xref: /freebsd/sys/dev/cxgbe/common/t4_hw.c (revision 6f63e88c0166ed3e5f2805a9e667c7d24d304cf1)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2012, 2016 Chelsio Communications, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_inet.h"
33 
34 #include <sys/param.h>
35 #include <sys/eventhandler.h>
36 
37 #include "common.h"
38 #include "t4_regs.h"
39 #include "t4_regs_values.h"
40 #include "firmware/t4fw_interface.h"
41 
42 #undef msleep
43 #define msleep(x) do { \
44 	if (cold) \
45 		DELAY((x) * 1000); \
46 	else \
47 		pause("t4hw", (x) * hz / 1000); \
48 } while (0)
49 
50 /**
51  *	t4_wait_op_done_val - wait until an operation is completed
52  *	@adapter: the adapter performing the operation
53  *	@reg: the register to check for completion
54  *	@mask: a single-bit field within @reg that indicates completion
55  *	@polarity: the value of the field when the operation is completed
56  *	@attempts: number of check iterations
57  *	@delay: delay in usecs between iterations
58  *	@valp: where to store the value of the register at completion time
59  *
60  *	Wait until an operation is completed by checking a bit in a register
61  *	up to @attempts times.  If @valp is not NULL the value of the register
62  *	at the time it indicated completion is stored there.  Returns 0 if the
63  *	operation completes and	-EAGAIN	otherwise.
64  */
65 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
66 			       int polarity, int attempts, int delay, u32 *valp)
67 {
68 	while (1) {
69 		u32 val = t4_read_reg(adapter, reg);
70 
71 		if (!!(val & mask) == polarity) {
72 			if (valp)
73 				*valp = val;
74 			return 0;
75 		}
76 		if (--attempts == 0)
77 			return -EAGAIN;
78 		if (delay)
79 			udelay(delay);
80 	}
81 }
82 
83 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
84 				  int polarity, int attempts, int delay)
85 {
86 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
87 				   delay, NULL);
88 }
89 
90 /**
91  *	t4_set_reg_field - set a register field to a value
92  *	@adapter: the adapter to program
93  *	@addr: the register address
94  *	@mask: specifies the portion of the register to modify
95  *	@val: the new value for the register field
96  *
97  *	Sets a register field specified by the supplied mask to the
98  *	given value.
99  */
100 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
101 		      u32 val)
102 {
103 	u32 v = t4_read_reg(adapter, addr) & ~mask;
104 
105 	t4_write_reg(adapter, addr, v | val);
106 	(void) t4_read_reg(adapter, addr);      /* flush */
107 }
108 
109 /**
110  *	t4_read_indirect - read indirectly addressed registers
111  *	@adap: the adapter
112  *	@addr_reg: register holding the indirect address
113  *	@data_reg: register holding the value of the indirect register
114  *	@vals: where the read register values are stored
115  *	@nregs: how many indirect registers to read
116  *	@start_idx: index of first indirect register to read
117  *
118  *	Reads registers that are accessed indirectly through an address/data
119  *	register pair.
120  */
121 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
122 			     unsigned int data_reg, u32 *vals,
123 			     unsigned int nregs, unsigned int start_idx)
124 {
125 	while (nregs--) {
126 		t4_write_reg(adap, addr_reg, start_idx);
127 		*vals++ = t4_read_reg(adap, data_reg);
128 		start_idx++;
129 	}
130 }
131 
132 /**
133  *	t4_write_indirect - write indirectly addressed registers
134  *	@adap: the adapter
135  *	@addr_reg: register holding the indirect addresses
136  *	@data_reg: register holding the value for the indirect registers
137  *	@vals: values to write
138  *	@nregs: how many indirect registers to write
139  *	@start_idx: address of first indirect register to write
140  *
141  *	Writes a sequential block of registers that are accessed indirectly
142  *	through an address/data register pair.
143  */
144 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
145 		       unsigned int data_reg, const u32 *vals,
146 		       unsigned int nregs, unsigned int start_idx)
147 {
148 	while (nregs--) {
149 		t4_write_reg(adap, addr_reg, start_idx++);
150 		t4_write_reg(adap, data_reg, *vals++);
151 	}
152 }
153 
154 /*
155  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
156  * mechanism.  This guarantees that we get the real value even if we're
157  * operating within a Virtual Machine and the Hypervisor is trapping our
158  * Configuration Space accesses.
159  *
160  * N.B. This routine should only be used as a last resort: the firmware uses
161  *      the backdoor registers on a regular basis and we can end up
162  *      conflicting with it's uses!
163  */
164 u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
165 {
166 	u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg);
167 	u32 val;
168 
169 	if (chip_id(adap) <= CHELSIO_T5)
170 		req |= F_ENABLE;
171 	else
172 		req |= F_T6_ENABLE;
173 
174 	if (is_t4(adap))
175 		req |= F_LOCALCFG;
176 
177 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req);
178 	val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
179 
180 	/*
181 	 * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
182 	 * Configuration Space read.  (None of the other fields matter when
183 	 * F_ENABLE is 0 so a simple register write is easier than a
184 	 * read-modify-write via t4_set_reg_field().)
185 	 */
186 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0);
187 
188 	return val;
189 }
190 
191 /*
192  * t4_report_fw_error - report firmware error
193  * @adap: the adapter
194  *
195  * The adapter firmware can indicate error conditions to the host.
196  * If the firmware has indicated an error, print out the reason for
197  * the firmware error.
198  */
199 static void t4_report_fw_error(struct adapter *adap)
200 {
201 	static const char *const reason[] = {
202 		"Crash",			/* PCIE_FW_EVAL_CRASH */
203 		"During Device Preparation",	/* PCIE_FW_EVAL_PREP */
204 		"During Device Configuration",	/* PCIE_FW_EVAL_CONF */
205 		"During Device Initialization",	/* PCIE_FW_EVAL_INIT */
206 		"Unexpected Event",		/* PCIE_FW_EVAL_UNEXPECTEDEVENT */
207 		"Insufficient Airflow",		/* PCIE_FW_EVAL_OVERHEAT */
208 		"Device Shutdown",		/* PCIE_FW_EVAL_DEVICESHUTDOWN */
209 		"Reserved",			/* reserved */
210 	};
211 	u32 pcie_fw;
212 
213 	pcie_fw = t4_read_reg(adap, A_PCIE_FW);
214 	if (pcie_fw & F_PCIE_FW_ERR) {
215 		adap->flags &= ~FW_OK;
216 		CH_ERR(adap, "firmware reports adapter error: %s (0x%08x)\n",
217 		    reason[G_PCIE_FW_EVAL(pcie_fw)], pcie_fw);
218 		if (pcie_fw != 0xffffffff)
219 			t4_os_dump_devlog(adap);
220 	}
221 }
222 
223 /*
224  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
225  */
226 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
227 			 u32 mbox_addr)
228 {
229 	for ( ; nflit; nflit--, mbox_addr += 8)
230 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
231 }
232 
233 /*
234  * Handle a FW assertion reported in a mailbox.
235  */
236 static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt)
237 {
238 	CH_ALERT(adap,
239 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
240 		  asrt->u.assert.filename_0_7,
241 		  be32_to_cpu(asrt->u.assert.line),
242 		  be32_to_cpu(asrt->u.assert.x),
243 		  be32_to_cpu(asrt->u.assert.y));
244 }
245 
246 struct port_tx_state {
247 	uint64_t rx_pause;
248 	uint64_t tx_frames;
249 };
250 
251 static void
252 read_tx_state_one(struct adapter *sc, int i, struct port_tx_state *tx_state)
253 {
254 	uint32_t rx_pause_reg, tx_frames_reg;
255 
256 	if (is_t4(sc)) {
257 		tx_frames_reg = PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
258 		rx_pause_reg = PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
259 	} else {
260 		tx_frames_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
261 		rx_pause_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
262 	}
263 
264 	tx_state->rx_pause = t4_read_reg64(sc, rx_pause_reg);
265 	tx_state->tx_frames = t4_read_reg64(sc, tx_frames_reg);
266 }
267 
268 static void
269 read_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
270 {
271 	int i;
272 
273 	for_each_port(sc, i)
274 		read_tx_state_one(sc, i, &tx_state[i]);
275 }
276 
277 static void
278 check_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
279 {
280 	uint32_t port_ctl_reg;
281 	uint64_t tx_frames, rx_pause;
282 	int i;
283 
284 	for_each_port(sc, i) {
285 		rx_pause = tx_state[i].rx_pause;
286 		tx_frames = tx_state[i].tx_frames;
287 		read_tx_state_one(sc, i, &tx_state[i]);	/* update */
288 
289 		if (is_t4(sc))
290 			port_ctl_reg = PORT_REG(i, A_MPS_PORT_CTL);
291 		else
292 			port_ctl_reg = T5_PORT_REG(i, A_MPS_PORT_CTL);
293 		if (t4_read_reg(sc, port_ctl_reg) & F_PORTTXEN &&
294 		    rx_pause != tx_state[i].rx_pause &&
295 		    tx_frames == tx_state[i].tx_frames) {
296 			t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, 0);
297 			mdelay(1);
298 			t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, F_PORTTXEN);
299 		}
300 	}
301 }
302 
303 #define X_CIM_PF_NOACCESS 0xeeeeeeee
304 /**
305  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
306  *	@adap: the adapter
307  *	@mbox: index of the mailbox to use
308  *	@cmd: the command to write
309  *	@size: command length in bytes
310  *	@rpl: where to optionally store the reply
311  *	@sleep_ok: if true we may sleep while awaiting command completion
312  *	@timeout: time to wait for command to finish before timing out
313  *		(negative implies @sleep_ok=false)
314  *
315  *	Sends the given command to FW through the selected mailbox and waits
316  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
317  *	store the FW's reply to the command.  The command and its optional
318  *	reply are of the same length.  Some FW commands like RESET and
319  *	INITIALIZE can take a considerable amount of time to execute.
320  *	@sleep_ok determines whether we may sleep while awaiting the response.
321  *	If sleeping is allowed we use progressive backoff otherwise we spin.
322  *	Note that passing in a negative @timeout is an alternate mechanism
323  *	for specifying @sleep_ok=false.  This is useful when a higher level
324  *	interface allows for specification of @timeout but not @sleep_ok ...
325  *
326  *	The return value is 0 on success or a negative errno on failure.  A
327  *	failure can happen either because we are not able to execute the
328  *	command or FW executes it but signals an error.  In the latter case
329  *	the return value is the error code indicated by FW (negated).
330  */
331 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
332 			    int size, void *rpl, bool sleep_ok, int timeout)
333 {
334 	/*
335 	 * We delay in small increments at first in an effort to maintain
336 	 * responsiveness for simple, fast executing commands but then back
337 	 * off to larger delays to a maximum retry delay.
338 	 */
339 	static const int delay[] = {
340 		1, 1, 3, 5, 10, 10, 20, 50, 100
341 	};
342 	u32 v;
343 	u64 res;
344 	int i, ms, delay_idx, ret, next_tx_check;
345 	u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
346 	u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
347 	u32 ctl;
348 	__be64 cmd_rpl[MBOX_LEN/8];
349 	u32 pcie_fw;
350 	struct port_tx_state tx_state[MAX_NPORTS];
351 
352 	if (adap->flags & CHK_MBOX_ACCESS)
353 		ASSERT_SYNCHRONIZED_OP(adap);
354 
355 	if (size <= 0 || (size & 15) || size > MBOX_LEN)
356 		return -EINVAL;
357 
358 	if (adap->flags & IS_VF) {
359 		if (is_t6(adap))
360 			data_reg = FW_T6VF_MBDATA_BASE_ADDR;
361 		else
362 			data_reg = FW_T4VF_MBDATA_BASE_ADDR;
363 		ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL);
364 	}
365 
366 	/*
367 	 * If we have a negative timeout, that implies that we can't sleep.
368 	 */
369 	if (timeout < 0) {
370 		sleep_ok = false;
371 		timeout = -timeout;
372 	}
373 
374 	/*
375 	 * Attempt to gain access to the mailbox.
376 	 */
377 	for (i = 0; i < 4; i++) {
378 		ctl = t4_read_reg(adap, ctl_reg);
379 		v = G_MBOWNER(ctl);
380 		if (v != X_MBOWNER_NONE)
381 			break;
382 	}
383 
384 	/*
385 	 * If we were unable to gain access, report the error to our caller.
386 	 */
387 	if (v != X_MBOWNER_PL) {
388 		t4_report_fw_error(adap);
389 		ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
390 		return ret;
391 	}
392 
393 	/*
394 	 * If we gain ownership of the mailbox and there's a "valid" message
395 	 * in it, this is likely an asynchronous error message from the
396 	 * firmware.  So we'll report that and then proceed on with attempting
397 	 * to issue our own command ... which may well fail if the error
398 	 * presaged the firmware crashing ...
399 	 */
400 	if (ctl & F_MBMSGVALID) {
401 		CH_DUMP_MBOX(adap, mbox, data_reg, "VLD", NULL, true);
402 	}
403 
404 	/*
405 	 * Copy in the new mailbox command and send it on its way ...
406 	 */
407 	memset(cmd_rpl, 0, sizeof(cmd_rpl));
408 	memcpy(cmd_rpl, cmd, size);
409 	CH_DUMP_MBOX(adap, mbox, 0, "cmd", cmd_rpl, false);
410 	for (i = 0; i < ARRAY_SIZE(cmd_rpl); i++)
411 		t4_write_reg64(adap, data_reg + i * 8, be64_to_cpu(cmd_rpl[i]));
412 
413 	if (adap->flags & IS_VF) {
414 		/*
415 		 * For the VFs, the Mailbox Data "registers" are
416 		 * actually backed by T4's "MA" interface rather than
417 		 * PL Registers (as is the case for the PFs).  Because
418 		 * these are in different coherency domains, the write
419 		 * to the VF's PL-register-backed Mailbox Control can
420 		 * race in front of the writes to the MA-backed VF
421 		 * Mailbox Data "registers".  So we need to do a
422 		 * read-back on at least one byte of the VF Mailbox
423 		 * Data registers before doing the write to the VF
424 		 * Mailbox Control register.
425 		 */
426 		t4_read_reg(adap, data_reg);
427 	}
428 
429 	t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
430 	read_tx_state(adap, &tx_state[0]);	/* also flushes the write_reg */
431 	next_tx_check = 1000;
432 	delay_idx = 0;
433 	ms = delay[0];
434 
435 	/*
436 	 * Loop waiting for the reply; bail out if we time out or the firmware
437 	 * reports an error.
438 	 */
439 	pcie_fw = 0;
440 	for (i = 0; i < timeout; i += ms) {
441 		if (!(adap->flags & IS_VF)) {
442 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
443 			if (pcie_fw & F_PCIE_FW_ERR)
444 				break;
445 		}
446 
447 		if (i >= next_tx_check) {
448 			check_tx_state(adap, &tx_state[0]);
449 			next_tx_check = i + 1000;
450 		}
451 
452 		if (sleep_ok) {
453 			ms = delay[delay_idx];  /* last element may repeat */
454 			if (delay_idx < ARRAY_SIZE(delay) - 1)
455 				delay_idx++;
456 			msleep(ms);
457 		} else {
458 			mdelay(ms);
459 		}
460 
461 		v = t4_read_reg(adap, ctl_reg);
462 		if (v == X_CIM_PF_NOACCESS)
463 			continue;
464 		if (G_MBOWNER(v) == X_MBOWNER_PL) {
465 			if (!(v & F_MBMSGVALID)) {
466 				t4_write_reg(adap, ctl_reg,
467 					     V_MBOWNER(X_MBOWNER_NONE));
468 				continue;
469 			}
470 
471 			/*
472 			 * Retrieve the command reply and release the mailbox.
473 			 */
474 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg);
475 			CH_DUMP_MBOX(adap, mbox, 0, "rpl", cmd_rpl, false);
476 			t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
477 
478 			res = be64_to_cpu(cmd_rpl[0]);
479 			if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
480 				fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl);
481 				res = V_FW_CMD_RETVAL(EIO);
482 			} else if (rpl)
483 				memcpy(rpl, cmd_rpl, size);
484 			return -G_FW_CMD_RETVAL((int)res);
485 		}
486 	}
487 
488 	/*
489 	 * We timed out waiting for a reply to our mailbox command.  Report
490 	 * the error and also check to see if the firmware reported any
491 	 * errors ...
492 	 */
493 	CH_ERR(adap, "command %#x in mbox %d timed out (0x%08x).\n",
494 	    *(const u8 *)cmd, mbox, pcie_fw);
495 	CH_DUMP_MBOX(adap, mbox, 0, "cmdsent", cmd_rpl, true);
496 	CH_DUMP_MBOX(adap, mbox, data_reg, "current", NULL, true);
497 
498 	if (pcie_fw & F_PCIE_FW_ERR) {
499 		ret = -ENXIO;
500 		t4_report_fw_error(adap);
501 	} else {
502 		ret = -ETIMEDOUT;
503 		t4_os_dump_devlog(adap);
504 	}
505 
506 	t4_fatal_err(adap, true);
507 	return ret;
508 }
509 
510 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
511 		    void *rpl, bool sleep_ok)
512 {
513 		return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl,
514 					       sleep_ok, FW_CMD_MAX_TIMEOUT);
515 
516 }
517 
518 static int t4_edc_err_read(struct adapter *adap, int idx)
519 {
520 	u32 edc_ecc_err_addr_reg;
521 	u32 edc_bist_status_rdata_reg;
522 
523 	if (is_t4(adap)) {
524 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
525 		return 0;
526 	}
527 	if (idx != MEM_EDC0 && idx != MEM_EDC1) {
528 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
529 		return 0;
530 	}
531 
532 	edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx);
533 	edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx);
534 
535 	CH_WARN(adap,
536 		"edc%d err addr 0x%x: 0x%x.\n",
537 		idx, edc_ecc_err_addr_reg,
538 		t4_read_reg(adap, edc_ecc_err_addr_reg));
539 	CH_WARN(adap,
540 	 	"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
541 		edc_bist_status_rdata_reg,
542 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg),
543 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8),
544 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16),
545 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24),
546 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32),
547 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40),
548 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48),
549 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56),
550 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64));
551 
552 	return 0;
553 }
554 
555 /**
556  *	t4_mc_read - read from MC through backdoor accesses
557  *	@adap: the adapter
558  *	@idx: which MC to access
559  *	@addr: address of first byte requested
560  *	@data: 64 bytes of data containing the requested address
561  *	@ecc: where to store the corresponding 64-bit ECC word
562  *
563  *	Read 64 bytes of data from MC starting at a 64-byte-aligned address
564  *	that covers the requested address @addr.  If @parity is not %NULL it
565  *	is assigned the 64-bit ECC word for the read data.
566  */
567 int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
568 {
569 	int i;
570 	u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
571 	u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
572 
573 	if (is_t4(adap)) {
574 		mc_bist_cmd_reg = A_MC_BIST_CMD;
575 		mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
576 		mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
577 		mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
578 		mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
579 	} else {
580 		mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
581 		mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
582 		mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
583 		mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA,
584 						  idx);
585 		mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN,
586 						  idx);
587 	}
588 
589 	if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
590 		return -EBUSY;
591 	t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
592 	t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
593 	t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
594 	t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
595 		     F_START_BIST | V_BIST_CMD_GAP(1));
596 	i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
597 	if (i)
598 		return i;
599 
600 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
601 
602 	for (i = 15; i >= 0; i--)
603 		*data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
604 	if (ecc)
605 		*ecc = t4_read_reg64(adap, MC_DATA(16));
606 #undef MC_DATA
607 	return 0;
608 }
609 
610 /**
611  *	t4_edc_read - read from EDC through backdoor accesses
612  *	@adap: the adapter
613  *	@idx: which EDC to access
614  *	@addr: address of first byte requested
615  *	@data: 64 bytes of data containing the requested address
616  *	@ecc: where to store the corresponding 64-bit ECC word
617  *
618  *	Read 64 bytes of data from EDC starting at a 64-byte-aligned address
619  *	that covers the requested address @addr.  If @parity is not %NULL it
620  *	is assigned the 64-bit ECC word for the read data.
621  */
622 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
623 {
624 	int i;
625 	u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
626 	u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
627 
628 	if (is_t4(adap)) {
629 		edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
630 		edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
631 		edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
632 		edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
633 						    idx);
634 		edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
635 						    idx);
636 	} else {
637 /*
638  * These macro are missing in t4_regs.h file.
639  * Added temporarily for testing.
640  */
641 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
642 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
643 		edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx);
644 		edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx);
645 		edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx);
646 		edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN,
647 						    idx);
648 		edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA,
649 						    idx);
650 #undef EDC_REG_T5
651 #undef EDC_STRIDE_T5
652 	}
653 
654 	if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
655 		return -EBUSY;
656 	t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
657 	t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
658 	t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
659 	t4_write_reg(adap, edc_bist_cmd_reg,
660 		     V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
661 	i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
662 	if (i)
663 		return i;
664 
665 #define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
666 
667 	for (i = 15; i >= 0; i--)
668 		*data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
669 	if (ecc)
670 		*ecc = t4_read_reg64(adap, EDC_DATA(16));
671 #undef EDC_DATA
672 	return 0;
673 }
674 
675 /**
676  *	t4_mem_read - read EDC 0, EDC 1 or MC into buffer
677  *	@adap: the adapter
678  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
679  *	@addr: address within indicated memory type
680  *	@len: amount of memory to read
681  *	@buf: host memory buffer
682  *
683  *	Reads an [almost] arbitrary memory region in the firmware: the
684  *	firmware memory address, length and host buffer must be aligned on
685  *	32-bit boudaries.  The memory is returned as a raw byte sequence from
686  *	the firmware's memory.  If this memory contains data structures which
687  *	contain multi-byte integers, it's the callers responsibility to
688  *	perform appropriate byte order conversions.
689  */
690 int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
691 		__be32 *buf)
692 {
693 	u32 pos, start, end, offset;
694 	int ret;
695 
696 	/*
697 	 * Argument sanity checks ...
698 	 */
699 	if ((addr & 0x3) || (len & 0x3))
700 		return -EINVAL;
701 
702 	/*
703 	 * The underlaying EDC/MC read routines read 64 bytes at a time so we
704 	 * need to round down the start and round up the end.  We'll start
705 	 * copying out of the first line at (addr - start) a word at a time.
706 	 */
707 	start = rounddown2(addr, 64);
708 	end = roundup2(addr + len, 64);
709 	offset = (addr - start)/sizeof(__be32);
710 
711 	for (pos = start; pos < end; pos += 64, offset = 0) {
712 		__be32 data[16];
713 
714 		/*
715 		 * Read the chip's memory block and bail if there's an error.
716 		 */
717 		if ((mtype == MEM_MC) || (mtype == MEM_MC1))
718 			ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
719 		else
720 			ret = t4_edc_read(adap, mtype, pos, data, NULL);
721 		if (ret)
722 			return ret;
723 
724 		/*
725 		 * Copy the data into the caller's memory buffer.
726 		 */
727 		while (offset < 16 && len > 0) {
728 			*buf++ = data[offset++];
729 			len -= sizeof(__be32);
730 		}
731 	}
732 
733 	return 0;
734 }
735 
736 /*
737  * Return the specified PCI-E Configuration Space register from our Physical
738  * Function.  We try first via a Firmware LDST Command (if fw_attach != 0)
739  * since we prefer to let the firmware own all of these registers, but if that
740  * fails we go for it directly ourselves.
741  */
742 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach)
743 {
744 
745 	/*
746 	 * If fw_attach != 0, construct and send the Firmware LDST Command to
747 	 * retrieve the specified PCI-E Configuration Space register.
748 	 */
749 	if (drv_fw_attach != 0) {
750 		struct fw_ldst_cmd ldst_cmd;
751 		int ret;
752 
753 		memset(&ldst_cmd, 0, sizeof(ldst_cmd));
754 		ldst_cmd.op_to_addrspace =
755 			cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
756 				    F_FW_CMD_REQUEST |
757 				    F_FW_CMD_READ |
758 				    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
759 		ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
760 		ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1);
761 		ldst_cmd.u.pcie.ctrl_to_fn =
762 			(F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf));
763 		ldst_cmd.u.pcie.r = reg;
764 
765 		/*
766 		 * If the LDST Command succeeds, return the result, otherwise
767 		 * fall through to reading it directly ourselves ...
768 		 */
769 		ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
770 				 &ldst_cmd);
771 		if (ret == 0)
772 			return be32_to_cpu(ldst_cmd.u.pcie.data[0]);
773 
774 		CH_WARN(adap, "Firmware failed to return "
775 			"Configuration Space register %d, err = %d\n",
776 			reg, -ret);
777 	}
778 
779 	/*
780 	 * Read the desired Configuration Space register via the PCI-E
781 	 * Backdoor mechanism.
782 	 */
783 	return t4_hw_pci_read_cfg4(adap, reg);
784 }
785 
786 /**
787  *	t4_get_regs_len - return the size of the chips register set
788  *	@adapter: the adapter
789  *
790  *	Returns the size of the chip's BAR0 register space.
791  */
792 unsigned int t4_get_regs_len(struct adapter *adapter)
793 {
794 	unsigned int chip_version = chip_id(adapter);
795 
796 	switch (chip_version) {
797 	case CHELSIO_T4:
798 		if (adapter->flags & IS_VF)
799 			return FW_T4VF_REGMAP_SIZE;
800 		return T4_REGMAP_SIZE;
801 
802 	case CHELSIO_T5:
803 	case CHELSIO_T6:
804 		if (adapter->flags & IS_VF)
805 			return FW_T4VF_REGMAP_SIZE;
806 		return T5_REGMAP_SIZE;
807 	}
808 
809 	CH_ERR(adapter,
810 		"Unsupported chip version %d\n", chip_version);
811 	return 0;
812 }
813 
814 /**
815  *	t4_get_regs - read chip registers into provided buffer
816  *	@adap: the adapter
817  *	@buf: register buffer
818  *	@buf_size: size (in bytes) of register buffer
819  *
820  *	If the provided register buffer isn't large enough for the chip's
821  *	full register range, the register dump will be truncated to the
822  *	register buffer's size.
823  */
824 void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size)
825 {
826 	static const unsigned int t4_reg_ranges[] = {
827 		0x1008, 0x1108,
828 		0x1180, 0x1184,
829 		0x1190, 0x1194,
830 		0x11a0, 0x11a4,
831 		0x11b0, 0x11b4,
832 		0x11fc, 0x123c,
833 		0x1300, 0x173c,
834 		0x1800, 0x18fc,
835 		0x3000, 0x30d8,
836 		0x30e0, 0x30e4,
837 		0x30ec, 0x5910,
838 		0x5920, 0x5924,
839 		0x5960, 0x5960,
840 		0x5968, 0x5968,
841 		0x5970, 0x5970,
842 		0x5978, 0x5978,
843 		0x5980, 0x5980,
844 		0x5988, 0x5988,
845 		0x5990, 0x5990,
846 		0x5998, 0x5998,
847 		0x59a0, 0x59d4,
848 		0x5a00, 0x5ae0,
849 		0x5ae8, 0x5ae8,
850 		0x5af0, 0x5af0,
851 		0x5af8, 0x5af8,
852 		0x6000, 0x6098,
853 		0x6100, 0x6150,
854 		0x6200, 0x6208,
855 		0x6240, 0x6248,
856 		0x6280, 0x62b0,
857 		0x62c0, 0x6338,
858 		0x6370, 0x638c,
859 		0x6400, 0x643c,
860 		0x6500, 0x6524,
861 		0x6a00, 0x6a04,
862 		0x6a14, 0x6a38,
863 		0x6a60, 0x6a70,
864 		0x6a78, 0x6a78,
865 		0x6b00, 0x6b0c,
866 		0x6b1c, 0x6b84,
867 		0x6bf0, 0x6bf8,
868 		0x6c00, 0x6c0c,
869 		0x6c1c, 0x6c84,
870 		0x6cf0, 0x6cf8,
871 		0x6d00, 0x6d0c,
872 		0x6d1c, 0x6d84,
873 		0x6df0, 0x6df8,
874 		0x6e00, 0x6e0c,
875 		0x6e1c, 0x6e84,
876 		0x6ef0, 0x6ef8,
877 		0x6f00, 0x6f0c,
878 		0x6f1c, 0x6f84,
879 		0x6ff0, 0x6ff8,
880 		0x7000, 0x700c,
881 		0x701c, 0x7084,
882 		0x70f0, 0x70f8,
883 		0x7100, 0x710c,
884 		0x711c, 0x7184,
885 		0x71f0, 0x71f8,
886 		0x7200, 0x720c,
887 		0x721c, 0x7284,
888 		0x72f0, 0x72f8,
889 		0x7300, 0x730c,
890 		0x731c, 0x7384,
891 		0x73f0, 0x73f8,
892 		0x7400, 0x7450,
893 		0x7500, 0x7530,
894 		0x7600, 0x760c,
895 		0x7614, 0x761c,
896 		0x7680, 0x76cc,
897 		0x7700, 0x7798,
898 		0x77c0, 0x77fc,
899 		0x7900, 0x79fc,
900 		0x7b00, 0x7b58,
901 		0x7b60, 0x7b84,
902 		0x7b8c, 0x7c38,
903 		0x7d00, 0x7d38,
904 		0x7d40, 0x7d80,
905 		0x7d8c, 0x7ddc,
906 		0x7de4, 0x7e04,
907 		0x7e10, 0x7e1c,
908 		0x7e24, 0x7e38,
909 		0x7e40, 0x7e44,
910 		0x7e4c, 0x7e78,
911 		0x7e80, 0x7ea4,
912 		0x7eac, 0x7edc,
913 		0x7ee8, 0x7efc,
914 		0x8dc0, 0x8e04,
915 		0x8e10, 0x8e1c,
916 		0x8e30, 0x8e78,
917 		0x8ea0, 0x8eb8,
918 		0x8ec0, 0x8f6c,
919 		0x8fc0, 0x9008,
920 		0x9010, 0x9058,
921 		0x9060, 0x9060,
922 		0x9068, 0x9074,
923 		0x90fc, 0x90fc,
924 		0x9400, 0x9408,
925 		0x9410, 0x9458,
926 		0x9600, 0x9600,
927 		0x9608, 0x9638,
928 		0x9640, 0x96bc,
929 		0x9800, 0x9808,
930 		0x9820, 0x983c,
931 		0x9850, 0x9864,
932 		0x9c00, 0x9c6c,
933 		0x9c80, 0x9cec,
934 		0x9d00, 0x9d6c,
935 		0x9d80, 0x9dec,
936 		0x9e00, 0x9e6c,
937 		0x9e80, 0x9eec,
938 		0x9f00, 0x9f6c,
939 		0x9f80, 0x9fec,
940 		0xd004, 0xd004,
941 		0xd010, 0xd03c,
942 		0xdfc0, 0xdfe0,
943 		0xe000, 0xea7c,
944 		0xf000, 0x11110,
945 		0x11118, 0x11190,
946 		0x19040, 0x1906c,
947 		0x19078, 0x19080,
948 		0x1908c, 0x190e4,
949 		0x190f0, 0x190f8,
950 		0x19100, 0x19110,
951 		0x19120, 0x19124,
952 		0x19150, 0x19194,
953 		0x1919c, 0x191b0,
954 		0x191d0, 0x191e8,
955 		0x19238, 0x1924c,
956 		0x193f8, 0x1943c,
957 		0x1944c, 0x19474,
958 		0x19490, 0x194e0,
959 		0x194f0, 0x194f8,
960 		0x19800, 0x19c08,
961 		0x19c10, 0x19c90,
962 		0x19ca0, 0x19ce4,
963 		0x19cf0, 0x19d40,
964 		0x19d50, 0x19d94,
965 		0x19da0, 0x19de8,
966 		0x19df0, 0x19e40,
967 		0x19e50, 0x19e90,
968 		0x19ea0, 0x19f4c,
969 		0x1a000, 0x1a004,
970 		0x1a010, 0x1a06c,
971 		0x1a0b0, 0x1a0e4,
972 		0x1a0ec, 0x1a0f4,
973 		0x1a100, 0x1a108,
974 		0x1a114, 0x1a120,
975 		0x1a128, 0x1a130,
976 		0x1a138, 0x1a138,
977 		0x1a190, 0x1a1c4,
978 		0x1a1fc, 0x1a1fc,
979 		0x1e040, 0x1e04c,
980 		0x1e284, 0x1e28c,
981 		0x1e2c0, 0x1e2c0,
982 		0x1e2e0, 0x1e2e0,
983 		0x1e300, 0x1e384,
984 		0x1e3c0, 0x1e3c8,
985 		0x1e440, 0x1e44c,
986 		0x1e684, 0x1e68c,
987 		0x1e6c0, 0x1e6c0,
988 		0x1e6e0, 0x1e6e0,
989 		0x1e700, 0x1e784,
990 		0x1e7c0, 0x1e7c8,
991 		0x1e840, 0x1e84c,
992 		0x1ea84, 0x1ea8c,
993 		0x1eac0, 0x1eac0,
994 		0x1eae0, 0x1eae0,
995 		0x1eb00, 0x1eb84,
996 		0x1ebc0, 0x1ebc8,
997 		0x1ec40, 0x1ec4c,
998 		0x1ee84, 0x1ee8c,
999 		0x1eec0, 0x1eec0,
1000 		0x1eee0, 0x1eee0,
1001 		0x1ef00, 0x1ef84,
1002 		0x1efc0, 0x1efc8,
1003 		0x1f040, 0x1f04c,
1004 		0x1f284, 0x1f28c,
1005 		0x1f2c0, 0x1f2c0,
1006 		0x1f2e0, 0x1f2e0,
1007 		0x1f300, 0x1f384,
1008 		0x1f3c0, 0x1f3c8,
1009 		0x1f440, 0x1f44c,
1010 		0x1f684, 0x1f68c,
1011 		0x1f6c0, 0x1f6c0,
1012 		0x1f6e0, 0x1f6e0,
1013 		0x1f700, 0x1f784,
1014 		0x1f7c0, 0x1f7c8,
1015 		0x1f840, 0x1f84c,
1016 		0x1fa84, 0x1fa8c,
1017 		0x1fac0, 0x1fac0,
1018 		0x1fae0, 0x1fae0,
1019 		0x1fb00, 0x1fb84,
1020 		0x1fbc0, 0x1fbc8,
1021 		0x1fc40, 0x1fc4c,
1022 		0x1fe84, 0x1fe8c,
1023 		0x1fec0, 0x1fec0,
1024 		0x1fee0, 0x1fee0,
1025 		0x1ff00, 0x1ff84,
1026 		0x1ffc0, 0x1ffc8,
1027 		0x20000, 0x2002c,
1028 		0x20100, 0x2013c,
1029 		0x20190, 0x201a0,
1030 		0x201a8, 0x201b8,
1031 		0x201c4, 0x201c8,
1032 		0x20200, 0x20318,
1033 		0x20400, 0x204b4,
1034 		0x204c0, 0x20528,
1035 		0x20540, 0x20614,
1036 		0x21000, 0x21040,
1037 		0x2104c, 0x21060,
1038 		0x210c0, 0x210ec,
1039 		0x21200, 0x21268,
1040 		0x21270, 0x21284,
1041 		0x212fc, 0x21388,
1042 		0x21400, 0x21404,
1043 		0x21500, 0x21500,
1044 		0x21510, 0x21518,
1045 		0x2152c, 0x21530,
1046 		0x2153c, 0x2153c,
1047 		0x21550, 0x21554,
1048 		0x21600, 0x21600,
1049 		0x21608, 0x2161c,
1050 		0x21624, 0x21628,
1051 		0x21630, 0x21634,
1052 		0x2163c, 0x2163c,
1053 		0x21700, 0x2171c,
1054 		0x21780, 0x2178c,
1055 		0x21800, 0x21818,
1056 		0x21820, 0x21828,
1057 		0x21830, 0x21848,
1058 		0x21850, 0x21854,
1059 		0x21860, 0x21868,
1060 		0x21870, 0x21870,
1061 		0x21878, 0x21898,
1062 		0x218a0, 0x218a8,
1063 		0x218b0, 0x218c8,
1064 		0x218d0, 0x218d4,
1065 		0x218e0, 0x218e8,
1066 		0x218f0, 0x218f0,
1067 		0x218f8, 0x21a18,
1068 		0x21a20, 0x21a28,
1069 		0x21a30, 0x21a48,
1070 		0x21a50, 0x21a54,
1071 		0x21a60, 0x21a68,
1072 		0x21a70, 0x21a70,
1073 		0x21a78, 0x21a98,
1074 		0x21aa0, 0x21aa8,
1075 		0x21ab0, 0x21ac8,
1076 		0x21ad0, 0x21ad4,
1077 		0x21ae0, 0x21ae8,
1078 		0x21af0, 0x21af0,
1079 		0x21af8, 0x21c18,
1080 		0x21c20, 0x21c20,
1081 		0x21c28, 0x21c30,
1082 		0x21c38, 0x21c38,
1083 		0x21c80, 0x21c98,
1084 		0x21ca0, 0x21ca8,
1085 		0x21cb0, 0x21cc8,
1086 		0x21cd0, 0x21cd4,
1087 		0x21ce0, 0x21ce8,
1088 		0x21cf0, 0x21cf0,
1089 		0x21cf8, 0x21d7c,
1090 		0x21e00, 0x21e04,
1091 		0x22000, 0x2202c,
1092 		0x22100, 0x2213c,
1093 		0x22190, 0x221a0,
1094 		0x221a8, 0x221b8,
1095 		0x221c4, 0x221c8,
1096 		0x22200, 0x22318,
1097 		0x22400, 0x224b4,
1098 		0x224c0, 0x22528,
1099 		0x22540, 0x22614,
1100 		0x23000, 0x23040,
1101 		0x2304c, 0x23060,
1102 		0x230c0, 0x230ec,
1103 		0x23200, 0x23268,
1104 		0x23270, 0x23284,
1105 		0x232fc, 0x23388,
1106 		0x23400, 0x23404,
1107 		0x23500, 0x23500,
1108 		0x23510, 0x23518,
1109 		0x2352c, 0x23530,
1110 		0x2353c, 0x2353c,
1111 		0x23550, 0x23554,
1112 		0x23600, 0x23600,
1113 		0x23608, 0x2361c,
1114 		0x23624, 0x23628,
1115 		0x23630, 0x23634,
1116 		0x2363c, 0x2363c,
1117 		0x23700, 0x2371c,
1118 		0x23780, 0x2378c,
1119 		0x23800, 0x23818,
1120 		0x23820, 0x23828,
1121 		0x23830, 0x23848,
1122 		0x23850, 0x23854,
1123 		0x23860, 0x23868,
1124 		0x23870, 0x23870,
1125 		0x23878, 0x23898,
1126 		0x238a0, 0x238a8,
1127 		0x238b0, 0x238c8,
1128 		0x238d0, 0x238d4,
1129 		0x238e0, 0x238e8,
1130 		0x238f0, 0x238f0,
1131 		0x238f8, 0x23a18,
1132 		0x23a20, 0x23a28,
1133 		0x23a30, 0x23a48,
1134 		0x23a50, 0x23a54,
1135 		0x23a60, 0x23a68,
1136 		0x23a70, 0x23a70,
1137 		0x23a78, 0x23a98,
1138 		0x23aa0, 0x23aa8,
1139 		0x23ab0, 0x23ac8,
1140 		0x23ad0, 0x23ad4,
1141 		0x23ae0, 0x23ae8,
1142 		0x23af0, 0x23af0,
1143 		0x23af8, 0x23c18,
1144 		0x23c20, 0x23c20,
1145 		0x23c28, 0x23c30,
1146 		0x23c38, 0x23c38,
1147 		0x23c80, 0x23c98,
1148 		0x23ca0, 0x23ca8,
1149 		0x23cb0, 0x23cc8,
1150 		0x23cd0, 0x23cd4,
1151 		0x23ce0, 0x23ce8,
1152 		0x23cf0, 0x23cf0,
1153 		0x23cf8, 0x23d7c,
1154 		0x23e00, 0x23e04,
1155 		0x24000, 0x2402c,
1156 		0x24100, 0x2413c,
1157 		0x24190, 0x241a0,
1158 		0x241a8, 0x241b8,
1159 		0x241c4, 0x241c8,
1160 		0x24200, 0x24318,
1161 		0x24400, 0x244b4,
1162 		0x244c0, 0x24528,
1163 		0x24540, 0x24614,
1164 		0x25000, 0x25040,
1165 		0x2504c, 0x25060,
1166 		0x250c0, 0x250ec,
1167 		0x25200, 0x25268,
1168 		0x25270, 0x25284,
1169 		0x252fc, 0x25388,
1170 		0x25400, 0x25404,
1171 		0x25500, 0x25500,
1172 		0x25510, 0x25518,
1173 		0x2552c, 0x25530,
1174 		0x2553c, 0x2553c,
1175 		0x25550, 0x25554,
1176 		0x25600, 0x25600,
1177 		0x25608, 0x2561c,
1178 		0x25624, 0x25628,
1179 		0x25630, 0x25634,
1180 		0x2563c, 0x2563c,
1181 		0x25700, 0x2571c,
1182 		0x25780, 0x2578c,
1183 		0x25800, 0x25818,
1184 		0x25820, 0x25828,
1185 		0x25830, 0x25848,
1186 		0x25850, 0x25854,
1187 		0x25860, 0x25868,
1188 		0x25870, 0x25870,
1189 		0x25878, 0x25898,
1190 		0x258a0, 0x258a8,
1191 		0x258b0, 0x258c8,
1192 		0x258d0, 0x258d4,
1193 		0x258e0, 0x258e8,
1194 		0x258f0, 0x258f0,
1195 		0x258f8, 0x25a18,
1196 		0x25a20, 0x25a28,
1197 		0x25a30, 0x25a48,
1198 		0x25a50, 0x25a54,
1199 		0x25a60, 0x25a68,
1200 		0x25a70, 0x25a70,
1201 		0x25a78, 0x25a98,
1202 		0x25aa0, 0x25aa8,
1203 		0x25ab0, 0x25ac8,
1204 		0x25ad0, 0x25ad4,
1205 		0x25ae0, 0x25ae8,
1206 		0x25af0, 0x25af0,
1207 		0x25af8, 0x25c18,
1208 		0x25c20, 0x25c20,
1209 		0x25c28, 0x25c30,
1210 		0x25c38, 0x25c38,
1211 		0x25c80, 0x25c98,
1212 		0x25ca0, 0x25ca8,
1213 		0x25cb0, 0x25cc8,
1214 		0x25cd0, 0x25cd4,
1215 		0x25ce0, 0x25ce8,
1216 		0x25cf0, 0x25cf0,
1217 		0x25cf8, 0x25d7c,
1218 		0x25e00, 0x25e04,
1219 		0x26000, 0x2602c,
1220 		0x26100, 0x2613c,
1221 		0x26190, 0x261a0,
1222 		0x261a8, 0x261b8,
1223 		0x261c4, 0x261c8,
1224 		0x26200, 0x26318,
1225 		0x26400, 0x264b4,
1226 		0x264c0, 0x26528,
1227 		0x26540, 0x26614,
1228 		0x27000, 0x27040,
1229 		0x2704c, 0x27060,
1230 		0x270c0, 0x270ec,
1231 		0x27200, 0x27268,
1232 		0x27270, 0x27284,
1233 		0x272fc, 0x27388,
1234 		0x27400, 0x27404,
1235 		0x27500, 0x27500,
1236 		0x27510, 0x27518,
1237 		0x2752c, 0x27530,
1238 		0x2753c, 0x2753c,
1239 		0x27550, 0x27554,
1240 		0x27600, 0x27600,
1241 		0x27608, 0x2761c,
1242 		0x27624, 0x27628,
1243 		0x27630, 0x27634,
1244 		0x2763c, 0x2763c,
1245 		0x27700, 0x2771c,
1246 		0x27780, 0x2778c,
1247 		0x27800, 0x27818,
1248 		0x27820, 0x27828,
1249 		0x27830, 0x27848,
1250 		0x27850, 0x27854,
1251 		0x27860, 0x27868,
1252 		0x27870, 0x27870,
1253 		0x27878, 0x27898,
1254 		0x278a0, 0x278a8,
1255 		0x278b0, 0x278c8,
1256 		0x278d0, 0x278d4,
1257 		0x278e0, 0x278e8,
1258 		0x278f0, 0x278f0,
1259 		0x278f8, 0x27a18,
1260 		0x27a20, 0x27a28,
1261 		0x27a30, 0x27a48,
1262 		0x27a50, 0x27a54,
1263 		0x27a60, 0x27a68,
1264 		0x27a70, 0x27a70,
1265 		0x27a78, 0x27a98,
1266 		0x27aa0, 0x27aa8,
1267 		0x27ab0, 0x27ac8,
1268 		0x27ad0, 0x27ad4,
1269 		0x27ae0, 0x27ae8,
1270 		0x27af0, 0x27af0,
1271 		0x27af8, 0x27c18,
1272 		0x27c20, 0x27c20,
1273 		0x27c28, 0x27c30,
1274 		0x27c38, 0x27c38,
1275 		0x27c80, 0x27c98,
1276 		0x27ca0, 0x27ca8,
1277 		0x27cb0, 0x27cc8,
1278 		0x27cd0, 0x27cd4,
1279 		0x27ce0, 0x27ce8,
1280 		0x27cf0, 0x27cf0,
1281 		0x27cf8, 0x27d7c,
1282 		0x27e00, 0x27e04,
1283 	};
1284 
1285 	static const unsigned int t4vf_reg_ranges[] = {
1286 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
1287 		VF_MPS_REG(A_MPS_VF_CTL),
1288 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
1289 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI),
1290 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
1291 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
1292 		FW_T4VF_MBDATA_BASE_ADDR,
1293 		FW_T4VF_MBDATA_BASE_ADDR +
1294 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
1295 	};
1296 
1297 	static const unsigned int t5_reg_ranges[] = {
1298 		0x1008, 0x10c0,
1299 		0x10cc, 0x10f8,
1300 		0x1100, 0x1100,
1301 		0x110c, 0x1148,
1302 		0x1180, 0x1184,
1303 		0x1190, 0x1194,
1304 		0x11a0, 0x11a4,
1305 		0x11b0, 0x11b4,
1306 		0x11fc, 0x123c,
1307 		0x1280, 0x173c,
1308 		0x1800, 0x18fc,
1309 		0x3000, 0x3028,
1310 		0x3060, 0x30b0,
1311 		0x30b8, 0x30d8,
1312 		0x30e0, 0x30fc,
1313 		0x3140, 0x357c,
1314 		0x35a8, 0x35cc,
1315 		0x35ec, 0x35ec,
1316 		0x3600, 0x5624,
1317 		0x56cc, 0x56ec,
1318 		0x56f4, 0x5720,
1319 		0x5728, 0x575c,
1320 		0x580c, 0x5814,
1321 		0x5890, 0x589c,
1322 		0x58a4, 0x58ac,
1323 		0x58b8, 0x58bc,
1324 		0x5940, 0x59c8,
1325 		0x59d0, 0x59dc,
1326 		0x59fc, 0x5a18,
1327 		0x5a60, 0x5a70,
1328 		0x5a80, 0x5a9c,
1329 		0x5b94, 0x5bfc,
1330 		0x6000, 0x6020,
1331 		0x6028, 0x6040,
1332 		0x6058, 0x609c,
1333 		0x60a8, 0x614c,
1334 		0x7700, 0x7798,
1335 		0x77c0, 0x78fc,
1336 		0x7b00, 0x7b58,
1337 		0x7b60, 0x7b84,
1338 		0x7b8c, 0x7c54,
1339 		0x7d00, 0x7d38,
1340 		0x7d40, 0x7d80,
1341 		0x7d8c, 0x7ddc,
1342 		0x7de4, 0x7e04,
1343 		0x7e10, 0x7e1c,
1344 		0x7e24, 0x7e38,
1345 		0x7e40, 0x7e44,
1346 		0x7e4c, 0x7e78,
1347 		0x7e80, 0x7edc,
1348 		0x7ee8, 0x7efc,
1349 		0x8dc0, 0x8de0,
1350 		0x8df8, 0x8e04,
1351 		0x8e10, 0x8e84,
1352 		0x8ea0, 0x8f84,
1353 		0x8fc0, 0x9058,
1354 		0x9060, 0x9060,
1355 		0x9068, 0x90f8,
1356 		0x9400, 0x9408,
1357 		0x9410, 0x9470,
1358 		0x9600, 0x9600,
1359 		0x9608, 0x9638,
1360 		0x9640, 0x96f4,
1361 		0x9800, 0x9808,
1362 		0x9820, 0x983c,
1363 		0x9850, 0x9864,
1364 		0x9c00, 0x9c6c,
1365 		0x9c80, 0x9cec,
1366 		0x9d00, 0x9d6c,
1367 		0x9d80, 0x9dec,
1368 		0x9e00, 0x9e6c,
1369 		0x9e80, 0x9eec,
1370 		0x9f00, 0x9f6c,
1371 		0x9f80, 0xa020,
1372 		0xd004, 0xd004,
1373 		0xd010, 0xd03c,
1374 		0xdfc0, 0xdfe0,
1375 		0xe000, 0x1106c,
1376 		0x11074, 0x11088,
1377 		0x1109c, 0x1117c,
1378 		0x11190, 0x11204,
1379 		0x19040, 0x1906c,
1380 		0x19078, 0x19080,
1381 		0x1908c, 0x190e8,
1382 		0x190f0, 0x190f8,
1383 		0x19100, 0x19110,
1384 		0x19120, 0x19124,
1385 		0x19150, 0x19194,
1386 		0x1919c, 0x191b0,
1387 		0x191d0, 0x191e8,
1388 		0x19238, 0x19290,
1389 		0x193f8, 0x19428,
1390 		0x19430, 0x19444,
1391 		0x1944c, 0x1946c,
1392 		0x19474, 0x19474,
1393 		0x19490, 0x194cc,
1394 		0x194f0, 0x194f8,
1395 		0x19c00, 0x19c08,
1396 		0x19c10, 0x19c60,
1397 		0x19c94, 0x19ce4,
1398 		0x19cf0, 0x19d40,
1399 		0x19d50, 0x19d94,
1400 		0x19da0, 0x19de8,
1401 		0x19df0, 0x19e10,
1402 		0x19e50, 0x19e90,
1403 		0x19ea0, 0x19f24,
1404 		0x19f34, 0x19f34,
1405 		0x19f40, 0x19f50,
1406 		0x19f90, 0x19fb4,
1407 		0x19fc4, 0x19fe4,
1408 		0x1a000, 0x1a004,
1409 		0x1a010, 0x1a06c,
1410 		0x1a0b0, 0x1a0e4,
1411 		0x1a0ec, 0x1a0f8,
1412 		0x1a100, 0x1a108,
1413 		0x1a114, 0x1a120,
1414 		0x1a128, 0x1a130,
1415 		0x1a138, 0x1a138,
1416 		0x1a190, 0x1a1c4,
1417 		0x1a1fc, 0x1a1fc,
1418 		0x1e008, 0x1e00c,
1419 		0x1e040, 0x1e044,
1420 		0x1e04c, 0x1e04c,
1421 		0x1e284, 0x1e290,
1422 		0x1e2c0, 0x1e2c0,
1423 		0x1e2e0, 0x1e2e0,
1424 		0x1e300, 0x1e384,
1425 		0x1e3c0, 0x1e3c8,
1426 		0x1e408, 0x1e40c,
1427 		0x1e440, 0x1e444,
1428 		0x1e44c, 0x1e44c,
1429 		0x1e684, 0x1e690,
1430 		0x1e6c0, 0x1e6c0,
1431 		0x1e6e0, 0x1e6e0,
1432 		0x1e700, 0x1e784,
1433 		0x1e7c0, 0x1e7c8,
1434 		0x1e808, 0x1e80c,
1435 		0x1e840, 0x1e844,
1436 		0x1e84c, 0x1e84c,
1437 		0x1ea84, 0x1ea90,
1438 		0x1eac0, 0x1eac0,
1439 		0x1eae0, 0x1eae0,
1440 		0x1eb00, 0x1eb84,
1441 		0x1ebc0, 0x1ebc8,
1442 		0x1ec08, 0x1ec0c,
1443 		0x1ec40, 0x1ec44,
1444 		0x1ec4c, 0x1ec4c,
1445 		0x1ee84, 0x1ee90,
1446 		0x1eec0, 0x1eec0,
1447 		0x1eee0, 0x1eee0,
1448 		0x1ef00, 0x1ef84,
1449 		0x1efc0, 0x1efc8,
1450 		0x1f008, 0x1f00c,
1451 		0x1f040, 0x1f044,
1452 		0x1f04c, 0x1f04c,
1453 		0x1f284, 0x1f290,
1454 		0x1f2c0, 0x1f2c0,
1455 		0x1f2e0, 0x1f2e0,
1456 		0x1f300, 0x1f384,
1457 		0x1f3c0, 0x1f3c8,
1458 		0x1f408, 0x1f40c,
1459 		0x1f440, 0x1f444,
1460 		0x1f44c, 0x1f44c,
1461 		0x1f684, 0x1f690,
1462 		0x1f6c0, 0x1f6c0,
1463 		0x1f6e0, 0x1f6e0,
1464 		0x1f700, 0x1f784,
1465 		0x1f7c0, 0x1f7c8,
1466 		0x1f808, 0x1f80c,
1467 		0x1f840, 0x1f844,
1468 		0x1f84c, 0x1f84c,
1469 		0x1fa84, 0x1fa90,
1470 		0x1fac0, 0x1fac0,
1471 		0x1fae0, 0x1fae0,
1472 		0x1fb00, 0x1fb84,
1473 		0x1fbc0, 0x1fbc8,
1474 		0x1fc08, 0x1fc0c,
1475 		0x1fc40, 0x1fc44,
1476 		0x1fc4c, 0x1fc4c,
1477 		0x1fe84, 0x1fe90,
1478 		0x1fec0, 0x1fec0,
1479 		0x1fee0, 0x1fee0,
1480 		0x1ff00, 0x1ff84,
1481 		0x1ffc0, 0x1ffc8,
1482 		0x30000, 0x30030,
1483 		0x30100, 0x30144,
1484 		0x30190, 0x301a0,
1485 		0x301a8, 0x301b8,
1486 		0x301c4, 0x301c8,
1487 		0x301d0, 0x301d0,
1488 		0x30200, 0x30318,
1489 		0x30400, 0x304b4,
1490 		0x304c0, 0x3052c,
1491 		0x30540, 0x3061c,
1492 		0x30800, 0x30828,
1493 		0x30834, 0x30834,
1494 		0x308c0, 0x30908,
1495 		0x30910, 0x309ac,
1496 		0x30a00, 0x30a14,
1497 		0x30a1c, 0x30a2c,
1498 		0x30a44, 0x30a50,
1499 		0x30a74, 0x30a74,
1500 		0x30a7c, 0x30afc,
1501 		0x30b08, 0x30c24,
1502 		0x30d00, 0x30d00,
1503 		0x30d08, 0x30d14,
1504 		0x30d1c, 0x30d20,
1505 		0x30d3c, 0x30d3c,
1506 		0x30d48, 0x30d50,
1507 		0x31200, 0x3120c,
1508 		0x31220, 0x31220,
1509 		0x31240, 0x31240,
1510 		0x31600, 0x3160c,
1511 		0x31a00, 0x31a1c,
1512 		0x31e00, 0x31e20,
1513 		0x31e38, 0x31e3c,
1514 		0x31e80, 0x31e80,
1515 		0x31e88, 0x31ea8,
1516 		0x31eb0, 0x31eb4,
1517 		0x31ec8, 0x31ed4,
1518 		0x31fb8, 0x32004,
1519 		0x32200, 0x32200,
1520 		0x32208, 0x32240,
1521 		0x32248, 0x32280,
1522 		0x32288, 0x322c0,
1523 		0x322c8, 0x322fc,
1524 		0x32600, 0x32630,
1525 		0x32a00, 0x32abc,
1526 		0x32b00, 0x32b10,
1527 		0x32b20, 0x32b30,
1528 		0x32b40, 0x32b50,
1529 		0x32b60, 0x32b70,
1530 		0x33000, 0x33028,
1531 		0x33030, 0x33048,
1532 		0x33060, 0x33068,
1533 		0x33070, 0x3309c,
1534 		0x330f0, 0x33128,
1535 		0x33130, 0x33148,
1536 		0x33160, 0x33168,
1537 		0x33170, 0x3319c,
1538 		0x331f0, 0x33238,
1539 		0x33240, 0x33240,
1540 		0x33248, 0x33250,
1541 		0x3325c, 0x33264,
1542 		0x33270, 0x332b8,
1543 		0x332c0, 0x332e4,
1544 		0x332f8, 0x33338,
1545 		0x33340, 0x33340,
1546 		0x33348, 0x33350,
1547 		0x3335c, 0x33364,
1548 		0x33370, 0x333b8,
1549 		0x333c0, 0x333e4,
1550 		0x333f8, 0x33428,
1551 		0x33430, 0x33448,
1552 		0x33460, 0x33468,
1553 		0x33470, 0x3349c,
1554 		0x334f0, 0x33528,
1555 		0x33530, 0x33548,
1556 		0x33560, 0x33568,
1557 		0x33570, 0x3359c,
1558 		0x335f0, 0x33638,
1559 		0x33640, 0x33640,
1560 		0x33648, 0x33650,
1561 		0x3365c, 0x33664,
1562 		0x33670, 0x336b8,
1563 		0x336c0, 0x336e4,
1564 		0x336f8, 0x33738,
1565 		0x33740, 0x33740,
1566 		0x33748, 0x33750,
1567 		0x3375c, 0x33764,
1568 		0x33770, 0x337b8,
1569 		0x337c0, 0x337e4,
1570 		0x337f8, 0x337fc,
1571 		0x33814, 0x33814,
1572 		0x3382c, 0x3382c,
1573 		0x33880, 0x3388c,
1574 		0x338e8, 0x338ec,
1575 		0x33900, 0x33928,
1576 		0x33930, 0x33948,
1577 		0x33960, 0x33968,
1578 		0x33970, 0x3399c,
1579 		0x339f0, 0x33a38,
1580 		0x33a40, 0x33a40,
1581 		0x33a48, 0x33a50,
1582 		0x33a5c, 0x33a64,
1583 		0x33a70, 0x33ab8,
1584 		0x33ac0, 0x33ae4,
1585 		0x33af8, 0x33b10,
1586 		0x33b28, 0x33b28,
1587 		0x33b3c, 0x33b50,
1588 		0x33bf0, 0x33c10,
1589 		0x33c28, 0x33c28,
1590 		0x33c3c, 0x33c50,
1591 		0x33cf0, 0x33cfc,
1592 		0x34000, 0x34030,
1593 		0x34100, 0x34144,
1594 		0x34190, 0x341a0,
1595 		0x341a8, 0x341b8,
1596 		0x341c4, 0x341c8,
1597 		0x341d0, 0x341d0,
1598 		0x34200, 0x34318,
1599 		0x34400, 0x344b4,
1600 		0x344c0, 0x3452c,
1601 		0x34540, 0x3461c,
1602 		0x34800, 0x34828,
1603 		0x34834, 0x34834,
1604 		0x348c0, 0x34908,
1605 		0x34910, 0x349ac,
1606 		0x34a00, 0x34a14,
1607 		0x34a1c, 0x34a2c,
1608 		0x34a44, 0x34a50,
1609 		0x34a74, 0x34a74,
1610 		0x34a7c, 0x34afc,
1611 		0x34b08, 0x34c24,
1612 		0x34d00, 0x34d00,
1613 		0x34d08, 0x34d14,
1614 		0x34d1c, 0x34d20,
1615 		0x34d3c, 0x34d3c,
1616 		0x34d48, 0x34d50,
1617 		0x35200, 0x3520c,
1618 		0x35220, 0x35220,
1619 		0x35240, 0x35240,
1620 		0x35600, 0x3560c,
1621 		0x35a00, 0x35a1c,
1622 		0x35e00, 0x35e20,
1623 		0x35e38, 0x35e3c,
1624 		0x35e80, 0x35e80,
1625 		0x35e88, 0x35ea8,
1626 		0x35eb0, 0x35eb4,
1627 		0x35ec8, 0x35ed4,
1628 		0x35fb8, 0x36004,
1629 		0x36200, 0x36200,
1630 		0x36208, 0x36240,
1631 		0x36248, 0x36280,
1632 		0x36288, 0x362c0,
1633 		0x362c8, 0x362fc,
1634 		0x36600, 0x36630,
1635 		0x36a00, 0x36abc,
1636 		0x36b00, 0x36b10,
1637 		0x36b20, 0x36b30,
1638 		0x36b40, 0x36b50,
1639 		0x36b60, 0x36b70,
1640 		0x37000, 0x37028,
1641 		0x37030, 0x37048,
1642 		0x37060, 0x37068,
1643 		0x37070, 0x3709c,
1644 		0x370f0, 0x37128,
1645 		0x37130, 0x37148,
1646 		0x37160, 0x37168,
1647 		0x37170, 0x3719c,
1648 		0x371f0, 0x37238,
1649 		0x37240, 0x37240,
1650 		0x37248, 0x37250,
1651 		0x3725c, 0x37264,
1652 		0x37270, 0x372b8,
1653 		0x372c0, 0x372e4,
1654 		0x372f8, 0x37338,
1655 		0x37340, 0x37340,
1656 		0x37348, 0x37350,
1657 		0x3735c, 0x37364,
1658 		0x37370, 0x373b8,
1659 		0x373c0, 0x373e4,
1660 		0x373f8, 0x37428,
1661 		0x37430, 0x37448,
1662 		0x37460, 0x37468,
1663 		0x37470, 0x3749c,
1664 		0x374f0, 0x37528,
1665 		0x37530, 0x37548,
1666 		0x37560, 0x37568,
1667 		0x37570, 0x3759c,
1668 		0x375f0, 0x37638,
1669 		0x37640, 0x37640,
1670 		0x37648, 0x37650,
1671 		0x3765c, 0x37664,
1672 		0x37670, 0x376b8,
1673 		0x376c0, 0x376e4,
1674 		0x376f8, 0x37738,
1675 		0x37740, 0x37740,
1676 		0x37748, 0x37750,
1677 		0x3775c, 0x37764,
1678 		0x37770, 0x377b8,
1679 		0x377c0, 0x377e4,
1680 		0x377f8, 0x377fc,
1681 		0x37814, 0x37814,
1682 		0x3782c, 0x3782c,
1683 		0x37880, 0x3788c,
1684 		0x378e8, 0x378ec,
1685 		0x37900, 0x37928,
1686 		0x37930, 0x37948,
1687 		0x37960, 0x37968,
1688 		0x37970, 0x3799c,
1689 		0x379f0, 0x37a38,
1690 		0x37a40, 0x37a40,
1691 		0x37a48, 0x37a50,
1692 		0x37a5c, 0x37a64,
1693 		0x37a70, 0x37ab8,
1694 		0x37ac0, 0x37ae4,
1695 		0x37af8, 0x37b10,
1696 		0x37b28, 0x37b28,
1697 		0x37b3c, 0x37b50,
1698 		0x37bf0, 0x37c10,
1699 		0x37c28, 0x37c28,
1700 		0x37c3c, 0x37c50,
1701 		0x37cf0, 0x37cfc,
1702 		0x38000, 0x38030,
1703 		0x38100, 0x38144,
1704 		0x38190, 0x381a0,
1705 		0x381a8, 0x381b8,
1706 		0x381c4, 0x381c8,
1707 		0x381d0, 0x381d0,
1708 		0x38200, 0x38318,
1709 		0x38400, 0x384b4,
1710 		0x384c0, 0x3852c,
1711 		0x38540, 0x3861c,
1712 		0x38800, 0x38828,
1713 		0x38834, 0x38834,
1714 		0x388c0, 0x38908,
1715 		0x38910, 0x389ac,
1716 		0x38a00, 0x38a14,
1717 		0x38a1c, 0x38a2c,
1718 		0x38a44, 0x38a50,
1719 		0x38a74, 0x38a74,
1720 		0x38a7c, 0x38afc,
1721 		0x38b08, 0x38c24,
1722 		0x38d00, 0x38d00,
1723 		0x38d08, 0x38d14,
1724 		0x38d1c, 0x38d20,
1725 		0x38d3c, 0x38d3c,
1726 		0x38d48, 0x38d50,
1727 		0x39200, 0x3920c,
1728 		0x39220, 0x39220,
1729 		0x39240, 0x39240,
1730 		0x39600, 0x3960c,
1731 		0x39a00, 0x39a1c,
1732 		0x39e00, 0x39e20,
1733 		0x39e38, 0x39e3c,
1734 		0x39e80, 0x39e80,
1735 		0x39e88, 0x39ea8,
1736 		0x39eb0, 0x39eb4,
1737 		0x39ec8, 0x39ed4,
1738 		0x39fb8, 0x3a004,
1739 		0x3a200, 0x3a200,
1740 		0x3a208, 0x3a240,
1741 		0x3a248, 0x3a280,
1742 		0x3a288, 0x3a2c0,
1743 		0x3a2c8, 0x3a2fc,
1744 		0x3a600, 0x3a630,
1745 		0x3aa00, 0x3aabc,
1746 		0x3ab00, 0x3ab10,
1747 		0x3ab20, 0x3ab30,
1748 		0x3ab40, 0x3ab50,
1749 		0x3ab60, 0x3ab70,
1750 		0x3b000, 0x3b028,
1751 		0x3b030, 0x3b048,
1752 		0x3b060, 0x3b068,
1753 		0x3b070, 0x3b09c,
1754 		0x3b0f0, 0x3b128,
1755 		0x3b130, 0x3b148,
1756 		0x3b160, 0x3b168,
1757 		0x3b170, 0x3b19c,
1758 		0x3b1f0, 0x3b238,
1759 		0x3b240, 0x3b240,
1760 		0x3b248, 0x3b250,
1761 		0x3b25c, 0x3b264,
1762 		0x3b270, 0x3b2b8,
1763 		0x3b2c0, 0x3b2e4,
1764 		0x3b2f8, 0x3b338,
1765 		0x3b340, 0x3b340,
1766 		0x3b348, 0x3b350,
1767 		0x3b35c, 0x3b364,
1768 		0x3b370, 0x3b3b8,
1769 		0x3b3c0, 0x3b3e4,
1770 		0x3b3f8, 0x3b428,
1771 		0x3b430, 0x3b448,
1772 		0x3b460, 0x3b468,
1773 		0x3b470, 0x3b49c,
1774 		0x3b4f0, 0x3b528,
1775 		0x3b530, 0x3b548,
1776 		0x3b560, 0x3b568,
1777 		0x3b570, 0x3b59c,
1778 		0x3b5f0, 0x3b638,
1779 		0x3b640, 0x3b640,
1780 		0x3b648, 0x3b650,
1781 		0x3b65c, 0x3b664,
1782 		0x3b670, 0x3b6b8,
1783 		0x3b6c0, 0x3b6e4,
1784 		0x3b6f8, 0x3b738,
1785 		0x3b740, 0x3b740,
1786 		0x3b748, 0x3b750,
1787 		0x3b75c, 0x3b764,
1788 		0x3b770, 0x3b7b8,
1789 		0x3b7c0, 0x3b7e4,
1790 		0x3b7f8, 0x3b7fc,
1791 		0x3b814, 0x3b814,
1792 		0x3b82c, 0x3b82c,
1793 		0x3b880, 0x3b88c,
1794 		0x3b8e8, 0x3b8ec,
1795 		0x3b900, 0x3b928,
1796 		0x3b930, 0x3b948,
1797 		0x3b960, 0x3b968,
1798 		0x3b970, 0x3b99c,
1799 		0x3b9f0, 0x3ba38,
1800 		0x3ba40, 0x3ba40,
1801 		0x3ba48, 0x3ba50,
1802 		0x3ba5c, 0x3ba64,
1803 		0x3ba70, 0x3bab8,
1804 		0x3bac0, 0x3bae4,
1805 		0x3baf8, 0x3bb10,
1806 		0x3bb28, 0x3bb28,
1807 		0x3bb3c, 0x3bb50,
1808 		0x3bbf0, 0x3bc10,
1809 		0x3bc28, 0x3bc28,
1810 		0x3bc3c, 0x3bc50,
1811 		0x3bcf0, 0x3bcfc,
1812 		0x3c000, 0x3c030,
1813 		0x3c100, 0x3c144,
1814 		0x3c190, 0x3c1a0,
1815 		0x3c1a8, 0x3c1b8,
1816 		0x3c1c4, 0x3c1c8,
1817 		0x3c1d0, 0x3c1d0,
1818 		0x3c200, 0x3c318,
1819 		0x3c400, 0x3c4b4,
1820 		0x3c4c0, 0x3c52c,
1821 		0x3c540, 0x3c61c,
1822 		0x3c800, 0x3c828,
1823 		0x3c834, 0x3c834,
1824 		0x3c8c0, 0x3c908,
1825 		0x3c910, 0x3c9ac,
1826 		0x3ca00, 0x3ca14,
1827 		0x3ca1c, 0x3ca2c,
1828 		0x3ca44, 0x3ca50,
1829 		0x3ca74, 0x3ca74,
1830 		0x3ca7c, 0x3cafc,
1831 		0x3cb08, 0x3cc24,
1832 		0x3cd00, 0x3cd00,
1833 		0x3cd08, 0x3cd14,
1834 		0x3cd1c, 0x3cd20,
1835 		0x3cd3c, 0x3cd3c,
1836 		0x3cd48, 0x3cd50,
1837 		0x3d200, 0x3d20c,
1838 		0x3d220, 0x3d220,
1839 		0x3d240, 0x3d240,
1840 		0x3d600, 0x3d60c,
1841 		0x3da00, 0x3da1c,
1842 		0x3de00, 0x3de20,
1843 		0x3de38, 0x3de3c,
1844 		0x3de80, 0x3de80,
1845 		0x3de88, 0x3dea8,
1846 		0x3deb0, 0x3deb4,
1847 		0x3dec8, 0x3ded4,
1848 		0x3dfb8, 0x3e004,
1849 		0x3e200, 0x3e200,
1850 		0x3e208, 0x3e240,
1851 		0x3e248, 0x3e280,
1852 		0x3e288, 0x3e2c0,
1853 		0x3e2c8, 0x3e2fc,
1854 		0x3e600, 0x3e630,
1855 		0x3ea00, 0x3eabc,
1856 		0x3eb00, 0x3eb10,
1857 		0x3eb20, 0x3eb30,
1858 		0x3eb40, 0x3eb50,
1859 		0x3eb60, 0x3eb70,
1860 		0x3f000, 0x3f028,
1861 		0x3f030, 0x3f048,
1862 		0x3f060, 0x3f068,
1863 		0x3f070, 0x3f09c,
1864 		0x3f0f0, 0x3f128,
1865 		0x3f130, 0x3f148,
1866 		0x3f160, 0x3f168,
1867 		0x3f170, 0x3f19c,
1868 		0x3f1f0, 0x3f238,
1869 		0x3f240, 0x3f240,
1870 		0x3f248, 0x3f250,
1871 		0x3f25c, 0x3f264,
1872 		0x3f270, 0x3f2b8,
1873 		0x3f2c0, 0x3f2e4,
1874 		0x3f2f8, 0x3f338,
1875 		0x3f340, 0x3f340,
1876 		0x3f348, 0x3f350,
1877 		0x3f35c, 0x3f364,
1878 		0x3f370, 0x3f3b8,
1879 		0x3f3c0, 0x3f3e4,
1880 		0x3f3f8, 0x3f428,
1881 		0x3f430, 0x3f448,
1882 		0x3f460, 0x3f468,
1883 		0x3f470, 0x3f49c,
1884 		0x3f4f0, 0x3f528,
1885 		0x3f530, 0x3f548,
1886 		0x3f560, 0x3f568,
1887 		0x3f570, 0x3f59c,
1888 		0x3f5f0, 0x3f638,
1889 		0x3f640, 0x3f640,
1890 		0x3f648, 0x3f650,
1891 		0x3f65c, 0x3f664,
1892 		0x3f670, 0x3f6b8,
1893 		0x3f6c0, 0x3f6e4,
1894 		0x3f6f8, 0x3f738,
1895 		0x3f740, 0x3f740,
1896 		0x3f748, 0x3f750,
1897 		0x3f75c, 0x3f764,
1898 		0x3f770, 0x3f7b8,
1899 		0x3f7c0, 0x3f7e4,
1900 		0x3f7f8, 0x3f7fc,
1901 		0x3f814, 0x3f814,
1902 		0x3f82c, 0x3f82c,
1903 		0x3f880, 0x3f88c,
1904 		0x3f8e8, 0x3f8ec,
1905 		0x3f900, 0x3f928,
1906 		0x3f930, 0x3f948,
1907 		0x3f960, 0x3f968,
1908 		0x3f970, 0x3f99c,
1909 		0x3f9f0, 0x3fa38,
1910 		0x3fa40, 0x3fa40,
1911 		0x3fa48, 0x3fa50,
1912 		0x3fa5c, 0x3fa64,
1913 		0x3fa70, 0x3fab8,
1914 		0x3fac0, 0x3fae4,
1915 		0x3faf8, 0x3fb10,
1916 		0x3fb28, 0x3fb28,
1917 		0x3fb3c, 0x3fb50,
1918 		0x3fbf0, 0x3fc10,
1919 		0x3fc28, 0x3fc28,
1920 		0x3fc3c, 0x3fc50,
1921 		0x3fcf0, 0x3fcfc,
1922 		0x40000, 0x4000c,
1923 		0x40040, 0x40050,
1924 		0x40060, 0x40068,
1925 		0x4007c, 0x4008c,
1926 		0x40094, 0x400b0,
1927 		0x400c0, 0x40144,
1928 		0x40180, 0x4018c,
1929 		0x40200, 0x40254,
1930 		0x40260, 0x40264,
1931 		0x40270, 0x40288,
1932 		0x40290, 0x40298,
1933 		0x402ac, 0x402c8,
1934 		0x402d0, 0x402e0,
1935 		0x402f0, 0x402f0,
1936 		0x40300, 0x4033c,
1937 		0x403f8, 0x403fc,
1938 		0x41304, 0x413c4,
1939 		0x41400, 0x4140c,
1940 		0x41414, 0x4141c,
1941 		0x41480, 0x414d0,
1942 		0x44000, 0x44054,
1943 		0x4405c, 0x44078,
1944 		0x440c0, 0x44174,
1945 		0x44180, 0x441ac,
1946 		0x441b4, 0x441b8,
1947 		0x441c0, 0x44254,
1948 		0x4425c, 0x44278,
1949 		0x442c0, 0x44374,
1950 		0x44380, 0x443ac,
1951 		0x443b4, 0x443b8,
1952 		0x443c0, 0x44454,
1953 		0x4445c, 0x44478,
1954 		0x444c0, 0x44574,
1955 		0x44580, 0x445ac,
1956 		0x445b4, 0x445b8,
1957 		0x445c0, 0x44654,
1958 		0x4465c, 0x44678,
1959 		0x446c0, 0x44774,
1960 		0x44780, 0x447ac,
1961 		0x447b4, 0x447b8,
1962 		0x447c0, 0x44854,
1963 		0x4485c, 0x44878,
1964 		0x448c0, 0x44974,
1965 		0x44980, 0x449ac,
1966 		0x449b4, 0x449b8,
1967 		0x449c0, 0x449fc,
1968 		0x45000, 0x45004,
1969 		0x45010, 0x45030,
1970 		0x45040, 0x45060,
1971 		0x45068, 0x45068,
1972 		0x45080, 0x45084,
1973 		0x450a0, 0x450b0,
1974 		0x45200, 0x45204,
1975 		0x45210, 0x45230,
1976 		0x45240, 0x45260,
1977 		0x45268, 0x45268,
1978 		0x45280, 0x45284,
1979 		0x452a0, 0x452b0,
1980 		0x460c0, 0x460e4,
1981 		0x47000, 0x4703c,
1982 		0x47044, 0x4708c,
1983 		0x47200, 0x47250,
1984 		0x47400, 0x47408,
1985 		0x47414, 0x47420,
1986 		0x47600, 0x47618,
1987 		0x47800, 0x47814,
1988 		0x48000, 0x4800c,
1989 		0x48040, 0x48050,
1990 		0x48060, 0x48068,
1991 		0x4807c, 0x4808c,
1992 		0x48094, 0x480b0,
1993 		0x480c0, 0x48144,
1994 		0x48180, 0x4818c,
1995 		0x48200, 0x48254,
1996 		0x48260, 0x48264,
1997 		0x48270, 0x48288,
1998 		0x48290, 0x48298,
1999 		0x482ac, 0x482c8,
2000 		0x482d0, 0x482e0,
2001 		0x482f0, 0x482f0,
2002 		0x48300, 0x4833c,
2003 		0x483f8, 0x483fc,
2004 		0x49304, 0x493c4,
2005 		0x49400, 0x4940c,
2006 		0x49414, 0x4941c,
2007 		0x49480, 0x494d0,
2008 		0x4c000, 0x4c054,
2009 		0x4c05c, 0x4c078,
2010 		0x4c0c0, 0x4c174,
2011 		0x4c180, 0x4c1ac,
2012 		0x4c1b4, 0x4c1b8,
2013 		0x4c1c0, 0x4c254,
2014 		0x4c25c, 0x4c278,
2015 		0x4c2c0, 0x4c374,
2016 		0x4c380, 0x4c3ac,
2017 		0x4c3b4, 0x4c3b8,
2018 		0x4c3c0, 0x4c454,
2019 		0x4c45c, 0x4c478,
2020 		0x4c4c0, 0x4c574,
2021 		0x4c580, 0x4c5ac,
2022 		0x4c5b4, 0x4c5b8,
2023 		0x4c5c0, 0x4c654,
2024 		0x4c65c, 0x4c678,
2025 		0x4c6c0, 0x4c774,
2026 		0x4c780, 0x4c7ac,
2027 		0x4c7b4, 0x4c7b8,
2028 		0x4c7c0, 0x4c854,
2029 		0x4c85c, 0x4c878,
2030 		0x4c8c0, 0x4c974,
2031 		0x4c980, 0x4c9ac,
2032 		0x4c9b4, 0x4c9b8,
2033 		0x4c9c0, 0x4c9fc,
2034 		0x4d000, 0x4d004,
2035 		0x4d010, 0x4d030,
2036 		0x4d040, 0x4d060,
2037 		0x4d068, 0x4d068,
2038 		0x4d080, 0x4d084,
2039 		0x4d0a0, 0x4d0b0,
2040 		0x4d200, 0x4d204,
2041 		0x4d210, 0x4d230,
2042 		0x4d240, 0x4d260,
2043 		0x4d268, 0x4d268,
2044 		0x4d280, 0x4d284,
2045 		0x4d2a0, 0x4d2b0,
2046 		0x4e0c0, 0x4e0e4,
2047 		0x4f000, 0x4f03c,
2048 		0x4f044, 0x4f08c,
2049 		0x4f200, 0x4f250,
2050 		0x4f400, 0x4f408,
2051 		0x4f414, 0x4f420,
2052 		0x4f600, 0x4f618,
2053 		0x4f800, 0x4f814,
2054 		0x50000, 0x50084,
2055 		0x50090, 0x500cc,
2056 		0x50400, 0x50400,
2057 		0x50800, 0x50884,
2058 		0x50890, 0x508cc,
2059 		0x50c00, 0x50c00,
2060 		0x51000, 0x5101c,
2061 		0x51300, 0x51308,
2062 	};
2063 
2064 	static const unsigned int t5vf_reg_ranges[] = {
2065 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2066 		VF_MPS_REG(A_MPS_VF_CTL),
2067 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2068 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2069 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2070 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2071 		FW_T4VF_MBDATA_BASE_ADDR,
2072 		FW_T4VF_MBDATA_BASE_ADDR +
2073 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2074 	};
2075 
2076 	static const unsigned int t6_reg_ranges[] = {
2077 		0x1008, 0x101c,
2078 		0x1024, 0x10a8,
2079 		0x10b4, 0x10f8,
2080 		0x1100, 0x1114,
2081 		0x111c, 0x112c,
2082 		0x1138, 0x113c,
2083 		0x1144, 0x114c,
2084 		0x1180, 0x1184,
2085 		0x1190, 0x1194,
2086 		0x11a0, 0x11a4,
2087 		0x11b0, 0x11b4,
2088 		0x11fc, 0x1274,
2089 		0x1280, 0x133c,
2090 		0x1800, 0x18fc,
2091 		0x3000, 0x302c,
2092 		0x3060, 0x30b0,
2093 		0x30b8, 0x30d8,
2094 		0x30e0, 0x30fc,
2095 		0x3140, 0x357c,
2096 		0x35a8, 0x35cc,
2097 		0x35ec, 0x35ec,
2098 		0x3600, 0x5624,
2099 		0x56cc, 0x56ec,
2100 		0x56f4, 0x5720,
2101 		0x5728, 0x575c,
2102 		0x580c, 0x5814,
2103 		0x5890, 0x589c,
2104 		0x58a4, 0x58ac,
2105 		0x58b8, 0x58bc,
2106 		0x5940, 0x595c,
2107 		0x5980, 0x598c,
2108 		0x59b0, 0x59c8,
2109 		0x59d0, 0x59dc,
2110 		0x59fc, 0x5a18,
2111 		0x5a60, 0x5a6c,
2112 		0x5a80, 0x5a8c,
2113 		0x5a94, 0x5a9c,
2114 		0x5b94, 0x5bfc,
2115 		0x5c10, 0x5e48,
2116 		0x5e50, 0x5e94,
2117 		0x5ea0, 0x5eb0,
2118 		0x5ec0, 0x5ec0,
2119 		0x5ec8, 0x5ed0,
2120 		0x5ee0, 0x5ee0,
2121 		0x5ef0, 0x5ef0,
2122 		0x5f00, 0x5f00,
2123 		0x6000, 0x6020,
2124 		0x6028, 0x6040,
2125 		0x6058, 0x609c,
2126 		0x60a8, 0x619c,
2127 		0x7700, 0x7798,
2128 		0x77c0, 0x7880,
2129 		0x78cc, 0x78fc,
2130 		0x7b00, 0x7b58,
2131 		0x7b60, 0x7b84,
2132 		0x7b8c, 0x7c54,
2133 		0x7d00, 0x7d38,
2134 		0x7d40, 0x7d84,
2135 		0x7d8c, 0x7ddc,
2136 		0x7de4, 0x7e04,
2137 		0x7e10, 0x7e1c,
2138 		0x7e24, 0x7e38,
2139 		0x7e40, 0x7e44,
2140 		0x7e4c, 0x7e78,
2141 		0x7e80, 0x7edc,
2142 		0x7ee8, 0x7efc,
2143 		0x8dc0, 0x8de4,
2144 		0x8df8, 0x8e04,
2145 		0x8e10, 0x8e84,
2146 		0x8ea0, 0x8f88,
2147 		0x8fb8, 0x9058,
2148 		0x9060, 0x9060,
2149 		0x9068, 0x90f8,
2150 		0x9100, 0x9124,
2151 		0x9400, 0x9470,
2152 		0x9600, 0x9600,
2153 		0x9608, 0x9638,
2154 		0x9640, 0x9704,
2155 		0x9710, 0x971c,
2156 		0x9800, 0x9808,
2157 		0x9820, 0x983c,
2158 		0x9850, 0x9864,
2159 		0x9c00, 0x9c6c,
2160 		0x9c80, 0x9cec,
2161 		0x9d00, 0x9d6c,
2162 		0x9d80, 0x9dec,
2163 		0x9e00, 0x9e6c,
2164 		0x9e80, 0x9eec,
2165 		0x9f00, 0x9f6c,
2166 		0x9f80, 0xa020,
2167 		0xd004, 0xd03c,
2168 		0xd100, 0xd118,
2169 		0xd200, 0xd214,
2170 		0xd220, 0xd234,
2171 		0xd240, 0xd254,
2172 		0xd260, 0xd274,
2173 		0xd280, 0xd294,
2174 		0xd2a0, 0xd2b4,
2175 		0xd2c0, 0xd2d4,
2176 		0xd2e0, 0xd2f4,
2177 		0xd300, 0xd31c,
2178 		0xdfc0, 0xdfe0,
2179 		0xe000, 0xf008,
2180 		0xf010, 0xf018,
2181 		0xf020, 0xf028,
2182 		0x11000, 0x11014,
2183 		0x11048, 0x1106c,
2184 		0x11074, 0x11088,
2185 		0x11098, 0x11120,
2186 		0x1112c, 0x1117c,
2187 		0x11190, 0x112e0,
2188 		0x11300, 0x1130c,
2189 		0x12000, 0x1206c,
2190 		0x19040, 0x1906c,
2191 		0x19078, 0x19080,
2192 		0x1908c, 0x190e8,
2193 		0x190f0, 0x190f8,
2194 		0x19100, 0x19110,
2195 		0x19120, 0x19124,
2196 		0x19150, 0x19194,
2197 		0x1919c, 0x191b0,
2198 		0x191d0, 0x191e8,
2199 		0x19238, 0x19290,
2200 		0x192a4, 0x192b0,
2201 		0x192bc, 0x192bc,
2202 		0x19348, 0x1934c,
2203 		0x193f8, 0x19418,
2204 		0x19420, 0x19428,
2205 		0x19430, 0x19444,
2206 		0x1944c, 0x1946c,
2207 		0x19474, 0x19474,
2208 		0x19490, 0x194cc,
2209 		0x194f0, 0x194f8,
2210 		0x19c00, 0x19c48,
2211 		0x19c50, 0x19c80,
2212 		0x19c94, 0x19c98,
2213 		0x19ca0, 0x19cbc,
2214 		0x19ce4, 0x19ce4,
2215 		0x19cf0, 0x19cf8,
2216 		0x19d00, 0x19d28,
2217 		0x19d50, 0x19d78,
2218 		0x19d94, 0x19d98,
2219 		0x19da0, 0x19dc8,
2220 		0x19df0, 0x19e10,
2221 		0x19e50, 0x19e6c,
2222 		0x19ea0, 0x19ebc,
2223 		0x19ec4, 0x19ef4,
2224 		0x19f04, 0x19f2c,
2225 		0x19f34, 0x19f34,
2226 		0x19f40, 0x19f50,
2227 		0x19f90, 0x19fac,
2228 		0x19fc4, 0x19fc8,
2229 		0x19fd0, 0x19fe4,
2230 		0x1a000, 0x1a004,
2231 		0x1a010, 0x1a06c,
2232 		0x1a0b0, 0x1a0e4,
2233 		0x1a0ec, 0x1a0f8,
2234 		0x1a100, 0x1a108,
2235 		0x1a114, 0x1a120,
2236 		0x1a128, 0x1a130,
2237 		0x1a138, 0x1a138,
2238 		0x1a190, 0x1a1c4,
2239 		0x1a1fc, 0x1a1fc,
2240 		0x1e008, 0x1e00c,
2241 		0x1e040, 0x1e044,
2242 		0x1e04c, 0x1e04c,
2243 		0x1e284, 0x1e290,
2244 		0x1e2c0, 0x1e2c0,
2245 		0x1e2e0, 0x1e2e0,
2246 		0x1e300, 0x1e384,
2247 		0x1e3c0, 0x1e3c8,
2248 		0x1e408, 0x1e40c,
2249 		0x1e440, 0x1e444,
2250 		0x1e44c, 0x1e44c,
2251 		0x1e684, 0x1e690,
2252 		0x1e6c0, 0x1e6c0,
2253 		0x1e6e0, 0x1e6e0,
2254 		0x1e700, 0x1e784,
2255 		0x1e7c0, 0x1e7c8,
2256 		0x1e808, 0x1e80c,
2257 		0x1e840, 0x1e844,
2258 		0x1e84c, 0x1e84c,
2259 		0x1ea84, 0x1ea90,
2260 		0x1eac0, 0x1eac0,
2261 		0x1eae0, 0x1eae0,
2262 		0x1eb00, 0x1eb84,
2263 		0x1ebc0, 0x1ebc8,
2264 		0x1ec08, 0x1ec0c,
2265 		0x1ec40, 0x1ec44,
2266 		0x1ec4c, 0x1ec4c,
2267 		0x1ee84, 0x1ee90,
2268 		0x1eec0, 0x1eec0,
2269 		0x1eee0, 0x1eee0,
2270 		0x1ef00, 0x1ef84,
2271 		0x1efc0, 0x1efc8,
2272 		0x1f008, 0x1f00c,
2273 		0x1f040, 0x1f044,
2274 		0x1f04c, 0x1f04c,
2275 		0x1f284, 0x1f290,
2276 		0x1f2c0, 0x1f2c0,
2277 		0x1f2e0, 0x1f2e0,
2278 		0x1f300, 0x1f384,
2279 		0x1f3c0, 0x1f3c8,
2280 		0x1f408, 0x1f40c,
2281 		0x1f440, 0x1f444,
2282 		0x1f44c, 0x1f44c,
2283 		0x1f684, 0x1f690,
2284 		0x1f6c0, 0x1f6c0,
2285 		0x1f6e0, 0x1f6e0,
2286 		0x1f700, 0x1f784,
2287 		0x1f7c0, 0x1f7c8,
2288 		0x1f808, 0x1f80c,
2289 		0x1f840, 0x1f844,
2290 		0x1f84c, 0x1f84c,
2291 		0x1fa84, 0x1fa90,
2292 		0x1fac0, 0x1fac0,
2293 		0x1fae0, 0x1fae0,
2294 		0x1fb00, 0x1fb84,
2295 		0x1fbc0, 0x1fbc8,
2296 		0x1fc08, 0x1fc0c,
2297 		0x1fc40, 0x1fc44,
2298 		0x1fc4c, 0x1fc4c,
2299 		0x1fe84, 0x1fe90,
2300 		0x1fec0, 0x1fec0,
2301 		0x1fee0, 0x1fee0,
2302 		0x1ff00, 0x1ff84,
2303 		0x1ffc0, 0x1ffc8,
2304 		0x30000, 0x30030,
2305 		0x30100, 0x30168,
2306 		0x30190, 0x301a0,
2307 		0x301a8, 0x301b8,
2308 		0x301c4, 0x301c8,
2309 		0x301d0, 0x301d0,
2310 		0x30200, 0x30320,
2311 		0x30400, 0x304b4,
2312 		0x304c0, 0x3052c,
2313 		0x30540, 0x3061c,
2314 		0x30800, 0x308a0,
2315 		0x308c0, 0x30908,
2316 		0x30910, 0x309b8,
2317 		0x30a00, 0x30a04,
2318 		0x30a0c, 0x30a14,
2319 		0x30a1c, 0x30a2c,
2320 		0x30a44, 0x30a50,
2321 		0x30a74, 0x30a74,
2322 		0x30a7c, 0x30afc,
2323 		0x30b08, 0x30c24,
2324 		0x30d00, 0x30d14,
2325 		0x30d1c, 0x30d3c,
2326 		0x30d44, 0x30d4c,
2327 		0x30d54, 0x30d74,
2328 		0x30d7c, 0x30d7c,
2329 		0x30de0, 0x30de0,
2330 		0x30e00, 0x30ed4,
2331 		0x30f00, 0x30fa4,
2332 		0x30fc0, 0x30fc4,
2333 		0x31000, 0x31004,
2334 		0x31080, 0x310fc,
2335 		0x31208, 0x31220,
2336 		0x3123c, 0x31254,
2337 		0x31300, 0x31300,
2338 		0x31308, 0x3131c,
2339 		0x31338, 0x3133c,
2340 		0x31380, 0x31380,
2341 		0x31388, 0x313a8,
2342 		0x313b4, 0x313b4,
2343 		0x31400, 0x31420,
2344 		0x31438, 0x3143c,
2345 		0x31480, 0x31480,
2346 		0x314a8, 0x314a8,
2347 		0x314b0, 0x314b4,
2348 		0x314c8, 0x314d4,
2349 		0x31a40, 0x31a4c,
2350 		0x31af0, 0x31b20,
2351 		0x31b38, 0x31b3c,
2352 		0x31b80, 0x31b80,
2353 		0x31ba8, 0x31ba8,
2354 		0x31bb0, 0x31bb4,
2355 		0x31bc8, 0x31bd4,
2356 		0x32140, 0x3218c,
2357 		0x321f0, 0x321f4,
2358 		0x32200, 0x32200,
2359 		0x32218, 0x32218,
2360 		0x32400, 0x32400,
2361 		0x32408, 0x3241c,
2362 		0x32618, 0x32620,
2363 		0x32664, 0x32664,
2364 		0x326a8, 0x326a8,
2365 		0x326ec, 0x326ec,
2366 		0x32a00, 0x32abc,
2367 		0x32b00, 0x32b18,
2368 		0x32b20, 0x32b38,
2369 		0x32b40, 0x32b58,
2370 		0x32b60, 0x32b78,
2371 		0x32c00, 0x32c00,
2372 		0x32c08, 0x32c3c,
2373 		0x33000, 0x3302c,
2374 		0x33034, 0x33050,
2375 		0x33058, 0x33058,
2376 		0x33060, 0x3308c,
2377 		0x3309c, 0x330ac,
2378 		0x330c0, 0x330c0,
2379 		0x330c8, 0x330d0,
2380 		0x330d8, 0x330e0,
2381 		0x330ec, 0x3312c,
2382 		0x33134, 0x33150,
2383 		0x33158, 0x33158,
2384 		0x33160, 0x3318c,
2385 		0x3319c, 0x331ac,
2386 		0x331c0, 0x331c0,
2387 		0x331c8, 0x331d0,
2388 		0x331d8, 0x331e0,
2389 		0x331ec, 0x33290,
2390 		0x33298, 0x332c4,
2391 		0x332e4, 0x33390,
2392 		0x33398, 0x333c4,
2393 		0x333e4, 0x3342c,
2394 		0x33434, 0x33450,
2395 		0x33458, 0x33458,
2396 		0x33460, 0x3348c,
2397 		0x3349c, 0x334ac,
2398 		0x334c0, 0x334c0,
2399 		0x334c8, 0x334d0,
2400 		0x334d8, 0x334e0,
2401 		0x334ec, 0x3352c,
2402 		0x33534, 0x33550,
2403 		0x33558, 0x33558,
2404 		0x33560, 0x3358c,
2405 		0x3359c, 0x335ac,
2406 		0x335c0, 0x335c0,
2407 		0x335c8, 0x335d0,
2408 		0x335d8, 0x335e0,
2409 		0x335ec, 0x33690,
2410 		0x33698, 0x336c4,
2411 		0x336e4, 0x33790,
2412 		0x33798, 0x337c4,
2413 		0x337e4, 0x337fc,
2414 		0x33814, 0x33814,
2415 		0x33854, 0x33868,
2416 		0x33880, 0x3388c,
2417 		0x338c0, 0x338d0,
2418 		0x338e8, 0x338ec,
2419 		0x33900, 0x3392c,
2420 		0x33934, 0x33950,
2421 		0x33958, 0x33958,
2422 		0x33960, 0x3398c,
2423 		0x3399c, 0x339ac,
2424 		0x339c0, 0x339c0,
2425 		0x339c8, 0x339d0,
2426 		0x339d8, 0x339e0,
2427 		0x339ec, 0x33a90,
2428 		0x33a98, 0x33ac4,
2429 		0x33ae4, 0x33b10,
2430 		0x33b24, 0x33b28,
2431 		0x33b38, 0x33b50,
2432 		0x33bf0, 0x33c10,
2433 		0x33c24, 0x33c28,
2434 		0x33c38, 0x33c50,
2435 		0x33cf0, 0x33cfc,
2436 		0x34000, 0x34030,
2437 		0x34100, 0x34168,
2438 		0x34190, 0x341a0,
2439 		0x341a8, 0x341b8,
2440 		0x341c4, 0x341c8,
2441 		0x341d0, 0x341d0,
2442 		0x34200, 0x34320,
2443 		0x34400, 0x344b4,
2444 		0x344c0, 0x3452c,
2445 		0x34540, 0x3461c,
2446 		0x34800, 0x348a0,
2447 		0x348c0, 0x34908,
2448 		0x34910, 0x349b8,
2449 		0x34a00, 0x34a04,
2450 		0x34a0c, 0x34a14,
2451 		0x34a1c, 0x34a2c,
2452 		0x34a44, 0x34a50,
2453 		0x34a74, 0x34a74,
2454 		0x34a7c, 0x34afc,
2455 		0x34b08, 0x34c24,
2456 		0x34d00, 0x34d14,
2457 		0x34d1c, 0x34d3c,
2458 		0x34d44, 0x34d4c,
2459 		0x34d54, 0x34d74,
2460 		0x34d7c, 0x34d7c,
2461 		0x34de0, 0x34de0,
2462 		0x34e00, 0x34ed4,
2463 		0x34f00, 0x34fa4,
2464 		0x34fc0, 0x34fc4,
2465 		0x35000, 0x35004,
2466 		0x35080, 0x350fc,
2467 		0x35208, 0x35220,
2468 		0x3523c, 0x35254,
2469 		0x35300, 0x35300,
2470 		0x35308, 0x3531c,
2471 		0x35338, 0x3533c,
2472 		0x35380, 0x35380,
2473 		0x35388, 0x353a8,
2474 		0x353b4, 0x353b4,
2475 		0x35400, 0x35420,
2476 		0x35438, 0x3543c,
2477 		0x35480, 0x35480,
2478 		0x354a8, 0x354a8,
2479 		0x354b0, 0x354b4,
2480 		0x354c8, 0x354d4,
2481 		0x35a40, 0x35a4c,
2482 		0x35af0, 0x35b20,
2483 		0x35b38, 0x35b3c,
2484 		0x35b80, 0x35b80,
2485 		0x35ba8, 0x35ba8,
2486 		0x35bb0, 0x35bb4,
2487 		0x35bc8, 0x35bd4,
2488 		0x36140, 0x3618c,
2489 		0x361f0, 0x361f4,
2490 		0x36200, 0x36200,
2491 		0x36218, 0x36218,
2492 		0x36400, 0x36400,
2493 		0x36408, 0x3641c,
2494 		0x36618, 0x36620,
2495 		0x36664, 0x36664,
2496 		0x366a8, 0x366a8,
2497 		0x366ec, 0x366ec,
2498 		0x36a00, 0x36abc,
2499 		0x36b00, 0x36b18,
2500 		0x36b20, 0x36b38,
2501 		0x36b40, 0x36b58,
2502 		0x36b60, 0x36b78,
2503 		0x36c00, 0x36c00,
2504 		0x36c08, 0x36c3c,
2505 		0x37000, 0x3702c,
2506 		0x37034, 0x37050,
2507 		0x37058, 0x37058,
2508 		0x37060, 0x3708c,
2509 		0x3709c, 0x370ac,
2510 		0x370c0, 0x370c0,
2511 		0x370c8, 0x370d0,
2512 		0x370d8, 0x370e0,
2513 		0x370ec, 0x3712c,
2514 		0x37134, 0x37150,
2515 		0x37158, 0x37158,
2516 		0x37160, 0x3718c,
2517 		0x3719c, 0x371ac,
2518 		0x371c0, 0x371c0,
2519 		0x371c8, 0x371d0,
2520 		0x371d8, 0x371e0,
2521 		0x371ec, 0x37290,
2522 		0x37298, 0x372c4,
2523 		0x372e4, 0x37390,
2524 		0x37398, 0x373c4,
2525 		0x373e4, 0x3742c,
2526 		0x37434, 0x37450,
2527 		0x37458, 0x37458,
2528 		0x37460, 0x3748c,
2529 		0x3749c, 0x374ac,
2530 		0x374c0, 0x374c0,
2531 		0x374c8, 0x374d0,
2532 		0x374d8, 0x374e0,
2533 		0x374ec, 0x3752c,
2534 		0x37534, 0x37550,
2535 		0x37558, 0x37558,
2536 		0x37560, 0x3758c,
2537 		0x3759c, 0x375ac,
2538 		0x375c0, 0x375c0,
2539 		0x375c8, 0x375d0,
2540 		0x375d8, 0x375e0,
2541 		0x375ec, 0x37690,
2542 		0x37698, 0x376c4,
2543 		0x376e4, 0x37790,
2544 		0x37798, 0x377c4,
2545 		0x377e4, 0x377fc,
2546 		0x37814, 0x37814,
2547 		0x37854, 0x37868,
2548 		0x37880, 0x3788c,
2549 		0x378c0, 0x378d0,
2550 		0x378e8, 0x378ec,
2551 		0x37900, 0x3792c,
2552 		0x37934, 0x37950,
2553 		0x37958, 0x37958,
2554 		0x37960, 0x3798c,
2555 		0x3799c, 0x379ac,
2556 		0x379c0, 0x379c0,
2557 		0x379c8, 0x379d0,
2558 		0x379d8, 0x379e0,
2559 		0x379ec, 0x37a90,
2560 		0x37a98, 0x37ac4,
2561 		0x37ae4, 0x37b10,
2562 		0x37b24, 0x37b28,
2563 		0x37b38, 0x37b50,
2564 		0x37bf0, 0x37c10,
2565 		0x37c24, 0x37c28,
2566 		0x37c38, 0x37c50,
2567 		0x37cf0, 0x37cfc,
2568 		0x40040, 0x40040,
2569 		0x40080, 0x40084,
2570 		0x40100, 0x40100,
2571 		0x40140, 0x401bc,
2572 		0x40200, 0x40214,
2573 		0x40228, 0x40228,
2574 		0x40240, 0x40258,
2575 		0x40280, 0x40280,
2576 		0x40304, 0x40304,
2577 		0x40330, 0x4033c,
2578 		0x41304, 0x413c8,
2579 		0x413d0, 0x413dc,
2580 		0x413f0, 0x413f0,
2581 		0x41400, 0x4140c,
2582 		0x41414, 0x4141c,
2583 		0x41480, 0x414d0,
2584 		0x44000, 0x4407c,
2585 		0x440c0, 0x441ac,
2586 		0x441b4, 0x4427c,
2587 		0x442c0, 0x443ac,
2588 		0x443b4, 0x4447c,
2589 		0x444c0, 0x445ac,
2590 		0x445b4, 0x4467c,
2591 		0x446c0, 0x447ac,
2592 		0x447b4, 0x4487c,
2593 		0x448c0, 0x449ac,
2594 		0x449b4, 0x44a7c,
2595 		0x44ac0, 0x44bac,
2596 		0x44bb4, 0x44c7c,
2597 		0x44cc0, 0x44dac,
2598 		0x44db4, 0x44e7c,
2599 		0x44ec0, 0x44fac,
2600 		0x44fb4, 0x4507c,
2601 		0x450c0, 0x451ac,
2602 		0x451b4, 0x451fc,
2603 		0x45800, 0x45804,
2604 		0x45810, 0x45830,
2605 		0x45840, 0x45860,
2606 		0x45868, 0x45868,
2607 		0x45880, 0x45884,
2608 		0x458a0, 0x458b0,
2609 		0x45a00, 0x45a04,
2610 		0x45a10, 0x45a30,
2611 		0x45a40, 0x45a60,
2612 		0x45a68, 0x45a68,
2613 		0x45a80, 0x45a84,
2614 		0x45aa0, 0x45ab0,
2615 		0x460c0, 0x460e4,
2616 		0x47000, 0x4703c,
2617 		0x47044, 0x4708c,
2618 		0x47200, 0x47250,
2619 		0x47400, 0x47408,
2620 		0x47414, 0x47420,
2621 		0x47600, 0x47618,
2622 		0x47800, 0x47814,
2623 		0x47820, 0x4782c,
2624 		0x50000, 0x50084,
2625 		0x50090, 0x500cc,
2626 		0x50300, 0x50384,
2627 		0x50400, 0x50400,
2628 		0x50800, 0x50884,
2629 		0x50890, 0x508cc,
2630 		0x50b00, 0x50b84,
2631 		0x50c00, 0x50c00,
2632 		0x51000, 0x51020,
2633 		0x51028, 0x510b0,
2634 		0x51300, 0x51324,
2635 	};
2636 
2637 	static const unsigned int t6vf_reg_ranges[] = {
2638 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2639 		VF_MPS_REG(A_MPS_VF_CTL),
2640 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2641 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2642 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2643 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2644 		FW_T6VF_MBDATA_BASE_ADDR,
2645 		FW_T6VF_MBDATA_BASE_ADDR +
2646 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2647 	};
2648 
2649 	u32 *buf_end = (u32 *)(buf + buf_size);
2650 	const unsigned int *reg_ranges;
2651 	int reg_ranges_size, range;
2652 	unsigned int chip_version = chip_id(adap);
2653 
2654 	/*
2655 	 * Select the right set of register ranges to dump depending on the
2656 	 * adapter chip type.
2657 	 */
2658 	switch (chip_version) {
2659 	case CHELSIO_T4:
2660 		if (adap->flags & IS_VF) {
2661 			reg_ranges = t4vf_reg_ranges;
2662 			reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges);
2663 		} else {
2664 			reg_ranges = t4_reg_ranges;
2665 			reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2666 		}
2667 		break;
2668 
2669 	case CHELSIO_T5:
2670 		if (adap->flags & IS_VF) {
2671 			reg_ranges = t5vf_reg_ranges;
2672 			reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges);
2673 		} else {
2674 			reg_ranges = t5_reg_ranges;
2675 			reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2676 		}
2677 		break;
2678 
2679 	case CHELSIO_T6:
2680 		if (adap->flags & IS_VF) {
2681 			reg_ranges = t6vf_reg_ranges;
2682 			reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges);
2683 		} else {
2684 			reg_ranges = t6_reg_ranges;
2685 			reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2686 		}
2687 		break;
2688 
2689 	default:
2690 		CH_ERR(adap,
2691 			"Unsupported chip version %d\n", chip_version);
2692 		return;
2693 	}
2694 
2695 	/*
2696 	 * Clear the register buffer and insert the appropriate register
2697 	 * values selected by the above register ranges.
2698 	 */
2699 	memset(buf, 0, buf_size);
2700 	for (range = 0; range < reg_ranges_size; range += 2) {
2701 		unsigned int reg = reg_ranges[range];
2702 		unsigned int last_reg = reg_ranges[range + 1];
2703 		u32 *bufp = (u32 *)(buf + reg);
2704 
2705 		/*
2706 		 * Iterate across the register range filling in the register
2707 		 * buffer but don't write past the end of the register buffer.
2708 		 */
2709 		while (reg <= last_reg && bufp < buf_end) {
2710 			*bufp++ = t4_read_reg(adap, reg);
2711 			reg += sizeof(u32);
2712 		}
2713 	}
2714 }
2715 
2716 /*
2717  * Partial EEPROM Vital Product Data structure.  The VPD starts with one ID
2718  * header followed by one or more VPD-R sections, each with its own header.
2719  */
2720 struct t4_vpd_hdr {
2721 	u8  id_tag;
2722 	u8  id_len[2];
2723 	u8  id_data[ID_LEN];
2724 };
2725 
2726 struct t4_vpdr_hdr {
2727 	u8  vpdr_tag;
2728 	u8  vpdr_len[2];
2729 };
2730 
2731 /*
2732  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
2733  */
2734 #define EEPROM_DELAY		10		/* 10us per poll spin */
2735 #define EEPROM_MAX_POLL		5000		/* x 5000 == 50ms */
2736 
2737 #define EEPROM_STAT_ADDR	0x7bfc
2738 #define VPD_SIZE		0x800
2739 #define VPD_BASE		0x400
2740 #define VPD_BASE_OLD		0
2741 #define VPD_LEN			1024
2742 #define VPD_INFO_FLD_HDR_SIZE	3
2743 #define CHELSIO_VPD_UNIQUE_ID	0x82
2744 
2745 /*
2746  * Small utility function to wait till any outstanding VPD Access is complete.
2747  * We have a per-adapter state variable "VPD Busy" to indicate when we have a
2748  * VPD Access in flight.  This allows us to handle the problem of having a
2749  * previous VPD Access time out and prevent an attempt to inject a new VPD
2750  * Request before any in-flight VPD reguest has completed.
2751  */
2752 static int t4_seeprom_wait(struct adapter *adapter)
2753 {
2754 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2755 	int max_poll;
2756 
2757 	/*
2758 	 * If no VPD Access is in flight, we can just return success right
2759 	 * away.
2760 	 */
2761 	if (!adapter->vpd_busy)
2762 		return 0;
2763 
2764 	/*
2765 	 * Poll the VPD Capability Address/Flag register waiting for it
2766 	 * to indicate that the operation is complete.
2767 	 */
2768 	max_poll = EEPROM_MAX_POLL;
2769 	do {
2770 		u16 val;
2771 
2772 		udelay(EEPROM_DELAY);
2773 		t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
2774 
2775 		/*
2776 		 * If the operation is complete, mark the VPD as no longer
2777 		 * busy and return success.
2778 		 */
2779 		if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
2780 			adapter->vpd_busy = 0;
2781 			return 0;
2782 		}
2783 	} while (--max_poll);
2784 
2785 	/*
2786 	 * Failure!  Note that we leave the VPD Busy status set in order to
2787 	 * avoid pushing a new VPD Access request into the VPD Capability till
2788 	 * the current operation eventually succeeds.  It's a bug to issue a
2789 	 * new request when an existing request is in flight and will result
2790 	 * in corrupt hardware state.
2791 	 */
2792 	return -ETIMEDOUT;
2793 }
2794 
2795 /**
2796  *	t4_seeprom_read - read a serial EEPROM location
2797  *	@adapter: adapter to read
2798  *	@addr: EEPROM virtual address
2799  *	@data: where to store the read data
2800  *
2801  *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
2802  *	VPD capability.  Note that this function must be called with a virtual
2803  *	address.
2804  */
2805 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2806 {
2807 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2808 	int ret;
2809 
2810 	/*
2811 	 * VPD Accesses must alway be 4-byte aligned!
2812 	 */
2813 	if (addr >= EEPROMVSIZE || (addr & 3))
2814 		return -EINVAL;
2815 
2816 	/*
2817 	 * Wait for any previous operation which may still be in flight to
2818 	 * complete.
2819 	 */
2820 	ret = t4_seeprom_wait(adapter);
2821 	if (ret) {
2822 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2823 		return ret;
2824 	}
2825 
2826 	/*
2827 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2828 	 * for our request to complete.  If it doesn't complete, note the
2829 	 * error and return it to our caller.  Note that we do not reset the
2830 	 * VPD Busy status!
2831 	 */
2832 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2833 	adapter->vpd_busy = 1;
2834 	adapter->vpd_flag = PCI_VPD_ADDR_F;
2835 	ret = t4_seeprom_wait(adapter);
2836 	if (ret) {
2837 		CH_ERR(adapter, "VPD read of address %#x failed\n", addr);
2838 		return ret;
2839 	}
2840 
2841 	/*
2842 	 * Grab the returned data, swizzle it into our endianness and
2843 	 * return success.
2844 	 */
2845 	t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2846 	*data = le32_to_cpu(*data);
2847 	return 0;
2848 }
2849 
2850 /**
2851  *	t4_seeprom_write - write a serial EEPROM location
2852  *	@adapter: adapter to write
2853  *	@addr: virtual EEPROM address
2854  *	@data: value to write
2855  *
2856  *	Write a 32-bit word to a location in serial EEPROM using the card's PCI
2857  *	VPD capability.  Note that this function must be called with a virtual
2858  *	address.
2859  */
2860 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2861 {
2862 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2863 	int ret;
2864 	u32 stats_reg;
2865 	int max_poll;
2866 
2867 	/*
2868 	 * VPD Accesses must alway be 4-byte aligned!
2869 	 */
2870 	if (addr >= EEPROMVSIZE || (addr & 3))
2871 		return -EINVAL;
2872 
2873 	/*
2874 	 * Wait for any previous operation which may still be in flight to
2875 	 * complete.
2876 	 */
2877 	ret = t4_seeprom_wait(adapter);
2878 	if (ret) {
2879 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2880 		return ret;
2881 	}
2882 
2883 	/*
2884 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2885 	 * for our request to complete.  If it doesn't complete, note the
2886 	 * error and return it to our caller.  Note that we do not reset the
2887 	 * VPD Busy status!
2888 	 */
2889 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2890 				 cpu_to_le32(data));
2891 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2892 				 (u16)addr | PCI_VPD_ADDR_F);
2893 	adapter->vpd_busy = 1;
2894 	adapter->vpd_flag = 0;
2895 	ret = t4_seeprom_wait(adapter);
2896 	if (ret) {
2897 		CH_ERR(adapter, "VPD write of address %#x failed\n", addr);
2898 		return ret;
2899 	}
2900 
2901 	/*
2902 	 * Reset PCI_VPD_DATA register after a transaction and wait for our
2903 	 * request to complete. If it doesn't complete, return error.
2904 	 */
2905 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2906 	max_poll = EEPROM_MAX_POLL;
2907 	do {
2908 		udelay(EEPROM_DELAY);
2909 		t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2910 	} while ((stats_reg & 0x1) && --max_poll);
2911 	if (!max_poll)
2912 		return -ETIMEDOUT;
2913 
2914 	/* Return success! */
2915 	return 0;
2916 }
2917 
2918 /**
2919  *	t4_eeprom_ptov - translate a physical EEPROM address to virtual
2920  *	@phys_addr: the physical EEPROM address
2921  *	@fn: the PCI function number
2922  *	@sz: size of function-specific area
2923  *
2924  *	Translate a physical EEPROM address to virtual.  The first 1K is
2925  *	accessed through virtual addresses starting at 31K, the rest is
2926  *	accessed through virtual addresses starting at 0.
2927  *
2928  *	The mapping is as follows:
2929  *	[0..1K) -> [31K..32K)
2930  *	[1K..1K+A) -> [ES-A..ES)
2931  *	[1K+A..ES) -> [0..ES-A-1K)
2932  *
2933  *	where A = @fn * @sz, and ES = EEPROM size.
2934  */
2935 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2936 {
2937 	fn *= sz;
2938 	if (phys_addr < 1024)
2939 		return phys_addr + (31 << 10);
2940 	if (phys_addr < 1024 + fn)
2941 		return EEPROMSIZE - fn + phys_addr - 1024;
2942 	if (phys_addr < EEPROMSIZE)
2943 		return phys_addr - 1024 - fn;
2944 	return -EINVAL;
2945 }
2946 
2947 /**
2948  *	t4_seeprom_wp - enable/disable EEPROM write protection
2949  *	@adapter: the adapter
2950  *	@enable: whether to enable or disable write protection
2951  *
2952  *	Enables or disables write protection on the serial EEPROM.
2953  */
2954 int t4_seeprom_wp(struct adapter *adapter, int enable)
2955 {
2956 	return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2957 }
2958 
2959 /**
2960  *	get_vpd_keyword_val - Locates an information field keyword in the VPD
2961  *	@vpd: Pointer to buffered vpd data structure
2962  *	@kw: The keyword to search for
2963  *	@region: VPD region to search (starting from 0)
2964  *
2965  *	Returns the value of the information field keyword or
2966  *	-ENOENT otherwise.
2967  */
2968 static int get_vpd_keyword_val(const u8 *vpd, const char *kw, int region)
2969 {
2970 	int i, tag;
2971 	unsigned int offset, len;
2972 	const struct t4_vpdr_hdr *vpdr;
2973 
2974 	offset = sizeof(struct t4_vpd_hdr);
2975 	vpdr = (const void *)(vpd + offset);
2976 	tag = vpdr->vpdr_tag;
2977 	len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2978 	while (region--) {
2979 		offset += sizeof(struct t4_vpdr_hdr) + len;
2980 		vpdr = (const void *)(vpd + offset);
2981 		if (++tag != vpdr->vpdr_tag)
2982 			return -ENOENT;
2983 		len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2984 	}
2985 	offset += sizeof(struct t4_vpdr_hdr);
2986 
2987 	if (offset + len > VPD_LEN) {
2988 		return -ENOENT;
2989 	}
2990 
2991 	for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
2992 		if (memcmp(vpd + i , kw , 2) == 0){
2993 			i += VPD_INFO_FLD_HDR_SIZE;
2994 			return i;
2995 		}
2996 
2997 		i += VPD_INFO_FLD_HDR_SIZE + vpd[i+2];
2998 	}
2999 
3000 	return -ENOENT;
3001 }
3002 
3003 
3004 /**
3005  *	get_vpd_params - read VPD parameters from VPD EEPROM
3006  *	@adapter: adapter to read
3007  *	@p: where to store the parameters
3008  *	@vpd: caller provided temporary space to read the VPD into
3009  *
3010  *	Reads card parameters stored in VPD EEPROM.
3011  */
3012 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p,
3013     uint16_t device_id, u32 *buf)
3014 {
3015 	int i, ret, addr;
3016 	int ec, sn, pn, na, md;
3017 	u8 csum;
3018 	const u8 *vpd = (const u8 *)buf;
3019 
3020 	/*
3021 	 * Card information normally starts at VPD_BASE but early cards had
3022 	 * it at 0.
3023 	 */
3024 	ret = t4_seeprom_read(adapter, VPD_BASE, buf);
3025 	if (ret)
3026 		return (ret);
3027 
3028 	/*
3029 	 * The VPD shall have a unique identifier specified by the PCI SIG.
3030 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
3031 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
3032 	 * is expected to automatically put this entry at the
3033 	 * beginning of the VPD.
3034 	 */
3035 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
3036 
3037 	for (i = 0; i < VPD_LEN; i += 4) {
3038 		ret = t4_seeprom_read(adapter, addr + i, buf++);
3039 		if (ret)
3040 			return ret;
3041 	}
3042 
3043 #define FIND_VPD_KW(var,name) do { \
3044 	var = get_vpd_keyword_val(vpd, name, 0); \
3045 	if (var < 0) { \
3046 		CH_ERR(adapter, "missing VPD keyword " name "\n"); \
3047 		return -EINVAL; \
3048 	} \
3049 } while (0)
3050 
3051 	FIND_VPD_KW(i, "RV");
3052 	for (csum = 0; i >= 0; i--)
3053 		csum += vpd[i];
3054 
3055 	if (csum) {
3056 		CH_ERR(adapter,
3057 			"corrupted VPD EEPROM, actual csum %u\n", csum);
3058 		return -EINVAL;
3059 	}
3060 
3061 	FIND_VPD_KW(ec, "EC");
3062 	FIND_VPD_KW(sn, "SN");
3063 	FIND_VPD_KW(pn, "PN");
3064 	FIND_VPD_KW(na, "NA");
3065 #undef FIND_VPD_KW
3066 
3067 	memcpy(p->id, vpd + offsetof(struct t4_vpd_hdr, id_data), ID_LEN);
3068 	strstrip(p->id);
3069 	memcpy(p->ec, vpd + ec, EC_LEN);
3070 	strstrip(p->ec);
3071 	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
3072 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
3073 	strstrip(p->sn);
3074 	i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
3075 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
3076 	strstrip((char *)p->pn);
3077 	i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
3078 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
3079 	strstrip((char *)p->na);
3080 
3081 	if (device_id & 0x80)
3082 		return 0;	/* Custom card */
3083 
3084 	md = get_vpd_keyword_val(vpd, "VF", 1);
3085 	if (md < 0) {
3086 		snprintf(p->md, sizeof(p->md), "unknown");
3087 	} else {
3088 		i = vpd[md - VPD_INFO_FLD_HDR_SIZE + 2];
3089 		memcpy(p->md, vpd + md, min(i, MD_LEN));
3090 		strstrip((char *)p->md);
3091 	}
3092 
3093 	return 0;
3094 }
3095 
3096 /* serial flash and firmware constants and flash config file constants */
3097 enum {
3098 	SF_ATTEMPTS = 10,	/* max retries for SF operations */
3099 
3100 	/* flash command opcodes */
3101 	SF_PROG_PAGE    = 2,	/* program 256B page */
3102 	SF_WR_DISABLE   = 4,	/* disable writes */
3103 	SF_RD_STATUS    = 5,	/* read status register */
3104 	SF_WR_ENABLE    = 6,	/* enable writes */
3105 	SF_RD_DATA_FAST = 0xb,	/* read flash */
3106 	SF_RD_ID	= 0x9f,	/* read ID */
3107 	SF_ERASE_SECTOR = 0xd8,	/* erase 64KB sector */
3108 };
3109 
3110 /**
3111  *	sf1_read - read data from the serial flash
3112  *	@adapter: the adapter
3113  *	@byte_cnt: number of bytes to read
3114  *	@cont: whether another operation will be chained
3115  *	@lock: whether to lock SF for PL access only
3116  *	@valp: where to store the read data
3117  *
3118  *	Reads up to 4 bytes of data from the serial flash.  The location of
3119  *	the read needs to be specified prior to calling this by issuing the
3120  *	appropriate commands to the serial flash.
3121  */
3122 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
3123 		    int lock, u32 *valp)
3124 {
3125 	int ret;
3126 
3127 	if (!byte_cnt || byte_cnt > 4)
3128 		return -EINVAL;
3129 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3130 		return -EBUSY;
3131 	t4_write_reg(adapter, A_SF_OP,
3132 		     V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
3133 	ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3134 	if (!ret)
3135 		*valp = t4_read_reg(adapter, A_SF_DATA);
3136 	return ret;
3137 }
3138 
3139 /**
3140  *	sf1_write - write data to the serial flash
3141  *	@adapter: the adapter
3142  *	@byte_cnt: number of bytes to write
3143  *	@cont: whether another operation will be chained
3144  *	@lock: whether to lock SF for PL access only
3145  *	@val: value to write
3146  *
3147  *	Writes up to 4 bytes of data to the serial flash.  The location of
3148  *	the write needs to be specified prior to calling this by issuing the
3149  *	appropriate commands to the serial flash.
3150  */
3151 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
3152 		     int lock, u32 val)
3153 {
3154 	if (!byte_cnt || byte_cnt > 4)
3155 		return -EINVAL;
3156 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3157 		return -EBUSY;
3158 	t4_write_reg(adapter, A_SF_DATA, val);
3159 	t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
3160 		     V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
3161 	return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3162 }
3163 
3164 /**
3165  *	flash_wait_op - wait for a flash operation to complete
3166  *	@adapter: the adapter
3167  *	@attempts: max number of polls of the status register
3168  *	@delay: delay between polls in ms
3169  *
3170  *	Wait for a flash operation to complete by polling the status register.
3171  */
3172 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3173 {
3174 	int ret;
3175 	u32 status;
3176 
3177 	while (1) {
3178 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3179 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3180 			return ret;
3181 		if (!(status & 1))
3182 			return 0;
3183 		if (--attempts == 0)
3184 			return -EAGAIN;
3185 		if (delay)
3186 			msleep(delay);
3187 	}
3188 }
3189 
3190 /**
3191  *	t4_read_flash - read words from serial flash
3192  *	@adapter: the adapter
3193  *	@addr: the start address for the read
3194  *	@nwords: how many 32-bit words to read
3195  *	@data: where to store the read data
3196  *	@byte_oriented: whether to store data as bytes or as words
3197  *
3198  *	Read the specified number of 32-bit words from the serial flash.
3199  *	If @byte_oriented is set the read data is stored as a byte array
3200  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3201  *	natural endianness.
3202  */
3203 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3204 		  unsigned int nwords, u32 *data, int byte_oriented)
3205 {
3206 	int ret;
3207 
3208 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3209 		return -EINVAL;
3210 
3211 	addr = swab32(addr) | SF_RD_DATA_FAST;
3212 
3213 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3214 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3215 		return ret;
3216 
3217 	for ( ; nwords; nwords--, data++) {
3218 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3219 		if (nwords == 1)
3220 			t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3221 		if (ret)
3222 			return ret;
3223 		if (byte_oriented)
3224 			*data = (__force __u32)(cpu_to_be32(*data));
3225 	}
3226 	return 0;
3227 }
3228 
3229 /**
3230  *	t4_write_flash - write up to a page of data to the serial flash
3231  *	@adapter: the adapter
3232  *	@addr: the start address to write
3233  *	@n: length of data to write in bytes
3234  *	@data: the data to write
3235  *	@byte_oriented: whether to store data as bytes or as words
3236  *
3237  *	Writes up to a page of data (256 bytes) to the serial flash starting
3238  *	at the given address.  All the data must be written to the same page.
3239  *	If @byte_oriented is set the write data is stored as byte stream
3240  *	(i.e. matches what on disk), otherwise in big-endian.
3241  */
3242 int t4_write_flash(struct adapter *adapter, unsigned int addr,
3243 			  unsigned int n, const u8 *data, int byte_oriented)
3244 {
3245 	int ret;
3246 	u32 buf[SF_PAGE_SIZE / 4];
3247 	unsigned int i, c, left, val, offset = addr & 0xff;
3248 
3249 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3250 		return -EINVAL;
3251 
3252 	val = swab32(addr) | SF_PROG_PAGE;
3253 
3254 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3255 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3256 		goto unlock;
3257 
3258 	for (left = n; left; left -= c) {
3259 		c = min(left, 4U);
3260 		for (val = 0, i = 0; i < c; ++i)
3261 			val = (val << 8) + *data++;
3262 
3263 		if (!byte_oriented)
3264 			val = cpu_to_be32(val);
3265 
3266 		ret = sf1_write(adapter, c, c != left, 1, val);
3267 		if (ret)
3268 			goto unlock;
3269 	}
3270 	ret = flash_wait_op(adapter, 8, 1);
3271 	if (ret)
3272 		goto unlock;
3273 
3274 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3275 
3276 	/* Read the page to verify the write succeeded */
3277 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3278 			    byte_oriented);
3279 	if (ret)
3280 		return ret;
3281 
3282 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3283 		CH_ERR(adapter,
3284 			"failed to correctly write the flash page at %#x\n",
3285 			addr);
3286 		return -EIO;
3287 	}
3288 	return 0;
3289 
3290 unlock:
3291 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3292 	return ret;
3293 }
3294 
3295 /**
3296  *	t4_get_fw_version - read the firmware version
3297  *	@adapter: the adapter
3298  *	@vers: where to place the version
3299  *
3300  *	Reads the FW version from flash.
3301  */
3302 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3303 {
3304 	return t4_read_flash(adapter, FLASH_FW_START +
3305 			     offsetof(struct fw_hdr, fw_ver), 1,
3306 			     vers, 0);
3307 }
3308 
3309 /**
3310  *	t4_get_fw_hdr - read the firmware header
3311  *	@adapter: the adapter
3312  *	@hdr: where to place the version
3313  *
3314  *	Reads the FW header from flash into caller provided buffer.
3315  */
3316 int t4_get_fw_hdr(struct adapter *adapter, struct fw_hdr *hdr)
3317 {
3318 	return t4_read_flash(adapter, FLASH_FW_START,
3319 	    sizeof (*hdr) / sizeof (uint32_t), (uint32_t *)hdr, 1);
3320 }
3321 
3322 /**
3323  *	t4_get_bs_version - read the firmware bootstrap version
3324  *	@adapter: the adapter
3325  *	@vers: where to place the version
3326  *
3327  *	Reads the FW Bootstrap version from flash.
3328  */
3329 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3330 {
3331 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3332 			     offsetof(struct fw_hdr, fw_ver), 1,
3333 			     vers, 0);
3334 }
3335 
3336 /**
3337  *	t4_get_tp_version - read the TP microcode version
3338  *	@adapter: the adapter
3339  *	@vers: where to place the version
3340  *
3341  *	Reads the TP microcode version from flash.
3342  */
3343 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3344 {
3345 	return t4_read_flash(adapter, FLASH_FW_START +
3346 			     offsetof(struct fw_hdr, tp_microcode_ver),
3347 			     1, vers, 0);
3348 }
3349 
3350 /**
3351  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3352  *	@adapter: the adapter
3353  *	@vers: where to place the version
3354  *
3355  *	Reads the Expansion ROM header from FLASH and returns the version
3356  *	number (if present) through the @vers return value pointer.  We return
3357  *	this in the Firmware Version Format since it's convenient.  Return
3358  *	0 on success, -ENOENT if no Expansion ROM is present.
3359  */
3360 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3361 {
3362 	struct exprom_header {
3363 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3364 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3365 	} *hdr;
3366 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3367 					   sizeof(u32))];
3368 	int ret;
3369 
3370 	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3371 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3372 			    0);
3373 	if (ret)
3374 		return ret;
3375 
3376 	hdr = (struct exprom_header *)exprom_header_buf;
3377 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3378 		return -ENOENT;
3379 
3380 	*vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
3381 		 V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
3382 		 V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
3383 		 V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
3384 	return 0;
3385 }
3386 
3387 /**
3388  *	t4_get_scfg_version - return the Serial Configuration version
3389  *	@adapter: the adapter
3390  *	@vers: where to place the version
3391  *
3392  *	Reads the Serial Configuration Version via the Firmware interface
3393  *	(thus this can only be called once we're ready to issue Firmware
3394  *	commands).  The format of the Serial Configuration version is
3395  *	adapter specific.  Returns 0 on success, an error on failure.
3396  *
3397  *	Note that early versions of the Firmware didn't include the ability
3398  *	to retrieve the Serial Configuration version, so we zero-out the
3399  *	return-value parameter in that case to avoid leaving it with
3400  *	garbage in it.
3401  *
3402  *	Also note that the Firmware will return its cached copy of the Serial
3403  *	Initialization Revision ID, not the actual Revision ID as written in
3404  *	the Serial EEPROM.  This is only an issue if a new VPD has been written
3405  *	and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3406  *	it's best to defer calling this routine till after a FW_RESET_CMD has
3407  *	been issued if the Host Driver will be performing a full adapter
3408  *	initialization.
3409  */
3410 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3411 {
3412 	u32 scfgrev_param;
3413 	int ret;
3414 
3415 	scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3416 			 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV));
3417 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3418 			      1, &scfgrev_param, vers);
3419 	if (ret)
3420 		*vers = 0;
3421 	return ret;
3422 }
3423 
3424 /**
3425  *	t4_get_vpd_version - return the VPD version
3426  *	@adapter: the adapter
3427  *	@vers: where to place the version
3428  *
3429  *	Reads the VPD via the Firmware interface (thus this can only be called
3430  *	once we're ready to issue Firmware commands).  The format of the
3431  *	VPD version is adapter specific.  Returns 0 on success, an error on
3432  *	failure.
3433  *
3434  *	Note that early versions of the Firmware didn't include the ability
3435  *	to retrieve the VPD version, so we zero-out the return-value parameter
3436  *	in that case to avoid leaving it with garbage in it.
3437  *
3438  *	Also note that the Firmware will return its cached copy of the VPD
3439  *	Revision ID, not the actual Revision ID as written in the Serial
3440  *	EEPROM.  This is only an issue if a new VPD has been written and the
3441  *	Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3442  *	to defer calling this routine till after a FW_RESET_CMD has been issued
3443  *	if the Host Driver will be performing a full adapter initialization.
3444  */
3445 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3446 {
3447 	u32 vpdrev_param;
3448 	int ret;
3449 
3450 	vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3451 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV));
3452 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3453 			      1, &vpdrev_param, vers);
3454 	if (ret)
3455 		*vers = 0;
3456 	return ret;
3457 }
3458 
3459 /**
3460  *	t4_get_version_info - extract various chip/firmware version information
3461  *	@adapter: the adapter
3462  *
3463  *	Reads various chip/firmware version numbers and stores them into the
3464  *	adapter Adapter Parameters structure.  If any of the efforts fails
3465  *	the first failure will be returned, but all of the version numbers
3466  *	will be read.
3467  */
3468 int t4_get_version_info(struct adapter *adapter)
3469 {
3470 	int ret = 0;
3471 
3472 	#define FIRST_RET(__getvinfo) \
3473 	do { \
3474 		int __ret = __getvinfo; \
3475 		if (__ret && !ret) \
3476 			ret = __ret; \
3477 	} while (0)
3478 
3479 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3480 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3481 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3482 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3483 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3484 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3485 
3486 	#undef FIRST_RET
3487 
3488 	return ret;
3489 }
3490 
3491 /**
3492  *	t4_flash_erase_sectors - erase a range of flash sectors
3493  *	@adapter: the adapter
3494  *	@start: the first sector to erase
3495  *	@end: the last sector to erase
3496  *
3497  *	Erases the sectors in the given inclusive range.
3498  */
3499 int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3500 {
3501 	int ret = 0;
3502 
3503 	if (end >= adapter->params.sf_nsec)
3504 		return -EINVAL;
3505 
3506 	while (start <= end) {
3507 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3508 		    (ret = sf1_write(adapter, 4, 0, 1,
3509 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3510 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3511 			CH_ERR(adapter,
3512 				"erase of flash sector %d failed, error %d\n",
3513 				start, ret);
3514 			break;
3515 		}
3516 		start++;
3517 	}
3518 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3519 	return ret;
3520 }
3521 
3522 /**
3523  *	t4_flash_cfg_addr - return the address of the flash configuration file
3524  *	@adapter: the adapter
3525  *
3526  *	Return the address within the flash where the Firmware Configuration
3527  *	File is stored, or an error if the device FLASH is too small to contain
3528  *	a Firmware Configuration File.
3529  */
3530 int t4_flash_cfg_addr(struct adapter *adapter)
3531 {
3532 	/*
3533 	 * If the device FLASH isn't large enough to hold a Firmware
3534 	 * Configuration File, return an error.
3535 	 */
3536 	if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
3537 		return -ENOSPC;
3538 
3539 	return FLASH_CFG_START;
3540 }
3541 
3542 /*
3543  * Return TRUE if the specified firmware matches the adapter.  I.e. T4
3544  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3545  * and emit an error message for mismatched firmware to save our caller the
3546  * effort ...
3547  */
3548 static int t4_fw_matches_chip(struct adapter *adap,
3549 			      const struct fw_hdr *hdr)
3550 {
3551 	/*
3552 	 * The expression below will return FALSE for any unsupported adapter
3553 	 * which will keep us "honest" in the future ...
3554 	 */
3555 	if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) ||
3556 	    (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) ||
3557 	    (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6))
3558 		return 1;
3559 
3560 	CH_ERR(adap,
3561 		"FW image (%d) is not suitable for this adapter (%d)\n",
3562 		hdr->chip, chip_id(adap));
3563 	return 0;
3564 }
3565 
3566 /**
3567  *	t4_load_fw - download firmware
3568  *	@adap: the adapter
3569  *	@fw_data: the firmware image to write
3570  *	@size: image size
3571  *
3572  *	Write the supplied firmware image to the card's serial flash.
3573  */
3574 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3575 {
3576 	u32 csum;
3577 	int ret, addr;
3578 	unsigned int i;
3579 	u8 first_page[SF_PAGE_SIZE];
3580 	const u32 *p = (const u32 *)fw_data;
3581 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3582 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3583 	unsigned int fw_start_sec;
3584 	unsigned int fw_start;
3585 	unsigned int fw_size;
3586 
3587 	if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) {
3588 		fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC;
3589 		fw_start = FLASH_FWBOOTSTRAP_START;
3590 		fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE;
3591 	} else {
3592 		fw_start_sec = FLASH_FW_START_SEC;
3593  		fw_start = FLASH_FW_START;
3594 		fw_size = FLASH_FW_MAX_SIZE;
3595 	}
3596 
3597 	if (!size) {
3598 		CH_ERR(adap, "FW image has no data\n");
3599 		return -EINVAL;
3600 	}
3601 	if (size & 511) {
3602 		CH_ERR(adap,
3603 			"FW image size not multiple of 512 bytes\n");
3604 		return -EINVAL;
3605 	}
3606 	if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) {
3607 		CH_ERR(adap,
3608 			"FW image size differs from size in FW header\n");
3609 		return -EINVAL;
3610 	}
3611 	if (size > fw_size) {
3612 		CH_ERR(adap, "FW image too large, max is %u bytes\n",
3613 			fw_size);
3614 		return -EFBIG;
3615 	}
3616 	if (!t4_fw_matches_chip(adap, hdr))
3617 		return -EINVAL;
3618 
3619 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3620 		csum += be32_to_cpu(p[i]);
3621 
3622 	if (csum != 0xffffffff) {
3623 		CH_ERR(adap,
3624 			"corrupted firmware image, checksum %#x\n", csum);
3625 		return -EINVAL;
3626 	}
3627 
3628 	i = DIV_ROUND_UP(size, sf_sec_size);	/* # of sectors spanned */
3629 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3630 	if (ret)
3631 		goto out;
3632 
3633 	/*
3634 	 * We write the correct version at the end so the driver can see a bad
3635 	 * version if the FW write fails.  Start by writing a copy of the
3636 	 * first page with a bad version.
3637 	 */
3638 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3639 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3640 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
3641 	if (ret)
3642 		goto out;
3643 
3644 	addr = fw_start;
3645 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3646 		addr += SF_PAGE_SIZE;
3647 		fw_data += SF_PAGE_SIZE;
3648 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
3649 		if (ret)
3650 			goto out;
3651 	}
3652 
3653 	ret = t4_write_flash(adap,
3654 			     fw_start + offsetof(struct fw_hdr, fw_ver),
3655 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
3656 out:
3657 	if (ret)
3658 		CH_ERR(adap, "firmware download failed, error %d\n",
3659 			ret);
3660 	return ret;
3661 }
3662 
3663 /**
3664  *	t4_fwcache - firmware cache operation
3665  *	@adap: the adapter
3666  *	@op  : the operation (flush or flush and invalidate)
3667  */
3668 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3669 {
3670 	struct fw_params_cmd c;
3671 
3672 	memset(&c, 0, sizeof(c));
3673 	c.op_to_vfn =
3674 	    cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3675 			    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3676 				V_FW_PARAMS_CMD_PFN(adap->pf) |
3677 				V_FW_PARAMS_CMD_VFN(0));
3678 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3679 	c.param[0].mnem =
3680 	    cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3681 			    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE));
3682 	c.param[0].val = (__force __be32)op;
3683 
3684 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3685 }
3686 
3687 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3688 			unsigned int *pif_req_wrptr,
3689 			unsigned int *pif_rsp_wrptr)
3690 {
3691 	int i, j;
3692 	u32 cfg, val, req, rsp;
3693 
3694 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3695 	if (cfg & F_LADBGEN)
3696 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3697 
3698 	val = t4_read_reg(adap, A_CIM_DEBUGSTS);
3699 	req = G_POLADBGWRPTR(val);
3700 	rsp = G_PILADBGWRPTR(val);
3701 	if (pif_req_wrptr)
3702 		*pif_req_wrptr = req;
3703 	if (pif_rsp_wrptr)
3704 		*pif_rsp_wrptr = rsp;
3705 
3706 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3707 		for (j = 0; j < 6; j++) {
3708 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
3709 				     V_PILADBGRDPTR(rsp));
3710 			*pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
3711 			*pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
3712 			req++;
3713 			rsp++;
3714 		}
3715 		req = (req + 2) & M_POLADBGRDPTR;
3716 		rsp = (rsp + 2) & M_PILADBGRDPTR;
3717 	}
3718 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3719 }
3720 
3721 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3722 {
3723 	u32 cfg;
3724 	int i, j, idx;
3725 
3726 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3727 	if (cfg & F_LADBGEN)
3728 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3729 
3730 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3731 		for (j = 0; j < 5; j++) {
3732 			idx = 8 * i + j;
3733 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
3734 				     V_PILADBGRDPTR(idx));
3735 			*ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
3736 			*ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
3737 		}
3738 	}
3739 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3740 }
3741 
3742 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3743 {
3744 	unsigned int i, j;
3745 
3746 	for (i = 0; i < 8; i++) {
3747 		u32 *p = la_buf + i;
3748 
3749 		t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
3750 		j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
3751 		t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
3752 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3753 			*p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
3754 	}
3755 }
3756 
3757 /**
3758  *	fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3759  *	@caps16: a 16-bit Port Capabilities value
3760  *
3761  *	Returns the equivalent 32-bit Port Capabilities value.
3762  */
3763 static uint32_t fwcaps16_to_caps32(uint16_t caps16)
3764 {
3765 	uint32_t caps32 = 0;
3766 
3767 	#define CAP16_TO_CAP32(__cap) \
3768 		do { \
3769 			if (caps16 & FW_PORT_CAP_##__cap) \
3770 				caps32 |= FW_PORT_CAP32_##__cap; \
3771 		} while (0)
3772 
3773 	CAP16_TO_CAP32(SPEED_100M);
3774 	CAP16_TO_CAP32(SPEED_1G);
3775 	CAP16_TO_CAP32(SPEED_25G);
3776 	CAP16_TO_CAP32(SPEED_10G);
3777 	CAP16_TO_CAP32(SPEED_40G);
3778 	CAP16_TO_CAP32(SPEED_100G);
3779 	CAP16_TO_CAP32(FC_RX);
3780 	CAP16_TO_CAP32(FC_TX);
3781 	CAP16_TO_CAP32(ANEG);
3782 	CAP16_TO_CAP32(FORCE_PAUSE);
3783 	CAP16_TO_CAP32(MDIAUTO);
3784 	CAP16_TO_CAP32(MDISTRAIGHT);
3785 	CAP16_TO_CAP32(FEC_RS);
3786 	CAP16_TO_CAP32(FEC_BASER_RS);
3787 	CAP16_TO_CAP32(802_3_PAUSE);
3788 	CAP16_TO_CAP32(802_3_ASM_DIR);
3789 
3790 	#undef CAP16_TO_CAP32
3791 
3792 	return caps32;
3793 }
3794 
3795 /**
3796  *	fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
3797  *	@caps32: a 32-bit Port Capabilities value
3798  *
3799  *	Returns the equivalent 16-bit Port Capabilities value.  Note that
3800  *	not all 32-bit Port Capabilities can be represented in the 16-bit
3801  *	Port Capabilities and some fields/values may not make it.
3802  */
3803 static uint16_t fwcaps32_to_caps16(uint32_t caps32)
3804 {
3805 	uint16_t caps16 = 0;
3806 
3807 	#define CAP32_TO_CAP16(__cap) \
3808 		do { \
3809 			if (caps32 & FW_PORT_CAP32_##__cap) \
3810 				caps16 |= FW_PORT_CAP_##__cap; \
3811 		} while (0)
3812 
3813 	CAP32_TO_CAP16(SPEED_100M);
3814 	CAP32_TO_CAP16(SPEED_1G);
3815 	CAP32_TO_CAP16(SPEED_10G);
3816 	CAP32_TO_CAP16(SPEED_25G);
3817 	CAP32_TO_CAP16(SPEED_40G);
3818 	CAP32_TO_CAP16(SPEED_100G);
3819 	CAP32_TO_CAP16(FC_RX);
3820 	CAP32_TO_CAP16(FC_TX);
3821 	CAP32_TO_CAP16(802_3_PAUSE);
3822 	CAP32_TO_CAP16(802_3_ASM_DIR);
3823 	CAP32_TO_CAP16(ANEG);
3824 	CAP32_TO_CAP16(FORCE_PAUSE);
3825 	CAP32_TO_CAP16(MDIAUTO);
3826 	CAP32_TO_CAP16(MDISTRAIGHT);
3827 	CAP32_TO_CAP16(FEC_RS);
3828 	CAP32_TO_CAP16(FEC_BASER_RS);
3829 
3830 	#undef CAP32_TO_CAP16
3831 
3832 	return caps16;
3833 }
3834 
3835 static bool
3836 is_bt(struct port_info *pi)
3837 {
3838 
3839 	return (pi->port_type == FW_PORT_TYPE_BT_SGMII ||
3840 	    pi->port_type == FW_PORT_TYPE_BT_XFI ||
3841 	    pi->port_type == FW_PORT_TYPE_BT_XAUI);
3842 }
3843 
3844 static int8_t fwcap_to_fec(uint32_t caps, bool unset_means_none)
3845 {
3846 	int8_t fec = 0;
3847 
3848 	if ((caps & V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC)) == 0)
3849 		return (unset_means_none ? FEC_NONE : 0);
3850 
3851 	if (caps & FW_PORT_CAP32_FEC_RS)
3852 		fec |= FEC_RS;
3853 	if (caps & FW_PORT_CAP32_FEC_BASER_RS)
3854 		fec |= FEC_BASER_RS;
3855 	if (caps & FW_PORT_CAP32_FEC_NO_FEC)
3856 		fec |= FEC_NONE;
3857 
3858 	return (fec);
3859 }
3860 
3861 /*
3862  * Note that 0 is not translated to NO_FEC.
3863  */
3864 static uint32_t fec_to_fwcap(int8_t fec)
3865 {
3866 	uint32_t caps = 0;
3867 
3868 	/* Only real FECs allowed. */
3869 	MPASS((fec & ~M_FW_PORT_CAP32_FEC) == 0);
3870 
3871 	if (fec & FEC_RS)
3872 		caps |= FW_PORT_CAP32_FEC_RS;
3873 	if (fec & FEC_BASER_RS)
3874 		caps |= FW_PORT_CAP32_FEC_BASER_RS;
3875 	if (fec & FEC_NONE)
3876 		caps |= FW_PORT_CAP32_FEC_NO_FEC;
3877 
3878 	return (caps);
3879 }
3880 
3881 /**
3882  *	t4_link_l1cfg - apply link configuration to MAC/PHY
3883  *	@phy: the PHY to setup
3884  *	@mac: the MAC to setup
3885  *	@lc: the requested link configuration
3886  *
3887  *	Set up a port's MAC and PHY according to a desired link configuration.
3888  *	- If the PHY can auto-negotiate first decide what to advertise, then
3889  *	  enable/disable auto-negotiation as desired, and reset.
3890  *	- If the PHY does not auto-negotiate just reset it.
3891  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3892  *	  otherwise do it later based on the outcome of auto-negotiation.
3893  */
3894 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3895 		  struct link_config *lc)
3896 {
3897 	struct fw_port_cmd c;
3898 	unsigned int mdi = V_FW_PORT_CAP32_MDI(FW_PORT_CAP32_MDI_AUTO);
3899 	unsigned int aneg, fc, fec, speed, rcap;
3900 
3901 	fc = 0;
3902 	if (lc->requested_fc & PAUSE_RX)
3903 		fc |= FW_PORT_CAP32_FC_RX;
3904 	if (lc->requested_fc & PAUSE_TX)
3905 		fc |= FW_PORT_CAP32_FC_TX;
3906 	if (!(lc->requested_fc & PAUSE_AUTONEG))
3907 		fc |= FW_PORT_CAP32_FORCE_PAUSE;
3908 
3909 	if (lc->requested_aneg == AUTONEG_DISABLE)
3910 		aneg = 0;
3911 	else if (lc->requested_aneg == AUTONEG_ENABLE)
3912 		aneg = FW_PORT_CAP32_ANEG;
3913 	else
3914 		aneg = lc->pcaps & FW_PORT_CAP32_ANEG;
3915 
3916 	if (aneg) {
3917 		speed = lc->pcaps &
3918 		    V_FW_PORT_CAP32_SPEED(M_FW_PORT_CAP32_SPEED);
3919 	} else if (lc->requested_speed != 0)
3920 		speed = speed_to_fwcap(lc->requested_speed);
3921 	else
3922 		speed = fwcap_top_speed(lc->pcaps);
3923 
3924 	fec = 0;
3925 	if (fec_supported(lc->pcaps)) {
3926 		if (lc->requested_fec == FEC_AUTO) {
3927 			if (lc->pcaps & FW_PORT_CAP32_FORCE_FEC) {
3928 				if (speed & FW_PORT_CAP32_SPEED_100G) {
3929 					fec |= FW_PORT_CAP32_FEC_RS;
3930 					fec |= FW_PORT_CAP32_FEC_NO_FEC;
3931 				} else {
3932 					fec |= FW_PORT_CAP32_FEC_RS;
3933 					fec |= FW_PORT_CAP32_FEC_BASER_RS;
3934 					fec |= FW_PORT_CAP32_FEC_NO_FEC;
3935 				}
3936 			} else {
3937 				/* Set only 1b with old firmwares. */
3938 				fec |= fec_to_fwcap(lc->fec_hint);
3939 			}
3940 		} else {
3941 			fec |= fec_to_fwcap(lc->requested_fec &
3942 			    M_FW_PORT_CAP32_FEC);
3943 			if (lc->requested_fec & FEC_MODULE)
3944 				fec |= fec_to_fwcap(lc->fec_hint);
3945 		}
3946 
3947 		if (lc->pcaps & FW_PORT_CAP32_FORCE_FEC)
3948 			fec |= FW_PORT_CAP32_FORCE_FEC;
3949 		else if (fec == FW_PORT_CAP32_FEC_NO_FEC)
3950 			fec = 0;
3951 	}
3952 
3953 	/* Force AN on for BT cards. */
3954 	if (is_bt(adap->port[adap->chan_map[port]]))
3955 		aneg = lc->pcaps & FW_PORT_CAP32_ANEG;
3956 
3957 	rcap = aneg | speed | fc | fec;
3958 	if ((rcap | lc->pcaps) != lc->pcaps) {
3959 #ifdef INVARIANTS
3960 		CH_WARN(adap, "rcap 0x%08x, pcap 0x%08x, removed 0x%x\n", rcap,
3961 		    lc->pcaps, rcap & (rcap ^ lc->pcaps));
3962 #endif
3963 		rcap &= lc->pcaps;
3964 	}
3965 	rcap |= mdi;
3966 
3967 	memset(&c, 0, sizeof(c));
3968 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3969 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3970 				     V_FW_PORT_CMD_PORTID(port));
3971 	if (adap->params.port_caps32) {
3972 		c.action_to_len16 =
3973 		    cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG32) |
3974 			FW_LEN16(c));
3975 		c.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
3976 	} else {
3977 		c.action_to_len16 =
3978 		    cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3979 			    FW_LEN16(c));
3980 		c.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
3981 	}
3982 
3983 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
3984 }
3985 
3986 /**
3987  *	t4_restart_aneg - restart autonegotiation
3988  *	@adap: the adapter
3989  *	@mbox: mbox to use for the FW command
3990  *	@port: the port id
3991  *
3992  *	Restarts autonegotiation for the selected port.
3993  */
3994 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3995 {
3996 	struct fw_port_cmd c;
3997 
3998 	memset(&c, 0, sizeof(c));
3999 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
4000 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
4001 				     V_FW_PORT_CMD_PORTID(port));
4002 	c.action_to_len16 =
4003 		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
4004 			    FW_LEN16(c));
4005 	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
4006 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4007 }
4008 
4009 struct intr_details {
4010 	u32 mask;
4011 	const char *msg;
4012 };
4013 
4014 struct intr_action {
4015 	u32 mask;
4016 	int arg;
4017 	bool (*action)(struct adapter *, int, bool);
4018 };
4019 
4020 #define NONFATAL_IF_DISABLED 1
4021 struct intr_info {
4022 	const char *name;	/* name of the INT_CAUSE register */
4023 	int cause_reg;		/* INT_CAUSE register */
4024 	int enable_reg;		/* INT_ENABLE register */
4025 	u32 fatal;		/* bits that are fatal */
4026 	int flags;		/* hints */
4027 	const struct intr_details *details;
4028 	const struct intr_action *actions;
4029 };
4030 
4031 static inline char
4032 intr_alert_char(u32 cause, u32 enable, u32 fatal)
4033 {
4034 
4035 	if (cause & fatal)
4036 		return ('!');
4037 	if (cause & enable)
4038 		return ('*');
4039 	return ('-');
4040 }
4041 
4042 static void
4043 t4_show_intr_info(struct adapter *adap, const struct intr_info *ii, u32 cause)
4044 {
4045 	u32 enable, fatal, leftover;
4046 	const struct intr_details *details;
4047 	char alert;
4048 
4049 	enable = t4_read_reg(adap, ii->enable_reg);
4050 	if (ii->flags & NONFATAL_IF_DISABLED)
4051 		fatal = ii->fatal & t4_read_reg(adap, ii->enable_reg);
4052 	else
4053 		fatal = ii->fatal;
4054 	alert = intr_alert_char(cause, enable, fatal);
4055 	CH_ALERT(adap, "%c %s 0x%x = 0x%08x, E 0x%08x, F 0x%08x\n",
4056 	    alert, ii->name, ii->cause_reg, cause, enable, fatal);
4057 
4058 	leftover = cause;
4059 	for (details = ii->details; details && details->mask != 0; details++) {
4060 		u32 msgbits = details->mask & cause;
4061 		if (msgbits == 0)
4062 			continue;
4063 		alert = intr_alert_char(msgbits, enable, ii->fatal);
4064 		CH_ALERT(adap, "  %c [0x%08x] %s\n", alert, msgbits,
4065 		    details->msg);
4066 		leftover &= ~msgbits;
4067 	}
4068 	if (leftover != 0 && leftover != cause)
4069 		CH_ALERT(adap, "  ? [0x%08x]\n", leftover);
4070 }
4071 
4072 /*
4073  * Returns true for fatal error.
4074  */
4075 static bool
4076 t4_handle_intr(struct adapter *adap, const struct intr_info *ii,
4077     u32 additional_cause, bool verbose)
4078 {
4079 	u32 cause, fatal;
4080 	bool rc;
4081 	const struct intr_action *action;
4082 
4083 	/*
4084 	 * Read and display cause.  Note that the top level PL_INT_CAUSE is a
4085 	 * bit special and we need to completely ignore the bits that are not in
4086 	 * PL_INT_ENABLE.
4087 	 */
4088 	cause = t4_read_reg(adap, ii->cause_reg);
4089 	if (ii->cause_reg == A_PL_INT_CAUSE)
4090 		cause &= t4_read_reg(adap, ii->enable_reg);
4091 	if (verbose || cause != 0)
4092 		t4_show_intr_info(adap, ii, cause);
4093 	fatal = cause & ii->fatal;
4094 	if (fatal != 0 && ii->flags & NONFATAL_IF_DISABLED)
4095 		fatal &= t4_read_reg(adap, ii->enable_reg);
4096 	cause |= additional_cause;
4097 	if (cause == 0)
4098 		return (false);
4099 
4100 	rc = fatal != 0;
4101 	for (action = ii->actions; action && action->mask != 0; action++) {
4102 		if (!(action->mask & cause))
4103 			continue;
4104 		rc |= (action->action)(adap, action->arg, verbose);
4105 	}
4106 
4107 	/* clear */
4108 	t4_write_reg(adap, ii->cause_reg, cause);
4109 	(void)t4_read_reg(adap, ii->cause_reg);
4110 
4111 	return (rc);
4112 }
4113 
4114 /*
4115  * Interrupt handler for the PCIE module.
4116  */
4117 static bool pcie_intr_handler(struct adapter *adap, int arg, bool verbose)
4118 {
4119 	static const struct intr_details sysbus_intr_details[] = {
4120 		{ F_RNPP, "RXNP array parity error" },
4121 		{ F_RPCP, "RXPC array parity error" },
4122 		{ F_RCIP, "RXCIF array parity error" },
4123 		{ F_RCCP, "Rx completions control array parity error" },
4124 		{ F_RFTP, "RXFT array parity error" },
4125 		{ 0 }
4126 	};
4127 	static const struct intr_info sysbus_intr_info = {
4128 		.name = "PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS",
4129 		.cause_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
4130 		.enable_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_INTERRUPT_ENABLE,
4131 		.fatal = F_RFTP | F_RCCP | F_RCIP | F_RPCP | F_RNPP,
4132 		.flags = 0,
4133 		.details = sysbus_intr_details,
4134 		.actions = NULL,
4135 	};
4136 	static const struct intr_details pcie_port_intr_details[] = {
4137 		{ F_TPCP, "TXPC array parity error" },
4138 		{ F_TNPP, "TXNP array parity error" },
4139 		{ F_TFTP, "TXFT array parity error" },
4140 		{ F_TCAP, "TXCA array parity error" },
4141 		{ F_TCIP, "TXCIF array parity error" },
4142 		{ F_RCAP, "RXCA array parity error" },
4143 		{ F_OTDD, "outbound request TLP discarded" },
4144 		{ F_RDPE, "Rx data parity error" },
4145 		{ F_TDUE, "Tx uncorrectable data error" },
4146 		{ 0 }
4147 	};
4148 	static const struct intr_info pcie_port_intr_info = {
4149 		.name = "PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS",
4150 		.cause_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
4151 		.enable_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_INTERRUPT_ENABLE,
4152 		.fatal = F_TPCP | F_TNPP | F_TFTP | F_TCAP | F_TCIP | F_RCAP |
4153 		    F_OTDD | F_RDPE | F_TDUE,
4154 		.flags = 0,
4155 		.details = pcie_port_intr_details,
4156 		.actions = NULL,
4157 	};
4158 	static const struct intr_details pcie_intr_details[] = {
4159 		{ F_MSIADDRLPERR, "MSI AddrL parity error" },
4160 		{ F_MSIADDRHPERR, "MSI AddrH parity error" },
4161 		{ F_MSIDATAPERR, "MSI data parity error" },
4162 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error" },
4163 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error" },
4164 		{ F_MSIXDATAPERR, "MSI-X data parity error" },
4165 		{ F_MSIXDIPERR, "MSI-X DI parity error" },
4166 		{ F_PIOCPLPERR, "PCIe PIO completion FIFO parity error" },
4167 		{ F_PIOREQPERR, "PCIe PIO request FIFO parity error" },
4168 		{ F_TARTAGPERR, "PCIe target tag FIFO parity error" },
4169 		{ F_CCNTPERR, "PCIe CMD channel count parity error" },
4170 		{ F_CREQPERR, "PCIe CMD channel request parity error" },
4171 		{ F_CRSPPERR, "PCIe CMD channel response parity error" },
4172 		{ F_DCNTPERR, "PCIe DMA channel count parity error" },
4173 		{ F_DREQPERR, "PCIe DMA channel request parity error" },
4174 		{ F_DRSPPERR, "PCIe DMA channel response parity error" },
4175 		{ F_HCNTPERR, "PCIe HMA channel count parity error" },
4176 		{ F_HREQPERR, "PCIe HMA channel request parity error" },
4177 		{ F_HRSPPERR, "PCIe HMA channel response parity error" },
4178 		{ F_CFGSNPPERR, "PCIe config snoop FIFO parity error" },
4179 		{ F_FIDPERR, "PCIe FID parity error" },
4180 		{ F_INTXCLRPERR, "PCIe INTx clear parity error" },
4181 		{ F_MATAGPERR, "PCIe MA tag parity error" },
4182 		{ F_PIOTAGPERR, "PCIe PIO tag parity error" },
4183 		{ F_RXCPLPERR, "PCIe Rx completion parity error" },
4184 		{ F_RXWRPERR, "PCIe Rx write parity error" },
4185 		{ F_RPLPERR, "PCIe replay buffer parity error" },
4186 		{ F_PCIESINT, "PCIe core secondary fault" },
4187 		{ F_PCIEPINT, "PCIe core primary fault" },
4188 		{ F_UNXSPLCPLERR, "PCIe unexpected split completion error" },
4189 		{ 0 }
4190 	};
4191 	static const struct intr_details t5_pcie_intr_details[] = {
4192 		{ F_IPGRPPERR, "Parity errors observed by IP" },
4193 		{ F_NONFATALERR, "PCIe non-fatal error" },
4194 		{ F_READRSPERR, "Outbound read error" },
4195 		{ F_TRGT1GRPPERR, "PCIe TRGT1 group FIFOs parity error" },
4196 		{ F_IPSOTPERR, "PCIe IP SOT buffer SRAM parity error" },
4197 		{ F_IPRETRYPERR, "PCIe IP replay buffer parity error" },
4198 		{ F_IPRXDATAGRPPERR, "PCIe IP Rx data group SRAMs parity error" },
4199 		{ F_IPRXHDRGRPPERR, "PCIe IP Rx header group SRAMs parity error" },
4200 		{ F_PIOTAGQPERR, "PIO tag queue FIFO parity error" },
4201 		{ F_MAGRPPERR, "MA group FIFO parity error" },
4202 		{ F_VFIDPERR, "VFID SRAM parity error" },
4203 		{ F_FIDPERR, "FID SRAM parity error" },
4204 		{ F_CFGSNPPERR, "config snoop FIFO parity error" },
4205 		{ F_HRSPPERR, "HMA channel response data SRAM parity error" },
4206 		{ F_HREQRDPERR, "HMA channel read request SRAM parity error" },
4207 		{ F_HREQWRPERR, "HMA channel write request SRAM parity error" },
4208 		{ F_DRSPPERR, "DMA channel response data SRAM parity error" },
4209 		{ F_DREQRDPERR, "DMA channel write request SRAM parity error" },
4210 		{ F_CRSPPERR, "CMD channel response data SRAM parity error" },
4211 		{ F_CREQRDPERR, "CMD channel read request SRAM parity error" },
4212 		{ F_MSTTAGQPERR, "PCIe master tag queue SRAM parity error" },
4213 		{ F_TGTTAGQPERR, "PCIe target tag queue FIFO parity error" },
4214 		{ F_PIOREQGRPPERR, "PIO request group FIFOs parity error" },
4215 		{ F_PIOCPLGRPPERR, "PIO completion group FIFOs parity error" },
4216 		{ F_MSIXDIPERR, "MSI-X DI SRAM parity error" },
4217 		{ F_MSIXDATAPERR, "MSI-X data SRAM parity error" },
4218 		{ F_MSIXADDRHPERR, "MSI-X AddrH SRAM parity error" },
4219 		{ F_MSIXADDRLPERR, "MSI-X AddrL SRAM parity error" },
4220 		{ F_MSIXSTIPERR, "MSI-X STI SRAM parity error" },
4221 		{ F_MSTTIMEOUTPERR, "Master timeout FIFO parity error" },
4222 		{ F_MSTGRPPERR, "Master response read queue SRAM parity error" },
4223 		{ 0 }
4224 	};
4225 	struct intr_info pcie_intr_info = {
4226 		.name = "PCIE_INT_CAUSE",
4227 		.cause_reg = A_PCIE_INT_CAUSE,
4228 		.enable_reg = A_PCIE_INT_ENABLE,
4229 		.fatal = 0xffffffff,
4230 		.flags = NONFATAL_IF_DISABLED,
4231 		.details = NULL,
4232 		.actions = NULL,
4233 	};
4234 	bool fatal = false;
4235 
4236 	if (is_t4(adap)) {
4237 		fatal |= t4_handle_intr(adap, &sysbus_intr_info, 0, verbose);
4238 		fatal |= t4_handle_intr(adap, &pcie_port_intr_info, 0, verbose);
4239 
4240 		pcie_intr_info.details = pcie_intr_details;
4241 	} else {
4242 		pcie_intr_info.details = t5_pcie_intr_details;
4243 	}
4244 	fatal |= t4_handle_intr(adap, &pcie_intr_info, 0, verbose);
4245 
4246 	return (fatal);
4247 }
4248 
4249 /*
4250  * TP interrupt handler.
4251  */
4252 static bool tp_intr_handler(struct adapter *adap, int arg, bool verbose)
4253 {
4254 	static const struct intr_details tp_intr_details[] = {
4255 		{ 0x3fffffff, "TP parity error" },
4256 		{ F_FLMTXFLSTEMPTY, "TP out of Tx pages" },
4257 		{ 0 }
4258 	};
4259 	static const struct intr_info tp_intr_info = {
4260 		.name = "TP_INT_CAUSE",
4261 		.cause_reg = A_TP_INT_CAUSE,
4262 		.enable_reg = A_TP_INT_ENABLE,
4263 		.fatal = 0x7fffffff,
4264 		.flags = NONFATAL_IF_DISABLED,
4265 		.details = tp_intr_details,
4266 		.actions = NULL,
4267 	};
4268 
4269 	return (t4_handle_intr(adap, &tp_intr_info, 0, verbose));
4270 }
4271 
4272 /*
4273  * SGE interrupt handler.
4274  */
4275 static bool sge_intr_handler(struct adapter *adap, int arg, bool verbose)
4276 {
4277 	static const struct intr_info sge_int1_info = {
4278 		.name = "SGE_INT_CAUSE1",
4279 		.cause_reg = A_SGE_INT_CAUSE1,
4280 		.enable_reg = A_SGE_INT_ENABLE1,
4281 		.fatal = 0xffffffff,
4282 		.flags = NONFATAL_IF_DISABLED,
4283 		.details = NULL,
4284 		.actions = NULL,
4285 	};
4286 	static const struct intr_info sge_int2_info = {
4287 		.name = "SGE_INT_CAUSE2",
4288 		.cause_reg = A_SGE_INT_CAUSE2,
4289 		.enable_reg = A_SGE_INT_ENABLE2,
4290 		.fatal = 0xffffffff,
4291 		.flags = NONFATAL_IF_DISABLED,
4292 		.details = NULL,
4293 		.actions = NULL,
4294 	};
4295 	static const struct intr_details sge_int3_details[] = {
4296 		{ F_ERR_FLM_DBP,
4297 			"DBP pointer delivery for invalid context or QID" },
4298 		{ F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0,
4299 			"Invalid QID or header request by IDMA" },
4300 		{ F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" },
4301 		{ F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" },
4302 		{ F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" },
4303 		{ F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" },
4304 		{ F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" },
4305 		{ F_ERR_TIMER_ABOVE_MAX_QID,
4306 			"SGE GTS with timer 0-5 for IQID > 1023" },
4307 		{ F_ERR_CPL_EXCEED_IQE_SIZE,
4308 			"SGE received CPL exceeding IQE size" },
4309 		{ F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" },
4310 		{ F_ERR_ITP_TIME_PAUSED, "SGE ITP error" },
4311 		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" },
4312 		{ F_ERR_DROPPED_DB, "SGE DB dropped" },
4313 		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
4314 		  "SGE IQID > 1023 received CPL for FL" },
4315 		{ F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4316 			F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" },
4317 		{ F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" },
4318 		{ F_ERR_ING_CTXT_PRIO,
4319 			"Ingress context manager priority user error" },
4320 		{ F_ERR_EGR_CTXT_PRIO,
4321 			"Egress context manager priority user error" },
4322 		{ F_DBFIFO_HP_INT, "High priority DB FIFO threshold reached" },
4323 		{ F_DBFIFO_LP_INT, "Low priority DB FIFO threshold reached" },
4324 		{ F_REG_ADDRESS_ERR, "Undefined SGE register accessed" },
4325 		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" },
4326 		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID" },
4327 		{ 0x0000000f, "SGE context access for invalid queue" },
4328 		{ 0 }
4329 	};
4330 	static const struct intr_details t6_sge_int3_details[] = {
4331 		{ F_ERR_FLM_DBP,
4332 			"DBP pointer delivery for invalid context or QID" },
4333 		{ F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0,
4334 			"Invalid QID or header request by IDMA" },
4335 		{ F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" },
4336 		{ F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" },
4337 		{ F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" },
4338 		{ F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" },
4339 		{ F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" },
4340 		{ F_ERR_TIMER_ABOVE_MAX_QID,
4341 			"SGE GTS with timer 0-5 for IQID > 1023" },
4342 		{ F_ERR_CPL_EXCEED_IQE_SIZE,
4343 			"SGE received CPL exceeding IQE size" },
4344 		{ F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" },
4345 		{ F_ERR_ITP_TIME_PAUSED, "SGE ITP error" },
4346 		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" },
4347 		{ F_ERR_DROPPED_DB, "SGE DB dropped" },
4348 		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
4349 			"SGE IQID > 1023 received CPL for FL" },
4350 		{ F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4351 			F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" },
4352 		{ F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" },
4353 		{ F_ERR_ING_CTXT_PRIO,
4354 			"Ingress context manager priority user error" },
4355 		{ F_ERR_EGR_CTXT_PRIO,
4356 			"Egress context manager priority user error" },
4357 		{ F_DBP_TBUF_FULL, "SGE DBP tbuf full" },
4358 		{ F_FATAL_WRE_LEN,
4359 			"SGE WRE packet less than advertized length" },
4360 		{ F_REG_ADDRESS_ERR, "Undefined SGE register accessed" },
4361 		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" },
4362 		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID" },
4363 		{ 0x0000000f, "SGE context access for invalid queue" },
4364 		{ 0 }
4365 	};
4366 	struct intr_info sge_int3_info = {
4367 		.name = "SGE_INT_CAUSE3",
4368 		.cause_reg = A_SGE_INT_CAUSE3,
4369 		.enable_reg = A_SGE_INT_ENABLE3,
4370 		.fatal = F_ERR_CPL_EXCEED_IQE_SIZE,
4371 		.flags = 0,
4372 		.details = NULL,
4373 		.actions = NULL,
4374 	};
4375 	static const struct intr_info sge_int4_info = {
4376 		.name = "SGE_INT_CAUSE4",
4377 		.cause_reg = A_SGE_INT_CAUSE4,
4378 		.enable_reg = A_SGE_INT_ENABLE4,
4379 		.fatal = 0,
4380 		.flags = 0,
4381 		.details = NULL,
4382 		.actions = NULL,
4383 	};
4384 	static const struct intr_info sge_int5_info = {
4385 		.name = "SGE_INT_CAUSE5",
4386 		.cause_reg = A_SGE_INT_CAUSE5,
4387 		.enable_reg = A_SGE_INT_ENABLE5,
4388 		.fatal = 0xffffffff,
4389 		.flags = NONFATAL_IF_DISABLED,
4390 		.details = NULL,
4391 		.actions = NULL,
4392 	};
4393 	static const struct intr_info sge_int6_info = {
4394 		.name = "SGE_INT_CAUSE6",
4395 		.cause_reg = A_SGE_INT_CAUSE6,
4396 		.enable_reg = A_SGE_INT_ENABLE6,
4397 		.fatal = 0,
4398 		.flags = 0,
4399 		.details = NULL,
4400 		.actions = NULL,
4401 	};
4402 
4403 	bool fatal;
4404 	u32 v;
4405 
4406 	if (chip_id(adap) <= CHELSIO_T5) {
4407 		sge_int3_info.details = sge_int3_details;
4408 	} else {
4409 		sge_int3_info.details = t6_sge_int3_details;
4410 	}
4411 
4412 	fatal = false;
4413 	fatal |= t4_handle_intr(adap, &sge_int1_info, 0, verbose);
4414 	fatal |= t4_handle_intr(adap, &sge_int2_info, 0, verbose);
4415 	fatal |= t4_handle_intr(adap, &sge_int3_info, 0, verbose);
4416 	fatal |= t4_handle_intr(adap, &sge_int4_info, 0, verbose);
4417 	if (chip_id(adap) >= CHELSIO_T5)
4418 		fatal |= t4_handle_intr(adap, &sge_int5_info, 0, verbose);
4419 	if (chip_id(adap) >= CHELSIO_T6)
4420 		fatal |= t4_handle_intr(adap, &sge_int6_info, 0, verbose);
4421 
4422 	v = t4_read_reg(adap, A_SGE_ERROR_STATS);
4423 	if (v & F_ERROR_QID_VALID) {
4424 		CH_ERR(adap, "SGE error for QID %u\n", G_ERROR_QID(v));
4425 		if (v & F_UNCAPTURED_ERROR)
4426 			CH_ERR(adap, "SGE UNCAPTURED_ERROR set (clearing)\n");
4427 		t4_write_reg(adap, A_SGE_ERROR_STATS,
4428 		    F_ERROR_QID_VALID | F_UNCAPTURED_ERROR);
4429 	}
4430 
4431 	return (fatal);
4432 }
4433 
4434 /*
4435  * CIM interrupt handler.
4436  */
4437 static bool cim_intr_handler(struct adapter *adap, int arg, bool verbose)
4438 {
4439 	static const struct intr_action cim_host_intr_actions[] = {
4440 		{ F_TIMER0INT, 0, t4_os_dump_cimla },
4441 		{ 0 },
4442 	};
4443 	static const struct intr_details cim_host_intr_details[] = {
4444 		/* T6+ */
4445 		{ F_PCIE2CIMINTFPARERR, "CIM IBQ PCIe interface parity error" },
4446 
4447 		/* T5+ */
4448 		{ F_MA_CIM_INTFPERR, "MA2CIM interface parity error" },
4449 		{ F_PLCIM_MSTRSPDATAPARERR,
4450 			"PL2CIM master response data parity error" },
4451 		{ F_NCSI2CIMINTFPARERR, "CIM IBQ NC-SI interface parity error" },
4452 		{ F_SGE2CIMINTFPARERR, "CIM IBQ SGE interface parity error" },
4453 		{ F_ULP2CIMINTFPARERR, "CIM IBQ ULP_TX interface parity error" },
4454 		{ F_TP2CIMINTFPARERR, "CIM IBQ TP interface parity error" },
4455 		{ F_OBQSGERX1PARERR, "CIM OBQ SGE1_RX parity error" },
4456 		{ F_OBQSGERX0PARERR, "CIM OBQ SGE0_RX parity error" },
4457 
4458 		/* T4+ */
4459 		{ F_TIEQOUTPARERRINT, "CIM TIEQ outgoing FIFO parity error" },
4460 		{ F_TIEQINPARERRINT, "CIM TIEQ incoming FIFO parity error" },
4461 		{ F_MBHOSTPARERR, "CIM mailbox host read parity error" },
4462 		{ F_MBUPPARERR, "CIM mailbox uP parity error" },
4463 		{ F_IBQTP0PARERR, "CIM IBQ TP0 parity error" },
4464 		{ F_IBQTP1PARERR, "CIM IBQ TP1 parity error" },
4465 		{ F_IBQULPPARERR, "CIM IBQ ULP parity error" },
4466 		{ F_IBQSGELOPARERR, "CIM IBQ SGE_LO parity error" },
4467 		{ F_IBQSGEHIPARERR | F_IBQPCIEPARERR,	/* same bit */
4468 			"CIM IBQ PCIe/SGE_HI parity error" },
4469 		{ F_IBQNCSIPARERR, "CIM IBQ NC-SI parity error" },
4470 		{ F_OBQULP0PARERR, "CIM OBQ ULP0 parity error" },
4471 		{ F_OBQULP1PARERR, "CIM OBQ ULP1 parity error" },
4472 		{ F_OBQULP2PARERR, "CIM OBQ ULP2 parity error" },
4473 		{ F_OBQULP3PARERR, "CIM OBQ ULP3 parity error" },
4474 		{ F_OBQSGEPARERR, "CIM OBQ SGE parity error" },
4475 		{ F_OBQNCSIPARERR, "CIM OBQ NC-SI parity error" },
4476 		{ F_TIMER1INT, "CIM TIMER0 interrupt" },
4477 		{ F_TIMER0INT, "CIM TIMER0 interrupt" },
4478 		{ F_PREFDROPINT, "CIM control register prefetch drop" },
4479 		{ 0}
4480 	};
4481 	static const struct intr_info cim_host_intr_info = {
4482 		.name = "CIM_HOST_INT_CAUSE",
4483 		.cause_reg = A_CIM_HOST_INT_CAUSE,
4484 		.enable_reg = A_CIM_HOST_INT_ENABLE,
4485 		.fatal = 0x007fffe6,
4486 		.flags = NONFATAL_IF_DISABLED,
4487 		.details = cim_host_intr_details,
4488 		.actions = cim_host_intr_actions,
4489 	};
4490 	static const struct intr_details cim_host_upacc_intr_details[] = {
4491 		{ F_EEPROMWRINT, "CIM EEPROM came out of busy state" },
4492 		{ F_TIMEOUTMAINT, "CIM PIF MA timeout" },
4493 		{ F_TIMEOUTINT, "CIM PIF timeout" },
4494 		{ F_RSPOVRLOOKUPINT, "CIM response FIFO overwrite" },
4495 		{ F_REQOVRLOOKUPINT, "CIM request FIFO overwrite" },
4496 		{ F_BLKWRPLINT, "CIM block write to PL space" },
4497 		{ F_BLKRDPLINT, "CIM block read from PL space" },
4498 		{ F_SGLWRPLINT,
4499 			"CIM single write to PL space with illegal BEs" },
4500 		{ F_SGLRDPLINT,
4501 			"CIM single read from PL space with illegal BEs" },
4502 		{ F_BLKWRCTLINT, "CIM block write to CTL space" },
4503 		{ F_BLKRDCTLINT, "CIM block read from CTL space" },
4504 		{ F_SGLWRCTLINT,
4505 			"CIM single write to CTL space with illegal BEs" },
4506 		{ F_SGLRDCTLINT,
4507 			"CIM single read from CTL space with illegal BEs" },
4508 		{ F_BLKWREEPROMINT, "CIM block write to EEPROM space" },
4509 		{ F_BLKRDEEPROMINT, "CIM block read from EEPROM space" },
4510 		{ F_SGLWREEPROMINT,
4511 			"CIM single write to EEPROM space with illegal BEs" },
4512 		{ F_SGLRDEEPROMINT,
4513 			"CIM single read from EEPROM space with illegal BEs" },
4514 		{ F_BLKWRFLASHINT, "CIM block write to flash space" },
4515 		{ F_BLKRDFLASHINT, "CIM block read from flash space" },
4516 		{ F_SGLWRFLASHINT, "CIM single write to flash space" },
4517 		{ F_SGLRDFLASHINT,
4518 			"CIM single read from flash space with illegal BEs" },
4519 		{ F_BLKWRBOOTINT, "CIM block write to boot space" },
4520 		{ F_BLKRDBOOTINT, "CIM block read from boot space" },
4521 		{ F_SGLWRBOOTINT, "CIM single write to boot space" },
4522 		{ F_SGLRDBOOTINT,
4523 			"CIM single read from boot space with illegal BEs" },
4524 		{ F_ILLWRBEINT, "CIM illegal write BEs" },
4525 		{ F_ILLRDBEINT, "CIM illegal read BEs" },
4526 		{ F_ILLRDINT, "CIM illegal read" },
4527 		{ F_ILLWRINT, "CIM illegal write" },
4528 		{ F_ILLTRANSINT, "CIM illegal transaction" },
4529 		{ F_RSVDSPACEINT, "CIM reserved space access" },
4530 		{0}
4531 	};
4532 	static const struct intr_info cim_host_upacc_intr_info = {
4533 		.name = "CIM_HOST_UPACC_INT_CAUSE",
4534 		.cause_reg = A_CIM_HOST_UPACC_INT_CAUSE,
4535 		.enable_reg = A_CIM_HOST_UPACC_INT_ENABLE,
4536 		.fatal = 0x3fffeeff,
4537 		.flags = NONFATAL_IF_DISABLED,
4538 		.details = cim_host_upacc_intr_details,
4539 		.actions = NULL,
4540 	};
4541 	static const struct intr_info cim_pf_host_intr_info = {
4542 		.name = "CIM_PF_HOST_INT_CAUSE",
4543 		.cause_reg = MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
4544 		.enable_reg = MYPF_REG(A_CIM_PF_HOST_INT_ENABLE),
4545 		.fatal = 0,
4546 		.flags = 0,
4547 		.details = NULL,
4548 		.actions = NULL,
4549 	};
4550 	u32 val, fw_err;
4551 	bool fatal;
4552 
4553 	fw_err = t4_read_reg(adap, A_PCIE_FW);
4554 	if (fw_err & F_PCIE_FW_ERR)
4555 		t4_report_fw_error(adap);
4556 
4557 	/*
4558 	 * When the Firmware detects an internal error which normally wouldn't
4559 	 * raise a Host Interrupt, it forces a CIM Timer0 interrupt in order
4560 	 * to make sure the Host sees the Firmware Crash.  So if we have a
4561 	 * Timer0 interrupt and don't see a Firmware Crash, ignore the Timer0
4562 	 * interrupt.
4563 	 */
4564 	val = t4_read_reg(adap, A_CIM_HOST_INT_CAUSE);
4565 	if (val & F_TIMER0INT && (!(fw_err & F_PCIE_FW_ERR) ||
4566 	    G_PCIE_FW_EVAL(fw_err) != PCIE_FW_EVAL_CRASH)) {
4567 		t4_write_reg(adap, A_CIM_HOST_INT_CAUSE, F_TIMER0INT);
4568 	}
4569 
4570 	fatal = false;
4571 	fatal |= t4_handle_intr(adap, &cim_host_intr_info, 0, verbose);
4572 	fatal |= t4_handle_intr(adap, &cim_host_upacc_intr_info, 0, verbose);
4573 	fatal |= t4_handle_intr(adap, &cim_pf_host_intr_info, 0, verbose);
4574 
4575 	return (fatal);
4576 }
4577 
4578 /*
4579  * ULP RX interrupt handler.
4580  */
4581 static bool ulprx_intr_handler(struct adapter *adap, int arg, bool verbose)
4582 {
4583 	static const struct intr_details ulprx_intr_details[] = {
4584 		/* T5+ */
4585 		{ F_SE_CNT_MISMATCH_1, "ULPRX SE count mismatch in channel 1" },
4586 		{ F_SE_CNT_MISMATCH_0, "ULPRX SE count mismatch in channel 0" },
4587 
4588 		/* T4+ */
4589 		{ F_CAUSE_CTX_1, "ULPRX channel 1 context error" },
4590 		{ F_CAUSE_CTX_0, "ULPRX channel 0 context error" },
4591 		{ 0x007fffff, "ULPRX parity error" },
4592 		{ 0 }
4593 	};
4594 	static const struct intr_info ulprx_intr_info = {
4595 		.name = "ULP_RX_INT_CAUSE",
4596 		.cause_reg = A_ULP_RX_INT_CAUSE,
4597 		.enable_reg = A_ULP_RX_INT_ENABLE,
4598 		.fatal = 0x07ffffff,
4599 		.flags = NONFATAL_IF_DISABLED,
4600 		.details = ulprx_intr_details,
4601 		.actions = NULL,
4602 	};
4603 	static const struct intr_info ulprx_intr2_info = {
4604 		.name = "ULP_RX_INT_CAUSE_2",
4605 		.cause_reg = A_ULP_RX_INT_CAUSE_2,
4606 		.enable_reg = A_ULP_RX_INT_ENABLE_2,
4607 		.fatal = 0,
4608 		.flags = 0,
4609 		.details = NULL,
4610 		.actions = NULL,
4611 	};
4612 	bool fatal = false;
4613 
4614 	fatal |= t4_handle_intr(adap, &ulprx_intr_info, 0, verbose);
4615 	fatal |= t4_handle_intr(adap, &ulprx_intr2_info, 0, verbose);
4616 
4617 	return (fatal);
4618 }
4619 
4620 /*
4621  * ULP TX interrupt handler.
4622  */
4623 static bool ulptx_intr_handler(struct adapter *adap, int arg, bool verbose)
4624 {
4625 	static const struct intr_details ulptx_intr_details[] = {
4626 		{ F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds" },
4627 		{ F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds" },
4628 		{ F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds" },
4629 		{ F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds" },
4630 		{ 0x0fffffff, "ULPTX parity error" },
4631 		{ 0 }
4632 	};
4633 	static const struct intr_info ulptx_intr_info = {
4634 		.name = "ULP_TX_INT_CAUSE",
4635 		.cause_reg = A_ULP_TX_INT_CAUSE,
4636 		.enable_reg = A_ULP_TX_INT_ENABLE,
4637 		.fatal = 0x0fffffff,
4638 		.flags = NONFATAL_IF_DISABLED,
4639 		.details = ulptx_intr_details,
4640 		.actions = NULL,
4641 	};
4642 	static const struct intr_info ulptx_intr2_info = {
4643 		.name = "ULP_TX_INT_CAUSE_2",
4644 		.cause_reg = A_ULP_TX_INT_CAUSE_2,
4645 		.enable_reg = A_ULP_TX_INT_ENABLE_2,
4646 		.fatal = 0xf0,
4647 		.flags = NONFATAL_IF_DISABLED,
4648 		.details = NULL,
4649 		.actions = NULL,
4650 	};
4651 	bool fatal = false;
4652 
4653 	fatal |= t4_handle_intr(adap, &ulptx_intr_info, 0, verbose);
4654 	fatal |= t4_handle_intr(adap, &ulptx_intr2_info, 0, verbose);
4655 
4656 	return (fatal);
4657 }
4658 
4659 static bool pmtx_dump_dbg_stats(struct adapter *adap, int arg, bool verbose)
4660 {
4661 	int i;
4662 	u32 data[17];
4663 
4664 	t4_read_indirect(adap, A_PM_TX_DBG_CTRL, A_PM_TX_DBG_DATA, &data[0],
4665 	    ARRAY_SIZE(data), A_PM_TX_DBG_STAT0);
4666 	for (i = 0; i < ARRAY_SIZE(data); i++) {
4667 		CH_ALERT(adap, "  - PM_TX_DBG_STAT%u (0x%x) = 0x%08x\n", i,
4668 		    A_PM_TX_DBG_STAT0 + i, data[i]);
4669 	}
4670 
4671 	return (false);
4672 }
4673 
4674 /*
4675  * PM TX interrupt handler.
4676  */
4677 static bool pmtx_intr_handler(struct adapter *adap, int arg, bool verbose)
4678 {
4679 	static const struct intr_action pmtx_intr_actions[] = {
4680 		{ 0xffffffff, 0, pmtx_dump_dbg_stats },
4681 		{ 0 },
4682 	};
4683 	static const struct intr_details pmtx_intr_details[] = {
4684 		{ F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large" },
4685 		{ F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large" },
4686 		{ F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large" },
4687 		{ F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd" },
4688 		{ 0x0f000000, "PMTX icspi FIFO2X Rx framing error" },
4689 		{ 0x00f00000, "PMTX icspi FIFO Rx framing error" },
4690 		{ 0x000f0000, "PMTX icspi FIFO Tx framing error" },
4691 		{ 0x0000f000, "PMTX oespi FIFO Rx framing error" },
4692 		{ 0x00000f00, "PMTX oespi FIFO Tx framing error" },
4693 		{ 0x000000f0, "PMTX oespi FIFO2X Tx framing error" },
4694 		{ F_OESPI_PAR_ERROR, "PMTX oespi parity error" },
4695 		{ F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error" },
4696 		{ F_ICSPI_PAR_ERROR, "PMTX icspi parity error" },
4697 		{ F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error" },
4698 		{ 0 }
4699 	};
4700 	static const struct intr_info pmtx_intr_info = {
4701 		.name = "PM_TX_INT_CAUSE",
4702 		.cause_reg = A_PM_TX_INT_CAUSE,
4703 		.enable_reg = A_PM_TX_INT_ENABLE,
4704 		.fatal = 0xffffffff,
4705 		.flags = 0,
4706 		.details = pmtx_intr_details,
4707 		.actions = pmtx_intr_actions,
4708 	};
4709 
4710 	return (t4_handle_intr(adap, &pmtx_intr_info, 0, verbose));
4711 }
4712 
4713 /*
4714  * PM RX interrupt handler.
4715  */
4716 static bool pmrx_intr_handler(struct adapter *adap, int arg, bool verbose)
4717 {
4718 	static const struct intr_details pmrx_intr_details[] = {
4719 		/* T6+ */
4720 		{ 0x18000000, "PMRX ospi overflow" },
4721 		{ F_MA_INTF_SDC_ERR, "PMRX MA interface SDC parity error" },
4722 		{ F_BUNDLE_LEN_PARERR, "PMRX bundle len FIFO parity error" },
4723 		{ F_BUNDLE_LEN_OVFL, "PMRX bundle len FIFO overflow" },
4724 		{ F_SDC_ERR, "PMRX SDC error" },
4725 
4726 		/* T4+ */
4727 		{ F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd" },
4728 		{ 0x003c0000, "PMRX iespi FIFO2X Rx framing error" },
4729 		{ 0x0003c000, "PMRX iespi Rx framing error" },
4730 		{ 0x00003c00, "PMRX iespi Tx framing error" },
4731 		{ 0x00000300, "PMRX ocspi Rx framing error" },
4732 		{ 0x000000c0, "PMRX ocspi Tx framing error" },
4733 		{ 0x00000030, "PMRX ocspi FIFO2X Tx framing error" },
4734 		{ F_OCSPI_PAR_ERROR, "PMRX ocspi parity error" },
4735 		{ F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error" },
4736 		{ F_IESPI_PAR_ERROR, "PMRX iespi parity error" },
4737 		{ F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error"},
4738 		{ 0 }
4739 	};
4740 	static const struct intr_info pmrx_intr_info = {
4741 		.name = "PM_RX_INT_CAUSE",
4742 		.cause_reg = A_PM_RX_INT_CAUSE,
4743 		.enable_reg = A_PM_RX_INT_ENABLE,
4744 		.fatal = 0x1fffffff,
4745 		.flags = NONFATAL_IF_DISABLED,
4746 		.details = pmrx_intr_details,
4747 		.actions = NULL,
4748 	};
4749 
4750 	return (t4_handle_intr(adap, &pmrx_intr_info, 0, verbose));
4751 }
4752 
4753 /*
4754  * CPL switch interrupt handler.
4755  */
4756 static bool cplsw_intr_handler(struct adapter *adap, int arg, bool verbose)
4757 {
4758 	static const struct intr_details cplsw_intr_details[] = {
4759 		/* T5+ */
4760 		{ F_PERR_CPL_128TO128_1, "CPLSW 128TO128 FIFO1 parity error" },
4761 		{ F_PERR_CPL_128TO128_0, "CPLSW 128TO128 FIFO0 parity error" },
4762 
4763 		/* T4+ */
4764 		{ F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error" },
4765 		{ F_CIM_OVFL_ERROR, "CPLSW CIM overflow" },
4766 		{ F_TP_FRAMING_ERROR, "CPLSW TP framing error" },
4767 		{ F_SGE_FRAMING_ERROR, "CPLSW SGE framing error" },
4768 		{ F_CIM_FRAMING_ERROR, "CPLSW CIM framing error" },
4769 		{ F_ZERO_SWITCH_ERROR, "CPLSW no-switch error" },
4770 		{ 0 }
4771 	};
4772 	static const struct intr_info cplsw_intr_info = {
4773 		.name = "CPL_INTR_CAUSE",
4774 		.cause_reg = A_CPL_INTR_CAUSE,
4775 		.enable_reg = A_CPL_INTR_ENABLE,
4776 		.fatal = 0xff,
4777 		.flags = NONFATAL_IF_DISABLED,
4778 		.details = cplsw_intr_details,
4779 		.actions = NULL,
4780 	};
4781 
4782 	return (t4_handle_intr(adap, &cplsw_intr_info, 0, verbose));
4783 }
4784 
4785 #define T4_LE_FATAL_MASK (F_PARITYERR | F_UNKNOWNCMD | F_REQQPARERR)
4786 #define T5_LE_FATAL_MASK (T4_LE_FATAL_MASK | F_VFPARERR)
4787 #define T6_LE_PERRCRC_MASK (F_PIPELINEERR | F_CLIPTCAMACCFAIL | \
4788     F_SRVSRAMACCFAIL | F_CLCAMCRCPARERR | F_CLCAMINTPERR | F_SSRAMINTPERR | \
4789     F_SRVSRAMPERR | F_VFSRAMPERR | F_TCAMINTPERR | F_TCAMCRCERR | \
4790     F_HASHTBLMEMACCERR | F_MAIFWRINTPERR | F_HASHTBLMEMCRCERR)
4791 #define T6_LE_FATAL_MASK (T6_LE_PERRCRC_MASK | F_T6_UNKNOWNCMD | \
4792     F_TCAMACCFAIL | F_HASHTBLACCFAIL | F_CMDTIDERR | F_CMDPRSRINTERR | \
4793     F_TOTCNTERR | F_CLCAMFIFOERR | F_CLIPSUBERR)
4794 
4795 /*
4796  * LE interrupt handler.
4797  */
4798 static bool le_intr_handler(struct adapter *adap, int arg, bool verbose)
4799 {
4800 	static const struct intr_details le_intr_details[] = {
4801 		{ F_REQQPARERR, "LE request queue parity error" },
4802 		{ F_UNKNOWNCMD, "LE unknown command" },
4803 		{ F_ACTRGNFULL, "LE active region full" },
4804 		{ F_PARITYERR, "LE parity error" },
4805 		{ F_LIPMISS, "LE LIP miss" },
4806 		{ F_LIP0, "LE 0 LIP error" },
4807 		{ 0 }
4808 	};
4809 	static const struct intr_details t6_le_intr_details[] = {
4810 		{ F_CLIPSUBERR, "LE CLIP CAM reverse substitution error" },
4811 		{ F_CLCAMFIFOERR, "LE CLIP CAM internal FIFO error" },
4812 		{ F_CTCAMINVLDENT, "Invalid IPv6 CLIP TCAM entry" },
4813 		{ F_TCAMINVLDENT, "Invalid IPv6 TCAM entry" },
4814 		{ F_TOTCNTERR, "LE total active < TCAM count" },
4815 		{ F_CMDPRSRINTERR, "LE internal error in parser" },
4816 		{ F_CMDTIDERR, "Incorrect tid in LE command" },
4817 		{ F_T6_ACTRGNFULL, "LE active region full" },
4818 		{ F_T6_ACTCNTIPV6TZERO, "LE IPv6 active open TCAM counter -ve" },
4819 		{ F_T6_ACTCNTIPV4TZERO, "LE IPv4 active open TCAM counter -ve" },
4820 		{ F_T6_ACTCNTIPV6ZERO, "LE IPv6 active open counter -ve" },
4821 		{ F_T6_ACTCNTIPV4ZERO, "LE IPv4 active open counter -ve" },
4822 		{ F_HASHTBLACCFAIL, "Hash table read error (proto conflict)" },
4823 		{ F_TCAMACCFAIL, "LE TCAM access failure" },
4824 		{ F_T6_UNKNOWNCMD, "LE unknown command" },
4825 		{ F_T6_LIP0, "LE found 0 LIP during CLIP substitution" },
4826 		{ F_T6_LIPMISS, "LE CLIP lookup miss" },
4827 		{ T6_LE_PERRCRC_MASK, "LE parity/CRC error" },
4828 		{ 0 }
4829 	};
4830 	struct intr_info le_intr_info = {
4831 		.name = "LE_DB_INT_CAUSE",
4832 		.cause_reg = A_LE_DB_INT_CAUSE,
4833 		.enable_reg = A_LE_DB_INT_ENABLE,
4834 		.fatal = 0,
4835 		.flags = NONFATAL_IF_DISABLED,
4836 		.details = NULL,
4837 		.actions = NULL,
4838 	};
4839 
4840 	if (chip_id(adap) <= CHELSIO_T5) {
4841 		le_intr_info.details = le_intr_details;
4842 		le_intr_info.fatal = T5_LE_FATAL_MASK;
4843 	} else {
4844 		le_intr_info.details = t6_le_intr_details;
4845 		le_intr_info.fatal = T6_LE_FATAL_MASK;
4846 	}
4847 
4848 	return (t4_handle_intr(adap, &le_intr_info, 0, verbose));
4849 }
4850 
4851 /*
4852  * MPS interrupt handler.
4853  */
4854 static bool mps_intr_handler(struct adapter *adap, int arg, bool verbose)
4855 {
4856 	static const struct intr_details mps_rx_perr_intr_details[] = {
4857 		{ 0xffffffff, "MPS Rx parity error" },
4858 		{ 0 }
4859 	};
4860 	static const struct intr_info mps_rx_perr_intr_info = {
4861 		.name = "MPS_RX_PERR_INT_CAUSE",
4862 		.cause_reg = A_MPS_RX_PERR_INT_CAUSE,
4863 		.enable_reg = A_MPS_RX_PERR_INT_ENABLE,
4864 		.fatal = 0xffffffff,
4865 		.flags = NONFATAL_IF_DISABLED,
4866 		.details = mps_rx_perr_intr_details,
4867 		.actions = NULL,
4868 	};
4869 	static const struct intr_details mps_tx_intr_details[] = {
4870 		{ F_PORTERR, "MPS Tx destination port is disabled" },
4871 		{ F_FRMERR, "MPS Tx framing error" },
4872 		{ F_SECNTERR, "MPS Tx SOP/EOP error" },
4873 		{ F_BUBBLE, "MPS Tx underflow" },
4874 		{ V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error" },
4875 		{ V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error" },
4876 		{ F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error" },
4877 		{ V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error" },
4878 		{ 0 }
4879 	};
4880 	static const struct intr_info mps_tx_intr_info = {
4881 		.name = "MPS_TX_INT_CAUSE",
4882 		.cause_reg = A_MPS_TX_INT_CAUSE,
4883 		.enable_reg = A_MPS_TX_INT_ENABLE,
4884 		.fatal = 0x1ffff,
4885 		.flags = NONFATAL_IF_DISABLED,
4886 		.details = mps_tx_intr_details,
4887 		.actions = NULL,
4888 	};
4889 	static const struct intr_details mps_trc_intr_details[] = {
4890 		{ F_MISCPERR, "MPS TRC misc parity error" },
4891 		{ V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error" },
4892 		{ V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error" },
4893 		{ 0 }
4894 	};
4895 	static const struct intr_info mps_trc_intr_info = {
4896 		.name = "MPS_TRC_INT_CAUSE",
4897 		.cause_reg = A_MPS_TRC_INT_CAUSE,
4898 		.enable_reg = A_MPS_TRC_INT_ENABLE,
4899 		.fatal = F_MISCPERR | V_PKTFIFO(M_PKTFIFO) | V_FILTMEM(M_FILTMEM),
4900 		.flags = 0,
4901 		.details = mps_trc_intr_details,
4902 		.actions = NULL,
4903 	};
4904 	static const struct intr_details mps_stat_sram_intr_details[] = {
4905 		{ 0xffffffff, "MPS statistics SRAM parity error" },
4906 		{ 0 }
4907 	};
4908 	static const struct intr_info mps_stat_sram_intr_info = {
4909 		.name = "MPS_STAT_PERR_INT_CAUSE_SRAM",
4910 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM,
4911 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM,
4912 		.fatal = 0x1fffffff,
4913 		.flags = NONFATAL_IF_DISABLED,
4914 		.details = mps_stat_sram_intr_details,
4915 		.actions = NULL,
4916 	};
4917 	static const struct intr_details mps_stat_tx_intr_details[] = {
4918 		{ 0xffffff, "MPS statistics Tx FIFO parity error" },
4919 		{ 0 }
4920 	};
4921 	static const struct intr_info mps_stat_tx_intr_info = {
4922 		.name = "MPS_STAT_PERR_INT_CAUSE_TX_FIFO",
4923 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
4924 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_TX_FIFO,
4925 		.fatal =  0xffffff,
4926 		.flags = NONFATAL_IF_DISABLED,
4927 		.details = mps_stat_tx_intr_details,
4928 		.actions = NULL,
4929 	};
4930 	static const struct intr_details mps_stat_rx_intr_details[] = {
4931 		{ 0xffffff, "MPS statistics Rx FIFO parity error" },
4932 		{ 0 }
4933 	};
4934 	static const struct intr_info mps_stat_rx_intr_info = {
4935 		.name = "MPS_STAT_PERR_INT_CAUSE_RX_FIFO",
4936 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
4937 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_RX_FIFO,
4938 		.fatal =  0xffffff,
4939 		.flags = 0,
4940 		.details = mps_stat_rx_intr_details,
4941 		.actions = NULL,
4942 	};
4943 	static const struct intr_details mps_cls_intr_details[] = {
4944 		{ F_HASHSRAM, "MPS hash SRAM parity error" },
4945 		{ F_MATCHTCAM, "MPS match TCAM parity error" },
4946 		{ F_MATCHSRAM, "MPS match SRAM parity error" },
4947 		{ 0 }
4948 	};
4949 	static const struct intr_info mps_cls_intr_info = {
4950 		.name = "MPS_CLS_INT_CAUSE",
4951 		.cause_reg = A_MPS_CLS_INT_CAUSE,
4952 		.enable_reg = A_MPS_CLS_INT_ENABLE,
4953 		.fatal =  F_MATCHSRAM | F_MATCHTCAM | F_HASHSRAM,
4954 		.flags = 0,
4955 		.details = mps_cls_intr_details,
4956 		.actions = NULL,
4957 	};
4958 	static const struct intr_details mps_stat_sram1_intr_details[] = {
4959 		{ 0xff, "MPS statistics SRAM1 parity error" },
4960 		{ 0 }
4961 	};
4962 	static const struct intr_info mps_stat_sram1_intr_info = {
4963 		.name = "MPS_STAT_PERR_INT_CAUSE_SRAM1",
4964 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM1,
4965 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM1,
4966 		.fatal = 0xff,
4967 		.flags = 0,
4968 		.details = mps_stat_sram1_intr_details,
4969 		.actions = NULL,
4970 	};
4971 
4972 	bool fatal;
4973 
4974 	fatal = false;
4975 	fatal |= t4_handle_intr(adap, &mps_rx_perr_intr_info, 0, verbose);
4976 	fatal |= t4_handle_intr(adap, &mps_tx_intr_info, 0, verbose);
4977 	fatal |= t4_handle_intr(adap, &mps_trc_intr_info, 0, verbose);
4978 	fatal |= t4_handle_intr(adap, &mps_stat_sram_intr_info, 0, verbose);
4979 	fatal |= t4_handle_intr(adap, &mps_stat_tx_intr_info, 0, verbose);
4980 	fatal |= t4_handle_intr(adap, &mps_stat_rx_intr_info, 0, verbose);
4981 	fatal |= t4_handle_intr(adap, &mps_cls_intr_info, 0, verbose);
4982 	if (chip_id(adap) > CHELSIO_T4) {
4983 		fatal |= t4_handle_intr(adap, &mps_stat_sram1_intr_info, 0,
4984 		    verbose);
4985 	}
4986 
4987 	t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff);
4988 	t4_read_reg(adap, A_MPS_INT_CAUSE);	/* flush */
4989 
4990 	return (fatal);
4991 
4992 }
4993 
4994 /*
4995  * EDC/MC interrupt handler.
4996  */
4997 static bool mem_intr_handler(struct adapter *adap, int idx, bool verbose)
4998 {
4999 	static const char name[4][5] = { "EDC0", "EDC1", "MC0", "MC1" };
5000 	unsigned int count_reg, v;
5001 	static const struct intr_details mem_intr_details[] = {
5002 		{ F_ECC_UE_INT_CAUSE, "Uncorrectable ECC data error(s)" },
5003 		{ F_ECC_CE_INT_CAUSE, "Correctable ECC data error(s)" },
5004 		{ F_PERR_INT_CAUSE, "FIFO parity error" },
5005 		{ 0 }
5006 	};
5007 	struct intr_info ii = {
5008 		.fatal = F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE,
5009 		.details = mem_intr_details,
5010 		.flags = 0,
5011 		.actions = NULL,
5012 	};
5013 	bool fatal;
5014 
5015 	switch (idx) {
5016 	case MEM_EDC0:
5017 		ii.name = "EDC0_INT_CAUSE";
5018 		ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 0);
5019 		ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 0);
5020 		count_reg = EDC_REG(A_EDC_ECC_STATUS, 0);
5021 		break;
5022 	case MEM_EDC1:
5023 		ii.name = "EDC1_INT_CAUSE";
5024 		ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 1);
5025 		ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 1);
5026 		count_reg = EDC_REG(A_EDC_ECC_STATUS, 1);
5027 		break;
5028 	case MEM_MC0:
5029 		ii.name = "MC0_INT_CAUSE";
5030 		if (is_t4(adap)) {
5031 			ii.cause_reg = A_MC_INT_CAUSE;
5032 			ii.enable_reg = A_MC_INT_ENABLE;
5033 			count_reg = A_MC_ECC_STATUS;
5034 		} else {
5035 			ii.cause_reg = A_MC_P_INT_CAUSE;
5036 			ii.enable_reg = A_MC_P_INT_ENABLE;
5037 			count_reg = A_MC_P_ECC_STATUS;
5038 		}
5039 		break;
5040 	case MEM_MC1:
5041 		ii.name = "MC1_INT_CAUSE";
5042 		ii.cause_reg = MC_REG(A_MC_P_INT_CAUSE, 1);
5043 		ii.enable_reg = MC_REG(A_MC_P_INT_ENABLE, 1);
5044 		count_reg = MC_REG(A_MC_P_ECC_STATUS, 1);
5045 		break;
5046 	}
5047 
5048 	fatal = t4_handle_intr(adap, &ii, 0, verbose);
5049 
5050 	v = t4_read_reg(adap, count_reg);
5051 	if (v != 0) {
5052 		if (G_ECC_UECNT(v) != 0) {
5053 			CH_ALERT(adap,
5054 			    "%s: %u uncorrectable ECC data error(s)\n",
5055 			    name[idx], G_ECC_UECNT(v));
5056 		}
5057 		if (G_ECC_CECNT(v) != 0) {
5058 			if (idx <= MEM_EDC1)
5059 				t4_edc_err_read(adap, idx);
5060 			CH_WARN_RATELIMIT(adap,
5061 			    "%s: %u correctable ECC data error(s)\n",
5062 			    name[idx], G_ECC_CECNT(v));
5063 		}
5064 		t4_write_reg(adap, count_reg, 0xffffffff);
5065 	}
5066 
5067 	return (fatal);
5068 }
5069 
5070 static bool ma_wrap_status(struct adapter *adap, int arg, bool verbose)
5071 {
5072 	u32 v;
5073 
5074 	v = t4_read_reg(adap, A_MA_INT_WRAP_STATUS);
5075 	CH_ALERT(adap,
5076 	    "MA address wrap-around error by client %u to address %#x\n",
5077 	    G_MEM_WRAP_CLIENT_NUM(v), G_MEM_WRAP_ADDRESS(v) << 4);
5078 	t4_write_reg(adap, A_MA_INT_WRAP_STATUS, v);
5079 
5080 	return (false);
5081 }
5082 
5083 
5084 /*
5085  * MA interrupt handler.
5086  */
5087 static bool ma_intr_handler(struct adapter *adap, int arg, bool verbose)
5088 {
5089 	static const struct intr_action ma_intr_actions[] = {
5090 		{ F_MEM_WRAP_INT_CAUSE, 0, ma_wrap_status },
5091 		{ 0 },
5092 	};
5093 	static const struct intr_info ma_intr_info = {
5094 		.name = "MA_INT_CAUSE",
5095 		.cause_reg = A_MA_INT_CAUSE,
5096 		.enable_reg = A_MA_INT_ENABLE,
5097 		.fatal = F_MEM_PERR_INT_CAUSE | F_MEM_TO_INT_CAUSE,
5098 		.flags = NONFATAL_IF_DISABLED,
5099 		.details = NULL,
5100 		.actions = ma_intr_actions,
5101 	};
5102 	static const struct intr_info ma_perr_status1 = {
5103 		.name = "MA_PARITY_ERROR_STATUS1",
5104 		.cause_reg = A_MA_PARITY_ERROR_STATUS1,
5105 		.enable_reg = A_MA_PARITY_ERROR_ENABLE1,
5106 		.fatal = 0xffffffff,
5107 		.flags = 0,
5108 		.details = NULL,
5109 		.actions = NULL,
5110 	};
5111 	static const struct intr_info ma_perr_status2 = {
5112 		.name = "MA_PARITY_ERROR_STATUS2",
5113 		.cause_reg = A_MA_PARITY_ERROR_STATUS2,
5114 		.enable_reg = A_MA_PARITY_ERROR_ENABLE2,
5115 		.fatal = 0xffffffff,
5116 		.flags = 0,
5117 		.details = NULL,
5118 		.actions = NULL,
5119 	};
5120 	bool fatal;
5121 
5122 	fatal = false;
5123 	fatal |= t4_handle_intr(adap, &ma_intr_info, 0, verbose);
5124 	fatal |= t4_handle_intr(adap, &ma_perr_status1, 0, verbose);
5125 	if (chip_id(adap) > CHELSIO_T4)
5126 		fatal |= t4_handle_intr(adap, &ma_perr_status2, 0, verbose);
5127 
5128 	return (fatal);
5129 }
5130 
5131 /*
5132  * SMB interrupt handler.
5133  */
5134 static bool smb_intr_handler(struct adapter *adap, int arg, bool verbose)
5135 {
5136 	static const struct intr_details smb_intr_details[] = {
5137 		{ F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error" },
5138 		{ F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error" },
5139 		{ F_SLVFIFOPARINT, "SMB slave FIFO parity error" },
5140 		{ 0 }
5141 	};
5142 	static const struct intr_info smb_intr_info = {
5143 		.name = "SMB_INT_CAUSE",
5144 		.cause_reg = A_SMB_INT_CAUSE,
5145 		.enable_reg = A_SMB_INT_ENABLE,
5146 		.fatal = F_SLVFIFOPARINT | F_MSTRXFIFOPARINT | F_MSTTXFIFOPARINT,
5147 		.flags = 0,
5148 		.details = smb_intr_details,
5149 		.actions = NULL,
5150 	};
5151 
5152 	return (t4_handle_intr(adap, &smb_intr_info, 0, verbose));
5153 }
5154 
5155 /*
5156  * NC-SI interrupt handler.
5157  */
5158 static bool ncsi_intr_handler(struct adapter *adap, int arg, bool verbose)
5159 {
5160 	static const struct intr_details ncsi_intr_details[] = {
5161 		{ F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error" },
5162 		{ F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error" },
5163 		{ F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error" },
5164 		{ F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error" },
5165 		{ 0 }
5166 	};
5167 	static const struct intr_info ncsi_intr_info = {
5168 		.name = "NCSI_INT_CAUSE",
5169 		.cause_reg = A_NCSI_INT_CAUSE,
5170 		.enable_reg = A_NCSI_INT_ENABLE,
5171 		.fatal = F_RXFIFO_PRTY_ERR | F_TXFIFO_PRTY_ERR |
5172 		    F_MPS_DM_PRTY_ERR | F_CIM_DM_PRTY_ERR,
5173 		.flags = 0,
5174 		.details = ncsi_intr_details,
5175 		.actions = NULL,
5176 	};
5177 
5178 	return (t4_handle_intr(adap, &ncsi_intr_info, 0, verbose));
5179 }
5180 
5181 /*
5182  * MAC interrupt handler.
5183  */
5184 static bool mac_intr_handler(struct adapter *adap, int port, bool verbose)
5185 {
5186 	static const struct intr_details mac_intr_details[] = {
5187 		{ F_TXFIFO_PRTY_ERR, "MAC Tx FIFO parity error" },
5188 		{ F_RXFIFO_PRTY_ERR, "MAC Rx FIFO parity error" },
5189 		{ 0 }
5190 	};
5191 	char name[32];
5192 	struct intr_info ii;
5193 	bool fatal = false;
5194 
5195 	if (is_t4(adap)) {
5196 		snprintf(name, sizeof(name), "XGMAC_PORT%u_INT_CAUSE", port);
5197 		ii.name = &name[0];
5198 		ii.cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
5199 		ii.enable_reg = PORT_REG(port, A_XGMAC_PORT_INT_EN);
5200 		ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR;
5201 		ii.flags = 0;
5202 		ii.details = mac_intr_details;
5203 		ii.actions = NULL;
5204 	} else {
5205 		snprintf(name, sizeof(name), "MAC_PORT%u_INT_CAUSE", port);
5206 		ii.name = &name[0];
5207 		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
5208 		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_INT_EN);
5209 		ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR;
5210 		ii.flags = 0;
5211 		ii.details = mac_intr_details;
5212 		ii.actions = NULL;
5213 	}
5214 	fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5215 
5216 	if (chip_id(adap) >= CHELSIO_T5) {
5217 		snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE", port);
5218 		ii.name = &name[0];
5219 		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE);
5220 		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN);
5221 		ii.fatal = 0;
5222 		ii.flags = 0;
5223 		ii.details = NULL;
5224 		ii.actions = NULL;
5225 		fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5226 	}
5227 
5228 	if (chip_id(adap) >= CHELSIO_T6) {
5229 		snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE_100G", port);
5230 		ii.name = &name[0];
5231 		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE_100G);
5232 		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN_100G);
5233 		ii.fatal = 0;
5234 		ii.flags = 0;
5235 		ii.details = NULL;
5236 		ii.actions = NULL;
5237 		fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5238 	}
5239 
5240 	return (fatal);
5241 }
5242 
5243 static bool plpl_intr_handler(struct adapter *adap, int arg, bool verbose)
5244 {
5245 	static const struct intr_details plpl_intr_details[] = {
5246 		{ F_FATALPERR, "Fatal parity error" },
5247 		{ F_PERRVFID, "VFID_MAP parity error" },
5248 		{ 0 }
5249 	};
5250 	static const struct intr_info plpl_intr_info = {
5251 		.name = "PL_PL_INT_CAUSE",
5252 		.cause_reg = A_PL_PL_INT_CAUSE,
5253 		.enable_reg = A_PL_PL_INT_ENABLE,
5254 		.fatal = F_FATALPERR | F_PERRVFID,
5255 		.flags = NONFATAL_IF_DISABLED,
5256 		.details = plpl_intr_details,
5257 		.actions = NULL,
5258 	};
5259 
5260 	return (t4_handle_intr(adap, &plpl_intr_info, 0, verbose));
5261 }
5262 
5263 /**
5264  *	t4_slow_intr_handler - control path interrupt handler
5265  *	@adap: the adapter
5266  *	@verbose: increased verbosity, for debug
5267  *
5268  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
5269  *	The designation 'slow' is because it involves register reads, while
5270  *	data interrupts typically don't involve any MMIOs.
5271  */
5272 int t4_slow_intr_handler(struct adapter *adap, bool verbose)
5273 {
5274 	static const struct intr_details pl_intr_details[] = {
5275 		{ F_MC1, "MC1" },
5276 		{ F_UART, "UART" },
5277 		{ F_ULP_TX, "ULP TX" },
5278 		{ F_SGE, "SGE" },
5279 		{ F_HMA, "HMA" },
5280 		{ F_CPL_SWITCH, "CPL Switch" },
5281 		{ F_ULP_RX, "ULP RX" },
5282 		{ F_PM_RX, "PM RX" },
5283 		{ F_PM_TX, "PM TX" },
5284 		{ F_MA, "MA" },
5285 		{ F_TP, "TP" },
5286 		{ F_LE, "LE" },
5287 		{ F_EDC1, "EDC1" },
5288 		{ F_EDC0, "EDC0" },
5289 		{ F_MC, "MC0" },
5290 		{ F_PCIE, "PCIE" },
5291 		{ F_PMU, "PMU" },
5292 		{ F_MAC3, "MAC3" },
5293 		{ F_MAC2, "MAC2" },
5294 		{ F_MAC1, "MAC1" },
5295 		{ F_MAC0, "MAC0" },
5296 		{ F_SMB, "SMB" },
5297 		{ F_SF, "SF" },
5298 		{ F_PL, "PL" },
5299 		{ F_NCSI, "NC-SI" },
5300 		{ F_MPS, "MPS" },
5301 		{ F_MI, "MI" },
5302 		{ F_DBG, "DBG" },
5303 		{ F_I2CM, "I2CM" },
5304 		{ F_CIM, "CIM" },
5305 		{ 0 }
5306 	};
5307 	static const struct intr_info pl_perr_cause = {
5308 		.name = "PL_PERR_CAUSE",
5309 		.cause_reg = A_PL_PERR_CAUSE,
5310 		.enable_reg = A_PL_PERR_ENABLE,
5311 		.fatal = 0xffffffff,
5312 		.flags = 0,
5313 		.details = pl_intr_details,
5314 		.actions = NULL,
5315 	};
5316 	static const struct intr_action pl_intr_action[] = {
5317 		{ F_MC1, MEM_MC1, mem_intr_handler },
5318 		{ F_ULP_TX, -1, ulptx_intr_handler },
5319 		{ F_SGE, -1, sge_intr_handler },
5320 		{ F_CPL_SWITCH, -1, cplsw_intr_handler },
5321 		{ F_ULP_RX, -1, ulprx_intr_handler },
5322 		{ F_PM_RX, -1, pmrx_intr_handler},
5323 		{ F_PM_TX, -1, pmtx_intr_handler},
5324 		{ F_MA, -1, ma_intr_handler },
5325 		{ F_TP, -1, tp_intr_handler },
5326 		{ F_LE, -1, le_intr_handler },
5327 		{ F_EDC1, MEM_EDC1, mem_intr_handler },
5328 		{ F_EDC0, MEM_EDC0, mem_intr_handler },
5329 		{ F_MC0, MEM_MC0, mem_intr_handler },
5330 		{ F_PCIE, -1, pcie_intr_handler },
5331 		{ F_MAC3, 3, mac_intr_handler},
5332 		{ F_MAC2, 2, mac_intr_handler},
5333 		{ F_MAC1, 1, mac_intr_handler},
5334 		{ F_MAC0, 0, mac_intr_handler},
5335 		{ F_SMB, -1, smb_intr_handler},
5336 		{ F_PL, -1, plpl_intr_handler },
5337 		{ F_NCSI, -1, ncsi_intr_handler},
5338 		{ F_MPS, -1, mps_intr_handler },
5339 		{ F_CIM, -1, cim_intr_handler },
5340 		{ 0 }
5341 	};
5342 	static const struct intr_info pl_intr_info = {
5343 		.name = "PL_INT_CAUSE",
5344 		.cause_reg = A_PL_INT_CAUSE,
5345 		.enable_reg = A_PL_INT_ENABLE,
5346 		.fatal = 0,
5347 		.flags = 0,
5348 		.details = pl_intr_details,
5349 		.actions = pl_intr_action,
5350 	};
5351 	bool fatal;
5352 	u32 perr;
5353 
5354 	perr = t4_read_reg(adap, pl_perr_cause.cause_reg);
5355 	if (verbose || perr != 0) {
5356 		t4_show_intr_info(adap, &pl_perr_cause, perr);
5357 		if (perr != 0)
5358 			t4_write_reg(adap, pl_perr_cause.cause_reg, perr);
5359 		if (verbose)
5360 			perr |= t4_read_reg(adap, pl_intr_info.enable_reg);
5361 	}
5362 	fatal = t4_handle_intr(adap, &pl_intr_info, perr, verbose);
5363 	if (fatal)
5364 		t4_fatal_err(adap, false);
5365 
5366 	return (0);
5367 }
5368 
5369 #define PF_INTR_MASK (F_PFSW | F_PFCIM)
5370 
5371 /**
5372  *	t4_intr_enable - enable interrupts
5373  *	@adapter: the adapter whose interrupts should be enabled
5374  *
5375  *	Enable PF-specific interrupts for the calling function and the top-level
5376  *	interrupt concentrator for global interrupts.  Interrupts are already
5377  *	enabled at each module,	here we just enable the roots of the interrupt
5378  *	hierarchies.
5379  *
5380  *	Note: this function should be called only when the driver manages
5381  *	non PF-specific interrupts from the various HW modules.  Only one PCI
5382  *	function at a time should be doing this.
5383  */
5384 void t4_intr_enable(struct adapter *adap)
5385 {
5386 	u32 val = 0;
5387 
5388 	if (chip_id(adap) <= CHELSIO_T5)
5389 		val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
5390 	else
5391 		val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN;
5392 	val |= F_ERR_CPL_EXCEED_IQE_SIZE | F_ERR_INVALID_CIDX_INC |
5393 	    F_ERR_CPL_OPCODE_0 | F_ERR_DATA_CPL_ON_HIGH_QID1 |
5394 	    F_INGRESS_SIZE_ERR | F_ERR_DATA_CPL_ON_HIGH_QID0 |
5395 	    F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
5396 	    F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO | F_DBFIFO_LP_INT |
5397 	    F_EGRESS_SIZE_ERR;
5398 	t4_set_reg_field(adap, A_SGE_INT_ENABLE3, val, val);
5399 	t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
5400 	t4_set_reg_field(adap, A_PL_INT_ENABLE, F_SF | F_I2CM, 0);
5401 	t4_set_reg_field(adap, A_PL_INT_MAP0, 0, 1 << adap->pf);
5402 }
5403 
5404 /**
5405  *	t4_intr_disable - disable interrupts
5406  *	@adap: the adapter whose interrupts should be disabled
5407  *
5408  *	Disable interrupts.  We only disable the top-level interrupt
5409  *	concentrators.  The caller must be a PCI function managing global
5410  *	interrupts.
5411  */
5412 void t4_intr_disable(struct adapter *adap)
5413 {
5414 
5415 	t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
5416 	t4_set_reg_field(adap, A_PL_INT_MAP0, 1 << adap->pf, 0);
5417 }
5418 
5419 /**
5420  *	t4_intr_clear - clear all interrupts
5421  *	@adap: the adapter whose interrupts should be cleared
5422  *
5423  *	Clears all interrupts.  The caller must be a PCI function managing
5424  *	global interrupts.
5425  */
5426 void t4_intr_clear(struct adapter *adap)
5427 {
5428 	static const u32 cause_reg[] = {
5429 		A_CIM_HOST_INT_CAUSE,
5430 		A_CIM_HOST_UPACC_INT_CAUSE,
5431 		MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
5432 		A_CPL_INTR_CAUSE,
5433 		EDC_REG(A_EDC_INT_CAUSE, 0), EDC_REG(A_EDC_INT_CAUSE, 1),
5434 		A_LE_DB_INT_CAUSE,
5435 		A_MA_INT_WRAP_STATUS,
5436 		A_MA_PARITY_ERROR_STATUS1,
5437 		A_MA_INT_CAUSE,
5438 		A_MPS_CLS_INT_CAUSE,
5439 		A_MPS_RX_PERR_INT_CAUSE,
5440 		A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
5441 		A_MPS_STAT_PERR_INT_CAUSE_SRAM,
5442 		A_MPS_TRC_INT_CAUSE,
5443 		A_MPS_TX_INT_CAUSE,
5444 		A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
5445 		A_NCSI_INT_CAUSE,
5446 		A_PCIE_INT_CAUSE,
5447 		A_PCIE_NONFAT_ERR,
5448 		A_PL_PL_INT_CAUSE,
5449 		A_PM_RX_INT_CAUSE,
5450 		A_PM_TX_INT_CAUSE,
5451 		A_SGE_INT_CAUSE1,
5452 		A_SGE_INT_CAUSE2,
5453 		A_SGE_INT_CAUSE3,
5454 		A_SGE_INT_CAUSE4,
5455 		A_SMB_INT_CAUSE,
5456 		A_TP_INT_CAUSE,
5457 		A_ULP_RX_INT_CAUSE,
5458 		A_ULP_RX_INT_CAUSE_2,
5459 		A_ULP_TX_INT_CAUSE,
5460 		A_ULP_TX_INT_CAUSE_2,
5461 
5462 		MYPF_REG(A_PL_PF_INT_CAUSE),
5463 	};
5464 	int i;
5465 	const int nchan = adap->chip_params->nchan;
5466 
5467 	for (i = 0; i < ARRAY_SIZE(cause_reg); i++)
5468 		t4_write_reg(adap, cause_reg[i], 0xffffffff);
5469 
5470 	if (is_t4(adap)) {
5471 		t4_write_reg(adap, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
5472 		    0xffffffff);
5473 		t4_write_reg(adap, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
5474 		    0xffffffff);
5475 		t4_write_reg(adap, A_MC_INT_CAUSE, 0xffffffff);
5476 		for (i = 0; i < nchan; i++) {
5477 			t4_write_reg(adap, PORT_REG(i, A_XGMAC_PORT_INT_CAUSE),
5478 			    0xffffffff);
5479 		}
5480 	}
5481 	if (chip_id(adap) >= CHELSIO_T5) {
5482 		t4_write_reg(adap, A_MA_PARITY_ERROR_STATUS2, 0xffffffff);
5483 		t4_write_reg(adap, A_MPS_STAT_PERR_INT_CAUSE_SRAM1, 0xffffffff);
5484 		t4_write_reg(adap, A_SGE_INT_CAUSE5, 0xffffffff);
5485 		t4_write_reg(adap, A_MC_P_INT_CAUSE, 0xffffffff);
5486 		if (is_t5(adap)) {
5487 			t4_write_reg(adap, MC_REG(A_MC_P_INT_CAUSE, 1),
5488 			    0xffffffff);
5489 		}
5490 		for (i = 0; i < nchan; i++) {
5491 			t4_write_reg(adap, T5_PORT_REG(i,
5492 			    A_MAC_PORT_PERR_INT_CAUSE), 0xffffffff);
5493 			if (chip_id(adap) > CHELSIO_T5) {
5494 				t4_write_reg(adap, T5_PORT_REG(i,
5495 				    A_MAC_PORT_PERR_INT_CAUSE_100G),
5496 				    0xffffffff);
5497 			}
5498 			t4_write_reg(adap, T5_PORT_REG(i, A_MAC_PORT_INT_CAUSE),
5499 			    0xffffffff);
5500 		}
5501 	}
5502 	if (chip_id(adap) >= CHELSIO_T6) {
5503 		t4_write_reg(adap, A_SGE_INT_CAUSE6, 0xffffffff);
5504 	}
5505 
5506 	t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff);
5507 	t4_write_reg(adap, A_PL_PERR_CAUSE, 0xffffffff);
5508 	t4_write_reg(adap, A_PL_INT_CAUSE, 0xffffffff);
5509 	(void) t4_read_reg(adap, A_PL_INT_CAUSE);          /* flush */
5510 }
5511 
5512 /**
5513  *	hash_mac_addr - return the hash value of a MAC address
5514  *	@addr: the 48-bit Ethernet MAC address
5515  *
5516  *	Hashes a MAC address according to the hash function used by HW inexact
5517  *	(hash) address matching.
5518  */
5519 static int hash_mac_addr(const u8 *addr)
5520 {
5521 	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
5522 	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
5523 	a ^= b;
5524 	a ^= (a >> 12);
5525 	a ^= (a >> 6);
5526 	return a & 0x3f;
5527 }
5528 
5529 /**
5530  *	t4_config_rss_range - configure a portion of the RSS mapping table
5531  *	@adapter: the adapter
5532  *	@mbox: mbox to use for the FW command
5533  *	@viid: virtual interface whose RSS subtable is to be written
5534  *	@start: start entry in the table to write
5535  *	@n: how many table entries to write
5536  *	@rspq: values for the "response queue" (Ingress Queue) lookup table
5537  *	@nrspq: number of values in @rspq
5538  *
5539  *	Programs the selected part of the VI's RSS mapping table with the
5540  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
5541  *	until the full table range is populated.
5542  *
5543  *	The caller must ensure the values in @rspq are in the range allowed for
5544  *	@viid.
5545  */
5546 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5547 			int start, int n, const u16 *rspq, unsigned int nrspq)
5548 {
5549 	int ret;
5550 	const u16 *rsp = rspq;
5551 	const u16 *rsp_end = rspq + nrspq;
5552 	struct fw_rss_ind_tbl_cmd cmd;
5553 
5554 	memset(&cmd, 0, sizeof(cmd));
5555 	cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
5556 				     F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
5557 				     V_FW_RSS_IND_TBL_CMD_VIID(viid));
5558 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5559 
5560 	/*
5561 	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
5562 	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
5563 	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
5564 	 * reserved.
5565 	 */
5566 	while (n > 0) {
5567 		int nq = min(n, 32);
5568 		int nq_packed = 0;
5569 		__be32 *qp = &cmd.iq0_to_iq2;
5570 
5571 		/*
5572 		 * Set up the firmware RSS command header to send the next
5573 		 * "nq" Ingress Queue IDs to the firmware.
5574 		 */
5575 		cmd.niqid = cpu_to_be16(nq);
5576 		cmd.startidx = cpu_to_be16(start);
5577 
5578 		/*
5579 		 * "nq" more done for the start of the next loop.
5580 		 */
5581 		start += nq;
5582 		n -= nq;
5583 
5584 		/*
5585 		 * While there are still Ingress Queue IDs to stuff into the
5586 		 * current firmware RSS command, retrieve them from the
5587 		 * Ingress Queue ID array and insert them into the command.
5588 		 */
5589 		while (nq > 0) {
5590 			/*
5591 			 * Grab up to the next 3 Ingress Queue IDs (wrapping
5592 			 * around the Ingress Queue ID array if necessary) and
5593 			 * insert them into the firmware RSS command at the
5594 			 * current 3-tuple position within the commad.
5595 			 */
5596 			u16 qbuf[3];
5597 			u16 *qbp = qbuf;
5598 			int nqbuf = min(3, nq);
5599 
5600 			nq -= nqbuf;
5601 			qbuf[0] = qbuf[1] = qbuf[2] = 0;
5602 			while (nqbuf && nq_packed < 32) {
5603 				nqbuf--;
5604 				nq_packed++;
5605 				*qbp++ = *rsp++;
5606 				if (rsp >= rsp_end)
5607 					rsp = rspq;
5608 			}
5609 			*qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
5610 					    V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
5611 					    V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
5612 		}
5613 
5614 		/*
5615 		 * Send this portion of the RRS table update to the firmware;
5616 		 * bail out on any errors.
5617 		 */
5618 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5619 		if (ret)
5620 			return ret;
5621 	}
5622 	return 0;
5623 }
5624 
5625 /**
5626  *	t4_config_glbl_rss - configure the global RSS mode
5627  *	@adapter: the adapter
5628  *	@mbox: mbox to use for the FW command
5629  *	@mode: global RSS mode
5630  *	@flags: mode-specific flags
5631  *
5632  *	Sets the global RSS mode.
5633  */
5634 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5635 		       unsigned int flags)
5636 {
5637 	struct fw_rss_glb_config_cmd c;
5638 
5639 	memset(&c, 0, sizeof(c));
5640 	c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
5641 				    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
5642 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5643 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5644 		c.u.manual.mode_pkd =
5645 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
5646 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5647 		c.u.basicvirtual.mode_keymode =
5648 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
5649 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5650 	} else
5651 		return -EINVAL;
5652 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5653 }
5654 
5655 /**
5656  *	t4_config_vi_rss - configure per VI RSS settings
5657  *	@adapter: the adapter
5658  *	@mbox: mbox to use for the FW command
5659  *	@viid: the VI id
5660  *	@flags: RSS flags
5661  *	@defq: id of the default RSS queue for the VI.
5662  *	@skeyidx: RSS secret key table index for non-global mode
5663  *	@skey: RSS vf_scramble key for VI.
5664  *
5665  *	Configures VI-specific RSS properties.
5666  */
5667 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5668 		     unsigned int flags, unsigned int defq, unsigned int skeyidx,
5669 		     unsigned int skey)
5670 {
5671 	struct fw_rss_vi_config_cmd c;
5672 
5673 	memset(&c, 0, sizeof(c));
5674 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
5675 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
5676 				   V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
5677 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5678 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5679 					V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
5680 	c.u.basicvirtual.secretkeyidx_pkd = cpu_to_be32(
5681 					V_FW_RSS_VI_CONFIG_CMD_SECRETKEYIDX(skeyidx));
5682 	c.u.basicvirtual.secretkeyxor = cpu_to_be32(skey);
5683 
5684 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5685 }
5686 
5687 /* Read an RSS table row */
5688 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5689 {
5690 	t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
5691 	return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
5692 				   5, 0, val);
5693 }
5694 
5695 /**
5696  *	t4_read_rss - read the contents of the RSS mapping table
5697  *	@adapter: the adapter
5698  *	@map: holds the contents of the RSS mapping table
5699  *
5700  *	Reads the contents of the RSS hash->queue mapping table.
5701  */
5702 int t4_read_rss(struct adapter *adapter, u16 *map)
5703 {
5704 	u32 val;
5705 	int i, ret;
5706 
5707 	for (i = 0; i < RSS_NENTRIES / 2; ++i) {
5708 		ret = rd_rss_row(adapter, i, &val);
5709 		if (ret)
5710 			return ret;
5711 		*map++ = G_LKPTBLQUEUE0(val);
5712 		*map++ = G_LKPTBLQUEUE1(val);
5713 	}
5714 	return 0;
5715 }
5716 
5717 /**
5718  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5719  * @adap: the adapter
5720  * @cmd: TP fw ldst address space type
5721  * @vals: where the indirect register values are stored/written
5722  * @nregs: how many indirect registers to read/write
5723  * @start_idx: index of first indirect register to read/write
5724  * @rw: Read (1) or Write (0)
5725  * @sleep_ok: if true we may sleep while awaiting command completion
5726  *
5727  * Access TP indirect registers through LDST
5728  **/
5729 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5730 			    unsigned int nregs, unsigned int start_index,
5731 			    unsigned int rw, bool sleep_ok)
5732 {
5733 	int ret = 0;
5734 	unsigned int i;
5735 	struct fw_ldst_cmd c;
5736 
5737 	for (i = 0; i < nregs; i++) {
5738 		memset(&c, 0, sizeof(c));
5739 		c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
5740 						F_FW_CMD_REQUEST |
5741 						(rw ? F_FW_CMD_READ :
5742 						      F_FW_CMD_WRITE) |
5743 						V_FW_LDST_CMD_ADDRSPACE(cmd));
5744 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5745 
5746 		c.u.addrval.addr = cpu_to_be32(start_index + i);
5747 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5748 		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5749 				      sleep_ok);
5750 		if (ret)
5751 			return ret;
5752 
5753 		if (rw)
5754 			vals[i] = be32_to_cpu(c.u.addrval.val);
5755 	}
5756 	return 0;
5757 }
5758 
5759 /**
5760  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5761  * @adap: the adapter
5762  * @reg_addr: Address Register
5763  * @reg_data: Data register
5764  * @buff: where the indirect register values are stored/written
5765  * @nregs: how many indirect registers to read/write
5766  * @start_index: index of first indirect register to read/write
5767  * @rw: READ(1) or WRITE(0)
5768  * @sleep_ok: if true we may sleep while awaiting command completion
5769  *
5770  * Read/Write TP indirect registers through LDST if possible.
5771  * Else, use backdoor access
5772  **/
5773 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5774 			      u32 *buff, u32 nregs, u32 start_index, int rw,
5775 			      bool sleep_ok)
5776 {
5777 	int rc = -EINVAL;
5778 	int cmd;
5779 
5780 	switch (reg_addr) {
5781 	case A_TP_PIO_ADDR:
5782 		cmd = FW_LDST_ADDRSPC_TP_PIO;
5783 		break;
5784 	case A_TP_TM_PIO_ADDR:
5785 		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5786 		break;
5787 	case A_TP_MIB_INDEX:
5788 		cmd = FW_LDST_ADDRSPC_TP_MIB;
5789 		break;
5790 	default:
5791 		goto indirect_access;
5792 	}
5793 
5794 	if (t4_use_ldst(adap))
5795 		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5796 				      sleep_ok);
5797 
5798 indirect_access:
5799 
5800 	if (rc) {
5801 		if (rw)
5802 			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5803 					 start_index);
5804 		else
5805 			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5806 					  start_index);
5807 	}
5808 }
5809 
5810 /**
5811  * t4_tp_pio_read - Read TP PIO registers
5812  * @adap: the adapter
5813  * @buff: where the indirect register values are written
5814  * @nregs: how many indirect registers to read
5815  * @start_index: index of first indirect register to read
5816  * @sleep_ok: if true we may sleep while awaiting command completion
5817  *
5818  * Read TP PIO Registers
5819  **/
5820 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5821 		    u32 start_index, bool sleep_ok)
5822 {
5823 	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, buff, nregs,
5824 			  start_index, 1, sleep_ok);
5825 }
5826 
5827 /**
5828  * t4_tp_pio_write - Write TP PIO registers
5829  * @adap: the adapter
5830  * @buff: where the indirect register values are stored
5831  * @nregs: how many indirect registers to write
5832  * @start_index: index of first indirect register to write
5833  * @sleep_ok: if true we may sleep while awaiting command completion
5834  *
5835  * Write TP PIO Registers
5836  **/
5837 void t4_tp_pio_write(struct adapter *adap, const u32 *buff, u32 nregs,
5838 		     u32 start_index, bool sleep_ok)
5839 {
5840 	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5841 	    __DECONST(u32 *, buff), nregs, start_index, 0, sleep_ok);
5842 }
5843 
5844 /**
5845  * t4_tp_tm_pio_read - Read TP TM PIO registers
5846  * @adap: the adapter
5847  * @buff: where the indirect register values are written
5848  * @nregs: how many indirect registers to read
5849  * @start_index: index of first indirect register to read
5850  * @sleep_ok: if true we may sleep while awaiting command completion
5851  *
5852  * Read TP TM PIO Registers
5853  **/
5854 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5855 		       u32 start_index, bool sleep_ok)
5856 {
5857 	t4_tp_indirect_rw(adap, A_TP_TM_PIO_ADDR, A_TP_TM_PIO_DATA, buff,
5858 			  nregs, start_index, 1, sleep_ok);
5859 }
5860 
5861 /**
5862  * t4_tp_mib_read - Read TP MIB registers
5863  * @adap: the adapter
5864  * @buff: where the indirect register values are written
5865  * @nregs: how many indirect registers to read
5866  * @start_index: index of first indirect register to read
5867  * @sleep_ok: if true we may sleep while awaiting command completion
5868  *
5869  * Read TP MIB Registers
5870  **/
5871 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5872 		    bool sleep_ok)
5873 {
5874 	t4_tp_indirect_rw(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, buff, nregs,
5875 			  start_index, 1, sleep_ok);
5876 }
5877 
5878 /**
5879  *	t4_read_rss_key - read the global RSS key
5880  *	@adap: the adapter
5881  *	@key: 10-entry array holding the 320-bit RSS key
5882  * 	@sleep_ok: if true we may sleep while awaiting command completion
5883  *
5884  *	Reads the global 320-bit RSS key.
5885  */
5886 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5887 {
5888 	t4_tp_pio_read(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5889 }
5890 
5891 /**
5892  *	t4_write_rss_key - program one of the RSS keys
5893  *	@adap: the adapter
5894  *	@key: 10-entry array holding the 320-bit RSS key
5895  *	@idx: which RSS key to write
5896  * 	@sleep_ok: if true we may sleep while awaiting command completion
5897  *
5898  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5899  *	0..15 the corresponding entry in the RSS key table is written,
5900  *	otherwise the global RSS key is written.
5901  */
5902 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5903 		      bool sleep_ok)
5904 {
5905 	u8 rss_key_addr_cnt = 16;
5906 	u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
5907 
5908 	/*
5909 	 * T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5910 	 * allows access to key addresses 16-63 by using KeyWrAddrX
5911 	 * as index[5:4](upper 2) into key table
5912 	 */
5913 	if ((chip_id(adap) > CHELSIO_T5) &&
5914 	    (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
5915 		rss_key_addr_cnt = 32;
5916 
5917 	t4_tp_pio_write(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5918 
5919 	if (idx >= 0 && idx < rss_key_addr_cnt) {
5920 		if (rss_key_addr_cnt > 16)
5921 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5922 				     vrt | V_KEYWRADDRX(idx >> 4) |
5923 				     V_T6_VFWRADDR(idx) | F_KEYWREN);
5924 		else
5925 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5926 				     vrt| V_KEYWRADDR(idx) | F_KEYWREN);
5927 	}
5928 }
5929 
5930 /**
5931  *	t4_read_rss_pf_config - read PF RSS Configuration Table
5932  *	@adapter: the adapter
5933  *	@index: the entry in the PF RSS table to read
5934  *	@valp: where to store the returned value
5935  * 	@sleep_ok: if true we may sleep while awaiting command completion
5936  *
5937  *	Reads the PF RSS Configuration Table at the specified index and returns
5938  *	the value found there.
5939  */
5940 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5941 			   u32 *valp, bool sleep_ok)
5942 {
5943 	t4_tp_pio_read(adapter, valp, 1, A_TP_RSS_PF0_CONFIG + index, sleep_ok);
5944 }
5945 
5946 /**
5947  *	t4_write_rss_pf_config - write PF RSS Configuration Table
5948  *	@adapter: the adapter
5949  *	@index: the entry in the VF RSS table to read
5950  *	@val: the value to store
5951  * 	@sleep_ok: if true we may sleep while awaiting command completion
5952  *
5953  *	Writes the PF RSS Configuration Table at the specified index with the
5954  *	specified value.
5955  */
5956 void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index,
5957 			    u32 val, bool sleep_ok)
5958 {
5959 	t4_tp_pio_write(adapter, &val, 1, A_TP_RSS_PF0_CONFIG + index,
5960 			sleep_ok);
5961 }
5962 
5963 /**
5964  *	t4_read_rss_vf_config - read VF RSS Configuration Table
5965  *	@adapter: the adapter
5966  *	@index: the entry in the VF RSS table to read
5967  *	@vfl: where to store the returned VFL
5968  *	@vfh: where to store the returned VFH
5969  * 	@sleep_ok: if true we may sleep while awaiting command completion
5970  *
5971  *	Reads the VF RSS Configuration Table at the specified index and returns
5972  *	the (VFL, VFH) values found there.
5973  */
5974 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5975 			   u32 *vfl, u32 *vfh, bool sleep_ok)
5976 {
5977 	u32 vrt, mask, data;
5978 
5979 	if (chip_id(adapter) <= CHELSIO_T5) {
5980 		mask = V_VFWRADDR(M_VFWRADDR);
5981 		data = V_VFWRADDR(index);
5982 	} else {
5983 		 mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5984 		 data = V_T6_VFWRADDR(index);
5985 	}
5986 	/*
5987 	 * Request that the index'th VF Table values be read into VFL/VFH.
5988 	 */
5989 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5990 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5991 	vrt |= data | F_VFRDEN;
5992 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5993 
5994 	/*
5995 	 * Grab the VFL/VFH values ...
5996 	 */
5997 	t4_tp_pio_read(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
5998 	t4_tp_pio_read(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
5999 }
6000 
6001 /**
6002  *	t4_write_rss_vf_config - write VF RSS Configuration Table
6003  *
6004  *	@adapter: the adapter
6005  *	@index: the entry in the VF RSS table to write
6006  *	@vfl: the VFL to store
6007  *	@vfh: the VFH to store
6008  *
6009  *	Writes the VF RSS Configuration Table at the specified index with the
6010  *	specified (VFL, VFH) values.
6011  */
6012 void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
6013 			    u32 vfl, u32 vfh, bool sleep_ok)
6014 {
6015 	u32 vrt, mask, data;
6016 
6017 	if (chip_id(adapter) <= CHELSIO_T5) {
6018 		mask = V_VFWRADDR(M_VFWRADDR);
6019 		data = V_VFWRADDR(index);
6020 	} else {
6021 		mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
6022 		data = V_T6_VFWRADDR(index);
6023 	}
6024 
6025 	/*
6026 	 * Load up VFL/VFH with the values to be written ...
6027 	 */
6028 	t4_tp_pio_write(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
6029 	t4_tp_pio_write(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
6030 
6031 	/*
6032 	 * Write the VFL/VFH into the VF Table at index'th location.
6033 	 */
6034 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
6035 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
6036 	vrt |= data | F_VFRDEN;
6037 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
6038 }
6039 
6040 /**
6041  *	t4_read_rss_pf_map - read PF RSS Map
6042  *	@adapter: the adapter
6043  * 	@sleep_ok: if true we may sleep while awaiting command completion
6044  *
6045  *	Reads the PF RSS Map register and returns its value.
6046  */
6047 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
6048 {
6049 	u32 pfmap;
6050 
6051 	t4_tp_pio_read(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
6052 
6053 	return pfmap;
6054 }
6055 
6056 /**
6057  *	t4_write_rss_pf_map - write PF RSS Map
6058  *	@adapter: the adapter
6059  *	@pfmap: PF RSS Map value
6060  *
6061  *	Writes the specified value to the PF RSS Map register.
6062  */
6063 void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap, bool sleep_ok)
6064 {
6065 	t4_tp_pio_write(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
6066 }
6067 
6068 /**
6069  *	t4_read_rss_pf_mask - read PF RSS Mask
6070  *	@adapter: the adapter
6071  * 	@sleep_ok: if true we may sleep while awaiting command completion
6072  *
6073  *	Reads the PF RSS Mask register and returns its value.
6074  */
6075 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
6076 {
6077 	u32 pfmask;
6078 
6079 	t4_tp_pio_read(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
6080 
6081 	return pfmask;
6082 }
6083 
6084 /**
6085  *	t4_write_rss_pf_mask - write PF RSS Mask
6086  *	@adapter: the adapter
6087  *	@pfmask: PF RSS Mask value
6088  *
6089  *	Writes the specified value to the PF RSS Mask register.
6090  */
6091 void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask, bool sleep_ok)
6092 {
6093 	t4_tp_pio_write(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
6094 }
6095 
6096 /**
6097  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
6098  *	@adap: the adapter
6099  *	@v4: holds the TCP/IP counter values
6100  *	@v6: holds the TCP/IPv6 counter values
6101  * 	@sleep_ok: if true we may sleep while awaiting command completion
6102  *
6103  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
6104  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
6105  */
6106 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
6107 			 struct tp_tcp_stats *v6, bool sleep_ok)
6108 {
6109 	u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
6110 
6111 #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
6112 #define STAT(x)     val[STAT_IDX(x)]
6113 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
6114 
6115 	if (v4) {
6116 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
6117 			       A_TP_MIB_TCP_OUT_RST, sleep_ok);
6118 		v4->tcp_out_rsts = STAT(OUT_RST);
6119 		v4->tcp_in_segs  = STAT64(IN_SEG);
6120 		v4->tcp_out_segs = STAT64(OUT_SEG);
6121 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
6122 	}
6123 	if (v6) {
6124 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
6125 			       A_TP_MIB_TCP_V6OUT_RST, sleep_ok);
6126 		v6->tcp_out_rsts = STAT(OUT_RST);
6127 		v6->tcp_in_segs  = STAT64(IN_SEG);
6128 		v6->tcp_out_segs = STAT64(OUT_SEG);
6129 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
6130 	}
6131 #undef STAT64
6132 #undef STAT
6133 #undef STAT_IDX
6134 }
6135 
6136 /**
6137  *	t4_tp_get_err_stats - read TP's error MIB counters
6138  *	@adap: the adapter
6139  *	@st: holds the counter values
6140  * 	@sleep_ok: if true we may sleep while awaiting command completion
6141  *
6142  *	Returns the values of TP's error counters.
6143  */
6144 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
6145 			 bool sleep_ok)
6146 {
6147 	int nchan = adap->chip_params->nchan;
6148 
6149 	t4_tp_mib_read(adap, st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0,
6150 		       sleep_ok);
6151 
6152 	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0,
6153 		       sleep_ok);
6154 
6155 	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0,
6156 		       sleep_ok);
6157 
6158 	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
6159 		       A_TP_MIB_TNL_CNG_DROP_0, sleep_ok);
6160 
6161 	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
6162 		       A_TP_MIB_OFD_CHN_DROP_0, sleep_ok);
6163 
6164 	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0,
6165 		       sleep_ok);
6166 
6167 	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
6168 		       A_TP_MIB_OFD_VLN_DROP_0, sleep_ok);
6169 
6170 	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
6171 		       A_TP_MIB_TCP_V6IN_ERR_0, sleep_ok);
6172 
6173 	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP,
6174 		       sleep_ok);
6175 }
6176 
6177 /**
6178  *	t4_tp_get_proxy_stats - read TP's proxy MIB counters
6179  *	@adap: the adapter
6180  *	@st: holds the counter values
6181  *
6182  *	Returns the values of TP's proxy counters.
6183  */
6184 void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st,
6185     bool sleep_ok)
6186 {
6187 	int nchan = adap->chip_params->nchan;
6188 
6189 	t4_tp_mib_read(adap, st->proxy, nchan, A_TP_MIB_TNL_LPBK_0, sleep_ok);
6190 }
6191 
6192 /**
6193  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
6194  *	@adap: the adapter
6195  *	@st: holds the counter values
6196  * 	@sleep_ok: if true we may sleep while awaiting command completion
6197  *
6198  *	Returns the values of TP's CPL counters.
6199  */
6200 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
6201 			 bool sleep_ok)
6202 {
6203 	int nchan = adap->chip_params->nchan;
6204 
6205 	t4_tp_mib_read(adap, st->req, nchan, A_TP_MIB_CPL_IN_REQ_0, sleep_ok);
6206 
6207 	t4_tp_mib_read(adap, st->rsp, nchan, A_TP_MIB_CPL_OUT_RSP_0, sleep_ok);
6208 }
6209 
6210 /**
6211  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
6212  *	@adap: the adapter
6213  *	@st: holds the counter values
6214  *
6215  *	Returns the values of TP's RDMA counters.
6216  */
6217 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
6218 			  bool sleep_ok)
6219 {
6220 	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, A_TP_MIB_RQE_DFR_PKT,
6221 		       sleep_ok);
6222 }
6223 
6224 /**
6225  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
6226  *	@adap: the adapter
6227  *	@idx: the port index
6228  *	@st: holds the counter values
6229  * 	@sleep_ok: if true we may sleep while awaiting command completion
6230  *
6231  *	Returns the values of TP's FCoE counters for the selected port.
6232  */
6233 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
6234 		       struct tp_fcoe_stats *st, bool sleep_ok)
6235 {
6236 	u32 val[2];
6237 
6238 	t4_tp_mib_read(adap, &st->frames_ddp, 1, A_TP_MIB_FCOE_DDP_0 + idx,
6239 		       sleep_ok);
6240 
6241 	t4_tp_mib_read(adap, &st->frames_drop, 1,
6242 		       A_TP_MIB_FCOE_DROP_0 + idx, sleep_ok);
6243 
6244 	t4_tp_mib_read(adap, val, 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx,
6245 		       sleep_ok);
6246 
6247 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
6248 }
6249 
6250 /**
6251  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
6252  *	@adap: the adapter
6253  *	@st: holds the counter values
6254  * 	@sleep_ok: if true we may sleep while awaiting command completion
6255  *
6256  *	Returns the values of TP's counters for non-TCP directly-placed packets.
6257  */
6258 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
6259 		      bool sleep_ok)
6260 {
6261 	u32 val[4];
6262 
6263 	t4_tp_mib_read(adap, val, 4, A_TP_MIB_USM_PKTS, sleep_ok);
6264 
6265 	st->frames = val[0];
6266 	st->drops = val[1];
6267 	st->octets = ((u64)val[2] << 32) | val[3];
6268 }
6269 
6270 /**
6271  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
6272  *	@adap: the adapter
6273  *	@mtus: where to store the MTU values
6274  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
6275  *
6276  *	Reads the HW path MTU table.
6277  */
6278 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
6279 {
6280 	u32 v;
6281 	int i;
6282 
6283 	for (i = 0; i < NMTUS; ++i) {
6284 		t4_write_reg(adap, A_TP_MTU_TABLE,
6285 			     V_MTUINDEX(0xff) | V_MTUVALUE(i));
6286 		v = t4_read_reg(adap, A_TP_MTU_TABLE);
6287 		mtus[i] = G_MTUVALUE(v);
6288 		if (mtu_log)
6289 			mtu_log[i] = G_MTUWIDTH(v);
6290 	}
6291 }
6292 
6293 /**
6294  *	t4_read_cong_tbl - reads the congestion control table
6295  *	@adap: the adapter
6296  *	@incr: where to store the alpha values
6297  *
6298  *	Reads the additive increments programmed into the HW congestion
6299  *	control table.
6300  */
6301 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
6302 {
6303 	unsigned int mtu, w;
6304 
6305 	for (mtu = 0; mtu < NMTUS; ++mtu)
6306 		for (w = 0; w < NCCTRL_WIN; ++w) {
6307 			t4_write_reg(adap, A_TP_CCTRL_TABLE,
6308 				     V_ROWINDEX(0xffff) | (mtu << 5) | w);
6309 			incr[mtu][w] = (u16)t4_read_reg(adap,
6310 						A_TP_CCTRL_TABLE) & 0x1fff;
6311 		}
6312 }
6313 
6314 /**
6315  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
6316  *	@adap: the adapter
6317  *	@addr: the indirect TP register address
6318  *	@mask: specifies the field within the register to modify
6319  *	@val: new value for the field
6320  *
6321  *	Sets a field of an indirect TP register to the given value.
6322  */
6323 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
6324 			    unsigned int mask, unsigned int val)
6325 {
6326 	t4_write_reg(adap, A_TP_PIO_ADDR, addr);
6327 	val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
6328 	t4_write_reg(adap, A_TP_PIO_DATA, val);
6329 }
6330 
6331 /**
6332  *	init_cong_ctrl - initialize congestion control parameters
6333  *	@a: the alpha values for congestion control
6334  *	@b: the beta values for congestion control
6335  *
6336  *	Initialize the congestion control parameters.
6337  */
6338 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
6339 {
6340 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
6341 	a[9] = 2;
6342 	a[10] = 3;
6343 	a[11] = 4;
6344 	a[12] = 5;
6345 	a[13] = 6;
6346 	a[14] = 7;
6347 	a[15] = 8;
6348 	a[16] = 9;
6349 	a[17] = 10;
6350 	a[18] = 14;
6351 	a[19] = 17;
6352 	a[20] = 21;
6353 	a[21] = 25;
6354 	a[22] = 30;
6355 	a[23] = 35;
6356 	a[24] = 45;
6357 	a[25] = 60;
6358 	a[26] = 80;
6359 	a[27] = 100;
6360 	a[28] = 200;
6361 	a[29] = 300;
6362 	a[30] = 400;
6363 	a[31] = 500;
6364 
6365 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
6366 	b[9] = b[10] = 1;
6367 	b[11] = b[12] = 2;
6368 	b[13] = b[14] = b[15] = b[16] = 3;
6369 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
6370 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
6371 	b[28] = b[29] = 6;
6372 	b[30] = b[31] = 7;
6373 }
6374 
6375 /* The minimum additive increment value for the congestion control table */
6376 #define CC_MIN_INCR 2U
6377 
6378 /**
6379  *	t4_load_mtus - write the MTU and congestion control HW tables
6380  *	@adap: the adapter
6381  *	@mtus: the values for the MTU table
6382  *	@alpha: the values for the congestion control alpha parameter
6383  *	@beta: the values for the congestion control beta parameter
6384  *
6385  *	Write the HW MTU table with the supplied MTUs and the high-speed
6386  *	congestion control table with the supplied alpha, beta, and MTUs.
6387  *	We write the two tables together because the additive increments
6388  *	depend on the MTUs.
6389  */
6390 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
6391 		  const unsigned short *alpha, const unsigned short *beta)
6392 {
6393 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
6394 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
6395 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
6396 		28672, 40960, 57344, 81920, 114688, 163840, 229376
6397 	};
6398 
6399 	unsigned int i, w;
6400 
6401 	for (i = 0; i < NMTUS; ++i) {
6402 		unsigned int mtu = mtus[i];
6403 		unsigned int log2 = fls(mtu);
6404 
6405 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
6406 			log2--;
6407 		t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
6408 			     V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
6409 
6410 		for (w = 0; w < NCCTRL_WIN; ++w) {
6411 			unsigned int inc;
6412 
6413 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
6414 				  CC_MIN_INCR);
6415 
6416 			t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
6417 				     (w << 16) | (beta[w] << 13) | inc);
6418 		}
6419 	}
6420 }
6421 
6422 /**
6423  *	t4_set_pace_tbl - set the pace table
6424  *	@adap: the adapter
6425  *	@pace_vals: the pace values in microseconds
6426  *	@start: index of the first entry in the HW pace table to set
6427  *	@n: how many entries to set
6428  *
6429  *	Sets (a subset of the) HW pace table.
6430  */
6431 int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
6432 		     unsigned int start, unsigned int n)
6433 {
6434 	unsigned int vals[NTX_SCHED], i;
6435 	unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
6436 
6437 	if (n > NTX_SCHED)
6438 	    return -ERANGE;
6439 
6440 	/* convert values from us to dack ticks, rounding to closest value */
6441 	for (i = 0; i < n; i++, pace_vals++) {
6442 		vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
6443 		if (vals[i] > 0x7ff)
6444 			return -ERANGE;
6445 		if (*pace_vals && vals[i] == 0)
6446 			return -ERANGE;
6447 	}
6448 	for (i = 0; i < n; i++, start++)
6449 		t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
6450 	return 0;
6451 }
6452 
6453 /**
6454  *	t4_set_sched_bps - set the bit rate for a HW traffic scheduler
6455  *	@adap: the adapter
6456  *	@kbps: target rate in Kbps
6457  *	@sched: the scheduler index
6458  *
6459  *	Configure a Tx HW scheduler for the target rate.
6460  */
6461 int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
6462 {
6463 	unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
6464 	unsigned int clk = adap->params.vpd.cclk * 1000;
6465 	unsigned int selected_cpt = 0, selected_bpt = 0;
6466 
6467 	if (kbps > 0) {
6468 		kbps *= 125;     /* -> bytes */
6469 		for (cpt = 1; cpt <= 255; cpt++) {
6470 			tps = clk / cpt;
6471 			bpt = (kbps + tps / 2) / tps;
6472 			if (bpt > 0 && bpt <= 255) {
6473 				v = bpt * tps;
6474 				delta = v >= kbps ? v - kbps : kbps - v;
6475 				if (delta < mindelta) {
6476 					mindelta = delta;
6477 					selected_cpt = cpt;
6478 					selected_bpt = bpt;
6479 				}
6480 			} else if (selected_cpt)
6481 				break;
6482 		}
6483 		if (!selected_cpt)
6484 			return -EINVAL;
6485 	}
6486 	t4_write_reg(adap, A_TP_TM_PIO_ADDR,
6487 		     A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
6488 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
6489 	if (sched & 1)
6490 		v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
6491 	else
6492 		v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
6493 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
6494 	return 0;
6495 }
6496 
6497 /**
6498  *	t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
6499  *	@adap: the adapter
6500  *	@sched: the scheduler index
6501  *	@ipg: the interpacket delay in tenths of nanoseconds
6502  *
6503  *	Set the interpacket delay for a HW packet rate scheduler.
6504  */
6505 int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
6506 {
6507 	unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
6508 
6509 	/* convert ipg to nearest number of core clocks */
6510 	ipg *= core_ticks_per_usec(adap);
6511 	ipg = (ipg + 5000) / 10000;
6512 	if (ipg > M_TXTIMERSEPQ0)
6513 		return -EINVAL;
6514 
6515 	t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
6516 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
6517 	if (sched & 1)
6518 		v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
6519 	else
6520 		v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
6521 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
6522 	t4_read_reg(adap, A_TP_TM_PIO_DATA);
6523 	return 0;
6524 }
6525 
6526 /*
6527  * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
6528  * clocks.  The formula is
6529  *
6530  * bytes/s = bytes256 * 256 * ClkFreq / 4096
6531  *
6532  * which is equivalent to
6533  *
6534  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
6535  */
6536 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
6537 {
6538 	u64 v = (u64)bytes256 * adap->params.vpd.cclk;
6539 
6540 	return v * 62 + v / 2;
6541 }
6542 
6543 /**
6544  *	t4_get_chan_txrate - get the current per channel Tx rates
6545  *	@adap: the adapter
6546  *	@nic_rate: rates for NIC traffic
6547  *	@ofld_rate: rates for offloaded traffic
6548  *
6549  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
6550  *	for each channel.
6551  */
6552 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
6553 {
6554 	u32 v;
6555 
6556 	v = t4_read_reg(adap, A_TP_TX_TRATE);
6557 	nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
6558 	nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
6559 	if (adap->chip_params->nchan > 2) {
6560 		nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
6561 		nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
6562 	}
6563 
6564 	v = t4_read_reg(adap, A_TP_TX_ORATE);
6565 	ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
6566 	ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
6567 	if (adap->chip_params->nchan > 2) {
6568 		ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
6569 		ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
6570 	}
6571 }
6572 
6573 /**
6574  *	t4_set_trace_filter - configure one of the tracing filters
6575  *	@adap: the adapter
6576  *	@tp: the desired trace filter parameters
6577  *	@idx: which filter to configure
6578  *	@enable: whether to enable or disable the filter
6579  *
6580  *	Configures one of the tracing filters available in HW.  If @tp is %NULL
6581  *	it indicates that the filter is already written in the register and it
6582  *	just needs to be enabled or disabled.
6583  */
6584 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
6585     int idx, int enable)
6586 {
6587 	int i, ofst = idx * 4;
6588 	u32 data_reg, mask_reg, cfg;
6589 	u32 multitrc = F_TRCMULTIFILTER;
6590 	u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
6591 
6592 	if (idx < 0 || idx >= NTRACE)
6593 		return -EINVAL;
6594 
6595 	if (tp == NULL || !enable) {
6596 		t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en,
6597 		    enable ? en : 0);
6598 		return 0;
6599 	}
6600 
6601 	/*
6602 	 * TODO - After T4 data book is updated, specify the exact
6603 	 * section below.
6604 	 *
6605 	 * See T4 data book - MPS section for a complete description
6606 	 * of the below if..else handling of A_MPS_TRC_CFG register
6607 	 * value.
6608 	 */
6609 	cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
6610 	if (cfg & F_TRCMULTIFILTER) {
6611 		/*
6612 		 * If multiple tracers are enabled, then maximum
6613 		 * capture size is 2.5KB (FIFO size of a single channel)
6614 		 * minus 2 flits for CPL_TRACE_PKT header.
6615 		 */
6616 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
6617 			return -EINVAL;
6618 	} else {
6619 		/*
6620 		 * If multiple tracers are disabled, to avoid deadlocks
6621 		 * maximum packet capture size of 9600 bytes is recommended.
6622 		 * Also in this mode, only trace0 can be enabled and running.
6623 		 */
6624 		multitrc = 0;
6625 		if (tp->snap_len > 9600 || idx)
6626 			return -EINVAL;
6627 	}
6628 
6629 	if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
6630 	    tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
6631 	    tp->min_len > M_TFMINPKTSIZE)
6632 		return -EINVAL;
6633 
6634 	/* stop the tracer we'll be changing */
6635 	t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0);
6636 
6637 	idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
6638 	data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
6639 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
6640 
6641 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6642 		t4_write_reg(adap, data_reg, tp->data[i]);
6643 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
6644 	}
6645 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
6646 		     V_TFCAPTUREMAX(tp->snap_len) |
6647 		     V_TFMINPKTSIZE(tp->min_len));
6648 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
6649 		     V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en |
6650 		     (is_t4(adap) ?
6651 		     V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
6652 		     V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
6653 
6654 	return 0;
6655 }
6656 
6657 /**
6658  *	t4_get_trace_filter - query one of the tracing filters
6659  *	@adap: the adapter
6660  *	@tp: the current trace filter parameters
6661  *	@idx: which trace filter to query
6662  *	@enabled: non-zero if the filter is enabled
6663  *
6664  *	Returns the current settings of one of the HW tracing filters.
6665  */
6666 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
6667 			 int *enabled)
6668 {
6669 	u32 ctla, ctlb;
6670 	int i, ofst = idx * 4;
6671 	u32 data_reg, mask_reg;
6672 
6673 	ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
6674 	ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
6675 
6676 	if (is_t4(adap)) {
6677 		*enabled = !!(ctla & F_TFEN);
6678 		tp->port =  G_TFPORT(ctla);
6679 		tp->invert = !!(ctla & F_TFINVERTMATCH);
6680 	} else {
6681 		*enabled = !!(ctla & F_T5_TFEN);
6682 		tp->port = G_T5_TFPORT(ctla);
6683 		tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
6684 	}
6685 	tp->snap_len = G_TFCAPTUREMAX(ctlb);
6686 	tp->min_len = G_TFMINPKTSIZE(ctlb);
6687 	tp->skip_ofst = G_TFOFFSET(ctla);
6688 	tp->skip_len = G_TFLENGTH(ctla);
6689 
6690 	ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
6691 	data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
6692 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
6693 
6694 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6695 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
6696 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
6697 	}
6698 }
6699 
6700 /**
6701  *	t4_pmtx_get_stats - returns the HW stats from PMTX
6702  *	@adap: the adapter
6703  *	@cnt: where to store the count statistics
6704  *	@cycles: where to store the cycle statistics
6705  *
6706  *	Returns performance statistics from PMTX.
6707  */
6708 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6709 {
6710 	int i;
6711 	u32 data[2];
6712 
6713 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
6714 		t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
6715 		cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
6716 		if (is_t4(adap))
6717 			cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
6718 		else {
6719 			t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
6720 					 A_PM_TX_DBG_DATA, data, 2,
6721 					 A_PM_TX_DBG_STAT_MSB);
6722 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6723 		}
6724 	}
6725 }
6726 
6727 /**
6728  *	t4_pmrx_get_stats - returns the HW stats from PMRX
6729  *	@adap: the adapter
6730  *	@cnt: where to store the count statistics
6731  *	@cycles: where to store the cycle statistics
6732  *
6733  *	Returns performance statistics from PMRX.
6734  */
6735 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6736 {
6737 	int i;
6738 	u32 data[2];
6739 
6740 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
6741 		t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
6742 		cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
6743 		if (is_t4(adap)) {
6744 			cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
6745 		} else {
6746 			t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
6747 					 A_PM_RX_DBG_DATA, data, 2,
6748 					 A_PM_RX_DBG_STAT_MSB);
6749 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6750 		}
6751 	}
6752 }
6753 
6754 /**
6755  *	t4_get_mps_bg_map - return the buffer groups associated with a port
6756  *	@adap: the adapter
6757  *	@idx: the port index
6758  *
6759  *	Returns a bitmap indicating which MPS buffer groups are associated
6760  *	with the given port.  Bit i is set if buffer group i is used by the
6761  *	port.
6762  */
6763 static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
6764 {
6765 	u32 n;
6766 
6767 	if (adap->params.mps_bg_map)
6768 		return ((adap->params.mps_bg_map >> (idx << 3)) & 0xff);
6769 
6770 	n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
6771 	if (n == 0)
6772 		return idx == 0 ? 0xf : 0;
6773 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
6774 		return idx < 2 ? (3 << (2 * idx)) : 0;
6775 	return 1 << idx;
6776 }
6777 
6778 /*
6779  * TP RX e-channels associated with the port.
6780  */
6781 static unsigned int t4_get_rx_e_chan_map(struct adapter *adap, int idx)
6782 {
6783 	u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
6784 	const u32 all_chan = (1 << adap->chip_params->nchan) - 1;
6785 
6786 	if (n == 0)
6787 		return idx == 0 ? all_chan : 0;
6788 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
6789 		return idx < 2 ? (3 << (2 * idx)) : 0;
6790 	return 1 << idx;
6791 }
6792 
6793 /**
6794  *      t4_get_port_type_description - return Port Type string description
6795  *      @port_type: firmware Port Type enumeration
6796  */
6797 const char *t4_get_port_type_description(enum fw_port_type port_type)
6798 {
6799 	static const char *const port_type_description[] = {
6800 		"Fiber_XFI",
6801 		"Fiber_XAUI",
6802 		"BT_SGMII",
6803 		"BT_XFI",
6804 		"BT_XAUI",
6805 		"KX4",
6806 		"CX4",
6807 		"KX",
6808 		"KR",
6809 		"SFP",
6810 		"BP_AP",
6811 		"BP4_AP",
6812 		"QSFP_10G",
6813 		"QSA",
6814 		"QSFP",
6815 		"BP40_BA",
6816 		"KR4_100G",
6817 		"CR4_QSFP",
6818 		"CR_QSFP",
6819 		"CR2_QSFP",
6820 		"SFP28",
6821 		"KR_SFP28",
6822 	};
6823 
6824 	if (port_type < ARRAY_SIZE(port_type_description))
6825 		return port_type_description[port_type];
6826 	return "UNKNOWN";
6827 }
6828 
6829 /**
6830  *      t4_get_port_stats_offset - collect port stats relative to a previous
6831  *				   snapshot
6832  *      @adap: The adapter
6833  *      @idx: The port
6834  *      @stats: Current stats to fill
6835  *      @offset: Previous stats snapshot
6836  */
6837 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6838 		struct port_stats *stats,
6839 		struct port_stats *offset)
6840 {
6841 	u64 *s, *o;
6842 	int i;
6843 
6844 	t4_get_port_stats(adap, idx, stats);
6845 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
6846 			i < (sizeof(struct port_stats)/sizeof(u64)) ;
6847 			i++, s++, o++)
6848 		*s -= *o;
6849 }
6850 
6851 /**
6852  *	t4_get_port_stats - collect port statistics
6853  *	@adap: the adapter
6854  *	@idx: the port index
6855  *	@p: the stats structure to fill
6856  *
6857  *	Collect statistics related to the given port from HW.
6858  */
6859 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6860 {
6861 	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
6862 	u32 stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
6863 
6864 #define GET_STAT(name) \
6865 	t4_read_reg64(adap, \
6866 	(is_t4(adap) ? PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) : \
6867 	T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
6868 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6869 
6870 	p->tx_pause		= GET_STAT(TX_PORT_PAUSE);
6871 	p->tx_octets		= GET_STAT(TX_PORT_BYTES);
6872 	p->tx_frames		= GET_STAT(TX_PORT_FRAMES);
6873 	p->tx_bcast_frames	= GET_STAT(TX_PORT_BCAST);
6874 	p->tx_mcast_frames	= GET_STAT(TX_PORT_MCAST);
6875 	p->tx_ucast_frames	= GET_STAT(TX_PORT_UCAST);
6876 	p->tx_error_frames	= GET_STAT(TX_PORT_ERROR);
6877 	p->tx_frames_64		= GET_STAT(TX_PORT_64B);
6878 	p->tx_frames_65_127	= GET_STAT(TX_PORT_65B_127B);
6879 	p->tx_frames_128_255	= GET_STAT(TX_PORT_128B_255B);
6880 	p->tx_frames_256_511	= GET_STAT(TX_PORT_256B_511B);
6881 	p->tx_frames_512_1023	= GET_STAT(TX_PORT_512B_1023B);
6882 	p->tx_frames_1024_1518	= GET_STAT(TX_PORT_1024B_1518B);
6883 	p->tx_frames_1519_max	= GET_STAT(TX_PORT_1519B_MAX);
6884 	p->tx_drop		= GET_STAT(TX_PORT_DROP);
6885 	p->tx_ppp0		= GET_STAT(TX_PORT_PPP0);
6886 	p->tx_ppp1		= GET_STAT(TX_PORT_PPP1);
6887 	p->tx_ppp2		= GET_STAT(TX_PORT_PPP2);
6888 	p->tx_ppp3		= GET_STAT(TX_PORT_PPP3);
6889 	p->tx_ppp4		= GET_STAT(TX_PORT_PPP4);
6890 	p->tx_ppp5		= GET_STAT(TX_PORT_PPP5);
6891 	p->tx_ppp6		= GET_STAT(TX_PORT_PPP6);
6892 	p->tx_ppp7		= GET_STAT(TX_PORT_PPP7);
6893 
6894 	if (chip_id(adap) >= CHELSIO_T5) {
6895 		if (stat_ctl & F_COUNTPAUSESTATTX) {
6896 			p->tx_frames -= p->tx_pause;
6897 			p->tx_octets -= p->tx_pause * 64;
6898 		}
6899 		if (stat_ctl & F_COUNTPAUSEMCTX)
6900 			p->tx_mcast_frames -= p->tx_pause;
6901 	}
6902 
6903 	p->rx_pause		= GET_STAT(RX_PORT_PAUSE);
6904 	p->rx_octets		= GET_STAT(RX_PORT_BYTES);
6905 	p->rx_frames		= GET_STAT(RX_PORT_FRAMES);
6906 	p->rx_bcast_frames	= GET_STAT(RX_PORT_BCAST);
6907 	p->rx_mcast_frames	= GET_STAT(RX_PORT_MCAST);
6908 	p->rx_ucast_frames	= GET_STAT(RX_PORT_UCAST);
6909 	p->rx_too_long		= GET_STAT(RX_PORT_MTU_ERROR);
6910 	p->rx_jabber		= GET_STAT(RX_PORT_MTU_CRC_ERROR);
6911 	p->rx_fcs_err		= GET_STAT(RX_PORT_CRC_ERROR);
6912 	p->rx_len_err		= GET_STAT(RX_PORT_LEN_ERROR);
6913 	p->rx_symbol_err	= GET_STAT(RX_PORT_SYM_ERROR);
6914 	p->rx_runt		= GET_STAT(RX_PORT_LESS_64B);
6915 	p->rx_frames_64		= GET_STAT(RX_PORT_64B);
6916 	p->rx_frames_65_127	= GET_STAT(RX_PORT_65B_127B);
6917 	p->rx_frames_128_255	= GET_STAT(RX_PORT_128B_255B);
6918 	p->rx_frames_256_511	= GET_STAT(RX_PORT_256B_511B);
6919 	p->rx_frames_512_1023	= GET_STAT(RX_PORT_512B_1023B);
6920 	p->rx_frames_1024_1518	= GET_STAT(RX_PORT_1024B_1518B);
6921 	p->rx_frames_1519_max	= GET_STAT(RX_PORT_1519B_MAX);
6922 	p->rx_ppp0		= GET_STAT(RX_PORT_PPP0);
6923 	p->rx_ppp1		= GET_STAT(RX_PORT_PPP1);
6924 	p->rx_ppp2		= GET_STAT(RX_PORT_PPP2);
6925 	p->rx_ppp3		= GET_STAT(RX_PORT_PPP3);
6926 	p->rx_ppp4		= GET_STAT(RX_PORT_PPP4);
6927 	p->rx_ppp5		= GET_STAT(RX_PORT_PPP5);
6928 	p->rx_ppp6		= GET_STAT(RX_PORT_PPP6);
6929 	p->rx_ppp7		= GET_STAT(RX_PORT_PPP7);
6930 
6931 	if (chip_id(adap) >= CHELSIO_T5) {
6932 		if (stat_ctl & F_COUNTPAUSESTATRX) {
6933 			p->rx_frames -= p->rx_pause;
6934 			p->rx_octets -= p->rx_pause * 64;
6935 		}
6936 		if (stat_ctl & F_COUNTPAUSEMCRX)
6937 			p->rx_mcast_frames -= p->rx_pause;
6938 	}
6939 
6940 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6941 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6942 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6943 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6944 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6945 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6946 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6947 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6948 
6949 #undef GET_STAT
6950 #undef GET_STAT_COM
6951 }
6952 
6953 /**
6954  *	t4_get_lb_stats - collect loopback port statistics
6955  *	@adap: the adapter
6956  *	@idx: the loopback port index
6957  *	@p: the stats structure to fill
6958  *
6959  *	Return HW statistics for the given loopback port.
6960  */
6961 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6962 {
6963 	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
6964 
6965 #define GET_STAT(name) \
6966 	t4_read_reg64(adap, \
6967 	(is_t4(adap) ? \
6968 	PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \
6969 	T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L)))
6970 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6971 
6972 	p->octets	= GET_STAT(BYTES);
6973 	p->frames	= GET_STAT(FRAMES);
6974 	p->bcast_frames	= GET_STAT(BCAST);
6975 	p->mcast_frames	= GET_STAT(MCAST);
6976 	p->ucast_frames	= GET_STAT(UCAST);
6977 	p->error_frames	= GET_STAT(ERROR);
6978 
6979 	p->frames_64		= GET_STAT(64B);
6980 	p->frames_65_127	= GET_STAT(65B_127B);
6981 	p->frames_128_255	= GET_STAT(128B_255B);
6982 	p->frames_256_511	= GET_STAT(256B_511B);
6983 	p->frames_512_1023	= GET_STAT(512B_1023B);
6984 	p->frames_1024_1518	= GET_STAT(1024B_1518B);
6985 	p->frames_1519_max	= GET_STAT(1519B_MAX);
6986 	p->drop			= GET_STAT(DROP_FRAMES);
6987 
6988 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6989 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6990 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6991 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6992 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6993 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6994 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6995 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6996 
6997 #undef GET_STAT
6998 #undef GET_STAT_COM
6999 }
7000 
7001 /**
7002  *	t4_wol_magic_enable - enable/disable magic packet WoL
7003  *	@adap: the adapter
7004  *	@port: the physical port index
7005  *	@addr: MAC address expected in magic packets, %NULL to disable
7006  *
7007  *	Enables/disables magic packet wake-on-LAN for the selected port.
7008  */
7009 void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
7010 			 const u8 *addr)
7011 {
7012 	u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
7013 
7014 	if (is_t4(adap)) {
7015 		mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
7016 		mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
7017 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
7018 	} else {
7019 		mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
7020 		mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
7021 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
7022 	}
7023 
7024 	if (addr) {
7025 		t4_write_reg(adap, mag_id_reg_l,
7026 			     (addr[2] << 24) | (addr[3] << 16) |
7027 			     (addr[4] << 8) | addr[5]);
7028 		t4_write_reg(adap, mag_id_reg_h,
7029 			     (addr[0] << 8) | addr[1]);
7030 	}
7031 	t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
7032 			 V_MAGICEN(addr != NULL));
7033 }
7034 
7035 /**
7036  *	t4_wol_pat_enable - enable/disable pattern-based WoL
7037  *	@adap: the adapter
7038  *	@port: the physical port index
7039  *	@map: bitmap of which HW pattern filters to set
7040  *	@mask0: byte mask for bytes 0-63 of a packet
7041  *	@mask1: byte mask for bytes 64-127 of a packet
7042  *	@crc: Ethernet CRC for selected bytes
7043  *	@enable: enable/disable switch
7044  *
7045  *	Sets the pattern filters indicated in @map to mask out the bytes
7046  *	specified in @mask0/@mask1 in received packets and compare the CRC of
7047  *	the resulting packet against @crc.  If @enable is %true pattern-based
7048  *	WoL is enabled, otherwise disabled.
7049  */
7050 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
7051 		      u64 mask0, u64 mask1, unsigned int crc, bool enable)
7052 {
7053 	int i;
7054 	u32 port_cfg_reg;
7055 
7056 	if (is_t4(adap))
7057 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
7058 	else
7059 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
7060 
7061 	if (!enable) {
7062 		t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
7063 		return 0;
7064 	}
7065 	if (map > 0xff)
7066 		return -EINVAL;
7067 
7068 #define EPIO_REG(name) \
7069 	(is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
7070 	T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
7071 
7072 	t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
7073 	t4_write_reg(adap, EPIO_REG(DATA2), mask1);
7074 	t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
7075 
7076 	for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
7077 		if (!(map & 1))
7078 			continue;
7079 
7080 		/* write byte masks */
7081 		t4_write_reg(adap, EPIO_REG(DATA0), mask0);
7082 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
7083 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
7084 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
7085 			return -ETIMEDOUT;
7086 
7087 		/* write CRC */
7088 		t4_write_reg(adap, EPIO_REG(DATA0), crc);
7089 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
7090 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
7091 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
7092 			return -ETIMEDOUT;
7093 	}
7094 #undef EPIO_REG
7095 
7096 	t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
7097 	return 0;
7098 }
7099 
7100 /*     t4_mk_filtdelwr - create a delete filter WR
7101  *     @ftid: the filter ID
7102  *     @wr: the filter work request to populate
7103  *     @qid: ingress queue to receive the delete notification
7104  *
7105  *     Creates a filter work request to delete the supplied filter.  If @qid is
7106  *     negative the delete notification is suppressed.
7107  */
7108 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
7109 {
7110 	memset(wr, 0, sizeof(*wr));
7111 	wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR));
7112 	wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16));
7113 	wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) |
7114 				    V_FW_FILTER_WR_NOREPLY(qid < 0));
7115 	wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER);
7116 	if (qid >= 0)
7117 		wr->rx_chan_rx_rpl_iq =
7118 				cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid));
7119 }
7120 
7121 #define INIT_CMD(var, cmd, rd_wr) do { \
7122 	(var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
7123 					F_FW_CMD_REQUEST | \
7124 					F_FW_CMD_##rd_wr); \
7125 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
7126 } while (0)
7127 
7128 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
7129 			  u32 addr, u32 val)
7130 {
7131 	u32 ldst_addrspace;
7132 	struct fw_ldst_cmd c;
7133 
7134 	memset(&c, 0, sizeof(c));
7135 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE);
7136 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7137 					F_FW_CMD_REQUEST |
7138 					F_FW_CMD_WRITE |
7139 					ldst_addrspace);
7140 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7141 	c.u.addrval.addr = cpu_to_be32(addr);
7142 	c.u.addrval.val = cpu_to_be32(val);
7143 
7144 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7145 }
7146 
7147 /**
7148  *	t4_mdio_rd - read a PHY register through MDIO
7149  *	@adap: the adapter
7150  *	@mbox: mailbox to use for the FW command
7151  *	@phy_addr: the PHY address
7152  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
7153  *	@reg: the register to read
7154  *	@valp: where to store the value
7155  *
7156  *	Issues a FW command through the given mailbox to read a PHY register.
7157  */
7158 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
7159 	       unsigned int mmd, unsigned int reg, unsigned int *valp)
7160 {
7161 	int ret;
7162 	u32 ldst_addrspace;
7163 	struct fw_ldst_cmd c;
7164 
7165 	memset(&c, 0, sizeof(c));
7166 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
7167 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7168 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
7169 					ldst_addrspace);
7170 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7171 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
7172 					 V_FW_LDST_CMD_MMD(mmd));
7173 	c.u.mdio.raddr = cpu_to_be16(reg);
7174 
7175 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7176 	if (ret == 0)
7177 		*valp = be16_to_cpu(c.u.mdio.rval);
7178 	return ret;
7179 }
7180 
7181 /**
7182  *	t4_mdio_wr - write a PHY register through MDIO
7183  *	@adap: the adapter
7184  *	@mbox: mailbox to use for the FW command
7185  *	@phy_addr: the PHY address
7186  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
7187  *	@reg: the register to write
7188  *	@valp: value to write
7189  *
7190  *	Issues a FW command through the given mailbox to write a PHY register.
7191  */
7192 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
7193 	       unsigned int mmd, unsigned int reg, unsigned int val)
7194 {
7195 	u32 ldst_addrspace;
7196 	struct fw_ldst_cmd c;
7197 
7198 	memset(&c, 0, sizeof(c));
7199 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
7200 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7201 					F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7202 					ldst_addrspace);
7203 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7204 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
7205 					 V_FW_LDST_CMD_MMD(mmd));
7206 	c.u.mdio.raddr = cpu_to_be16(reg);
7207 	c.u.mdio.rval = cpu_to_be16(val);
7208 
7209 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7210 }
7211 
7212 /**
7213  *
7214  *	t4_sge_decode_idma_state - decode the idma state
7215  *	@adap: the adapter
7216  *	@state: the state idma is stuck in
7217  */
7218 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
7219 {
7220 	static const char * const t4_decode[] = {
7221 		"IDMA_IDLE",
7222 		"IDMA_PUSH_MORE_CPL_FIFO",
7223 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7224 		"Not used",
7225 		"IDMA_PHYSADDR_SEND_PCIEHDR",
7226 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7227 		"IDMA_PHYSADDR_SEND_PAYLOAD",
7228 		"IDMA_SEND_FIFO_TO_IMSG",
7229 		"IDMA_FL_REQ_DATA_FL_PREP",
7230 		"IDMA_FL_REQ_DATA_FL",
7231 		"IDMA_FL_DROP",
7232 		"IDMA_FL_H_REQ_HEADER_FL",
7233 		"IDMA_FL_H_SEND_PCIEHDR",
7234 		"IDMA_FL_H_PUSH_CPL_FIFO",
7235 		"IDMA_FL_H_SEND_CPL",
7236 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
7237 		"IDMA_FL_H_SEND_IP_HDR",
7238 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
7239 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
7240 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
7241 		"IDMA_FL_D_SEND_PCIEHDR",
7242 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7243 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
7244 		"IDMA_FL_SEND_PCIEHDR",
7245 		"IDMA_FL_PUSH_CPL_FIFO",
7246 		"IDMA_FL_SEND_CPL",
7247 		"IDMA_FL_SEND_PAYLOAD_FIRST",
7248 		"IDMA_FL_SEND_PAYLOAD",
7249 		"IDMA_FL_REQ_NEXT_DATA_FL",
7250 		"IDMA_FL_SEND_NEXT_PCIEHDR",
7251 		"IDMA_FL_SEND_PADDING",
7252 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
7253 		"IDMA_FL_SEND_FIFO_TO_IMSG",
7254 		"IDMA_FL_REQ_DATAFL_DONE",
7255 		"IDMA_FL_REQ_HEADERFL_DONE",
7256 	};
7257 	static const char * const t5_decode[] = {
7258 		"IDMA_IDLE",
7259 		"IDMA_ALMOST_IDLE",
7260 		"IDMA_PUSH_MORE_CPL_FIFO",
7261 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7262 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
7263 		"IDMA_PHYSADDR_SEND_PCIEHDR",
7264 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7265 		"IDMA_PHYSADDR_SEND_PAYLOAD",
7266 		"IDMA_SEND_FIFO_TO_IMSG",
7267 		"IDMA_FL_REQ_DATA_FL",
7268 		"IDMA_FL_DROP",
7269 		"IDMA_FL_DROP_SEND_INC",
7270 		"IDMA_FL_H_REQ_HEADER_FL",
7271 		"IDMA_FL_H_SEND_PCIEHDR",
7272 		"IDMA_FL_H_PUSH_CPL_FIFO",
7273 		"IDMA_FL_H_SEND_CPL",
7274 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
7275 		"IDMA_FL_H_SEND_IP_HDR",
7276 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
7277 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
7278 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
7279 		"IDMA_FL_D_SEND_PCIEHDR",
7280 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7281 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
7282 		"IDMA_FL_SEND_PCIEHDR",
7283 		"IDMA_FL_PUSH_CPL_FIFO",
7284 		"IDMA_FL_SEND_CPL",
7285 		"IDMA_FL_SEND_PAYLOAD_FIRST",
7286 		"IDMA_FL_SEND_PAYLOAD",
7287 		"IDMA_FL_REQ_NEXT_DATA_FL",
7288 		"IDMA_FL_SEND_NEXT_PCIEHDR",
7289 		"IDMA_FL_SEND_PADDING",
7290 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
7291 	};
7292 	static const char * const t6_decode[] = {
7293 		"IDMA_IDLE",
7294 		"IDMA_PUSH_MORE_CPL_FIFO",
7295 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7296 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
7297 		"IDMA_PHYSADDR_SEND_PCIEHDR",
7298 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7299 		"IDMA_PHYSADDR_SEND_PAYLOAD",
7300 		"IDMA_FL_REQ_DATA_FL",
7301 		"IDMA_FL_DROP",
7302 		"IDMA_FL_DROP_SEND_INC",
7303 		"IDMA_FL_H_REQ_HEADER_FL",
7304 		"IDMA_FL_H_SEND_PCIEHDR",
7305 		"IDMA_FL_H_PUSH_CPL_FIFO",
7306 		"IDMA_FL_H_SEND_CPL",
7307 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
7308 		"IDMA_FL_H_SEND_IP_HDR",
7309 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
7310 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
7311 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
7312 		"IDMA_FL_D_SEND_PCIEHDR",
7313 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7314 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
7315 		"IDMA_FL_SEND_PCIEHDR",
7316 		"IDMA_FL_PUSH_CPL_FIFO",
7317 		"IDMA_FL_SEND_CPL",
7318 		"IDMA_FL_SEND_PAYLOAD_FIRST",
7319 		"IDMA_FL_SEND_PAYLOAD",
7320 		"IDMA_FL_REQ_NEXT_DATA_FL",
7321 		"IDMA_FL_SEND_NEXT_PCIEHDR",
7322 		"IDMA_FL_SEND_PADDING",
7323 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
7324 	};
7325 	static const u32 sge_regs[] = {
7326 		A_SGE_DEBUG_DATA_LOW_INDEX_2,
7327 		A_SGE_DEBUG_DATA_LOW_INDEX_3,
7328 		A_SGE_DEBUG_DATA_HIGH_INDEX_10,
7329 	};
7330 	const char * const *sge_idma_decode;
7331 	int sge_idma_decode_nstates;
7332 	int i;
7333 	unsigned int chip_version = chip_id(adapter);
7334 
7335 	/* Select the right set of decode strings to dump depending on the
7336 	 * adapter chip type.
7337 	 */
7338 	switch (chip_version) {
7339 	case CHELSIO_T4:
7340 		sge_idma_decode = (const char * const *)t4_decode;
7341 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
7342 		break;
7343 
7344 	case CHELSIO_T5:
7345 		sge_idma_decode = (const char * const *)t5_decode;
7346 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
7347 		break;
7348 
7349 	case CHELSIO_T6:
7350 		sge_idma_decode = (const char * const *)t6_decode;
7351 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
7352 		break;
7353 
7354 	default:
7355 		CH_ERR(adapter,	"Unsupported chip version %d\n", chip_version);
7356 		return;
7357 	}
7358 
7359 	if (state < sge_idma_decode_nstates)
7360 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
7361 	else
7362 		CH_WARN(adapter, "idma state %d unknown\n", state);
7363 
7364 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
7365 		CH_WARN(adapter, "SGE register %#x value %#x\n",
7366 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
7367 }
7368 
7369 /**
7370  *      t4_sge_ctxt_flush - flush the SGE context cache
7371  *      @adap: the adapter
7372  *      @mbox: mailbox to use for the FW command
7373  *
7374  *      Issues a FW command through the given mailbox to flush the
7375  *      SGE context cache.
7376  */
7377 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
7378 {
7379 	int ret;
7380 	u32 ldst_addrspace;
7381 	struct fw_ldst_cmd c;
7382 
7383 	memset(&c, 0, sizeof(c));
7384 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_SGE_EGRC);
7385 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7386 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
7387 					ldst_addrspace);
7388 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7389 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH);
7390 
7391 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7392 	return ret;
7393 }
7394 
7395 /**
7396  *      t4_fw_hello - establish communication with FW
7397  *      @adap: the adapter
7398  *      @mbox: mailbox to use for the FW command
7399  *      @evt_mbox: mailbox to receive async FW events
7400  *      @master: specifies the caller's willingness to be the device master
7401  *	@state: returns the current device state (if non-NULL)
7402  *
7403  *	Issues a command to establish communication with FW.  Returns either
7404  *	an error (negative integer) or the mailbox of the Master PF.
7405  */
7406 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
7407 		enum dev_master master, enum dev_state *state)
7408 {
7409 	int ret;
7410 	struct fw_hello_cmd c;
7411 	u32 v;
7412 	unsigned int master_mbox;
7413 	int retries = FW_CMD_HELLO_RETRIES;
7414 
7415 retry:
7416 	memset(&c, 0, sizeof(c));
7417 	INIT_CMD(c, HELLO, WRITE);
7418 	c.err_to_clearinit = cpu_to_be32(
7419 		V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
7420 		V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
7421 		V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ?
7422 					mbox : M_FW_HELLO_CMD_MBMASTER) |
7423 		V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
7424 		V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
7425 		F_FW_HELLO_CMD_CLEARINIT);
7426 
7427 	/*
7428 	 * Issue the HELLO command to the firmware.  If it's not successful
7429 	 * but indicates that we got a "busy" or "timeout" condition, retry
7430 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
7431 	 * retry limit, check to see if the firmware left us any error
7432 	 * information and report that if so ...
7433 	 */
7434 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7435 	if (ret != FW_SUCCESS) {
7436 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
7437 			goto retry;
7438 		if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
7439 			t4_report_fw_error(adap);
7440 		return ret;
7441 	}
7442 
7443 	v = be32_to_cpu(c.err_to_clearinit);
7444 	master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
7445 	if (state) {
7446 		if (v & F_FW_HELLO_CMD_ERR)
7447 			*state = DEV_STATE_ERR;
7448 		else if (v & F_FW_HELLO_CMD_INIT)
7449 			*state = DEV_STATE_INIT;
7450 		else
7451 			*state = DEV_STATE_UNINIT;
7452 	}
7453 
7454 	/*
7455 	 * If we're not the Master PF then we need to wait around for the
7456 	 * Master PF Driver to finish setting up the adapter.
7457 	 *
7458 	 * Note that we also do this wait if we're a non-Master-capable PF and
7459 	 * there is no current Master PF; a Master PF may show up momentarily
7460 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
7461 	 * OS loads lots of different drivers rapidly at the same time).  In
7462 	 * this case, the Master PF returned by the firmware will be
7463 	 * M_PCIE_FW_MASTER so the test below will work ...
7464 	 */
7465 	if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
7466 	    master_mbox != mbox) {
7467 		int waiting = FW_CMD_HELLO_TIMEOUT;
7468 
7469 		/*
7470 		 * Wait for the firmware to either indicate an error or
7471 		 * initialized state.  If we see either of these we bail out
7472 		 * and report the issue to the caller.  If we exhaust the
7473 		 * "hello timeout" and we haven't exhausted our retries, try
7474 		 * again.  Otherwise bail with a timeout error.
7475 		 */
7476 		for (;;) {
7477 			u32 pcie_fw;
7478 
7479 			msleep(50);
7480 			waiting -= 50;
7481 
7482 			/*
7483 			 * If neither Error nor Initialialized are indicated
7484 			 * by the firmware keep waiting till we exhaust our
7485 			 * timeout ... and then retry if we haven't exhausted
7486 			 * our retries ...
7487 			 */
7488 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
7489 			if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
7490 				if (waiting <= 0) {
7491 					if (retries-- > 0)
7492 						goto retry;
7493 
7494 					return -ETIMEDOUT;
7495 				}
7496 				continue;
7497 			}
7498 
7499 			/*
7500 			 * We either have an Error or Initialized condition
7501 			 * report errors preferentially.
7502 			 */
7503 			if (state) {
7504 				if (pcie_fw & F_PCIE_FW_ERR)
7505 					*state = DEV_STATE_ERR;
7506 				else if (pcie_fw & F_PCIE_FW_INIT)
7507 					*state = DEV_STATE_INIT;
7508 			}
7509 
7510 			/*
7511 			 * If we arrived before a Master PF was selected and
7512 			 * there's not a valid Master PF, grab its identity
7513 			 * for our caller.
7514 			 */
7515 			if (master_mbox == M_PCIE_FW_MASTER &&
7516 			    (pcie_fw & F_PCIE_FW_MASTER_VLD))
7517 				master_mbox = G_PCIE_FW_MASTER(pcie_fw);
7518 			break;
7519 		}
7520 	}
7521 
7522 	return master_mbox;
7523 }
7524 
7525 /**
7526  *	t4_fw_bye - end communication with FW
7527  *	@adap: the adapter
7528  *	@mbox: mailbox to use for the FW command
7529  *
7530  *	Issues a command to terminate communication with FW.
7531  */
7532 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
7533 {
7534 	struct fw_bye_cmd c;
7535 
7536 	memset(&c, 0, sizeof(c));
7537 	INIT_CMD(c, BYE, WRITE);
7538 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7539 }
7540 
7541 /**
7542  *	t4_fw_reset - issue a reset to FW
7543  *	@adap: the adapter
7544  *	@mbox: mailbox to use for the FW command
7545  *	@reset: specifies the type of reset to perform
7546  *
7547  *	Issues a reset command of the specified type to FW.
7548  */
7549 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
7550 {
7551 	struct fw_reset_cmd c;
7552 
7553 	memset(&c, 0, sizeof(c));
7554 	INIT_CMD(c, RESET, WRITE);
7555 	c.val = cpu_to_be32(reset);
7556 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7557 }
7558 
7559 /**
7560  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
7561  *	@adap: the adapter
7562  *	@mbox: mailbox to use for the FW RESET command (if desired)
7563  *	@force: force uP into RESET even if FW RESET command fails
7564  *
7565  *	Issues a RESET command to firmware (if desired) with a HALT indication
7566  *	and then puts the microprocessor into RESET state.  The RESET command
7567  *	will only be issued if a legitimate mailbox is provided (mbox <=
7568  *	M_PCIE_FW_MASTER).
7569  *
7570  *	This is generally used in order for the host to safely manipulate the
7571  *	adapter without fear of conflicting with whatever the firmware might
7572  *	be doing.  The only way out of this state is to RESTART the firmware
7573  *	...
7574  */
7575 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
7576 {
7577 	int ret = 0;
7578 
7579 	/*
7580 	 * If a legitimate mailbox is provided, issue a RESET command
7581 	 * with a HALT indication.
7582 	 */
7583 	if (adap->flags & FW_OK && mbox <= M_PCIE_FW_MASTER) {
7584 		struct fw_reset_cmd c;
7585 
7586 		memset(&c, 0, sizeof(c));
7587 		INIT_CMD(c, RESET, WRITE);
7588 		c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
7589 		c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
7590 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7591 	}
7592 
7593 	/*
7594 	 * Normally we won't complete the operation if the firmware RESET
7595 	 * command fails but if our caller insists we'll go ahead and put the
7596 	 * uP into RESET.  This can be useful if the firmware is hung or even
7597 	 * missing ...  We'll have to take the risk of putting the uP into
7598 	 * RESET without the cooperation of firmware in that case.
7599 	 *
7600 	 * We also force the firmware's HALT flag to be on in case we bypassed
7601 	 * the firmware RESET command above or we're dealing with old firmware
7602 	 * which doesn't have the HALT capability.  This will serve as a flag
7603 	 * for the incoming firmware to know that it's coming out of a HALT
7604 	 * rather than a RESET ... if it's new enough to understand that ...
7605 	 */
7606 	if (ret == 0 || force) {
7607 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
7608 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
7609 				 F_PCIE_FW_HALT);
7610 	}
7611 
7612 	/*
7613 	 * And we always return the result of the firmware RESET command
7614 	 * even when we force the uP into RESET ...
7615 	 */
7616 	return ret;
7617 }
7618 
7619 /**
7620  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
7621  *	@adap: the adapter
7622  *
7623  *	Restart firmware previously halted by t4_fw_halt().  On successful
7624  *	return the previous PF Master remains as the new PF Master and there
7625  *	is no need to issue a new HELLO command, etc.
7626  */
7627 int t4_fw_restart(struct adapter *adap, unsigned int mbox)
7628 {
7629 	int ms;
7630 
7631 	t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
7632 	for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
7633 		if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
7634 			return FW_SUCCESS;
7635 		msleep(100);
7636 		ms += 100;
7637 	}
7638 
7639 	return -ETIMEDOUT;
7640 }
7641 
7642 /**
7643  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
7644  *	@adap: the adapter
7645  *	@mbox: mailbox to use for the FW RESET command (if desired)
7646  *	@fw_data: the firmware image to write
7647  *	@size: image size
7648  *	@force: force upgrade even if firmware doesn't cooperate
7649  *
7650  *	Perform all of the steps necessary for upgrading an adapter's
7651  *	firmware image.  Normally this requires the cooperation of the
7652  *	existing firmware in order to halt all existing activities
7653  *	but if an invalid mailbox token is passed in we skip that step
7654  *	(though we'll still put the adapter microprocessor into RESET in
7655  *	that case).
7656  *
7657  *	On successful return the new firmware will have been loaded and
7658  *	the adapter will have been fully RESET losing all previous setup
7659  *	state.  On unsuccessful return the adapter may be completely hosed ...
7660  *	positive errno indicates that the adapter is ~probably~ intact, a
7661  *	negative errno indicates that things are looking bad ...
7662  */
7663 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
7664 		  const u8 *fw_data, unsigned int size, int force)
7665 {
7666 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7667 	unsigned int bootstrap =
7668 	    be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
7669 	int ret;
7670 
7671 	if (!t4_fw_matches_chip(adap, fw_hdr))
7672 		return -EINVAL;
7673 
7674 	if (!bootstrap) {
7675 		ret = t4_fw_halt(adap, mbox, force);
7676 		if (ret < 0 && !force)
7677 			return ret;
7678 	}
7679 
7680 	ret = t4_load_fw(adap, fw_data, size);
7681 	if (ret < 0 || bootstrap)
7682 		return ret;
7683 
7684 	return t4_fw_restart(adap, mbox);
7685 }
7686 
7687 /**
7688  *	t4_fw_initialize - ask FW to initialize the device
7689  *	@adap: the adapter
7690  *	@mbox: mailbox to use for the FW command
7691  *
7692  *	Issues a command to FW to partially initialize the device.  This
7693  *	performs initialization that generally doesn't depend on user input.
7694  */
7695 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7696 {
7697 	struct fw_initialize_cmd c;
7698 
7699 	memset(&c, 0, sizeof(c));
7700 	INIT_CMD(c, INITIALIZE, WRITE);
7701 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7702 }
7703 
7704 /**
7705  *	t4_query_params_rw - query FW or device parameters
7706  *	@adap: the adapter
7707  *	@mbox: mailbox to use for the FW command
7708  *	@pf: the PF
7709  *	@vf: the VF
7710  *	@nparams: the number of parameters
7711  *	@params: the parameter names
7712  *	@val: the parameter values
7713  *	@rw: Write and read flag
7714  *
7715  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
7716  *	queried at once.
7717  */
7718 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7719 		       unsigned int vf, unsigned int nparams, const u32 *params,
7720 		       u32 *val, int rw)
7721 {
7722 	int i, ret;
7723 	struct fw_params_cmd c;
7724 	__be32 *p = &c.param[0].mnem;
7725 
7726 	if (nparams > 7)
7727 		return -EINVAL;
7728 
7729 	memset(&c, 0, sizeof(c));
7730 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7731 				  F_FW_CMD_REQUEST | F_FW_CMD_READ |
7732 				  V_FW_PARAMS_CMD_PFN(pf) |
7733 				  V_FW_PARAMS_CMD_VFN(vf));
7734 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7735 
7736 	for (i = 0; i < nparams; i++) {
7737 		*p++ = cpu_to_be32(*params++);
7738 		if (rw)
7739 			*p = cpu_to_be32(*(val + i));
7740 		p++;
7741 	}
7742 
7743 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7744 	if (ret == 0)
7745 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7746 			*val++ = be32_to_cpu(*p);
7747 	return ret;
7748 }
7749 
7750 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7751 		    unsigned int vf, unsigned int nparams, const u32 *params,
7752 		    u32 *val)
7753 {
7754 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
7755 }
7756 
7757 /**
7758  *      t4_set_params_timeout - sets FW or device parameters
7759  *      @adap: the adapter
7760  *      @mbox: mailbox to use for the FW command
7761  *      @pf: the PF
7762  *      @vf: the VF
7763  *      @nparams: the number of parameters
7764  *      @params: the parameter names
7765  *      @val: the parameter values
7766  *      @timeout: the timeout time
7767  *
7768  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7769  *      specified at once.
7770  */
7771 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7772 			  unsigned int pf, unsigned int vf,
7773 			  unsigned int nparams, const u32 *params,
7774 			  const u32 *val, int timeout)
7775 {
7776 	struct fw_params_cmd c;
7777 	__be32 *p = &c.param[0].mnem;
7778 
7779 	if (nparams > 7)
7780 		return -EINVAL;
7781 
7782 	memset(&c, 0, sizeof(c));
7783 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7784 				  F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7785 				  V_FW_PARAMS_CMD_PFN(pf) |
7786 				  V_FW_PARAMS_CMD_VFN(vf));
7787 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7788 
7789 	while (nparams--) {
7790 		*p++ = cpu_to_be32(*params++);
7791 		*p++ = cpu_to_be32(*val++);
7792 	}
7793 
7794 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7795 }
7796 
7797 /**
7798  *	t4_set_params - sets FW or device parameters
7799  *	@adap: the adapter
7800  *	@mbox: mailbox to use for the FW command
7801  *	@pf: the PF
7802  *	@vf: the VF
7803  *	@nparams: the number of parameters
7804  *	@params: the parameter names
7805  *	@val: the parameter values
7806  *
7807  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7808  *	specified at once.
7809  */
7810 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7811 		  unsigned int vf, unsigned int nparams, const u32 *params,
7812 		  const u32 *val)
7813 {
7814 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7815 				     FW_CMD_MAX_TIMEOUT);
7816 }
7817 
7818 /**
7819  *	t4_cfg_pfvf - configure PF/VF resource limits
7820  *	@adap: the adapter
7821  *	@mbox: mailbox to use for the FW command
7822  *	@pf: the PF being configured
7823  *	@vf: the VF being configured
7824  *	@txq: the max number of egress queues
7825  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7826  *	@rxqi: the max number of interrupt-capable ingress queues
7827  *	@rxq: the max number of interruptless ingress queues
7828  *	@tc: the PCI traffic class
7829  *	@vi: the max number of virtual interfaces
7830  *	@cmask: the channel access rights mask for the PF/VF
7831  *	@pmask: the port access rights mask for the PF/VF
7832  *	@nexact: the maximum number of exact MPS filters
7833  *	@rcaps: read capabilities
7834  *	@wxcaps: write/execute capabilities
7835  *
7836  *	Configures resource limits and capabilities for a physical or virtual
7837  *	function.
7838  */
7839 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7840 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7841 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7842 		unsigned int vi, unsigned int cmask, unsigned int pmask,
7843 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7844 {
7845 	struct fw_pfvf_cmd c;
7846 
7847 	memset(&c, 0, sizeof(c));
7848 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
7849 				  F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
7850 				  V_FW_PFVF_CMD_VFN(vf));
7851 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7852 	c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
7853 				     V_FW_PFVF_CMD_NIQ(rxq));
7854 	c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) |
7855 				    V_FW_PFVF_CMD_PMASK(pmask) |
7856 				    V_FW_PFVF_CMD_NEQ(txq));
7857 	c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) |
7858 				      V_FW_PFVF_CMD_NVI(vi) |
7859 				      V_FW_PFVF_CMD_NEXACTF(nexact));
7860 	c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) |
7861 				     V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
7862 				     V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
7863 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7864 }
7865 
7866 /**
7867  *	t4_alloc_vi_func - allocate a virtual interface
7868  *	@adap: the adapter
7869  *	@mbox: mailbox to use for the FW command
7870  *	@port: physical port associated with the VI
7871  *	@pf: the PF owning the VI
7872  *	@vf: the VF owning the VI
7873  *	@nmac: number of MAC addresses needed (1 to 5)
7874  *	@mac: the MAC addresses of the VI
7875  *	@rss_size: size of RSS table slice associated with this VI
7876  *	@portfunc: which Port Application Function MAC Address is desired
7877  *	@idstype: Intrusion Detection Type
7878  *
7879  *	Allocates a virtual interface for the given physical port.  If @mac is
7880  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7881  *	If @rss_size is %NULL the VI is not assigned any RSS slice by FW.
7882  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7883  *	stored consecutively so the space needed is @nmac * 6 bytes.
7884  *	Returns a negative error number or the non-negative VI id.
7885  */
7886 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
7887 		     unsigned int port, unsigned int pf, unsigned int vf,
7888 		     unsigned int nmac, u8 *mac, u16 *rss_size,
7889 		     uint8_t *vfvld, uint16_t *vin,
7890 		     unsigned int portfunc, unsigned int idstype)
7891 {
7892 	int ret;
7893 	struct fw_vi_cmd c;
7894 
7895 	memset(&c, 0, sizeof(c));
7896 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
7897 				  F_FW_CMD_WRITE | F_FW_CMD_EXEC |
7898 				  V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
7899 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
7900 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
7901 				     V_FW_VI_CMD_FUNC(portfunc));
7902 	c.portid_pkd = V_FW_VI_CMD_PORTID(port);
7903 	c.nmac = nmac - 1;
7904 	if(!rss_size)
7905 		c.norss_rsssize = F_FW_VI_CMD_NORSS;
7906 
7907 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7908 	if (ret)
7909 		return ret;
7910 	ret = G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid));
7911 
7912 	if (mac) {
7913 		memcpy(mac, c.mac, sizeof(c.mac));
7914 		switch (nmac) {
7915 		case 5:
7916 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7917 		case 4:
7918 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7919 		case 3:
7920 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7921 		case 2:
7922 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7923 		}
7924 	}
7925 	if (rss_size)
7926 		*rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
7927 	if (vfvld) {
7928 		*vfvld = adap->params.viid_smt_extn_support ?
7929 		    G_FW_VI_CMD_VFVLD(be32_to_cpu(c.alloc_to_len16)) :
7930 		    G_FW_VIID_VIVLD(ret);
7931 	}
7932 	if (vin) {
7933 		*vin = adap->params.viid_smt_extn_support ?
7934 		    G_FW_VI_CMD_VIN(be32_to_cpu(c.alloc_to_len16)) :
7935 		    G_FW_VIID_VIN(ret);
7936 	}
7937 
7938 	return ret;
7939 }
7940 
7941 /**
7942  *      t4_alloc_vi - allocate an [Ethernet Function] virtual interface
7943  *      @adap: the adapter
7944  *      @mbox: mailbox to use for the FW command
7945  *      @port: physical port associated with the VI
7946  *      @pf: the PF owning the VI
7947  *      @vf: the VF owning the VI
7948  *      @nmac: number of MAC addresses needed (1 to 5)
7949  *      @mac: the MAC addresses of the VI
7950  *      @rss_size: size of RSS table slice associated with this VI
7951  *
7952  *	backwards compatible and convieniance routine to allocate a Virtual
7953  *	Interface with a Ethernet Port Application Function and Intrustion
7954  *	Detection System disabled.
7955  */
7956 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7957 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7958 		u16 *rss_size, uint8_t *vfvld, uint16_t *vin)
7959 {
7960 	return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
7961 				vfvld, vin, FW_VI_FUNC_ETH, 0);
7962 }
7963 
7964 /**
7965  * 	t4_free_vi - free a virtual interface
7966  * 	@adap: the adapter
7967  * 	@mbox: mailbox to use for the FW command
7968  * 	@pf: the PF owning the VI
7969  * 	@vf: the VF owning the VI
7970  * 	@viid: virtual interface identifiler
7971  *
7972  * 	Free a previously allocated virtual interface.
7973  */
7974 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7975 	       unsigned int vf, unsigned int viid)
7976 {
7977 	struct fw_vi_cmd c;
7978 
7979 	memset(&c, 0, sizeof(c));
7980 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
7981 				  F_FW_CMD_REQUEST |
7982 				  F_FW_CMD_EXEC |
7983 				  V_FW_VI_CMD_PFN(pf) |
7984 				  V_FW_VI_CMD_VFN(vf));
7985 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
7986 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
7987 
7988 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7989 }
7990 
7991 /**
7992  *	t4_set_rxmode - set Rx properties of a virtual interface
7993  *	@adap: the adapter
7994  *	@mbox: mailbox to use for the FW command
7995  *	@viid: the VI id
7996  *	@mtu: the new MTU or -1
7997  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7998  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7999  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
8000  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
8001  *	@sleep_ok: if true we may sleep while awaiting command completion
8002  *
8003  *	Sets Rx properties of a virtual interface.
8004  */
8005 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
8006 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
8007 		  bool sleep_ok)
8008 {
8009 	struct fw_vi_rxmode_cmd c;
8010 
8011 	/* convert to FW values */
8012 	if (mtu < 0)
8013 		mtu = M_FW_VI_RXMODE_CMD_MTU;
8014 	if (promisc < 0)
8015 		promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
8016 	if (all_multi < 0)
8017 		all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
8018 	if (bcast < 0)
8019 		bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
8020 	if (vlanex < 0)
8021 		vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
8022 
8023 	memset(&c, 0, sizeof(c));
8024 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
8025 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8026 				   V_FW_VI_RXMODE_CMD_VIID(viid));
8027 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
8028 	c.mtu_to_vlanexen =
8029 		cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
8030 			    V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
8031 			    V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
8032 			    V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
8033 			    V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
8034 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8035 }
8036 
8037 /**
8038  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
8039  *	@adap: the adapter
8040  *	@mbox: mailbox to use for the FW command
8041  *	@viid: the VI id
8042  *	@free: if true any existing filters for this VI id are first removed
8043  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
8044  *	@addr: the MAC address(es)
8045  *	@idx: where to store the index of each allocated filter
8046  *	@hash: pointer to hash address filter bitmap
8047  *	@sleep_ok: call is allowed to sleep
8048  *
8049  *	Allocates an exact-match filter for each of the supplied addresses and
8050  *	sets it to the corresponding address.  If @idx is not %NULL it should
8051  *	have at least @naddr entries, each of which will be set to the index of
8052  *	the filter allocated for the corresponding MAC address.  If a filter
8053  *	could not be allocated for an address its index is set to 0xffff.
8054  *	If @hash is not %NULL addresses that fail to allocate an exact filter
8055  *	are hashed and update the hash filter bitmap pointed at by @hash.
8056  *
8057  *	Returns a negative error number or the number of filters allocated.
8058  */
8059 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
8060 		      unsigned int viid, bool free, unsigned int naddr,
8061 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
8062 {
8063 	int offset, ret = 0;
8064 	struct fw_vi_mac_cmd c;
8065 	unsigned int nfilters = 0;
8066 	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
8067 	unsigned int rem = naddr;
8068 
8069 	if (naddr > max_naddr)
8070 		return -EINVAL;
8071 
8072 	for (offset = 0; offset < naddr ; /**/) {
8073 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8074 					 ? rem
8075 					 : ARRAY_SIZE(c.u.exact));
8076 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8077 						     u.exact[fw_naddr]), 16);
8078 		struct fw_vi_mac_exact *p;
8079 		int i;
8080 
8081 		memset(&c, 0, sizeof(c));
8082 		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8083 					   F_FW_CMD_REQUEST |
8084 					   F_FW_CMD_WRITE |
8085 					   V_FW_CMD_EXEC(free) |
8086 					   V_FW_VI_MAC_CMD_VIID(viid));
8087 		c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) |
8088 						  V_FW_CMD_LEN16(len16));
8089 
8090 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8091 			p->valid_to_idx =
8092 				cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8093 					    V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
8094 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8095 		}
8096 
8097 		/*
8098 		 * It's okay if we run out of space in our MAC address arena.
8099 		 * Some of the addresses we submit may get stored so we need
8100 		 * to run through the reply to see what the results were ...
8101 		 */
8102 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8103 		if (ret && ret != -FW_ENOMEM)
8104 			break;
8105 
8106 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8107 			u16 index = G_FW_VI_MAC_CMD_IDX(
8108 						be16_to_cpu(p->valid_to_idx));
8109 
8110 			if (idx)
8111 				idx[offset+i] = (index >=  max_naddr
8112 						 ? 0xffff
8113 						 : index);
8114 			if (index < max_naddr)
8115 				nfilters++;
8116 			else if (hash)
8117 				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
8118 		}
8119 
8120 		free = false;
8121 		offset += fw_naddr;
8122 		rem -= fw_naddr;
8123 	}
8124 
8125 	if (ret == 0 || ret == -FW_ENOMEM)
8126 		ret = nfilters;
8127 	return ret;
8128 }
8129 
8130 /**
8131  *	t4_change_mac - modifies the exact-match filter for a MAC address
8132  *	@adap: the adapter
8133  *	@mbox: mailbox to use for the FW command
8134  *	@viid: the VI id
8135  *	@idx: index of existing filter for old value of MAC address, or -1
8136  *	@addr: the new MAC address value
8137  *	@persist: whether a new MAC allocation should be persistent
8138  *	@smt_idx: add MAC to SMT and return its index, or NULL
8139  *
8140  *	Modifies an exact-match filter and sets it to the new MAC address if
8141  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
8142  *	latter case the address is added persistently if @persist is %true.
8143  *
8144  *	Note that in general it is not possible to modify the value of a given
8145  *	filter so the generic way to modify an address filter is to free the one
8146  *	being used by the old address value and allocate a new filter for the
8147  *	new address value.
8148  *
8149  *	Returns a negative error number or the index of the filter with the new
8150  *	MAC value.  Note that this index may differ from @idx.
8151  */
8152 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
8153 		  int idx, const u8 *addr, bool persist, uint16_t *smt_idx)
8154 {
8155 	int ret, mode;
8156 	struct fw_vi_mac_cmd c;
8157 	struct fw_vi_mac_exact *p = c.u.exact;
8158 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
8159 
8160 	if (idx < 0)		/* new allocation */
8161 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
8162 	mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
8163 
8164 	memset(&c, 0, sizeof(c));
8165 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8166 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8167 				   V_FW_VI_MAC_CMD_VIID(viid));
8168 	c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
8169 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8170 				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
8171 				      V_FW_VI_MAC_CMD_IDX(idx));
8172 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8173 
8174 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8175 	if (ret == 0) {
8176 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
8177 		if (ret >= max_mac_addr)
8178 			ret = -ENOMEM;
8179 		if (smt_idx) {
8180 			if (adap->params.viid_smt_extn_support)
8181 				*smt_idx = G_FW_VI_MAC_CMD_SMTID(be32_to_cpu(c.op_to_viid));
8182 			else {
8183 				if (chip_id(adap) <= CHELSIO_T5)
8184 					*smt_idx = (viid & M_FW_VIID_VIN) << 1;
8185 				else
8186 					*smt_idx = viid & M_FW_VIID_VIN;
8187 			}
8188 		}
8189 	}
8190 	return ret;
8191 }
8192 
8193 /**
8194  *	t4_set_addr_hash - program the MAC inexact-match hash filter
8195  *	@adap: the adapter
8196  *	@mbox: mailbox to use for the FW command
8197  *	@viid: the VI id
8198  *	@ucast: whether the hash filter should also match unicast addresses
8199  *	@vec: the value to be written to the hash filter
8200  *	@sleep_ok: call is allowed to sleep
8201  *
8202  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
8203  */
8204 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
8205 		     bool ucast, u64 vec, bool sleep_ok)
8206 {
8207 	struct fw_vi_mac_cmd c;
8208 	u32 val;
8209 
8210 	memset(&c, 0, sizeof(c));
8211 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8212 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8213 				   V_FW_VI_ENABLE_CMD_VIID(viid));
8214 	val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) |
8215 	      V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1);
8216 	c.freemacs_to_len16 = cpu_to_be32(val);
8217 	c.u.hash.hashvec = cpu_to_be64(vec);
8218 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8219 }
8220 
8221 /**
8222  *      t4_enable_vi_params - enable/disable a virtual interface
8223  *      @adap: the adapter
8224  *      @mbox: mailbox to use for the FW command
8225  *      @viid: the VI id
8226  *      @rx_en: 1=enable Rx, 0=disable Rx
8227  *      @tx_en: 1=enable Tx, 0=disable Tx
8228  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8229  *
8230  *      Enables/disables a virtual interface.  Note that setting DCB Enable
8231  *      only makes sense when enabling a Virtual Interface ...
8232  */
8233 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
8234 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
8235 {
8236 	struct fw_vi_enable_cmd c;
8237 
8238 	memset(&c, 0, sizeof(c));
8239 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
8240 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8241 				   V_FW_VI_ENABLE_CMD_VIID(viid));
8242 	c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
8243 				     V_FW_VI_ENABLE_CMD_EEN(tx_en) |
8244 				     V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
8245 				     FW_LEN16(c));
8246 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
8247 }
8248 
8249 /**
8250  *	t4_enable_vi - enable/disable a virtual interface
8251  *	@adap: the adapter
8252  *	@mbox: mailbox to use for the FW command
8253  *	@viid: the VI id
8254  *	@rx_en: 1=enable Rx, 0=disable Rx
8255  *	@tx_en: 1=enable Tx, 0=disable Tx
8256  *
8257  *	Enables/disables a virtual interface.  Note that setting DCB Enable
8258  *	only makes sense when enabling a Virtual Interface ...
8259  */
8260 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8261 		 bool rx_en, bool tx_en)
8262 {
8263 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8264 }
8265 
8266 /**
8267  *	t4_identify_port - identify a VI's port by blinking its LED
8268  *	@adap: the adapter
8269  *	@mbox: mailbox to use for the FW command
8270  *	@viid: the VI id
8271  *	@nblinks: how many times to blink LED at 2.5 Hz
8272  *
8273  *	Identifies a VI's port by blinking its LED.
8274  */
8275 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8276 		     unsigned int nblinks)
8277 {
8278 	struct fw_vi_enable_cmd c;
8279 
8280 	memset(&c, 0, sizeof(c));
8281 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
8282 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8283 				   V_FW_VI_ENABLE_CMD_VIID(viid));
8284 	c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
8285 	c.blinkdur = cpu_to_be16(nblinks);
8286 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8287 }
8288 
8289 /**
8290  *	t4_iq_stop - stop an ingress queue and its FLs
8291  *	@adap: the adapter
8292  *	@mbox: mailbox to use for the FW command
8293  *	@pf: the PF owning the queues
8294  *	@vf: the VF owning the queues
8295  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8296  *	@iqid: ingress queue id
8297  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8298  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8299  *
8300  *	Stops an ingress queue and its associated FLs, if any.  This causes
8301  *	any current or future data/messages destined for these queues to be
8302  *	tossed.
8303  */
8304 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8305 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8306 	       unsigned int fl0id, unsigned int fl1id)
8307 {
8308 	struct fw_iq_cmd c;
8309 
8310 	memset(&c, 0, sizeof(c));
8311 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
8312 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
8313 				  V_FW_IQ_CMD_VFN(vf));
8314 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c));
8315 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
8316 	c.iqid = cpu_to_be16(iqid);
8317 	c.fl0id = cpu_to_be16(fl0id);
8318 	c.fl1id = cpu_to_be16(fl1id);
8319 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8320 }
8321 
8322 /**
8323  *	t4_iq_free - free an ingress queue and its FLs
8324  *	@adap: the adapter
8325  *	@mbox: mailbox to use for the FW command
8326  *	@pf: the PF owning the queues
8327  *	@vf: the VF owning the queues
8328  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8329  *	@iqid: ingress queue id
8330  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8331  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8332  *
8333  *	Frees an ingress queue and its associated FLs, if any.
8334  */
8335 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8336 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8337 	       unsigned int fl0id, unsigned int fl1id)
8338 {
8339 	struct fw_iq_cmd c;
8340 
8341 	memset(&c, 0, sizeof(c));
8342 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
8343 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
8344 				  V_FW_IQ_CMD_VFN(vf));
8345 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
8346 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
8347 	c.iqid = cpu_to_be16(iqid);
8348 	c.fl0id = cpu_to_be16(fl0id);
8349 	c.fl1id = cpu_to_be16(fl1id);
8350 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8351 }
8352 
8353 /**
8354  *	t4_eth_eq_free - free an Ethernet egress queue
8355  *	@adap: the adapter
8356  *	@mbox: mailbox to use for the FW command
8357  *	@pf: the PF owning the queue
8358  *	@vf: the VF owning the queue
8359  *	@eqid: egress queue id
8360  *
8361  *	Frees an Ethernet egress queue.
8362  */
8363 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8364 		   unsigned int vf, unsigned int eqid)
8365 {
8366 	struct fw_eq_eth_cmd c;
8367 
8368 	memset(&c, 0, sizeof(c));
8369 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
8370 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8371 				  V_FW_EQ_ETH_CMD_PFN(pf) |
8372 				  V_FW_EQ_ETH_CMD_VFN(vf));
8373 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
8374 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
8375 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8376 }
8377 
8378 /**
8379  *	t4_ctrl_eq_free - free a control egress queue
8380  *	@adap: the adapter
8381  *	@mbox: mailbox to use for the FW command
8382  *	@pf: the PF owning the queue
8383  *	@vf: the VF owning the queue
8384  *	@eqid: egress queue id
8385  *
8386  *	Frees a control egress queue.
8387  */
8388 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8389 		    unsigned int vf, unsigned int eqid)
8390 {
8391 	struct fw_eq_ctrl_cmd c;
8392 
8393 	memset(&c, 0, sizeof(c));
8394 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
8395 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8396 				  V_FW_EQ_CTRL_CMD_PFN(pf) |
8397 				  V_FW_EQ_CTRL_CMD_VFN(vf));
8398 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
8399 	c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
8400 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8401 }
8402 
8403 /**
8404  *	t4_ofld_eq_free - free an offload egress queue
8405  *	@adap: the adapter
8406  *	@mbox: mailbox to use for the FW command
8407  *	@pf: the PF owning the queue
8408  *	@vf: the VF owning the queue
8409  *	@eqid: egress queue id
8410  *
8411  *	Frees a control egress queue.
8412  */
8413 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8414 		    unsigned int vf, unsigned int eqid)
8415 {
8416 	struct fw_eq_ofld_cmd c;
8417 
8418 	memset(&c, 0, sizeof(c));
8419 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) |
8420 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8421 				  V_FW_EQ_OFLD_CMD_PFN(pf) |
8422 				  V_FW_EQ_OFLD_CMD_VFN(vf));
8423 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
8424 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid));
8425 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8426 }
8427 
8428 /**
8429  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
8430  *	@link_down_rc: Link Down Reason Code
8431  *
8432  *	Returns a string representation of the Link Down Reason Code.
8433  */
8434 const char *t4_link_down_rc_str(unsigned char link_down_rc)
8435 {
8436 	static const char *reason[] = {
8437 		"Link Down",
8438 		"Remote Fault",
8439 		"Auto-negotiation Failure",
8440 		"Reserved3",
8441 		"Insufficient Airflow",
8442 		"Unable To Determine Reason",
8443 		"No RX Signal Detected",
8444 		"Reserved7",
8445 	};
8446 
8447 	if (link_down_rc >= ARRAY_SIZE(reason))
8448 		return "Bad Reason Code";
8449 
8450 	return reason[link_down_rc];
8451 }
8452 
8453 /*
8454  * Return the highest speed set in the port capabilities, in Mb/s.
8455  */
8456 unsigned int fwcap_to_speed(uint32_t caps)
8457 {
8458 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8459 		do { \
8460 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8461 				return __speed; \
8462 		} while (0)
8463 
8464 	TEST_SPEED_RETURN(400G, 400000);
8465 	TEST_SPEED_RETURN(200G, 200000);
8466 	TEST_SPEED_RETURN(100G, 100000);
8467 	TEST_SPEED_RETURN(50G,   50000);
8468 	TEST_SPEED_RETURN(40G,   40000);
8469 	TEST_SPEED_RETURN(25G,   25000);
8470 	TEST_SPEED_RETURN(10G,   10000);
8471 	TEST_SPEED_RETURN(1G,     1000);
8472 	TEST_SPEED_RETURN(100M,    100);
8473 
8474 	#undef TEST_SPEED_RETURN
8475 
8476 	return 0;
8477 }
8478 
8479 /*
8480  * Return the port capabilities bit for the given speed, which is in Mb/s.
8481  */
8482 uint32_t speed_to_fwcap(unsigned int speed)
8483 {
8484 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8485 		do { \
8486 			if (speed == __speed) \
8487 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8488 		} while (0)
8489 
8490 	TEST_SPEED_RETURN(400G, 400000);
8491 	TEST_SPEED_RETURN(200G, 200000);
8492 	TEST_SPEED_RETURN(100G, 100000);
8493 	TEST_SPEED_RETURN(50G,   50000);
8494 	TEST_SPEED_RETURN(40G,   40000);
8495 	TEST_SPEED_RETURN(25G,   25000);
8496 	TEST_SPEED_RETURN(10G,   10000);
8497 	TEST_SPEED_RETURN(1G,     1000);
8498 	TEST_SPEED_RETURN(100M,    100);
8499 
8500 	#undef TEST_SPEED_RETURN
8501 
8502 	return 0;
8503 }
8504 
8505 /*
8506  * Return the port capabilities bit for the highest speed in the capabilities.
8507  */
8508 uint32_t fwcap_top_speed(uint32_t caps)
8509 {
8510 	#define TEST_SPEED_RETURN(__caps_speed) \
8511 		do { \
8512 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8513 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8514 		} while (0)
8515 
8516 	TEST_SPEED_RETURN(400G);
8517 	TEST_SPEED_RETURN(200G);
8518 	TEST_SPEED_RETURN(100G);
8519 	TEST_SPEED_RETURN(50G);
8520 	TEST_SPEED_RETURN(40G);
8521 	TEST_SPEED_RETURN(25G);
8522 	TEST_SPEED_RETURN(10G);
8523 	TEST_SPEED_RETURN(1G);
8524 	TEST_SPEED_RETURN(100M);
8525 
8526 	#undef TEST_SPEED_RETURN
8527 
8528 	return 0;
8529 }
8530 
8531 /**
8532  *	lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8533  *	@lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8534  *
8535  *	Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8536  *	32-bit Port Capabilities value.
8537  */
8538 static uint32_t lstatus_to_fwcap(u32 lstatus)
8539 {
8540 	uint32_t linkattr = 0;
8541 
8542 	/*
8543 	 * Unfortunately the format of the Link Status in the old
8544 	 * 16-bit Port Information message isn't the same as the
8545 	 * 16-bit Port Capabilities bitfield used everywhere else ...
8546 	 */
8547 	if (lstatus & F_FW_PORT_CMD_RXPAUSE)
8548 		linkattr |= FW_PORT_CAP32_FC_RX;
8549 	if (lstatus & F_FW_PORT_CMD_TXPAUSE)
8550 		linkattr |= FW_PORT_CAP32_FC_TX;
8551 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
8552 		linkattr |= FW_PORT_CAP32_SPEED_100M;
8553 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
8554 		linkattr |= FW_PORT_CAP32_SPEED_1G;
8555 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
8556 		linkattr |= FW_PORT_CAP32_SPEED_10G;
8557 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G))
8558 		linkattr |= FW_PORT_CAP32_SPEED_25G;
8559 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
8560 		linkattr |= FW_PORT_CAP32_SPEED_40G;
8561 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G))
8562 		linkattr |= FW_PORT_CAP32_SPEED_100G;
8563 
8564 	return linkattr;
8565 }
8566 
8567 /*
8568  * Updates all fields owned by the common code in port_info and link_config
8569  * based on information provided by the firmware.  Does not touch any
8570  * requested_* field.
8571  */
8572 static void handle_port_info(struct port_info *pi, const struct fw_port_cmd *p,
8573     enum fw_port_action action, bool *mod_changed, bool *link_changed)
8574 {
8575 	struct link_config old_lc, *lc = &pi->link_cfg;
8576 	unsigned char fc;
8577 	u32 stat, linkattr;
8578 	int old_ptype, old_mtype;
8579 
8580 	old_ptype = pi->port_type;
8581 	old_mtype = pi->mod_type;
8582 	old_lc = *lc;
8583 	if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8584 		stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
8585 
8586 		pi->port_type = G_FW_PORT_CMD_PTYPE(stat);
8587 		pi->mod_type = G_FW_PORT_CMD_MODTYPE(stat);
8588 		pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP ?
8589 		    G_FW_PORT_CMD_MDIOADDR(stat) : -1;
8590 
8591 		lc->pcaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.pcap));
8592 		lc->acaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.acap));
8593 		lc->lpacaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.lpacap));
8594 		lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
8595 		lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC(stat);
8596 
8597 		linkattr = lstatus_to_fwcap(stat);
8598 	} else if (action == FW_PORT_ACTION_GET_PORT_INFO32) {
8599 		stat = be32_to_cpu(p->u.info32.lstatus32_to_cbllen32);
8600 
8601 		pi->port_type = G_FW_PORT_CMD_PORTTYPE32(stat);
8602 		pi->mod_type = G_FW_PORT_CMD_MODTYPE32(stat);
8603 		pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP32 ?
8604 		    G_FW_PORT_CMD_MDIOADDR32(stat) : -1;
8605 
8606 		lc->pcaps = be32_to_cpu(p->u.info32.pcaps32);
8607 		lc->acaps = be32_to_cpu(p->u.info32.acaps32);
8608 		lc->lpacaps = be32_to_cpu(p->u.info32.lpacaps32);
8609 		lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS32) != 0;
8610 		lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC32(stat);
8611 
8612 		linkattr = be32_to_cpu(p->u.info32.linkattr32);
8613 	} else {
8614 		CH_ERR(pi->adapter, "bad port_info action 0x%x\n", action);
8615 		return;
8616 	}
8617 
8618 	lc->speed = fwcap_to_speed(linkattr);
8619 	lc->fec = fwcap_to_fec(linkattr, true);
8620 
8621 	fc = 0;
8622 	if (linkattr & FW_PORT_CAP32_FC_RX)
8623 		fc |= PAUSE_RX;
8624 	if (linkattr & FW_PORT_CAP32_FC_TX)
8625 		fc |= PAUSE_TX;
8626 	lc->fc = fc;
8627 
8628 	if (mod_changed != NULL)
8629 		*mod_changed = false;
8630 	if (link_changed != NULL)
8631 		*link_changed = false;
8632 	if (old_ptype != pi->port_type || old_mtype != pi->mod_type ||
8633 	    old_lc.pcaps != lc->pcaps) {
8634 		if (pi->mod_type != FW_PORT_MOD_TYPE_NONE)
8635 			lc->fec_hint = fwcap_to_fec(lc->acaps, true);
8636 		if (mod_changed != NULL)
8637 			*mod_changed = true;
8638 	}
8639 	if (old_lc.link_ok != lc->link_ok || old_lc.speed != lc->speed ||
8640 	    old_lc.fec != lc->fec || old_lc.fc != lc->fc) {
8641 		if (link_changed != NULL)
8642 			*link_changed = true;
8643 	}
8644 }
8645 
8646 /**
8647  *	t4_update_port_info - retrieve and update port information if changed
8648  *	@pi: the port_info
8649  *
8650  *	We issue a Get Port Information Command to the Firmware and, if
8651  *	successful, we check to see if anything is different from what we
8652  *	last recorded and update things accordingly.
8653  */
8654  int t4_update_port_info(struct port_info *pi)
8655  {
8656 	struct adapter *sc = pi->adapter;
8657 	struct fw_port_cmd cmd;
8658 	enum fw_port_action action;
8659 	int ret;
8660 
8661 	memset(&cmd, 0, sizeof(cmd));
8662 	cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
8663 	    F_FW_CMD_REQUEST | F_FW_CMD_READ |
8664 	    V_FW_PORT_CMD_PORTID(pi->tx_chan));
8665 	action = sc->params.port_caps32 ? FW_PORT_ACTION_GET_PORT_INFO32 :
8666 	    FW_PORT_ACTION_GET_PORT_INFO;
8667 	cmd.action_to_len16 = cpu_to_be32(V_FW_PORT_CMD_ACTION(action) |
8668 	    FW_LEN16(cmd));
8669 	ret = t4_wr_mbox_ns(sc, sc->mbox, &cmd, sizeof(cmd), &cmd);
8670 	if (ret)
8671 		return ret;
8672 
8673 	handle_port_info(pi, &cmd, action, NULL, NULL);
8674 	return 0;
8675 }
8676 
8677 /**
8678  *	t4_handle_fw_rpl - process a FW reply message
8679  *	@adap: the adapter
8680  *	@rpl: start of the FW message
8681  *
8682  *	Processes a FW message, such as link state change messages.
8683  */
8684 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8685 {
8686 	u8 opcode = *(const u8 *)rpl;
8687 	const struct fw_port_cmd *p = (const void *)rpl;
8688 	enum fw_port_action action =
8689 	    G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
8690 	bool mod_changed, link_changed;
8691 
8692 	if (opcode == FW_PORT_CMD &&
8693 	    (action == FW_PORT_ACTION_GET_PORT_INFO ||
8694 	    action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8695 		/* link/module state change message */
8696 		int i;
8697 		int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
8698 		struct port_info *pi = NULL;
8699 		struct link_config *lc;
8700 
8701 		for_each_port(adap, i) {
8702 			pi = adap2pinfo(adap, i);
8703 			if (pi->tx_chan == chan)
8704 				break;
8705 		}
8706 
8707 		lc = &pi->link_cfg;
8708 		PORT_LOCK(pi);
8709 		handle_port_info(pi, p, action, &mod_changed, &link_changed);
8710 		PORT_UNLOCK(pi);
8711 		if (mod_changed)
8712 			t4_os_portmod_changed(pi);
8713 		if (link_changed) {
8714 			PORT_LOCK(pi);
8715 			t4_os_link_changed(pi);
8716 			PORT_UNLOCK(pi);
8717 		}
8718 	} else {
8719 		CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode);
8720 		return -EINVAL;
8721 	}
8722 	return 0;
8723 }
8724 
8725 /**
8726  *	get_pci_mode - determine a card's PCI mode
8727  *	@adapter: the adapter
8728  *	@p: where to store the PCI settings
8729  *
8730  *	Determines a card's PCI mode and associated parameters, such as speed
8731  *	and width.
8732  */
8733 static void get_pci_mode(struct adapter *adapter,
8734 				   struct pci_params *p)
8735 {
8736 	u16 val;
8737 	u32 pcie_cap;
8738 
8739 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
8740 	if (pcie_cap) {
8741 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
8742 		p->speed = val & PCI_EXP_LNKSTA_CLS;
8743 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
8744 	}
8745 }
8746 
8747 struct flash_desc {
8748 	u32 vendor_and_model_id;
8749 	u32 size_mb;
8750 };
8751 
8752 int t4_get_flash_params(struct adapter *adapter)
8753 {
8754 	/*
8755 	 * Table for non-standard supported Flash parts.  Note, all Flash
8756 	 * parts must have 64KB sectors.
8757 	 */
8758 	static struct flash_desc supported_flash[] = {
8759 		{ 0x00150201, 4 << 20 },	/* Spansion 4MB S25FL032P */
8760 	};
8761 
8762 	int ret;
8763 	u32 flashid = 0;
8764 	unsigned int part, manufacturer;
8765 	unsigned int density, size = 0;
8766 
8767 
8768 	/*
8769 	 * Issue a Read ID Command to the Flash part.  We decode supported
8770 	 * Flash parts and their sizes from this.  There's a newer Query
8771 	 * Command which can retrieve detailed geometry information but many
8772 	 * Flash parts don't support it.
8773 	 */
8774 	ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
8775 	if (!ret)
8776 		ret = sf1_read(adapter, 3, 0, 1, &flashid);
8777 	t4_write_reg(adapter, A_SF_OP, 0);	/* unlock SF */
8778 	if (ret < 0)
8779 		return ret;
8780 
8781 	/*
8782 	 * Check to see if it's one of our non-standard supported Flash parts.
8783 	 */
8784 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
8785 		if (supported_flash[part].vendor_and_model_id == flashid) {
8786 			adapter->params.sf_size =
8787 				supported_flash[part].size_mb;
8788 			adapter->params.sf_nsec =
8789 				adapter->params.sf_size / SF_SEC_SIZE;
8790 			goto found;
8791 		}
8792 
8793 	/*
8794 	 * Decode Flash part size.  The code below looks repetative with
8795 	 * common encodings, but that's not guaranteed in the JEDEC
8796 	 * specification for the Read JADEC ID command.  The only thing that
8797 	 * we're guaranteed by the JADEC specification is where the
8798 	 * Manufacturer ID is in the returned result.  After that each
8799 	 * Manufacturer ~could~ encode things completely differently.
8800 	 * Note, all Flash parts must have 64KB sectors.
8801 	 */
8802 	manufacturer = flashid & 0xff;
8803 	switch (manufacturer) {
8804 	case 0x20: /* Micron/Numonix */
8805 		/*
8806 		 * This Density -> Size decoding table is taken from Micron
8807 		 * Data Sheets.
8808 		 */
8809 		density = (flashid >> 16) & 0xff;
8810 		switch (density) {
8811 		case 0x14: size = 1 << 20; break; /*   1MB */
8812 		case 0x15: size = 1 << 21; break; /*   2MB */
8813 		case 0x16: size = 1 << 22; break; /*   4MB */
8814 		case 0x17: size = 1 << 23; break; /*   8MB */
8815 		case 0x18: size = 1 << 24; break; /*  16MB */
8816 		case 0x19: size = 1 << 25; break; /*  32MB */
8817 		case 0x20: size = 1 << 26; break; /*  64MB */
8818 		case 0x21: size = 1 << 27; break; /* 128MB */
8819 		case 0x22: size = 1 << 28; break; /* 256MB */
8820 		}
8821 		break;
8822 
8823 	case 0x9d: /* ISSI -- Integrated Silicon Solution, Inc. */
8824 		/*
8825 		 * This Density -> Size decoding table is taken from ISSI
8826 		 * Data Sheets.
8827 		 */
8828 		density = (flashid >> 16) & 0xff;
8829 		switch (density) {
8830 		case 0x16: size = 1 << 25; break; /*  32MB */
8831 		case 0x17: size = 1 << 26; break; /*  64MB */
8832 		}
8833 		break;
8834 
8835 	case 0xc2: /* Macronix */
8836 		/*
8837 		 * This Density -> Size decoding table is taken from Macronix
8838 		 * Data Sheets.
8839 		 */
8840 		density = (flashid >> 16) & 0xff;
8841 		switch (density) {
8842 		case 0x17: size = 1 << 23; break; /*   8MB */
8843 		case 0x18: size = 1 << 24; break; /*  16MB */
8844 		}
8845 		break;
8846 
8847 	case 0xef: /* Winbond */
8848 		/*
8849 		 * This Density -> Size decoding table is taken from Winbond
8850 		 * Data Sheets.
8851 		 */
8852 		density = (flashid >> 16) & 0xff;
8853 		switch (density) {
8854 		case 0x17: size = 1 << 23; break; /*   8MB */
8855 		case 0x18: size = 1 << 24; break; /*  16MB */
8856 		}
8857 		break;
8858 	}
8859 
8860 	/* If we didn't recognize the FLASH part, that's no real issue: the
8861 	 * Hardware/Software contract says that Hardware will _*ALWAYS*_
8862 	 * use a FLASH part which is at least 4MB in size and has 64KB
8863 	 * sectors.  The unrecognized FLASH part is likely to be much larger
8864 	 * than 4MB, but that's all we really need.
8865 	 */
8866 	if (size == 0) {
8867 		CH_WARN(adapter, "Unknown Flash Part, ID = %#x, assuming 4MB\n", flashid);
8868 		size = 1 << 22;
8869 	}
8870 
8871 	/*
8872 	 * Store decoded Flash size and fall through into vetting code.
8873 	 */
8874 	adapter->params.sf_size = size;
8875 	adapter->params.sf_nsec = size / SF_SEC_SIZE;
8876 
8877  found:
8878 	/*
8879 	 * We should ~probably~ reject adapters with FLASHes which are too
8880 	 * small but we have some legacy FPGAs with small FLASHes that we'd
8881 	 * still like to use.  So instead we emit a scary message ...
8882 	 */
8883 	if (adapter->params.sf_size < FLASH_MIN_SIZE)
8884 		CH_WARN(adapter, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
8885 			flashid, adapter->params.sf_size, FLASH_MIN_SIZE);
8886 
8887 	return 0;
8888 }
8889 
8890 static void set_pcie_completion_timeout(struct adapter *adapter,
8891 						  u8 range)
8892 {
8893 	u16 val;
8894 	u32 pcie_cap;
8895 
8896 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
8897 	if (pcie_cap) {
8898 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
8899 		val &= 0xfff0;
8900 		val |= range ;
8901 		t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
8902 	}
8903 }
8904 
8905 const struct chip_params *t4_get_chip_params(int chipid)
8906 {
8907 	static const struct chip_params chip_params[] = {
8908 		{
8909 			/* T4 */
8910 			.nchan = NCHAN,
8911 			.pm_stats_cnt = PM_NSTATS,
8912 			.cng_ch_bits_log = 2,
8913 			.nsched_cls = 15,
8914 			.cim_num_obq = CIM_NUM_OBQ,
8915 			.mps_rplc_size = 128,
8916 			.vfcount = 128,
8917 			.sge_fl_db = F_DBPRIO,
8918 			.mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES,
8919 		},
8920 		{
8921 			/* T5 */
8922 			.nchan = NCHAN,
8923 			.pm_stats_cnt = PM_NSTATS,
8924 			.cng_ch_bits_log = 2,
8925 			.nsched_cls = 16,
8926 			.cim_num_obq = CIM_NUM_OBQ_T5,
8927 			.mps_rplc_size = 128,
8928 			.vfcount = 128,
8929 			.sge_fl_db = F_DBPRIO | F_DBTYPE,
8930 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
8931 		},
8932 		{
8933 			/* T6 */
8934 			.nchan = T6_NCHAN,
8935 			.pm_stats_cnt = T6_PM_NSTATS,
8936 			.cng_ch_bits_log = 3,
8937 			.nsched_cls = 16,
8938 			.cim_num_obq = CIM_NUM_OBQ_T5,
8939 			.mps_rplc_size = 256,
8940 			.vfcount = 256,
8941 			.sge_fl_db = 0,
8942 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
8943 		},
8944 	};
8945 
8946 	chipid -= CHELSIO_T4;
8947 	if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params))
8948 		return NULL;
8949 
8950 	return &chip_params[chipid];
8951 }
8952 
8953 /**
8954  *	t4_prep_adapter - prepare SW and HW for operation
8955  *	@adapter: the adapter
8956  *	@buf: temporary space of at least VPD_LEN size provided by the caller.
8957  *
8958  *	Initialize adapter SW state for the various HW modules, set initial
8959  *	values for some adapter tunables, take PHYs out of reset, and
8960  *	initialize the MDIO interface.
8961  */
8962 int t4_prep_adapter(struct adapter *adapter, u32 *buf)
8963 {
8964 	int ret;
8965 	uint16_t device_id;
8966 	uint32_t pl_rev;
8967 
8968 	get_pci_mode(adapter, &adapter->params.pci);
8969 
8970 	pl_rev = t4_read_reg(adapter, A_PL_REV);
8971 	adapter->params.chipid = G_CHIPID(pl_rev);
8972 	adapter->params.rev = G_REV(pl_rev);
8973 	if (adapter->params.chipid == 0) {
8974 		/* T4 did not have chipid in PL_REV (T5 onwards do) */
8975 		adapter->params.chipid = CHELSIO_T4;
8976 
8977 		/* T4A1 chip is not supported */
8978 		if (adapter->params.rev == 1) {
8979 			CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
8980 			return -EINVAL;
8981 		}
8982 	}
8983 
8984 	adapter->chip_params = t4_get_chip_params(chip_id(adapter));
8985 	if (adapter->chip_params == NULL)
8986 		return -EINVAL;
8987 
8988 	adapter->params.pci.vpd_cap_addr =
8989 	    t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
8990 
8991 	ret = t4_get_flash_params(adapter);
8992 	if (ret < 0)
8993 		return ret;
8994 
8995 	/* Cards with real ASICs have the chipid in the PCIe device id */
8996 	t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
8997 	if (device_id >> 12 == chip_id(adapter))
8998 		adapter->params.cim_la_size = CIMLA_SIZE;
8999 	else {
9000 		/* FPGA */
9001 		adapter->params.fpga = 1;
9002 		adapter->params.cim_la_size = 2 * CIMLA_SIZE;
9003 	}
9004 
9005 	ret = get_vpd_params(adapter, &adapter->params.vpd, device_id, buf);
9006 	if (ret < 0)
9007 		return ret;
9008 
9009 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
9010 
9011 	/*
9012 	 * Default port and clock for debugging in case we can't reach FW.
9013 	 */
9014 	adapter->params.nports = 1;
9015 	adapter->params.portvec = 1;
9016 	adapter->params.vpd.cclk = 50000;
9017 
9018 	/* Set pci completion timeout value to 4 seconds. */
9019 	set_pcie_completion_timeout(adapter, 0xd);
9020 	return 0;
9021 }
9022 
9023 /**
9024  *	t4_shutdown_adapter - shut down adapter, host & wire
9025  *	@adapter: the adapter
9026  *
9027  *	Perform an emergency shutdown of the adapter and stop it from
9028  *	continuing any further communication on the ports or DMA to the
9029  *	host.  This is typically used when the adapter and/or firmware
9030  *	have crashed and we want to prevent any further accidental
9031  *	communication with the rest of the world.  This will also force
9032  *	the port Link Status to go down -- if register writes work --
9033  *	which should help our peers figure out that we're down.
9034  */
9035 int t4_shutdown_adapter(struct adapter *adapter)
9036 {
9037 	int port;
9038 
9039 	t4_intr_disable(adapter);
9040 	t4_write_reg(adapter, A_DBG_GPIO_EN, 0);
9041 	for_each_port(adapter, port) {
9042 		u32 a_port_cfg = is_t4(adapter) ?
9043 				 PORT_REG(port, A_XGMAC_PORT_CFG) :
9044 				 T5_PORT_REG(port, A_MAC_PORT_CFG);
9045 
9046 		t4_write_reg(adapter, a_port_cfg,
9047 			     t4_read_reg(adapter, a_port_cfg)
9048 			     & ~V_SIGNAL_DET(1));
9049 	}
9050 	t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0);
9051 
9052 	return 0;
9053 }
9054 
9055 /**
9056  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
9057  *	@adapter: the adapter
9058  *	@qid: the Queue ID
9059  *	@qtype: the Ingress or Egress type for @qid
9060  *	@user: true if this request is for a user mode queue
9061  *	@pbar2_qoffset: BAR2 Queue Offset
9062  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
9063  *
9064  *	Returns the BAR2 SGE Queue Registers information associated with the
9065  *	indicated Absolute Queue ID.  These are passed back in return value
9066  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
9067  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
9068  *
9069  *	This may return an error which indicates that BAR2 SGE Queue
9070  *	registers aren't available.  If an error is not returned, then the
9071  *	following values are returned:
9072  *
9073  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
9074  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
9075  *
9076  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
9077  *	require the "Inferred Queue ID" ability may be used.  E.g. the
9078  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
9079  *	then these "Inferred Queue ID" register may not be used.
9080  */
9081 int t4_bar2_sge_qregs(struct adapter *adapter,
9082 		      unsigned int qid,
9083 		      enum t4_bar2_qtype qtype,
9084 		      int user,
9085 		      u64 *pbar2_qoffset,
9086 		      unsigned int *pbar2_qid)
9087 {
9088 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
9089 	u64 bar2_page_offset, bar2_qoffset;
9090 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
9091 
9092 	/* T4 doesn't support BAR2 SGE Queue registers for kernel
9093 	 * mode queues.
9094 	 */
9095 	if (!user && is_t4(adapter))
9096 		return -EINVAL;
9097 
9098 	/* Get our SGE Page Size parameters.
9099 	 */
9100 	page_shift = adapter->params.sge.page_shift;
9101 	page_size = 1 << page_shift;
9102 
9103 	/* Get the right Queues per Page parameters for our Queue.
9104 	 */
9105 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
9106 		     ? adapter->params.sge.eq_s_qpp
9107 		     : adapter->params.sge.iq_s_qpp);
9108 	qpp_mask = (1 << qpp_shift) - 1;
9109 
9110 	/* Calculate the basics of the BAR2 SGE Queue register area:
9111 	 *  o The BAR2 page the Queue registers will be in.
9112 	 *  o The BAR2 Queue ID.
9113 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
9114 	 */
9115 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
9116 	bar2_qid = qid & qpp_mask;
9117 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
9118 
9119 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
9120 	 * hardware will infer the Absolute Queue ID simply from the writes to
9121 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9122 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9123 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9124 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9125 	 * from the BAR2 Page and BAR2 Queue ID.
9126 	 *
9127 	 * One important censequence of this is that some BAR2 SGE registers
9128 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9129 	 * there.  But other registers synthesize the SGE Queue ID purely
9130 	 * from the writes to the registers -- the Write Combined Doorbell
9131 	 * Buffer is a good example.  These BAR2 SGE Registers are only
9132 	 * available for those BAR2 SGE Register areas where the SGE Absolute
9133 	 * Queue ID can be inferred from simple writes.
9134 	 */
9135 	bar2_qoffset = bar2_page_offset;
9136 	bar2_qinferred = (bar2_qid_offset < page_size);
9137 	if (bar2_qinferred) {
9138 		bar2_qoffset += bar2_qid_offset;
9139 		bar2_qid = 0;
9140 	}
9141 
9142 	*pbar2_qoffset = bar2_qoffset;
9143 	*pbar2_qid = bar2_qid;
9144 	return 0;
9145 }
9146 
9147 /**
9148  *	t4_init_devlog_params - initialize adapter->params.devlog
9149  *	@adap: the adapter
9150  *	@fw_attach: whether we can talk to the firmware
9151  *
9152  *	Initialize various fields of the adapter's Firmware Device Log
9153  *	Parameters structure.
9154  */
9155 int t4_init_devlog_params(struct adapter *adap, int fw_attach)
9156 {
9157 	struct devlog_params *dparams = &adap->params.devlog;
9158 	u32 pf_dparams;
9159 	unsigned int devlog_meminfo;
9160 	struct fw_devlog_cmd devlog_cmd;
9161 	int ret;
9162 
9163 	/* If we're dealing with newer firmware, the Device Log Paramerters
9164 	 * are stored in a designated register which allows us to access the
9165 	 * Device Log even if we can't talk to the firmware.
9166 	 */
9167 	pf_dparams =
9168 		t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG));
9169 	if (pf_dparams) {
9170 		unsigned int nentries, nentries128;
9171 
9172 		dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams);
9173 		dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4;
9174 
9175 		nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams);
9176 		nentries = (nentries128 + 1) * 128;
9177 		dparams->size = nentries * sizeof(struct fw_devlog_e);
9178 
9179 		return 0;
9180 	}
9181 
9182 	/*
9183 	 * For any failing returns ...
9184 	 */
9185 	memset(dparams, 0, sizeof *dparams);
9186 
9187 	/*
9188 	 * If we can't talk to the firmware, there's really nothing we can do
9189 	 * at this point.
9190 	 */
9191 	if (!fw_attach)
9192 		return -ENXIO;
9193 
9194 	/* Otherwise, ask the firmware for it's Device Log Parameters.
9195 	 */
9196 	memset(&devlog_cmd, 0, sizeof devlog_cmd);
9197 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9198 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
9199 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9200 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9201 			 &devlog_cmd);
9202 	if (ret)
9203 		return ret;
9204 
9205 	devlog_meminfo =
9206 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9207 	dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo);
9208 	dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4;
9209 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9210 
9211 	return 0;
9212 }
9213 
9214 /**
9215  *	t4_init_sge_params - initialize adap->params.sge
9216  *	@adapter: the adapter
9217  *
9218  *	Initialize various fields of the adapter's SGE Parameters structure.
9219  */
9220 int t4_init_sge_params(struct adapter *adapter)
9221 {
9222 	u32 r;
9223 	struct sge_params *sp = &adapter->params.sge;
9224 	unsigned i, tscale = 1;
9225 
9226 	r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD);
9227 	sp->counter_val[0] = G_THRESHOLD_0(r);
9228 	sp->counter_val[1] = G_THRESHOLD_1(r);
9229 	sp->counter_val[2] = G_THRESHOLD_2(r);
9230 	sp->counter_val[3] = G_THRESHOLD_3(r);
9231 
9232 	if (chip_id(adapter) >= CHELSIO_T6) {
9233 		r = t4_read_reg(adapter, A_SGE_ITP_CONTROL);
9234 		tscale = G_TSCALE(r);
9235 		if (tscale == 0)
9236 			tscale = 1;
9237 		else
9238 			tscale += 2;
9239 	}
9240 
9241 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1);
9242 	sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r)) * tscale;
9243 	sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r)) * tscale;
9244 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3);
9245 	sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r)) * tscale;
9246 	sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r)) * tscale;
9247 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5);
9248 	sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r)) * tscale;
9249 	sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r)) * tscale;
9250 
9251 	r = t4_read_reg(adapter, A_SGE_CONM_CTRL);
9252 	sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
9253 	if (is_t4(adapter))
9254 		sp->fl_starve_threshold2 = sp->fl_starve_threshold;
9255 	else if (is_t5(adapter))
9256 		sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
9257 	else
9258 		sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(r) * 2 + 1;
9259 
9260 	/* egress queues: log2 of # of doorbells per BAR2 page */
9261 	r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
9262 	r >>= S_QUEUESPERPAGEPF0 +
9263 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
9264 	sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
9265 
9266 	/* ingress queues: log2 of # of doorbells per BAR2 page */
9267 	r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
9268 	r >>= S_QUEUESPERPAGEPF0 +
9269 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
9270 	sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
9271 
9272 	r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
9273 	r >>= S_HOSTPAGESIZEPF0 +
9274 	    (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf;
9275 	sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10;
9276 
9277 	r = t4_read_reg(adapter, A_SGE_CONTROL);
9278 	sp->sge_control = r;
9279 	sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64;
9280 	sp->fl_pktshift = G_PKTSHIFT(r);
9281 	if (chip_id(adapter) <= CHELSIO_T5) {
9282 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
9283 		    X_INGPADBOUNDARY_SHIFT);
9284 	} else {
9285 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
9286 		    X_T6_INGPADBOUNDARY_SHIFT);
9287 	}
9288 	if (is_t4(adapter))
9289 		sp->pack_boundary = sp->pad_boundary;
9290 	else {
9291 		r = t4_read_reg(adapter, A_SGE_CONTROL2);
9292 		if (G_INGPACKBOUNDARY(r) == 0)
9293 			sp->pack_boundary = 16;
9294 		else
9295 			sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5);
9296 	}
9297 	for (i = 0; i < SGE_FLBUF_SIZES; i++)
9298 		sp->sge_fl_buffer_size[i] = t4_read_reg(adapter,
9299 		    A_SGE_FL_BUFFER_SIZE0 + (4 * i));
9300 
9301 	return 0;
9302 }
9303 
9304 /*
9305  * Read and cache the adapter's compressed filter mode and ingress config.
9306  */
9307 static void read_filter_mode_and_ingress_config(struct adapter *adap,
9308     bool sleep_ok)
9309 {
9310 	uint32_t v;
9311 	struct tp_params *tpp = &adap->params.tp;
9312 
9313 	t4_tp_pio_read(adap, &tpp->vlan_pri_map, 1, A_TP_VLAN_PRI_MAP,
9314 	    sleep_ok);
9315 	t4_tp_pio_read(adap, &tpp->ingress_config, 1, A_TP_INGRESS_CONFIG,
9316 	    sleep_ok);
9317 
9318 	/*
9319 	 * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9320 	 * shift positions of several elements of the Compressed Filter Tuple
9321 	 * for this adapter which we need frequently ...
9322 	 */
9323 	tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE);
9324 	tpp->port_shift = t4_filter_field_shift(adap, F_PORT);
9325 	tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
9326 	tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN);
9327 	tpp->tos_shift = t4_filter_field_shift(adap, F_TOS);
9328 	tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
9329 	tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE);
9330 	tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH);
9331 	tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE);
9332 	tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION);
9333 
9334 	if (chip_id(adap) > CHELSIO_T4) {
9335 		v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(3));
9336 		adap->params.tp.hash_filter_mask = v;
9337 		v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(4));
9338 		adap->params.tp.hash_filter_mask |= (u64)v << 32;
9339 	}
9340 }
9341 
9342 /**
9343  *      t4_init_tp_params - initialize adap->params.tp
9344  *      @adap: the adapter
9345  *
9346  *      Initialize various fields of the adapter's TP Parameters structure.
9347  */
9348 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
9349 {
9350 	int chan;
9351 	u32 v;
9352 	struct tp_params *tpp = &adap->params.tp;
9353 
9354 	v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
9355 	tpp->tre = G_TIMERRESOLUTION(v);
9356 	tpp->dack_re = G_DELAYEDACKRESOLUTION(v);
9357 
9358 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9359 	for (chan = 0; chan < MAX_NCHAN; chan++)
9360 		tpp->tx_modq[chan] = chan;
9361 
9362 	read_filter_mode_and_ingress_config(adap, sleep_ok);
9363 
9364 	/*
9365 	 * Cache a mask of the bits that represent the error vector portion of
9366 	 * rx_pkt.err_vec.  T6+ can use a compressed error vector to make room
9367 	 * for information about outer encapsulation (GENEVE/VXLAN/NVGRE).
9368 	 */
9369 	tpp->err_vec_mask = htobe16(0xffff);
9370 	if (chip_id(adap) > CHELSIO_T5) {
9371 		v = t4_read_reg(adap, A_TP_OUT_CONFIG);
9372 		if (v & F_CRXPKTENC) {
9373 			tpp->err_vec_mask =
9374 			    htobe16(V_T6_COMPR_RXERR_VEC(M_T6_COMPR_RXERR_VEC));
9375 		}
9376 	}
9377 
9378 	return 0;
9379 }
9380 
9381 /**
9382  *      t4_filter_field_shift - calculate filter field shift
9383  *      @adap: the adapter
9384  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9385  *
9386  *      Return the shift position of a filter field within the Compressed
9387  *      Filter Tuple.  The filter field is specified via its selection bit
9388  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9389  */
9390 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9391 {
9392 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
9393 	unsigned int sel;
9394 	int field_shift;
9395 
9396 	if ((filter_mode & filter_sel) == 0)
9397 		return -1;
9398 
9399 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9400 		switch (filter_mode & sel) {
9401 		case F_FCOE:
9402 			field_shift += W_FT_FCOE;
9403 			break;
9404 		case F_PORT:
9405 			field_shift += W_FT_PORT;
9406 			break;
9407 		case F_VNIC_ID:
9408 			field_shift += W_FT_VNIC_ID;
9409 			break;
9410 		case F_VLAN:
9411 			field_shift += W_FT_VLAN;
9412 			break;
9413 		case F_TOS:
9414 			field_shift += W_FT_TOS;
9415 			break;
9416 		case F_PROTOCOL:
9417 			field_shift += W_FT_PROTOCOL;
9418 			break;
9419 		case F_ETHERTYPE:
9420 			field_shift += W_FT_ETHERTYPE;
9421 			break;
9422 		case F_MACMATCH:
9423 			field_shift += W_FT_MACMATCH;
9424 			break;
9425 		case F_MPSHITTYPE:
9426 			field_shift += W_FT_MPSHITTYPE;
9427 			break;
9428 		case F_FRAGMENTATION:
9429 			field_shift += W_FT_FRAGMENTATION;
9430 			break;
9431 		}
9432 	}
9433 	return field_shift;
9434 }
9435 
9436 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id)
9437 {
9438 	u8 addr[6];
9439 	int ret, i, j;
9440 	struct port_info *p = adap2pinfo(adap, port_id);
9441 	u32 param, val;
9442 	struct vi_info *vi = &p->vi[0];
9443 
9444 	for (i = 0, j = -1; i <= p->port_id; i++) {
9445 		do {
9446 			j++;
9447 		} while ((adap->params.portvec & (1 << j)) == 0);
9448 	}
9449 
9450 	p->tx_chan = j;
9451 	p->mps_bg_map = t4_get_mps_bg_map(adap, j);
9452 	p->rx_e_chan_map = t4_get_rx_e_chan_map(adap, j);
9453 	p->lport = j;
9454 
9455 	if (!(adap->flags & IS_VF) ||
9456 	    adap->params.vfres.r_caps & FW_CMD_CAP_PORT) {
9457  		t4_update_port_info(p);
9458 	}
9459 
9460 	ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &vi->rss_size,
9461 	    &vi->vfvld, &vi->vin);
9462 	if (ret < 0)
9463 		return ret;
9464 
9465 	vi->viid = ret;
9466 	t4_os_set_hw_addr(p, addr);
9467 
9468 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9469 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
9470 	    V_FW_PARAMS_PARAM_YZ(vi->viid);
9471 	ret = t4_query_params(adap, mbox, pf, vf, 1, &param, &val);
9472 	if (ret)
9473 		vi->rss_base = 0xffff;
9474 	else {
9475 		/* MPASS((val >> 16) == rss_size); */
9476 		vi->rss_base = val & 0xffff;
9477 	}
9478 
9479 	return 0;
9480 }
9481 
9482 /**
9483  *	t4_read_cimq_cfg - read CIM queue configuration
9484  *	@adap: the adapter
9485  *	@base: holds the queue base addresses in bytes
9486  *	@size: holds the queue sizes in bytes
9487  *	@thres: holds the queue full thresholds in bytes
9488  *
9489  *	Returns the current configuration of the CIM queues, starting with
9490  *	the IBQs, then the OBQs.
9491  */
9492 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9493 {
9494 	unsigned int i, v;
9495 	int cim_num_obq = adap->chip_params->cim_num_obq;
9496 
9497 	for (i = 0; i < CIM_NUM_IBQ; i++) {
9498 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
9499 			     V_QUENUMSELECT(i));
9500 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9501 		/* value is in 256-byte units */
9502 		*base++ = G_CIMQBASE(v) * 256;
9503 		*size++ = G_CIMQSIZE(v) * 256;
9504 		*thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */
9505 	}
9506 	for (i = 0; i < cim_num_obq; i++) {
9507 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
9508 			     V_QUENUMSELECT(i));
9509 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9510 		/* value is in 256-byte units */
9511 		*base++ = G_CIMQBASE(v) * 256;
9512 		*size++ = G_CIMQSIZE(v) * 256;
9513 	}
9514 }
9515 
9516 /**
9517  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
9518  *	@adap: the adapter
9519  *	@qid: the queue index
9520  *	@data: where to store the queue contents
9521  *	@n: capacity of @data in 32-bit words
9522  *
9523  *	Reads the contents of the selected CIM queue starting at address 0 up
9524  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9525  *	error and the number of 32-bit words actually read on success.
9526  */
9527 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9528 {
9529 	int i, err, attempts;
9530 	unsigned int addr;
9531 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
9532 
9533 	if (qid > 5 || (n & 3))
9534 		return -EINVAL;
9535 
9536 	addr = qid * nwords;
9537 	if (n > nwords)
9538 		n = nwords;
9539 
9540 	/* It might take 3-10ms before the IBQ debug read access is allowed.
9541 	 * Wait for 1 Sec with a delay of 1 usec.
9542 	 */
9543 	attempts = 1000000;
9544 
9545 	for (i = 0; i < n; i++, addr++) {
9546 		t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
9547 			     F_IBQDBGEN);
9548 		err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
9549 				      attempts, 1);
9550 		if (err)
9551 			return err;
9552 		*data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
9553 	}
9554 	t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
9555 	return i;
9556 }
9557 
9558 /**
9559  *	t4_read_cim_obq - read the contents of a CIM outbound queue
9560  *	@adap: the adapter
9561  *	@qid: the queue index
9562  *	@data: where to store the queue contents
9563  *	@n: capacity of @data in 32-bit words
9564  *
9565  *	Reads the contents of the selected CIM queue starting at address 0 up
9566  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9567  *	error and the number of 32-bit words actually read on success.
9568  */
9569 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9570 {
9571 	int i, err;
9572 	unsigned int addr, v, nwords;
9573 	int cim_num_obq = adap->chip_params->cim_num_obq;
9574 
9575 	if ((qid > (cim_num_obq - 1)) || (n & 3))
9576 		return -EINVAL;
9577 
9578 	t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
9579 		     V_QUENUMSELECT(qid));
9580 	v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9581 
9582 	addr = G_CIMQBASE(v) * 64;    /* muliple of 256 -> muliple of 4 */
9583 	nwords = G_CIMQSIZE(v) * 64;  /* same */
9584 	if (n > nwords)
9585 		n = nwords;
9586 
9587 	for (i = 0; i < n; i++, addr++) {
9588 		t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
9589 			     F_OBQDBGEN);
9590 		err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
9591 				      2, 1);
9592 		if (err)
9593 			return err;
9594 		*data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
9595 	}
9596 	t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
9597 	return i;
9598 }
9599 
9600 enum {
9601 	CIM_QCTL_BASE     = 0,
9602 	CIM_CTL_BASE      = 0x2000,
9603 	CIM_PBT_ADDR_BASE = 0x2800,
9604 	CIM_PBT_LRF_BASE  = 0x3000,
9605 	CIM_PBT_DATA_BASE = 0x3800
9606 };
9607 
9608 /**
9609  *	t4_cim_read - read a block from CIM internal address space
9610  *	@adap: the adapter
9611  *	@addr: the start address within the CIM address space
9612  *	@n: number of words to read
9613  *	@valp: where to store the result
9614  *
9615  *	Reads a block of 4-byte words from the CIM intenal address space.
9616  */
9617 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9618 		unsigned int *valp)
9619 {
9620 	int ret = 0;
9621 
9622 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
9623 		return -EBUSY;
9624 
9625 	for ( ; !ret && n--; addr += 4) {
9626 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
9627 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
9628 				      0, 5, 2);
9629 		if (!ret)
9630 			*valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
9631 	}
9632 	return ret;
9633 }
9634 
9635 /**
9636  *	t4_cim_write - write a block into CIM internal address space
9637  *	@adap: the adapter
9638  *	@addr: the start address within the CIM address space
9639  *	@n: number of words to write
9640  *	@valp: set of values to write
9641  *
9642  *	Writes a block of 4-byte words into the CIM intenal address space.
9643  */
9644 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
9645 		 const unsigned int *valp)
9646 {
9647 	int ret = 0;
9648 
9649 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
9650 		return -EBUSY;
9651 
9652 	for ( ; !ret && n--; addr += 4) {
9653 		t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
9654 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
9655 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
9656 				      0, 5, 2);
9657 	}
9658 	return ret;
9659 }
9660 
9661 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
9662 			 unsigned int val)
9663 {
9664 	return t4_cim_write(adap, addr, 1, &val);
9665 }
9666 
9667 /**
9668  *	t4_cim_ctl_read - read a block from CIM control region
9669  *	@adap: the adapter
9670  *	@addr: the start address within the CIM control region
9671  *	@n: number of words to read
9672  *	@valp: where to store the result
9673  *
9674  *	Reads a block of 4-byte words from the CIM control region.
9675  */
9676 int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
9677 		    unsigned int *valp)
9678 {
9679 	return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
9680 }
9681 
9682 /**
9683  *	t4_cim_read_la - read CIM LA capture buffer
9684  *	@adap: the adapter
9685  *	@la_buf: where to store the LA data
9686  *	@wrptr: the HW write pointer within the capture buffer
9687  *
9688  *	Reads the contents of the CIM LA buffer with the most recent entry at
9689  *	the end	of the returned data and with the entry at @wrptr first.
9690  *	We try to leave the LA in the running state we find it in.
9691  */
9692 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9693 {
9694 	int i, ret;
9695 	unsigned int cfg, val, idx;
9696 
9697 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
9698 	if (ret)
9699 		return ret;
9700 
9701 	if (cfg & F_UPDBGLAEN) {	/* LA is running, freeze it */
9702 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
9703 		if (ret)
9704 			return ret;
9705 	}
9706 
9707 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
9708 	if (ret)
9709 		goto restart;
9710 
9711 	idx = G_UPDBGLAWRPTR(val);
9712 	if (wrptr)
9713 		*wrptr = idx;
9714 
9715 	for (i = 0; i < adap->params.cim_la_size; i++) {
9716 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
9717 				    V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
9718 		if (ret)
9719 			break;
9720 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
9721 		if (ret)
9722 			break;
9723 		if (val & F_UPDBGLARDEN) {
9724 			ret = -ETIMEDOUT;
9725 			break;
9726 		}
9727 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
9728 		if (ret)
9729 			break;
9730 
9731 		/* address can't exceed 0xfff (UpDbgLaRdPtr is of 12-bits) */
9732 		idx = (idx + 1) & M_UPDBGLARDPTR;
9733 		/*
9734 		 * Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
9735 		 * identify the 32-bit portion of the full 312-bit data
9736 		 */
9737 		if (is_t6(adap))
9738 			while ((idx & 0xf) > 9)
9739 				idx = (idx + 1) % M_UPDBGLARDPTR;
9740 	}
9741 restart:
9742 	if (cfg & F_UPDBGLAEN) {
9743 		int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
9744 				      cfg & ~F_UPDBGLARDEN);
9745 		if (!ret)
9746 			ret = r;
9747 	}
9748 	return ret;
9749 }
9750 
9751 /**
9752  *	t4_tp_read_la - read TP LA capture buffer
9753  *	@adap: the adapter
9754  *	@la_buf: where to store the LA data
9755  *	@wrptr: the HW write pointer within the capture buffer
9756  *
9757  *	Reads the contents of the TP LA buffer with the most recent entry at
9758  *	the end	of the returned data and with the entry at @wrptr first.
9759  *	We leave the LA in the running state we find it in.
9760  */
9761 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
9762 {
9763 	bool last_incomplete;
9764 	unsigned int i, cfg, val, idx;
9765 
9766 	cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
9767 	if (cfg & F_DBGLAENABLE)			/* freeze LA */
9768 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
9769 			     adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
9770 
9771 	val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
9772 	idx = G_DBGLAWPTR(val);
9773 	last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
9774 	if (last_incomplete)
9775 		idx = (idx + 1) & M_DBGLARPTR;
9776 	if (wrptr)
9777 		*wrptr = idx;
9778 
9779 	val &= 0xffff;
9780 	val &= ~V_DBGLARPTR(M_DBGLARPTR);
9781 	val |= adap->params.tp.la_mask;
9782 
9783 	for (i = 0; i < TPLA_SIZE; i++) {
9784 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
9785 		la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
9786 		idx = (idx + 1) & M_DBGLARPTR;
9787 	}
9788 
9789 	/* Wipe out last entry if it isn't valid */
9790 	if (last_incomplete)
9791 		la_buf[TPLA_SIZE - 1] = ~0ULL;
9792 
9793 	if (cfg & F_DBGLAENABLE)		/* restore running state */
9794 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
9795 			     cfg | adap->params.tp.la_mask);
9796 }
9797 
9798 /*
9799  * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
9800  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
9801  * state for more than the Warning Threshold then we'll issue a warning about
9802  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
9803  * appears to be hung every Warning Repeat second till the situation clears.
9804  * If the situation clears, we'll note that as well.
9805  */
9806 #define SGE_IDMA_WARN_THRESH 1
9807 #define SGE_IDMA_WARN_REPEAT 300
9808 
9809 /**
9810  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
9811  *	@adapter: the adapter
9812  *	@idma: the adapter IDMA Monitor state
9813  *
9814  *	Initialize the state of an SGE Ingress DMA Monitor.
9815  */
9816 void t4_idma_monitor_init(struct adapter *adapter,
9817 			  struct sge_idma_monitor_state *idma)
9818 {
9819 	/* Initialize the state variables for detecting an SGE Ingress DMA
9820 	 * hang.  The SGE has internal counters which count up on each clock
9821 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
9822 	 * same state they were on the previous clock tick.  The clock used is
9823 	 * the Core Clock so we have a limit on the maximum "time" they can
9824 	 * record; typically a very small number of seconds.  For instance,
9825 	 * with a 600MHz Core Clock, we can only count up to a bit more than
9826 	 * 7s.  So we'll synthesize a larger counter in order to not run the
9827 	 * risk of having the "timers" overflow and give us the flexibility to
9828 	 * maintain a Hung SGE State Machine of our own which operates across
9829 	 * a longer time frame.
9830 	 */
9831 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
9832 	idma->idma_stalled[0] = idma->idma_stalled[1] = 0;
9833 }
9834 
9835 /**
9836  *	t4_idma_monitor - monitor SGE Ingress DMA state
9837  *	@adapter: the adapter
9838  *	@idma: the adapter IDMA Monitor state
9839  *	@hz: number of ticks/second
9840  *	@ticks: number of ticks since the last IDMA Monitor call
9841  */
9842 void t4_idma_monitor(struct adapter *adapter,
9843 		     struct sge_idma_monitor_state *idma,
9844 		     int hz, int ticks)
9845 {
9846 	int i, idma_same_state_cnt[2];
9847 
9848 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
9849 	  * are counters inside the SGE which count up on each clock when the
9850 	  * SGE finds its Ingress DMA State Engines in the same states they
9851 	  * were in the previous clock.  The counters will peg out at
9852 	  * 0xffffffff without wrapping around so once they pass the 1s
9853 	  * threshold they'll stay above that till the IDMA state changes.
9854 	  */
9855 	t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13);
9856 	idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH);
9857 	idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
9858 
9859 	for (i = 0; i < 2; i++) {
9860 		u32 debug0, debug11;
9861 
9862 		/* If the Ingress DMA Same State Counter ("timer") is less
9863 		 * than 1s, then we can reset our synthesized Stall Timer and
9864 		 * continue.  If we have previously emitted warnings about a
9865 		 * potential stalled Ingress Queue, issue a note indicating
9866 		 * that the Ingress Queue has resumed forward progress.
9867 		 */
9868 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
9869 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz)
9870 				CH_WARN(adapter, "SGE idma%d, queue %u, "
9871 					"resumed after %d seconds\n",
9872 					i, idma->idma_qid[i],
9873 					idma->idma_stalled[i]/hz);
9874 			idma->idma_stalled[i] = 0;
9875 			continue;
9876 		}
9877 
9878 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
9879 		 * domain.  The first time we get here it'll be because we
9880 		 * passed the 1s Threshold; each additional time it'll be
9881 		 * because the RX Timer Callback is being fired on its regular
9882 		 * schedule.
9883 		 *
9884 		 * If the stall is below our Potential Hung Ingress Queue
9885 		 * Warning Threshold, continue.
9886 		 */
9887 		if (idma->idma_stalled[i] == 0) {
9888 			idma->idma_stalled[i] = hz;
9889 			idma->idma_warn[i] = 0;
9890 		} else {
9891 			idma->idma_stalled[i] += ticks;
9892 			idma->idma_warn[i] -= ticks;
9893 		}
9894 
9895 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz)
9896 			continue;
9897 
9898 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
9899 		 */
9900 		if (idma->idma_warn[i] > 0)
9901 			continue;
9902 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz;
9903 
9904 		/* Read and save the SGE IDMA State and Queue ID information.
9905 		 * We do this every time in case it changes across time ...
9906 		 * can't be too careful ...
9907 		 */
9908 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0);
9909 		debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
9910 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
9911 
9912 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11);
9913 		debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
9914 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
9915 
9916 		CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in "
9917 			" state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
9918 			i, idma->idma_qid[i], idma->idma_state[i],
9919 			idma->idma_stalled[i]/hz,
9920 			debug0, debug11);
9921 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
9922 	}
9923 }
9924 
9925 /**
9926  *	t4_read_pace_tbl - read the pace table
9927  *	@adap: the adapter
9928  *	@pace_vals: holds the returned values
9929  *
9930  *	Returns the values of TP's pace table in microseconds.
9931  */
9932 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
9933 {
9934 	unsigned int i, v;
9935 
9936 	for (i = 0; i < NTX_SCHED; i++) {
9937 		t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
9938 		v = t4_read_reg(adap, A_TP_PACE_TABLE);
9939 		pace_vals[i] = dack_ticks_to_usec(adap, v);
9940 	}
9941 }
9942 
9943 /**
9944  *	t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
9945  *	@adap: the adapter
9946  *	@sched: the scheduler index
9947  *	@kbps: the byte rate in Kbps
9948  *	@ipg: the interpacket delay in tenths of nanoseconds
9949  *
9950  *	Return the current configuration of a HW Tx scheduler.
9951  */
9952 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
9953 		     unsigned int *ipg, bool sleep_ok)
9954 {
9955 	unsigned int v, addr, bpt, cpt;
9956 
9957 	if (kbps) {
9958 		addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
9959 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9960 		if (sched & 1)
9961 			v >>= 16;
9962 		bpt = (v >> 8) & 0xff;
9963 		cpt = v & 0xff;
9964 		if (!cpt)
9965 			*kbps = 0;	/* scheduler disabled */
9966 		else {
9967 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
9968 			*kbps = (v * bpt) / 125;
9969 		}
9970 	}
9971 	if (ipg) {
9972 		addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
9973 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9974 		if (sched & 1)
9975 			v >>= 16;
9976 		v &= 0xffff;
9977 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
9978 	}
9979 }
9980 
9981 /**
9982  *	t4_load_cfg - download config file
9983  *	@adap: the adapter
9984  *	@cfg_data: the cfg text file to write
9985  *	@size: text file size
9986  *
9987  *	Write the supplied config text file to the card's serial flash.
9988  */
9989 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
9990 {
9991 	int ret, i, n, cfg_addr;
9992 	unsigned int addr;
9993 	unsigned int flash_cfg_start_sec;
9994 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9995 
9996 	cfg_addr = t4_flash_cfg_addr(adap);
9997 	if (cfg_addr < 0)
9998 		return cfg_addr;
9999 
10000 	addr = cfg_addr;
10001 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10002 
10003 	if (size > FLASH_CFG_MAX_SIZE) {
10004 		CH_ERR(adap, "cfg file too large, max is %u bytes\n",
10005 		       FLASH_CFG_MAX_SIZE);
10006 		return -EFBIG;
10007 	}
10008 
10009 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
10010 			 sf_sec_size);
10011 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10012 				     flash_cfg_start_sec + i - 1);
10013 	/*
10014 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10015 	 * with the on-adapter Firmware Configuration File.
10016 	 */
10017 	if (ret || size == 0)
10018 		goto out;
10019 
10020 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10021 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
10022 		if ( (size - i) <  SF_PAGE_SIZE)
10023 			n = size - i;
10024 		else
10025 			n = SF_PAGE_SIZE;
10026 		ret = t4_write_flash(adap, addr, n, cfg_data, 1);
10027 		if (ret)
10028 			goto out;
10029 
10030 		addr += SF_PAGE_SIZE;
10031 		cfg_data += SF_PAGE_SIZE;
10032 	}
10033 
10034 out:
10035 	if (ret)
10036 		CH_ERR(adap, "config file %s failed %d\n",
10037 		       (size == 0 ? "clear" : "download"), ret);
10038 	return ret;
10039 }
10040 
10041 /**
10042  *	t5_fw_init_extern_mem - initialize the external memory
10043  *	@adap: the adapter
10044  *
10045  *	Initializes the external memory on T5.
10046  */
10047 int t5_fw_init_extern_mem(struct adapter *adap)
10048 {
10049 	u32 params[1], val[1];
10050 	int ret;
10051 
10052 	if (!is_t5(adap))
10053 		return 0;
10054 
10055 	val[0] = 0xff; /* Initialize all MCs */
10056 	params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
10057 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT));
10058 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val,
10059 			FW_CMD_MAX_TIMEOUT);
10060 
10061 	return ret;
10062 }
10063 
10064 /* BIOS boot headers */
10065 typedef struct pci_expansion_rom_header {
10066 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
10067 	u8	reserved[22]; /* Reserved per processor Architecture data */
10068 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
10069 } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
10070 
10071 /* Legacy PCI Expansion ROM Header */
10072 typedef struct legacy_pci_expansion_rom_header {
10073 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
10074 	u8	size512; /* Current Image Size in units of 512 bytes */
10075 	u8	initentry_point[4];
10076 	u8	cksum; /* Checksum computed on the entire Image */
10077 	u8	reserved[16]; /* Reserved */
10078 	u8	pcir_offset[2]; /* Offset to PCI Data Struture */
10079 } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
10080 
10081 /* EFI PCI Expansion ROM Header */
10082 typedef struct efi_pci_expansion_rom_header {
10083 	u8	signature[2]; // ROM signature. The value 0xaa55
10084 	u8	initialization_size[2]; /* Units 512. Includes this header */
10085 	u8	efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
10086 	u8	efi_subsystem[2]; /* Subsystem value for EFI image header */
10087 	u8	efi_machine_type[2]; /* Machine type from EFI image header */
10088 	u8	compression_type[2]; /* Compression type. */
10089 		/*
10090 		 * Compression type definition
10091 		 * 0x0: uncompressed
10092 		 * 0x1: Compressed
10093 		 * 0x2-0xFFFF: Reserved
10094 		 */
10095 	u8	reserved[8]; /* Reserved */
10096 	u8	efi_image_header_offset[2]; /* Offset to EFI Image */
10097 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
10098 } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
10099 
10100 /* PCI Data Structure Format */
10101 typedef struct pcir_data_structure { /* PCI Data Structure */
10102 	u8	signature[4]; /* Signature. The string "PCIR" */
10103 	u8	vendor_id[2]; /* Vendor Identification */
10104 	u8	device_id[2]; /* Device Identification */
10105 	u8	vital_product[2]; /* Pointer to Vital Product Data */
10106 	u8	length[2]; /* PCIR Data Structure Length */
10107 	u8	revision; /* PCIR Data Structure Revision */
10108 	u8	class_code[3]; /* Class Code */
10109 	u8	image_length[2]; /* Image Length. Multiple of 512B */
10110 	u8	code_revision[2]; /* Revision Level of Code/Data */
10111 	u8	code_type; /* Code Type. */
10112 		/*
10113 		 * PCI Expansion ROM Code Types
10114 		 * 0x00: Intel IA-32, PC-AT compatible. Legacy
10115 		 * 0x01: Open Firmware standard for PCI. FCODE
10116 		 * 0x02: Hewlett-Packard PA RISC. HP reserved
10117 		 * 0x03: EFI Image. EFI
10118 		 * 0x04-0xFF: Reserved.
10119 		 */
10120 	u8	indicator; /* Indicator. Identifies the last image in the ROM */
10121 	u8	reserved[2]; /* Reserved */
10122 } pcir_data_t; /* PCI__DATA_STRUCTURE */
10123 
10124 /* BOOT constants */
10125 enum {
10126 	BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
10127 	BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
10128 	BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
10129 	BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
10130 	BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
10131 	VENDOR_ID = 0x1425, /* Vendor ID */
10132 	PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
10133 };
10134 
10135 /*
10136  *	modify_device_id - Modifies the device ID of the Boot BIOS image
10137  *	@adatper: the device ID to write.
10138  *	@boot_data: the boot image to modify.
10139  *
10140  *	Write the supplied device ID to the boot BIOS image.
10141  */
10142 static void modify_device_id(int device_id, u8 *boot_data)
10143 {
10144 	legacy_pci_exp_rom_header_t *header;
10145 	pcir_data_t *pcir_header;
10146 	u32 cur_header = 0;
10147 
10148 	/*
10149 	 * Loop through all chained images and change the device ID's
10150 	 */
10151 	while (1) {
10152 		header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
10153 		pcir_header = (pcir_data_t *) &boot_data[cur_header +
10154 			      le16_to_cpu(*(u16*)header->pcir_offset)];
10155 
10156 		/*
10157 		 * Only modify the Device ID if code type is Legacy or HP.
10158 		 * 0x00: Okay to modify
10159 		 * 0x01: FCODE. Do not be modify
10160 		 * 0x03: Okay to modify
10161 		 * 0x04-0xFF: Do not modify
10162 		 */
10163 		if (pcir_header->code_type == 0x00) {
10164 			u8 csum = 0;
10165 			int i;
10166 
10167 			/*
10168 			 * Modify Device ID to match current adatper
10169 			 */
10170 			*(u16*) pcir_header->device_id = device_id;
10171 
10172 			/*
10173 			 * Set checksum temporarily to 0.
10174 			 * We will recalculate it later.
10175 			 */
10176 			header->cksum = 0x0;
10177 
10178 			/*
10179 			 * Calculate and update checksum
10180 			 */
10181 			for (i = 0; i < (header->size512 * 512); i++)
10182 				csum += (u8)boot_data[cur_header + i];
10183 
10184 			/*
10185 			 * Invert summed value to create the checksum
10186 			 * Writing new checksum value directly to the boot data
10187 			 */
10188 			boot_data[cur_header + 7] = -csum;
10189 
10190 		} else if (pcir_header->code_type == 0x03) {
10191 
10192 			/*
10193 			 * Modify Device ID to match current adatper
10194 			 */
10195 			*(u16*) pcir_header->device_id = device_id;
10196 
10197 		}
10198 
10199 
10200 		/*
10201 		 * Check indicator element to identify if this is the last
10202 		 * image in the ROM.
10203 		 */
10204 		if (pcir_header->indicator & 0x80)
10205 			break;
10206 
10207 		/*
10208 		 * Move header pointer up to the next image in the ROM.
10209 		 */
10210 		cur_header += header->size512 * 512;
10211 	}
10212 }
10213 
10214 /*
10215  *	t4_load_boot - download boot flash
10216  *	@adapter: the adapter
10217  *	@boot_data: the boot image to write
10218  *	@boot_addr: offset in flash to write boot_data
10219  *	@size: image size
10220  *
10221  *	Write the supplied boot image to the card's serial flash.
10222  *	The boot image has the following sections: a 28-byte header and the
10223  *	boot image.
10224  */
10225 int t4_load_boot(struct adapter *adap, u8 *boot_data,
10226 		 unsigned int boot_addr, unsigned int size)
10227 {
10228 	pci_exp_rom_header_t *header;
10229 	int pcir_offset ;
10230 	pcir_data_t *pcir_header;
10231 	int ret, addr;
10232 	uint16_t device_id;
10233 	unsigned int i;
10234 	unsigned int boot_sector = (boot_addr * 1024 );
10235 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10236 
10237 	/*
10238 	 * Make sure the boot image does not encroach on the firmware region
10239 	 */
10240 	if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
10241 		CH_ERR(adap, "boot image encroaching on firmware region\n");
10242 		return -EFBIG;
10243 	}
10244 
10245 	/*
10246 	 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
10247 	 * and Boot configuration data sections. These 3 boot sections span
10248 	 * sectors 0 to 7 in flash and live right before the FW image location.
10249 	 */
10250 	i = DIV_ROUND_UP(size ? size : FLASH_FW_START,
10251 			sf_sec_size);
10252 	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
10253 				     (boot_sector >> 16) + i - 1);
10254 
10255 	/*
10256 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10257 	 * with the on-adapter option ROM file
10258 	 */
10259 	if (ret || (size == 0))
10260 		goto out;
10261 
10262 	/* Get boot header */
10263 	header = (pci_exp_rom_header_t *)boot_data;
10264 	pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
10265 	/* PCIR Data Structure */
10266 	pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
10267 
10268 	/*
10269 	 * Perform some primitive sanity testing to avoid accidentally
10270 	 * writing garbage over the boot sectors.  We ought to check for
10271 	 * more but it's not worth it for now ...
10272 	 */
10273 	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
10274 		CH_ERR(adap, "boot image too small/large\n");
10275 		return -EFBIG;
10276 	}
10277 
10278 #ifndef CHELSIO_T4_DIAGS
10279 	/*
10280 	 * Check BOOT ROM header signature
10281 	 */
10282 	if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
10283 		CH_ERR(adap, "Boot image missing signature\n");
10284 		return -EINVAL;
10285 	}
10286 
10287 	/*
10288 	 * Check PCI header signature
10289 	 */
10290 	if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
10291 		CH_ERR(adap, "PCI header missing signature\n");
10292 		return -EINVAL;
10293 	}
10294 
10295 	/*
10296 	 * Check Vendor ID matches Chelsio ID
10297 	 */
10298 	if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
10299 		CH_ERR(adap, "Vendor ID missing signature\n");
10300 		return -EINVAL;
10301 	}
10302 #endif
10303 
10304 	/*
10305 	 * Retrieve adapter's device ID
10306 	 */
10307 	t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
10308 	/* Want to deal with PF 0 so I strip off PF 4 indicator */
10309 	device_id = device_id & 0xf0ff;
10310 
10311 	/*
10312 	 * Check PCIE Device ID
10313 	 */
10314 	if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
10315 		/*
10316 		 * Change the device ID in the Boot BIOS image to match
10317 		 * the Device ID of the current adapter.
10318 		 */
10319 		modify_device_id(device_id, boot_data);
10320 	}
10321 
10322 	/*
10323 	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
10324 	 * we finish copying the rest of the boot image. This will ensure
10325 	 * that the BIOS boot header will only be written if the boot image
10326 	 * was written in full.
10327 	 */
10328 	addr = boot_sector;
10329 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
10330 		addr += SF_PAGE_SIZE;
10331 		boot_data += SF_PAGE_SIZE;
10332 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
10333 		if (ret)
10334 			goto out;
10335 	}
10336 
10337 	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
10338 			     (const u8 *)header, 0);
10339 
10340 out:
10341 	if (ret)
10342 		CH_ERR(adap, "boot image download failed, error %d\n", ret);
10343 	return ret;
10344 }
10345 
10346 /*
10347  *	t4_flash_bootcfg_addr - return the address of the flash optionrom configuration
10348  *	@adapter: the adapter
10349  *
10350  *	Return the address within the flash where the OptionROM Configuration
10351  *	is stored, or an error if the device FLASH is too small to contain
10352  *	a OptionROM Configuration.
10353  */
10354 static int t4_flash_bootcfg_addr(struct adapter *adapter)
10355 {
10356 	/*
10357 	 * If the device FLASH isn't large enough to hold a Firmware
10358 	 * Configuration File, return an error.
10359 	 */
10360 	if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
10361 		return -ENOSPC;
10362 
10363 	return FLASH_BOOTCFG_START;
10364 }
10365 
10366 int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size)
10367 {
10368 	int ret, i, n, cfg_addr;
10369 	unsigned int addr;
10370 	unsigned int flash_cfg_start_sec;
10371 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10372 
10373 	cfg_addr = t4_flash_bootcfg_addr(adap);
10374 	if (cfg_addr < 0)
10375 		return cfg_addr;
10376 
10377 	addr = cfg_addr;
10378 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10379 
10380 	if (size > FLASH_BOOTCFG_MAX_SIZE) {
10381 		CH_ERR(adap, "bootcfg file too large, max is %u bytes\n",
10382 			FLASH_BOOTCFG_MAX_SIZE);
10383 		return -EFBIG;
10384 	}
10385 
10386 	i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */
10387 			 sf_sec_size);
10388 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10389 					flash_cfg_start_sec + i - 1);
10390 
10391 	/*
10392 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10393 	 * with the on-adapter OptionROM Configuration File.
10394 	 */
10395 	if (ret || size == 0)
10396 		goto out;
10397 
10398 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10399 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
10400 		if ( (size - i) <  SF_PAGE_SIZE)
10401 			n = size - i;
10402 		else
10403 			n = SF_PAGE_SIZE;
10404 		ret = t4_write_flash(adap, addr, n, cfg_data, 0);
10405 		if (ret)
10406 			goto out;
10407 
10408 		addr += SF_PAGE_SIZE;
10409 		cfg_data += SF_PAGE_SIZE;
10410 	}
10411 
10412 out:
10413 	if (ret)
10414 		CH_ERR(adap, "boot config data %s failed %d\n",
10415 				(size == 0 ? "clear" : "download"), ret);
10416 	return ret;
10417 }
10418 
10419 /**
10420  *	t4_set_filter_mode - configure the optional components of filter tuples
10421  *	@adap: the adapter
10422  *	@mode_map: a bitmap selcting which optional filter components to enable
10423  * 	@sleep_ok: if true we may sleep while awaiting command completion
10424  *
10425  *	Sets the filter mode by selecting the optional components to enable
10426  *	in filter tuples.  Returns 0 on success and a negative error if the
10427  *	requested mode needs more bits than are available for optional
10428  *	components.
10429  */
10430 int t4_set_filter_mode(struct adapter *adap, unsigned int mode_map,
10431 		       bool sleep_ok)
10432 {
10433 	static u8 width[] = { 1, 3, 17, 17, 8, 8, 16, 9, 3, 1 };
10434 
10435 	int i, nbits = 0;
10436 
10437 	for (i = S_FCOE; i <= S_FRAGMENTATION; i++)
10438 		if (mode_map & (1 << i))
10439 			nbits += width[i];
10440 	if (nbits > FILTER_OPT_LEN)
10441 		return -EINVAL;
10442 	t4_tp_pio_write(adap, &mode_map, 1, A_TP_VLAN_PRI_MAP, sleep_ok);
10443 	read_filter_mode_and_ingress_config(adap, sleep_ok);
10444 
10445 	return 0;
10446 }
10447 
10448 /**
10449  *	t4_clr_port_stats - clear port statistics
10450  *	@adap: the adapter
10451  *	@idx: the port index
10452  *
10453  *	Clear HW statistics for the given port.
10454  */
10455 void t4_clr_port_stats(struct adapter *adap, int idx)
10456 {
10457 	unsigned int i;
10458 	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
10459 	u32 port_base_addr;
10460 
10461 	if (is_t4(adap))
10462 		port_base_addr = PORT_BASE(idx);
10463 	else
10464 		port_base_addr = T5_PORT_BASE(idx);
10465 
10466 	for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
10467 			i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
10468 		t4_write_reg(adap, port_base_addr + i, 0);
10469 	for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
10470 			i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
10471 		t4_write_reg(adap, port_base_addr + i, 0);
10472 	for (i = 0; i < 4; i++)
10473 		if (bgmap & (1 << i)) {
10474 			t4_write_reg(adap,
10475 			A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
10476 			t4_write_reg(adap,
10477 			A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
10478 		}
10479 }
10480 
10481 /**
10482  *	t4_i2c_rd - read I2C data from adapter
10483  *	@adap: the adapter
10484  *	@port: Port number if per-port device; <0 if not
10485  *	@devid: per-port device ID or absolute device ID
10486  *	@offset: byte offset into device I2C space
10487  *	@len: byte length of I2C space data
10488  *	@buf: buffer in which to return I2C data
10489  *
10490  *	Reads the I2C data from the indicated device and location.
10491  */
10492 int t4_i2c_rd(struct adapter *adap, unsigned int mbox,
10493 	      int port, unsigned int devid,
10494 	      unsigned int offset, unsigned int len,
10495 	      u8 *buf)
10496 {
10497 	u32 ldst_addrspace;
10498 	struct fw_ldst_cmd ldst;
10499 	int ret;
10500 
10501 	if (port >= 4 ||
10502 	    devid >= 256 ||
10503 	    offset >= 256 ||
10504 	    len > sizeof ldst.u.i2c.data)
10505 		return -EINVAL;
10506 
10507 	memset(&ldst, 0, sizeof ldst);
10508 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
10509 	ldst.op_to_addrspace =
10510 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
10511 			    F_FW_CMD_REQUEST |
10512 			    F_FW_CMD_READ |
10513 			    ldst_addrspace);
10514 	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
10515 	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
10516 	ldst.u.i2c.did = devid;
10517 	ldst.u.i2c.boffset = offset;
10518 	ldst.u.i2c.blen = len;
10519 	ret = t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
10520 	if (!ret)
10521 		memcpy(buf, ldst.u.i2c.data, len);
10522 	return ret;
10523 }
10524 
10525 /**
10526  *	t4_i2c_wr - write I2C data to adapter
10527  *	@adap: the adapter
10528  *	@port: Port number if per-port device; <0 if not
10529  *	@devid: per-port device ID or absolute device ID
10530  *	@offset: byte offset into device I2C space
10531  *	@len: byte length of I2C space data
10532  *	@buf: buffer containing new I2C data
10533  *
10534  *	Write the I2C data to the indicated device and location.
10535  */
10536 int t4_i2c_wr(struct adapter *adap, unsigned int mbox,
10537 	      int port, unsigned int devid,
10538 	      unsigned int offset, unsigned int len,
10539 	      u8 *buf)
10540 {
10541 	u32 ldst_addrspace;
10542 	struct fw_ldst_cmd ldst;
10543 
10544 	if (port >= 4 ||
10545 	    devid >= 256 ||
10546 	    offset >= 256 ||
10547 	    len > sizeof ldst.u.i2c.data)
10548 		return -EINVAL;
10549 
10550 	memset(&ldst, 0, sizeof ldst);
10551 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
10552 	ldst.op_to_addrspace =
10553 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
10554 			    F_FW_CMD_REQUEST |
10555 			    F_FW_CMD_WRITE |
10556 			    ldst_addrspace);
10557 	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
10558 	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
10559 	ldst.u.i2c.did = devid;
10560 	ldst.u.i2c.boffset = offset;
10561 	ldst.u.i2c.blen = len;
10562 	memcpy(ldst.u.i2c.data, buf, len);
10563 	return t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
10564 }
10565 
10566 /**
10567  * 	t4_sge_ctxt_rd - read an SGE context through FW
10568  * 	@adap: the adapter
10569  * 	@mbox: mailbox to use for the FW command
10570  * 	@cid: the context id
10571  * 	@ctype: the context type
10572  * 	@data: where to store the context data
10573  *
10574  * 	Issues a FW command through the given mailbox to read an SGE context.
10575  */
10576 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
10577 		   enum ctxt_type ctype, u32 *data)
10578 {
10579 	int ret;
10580 	struct fw_ldst_cmd c;
10581 
10582 	if (ctype == CTXT_EGRESS)
10583 		ret = FW_LDST_ADDRSPC_SGE_EGRC;
10584 	else if (ctype == CTXT_INGRESS)
10585 		ret = FW_LDST_ADDRSPC_SGE_INGC;
10586 	else if (ctype == CTXT_FLM)
10587 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
10588 	else
10589 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
10590 
10591 	memset(&c, 0, sizeof(c));
10592 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
10593 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
10594 					V_FW_LDST_CMD_ADDRSPACE(ret));
10595 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
10596 	c.u.idctxt.physid = cpu_to_be32(cid);
10597 
10598 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
10599 	if (ret == 0) {
10600 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
10601 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
10602 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
10603 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
10604 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
10605 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
10606 	}
10607 	return ret;
10608 }
10609 
10610 /**
10611  * 	t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
10612  * 	@adap: the adapter
10613  * 	@cid: the context id
10614  * 	@ctype: the context type
10615  * 	@data: where to store the context data
10616  *
10617  * 	Reads an SGE context directly, bypassing FW.  This is only for
10618  * 	debugging when FW is unavailable.
10619  */
10620 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
10621 		      u32 *data)
10622 {
10623 	int i, ret;
10624 
10625 	t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
10626 	ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
10627 	if (!ret)
10628 		for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
10629 			*data++ = t4_read_reg(adap, i);
10630 	return ret;
10631 }
10632 
10633 int t4_sched_config(struct adapter *adapter, int type, int minmaxen,
10634     int sleep_ok)
10635 {
10636 	struct fw_sched_cmd cmd;
10637 
10638 	memset(&cmd, 0, sizeof(cmd));
10639 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10640 				      F_FW_CMD_REQUEST |
10641 				      F_FW_CMD_WRITE);
10642 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10643 
10644 	cmd.u.config.sc = FW_SCHED_SC_CONFIG;
10645 	cmd.u.config.type = type;
10646 	cmd.u.config.minmaxen = minmaxen;
10647 
10648 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10649 			       NULL, sleep_ok);
10650 }
10651 
10652 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
10653 		    int rateunit, int ratemode, int channel, int cl,
10654 		    int minrate, int maxrate, int weight, int pktsize,
10655 		    int burstsize, int sleep_ok)
10656 {
10657 	struct fw_sched_cmd cmd;
10658 
10659 	memset(&cmd, 0, sizeof(cmd));
10660 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10661 				      F_FW_CMD_REQUEST |
10662 				      F_FW_CMD_WRITE);
10663 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10664 
10665 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10666 	cmd.u.params.type = type;
10667 	cmd.u.params.level = level;
10668 	cmd.u.params.mode = mode;
10669 	cmd.u.params.ch = channel;
10670 	cmd.u.params.cl = cl;
10671 	cmd.u.params.unit = rateunit;
10672 	cmd.u.params.rate = ratemode;
10673 	cmd.u.params.min = cpu_to_be32(minrate);
10674 	cmd.u.params.max = cpu_to_be32(maxrate);
10675 	cmd.u.params.weight = cpu_to_be16(weight);
10676 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
10677 	cmd.u.params.burstsize = cpu_to_be16(burstsize);
10678 
10679 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10680 			       NULL, sleep_ok);
10681 }
10682 
10683 int t4_sched_params_ch_rl(struct adapter *adapter, int channel, int ratemode,
10684     unsigned int maxrate, int sleep_ok)
10685 {
10686 	struct fw_sched_cmd cmd;
10687 
10688 	memset(&cmd, 0, sizeof(cmd));
10689 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10690 				      F_FW_CMD_REQUEST |
10691 				      F_FW_CMD_WRITE);
10692 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10693 
10694 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10695 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
10696 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CH_RL;
10697 	cmd.u.params.ch = channel;
10698 	cmd.u.params.rate = ratemode;		/* REL or ABS */
10699 	cmd.u.params.max = cpu_to_be32(maxrate);/*  %  or kbps */
10700 
10701 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10702 			       NULL, sleep_ok);
10703 }
10704 
10705 int t4_sched_params_cl_wrr(struct adapter *adapter, int channel, int cl,
10706     int weight, int sleep_ok)
10707 {
10708 	struct fw_sched_cmd cmd;
10709 
10710 	if (weight < 0 || weight > 100)
10711 		return -EINVAL;
10712 
10713 	memset(&cmd, 0, sizeof(cmd));
10714 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10715 				      F_FW_CMD_REQUEST |
10716 				      F_FW_CMD_WRITE);
10717 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10718 
10719 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10720 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
10721 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_WRR;
10722 	cmd.u.params.ch = channel;
10723 	cmd.u.params.cl = cl;
10724 	cmd.u.params.weight = cpu_to_be16(weight);
10725 
10726 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10727 			       NULL, sleep_ok);
10728 }
10729 
10730 int t4_sched_params_cl_rl_kbps(struct adapter *adapter, int channel, int cl,
10731     int mode, unsigned int maxrate, int pktsize, int sleep_ok)
10732 {
10733 	struct fw_sched_cmd cmd;
10734 
10735 	memset(&cmd, 0, sizeof(cmd));
10736 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10737 				      F_FW_CMD_REQUEST |
10738 				      F_FW_CMD_WRITE);
10739 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10740 
10741 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10742 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
10743 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_RL;
10744 	cmd.u.params.mode = mode;
10745 	cmd.u.params.ch = channel;
10746 	cmd.u.params.cl = cl;
10747 	cmd.u.params.unit = FW_SCHED_PARAMS_UNIT_BITRATE;
10748 	cmd.u.params.rate = FW_SCHED_PARAMS_RATE_ABS;
10749 	cmd.u.params.max = cpu_to_be32(maxrate);
10750 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
10751 
10752 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10753 			       NULL, sleep_ok);
10754 }
10755 
10756 /*
10757  *	t4_config_watchdog - configure (enable/disable) a watchdog timer
10758  *	@adapter: the adapter
10759  * 	@mbox: mailbox to use for the FW command
10760  * 	@pf: the PF owning the queue
10761  * 	@vf: the VF owning the queue
10762  *	@timeout: watchdog timeout in ms
10763  *	@action: watchdog timer / action
10764  *
10765  *	There are separate watchdog timers for each possible watchdog
10766  *	action.  Configure one of the watchdog timers by setting a non-zero
10767  *	timeout.  Disable a watchdog timer by using a timeout of zero.
10768  */
10769 int t4_config_watchdog(struct adapter *adapter, unsigned int mbox,
10770 		       unsigned int pf, unsigned int vf,
10771 		       unsigned int timeout, unsigned int action)
10772 {
10773 	struct fw_watchdog_cmd wdog;
10774 	unsigned int ticks;
10775 
10776 	/*
10777 	 * The watchdog command expects a timeout in units of 10ms so we need
10778 	 * to convert it here (via rounding) and force a minimum of one 10ms
10779 	 * "tick" if the timeout is non-zero but the conversion results in 0
10780 	 * ticks.
10781 	 */
10782 	ticks = (timeout + 5)/10;
10783 	if (timeout && !ticks)
10784 		ticks = 1;
10785 
10786 	memset(&wdog, 0, sizeof wdog);
10787 	wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) |
10788 				     F_FW_CMD_REQUEST |
10789 				     F_FW_CMD_WRITE |
10790 				     V_FW_PARAMS_CMD_PFN(pf) |
10791 				     V_FW_PARAMS_CMD_VFN(vf));
10792 	wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog));
10793 	wdog.timeout = cpu_to_be32(ticks);
10794 	wdog.action = cpu_to_be32(action);
10795 
10796 	return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL);
10797 }
10798 
10799 int t4_get_devlog_level(struct adapter *adapter, unsigned int *level)
10800 {
10801 	struct fw_devlog_cmd devlog_cmd;
10802 	int ret;
10803 
10804 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
10805 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
10806 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
10807 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
10808 	ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
10809 			 sizeof(devlog_cmd), &devlog_cmd);
10810 	if (ret)
10811 		return ret;
10812 
10813 	*level = devlog_cmd.level;
10814 	return 0;
10815 }
10816 
10817 int t4_set_devlog_level(struct adapter *adapter, unsigned int level)
10818 {
10819 	struct fw_devlog_cmd devlog_cmd;
10820 
10821 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
10822 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
10823 					     F_FW_CMD_REQUEST |
10824 					     F_FW_CMD_WRITE);
10825 	devlog_cmd.level = level;
10826 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
10827 	return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
10828 			  sizeof(devlog_cmd), &devlog_cmd);
10829 }
10830