xref: /freebsd/sys/dev/cxgbe/common/t4_hw.c (revision 5bf5ca772c6de2d53344a78cf461447cc322ccea)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2012, 2016 Chelsio Communications, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_inet.h"
33 
34 #include <sys/param.h>
35 #include <sys/eventhandler.h>
36 
37 #include "common.h"
38 #include "t4_regs.h"
39 #include "t4_regs_values.h"
40 #include "firmware/t4fw_interface.h"
41 
42 #undef msleep
43 #define msleep(x) do { \
44 	if (cold) \
45 		DELAY((x) * 1000); \
46 	else \
47 		pause("t4hw", (x) * hz / 1000); \
48 } while (0)
49 
50 /**
51  *	t4_wait_op_done_val - wait until an operation is completed
52  *	@adapter: the adapter performing the operation
53  *	@reg: the register to check for completion
54  *	@mask: a single-bit field within @reg that indicates completion
55  *	@polarity: the value of the field when the operation is completed
56  *	@attempts: number of check iterations
57  *	@delay: delay in usecs between iterations
58  *	@valp: where to store the value of the register at completion time
59  *
60  *	Wait until an operation is completed by checking a bit in a register
61  *	up to @attempts times.  If @valp is not NULL the value of the register
62  *	at the time it indicated completion is stored there.  Returns 0 if the
63  *	operation completes and	-EAGAIN	otherwise.
64  */
65 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
66 			       int polarity, int attempts, int delay, u32 *valp)
67 {
68 	while (1) {
69 		u32 val = t4_read_reg(adapter, reg);
70 
71 		if (!!(val & mask) == polarity) {
72 			if (valp)
73 				*valp = val;
74 			return 0;
75 		}
76 		if (--attempts == 0)
77 			return -EAGAIN;
78 		if (delay)
79 			udelay(delay);
80 	}
81 }
82 
83 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
84 				  int polarity, int attempts, int delay)
85 {
86 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
87 				   delay, NULL);
88 }
89 
90 /**
91  *	t4_set_reg_field - set a register field to a value
92  *	@adapter: the adapter to program
93  *	@addr: the register address
94  *	@mask: specifies the portion of the register to modify
95  *	@val: the new value for the register field
96  *
97  *	Sets a register field specified by the supplied mask to the
98  *	given value.
99  */
100 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
101 		      u32 val)
102 {
103 	u32 v = t4_read_reg(adapter, addr) & ~mask;
104 
105 	t4_write_reg(adapter, addr, v | val);
106 	(void) t4_read_reg(adapter, addr);      /* flush */
107 }
108 
109 /**
110  *	t4_read_indirect - read indirectly addressed registers
111  *	@adap: the adapter
112  *	@addr_reg: register holding the indirect address
113  *	@data_reg: register holding the value of the indirect register
114  *	@vals: where the read register values are stored
115  *	@nregs: how many indirect registers to read
116  *	@start_idx: index of first indirect register to read
117  *
118  *	Reads registers that are accessed indirectly through an address/data
119  *	register pair.
120  */
121 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
122 			     unsigned int data_reg, u32 *vals,
123 			     unsigned int nregs, unsigned int start_idx)
124 {
125 	while (nregs--) {
126 		t4_write_reg(adap, addr_reg, start_idx);
127 		*vals++ = t4_read_reg(adap, data_reg);
128 		start_idx++;
129 	}
130 }
131 
132 /**
133  *	t4_write_indirect - write indirectly addressed registers
134  *	@adap: the adapter
135  *	@addr_reg: register holding the indirect addresses
136  *	@data_reg: register holding the value for the indirect registers
137  *	@vals: values to write
138  *	@nregs: how many indirect registers to write
139  *	@start_idx: address of first indirect register to write
140  *
141  *	Writes a sequential block of registers that are accessed indirectly
142  *	through an address/data register pair.
143  */
144 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
145 		       unsigned int data_reg, const u32 *vals,
146 		       unsigned int nregs, unsigned int start_idx)
147 {
148 	while (nregs--) {
149 		t4_write_reg(adap, addr_reg, start_idx++);
150 		t4_write_reg(adap, data_reg, *vals++);
151 	}
152 }
153 
154 /*
155  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
156  * mechanism.  This guarantees that we get the real value even if we're
157  * operating within a Virtual Machine and the Hypervisor is trapping our
158  * Configuration Space accesses.
159  *
160  * N.B. This routine should only be used as a last resort: the firmware uses
161  *      the backdoor registers on a regular basis and we can end up
162  *      conflicting with it's uses!
163  */
164 u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
165 {
166 	u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg);
167 	u32 val;
168 
169 	if (chip_id(adap) <= CHELSIO_T5)
170 		req |= F_ENABLE;
171 	else
172 		req |= F_T6_ENABLE;
173 
174 	if (is_t4(adap))
175 		req |= F_LOCALCFG;
176 
177 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req);
178 	val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
179 
180 	/*
181 	 * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
182 	 * Configuration Space read.  (None of the other fields matter when
183 	 * F_ENABLE is 0 so a simple register write is easier than a
184 	 * read-modify-write via t4_set_reg_field().)
185 	 */
186 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0);
187 
188 	return val;
189 }
190 
191 /*
192  * t4_report_fw_error - report firmware error
193  * @adap: the adapter
194  *
195  * The adapter firmware can indicate error conditions to the host.
196  * If the firmware has indicated an error, print out the reason for
197  * the firmware error.
198  */
199 static void t4_report_fw_error(struct adapter *adap)
200 {
201 	static const char *const reason[] = {
202 		"Crash",			/* PCIE_FW_EVAL_CRASH */
203 		"During Device Preparation",	/* PCIE_FW_EVAL_PREP */
204 		"During Device Configuration",	/* PCIE_FW_EVAL_CONF */
205 		"During Device Initialization",	/* PCIE_FW_EVAL_INIT */
206 		"Unexpected Event",		/* PCIE_FW_EVAL_UNEXPECTEDEVENT */
207 		"Insufficient Airflow",		/* PCIE_FW_EVAL_OVERHEAT */
208 		"Device Shutdown",		/* PCIE_FW_EVAL_DEVICESHUTDOWN */
209 		"Reserved",			/* reserved */
210 	};
211 	u32 pcie_fw;
212 
213 	pcie_fw = t4_read_reg(adap, A_PCIE_FW);
214 	if (pcie_fw & F_PCIE_FW_ERR)
215 		CH_ERR(adap, "Firmware reports adapter error: %s\n",
216 			reason[G_PCIE_FW_EVAL(pcie_fw)]);
217 }
218 
219 /*
220  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
221  */
222 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
223 			 u32 mbox_addr)
224 {
225 	for ( ; nflit; nflit--, mbox_addr += 8)
226 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
227 }
228 
229 /*
230  * Handle a FW assertion reported in a mailbox.
231  */
232 static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt)
233 {
234 	CH_ALERT(adap,
235 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
236 		  asrt->u.assert.filename_0_7,
237 		  be32_to_cpu(asrt->u.assert.line),
238 		  be32_to_cpu(asrt->u.assert.x),
239 		  be32_to_cpu(asrt->u.assert.y));
240 }
241 
242 #define X_CIM_PF_NOACCESS 0xeeeeeeee
243 /**
244  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
245  *	@adap: the adapter
246  *	@mbox: index of the mailbox to use
247  *	@cmd: the command to write
248  *	@size: command length in bytes
249  *	@rpl: where to optionally store the reply
250  *	@sleep_ok: if true we may sleep while awaiting command completion
251  *	@timeout: time to wait for command to finish before timing out
252  *		(negative implies @sleep_ok=false)
253  *
254  *	Sends the given command to FW through the selected mailbox and waits
255  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
256  *	store the FW's reply to the command.  The command and its optional
257  *	reply are of the same length.  Some FW commands like RESET and
258  *	INITIALIZE can take a considerable amount of time to execute.
259  *	@sleep_ok determines whether we may sleep while awaiting the response.
260  *	If sleeping is allowed we use progressive backoff otherwise we spin.
261  *	Note that passing in a negative @timeout is an alternate mechanism
262  *	for specifying @sleep_ok=false.  This is useful when a higher level
263  *	interface allows for specification of @timeout but not @sleep_ok ...
264  *
265  *	The return value is 0 on success or a negative errno on failure.  A
266  *	failure can happen either because we are not able to execute the
267  *	command or FW executes it but signals an error.  In the latter case
268  *	the return value is the error code indicated by FW (negated).
269  */
270 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
271 			    int size, void *rpl, bool sleep_ok, int timeout)
272 {
273 	/*
274 	 * We delay in small increments at first in an effort to maintain
275 	 * responsiveness for simple, fast executing commands but then back
276 	 * off to larger delays to a maximum retry delay.
277 	 */
278 	static const int delay[] = {
279 		1, 1, 3, 5, 10, 10, 20, 50, 100
280 	};
281 	u32 v;
282 	u64 res;
283 	int i, ms, delay_idx, ret;
284 	const __be64 *p = cmd;
285 	u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
286 	u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
287 	u32 ctl;
288 	__be64 cmd_rpl[MBOX_LEN/8];
289 	u32 pcie_fw;
290 
291 	if (adap->flags & CHK_MBOX_ACCESS)
292 		ASSERT_SYNCHRONIZED_OP(adap);
293 
294 	if ((size & 15) || size > MBOX_LEN)
295 		return -EINVAL;
296 
297 	if (adap->flags & IS_VF) {
298 		if (is_t6(adap))
299 			data_reg = FW_T6VF_MBDATA_BASE_ADDR;
300 		else
301 			data_reg = FW_T4VF_MBDATA_BASE_ADDR;
302 		ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL);
303 	}
304 
305 	/*
306 	 * If we have a negative timeout, that implies that we can't sleep.
307 	 */
308 	if (timeout < 0) {
309 		sleep_ok = false;
310 		timeout = -timeout;
311 	}
312 
313 	/*
314 	 * Attempt to gain access to the mailbox.
315 	 */
316 	for (i = 0; i < 4; i++) {
317 		ctl = t4_read_reg(adap, ctl_reg);
318 		v = G_MBOWNER(ctl);
319 		if (v != X_MBOWNER_NONE)
320 			break;
321 	}
322 
323 	/*
324 	 * If we were unable to gain access, dequeue ourselves from the
325 	 * mailbox atomic access list and report the error to our caller.
326 	 */
327 	if (v != X_MBOWNER_PL) {
328 		t4_report_fw_error(adap);
329 		ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
330 		return ret;
331 	}
332 
333 	/*
334 	 * If we gain ownership of the mailbox and there's a "valid" message
335 	 * in it, this is likely an asynchronous error message from the
336 	 * firmware.  So we'll report that and then proceed on with attempting
337 	 * to issue our own command ... which may well fail if the error
338 	 * presaged the firmware crashing ...
339 	 */
340 	if (ctl & F_MBMSGVALID) {
341 		CH_ERR(adap, "found VALID command in mbox %u: %016llx %016llx "
342 		       "%016llx %016llx %016llx %016llx %016llx %016llx\n",
343 		       mbox, (unsigned long long)t4_read_reg64(adap, data_reg),
344 		       (unsigned long long)t4_read_reg64(adap, data_reg + 8),
345 		       (unsigned long long)t4_read_reg64(adap, data_reg + 16),
346 		       (unsigned long long)t4_read_reg64(adap, data_reg + 24),
347 		       (unsigned long long)t4_read_reg64(adap, data_reg + 32),
348 		       (unsigned long long)t4_read_reg64(adap, data_reg + 40),
349 		       (unsigned long long)t4_read_reg64(adap, data_reg + 48),
350 		       (unsigned long long)t4_read_reg64(adap, data_reg + 56));
351 	}
352 
353 	/*
354 	 * Copy in the new mailbox command and send it on its way ...
355 	 */
356 	for (i = 0; i < size; i += 8, p++)
357 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p));
358 
359 	if (adap->flags & IS_VF) {
360 		/*
361 		 * For the VFs, the Mailbox Data "registers" are
362 		 * actually backed by T4's "MA" interface rather than
363 		 * PL Registers (as is the case for the PFs).  Because
364 		 * these are in different coherency domains, the write
365 		 * to the VF's PL-register-backed Mailbox Control can
366 		 * race in front of the writes to the MA-backed VF
367 		 * Mailbox Data "registers".  So we need to do a
368 		 * read-back on at least one byte of the VF Mailbox
369 		 * Data registers before doing the write to the VF
370 		 * Mailbox Control register.
371 		 */
372 		t4_read_reg(adap, data_reg);
373 	}
374 
375 	CH_DUMP_MBOX(adap, mbox, data_reg);
376 
377 	t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
378 	t4_read_reg(adap, ctl_reg);	/* flush write */
379 
380 	delay_idx = 0;
381 	ms = delay[0];
382 
383 	/*
384 	 * Loop waiting for the reply; bail out if we time out or the firmware
385 	 * reports an error.
386 	 */
387 	pcie_fw = 0;
388 	for (i = 0; i < timeout; i += ms) {
389 		if (!(adap->flags & IS_VF)) {
390 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
391 			if (pcie_fw & F_PCIE_FW_ERR)
392 				break;
393 		}
394 		if (sleep_ok) {
395 			ms = delay[delay_idx];  /* last element may repeat */
396 			if (delay_idx < ARRAY_SIZE(delay) - 1)
397 				delay_idx++;
398 			msleep(ms);
399 		} else {
400 			mdelay(ms);
401 		}
402 
403 		v = t4_read_reg(adap, ctl_reg);
404 		if (v == X_CIM_PF_NOACCESS)
405 			continue;
406 		if (G_MBOWNER(v) == X_MBOWNER_PL) {
407 			if (!(v & F_MBMSGVALID)) {
408 				t4_write_reg(adap, ctl_reg,
409 					     V_MBOWNER(X_MBOWNER_NONE));
410 				continue;
411 			}
412 
413 			/*
414 			 * Retrieve the command reply and release the mailbox.
415 			 */
416 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg);
417 			t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
418 
419 			CH_DUMP_MBOX(adap, mbox, data_reg);
420 
421 			res = be64_to_cpu(cmd_rpl[0]);
422 			if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
423 				fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl);
424 				res = V_FW_CMD_RETVAL(EIO);
425 			} else if (rpl)
426 				memcpy(rpl, cmd_rpl, size);
427 			return -G_FW_CMD_RETVAL((int)res);
428 		}
429 	}
430 
431 	/*
432 	 * We timed out waiting for a reply to our mailbox command.  Report
433 	 * the error and also check to see if the firmware reported any
434 	 * errors ...
435 	 */
436 	ret = (pcie_fw & F_PCIE_FW_ERR) ? -ENXIO : -ETIMEDOUT;
437 	CH_ERR(adap, "command %#x in mailbox %d timed out\n",
438 	       *(const u8 *)cmd, mbox);
439 
440 	/* If DUMP_MBOX is set the mbox has already been dumped */
441 	if ((adap->debug_flags & DF_DUMP_MBOX) == 0) {
442 		p = cmd;
443 		CH_ERR(adap, "mbox: %016llx %016llx %016llx %016llx "
444 		    "%016llx %016llx %016llx %016llx\n",
445 		    (unsigned long long)be64_to_cpu(p[0]),
446 		    (unsigned long long)be64_to_cpu(p[1]),
447 		    (unsigned long long)be64_to_cpu(p[2]),
448 		    (unsigned long long)be64_to_cpu(p[3]),
449 		    (unsigned long long)be64_to_cpu(p[4]),
450 		    (unsigned long long)be64_to_cpu(p[5]),
451 		    (unsigned long long)be64_to_cpu(p[6]),
452 		    (unsigned long long)be64_to_cpu(p[7]));
453 	}
454 
455 	t4_report_fw_error(adap);
456 	t4_fatal_err(adap);
457 	return ret;
458 }
459 
460 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
461 		    void *rpl, bool sleep_ok)
462 {
463 		return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl,
464 					       sleep_ok, FW_CMD_MAX_TIMEOUT);
465 
466 }
467 
468 static int t4_edc_err_read(struct adapter *adap, int idx)
469 {
470 	u32 edc_ecc_err_addr_reg;
471 	u32 edc_bist_status_rdata_reg;
472 
473 	if (is_t4(adap)) {
474 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
475 		return 0;
476 	}
477 	if (idx != MEM_EDC0 && idx != MEM_EDC1) {
478 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
479 		return 0;
480 	}
481 
482 	edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx);
483 	edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx);
484 
485 	CH_WARN(adap,
486 		"edc%d err addr 0x%x: 0x%x.\n",
487 		idx, edc_ecc_err_addr_reg,
488 		t4_read_reg(adap, edc_ecc_err_addr_reg));
489 	CH_WARN(adap,
490 	 	"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
491 		edc_bist_status_rdata_reg,
492 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg),
493 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8),
494 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16),
495 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24),
496 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32),
497 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40),
498 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48),
499 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56),
500 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64));
501 
502 	return 0;
503 }
504 
505 /**
506  *	t4_mc_read - read from MC through backdoor accesses
507  *	@adap: the adapter
508  *	@idx: which MC to access
509  *	@addr: address of first byte requested
510  *	@data: 64 bytes of data containing the requested address
511  *	@ecc: where to store the corresponding 64-bit ECC word
512  *
513  *	Read 64 bytes of data from MC starting at a 64-byte-aligned address
514  *	that covers the requested address @addr.  If @parity is not %NULL it
515  *	is assigned the 64-bit ECC word for the read data.
516  */
517 int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
518 {
519 	int i;
520 	u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
521 	u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
522 
523 	if (is_t4(adap)) {
524 		mc_bist_cmd_reg = A_MC_BIST_CMD;
525 		mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
526 		mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
527 		mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
528 		mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
529 	} else {
530 		mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
531 		mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
532 		mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
533 		mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA,
534 						  idx);
535 		mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN,
536 						  idx);
537 	}
538 
539 	if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
540 		return -EBUSY;
541 	t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
542 	t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
543 	t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
544 	t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
545 		     F_START_BIST | V_BIST_CMD_GAP(1));
546 	i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
547 	if (i)
548 		return i;
549 
550 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
551 
552 	for (i = 15; i >= 0; i--)
553 		*data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
554 	if (ecc)
555 		*ecc = t4_read_reg64(adap, MC_DATA(16));
556 #undef MC_DATA
557 	return 0;
558 }
559 
560 /**
561  *	t4_edc_read - read from EDC through backdoor accesses
562  *	@adap: the adapter
563  *	@idx: which EDC to access
564  *	@addr: address of first byte requested
565  *	@data: 64 bytes of data containing the requested address
566  *	@ecc: where to store the corresponding 64-bit ECC word
567  *
568  *	Read 64 bytes of data from EDC starting at a 64-byte-aligned address
569  *	that covers the requested address @addr.  If @parity is not %NULL it
570  *	is assigned the 64-bit ECC word for the read data.
571  */
572 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
573 {
574 	int i;
575 	u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
576 	u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
577 
578 	if (is_t4(adap)) {
579 		edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
580 		edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
581 		edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
582 		edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
583 						    idx);
584 		edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
585 						    idx);
586 	} else {
587 /*
588  * These macro are missing in t4_regs.h file.
589  * Added temporarily for testing.
590  */
591 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
592 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
593 		edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx);
594 		edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx);
595 		edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx);
596 		edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN,
597 						    idx);
598 		edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA,
599 						    idx);
600 #undef EDC_REG_T5
601 #undef EDC_STRIDE_T5
602 	}
603 
604 	if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
605 		return -EBUSY;
606 	t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
607 	t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
608 	t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
609 	t4_write_reg(adap, edc_bist_cmd_reg,
610 		     V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
611 	i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
612 	if (i)
613 		return i;
614 
615 #define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
616 
617 	for (i = 15; i >= 0; i--)
618 		*data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
619 	if (ecc)
620 		*ecc = t4_read_reg64(adap, EDC_DATA(16));
621 #undef EDC_DATA
622 	return 0;
623 }
624 
625 /**
626  *	t4_mem_read - read EDC 0, EDC 1 or MC into buffer
627  *	@adap: the adapter
628  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
629  *	@addr: address within indicated memory type
630  *	@len: amount of memory to read
631  *	@buf: host memory buffer
632  *
633  *	Reads an [almost] arbitrary memory region in the firmware: the
634  *	firmware memory address, length and host buffer must be aligned on
635  *	32-bit boudaries.  The memory is returned as a raw byte sequence from
636  *	the firmware's memory.  If this memory contains data structures which
637  *	contain multi-byte integers, it's the callers responsibility to
638  *	perform appropriate byte order conversions.
639  */
640 int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
641 		__be32 *buf)
642 {
643 	u32 pos, start, end, offset;
644 	int ret;
645 
646 	/*
647 	 * Argument sanity checks ...
648 	 */
649 	if ((addr & 0x3) || (len & 0x3))
650 		return -EINVAL;
651 
652 	/*
653 	 * The underlaying EDC/MC read routines read 64 bytes at a time so we
654 	 * need to round down the start and round up the end.  We'll start
655 	 * copying out of the first line at (addr - start) a word at a time.
656 	 */
657 	start = rounddown2(addr, 64);
658 	end = roundup2(addr + len, 64);
659 	offset = (addr - start)/sizeof(__be32);
660 
661 	for (pos = start; pos < end; pos += 64, offset = 0) {
662 		__be32 data[16];
663 
664 		/*
665 		 * Read the chip's memory block and bail if there's an error.
666 		 */
667 		if ((mtype == MEM_MC) || (mtype == MEM_MC1))
668 			ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
669 		else
670 			ret = t4_edc_read(adap, mtype, pos, data, NULL);
671 		if (ret)
672 			return ret;
673 
674 		/*
675 		 * Copy the data into the caller's memory buffer.
676 		 */
677 		while (offset < 16 && len > 0) {
678 			*buf++ = data[offset++];
679 			len -= sizeof(__be32);
680 		}
681 	}
682 
683 	return 0;
684 }
685 
686 /*
687  * Return the specified PCI-E Configuration Space register from our Physical
688  * Function.  We try first via a Firmware LDST Command (if fw_attach != 0)
689  * since we prefer to let the firmware own all of these registers, but if that
690  * fails we go for it directly ourselves.
691  */
692 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach)
693 {
694 
695 	/*
696 	 * If fw_attach != 0, construct and send the Firmware LDST Command to
697 	 * retrieve the specified PCI-E Configuration Space register.
698 	 */
699 	if (drv_fw_attach != 0) {
700 		struct fw_ldst_cmd ldst_cmd;
701 		int ret;
702 
703 		memset(&ldst_cmd, 0, sizeof(ldst_cmd));
704 		ldst_cmd.op_to_addrspace =
705 			cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
706 				    F_FW_CMD_REQUEST |
707 				    F_FW_CMD_READ |
708 				    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
709 		ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
710 		ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1);
711 		ldst_cmd.u.pcie.ctrl_to_fn =
712 			(F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf));
713 		ldst_cmd.u.pcie.r = reg;
714 
715 		/*
716 		 * If the LDST Command succeeds, return the result, otherwise
717 		 * fall through to reading it directly ourselves ...
718 		 */
719 		ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
720 				 &ldst_cmd);
721 		if (ret == 0)
722 			return be32_to_cpu(ldst_cmd.u.pcie.data[0]);
723 
724 		CH_WARN(adap, "Firmware failed to return "
725 			"Configuration Space register %d, err = %d\n",
726 			reg, -ret);
727 	}
728 
729 	/*
730 	 * Read the desired Configuration Space register via the PCI-E
731 	 * Backdoor mechanism.
732 	 */
733 	return t4_hw_pci_read_cfg4(adap, reg);
734 }
735 
736 /**
737  *	t4_get_regs_len - return the size of the chips register set
738  *	@adapter: the adapter
739  *
740  *	Returns the size of the chip's BAR0 register space.
741  */
742 unsigned int t4_get_regs_len(struct adapter *adapter)
743 {
744 	unsigned int chip_version = chip_id(adapter);
745 
746 	switch (chip_version) {
747 	case CHELSIO_T4:
748 		if (adapter->flags & IS_VF)
749 			return FW_T4VF_REGMAP_SIZE;
750 		return T4_REGMAP_SIZE;
751 
752 	case CHELSIO_T5:
753 	case CHELSIO_T6:
754 		if (adapter->flags & IS_VF)
755 			return FW_T4VF_REGMAP_SIZE;
756 		return T5_REGMAP_SIZE;
757 	}
758 
759 	CH_ERR(adapter,
760 		"Unsupported chip version %d\n", chip_version);
761 	return 0;
762 }
763 
764 /**
765  *	t4_get_regs - read chip registers into provided buffer
766  *	@adap: the adapter
767  *	@buf: register buffer
768  *	@buf_size: size (in bytes) of register buffer
769  *
770  *	If the provided register buffer isn't large enough for the chip's
771  *	full register range, the register dump will be truncated to the
772  *	register buffer's size.
773  */
774 void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size)
775 {
776 	static const unsigned int t4_reg_ranges[] = {
777 		0x1008, 0x1108,
778 		0x1180, 0x1184,
779 		0x1190, 0x1194,
780 		0x11a0, 0x11a4,
781 		0x11b0, 0x11b4,
782 		0x11fc, 0x123c,
783 		0x1300, 0x173c,
784 		0x1800, 0x18fc,
785 		0x3000, 0x30d8,
786 		0x30e0, 0x30e4,
787 		0x30ec, 0x5910,
788 		0x5920, 0x5924,
789 		0x5960, 0x5960,
790 		0x5968, 0x5968,
791 		0x5970, 0x5970,
792 		0x5978, 0x5978,
793 		0x5980, 0x5980,
794 		0x5988, 0x5988,
795 		0x5990, 0x5990,
796 		0x5998, 0x5998,
797 		0x59a0, 0x59d4,
798 		0x5a00, 0x5ae0,
799 		0x5ae8, 0x5ae8,
800 		0x5af0, 0x5af0,
801 		0x5af8, 0x5af8,
802 		0x6000, 0x6098,
803 		0x6100, 0x6150,
804 		0x6200, 0x6208,
805 		0x6240, 0x6248,
806 		0x6280, 0x62b0,
807 		0x62c0, 0x6338,
808 		0x6370, 0x638c,
809 		0x6400, 0x643c,
810 		0x6500, 0x6524,
811 		0x6a00, 0x6a04,
812 		0x6a14, 0x6a38,
813 		0x6a60, 0x6a70,
814 		0x6a78, 0x6a78,
815 		0x6b00, 0x6b0c,
816 		0x6b1c, 0x6b84,
817 		0x6bf0, 0x6bf8,
818 		0x6c00, 0x6c0c,
819 		0x6c1c, 0x6c84,
820 		0x6cf0, 0x6cf8,
821 		0x6d00, 0x6d0c,
822 		0x6d1c, 0x6d84,
823 		0x6df0, 0x6df8,
824 		0x6e00, 0x6e0c,
825 		0x6e1c, 0x6e84,
826 		0x6ef0, 0x6ef8,
827 		0x6f00, 0x6f0c,
828 		0x6f1c, 0x6f84,
829 		0x6ff0, 0x6ff8,
830 		0x7000, 0x700c,
831 		0x701c, 0x7084,
832 		0x70f0, 0x70f8,
833 		0x7100, 0x710c,
834 		0x711c, 0x7184,
835 		0x71f0, 0x71f8,
836 		0x7200, 0x720c,
837 		0x721c, 0x7284,
838 		0x72f0, 0x72f8,
839 		0x7300, 0x730c,
840 		0x731c, 0x7384,
841 		0x73f0, 0x73f8,
842 		0x7400, 0x7450,
843 		0x7500, 0x7530,
844 		0x7600, 0x760c,
845 		0x7614, 0x761c,
846 		0x7680, 0x76cc,
847 		0x7700, 0x7798,
848 		0x77c0, 0x77fc,
849 		0x7900, 0x79fc,
850 		0x7b00, 0x7b58,
851 		0x7b60, 0x7b84,
852 		0x7b8c, 0x7c38,
853 		0x7d00, 0x7d38,
854 		0x7d40, 0x7d80,
855 		0x7d8c, 0x7ddc,
856 		0x7de4, 0x7e04,
857 		0x7e10, 0x7e1c,
858 		0x7e24, 0x7e38,
859 		0x7e40, 0x7e44,
860 		0x7e4c, 0x7e78,
861 		0x7e80, 0x7ea4,
862 		0x7eac, 0x7edc,
863 		0x7ee8, 0x7efc,
864 		0x8dc0, 0x8e04,
865 		0x8e10, 0x8e1c,
866 		0x8e30, 0x8e78,
867 		0x8ea0, 0x8eb8,
868 		0x8ec0, 0x8f6c,
869 		0x8fc0, 0x9008,
870 		0x9010, 0x9058,
871 		0x9060, 0x9060,
872 		0x9068, 0x9074,
873 		0x90fc, 0x90fc,
874 		0x9400, 0x9408,
875 		0x9410, 0x9458,
876 		0x9600, 0x9600,
877 		0x9608, 0x9638,
878 		0x9640, 0x96bc,
879 		0x9800, 0x9808,
880 		0x9820, 0x983c,
881 		0x9850, 0x9864,
882 		0x9c00, 0x9c6c,
883 		0x9c80, 0x9cec,
884 		0x9d00, 0x9d6c,
885 		0x9d80, 0x9dec,
886 		0x9e00, 0x9e6c,
887 		0x9e80, 0x9eec,
888 		0x9f00, 0x9f6c,
889 		0x9f80, 0x9fec,
890 		0xd004, 0xd004,
891 		0xd010, 0xd03c,
892 		0xdfc0, 0xdfe0,
893 		0xe000, 0xea7c,
894 		0xf000, 0x11110,
895 		0x11118, 0x11190,
896 		0x19040, 0x1906c,
897 		0x19078, 0x19080,
898 		0x1908c, 0x190e4,
899 		0x190f0, 0x190f8,
900 		0x19100, 0x19110,
901 		0x19120, 0x19124,
902 		0x19150, 0x19194,
903 		0x1919c, 0x191b0,
904 		0x191d0, 0x191e8,
905 		0x19238, 0x1924c,
906 		0x193f8, 0x1943c,
907 		0x1944c, 0x19474,
908 		0x19490, 0x194e0,
909 		0x194f0, 0x194f8,
910 		0x19800, 0x19c08,
911 		0x19c10, 0x19c90,
912 		0x19ca0, 0x19ce4,
913 		0x19cf0, 0x19d40,
914 		0x19d50, 0x19d94,
915 		0x19da0, 0x19de8,
916 		0x19df0, 0x19e40,
917 		0x19e50, 0x19e90,
918 		0x19ea0, 0x19f4c,
919 		0x1a000, 0x1a004,
920 		0x1a010, 0x1a06c,
921 		0x1a0b0, 0x1a0e4,
922 		0x1a0ec, 0x1a0f4,
923 		0x1a100, 0x1a108,
924 		0x1a114, 0x1a120,
925 		0x1a128, 0x1a130,
926 		0x1a138, 0x1a138,
927 		0x1a190, 0x1a1c4,
928 		0x1a1fc, 0x1a1fc,
929 		0x1e040, 0x1e04c,
930 		0x1e284, 0x1e28c,
931 		0x1e2c0, 0x1e2c0,
932 		0x1e2e0, 0x1e2e0,
933 		0x1e300, 0x1e384,
934 		0x1e3c0, 0x1e3c8,
935 		0x1e440, 0x1e44c,
936 		0x1e684, 0x1e68c,
937 		0x1e6c0, 0x1e6c0,
938 		0x1e6e0, 0x1e6e0,
939 		0x1e700, 0x1e784,
940 		0x1e7c0, 0x1e7c8,
941 		0x1e840, 0x1e84c,
942 		0x1ea84, 0x1ea8c,
943 		0x1eac0, 0x1eac0,
944 		0x1eae0, 0x1eae0,
945 		0x1eb00, 0x1eb84,
946 		0x1ebc0, 0x1ebc8,
947 		0x1ec40, 0x1ec4c,
948 		0x1ee84, 0x1ee8c,
949 		0x1eec0, 0x1eec0,
950 		0x1eee0, 0x1eee0,
951 		0x1ef00, 0x1ef84,
952 		0x1efc0, 0x1efc8,
953 		0x1f040, 0x1f04c,
954 		0x1f284, 0x1f28c,
955 		0x1f2c0, 0x1f2c0,
956 		0x1f2e0, 0x1f2e0,
957 		0x1f300, 0x1f384,
958 		0x1f3c0, 0x1f3c8,
959 		0x1f440, 0x1f44c,
960 		0x1f684, 0x1f68c,
961 		0x1f6c0, 0x1f6c0,
962 		0x1f6e0, 0x1f6e0,
963 		0x1f700, 0x1f784,
964 		0x1f7c0, 0x1f7c8,
965 		0x1f840, 0x1f84c,
966 		0x1fa84, 0x1fa8c,
967 		0x1fac0, 0x1fac0,
968 		0x1fae0, 0x1fae0,
969 		0x1fb00, 0x1fb84,
970 		0x1fbc0, 0x1fbc8,
971 		0x1fc40, 0x1fc4c,
972 		0x1fe84, 0x1fe8c,
973 		0x1fec0, 0x1fec0,
974 		0x1fee0, 0x1fee0,
975 		0x1ff00, 0x1ff84,
976 		0x1ffc0, 0x1ffc8,
977 		0x20000, 0x2002c,
978 		0x20100, 0x2013c,
979 		0x20190, 0x201a0,
980 		0x201a8, 0x201b8,
981 		0x201c4, 0x201c8,
982 		0x20200, 0x20318,
983 		0x20400, 0x204b4,
984 		0x204c0, 0x20528,
985 		0x20540, 0x20614,
986 		0x21000, 0x21040,
987 		0x2104c, 0x21060,
988 		0x210c0, 0x210ec,
989 		0x21200, 0x21268,
990 		0x21270, 0x21284,
991 		0x212fc, 0x21388,
992 		0x21400, 0x21404,
993 		0x21500, 0x21500,
994 		0x21510, 0x21518,
995 		0x2152c, 0x21530,
996 		0x2153c, 0x2153c,
997 		0x21550, 0x21554,
998 		0x21600, 0x21600,
999 		0x21608, 0x2161c,
1000 		0x21624, 0x21628,
1001 		0x21630, 0x21634,
1002 		0x2163c, 0x2163c,
1003 		0x21700, 0x2171c,
1004 		0x21780, 0x2178c,
1005 		0x21800, 0x21818,
1006 		0x21820, 0x21828,
1007 		0x21830, 0x21848,
1008 		0x21850, 0x21854,
1009 		0x21860, 0x21868,
1010 		0x21870, 0x21870,
1011 		0x21878, 0x21898,
1012 		0x218a0, 0x218a8,
1013 		0x218b0, 0x218c8,
1014 		0x218d0, 0x218d4,
1015 		0x218e0, 0x218e8,
1016 		0x218f0, 0x218f0,
1017 		0x218f8, 0x21a18,
1018 		0x21a20, 0x21a28,
1019 		0x21a30, 0x21a48,
1020 		0x21a50, 0x21a54,
1021 		0x21a60, 0x21a68,
1022 		0x21a70, 0x21a70,
1023 		0x21a78, 0x21a98,
1024 		0x21aa0, 0x21aa8,
1025 		0x21ab0, 0x21ac8,
1026 		0x21ad0, 0x21ad4,
1027 		0x21ae0, 0x21ae8,
1028 		0x21af0, 0x21af0,
1029 		0x21af8, 0x21c18,
1030 		0x21c20, 0x21c20,
1031 		0x21c28, 0x21c30,
1032 		0x21c38, 0x21c38,
1033 		0x21c80, 0x21c98,
1034 		0x21ca0, 0x21ca8,
1035 		0x21cb0, 0x21cc8,
1036 		0x21cd0, 0x21cd4,
1037 		0x21ce0, 0x21ce8,
1038 		0x21cf0, 0x21cf0,
1039 		0x21cf8, 0x21d7c,
1040 		0x21e00, 0x21e04,
1041 		0x22000, 0x2202c,
1042 		0x22100, 0x2213c,
1043 		0x22190, 0x221a0,
1044 		0x221a8, 0x221b8,
1045 		0x221c4, 0x221c8,
1046 		0x22200, 0x22318,
1047 		0x22400, 0x224b4,
1048 		0x224c0, 0x22528,
1049 		0x22540, 0x22614,
1050 		0x23000, 0x23040,
1051 		0x2304c, 0x23060,
1052 		0x230c0, 0x230ec,
1053 		0x23200, 0x23268,
1054 		0x23270, 0x23284,
1055 		0x232fc, 0x23388,
1056 		0x23400, 0x23404,
1057 		0x23500, 0x23500,
1058 		0x23510, 0x23518,
1059 		0x2352c, 0x23530,
1060 		0x2353c, 0x2353c,
1061 		0x23550, 0x23554,
1062 		0x23600, 0x23600,
1063 		0x23608, 0x2361c,
1064 		0x23624, 0x23628,
1065 		0x23630, 0x23634,
1066 		0x2363c, 0x2363c,
1067 		0x23700, 0x2371c,
1068 		0x23780, 0x2378c,
1069 		0x23800, 0x23818,
1070 		0x23820, 0x23828,
1071 		0x23830, 0x23848,
1072 		0x23850, 0x23854,
1073 		0x23860, 0x23868,
1074 		0x23870, 0x23870,
1075 		0x23878, 0x23898,
1076 		0x238a0, 0x238a8,
1077 		0x238b0, 0x238c8,
1078 		0x238d0, 0x238d4,
1079 		0x238e0, 0x238e8,
1080 		0x238f0, 0x238f0,
1081 		0x238f8, 0x23a18,
1082 		0x23a20, 0x23a28,
1083 		0x23a30, 0x23a48,
1084 		0x23a50, 0x23a54,
1085 		0x23a60, 0x23a68,
1086 		0x23a70, 0x23a70,
1087 		0x23a78, 0x23a98,
1088 		0x23aa0, 0x23aa8,
1089 		0x23ab0, 0x23ac8,
1090 		0x23ad0, 0x23ad4,
1091 		0x23ae0, 0x23ae8,
1092 		0x23af0, 0x23af0,
1093 		0x23af8, 0x23c18,
1094 		0x23c20, 0x23c20,
1095 		0x23c28, 0x23c30,
1096 		0x23c38, 0x23c38,
1097 		0x23c80, 0x23c98,
1098 		0x23ca0, 0x23ca8,
1099 		0x23cb0, 0x23cc8,
1100 		0x23cd0, 0x23cd4,
1101 		0x23ce0, 0x23ce8,
1102 		0x23cf0, 0x23cf0,
1103 		0x23cf8, 0x23d7c,
1104 		0x23e00, 0x23e04,
1105 		0x24000, 0x2402c,
1106 		0x24100, 0x2413c,
1107 		0x24190, 0x241a0,
1108 		0x241a8, 0x241b8,
1109 		0x241c4, 0x241c8,
1110 		0x24200, 0x24318,
1111 		0x24400, 0x244b4,
1112 		0x244c0, 0x24528,
1113 		0x24540, 0x24614,
1114 		0x25000, 0x25040,
1115 		0x2504c, 0x25060,
1116 		0x250c0, 0x250ec,
1117 		0x25200, 0x25268,
1118 		0x25270, 0x25284,
1119 		0x252fc, 0x25388,
1120 		0x25400, 0x25404,
1121 		0x25500, 0x25500,
1122 		0x25510, 0x25518,
1123 		0x2552c, 0x25530,
1124 		0x2553c, 0x2553c,
1125 		0x25550, 0x25554,
1126 		0x25600, 0x25600,
1127 		0x25608, 0x2561c,
1128 		0x25624, 0x25628,
1129 		0x25630, 0x25634,
1130 		0x2563c, 0x2563c,
1131 		0x25700, 0x2571c,
1132 		0x25780, 0x2578c,
1133 		0x25800, 0x25818,
1134 		0x25820, 0x25828,
1135 		0x25830, 0x25848,
1136 		0x25850, 0x25854,
1137 		0x25860, 0x25868,
1138 		0x25870, 0x25870,
1139 		0x25878, 0x25898,
1140 		0x258a0, 0x258a8,
1141 		0x258b0, 0x258c8,
1142 		0x258d0, 0x258d4,
1143 		0x258e0, 0x258e8,
1144 		0x258f0, 0x258f0,
1145 		0x258f8, 0x25a18,
1146 		0x25a20, 0x25a28,
1147 		0x25a30, 0x25a48,
1148 		0x25a50, 0x25a54,
1149 		0x25a60, 0x25a68,
1150 		0x25a70, 0x25a70,
1151 		0x25a78, 0x25a98,
1152 		0x25aa0, 0x25aa8,
1153 		0x25ab0, 0x25ac8,
1154 		0x25ad0, 0x25ad4,
1155 		0x25ae0, 0x25ae8,
1156 		0x25af0, 0x25af0,
1157 		0x25af8, 0x25c18,
1158 		0x25c20, 0x25c20,
1159 		0x25c28, 0x25c30,
1160 		0x25c38, 0x25c38,
1161 		0x25c80, 0x25c98,
1162 		0x25ca0, 0x25ca8,
1163 		0x25cb0, 0x25cc8,
1164 		0x25cd0, 0x25cd4,
1165 		0x25ce0, 0x25ce8,
1166 		0x25cf0, 0x25cf0,
1167 		0x25cf8, 0x25d7c,
1168 		0x25e00, 0x25e04,
1169 		0x26000, 0x2602c,
1170 		0x26100, 0x2613c,
1171 		0x26190, 0x261a0,
1172 		0x261a8, 0x261b8,
1173 		0x261c4, 0x261c8,
1174 		0x26200, 0x26318,
1175 		0x26400, 0x264b4,
1176 		0x264c0, 0x26528,
1177 		0x26540, 0x26614,
1178 		0x27000, 0x27040,
1179 		0x2704c, 0x27060,
1180 		0x270c0, 0x270ec,
1181 		0x27200, 0x27268,
1182 		0x27270, 0x27284,
1183 		0x272fc, 0x27388,
1184 		0x27400, 0x27404,
1185 		0x27500, 0x27500,
1186 		0x27510, 0x27518,
1187 		0x2752c, 0x27530,
1188 		0x2753c, 0x2753c,
1189 		0x27550, 0x27554,
1190 		0x27600, 0x27600,
1191 		0x27608, 0x2761c,
1192 		0x27624, 0x27628,
1193 		0x27630, 0x27634,
1194 		0x2763c, 0x2763c,
1195 		0x27700, 0x2771c,
1196 		0x27780, 0x2778c,
1197 		0x27800, 0x27818,
1198 		0x27820, 0x27828,
1199 		0x27830, 0x27848,
1200 		0x27850, 0x27854,
1201 		0x27860, 0x27868,
1202 		0x27870, 0x27870,
1203 		0x27878, 0x27898,
1204 		0x278a0, 0x278a8,
1205 		0x278b0, 0x278c8,
1206 		0x278d0, 0x278d4,
1207 		0x278e0, 0x278e8,
1208 		0x278f0, 0x278f0,
1209 		0x278f8, 0x27a18,
1210 		0x27a20, 0x27a28,
1211 		0x27a30, 0x27a48,
1212 		0x27a50, 0x27a54,
1213 		0x27a60, 0x27a68,
1214 		0x27a70, 0x27a70,
1215 		0x27a78, 0x27a98,
1216 		0x27aa0, 0x27aa8,
1217 		0x27ab0, 0x27ac8,
1218 		0x27ad0, 0x27ad4,
1219 		0x27ae0, 0x27ae8,
1220 		0x27af0, 0x27af0,
1221 		0x27af8, 0x27c18,
1222 		0x27c20, 0x27c20,
1223 		0x27c28, 0x27c30,
1224 		0x27c38, 0x27c38,
1225 		0x27c80, 0x27c98,
1226 		0x27ca0, 0x27ca8,
1227 		0x27cb0, 0x27cc8,
1228 		0x27cd0, 0x27cd4,
1229 		0x27ce0, 0x27ce8,
1230 		0x27cf0, 0x27cf0,
1231 		0x27cf8, 0x27d7c,
1232 		0x27e00, 0x27e04,
1233 	};
1234 
1235 	static const unsigned int t4vf_reg_ranges[] = {
1236 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
1237 		VF_MPS_REG(A_MPS_VF_CTL),
1238 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
1239 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI),
1240 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
1241 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
1242 		FW_T4VF_MBDATA_BASE_ADDR,
1243 		FW_T4VF_MBDATA_BASE_ADDR +
1244 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
1245 	};
1246 
1247 	static const unsigned int t5_reg_ranges[] = {
1248 		0x1008, 0x10c0,
1249 		0x10cc, 0x10f8,
1250 		0x1100, 0x1100,
1251 		0x110c, 0x1148,
1252 		0x1180, 0x1184,
1253 		0x1190, 0x1194,
1254 		0x11a0, 0x11a4,
1255 		0x11b0, 0x11b4,
1256 		0x11fc, 0x123c,
1257 		0x1280, 0x173c,
1258 		0x1800, 0x18fc,
1259 		0x3000, 0x3028,
1260 		0x3060, 0x30b0,
1261 		0x30b8, 0x30d8,
1262 		0x30e0, 0x30fc,
1263 		0x3140, 0x357c,
1264 		0x35a8, 0x35cc,
1265 		0x35ec, 0x35ec,
1266 		0x3600, 0x5624,
1267 		0x56cc, 0x56ec,
1268 		0x56f4, 0x5720,
1269 		0x5728, 0x575c,
1270 		0x580c, 0x5814,
1271 		0x5890, 0x589c,
1272 		0x58a4, 0x58ac,
1273 		0x58b8, 0x58bc,
1274 		0x5940, 0x59c8,
1275 		0x59d0, 0x59dc,
1276 		0x59fc, 0x5a18,
1277 		0x5a60, 0x5a70,
1278 		0x5a80, 0x5a9c,
1279 		0x5b94, 0x5bfc,
1280 		0x6000, 0x6020,
1281 		0x6028, 0x6040,
1282 		0x6058, 0x609c,
1283 		0x60a8, 0x614c,
1284 		0x7700, 0x7798,
1285 		0x77c0, 0x78fc,
1286 		0x7b00, 0x7b58,
1287 		0x7b60, 0x7b84,
1288 		0x7b8c, 0x7c54,
1289 		0x7d00, 0x7d38,
1290 		0x7d40, 0x7d80,
1291 		0x7d8c, 0x7ddc,
1292 		0x7de4, 0x7e04,
1293 		0x7e10, 0x7e1c,
1294 		0x7e24, 0x7e38,
1295 		0x7e40, 0x7e44,
1296 		0x7e4c, 0x7e78,
1297 		0x7e80, 0x7edc,
1298 		0x7ee8, 0x7efc,
1299 		0x8dc0, 0x8de0,
1300 		0x8df8, 0x8e04,
1301 		0x8e10, 0x8e84,
1302 		0x8ea0, 0x8f84,
1303 		0x8fc0, 0x9058,
1304 		0x9060, 0x9060,
1305 		0x9068, 0x90f8,
1306 		0x9400, 0x9408,
1307 		0x9410, 0x9470,
1308 		0x9600, 0x9600,
1309 		0x9608, 0x9638,
1310 		0x9640, 0x96f4,
1311 		0x9800, 0x9808,
1312 		0x9820, 0x983c,
1313 		0x9850, 0x9864,
1314 		0x9c00, 0x9c6c,
1315 		0x9c80, 0x9cec,
1316 		0x9d00, 0x9d6c,
1317 		0x9d80, 0x9dec,
1318 		0x9e00, 0x9e6c,
1319 		0x9e80, 0x9eec,
1320 		0x9f00, 0x9f6c,
1321 		0x9f80, 0xa020,
1322 		0xd004, 0xd004,
1323 		0xd010, 0xd03c,
1324 		0xdfc0, 0xdfe0,
1325 		0xe000, 0x1106c,
1326 		0x11074, 0x11088,
1327 		0x1109c, 0x1117c,
1328 		0x11190, 0x11204,
1329 		0x19040, 0x1906c,
1330 		0x19078, 0x19080,
1331 		0x1908c, 0x190e8,
1332 		0x190f0, 0x190f8,
1333 		0x19100, 0x19110,
1334 		0x19120, 0x19124,
1335 		0x19150, 0x19194,
1336 		0x1919c, 0x191b0,
1337 		0x191d0, 0x191e8,
1338 		0x19238, 0x19290,
1339 		0x193f8, 0x19428,
1340 		0x19430, 0x19444,
1341 		0x1944c, 0x1946c,
1342 		0x19474, 0x19474,
1343 		0x19490, 0x194cc,
1344 		0x194f0, 0x194f8,
1345 		0x19c00, 0x19c08,
1346 		0x19c10, 0x19c60,
1347 		0x19c94, 0x19ce4,
1348 		0x19cf0, 0x19d40,
1349 		0x19d50, 0x19d94,
1350 		0x19da0, 0x19de8,
1351 		0x19df0, 0x19e10,
1352 		0x19e50, 0x19e90,
1353 		0x19ea0, 0x19f24,
1354 		0x19f34, 0x19f34,
1355 		0x19f40, 0x19f50,
1356 		0x19f90, 0x19fb4,
1357 		0x19fc4, 0x19fe4,
1358 		0x1a000, 0x1a004,
1359 		0x1a010, 0x1a06c,
1360 		0x1a0b0, 0x1a0e4,
1361 		0x1a0ec, 0x1a0f8,
1362 		0x1a100, 0x1a108,
1363 		0x1a114, 0x1a120,
1364 		0x1a128, 0x1a130,
1365 		0x1a138, 0x1a138,
1366 		0x1a190, 0x1a1c4,
1367 		0x1a1fc, 0x1a1fc,
1368 		0x1e008, 0x1e00c,
1369 		0x1e040, 0x1e044,
1370 		0x1e04c, 0x1e04c,
1371 		0x1e284, 0x1e290,
1372 		0x1e2c0, 0x1e2c0,
1373 		0x1e2e0, 0x1e2e0,
1374 		0x1e300, 0x1e384,
1375 		0x1e3c0, 0x1e3c8,
1376 		0x1e408, 0x1e40c,
1377 		0x1e440, 0x1e444,
1378 		0x1e44c, 0x1e44c,
1379 		0x1e684, 0x1e690,
1380 		0x1e6c0, 0x1e6c0,
1381 		0x1e6e0, 0x1e6e0,
1382 		0x1e700, 0x1e784,
1383 		0x1e7c0, 0x1e7c8,
1384 		0x1e808, 0x1e80c,
1385 		0x1e840, 0x1e844,
1386 		0x1e84c, 0x1e84c,
1387 		0x1ea84, 0x1ea90,
1388 		0x1eac0, 0x1eac0,
1389 		0x1eae0, 0x1eae0,
1390 		0x1eb00, 0x1eb84,
1391 		0x1ebc0, 0x1ebc8,
1392 		0x1ec08, 0x1ec0c,
1393 		0x1ec40, 0x1ec44,
1394 		0x1ec4c, 0x1ec4c,
1395 		0x1ee84, 0x1ee90,
1396 		0x1eec0, 0x1eec0,
1397 		0x1eee0, 0x1eee0,
1398 		0x1ef00, 0x1ef84,
1399 		0x1efc0, 0x1efc8,
1400 		0x1f008, 0x1f00c,
1401 		0x1f040, 0x1f044,
1402 		0x1f04c, 0x1f04c,
1403 		0x1f284, 0x1f290,
1404 		0x1f2c0, 0x1f2c0,
1405 		0x1f2e0, 0x1f2e0,
1406 		0x1f300, 0x1f384,
1407 		0x1f3c0, 0x1f3c8,
1408 		0x1f408, 0x1f40c,
1409 		0x1f440, 0x1f444,
1410 		0x1f44c, 0x1f44c,
1411 		0x1f684, 0x1f690,
1412 		0x1f6c0, 0x1f6c0,
1413 		0x1f6e0, 0x1f6e0,
1414 		0x1f700, 0x1f784,
1415 		0x1f7c0, 0x1f7c8,
1416 		0x1f808, 0x1f80c,
1417 		0x1f840, 0x1f844,
1418 		0x1f84c, 0x1f84c,
1419 		0x1fa84, 0x1fa90,
1420 		0x1fac0, 0x1fac0,
1421 		0x1fae0, 0x1fae0,
1422 		0x1fb00, 0x1fb84,
1423 		0x1fbc0, 0x1fbc8,
1424 		0x1fc08, 0x1fc0c,
1425 		0x1fc40, 0x1fc44,
1426 		0x1fc4c, 0x1fc4c,
1427 		0x1fe84, 0x1fe90,
1428 		0x1fec0, 0x1fec0,
1429 		0x1fee0, 0x1fee0,
1430 		0x1ff00, 0x1ff84,
1431 		0x1ffc0, 0x1ffc8,
1432 		0x30000, 0x30030,
1433 		0x30100, 0x30144,
1434 		0x30190, 0x301a0,
1435 		0x301a8, 0x301b8,
1436 		0x301c4, 0x301c8,
1437 		0x301d0, 0x301d0,
1438 		0x30200, 0x30318,
1439 		0x30400, 0x304b4,
1440 		0x304c0, 0x3052c,
1441 		0x30540, 0x3061c,
1442 		0x30800, 0x30828,
1443 		0x30834, 0x30834,
1444 		0x308c0, 0x30908,
1445 		0x30910, 0x309ac,
1446 		0x30a00, 0x30a14,
1447 		0x30a1c, 0x30a2c,
1448 		0x30a44, 0x30a50,
1449 		0x30a74, 0x30a74,
1450 		0x30a7c, 0x30afc,
1451 		0x30b08, 0x30c24,
1452 		0x30d00, 0x30d00,
1453 		0x30d08, 0x30d14,
1454 		0x30d1c, 0x30d20,
1455 		0x30d3c, 0x30d3c,
1456 		0x30d48, 0x30d50,
1457 		0x31200, 0x3120c,
1458 		0x31220, 0x31220,
1459 		0x31240, 0x31240,
1460 		0x31600, 0x3160c,
1461 		0x31a00, 0x31a1c,
1462 		0x31e00, 0x31e20,
1463 		0x31e38, 0x31e3c,
1464 		0x31e80, 0x31e80,
1465 		0x31e88, 0x31ea8,
1466 		0x31eb0, 0x31eb4,
1467 		0x31ec8, 0x31ed4,
1468 		0x31fb8, 0x32004,
1469 		0x32200, 0x32200,
1470 		0x32208, 0x32240,
1471 		0x32248, 0x32280,
1472 		0x32288, 0x322c0,
1473 		0x322c8, 0x322fc,
1474 		0x32600, 0x32630,
1475 		0x32a00, 0x32abc,
1476 		0x32b00, 0x32b10,
1477 		0x32b20, 0x32b30,
1478 		0x32b40, 0x32b50,
1479 		0x32b60, 0x32b70,
1480 		0x33000, 0x33028,
1481 		0x33030, 0x33048,
1482 		0x33060, 0x33068,
1483 		0x33070, 0x3309c,
1484 		0x330f0, 0x33128,
1485 		0x33130, 0x33148,
1486 		0x33160, 0x33168,
1487 		0x33170, 0x3319c,
1488 		0x331f0, 0x33238,
1489 		0x33240, 0x33240,
1490 		0x33248, 0x33250,
1491 		0x3325c, 0x33264,
1492 		0x33270, 0x332b8,
1493 		0x332c0, 0x332e4,
1494 		0x332f8, 0x33338,
1495 		0x33340, 0x33340,
1496 		0x33348, 0x33350,
1497 		0x3335c, 0x33364,
1498 		0x33370, 0x333b8,
1499 		0x333c0, 0x333e4,
1500 		0x333f8, 0x33428,
1501 		0x33430, 0x33448,
1502 		0x33460, 0x33468,
1503 		0x33470, 0x3349c,
1504 		0x334f0, 0x33528,
1505 		0x33530, 0x33548,
1506 		0x33560, 0x33568,
1507 		0x33570, 0x3359c,
1508 		0x335f0, 0x33638,
1509 		0x33640, 0x33640,
1510 		0x33648, 0x33650,
1511 		0x3365c, 0x33664,
1512 		0x33670, 0x336b8,
1513 		0x336c0, 0x336e4,
1514 		0x336f8, 0x33738,
1515 		0x33740, 0x33740,
1516 		0x33748, 0x33750,
1517 		0x3375c, 0x33764,
1518 		0x33770, 0x337b8,
1519 		0x337c0, 0x337e4,
1520 		0x337f8, 0x337fc,
1521 		0x33814, 0x33814,
1522 		0x3382c, 0x3382c,
1523 		0x33880, 0x3388c,
1524 		0x338e8, 0x338ec,
1525 		0x33900, 0x33928,
1526 		0x33930, 0x33948,
1527 		0x33960, 0x33968,
1528 		0x33970, 0x3399c,
1529 		0x339f0, 0x33a38,
1530 		0x33a40, 0x33a40,
1531 		0x33a48, 0x33a50,
1532 		0x33a5c, 0x33a64,
1533 		0x33a70, 0x33ab8,
1534 		0x33ac0, 0x33ae4,
1535 		0x33af8, 0x33b10,
1536 		0x33b28, 0x33b28,
1537 		0x33b3c, 0x33b50,
1538 		0x33bf0, 0x33c10,
1539 		0x33c28, 0x33c28,
1540 		0x33c3c, 0x33c50,
1541 		0x33cf0, 0x33cfc,
1542 		0x34000, 0x34030,
1543 		0x34100, 0x34144,
1544 		0x34190, 0x341a0,
1545 		0x341a8, 0x341b8,
1546 		0x341c4, 0x341c8,
1547 		0x341d0, 0x341d0,
1548 		0x34200, 0x34318,
1549 		0x34400, 0x344b4,
1550 		0x344c0, 0x3452c,
1551 		0x34540, 0x3461c,
1552 		0x34800, 0x34828,
1553 		0x34834, 0x34834,
1554 		0x348c0, 0x34908,
1555 		0x34910, 0x349ac,
1556 		0x34a00, 0x34a14,
1557 		0x34a1c, 0x34a2c,
1558 		0x34a44, 0x34a50,
1559 		0x34a74, 0x34a74,
1560 		0x34a7c, 0x34afc,
1561 		0x34b08, 0x34c24,
1562 		0x34d00, 0x34d00,
1563 		0x34d08, 0x34d14,
1564 		0x34d1c, 0x34d20,
1565 		0x34d3c, 0x34d3c,
1566 		0x34d48, 0x34d50,
1567 		0x35200, 0x3520c,
1568 		0x35220, 0x35220,
1569 		0x35240, 0x35240,
1570 		0x35600, 0x3560c,
1571 		0x35a00, 0x35a1c,
1572 		0x35e00, 0x35e20,
1573 		0x35e38, 0x35e3c,
1574 		0x35e80, 0x35e80,
1575 		0x35e88, 0x35ea8,
1576 		0x35eb0, 0x35eb4,
1577 		0x35ec8, 0x35ed4,
1578 		0x35fb8, 0x36004,
1579 		0x36200, 0x36200,
1580 		0x36208, 0x36240,
1581 		0x36248, 0x36280,
1582 		0x36288, 0x362c0,
1583 		0x362c8, 0x362fc,
1584 		0x36600, 0x36630,
1585 		0x36a00, 0x36abc,
1586 		0x36b00, 0x36b10,
1587 		0x36b20, 0x36b30,
1588 		0x36b40, 0x36b50,
1589 		0x36b60, 0x36b70,
1590 		0x37000, 0x37028,
1591 		0x37030, 0x37048,
1592 		0x37060, 0x37068,
1593 		0x37070, 0x3709c,
1594 		0x370f0, 0x37128,
1595 		0x37130, 0x37148,
1596 		0x37160, 0x37168,
1597 		0x37170, 0x3719c,
1598 		0x371f0, 0x37238,
1599 		0x37240, 0x37240,
1600 		0x37248, 0x37250,
1601 		0x3725c, 0x37264,
1602 		0x37270, 0x372b8,
1603 		0x372c0, 0x372e4,
1604 		0x372f8, 0x37338,
1605 		0x37340, 0x37340,
1606 		0x37348, 0x37350,
1607 		0x3735c, 0x37364,
1608 		0x37370, 0x373b8,
1609 		0x373c0, 0x373e4,
1610 		0x373f8, 0x37428,
1611 		0x37430, 0x37448,
1612 		0x37460, 0x37468,
1613 		0x37470, 0x3749c,
1614 		0x374f0, 0x37528,
1615 		0x37530, 0x37548,
1616 		0x37560, 0x37568,
1617 		0x37570, 0x3759c,
1618 		0x375f0, 0x37638,
1619 		0x37640, 0x37640,
1620 		0x37648, 0x37650,
1621 		0x3765c, 0x37664,
1622 		0x37670, 0x376b8,
1623 		0x376c0, 0x376e4,
1624 		0x376f8, 0x37738,
1625 		0x37740, 0x37740,
1626 		0x37748, 0x37750,
1627 		0x3775c, 0x37764,
1628 		0x37770, 0x377b8,
1629 		0x377c0, 0x377e4,
1630 		0x377f8, 0x377fc,
1631 		0x37814, 0x37814,
1632 		0x3782c, 0x3782c,
1633 		0x37880, 0x3788c,
1634 		0x378e8, 0x378ec,
1635 		0x37900, 0x37928,
1636 		0x37930, 0x37948,
1637 		0x37960, 0x37968,
1638 		0x37970, 0x3799c,
1639 		0x379f0, 0x37a38,
1640 		0x37a40, 0x37a40,
1641 		0x37a48, 0x37a50,
1642 		0x37a5c, 0x37a64,
1643 		0x37a70, 0x37ab8,
1644 		0x37ac0, 0x37ae4,
1645 		0x37af8, 0x37b10,
1646 		0x37b28, 0x37b28,
1647 		0x37b3c, 0x37b50,
1648 		0x37bf0, 0x37c10,
1649 		0x37c28, 0x37c28,
1650 		0x37c3c, 0x37c50,
1651 		0x37cf0, 0x37cfc,
1652 		0x38000, 0x38030,
1653 		0x38100, 0x38144,
1654 		0x38190, 0x381a0,
1655 		0x381a8, 0x381b8,
1656 		0x381c4, 0x381c8,
1657 		0x381d0, 0x381d0,
1658 		0x38200, 0x38318,
1659 		0x38400, 0x384b4,
1660 		0x384c0, 0x3852c,
1661 		0x38540, 0x3861c,
1662 		0x38800, 0x38828,
1663 		0x38834, 0x38834,
1664 		0x388c0, 0x38908,
1665 		0x38910, 0x389ac,
1666 		0x38a00, 0x38a14,
1667 		0x38a1c, 0x38a2c,
1668 		0x38a44, 0x38a50,
1669 		0x38a74, 0x38a74,
1670 		0x38a7c, 0x38afc,
1671 		0x38b08, 0x38c24,
1672 		0x38d00, 0x38d00,
1673 		0x38d08, 0x38d14,
1674 		0x38d1c, 0x38d20,
1675 		0x38d3c, 0x38d3c,
1676 		0x38d48, 0x38d50,
1677 		0x39200, 0x3920c,
1678 		0x39220, 0x39220,
1679 		0x39240, 0x39240,
1680 		0x39600, 0x3960c,
1681 		0x39a00, 0x39a1c,
1682 		0x39e00, 0x39e20,
1683 		0x39e38, 0x39e3c,
1684 		0x39e80, 0x39e80,
1685 		0x39e88, 0x39ea8,
1686 		0x39eb0, 0x39eb4,
1687 		0x39ec8, 0x39ed4,
1688 		0x39fb8, 0x3a004,
1689 		0x3a200, 0x3a200,
1690 		0x3a208, 0x3a240,
1691 		0x3a248, 0x3a280,
1692 		0x3a288, 0x3a2c0,
1693 		0x3a2c8, 0x3a2fc,
1694 		0x3a600, 0x3a630,
1695 		0x3aa00, 0x3aabc,
1696 		0x3ab00, 0x3ab10,
1697 		0x3ab20, 0x3ab30,
1698 		0x3ab40, 0x3ab50,
1699 		0x3ab60, 0x3ab70,
1700 		0x3b000, 0x3b028,
1701 		0x3b030, 0x3b048,
1702 		0x3b060, 0x3b068,
1703 		0x3b070, 0x3b09c,
1704 		0x3b0f0, 0x3b128,
1705 		0x3b130, 0x3b148,
1706 		0x3b160, 0x3b168,
1707 		0x3b170, 0x3b19c,
1708 		0x3b1f0, 0x3b238,
1709 		0x3b240, 0x3b240,
1710 		0x3b248, 0x3b250,
1711 		0x3b25c, 0x3b264,
1712 		0x3b270, 0x3b2b8,
1713 		0x3b2c0, 0x3b2e4,
1714 		0x3b2f8, 0x3b338,
1715 		0x3b340, 0x3b340,
1716 		0x3b348, 0x3b350,
1717 		0x3b35c, 0x3b364,
1718 		0x3b370, 0x3b3b8,
1719 		0x3b3c0, 0x3b3e4,
1720 		0x3b3f8, 0x3b428,
1721 		0x3b430, 0x3b448,
1722 		0x3b460, 0x3b468,
1723 		0x3b470, 0x3b49c,
1724 		0x3b4f0, 0x3b528,
1725 		0x3b530, 0x3b548,
1726 		0x3b560, 0x3b568,
1727 		0x3b570, 0x3b59c,
1728 		0x3b5f0, 0x3b638,
1729 		0x3b640, 0x3b640,
1730 		0x3b648, 0x3b650,
1731 		0x3b65c, 0x3b664,
1732 		0x3b670, 0x3b6b8,
1733 		0x3b6c0, 0x3b6e4,
1734 		0x3b6f8, 0x3b738,
1735 		0x3b740, 0x3b740,
1736 		0x3b748, 0x3b750,
1737 		0x3b75c, 0x3b764,
1738 		0x3b770, 0x3b7b8,
1739 		0x3b7c0, 0x3b7e4,
1740 		0x3b7f8, 0x3b7fc,
1741 		0x3b814, 0x3b814,
1742 		0x3b82c, 0x3b82c,
1743 		0x3b880, 0x3b88c,
1744 		0x3b8e8, 0x3b8ec,
1745 		0x3b900, 0x3b928,
1746 		0x3b930, 0x3b948,
1747 		0x3b960, 0x3b968,
1748 		0x3b970, 0x3b99c,
1749 		0x3b9f0, 0x3ba38,
1750 		0x3ba40, 0x3ba40,
1751 		0x3ba48, 0x3ba50,
1752 		0x3ba5c, 0x3ba64,
1753 		0x3ba70, 0x3bab8,
1754 		0x3bac0, 0x3bae4,
1755 		0x3baf8, 0x3bb10,
1756 		0x3bb28, 0x3bb28,
1757 		0x3bb3c, 0x3bb50,
1758 		0x3bbf0, 0x3bc10,
1759 		0x3bc28, 0x3bc28,
1760 		0x3bc3c, 0x3bc50,
1761 		0x3bcf0, 0x3bcfc,
1762 		0x3c000, 0x3c030,
1763 		0x3c100, 0x3c144,
1764 		0x3c190, 0x3c1a0,
1765 		0x3c1a8, 0x3c1b8,
1766 		0x3c1c4, 0x3c1c8,
1767 		0x3c1d0, 0x3c1d0,
1768 		0x3c200, 0x3c318,
1769 		0x3c400, 0x3c4b4,
1770 		0x3c4c0, 0x3c52c,
1771 		0x3c540, 0x3c61c,
1772 		0x3c800, 0x3c828,
1773 		0x3c834, 0x3c834,
1774 		0x3c8c0, 0x3c908,
1775 		0x3c910, 0x3c9ac,
1776 		0x3ca00, 0x3ca14,
1777 		0x3ca1c, 0x3ca2c,
1778 		0x3ca44, 0x3ca50,
1779 		0x3ca74, 0x3ca74,
1780 		0x3ca7c, 0x3cafc,
1781 		0x3cb08, 0x3cc24,
1782 		0x3cd00, 0x3cd00,
1783 		0x3cd08, 0x3cd14,
1784 		0x3cd1c, 0x3cd20,
1785 		0x3cd3c, 0x3cd3c,
1786 		0x3cd48, 0x3cd50,
1787 		0x3d200, 0x3d20c,
1788 		0x3d220, 0x3d220,
1789 		0x3d240, 0x3d240,
1790 		0x3d600, 0x3d60c,
1791 		0x3da00, 0x3da1c,
1792 		0x3de00, 0x3de20,
1793 		0x3de38, 0x3de3c,
1794 		0x3de80, 0x3de80,
1795 		0x3de88, 0x3dea8,
1796 		0x3deb0, 0x3deb4,
1797 		0x3dec8, 0x3ded4,
1798 		0x3dfb8, 0x3e004,
1799 		0x3e200, 0x3e200,
1800 		0x3e208, 0x3e240,
1801 		0x3e248, 0x3e280,
1802 		0x3e288, 0x3e2c0,
1803 		0x3e2c8, 0x3e2fc,
1804 		0x3e600, 0x3e630,
1805 		0x3ea00, 0x3eabc,
1806 		0x3eb00, 0x3eb10,
1807 		0x3eb20, 0x3eb30,
1808 		0x3eb40, 0x3eb50,
1809 		0x3eb60, 0x3eb70,
1810 		0x3f000, 0x3f028,
1811 		0x3f030, 0x3f048,
1812 		0x3f060, 0x3f068,
1813 		0x3f070, 0x3f09c,
1814 		0x3f0f0, 0x3f128,
1815 		0x3f130, 0x3f148,
1816 		0x3f160, 0x3f168,
1817 		0x3f170, 0x3f19c,
1818 		0x3f1f0, 0x3f238,
1819 		0x3f240, 0x3f240,
1820 		0x3f248, 0x3f250,
1821 		0x3f25c, 0x3f264,
1822 		0x3f270, 0x3f2b8,
1823 		0x3f2c0, 0x3f2e4,
1824 		0x3f2f8, 0x3f338,
1825 		0x3f340, 0x3f340,
1826 		0x3f348, 0x3f350,
1827 		0x3f35c, 0x3f364,
1828 		0x3f370, 0x3f3b8,
1829 		0x3f3c0, 0x3f3e4,
1830 		0x3f3f8, 0x3f428,
1831 		0x3f430, 0x3f448,
1832 		0x3f460, 0x3f468,
1833 		0x3f470, 0x3f49c,
1834 		0x3f4f0, 0x3f528,
1835 		0x3f530, 0x3f548,
1836 		0x3f560, 0x3f568,
1837 		0x3f570, 0x3f59c,
1838 		0x3f5f0, 0x3f638,
1839 		0x3f640, 0x3f640,
1840 		0x3f648, 0x3f650,
1841 		0x3f65c, 0x3f664,
1842 		0x3f670, 0x3f6b8,
1843 		0x3f6c0, 0x3f6e4,
1844 		0x3f6f8, 0x3f738,
1845 		0x3f740, 0x3f740,
1846 		0x3f748, 0x3f750,
1847 		0x3f75c, 0x3f764,
1848 		0x3f770, 0x3f7b8,
1849 		0x3f7c0, 0x3f7e4,
1850 		0x3f7f8, 0x3f7fc,
1851 		0x3f814, 0x3f814,
1852 		0x3f82c, 0x3f82c,
1853 		0x3f880, 0x3f88c,
1854 		0x3f8e8, 0x3f8ec,
1855 		0x3f900, 0x3f928,
1856 		0x3f930, 0x3f948,
1857 		0x3f960, 0x3f968,
1858 		0x3f970, 0x3f99c,
1859 		0x3f9f0, 0x3fa38,
1860 		0x3fa40, 0x3fa40,
1861 		0x3fa48, 0x3fa50,
1862 		0x3fa5c, 0x3fa64,
1863 		0x3fa70, 0x3fab8,
1864 		0x3fac0, 0x3fae4,
1865 		0x3faf8, 0x3fb10,
1866 		0x3fb28, 0x3fb28,
1867 		0x3fb3c, 0x3fb50,
1868 		0x3fbf0, 0x3fc10,
1869 		0x3fc28, 0x3fc28,
1870 		0x3fc3c, 0x3fc50,
1871 		0x3fcf0, 0x3fcfc,
1872 		0x40000, 0x4000c,
1873 		0x40040, 0x40050,
1874 		0x40060, 0x40068,
1875 		0x4007c, 0x4008c,
1876 		0x40094, 0x400b0,
1877 		0x400c0, 0x40144,
1878 		0x40180, 0x4018c,
1879 		0x40200, 0x40254,
1880 		0x40260, 0x40264,
1881 		0x40270, 0x40288,
1882 		0x40290, 0x40298,
1883 		0x402ac, 0x402c8,
1884 		0x402d0, 0x402e0,
1885 		0x402f0, 0x402f0,
1886 		0x40300, 0x4033c,
1887 		0x403f8, 0x403fc,
1888 		0x41304, 0x413c4,
1889 		0x41400, 0x4140c,
1890 		0x41414, 0x4141c,
1891 		0x41480, 0x414d0,
1892 		0x44000, 0x44054,
1893 		0x4405c, 0x44078,
1894 		0x440c0, 0x44174,
1895 		0x44180, 0x441ac,
1896 		0x441b4, 0x441b8,
1897 		0x441c0, 0x44254,
1898 		0x4425c, 0x44278,
1899 		0x442c0, 0x44374,
1900 		0x44380, 0x443ac,
1901 		0x443b4, 0x443b8,
1902 		0x443c0, 0x44454,
1903 		0x4445c, 0x44478,
1904 		0x444c0, 0x44574,
1905 		0x44580, 0x445ac,
1906 		0x445b4, 0x445b8,
1907 		0x445c0, 0x44654,
1908 		0x4465c, 0x44678,
1909 		0x446c0, 0x44774,
1910 		0x44780, 0x447ac,
1911 		0x447b4, 0x447b8,
1912 		0x447c0, 0x44854,
1913 		0x4485c, 0x44878,
1914 		0x448c0, 0x44974,
1915 		0x44980, 0x449ac,
1916 		0x449b4, 0x449b8,
1917 		0x449c0, 0x449fc,
1918 		0x45000, 0x45004,
1919 		0x45010, 0x45030,
1920 		0x45040, 0x45060,
1921 		0x45068, 0x45068,
1922 		0x45080, 0x45084,
1923 		0x450a0, 0x450b0,
1924 		0x45200, 0x45204,
1925 		0x45210, 0x45230,
1926 		0x45240, 0x45260,
1927 		0x45268, 0x45268,
1928 		0x45280, 0x45284,
1929 		0x452a0, 0x452b0,
1930 		0x460c0, 0x460e4,
1931 		0x47000, 0x4703c,
1932 		0x47044, 0x4708c,
1933 		0x47200, 0x47250,
1934 		0x47400, 0x47408,
1935 		0x47414, 0x47420,
1936 		0x47600, 0x47618,
1937 		0x47800, 0x47814,
1938 		0x48000, 0x4800c,
1939 		0x48040, 0x48050,
1940 		0x48060, 0x48068,
1941 		0x4807c, 0x4808c,
1942 		0x48094, 0x480b0,
1943 		0x480c0, 0x48144,
1944 		0x48180, 0x4818c,
1945 		0x48200, 0x48254,
1946 		0x48260, 0x48264,
1947 		0x48270, 0x48288,
1948 		0x48290, 0x48298,
1949 		0x482ac, 0x482c8,
1950 		0x482d0, 0x482e0,
1951 		0x482f0, 0x482f0,
1952 		0x48300, 0x4833c,
1953 		0x483f8, 0x483fc,
1954 		0x49304, 0x493c4,
1955 		0x49400, 0x4940c,
1956 		0x49414, 0x4941c,
1957 		0x49480, 0x494d0,
1958 		0x4c000, 0x4c054,
1959 		0x4c05c, 0x4c078,
1960 		0x4c0c0, 0x4c174,
1961 		0x4c180, 0x4c1ac,
1962 		0x4c1b4, 0x4c1b8,
1963 		0x4c1c0, 0x4c254,
1964 		0x4c25c, 0x4c278,
1965 		0x4c2c0, 0x4c374,
1966 		0x4c380, 0x4c3ac,
1967 		0x4c3b4, 0x4c3b8,
1968 		0x4c3c0, 0x4c454,
1969 		0x4c45c, 0x4c478,
1970 		0x4c4c0, 0x4c574,
1971 		0x4c580, 0x4c5ac,
1972 		0x4c5b4, 0x4c5b8,
1973 		0x4c5c0, 0x4c654,
1974 		0x4c65c, 0x4c678,
1975 		0x4c6c0, 0x4c774,
1976 		0x4c780, 0x4c7ac,
1977 		0x4c7b4, 0x4c7b8,
1978 		0x4c7c0, 0x4c854,
1979 		0x4c85c, 0x4c878,
1980 		0x4c8c0, 0x4c974,
1981 		0x4c980, 0x4c9ac,
1982 		0x4c9b4, 0x4c9b8,
1983 		0x4c9c0, 0x4c9fc,
1984 		0x4d000, 0x4d004,
1985 		0x4d010, 0x4d030,
1986 		0x4d040, 0x4d060,
1987 		0x4d068, 0x4d068,
1988 		0x4d080, 0x4d084,
1989 		0x4d0a0, 0x4d0b0,
1990 		0x4d200, 0x4d204,
1991 		0x4d210, 0x4d230,
1992 		0x4d240, 0x4d260,
1993 		0x4d268, 0x4d268,
1994 		0x4d280, 0x4d284,
1995 		0x4d2a0, 0x4d2b0,
1996 		0x4e0c0, 0x4e0e4,
1997 		0x4f000, 0x4f03c,
1998 		0x4f044, 0x4f08c,
1999 		0x4f200, 0x4f250,
2000 		0x4f400, 0x4f408,
2001 		0x4f414, 0x4f420,
2002 		0x4f600, 0x4f618,
2003 		0x4f800, 0x4f814,
2004 		0x50000, 0x50084,
2005 		0x50090, 0x500cc,
2006 		0x50400, 0x50400,
2007 		0x50800, 0x50884,
2008 		0x50890, 0x508cc,
2009 		0x50c00, 0x50c00,
2010 		0x51000, 0x5101c,
2011 		0x51300, 0x51308,
2012 	};
2013 
2014 	static const unsigned int t5vf_reg_ranges[] = {
2015 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2016 		VF_MPS_REG(A_MPS_VF_CTL),
2017 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2018 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2019 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2020 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2021 		FW_T4VF_MBDATA_BASE_ADDR,
2022 		FW_T4VF_MBDATA_BASE_ADDR +
2023 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2024 	};
2025 
2026 	static const unsigned int t6_reg_ranges[] = {
2027 		0x1008, 0x101c,
2028 		0x1024, 0x10a8,
2029 		0x10b4, 0x10f8,
2030 		0x1100, 0x1114,
2031 		0x111c, 0x112c,
2032 		0x1138, 0x113c,
2033 		0x1144, 0x114c,
2034 		0x1180, 0x1184,
2035 		0x1190, 0x1194,
2036 		0x11a0, 0x11a4,
2037 		0x11b0, 0x11b4,
2038 		0x11fc, 0x1274,
2039 		0x1280, 0x133c,
2040 		0x1800, 0x18fc,
2041 		0x3000, 0x302c,
2042 		0x3060, 0x30b0,
2043 		0x30b8, 0x30d8,
2044 		0x30e0, 0x30fc,
2045 		0x3140, 0x357c,
2046 		0x35a8, 0x35cc,
2047 		0x35ec, 0x35ec,
2048 		0x3600, 0x5624,
2049 		0x56cc, 0x56ec,
2050 		0x56f4, 0x5720,
2051 		0x5728, 0x575c,
2052 		0x580c, 0x5814,
2053 		0x5890, 0x589c,
2054 		0x58a4, 0x58ac,
2055 		0x58b8, 0x58bc,
2056 		0x5940, 0x595c,
2057 		0x5980, 0x598c,
2058 		0x59b0, 0x59c8,
2059 		0x59d0, 0x59dc,
2060 		0x59fc, 0x5a18,
2061 		0x5a60, 0x5a6c,
2062 		0x5a80, 0x5a8c,
2063 		0x5a94, 0x5a9c,
2064 		0x5b94, 0x5bfc,
2065 		0x5c10, 0x5e48,
2066 		0x5e50, 0x5e94,
2067 		0x5ea0, 0x5eb0,
2068 		0x5ec0, 0x5ec0,
2069 		0x5ec8, 0x5ed0,
2070 		0x5ee0, 0x5ee0,
2071 		0x5ef0, 0x5ef0,
2072 		0x5f00, 0x5f00,
2073 		0x6000, 0x6020,
2074 		0x6028, 0x6040,
2075 		0x6058, 0x609c,
2076 		0x60a8, 0x619c,
2077 		0x7700, 0x7798,
2078 		0x77c0, 0x7880,
2079 		0x78cc, 0x78fc,
2080 		0x7b00, 0x7b58,
2081 		0x7b60, 0x7b84,
2082 		0x7b8c, 0x7c54,
2083 		0x7d00, 0x7d38,
2084 		0x7d40, 0x7d84,
2085 		0x7d8c, 0x7ddc,
2086 		0x7de4, 0x7e04,
2087 		0x7e10, 0x7e1c,
2088 		0x7e24, 0x7e38,
2089 		0x7e40, 0x7e44,
2090 		0x7e4c, 0x7e78,
2091 		0x7e80, 0x7edc,
2092 		0x7ee8, 0x7efc,
2093 		0x8dc0, 0x8de4,
2094 		0x8df8, 0x8e04,
2095 		0x8e10, 0x8e84,
2096 		0x8ea0, 0x8f88,
2097 		0x8fb8, 0x9058,
2098 		0x9060, 0x9060,
2099 		0x9068, 0x90f8,
2100 		0x9100, 0x9124,
2101 		0x9400, 0x9470,
2102 		0x9600, 0x9600,
2103 		0x9608, 0x9638,
2104 		0x9640, 0x9704,
2105 		0x9710, 0x971c,
2106 		0x9800, 0x9808,
2107 		0x9820, 0x983c,
2108 		0x9850, 0x9864,
2109 		0x9c00, 0x9c6c,
2110 		0x9c80, 0x9cec,
2111 		0x9d00, 0x9d6c,
2112 		0x9d80, 0x9dec,
2113 		0x9e00, 0x9e6c,
2114 		0x9e80, 0x9eec,
2115 		0x9f00, 0x9f6c,
2116 		0x9f80, 0xa020,
2117 		0xd004, 0xd03c,
2118 		0xd100, 0xd118,
2119 		0xd200, 0xd214,
2120 		0xd220, 0xd234,
2121 		0xd240, 0xd254,
2122 		0xd260, 0xd274,
2123 		0xd280, 0xd294,
2124 		0xd2a0, 0xd2b4,
2125 		0xd2c0, 0xd2d4,
2126 		0xd2e0, 0xd2f4,
2127 		0xd300, 0xd31c,
2128 		0xdfc0, 0xdfe0,
2129 		0xe000, 0xf008,
2130 		0xf010, 0xf018,
2131 		0xf020, 0xf028,
2132 		0x11000, 0x11014,
2133 		0x11048, 0x1106c,
2134 		0x11074, 0x11088,
2135 		0x11098, 0x11120,
2136 		0x1112c, 0x1117c,
2137 		0x11190, 0x112e0,
2138 		0x11300, 0x1130c,
2139 		0x12000, 0x1206c,
2140 		0x19040, 0x1906c,
2141 		0x19078, 0x19080,
2142 		0x1908c, 0x190e8,
2143 		0x190f0, 0x190f8,
2144 		0x19100, 0x19110,
2145 		0x19120, 0x19124,
2146 		0x19150, 0x19194,
2147 		0x1919c, 0x191b0,
2148 		0x191d0, 0x191e8,
2149 		0x19238, 0x19290,
2150 		0x192a4, 0x192b0,
2151 		0x192bc, 0x192bc,
2152 		0x19348, 0x1934c,
2153 		0x193f8, 0x19418,
2154 		0x19420, 0x19428,
2155 		0x19430, 0x19444,
2156 		0x1944c, 0x1946c,
2157 		0x19474, 0x19474,
2158 		0x19490, 0x194cc,
2159 		0x194f0, 0x194f8,
2160 		0x19c00, 0x19c48,
2161 		0x19c50, 0x19c80,
2162 		0x19c94, 0x19c98,
2163 		0x19ca0, 0x19cbc,
2164 		0x19ce4, 0x19ce4,
2165 		0x19cf0, 0x19cf8,
2166 		0x19d00, 0x19d28,
2167 		0x19d50, 0x19d78,
2168 		0x19d94, 0x19d98,
2169 		0x19da0, 0x19dc8,
2170 		0x19df0, 0x19e10,
2171 		0x19e50, 0x19e6c,
2172 		0x19ea0, 0x19ebc,
2173 		0x19ec4, 0x19ef4,
2174 		0x19f04, 0x19f2c,
2175 		0x19f34, 0x19f34,
2176 		0x19f40, 0x19f50,
2177 		0x19f90, 0x19fac,
2178 		0x19fc4, 0x19fc8,
2179 		0x19fd0, 0x19fe4,
2180 		0x1a000, 0x1a004,
2181 		0x1a010, 0x1a06c,
2182 		0x1a0b0, 0x1a0e4,
2183 		0x1a0ec, 0x1a0f8,
2184 		0x1a100, 0x1a108,
2185 		0x1a114, 0x1a120,
2186 		0x1a128, 0x1a130,
2187 		0x1a138, 0x1a138,
2188 		0x1a190, 0x1a1c4,
2189 		0x1a1fc, 0x1a1fc,
2190 		0x1e008, 0x1e00c,
2191 		0x1e040, 0x1e044,
2192 		0x1e04c, 0x1e04c,
2193 		0x1e284, 0x1e290,
2194 		0x1e2c0, 0x1e2c0,
2195 		0x1e2e0, 0x1e2e0,
2196 		0x1e300, 0x1e384,
2197 		0x1e3c0, 0x1e3c8,
2198 		0x1e408, 0x1e40c,
2199 		0x1e440, 0x1e444,
2200 		0x1e44c, 0x1e44c,
2201 		0x1e684, 0x1e690,
2202 		0x1e6c0, 0x1e6c0,
2203 		0x1e6e0, 0x1e6e0,
2204 		0x1e700, 0x1e784,
2205 		0x1e7c0, 0x1e7c8,
2206 		0x1e808, 0x1e80c,
2207 		0x1e840, 0x1e844,
2208 		0x1e84c, 0x1e84c,
2209 		0x1ea84, 0x1ea90,
2210 		0x1eac0, 0x1eac0,
2211 		0x1eae0, 0x1eae0,
2212 		0x1eb00, 0x1eb84,
2213 		0x1ebc0, 0x1ebc8,
2214 		0x1ec08, 0x1ec0c,
2215 		0x1ec40, 0x1ec44,
2216 		0x1ec4c, 0x1ec4c,
2217 		0x1ee84, 0x1ee90,
2218 		0x1eec0, 0x1eec0,
2219 		0x1eee0, 0x1eee0,
2220 		0x1ef00, 0x1ef84,
2221 		0x1efc0, 0x1efc8,
2222 		0x1f008, 0x1f00c,
2223 		0x1f040, 0x1f044,
2224 		0x1f04c, 0x1f04c,
2225 		0x1f284, 0x1f290,
2226 		0x1f2c0, 0x1f2c0,
2227 		0x1f2e0, 0x1f2e0,
2228 		0x1f300, 0x1f384,
2229 		0x1f3c0, 0x1f3c8,
2230 		0x1f408, 0x1f40c,
2231 		0x1f440, 0x1f444,
2232 		0x1f44c, 0x1f44c,
2233 		0x1f684, 0x1f690,
2234 		0x1f6c0, 0x1f6c0,
2235 		0x1f6e0, 0x1f6e0,
2236 		0x1f700, 0x1f784,
2237 		0x1f7c0, 0x1f7c8,
2238 		0x1f808, 0x1f80c,
2239 		0x1f840, 0x1f844,
2240 		0x1f84c, 0x1f84c,
2241 		0x1fa84, 0x1fa90,
2242 		0x1fac0, 0x1fac0,
2243 		0x1fae0, 0x1fae0,
2244 		0x1fb00, 0x1fb84,
2245 		0x1fbc0, 0x1fbc8,
2246 		0x1fc08, 0x1fc0c,
2247 		0x1fc40, 0x1fc44,
2248 		0x1fc4c, 0x1fc4c,
2249 		0x1fe84, 0x1fe90,
2250 		0x1fec0, 0x1fec0,
2251 		0x1fee0, 0x1fee0,
2252 		0x1ff00, 0x1ff84,
2253 		0x1ffc0, 0x1ffc8,
2254 		0x30000, 0x30030,
2255 		0x30100, 0x30168,
2256 		0x30190, 0x301a0,
2257 		0x301a8, 0x301b8,
2258 		0x301c4, 0x301c8,
2259 		0x301d0, 0x301d0,
2260 		0x30200, 0x30320,
2261 		0x30400, 0x304b4,
2262 		0x304c0, 0x3052c,
2263 		0x30540, 0x3061c,
2264 		0x30800, 0x308a0,
2265 		0x308c0, 0x30908,
2266 		0x30910, 0x309b8,
2267 		0x30a00, 0x30a04,
2268 		0x30a0c, 0x30a14,
2269 		0x30a1c, 0x30a2c,
2270 		0x30a44, 0x30a50,
2271 		0x30a74, 0x30a74,
2272 		0x30a7c, 0x30afc,
2273 		0x30b08, 0x30c24,
2274 		0x30d00, 0x30d14,
2275 		0x30d1c, 0x30d3c,
2276 		0x30d44, 0x30d4c,
2277 		0x30d54, 0x30d74,
2278 		0x30d7c, 0x30d7c,
2279 		0x30de0, 0x30de0,
2280 		0x30e00, 0x30ed4,
2281 		0x30f00, 0x30fa4,
2282 		0x30fc0, 0x30fc4,
2283 		0x31000, 0x31004,
2284 		0x31080, 0x310fc,
2285 		0x31208, 0x31220,
2286 		0x3123c, 0x31254,
2287 		0x31300, 0x31300,
2288 		0x31308, 0x3131c,
2289 		0x31338, 0x3133c,
2290 		0x31380, 0x31380,
2291 		0x31388, 0x313a8,
2292 		0x313b4, 0x313b4,
2293 		0x31400, 0x31420,
2294 		0x31438, 0x3143c,
2295 		0x31480, 0x31480,
2296 		0x314a8, 0x314a8,
2297 		0x314b0, 0x314b4,
2298 		0x314c8, 0x314d4,
2299 		0x31a40, 0x31a4c,
2300 		0x31af0, 0x31b20,
2301 		0x31b38, 0x31b3c,
2302 		0x31b80, 0x31b80,
2303 		0x31ba8, 0x31ba8,
2304 		0x31bb0, 0x31bb4,
2305 		0x31bc8, 0x31bd4,
2306 		0x32140, 0x3218c,
2307 		0x321f0, 0x321f4,
2308 		0x32200, 0x32200,
2309 		0x32218, 0x32218,
2310 		0x32400, 0x32400,
2311 		0x32408, 0x3241c,
2312 		0x32618, 0x32620,
2313 		0x32664, 0x32664,
2314 		0x326a8, 0x326a8,
2315 		0x326ec, 0x326ec,
2316 		0x32a00, 0x32abc,
2317 		0x32b00, 0x32b18,
2318 		0x32b20, 0x32b38,
2319 		0x32b40, 0x32b58,
2320 		0x32b60, 0x32b78,
2321 		0x32c00, 0x32c00,
2322 		0x32c08, 0x32c3c,
2323 		0x33000, 0x3302c,
2324 		0x33034, 0x33050,
2325 		0x33058, 0x33058,
2326 		0x33060, 0x3308c,
2327 		0x3309c, 0x330ac,
2328 		0x330c0, 0x330c0,
2329 		0x330c8, 0x330d0,
2330 		0x330d8, 0x330e0,
2331 		0x330ec, 0x3312c,
2332 		0x33134, 0x33150,
2333 		0x33158, 0x33158,
2334 		0x33160, 0x3318c,
2335 		0x3319c, 0x331ac,
2336 		0x331c0, 0x331c0,
2337 		0x331c8, 0x331d0,
2338 		0x331d8, 0x331e0,
2339 		0x331ec, 0x33290,
2340 		0x33298, 0x332c4,
2341 		0x332e4, 0x33390,
2342 		0x33398, 0x333c4,
2343 		0x333e4, 0x3342c,
2344 		0x33434, 0x33450,
2345 		0x33458, 0x33458,
2346 		0x33460, 0x3348c,
2347 		0x3349c, 0x334ac,
2348 		0x334c0, 0x334c0,
2349 		0x334c8, 0x334d0,
2350 		0x334d8, 0x334e0,
2351 		0x334ec, 0x3352c,
2352 		0x33534, 0x33550,
2353 		0x33558, 0x33558,
2354 		0x33560, 0x3358c,
2355 		0x3359c, 0x335ac,
2356 		0x335c0, 0x335c0,
2357 		0x335c8, 0x335d0,
2358 		0x335d8, 0x335e0,
2359 		0x335ec, 0x33690,
2360 		0x33698, 0x336c4,
2361 		0x336e4, 0x33790,
2362 		0x33798, 0x337c4,
2363 		0x337e4, 0x337fc,
2364 		0x33814, 0x33814,
2365 		0x33854, 0x33868,
2366 		0x33880, 0x3388c,
2367 		0x338c0, 0x338d0,
2368 		0x338e8, 0x338ec,
2369 		0x33900, 0x3392c,
2370 		0x33934, 0x33950,
2371 		0x33958, 0x33958,
2372 		0x33960, 0x3398c,
2373 		0x3399c, 0x339ac,
2374 		0x339c0, 0x339c0,
2375 		0x339c8, 0x339d0,
2376 		0x339d8, 0x339e0,
2377 		0x339ec, 0x33a90,
2378 		0x33a98, 0x33ac4,
2379 		0x33ae4, 0x33b10,
2380 		0x33b24, 0x33b28,
2381 		0x33b38, 0x33b50,
2382 		0x33bf0, 0x33c10,
2383 		0x33c24, 0x33c28,
2384 		0x33c38, 0x33c50,
2385 		0x33cf0, 0x33cfc,
2386 		0x34000, 0x34030,
2387 		0x34100, 0x34168,
2388 		0x34190, 0x341a0,
2389 		0x341a8, 0x341b8,
2390 		0x341c4, 0x341c8,
2391 		0x341d0, 0x341d0,
2392 		0x34200, 0x34320,
2393 		0x34400, 0x344b4,
2394 		0x344c0, 0x3452c,
2395 		0x34540, 0x3461c,
2396 		0x34800, 0x348a0,
2397 		0x348c0, 0x34908,
2398 		0x34910, 0x349b8,
2399 		0x34a00, 0x34a04,
2400 		0x34a0c, 0x34a14,
2401 		0x34a1c, 0x34a2c,
2402 		0x34a44, 0x34a50,
2403 		0x34a74, 0x34a74,
2404 		0x34a7c, 0x34afc,
2405 		0x34b08, 0x34c24,
2406 		0x34d00, 0x34d14,
2407 		0x34d1c, 0x34d3c,
2408 		0x34d44, 0x34d4c,
2409 		0x34d54, 0x34d74,
2410 		0x34d7c, 0x34d7c,
2411 		0x34de0, 0x34de0,
2412 		0x34e00, 0x34ed4,
2413 		0x34f00, 0x34fa4,
2414 		0x34fc0, 0x34fc4,
2415 		0x35000, 0x35004,
2416 		0x35080, 0x350fc,
2417 		0x35208, 0x35220,
2418 		0x3523c, 0x35254,
2419 		0x35300, 0x35300,
2420 		0x35308, 0x3531c,
2421 		0x35338, 0x3533c,
2422 		0x35380, 0x35380,
2423 		0x35388, 0x353a8,
2424 		0x353b4, 0x353b4,
2425 		0x35400, 0x35420,
2426 		0x35438, 0x3543c,
2427 		0x35480, 0x35480,
2428 		0x354a8, 0x354a8,
2429 		0x354b0, 0x354b4,
2430 		0x354c8, 0x354d4,
2431 		0x35a40, 0x35a4c,
2432 		0x35af0, 0x35b20,
2433 		0x35b38, 0x35b3c,
2434 		0x35b80, 0x35b80,
2435 		0x35ba8, 0x35ba8,
2436 		0x35bb0, 0x35bb4,
2437 		0x35bc8, 0x35bd4,
2438 		0x36140, 0x3618c,
2439 		0x361f0, 0x361f4,
2440 		0x36200, 0x36200,
2441 		0x36218, 0x36218,
2442 		0x36400, 0x36400,
2443 		0x36408, 0x3641c,
2444 		0x36618, 0x36620,
2445 		0x36664, 0x36664,
2446 		0x366a8, 0x366a8,
2447 		0x366ec, 0x366ec,
2448 		0x36a00, 0x36abc,
2449 		0x36b00, 0x36b18,
2450 		0x36b20, 0x36b38,
2451 		0x36b40, 0x36b58,
2452 		0x36b60, 0x36b78,
2453 		0x36c00, 0x36c00,
2454 		0x36c08, 0x36c3c,
2455 		0x37000, 0x3702c,
2456 		0x37034, 0x37050,
2457 		0x37058, 0x37058,
2458 		0x37060, 0x3708c,
2459 		0x3709c, 0x370ac,
2460 		0x370c0, 0x370c0,
2461 		0x370c8, 0x370d0,
2462 		0x370d8, 0x370e0,
2463 		0x370ec, 0x3712c,
2464 		0x37134, 0x37150,
2465 		0x37158, 0x37158,
2466 		0x37160, 0x3718c,
2467 		0x3719c, 0x371ac,
2468 		0x371c0, 0x371c0,
2469 		0x371c8, 0x371d0,
2470 		0x371d8, 0x371e0,
2471 		0x371ec, 0x37290,
2472 		0x37298, 0x372c4,
2473 		0x372e4, 0x37390,
2474 		0x37398, 0x373c4,
2475 		0x373e4, 0x3742c,
2476 		0x37434, 0x37450,
2477 		0x37458, 0x37458,
2478 		0x37460, 0x3748c,
2479 		0x3749c, 0x374ac,
2480 		0x374c0, 0x374c0,
2481 		0x374c8, 0x374d0,
2482 		0x374d8, 0x374e0,
2483 		0x374ec, 0x3752c,
2484 		0x37534, 0x37550,
2485 		0x37558, 0x37558,
2486 		0x37560, 0x3758c,
2487 		0x3759c, 0x375ac,
2488 		0x375c0, 0x375c0,
2489 		0x375c8, 0x375d0,
2490 		0x375d8, 0x375e0,
2491 		0x375ec, 0x37690,
2492 		0x37698, 0x376c4,
2493 		0x376e4, 0x37790,
2494 		0x37798, 0x377c4,
2495 		0x377e4, 0x377fc,
2496 		0x37814, 0x37814,
2497 		0x37854, 0x37868,
2498 		0x37880, 0x3788c,
2499 		0x378c0, 0x378d0,
2500 		0x378e8, 0x378ec,
2501 		0x37900, 0x3792c,
2502 		0x37934, 0x37950,
2503 		0x37958, 0x37958,
2504 		0x37960, 0x3798c,
2505 		0x3799c, 0x379ac,
2506 		0x379c0, 0x379c0,
2507 		0x379c8, 0x379d0,
2508 		0x379d8, 0x379e0,
2509 		0x379ec, 0x37a90,
2510 		0x37a98, 0x37ac4,
2511 		0x37ae4, 0x37b10,
2512 		0x37b24, 0x37b28,
2513 		0x37b38, 0x37b50,
2514 		0x37bf0, 0x37c10,
2515 		0x37c24, 0x37c28,
2516 		0x37c38, 0x37c50,
2517 		0x37cf0, 0x37cfc,
2518 		0x40040, 0x40040,
2519 		0x40080, 0x40084,
2520 		0x40100, 0x40100,
2521 		0x40140, 0x401bc,
2522 		0x40200, 0x40214,
2523 		0x40228, 0x40228,
2524 		0x40240, 0x40258,
2525 		0x40280, 0x40280,
2526 		0x40304, 0x40304,
2527 		0x40330, 0x4033c,
2528 		0x41304, 0x413c8,
2529 		0x413d0, 0x413dc,
2530 		0x413f0, 0x413f0,
2531 		0x41400, 0x4140c,
2532 		0x41414, 0x4141c,
2533 		0x41480, 0x414d0,
2534 		0x44000, 0x4407c,
2535 		0x440c0, 0x441ac,
2536 		0x441b4, 0x4427c,
2537 		0x442c0, 0x443ac,
2538 		0x443b4, 0x4447c,
2539 		0x444c0, 0x445ac,
2540 		0x445b4, 0x4467c,
2541 		0x446c0, 0x447ac,
2542 		0x447b4, 0x4487c,
2543 		0x448c0, 0x449ac,
2544 		0x449b4, 0x44a7c,
2545 		0x44ac0, 0x44bac,
2546 		0x44bb4, 0x44c7c,
2547 		0x44cc0, 0x44dac,
2548 		0x44db4, 0x44e7c,
2549 		0x44ec0, 0x44fac,
2550 		0x44fb4, 0x4507c,
2551 		0x450c0, 0x451ac,
2552 		0x451b4, 0x451fc,
2553 		0x45800, 0x45804,
2554 		0x45810, 0x45830,
2555 		0x45840, 0x45860,
2556 		0x45868, 0x45868,
2557 		0x45880, 0x45884,
2558 		0x458a0, 0x458b0,
2559 		0x45a00, 0x45a04,
2560 		0x45a10, 0x45a30,
2561 		0x45a40, 0x45a60,
2562 		0x45a68, 0x45a68,
2563 		0x45a80, 0x45a84,
2564 		0x45aa0, 0x45ab0,
2565 		0x460c0, 0x460e4,
2566 		0x47000, 0x4703c,
2567 		0x47044, 0x4708c,
2568 		0x47200, 0x47250,
2569 		0x47400, 0x47408,
2570 		0x47414, 0x47420,
2571 		0x47600, 0x47618,
2572 		0x47800, 0x47814,
2573 		0x47820, 0x4782c,
2574 		0x50000, 0x50084,
2575 		0x50090, 0x500cc,
2576 		0x50300, 0x50384,
2577 		0x50400, 0x50400,
2578 		0x50800, 0x50884,
2579 		0x50890, 0x508cc,
2580 		0x50b00, 0x50b84,
2581 		0x50c00, 0x50c00,
2582 		0x51000, 0x51020,
2583 		0x51028, 0x510b0,
2584 		0x51300, 0x51324,
2585 	};
2586 
2587 	static const unsigned int t6vf_reg_ranges[] = {
2588 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2589 		VF_MPS_REG(A_MPS_VF_CTL),
2590 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2591 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2592 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2593 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2594 		FW_T6VF_MBDATA_BASE_ADDR,
2595 		FW_T6VF_MBDATA_BASE_ADDR +
2596 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2597 	};
2598 
2599 	u32 *buf_end = (u32 *)(buf + buf_size);
2600 	const unsigned int *reg_ranges;
2601 	int reg_ranges_size, range;
2602 	unsigned int chip_version = chip_id(adap);
2603 
2604 	/*
2605 	 * Select the right set of register ranges to dump depending on the
2606 	 * adapter chip type.
2607 	 */
2608 	switch (chip_version) {
2609 	case CHELSIO_T4:
2610 		if (adap->flags & IS_VF) {
2611 			reg_ranges = t4vf_reg_ranges;
2612 			reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges);
2613 		} else {
2614 			reg_ranges = t4_reg_ranges;
2615 			reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2616 		}
2617 		break;
2618 
2619 	case CHELSIO_T5:
2620 		if (adap->flags & IS_VF) {
2621 			reg_ranges = t5vf_reg_ranges;
2622 			reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges);
2623 		} else {
2624 			reg_ranges = t5_reg_ranges;
2625 			reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2626 		}
2627 		break;
2628 
2629 	case CHELSIO_T6:
2630 		if (adap->flags & IS_VF) {
2631 			reg_ranges = t6vf_reg_ranges;
2632 			reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges);
2633 		} else {
2634 			reg_ranges = t6_reg_ranges;
2635 			reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2636 		}
2637 		break;
2638 
2639 	default:
2640 		CH_ERR(adap,
2641 			"Unsupported chip version %d\n", chip_version);
2642 		return;
2643 	}
2644 
2645 	/*
2646 	 * Clear the register buffer and insert the appropriate register
2647 	 * values selected by the above register ranges.
2648 	 */
2649 	memset(buf, 0, buf_size);
2650 	for (range = 0; range < reg_ranges_size; range += 2) {
2651 		unsigned int reg = reg_ranges[range];
2652 		unsigned int last_reg = reg_ranges[range + 1];
2653 		u32 *bufp = (u32 *)(buf + reg);
2654 
2655 		/*
2656 		 * Iterate across the register range filling in the register
2657 		 * buffer but don't write past the end of the register buffer.
2658 		 */
2659 		while (reg <= last_reg && bufp < buf_end) {
2660 			*bufp++ = t4_read_reg(adap, reg);
2661 			reg += sizeof(u32);
2662 		}
2663 	}
2664 }
2665 
2666 /*
2667  * Partial EEPROM Vital Product Data structure.  The VPD starts with one ID
2668  * header followed by one or more VPD-R sections, each with its own header.
2669  */
2670 struct t4_vpd_hdr {
2671 	u8  id_tag;
2672 	u8  id_len[2];
2673 	u8  id_data[ID_LEN];
2674 };
2675 
2676 struct t4_vpdr_hdr {
2677 	u8  vpdr_tag;
2678 	u8  vpdr_len[2];
2679 };
2680 
2681 /*
2682  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
2683  */
2684 #define EEPROM_DELAY		10		/* 10us per poll spin */
2685 #define EEPROM_MAX_POLL		5000		/* x 5000 == 50ms */
2686 
2687 #define EEPROM_STAT_ADDR	0x7bfc
2688 #define VPD_SIZE		0x800
2689 #define VPD_BASE		0x400
2690 #define VPD_BASE_OLD		0
2691 #define VPD_LEN			1024
2692 #define VPD_INFO_FLD_HDR_SIZE	3
2693 #define CHELSIO_VPD_UNIQUE_ID	0x82
2694 
2695 /*
2696  * Small utility function to wait till any outstanding VPD Access is complete.
2697  * We have a per-adapter state variable "VPD Busy" to indicate when we have a
2698  * VPD Access in flight.  This allows us to handle the problem of having a
2699  * previous VPD Access time out and prevent an attempt to inject a new VPD
2700  * Request before any in-flight VPD reguest has completed.
2701  */
2702 static int t4_seeprom_wait(struct adapter *adapter)
2703 {
2704 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2705 	int max_poll;
2706 
2707 	/*
2708 	 * If no VPD Access is in flight, we can just return success right
2709 	 * away.
2710 	 */
2711 	if (!adapter->vpd_busy)
2712 		return 0;
2713 
2714 	/*
2715 	 * Poll the VPD Capability Address/Flag register waiting for it
2716 	 * to indicate that the operation is complete.
2717 	 */
2718 	max_poll = EEPROM_MAX_POLL;
2719 	do {
2720 		u16 val;
2721 
2722 		udelay(EEPROM_DELAY);
2723 		t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
2724 
2725 		/*
2726 		 * If the operation is complete, mark the VPD as no longer
2727 		 * busy and return success.
2728 		 */
2729 		if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
2730 			adapter->vpd_busy = 0;
2731 			return 0;
2732 		}
2733 	} while (--max_poll);
2734 
2735 	/*
2736 	 * Failure!  Note that we leave the VPD Busy status set in order to
2737 	 * avoid pushing a new VPD Access request into the VPD Capability till
2738 	 * the current operation eventually succeeds.  It's a bug to issue a
2739 	 * new request when an existing request is in flight and will result
2740 	 * in corrupt hardware state.
2741 	 */
2742 	return -ETIMEDOUT;
2743 }
2744 
2745 /**
2746  *	t4_seeprom_read - read a serial EEPROM location
2747  *	@adapter: adapter to read
2748  *	@addr: EEPROM virtual address
2749  *	@data: where to store the read data
2750  *
2751  *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
2752  *	VPD capability.  Note that this function must be called with a virtual
2753  *	address.
2754  */
2755 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2756 {
2757 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2758 	int ret;
2759 
2760 	/*
2761 	 * VPD Accesses must alway be 4-byte aligned!
2762 	 */
2763 	if (addr >= EEPROMVSIZE || (addr & 3))
2764 		return -EINVAL;
2765 
2766 	/*
2767 	 * Wait for any previous operation which may still be in flight to
2768 	 * complete.
2769 	 */
2770 	ret = t4_seeprom_wait(adapter);
2771 	if (ret) {
2772 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2773 		return ret;
2774 	}
2775 
2776 	/*
2777 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2778 	 * for our request to complete.  If it doesn't complete, note the
2779 	 * error and return it to our caller.  Note that we do not reset the
2780 	 * VPD Busy status!
2781 	 */
2782 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2783 	adapter->vpd_busy = 1;
2784 	adapter->vpd_flag = PCI_VPD_ADDR_F;
2785 	ret = t4_seeprom_wait(adapter);
2786 	if (ret) {
2787 		CH_ERR(adapter, "VPD read of address %#x failed\n", addr);
2788 		return ret;
2789 	}
2790 
2791 	/*
2792 	 * Grab the returned data, swizzle it into our endianness and
2793 	 * return success.
2794 	 */
2795 	t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2796 	*data = le32_to_cpu(*data);
2797 	return 0;
2798 }
2799 
2800 /**
2801  *	t4_seeprom_write - write a serial EEPROM location
2802  *	@adapter: adapter to write
2803  *	@addr: virtual EEPROM address
2804  *	@data: value to write
2805  *
2806  *	Write a 32-bit word to a location in serial EEPROM using the card's PCI
2807  *	VPD capability.  Note that this function must be called with a virtual
2808  *	address.
2809  */
2810 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2811 {
2812 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2813 	int ret;
2814 	u32 stats_reg;
2815 	int max_poll;
2816 
2817 	/*
2818 	 * VPD Accesses must alway be 4-byte aligned!
2819 	 */
2820 	if (addr >= EEPROMVSIZE || (addr & 3))
2821 		return -EINVAL;
2822 
2823 	/*
2824 	 * Wait for any previous operation which may still be in flight to
2825 	 * complete.
2826 	 */
2827 	ret = t4_seeprom_wait(adapter);
2828 	if (ret) {
2829 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2830 		return ret;
2831 	}
2832 
2833 	/*
2834 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2835 	 * for our request to complete.  If it doesn't complete, note the
2836 	 * error and return it to our caller.  Note that we do not reset the
2837 	 * VPD Busy status!
2838 	 */
2839 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2840 				 cpu_to_le32(data));
2841 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2842 				 (u16)addr | PCI_VPD_ADDR_F);
2843 	adapter->vpd_busy = 1;
2844 	adapter->vpd_flag = 0;
2845 	ret = t4_seeprom_wait(adapter);
2846 	if (ret) {
2847 		CH_ERR(adapter, "VPD write of address %#x failed\n", addr);
2848 		return ret;
2849 	}
2850 
2851 	/*
2852 	 * Reset PCI_VPD_DATA register after a transaction and wait for our
2853 	 * request to complete. If it doesn't complete, return error.
2854 	 */
2855 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2856 	max_poll = EEPROM_MAX_POLL;
2857 	do {
2858 		udelay(EEPROM_DELAY);
2859 		t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2860 	} while ((stats_reg & 0x1) && --max_poll);
2861 	if (!max_poll)
2862 		return -ETIMEDOUT;
2863 
2864 	/* Return success! */
2865 	return 0;
2866 }
2867 
2868 /**
2869  *	t4_eeprom_ptov - translate a physical EEPROM address to virtual
2870  *	@phys_addr: the physical EEPROM address
2871  *	@fn: the PCI function number
2872  *	@sz: size of function-specific area
2873  *
2874  *	Translate a physical EEPROM address to virtual.  The first 1K is
2875  *	accessed through virtual addresses starting at 31K, the rest is
2876  *	accessed through virtual addresses starting at 0.
2877  *
2878  *	The mapping is as follows:
2879  *	[0..1K) -> [31K..32K)
2880  *	[1K..1K+A) -> [ES-A..ES)
2881  *	[1K+A..ES) -> [0..ES-A-1K)
2882  *
2883  *	where A = @fn * @sz, and ES = EEPROM size.
2884  */
2885 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2886 {
2887 	fn *= sz;
2888 	if (phys_addr < 1024)
2889 		return phys_addr + (31 << 10);
2890 	if (phys_addr < 1024 + fn)
2891 		return EEPROMSIZE - fn + phys_addr - 1024;
2892 	if (phys_addr < EEPROMSIZE)
2893 		return phys_addr - 1024 - fn;
2894 	return -EINVAL;
2895 }
2896 
2897 /**
2898  *	t4_seeprom_wp - enable/disable EEPROM write protection
2899  *	@adapter: the adapter
2900  *	@enable: whether to enable or disable write protection
2901  *
2902  *	Enables or disables write protection on the serial EEPROM.
2903  */
2904 int t4_seeprom_wp(struct adapter *adapter, int enable)
2905 {
2906 	return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2907 }
2908 
2909 /**
2910  *	get_vpd_keyword_val - Locates an information field keyword in the VPD
2911  *	@vpd: Pointer to buffered vpd data structure
2912  *	@kw: The keyword to search for
2913  *	@region: VPD region to search (starting from 0)
2914  *
2915  *	Returns the value of the information field keyword or
2916  *	-ENOENT otherwise.
2917  */
2918 static int get_vpd_keyword_val(const u8 *vpd, const char *kw, int region)
2919 {
2920 	int i, tag;
2921 	unsigned int offset, len;
2922 	const struct t4_vpdr_hdr *vpdr;
2923 
2924 	offset = sizeof(struct t4_vpd_hdr);
2925 	vpdr = (const void *)(vpd + offset);
2926 	tag = vpdr->vpdr_tag;
2927 	len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2928 	while (region--) {
2929 		offset += sizeof(struct t4_vpdr_hdr) + len;
2930 		vpdr = (const void *)(vpd + offset);
2931 		if (++tag != vpdr->vpdr_tag)
2932 			return -ENOENT;
2933 		len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2934 	}
2935 	offset += sizeof(struct t4_vpdr_hdr);
2936 
2937 	if (offset + len > VPD_LEN) {
2938 		return -ENOENT;
2939 	}
2940 
2941 	for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
2942 		if (memcmp(vpd + i , kw , 2) == 0){
2943 			i += VPD_INFO_FLD_HDR_SIZE;
2944 			return i;
2945 		}
2946 
2947 		i += VPD_INFO_FLD_HDR_SIZE + vpd[i+2];
2948 	}
2949 
2950 	return -ENOENT;
2951 }
2952 
2953 
2954 /**
2955  *	get_vpd_params - read VPD parameters from VPD EEPROM
2956  *	@adapter: adapter to read
2957  *	@p: where to store the parameters
2958  *	@vpd: caller provided temporary space to read the VPD into
2959  *
2960  *	Reads card parameters stored in VPD EEPROM.
2961  */
2962 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p,
2963     u32 *buf)
2964 {
2965 	int i, ret, addr;
2966 	int ec, sn, pn, na, md;
2967 	u8 csum;
2968 	const u8 *vpd = (const u8 *)buf;
2969 
2970 	/*
2971 	 * Card information normally starts at VPD_BASE but early cards had
2972 	 * it at 0.
2973 	 */
2974 	ret = t4_seeprom_read(adapter, VPD_BASE, buf);
2975 	if (ret)
2976 		return (ret);
2977 
2978 	/*
2979 	 * The VPD shall have a unique identifier specified by the PCI SIG.
2980 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2981 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2982 	 * is expected to automatically put this entry at the
2983 	 * beginning of the VPD.
2984 	 */
2985 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2986 
2987 	for (i = 0; i < VPD_LEN; i += 4) {
2988 		ret = t4_seeprom_read(adapter, addr + i, buf++);
2989 		if (ret)
2990 			return ret;
2991 	}
2992 
2993 #define FIND_VPD_KW(var,name) do { \
2994 	var = get_vpd_keyword_val(vpd, name, 0); \
2995 	if (var < 0) { \
2996 		CH_ERR(adapter, "missing VPD keyword " name "\n"); \
2997 		return -EINVAL; \
2998 	} \
2999 } while (0)
3000 
3001 	FIND_VPD_KW(i, "RV");
3002 	for (csum = 0; i >= 0; i--)
3003 		csum += vpd[i];
3004 
3005 	if (csum) {
3006 		CH_ERR(adapter,
3007 			"corrupted VPD EEPROM, actual csum %u\n", csum);
3008 		return -EINVAL;
3009 	}
3010 
3011 	FIND_VPD_KW(ec, "EC");
3012 	FIND_VPD_KW(sn, "SN");
3013 	FIND_VPD_KW(pn, "PN");
3014 	FIND_VPD_KW(na, "NA");
3015 #undef FIND_VPD_KW
3016 
3017 	memcpy(p->id, vpd + offsetof(struct t4_vpd_hdr, id_data), ID_LEN);
3018 	strstrip(p->id);
3019 	memcpy(p->ec, vpd + ec, EC_LEN);
3020 	strstrip(p->ec);
3021 	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
3022 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
3023 	strstrip(p->sn);
3024 	i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
3025 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
3026 	strstrip((char *)p->pn);
3027 	i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
3028 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
3029 	strstrip((char *)p->na);
3030 
3031 	md = get_vpd_keyword_val(vpd, "VF", 1);
3032 	if (md < 0) {
3033 		snprintf(p->md, sizeof(p->md), "unknown");
3034 	} else {
3035 		i = vpd[md - VPD_INFO_FLD_HDR_SIZE + 2];
3036 		memcpy(p->md, vpd + md, min(i, MD_LEN));
3037 	}
3038 
3039 	return 0;
3040 }
3041 
3042 /* serial flash and firmware constants and flash config file constants */
3043 enum {
3044 	SF_ATTEMPTS = 10,	/* max retries for SF operations */
3045 
3046 	/* flash command opcodes */
3047 	SF_PROG_PAGE    = 2,	/* program 256B page */
3048 	SF_WR_DISABLE   = 4,	/* disable writes */
3049 	SF_RD_STATUS    = 5,	/* read status register */
3050 	SF_WR_ENABLE    = 6,	/* enable writes */
3051 	SF_RD_DATA_FAST = 0xb,	/* read flash */
3052 	SF_RD_ID	= 0x9f,	/* read ID */
3053 	SF_ERASE_SECTOR = 0xd8,	/* erase 64KB sector */
3054 };
3055 
3056 /**
3057  *	sf1_read - read data from the serial flash
3058  *	@adapter: the adapter
3059  *	@byte_cnt: number of bytes to read
3060  *	@cont: whether another operation will be chained
3061  *	@lock: whether to lock SF for PL access only
3062  *	@valp: where to store the read data
3063  *
3064  *	Reads up to 4 bytes of data from the serial flash.  The location of
3065  *	the read needs to be specified prior to calling this by issuing the
3066  *	appropriate commands to the serial flash.
3067  */
3068 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
3069 		    int lock, u32 *valp)
3070 {
3071 	int ret;
3072 
3073 	if (!byte_cnt || byte_cnt > 4)
3074 		return -EINVAL;
3075 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3076 		return -EBUSY;
3077 	t4_write_reg(adapter, A_SF_OP,
3078 		     V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
3079 	ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3080 	if (!ret)
3081 		*valp = t4_read_reg(adapter, A_SF_DATA);
3082 	return ret;
3083 }
3084 
3085 /**
3086  *	sf1_write - write data to the serial flash
3087  *	@adapter: the adapter
3088  *	@byte_cnt: number of bytes to write
3089  *	@cont: whether another operation will be chained
3090  *	@lock: whether to lock SF for PL access only
3091  *	@val: value to write
3092  *
3093  *	Writes up to 4 bytes of data to the serial flash.  The location of
3094  *	the write needs to be specified prior to calling this by issuing the
3095  *	appropriate commands to the serial flash.
3096  */
3097 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
3098 		     int lock, u32 val)
3099 {
3100 	if (!byte_cnt || byte_cnt > 4)
3101 		return -EINVAL;
3102 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3103 		return -EBUSY;
3104 	t4_write_reg(adapter, A_SF_DATA, val);
3105 	t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
3106 		     V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
3107 	return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3108 }
3109 
3110 /**
3111  *	flash_wait_op - wait for a flash operation to complete
3112  *	@adapter: the adapter
3113  *	@attempts: max number of polls of the status register
3114  *	@delay: delay between polls in ms
3115  *
3116  *	Wait for a flash operation to complete by polling the status register.
3117  */
3118 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3119 {
3120 	int ret;
3121 	u32 status;
3122 
3123 	while (1) {
3124 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3125 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3126 			return ret;
3127 		if (!(status & 1))
3128 			return 0;
3129 		if (--attempts == 0)
3130 			return -EAGAIN;
3131 		if (delay)
3132 			msleep(delay);
3133 	}
3134 }
3135 
3136 /**
3137  *	t4_read_flash - read words from serial flash
3138  *	@adapter: the adapter
3139  *	@addr: the start address for the read
3140  *	@nwords: how many 32-bit words to read
3141  *	@data: where to store the read data
3142  *	@byte_oriented: whether to store data as bytes or as words
3143  *
3144  *	Read the specified number of 32-bit words from the serial flash.
3145  *	If @byte_oriented is set the read data is stored as a byte array
3146  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3147  *	natural endianness.
3148  */
3149 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3150 		  unsigned int nwords, u32 *data, int byte_oriented)
3151 {
3152 	int ret;
3153 
3154 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3155 		return -EINVAL;
3156 
3157 	addr = swab32(addr) | SF_RD_DATA_FAST;
3158 
3159 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3160 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3161 		return ret;
3162 
3163 	for ( ; nwords; nwords--, data++) {
3164 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3165 		if (nwords == 1)
3166 			t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3167 		if (ret)
3168 			return ret;
3169 		if (byte_oriented)
3170 			*data = (__force __u32)(cpu_to_be32(*data));
3171 	}
3172 	return 0;
3173 }
3174 
3175 /**
3176  *	t4_write_flash - write up to a page of data to the serial flash
3177  *	@adapter: the adapter
3178  *	@addr: the start address to write
3179  *	@n: length of data to write in bytes
3180  *	@data: the data to write
3181  *	@byte_oriented: whether to store data as bytes or as words
3182  *
3183  *	Writes up to a page of data (256 bytes) to the serial flash starting
3184  *	at the given address.  All the data must be written to the same page.
3185  *	If @byte_oriented is set the write data is stored as byte stream
3186  *	(i.e. matches what on disk), otherwise in big-endian.
3187  */
3188 int t4_write_flash(struct adapter *adapter, unsigned int addr,
3189 			  unsigned int n, const u8 *data, int byte_oriented)
3190 {
3191 	int ret;
3192 	u32 buf[SF_PAGE_SIZE / 4];
3193 	unsigned int i, c, left, val, offset = addr & 0xff;
3194 
3195 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3196 		return -EINVAL;
3197 
3198 	val = swab32(addr) | SF_PROG_PAGE;
3199 
3200 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3201 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3202 		goto unlock;
3203 
3204 	for (left = n; left; left -= c) {
3205 		c = min(left, 4U);
3206 		for (val = 0, i = 0; i < c; ++i)
3207 			val = (val << 8) + *data++;
3208 
3209 		if (!byte_oriented)
3210 			val = cpu_to_be32(val);
3211 
3212 		ret = sf1_write(adapter, c, c != left, 1, val);
3213 		if (ret)
3214 			goto unlock;
3215 	}
3216 	ret = flash_wait_op(adapter, 8, 1);
3217 	if (ret)
3218 		goto unlock;
3219 
3220 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3221 
3222 	/* Read the page to verify the write succeeded */
3223 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3224 			    byte_oriented);
3225 	if (ret)
3226 		return ret;
3227 
3228 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3229 		CH_ERR(adapter,
3230 			"failed to correctly write the flash page at %#x\n",
3231 			addr);
3232 		return -EIO;
3233 	}
3234 	return 0;
3235 
3236 unlock:
3237 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3238 	return ret;
3239 }
3240 
3241 /**
3242  *	t4_get_fw_version - read the firmware version
3243  *	@adapter: the adapter
3244  *	@vers: where to place the version
3245  *
3246  *	Reads the FW version from flash.
3247  */
3248 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3249 {
3250 	return t4_read_flash(adapter, FLASH_FW_START +
3251 			     offsetof(struct fw_hdr, fw_ver), 1,
3252 			     vers, 0);
3253 }
3254 
3255 /**
3256  *	t4_get_bs_version - read the firmware bootstrap version
3257  *	@adapter: the adapter
3258  *	@vers: where to place the version
3259  *
3260  *	Reads the FW Bootstrap version from flash.
3261  */
3262 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3263 {
3264 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3265 			     offsetof(struct fw_hdr, fw_ver), 1,
3266 			     vers, 0);
3267 }
3268 
3269 /**
3270  *	t4_get_tp_version - read the TP microcode version
3271  *	@adapter: the adapter
3272  *	@vers: where to place the version
3273  *
3274  *	Reads the TP microcode version from flash.
3275  */
3276 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3277 {
3278 	return t4_read_flash(adapter, FLASH_FW_START +
3279 			     offsetof(struct fw_hdr, tp_microcode_ver),
3280 			     1, vers, 0);
3281 }
3282 
3283 /**
3284  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3285  *	@adapter: the adapter
3286  *	@vers: where to place the version
3287  *
3288  *	Reads the Expansion ROM header from FLASH and returns the version
3289  *	number (if present) through the @vers return value pointer.  We return
3290  *	this in the Firmware Version Format since it's convenient.  Return
3291  *	0 on success, -ENOENT if no Expansion ROM is present.
3292  */
3293 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3294 {
3295 	struct exprom_header {
3296 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3297 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3298 	} *hdr;
3299 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3300 					   sizeof(u32))];
3301 	int ret;
3302 
3303 	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3304 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3305 			    0);
3306 	if (ret)
3307 		return ret;
3308 
3309 	hdr = (struct exprom_header *)exprom_header_buf;
3310 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3311 		return -ENOENT;
3312 
3313 	*vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
3314 		 V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
3315 		 V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
3316 		 V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
3317 	return 0;
3318 }
3319 
3320 /**
3321  *	t4_get_scfg_version - return the Serial Configuration version
3322  *	@adapter: the adapter
3323  *	@vers: where to place the version
3324  *
3325  *	Reads the Serial Configuration Version via the Firmware interface
3326  *	(thus this can only be called once we're ready to issue Firmware
3327  *	commands).  The format of the Serial Configuration version is
3328  *	adapter specific.  Returns 0 on success, an error on failure.
3329  *
3330  *	Note that early versions of the Firmware didn't include the ability
3331  *	to retrieve the Serial Configuration version, so we zero-out the
3332  *	return-value parameter in that case to avoid leaving it with
3333  *	garbage in it.
3334  *
3335  *	Also note that the Firmware will return its cached copy of the Serial
3336  *	Initialization Revision ID, not the actual Revision ID as written in
3337  *	the Serial EEPROM.  This is only an issue if a new VPD has been written
3338  *	and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3339  *	it's best to defer calling this routine till after a FW_RESET_CMD has
3340  *	been issued if the Host Driver will be performing a full adapter
3341  *	initialization.
3342  */
3343 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3344 {
3345 	u32 scfgrev_param;
3346 	int ret;
3347 
3348 	scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3349 			 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV));
3350 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3351 			      1, &scfgrev_param, vers);
3352 	if (ret)
3353 		*vers = 0;
3354 	return ret;
3355 }
3356 
3357 /**
3358  *	t4_get_vpd_version - return the VPD version
3359  *	@adapter: the adapter
3360  *	@vers: where to place the version
3361  *
3362  *	Reads the VPD via the Firmware interface (thus this can only be called
3363  *	once we're ready to issue Firmware commands).  The format of the
3364  *	VPD version is adapter specific.  Returns 0 on success, an error on
3365  *	failure.
3366  *
3367  *	Note that early versions of the Firmware didn't include the ability
3368  *	to retrieve the VPD version, so we zero-out the return-value parameter
3369  *	in that case to avoid leaving it with garbage in it.
3370  *
3371  *	Also note that the Firmware will return its cached copy of the VPD
3372  *	Revision ID, not the actual Revision ID as written in the Serial
3373  *	EEPROM.  This is only an issue if a new VPD has been written and the
3374  *	Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3375  *	to defer calling this routine till after a FW_RESET_CMD has been issued
3376  *	if the Host Driver will be performing a full adapter initialization.
3377  */
3378 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3379 {
3380 	u32 vpdrev_param;
3381 	int ret;
3382 
3383 	vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3384 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV));
3385 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3386 			      1, &vpdrev_param, vers);
3387 	if (ret)
3388 		*vers = 0;
3389 	return ret;
3390 }
3391 
3392 /**
3393  *	t4_get_version_info - extract various chip/firmware version information
3394  *	@adapter: the adapter
3395  *
3396  *	Reads various chip/firmware version numbers and stores them into the
3397  *	adapter Adapter Parameters structure.  If any of the efforts fails
3398  *	the first failure will be returned, but all of the version numbers
3399  *	will be read.
3400  */
3401 int t4_get_version_info(struct adapter *adapter)
3402 {
3403 	int ret = 0;
3404 
3405 	#define FIRST_RET(__getvinfo) \
3406 	do { \
3407 		int __ret = __getvinfo; \
3408 		if (__ret && !ret) \
3409 			ret = __ret; \
3410 	} while (0)
3411 
3412 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3413 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3414 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3415 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3416 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3417 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3418 
3419 	#undef FIRST_RET
3420 
3421 	return ret;
3422 }
3423 
3424 /**
3425  *	t4_flash_erase_sectors - erase a range of flash sectors
3426  *	@adapter: the adapter
3427  *	@start: the first sector to erase
3428  *	@end: the last sector to erase
3429  *
3430  *	Erases the sectors in the given inclusive range.
3431  */
3432 int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3433 {
3434 	int ret = 0;
3435 
3436 	if (end >= adapter->params.sf_nsec)
3437 		return -EINVAL;
3438 
3439 	while (start <= end) {
3440 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3441 		    (ret = sf1_write(adapter, 4, 0, 1,
3442 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3443 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3444 			CH_ERR(adapter,
3445 				"erase of flash sector %d failed, error %d\n",
3446 				start, ret);
3447 			break;
3448 		}
3449 		start++;
3450 	}
3451 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3452 	return ret;
3453 }
3454 
3455 /**
3456  *	t4_flash_cfg_addr - return the address of the flash configuration file
3457  *	@adapter: the adapter
3458  *
3459  *	Return the address within the flash where the Firmware Configuration
3460  *	File is stored, or an error if the device FLASH is too small to contain
3461  *	a Firmware Configuration File.
3462  */
3463 int t4_flash_cfg_addr(struct adapter *adapter)
3464 {
3465 	/*
3466 	 * If the device FLASH isn't large enough to hold a Firmware
3467 	 * Configuration File, return an error.
3468 	 */
3469 	if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
3470 		return -ENOSPC;
3471 
3472 	return FLASH_CFG_START;
3473 }
3474 
3475 /*
3476  * Return TRUE if the specified firmware matches the adapter.  I.e. T4
3477  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3478  * and emit an error message for mismatched firmware to save our caller the
3479  * effort ...
3480  */
3481 static int t4_fw_matches_chip(struct adapter *adap,
3482 			      const struct fw_hdr *hdr)
3483 {
3484 	/*
3485 	 * The expression below will return FALSE for any unsupported adapter
3486 	 * which will keep us "honest" in the future ...
3487 	 */
3488 	if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) ||
3489 	    (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) ||
3490 	    (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6))
3491 		return 1;
3492 
3493 	CH_ERR(adap,
3494 		"FW image (%d) is not suitable for this adapter (%d)\n",
3495 		hdr->chip, chip_id(adap));
3496 	return 0;
3497 }
3498 
3499 /**
3500  *	t4_load_fw - download firmware
3501  *	@adap: the adapter
3502  *	@fw_data: the firmware image to write
3503  *	@size: image size
3504  *
3505  *	Write the supplied firmware image to the card's serial flash.
3506  */
3507 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3508 {
3509 	u32 csum;
3510 	int ret, addr;
3511 	unsigned int i;
3512 	u8 first_page[SF_PAGE_SIZE];
3513 	const u32 *p = (const u32 *)fw_data;
3514 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3515 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3516 	unsigned int fw_start_sec;
3517 	unsigned int fw_start;
3518 	unsigned int fw_size;
3519 
3520 	if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) {
3521 		fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC;
3522 		fw_start = FLASH_FWBOOTSTRAP_START;
3523 		fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE;
3524 	} else {
3525 		fw_start_sec = FLASH_FW_START_SEC;
3526  		fw_start = FLASH_FW_START;
3527 		fw_size = FLASH_FW_MAX_SIZE;
3528 	}
3529 
3530 	if (!size) {
3531 		CH_ERR(adap, "FW image has no data\n");
3532 		return -EINVAL;
3533 	}
3534 	if (size & 511) {
3535 		CH_ERR(adap,
3536 			"FW image size not multiple of 512 bytes\n");
3537 		return -EINVAL;
3538 	}
3539 	if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) {
3540 		CH_ERR(adap,
3541 			"FW image size differs from size in FW header\n");
3542 		return -EINVAL;
3543 	}
3544 	if (size > fw_size) {
3545 		CH_ERR(adap, "FW image too large, max is %u bytes\n",
3546 			fw_size);
3547 		return -EFBIG;
3548 	}
3549 	if (!t4_fw_matches_chip(adap, hdr))
3550 		return -EINVAL;
3551 
3552 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3553 		csum += be32_to_cpu(p[i]);
3554 
3555 	if (csum != 0xffffffff) {
3556 		CH_ERR(adap,
3557 			"corrupted firmware image, checksum %#x\n", csum);
3558 		return -EINVAL;
3559 	}
3560 
3561 	i = DIV_ROUND_UP(size, sf_sec_size);	/* # of sectors spanned */
3562 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3563 	if (ret)
3564 		goto out;
3565 
3566 	/*
3567 	 * We write the correct version at the end so the driver can see a bad
3568 	 * version if the FW write fails.  Start by writing a copy of the
3569 	 * first page with a bad version.
3570 	 */
3571 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3572 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3573 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
3574 	if (ret)
3575 		goto out;
3576 
3577 	addr = fw_start;
3578 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3579 		addr += SF_PAGE_SIZE;
3580 		fw_data += SF_PAGE_SIZE;
3581 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
3582 		if (ret)
3583 			goto out;
3584 	}
3585 
3586 	ret = t4_write_flash(adap,
3587 			     fw_start + offsetof(struct fw_hdr, fw_ver),
3588 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
3589 out:
3590 	if (ret)
3591 		CH_ERR(adap, "firmware download failed, error %d\n",
3592 			ret);
3593 	return ret;
3594 }
3595 
3596 /**
3597  *	t4_fwcache - firmware cache operation
3598  *	@adap: the adapter
3599  *	@op  : the operation (flush or flush and invalidate)
3600  */
3601 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3602 {
3603 	struct fw_params_cmd c;
3604 
3605 	memset(&c, 0, sizeof(c));
3606 	c.op_to_vfn =
3607 	    cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3608 			    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3609 				V_FW_PARAMS_CMD_PFN(adap->pf) |
3610 				V_FW_PARAMS_CMD_VFN(0));
3611 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3612 	c.param[0].mnem =
3613 	    cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3614 			    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE));
3615 	c.param[0].val = (__force __be32)op;
3616 
3617 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3618 }
3619 
3620 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3621 			unsigned int *pif_req_wrptr,
3622 			unsigned int *pif_rsp_wrptr)
3623 {
3624 	int i, j;
3625 	u32 cfg, val, req, rsp;
3626 
3627 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3628 	if (cfg & F_LADBGEN)
3629 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3630 
3631 	val = t4_read_reg(adap, A_CIM_DEBUGSTS);
3632 	req = G_POLADBGWRPTR(val);
3633 	rsp = G_PILADBGWRPTR(val);
3634 	if (pif_req_wrptr)
3635 		*pif_req_wrptr = req;
3636 	if (pif_rsp_wrptr)
3637 		*pif_rsp_wrptr = rsp;
3638 
3639 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3640 		for (j = 0; j < 6; j++) {
3641 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
3642 				     V_PILADBGRDPTR(rsp));
3643 			*pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
3644 			*pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
3645 			req++;
3646 			rsp++;
3647 		}
3648 		req = (req + 2) & M_POLADBGRDPTR;
3649 		rsp = (rsp + 2) & M_PILADBGRDPTR;
3650 	}
3651 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3652 }
3653 
3654 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3655 {
3656 	u32 cfg;
3657 	int i, j, idx;
3658 
3659 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3660 	if (cfg & F_LADBGEN)
3661 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3662 
3663 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3664 		for (j = 0; j < 5; j++) {
3665 			idx = 8 * i + j;
3666 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
3667 				     V_PILADBGRDPTR(idx));
3668 			*ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
3669 			*ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
3670 		}
3671 	}
3672 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3673 }
3674 
3675 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3676 {
3677 	unsigned int i, j;
3678 
3679 	for (i = 0; i < 8; i++) {
3680 		u32 *p = la_buf + i;
3681 
3682 		t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
3683 		j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
3684 		t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
3685 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3686 			*p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
3687 	}
3688 }
3689 
3690 /**
3691  *	t4_link_l1cfg - apply link configuration to MAC/PHY
3692  *	@phy: the PHY to setup
3693  *	@mac: the MAC to setup
3694  *	@lc: the requested link configuration
3695  *
3696  *	Set up a port's MAC and PHY according to a desired link configuration.
3697  *	- If the PHY can auto-negotiate first decide what to advertise, then
3698  *	  enable/disable auto-negotiation as desired, and reset.
3699  *	- If the PHY does not auto-negotiate just reset it.
3700  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3701  *	  otherwise do it later based on the outcome of auto-negotiation.
3702  */
3703 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3704 		  struct link_config *lc)
3705 {
3706 	struct fw_port_cmd c;
3707 	unsigned int mdi = V_FW_PORT_CAP_MDI(FW_PORT_CAP_MDI_AUTO);
3708 	unsigned int aneg, fc, fec, speed, rcap;
3709 
3710 	fc = 0;
3711 	if (lc->requested_fc & PAUSE_RX)
3712 		fc |= FW_PORT_CAP_FC_RX;
3713 	if (lc->requested_fc & PAUSE_TX)
3714 		fc |= FW_PORT_CAP_FC_TX;
3715 
3716 	fec = 0;
3717 	if (lc->requested_fec & FEC_RS)
3718 		fec = FW_PORT_CAP_FEC_RS;
3719 	else if (lc->requested_fec & FEC_BASER_RS)
3720 		fec = FW_PORT_CAP_FEC_BASER_RS;
3721 	else if (lc->requested_fec & FEC_RESERVED)
3722 		fec = FW_PORT_CAP_FEC_RESERVED;
3723 
3724 	if (!(lc->supported & FW_PORT_CAP_ANEG) ||
3725 	    lc->requested_aneg == AUTONEG_DISABLE) {
3726 		aneg = 0;
3727 		switch (lc->requested_speed) {
3728 		case 100:
3729 			speed = FW_PORT_CAP_SPEED_100G;
3730 			break;
3731 		case 40:
3732 			speed = FW_PORT_CAP_SPEED_40G;
3733 			break;
3734 		case 25:
3735 			speed = FW_PORT_CAP_SPEED_25G;
3736 			break;
3737 		case 10:
3738 			speed = FW_PORT_CAP_SPEED_10G;
3739 			break;
3740 		case 1:
3741 			speed = FW_PORT_CAP_SPEED_1G;
3742 			break;
3743 		default:
3744 			return -EINVAL;
3745 			break;
3746 		}
3747 	} else {
3748 		aneg = FW_PORT_CAP_ANEG;
3749 		speed = lc->supported &
3750 		    V_FW_PORT_CAP_SPEED(M_FW_PORT_CAP_SPEED);
3751 	}
3752 
3753 	rcap = aneg | speed | fc | fec;
3754 	if ((rcap | lc->supported) != lc->supported) {
3755 #ifdef INVARIANTS
3756 		CH_WARN(adap, "rcap 0x%08x, pcap 0x%08x\n", rcap,
3757 		    lc->supported);
3758 #endif
3759 		rcap &= lc->supported;
3760 	}
3761 	rcap |= mdi;
3762 
3763 	memset(&c, 0, sizeof(c));
3764 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3765 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3766 				     V_FW_PORT_CMD_PORTID(port));
3767 	c.action_to_len16 =
3768 		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3769 			    FW_LEN16(c));
3770 	c.u.l1cfg.rcap = cpu_to_be32(rcap);
3771 
3772 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
3773 }
3774 
3775 /**
3776  *	t4_restart_aneg - restart autonegotiation
3777  *	@adap: the adapter
3778  *	@mbox: mbox to use for the FW command
3779  *	@port: the port id
3780  *
3781  *	Restarts autonegotiation for the selected port.
3782  */
3783 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3784 {
3785 	struct fw_port_cmd c;
3786 
3787 	memset(&c, 0, sizeof(c));
3788 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3789 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3790 				     V_FW_PORT_CMD_PORTID(port));
3791 	c.action_to_len16 =
3792 		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3793 			    FW_LEN16(c));
3794 	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3795 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3796 }
3797 
3798 typedef void (*int_handler_t)(struct adapter *adap);
3799 
3800 struct intr_info {
3801 	unsigned int mask;	/* bits to check in interrupt status */
3802 	const char *msg;	/* message to print or NULL */
3803 	short stat_idx;		/* stat counter to increment or -1 */
3804 	unsigned short fatal;	/* whether the condition reported is fatal */
3805 	int_handler_t int_handler;	/* platform-specific int handler */
3806 };
3807 
3808 /**
3809  *	t4_handle_intr_status - table driven interrupt handler
3810  *	@adapter: the adapter that generated the interrupt
3811  *	@reg: the interrupt status register to process
3812  *	@acts: table of interrupt actions
3813  *
3814  *	A table driven interrupt handler that applies a set of masks to an
3815  *	interrupt status word and performs the corresponding actions if the
3816  *	interrupts described by the mask have occurred.  The actions include
3817  *	optionally emitting a warning or alert message.  The table is terminated
3818  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
3819  *	conditions.
3820  */
3821 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
3822 				 const struct intr_info *acts)
3823 {
3824 	int fatal = 0;
3825 	unsigned int mask = 0;
3826 	unsigned int status = t4_read_reg(adapter, reg);
3827 
3828 	for ( ; acts->mask; ++acts) {
3829 		if (!(status & acts->mask))
3830 			continue;
3831 		if (acts->fatal) {
3832 			fatal++;
3833 			CH_ALERT(adapter, "%s (0x%x)\n", acts->msg,
3834 				  status & acts->mask);
3835 		} else if (acts->msg)
3836 			CH_WARN_RATELIMIT(adapter, "%s (0x%x)\n", acts->msg,
3837 				 status & acts->mask);
3838 		if (acts->int_handler)
3839 			acts->int_handler(adapter);
3840 		mask |= acts->mask;
3841 	}
3842 	status &= mask;
3843 	if (status)	/* clear processed interrupts */
3844 		t4_write_reg(adapter, reg, status);
3845 	return fatal;
3846 }
3847 
3848 /*
3849  * Interrupt handler for the PCIE module.
3850  */
3851 static void pcie_intr_handler(struct adapter *adapter)
3852 {
3853 	static const struct intr_info sysbus_intr_info[] = {
3854 		{ F_RNPP, "RXNP array parity error", -1, 1 },
3855 		{ F_RPCP, "RXPC array parity error", -1, 1 },
3856 		{ F_RCIP, "RXCIF array parity error", -1, 1 },
3857 		{ F_RCCP, "Rx completions control array parity error", -1, 1 },
3858 		{ F_RFTP, "RXFT array parity error", -1, 1 },
3859 		{ 0 }
3860 	};
3861 	static const struct intr_info pcie_port_intr_info[] = {
3862 		{ F_TPCP, "TXPC array parity error", -1, 1 },
3863 		{ F_TNPP, "TXNP array parity error", -1, 1 },
3864 		{ F_TFTP, "TXFT array parity error", -1, 1 },
3865 		{ F_TCAP, "TXCA array parity error", -1, 1 },
3866 		{ F_TCIP, "TXCIF array parity error", -1, 1 },
3867 		{ F_RCAP, "RXCA array parity error", -1, 1 },
3868 		{ F_OTDD, "outbound request TLP discarded", -1, 1 },
3869 		{ F_RDPE, "Rx data parity error", -1, 1 },
3870 		{ F_TDUE, "Tx uncorrectable data error", -1, 1 },
3871 		{ 0 }
3872 	};
3873 	static const struct intr_info pcie_intr_info[] = {
3874 		{ F_MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
3875 		{ F_MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
3876 		{ F_MSIDATAPERR, "MSI data parity error", -1, 1 },
3877 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
3878 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
3879 		{ F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
3880 		{ F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
3881 		{ F_PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
3882 		{ F_PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
3883 		{ F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
3884 		{ F_CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
3885 		{ F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
3886 		{ F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
3887 		{ F_DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
3888 		{ F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
3889 		{ F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
3890 		{ F_HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
3891 		{ F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
3892 		{ F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
3893 		{ F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
3894 		{ F_FIDPERR, "PCI FID parity error", -1, 1 },
3895 		{ F_INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
3896 		{ F_MATAGPERR, "PCI MA tag parity error", -1, 1 },
3897 		{ F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
3898 		{ F_RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
3899 		{ F_RXWRPERR, "PCI Rx write parity error", -1, 1 },
3900 		{ F_RPLPERR, "PCI replay buffer parity error", -1, 1 },
3901 		{ F_PCIESINT, "PCI core secondary fault", -1, 1 },
3902 		{ F_PCIEPINT, "PCI core primary fault", -1, 1 },
3903 		{ F_UNXSPLCPLERR, "PCI unexpected split completion error", -1,
3904 		  0 },
3905 		{ 0 }
3906 	};
3907 
3908 	static const struct intr_info t5_pcie_intr_info[] = {
3909 		{ F_MSTGRPPERR, "Master Response Read Queue parity error",
3910 		  -1, 1 },
3911 		{ F_MSTTIMEOUTPERR, "Master Timeout FIFO parity error", -1, 1 },
3912 		{ F_MSIXSTIPERR, "MSI-X STI SRAM parity error", -1, 1 },
3913 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
3914 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
3915 		{ F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
3916 		{ F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
3917 		{ F_PIOCPLGRPPERR, "PCI PIO completion Group FIFO parity error",
3918 		  -1, 1 },
3919 		{ F_PIOREQGRPPERR, "PCI PIO request Group FIFO parity error",
3920 		  -1, 1 },
3921 		{ F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
3922 		{ F_MSTTAGQPERR, "PCI master tag queue parity error", -1, 1 },
3923 		{ F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
3924 		{ F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
3925 		{ F_DREQWRPERR, "PCI DMA channel write request parity error",
3926 		  -1, 1 },
3927 		{ F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
3928 		{ F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
3929 		{ F_HREQWRPERR, "PCI HMA channel count parity error", -1, 1 },
3930 		{ F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
3931 		{ F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
3932 		{ F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
3933 		{ F_FIDPERR, "PCI FID parity error", -1, 1 },
3934 		{ F_VFIDPERR, "PCI INTx clear parity error", -1, 1 },
3935 		{ F_MAGRPPERR, "PCI MA group FIFO parity error", -1, 1 },
3936 		{ F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
3937 		{ F_IPRXHDRGRPPERR, "PCI IP Rx header group parity error",
3938 		  -1, 1 },
3939 		{ F_IPRXDATAGRPPERR, "PCI IP Rx data group parity error",
3940 		  -1, 1 },
3941 		{ F_RPLPERR, "PCI IP replay buffer parity error", -1, 1 },
3942 		{ F_IPSOTPERR, "PCI IP SOT buffer parity error", -1, 1 },
3943 		{ F_TRGT1GRPPERR, "PCI TRGT1 group FIFOs parity error", -1, 1 },
3944 		{ F_READRSPERR, "Outbound read error", -1,
3945 		  0 },
3946 		{ 0 }
3947 	};
3948 
3949 	int fat;
3950 
3951 	if (is_t4(adapter))
3952 		fat = t4_handle_intr_status(adapter,
3953 				A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
3954 				sysbus_intr_info) +
3955 			t4_handle_intr_status(adapter,
3956 					A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
3957 					pcie_port_intr_info) +
3958 			t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
3959 					      pcie_intr_info);
3960 	else
3961 		fat = t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
3962 					    t5_pcie_intr_info);
3963 	if (fat)
3964 		t4_fatal_err(adapter);
3965 }
3966 
3967 /*
3968  * TP interrupt handler.
3969  */
3970 static void tp_intr_handler(struct adapter *adapter)
3971 {
3972 	static const struct intr_info tp_intr_info[] = {
3973 		{ 0x3fffffff, "TP parity error", -1, 1 },
3974 		{ F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
3975 		{ 0 }
3976 	};
3977 
3978 	if (t4_handle_intr_status(adapter, A_TP_INT_CAUSE, tp_intr_info))
3979 		t4_fatal_err(adapter);
3980 }
3981 
3982 /*
3983  * SGE interrupt handler.
3984  */
3985 static void sge_intr_handler(struct adapter *adapter)
3986 {
3987 	u64 v;
3988 	u32 err;
3989 
3990 	static const struct intr_info sge_intr_info[] = {
3991 		{ F_ERR_CPL_EXCEED_IQE_SIZE,
3992 		  "SGE received CPL exceeding IQE size", -1, 1 },
3993 		{ F_ERR_INVALID_CIDX_INC,
3994 		  "SGE GTS CIDX increment too large", -1, 0 },
3995 		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
3996 		{ F_DBFIFO_LP_INT, NULL, -1, 0, t4_db_full },
3997 		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
3998 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
3999 		{ F_ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
4000 		  0 },
4001 		{ F_ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
4002 		  0 },
4003 		{ F_ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
4004 		  0 },
4005 		{ F_ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
4006 		  0 },
4007 		{ F_ERR_ING_CTXT_PRIO,
4008 		  "SGE too many priority ingress contexts", -1, 0 },
4009 		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
4010 		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
4011 		{ F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 |
4012 		  F_ERR_PCIE_ERROR2 | F_ERR_PCIE_ERROR3,
4013 		  "SGE PCIe error for a DBP thread", -1, 0 },
4014 		{ 0 }
4015 	};
4016 
4017 	static const struct intr_info t4t5_sge_intr_info[] = {
4018 		{ F_ERR_DROPPED_DB, NULL, -1, 0, t4_db_dropped },
4019 		{ F_DBFIFO_HP_INT, NULL, -1, 0, t4_db_full },
4020 		{ F_ERR_EGR_CTXT_PRIO,
4021 		  "SGE too many priority egress contexts", -1, 0 },
4022 		{ 0 }
4023 	};
4024 
4025 	/*
4026  	* For now, treat below interrupts as fatal so that we disable SGE and
4027  	* get better debug */
4028 	static const struct intr_info t6_sge_intr_info[] = {
4029 		{ F_FATAL_WRE_LEN,
4030 		  "SGE Actual WRE packet is less than advertized length",
4031 		  -1, 1 },
4032 		{ 0 }
4033 	};
4034 
4035 	v = (u64)t4_read_reg(adapter, A_SGE_INT_CAUSE1) |
4036 		((u64)t4_read_reg(adapter, A_SGE_INT_CAUSE2) << 32);
4037 	if (v) {
4038 		CH_ALERT(adapter, "SGE parity error (%#llx)\n",
4039 				(unsigned long long)v);
4040 		t4_write_reg(adapter, A_SGE_INT_CAUSE1, v);
4041 		t4_write_reg(adapter, A_SGE_INT_CAUSE2, v >> 32);
4042 	}
4043 
4044 	v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3, sge_intr_info);
4045 	if (chip_id(adapter) <= CHELSIO_T5)
4046 		v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3,
4047 					   t4t5_sge_intr_info);
4048 	else
4049 		v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3,
4050 					   t6_sge_intr_info);
4051 
4052 	err = t4_read_reg(adapter, A_SGE_ERROR_STATS);
4053 	if (err & F_ERROR_QID_VALID) {
4054 		CH_ERR(adapter, "SGE error for queue %u\n", G_ERROR_QID(err));
4055 		if (err & F_UNCAPTURED_ERROR)
4056 			CH_ERR(adapter, "SGE UNCAPTURED_ERROR set (clearing)\n");
4057 		t4_write_reg(adapter, A_SGE_ERROR_STATS, F_ERROR_QID_VALID |
4058 			     F_UNCAPTURED_ERROR);
4059 	}
4060 
4061 	if (v != 0)
4062 		t4_fatal_err(adapter);
4063 }
4064 
4065 #define CIM_OBQ_INTR (F_OBQULP0PARERR | F_OBQULP1PARERR | F_OBQULP2PARERR |\
4066 		      F_OBQULP3PARERR | F_OBQSGEPARERR | F_OBQNCSIPARERR)
4067 #define CIM_IBQ_INTR (F_IBQTP0PARERR | F_IBQTP1PARERR | F_IBQULPPARERR |\
4068 		      F_IBQSGEHIPARERR | F_IBQSGELOPARERR | F_IBQNCSIPARERR)
4069 
4070 /*
4071  * CIM interrupt handler.
4072  */
4073 static void cim_intr_handler(struct adapter *adapter)
4074 {
4075 	static const struct intr_info cim_intr_info[] = {
4076 		{ F_PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
4077 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4078 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4079 		{ F_MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
4080 		{ F_MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
4081 		{ F_TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
4082 		{ F_TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
4083 		{ F_TIMER0INT, "CIM TIMER0 interrupt", -1, 1 },
4084 		{ 0 }
4085 	};
4086 	static const struct intr_info cim_upintr_info[] = {
4087 		{ F_RSVDSPACEINT, "CIM reserved space access", -1, 1 },
4088 		{ F_ILLTRANSINT, "CIM illegal transaction", -1, 1 },
4089 		{ F_ILLWRINT, "CIM illegal write", -1, 1 },
4090 		{ F_ILLRDINT, "CIM illegal read", -1, 1 },
4091 		{ F_ILLRDBEINT, "CIM illegal read BE", -1, 1 },
4092 		{ F_ILLWRBEINT, "CIM illegal write BE", -1, 1 },
4093 		{ F_SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
4094 		{ F_SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
4095 		{ F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
4096 		{ F_SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
4097 		{ F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
4098 		{ F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
4099 		{ F_SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
4100 		{ F_SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
4101 		{ F_BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
4102 		{ F_BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
4103 		{ F_SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
4104 		{ F_SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
4105 		{ F_BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
4106 		{ F_BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
4107 		{ F_SGLRDPLINT , "CIM single read from PL space", -1, 1 },
4108 		{ F_SGLWRPLINT , "CIM single write to PL space", -1, 1 },
4109 		{ F_BLKRDPLINT , "CIM block read from PL space", -1, 1 },
4110 		{ F_BLKWRPLINT , "CIM block write to PL space", -1, 1 },
4111 		{ F_REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
4112 		{ F_RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
4113 		{ F_TIMEOUTINT , "CIM PIF timeout", -1, 1 },
4114 		{ F_TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
4115 		{ 0 }
4116 	};
4117 	u32 val, fw_err;
4118 	int fat;
4119 
4120 	fw_err = t4_read_reg(adapter, A_PCIE_FW);
4121 	if (fw_err & F_PCIE_FW_ERR)
4122 		t4_report_fw_error(adapter);
4123 
4124 	/* When the Firmware detects an internal error which normally wouldn't
4125 	 * raise a Host Interrupt, it forces a CIM Timer0 interrupt in order
4126 	 * to make sure the Host sees the Firmware Crash.  So if we have a
4127 	 * Timer0 interrupt and don't see a Firmware Crash, ignore the Timer0
4128 	 * interrupt.
4129 	 */
4130 	val = t4_read_reg(adapter, A_CIM_HOST_INT_CAUSE);
4131 	if (val & F_TIMER0INT)
4132 		if (!(fw_err & F_PCIE_FW_ERR) ||
4133 		    (G_PCIE_FW_EVAL(fw_err) != PCIE_FW_EVAL_CRASH))
4134 			t4_write_reg(adapter, A_CIM_HOST_INT_CAUSE,
4135 				     F_TIMER0INT);
4136 
4137 	fat = t4_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE,
4138 				    cim_intr_info) +
4139 	      t4_handle_intr_status(adapter, A_CIM_HOST_UPACC_INT_CAUSE,
4140 				    cim_upintr_info);
4141 	if (fat)
4142 		t4_fatal_err(adapter);
4143 }
4144 
4145 /*
4146  * ULP RX interrupt handler.
4147  */
4148 static void ulprx_intr_handler(struct adapter *adapter)
4149 {
4150 	static const struct intr_info ulprx_intr_info[] = {
4151 		{ F_CAUSE_CTX_1, "ULPRX channel 1 context error", -1, 1 },
4152 		{ F_CAUSE_CTX_0, "ULPRX channel 0 context error", -1, 1 },
4153 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
4154 		{ 0 }
4155 	};
4156 
4157 	if (t4_handle_intr_status(adapter, A_ULP_RX_INT_CAUSE, ulprx_intr_info))
4158 		t4_fatal_err(adapter);
4159 }
4160 
4161 /*
4162  * ULP TX interrupt handler.
4163  */
4164 static void ulptx_intr_handler(struct adapter *adapter)
4165 {
4166 	static const struct intr_info ulptx_intr_info[] = {
4167 		{ F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
4168 		  0 },
4169 		{ F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
4170 		  0 },
4171 		{ F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
4172 		  0 },
4173 		{ F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
4174 		  0 },
4175 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
4176 		{ 0 }
4177 	};
4178 
4179 	if (t4_handle_intr_status(adapter, A_ULP_TX_INT_CAUSE, ulptx_intr_info))
4180 		t4_fatal_err(adapter);
4181 }
4182 
4183 /*
4184  * PM TX interrupt handler.
4185  */
4186 static void pmtx_intr_handler(struct adapter *adapter)
4187 {
4188 	static const struct intr_info pmtx_intr_info[] = {
4189 		{ F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
4190 		{ F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
4191 		{ F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
4192 		{ F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
4193 		{ 0xffffff0, "PMTX framing error", -1, 1 },
4194 		{ F_OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
4195 		{ F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1,
4196 		  1 },
4197 		{ F_ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
4198 		{ F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
4199 		{ 0 }
4200 	};
4201 
4202 	if (t4_handle_intr_status(adapter, A_PM_TX_INT_CAUSE, pmtx_intr_info))
4203 		t4_fatal_err(adapter);
4204 }
4205 
4206 /*
4207  * PM RX interrupt handler.
4208  */
4209 static void pmrx_intr_handler(struct adapter *adapter)
4210 {
4211 	static const struct intr_info pmrx_intr_info[] = {
4212 		{ F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
4213 		{ 0x3ffff0, "PMRX framing error", -1, 1 },
4214 		{ F_OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
4215 		{ F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1,
4216 		  1 },
4217 		{ F_IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
4218 		{ F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
4219 		{ 0 }
4220 	};
4221 
4222 	if (t4_handle_intr_status(adapter, A_PM_RX_INT_CAUSE, pmrx_intr_info))
4223 		t4_fatal_err(adapter);
4224 }
4225 
4226 /*
4227  * CPL switch interrupt handler.
4228  */
4229 static void cplsw_intr_handler(struct adapter *adapter)
4230 {
4231 	static const struct intr_info cplsw_intr_info[] = {
4232 		{ F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
4233 		{ F_CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
4234 		{ F_TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
4235 		{ F_SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
4236 		{ F_CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
4237 		{ F_ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
4238 		{ 0 }
4239 	};
4240 
4241 	if (t4_handle_intr_status(adapter, A_CPL_INTR_CAUSE, cplsw_intr_info))
4242 		t4_fatal_err(adapter);
4243 }
4244 
4245 /*
4246  * LE interrupt handler.
4247  */
4248 static void le_intr_handler(struct adapter *adap)
4249 {
4250 	unsigned int chip_ver = chip_id(adap);
4251 	static const struct intr_info le_intr_info[] = {
4252 		{ F_LIPMISS, "LE LIP miss", -1, 0 },
4253 		{ F_LIP0, "LE 0 LIP error", -1, 0 },
4254 		{ F_PARITYERR, "LE parity error", -1, 1 },
4255 		{ F_UNKNOWNCMD, "LE unknown command", -1, 1 },
4256 		{ F_REQQPARERR, "LE request queue parity error", -1, 1 },
4257 		{ 0 }
4258 	};
4259 
4260 	static const struct intr_info t6_le_intr_info[] = {
4261 		{ F_T6_LIPMISS, "LE LIP miss", -1, 0 },
4262 		{ F_T6_LIP0, "LE 0 LIP error", -1, 0 },
4263 		{ F_TCAMINTPERR, "LE parity error", -1, 1 },
4264 		{ F_T6_UNKNOWNCMD, "LE unknown command", -1, 1 },
4265 		{ F_SSRAMINTPERR, "LE request queue parity error", -1, 1 },
4266 		{ 0 }
4267 	};
4268 
4269 	if (t4_handle_intr_status(adap, A_LE_DB_INT_CAUSE,
4270 				  (chip_ver <= CHELSIO_T5) ?
4271 				  le_intr_info : t6_le_intr_info))
4272 		t4_fatal_err(adap);
4273 }
4274 
4275 /*
4276  * MPS interrupt handler.
4277  */
4278 static void mps_intr_handler(struct adapter *adapter)
4279 {
4280 	static const struct intr_info mps_rx_intr_info[] = {
4281 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4282 		{ 0 }
4283 	};
4284 	static const struct intr_info mps_tx_intr_info[] = {
4285 		{ V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error", -1, 1 },
4286 		{ F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4287 		{ V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error",
4288 		  -1, 1 },
4289 		{ V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error",
4290 		  -1, 1 },
4291 		{ F_BUBBLE, "MPS Tx underflow", -1, 1 },
4292 		{ F_SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
4293 		{ F_FRMERR, "MPS Tx framing error", -1, 1 },
4294 		{ 0 }
4295 	};
4296 	static const struct intr_info mps_trc_intr_info[] = {
4297 		{ V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error", -1, 1 },
4298 		{ V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error", -1,
4299 		  1 },
4300 		{ F_MISCPERR, "MPS TRC misc parity error", -1, 1 },
4301 		{ 0 }
4302 	};
4303 	static const struct intr_info mps_stat_sram_intr_info[] = {
4304 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4305 		{ 0 }
4306 	};
4307 	static const struct intr_info mps_stat_tx_intr_info[] = {
4308 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4309 		{ 0 }
4310 	};
4311 	static const struct intr_info mps_stat_rx_intr_info[] = {
4312 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4313 		{ 0 }
4314 	};
4315 	static const struct intr_info mps_cls_intr_info[] = {
4316 		{ F_MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
4317 		{ F_MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
4318 		{ F_HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
4319 		{ 0 }
4320 	};
4321 
4322 	int fat;
4323 
4324 	fat = t4_handle_intr_status(adapter, A_MPS_RX_PERR_INT_CAUSE,
4325 				    mps_rx_intr_info) +
4326 	      t4_handle_intr_status(adapter, A_MPS_TX_INT_CAUSE,
4327 				    mps_tx_intr_info) +
4328 	      t4_handle_intr_status(adapter, A_MPS_TRC_INT_CAUSE,
4329 				    mps_trc_intr_info) +
4330 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_SRAM,
4331 				    mps_stat_sram_intr_info) +
4332 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
4333 				    mps_stat_tx_intr_info) +
4334 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
4335 				    mps_stat_rx_intr_info) +
4336 	      t4_handle_intr_status(adapter, A_MPS_CLS_INT_CAUSE,
4337 				    mps_cls_intr_info);
4338 
4339 	t4_write_reg(adapter, A_MPS_INT_CAUSE, 0);
4340 	t4_read_reg(adapter, A_MPS_INT_CAUSE);	/* flush */
4341 	if (fat)
4342 		t4_fatal_err(adapter);
4343 }
4344 
4345 #define MEM_INT_MASK (F_PERR_INT_CAUSE | F_ECC_CE_INT_CAUSE | \
4346 		      F_ECC_UE_INT_CAUSE)
4347 
4348 /*
4349  * EDC/MC interrupt handler.
4350  */
4351 static void mem_intr_handler(struct adapter *adapter, int idx)
4352 {
4353 	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4354 
4355 	unsigned int addr, cnt_addr, v;
4356 
4357 	if (idx <= MEM_EDC1) {
4358 		addr = EDC_REG(A_EDC_INT_CAUSE, idx);
4359 		cnt_addr = EDC_REG(A_EDC_ECC_STATUS, idx);
4360 	} else if (idx == MEM_MC) {
4361 		if (is_t4(adapter)) {
4362 			addr = A_MC_INT_CAUSE;
4363 			cnt_addr = A_MC_ECC_STATUS;
4364 		} else {
4365 			addr = A_MC_P_INT_CAUSE;
4366 			cnt_addr = A_MC_P_ECC_STATUS;
4367 		}
4368 	} else {
4369 		addr = MC_REG(A_MC_P_INT_CAUSE, 1);
4370 		cnt_addr = MC_REG(A_MC_P_ECC_STATUS, 1);
4371 	}
4372 
4373 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4374 	if (v & F_PERR_INT_CAUSE)
4375 		CH_ALERT(adapter, "%s FIFO parity error\n",
4376 			  name[idx]);
4377 	if (v & F_ECC_CE_INT_CAUSE) {
4378 		u32 cnt = G_ECC_CECNT(t4_read_reg(adapter, cnt_addr));
4379 
4380 		if (idx <= MEM_EDC1)
4381 			t4_edc_err_read(adapter, idx);
4382 
4383 		t4_write_reg(adapter, cnt_addr, V_ECC_CECNT(M_ECC_CECNT));
4384 		CH_WARN_RATELIMIT(adapter,
4385 				  "%u %s correctable ECC data error%s\n",
4386 				  cnt, name[idx], cnt > 1 ? "s" : "");
4387 	}
4388 	if (v & F_ECC_UE_INT_CAUSE)
4389 		CH_ALERT(adapter,
4390 			 "%s uncorrectable ECC data error\n", name[idx]);
4391 
4392 	t4_write_reg(adapter, addr, v);
4393 	if (v & (F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE))
4394 		t4_fatal_err(adapter);
4395 }
4396 
4397 /*
4398  * MA interrupt handler.
4399  */
4400 static void ma_intr_handler(struct adapter *adapter)
4401 {
4402 	u32 v, status = t4_read_reg(adapter, A_MA_INT_CAUSE);
4403 
4404 	if (status & F_MEM_PERR_INT_CAUSE) {
4405 		CH_ALERT(adapter,
4406 			  "MA parity error, parity status %#x\n",
4407 			  t4_read_reg(adapter, A_MA_PARITY_ERROR_STATUS1));
4408 		if (is_t5(adapter))
4409 			CH_ALERT(adapter,
4410 				  "MA parity error, parity status %#x\n",
4411 				  t4_read_reg(adapter,
4412 					      A_MA_PARITY_ERROR_STATUS2));
4413 	}
4414 	if (status & F_MEM_WRAP_INT_CAUSE) {
4415 		v = t4_read_reg(adapter, A_MA_INT_WRAP_STATUS);
4416 		CH_ALERT(adapter, "MA address wrap-around error by "
4417 			  "client %u to address %#x\n",
4418 			  G_MEM_WRAP_CLIENT_NUM(v),
4419 			  G_MEM_WRAP_ADDRESS(v) << 4);
4420 	}
4421 	t4_write_reg(adapter, A_MA_INT_CAUSE, status);
4422 	t4_fatal_err(adapter);
4423 }
4424 
4425 /*
4426  * SMB interrupt handler.
4427  */
4428 static void smb_intr_handler(struct adapter *adap)
4429 {
4430 	static const struct intr_info smb_intr_info[] = {
4431 		{ F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
4432 		{ F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
4433 		{ F_SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
4434 		{ 0 }
4435 	};
4436 
4437 	if (t4_handle_intr_status(adap, A_SMB_INT_CAUSE, smb_intr_info))
4438 		t4_fatal_err(adap);
4439 }
4440 
4441 /*
4442  * NC-SI interrupt handler.
4443  */
4444 static void ncsi_intr_handler(struct adapter *adap)
4445 {
4446 	static const struct intr_info ncsi_intr_info[] = {
4447 		{ F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
4448 		{ F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
4449 		{ F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
4450 		{ F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
4451 		{ 0 }
4452 	};
4453 
4454 	if (t4_handle_intr_status(adap, A_NCSI_INT_CAUSE, ncsi_intr_info))
4455 		t4_fatal_err(adap);
4456 }
4457 
4458 /*
4459  * XGMAC interrupt handler.
4460  */
4461 static void xgmac_intr_handler(struct adapter *adap, int port)
4462 {
4463 	u32 v, int_cause_reg;
4464 
4465 	if (is_t4(adap))
4466 		int_cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
4467 	else
4468 		int_cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
4469 
4470 	v = t4_read_reg(adap, int_cause_reg);
4471 
4472 	v &= (F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR);
4473 	if (!v)
4474 		return;
4475 
4476 	if (v & F_TXFIFO_PRTY_ERR)
4477 		CH_ALERT(adap, "XGMAC %d Tx FIFO parity error\n",
4478 			  port);
4479 	if (v & F_RXFIFO_PRTY_ERR)
4480 		CH_ALERT(adap, "XGMAC %d Rx FIFO parity error\n",
4481 			  port);
4482 	t4_write_reg(adap, int_cause_reg, v);
4483 	t4_fatal_err(adap);
4484 }
4485 
4486 /*
4487  * PL interrupt handler.
4488  */
4489 static void pl_intr_handler(struct adapter *adap)
4490 {
4491 	static const struct intr_info pl_intr_info[] = {
4492 		{ F_FATALPERR, "Fatal parity error", -1, 1 },
4493 		{ F_PERRVFID, "PL VFID_MAP parity error", -1, 1 },
4494 		{ 0 }
4495 	};
4496 
4497 	static const struct intr_info t5_pl_intr_info[] = {
4498 		{ F_FATALPERR, "Fatal parity error", -1, 1 },
4499 		{ 0 }
4500 	};
4501 
4502 	if (t4_handle_intr_status(adap, A_PL_PL_INT_CAUSE,
4503 				  is_t4(adap) ?
4504 				  pl_intr_info : t5_pl_intr_info))
4505 		t4_fatal_err(adap);
4506 }
4507 
4508 #define PF_INTR_MASK (F_PFSW | F_PFCIM)
4509 
4510 /**
4511  *	t4_slow_intr_handler - control path interrupt handler
4512  *	@adapter: the adapter
4513  *
4514  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
4515  *	The designation 'slow' is because it involves register reads, while
4516  *	data interrupts typically don't involve any MMIOs.
4517  */
4518 int t4_slow_intr_handler(struct adapter *adapter)
4519 {
4520 	u32 cause = t4_read_reg(adapter, A_PL_INT_CAUSE);
4521 
4522 	if (!(cause & GLBL_INTR_MASK))
4523 		return 0;
4524 	if (cause & F_CIM)
4525 		cim_intr_handler(adapter);
4526 	if (cause & F_MPS)
4527 		mps_intr_handler(adapter);
4528 	if (cause & F_NCSI)
4529 		ncsi_intr_handler(adapter);
4530 	if (cause & F_PL)
4531 		pl_intr_handler(adapter);
4532 	if (cause & F_SMB)
4533 		smb_intr_handler(adapter);
4534 	if (cause & F_MAC0)
4535 		xgmac_intr_handler(adapter, 0);
4536 	if (cause & F_MAC1)
4537 		xgmac_intr_handler(adapter, 1);
4538 	if (cause & F_MAC2)
4539 		xgmac_intr_handler(adapter, 2);
4540 	if (cause & F_MAC3)
4541 		xgmac_intr_handler(adapter, 3);
4542 	if (cause & F_PCIE)
4543 		pcie_intr_handler(adapter);
4544 	if (cause & F_MC0)
4545 		mem_intr_handler(adapter, MEM_MC);
4546 	if (is_t5(adapter) && (cause & F_MC1))
4547 		mem_intr_handler(adapter, MEM_MC1);
4548 	if (cause & F_EDC0)
4549 		mem_intr_handler(adapter, MEM_EDC0);
4550 	if (cause & F_EDC1)
4551 		mem_intr_handler(adapter, MEM_EDC1);
4552 	if (cause & F_LE)
4553 		le_intr_handler(adapter);
4554 	if (cause & F_TP)
4555 		tp_intr_handler(adapter);
4556 	if (cause & F_MA)
4557 		ma_intr_handler(adapter);
4558 	if (cause & F_PM_TX)
4559 		pmtx_intr_handler(adapter);
4560 	if (cause & F_PM_RX)
4561 		pmrx_intr_handler(adapter);
4562 	if (cause & F_ULP_RX)
4563 		ulprx_intr_handler(adapter);
4564 	if (cause & F_CPL_SWITCH)
4565 		cplsw_intr_handler(adapter);
4566 	if (cause & F_SGE)
4567 		sge_intr_handler(adapter);
4568 	if (cause & F_ULP_TX)
4569 		ulptx_intr_handler(adapter);
4570 
4571 	/* Clear the interrupts just processed for which we are the master. */
4572 	t4_write_reg(adapter, A_PL_INT_CAUSE, cause & GLBL_INTR_MASK);
4573 	(void)t4_read_reg(adapter, A_PL_INT_CAUSE); /* flush */
4574 	return 1;
4575 }
4576 
4577 /**
4578  *	t4_intr_enable - enable interrupts
4579  *	@adapter: the adapter whose interrupts should be enabled
4580  *
4581  *	Enable PF-specific interrupts for the calling function and the top-level
4582  *	interrupt concentrator for global interrupts.  Interrupts are already
4583  *	enabled at each module,	here we just enable the roots of the interrupt
4584  *	hierarchies.
4585  *
4586  *	Note: this function should be called only when the driver manages
4587  *	non PF-specific interrupts from the various HW modules.  Only one PCI
4588  *	function at a time should be doing this.
4589  */
4590 void t4_intr_enable(struct adapter *adapter)
4591 {
4592 	u32 val = 0;
4593 	u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4594 	u32 pf = (chip_id(adapter) <= CHELSIO_T5
4595 		  ? G_SOURCEPF(whoami)
4596 		  : G_T6_SOURCEPF(whoami));
4597 
4598 	if (chip_id(adapter) <= CHELSIO_T5)
4599 		val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
4600 	else
4601 		val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN;
4602 	t4_write_reg(adapter, A_SGE_INT_ENABLE3, F_ERR_CPL_EXCEED_IQE_SIZE |
4603 		     F_ERR_INVALID_CIDX_INC | F_ERR_CPL_OPCODE_0 |
4604 		     F_ERR_DATA_CPL_ON_HIGH_QID1 | F_INGRESS_SIZE_ERR |
4605 		     F_ERR_DATA_CPL_ON_HIGH_QID0 | F_ERR_BAD_DB_PIDX3 |
4606 		     F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4607 		     F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO |
4608 		     F_DBFIFO_LP_INT | F_EGRESS_SIZE_ERR | val);
4609 	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
4610 	t4_set_reg_field(adapter, A_PL_INT_MAP0, 0, 1 << pf);
4611 }
4612 
4613 /**
4614  *	t4_intr_disable - disable interrupts
4615  *	@adapter: the adapter whose interrupts should be disabled
4616  *
4617  *	Disable interrupts.  We only disable the top-level interrupt
4618  *	concentrators.  The caller must be a PCI function managing global
4619  *	interrupts.
4620  */
4621 void t4_intr_disable(struct adapter *adapter)
4622 {
4623 	u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4624 	u32 pf = (chip_id(adapter) <= CHELSIO_T5
4625 		  ? G_SOURCEPF(whoami)
4626 		  : G_T6_SOURCEPF(whoami));
4627 
4628 	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
4629 	t4_set_reg_field(adapter, A_PL_INT_MAP0, 1 << pf, 0);
4630 }
4631 
4632 /**
4633  *	t4_intr_clear - clear all interrupts
4634  *	@adapter: the adapter whose interrupts should be cleared
4635  *
4636  *	Clears all interrupts.  The caller must be a PCI function managing
4637  *	global interrupts.
4638  */
4639 void t4_intr_clear(struct adapter *adapter)
4640 {
4641 	static const unsigned int cause_reg[] = {
4642 		A_SGE_INT_CAUSE1, A_SGE_INT_CAUSE2, A_SGE_INT_CAUSE3,
4643 		A_PCIE_NONFAT_ERR, A_PCIE_INT_CAUSE,
4644 		A_MA_INT_WRAP_STATUS, A_MA_PARITY_ERROR_STATUS1, A_MA_INT_CAUSE,
4645 		A_EDC_INT_CAUSE, EDC_REG(A_EDC_INT_CAUSE, 1),
4646 		A_CIM_HOST_INT_CAUSE, A_CIM_HOST_UPACC_INT_CAUSE,
4647 		MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
4648 		A_TP_INT_CAUSE,
4649 		A_ULP_RX_INT_CAUSE, A_ULP_TX_INT_CAUSE,
4650 		A_PM_RX_INT_CAUSE, A_PM_TX_INT_CAUSE,
4651 		A_MPS_RX_PERR_INT_CAUSE,
4652 		A_CPL_INTR_CAUSE,
4653 		MYPF_REG(A_PL_PF_INT_CAUSE),
4654 		A_PL_PL_INT_CAUSE,
4655 		A_LE_DB_INT_CAUSE,
4656 	};
4657 
4658 	unsigned int i;
4659 
4660 	for (i = 0; i < ARRAY_SIZE(cause_reg); ++i)
4661 		t4_write_reg(adapter, cause_reg[i], 0xffffffff);
4662 
4663 	t4_write_reg(adapter, is_t4(adapter) ? A_MC_INT_CAUSE :
4664 				A_MC_P_INT_CAUSE, 0xffffffff);
4665 
4666 	if (is_t4(adapter)) {
4667 		t4_write_reg(adapter, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
4668 				0xffffffff);
4669 		t4_write_reg(adapter, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
4670 				0xffffffff);
4671 	} else
4672 		t4_write_reg(adapter, A_MA_PARITY_ERROR_STATUS2, 0xffffffff);
4673 
4674 	t4_write_reg(adapter, A_PL_INT_CAUSE, GLBL_INTR_MASK);
4675 	(void) t4_read_reg(adapter, A_PL_INT_CAUSE);          /* flush */
4676 }
4677 
4678 /**
4679  *	hash_mac_addr - return the hash value of a MAC address
4680  *	@addr: the 48-bit Ethernet MAC address
4681  *
4682  *	Hashes a MAC address according to the hash function used by HW inexact
4683  *	(hash) address matching.
4684  */
4685 static int hash_mac_addr(const u8 *addr)
4686 {
4687 	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
4688 	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
4689 	a ^= b;
4690 	a ^= (a >> 12);
4691 	a ^= (a >> 6);
4692 	return a & 0x3f;
4693 }
4694 
4695 /**
4696  *	t4_config_rss_range - configure a portion of the RSS mapping table
4697  *	@adapter: the adapter
4698  *	@mbox: mbox to use for the FW command
4699  *	@viid: virtual interface whose RSS subtable is to be written
4700  *	@start: start entry in the table to write
4701  *	@n: how many table entries to write
4702  *	@rspq: values for the "response queue" (Ingress Queue) lookup table
4703  *	@nrspq: number of values in @rspq
4704  *
4705  *	Programs the selected part of the VI's RSS mapping table with the
4706  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
4707  *	until the full table range is populated.
4708  *
4709  *	The caller must ensure the values in @rspq are in the range allowed for
4710  *	@viid.
4711  */
4712 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4713 			int start, int n, const u16 *rspq, unsigned int nrspq)
4714 {
4715 	int ret;
4716 	const u16 *rsp = rspq;
4717 	const u16 *rsp_end = rspq + nrspq;
4718 	struct fw_rss_ind_tbl_cmd cmd;
4719 
4720 	memset(&cmd, 0, sizeof(cmd));
4721 	cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
4722 				     F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4723 				     V_FW_RSS_IND_TBL_CMD_VIID(viid));
4724 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
4725 
4726 	/*
4727 	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
4728 	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
4729 	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
4730 	 * reserved.
4731 	 */
4732 	while (n > 0) {
4733 		int nq = min(n, 32);
4734 		int nq_packed = 0;
4735 		__be32 *qp = &cmd.iq0_to_iq2;
4736 
4737 		/*
4738 		 * Set up the firmware RSS command header to send the next
4739 		 * "nq" Ingress Queue IDs to the firmware.
4740 		 */
4741 		cmd.niqid = cpu_to_be16(nq);
4742 		cmd.startidx = cpu_to_be16(start);
4743 
4744 		/*
4745 		 * "nq" more done for the start of the next loop.
4746 		 */
4747 		start += nq;
4748 		n -= nq;
4749 
4750 		/*
4751 		 * While there are still Ingress Queue IDs to stuff into the
4752 		 * current firmware RSS command, retrieve them from the
4753 		 * Ingress Queue ID array and insert them into the command.
4754 		 */
4755 		while (nq > 0) {
4756 			/*
4757 			 * Grab up to the next 3 Ingress Queue IDs (wrapping
4758 			 * around the Ingress Queue ID array if necessary) and
4759 			 * insert them into the firmware RSS command at the
4760 			 * current 3-tuple position within the commad.
4761 			 */
4762 			u16 qbuf[3];
4763 			u16 *qbp = qbuf;
4764 			int nqbuf = min(3, nq);
4765 
4766 			nq -= nqbuf;
4767 			qbuf[0] = qbuf[1] = qbuf[2] = 0;
4768 			while (nqbuf && nq_packed < 32) {
4769 				nqbuf--;
4770 				nq_packed++;
4771 				*qbp++ = *rsp++;
4772 				if (rsp >= rsp_end)
4773 					rsp = rspq;
4774 			}
4775 			*qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
4776 					    V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
4777 					    V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
4778 		}
4779 
4780 		/*
4781 		 * Send this portion of the RRS table update to the firmware;
4782 		 * bail out on any errors.
4783 		 */
4784 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4785 		if (ret)
4786 			return ret;
4787 	}
4788 	return 0;
4789 }
4790 
4791 /**
4792  *	t4_config_glbl_rss - configure the global RSS mode
4793  *	@adapter: the adapter
4794  *	@mbox: mbox to use for the FW command
4795  *	@mode: global RSS mode
4796  *	@flags: mode-specific flags
4797  *
4798  *	Sets the global RSS mode.
4799  */
4800 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
4801 		       unsigned int flags)
4802 {
4803 	struct fw_rss_glb_config_cmd c;
4804 
4805 	memset(&c, 0, sizeof(c));
4806 	c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
4807 				    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
4808 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4809 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
4810 		c.u.manual.mode_pkd =
4811 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
4812 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
4813 		c.u.basicvirtual.mode_keymode =
4814 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
4815 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
4816 	} else
4817 		return -EINVAL;
4818 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4819 }
4820 
4821 /**
4822  *	t4_config_vi_rss - configure per VI RSS settings
4823  *	@adapter: the adapter
4824  *	@mbox: mbox to use for the FW command
4825  *	@viid: the VI id
4826  *	@flags: RSS flags
4827  *	@defq: id of the default RSS queue for the VI.
4828  *	@skeyidx: RSS secret key table index for non-global mode
4829  *	@skey: RSS vf_scramble key for VI.
4830  *
4831  *	Configures VI-specific RSS properties.
4832  */
4833 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
4834 		     unsigned int flags, unsigned int defq, unsigned int skeyidx,
4835 		     unsigned int skey)
4836 {
4837 	struct fw_rss_vi_config_cmd c;
4838 
4839 	memset(&c, 0, sizeof(c));
4840 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
4841 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4842 				   V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
4843 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4844 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
4845 					V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
4846 	c.u.basicvirtual.secretkeyidx_pkd = cpu_to_be32(
4847 					V_FW_RSS_VI_CONFIG_CMD_SECRETKEYIDX(skeyidx));
4848 	c.u.basicvirtual.secretkeyxor = cpu_to_be32(skey);
4849 
4850 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4851 }
4852 
4853 /* Read an RSS table row */
4854 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
4855 {
4856 	t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
4857 	return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
4858 				   5, 0, val);
4859 }
4860 
4861 /**
4862  *	t4_read_rss - read the contents of the RSS mapping table
4863  *	@adapter: the adapter
4864  *	@map: holds the contents of the RSS mapping table
4865  *
4866  *	Reads the contents of the RSS hash->queue mapping table.
4867  */
4868 int t4_read_rss(struct adapter *adapter, u16 *map)
4869 {
4870 	u32 val;
4871 	int i, ret;
4872 
4873 	for (i = 0; i < RSS_NENTRIES / 2; ++i) {
4874 		ret = rd_rss_row(adapter, i, &val);
4875 		if (ret)
4876 			return ret;
4877 		*map++ = G_LKPTBLQUEUE0(val);
4878 		*map++ = G_LKPTBLQUEUE1(val);
4879 	}
4880 	return 0;
4881 }
4882 
4883 /**
4884  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
4885  * @adap: the adapter
4886  * @cmd: TP fw ldst address space type
4887  * @vals: where the indirect register values are stored/written
4888  * @nregs: how many indirect registers to read/write
4889  * @start_idx: index of first indirect register to read/write
4890  * @rw: Read (1) or Write (0)
4891  * @sleep_ok: if true we may sleep while awaiting command completion
4892  *
4893  * Access TP indirect registers through LDST
4894  **/
4895 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
4896 			    unsigned int nregs, unsigned int start_index,
4897 			    unsigned int rw, bool sleep_ok)
4898 {
4899 	int ret = 0;
4900 	unsigned int i;
4901 	struct fw_ldst_cmd c;
4902 
4903 	for (i = 0; i < nregs; i++) {
4904 		memset(&c, 0, sizeof(c));
4905 		c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
4906 						F_FW_CMD_REQUEST |
4907 						(rw ? F_FW_CMD_READ :
4908 						      F_FW_CMD_WRITE) |
4909 						V_FW_LDST_CMD_ADDRSPACE(cmd));
4910 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4911 
4912 		c.u.addrval.addr = cpu_to_be32(start_index + i);
4913 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
4914 		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
4915 				      sleep_ok);
4916 		if (ret)
4917 			return ret;
4918 
4919 		if (rw)
4920 			vals[i] = be32_to_cpu(c.u.addrval.val);
4921 	}
4922 	return 0;
4923 }
4924 
4925 /**
4926  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
4927  * @adap: the adapter
4928  * @reg_addr: Address Register
4929  * @reg_data: Data register
4930  * @buff: where the indirect register values are stored/written
4931  * @nregs: how many indirect registers to read/write
4932  * @start_index: index of first indirect register to read/write
4933  * @rw: READ(1) or WRITE(0)
4934  * @sleep_ok: if true we may sleep while awaiting command completion
4935  *
4936  * Read/Write TP indirect registers through LDST if possible.
4937  * Else, use backdoor access
4938  **/
4939 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
4940 			      u32 *buff, u32 nregs, u32 start_index, int rw,
4941 			      bool sleep_ok)
4942 {
4943 	int rc = -EINVAL;
4944 	int cmd;
4945 
4946 	switch (reg_addr) {
4947 	case A_TP_PIO_ADDR:
4948 		cmd = FW_LDST_ADDRSPC_TP_PIO;
4949 		break;
4950 	case A_TP_TM_PIO_ADDR:
4951 		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
4952 		break;
4953 	case A_TP_MIB_INDEX:
4954 		cmd = FW_LDST_ADDRSPC_TP_MIB;
4955 		break;
4956 	default:
4957 		goto indirect_access;
4958 	}
4959 
4960 	if (t4_use_ldst(adap))
4961 		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
4962 				      sleep_ok);
4963 
4964 indirect_access:
4965 
4966 	if (rc) {
4967 		if (rw)
4968 			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
4969 					 start_index);
4970 		else
4971 			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
4972 					  start_index);
4973 	}
4974 }
4975 
4976 /**
4977  * t4_tp_pio_read - Read TP PIO registers
4978  * @adap: the adapter
4979  * @buff: where the indirect register values are written
4980  * @nregs: how many indirect registers to read
4981  * @start_index: index of first indirect register to read
4982  * @sleep_ok: if true we may sleep while awaiting command completion
4983  *
4984  * Read TP PIO Registers
4985  **/
4986 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
4987 		    u32 start_index, bool sleep_ok)
4988 {
4989 	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, buff, nregs,
4990 			  start_index, 1, sleep_ok);
4991 }
4992 
4993 /**
4994  * t4_tp_pio_write - Write TP PIO registers
4995  * @adap: the adapter
4996  * @buff: where the indirect register values are stored
4997  * @nregs: how many indirect registers to write
4998  * @start_index: index of first indirect register to write
4999  * @sleep_ok: if true we may sleep while awaiting command completion
5000  *
5001  * Write TP PIO Registers
5002  **/
5003 void t4_tp_pio_write(struct adapter *adap, const u32 *buff, u32 nregs,
5004 		     u32 start_index, bool sleep_ok)
5005 {
5006 	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5007 	    __DECONST(u32 *, buff), nregs, start_index, 0, sleep_ok);
5008 }
5009 
5010 /**
5011  * t4_tp_tm_pio_read - Read TP TM PIO registers
5012  * @adap: the adapter
5013  * @buff: where the indirect register values are written
5014  * @nregs: how many indirect registers to read
5015  * @start_index: index of first indirect register to read
5016  * @sleep_ok: if true we may sleep while awaiting command completion
5017  *
5018  * Read TP TM PIO Registers
5019  **/
5020 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5021 		       u32 start_index, bool sleep_ok)
5022 {
5023 	t4_tp_indirect_rw(adap, A_TP_TM_PIO_ADDR, A_TP_TM_PIO_DATA, buff,
5024 			  nregs, start_index, 1, sleep_ok);
5025 }
5026 
5027 /**
5028  * t4_tp_mib_read - Read TP MIB registers
5029  * @adap: the adapter
5030  * @buff: where the indirect register values are written
5031  * @nregs: how many indirect registers to read
5032  * @start_index: index of first indirect register to read
5033  * @sleep_ok: if true we may sleep while awaiting command completion
5034  *
5035  * Read TP MIB Registers
5036  **/
5037 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5038 		    bool sleep_ok)
5039 {
5040 	t4_tp_indirect_rw(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, buff, nregs,
5041 			  start_index, 1, sleep_ok);
5042 }
5043 
5044 /**
5045  *	t4_read_rss_key - read the global RSS key
5046  *	@adap: the adapter
5047  *	@key: 10-entry array holding the 320-bit RSS key
5048  * 	@sleep_ok: if true we may sleep while awaiting command completion
5049  *
5050  *	Reads the global 320-bit RSS key.
5051  */
5052 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5053 {
5054 	t4_tp_pio_read(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5055 }
5056 
5057 /**
5058  *	t4_write_rss_key - program one of the RSS keys
5059  *	@adap: the adapter
5060  *	@key: 10-entry array holding the 320-bit RSS key
5061  *	@idx: which RSS key to write
5062  * 	@sleep_ok: if true we may sleep while awaiting command completion
5063  *
5064  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5065  *	0..15 the corresponding entry in the RSS key table is written,
5066  *	otherwise the global RSS key is written.
5067  */
5068 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5069 		      bool sleep_ok)
5070 {
5071 	u8 rss_key_addr_cnt = 16;
5072 	u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
5073 
5074 	/*
5075 	 * T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5076 	 * allows access to key addresses 16-63 by using KeyWrAddrX
5077 	 * as index[5:4](upper 2) into key table
5078 	 */
5079 	if ((chip_id(adap) > CHELSIO_T5) &&
5080 	    (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
5081 		rss_key_addr_cnt = 32;
5082 
5083 	t4_tp_pio_write(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5084 
5085 	if (idx >= 0 && idx < rss_key_addr_cnt) {
5086 		if (rss_key_addr_cnt > 16)
5087 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5088 				     vrt | V_KEYWRADDRX(idx >> 4) |
5089 				     V_T6_VFWRADDR(idx) | F_KEYWREN);
5090 		else
5091 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5092 				     vrt| V_KEYWRADDR(idx) | F_KEYWREN);
5093 	}
5094 }
5095 
5096 /**
5097  *	t4_read_rss_pf_config - read PF RSS Configuration Table
5098  *	@adapter: the adapter
5099  *	@index: the entry in the PF RSS table to read
5100  *	@valp: where to store the returned value
5101  * 	@sleep_ok: if true we may sleep while awaiting command completion
5102  *
5103  *	Reads the PF RSS Configuration Table at the specified index and returns
5104  *	the value found there.
5105  */
5106 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5107 			   u32 *valp, bool sleep_ok)
5108 {
5109 	t4_tp_pio_read(adapter, valp, 1, A_TP_RSS_PF0_CONFIG + index, sleep_ok);
5110 }
5111 
5112 /**
5113  *	t4_write_rss_pf_config - write PF RSS Configuration Table
5114  *	@adapter: the adapter
5115  *	@index: the entry in the VF RSS table to read
5116  *	@val: the value to store
5117  * 	@sleep_ok: if true we may sleep while awaiting command completion
5118  *
5119  *	Writes the PF RSS Configuration Table at the specified index with the
5120  *	specified value.
5121  */
5122 void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index,
5123 			    u32 val, bool sleep_ok)
5124 {
5125 	t4_tp_pio_write(adapter, &val, 1, A_TP_RSS_PF0_CONFIG + index,
5126 			sleep_ok);
5127 }
5128 
5129 /**
5130  *	t4_read_rss_vf_config - read VF RSS Configuration Table
5131  *	@adapter: the adapter
5132  *	@index: the entry in the VF RSS table to read
5133  *	@vfl: where to store the returned VFL
5134  *	@vfh: where to store the returned VFH
5135  * 	@sleep_ok: if true we may sleep while awaiting command completion
5136  *
5137  *	Reads the VF RSS Configuration Table at the specified index and returns
5138  *	the (VFL, VFH) values found there.
5139  */
5140 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5141 			   u32 *vfl, u32 *vfh, bool sleep_ok)
5142 {
5143 	u32 vrt, mask, data;
5144 
5145 	if (chip_id(adapter) <= CHELSIO_T5) {
5146 		mask = V_VFWRADDR(M_VFWRADDR);
5147 		data = V_VFWRADDR(index);
5148 	} else {
5149 		 mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5150 		 data = V_T6_VFWRADDR(index);
5151 	}
5152 	/*
5153 	 * Request that the index'th VF Table values be read into VFL/VFH.
5154 	 */
5155 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5156 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5157 	vrt |= data | F_VFRDEN;
5158 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5159 
5160 	/*
5161 	 * Grab the VFL/VFH values ...
5162 	 */
5163 	t4_tp_pio_read(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
5164 	t4_tp_pio_read(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
5165 }
5166 
5167 /**
5168  *	t4_write_rss_vf_config - write VF RSS Configuration Table
5169  *
5170  *	@adapter: the adapter
5171  *	@index: the entry in the VF RSS table to write
5172  *	@vfl: the VFL to store
5173  *	@vfh: the VFH to store
5174  *
5175  *	Writes the VF RSS Configuration Table at the specified index with the
5176  *	specified (VFL, VFH) values.
5177  */
5178 void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
5179 			    u32 vfl, u32 vfh, bool sleep_ok)
5180 {
5181 	u32 vrt, mask, data;
5182 
5183 	if (chip_id(adapter) <= CHELSIO_T5) {
5184 		mask = V_VFWRADDR(M_VFWRADDR);
5185 		data = V_VFWRADDR(index);
5186 	} else {
5187 		mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5188 		data = V_T6_VFWRADDR(index);
5189 	}
5190 
5191 	/*
5192 	 * Load up VFL/VFH with the values to be written ...
5193 	 */
5194 	t4_tp_pio_write(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
5195 	t4_tp_pio_write(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
5196 
5197 	/*
5198 	 * Write the VFL/VFH into the VF Table at index'th location.
5199 	 */
5200 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5201 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5202 	vrt |= data | F_VFRDEN;
5203 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5204 }
5205 
5206 /**
5207  *	t4_read_rss_pf_map - read PF RSS Map
5208  *	@adapter: the adapter
5209  * 	@sleep_ok: if true we may sleep while awaiting command completion
5210  *
5211  *	Reads the PF RSS Map register and returns its value.
5212  */
5213 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5214 {
5215 	u32 pfmap;
5216 
5217 	t4_tp_pio_read(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
5218 
5219 	return pfmap;
5220 }
5221 
5222 /**
5223  *	t4_write_rss_pf_map - write PF RSS Map
5224  *	@adapter: the adapter
5225  *	@pfmap: PF RSS Map value
5226  *
5227  *	Writes the specified value to the PF RSS Map register.
5228  */
5229 void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap, bool sleep_ok)
5230 {
5231 	t4_tp_pio_write(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
5232 }
5233 
5234 /**
5235  *	t4_read_rss_pf_mask - read PF RSS Mask
5236  *	@adapter: the adapter
5237  * 	@sleep_ok: if true we may sleep while awaiting command completion
5238  *
5239  *	Reads the PF RSS Mask register and returns its value.
5240  */
5241 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5242 {
5243 	u32 pfmask;
5244 
5245 	t4_tp_pio_read(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
5246 
5247 	return pfmask;
5248 }
5249 
5250 /**
5251  *	t4_write_rss_pf_mask - write PF RSS Mask
5252  *	@adapter: the adapter
5253  *	@pfmask: PF RSS Mask value
5254  *
5255  *	Writes the specified value to the PF RSS Mask register.
5256  */
5257 void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask, bool sleep_ok)
5258 {
5259 	t4_tp_pio_write(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
5260 }
5261 
5262 /**
5263  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
5264  *	@adap: the adapter
5265  *	@v4: holds the TCP/IP counter values
5266  *	@v6: holds the TCP/IPv6 counter values
5267  * 	@sleep_ok: if true we may sleep while awaiting command completion
5268  *
5269  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5270  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5271  */
5272 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5273 			 struct tp_tcp_stats *v6, bool sleep_ok)
5274 {
5275 	u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
5276 
5277 #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
5278 #define STAT(x)     val[STAT_IDX(x)]
5279 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5280 
5281 	if (v4) {
5282 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5283 			       A_TP_MIB_TCP_OUT_RST, sleep_ok);
5284 		v4->tcp_out_rsts = STAT(OUT_RST);
5285 		v4->tcp_in_segs  = STAT64(IN_SEG);
5286 		v4->tcp_out_segs = STAT64(OUT_SEG);
5287 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
5288 	}
5289 	if (v6) {
5290 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5291 			       A_TP_MIB_TCP_V6OUT_RST, sleep_ok);
5292 		v6->tcp_out_rsts = STAT(OUT_RST);
5293 		v6->tcp_in_segs  = STAT64(IN_SEG);
5294 		v6->tcp_out_segs = STAT64(OUT_SEG);
5295 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
5296 	}
5297 #undef STAT64
5298 #undef STAT
5299 #undef STAT_IDX
5300 }
5301 
5302 /**
5303  *	t4_tp_get_err_stats - read TP's error MIB counters
5304  *	@adap: the adapter
5305  *	@st: holds the counter values
5306  * 	@sleep_ok: if true we may sleep while awaiting command completion
5307  *
5308  *	Returns the values of TP's error counters.
5309  */
5310 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
5311 			 bool sleep_ok)
5312 {
5313 	int nchan = adap->chip_params->nchan;
5314 
5315 	t4_tp_mib_read(adap, st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0,
5316 		       sleep_ok);
5317 
5318 	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0,
5319 		       sleep_ok);
5320 
5321 	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0,
5322 		       sleep_ok);
5323 
5324 	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
5325 		       A_TP_MIB_TNL_CNG_DROP_0, sleep_ok);
5326 
5327 	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
5328 		       A_TP_MIB_OFD_CHN_DROP_0, sleep_ok);
5329 
5330 	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0,
5331 		       sleep_ok);
5332 
5333 	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
5334 		       A_TP_MIB_OFD_VLN_DROP_0, sleep_ok);
5335 
5336 	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
5337 		       A_TP_MIB_TCP_V6IN_ERR_0, sleep_ok);
5338 
5339 	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP,
5340 		       sleep_ok);
5341 }
5342 
5343 /**
5344  *	t4_tp_get_proxy_stats - read TP's proxy MIB counters
5345  *	@adap: the adapter
5346  *	@st: holds the counter values
5347  *
5348  *	Returns the values of TP's proxy counters.
5349  */
5350 void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st,
5351     bool sleep_ok)
5352 {
5353 	int nchan = adap->chip_params->nchan;
5354 
5355 	t4_tp_mib_read(adap, st->proxy, nchan, A_TP_MIB_TNL_LPBK_0, sleep_ok);
5356 }
5357 
5358 /**
5359  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
5360  *	@adap: the adapter
5361  *	@st: holds the counter values
5362  * 	@sleep_ok: if true we may sleep while awaiting command completion
5363  *
5364  *	Returns the values of TP's CPL counters.
5365  */
5366 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
5367 			 bool sleep_ok)
5368 {
5369 	int nchan = adap->chip_params->nchan;
5370 
5371 	t4_tp_mib_read(adap, st->req, nchan, A_TP_MIB_CPL_IN_REQ_0, sleep_ok);
5372 
5373 	t4_tp_mib_read(adap, st->rsp, nchan, A_TP_MIB_CPL_OUT_RSP_0, sleep_ok);
5374 }
5375 
5376 /**
5377  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5378  *	@adap: the adapter
5379  *	@st: holds the counter values
5380  *
5381  *	Returns the values of TP's RDMA counters.
5382  */
5383 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
5384 			  bool sleep_ok)
5385 {
5386 	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, A_TP_MIB_RQE_DFR_PKT,
5387 		       sleep_ok);
5388 }
5389 
5390 /**
5391  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5392  *	@adap: the adapter
5393  *	@idx: the port index
5394  *	@st: holds the counter values
5395  * 	@sleep_ok: if true we may sleep while awaiting command completion
5396  *
5397  *	Returns the values of TP's FCoE counters for the selected port.
5398  */
5399 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5400 		       struct tp_fcoe_stats *st, bool sleep_ok)
5401 {
5402 	u32 val[2];
5403 
5404 	t4_tp_mib_read(adap, &st->frames_ddp, 1, A_TP_MIB_FCOE_DDP_0 + idx,
5405 		       sleep_ok);
5406 
5407 	t4_tp_mib_read(adap, &st->frames_drop, 1,
5408 		       A_TP_MIB_FCOE_DROP_0 + idx, sleep_ok);
5409 
5410 	t4_tp_mib_read(adap, val, 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx,
5411 		       sleep_ok);
5412 
5413 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
5414 }
5415 
5416 /**
5417  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5418  *	@adap: the adapter
5419  *	@st: holds the counter values
5420  * 	@sleep_ok: if true we may sleep while awaiting command completion
5421  *
5422  *	Returns the values of TP's counters for non-TCP directly-placed packets.
5423  */
5424 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
5425 		      bool sleep_ok)
5426 {
5427 	u32 val[4];
5428 
5429 	t4_tp_mib_read(adap, val, 4, A_TP_MIB_USM_PKTS, sleep_ok);
5430 
5431 	st->frames = val[0];
5432 	st->drops = val[1];
5433 	st->octets = ((u64)val[2] << 32) | val[3];
5434 }
5435 
5436 /**
5437  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
5438  *	@adap: the adapter
5439  *	@mtus: where to store the MTU values
5440  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
5441  *
5442  *	Reads the HW path MTU table.
5443  */
5444 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5445 {
5446 	u32 v;
5447 	int i;
5448 
5449 	for (i = 0; i < NMTUS; ++i) {
5450 		t4_write_reg(adap, A_TP_MTU_TABLE,
5451 			     V_MTUINDEX(0xff) | V_MTUVALUE(i));
5452 		v = t4_read_reg(adap, A_TP_MTU_TABLE);
5453 		mtus[i] = G_MTUVALUE(v);
5454 		if (mtu_log)
5455 			mtu_log[i] = G_MTUWIDTH(v);
5456 	}
5457 }
5458 
5459 /**
5460  *	t4_read_cong_tbl - reads the congestion control table
5461  *	@adap: the adapter
5462  *	@incr: where to store the alpha values
5463  *
5464  *	Reads the additive increments programmed into the HW congestion
5465  *	control table.
5466  */
5467 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5468 {
5469 	unsigned int mtu, w;
5470 
5471 	for (mtu = 0; mtu < NMTUS; ++mtu)
5472 		for (w = 0; w < NCCTRL_WIN; ++w) {
5473 			t4_write_reg(adap, A_TP_CCTRL_TABLE,
5474 				     V_ROWINDEX(0xffff) | (mtu << 5) | w);
5475 			incr[mtu][w] = (u16)t4_read_reg(adap,
5476 						A_TP_CCTRL_TABLE) & 0x1fff;
5477 		}
5478 }
5479 
5480 /**
5481  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5482  *	@adap: the adapter
5483  *	@addr: the indirect TP register address
5484  *	@mask: specifies the field within the register to modify
5485  *	@val: new value for the field
5486  *
5487  *	Sets a field of an indirect TP register to the given value.
5488  */
5489 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5490 			    unsigned int mask, unsigned int val)
5491 {
5492 	t4_write_reg(adap, A_TP_PIO_ADDR, addr);
5493 	val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
5494 	t4_write_reg(adap, A_TP_PIO_DATA, val);
5495 }
5496 
5497 /**
5498  *	init_cong_ctrl - initialize congestion control parameters
5499  *	@a: the alpha values for congestion control
5500  *	@b: the beta values for congestion control
5501  *
5502  *	Initialize the congestion control parameters.
5503  */
5504 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5505 {
5506 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5507 	a[9] = 2;
5508 	a[10] = 3;
5509 	a[11] = 4;
5510 	a[12] = 5;
5511 	a[13] = 6;
5512 	a[14] = 7;
5513 	a[15] = 8;
5514 	a[16] = 9;
5515 	a[17] = 10;
5516 	a[18] = 14;
5517 	a[19] = 17;
5518 	a[20] = 21;
5519 	a[21] = 25;
5520 	a[22] = 30;
5521 	a[23] = 35;
5522 	a[24] = 45;
5523 	a[25] = 60;
5524 	a[26] = 80;
5525 	a[27] = 100;
5526 	a[28] = 200;
5527 	a[29] = 300;
5528 	a[30] = 400;
5529 	a[31] = 500;
5530 
5531 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5532 	b[9] = b[10] = 1;
5533 	b[11] = b[12] = 2;
5534 	b[13] = b[14] = b[15] = b[16] = 3;
5535 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5536 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5537 	b[28] = b[29] = 6;
5538 	b[30] = b[31] = 7;
5539 }
5540 
5541 /* The minimum additive increment value for the congestion control table */
5542 #define CC_MIN_INCR 2U
5543 
5544 /**
5545  *	t4_load_mtus - write the MTU and congestion control HW tables
5546  *	@adap: the adapter
5547  *	@mtus: the values for the MTU table
5548  *	@alpha: the values for the congestion control alpha parameter
5549  *	@beta: the values for the congestion control beta parameter
5550  *
5551  *	Write the HW MTU table with the supplied MTUs and the high-speed
5552  *	congestion control table with the supplied alpha, beta, and MTUs.
5553  *	We write the two tables together because the additive increments
5554  *	depend on the MTUs.
5555  */
5556 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5557 		  const unsigned short *alpha, const unsigned short *beta)
5558 {
5559 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5560 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5561 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5562 		28672, 40960, 57344, 81920, 114688, 163840, 229376
5563 	};
5564 
5565 	unsigned int i, w;
5566 
5567 	for (i = 0; i < NMTUS; ++i) {
5568 		unsigned int mtu = mtus[i];
5569 		unsigned int log2 = fls(mtu);
5570 
5571 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5572 			log2--;
5573 		t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
5574 			     V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
5575 
5576 		for (w = 0; w < NCCTRL_WIN; ++w) {
5577 			unsigned int inc;
5578 
5579 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5580 				  CC_MIN_INCR);
5581 
5582 			t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
5583 				     (w << 16) | (beta[w] << 13) | inc);
5584 		}
5585 	}
5586 }
5587 
5588 /**
5589  *	t4_set_pace_tbl - set the pace table
5590  *	@adap: the adapter
5591  *	@pace_vals: the pace values in microseconds
5592  *	@start: index of the first entry in the HW pace table to set
5593  *	@n: how many entries to set
5594  *
5595  *	Sets (a subset of the) HW pace table.
5596  */
5597 int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
5598 		     unsigned int start, unsigned int n)
5599 {
5600 	unsigned int vals[NTX_SCHED], i;
5601 	unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
5602 
5603 	if (n > NTX_SCHED)
5604 	    return -ERANGE;
5605 
5606 	/* convert values from us to dack ticks, rounding to closest value */
5607 	for (i = 0; i < n; i++, pace_vals++) {
5608 		vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
5609 		if (vals[i] > 0x7ff)
5610 			return -ERANGE;
5611 		if (*pace_vals && vals[i] == 0)
5612 			return -ERANGE;
5613 	}
5614 	for (i = 0; i < n; i++, start++)
5615 		t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
5616 	return 0;
5617 }
5618 
5619 /**
5620  *	t4_set_sched_bps - set the bit rate for a HW traffic scheduler
5621  *	@adap: the adapter
5622  *	@kbps: target rate in Kbps
5623  *	@sched: the scheduler index
5624  *
5625  *	Configure a Tx HW scheduler for the target rate.
5626  */
5627 int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
5628 {
5629 	unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
5630 	unsigned int clk = adap->params.vpd.cclk * 1000;
5631 	unsigned int selected_cpt = 0, selected_bpt = 0;
5632 
5633 	if (kbps > 0) {
5634 		kbps *= 125;     /* -> bytes */
5635 		for (cpt = 1; cpt <= 255; cpt++) {
5636 			tps = clk / cpt;
5637 			bpt = (kbps + tps / 2) / tps;
5638 			if (bpt > 0 && bpt <= 255) {
5639 				v = bpt * tps;
5640 				delta = v >= kbps ? v - kbps : kbps - v;
5641 				if (delta < mindelta) {
5642 					mindelta = delta;
5643 					selected_cpt = cpt;
5644 					selected_bpt = bpt;
5645 				}
5646 			} else if (selected_cpt)
5647 				break;
5648 		}
5649 		if (!selected_cpt)
5650 			return -EINVAL;
5651 	}
5652 	t4_write_reg(adap, A_TP_TM_PIO_ADDR,
5653 		     A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
5654 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
5655 	if (sched & 1)
5656 		v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
5657 	else
5658 		v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
5659 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
5660 	return 0;
5661 }
5662 
5663 /**
5664  *	t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
5665  *	@adap: the adapter
5666  *	@sched: the scheduler index
5667  *	@ipg: the interpacket delay in tenths of nanoseconds
5668  *
5669  *	Set the interpacket delay for a HW packet rate scheduler.
5670  */
5671 int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
5672 {
5673 	unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
5674 
5675 	/* convert ipg to nearest number of core clocks */
5676 	ipg *= core_ticks_per_usec(adap);
5677 	ipg = (ipg + 5000) / 10000;
5678 	if (ipg > M_TXTIMERSEPQ0)
5679 		return -EINVAL;
5680 
5681 	t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
5682 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
5683 	if (sched & 1)
5684 		v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
5685 	else
5686 		v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
5687 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
5688 	t4_read_reg(adap, A_TP_TM_PIO_DATA);
5689 	return 0;
5690 }
5691 
5692 /*
5693  * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5694  * clocks.  The formula is
5695  *
5696  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5697  *
5698  * which is equivalent to
5699  *
5700  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5701  */
5702 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5703 {
5704 	u64 v = bytes256 * adap->params.vpd.cclk;
5705 
5706 	return v * 62 + v / 2;
5707 }
5708 
5709 /**
5710  *	t4_get_chan_txrate - get the current per channel Tx rates
5711  *	@adap: the adapter
5712  *	@nic_rate: rates for NIC traffic
5713  *	@ofld_rate: rates for offloaded traffic
5714  *
5715  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5716  *	for each channel.
5717  */
5718 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5719 {
5720 	u32 v;
5721 
5722 	v = t4_read_reg(adap, A_TP_TX_TRATE);
5723 	nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
5724 	nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
5725 	if (adap->chip_params->nchan > 2) {
5726 		nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
5727 		nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
5728 	}
5729 
5730 	v = t4_read_reg(adap, A_TP_TX_ORATE);
5731 	ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
5732 	ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
5733 	if (adap->chip_params->nchan > 2) {
5734 		ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
5735 		ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
5736 	}
5737 }
5738 
5739 /**
5740  *	t4_set_trace_filter - configure one of the tracing filters
5741  *	@adap: the adapter
5742  *	@tp: the desired trace filter parameters
5743  *	@idx: which filter to configure
5744  *	@enable: whether to enable or disable the filter
5745  *
5746  *	Configures one of the tracing filters available in HW.  If @tp is %NULL
5747  *	it indicates that the filter is already written in the register and it
5748  *	just needs to be enabled or disabled.
5749  */
5750 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5751     int idx, int enable)
5752 {
5753 	int i, ofst = idx * 4;
5754 	u32 data_reg, mask_reg, cfg;
5755 	u32 multitrc = F_TRCMULTIFILTER;
5756 	u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
5757 
5758 	if (idx < 0 || idx >= NTRACE)
5759 		return -EINVAL;
5760 
5761 	if (tp == NULL || !enable) {
5762 		t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en,
5763 		    enable ? en : 0);
5764 		return 0;
5765 	}
5766 
5767 	/*
5768 	 * TODO - After T4 data book is updated, specify the exact
5769 	 * section below.
5770 	 *
5771 	 * See T4 data book - MPS section for a complete description
5772 	 * of the below if..else handling of A_MPS_TRC_CFG register
5773 	 * value.
5774 	 */
5775 	cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
5776 	if (cfg & F_TRCMULTIFILTER) {
5777 		/*
5778 		 * If multiple tracers are enabled, then maximum
5779 		 * capture size is 2.5KB (FIFO size of a single channel)
5780 		 * minus 2 flits for CPL_TRACE_PKT header.
5781 		 */
5782 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5783 			return -EINVAL;
5784 	} else {
5785 		/*
5786 		 * If multiple tracers are disabled, to avoid deadlocks
5787 		 * maximum packet capture size of 9600 bytes is recommended.
5788 		 * Also in this mode, only trace0 can be enabled and running.
5789 		 */
5790 		multitrc = 0;
5791 		if (tp->snap_len > 9600 || idx)
5792 			return -EINVAL;
5793 	}
5794 
5795 	if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
5796 	    tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
5797 	    tp->min_len > M_TFMINPKTSIZE)
5798 		return -EINVAL;
5799 
5800 	/* stop the tracer we'll be changing */
5801 	t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0);
5802 
5803 	idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
5804 	data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
5805 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
5806 
5807 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5808 		t4_write_reg(adap, data_reg, tp->data[i]);
5809 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5810 	}
5811 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
5812 		     V_TFCAPTUREMAX(tp->snap_len) |
5813 		     V_TFMINPKTSIZE(tp->min_len));
5814 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
5815 		     V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en |
5816 		     (is_t4(adap) ?
5817 		     V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
5818 		     V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
5819 
5820 	return 0;
5821 }
5822 
5823 /**
5824  *	t4_get_trace_filter - query one of the tracing filters
5825  *	@adap: the adapter
5826  *	@tp: the current trace filter parameters
5827  *	@idx: which trace filter to query
5828  *	@enabled: non-zero if the filter is enabled
5829  *
5830  *	Returns the current settings of one of the HW tracing filters.
5831  */
5832 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5833 			 int *enabled)
5834 {
5835 	u32 ctla, ctlb;
5836 	int i, ofst = idx * 4;
5837 	u32 data_reg, mask_reg;
5838 
5839 	ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
5840 	ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
5841 
5842 	if (is_t4(adap)) {
5843 		*enabled = !!(ctla & F_TFEN);
5844 		tp->port =  G_TFPORT(ctla);
5845 		tp->invert = !!(ctla & F_TFINVERTMATCH);
5846 	} else {
5847 		*enabled = !!(ctla & F_T5_TFEN);
5848 		tp->port = G_T5_TFPORT(ctla);
5849 		tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
5850 	}
5851 	tp->snap_len = G_TFCAPTUREMAX(ctlb);
5852 	tp->min_len = G_TFMINPKTSIZE(ctlb);
5853 	tp->skip_ofst = G_TFOFFSET(ctla);
5854 	tp->skip_len = G_TFLENGTH(ctla);
5855 
5856 	ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
5857 	data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
5858 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
5859 
5860 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5861 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5862 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5863 	}
5864 }
5865 
5866 /**
5867  *	t4_pmtx_get_stats - returns the HW stats from PMTX
5868  *	@adap: the adapter
5869  *	@cnt: where to store the count statistics
5870  *	@cycles: where to store the cycle statistics
5871  *
5872  *	Returns performance statistics from PMTX.
5873  */
5874 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5875 {
5876 	int i;
5877 	u32 data[2];
5878 
5879 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
5880 		t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
5881 		cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
5882 		if (is_t4(adap))
5883 			cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
5884 		else {
5885 			t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
5886 					 A_PM_TX_DBG_DATA, data, 2,
5887 					 A_PM_TX_DBG_STAT_MSB);
5888 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5889 		}
5890 	}
5891 }
5892 
5893 /**
5894  *	t4_pmrx_get_stats - returns the HW stats from PMRX
5895  *	@adap: the adapter
5896  *	@cnt: where to store the count statistics
5897  *	@cycles: where to store the cycle statistics
5898  *
5899  *	Returns performance statistics from PMRX.
5900  */
5901 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5902 {
5903 	int i;
5904 	u32 data[2];
5905 
5906 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
5907 		t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
5908 		cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
5909 		if (is_t4(adap)) {
5910 			cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
5911 		} else {
5912 			t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
5913 					 A_PM_RX_DBG_DATA, data, 2,
5914 					 A_PM_RX_DBG_STAT_MSB);
5915 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5916 		}
5917 	}
5918 }
5919 
5920 /**
5921  *	t4_get_mps_bg_map - return the buffer groups associated with a port
5922  *	@adap: the adapter
5923  *	@idx: the port index
5924  *
5925  *	Returns a bitmap indicating which MPS buffer groups are associated
5926  *	with the given port.  Bit i is set if buffer group i is used by the
5927  *	port.
5928  */
5929 static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
5930 {
5931 	u32 n;
5932 
5933 	if (adap->params.mps_bg_map)
5934 		return ((adap->params.mps_bg_map >> (idx << 3)) & 0xff);
5935 
5936 	n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
5937 	if (n == 0)
5938 		return idx == 0 ? 0xf : 0;
5939 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
5940 		return idx < 2 ? (3 << (2 * idx)) : 0;
5941 	return 1 << idx;
5942 }
5943 
5944 /*
5945  * TP RX e-channels associated with the port.
5946  */
5947 static unsigned int t4_get_rx_e_chan_map(struct adapter *adap, int idx)
5948 {
5949 	u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
5950 
5951 	if (n == 0)
5952 		return idx == 0 ? 0xf : 0;
5953 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
5954 		return idx < 2 ? (3 << (2 * idx)) : 0;
5955 	return 1 << idx;
5956 }
5957 
5958 /**
5959  *      t4_get_port_type_description - return Port Type string description
5960  *      @port_type: firmware Port Type enumeration
5961  */
5962 const char *t4_get_port_type_description(enum fw_port_type port_type)
5963 {
5964 	static const char *const port_type_description[] = {
5965 		"Fiber_XFI",
5966 		"Fiber_XAUI",
5967 		"BT_SGMII",
5968 		"BT_XFI",
5969 		"BT_XAUI",
5970 		"KX4",
5971 		"CX4",
5972 		"KX",
5973 		"KR",
5974 		"SFP",
5975 		"BP_AP",
5976 		"BP4_AP",
5977 		"QSFP_10G",
5978 		"QSA",
5979 		"QSFP",
5980 		"BP40_BA",
5981 		"KR4_100G",
5982 		"CR4_QSFP",
5983 		"CR_QSFP",
5984 		"CR2_QSFP",
5985 		"SFP28",
5986 		"KR_SFP28",
5987 	};
5988 
5989 	if (port_type < ARRAY_SIZE(port_type_description))
5990 		return port_type_description[port_type];
5991 	return "UNKNOWN";
5992 }
5993 
5994 /**
5995  *      t4_get_port_stats_offset - collect port stats relative to a previous
5996  *				   snapshot
5997  *      @adap: The adapter
5998  *      @idx: The port
5999  *      @stats: Current stats to fill
6000  *      @offset: Previous stats snapshot
6001  */
6002 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6003 		struct port_stats *stats,
6004 		struct port_stats *offset)
6005 {
6006 	u64 *s, *o;
6007 	int i;
6008 
6009 	t4_get_port_stats(adap, idx, stats);
6010 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
6011 			i < (sizeof(struct port_stats)/sizeof(u64)) ;
6012 			i++, s++, o++)
6013 		*s -= *o;
6014 }
6015 
6016 /**
6017  *	t4_get_port_stats - collect port statistics
6018  *	@adap: the adapter
6019  *	@idx: the port index
6020  *	@p: the stats structure to fill
6021  *
6022  *	Collect statistics related to the given port from HW.
6023  */
6024 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6025 {
6026 	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
6027 	u32 stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
6028 
6029 #define GET_STAT(name) \
6030 	t4_read_reg64(adap, \
6031 	(is_t4(adap) ? PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) : \
6032 	T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
6033 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6034 
6035 	p->tx_pause		= GET_STAT(TX_PORT_PAUSE);
6036 	p->tx_octets		= GET_STAT(TX_PORT_BYTES);
6037 	p->tx_frames		= GET_STAT(TX_PORT_FRAMES);
6038 	p->tx_bcast_frames	= GET_STAT(TX_PORT_BCAST);
6039 	p->tx_mcast_frames	= GET_STAT(TX_PORT_MCAST);
6040 	p->tx_ucast_frames	= GET_STAT(TX_PORT_UCAST);
6041 	p->tx_error_frames	= GET_STAT(TX_PORT_ERROR);
6042 	p->tx_frames_64		= GET_STAT(TX_PORT_64B);
6043 	p->tx_frames_65_127	= GET_STAT(TX_PORT_65B_127B);
6044 	p->tx_frames_128_255	= GET_STAT(TX_PORT_128B_255B);
6045 	p->tx_frames_256_511	= GET_STAT(TX_PORT_256B_511B);
6046 	p->tx_frames_512_1023	= GET_STAT(TX_PORT_512B_1023B);
6047 	p->tx_frames_1024_1518	= GET_STAT(TX_PORT_1024B_1518B);
6048 	p->tx_frames_1519_max	= GET_STAT(TX_PORT_1519B_MAX);
6049 	p->tx_drop		= GET_STAT(TX_PORT_DROP);
6050 	p->tx_ppp0		= GET_STAT(TX_PORT_PPP0);
6051 	p->tx_ppp1		= GET_STAT(TX_PORT_PPP1);
6052 	p->tx_ppp2		= GET_STAT(TX_PORT_PPP2);
6053 	p->tx_ppp3		= GET_STAT(TX_PORT_PPP3);
6054 	p->tx_ppp4		= GET_STAT(TX_PORT_PPP4);
6055 	p->tx_ppp5		= GET_STAT(TX_PORT_PPP5);
6056 	p->tx_ppp6		= GET_STAT(TX_PORT_PPP6);
6057 	p->tx_ppp7		= GET_STAT(TX_PORT_PPP7);
6058 
6059 	if (chip_id(adap) >= CHELSIO_T5) {
6060 		if (stat_ctl & F_COUNTPAUSESTATTX) {
6061 			p->tx_frames -= p->tx_pause;
6062 			p->tx_octets -= p->tx_pause * 64;
6063 		}
6064 		if (stat_ctl & F_COUNTPAUSEMCTX)
6065 			p->tx_mcast_frames -= p->tx_pause;
6066 	}
6067 
6068 	p->rx_pause		= GET_STAT(RX_PORT_PAUSE);
6069 	p->rx_octets		= GET_STAT(RX_PORT_BYTES);
6070 	p->rx_frames		= GET_STAT(RX_PORT_FRAMES);
6071 	p->rx_bcast_frames	= GET_STAT(RX_PORT_BCAST);
6072 	p->rx_mcast_frames	= GET_STAT(RX_PORT_MCAST);
6073 	p->rx_ucast_frames	= GET_STAT(RX_PORT_UCAST);
6074 	p->rx_too_long		= GET_STAT(RX_PORT_MTU_ERROR);
6075 	p->rx_jabber		= GET_STAT(RX_PORT_MTU_CRC_ERROR);
6076 	p->rx_fcs_err		= GET_STAT(RX_PORT_CRC_ERROR);
6077 	p->rx_len_err		= GET_STAT(RX_PORT_LEN_ERROR);
6078 	p->rx_symbol_err	= GET_STAT(RX_PORT_SYM_ERROR);
6079 	p->rx_runt		= GET_STAT(RX_PORT_LESS_64B);
6080 	p->rx_frames_64		= GET_STAT(RX_PORT_64B);
6081 	p->rx_frames_65_127	= GET_STAT(RX_PORT_65B_127B);
6082 	p->rx_frames_128_255	= GET_STAT(RX_PORT_128B_255B);
6083 	p->rx_frames_256_511	= GET_STAT(RX_PORT_256B_511B);
6084 	p->rx_frames_512_1023	= GET_STAT(RX_PORT_512B_1023B);
6085 	p->rx_frames_1024_1518	= GET_STAT(RX_PORT_1024B_1518B);
6086 	p->rx_frames_1519_max	= GET_STAT(RX_PORT_1519B_MAX);
6087 	p->rx_ppp0		= GET_STAT(RX_PORT_PPP0);
6088 	p->rx_ppp1		= GET_STAT(RX_PORT_PPP1);
6089 	p->rx_ppp2		= GET_STAT(RX_PORT_PPP2);
6090 	p->rx_ppp3		= GET_STAT(RX_PORT_PPP3);
6091 	p->rx_ppp4		= GET_STAT(RX_PORT_PPP4);
6092 	p->rx_ppp5		= GET_STAT(RX_PORT_PPP5);
6093 	p->rx_ppp6		= GET_STAT(RX_PORT_PPP6);
6094 	p->rx_ppp7		= GET_STAT(RX_PORT_PPP7);
6095 
6096 	if (chip_id(adap) >= CHELSIO_T5) {
6097 		if (stat_ctl & F_COUNTPAUSESTATRX) {
6098 			p->rx_frames -= p->rx_pause;
6099 			p->rx_octets -= p->rx_pause * 64;
6100 		}
6101 		if (stat_ctl & F_COUNTPAUSEMCRX)
6102 			p->rx_mcast_frames -= p->rx_pause;
6103 	}
6104 
6105 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6106 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6107 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6108 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6109 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6110 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6111 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6112 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6113 
6114 #undef GET_STAT
6115 #undef GET_STAT_COM
6116 }
6117 
6118 /**
6119  *	t4_get_lb_stats - collect loopback port statistics
6120  *	@adap: the adapter
6121  *	@idx: the loopback port index
6122  *	@p: the stats structure to fill
6123  *
6124  *	Return HW statistics for the given loopback port.
6125  */
6126 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6127 {
6128 	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
6129 
6130 #define GET_STAT(name) \
6131 	t4_read_reg64(adap, \
6132 	(is_t4(adap) ? \
6133 	PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \
6134 	T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L)))
6135 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6136 
6137 	p->octets	= GET_STAT(BYTES);
6138 	p->frames	= GET_STAT(FRAMES);
6139 	p->bcast_frames	= GET_STAT(BCAST);
6140 	p->mcast_frames	= GET_STAT(MCAST);
6141 	p->ucast_frames	= GET_STAT(UCAST);
6142 	p->error_frames	= GET_STAT(ERROR);
6143 
6144 	p->frames_64		= GET_STAT(64B);
6145 	p->frames_65_127	= GET_STAT(65B_127B);
6146 	p->frames_128_255	= GET_STAT(128B_255B);
6147 	p->frames_256_511	= GET_STAT(256B_511B);
6148 	p->frames_512_1023	= GET_STAT(512B_1023B);
6149 	p->frames_1024_1518	= GET_STAT(1024B_1518B);
6150 	p->frames_1519_max	= GET_STAT(1519B_MAX);
6151 	p->drop			= GET_STAT(DROP_FRAMES);
6152 
6153 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6154 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6155 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6156 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6157 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6158 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6159 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6160 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6161 
6162 #undef GET_STAT
6163 #undef GET_STAT_COM
6164 }
6165 
6166 /**
6167  *	t4_wol_magic_enable - enable/disable magic packet WoL
6168  *	@adap: the adapter
6169  *	@port: the physical port index
6170  *	@addr: MAC address expected in magic packets, %NULL to disable
6171  *
6172  *	Enables/disables magic packet wake-on-LAN for the selected port.
6173  */
6174 void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
6175 			 const u8 *addr)
6176 {
6177 	u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
6178 
6179 	if (is_t4(adap)) {
6180 		mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
6181 		mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
6182 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
6183 	} else {
6184 		mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
6185 		mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
6186 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
6187 	}
6188 
6189 	if (addr) {
6190 		t4_write_reg(adap, mag_id_reg_l,
6191 			     (addr[2] << 24) | (addr[3] << 16) |
6192 			     (addr[4] << 8) | addr[5]);
6193 		t4_write_reg(adap, mag_id_reg_h,
6194 			     (addr[0] << 8) | addr[1]);
6195 	}
6196 	t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
6197 			 V_MAGICEN(addr != NULL));
6198 }
6199 
6200 /**
6201  *	t4_wol_pat_enable - enable/disable pattern-based WoL
6202  *	@adap: the adapter
6203  *	@port: the physical port index
6204  *	@map: bitmap of which HW pattern filters to set
6205  *	@mask0: byte mask for bytes 0-63 of a packet
6206  *	@mask1: byte mask for bytes 64-127 of a packet
6207  *	@crc: Ethernet CRC for selected bytes
6208  *	@enable: enable/disable switch
6209  *
6210  *	Sets the pattern filters indicated in @map to mask out the bytes
6211  *	specified in @mask0/@mask1 in received packets and compare the CRC of
6212  *	the resulting packet against @crc.  If @enable is %true pattern-based
6213  *	WoL is enabled, otherwise disabled.
6214  */
6215 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
6216 		      u64 mask0, u64 mask1, unsigned int crc, bool enable)
6217 {
6218 	int i;
6219 	u32 port_cfg_reg;
6220 
6221 	if (is_t4(adap))
6222 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
6223 	else
6224 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
6225 
6226 	if (!enable) {
6227 		t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
6228 		return 0;
6229 	}
6230 	if (map > 0xff)
6231 		return -EINVAL;
6232 
6233 #define EPIO_REG(name) \
6234 	(is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
6235 	T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
6236 
6237 	t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
6238 	t4_write_reg(adap, EPIO_REG(DATA2), mask1);
6239 	t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
6240 
6241 	for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
6242 		if (!(map & 1))
6243 			continue;
6244 
6245 		/* write byte masks */
6246 		t4_write_reg(adap, EPIO_REG(DATA0), mask0);
6247 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
6248 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
6249 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
6250 			return -ETIMEDOUT;
6251 
6252 		/* write CRC */
6253 		t4_write_reg(adap, EPIO_REG(DATA0), crc);
6254 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
6255 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
6256 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
6257 			return -ETIMEDOUT;
6258 	}
6259 #undef EPIO_REG
6260 
6261 	t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
6262 	return 0;
6263 }
6264 
6265 /*     t4_mk_filtdelwr - create a delete filter WR
6266  *     @ftid: the filter ID
6267  *     @wr: the filter work request to populate
6268  *     @qid: ingress queue to receive the delete notification
6269  *
6270  *     Creates a filter work request to delete the supplied filter.  If @qid is
6271  *     negative the delete notification is suppressed.
6272  */
6273 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6274 {
6275 	memset(wr, 0, sizeof(*wr));
6276 	wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR));
6277 	wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16));
6278 	wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) |
6279 				    V_FW_FILTER_WR_NOREPLY(qid < 0));
6280 	wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER);
6281 	if (qid >= 0)
6282 		wr->rx_chan_rx_rpl_iq =
6283 				cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid));
6284 }
6285 
6286 #define INIT_CMD(var, cmd, rd_wr) do { \
6287 	(var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
6288 					F_FW_CMD_REQUEST | \
6289 					F_FW_CMD_##rd_wr); \
6290 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6291 } while (0)
6292 
6293 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6294 			  u32 addr, u32 val)
6295 {
6296 	u32 ldst_addrspace;
6297 	struct fw_ldst_cmd c;
6298 
6299 	memset(&c, 0, sizeof(c));
6300 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE);
6301 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6302 					F_FW_CMD_REQUEST |
6303 					F_FW_CMD_WRITE |
6304 					ldst_addrspace);
6305 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6306 	c.u.addrval.addr = cpu_to_be32(addr);
6307 	c.u.addrval.val = cpu_to_be32(val);
6308 
6309 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6310 }
6311 
6312 /**
6313  *	t4_mdio_rd - read a PHY register through MDIO
6314  *	@adap: the adapter
6315  *	@mbox: mailbox to use for the FW command
6316  *	@phy_addr: the PHY address
6317  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6318  *	@reg: the register to read
6319  *	@valp: where to store the value
6320  *
6321  *	Issues a FW command through the given mailbox to read a PHY register.
6322  */
6323 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6324 	       unsigned int mmd, unsigned int reg, unsigned int *valp)
6325 {
6326 	int ret;
6327 	u32 ldst_addrspace;
6328 	struct fw_ldst_cmd c;
6329 
6330 	memset(&c, 0, sizeof(c));
6331 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
6332 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6333 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
6334 					ldst_addrspace);
6335 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6336 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
6337 					 V_FW_LDST_CMD_MMD(mmd));
6338 	c.u.mdio.raddr = cpu_to_be16(reg);
6339 
6340 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6341 	if (ret == 0)
6342 		*valp = be16_to_cpu(c.u.mdio.rval);
6343 	return ret;
6344 }
6345 
6346 /**
6347  *	t4_mdio_wr - write a PHY register through MDIO
6348  *	@adap: the adapter
6349  *	@mbox: mailbox to use for the FW command
6350  *	@phy_addr: the PHY address
6351  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6352  *	@reg: the register to write
6353  *	@valp: value to write
6354  *
6355  *	Issues a FW command through the given mailbox to write a PHY register.
6356  */
6357 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6358 	       unsigned int mmd, unsigned int reg, unsigned int val)
6359 {
6360 	u32 ldst_addrspace;
6361 	struct fw_ldst_cmd c;
6362 
6363 	memset(&c, 0, sizeof(c));
6364 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
6365 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6366 					F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
6367 					ldst_addrspace);
6368 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6369 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
6370 					 V_FW_LDST_CMD_MMD(mmd));
6371 	c.u.mdio.raddr = cpu_to_be16(reg);
6372 	c.u.mdio.rval = cpu_to_be16(val);
6373 
6374 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6375 }
6376 
6377 /**
6378  *
6379  *	t4_sge_decode_idma_state - decode the idma state
6380  *	@adap: the adapter
6381  *	@state: the state idma is stuck in
6382  */
6383 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6384 {
6385 	static const char * const t4_decode[] = {
6386 		"IDMA_IDLE",
6387 		"IDMA_PUSH_MORE_CPL_FIFO",
6388 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6389 		"Not used",
6390 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6391 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6392 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6393 		"IDMA_SEND_FIFO_TO_IMSG",
6394 		"IDMA_FL_REQ_DATA_FL_PREP",
6395 		"IDMA_FL_REQ_DATA_FL",
6396 		"IDMA_FL_DROP",
6397 		"IDMA_FL_H_REQ_HEADER_FL",
6398 		"IDMA_FL_H_SEND_PCIEHDR",
6399 		"IDMA_FL_H_PUSH_CPL_FIFO",
6400 		"IDMA_FL_H_SEND_CPL",
6401 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6402 		"IDMA_FL_H_SEND_IP_HDR",
6403 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6404 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6405 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6406 		"IDMA_FL_D_SEND_PCIEHDR",
6407 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6408 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6409 		"IDMA_FL_SEND_PCIEHDR",
6410 		"IDMA_FL_PUSH_CPL_FIFO",
6411 		"IDMA_FL_SEND_CPL",
6412 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6413 		"IDMA_FL_SEND_PAYLOAD",
6414 		"IDMA_FL_REQ_NEXT_DATA_FL",
6415 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6416 		"IDMA_FL_SEND_PADDING",
6417 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6418 		"IDMA_FL_SEND_FIFO_TO_IMSG",
6419 		"IDMA_FL_REQ_DATAFL_DONE",
6420 		"IDMA_FL_REQ_HEADERFL_DONE",
6421 	};
6422 	static const char * const t5_decode[] = {
6423 		"IDMA_IDLE",
6424 		"IDMA_ALMOST_IDLE",
6425 		"IDMA_PUSH_MORE_CPL_FIFO",
6426 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6427 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6428 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6429 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6430 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6431 		"IDMA_SEND_FIFO_TO_IMSG",
6432 		"IDMA_FL_REQ_DATA_FL",
6433 		"IDMA_FL_DROP",
6434 		"IDMA_FL_DROP_SEND_INC",
6435 		"IDMA_FL_H_REQ_HEADER_FL",
6436 		"IDMA_FL_H_SEND_PCIEHDR",
6437 		"IDMA_FL_H_PUSH_CPL_FIFO",
6438 		"IDMA_FL_H_SEND_CPL",
6439 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6440 		"IDMA_FL_H_SEND_IP_HDR",
6441 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6442 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6443 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6444 		"IDMA_FL_D_SEND_PCIEHDR",
6445 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6446 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6447 		"IDMA_FL_SEND_PCIEHDR",
6448 		"IDMA_FL_PUSH_CPL_FIFO",
6449 		"IDMA_FL_SEND_CPL",
6450 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6451 		"IDMA_FL_SEND_PAYLOAD",
6452 		"IDMA_FL_REQ_NEXT_DATA_FL",
6453 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6454 		"IDMA_FL_SEND_PADDING",
6455 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6456 	};
6457 	static const char * const t6_decode[] = {
6458 		"IDMA_IDLE",
6459 		"IDMA_PUSH_MORE_CPL_FIFO",
6460 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6461 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6462 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6463 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6464 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6465 		"IDMA_FL_REQ_DATA_FL",
6466 		"IDMA_FL_DROP",
6467 		"IDMA_FL_DROP_SEND_INC",
6468 		"IDMA_FL_H_REQ_HEADER_FL",
6469 		"IDMA_FL_H_SEND_PCIEHDR",
6470 		"IDMA_FL_H_PUSH_CPL_FIFO",
6471 		"IDMA_FL_H_SEND_CPL",
6472 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6473 		"IDMA_FL_H_SEND_IP_HDR",
6474 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6475 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6476 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6477 		"IDMA_FL_D_SEND_PCIEHDR",
6478 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6479 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6480 		"IDMA_FL_SEND_PCIEHDR",
6481 		"IDMA_FL_PUSH_CPL_FIFO",
6482 		"IDMA_FL_SEND_CPL",
6483 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6484 		"IDMA_FL_SEND_PAYLOAD",
6485 		"IDMA_FL_REQ_NEXT_DATA_FL",
6486 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6487 		"IDMA_FL_SEND_PADDING",
6488 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6489 	};
6490 	static const u32 sge_regs[] = {
6491 		A_SGE_DEBUG_DATA_LOW_INDEX_2,
6492 		A_SGE_DEBUG_DATA_LOW_INDEX_3,
6493 		A_SGE_DEBUG_DATA_HIGH_INDEX_10,
6494 	};
6495 	const char * const *sge_idma_decode;
6496 	int sge_idma_decode_nstates;
6497 	int i;
6498 	unsigned int chip_version = chip_id(adapter);
6499 
6500 	/* Select the right set of decode strings to dump depending on the
6501 	 * adapter chip type.
6502 	 */
6503 	switch (chip_version) {
6504 	case CHELSIO_T4:
6505 		sge_idma_decode = (const char * const *)t4_decode;
6506 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6507 		break;
6508 
6509 	case CHELSIO_T5:
6510 		sge_idma_decode = (const char * const *)t5_decode;
6511 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6512 		break;
6513 
6514 	case CHELSIO_T6:
6515 		sge_idma_decode = (const char * const *)t6_decode;
6516 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6517 		break;
6518 
6519 	default:
6520 		CH_ERR(adapter,	"Unsupported chip version %d\n", chip_version);
6521 		return;
6522 	}
6523 
6524 	if (state < sge_idma_decode_nstates)
6525 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6526 	else
6527 		CH_WARN(adapter, "idma state %d unknown\n", state);
6528 
6529 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6530 		CH_WARN(adapter, "SGE register %#x value %#x\n",
6531 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6532 }
6533 
6534 /**
6535  *      t4_sge_ctxt_flush - flush the SGE context cache
6536  *      @adap: the adapter
6537  *      @mbox: mailbox to use for the FW command
6538  *
6539  *      Issues a FW command through the given mailbox to flush the
6540  *      SGE context cache.
6541  */
6542 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
6543 {
6544 	int ret;
6545 	u32 ldst_addrspace;
6546 	struct fw_ldst_cmd c;
6547 
6548 	memset(&c, 0, sizeof(c));
6549 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_SGE_EGRC);
6550 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6551 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
6552 					ldst_addrspace);
6553 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6554 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH);
6555 
6556 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6557 	return ret;
6558 }
6559 
6560 /**
6561  *      t4_fw_hello - establish communication with FW
6562  *      @adap: the adapter
6563  *      @mbox: mailbox to use for the FW command
6564  *      @evt_mbox: mailbox to receive async FW events
6565  *      @master: specifies the caller's willingness to be the device master
6566  *	@state: returns the current device state (if non-NULL)
6567  *
6568  *	Issues a command to establish communication with FW.  Returns either
6569  *	an error (negative integer) or the mailbox of the Master PF.
6570  */
6571 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6572 		enum dev_master master, enum dev_state *state)
6573 {
6574 	int ret;
6575 	struct fw_hello_cmd c;
6576 	u32 v;
6577 	unsigned int master_mbox;
6578 	int retries = FW_CMD_HELLO_RETRIES;
6579 
6580 retry:
6581 	memset(&c, 0, sizeof(c));
6582 	INIT_CMD(c, HELLO, WRITE);
6583 	c.err_to_clearinit = cpu_to_be32(
6584 		V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
6585 		V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
6586 		V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ?
6587 					mbox : M_FW_HELLO_CMD_MBMASTER) |
6588 		V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
6589 		V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
6590 		F_FW_HELLO_CMD_CLEARINIT);
6591 
6592 	/*
6593 	 * Issue the HELLO command to the firmware.  If it's not successful
6594 	 * but indicates that we got a "busy" or "timeout" condition, retry
6595 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
6596 	 * retry limit, check to see if the firmware left us any error
6597 	 * information and report that if so ...
6598 	 */
6599 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6600 	if (ret != FW_SUCCESS) {
6601 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6602 			goto retry;
6603 		if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
6604 			t4_report_fw_error(adap);
6605 		return ret;
6606 	}
6607 
6608 	v = be32_to_cpu(c.err_to_clearinit);
6609 	master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
6610 	if (state) {
6611 		if (v & F_FW_HELLO_CMD_ERR)
6612 			*state = DEV_STATE_ERR;
6613 		else if (v & F_FW_HELLO_CMD_INIT)
6614 			*state = DEV_STATE_INIT;
6615 		else
6616 			*state = DEV_STATE_UNINIT;
6617 	}
6618 
6619 	/*
6620 	 * If we're not the Master PF then we need to wait around for the
6621 	 * Master PF Driver to finish setting up the adapter.
6622 	 *
6623 	 * Note that we also do this wait if we're a non-Master-capable PF and
6624 	 * there is no current Master PF; a Master PF may show up momentarily
6625 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
6626 	 * OS loads lots of different drivers rapidly at the same time).  In
6627 	 * this case, the Master PF returned by the firmware will be
6628 	 * M_PCIE_FW_MASTER so the test below will work ...
6629 	 */
6630 	if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
6631 	    master_mbox != mbox) {
6632 		int waiting = FW_CMD_HELLO_TIMEOUT;
6633 
6634 		/*
6635 		 * Wait for the firmware to either indicate an error or
6636 		 * initialized state.  If we see either of these we bail out
6637 		 * and report the issue to the caller.  If we exhaust the
6638 		 * "hello timeout" and we haven't exhausted our retries, try
6639 		 * again.  Otherwise bail with a timeout error.
6640 		 */
6641 		for (;;) {
6642 			u32 pcie_fw;
6643 
6644 			msleep(50);
6645 			waiting -= 50;
6646 
6647 			/*
6648 			 * If neither Error nor Initialialized are indicated
6649 			 * by the firmware keep waiting till we exhaust our
6650 			 * timeout ... and then retry if we haven't exhausted
6651 			 * our retries ...
6652 			 */
6653 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
6654 			if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
6655 				if (waiting <= 0) {
6656 					if (retries-- > 0)
6657 						goto retry;
6658 
6659 					return -ETIMEDOUT;
6660 				}
6661 				continue;
6662 			}
6663 
6664 			/*
6665 			 * We either have an Error or Initialized condition
6666 			 * report errors preferentially.
6667 			 */
6668 			if (state) {
6669 				if (pcie_fw & F_PCIE_FW_ERR)
6670 					*state = DEV_STATE_ERR;
6671 				else if (pcie_fw & F_PCIE_FW_INIT)
6672 					*state = DEV_STATE_INIT;
6673 			}
6674 
6675 			/*
6676 			 * If we arrived before a Master PF was selected and
6677 			 * there's not a valid Master PF, grab its identity
6678 			 * for our caller.
6679 			 */
6680 			if (master_mbox == M_PCIE_FW_MASTER &&
6681 			    (pcie_fw & F_PCIE_FW_MASTER_VLD))
6682 				master_mbox = G_PCIE_FW_MASTER(pcie_fw);
6683 			break;
6684 		}
6685 	}
6686 
6687 	return master_mbox;
6688 }
6689 
6690 /**
6691  *	t4_fw_bye - end communication with FW
6692  *	@adap: the adapter
6693  *	@mbox: mailbox to use for the FW command
6694  *
6695  *	Issues a command to terminate communication with FW.
6696  */
6697 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6698 {
6699 	struct fw_bye_cmd c;
6700 
6701 	memset(&c, 0, sizeof(c));
6702 	INIT_CMD(c, BYE, WRITE);
6703 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6704 }
6705 
6706 /**
6707  *	t4_fw_reset - issue a reset to FW
6708  *	@adap: the adapter
6709  *	@mbox: mailbox to use for the FW command
6710  *	@reset: specifies the type of reset to perform
6711  *
6712  *	Issues a reset command of the specified type to FW.
6713  */
6714 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6715 {
6716 	struct fw_reset_cmd c;
6717 
6718 	memset(&c, 0, sizeof(c));
6719 	INIT_CMD(c, RESET, WRITE);
6720 	c.val = cpu_to_be32(reset);
6721 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6722 }
6723 
6724 /**
6725  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6726  *	@adap: the adapter
6727  *	@mbox: mailbox to use for the FW RESET command (if desired)
6728  *	@force: force uP into RESET even if FW RESET command fails
6729  *
6730  *	Issues a RESET command to firmware (if desired) with a HALT indication
6731  *	and then puts the microprocessor into RESET state.  The RESET command
6732  *	will only be issued if a legitimate mailbox is provided (mbox <=
6733  *	M_PCIE_FW_MASTER).
6734  *
6735  *	This is generally used in order for the host to safely manipulate the
6736  *	adapter without fear of conflicting with whatever the firmware might
6737  *	be doing.  The only way out of this state is to RESTART the firmware
6738  *	...
6739  */
6740 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
6741 {
6742 	int ret = 0;
6743 
6744 	/*
6745 	 * If a legitimate mailbox is provided, issue a RESET command
6746 	 * with a HALT indication.
6747 	 */
6748 	if (mbox <= M_PCIE_FW_MASTER) {
6749 		struct fw_reset_cmd c;
6750 
6751 		memset(&c, 0, sizeof(c));
6752 		INIT_CMD(c, RESET, WRITE);
6753 		c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
6754 		c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
6755 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6756 	}
6757 
6758 	/*
6759 	 * Normally we won't complete the operation if the firmware RESET
6760 	 * command fails but if our caller insists we'll go ahead and put the
6761 	 * uP into RESET.  This can be useful if the firmware is hung or even
6762 	 * missing ...  We'll have to take the risk of putting the uP into
6763 	 * RESET without the cooperation of firmware in that case.
6764 	 *
6765 	 * We also force the firmware's HALT flag to be on in case we bypassed
6766 	 * the firmware RESET command above or we're dealing with old firmware
6767 	 * which doesn't have the HALT capability.  This will serve as a flag
6768 	 * for the incoming firmware to know that it's coming out of a HALT
6769 	 * rather than a RESET ... if it's new enough to understand that ...
6770 	 */
6771 	if (ret == 0 || force) {
6772 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
6773 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
6774 				 F_PCIE_FW_HALT);
6775 	}
6776 
6777 	/*
6778 	 * And we always return the result of the firmware RESET command
6779 	 * even when we force the uP into RESET ...
6780 	 */
6781 	return ret;
6782 }
6783 
6784 /**
6785  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
6786  *	@adap: the adapter
6787  *	@reset: if we want to do a RESET to restart things
6788  *
6789  *	Restart firmware previously halted by t4_fw_halt().  On successful
6790  *	return the previous PF Master remains as the new PF Master and there
6791  *	is no need to issue a new HELLO command, etc.
6792  *
6793  *	We do this in two ways:
6794  *
6795  *	 1. If we're dealing with newer firmware we'll simply want to take
6796  *	    the chip's microprocessor out of RESET.  This will cause the
6797  *	    firmware to start up from its start vector.  And then we'll loop
6798  *	    until the firmware indicates it's started again (PCIE_FW.HALT
6799  *	    reset to 0) or we timeout.
6800  *
6801  *	 2. If we're dealing with older firmware then we'll need to RESET
6802  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
6803  *	    flag and automatically RESET itself on startup.
6804  */
6805 int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6806 {
6807 	if (reset) {
6808 		/*
6809 		 * Since we're directing the RESET instead of the firmware
6810 		 * doing it automatically, we need to clear the PCIE_FW.HALT
6811 		 * bit.
6812 		 */
6813 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, 0);
6814 
6815 		/*
6816 		 * If we've been given a valid mailbox, first try to get the
6817 		 * firmware to do the RESET.  If that works, great and we can
6818 		 * return success.  Otherwise, if we haven't been given a
6819 		 * valid mailbox or the RESET command failed, fall back to
6820 		 * hitting the chip with a hammer.
6821 		 */
6822 		if (mbox <= M_PCIE_FW_MASTER) {
6823 			t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
6824 			msleep(100);
6825 			if (t4_fw_reset(adap, mbox,
6826 					F_PIORST | F_PIORSTMODE) == 0)
6827 				return 0;
6828 		}
6829 
6830 		t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE);
6831 		msleep(2000);
6832 	} else {
6833 		int ms;
6834 
6835 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
6836 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6837 			if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
6838 				return FW_SUCCESS;
6839 			msleep(100);
6840 			ms += 100;
6841 		}
6842 		return -ETIMEDOUT;
6843 	}
6844 	return 0;
6845 }
6846 
6847 /**
6848  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6849  *	@adap: the adapter
6850  *	@mbox: mailbox to use for the FW RESET command (if desired)
6851  *	@fw_data: the firmware image to write
6852  *	@size: image size
6853  *	@force: force upgrade even if firmware doesn't cooperate
6854  *
6855  *	Perform all of the steps necessary for upgrading an adapter's
6856  *	firmware image.  Normally this requires the cooperation of the
6857  *	existing firmware in order to halt all existing activities
6858  *	but if an invalid mailbox token is passed in we skip that step
6859  *	(though we'll still put the adapter microprocessor into RESET in
6860  *	that case).
6861  *
6862  *	On successful return the new firmware will have been loaded and
6863  *	the adapter will have been fully RESET losing all previous setup
6864  *	state.  On unsuccessful return the adapter may be completely hosed ...
6865  *	positive errno indicates that the adapter is ~probably~ intact, a
6866  *	negative errno indicates that things are looking bad ...
6867  */
6868 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6869 		  const u8 *fw_data, unsigned int size, int force)
6870 {
6871 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6872 	unsigned int bootstrap =
6873 	    be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
6874 	int reset, ret;
6875 
6876 	if (!t4_fw_matches_chip(adap, fw_hdr))
6877 		return -EINVAL;
6878 
6879 	if (!bootstrap) {
6880 		ret = t4_fw_halt(adap, mbox, force);
6881 		if (ret < 0 && !force)
6882 			return ret;
6883 	}
6884 
6885 	ret = t4_load_fw(adap, fw_data, size);
6886 	if (ret < 0 || bootstrap)
6887 		return ret;
6888 
6889 	/*
6890 	 * Older versions of the firmware don't understand the new
6891 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6892 	 * restart.  So for newly loaded older firmware we'll have to do the
6893 	 * RESET for it so it starts up on a clean slate.  We can tell if
6894 	 * the newly loaded firmware will handle this right by checking
6895 	 * its header flags to see if it advertises the capability.
6896 	 */
6897 	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
6898 	return t4_fw_restart(adap, mbox, reset);
6899 }
6900 
6901 /*
6902  * Card doesn't have a firmware, install one.
6903  */
6904 int t4_fw_forceinstall(struct adapter *adap, const u8 *fw_data,
6905     unsigned int size)
6906 {
6907 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6908 	unsigned int bootstrap =
6909 	    be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
6910 	int ret;
6911 
6912 	if (!t4_fw_matches_chip(adap, fw_hdr) || bootstrap)
6913 		return -EINVAL;
6914 
6915 	t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
6916 	t4_write_reg(adap, A_PCIE_FW, 0);	/* Clobber internal state */
6917 	ret = t4_load_fw(adap, fw_data, size);
6918 	if (ret < 0)
6919 		return ret;
6920 	t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE);
6921 	msleep(1000);
6922 
6923 	return (0);
6924 }
6925 
6926 /**
6927  *	t4_fw_initialize - ask FW to initialize the device
6928  *	@adap: the adapter
6929  *	@mbox: mailbox to use for the FW command
6930  *
6931  *	Issues a command to FW to partially initialize the device.  This
6932  *	performs initialization that generally doesn't depend on user input.
6933  */
6934 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
6935 {
6936 	struct fw_initialize_cmd c;
6937 
6938 	memset(&c, 0, sizeof(c));
6939 	INIT_CMD(c, INITIALIZE, WRITE);
6940 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6941 }
6942 
6943 /**
6944  *	t4_query_params_rw - query FW or device parameters
6945  *	@adap: the adapter
6946  *	@mbox: mailbox to use for the FW command
6947  *	@pf: the PF
6948  *	@vf: the VF
6949  *	@nparams: the number of parameters
6950  *	@params: the parameter names
6951  *	@val: the parameter values
6952  *	@rw: Write and read flag
6953  *
6954  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
6955  *	queried at once.
6956  */
6957 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
6958 		       unsigned int vf, unsigned int nparams, const u32 *params,
6959 		       u32 *val, int rw)
6960 {
6961 	int i, ret;
6962 	struct fw_params_cmd c;
6963 	__be32 *p = &c.param[0].mnem;
6964 
6965 	if (nparams > 7)
6966 		return -EINVAL;
6967 
6968 	memset(&c, 0, sizeof(c));
6969 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
6970 				  F_FW_CMD_REQUEST | F_FW_CMD_READ |
6971 				  V_FW_PARAMS_CMD_PFN(pf) |
6972 				  V_FW_PARAMS_CMD_VFN(vf));
6973 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6974 
6975 	for (i = 0; i < nparams; i++) {
6976 		*p++ = cpu_to_be32(*params++);
6977 		if (rw)
6978 			*p = cpu_to_be32(*(val + i));
6979 		p++;
6980 	}
6981 
6982 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6983 	if (ret == 0)
6984 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
6985 			*val++ = be32_to_cpu(*p);
6986 	return ret;
6987 }
6988 
6989 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6990 		    unsigned int vf, unsigned int nparams, const u32 *params,
6991 		    u32 *val)
6992 {
6993 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
6994 }
6995 
6996 /**
6997  *      t4_set_params_timeout - sets FW or device parameters
6998  *      @adap: the adapter
6999  *      @mbox: mailbox to use for the FW command
7000  *      @pf: the PF
7001  *      @vf: the VF
7002  *      @nparams: the number of parameters
7003  *      @params: the parameter names
7004  *      @val: the parameter values
7005  *      @timeout: the timeout time
7006  *
7007  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7008  *      specified at once.
7009  */
7010 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7011 			  unsigned int pf, unsigned int vf,
7012 			  unsigned int nparams, const u32 *params,
7013 			  const u32 *val, int timeout)
7014 {
7015 	struct fw_params_cmd c;
7016 	__be32 *p = &c.param[0].mnem;
7017 
7018 	if (nparams > 7)
7019 		return -EINVAL;
7020 
7021 	memset(&c, 0, sizeof(c));
7022 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7023 				  F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7024 				  V_FW_PARAMS_CMD_PFN(pf) |
7025 				  V_FW_PARAMS_CMD_VFN(vf));
7026 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7027 
7028 	while (nparams--) {
7029 		*p++ = cpu_to_be32(*params++);
7030 		*p++ = cpu_to_be32(*val++);
7031 	}
7032 
7033 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7034 }
7035 
7036 /**
7037  *	t4_set_params - sets FW or device parameters
7038  *	@adap: the adapter
7039  *	@mbox: mailbox to use for the FW command
7040  *	@pf: the PF
7041  *	@vf: the VF
7042  *	@nparams: the number of parameters
7043  *	@params: the parameter names
7044  *	@val: the parameter values
7045  *
7046  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7047  *	specified at once.
7048  */
7049 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7050 		  unsigned int vf, unsigned int nparams, const u32 *params,
7051 		  const u32 *val)
7052 {
7053 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7054 				     FW_CMD_MAX_TIMEOUT);
7055 }
7056 
7057 /**
7058  *	t4_cfg_pfvf - configure PF/VF resource limits
7059  *	@adap: the adapter
7060  *	@mbox: mailbox to use for the FW command
7061  *	@pf: the PF being configured
7062  *	@vf: the VF being configured
7063  *	@txq: the max number of egress queues
7064  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7065  *	@rxqi: the max number of interrupt-capable ingress queues
7066  *	@rxq: the max number of interruptless ingress queues
7067  *	@tc: the PCI traffic class
7068  *	@vi: the max number of virtual interfaces
7069  *	@cmask: the channel access rights mask for the PF/VF
7070  *	@pmask: the port access rights mask for the PF/VF
7071  *	@nexact: the maximum number of exact MPS filters
7072  *	@rcaps: read capabilities
7073  *	@wxcaps: write/execute capabilities
7074  *
7075  *	Configures resource limits and capabilities for a physical or virtual
7076  *	function.
7077  */
7078 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7079 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7080 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7081 		unsigned int vi, unsigned int cmask, unsigned int pmask,
7082 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7083 {
7084 	struct fw_pfvf_cmd c;
7085 
7086 	memset(&c, 0, sizeof(c));
7087 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
7088 				  F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
7089 				  V_FW_PFVF_CMD_VFN(vf));
7090 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7091 	c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
7092 				     V_FW_PFVF_CMD_NIQ(rxq));
7093 	c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) |
7094 				    V_FW_PFVF_CMD_PMASK(pmask) |
7095 				    V_FW_PFVF_CMD_NEQ(txq));
7096 	c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) |
7097 				      V_FW_PFVF_CMD_NVI(vi) |
7098 				      V_FW_PFVF_CMD_NEXACTF(nexact));
7099 	c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) |
7100 				     V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
7101 				     V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
7102 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7103 }
7104 
7105 /**
7106  *	t4_alloc_vi_func - allocate a virtual interface
7107  *	@adap: the adapter
7108  *	@mbox: mailbox to use for the FW command
7109  *	@port: physical port associated with the VI
7110  *	@pf: the PF owning the VI
7111  *	@vf: the VF owning the VI
7112  *	@nmac: number of MAC addresses needed (1 to 5)
7113  *	@mac: the MAC addresses of the VI
7114  *	@rss_size: size of RSS table slice associated with this VI
7115  *	@portfunc: which Port Application Function MAC Address is desired
7116  *	@idstype: Intrusion Detection Type
7117  *
7118  *	Allocates a virtual interface for the given physical port.  If @mac is
7119  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7120  *	If @rss_size is %NULL the VI is not assigned any RSS slice by FW.
7121  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7122  *	stored consecutively so the space needed is @nmac * 6 bytes.
7123  *	Returns a negative error number or the non-negative VI id.
7124  */
7125 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
7126 		     unsigned int port, unsigned int pf, unsigned int vf,
7127 		     unsigned int nmac, u8 *mac, u16 *rss_size,
7128 		     unsigned int portfunc, unsigned int idstype)
7129 {
7130 	int ret;
7131 	struct fw_vi_cmd c;
7132 
7133 	memset(&c, 0, sizeof(c));
7134 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
7135 				  F_FW_CMD_WRITE | F_FW_CMD_EXEC |
7136 				  V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
7137 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
7138 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
7139 				     V_FW_VI_CMD_FUNC(portfunc));
7140 	c.portid_pkd = V_FW_VI_CMD_PORTID(port);
7141 	c.nmac = nmac - 1;
7142 	if(!rss_size)
7143 		c.norss_rsssize = F_FW_VI_CMD_NORSS;
7144 
7145 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7146 	if (ret)
7147 		return ret;
7148 
7149 	if (mac) {
7150 		memcpy(mac, c.mac, sizeof(c.mac));
7151 		switch (nmac) {
7152 		case 5:
7153 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7154 		case 4:
7155 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7156 		case 3:
7157 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7158 		case 2:
7159 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7160 		}
7161 	}
7162 	if (rss_size)
7163 		*rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
7164 	return G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid));
7165 }
7166 
7167 /**
7168  *      t4_alloc_vi - allocate an [Ethernet Function] virtual interface
7169  *      @adap: the adapter
7170  *      @mbox: mailbox to use for the FW command
7171  *      @port: physical port associated with the VI
7172  *      @pf: the PF owning the VI
7173  *      @vf: the VF owning the VI
7174  *      @nmac: number of MAC addresses needed (1 to 5)
7175  *      @mac: the MAC addresses of the VI
7176  *      @rss_size: size of RSS table slice associated with this VI
7177  *
7178  *	backwards compatible and convieniance routine to allocate a Virtual
7179  *	Interface with a Ethernet Port Application Function and Intrustion
7180  *	Detection System disabled.
7181  */
7182 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7183 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7184 		u16 *rss_size)
7185 {
7186 	return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
7187 				FW_VI_FUNC_ETH, 0);
7188 }
7189 
7190 /**
7191  * 	t4_free_vi - free a virtual interface
7192  * 	@adap: the adapter
7193  * 	@mbox: mailbox to use for the FW command
7194  * 	@pf: the PF owning the VI
7195  * 	@vf: the VF owning the VI
7196  * 	@viid: virtual interface identifiler
7197  *
7198  * 	Free a previously allocated virtual interface.
7199  */
7200 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7201 	       unsigned int vf, unsigned int viid)
7202 {
7203 	struct fw_vi_cmd c;
7204 
7205 	memset(&c, 0, sizeof(c));
7206 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
7207 				  F_FW_CMD_REQUEST |
7208 				  F_FW_CMD_EXEC |
7209 				  V_FW_VI_CMD_PFN(pf) |
7210 				  V_FW_VI_CMD_VFN(vf));
7211 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
7212 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
7213 
7214 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7215 }
7216 
7217 /**
7218  *	t4_set_rxmode - set Rx properties of a virtual interface
7219  *	@adap: the adapter
7220  *	@mbox: mailbox to use for the FW command
7221  *	@viid: the VI id
7222  *	@mtu: the new MTU or -1
7223  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7224  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7225  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7226  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7227  *	@sleep_ok: if true we may sleep while awaiting command completion
7228  *
7229  *	Sets Rx properties of a virtual interface.
7230  */
7231 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7232 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
7233 		  bool sleep_ok)
7234 {
7235 	struct fw_vi_rxmode_cmd c;
7236 
7237 	/* convert to FW values */
7238 	if (mtu < 0)
7239 		mtu = M_FW_VI_RXMODE_CMD_MTU;
7240 	if (promisc < 0)
7241 		promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
7242 	if (all_multi < 0)
7243 		all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
7244 	if (bcast < 0)
7245 		bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
7246 	if (vlanex < 0)
7247 		vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
7248 
7249 	memset(&c, 0, sizeof(c));
7250 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
7251 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7252 				   V_FW_VI_RXMODE_CMD_VIID(viid));
7253 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7254 	c.mtu_to_vlanexen =
7255 		cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
7256 			    V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
7257 			    V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
7258 			    V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
7259 			    V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
7260 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7261 }
7262 
7263 /**
7264  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7265  *	@adap: the adapter
7266  *	@mbox: mailbox to use for the FW command
7267  *	@viid: the VI id
7268  *	@free: if true any existing filters for this VI id are first removed
7269  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7270  *	@addr: the MAC address(es)
7271  *	@idx: where to store the index of each allocated filter
7272  *	@hash: pointer to hash address filter bitmap
7273  *	@sleep_ok: call is allowed to sleep
7274  *
7275  *	Allocates an exact-match filter for each of the supplied addresses and
7276  *	sets it to the corresponding address.  If @idx is not %NULL it should
7277  *	have at least @naddr entries, each of which will be set to the index of
7278  *	the filter allocated for the corresponding MAC address.  If a filter
7279  *	could not be allocated for an address its index is set to 0xffff.
7280  *	If @hash is not %NULL addresses that fail to allocate an exact filter
7281  *	are hashed and update the hash filter bitmap pointed at by @hash.
7282  *
7283  *	Returns a negative error number or the number of filters allocated.
7284  */
7285 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7286 		      unsigned int viid, bool free, unsigned int naddr,
7287 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7288 {
7289 	int offset, ret = 0;
7290 	struct fw_vi_mac_cmd c;
7291 	unsigned int nfilters = 0;
7292 	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
7293 	unsigned int rem = naddr;
7294 
7295 	if (naddr > max_naddr)
7296 		return -EINVAL;
7297 
7298 	for (offset = 0; offset < naddr ; /**/) {
7299 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
7300 					 ? rem
7301 					 : ARRAY_SIZE(c.u.exact));
7302 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7303 						     u.exact[fw_naddr]), 16);
7304 		struct fw_vi_mac_exact *p;
7305 		int i;
7306 
7307 		memset(&c, 0, sizeof(c));
7308 		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7309 					   F_FW_CMD_REQUEST |
7310 					   F_FW_CMD_WRITE |
7311 					   V_FW_CMD_EXEC(free) |
7312 					   V_FW_VI_MAC_CMD_VIID(viid));
7313 		c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) |
7314 						  V_FW_CMD_LEN16(len16));
7315 
7316 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7317 			p->valid_to_idx =
7318 				cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
7319 					    V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
7320 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
7321 		}
7322 
7323 		/*
7324 		 * It's okay if we run out of space in our MAC address arena.
7325 		 * Some of the addresses we submit may get stored so we need
7326 		 * to run through the reply to see what the results were ...
7327 		 */
7328 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7329 		if (ret && ret != -FW_ENOMEM)
7330 			break;
7331 
7332 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7333 			u16 index = G_FW_VI_MAC_CMD_IDX(
7334 						be16_to_cpu(p->valid_to_idx));
7335 
7336 			if (idx)
7337 				idx[offset+i] = (index >=  max_naddr
7338 						 ? 0xffff
7339 						 : index);
7340 			if (index < max_naddr)
7341 				nfilters++;
7342 			else if (hash)
7343 				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
7344 		}
7345 
7346 		free = false;
7347 		offset += fw_naddr;
7348 		rem -= fw_naddr;
7349 	}
7350 
7351 	if (ret == 0 || ret == -FW_ENOMEM)
7352 		ret = nfilters;
7353 	return ret;
7354 }
7355 
7356 /**
7357  *	t4_change_mac - modifies the exact-match filter for a MAC address
7358  *	@adap: the adapter
7359  *	@mbox: mailbox to use for the FW command
7360  *	@viid: the VI id
7361  *	@idx: index of existing filter for old value of MAC address, or -1
7362  *	@addr: the new MAC address value
7363  *	@persist: whether a new MAC allocation should be persistent
7364  *	@add_smt: if true also add the address to the HW SMT
7365  *
7366  *	Modifies an exact-match filter and sets it to the new MAC address if
7367  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
7368  *	latter case the address is added persistently if @persist is %true.
7369  *
7370  *	Note that in general it is not possible to modify the value of a given
7371  *	filter so the generic way to modify an address filter is to free the one
7372  *	being used by the old address value and allocate a new filter for the
7373  *	new address value.
7374  *
7375  *	Returns a negative error number or the index of the filter with the new
7376  *	MAC value.  Note that this index may differ from @idx.
7377  */
7378 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
7379 		  int idx, const u8 *addr, bool persist, bool add_smt)
7380 {
7381 	int ret, mode;
7382 	struct fw_vi_mac_cmd c;
7383 	struct fw_vi_mac_exact *p = c.u.exact;
7384 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
7385 
7386 	if (idx < 0)		/* new allocation */
7387 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
7388 	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
7389 
7390 	memset(&c, 0, sizeof(c));
7391 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7392 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7393 				   V_FW_VI_MAC_CMD_VIID(viid));
7394 	c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
7395 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
7396 				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
7397 				      V_FW_VI_MAC_CMD_IDX(idx));
7398 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7399 
7400 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7401 	if (ret == 0) {
7402 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
7403 		if (ret >= max_mac_addr)
7404 			ret = -ENOMEM;
7405 	}
7406 	return ret;
7407 }
7408 
7409 /**
7410  *	t4_set_addr_hash - program the MAC inexact-match hash filter
7411  *	@adap: the adapter
7412  *	@mbox: mailbox to use for the FW command
7413  *	@viid: the VI id
7414  *	@ucast: whether the hash filter should also match unicast addresses
7415  *	@vec: the value to be written to the hash filter
7416  *	@sleep_ok: call is allowed to sleep
7417  *
7418  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
7419  */
7420 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
7421 		     bool ucast, u64 vec, bool sleep_ok)
7422 {
7423 	struct fw_vi_mac_cmd c;
7424 	u32 val;
7425 
7426 	memset(&c, 0, sizeof(c));
7427 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7428 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7429 				   V_FW_VI_ENABLE_CMD_VIID(viid));
7430 	val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) |
7431 	      V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1);
7432 	c.freemacs_to_len16 = cpu_to_be32(val);
7433 	c.u.hash.hashvec = cpu_to_be64(vec);
7434 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7435 }
7436 
7437 /**
7438  *      t4_enable_vi_params - enable/disable a virtual interface
7439  *      @adap: the adapter
7440  *      @mbox: mailbox to use for the FW command
7441  *      @viid: the VI id
7442  *      @rx_en: 1=enable Rx, 0=disable Rx
7443  *      @tx_en: 1=enable Tx, 0=disable Tx
7444  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
7445  *
7446  *      Enables/disables a virtual interface.  Note that setting DCB Enable
7447  *      only makes sense when enabling a Virtual Interface ...
7448  */
7449 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
7450 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
7451 {
7452 	struct fw_vi_enable_cmd c;
7453 
7454 	memset(&c, 0, sizeof(c));
7455 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
7456 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7457 				   V_FW_VI_ENABLE_CMD_VIID(viid));
7458 	c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
7459 				     V_FW_VI_ENABLE_CMD_EEN(tx_en) |
7460 				     V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
7461 				     FW_LEN16(c));
7462 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
7463 }
7464 
7465 /**
7466  *	t4_enable_vi - enable/disable a virtual interface
7467  *	@adap: the adapter
7468  *	@mbox: mailbox to use for the FW command
7469  *	@viid: the VI id
7470  *	@rx_en: 1=enable Rx, 0=disable Rx
7471  *	@tx_en: 1=enable Tx, 0=disable Tx
7472  *
7473  *	Enables/disables a virtual interface.  Note that setting DCB Enable
7474  *	only makes sense when enabling a Virtual Interface ...
7475  */
7476 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
7477 		 bool rx_en, bool tx_en)
7478 {
7479 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
7480 }
7481 
7482 /**
7483  *	t4_identify_port - identify a VI's port by blinking its LED
7484  *	@adap: the adapter
7485  *	@mbox: mailbox to use for the FW command
7486  *	@viid: the VI id
7487  *	@nblinks: how many times to blink LED at 2.5 Hz
7488  *
7489  *	Identifies a VI's port by blinking its LED.
7490  */
7491 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
7492 		     unsigned int nblinks)
7493 {
7494 	struct fw_vi_enable_cmd c;
7495 
7496 	memset(&c, 0, sizeof(c));
7497 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
7498 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7499 				   V_FW_VI_ENABLE_CMD_VIID(viid));
7500 	c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
7501 	c.blinkdur = cpu_to_be16(nblinks);
7502 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7503 }
7504 
7505 /**
7506  *	t4_iq_stop - stop an ingress queue and its FLs
7507  *	@adap: the adapter
7508  *	@mbox: mailbox to use for the FW command
7509  *	@pf: the PF owning the queues
7510  *	@vf: the VF owning the queues
7511  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7512  *	@iqid: ingress queue id
7513  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7514  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7515  *
7516  *	Stops an ingress queue and its associated FLs, if any.  This causes
7517  *	any current or future data/messages destined for these queues to be
7518  *	tossed.
7519  */
7520 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
7521 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7522 	       unsigned int fl0id, unsigned int fl1id)
7523 {
7524 	struct fw_iq_cmd c;
7525 
7526 	memset(&c, 0, sizeof(c));
7527 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
7528 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
7529 				  V_FW_IQ_CMD_VFN(vf));
7530 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c));
7531 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
7532 	c.iqid = cpu_to_be16(iqid);
7533 	c.fl0id = cpu_to_be16(fl0id);
7534 	c.fl1id = cpu_to_be16(fl1id);
7535 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7536 }
7537 
7538 /**
7539  *	t4_iq_free - free an ingress queue and its FLs
7540  *	@adap: the adapter
7541  *	@mbox: mailbox to use for the FW command
7542  *	@pf: the PF owning the queues
7543  *	@vf: the VF owning the queues
7544  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7545  *	@iqid: ingress queue id
7546  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7547  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7548  *
7549  *	Frees an ingress queue and its associated FLs, if any.
7550  */
7551 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7552 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7553 	       unsigned int fl0id, unsigned int fl1id)
7554 {
7555 	struct fw_iq_cmd c;
7556 
7557 	memset(&c, 0, sizeof(c));
7558 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
7559 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
7560 				  V_FW_IQ_CMD_VFN(vf));
7561 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
7562 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
7563 	c.iqid = cpu_to_be16(iqid);
7564 	c.fl0id = cpu_to_be16(fl0id);
7565 	c.fl1id = cpu_to_be16(fl1id);
7566 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7567 }
7568 
7569 /**
7570  *	t4_eth_eq_free - free an Ethernet egress queue
7571  *	@adap: the adapter
7572  *	@mbox: mailbox to use for the FW command
7573  *	@pf: the PF owning the queue
7574  *	@vf: the VF owning the queue
7575  *	@eqid: egress queue id
7576  *
7577  *	Frees an Ethernet egress queue.
7578  */
7579 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7580 		   unsigned int vf, unsigned int eqid)
7581 {
7582 	struct fw_eq_eth_cmd c;
7583 
7584 	memset(&c, 0, sizeof(c));
7585 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
7586 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7587 				  V_FW_EQ_ETH_CMD_PFN(pf) |
7588 				  V_FW_EQ_ETH_CMD_VFN(vf));
7589 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
7590 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
7591 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7592 }
7593 
7594 /**
7595  *	t4_ctrl_eq_free - free a control egress queue
7596  *	@adap: the adapter
7597  *	@mbox: mailbox to use for the FW command
7598  *	@pf: the PF owning the queue
7599  *	@vf: the VF owning the queue
7600  *	@eqid: egress queue id
7601  *
7602  *	Frees a control egress queue.
7603  */
7604 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7605 		    unsigned int vf, unsigned int eqid)
7606 {
7607 	struct fw_eq_ctrl_cmd c;
7608 
7609 	memset(&c, 0, sizeof(c));
7610 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
7611 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7612 				  V_FW_EQ_CTRL_CMD_PFN(pf) |
7613 				  V_FW_EQ_CTRL_CMD_VFN(vf));
7614 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
7615 	c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
7616 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7617 }
7618 
7619 /**
7620  *	t4_ofld_eq_free - free an offload egress queue
7621  *	@adap: the adapter
7622  *	@mbox: mailbox to use for the FW command
7623  *	@pf: the PF owning the queue
7624  *	@vf: the VF owning the queue
7625  *	@eqid: egress queue id
7626  *
7627  *	Frees a control egress queue.
7628  */
7629 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7630 		    unsigned int vf, unsigned int eqid)
7631 {
7632 	struct fw_eq_ofld_cmd c;
7633 
7634 	memset(&c, 0, sizeof(c));
7635 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) |
7636 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7637 				  V_FW_EQ_OFLD_CMD_PFN(pf) |
7638 				  V_FW_EQ_OFLD_CMD_VFN(vf));
7639 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
7640 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid));
7641 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7642 }
7643 
7644 /**
7645  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
7646  *	@link_down_rc: Link Down Reason Code
7647  *
7648  *	Returns a string representation of the Link Down Reason Code.
7649  */
7650 const char *t4_link_down_rc_str(unsigned char link_down_rc)
7651 {
7652 	static const char *reason[] = {
7653 		"Link Down",
7654 		"Remote Fault",
7655 		"Auto-negotiation Failure",
7656 		"Reserved3",
7657 		"Insufficient Airflow",
7658 		"Unable To Determine Reason",
7659 		"No RX Signal Detected",
7660 		"Reserved7",
7661 	};
7662 
7663 	if (link_down_rc >= ARRAY_SIZE(reason))
7664 		return "Bad Reason Code";
7665 
7666 	return reason[link_down_rc];
7667 }
7668 
7669 /*
7670  * Updates all fields owned by the common code in port_info and link_config
7671  * based on information provided by the firmware.  Does not touch any
7672  * requested_* field.
7673  */
7674 static void handle_port_info(struct port_info *pi, const struct fw_port_info *p)
7675 {
7676 	struct link_config *lc = &pi->link_cfg;
7677 	int speed;
7678 	unsigned char fc, fec;
7679 	u32 stat = be32_to_cpu(p->lstatus_to_modtype);
7680 
7681 	pi->port_type = G_FW_PORT_CMD_PTYPE(stat);
7682 	pi->mod_type = G_FW_PORT_CMD_MODTYPE(stat);
7683 	pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP ?
7684 	    G_FW_PORT_CMD_MDIOADDR(stat) : -1;
7685 
7686 	lc->supported = be16_to_cpu(p->pcap);
7687 	lc->advertising = be16_to_cpu(p->acap);
7688 	lc->lp_advertising = be16_to_cpu(p->lpacap);
7689 	lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
7690 	lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC(stat);
7691 
7692 	speed = 0;
7693 	if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
7694 		speed = 100;
7695 	else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
7696 		speed = 1000;
7697 	else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
7698 		speed = 10000;
7699 	else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G))
7700 		speed = 25000;
7701 	else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
7702 		speed = 40000;
7703 	else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G))
7704 		speed = 100000;
7705 	lc->speed = speed;
7706 
7707 	fc = 0;
7708 	if (stat & F_FW_PORT_CMD_RXPAUSE)
7709 		fc |= PAUSE_RX;
7710 	if (stat & F_FW_PORT_CMD_TXPAUSE)
7711 		fc |= PAUSE_TX;
7712 	lc->fc = fc;
7713 
7714 	fec = 0;
7715 	if (lc->advertising & FW_PORT_CAP_FEC_RS)
7716 		fec |= FEC_RS;
7717 	if (lc->advertising & FW_PORT_CAP_FEC_BASER_RS)
7718 		fec |= FEC_BASER_RS;
7719 	if (lc->advertising & FW_PORT_CAP_FEC_RESERVED)
7720 		fec |= FEC_RESERVED;
7721 	lc->fec = fec;
7722 }
7723 
7724 /**
7725  *	t4_update_port_info - retrieve and update port information if changed
7726  *	@pi: the port_info
7727  *
7728  *	We issue a Get Port Information Command to the Firmware and, if
7729  *	successful, we check to see if anything is different from what we
7730  *	last recorded and update things accordingly.
7731  */
7732  int t4_update_port_info(struct port_info *pi)
7733  {
7734 	struct fw_port_cmd port_cmd;
7735 	int ret;
7736 
7737 	memset(&port_cmd, 0, sizeof port_cmd);
7738 	port_cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
7739 					    F_FW_CMD_REQUEST | F_FW_CMD_READ |
7740 					    V_FW_PORT_CMD_PORTID(pi->tx_chan));
7741 	port_cmd.action_to_len16 = cpu_to_be32(
7742 		V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
7743 		FW_LEN16(port_cmd));
7744 	ret = t4_wr_mbox_ns(pi->adapter, pi->adapter->mbox,
7745 			 &port_cmd, sizeof(port_cmd), &port_cmd);
7746 	if (ret)
7747 		return ret;
7748 
7749 	handle_port_info(pi, &port_cmd.u.info);
7750 	return 0;
7751 }
7752 
7753 /**
7754  *	t4_handle_fw_rpl - process a FW reply message
7755  *	@adap: the adapter
7756  *	@rpl: start of the FW message
7757  *
7758  *	Processes a FW message, such as link state change messages.
7759  */
7760 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
7761 {
7762 	u8 opcode = *(const u8 *)rpl;
7763 	const struct fw_port_cmd *p = (const void *)rpl;
7764 	unsigned int action =
7765 			G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
7766 
7767 	if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO) {
7768 		/* link/module state change message */
7769 		int i, old_ptype, old_mtype;
7770 		int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
7771 		struct port_info *pi = NULL;
7772 		struct link_config *lc, *old_lc;
7773 
7774 		for_each_port(adap, i) {
7775 			pi = adap2pinfo(adap, i);
7776 			if (pi->tx_chan == chan)
7777 				break;
7778 		}
7779 
7780 		lc = &pi->link_cfg;
7781 		old_lc = &pi->old_link_cfg;
7782 		old_ptype = pi->port_type;
7783 		old_mtype = pi->mod_type;
7784 
7785 		handle_port_info(pi, &p->u.info);
7786 		if (old_ptype != pi->port_type || old_mtype != pi->mod_type) {
7787 			t4_os_portmod_changed(pi);
7788 		}
7789 		if (old_lc->link_ok != lc->link_ok ||
7790 		    old_lc->speed != lc->speed ||
7791 		    old_lc->fec != lc->fec ||
7792 		    old_lc->fc != lc->fc) {
7793 			t4_os_link_changed(pi);
7794 			*old_lc = *lc;
7795 		}
7796 	} else {
7797 		CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode);
7798 		return -EINVAL;
7799 	}
7800 	return 0;
7801 }
7802 
7803 /**
7804  *	get_pci_mode - determine a card's PCI mode
7805  *	@adapter: the adapter
7806  *	@p: where to store the PCI settings
7807  *
7808  *	Determines a card's PCI mode and associated parameters, such as speed
7809  *	and width.
7810  */
7811 static void get_pci_mode(struct adapter *adapter,
7812 				   struct pci_params *p)
7813 {
7814 	u16 val;
7815 	u32 pcie_cap;
7816 
7817 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
7818 	if (pcie_cap) {
7819 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
7820 		p->speed = val & PCI_EXP_LNKSTA_CLS;
7821 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
7822 	}
7823 }
7824 
7825 struct flash_desc {
7826 	u32 vendor_and_model_id;
7827 	u32 size_mb;
7828 };
7829 
7830 int t4_get_flash_params(struct adapter *adapter)
7831 {
7832 	/*
7833 	 * Table for non-standard supported Flash parts.  Note, all Flash
7834 	 * parts must have 64KB sectors.
7835 	 */
7836 	static struct flash_desc supported_flash[] = {
7837 		{ 0x00150201, 4 << 20 },	/* Spansion 4MB S25FL032P */
7838 	};
7839 
7840 	int ret;
7841 	u32 flashid = 0;
7842 	unsigned int part, manufacturer;
7843 	unsigned int density, size;
7844 
7845 
7846 	/*
7847 	 * Issue a Read ID Command to the Flash part.  We decode supported
7848 	 * Flash parts and their sizes from this.  There's a newer Query
7849 	 * Command which can retrieve detailed geometry information but many
7850 	 * Flash parts don't support it.
7851 	 */
7852 	ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
7853 	if (!ret)
7854 		ret = sf1_read(adapter, 3, 0, 1, &flashid);
7855 	t4_write_reg(adapter, A_SF_OP, 0);	/* unlock SF */
7856 	if (ret < 0)
7857 		return ret;
7858 
7859 	/*
7860 	 * Check to see if it's one of our non-standard supported Flash parts.
7861 	 */
7862 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
7863 		if (supported_flash[part].vendor_and_model_id == flashid) {
7864 			adapter->params.sf_size =
7865 				supported_flash[part].size_mb;
7866 			adapter->params.sf_nsec =
7867 				adapter->params.sf_size / SF_SEC_SIZE;
7868 			goto found;
7869 		}
7870 
7871 	/*
7872 	 * Decode Flash part size.  The code below looks repetative with
7873 	 * common encodings, but that's not guaranteed in the JEDEC
7874 	 * specification for the Read JADEC ID command.  The only thing that
7875 	 * we're guaranteed by the JADEC specification is where the
7876 	 * Manufacturer ID is in the returned result.  After that each
7877 	 * Manufacturer ~could~ encode things completely differently.
7878 	 * Note, all Flash parts must have 64KB sectors.
7879 	 */
7880 	manufacturer = flashid & 0xff;
7881 	switch (manufacturer) {
7882 	case 0x20: { /* Micron/Numonix */
7883 		/*
7884 		 * This Density -> Size decoding table is taken from Micron
7885 		 * Data Sheets.
7886 		 */
7887 		density = (flashid >> 16) & 0xff;
7888 		switch (density) {
7889 		case 0x14: size = 1 << 20; break; /*   1MB */
7890 		case 0x15: size = 1 << 21; break; /*   2MB */
7891 		case 0x16: size = 1 << 22; break; /*   4MB */
7892 		case 0x17: size = 1 << 23; break; /*   8MB */
7893 		case 0x18: size = 1 << 24; break; /*  16MB */
7894 		case 0x19: size = 1 << 25; break; /*  32MB */
7895 		case 0x20: size = 1 << 26; break; /*  64MB */
7896 		case 0x21: size = 1 << 27; break; /* 128MB */
7897 		case 0x22: size = 1 << 28; break; /* 256MB */
7898 
7899 		default:
7900 			CH_ERR(adapter, "Micron Flash Part has bad size, "
7901 			       "ID = %#x, Density code = %#x\n",
7902 			       flashid, density);
7903 			return -EINVAL;
7904 		}
7905 		break;
7906 	}
7907 
7908 	case 0xef: { /* Winbond */
7909 		/*
7910 		 * This Density -> Size decoding table is taken from Winbond
7911 		 * Data Sheets.
7912 		 */
7913 		density = (flashid >> 16) & 0xff;
7914 		switch (density) {
7915 		case 0x17: size = 1 << 23; break; /*   8MB */
7916 		case 0x18: size = 1 << 24; break; /*  16MB */
7917 
7918 		default:
7919 			CH_ERR(adapter, "Winbond Flash Part has bad size, "
7920 			       "ID = %#x, Density code = %#x\n",
7921 			       flashid, density);
7922 			return -EINVAL;
7923 		}
7924 		break;
7925 	}
7926 
7927 	default:
7928 		CH_ERR(adapter, "Unsupported Flash Part, ID = %#x\n", flashid);
7929 		return -EINVAL;
7930 	}
7931 
7932 	/*
7933 	 * Store decoded Flash size and fall through into vetting code.
7934 	 */
7935 	adapter->params.sf_size = size;
7936 	adapter->params.sf_nsec = size / SF_SEC_SIZE;
7937 
7938  found:
7939 	/*
7940 	 * We should ~probably~ reject adapters with FLASHes which are too
7941 	 * small but we have some legacy FPGAs with small FLASHes that we'd
7942 	 * still like to use.  So instead we emit a scary message ...
7943 	 */
7944 	if (adapter->params.sf_size < FLASH_MIN_SIZE)
7945 		CH_WARN(adapter, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
7946 			flashid, adapter->params.sf_size, FLASH_MIN_SIZE);
7947 
7948 	return 0;
7949 }
7950 
7951 static void set_pcie_completion_timeout(struct adapter *adapter,
7952 						  u8 range)
7953 {
7954 	u16 val;
7955 	u32 pcie_cap;
7956 
7957 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
7958 	if (pcie_cap) {
7959 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
7960 		val &= 0xfff0;
7961 		val |= range ;
7962 		t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
7963 	}
7964 }
7965 
7966 const struct chip_params *t4_get_chip_params(int chipid)
7967 {
7968 	static const struct chip_params chip_params[] = {
7969 		{
7970 			/* T4 */
7971 			.nchan = NCHAN,
7972 			.pm_stats_cnt = PM_NSTATS,
7973 			.cng_ch_bits_log = 2,
7974 			.nsched_cls = 15,
7975 			.cim_num_obq = CIM_NUM_OBQ,
7976 			.mps_rplc_size = 128,
7977 			.vfcount = 128,
7978 			.sge_fl_db = F_DBPRIO,
7979 			.mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES,
7980 		},
7981 		{
7982 			/* T5 */
7983 			.nchan = NCHAN,
7984 			.pm_stats_cnt = PM_NSTATS,
7985 			.cng_ch_bits_log = 2,
7986 			.nsched_cls = 16,
7987 			.cim_num_obq = CIM_NUM_OBQ_T5,
7988 			.mps_rplc_size = 128,
7989 			.vfcount = 128,
7990 			.sge_fl_db = F_DBPRIO | F_DBTYPE,
7991 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
7992 		},
7993 		{
7994 			/* T6 */
7995 			.nchan = T6_NCHAN,
7996 			.pm_stats_cnt = T6_PM_NSTATS,
7997 			.cng_ch_bits_log = 3,
7998 			.nsched_cls = 16,
7999 			.cim_num_obq = CIM_NUM_OBQ_T5,
8000 			.mps_rplc_size = 256,
8001 			.vfcount = 256,
8002 			.sge_fl_db = 0,
8003 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
8004 		},
8005 	};
8006 
8007 	chipid -= CHELSIO_T4;
8008 	if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params))
8009 		return NULL;
8010 
8011 	return &chip_params[chipid];
8012 }
8013 
8014 /**
8015  *	t4_prep_adapter - prepare SW and HW for operation
8016  *	@adapter: the adapter
8017  *	@buf: temporary space of at least VPD_LEN size provided by the caller.
8018  *
8019  *	Initialize adapter SW state for the various HW modules, set initial
8020  *	values for some adapter tunables, take PHYs out of reset, and
8021  *	initialize the MDIO interface.
8022  */
8023 int t4_prep_adapter(struct adapter *adapter, u32 *buf)
8024 {
8025 	int ret;
8026 	uint16_t device_id;
8027 	uint32_t pl_rev;
8028 
8029 	get_pci_mode(adapter, &adapter->params.pci);
8030 
8031 	pl_rev = t4_read_reg(adapter, A_PL_REV);
8032 	adapter->params.chipid = G_CHIPID(pl_rev);
8033 	adapter->params.rev = G_REV(pl_rev);
8034 	if (adapter->params.chipid == 0) {
8035 		/* T4 did not have chipid in PL_REV (T5 onwards do) */
8036 		adapter->params.chipid = CHELSIO_T4;
8037 
8038 		/* T4A1 chip is not supported */
8039 		if (adapter->params.rev == 1) {
8040 			CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
8041 			return -EINVAL;
8042 		}
8043 	}
8044 
8045 	adapter->chip_params = t4_get_chip_params(chip_id(adapter));
8046 	if (adapter->chip_params == NULL)
8047 		return -EINVAL;
8048 
8049 	adapter->params.pci.vpd_cap_addr =
8050 	    t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
8051 
8052 	ret = t4_get_flash_params(adapter);
8053 	if (ret < 0)
8054 		return ret;
8055 
8056 	ret = get_vpd_params(adapter, &adapter->params.vpd, buf);
8057 	if (ret < 0)
8058 		return ret;
8059 
8060 	/* Cards with real ASICs have the chipid in the PCIe device id */
8061 	t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
8062 	if (device_id >> 12 == chip_id(adapter))
8063 		adapter->params.cim_la_size = CIMLA_SIZE;
8064 	else {
8065 		/* FPGA */
8066 		adapter->params.fpga = 1;
8067 		adapter->params.cim_la_size = 2 * CIMLA_SIZE;
8068 	}
8069 
8070 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
8071 
8072 	/*
8073 	 * Default port and clock for debugging in case we can't reach FW.
8074 	 */
8075 	adapter->params.nports = 1;
8076 	adapter->params.portvec = 1;
8077 	adapter->params.vpd.cclk = 50000;
8078 
8079 	/* Set pci completion timeout value to 4 seconds. */
8080 	set_pcie_completion_timeout(adapter, 0xd);
8081 	return 0;
8082 }
8083 
8084 /**
8085  *	t4_shutdown_adapter - shut down adapter, host & wire
8086  *	@adapter: the adapter
8087  *
8088  *	Perform an emergency shutdown of the adapter and stop it from
8089  *	continuing any further communication on the ports or DMA to the
8090  *	host.  This is typically used when the adapter and/or firmware
8091  *	have crashed and we want to prevent any further accidental
8092  *	communication with the rest of the world.  This will also force
8093  *	the port Link Status to go down -- if register writes work --
8094  *	which should help our peers figure out that we're down.
8095  */
8096 int t4_shutdown_adapter(struct adapter *adapter)
8097 {
8098 	int port;
8099 
8100 	t4_intr_disable(adapter);
8101 	t4_write_reg(adapter, A_DBG_GPIO_EN, 0);
8102 	for_each_port(adapter, port) {
8103 		u32 a_port_cfg = is_t4(adapter) ?
8104 				 PORT_REG(port, A_XGMAC_PORT_CFG) :
8105 				 T5_PORT_REG(port, A_MAC_PORT_CFG);
8106 
8107 		t4_write_reg(adapter, a_port_cfg,
8108 			     t4_read_reg(adapter, a_port_cfg)
8109 			     & ~V_SIGNAL_DET(1));
8110 	}
8111 	t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0);
8112 
8113 	return 0;
8114 }
8115 
8116 /**
8117  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
8118  *	@adapter: the adapter
8119  *	@qid: the Queue ID
8120  *	@qtype: the Ingress or Egress type for @qid
8121  *	@user: true if this request is for a user mode queue
8122  *	@pbar2_qoffset: BAR2 Queue Offset
8123  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
8124  *
8125  *	Returns the BAR2 SGE Queue Registers information associated with the
8126  *	indicated Absolute Queue ID.  These are passed back in return value
8127  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
8128  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
8129  *
8130  *	This may return an error which indicates that BAR2 SGE Queue
8131  *	registers aren't available.  If an error is not returned, then the
8132  *	following values are returned:
8133  *
8134  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
8135  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
8136  *
8137  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
8138  *	require the "Inferred Queue ID" ability may be used.  E.g. the
8139  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
8140  *	then these "Inferred Queue ID" register may not be used.
8141  */
8142 int t4_bar2_sge_qregs(struct adapter *adapter,
8143 		      unsigned int qid,
8144 		      enum t4_bar2_qtype qtype,
8145 		      int user,
8146 		      u64 *pbar2_qoffset,
8147 		      unsigned int *pbar2_qid)
8148 {
8149 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
8150 	u64 bar2_page_offset, bar2_qoffset;
8151 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
8152 
8153 	/* T4 doesn't support BAR2 SGE Queue registers for kernel
8154 	 * mode queues.
8155 	 */
8156 	if (!user && is_t4(adapter))
8157 		return -EINVAL;
8158 
8159 	/* Get our SGE Page Size parameters.
8160 	 */
8161 	page_shift = adapter->params.sge.page_shift;
8162 	page_size = 1 << page_shift;
8163 
8164 	/* Get the right Queues per Page parameters for our Queue.
8165 	 */
8166 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
8167 		     ? adapter->params.sge.eq_s_qpp
8168 		     : adapter->params.sge.iq_s_qpp);
8169 	qpp_mask = (1 << qpp_shift) - 1;
8170 
8171 	/* Calculate the basics of the BAR2 SGE Queue register area:
8172 	 *  o The BAR2 page the Queue registers will be in.
8173 	 *  o The BAR2 Queue ID.
8174 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
8175 	 */
8176 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
8177 	bar2_qid = qid & qpp_mask;
8178 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
8179 
8180 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
8181 	 * hardware will infer the Absolute Queue ID simply from the writes to
8182 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
8183 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
8184 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
8185 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
8186 	 * from the BAR2 Page and BAR2 Queue ID.
8187 	 *
8188 	 * One important censequence of this is that some BAR2 SGE registers
8189 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
8190 	 * there.  But other registers synthesize the SGE Queue ID purely
8191 	 * from the writes to the registers -- the Write Combined Doorbell
8192 	 * Buffer is a good example.  These BAR2 SGE Registers are only
8193 	 * available for those BAR2 SGE Register areas where the SGE Absolute
8194 	 * Queue ID can be inferred from simple writes.
8195 	 */
8196 	bar2_qoffset = bar2_page_offset;
8197 	bar2_qinferred = (bar2_qid_offset < page_size);
8198 	if (bar2_qinferred) {
8199 		bar2_qoffset += bar2_qid_offset;
8200 		bar2_qid = 0;
8201 	}
8202 
8203 	*pbar2_qoffset = bar2_qoffset;
8204 	*pbar2_qid = bar2_qid;
8205 	return 0;
8206 }
8207 
8208 /**
8209  *	t4_init_devlog_params - initialize adapter->params.devlog
8210  *	@adap: the adapter
8211  *	@fw_attach: whether we can talk to the firmware
8212  *
8213  *	Initialize various fields of the adapter's Firmware Device Log
8214  *	Parameters structure.
8215  */
8216 int t4_init_devlog_params(struct adapter *adap, int fw_attach)
8217 {
8218 	struct devlog_params *dparams = &adap->params.devlog;
8219 	u32 pf_dparams;
8220 	unsigned int devlog_meminfo;
8221 	struct fw_devlog_cmd devlog_cmd;
8222 	int ret;
8223 
8224 	/* If we're dealing with newer firmware, the Device Log Paramerters
8225 	 * are stored in a designated register which allows us to access the
8226 	 * Device Log even if we can't talk to the firmware.
8227 	 */
8228 	pf_dparams =
8229 		t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG));
8230 	if (pf_dparams) {
8231 		unsigned int nentries, nentries128;
8232 
8233 		dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams);
8234 		dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4;
8235 
8236 		nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams);
8237 		nentries = (nentries128 + 1) * 128;
8238 		dparams->size = nentries * sizeof(struct fw_devlog_e);
8239 
8240 		return 0;
8241 	}
8242 
8243 	/*
8244 	 * For any failing returns ...
8245 	 */
8246 	memset(dparams, 0, sizeof *dparams);
8247 
8248 	/*
8249 	 * If we can't talk to the firmware, there's really nothing we can do
8250 	 * at this point.
8251 	 */
8252 	if (!fw_attach)
8253 		return -ENXIO;
8254 
8255 	/* Otherwise, ask the firmware for it's Device Log Parameters.
8256 	 */
8257 	memset(&devlog_cmd, 0, sizeof devlog_cmd);
8258 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
8259 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
8260 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
8261 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
8262 			 &devlog_cmd);
8263 	if (ret)
8264 		return ret;
8265 
8266 	devlog_meminfo =
8267 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
8268 	dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo);
8269 	dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4;
8270 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
8271 
8272 	return 0;
8273 }
8274 
8275 /**
8276  *	t4_init_sge_params - initialize adap->params.sge
8277  *	@adapter: the adapter
8278  *
8279  *	Initialize various fields of the adapter's SGE Parameters structure.
8280  */
8281 int t4_init_sge_params(struct adapter *adapter)
8282 {
8283 	u32 r;
8284 	struct sge_params *sp = &adapter->params.sge;
8285 	unsigned i, tscale = 1;
8286 
8287 	r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD);
8288 	sp->counter_val[0] = G_THRESHOLD_0(r);
8289 	sp->counter_val[1] = G_THRESHOLD_1(r);
8290 	sp->counter_val[2] = G_THRESHOLD_2(r);
8291 	sp->counter_val[3] = G_THRESHOLD_3(r);
8292 
8293 	if (chip_id(adapter) >= CHELSIO_T6) {
8294 		r = t4_read_reg(adapter, A_SGE_ITP_CONTROL);
8295 		tscale = G_TSCALE(r);
8296 		if (tscale == 0)
8297 			tscale = 1;
8298 		else
8299 			tscale += 2;
8300 	}
8301 
8302 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1);
8303 	sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r)) * tscale;
8304 	sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r)) * tscale;
8305 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3);
8306 	sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r)) * tscale;
8307 	sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r)) * tscale;
8308 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5);
8309 	sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r)) * tscale;
8310 	sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r)) * tscale;
8311 
8312 	r = t4_read_reg(adapter, A_SGE_CONM_CTRL);
8313 	sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
8314 	if (is_t4(adapter))
8315 		sp->fl_starve_threshold2 = sp->fl_starve_threshold;
8316 	else if (is_t5(adapter))
8317 		sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
8318 	else
8319 		sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(r) * 2 + 1;
8320 
8321 	/* egress queues: log2 of # of doorbells per BAR2 page */
8322 	r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
8323 	r >>= S_QUEUESPERPAGEPF0 +
8324 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
8325 	sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
8326 
8327 	/* ingress queues: log2 of # of doorbells per BAR2 page */
8328 	r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
8329 	r >>= S_QUEUESPERPAGEPF0 +
8330 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
8331 	sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
8332 
8333 	r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
8334 	r >>= S_HOSTPAGESIZEPF0 +
8335 	    (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf;
8336 	sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10;
8337 
8338 	r = t4_read_reg(adapter, A_SGE_CONTROL);
8339 	sp->sge_control = r;
8340 	sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64;
8341 	sp->fl_pktshift = G_PKTSHIFT(r);
8342 	if (chip_id(adapter) <= CHELSIO_T5) {
8343 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
8344 		    X_INGPADBOUNDARY_SHIFT);
8345 	} else {
8346 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
8347 		    X_T6_INGPADBOUNDARY_SHIFT);
8348 	}
8349 	if (is_t4(adapter))
8350 		sp->pack_boundary = sp->pad_boundary;
8351 	else {
8352 		r = t4_read_reg(adapter, A_SGE_CONTROL2);
8353 		if (G_INGPACKBOUNDARY(r) == 0)
8354 			sp->pack_boundary = 16;
8355 		else
8356 			sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5);
8357 	}
8358 	for (i = 0; i < SGE_FLBUF_SIZES; i++)
8359 		sp->sge_fl_buffer_size[i] = t4_read_reg(adapter,
8360 		    A_SGE_FL_BUFFER_SIZE0 + (4 * i));
8361 
8362 	return 0;
8363 }
8364 
8365 /*
8366  * Read and cache the adapter's compressed filter mode and ingress config.
8367  */
8368 static void read_filter_mode_and_ingress_config(struct adapter *adap,
8369     bool sleep_ok)
8370 {
8371 	struct tp_params *tpp = &adap->params.tp;
8372 
8373 	t4_tp_pio_read(adap, &tpp->vlan_pri_map, 1, A_TP_VLAN_PRI_MAP,
8374 	    sleep_ok);
8375 	t4_tp_pio_read(adap, &tpp->ingress_config, 1, A_TP_INGRESS_CONFIG,
8376 	    sleep_ok);
8377 
8378 	/*
8379 	 * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
8380 	 * shift positions of several elements of the Compressed Filter Tuple
8381 	 * for this adapter which we need frequently ...
8382 	 */
8383 	tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE);
8384 	tpp->port_shift = t4_filter_field_shift(adap, F_PORT);
8385 	tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
8386 	tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN);
8387 	tpp->tos_shift = t4_filter_field_shift(adap, F_TOS);
8388 	tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
8389 	tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE);
8390 	tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH);
8391 	tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE);
8392 	tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION);
8393 
8394 	/*
8395 	 * If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
8396 	 * represents the presence of an Outer VLAN instead of a VNIC ID.
8397 	 */
8398 	if ((tpp->ingress_config & F_VNIC) == 0)
8399 		tpp->vnic_shift = -1;
8400 }
8401 
8402 /**
8403  *      t4_init_tp_params - initialize adap->params.tp
8404  *      @adap: the adapter
8405  *
8406  *      Initialize various fields of the adapter's TP Parameters structure.
8407  */
8408 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
8409 {
8410 	int chan;
8411 	u32 v;
8412 	struct tp_params *tpp = &adap->params.tp;
8413 
8414 	v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
8415 	tpp->tre = G_TIMERRESOLUTION(v);
8416 	tpp->dack_re = G_DELAYEDACKRESOLUTION(v);
8417 
8418 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
8419 	for (chan = 0; chan < MAX_NCHAN; chan++)
8420 		tpp->tx_modq[chan] = chan;
8421 
8422 	read_filter_mode_and_ingress_config(adap, sleep_ok);
8423 
8424 	/*
8425 	 * Cache a mask of the bits that represent the error vector portion of
8426 	 * rx_pkt.err_vec.  T6+ can use a compressed error vector to make room
8427 	 * for information about outer encapsulation (GENEVE/VXLAN/NVGRE).
8428 	 */
8429 	tpp->err_vec_mask = htobe16(0xffff);
8430 	if (chip_id(adap) > CHELSIO_T5) {
8431 		v = t4_read_reg(adap, A_TP_OUT_CONFIG);
8432 		if (v & F_CRXPKTENC) {
8433 			tpp->err_vec_mask =
8434 			    htobe16(V_T6_COMPR_RXERR_VEC(M_T6_COMPR_RXERR_VEC));
8435 		}
8436 	}
8437 
8438 	return 0;
8439 }
8440 
8441 /**
8442  *      t4_filter_field_shift - calculate filter field shift
8443  *      @adap: the adapter
8444  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
8445  *
8446  *      Return the shift position of a filter field within the Compressed
8447  *      Filter Tuple.  The filter field is specified via its selection bit
8448  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
8449  */
8450 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
8451 {
8452 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
8453 	unsigned int sel;
8454 	int field_shift;
8455 
8456 	if ((filter_mode & filter_sel) == 0)
8457 		return -1;
8458 
8459 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
8460 		switch (filter_mode & sel) {
8461 		case F_FCOE:
8462 			field_shift += W_FT_FCOE;
8463 			break;
8464 		case F_PORT:
8465 			field_shift += W_FT_PORT;
8466 			break;
8467 		case F_VNIC_ID:
8468 			field_shift += W_FT_VNIC_ID;
8469 			break;
8470 		case F_VLAN:
8471 			field_shift += W_FT_VLAN;
8472 			break;
8473 		case F_TOS:
8474 			field_shift += W_FT_TOS;
8475 			break;
8476 		case F_PROTOCOL:
8477 			field_shift += W_FT_PROTOCOL;
8478 			break;
8479 		case F_ETHERTYPE:
8480 			field_shift += W_FT_ETHERTYPE;
8481 			break;
8482 		case F_MACMATCH:
8483 			field_shift += W_FT_MACMATCH;
8484 			break;
8485 		case F_MPSHITTYPE:
8486 			field_shift += W_FT_MPSHITTYPE;
8487 			break;
8488 		case F_FRAGMENTATION:
8489 			field_shift += W_FT_FRAGMENTATION;
8490 			break;
8491 		}
8492 	}
8493 	return field_shift;
8494 }
8495 
8496 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id)
8497 {
8498 	u8 addr[6];
8499 	int ret, i, j;
8500 	u16 rss_size;
8501 	struct port_info *p = adap2pinfo(adap, port_id);
8502 	u32 param, val;
8503 
8504 	for (i = 0, j = -1; i <= p->port_id; i++) {
8505 		do {
8506 			j++;
8507 		} while ((adap->params.portvec & (1 << j)) == 0);
8508 	}
8509 
8510 	if (!(adap->flags & IS_VF) ||
8511 	    adap->params.vfres.r_caps & FW_CMD_CAP_PORT) {
8512  		t4_update_port_info(p);
8513 	}
8514 
8515 	ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
8516 	if (ret < 0)
8517 		return ret;
8518 
8519 	p->vi[0].viid = ret;
8520 	if (chip_id(adap) <= CHELSIO_T5)
8521 		p->vi[0].smt_idx = (ret & 0x7f) << 1;
8522 	else
8523 		p->vi[0].smt_idx = (ret & 0x7f);
8524 	p->tx_chan = j;
8525 	p->mps_bg_map = t4_get_mps_bg_map(adap, j);
8526 	p->rx_e_chan_map = t4_get_rx_e_chan_map(adap, j);
8527 	p->lport = j;
8528 	p->vi[0].rss_size = rss_size;
8529 	t4_os_set_hw_addr(p, addr);
8530 
8531 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8532 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
8533 	    V_FW_PARAMS_PARAM_YZ(p->vi[0].viid);
8534 	ret = t4_query_params(adap, mbox, pf, vf, 1, &param, &val);
8535 	if (ret)
8536 		p->vi[0].rss_base = 0xffff;
8537 	else {
8538 		/* MPASS((val >> 16) == rss_size); */
8539 		p->vi[0].rss_base = val & 0xffff;
8540 	}
8541 
8542 	return 0;
8543 }
8544 
8545 /**
8546  *	t4_read_cimq_cfg - read CIM queue configuration
8547  *	@adap: the adapter
8548  *	@base: holds the queue base addresses in bytes
8549  *	@size: holds the queue sizes in bytes
8550  *	@thres: holds the queue full thresholds in bytes
8551  *
8552  *	Returns the current configuration of the CIM queues, starting with
8553  *	the IBQs, then the OBQs.
8554  */
8555 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
8556 {
8557 	unsigned int i, v;
8558 	int cim_num_obq = adap->chip_params->cim_num_obq;
8559 
8560 	for (i = 0; i < CIM_NUM_IBQ; i++) {
8561 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
8562 			     V_QUENUMSELECT(i));
8563 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8564 		/* value is in 256-byte units */
8565 		*base++ = G_CIMQBASE(v) * 256;
8566 		*size++ = G_CIMQSIZE(v) * 256;
8567 		*thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */
8568 	}
8569 	for (i = 0; i < cim_num_obq; i++) {
8570 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
8571 			     V_QUENUMSELECT(i));
8572 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8573 		/* value is in 256-byte units */
8574 		*base++ = G_CIMQBASE(v) * 256;
8575 		*size++ = G_CIMQSIZE(v) * 256;
8576 	}
8577 }
8578 
8579 /**
8580  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
8581  *	@adap: the adapter
8582  *	@qid: the queue index
8583  *	@data: where to store the queue contents
8584  *	@n: capacity of @data in 32-bit words
8585  *
8586  *	Reads the contents of the selected CIM queue starting at address 0 up
8587  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8588  *	error and the number of 32-bit words actually read on success.
8589  */
8590 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8591 {
8592 	int i, err, attempts;
8593 	unsigned int addr;
8594 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
8595 
8596 	if (qid > 5 || (n & 3))
8597 		return -EINVAL;
8598 
8599 	addr = qid * nwords;
8600 	if (n > nwords)
8601 		n = nwords;
8602 
8603 	/* It might take 3-10ms before the IBQ debug read access is allowed.
8604 	 * Wait for 1 Sec with a delay of 1 usec.
8605 	 */
8606 	attempts = 1000000;
8607 
8608 	for (i = 0; i < n; i++, addr++) {
8609 		t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
8610 			     F_IBQDBGEN);
8611 		err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
8612 				      attempts, 1);
8613 		if (err)
8614 			return err;
8615 		*data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
8616 	}
8617 	t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
8618 	return i;
8619 }
8620 
8621 /**
8622  *	t4_read_cim_obq - read the contents of a CIM outbound queue
8623  *	@adap: the adapter
8624  *	@qid: the queue index
8625  *	@data: where to store the queue contents
8626  *	@n: capacity of @data in 32-bit words
8627  *
8628  *	Reads the contents of the selected CIM queue starting at address 0 up
8629  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8630  *	error and the number of 32-bit words actually read on success.
8631  */
8632 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8633 {
8634 	int i, err;
8635 	unsigned int addr, v, nwords;
8636 	int cim_num_obq = adap->chip_params->cim_num_obq;
8637 
8638 	if ((qid > (cim_num_obq - 1)) || (n & 3))
8639 		return -EINVAL;
8640 
8641 	t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
8642 		     V_QUENUMSELECT(qid));
8643 	v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8644 
8645 	addr = G_CIMQBASE(v) * 64;    /* muliple of 256 -> muliple of 4 */
8646 	nwords = G_CIMQSIZE(v) * 64;  /* same */
8647 	if (n > nwords)
8648 		n = nwords;
8649 
8650 	for (i = 0; i < n; i++, addr++) {
8651 		t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
8652 			     F_OBQDBGEN);
8653 		err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
8654 				      2, 1);
8655 		if (err)
8656 			return err;
8657 		*data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
8658 	}
8659 	t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
8660 	return i;
8661 }
8662 
8663 enum {
8664 	CIM_QCTL_BASE     = 0,
8665 	CIM_CTL_BASE      = 0x2000,
8666 	CIM_PBT_ADDR_BASE = 0x2800,
8667 	CIM_PBT_LRF_BASE  = 0x3000,
8668 	CIM_PBT_DATA_BASE = 0x3800
8669 };
8670 
8671 /**
8672  *	t4_cim_read - read a block from CIM internal address space
8673  *	@adap: the adapter
8674  *	@addr: the start address within the CIM address space
8675  *	@n: number of words to read
8676  *	@valp: where to store the result
8677  *
8678  *	Reads a block of 4-byte words from the CIM intenal address space.
8679  */
8680 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
8681 		unsigned int *valp)
8682 {
8683 	int ret = 0;
8684 
8685 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
8686 		return -EBUSY;
8687 
8688 	for ( ; !ret && n--; addr += 4) {
8689 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
8690 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
8691 				      0, 5, 2);
8692 		if (!ret)
8693 			*valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
8694 	}
8695 	return ret;
8696 }
8697 
8698 /**
8699  *	t4_cim_write - write a block into CIM internal address space
8700  *	@adap: the adapter
8701  *	@addr: the start address within the CIM address space
8702  *	@n: number of words to write
8703  *	@valp: set of values to write
8704  *
8705  *	Writes a block of 4-byte words into the CIM intenal address space.
8706  */
8707 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
8708 		 const unsigned int *valp)
8709 {
8710 	int ret = 0;
8711 
8712 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
8713 		return -EBUSY;
8714 
8715 	for ( ; !ret && n--; addr += 4) {
8716 		t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
8717 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
8718 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
8719 				      0, 5, 2);
8720 	}
8721 	return ret;
8722 }
8723 
8724 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
8725 			 unsigned int val)
8726 {
8727 	return t4_cim_write(adap, addr, 1, &val);
8728 }
8729 
8730 /**
8731  *	t4_cim_ctl_read - read a block from CIM control region
8732  *	@adap: the adapter
8733  *	@addr: the start address within the CIM control region
8734  *	@n: number of words to read
8735  *	@valp: where to store the result
8736  *
8737  *	Reads a block of 4-byte words from the CIM control region.
8738  */
8739 int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
8740 		    unsigned int *valp)
8741 {
8742 	return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
8743 }
8744 
8745 /**
8746  *	t4_cim_read_la - read CIM LA capture buffer
8747  *	@adap: the adapter
8748  *	@la_buf: where to store the LA data
8749  *	@wrptr: the HW write pointer within the capture buffer
8750  *
8751  *	Reads the contents of the CIM LA buffer with the most recent entry at
8752  *	the end	of the returned data and with the entry at @wrptr first.
8753  *	We try to leave the LA in the running state we find it in.
8754  */
8755 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
8756 {
8757 	int i, ret;
8758 	unsigned int cfg, val, idx;
8759 
8760 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
8761 	if (ret)
8762 		return ret;
8763 
8764 	if (cfg & F_UPDBGLAEN) {	/* LA is running, freeze it */
8765 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
8766 		if (ret)
8767 			return ret;
8768 	}
8769 
8770 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
8771 	if (ret)
8772 		goto restart;
8773 
8774 	idx = G_UPDBGLAWRPTR(val);
8775 	if (wrptr)
8776 		*wrptr = idx;
8777 
8778 	for (i = 0; i < adap->params.cim_la_size; i++) {
8779 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
8780 				    V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
8781 		if (ret)
8782 			break;
8783 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
8784 		if (ret)
8785 			break;
8786 		if (val & F_UPDBGLARDEN) {
8787 			ret = -ETIMEDOUT;
8788 			break;
8789 		}
8790 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
8791 		if (ret)
8792 			break;
8793 
8794 		/* address can't exceed 0xfff (UpDbgLaRdPtr is of 12-bits) */
8795 		idx = (idx + 1) & M_UPDBGLARDPTR;
8796 		/*
8797 		 * Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
8798 		 * identify the 32-bit portion of the full 312-bit data
8799 		 */
8800 		if (is_t6(adap))
8801 			while ((idx & 0xf) > 9)
8802 				idx = (idx + 1) % M_UPDBGLARDPTR;
8803 	}
8804 restart:
8805 	if (cfg & F_UPDBGLAEN) {
8806 		int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
8807 				      cfg & ~F_UPDBGLARDEN);
8808 		if (!ret)
8809 			ret = r;
8810 	}
8811 	return ret;
8812 }
8813 
8814 /**
8815  *	t4_tp_read_la - read TP LA capture buffer
8816  *	@adap: the adapter
8817  *	@la_buf: where to store the LA data
8818  *	@wrptr: the HW write pointer within the capture buffer
8819  *
8820  *	Reads the contents of the TP LA buffer with the most recent entry at
8821  *	the end	of the returned data and with the entry at @wrptr first.
8822  *	We leave the LA in the running state we find it in.
8823  */
8824 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
8825 {
8826 	bool last_incomplete;
8827 	unsigned int i, cfg, val, idx;
8828 
8829 	cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
8830 	if (cfg & F_DBGLAENABLE)			/* freeze LA */
8831 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
8832 			     adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
8833 
8834 	val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
8835 	idx = G_DBGLAWPTR(val);
8836 	last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
8837 	if (last_incomplete)
8838 		idx = (idx + 1) & M_DBGLARPTR;
8839 	if (wrptr)
8840 		*wrptr = idx;
8841 
8842 	val &= 0xffff;
8843 	val &= ~V_DBGLARPTR(M_DBGLARPTR);
8844 	val |= adap->params.tp.la_mask;
8845 
8846 	for (i = 0; i < TPLA_SIZE; i++) {
8847 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
8848 		la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
8849 		idx = (idx + 1) & M_DBGLARPTR;
8850 	}
8851 
8852 	/* Wipe out last entry if it isn't valid */
8853 	if (last_incomplete)
8854 		la_buf[TPLA_SIZE - 1] = ~0ULL;
8855 
8856 	if (cfg & F_DBGLAENABLE)		/* restore running state */
8857 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
8858 			     cfg | adap->params.tp.la_mask);
8859 }
8860 
8861 /*
8862  * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
8863  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
8864  * state for more than the Warning Threshold then we'll issue a warning about
8865  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
8866  * appears to be hung every Warning Repeat second till the situation clears.
8867  * If the situation clears, we'll note that as well.
8868  */
8869 #define SGE_IDMA_WARN_THRESH 1
8870 #define SGE_IDMA_WARN_REPEAT 300
8871 
8872 /**
8873  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
8874  *	@adapter: the adapter
8875  *	@idma: the adapter IDMA Monitor state
8876  *
8877  *	Initialize the state of an SGE Ingress DMA Monitor.
8878  */
8879 void t4_idma_monitor_init(struct adapter *adapter,
8880 			  struct sge_idma_monitor_state *idma)
8881 {
8882 	/* Initialize the state variables for detecting an SGE Ingress DMA
8883 	 * hang.  The SGE has internal counters which count up on each clock
8884 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
8885 	 * same state they were on the previous clock tick.  The clock used is
8886 	 * the Core Clock so we have a limit on the maximum "time" they can
8887 	 * record; typically a very small number of seconds.  For instance,
8888 	 * with a 600MHz Core Clock, we can only count up to a bit more than
8889 	 * 7s.  So we'll synthesize a larger counter in order to not run the
8890 	 * risk of having the "timers" overflow and give us the flexibility to
8891 	 * maintain a Hung SGE State Machine of our own which operates across
8892 	 * a longer time frame.
8893 	 */
8894 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
8895 	idma->idma_stalled[0] = idma->idma_stalled[1] = 0;
8896 }
8897 
8898 /**
8899  *	t4_idma_monitor - monitor SGE Ingress DMA state
8900  *	@adapter: the adapter
8901  *	@idma: the adapter IDMA Monitor state
8902  *	@hz: number of ticks/second
8903  *	@ticks: number of ticks since the last IDMA Monitor call
8904  */
8905 void t4_idma_monitor(struct adapter *adapter,
8906 		     struct sge_idma_monitor_state *idma,
8907 		     int hz, int ticks)
8908 {
8909 	int i, idma_same_state_cnt[2];
8910 
8911 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
8912 	  * are counters inside the SGE which count up on each clock when the
8913 	  * SGE finds its Ingress DMA State Engines in the same states they
8914 	  * were in the previous clock.  The counters will peg out at
8915 	  * 0xffffffff without wrapping around so once they pass the 1s
8916 	  * threshold they'll stay above that till the IDMA state changes.
8917 	  */
8918 	t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13);
8919 	idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH);
8920 	idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8921 
8922 	for (i = 0; i < 2; i++) {
8923 		u32 debug0, debug11;
8924 
8925 		/* If the Ingress DMA Same State Counter ("timer") is less
8926 		 * than 1s, then we can reset our synthesized Stall Timer and
8927 		 * continue.  If we have previously emitted warnings about a
8928 		 * potential stalled Ingress Queue, issue a note indicating
8929 		 * that the Ingress Queue has resumed forward progress.
8930 		 */
8931 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
8932 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz)
8933 				CH_WARN(adapter, "SGE idma%d, queue %u, "
8934 					"resumed after %d seconds\n",
8935 					i, idma->idma_qid[i],
8936 					idma->idma_stalled[i]/hz);
8937 			idma->idma_stalled[i] = 0;
8938 			continue;
8939 		}
8940 
8941 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
8942 		 * domain.  The first time we get here it'll be because we
8943 		 * passed the 1s Threshold; each additional time it'll be
8944 		 * because the RX Timer Callback is being fired on its regular
8945 		 * schedule.
8946 		 *
8947 		 * If the stall is below our Potential Hung Ingress Queue
8948 		 * Warning Threshold, continue.
8949 		 */
8950 		if (idma->idma_stalled[i] == 0) {
8951 			idma->idma_stalled[i] = hz;
8952 			idma->idma_warn[i] = 0;
8953 		} else {
8954 			idma->idma_stalled[i] += ticks;
8955 			idma->idma_warn[i] -= ticks;
8956 		}
8957 
8958 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz)
8959 			continue;
8960 
8961 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
8962 		 */
8963 		if (idma->idma_warn[i] > 0)
8964 			continue;
8965 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz;
8966 
8967 		/* Read and save the SGE IDMA State and Queue ID information.
8968 		 * We do this every time in case it changes across time ...
8969 		 * can't be too careful ...
8970 		 */
8971 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0);
8972 		debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8973 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
8974 
8975 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11);
8976 		debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8977 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
8978 
8979 		CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in "
8980 			" state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
8981 			i, idma->idma_qid[i], idma->idma_state[i],
8982 			idma->idma_stalled[i]/hz,
8983 			debug0, debug11);
8984 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
8985 	}
8986 }
8987 
8988 /**
8989  *	t4_read_pace_tbl - read the pace table
8990  *	@adap: the adapter
8991  *	@pace_vals: holds the returned values
8992  *
8993  *	Returns the values of TP's pace table in microseconds.
8994  */
8995 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
8996 {
8997 	unsigned int i, v;
8998 
8999 	for (i = 0; i < NTX_SCHED; i++) {
9000 		t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
9001 		v = t4_read_reg(adap, A_TP_PACE_TABLE);
9002 		pace_vals[i] = dack_ticks_to_usec(adap, v);
9003 	}
9004 }
9005 
9006 /**
9007  *	t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
9008  *	@adap: the adapter
9009  *	@sched: the scheduler index
9010  *	@kbps: the byte rate in Kbps
9011  *	@ipg: the interpacket delay in tenths of nanoseconds
9012  *
9013  *	Return the current configuration of a HW Tx scheduler.
9014  */
9015 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
9016 		     unsigned int *ipg, bool sleep_ok)
9017 {
9018 	unsigned int v, addr, bpt, cpt;
9019 
9020 	if (kbps) {
9021 		addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
9022 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9023 		if (sched & 1)
9024 			v >>= 16;
9025 		bpt = (v >> 8) & 0xff;
9026 		cpt = v & 0xff;
9027 		if (!cpt)
9028 			*kbps = 0;	/* scheduler disabled */
9029 		else {
9030 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
9031 			*kbps = (v * bpt) / 125;
9032 		}
9033 	}
9034 	if (ipg) {
9035 		addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
9036 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9037 		if (sched & 1)
9038 			v >>= 16;
9039 		v &= 0xffff;
9040 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
9041 	}
9042 }
9043 
9044 /**
9045  *	t4_load_cfg - download config file
9046  *	@adap: the adapter
9047  *	@cfg_data: the cfg text file to write
9048  *	@size: text file size
9049  *
9050  *	Write the supplied config text file to the card's serial flash.
9051  */
9052 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
9053 {
9054 	int ret, i, n, cfg_addr;
9055 	unsigned int addr;
9056 	unsigned int flash_cfg_start_sec;
9057 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9058 
9059 	cfg_addr = t4_flash_cfg_addr(adap);
9060 	if (cfg_addr < 0)
9061 		return cfg_addr;
9062 
9063 	addr = cfg_addr;
9064 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
9065 
9066 	if (size > FLASH_CFG_MAX_SIZE) {
9067 		CH_ERR(adap, "cfg file too large, max is %u bytes\n",
9068 		       FLASH_CFG_MAX_SIZE);
9069 		return -EFBIG;
9070 	}
9071 
9072 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
9073 			 sf_sec_size);
9074 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9075 				     flash_cfg_start_sec + i - 1);
9076 	/*
9077 	 * If size == 0 then we're simply erasing the FLASH sectors associated
9078 	 * with the on-adapter Firmware Configuration File.
9079 	 */
9080 	if (ret || size == 0)
9081 		goto out;
9082 
9083 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
9084 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
9085 		if ( (size - i) <  SF_PAGE_SIZE)
9086 			n = size - i;
9087 		else
9088 			n = SF_PAGE_SIZE;
9089 		ret = t4_write_flash(adap, addr, n, cfg_data, 1);
9090 		if (ret)
9091 			goto out;
9092 
9093 		addr += SF_PAGE_SIZE;
9094 		cfg_data += SF_PAGE_SIZE;
9095 	}
9096 
9097 out:
9098 	if (ret)
9099 		CH_ERR(adap, "config file %s failed %d\n",
9100 		       (size == 0 ? "clear" : "download"), ret);
9101 	return ret;
9102 }
9103 
9104 /**
9105  *	t5_fw_init_extern_mem - initialize the external memory
9106  *	@adap: the adapter
9107  *
9108  *	Initializes the external memory on T5.
9109  */
9110 int t5_fw_init_extern_mem(struct adapter *adap)
9111 {
9112 	u32 params[1], val[1];
9113 	int ret;
9114 
9115 	if (!is_t5(adap))
9116 		return 0;
9117 
9118 	val[0] = 0xff; /* Initialize all MCs */
9119 	params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9120 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT));
9121 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val,
9122 			FW_CMD_MAX_TIMEOUT);
9123 
9124 	return ret;
9125 }
9126 
9127 /* BIOS boot headers */
9128 typedef struct pci_expansion_rom_header {
9129 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
9130 	u8	reserved[22]; /* Reserved per processor Architecture data */
9131 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
9132 } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
9133 
9134 /* Legacy PCI Expansion ROM Header */
9135 typedef struct legacy_pci_expansion_rom_header {
9136 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
9137 	u8	size512; /* Current Image Size in units of 512 bytes */
9138 	u8	initentry_point[4];
9139 	u8	cksum; /* Checksum computed on the entire Image */
9140 	u8	reserved[16]; /* Reserved */
9141 	u8	pcir_offset[2]; /* Offset to PCI Data Struture */
9142 } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
9143 
9144 /* EFI PCI Expansion ROM Header */
9145 typedef struct efi_pci_expansion_rom_header {
9146 	u8	signature[2]; // ROM signature. The value 0xaa55
9147 	u8	initialization_size[2]; /* Units 512. Includes this header */
9148 	u8	efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
9149 	u8	efi_subsystem[2]; /* Subsystem value for EFI image header */
9150 	u8	efi_machine_type[2]; /* Machine type from EFI image header */
9151 	u8	compression_type[2]; /* Compression type. */
9152 		/*
9153 		 * Compression type definition
9154 		 * 0x0: uncompressed
9155 		 * 0x1: Compressed
9156 		 * 0x2-0xFFFF: Reserved
9157 		 */
9158 	u8	reserved[8]; /* Reserved */
9159 	u8	efi_image_header_offset[2]; /* Offset to EFI Image */
9160 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
9161 } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
9162 
9163 /* PCI Data Structure Format */
9164 typedef struct pcir_data_structure { /* PCI Data Structure */
9165 	u8	signature[4]; /* Signature. The string "PCIR" */
9166 	u8	vendor_id[2]; /* Vendor Identification */
9167 	u8	device_id[2]; /* Device Identification */
9168 	u8	vital_product[2]; /* Pointer to Vital Product Data */
9169 	u8	length[2]; /* PCIR Data Structure Length */
9170 	u8	revision; /* PCIR Data Structure Revision */
9171 	u8	class_code[3]; /* Class Code */
9172 	u8	image_length[2]; /* Image Length. Multiple of 512B */
9173 	u8	code_revision[2]; /* Revision Level of Code/Data */
9174 	u8	code_type; /* Code Type. */
9175 		/*
9176 		 * PCI Expansion ROM Code Types
9177 		 * 0x00: Intel IA-32, PC-AT compatible. Legacy
9178 		 * 0x01: Open Firmware standard for PCI. FCODE
9179 		 * 0x02: Hewlett-Packard PA RISC. HP reserved
9180 		 * 0x03: EFI Image. EFI
9181 		 * 0x04-0xFF: Reserved.
9182 		 */
9183 	u8	indicator; /* Indicator. Identifies the last image in the ROM */
9184 	u8	reserved[2]; /* Reserved */
9185 } pcir_data_t; /* PCI__DATA_STRUCTURE */
9186 
9187 /* BOOT constants */
9188 enum {
9189 	BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
9190 	BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
9191 	BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
9192 	BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
9193 	BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
9194 	VENDOR_ID = 0x1425, /* Vendor ID */
9195 	PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
9196 };
9197 
9198 /*
9199  *	modify_device_id - Modifies the device ID of the Boot BIOS image
9200  *	@adatper: the device ID to write.
9201  *	@boot_data: the boot image to modify.
9202  *
9203  *	Write the supplied device ID to the boot BIOS image.
9204  */
9205 static void modify_device_id(int device_id, u8 *boot_data)
9206 {
9207 	legacy_pci_exp_rom_header_t *header;
9208 	pcir_data_t *pcir_header;
9209 	u32 cur_header = 0;
9210 
9211 	/*
9212 	 * Loop through all chained images and change the device ID's
9213 	 */
9214 	while (1) {
9215 		header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
9216 		pcir_header = (pcir_data_t *) &boot_data[cur_header +
9217 			      le16_to_cpu(*(u16*)header->pcir_offset)];
9218 
9219 		/*
9220 		 * Only modify the Device ID if code type is Legacy or HP.
9221 		 * 0x00: Okay to modify
9222 		 * 0x01: FCODE. Do not be modify
9223 		 * 0x03: Okay to modify
9224 		 * 0x04-0xFF: Do not modify
9225 		 */
9226 		if (pcir_header->code_type == 0x00) {
9227 			u8 csum = 0;
9228 			int i;
9229 
9230 			/*
9231 			 * Modify Device ID to match current adatper
9232 			 */
9233 			*(u16*) pcir_header->device_id = device_id;
9234 
9235 			/*
9236 			 * Set checksum temporarily to 0.
9237 			 * We will recalculate it later.
9238 			 */
9239 			header->cksum = 0x0;
9240 
9241 			/*
9242 			 * Calculate and update checksum
9243 			 */
9244 			for (i = 0; i < (header->size512 * 512); i++)
9245 				csum += (u8)boot_data[cur_header + i];
9246 
9247 			/*
9248 			 * Invert summed value to create the checksum
9249 			 * Writing new checksum value directly to the boot data
9250 			 */
9251 			boot_data[cur_header + 7] = -csum;
9252 
9253 		} else if (pcir_header->code_type == 0x03) {
9254 
9255 			/*
9256 			 * Modify Device ID to match current adatper
9257 			 */
9258 			*(u16*) pcir_header->device_id = device_id;
9259 
9260 		}
9261 
9262 
9263 		/*
9264 		 * Check indicator element to identify if this is the last
9265 		 * image in the ROM.
9266 		 */
9267 		if (pcir_header->indicator & 0x80)
9268 			break;
9269 
9270 		/*
9271 		 * Move header pointer up to the next image in the ROM.
9272 		 */
9273 		cur_header += header->size512 * 512;
9274 	}
9275 }
9276 
9277 /*
9278  *	t4_load_boot - download boot flash
9279  *	@adapter: the adapter
9280  *	@boot_data: the boot image to write
9281  *	@boot_addr: offset in flash to write boot_data
9282  *	@size: image size
9283  *
9284  *	Write the supplied boot image to the card's serial flash.
9285  *	The boot image has the following sections: a 28-byte header and the
9286  *	boot image.
9287  */
9288 int t4_load_boot(struct adapter *adap, u8 *boot_data,
9289 		 unsigned int boot_addr, unsigned int size)
9290 {
9291 	pci_exp_rom_header_t *header;
9292 	int pcir_offset ;
9293 	pcir_data_t *pcir_header;
9294 	int ret, addr;
9295 	uint16_t device_id;
9296 	unsigned int i;
9297 	unsigned int boot_sector = (boot_addr * 1024 );
9298 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9299 
9300 	/*
9301 	 * Make sure the boot image does not encroach on the firmware region
9302 	 */
9303 	if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
9304 		CH_ERR(adap, "boot image encroaching on firmware region\n");
9305 		return -EFBIG;
9306 	}
9307 
9308 	/*
9309 	 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
9310 	 * and Boot configuration data sections. These 3 boot sections span
9311 	 * sectors 0 to 7 in flash and live right before the FW image location.
9312 	 */
9313 	i = DIV_ROUND_UP(size ? size : FLASH_FW_START,
9314 			sf_sec_size);
9315 	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
9316 				     (boot_sector >> 16) + i - 1);
9317 
9318 	/*
9319 	 * If size == 0 then we're simply erasing the FLASH sectors associated
9320 	 * with the on-adapter option ROM file
9321 	 */
9322 	if (ret || (size == 0))
9323 		goto out;
9324 
9325 	/* Get boot header */
9326 	header = (pci_exp_rom_header_t *)boot_data;
9327 	pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
9328 	/* PCIR Data Structure */
9329 	pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
9330 
9331 	/*
9332 	 * Perform some primitive sanity testing to avoid accidentally
9333 	 * writing garbage over the boot sectors.  We ought to check for
9334 	 * more but it's not worth it for now ...
9335 	 */
9336 	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
9337 		CH_ERR(adap, "boot image too small/large\n");
9338 		return -EFBIG;
9339 	}
9340 
9341 #ifndef CHELSIO_T4_DIAGS
9342 	/*
9343 	 * Check BOOT ROM header signature
9344 	 */
9345 	if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
9346 		CH_ERR(adap, "Boot image missing signature\n");
9347 		return -EINVAL;
9348 	}
9349 
9350 	/*
9351 	 * Check PCI header signature
9352 	 */
9353 	if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
9354 		CH_ERR(adap, "PCI header missing signature\n");
9355 		return -EINVAL;
9356 	}
9357 
9358 	/*
9359 	 * Check Vendor ID matches Chelsio ID
9360 	 */
9361 	if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
9362 		CH_ERR(adap, "Vendor ID missing signature\n");
9363 		return -EINVAL;
9364 	}
9365 #endif
9366 
9367 	/*
9368 	 * Retrieve adapter's device ID
9369 	 */
9370 	t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
9371 	/* Want to deal with PF 0 so I strip off PF 4 indicator */
9372 	device_id = device_id & 0xf0ff;
9373 
9374 	/*
9375 	 * Check PCIE Device ID
9376 	 */
9377 	if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
9378 		/*
9379 		 * Change the device ID in the Boot BIOS image to match
9380 		 * the Device ID of the current adapter.
9381 		 */
9382 		modify_device_id(device_id, boot_data);
9383 	}
9384 
9385 	/*
9386 	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
9387 	 * we finish copying the rest of the boot image. This will ensure
9388 	 * that the BIOS boot header will only be written if the boot image
9389 	 * was written in full.
9390 	 */
9391 	addr = boot_sector;
9392 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
9393 		addr += SF_PAGE_SIZE;
9394 		boot_data += SF_PAGE_SIZE;
9395 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
9396 		if (ret)
9397 			goto out;
9398 	}
9399 
9400 	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
9401 			     (const u8 *)header, 0);
9402 
9403 out:
9404 	if (ret)
9405 		CH_ERR(adap, "boot image download failed, error %d\n", ret);
9406 	return ret;
9407 }
9408 
9409 /*
9410  *	t4_flash_bootcfg_addr - return the address of the flash optionrom configuration
9411  *	@adapter: the adapter
9412  *
9413  *	Return the address within the flash where the OptionROM Configuration
9414  *	is stored, or an error if the device FLASH is too small to contain
9415  *	a OptionROM Configuration.
9416  */
9417 static int t4_flash_bootcfg_addr(struct adapter *adapter)
9418 {
9419 	/*
9420 	 * If the device FLASH isn't large enough to hold a Firmware
9421 	 * Configuration File, return an error.
9422 	 */
9423 	if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
9424 		return -ENOSPC;
9425 
9426 	return FLASH_BOOTCFG_START;
9427 }
9428 
9429 int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size)
9430 {
9431 	int ret, i, n, cfg_addr;
9432 	unsigned int addr;
9433 	unsigned int flash_cfg_start_sec;
9434 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9435 
9436 	cfg_addr = t4_flash_bootcfg_addr(adap);
9437 	if (cfg_addr < 0)
9438 		return cfg_addr;
9439 
9440 	addr = cfg_addr;
9441 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
9442 
9443 	if (size > FLASH_BOOTCFG_MAX_SIZE) {
9444 		CH_ERR(adap, "bootcfg file too large, max is %u bytes\n",
9445 			FLASH_BOOTCFG_MAX_SIZE);
9446 		return -EFBIG;
9447 	}
9448 
9449 	i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */
9450 			 sf_sec_size);
9451 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9452 					flash_cfg_start_sec + i - 1);
9453 
9454 	/*
9455 	 * If size == 0 then we're simply erasing the FLASH sectors associated
9456 	 * with the on-adapter OptionROM Configuration File.
9457 	 */
9458 	if (ret || size == 0)
9459 		goto out;
9460 
9461 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
9462 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
9463 		if ( (size - i) <  SF_PAGE_SIZE)
9464 			n = size - i;
9465 		else
9466 			n = SF_PAGE_SIZE;
9467 		ret = t4_write_flash(adap, addr, n, cfg_data, 0);
9468 		if (ret)
9469 			goto out;
9470 
9471 		addr += SF_PAGE_SIZE;
9472 		cfg_data += SF_PAGE_SIZE;
9473 	}
9474 
9475 out:
9476 	if (ret)
9477 		CH_ERR(adap, "boot config data %s failed %d\n",
9478 				(size == 0 ? "clear" : "download"), ret);
9479 	return ret;
9480 }
9481 
9482 /**
9483  *	t4_set_filter_mode - configure the optional components of filter tuples
9484  *	@adap: the adapter
9485  *	@mode_map: a bitmap selcting which optional filter components to enable
9486  * 	@sleep_ok: if true we may sleep while awaiting command completion
9487  *
9488  *	Sets the filter mode by selecting the optional components to enable
9489  *	in filter tuples.  Returns 0 on success and a negative error if the
9490  *	requested mode needs more bits than are available for optional
9491  *	components.
9492  */
9493 int t4_set_filter_mode(struct adapter *adap, unsigned int mode_map,
9494 		       bool sleep_ok)
9495 {
9496 	static u8 width[] = { 1, 3, 17, 17, 8, 8, 16, 9, 3, 1 };
9497 
9498 	int i, nbits = 0;
9499 
9500 	for (i = S_FCOE; i <= S_FRAGMENTATION; i++)
9501 		if (mode_map & (1 << i))
9502 			nbits += width[i];
9503 	if (nbits > FILTER_OPT_LEN)
9504 		return -EINVAL;
9505 	t4_tp_pio_write(adap, &mode_map, 1, A_TP_VLAN_PRI_MAP, sleep_ok);
9506 	read_filter_mode_and_ingress_config(adap, sleep_ok);
9507 
9508 	return 0;
9509 }
9510 
9511 /**
9512  *	t4_clr_port_stats - clear port statistics
9513  *	@adap: the adapter
9514  *	@idx: the port index
9515  *
9516  *	Clear HW statistics for the given port.
9517  */
9518 void t4_clr_port_stats(struct adapter *adap, int idx)
9519 {
9520 	unsigned int i;
9521 	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
9522 	u32 port_base_addr;
9523 
9524 	if (is_t4(adap))
9525 		port_base_addr = PORT_BASE(idx);
9526 	else
9527 		port_base_addr = T5_PORT_BASE(idx);
9528 
9529 	for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
9530 			i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
9531 		t4_write_reg(adap, port_base_addr + i, 0);
9532 	for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
9533 			i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
9534 		t4_write_reg(adap, port_base_addr + i, 0);
9535 	for (i = 0; i < 4; i++)
9536 		if (bgmap & (1 << i)) {
9537 			t4_write_reg(adap,
9538 			A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
9539 			t4_write_reg(adap,
9540 			A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
9541 		}
9542 }
9543 
9544 /**
9545  *	t4_i2c_rd - read I2C data from adapter
9546  *	@adap: the adapter
9547  *	@port: Port number if per-port device; <0 if not
9548  *	@devid: per-port device ID or absolute device ID
9549  *	@offset: byte offset into device I2C space
9550  *	@len: byte length of I2C space data
9551  *	@buf: buffer in which to return I2C data
9552  *
9553  *	Reads the I2C data from the indicated device and location.
9554  */
9555 int t4_i2c_rd(struct adapter *adap, unsigned int mbox,
9556 	      int port, unsigned int devid,
9557 	      unsigned int offset, unsigned int len,
9558 	      u8 *buf)
9559 {
9560 	u32 ldst_addrspace;
9561 	struct fw_ldst_cmd ldst;
9562 	int ret;
9563 
9564 	if (port >= 4 ||
9565 	    devid >= 256 ||
9566 	    offset >= 256 ||
9567 	    len > sizeof ldst.u.i2c.data)
9568 		return -EINVAL;
9569 
9570 	memset(&ldst, 0, sizeof ldst);
9571 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
9572 	ldst.op_to_addrspace =
9573 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9574 			    F_FW_CMD_REQUEST |
9575 			    F_FW_CMD_READ |
9576 			    ldst_addrspace);
9577 	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
9578 	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
9579 	ldst.u.i2c.did = devid;
9580 	ldst.u.i2c.boffset = offset;
9581 	ldst.u.i2c.blen = len;
9582 	ret = t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
9583 	if (!ret)
9584 		memcpy(buf, ldst.u.i2c.data, len);
9585 	return ret;
9586 }
9587 
9588 /**
9589  *	t4_i2c_wr - write I2C data to adapter
9590  *	@adap: the adapter
9591  *	@port: Port number if per-port device; <0 if not
9592  *	@devid: per-port device ID or absolute device ID
9593  *	@offset: byte offset into device I2C space
9594  *	@len: byte length of I2C space data
9595  *	@buf: buffer containing new I2C data
9596  *
9597  *	Write the I2C data to the indicated device and location.
9598  */
9599 int t4_i2c_wr(struct adapter *adap, unsigned int mbox,
9600 	      int port, unsigned int devid,
9601 	      unsigned int offset, unsigned int len,
9602 	      u8 *buf)
9603 {
9604 	u32 ldst_addrspace;
9605 	struct fw_ldst_cmd ldst;
9606 
9607 	if (port >= 4 ||
9608 	    devid >= 256 ||
9609 	    offset >= 256 ||
9610 	    len > sizeof ldst.u.i2c.data)
9611 		return -EINVAL;
9612 
9613 	memset(&ldst, 0, sizeof ldst);
9614 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
9615 	ldst.op_to_addrspace =
9616 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9617 			    F_FW_CMD_REQUEST |
9618 			    F_FW_CMD_WRITE |
9619 			    ldst_addrspace);
9620 	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
9621 	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
9622 	ldst.u.i2c.did = devid;
9623 	ldst.u.i2c.boffset = offset;
9624 	ldst.u.i2c.blen = len;
9625 	memcpy(ldst.u.i2c.data, buf, len);
9626 	return t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
9627 }
9628 
9629 /**
9630  * 	t4_sge_ctxt_rd - read an SGE context through FW
9631  * 	@adap: the adapter
9632  * 	@mbox: mailbox to use for the FW command
9633  * 	@cid: the context id
9634  * 	@ctype: the context type
9635  * 	@data: where to store the context data
9636  *
9637  * 	Issues a FW command through the given mailbox to read an SGE context.
9638  */
9639 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
9640 		   enum ctxt_type ctype, u32 *data)
9641 {
9642 	int ret;
9643 	struct fw_ldst_cmd c;
9644 
9645 	if (ctype == CTXT_EGRESS)
9646 		ret = FW_LDST_ADDRSPC_SGE_EGRC;
9647 	else if (ctype == CTXT_INGRESS)
9648 		ret = FW_LDST_ADDRSPC_SGE_INGC;
9649 	else if (ctype == CTXT_FLM)
9650 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
9651 	else
9652 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
9653 
9654 	memset(&c, 0, sizeof(c));
9655 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9656 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
9657 					V_FW_LDST_CMD_ADDRSPACE(ret));
9658 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
9659 	c.u.idctxt.physid = cpu_to_be32(cid);
9660 
9661 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
9662 	if (ret == 0) {
9663 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
9664 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
9665 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
9666 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
9667 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
9668 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
9669 	}
9670 	return ret;
9671 }
9672 
9673 /**
9674  * 	t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
9675  * 	@adap: the adapter
9676  * 	@cid: the context id
9677  * 	@ctype: the context type
9678  * 	@data: where to store the context data
9679  *
9680  * 	Reads an SGE context directly, bypassing FW.  This is only for
9681  * 	debugging when FW is unavailable.
9682  */
9683 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
9684 		      u32 *data)
9685 {
9686 	int i, ret;
9687 
9688 	t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
9689 	ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
9690 	if (!ret)
9691 		for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
9692 			*data++ = t4_read_reg(adap, i);
9693 	return ret;
9694 }
9695 
9696 int t4_sched_config(struct adapter *adapter, int type, int minmaxen,
9697     int sleep_ok)
9698 {
9699 	struct fw_sched_cmd cmd;
9700 
9701 	memset(&cmd, 0, sizeof(cmd));
9702 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9703 				      F_FW_CMD_REQUEST |
9704 				      F_FW_CMD_WRITE);
9705 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9706 
9707 	cmd.u.config.sc = FW_SCHED_SC_CONFIG;
9708 	cmd.u.config.type = type;
9709 	cmd.u.config.minmaxen = minmaxen;
9710 
9711 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9712 			       NULL, sleep_ok);
9713 }
9714 
9715 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
9716 		    int rateunit, int ratemode, int channel, int cl,
9717 		    int minrate, int maxrate, int weight, int pktsize,
9718 		    int sleep_ok)
9719 {
9720 	struct fw_sched_cmd cmd;
9721 
9722 	memset(&cmd, 0, sizeof(cmd));
9723 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9724 				      F_FW_CMD_REQUEST |
9725 				      F_FW_CMD_WRITE);
9726 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9727 
9728 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9729 	cmd.u.params.type = type;
9730 	cmd.u.params.level = level;
9731 	cmd.u.params.mode = mode;
9732 	cmd.u.params.ch = channel;
9733 	cmd.u.params.cl = cl;
9734 	cmd.u.params.unit = rateunit;
9735 	cmd.u.params.rate = ratemode;
9736 	cmd.u.params.min = cpu_to_be32(minrate);
9737 	cmd.u.params.max = cpu_to_be32(maxrate);
9738 	cmd.u.params.weight = cpu_to_be16(weight);
9739 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
9740 
9741 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9742 			       NULL, sleep_ok);
9743 }
9744 
9745 int t4_sched_params_ch_rl(struct adapter *adapter, int channel, int ratemode,
9746     unsigned int maxrate, int sleep_ok)
9747 {
9748 	struct fw_sched_cmd cmd;
9749 
9750 	memset(&cmd, 0, sizeof(cmd));
9751 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9752 				      F_FW_CMD_REQUEST |
9753 				      F_FW_CMD_WRITE);
9754 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9755 
9756 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9757 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
9758 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CH_RL;
9759 	cmd.u.params.ch = channel;
9760 	cmd.u.params.rate = ratemode;		/* REL or ABS */
9761 	cmd.u.params.max = cpu_to_be32(maxrate);/*  %  or kbps */
9762 
9763 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9764 			       NULL, sleep_ok);
9765 }
9766 
9767 int t4_sched_params_cl_wrr(struct adapter *adapter, int channel, int cl,
9768     int weight, int sleep_ok)
9769 {
9770 	struct fw_sched_cmd cmd;
9771 
9772 	if (weight < 0 || weight > 100)
9773 		return -EINVAL;
9774 
9775 	memset(&cmd, 0, sizeof(cmd));
9776 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9777 				      F_FW_CMD_REQUEST |
9778 				      F_FW_CMD_WRITE);
9779 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9780 
9781 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9782 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
9783 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_WRR;
9784 	cmd.u.params.ch = channel;
9785 	cmd.u.params.cl = cl;
9786 	cmd.u.params.weight = cpu_to_be16(weight);
9787 
9788 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9789 			       NULL, sleep_ok);
9790 }
9791 
9792 int t4_sched_params_cl_rl_kbps(struct adapter *adapter, int channel, int cl,
9793     int mode, unsigned int maxrate, int pktsize, int sleep_ok)
9794 {
9795 	struct fw_sched_cmd cmd;
9796 
9797 	memset(&cmd, 0, sizeof(cmd));
9798 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9799 				      F_FW_CMD_REQUEST |
9800 				      F_FW_CMD_WRITE);
9801 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9802 
9803 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9804 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
9805 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_RL;
9806 	cmd.u.params.mode = mode;
9807 	cmd.u.params.ch = channel;
9808 	cmd.u.params.cl = cl;
9809 	cmd.u.params.unit = FW_SCHED_PARAMS_UNIT_BITRATE;
9810 	cmd.u.params.rate = FW_SCHED_PARAMS_RATE_ABS;
9811 	cmd.u.params.max = cpu_to_be32(maxrate);
9812 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
9813 
9814 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9815 			       NULL, sleep_ok);
9816 }
9817 
9818 /*
9819  *	t4_config_watchdog - configure (enable/disable) a watchdog timer
9820  *	@adapter: the adapter
9821  * 	@mbox: mailbox to use for the FW command
9822  * 	@pf: the PF owning the queue
9823  * 	@vf: the VF owning the queue
9824  *	@timeout: watchdog timeout in ms
9825  *	@action: watchdog timer / action
9826  *
9827  *	There are separate watchdog timers for each possible watchdog
9828  *	action.  Configure one of the watchdog timers by setting a non-zero
9829  *	timeout.  Disable a watchdog timer by using a timeout of zero.
9830  */
9831 int t4_config_watchdog(struct adapter *adapter, unsigned int mbox,
9832 		       unsigned int pf, unsigned int vf,
9833 		       unsigned int timeout, unsigned int action)
9834 {
9835 	struct fw_watchdog_cmd wdog;
9836 	unsigned int ticks;
9837 
9838 	/*
9839 	 * The watchdog command expects a timeout in units of 10ms so we need
9840 	 * to convert it here (via rounding) and force a minimum of one 10ms
9841 	 * "tick" if the timeout is non-zero but the conversion results in 0
9842 	 * ticks.
9843 	 */
9844 	ticks = (timeout + 5)/10;
9845 	if (timeout && !ticks)
9846 		ticks = 1;
9847 
9848 	memset(&wdog, 0, sizeof wdog);
9849 	wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) |
9850 				     F_FW_CMD_REQUEST |
9851 				     F_FW_CMD_WRITE |
9852 				     V_FW_PARAMS_CMD_PFN(pf) |
9853 				     V_FW_PARAMS_CMD_VFN(vf));
9854 	wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog));
9855 	wdog.timeout = cpu_to_be32(ticks);
9856 	wdog.action = cpu_to_be32(action);
9857 
9858 	return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL);
9859 }
9860 
9861 int t4_get_devlog_level(struct adapter *adapter, unsigned int *level)
9862 {
9863 	struct fw_devlog_cmd devlog_cmd;
9864 	int ret;
9865 
9866 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9867 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9868 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
9869 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9870 	ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
9871 			 sizeof(devlog_cmd), &devlog_cmd);
9872 	if (ret)
9873 		return ret;
9874 
9875 	*level = devlog_cmd.level;
9876 	return 0;
9877 }
9878 
9879 int t4_set_devlog_level(struct adapter *adapter, unsigned int level)
9880 {
9881 	struct fw_devlog_cmd devlog_cmd;
9882 
9883 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9884 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9885 					     F_FW_CMD_REQUEST |
9886 					     F_FW_CMD_WRITE);
9887 	devlog_cmd.level = level;
9888 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9889 	return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
9890 			  sizeof(devlog_cmd), &devlog_cmd);
9891 }
9892