xref: /freebsd/sys/dev/cxgbe/common/t4_hw.c (revision 60fde7ce5d7bf5d94290720ea53db5701ab406a8)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2012, 2016 Chelsio Communications, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_inet.h"
33 
34 #include <sys/param.h>
35 #include <sys/eventhandler.h>
36 
37 #include "common.h"
38 #include "t4_regs.h"
39 #include "t4_regs_values.h"
40 #include "firmware/t4fw_interface.h"
41 
42 #undef msleep
43 #define msleep(x) do { \
44 	if (cold) \
45 		DELAY((x) * 1000); \
46 	else \
47 		pause("t4hw", (x) * hz / 1000); \
48 } while (0)
49 
50 /**
51  *	t4_wait_op_done_val - wait until an operation is completed
52  *	@adapter: the adapter performing the operation
53  *	@reg: the register to check for completion
54  *	@mask: a single-bit field within @reg that indicates completion
55  *	@polarity: the value of the field when the operation is completed
56  *	@attempts: number of check iterations
57  *	@delay: delay in usecs between iterations
58  *	@valp: where to store the value of the register at completion time
59  *
60  *	Wait until an operation is completed by checking a bit in a register
61  *	up to @attempts times.  If @valp is not NULL the value of the register
62  *	at the time it indicated completion is stored there.  Returns 0 if the
63  *	operation completes and	-EAGAIN	otherwise.
64  */
65 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
66 			       int polarity, int attempts, int delay, u32 *valp)
67 {
68 	while (1) {
69 		u32 val = t4_read_reg(adapter, reg);
70 
71 		if (!!(val & mask) == polarity) {
72 			if (valp)
73 				*valp = val;
74 			return 0;
75 		}
76 		if (--attempts == 0)
77 			return -EAGAIN;
78 		if (delay)
79 			udelay(delay);
80 	}
81 }
82 
83 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
84 				  int polarity, int attempts, int delay)
85 {
86 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
87 				   delay, NULL);
88 }
89 
90 /**
91  *	t4_set_reg_field - set a register field to a value
92  *	@adapter: the adapter to program
93  *	@addr: the register address
94  *	@mask: specifies the portion of the register to modify
95  *	@val: the new value for the register field
96  *
97  *	Sets a register field specified by the supplied mask to the
98  *	given value.
99  */
100 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
101 		      u32 val)
102 {
103 	u32 v = t4_read_reg(adapter, addr) & ~mask;
104 
105 	t4_write_reg(adapter, addr, v | val);
106 	(void) t4_read_reg(adapter, addr);      /* flush */
107 }
108 
109 /**
110  *	t4_read_indirect - read indirectly addressed registers
111  *	@adap: the adapter
112  *	@addr_reg: register holding the indirect address
113  *	@data_reg: register holding the value of the indirect register
114  *	@vals: where the read register values are stored
115  *	@nregs: how many indirect registers to read
116  *	@start_idx: index of first indirect register to read
117  *
118  *	Reads registers that are accessed indirectly through an address/data
119  *	register pair.
120  */
121 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
122 			     unsigned int data_reg, u32 *vals,
123 			     unsigned int nregs, unsigned int start_idx)
124 {
125 	while (nregs--) {
126 		t4_write_reg(adap, addr_reg, start_idx);
127 		*vals++ = t4_read_reg(adap, data_reg);
128 		start_idx++;
129 	}
130 }
131 
132 /**
133  *	t4_write_indirect - write indirectly addressed registers
134  *	@adap: the adapter
135  *	@addr_reg: register holding the indirect addresses
136  *	@data_reg: register holding the value for the indirect registers
137  *	@vals: values to write
138  *	@nregs: how many indirect registers to write
139  *	@start_idx: address of first indirect register to write
140  *
141  *	Writes a sequential block of registers that are accessed indirectly
142  *	through an address/data register pair.
143  */
144 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
145 		       unsigned int data_reg, const u32 *vals,
146 		       unsigned int nregs, unsigned int start_idx)
147 {
148 	while (nregs--) {
149 		t4_write_reg(adap, addr_reg, start_idx++);
150 		t4_write_reg(adap, data_reg, *vals++);
151 	}
152 }
153 
154 /*
155  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
156  * mechanism.  This guarantees that we get the real value even if we're
157  * operating within a Virtual Machine and the Hypervisor is trapping our
158  * Configuration Space accesses.
159  *
160  * N.B. This routine should only be used as a last resort: the firmware uses
161  *      the backdoor registers on a regular basis and we can end up
162  *      conflicting with it's uses!
163  */
164 u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
165 {
166 	u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg);
167 	u32 val;
168 
169 	if (chip_id(adap) <= CHELSIO_T5)
170 		req |= F_ENABLE;
171 	else
172 		req |= F_T6_ENABLE;
173 
174 	if (is_t4(adap))
175 		req |= F_LOCALCFG;
176 
177 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req);
178 	val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
179 
180 	/*
181 	 * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
182 	 * Configuration Space read.  (None of the other fields matter when
183 	 * F_ENABLE is 0 so a simple register write is easier than a
184 	 * read-modify-write via t4_set_reg_field().)
185 	 */
186 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0);
187 
188 	return val;
189 }
190 
191 /*
192  * t4_report_fw_error - report firmware error
193  * @adap: the adapter
194  *
195  * The adapter firmware can indicate error conditions to the host.
196  * If the firmware has indicated an error, print out the reason for
197  * the firmware error.
198  */
199 static void t4_report_fw_error(struct adapter *adap)
200 {
201 	static const char *const reason[] = {
202 		"Crash",			/* PCIE_FW_EVAL_CRASH */
203 		"During Device Preparation",	/* PCIE_FW_EVAL_PREP */
204 		"During Device Configuration",	/* PCIE_FW_EVAL_CONF */
205 		"During Device Initialization",	/* PCIE_FW_EVAL_INIT */
206 		"Unexpected Event",		/* PCIE_FW_EVAL_UNEXPECTEDEVENT */
207 		"Insufficient Airflow",		/* PCIE_FW_EVAL_OVERHEAT */
208 		"Device Shutdown",		/* PCIE_FW_EVAL_DEVICESHUTDOWN */
209 		"Reserved",			/* reserved */
210 	};
211 	u32 pcie_fw;
212 
213 	pcie_fw = t4_read_reg(adap, A_PCIE_FW);
214 	if (pcie_fw & F_PCIE_FW_ERR)
215 		CH_ERR(adap, "Firmware reports adapter error: %s\n",
216 			reason[G_PCIE_FW_EVAL(pcie_fw)]);
217 }
218 
219 /*
220  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
221  */
222 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
223 			 u32 mbox_addr)
224 {
225 	for ( ; nflit; nflit--, mbox_addr += 8)
226 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
227 }
228 
229 /*
230  * Handle a FW assertion reported in a mailbox.
231  */
232 static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt)
233 {
234 	CH_ALERT(adap,
235 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
236 		  asrt->u.assert.filename_0_7,
237 		  be32_to_cpu(asrt->u.assert.line),
238 		  be32_to_cpu(asrt->u.assert.x),
239 		  be32_to_cpu(asrt->u.assert.y));
240 }
241 
242 #define X_CIM_PF_NOACCESS 0xeeeeeeee
243 /**
244  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
245  *	@adap: the adapter
246  *	@mbox: index of the mailbox to use
247  *	@cmd: the command to write
248  *	@size: command length in bytes
249  *	@rpl: where to optionally store the reply
250  *	@sleep_ok: if true we may sleep while awaiting command completion
251  *	@timeout: time to wait for command to finish before timing out
252  *		(negative implies @sleep_ok=false)
253  *
254  *	Sends the given command to FW through the selected mailbox and waits
255  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
256  *	store the FW's reply to the command.  The command and its optional
257  *	reply are of the same length.  Some FW commands like RESET and
258  *	INITIALIZE can take a considerable amount of time to execute.
259  *	@sleep_ok determines whether we may sleep while awaiting the response.
260  *	If sleeping is allowed we use progressive backoff otherwise we spin.
261  *	Note that passing in a negative @timeout is an alternate mechanism
262  *	for specifying @sleep_ok=false.  This is useful when a higher level
263  *	interface allows for specification of @timeout but not @sleep_ok ...
264  *
265  *	The return value is 0 on success or a negative errno on failure.  A
266  *	failure can happen either because we are not able to execute the
267  *	command or FW executes it but signals an error.  In the latter case
268  *	the return value is the error code indicated by FW (negated).
269  */
270 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
271 			    int size, void *rpl, bool sleep_ok, int timeout)
272 {
273 	/*
274 	 * We delay in small increments at first in an effort to maintain
275 	 * responsiveness for simple, fast executing commands but then back
276 	 * off to larger delays to a maximum retry delay.
277 	 */
278 	static const int delay[] = {
279 		1, 1, 3, 5, 10, 10, 20, 50, 100
280 	};
281 	u32 v;
282 	u64 res;
283 	int i, ms, delay_idx, ret;
284 	const __be64 *p = cmd;
285 	u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
286 	u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
287 	u32 ctl;
288 	__be64 cmd_rpl[MBOX_LEN/8];
289 	u32 pcie_fw;
290 
291 	if (adap->flags & CHK_MBOX_ACCESS)
292 		ASSERT_SYNCHRONIZED_OP(adap);
293 
294 	if ((size & 15) || size > MBOX_LEN)
295 		return -EINVAL;
296 
297 	if (adap->flags & IS_VF) {
298 		if (is_t6(adap))
299 			data_reg = FW_T6VF_MBDATA_BASE_ADDR;
300 		else
301 			data_reg = FW_T4VF_MBDATA_BASE_ADDR;
302 		ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL);
303 	}
304 
305 	/*
306 	 * If we have a negative timeout, that implies that we can't sleep.
307 	 */
308 	if (timeout < 0) {
309 		sleep_ok = false;
310 		timeout = -timeout;
311 	}
312 
313 	/*
314 	 * Attempt to gain access to the mailbox.
315 	 */
316 	for (i = 0; i < 4; i++) {
317 		ctl = t4_read_reg(adap, ctl_reg);
318 		v = G_MBOWNER(ctl);
319 		if (v != X_MBOWNER_NONE)
320 			break;
321 	}
322 
323 	/*
324 	 * If we were unable to gain access, dequeue ourselves from the
325 	 * mailbox atomic access list and report the error to our caller.
326 	 */
327 	if (v != X_MBOWNER_PL) {
328 		t4_report_fw_error(adap);
329 		ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
330 		return ret;
331 	}
332 
333 	/*
334 	 * If we gain ownership of the mailbox and there's a "valid" message
335 	 * in it, this is likely an asynchronous error message from the
336 	 * firmware.  So we'll report that and then proceed on with attempting
337 	 * to issue our own command ... which may well fail if the error
338 	 * presaged the firmware crashing ...
339 	 */
340 	if (ctl & F_MBMSGVALID) {
341 		CH_ERR(adap, "found VALID command in mbox %u: %016llx %016llx "
342 		       "%016llx %016llx %016llx %016llx %016llx %016llx\n",
343 		       mbox, (unsigned long long)t4_read_reg64(adap, data_reg),
344 		       (unsigned long long)t4_read_reg64(adap, data_reg + 8),
345 		       (unsigned long long)t4_read_reg64(adap, data_reg + 16),
346 		       (unsigned long long)t4_read_reg64(adap, data_reg + 24),
347 		       (unsigned long long)t4_read_reg64(adap, data_reg + 32),
348 		       (unsigned long long)t4_read_reg64(adap, data_reg + 40),
349 		       (unsigned long long)t4_read_reg64(adap, data_reg + 48),
350 		       (unsigned long long)t4_read_reg64(adap, data_reg + 56));
351 	}
352 
353 	/*
354 	 * Copy in the new mailbox command and send it on its way ...
355 	 */
356 	for (i = 0; i < size; i += 8, p++)
357 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p));
358 
359 	if (adap->flags & IS_VF) {
360 		/*
361 		 * For the VFs, the Mailbox Data "registers" are
362 		 * actually backed by T4's "MA" interface rather than
363 		 * PL Registers (as is the case for the PFs).  Because
364 		 * these are in different coherency domains, the write
365 		 * to the VF's PL-register-backed Mailbox Control can
366 		 * race in front of the writes to the MA-backed VF
367 		 * Mailbox Data "registers".  So we need to do a
368 		 * read-back on at least one byte of the VF Mailbox
369 		 * Data registers before doing the write to the VF
370 		 * Mailbox Control register.
371 		 */
372 		t4_read_reg(adap, data_reg);
373 	}
374 
375 	CH_DUMP_MBOX(adap, mbox, data_reg);
376 
377 	t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
378 	t4_read_reg(adap, ctl_reg);	/* flush write */
379 
380 	delay_idx = 0;
381 	ms = delay[0];
382 
383 	/*
384 	 * Loop waiting for the reply; bail out if we time out or the firmware
385 	 * reports an error.
386 	 */
387 	pcie_fw = 0;
388 	for (i = 0; i < timeout; i += ms) {
389 		if (!(adap->flags & IS_VF)) {
390 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
391 			if (pcie_fw & F_PCIE_FW_ERR)
392 				break;
393 		}
394 		if (sleep_ok) {
395 			ms = delay[delay_idx];  /* last element may repeat */
396 			if (delay_idx < ARRAY_SIZE(delay) - 1)
397 				delay_idx++;
398 			msleep(ms);
399 		} else {
400 			mdelay(ms);
401 		}
402 
403 		v = t4_read_reg(adap, ctl_reg);
404 		if (v == X_CIM_PF_NOACCESS)
405 			continue;
406 		if (G_MBOWNER(v) == X_MBOWNER_PL) {
407 			if (!(v & F_MBMSGVALID)) {
408 				t4_write_reg(adap, ctl_reg,
409 					     V_MBOWNER(X_MBOWNER_NONE));
410 				continue;
411 			}
412 
413 			/*
414 			 * Retrieve the command reply and release the mailbox.
415 			 */
416 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg);
417 			t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
418 
419 			CH_DUMP_MBOX(adap, mbox, data_reg);
420 
421 			res = be64_to_cpu(cmd_rpl[0]);
422 			if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
423 				fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl);
424 				res = V_FW_CMD_RETVAL(EIO);
425 			} else if (rpl)
426 				memcpy(rpl, cmd_rpl, size);
427 			return -G_FW_CMD_RETVAL((int)res);
428 		}
429 	}
430 
431 	/*
432 	 * We timed out waiting for a reply to our mailbox command.  Report
433 	 * the error and also check to see if the firmware reported any
434 	 * errors ...
435 	 */
436 	ret = (pcie_fw & F_PCIE_FW_ERR) ? -ENXIO : -ETIMEDOUT;
437 	CH_ERR(adap, "command %#x in mailbox %d timed out\n",
438 	       *(const u8 *)cmd, mbox);
439 
440 	/* If DUMP_MBOX is set the mbox has already been dumped */
441 	if ((adap->debug_flags & DF_DUMP_MBOX) == 0) {
442 		p = cmd;
443 		CH_ERR(adap, "mbox: %016llx %016llx %016llx %016llx "
444 		    "%016llx %016llx %016llx %016llx\n",
445 		    (unsigned long long)be64_to_cpu(p[0]),
446 		    (unsigned long long)be64_to_cpu(p[1]),
447 		    (unsigned long long)be64_to_cpu(p[2]),
448 		    (unsigned long long)be64_to_cpu(p[3]),
449 		    (unsigned long long)be64_to_cpu(p[4]),
450 		    (unsigned long long)be64_to_cpu(p[5]),
451 		    (unsigned long long)be64_to_cpu(p[6]),
452 		    (unsigned long long)be64_to_cpu(p[7]));
453 	}
454 
455 	t4_report_fw_error(adap);
456 	t4_fatal_err(adap);
457 	return ret;
458 }
459 
460 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
461 		    void *rpl, bool sleep_ok)
462 {
463 		return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl,
464 					       sleep_ok, FW_CMD_MAX_TIMEOUT);
465 
466 }
467 
468 static int t4_edc_err_read(struct adapter *adap, int idx)
469 {
470 	u32 edc_ecc_err_addr_reg;
471 	u32 edc_bist_status_rdata_reg;
472 
473 	if (is_t4(adap)) {
474 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
475 		return 0;
476 	}
477 	if (idx != MEM_EDC0 && idx != MEM_EDC1) {
478 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
479 		return 0;
480 	}
481 
482 	edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx);
483 	edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx);
484 
485 	CH_WARN(adap,
486 		"edc%d err addr 0x%x: 0x%x.\n",
487 		idx, edc_ecc_err_addr_reg,
488 		t4_read_reg(adap, edc_ecc_err_addr_reg));
489 	CH_WARN(adap,
490 	 	"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
491 		edc_bist_status_rdata_reg,
492 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg),
493 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8),
494 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16),
495 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24),
496 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32),
497 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40),
498 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48),
499 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56),
500 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64));
501 
502 	return 0;
503 }
504 
505 /**
506  *	t4_mc_read - read from MC through backdoor accesses
507  *	@adap: the adapter
508  *	@idx: which MC to access
509  *	@addr: address of first byte requested
510  *	@data: 64 bytes of data containing the requested address
511  *	@ecc: where to store the corresponding 64-bit ECC word
512  *
513  *	Read 64 bytes of data from MC starting at a 64-byte-aligned address
514  *	that covers the requested address @addr.  If @parity is not %NULL it
515  *	is assigned the 64-bit ECC word for the read data.
516  */
517 int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
518 {
519 	int i;
520 	u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
521 	u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
522 
523 	if (is_t4(adap)) {
524 		mc_bist_cmd_reg = A_MC_BIST_CMD;
525 		mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
526 		mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
527 		mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
528 		mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
529 	} else {
530 		mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
531 		mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
532 		mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
533 		mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA,
534 						  idx);
535 		mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN,
536 						  idx);
537 	}
538 
539 	if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
540 		return -EBUSY;
541 	t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
542 	t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
543 	t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
544 	t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
545 		     F_START_BIST | V_BIST_CMD_GAP(1));
546 	i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
547 	if (i)
548 		return i;
549 
550 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
551 
552 	for (i = 15; i >= 0; i--)
553 		*data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
554 	if (ecc)
555 		*ecc = t4_read_reg64(adap, MC_DATA(16));
556 #undef MC_DATA
557 	return 0;
558 }
559 
560 /**
561  *	t4_edc_read - read from EDC through backdoor accesses
562  *	@adap: the adapter
563  *	@idx: which EDC to access
564  *	@addr: address of first byte requested
565  *	@data: 64 bytes of data containing the requested address
566  *	@ecc: where to store the corresponding 64-bit ECC word
567  *
568  *	Read 64 bytes of data from EDC starting at a 64-byte-aligned address
569  *	that covers the requested address @addr.  If @parity is not %NULL it
570  *	is assigned the 64-bit ECC word for the read data.
571  */
572 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
573 {
574 	int i;
575 	u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
576 	u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
577 
578 	if (is_t4(adap)) {
579 		edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
580 		edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
581 		edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
582 		edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
583 						    idx);
584 		edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
585 						    idx);
586 	} else {
587 /*
588  * These macro are missing in t4_regs.h file.
589  * Added temporarily for testing.
590  */
591 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
592 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
593 		edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx);
594 		edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx);
595 		edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx);
596 		edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN,
597 						    idx);
598 		edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA,
599 						    idx);
600 #undef EDC_REG_T5
601 #undef EDC_STRIDE_T5
602 	}
603 
604 	if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
605 		return -EBUSY;
606 	t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
607 	t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
608 	t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
609 	t4_write_reg(adap, edc_bist_cmd_reg,
610 		     V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
611 	i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
612 	if (i)
613 		return i;
614 
615 #define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
616 
617 	for (i = 15; i >= 0; i--)
618 		*data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
619 	if (ecc)
620 		*ecc = t4_read_reg64(adap, EDC_DATA(16));
621 #undef EDC_DATA
622 	return 0;
623 }
624 
625 /**
626  *	t4_mem_read - read EDC 0, EDC 1 or MC into buffer
627  *	@adap: the adapter
628  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
629  *	@addr: address within indicated memory type
630  *	@len: amount of memory to read
631  *	@buf: host memory buffer
632  *
633  *	Reads an [almost] arbitrary memory region in the firmware: the
634  *	firmware memory address, length and host buffer must be aligned on
635  *	32-bit boudaries.  The memory is returned as a raw byte sequence from
636  *	the firmware's memory.  If this memory contains data structures which
637  *	contain multi-byte integers, it's the callers responsibility to
638  *	perform appropriate byte order conversions.
639  */
640 int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
641 		__be32 *buf)
642 {
643 	u32 pos, start, end, offset;
644 	int ret;
645 
646 	/*
647 	 * Argument sanity checks ...
648 	 */
649 	if ((addr & 0x3) || (len & 0x3))
650 		return -EINVAL;
651 
652 	/*
653 	 * The underlaying EDC/MC read routines read 64 bytes at a time so we
654 	 * need to round down the start and round up the end.  We'll start
655 	 * copying out of the first line at (addr - start) a word at a time.
656 	 */
657 	start = rounddown2(addr, 64);
658 	end = roundup2(addr + len, 64);
659 	offset = (addr - start)/sizeof(__be32);
660 
661 	for (pos = start; pos < end; pos += 64, offset = 0) {
662 		__be32 data[16];
663 
664 		/*
665 		 * Read the chip's memory block and bail if there's an error.
666 		 */
667 		if ((mtype == MEM_MC) || (mtype == MEM_MC1))
668 			ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
669 		else
670 			ret = t4_edc_read(adap, mtype, pos, data, NULL);
671 		if (ret)
672 			return ret;
673 
674 		/*
675 		 * Copy the data into the caller's memory buffer.
676 		 */
677 		while (offset < 16 && len > 0) {
678 			*buf++ = data[offset++];
679 			len -= sizeof(__be32);
680 		}
681 	}
682 
683 	return 0;
684 }
685 
686 /*
687  * Return the specified PCI-E Configuration Space register from our Physical
688  * Function.  We try first via a Firmware LDST Command (if fw_attach != 0)
689  * since we prefer to let the firmware own all of these registers, but if that
690  * fails we go for it directly ourselves.
691  */
692 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach)
693 {
694 
695 	/*
696 	 * If fw_attach != 0, construct and send the Firmware LDST Command to
697 	 * retrieve the specified PCI-E Configuration Space register.
698 	 */
699 	if (drv_fw_attach != 0) {
700 		struct fw_ldst_cmd ldst_cmd;
701 		int ret;
702 
703 		memset(&ldst_cmd, 0, sizeof(ldst_cmd));
704 		ldst_cmd.op_to_addrspace =
705 			cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
706 				    F_FW_CMD_REQUEST |
707 				    F_FW_CMD_READ |
708 				    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
709 		ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
710 		ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1);
711 		ldst_cmd.u.pcie.ctrl_to_fn =
712 			(F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf));
713 		ldst_cmd.u.pcie.r = reg;
714 
715 		/*
716 		 * If the LDST Command succeeds, return the result, otherwise
717 		 * fall through to reading it directly ourselves ...
718 		 */
719 		ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
720 				 &ldst_cmd);
721 		if (ret == 0)
722 			return be32_to_cpu(ldst_cmd.u.pcie.data[0]);
723 
724 		CH_WARN(adap, "Firmware failed to return "
725 			"Configuration Space register %d, err = %d\n",
726 			reg, -ret);
727 	}
728 
729 	/*
730 	 * Read the desired Configuration Space register via the PCI-E
731 	 * Backdoor mechanism.
732 	 */
733 	return t4_hw_pci_read_cfg4(adap, reg);
734 }
735 
736 /**
737  *	t4_get_regs_len - return the size of the chips register set
738  *	@adapter: the adapter
739  *
740  *	Returns the size of the chip's BAR0 register space.
741  */
742 unsigned int t4_get_regs_len(struct adapter *adapter)
743 {
744 	unsigned int chip_version = chip_id(adapter);
745 
746 	switch (chip_version) {
747 	case CHELSIO_T4:
748 		if (adapter->flags & IS_VF)
749 			return FW_T4VF_REGMAP_SIZE;
750 		return T4_REGMAP_SIZE;
751 
752 	case CHELSIO_T5:
753 	case CHELSIO_T6:
754 		if (adapter->flags & IS_VF)
755 			return FW_T4VF_REGMAP_SIZE;
756 		return T5_REGMAP_SIZE;
757 	}
758 
759 	CH_ERR(adapter,
760 		"Unsupported chip version %d\n", chip_version);
761 	return 0;
762 }
763 
764 /**
765  *	t4_get_regs - read chip registers into provided buffer
766  *	@adap: the adapter
767  *	@buf: register buffer
768  *	@buf_size: size (in bytes) of register buffer
769  *
770  *	If the provided register buffer isn't large enough for the chip's
771  *	full register range, the register dump will be truncated to the
772  *	register buffer's size.
773  */
774 void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size)
775 {
776 	static const unsigned int t4_reg_ranges[] = {
777 		0x1008, 0x1108,
778 		0x1180, 0x1184,
779 		0x1190, 0x1194,
780 		0x11a0, 0x11a4,
781 		0x11b0, 0x11b4,
782 		0x11fc, 0x123c,
783 		0x1300, 0x173c,
784 		0x1800, 0x18fc,
785 		0x3000, 0x30d8,
786 		0x30e0, 0x30e4,
787 		0x30ec, 0x5910,
788 		0x5920, 0x5924,
789 		0x5960, 0x5960,
790 		0x5968, 0x5968,
791 		0x5970, 0x5970,
792 		0x5978, 0x5978,
793 		0x5980, 0x5980,
794 		0x5988, 0x5988,
795 		0x5990, 0x5990,
796 		0x5998, 0x5998,
797 		0x59a0, 0x59d4,
798 		0x5a00, 0x5ae0,
799 		0x5ae8, 0x5ae8,
800 		0x5af0, 0x5af0,
801 		0x5af8, 0x5af8,
802 		0x6000, 0x6098,
803 		0x6100, 0x6150,
804 		0x6200, 0x6208,
805 		0x6240, 0x6248,
806 		0x6280, 0x62b0,
807 		0x62c0, 0x6338,
808 		0x6370, 0x638c,
809 		0x6400, 0x643c,
810 		0x6500, 0x6524,
811 		0x6a00, 0x6a04,
812 		0x6a14, 0x6a38,
813 		0x6a60, 0x6a70,
814 		0x6a78, 0x6a78,
815 		0x6b00, 0x6b0c,
816 		0x6b1c, 0x6b84,
817 		0x6bf0, 0x6bf8,
818 		0x6c00, 0x6c0c,
819 		0x6c1c, 0x6c84,
820 		0x6cf0, 0x6cf8,
821 		0x6d00, 0x6d0c,
822 		0x6d1c, 0x6d84,
823 		0x6df0, 0x6df8,
824 		0x6e00, 0x6e0c,
825 		0x6e1c, 0x6e84,
826 		0x6ef0, 0x6ef8,
827 		0x6f00, 0x6f0c,
828 		0x6f1c, 0x6f84,
829 		0x6ff0, 0x6ff8,
830 		0x7000, 0x700c,
831 		0x701c, 0x7084,
832 		0x70f0, 0x70f8,
833 		0x7100, 0x710c,
834 		0x711c, 0x7184,
835 		0x71f0, 0x71f8,
836 		0x7200, 0x720c,
837 		0x721c, 0x7284,
838 		0x72f0, 0x72f8,
839 		0x7300, 0x730c,
840 		0x731c, 0x7384,
841 		0x73f0, 0x73f8,
842 		0x7400, 0x7450,
843 		0x7500, 0x7530,
844 		0x7600, 0x760c,
845 		0x7614, 0x761c,
846 		0x7680, 0x76cc,
847 		0x7700, 0x7798,
848 		0x77c0, 0x77fc,
849 		0x7900, 0x79fc,
850 		0x7b00, 0x7b58,
851 		0x7b60, 0x7b84,
852 		0x7b8c, 0x7c38,
853 		0x7d00, 0x7d38,
854 		0x7d40, 0x7d80,
855 		0x7d8c, 0x7ddc,
856 		0x7de4, 0x7e04,
857 		0x7e10, 0x7e1c,
858 		0x7e24, 0x7e38,
859 		0x7e40, 0x7e44,
860 		0x7e4c, 0x7e78,
861 		0x7e80, 0x7ea4,
862 		0x7eac, 0x7edc,
863 		0x7ee8, 0x7efc,
864 		0x8dc0, 0x8e04,
865 		0x8e10, 0x8e1c,
866 		0x8e30, 0x8e78,
867 		0x8ea0, 0x8eb8,
868 		0x8ec0, 0x8f6c,
869 		0x8fc0, 0x9008,
870 		0x9010, 0x9058,
871 		0x9060, 0x9060,
872 		0x9068, 0x9074,
873 		0x90fc, 0x90fc,
874 		0x9400, 0x9408,
875 		0x9410, 0x9458,
876 		0x9600, 0x9600,
877 		0x9608, 0x9638,
878 		0x9640, 0x96bc,
879 		0x9800, 0x9808,
880 		0x9820, 0x983c,
881 		0x9850, 0x9864,
882 		0x9c00, 0x9c6c,
883 		0x9c80, 0x9cec,
884 		0x9d00, 0x9d6c,
885 		0x9d80, 0x9dec,
886 		0x9e00, 0x9e6c,
887 		0x9e80, 0x9eec,
888 		0x9f00, 0x9f6c,
889 		0x9f80, 0x9fec,
890 		0xd004, 0xd004,
891 		0xd010, 0xd03c,
892 		0xdfc0, 0xdfe0,
893 		0xe000, 0xea7c,
894 		0xf000, 0x11110,
895 		0x11118, 0x11190,
896 		0x19040, 0x1906c,
897 		0x19078, 0x19080,
898 		0x1908c, 0x190e4,
899 		0x190f0, 0x190f8,
900 		0x19100, 0x19110,
901 		0x19120, 0x19124,
902 		0x19150, 0x19194,
903 		0x1919c, 0x191b0,
904 		0x191d0, 0x191e8,
905 		0x19238, 0x1924c,
906 		0x193f8, 0x1943c,
907 		0x1944c, 0x19474,
908 		0x19490, 0x194e0,
909 		0x194f0, 0x194f8,
910 		0x19800, 0x19c08,
911 		0x19c10, 0x19c90,
912 		0x19ca0, 0x19ce4,
913 		0x19cf0, 0x19d40,
914 		0x19d50, 0x19d94,
915 		0x19da0, 0x19de8,
916 		0x19df0, 0x19e40,
917 		0x19e50, 0x19e90,
918 		0x19ea0, 0x19f4c,
919 		0x1a000, 0x1a004,
920 		0x1a010, 0x1a06c,
921 		0x1a0b0, 0x1a0e4,
922 		0x1a0ec, 0x1a0f4,
923 		0x1a100, 0x1a108,
924 		0x1a114, 0x1a120,
925 		0x1a128, 0x1a130,
926 		0x1a138, 0x1a138,
927 		0x1a190, 0x1a1c4,
928 		0x1a1fc, 0x1a1fc,
929 		0x1e040, 0x1e04c,
930 		0x1e284, 0x1e28c,
931 		0x1e2c0, 0x1e2c0,
932 		0x1e2e0, 0x1e2e0,
933 		0x1e300, 0x1e384,
934 		0x1e3c0, 0x1e3c8,
935 		0x1e440, 0x1e44c,
936 		0x1e684, 0x1e68c,
937 		0x1e6c0, 0x1e6c0,
938 		0x1e6e0, 0x1e6e0,
939 		0x1e700, 0x1e784,
940 		0x1e7c0, 0x1e7c8,
941 		0x1e840, 0x1e84c,
942 		0x1ea84, 0x1ea8c,
943 		0x1eac0, 0x1eac0,
944 		0x1eae0, 0x1eae0,
945 		0x1eb00, 0x1eb84,
946 		0x1ebc0, 0x1ebc8,
947 		0x1ec40, 0x1ec4c,
948 		0x1ee84, 0x1ee8c,
949 		0x1eec0, 0x1eec0,
950 		0x1eee0, 0x1eee0,
951 		0x1ef00, 0x1ef84,
952 		0x1efc0, 0x1efc8,
953 		0x1f040, 0x1f04c,
954 		0x1f284, 0x1f28c,
955 		0x1f2c0, 0x1f2c0,
956 		0x1f2e0, 0x1f2e0,
957 		0x1f300, 0x1f384,
958 		0x1f3c0, 0x1f3c8,
959 		0x1f440, 0x1f44c,
960 		0x1f684, 0x1f68c,
961 		0x1f6c0, 0x1f6c0,
962 		0x1f6e0, 0x1f6e0,
963 		0x1f700, 0x1f784,
964 		0x1f7c0, 0x1f7c8,
965 		0x1f840, 0x1f84c,
966 		0x1fa84, 0x1fa8c,
967 		0x1fac0, 0x1fac0,
968 		0x1fae0, 0x1fae0,
969 		0x1fb00, 0x1fb84,
970 		0x1fbc0, 0x1fbc8,
971 		0x1fc40, 0x1fc4c,
972 		0x1fe84, 0x1fe8c,
973 		0x1fec0, 0x1fec0,
974 		0x1fee0, 0x1fee0,
975 		0x1ff00, 0x1ff84,
976 		0x1ffc0, 0x1ffc8,
977 		0x20000, 0x2002c,
978 		0x20100, 0x2013c,
979 		0x20190, 0x201a0,
980 		0x201a8, 0x201b8,
981 		0x201c4, 0x201c8,
982 		0x20200, 0x20318,
983 		0x20400, 0x204b4,
984 		0x204c0, 0x20528,
985 		0x20540, 0x20614,
986 		0x21000, 0x21040,
987 		0x2104c, 0x21060,
988 		0x210c0, 0x210ec,
989 		0x21200, 0x21268,
990 		0x21270, 0x21284,
991 		0x212fc, 0x21388,
992 		0x21400, 0x21404,
993 		0x21500, 0x21500,
994 		0x21510, 0x21518,
995 		0x2152c, 0x21530,
996 		0x2153c, 0x2153c,
997 		0x21550, 0x21554,
998 		0x21600, 0x21600,
999 		0x21608, 0x2161c,
1000 		0x21624, 0x21628,
1001 		0x21630, 0x21634,
1002 		0x2163c, 0x2163c,
1003 		0x21700, 0x2171c,
1004 		0x21780, 0x2178c,
1005 		0x21800, 0x21818,
1006 		0x21820, 0x21828,
1007 		0x21830, 0x21848,
1008 		0x21850, 0x21854,
1009 		0x21860, 0x21868,
1010 		0x21870, 0x21870,
1011 		0x21878, 0x21898,
1012 		0x218a0, 0x218a8,
1013 		0x218b0, 0x218c8,
1014 		0x218d0, 0x218d4,
1015 		0x218e0, 0x218e8,
1016 		0x218f0, 0x218f0,
1017 		0x218f8, 0x21a18,
1018 		0x21a20, 0x21a28,
1019 		0x21a30, 0x21a48,
1020 		0x21a50, 0x21a54,
1021 		0x21a60, 0x21a68,
1022 		0x21a70, 0x21a70,
1023 		0x21a78, 0x21a98,
1024 		0x21aa0, 0x21aa8,
1025 		0x21ab0, 0x21ac8,
1026 		0x21ad0, 0x21ad4,
1027 		0x21ae0, 0x21ae8,
1028 		0x21af0, 0x21af0,
1029 		0x21af8, 0x21c18,
1030 		0x21c20, 0x21c20,
1031 		0x21c28, 0x21c30,
1032 		0x21c38, 0x21c38,
1033 		0x21c80, 0x21c98,
1034 		0x21ca0, 0x21ca8,
1035 		0x21cb0, 0x21cc8,
1036 		0x21cd0, 0x21cd4,
1037 		0x21ce0, 0x21ce8,
1038 		0x21cf0, 0x21cf0,
1039 		0x21cf8, 0x21d7c,
1040 		0x21e00, 0x21e04,
1041 		0x22000, 0x2202c,
1042 		0x22100, 0x2213c,
1043 		0x22190, 0x221a0,
1044 		0x221a8, 0x221b8,
1045 		0x221c4, 0x221c8,
1046 		0x22200, 0x22318,
1047 		0x22400, 0x224b4,
1048 		0x224c0, 0x22528,
1049 		0x22540, 0x22614,
1050 		0x23000, 0x23040,
1051 		0x2304c, 0x23060,
1052 		0x230c0, 0x230ec,
1053 		0x23200, 0x23268,
1054 		0x23270, 0x23284,
1055 		0x232fc, 0x23388,
1056 		0x23400, 0x23404,
1057 		0x23500, 0x23500,
1058 		0x23510, 0x23518,
1059 		0x2352c, 0x23530,
1060 		0x2353c, 0x2353c,
1061 		0x23550, 0x23554,
1062 		0x23600, 0x23600,
1063 		0x23608, 0x2361c,
1064 		0x23624, 0x23628,
1065 		0x23630, 0x23634,
1066 		0x2363c, 0x2363c,
1067 		0x23700, 0x2371c,
1068 		0x23780, 0x2378c,
1069 		0x23800, 0x23818,
1070 		0x23820, 0x23828,
1071 		0x23830, 0x23848,
1072 		0x23850, 0x23854,
1073 		0x23860, 0x23868,
1074 		0x23870, 0x23870,
1075 		0x23878, 0x23898,
1076 		0x238a0, 0x238a8,
1077 		0x238b0, 0x238c8,
1078 		0x238d0, 0x238d4,
1079 		0x238e0, 0x238e8,
1080 		0x238f0, 0x238f0,
1081 		0x238f8, 0x23a18,
1082 		0x23a20, 0x23a28,
1083 		0x23a30, 0x23a48,
1084 		0x23a50, 0x23a54,
1085 		0x23a60, 0x23a68,
1086 		0x23a70, 0x23a70,
1087 		0x23a78, 0x23a98,
1088 		0x23aa0, 0x23aa8,
1089 		0x23ab0, 0x23ac8,
1090 		0x23ad0, 0x23ad4,
1091 		0x23ae0, 0x23ae8,
1092 		0x23af0, 0x23af0,
1093 		0x23af8, 0x23c18,
1094 		0x23c20, 0x23c20,
1095 		0x23c28, 0x23c30,
1096 		0x23c38, 0x23c38,
1097 		0x23c80, 0x23c98,
1098 		0x23ca0, 0x23ca8,
1099 		0x23cb0, 0x23cc8,
1100 		0x23cd0, 0x23cd4,
1101 		0x23ce0, 0x23ce8,
1102 		0x23cf0, 0x23cf0,
1103 		0x23cf8, 0x23d7c,
1104 		0x23e00, 0x23e04,
1105 		0x24000, 0x2402c,
1106 		0x24100, 0x2413c,
1107 		0x24190, 0x241a0,
1108 		0x241a8, 0x241b8,
1109 		0x241c4, 0x241c8,
1110 		0x24200, 0x24318,
1111 		0x24400, 0x244b4,
1112 		0x244c0, 0x24528,
1113 		0x24540, 0x24614,
1114 		0x25000, 0x25040,
1115 		0x2504c, 0x25060,
1116 		0x250c0, 0x250ec,
1117 		0x25200, 0x25268,
1118 		0x25270, 0x25284,
1119 		0x252fc, 0x25388,
1120 		0x25400, 0x25404,
1121 		0x25500, 0x25500,
1122 		0x25510, 0x25518,
1123 		0x2552c, 0x25530,
1124 		0x2553c, 0x2553c,
1125 		0x25550, 0x25554,
1126 		0x25600, 0x25600,
1127 		0x25608, 0x2561c,
1128 		0x25624, 0x25628,
1129 		0x25630, 0x25634,
1130 		0x2563c, 0x2563c,
1131 		0x25700, 0x2571c,
1132 		0x25780, 0x2578c,
1133 		0x25800, 0x25818,
1134 		0x25820, 0x25828,
1135 		0x25830, 0x25848,
1136 		0x25850, 0x25854,
1137 		0x25860, 0x25868,
1138 		0x25870, 0x25870,
1139 		0x25878, 0x25898,
1140 		0x258a0, 0x258a8,
1141 		0x258b0, 0x258c8,
1142 		0x258d0, 0x258d4,
1143 		0x258e0, 0x258e8,
1144 		0x258f0, 0x258f0,
1145 		0x258f8, 0x25a18,
1146 		0x25a20, 0x25a28,
1147 		0x25a30, 0x25a48,
1148 		0x25a50, 0x25a54,
1149 		0x25a60, 0x25a68,
1150 		0x25a70, 0x25a70,
1151 		0x25a78, 0x25a98,
1152 		0x25aa0, 0x25aa8,
1153 		0x25ab0, 0x25ac8,
1154 		0x25ad0, 0x25ad4,
1155 		0x25ae0, 0x25ae8,
1156 		0x25af0, 0x25af0,
1157 		0x25af8, 0x25c18,
1158 		0x25c20, 0x25c20,
1159 		0x25c28, 0x25c30,
1160 		0x25c38, 0x25c38,
1161 		0x25c80, 0x25c98,
1162 		0x25ca0, 0x25ca8,
1163 		0x25cb0, 0x25cc8,
1164 		0x25cd0, 0x25cd4,
1165 		0x25ce0, 0x25ce8,
1166 		0x25cf0, 0x25cf0,
1167 		0x25cf8, 0x25d7c,
1168 		0x25e00, 0x25e04,
1169 		0x26000, 0x2602c,
1170 		0x26100, 0x2613c,
1171 		0x26190, 0x261a0,
1172 		0x261a8, 0x261b8,
1173 		0x261c4, 0x261c8,
1174 		0x26200, 0x26318,
1175 		0x26400, 0x264b4,
1176 		0x264c0, 0x26528,
1177 		0x26540, 0x26614,
1178 		0x27000, 0x27040,
1179 		0x2704c, 0x27060,
1180 		0x270c0, 0x270ec,
1181 		0x27200, 0x27268,
1182 		0x27270, 0x27284,
1183 		0x272fc, 0x27388,
1184 		0x27400, 0x27404,
1185 		0x27500, 0x27500,
1186 		0x27510, 0x27518,
1187 		0x2752c, 0x27530,
1188 		0x2753c, 0x2753c,
1189 		0x27550, 0x27554,
1190 		0x27600, 0x27600,
1191 		0x27608, 0x2761c,
1192 		0x27624, 0x27628,
1193 		0x27630, 0x27634,
1194 		0x2763c, 0x2763c,
1195 		0x27700, 0x2771c,
1196 		0x27780, 0x2778c,
1197 		0x27800, 0x27818,
1198 		0x27820, 0x27828,
1199 		0x27830, 0x27848,
1200 		0x27850, 0x27854,
1201 		0x27860, 0x27868,
1202 		0x27870, 0x27870,
1203 		0x27878, 0x27898,
1204 		0x278a0, 0x278a8,
1205 		0x278b0, 0x278c8,
1206 		0x278d0, 0x278d4,
1207 		0x278e0, 0x278e8,
1208 		0x278f0, 0x278f0,
1209 		0x278f8, 0x27a18,
1210 		0x27a20, 0x27a28,
1211 		0x27a30, 0x27a48,
1212 		0x27a50, 0x27a54,
1213 		0x27a60, 0x27a68,
1214 		0x27a70, 0x27a70,
1215 		0x27a78, 0x27a98,
1216 		0x27aa0, 0x27aa8,
1217 		0x27ab0, 0x27ac8,
1218 		0x27ad0, 0x27ad4,
1219 		0x27ae0, 0x27ae8,
1220 		0x27af0, 0x27af0,
1221 		0x27af8, 0x27c18,
1222 		0x27c20, 0x27c20,
1223 		0x27c28, 0x27c30,
1224 		0x27c38, 0x27c38,
1225 		0x27c80, 0x27c98,
1226 		0x27ca0, 0x27ca8,
1227 		0x27cb0, 0x27cc8,
1228 		0x27cd0, 0x27cd4,
1229 		0x27ce0, 0x27ce8,
1230 		0x27cf0, 0x27cf0,
1231 		0x27cf8, 0x27d7c,
1232 		0x27e00, 0x27e04,
1233 	};
1234 
1235 	static const unsigned int t4vf_reg_ranges[] = {
1236 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
1237 		VF_MPS_REG(A_MPS_VF_CTL),
1238 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
1239 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI),
1240 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
1241 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
1242 		FW_T4VF_MBDATA_BASE_ADDR,
1243 		FW_T4VF_MBDATA_BASE_ADDR +
1244 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
1245 	};
1246 
1247 	static const unsigned int t5_reg_ranges[] = {
1248 		0x1008, 0x10c0,
1249 		0x10cc, 0x10f8,
1250 		0x1100, 0x1100,
1251 		0x110c, 0x1148,
1252 		0x1180, 0x1184,
1253 		0x1190, 0x1194,
1254 		0x11a0, 0x11a4,
1255 		0x11b0, 0x11b4,
1256 		0x11fc, 0x123c,
1257 		0x1280, 0x173c,
1258 		0x1800, 0x18fc,
1259 		0x3000, 0x3028,
1260 		0x3060, 0x30b0,
1261 		0x30b8, 0x30d8,
1262 		0x30e0, 0x30fc,
1263 		0x3140, 0x357c,
1264 		0x35a8, 0x35cc,
1265 		0x35ec, 0x35ec,
1266 		0x3600, 0x5624,
1267 		0x56cc, 0x56ec,
1268 		0x56f4, 0x5720,
1269 		0x5728, 0x575c,
1270 		0x580c, 0x5814,
1271 		0x5890, 0x589c,
1272 		0x58a4, 0x58ac,
1273 		0x58b8, 0x58bc,
1274 		0x5940, 0x59c8,
1275 		0x59d0, 0x59dc,
1276 		0x59fc, 0x5a18,
1277 		0x5a60, 0x5a70,
1278 		0x5a80, 0x5a9c,
1279 		0x5b94, 0x5bfc,
1280 		0x6000, 0x6020,
1281 		0x6028, 0x6040,
1282 		0x6058, 0x609c,
1283 		0x60a8, 0x614c,
1284 		0x7700, 0x7798,
1285 		0x77c0, 0x78fc,
1286 		0x7b00, 0x7b58,
1287 		0x7b60, 0x7b84,
1288 		0x7b8c, 0x7c54,
1289 		0x7d00, 0x7d38,
1290 		0x7d40, 0x7d80,
1291 		0x7d8c, 0x7ddc,
1292 		0x7de4, 0x7e04,
1293 		0x7e10, 0x7e1c,
1294 		0x7e24, 0x7e38,
1295 		0x7e40, 0x7e44,
1296 		0x7e4c, 0x7e78,
1297 		0x7e80, 0x7edc,
1298 		0x7ee8, 0x7efc,
1299 		0x8dc0, 0x8de0,
1300 		0x8df8, 0x8e04,
1301 		0x8e10, 0x8e84,
1302 		0x8ea0, 0x8f84,
1303 		0x8fc0, 0x9058,
1304 		0x9060, 0x9060,
1305 		0x9068, 0x90f8,
1306 		0x9400, 0x9408,
1307 		0x9410, 0x9470,
1308 		0x9600, 0x9600,
1309 		0x9608, 0x9638,
1310 		0x9640, 0x96f4,
1311 		0x9800, 0x9808,
1312 		0x9820, 0x983c,
1313 		0x9850, 0x9864,
1314 		0x9c00, 0x9c6c,
1315 		0x9c80, 0x9cec,
1316 		0x9d00, 0x9d6c,
1317 		0x9d80, 0x9dec,
1318 		0x9e00, 0x9e6c,
1319 		0x9e80, 0x9eec,
1320 		0x9f00, 0x9f6c,
1321 		0x9f80, 0xa020,
1322 		0xd004, 0xd004,
1323 		0xd010, 0xd03c,
1324 		0xdfc0, 0xdfe0,
1325 		0xe000, 0x1106c,
1326 		0x11074, 0x11088,
1327 		0x1109c, 0x1117c,
1328 		0x11190, 0x11204,
1329 		0x19040, 0x1906c,
1330 		0x19078, 0x19080,
1331 		0x1908c, 0x190e8,
1332 		0x190f0, 0x190f8,
1333 		0x19100, 0x19110,
1334 		0x19120, 0x19124,
1335 		0x19150, 0x19194,
1336 		0x1919c, 0x191b0,
1337 		0x191d0, 0x191e8,
1338 		0x19238, 0x19290,
1339 		0x193f8, 0x19428,
1340 		0x19430, 0x19444,
1341 		0x1944c, 0x1946c,
1342 		0x19474, 0x19474,
1343 		0x19490, 0x194cc,
1344 		0x194f0, 0x194f8,
1345 		0x19c00, 0x19c08,
1346 		0x19c10, 0x19c60,
1347 		0x19c94, 0x19ce4,
1348 		0x19cf0, 0x19d40,
1349 		0x19d50, 0x19d94,
1350 		0x19da0, 0x19de8,
1351 		0x19df0, 0x19e10,
1352 		0x19e50, 0x19e90,
1353 		0x19ea0, 0x19f24,
1354 		0x19f34, 0x19f34,
1355 		0x19f40, 0x19f50,
1356 		0x19f90, 0x19fb4,
1357 		0x19fc4, 0x19fe4,
1358 		0x1a000, 0x1a004,
1359 		0x1a010, 0x1a06c,
1360 		0x1a0b0, 0x1a0e4,
1361 		0x1a0ec, 0x1a0f8,
1362 		0x1a100, 0x1a108,
1363 		0x1a114, 0x1a120,
1364 		0x1a128, 0x1a130,
1365 		0x1a138, 0x1a138,
1366 		0x1a190, 0x1a1c4,
1367 		0x1a1fc, 0x1a1fc,
1368 		0x1e008, 0x1e00c,
1369 		0x1e040, 0x1e044,
1370 		0x1e04c, 0x1e04c,
1371 		0x1e284, 0x1e290,
1372 		0x1e2c0, 0x1e2c0,
1373 		0x1e2e0, 0x1e2e0,
1374 		0x1e300, 0x1e384,
1375 		0x1e3c0, 0x1e3c8,
1376 		0x1e408, 0x1e40c,
1377 		0x1e440, 0x1e444,
1378 		0x1e44c, 0x1e44c,
1379 		0x1e684, 0x1e690,
1380 		0x1e6c0, 0x1e6c0,
1381 		0x1e6e0, 0x1e6e0,
1382 		0x1e700, 0x1e784,
1383 		0x1e7c0, 0x1e7c8,
1384 		0x1e808, 0x1e80c,
1385 		0x1e840, 0x1e844,
1386 		0x1e84c, 0x1e84c,
1387 		0x1ea84, 0x1ea90,
1388 		0x1eac0, 0x1eac0,
1389 		0x1eae0, 0x1eae0,
1390 		0x1eb00, 0x1eb84,
1391 		0x1ebc0, 0x1ebc8,
1392 		0x1ec08, 0x1ec0c,
1393 		0x1ec40, 0x1ec44,
1394 		0x1ec4c, 0x1ec4c,
1395 		0x1ee84, 0x1ee90,
1396 		0x1eec0, 0x1eec0,
1397 		0x1eee0, 0x1eee0,
1398 		0x1ef00, 0x1ef84,
1399 		0x1efc0, 0x1efc8,
1400 		0x1f008, 0x1f00c,
1401 		0x1f040, 0x1f044,
1402 		0x1f04c, 0x1f04c,
1403 		0x1f284, 0x1f290,
1404 		0x1f2c0, 0x1f2c0,
1405 		0x1f2e0, 0x1f2e0,
1406 		0x1f300, 0x1f384,
1407 		0x1f3c0, 0x1f3c8,
1408 		0x1f408, 0x1f40c,
1409 		0x1f440, 0x1f444,
1410 		0x1f44c, 0x1f44c,
1411 		0x1f684, 0x1f690,
1412 		0x1f6c0, 0x1f6c0,
1413 		0x1f6e0, 0x1f6e0,
1414 		0x1f700, 0x1f784,
1415 		0x1f7c0, 0x1f7c8,
1416 		0x1f808, 0x1f80c,
1417 		0x1f840, 0x1f844,
1418 		0x1f84c, 0x1f84c,
1419 		0x1fa84, 0x1fa90,
1420 		0x1fac0, 0x1fac0,
1421 		0x1fae0, 0x1fae0,
1422 		0x1fb00, 0x1fb84,
1423 		0x1fbc0, 0x1fbc8,
1424 		0x1fc08, 0x1fc0c,
1425 		0x1fc40, 0x1fc44,
1426 		0x1fc4c, 0x1fc4c,
1427 		0x1fe84, 0x1fe90,
1428 		0x1fec0, 0x1fec0,
1429 		0x1fee0, 0x1fee0,
1430 		0x1ff00, 0x1ff84,
1431 		0x1ffc0, 0x1ffc8,
1432 		0x30000, 0x30030,
1433 		0x30100, 0x30144,
1434 		0x30190, 0x301a0,
1435 		0x301a8, 0x301b8,
1436 		0x301c4, 0x301c8,
1437 		0x301d0, 0x301d0,
1438 		0x30200, 0x30318,
1439 		0x30400, 0x304b4,
1440 		0x304c0, 0x3052c,
1441 		0x30540, 0x3061c,
1442 		0x30800, 0x30828,
1443 		0x30834, 0x30834,
1444 		0x308c0, 0x30908,
1445 		0x30910, 0x309ac,
1446 		0x30a00, 0x30a14,
1447 		0x30a1c, 0x30a2c,
1448 		0x30a44, 0x30a50,
1449 		0x30a74, 0x30a74,
1450 		0x30a7c, 0x30afc,
1451 		0x30b08, 0x30c24,
1452 		0x30d00, 0x30d00,
1453 		0x30d08, 0x30d14,
1454 		0x30d1c, 0x30d20,
1455 		0x30d3c, 0x30d3c,
1456 		0x30d48, 0x30d50,
1457 		0x31200, 0x3120c,
1458 		0x31220, 0x31220,
1459 		0x31240, 0x31240,
1460 		0x31600, 0x3160c,
1461 		0x31a00, 0x31a1c,
1462 		0x31e00, 0x31e20,
1463 		0x31e38, 0x31e3c,
1464 		0x31e80, 0x31e80,
1465 		0x31e88, 0x31ea8,
1466 		0x31eb0, 0x31eb4,
1467 		0x31ec8, 0x31ed4,
1468 		0x31fb8, 0x32004,
1469 		0x32200, 0x32200,
1470 		0x32208, 0x32240,
1471 		0x32248, 0x32280,
1472 		0x32288, 0x322c0,
1473 		0x322c8, 0x322fc,
1474 		0x32600, 0x32630,
1475 		0x32a00, 0x32abc,
1476 		0x32b00, 0x32b10,
1477 		0x32b20, 0x32b30,
1478 		0x32b40, 0x32b50,
1479 		0x32b60, 0x32b70,
1480 		0x33000, 0x33028,
1481 		0x33030, 0x33048,
1482 		0x33060, 0x33068,
1483 		0x33070, 0x3309c,
1484 		0x330f0, 0x33128,
1485 		0x33130, 0x33148,
1486 		0x33160, 0x33168,
1487 		0x33170, 0x3319c,
1488 		0x331f0, 0x33238,
1489 		0x33240, 0x33240,
1490 		0x33248, 0x33250,
1491 		0x3325c, 0x33264,
1492 		0x33270, 0x332b8,
1493 		0x332c0, 0x332e4,
1494 		0x332f8, 0x33338,
1495 		0x33340, 0x33340,
1496 		0x33348, 0x33350,
1497 		0x3335c, 0x33364,
1498 		0x33370, 0x333b8,
1499 		0x333c0, 0x333e4,
1500 		0x333f8, 0x33428,
1501 		0x33430, 0x33448,
1502 		0x33460, 0x33468,
1503 		0x33470, 0x3349c,
1504 		0x334f0, 0x33528,
1505 		0x33530, 0x33548,
1506 		0x33560, 0x33568,
1507 		0x33570, 0x3359c,
1508 		0x335f0, 0x33638,
1509 		0x33640, 0x33640,
1510 		0x33648, 0x33650,
1511 		0x3365c, 0x33664,
1512 		0x33670, 0x336b8,
1513 		0x336c0, 0x336e4,
1514 		0x336f8, 0x33738,
1515 		0x33740, 0x33740,
1516 		0x33748, 0x33750,
1517 		0x3375c, 0x33764,
1518 		0x33770, 0x337b8,
1519 		0x337c0, 0x337e4,
1520 		0x337f8, 0x337fc,
1521 		0x33814, 0x33814,
1522 		0x3382c, 0x3382c,
1523 		0x33880, 0x3388c,
1524 		0x338e8, 0x338ec,
1525 		0x33900, 0x33928,
1526 		0x33930, 0x33948,
1527 		0x33960, 0x33968,
1528 		0x33970, 0x3399c,
1529 		0x339f0, 0x33a38,
1530 		0x33a40, 0x33a40,
1531 		0x33a48, 0x33a50,
1532 		0x33a5c, 0x33a64,
1533 		0x33a70, 0x33ab8,
1534 		0x33ac0, 0x33ae4,
1535 		0x33af8, 0x33b10,
1536 		0x33b28, 0x33b28,
1537 		0x33b3c, 0x33b50,
1538 		0x33bf0, 0x33c10,
1539 		0x33c28, 0x33c28,
1540 		0x33c3c, 0x33c50,
1541 		0x33cf0, 0x33cfc,
1542 		0x34000, 0x34030,
1543 		0x34100, 0x34144,
1544 		0x34190, 0x341a0,
1545 		0x341a8, 0x341b8,
1546 		0x341c4, 0x341c8,
1547 		0x341d0, 0x341d0,
1548 		0x34200, 0x34318,
1549 		0x34400, 0x344b4,
1550 		0x344c0, 0x3452c,
1551 		0x34540, 0x3461c,
1552 		0x34800, 0x34828,
1553 		0x34834, 0x34834,
1554 		0x348c0, 0x34908,
1555 		0x34910, 0x349ac,
1556 		0x34a00, 0x34a14,
1557 		0x34a1c, 0x34a2c,
1558 		0x34a44, 0x34a50,
1559 		0x34a74, 0x34a74,
1560 		0x34a7c, 0x34afc,
1561 		0x34b08, 0x34c24,
1562 		0x34d00, 0x34d00,
1563 		0x34d08, 0x34d14,
1564 		0x34d1c, 0x34d20,
1565 		0x34d3c, 0x34d3c,
1566 		0x34d48, 0x34d50,
1567 		0x35200, 0x3520c,
1568 		0x35220, 0x35220,
1569 		0x35240, 0x35240,
1570 		0x35600, 0x3560c,
1571 		0x35a00, 0x35a1c,
1572 		0x35e00, 0x35e20,
1573 		0x35e38, 0x35e3c,
1574 		0x35e80, 0x35e80,
1575 		0x35e88, 0x35ea8,
1576 		0x35eb0, 0x35eb4,
1577 		0x35ec8, 0x35ed4,
1578 		0x35fb8, 0x36004,
1579 		0x36200, 0x36200,
1580 		0x36208, 0x36240,
1581 		0x36248, 0x36280,
1582 		0x36288, 0x362c0,
1583 		0x362c8, 0x362fc,
1584 		0x36600, 0x36630,
1585 		0x36a00, 0x36abc,
1586 		0x36b00, 0x36b10,
1587 		0x36b20, 0x36b30,
1588 		0x36b40, 0x36b50,
1589 		0x36b60, 0x36b70,
1590 		0x37000, 0x37028,
1591 		0x37030, 0x37048,
1592 		0x37060, 0x37068,
1593 		0x37070, 0x3709c,
1594 		0x370f0, 0x37128,
1595 		0x37130, 0x37148,
1596 		0x37160, 0x37168,
1597 		0x37170, 0x3719c,
1598 		0x371f0, 0x37238,
1599 		0x37240, 0x37240,
1600 		0x37248, 0x37250,
1601 		0x3725c, 0x37264,
1602 		0x37270, 0x372b8,
1603 		0x372c0, 0x372e4,
1604 		0x372f8, 0x37338,
1605 		0x37340, 0x37340,
1606 		0x37348, 0x37350,
1607 		0x3735c, 0x37364,
1608 		0x37370, 0x373b8,
1609 		0x373c0, 0x373e4,
1610 		0x373f8, 0x37428,
1611 		0x37430, 0x37448,
1612 		0x37460, 0x37468,
1613 		0x37470, 0x3749c,
1614 		0x374f0, 0x37528,
1615 		0x37530, 0x37548,
1616 		0x37560, 0x37568,
1617 		0x37570, 0x3759c,
1618 		0x375f0, 0x37638,
1619 		0x37640, 0x37640,
1620 		0x37648, 0x37650,
1621 		0x3765c, 0x37664,
1622 		0x37670, 0x376b8,
1623 		0x376c0, 0x376e4,
1624 		0x376f8, 0x37738,
1625 		0x37740, 0x37740,
1626 		0x37748, 0x37750,
1627 		0x3775c, 0x37764,
1628 		0x37770, 0x377b8,
1629 		0x377c0, 0x377e4,
1630 		0x377f8, 0x377fc,
1631 		0x37814, 0x37814,
1632 		0x3782c, 0x3782c,
1633 		0x37880, 0x3788c,
1634 		0x378e8, 0x378ec,
1635 		0x37900, 0x37928,
1636 		0x37930, 0x37948,
1637 		0x37960, 0x37968,
1638 		0x37970, 0x3799c,
1639 		0x379f0, 0x37a38,
1640 		0x37a40, 0x37a40,
1641 		0x37a48, 0x37a50,
1642 		0x37a5c, 0x37a64,
1643 		0x37a70, 0x37ab8,
1644 		0x37ac0, 0x37ae4,
1645 		0x37af8, 0x37b10,
1646 		0x37b28, 0x37b28,
1647 		0x37b3c, 0x37b50,
1648 		0x37bf0, 0x37c10,
1649 		0x37c28, 0x37c28,
1650 		0x37c3c, 0x37c50,
1651 		0x37cf0, 0x37cfc,
1652 		0x38000, 0x38030,
1653 		0x38100, 0x38144,
1654 		0x38190, 0x381a0,
1655 		0x381a8, 0x381b8,
1656 		0x381c4, 0x381c8,
1657 		0x381d0, 0x381d0,
1658 		0x38200, 0x38318,
1659 		0x38400, 0x384b4,
1660 		0x384c0, 0x3852c,
1661 		0x38540, 0x3861c,
1662 		0x38800, 0x38828,
1663 		0x38834, 0x38834,
1664 		0x388c0, 0x38908,
1665 		0x38910, 0x389ac,
1666 		0x38a00, 0x38a14,
1667 		0x38a1c, 0x38a2c,
1668 		0x38a44, 0x38a50,
1669 		0x38a74, 0x38a74,
1670 		0x38a7c, 0x38afc,
1671 		0x38b08, 0x38c24,
1672 		0x38d00, 0x38d00,
1673 		0x38d08, 0x38d14,
1674 		0x38d1c, 0x38d20,
1675 		0x38d3c, 0x38d3c,
1676 		0x38d48, 0x38d50,
1677 		0x39200, 0x3920c,
1678 		0x39220, 0x39220,
1679 		0x39240, 0x39240,
1680 		0x39600, 0x3960c,
1681 		0x39a00, 0x39a1c,
1682 		0x39e00, 0x39e20,
1683 		0x39e38, 0x39e3c,
1684 		0x39e80, 0x39e80,
1685 		0x39e88, 0x39ea8,
1686 		0x39eb0, 0x39eb4,
1687 		0x39ec8, 0x39ed4,
1688 		0x39fb8, 0x3a004,
1689 		0x3a200, 0x3a200,
1690 		0x3a208, 0x3a240,
1691 		0x3a248, 0x3a280,
1692 		0x3a288, 0x3a2c0,
1693 		0x3a2c8, 0x3a2fc,
1694 		0x3a600, 0x3a630,
1695 		0x3aa00, 0x3aabc,
1696 		0x3ab00, 0x3ab10,
1697 		0x3ab20, 0x3ab30,
1698 		0x3ab40, 0x3ab50,
1699 		0x3ab60, 0x3ab70,
1700 		0x3b000, 0x3b028,
1701 		0x3b030, 0x3b048,
1702 		0x3b060, 0x3b068,
1703 		0x3b070, 0x3b09c,
1704 		0x3b0f0, 0x3b128,
1705 		0x3b130, 0x3b148,
1706 		0x3b160, 0x3b168,
1707 		0x3b170, 0x3b19c,
1708 		0x3b1f0, 0x3b238,
1709 		0x3b240, 0x3b240,
1710 		0x3b248, 0x3b250,
1711 		0x3b25c, 0x3b264,
1712 		0x3b270, 0x3b2b8,
1713 		0x3b2c0, 0x3b2e4,
1714 		0x3b2f8, 0x3b338,
1715 		0x3b340, 0x3b340,
1716 		0x3b348, 0x3b350,
1717 		0x3b35c, 0x3b364,
1718 		0x3b370, 0x3b3b8,
1719 		0x3b3c0, 0x3b3e4,
1720 		0x3b3f8, 0x3b428,
1721 		0x3b430, 0x3b448,
1722 		0x3b460, 0x3b468,
1723 		0x3b470, 0x3b49c,
1724 		0x3b4f0, 0x3b528,
1725 		0x3b530, 0x3b548,
1726 		0x3b560, 0x3b568,
1727 		0x3b570, 0x3b59c,
1728 		0x3b5f0, 0x3b638,
1729 		0x3b640, 0x3b640,
1730 		0x3b648, 0x3b650,
1731 		0x3b65c, 0x3b664,
1732 		0x3b670, 0x3b6b8,
1733 		0x3b6c0, 0x3b6e4,
1734 		0x3b6f8, 0x3b738,
1735 		0x3b740, 0x3b740,
1736 		0x3b748, 0x3b750,
1737 		0x3b75c, 0x3b764,
1738 		0x3b770, 0x3b7b8,
1739 		0x3b7c0, 0x3b7e4,
1740 		0x3b7f8, 0x3b7fc,
1741 		0x3b814, 0x3b814,
1742 		0x3b82c, 0x3b82c,
1743 		0x3b880, 0x3b88c,
1744 		0x3b8e8, 0x3b8ec,
1745 		0x3b900, 0x3b928,
1746 		0x3b930, 0x3b948,
1747 		0x3b960, 0x3b968,
1748 		0x3b970, 0x3b99c,
1749 		0x3b9f0, 0x3ba38,
1750 		0x3ba40, 0x3ba40,
1751 		0x3ba48, 0x3ba50,
1752 		0x3ba5c, 0x3ba64,
1753 		0x3ba70, 0x3bab8,
1754 		0x3bac0, 0x3bae4,
1755 		0x3baf8, 0x3bb10,
1756 		0x3bb28, 0x3bb28,
1757 		0x3bb3c, 0x3bb50,
1758 		0x3bbf0, 0x3bc10,
1759 		0x3bc28, 0x3bc28,
1760 		0x3bc3c, 0x3bc50,
1761 		0x3bcf0, 0x3bcfc,
1762 		0x3c000, 0x3c030,
1763 		0x3c100, 0x3c144,
1764 		0x3c190, 0x3c1a0,
1765 		0x3c1a8, 0x3c1b8,
1766 		0x3c1c4, 0x3c1c8,
1767 		0x3c1d0, 0x3c1d0,
1768 		0x3c200, 0x3c318,
1769 		0x3c400, 0x3c4b4,
1770 		0x3c4c0, 0x3c52c,
1771 		0x3c540, 0x3c61c,
1772 		0x3c800, 0x3c828,
1773 		0x3c834, 0x3c834,
1774 		0x3c8c0, 0x3c908,
1775 		0x3c910, 0x3c9ac,
1776 		0x3ca00, 0x3ca14,
1777 		0x3ca1c, 0x3ca2c,
1778 		0x3ca44, 0x3ca50,
1779 		0x3ca74, 0x3ca74,
1780 		0x3ca7c, 0x3cafc,
1781 		0x3cb08, 0x3cc24,
1782 		0x3cd00, 0x3cd00,
1783 		0x3cd08, 0x3cd14,
1784 		0x3cd1c, 0x3cd20,
1785 		0x3cd3c, 0x3cd3c,
1786 		0x3cd48, 0x3cd50,
1787 		0x3d200, 0x3d20c,
1788 		0x3d220, 0x3d220,
1789 		0x3d240, 0x3d240,
1790 		0x3d600, 0x3d60c,
1791 		0x3da00, 0x3da1c,
1792 		0x3de00, 0x3de20,
1793 		0x3de38, 0x3de3c,
1794 		0x3de80, 0x3de80,
1795 		0x3de88, 0x3dea8,
1796 		0x3deb0, 0x3deb4,
1797 		0x3dec8, 0x3ded4,
1798 		0x3dfb8, 0x3e004,
1799 		0x3e200, 0x3e200,
1800 		0x3e208, 0x3e240,
1801 		0x3e248, 0x3e280,
1802 		0x3e288, 0x3e2c0,
1803 		0x3e2c8, 0x3e2fc,
1804 		0x3e600, 0x3e630,
1805 		0x3ea00, 0x3eabc,
1806 		0x3eb00, 0x3eb10,
1807 		0x3eb20, 0x3eb30,
1808 		0x3eb40, 0x3eb50,
1809 		0x3eb60, 0x3eb70,
1810 		0x3f000, 0x3f028,
1811 		0x3f030, 0x3f048,
1812 		0x3f060, 0x3f068,
1813 		0x3f070, 0x3f09c,
1814 		0x3f0f0, 0x3f128,
1815 		0x3f130, 0x3f148,
1816 		0x3f160, 0x3f168,
1817 		0x3f170, 0x3f19c,
1818 		0x3f1f0, 0x3f238,
1819 		0x3f240, 0x3f240,
1820 		0x3f248, 0x3f250,
1821 		0x3f25c, 0x3f264,
1822 		0x3f270, 0x3f2b8,
1823 		0x3f2c0, 0x3f2e4,
1824 		0x3f2f8, 0x3f338,
1825 		0x3f340, 0x3f340,
1826 		0x3f348, 0x3f350,
1827 		0x3f35c, 0x3f364,
1828 		0x3f370, 0x3f3b8,
1829 		0x3f3c0, 0x3f3e4,
1830 		0x3f3f8, 0x3f428,
1831 		0x3f430, 0x3f448,
1832 		0x3f460, 0x3f468,
1833 		0x3f470, 0x3f49c,
1834 		0x3f4f0, 0x3f528,
1835 		0x3f530, 0x3f548,
1836 		0x3f560, 0x3f568,
1837 		0x3f570, 0x3f59c,
1838 		0x3f5f0, 0x3f638,
1839 		0x3f640, 0x3f640,
1840 		0x3f648, 0x3f650,
1841 		0x3f65c, 0x3f664,
1842 		0x3f670, 0x3f6b8,
1843 		0x3f6c0, 0x3f6e4,
1844 		0x3f6f8, 0x3f738,
1845 		0x3f740, 0x3f740,
1846 		0x3f748, 0x3f750,
1847 		0x3f75c, 0x3f764,
1848 		0x3f770, 0x3f7b8,
1849 		0x3f7c0, 0x3f7e4,
1850 		0x3f7f8, 0x3f7fc,
1851 		0x3f814, 0x3f814,
1852 		0x3f82c, 0x3f82c,
1853 		0x3f880, 0x3f88c,
1854 		0x3f8e8, 0x3f8ec,
1855 		0x3f900, 0x3f928,
1856 		0x3f930, 0x3f948,
1857 		0x3f960, 0x3f968,
1858 		0x3f970, 0x3f99c,
1859 		0x3f9f0, 0x3fa38,
1860 		0x3fa40, 0x3fa40,
1861 		0x3fa48, 0x3fa50,
1862 		0x3fa5c, 0x3fa64,
1863 		0x3fa70, 0x3fab8,
1864 		0x3fac0, 0x3fae4,
1865 		0x3faf8, 0x3fb10,
1866 		0x3fb28, 0x3fb28,
1867 		0x3fb3c, 0x3fb50,
1868 		0x3fbf0, 0x3fc10,
1869 		0x3fc28, 0x3fc28,
1870 		0x3fc3c, 0x3fc50,
1871 		0x3fcf0, 0x3fcfc,
1872 		0x40000, 0x4000c,
1873 		0x40040, 0x40050,
1874 		0x40060, 0x40068,
1875 		0x4007c, 0x4008c,
1876 		0x40094, 0x400b0,
1877 		0x400c0, 0x40144,
1878 		0x40180, 0x4018c,
1879 		0x40200, 0x40254,
1880 		0x40260, 0x40264,
1881 		0x40270, 0x40288,
1882 		0x40290, 0x40298,
1883 		0x402ac, 0x402c8,
1884 		0x402d0, 0x402e0,
1885 		0x402f0, 0x402f0,
1886 		0x40300, 0x4033c,
1887 		0x403f8, 0x403fc,
1888 		0x41304, 0x413c4,
1889 		0x41400, 0x4140c,
1890 		0x41414, 0x4141c,
1891 		0x41480, 0x414d0,
1892 		0x44000, 0x44054,
1893 		0x4405c, 0x44078,
1894 		0x440c0, 0x44174,
1895 		0x44180, 0x441ac,
1896 		0x441b4, 0x441b8,
1897 		0x441c0, 0x44254,
1898 		0x4425c, 0x44278,
1899 		0x442c0, 0x44374,
1900 		0x44380, 0x443ac,
1901 		0x443b4, 0x443b8,
1902 		0x443c0, 0x44454,
1903 		0x4445c, 0x44478,
1904 		0x444c0, 0x44574,
1905 		0x44580, 0x445ac,
1906 		0x445b4, 0x445b8,
1907 		0x445c0, 0x44654,
1908 		0x4465c, 0x44678,
1909 		0x446c0, 0x44774,
1910 		0x44780, 0x447ac,
1911 		0x447b4, 0x447b8,
1912 		0x447c0, 0x44854,
1913 		0x4485c, 0x44878,
1914 		0x448c0, 0x44974,
1915 		0x44980, 0x449ac,
1916 		0x449b4, 0x449b8,
1917 		0x449c0, 0x449fc,
1918 		0x45000, 0x45004,
1919 		0x45010, 0x45030,
1920 		0x45040, 0x45060,
1921 		0x45068, 0x45068,
1922 		0x45080, 0x45084,
1923 		0x450a0, 0x450b0,
1924 		0x45200, 0x45204,
1925 		0x45210, 0x45230,
1926 		0x45240, 0x45260,
1927 		0x45268, 0x45268,
1928 		0x45280, 0x45284,
1929 		0x452a0, 0x452b0,
1930 		0x460c0, 0x460e4,
1931 		0x47000, 0x4703c,
1932 		0x47044, 0x4708c,
1933 		0x47200, 0x47250,
1934 		0x47400, 0x47408,
1935 		0x47414, 0x47420,
1936 		0x47600, 0x47618,
1937 		0x47800, 0x47814,
1938 		0x48000, 0x4800c,
1939 		0x48040, 0x48050,
1940 		0x48060, 0x48068,
1941 		0x4807c, 0x4808c,
1942 		0x48094, 0x480b0,
1943 		0x480c0, 0x48144,
1944 		0x48180, 0x4818c,
1945 		0x48200, 0x48254,
1946 		0x48260, 0x48264,
1947 		0x48270, 0x48288,
1948 		0x48290, 0x48298,
1949 		0x482ac, 0x482c8,
1950 		0x482d0, 0x482e0,
1951 		0x482f0, 0x482f0,
1952 		0x48300, 0x4833c,
1953 		0x483f8, 0x483fc,
1954 		0x49304, 0x493c4,
1955 		0x49400, 0x4940c,
1956 		0x49414, 0x4941c,
1957 		0x49480, 0x494d0,
1958 		0x4c000, 0x4c054,
1959 		0x4c05c, 0x4c078,
1960 		0x4c0c0, 0x4c174,
1961 		0x4c180, 0x4c1ac,
1962 		0x4c1b4, 0x4c1b8,
1963 		0x4c1c0, 0x4c254,
1964 		0x4c25c, 0x4c278,
1965 		0x4c2c0, 0x4c374,
1966 		0x4c380, 0x4c3ac,
1967 		0x4c3b4, 0x4c3b8,
1968 		0x4c3c0, 0x4c454,
1969 		0x4c45c, 0x4c478,
1970 		0x4c4c0, 0x4c574,
1971 		0x4c580, 0x4c5ac,
1972 		0x4c5b4, 0x4c5b8,
1973 		0x4c5c0, 0x4c654,
1974 		0x4c65c, 0x4c678,
1975 		0x4c6c0, 0x4c774,
1976 		0x4c780, 0x4c7ac,
1977 		0x4c7b4, 0x4c7b8,
1978 		0x4c7c0, 0x4c854,
1979 		0x4c85c, 0x4c878,
1980 		0x4c8c0, 0x4c974,
1981 		0x4c980, 0x4c9ac,
1982 		0x4c9b4, 0x4c9b8,
1983 		0x4c9c0, 0x4c9fc,
1984 		0x4d000, 0x4d004,
1985 		0x4d010, 0x4d030,
1986 		0x4d040, 0x4d060,
1987 		0x4d068, 0x4d068,
1988 		0x4d080, 0x4d084,
1989 		0x4d0a0, 0x4d0b0,
1990 		0x4d200, 0x4d204,
1991 		0x4d210, 0x4d230,
1992 		0x4d240, 0x4d260,
1993 		0x4d268, 0x4d268,
1994 		0x4d280, 0x4d284,
1995 		0x4d2a0, 0x4d2b0,
1996 		0x4e0c0, 0x4e0e4,
1997 		0x4f000, 0x4f03c,
1998 		0x4f044, 0x4f08c,
1999 		0x4f200, 0x4f250,
2000 		0x4f400, 0x4f408,
2001 		0x4f414, 0x4f420,
2002 		0x4f600, 0x4f618,
2003 		0x4f800, 0x4f814,
2004 		0x50000, 0x50084,
2005 		0x50090, 0x500cc,
2006 		0x50400, 0x50400,
2007 		0x50800, 0x50884,
2008 		0x50890, 0x508cc,
2009 		0x50c00, 0x50c00,
2010 		0x51000, 0x5101c,
2011 		0x51300, 0x51308,
2012 	};
2013 
2014 	static const unsigned int t5vf_reg_ranges[] = {
2015 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2016 		VF_MPS_REG(A_MPS_VF_CTL),
2017 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2018 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2019 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2020 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2021 		FW_T4VF_MBDATA_BASE_ADDR,
2022 		FW_T4VF_MBDATA_BASE_ADDR +
2023 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2024 	};
2025 
2026 	static const unsigned int t6_reg_ranges[] = {
2027 		0x1008, 0x101c,
2028 		0x1024, 0x10a8,
2029 		0x10b4, 0x10f8,
2030 		0x1100, 0x1114,
2031 		0x111c, 0x112c,
2032 		0x1138, 0x113c,
2033 		0x1144, 0x114c,
2034 		0x1180, 0x1184,
2035 		0x1190, 0x1194,
2036 		0x11a0, 0x11a4,
2037 		0x11b0, 0x11b4,
2038 		0x11fc, 0x1274,
2039 		0x1280, 0x133c,
2040 		0x1800, 0x18fc,
2041 		0x3000, 0x302c,
2042 		0x3060, 0x30b0,
2043 		0x30b8, 0x30d8,
2044 		0x30e0, 0x30fc,
2045 		0x3140, 0x357c,
2046 		0x35a8, 0x35cc,
2047 		0x35ec, 0x35ec,
2048 		0x3600, 0x5624,
2049 		0x56cc, 0x56ec,
2050 		0x56f4, 0x5720,
2051 		0x5728, 0x575c,
2052 		0x580c, 0x5814,
2053 		0x5890, 0x589c,
2054 		0x58a4, 0x58ac,
2055 		0x58b8, 0x58bc,
2056 		0x5940, 0x595c,
2057 		0x5980, 0x598c,
2058 		0x59b0, 0x59c8,
2059 		0x59d0, 0x59dc,
2060 		0x59fc, 0x5a18,
2061 		0x5a60, 0x5a6c,
2062 		0x5a80, 0x5a8c,
2063 		0x5a94, 0x5a9c,
2064 		0x5b94, 0x5bfc,
2065 		0x5c10, 0x5e48,
2066 		0x5e50, 0x5e94,
2067 		0x5ea0, 0x5eb0,
2068 		0x5ec0, 0x5ec0,
2069 		0x5ec8, 0x5ed0,
2070 		0x5ee0, 0x5ee0,
2071 		0x5ef0, 0x5ef0,
2072 		0x5f00, 0x5f00,
2073 		0x6000, 0x6020,
2074 		0x6028, 0x6040,
2075 		0x6058, 0x609c,
2076 		0x60a8, 0x619c,
2077 		0x7700, 0x7798,
2078 		0x77c0, 0x7880,
2079 		0x78cc, 0x78fc,
2080 		0x7b00, 0x7b58,
2081 		0x7b60, 0x7b84,
2082 		0x7b8c, 0x7c54,
2083 		0x7d00, 0x7d38,
2084 		0x7d40, 0x7d84,
2085 		0x7d8c, 0x7ddc,
2086 		0x7de4, 0x7e04,
2087 		0x7e10, 0x7e1c,
2088 		0x7e24, 0x7e38,
2089 		0x7e40, 0x7e44,
2090 		0x7e4c, 0x7e78,
2091 		0x7e80, 0x7edc,
2092 		0x7ee8, 0x7efc,
2093 		0x8dc0, 0x8de4,
2094 		0x8df8, 0x8e04,
2095 		0x8e10, 0x8e84,
2096 		0x8ea0, 0x8f88,
2097 		0x8fb8, 0x9058,
2098 		0x9060, 0x9060,
2099 		0x9068, 0x90f8,
2100 		0x9100, 0x9124,
2101 		0x9400, 0x9470,
2102 		0x9600, 0x9600,
2103 		0x9608, 0x9638,
2104 		0x9640, 0x9704,
2105 		0x9710, 0x971c,
2106 		0x9800, 0x9808,
2107 		0x9820, 0x983c,
2108 		0x9850, 0x9864,
2109 		0x9c00, 0x9c6c,
2110 		0x9c80, 0x9cec,
2111 		0x9d00, 0x9d6c,
2112 		0x9d80, 0x9dec,
2113 		0x9e00, 0x9e6c,
2114 		0x9e80, 0x9eec,
2115 		0x9f00, 0x9f6c,
2116 		0x9f80, 0xa020,
2117 		0xd004, 0xd03c,
2118 		0xd100, 0xd118,
2119 		0xd200, 0xd214,
2120 		0xd220, 0xd234,
2121 		0xd240, 0xd254,
2122 		0xd260, 0xd274,
2123 		0xd280, 0xd294,
2124 		0xd2a0, 0xd2b4,
2125 		0xd2c0, 0xd2d4,
2126 		0xd2e0, 0xd2f4,
2127 		0xd300, 0xd31c,
2128 		0xdfc0, 0xdfe0,
2129 		0xe000, 0xf008,
2130 		0xf010, 0xf018,
2131 		0xf020, 0xf028,
2132 		0x11000, 0x11014,
2133 		0x11048, 0x1106c,
2134 		0x11074, 0x11088,
2135 		0x11098, 0x11120,
2136 		0x1112c, 0x1117c,
2137 		0x11190, 0x112e0,
2138 		0x11300, 0x1130c,
2139 		0x12000, 0x1206c,
2140 		0x19040, 0x1906c,
2141 		0x19078, 0x19080,
2142 		0x1908c, 0x190e8,
2143 		0x190f0, 0x190f8,
2144 		0x19100, 0x19110,
2145 		0x19120, 0x19124,
2146 		0x19150, 0x19194,
2147 		0x1919c, 0x191b0,
2148 		0x191d0, 0x191e8,
2149 		0x19238, 0x19290,
2150 		0x192a4, 0x192b0,
2151 		0x192bc, 0x192bc,
2152 		0x19348, 0x1934c,
2153 		0x193f8, 0x19418,
2154 		0x19420, 0x19428,
2155 		0x19430, 0x19444,
2156 		0x1944c, 0x1946c,
2157 		0x19474, 0x19474,
2158 		0x19490, 0x194cc,
2159 		0x194f0, 0x194f8,
2160 		0x19c00, 0x19c48,
2161 		0x19c50, 0x19c80,
2162 		0x19c94, 0x19c98,
2163 		0x19ca0, 0x19cbc,
2164 		0x19ce4, 0x19ce4,
2165 		0x19cf0, 0x19cf8,
2166 		0x19d00, 0x19d28,
2167 		0x19d50, 0x19d78,
2168 		0x19d94, 0x19d98,
2169 		0x19da0, 0x19dc8,
2170 		0x19df0, 0x19e10,
2171 		0x19e50, 0x19e6c,
2172 		0x19ea0, 0x19ebc,
2173 		0x19ec4, 0x19ef4,
2174 		0x19f04, 0x19f2c,
2175 		0x19f34, 0x19f34,
2176 		0x19f40, 0x19f50,
2177 		0x19f90, 0x19fac,
2178 		0x19fc4, 0x19fc8,
2179 		0x19fd0, 0x19fe4,
2180 		0x1a000, 0x1a004,
2181 		0x1a010, 0x1a06c,
2182 		0x1a0b0, 0x1a0e4,
2183 		0x1a0ec, 0x1a0f8,
2184 		0x1a100, 0x1a108,
2185 		0x1a114, 0x1a120,
2186 		0x1a128, 0x1a130,
2187 		0x1a138, 0x1a138,
2188 		0x1a190, 0x1a1c4,
2189 		0x1a1fc, 0x1a1fc,
2190 		0x1e008, 0x1e00c,
2191 		0x1e040, 0x1e044,
2192 		0x1e04c, 0x1e04c,
2193 		0x1e284, 0x1e290,
2194 		0x1e2c0, 0x1e2c0,
2195 		0x1e2e0, 0x1e2e0,
2196 		0x1e300, 0x1e384,
2197 		0x1e3c0, 0x1e3c8,
2198 		0x1e408, 0x1e40c,
2199 		0x1e440, 0x1e444,
2200 		0x1e44c, 0x1e44c,
2201 		0x1e684, 0x1e690,
2202 		0x1e6c0, 0x1e6c0,
2203 		0x1e6e0, 0x1e6e0,
2204 		0x1e700, 0x1e784,
2205 		0x1e7c0, 0x1e7c8,
2206 		0x1e808, 0x1e80c,
2207 		0x1e840, 0x1e844,
2208 		0x1e84c, 0x1e84c,
2209 		0x1ea84, 0x1ea90,
2210 		0x1eac0, 0x1eac0,
2211 		0x1eae0, 0x1eae0,
2212 		0x1eb00, 0x1eb84,
2213 		0x1ebc0, 0x1ebc8,
2214 		0x1ec08, 0x1ec0c,
2215 		0x1ec40, 0x1ec44,
2216 		0x1ec4c, 0x1ec4c,
2217 		0x1ee84, 0x1ee90,
2218 		0x1eec0, 0x1eec0,
2219 		0x1eee0, 0x1eee0,
2220 		0x1ef00, 0x1ef84,
2221 		0x1efc0, 0x1efc8,
2222 		0x1f008, 0x1f00c,
2223 		0x1f040, 0x1f044,
2224 		0x1f04c, 0x1f04c,
2225 		0x1f284, 0x1f290,
2226 		0x1f2c0, 0x1f2c0,
2227 		0x1f2e0, 0x1f2e0,
2228 		0x1f300, 0x1f384,
2229 		0x1f3c0, 0x1f3c8,
2230 		0x1f408, 0x1f40c,
2231 		0x1f440, 0x1f444,
2232 		0x1f44c, 0x1f44c,
2233 		0x1f684, 0x1f690,
2234 		0x1f6c0, 0x1f6c0,
2235 		0x1f6e0, 0x1f6e0,
2236 		0x1f700, 0x1f784,
2237 		0x1f7c0, 0x1f7c8,
2238 		0x1f808, 0x1f80c,
2239 		0x1f840, 0x1f844,
2240 		0x1f84c, 0x1f84c,
2241 		0x1fa84, 0x1fa90,
2242 		0x1fac0, 0x1fac0,
2243 		0x1fae0, 0x1fae0,
2244 		0x1fb00, 0x1fb84,
2245 		0x1fbc0, 0x1fbc8,
2246 		0x1fc08, 0x1fc0c,
2247 		0x1fc40, 0x1fc44,
2248 		0x1fc4c, 0x1fc4c,
2249 		0x1fe84, 0x1fe90,
2250 		0x1fec0, 0x1fec0,
2251 		0x1fee0, 0x1fee0,
2252 		0x1ff00, 0x1ff84,
2253 		0x1ffc0, 0x1ffc8,
2254 		0x30000, 0x30030,
2255 		0x30100, 0x30168,
2256 		0x30190, 0x301a0,
2257 		0x301a8, 0x301b8,
2258 		0x301c4, 0x301c8,
2259 		0x301d0, 0x301d0,
2260 		0x30200, 0x30320,
2261 		0x30400, 0x304b4,
2262 		0x304c0, 0x3052c,
2263 		0x30540, 0x3061c,
2264 		0x30800, 0x308a0,
2265 		0x308c0, 0x30908,
2266 		0x30910, 0x309b8,
2267 		0x30a00, 0x30a04,
2268 		0x30a0c, 0x30a14,
2269 		0x30a1c, 0x30a2c,
2270 		0x30a44, 0x30a50,
2271 		0x30a74, 0x30a74,
2272 		0x30a7c, 0x30afc,
2273 		0x30b08, 0x30c24,
2274 		0x30d00, 0x30d14,
2275 		0x30d1c, 0x30d3c,
2276 		0x30d44, 0x30d4c,
2277 		0x30d54, 0x30d74,
2278 		0x30d7c, 0x30d7c,
2279 		0x30de0, 0x30de0,
2280 		0x30e00, 0x30ed4,
2281 		0x30f00, 0x30fa4,
2282 		0x30fc0, 0x30fc4,
2283 		0x31000, 0x31004,
2284 		0x31080, 0x310fc,
2285 		0x31208, 0x31220,
2286 		0x3123c, 0x31254,
2287 		0x31300, 0x31300,
2288 		0x31308, 0x3131c,
2289 		0x31338, 0x3133c,
2290 		0x31380, 0x31380,
2291 		0x31388, 0x313a8,
2292 		0x313b4, 0x313b4,
2293 		0x31400, 0x31420,
2294 		0x31438, 0x3143c,
2295 		0x31480, 0x31480,
2296 		0x314a8, 0x314a8,
2297 		0x314b0, 0x314b4,
2298 		0x314c8, 0x314d4,
2299 		0x31a40, 0x31a4c,
2300 		0x31af0, 0x31b20,
2301 		0x31b38, 0x31b3c,
2302 		0x31b80, 0x31b80,
2303 		0x31ba8, 0x31ba8,
2304 		0x31bb0, 0x31bb4,
2305 		0x31bc8, 0x31bd4,
2306 		0x32140, 0x3218c,
2307 		0x321f0, 0x321f4,
2308 		0x32200, 0x32200,
2309 		0x32218, 0x32218,
2310 		0x32400, 0x32400,
2311 		0x32408, 0x3241c,
2312 		0x32618, 0x32620,
2313 		0x32664, 0x32664,
2314 		0x326a8, 0x326a8,
2315 		0x326ec, 0x326ec,
2316 		0x32a00, 0x32abc,
2317 		0x32b00, 0x32b18,
2318 		0x32b20, 0x32b38,
2319 		0x32b40, 0x32b58,
2320 		0x32b60, 0x32b78,
2321 		0x32c00, 0x32c00,
2322 		0x32c08, 0x32c3c,
2323 		0x33000, 0x3302c,
2324 		0x33034, 0x33050,
2325 		0x33058, 0x33058,
2326 		0x33060, 0x3308c,
2327 		0x3309c, 0x330ac,
2328 		0x330c0, 0x330c0,
2329 		0x330c8, 0x330d0,
2330 		0x330d8, 0x330e0,
2331 		0x330ec, 0x3312c,
2332 		0x33134, 0x33150,
2333 		0x33158, 0x33158,
2334 		0x33160, 0x3318c,
2335 		0x3319c, 0x331ac,
2336 		0x331c0, 0x331c0,
2337 		0x331c8, 0x331d0,
2338 		0x331d8, 0x331e0,
2339 		0x331ec, 0x33290,
2340 		0x33298, 0x332c4,
2341 		0x332e4, 0x33390,
2342 		0x33398, 0x333c4,
2343 		0x333e4, 0x3342c,
2344 		0x33434, 0x33450,
2345 		0x33458, 0x33458,
2346 		0x33460, 0x3348c,
2347 		0x3349c, 0x334ac,
2348 		0x334c0, 0x334c0,
2349 		0x334c8, 0x334d0,
2350 		0x334d8, 0x334e0,
2351 		0x334ec, 0x3352c,
2352 		0x33534, 0x33550,
2353 		0x33558, 0x33558,
2354 		0x33560, 0x3358c,
2355 		0x3359c, 0x335ac,
2356 		0x335c0, 0x335c0,
2357 		0x335c8, 0x335d0,
2358 		0x335d8, 0x335e0,
2359 		0x335ec, 0x33690,
2360 		0x33698, 0x336c4,
2361 		0x336e4, 0x33790,
2362 		0x33798, 0x337c4,
2363 		0x337e4, 0x337fc,
2364 		0x33814, 0x33814,
2365 		0x33854, 0x33868,
2366 		0x33880, 0x3388c,
2367 		0x338c0, 0x338d0,
2368 		0x338e8, 0x338ec,
2369 		0x33900, 0x3392c,
2370 		0x33934, 0x33950,
2371 		0x33958, 0x33958,
2372 		0x33960, 0x3398c,
2373 		0x3399c, 0x339ac,
2374 		0x339c0, 0x339c0,
2375 		0x339c8, 0x339d0,
2376 		0x339d8, 0x339e0,
2377 		0x339ec, 0x33a90,
2378 		0x33a98, 0x33ac4,
2379 		0x33ae4, 0x33b10,
2380 		0x33b24, 0x33b28,
2381 		0x33b38, 0x33b50,
2382 		0x33bf0, 0x33c10,
2383 		0x33c24, 0x33c28,
2384 		0x33c38, 0x33c50,
2385 		0x33cf0, 0x33cfc,
2386 		0x34000, 0x34030,
2387 		0x34100, 0x34168,
2388 		0x34190, 0x341a0,
2389 		0x341a8, 0x341b8,
2390 		0x341c4, 0x341c8,
2391 		0x341d0, 0x341d0,
2392 		0x34200, 0x34320,
2393 		0x34400, 0x344b4,
2394 		0x344c0, 0x3452c,
2395 		0x34540, 0x3461c,
2396 		0x34800, 0x348a0,
2397 		0x348c0, 0x34908,
2398 		0x34910, 0x349b8,
2399 		0x34a00, 0x34a04,
2400 		0x34a0c, 0x34a14,
2401 		0x34a1c, 0x34a2c,
2402 		0x34a44, 0x34a50,
2403 		0x34a74, 0x34a74,
2404 		0x34a7c, 0x34afc,
2405 		0x34b08, 0x34c24,
2406 		0x34d00, 0x34d14,
2407 		0x34d1c, 0x34d3c,
2408 		0x34d44, 0x34d4c,
2409 		0x34d54, 0x34d74,
2410 		0x34d7c, 0x34d7c,
2411 		0x34de0, 0x34de0,
2412 		0x34e00, 0x34ed4,
2413 		0x34f00, 0x34fa4,
2414 		0x34fc0, 0x34fc4,
2415 		0x35000, 0x35004,
2416 		0x35080, 0x350fc,
2417 		0x35208, 0x35220,
2418 		0x3523c, 0x35254,
2419 		0x35300, 0x35300,
2420 		0x35308, 0x3531c,
2421 		0x35338, 0x3533c,
2422 		0x35380, 0x35380,
2423 		0x35388, 0x353a8,
2424 		0x353b4, 0x353b4,
2425 		0x35400, 0x35420,
2426 		0x35438, 0x3543c,
2427 		0x35480, 0x35480,
2428 		0x354a8, 0x354a8,
2429 		0x354b0, 0x354b4,
2430 		0x354c8, 0x354d4,
2431 		0x35a40, 0x35a4c,
2432 		0x35af0, 0x35b20,
2433 		0x35b38, 0x35b3c,
2434 		0x35b80, 0x35b80,
2435 		0x35ba8, 0x35ba8,
2436 		0x35bb0, 0x35bb4,
2437 		0x35bc8, 0x35bd4,
2438 		0x36140, 0x3618c,
2439 		0x361f0, 0x361f4,
2440 		0x36200, 0x36200,
2441 		0x36218, 0x36218,
2442 		0x36400, 0x36400,
2443 		0x36408, 0x3641c,
2444 		0x36618, 0x36620,
2445 		0x36664, 0x36664,
2446 		0x366a8, 0x366a8,
2447 		0x366ec, 0x366ec,
2448 		0x36a00, 0x36abc,
2449 		0x36b00, 0x36b18,
2450 		0x36b20, 0x36b38,
2451 		0x36b40, 0x36b58,
2452 		0x36b60, 0x36b78,
2453 		0x36c00, 0x36c00,
2454 		0x36c08, 0x36c3c,
2455 		0x37000, 0x3702c,
2456 		0x37034, 0x37050,
2457 		0x37058, 0x37058,
2458 		0x37060, 0x3708c,
2459 		0x3709c, 0x370ac,
2460 		0x370c0, 0x370c0,
2461 		0x370c8, 0x370d0,
2462 		0x370d8, 0x370e0,
2463 		0x370ec, 0x3712c,
2464 		0x37134, 0x37150,
2465 		0x37158, 0x37158,
2466 		0x37160, 0x3718c,
2467 		0x3719c, 0x371ac,
2468 		0x371c0, 0x371c0,
2469 		0x371c8, 0x371d0,
2470 		0x371d8, 0x371e0,
2471 		0x371ec, 0x37290,
2472 		0x37298, 0x372c4,
2473 		0x372e4, 0x37390,
2474 		0x37398, 0x373c4,
2475 		0x373e4, 0x3742c,
2476 		0x37434, 0x37450,
2477 		0x37458, 0x37458,
2478 		0x37460, 0x3748c,
2479 		0x3749c, 0x374ac,
2480 		0x374c0, 0x374c0,
2481 		0x374c8, 0x374d0,
2482 		0x374d8, 0x374e0,
2483 		0x374ec, 0x3752c,
2484 		0x37534, 0x37550,
2485 		0x37558, 0x37558,
2486 		0x37560, 0x3758c,
2487 		0x3759c, 0x375ac,
2488 		0x375c0, 0x375c0,
2489 		0x375c8, 0x375d0,
2490 		0x375d8, 0x375e0,
2491 		0x375ec, 0x37690,
2492 		0x37698, 0x376c4,
2493 		0x376e4, 0x37790,
2494 		0x37798, 0x377c4,
2495 		0x377e4, 0x377fc,
2496 		0x37814, 0x37814,
2497 		0x37854, 0x37868,
2498 		0x37880, 0x3788c,
2499 		0x378c0, 0x378d0,
2500 		0x378e8, 0x378ec,
2501 		0x37900, 0x3792c,
2502 		0x37934, 0x37950,
2503 		0x37958, 0x37958,
2504 		0x37960, 0x3798c,
2505 		0x3799c, 0x379ac,
2506 		0x379c0, 0x379c0,
2507 		0x379c8, 0x379d0,
2508 		0x379d8, 0x379e0,
2509 		0x379ec, 0x37a90,
2510 		0x37a98, 0x37ac4,
2511 		0x37ae4, 0x37b10,
2512 		0x37b24, 0x37b28,
2513 		0x37b38, 0x37b50,
2514 		0x37bf0, 0x37c10,
2515 		0x37c24, 0x37c28,
2516 		0x37c38, 0x37c50,
2517 		0x37cf0, 0x37cfc,
2518 		0x40040, 0x40040,
2519 		0x40080, 0x40084,
2520 		0x40100, 0x40100,
2521 		0x40140, 0x401bc,
2522 		0x40200, 0x40214,
2523 		0x40228, 0x40228,
2524 		0x40240, 0x40258,
2525 		0x40280, 0x40280,
2526 		0x40304, 0x40304,
2527 		0x40330, 0x4033c,
2528 		0x41304, 0x413c8,
2529 		0x413d0, 0x413dc,
2530 		0x413f0, 0x413f0,
2531 		0x41400, 0x4140c,
2532 		0x41414, 0x4141c,
2533 		0x41480, 0x414d0,
2534 		0x44000, 0x4407c,
2535 		0x440c0, 0x441ac,
2536 		0x441b4, 0x4427c,
2537 		0x442c0, 0x443ac,
2538 		0x443b4, 0x4447c,
2539 		0x444c0, 0x445ac,
2540 		0x445b4, 0x4467c,
2541 		0x446c0, 0x447ac,
2542 		0x447b4, 0x4487c,
2543 		0x448c0, 0x449ac,
2544 		0x449b4, 0x44a7c,
2545 		0x44ac0, 0x44bac,
2546 		0x44bb4, 0x44c7c,
2547 		0x44cc0, 0x44dac,
2548 		0x44db4, 0x44e7c,
2549 		0x44ec0, 0x44fac,
2550 		0x44fb4, 0x4507c,
2551 		0x450c0, 0x451ac,
2552 		0x451b4, 0x451fc,
2553 		0x45800, 0x45804,
2554 		0x45810, 0x45830,
2555 		0x45840, 0x45860,
2556 		0x45868, 0x45868,
2557 		0x45880, 0x45884,
2558 		0x458a0, 0x458b0,
2559 		0x45a00, 0x45a04,
2560 		0x45a10, 0x45a30,
2561 		0x45a40, 0x45a60,
2562 		0x45a68, 0x45a68,
2563 		0x45a80, 0x45a84,
2564 		0x45aa0, 0x45ab0,
2565 		0x460c0, 0x460e4,
2566 		0x47000, 0x4703c,
2567 		0x47044, 0x4708c,
2568 		0x47200, 0x47250,
2569 		0x47400, 0x47408,
2570 		0x47414, 0x47420,
2571 		0x47600, 0x47618,
2572 		0x47800, 0x47814,
2573 		0x47820, 0x4782c,
2574 		0x50000, 0x50084,
2575 		0x50090, 0x500cc,
2576 		0x50300, 0x50384,
2577 		0x50400, 0x50400,
2578 		0x50800, 0x50884,
2579 		0x50890, 0x508cc,
2580 		0x50b00, 0x50b84,
2581 		0x50c00, 0x50c00,
2582 		0x51000, 0x51020,
2583 		0x51028, 0x510b0,
2584 		0x51300, 0x51324,
2585 	};
2586 
2587 	static const unsigned int t6vf_reg_ranges[] = {
2588 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2589 		VF_MPS_REG(A_MPS_VF_CTL),
2590 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2591 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2592 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2593 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2594 		FW_T6VF_MBDATA_BASE_ADDR,
2595 		FW_T6VF_MBDATA_BASE_ADDR +
2596 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2597 	};
2598 
2599 	u32 *buf_end = (u32 *)(buf + buf_size);
2600 	const unsigned int *reg_ranges;
2601 	int reg_ranges_size, range;
2602 	unsigned int chip_version = chip_id(adap);
2603 
2604 	/*
2605 	 * Select the right set of register ranges to dump depending on the
2606 	 * adapter chip type.
2607 	 */
2608 	switch (chip_version) {
2609 	case CHELSIO_T4:
2610 		if (adap->flags & IS_VF) {
2611 			reg_ranges = t4vf_reg_ranges;
2612 			reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges);
2613 		} else {
2614 			reg_ranges = t4_reg_ranges;
2615 			reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2616 		}
2617 		break;
2618 
2619 	case CHELSIO_T5:
2620 		if (adap->flags & IS_VF) {
2621 			reg_ranges = t5vf_reg_ranges;
2622 			reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges);
2623 		} else {
2624 			reg_ranges = t5_reg_ranges;
2625 			reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2626 		}
2627 		break;
2628 
2629 	case CHELSIO_T6:
2630 		if (adap->flags & IS_VF) {
2631 			reg_ranges = t6vf_reg_ranges;
2632 			reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges);
2633 		} else {
2634 			reg_ranges = t6_reg_ranges;
2635 			reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2636 		}
2637 		break;
2638 
2639 	default:
2640 		CH_ERR(adap,
2641 			"Unsupported chip version %d\n", chip_version);
2642 		return;
2643 	}
2644 
2645 	/*
2646 	 * Clear the register buffer and insert the appropriate register
2647 	 * values selected by the above register ranges.
2648 	 */
2649 	memset(buf, 0, buf_size);
2650 	for (range = 0; range < reg_ranges_size; range += 2) {
2651 		unsigned int reg = reg_ranges[range];
2652 		unsigned int last_reg = reg_ranges[range + 1];
2653 		u32 *bufp = (u32 *)(buf + reg);
2654 
2655 		/*
2656 		 * Iterate across the register range filling in the register
2657 		 * buffer but don't write past the end of the register buffer.
2658 		 */
2659 		while (reg <= last_reg && bufp < buf_end) {
2660 			*bufp++ = t4_read_reg(adap, reg);
2661 			reg += sizeof(u32);
2662 		}
2663 	}
2664 }
2665 
2666 /*
2667  * Partial EEPROM Vital Product Data structure.  The VPD starts with one ID
2668  * header followed by one or more VPD-R sections, each with its own header.
2669  */
2670 struct t4_vpd_hdr {
2671 	u8  id_tag;
2672 	u8  id_len[2];
2673 	u8  id_data[ID_LEN];
2674 };
2675 
2676 struct t4_vpdr_hdr {
2677 	u8  vpdr_tag;
2678 	u8  vpdr_len[2];
2679 };
2680 
2681 /*
2682  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
2683  */
2684 #define EEPROM_DELAY		10		/* 10us per poll spin */
2685 #define EEPROM_MAX_POLL		5000		/* x 5000 == 50ms */
2686 
2687 #define EEPROM_STAT_ADDR	0x7bfc
2688 #define VPD_SIZE		0x800
2689 #define VPD_BASE		0x400
2690 #define VPD_BASE_OLD		0
2691 #define VPD_LEN			1024
2692 #define VPD_INFO_FLD_HDR_SIZE	3
2693 #define CHELSIO_VPD_UNIQUE_ID	0x82
2694 
2695 /*
2696  * Small utility function to wait till any outstanding VPD Access is complete.
2697  * We have a per-adapter state variable "VPD Busy" to indicate when we have a
2698  * VPD Access in flight.  This allows us to handle the problem of having a
2699  * previous VPD Access time out and prevent an attempt to inject a new VPD
2700  * Request before any in-flight VPD reguest has completed.
2701  */
2702 static int t4_seeprom_wait(struct adapter *adapter)
2703 {
2704 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2705 	int max_poll;
2706 
2707 	/*
2708 	 * If no VPD Access is in flight, we can just return success right
2709 	 * away.
2710 	 */
2711 	if (!adapter->vpd_busy)
2712 		return 0;
2713 
2714 	/*
2715 	 * Poll the VPD Capability Address/Flag register waiting for it
2716 	 * to indicate that the operation is complete.
2717 	 */
2718 	max_poll = EEPROM_MAX_POLL;
2719 	do {
2720 		u16 val;
2721 
2722 		udelay(EEPROM_DELAY);
2723 		t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
2724 
2725 		/*
2726 		 * If the operation is complete, mark the VPD as no longer
2727 		 * busy and return success.
2728 		 */
2729 		if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
2730 			adapter->vpd_busy = 0;
2731 			return 0;
2732 		}
2733 	} while (--max_poll);
2734 
2735 	/*
2736 	 * Failure!  Note that we leave the VPD Busy status set in order to
2737 	 * avoid pushing a new VPD Access request into the VPD Capability till
2738 	 * the current operation eventually succeeds.  It's a bug to issue a
2739 	 * new request when an existing request is in flight and will result
2740 	 * in corrupt hardware state.
2741 	 */
2742 	return -ETIMEDOUT;
2743 }
2744 
2745 /**
2746  *	t4_seeprom_read - read a serial EEPROM location
2747  *	@adapter: adapter to read
2748  *	@addr: EEPROM virtual address
2749  *	@data: where to store the read data
2750  *
2751  *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
2752  *	VPD capability.  Note that this function must be called with a virtual
2753  *	address.
2754  */
2755 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2756 {
2757 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2758 	int ret;
2759 
2760 	/*
2761 	 * VPD Accesses must alway be 4-byte aligned!
2762 	 */
2763 	if (addr >= EEPROMVSIZE || (addr & 3))
2764 		return -EINVAL;
2765 
2766 	/*
2767 	 * Wait for any previous operation which may still be in flight to
2768 	 * complete.
2769 	 */
2770 	ret = t4_seeprom_wait(adapter);
2771 	if (ret) {
2772 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2773 		return ret;
2774 	}
2775 
2776 	/*
2777 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2778 	 * for our request to complete.  If it doesn't complete, note the
2779 	 * error and return it to our caller.  Note that we do not reset the
2780 	 * VPD Busy status!
2781 	 */
2782 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2783 	adapter->vpd_busy = 1;
2784 	adapter->vpd_flag = PCI_VPD_ADDR_F;
2785 	ret = t4_seeprom_wait(adapter);
2786 	if (ret) {
2787 		CH_ERR(adapter, "VPD read of address %#x failed\n", addr);
2788 		return ret;
2789 	}
2790 
2791 	/*
2792 	 * Grab the returned data, swizzle it into our endianness and
2793 	 * return success.
2794 	 */
2795 	t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2796 	*data = le32_to_cpu(*data);
2797 	return 0;
2798 }
2799 
2800 /**
2801  *	t4_seeprom_write - write a serial EEPROM location
2802  *	@adapter: adapter to write
2803  *	@addr: virtual EEPROM address
2804  *	@data: value to write
2805  *
2806  *	Write a 32-bit word to a location in serial EEPROM using the card's PCI
2807  *	VPD capability.  Note that this function must be called with a virtual
2808  *	address.
2809  */
2810 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2811 {
2812 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2813 	int ret;
2814 	u32 stats_reg;
2815 	int max_poll;
2816 
2817 	/*
2818 	 * VPD Accesses must alway be 4-byte aligned!
2819 	 */
2820 	if (addr >= EEPROMVSIZE || (addr & 3))
2821 		return -EINVAL;
2822 
2823 	/*
2824 	 * Wait for any previous operation which may still be in flight to
2825 	 * complete.
2826 	 */
2827 	ret = t4_seeprom_wait(adapter);
2828 	if (ret) {
2829 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2830 		return ret;
2831 	}
2832 
2833 	/*
2834 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2835 	 * for our request to complete.  If it doesn't complete, note the
2836 	 * error and return it to our caller.  Note that we do not reset the
2837 	 * VPD Busy status!
2838 	 */
2839 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2840 				 cpu_to_le32(data));
2841 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2842 				 (u16)addr | PCI_VPD_ADDR_F);
2843 	adapter->vpd_busy = 1;
2844 	adapter->vpd_flag = 0;
2845 	ret = t4_seeprom_wait(adapter);
2846 	if (ret) {
2847 		CH_ERR(adapter, "VPD write of address %#x failed\n", addr);
2848 		return ret;
2849 	}
2850 
2851 	/*
2852 	 * Reset PCI_VPD_DATA register after a transaction and wait for our
2853 	 * request to complete. If it doesn't complete, return error.
2854 	 */
2855 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2856 	max_poll = EEPROM_MAX_POLL;
2857 	do {
2858 		udelay(EEPROM_DELAY);
2859 		t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2860 	} while ((stats_reg & 0x1) && --max_poll);
2861 	if (!max_poll)
2862 		return -ETIMEDOUT;
2863 
2864 	/* Return success! */
2865 	return 0;
2866 }
2867 
2868 /**
2869  *	t4_eeprom_ptov - translate a physical EEPROM address to virtual
2870  *	@phys_addr: the physical EEPROM address
2871  *	@fn: the PCI function number
2872  *	@sz: size of function-specific area
2873  *
2874  *	Translate a physical EEPROM address to virtual.  The first 1K is
2875  *	accessed through virtual addresses starting at 31K, the rest is
2876  *	accessed through virtual addresses starting at 0.
2877  *
2878  *	The mapping is as follows:
2879  *	[0..1K) -> [31K..32K)
2880  *	[1K..1K+A) -> [ES-A..ES)
2881  *	[1K+A..ES) -> [0..ES-A-1K)
2882  *
2883  *	where A = @fn * @sz, and ES = EEPROM size.
2884  */
2885 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2886 {
2887 	fn *= sz;
2888 	if (phys_addr < 1024)
2889 		return phys_addr + (31 << 10);
2890 	if (phys_addr < 1024 + fn)
2891 		return EEPROMSIZE - fn + phys_addr - 1024;
2892 	if (phys_addr < EEPROMSIZE)
2893 		return phys_addr - 1024 - fn;
2894 	return -EINVAL;
2895 }
2896 
2897 /**
2898  *	t4_seeprom_wp - enable/disable EEPROM write protection
2899  *	@adapter: the adapter
2900  *	@enable: whether to enable or disable write protection
2901  *
2902  *	Enables or disables write protection on the serial EEPROM.
2903  */
2904 int t4_seeprom_wp(struct adapter *adapter, int enable)
2905 {
2906 	return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2907 }
2908 
2909 /**
2910  *	get_vpd_keyword_val - Locates an information field keyword in the VPD
2911  *	@vpd: Pointer to buffered vpd data structure
2912  *	@kw: The keyword to search for
2913  *	@region: VPD region to search (starting from 0)
2914  *
2915  *	Returns the value of the information field keyword or
2916  *	-ENOENT otherwise.
2917  */
2918 static int get_vpd_keyword_val(const u8 *vpd, const char *kw, int region)
2919 {
2920 	int i, tag;
2921 	unsigned int offset, len;
2922 	const struct t4_vpdr_hdr *vpdr;
2923 
2924 	offset = sizeof(struct t4_vpd_hdr);
2925 	vpdr = (const void *)(vpd + offset);
2926 	tag = vpdr->vpdr_tag;
2927 	len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2928 	while (region--) {
2929 		offset += sizeof(struct t4_vpdr_hdr) + len;
2930 		vpdr = (const void *)(vpd + offset);
2931 		if (++tag != vpdr->vpdr_tag)
2932 			return -ENOENT;
2933 		len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2934 	}
2935 	offset += sizeof(struct t4_vpdr_hdr);
2936 
2937 	if (offset + len > VPD_LEN) {
2938 		return -ENOENT;
2939 	}
2940 
2941 	for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
2942 		if (memcmp(vpd + i , kw , 2) == 0){
2943 			i += VPD_INFO_FLD_HDR_SIZE;
2944 			return i;
2945 		}
2946 
2947 		i += VPD_INFO_FLD_HDR_SIZE + vpd[i+2];
2948 	}
2949 
2950 	return -ENOENT;
2951 }
2952 
2953 
2954 /**
2955  *	get_vpd_params - read VPD parameters from VPD EEPROM
2956  *	@adapter: adapter to read
2957  *	@p: where to store the parameters
2958  *	@vpd: caller provided temporary space to read the VPD into
2959  *
2960  *	Reads card parameters stored in VPD EEPROM.
2961  */
2962 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p,
2963     uint16_t device_id, u32 *buf)
2964 {
2965 	int i, ret, addr;
2966 	int ec, sn, pn, na, md;
2967 	u8 csum;
2968 	const u8 *vpd = (const u8 *)buf;
2969 
2970 	/*
2971 	 * Card information normally starts at VPD_BASE but early cards had
2972 	 * it at 0.
2973 	 */
2974 	ret = t4_seeprom_read(adapter, VPD_BASE, buf);
2975 	if (ret)
2976 		return (ret);
2977 
2978 	/*
2979 	 * The VPD shall have a unique identifier specified by the PCI SIG.
2980 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2981 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2982 	 * is expected to automatically put this entry at the
2983 	 * beginning of the VPD.
2984 	 */
2985 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2986 
2987 	for (i = 0; i < VPD_LEN; i += 4) {
2988 		ret = t4_seeprom_read(adapter, addr + i, buf++);
2989 		if (ret)
2990 			return ret;
2991 	}
2992 
2993 #define FIND_VPD_KW(var,name) do { \
2994 	var = get_vpd_keyword_val(vpd, name, 0); \
2995 	if (var < 0) { \
2996 		CH_ERR(adapter, "missing VPD keyword " name "\n"); \
2997 		return -EINVAL; \
2998 	} \
2999 } while (0)
3000 
3001 	FIND_VPD_KW(i, "RV");
3002 	for (csum = 0; i >= 0; i--)
3003 		csum += vpd[i];
3004 
3005 	if (csum) {
3006 		CH_ERR(adapter,
3007 			"corrupted VPD EEPROM, actual csum %u\n", csum);
3008 		return -EINVAL;
3009 	}
3010 
3011 	FIND_VPD_KW(ec, "EC");
3012 	FIND_VPD_KW(sn, "SN");
3013 	FIND_VPD_KW(pn, "PN");
3014 	FIND_VPD_KW(na, "NA");
3015 #undef FIND_VPD_KW
3016 
3017 	memcpy(p->id, vpd + offsetof(struct t4_vpd_hdr, id_data), ID_LEN);
3018 	strstrip(p->id);
3019 	memcpy(p->ec, vpd + ec, EC_LEN);
3020 	strstrip(p->ec);
3021 	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
3022 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
3023 	strstrip(p->sn);
3024 	i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
3025 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
3026 	strstrip((char *)p->pn);
3027 	i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
3028 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
3029 	strstrip((char *)p->na);
3030 
3031 	if (device_id & 0x80)
3032 		return 0;	/* Custom card */
3033 
3034 	md = get_vpd_keyword_val(vpd, "VF", 1);
3035 	if (md < 0) {
3036 		snprintf(p->md, sizeof(p->md), "unknown");
3037 	} else {
3038 		i = vpd[md - VPD_INFO_FLD_HDR_SIZE + 2];
3039 		memcpy(p->md, vpd + md, min(i, MD_LEN));
3040 		strstrip((char *)p->md);
3041 	}
3042 
3043 	return 0;
3044 }
3045 
3046 /* serial flash and firmware constants and flash config file constants */
3047 enum {
3048 	SF_ATTEMPTS = 10,	/* max retries for SF operations */
3049 
3050 	/* flash command opcodes */
3051 	SF_PROG_PAGE    = 2,	/* program 256B page */
3052 	SF_WR_DISABLE   = 4,	/* disable writes */
3053 	SF_RD_STATUS    = 5,	/* read status register */
3054 	SF_WR_ENABLE    = 6,	/* enable writes */
3055 	SF_RD_DATA_FAST = 0xb,	/* read flash */
3056 	SF_RD_ID	= 0x9f,	/* read ID */
3057 	SF_ERASE_SECTOR = 0xd8,	/* erase 64KB sector */
3058 };
3059 
3060 /**
3061  *	sf1_read - read data from the serial flash
3062  *	@adapter: the adapter
3063  *	@byte_cnt: number of bytes to read
3064  *	@cont: whether another operation will be chained
3065  *	@lock: whether to lock SF for PL access only
3066  *	@valp: where to store the read data
3067  *
3068  *	Reads up to 4 bytes of data from the serial flash.  The location of
3069  *	the read needs to be specified prior to calling this by issuing the
3070  *	appropriate commands to the serial flash.
3071  */
3072 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
3073 		    int lock, u32 *valp)
3074 {
3075 	int ret;
3076 
3077 	if (!byte_cnt || byte_cnt > 4)
3078 		return -EINVAL;
3079 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3080 		return -EBUSY;
3081 	t4_write_reg(adapter, A_SF_OP,
3082 		     V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
3083 	ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3084 	if (!ret)
3085 		*valp = t4_read_reg(adapter, A_SF_DATA);
3086 	return ret;
3087 }
3088 
3089 /**
3090  *	sf1_write - write data to the serial flash
3091  *	@adapter: the adapter
3092  *	@byte_cnt: number of bytes to write
3093  *	@cont: whether another operation will be chained
3094  *	@lock: whether to lock SF for PL access only
3095  *	@val: value to write
3096  *
3097  *	Writes up to 4 bytes of data to the serial flash.  The location of
3098  *	the write needs to be specified prior to calling this by issuing the
3099  *	appropriate commands to the serial flash.
3100  */
3101 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
3102 		     int lock, u32 val)
3103 {
3104 	if (!byte_cnt || byte_cnt > 4)
3105 		return -EINVAL;
3106 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3107 		return -EBUSY;
3108 	t4_write_reg(adapter, A_SF_DATA, val);
3109 	t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
3110 		     V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
3111 	return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3112 }
3113 
3114 /**
3115  *	flash_wait_op - wait for a flash operation to complete
3116  *	@adapter: the adapter
3117  *	@attempts: max number of polls of the status register
3118  *	@delay: delay between polls in ms
3119  *
3120  *	Wait for a flash operation to complete by polling the status register.
3121  */
3122 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3123 {
3124 	int ret;
3125 	u32 status;
3126 
3127 	while (1) {
3128 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3129 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3130 			return ret;
3131 		if (!(status & 1))
3132 			return 0;
3133 		if (--attempts == 0)
3134 			return -EAGAIN;
3135 		if (delay)
3136 			msleep(delay);
3137 	}
3138 }
3139 
3140 /**
3141  *	t4_read_flash - read words from serial flash
3142  *	@adapter: the adapter
3143  *	@addr: the start address for the read
3144  *	@nwords: how many 32-bit words to read
3145  *	@data: where to store the read data
3146  *	@byte_oriented: whether to store data as bytes or as words
3147  *
3148  *	Read the specified number of 32-bit words from the serial flash.
3149  *	If @byte_oriented is set the read data is stored as a byte array
3150  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3151  *	natural endianness.
3152  */
3153 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3154 		  unsigned int nwords, u32 *data, int byte_oriented)
3155 {
3156 	int ret;
3157 
3158 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3159 		return -EINVAL;
3160 
3161 	addr = swab32(addr) | SF_RD_DATA_FAST;
3162 
3163 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3164 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3165 		return ret;
3166 
3167 	for ( ; nwords; nwords--, data++) {
3168 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3169 		if (nwords == 1)
3170 			t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3171 		if (ret)
3172 			return ret;
3173 		if (byte_oriented)
3174 			*data = (__force __u32)(cpu_to_be32(*data));
3175 	}
3176 	return 0;
3177 }
3178 
3179 /**
3180  *	t4_write_flash - write up to a page of data to the serial flash
3181  *	@adapter: the adapter
3182  *	@addr: the start address to write
3183  *	@n: length of data to write in bytes
3184  *	@data: the data to write
3185  *	@byte_oriented: whether to store data as bytes or as words
3186  *
3187  *	Writes up to a page of data (256 bytes) to the serial flash starting
3188  *	at the given address.  All the data must be written to the same page.
3189  *	If @byte_oriented is set the write data is stored as byte stream
3190  *	(i.e. matches what on disk), otherwise in big-endian.
3191  */
3192 int t4_write_flash(struct adapter *adapter, unsigned int addr,
3193 			  unsigned int n, const u8 *data, int byte_oriented)
3194 {
3195 	int ret;
3196 	u32 buf[SF_PAGE_SIZE / 4];
3197 	unsigned int i, c, left, val, offset = addr & 0xff;
3198 
3199 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3200 		return -EINVAL;
3201 
3202 	val = swab32(addr) | SF_PROG_PAGE;
3203 
3204 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3205 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3206 		goto unlock;
3207 
3208 	for (left = n; left; left -= c) {
3209 		c = min(left, 4U);
3210 		for (val = 0, i = 0; i < c; ++i)
3211 			val = (val << 8) + *data++;
3212 
3213 		if (!byte_oriented)
3214 			val = cpu_to_be32(val);
3215 
3216 		ret = sf1_write(adapter, c, c != left, 1, val);
3217 		if (ret)
3218 			goto unlock;
3219 	}
3220 	ret = flash_wait_op(adapter, 8, 1);
3221 	if (ret)
3222 		goto unlock;
3223 
3224 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3225 
3226 	/* Read the page to verify the write succeeded */
3227 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3228 			    byte_oriented);
3229 	if (ret)
3230 		return ret;
3231 
3232 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3233 		CH_ERR(adapter,
3234 			"failed to correctly write the flash page at %#x\n",
3235 			addr);
3236 		return -EIO;
3237 	}
3238 	return 0;
3239 
3240 unlock:
3241 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3242 	return ret;
3243 }
3244 
3245 /**
3246  *	t4_get_fw_version - read the firmware version
3247  *	@adapter: the adapter
3248  *	@vers: where to place the version
3249  *
3250  *	Reads the FW version from flash.
3251  */
3252 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3253 {
3254 	return t4_read_flash(adapter, FLASH_FW_START +
3255 			     offsetof(struct fw_hdr, fw_ver), 1,
3256 			     vers, 0);
3257 }
3258 
3259 /**
3260  *	t4_get_bs_version - read the firmware bootstrap version
3261  *	@adapter: the adapter
3262  *	@vers: where to place the version
3263  *
3264  *	Reads the FW Bootstrap version from flash.
3265  */
3266 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3267 {
3268 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3269 			     offsetof(struct fw_hdr, fw_ver), 1,
3270 			     vers, 0);
3271 }
3272 
3273 /**
3274  *	t4_get_tp_version - read the TP microcode version
3275  *	@adapter: the adapter
3276  *	@vers: where to place the version
3277  *
3278  *	Reads the TP microcode version from flash.
3279  */
3280 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3281 {
3282 	return t4_read_flash(adapter, FLASH_FW_START +
3283 			     offsetof(struct fw_hdr, tp_microcode_ver),
3284 			     1, vers, 0);
3285 }
3286 
3287 /**
3288  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3289  *	@adapter: the adapter
3290  *	@vers: where to place the version
3291  *
3292  *	Reads the Expansion ROM header from FLASH and returns the version
3293  *	number (if present) through the @vers return value pointer.  We return
3294  *	this in the Firmware Version Format since it's convenient.  Return
3295  *	0 on success, -ENOENT if no Expansion ROM is present.
3296  */
3297 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3298 {
3299 	struct exprom_header {
3300 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3301 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3302 	} *hdr;
3303 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3304 					   sizeof(u32))];
3305 	int ret;
3306 
3307 	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3308 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3309 			    0);
3310 	if (ret)
3311 		return ret;
3312 
3313 	hdr = (struct exprom_header *)exprom_header_buf;
3314 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3315 		return -ENOENT;
3316 
3317 	*vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
3318 		 V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
3319 		 V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
3320 		 V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
3321 	return 0;
3322 }
3323 
3324 /**
3325  *	t4_get_scfg_version - return the Serial Configuration version
3326  *	@adapter: the adapter
3327  *	@vers: where to place the version
3328  *
3329  *	Reads the Serial Configuration Version via the Firmware interface
3330  *	(thus this can only be called once we're ready to issue Firmware
3331  *	commands).  The format of the Serial Configuration version is
3332  *	adapter specific.  Returns 0 on success, an error on failure.
3333  *
3334  *	Note that early versions of the Firmware didn't include the ability
3335  *	to retrieve the Serial Configuration version, so we zero-out the
3336  *	return-value parameter in that case to avoid leaving it with
3337  *	garbage in it.
3338  *
3339  *	Also note that the Firmware will return its cached copy of the Serial
3340  *	Initialization Revision ID, not the actual Revision ID as written in
3341  *	the Serial EEPROM.  This is only an issue if a new VPD has been written
3342  *	and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3343  *	it's best to defer calling this routine till after a FW_RESET_CMD has
3344  *	been issued if the Host Driver will be performing a full adapter
3345  *	initialization.
3346  */
3347 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3348 {
3349 	u32 scfgrev_param;
3350 	int ret;
3351 
3352 	scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3353 			 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV));
3354 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3355 			      1, &scfgrev_param, vers);
3356 	if (ret)
3357 		*vers = 0;
3358 	return ret;
3359 }
3360 
3361 /**
3362  *	t4_get_vpd_version - return the VPD version
3363  *	@adapter: the adapter
3364  *	@vers: where to place the version
3365  *
3366  *	Reads the VPD via the Firmware interface (thus this can only be called
3367  *	once we're ready to issue Firmware commands).  The format of the
3368  *	VPD version is adapter specific.  Returns 0 on success, an error on
3369  *	failure.
3370  *
3371  *	Note that early versions of the Firmware didn't include the ability
3372  *	to retrieve the VPD version, so we zero-out the return-value parameter
3373  *	in that case to avoid leaving it with garbage in it.
3374  *
3375  *	Also note that the Firmware will return its cached copy of the VPD
3376  *	Revision ID, not the actual Revision ID as written in the Serial
3377  *	EEPROM.  This is only an issue if a new VPD has been written and the
3378  *	Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3379  *	to defer calling this routine till after a FW_RESET_CMD has been issued
3380  *	if the Host Driver will be performing a full adapter initialization.
3381  */
3382 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3383 {
3384 	u32 vpdrev_param;
3385 	int ret;
3386 
3387 	vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3388 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV));
3389 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3390 			      1, &vpdrev_param, vers);
3391 	if (ret)
3392 		*vers = 0;
3393 	return ret;
3394 }
3395 
3396 /**
3397  *	t4_get_version_info - extract various chip/firmware version information
3398  *	@adapter: the adapter
3399  *
3400  *	Reads various chip/firmware version numbers and stores them into the
3401  *	adapter Adapter Parameters structure.  If any of the efforts fails
3402  *	the first failure will be returned, but all of the version numbers
3403  *	will be read.
3404  */
3405 int t4_get_version_info(struct adapter *adapter)
3406 {
3407 	int ret = 0;
3408 
3409 	#define FIRST_RET(__getvinfo) \
3410 	do { \
3411 		int __ret = __getvinfo; \
3412 		if (__ret && !ret) \
3413 			ret = __ret; \
3414 	} while (0)
3415 
3416 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3417 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3418 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3419 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3420 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3421 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3422 
3423 	#undef FIRST_RET
3424 
3425 	return ret;
3426 }
3427 
3428 /**
3429  *	t4_flash_erase_sectors - erase a range of flash sectors
3430  *	@adapter: the adapter
3431  *	@start: the first sector to erase
3432  *	@end: the last sector to erase
3433  *
3434  *	Erases the sectors in the given inclusive range.
3435  */
3436 int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3437 {
3438 	int ret = 0;
3439 
3440 	if (end >= adapter->params.sf_nsec)
3441 		return -EINVAL;
3442 
3443 	while (start <= end) {
3444 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3445 		    (ret = sf1_write(adapter, 4, 0, 1,
3446 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3447 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3448 			CH_ERR(adapter,
3449 				"erase of flash sector %d failed, error %d\n",
3450 				start, ret);
3451 			break;
3452 		}
3453 		start++;
3454 	}
3455 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3456 	return ret;
3457 }
3458 
3459 /**
3460  *	t4_flash_cfg_addr - return the address of the flash configuration file
3461  *	@adapter: the adapter
3462  *
3463  *	Return the address within the flash where the Firmware Configuration
3464  *	File is stored, or an error if the device FLASH is too small to contain
3465  *	a Firmware Configuration File.
3466  */
3467 int t4_flash_cfg_addr(struct adapter *adapter)
3468 {
3469 	/*
3470 	 * If the device FLASH isn't large enough to hold a Firmware
3471 	 * Configuration File, return an error.
3472 	 */
3473 	if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
3474 		return -ENOSPC;
3475 
3476 	return FLASH_CFG_START;
3477 }
3478 
3479 /*
3480  * Return TRUE if the specified firmware matches the adapter.  I.e. T4
3481  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3482  * and emit an error message for mismatched firmware to save our caller the
3483  * effort ...
3484  */
3485 static int t4_fw_matches_chip(struct adapter *adap,
3486 			      const struct fw_hdr *hdr)
3487 {
3488 	/*
3489 	 * The expression below will return FALSE for any unsupported adapter
3490 	 * which will keep us "honest" in the future ...
3491 	 */
3492 	if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) ||
3493 	    (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) ||
3494 	    (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6))
3495 		return 1;
3496 
3497 	CH_ERR(adap,
3498 		"FW image (%d) is not suitable for this adapter (%d)\n",
3499 		hdr->chip, chip_id(adap));
3500 	return 0;
3501 }
3502 
3503 /**
3504  *	t4_load_fw - download firmware
3505  *	@adap: the adapter
3506  *	@fw_data: the firmware image to write
3507  *	@size: image size
3508  *
3509  *	Write the supplied firmware image to the card's serial flash.
3510  */
3511 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3512 {
3513 	u32 csum;
3514 	int ret, addr;
3515 	unsigned int i;
3516 	u8 first_page[SF_PAGE_SIZE];
3517 	const u32 *p = (const u32 *)fw_data;
3518 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3519 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3520 	unsigned int fw_start_sec;
3521 	unsigned int fw_start;
3522 	unsigned int fw_size;
3523 
3524 	if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) {
3525 		fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC;
3526 		fw_start = FLASH_FWBOOTSTRAP_START;
3527 		fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE;
3528 	} else {
3529 		fw_start_sec = FLASH_FW_START_SEC;
3530  		fw_start = FLASH_FW_START;
3531 		fw_size = FLASH_FW_MAX_SIZE;
3532 	}
3533 
3534 	if (!size) {
3535 		CH_ERR(adap, "FW image has no data\n");
3536 		return -EINVAL;
3537 	}
3538 	if (size & 511) {
3539 		CH_ERR(adap,
3540 			"FW image size not multiple of 512 bytes\n");
3541 		return -EINVAL;
3542 	}
3543 	if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) {
3544 		CH_ERR(adap,
3545 			"FW image size differs from size in FW header\n");
3546 		return -EINVAL;
3547 	}
3548 	if (size > fw_size) {
3549 		CH_ERR(adap, "FW image too large, max is %u bytes\n",
3550 			fw_size);
3551 		return -EFBIG;
3552 	}
3553 	if (!t4_fw_matches_chip(adap, hdr))
3554 		return -EINVAL;
3555 
3556 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3557 		csum += be32_to_cpu(p[i]);
3558 
3559 	if (csum != 0xffffffff) {
3560 		CH_ERR(adap,
3561 			"corrupted firmware image, checksum %#x\n", csum);
3562 		return -EINVAL;
3563 	}
3564 
3565 	i = DIV_ROUND_UP(size, sf_sec_size);	/* # of sectors spanned */
3566 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3567 	if (ret)
3568 		goto out;
3569 
3570 	/*
3571 	 * We write the correct version at the end so the driver can see a bad
3572 	 * version if the FW write fails.  Start by writing a copy of the
3573 	 * first page with a bad version.
3574 	 */
3575 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3576 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3577 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
3578 	if (ret)
3579 		goto out;
3580 
3581 	addr = fw_start;
3582 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3583 		addr += SF_PAGE_SIZE;
3584 		fw_data += SF_PAGE_SIZE;
3585 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
3586 		if (ret)
3587 			goto out;
3588 	}
3589 
3590 	ret = t4_write_flash(adap,
3591 			     fw_start + offsetof(struct fw_hdr, fw_ver),
3592 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
3593 out:
3594 	if (ret)
3595 		CH_ERR(adap, "firmware download failed, error %d\n",
3596 			ret);
3597 	return ret;
3598 }
3599 
3600 /**
3601  *	t4_fwcache - firmware cache operation
3602  *	@adap: the adapter
3603  *	@op  : the operation (flush or flush and invalidate)
3604  */
3605 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3606 {
3607 	struct fw_params_cmd c;
3608 
3609 	memset(&c, 0, sizeof(c));
3610 	c.op_to_vfn =
3611 	    cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3612 			    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3613 				V_FW_PARAMS_CMD_PFN(adap->pf) |
3614 				V_FW_PARAMS_CMD_VFN(0));
3615 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3616 	c.param[0].mnem =
3617 	    cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3618 			    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE));
3619 	c.param[0].val = (__force __be32)op;
3620 
3621 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3622 }
3623 
3624 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3625 			unsigned int *pif_req_wrptr,
3626 			unsigned int *pif_rsp_wrptr)
3627 {
3628 	int i, j;
3629 	u32 cfg, val, req, rsp;
3630 
3631 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3632 	if (cfg & F_LADBGEN)
3633 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3634 
3635 	val = t4_read_reg(adap, A_CIM_DEBUGSTS);
3636 	req = G_POLADBGWRPTR(val);
3637 	rsp = G_PILADBGWRPTR(val);
3638 	if (pif_req_wrptr)
3639 		*pif_req_wrptr = req;
3640 	if (pif_rsp_wrptr)
3641 		*pif_rsp_wrptr = rsp;
3642 
3643 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3644 		for (j = 0; j < 6; j++) {
3645 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
3646 				     V_PILADBGRDPTR(rsp));
3647 			*pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
3648 			*pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
3649 			req++;
3650 			rsp++;
3651 		}
3652 		req = (req + 2) & M_POLADBGRDPTR;
3653 		rsp = (rsp + 2) & M_PILADBGRDPTR;
3654 	}
3655 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3656 }
3657 
3658 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3659 {
3660 	u32 cfg;
3661 	int i, j, idx;
3662 
3663 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3664 	if (cfg & F_LADBGEN)
3665 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3666 
3667 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3668 		for (j = 0; j < 5; j++) {
3669 			idx = 8 * i + j;
3670 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
3671 				     V_PILADBGRDPTR(idx));
3672 			*ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
3673 			*ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
3674 		}
3675 	}
3676 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3677 }
3678 
3679 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3680 {
3681 	unsigned int i, j;
3682 
3683 	for (i = 0; i < 8; i++) {
3684 		u32 *p = la_buf + i;
3685 
3686 		t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
3687 		j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
3688 		t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
3689 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3690 			*p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
3691 	}
3692 }
3693 
3694 /**
3695  *	t4_link_l1cfg - apply link configuration to MAC/PHY
3696  *	@phy: the PHY to setup
3697  *	@mac: the MAC to setup
3698  *	@lc: the requested link configuration
3699  *
3700  *	Set up a port's MAC and PHY according to a desired link configuration.
3701  *	- If the PHY can auto-negotiate first decide what to advertise, then
3702  *	  enable/disable auto-negotiation as desired, and reset.
3703  *	- If the PHY does not auto-negotiate just reset it.
3704  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3705  *	  otherwise do it later based on the outcome of auto-negotiation.
3706  */
3707 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3708 		  struct link_config *lc)
3709 {
3710 	struct fw_port_cmd c;
3711 	unsigned int mdi = V_FW_PORT_CAP_MDI(FW_PORT_CAP_MDI_AUTO);
3712 	unsigned int aneg, fc, fec, speed, rcap;
3713 
3714 	fc = 0;
3715 	if (lc->requested_fc & PAUSE_RX)
3716 		fc |= FW_PORT_CAP_FC_RX;
3717 	if (lc->requested_fc & PAUSE_TX)
3718 		fc |= FW_PORT_CAP_FC_TX;
3719 
3720 	fec = 0;
3721 	if (lc->requested_fec & FEC_RS)
3722 		fec = FW_PORT_CAP_FEC_RS;
3723 	else if (lc->requested_fec & FEC_BASER_RS)
3724 		fec = FW_PORT_CAP_FEC_BASER_RS;
3725 	else if (lc->requested_fec & FEC_RESERVED)
3726 		fec = FW_PORT_CAP_FEC_RESERVED;
3727 
3728 	if (!(lc->supported & FW_PORT_CAP_ANEG) ||
3729 	    lc->requested_aneg == AUTONEG_DISABLE) {
3730 		aneg = 0;
3731 		switch (lc->requested_speed) {
3732 		case 100:
3733 			speed = FW_PORT_CAP_SPEED_100G;
3734 			break;
3735 		case 40:
3736 			speed = FW_PORT_CAP_SPEED_40G;
3737 			break;
3738 		case 25:
3739 			speed = FW_PORT_CAP_SPEED_25G;
3740 			break;
3741 		case 10:
3742 			speed = FW_PORT_CAP_SPEED_10G;
3743 			break;
3744 		case 1:
3745 			speed = FW_PORT_CAP_SPEED_1G;
3746 			break;
3747 		default:
3748 			return -EINVAL;
3749 			break;
3750 		}
3751 	} else {
3752 		aneg = FW_PORT_CAP_ANEG;
3753 		speed = lc->supported &
3754 		    V_FW_PORT_CAP_SPEED(M_FW_PORT_CAP_SPEED);
3755 	}
3756 
3757 	rcap = aneg | speed | fc | fec;
3758 	if ((rcap | lc->supported) != lc->supported) {
3759 #ifdef INVARIANTS
3760 		CH_WARN(adap, "rcap 0x%08x, pcap 0x%08x\n", rcap,
3761 		    lc->supported);
3762 #endif
3763 		rcap &= lc->supported;
3764 	}
3765 	rcap |= mdi;
3766 
3767 	memset(&c, 0, sizeof(c));
3768 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3769 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3770 				     V_FW_PORT_CMD_PORTID(port));
3771 	c.action_to_len16 =
3772 		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3773 			    FW_LEN16(c));
3774 	c.u.l1cfg.rcap = cpu_to_be32(rcap);
3775 
3776 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
3777 }
3778 
3779 /**
3780  *	t4_restart_aneg - restart autonegotiation
3781  *	@adap: the adapter
3782  *	@mbox: mbox to use for the FW command
3783  *	@port: the port id
3784  *
3785  *	Restarts autonegotiation for the selected port.
3786  */
3787 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3788 {
3789 	struct fw_port_cmd c;
3790 
3791 	memset(&c, 0, sizeof(c));
3792 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3793 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3794 				     V_FW_PORT_CMD_PORTID(port));
3795 	c.action_to_len16 =
3796 		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3797 			    FW_LEN16(c));
3798 	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3799 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3800 }
3801 
3802 typedef void (*int_handler_t)(struct adapter *adap);
3803 
3804 struct intr_info {
3805 	unsigned int mask;	/* bits to check in interrupt status */
3806 	const char *msg;	/* message to print or NULL */
3807 	short stat_idx;		/* stat counter to increment or -1 */
3808 	unsigned short fatal;	/* whether the condition reported is fatal */
3809 	int_handler_t int_handler;	/* platform-specific int handler */
3810 };
3811 
3812 /**
3813  *	t4_handle_intr_status - table driven interrupt handler
3814  *	@adapter: the adapter that generated the interrupt
3815  *	@reg: the interrupt status register to process
3816  *	@acts: table of interrupt actions
3817  *
3818  *	A table driven interrupt handler that applies a set of masks to an
3819  *	interrupt status word and performs the corresponding actions if the
3820  *	interrupts described by the mask have occurred.  The actions include
3821  *	optionally emitting a warning or alert message.  The table is terminated
3822  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
3823  *	conditions.
3824  */
3825 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
3826 				 const struct intr_info *acts)
3827 {
3828 	int fatal = 0;
3829 	unsigned int mask = 0;
3830 	unsigned int status = t4_read_reg(adapter, reg);
3831 
3832 	for ( ; acts->mask; ++acts) {
3833 		if (!(status & acts->mask))
3834 			continue;
3835 		if (acts->fatal) {
3836 			fatal++;
3837 			CH_ALERT(adapter, "%s (0x%x)\n", acts->msg,
3838 				  status & acts->mask);
3839 		} else if (acts->msg)
3840 			CH_WARN_RATELIMIT(adapter, "%s (0x%x)\n", acts->msg,
3841 				 status & acts->mask);
3842 		if (acts->int_handler)
3843 			acts->int_handler(adapter);
3844 		mask |= acts->mask;
3845 	}
3846 	status &= mask;
3847 	if (status)	/* clear processed interrupts */
3848 		t4_write_reg(adapter, reg, status);
3849 	return fatal;
3850 }
3851 
3852 /*
3853  * Interrupt handler for the PCIE module.
3854  */
3855 static void pcie_intr_handler(struct adapter *adapter)
3856 {
3857 	static const struct intr_info sysbus_intr_info[] = {
3858 		{ F_RNPP, "RXNP array parity error", -1, 1 },
3859 		{ F_RPCP, "RXPC array parity error", -1, 1 },
3860 		{ F_RCIP, "RXCIF array parity error", -1, 1 },
3861 		{ F_RCCP, "Rx completions control array parity error", -1, 1 },
3862 		{ F_RFTP, "RXFT array parity error", -1, 1 },
3863 		{ 0 }
3864 	};
3865 	static const struct intr_info pcie_port_intr_info[] = {
3866 		{ F_TPCP, "TXPC array parity error", -1, 1 },
3867 		{ F_TNPP, "TXNP array parity error", -1, 1 },
3868 		{ F_TFTP, "TXFT array parity error", -1, 1 },
3869 		{ F_TCAP, "TXCA array parity error", -1, 1 },
3870 		{ F_TCIP, "TXCIF array parity error", -1, 1 },
3871 		{ F_RCAP, "RXCA array parity error", -1, 1 },
3872 		{ F_OTDD, "outbound request TLP discarded", -1, 1 },
3873 		{ F_RDPE, "Rx data parity error", -1, 1 },
3874 		{ F_TDUE, "Tx uncorrectable data error", -1, 1 },
3875 		{ 0 }
3876 	};
3877 	static const struct intr_info pcie_intr_info[] = {
3878 		{ F_MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
3879 		{ F_MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
3880 		{ F_MSIDATAPERR, "MSI data parity error", -1, 1 },
3881 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
3882 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
3883 		{ F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
3884 		{ F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
3885 		{ F_PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
3886 		{ F_PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
3887 		{ F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
3888 		{ F_CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
3889 		{ F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
3890 		{ F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
3891 		{ F_DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
3892 		{ F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
3893 		{ F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
3894 		{ F_HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
3895 		{ F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
3896 		{ F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
3897 		{ F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
3898 		{ F_FIDPERR, "PCI FID parity error", -1, 1 },
3899 		{ F_INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
3900 		{ F_MATAGPERR, "PCI MA tag parity error", -1, 1 },
3901 		{ F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
3902 		{ F_RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
3903 		{ F_RXWRPERR, "PCI Rx write parity error", -1, 1 },
3904 		{ F_RPLPERR, "PCI replay buffer parity error", -1, 1 },
3905 		{ F_PCIESINT, "PCI core secondary fault", -1, 1 },
3906 		{ F_PCIEPINT, "PCI core primary fault", -1, 1 },
3907 		{ F_UNXSPLCPLERR, "PCI unexpected split completion error", -1,
3908 		  0 },
3909 		{ 0 }
3910 	};
3911 
3912 	static const struct intr_info t5_pcie_intr_info[] = {
3913 		{ F_MSTGRPPERR, "Master Response Read Queue parity error",
3914 		  -1, 1 },
3915 		{ F_MSTTIMEOUTPERR, "Master Timeout FIFO parity error", -1, 1 },
3916 		{ F_MSIXSTIPERR, "MSI-X STI SRAM parity error", -1, 1 },
3917 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
3918 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
3919 		{ F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
3920 		{ F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
3921 		{ F_PIOCPLGRPPERR, "PCI PIO completion Group FIFO parity error",
3922 		  -1, 1 },
3923 		{ F_PIOREQGRPPERR, "PCI PIO request Group FIFO parity error",
3924 		  -1, 1 },
3925 		{ F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
3926 		{ F_MSTTAGQPERR, "PCI master tag queue parity error", -1, 1 },
3927 		{ F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
3928 		{ F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
3929 		{ F_DREQWRPERR, "PCI DMA channel write request parity error",
3930 		  -1, 1 },
3931 		{ F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
3932 		{ F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
3933 		{ F_HREQWRPERR, "PCI HMA channel count parity error", -1, 1 },
3934 		{ F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
3935 		{ F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
3936 		{ F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
3937 		{ F_FIDPERR, "PCI FID parity error", -1, 1 },
3938 		{ F_VFIDPERR, "PCI INTx clear parity error", -1, 1 },
3939 		{ F_MAGRPPERR, "PCI MA group FIFO parity error", -1, 1 },
3940 		{ F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
3941 		{ F_IPRXHDRGRPPERR, "PCI IP Rx header group parity error",
3942 		  -1, 1 },
3943 		{ F_IPRXDATAGRPPERR, "PCI IP Rx data group parity error",
3944 		  -1, 1 },
3945 		{ F_RPLPERR, "PCI IP replay buffer parity error", -1, 1 },
3946 		{ F_IPSOTPERR, "PCI IP SOT buffer parity error", -1, 1 },
3947 		{ F_TRGT1GRPPERR, "PCI TRGT1 group FIFOs parity error", -1, 1 },
3948 		{ F_READRSPERR, "Outbound read error", -1,
3949 		  0 },
3950 		{ 0 }
3951 	};
3952 
3953 	int fat;
3954 
3955 	if (is_t4(adapter))
3956 		fat = t4_handle_intr_status(adapter,
3957 				A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
3958 				sysbus_intr_info) +
3959 			t4_handle_intr_status(adapter,
3960 					A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
3961 					pcie_port_intr_info) +
3962 			t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
3963 					      pcie_intr_info);
3964 	else
3965 		fat = t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
3966 					    t5_pcie_intr_info);
3967 	if (fat)
3968 		t4_fatal_err(adapter);
3969 }
3970 
3971 /*
3972  * TP interrupt handler.
3973  */
3974 static void tp_intr_handler(struct adapter *adapter)
3975 {
3976 	static const struct intr_info tp_intr_info[] = {
3977 		{ 0x3fffffff, "TP parity error", -1, 1 },
3978 		{ F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
3979 		{ 0 }
3980 	};
3981 
3982 	if (t4_handle_intr_status(adapter, A_TP_INT_CAUSE, tp_intr_info))
3983 		t4_fatal_err(adapter);
3984 }
3985 
3986 /*
3987  * SGE interrupt handler.
3988  */
3989 static void sge_intr_handler(struct adapter *adapter)
3990 {
3991 	u64 v;
3992 	u32 err;
3993 
3994 	static const struct intr_info sge_intr_info[] = {
3995 		{ F_ERR_CPL_EXCEED_IQE_SIZE,
3996 		  "SGE received CPL exceeding IQE size", -1, 1 },
3997 		{ F_ERR_INVALID_CIDX_INC,
3998 		  "SGE GTS CIDX increment too large", -1, 0 },
3999 		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
4000 		{ F_DBFIFO_LP_INT, NULL, -1, 0, t4_db_full },
4001 		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
4002 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
4003 		{ F_ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
4004 		  0 },
4005 		{ F_ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
4006 		  0 },
4007 		{ F_ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
4008 		  0 },
4009 		{ F_ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
4010 		  0 },
4011 		{ F_ERR_ING_CTXT_PRIO,
4012 		  "SGE too many priority ingress contexts", -1, 0 },
4013 		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
4014 		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
4015 		{ F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 |
4016 		  F_ERR_PCIE_ERROR2 | F_ERR_PCIE_ERROR3,
4017 		  "SGE PCIe error for a DBP thread", -1, 0 },
4018 		{ 0 }
4019 	};
4020 
4021 	static const struct intr_info t4t5_sge_intr_info[] = {
4022 		{ F_ERR_DROPPED_DB, NULL, -1, 0, t4_db_dropped },
4023 		{ F_DBFIFO_HP_INT, NULL, -1, 0, t4_db_full },
4024 		{ F_ERR_EGR_CTXT_PRIO,
4025 		  "SGE too many priority egress contexts", -1, 0 },
4026 		{ 0 }
4027 	};
4028 
4029 	/*
4030  	* For now, treat below interrupts as fatal so that we disable SGE and
4031  	* get better debug */
4032 	static const struct intr_info t6_sge_intr_info[] = {
4033 		{ F_FATAL_WRE_LEN,
4034 		  "SGE Actual WRE packet is less than advertized length",
4035 		  -1, 1 },
4036 		{ 0 }
4037 	};
4038 
4039 	v = (u64)t4_read_reg(adapter, A_SGE_INT_CAUSE1) |
4040 		((u64)t4_read_reg(adapter, A_SGE_INT_CAUSE2) << 32);
4041 	if (v) {
4042 		CH_ALERT(adapter, "SGE parity error (%#llx)\n",
4043 				(unsigned long long)v);
4044 		t4_write_reg(adapter, A_SGE_INT_CAUSE1, v);
4045 		t4_write_reg(adapter, A_SGE_INT_CAUSE2, v >> 32);
4046 	}
4047 
4048 	v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3, sge_intr_info);
4049 	if (chip_id(adapter) <= CHELSIO_T5)
4050 		v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3,
4051 					   t4t5_sge_intr_info);
4052 	else
4053 		v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3,
4054 					   t6_sge_intr_info);
4055 
4056 	err = t4_read_reg(adapter, A_SGE_ERROR_STATS);
4057 	if (err & F_ERROR_QID_VALID) {
4058 		CH_ERR(adapter, "SGE error for queue %u\n", G_ERROR_QID(err));
4059 		if (err & F_UNCAPTURED_ERROR)
4060 			CH_ERR(adapter, "SGE UNCAPTURED_ERROR set (clearing)\n");
4061 		t4_write_reg(adapter, A_SGE_ERROR_STATS, F_ERROR_QID_VALID |
4062 			     F_UNCAPTURED_ERROR);
4063 	}
4064 
4065 	if (v != 0)
4066 		t4_fatal_err(adapter);
4067 }
4068 
4069 #define CIM_OBQ_INTR (F_OBQULP0PARERR | F_OBQULP1PARERR | F_OBQULP2PARERR |\
4070 		      F_OBQULP3PARERR | F_OBQSGEPARERR | F_OBQNCSIPARERR)
4071 #define CIM_IBQ_INTR (F_IBQTP0PARERR | F_IBQTP1PARERR | F_IBQULPPARERR |\
4072 		      F_IBQSGEHIPARERR | F_IBQSGELOPARERR | F_IBQNCSIPARERR)
4073 
4074 /*
4075  * CIM interrupt handler.
4076  */
4077 static void cim_intr_handler(struct adapter *adapter)
4078 {
4079 	static const struct intr_info cim_intr_info[] = {
4080 		{ F_PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
4081 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4082 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4083 		{ F_MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
4084 		{ F_MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
4085 		{ F_TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
4086 		{ F_TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
4087 		{ F_TIMER0INT, "CIM TIMER0 interrupt", -1, 1 },
4088 		{ 0 }
4089 	};
4090 	static const struct intr_info cim_upintr_info[] = {
4091 		{ F_RSVDSPACEINT, "CIM reserved space access", -1, 1 },
4092 		{ F_ILLTRANSINT, "CIM illegal transaction", -1, 1 },
4093 		{ F_ILLWRINT, "CIM illegal write", -1, 1 },
4094 		{ F_ILLRDINT, "CIM illegal read", -1, 1 },
4095 		{ F_ILLRDBEINT, "CIM illegal read BE", -1, 1 },
4096 		{ F_ILLWRBEINT, "CIM illegal write BE", -1, 1 },
4097 		{ F_SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
4098 		{ F_SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
4099 		{ F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
4100 		{ F_SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
4101 		{ F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
4102 		{ F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
4103 		{ F_SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
4104 		{ F_SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
4105 		{ F_BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
4106 		{ F_BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
4107 		{ F_SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
4108 		{ F_SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
4109 		{ F_BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
4110 		{ F_BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
4111 		{ F_SGLRDPLINT , "CIM single read from PL space", -1, 1 },
4112 		{ F_SGLWRPLINT , "CIM single write to PL space", -1, 1 },
4113 		{ F_BLKRDPLINT , "CIM block read from PL space", -1, 1 },
4114 		{ F_BLKWRPLINT , "CIM block write to PL space", -1, 1 },
4115 		{ F_REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
4116 		{ F_RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
4117 		{ F_TIMEOUTINT , "CIM PIF timeout", -1, 1 },
4118 		{ F_TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
4119 		{ 0 }
4120 	};
4121 	u32 val, fw_err;
4122 	int fat;
4123 
4124 	fw_err = t4_read_reg(adapter, A_PCIE_FW);
4125 	if (fw_err & F_PCIE_FW_ERR)
4126 		t4_report_fw_error(adapter);
4127 
4128 	/* When the Firmware detects an internal error which normally wouldn't
4129 	 * raise a Host Interrupt, it forces a CIM Timer0 interrupt in order
4130 	 * to make sure the Host sees the Firmware Crash.  So if we have a
4131 	 * Timer0 interrupt and don't see a Firmware Crash, ignore the Timer0
4132 	 * interrupt.
4133 	 */
4134 	val = t4_read_reg(adapter, A_CIM_HOST_INT_CAUSE);
4135 	if (val & F_TIMER0INT)
4136 		if (!(fw_err & F_PCIE_FW_ERR) ||
4137 		    (G_PCIE_FW_EVAL(fw_err) != PCIE_FW_EVAL_CRASH))
4138 			t4_write_reg(adapter, A_CIM_HOST_INT_CAUSE,
4139 				     F_TIMER0INT);
4140 
4141 	fat = t4_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE,
4142 				    cim_intr_info) +
4143 	      t4_handle_intr_status(adapter, A_CIM_HOST_UPACC_INT_CAUSE,
4144 				    cim_upintr_info);
4145 	if (fat)
4146 		t4_fatal_err(adapter);
4147 }
4148 
4149 /*
4150  * ULP RX interrupt handler.
4151  */
4152 static void ulprx_intr_handler(struct adapter *adapter)
4153 {
4154 	static const struct intr_info ulprx_intr_info[] = {
4155 		{ F_CAUSE_CTX_1, "ULPRX channel 1 context error", -1, 1 },
4156 		{ F_CAUSE_CTX_0, "ULPRX channel 0 context error", -1, 1 },
4157 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
4158 		{ 0 }
4159 	};
4160 
4161 	if (t4_handle_intr_status(adapter, A_ULP_RX_INT_CAUSE, ulprx_intr_info))
4162 		t4_fatal_err(adapter);
4163 }
4164 
4165 /*
4166  * ULP TX interrupt handler.
4167  */
4168 static void ulptx_intr_handler(struct adapter *adapter)
4169 {
4170 	static const struct intr_info ulptx_intr_info[] = {
4171 		{ F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
4172 		  0 },
4173 		{ F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
4174 		  0 },
4175 		{ F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
4176 		  0 },
4177 		{ F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
4178 		  0 },
4179 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
4180 		{ 0 }
4181 	};
4182 
4183 	if (t4_handle_intr_status(adapter, A_ULP_TX_INT_CAUSE, ulptx_intr_info))
4184 		t4_fatal_err(adapter);
4185 }
4186 
4187 /*
4188  * PM TX interrupt handler.
4189  */
4190 static void pmtx_intr_handler(struct adapter *adapter)
4191 {
4192 	static const struct intr_info pmtx_intr_info[] = {
4193 		{ F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
4194 		{ F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
4195 		{ F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
4196 		{ F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
4197 		{ 0xffffff0, "PMTX framing error", -1, 1 },
4198 		{ F_OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
4199 		{ F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1,
4200 		  1 },
4201 		{ F_ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
4202 		{ F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
4203 		{ 0 }
4204 	};
4205 
4206 	if (t4_handle_intr_status(adapter, A_PM_TX_INT_CAUSE, pmtx_intr_info))
4207 		t4_fatal_err(adapter);
4208 }
4209 
4210 /*
4211  * PM RX interrupt handler.
4212  */
4213 static void pmrx_intr_handler(struct adapter *adapter)
4214 {
4215 	static const struct intr_info pmrx_intr_info[] = {
4216 		{ F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
4217 		{ 0x3ffff0, "PMRX framing error", -1, 1 },
4218 		{ F_OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
4219 		{ F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1,
4220 		  1 },
4221 		{ F_IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
4222 		{ F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
4223 		{ 0 }
4224 	};
4225 
4226 	if (t4_handle_intr_status(adapter, A_PM_RX_INT_CAUSE, pmrx_intr_info))
4227 		t4_fatal_err(adapter);
4228 }
4229 
4230 /*
4231  * CPL switch interrupt handler.
4232  */
4233 static void cplsw_intr_handler(struct adapter *adapter)
4234 {
4235 	static const struct intr_info cplsw_intr_info[] = {
4236 		{ F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
4237 		{ F_CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
4238 		{ F_TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
4239 		{ F_SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
4240 		{ F_CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
4241 		{ F_ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
4242 		{ 0 }
4243 	};
4244 
4245 	if (t4_handle_intr_status(adapter, A_CPL_INTR_CAUSE, cplsw_intr_info))
4246 		t4_fatal_err(adapter);
4247 }
4248 
4249 /*
4250  * LE interrupt handler.
4251  */
4252 static void le_intr_handler(struct adapter *adap)
4253 {
4254 	unsigned int chip_ver = chip_id(adap);
4255 	static const struct intr_info le_intr_info[] = {
4256 		{ F_LIPMISS, "LE LIP miss", -1, 0 },
4257 		{ F_LIP0, "LE 0 LIP error", -1, 0 },
4258 		{ F_PARITYERR, "LE parity error", -1, 1 },
4259 		{ F_UNKNOWNCMD, "LE unknown command", -1, 1 },
4260 		{ F_REQQPARERR, "LE request queue parity error", -1, 1 },
4261 		{ 0 }
4262 	};
4263 
4264 	static const struct intr_info t6_le_intr_info[] = {
4265 		{ F_T6_LIPMISS, "LE LIP miss", -1, 0 },
4266 		{ F_T6_LIP0, "LE 0 LIP error", -1, 0 },
4267 		{ F_TCAMINTPERR, "LE parity error", -1, 1 },
4268 		{ F_T6_UNKNOWNCMD, "LE unknown command", -1, 1 },
4269 		{ F_SSRAMINTPERR, "LE request queue parity error", -1, 1 },
4270 		{ 0 }
4271 	};
4272 
4273 	if (t4_handle_intr_status(adap, A_LE_DB_INT_CAUSE,
4274 				  (chip_ver <= CHELSIO_T5) ?
4275 				  le_intr_info : t6_le_intr_info))
4276 		t4_fatal_err(adap);
4277 }
4278 
4279 /*
4280  * MPS interrupt handler.
4281  */
4282 static void mps_intr_handler(struct adapter *adapter)
4283 {
4284 	static const struct intr_info mps_rx_intr_info[] = {
4285 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4286 		{ 0 }
4287 	};
4288 	static const struct intr_info mps_tx_intr_info[] = {
4289 		{ V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error", -1, 1 },
4290 		{ F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4291 		{ V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error",
4292 		  -1, 1 },
4293 		{ V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error",
4294 		  -1, 1 },
4295 		{ F_BUBBLE, "MPS Tx underflow", -1, 1 },
4296 		{ F_SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
4297 		{ F_FRMERR, "MPS Tx framing error", -1, 1 },
4298 		{ 0 }
4299 	};
4300 	static const struct intr_info mps_trc_intr_info[] = {
4301 		{ V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error", -1, 1 },
4302 		{ V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error", -1,
4303 		  1 },
4304 		{ F_MISCPERR, "MPS TRC misc parity error", -1, 1 },
4305 		{ 0 }
4306 	};
4307 	static const struct intr_info mps_stat_sram_intr_info[] = {
4308 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4309 		{ 0 }
4310 	};
4311 	static const struct intr_info mps_stat_tx_intr_info[] = {
4312 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4313 		{ 0 }
4314 	};
4315 	static const struct intr_info mps_stat_rx_intr_info[] = {
4316 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4317 		{ 0 }
4318 	};
4319 	static const struct intr_info mps_cls_intr_info[] = {
4320 		{ F_MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
4321 		{ F_MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
4322 		{ F_HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
4323 		{ 0 }
4324 	};
4325 
4326 	int fat;
4327 
4328 	fat = t4_handle_intr_status(adapter, A_MPS_RX_PERR_INT_CAUSE,
4329 				    mps_rx_intr_info) +
4330 	      t4_handle_intr_status(adapter, A_MPS_TX_INT_CAUSE,
4331 				    mps_tx_intr_info) +
4332 	      t4_handle_intr_status(adapter, A_MPS_TRC_INT_CAUSE,
4333 				    mps_trc_intr_info) +
4334 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_SRAM,
4335 				    mps_stat_sram_intr_info) +
4336 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
4337 				    mps_stat_tx_intr_info) +
4338 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
4339 				    mps_stat_rx_intr_info) +
4340 	      t4_handle_intr_status(adapter, A_MPS_CLS_INT_CAUSE,
4341 				    mps_cls_intr_info);
4342 
4343 	t4_write_reg(adapter, A_MPS_INT_CAUSE, 0);
4344 	t4_read_reg(adapter, A_MPS_INT_CAUSE);	/* flush */
4345 	if (fat)
4346 		t4_fatal_err(adapter);
4347 }
4348 
4349 #define MEM_INT_MASK (F_PERR_INT_CAUSE | F_ECC_CE_INT_CAUSE | \
4350 		      F_ECC_UE_INT_CAUSE)
4351 
4352 /*
4353  * EDC/MC interrupt handler.
4354  */
4355 static void mem_intr_handler(struct adapter *adapter, int idx)
4356 {
4357 	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4358 
4359 	unsigned int addr, cnt_addr, v;
4360 
4361 	if (idx <= MEM_EDC1) {
4362 		addr = EDC_REG(A_EDC_INT_CAUSE, idx);
4363 		cnt_addr = EDC_REG(A_EDC_ECC_STATUS, idx);
4364 	} else if (idx == MEM_MC) {
4365 		if (is_t4(adapter)) {
4366 			addr = A_MC_INT_CAUSE;
4367 			cnt_addr = A_MC_ECC_STATUS;
4368 		} else {
4369 			addr = A_MC_P_INT_CAUSE;
4370 			cnt_addr = A_MC_P_ECC_STATUS;
4371 		}
4372 	} else {
4373 		addr = MC_REG(A_MC_P_INT_CAUSE, 1);
4374 		cnt_addr = MC_REG(A_MC_P_ECC_STATUS, 1);
4375 	}
4376 
4377 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4378 	if (v & F_PERR_INT_CAUSE)
4379 		CH_ALERT(adapter, "%s FIFO parity error\n",
4380 			  name[idx]);
4381 	if (v & F_ECC_CE_INT_CAUSE) {
4382 		u32 cnt = G_ECC_CECNT(t4_read_reg(adapter, cnt_addr));
4383 
4384 		if (idx <= MEM_EDC1)
4385 			t4_edc_err_read(adapter, idx);
4386 
4387 		t4_write_reg(adapter, cnt_addr, V_ECC_CECNT(M_ECC_CECNT));
4388 		CH_WARN_RATELIMIT(adapter,
4389 				  "%u %s correctable ECC data error%s\n",
4390 				  cnt, name[idx], cnt > 1 ? "s" : "");
4391 	}
4392 	if (v & F_ECC_UE_INT_CAUSE)
4393 		CH_ALERT(adapter,
4394 			 "%s uncorrectable ECC data error\n", name[idx]);
4395 
4396 	t4_write_reg(adapter, addr, v);
4397 	if (v & (F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE))
4398 		t4_fatal_err(adapter);
4399 }
4400 
4401 /*
4402  * MA interrupt handler.
4403  */
4404 static void ma_intr_handler(struct adapter *adapter)
4405 {
4406 	u32 v, status = t4_read_reg(adapter, A_MA_INT_CAUSE);
4407 
4408 	if (status & F_MEM_PERR_INT_CAUSE) {
4409 		CH_ALERT(adapter,
4410 			  "MA parity error, parity status %#x\n",
4411 			  t4_read_reg(adapter, A_MA_PARITY_ERROR_STATUS1));
4412 		if (is_t5(adapter))
4413 			CH_ALERT(adapter,
4414 				  "MA parity error, parity status %#x\n",
4415 				  t4_read_reg(adapter,
4416 					      A_MA_PARITY_ERROR_STATUS2));
4417 	}
4418 	if (status & F_MEM_WRAP_INT_CAUSE) {
4419 		v = t4_read_reg(adapter, A_MA_INT_WRAP_STATUS);
4420 		CH_ALERT(adapter, "MA address wrap-around error by "
4421 			  "client %u to address %#x\n",
4422 			  G_MEM_WRAP_CLIENT_NUM(v),
4423 			  G_MEM_WRAP_ADDRESS(v) << 4);
4424 	}
4425 	t4_write_reg(adapter, A_MA_INT_CAUSE, status);
4426 	t4_fatal_err(adapter);
4427 }
4428 
4429 /*
4430  * SMB interrupt handler.
4431  */
4432 static void smb_intr_handler(struct adapter *adap)
4433 {
4434 	static const struct intr_info smb_intr_info[] = {
4435 		{ F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
4436 		{ F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
4437 		{ F_SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
4438 		{ 0 }
4439 	};
4440 
4441 	if (t4_handle_intr_status(adap, A_SMB_INT_CAUSE, smb_intr_info))
4442 		t4_fatal_err(adap);
4443 }
4444 
4445 /*
4446  * NC-SI interrupt handler.
4447  */
4448 static void ncsi_intr_handler(struct adapter *adap)
4449 {
4450 	static const struct intr_info ncsi_intr_info[] = {
4451 		{ F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
4452 		{ F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
4453 		{ F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
4454 		{ F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
4455 		{ 0 }
4456 	};
4457 
4458 	if (t4_handle_intr_status(adap, A_NCSI_INT_CAUSE, ncsi_intr_info))
4459 		t4_fatal_err(adap);
4460 }
4461 
4462 /*
4463  * XGMAC interrupt handler.
4464  */
4465 static void xgmac_intr_handler(struct adapter *adap, int port)
4466 {
4467 	u32 v, int_cause_reg;
4468 
4469 	if (is_t4(adap))
4470 		int_cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
4471 	else
4472 		int_cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
4473 
4474 	v = t4_read_reg(adap, int_cause_reg);
4475 
4476 	v &= (F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR);
4477 	if (!v)
4478 		return;
4479 
4480 	if (v & F_TXFIFO_PRTY_ERR)
4481 		CH_ALERT(adap, "XGMAC %d Tx FIFO parity error\n",
4482 			  port);
4483 	if (v & F_RXFIFO_PRTY_ERR)
4484 		CH_ALERT(adap, "XGMAC %d Rx FIFO parity error\n",
4485 			  port);
4486 	t4_write_reg(adap, int_cause_reg, v);
4487 	t4_fatal_err(adap);
4488 }
4489 
4490 /*
4491  * PL interrupt handler.
4492  */
4493 static void pl_intr_handler(struct adapter *adap)
4494 {
4495 	static const struct intr_info pl_intr_info[] = {
4496 		{ F_FATALPERR, "Fatal parity error", -1, 1 },
4497 		{ F_PERRVFID, "PL VFID_MAP parity error", -1, 1 },
4498 		{ 0 }
4499 	};
4500 
4501 	static const struct intr_info t5_pl_intr_info[] = {
4502 		{ F_FATALPERR, "Fatal parity error", -1, 1 },
4503 		{ 0 }
4504 	};
4505 
4506 	if (t4_handle_intr_status(adap, A_PL_PL_INT_CAUSE,
4507 				  is_t4(adap) ?
4508 				  pl_intr_info : t5_pl_intr_info))
4509 		t4_fatal_err(adap);
4510 }
4511 
4512 #define PF_INTR_MASK (F_PFSW | F_PFCIM)
4513 
4514 /**
4515  *	t4_slow_intr_handler - control path interrupt handler
4516  *	@adapter: the adapter
4517  *
4518  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
4519  *	The designation 'slow' is because it involves register reads, while
4520  *	data interrupts typically don't involve any MMIOs.
4521  */
4522 int t4_slow_intr_handler(struct adapter *adapter)
4523 {
4524 	u32 cause = t4_read_reg(adapter, A_PL_INT_CAUSE);
4525 
4526 	if (!(cause & GLBL_INTR_MASK))
4527 		return 0;
4528 	if (cause & F_CIM)
4529 		cim_intr_handler(adapter);
4530 	if (cause & F_MPS)
4531 		mps_intr_handler(adapter);
4532 	if (cause & F_NCSI)
4533 		ncsi_intr_handler(adapter);
4534 	if (cause & F_PL)
4535 		pl_intr_handler(adapter);
4536 	if (cause & F_SMB)
4537 		smb_intr_handler(adapter);
4538 	if (cause & F_MAC0)
4539 		xgmac_intr_handler(adapter, 0);
4540 	if (cause & F_MAC1)
4541 		xgmac_intr_handler(adapter, 1);
4542 	if (cause & F_MAC2)
4543 		xgmac_intr_handler(adapter, 2);
4544 	if (cause & F_MAC3)
4545 		xgmac_intr_handler(adapter, 3);
4546 	if (cause & F_PCIE)
4547 		pcie_intr_handler(adapter);
4548 	if (cause & F_MC0)
4549 		mem_intr_handler(adapter, MEM_MC);
4550 	if (is_t5(adapter) && (cause & F_MC1))
4551 		mem_intr_handler(adapter, MEM_MC1);
4552 	if (cause & F_EDC0)
4553 		mem_intr_handler(adapter, MEM_EDC0);
4554 	if (cause & F_EDC1)
4555 		mem_intr_handler(adapter, MEM_EDC1);
4556 	if (cause & F_LE)
4557 		le_intr_handler(adapter);
4558 	if (cause & F_TP)
4559 		tp_intr_handler(adapter);
4560 	if (cause & F_MA)
4561 		ma_intr_handler(adapter);
4562 	if (cause & F_PM_TX)
4563 		pmtx_intr_handler(adapter);
4564 	if (cause & F_PM_RX)
4565 		pmrx_intr_handler(adapter);
4566 	if (cause & F_ULP_RX)
4567 		ulprx_intr_handler(adapter);
4568 	if (cause & F_CPL_SWITCH)
4569 		cplsw_intr_handler(adapter);
4570 	if (cause & F_SGE)
4571 		sge_intr_handler(adapter);
4572 	if (cause & F_ULP_TX)
4573 		ulptx_intr_handler(adapter);
4574 
4575 	/* Clear the interrupts just processed for which we are the master. */
4576 	t4_write_reg(adapter, A_PL_INT_CAUSE, cause & GLBL_INTR_MASK);
4577 	(void)t4_read_reg(adapter, A_PL_INT_CAUSE); /* flush */
4578 	return 1;
4579 }
4580 
4581 /**
4582  *	t4_intr_enable - enable interrupts
4583  *	@adapter: the adapter whose interrupts should be enabled
4584  *
4585  *	Enable PF-specific interrupts for the calling function and the top-level
4586  *	interrupt concentrator for global interrupts.  Interrupts are already
4587  *	enabled at each module,	here we just enable the roots of the interrupt
4588  *	hierarchies.
4589  *
4590  *	Note: this function should be called only when the driver manages
4591  *	non PF-specific interrupts from the various HW modules.  Only one PCI
4592  *	function at a time should be doing this.
4593  */
4594 void t4_intr_enable(struct adapter *adapter)
4595 {
4596 	u32 val = 0;
4597 	u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4598 	u32 pf = (chip_id(adapter) <= CHELSIO_T5
4599 		  ? G_SOURCEPF(whoami)
4600 		  : G_T6_SOURCEPF(whoami));
4601 
4602 	if (chip_id(adapter) <= CHELSIO_T5)
4603 		val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
4604 	else
4605 		val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN;
4606 	t4_write_reg(adapter, A_SGE_INT_ENABLE3, F_ERR_CPL_EXCEED_IQE_SIZE |
4607 		     F_ERR_INVALID_CIDX_INC | F_ERR_CPL_OPCODE_0 |
4608 		     F_ERR_DATA_CPL_ON_HIGH_QID1 | F_INGRESS_SIZE_ERR |
4609 		     F_ERR_DATA_CPL_ON_HIGH_QID0 | F_ERR_BAD_DB_PIDX3 |
4610 		     F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4611 		     F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO |
4612 		     F_DBFIFO_LP_INT | F_EGRESS_SIZE_ERR | val);
4613 	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
4614 	t4_set_reg_field(adapter, A_PL_INT_MAP0, 0, 1 << pf);
4615 }
4616 
4617 /**
4618  *	t4_intr_disable - disable interrupts
4619  *	@adapter: the adapter whose interrupts should be disabled
4620  *
4621  *	Disable interrupts.  We only disable the top-level interrupt
4622  *	concentrators.  The caller must be a PCI function managing global
4623  *	interrupts.
4624  */
4625 void t4_intr_disable(struct adapter *adapter)
4626 {
4627 	u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4628 	u32 pf = (chip_id(adapter) <= CHELSIO_T5
4629 		  ? G_SOURCEPF(whoami)
4630 		  : G_T6_SOURCEPF(whoami));
4631 
4632 	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
4633 	t4_set_reg_field(adapter, A_PL_INT_MAP0, 1 << pf, 0);
4634 }
4635 
4636 /**
4637  *	t4_intr_clear - clear all interrupts
4638  *	@adapter: the adapter whose interrupts should be cleared
4639  *
4640  *	Clears all interrupts.  The caller must be a PCI function managing
4641  *	global interrupts.
4642  */
4643 void t4_intr_clear(struct adapter *adapter)
4644 {
4645 	static const unsigned int cause_reg[] = {
4646 		A_SGE_INT_CAUSE1, A_SGE_INT_CAUSE2, A_SGE_INT_CAUSE3,
4647 		A_PCIE_NONFAT_ERR, A_PCIE_INT_CAUSE,
4648 		A_MA_INT_WRAP_STATUS, A_MA_PARITY_ERROR_STATUS1, A_MA_INT_CAUSE,
4649 		A_EDC_INT_CAUSE, EDC_REG(A_EDC_INT_CAUSE, 1),
4650 		A_CIM_HOST_INT_CAUSE, A_CIM_HOST_UPACC_INT_CAUSE,
4651 		MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
4652 		A_TP_INT_CAUSE,
4653 		A_ULP_RX_INT_CAUSE, A_ULP_TX_INT_CAUSE,
4654 		A_PM_RX_INT_CAUSE, A_PM_TX_INT_CAUSE,
4655 		A_MPS_RX_PERR_INT_CAUSE,
4656 		A_CPL_INTR_CAUSE,
4657 		MYPF_REG(A_PL_PF_INT_CAUSE),
4658 		A_PL_PL_INT_CAUSE,
4659 		A_LE_DB_INT_CAUSE,
4660 	};
4661 
4662 	unsigned int i;
4663 
4664 	for (i = 0; i < ARRAY_SIZE(cause_reg); ++i)
4665 		t4_write_reg(adapter, cause_reg[i], 0xffffffff);
4666 
4667 	t4_write_reg(adapter, is_t4(adapter) ? A_MC_INT_CAUSE :
4668 				A_MC_P_INT_CAUSE, 0xffffffff);
4669 
4670 	if (is_t4(adapter)) {
4671 		t4_write_reg(adapter, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
4672 				0xffffffff);
4673 		t4_write_reg(adapter, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
4674 				0xffffffff);
4675 	} else
4676 		t4_write_reg(adapter, A_MA_PARITY_ERROR_STATUS2, 0xffffffff);
4677 
4678 	t4_write_reg(adapter, A_PL_INT_CAUSE, GLBL_INTR_MASK);
4679 	(void) t4_read_reg(adapter, A_PL_INT_CAUSE);          /* flush */
4680 }
4681 
4682 /**
4683  *	hash_mac_addr - return the hash value of a MAC address
4684  *	@addr: the 48-bit Ethernet MAC address
4685  *
4686  *	Hashes a MAC address according to the hash function used by HW inexact
4687  *	(hash) address matching.
4688  */
4689 static int hash_mac_addr(const u8 *addr)
4690 {
4691 	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
4692 	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
4693 	a ^= b;
4694 	a ^= (a >> 12);
4695 	a ^= (a >> 6);
4696 	return a & 0x3f;
4697 }
4698 
4699 /**
4700  *	t4_config_rss_range - configure a portion of the RSS mapping table
4701  *	@adapter: the adapter
4702  *	@mbox: mbox to use for the FW command
4703  *	@viid: virtual interface whose RSS subtable is to be written
4704  *	@start: start entry in the table to write
4705  *	@n: how many table entries to write
4706  *	@rspq: values for the "response queue" (Ingress Queue) lookup table
4707  *	@nrspq: number of values in @rspq
4708  *
4709  *	Programs the selected part of the VI's RSS mapping table with the
4710  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
4711  *	until the full table range is populated.
4712  *
4713  *	The caller must ensure the values in @rspq are in the range allowed for
4714  *	@viid.
4715  */
4716 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4717 			int start, int n, const u16 *rspq, unsigned int nrspq)
4718 {
4719 	int ret;
4720 	const u16 *rsp = rspq;
4721 	const u16 *rsp_end = rspq + nrspq;
4722 	struct fw_rss_ind_tbl_cmd cmd;
4723 
4724 	memset(&cmd, 0, sizeof(cmd));
4725 	cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
4726 				     F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4727 				     V_FW_RSS_IND_TBL_CMD_VIID(viid));
4728 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
4729 
4730 	/*
4731 	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
4732 	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
4733 	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
4734 	 * reserved.
4735 	 */
4736 	while (n > 0) {
4737 		int nq = min(n, 32);
4738 		int nq_packed = 0;
4739 		__be32 *qp = &cmd.iq0_to_iq2;
4740 
4741 		/*
4742 		 * Set up the firmware RSS command header to send the next
4743 		 * "nq" Ingress Queue IDs to the firmware.
4744 		 */
4745 		cmd.niqid = cpu_to_be16(nq);
4746 		cmd.startidx = cpu_to_be16(start);
4747 
4748 		/*
4749 		 * "nq" more done for the start of the next loop.
4750 		 */
4751 		start += nq;
4752 		n -= nq;
4753 
4754 		/*
4755 		 * While there are still Ingress Queue IDs to stuff into the
4756 		 * current firmware RSS command, retrieve them from the
4757 		 * Ingress Queue ID array and insert them into the command.
4758 		 */
4759 		while (nq > 0) {
4760 			/*
4761 			 * Grab up to the next 3 Ingress Queue IDs (wrapping
4762 			 * around the Ingress Queue ID array if necessary) and
4763 			 * insert them into the firmware RSS command at the
4764 			 * current 3-tuple position within the commad.
4765 			 */
4766 			u16 qbuf[3];
4767 			u16 *qbp = qbuf;
4768 			int nqbuf = min(3, nq);
4769 
4770 			nq -= nqbuf;
4771 			qbuf[0] = qbuf[1] = qbuf[2] = 0;
4772 			while (nqbuf && nq_packed < 32) {
4773 				nqbuf--;
4774 				nq_packed++;
4775 				*qbp++ = *rsp++;
4776 				if (rsp >= rsp_end)
4777 					rsp = rspq;
4778 			}
4779 			*qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
4780 					    V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
4781 					    V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
4782 		}
4783 
4784 		/*
4785 		 * Send this portion of the RRS table update to the firmware;
4786 		 * bail out on any errors.
4787 		 */
4788 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4789 		if (ret)
4790 			return ret;
4791 	}
4792 	return 0;
4793 }
4794 
4795 /**
4796  *	t4_config_glbl_rss - configure the global RSS mode
4797  *	@adapter: the adapter
4798  *	@mbox: mbox to use for the FW command
4799  *	@mode: global RSS mode
4800  *	@flags: mode-specific flags
4801  *
4802  *	Sets the global RSS mode.
4803  */
4804 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
4805 		       unsigned int flags)
4806 {
4807 	struct fw_rss_glb_config_cmd c;
4808 
4809 	memset(&c, 0, sizeof(c));
4810 	c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
4811 				    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
4812 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4813 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
4814 		c.u.manual.mode_pkd =
4815 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
4816 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
4817 		c.u.basicvirtual.mode_keymode =
4818 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
4819 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
4820 	} else
4821 		return -EINVAL;
4822 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4823 }
4824 
4825 /**
4826  *	t4_config_vi_rss - configure per VI RSS settings
4827  *	@adapter: the adapter
4828  *	@mbox: mbox to use for the FW command
4829  *	@viid: the VI id
4830  *	@flags: RSS flags
4831  *	@defq: id of the default RSS queue for the VI.
4832  *	@skeyidx: RSS secret key table index for non-global mode
4833  *	@skey: RSS vf_scramble key for VI.
4834  *
4835  *	Configures VI-specific RSS properties.
4836  */
4837 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
4838 		     unsigned int flags, unsigned int defq, unsigned int skeyidx,
4839 		     unsigned int skey)
4840 {
4841 	struct fw_rss_vi_config_cmd c;
4842 
4843 	memset(&c, 0, sizeof(c));
4844 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
4845 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4846 				   V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
4847 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4848 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
4849 					V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
4850 	c.u.basicvirtual.secretkeyidx_pkd = cpu_to_be32(
4851 					V_FW_RSS_VI_CONFIG_CMD_SECRETKEYIDX(skeyidx));
4852 	c.u.basicvirtual.secretkeyxor = cpu_to_be32(skey);
4853 
4854 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4855 }
4856 
4857 /* Read an RSS table row */
4858 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
4859 {
4860 	t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
4861 	return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
4862 				   5, 0, val);
4863 }
4864 
4865 /**
4866  *	t4_read_rss - read the contents of the RSS mapping table
4867  *	@adapter: the adapter
4868  *	@map: holds the contents of the RSS mapping table
4869  *
4870  *	Reads the contents of the RSS hash->queue mapping table.
4871  */
4872 int t4_read_rss(struct adapter *adapter, u16 *map)
4873 {
4874 	u32 val;
4875 	int i, ret;
4876 
4877 	for (i = 0; i < RSS_NENTRIES / 2; ++i) {
4878 		ret = rd_rss_row(adapter, i, &val);
4879 		if (ret)
4880 			return ret;
4881 		*map++ = G_LKPTBLQUEUE0(val);
4882 		*map++ = G_LKPTBLQUEUE1(val);
4883 	}
4884 	return 0;
4885 }
4886 
4887 /**
4888  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
4889  * @adap: the adapter
4890  * @cmd: TP fw ldst address space type
4891  * @vals: where the indirect register values are stored/written
4892  * @nregs: how many indirect registers to read/write
4893  * @start_idx: index of first indirect register to read/write
4894  * @rw: Read (1) or Write (0)
4895  * @sleep_ok: if true we may sleep while awaiting command completion
4896  *
4897  * Access TP indirect registers through LDST
4898  **/
4899 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
4900 			    unsigned int nregs, unsigned int start_index,
4901 			    unsigned int rw, bool sleep_ok)
4902 {
4903 	int ret = 0;
4904 	unsigned int i;
4905 	struct fw_ldst_cmd c;
4906 
4907 	for (i = 0; i < nregs; i++) {
4908 		memset(&c, 0, sizeof(c));
4909 		c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
4910 						F_FW_CMD_REQUEST |
4911 						(rw ? F_FW_CMD_READ :
4912 						      F_FW_CMD_WRITE) |
4913 						V_FW_LDST_CMD_ADDRSPACE(cmd));
4914 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4915 
4916 		c.u.addrval.addr = cpu_to_be32(start_index + i);
4917 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
4918 		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
4919 				      sleep_ok);
4920 		if (ret)
4921 			return ret;
4922 
4923 		if (rw)
4924 			vals[i] = be32_to_cpu(c.u.addrval.val);
4925 	}
4926 	return 0;
4927 }
4928 
4929 /**
4930  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
4931  * @adap: the adapter
4932  * @reg_addr: Address Register
4933  * @reg_data: Data register
4934  * @buff: where the indirect register values are stored/written
4935  * @nregs: how many indirect registers to read/write
4936  * @start_index: index of first indirect register to read/write
4937  * @rw: READ(1) or WRITE(0)
4938  * @sleep_ok: if true we may sleep while awaiting command completion
4939  *
4940  * Read/Write TP indirect registers through LDST if possible.
4941  * Else, use backdoor access
4942  **/
4943 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
4944 			      u32 *buff, u32 nregs, u32 start_index, int rw,
4945 			      bool sleep_ok)
4946 {
4947 	int rc = -EINVAL;
4948 	int cmd;
4949 
4950 	switch (reg_addr) {
4951 	case A_TP_PIO_ADDR:
4952 		cmd = FW_LDST_ADDRSPC_TP_PIO;
4953 		break;
4954 	case A_TP_TM_PIO_ADDR:
4955 		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
4956 		break;
4957 	case A_TP_MIB_INDEX:
4958 		cmd = FW_LDST_ADDRSPC_TP_MIB;
4959 		break;
4960 	default:
4961 		goto indirect_access;
4962 	}
4963 
4964 	if (t4_use_ldst(adap))
4965 		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
4966 				      sleep_ok);
4967 
4968 indirect_access:
4969 
4970 	if (rc) {
4971 		if (rw)
4972 			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
4973 					 start_index);
4974 		else
4975 			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
4976 					  start_index);
4977 	}
4978 }
4979 
4980 /**
4981  * t4_tp_pio_read - Read TP PIO registers
4982  * @adap: the adapter
4983  * @buff: where the indirect register values are written
4984  * @nregs: how many indirect registers to read
4985  * @start_index: index of first indirect register to read
4986  * @sleep_ok: if true we may sleep while awaiting command completion
4987  *
4988  * Read TP PIO Registers
4989  **/
4990 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
4991 		    u32 start_index, bool sleep_ok)
4992 {
4993 	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, buff, nregs,
4994 			  start_index, 1, sleep_ok);
4995 }
4996 
4997 /**
4998  * t4_tp_pio_write - Write TP PIO registers
4999  * @adap: the adapter
5000  * @buff: where the indirect register values are stored
5001  * @nregs: how many indirect registers to write
5002  * @start_index: index of first indirect register to write
5003  * @sleep_ok: if true we may sleep while awaiting command completion
5004  *
5005  * Write TP PIO Registers
5006  **/
5007 void t4_tp_pio_write(struct adapter *adap, const u32 *buff, u32 nregs,
5008 		     u32 start_index, bool sleep_ok)
5009 {
5010 	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5011 	    __DECONST(u32 *, buff), nregs, start_index, 0, sleep_ok);
5012 }
5013 
5014 /**
5015  * t4_tp_tm_pio_read - Read TP TM PIO registers
5016  * @adap: the adapter
5017  * @buff: where the indirect register values are written
5018  * @nregs: how many indirect registers to read
5019  * @start_index: index of first indirect register to read
5020  * @sleep_ok: if true we may sleep while awaiting command completion
5021  *
5022  * Read TP TM PIO Registers
5023  **/
5024 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5025 		       u32 start_index, bool sleep_ok)
5026 {
5027 	t4_tp_indirect_rw(adap, A_TP_TM_PIO_ADDR, A_TP_TM_PIO_DATA, buff,
5028 			  nregs, start_index, 1, sleep_ok);
5029 }
5030 
5031 /**
5032  * t4_tp_mib_read - Read TP MIB registers
5033  * @adap: the adapter
5034  * @buff: where the indirect register values are written
5035  * @nregs: how many indirect registers to read
5036  * @start_index: index of first indirect register to read
5037  * @sleep_ok: if true we may sleep while awaiting command completion
5038  *
5039  * Read TP MIB Registers
5040  **/
5041 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5042 		    bool sleep_ok)
5043 {
5044 	t4_tp_indirect_rw(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, buff, nregs,
5045 			  start_index, 1, sleep_ok);
5046 }
5047 
5048 /**
5049  *	t4_read_rss_key - read the global RSS key
5050  *	@adap: the adapter
5051  *	@key: 10-entry array holding the 320-bit RSS key
5052  * 	@sleep_ok: if true we may sleep while awaiting command completion
5053  *
5054  *	Reads the global 320-bit RSS key.
5055  */
5056 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5057 {
5058 	t4_tp_pio_read(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5059 }
5060 
5061 /**
5062  *	t4_write_rss_key - program one of the RSS keys
5063  *	@adap: the adapter
5064  *	@key: 10-entry array holding the 320-bit RSS key
5065  *	@idx: which RSS key to write
5066  * 	@sleep_ok: if true we may sleep while awaiting command completion
5067  *
5068  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5069  *	0..15 the corresponding entry in the RSS key table is written,
5070  *	otherwise the global RSS key is written.
5071  */
5072 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5073 		      bool sleep_ok)
5074 {
5075 	u8 rss_key_addr_cnt = 16;
5076 	u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
5077 
5078 	/*
5079 	 * T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5080 	 * allows access to key addresses 16-63 by using KeyWrAddrX
5081 	 * as index[5:4](upper 2) into key table
5082 	 */
5083 	if ((chip_id(adap) > CHELSIO_T5) &&
5084 	    (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
5085 		rss_key_addr_cnt = 32;
5086 
5087 	t4_tp_pio_write(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5088 
5089 	if (idx >= 0 && idx < rss_key_addr_cnt) {
5090 		if (rss_key_addr_cnt > 16)
5091 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5092 				     vrt | V_KEYWRADDRX(idx >> 4) |
5093 				     V_T6_VFWRADDR(idx) | F_KEYWREN);
5094 		else
5095 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5096 				     vrt| V_KEYWRADDR(idx) | F_KEYWREN);
5097 	}
5098 }
5099 
5100 /**
5101  *	t4_read_rss_pf_config - read PF RSS Configuration Table
5102  *	@adapter: the adapter
5103  *	@index: the entry in the PF RSS table to read
5104  *	@valp: where to store the returned value
5105  * 	@sleep_ok: if true we may sleep while awaiting command completion
5106  *
5107  *	Reads the PF RSS Configuration Table at the specified index and returns
5108  *	the value found there.
5109  */
5110 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5111 			   u32 *valp, bool sleep_ok)
5112 {
5113 	t4_tp_pio_read(adapter, valp, 1, A_TP_RSS_PF0_CONFIG + index, sleep_ok);
5114 }
5115 
5116 /**
5117  *	t4_write_rss_pf_config - write PF RSS Configuration Table
5118  *	@adapter: the adapter
5119  *	@index: the entry in the VF RSS table to read
5120  *	@val: the value to store
5121  * 	@sleep_ok: if true we may sleep while awaiting command completion
5122  *
5123  *	Writes the PF RSS Configuration Table at the specified index with the
5124  *	specified value.
5125  */
5126 void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index,
5127 			    u32 val, bool sleep_ok)
5128 {
5129 	t4_tp_pio_write(adapter, &val, 1, A_TP_RSS_PF0_CONFIG + index,
5130 			sleep_ok);
5131 }
5132 
5133 /**
5134  *	t4_read_rss_vf_config - read VF RSS Configuration Table
5135  *	@adapter: the adapter
5136  *	@index: the entry in the VF RSS table to read
5137  *	@vfl: where to store the returned VFL
5138  *	@vfh: where to store the returned VFH
5139  * 	@sleep_ok: if true we may sleep while awaiting command completion
5140  *
5141  *	Reads the VF RSS Configuration Table at the specified index and returns
5142  *	the (VFL, VFH) values found there.
5143  */
5144 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5145 			   u32 *vfl, u32 *vfh, bool sleep_ok)
5146 {
5147 	u32 vrt, mask, data;
5148 
5149 	if (chip_id(adapter) <= CHELSIO_T5) {
5150 		mask = V_VFWRADDR(M_VFWRADDR);
5151 		data = V_VFWRADDR(index);
5152 	} else {
5153 		 mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5154 		 data = V_T6_VFWRADDR(index);
5155 	}
5156 	/*
5157 	 * Request that the index'th VF Table values be read into VFL/VFH.
5158 	 */
5159 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5160 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5161 	vrt |= data | F_VFRDEN;
5162 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5163 
5164 	/*
5165 	 * Grab the VFL/VFH values ...
5166 	 */
5167 	t4_tp_pio_read(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
5168 	t4_tp_pio_read(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
5169 }
5170 
5171 /**
5172  *	t4_write_rss_vf_config - write VF RSS Configuration Table
5173  *
5174  *	@adapter: the adapter
5175  *	@index: the entry in the VF RSS table to write
5176  *	@vfl: the VFL to store
5177  *	@vfh: the VFH to store
5178  *
5179  *	Writes the VF RSS Configuration Table at the specified index with the
5180  *	specified (VFL, VFH) values.
5181  */
5182 void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
5183 			    u32 vfl, u32 vfh, bool sleep_ok)
5184 {
5185 	u32 vrt, mask, data;
5186 
5187 	if (chip_id(adapter) <= CHELSIO_T5) {
5188 		mask = V_VFWRADDR(M_VFWRADDR);
5189 		data = V_VFWRADDR(index);
5190 	} else {
5191 		mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5192 		data = V_T6_VFWRADDR(index);
5193 	}
5194 
5195 	/*
5196 	 * Load up VFL/VFH with the values to be written ...
5197 	 */
5198 	t4_tp_pio_write(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
5199 	t4_tp_pio_write(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
5200 
5201 	/*
5202 	 * Write the VFL/VFH into the VF Table at index'th location.
5203 	 */
5204 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5205 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5206 	vrt |= data | F_VFRDEN;
5207 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5208 }
5209 
5210 /**
5211  *	t4_read_rss_pf_map - read PF RSS Map
5212  *	@adapter: the adapter
5213  * 	@sleep_ok: if true we may sleep while awaiting command completion
5214  *
5215  *	Reads the PF RSS Map register and returns its value.
5216  */
5217 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5218 {
5219 	u32 pfmap;
5220 
5221 	t4_tp_pio_read(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
5222 
5223 	return pfmap;
5224 }
5225 
5226 /**
5227  *	t4_write_rss_pf_map - write PF RSS Map
5228  *	@adapter: the adapter
5229  *	@pfmap: PF RSS Map value
5230  *
5231  *	Writes the specified value to the PF RSS Map register.
5232  */
5233 void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap, bool sleep_ok)
5234 {
5235 	t4_tp_pio_write(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
5236 }
5237 
5238 /**
5239  *	t4_read_rss_pf_mask - read PF RSS Mask
5240  *	@adapter: the adapter
5241  * 	@sleep_ok: if true we may sleep while awaiting command completion
5242  *
5243  *	Reads the PF RSS Mask register and returns its value.
5244  */
5245 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5246 {
5247 	u32 pfmask;
5248 
5249 	t4_tp_pio_read(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
5250 
5251 	return pfmask;
5252 }
5253 
5254 /**
5255  *	t4_write_rss_pf_mask - write PF RSS Mask
5256  *	@adapter: the adapter
5257  *	@pfmask: PF RSS Mask value
5258  *
5259  *	Writes the specified value to the PF RSS Mask register.
5260  */
5261 void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask, bool sleep_ok)
5262 {
5263 	t4_tp_pio_write(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
5264 }
5265 
5266 /**
5267  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
5268  *	@adap: the adapter
5269  *	@v4: holds the TCP/IP counter values
5270  *	@v6: holds the TCP/IPv6 counter values
5271  * 	@sleep_ok: if true we may sleep while awaiting command completion
5272  *
5273  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5274  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5275  */
5276 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5277 			 struct tp_tcp_stats *v6, bool sleep_ok)
5278 {
5279 	u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
5280 
5281 #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
5282 #define STAT(x)     val[STAT_IDX(x)]
5283 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5284 
5285 	if (v4) {
5286 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5287 			       A_TP_MIB_TCP_OUT_RST, sleep_ok);
5288 		v4->tcp_out_rsts = STAT(OUT_RST);
5289 		v4->tcp_in_segs  = STAT64(IN_SEG);
5290 		v4->tcp_out_segs = STAT64(OUT_SEG);
5291 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
5292 	}
5293 	if (v6) {
5294 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5295 			       A_TP_MIB_TCP_V6OUT_RST, sleep_ok);
5296 		v6->tcp_out_rsts = STAT(OUT_RST);
5297 		v6->tcp_in_segs  = STAT64(IN_SEG);
5298 		v6->tcp_out_segs = STAT64(OUT_SEG);
5299 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
5300 	}
5301 #undef STAT64
5302 #undef STAT
5303 #undef STAT_IDX
5304 }
5305 
5306 /**
5307  *	t4_tp_get_err_stats - read TP's error MIB counters
5308  *	@adap: the adapter
5309  *	@st: holds the counter values
5310  * 	@sleep_ok: if true we may sleep while awaiting command completion
5311  *
5312  *	Returns the values of TP's error counters.
5313  */
5314 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
5315 			 bool sleep_ok)
5316 {
5317 	int nchan = adap->chip_params->nchan;
5318 
5319 	t4_tp_mib_read(adap, st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0,
5320 		       sleep_ok);
5321 
5322 	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0,
5323 		       sleep_ok);
5324 
5325 	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0,
5326 		       sleep_ok);
5327 
5328 	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
5329 		       A_TP_MIB_TNL_CNG_DROP_0, sleep_ok);
5330 
5331 	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
5332 		       A_TP_MIB_OFD_CHN_DROP_0, sleep_ok);
5333 
5334 	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0,
5335 		       sleep_ok);
5336 
5337 	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
5338 		       A_TP_MIB_OFD_VLN_DROP_0, sleep_ok);
5339 
5340 	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
5341 		       A_TP_MIB_TCP_V6IN_ERR_0, sleep_ok);
5342 
5343 	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP,
5344 		       sleep_ok);
5345 }
5346 
5347 /**
5348  *	t4_tp_get_proxy_stats - read TP's proxy MIB counters
5349  *	@adap: the adapter
5350  *	@st: holds the counter values
5351  *
5352  *	Returns the values of TP's proxy counters.
5353  */
5354 void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st,
5355     bool sleep_ok)
5356 {
5357 	int nchan = adap->chip_params->nchan;
5358 
5359 	t4_tp_mib_read(adap, st->proxy, nchan, A_TP_MIB_TNL_LPBK_0, sleep_ok);
5360 }
5361 
5362 /**
5363  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
5364  *	@adap: the adapter
5365  *	@st: holds the counter values
5366  * 	@sleep_ok: if true we may sleep while awaiting command completion
5367  *
5368  *	Returns the values of TP's CPL counters.
5369  */
5370 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
5371 			 bool sleep_ok)
5372 {
5373 	int nchan = adap->chip_params->nchan;
5374 
5375 	t4_tp_mib_read(adap, st->req, nchan, A_TP_MIB_CPL_IN_REQ_0, sleep_ok);
5376 
5377 	t4_tp_mib_read(adap, st->rsp, nchan, A_TP_MIB_CPL_OUT_RSP_0, sleep_ok);
5378 }
5379 
5380 /**
5381  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5382  *	@adap: the adapter
5383  *	@st: holds the counter values
5384  *
5385  *	Returns the values of TP's RDMA counters.
5386  */
5387 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
5388 			  bool sleep_ok)
5389 {
5390 	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, A_TP_MIB_RQE_DFR_PKT,
5391 		       sleep_ok);
5392 }
5393 
5394 /**
5395  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5396  *	@adap: the adapter
5397  *	@idx: the port index
5398  *	@st: holds the counter values
5399  * 	@sleep_ok: if true we may sleep while awaiting command completion
5400  *
5401  *	Returns the values of TP's FCoE counters for the selected port.
5402  */
5403 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5404 		       struct tp_fcoe_stats *st, bool sleep_ok)
5405 {
5406 	u32 val[2];
5407 
5408 	t4_tp_mib_read(adap, &st->frames_ddp, 1, A_TP_MIB_FCOE_DDP_0 + idx,
5409 		       sleep_ok);
5410 
5411 	t4_tp_mib_read(adap, &st->frames_drop, 1,
5412 		       A_TP_MIB_FCOE_DROP_0 + idx, sleep_ok);
5413 
5414 	t4_tp_mib_read(adap, val, 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx,
5415 		       sleep_ok);
5416 
5417 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
5418 }
5419 
5420 /**
5421  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5422  *	@adap: the adapter
5423  *	@st: holds the counter values
5424  * 	@sleep_ok: if true we may sleep while awaiting command completion
5425  *
5426  *	Returns the values of TP's counters for non-TCP directly-placed packets.
5427  */
5428 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
5429 		      bool sleep_ok)
5430 {
5431 	u32 val[4];
5432 
5433 	t4_tp_mib_read(adap, val, 4, A_TP_MIB_USM_PKTS, sleep_ok);
5434 
5435 	st->frames = val[0];
5436 	st->drops = val[1];
5437 	st->octets = ((u64)val[2] << 32) | val[3];
5438 }
5439 
5440 /**
5441  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
5442  *	@adap: the adapter
5443  *	@mtus: where to store the MTU values
5444  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
5445  *
5446  *	Reads the HW path MTU table.
5447  */
5448 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5449 {
5450 	u32 v;
5451 	int i;
5452 
5453 	for (i = 0; i < NMTUS; ++i) {
5454 		t4_write_reg(adap, A_TP_MTU_TABLE,
5455 			     V_MTUINDEX(0xff) | V_MTUVALUE(i));
5456 		v = t4_read_reg(adap, A_TP_MTU_TABLE);
5457 		mtus[i] = G_MTUVALUE(v);
5458 		if (mtu_log)
5459 			mtu_log[i] = G_MTUWIDTH(v);
5460 	}
5461 }
5462 
5463 /**
5464  *	t4_read_cong_tbl - reads the congestion control table
5465  *	@adap: the adapter
5466  *	@incr: where to store the alpha values
5467  *
5468  *	Reads the additive increments programmed into the HW congestion
5469  *	control table.
5470  */
5471 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5472 {
5473 	unsigned int mtu, w;
5474 
5475 	for (mtu = 0; mtu < NMTUS; ++mtu)
5476 		for (w = 0; w < NCCTRL_WIN; ++w) {
5477 			t4_write_reg(adap, A_TP_CCTRL_TABLE,
5478 				     V_ROWINDEX(0xffff) | (mtu << 5) | w);
5479 			incr[mtu][w] = (u16)t4_read_reg(adap,
5480 						A_TP_CCTRL_TABLE) & 0x1fff;
5481 		}
5482 }
5483 
5484 /**
5485  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5486  *	@adap: the adapter
5487  *	@addr: the indirect TP register address
5488  *	@mask: specifies the field within the register to modify
5489  *	@val: new value for the field
5490  *
5491  *	Sets a field of an indirect TP register to the given value.
5492  */
5493 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5494 			    unsigned int mask, unsigned int val)
5495 {
5496 	t4_write_reg(adap, A_TP_PIO_ADDR, addr);
5497 	val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
5498 	t4_write_reg(adap, A_TP_PIO_DATA, val);
5499 }
5500 
5501 /**
5502  *	init_cong_ctrl - initialize congestion control parameters
5503  *	@a: the alpha values for congestion control
5504  *	@b: the beta values for congestion control
5505  *
5506  *	Initialize the congestion control parameters.
5507  */
5508 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5509 {
5510 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5511 	a[9] = 2;
5512 	a[10] = 3;
5513 	a[11] = 4;
5514 	a[12] = 5;
5515 	a[13] = 6;
5516 	a[14] = 7;
5517 	a[15] = 8;
5518 	a[16] = 9;
5519 	a[17] = 10;
5520 	a[18] = 14;
5521 	a[19] = 17;
5522 	a[20] = 21;
5523 	a[21] = 25;
5524 	a[22] = 30;
5525 	a[23] = 35;
5526 	a[24] = 45;
5527 	a[25] = 60;
5528 	a[26] = 80;
5529 	a[27] = 100;
5530 	a[28] = 200;
5531 	a[29] = 300;
5532 	a[30] = 400;
5533 	a[31] = 500;
5534 
5535 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5536 	b[9] = b[10] = 1;
5537 	b[11] = b[12] = 2;
5538 	b[13] = b[14] = b[15] = b[16] = 3;
5539 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5540 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5541 	b[28] = b[29] = 6;
5542 	b[30] = b[31] = 7;
5543 }
5544 
5545 /* The minimum additive increment value for the congestion control table */
5546 #define CC_MIN_INCR 2U
5547 
5548 /**
5549  *	t4_load_mtus - write the MTU and congestion control HW tables
5550  *	@adap: the adapter
5551  *	@mtus: the values for the MTU table
5552  *	@alpha: the values for the congestion control alpha parameter
5553  *	@beta: the values for the congestion control beta parameter
5554  *
5555  *	Write the HW MTU table with the supplied MTUs and the high-speed
5556  *	congestion control table with the supplied alpha, beta, and MTUs.
5557  *	We write the two tables together because the additive increments
5558  *	depend on the MTUs.
5559  */
5560 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5561 		  const unsigned short *alpha, const unsigned short *beta)
5562 {
5563 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5564 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5565 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5566 		28672, 40960, 57344, 81920, 114688, 163840, 229376
5567 	};
5568 
5569 	unsigned int i, w;
5570 
5571 	for (i = 0; i < NMTUS; ++i) {
5572 		unsigned int mtu = mtus[i];
5573 		unsigned int log2 = fls(mtu);
5574 
5575 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5576 			log2--;
5577 		t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
5578 			     V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
5579 
5580 		for (w = 0; w < NCCTRL_WIN; ++w) {
5581 			unsigned int inc;
5582 
5583 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5584 				  CC_MIN_INCR);
5585 
5586 			t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
5587 				     (w << 16) | (beta[w] << 13) | inc);
5588 		}
5589 	}
5590 }
5591 
5592 /**
5593  *	t4_set_pace_tbl - set the pace table
5594  *	@adap: the adapter
5595  *	@pace_vals: the pace values in microseconds
5596  *	@start: index of the first entry in the HW pace table to set
5597  *	@n: how many entries to set
5598  *
5599  *	Sets (a subset of the) HW pace table.
5600  */
5601 int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
5602 		     unsigned int start, unsigned int n)
5603 {
5604 	unsigned int vals[NTX_SCHED], i;
5605 	unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
5606 
5607 	if (n > NTX_SCHED)
5608 	    return -ERANGE;
5609 
5610 	/* convert values from us to dack ticks, rounding to closest value */
5611 	for (i = 0; i < n; i++, pace_vals++) {
5612 		vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
5613 		if (vals[i] > 0x7ff)
5614 			return -ERANGE;
5615 		if (*pace_vals && vals[i] == 0)
5616 			return -ERANGE;
5617 	}
5618 	for (i = 0; i < n; i++, start++)
5619 		t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
5620 	return 0;
5621 }
5622 
5623 /**
5624  *	t4_set_sched_bps - set the bit rate for a HW traffic scheduler
5625  *	@adap: the adapter
5626  *	@kbps: target rate in Kbps
5627  *	@sched: the scheduler index
5628  *
5629  *	Configure a Tx HW scheduler for the target rate.
5630  */
5631 int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
5632 {
5633 	unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
5634 	unsigned int clk = adap->params.vpd.cclk * 1000;
5635 	unsigned int selected_cpt = 0, selected_bpt = 0;
5636 
5637 	if (kbps > 0) {
5638 		kbps *= 125;     /* -> bytes */
5639 		for (cpt = 1; cpt <= 255; cpt++) {
5640 			tps = clk / cpt;
5641 			bpt = (kbps + tps / 2) / tps;
5642 			if (bpt > 0 && bpt <= 255) {
5643 				v = bpt * tps;
5644 				delta = v >= kbps ? v - kbps : kbps - v;
5645 				if (delta < mindelta) {
5646 					mindelta = delta;
5647 					selected_cpt = cpt;
5648 					selected_bpt = bpt;
5649 				}
5650 			} else if (selected_cpt)
5651 				break;
5652 		}
5653 		if (!selected_cpt)
5654 			return -EINVAL;
5655 	}
5656 	t4_write_reg(adap, A_TP_TM_PIO_ADDR,
5657 		     A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
5658 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
5659 	if (sched & 1)
5660 		v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
5661 	else
5662 		v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
5663 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
5664 	return 0;
5665 }
5666 
5667 /**
5668  *	t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
5669  *	@adap: the adapter
5670  *	@sched: the scheduler index
5671  *	@ipg: the interpacket delay in tenths of nanoseconds
5672  *
5673  *	Set the interpacket delay for a HW packet rate scheduler.
5674  */
5675 int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
5676 {
5677 	unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
5678 
5679 	/* convert ipg to nearest number of core clocks */
5680 	ipg *= core_ticks_per_usec(adap);
5681 	ipg = (ipg + 5000) / 10000;
5682 	if (ipg > M_TXTIMERSEPQ0)
5683 		return -EINVAL;
5684 
5685 	t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
5686 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
5687 	if (sched & 1)
5688 		v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
5689 	else
5690 		v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
5691 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
5692 	t4_read_reg(adap, A_TP_TM_PIO_DATA);
5693 	return 0;
5694 }
5695 
5696 /*
5697  * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5698  * clocks.  The formula is
5699  *
5700  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5701  *
5702  * which is equivalent to
5703  *
5704  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5705  */
5706 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5707 {
5708 	u64 v = bytes256 * adap->params.vpd.cclk;
5709 
5710 	return v * 62 + v / 2;
5711 }
5712 
5713 /**
5714  *	t4_get_chan_txrate - get the current per channel Tx rates
5715  *	@adap: the adapter
5716  *	@nic_rate: rates for NIC traffic
5717  *	@ofld_rate: rates for offloaded traffic
5718  *
5719  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5720  *	for each channel.
5721  */
5722 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5723 {
5724 	u32 v;
5725 
5726 	v = t4_read_reg(adap, A_TP_TX_TRATE);
5727 	nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
5728 	nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
5729 	if (adap->chip_params->nchan > 2) {
5730 		nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
5731 		nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
5732 	}
5733 
5734 	v = t4_read_reg(adap, A_TP_TX_ORATE);
5735 	ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
5736 	ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
5737 	if (adap->chip_params->nchan > 2) {
5738 		ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
5739 		ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
5740 	}
5741 }
5742 
5743 /**
5744  *	t4_set_trace_filter - configure one of the tracing filters
5745  *	@adap: the adapter
5746  *	@tp: the desired trace filter parameters
5747  *	@idx: which filter to configure
5748  *	@enable: whether to enable or disable the filter
5749  *
5750  *	Configures one of the tracing filters available in HW.  If @tp is %NULL
5751  *	it indicates that the filter is already written in the register and it
5752  *	just needs to be enabled or disabled.
5753  */
5754 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5755     int idx, int enable)
5756 {
5757 	int i, ofst = idx * 4;
5758 	u32 data_reg, mask_reg, cfg;
5759 	u32 multitrc = F_TRCMULTIFILTER;
5760 	u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
5761 
5762 	if (idx < 0 || idx >= NTRACE)
5763 		return -EINVAL;
5764 
5765 	if (tp == NULL || !enable) {
5766 		t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en,
5767 		    enable ? en : 0);
5768 		return 0;
5769 	}
5770 
5771 	/*
5772 	 * TODO - After T4 data book is updated, specify the exact
5773 	 * section below.
5774 	 *
5775 	 * See T4 data book - MPS section for a complete description
5776 	 * of the below if..else handling of A_MPS_TRC_CFG register
5777 	 * value.
5778 	 */
5779 	cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
5780 	if (cfg & F_TRCMULTIFILTER) {
5781 		/*
5782 		 * If multiple tracers are enabled, then maximum
5783 		 * capture size is 2.5KB (FIFO size of a single channel)
5784 		 * minus 2 flits for CPL_TRACE_PKT header.
5785 		 */
5786 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5787 			return -EINVAL;
5788 	} else {
5789 		/*
5790 		 * If multiple tracers are disabled, to avoid deadlocks
5791 		 * maximum packet capture size of 9600 bytes is recommended.
5792 		 * Also in this mode, only trace0 can be enabled and running.
5793 		 */
5794 		multitrc = 0;
5795 		if (tp->snap_len > 9600 || idx)
5796 			return -EINVAL;
5797 	}
5798 
5799 	if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
5800 	    tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
5801 	    tp->min_len > M_TFMINPKTSIZE)
5802 		return -EINVAL;
5803 
5804 	/* stop the tracer we'll be changing */
5805 	t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0);
5806 
5807 	idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
5808 	data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
5809 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
5810 
5811 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5812 		t4_write_reg(adap, data_reg, tp->data[i]);
5813 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5814 	}
5815 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
5816 		     V_TFCAPTUREMAX(tp->snap_len) |
5817 		     V_TFMINPKTSIZE(tp->min_len));
5818 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
5819 		     V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en |
5820 		     (is_t4(adap) ?
5821 		     V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
5822 		     V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
5823 
5824 	return 0;
5825 }
5826 
5827 /**
5828  *	t4_get_trace_filter - query one of the tracing filters
5829  *	@adap: the adapter
5830  *	@tp: the current trace filter parameters
5831  *	@idx: which trace filter to query
5832  *	@enabled: non-zero if the filter is enabled
5833  *
5834  *	Returns the current settings of one of the HW tracing filters.
5835  */
5836 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5837 			 int *enabled)
5838 {
5839 	u32 ctla, ctlb;
5840 	int i, ofst = idx * 4;
5841 	u32 data_reg, mask_reg;
5842 
5843 	ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
5844 	ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
5845 
5846 	if (is_t4(adap)) {
5847 		*enabled = !!(ctla & F_TFEN);
5848 		tp->port =  G_TFPORT(ctla);
5849 		tp->invert = !!(ctla & F_TFINVERTMATCH);
5850 	} else {
5851 		*enabled = !!(ctla & F_T5_TFEN);
5852 		tp->port = G_T5_TFPORT(ctla);
5853 		tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
5854 	}
5855 	tp->snap_len = G_TFCAPTUREMAX(ctlb);
5856 	tp->min_len = G_TFMINPKTSIZE(ctlb);
5857 	tp->skip_ofst = G_TFOFFSET(ctla);
5858 	tp->skip_len = G_TFLENGTH(ctla);
5859 
5860 	ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
5861 	data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
5862 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
5863 
5864 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5865 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5866 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5867 	}
5868 }
5869 
5870 /**
5871  *	t4_pmtx_get_stats - returns the HW stats from PMTX
5872  *	@adap: the adapter
5873  *	@cnt: where to store the count statistics
5874  *	@cycles: where to store the cycle statistics
5875  *
5876  *	Returns performance statistics from PMTX.
5877  */
5878 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5879 {
5880 	int i;
5881 	u32 data[2];
5882 
5883 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
5884 		t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
5885 		cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
5886 		if (is_t4(adap))
5887 			cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
5888 		else {
5889 			t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
5890 					 A_PM_TX_DBG_DATA, data, 2,
5891 					 A_PM_TX_DBG_STAT_MSB);
5892 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5893 		}
5894 	}
5895 }
5896 
5897 /**
5898  *	t4_pmrx_get_stats - returns the HW stats from PMRX
5899  *	@adap: the adapter
5900  *	@cnt: where to store the count statistics
5901  *	@cycles: where to store the cycle statistics
5902  *
5903  *	Returns performance statistics from PMRX.
5904  */
5905 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5906 {
5907 	int i;
5908 	u32 data[2];
5909 
5910 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
5911 		t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
5912 		cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
5913 		if (is_t4(adap)) {
5914 			cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
5915 		} else {
5916 			t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
5917 					 A_PM_RX_DBG_DATA, data, 2,
5918 					 A_PM_RX_DBG_STAT_MSB);
5919 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5920 		}
5921 	}
5922 }
5923 
5924 /**
5925  *	t4_get_mps_bg_map - return the buffer groups associated with a port
5926  *	@adap: the adapter
5927  *	@idx: the port index
5928  *
5929  *	Returns a bitmap indicating which MPS buffer groups are associated
5930  *	with the given port.  Bit i is set if buffer group i is used by the
5931  *	port.
5932  */
5933 static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
5934 {
5935 	u32 n;
5936 
5937 	if (adap->params.mps_bg_map)
5938 		return ((adap->params.mps_bg_map >> (idx << 3)) & 0xff);
5939 
5940 	n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
5941 	if (n == 0)
5942 		return idx == 0 ? 0xf : 0;
5943 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
5944 		return idx < 2 ? (3 << (2 * idx)) : 0;
5945 	return 1 << idx;
5946 }
5947 
5948 /*
5949  * TP RX e-channels associated with the port.
5950  */
5951 static unsigned int t4_get_rx_e_chan_map(struct adapter *adap, int idx)
5952 {
5953 	u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
5954 
5955 	if (n == 0)
5956 		return idx == 0 ? 0xf : 0;
5957 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
5958 		return idx < 2 ? (3 << (2 * idx)) : 0;
5959 	return 1 << idx;
5960 }
5961 
5962 /**
5963  *      t4_get_port_type_description - return Port Type string description
5964  *      @port_type: firmware Port Type enumeration
5965  */
5966 const char *t4_get_port_type_description(enum fw_port_type port_type)
5967 {
5968 	static const char *const port_type_description[] = {
5969 		"Fiber_XFI",
5970 		"Fiber_XAUI",
5971 		"BT_SGMII",
5972 		"BT_XFI",
5973 		"BT_XAUI",
5974 		"KX4",
5975 		"CX4",
5976 		"KX",
5977 		"KR",
5978 		"SFP",
5979 		"BP_AP",
5980 		"BP4_AP",
5981 		"QSFP_10G",
5982 		"QSA",
5983 		"QSFP",
5984 		"BP40_BA",
5985 		"KR4_100G",
5986 		"CR4_QSFP",
5987 		"CR_QSFP",
5988 		"CR2_QSFP",
5989 		"SFP28",
5990 		"KR_SFP28",
5991 	};
5992 
5993 	if (port_type < ARRAY_SIZE(port_type_description))
5994 		return port_type_description[port_type];
5995 	return "UNKNOWN";
5996 }
5997 
5998 /**
5999  *      t4_get_port_stats_offset - collect port stats relative to a previous
6000  *				   snapshot
6001  *      @adap: The adapter
6002  *      @idx: The port
6003  *      @stats: Current stats to fill
6004  *      @offset: Previous stats snapshot
6005  */
6006 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6007 		struct port_stats *stats,
6008 		struct port_stats *offset)
6009 {
6010 	u64 *s, *o;
6011 	int i;
6012 
6013 	t4_get_port_stats(adap, idx, stats);
6014 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
6015 			i < (sizeof(struct port_stats)/sizeof(u64)) ;
6016 			i++, s++, o++)
6017 		*s -= *o;
6018 }
6019 
6020 /**
6021  *	t4_get_port_stats - collect port statistics
6022  *	@adap: the adapter
6023  *	@idx: the port index
6024  *	@p: the stats structure to fill
6025  *
6026  *	Collect statistics related to the given port from HW.
6027  */
6028 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6029 {
6030 	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
6031 	u32 stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
6032 
6033 #define GET_STAT(name) \
6034 	t4_read_reg64(adap, \
6035 	(is_t4(adap) ? PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) : \
6036 	T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
6037 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6038 
6039 	p->tx_pause		= GET_STAT(TX_PORT_PAUSE);
6040 	p->tx_octets		= GET_STAT(TX_PORT_BYTES);
6041 	p->tx_frames		= GET_STAT(TX_PORT_FRAMES);
6042 	p->tx_bcast_frames	= GET_STAT(TX_PORT_BCAST);
6043 	p->tx_mcast_frames	= GET_STAT(TX_PORT_MCAST);
6044 	p->tx_ucast_frames	= GET_STAT(TX_PORT_UCAST);
6045 	p->tx_error_frames	= GET_STAT(TX_PORT_ERROR);
6046 	p->tx_frames_64		= GET_STAT(TX_PORT_64B);
6047 	p->tx_frames_65_127	= GET_STAT(TX_PORT_65B_127B);
6048 	p->tx_frames_128_255	= GET_STAT(TX_PORT_128B_255B);
6049 	p->tx_frames_256_511	= GET_STAT(TX_PORT_256B_511B);
6050 	p->tx_frames_512_1023	= GET_STAT(TX_PORT_512B_1023B);
6051 	p->tx_frames_1024_1518	= GET_STAT(TX_PORT_1024B_1518B);
6052 	p->tx_frames_1519_max	= GET_STAT(TX_PORT_1519B_MAX);
6053 	p->tx_drop		= GET_STAT(TX_PORT_DROP);
6054 	p->tx_ppp0		= GET_STAT(TX_PORT_PPP0);
6055 	p->tx_ppp1		= GET_STAT(TX_PORT_PPP1);
6056 	p->tx_ppp2		= GET_STAT(TX_PORT_PPP2);
6057 	p->tx_ppp3		= GET_STAT(TX_PORT_PPP3);
6058 	p->tx_ppp4		= GET_STAT(TX_PORT_PPP4);
6059 	p->tx_ppp5		= GET_STAT(TX_PORT_PPP5);
6060 	p->tx_ppp6		= GET_STAT(TX_PORT_PPP6);
6061 	p->tx_ppp7		= GET_STAT(TX_PORT_PPP7);
6062 
6063 	if (chip_id(adap) >= CHELSIO_T5) {
6064 		if (stat_ctl & F_COUNTPAUSESTATTX) {
6065 			p->tx_frames -= p->tx_pause;
6066 			p->tx_octets -= p->tx_pause * 64;
6067 		}
6068 		if (stat_ctl & F_COUNTPAUSEMCTX)
6069 			p->tx_mcast_frames -= p->tx_pause;
6070 	}
6071 
6072 	p->rx_pause		= GET_STAT(RX_PORT_PAUSE);
6073 	p->rx_octets		= GET_STAT(RX_PORT_BYTES);
6074 	p->rx_frames		= GET_STAT(RX_PORT_FRAMES);
6075 	p->rx_bcast_frames	= GET_STAT(RX_PORT_BCAST);
6076 	p->rx_mcast_frames	= GET_STAT(RX_PORT_MCAST);
6077 	p->rx_ucast_frames	= GET_STAT(RX_PORT_UCAST);
6078 	p->rx_too_long		= GET_STAT(RX_PORT_MTU_ERROR);
6079 	p->rx_jabber		= GET_STAT(RX_PORT_MTU_CRC_ERROR);
6080 	p->rx_fcs_err		= GET_STAT(RX_PORT_CRC_ERROR);
6081 	p->rx_len_err		= GET_STAT(RX_PORT_LEN_ERROR);
6082 	p->rx_symbol_err	= GET_STAT(RX_PORT_SYM_ERROR);
6083 	p->rx_runt		= GET_STAT(RX_PORT_LESS_64B);
6084 	p->rx_frames_64		= GET_STAT(RX_PORT_64B);
6085 	p->rx_frames_65_127	= GET_STAT(RX_PORT_65B_127B);
6086 	p->rx_frames_128_255	= GET_STAT(RX_PORT_128B_255B);
6087 	p->rx_frames_256_511	= GET_STAT(RX_PORT_256B_511B);
6088 	p->rx_frames_512_1023	= GET_STAT(RX_PORT_512B_1023B);
6089 	p->rx_frames_1024_1518	= GET_STAT(RX_PORT_1024B_1518B);
6090 	p->rx_frames_1519_max	= GET_STAT(RX_PORT_1519B_MAX);
6091 	p->rx_ppp0		= GET_STAT(RX_PORT_PPP0);
6092 	p->rx_ppp1		= GET_STAT(RX_PORT_PPP1);
6093 	p->rx_ppp2		= GET_STAT(RX_PORT_PPP2);
6094 	p->rx_ppp3		= GET_STAT(RX_PORT_PPP3);
6095 	p->rx_ppp4		= GET_STAT(RX_PORT_PPP4);
6096 	p->rx_ppp5		= GET_STAT(RX_PORT_PPP5);
6097 	p->rx_ppp6		= GET_STAT(RX_PORT_PPP6);
6098 	p->rx_ppp7		= GET_STAT(RX_PORT_PPP7);
6099 
6100 	if (chip_id(adap) >= CHELSIO_T5) {
6101 		if (stat_ctl & F_COUNTPAUSESTATRX) {
6102 			p->rx_frames -= p->rx_pause;
6103 			p->rx_octets -= p->rx_pause * 64;
6104 		}
6105 		if (stat_ctl & F_COUNTPAUSEMCRX)
6106 			p->rx_mcast_frames -= p->rx_pause;
6107 	}
6108 
6109 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6110 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6111 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6112 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6113 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6114 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6115 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6116 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6117 
6118 #undef GET_STAT
6119 #undef GET_STAT_COM
6120 }
6121 
6122 /**
6123  *	t4_get_lb_stats - collect loopback port statistics
6124  *	@adap: the adapter
6125  *	@idx: the loopback port index
6126  *	@p: the stats structure to fill
6127  *
6128  *	Return HW statistics for the given loopback port.
6129  */
6130 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6131 {
6132 	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
6133 
6134 #define GET_STAT(name) \
6135 	t4_read_reg64(adap, \
6136 	(is_t4(adap) ? \
6137 	PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \
6138 	T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L)))
6139 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6140 
6141 	p->octets	= GET_STAT(BYTES);
6142 	p->frames	= GET_STAT(FRAMES);
6143 	p->bcast_frames	= GET_STAT(BCAST);
6144 	p->mcast_frames	= GET_STAT(MCAST);
6145 	p->ucast_frames	= GET_STAT(UCAST);
6146 	p->error_frames	= GET_STAT(ERROR);
6147 
6148 	p->frames_64		= GET_STAT(64B);
6149 	p->frames_65_127	= GET_STAT(65B_127B);
6150 	p->frames_128_255	= GET_STAT(128B_255B);
6151 	p->frames_256_511	= GET_STAT(256B_511B);
6152 	p->frames_512_1023	= GET_STAT(512B_1023B);
6153 	p->frames_1024_1518	= GET_STAT(1024B_1518B);
6154 	p->frames_1519_max	= GET_STAT(1519B_MAX);
6155 	p->drop			= GET_STAT(DROP_FRAMES);
6156 
6157 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6158 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6159 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6160 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6161 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6162 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6163 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6164 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6165 
6166 #undef GET_STAT
6167 #undef GET_STAT_COM
6168 }
6169 
6170 /**
6171  *	t4_wol_magic_enable - enable/disable magic packet WoL
6172  *	@adap: the adapter
6173  *	@port: the physical port index
6174  *	@addr: MAC address expected in magic packets, %NULL to disable
6175  *
6176  *	Enables/disables magic packet wake-on-LAN for the selected port.
6177  */
6178 void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
6179 			 const u8 *addr)
6180 {
6181 	u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
6182 
6183 	if (is_t4(adap)) {
6184 		mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
6185 		mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
6186 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
6187 	} else {
6188 		mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
6189 		mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
6190 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
6191 	}
6192 
6193 	if (addr) {
6194 		t4_write_reg(adap, mag_id_reg_l,
6195 			     (addr[2] << 24) | (addr[3] << 16) |
6196 			     (addr[4] << 8) | addr[5]);
6197 		t4_write_reg(adap, mag_id_reg_h,
6198 			     (addr[0] << 8) | addr[1]);
6199 	}
6200 	t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
6201 			 V_MAGICEN(addr != NULL));
6202 }
6203 
6204 /**
6205  *	t4_wol_pat_enable - enable/disable pattern-based WoL
6206  *	@adap: the adapter
6207  *	@port: the physical port index
6208  *	@map: bitmap of which HW pattern filters to set
6209  *	@mask0: byte mask for bytes 0-63 of a packet
6210  *	@mask1: byte mask for bytes 64-127 of a packet
6211  *	@crc: Ethernet CRC for selected bytes
6212  *	@enable: enable/disable switch
6213  *
6214  *	Sets the pattern filters indicated in @map to mask out the bytes
6215  *	specified in @mask0/@mask1 in received packets and compare the CRC of
6216  *	the resulting packet against @crc.  If @enable is %true pattern-based
6217  *	WoL is enabled, otherwise disabled.
6218  */
6219 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
6220 		      u64 mask0, u64 mask1, unsigned int crc, bool enable)
6221 {
6222 	int i;
6223 	u32 port_cfg_reg;
6224 
6225 	if (is_t4(adap))
6226 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
6227 	else
6228 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
6229 
6230 	if (!enable) {
6231 		t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
6232 		return 0;
6233 	}
6234 	if (map > 0xff)
6235 		return -EINVAL;
6236 
6237 #define EPIO_REG(name) \
6238 	(is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
6239 	T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
6240 
6241 	t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
6242 	t4_write_reg(adap, EPIO_REG(DATA2), mask1);
6243 	t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
6244 
6245 	for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
6246 		if (!(map & 1))
6247 			continue;
6248 
6249 		/* write byte masks */
6250 		t4_write_reg(adap, EPIO_REG(DATA0), mask0);
6251 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
6252 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
6253 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
6254 			return -ETIMEDOUT;
6255 
6256 		/* write CRC */
6257 		t4_write_reg(adap, EPIO_REG(DATA0), crc);
6258 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
6259 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
6260 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
6261 			return -ETIMEDOUT;
6262 	}
6263 #undef EPIO_REG
6264 
6265 	t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
6266 	return 0;
6267 }
6268 
6269 /*     t4_mk_filtdelwr - create a delete filter WR
6270  *     @ftid: the filter ID
6271  *     @wr: the filter work request to populate
6272  *     @qid: ingress queue to receive the delete notification
6273  *
6274  *     Creates a filter work request to delete the supplied filter.  If @qid is
6275  *     negative the delete notification is suppressed.
6276  */
6277 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6278 {
6279 	memset(wr, 0, sizeof(*wr));
6280 	wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR));
6281 	wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16));
6282 	wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) |
6283 				    V_FW_FILTER_WR_NOREPLY(qid < 0));
6284 	wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER);
6285 	if (qid >= 0)
6286 		wr->rx_chan_rx_rpl_iq =
6287 				cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid));
6288 }
6289 
6290 #define INIT_CMD(var, cmd, rd_wr) do { \
6291 	(var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
6292 					F_FW_CMD_REQUEST | \
6293 					F_FW_CMD_##rd_wr); \
6294 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6295 } while (0)
6296 
6297 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6298 			  u32 addr, u32 val)
6299 {
6300 	u32 ldst_addrspace;
6301 	struct fw_ldst_cmd c;
6302 
6303 	memset(&c, 0, sizeof(c));
6304 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE);
6305 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6306 					F_FW_CMD_REQUEST |
6307 					F_FW_CMD_WRITE |
6308 					ldst_addrspace);
6309 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6310 	c.u.addrval.addr = cpu_to_be32(addr);
6311 	c.u.addrval.val = cpu_to_be32(val);
6312 
6313 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6314 }
6315 
6316 /**
6317  *	t4_mdio_rd - read a PHY register through MDIO
6318  *	@adap: the adapter
6319  *	@mbox: mailbox to use for the FW command
6320  *	@phy_addr: the PHY address
6321  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6322  *	@reg: the register to read
6323  *	@valp: where to store the value
6324  *
6325  *	Issues a FW command through the given mailbox to read a PHY register.
6326  */
6327 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6328 	       unsigned int mmd, unsigned int reg, unsigned int *valp)
6329 {
6330 	int ret;
6331 	u32 ldst_addrspace;
6332 	struct fw_ldst_cmd c;
6333 
6334 	memset(&c, 0, sizeof(c));
6335 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
6336 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6337 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
6338 					ldst_addrspace);
6339 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6340 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
6341 					 V_FW_LDST_CMD_MMD(mmd));
6342 	c.u.mdio.raddr = cpu_to_be16(reg);
6343 
6344 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6345 	if (ret == 0)
6346 		*valp = be16_to_cpu(c.u.mdio.rval);
6347 	return ret;
6348 }
6349 
6350 /**
6351  *	t4_mdio_wr - write a PHY register through MDIO
6352  *	@adap: the adapter
6353  *	@mbox: mailbox to use for the FW command
6354  *	@phy_addr: the PHY address
6355  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6356  *	@reg: the register to write
6357  *	@valp: value to write
6358  *
6359  *	Issues a FW command through the given mailbox to write a PHY register.
6360  */
6361 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6362 	       unsigned int mmd, unsigned int reg, unsigned int val)
6363 {
6364 	u32 ldst_addrspace;
6365 	struct fw_ldst_cmd c;
6366 
6367 	memset(&c, 0, sizeof(c));
6368 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
6369 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6370 					F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
6371 					ldst_addrspace);
6372 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6373 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
6374 					 V_FW_LDST_CMD_MMD(mmd));
6375 	c.u.mdio.raddr = cpu_to_be16(reg);
6376 	c.u.mdio.rval = cpu_to_be16(val);
6377 
6378 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6379 }
6380 
6381 /**
6382  *
6383  *	t4_sge_decode_idma_state - decode the idma state
6384  *	@adap: the adapter
6385  *	@state: the state idma is stuck in
6386  */
6387 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6388 {
6389 	static const char * const t4_decode[] = {
6390 		"IDMA_IDLE",
6391 		"IDMA_PUSH_MORE_CPL_FIFO",
6392 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6393 		"Not used",
6394 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6395 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6396 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6397 		"IDMA_SEND_FIFO_TO_IMSG",
6398 		"IDMA_FL_REQ_DATA_FL_PREP",
6399 		"IDMA_FL_REQ_DATA_FL",
6400 		"IDMA_FL_DROP",
6401 		"IDMA_FL_H_REQ_HEADER_FL",
6402 		"IDMA_FL_H_SEND_PCIEHDR",
6403 		"IDMA_FL_H_PUSH_CPL_FIFO",
6404 		"IDMA_FL_H_SEND_CPL",
6405 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6406 		"IDMA_FL_H_SEND_IP_HDR",
6407 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6408 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6409 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6410 		"IDMA_FL_D_SEND_PCIEHDR",
6411 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6412 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6413 		"IDMA_FL_SEND_PCIEHDR",
6414 		"IDMA_FL_PUSH_CPL_FIFO",
6415 		"IDMA_FL_SEND_CPL",
6416 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6417 		"IDMA_FL_SEND_PAYLOAD",
6418 		"IDMA_FL_REQ_NEXT_DATA_FL",
6419 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6420 		"IDMA_FL_SEND_PADDING",
6421 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6422 		"IDMA_FL_SEND_FIFO_TO_IMSG",
6423 		"IDMA_FL_REQ_DATAFL_DONE",
6424 		"IDMA_FL_REQ_HEADERFL_DONE",
6425 	};
6426 	static const char * const t5_decode[] = {
6427 		"IDMA_IDLE",
6428 		"IDMA_ALMOST_IDLE",
6429 		"IDMA_PUSH_MORE_CPL_FIFO",
6430 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6431 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6432 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6433 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6434 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6435 		"IDMA_SEND_FIFO_TO_IMSG",
6436 		"IDMA_FL_REQ_DATA_FL",
6437 		"IDMA_FL_DROP",
6438 		"IDMA_FL_DROP_SEND_INC",
6439 		"IDMA_FL_H_REQ_HEADER_FL",
6440 		"IDMA_FL_H_SEND_PCIEHDR",
6441 		"IDMA_FL_H_PUSH_CPL_FIFO",
6442 		"IDMA_FL_H_SEND_CPL",
6443 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6444 		"IDMA_FL_H_SEND_IP_HDR",
6445 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6446 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6447 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6448 		"IDMA_FL_D_SEND_PCIEHDR",
6449 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6450 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6451 		"IDMA_FL_SEND_PCIEHDR",
6452 		"IDMA_FL_PUSH_CPL_FIFO",
6453 		"IDMA_FL_SEND_CPL",
6454 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6455 		"IDMA_FL_SEND_PAYLOAD",
6456 		"IDMA_FL_REQ_NEXT_DATA_FL",
6457 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6458 		"IDMA_FL_SEND_PADDING",
6459 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6460 	};
6461 	static const char * const t6_decode[] = {
6462 		"IDMA_IDLE",
6463 		"IDMA_PUSH_MORE_CPL_FIFO",
6464 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6465 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6466 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6467 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6468 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6469 		"IDMA_FL_REQ_DATA_FL",
6470 		"IDMA_FL_DROP",
6471 		"IDMA_FL_DROP_SEND_INC",
6472 		"IDMA_FL_H_REQ_HEADER_FL",
6473 		"IDMA_FL_H_SEND_PCIEHDR",
6474 		"IDMA_FL_H_PUSH_CPL_FIFO",
6475 		"IDMA_FL_H_SEND_CPL",
6476 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6477 		"IDMA_FL_H_SEND_IP_HDR",
6478 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6479 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6480 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6481 		"IDMA_FL_D_SEND_PCIEHDR",
6482 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6483 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6484 		"IDMA_FL_SEND_PCIEHDR",
6485 		"IDMA_FL_PUSH_CPL_FIFO",
6486 		"IDMA_FL_SEND_CPL",
6487 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6488 		"IDMA_FL_SEND_PAYLOAD",
6489 		"IDMA_FL_REQ_NEXT_DATA_FL",
6490 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6491 		"IDMA_FL_SEND_PADDING",
6492 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6493 	};
6494 	static const u32 sge_regs[] = {
6495 		A_SGE_DEBUG_DATA_LOW_INDEX_2,
6496 		A_SGE_DEBUG_DATA_LOW_INDEX_3,
6497 		A_SGE_DEBUG_DATA_HIGH_INDEX_10,
6498 	};
6499 	const char * const *sge_idma_decode;
6500 	int sge_idma_decode_nstates;
6501 	int i;
6502 	unsigned int chip_version = chip_id(adapter);
6503 
6504 	/* Select the right set of decode strings to dump depending on the
6505 	 * adapter chip type.
6506 	 */
6507 	switch (chip_version) {
6508 	case CHELSIO_T4:
6509 		sge_idma_decode = (const char * const *)t4_decode;
6510 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6511 		break;
6512 
6513 	case CHELSIO_T5:
6514 		sge_idma_decode = (const char * const *)t5_decode;
6515 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6516 		break;
6517 
6518 	case CHELSIO_T6:
6519 		sge_idma_decode = (const char * const *)t6_decode;
6520 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6521 		break;
6522 
6523 	default:
6524 		CH_ERR(adapter,	"Unsupported chip version %d\n", chip_version);
6525 		return;
6526 	}
6527 
6528 	if (state < sge_idma_decode_nstates)
6529 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6530 	else
6531 		CH_WARN(adapter, "idma state %d unknown\n", state);
6532 
6533 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6534 		CH_WARN(adapter, "SGE register %#x value %#x\n",
6535 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6536 }
6537 
6538 /**
6539  *      t4_sge_ctxt_flush - flush the SGE context cache
6540  *      @adap: the adapter
6541  *      @mbox: mailbox to use for the FW command
6542  *
6543  *      Issues a FW command through the given mailbox to flush the
6544  *      SGE context cache.
6545  */
6546 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
6547 {
6548 	int ret;
6549 	u32 ldst_addrspace;
6550 	struct fw_ldst_cmd c;
6551 
6552 	memset(&c, 0, sizeof(c));
6553 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_SGE_EGRC);
6554 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6555 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
6556 					ldst_addrspace);
6557 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6558 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH);
6559 
6560 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6561 	return ret;
6562 }
6563 
6564 /**
6565  *      t4_fw_hello - establish communication with FW
6566  *      @adap: the adapter
6567  *      @mbox: mailbox to use for the FW command
6568  *      @evt_mbox: mailbox to receive async FW events
6569  *      @master: specifies the caller's willingness to be the device master
6570  *	@state: returns the current device state (if non-NULL)
6571  *
6572  *	Issues a command to establish communication with FW.  Returns either
6573  *	an error (negative integer) or the mailbox of the Master PF.
6574  */
6575 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6576 		enum dev_master master, enum dev_state *state)
6577 {
6578 	int ret;
6579 	struct fw_hello_cmd c;
6580 	u32 v;
6581 	unsigned int master_mbox;
6582 	int retries = FW_CMD_HELLO_RETRIES;
6583 
6584 retry:
6585 	memset(&c, 0, sizeof(c));
6586 	INIT_CMD(c, HELLO, WRITE);
6587 	c.err_to_clearinit = cpu_to_be32(
6588 		V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
6589 		V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
6590 		V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ?
6591 					mbox : M_FW_HELLO_CMD_MBMASTER) |
6592 		V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
6593 		V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
6594 		F_FW_HELLO_CMD_CLEARINIT);
6595 
6596 	/*
6597 	 * Issue the HELLO command to the firmware.  If it's not successful
6598 	 * but indicates that we got a "busy" or "timeout" condition, retry
6599 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
6600 	 * retry limit, check to see if the firmware left us any error
6601 	 * information and report that if so ...
6602 	 */
6603 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6604 	if (ret != FW_SUCCESS) {
6605 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6606 			goto retry;
6607 		if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
6608 			t4_report_fw_error(adap);
6609 		return ret;
6610 	}
6611 
6612 	v = be32_to_cpu(c.err_to_clearinit);
6613 	master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
6614 	if (state) {
6615 		if (v & F_FW_HELLO_CMD_ERR)
6616 			*state = DEV_STATE_ERR;
6617 		else if (v & F_FW_HELLO_CMD_INIT)
6618 			*state = DEV_STATE_INIT;
6619 		else
6620 			*state = DEV_STATE_UNINIT;
6621 	}
6622 
6623 	/*
6624 	 * If we're not the Master PF then we need to wait around for the
6625 	 * Master PF Driver to finish setting up the adapter.
6626 	 *
6627 	 * Note that we also do this wait if we're a non-Master-capable PF and
6628 	 * there is no current Master PF; a Master PF may show up momentarily
6629 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
6630 	 * OS loads lots of different drivers rapidly at the same time).  In
6631 	 * this case, the Master PF returned by the firmware will be
6632 	 * M_PCIE_FW_MASTER so the test below will work ...
6633 	 */
6634 	if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
6635 	    master_mbox != mbox) {
6636 		int waiting = FW_CMD_HELLO_TIMEOUT;
6637 
6638 		/*
6639 		 * Wait for the firmware to either indicate an error or
6640 		 * initialized state.  If we see either of these we bail out
6641 		 * and report the issue to the caller.  If we exhaust the
6642 		 * "hello timeout" and we haven't exhausted our retries, try
6643 		 * again.  Otherwise bail with a timeout error.
6644 		 */
6645 		for (;;) {
6646 			u32 pcie_fw;
6647 
6648 			msleep(50);
6649 			waiting -= 50;
6650 
6651 			/*
6652 			 * If neither Error nor Initialialized are indicated
6653 			 * by the firmware keep waiting till we exhaust our
6654 			 * timeout ... and then retry if we haven't exhausted
6655 			 * our retries ...
6656 			 */
6657 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
6658 			if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
6659 				if (waiting <= 0) {
6660 					if (retries-- > 0)
6661 						goto retry;
6662 
6663 					return -ETIMEDOUT;
6664 				}
6665 				continue;
6666 			}
6667 
6668 			/*
6669 			 * We either have an Error or Initialized condition
6670 			 * report errors preferentially.
6671 			 */
6672 			if (state) {
6673 				if (pcie_fw & F_PCIE_FW_ERR)
6674 					*state = DEV_STATE_ERR;
6675 				else if (pcie_fw & F_PCIE_FW_INIT)
6676 					*state = DEV_STATE_INIT;
6677 			}
6678 
6679 			/*
6680 			 * If we arrived before a Master PF was selected and
6681 			 * there's not a valid Master PF, grab its identity
6682 			 * for our caller.
6683 			 */
6684 			if (master_mbox == M_PCIE_FW_MASTER &&
6685 			    (pcie_fw & F_PCIE_FW_MASTER_VLD))
6686 				master_mbox = G_PCIE_FW_MASTER(pcie_fw);
6687 			break;
6688 		}
6689 	}
6690 
6691 	return master_mbox;
6692 }
6693 
6694 /**
6695  *	t4_fw_bye - end communication with FW
6696  *	@adap: the adapter
6697  *	@mbox: mailbox to use for the FW command
6698  *
6699  *	Issues a command to terminate communication with FW.
6700  */
6701 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6702 {
6703 	struct fw_bye_cmd c;
6704 
6705 	memset(&c, 0, sizeof(c));
6706 	INIT_CMD(c, BYE, WRITE);
6707 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6708 }
6709 
6710 /**
6711  *	t4_fw_reset - issue a reset to FW
6712  *	@adap: the adapter
6713  *	@mbox: mailbox to use for the FW command
6714  *	@reset: specifies the type of reset to perform
6715  *
6716  *	Issues a reset command of the specified type to FW.
6717  */
6718 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6719 {
6720 	struct fw_reset_cmd c;
6721 
6722 	memset(&c, 0, sizeof(c));
6723 	INIT_CMD(c, RESET, WRITE);
6724 	c.val = cpu_to_be32(reset);
6725 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6726 }
6727 
6728 /**
6729  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6730  *	@adap: the adapter
6731  *	@mbox: mailbox to use for the FW RESET command (if desired)
6732  *	@force: force uP into RESET even if FW RESET command fails
6733  *
6734  *	Issues a RESET command to firmware (if desired) with a HALT indication
6735  *	and then puts the microprocessor into RESET state.  The RESET command
6736  *	will only be issued if a legitimate mailbox is provided (mbox <=
6737  *	M_PCIE_FW_MASTER).
6738  *
6739  *	This is generally used in order for the host to safely manipulate the
6740  *	adapter without fear of conflicting with whatever the firmware might
6741  *	be doing.  The only way out of this state is to RESTART the firmware
6742  *	...
6743  */
6744 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
6745 {
6746 	int ret = 0;
6747 
6748 	/*
6749 	 * If a legitimate mailbox is provided, issue a RESET command
6750 	 * with a HALT indication.
6751 	 */
6752 	if (mbox <= M_PCIE_FW_MASTER) {
6753 		struct fw_reset_cmd c;
6754 
6755 		memset(&c, 0, sizeof(c));
6756 		INIT_CMD(c, RESET, WRITE);
6757 		c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
6758 		c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
6759 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6760 	}
6761 
6762 	/*
6763 	 * Normally we won't complete the operation if the firmware RESET
6764 	 * command fails but if our caller insists we'll go ahead and put the
6765 	 * uP into RESET.  This can be useful if the firmware is hung or even
6766 	 * missing ...  We'll have to take the risk of putting the uP into
6767 	 * RESET without the cooperation of firmware in that case.
6768 	 *
6769 	 * We also force the firmware's HALT flag to be on in case we bypassed
6770 	 * the firmware RESET command above or we're dealing with old firmware
6771 	 * which doesn't have the HALT capability.  This will serve as a flag
6772 	 * for the incoming firmware to know that it's coming out of a HALT
6773 	 * rather than a RESET ... if it's new enough to understand that ...
6774 	 */
6775 	if (ret == 0 || force) {
6776 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
6777 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
6778 				 F_PCIE_FW_HALT);
6779 	}
6780 
6781 	/*
6782 	 * And we always return the result of the firmware RESET command
6783 	 * even when we force the uP into RESET ...
6784 	 */
6785 	return ret;
6786 }
6787 
6788 /**
6789  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
6790  *	@adap: the adapter
6791  *	@reset: if we want to do a RESET to restart things
6792  *
6793  *	Restart firmware previously halted by t4_fw_halt().  On successful
6794  *	return the previous PF Master remains as the new PF Master and there
6795  *	is no need to issue a new HELLO command, etc.
6796  *
6797  *	We do this in two ways:
6798  *
6799  *	 1. If we're dealing with newer firmware we'll simply want to take
6800  *	    the chip's microprocessor out of RESET.  This will cause the
6801  *	    firmware to start up from its start vector.  And then we'll loop
6802  *	    until the firmware indicates it's started again (PCIE_FW.HALT
6803  *	    reset to 0) or we timeout.
6804  *
6805  *	 2. If we're dealing with older firmware then we'll need to RESET
6806  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
6807  *	    flag and automatically RESET itself on startup.
6808  */
6809 int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6810 {
6811 	if (reset) {
6812 		/*
6813 		 * Since we're directing the RESET instead of the firmware
6814 		 * doing it automatically, we need to clear the PCIE_FW.HALT
6815 		 * bit.
6816 		 */
6817 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, 0);
6818 
6819 		/*
6820 		 * If we've been given a valid mailbox, first try to get the
6821 		 * firmware to do the RESET.  If that works, great and we can
6822 		 * return success.  Otherwise, if we haven't been given a
6823 		 * valid mailbox or the RESET command failed, fall back to
6824 		 * hitting the chip with a hammer.
6825 		 */
6826 		if (mbox <= M_PCIE_FW_MASTER) {
6827 			t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
6828 			msleep(100);
6829 			if (t4_fw_reset(adap, mbox,
6830 					F_PIORST | F_PIORSTMODE) == 0)
6831 				return 0;
6832 		}
6833 
6834 		t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE);
6835 		msleep(2000);
6836 	} else {
6837 		int ms;
6838 
6839 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
6840 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6841 			if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
6842 				return FW_SUCCESS;
6843 			msleep(100);
6844 			ms += 100;
6845 		}
6846 		return -ETIMEDOUT;
6847 	}
6848 	return 0;
6849 }
6850 
6851 /**
6852  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6853  *	@adap: the adapter
6854  *	@mbox: mailbox to use for the FW RESET command (if desired)
6855  *	@fw_data: the firmware image to write
6856  *	@size: image size
6857  *	@force: force upgrade even if firmware doesn't cooperate
6858  *
6859  *	Perform all of the steps necessary for upgrading an adapter's
6860  *	firmware image.  Normally this requires the cooperation of the
6861  *	existing firmware in order to halt all existing activities
6862  *	but if an invalid mailbox token is passed in we skip that step
6863  *	(though we'll still put the adapter microprocessor into RESET in
6864  *	that case).
6865  *
6866  *	On successful return the new firmware will have been loaded and
6867  *	the adapter will have been fully RESET losing all previous setup
6868  *	state.  On unsuccessful return the adapter may be completely hosed ...
6869  *	positive errno indicates that the adapter is ~probably~ intact, a
6870  *	negative errno indicates that things are looking bad ...
6871  */
6872 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6873 		  const u8 *fw_data, unsigned int size, int force)
6874 {
6875 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6876 	unsigned int bootstrap =
6877 	    be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
6878 	int reset, ret;
6879 
6880 	if (!t4_fw_matches_chip(adap, fw_hdr))
6881 		return -EINVAL;
6882 
6883 	if (!bootstrap) {
6884 		ret = t4_fw_halt(adap, mbox, force);
6885 		if (ret < 0 && !force)
6886 			return ret;
6887 	}
6888 
6889 	ret = t4_load_fw(adap, fw_data, size);
6890 	if (ret < 0 || bootstrap)
6891 		return ret;
6892 
6893 	/*
6894 	 * Older versions of the firmware don't understand the new
6895 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6896 	 * restart.  So for newly loaded older firmware we'll have to do the
6897 	 * RESET for it so it starts up on a clean slate.  We can tell if
6898 	 * the newly loaded firmware will handle this right by checking
6899 	 * its header flags to see if it advertises the capability.
6900 	 */
6901 	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
6902 	return t4_fw_restart(adap, mbox, reset);
6903 }
6904 
6905 /*
6906  * Card doesn't have a firmware, install one.
6907  */
6908 int t4_fw_forceinstall(struct adapter *adap, const u8 *fw_data,
6909     unsigned int size)
6910 {
6911 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6912 	unsigned int bootstrap =
6913 	    be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
6914 	int ret;
6915 
6916 	if (!t4_fw_matches_chip(adap, fw_hdr) || bootstrap)
6917 		return -EINVAL;
6918 
6919 	t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
6920 	t4_write_reg(adap, A_PCIE_FW, 0);	/* Clobber internal state */
6921 	ret = t4_load_fw(adap, fw_data, size);
6922 	if (ret < 0)
6923 		return ret;
6924 	t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE);
6925 	msleep(1000);
6926 
6927 	return (0);
6928 }
6929 
6930 /**
6931  *	t4_fw_initialize - ask FW to initialize the device
6932  *	@adap: the adapter
6933  *	@mbox: mailbox to use for the FW command
6934  *
6935  *	Issues a command to FW to partially initialize the device.  This
6936  *	performs initialization that generally doesn't depend on user input.
6937  */
6938 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
6939 {
6940 	struct fw_initialize_cmd c;
6941 
6942 	memset(&c, 0, sizeof(c));
6943 	INIT_CMD(c, INITIALIZE, WRITE);
6944 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6945 }
6946 
6947 /**
6948  *	t4_query_params_rw - query FW or device parameters
6949  *	@adap: the adapter
6950  *	@mbox: mailbox to use for the FW command
6951  *	@pf: the PF
6952  *	@vf: the VF
6953  *	@nparams: the number of parameters
6954  *	@params: the parameter names
6955  *	@val: the parameter values
6956  *	@rw: Write and read flag
6957  *
6958  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
6959  *	queried at once.
6960  */
6961 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
6962 		       unsigned int vf, unsigned int nparams, const u32 *params,
6963 		       u32 *val, int rw)
6964 {
6965 	int i, ret;
6966 	struct fw_params_cmd c;
6967 	__be32 *p = &c.param[0].mnem;
6968 
6969 	if (nparams > 7)
6970 		return -EINVAL;
6971 
6972 	memset(&c, 0, sizeof(c));
6973 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
6974 				  F_FW_CMD_REQUEST | F_FW_CMD_READ |
6975 				  V_FW_PARAMS_CMD_PFN(pf) |
6976 				  V_FW_PARAMS_CMD_VFN(vf));
6977 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6978 
6979 	for (i = 0; i < nparams; i++) {
6980 		*p++ = cpu_to_be32(*params++);
6981 		if (rw)
6982 			*p = cpu_to_be32(*(val + i));
6983 		p++;
6984 	}
6985 
6986 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6987 	if (ret == 0)
6988 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
6989 			*val++ = be32_to_cpu(*p);
6990 	return ret;
6991 }
6992 
6993 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6994 		    unsigned int vf, unsigned int nparams, const u32 *params,
6995 		    u32 *val)
6996 {
6997 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
6998 }
6999 
7000 /**
7001  *      t4_set_params_timeout - sets FW or device parameters
7002  *      @adap: the adapter
7003  *      @mbox: mailbox to use for the FW command
7004  *      @pf: the PF
7005  *      @vf: the VF
7006  *      @nparams: the number of parameters
7007  *      @params: the parameter names
7008  *      @val: the parameter values
7009  *      @timeout: the timeout time
7010  *
7011  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7012  *      specified at once.
7013  */
7014 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7015 			  unsigned int pf, unsigned int vf,
7016 			  unsigned int nparams, const u32 *params,
7017 			  const u32 *val, int timeout)
7018 {
7019 	struct fw_params_cmd c;
7020 	__be32 *p = &c.param[0].mnem;
7021 
7022 	if (nparams > 7)
7023 		return -EINVAL;
7024 
7025 	memset(&c, 0, sizeof(c));
7026 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7027 				  F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7028 				  V_FW_PARAMS_CMD_PFN(pf) |
7029 				  V_FW_PARAMS_CMD_VFN(vf));
7030 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7031 
7032 	while (nparams--) {
7033 		*p++ = cpu_to_be32(*params++);
7034 		*p++ = cpu_to_be32(*val++);
7035 	}
7036 
7037 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7038 }
7039 
7040 /**
7041  *	t4_set_params - sets FW or device parameters
7042  *	@adap: the adapter
7043  *	@mbox: mailbox to use for the FW command
7044  *	@pf: the PF
7045  *	@vf: the VF
7046  *	@nparams: the number of parameters
7047  *	@params: the parameter names
7048  *	@val: the parameter values
7049  *
7050  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7051  *	specified at once.
7052  */
7053 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7054 		  unsigned int vf, unsigned int nparams, const u32 *params,
7055 		  const u32 *val)
7056 {
7057 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7058 				     FW_CMD_MAX_TIMEOUT);
7059 }
7060 
7061 /**
7062  *	t4_cfg_pfvf - configure PF/VF resource limits
7063  *	@adap: the adapter
7064  *	@mbox: mailbox to use for the FW command
7065  *	@pf: the PF being configured
7066  *	@vf: the VF being configured
7067  *	@txq: the max number of egress queues
7068  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7069  *	@rxqi: the max number of interrupt-capable ingress queues
7070  *	@rxq: the max number of interruptless ingress queues
7071  *	@tc: the PCI traffic class
7072  *	@vi: the max number of virtual interfaces
7073  *	@cmask: the channel access rights mask for the PF/VF
7074  *	@pmask: the port access rights mask for the PF/VF
7075  *	@nexact: the maximum number of exact MPS filters
7076  *	@rcaps: read capabilities
7077  *	@wxcaps: write/execute capabilities
7078  *
7079  *	Configures resource limits and capabilities for a physical or virtual
7080  *	function.
7081  */
7082 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7083 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7084 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7085 		unsigned int vi, unsigned int cmask, unsigned int pmask,
7086 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7087 {
7088 	struct fw_pfvf_cmd c;
7089 
7090 	memset(&c, 0, sizeof(c));
7091 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
7092 				  F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
7093 				  V_FW_PFVF_CMD_VFN(vf));
7094 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7095 	c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
7096 				     V_FW_PFVF_CMD_NIQ(rxq));
7097 	c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) |
7098 				    V_FW_PFVF_CMD_PMASK(pmask) |
7099 				    V_FW_PFVF_CMD_NEQ(txq));
7100 	c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) |
7101 				      V_FW_PFVF_CMD_NVI(vi) |
7102 				      V_FW_PFVF_CMD_NEXACTF(nexact));
7103 	c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) |
7104 				     V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
7105 				     V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
7106 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7107 }
7108 
7109 /**
7110  *	t4_alloc_vi_func - allocate a virtual interface
7111  *	@adap: the adapter
7112  *	@mbox: mailbox to use for the FW command
7113  *	@port: physical port associated with the VI
7114  *	@pf: the PF owning the VI
7115  *	@vf: the VF owning the VI
7116  *	@nmac: number of MAC addresses needed (1 to 5)
7117  *	@mac: the MAC addresses of the VI
7118  *	@rss_size: size of RSS table slice associated with this VI
7119  *	@portfunc: which Port Application Function MAC Address is desired
7120  *	@idstype: Intrusion Detection Type
7121  *
7122  *	Allocates a virtual interface for the given physical port.  If @mac is
7123  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7124  *	If @rss_size is %NULL the VI is not assigned any RSS slice by FW.
7125  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7126  *	stored consecutively so the space needed is @nmac * 6 bytes.
7127  *	Returns a negative error number or the non-negative VI id.
7128  */
7129 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
7130 		     unsigned int port, unsigned int pf, unsigned int vf,
7131 		     unsigned int nmac, u8 *mac, u16 *rss_size,
7132 		     unsigned int portfunc, unsigned int idstype)
7133 {
7134 	int ret;
7135 	struct fw_vi_cmd c;
7136 
7137 	memset(&c, 0, sizeof(c));
7138 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
7139 				  F_FW_CMD_WRITE | F_FW_CMD_EXEC |
7140 				  V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
7141 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
7142 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
7143 				     V_FW_VI_CMD_FUNC(portfunc));
7144 	c.portid_pkd = V_FW_VI_CMD_PORTID(port);
7145 	c.nmac = nmac - 1;
7146 	if(!rss_size)
7147 		c.norss_rsssize = F_FW_VI_CMD_NORSS;
7148 
7149 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7150 	if (ret)
7151 		return ret;
7152 
7153 	if (mac) {
7154 		memcpy(mac, c.mac, sizeof(c.mac));
7155 		switch (nmac) {
7156 		case 5:
7157 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7158 		case 4:
7159 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7160 		case 3:
7161 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7162 		case 2:
7163 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7164 		}
7165 	}
7166 	if (rss_size)
7167 		*rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
7168 	return G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid));
7169 }
7170 
7171 /**
7172  *      t4_alloc_vi - allocate an [Ethernet Function] virtual interface
7173  *      @adap: the adapter
7174  *      @mbox: mailbox to use for the FW command
7175  *      @port: physical port associated with the VI
7176  *      @pf: the PF owning the VI
7177  *      @vf: the VF owning the VI
7178  *      @nmac: number of MAC addresses needed (1 to 5)
7179  *      @mac: the MAC addresses of the VI
7180  *      @rss_size: size of RSS table slice associated with this VI
7181  *
7182  *	backwards compatible and convieniance routine to allocate a Virtual
7183  *	Interface with a Ethernet Port Application Function and Intrustion
7184  *	Detection System disabled.
7185  */
7186 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7187 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7188 		u16 *rss_size)
7189 {
7190 	return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
7191 				FW_VI_FUNC_ETH, 0);
7192 }
7193 
7194 /**
7195  * 	t4_free_vi - free a virtual interface
7196  * 	@adap: the adapter
7197  * 	@mbox: mailbox to use for the FW command
7198  * 	@pf: the PF owning the VI
7199  * 	@vf: the VF owning the VI
7200  * 	@viid: virtual interface identifiler
7201  *
7202  * 	Free a previously allocated virtual interface.
7203  */
7204 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7205 	       unsigned int vf, unsigned int viid)
7206 {
7207 	struct fw_vi_cmd c;
7208 
7209 	memset(&c, 0, sizeof(c));
7210 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
7211 				  F_FW_CMD_REQUEST |
7212 				  F_FW_CMD_EXEC |
7213 				  V_FW_VI_CMD_PFN(pf) |
7214 				  V_FW_VI_CMD_VFN(vf));
7215 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
7216 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
7217 
7218 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7219 }
7220 
7221 /**
7222  *	t4_set_rxmode - set Rx properties of a virtual interface
7223  *	@adap: the adapter
7224  *	@mbox: mailbox to use for the FW command
7225  *	@viid: the VI id
7226  *	@mtu: the new MTU or -1
7227  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7228  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7229  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7230  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7231  *	@sleep_ok: if true we may sleep while awaiting command completion
7232  *
7233  *	Sets Rx properties of a virtual interface.
7234  */
7235 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7236 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
7237 		  bool sleep_ok)
7238 {
7239 	struct fw_vi_rxmode_cmd c;
7240 
7241 	/* convert to FW values */
7242 	if (mtu < 0)
7243 		mtu = M_FW_VI_RXMODE_CMD_MTU;
7244 	if (promisc < 0)
7245 		promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
7246 	if (all_multi < 0)
7247 		all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
7248 	if (bcast < 0)
7249 		bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
7250 	if (vlanex < 0)
7251 		vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
7252 
7253 	memset(&c, 0, sizeof(c));
7254 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
7255 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7256 				   V_FW_VI_RXMODE_CMD_VIID(viid));
7257 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7258 	c.mtu_to_vlanexen =
7259 		cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
7260 			    V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
7261 			    V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
7262 			    V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
7263 			    V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
7264 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7265 }
7266 
7267 /**
7268  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7269  *	@adap: the adapter
7270  *	@mbox: mailbox to use for the FW command
7271  *	@viid: the VI id
7272  *	@free: if true any existing filters for this VI id are first removed
7273  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7274  *	@addr: the MAC address(es)
7275  *	@idx: where to store the index of each allocated filter
7276  *	@hash: pointer to hash address filter bitmap
7277  *	@sleep_ok: call is allowed to sleep
7278  *
7279  *	Allocates an exact-match filter for each of the supplied addresses and
7280  *	sets it to the corresponding address.  If @idx is not %NULL it should
7281  *	have at least @naddr entries, each of which will be set to the index of
7282  *	the filter allocated for the corresponding MAC address.  If a filter
7283  *	could not be allocated for an address its index is set to 0xffff.
7284  *	If @hash is not %NULL addresses that fail to allocate an exact filter
7285  *	are hashed and update the hash filter bitmap pointed at by @hash.
7286  *
7287  *	Returns a negative error number or the number of filters allocated.
7288  */
7289 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7290 		      unsigned int viid, bool free, unsigned int naddr,
7291 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7292 {
7293 	int offset, ret = 0;
7294 	struct fw_vi_mac_cmd c;
7295 	unsigned int nfilters = 0;
7296 	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
7297 	unsigned int rem = naddr;
7298 
7299 	if (naddr > max_naddr)
7300 		return -EINVAL;
7301 
7302 	for (offset = 0; offset < naddr ; /**/) {
7303 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
7304 					 ? rem
7305 					 : ARRAY_SIZE(c.u.exact));
7306 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7307 						     u.exact[fw_naddr]), 16);
7308 		struct fw_vi_mac_exact *p;
7309 		int i;
7310 
7311 		memset(&c, 0, sizeof(c));
7312 		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7313 					   F_FW_CMD_REQUEST |
7314 					   F_FW_CMD_WRITE |
7315 					   V_FW_CMD_EXEC(free) |
7316 					   V_FW_VI_MAC_CMD_VIID(viid));
7317 		c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) |
7318 						  V_FW_CMD_LEN16(len16));
7319 
7320 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7321 			p->valid_to_idx =
7322 				cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
7323 					    V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
7324 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
7325 		}
7326 
7327 		/*
7328 		 * It's okay if we run out of space in our MAC address arena.
7329 		 * Some of the addresses we submit may get stored so we need
7330 		 * to run through the reply to see what the results were ...
7331 		 */
7332 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7333 		if (ret && ret != -FW_ENOMEM)
7334 			break;
7335 
7336 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7337 			u16 index = G_FW_VI_MAC_CMD_IDX(
7338 						be16_to_cpu(p->valid_to_idx));
7339 
7340 			if (idx)
7341 				idx[offset+i] = (index >=  max_naddr
7342 						 ? 0xffff
7343 						 : index);
7344 			if (index < max_naddr)
7345 				nfilters++;
7346 			else if (hash)
7347 				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
7348 		}
7349 
7350 		free = false;
7351 		offset += fw_naddr;
7352 		rem -= fw_naddr;
7353 	}
7354 
7355 	if (ret == 0 || ret == -FW_ENOMEM)
7356 		ret = nfilters;
7357 	return ret;
7358 }
7359 
7360 /**
7361  *	t4_change_mac - modifies the exact-match filter for a MAC address
7362  *	@adap: the adapter
7363  *	@mbox: mailbox to use for the FW command
7364  *	@viid: the VI id
7365  *	@idx: index of existing filter for old value of MAC address, or -1
7366  *	@addr: the new MAC address value
7367  *	@persist: whether a new MAC allocation should be persistent
7368  *	@add_smt: if true also add the address to the HW SMT
7369  *
7370  *	Modifies an exact-match filter and sets it to the new MAC address if
7371  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
7372  *	latter case the address is added persistently if @persist is %true.
7373  *
7374  *	Note that in general it is not possible to modify the value of a given
7375  *	filter so the generic way to modify an address filter is to free the one
7376  *	being used by the old address value and allocate a new filter for the
7377  *	new address value.
7378  *
7379  *	Returns a negative error number or the index of the filter with the new
7380  *	MAC value.  Note that this index may differ from @idx.
7381  */
7382 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
7383 		  int idx, const u8 *addr, bool persist, bool add_smt)
7384 {
7385 	int ret, mode;
7386 	struct fw_vi_mac_cmd c;
7387 	struct fw_vi_mac_exact *p = c.u.exact;
7388 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
7389 
7390 	if (idx < 0)		/* new allocation */
7391 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
7392 	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
7393 
7394 	memset(&c, 0, sizeof(c));
7395 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7396 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7397 				   V_FW_VI_MAC_CMD_VIID(viid));
7398 	c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
7399 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
7400 				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
7401 				      V_FW_VI_MAC_CMD_IDX(idx));
7402 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7403 
7404 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7405 	if (ret == 0) {
7406 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
7407 		if (ret >= max_mac_addr)
7408 			ret = -ENOMEM;
7409 	}
7410 	return ret;
7411 }
7412 
7413 /**
7414  *	t4_set_addr_hash - program the MAC inexact-match hash filter
7415  *	@adap: the adapter
7416  *	@mbox: mailbox to use for the FW command
7417  *	@viid: the VI id
7418  *	@ucast: whether the hash filter should also match unicast addresses
7419  *	@vec: the value to be written to the hash filter
7420  *	@sleep_ok: call is allowed to sleep
7421  *
7422  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
7423  */
7424 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
7425 		     bool ucast, u64 vec, bool sleep_ok)
7426 {
7427 	struct fw_vi_mac_cmd c;
7428 	u32 val;
7429 
7430 	memset(&c, 0, sizeof(c));
7431 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7432 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7433 				   V_FW_VI_ENABLE_CMD_VIID(viid));
7434 	val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) |
7435 	      V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1);
7436 	c.freemacs_to_len16 = cpu_to_be32(val);
7437 	c.u.hash.hashvec = cpu_to_be64(vec);
7438 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7439 }
7440 
7441 /**
7442  *      t4_enable_vi_params - enable/disable a virtual interface
7443  *      @adap: the adapter
7444  *      @mbox: mailbox to use for the FW command
7445  *      @viid: the VI id
7446  *      @rx_en: 1=enable Rx, 0=disable Rx
7447  *      @tx_en: 1=enable Tx, 0=disable Tx
7448  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
7449  *
7450  *      Enables/disables a virtual interface.  Note that setting DCB Enable
7451  *      only makes sense when enabling a Virtual Interface ...
7452  */
7453 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
7454 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
7455 {
7456 	struct fw_vi_enable_cmd c;
7457 
7458 	memset(&c, 0, sizeof(c));
7459 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
7460 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7461 				   V_FW_VI_ENABLE_CMD_VIID(viid));
7462 	c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
7463 				     V_FW_VI_ENABLE_CMD_EEN(tx_en) |
7464 				     V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
7465 				     FW_LEN16(c));
7466 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
7467 }
7468 
7469 /**
7470  *	t4_enable_vi - enable/disable a virtual interface
7471  *	@adap: the adapter
7472  *	@mbox: mailbox to use for the FW command
7473  *	@viid: the VI id
7474  *	@rx_en: 1=enable Rx, 0=disable Rx
7475  *	@tx_en: 1=enable Tx, 0=disable Tx
7476  *
7477  *	Enables/disables a virtual interface.  Note that setting DCB Enable
7478  *	only makes sense when enabling a Virtual Interface ...
7479  */
7480 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
7481 		 bool rx_en, bool tx_en)
7482 {
7483 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
7484 }
7485 
7486 /**
7487  *	t4_identify_port - identify a VI's port by blinking its LED
7488  *	@adap: the adapter
7489  *	@mbox: mailbox to use for the FW command
7490  *	@viid: the VI id
7491  *	@nblinks: how many times to blink LED at 2.5 Hz
7492  *
7493  *	Identifies a VI's port by blinking its LED.
7494  */
7495 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
7496 		     unsigned int nblinks)
7497 {
7498 	struct fw_vi_enable_cmd c;
7499 
7500 	memset(&c, 0, sizeof(c));
7501 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
7502 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7503 				   V_FW_VI_ENABLE_CMD_VIID(viid));
7504 	c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
7505 	c.blinkdur = cpu_to_be16(nblinks);
7506 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7507 }
7508 
7509 /**
7510  *	t4_iq_stop - stop an ingress queue and its FLs
7511  *	@adap: the adapter
7512  *	@mbox: mailbox to use for the FW command
7513  *	@pf: the PF owning the queues
7514  *	@vf: the VF owning the queues
7515  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7516  *	@iqid: ingress queue id
7517  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7518  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7519  *
7520  *	Stops an ingress queue and its associated FLs, if any.  This causes
7521  *	any current or future data/messages destined for these queues to be
7522  *	tossed.
7523  */
7524 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
7525 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7526 	       unsigned int fl0id, unsigned int fl1id)
7527 {
7528 	struct fw_iq_cmd c;
7529 
7530 	memset(&c, 0, sizeof(c));
7531 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
7532 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
7533 				  V_FW_IQ_CMD_VFN(vf));
7534 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c));
7535 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
7536 	c.iqid = cpu_to_be16(iqid);
7537 	c.fl0id = cpu_to_be16(fl0id);
7538 	c.fl1id = cpu_to_be16(fl1id);
7539 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7540 }
7541 
7542 /**
7543  *	t4_iq_free - free an ingress queue and its FLs
7544  *	@adap: the adapter
7545  *	@mbox: mailbox to use for the FW command
7546  *	@pf: the PF owning the queues
7547  *	@vf: the VF owning the queues
7548  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7549  *	@iqid: ingress queue id
7550  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7551  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7552  *
7553  *	Frees an ingress queue and its associated FLs, if any.
7554  */
7555 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7556 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7557 	       unsigned int fl0id, unsigned int fl1id)
7558 {
7559 	struct fw_iq_cmd c;
7560 
7561 	memset(&c, 0, sizeof(c));
7562 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
7563 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
7564 				  V_FW_IQ_CMD_VFN(vf));
7565 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
7566 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
7567 	c.iqid = cpu_to_be16(iqid);
7568 	c.fl0id = cpu_to_be16(fl0id);
7569 	c.fl1id = cpu_to_be16(fl1id);
7570 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7571 }
7572 
7573 /**
7574  *	t4_eth_eq_free - free an Ethernet egress queue
7575  *	@adap: the adapter
7576  *	@mbox: mailbox to use for the FW command
7577  *	@pf: the PF owning the queue
7578  *	@vf: the VF owning the queue
7579  *	@eqid: egress queue id
7580  *
7581  *	Frees an Ethernet egress queue.
7582  */
7583 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7584 		   unsigned int vf, unsigned int eqid)
7585 {
7586 	struct fw_eq_eth_cmd c;
7587 
7588 	memset(&c, 0, sizeof(c));
7589 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
7590 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7591 				  V_FW_EQ_ETH_CMD_PFN(pf) |
7592 				  V_FW_EQ_ETH_CMD_VFN(vf));
7593 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
7594 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
7595 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7596 }
7597 
7598 /**
7599  *	t4_ctrl_eq_free - free a control egress queue
7600  *	@adap: the adapter
7601  *	@mbox: mailbox to use for the FW command
7602  *	@pf: the PF owning the queue
7603  *	@vf: the VF owning the queue
7604  *	@eqid: egress queue id
7605  *
7606  *	Frees a control egress queue.
7607  */
7608 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7609 		    unsigned int vf, unsigned int eqid)
7610 {
7611 	struct fw_eq_ctrl_cmd c;
7612 
7613 	memset(&c, 0, sizeof(c));
7614 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
7615 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7616 				  V_FW_EQ_CTRL_CMD_PFN(pf) |
7617 				  V_FW_EQ_CTRL_CMD_VFN(vf));
7618 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
7619 	c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
7620 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7621 }
7622 
7623 /**
7624  *	t4_ofld_eq_free - free an offload egress queue
7625  *	@adap: the adapter
7626  *	@mbox: mailbox to use for the FW command
7627  *	@pf: the PF owning the queue
7628  *	@vf: the VF owning the queue
7629  *	@eqid: egress queue id
7630  *
7631  *	Frees a control egress queue.
7632  */
7633 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7634 		    unsigned int vf, unsigned int eqid)
7635 {
7636 	struct fw_eq_ofld_cmd c;
7637 
7638 	memset(&c, 0, sizeof(c));
7639 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) |
7640 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7641 				  V_FW_EQ_OFLD_CMD_PFN(pf) |
7642 				  V_FW_EQ_OFLD_CMD_VFN(vf));
7643 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
7644 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid));
7645 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7646 }
7647 
7648 /**
7649  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
7650  *	@link_down_rc: Link Down Reason Code
7651  *
7652  *	Returns a string representation of the Link Down Reason Code.
7653  */
7654 const char *t4_link_down_rc_str(unsigned char link_down_rc)
7655 {
7656 	static const char *reason[] = {
7657 		"Link Down",
7658 		"Remote Fault",
7659 		"Auto-negotiation Failure",
7660 		"Reserved3",
7661 		"Insufficient Airflow",
7662 		"Unable To Determine Reason",
7663 		"No RX Signal Detected",
7664 		"Reserved7",
7665 	};
7666 
7667 	if (link_down_rc >= ARRAY_SIZE(reason))
7668 		return "Bad Reason Code";
7669 
7670 	return reason[link_down_rc];
7671 }
7672 
7673 /*
7674  * Updates all fields owned by the common code in port_info and link_config
7675  * based on information provided by the firmware.  Does not touch any
7676  * requested_* field.
7677  */
7678 static void handle_port_info(struct port_info *pi, const struct fw_port_info *p)
7679 {
7680 	struct link_config *lc = &pi->link_cfg;
7681 	int speed;
7682 	unsigned char fc, fec;
7683 	u32 stat = be32_to_cpu(p->lstatus_to_modtype);
7684 
7685 	pi->port_type = G_FW_PORT_CMD_PTYPE(stat);
7686 	pi->mod_type = G_FW_PORT_CMD_MODTYPE(stat);
7687 	pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP ?
7688 	    G_FW_PORT_CMD_MDIOADDR(stat) : -1;
7689 
7690 	lc->supported = be16_to_cpu(p->pcap);
7691 	lc->advertising = be16_to_cpu(p->acap);
7692 	lc->lp_advertising = be16_to_cpu(p->lpacap);
7693 	lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
7694 	lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC(stat);
7695 
7696 	speed = 0;
7697 	if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
7698 		speed = 100;
7699 	else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
7700 		speed = 1000;
7701 	else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
7702 		speed = 10000;
7703 	else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G))
7704 		speed = 25000;
7705 	else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
7706 		speed = 40000;
7707 	else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G))
7708 		speed = 100000;
7709 	lc->speed = speed;
7710 
7711 	fc = 0;
7712 	if (stat & F_FW_PORT_CMD_RXPAUSE)
7713 		fc |= PAUSE_RX;
7714 	if (stat & F_FW_PORT_CMD_TXPAUSE)
7715 		fc |= PAUSE_TX;
7716 	lc->fc = fc;
7717 
7718 	fec = 0;
7719 	if (lc->advertising & FW_PORT_CAP_FEC_RS)
7720 		fec |= FEC_RS;
7721 	if (lc->advertising & FW_PORT_CAP_FEC_BASER_RS)
7722 		fec |= FEC_BASER_RS;
7723 	if (lc->advertising & FW_PORT_CAP_FEC_RESERVED)
7724 		fec |= FEC_RESERVED;
7725 	lc->fec = fec;
7726 }
7727 
7728 /**
7729  *	t4_update_port_info - retrieve and update port information if changed
7730  *	@pi: the port_info
7731  *
7732  *	We issue a Get Port Information Command to the Firmware and, if
7733  *	successful, we check to see if anything is different from what we
7734  *	last recorded and update things accordingly.
7735  */
7736  int t4_update_port_info(struct port_info *pi)
7737  {
7738 	struct fw_port_cmd port_cmd;
7739 	int ret;
7740 
7741 	memset(&port_cmd, 0, sizeof port_cmd);
7742 	port_cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
7743 					    F_FW_CMD_REQUEST | F_FW_CMD_READ |
7744 					    V_FW_PORT_CMD_PORTID(pi->tx_chan));
7745 	port_cmd.action_to_len16 = cpu_to_be32(
7746 		V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
7747 		FW_LEN16(port_cmd));
7748 	ret = t4_wr_mbox_ns(pi->adapter, pi->adapter->mbox,
7749 			 &port_cmd, sizeof(port_cmd), &port_cmd);
7750 	if (ret)
7751 		return ret;
7752 
7753 	handle_port_info(pi, &port_cmd.u.info);
7754 	return 0;
7755 }
7756 
7757 /**
7758  *	t4_handle_fw_rpl - process a FW reply message
7759  *	@adap: the adapter
7760  *	@rpl: start of the FW message
7761  *
7762  *	Processes a FW message, such as link state change messages.
7763  */
7764 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
7765 {
7766 	u8 opcode = *(const u8 *)rpl;
7767 	const struct fw_port_cmd *p = (const void *)rpl;
7768 	unsigned int action =
7769 			G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
7770 
7771 	if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO) {
7772 		/* link/module state change message */
7773 		int i, old_ptype, old_mtype;
7774 		int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
7775 		struct port_info *pi = NULL;
7776 		struct link_config *lc, *old_lc;
7777 
7778 		for_each_port(adap, i) {
7779 			pi = adap2pinfo(adap, i);
7780 			if (pi->tx_chan == chan)
7781 				break;
7782 		}
7783 
7784 		lc = &pi->link_cfg;
7785 		old_lc = &pi->old_link_cfg;
7786 		old_ptype = pi->port_type;
7787 		old_mtype = pi->mod_type;
7788 
7789 		handle_port_info(pi, &p->u.info);
7790 		if (old_ptype != pi->port_type || old_mtype != pi->mod_type) {
7791 			t4_os_portmod_changed(pi);
7792 		}
7793 		if (old_lc->link_ok != lc->link_ok ||
7794 		    old_lc->speed != lc->speed ||
7795 		    old_lc->fec != lc->fec ||
7796 		    old_lc->fc != lc->fc) {
7797 			t4_os_link_changed(pi);
7798 			*old_lc = *lc;
7799 		}
7800 	} else {
7801 		CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode);
7802 		return -EINVAL;
7803 	}
7804 	return 0;
7805 }
7806 
7807 /**
7808  *	get_pci_mode - determine a card's PCI mode
7809  *	@adapter: the adapter
7810  *	@p: where to store the PCI settings
7811  *
7812  *	Determines a card's PCI mode and associated parameters, such as speed
7813  *	and width.
7814  */
7815 static void get_pci_mode(struct adapter *adapter,
7816 				   struct pci_params *p)
7817 {
7818 	u16 val;
7819 	u32 pcie_cap;
7820 
7821 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
7822 	if (pcie_cap) {
7823 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
7824 		p->speed = val & PCI_EXP_LNKSTA_CLS;
7825 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
7826 	}
7827 }
7828 
7829 struct flash_desc {
7830 	u32 vendor_and_model_id;
7831 	u32 size_mb;
7832 };
7833 
7834 int t4_get_flash_params(struct adapter *adapter)
7835 {
7836 	/*
7837 	 * Table for non-standard supported Flash parts.  Note, all Flash
7838 	 * parts must have 64KB sectors.
7839 	 */
7840 	static struct flash_desc supported_flash[] = {
7841 		{ 0x00150201, 4 << 20 },	/* Spansion 4MB S25FL032P */
7842 	};
7843 
7844 	int ret;
7845 	u32 flashid = 0;
7846 	unsigned int part, manufacturer;
7847 	unsigned int density, size;
7848 
7849 
7850 	/*
7851 	 * Issue a Read ID Command to the Flash part.  We decode supported
7852 	 * Flash parts and their sizes from this.  There's a newer Query
7853 	 * Command which can retrieve detailed geometry information but many
7854 	 * Flash parts don't support it.
7855 	 */
7856 	ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
7857 	if (!ret)
7858 		ret = sf1_read(adapter, 3, 0, 1, &flashid);
7859 	t4_write_reg(adapter, A_SF_OP, 0);	/* unlock SF */
7860 	if (ret < 0)
7861 		return ret;
7862 
7863 	/*
7864 	 * Check to see if it's one of our non-standard supported Flash parts.
7865 	 */
7866 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
7867 		if (supported_flash[part].vendor_and_model_id == flashid) {
7868 			adapter->params.sf_size =
7869 				supported_flash[part].size_mb;
7870 			adapter->params.sf_nsec =
7871 				adapter->params.sf_size / SF_SEC_SIZE;
7872 			goto found;
7873 		}
7874 
7875 	/*
7876 	 * Decode Flash part size.  The code below looks repetative with
7877 	 * common encodings, but that's not guaranteed in the JEDEC
7878 	 * specification for the Read JADEC ID command.  The only thing that
7879 	 * we're guaranteed by the JADEC specification is where the
7880 	 * Manufacturer ID is in the returned result.  After that each
7881 	 * Manufacturer ~could~ encode things completely differently.
7882 	 * Note, all Flash parts must have 64KB sectors.
7883 	 */
7884 	manufacturer = flashid & 0xff;
7885 	switch (manufacturer) {
7886 	case 0x20: { /* Micron/Numonix */
7887 		/*
7888 		 * This Density -> Size decoding table is taken from Micron
7889 		 * Data Sheets.
7890 		 */
7891 		density = (flashid >> 16) & 0xff;
7892 		switch (density) {
7893 		case 0x14: size = 1 << 20; break; /*   1MB */
7894 		case 0x15: size = 1 << 21; break; /*   2MB */
7895 		case 0x16: size = 1 << 22; break; /*   4MB */
7896 		case 0x17: size = 1 << 23; break; /*   8MB */
7897 		case 0x18: size = 1 << 24; break; /*  16MB */
7898 		case 0x19: size = 1 << 25; break; /*  32MB */
7899 		case 0x20: size = 1 << 26; break; /*  64MB */
7900 		case 0x21: size = 1 << 27; break; /* 128MB */
7901 		case 0x22: size = 1 << 28; break; /* 256MB */
7902 
7903 		default:
7904 			CH_ERR(adapter, "Micron Flash Part has bad size, "
7905 			       "ID = %#x, Density code = %#x\n",
7906 			       flashid, density);
7907 			return -EINVAL;
7908 		}
7909 		break;
7910 	}
7911 
7912 	case 0xef: { /* Winbond */
7913 		/*
7914 		 * This Density -> Size decoding table is taken from Winbond
7915 		 * Data Sheets.
7916 		 */
7917 		density = (flashid >> 16) & 0xff;
7918 		switch (density) {
7919 		case 0x17: size = 1 << 23; break; /*   8MB */
7920 		case 0x18: size = 1 << 24; break; /*  16MB */
7921 
7922 		default:
7923 			CH_ERR(adapter, "Winbond Flash Part has bad size, "
7924 			       "ID = %#x, Density code = %#x\n",
7925 			       flashid, density);
7926 			return -EINVAL;
7927 		}
7928 		break;
7929 	}
7930 
7931 	default:
7932 		CH_ERR(adapter, "Unsupported Flash Part, ID = %#x\n", flashid);
7933 		return -EINVAL;
7934 	}
7935 
7936 	/*
7937 	 * Store decoded Flash size and fall through into vetting code.
7938 	 */
7939 	adapter->params.sf_size = size;
7940 	adapter->params.sf_nsec = size / SF_SEC_SIZE;
7941 
7942  found:
7943 	/*
7944 	 * We should ~probably~ reject adapters with FLASHes which are too
7945 	 * small but we have some legacy FPGAs with small FLASHes that we'd
7946 	 * still like to use.  So instead we emit a scary message ...
7947 	 */
7948 	if (adapter->params.sf_size < FLASH_MIN_SIZE)
7949 		CH_WARN(adapter, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
7950 			flashid, adapter->params.sf_size, FLASH_MIN_SIZE);
7951 
7952 	return 0;
7953 }
7954 
7955 static void set_pcie_completion_timeout(struct adapter *adapter,
7956 						  u8 range)
7957 {
7958 	u16 val;
7959 	u32 pcie_cap;
7960 
7961 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
7962 	if (pcie_cap) {
7963 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
7964 		val &= 0xfff0;
7965 		val |= range ;
7966 		t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
7967 	}
7968 }
7969 
7970 const struct chip_params *t4_get_chip_params(int chipid)
7971 {
7972 	static const struct chip_params chip_params[] = {
7973 		{
7974 			/* T4 */
7975 			.nchan = NCHAN,
7976 			.pm_stats_cnt = PM_NSTATS,
7977 			.cng_ch_bits_log = 2,
7978 			.nsched_cls = 15,
7979 			.cim_num_obq = CIM_NUM_OBQ,
7980 			.mps_rplc_size = 128,
7981 			.vfcount = 128,
7982 			.sge_fl_db = F_DBPRIO,
7983 			.mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES,
7984 		},
7985 		{
7986 			/* T5 */
7987 			.nchan = NCHAN,
7988 			.pm_stats_cnt = PM_NSTATS,
7989 			.cng_ch_bits_log = 2,
7990 			.nsched_cls = 16,
7991 			.cim_num_obq = CIM_NUM_OBQ_T5,
7992 			.mps_rplc_size = 128,
7993 			.vfcount = 128,
7994 			.sge_fl_db = F_DBPRIO | F_DBTYPE,
7995 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
7996 		},
7997 		{
7998 			/* T6 */
7999 			.nchan = T6_NCHAN,
8000 			.pm_stats_cnt = T6_PM_NSTATS,
8001 			.cng_ch_bits_log = 3,
8002 			.nsched_cls = 16,
8003 			.cim_num_obq = CIM_NUM_OBQ_T5,
8004 			.mps_rplc_size = 256,
8005 			.vfcount = 256,
8006 			.sge_fl_db = 0,
8007 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
8008 		},
8009 	};
8010 
8011 	chipid -= CHELSIO_T4;
8012 	if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params))
8013 		return NULL;
8014 
8015 	return &chip_params[chipid];
8016 }
8017 
8018 /**
8019  *	t4_prep_adapter - prepare SW and HW for operation
8020  *	@adapter: the adapter
8021  *	@buf: temporary space of at least VPD_LEN size provided by the caller.
8022  *
8023  *	Initialize adapter SW state for the various HW modules, set initial
8024  *	values for some adapter tunables, take PHYs out of reset, and
8025  *	initialize the MDIO interface.
8026  */
8027 int t4_prep_adapter(struct adapter *adapter, u32 *buf)
8028 {
8029 	int ret;
8030 	uint16_t device_id;
8031 	uint32_t pl_rev;
8032 
8033 	get_pci_mode(adapter, &adapter->params.pci);
8034 
8035 	pl_rev = t4_read_reg(adapter, A_PL_REV);
8036 	adapter->params.chipid = G_CHIPID(pl_rev);
8037 	adapter->params.rev = G_REV(pl_rev);
8038 	if (adapter->params.chipid == 0) {
8039 		/* T4 did not have chipid in PL_REV (T5 onwards do) */
8040 		adapter->params.chipid = CHELSIO_T4;
8041 
8042 		/* T4A1 chip is not supported */
8043 		if (adapter->params.rev == 1) {
8044 			CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
8045 			return -EINVAL;
8046 		}
8047 	}
8048 
8049 	adapter->chip_params = t4_get_chip_params(chip_id(adapter));
8050 	if (adapter->chip_params == NULL)
8051 		return -EINVAL;
8052 
8053 	adapter->params.pci.vpd_cap_addr =
8054 	    t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
8055 
8056 	ret = t4_get_flash_params(adapter);
8057 	if (ret < 0)
8058 		return ret;
8059 
8060 	/* Cards with real ASICs have the chipid in the PCIe device id */
8061 	t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
8062 	if (device_id >> 12 == chip_id(adapter))
8063 		adapter->params.cim_la_size = CIMLA_SIZE;
8064 	else {
8065 		/* FPGA */
8066 		adapter->params.fpga = 1;
8067 		adapter->params.cim_la_size = 2 * CIMLA_SIZE;
8068 	}
8069 
8070 	ret = get_vpd_params(adapter, &adapter->params.vpd, device_id, buf);
8071 	if (ret < 0)
8072 		return ret;
8073 
8074 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
8075 
8076 	/*
8077 	 * Default port and clock for debugging in case we can't reach FW.
8078 	 */
8079 	adapter->params.nports = 1;
8080 	adapter->params.portvec = 1;
8081 	adapter->params.vpd.cclk = 50000;
8082 
8083 	/* Set pci completion timeout value to 4 seconds. */
8084 	set_pcie_completion_timeout(adapter, 0xd);
8085 	return 0;
8086 }
8087 
8088 /**
8089  *	t4_shutdown_adapter - shut down adapter, host & wire
8090  *	@adapter: the adapter
8091  *
8092  *	Perform an emergency shutdown of the adapter and stop it from
8093  *	continuing any further communication on the ports or DMA to the
8094  *	host.  This is typically used when the adapter and/or firmware
8095  *	have crashed and we want to prevent any further accidental
8096  *	communication with the rest of the world.  This will also force
8097  *	the port Link Status to go down -- if register writes work --
8098  *	which should help our peers figure out that we're down.
8099  */
8100 int t4_shutdown_adapter(struct adapter *adapter)
8101 {
8102 	int port;
8103 
8104 	t4_intr_disable(adapter);
8105 	t4_write_reg(adapter, A_DBG_GPIO_EN, 0);
8106 	for_each_port(adapter, port) {
8107 		u32 a_port_cfg = is_t4(adapter) ?
8108 				 PORT_REG(port, A_XGMAC_PORT_CFG) :
8109 				 T5_PORT_REG(port, A_MAC_PORT_CFG);
8110 
8111 		t4_write_reg(adapter, a_port_cfg,
8112 			     t4_read_reg(adapter, a_port_cfg)
8113 			     & ~V_SIGNAL_DET(1));
8114 	}
8115 	t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0);
8116 
8117 	return 0;
8118 }
8119 
8120 /**
8121  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
8122  *	@adapter: the adapter
8123  *	@qid: the Queue ID
8124  *	@qtype: the Ingress or Egress type for @qid
8125  *	@user: true if this request is for a user mode queue
8126  *	@pbar2_qoffset: BAR2 Queue Offset
8127  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
8128  *
8129  *	Returns the BAR2 SGE Queue Registers information associated with the
8130  *	indicated Absolute Queue ID.  These are passed back in return value
8131  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
8132  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
8133  *
8134  *	This may return an error which indicates that BAR2 SGE Queue
8135  *	registers aren't available.  If an error is not returned, then the
8136  *	following values are returned:
8137  *
8138  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
8139  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
8140  *
8141  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
8142  *	require the "Inferred Queue ID" ability may be used.  E.g. the
8143  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
8144  *	then these "Inferred Queue ID" register may not be used.
8145  */
8146 int t4_bar2_sge_qregs(struct adapter *adapter,
8147 		      unsigned int qid,
8148 		      enum t4_bar2_qtype qtype,
8149 		      int user,
8150 		      u64 *pbar2_qoffset,
8151 		      unsigned int *pbar2_qid)
8152 {
8153 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
8154 	u64 bar2_page_offset, bar2_qoffset;
8155 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
8156 
8157 	/* T4 doesn't support BAR2 SGE Queue registers for kernel
8158 	 * mode queues.
8159 	 */
8160 	if (!user && is_t4(adapter))
8161 		return -EINVAL;
8162 
8163 	/* Get our SGE Page Size parameters.
8164 	 */
8165 	page_shift = adapter->params.sge.page_shift;
8166 	page_size = 1 << page_shift;
8167 
8168 	/* Get the right Queues per Page parameters for our Queue.
8169 	 */
8170 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
8171 		     ? adapter->params.sge.eq_s_qpp
8172 		     : adapter->params.sge.iq_s_qpp);
8173 	qpp_mask = (1 << qpp_shift) - 1;
8174 
8175 	/* Calculate the basics of the BAR2 SGE Queue register area:
8176 	 *  o The BAR2 page the Queue registers will be in.
8177 	 *  o The BAR2 Queue ID.
8178 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
8179 	 */
8180 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
8181 	bar2_qid = qid & qpp_mask;
8182 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
8183 
8184 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
8185 	 * hardware will infer the Absolute Queue ID simply from the writes to
8186 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
8187 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
8188 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
8189 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
8190 	 * from the BAR2 Page and BAR2 Queue ID.
8191 	 *
8192 	 * One important censequence of this is that some BAR2 SGE registers
8193 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
8194 	 * there.  But other registers synthesize the SGE Queue ID purely
8195 	 * from the writes to the registers -- the Write Combined Doorbell
8196 	 * Buffer is a good example.  These BAR2 SGE Registers are only
8197 	 * available for those BAR2 SGE Register areas where the SGE Absolute
8198 	 * Queue ID can be inferred from simple writes.
8199 	 */
8200 	bar2_qoffset = bar2_page_offset;
8201 	bar2_qinferred = (bar2_qid_offset < page_size);
8202 	if (bar2_qinferred) {
8203 		bar2_qoffset += bar2_qid_offset;
8204 		bar2_qid = 0;
8205 	}
8206 
8207 	*pbar2_qoffset = bar2_qoffset;
8208 	*pbar2_qid = bar2_qid;
8209 	return 0;
8210 }
8211 
8212 /**
8213  *	t4_init_devlog_params - initialize adapter->params.devlog
8214  *	@adap: the adapter
8215  *	@fw_attach: whether we can talk to the firmware
8216  *
8217  *	Initialize various fields of the adapter's Firmware Device Log
8218  *	Parameters structure.
8219  */
8220 int t4_init_devlog_params(struct adapter *adap, int fw_attach)
8221 {
8222 	struct devlog_params *dparams = &adap->params.devlog;
8223 	u32 pf_dparams;
8224 	unsigned int devlog_meminfo;
8225 	struct fw_devlog_cmd devlog_cmd;
8226 	int ret;
8227 
8228 	/* If we're dealing with newer firmware, the Device Log Paramerters
8229 	 * are stored in a designated register which allows us to access the
8230 	 * Device Log even if we can't talk to the firmware.
8231 	 */
8232 	pf_dparams =
8233 		t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG));
8234 	if (pf_dparams) {
8235 		unsigned int nentries, nentries128;
8236 
8237 		dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams);
8238 		dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4;
8239 
8240 		nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams);
8241 		nentries = (nentries128 + 1) * 128;
8242 		dparams->size = nentries * sizeof(struct fw_devlog_e);
8243 
8244 		return 0;
8245 	}
8246 
8247 	/*
8248 	 * For any failing returns ...
8249 	 */
8250 	memset(dparams, 0, sizeof *dparams);
8251 
8252 	/*
8253 	 * If we can't talk to the firmware, there's really nothing we can do
8254 	 * at this point.
8255 	 */
8256 	if (!fw_attach)
8257 		return -ENXIO;
8258 
8259 	/* Otherwise, ask the firmware for it's Device Log Parameters.
8260 	 */
8261 	memset(&devlog_cmd, 0, sizeof devlog_cmd);
8262 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
8263 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
8264 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
8265 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
8266 			 &devlog_cmd);
8267 	if (ret)
8268 		return ret;
8269 
8270 	devlog_meminfo =
8271 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
8272 	dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo);
8273 	dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4;
8274 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
8275 
8276 	return 0;
8277 }
8278 
8279 /**
8280  *	t4_init_sge_params - initialize adap->params.sge
8281  *	@adapter: the adapter
8282  *
8283  *	Initialize various fields of the adapter's SGE Parameters structure.
8284  */
8285 int t4_init_sge_params(struct adapter *adapter)
8286 {
8287 	u32 r;
8288 	struct sge_params *sp = &adapter->params.sge;
8289 	unsigned i, tscale = 1;
8290 
8291 	r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD);
8292 	sp->counter_val[0] = G_THRESHOLD_0(r);
8293 	sp->counter_val[1] = G_THRESHOLD_1(r);
8294 	sp->counter_val[2] = G_THRESHOLD_2(r);
8295 	sp->counter_val[3] = G_THRESHOLD_3(r);
8296 
8297 	if (chip_id(adapter) >= CHELSIO_T6) {
8298 		r = t4_read_reg(adapter, A_SGE_ITP_CONTROL);
8299 		tscale = G_TSCALE(r);
8300 		if (tscale == 0)
8301 			tscale = 1;
8302 		else
8303 			tscale += 2;
8304 	}
8305 
8306 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1);
8307 	sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r)) * tscale;
8308 	sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r)) * tscale;
8309 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3);
8310 	sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r)) * tscale;
8311 	sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r)) * tscale;
8312 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5);
8313 	sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r)) * tscale;
8314 	sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r)) * tscale;
8315 
8316 	r = t4_read_reg(adapter, A_SGE_CONM_CTRL);
8317 	sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
8318 	if (is_t4(adapter))
8319 		sp->fl_starve_threshold2 = sp->fl_starve_threshold;
8320 	else if (is_t5(adapter))
8321 		sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
8322 	else
8323 		sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(r) * 2 + 1;
8324 
8325 	/* egress queues: log2 of # of doorbells per BAR2 page */
8326 	r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
8327 	r >>= S_QUEUESPERPAGEPF0 +
8328 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
8329 	sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
8330 
8331 	/* ingress queues: log2 of # of doorbells per BAR2 page */
8332 	r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
8333 	r >>= S_QUEUESPERPAGEPF0 +
8334 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
8335 	sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
8336 
8337 	r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
8338 	r >>= S_HOSTPAGESIZEPF0 +
8339 	    (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf;
8340 	sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10;
8341 
8342 	r = t4_read_reg(adapter, A_SGE_CONTROL);
8343 	sp->sge_control = r;
8344 	sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64;
8345 	sp->fl_pktshift = G_PKTSHIFT(r);
8346 	if (chip_id(adapter) <= CHELSIO_T5) {
8347 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
8348 		    X_INGPADBOUNDARY_SHIFT);
8349 	} else {
8350 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
8351 		    X_T6_INGPADBOUNDARY_SHIFT);
8352 	}
8353 	if (is_t4(adapter))
8354 		sp->pack_boundary = sp->pad_boundary;
8355 	else {
8356 		r = t4_read_reg(adapter, A_SGE_CONTROL2);
8357 		if (G_INGPACKBOUNDARY(r) == 0)
8358 			sp->pack_boundary = 16;
8359 		else
8360 			sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5);
8361 	}
8362 	for (i = 0; i < SGE_FLBUF_SIZES; i++)
8363 		sp->sge_fl_buffer_size[i] = t4_read_reg(adapter,
8364 		    A_SGE_FL_BUFFER_SIZE0 + (4 * i));
8365 
8366 	return 0;
8367 }
8368 
8369 /*
8370  * Read and cache the adapter's compressed filter mode and ingress config.
8371  */
8372 static void read_filter_mode_and_ingress_config(struct adapter *adap,
8373     bool sleep_ok)
8374 {
8375 	struct tp_params *tpp = &adap->params.tp;
8376 
8377 	t4_tp_pio_read(adap, &tpp->vlan_pri_map, 1, A_TP_VLAN_PRI_MAP,
8378 	    sleep_ok);
8379 	t4_tp_pio_read(adap, &tpp->ingress_config, 1, A_TP_INGRESS_CONFIG,
8380 	    sleep_ok);
8381 
8382 	/*
8383 	 * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
8384 	 * shift positions of several elements of the Compressed Filter Tuple
8385 	 * for this adapter which we need frequently ...
8386 	 */
8387 	tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE);
8388 	tpp->port_shift = t4_filter_field_shift(adap, F_PORT);
8389 	tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
8390 	tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN);
8391 	tpp->tos_shift = t4_filter_field_shift(adap, F_TOS);
8392 	tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
8393 	tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE);
8394 	tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH);
8395 	tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE);
8396 	tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION);
8397 
8398 	/*
8399 	 * If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
8400 	 * represents the presence of an Outer VLAN instead of a VNIC ID.
8401 	 */
8402 	if ((tpp->ingress_config & F_VNIC) == 0)
8403 		tpp->vnic_shift = -1;
8404 }
8405 
8406 /**
8407  *      t4_init_tp_params - initialize adap->params.tp
8408  *      @adap: the adapter
8409  *
8410  *      Initialize various fields of the adapter's TP Parameters structure.
8411  */
8412 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
8413 {
8414 	int chan;
8415 	u32 v;
8416 	struct tp_params *tpp = &adap->params.tp;
8417 
8418 	v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
8419 	tpp->tre = G_TIMERRESOLUTION(v);
8420 	tpp->dack_re = G_DELAYEDACKRESOLUTION(v);
8421 
8422 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
8423 	for (chan = 0; chan < MAX_NCHAN; chan++)
8424 		tpp->tx_modq[chan] = chan;
8425 
8426 	read_filter_mode_and_ingress_config(adap, sleep_ok);
8427 
8428 	/*
8429 	 * Cache a mask of the bits that represent the error vector portion of
8430 	 * rx_pkt.err_vec.  T6+ can use a compressed error vector to make room
8431 	 * for information about outer encapsulation (GENEVE/VXLAN/NVGRE).
8432 	 */
8433 	tpp->err_vec_mask = htobe16(0xffff);
8434 	if (chip_id(adap) > CHELSIO_T5) {
8435 		v = t4_read_reg(adap, A_TP_OUT_CONFIG);
8436 		if (v & F_CRXPKTENC) {
8437 			tpp->err_vec_mask =
8438 			    htobe16(V_T6_COMPR_RXERR_VEC(M_T6_COMPR_RXERR_VEC));
8439 		}
8440 	}
8441 
8442 	return 0;
8443 }
8444 
8445 /**
8446  *      t4_filter_field_shift - calculate filter field shift
8447  *      @adap: the adapter
8448  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
8449  *
8450  *      Return the shift position of a filter field within the Compressed
8451  *      Filter Tuple.  The filter field is specified via its selection bit
8452  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
8453  */
8454 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
8455 {
8456 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
8457 	unsigned int sel;
8458 	int field_shift;
8459 
8460 	if ((filter_mode & filter_sel) == 0)
8461 		return -1;
8462 
8463 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
8464 		switch (filter_mode & sel) {
8465 		case F_FCOE:
8466 			field_shift += W_FT_FCOE;
8467 			break;
8468 		case F_PORT:
8469 			field_shift += W_FT_PORT;
8470 			break;
8471 		case F_VNIC_ID:
8472 			field_shift += W_FT_VNIC_ID;
8473 			break;
8474 		case F_VLAN:
8475 			field_shift += W_FT_VLAN;
8476 			break;
8477 		case F_TOS:
8478 			field_shift += W_FT_TOS;
8479 			break;
8480 		case F_PROTOCOL:
8481 			field_shift += W_FT_PROTOCOL;
8482 			break;
8483 		case F_ETHERTYPE:
8484 			field_shift += W_FT_ETHERTYPE;
8485 			break;
8486 		case F_MACMATCH:
8487 			field_shift += W_FT_MACMATCH;
8488 			break;
8489 		case F_MPSHITTYPE:
8490 			field_shift += W_FT_MPSHITTYPE;
8491 			break;
8492 		case F_FRAGMENTATION:
8493 			field_shift += W_FT_FRAGMENTATION;
8494 			break;
8495 		}
8496 	}
8497 	return field_shift;
8498 }
8499 
8500 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id)
8501 {
8502 	u8 addr[6];
8503 	int ret, i, j;
8504 	u16 rss_size;
8505 	struct port_info *p = adap2pinfo(adap, port_id);
8506 	u32 param, val;
8507 
8508 	for (i = 0, j = -1; i <= p->port_id; i++) {
8509 		do {
8510 			j++;
8511 		} while ((adap->params.portvec & (1 << j)) == 0);
8512 	}
8513 
8514 	if (!(adap->flags & IS_VF) ||
8515 	    adap->params.vfres.r_caps & FW_CMD_CAP_PORT) {
8516  		t4_update_port_info(p);
8517 	}
8518 
8519 	ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
8520 	if (ret < 0)
8521 		return ret;
8522 
8523 	p->vi[0].viid = ret;
8524 	if (chip_id(adap) <= CHELSIO_T5)
8525 		p->vi[0].smt_idx = (ret & 0x7f) << 1;
8526 	else
8527 		p->vi[0].smt_idx = (ret & 0x7f);
8528 	p->tx_chan = j;
8529 	p->mps_bg_map = t4_get_mps_bg_map(adap, j);
8530 	p->rx_e_chan_map = t4_get_rx_e_chan_map(adap, j);
8531 	p->lport = j;
8532 	p->vi[0].rss_size = rss_size;
8533 	t4_os_set_hw_addr(p, addr);
8534 
8535 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8536 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
8537 	    V_FW_PARAMS_PARAM_YZ(p->vi[0].viid);
8538 	ret = t4_query_params(adap, mbox, pf, vf, 1, &param, &val);
8539 	if (ret)
8540 		p->vi[0].rss_base = 0xffff;
8541 	else {
8542 		/* MPASS((val >> 16) == rss_size); */
8543 		p->vi[0].rss_base = val & 0xffff;
8544 	}
8545 
8546 	return 0;
8547 }
8548 
8549 /**
8550  *	t4_read_cimq_cfg - read CIM queue configuration
8551  *	@adap: the adapter
8552  *	@base: holds the queue base addresses in bytes
8553  *	@size: holds the queue sizes in bytes
8554  *	@thres: holds the queue full thresholds in bytes
8555  *
8556  *	Returns the current configuration of the CIM queues, starting with
8557  *	the IBQs, then the OBQs.
8558  */
8559 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
8560 {
8561 	unsigned int i, v;
8562 	int cim_num_obq = adap->chip_params->cim_num_obq;
8563 
8564 	for (i = 0; i < CIM_NUM_IBQ; i++) {
8565 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
8566 			     V_QUENUMSELECT(i));
8567 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8568 		/* value is in 256-byte units */
8569 		*base++ = G_CIMQBASE(v) * 256;
8570 		*size++ = G_CIMQSIZE(v) * 256;
8571 		*thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */
8572 	}
8573 	for (i = 0; i < cim_num_obq; i++) {
8574 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
8575 			     V_QUENUMSELECT(i));
8576 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8577 		/* value is in 256-byte units */
8578 		*base++ = G_CIMQBASE(v) * 256;
8579 		*size++ = G_CIMQSIZE(v) * 256;
8580 	}
8581 }
8582 
8583 /**
8584  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
8585  *	@adap: the adapter
8586  *	@qid: the queue index
8587  *	@data: where to store the queue contents
8588  *	@n: capacity of @data in 32-bit words
8589  *
8590  *	Reads the contents of the selected CIM queue starting at address 0 up
8591  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8592  *	error and the number of 32-bit words actually read on success.
8593  */
8594 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8595 {
8596 	int i, err, attempts;
8597 	unsigned int addr;
8598 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
8599 
8600 	if (qid > 5 || (n & 3))
8601 		return -EINVAL;
8602 
8603 	addr = qid * nwords;
8604 	if (n > nwords)
8605 		n = nwords;
8606 
8607 	/* It might take 3-10ms before the IBQ debug read access is allowed.
8608 	 * Wait for 1 Sec with a delay of 1 usec.
8609 	 */
8610 	attempts = 1000000;
8611 
8612 	for (i = 0; i < n; i++, addr++) {
8613 		t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
8614 			     F_IBQDBGEN);
8615 		err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
8616 				      attempts, 1);
8617 		if (err)
8618 			return err;
8619 		*data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
8620 	}
8621 	t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
8622 	return i;
8623 }
8624 
8625 /**
8626  *	t4_read_cim_obq - read the contents of a CIM outbound queue
8627  *	@adap: the adapter
8628  *	@qid: the queue index
8629  *	@data: where to store the queue contents
8630  *	@n: capacity of @data in 32-bit words
8631  *
8632  *	Reads the contents of the selected CIM queue starting at address 0 up
8633  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8634  *	error and the number of 32-bit words actually read on success.
8635  */
8636 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8637 {
8638 	int i, err;
8639 	unsigned int addr, v, nwords;
8640 	int cim_num_obq = adap->chip_params->cim_num_obq;
8641 
8642 	if ((qid > (cim_num_obq - 1)) || (n & 3))
8643 		return -EINVAL;
8644 
8645 	t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
8646 		     V_QUENUMSELECT(qid));
8647 	v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8648 
8649 	addr = G_CIMQBASE(v) * 64;    /* muliple of 256 -> muliple of 4 */
8650 	nwords = G_CIMQSIZE(v) * 64;  /* same */
8651 	if (n > nwords)
8652 		n = nwords;
8653 
8654 	for (i = 0; i < n; i++, addr++) {
8655 		t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
8656 			     F_OBQDBGEN);
8657 		err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
8658 				      2, 1);
8659 		if (err)
8660 			return err;
8661 		*data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
8662 	}
8663 	t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
8664 	return i;
8665 }
8666 
8667 enum {
8668 	CIM_QCTL_BASE     = 0,
8669 	CIM_CTL_BASE      = 0x2000,
8670 	CIM_PBT_ADDR_BASE = 0x2800,
8671 	CIM_PBT_LRF_BASE  = 0x3000,
8672 	CIM_PBT_DATA_BASE = 0x3800
8673 };
8674 
8675 /**
8676  *	t4_cim_read - read a block from CIM internal address space
8677  *	@adap: the adapter
8678  *	@addr: the start address within the CIM address space
8679  *	@n: number of words to read
8680  *	@valp: where to store the result
8681  *
8682  *	Reads a block of 4-byte words from the CIM intenal address space.
8683  */
8684 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
8685 		unsigned int *valp)
8686 {
8687 	int ret = 0;
8688 
8689 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
8690 		return -EBUSY;
8691 
8692 	for ( ; !ret && n--; addr += 4) {
8693 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
8694 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
8695 				      0, 5, 2);
8696 		if (!ret)
8697 			*valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
8698 	}
8699 	return ret;
8700 }
8701 
8702 /**
8703  *	t4_cim_write - write a block into CIM internal address space
8704  *	@adap: the adapter
8705  *	@addr: the start address within the CIM address space
8706  *	@n: number of words to write
8707  *	@valp: set of values to write
8708  *
8709  *	Writes a block of 4-byte words into the CIM intenal address space.
8710  */
8711 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
8712 		 const unsigned int *valp)
8713 {
8714 	int ret = 0;
8715 
8716 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
8717 		return -EBUSY;
8718 
8719 	for ( ; !ret && n--; addr += 4) {
8720 		t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
8721 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
8722 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
8723 				      0, 5, 2);
8724 	}
8725 	return ret;
8726 }
8727 
8728 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
8729 			 unsigned int val)
8730 {
8731 	return t4_cim_write(adap, addr, 1, &val);
8732 }
8733 
8734 /**
8735  *	t4_cim_ctl_read - read a block from CIM control region
8736  *	@adap: the adapter
8737  *	@addr: the start address within the CIM control region
8738  *	@n: number of words to read
8739  *	@valp: where to store the result
8740  *
8741  *	Reads a block of 4-byte words from the CIM control region.
8742  */
8743 int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
8744 		    unsigned int *valp)
8745 {
8746 	return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
8747 }
8748 
8749 /**
8750  *	t4_cim_read_la - read CIM LA capture buffer
8751  *	@adap: the adapter
8752  *	@la_buf: where to store the LA data
8753  *	@wrptr: the HW write pointer within the capture buffer
8754  *
8755  *	Reads the contents of the CIM LA buffer with the most recent entry at
8756  *	the end	of the returned data and with the entry at @wrptr first.
8757  *	We try to leave the LA in the running state we find it in.
8758  */
8759 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
8760 {
8761 	int i, ret;
8762 	unsigned int cfg, val, idx;
8763 
8764 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
8765 	if (ret)
8766 		return ret;
8767 
8768 	if (cfg & F_UPDBGLAEN) {	/* LA is running, freeze it */
8769 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
8770 		if (ret)
8771 			return ret;
8772 	}
8773 
8774 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
8775 	if (ret)
8776 		goto restart;
8777 
8778 	idx = G_UPDBGLAWRPTR(val);
8779 	if (wrptr)
8780 		*wrptr = idx;
8781 
8782 	for (i = 0; i < adap->params.cim_la_size; i++) {
8783 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
8784 				    V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
8785 		if (ret)
8786 			break;
8787 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
8788 		if (ret)
8789 			break;
8790 		if (val & F_UPDBGLARDEN) {
8791 			ret = -ETIMEDOUT;
8792 			break;
8793 		}
8794 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
8795 		if (ret)
8796 			break;
8797 
8798 		/* address can't exceed 0xfff (UpDbgLaRdPtr is of 12-bits) */
8799 		idx = (idx + 1) & M_UPDBGLARDPTR;
8800 		/*
8801 		 * Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
8802 		 * identify the 32-bit portion of the full 312-bit data
8803 		 */
8804 		if (is_t6(adap))
8805 			while ((idx & 0xf) > 9)
8806 				idx = (idx + 1) % M_UPDBGLARDPTR;
8807 	}
8808 restart:
8809 	if (cfg & F_UPDBGLAEN) {
8810 		int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
8811 				      cfg & ~F_UPDBGLARDEN);
8812 		if (!ret)
8813 			ret = r;
8814 	}
8815 	return ret;
8816 }
8817 
8818 /**
8819  *	t4_tp_read_la - read TP LA capture buffer
8820  *	@adap: the adapter
8821  *	@la_buf: where to store the LA data
8822  *	@wrptr: the HW write pointer within the capture buffer
8823  *
8824  *	Reads the contents of the TP LA buffer with the most recent entry at
8825  *	the end	of the returned data and with the entry at @wrptr first.
8826  *	We leave the LA in the running state we find it in.
8827  */
8828 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
8829 {
8830 	bool last_incomplete;
8831 	unsigned int i, cfg, val, idx;
8832 
8833 	cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
8834 	if (cfg & F_DBGLAENABLE)			/* freeze LA */
8835 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
8836 			     adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
8837 
8838 	val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
8839 	idx = G_DBGLAWPTR(val);
8840 	last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
8841 	if (last_incomplete)
8842 		idx = (idx + 1) & M_DBGLARPTR;
8843 	if (wrptr)
8844 		*wrptr = idx;
8845 
8846 	val &= 0xffff;
8847 	val &= ~V_DBGLARPTR(M_DBGLARPTR);
8848 	val |= adap->params.tp.la_mask;
8849 
8850 	for (i = 0; i < TPLA_SIZE; i++) {
8851 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
8852 		la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
8853 		idx = (idx + 1) & M_DBGLARPTR;
8854 	}
8855 
8856 	/* Wipe out last entry if it isn't valid */
8857 	if (last_incomplete)
8858 		la_buf[TPLA_SIZE - 1] = ~0ULL;
8859 
8860 	if (cfg & F_DBGLAENABLE)		/* restore running state */
8861 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
8862 			     cfg | adap->params.tp.la_mask);
8863 }
8864 
8865 /*
8866  * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
8867  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
8868  * state for more than the Warning Threshold then we'll issue a warning about
8869  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
8870  * appears to be hung every Warning Repeat second till the situation clears.
8871  * If the situation clears, we'll note that as well.
8872  */
8873 #define SGE_IDMA_WARN_THRESH 1
8874 #define SGE_IDMA_WARN_REPEAT 300
8875 
8876 /**
8877  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
8878  *	@adapter: the adapter
8879  *	@idma: the adapter IDMA Monitor state
8880  *
8881  *	Initialize the state of an SGE Ingress DMA Monitor.
8882  */
8883 void t4_idma_monitor_init(struct adapter *adapter,
8884 			  struct sge_idma_monitor_state *idma)
8885 {
8886 	/* Initialize the state variables for detecting an SGE Ingress DMA
8887 	 * hang.  The SGE has internal counters which count up on each clock
8888 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
8889 	 * same state they were on the previous clock tick.  The clock used is
8890 	 * the Core Clock so we have a limit on the maximum "time" they can
8891 	 * record; typically a very small number of seconds.  For instance,
8892 	 * with a 600MHz Core Clock, we can only count up to a bit more than
8893 	 * 7s.  So we'll synthesize a larger counter in order to not run the
8894 	 * risk of having the "timers" overflow and give us the flexibility to
8895 	 * maintain a Hung SGE State Machine of our own which operates across
8896 	 * a longer time frame.
8897 	 */
8898 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
8899 	idma->idma_stalled[0] = idma->idma_stalled[1] = 0;
8900 }
8901 
8902 /**
8903  *	t4_idma_monitor - monitor SGE Ingress DMA state
8904  *	@adapter: the adapter
8905  *	@idma: the adapter IDMA Monitor state
8906  *	@hz: number of ticks/second
8907  *	@ticks: number of ticks since the last IDMA Monitor call
8908  */
8909 void t4_idma_monitor(struct adapter *adapter,
8910 		     struct sge_idma_monitor_state *idma,
8911 		     int hz, int ticks)
8912 {
8913 	int i, idma_same_state_cnt[2];
8914 
8915 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
8916 	  * are counters inside the SGE which count up on each clock when the
8917 	  * SGE finds its Ingress DMA State Engines in the same states they
8918 	  * were in the previous clock.  The counters will peg out at
8919 	  * 0xffffffff without wrapping around so once they pass the 1s
8920 	  * threshold they'll stay above that till the IDMA state changes.
8921 	  */
8922 	t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13);
8923 	idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH);
8924 	idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8925 
8926 	for (i = 0; i < 2; i++) {
8927 		u32 debug0, debug11;
8928 
8929 		/* If the Ingress DMA Same State Counter ("timer") is less
8930 		 * than 1s, then we can reset our synthesized Stall Timer and
8931 		 * continue.  If we have previously emitted warnings about a
8932 		 * potential stalled Ingress Queue, issue a note indicating
8933 		 * that the Ingress Queue has resumed forward progress.
8934 		 */
8935 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
8936 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz)
8937 				CH_WARN(adapter, "SGE idma%d, queue %u, "
8938 					"resumed after %d seconds\n",
8939 					i, idma->idma_qid[i],
8940 					idma->idma_stalled[i]/hz);
8941 			idma->idma_stalled[i] = 0;
8942 			continue;
8943 		}
8944 
8945 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
8946 		 * domain.  The first time we get here it'll be because we
8947 		 * passed the 1s Threshold; each additional time it'll be
8948 		 * because the RX Timer Callback is being fired on its regular
8949 		 * schedule.
8950 		 *
8951 		 * If the stall is below our Potential Hung Ingress Queue
8952 		 * Warning Threshold, continue.
8953 		 */
8954 		if (idma->idma_stalled[i] == 0) {
8955 			idma->idma_stalled[i] = hz;
8956 			idma->idma_warn[i] = 0;
8957 		} else {
8958 			idma->idma_stalled[i] += ticks;
8959 			idma->idma_warn[i] -= ticks;
8960 		}
8961 
8962 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz)
8963 			continue;
8964 
8965 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
8966 		 */
8967 		if (idma->idma_warn[i] > 0)
8968 			continue;
8969 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz;
8970 
8971 		/* Read and save the SGE IDMA State and Queue ID information.
8972 		 * We do this every time in case it changes across time ...
8973 		 * can't be too careful ...
8974 		 */
8975 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0);
8976 		debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8977 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
8978 
8979 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11);
8980 		debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8981 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
8982 
8983 		CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in "
8984 			" state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
8985 			i, idma->idma_qid[i], idma->idma_state[i],
8986 			idma->idma_stalled[i]/hz,
8987 			debug0, debug11);
8988 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
8989 	}
8990 }
8991 
8992 /**
8993  *	t4_read_pace_tbl - read the pace table
8994  *	@adap: the adapter
8995  *	@pace_vals: holds the returned values
8996  *
8997  *	Returns the values of TP's pace table in microseconds.
8998  */
8999 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
9000 {
9001 	unsigned int i, v;
9002 
9003 	for (i = 0; i < NTX_SCHED; i++) {
9004 		t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
9005 		v = t4_read_reg(adap, A_TP_PACE_TABLE);
9006 		pace_vals[i] = dack_ticks_to_usec(adap, v);
9007 	}
9008 }
9009 
9010 /**
9011  *	t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
9012  *	@adap: the adapter
9013  *	@sched: the scheduler index
9014  *	@kbps: the byte rate in Kbps
9015  *	@ipg: the interpacket delay in tenths of nanoseconds
9016  *
9017  *	Return the current configuration of a HW Tx scheduler.
9018  */
9019 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
9020 		     unsigned int *ipg, bool sleep_ok)
9021 {
9022 	unsigned int v, addr, bpt, cpt;
9023 
9024 	if (kbps) {
9025 		addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
9026 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9027 		if (sched & 1)
9028 			v >>= 16;
9029 		bpt = (v >> 8) & 0xff;
9030 		cpt = v & 0xff;
9031 		if (!cpt)
9032 			*kbps = 0;	/* scheduler disabled */
9033 		else {
9034 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
9035 			*kbps = (v * bpt) / 125;
9036 		}
9037 	}
9038 	if (ipg) {
9039 		addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
9040 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9041 		if (sched & 1)
9042 			v >>= 16;
9043 		v &= 0xffff;
9044 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
9045 	}
9046 }
9047 
9048 /**
9049  *	t4_load_cfg - download config file
9050  *	@adap: the adapter
9051  *	@cfg_data: the cfg text file to write
9052  *	@size: text file size
9053  *
9054  *	Write the supplied config text file to the card's serial flash.
9055  */
9056 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
9057 {
9058 	int ret, i, n, cfg_addr;
9059 	unsigned int addr;
9060 	unsigned int flash_cfg_start_sec;
9061 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9062 
9063 	cfg_addr = t4_flash_cfg_addr(adap);
9064 	if (cfg_addr < 0)
9065 		return cfg_addr;
9066 
9067 	addr = cfg_addr;
9068 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
9069 
9070 	if (size > FLASH_CFG_MAX_SIZE) {
9071 		CH_ERR(adap, "cfg file too large, max is %u bytes\n",
9072 		       FLASH_CFG_MAX_SIZE);
9073 		return -EFBIG;
9074 	}
9075 
9076 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
9077 			 sf_sec_size);
9078 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9079 				     flash_cfg_start_sec + i - 1);
9080 	/*
9081 	 * If size == 0 then we're simply erasing the FLASH sectors associated
9082 	 * with the on-adapter Firmware Configuration File.
9083 	 */
9084 	if (ret || size == 0)
9085 		goto out;
9086 
9087 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
9088 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
9089 		if ( (size - i) <  SF_PAGE_SIZE)
9090 			n = size - i;
9091 		else
9092 			n = SF_PAGE_SIZE;
9093 		ret = t4_write_flash(adap, addr, n, cfg_data, 1);
9094 		if (ret)
9095 			goto out;
9096 
9097 		addr += SF_PAGE_SIZE;
9098 		cfg_data += SF_PAGE_SIZE;
9099 	}
9100 
9101 out:
9102 	if (ret)
9103 		CH_ERR(adap, "config file %s failed %d\n",
9104 		       (size == 0 ? "clear" : "download"), ret);
9105 	return ret;
9106 }
9107 
9108 /**
9109  *	t5_fw_init_extern_mem - initialize the external memory
9110  *	@adap: the adapter
9111  *
9112  *	Initializes the external memory on T5.
9113  */
9114 int t5_fw_init_extern_mem(struct adapter *adap)
9115 {
9116 	u32 params[1], val[1];
9117 	int ret;
9118 
9119 	if (!is_t5(adap))
9120 		return 0;
9121 
9122 	val[0] = 0xff; /* Initialize all MCs */
9123 	params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9124 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT));
9125 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val,
9126 			FW_CMD_MAX_TIMEOUT);
9127 
9128 	return ret;
9129 }
9130 
9131 /* BIOS boot headers */
9132 typedef struct pci_expansion_rom_header {
9133 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
9134 	u8	reserved[22]; /* Reserved per processor Architecture data */
9135 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
9136 } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
9137 
9138 /* Legacy PCI Expansion ROM Header */
9139 typedef struct legacy_pci_expansion_rom_header {
9140 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
9141 	u8	size512; /* Current Image Size in units of 512 bytes */
9142 	u8	initentry_point[4];
9143 	u8	cksum; /* Checksum computed on the entire Image */
9144 	u8	reserved[16]; /* Reserved */
9145 	u8	pcir_offset[2]; /* Offset to PCI Data Struture */
9146 } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
9147 
9148 /* EFI PCI Expansion ROM Header */
9149 typedef struct efi_pci_expansion_rom_header {
9150 	u8	signature[2]; // ROM signature. The value 0xaa55
9151 	u8	initialization_size[2]; /* Units 512. Includes this header */
9152 	u8	efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
9153 	u8	efi_subsystem[2]; /* Subsystem value for EFI image header */
9154 	u8	efi_machine_type[2]; /* Machine type from EFI image header */
9155 	u8	compression_type[2]; /* Compression type. */
9156 		/*
9157 		 * Compression type definition
9158 		 * 0x0: uncompressed
9159 		 * 0x1: Compressed
9160 		 * 0x2-0xFFFF: Reserved
9161 		 */
9162 	u8	reserved[8]; /* Reserved */
9163 	u8	efi_image_header_offset[2]; /* Offset to EFI Image */
9164 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
9165 } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
9166 
9167 /* PCI Data Structure Format */
9168 typedef struct pcir_data_structure { /* PCI Data Structure */
9169 	u8	signature[4]; /* Signature. The string "PCIR" */
9170 	u8	vendor_id[2]; /* Vendor Identification */
9171 	u8	device_id[2]; /* Device Identification */
9172 	u8	vital_product[2]; /* Pointer to Vital Product Data */
9173 	u8	length[2]; /* PCIR Data Structure Length */
9174 	u8	revision; /* PCIR Data Structure Revision */
9175 	u8	class_code[3]; /* Class Code */
9176 	u8	image_length[2]; /* Image Length. Multiple of 512B */
9177 	u8	code_revision[2]; /* Revision Level of Code/Data */
9178 	u8	code_type; /* Code Type. */
9179 		/*
9180 		 * PCI Expansion ROM Code Types
9181 		 * 0x00: Intel IA-32, PC-AT compatible. Legacy
9182 		 * 0x01: Open Firmware standard for PCI. FCODE
9183 		 * 0x02: Hewlett-Packard PA RISC. HP reserved
9184 		 * 0x03: EFI Image. EFI
9185 		 * 0x04-0xFF: Reserved.
9186 		 */
9187 	u8	indicator; /* Indicator. Identifies the last image in the ROM */
9188 	u8	reserved[2]; /* Reserved */
9189 } pcir_data_t; /* PCI__DATA_STRUCTURE */
9190 
9191 /* BOOT constants */
9192 enum {
9193 	BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
9194 	BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
9195 	BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
9196 	BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
9197 	BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
9198 	VENDOR_ID = 0x1425, /* Vendor ID */
9199 	PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
9200 };
9201 
9202 /*
9203  *	modify_device_id - Modifies the device ID of the Boot BIOS image
9204  *	@adatper: the device ID to write.
9205  *	@boot_data: the boot image to modify.
9206  *
9207  *	Write the supplied device ID to the boot BIOS image.
9208  */
9209 static void modify_device_id(int device_id, u8 *boot_data)
9210 {
9211 	legacy_pci_exp_rom_header_t *header;
9212 	pcir_data_t *pcir_header;
9213 	u32 cur_header = 0;
9214 
9215 	/*
9216 	 * Loop through all chained images and change the device ID's
9217 	 */
9218 	while (1) {
9219 		header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
9220 		pcir_header = (pcir_data_t *) &boot_data[cur_header +
9221 			      le16_to_cpu(*(u16*)header->pcir_offset)];
9222 
9223 		/*
9224 		 * Only modify the Device ID if code type is Legacy or HP.
9225 		 * 0x00: Okay to modify
9226 		 * 0x01: FCODE. Do not be modify
9227 		 * 0x03: Okay to modify
9228 		 * 0x04-0xFF: Do not modify
9229 		 */
9230 		if (pcir_header->code_type == 0x00) {
9231 			u8 csum = 0;
9232 			int i;
9233 
9234 			/*
9235 			 * Modify Device ID to match current adatper
9236 			 */
9237 			*(u16*) pcir_header->device_id = device_id;
9238 
9239 			/*
9240 			 * Set checksum temporarily to 0.
9241 			 * We will recalculate it later.
9242 			 */
9243 			header->cksum = 0x0;
9244 
9245 			/*
9246 			 * Calculate and update checksum
9247 			 */
9248 			for (i = 0; i < (header->size512 * 512); i++)
9249 				csum += (u8)boot_data[cur_header + i];
9250 
9251 			/*
9252 			 * Invert summed value to create the checksum
9253 			 * Writing new checksum value directly to the boot data
9254 			 */
9255 			boot_data[cur_header + 7] = -csum;
9256 
9257 		} else if (pcir_header->code_type == 0x03) {
9258 
9259 			/*
9260 			 * Modify Device ID to match current adatper
9261 			 */
9262 			*(u16*) pcir_header->device_id = device_id;
9263 
9264 		}
9265 
9266 
9267 		/*
9268 		 * Check indicator element to identify if this is the last
9269 		 * image in the ROM.
9270 		 */
9271 		if (pcir_header->indicator & 0x80)
9272 			break;
9273 
9274 		/*
9275 		 * Move header pointer up to the next image in the ROM.
9276 		 */
9277 		cur_header += header->size512 * 512;
9278 	}
9279 }
9280 
9281 /*
9282  *	t4_load_boot - download boot flash
9283  *	@adapter: the adapter
9284  *	@boot_data: the boot image to write
9285  *	@boot_addr: offset in flash to write boot_data
9286  *	@size: image size
9287  *
9288  *	Write the supplied boot image to the card's serial flash.
9289  *	The boot image has the following sections: a 28-byte header and the
9290  *	boot image.
9291  */
9292 int t4_load_boot(struct adapter *adap, u8 *boot_data,
9293 		 unsigned int boot_addr, unsigned int size)
9294 {
9295 	pci_exp_rom_header_t *header;
9296 	int pcir_offset ;
9297 	pcir_data_t *pcir_header;
9298 	int ret, addr;
9299 	uint16_t device_id;
9300 	unsigned int i;
9301 	unsigned int boot_sector = (boot_addr * 1024 );
9302 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9303 
9304 	/*
9305 	 * Make sure the boot image does not encroach on the firmware region
9306 	 */
9307 	if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
9308 		CH_ERR(adap, "boot image encroaching on firmware region\n");
9309 		return -EFBIG;
9310 	}
9311 
9312 	/*
9313 	 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
9314 	 * and Boot configuration data sections. These 3 boot sections span
9315 	 * sectors 0 to 7 in flash and live right before the FW image location.
9316 	 */
9317 	i = DIV_ROUND_UP(size ? size : FLASH_FW_START,
9318 			sf_sec_size);
9319 	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
9320 				     (boot_sector >> 16) + i - 1);
9321 
9322 	/*
9323 	 * If size == 0 then we're simply erasing the FLASH sectors associated
9324 	 * with the on-adapter option ROM file
9325 	 */
9326 	if (ret || (size == 0))
9327 		goto out;
9328 
9329 	/* Get boot header */
9330 	header = (pci_exp_rom_header_t *)boot_data;
9331 	pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
9332 	/* PCIR Data Structure */
9333 	pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
9334 
9335 	/*
9336 	 * Perform some primitive sanity testing to avoid accidentally
9337 	 * writing garbage over the boot sectors.  We ought to check for
9338 	 * more but it's not worth it for now ...
9339 	 */
9340 	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
9341 		CH_ERR(adap, "boot image too small/large\n");
9342 		return -EFBIG;
9343 	}
9344 
9345 #ifndef CHELSIO_T4_DIAGS
9346 	/*
9347 	 * Check BOOT ROM header signature
9348 	 */
9349 	if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
9350 		CH_ERR(adap, "Boot image missing signature\n");
9351 		return -EINVAL;
9352 	}
9353 
9354 	/*
9355 	 * Check PCI header signature
9356 	 */
9357 	if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
9358 		CH_ERR(adap, "PCI header missing signature\n");
9359 		return -EINVAL;
9360 	}
9361 
9362 	/*
9363 	 * Check Vendor ID matches Chelsio ID
9364 	 */
9365 	if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
9366 		CH_ERR(adap, "Vendor ID missing signature\n");
9367 		return -EINVAL;
9368 	}
9369 #endif
9370 
9371 	/*
9372 	 * Retrieve adapter's device ID
9373 	 */
9374 	t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
9375 	/* Want to deal with PF 0 so I strip off PF 4 indicator */
9376 	device_id = device_id & 0xf0ff;
9377 
9378 	/*
9379 	 * Check PCIE Device ID
9380 	 */
9381 	if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
9382 		/*
9383 		 * Change the device ID in the Boot BIOS image to match
9384 		 * the Device ID of the current adapter.
9385 		 */
9386 		modify_device_id(device_id, boot_data);
9387 	}
9388 
9389 	/*
9390 	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
9391 	 * we finish copying the rest of the boot image. This will ensure
9392 	 * that the BIOS boot header will only be written if the boot image
9393 	 * was written in full.
9394 	 */
9395 	addr = boot_sector;
9396 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
9397 		addr += SF_PAGE_SIZE;
9398 		boot_data += SF_PAGE_SIZE;
9399 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
9400 		if (ret)
9401 			goto out;
9402 	}
9403 
9404 	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
9405 			     (const u8 *)header, 0);
9406 
9407 out:
9408 	if (ret)
9409 		CH_ERR(adap, "boot image download failed, error %d\n", ret);
9410 	return ret;
9411 }
9412 
9413 /*
9414  *	t4_flash_bootcfg_addr - return the address of the flash optionrom configuration
9415  *	@adapter: the adapter
9416  *
9417  *	Return the address within the flash where the OptionROM Configuration
9418  *	is stored, or an error if the device FLASH is too small to contain
9419  *	a OptionROM Configuration.
9420  */
9421 static int t4_flash_bootcfg_addr(struct adapter *adapter)
9422 {
9423 	/*
9424 	 * If the device FLASH isn't large enough to hold a Firmware
9425 	 * Configuration File, return an error.
9426 	 */
9427 	if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
9428 		return -ENOSPC;
9429 
9430 	return FLASH_BOOTCFG_START;
9431 }
9432 
9433 int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size)
9434 {
9435 	int ret, i, n, cfg_addr;
9436 	unsigned int addr;
9437 	unsigned int flash_cfg_start_sec;
9438 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9439 
9440 	cfg_addr = t4_flash_bootcfg_addr(adap);
9441 	if (cfg_addr < 0)
9442 		return cfg_addr;
9443 
9444 	addr = cfg_addr;
9445 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
9446 
9447 	if (size > FLASH_BOOTCFG_MAX_SIZE) {
9448 		CH_ERR(adap, "bootcfg file too large, max is %u bytes\n",
9449 			FLASH_BOOTCFG_MAX_SIZE);
9450 		return -EFBIG;
9451 	}
9452 
9453 	i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */
9454 			 sf_sec_size);
9455 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9456 					flash_cfg_start_sec + i - 1);
9457 
9458 	/*
9459 	 * If size == 0 then we're simply erasing the FLASH sectors associated
9460 	 * with the on-adapter OptionROM Configuration File.
9461 	 */
9462 	if (ret || size == 0)
9463 		goto out;
9464 
9465 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
9466 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
9467 		if ( (size - i) <  SF_PAGE_SIZE)
9468 			n = size - i;
9469 		else
9470 			n = SF_PAGE_SIZE;
9471 		ret = t4_write_flash(adap, addr, n, cfg_data, 0);
9472 		if (ret)
9473 			goto out;
9474 
9475 		addr += SF_PAGE_SIZE;
9476 		cfg_data += SF_PAGE_SIZE;
9477 	}
9478 
9479 out:
9480 	if (ret)
9481 		CH_ERR(adap, "boot config data %s failed %d\n",
9482 				(size == 0 ? "clear" : "download"), ret);
9483 	return ret;
9484 }
9485 
9486 /**
9487  *	t4_set_filter_mode - configure the optional components of filter tuples
9488  *	@adap: the adapter
9489  *	@mode_map: a bitmap selcting which optional filter components to enable
9490  * 	@sleep_ok: if true we may sleep while awaiting command completion
9491  *
9492  *	Sets the filter mode by selecting the optional components to enable
9493  *	in filter tuples.  Returns 0 on success and a negative error if the
9494  *	requested mode needs more bits than are available for optional
9495  *	components.
9496  */
9497 int t4_set_filter_mode(struct adapter *adap, unsigned int mode_map,
9498 		       bool sleep_ok)
9499 {
9500 	static u8 width[] = { 1, 3, 17, 17, 8, 8, 16, 9, 3, 1 };
9501 
9502 	int i, nbits = 0;
9503 
9504 	for (i = S_FCOE; i <= S_FRAGMENTATION; i++)
9505 		if (mode_map & (1 << i))
9506 			nbits += width[i];
9507 	if (nbits > FILTER_OPT_LEN)
9508 		return -EINVAL;
9509 	t4_tp_pio_write(adap, &mode_map, 1, A_TP_VLAN_PRI_MAP, sleep_ok);
9510 	read_filter_mode_and_ingress_config(adap, sleep_ok);
9511 
9512 	return 0;
9513 }
9514 
9515 /**
9516  *	t4_clr_port_stats - clear port statistics
9517  *	@adap: the adapter
9518  *	@idx: the port index
9519  *
9520  *	Clear HW statistics for the given port.
9521  */
9522 void t4_clr_port_stats(struct adapter *adap, int idx)
9523 {
9524 	unsigned int i;
9525 	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
9526 	u32 port_base_addr;
9527 
9528 	if (is_t4(adap))
9529 		port_base_addr = PORT_BASE(idx);
9530 	else
9531 		port_base_addr = T5_PORT_BASE(idx);
9532 
9533 	for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
9534 			i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
9535 		t4_write_reg(adap, port_base_addr + i, 0);
9536 	for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
9537 			i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
9538 		t4_write_reg(adap, port_base_addr + i, 0);
9539 	for (i = 0; i < 4; i++)
9540 		if (bgmap & (1 << i)) {
9541 			t4_write_reg(adap,
9542 			A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
9543 			t4_write_reg(adap,
9544 			A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
9545 		}
9546 }
9547 
9548 /**
9549  *	t4_i2c_rd - read I2C data from adapter
9550  *	@adap: the adapter
9551  *	@port: Port number if per-port device; <0 if not
9552  *	@devid: per-port device ID or absolute device ID
9553  *	@offset: byte offset into device I2C space
9554  *	@len: byte length of I2C space data
9555  *	@buf: buffer in which to return I2C data
9556  *
9557  *	Reads the I2C data from the indicated device and location.
9558  */
9559 int t4_i2c_rd(struct adapter *adap, unsigned int mbox,
9560 	      int port, unsigned int devid,
9561 	      unsigned int offset, unsigned int len,
9562 	      u8 *buf)
9563 {
9564 	u32 ldst_addrspace;
9565 	struct fw_ldst_cmd ldst;
9566 	int ret;
9567 
9568 	if (port >= 4 ||
9569 	    devid >= 256 ||
9570 	    offset >= 256 ||
9571 	    len > sizeof ldst.u.i2c.data)
9572 		return -EINVAL;
9573 
9574 	memset(&ldst, 0, sizeof ldst);
9575 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
9576 	ldst.op_to_addrspace =
9577 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9578 			    F_FW_CMD_REQUEST |
9579 			    F_FW_CMD_READ |
9580 			    ldst_addrspace);
9581 	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
9582 	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
9583 	ldst.u.i2c.did = devid;
9584 	ldst.u.i2c.boffset = offset;
9585 	ldst.u.i2c.blen = len;
9586 	ret = t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
9587 	if (!ret)
9588 		memcpy(buf, ldst.u.i2c.data, len);
9589 	return ret;
9590 }
9591 
9592 /**
9593  *	t4_i2c_wr - write I2C data to adapter
9594  *	@adap: the adapter
9595  *	@port: Port number if per-port device; <0 if not
9596  *	@devid: per-port device ID or absolute device ID
9597  *	@offset: byte offset into device I2C space
9598  *	@len: byte length of I2C space data
9599  *	@buf: buffer containing new I2C data
9600  *
9601  *	Write the I2C data to the indicated device and location.
9602  */
9603 int t4_i2c_wr(struct adapter *adap, unsigned int mbox,
9604 	      int port, unsigned int devid,
9605 	      unsigned int offset, unsigned int len,
9606 	      u8 *buf)
9607 {
9608 	u32 ldst_addrspace;
9609 	struct fw_ldst_cmd ldst;
9610 
9611 	if (port >= 4 ||
9612 	    devid >= 256 ||
9613 	    offset >= 256 ||
9614 	    len > sizeof ldst.u.i2c.data)
9615 		return -EINVAL;
9616 
9617 	memset(&ldst, 0, sizeof ldst);
9618 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
9619 	ldst.op_to_addrspace =
9620 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9621 			    F_FW_CMD_REQUEST |
9622 			    F_FW_CMD_WRITE |
9623 			    ldst_addrspace);
9624 	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
9625 	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
9626 	ldst.u.i2c.did = devid;
9627 	ldst.u.i2c.boffset = offset;
9628 	ldst.u.i2c.blen = len;
9629 	memcpy(ldst.u.i2c.data, buf, len);
9630 	return t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
9631 }
9632 
9633 /**
9634  * 	t4_sge_ctxt_rd - read an SGE context through FW
9635  * 	@adap: the adapter
9636  * 	@mbox: mailbox to use for the FW command
9637  * 	@cid: the context id
9638  * 	@ctype: the context type
9639  * 	@data: where to store the context data
9640  *
9641  * 	Issues a FW command through the given mailbox to read an SGE context.
9642  */
9643 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
9644 		   enum ctxt_type ctype, u32 *data)
9645 {
9646 	int ret;
9647 	struct fw_ldst_cmd c;
9648 
9649 	if (ctype == CTXT_EGRESS)
9650 		ret = FW_LDST_ADDRSPC_SGE_EGRC;
9651 	else if (ctype == CTXT_INGRESS)
9652 		ret = FW_LDST_ADDRSPC_SGE_INGC;
9653 	else if (ctype == CTXT_FLM)
9654 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
9655 	else
9656 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
9657 
9658 	memset(&c, 0, sizeof(c));
9659 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9660 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
9661 					V_FW_LDST_CMD_ADDRSPACE(ret));
9662 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
9663 	c.u.idctxt.physid = cpu_to_be32(cid);
9664 
9665 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
9666 	if (ret == 0) {
9667 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
9668 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
9669 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
9670 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
9671 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
9672 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
9673 	}
9674 	return ret;
9675 }
9676 
9677 /**
9678  * 	t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
9679  * 	@adap: the adapter
9680  * 	@cid: the context id
9681  * 	@ctype: the context type
9682  * 	@data: where to store the context data
9683  *
9684  * 	Reads an SGE context directly, bypassing FW.  This is only for
9685  * 	debugging when FW is unavailable.
9686  */
9687 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
9688 		      u32 *data)
9689 {
9690 	int i, ret;
9691 
9692 	t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
9693 	ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
9694 	if (!ret)
9695 		for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
9696 			*data++ = t4_read_reg(adap, i);
9697 	return ret;
9698 }
9699 
9700 int t4_sched_config(struct adapter *adapter, int type, int minmaxen,
9701     int sleep_ok)
9702 {
9703 	struct fw_sched_cmd cmd;
9704 
9705 	memset(&cmd, 0, sizeof(cmd));
9706 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9707 				      F_FW_CMD_REQUEST |
9708 				      F_FW_CMD_WRITE);
9709 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9710 
9711 	cmd.u.config.sc = FW_SCHED_SC_CONFIG;
9712 	cmd.u.config.type = type;
9713 	cmd.u.config.minmaxen = minmaxen;
9714 
9715 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9716 			       NULL, sleep_ok);
9717 }
9718 
9719 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
9720 		    int rateunit, int ratemode, int channel, int cl,
9721 		    int minrate, int maxrate, int weight, int pktsize,
9722 		    int sleep_ok)
9723 {
9724 	struct fw_sched_cmd cmd;
9725 
9726 	memset(&cmd, 0, sizeof(cmd));
9727 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9728 				      F_FW_CMD_REQUEST |
9729 				      F_FW_CMD_WRITE);
9730 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9731 
9732 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9733 	cmd.u.params.type = type;
9734 	cmd.u.params.level = level;
9735 	cmd.u.params.mode = mode;
9736 	cmd.u.params.ch = channel;
9737 	cmd.u.params.cl = cl;
9738 	cmd.u.params.unit = rateunit;
9739 	cmd.u.params.rate = ratemode;
9740 	cmd.u.params.min = cpu_to_be32(minrate);
9741 	cmd.u.params.max = cpu_to_be32(maxrate);
9742 	cmd.u.params.weight = cpu_to_be16(weight);
9743 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
9744 
9745 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9746 			       NULL, sleep_ok);
9747 }
9748 
9749 int t4_sched_params_ch_rl(struct adapter *adapter, int channel, int ratemode,
9750     unsigned int maxrate, int sleep_ok)
9751 {
9752 	struct fw_sched_cmd cmd;
9753 
9754 	memset(&cmd, 0, sizeof(cmd));
9755 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9756 				      F_FW_CMD_REQUEST |
9757 				      F_FW_CMD_WRITE);
9758 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9759 
9760 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9761 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
9762 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CH_RL;
9763 	cmd.u.params.ch = channel;
9764 	cmd.u.params.rate = ratemode;		/* REL or ABS */
9765 	cmd.u.params.max = cpu_to_be32(maxrate);/*  %  or kbps */
9766 
9767 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9768 			       NULL, sleep_ok);
9769 }
9770 
9771 int t4_sched_params_cl_wrr(struct adapter *adapter, int channel, int cl,
9772     int weight, int sleep_ok)
9773 {
9774 	struct fw_sched_cmd cmd;
9775 
9776 	if (weight < 0 || weight > 100)
9777 		return -EINVAL;
9778 
9779 	memset(&cmd, 0, sizeof(cmd));
9780 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9781 				      F_FW_CMD_REQUEST |
9782 				      F_FW_CMD_WRITE);
9783 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9784 
9785 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9786 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
9787 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_WRR;
9788 	cmd.u.params.ch = channel;
9789 	cmd.u.params.cl = cl;
9790 	cmd.u.params.weight = cpu_to_be16(weight);
9791 
9792 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9793 			       NULL, sleep_ok);
9794 }
9795 
9796 int t4_sched_params_cl_rl_kbps(struct adapter *adapter, int channel, int cl,
9797     int mode, unsigned int maxrate, int pktsize, int sleep_ok)
9798 {
9799 	struct fw_sched_cmd cmd;
9800 
9801 	memset(&cmd, 0, sizeof(cmd));
9802 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9803 				      F_FW_CMD_REQUEST |
9804 				      F_FW_CMD_WRITE);
9805 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9806 
9807 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9808 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
9809 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_RL;
9810 	cmd.u.params.mode = mode;
9811 	cmd.u.params.ch = channel;
9812 	cmd.u.params.cl = cl;
9813 	cmd.u.params.unit = FW_SCHED_PARAMS_UNIT_BITRATE;
9814 	cmd.u.params.rate = FW_SCHED_PARAMS_RATE_ABS;
9815 	cmd.u.params.max = cpu_to_be32(maxrate);
9816 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
9817 
9818 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9819 			       NULL, sleep_ok);
9820 }
9821 
9822 /*
9823  *	t4_config_watchdog - configure (enable/disable) a watchdog timer
9824  *	@adapter: the adapter
9825  * 	@mbox: mailbox to use for the FW command
9826  * 	@pf: the PF owning the queue
9827  * 	@vf: the VF owning the queue
9828  *	@timeout: watchdog timeout in ms
9829  *	@action: watchdog timer / action
9830  *
9831  *	There are separate watchdog timers for each possible watchdog
9832  *	action.  Configure one of the watchdog timers by setting a non-zero
9833  *	timeout.  Disable a watchdog timer by using a timeout of zero.
9834  */
9835 int t4_config_watchdog(struct adapter *adapter, unsigned int mbox,
9836 		       unsigned int pf, unsigned int vf,
9837 		       unsigned int timeout, unsigned int action)
9838 {
9839 	struct fw_watchdog_cmd wdog;
9840 	unsigned int ticks;
9841 
9842 	/*
9843 	 * The watchdog command expects a timeout in units of 10ms so we need
9844 	 * to convert it here (via rounding) and force a minimum of one 10ms
9845 	 * "tick" if the timeout is non-zero but the conversion results in 0
9846 	 * ticks.
9847 	 */
9848 	ticks = (timeout + 5)/10;
9849 	if (timeout && !ticks)
9850 		ticks = 1;
9851 
9852 	memset(&wdog, 0, sizeof wdog);
9853 	wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) |
9854 				     F_FW_CMD_REQUEST |
9855 				     F_FW_CMD_WRITE |
9856 				     V_FW_PARAMS_CMD_PFN(pf) |
9857 				     V_FW_PARAMS_CMD_VFN(vf));
9858 	wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog));
9859 	wdog.timeout = cpu_to_be32(ticks);
9860 	wdog.action = cpu_to_be32(action);
9861 
9862 	return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL);
9863 }
9864 
9865 int t4_get_devlog_level(struct adapter *adapter, unsigned int *level)
9866 {
9867 	struct fw_devlog_cmd devlog_cmd;
9868 	int ret;
9869 
9870 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9871 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9872 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
9873 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9874 	ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
9875 			 sizeof(devlog_cmd), &devlog_cmd);
9876 	if (ret)
9877 		return ret;
9878 
9879 	*level = devlog_cmd.level;
9880 	return 0;
9881 }
9882 
9883 int t4_set_devlog_level(struct adapter *adapter, unsigned int level)
9884 {
9885 	struct fw_devlog_cmd devlog_cmd;
9886 
9887 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9888 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9889 					     F_FW_CMD_REQUEST |
9890 					     F_FW_CMD_WRITE);
9891 	devlog_cmd.level = level;
9892 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9893 	return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
9894 			  sizeof(devlog_cmd), &devlog_cmd);
9895 }
9896