xref: /freebsd/sys/dev/cxgbe/common/t4_hw.c (revision 7f9dff23d3092aa33ad45b2b63e52469b3c13a6e)
1 /*-
2  * Copyright (c) 2012, 2016 Chelsio Communications, Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_inet.h"
31 
32 #include <sys/param.h>
33 #include <sys/eventhandler.h>
34 
35 #include "common.h"
36 #include "t4_regs.h"
37 #include "t4_regs_values.h"
38 #include "firmware/t4fw_interface.h"
39 
40 #undef msleep
41 #define msleep(x) do { \
42 	if (cold) \
43 		DELAY((x) * 1000); \
44 	else \
45 		pause("t4hw", (x) * hz / 1000); \
46 } while (0)
47 
48 /**
49  *	t4_wait_op_done_val - wait until an operation is completed
50  *	@adapter: the adapter performing the operation
51  *	@reg: the register to check for completion
52  *	@mask: a single-bit field within @reg that indicates completion
53  *	@polarity: the value of the field when the operation is completed
54  *	@attempts: number of check iterations
55  *	@delay: delay in usecs between iterations
56  *	@valp: where to store the value of the register at completion time
57  *
58  *	Wait until an operation is completed by checking a bit in a register
59  *	up to @attempts times.  If @valp is not NULL the value of the register
60  *	at the time it indicated completion is stored there.  Returns 0 if the
61  *	operation completes and	-EAGAIN	otherwise.
62  */
63 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
64 			       int polarity, int attempts, int delay, u32 *valp)
65 {
66 	while (1) {
67 		u32 val = t4_read_reg(adapter, reg);
68 
69 		if (!!(val & mask) == polarity) {
70 			if (valp)
71 				*valp = val;
72 			return 0;
73 		}
74 		if (--attempts == 0)
75 			return -EAGAIN;
76 		if (delay)
77 			udelay(delay);
78 	}
79 }
80 
81 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
82 				  int polarity, int attempts, int delay)
83 {
84 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
85 				   delay, NULL);
86 }
87 
88 /**
89  *	t4_set_reg_field - set a register field to a value
90  *	@adapter: the adapter to program
91  *	@addr: the register address
92  *	@mask: specifies the portion of the register to modify
93  *	@val: the new value for the register field
94  *
95  *	Sets a register field specified by the supplied mask to the
96  *	given value.
97  */
98 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
99 		      u32 val)
100 {
101 	u32 v = t4_read_reg(adapter, addr) & ~mask;
102 
103 	t4_write_reg(adapter, addr, v | val);
104 	(void) t4_read_reg(adapter, addr);      /* flush */
105 }
106 
107 /**
108  *	t4_read_indirect - read indirectly addressed registers
109  *	@adap: the adapter
110  *	@addr_reg: register holding the indirect address
111  *	@data_reg: register holding the value of the indirect register
112  *	@vals: where the read register values are stored
113  *	@nregs: how many indirect registers to read
114  *	@start_idx: index of first indirect register to read
115  *
116  *	Reads registers that are accessed indirectly through an address/data
117  *	register pair.
118  */
119 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
120 			     unsigned int data_reg, u32 *vals,
121 			     unsigned int nregs, unsigned int start_idx)
122 {
123 	while (nregs--) {
124 		t4_write_reg(adap, addr_reg, start_idx);
125 		*vals++ = t4_read_reg(adap, data_reg);
126 		start_idx++;
127 	}
128 }
129 
130 /**
131  *	t4_write_indirect - write indirectly addressed registers
132  *	@adap: the adapter
133  *	@addr_reg: register holding the indirect addresses
134  *	@data_reg: register holding the value for the indirect registers
135  *	@vals: values to write
136  *	@nregs: how many indirect registers to write
137  *	@start_idx: address of first indirect register to write
138  *
139  *	Writes a sequential block of registers that are accessed indirectly
140  *	through an address/data register pair.
141  */
142 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
143 		       unsigned int data_reg, const u32 *vals,
144 		       unsigned int nregs, unsigned int start_idx)
145 {
146 	while (nregs--) {
147 		t4_write_reg(adap, addr_reg, start_idx++);
148 		t4_write_reg(adap, data_reg, *vals++);
149 	}
150 }
151 
152 /*
153  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
154  * mechanism.  This guarantees that we get the real value even if we're
155  * operating within a Virtual Machine and the Hypervisor is trapping our
156  * Configuration Space accesses.
157  *
158  * N.B. This routine should only be used as a last resort: the firmware uses
159  *      the backdoor registers on a regular basis and we can end up
160  *      conflicting with it's uses!
161  */
162 u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
163 {
164 	u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg);
165 	u32 val;
166 
167 	if (chip_id(adap) <= CHELSIO_T5)
168 		req |= F_ENABLE;
169 	else
170 		req |= F_T6_ENABLE;
171 
172 	if (is_t4(adap))
173 		req |= F_LOCALCFG;
174 
175 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req);
176 	val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
177 
178 	/*
179 	 * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
180 	 * Configuration Space read.  (None of the other fields matter when
181 	 * F_ENABLE is 0 so a simple register write is easier than a
182 	 * read-modify-write via t4_set_reg_field().)
183 	 */
184 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0);
185 
186 	return val;
187 }
188 
189 /*
190  * t4_report_fw_error - report firmware error
191  * @adap: the adapter
192  *
193  * The adapter firmware can indicate error conditions to the host.
194  * If the firmware has indicated an error, print out the reason for
195  * the firmware error.
196  */
197 static void t4_report_fw_error(struct adapter *adap)
198 {
199 	static const char *const reason[] = {
200 		"Crash",			/* PCIE_FW_EVAL_CRASH */
201 		"During Device Preparation",	/* PCIE_FW_EVAL_PREP */
202 		"During Device Configuration",	/* PCIE_FW_EVAL_CONF */
203 		"During Device Initialization",	/* PCIE_FW_EVAL_INIT */
204 		"Unexpected Event",		/* PCIE_FW_EVAL_UNEXPECTEDEVENT */
205 		"Insufficient Airflow",		/* PCIE_FW_EVAL_OVERHEAT */
206 		"Device Shutdown",		/* PCIE_FW_EVAL_DEVICESHUTDOWN */
207 		"Reserved",			/* reserved */
208 	};
209 	u32 pcie_fw;
210 
211 	pcie_fw = t4_read_reg(adap, A_PCIE_FW);
212 	if (pcie_fw & F_PCIE_FW_ERR)
213 		CH_ERR(adap, "Firmware reports adapter error: %s\n",
214 			reason[G_PCIE_FW_EVAL(pcie_fw)]);
215 }
216 
217 /*
218  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
219  */
220 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
221 			 u32 mbox_addr)
222 {
223 	for ( ; nflit; nflit--, mbox_addr += 8)
224 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
225 }
226 
227 /*
228  * Handle a FW assertion reported in a mailbox.
229  */
230 static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt)
231 {
232 	CH_ALERT(adap,
233 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
234 		  asrt->u.assert.filename_0_7,
235 		  be32_to_cpu(asrt->u.assert.line),
236 		  be32_to_cpu(asrt->u.assert.x),
237 		  be32_to_cpu(asrt->u.assert.y));
238 }
239 
240 #define X_CIM_PF_NOACCESS 0xeeeeeeee
241 /**
242  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
243  *	@adap: the adapter
244  *	@mbox: index of the mailbox to use
245  *	@cmd: the command to write
246  *	@size: command length in bytes
247  *	@rpl: where to optionally store the reply
248  *	@sleep_ok: if true we may sleep while awaiting command completion
249  *	@timeout: time to wait for command to finish before timing out
250  *		(negative implies @sleep_ok=false)
251  *
252  *	Sends the given command to FW through the selected mailbox and waits
253  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
254  *	store the FW's reply to the command.  The command and its optional
255  *	reply are of the same length.  Some FW commands like RESET and
256  *	INITIALIZE can take a considerable amount of time to execute.
257  *	@sleep_ok determines whether we may sleep while awaiting the response.
258  *	If sleeping is allowed we use progressive backoff otherwise we spin.
259  *	Note that passing in a negative @timeout is an alternate mechanism
260  *	for specifying @sleep_ok=false.  This is useful when a higher level
261  *	interface allows for specification of @timeout but not @sleep_ok ...
262  *
263  *	The return value is 0 on success or a negative errno on failure.  A
264  *	failure can happen either because we are not able to execute the
265  *	command or FW executes it but signals an error.  In the latter case
266  *	the return value is the error code indicated by FW (negated).
267  */
268 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
269 			    int size, void *rpl, bool sleep_ok, int timeout)
270 {
271 	/*
272 	 * We delay in small increments at first in an effort to maintain
273 	 * responsiveness for simple, fast executing commands but then back
274 	 * off to larger delays to a maximum retry delay.
275 	 */
276 	static const int delay[] = {
277 		1, 1, 3, 5, 10, 10, 20, 50, 100
278 	};
279 	u32 v;
280 	u64 res;
281 	int i, ms, delay_idx, ret;
282 	const __be64 *p = cmd;
283 	u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
284 	u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
285 	u32 ctl;
286 	__be64 cmd_rpl[MBOX_LEN/8];
287 	u32 pcie_fw;
288 
289 	if ((size & 15) || size > MBOX_LEN)
290 		return -EINVAL;
291 
292 	if (adap->flags & IS_VF) {
293 		if (is_t6(adap))
294 			data_reg = FW_T6VF_MBDATA_BASE_ADDR;
295 		else
296 			data_reg = FW_T4VF_MBDATA_BASE_ADDR;
297 		ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL);
298 	}
299 
300 	/*
301 	 * If we have a negative timeout, that implies that we can't sleep.
302 	 */
303 	if (timeout < 0) {
304 		sleep_ok = false;
305 		timeout = -timeout;
306 	}
307 
308 	/*
309 	 * Attempt to gain access to the mailbox.
310 	 */
311 	for (i = 0; i < 4; i++) {
312 		ctl = t4_read_reg(adap, ctl_reg);
313 		v = G_MBOWNER(ctl);
314 		if (v != X_MBOWNER_NONE)
315 			break;
316 	}
317 
318 	/*
319 	 * If we were unable to gain access, dequeue ourselves from the
320 	 * mailbox atomic access list and report the error to our caller.
321 	 */
322 	if (v != X_MBOWNER_PL) {
323 		t4_report_fw_error(adap);
324 		ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
325 		return ret;
326 	}
327 
328 	/*
329 	 * If we gain ownership of the mailbox and there's a "valid" message
330 	 * in it, this is likely an asynchronous error message from the
331 	 * firmware.  So we'll report that and then proceed on with attempting
332 	 * to issue our own command ... which may well fail if the error
333 	 * presaged the firmware crashing ...
334 	 */
335 	if (ctl & F_MBMSGVALID) {
336 		CH_ERR(adap, "found VALID command in mbox %u: "
337 		       "%llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
338 		       (unsigned long long)t4_read_reg64(adap, data_reg),
339 		       (unsigned long long)t4_read_reg64(adap, data_reg + 8),
340 		       (unsigned long long)t4_read_reg64(adap, data_reg + 16),
341 		       (unsigned long long)t4_read_reg64(adap, data_reg + 24),
342 		       (unsigned long long)t4_read_reg64(adap, data_reg + 32),
343 		       (unsigned long long)t4_read_reg64(adap, data_reg + 40),
344 		       (unsigned long long)t4_read_reg64(adap, data_reg + 48),
345 		       (unsigned long long)t4_read_reg64(adap, data_reg + 56));
346 	}
347 
348 	/*
349 	 * Copy in the new mailbox command and send it on its way ...
350 	 */
351 	for (i = 0; i < size; i += 8, p++)
352 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p));
353 
354 	if (adap->flags & IS_VF) {
355 		/*
356 		 * For the VFs, the Mailbox Data "registers" are
357 		 * actually backed by T4's "MA" interface rather than
358 		 * PL Registers (as is the case for the PFs).  Because
359 		 * these are in different coherency domains, the write
360 		 * to the VF's PL-register-backed Mailbox Control can
361 		 * race in front of the writes to the MA-backed VF
362 		 * Mailbox Data "registers".  So we need to do a
363 		 * read-back on at least one byte of the VF Mailbox
364 		 * Data registers before doing the write to the VF
365 		 * Mailbox Control register.
366 		 */
367 		t4_read_reg(adap, data_reg);
368 	}
369 
370 	CH_DUMP_MBOX(adap, mbox, data_reg);
371 
372 	t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
373 	t4_read_reg(adap, ctl_reg);	/* flush write */
374 
375 	delay_idx = 0;
376 	ms = delay[0];
377 
378 	/*
379 	 * Loop waiting for the reply; bail out if we time out or the firmware
380 	 * reports an error.
381 	 */
382 	pcie_fw = 0;
383 	for (i = 0; i < timeout; i += ms) {
384 		if (!(adap->flags & IS_VF)) {
385 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
386 			if (pcie_fw & F_PCIE_FW_ERR)
387 				break;
388 		}
389 		if (sleep_ok) {
390 			ms = delay[delay_idx];  /* last element may repeat */
391 			if (delay_idx < ARRAY_SIZE(delay) - 1)
392 				delay_idx++;
393 			msleep(ms);
394 		} else {
395 			mdelay(ms);
396 		}
397 
398 		v = t4_read_reg(adap, ctl_reg);
399 		if (v == X_CIM_PF_NOACCESS)
400 			continue;
401 		if (G_MBOWNER(v) == X_MBOWNER_PL) {
402 			if (!(v & F_MBMSGVALID)) {
403 				t4_write_reg(adap, ctl_reg,
404 					     V_MBOWNER(X_MBOWNER_NONE));
405 				continue;
406 			}
407 
408 			/*
409 			 * Retrieve the command reply and release the mailbox.
410 			 */
411 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg);
412 			t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
413 
414 			CH_DUMP_MBOX(adap, mbox, data_reg);
415 
416 			res = be64_to_cpu(cmd_rpl[0]);
417 			if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
418 				fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl);
419 				res = V_FW_CMD_RETVAL(EIO);
420 			} else if (rpl)
421 				memcpy(rpl, cmd_rpl, size);
422 			return -G_FW_CMD_RETVAL((int)res);
423 		}
424 	}
425 
426 	/*
427 	 * We timed out waiting for a reply to our mailbox command.  Report
428 	 * the error and also check to see if the firmware reported any
429 	 * errors ...
430 	 */
431 	ret = (pcie_fw & F_PCIE_FW_ERR) ? -ENXIO : -ETIMEDOUT;
432 	CH_ERR(adap, "command %#x in mailbox %d timed out\n",
433 	       *(const u8 *)cmd, mbox);
434 
435 	/* If DUMP_MBOX is set the mbox has already been dumped */
436 	if ((adap->debug_flags & DF_DUMP_MBOX) == 0) {
437 		p = cmd;
438 		CH_ERR(adap, "mbox: %016llx %016llx %016llx %016llx "
439 		    "%016llx %016llx %016llx %016llx\n",
440 		    (unsigned long long)be64_to_cpu(p[0]),
441 		    (unsigned long long)be64_to_cpu(p[1]),
442 		    (unsigned long long)be64_to_cpu(p[2]),
443 		    (unsigned long long)be64_to_cpu(p[3]),
444 		    (unsigned long long)be64_to_cpu(p[4]),
445 		    (unsigned long long)be64_to_cpu(p[5]),
446 		    (unsigned long long)be64_to_cpu(p[6]),
447 		    (unsigned long long)be64_to_cpu(p[7]));
448 	}
449 
450 	t4_report_fw_error(adap);
451 	t4_fatal_err(adap);
452 	return ret;
453 }
454 
455 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
456 		    void *rpl, bool sleep_ok)
457 {
458 		return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl,
459 					       sleep_ok, FW_CMD_MAX_TIMEOUT);
460 
461 }
462 
463 static int t4_edc_err_read(struct adapter *adap, int idx)
464 {
465 	u32 edc_ecc_err_addr_reg;
466 	u32 edc_bist_status_rdata_reg;
467 
468 	if (is_t4(adap)) {
469 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
470 		return 0;
471 	}
472 	if (idx != 0 && idx != 1) {
473 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
474 		return 0;
475 	}
476 
477 	edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx);
478 	edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx);
479 
480 	CH_WARN(adap,
481 		"edc%d err addr 0x%x: 0x%x.\n",
482 		idx, edc_ecc_err_addr_reg,
483 		t4_read_reg(adap, edc_ecc_err_addr_reg));
484 	CH_WARN(adap,
485 	 	"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
486 		edc_bist_status_rdata_reg,
487 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg),
488 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8),
489 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16),
490 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24),
491 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32),
492 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40),
493 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48),
494 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56),
495 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64));
496 
497 	return 0;
498 }
499 
500 /**
501  *	t4_mc_read - read from MC through backdoor accesses
502  *	@adap: the adapter
503  *	@idx: which MC to access
504  *	@addr: address of first byte requested
505  *	@data: 64 bytes of data containing the requested address
506  *	@ecc: where to store the corresponding 64-bit ECC word
507  *
508  *	Read 64 bytes of data from MC starting at a 64-byte-aligned address
509  *	that covers the requested address @addr.  If @parity is not %NULL it
510  *	is assigned the 64-bit ECC word for the read data.
511  */
512 int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
513 {
514 	int i;
515 	u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
516 	u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
517 
518 	if (is_t4(adap)) {
519 		mc_bist_cmd_reg = A_MC_BIST_CMD;
520 		mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
521 		mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
522 		mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
523 		mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
524 	} else {
525 		mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
526 		mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
527 		mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
528 		mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA,
529 						  idx);
530 		mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN,
531 						  idx);
532 	}
533 
534 	if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
535 		return -EBUSY;
536 	t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
537 	t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
538 	t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
539 	t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
540 		     F_START_BIST | V_BIST_CMD_GAP(1));
541 	i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
542 	if (i)
543 		return i;
544 
545 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
546 
547 	for (i = 15; i >= 0; i--)
548 		*data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
549 	if (ecc)
550 		*ecc = t4_read_reg64(adap, MC_DATA(16));
551 #undef MC_DATA
552 	return 0;
553 }
554 
555 /**
556  *	t4_edc_read - read from EDC through backdoor accesses
557  *	@adap: the adapter
558  *	@idx: which EDC to access
559  *	@addr: address of first byte requested
560  *	@data: 64 bytes of data containing the requested address
561  *	@ecc: where to store the corresponding 64-bit ECC word
562  *
563  *	Read 64 bytes of data from EDC starting at a 64-byte-aligned address
564  *	that covers the requested address @addr.  If @parity is not %NULL it
565  *	is assigned the 64-bit ECC word for the read data.
566  */
567 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
568 {
569 	int i;
570 	u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
571 	u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
572 
573 	if (is_t4(adap)) {
574 		edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
575 		edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
576 		edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
577 		edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
578 						    idx);
579 		edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
580 						    idx);
581 	} else {
582 /*
583  * These macro are missing in t4_regs.h file.
584  * Added temporarily for testing.
585  */
586 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
587 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
588 		edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx);
589 		edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx);
590 		edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx);
591 		edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN,
592 						    idx);
593 		edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA,
594 						    idx);
595 #undef EDC_REG_T5
596 #undef EDC_STRIDE_T5
597 	}
598 
599 	if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
600 		return -EBUSY;
601 	t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
602 	t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
603 	t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
604 	t4_write_reg(adap, edc_bist_cmd_reg,
605 		     V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
606 	i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
607 	if (i)
608 		return i;
609 
610 #define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
611 
612 	for (i = 15; i >= 0; i--)
613 		*data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
614 	if (ecc)
615 		*ecc = t4_read_reg64(adap, EDC_DATA(16));
616 #undef EDC_DATA
617 	return 0;
618 }
619 
620 /**
621  *	t4_mem_read - read EDC 0, EDC 1 or MC into buffer
622  *	@adap: the adapter
623  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
624  *	@addr: address within indicated memory type
625  *	@len: amount of memory to read
626  *	@buf: host memory buffer
627  *
628  *	Reads an [almost] arbitrary memory region in the firmware: the
629  *	firmware memory address, length and host buffer must be aligned on
630  *	32-bit boudaries.  The memory is returned as a raw byte sequence from
631  *	the firmware's memory.  If this memory contains data structures which
632  *	contain multi-byte integers, it's the callers responsibility to
633  *	perform appropriate byte order conversions.
634  */
635 int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
636 		__be32 *buf)
637 {
638 	u32 pos, start, end, offset;
639 	int ret;
640 
641 	/*
642 	 * Argument sanity checks ...
643 	 */
644 	if ((addr & 0x3) || (len & 0x3))
645 		return -EINVAL;
646 
647 	/*
648 	 * The underlaying EDC/MC read routines read 64 bytes at a time so we
649 	 * need to round down the start and round up the end.  We'll start
650 	 * copying out of the first line at (addr - start) a word at a time.
651 	 */
652 	start = rounddown2(addr, 64);
653 	end = roundup2(addr + len, 64);
654 	offset = (addr - start)/sizeof(__be32);
655 
656 	for (pos = start; pos < end; pos += 64, offset = 0) {
657 		__be32 data[16];
658 
659 		/*
660 		 * Read the chip's memory block and bail if there's an error.
661 		 */
662 		if ((mtype == MEM_MC) || (mtype == MEM_MC1))
663 			ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
664 		else
665 			ret = t4_edc_read(adap, mtype, pos, data, NULL);
666 		if (ret)
667 			return ret;
668 
669 		/*
670 		 * Copy the data into the caller's memory buffer.
671 		 */
672 		while (offset < 16 && len > 0) {
673 			*buf++ = data[offset++];
674 			len -= sizeof(__be32);
675 		}
676 	}
677 
678 	return 0;
679 }
680 
681 /*
682  * Return the specified PCI-E Configuration Space register from our Physical
683  * Function.  We try first via a Firmware LDST Command (if fw_attach != 0)
684  * since we prefer to let the firmware own all of these registers, but if that
685  * fails we go for it directly ourselves.
686  */
687 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach)
688 {
689 
690 	/*
691 	 * If fw_attach != 0, construct and send the Firmware LDST Command to
692 	 * retrieve the specified PCI-E Configuration Space register.
693 	 */
694 	if (drv_fw_attach != 0) {
695 		struct fw_ldst_cmd ldst_cmd;
696 		int ret;
697 
698 		memset(&ldst_cmd, 0, sizeof(ldst_cmd));
699 		ldst_cmd.op_to_addrspace =
700 			cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
701 				    F_FW_CMD_REQUEST |
702 				    F_FW_CMD_READ |
703 				    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
704 		ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
705 		ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1);
706 		ldst_cmd.u.pcie.ctrl_to_fn =
707 			(F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf));
708 		ldst_cmd.u.pcie.r = reg;
709 
710 		/*
711 		 * If the LDST Command succeeds, return the result, otherwise
712 		 * fall through to reading it directly ourselves ...
713 		 */
714 		ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
715 				 &ldst_cmd);
716 		if (ret == 0)
717 			return be32_to_cpu(ldst_cmd.u.pcie.data[0]);
718 
719 		CH_WARN(adap, "Firmware failed to return "
720 			"Configuration Space register %d, err = %d\n",
721 			reg, -ret);
722 	}
723 
724 	/*
725 	 * Read the desired Configuration Space register via the PCI-E
726 	 * Backdoor mechanism.
727 	 */
728 	return t4_hw_pci_read_cfg4(adap, reg);
729 }
730 
731 /**
732  *	t4_get_regs_len - return the size of the chips register set
733  *	@adapter: the adapter
734  *
735  *	Returns the size of the chip's BAR0 register space.
736  */
737 unsigned int t4_get_regs_len(struct adapter *adapter)
738 {
739 	unsigned int chip_version = chip_id(adapter);
740 
741 	switch (chip_version) {
742 	case CHELSIO_T4:
743 		if (adapter->flags & IS_VF)
744 			return FW_T4VF_REGMAP_SIZE;
745 		return T4_REGMAP_SIZE;
746 
747 	case CHELSIO_T5:
748 	case CHELSIO_T6:
749 		if (adapter->flags & IS_VF)
750 			return FW_T4VF_REGMAP_SIZE;
751 		return T5_REGMAP_SIZE;
752 	}
753 
754 	CH_ERR(adapter,
755 		"Unsupported chip version %d\n", chip_version);
756 	return 0;
757 }
758 
759 /**
760  *	t4_get_regs - read chip registers into provided buffer
761  *	@adap: the adapter
762  *	@buf: register buffer
763  *	@buf_size: size (in bytes) of register buffer
764  *
765  *	If the provided register buffer isn't large enough for the chip's
766  *	full register range, the register dump will be truncated to the
767  *	register buffer's size.
768  */
769 void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size)
770 {
771 	static const unsigned int t4_reg_ranges[] = {
772 		0x1008, 0x1108,
773 		0x1180, 0x1184,
774 		0x1190, 0x1194,
775 		0x11a0, 0x11a4,
776 		0x11b0, 0x11b4,
777 		0x11fc, 0x123c,
778 		0x1300, 0x173c,
779 		0x1800, 0x18fc,
780 		0x3000, 0x30d8,
781 		0x30e0, 0x30e4,
782 		0x30ec, 0x5910,
783 		0x5920, 0x5924,
784 		0x5960, 0x5960,
785 		0x5968, 0x5968,
786 		0x5970, 0x5970,
787 		0x5978, 0x5978,
788 		0x5980, 0x5980,
789 		0x5988, 0x5988,
790 		0x5990, 0x5990,
791 		0x5998, 0x5998,
792 		0x59a0, 0x59d4,
793 		0x5a00, 0x5ae0,
794 		0x5ae8, 0x5ae8,
795 		0x5af0, 0x5af0,
796 		0x5af8, 0x5af8,
797 		0x6000, 0x6098,
798 		0x6100, 0x6150,
799 		0x6200, 0x6208,
800 		0x6240, 0x6248,
801 		0x6280, 0x62b0,
802 		0x62c0, 0x6338,
803 		0x6370, 0x638c,
804 		0x6400, 0x643c,
805 		0x6500, 0x6524,
806 		0x6a00, 0x6a04,
807 		0x6a14, 0x6a38,
808 		0x6a60, 0x6a70,
809 		0x6a78, 0x6a78,
810 		0x6b00, 0x6b0c,
811 		0x6b1c, 0x6b84,
812 		0x6bf0, 0x6bf8,
813 		0x6c00, 0x6c0c,
814 		0x6c1c, 0x6c84,
815 		0x6cf0, 0x6cf8,
816 		0x6d00, 0x6d0c,
817 		0x6d1c, 0x6d84,
818 		0x6df0, 0x6df8,
819 		0x6e00, 0x6e0c,
820 		0x6e1c, 0x6e84,
821 		0x6ef0, 0x6ef8,
822 		0x6f00, 0x6f0c,
823 		0x6f1c, 0x6f84,
824 		0x6ff0, 0x6ff8,
825 		0x7000, 0x700c,
826 		0x701c, 0x7084,
827 		0x70f0, 0x70f8,
828 		0x7100, 0x710c,
829 		0x711c, 0x7184,
830 		0x71f0, 0x71f8,
831 		0x7200, 0x720c,
832 		0x721c, 0x7284,
833 		0x72f0, 0x72f8,
834 		0x7300, 0x730c,
835 		0x731c, 0x7384,
836 		0x73f0, 0x73f8,
837 		0x7400, 0x7450,
838 		0x7500, 0x7530,
839 		0x7600, 0x760c,
840 		0x7614, 0x761c,
841 		0x7680, 0x76cc,
842 		0x7700, 0x7798,
843 		0x77c0, 0x77fc,
844 		0x7900, 0x79fc,
845 		0x7b00, 0x7b58,
846 		0x7b60, 0x7b84,
847 		0x7b8c, 0x7c38,
848 		0x7d00, 0x7d38,
849 		0x7d40, 0x7d80,
850 		0x7d8c, 0x7ddc,
851 		0x7de4, 0x7e04,
852 		0x7e10, 0x7e1c,
853 		0x7e24, 0x7e38,
854 		0x7e40, 0x7e44,
855 		0x7e4c, 0x7e78,
856 		0x7e80, 0x7ea4,
857 		0x7eac, 0x7edc,
858 		0x7ee8, 0x7efc,
859 		0x8dc0, 0x8e04,
860 		0x8e10, 0x8e1c,
861 		0x8e30, 0x8e78,
862 		0x8ea0, 0x8eb8,
863 		0x8ec0, 0x8f6c,
864 		0x8fc0, 0x9008,
865 		0x9010, 0x9058,
866 		0x9060, 0x9060,
867 		0x9068, 0x9074,
868 		0x90fc, 0x90fc,
869 		0x9400, 0x9408,
870 		0x9410, 0x9458,
871 		0x9600, 0x9600,
872 		0x9608, 0x9638,
873 		0x9640, 0x96bc,
874 		0x9800, 0x9808,
875 		0x9820, 0x983c,
876 		0x9850, 0x9864,
877 		0x9c00, 0x9c6c,
878 		0x9c80, 0x9cec,
879 		0x9d00, 0x9d6c,
880 		0x9d80, 0x9dec,
881 		0x9e00, 0x9e6c,
882 		0x9e80, 0x9eec,
883 		0x9f00, 0x9f6c,
884 		0x9f80, 0x9fec,
885 		0xd004, 0xd004,
886 		0xd010, 0xd03c,
887 		0xdfc0, 0xdfe0,
888 		0xe000, 0xea7c,
889 		0xf000, 0x11190,
890 		0x19040, 0x1906c,
891 		0x19078, 0x19080,
892 		0x1908c, 0x190e4,
893 		0x190f0, 0x190f8,
894 		0x19100, 0x19110,
895 		0x19120, 0x19124,
896 		0x19150, 0x19194,
897 		0x1919c, 0x191b0,
898 		0x191d0, 0x191e8,
899 		0x19238, 0x1924c,
900 		0x193f8, 0x1943c,
901 		0x1944c, 0x19474,
902 		0x19490, 0x194e0,
903 		0x194f0, 0x194f8,
904 		0x19800, 0x19c08,
905 		0x19c10, 0x19c90,
906 		0x19ca0, 0x19ce4,
907 		0x19cf0, 0x19d40,
908 		0x19d50, 0x19d94,
909 		0x19da0, 0x19de8,
910 		0x19df0, 0x19e40,
911 		0x19e50, 0x19e90,
912 		0x19ea0, 0x19f4c,
913 		0x1a000, 0x1a004,
914 		0x1a010, 0x1a06c,
915 		0x1a0b0, 0x1a0e4,
916 		0x1a0ec, 0x1a0f4,
917 		0x1a100, 0x1a108,
918 		0x1a114, 0x1a120,
919 		0x1a128, 0x1a130,
920 		0x1a138, 0x1a138,
921 		0x1a190, 0x1a1c4,
922 		0x1a1fc, 0x1a1fc,
923 		0x1e040, 0x1e04c,
924 		0x1e284, 0x1e28c,
925 		0x1e2c0, 0x1e2c0,
926 		0x1e2e0, 0x1e2e0,
927 		0x1e300, 0x1e384,
928 		0x1e3c0, 0x1e3c8,
929 		0x1e440, 0x1e44c,
930 		0x1e684, 0x1e68c,
931 		0x1e6c0, 0x1e6c0,
932 		0x1e6e0, 0x1e6e0,
933 		0x1e700, 0x1e784,
934 		0x1e7c0, 0x1e7c8,
935 		0x1e840, 0x1e84c,
936 		0x1ea84, 0x1ea8c,
937 		0x1eac0, 0x1eac0,
938 		0x1eae0, 0x1eae0,
939 		0x1eb00, 0x1eb84,
940 		0x1ebc0, 0x1ebc8,
941 		0x1ec40, 0x1ec4c,
942 		0x1ee84, 0x1ee8c,
943 		0x1eec0, 0x1eec0,
944 		0x1eee0, 0x1eee0,
945 		0x1ef00, 0x1ef84,
946 		0x1efc0, 0x1efc8,
947 		0x1f040, 0x1f04c,
948 		0x1f284, 0x1f28c,
949 		0x1f2c0, 0x1f2c0,
950 		0x1f2e0, 0x1f2e0,
951 		0x1f300, 0x1f384,
952 		0x1f3c0, 0x1f3c8,
953 		0x1f440, 0x1f44c,
954 		0x1f684, 0x1f68c,
955 		0x1f6c0, 0x1f6c0,
956 		0x1f6e0, 0x1f6e0,
957 		0x1f700, 0x1f784,
958 		0x1f7c0, 0x1f7c8,
959 		0x1f840, 0x1f84c,
960 		0x1fa84, 0x1fa8c,
961 		0x1fac0, 0x1fac0,
962 		0x1fae0, 0x1fae0,
963 		0x1fb00, 0x1fb84,
964 		0x1fbc0, 0x1fbc8,
965 		0x1fc40, 0x1fc4c,
966 		0x1fe84, 0x1fe8c,
967 		0x1fec0, 0x1fec0,
968 		0x1fee0, 0x1fee0,
969 		0x1ff00, 0x1ff84,
970 		0x1ffc0, 0x1ffc8,
971 		0x20000, 0x2002c,
972 		0x20100, 0x2013c,
973 		0x20190, 0x201a0,
974 		0x201a8, 0x201b8,
975 		0x201c4, 0x201c8,
976 		0x20200, 0x20318,
977 		0x20400, 0x204b4,
978 		0x204c0, 0x20528,
979 		0x20540, 0x20614,
980 		0x21000, 0x21040,
981 		0x2104c, 0x21060,
982 		0x210c0, 0x210ec,
983 		0x21200, 0x21268,
984 		0x21270, 0x21284,
985 		0x212fc, 0x21388,
986 		0x21400, 0x21404,
987 		0x21500, 0x21500,
988 		0x21510, 0x21518,
989 		0x2152c, 0x21530,
990 		0x2153c, 0x2153c,
991 		0x21550, 0x21554,
992 		0x21600, 0x21600,
993 		0x21608, 0x2161c,
994 		0x21624, 0x21628,
995 		0x21630, 0x21634,
996 		0x2163c, 0x2163c,
997 		0x21700, 0x2171c,
998 		0x21780, 0x2178c,
999 		0x21800, 0x21818,
1000 		0x21820, 0x21828,
1001 		0x21830, 0x21848,
1002 		0x21850, 0x21854,
1003 		0x21860, 0x21868,
1004 		0x21870, 0x21870,
1005 		0x21878, 0x21898,
1006 		0x218a0, 0x218a8,
1007 		0x218b0, 0x218c8,
1008 		0x218d0, 0x218d4,
1009 		0x218e0, 0x218e8,
1010 		0x218f0, 0x218f0,
1011 		0x218f8, 0x21a18,
1012 		0x21a20, 0x21a28,
1013 		0x21a30, 0x21a48,
1014 		0x21a50, 0x21a54,
1015 		0x21a60, 0x21a68,
1016 		0x21a70, 0x21a70,
1017 		0x21a78, 0x21a98,
1018 		0x21aa0, 0x21aa8,
1019 		0x21ab0, 0x21ac8,
1020 		0x21ad0, 0x21ad4,
1021 		0x21ae0, 0x21ae8,
1022 		0x21af0, 0x21af0,
1023 		0x21af8, 0x21c18,
1024 		0x21c20, 0x21c20,
1025 		0x21c28, 0x21c30,
1026 		0x21c38, 0x21c38,
1027 		0x21c80, 0x21c98,
1028 		0x21ca0, 0x21ca8,
1029 		0x21cb0, 0x21cc8,
1030 		0x21cd0, 0x21cd4,
1031 		0x21ce0, 0x21ce8,
1032 		0x21cf0, 0x21cf0,
1033 		0x21cf8, 0x21d7c,
1034 		0x21e00, 0x21e04,
1035 		0x22000, 0x2202c,
1036 		0x22100, 0x2213c,
1037 		0x22190, 0x221a0,
1038 		0x221a8, 0x221b8,
1039 		0x221c4, 0x221c8,
1040 		0x22200, 0x22318,
1041 		0x22400, 0x224b4,
1042 		0x224c0, 0x22528,
1043 		0x22540, 0x22614,
1044 		0x23000, 0x23040,
1045 		0x2304c, 0x23060,
1046 		0x230c0, 0x230ec,
1047 		0x23200, 0x23268,
1048 		0x23270, 0x23284,
1049 		0x232fc, 0x23388,
1050 		0x23400, 0x23404,
1051 		0x23500, 0x23500,
1052 		0x23510, 0x23518,
1053 		0x2352c, 0x23530,
1054 		0x2353c, 0x2353c,
1055 		0x23550, 0x23554,
1056 		0x23600, 0x23600,
1057 		0x23608, 0x2361c,
1058 		0x23624, 0x23628,
1059 		0x23630, 0x23634,
1060 		0x2363c, 0x2363c,
1061 		0x23700, 0x2371c,
1062 		0x23780, 0x2378c,
1063 		0x23800, 0x23818,
1064 		0x23820, 0x23828,
1065 		0x23830, 0x23848,
1066 		0x23850, 0x23854,
1067 		0x23860, 0x23868,
1068 		0x23870, 0x23870,
1069 		0x23878, 0x23898,
1070 		0x238a0, 0x238a8,
1071 		0x238b0, 0x238c8,
1072 		0x238d0, 0x238d4,
1073 		0x238e0, 0x238e8,
1074 		0x238f0, 0x238f0,
1075 		0x238f8, 0x23a18,
1076 		0x23a20, 0x23a28,
1077 		0x23a30, 0x23a48,
1078 		0x23a50, 0x23a54,
1079 		0x23a60, 0x23a68,
1080 		0x23a70, 0x23a70,
1081 		0x23a78, 0x23a98,
1082 		0x23aa0, 0x23aa8,
1083 		0x23ab0, 0x23ac8,
1084 		0x23ad0, 0x23ad4,
1085 		0x23ae0, 0x23ae8,
1086 		0x23af0, 0x23af0,
1087 		0x23af8, 0x23c18,
1088 		0x23c20, 0x23c20,
1089 		0x23c28, 0x23c30,
1090 		0x23c38, 0x23c38,
1091 		0x23c80, 0x23c98,
1092 		0x23ca0, 0x23ca8,
1093 		0x23cb0, 0x23cc8,
1094 		0x23cd0, 0x23cd4,
1095 		0x23ce0, 0x23ce8,
1096 		0x23cf0, 0x23cf0,
1097 		0x23cf8, 0x23d7c,
1098 		0x23e00, 0x23e04,
1099 		0x24000, 0x2402c,
1100 		0x24100, 0x2413c,
1101 		0x24190, 0x241a0,
1102 		0x241a8, 0x241b8,
1103 		0x241c4, 0x241c8,
1104 		0x24200, 0x24318,
1105 		0x24400, 0x244b4,
1106 		0x244c0, 0x24528,
1107 		0x24540, 0x24614,
1108 		0x25000, 0x25040,
1109 		0x2504c, 0x25060,
1110 		0x250c0, 0x250ec,
1111 		0x25200, 0x25268,
1112 		0x25270, 0x25284,
1113 		0x252fc, 0x25388,
1114 		0x25400, 0x25404,
1115 		0x25500, 0x25500,
1116 		0x25510, 0x25518,
1117 		0x2552c, 0x25530,
1118 		0x2553c, 0x2553c,
1119 		0x25550, 0x25554,
1120 		0x25600, 0x25600,
1121 		0x25608, 0x2561c,
1122 		0x25624, 0x25628,
1123 		0x25630, 0x25634,
1124 		0x2563c, 0x2563c,
1125 		0x25700, 0x2571c,
1126 		0x25780, 0x2578c,
1127 		0x25800, 0x25818,
1128 		0x25820, 0x25828,
1129 		0x25830, 0x25848,
1130 		0x25850, 0x25854,
1131 		0x25860, 0x25868,
1132 		0x25870, 0x25870,
1133 		0x25878, 0x25898,
1134 		0x258a0, 0x258a8,
1135 		0x258b0, 0x258c8,
1136 		0x258d0, 0x258d4,
1137 		0x258e0, 0x258e8,
1138 		0x258f0, 0x258f0,
1139 		0x258f8, 0x25a18,
1140 		0x25a20, 0x25a28,
1141 		0x25a30, 0x25a48,
1142 		0x25a50, 0x25a54,
1143 		0x25a60, 0x25a68,
1144 		0x25a70, 0x25a70,
1145 		0x25a78, 0x25a98,
1146 		0x25aa0, 0x25aa8,
1147 		0x25ab0, 0x25ac8,
1148 		0x25ad0, 0x25ad4,
1149 		0x25ae0, 0x25ae8,
1150 		0x25af0, 0x25af0,
1151 		0x25af8, 0x25c18,
1152 		0x25c20, 0x25c20,
1153 		0x25c28, 0x25c30,
1154 		0x25c38, 0x25c38,
1155 		0x25c80, 0x25c98,
1156 		0x25ca0, 0x25ca8,
1157 		0x25cb0, 0x25cc8,
1158 		0x25cd0, 0x25cd4,
1159 		0x25ce0, 0x25ce8,
1160 		0x25cf0, 0x25cf0,
1161 		0x25cf8, 0x25d7c,
1162 		0x25e00, 0x25e04,
1163 		0x26000, 0x2602c,
1164 		0x26100, 0x2613c,
1165 		0x26190, 0x261a0,
1166 		0x261a8, 0x261b8,
1167 		0x261c4, 0x261c8,
1168 		0x26200, 0x26318,
1169 		0x26400, 0x264b4,
1170 		0x264c0, 0x26528,
1171 		0x26540, 0x26614,
1172 		0x27000, 0x27040,
1173 		0x2704c, 0x27060,
1174 		0x270c0, 0x270ec,
1175 		0x27200, 0x27268,
1176 		0x27270, 0x27284,
1177 		0x272fc, 0x27388,
1178 		0x27400, 0x27404,
1179 		0x27500, 0x27500,
1180 		0x27510, 0x27518,
1181 		0x2752c, 0x27530,
1182 		0x2753c, 0x2753c,
1183 		0x27550, 0x27554,
1184 		0x27600, 0x27600,
1185 		0x27608, 0x2761c,
1186 		0x27624, 0x27628,
1187 		0x27630, 0x27634,
1188 		0x2763c, 0x2763c,
1189 		0x27700, 0x2771c,
1190 		0x27780, 0x2778c,
1191 		0x27800, 0x27818,
1192 		0x27820, 0x27828,
1193 		0x27830, 0x27848,
1194 		0x27850, 0x27854,
1195 		0x27860, 0x27868,
1196 		0x27870, 0x27870,
1197 		0x27878, 0x27898,
1198 		0x278a0, 0x278a8,
1199 		0x278b0, 0x278c8,
1200 		0x278d0, 0x278d4,
1201 		0x278e0, 0x278e8,
1202 		0x278f0, 0x278f0,
1203 		0x278f8, 0x27a18,
1204 		0x27a20, 0x27a28,
1205 		0x27a30, 0x27a48,
1206 		0x27a50, 0x27a54,
1207 		0x27a60, 0x27a68,
1208 		0x27a70, 0x27a70,
1209 		0x27a78, 0x27a98,
1210 		0x27aa0, 0x27aa8,
1211 		0x27ab0, 0x27ac8,
1212 		0x27ad0, 0x27ad4,
1213 		0x27ae0, 0x27ae8,
1214 		0x27af0, 0x27af0,
1215 		0x27af8, 0x27c18,
1216 		0x27c20, 0x27c20,
1217 		0x27c28, 0x27c30,
1218 		0x27c38, 0x27c38,
1219 		0x27c80, 0x27c98,
1220 		0x27ca0, 0x27ca8,
1221 		0x27cb0, 0x27cc8,
1222 		0x27cd0, 0x27cd4,
1223 		0x27ce0, 0x27ce8,
1224 		0x27cf0, 0x27cf0,
1225 		0x27cf8, 0x27d7c,
1226 		0x27e00, 0x27e04,
1227 	};
1228 
1229 	static const unsigned int t4vf_reg_ranges[] = {
1230 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
1231 		VF_MPS_REG(A_MPS_VF_CTL),
1232 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
1233 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI),
1234 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
1235 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
1236 		FW_T4VF_MBDATA_BASE_ADDR,
1237 		FW_T4VF_MBDATA_BASE_ADDR +
1238 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
1239 	};
1240 
1241 	static const unsigned int t5_reg_ranges[] = {
1242 		0x1008, 0x10c0,
1243 		0x10cc, 0x10f8,
1244 		0x1100, 0x1100,
1245 		0x110c, 0x1148,
1246 		0x1180, 0x1184,
1247 		0x1190, 0x1194,
1248 		0x11a0, 0x11a4,
1249 		0x11b0, 0x11b4,
1250 		0x11fc, 0x123c,
1251 		0x1280, 0x173c,
1252 		0x1800, 0x18fc,
1253 		0x3000, 0x3028,
1254 		0x3060, 0x30b0,
1255 		0x30b8, 0x30d8,
1256 		0x30e0, 0x30fc,
1257 		0x3140, 0x357c,
1258 		0x35a8, 0x35cc,
1259 		0x35ec, 0x35ec,
1260 		0x3600, 0x5624,
1261 		0x56cc, 0x56ec,
1262 		0x56f4, 0x5720,
1263 		0x5728, 0x575c,
1264 		0x580c, 0x5814,
1265 		0x5890, 0x589c,
1266 		0x58a4, 0x58ac,
1267 		0x58b8, 0x58bc,
1268 		0x5940, 0x59c8,
1269 		0x59d0, 0x59dc,
1270 		0x59fc, 0x5a18,
1271 		0x5a60, 0x5a70,
1272 		0x5a80, 0x5a9c,
1273 		0x5b94, 0x5bfc,
1274 		0x6000, 0x6020,
1275 		0x6028, 0x6040,
1276 		0x6058, 0x609c,
1277 		0x60a8, 0x614c,
1278 		0x7700, 0x7798,
1279 		0x77c0, 0x78fc,
1280 		0x7b00, 0x7b58,
1281 		0x7b60, 0x7b84,
1282 		0x7b8c, 0x7c54,
1283 		0x7d00, 0x7d38,
1284 		0x7d40, 0x7d80,
1285 		0x7d8c, 0x7ddc,
1286 		0x7de4, 0x7e04,
1287 		0x7e10, 0x7e1c,
1288 		0x7e24, 0x7e38,
1289 		0x7e40, 0x7e44,
1290 		0x7e4c, 0x7e78,
1291 		0x7e80, 0x7edc,
1292 		0x7ee8, 0x7efc,
1293 		0x8dc0, 0x8de0,
1294 		0x8df8, 0x8e04,
1295 		0x8e10, 0x8e84,
1296 		0x8ea0, 0x8f84,
1297 		0x8fc0, 0x9058,
1298 		0x9060, 0x9060,
1299 		0x9068, 0x90f8,
1300 		0x9400, 0x9408,
1301 		0x9410, 0x9470,
1302 		0x9600, 0x9600,
1303 		0x9608, 0x9638,
1304 		0x9640, 0x96f4,
1305 		0x9800, 0x9808,
1306 		0x9820, 0x983c,
1307 		0x9850, 0x9864,
1308 		0x9c00, 0x9c6c,
1309 		0x9c80, 0x9cec,
1310 		0x9d00, 0x9d6c,
1311 		0x9d80, 0x9dec,
1312 		0x9e00, 0x9e6c,
1313 		0x9e80, 0x9eec,
1314 		0x9f00, 0x9f6c,
1315 		0x9f80, 0xa020,
1316 		0xd004, 0xd004,
1317 		0xd010, 0xd03c,
1318 		0xdfc0, 0xdfe0,
1319 		0xe000, 0x1106c,
1320 		0x11074, 0x11088,
1321 		0x1109c, 0x1117c,
1322 		0x11190, 0x11204,
1323 		0x19040, 0x1906c,
1324 		0x19078, 0x19080,
1325 		0x1908c, 0x190e8,
1326 		0x190f0, 0x190f8,
1327 		0x19100, 0x19110,
1328 		0x19120, 0x19124,
1329 		0x19150, 0x19194,
1330 		0x1919c, 0x191b0,
1331 		0x191d0, 0x191e8,
1332 		0x19238, 0x19290,
1333 		0x193f8, 0x19428,
1334 		0x19430, 0x19444,
1335 		0x1944c, 0x1946c,
1336 		0x19474, 0x19474,
1337 		0x19490, 0x194cc,
1338 		0x194f0, 0x194f8,
1339 		0x19c00, 0x19c08,
1340 		0x19c10, 0x19c60,
1341 		0x19c94, 0x19ce4,
1342 		0x19cf0, 0x19d40,
1343 		0x19d50, 0x19d94,
1344 		0x19da0, 0x19de8,
1345 		0x19df0, 0x19e10,
1346 		0x19e50, 0x19e90,
1347 		0x19ea0, 0x19f24,
1348 		0x19f34, 0x19f34,
1349 		0x19f40, 0x19f50,
1350 		0x19f90, 0x19fb4,
1351 		0x19fc4, 0x19fe4,
1352 		0x1a000, 0x1a004,
1353 		0x1a010, 0x1a06c,
1354 		0x1a0b0, 0x1a0e4,
1355 		0x1a0ec, 0x1a0f8,
1356 		0x1a100, 0x1a108,
1357 		0x1a114, 0x1a120,
1358 		0x1a128, 0x1a130,
1359 		0x1a138, 0x1a138,
1360 		0x1a190, 0x1a1c4,
1361 		0x1a1fc, 0x1a1fc,
1362 		0x1e008, 0x1e00c,
1363 		0x1e040, 0x1e044,
1364 		0x1e04c, 0x1e04c,
1365 		0x1e284, 0x1e290,
1366 		0x1e2c0, 0x1e2c0,
1367 		0x1e2e0, 0x1e2e0,
1368 		0x1e300, 0x1e384,
1369 		0x1e3c0, 0x1e3c8,
1370 		0x1e408, 0x1e40c,
1371 		0x1e440, 0x1e444,
1372 		0x1e44c, 0x1e44c,
1373 		0x1e684, 0x1e690,
1374 		0x1e6c0, 0x1e6c0,
1375 		0x1e6e0, 0x1e6e0,
1376 		0x1e700, 0x1e784,
1377 		0x1e7c0, 0x1e7c8,
1378 		0x1e808, 0x1e80c,
1379 		0x1e840, 0x1e844,
1380 		0x1e84c, 0x1e84c,
1381 		0x1ea84, 0x1ea90,
1382 		0x1eac0, 0x1eac0,
1383 		0x1eae0, 0x1eae0,
1384 		0x1eb00, 0x1eb84,
1385 		0x1ebc0, 0x1ebc8,
1386 		0x1ec08, 0x1ec0c,
1387 		0x1ec40, 0x1ec44,
1388 		0x1ec4c, 0x1ec4c,
1389 		0x1ee84, 0x1ee90,
1390 		0x1eec0, 0x1eec0,
1391 		0x1eee0, 0x1eee0,
1392 		0x1ef00, 0x1ef84,
1393 		0x1efc0, 0x1efc8,
1394 		0x1f008, 0x1f00c,
1395 		0x1f040, 0x1f044,
1396 		0x1f04c, 0x1f04c,
1397 		0x1f284, 0x1f290,
1398 		0x1f2c0, 0x1f2c0,
1399 		0x1f2e0, 0x1f2e0,
1400 		0x1f300, 0x1f384,
1401 		0x1f3c0, 0x1f3c8,
1402 		0x1f408, 0x1f40c,
1403 		0x1f440, 0x1f444,
1404 		0x1f44c, 0x1f44c,
1405 		0x1f684, 0x1f690,
1406 		0x1f6c0, 0x1f6c0,
1407 		0x1f6e0, 0x1f6e0,
1408 		0x1f700, 0x1f784,
1409 		0x1f7c0, 0x1f7c8,
1410 		0x1f808, 0x1f80c,
1411 		0x1f840, 0x1f844,
1412 		0x1f84c, 0x1f84c,
1413 		0x1fa84, 0x1fa90,
1414 		0x1fac0, 0x1fac0,
1415 		0x1fae0, 0x1fae0,
1416 		0x1fb00, 0x1fb84,
1417 		0x1fbc0, 0x1fbc8,
1418 		0x1fc08, 0x1fc0c,
1419 		0x1fc40, 0x1fc44,
1420 		0x1fc4c, 0x1fc4c,
1421 		0x1fe84, 0x1fe90,
1422 		0x1fec0, 0x1fec0,
1423 		0x1fee0, 0x1fee0,
1424 		0x1ff00, 0x1ff84,
1425 		0x1ffc0, 0x1ffc8,
1426 		0x30000, 0x30030,
1427 		0x30038, 0x30038,
1428 		0x30040, 0x30040,
1429 		0x30100, 0x30144,
1430 		0x30190, 0x301a0,
1431 		0x301a8, 0x301b8,
1432 		0x301c4, 0x301c8,
1433 		0x301d0, 0x301d0,
1434 		0x30200, 0x30318,
1435 		0x30400, 0x304b4,
1436 		0x304c0, 0x3052c,
1437 		0x30540, 0x3061c,
1438 		0x30800, 0x30828,
1439 		0x30834, 0x30834,
1440 		0x308c0, 0x30908,
1441 		0x30910, 0x309ac,
1442 		0x30a00, 0x30a14,
1443 		0x30a1c, 0x30a2c,
1444 		0x30a44, 0x30a50,
1445 		0x30a74, 0x30a74,
1446 		0x30a7c, 0x30afc,
1447 		0x30b08, 0x30c24,
1448 		0x30d00, 0x30d00,
1449 		0x30d08, 0x30d14,
1450 		0x30d1c, 0x30d20,
1451 		0x30d3c, 0x30d3c,
1452 		0x30d48, 0x30d50,
1453 		0x31200, 0x3120c,
1454 		0x31220, 0x31220,
1455 		0x31240, 0x31240,
1456 		0x31600, 0x3160c,
1457 		0x31a00, 0x31a1c,
1458 		0x31e00, 0x31e20,
1459 		0x31e38, 0x31e3c,
1460 		0x31e80, 0x31e80,
1461 		0x31e88, 0x31ea8,
1462 		0x31eb0, 0x31eb4,
1463 		0x31ec8, 0x31ed4,
1464 		0x31fb8, 0x32004,
1465 		0x32200, 0x32200,
1466 		0x32208, 0x32240,
1467 		0x32248, 0x32280,
1468 		0x32288, 0x322c0,
1469 		0x322c8, 0x322fc,
1470 		0x32600, 0x32630,
1471 		0x32a00, 0x32abc,
1472 		0x32b00, 0x32b10,
1473 		0x32b20, 0x32b30,
1474 		0x32b40, 0x32b50,
1475 		0x32b60, 0x32b70,
1476 		0x33000, 0x33028,
1477 		0x33030, 0x33048,
1478 		0x33060, 0x33068,
1479 		0x33070, 0x3309c,
1480 		0x330f0, 0x33128,
1481 		0x33130, 0x33148,
1482 		0x33160, 0x33168,
1483 		0x33170, 0x3319c,
1484 		0x331f0, 0x33238,
1485 		0x33240, 0x33240,
1486 		0x33248, 0x33250,
1487 		0x3325c, 0x33264,
1488 		0x33270, 0x332b8,
1489 		0x332c0, 0x332e4,
1490 		0x332f8, 0x33338,
1491 		0x33340, 0x33340,
1492 		0x33348, 0x33350,
1493 		0x3335c, 0x33364,
1494 		0x33370, 0x333b8,
1495 		0x333c0, 0x333e4,
1496 		0x333f8, 0x33428,
1497 		0x33430, 0x33448,
1498 		0x33460, 0x33468,
1499 		0x33470, 0x3349c,
1500 		0x334f0, 0x33528,
1501 		0x33530, 0x33548,
1502 		0x33560, 0x33568,
1503 		0x33570, 0x3359c,
1504 		0x335f0, 0x33638,
1505 		0x33640, 0x33640,
1506 		0x33648, 0x33650,
1507 		0x3365c, 0x33664,
1508 		0x33670, 0x336b8,
1509 		0x336c0, 0x336e4,
1510 		0x336f8, 0x33738,
1511 		0x33740, 0x33740,
1512 		0x33748, 0x33750,
1513 		0x3375c, 0x33764,
1514 		0x33770, 0x337b8,
1515 		0x337c0, 0x337e4,
1516 		0x337f8, 0x337fc,
1517 		0x33814, 0x33814,
1518 		0x3382c, 0x3382c,
1519 		0x33880, 0x3388c,
1520 		0x338e8, 0x338ec,
1521 		0x33900, 0x33928,
1522 		0x33930, 0x33948,
1523 		0x33960, 0x33968,
1524 		0x33970, 0x3399c,
1525 		0x339f0, 0x33a38,
1526 		0x33a40, 0x33a40,
1527 		0x33a48, 0x33a50,
1528 		0x33a5c, 0x33a64,
1529 		0x33a70, 0x33ab8,
1530 		0x33ac0, 0x33ae4,
1531 		0x33af8, 0x33b10,
1532 		0x33b28, 0x33b28,
1533 		0x33b3c, 0x33b50,
1534 		0x33bf0, 0x33c10,
1535 		0x33c28, 0x33c28,
1536 		0x33c3c, 0x33c50,
1537 		0x33cf0, 0x33cfc,
1538 		0x34000, 0x34030,
1539 		0x34038, 0x34038,
1540 		0x34040, 0x34040,
1541 		0x34100, 0x34144,
1542 		0x34190, 0x341a0,
1543 		0x341a8, 0x341b8,
1544 		0x341c4, 0x341c8,
1545 		0x341d0, 0x341d0,
1546 		0x34200, 0x34318,
1547 		0x34400, 0x344b4,
1548 		0x344c0, 0x3452c,
1549 		0x34540, 0x3461c,
1550 		0x34800, 0x34828,
1551 		0x34834, 0x34834,
1552 		0x348c0, 0x34908,
1553 		0x34910, 0x349ac,
1554 		0x34a00, 0x34a14,
1555 		0x34a1c, 0x34a2c,
1556 		0x34a44, 0x34a50,
1557 		0x34a74, 0x34a74,
1558 		0x34a7c, 0x34afc,
1559 		0x34b08, 0x34c24,
1560 		0x34d00, 0x34d00,
1561 		0x34d08, 0x34d14,
1562 		0x34d1c, 0x34d20,
1563 		0x34d3c, 0x34d3c,
1564 		0x34d48, 0x34d50,
1565 		0x35200, 0x3520c,
1566 		0x35220, 0x35220,
1567 		0x35240, 0x35240,
1568 		0x35600, 0x3560c,
1569 		0x35a00, 0x35a1c,
1570 		0x35e00, 0x35e20,
1571 		0x35e38, 0x35e3c,
1572 		0x35e80, 0x35e80,
1573 		0x35e88, 0x35ea8,
1574 		0x35eb0, 0x35eb4,
1575 		0x35ec8, 0x35ed4,
1576 		0x35fb8, 0x36004,
1577 		0x36200, 0x36200,
1578 		0x36208, 0x36240,
1579 		0x36248, 0x36280,
1580 		0x36288, 0x362c0,
1581 		0x362c8, 0x362fc,
1582 		0x36600, 0x36630,
1583 		0x36a00, 0x36abc,
1584 		0x36b00, 0x36b10,
1585 		0x36b20, 0x36b30,
1586 		0x36b40, 0x36b50,
1587 		0x36b60, 0x36b70,
1588 		0x37000, 0x37028,
1589 		0x37030, 0x37048,
1590 		0x37060, 0x37068,
1591 		0x37070, 0x3709c,
1592 		0x370f0, 0x37128,
1593 		0x37130, 0x37148,
1594 		0x37160, 0x37168,
1595 		0x37170, 0x3719c,
1596 		0x371f0, 0x37238,
1597 		0x37240, 0x37240,
1598 		0x37248, 0x37250,
1599 		0x3725c, 0x37264,
1600 		0x37270, 0x372b8,
1601 		0x372c0, 0x372e4,
1602 		0x372f8, 0x37338,
1603 		0x37340, 0x37340,
1604 		0x37348, 0x37350,
1605 		0x3735c, 0x37364,
1606 		0x37370, 0x373b8,
1607 		0x373c0, 0x373e4,
1608 		0x373f8, 0x37428,
1609 		0x37430, 0x37448,
1610 		0x37460, 0x37468,
1611 		0x37470, 0x3749c,
1612 		0x374f0, 0x37528,
1613 		0x37530, 0x37548,
1614 		0x37560, 0x37568,
1615 		0x37570, 0x3759c,
1616 		0x375f0, 0x37638,
1617 		0x37640, 0x37640,
1618 		0x37648, 0x37650,
1619 		0x3765c, 0x37664,
1620 		0x37670, 0x376b8,
1621 		0x376c0, 0x376e4,
1622 		0x376f8, 0x37738,
1623 		0x37740, 0x37740,
1624 		0x37748, 0x37750,
1625 		0x3775c, 0x37764,
1626 		0x37770, 0x377b8,
1627 		0x377c0, 0x377e4,
1628 		0x377f8, 0x377fc,
1629 		0x37814, 0x37814,
1630 		0x3782c, 0x3782c,
1631 		0x37880, 0x3788c,
1632 		0x378e8, 0x378ec,
1633 		0x37900, 0x37928,
1634 		0x37930, 0x37948,
1635 		0x37960, 0x37968,
1636 		0x37970, 0x3799c,
1637 		0x379f0, 0x37a38,
1638 		0x37a40, 0x37a40,
1639 		0x37a48, 0x37a50,
1640 		0x37a5c, 0x37a64,
1641 		0x37a70, 0x37ab8,
1642 		0x37ac0, 0x37ae4,
1643 		0x37af8, 0x37b10,
1644 		0x37b28, 0x37b28,
1645 		0x37b3c, 0x37b50,
1646 		0x37bf0, 0x37c10,
1647 		0x37c28, 0x37c28,
1648 		0x37c3c, 0x37c50,
1649 		0x37cf0, 0x37cfc,
1650 		0x38000, 0x38030,
1651 		0x38038, 0x38038,
1652 		0x38040, 0x38040,
1653 		0x38100, 0x38144,
1654 		0x38190, 0x381a0,
1655 		0x381a8, 0x381b8,
1656 		0x381c4, 0x381c8,
1657 		0x381d0, 0x381d0,
1658 		0x38200, 0x38318,
1659 		0x38400, 0x384b4,
1660 		0x384c0, 0x3852c,
1661 		0x38540, 0x3861c,
1662 		0x38800, 0x38828,
1663 		0x38834, 0x38834,
1664 		0x388c0, 0x38908,
1665 		0x38910, 0x389ac,
1666 		0x38a00, 0x38a14,
1667 		0x38a1c, 0x38a2c,
1668 		0x38a44, 0x38a50,
1669 		0x38a74, 0x38a74,
1670 		0x38a7c, 0x38afc,
1671 		0x38b08, 0x38c24,
1672 		0x38d00, 0x38d00,
1673 		0x38d08, 0x38d14,
1674 		0x38d1c, 0x38d20,
1675 		0x38d3c, 0x38d3c,
1676 		0x38d48, 0x38d50,
1677 		0x39200, 0x3920c,
1678 		0x39220, 0x39220,
1679 		0x39240, 0x39240,
1680 		0x39600, 0x3960c,
1681 		0x39a00, 0x39a1c,
1682 		0x39e00, 0x39e20,
1683 		0x39e38, 0x39e3c,
1684 		0x39e80, 0x39e80,
1685 		0x39e88, 0x39ea8,
1686 		0x39eb0, 0x39eb4,
1687 		0x39ec8, 0x39ed4,
1688 		0x39fb8, 0x3a004,
1689 		0x3a200, 0x3a200,
1690 		0x3a208, 0x3a240,
1691 		0x3a248, 0x3a280,
1692 		0x3a288, 0x3a2c0,
1693 		0x3a2c8, 0x3a2fc,
1694 		0x3a600, 0x3a630,
1695 		0x3aa00, 0x3aabc,
1696 		0x3ab00, 0x3ab10,
1697 		0x3ab20, 0x3ab30,
1698 		0x3ab40, 0x3ab50,
1699 		0x3ab60, 0x3ab70,
1700 		0x3b000, 0x3b028,
1701 		0x3b030, 0x3b048,
1702 		0x3b060, 0x3b068,
1703 		0x3b070, 0x3b09c,
1704 		0x3b0f0, 0x3b128,
1705 		0x3b130, 0x3b148,
1706 		0x3b160, 0x3b168,
1707 		0x3b170, 0x3b19c,
1708 		0x3b1f0, 0x3b238,
1709 		0x3b240, 0x3b240,
1710 		0x3b248, 0x3b250,
1711 		0x3b25c, 0x3b264,
1712 		0x3b270, 0x3b2b8,
1713 		0x3b2c0, 0x3b2e4,
1714 		0x3b2f8, 0x3b338,
1715 		0x3b340, 0x3b340,
1716 		0x3b348, 0x3b350,
1717 		0x3b35c, 0x3b364,
1718 		0x3b370, 0x3b3b8,
1719 		0x3b3c0, 0x3b3e4,
1720 		0x3b3f8, 0x3b428,
1721 		0x3b430, 0x3b448,
1722 		0x3b460, 0x3b468,
1723 		0x3b470, 0x3b49c,
1724 		0x3b4f0, 0x3b528,
1725 		0x3b530, 0x3b548,
1726 		0x3b560, 0x3b568,
1727 		0x3b570, 0x3b59c,
1728 		0x3b5f0, 0x3b638,
1729 		0x3b640, 0x3b640,
1730 		0x3b648, 0x3b650,
1731 		0x3b65c, 0x3b664,
1732 		0x3b670, 0x3b6b8,
1733 		0x3b6c0, 0x3b6e4,
1734 		0x3b6f8, 0x3b738,
1735 		0x3b740, 0x3b740,
1736 		0x3b748, 0x3b750,
1737 		0x3b75c, 0x3b764,
1738 		0x3b770, 0x3b7b8,
1739 		0x3b7c0, 0x3b7e4,
1740 		0x3b7f8, 0x3b7fc,
1741 		0x3b814, 0x3b814,
1742 		0x3b82c, 0x3b82c,
1743 		0x3b880, 0x3b88c,
1744 		0x3b8e8, 0x3b8ec,
1745 		0x3b900, 0x3b928,
1746 		0x3b930, 0x3b948,
1747 		0x3b960, 0x3b968,
1748 		0x3b970, 0x3b99c,
1749 		0x3b9f0, 0x3ba38,
1750 		0x3ba40, 0x3ba40,
1751 		0x3ba48, 0x3ba50,
1752 		0x3ba5c, 0x3ba64,
1753 		0x3ba70, 0x3bab8,
1754 		0x3bac0, 0x3bae4,
1755 		0x3baf8, 0x3bb10,
1756 		0x3bb28, 0x3bb28,
1757 		0x3bb3c, 0x3bb50,
1758 		0x3bbf0, 0x3bc10,
1759 		0x3bc28, 0x3bc28,
1760 		0x3bc3c, 0x3bc50,
1761 		0x3bcf0, 0x3bcfc,
1762 		0x3c000, 0x3c030,
1763 		0x3c038, 0x3c038,
1764 		0x3c040, 0x3c040,
1765 		0x3c100, 0x3c144,
1766 		0x3c190, 0x3c1a0,
1767 		0x3c1a8, 0x3c1b8,
1768 		0x3c1c4, 0x3c1c8,
1769 		0x3c1d0, 0x3c1d0,
1770 		0x3c200, 0x3c318,
1771 		0x3c400, 0x3c4b4,
1772 		0x3c4c0, 0x3c52c,
1773 		0x3c540, 0x3c61c,
1774 		0x3c800, 0x3c828,
1775 		0x3c834, 0x3c834,
1776 		0x3c8c0, 0x3c908,
1777 		0x3c910, 0x3c9ac,
1778 		0x3ca00, 0x3ca14,
1779 		0x3ca1c, 0x3ca2c,
1780 		0x3ca44, 0x3ca50,
1781 		0x3ca74, 0x3ca74,
1782 		0x3ca7c, 0x3cafc,
1783 		0x3cb08, 0x3cc24,
1784 		0x3cd00, 0x3cd00,
1785 		0x3cd08, 0x3cd14,
1786 		0x3cd1c, 0x3cd20,
1787 		0x3cd3c, 0x3cd3c,
1788 		0x3cd48, 0x3cd50,
1789 		0x3d200, 0x3d20c,
1790 		0x3d220, 0x3d220,
1791 		0x3d240, 0x3d240,
1792 		0x3d600, 0x3d60c,
1793 		0x3da00, 0x3da1c,
1794 		0x3de00, 0x3de20,
1795 		0x3de38, 0x3de3c,
1796 		0x3de80, 0x3de80,
1797 		0x3de88, 0x3dea8,
1798 		0x3deb0, 0x3deb4,
1799 		0x3dec8, 0x3ded4,
1800 		0x3dfb8, 0x3e004,
1801 		0x3e200, 0x3e200,
1802 		0x3e208, 0x3e240,
1803 		0x3e248, 0x3e280,
1804 		0x3e288, 0x3e2c0,
1805 		0x3e2c8, 0x3e2fc,
1806 		0x3e600, 0x3e630,
1807 		0x3ea00, 0x3eabc,
1808 		0x3eb00, 0x3eb10,
1809 		0x3eb20, 0x3eb30,
1810 		0x3eb40, 0x3eb50,
1811 		0x3eb60, 0x3eb70,
1812 		0x3f000, 0x3f028,
1813 		0x3f030, 0x3f048,
1814 		0x3f060, 0x3f068,
1815 		0x3f070, 0x3f09c,
1816 		0x3f0f0, 0x3f128,
1817 		0x3f130, 0x3f148,
1818 		0x3f160, 0x3f168,
1819 		0x3f170, 0x3f19c,
1820 		0x3f1f0, 0x3f238,
1821 		0x3f240, 0x3f240,
1822 		0x3f248, 0x3f250,
1823 		0x3f25c, 0x3f264,
1824 		0x3f270, 0x3f2b8,
1825 		0x3f2c0, 0x3f2e4,
1826 		0x3f2f8, 0x3f338,
1827 		0x3f340, 0x3f340,
1828 		0x3f348, 0x3f350,
1829 		0x3f35c, 0x3f364,
1830 		0x3f370, 0x3f3b8,
1831 		0x3f3c0, 0x3f3e4,
1832 		0x3f3f8, 0x3f428,
1833 		0x3f430, 0x3f448,
1834 		0x3f460, 0x3f468,
1835 		0x3f470, 0x3f49c,
1836 		0x3f4f0, 0x3f528,
1837 		0x3f530, 0x3f548,
1838 		0x3f560, 0x3f568,
1839 		0x3f570, 0x3f59c,
1840 		0x3f5f0, 0x3f638,
1841 		0x3f640, 0x3f640,
1842 		0x3f648, 0x3f650,
1843 		0x3f65c, 0x3f664,
1844 		0x3f670, 0x3f6b8,
1845 		0x3f6c0, 0x3f6e4,
1846 		0x3f6f8, 0x3f738,
1847 		0x3f740, 0x3f740,
1848 		0x3f748, 0x3f750,
1849 		0x3f75c, 0x3f764,
1850 		0x3f770, 0x3f7b8,
1851 		0x3f7c0, 0x3f7e4,
1852 		0x3f7f8, 0x3f7fc,
1853 		0x3f814, 0x3f814,
1854 		0x3f82c, 0x3f82c,
1855 		0x3f880, 0x3f88c,
1856 		0x3f8e8, 0x3f8ec,
1857 		0x3f900, 0x3f928,
1858 		0x3f930, 0x3f948,
1859 		0x3f960, 0x3f968,
1860 		0x3f970, 0x3f99c,
1861 		0x3f9f0, 0x3fa38,
1862 		0x3fa40, 0x3fa40,
1863 		0x3fa48, 0x3fa50,
1864 		0x3fa5c, 0x3fa64,
1865 		0x3fa70, 0x3fab8,
1866 		0x3fac0, 0x3fae4,
1867 		0x3faf8, 0x3fb10,
1868 		0x3fb28, 0x3fb28,
1869 		0x3fb3c, 0x3fb50,
1870 		0x3fbf0, 0x3fc10,
1871 		0x3fc28, 0x3fc28,
1872 		0x3fc3c, 0x3fc50,
1873 		0x3fcf0, 0x3fcfc,
1874 		0x40000, 0x4000c,
1875 		0x40040, 0x40050,
1876 		0x40060, 0x40068,
1877 		0x4007c, 0x4008c,
1878 		0x40094, 0x400b0,
1879 		0x400c0, 0x40144,
1880 		0x40180, 0x4018c,
1881 		0x40200, 0x40254,
1882 		0x40260, 0x40264,
1883 		0x40270, 0x40288,
1884 		0x40290, 0x40298,
1885 		0x402ac, 0x402c8,
1886 		0x402d0, 0x402e0,
1887 		0x402f0, 0x402f0,
1888 		0x40300, 0x4033c,
1889 		0x403f8, 0x403fc,
1890 		0x41304, 0x413c4,
1891 		0x41400, 0x4140c,
1892 		0x41414, 0x4141c,
1893 		0x41480, 0x414d0,
1894 		0x44000, 0x44054,
1895 		0x4405c, 0x44078,
1896 		0x440c0, 0x44174,
1897 		0x44180, 0x441ac,
1898 		0x441b4, 0x441b8,
1899 		0x441c0, 0x44254,
1900 		0x4425c, 0x44278,
1901 		0x442c0, 0x44374,
1902 		0x44380, 0x443ac,
1903 		0x443b4, 0x443b8,
1904 		0x443c0, 0x44454,
1905 		0x4445c, 0x44478,
1906 		0x444c0, 0x44574,
1907 		0x44580, 0x445ac,
1908 		0x445b4, 0x445b8,
1909 		0x445c0, 0x44654,
1910 		0x4465c, 0x44678,
1911 		0x446c0, 0x44774,
1912 		0x44780, 0x447ac,
1913 		0x447b4, 0x447b8,
1914 		0x447c0, 0x44854,
1915 		0x4485c, 0x44878,
1916 		0x448c0, 0x44974,
1917 		0x44980, 0x449ac,
1918 		0x449b4, 0x449b8,
1919 		0x449c0, 0x449fc,
1920 		0x45000, 0x45004,
1921 		0x45010, 0x45030,
1922 		0x45040, 0x45060,
1923 		0x45068, 0x45068,
1924 		0x45080, 0x45084,
1925 		0x450a0, 0x450b0,
1926 		0x45200, 0x45204,
1927 		0x45210, 0x45230,
1928 		0x45240, 0x45260,
1929 		0x45268, 0x45268,
1930 		0x45280, 0x45284,
1931 		0x452a0, 0x452b0,
1932 		0x460c0, 0x460e4,
1933 		0x47000, 0x4703c,
1934 		0x47044, 0x4708c,
1935 		0x47200, 0x47250,
1936 		0x47400, 0x47408,
1937 		0x47414, 0x47420,
1938 		0x47600, 0x47618,
1939 		0x47800, 0x47814,
1940 		0x48000, 0x4800c,
1941 		0x48040, 0x48050,
1942 		0x48060, 0x48068,
1943 		0x4807c, 0x4808c,
1944 		0x48094, 0x480b0,
1945 		0x480c0, 0x48144,
1946 		0x48180, 0x4818c,
1947 		0x48200, 0x48254,
1948 		0x48260, 0x48264,
1949 		0x48270, 0x48288,
1950 		0x48290, 0x48298,
1951 		0x482ac, 0x482c8,
1952 		0x482d0, 0x482e0,
1953 		0x482f0, 0x482f0,
1954 		0x48300, 0x4833c,
1955 		0x483f8, 0x483fc,
1956 		0x49304, 0x493c4,
1957 		0x49400, 0x4940c,
1958 		0x49414, 0x4941c,
1959 		0x49480, 0x494d0,
1960 		0x4c000, 0x4c054,
1961 		0x4c05c, 0x4c078,
1962 		0x4c0c0, 0x4c174,
1963 		0x4c180, 0x4c1ac,
1964 		0x4c1b4, 0x4c1b8,
1965 		0x4c1c0, 0x4c254,
1966 		0x4c25c, 0x4c278,
1967 		0x4c2c0, 0x4c374,
1968 		0x4c380, 0x4c3ac,
1969 		0x4c3b4, 0x4c3b8,
1970 		0x4c3c0, 0x4c454,
1971 		0x4c45c, 0x4c478,
1972 		0x4c4c0, 0x4c574,
1973 		0x4c580, 0x4c5ac,
1974 		0x4c5b4, 0x4c5b8,
1975 		0x4c5c0, 0x4c654,
1976 		0x4c65c, 0x4c678,
1977 		0x4c6c0, 0x4c774,
1978 		0x4c780, 0x4c7ac,
1979 		0x4c7b4, 0x4c7b8,
1980 		0x4c7c0, 0x4c854,
1981 		0x4c85c, 0x4c878,
1982 		0x4c8c0, 0x4c974,
1983 		0x4c980, 0x4c9ac,
1984 		0x4c9b4, 0x4c9b8,
1985 		0x4c9c0, 0x4c9fc,
1986 		0x4d000, 0x4d004,
1987 		0x4d010, 0x4d030,
1988 		0x4d040, 0x4d060,
1989 		0x4d068, 0x4d068,
1990 		0x4d080, 0x4d084,
1991 		0x4d0a0, 0x4d0b0,
1992 		0x4d200, 0x4d204,
1993 		0x4d210, 0x4d230,
1994 		0x4d240, 0x4d260,
1995 		0x4d268, 0x4d268,
1996 		0x4d280, 0x4d284,
1997 		0x4d2a0, 0x4d2b0,
1998 		0x4e0c0, 0x4e0e4,
1999 		0x4f000, 0x4f03c,
2000 		0x4f044, 0x4f08c,
2001 		0x4f200, 0x4f250,
2002 		0x4f400, 0x4f408,
2003 		0x4f414, 0x4f420,
2004 		0x4f600, 0x4f618,
2005 		0x4f800, 0x4f814,
2006 		0x50000, 0x50084,
2007 		0x50090, 0x500cc,
2008 		0x50400, 0x50400,
2009 		0x50800, 0x50884,
2010 		0x50890, 0x508cc,
2011 		0x50c00, 0x50c00,
2012 		0x51000, 0x5101c,
2013 		0x51300, 0x51308,
2014 	};
2015 
2016 	static const unsigned int t5vf_reg_ranges[] = {
2017 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2018 		VF_MPS_REG(A_MPS_VF_CTL),
2019 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2020 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2021 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2022 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2023 		FW_T4VF_MBDATA_BASE_ADDR,
2024 		FW_T4VF_MBDATA_BASE_ADDR +
2025 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2026 	};
2027 
2028 	static const unsigned int t6_reg_ranges[] = {
2029 		0x1008, 0x101c,
2030 		0x1024, 0x10a8,
2031 		0x10b4, 0x10f8,
2032 		0x1100, 0x1114,
2033 		0x111c, 0x112c,
2034 		0x1138, 0x113c,
2035 		0x1144, 0x114c,
2036 		0x1180, 0x1184,
2037 		0x1190, 0x1194,
2038 		0x11a0, 0x11a4,
2039 		0x11b0, 0x11b4,
2040 		0x11fc, 0x1274,
2041 		0x1280, 0x133c,
2042 		0x1800, 0x18fc,
2043 		0x3000, 0x302c,
2044 		0x3060, 0x30b0,
2045 		0x30b8, 0x30d8,
2046 		0x30e0, 0x30fc,
2047 		0x3140, 0x357c,
2048 		0x35a8, 0x35cc,
2049 		0x35ec, 0x35ec,
2050 		0x3600, 0x5624,
2051 		0x56cc, 0x56ec,
2052 		0x56f4, 0x5720,
2053 		0x5728, 0x575c,
2054 		0x580c, 0x5814,
2055 		0x5890, 0x589c,
2056 		0x58a4, 0x58ac,
2057 		0x58b8, 0x58bc,
2058 		0x5940, 0x595c,
2059 		0x5980, 0x598c,
2060 		0x59b0, 0x59c8,
2061 		0x59d0, 0x59dc,
2062 		0x59fc, 0x5a18,
2063 		0x5a60, 0x5a6c,
2064 		0x5a80, 0x5a8c,
2065 		0x5a94, 0x5a9c,
2066 		0x5b94, 0x5bfc,
2067 		0x5c10, 0x5e48,
2068 		0x5e50, 0x5e94,
2069 		0x5ea0, 0x5eb0,
2070 		0x5ec0, 0x5ec0,
2071 		0x5ec8, 0x5ed0,
2072 		0x5ee0, 0x5ee0,
2073 		0x5ef0, 0x5ef0,
2074 		0x5f00, 0x5f00,
2075 		0x6000, 0x6020,
2076 		0x6028, 0x6040,
2077 		0x6058, 0x609c,
2078 		0x60a8, 0x619c,
2079 		0x7700, 0x7798,
2080 		0x77c0, 0x7880,
2081 		0x78cc, 0x78fc,
2082 		0x7b00, 0x7b58,
2083 		0x7b60, 0x7b84,
2084 		0x7b8c, 0x7c54,
2085 		0x7d00, 0x7d38,
2086 		0x7d40, 0x7d84,
2087 		0x7d8c, 0x7ddc,
2088 		0x7de4, 0x7e04,
2089 		0x7e10, 0x7e1c,
2090 		0x7e24, 0x7e38,
2091 		0x7e40, 0x7e44,
2092 		0x7e4c, 0x7e78,
2093 		0x7e80, 0x7edc,
2094 		0x7ee8, 0x7efc,
2095 		0x8dc0, 0x8de4,
2096 		0x8df8, 0x8e04,
2097 		0x8e10, 0x8e84,
2098 		0x8ea0, 0x8f88,
2099 		0x8fb8, 0x9058,
2100 		0x9060, 0x9060,
2101 		0x9068, 0x90f8,
2102 		0x9100, 0x9124,
2103 		0x9400, 0x9470,
2104 		0x9600, 0x9600,
2105 		0x9608, 0x9638,
2106 		0x9640, 0x9704,
2107 		0x9710, 0x971c,
2108 		0x9800, 0x9808,
2109 		0x9820, 0x983c,
2110 		0x9850, 0x9864,
2111 		0x9c00, 0x9c6c,
2112 		0x9c80, 0x9cec,
2113 		0x9d00, 0x9d6c,
2114 		0x9d80, 0x9dec,
2115 		0x9e00, 0x9e6c,
2116 		0x9e80, 0x9eec,
2117 		0x9f00, 0x9f6c,
2118 		0x9f80, 0xa020,
2119 		0xd004, 0xd03c,
2120 		0xd100, 0xd118,
2121 		0xd200, 0xd214,
2122 		0xd220, 0xd234,
2123 		0xd240, 0xd254,
2124 		0xd260, 0xd274,
2125 		0xd280, 0xd294,
2126 		0xd2a0, 0xd2b4,
2127 		0xd2c0, 0xd2d4,
2128 		0xd2e0, 0xd2f4,
2129 		0xd300, 0xd31c,
2130 		0xdfc0, 0xdfe0,
2131 		0xe000, 0xf008,
2132 		0xf010, 0xf018,
2133 		0xf020, 0xf028,
2134 		0x11000, 0x11014,
2135 		0x11048, 0x1106c,
2136 		0x11074, 0x11088,
2137 		0x11098, 0x11120,
2138 		0x1112c, 0x1117c,
2139 		0x11190, 0x112e0,
2140 		0x11300, 0x1130c,
2141 		0x12000, 0x1206c,
2142 		0x19040, 0x1906c,
2143 		0x19078, 0x19080,
2144 		0x1908c, 0x190e8,
2145 		0x190f0, 0x190f8,
2146 		0x19100, 0x19110,
2147 		0x19120, 0x19124,
2148 		0x19150, 0x19194,
2149 		0x1919c, 0x191b0,
2150 		0x191d0, 0x191e8,
2151 		0x19238, 0x19290,
2152 		0x192a4, 0x192b0,
2153 		0x192bc, 0x192bc,
2154 		0x19348, 0x1934c,
2155 		0x193f8, 0x19418,
2156 		0x19420, 0x19428,
2157 		0x19430, 0x19444,
2158 		0x1944c, 0x1946c,
2159 		0x19474, 0x19474,
2160 		0x19490, 0x194cc,
2161 		0x194f0, 0x194f8,
2162 		0x19c00, 0x19c48,
2163 		0x19c50, 0x19c80,
2164 		0x19c94, 0x19c98,
2165 		0x19ca0, 0x19cbc,
2166 		0x19ce4, 0x19ce4,
2167 		0x19cf0, 0x19cf8,
2168 		0x19d00, 0x19d28,
2169 		0x19d50, 0x19d78,
2170 		0x19d94, 0x19d98,
2171 		0x19da0, 0x19dc8,
2172 		0x19df0, 0x19e10,
2173 		0x19e50, 0x19e6c,
2174 		0x19ea0, 0x19ebc,
2175 		0x19ec4, 0x19ef4,
2176 		0x19f04, 0x19f2c,
2177 		0x19f34, 0x19f34,
2178 		0x19f40, 0x19f50,
2179 		0x19f90, 0x19fac,
2180 		0x19fc4, 0x19fc8,
2181 		0x19fd0, 0x19fe4,
2182 		0x1a000, 0x1a004,
2183 		0x1a010, 0x1a06c,
2184 		0x1a0b0, 0x1a0e4,
2185 		0x1a0ec, 0x1a0f8,
2186 		0x1a100, 0x1a108,
2187 		0x1a114, 0x1a120,
2188 		0x1a128, 0x1a130,
2189 		0x1a138, 0x1a138,
2190 		0x1a190, 0x1a1c4,
2191 		0x1a1fc, 0x1a1fc,
2192 		0x1e008, 0x1e00c,
2193 		0x1e040, 0x1e044,
2194 		0x1e04c, 0x1e04c,
2195 		0x1e284, 0x1e290,
2196 		0x1e2c0, 0x1e2c0,
2197 		0x1e2e0, 0x1e2e0,
2198 		0x1e300, 0x1e384,
2199 		0x1e3c0, 0x1e3c8,
2200 		0x1e408, 0x1e40c,
2201 		0x1e440, 0x1e444,
2202 		0x1e44c, 0x1e44c,
2203 		0x1e684, 0x1e690,
2204 		0x1e6c0, 0x1e6c0,
2205 		0x1e6e0, 0x1e6e0,
2206 		0x1e700, 0x1e784,
2207 		0x1e7c0, 0x1e7c8,
2208 		0x1e808, 0x1e80c,
2209 		0x1e840, 0x1e844,
2210 		0x1e84c, 0x1e84c,
2211 		0x1ea84, 0x1ea90,
2212 		0x1eac0, 0x1eac0,
2213 		0x1eae0, 0x1eae0,
2214 		0x1eb00, 0x1eb84,
2215 		0x1ebc0, 0x1ebc8,
2216 		0x1ec08, 0x1ec0c,
2217 		0x1ec40, 0x1ec44,
2218 		0x1ec4c, 0x1ec4c,
2219 		0x1ee84, 0x1ee90,
2220 		0x1eec0, 0x1eec0,
2221 		0x1eee0, 0x1eee0,
2222 		0x1ef00, 0x1ef84,
2223 		0x1efc0, 0x1efc8,
2224 		0x1f008, 0x1f00c,
2225 		0x1f040, 0x1f044,
2226 		0x1f04c, 0x1f04c,
2227 		0x1f284, 0x1f290,
2228 		0x1f2c0, 0x1f2c0,
2229 		0x1f2e0, 0x1f2e0,
2230 		0x1f300, 0x1f384,
2231 		0x1f3c0, 0x1f3c8,
2232 		0x1f408, 0x1f40c,
2233 		0x1f440, 0x1f444,
2234 		0x1f44c, 0x1f44c,
2235 		0x1f684, 0x1f690,
2236 		0x1f6c0, 0x1f6c0,
2237 		0x1f6e0, 0x1f6e0,
2238 		0x1f700, 0x1f784,
2239 		0x1f7c0, 0x1f7c8,
2240 		0x1f808, 0x1f80c,
2241 		0x1f840, 0x1f844,
2242 		0x1f84c, 0x1f84c,
2243 		0x1fa84, 0x1fa90,
2244 		0x1fac0, 0x1fac0,
2245 		0x1fae0, 0x1fae0,
2246 		0x1fb00, 0x1fb84,
2247 		0x1fbc0, 0x1fbc8,
2248 		0x1fc08, 0x1fc0c,
2249 		0x1fc40, 0x1fc44,
2250 		0x1fc4c, 0x1fc4c,
2251 		0x1fe84, 0x1fe90,
2252 		0x1fec0, 0x1fec0,
2253 		0x1fee0, 0x1fee0,
2254 		0x1ff00, 0x1ff84,
2255 		0x1ffc0, 0x1ffc8,
2256 		0x30000, 0x30030,
2257 		0x30038, 0x30038,
2258 		0x30040, 0x30040,
2259 		0x30048, 0x30048,
2260 		0x30050, 0x30050,
2261 		0x3005c, 0x30060,
2262 		0x30068, 0x30068,
2263 		0x30070, 0x30070,
2264 		0x30100, 0x30168,
2265 		0x30190, 0x301a0,
2266 		0x301a8, 0x301b8,
2267 		0x301c4, 0x301c8,
2268 		0x301d0, 0x301d0,
2269 		0x30200, 0x30320,
2270 		0x30400, 0x304b4,
2271 		0x304c0, 0x3052c,
2272 		0x30540, 0x3061c,
2273 		0x30800, 0x308a0,
2274 		0x308c0, 0x30908,
2275 		0x30910, 0x309b8,
2276 		0x30a00, 0x30a04,
2277 		0x30a0c, 0x30a14,
2278 		0x30a1c, 0x30a2c,
2279 		0x30a44, 0x30a50,
2280 		0x30a74, 0x30a74,
2281 		0x30a7c, 0x30afc,
2282 		0x30b08, 0x30c24,
2283 		0x30d00, 0x30d14,
2284 		0x30d1c, 0x30d3c,
2285 		0x30d44, 0x30d4c,
2286 		0x30d54, 0x30d74,
2287 		0x30d7c, 0x30d7c,
2288 		0x30de0, 0x30de0,
2289 		0x30e00, 0x30ed4,
2290 		0x30f00, 0x30fa4,
2291 		0x30fc0, 0x30fc4,
2292 		0x31000, 0x31004,
2293 		0x31080, 0x310fc,
2294 		0x31208, 0x31220,
2295 		0x3123c, 0x31254,
2296 		0x31300, 0x31300,
2297 		0x31308, 0x3131c,
2298 		0x31338, 0x3133c,
2299 		0x31380, 0x31380,
2300 		0x31388, 0x313a8,
2301 		0x313b4, 0x313b4,
2302 		0x31400, 0x31420,
2303 		0x31438, 0x3143c,
2304 		0x31480, 0x31480,
2305 		0x314a8, 0x314a8,
2306 		0x314b0, 0x314b4,
2307 		0x314c8, 0x314d4,
2308 		0x31a40, 0x31a4c,
2309 		0x31af0, 0x31b20,
2310 		0x31b38, 0x31b3c,
2311 		0x31b80, 0x31b80,
2312 		0x31ba8, 0x31ba8,
2313 		0x31bb0, 0x31bb4,
2314 		0x31bc8, 0x31bd4,
2315 		0x32140, 0x3218c,
2316 		0x321f0, 0x321f4,
2317 		0x32200, 0x32200,
2318 		0x32218, 0x32218,
2319 		0x32400, 0x32400,
2320 		0x32408, 0x3241c,
2321 		0x32618, 0x32620,
2322 		0x32664, 0x32664,
2323 		0x326a8, 0x326a8,
2324 		0x326ec, 0x326ec,
2325 		0x32a00, 0x32abc,
2326 		0x32b00, 0x32b38,
2327 		0x32b40, 0x32b58,
2328 		0x32b60, 0x32b78,
2329 		0x32c00, 0x32c00,
2330 		0x32c08, 0x32c3c,
2331 		0x32e00, 0x32e2c,
2332 		0x32f00, 0x32f2c,
2333 		0x33000, 0x3302c,
2334 		0x33034, 0x33050,
2335 		0x33058, 0x33058,
2336 		0x33060, 0x3308c,
2337 		0x3309c, 0x330ac,
2338 		0x330c0, 0x330c0,
2339 		0x330c8, 0x330d0,
2340 		0x330d8, 0x330e0,
2341 		0x330ec, 0x3312c,
2342 		0x33134, 0x33150,
2343 		0x33158, 0x33158,
2344 		0x33160, 0x3318c,
2345 		0x3319c, 0x331ac,
2346 		0x331c0, 0x331c0,
2347 		0x331c8, 0x331d0,
2348 		0x331d8, 0x331e0,
2349 		0x331ec, 0x33290,
2350 		0x33298, 0x332c4,
2351 		0x332e4, 0x33390,
2352 		0x33398, 0x333c4,
2353 		0x333e4, 0x3342c,
2354 		0x33434, 0x33450,
2355 		0x33458, 0x33458,
2356 		0x33460, 0x3348c,
2357 		0x3349c, 0x334ac,
2358 		0x334c0, 0x334c0,
2359 		0x334c8, 0x334d0,
2360 		0x334d8, 0x334e0,
2361 		0x334ec, 0x3352c,
2362 		0x33534, 0x33550,
2363 		0x33558, 0x33558,
2364 		0x33560, 0x3358c,
2365 		0x3359c, 0x335ac,
2366 		0x335c0, 0x335c0,
2367 		0x335c8, 0x335d0,
2368 		0x335d8, 0x335e0,
2369 		0x335ec, 0x33690,
2370 		0x33698, 0x336c4,
2371 		0x336e4, 0x33790,
2372 		0x33798, 0x337c4,
2373 		0x337e4, 0x337fc,
2374 		0x33814, 0x33814,
2375 		0x33854, 0x33868,
2376 		0x33880, 0x3388c,
2377 		0x338c0, 0x338d0,
2378 		0x338e8, 0x338ec,
2379 		0x33900, 0x3392c,
2380 		0x33934, 0x33950,
2381 		0x33958, 0x33958,
2382 		0x33960, 0x3398c,
2383 		0x3399c, 0x339ac,
2384 		0x339c0, 0x339c0,
2385 		0x339c8, 0x339d0,
2386 		0x339d8, 0x339e0,
2387 		0x339ec, 0x33a90,
2388 		0x33a98, 0x33ac4,
2389 		0x33ae4, 0x33b10,
2390 		0x33b24, 0x33b28,
2391 		0x33b38, 0x33b50,
2392 		0x33bf0, 0x33c10,
2393 		0x33c24, 0x33c28,
2394 		0x33c38, 0x33c50,
2395 		0x33cf0, 0x33cfc,
2396 		0x34000, 0x34030,
2397 		0x34038, 0x34038,
2398 		0x34040, 0x34040,
2399 		0x34048, 0x34048,
2400 		0x34050, 0x34050,
2401 		0x3405c, 0x34060,
2402 		0x34068, 0x34068,
2403 		0x34070, 0x34070,
2404 		0x34100, 0x34168,
2405 		0x34190, 0x341a0,
2406 		0x341a8, 0x341b8,
2407 		0x341c4, 0x341c8,
2408 		0x341d0, 0x341d0,
2409 		0x34200, 0x34320,
2410 		0x34400, 0x344b4,
2411 		0x344c0, 0x3452c,
2412 		0x34540, 0x3461c,
2413 		0x34800, 0x348a0,
2414 		0x348c0, 0x34908,
2415 		0x34910, 0x349b8,
2416 		0x34a00, 0x34a04,
2417 		0x34a0c, 0x34a14,
2418 		0x34a1c, 0x34a2c,
2419 		0x34a44, 0x34a50,
2420 		0x34a74, 0x34a74,
2421 		0x34a7c, 0x34afc,
2422 		0x34b08, 0x34c24,
2423 		0x34d00, 0x34d14,
2424 		0x34d1c, 0x34d3c,
2425 		0x34d44, 0x34d4c,
2426 		0x34d54, 0x34d74,
2427 		0x34d7c, 0x34d7c,
2428 		0x34de0, 0x34de0,
2429 		0x34e00, 0x34ed4,
2430 		0x34f00, 0x34fa4,
2431 		0x34fc0, 0x34fc4,
2432 		0x35000, 0x35004,
2433 		0x35080, 0x350fc,
2434 		0x35208, 0x35220,
2435 		0x3523c, 0x35254,
2436 		0x35300, 0x35300,
2437 		0x35308, 0x3531c,
2438 		0x35338, 0x3533c,
2439 		0x35380, 0x35380,
2440 		0x35388, 0x353a8,
2441 		0x353b4, 0x353b4,
2442 		0x35400, 0x35420,
2443 		0x35438, 0x3543c,
2444 		0x35480, 0x35480,
2445 		0x354a8, 0x354a8,
2446 		0x354b0, 0x354b4,
2447 		0x354c8, 0x354d4,
2448 		0x35a40, 0x35a4c,
2449 		0x35af0, 0x35b20,
2450 		0x35b38, 0x35b3c,
2451 		0x35b80, 0x35b80,
2452 		0x35ba8, 0x35ba8,
2453 		0x35bb0, 0x35bb4,
2454 		0x35bc8, 0x35bd4,
2455 		0x36140, 0x3618c,
2456 		0x361f0, 0x361f4,
2457 		0x36200, 0x36200,
2458 		0x36218, 0x36218,
2459 		0x36400, 0x36400,
2460 		0x36408, 0x3641c,
2461 		0x36618, 0x36620,
2462 		0x36664, 0x36664,
2463 		0x366a8, 0x366a8,
2464 		0x366ec, 0x366ec,
2465 		0x36a00, 0x36abc,
2466 		0x36b00, 0x36b38,
2467 		0x36b40, 0x36b58,
2468 		0x36b60, 0x36b78,
2469 		0x36c00, 0x36c00,
2470 		0x36c08, 0x36c3c,
2471 		0x36e00, 0x36e2c,
2472 		0x36f00, 0x36f2c,
2473 		0x37000, 0x3702c,
2474 		0x37034, 0x37050,
2475 		0x37058, 0x37058,
2476 		0x37060, 0x3708c,
2477 		0x3709c, 0x370ac,
2478 		0x370c0, 0x370c0,
2479 		0x370c8, 0x370d0,
2480 		0x370d8, 0x370e0,
2481 		0x370ec, 0x3712c,
2482 		0x37134, 0x37150,
2483 		0x37158, 0x37158,
2484 		0x37160, 0x3718c,
2485 		0x3719c, 0x371ac,
2486 		0x371c0, 0x371c0,
2487 		0x371c8, 0x371d0,
2488 		0x371d8, 0x371e0,
2489 		0x371ec, 0x37290,
2490 		0x37298, 0x372c4,
2491 		0x372e4, 0x37390,
2492 		0x37398, 0x373c4,
2493 		0x373e4, 0x3742c,
2494 		0x37434, 0x37450,
2495 		0x37458, 0x37458,
2496 		0x37460, 0x3748c,
2497 		0x3749c, 0x374ac,
2498 		0x374c0, 0x374c0,
2499 		0x374c8, 0x374d0,
2500 		0x374d8, 0x374e0,
2501 		0x374ec, 0x3752c,
2502 		0x37534, 0x37550,
2503 		0x37558, 0x37558,
2504 		0x37560, 0x3758c,
2505 		0x3759c, 0x375ac,
2506 		0x375c0, 0x375c0,
2507 		0x375c8, 0x375d0,
2508 		0x375d8, 0x375e0,
2509 		0x375ec, 0x37690,
2510 		0x37698, 0x376c4,
2511 		0x376e4, 0x37790,
2512 		0x37798, 0x377c4,
2513 		0x377e4, 0x377fc,
2514 		0x37814, 0x37814,
2515 		0x37854, 0x37868,
2516 		0x37880, 0x3788c,
2517 		0x378c0, 0x378d0,
2518 		0x378e8, 0x378ec,
2519 		0x37900, 0x3792c,
2520 		0x37934, 0x37950,
2521 		0x37958, 0x37958,
2522 		0x37960, 0x3798c,
2523 		0x3799c, 0x379ac,
2524 		0x379c0, 0x379c0,
2525 		0x379c8, 0x379d0,
2526 		0x379d8, 0x379e0,
2527 		0x379ec, 0x37a90,
2528 		0x37a98, 0x37ac4,
2529 		0x37ae4, 0x37b10,
2530 		0x37b24, 0x37b28,
2531 		0x37b38, 0x37b50,
2532 		0x37bf0, 0x37c10,
2533 		0x37c24, 0x37c28,
2534 		0x37c38, 0x37c50,
2535 		0x37cf0, 0x37cfc,
2536 		0x40040, 0x40040,
2537 		0x40080, 0x40084,
2538 		0x40100, 0x40100,
2539 		0x40140, 0x401bc,
2540 		0x40200, 0x40214,
2541 		0x40228, 0x40228,
2542 		0x40240, 0x40258,
2543 		0x40280, 0x40280,
2544 		0x40304, 0x40304,
2545 		0x40330, 0x4033c,
2546 		0x41304, 0x413c8,
2547 		0x413d0, 0x413dc,
2548 		0x413f0, 0x413f0,
2549 		0x41400, 0x4140c,
2550 		0x41414, 0x4141c,
2551 		0x41480, 0x414d0,
2552 		0x44000, 0x4407c,
2553 		0x440c0, 0x441ac,
2554 		0x441b4, 0x4427c,
2555 		0x442c0, 0x443ac,
2556 		0x443b4, 0x4447c,
2557 		0x444c0, 0x445ac,
2558 		0x445b4, 0x4467c,
2559 		0x446c0, 0x447ac,
2560 		0x447b4, 0x4487c,
2561 		0x448c0, 0x449ac,
2562 		0x449b4, 0x44a7c,
2563 		0x44ac0, 0x44bac,
2564 		0x44bb4, 0x44c7c,
2565 		0x44cc0, 0x44dac,
2566 		0x44db4, 0x44e7c,
2567 		0x44ec0, 0x44fac,
2568 		0x44fb4, 0x4507c,
2569 		0x450c0, 0x451ac,
2570 		0x451b4, 0x451fc,
2571 		0x45800, 0x45804,
2572 		0x45810, 0x45830,
2573 		0x45840, 0x45860,
2574 		0x45868, 0x45868,
2575 		0x45880, 0x45884,
2576 		0x458a0, 0x458b0,
2577 		0x45a00, 0x45a04,
2578 		0x45a10, 0x45a30,
2579 		0x45a40, 0x45a60,
2580 		0x45a68, 0x45a68,
2581 		0x45a80, 0x45a84,
2582 		0x45aa0, 0x45ab0,
2583 		0x460c0, 0x460e4,
2584 		0x47000, 0x4703c,
2585 		0x47044, 0x4708c,
2586 		0x47200, 0x47250,
2587 		0x47400, 0x47408,
2588 		0x47414, 0x47420,
2589 		0x47600, 0x47618,
2590 		0x47800, 0x47814,
2591 		0x47820, 0x4782c,
2592 		0x50000, 0x50084,
2593 		0x50090, 0x500cc,
2594 		0x50300, 0x50384,
2595 		0x50400, 0x50400,
2596 		0x50800, 0x50884,
2597 		0x50890, 0x508cc,
2598 		0x50b00, 0x50b84,
2599 		0x50c00, 0x50c00,
2600 		0x51000, 0x51020,
2601 		0x51028, 0x510b0,
2602 		0x51300, 0x51324,
2603 	};
2604 
2605 	static const unsigned int t6vf_reg_ranges[] = {
2606 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2607 		VF_MPS_REG(A_MPS_VF_CTL),
2608 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2609 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2610 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2611 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2612 		FW_T6VF_MBDATA_BASE_ADDR,
2613 		FW_T6VF_MBDATA_BASE_ADDR +
2614 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2615 	};
2616 
2617 	u32 *buf_end = (u32 *)(buf + buf_size);
2618 	const unsigned int *reg_ranges;
2619 	int reg_ranges_size, range;
2620 	unsigned int chip_version = chip_id(adap);
2621 
2622 	/*
2623 	 * Select the right set of register ranges to dump depending on the
2624 	 * adapter chip type.
2625 	 */
2626 	switch (chip_version) {
2627 	case CHELSIO_T4:
2628 		if (adap->flags & IS_VF) {
2629 			reg_ranges = t4vf_reg_ranges;
2630 			reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges);
2631 		} else {
2632 			reg_ranges = t4_reg_ranges;
2633 			reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2634 		}
2635 		break;
2636 
2637 	case CHELSIO_T5:
2638 		if (adap->flags & IS_VF) {
2639 			reg_ranges = t5vf_reg_ranges;
2640 			reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges);
2641 		} else {
2642 			reg_ranges = t5_reg_ranges;
2643 			reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2644 		}
2645 		break;
2646 
2647 	case CHELSIO_T6:
2648 		if (adap->flags & IS_VF) {
2649 			reg_ranges = t6vf_reg_ranges;
2650 			reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges);
2651 		} else {
2652 			reg_ranges = t6_reg_ranges;
2653 			reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2654 		}
2655 		break;
2656 
2657 	default:
2658 		CH_ERR(adap,
2659 			"Unsupported chip version %d\n", chip_version);
2660 		return;
2661 	}
2662 
2663 	/*
2664 	 * Clear the register buffer and insert the appropriate register
2665 	 * values selected by the above register ranges.
2666 	 */
2667 	memset(buf, 0, buf_size);
2668 	for (range = 0; range < reg_ranges_size; range += 2) {
2669 		unsigned int reg = reg_ranges[range];
2670 		unsigned int last_reg = reg_ranges[range + 1];
2671 		u32 *bufp = (u32 *)(buf + reg);
2672 
2673 		/*
2674 		 * Iterate across the register range filling in the register
2675 		 * buffer but don't write past the end of the register buffer.
2676 		 */
2677 		while (reg <= last_reg && bufp < buf_end) {
2678 			*bufp++ = t4_read_reg(adap, reg);
2679 			reg += sizeof(u32);
2680 		}
2681 	}
2682 }
2683 
2684 /*
2685  * Partial EEPROM Vital Product Data structure.  Includes only the ID and
2686  * VPD-R sections.
2687  */
2688 struct t4_vpd_hdr {
2689 	u8  id_tag;
2690 	u8  id_len[2];
2691 	u8  id_data[ID_LEN];
2692 	u8  vpdr_tag;
2693 	u8  vpdr_len[2];
2694 };
2695 
2696 /*
2697  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
2698  */
2699 #define EEPROM_DELAY		10		/* 10us per poll spin */
2700 #define EEPROM_MAX_POLL		5000		/* x 5000 == 50ms */
2701 
2702 #define EEPROM_STAT_ADDR	0x7bfc
2703 #define VPD_BASE		0x400
2704 #define VPD_BASE_OLD		0
2705 #define VPD_LEN			1024
2706 #define VPD_INFO_FLD_HDR_SIZE	3
2707 #define CHELSIO_VPD_UNIQUE_ID	0x82
2708 
2709 /*
2710  * Small utility function to wait till any outstanding VPD Access is complete.
2711  * We have a per-adapter state variable "VPD Busy" to indicate when we have a
2712  * VPD Access in flight.  This allows us to handle the problem of having a
2713  * previous VPD Access time out and prevent an attempt to inject a new VPD
2714  * Request before any in-flight VPD reguest has completed.
2715  */
2716 static int t4_seeprom_wait(struct adapter *adapter)
2717 {
2718 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2719 	int max_poll;
2720 
2721 	/*
2722 	 * If no VPD Access is in flight, we can just return success right
2723 	 * away.
2724 	 */
2725 	if (!adapter->vpd_busy)
2726 		return 0;
2727 
2728 	/*
2729 	 * Poll the VPD Capability Address/Flag register waiting for it
2730 	 * to indicate that the operation is complete.
2731 	 */
2732 	max_poll = EEPROM_MAX_POLL;
2733 	do {
2734 		u16 val;
2735 
2736 		udelay(EEPROM_DELAY);
2737 		t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
2738 
2739 		/*
2740 		 * If the operation is complete, mark the VPD as no longer
2741 		 * busy and return success.
2742 		 */
2743 		if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
2744 			adapter->vpd_busy = 0;
2745 			return 0;
2746 		}
2747 	} while (--max_poll);
2748 
2749 	/*
2750 	 * Failure!  Note that we leave the VPD Busy status set in order to
2751 	 * avoid pushing a new VPD Access request into the VPD Capability till
2752 	 * the current operation eventually succeeds.  It's a bug to issue a
2753 	 * new request when an existing request is in flight and will result
2754 	 * in corrupt hardware state.
2755 	 */
2756 	return -ETIMEDOUT;
2757 }
2758 
2759 /**
2760  *	t4_seeprom_read - read a serial EEPROM location
2761  *	@adapter: adapter to read
2762  *	@addr: EEPROM virtual address
2763  *	@data: where to store the read data
2764  *
2765  *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
2766  *	VPD capability.  Note that this function must be called with a virtual
2767  *	address.
2768  */
2769 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2770 {
2771 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2772 	int ret;
2773 
2774 	/*
2775 	 * VPD Accesses must alway be 4-byte aligned!
2776 	 */
2777 	if (addr >= EEPROMVSIZE || (addr & 3))
2778 		return -EINVAL;
2779 
2780 	/*
2781 	 * Wait for any previous operation which may still be in flight to
2782 	 * complete.
2783 	 */
2784 	ret = t4_seeprom_wait(adapter);
2785 	if (ret) {
2786 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2787 		return ret;
2788 	}
2789 
2790 	/*
2791 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2792 	 * for our request to complete.  If it doesn't complete, note the
2793 	 * error and return it to our caller.  Note that we do not reset the
2794 	 * VPD Busy status!
2795 	 */
2796 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2797 	adapter->vpd_busy = 1;
2798 	adapter->vpd_flag = PCI_VPD_ADDR_F;
2799 	ret = t4_seeprom_wait(adapter);
2800 	if (ret) {
2801 		CH_ERR(adapter, "VPD read of address %#x failed\n", addr);
2802 		return ret;
2803 	}
2804 
2805 	/*
2806 	 * Grab the returned data, swizzle it into our endianness and
2807 	 * return success.
2808 	 */
2809 	t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2810 	*data = le32_to_cpu(*data);
2811 	return 0;
2812 }
2813 
2814 /**
2815  *	t4_seeprom_write - write a serial EEPROM location
2816  *	@adapter: adapter to write
2817  *	@addr: virtual EEPROM address
2818  *	@data: value to write
2819  *
2820  *	Write a 32-bit word to a location in serial EEPROM using the card's PCI
2821  *	VPD capability.  Note that this function must be called with a virtual
2822  *	address.
2823  */
2824 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2825 {
2826 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2827 	int ret;
2828 	u32 stats_reg;
2829 	int max_poll;
2830 
2831 	/*
2832 	 * VPD Accesses must alway be 4-byte aligned!
2833 	 */
2834 	if (addr >= EEPROMVSIZE || (addr & 3))
2835 		return -EINVAL;
2836 
2837 	/*
2838 	 * Wait for any previous operation which may still be in flight to
2839 	 * complete.
2840 	 */
2841 	ret = t4_seeprom_wait(adapter);
2842 	if (ret) {
2843 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2844 		return ret;
2845 	}
2846 
2847 	/*
2848 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2849 	 * for our request to complete.  If it doesn't complete, note the
2850 	 * error and return it to our caller.  Note that we do not reset the
2851 	 * VPD Busy status!
2852 	 */
2853 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2854 				 cpu_to_le32(data));
2855 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2856 				 (u16)addr | PCI_VPD_ADDR_F);
2857 	adapter->vpd_busy = 1;
2858 	adapter->vpd_flag = 0;
2859 	ret = t4_seeprom_wait(adapter);
2860 	if (ret) {
2861 		CH_ERR(adapter, "VPD write of address %#x failed\n", addr);
2862 		return ret;
2863 	}
2864 
2865 	/*
2866 	 * Reset PCI_VPD_DATA register after a transaction and wait for our
2867 	 * request to complete. If it doesn't complete, return error.
2868 	 */
2869 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2870 	max_poll = EEPROM_MAX_POLL;
2871 	do {
2872 		udelay(EEPROM_DELAY);
2873 		t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2874 	} while ((stats_reg & 0x1) && --max_poll);
2875 	if (!max_poll)
2876 		return -ETIMEDOUT;
2877 
2878 	/* Return success! */
2879 	return 0;
2880 }
2881 
2882 /**
2883  *	t4_eeprom_ptov - translate a physical EEPROM address to virtual
2884  *	@phys_addr: the physical EEPROM address
2885  *	@fn: the PCI function number
2886  *	@sz: size of function-specific area
2887  *
2888  *	Translate a physical EEPROM address to virtual.  The first 1K is
2889  *	accessed through virtual addresses starting at 31K, the rest is
2890  *	accessed through virtual addresses starting at 0.
2891  *
2892  *	The mapping is as follows:
2893  *	[0..1K) -> [31K..32K)
2894  *	[1K..1K+A) -> [ES-A..ES)
2895  *	[1K+A..ES) -> [0..ES-A-1K)
2896  *
2897  *	where A = @fn * @sz, and ES = EEPROM size.
2898  */
2899 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2900 {
2901 	fn *= sz;
2902 	if (phys_addr < 1024)
2903 		return phys_addr + (31 << 10);
2904 	if (phys_addr < 1024 + fn)
2905 		return EEPROMSIZE - fn + phys_addr - 1024;
2906 	if (phys_addr < EEPROMSIZE)
2907 		return phys_addr - 1024 - fn;
2908 	return -EINVAL;
2909 }
2910 
2911 /**
2912  *	t4_seeprom_wp - enable/disable EEPROM write protection
2913  *	@adapter: the adapter
2914  *	@enable: whether to enable or disable write protection
2915  *
2916  *	Enables or disables write protection on the serial EEPROM.
2917  */
2918 int t4_seeprom_wp(struct adapter *adapter, int enable)
2919 {
2920 	return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2921 }
2922 
2923 /**
2924  *	get_vpd_keyword_val - Locates an information field keyword in the VPD
2925  *	@v: Pointer to buffered vpd data structure
2926  *	@kw: The keyword to search for
2927  *
2928  *	Returns the value of the information field keyword or
2929  *	-ENOENT otherwise.
2930  */
2931 static int get_vpd_keyword_val(const struct t4_vpd_hdr *v, const char *kw)
2932 {
2933 	int i;
2934 	unsigned int offset , len;
2935 	const u8 *buf = (const u8 *)v;
2936 	const u8 *vpdr_len = &v->vpdr_len[0];
2937 	offset = sizeof(struct t4_vpd_hdr);
2938 	len =  (u16)vpdr_len[0] + ((u16)vpdr_len[1] << 8);
2939 
2940 	if (len + sizeof(struct t4_vpd_hdr) > VPD_LEN) {
2941 		return -ENOENT;
2942 	}
2943 
2944 	for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
2945 		if(memcmp(buf + i , kw , 2) == 0){
2946 			i += VPD_INFO_FLD_HDR_SIZE;
2947 			return i;
2948 		}
2949 
2950 		i += VPD_INFO_FLD_HDR_SIZE + buf[i+2];
2951 	}
2952 
2953 	return -ENOENT;
2954 }
2955 
2956 
2957 /**
2958  *	get_vpd_params - read VPD parameters from VPD EEPROM
2959  *	@adapter: adapter to read
2960  *	@p: where to store the parameters
2961  *	@vpd: caller provided temporary space to read the VPD into
2962  *
2963  *	Reads card parameters stored in VPD EEPROM.
2964  */
2965 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p,
2966     u8 *vpd)
2967 {
2968 	int i, ret, addr;
2969 	int ec, sn, pn, na;
2970 	u8 csum;
2971 	const struct t4_vpd_hdr *v;
2972 
2973 	/*
2974 	 * Card information normally starts at VPD_BASE but early cards had
2975 	 * it at 0.
2976 	 */
2977 	ret = t4_seeprom_read(adapter, VPD_BASE, (u32 *)(vpd));
2978 	if (ret)
2979 		return (ret);
2980 
2981 	/*
2982 	 * The VPD shall have a unique identifier specified by the PCI SIG.
2983 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2984 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2985 	 * is expected to automatically put this entry at the
2986 	 * beginning of the VPD.
2987 	 */
2988 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2989 
2990 	for (i = 0; i < VPD_LEN; i += 4) {
2991 		ret = t4_seeprom_read(adapter, addr + i, (u32 *)(vpd + i));
2992 		if (ret)
2993 			return ret;
2994 	}
2995  	v = (const struct t4_vpd_hdr *)vpd;
2996 
2997 #define FIND_VPD_KW(var,name) do { \
2998 	var = get_vpd_keyword_val(v , name); \
2999 	if (var < 0) { \
3000 		CH_ERR(adapter, "missing VPD keyword " name "\n"); \
3001 		return -EINVAL; \
3002 	} \
3003 } while (0)
3004 
3005 	FIND_VPD_KW(i, "RV");
3006 	for (csum = 0; i >= 0; i--)
3007 		csum += vpd[i];
3008 
3009 	if (csum) {
3010 		CH_ERR(adapter,
3011 			"corrupted VPD EEPROM, actual csum %u\n", csum);
3012 		return -EINVAL;
3013 	}
3014 
3015 	FIND_VPD_KW(ec, "EC");
3016 	FIND_VPD_KW(sn, "SN");
3017 	FIND_VPD_KW(pn, "PN");
3018 	FIND_VPD_KW(na, "NA");
3019 #undef FIND_VPD_KW
3020 
3021 	memcpy(p->id, v->id_data, ID_LEN);
3022 	strstrip(p->id);
3023 	memcpy(p->ec, vpd + ec, EC_LEN);
3024 	strstrip(p->ec);
3025 	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
3026 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
3027 	strstrip(p->sn);
3028 	i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
3029 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
3030 	strstrip((char *)p->pn);
3031 	i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
3032 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
3033 	strstrip((char *)p->na);
3034 
3035 	return 0;
3036 }
3037 
3038 /* serial flash and firmware constants and flash config file constants */
3039 enum {
3040 	SF_ATTEMPTS = 10,	/* max retries for SF operations */
3041 
3042 	/* flash command opcodes */
3043 	SF_PROG_PAGE    = 2,	/* program page */
3044 	SF_WR_DISABLE   = 4,	/* disable writes */
3045 	SF_RD_STATUS    = 5,	/* read status register */
3046 	SF_WR_ENABLE    = 6,	/* enable writes */
3047 	SF_RD_DATA_FAST = 0xb,	/* read flash */
3048 	SF_RD_ID	= 0x9f,	/* read ID */
3049 	SF_ERASE_SECTOR = 0xd8,	/* erase sector */
3050 };
3051 
3052 /**
3053  *	sf1_read - read data from the serial flash
3054  *	@adapter: the adapter
3055  *	@byte_cnt: number of bytes to read
3056  *	@cont: whether another operation will be chained
3057  *	@lock: whether to lock SF for PL access only
3058  *	@valp: where to store the read data
3059  *
3060  *	Reads up to 4 bytes of data from the serial flash.  The location of
3061  *	the read needs to be specified prior to calling this by issuing the
3062  *	appropriate commands to the serial flash.
3063  */
3064 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
3065 		    int lock, u32 *valp)
3066 {
3067 	int ret;
3068 
3069 	if (!byte_cnt || byte_cnt > 4)
3070 		return -EINVAL;
3071 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3072 		return -EBUSY;
3073 	t4_write_reg(adapter, A_SF_OP,
3074 		     V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
3075 	ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3076 	if (!ret)
3077 		*valp = t4_read_reg(adapter, A_SF_DATA);
3078 	return ret;
3079 }
3080 
3081 /**
3082  *	sf1_write - write data to the serial flash
3083  *	@adapter: the adapter
3084  *	@byte_cnt: number of bytes to write
3085  *	@cont: whether another operation will be chained
3086  *	@lock: whether to lock SF for PL access only
3087  *	@val: value to write
3088  *
3089  *	Writes up to 4 bytes of data to the serial flash.  The location of
3090  *	the write needs to be specified prior to calling this by issuing the
3091  *	appropriate commands to the serial flash.
3092  */
3093 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
3094 		     int lock, u32 val)
3095 {
3096 	if (!byte_cnt || byte_cnt > 4)
3097 		return -EINVAL;
3098 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3099 		return -EBUSY;
3100 	t4_write_reg(adapter, A_SF_DATA, val);
3101 	t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
3102 		     V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
3103 	return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3104 }
3105 
3106 /**
3107  *	flash_wait_op - wait for a flash operation to complete
3108  *	@adapter: the adapter
3109  *	@attempts: max number of polls of the status register
3110  *	@delay: delay between polls in ms
3111  *
3112  *	Wait for a flash operation to complete by polling the status register.
3113  */
3114 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3115 {
3116 	int ret;
3117 	u32 status;
3118 
3119 	while (1) {
3120 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3121 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3122 			return ret;
3123 		if (!(status & 1))
3124 			return 0;
3125 		if (--attempts == 0)
3126 			return -EAGAIN;
3127 		if (delay)
3128 			msleep(delay);
3129 	}
3130 }
3131 
3132 /**
3133  *	t4_read_flash - read words from serial flash
3134  *	@adapter: the adapter
3135  *	@addr: the start address for the read
3136  *	@nwords: how many 32-bit words to read
3137  *	@data: where to store the read data
3138  *	@byte_oriented: whether to store data as bytes or as words
3139  *
3140  *	Read the specified number of 32-bit words from the serial flash.
3141  *	If @byte_oriented is set the read data is stored as a byte array
3142  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3143  *	natural endianness.
3144  */
3145 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3146 		  unsigned int nwords, u32 *data, int byte_oriented)
3147 {
3148 	int ret;
3149 
3150 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3151 		return -EINVAL;
3152 
3153 	addr = swab32(addr) | SF_RD_DATA_FAST;
3154 
3155 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3156 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3157 		return ret;
3158 
3159 	for ( ; nwords; nwords--, data++) {
3160 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3161 		if (nwords == 1)
3162 			t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3163 		if (ret)
3164 			return ret;
3165 		if (byte_oriented)
3166 			*data = (__force __u32)(cpu_to_be32(*data));
3167 	}
3168 	return 0;
3169 }
3170 
3171 /**
3172  *	t4_write_flash - write up to a page of data to the serial flash
3173  *	@adapter: the adapter
3174  *	@addr: the start address to write
3175  *	@n: length of data to write in bytes
3176  *	@data: the data to write
3177  *	@byte_oriented: whether to store data as bytes or as words
3178  *
3179  *	Writes up to a page of data (256 bytes) to the serial flash starting
3180  *	at the given address.  All the data must be written to the same page.
3181  *	If @byte_oriented is set the write data is stored as byte stream
3182  *	(i.e. matches what on disk), otherwise in big-endian.
3183  */
3184 int t4_write_flash(struct adapter *adapter, unsigned int addr,
3185 			  unsigned int n, const u8 *data, int byte_oriented)
3186 {
3187 	int ret;
3188 	u32 buf[SF_PAGE_SIZE / 4];
3189 	unsigned int i, c, left, val, offset = addr & 0xff;
3190 
3191 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3192 		return -EINVAL;
3193 
3194 	val = swab32(addr) | SF_PROG_PAGE;
3195 
3196 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3197 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3198 		goto unlock;
3199 
3200 	for (left = n; left; left -= c) {
3201 		c = min(left, 4U);
3202 		for (val = 0, i = 0; i < c; ++i)
3203 			val = (val << 8) + *data++;
3204 
3205 		if (!byte_oriented)
3206 			val = cpu_to_be32(val);
3207 
3208 		ret = sf1_write(adapter, c, c != left, 1, val);
3209 		if (ret)
3210 			goto unlock;
3211 	}
3212 	ret = flash_wait_op(adapter, 8, 1);
3213 	if (ret)
3214 		goto unlock;
3215 
3216 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3217 
3218 	/* Read the page to verify the write succeeded */
3219 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3220 			    byte_oriented);
3221 	if (ret)
3222 		return ret;
3223 
3224 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3225 		CH_ERR(adapter,
3226 			"failed to correctly write the flash page at %#x\n",
3227 			addr);
3228 		return -EIO;
3229 	}
3230 	return 0;
3231 
3232 unlock:
3233 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3234 	return ret;
3235 }
3236 
3237 /**
3238  *	t4_get_fw_version - read the firmware version
3239  *	@adapter: the adapter
3240  *	@vers: where to place the version
3241  *
3242  *	Reads the FW version from flash.
3243  */
3244 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3245 {
3246 	return t4_read_flash(adapter, FLASH_FW_START +
3247 			     offsetof(struct fw_hdr, fw_ver), 1,
3248 			     vers, 0);
3249 }
3250 
3251 /**
3252  *	t4_get_bs_version - read the firmware bootstrap version
3253  *	@adapter: the adapter
3254  *	@vers: where to place the version
3255  *
3256  *	Reads the FW Bootstrap version from flash.
3257  */
3258 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3259 {
3260 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3261 			     offsetof(struct fw_hdr, fw_ver), 1,
3262 			     vers, 0);
3263 }
3264 
3265 /**
3266  *	t4_get_tp_version - read the TP microcode version
3267  *	@adapter: the adapter
3268  *	@vers: where to place the version
3269  *
3270  *	Reads the TP microcode version from flash.
3271  */
3272 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3273 {
3274 	return t4_read_flash(adapter, FLASH_FW_START +
3275 			     offsetof(struct fw_hdr, tp_microcode_ver),
3276 			     1, vers, 0);
3277 }
3278 
3279 /**
3280  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3281  *	@adapter: the adapter
3282  *	@vers: where to place the version
3283  *
3284  *	Reads the Expansion ROM header from FLASH and returns the version
3285  *	number (if present) through the @vers return value pointer.  We return
3286  *	this in the Firmware Version Format since it's convenient.  Return
3287  *	0 on success, -ENOENT if no Expansion ROM is present.
3288  */
3289 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3290 {
3291 	struct exprom_header {
3292 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3293 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3294 	} *hdr;
3295 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3296 					   sizeof(u32))];
3297 	int ret;
3298 
3299 	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3300 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3301 			    0);
3302 	if (ret)
3303 		return ret;
3304 
3305 	hdr = (struct exprom_header *)exprom_header_buf;
3306 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3307 		return -ENOENT;
3308 
3309 	*vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
3310 		 V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
3311 		 V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
3312 		 V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
3313 	return 0;
3314 }
3315 
3316 /**
3317  *	t4_get_scfg_version - return the Serial Configuration version
3318  *	@adapter: the adapter
3319  *	@vers: where to place the version
3320  *
3321  *	Reads the Serial Configuration Version via the Firmware interface
3322  *	(thus this can only be called once we're ready to issue Firmware
3323  *	commands).  The format of the Serial Configuration version is
3324  *	adapter specific.  Returns 0 on success, an error on failure.
3325  *
3326  *	Note that early versions of the Firmware didn't include the ability
3327  *	to retrieve the Serial Configuration version, so we zero-out the
3328  *	return-value parameter in that case to avoid leaving it with
3329  *	garbage in it.
3330  *
3331  *	Also note that the Firmware will return its cached copy of the Serial
3332  *	Initialization Revision ID, not the actual Revision ID as written in
3333  *	the Serial EEPROM.  This is only an issue if a new VPD has been written
3334  *	and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3335  *	it's best to defer calling this routine till after a FW_RESET_CMD has
3336  *	been issued if the Host Driver will be performing a full adapter
3337  *	initialization.
3338  */
3339 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3340 {
3341 	u32 scfgrev_param;
3342 	int ret;
3343 
3344 	scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3345 			 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV));
3346 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3347 			      1, &scfgrev_param, vers);
3348 	if (ret)
3349 		*vers = 0;
3350 	return ret;
3351 }
3352 
3353 /**
3354  *	t4_get_vpd_version - return the VPD version
3355  *	@adapter: the adapter
3356  *	@vers: where to place the version
3357  *
3358  *	Reads the VPD via the Firmware interface (thus this can only be called
3359  *	once we're ready to issue Firmware commands).  The format of the
3360  *	VPD version is adapter specific.  Returns 0 on success, an error on
3361  *	failure.
3362  *
3363  *	Note that early versions of the Firmware didn't include the ability
3364  *	to retrieve the VPD version, so we zero-out the return-value parameter
3365  *	in that case to avoid leaving it with garbage in it.
3366  *
3367  *	Also note that the Firmware will return its cached copy of the VPD
3368  *	Revision ID, not the actual Revision ID as written in the Serial
3369  *	EEPROM.  This is only an issue if a new VPD has been written and the
3370  *	Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3371  *	to defer calling this routine till after a FW_RESET_CMD has been issued
3372  *	if the Host Driver will be performing a full adapter initialization.
3373  */
3374 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3375 {
3376 	u32 vpdrev_param;
3377 	int ret;
3378 
3379 	vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3380 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV));
3381 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3382 			      1, &vpdrev_param, vers);
3383 	if (ret)
3384 		*vers = 0;
3385 	return ret;
3386 }
3387 
3388 /**
3389  *	t4_get_version_info - extract various chip/firmware version information
3390  *	@adapter: the adapter
3391  *
3392  *	Reads various chip/firmware version numbers and stores them into the
3393  *	adapter Adapter Parameters structure.  If any of the efforts fails
3394  *	the first failure will be returned, but all of the version numbers
3395  *	will be read.
3396  */
3397 int t4_get_version_info(struct adapter *adapter)
3398 {
3399 	int ret = 0;
3400 
3401 	#define FIRST_RET(__getvinfo) \
3402 	do { \
3403 		int __ret = __getvinfo; \
3404 		if (__ret && !ret) \
3405 			ret = __ret; \
3406 	} while (0)
3407 
3408 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3409 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3410 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3411 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3412 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3413 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3414 
3415 	#undef FIRST_RET
3416 
3417 	return ret;
3418 }
3419 
3420 /**
3421  *	t4_flash_erase_sectors - erase a range of flash sectors
3422  *	@adapter: the adapter
3423  *	@start: the first sector to erase
3424  *	@end: the last sector to erase
3425  *
3426  *	Erases the sectors in the given inclusive range.
3427  */
3428 int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3429 {
3430 	int ret = 0;
3431 
3432 	if (end >= adapter->params.sf_nsec)
3433 		return -EINVAL;
3434 
3435 	while (start <= end) {
3436 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3437 		    (ret = sf1_write(adapter, 4, 0, 1,
3438 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3439 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3440 			CH_ERR(adapter,
3441 				"erase of flash sector %d failed, error %d\n",
3442 				start, ret);
3443 			break;
3444 		}
3445 		start++;
3446 	}
3447 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3448 	return ret;
3449 }
3450 
3451 /**
3452  *	t4_flash_cfg_addr - return the address of the flash configuration file
3453  *	@adapter: the adapter
3454  *
3455  *	Return the address within the flash where the Firmware Configuration
3456  *	File is stored, or an error if the device FLASH is too small to contain
3457  *	a Firmware Configuration File.
3458  */
3459 int t4_flash_cfg_addr(struct adapter *adapter)
3460 {
3461 	/*
3462 	 * If the device FLASH isn't large enough to hold a Firmware
3463 	 * Configuration File, return an error.
3464 	 */
3465 	if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
3466 		return -ENOSPC;
3467 
3468 	return FLASH_CFG_START;
3469 }
3470 
3471 /*
3472  * Return TRUE if the specified firmware matches the adapter.  I.e. T4
3473  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3474  * and emit an error message for mismatched firmware to save our caller the
3475  * effort ...
3476  */
3477 static int t4_fw_matches_chip(struct adapter *adap,
3478 			      const struct fw_hdr *hdr)
3479 {
3480 	/*
3481 	 * The expression below will return FALSE for any unsupported adapter
3482 	 * which will keep us "honest" in the future ...
3483 	 */
3484 	if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) ||
3485 	    (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) ||
3486 	    (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6))
3487 		return 1;
3488 
3489 	CH_ERR(adap,
3490 		"FW image (%d) is not suitable for this adapter (%d)\n",
3491 		hdr->chip, chip_id(adap));
3492 	return 0;
3493 }
3494 
3495 /**
3496  *	t4_load_fw - download firmware
3497  *	@adap: the adapter
3498  *	@fw_data: the firmware image to write
3499  *	@size: image size
3500  *
3501  *	Write the supplied firmware image to the card's serial flash.
3502  */
3503 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3504 {
3505 	u32 csum;
3506 	int ret, addr;
3507 	unsigned int i;
3508 	u8 first_page[SF_PAGE_SIZE];
3509 	const u32 *p = (const u32 *)fw_data;
3510 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3511 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3512 	unsigned int fw_start_sec;
3513 	unsigned int fw_start;
3514 	unsigned int fw_size;
3515 
3516 	if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) {
3517 		fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC;
3518 		fw_start = FLASH_FWBOOTSTRAP_START;
3519 		fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE;
3520 	} else {
3521 		fw_start_sec = FLASH_FW_START_SEC;
3522  		fw_start = FLASH_FW_START;
3523 		fw_size = FLASH_FW_MAX_SIZE;
3524 	}
3525 
3526 	if (!size) {
3527 		CH_ERR(adap, "FW image has no data\n");
3528 		return -EINVAL;
3529 	}
3530 	if (size & 511) {
3531 		CH_ERR(adap,
3532 			"FW image size not multiple of 512 bytes\n");
3533 		return -EINVAL;
3534 	}
3535 	if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) {
3536 		CH_ERR(adap,
3537 			"FW image size differs from size in FW header\n");
3538 		return -EINVAL;
3539 	}
3540 	if (size > fw_size) {
3541 		CH_ERR(adap, "FW image too large, max is %u bytes\n",
3542 			fw_size);
3543 		return -EFBIG;
3544 	}
3545 	if (!t4_fw_matches_chip(adap, hdr))
3546 		return -EINVAL;
3547 
3548 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3549 		csum += be32_to_cpu(p[i]);
3550 
3551 	if (csum != 0xffffffff) {
3552 		CH_ERR(adap,
3553 			"corrupted firmware image, checksum %#x\n", csum);
3554 		return -EINVAL;
3555 	}
3556 
3557 	i = DIV_ROUND_UP(size, sf_sec_size);	/* # of sectors spanned */
3558 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3559 	if (ret)
3560 		goto out;
3561 
3562 	/*
3563 	 * We write the correct version at the end so the driver can see a bad
3564 	 * version if the FW write fails.  Start by writing a copy of the
3565 	 * first page with a bad version.
3566 	 */
3567 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3568 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3569 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
3570 	if (ret)
3571 		goto out;
3572 
3573 	addr = fw_start;
3574 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3575 		addr += SF_PAGE_SIZE;
3576 		fw_data += SF_PAGE_SIZE;
3577 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
3578 		if (ret)
3579 			goto out;
3580 	}
3581 
3582 	ret = t4_write_flash(adap,
3583 			     fw_start + offsetof(struct fw_hdr, fw_ver),
3584 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
3585 out:
3586 	if (ret)
3587 		CH_ERR(adap, "firmware download failed, error %d\n",
3588 			ret);
3589 	return ret;
3590 }
3591 
3592 /**
3593  *	t4_fwcache - firmware cache operation
3594  *	@adap: the adapter
3595  *	@op  : the operation (flush or flush and invalidate)
3596  */
3597 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3598 {
3599 	struct fw_params_cmd c;
3600 
3601 	memset(&c, 0, sizeof(c));
3602 	c.op_to_vfn =
3603 	    cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3604 			    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3605 				V_FW_PARAMS_CMD_PFN(adap->pf) |
3606 				V_FW_PARAMS_CMD_VFN(0));
3607 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3608 	c.param[0].mnem =
3609 	    cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3610 			    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE));
3611 	c.param[0].val = (__force __be32)op;
3612 
3613 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3614 }
3615 
3616 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3617 			unsigned int *pif_req_wrptr,
3618 			unsigned int *pif_rsp_wrptr)
3619 {
3620 	int i, j;
3621 	u32 cfg, val, req, rsp;
3622 
3623 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3624 	if (cfg & F_LADBGEN)
3625 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3626 
3627 	val = t4_read_reg(adap, A_CIM_DEBUGSTS);
3628 	req = G_POLADBGWRPTR(val);
3629 	rsp = G_PILADBGWRPTR(val);
3630 	if (pif_req_wrptr)
3631 		*pif_req_wrptr = req;
3632 	if (pif_rsp_wrptr)
3633 		*pif_rsp_wrptr = rsp;
3634 
3635 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3636 		for (j = 0; j < 6; j++) {
3637 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
3638 				     V_PILADBGRDPTR(rsp));
3639 			*pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
3640 			*pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
3641 			req++;
3642 			rsp++;
3643 		}
3644 		req = (req + 2) & M_POLADBGRDPTR;
3645 		rsp = (rsp + 2) & M_PILADBGRDPTR;
3646 	}
3647 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3648 }
3649 
3650 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3651 {
3652 	u32 cfg;
3653 	int i, j, idx;
3654 
3655 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3656 	if (cfg & F_LADBGEN)
3657 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3658 
3659 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3660 		for (j = 0; j < 5; j++) {
3661 			idx = 8 * i + j;
3662 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
3663 				     V_PILADBGRDPTR(idx));
3664 			*ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
3665 			*ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
3666 		}
3667 	}
3668 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3669 }
3670 
3671 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3672 {
3673 	unsigned int i, j;
3674 
3675 	for (i = 0; i < 8; i++) {
3676 		u32 *p = la_buf + i;
3677 
3678 		t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
3679 		j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
3680 		t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
3681 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3682 			*p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
3683 	}
3684 }
3685 
3686 #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
3687 		     FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_25G | \
3688 		     FW_PORT_CAP_SPEED_40G | FW_PORT_CAP_SPEED_100G | \
3689 		     FW_PORT_CAP_ANEG)
3690 
3691 /**
3692  *	t4_link_l1cfg - apply link configuration to MAC/PHY
3693  *	@phy: the PHY to setup
3694  *	@mac: the MAC to setup
3695  *	@lc: the requested link configuration
3696  *
3697  *	Set up a port's MAC and PHY according to a desired link configuration.
3698  *	- If the PHY can auto-negotiate first decide what to advertise, then
3699  *	  enable/disable auto-negotiation as desired, and reset.
3700  *	- If the PHY does not auto-negotiate just reset it.
3701  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3702  *	  otherwise do it later based on the outcome of auto-negotiation.
3703  */
3704 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3705 		  struct link_config *lc)
3706 {
3707 	struct fw_port_cmd c;
3708 	unsigned int fc = 0, mdi = V_FW_PORT_CAP_MDI(FW_PORT_CAP_MDI_AUTO);
3709 
3710 	lc->link_ok = 0;
3711 	if (lc->requested_fc & PAUSE_RX)
3712 		fc |= FW_PORT_CAP_FC_RX;
3713 	if (lc->requested_fc & PAUSE_TX)
3714 		fc |= FW_PORT_CAP_FC_TX;
3715 
3716 	memset(&c, 0, sizeof(c));
3717 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3718 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3719 				     V_FW_PORT_CMD_PORTID(port));
3720 	c.action_to_len16 =
3721 		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3722 			    FW_LEN16(c));
3723 
3724 	if (!(lc->supported & FW_PORT_CAP_ANEG)) {
3725 		c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) |
3726 					     fc);
3727 		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3728 	} else if (lc->autoneg == AUTONEG_DISABLE) {
3729 		c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed | fc | mdi);
3730 		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3731 	} else
3732 		c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc | mdi);
3733 
3734 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3735 }
3736 
3737 /**
3738  *	t4_restart_aneg - restart autonegotiation
3739  *	@adap: the adapter
3740  *	@mbox: mbox to use for the FW command
3741  *	@port: the port id
3742  *
3743  *	Restarts autonegotiation for the selected port.
3744  */
3745 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3746 {
3747 	struct fw_port_cmd c;
3748 
3749 	memset(&c, 0, sizeof(c));
3750 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3751 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3752 				     V_FW_PORT_CMD_PORTID(port));
3753 	c.action_to_len16 =
3754 		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3755 			    FW_LEN16(c));
3756 	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3757 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3758 }
3759 
3760 typedef void (*int_handler_t)(struct adapter *adap);
3761 
3762 struct intr_info {
3763 	unsigned int mask;	/* bits to check in interrupt status */
3764 	const char *msg;	/* message to print or NULL */
3765 	short stat_idx;		/* stat counter to increment or -1 */
3766 	unsigned short fatal;	/* whether the condition reported is fatal */
3767 	int_handler_t int_handler;	/* platform-specific int handler */
3768 };
3769 
3770 /**
3771  *	t4_handle_intr_status - table driven interrupt handler
3772  *	@adapter: the adapter that generated the interrupt
3773  *	@reg: the interrupt status register to process
3774  *	@acts: table of interrupt actions
3775  *
3776  *	A table driven interrupt handler that applies a set of masks to an
3777  *	interrupt status word and performs the corresponding actions if the
3778  *	interrupts described by the mask have occurred.  The actions include
3779  *	optionally emitting a warning or alert message.  The table is terminated
3780  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
3781  *	conditions.
3782  */
3783 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
3784 				 const struct intr_info *acts)
3785 {
3786 	int fatal = 0;
3787 	unsigned int mask = 0;
3788 	unsigned int status = t4_read_reg(adapter, reg);
3789 
3790 	for ( ; acts->mask; ++acts) {
3791 		if (!(status & acts->mask))
3792 			continue;
3793 		if (acts->fatal) {
3794 			fatal++;
3795 			CH_ALERT(adapter, "%s (0x%x)\n", acts->msg,
3796 				  status & acts->mask);
3797 		} else if (acts->msg)
3798 			CH_WARN_RATELIMIT(adapter, "%s (0x%x)\n", acts->msg,
3799 				 status & acts->mask);
3800 		if (acts->int_handler)
3801 			acts->int_handler(adapter);
3802 		mask |= acts->mask;
3803 	}
3804 	status &= mask;
3805 	if (status)	/* clear processed interrupts */
3806 		t4_write_reg(adapter, reg, status);
3807 	return fatal;
3808 }
3809 
3810 /*
3811  * Interrupt handler for the PCIE module.
3812  */
3813 static void pcie_intr_handler(struct adapter *adapter)
3814 {
3815 	static const struct intr_info sysbus_intr_info[] = {
3816 		{ F_RNPP, "RXNP array parity error", -1, 1 },
3817 		{ F_RPCP, "RXPC array parity error", -1, 1 },
3818 		{ F_RCIP, "RXCIF array parity error", -1, 1 },
3819 		{ F_RCCP, "Rx completions control array parity error", -1, 1 },
3820 		{ F_RFTP, "RXFT array parity error", -1, 1 },
3821 		{ 0 }
3822 	};
3823 	static const struct intr_info pcie_port_intr_info[] = {
3824 		{ F_TPCP, "TXPC array parity error", -1, 1 },
3825 		{ F_TNPP, "TXNP array parity error", -1, 1 },
3826 		{ F_TFTP, "TXFT array parity error", -1, 1 },
3827 		{ F_TCAP, "TXCA array parity error", -1, 1 },
3828 		{ F_TCIP, "TXCIF array parity error", -1, 1 },
3829 		{ F_RCAP, "RXCA array parity error", -1, 1 },
3830 		{ F_OTDD, "outbound request TLP discarded", -1, 1 },
3831 		{ F_RDPE, "Rx data parity error", -1, 1 },
3832 		{ F_TDUE, "Tx uncorrectable data error", -1, 1 },
3833 		{ 0 }
3834 	};
3835 	static const struct intr_info pcie_intr_info[] = {
3836 		{ F_MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
3837 		{ F_MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
3838 		{ F_MSIDATAPERR, "MSI data parity error", -1, 1 },
3839 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
3840 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
3841 		{ F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
3842 		{ F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
3843 		{ F_PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
3844 		{ F_PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
3845 		{ F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
3846 		{ F_CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
3847 		{ F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
3848 		{ F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
3849 		{ F_DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
3850 		{ F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
3851 		{ F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
3852 		{ F_HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
3853 		{ F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
3854 		{ F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
3855 		{ F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
3856 		{ F_FIDPERR, "PCI FID parity error", -1, 1 },
3857 		{ F_INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
3858 		{ F_MATAGPERR, "PCI MA tag parity error", -1, 1 },
3859 		{ F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
3860 		{ F_RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
3861 		{ F_RXWRPERR, "PCI Rx write parity error", -1, 1 },
3862 		{ F_RPLPERR, "PCI replay buffer parity error", -1, 1 },
3863 		{ F_PCIESINT, "PCI core secondary fault", -1, 1 },
3864 		{ F_PCIEPINT, "PCI core primary fault", -1, 1 },
3865 		{ F_UNXSPLCPLERR, "PCI unexpected split completion error", -1,
3866 		  0 },
3867 		{ 0 }
3868 	};
3869 
3870 	static const struct intr_info t5_pcie_intr_info[] = {
3871 		{ F_MSTGRPPERR, "Master Response Read Queue parity error",
3872 		  -1, 1 },
3873 		{ F_MSTTIMEOUTPERR, "Master Timeout FIFO parity error", -1, 1 },
3874 		{ F_MSIXSTIPERR, "MSI-X STI SRAM parity error", -1, 1 },
3875 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
3876 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
3877 		{ F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
3878 		{ F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
3879 		{ F_PIOCPLGRPPERR, "PCI PIO completion Group FIFO parity error",
3880 		  -1, 1 },
3881 		{ F_PIOREQGRPPERR, "PCI PIO request Group FIFO parity error",
3882 		  -1, 1 },
3883 		{ F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
3884 		{ F_MSTTAGQPERR, "PCI master tag queue parity error", -1, 1 },
3885 		{ F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
3886 		{ F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
3887 		{ F_DREQWRPERR, "PCI DMA channel write request parity error",
3888 		  -1, 1 },
3889 		{ F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
3890 		{ F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
3891 		{ F_HREQWRPERR, "PCI HMA channel count parity error", -1, 1 },
3892 		{ F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
3893 		{ F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
3894 		{ F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
3895 		{ F_FIDPERR, "PCI FID parity error", -1, 1 },
3896 		{ F_VFIDPERR, "PCI INTx clear parity error", -1, 1 },
3897 		{ F_MAGRPPERR, "PCI MA group FIFO parity error", -1, 1 },
3898 		{ F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
3899 		{ F_IPRXHDRGRPPERR, "PCI IP Rx header group parity error",
3900 		  -1, 1 },
3901 		{ F_IPRXDATAGRPPERR, "PCI IP Rx data group parity error",
3902 		  -1, 1 },
3903 		{ F_RPLPERR, "PCI IP replay buffer parity error", -1, 1 },
3904 		{ F_IPSOTPERR, "PCI IP SOT buffer parity error", -1, 1 },
3905 		{ F_TRGT1GRPPERR, "PCI TRGT1 group FIFOs parity error", -1, 1 },
3906 		{ F_READRSPERR, "Outbound read error", -1,
3907 		  0 },
3908 		{ 0 }
3909 	};
3910 
3911 	int fat;
3912 
3913 	if (is_t4(adapter))
3914 		fat = t4_handle_intr_status(adapter,
3915 				A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
3916 				sysbus_intr_info) +
3917 			t4_handle_intr_status(adapter,
3918 					A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
3919 					pcie_port_intr_info) +
3920 			t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
3921 					      pcie_intr_info);
3922 	else
3923 		fat = t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
3924 					    t5_pcie_intr_info);
3925 	if (fat)
3926 		t4_fatal_err(adapter);
3927 }
3928 
3929 /*
3930  * TP interrupt handler.
3931  */
3932 static void tp_intr_handler(struct adapter *adapter)
3933 {
3934 	static const struct intr_info tp_intr_info[] = {
3935 		{ 0x3fffffff, "TP parity error", -1, 1 },
3936 		{ F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
3937 		{ 0 }
3938 	};
3939 
3940 	if (t4_handle_intr_status(adapter, A_TP_INT_CAUSE, tp_intr_info))
3941 		t4_fatal_err(adapter);
3942 }
3943 
3944 /*
3945  * SGE interrupt handler.
3946  */
3947 static void sge_intr_handler(struct adapter *adapter)
3948 {
3949 	u64 v;
3950 	u32 err;
3951 
3952 	static const struct intr_info sge_intr_info[] = {
3953 		{ F_ERR_CPL_EXCEED_IQE_SIZE,
3954 		  "SGE received CPL exceeding IQE size", -1, 1 },
3955 		{ F_ERR_INVALID_CIDX_INC,
3956 		  "SGE GTS CIDX increment too large", -1, 0 },
3957 		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
3958 		{ F_DBFIFO_LP_INT, NULL, -1, 0, t4_db_full },
3959 		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
3960 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
3961 		{ F_ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
3962 		  0 },
3963 		{ F_ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
3964 		  0 },
3965 		{ F_ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
3966 		  0 },
3967 		{ F_ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
3968 		  0 },
3969 		{ F_ERR_ING_CTXT_PRIO,
3970 		  "SGE too many priority ingress contexts", -1, 0 },
3971 		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
3972 		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
3973 		{ 0 }
3974 	};
3975 
3976 	static const struct intr_info t4t5_sge_intr_info[] = {
3977 		{ F_ERR_DROPPED_DB, NULL, -1, 0, t4_db_dropped },
3978 		{ F_DBFIFO_HP_INT, NULL, -1, 0, t4_db_full },
3979 		{ F_ERR_EGR_CTXT_PRIO,
3980 		  "SGE too many priority egress contexts", -1, 0 },
3981 		{ 0 }
3982 	};
3983 
3984 	/*
3985  	* For now, treat below interrupts as fatal so that we disable SGE and
3986  	* get better debug */
3987 	static const struct intr_info t6_sge_intr_info[] = {
3988 		{ F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1,
3989 		  "SGE PCIe error for a DBP thread", -1, 1 },
3990 		{ F_FATAL_WRE_LEN,
3991 		  "SGE Actual WRE packet is less than advertized length",
3992 		  -1, 1 },
3993 		{ 0 }
3994 	};
3995 
3996 	v = (u64)t4_read_reg(adapter, A_SGE_INT_CAUSE1) |
3997 		((u64)t4_read_reg(adapter, A_SGE_INT_CAUSE2) << 32);
3998 	if (v) {
3999 		CH_ALERT(adapter, "SGE parity error (%#llx)\n",
4000 				(unsigned long long)v);
4001 		t4_write_reg(adapter, A_SGE_INT_CAUSE1, v);
4002 		t4_write_reg(adapter, A_SGE_INT_CAUSE2, v >> 32);
4003 	}
4004 
4005 	v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3, sge_intr_info);
4006 	if (chip_id(adapter) <= CHELSIO_T5)
4007 		v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3,
4008 					   t4t5_sge_intr_info);
4009 	else
4010 		v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3,
4011 					   t6_sge_intr_info);
4012 
4013 	err = t4_read_reg(adapter, A_SGE_ERROR_STATS);
4014 	if (err & F_ERROR_QID_VALID) {
4015 		CH_ERR(adapter, "SGE error for queue %u\n", G_ERROR_QID(err));
4016 		if (err & F_UNCAPTURED_ERROR)
4017 			CH_ERR(adapter, "SGE UNCAPTURED_ERROR set (clearing)\n");
4018 		t4_write_reg(adapter, A_SGE_ERROR_STATS, F_ERROR_QID_VALID |
4019 			     F_UNCAPTURED_ERROR);
4020 	}
4021 
4022 	if (v != 0)
4023 		t4_fatal_err(adapter);
4024 }
4025 
4026 #define CIM_OBQ_INTR (F_OBQULP0PARERR | F_OBQULP1PARERR | F_OBQULP2PARERR |\
4027 		      F_OBQULP3PARERR | F_OBQSGEPARERR | F_OBQNCSIPARERR)
4028 #define CIM_IBQ_INTR (F_IBQTP0PARERR | F_IBQTP1PARERR | F_IBQULPPARERR |\
4029 		      F_IBQSGEHIPARERR | F_IBQSGELOPARERR | F_IBQNCSIPARERR)
4030 
4031 /*
4032  * CIM interrupt handler.
4033  */
4034 static void cim_intr_handler(struct adapter *adapter)
4035 {
4036 	static const struct intr_info cim_intr_info[] = {
4037 		{ F_PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
4038 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4039 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4040 		{ F_MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
4041 		{ F_MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
4042 		{ F_TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
4043 		{ F_TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
4044 		{ 0 }
4045 	};
4046 	static const struct intr_info cim_upintr_info[] = {
4047 		{ F_RSVDSPACEINT, "CIM reserved space access", -1, 1 },
4048 		{ F_ILLTRANSINT, "CIM illegal transaction", -1, 1 },
4049 		{ F_ILLWRINT, "CIM illegal write", -1, 1 },
4050 		{ F_ILLRDINT, "CIM illegal read", -1, 1 },
4051 		{ F_ILLRDBEINT, "CIM illegal read BE", -1, 1 },
4052 		{ F_ILLWRBEINT, "CIM illegal write BE", -1, 1 },
4053 		{ F_SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
4054 		{ F_SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
4055 		{ F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
4056 		{ F_SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
4057 		{ F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
4058 		{ F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
4059 		{ F_SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
4060 		{ F_SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
4061 		{ F_BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
4062 		{ F_BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
4063 		{ F_SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
4064 		{ F_SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
4065 		{ F_BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
4066 		{ F_BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
4067 		{ F_SGLRDPLINT , "CIM single read from PL space", -1, 1 },
4068 		{ F_SGLWRPLINT , "CIM single write to PL space", -1, 1 },
4069 		{ F_BLKRDPLINT , "CIM block read from PL space", -1, 1 },
4070 		{ F_BLKWRPLINT , "CIM block write to PL space", -1, 1 },
4071 		{ F_REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
4072 		{ F_RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
4073 		{ F_TIMEOUTINT , "CIM PIF timeout", -1, 1 },
4074 		{ F_TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
4075 		{ 0 }
4076 	};
4077 	int fat;
4078 
4079 	if (t4_read_reg(adapter, A_PCIE_FW) & F_PCIE_FW_ERR)
4080 		t4_report_fw_error(adapter);
4081 
4082 	fat = t4_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE,
4083 				    cim_intr_info) +
4084 	      t4_handle_intr_status(adapter, A_CIM_HOST_UPACC_INT_CAUSE,
4085 				    cim_upintr_info);
4086 	if (fat)
4087 		t4_fatal_err(adapter);
4088 }
4089 
4090 /*
4091  * ULP RX interrupt handler.
4092  */
4093 static void ulprx_intr_handler(struct adapter *adapter)
4094 {
4095 	static const struct intr_info ulprx_intr_info[] = {
4096 		{ F_CAUSE_CTX_1, "ULPRX channel 1 context error", -1, 1 },
4097 		{ F_CAUSE_CTX_0, "ULPRX channel 0 context error", -1, 1 },
4098 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
4099 		{ 0 }
4100 	};
4101 
4102 	if (t4_handle_intr_status(adapter, A_ULP_RX_INT_CAUSE, ulprx_intr_info))
4103 		t4_fatal_err(adapter);
4104 }
4105 
4106 /*
4107  * ULP TX interrupt handler.
4108  */
4109 static void ulptx_intr_handler(struct adapter *adapter)
4110 {
4111 	static const struct intr_info ulptx_intr_info[] = {
4112 		{ F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
4113 		  0 },
4114 		{ F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
4115 		  0 },
4116 		{ F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
4117 		  0 },
4118 		{ F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
4119 		  0 },
4120 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
4121 		{ 0 }
4122 	};
4123 
4124 	if (t4_handle_intr_status(adapter, A_ULP_TX_INT_CAUSE, ulptx_intr_info))
4125 		t4_fatal_err(adapter);
4126 }
4127 
4128 /*
4129  * PM TX interrupt handler.
4130  */
4131 static void pmtx_intr_handler(struct adapter *adapter)
4132 {
4133 	static const struct intr_info pmtx_intr_info[] = {
4134 		{ F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
4135 		{ F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
4136 		{ F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
4137 		{ F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
4138 		{ 0xffffff0, "PMTX framing error", -1, 1 },
4139 		{ F_OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
4140 		{ F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1,
4141 		  1 },
4142 		{ F_ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
4143 		{ F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
4144 		{ 0 }
4145 	};
4146 
4147 	if (t4_handle_intr_status(adapter, A_PM_TX_INT_CAUSE, pmtx_intr_info))
4148 		t4_fatal_err(adapter);
4149 }
4150 
4151 /*
4152  * PM RX interrupt handler.
4153  */
4154 static void pmrx_intr_handler(struct adapter *adapter)
4155 {
4156 	static const struct intr_info pmrx_intr_info[] = {
4157 		{ F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
4158 		{ 0x3ffff0, "PMRX framing error", -1, 1 },
4159 		{ F_OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
4160 		{ F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1,
4161 		  1 },
4162 		{ F_IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
4163 		{ F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
4164 		{ 0 }
4165 	};
4166 
4167 	if (t4_handle_intr_status(adapter, A_PM_RX_INT_CAUSE, pmrx_intr_info))
4168 		t4_fatal_err(adapter);
4169 }
4170 
4171 /*
4172  * CPL switch interrupt handler.
4173  */
4174 static void cplsw_intr_handler(struct adapter *adapter)
4175 {
4176 	static const struct intr_info cplsw_intr_info[] = {
4177 		{ F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
4178 		{ F_CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
4179 		{ F_TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
4180 		{ F_SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
4181 		{ F_CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
4182 		{ F_ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
4183 		{ 0 }
4184 	};
4185 
4186 	if (t4_handle_intr_status(adapter, A_CPL_INTR_CAUSE, cplsw_intr_info))
4187 		t4_fatal_err(adapter);
4188 }
4189 
4190 /*
4191  * LE interrupt handler.
4192  */
4193 static void le_intr_handler(struct adapter *adap)
4194 {
4195 	unsigned int chip_ver = chip_id(adap);
4196 	static const struct intr_info le_intr_info[] = {
4197 		{ F_LIPMISS, "LE LIP miss", -1, 0 },
4198 		{ F_LIP0, "LE 0 LIP error", -1, 0 },
4199 		{ F_PARITYERR, "LE parity error", -1, 1 },
4200 		{ F_UNKNOWNCMD, "LE unknown command", -1, 1 },
4201 		{ F_REQQPARERR, "LE request queue parity error", -1, 1 },
4202 		{ 0 }
4203 	};
4204 
4205 	static const struct intr_info t6_le_intr_info[] = {
4206 		{ F_T6_LIPMISS, "LE LIP miss", -1, 0 },
4207 		{ F_T6_LIP0, "LE 0 LIP error", -1, 0 },
4208 		{ F_TCAMINTPERR, "LE parity error", -1, 1 },
4209 		{ F_T6_UNKNOWNCMD, "LE unknown command", -1, 1 },
4210 		{ F_SSRAMINTPERR, "LE request queue parity error", -1, 1 },
4211 		{ 0 }
4212 	};
4213 
4214 	if (t4_handle_intr_status(adap, A_LE_DB_INT_CAUSE,
4215 				  (chip_ver <= CHELSIO_T5) ?
4216 				  le_intr_info : t6_le_intr_info))
4217 		t4_fatal_err(adap);
4218 }
4219 
4220 /*
4221  * MPS interrupt handler.
4222  */
4223 static void mps_intr_handler(struct adapter *adapter)
4224 {
4225 	static const struct intr_info mps_rx_intr_info[] = {
4226 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4227 		{ 0 }
4228 	};
4229 	static const struct intr_info mps_tx_intr_info[] = {
4230 		{ V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error", -1, 1 },
4231 		{ F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4232 		{ V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error",
4233 		  -1, 1 },
4234 		{ V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error",
4235 		  -1, 1 },
4236 		{ F_BUBBLE, "MPS Tx underflow", -1, 1 },
4237 		{ F_SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
4238 		{ F_FRMERR, "MPS Tx framing error", -1, 1 },
4239 		{ 0 }
4240 	};
4241 	static const struct intr_info mps_trc_intr_info[] = {
4242 		{ V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error", -1, 1 },
4243 		{ V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error", -1,
4244 		  1 },
4245 		{ F_MISCPERR, "MPS TRC misc parity error", -1, 1 },
4246 		{ 0 }
4247 	};
4248 	static const struct intr_info mps_stat_sram_intr_info[] = {
4249 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4250 		{ 0 }
4251 	};
4252 	static const struct intr_info mps_stat_tx_intr_info[] = {
4253 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4254 		{ 0 }
4255 	};
4256 	static const struct intr_info mps_stat_rx_intr_info[] = {
4257 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4258 		{ 0 }
4259 	};
4260 	static const struct intr_info mps_cls_intr_info[] = {
4261 		{ F_MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
4262 		{ F_MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
4263 		{ F_HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
4264 		{ 0 }
4265 	};
4266 
4267 	int fat;
4268 
4269 	fat = t4_handle_intr_status(adapter, A_MPS_RX_PERR_INT_CAUSE,
4270 				    mps_rx_intr_info) +
4271 	      t4_handle_intr_status(adapter, A_MPS_TX_INT_CAUSE,
4272 				    mps_tx_intr_info) +
4273 	      t4_handle_intr_status(adapter, A_MPS_TRC_INT_CAUSE,
4274 				    mps_trc_intr_info) +
4275 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_SRAM,
4276 				    mps_stat_sram_intr_info) +
4277 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
4278 				    mps_stat_tx_intr_info) +
4279 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
4280 				    mps_stat_rx_intr_info) +
4281 	      t4_handle_intr_status(adapter, A_MPS_CLS_INT_CAUSE,
4282 				    mps_cls_intr_info);
4283 
4284 	t4_write_reg(adapter, A_MPS_INT_CAUSE, 0);
4285 	t4_read_reg(adapter, A_MPS_INT_CAUSE);	/* flush */
4286 	if (fat)
4287 		t4_fatal_err(adapter);
4288 }
4289 
4290 #define MEM_INT_MASK (F_PERR_INT_CAUSE | F_ECC_CE_INT_CAUSE | \
4291 		      F_ECC_UE_INT_CAUSE)
4292 
4293 /*
4294  * EDC/MC interrupt handler.
4295  */
4296 static void mem_intr_handler(struct adapter *adapter, int idx)
4297 {
4298 	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4299 
4300 	unsigned int addr, cnt_addr, v;
4301 
4302 	if (idx <= MEM_EDC1) {
4303 		addr = EDC_REG(A_EDC_INT_CAUSE, idx);
4304 		cnt_addr = EDC_REG(A_EDC_ECC_STATUS, idx);
4305 	} else if (idx == MEM_MC) {
4306 		if (is_t4(adapter)) {
4307 			addr = A_MC_INT_CAUSE;
4308 			cnt_addr = A_MC_ECC_STATUS;
4309 		} else {
4310 			addr = A_MC_P_INT_CAUSE;
4311 			cnt_addr = A_MC_P_ECC_STATUS;
4312 		}
4313 	} else {
4314 		addr = MC_REG(A_MC_P_INT_CAUSE, 1);
4315 		cnt_addr = MC_REG(A_MC_P_ECC_STATUS, 1);
4316 	}
4317 
4318 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4319 	if (v & F_PERR_INT_CAUSE)
4320 		CH_ALERT(adapter, "%s FIFO parity error\n",
4321 			  name[idx]);
4322 	if (v & F_ECC_CE_INT_CAUSE) {
4323 		u32 cnt = G_ECC_CECNT(t4_read_reg(adapter, cnt_addr));
4324 
4325 		t4_edc_err_read(adapter, idx);
4326 
4327 		t4_write_reg(adapter, cnt_addr, V_ECC_CECNT(M_ECC_CECNT));
4328 		CH_WARN_RATELIMIT(adapter,
4329 				  "%u %s correctable ECC data error%s\n",
4330 				  cnt, name[idx], cnt > 1 ? "s" : "");
4331 	}
4332 	if (v & F_ECC_UE_INT_CAUSE)
4333 		CH_ALERT(adapter,
4334 			 "%s uncorrectable ECC data error\n", name[idx]);
4335 
4336 	t4_write_reg(adapter, addr, v);
4337 	if (v & (F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE))
4338 		t4_fatal_err(adapter);
4339 }
4340 
4341 /*
4342  * MA interrupt handler.
4343  */
4344 static void ma_intr_handler(struct adapter *adapter)
4345 {
4346 	u32 v, status = t4_read_reg(adapter, A_MA_INT_CAUSE);
4347 
4348 	if (status & F_MEM_PERR_INT_CAUSE) {
4349 		CH_ALERT(adapter,
4350 			  "MA parity error, parity status %#x\n",
4351 			  t4_read_reg(adapter, A_MA_PARITY_ERROR_STATUS1));
4352 		if (is_t5(adapter))
4353 			CH_ALERT(adapter,
4354 				  "MA parity error, parity status %#x\n",
4355 				  t4_read_reg(adapter,
4356 					      A_MA_PARITY_ERROR_STATUS2));
4357 	}
4358 	if (status & F_MEM_WRAP_INT_CAUSE) {
4359 		v = t4_read_reg(adapter, A_MA_INT_WRAP_STATUS);
4360 		CH_ALERT(adapter, "MA address wrap-around error by "
4361 			  "client %u to address %#x\n",
4362 			  G_MEM_WRAP_CLIENT_NUM(v),
4363 			  G_MEM_WRAP_ADDRESS(v) << 4);
4364 	}
4365 	t4_write_reg(adapter, A_MA_INT_CAUSE, status);
4366 	t4_fatal_err(adapter);
4367 }
4368 
4369 /*
4370  * SMB interrupt handler.
4371  */
4372 static void smb_intr_handler(struct adapter *adap)
4373 {
4374 	static const struct intr_info smb_intr_info[] = {
4375 		{ F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
4376 		{ F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
4377 		{ F_SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
4378 		{ 0 }
4379 	};
4380 
4381 	if (t4_handle_intr_status(adap, A_SMB_INT_CAUSE, smb_intr_info))
4382 		t4_fatal_err(adap);
4383 }
4384 
4385 /*
4386  * NC-SI interrupt handler.
4387  */
4388 static void ncsi_intr_handler(struct adapter *adap)
4389 {
4390 	static const struct intr_info ncsi_intr_info[] = {
4391 		{ F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
4392 		{ F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
4393 		{ F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
4394 		{ F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
4395 		{ 0 }
4396 	};
4397 
4398 	if (t4_handle_intr_status(adap, A_NCSI_INT_CAUSE, ncsi_intr_info))
4399 		t4_fatal_err(adap);
4400 }
4401 
4402 /*
4403  * XGMAC interrupt handler.
4404  */
4405 static void xgmac_intr_handler(struct adapter *adap, int port)
4406 {
4407 	u32 v, int_cause_reg;
4408 
4409 	if (is_t4(adap))
4410 		int_cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
4411 	else
4412 		int_cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
4413 
4414 	v = t4_read_reg(adap, int_cause_reg);
4415 
4416 	v &= (F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR);
4417 	if (!v)
4418 		return;
4419 
4420 	if (v & F_TXFIFO_PRTY_ERR)
4421 		CH_ALERT(adap, "XGMAC %d Tx FIFO parity error\n",
4422 			  port);
4423 	if (v & F_RXFIFO_PRTY_ERR)
4424 		CH_ALERT(adap, "XGMAC %d Rx FIFO parity error\n",
4425 			  port);
4426 	t4_write_reg(adap, int_cause_reg, v);
4427 	t4_fatal_err(adap);
4428 }
4429 
4430 /*
4431  * PL interrupt handler.
4432  */
4433 static void pl_intr_handler(struct adapter *adap)
4434 {
4435 	static const struct intr_info pl_intr_info[] = {
4436 		{ F_FATALPERR, "Fatal parity error", -1, 1 },
4437 		{ F_PERRVFID, "PL VFID_MAP parity error", -1, 1 },
4438 		{ 0 }
4439 	};
4440 
4441 	static const struct intr_info t5_pl_intr_info[] = {
4442 		{ F_FATALPERR, "Fatal parity error", -1, 1 },
4443 		{ 0 }
4444 	};
4445 
4446 	if (t4_handle_intr_status(adap, A_PL_PL_INT_CAUSE,
4447 				  is_t4(adap) ?
4448 				  pl_intr_info : t5_pl_intr_info))
4449 		t4_fatal_err(adap);
4450 }
4451 
4452 #define PF_INTR_MASK (F_PFSW | F_PFCIM)
4453 
4454 /**
4455  *	t4_slow_intr_handler - control path interrupt handler
4456  *	@adapter: the adapter
4457  *
4458  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
4459  *	The designation 'slow' is because it involves register reads, while
4460  *	data interrupts typically don't involve any MMIOs.
4461  */
4462 int t4_slow_intr_handler(struct adapter *adapter)
4463 {
4464 	u32 cause = t4_read_reg(adapter, A_PL_INT_CAUSE);
4465 
4466 	if (!(cause & GLBL_INTR_MASK))
4467 		return 0;
4468 	if (cause & F_CIM)
4469 		cim_intr_handler(adapter);
4470 	if (cause & F_MPS)
4471 		mps_intr_handler(adapter);
4472 	if (cause & F_NCSI)
4473 		ncsi_intr_handler(adapter);
4474 	if (cause & F_PL)
4475 		pl_intr_handler(adapter);
4476 	if (cause & F_SMB)
4477 		smb_intr_handler(adapter);
4478 	if (cause & F_MAC0)
4479 		xgmac_intr_handler(adapter, 0);
4480 	if (cause & F_MAC1)
4481 		xgmac_intr_handler(adapter, 1);
4482 	if (cause & F_MAC2)
4483 		xgmac_intr_handler(adapter, 2);
4484 	if (cause & F_MAC3)
4485 		xgmac_intr_handler(adapter, 3);
4486 	if (cause & F_PCIE)
4487 		pcie_intr_handler(adapter);
4488 	if (cause & F_MC0)
4489 		mem_intr_handler(adapter, MEM_MC);
4490 	if (is_t5(adapter) && (cause & F_MC1))
4491 		mem_intr_handler(adapter, MEM_MC1);
4492 	if (cause & F_EDC0)
4493 		mem_intr_handler(adapter, MEM_EDC0);
4494 	if (cause & F_EDC1)
4495 		mem_intr_handler(adapter, MEM_EDC1);
4496 	if (cause & F_LE)
4497 		le_intr_handler(adapter);
4498 	if (cause & F_TP)
4499 		tp_intr_handler(adapter);
4500 	if (cause & F_MA)
4501 		ma_intr_handler(adapter);
4502 	if (cause & F_PM_TX)
4503 		pmtx_intr_handler(adapter);
4504 	if (cause & F_PM_RX)
4505 		pmrx_intr_handler(adapter);
4506 	if (cause & F_ULP_RX)
4507 		ulprx_intr_handler(adapter);
4508 	if (cause & F_CPL_SWITCH)
4509 		cplsw_intr_handler(adapter);
4510 	if (cause & F_SGE)
4511 		sge_intr_handler(adapter);
4512 	if (cause & F_ULP_TX)
4513 		ulptx_intr_handler(adapter);
4514 
4515 	/* Clear the interrupts just processed for which we are the master. */
4516 	t4_write_reg(adapter, A_PL_INT_CAUSE, cause & GLBL_INTR_MASK);
4517 	(void)t4_read_reg(adapter, A_PL_INT_CAUSE); /* flush */
4518 	return 1;
4519 }
4520 
4521 /**
4522  *	t4_intr_enable - enable interrupts
4523  *	@adapter: the adapter whose interrupts should be enabled
4524  *
4525  *	Enable PF-specific interrupts for the calling function and the top-level
4526  *	interrupt concentrator for global interrupts.  Interrupts are already
4527  *	enabled at each module,	here we just enable the roots of the interrupt
4528  *	hierarchies.
4529  *
4530  *	Note: this function should be called only when the driver manages
4531  *	non PF-specific interrupts from the various HW modules.  Only one PCI
4532  *	function at a time should be doing this.
4533  */
4534 void t4_intr_enable(struct adapter *adapter)
4535 {
4536 	u32 val = 0;
4537 	u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4538 	u32 pf = (chip_id(adapter) <= CHELSIO_T5
4539 		  ? G_SOURCEPF(whoami)
4540 		  : G_T6_SOURCEPF(whoami));
4541 
4542 	if (chip_id(adapter) <= CHELSIO_T5)
4543 		val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
4544 	else
4545 		val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN;
4546 	t4_write_reg(adapter, A_SGE_INT_ENABLE3, F_ERR_CPL_EXCEED_IQE_SIZE |
4547 		     F_ERR_INVALID_CIDX_INC | F_ERR_CPL_OPCODE_0 |
4548 		     F_ERR_DATA_CPL_ON_HIGH_QID1 | F_INGRESS_SIZE_ERR |
4549 		     F_ERR_DATA_CPL_ON_HIGH_QID0 | F_ERR_BAD_DB_PIDX3 |
4550 		     F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4551 		     F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO |
4552 		     F_DBFIFO_LP_INT | F_EGRESS_SIZE_ERR | val);
4553 	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
4554 	t4_set_reg_field(adapter, A_PL_INT_MAP0, 0, 1 << pf);
4555 }
4556 
4557 /**
4558  *	t4_intr_disable - disable interrupts
4559  *	@adapter: the adapter whose interrupts should be disabled
4560  *
4561  *	Disable interrupts.  We only disable the top-level interrupt
4562  *	concentrators.  The caller must be a PCI function managing global
4563  *	interrupts.
4564  */
4565 void t4_intr_disable(struct adapter *adapter)
4566 {
4567 	u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4568 	u32 pf = (chip_id(adapter) <= CHELSIO_T5
4569 		  ? G_SOURCEPF(whoami)
4570 		  : G_T6_SOURCEPF(whoami));
4571 
4572 	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
4573 	t4_set_reg_field(adapter, A_PL_INT_MAP0, 1 << pf, 0);
4574 }
4575 
4576 /**
4577  *	t4_intr_clear - clear all interrupts
4578  *	@adapter: the adapter whose interrupts should be cleared
4579  *
4580  *	Clears all interrupts.  The caller must be a PCI function managing
4581  *	global interrupts.
4582  */
4583 void t4_intr_clear(struct adapter *adapter)
4584 {
4585 	static const unsigned int cause_reg[] = {
4586 		A_SGE_INT_CAUSE1, A_SGE_INT_CAUSE2, A_SGE_INT_CAUSE3,
4587 		A_PCIE_NONFAT_ERR, A_PCIE_INT_CAUSE,
4588 		A_MA_INT_WRAP_STATUS, A_MA_PARITY_ERROR_STATUS1, A_MA_INT_CAUSE,
4589 		A_EDC_INT_CAUSE, EDC_REG(A_EDC_INT_CAUSE, 1),
4590 		A_CIM_HOST_INT_CAUSE, A_CIM_HOST_UPACC_INT_CAUSE,
4591 		MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
4592 		A_TP_INT_CAUSE,
4593 		A_ULP_RX_INT_CAUSE, A_ULP_TX_INT_CAUSE,
4594 		A_PM_RX_INT_CAUSE, A_PM_TX_INT_CAUSE,
4595 		A_MPS_RX_PERR_INT_CAUSE,
4596 		A_CPL_INTR_CAUSE,
4597 		MYPF_REG(A_PL_PF_INT_CAUSE),
4598 		A_PL_PL_INT_CAUSE,
4599 		A_LE_DB_INT_CAUSE,
4600 	};
4601 
4602 	unsigned int i;
4603 
4604 	for (i = 0; i < ARRAY_SIZE(cause_reg); ++i)
4605 		t4_write_reg(adapter, cause_reg[i], 0xffffffff);
4606 
4607 	t4_write_reg(adapter, is_t4(adapter) ? A_MC_INT_CAUSE :
4608 				A_MC_P_INT_CAUSE, 0xffffffff);
4609 
4610 	if (is_t4(adapter)) {
4611 		t4_write_reg(adapter, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
4612 				0xffffffff);
4613 		t4_write_reg(adapter, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
4614 				0xffffffff);
4615 	} else
4616 		t4_write_reg(adapter, A_MA_PARITY_ERROR_STATUS2, 0xffffffff);
4617 
4618 	t4_write_reg(adapter, A_PL_INT_CAUSE, GLBL_INTR_MASK);
4619 	(void) t4_read_reg(adapter, A_PL_INT_CAUSE);          /* flush */
4620 }
4621 
4622 /**
4623  *	hash_mac_addr - return the hash value of a MAC address
4624  *	@addr: the 48-bit Ethernet MAC address
4625  *
4626  *	Hashes a MAC address according to the hash function used by HW inexact
4627  *	(hash) address matching.
4628  */
4629 static int hash_mac_addr(const u8 *addr)
4630 {
4631 	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
4632 	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
4633 	a ^= b;
4634 	a ^= (a >> 12);
4635 	a ^= (a >> 6);
4636 	return a & 0x3f;
4637 }
4638 
4639 /**
4640  *	t4_config_rss_range - configure a portion of the RSS mapping table
4641  *	@adapter: the adapter
4642  *	@mbox: mbox to use for the FW command
4643  *	@viid: virtual interface whose RSS subtable is to be written
4644  *	@start: start entry in the table to write
4645  *	@n: how many table entries to write
4646  *	@rspq: values for the "response queue" (Ingress Queue) lookup table
4647  *	@nrspq: number of values in @rspq
4648  *
4649  *	Programs the selected part of the VI's RSS mapping table with the
4650  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
4651  *	until the full table range is populated.
4652  *
4653  *	The caller must ensure the values in @rspq are in the range allowed for
4654  *	@viid.
4655  */
4656 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4657 			int start, int n, const u16 *rspq, unsigned int nrspq)
4658 {
4659 	int ret;
4660 	const u16 *rsp = rspq;
4661 	const u16 *rsp_end = rspq + nrspq;
4662 	struct fw_rss_ind_tbl_cmd cmd;
4663 
4664 	memset(&cmd, 0, sizeof(cmd));
4665 	cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
4666 				     F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4667 				     V_FW_RSS_IND_TBL_CMD_VIID(viid));
4668 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
4669 
4670 	/*
4671 	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
4672 	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
4673 	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
4674 	 * reserved.
4675 	 */
4676 	while (n > 0) {
4677 		int nq = min(n, 32);
4678 		int nq_packed = 0;
4679 		__be32 *qp = &cmd.iq0_to_iq2;
4680 
4681 		/*
4682 		 * Set up the firmware RSS command header to send the next
4683 		 * "nq" Ingress Queue IDs to the firmware.
4684 		 */
4685 		cmd.niqid = cpu_to_be16(nq);
4686 		cmd.startidx = cpu_to_be16(start);
4687 
4688 		/*
4689 		 * "nq" more done for the start of the next loop.
4690 		 */
4691 		start += nq;
4692 		n -= nq;
4693 
4694 		/*
4695 		 * While there are still Ingress Queue IDs to stuff into the
4696 		 * current firmware RSS command, retrieve them from the
4697 		 * Ingress Queue ID array and insert them into the command.
4698 		 */
4699 		while (nq > 0) {
4700 			/*
4701 			 * Grab up to the next 3 Ingress Queue IDs (wrapping
4702 			 * around the Ingress Queue ID array if necessary) and
4703 			 * insert them into the firmware RSS command at the
4704 			 * current 3-tuple position within the commad.
4705 			 */
4706 			u16 qbuf[3];
4707 			u16 *qbp = qbuf;
4708 			int nqbuf = min(3, nq);
4709 
4710 			nq -= nqbuf;
4711 			qbuf[0] = qbuf[1] = qbuf[2] = 0;
4712 			while (nqbuf && nq_packed < 32) {
4713 				nqbuf--;
4714 				nq_packed++;
4715 				*qbp++ = *rsp++;
4716 				if (rsp >= rsp_end)
4717 					rsp = rspq;
4718 			}
4719 			*qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
4720 					    V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
4721 					    V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
4722 		}
4723 
4724 		/*
4725 		 * Send this portion of the RRS table update to the firmware;
4726 		 * bail out on any errors.
4727 		 */
4728 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4729 		if (ret)
4730 			return ret;
4731 	}
4732 	return 0;
4733 }
4734 
4735 /**
4736  *	t4_config_glbl_rss - configure the global RSS mode
4737  *	@adapter: the adapter
4738  *	@mbox: mbox to use for the FW command
4739  *	@mode: global RSS mode
4740  *	@flags: mode-specific flags
4741  *
4742  *	Sets the global RSS mode.
4743  */
4744 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
4745 		       unsigned int flags)
4746 {
4747 	struct fw_rss_glb_config_cmd c;
4748 
4749 	memset(&c, 0, sizeof(c));
4750 	c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
4751 				    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
4752 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4753 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
4754 		c.u.manual.mode_pkd =
4755 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
4756 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
4757 		c.u.basicvirtual.mode_keymode =
4758 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
4759 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
4760 	} else
4761 		return -EINVAL;
4762 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4763 }
4764 
4765 /**
4766  *	t4_config_vi_rss - configure per VI RSS settings
4767  *	@adapter: the adapter
4768  *	@mbox: mbox to use for the FW command
4769  *	@viid: the VI id
4770  *	@flags: RSS flags
4771  *	@defq: id of the default RSS queue for the VI.
4772  *	@skeyidx: RSS secret key table index for non-global mode
4773  *	@skey: RSS vf_scramble key for VI.
4774  *
4775  *	Configures VI-specific RSS properties.
4776  */
4777 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
4778 		     unsigned int flags, unsigned int defq, unsigned int skeyidx,
4779 		     unsigned int skey)
4780 {
4781 	struct fw_rss_vi_config_cmd c;
4782 
4783 	memset(&c, 0, sizeof(c));
4784 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
4785 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4786 				   V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
4787 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4788 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
4789 					V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
4790 	c.u.basicvirtual.secretkeyidx_pkd = cpu_to_be32(
4791 					V_FW_RSS_VI_CONFIG_CMD_SECRETKEYIDX(skeyidx));
4792 	c.u.basicvirtual.secretkeyxor = cpu_to_be32(skey);
4793 
4794 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4795 }
4796 
4797 /* Read an RSS table row */
4798 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
4799 {
4800 	t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
4801 	return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
4802 				   5, 0, val);
4803 }
4804 
4805 /**
4806  *	t4_read_rss - read the contents of the RSS mapping table
4807  *	@adapter: the adapter
4808  *	@map: holds the contents of the RSS mapping table
4809  *
4810  *	Reads the contents of the RSS hash->queue mapping table.
4811  */
4812 int t4_read_rss(struct adapter *adapter, u16 *map)
4813 {
4814 	u32 val;
4815 	int i, ret;
4816 
4817 	for (i = 0; i < RSS_NENTRIES / 2; ++i) {
4818 		ret = rd_rss_row(adapter, i, &val);
4819 		if (ret)
4820 			return ret;
4821 		*map++ = G_LKPTBLQUEUE0(val);
4822 		*map++ = G_LKPTBLQUEUE1(val);
4823 	}
4824 	return 0;
4825 }
4826 
4827 /**
4828  *	t4_fw_tp_pio_rw - Access TP PIO through LDST
4829  *	@adap: the adapter
4830  *	@vals: where the indirect register values are stored/written
4831  *	@nregs: how many indirect registers to read/write
4832  *	@start_idx: index of first indirect register to read/write
4833  *	@rw: Read (1) or Write (0)
4834  *
4835  *	Access TP PIO registers through LDST
4836  */
4837 void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs,
4838 		     unsigned int start_index, unsigned int rw)
4839 {
4840 	int ret, i;
4841 	int cmd = FW_LDST_ADDRSPC_TP_PIO;
4842 	struct fw_ldst_cmd c;
4843 
4844 	for (i = 0 ; i < nregs; i++) {
4845 		memset(&c, 0, sizeof(c));
4846 		c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
4847 						F_FW_CMD_REQUEST |
4848 						(rw ? F_FW_CMD_READ :
4849 						     F_FW_CMD_WRITE) |
4850 						V_FW_LDST_CMD_ADDRSPACE(cmd));
4851 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4852 
4853 		c.u.addrval.addr = cpu_to_be32(start_index + i);
4854 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
4855 		ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4856 		if (ret == 0) {
4857 			if (rw)
4858 				vals[i] = be32_to_cpu(c.u.addrval.val);
4859 		}
4860 	}
4861 }
4862 
4863 /**
4864  *	t4_read_rss_key - read the global RSS key
4865  *	@adap: the adapter
4866  *	@key: 10-entry array holding the 320-bit RSS key
4867  *
4868  *	Reads the global 320-bit RSS key.
4869  */
4870 void t4_read_rss_key(struct adapter *adap, u32 *key)
4871 {
4872 	if (t4_use_ldst(adap))
4873 		t4_fw_tp_pio_rw(adap, key, 10, A_TP_RSS_SECRET_KEY0, 1);
4874 	else
4875 		t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, key, 10,
4876 				 A_TP_RSS_SECRET_KEY0);
4877 }
4878 
4879 /**
4880  *	t4_write_rss_key - program one of the RSS keys
4881  *	@adap: the adapter
4882  *	@key: 10-entry array holding the 320-bit RSS key
4883  *	@idx: which RSS key to write
4884  *
4885  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
4886  *	0..15 the corresponding entry in the RSS key table is written,
4887  *	otherwise the global RSS key is written.
4888  */
4889 void t4_write_rss_key(struct adapter *adap, u32 *key, int idx)
4890 {
4891 	u8 rss_key_addr_cnt = 16;
4892 	u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
4893 
4894 	/*
4895 	 * T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
4896 	 * allows access to key addresses 16-63 by using KeyWrAddrX
4897 	 * as index[5:4](upper 2) into key table
4898 	 */
4899 	if ((chip_id(adap) > CHELSIO_T5) &&
4900 	    (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
4901 		rss_key_addr_cnt = 32;
4902 
4903 	if (t4_use_ldst(adap))
4904 		t4_fw_tp_pio_rw(adap, key, 10, A_TP_RSS_SECRET_KEY0, 0);
4905 	else
4906 		t4_write_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, key, 10,
4907 				  A_TP_RSS_SECRET_KEY0);
4908 
4909 	if (idx >= 0 && idx < rss_key_addr_cnt) {
4910 		if (rss_key_addr_cnt > 16)
4911 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
4912 				     vrt | V_KEYWRADDRX(idx >> 4) |
4913 				     V_T6_VFWRADDR(idx) | F_KEYWREN);
4914 		else
4915 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
4916 				     vrt| V_KEYWRADDR(idx) | F_KEYWREN);
4917 	}
4918 }
4919 
4920 /**
4921  *	t4_read_rss_pf_config - read PF RSS Configuration Table
4922  *	@adapter: the adapter
4923  *	@index: the entry in the PF RSS table to read
4924  *	@valp: where to store the returned value
4925  *
4926  *	Reads the PF RSS Configuration Table at the specified index and returns
4927  *	the value found there.
4928  */
4929 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
4930 			   u32 *valp)
4931 {
4932 	if (t4_use_ldst(adapter))
4933 		t4_fw_tp_pio_rw(adapter, valp, 1,
4934 				A_TP_RSS_PF0_CONFIG + index, 1);
4935 	else
4936 		t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4937 				 valp, 1, A_TP_RSS_PF0_CONFIG + index);
4938 }
4939 
4940 /**
4941  *	t4_write_rss_pf_config - write PF RSS Configuration Table
4942  *	@adapter: the adapter
4943  *	@index: the entry in the VF RSS table to read
4944  *	@val: the value to store
4945  *
4946  *	Writes the PF RSS Configuration Table at the specified index with the
4947  *	specified value.
4948  */
4949 void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index,
4950 			    u32 val)
4951 {
4952 	if (t4_use_ldst(adapter))
4953 		t4_fw_tp_pio_rw(adapter, &val, 1,
4954 				A_TP_RSS_PF0_CONFIG + index, 0);
4955 	else
4956 		t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4957 				  &val, 1, A_TP_RSS_PF0_CONFIG + index);
4958 }
4959 
4960 /**
4961  *	t4_read_rss_vf_config - read VF RSS Configuration Table
4962  *	@adapter: the adapter
4963  *	@index: the entry in the VF RSS table to read
4964  *	@vfl: where to store the returned VFL
4965  *	@vfh: where to store the returned VFH
4966  *
4967  *	Reads the VF RSS Configuration Table at the specified index and returns
4968  *	the (VFL, VFH) values found there.
4969  */
4970 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
4971 			   u32 *vfl, u32 *vfh)
4972 {
4973 	u32 vrt, mask, data;
4974 
4975 	if (chip_id(adapter) <= CHELSIO_T5) {
4976 		mask = V_VFWRADDR(M_VFWRADDR);
4977 		data = V_VFWRADDR(index);
4978 	} else {
4979 		 mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
4980 		 data = V_T6_VFWRADDR(index);
4981 	}
4982 	/*
4983 	 * Request that the index'th VF Table values be read into VFL/VFH.
4984 	 */
4985 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
4986 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
4987 	vrt |= data | F_VFRDEN;
4988 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
4989 
4990 	/*
4991 	 * Grab the VFL/VFH values ...
4992 	 */
4993 	if (t4_use_ldst(adapter)) {
4994 		t4_fw_tp_pio_rw(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, 1);
4995 		t4_fw_tp_pio_rw(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, 1);
4996 	} else {
4997 		t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4998 				 vfl, 1, A_TP_RSS_VFL_CONFIG);
4999 		t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5000 				 vfh, 1, A_TP_RSS_VFH_CONFIG);
5001 	}
5002 }
5003 
5004 /**
5005  *	t4_write_rss_vf_config - write VF RSS Configuration Table
5006  *
5007  *	@adapter: the adapter
5008  *	@index: the entry in the VF RSS table to write
5009  *	@vfl: the VFL to store
5010  *	@vfh: the VFH to store
5011  *
5012  *	Writes the VF RSS Configuration Table at the specified index with the
5013  *	specified (VFL, VFH) values.
5014  */
5015 void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
5016 			    u32 vfl, u32 vfh)
5017 {
5018 	u32 vrt, mask, data;
5019 
5020 	if (chip_id(adapter) <= CHELSIO_T5) {
5021 		mask = V_VFWRADDR(M_VFWRADDR);
5022 		data = V_VFWRADDR(index);
5023 	} else {
5024 		mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5025 		data = V_T6_VFWRADDR(index);
5026 	}
5027 
5028 	/*
5029 	 * Load up VFL/VFH with the values to be written ...
5030 	 */
5031 	if (t4_use_ldst(adapter)) {
5032 		t4_fw_tp_pio_rw(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, 0);
5033 		t4_fw_tp_pio_rw(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, 0);
5034 	} else {
5035 		t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5036 				  &vfl, 1, A_TP_RSS_VFL_CONFIG);
5037 		t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5038 				  &vfh, 1, A_TP_RSS_VFH_CONFIG);
5039 	}
5040 
5041 	/*
5042 	 * Write the VFL/VFH into the VF Table at index'th location.
5043 	 */
5044 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5045 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5046 	vrt |= data | F_VFRDEN;
5047 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5048 }
5049 
5050 /**
5051  *	t4_read_rss_pf_map - read PF RSS Map
5052  *	@adapter: the adapter
5053  *
5054  *	Reads the PF RSS Map register and returns its value.
5055  */
5056 u32 t4_read_rss_pf_map(struct adapter *adapter)
5057 {
5058 	u32 pfmap;
5059 
5060 	if (t4_use_ldst(adapter))
5061 		t4_fw_tp_pio_rw(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, 1);
5062 	else
5063 		t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5064 				 &pfmap, 1, A_TP_RSS_PF_MAP);
5065 	return pfmap;
5066 }
5067 
5068 /**
5069  *	t4_write_rss_pf_map - write PF RSS Map
5070  *	@adapter: the adapter
5071  *	@pfmap: PF RSS Map value
5072  *
5073  *	Writes the specified value to the PF RSS Map register.
5074  */
5075 void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap)
5076 {
5077 	if (t4_use_ldst(adapter))
5078 		t4_fw_tp_pio_rw(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, 0);
5079 	else
5080 		t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5081 				  &pfmap, 1, A_TP_RSS_PF_MAP);
5082 }
5083 
5084 /**
5085  *	t4_read_rss_pf_mask - read PF RSS Mask
5086  *	@adapter: the adapter
5087  *
5088  *	Reads the PF RSS Mask register and returns its value.
5089  */
5090 u32 t4_read_rss_pf_mask(struct adapter *adapter)
5091 {
5092 	u32 pfmask;
5093 
5094 	if (t4_use_ldst(adapter))
5095 		t4_fw_tp_pio_rw(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, 1);
5096 	else
5097 		t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5098 				 &pfmask, 1, A_TP_RSS_PF_MSK);
5099 	return pfmask;
5100 }
5101 
5102 /**
5103  *	t4_write_rss_pf_mask - write PF RSS Mask
5104  *	@adapter: the adapter
5105  *	@pfmask: PF RSS Mask value
5106  *
5107  *	Writes the specified value to the PF RSS Mask register.
5108  */
5109 void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask)
5110 {
5111 	if (t4_use_ldst(adapter))
5112 		t4_fw_tp_pio_rw(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, 0);
5113 	else
5114 		t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5115 				  &pfmask, 1, A_TP_RSS_PF_MSK);
5116 }
5117 
5118 /**
5119  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
5120  *	@adap: the adapter
5121  *	@v4: holds the TCP/IP counter values
5122  *	@v6: holds the TCP/IPv6 counter values
5123  *
5124  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5125  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5126  */
5127 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5128 			 struct tp_tcp_stats *v6)
5129 {
5130 	u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
5131 
5132 #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
5133 #define STAT(x)     val[STAT_IDX(x)]
5134 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5135 
5136 	if (v4) {
5137 		t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val,
5138 				 ARRAY_SIZE(val), A_TP_MIB_TCP_OUT_RST);
5139 		v4->tcp_out_rsts = STAT(OUT_RST);
5140 		v4->tcp_in_segs  = STAT64(IN_SEG);
5141 		v4->tcp_out_segs = STAT64(OUT_SEG);
5142 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
5143 	}
5144 	if (v6) {
5145 		t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val,
5146 				 ARRAY_SIZE(val), A_TP_MIB_TCP_V6OUT_RST);
5147 		v6->tcp_out_rsts = STAT(OUT_RST);
5148 		v6->tcp_in_segs  = STAT64(IN_SEG);
5149 		v6->tcp_out_segs = STAT64(OUT_SEG);
5150 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
5151 	}
5152 #undef STAT64
5153 #undef STAT
5154 #undef STAT_IDX
5155 }
5156 
5157 /**
5158  *	t4_tp_get_err_stats - read TP's error MIB counters
5159  *	@adap: the adapter
5160  *	@st: holds the counter values
5161  *
5162  *	Returns the values of TP's error counters.
5163  */
5164 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
5165 {
5166 	int nchan = adap->chip_params->nchan;
5167 
5168 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5169 			st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0);
5170 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5171 			st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0);
5172 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5173 			st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0);
5174 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5175 			st->tnl_cong_drops, nchan, A_TP_MIB_TNL_CNG_DROP_0);
5176 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5177 			st->ofld_chan_drops, nchan, A_TP_MIB_OFD_CHN_DROP_0);
5178 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5179 			st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0);
5180 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5181 			st->ofld_vlan_drops, nchan, A_TP_MIB_OFD_VLN_DROP_0);
5182 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5183 			st->tcp6_in_errs, nchan, A_TP_MIB_TCP_V6IN_ERR_0);
5184 
5185 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5186 			 &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP);
5187 }
5188 
5189 /**
5190  *	t4_tp_get_proxy_stats - read TP's proxy MIB counters
5191  *	@adap: the adapter
5192  *	@st: holds the counter values
5193  *
5194  *	Returns the values of TP's proxy counters.
5195  */
5196 void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st)
5197 {
5198 	int nchan = adap->chip_params->nchan;
5199 
5200 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->proxy,
5201 			 nchan, A_TP_MIB_TNL_LPBK_0);
5202 }
5203 
5204 /**
5205  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
5206  *	@adap: the adapter
5207  *	@st: holds the counter values
5208  *
5209  *	Returns the values of TP's CPL counters.
5210  */
5211 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st)
5212 {
5213 	int nchan = adap->chip_params->nchan;
5214 
5215 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->req,
5216 			 nchan, A_TP_MIB_CPL_IN_REQ_0);
5217 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->rsp,
5218 			 nchan, A_TP_MIB_CPL_OUT_RSP_0);
5219 }
5220 
5221 /**
5222  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5223  *	@adap: the adapter
5224  *	@st: holds the counter values
5225  *
5226  *	Returns the values of TP's RDMA counters.
5227  */
5228 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st)
5229 {
5230 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->rqe_dfr_pkt,
5231 			 2, A_TP_MIB_RQE_DFR_PKT);
5232 }
5233 
5234 /**
5235  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5236  *	@adap: the adapter
5237  *	@idx: the port index
5238  *	@st: holds the counter values
5239  *
5240  *	Returns the values of TP's FCoE counters for the selected port.
5241  */
5242 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5243 		       struct tp_fcoe_stats *st)
5244 {
5245 	u32 val[2];
5246 
5247 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->frames_ddp,
5248 			 1, A_TP_MIB_FCOE_DDP_0 + idx);
5249 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->frames_drop,
5250 			 1, A_TP_MIB_FCOE_DROP_0 + idx);
5251 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val,
5252 			 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx);
5253 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
5254 }
5255 
5256 /**
5257  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5258  *	@adap: the adapter
5259  *	@st: holds the counter values
5260  *
5261  *	Returns the values of TP's counters for non-TCP directly-placed packets.
5262  */
5263 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st)
5264 {
5265 	u32 val[4];
5266 
5267 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val, 4,
5268 			 A_TP_MIB_USM_PKTS);
5269 	st->frames = val[0];
5270 	st->drops = val[1];
5271 	st->octets = ((u64)val[2] << 32) | val[3];
5272 }
5273 
5274 /**
5275  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
5276  *	@adap: the adapter
5277  *	@mtus: where to store the MTU values
5278  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
5279  *
5280  *	Reads the HW path MTU table.
5281  */
5282 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5283 {
5284 	u32 v;
5285 	int i;
5286 
5287 	for (i = 0; i < NMTUS; ++i) {
5288 		t4_write_reg(adap, A_TP_MTU_TABLE,
5289 			     V_MTUINDEX(0xff) | V_MTUVALUE(i));
5290 		v = t4_read_reg(adap, A_TP_MTU_TABLE);
5291 		mtus[i] = G_MTUVALUE(v);
5292 		if (mtu_log)
5293 			mtu_log[i] = G_MTUWIDTH(v);
5294 	}
5295 }
5296 
5297 /**
5298  *	t4_read_cong_tbl - reads the congestion control table
5299  *	@adap: the adapter
5300  *	@incr: where to store the alpha values
5301  *
5302  *	Reads the additive increments programmed into the HW congestion
5303  *	control table.
5304  */
5305 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5306 {
5307 	unsigned int mtu, w;
5308 
5309 	for (mtu = 0; mtu < NMTUS; ++mtu)
5310 		for (w = 0; w < NCCTRL_WIN; ++w) {
5311 			t4_write_reg(adap, A_TP_CCTRL_TABLE,
5312 				     V_ROWINDEX(0xffff) | (mtu << 5) | w);
5313 			incr[mtu][w] = (u16)t4_read_reg(adap,
5314 						A_TP_CCTRL_TABLE) & 0x1fff;
5315 		}
5316 }
5317 
5318 /**
5319  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5320  *	@adap: the adapter
5321  *	@addr: the indirect TP register address
5322  *	@mask: specifies the field within the register to modify
5323  *	@val: new value for the field
5324  *
5325  *	Sets a field of an indirect TP register to the given value.
5326  */
5327 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5328 			    unsigned int mask, unsigned int val)
5329 {
5330 	t4_write_reg(adap, A_TP_PIO_ADDR, addr);
5331 	val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
5332 	t4_write_reg(adap, A_TP_PIO_DATA, val);
5333 }
5334 
5335 /**
5336  *	init_cong_ctrl - initialize congestion control parameters
5337  *	@a: the alpha values for congestion control
5338  *	@b: the beta values for congestion control
5339  *
5340  *	Initialize the congestion control parameters.
5341  */
5342 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5343 {
5344 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5345 	a[9] = 2;
5346 	a[10] = 3;
5347 	a[11] = 4;
5348 	a[12] = 5;
5349 	a[13] = 6;
5350 	a[14] = 7;
5351 	a[15] = 8;
5352 	a[16] = 9;
5353 	a[17] = 10;
5354 	a[18] = 14;
5355 	a[19] = 17;
5356 	a[20] = 21;
5357 	a[21] = 25;
5358 	a[22] = 30;
5359 	a[23] = 35;
5360 	a[24] = 45;
5361 	a[25] = 60;
5362 	a[26] = 80;
5363 	a[27] = 100;
5364 	a[28] = 200;
5365 	a[29] = 300;
5366 	a[30] = 400;
5367 	a[31] = 500;
5368 
5369 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5370 	b[9] = b[10] = 1;
5371 	b[11] = b[12] = 2;
5372 	b[13] = b[14] = b[15] = b[16] = 3;
5373 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5374 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5375 	b[28] = b[29] = 6;
5376 	b[30] = b[31] = 7;
5377 }
5378 
5379 /* The minimum additive increment value for the congestion control table */
5380 #define CC_MIN_INCR 2U
5381 
5382 /**
5383  *	t4_load_mtus - write the MTU and congestion control HW tables
5384  *	@adap: the adapter
5385  *	@mtus: the values for the MTU table
5386  *	@alpha: the values for the congestion control alpha parameter
5387  *	@beta: the values for the congestion control beta parameter
5388  *
5389  *	Write the HW MTU table with the supplied MTUs and the high-speed
5390  *	congestion control table with the supplied alpha, beta, and MTUs.
5391  *	We write the two tables together because the additive increments
5392  *	depend on the MTUs.
5393  */
5394 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5395 		  const unsigned short *alpha, const unsigned short *beta)
5396 {
5397 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5398 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5399 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5400 		28672, 40960, 57344, 81920, 114688, 163840, 229376
5401 	};
5402 
5403 	unsigned int i, w;
5404 
5405 	for (i = 0; i < NMTUS; ++i) {
5406 		unsigned int mtu = mtus[i];
5407 		unsigned int log2 = fls(mtu);
5408 
5409 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5410 			log2--;
5411 		t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
5412 			     V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
5413 
5414 		for (w = 0; w < NCCTRL_WIN; ++w) {
5415 			unsigned int inc;
5416 
5417 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5418 				  CC_MIN_INCR);
5419 
5420 			t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
5421 				     (w << 16) | (beta[w] << 13) | inc);
5422 		}
5423 	}
5424 }
5425 
5426 /**
5427  *	t4_set_pace_tbl - set the pace table
5428  *	@adap: the adapter
5429  *	@pace_vals: the pace values in microseconds
5430  *	@start: index of the first entry in the HW pace table to set
5431  *	@n: how many entries to set
5432  *
5433  *	Sets (a subset of the) HW pace table.
5434  */
5435 int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
5436 		     unsigned int start, unsigned int n)
5437 {
5438 	unsigned int vals[NTX_SCHED], i;
5439 	unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
5440 
5441 	if (n > NTX_SCHED)
5442 	    return -ERANGE;
5443 
5444 	/* convert values from us to dack ticks, rounding to closest value */
5445 	for (i = 0; i < n; i++, pace_vals++) {
5446 		vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
5447 		if (vals[i] > 0x7ff)
5448 			return -ERANGE;
5449 		if (*pace_vals && vals[i] == 0)
5450 			return -ERANGE;
5451 	}
5452 	for (i = 0; i < n; i++, start++)
5453 		t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
5454 	return 0;
5455 }
5456 
5457 /**
5458  *	t4_set_sched_bps - set the bit rate for a HW traffic scheduler
5459  *	@adap: the adapter
5460  *	@kbps: target rate in Kbps
5461  *	@sched: the scheduler index
5462  *
5463  *	Configure a Tx HW scheduler for the target rate.
5464  */
5465 int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
5466 {
5467 	unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
5468 	unsigned int clk = adap->params.vpd.cclk * 1000;
5469 	unsigned int selected_cpt = 0, selected_bpt = 0;
5470 
5471 	if (kbps > 0) {
5472 		kbps *= 125;     /* -> bytes */
5473 		for (cpt = 1; cpt <= 255; cpt++) {
5474 			tps = clk / cpt;
5475 			bpt = (kbps + tps / 2) / tps;
5476 			if (bpt > 0 && bpt <= 255) {
5477 				v = bpt * tps;
5478 				delta = v >= kbps ? v - kbps : kbps - v;
5479 				if (delta < mindelta) {
5480 					mindelta = delta;
5481 					selected_cpt = cpt;
5482 					selected_bpt = bpt;
5483 				}
5484 			} else if (selected_cpt)
5485 				break;
5486 		}
5487 		if (!selected_cpt)
5488 			return -EINVAL;
5489 	}
5490 	t4_write_reg(adap, A_TP_TM_PIO_ADDR,
5491 		     A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
5492 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
5493 	if (sched & 1)
5494 		v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
5495 	else
5496 		v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
5497 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
5498 	return 0;
5499 }
5500 
5501 /**
5502  *	t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
5503  *	@adap: the adapter
5504  *	@sched: the scheduler index
5505  *	@ipg: the interpacket delay in tenths of nanoseconds
5506  *
5507  *	Set the interpacket delay for a HW packet rate scheduler.
5508  */
5509 int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
5510 {
5511 	unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
5512 
5513 	/* convert ipg to nearest number of core clocks */
5514 	ipg *= core_ticks_per_usec(adap);
5515 	ipg = (ipg + 5000) / 10000;
5516 	if (ipg > M_TXTIMERSEPQ0)
5517 		return -EINVAL;
5518 
5519 	t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
5520 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
5521 	if (sched & 1)
5522 		v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
5523 	else
5524 		v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
5525 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
5526 	t4_read_reg(adap, A_TP_TM_PIO_DATA);
5527 	return 0;
5528 }
5529 
5530 /*
5531  * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5532  * clocks.  The formula is
5533  *
5534  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5535  *
5536  * which is equivalent to
5537  *
5538  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5539  */
5540 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5541 {
5542 	u64 v = bytes256 * adap->params.vpd.cclk;
5543 
5544 	return v * 62 + v / 2;
5545 }
5546 
5547 /**
5548  *	t4_get_chan_txrate - get the current per channel Tx rates
5549  *	@adap: the adapter
5550  *	@nic_rate: rates for NIC traffic
5551  *	@ofld_rate: rates for offloaded traffic
5552  *
5553  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5554  *	for each channel.
5555  */
5556 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5557 {
5558 	u32 v;
5559 
5560 	v = t4_read_reg(adap, A_TP_TX_TRATE);
5561 	nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
5562 	nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
5563 	if (adap->chip_params->nchan > 2) {
5564 		nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
5565 		nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
5566 	}
5567 
5568 	v = t4_read_reg(adap, A_TP_TX_ORATE);
5569 	ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
5570 	ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
5571 	if (adap->chip_params->nchan > 2) {
5572 		ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
5573 		ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
5574 	}
5575 }
5576 
5577 /**
5578  *	t4_set_trace_filter - configure one of the tracing filters
5579  *	@adap: the adapter
5580  *	@tp: the desired trace filter parameters
5581  *	@idx: which filter to configure
5582  *	@enable: whether to enable or disable the filter
5583  *
5584  *	Configures one of the tracing filters available in HW.  If @tp is %NULL
5585  *	it indicates that the filter is already written in the register and it
5586  *	just needs to be enabled or disabled.
5587  */
5588 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5589     int idx, int enable)
5590 {
5591 	int i, ofst = idx * 4;
5592 	u32 data_reg, mask_reg, cfg;
5593 	u32 multitrc = F_TRCMULTIFILTER;
5594 	u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
5595 
5596 	if (idx < 0 || idx >= NTRACE)
5597 		return -EINVAL;
5598 
5599 	if (tp == NULL || !enable) {
5600 		t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en,
5601 		    enable ? en : 0);
5602 		return 0;
5603 	}
5604 
5605 	/*
5606 	 * TODO - After T4 data book is updated, specify the exact
5607 	 * section below.
5608 	 *
5609 	 * See T4 data book - MPS section for a complete description
5610 	 * of the below if..else handling of A_MPS_TRC_CFG register
5611 	 * value.
5612 	 */
5613 	cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
5614 	if (cfg & F_TRCMULTIFILTER) {
5615 		/*
5616 		 * If multiple tracers are enabled, then maximum
5617 		 * capture size is 2.5KB (FIFO size of a single channel)
5618 		 * minus 2 flits for CPL_TRACE_PKT header.
5619 		 */
5620 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5621 			return -EINVAL;
5622 	} else {
5623 		/*
5624 		 * If multiple tracers are disabled, to avoid deadlocks
5625 		 * maximum packet capture size of 9600 bytes is recommended.
5626 		 * Also in this mode, only trace0 can be enabled and running.
5627 		 */
5628 		multitrc = 0;
5629 		if (tp->snap_len > 9600 || idx)
5630 			return -EINVAL;
5631 	}
5632 
5633 	if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
5634 	    tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
5635 	    tp->min_len > M_TFMINPKTSIZE)
5636 		return -EINVAL;
5637 
5638 	/* stop the tracer we'll be changing */
5639 	t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0);
5640 
5641 	idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
5642 	data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
5643 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
5644 
5645 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5646 		t4_write_reg(adap, data_reg, tp->data[i]);
5647 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5648 	}
5649 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
5650 		     V_TFCAPTUREMAX(tp->snap_len) |
5651 		     V_TFMINPKTSIZE(tp->min_len));
5652 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
5653 		     V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en |
5654 		     (is_t4(adap) ?
5655 		     V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
5656 		     V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
5657 
5658 	return 0;
5659 }
5660 
5661 /**
5662  *	t4_get_trace_filter - query one of the tracing filters
5663  *	@adap: the adapter
5664  *	@tp: the current trace filter parameters
5665  *	@idx: which trace filter to query
5666  *	@enabled: non-zero if the filter is enabled
5667  *
5668  *	Returns the current settings of one of the HW tracing filters.
5669  */
5670 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5671 			 int *enabled)
5672 {
5673 	u32 ctla, ctlb;
5674 	int i, ofst = idx * 4;
5675 	u32 data_reg, mask_reg;
5676 
5677 	ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
5678 	ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
5679 
5680 	if (is_t4(adap)) {
5681 		*enabled = !!(ctla & F_TFEN);
5682 		tp->port =  G_TFPORT(ctla);
5683 		tp->invert = !!(ctla & F_TFINVERTMATCH);
5684 	} else {
5685 		*enabled = !!(ctla & F_T5_TFEN);
5686 		tp->port = G_T5_TFPORT(ctla);
5687 		tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
5688 	}
5689 	tp->snap_len = G_TFCAPTUREMAX(ctlb);
5690 	tp->min_len = G_TFMINPKTSIZE(ctlb);
5691 	tp->skip_ofst = G_TFOFFSET(ctla);
5692 	tp->skip_len = G_TFLENGTH(ctla);
5693 
5694 	ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
5695 	data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
5696 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
5697 
5698 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5699 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5700 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5701 	}
5702 }
5703 
5704 /**
5705  *	t4_pmtx_get_stats - returns the HW stats from PMTX
5706  *	@adap: the adapter
5707  *	@cnt: where to store the count statistics
5708  *	@cycles: where to store the cycle statistics
5709  *
5710  *	Returns performance statistics from PMTX.
5711  */
5712 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5713 {
5714 	int i;
5715 	u32 data[2];
5716 
5717 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
5718 		t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
5719 		cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
5720 		if (is_t4(adap))
5721 			cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
5722 		else {
5723 			t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
5724 					 A_PM_TX_DBG_DATA, data, 2,
5725 					 A_PM_TX_DBG_STAT_MSB);
5726 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5727 		}
5728 	}
5729 }
5730 
5731 /**
5732  *	t4_pmrx_get_stats - returns the HW stats from PMRX
5733  *	@adap: the adapter
5734  *	@cnt: where to store the count statistics
5735  *	@cycles: where to store the cycle statistics
5736  *
5737  *	Returns performance statistics from PMRX.
5738  */
5739 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5740 {
5741 	int i;
5742 	u32 data[2];
5743 
5744 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
5745 		t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
5746 		cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
5747 		if (is_t4(adap)) {
5748 			cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
5749 		} else {
5750 			t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
5751 					 A_PM_RX_DBG_DATA, data, 2,
5752 					 A_PM_RX_DBG_STAT_MSB);
5753 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5754 		}
5755 	}
5756 }
5757 
5758 /**
5759  *	t4_get_mps_bg_map - return the buffer groups associated with a port
5760  *	@adap: the adapter
5761  *	@idx: the port index
5762  *
5763  *	Returns a bitmap indicating which MPS buffer groups are associated
5764  *	with the given port.  Bit i is set if buffer group i is used by the
5765  *	port.
5766  */
5767 static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
5768 {
5769 	u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
5770 
5771 	if (n == 0)
5772 		return idx == 0 ? 0xf : 0;
5773 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
5774 		return idx < 2 ? (3 << (2 * idx)) : 0;
5775 	return 1 << idx;
5776 }
5777 
5778 /**
5779  *      t4_get_port_type_description - return Port Type string description
5780  *      @port_type: firmware Port Type enumeration
5781  */
5782 const char *t4_get_port_type_description(enum fw_port_type port_type)
5783 {
5784 	static const char *const port_type_description[] = {
5785 		"Fiber_XFI",
5786 		"Fiber_XAUI",
5787 		"BT_SGMII",
5788 		"BT_XFI",
5789 		"BT_XAUI",
5790 		"KX4",
5791 		"CX4",
5792 		"KX",
5793 		"KR",
5794 		"SFP",
5795 		"BP_AP",
5796 		"BP4_AP",
5797 		"QSFP_10G",
5798 		"QSA",
5799 		"QSFP",
5800 		"BP40_BA",
5801 		"KR4_100G",
5802 		"CR4_QSFP",
5803 		"CR_QSFP",
5804 		"CR2_QSFP",
5805 		"SFP28",
5806 		"KR_SFP28",
5807 	};
5808 
5809 	if (port_type < ARRAY_SIZE(port_type_description))
5810 		return port_type_description[port_type];
5811 	return "UNKNOWN";
5812 }
5813 
5814 /**
5815  *      t4_get_port_stats_offset - collect port stats relative to a previous
5816  *				   snapshot
5817  *      @adap: The adapter
5818  *      @idx: The port
5819  *      @stats: Current stats to fill
5820  *      @offset: Previous stats snapshot
5821  */
5822 void t4_get_port_stats_offset(struct adapter *adap, int idx,
5823 		struct port_stats *stats,
5824 		struct port_stats *offset)
5825 {
5826 	u64 *s, *o;
5827 	int i;
5828 
5829 	t4_get_port_stats(adap, idx, stats);
5830 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
5831 			i < (sizeof(struct port_stats)/sizeof(u64)) ;
5832 			i++, s++, o++)
5833 		*s -= *o;
5834 }
5835 
5836 /**
5837  *	t4_get_port_stats - collect port statistics
5838  *	@adap: the adapter
5839  *	@idx: the port index
5840  *	@p: the stats structure to fill
5841  *
5842  *	Collect statistics related to the given port from HW.
5843  */
5844 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
5845 {
5846 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
5847 	u32 stat_ctl;
5848 
5849 #define GET_STAT(name) \
5850 	t4_read_reg64(adap, \
5851 	(is_t4(adap) ? PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) : \
5852 	T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
5853 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
5854 
5855 	stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
5856 
5857 	p->tx_pause		= GET_STAT(TX_PORT_PAUSE);
5858 	p->tx_octets		= GET_STAT(TX_PORT_BYTES);
5859 	p->tx_frames		= GET_STAT(TX_PORT_FRAMES);
5860 	p->tx_bcast_frames	= GET_STAT(TX_PORT_BCAST);
5861 	p->tx_mcast_frames	= GET_STAT(TX_PORT_MCAST);
5862 	p->tx_ucast_frames	= GET_STAT(TX_PORT_UCAST);
5863 	p->tx_error_frames	= GET_STAT(TX_PORT_ERROR);
5864 	p->tx_frames_64		= GET_STAT(TX_PORT_64B);
5865 	p->tx_frames_65_127	= GET_STAT(TX_PORT_65B_127B);
5866 	p->tx_frames_128_255	= GET_STAT(TX_PORT_128B_255B);
5867 	p->tx_frames_256_511	= GET_STAT(TX_PORT_256B_511B);
5868 	p->tx_frames_512_1023	= GET_STAT(TX_PORT_512B_1023B);
5869 	p->tx_frames_1024_1518	= GET_STAT(TX_PORT_1024B_1518B);
5870 	p->tx_frames_1519_max	= GET_STAT(TX_PORT_1519B_MAX);
5871 	p->tx_drop		= GET_STAT(TX_PORT_DROP);
5872 	p->tx_ppp0		= GET_STAT(TX_PORT_PPP0);
5873 	p->tx_ppp1		= GET_STAT(TX_PORT_PPP1);
5874 	p->tx_ppp2		= GET_STAT(TX_PORT_PPP2);
5875 	p->tx_ppp3		= GET_STAT(TX_PORT_PPP3);
5876 	p->tx_ppp4		= GET_STAT(TX_PORT_PPP4);
5877 	p->tx_ppp5		= GET_STAT(TX_PORT_PPP5);
5878 	p->tx_ppp6		= GET_STAT(TX_PORT_PPP6);
5879 	p->tx_ppp7		= GET_STAT(TX_PORT_PPP7);
5880 
5881 	if (chip_id(adap) >= CHELSIO_T5) {
5882 		if (stat_ctl & F_COUNTPAUSESTATTX) {
5883 			p->tx_frames -= p->tx_pause;
5884 			p->tx_octets -= p->tx_pause * 64;
5885 		}
5886 		if (stat_ctl & F_COUNTPAUSEMCTX)
5887 			p->tx_mcast_frames -= p->tx_pause;
5888 	}
5889 
5890 	p->rx_pause		= GET_STAT(RX_PORT_PAUSE);
5891 	p->rx_octets		= GET_STAT(RX_PORT_BYTES);
5892 	p->rx_frames		= GET_STAT(RX_PORT_FRAMES);
5893 	p->rx_bcast_frames	= GET_STAT(RX_PORT_BCAST);
5894 	p->rx_mcast_frames	= GET_STAT(RX_PORT_MCAST);
5895 	p->rx_ucast_frames	= GET_STAT(RX_PORT_UCAST);
5896 	p->rx_too_long		= GET_STAT(RX_PORT_MTU_ERROR);
5897 	p->rx_jabber		= GET_STAT(RX_PORT_MTU_CRC_ERROR);
5898 	p->rx_fcs_err		= GET_STAT(RX_PORT_CRC_ERROR);
5899 	p->rx_len_err		= GET_STAT(RX_PORT_LEN_ERROR);
5900 	p->rx_symbol_err	= GET_STAT(RX_PORT_SYM_ERROR);
5901 	p->rx_runt		= GET_STAT(RX_PORT_LESS_64B);
5902 	p->rx_frames_64		= GET_STAT(RX_PORT_64B);
5903 	p->rx_frames_65_127	= GET_STAT(RX_PORT_65B_127B);
5904 	p->rx_frames_128_255	= GET_STAT(RX_PORT_128B_255B);
5905 	p->rx_frames_256_511	= GET_STAT(RX_PORT_256B_511B);
5906 	p->rx_frames_512_1023	= GET_STAT(RX_PORT_512B_1023B);
5907 	p->rx_frames_1024_1518	= GET_STAT(RX_PORT_1024B_1518B);
5908 	p->rx_frames_1519_max	= GET_STAT(RX_PORT_1519B_MAX);
5909 	p->rx_ppp0		= GET_STAT(RX_PORT_PPP0);
5910 	p->rx_ppp1		= GET_STAT(RX_PORT_PPP1);
5911 	p->rx_ppp2		= GET_STAT(RX_PORT_PPP2);
5912 	p->rx_ppp3		= GET_STAT(RX_PORT_PPP3);
5913 	p->rx_ppp4		= GET_STAT(RX_PORT_PPP4);
5914 	p->rx_ppp5		= GET_STAT(RX_PORT_PPP5);
5915 	p->rx_ppp6		= GET_STAT(RX_PORT_PPP6);
5916 	p->rx_ppp7		= GET_STAT(RX_PORT_PPP7);
5917 
5918 	if (chip_id(adap) >= CHELSIO_T5) {
5919 		if (stat_ctl & F_COUNTPAUSESTATRX) {
5920 			p->rx_frames -= p->rx_pause;
5921 			p->rx_octets -= p->rx_pause * 64;
5922 		}
5923 		if (stat_ctl & F_COUNTPAUSEMCRX)
5924 			p->rx_mcast_frames -= p->rx_pause;
5925 	}
5926 
5927 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
5928 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
5929 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
5930 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
5931 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
5932 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
5933 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
5934 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
5935 
5936 #undef GET_STAT
5937 #undef GET_STAT_COM
5938 }
5939 
5940 /**
5941  *	t4_get_lb_stats - collect loopback port statistics
5942  *	@adap: the adapter
5943  *	@idx: the loopback port index
5944  *	@p: the stats structure to fill
5945  *
5946  *	Return HW statistics for the given loopback port.
5947  */
5948 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
5949 {
5950 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
5951 
5952 #define GET_STAT(name) \
5953 	t4_read_reg64(adap, \
5954 	(is_t4(adap) ? \
5955 	PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \
5956 	T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L)))
5957 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
5958 
5959 	p->octets	= GET_STAT(BYTES);
5960 	p->frames	= GET_STAT(FRAMES);
5961 	p->bcast_frames	= GET_STAT(BCAST);
5962 	p->mcast_frames	= GET_STAT(MCAST);
5963 	p->ucast_frames	= GET_STAT(UCAST);
5964 	p->error_frames	= GET_STAT(ERROR);
5965 
5966 	p->frames_64		= GET_STAT(64B);
5967 	p->frames_65_127	= GET_STAT(65B_127B);
5968 	p->frames_128_255	= GET_STAT(128B_255B);
5969 	p->frames_256_511	= GET_STAT(256B_511B);
5970 	p->frames_512_1023	= GET_STAT(512B_1023B);
5971 	p->frames_1024_1518	= GET_STAT(1024B_1518B);
5972 	p->frames_1519_max	= GET_STAT(1519B_MAX);
5973 	p->drop			= GET_STAT(DROP_FRAMES);
5974 
5975 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
5976 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
5977 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
5978 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
5979 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
5980 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
5981 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
5982 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
5983 
5984 #undef GET_STAT
5985 #undef GET_STAT_COM
5986 }
5987 
5988 /**
5989  *	t4_wol_magic_enable - enable/disable magic packet WoL
5990  *	@adap: the adapter
5991  *	@port: the physical port index
5992  *	@addr: MAC address expected in magic packets, %NULL to disable
5993  *
5994  *	Enables/disables magic packet wake-on-LAN for the selected port.
5995  */
5996 void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
5997 			 const u8 *addr)
5998 {
5999 	u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
6000 
6001 	if (is_t4(adap)) {
6002 		mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
6003 		mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
6004 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
6005 	} else {
6006 		mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
6007 		mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
6008 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
6009 	}
6010 
6011 	if (addr) {
6012 		t4_write_reg(adap, mag_id_reg_l,
6013 			     (addr[2] << 24) | (addr[3] << 16) |
6014 			     (addr[4] << 8) | addr[5]);
6015 		t4_write_reg(adap, mag_id_reg_h,
6016 			     (addr[0] << 8) | addr[1]);
6017 	}
6018 	t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
6019 			 V_MAGICEN(addr != NULL));
6020 }
6021 
6022 /**
6023  *	t4_wol_pat_enable - enable/disable pattern-based WoL
6024  *	@adap: the adapter
6025  *	@port: the physical port index
6026  *	@map: bitmap of which HW pattern filters to set
6027  *	@mask0: byte mask for bytes 0-63 of a packet
6028  *	@mask1: byte mask for bytes 64-127 of a packet
6029  *	@crc: Ethernet CRC for selected bytes
6030  *	@enable: enable/disable switch
6031  *
6032  *	Sets the pattern filters indicated in @map to mask out the bytes
6033  *	specified in @mask0/@mask1 in received packets and compare the CRC of
6034  *	the resulting packet against @crc.  If @enable is %true pattern-based
6035  *	WoL is enabled, otherwise disabled.
6036  */
6037 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
6038 		      u64 mask0, u64 mask1, unsigned int crc, bool enable)
6039 {
6040 	int i;
6041 	u32 port_cfg_reg;
6042 
6043 	if (is_t4(adap))
6044 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
6045 	else
6046 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
6047 
6048 	if (!enable) {
6049 		t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
6050 		return 0;
6051 	}
6052 	if (map > 0xff)
6053 		return -EINVAL;
6054 
6055 #define EPIO_REG(name) \
6056 	(is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
6057 	T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
6058 
6059 	t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
6060 	t4_write_reg(adap, EPIO_REG(DATA2), mask1);
6061 	t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
6062 
6063 	for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
6064 		if (!(map & 1))
6065 			continue;
6066 
6067 		/* write byte masks */
6068 		t4_write_reg(adap, EPIO_REG(DATA0), mask0);
6069 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
6070 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
6071 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
6072 			return -ETIMEDOUT;
6073 
6074 		/* write CRC */
6075 		t4_write_reg(adap, EPIO_REG(DATA0), crc);
6076 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
6077 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
6078 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
6079 			return -ETIMEDOUT;
6080 	}
6081 #undef EPIO_REG
6082 
6083 	t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
6084 	return 0;
6085 }
6086 
6087 /*     t4_mk_filtdelwr - create a delete filter WR
6088  *     @ftid: the filter ID
6089  *     @wr: the filter work request to populate
6090  *     @qid: ingress queue to receive the delete notification
6091  *
6092  *     Creates a filter work request to delete the supplied filter.  If @qid is
6093  *     negative the delete notification is suppressed.
6094  */
6095 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6096 {
6097 	memset(wr, 0, sizeof(*wr));
6098 	wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR));
6099 	wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16));
6100 	wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) |
6101 				    V_FW_FILTER_WR_NOREPLY(qid < 0));
6102 	wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER);
6103 	if (qid >= 0)
6104 		wr->rx_chan_rx_rpl_iq =
6105 				cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid));
6106 }
6107 
6108 #define INIT_CMD(var, cmd, rd_wr) do { \
6109 	(var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
6110 					F_FW_CMD_REQUEST | \
6111 					F_FW_CMD_##rd_wr); \
6112 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6113 } while (0)
6114 
6115 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6116 			  u32 addr, u32 val)
6117 {
6118 	u32 ldst_addrspace;
6119 	struct fw_ldst_cmd c;
6120 
6121 	memset(&c, 0, sizeof(c));
6122 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE);
6123 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6124 					F_FW_CMD_REQUEST |
6125 					F_FW_CMD_WRITE |
6126 					ldst_addrspace);
6127 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6128 	c.u.addrval.addr = cpu_to_be32(addr);
6129 	c.u.addrval.val = cpu_to_be32(val);
6130 
6131 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6132 }
6133 
6134 /**
6135  *	t4_mdio_rd - read a PHY register through MDIO
6136  *	@adap: the adapter
6137  *	@mbox: mailbox to use for the FW command
6138  *	@phy_addr: the PHY address
6139  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6140  *	@reg: the register to read
6141  *	@valp: where to store the value
6142  *
6143  *	Issues a FW command through the given mailbox to read a PHY register.
6144  */
6145 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6146 	       unsigned int mmd, unsigned int reg, unsigned int *valp)
6147 {
6148 	int ret;
6149 	u32 ldst_addrspace;
6150 	struct fw_ldst_cmd c;
6151 
6152 	memset(&c, 0, sizeof(c));
6153 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
6154 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6155 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
6156 					ldst_addrspace);
6157 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6158 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
6159 					 V_FW_LDST_CMD_MMD(mmd));
6160 	c.u.mdio.raddr = cpu_to_be16(reg);
6161 
6162 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6163 	if (ret == 0)
6164 		*valp = be16_to_cpu(c.u.mdio.rval);
6165 	return ret;
6166 }
6167 
6168 /**
6169  *	t4_mdio_wr - write a PHY register through MDIO
6170  *	@adap: the adapter
6171  *	@mbox: mailbox to use for the FW command
6172  *	@phy_addr: the PHY address
6173  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6174  *	@reg: the register to write
6175  *	@valp: value to write
6176  *
6177  *	Issues a FW command through the given mailbox to write a PHY register.
6178  */
6179 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6180 	       unsigned int mmd, unsigned int reg, unsigned int val)
6181 {
6182 	u32 ldst_addrspace;
6183 	struct fw_ldst_cmd c;
6184 
6185 	memset(&c, 0, sizeof(c));
6186 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
6187 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6188 					F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
6189 					ldst_addrspace);
6190 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6191 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
6192 					 V_FW_LDST_CMD_MMD(mmd));
6193 	c.u.mdio.raddr = cpu_to_be16(reg);
6194 	c.u.mdio.rval = cpu_to_be16(val);
6195 
6196 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6197 }
6198 
6199 /**
6200  *
6201  *	t4_sge_decode_idma_state - decode the idma state
6202  *	@adap: the adapter
6203  *	@state: the state idma is stuck in
6204  */
6205 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6206 {
6207 	static const char * const t4_decode[] = {
6208 		"IDMA_IDLE",
6209 		"IDMA_PUSH_MORE_CPL_FIFO",
6210 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6211 		"Not used",
6212 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6213 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6214 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6215 		"IDMA_SEND_FIFO_TO_IMSG",
6216 		"IDMA_FL_REQ_DATA_FL_PREP",
6217 		"IDMA_FL_REQ_DATA_FL",
6218 		"IDMA_FL_DROP",
6219 		"IDMA_FL_H_REQ_HEADER_FL",
6220 		"IDMA_FL_H_SEND_PCIEHDR",
6221 		"IDMA_FL_H_PUSH_CPL_FIFO",
6222 		"IDMA_FL_H_SEND_CPL",
6223 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6224 		"IDMA_FL_H_SEND_IP_HDR",
6225 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6226 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6227 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6228 		"IDMA_FL_D_SEND_PCIEHDR",
6229 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6230 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6231 		"IDMA_FL_SEND_PCIEHDR",
6232 		"IDMA_FL_PUSH_CPL_FIFO",
6233 		"IDMA_FL_SEND_CPL",
6234 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6235 		"IDMA_FL_SEND_PAYLOAD",
6236 		"IDMA_FL_REQ_NEXT_DATA_FL",
6237 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6238 		"IDMA_FL_SEND_PADDING",
6239 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6240 		"IDMA_FL_SEND_FIFO_TO_IMSG",
6241 		"IDMA_FL_REQ_DATAFL_DONE",
6242 		"IDMA_FL_REQ_HEADERFL_DONE",
6243 	};
6244 	static const char * const t5_decode[] = {
6245 		"IDMA_IDLE",
6246 		"IDMA_ALMOST_IDLE",
6247 		"IDMA_PUSH_MORE_CPL_FIFO",
6248 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6249 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6250 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6251 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6252 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6253 		"IDMA_SEND_FIFO_TO_IMSG",
6254 		"IDMA_FL_REQ_DATA_FL",
6255 		"IDMA_FL_DROP",
6256 		"IDMA_FL_DROP_SEND_INC",
6257 		"IDMA_FL_H_REQ_HEADER_FL",
6258 		"IDMA_FL_H_SEND_PCIEHDR",
6259 		"IDMA_FL_H_PUSH_CPL_FIFO",
6260 		"IDMA_FL_H_SEND_CPL",
6261 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6262 		"IDMA_FL_H_SEND_IP_HDR",
6263 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6264 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6265 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6266 		"IDMA_FL_D_SEND_PCIEHDR",
6267 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6268 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6269 		"IDMA_FL_SEND_PCIEHDR",
6270 		"IDMA_FL_PUSH_CPL_FIFO",
6271 		"IDMA_FL_SEND_CPL",
6272 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6273 		"IDMA_FL_SEND_PAYLOAD",
6274 		"IDMA_FL_REQ_NEXT_DATA_FL",
6275 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6276 		"IDMA_FL_SEND_PADDING",
6277 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6278 	};
6279 	static const char * const t6_decode[] = {
6280 		"IDMA_IDLE",
6281 		"IDMA_PUSH_MORE_CPL_FIFO",
6282 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6283 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6284 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6285 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6286 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6287 		"IDMA_FL_REQ_DATA_FL",
6288 		"IDMA_FL_DROP",
6289 		"IDMA_FL_DROP_SEND_INC",
6290 		"IDMA_FL_H_REQ_HEADER_FL",
6291 		"IDMA_FL_H_SEND_PCIEHDR",
6292 		"IDMA_FL_H_PUSH_CPL_FIFO",
6293 		"IDMA_FL_H_SEND_CPL",
6294 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6295 		"IDMA_FL_H_SEND_IP_HDR",
6296 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6297 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6298 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6299 		"IDMA_FL_D_SEND_PCIEHDR",
6300 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6301 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6302 		"IDMA_FL_SEND_PCIEHDR",
6303 		"IDMA_FL_PUSH_CPL_FIFO",
6304 		"IDMA_FL_SEND_CPL",
6305 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6306 		"IDMA_FL_SEND_PAYLOAD",
6307 		"IDMA_FL_REQ_NEXT_DATA_FL",
6308 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6309 		"IDMA_FL_SEND_PADDING",
6310 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6311 	};
6312 	static const u32 sge_regs[] = {
6313 		A_SGE_DEBUG_DATA_LOW_INDEX_2,
6314 		A_SGE_DEBUG_DATA_LOW_INDEX_3,
6315 		A_SGE_DEBUG_DATA_HIGH_INDEX_10,
6316 	};
6317 	const char * const *sge_idma_decode;
6318 	int sge_idma_decode_nstates;
6319 	int i;
6320 	unsigned int chip_version = chip_id(adapter);
6321 
6322 	/* Select the right set of decode strings to dump depending on the
6323 	 * adapter chip type.
6324 	 */
6325 	switch (chip_version) {
6326 	case CHELSIO_T4:
6327 		sge_idma_decode = (const char * const *)t4_decode;
6328 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6329 		break;
6330 
6331 	case CHELSIO_T5:
6332 		sge_idma_decode = (const char * const *)t5_decode;
6333 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6334 		break;
6335 
6336 	case CHELSIO_T6:
6337 		sge_idma_decode = (const char * const *)t6_decode;
6338 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6339 		break;
6340 
6341 	default:
6342 		CH_ERR(adapter,	"Unsupported chip version %d\n", chip_version);
6343 		return;
6344 	}
6345 
6346 	if (state < sge_idma_decode_nstates)
6347 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6348 	else
6349 		CH_WARN(adapter, "idma state %d unknown\n", state);
6350 
6351 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6352 		CH_WARN(adapter, "SGE register %#x value %#x\n",
6353 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6354 }
6355 
6356 /**
6357  *      t4_sge_ctxt_flush - flush the SGE context cache
6358  *      @adap: the adapter
6359  *      @mbox: mailbox to use for the FW command
6360  *
6361  *      Issues a FW command through the given mailbox to flush the
6362  *      SGE context cache.
6363  */
6364 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
6365 {
6366 	int ret;
6367 	u32 ldst_addrspace;
6368 	struct fw_ldst_cmd c;
6369 
6370 	memset(&c, 0, sizeof(c));
6371 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_SGE_EGRC);
6372 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6373 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
6374 					ldst_addrspace);
6375 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6376 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH);
6377 
6378 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6379 	return ret;
6380 }
6381 
6382 /**
6383  *      t4_fw_hello - establish communication with FW
6384  *      @adap: the adapter
6385  *      @mbox: mailbox to use for the FW command
6386  *      @evt_mbox: mailbox to receive async FW events
6387  *      @master: specifies the caller's willingness to be the device master
6388  *	@state: returns the current device state (if non-NULL)
6389  *
6390  *	Issues a command to establish communication with FW.  Returns either
6391  *	an error (negative integer) or the mailbox of the Master PF.
6392  */
6393 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6394 		enum dev_master master, enum dev_state *state)
6395 {
6396 	int ret;
6397 	struct fw_hello_cmd c;
6398 	u32 v;
6399 	unsigned int master_mbox;
6400 	int retries = FW_CMD_HELLO_RETRIES;
6401 
6402 retry:
6403 	memset(&c, 0, sizeof(c));
6404 	INIT_CMD(c, HELLO, WRITE);
6405 	c.err_to_clearinit = cpu_to_be32(
6406 		V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
6407 		V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
6408 		V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ?
6409 					mbox : M_FW_HELLO_CMD_MBMASTER) |
6410 		V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
6411 		V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
6412 		F_FW_HELLO_CMD_CLEARINIT);
6413 
6414 	/*
6415 	 * Issue the HELLO command to the firmware.  If it's not successful
6416 	 * but indicates that we got a "busy" or "timeout" condition, retry
6417 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
6418 	 * retry limit, check to see if the firmware left us any error
6419 	 * information and report that if so ...
6420 	 */
6421 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6422 	if (ret != FW_SUCCESS) {
6423 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6424 			goto retry;
6425 		if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
6426 			t4_report_fw_error(adap);
6427 		return ret;
6428 	}
6429 
6430 	v = be32_to_cpu(c.err_to_clearinit);
6431 	master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
6432 	if (state) {
6433 		if (v & F_FW_HELLO_CMD_ERR)
6434 			*state = DEV_STATE_ERR;
6435 		else if (v & F_FW_HELLO_CMD_INIT)
6436 			*state = DEV_STATE_INIT;
6437 		else
6438 			*state = DEV_STATE_UNINIT;
6439 	}
6440 
6441 	/*
6442 	 * If we're not the Master PF then we need to wait around for the
6443 	 * Master PF Driver to finish setting up the adapter.
6444 	 *
6445 	 * Note that we also do this wait if we're a non-Master-capable PF and
6446 	 * there is no current Master PF; a Master PF may show up momentarily
6447 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
6448 	 * OS loads lots of different drivers rapidly at the same time).  In
6449 	 * this case, the Master PF returned by the firmware will be
6450 	 * M_PCIE_FW_MASTER so the test below will work ...
6451 	 */
6452 	if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
6453 	    master_mbox != mbox) {
6454 		int waiting = FW_CMD_HELLO_TIMEOUT;
6455 
6456 		/*
6457 		 * Wait for the firmware to either indicate an error or
6458 		 * initialized state.  If we see either of these we bail out
6459 		 * and report the issue to the caller.  If we exhaust the
6460 		 * "hello timeout" and we haven't exhausted our retries, try
6461 		 * again.  Otherwise bail with a timeout error.
6462 		 */
6463 		for (;;) {
6464 			u32 pcie_fw;
6465 
6466 			msleep(50);
6467 			waiting -= 50;
6468 
6469 			/*
6470 			 * If neither Error nor Initialialized are indicated
6471 			 * by the firmware keep waiting till we exhaust our
6472 			 * timeout ... and then retry if we haven't exhausted
6473 			 * our retries ...
6474 			 */
6475 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
6476 			if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
6477 				if (waiting <= 0) {
6478 					if (retries-- > 0)
6479 						goto retry;
6480 
6481 					return -ETIMEDOUT;
6482 				}
6483 				continue;
6484 			}
6485 
6486 			/*
6487 			 * We either have an Error or Initialized condition
6488 			 * report errors preferentially.
6489 			 */
6490 			if (state) {
6491 				if (pcie_fw & F_PCIE_FW_ERR)
6492 					*state = DEV_STATE_ERR;
6493 				else if (pcie_fw & F_PCIE_FW_INIT)
6494 					*state = DEV_STATE_INIT;
6495 			}
6496 
6497 			/*
6498 			 * If we arrived before a Master PF was selected and
6499 			 * there's not a valid Master PF, grab its identity
6500 			 * for our caller.
6501 			 */
6502 			if (master_mbox == M_PCIE_FW_MASTER &&
6503 			    (pcie_fw & F_PCIE_FW_MASTER_VLD))
6504 				master_mbox = G_PCIE_FW_MASTER(pcie_fw);
6505 			break;
6506 		}
6507 	}
6508 
6509 	return master_mbox;
6510 }
6511 
6512 /**
6513  *	t4_fw_bye - end communication with FW
6514  *	@adap: the adapter
6515  *	@mbox: mailbox to use for the FW command
6516  *
6517  *	Issues a command to terminate communication with FW.
6518  */
6519 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6520 {
6521 	struct fw_bye_cmd c;
6522 
6523 	memset(&c, 0, sizeof(c));
6524 	INIT_CMD(c, BYE, WRITE);
6525 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6526 }
6527 
6528 /**
6529  *	t4_fw_reset - issue a reset to FW
6530  *	@adap: the adapter
6531  *	@mbox: mailbox to use for the FW command
6532  *	@reset: specifies the type of reset to perform
6533  *
6534  *	Issues a reset command of the specified type to FW.
6535  */
6536 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6537 {
6538 	struct fw_reset_cmd c;
6539 
6540 	memset(&c, 0, sizeof(c));
6541 	INIT_CMD(c, RESET, WRITE);
6542 	c.val = cpu_to_be32(reset);
6543 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6544 }
6545 
6546 /**
6547  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6548  *	@adap: the adapter
6549  *	@mbox: mailbox to use for the FW RESET command (if desired)
6550  *	@force: force uP into RESET even if FW RESET command fails
6551  *
6552  *	Issues a RESET command to firmware (if desired) with a HALT indication
6553  *	and then puts the microprocessor into RESET state.  The RESET command
6554  *	will only be issued if a legitimate mailbox is provided (mbox <=
6555  *	M_PCIE_FW_MASTER).
6556  *
6557  *	This is generally used in order for the host to safely manipulate the
6558  *	adapter without fear of conflicting with whatever the firmware might
6559  *	be doing.  The only way out of this state is to RESTART the firmware
6560  *	...
6561  */
6562 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
6563 {
6564 	int ret = 0;
6565 
6566 	/*
6567 	 * If a legitimate mailbox is provided, issue a RESET command
6568 	 * with a HALT indication.
6569 	 */
6570 	if (mbox <= M_PCIE_FW_MASTER) {
6571 		struct fw_reset_cmd c;
6572 
6573 		memset(&c, 0, sizeof(c));
6574 		INIT_CMD(c, RESET, WRITE);
6575 		c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
6576 		c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
6577 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6578 	}
6579 
6580 	/*
6581 	 * Normally we won't complete the operation if the firmware RESET
6582 	 * command fails but if our caller insists we'll go ahead and put the
6583 	 * uP into RESET.  This can be useful if the firmware is hung or even
6584 	 * missing ...  We'll have to take the risk of putting the uP into
6585 	 * RESET without the cooperation of firmware in that case.
6586 	 *
6587 	 * We also force the firmware's HALT flag to be on in case we bypassed
6588 	 * the firmware RESET command above or we're dealing with old firmware
6589 	 * which doesn't have the HALT capability.  This will serve as a flag
6590 	 * for the incoming firmware to know that it's coming out of a HALT
6591 	 * rather than a RESET ... if it's new enough to understand that ...
6592 	 */
6593 	if (ret == 0 || force) {
6594 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
6595 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
6596 				 F_PCIE_FW_HALT);
6597 	}
6598 
6599 	/*
6600 	 * And we always return the result of the firmware RESET command
6601 	 * even when we force the uP into RESET ...
6602 	 */
6603 	return ret;
6604 }
6605 
6606 /**
6607  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
6608  *	@adap: the adapter
6609  *	@reset: if we want to do a RESET to restart things
6610  *
6611  *	Restart firmware previously halted by t4_fw_halt().  On successful
6612  *	return the previous PF Master remains as the new PF Master and there
6613  *	is no need to issue a new HELLO command, etc.
6614  *
6615  *	We do this in two ways:
6616  *
6617  *	 1. If we're dealing with newer firmware we'll simply want to take
6618  *	    the chip's microprocessor out of RESET.  This will cause the
6619  *	    firmware to start up from its start vector.  And then we'll loop
6620  *	    until the firmware indicates it's started again (PCIE_FW.HALT
6621  *	    reset to 0) or we timeout.
6622  *
6623  *	 2. If we're dealing with older firmware then we'll need to RESET
6624  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
6625  *	    flag and automatically RESET itself on startup.
6626  */
6627 int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6628 {
6629 	if (reset) {
6630 		/*
6631 		 * Since we're directing the RESET instead of the firmware
6632 		 * doing it automatically, we need to clear the PCIE_FW.HALT
6633 		 * bit.
6634 		 */
6635 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, 0);
6636 
6637 		/*
6638 		 * If we've been given a valid mailbox, first try to get the
6639 		 * firmware to do the RESET.  If that works, great and we can
6640 		 * return success.  Otherwise, if we haven't been given a
6641 		 * valid mailbox or the RESET command failed, fall back to
6642 		 * hitting the chip with a hammer.
6643 		 */
6644 		if (mbox <= M_PCIE_FW_MASTER) {
6645 			t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
6646 			msleep(100);
6647 			if (t4_fw_reset(adap, mbox,
6648 					F_PIORST | F_PIORSTMODE) == 0)
6649 				return 0;
6650 		}
6651 
6652 		t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE);
6653 		msleep(2000);
6654 	} else {
6655 		int ms;
6656 
6657 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
6658 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6659 			if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
6660 				return FW_SUCCESS;
6661 			msleep(100);
6662 			ms += 100;
6663 		}
6664 		return -ETIMEDOUT;
6665 	}
6666 	return 0;
6667 }
6668 
6669 /**
6670  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6671  *	@adap: the adapter
6672  *	@mbox: mailbox to use for the FW RESET command (if desired)
6673  *	@fw_data: the firmware image to write
6674  *	@size: image size
6675  *	@force: force upgrade even if firmware doesn't cooperate
6676  *
6677  *	Perform all of the steps necessary for upgrading an adapter's
6678  *	firmware image.  Normally this requires the cooperation of the
6679  *	existing firmware in order to halt all existing activities
6680  *	but if an invalid mailbox token is passed in we skip that step
6681  *	(though we'll still put the adapter microprocessor into RESET in
6682  *	that case).
6683  *
6684  *	On successful return the new firmware will have been loaded and
6685  *	the adapter will have been fully RESET losing all previous setup
6686  *	state.  On unsuccessful return the adapter may be completely hosed ...
6687  *	positive errno indicates that the adapter is ~probably~ intact, a
6688  *	negative errno indicates that things are looking bad ...
6689  */
6690 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6691 		  const u8 *fw_data, unsigned int size, int force)
6692 {
6693 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6694 	unsigned int bootstrap =
6695 	    be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
6696 	int reset, ret;
6697 
6698 	if (!t4_fw_matches_chip(adap, fw_hdr))
6699 		return -EINVAL;
6700 
6701 	if (!bootstrap) {
6702 		ret = t4_fw_halt(adap, mbox, force);
6703 		if (ret < 0 && !force)
6704 			return ret;
6705 	}
6706 
6707 	ret = t4_load_fw(adap, fw_data, size);
6708 	if (ret < 0 || bootstrap)
6709 		return ret;
6710 
6711 	/*
6712 	 * Older versions of the firmware don't understand the new
6713 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6714 	 * restart.  So for newly loaded older firmware we'll have to do the
6715 	 * RESET for it so it starts up on a clean slate.  We can tell if
6716 	 * the newly loaded firmware will handle this right by checking
6717 	 * its header flags to see if it advertises the capability.
6718 	 */
6719 	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
6720 	return t4_fw_restart(adap, mbox, reset);
6721 }
6722 
6723 /**
6724  *	t4_fw_initialize - ask FW to initialize the device
6725  *	@adap: the adapter
6726  *	@mbox: mailbox to use for the FW command
6727  *
6728  *	Issues a command to FW to partially initialize the device.  This
6729  *	performs initialization that generally doesn't depend on user input.
6730  */
6731 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
6732 {
6733 	struct fw_initialize_cmd c;
6734 
6735 	memset(&c, 0, sizeof(c));
6736 	INIT_CMD(c, INITIALIZE, WRITE);
6737 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6738 }
6739 
6740 /**
6741  *	t4_query_params_rw - query FW or device parameters
6742  *	@adap: the adapter
6743  *	@mbox: mailbox to use for the FW command
6744  *	@pf: the PF
6745  *	@vf: the VF
6746  *	@nparams: the number of parameters
6747  *	@params: the parameter names
6748  *	@val: the parameter values
6749  *	@rw: Write and read flag
6750  *
6751  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
6752  *	queried at once.
6753  */
6754 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
6755 		       unsigned int vf, unsigned int nparams, const u32 *params,
6756 		       u32 *val, int rw)
6757 {
6758 	int i, ret;
6759 	struct fw_params_cmd c;
6760 	__be32 *p = &c.param[0].mnem;
6761 
6762 	if (nparams > 7)
6763 		return -EINVAL;
6764 
6765 	memset(&c, 0, sizeof(c));
6766 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
6767 				  F_FW_CMD_REQUEST | F_FW_CMD_READ |
6768 				  V_FW_PARAMS_CMD_PFN(pf) |
6769 				  V_FW_PARAMS_CMD_VFN(vf));
6770 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6771 
6772 	for (i = 0; i < nparams; i++) {
6773 		*p++ = cpu_to_be32(*params++);
6774 		if (rw)
6775 			*p = cpu_to_be32(*(val + i));
6776 		p++;
6777 	}
6778 
6779 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6780 	if (ret == 0)
6781 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
6782 			*val++ = be32_to_cpu(*p);
6783 	return ret;
6784 }
6785 
6786 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6787 		    unsigned int vf, unsigned int nparams, const u32 *params,
6788 		    u32 *val)
6789 {
6790 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
6791 }
6792 
6793 /**
6794  *      t4_set_params_timeout - sets FW or device parameters
6795  *      @adap: the adapter
6796  *      @mbox: mailbox to use for the FW command
6797  *      @pf: the PF
6798  *      @vf: the VF
6799  *      @nparams: the number of parameters
6800  *      @params: the parameter names
6801  *      @val: the parameter values
6802  *      @timeout: the timeout time
6803  *
6804  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
6805  *      specified at once.
6806  */
6807 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
6808 			  unsigned int pf, unsigned int vf,
6809 			  unsigned int nparams, const u32 *params,
6810 			  const u32 *val, int timeout)
6811 {
6812 	struct fw_params_cmd c;
6813 	__be32 *p = &c.param[0].mnem;
6814 
6815 	if (nparams > 7)
6816 		return -EINVAL;
6817 
6818 	memset(&c, 0, sizeof(c));
6819 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
6820 				  F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
6821 				  V_FW_PARAMS_CMD_PFN(pf) |
6822 				  V_FW_PARAMS_CMD_VFN(vf));
6823 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6824 
6825 	while (nparams--) {
6826 		*p++ = cpu_to_be32(*params++);
6827 		*p++ = cpu_to_be32(*val++);
6828 	}
6829 
6830 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
6831 }
6832 
6833 /**
6834  *	t4_set_params - sets FW or device parameters
6835  *	@adap: the adapter
6836  *	@mbox: mailbox to use for the FW command
6837  *	@pf: the PF
6838  *	@vf: the VF
6839  *	@nparams: the number of parameters
6840  *	@params: the parameter names
6841  *	@val: the parameter values
6842  *
6843  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
6844  *	specified at once.
6845  */
6846 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6847 		  unsigned int vf, unsigned int nparams, const u32 *params,
6848 		  const u32 *val)
6849 {
6850 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
6851 				     FW_CMD_MAX_TIMEOUT);
6852 }
6853 
6854 /**
6855  *	t4_cfg_pfvf - configure PF/VF resource limits
6856  *	@adap: the adapter
6857  *	@mbox: mailbox to use for the FW command
6858  *	@pf: the PF being configured
6859  *	@vf: the VF being configured
6860  *	@txq: the max number of egress queues
6861  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
6862  *	@rxqi: the max number of interrupt-capable ingress queues
6863  *	@rxq: the max number of interruptless ingress queues
6864  *	@tc: the PCI traffic class
6865  *	@vi: the max number of virtual interfaces
6866  *	@cmask: the channel access rights mask for the PF/VF
6867  *	@pmask: the port access rights mask for the PF/VF
6868  *	@nexact: the maximum number of exact MPS filters
6869  *	@rcaps: read capabilities
6870  *	@wxcaps: write/execute capabilities
6871  *
6872  *	Configures resource limits and capabilities for a physical or virtual
6873  *	function.
6874  */
6875 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
6876 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
6877 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
6878 		unsigned int vi, unsigned int cmask, unsigned int pmask,
6879 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
6880 {
6881 	struct fw_pfvf_cmd c;
6882 
6883 	memset(&c, 0, sizeof(c));
6884 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
6885 				  F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
6886 				  V_FW_PFVF_CMD_VFN(vf));
6887 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6888 	c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
6889 				     V_FW_PFVF_CMD_NIQ(rxq));
6890 	c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) |
6891 				    V_FW_PFVF_CMD_PMASK(pmask) |
6892 				    V_FW_PFVF_CMD_NEQ(txq));
6893 	c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) |
6894 				      V_FW_PFVF_CMD_NVI(vi) |
6895 				      V_FW_PFVF_CMD_NEXACTF(nexact));
6896 	c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) |
6897 				     V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
6898 				     V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
6899 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6900 }
6901 
6902 /**
6903  *	t4_alloc_vi_func - allocate a virtual interface
6904  *	@adap: the adapter
6905  *	@mbox: mailbox to use for the FW command
6906  *	@port: physical port associated with the VI
6907  *	@pf: the PF owning the VI
6908  *	@vf: the VF owning the VI
6909  *	@nmac: number of MAC addresses needed (1 to 5)
6910  *	@mac: the MAC addresses of the VI
6911  *	@rss_size: size of RSS table slice associated with this VI
6912  *	@portfunc: which Port Application Function MAC Address is desired
6913  *	@idstype: Intrusion Detection Type
6914  *
6915  *	Allocates a virtual interface for the given physical port.  If @mac is
6916  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
6917  *	If @rss_size is %NULL the VI is not assigned any RSS slice by FW.
6918  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
6919  *	stored consecutively so the space needed is @nmac * 6 bytes.
6920  *	Returns a negative error number or the non-negative VI id.
6921  */
6922 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
6923 		     unsigned int port, unsigned int pf, unsigned int vf,
6924 		     unsigned int nmac, u8 *mac, u16 *rss_size,
6925 		     unsigned int portfunc, unsigned int idstype)
6926 {
6927 	int ret;
6928 	struct fw_vi_cmd c;
6929 
6930 	memset(&c, 0, sizeof(c));
6931 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
6932 				  F_FW_CMD_WRITE | F_FW_CMD_EXEC |
6933 				  V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
6934 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
6935 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
6936 				     V_FW_VI_CMD_FUNC(portfunc));
6937 	c.portid_pkd = V_FW_VI_CMD_PORTID(port);
6938 	c.nmac = nmac - 1;
6939 	if(!rss_size)
6940 		c.norss_rsssize = F_FW_VI_CMD_NORSS;
6941 
6942 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6943 	if (ret)
6944 		return ret;
6945 
6946 	if (mac) {
6947 		memcpy(mac, c.mac, sizeof(c.mac));
6948 		switch (nmac) {
6949 		case 5:
6950 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
6951 		case 4:
6952 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
6953 		case 3:
6954 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
6955 		case 2:
6956 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
6957 		}
6958 	}
6959 	if (rss_size)
6960 		*rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
6961 	return G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid));
6962 }
6963 
6964 /**
6965  *      t4_alloc_vi - allocate an [Ethernet Function] virtual interface
6966  *      @adap: the adapter
6967  *      @mbox: mailbox to use for the FW command
6968  *      @port: physical port associated with the VI
6969  *      @pf: the PF owning the VI
6970  *      @vf: the VF owning the VI
6971  *      @nmac: number of MAC addresses needed (1 to 5)
6972  *      @mac: the MAC addresses of the VI
6973  *      @rss_size: size of RSS table slice associated with this VI
6974  *
6975  *	backwards compatible and convieniance routine to allocate a Virtual
6976  *	Interface with a Ethernet Port Application Function and Intrustion
6977  *	Detection System disabled.
6978  */
6979 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
6980 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
6981 		u16 *rss_size)
6982 {
6983 	return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
6984 				FW_VI_FUNC_ETH, 0);
6985 }
6986 
6987 /**
6988  * 	t4_free_vi - free a virtual interface
6989  * 	@adap: the adapter
6990  * 	@mbox: mailbox to use for the FW command
6991  * 	@pf: the PF owning the VI
6992  * 	@vf: the VF owning the VI
6993  * 	@viid: virtual interface identifiler
6994  *
6995  * 	Free a previously allocated virtual interface.
6996  */
6997 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
6998 	       unsigned int vf, unsigned int viid)
6999 {
7000 	struct fw_vi_cmd c;
7001 
7002 	memset(&c, 0, sizeof(c));
7003 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
7004 				  F_FW_CMD_REQUEST |
7005 				  F_FW_CMD_EXEC |
7006 				  V_FW_VI_CMD_PFN(pf) |
7007 				  V_FW_VI_CMD_VFN(vf));
7008 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
7009 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
7010 
7011 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7012 }
7013 
7014 /**
7015  *	t4_set_rxmode - set Rx properties of a virtual interface
7016  *	@adap: the adapter
7017  *	@mbox: mailbox to use for the FW command
7018  *	@viid: the VI id
7019  *	@mtu: the new MTU or -1
7020  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7021  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7022  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7023  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7024  *	@sleep_ok: if true we may sleep while awaiting command completion
7025  *
7026  *	Sets Rx properties of a virtual interface.
7027  */
7028 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7029 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
7030 		  bool sleep_ok)
7031 {
7032 	struct fw_vi_rxmode_cmd c;
7033 
7034 	/* convert to FW values */
7035 	if (mtu < 0)
7036 		mtu = M_FW_VI_RXMODE_CMD_MTU;
7037 	if (promisc < 0)
7038 		promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
7039 	if (all_multi < 0)
7040 		all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
7041 	if (bcast < 0)
7042 		bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
7043 	if (vlanex < 0)
7044 		vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
7045 
7046 	memset(&c, 0, sizeof(c));
7047 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
7048 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7049 				   V_FW_VI_RXMODE_CMD_VIID(viid));
7050 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7051 	c.mtu_to_vlanexen =
7052 		cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
7053 			    V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
7054 			    V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
7055 			    V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
7056 			    V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
7057 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7058 }
7059 
7060 /**
7061  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7062  *	@adap: the adapter
7063  *	@mbox: mailbox to use for the FW command
7064  *	@viid: the VI id
7065  *	@free: if true any existing filters for this VI id are first removed
7066  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7067  *	@addr: the MAC address(es)
7068  *	@idx: where to store the index of each allocated filter
7069  *	@hash: pointer to hash address filter bitmap
7070  *	@sleep_ok: call is allowed to sleep
7071  *
7072  *	Allocates an exact-match filter for each of the supplied addresses and
7073  *	sets it to the corresponding address.  If @idx is not %NULL it should
7074  *	have at least @naddr entries, each of which will be set to the index of
7075  *	the filter allocated for the corresponding MAC address.  If a filter
7076  *	could not be allocated for an address its index is set to 0xffff.
7077  *	If @hash is not %NULL addresses that fail to allocate an exact filter
7078  *	are hashed and update the hash filter bitmap pointed at by @hash.
7079  *
7080  *	Returns a negative error number or the number of filters allocated.
7081  */
7082 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7083 		      unsigned int viid, bool free, unsigned int naddr,
7084 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7085 {
7086 	int offset, ret = 0;
7087 	struct fw_vi_mac_cmd c;
7088 	unsigned int nfilters = 0;
7089 	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
7090 	unsigned int rem = naddr;
7091 
7092 	if (naddr > max_naddr)
7093 		return -EINVAL;
7094 
7095 	for (offset = 0; offset < naddr ; /**/) {
7096 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
7097 					 ? rem
7098 					 : ARRAY_SIZE(c.u.exact));
7099 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7100 						     u.exact[fw_naddr]), 16);
7101 		struct fw_vi_mac_exact *p;
7102 		int i;
7103 
7104 		memset(&c, 0, sizeof(c));
7105 		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7106 					   F_FW_CMD_REQUEST |
7107 					   F_FW_CMD_WRITE |
7108 					   V_FW_CMD_EXEC(free) |
7109 					   V_FW_VI_MAC_CMD_VIID(viid));
7110 		c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) |
7111 						  V_FW_CMD_LEN16(len16));
7112 
7113 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7114 			p->valid_to_idx =
7115 				cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
7116 					    V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
7117 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
7118 		}
7119 
7120 		/*
7121 		 * It's okay if we run out of space in our MAC address arena.
7122 		 * Some of the addresses we submit may get stored so we need
7123 		 * to run through the reply to see what the results were ...
7124 		 */
7125 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7126 		if (ret && ret != -FW_ENOMEM)
7127 			break;
7128 
7129 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7130 			u16 index = G_FW_VI_MAC_CMD_IDX(
7131 						be16_to_cpu(p->valid_to_idx));
7132 
7133 			if (idx)
7134 				idx[offset+i] = (index >=  max_naddr
7135 						 ? 0xffff
7136 						 : index);
7137 			if (index < max_naddr)
7138 				nfilters++;
7139 			else if (hash)
7140 				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
7141 		}
7142 
7143 		free = false;
7144 		offset += fw_naddr;
7145 		rem -= fw_naddr;
7146 	}
7147 
7148 	if (ret == 0 || ret == -FW_ENOMEM)
7149 		ret = nfilters;
7150 	return ret;
7151 }
7152 
7153 /**
7154  *	t4_change_mac - modifies the exact-match filter for a MAC address
7155  *	@adap: the adapter
7156  *	@mbox: mailbox to use for the FW command
7157  *	@viid: the VI id
7158  *	@idx: index of existing filter for old value of MAC address, or -1
7159  *	@addr: the new MAC address value
7160  *	@persist: whether a new MAC allocation should be persistent
7161  *	@add_smt: if true also add the address to the HW SMT
7162  *
7163  *	Modifies an exact-match filter and sets it to the new MAC address if
7164  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
7165  *	latter case the address is added persistently if @persist is %true.
7166  *
7167  *	Note that in general it is not possible to modify the value of a given
7168  *	filter so the generic way to modify an address filter is to free the one
7169  *	being used by the old address value and allocate a new filter for the
7170  *	new address value.
7171  *
7172  *	Returns a negative error number or the index of the filter with the new
7173  *	MAC value.  Note that this index may differ from @idx.
7174  */
7175 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
7176 		  int idx, const u8 *addr, bool persist, bool add_smt)
7177 {
7178 	int ret, mode;
7179 	struct fw_vi_mac_cmd c;
7180 	struct fw_vi_mac_exact *p = c.u.exact;
7181 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
7182 
7183 	if (idx < 0)		/* new allocation */
7184 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
7185 	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
7186 
7187 	memset(&c, 0, sizeof(c));
7188 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7189 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7190 				   V_FW_VI_MAC_CMD_VIID(viid));
7191 	c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
7192 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
7193 				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
7194 				      V_FW_VI_MAC_CMD_IDX(idx));
7195 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7196 
7197 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7198 	if (ret == 0) {
7199 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
7200 		if (ret >= max_mac_addr)
7201 			ret = -ENOMEM;
7202 	}
7203 	return ret;
7204 }
7205 
7206 /**
7207  *	t4_set_addr_hash - program the MAC inexact-match hash filter
7208  *	@adap: the adapter
7209  *	@mbox: mailbox to use for the FW command
7210  *	@viid: the VI id
7211  *	@ucast: whether the hash filter should also match unicast addresses
7212  *	@vec: the value to be written to the hash filter
7213  *	@sleep_ok: call is allowed to sleep
7214  *
7215  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
7216  */
7217 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
7218 		     bool ucast, u64 vec, bool sleep_ok)
7219 {
7220 	struct fw_vi_mac_cmd c;
7221 	u32 val;
7222 
7223 	memset(&c, 0, sizeof(c));
7224 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7225 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7226 				   V_FW_VI_ENABLE_CMD_VIID(viid));
7227 	val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) |
7228 	      V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1);
7229 	c.freemacs_to_len16 = cpu_to_be32(val);
7230 	c.u.hash.hashvec = cpu_to_be64(vec);
7231 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7232 }
7233 
7234 /**
7235  *      t4_enable_vi_params - enable/disable a virtual interface
7236  *      @adap: the adapter
7237  *      @mbox: mailbox to use for the FW command
7238  *      @viid: the VI id
7239  *      @rx_en: 1=enable Rx, 0=disable Rx
7240  *      @tx_en: 1=enable Tx, 0=disable Tx
7241  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
7242  *
7243  *      Enables/disables a virtual interface.  Note that setting DCB Enable
7244  *      only makes sense when enabling a Virtual Interface ...
7245  */
7246 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
7247 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
7248 {
7249 	struct fw_vi_enable_cmd c;
7250 
7251 	memset(&c, 0, sizeof(c));
7252 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
7253 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7254 				   V_FW_VI_ENABLE_CMD_VIID(viid));
7255 	c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
7256 				     V_FW_VI_ENABLE_CMD_EEN(tx_en) |
7257 				     V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
7258 				     FW_LEN16(c));
7259 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
7260 }
7261 
7262 /**
7263  *	t4_enable_vi - enable/disable a virtual interface
7264  *	@adap: the adapter
7265  *	@mbox: mailbox to use for the FW command
7266  *	@viid: the VI id
7267  *	@rx_en: 1=enable Rx, 0=disable Rx
7268  *	@tx_en: 1=enable Tx, 0=disable Tx
7269  *
7270  *	Enables/disables a virtual interface.  Note that setting DCB Enable
7271  *	only makes sense when enabling a Virtual Interface ...
7272  */
7273 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
7274 		 bool rx_en, bool tx_en)
7275 {
7276 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
7277 }
7278 
7279 /**
7280  *	t4_identify_port - identify a VI's port by blinking its LED
7281  *	@adap: the adapter
7282  *	@mbox: mailbox to use for the FW command
7283  *	@viid: the VI id
7284  *	@nblinks: how many times to blink LED at 2.5 Hz
7285  *
7286  *	Identifies a VI's port by blinking its LED.
7287  */
7288 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
7289 		     unsigned int nblinks)
7290 {
7291 	struct fw_vi_enable_cmd c;
7292 
7293 	memset(&c, 0, sizeof(c));
7294 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
7295 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7296 				   V_FW_VI_ENABLE_CMD_VIID(viid));
7297 	c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
7298 	c.blinkdur = cpu_to_be16(nblinks);
7299 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7300 }
7301 
7302 /**
7303  *	t4_iq_stop - stop an ingress queue and its FLs
7304  *	@adap: the adapter
7305  *	@mbox: mailbox to use for the FW command
7306  *	@pf: the PF owning the queues
7307  *	@vf: the VF owning the queues
7308  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7309  *	@iqid: ingress queue id
7310  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7311  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7312  *
7313  *	Stops an ingress queue and its associated FLs, if any.  This causes
7314  *	any current or future data/messages destined for these queues to be
7315  *	tossed.
7316  */
7317 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
7318 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7319 	       unsigned int fl0id, unsigned int fl1id)
7320 {
7321 	struct fw_iq_cmd c;
7322 
7323 	memset(&c, 0, sizeof(c));
7324 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
7325 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
7326 				  V_FW_IQ_CMD_VFN(vf));
7327 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c));
7328 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
7329 	c.iqid = cpu_to_be16(iqid);
7330 	c.fl0id = cpu_to_be16(fl0id);
7331 	c.fl1id = cpu_to_be16(fl1id);
7332 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7333 }
7334 
7335 /**
7336  *	t4_iq_free - free an ingress queue and its FLs
7337  *	@adap: the adapter
7338  *	@mbox: mailbox to use for the FW command
7339  *	@pf: the PF owning the queues
7340  *	@vf: the VF owning the queues
7341  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7342  *	@iqid: ingress queue id
7343  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7344  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7345  *
7346  *	Frees an ingress queue and its associated FLs, if any.
7347  */
7348 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7349 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7350 	       unsigned int fl0id, unsigned int fl1id)
7351 {
7352 	struct fw_iq_cmd c;
7353 
7354 	memset(&c, 0, sizeof(c));
7355 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
7356 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
7357 				  V_FW_IQ_CMD_VFN(vf));
7358 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
7359 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
7360 	c.iqid = cpu_to_be16(iqid);
7361 	c.fl0id = cpu_to_be16(fl0id);
7362 	c.fl1id = cpu_to_be16(fl1id);
7363 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7364 }
7365 
7366 /**
7367  *	t4_eth_eq_free - free an Ethernet egress queue
7368  *	@adap: the adapter
7369  *	@mbox: mailbox to use for the FW command
7370  *	@pf: the PF owning the queue
7371  *	@vf: the VF owning the queue
7372  *	@eqid: egress queue id
7373  *
7374  *	Frees an Ethernet egress queue.
7375  */
7376 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7377 		   unsigned int vf, unsigned int eqid)
7378 {
7379 	struct fw_eq_eth_cmd c;
7380 
7381 	memset(&c, 0, sizeof(c));
7382 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
7383 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7384 				  V_FW_EQ_ETH_CMD_PFN(pf) |
7385 				  V_FW_EQ_ETH_CMD_VFN(vf));
7386 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
7387 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
7388 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7389 }
7390 
7391 /**
7392  *	t4_ctrl_eq_free - free a control egress queue
7393  *	@adap: the adapter
7394  *	@mbox: mailbox to use for the FW command
7395  *	@pf: the PF owning the queue
7396  *	@vf: the VF owning the queue
7397  *	@eqid: egress queue id
7398  *
7399  *	Frees a control egress queue.
7400  */
7401 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7402 		    unsigned int vf, unsigned int eqid)
7403 {
7404 	struct fw_eq_ctrl_cmd c;
7405 
7406 	memset(&c, 0, sizeof(c));
7407 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
7408 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7409 				  V_FW_EQ_CTRL_CMD_PFN(pf) |
7410 				  V_FW_EQ_CTRL_CMD_VFN(vf));
7411 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
7412 	c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
7413 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7414 }
7415 
7416 /**
7417  *	t4_ofld_eq_free - free an offload egress queue
7418  *	@adap: the adapter
7419  *	@mbox: mailbox to use for the FW command
7420  *	@pf: the PF owning the queue
7421  *	@vf: the VF owning the queue
7422  *	@eqid: egress queue id
7423  *
7424  *	Frees a control egress queue.
7425  */
7426 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7427 		    unsigned int vf, unsigned int eqid)
7428 {
7429 	struct fw_eq_ofld_cmd c;
7430 
7431 	memset(&c, 0, sizeof(c));
7432 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) |
7433 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7434 				  V_FW_EQ_OFLD_CMD_PFN(pf) |
7435 				  V_FW_EQ_OFLD_CMD_VFN(vf));
7436 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
7437 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid));
7438 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7439 }
7440 
7441 /**
7442  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
7443  *	@link_down_rc: Link Down Reason Code
7444  *
7445  *	Returns a string representation of the Link Down Reason Code.
7446  */
7447 const char *t4_link_down_rc_str(unsigned char link_down_rc)
7448 {
7449 	static const char *reason[] = {
7450 		"Link Down",
7451 		"Remote Fault",
7452 		"Auto-negotiation Failure",
7453 		"Reserved3",
7454 		"Insufficient Airflow",
7455 		"Unable To Determine Reason",
7456 		"No RX Signal Detected",
7457 		"Reserved7",
7458 	};
7459 
7460 	if (link_down_rc >= ARRAY_SIZE(reason))
7461 		return "Bad Reason Code";
7462 
7463 	return reason[link_down_rc];
7464 }
7465 
7466 /**
7467  *	t4_handle_fw_rpl - process a FW reply message
7468  *	@adap: the adapter
7469  *	@rpl: start of the FW message
7470  *
7471  *	Processes a FW message, such as link state change messages.
7472  */
7473 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
7474 {
7475 	u8 opcode = *(const u8 *)rpl;
7476 	const struct fw_port_cmd *p = (const void *)rpl;
7477 	unsigned int action =
7478 			G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
7479 
7480 	if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO) {
7481 		/* link/module state change message */
7482 		int speed = 0, fc = 0, i;
7483 		int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
7484 		struct port_info *pi = NULL;
7485 		struct link_config *lc;
7486 		u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
7487 		int link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
7488 		u32 mod = G_FW_PORT_CMD_MODTYPE(stat);
7489 
7490 		if (stat & F_FW_PORT_CMD_RXPAUSE)
7491 			fc |= PAUSE_RX;
7492 		if (stat & F_FW_PORT_CMD_TXPAUSE)
7493 			fc |= PAUSE_TX;
7494 		if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
7495 			speed = 100;
7496 		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
7497 			speed = 1000;
7498 		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
7499 			speed = 10000;
7500 		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G))
7501 			speed = 25000;
7502 		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
7503 			speed = 40000;
7504 		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G))
7505 			speed = 100000;
7506 
7507 		for_each_port(adap, i) {
7508 			pi = adap2pinfo(adap, i);
7509 			if (pi->tx_chan == chan)
7510 				break;
7511 		}
7512 		lc = &pi->link_cfg;
7513 
7514 		if (mod != pi->mod_type) {
7515 			pi->mod_type = mod;
7516 			t4_os_portmod_changed(adap, i);
7517 		}
7518 		if (link_ok != lc->link_ok || speed != lc->speed ||
7519 		    fc != lc->fc) {                    /* something changed */
7520 			int reason;
7521 
7522 			if (!link_ok && lc->link_ok)
7523 				reason = G_FW_PORT_CMD_LINKDNRC(stat);
7524 			else
7525 				reason = -1;
7526 
7527 			lc->link_ok = link_ok;
7528 			lc->speed = speed;
7529 			lc->fc = fc;
7530 			lc->supported = be16_to_cpu(p->u.info.pcap);
7531 			t4_os_link_changed(adap, i, link_ok, reason);
7532 		}
7533 	} else {
7534 		CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode);
7535 		return -EINVAL;
7536 	}
7537 	return 0;
7538 }
7539 
7540 /**
7541  *	get_pci_mode - determine a card's PCI mode
7542  *	@adapter: the adapter
7543  *	@p: where to store the PCI settings
7544  *
7545  *	Determines a card's PCI mode and associated parameters, such as speed
7546  *	and width.
7547  */
7548 static void get_pci_mode(struct adapter *adapter,
7549 				   struct pci_params *p)
7550 {
7551 	u16 val;
7552 	u32 pcie_cap;
7553 
7554 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
7555 	if (pcie_cap) {
7556 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
7557 		p->speed = val & PCI_EXP_LNKSTA_CLS;
7558 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
7559 	}
7560 }
7561 
7562 /**
7563  *	init_link_config - initialize a link's SW state
7564  *	@lc: structure holding the link state
7565  *	@caps: link capabilities
7566  *
7567  *	Initializes the SW state maintained for each link, including the link's
7568  *	capabilities and default speed/flow-control/autonegotiation settings.
7569  */
7570 static void init_link_config(struct link_config *lc, unsigned int caps)
7571 {
7572 	lc->supported = caps;
7573 	lc->requested_speed = 0;
7574 	lc->speed = 0;
7575 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
7576 	if (lc->supported & FW_PORT_CAP_ANEG) {
7577 		lc->advertising = lc->supported & ADVERT_MASK;
7578 		lc->autoneg = AUTONEG_ENABLE;
7579 		lc->requested_fc |= PAUSE_AUTONEG;
7580 	} else {
7581 		lc->advertising = 0;
7582 		lc->autoneg = AUTONEG_DISABLE;
7583 	}
7584 }
7585 
7586 struct flash_desc {
7587 	u32 vendor_and_model_id;
7588 	u32 size_mb;
7589 };
7590 
7591 int t4_get_flash_params(struct adapter *adapter)
7592 {
7593 	/*
7594 	 * Table for non-Numonix supported flash parts.  Numonix parts are left
7595 	 * to the preexisting well-tested code.  All flash parts have 64KB
7596 	 * sectors.
7597 	 */
7598 	static struct flash_desc supported_flash[] = {
7599 		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
7600 	};
7601 
7602 	int ret;
7603 	u32 info = 0;
7604 
7605 	ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
7606 	if (!ret)
7607 		ret = sf1_read(adapter, 3, 0, 1, &info);
7608 	t4_write_reg(adapter, A_SF_OP, 0);	/* unlock SF */
7609 	if (ret < 0)
7610 		return ret;
7611 
7612 	for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
7613 		if (supported_flash[ret].vendor_and_model_id == info) {
7614 			adapter->params.sf_size = supported_flash[ret].size_mb;
7615 			adapter->params.sf_nsec =
7616 				adapter->params.sf_size / SF_SEC_SIZE;
7617 			return 0;
7618 		}
7619 
7620 	if ((info & 0xff) != 0x20)		/* not a Numonix flash */
7621 		return -EINVAL;
7622 	info >>= 16;				/* log2 of size */
7623 	if (info >= 0x14 && info < 0x18)
7624 		adapter->params.sf_nsec = 1 << (info - 16);
7625 	else if (info == 0x18)
7626 		adapter->params.sf_nsec = 64;
7627 	else
7628 		return -EINVAL;
7629 	adapter->params.sf_size = 1 << info;
7630 
7631 	/*
7632 	 * We should ~probably~ reject adapters with FLASHes which are too
7633 	 * small but we have some legacy FPGAs with small FLASHes that we'd
7634 	 * still like to use.  So instead we emit a scary message ...
7635 	 */
7636 	if (adapter->params.sf_size < FLASH_MIN_SIZE)
7637 		CH_WARN(adapter, "WARNING!!! FLASH size %#x < %#x!!!\n",
7638 			adapter->params.sf_size, FLASH_MIN_SIZE);
7639 
7640 	return 0;
7641 }
7642 
7643 static void set_pcie_completion_timeout(struct adapter *adapter,
7644 						  u8 range)
7645 {
7646 	u16 val;
7647 	u32 pcie_cap;
7648 
7649 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
7650 	if (pcie_cap) {
7651 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
7652 		val &= 0xfff0;
7653 		val |= range ;
7654 		t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
7655 	}
7656 }
7657 
7658 const struct chip_params *t4_get_chip_params(int chipid)
7659 {
7660 	static const struct chip_params chip_params[] = {
7661 		{
7662 			/* T4 */
7663 			.nchan = NCHAN,
7664 			.pm_stats_cnt = PM_NSTATS,
7665 			.cng_ch_bits_log = 2,
7666 			.nsched_cls = 15,
7667 			.cim_num_obq = CIM_NUM_OBQ,
7668 			.mps_rplc_size = 128,
7669 			.vfcount = 128,
7670 			.sge_fl_db = F_DBPRIO,
7671 			.mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES,
7672 		},
7673 		{
7674 			/* T5 */
7675 			.nchan = NCHAN,
7676 			.pm_stats_cnt = PM_NSTATS,
7677 			.cng_ch_bits_log = 2,
7678 			.nsched_cls = 16,
7679 			.cim_num_obq = CIM_NUM_OBQ_T5,
7680 			.mps_rplc_size = 128,
7681 			.vfcount = 128,
7682 			.sge_fl_db = F_DBPRIO | F_DBTYPE,
7683 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
7684 		},
7685 		{
7686 			/* T6 */
7687 			.nchan = T6_NCHAN,
7688 			.pm_stats_cnt = T6_PM_NSTATS,
7689 			.cng_ch_bits_log = 3,
7690 			.nsched_cls = 16,
7691 			.cim_num_obq = CIM_NUM_OBQ_T5,
7692 			.mps_rplc_size = 256,
7693 			.vfcount = 256,
7694 			.sge_fl_db = 0,
7695 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
7696 		},
7697 	};
7698 
7699 	chipid -= CHELSIO_T4;
7700 	if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params))
7701 		return NULL;
7702 
7703 	return &chip_params[chipid];
7704 }
7705 
7706 /**
7707  *	t4_prep_adapter - prepare SW and HW for operation
7708  *	@adapter: the adapter
7709  *	@buf: temporary space of at least VPD_LEN size provided by the caller.
7710  *
7711  *	Initialize adapter SW state for the various HW modules, set initial
7712  *	values for some adapter tunables, take PHYs out of reset, and
7713  *	initialize the MDIO interface.
7714  */
7715 int t4_prep_adapter(struct adapter *adapter, u8 *buf)
7716 {
7717 	int ret;
7718 	uint16_t device_id;
7719 	uint32_t pl_rev;
7720 
7721 	get_pci_mode(adapter, &adapter->params.pci);
7722 
7723 	pl_rev = t4_read_reg(adapter, A_PL_REV);
7724 	adapter->params.chipid = G_CHIPID(pl_rev);
7725 	adapter->params.rev = G_REV(pl_rev);
7726 	if (adapter->params.chipid == 0) {
7727 		/* T4 did not have chipid in PL_REV (T5 onwards do) */
7728 		adapter->params.chipid = CHELSIO_T4;
7729 
7730 		/* T4A1 chip is not supported */
7731 		if (adapter->params.rev == 1) {
7732 			CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
7733 			return -EINVAL;
7734 		}
7735 	}
7736 
7737 	adapter->chip_params = t4_get_chip_params(chip_id(adapter));
7738 	if (adapter->chip_params == NULL)
7739 		return -EINVAL;
7740 
7741 	adapter->params.pci.vpd_cap_addr =
7742 	    t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
7743 
7744 	ret = t4_get_flash_params(adapter);
7745 	if (ret < 0)
7746 		return ret;
7747 
7748 	ret = get_vpd_params(adapter, &adapter->params.vpd, buf);
7749 	if (ret < 0)
7750 		return ret;
7751 
7752 	/* Cards with real ASICs have the chipid in the PCIe device id */
7753 	t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
7754 	if (device_id >> 12 == chip_id(adapter))
7755 		adapter->params.cim_la_size = CIMLA_SIZE;
7756 	else {
7757 		/* FPGA */
7758 		adapter->params.fpga = 1;
7759 		adapter->params.cim_la_size = 2 * CIMLA_SIZE;
7760 	}
7761 
7762 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
7763 
7764 	/*
7765 	 * Default port and clock for debugging in case we can't reach FW.
7766 	 */
7767 	adapter->params.nports = 1;
7768 	adapter->params.portvec = 1;
7769 	adapter->params.vpd.cclk = 50000;
7770 
7771 	/* Set pci completion timeout value to 4 seconds. */
7772 	set_pcie_completion_timeout(adapter, 0xd);
7773 	return 0;
7774 }
7775 
7776 /**
7777  *	t4_shutdown_adapter - shut down adapter, host & wire
7778  *	@adapter: the adapter
7779  *
7780  *	Perform an emergency shutdown of the adapter and stop it from
7781  *	continuing any further communication on the ports or DMA to the
7782  *	host.  This is typically used when the adapter and/or firmware
7783  *	have crashed and we want to prevent any further accidental
7784  *	communication with the rest of the world.  This will also force
7785  *	the port Link Status to go down -- if register writes work --
7786  *	which should help our peers figure out that we're down.
7787  */
7788 int t4_shutdown_adapter(struct adapter *adapter)
7789 {
7790 	int port;
7791 
7792 	t4_intr_disable(adapter);
7793 	t4_write_reg(adapter, A_DBG_GPIO_EN, 0);
7794 	for_each_port(adapter, port) {
7795 		u32 a_port_cfg = PORT_REG(port,
7796 					  is_t4(adapter)
7797 					  ? A_XGMAC_PORT_CFG
7798 					  : A_MAC_PORT_CFG);
7799 
7800 		t4_write_reg(adapter, a_port_cfg,
7801 			     t4_read_reg(adapter, a_port_cfg)
7802 			     & ~V_SIGNAL_DET(1));
7803 	}
7804 	t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0);
7805 
7806 	return 0;
7807 }
7808 
7809 /**
7810  *	t4_init_devlog_params - initialize adapter->params.devlog
7811  *	@adap: the adapter
7812  *	@fw_attach: whether we can talk to the firmware
7813  *
7814  *	Initialize various fields of the adapter's Firmware Device Log
7815  *	Parameters structure.
7816  */
7817 int t4_init_devlog_params(struct adapter *adap, int fw_attach)
7818 {
7819 	struct devlog_params *dparams = &adap->params.devlog;
7820 	u32 pf_dparams;
7821 	unsigned int devlog_meminfo;
7822 	struct fw_devlog_cmd devlog_cmd;
7823 	int ret;
7824 
7825 	/* If we're dealing with newer firmware, the Device Log Paramerters
7826 	 * are stored in a designated register which allows us to access the
7827 	 * Device Log even if we can't talk to the firmware.
7828 	 */
7829 	pf_dparams =
7830 		t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG));
7831 	if (pf_dparams) {
7832 		unsigned int nentries, nentries128;
7833 
7834 		dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams);
7835 		dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4;
7836 
7837 		nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams);
7838 		nentries = (nentries128 + 1) * 128;
7839 		dparams->size = nentries * sizeof(struct fw_devlog_e);
7840 
7841 		return 0;
7842 	}
7843 
7844 	/*
7845 	 * For any failing returns ...
7846 	 */
7847 	memset(dparams, 0, sizeof *dparams);
7848 
7849 	/*
7850 	 * If we can't talk to the firmware, there's really nothing we can do
7851 	 * at this point.
7852 	 */
7853 	if (!fw_attach)
7854 		return -ENXIO;
7855 
7856 	/* Otherwise, ask the firmware for it's Device Log Parameters.
7857 	 */
7858 	memset(&devlog_cmd, 0, sizeof devlog_cmd);
7859 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
7860 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
7861 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
7862 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
7863 			 &devlog_cmd);
7864 	if (ret)
7865 		return ret;
7866 
7867 	devlog_meminfo =
7868 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
7869 	dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo);
7870 	dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4;
7871 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
7872 
7873 	return 0;
7874 }
7875 
7876 /**
7877  *	t4_init_sge_params - initialize adap->params.sge
7878  *	@adapter: the adapter
7879  *
7880  *	Initialize various fields of the adapter's SGE Parameters structure.
7881  */
7882 int t4_init_sge_params(struct adapter *adapter)
7883 {
7884 	u32 r;
7885 	struct sge_params *sp = &adapter->params.sge;
7886 	unsigned i;
7887 
7888 	r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD);
7889 	sp->counter_val[0] = G_THRESHOLD_0(r);
7890 	sp->counter_val[1] = G_THRESHOLD_1(r);
7891 	sp->counter_val[2] = G_THRESHOLD_2(r);
7892 	sp->counter_val[3] = G_THRESHOLD_3(r);
7893 
7894 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1);
7895 	sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r));
7896 	sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r));
7897 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3);
7898 	sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r));
7899 	sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r));
7900 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5);
7901 	sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r));
7902 	sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r));
7903 
7904 	r = t4_read_reg(adapter, A_SGE_CONM_CTRL);
7905 	sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
7906 	if (is_t4(adapter))
7907 		sp->fl_starve_threshold2 = sp->fl_starve_threshold;
7908 	else if (is_t5(adapter))
7909 		sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
7910 	else
7911 		sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(r) * 2 + 1;
7912 
7913 	/* egress queues: log2 of # of doorbells per BAR2 page */
7914 	r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
7915 	r >>= S_QUEUESPERPAGEPF0 +
7916 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
7917 	sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
7918 
7919 	/* ingress queues: log2 of # of doorbells per BAR2 page */
7920 	r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
7921 	r >>= S_QUEUESPERPAGEPF0 +
7922 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
7923 	sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
7924 
7925 	r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
7926 	r >>= S_HOSTPAGESIZEPF0 +
7927 	    (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf;
7928 	sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10;
7929 
7930 	r = t4_read_reg(adapter, A_SGE_CONTROL);
7931 	sp->sge_control = r;
7932 	sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64;
7933 	sp->fl_pktshift = G_PKTSHIFT(r);
7934 	if (chip_id(adapter) <= CHELSIO_T5) {
7935 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
7936 		    X_INGPADBOUNDARY_SHIFT);
7937 	} else {
7938 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
7939 		    X_T6_INGPADBOUNDARY_SHIFT);
7940 	}
7941 	if (is_t4(adapter))
7942 		sp->pack_boundary = sp->pad_boundary;
7943 	else {
7944 		r = t4_read_reg(adapter, A_SGE_CONTROL2);
7945 		if (G_INGPACKBOUNDARY(r) == 0)
7946 			sp->pack_boundary = 16;
7947 		else
7948 			sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5);
7949 	}
7950 	for (i = 0; i < SGE_FLBUF_SIZES; i++)
7951 		sp->sge_fl_buffer_size[i] = t4_read_reg(adapter,
7952 		    A_SGE_FL_BUFFER_SIZE0 + (4 * i));
7953 
7954 	return 0;
7955 }
7956 
7957 /*
7958  * Read and cache the adapter's compressed filter mode and ingress config.
7959  */
7960 static void read_filter_mode_and_ingress_config(struct adapter *adap)
7961 {
7962 	struct tp_params *tpp = &adap->params.tp;
7963 
7964 	if (t4_use_ldst(adap)) {
7965 		t4_fw_tp_pio_rw(adap, &tpp->vlan_pri_map, 1,
7966 				A_TP_VLAN_PRI_MAP, 1);
7967 		t4_fw_tp_pio_rw(adap, &tpp->ingress_config, 1,
7968 				A_TP_INGRESS_CONFIG, 1);
7969 	} else {
7970 		t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
7971 				 &tpp->vlan_pri_map, 1, A_TP_VLAN_PRI_MAP);
7972 		t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
7973 				 &tpp->ingress_config, 1, A_TP_INGRESS_CONFIG);
7974 	}
7975 
7976 	/*
7977 	 * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
7978 	 * shift positions of several elements of the Compressed Filter Tuple
7979 	 * for this adapter which we need frequently ...
7980 	 */
7981 	tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE);
7982 	tpp->port_shift = t4_filter_field_shift(adap, F_PORT);
7983 	tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
7984 	tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN);
7985 	tpp->tos_shift = t4_filter_field_shift(adap, F_TOS);
7986 	tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
7987 	tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE);
7988 	tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH);
7989 	tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE);
7990 	tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION);
7991 
7992 	/*
7993 	 * If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
7994 	 * represents the presence of an Outer VLAN instead of a VNIC ID.
7995 	 */
7996 	if ((tpp->ingress_config & F_VNIC) == 0)
7997 		tpp->vnic_shift = -1;
7998 }
7999 
8000 /**
8001  *      t4_init_tp_params - initialize adap->params.tp
8002  *      @adap: the adapter
8003  *
8004  *      Initialize various fields of the adapter's TP Parameters structure.
8005  */
8006 int t4_init_tp_params(struct adapter *adap)
8007 {
8008 	int chan;
8009 	u32 v;
8010 	struct tp_params *tpp = &adap->params.tp;
8011 
8012 	v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
8013 	tpp->tre = G_TIMERRESOLUTION(v);
8014 	tpp->dack_re = G_DELAYEDACKRESOLUTION(v);
8015 
8016 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
8017 	for (chan = 0; chan < MAX_NCHAN; chan++)
8018 		tpp->tx_modq[chan] = chan;
8019 
8020 	read_filter_mode_and_ingress_config(adap);
8021 
8022 	/*
8023 	 * For T6, cache the adapter's compressed error vector
8024 	 * and passing outer header info for encapsulated packets.
8025 	 */
8026 	if (chip_id(adap) > CHELSIO_T5) {
8027 		v = t4_read_reg(adap, A_TP_OUT_CONFIG);
8028 		tpp->rx_pkt_encap = (v & F_CRXPKTENC) ? 1 : 0;
8029 	}
8030 
8031 	return 0;
8032 }
8033 
8034 /**
8035  *      t4_filter_field_shift - calculate filter field shift
8036  *      @adap: the adapter
8037  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
8038  *
8039  *      Return the shift position of a filter field within the Compressed
8040  *      Filter Tuple.  The filter field is specified via its selection bit
8041  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
8042  */
8043 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
8044 {
8045 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
8046 	unsigned int sel;
8047 	int field_shift;
8048 
8049 	if ((filter_mode & filter_sel) == 0)
8050 		return -1;
8051 
8052 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
8053 		switch (filter_mode & sel) {
8054 		case F_FCOE:
8055 			field_shift += W_FT_FCOE;
8056 			break;
8057 		case F_PORT:
8058 			field_shift += W_FT_PORT;
8059 			break;
8060 		case F_VNIC_ID:
8061 			field_shift += W_FT_VNIC_ID;
8062 			break;
8063 		case F_VLAN:
8064 			field_shift += W_FT_VLAN;
8065 			break;
8066 		case F_TOS:
8067 			field_shift += W_FT_TOS;
8068 			break;
8069 		case F_PROTOCOL:
8070 			field_shift += W_FT_PROTOCOL;
8071 			break;
8072 		case F_ETHERTYPE:
8073 			field_shift += W_FT_ETHERTYPE;
8074 			break;
8075 		case F_MACMATCH:
8076 			field_shift += W_FT_MACMATCH;
8077 			break;
8078 		case F_MPSHITTYPE:
8079 			field_shift += W_FT_MPSHITTYPE;
8080 			break;
8081 		case F_FRAGMENTATION:
8082 			field_shift += W_FT_FRAGMENTATION;
8083 			break;
8084 		}
8085 	}
8086 	return field_shift;
8087 }
8088 
8089 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id)
8090 {
8091 	u8 addr[6];
8092 	int ret, i, j;
8093 	struct fw_port_cmd c;
8094 	u16 rss_size;
8095 	struct port_info *p = adap2pinfo(adap, port_id);
8096 	u32 param, val;
8097 
8098 	memset(&c, 0, sizeof(c));
8099 
8100 	for (i = 0, j = -1; i <= p->port_id; i++) {
8101 		do {
8102 			j++;
8103 		} while ((adap->params.portvec & (1 << j)) == 0);
8104 	}
8105 
8106 	if (!(adap->flags & IS_VF) ||
8107 	    adap->params.vfres.r_caps & FW_CMD_CAP_PORT) {
8108 		c.op_to_portid = htonl(V_FW_CMD_OP(FW_PORT_CMD) |
8109 				       F_FW_CMD_REQUEST | F_FW_CMD_READ |
8110 				       V_FW_PORT_CMD_PORTID(j));
8111 		c.action_to_len16 = htonl(
8112 			V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
8113 			FW_LEN16(c));
8114 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8115 		if (ret)
8116 			return ret;
8117 
8118 		ret = be32_to_cpu(c.u.info.lstatus_to_modtype);
8119 		p->mdio_addr = (ret & F_FW_PORT_CMD_MDIOCAP) ?
8120 			G_FW_PORT_CMD_MDIOADDR(ret) : -1;
8121 		p->port_type = G_FW_PORT_CMD_PTYPE(ret);
8122 		p->mod_type = G_FW_PORT_CMD_MODTYPE(ret);
8123 
8124 		init_link_config(&p->link_cfg, be16_to_cpu(c.u.info.pcap));
8125 	}
8126 
8127 	ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
8128 	if (ret < 0)
8129 		return ret;
8130 
8131 	p->vi[0].viid = ret;
8132 	if (chip_id(adap) <= CHELSIO_T5)
8133 		p->vi[0].smt_idx = (ret & 0x7f) << 1;
8134 	else
8135 		p->vi[0].smt_idx = (ret & 0x7f);
8136 	p->tx_chan = j;
8137 	p->rx_chan_map = t4_get_mps_bg_map(adap, j);
8138 	p->lport = j;
8139 	p->vi[0].rss_size = rss_size;
8140 	t4_os_set_hw_addr(adap, p->port_id, addr);
8141 
8142 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8143 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
8144 	    V_FW_PARAMS_PARAM_YZ(p->vi[0].viid);
8145 	ret = t4_query_params(adap, mbox, pf, vf, 1, &param, &val);
8146 	if (ret)
8147 		p->vi[0].rss_base = 0xffff;
8148 	else {
8149 		/* MPASS((val >> 16) == rss_size); */
8150 		p->vi[0].rss_base = val & 0xffff;
8151 	}
8152 
8153 	return 0;
8154 }
8155 
8156 /**
8157  *	t4_read_cimq_cfg - read CIM queue configuration
8158  *	@adap: the adapter
8159  *	@base: holds the queue base addresses in bytes
8160  *	@size: holds the queue sizes in bytes
8161  *	@thres: holds the queue full thresholds in bytes
8162  *
8163  *	Returns the current configuration of the CIM queues, starting with
8164  *	the IBQs, then the OBQs.
8165  */
8166 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
8167 {
8168 	unsigned int i, v;
8169 	int cim_num_obq = adap->chip_params->cim_num_obq;
8170 
8171 	for (i = 0; i < CIM_NUM_IBQ; i++) {
8172 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
8173 			     V_QUENUMSELECT(i));
8174 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8175 		/* value is in 256-byte units */
8176 		*base++ = G_CIMQBASE(v) * 256;
8177 		*size++ = G_CIMQSIZE(v) * 256;
8178 		*thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */
8179 	}
8180 	for (i = 0; i < cim_num_obq; i++) {
8181 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
8182 			     V_QUENUMSELECT(i));
8183 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8184 		/* value is in 256-byte units */
8185 		*base++ = G_CIMQBASE(v) * 256;
8186 		*size++ = G_CIMQSIZE(v) * 256;
8187 	}
8188 }
8189 
8190 /**
8191  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
8192  *	@adap: the adapter
8193  *	@qid: the queue index
8194  *	@data: where to store the queue contents
8195  *	@n: capacity of @data in 32-bit words
8196  *
8197  *	Reads the contents of the selected CIM queue starting at address 0 up
8198  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8199  *	error and the number of 32-bit words actually read on success.
8200  */
8201 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8202 {
8203 	int i, err, attempts;
8204 	unsigned int addr;
8205 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
8206 
8207 	if (qid > 5 || (n & 3))
8208 		return -EINVAL;
8209 
8210 	addr = qid * nwords;
8211 	if (n > nwords)
8212 		n = nwords;
8213 
8214 	/* It might take 3-10ms before the IBQ debug read access is allowed.
8215 	 * Wait for 1 Sec with a delay of 1 usec.
8216 	 */
8217 	attempts = 1000000;
8218 
8219 	for (i = 0; i < n; i++, addr++) {
8220 		t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
8221 			     F_IBQDBGEN);
8222 		err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
8223 				      attempts, 1);
8224 		if (err)
8225 			return err;
8226 		*data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
8227 	}
8228 	t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
8229 	return i;
8230 }
8231 
8232 /**
8233  *	t4_read_cim_obq - read the contents of a CIM outbound queue
8234  *	@adap: the adapter
8235  *	@qid: the queue index
8236  *	@data: where to store the queue contents
8237  *	@n: capacity of @data in 32-bit words
8238  *
8239  *	Reads the contents of the selected CIM queue starting at address 0 up
8240  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8241  *	error and the number of 32-bit words actually read on success.
8242  */
8243 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8244 {
8245 	int i, err;
8246 	unsigned int addr, v, nwords;
8247 	int cim_num_obq = adap->chip_params->cim_num_obq;
8248 
8249 	if ((qid > (cim_num_obq - 1)) || (n & 3))
8250 		return -EINVAL;
8251 
8252 	t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
8253 		     V_QUENUMSELECT(qid));
8254 	v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8255 
8256 	addr = G_CIMQBASE(v) * 64;    /* muliple of 256 -> muliple of 4 */
8257 	nwords = G_CIMQSIZE(v) * 64;  /* same */
8258 	if (n > nwords)
8259 		n = nwords;
8260 
8261 	for (i = 0; i < n; i++, addr++) {
8262 		t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
8263 			     F_OBQDBGEN);
8264 		err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
8265 				      2, 1);
8266 		if (err)
8267 			return err;
8268 		*data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
8269 	}
8270 	t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
8271 	return i;
8272 }
8273 
8274 enum {
8275 	CIM_QCTL_BASE     = 0,
8276 	CIM_CTL_BASE      = 0x2000,
8277 	CIM_PBT_ADDR_BASE = 0x2800,
8278 	CIM_PBT_LRF_BASE  = 0x3000,
8279 	CIM_PBT_DATA_BASE = 0x3800
8280 };
8281 
8282 /**
8283  *	t4_cim_read - read a block from CIM internal address space
8284  *	@adap: the adapter
8285  *	@addr: the start address within the CIM address space
8286  *	@n: number of words to read
8287  *	@valp: where to store the result
8288  *
8289  *	Reads a block of 4-byte words from the CIM intenal address space.
8290  */
8291 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
8292 		unsigned int *valp)
8293 {
8294 	int ret = 0;
8295 
8296 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
8297 		return -EBUSY;
8298 
8299 	for ( ; !ret && n--; addr += 4) {
8300 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
8301 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
8302 				      0, 5, 2);
8303 		if (!ret)
8304 			*valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
8305 	}
8306 	return ret;
8307 }
8308 
8309 /**
8310  *	t4_cim_write - write a block into CIM internal address space
8311  *	@adap: the adapter
8312  *	@addr: the start address within the CIM address space
8313  *	@n: number of words to write
8314  *	@valp: set of values to write
8315  *
8316  *	Writes a block of 4-byte words into the CIM intenal address space.
8317  */
8318 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
8319 		 const unsigned int *valp)
8320 {
8321 	int ret = 0;
8322 
8323 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
8324 		return -EBUSY;
8325 
8326 	for ( ; !ret && n--; addr += 4) {
8327 		t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
8328 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
8329 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
8330 				      0, 5, 2);
8331 	}
8332 	return ret;
8333 }
8334 
8335 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
8336 			 unsigned int val)
8337 {
8338 	return t4_cim_write(adap, addr, 1, &val);
8339 }
8340 
8341 /**
8342  *	t4_cim_ctl_read - read a block from CIM control region
8343  *	@adap: the adapter
8344  *	@addr: the start address within the CIM control region
8345  *	@n: number of words to read
8346  *	@valp: where to store the result
8347  *
8348  *	Reads a block of 4-byte words from the CIM control region.
8349  */
8350 int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
8351 		    unsigned int *valp)
8352 {
8353 	return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
8354 }
8355 
8356 /**
8357  *	t4_cim_read_la - read CIM LA capture buffer
8358  *	@adap: the adapter
8359  *	@la_buf: where to store the LA data
8360  *	@wrptr: the HW write pointer within the capture buffer
8361  *
8362  *	Reads the contents of the CIM LA buffer with the most recent entry at
8363  *	the end	of the returned data and with the entry at @wrptr first.
8364  *	We try to leave the LA in the running state we find it in.
8365  */
8366 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
8367 {
8368 	int i, ret;
8369 	unsigned int cfg, val, idx;
8370 
8371 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
8372 	if (ret)
8373 		return ret;
8374 
8375 	if (cfg & F_UPDBGLAEN) {	/* LA is running, freeze it */
8376 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
8377 		if (ret)
8378 			return ret;
8379 	}
8380 
8381 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
8382 	if (ret)
8383 		goto restart;
8384 
8385 	idx = G_UPDBGLAWRPTR(val);
8386 	if (wrptr)
8387 		*wrptr = idx;
8388 
8389 	for (i = 0; i < adap->params.cim_la_size; i++) {
8390 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
8391 				    V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
8392 		if (ret)
8393 			break;
8394 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
8395 		if (ret)
8396 			break;
8397 		if (val & F_UPDBGLARDEN) {
8398 			ret = -ETIMEDOUT;
8399 			break;
8400 		}
8401 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
8402 		if (ret)
8403 			break;
8404 
8405 		/* address can't exceed 0xfff (UpDbgLaRdPtr is of 12-bits) */
8406 		idx = (idx + 1) & M_UPDBGLARDPTR;
8407 		/*
8408 		 * Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
8409 		 * identify the 32-bit portion of the full 312-bit data
8410 		 */
8411 		if (is_t6(adap))
8412 			while ((idx & 0xf) > 9)
8413 				idx = (idx + 1) % M_UPDBGLARDPTR;
8414 	}
8415 restart:
8416 	if (cfg & F_UPDBGLAEN) {
8417 		int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
8418 				      cfg & ~F_UPDBGLARDEN);
8419 		if (!ret)
8420 			ret = r;
8421 	}
8422 	return ret;
8423 }
8424 
8425 /**
8426  *	t4_tp_read_la - read TP LA capture buffer
8427  *	@adap: the adapter
8428  *	@la_buf: where to store the LA data
8429  *	@wrptr: the HW write pointer within the capture buffer
8430  *
8431  *	Reads the contents of the TP LA buffer with the most recent entry at
8432  *	the end	of the returned data and with the entry at @wrptr first.
8433  *	We leave the LA in the running state we find it in.
8434  */
8435 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
8436 {
8437 	bool last_incomplete;
8438 	unsigned int i, cfg, val, idx;
8439 
8440 	cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
8441 	if (cfg & F_DBGLAENABLE)			/* freeze LA */
8442 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
8443 			     adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
8444 
8445 	val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
8446 	idx = G_DBGLAWPTR(val);
8447 	last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
8448 	if (last_incomplete)
8449 		idx = (idx + 1) & M_DBGLARPTR;
8450 	if (wrptr)
8451 		*wrptr = idx;
8452 
8453 	val &= 0xffff;
8454 	val &= ~V_DBGLARPTR(M_DBGLARPTR);
8455 	val |= adap->params.tp.la_mask;
8456 
8457 	for (i = 0; i < TPLA_SIZE; i++) {
8458 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
8459 		la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
8460 		idx = (idx + 1) & M_DBGLARPTR;
8461 	}
8462 
8463 	/* Wipe out last entry if it isn't valid */
8464 	if (last_incomplete)
8465 		la_buf[TPLA_SIZE - 1] = ~0ULL;
8466 
8467 	if (cfg & F_DBGLAENABLE)		/* restore running state */
8468 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
8469 			     cfg | adap->params.tp.la_mask);
8470 }
8471 
8472 /*
8473  * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
8474  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
8475  * state for more than the Warning Threshold then we'll issue a warning about
8476  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
8477  * appears to be hung every Warning Repeat second till the situation clears.
8478  * If the situation clears, we'll note that as well.
8479  */
8480 #define SGE_IDMA_WARN_THRESH 1
8481 #define SGE_IDMA_WARN_REPEAT 300
8482 
8483 /**
8484  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
8485  *	@adapter: the adapter
8486  *	@idma: the adapter IDMA Monitor state
8487  *
8488  *	Initialize the state of an SGE Ingress DMA Monitor.
8489  */
8490 void t4_idma_monitor_init(struct adapter *adapter,
8491 			  struct sge_idma_monitor_state *idma)
8492 {
8493 	/* Initialize the state variables for detecting an SGE Ingress DMA
8494 	 * hang.  The SGE has internal counters which count up on each clock
8495 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
8496 	 * same state they were on the previous clock tick.  The clock used is
8497 	 * the Core Clock so we have a limit on the maximum "time" they can
8498 	 * record; typically a very small number of seconds.  For instance,
8499 	 * with a 600MHz Core Clock, we can only count up to a bit more than
8500 	 * 7s.  So we'll synthesize a larger counter in order to not run the
8501 	 * risk of having the "timers" overflow and give us the flexibility to
8502 	 * maintain a Hung SGE State Machine of our own which operates across
8503 	 * a longer time frame.
8504 	 */
8505 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
8506 	idma->idma_stalled[0] = idma->idma_stalled[1] = 0;
8507 }
8508 
8509 /**
8510  *	t4_idma_monitor - monitor SGE Ingress DMA state
8511  *	@adapter: the adapter
8512  *	@idma: the adapter IDMA Monitor state
8513  *	@hz: number of ticks/second
8514  *	@ticks: number of ticks since the last IDMA Monitor call
8515  */
8516 void t4_idma_monitor(struct adapter *adapter,
8517 		     struct sge_idma_monitor_state *idma,
8518 		     int hz, int ticks)
8519 {
8520 	int i, idma_same_state_cnt[2];
8521 
8522 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
8523 	  * are counters inside the SGE which count up on each clock when the
8524 	  * SGE finds its Ingress DMA State Engines in the same states they
8525 	  * were in the previous clock.  The counters will peg out at
8526 	  * 0xffffffff without wrapping around so once they pass the 1s
8527 	  * threshold they'll stay above that till the IDMA state changes.
8528 	  */
8529 	t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13);
8530 	idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH);
8531 	idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8532 
8533 	for (i = 0; i < 2; i++) {
8534 		u32 debug0, debug11;
8535 
8536 		/* If the Ingress DMA Same State Counter ("timer") is less
8537 		 * than 1s, then we can reset our synthesized Stall Timer and
8538 		 * continue.  If we have previously emitted warnings about a
8539 		 * potential stalled Ingress Queue, issue a note indicating
8540 		 * that the Ingress Queue has resumed forward progress.
8541 		 */
8542 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
8543 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz)
8544 				CH_WARN(adapter, "SGE idma%d, queue %u, "
8545 					"resumed after %d seconds\n",
8546 					i, idma->idma_qid[i],
8547 					idma->idma_stalled[i]/hz);
8548 			idma->idma_stalled[i] = 0;
8549 			continue;
8550 		}
8551 
8552 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
8553 		 * domain.  The first time we get here it'll be because we
8554 		 * passed the 1s Threshold; each additional time it'll be
8555 		 * because the RX Timer Callback is being fired on its regular
8556 		 * schedule.
8557 		 *
8558 		 * If the stall is below our Potential Hung Ingress Queue
8559 		 * Warning Threshold, continue.
8560 		 */
8561 		if (idma->idma_stalled[i] == 0) {
8562 			idma->idma_stalled[i] = hz;
8563 			idma->idma_warn[i] = 0;
8564 		} else {
8565 			idma->idma_stalled[i] += ticks;
8566 			idma->idma_warn[i] -= ticks;
8567 		}
8568 
8569 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz)
8570 			continue;
8571 
8572 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
8573 		 */
8574 		if (idma->idma_warn[i] > 0)
8575 			continue;
8576 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz;
8577 
8578 		/* Read and save the SGE IDMA State and Queue ID information.
8579 		 * We do this every time in case it changes across time ...
8580 		 * can't be too careful ...
8581 		 */
8582 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0);
8583 		debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8584 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
8585 
8586 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11);
8587 		debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8588 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
8589 
8590 		CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in "
8591 			" state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
8592 			i, idma->idma_qid[i], idma->idma_state[i],
8593 			idma->idma_stalled[i]/hz,
8594 			debug0, debug11);
8595 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
8596 	}
8597 }
8598 
8599 /**
8600  *	t4_read_pace_tbl - read the pace table
8601  *	@adap: the adapter
8602  *	@pace_vals: holds the returned values
8603  *
8604  *	Returns the values of TP's pace table in microseconds.
8605  */
8606 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
8607 {
8608 	unsigned int i, v;
8609 
8610 	for (i = 0; i < NTX_SCHED; i++) {
8611 		t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
8612 		v = t4_read_reg(adap, A_TP_PACE_TABLE);
8613 		pace_vals[i] = dack_ticks_to_usec(adap, v);
8614 	}
8615 }
8616 
8617 /**
8618  *	t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
8619  *	@adap: the adapter
8620  *	@sched: the scheduler index
8621  *	@kbps: the byte rate in Kbps
8622  *	@ipg: the interpacket delay in tenths of nanoseconds
8623  *
8624  *	Return the current configuration of a HW Tx scheduler.
8625  */
8626 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
8627 		     unsigned int *ipg)
8628 {
8629 	unsigned int v, addr, bpt, cpt;
8630 
8631 	if (kbps) {
8632 		addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
8633 		t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
8634 		v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
8635 		if (sched & 1)
8636 			v >>= 16;
8637 		bpt = (v >> 8) & 0xff;
8638 		cpt = v & 0xff;
8639 		if (!cpt)
8640 			*kbps = 0;	/* scheduler disabled */
8641 		else {
8642 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
8643 			*kbps = (v * bpt) / 125;
8644 		}
8645 	}
8646 	if (ipg) {
8647 		addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
8648 		t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
8649 		v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
8650 		if (sched & 1)
8651 			v >>= 16;
8652 		v &= 0xffff;
8653 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
8654 	}
8655 }
8656 
8657 /**
8658  *	t4_load_cfg - download config file
8659  *	@adap: the adapter
8660  *	@cfg_data: the cfg text file to write
8661  *	@size: text file size
8662  *
8663  *	Write the supplied config text file to the card's serial flash.
8664  */
8665 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
8666 {
8667 	int ret, i, n, cfg_addr;
8668 	unsigned int addr;
8669 	unsigned int flash_cfg_start_sec;
8670 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
8671 
8672 	cfg_addr = t4_flash_cfg_addr(adap);
8673 	if (cfg_addr < 0)
8674 		return cfg_addr;
8675 
8676 	addr = cfg_addr;
8677 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
8678 
8679 	if (size > FLASH_CFG_MAX_SIZE) {
8680 		CH_ERR(adap, "cfg file too large, max is %u bytes\n",
8681 		       FLASH_CFG_MAX_SIZE);
8682 		return -EFBIG;
8683 	}
8684 
8685 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
8686 			 sf_sec_size);
8687 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
8688 				     flash_cfg_start_sec + i - 1);
8689 	/*
8690 	 * If size == 0 then we're simply erasing the FLASH sectors associated
8691 	 * with the on-adapter Firmware Configuration File.
8692 	 */
8693 	if (ret || size == 0)
8694 		goto out;
8695 
8696 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
8697 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
8698 		if ( (size - i) <  SF_PAGE_SIZE)
8699 			n = size - i;
8700 		else
8701 			n = SF_PAGE_SIZE;
8702 		ret = t4_write_flash(adap, addr, n, cfg_data, 1);
8703 		if (ret)
8704 			goto out;
8705 
8706 		addr += SF_PAGE_SIZE;
8707 		cfg_data += SF_PAGE_SIZE;
8708 	}
8709 
8710 out:
8711 	if (ret)
8712 		CH_ERR(adap, "config file %s failed %d\n",
8713 		       (size == 0 ? "clear" : "download"), ret);
8714 	return ret;
8715 }
8716 
8717 /**
8718  *	t5_fw_init_extern_mem - initialize the external memory
8719  *	@adap: the adapter
8720  *
8721  *	Initializes the external memory on T5.
8722  */
8723 int t5_fw_init_extern_mem(struct adapter *adap)
8724 {
8725 	u32 params[1], val[1];
8726 	int ret;
8727 
8728 	if (!is_t5(adap))
8729 		return 0;
8730 
8731 	val[0] = 0xff; /* Initialize all MCs */
8732 	params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8733 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT));
8734 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val,
8735 			FW_CMD_MAX_TIMEOUT);
8736 
8737 	return ret;
8738 }
8739 
8740 /* BIOS boot headers */
8741 typedef struct pci_expansion_rom_header {
8742 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
8743 	u8	reserved[22]; /* Reserved per processor Architecture data */
8744 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
8745 } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
8746 
8747 /* Legacy PCI Expansion ROM Header */
8748 typedef struct legacy_pci_expansion_rom_header {
8749 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
8750 	u8	size512; /* Current Image Size in units of 512 bytes */
8751 	u8	initentry_point[4];
8752 	u8	cksum; /* Checksum computed on the entire Image */
8753 	u8	reserved[16]; /* Reserved */
8754 	u8	pcir_offset[2]; /* Offset to PCI Data Struture */
8755 } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
8756 
8757 /* EFI PCI Expansion ROM Header */
8758 typedef struct efi_pci_expansion_rom_header {
8759 	u8	signature[2]; // ROM signature. The value 0xaa55
8760 	u8	initialization_size[2]; /* Units 512. Includes this header */
8761 	u8	efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
8762 	u8	efi_subsystem[2]; /* Subsystem value for EFI image header */
8763 	u8	efi_machine_type[2]; /* Machine type from EFI image header */
8764 	u8	compression_type[2]; /* Compression type. */
8765 		/*
8766 		 * Compression type definition
8767 		 * 0x0: uncompressed
8768 		 * 0x1: Compressed
8769 		 * 0x2-0xFFFF: Reserved
8770 		 */
8771 	u8	reserved[8]; /* Reserved */
8772 	u8	efi_image_header_offset[2]; /* Offset to EFI Image */
8773 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
8774 } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
8775 
8776 /* PCI Data Structure Format */
8777 typedef struct pcir_data_structure { /* PCI Data Structure */
8778 	u8	signature[4]; /* Signature. The string "PCIR" */
8779 	u8	vendor_id[2]; /* Vendor Identification */
8780 	u8	device_id[2]; /* Device Identification */
8781 	u8	vital_product[2]; /* Pointer to Vital Product Data */
8782 	u8	length[2]; /* PCIR Data Structure Length */
8783 	u8	revision; /* PCIR Data Structure Revision */
8784 	u8	class_code[3]; /* Class Code */
8785 	u8	image_length[2]; /* Image Length. Multiple of 512B */
8786 	u8	code_revision[2]; /* Revision Level of Code/Data */
8787 	u8	code_type; /* Code Type. */
8788 		/*
8789 		 * PCI Expansion ROM Code Types
8790 		 * 0x00: Intel IA-32, PC-AT compatible. Legacy
8791 		 * 0x01: Open Firmware standard for PCI. FCODE
8792 		 * 0x02: Hewlett-Packard PA RISC. HP reserved
8793 		 * 0x03: EFI Image. EFI
8794 		 * 0x04-0xFF: Reserved.
8795 		 */
8796 	u8	indicator; /* Indicator. Identifies the last image in the ROM */
8797 	u8	reserved[2]; /* Reserved */
8798 } pcir_data_t; /* PCI__DATA_STRUCTURE */
8799 
8800 /* BOOT constants */
8801 enum {
8802 	BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
8803 	BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
8804 	BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
8805 	BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
8806 	BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
8807 	VENDOR_ID = 0x1425, /* Vendor ID */
8808 	PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
8809 };
8810 
8811 /*
8812  *	modify_device_id - Modifies the device ID of the Boot BIOS image
8813  *	@adatper: the device ID to write.
8814  *	@boot_data: the boot image to modify.
8815  *
8816  *	Write the supplied device ID to the boot BIOS image.
8817  */
8818 static void modify_device_id(int device_id, u8 *boot_data)
8819 {
8820 	legacy_pci_exp_rom_header_t *header;
8821 	pcir_data_t *pcir_header;
8822 	u32 cur_header = 0;
8823 
8824 	/*
8825 	 * Loop through all chained images and change the device ID's
8826 	 */
8827 	while (1) {
8828 		header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
8829 		pcir_header = (pcir_data_t *) &boot_data[cur_header +
8830 			      le16_to_cpu(*(u16*)header->pcir_offset)];
8831 
8832 		/*
8833 		 * Only modify the Device ID if code type is Legacy or HP.
8834 		 * 0x00: Okay to modify
8835 		 * 0x01: FCODE. Do not be modify
8836 		 * 0x03: Okay to modify
8837 		 * 0x04-0xFF: Do not modify
8838 		 */
8839 		if (pcir_header->code_type == 0x00) {
8840 			u8 csum = 0;
8841 			int i;
8842 
8843 			/*
8844 			 * Modify Device ID to match current adatper
8845 			 */
8846 			*(u16*) pcir_header->device_id = device_id;
8847 
8848 			/*
8849 			 * Set checksum temporarily to 0.
8850 			 * We will recalculate it later.
8851 			 */
8852 			header->cksum = 0x0;
8853 
8854 			/*
8855 			 * Calculate and update checksum
8856 			 */
8857 			for (i = 0; i < (header->size512 * 512); i++)
8858 				csum += (u8)boot_data[cur_header + i];
8859 
8860 			/*
8861 			 * Invert summed value to create the checksum
8862 			 * Writing new checksum value directly to the boot data
8863 			 */
8864 			boot_data[cur_header + 7] = -csum;
8865 
8866 		} else if (pcir_header->code_type == 0x03) {
8867 
8868 			/*
8869 			 * Modify Device ID to match current adatper
8870 			 */
8871 			*(u16*) pcir_header->device_id = device_id;
8872 
8873 		}
8874 
8875 
8876 		/*
8877 		 * Check indicator element to identify if this is the last
8878 		 * image in the ROM.
8879 		 */
8880 		if (pcir_header->indicator & 0x80)
8881 			break;
8882 
8883 		/*
8884 		 * Move header pointer up to the next image in the ROM.
8885 		 */
8886 		cur_header += header->size512 * 512;
8887 	}
8888 }
8889 
8890 /*
8891  *	t4_load_boot - download boot flash
8892  *	@adapter: the adapter
8893  *	@boot_data: the boot image to write
8894  *	@boot_addr: offset in flash to write boot_data
8895  *	@size: image size
8896  *
8897  *	Write the supplied boot image to the card's serial flash.
8898  *	The boot image has the following sections: a 28-byte header and the
8899  *	boot image.
8900  */
8901 int t4_load_boot(struct adapter *adap, u8 *boot_data,
8902 		 unsigned int boot_addr, unsigned int size)
8903 {
8904 	pci_exp_rom_header_t *header;
8905 	int pcir_offset ;
8906 	pcir_data_t *pcir_header;
8907 	int ret, addr;
8908 	uint16_t device_id;
8909 	unsigned int i;
8910 	unsigned int boot_sector = (boot_addr * 1024 );
8911 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
8912 
8913 	/*
8914 	 * Make sure the boot image does not encroach on the firmware region
8915 	 */
8916 	if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
8917 		CH_ERR(adap, "boot image encroaching on firmware region\n");
8918 		return -EFBIG;
8919 	}
8920 
8921 	/*
8922 	 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
8923 	 * and Boot configuration data sections. These 3 boot sections span
8924 	 * sectors 0 to 7 in flash and live right before the FW image location.
8925 	 */
8926 	i = DIV_ROUND_UP(size ? size : FLASH_FW_START,
8927 			sf_sec_size);
8928 	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
8929 				     (boot_sector >> 16) + i - 1);
8930 
8931 	/*
8932 	 * If size == 0 then we're simply erasing the FLASH sectors associated
8933 	 * with the on-adapter option ROM file
8934 	 */
8935 	if (ret || (size == 0))
8936 		goto out;
8937 
8938 	/* Get boot header */
8939 	header = (pci_exp_rom_header_t *)boot_data;
8940 	pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
8941 	/* PCIR Data Structure */
8942 	pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
8943 
8944 	/*
8945 	 * Perform some primitive sanity testing to avoid accidentally
8946 	 * writing garbage over the boot sectors.  We ought to check for
8947 	 * more but it's not worth it for now ...
8948 	 */
8949 	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
8950 		CH_ERR(adap, "boot image too small/large\n");
8951 		return -EFBIG;
8952 	}
8953 
8954 #ifndef CHELSIO_T4_DIAGS
8955 	/*
8956 	 * Check BOOT ROM header signature
8957 	 */
8958 	if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
8959 		CH_ERR(adap, "Boot image missing signature\n");
8960 		return -EINVAL;
8961 	}
8962 
8963 	/*
8964 	 * Check PCI header signature
8965 	 */
8966 	if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
8967 		CH_ERR(adap, "PCI header missing signature\n");
8968 		return -EINVAL;
8969 	}
8970 
8971 	/*
8972 	 * Check Vendor ID matches Chelsio ID
8973 	 */
8974 	if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
8975 		CH_ERR(adap, "Vendor ID missing signature\n");
8976 		return -EINVAL;
8977 	}
8978 #endif
8979 
8980 	/*
8981 	 * Retrieve adapter's device ID
8982 	 */
8983 	t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
8984 	/* Want to deal with PF 0 so I strip off PF 4 indicator */
8985 	device_id = device_id & 0xf0ff;
8986 
8987 	/*
8988 	 * Check PCIE Device ID
8989 	 */
8990 	if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
8991 		/*
8992 		 * Change the device ID in the Boot BIOS image to match
8993 		 * the Device ID of the current adapter.
8994 		 */
8995 		modify_device_id(device_id, boot_data);
8996 	}
8997 
8998 	/*
8999 	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
9000 	 * we finish copying the rest of the boot image. This will ensure
9001 	 * that the BIOS boot header will only be written if the boot image
9002 	 * was written in full.
9003 	 */
9004 	addr = boot_sector;
9005 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
9006 		addr += SF_PAGE_SIZE;
9007 		boot_data += SF_PAGE_SIZE;
9008 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
9009 		if (ret)
9010 			goto out;
9011 	}
9012 
9013 	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
9014 			     (const u8 *)header, 0);
9015 
9016 out:
9017 	if (ret)
9018 		CH_ERR(adap, "boot image download failed, error %d\n", ret);
9019 	return ret;
9020 }
9021 
9022 /*
9023  *	t4_flash_bootcfg_addr - return the address of the flash optionrom configuration
9024  *	@adapter: the adapter
9025  *
9026  *	Return the address within the flash where the OptionROM Configuration
9027  *	is stored, or an error if the device FLASH is too small to contain
9028  *	a OptionROM Configuration.
9029  */
9030 static int t4_flash_bootcfg_addr(struct adapter *adapter)
9031 {
9032 	/*
9033 	 * If the device FLASH isn't large enough to hold a Firmware
9034 	 * Configuration File, return an error.
9035 	 */
9036 	if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
9037 		return -ENOSPC;
9038 
9039 	return FLASH_BOOTCFG_START;
9040 }
9041 
9042 int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size)
9043 {
9044 	int ret, i, n, cfg_addr;
9045 	unsigned int addr;
9046 	unsigned int flash_cfg_start_sec;
9047 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9048 
9049 	cfg_addr = t4_flash_bootcfg_addr(adap);
9050 	if (cfg_addr < 0)
9051 		return cfg_addr;
9052 
9053 	addr = cfg_addr;
9054 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
9055 
9056 	if (size > FLASH_BOOTCFG_MAX_SIZE) {
9057 		CH_ERR(adap, "bootcfg file too large, max is %u bytes\n",
9058 			FLASH_BOOTCFG_MAX_SIZE);
9059 		return -EFBIG;
9060 	}
9061 
9062 	i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */
9063 			 sf_sec_size);
9064 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9065 					flash_cfg_start_sec + i - 1);
9066 
9067 	/*
9068 	 * If size == 0 then we're simply erasing the FLASH sectors associated
9069 	 * with the on-adapter OptionROM Configuration File.
9070 	 */
9071 	if (ret || size == 0)
9072 		goto out;
9073 
9074 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
9075 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
9076 		if ( (size - i) <  SF_PAGE_SIZE)
9077 			n = size - i;
9078 		else
9079 			n = SF_PAGE_SIZE;
9080 		ret = t4_write_flash(adap, addr, n, cfg_data, 0);
9081 		if (ret)
9082 			goto out;
9083 
9084 		addr += SF_PAGE_SIZE;
9085 		cfg_data += SF_PAGE_SIZE;
9086 	}
9087 
9088 out:
9089 	if (ret)
9090 		CH_ERR(adap, "boot config data %s failed %d\n",
9091 				(size == 0 ? "clear" : "download"), ret);
9092 	return ret;
9093 }
9094 
9095 /**
9096  *	t4_set_filter_mode - configure the optional components of filter tuples
9097  *	@adap: the adapter
9098  *	@mode_map: a bitmap selcting which optional filter components to enable
9099  *
9100  *	Sets the filter mode by selecting the optional components to enable
9101  *	in filter tuples.  Returns 0 on success and a negative error if the
9102  *	requested mode needs more bits than are available for optional
9103  *	components.
9104  */
9105 int t4_set_filter_mode(struct adapter *adap, unsigned int mode_map)
9106 {
9107 	static u8 width[] = { 1, 3, 17, 17, 8, 8, 16, 9, 3, 1 };
9108 
9109 	int i, nbits = 0;
9110 
9111 	for (i = S_FCOE; i <= S_FRAGMENTATION; i++)
9112 		if (mode_map & (1 << i))
9113 			nbits += width[i];
9114 	if (nbits > FILTER_OPT_LEN)
9115 		return -EINVAL;
9116 	if (t4_use_ldst(adap))
9117 		t4_fw_tp_pio_rw(adap, &mode_map, 1, A_TP_VLAN_PRI_MAP, 0);
9118 	else
9119 		t4_write_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, &mode_map,
9120 				  1, A_TP_VLAN_PRI_MAP);
9121 	read_filter_mode_and_ingress_config(adap);
9122 
9123 	return 0;
9124 }
9125 
9126 /**
9127  *	t4_clr_port_stats - clear port statistics
9128  *	@adap: the adapter
9129  *	@idx: the port index
9130  *
9131  *	Clear HW statistics for the given port.
9132  */
9133 void t4_clr_port_stats(struct adapter *adap, int idx)
9134 {
9135 	unsigned int i;
9136 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
9137 	u32 port_base_addr;
9138 
9139 	if (is_t4(adap))
9140 		port_base_addr = PORT_BASE(idx);
9141 	else
9142 		port_base_addr = T5_PORT_BASE(idx);
9143 
9144 	for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
9145 			i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
9146 		t4_write_reg(adap, port_base_addr + i, 0);
9147 	for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
9148 			i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
9149 		t4_write_reg(adap, port_base_addr + i, 0);
9150 	for (i = 0; i < 4; i++)
9151 		if (bgmap & (1 << i)) {
9152 			t4_write_reg(adap,
9153 			A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
9154 			t4_write_reg(adap,
9155 			A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
9156 		}
9157 }
9158 
9159 /**
9160  *	t4_i2c_rd - read I2C data from adapter
9161  *	@adap: the adapter
9162  *	@port: Port number if per-port device; <0 if not
9163  *	@devid: per-port device ID or absolute device ID
9164  *	@offset: byte offset into device I2C space
9165  *	@len: byte length of I2C space data
9166  *	@buf: buffer in which to return I2C data
9167  *
9168  *	Reads the I2C data from the indicated device and location.
9169  */
9170 int t4_i2c_rd(struct adapter *adap, unsigned int mbox,
9171 	      int port, unsigned int devid,
9172 	      unsigned int offset, unsigned int len,
9173 	      u8 *buf)
9174 {
9175 	u32 ldst_addrspace;
9176 	struct fw_ldst_cmd ldst;
9177 	int ret;
9178 
9179 	if (port >= 4 ||
9180 	    devid >= 256 ||
9181 	    offset >= 256 ||
9182 	    len > sizeof ldst.u.i2c.data)
9183 		return -EINVAL;
9184 
9185 	memset(&ldst, 0, sizeof ldst);
9186 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
9187 	ldst.op_to_addrspace =
9188 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9189 			    F_FW_CMD_REQUEST |
9190 			    F_FW_CMD_READ |
9191 			    ldst_addrspace);
9192 	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
9193 	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
9194 	ldst.u.i2c.did = devid;
9195 	ldst.u.i2c.boffset = offset;
9196 	ldst.u.i2c.blen = len;
9197 	ret = t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
9198 	if (!ret)
9199 		memcpy(buf, ldst.u.i2c.data, len);
9200 	return ret;
9201 }
9202 
9203 /**
9204  *	t4_i2c_wr - write I2C data to adapter
9205  *	@adap: the adapter
9206  *	@port: Port number if per-port device; <0 if not
9207  *	@devid: per-port device ID or absolute device ID
9208  *	@offset: byte offset into device I2C space
9209  *	@len: byte length of I2C space data
9210  *	@buf: buffer containing new I2C data
9211  *
9212  *	Write the I2C data to the indicated device and location.
9213  */
9214 int t4_i2c_wr(struct adapter *adap, unsigned int mbox,
9215 	      int port, unsigned int devid,
9216 	      unsigned int offset, unsigned int len,
9217 	      u8 *buf)
9218 {
9219 	u32 ldst_addrspace;
9220 	struct fw_ldst_cmd ldst;
9221 
9222 	if (port >= 4 ||
9223 	    devid >= 256 ||
9224 	    offset >= 256 ||
9225 	    len > sizeof ldst.u.i2c.data)
9226 		return -EINVAL;
9227 
9228 	memset(&ldst, 0, sizeof ldst);
9229 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
9230 	ldst.op_to_addrspace =
9231 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9232 			    F_FW_CMD_REQUEST |
9233 			    F_FW_CMD_WRITE |
9234 			    ldst_addrspace);
9235 	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
9236 	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
9237 	ldst.u.i2c.did = devid;
9238 	ldst.u.i2c.boffset = offset;
9239 	ldst.u.i2c.blen = len;
9240 	memcpy(ldst.u.i2c.data, buf, len);
9241 	return t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
9242 }
9243 
9244 /**
9245  * 	t4_sge_ctxt_rd - read an SGE context through FW
9246  * 	@adap: the adapter
9247  * 	@mbox: mailbox to use for the FW command
9248  * 	@cid: the context id
9249  * 	@ctype: the context type
9250  * 	@data: where to store the context data
9251  *
9252  * 	Issues a FW command through the given mailbox to read an SGE context.
9253  */
9254 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
9255 		   enum ctxt_type ctype, u32 *data)
9256 {
9257 	int ret;
9258 	struct fw_ldst_cmd c;
9259 
9260 	if (ctype == CTXT_EGRESS)
9261 		ret = FW_LDST_ADDRSPC_SGE_EGRC;
9262 	else if (ctype == CTXT_INGRESS)
9263 		ret = FW_LDST_ADDRSPC_SGE_INGC;
9264 	else if (ctype == CTXT_FLM)
9265 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
9266 	else
9267 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
9268 
9269 	memset(&c, 0, sizeof(c));
9270 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9271 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
9272 					V_FW_LDST_CMD_ADDRSPACE(ret));
9273 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
9274 	c.u.idctxt.physid = cpu_to_be32(cid);
9275 
9276 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
9277 	if (ret == 0) {
9278 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
9279 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
9280 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
9281 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
9282 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
9283 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
9284 	}
9285 	return ret;
9286 }
9287 
9288 /**
9289  * 	t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
9290  * 	@adap: the adapter
9291  * 	@cid: the context id
9292  * 	@ctype: the context type
9293  * 	@data: where to store the context data
9294  *
9295  * 	Reads an SGE context directly, bypassing FW.  This is only for
9296  * 	debugging when FW is unavailable.
9297  */
9298 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
9299 		      u32 *data)
9300 {
9301 	int i, ret;
9302 
9303 	t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
9304 	ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
9305 	if (!ret)
9306 		for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
9307 			*data++ = t4_read_reg(adap, i);
9308 	return ret;
9309 }
9310 
9311 int t4_sched_config(struct adapter *adapter, int type, int minmaxen,
9312     		    int sleep_ok)
9313 {
9314 	struct fw_sched_cmd cmd;
9315 
9316 	memset(&cmd, 0, sizeof(cmd));
9317 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9318 				      F_FW_CMD_REQUEST |
9319 				      F_FW_CMD_WRITE);
9320 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9321 
9322 	cmd.u.config.sc = FW_SCHED_SC_CONFIG;
9323 	cmd.u.config.type = type;
9324 	cmd.u.config.minmaxen = minmaxen;
9325 
9326 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9327 			       NULL, sleep_ok);
9328 }
9329 
9330 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
9331 		    int rateunit, int ratemode, int channel, int cl,
9332 		    int minrate, int maxrate, int weight, int pktsize,
9333 		    int sleep_ok)
9334 {
9335 	struct fw_sched_cmd cmd;
9336 
9337 	memset(&cmd, 0, sizeof(cmd));
9338 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9339 				      F_FW_CMD_REQUEST |
9340 				      F_FW_CMD_WRITE);
9341 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9342 
9343 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9344 	cmd.u.params.type = type;
9345 	cmd.u.params.level = level;
9346 	cmd.u.params.mode = mode;
9347 	cmd.u.params.ch = channel;
9348 	cmd.u.params.cl = cl;
9349 	cmd.u.params.unit = rateunit;
9350 	cmd.u.params.rate = ratemode;
9351 	cmd.u.params.min = cpu_to_be32(minrate);
9352 	cmd.u.params.max = cpu_to_be32(maxrate);
9353 	cmd.u.params.weight = cpu_to_be16(weight);
9354 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
9355 
9356 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9357 			       NULL, sleep_ok);
9358 }
9359 
9360 /*
9361  *	t4_config_watchdog - configure (enable/disable) a watchdog timer
9362  *	@adapter: the adapter
9363  * 	@mbox: mailbox to use for the FW command
9364  * 	@pf: the PF owning the queue
9365  * 	@vf: the VF owning the queue
9366  *	@timeout: watchdog timeout in ms
9367  *	@action: watchdog timer / action
9368  *
9369  *	There are separate watchdog timers for each possible watchdog
9370  *	action.  Configure one of the watchdog timers by setting a non-zero
9371  *	timeout.  Disable a watchdog timer by using a timeout of zero.
9372  */
9373 int t4_config_watchdog(struct adapter *adapter, unsigned int mbox,
9374 		       unsigned int pf, unsigned int vf,
9375 		       unsigned int timeout, unsigned int action)
9376 {
9377 	struct fw_watchdog_cmd wdog;
9378 	unsigned int ticks;
9379 
9380 	/*
9381 	 * The watchdog command expects a timeout in units of 10ms so we need
9382 	 * to convert it here (via rounding) and force a minimum of one 10ms
9383 	 * "tick" if the timeout is non-zero but the conversion results in 0
9384 	 * ticks.
9385 	 */
9386 	ticks = (timeout + 5)/10;
9387 	if (timeout && !ticks)
9388 		ticks = 1;
9389 
9390 	memset(&wdog, 0, sizeof wdog);
9391 	wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) |
9392 				     F_FW_CMD_REQUEST |
9393 				     F_FW_CMD_WRITE |
9394 				     V_FW_PARAMS_CMD_PFN(pf) |
9395 				     V_FW_PARAMS_CMD_VFN(vf));
9396 	wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog));
9397 	wdog.timeout = cpu_to_be32(ticks);
9398 	wdog.action = cpu_to_be32(action);
9399 
9400 	return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL);
9401 }
9402 
9403 int t4_get_devlog_level(struct adapter *adapter, unsigned int *level)
9404 {
9405 	struct fw_devlog_cmd devlog_cmd;
9406 	int ret;
9407 
9408 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9409 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9410 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
9411 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9412 	ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
9413 			 sizeof(devlog_cmd), &devlog_cmd);
9414 	if (ret)
9415 		return ret;
9416 
9417 	*level = devlog_cmd.level;
9418 	return 0;
9419 }
9420 
9421 int t4_set_devlog_level(struct adapter *adapter, unsigned int level)
9422 {
9423 	struct fw_devlog_cmd devlog_cmd;
9424 
9425 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9426 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9427 					     F_FW_CMD_REQUEST |
9428 					     F_FW_CMD_WRITE);
9429 	devlog_cmd.level = level;
9430 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9431 	return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
9432 			  sizeof(devlog_cmd), &devlog_cmd);
9433 }
9434