xref: /freebsd/sys/dev/cxgbe/common/t4_hw.c (revision 5aa839c9e2c373275091b8bf529c1311d0b84d76)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2012, 2016 Chelsio Communications, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_inet.h"
33 
34 #include <sys/param.h>
35 #include <sys/eventhandler.h>
36 
37 #include "common.h"
38 #include "t4_regs.h"
39 #include "t4_regs_values.h"
40 #include "firmware/t4fw_interface.h"
41 
42 #undef msleep
43 #define msleep(x) do { \
44 	if (cold) \
45 		DELAY((x) * 1000); \
46 	else \
47 		pause("t4hw", (x) * hz / 1000); \
48 } while (0)
49 
50 /**
51  *	t4_wait_op_done_val - wait until an operation is completed
52  *	@adapter: the adapter performing the operation
53  *	@reg: the register to check for completion
54  *	@mask: a single-bit field within @reg that indicates completion
55  *	@polarity: the value of the field when the operation is completed
56  *	@attempts: number of check iterations
57  *	@delay: delay in usecs between iterations
58  *	@valp: where to store the value of the register at completion time
59  *
60  *	Wait until an operation is completed by checking a bit in a register
61  *	up to @attempts times.  If @valp is not NULL the value of the register
62  *	at the time it indicated completion is stored there.  Returns 0 if the
63  *	operation completes and	-EAGAIN	otherwise.
64  */
65 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
66 			       int polarity, int attempts, int delay, u32 *valp)
67 {
68 	while (1) {
69 		u32 val = t4_read_reg(adapter, reg);
70 
71 		if (!!(val & mask) == polarity) {
72 			if (valp)
73 				*valp = val;
74 			return 0;
75 		}
76 		if (--attempts == 0)
77 			return -EAGAIN;
78 		if (delay)
79 			udelay(delay);
80 	}
81 }
82 
83 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
84 				  int polarity, int attempts, int delay)
85 {
86 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
87 				   delay, NULL);
88 }
89 
90 /**
91  *	t4_set_reg_field - set a register field to a value
92  *	@adapter: the adapter to program
93  *	@addr: the register address
94  *	@mask: specifies the portion of the register to modify
95  *	@val: the new value for the register field
96  *
97  *	Sets a register field specified by the supplied mask to the
98  *	given value.
99  */
100 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
101 		      u32 val)
102 {
103 	u32 v = t4_read_reg(adapter, addr) & ~mask;
104 
105 	t4_write_reg(adapter, addr, v | val);
106 	(void) t4_read_reg(adapter, addr);      /* flush */
107 }
108 
109 /**
110  *	t4_read_indirect - read indirectly addressed registers
111  *	@adap: the adapter
112  *	@addr_reg: register holding the indirect address
113  *	@data_reg: register holding the value of the indirect register
114  *	@vals: where the read register values are stored
115  *	@nregs: how many indirect registers to read
116  *	@start_idx: index of first indirect register to read
117  *
118  *	Reads registers that are accessed indirectly through an address/data
119  *	register pair.
120  */
121 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
122 			     unsigned int data_reg, u32 *vals,
123 			     unsigned int nregs, unsigned int start_idx)
124 {
125 	while (nregs--) {
126 		t4_write_reg(adap, addr_reg, start_idx);
127 		*vals++ = t4_read_reg(adap, data_reg);
128 		start_idx++;
129 	}
130 }
131 
132 /**
133  *	t4_write_indirect - write indirectly addressed registers
134  *	@adap: the adapter
135  *	@addr_reg: register holding the indirect addresses
136  *	@data_reg: register holding the value for the indirect registers
137  *	@vals: values to write
138  *	@nregs: how many indirect registers to write
139  *	@start_idx: address of first indirect register to write
140  *
141  *	Writes a sequential block of registers that are accessed indirectly
142  *	through an address/data register pair.
143  */
144 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
145 		       unsigned int data_reg, const u32 *vals,
146 		       unsigned int nregs, unsigned int start_idx)
147 {
148 	while (nregs--) {
149 		t4_write_reg(adap, addr_reg, start_idx++);
150 		t4_write_reg(adap, data_reg, *vals++);
151 	}
152 }
153 
154 /*
155  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
156  * mechanism.  This guarantees that we get the real value even if we're
157  * operating within a Virtual Machine and the Hypervisor is trapping our
158  * Configuration Space accesses.
159  *
160  * N.B. This routine should only be used as a last resort: the firmware uses
161  *      the backdoor registers on a regular basis and we can end up
162  *      conflicting with it's uses!
163  */
164 u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
165 {
166 	u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg);
167 	u32 val;
168 
169 	if (chip_id(adap) <= CHELSIO_T5)
170 		req |= F_ENABLE;
171 	else
172 		req |= F_T6_ENABLE;
173 
174 	if (is_t4(adap))
175 		req |= F_LOCALCFG;
176 
177 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req);
178 	val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
179 
180 	/*
181 	 * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
182 	 * Configuration Space read.  (None of the other fields matter when
183 	 * F_ENABLE is 0 so a simple register write is easier than a
184 	 * read-modify-write via t4_set_reg_field().)
185 	 */
186 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0);
187 
188 	return val;
189 }
190 
191 /*
192  * t4_report_fw_error - report firmware error
193  * @adap: the adapter
194  *
195  * The adapter firmware can indicate error conditions to the host.
196  * If the firmware has indicated an error, print out the reason for
197  * the firmware error.
198  */
199 void t4_report_fw_error(struct adapter *adap)
200 {
201 	static const char *const reason[] = {
202 		"Crash",			/* PCIE_FW_EVAL_CRASH */
203 		"During Device Preparation",	/* PCIE_FW_EVAL_PREP */
204 		"During Device Configuration",	/* PCIE_FW_EVAL_CONF */
205 		"During Device Initialization",	/* PCIE_FW_EVAL_INIT */
206 		"Unexpected Event",		/* PCIE_FW_EVAL_UNEXPECTEDEVENT */
207 		"Insufficient Airflow",		/* PCIE_FW_EVAL_OVERHEAT */
208 		"Device Shutdown",		/* PCIE_FW_EVAL_DEVICESHUTDOWN */
209 		"Reserved",			/* reserved */
210 	};
211 	u32 pcie_fw;
212 
213 	pcie_fw = t4_read_reg(adap, A_PCIE_FW);
214 	if (pcie_fw & F_PCIE_FW_ERR) {
215 		CH_ERR(adap, "firmware reports adapter error: %s (0x%08x)\n",
216 		    reason[G_PCIE_FW_EVAL(pcie_fw)], pcie_fw);
217 	}
218 }
219 
220 /*
221  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
222  */
223 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
224 			 u32 mbox_addr)
225 {
226 	for ( ; nflit; nflit--, mbox_addr += 8)
227 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
228 }
229 
230 /*
231  * Handle a FW assertion reported in a mailbox.
232  */
233 static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt)
234 {
235 	CH_ALERT(adap,
236 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
237 		  asrt->u.assert.filename_0_7,
238 		  be32_to_cpu(asrt->u.assert.line),
239 		  be32_to_cpu(asrt->u.assert.x),
240 		  be32_to_cpu(asrt->u.assert.y));
241 }
242 
243 struct port_tx_state {
244 	uint64_t rx_pause;
245 	uint64_t tx_frames;
246 };
247 
248 static void
249 read_tx_state_one(struct adapter *sc, int i, struct port_tx_state *tx_state)
250 {
251 	uint32_t rx_pause_reg, tx_frames_reg;
252 
253 	if (is_t4(sc)) {
254 		tx_frames_reg = PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
255 		rx_pause_reg = PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
256 	} else {
257 		tx_frames_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
258 		rx_pause_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
259 	}
260 
261 	tx_state->rx_pause = t4_read_reg64(sc, rx_pause_reg);
262 	tx_state->tx_frames = t4_read_reg64(sc, tx_frames_reg);
263 }
264 
265 static void
266 read_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
267 {
268 	int i;
269 
270 	for_each_port(sc, i)
271 		read_tx_state_one(sc, i, &tx_state[i]);
272 }
273 
274 static void
275 check_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
276 {
277 	uint32_t port_ctl_reg;
278 	uint64_t tx_frames, rx_pause;
279 	int i;
280 
281 	for_each_port(sc, i) {
282 		rx_pause = tx_state[i].rx_pause;
283 		tx_frames = tx_state[i].tx_frames;
284 		read_tx_state_one(sc, i, &tx_state[i]);	/* update */
285 
286 		if (is_t4(sc))
287 			port_ctl_reg = PORT_REG(i, A_MPS_PORT_CTL);
288 		else
289 			port_ctl_reg = T5_PORT_REG(i, A_MPS_PORT_CTL);
290 		if (t4_read_reg(sc, port_ctl_reg) & F_PORTTXEN &&
291 		    rx_pause != tx_state[i].rx_pause &&
292 		    tx_frames == tx_state[i].tx_frames) {
293 			t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, 0);
294 			mdelay(1);
295 			t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, F_PORTTXEN);
296 		}
297 	}
298 }
299 
300 #define X_CIM_PF_NOACCESS 0xeeeeeeee
301 /**
302  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
303  *	@adap: the adapter
304  *	@mbox: index of the mailbox to use
305  *	@cmd: the command to write
306  *	@size: command length in bytes
307  *	@rpl: where to optionally store the reply
308  *	@sleep_ok: if true we may sleep while awaiting command completion
309  *	@timeout: time to wait for command to finish before timing out
310  *		(negative implies @sleep_ok=false)
311  *
312  *	Sends the given command to FW through the selected mailbox and waits
313  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
314  *	store the FW's reply to the command.  The command and its optional
315  *	reply are of the same length.  Some FW commands like RESET and
316  *	INITIALIZE can take a considerable amount of time to execute.
317  *	@sleep_ok determines whether we may sleep while awaiting the response.
318  *	If sleeping is allowed we use progressive backoff otherwise we spin.
319  *	Note that passing in a negative @timeout is an alternate mechanism
320  *	for specifying @sleep_ok=false.  This is useful when a higher level
321  *	interface allows for specification of @timeout but not @sleep_ok ...
322  *
323  *	The return value is 0 on success or a negative errno on failure.  A
324  *	failure can happen either because we are not able to execute the
325  *	command or FW executes it but signals an error.  In the latter case
326  *	the return value is the error code indicated by FW (negated).
327  */
328 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
329 			    int size, void *rpl, bool sleep_ok, int timeout)
330 {
331 	/*
332 	 * We delay in small increments at first in an effort to maintain
333 	 * responsiveness for simple, fast executing commands but then back
334 	 * off to larger delays to a maximum retry delay.
335 	 */
336 	static const int delay[] = {
337 		1, 1, 3, 5, 10, 10, 20, 50, 100
338 	};
339 	u32 v;
340 	u64 res;
341 	int i, ms, delay_idx, ret, next_tx_check;
342 	u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
343 	u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
344 	u32 ctl;
345 	__be64 cmd_rpl[MBOX_LEN/8];
346 	u32 pcie_fw;
347 	struct port_tx_state tx_state[MAX_NPORTS];
348 
349 	if (adap->flags & CHK_MBOX_ACCESS)
350 		ASSERT_SYNCHRONIZED_OP(adap);
351 
352 	if (size <= 0 || (size & 15) || size > MBOX_LEN)
353 		return -EINVAL;
354 
355 	if (adap->flags & IS_VF) {
356 		if (is_t6(adap))
357 			data_reg = FW_T6VF_MBDATA_BASE_ADDR;
358 		else
359 			data_reg = FW_T4VF_MBDATA_BASE_ADDR;
360 		ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL);
361 	}
362 
363 	/*
364 	 * If we have a negative timeout, that implies that we can't sleep.
365 	 */
366 	if (timeout < 0) {
367 		sleep_ok = false;
368 		timeout = -timeout;
369 	}
370 
371 	/*
372 	 * Attempt to gain access to the mailbox.
373 	 */
374 	pcie_fw = 0;
375 	if (!(adap->flags & IS_VF)) {
376 		pcie_fw = t4_read_reg(adap, A_PCIE_FW);
377 		if (pcie_fw & F_PCIE_FW_ERR)
378 			goto failed;
379 	}
380 	for (i = 0; i < 4; i++) {
381 		ctl = t4_read_reg(adap, ctl_reg);
382 		v = G_MBOWNER(ctl);
383 		if (v != X_MBOWNER_NONE)
384 			break;
385 	}
386 
387 	/*
388 	 * If we were unable to gain access, report the error to our caller.
389 	 */
390 	if (v != X_MBOWNER_PL) {
391 		if (!(adap->flags & IS_VF)) {
392 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
393 			if (pcie_fw & F_PCIE_FW_ERR)
394 				goto failed;
395 		}
396 		ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
397 		return ret;
398 	}
399 
400 	/*
401 	 * If we gain ownership of the mailbox and there's a "valid" message
402 	 * in it, this is likely an asynchronous error message from the
403 	 * firmware.  So we'll report that and then proceed on with attempting
404 	 * to issue our own command ... which may well fail if the error
405 	 * presaged the firmware crashing ...
406 	 */
407 	if (ctl & F_MBMSGVALID) {
408 		CH_DUMP_MBOX(adap, mbox, data_reg, "VLD", NULL, true);
409 	}
410 
411 	/*
412 	 * Copy in the new mailbox command and send it on its way ...
413 	 */
414 	memset(cmd_rpl, 0, sizeof(cmd_rpl));
415 	memcpy(cmd_rpl, cmd, size);
416 	CH_DUMP_MBOX(adap, mbox, 0, "cmd", cmd_rpl, false);
417 	for (i = 0; i < ARRAY_SIZE(cmd_rpl); i++)
418 		t4_write_reg64(adap, data_reg + i * 8, be64_to_cpu(cmd_rpl[i]));
419 
420 	if (adap->flags & IS_VF) {
421 		/*
422 		 * For the VFs, the Mailbox Data "registers" are
423 		 * actually backed by T4's "MA" interface rather than
424 		 * PL Registers (as is the case for the PFs).  Because
425 		 * these are in different coherency domains, the write
426 		 * to the VF's PL-register-backed Mailbox Control can
427 		 * race in front of the writes to the MA-backed VF
428 		 * Mailbox Data "registers".  So we need to do a
429 		 * read-back on at least one byte of the VF Mailbox
430 		 * Data registers before doing the write to the VF
431 		 * Mailbox Control register.
432 		 */
433 		t4_read_reg(adap, data_reg);
434 	}
435 
436 	t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
437 	read_tx_state(adap, &tx_state[0]);	/* also flushes the write_reg */
438 	next_tx_check = 1000;
439 	delay_idx = 0;
440 	ms = delay[0];
441 
442 	/*
443 	 * Loop waiting for the reply; bail out if we time out or the firmware
444 	 * reports an error.
445 	 */
446 	for (i = 0; i < timeout; i += ms) {
447 		if (!(adap->flags & IS_VF)) {
448 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
449 			if (pcie_fw & F_PCIE_FW_ERR)
450 				break;
451 		}
452 
453 		if (i >= next_tx_check) {
454 			check_tx_state(adap, &tx_state[0]);
455 			next_tx_check = i + 1000;
456 		}
457 
458 		if (sleep_ok) {
459 			ms = delay[delay_idx];  /* last element may repeat */
460 			if (delay_idx < ARRAY_SIZE(delay) - 1)
461 				delay_idx++;
462 			msleep(ms);
463 		} else {
464 			mdelay(ms);
465 		}
466 
467 		v = t4_read_reg(adap, ctl_reg);
468 		if (v == X_CIM_PF_NOACCESS)
469 			continue;
470 		if (G_MBOWNER(v) == X_MBOWNER_PL) {
471 			if (!(v & F_MBMSGVALID)) {
472 				t4_write_reg(adap, ctl_reg,
473 					     V_MBOWNER(X_MBOWNER_NONE));
474 				continue;
475 			}
476 
477 			/*
478 			 * Retrieve the command reply and release the mailbox.
479 			 */
480 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg);
481 			CH_DUMP_MBOX(adap, mbox, 0, "rpl", cmd_rpl, false);
482 			t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
483 
484 			res = be64_to_cpu(cmd_rpl[0]);
485 			if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
486 				fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl);
487 				res = V_FW_CMD_RETVAL(EIO);
488 			} else if (rpl)
489 				memcpy(rpl, cmd_rpl, size);
490 			return -G_FW_CMD_RETVAL((int)res);
491 		}
492 	}
493 
494 	/*
495 	 * We timed out waiting for a reply to our mailbox command.  Report
496 	 * the error and also check to see if the firmware reported any
497 	 * errors ...
498 	 */
499 	CH_ERR(adap, "command %#x in mbox %d timed out (0x%08x).\n",
500 	    *(const u8 *)cmd, mbox, pcie_fw);
501 	CH_DUMP_MBOX(adap, mbox, 0, "cmdsent", cmd_rpl, true);
502 	CH_DUMP_MBOX(adap, mbox, data_reg, "current", NULL, true);
503 failed:
504 	adap->flags &= ~FW_OK;
505 	ret = pcie_fw & F_PCIE_FW_ERR ? -ENXIO : -ETIMEDOUT;
506 	t4_fatal_err(adap, true);
507 	return ret;
508 }
509 
510 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
511 		    void *rpl, bool sleep_ok)
512 {
513 		return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl,
514 					       sleep_ok, FW_CMD_MAX_TIMEOUT);
515 
516 }
517 
518 static int t4_edc_err_read(struct adapter *adap, int idx)
519 {
520 	u32 edc_ecc_err_addr_reg;
521 	u32 edc_bist_status_rdata_reg;
522 
523 	if (is_t4(adap)) {
524 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
525 		return 0;
526 	}
527 	if (idx != MEM_EDC0 && idx != MEM_EDC1) {
528 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
529 		return 0;
530 	}
531 
532 	edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx);
533 	edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx);
534 
535 	CH_WARN(adap,
536 		"edc%d err addr 0x%x: 0x%x.\n",
537 		idx, edc_ecc_err_addr_reg,
538 		t4_read_reg(adap, edc_ecc_err_addr_reg));
539 	CH_WARN(adap,
540 	 	"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
541 		edc_bist_status_rdata_reg,
542 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg),
543 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8),
544 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16),
545 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24),
546 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32),
547 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40),
548 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48),
549 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56),
550 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64));
551 
552 	return 0;
553 }
554 
555 /**
556  *	t4_mc_read - read from MC through backdoor accesses
557  *	@adap: the adapter
558  *	@idx: which MC to access
559  *	@addr: address of first byte requested
560  *	@data: 64 bytes of data containing the requested address
561  *	@ecc: where to store the corresponding 64-bit ECC word
562  *
563  *	Read 64 bytes of data from MC starting at a 64-byte-aligned address
564  *	that covers the requested address @addr.  If @parity is not %NULL it
565  *	is assigned the 64-bit ECC word for the read data.
566  */
567 int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
568 {
569 	int i;
570 	u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
571 	u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
572 
573 	if (is_t4(adap)) {
574 		mc_bist_cmd_reg = A_MC_BIST_CMD;
575 		mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
576 		mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
577 		mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
578 		mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
579 	} else {
580 		mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
581 		mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
582 		mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
583 		mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA,
584 						  idx);
585 		mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN,
586 						  idx);
587 	}
588 
589 	if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
590 		return -EBUSY;
591 	t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
592 	t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
593 	t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
594 	t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
595 		     F_START_BIST | V_BIST_CMD_GAP(1));
596 	i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
597 	if (i)
598 		return i;
599 
600 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
601 
602 	for (i = 15; i >= 0; i--)
603 		*data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
604 	if (ecc)
605 		*ecc = t4_read_reg64(adap, MC_DATA(16));
606 #undef MC_DATA
607 	return 0;
608 }
609 
610 /**
611  *	t4_edc_read - read from EDC through backdoor accesses
612  *	@adap: the adapter
613  *	@idx: which EDC to access
614  *	@addr: address of first byte requested
615  *	@data: 64 bytes of data containing the requested address
616  *	@ecc: where to store the corresponding 64-bit ECC word
617  *
618  *	Read 64 bytes of data from EDC starting at a 64-byte-aligned address
619  *	that covers the requested address @addr.  If @parity is not %NULL it
620  *	is assigned the 64-bit ECC word for the read data.
621  */
622 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
623 {
624 	int i;
625 	u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
626 	u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
627 
628 	if (is_t4(adap)) {
629 		edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
630 		edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
631 		edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
632 		edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
633 						    idx);
634 		edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
635 						    idx);
636 	} else {
637 /*
638  * These macro are missing in t4_regs.h file.
639  * Added temporarily for testing.
640  */
641 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
642 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
643 		edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx);
644 		edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx);
645 		edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx);
646 		edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN,
647 						    idx);
648 		edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA,
649 						    idx);
650 #undef EDC_REG_T5
651 #undef EDC_STRIDE_T5
652 	}
653 
654 	if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
655 		return -EBUSY;
656 	t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
657 	t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
658 	t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
659 	t4_write_reg(adap, edc_bist_cmd_reg,
660 		     V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
661 	i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
662 	if (i)
663 		return i;
664 
665 #define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
666 
667 	for (i = 15; i >= 0; i--)
668 		*data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
669 	if (ecc)
670 		*ecc = t4_read_reg64(adap, EDC_DATA(16));
671 #undef EDC_DATA
672 	return 0;
673 }
674 
675 /**
676  *	t4_mem_read - read EDC 0, EDC 1 or MC into buffer
677  *	@adap: the adapter
678  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
679  *	@addr: address within indicated memory type
680  *	@len: amount of memory to read
681  *	@buf: host memory buffer
682  *
683  *	Reads an [almost] arbitrary memory region in the firmware: the
684  *	firmware memory address, length and host buffer must be aligned on
685  *	32-bit boudaries.  The memory is returned as a raw byte sequence from
686  *	the firmware's memory.  If this memory contains data structures which
687  *	contain multi-byte integers, it's the callers responsibility to
688  *	perform appropriate byte order conversions.
689  */
690 int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
691 		__be32 *buf)
692 {
693 	u32 pos, start, end, offset;
694 	int ret;
695 
696 	/*
697 	 * Argument sanity checks ...
698 	 */
699 	if ((addr & 0x3) || (len & 0x3))
700 		return -EINVAL;
701 
702 	/*
703 	 * The underlaying EDC/MC read routines read 64 bytes at a time so we
704 	 * need to round down the start and round up the end.  We'll start
705 	 * copying out of the first line at (addr - start) a word at a time.
706 	 */
707 	start = rounddown2(addr, 64);
708 	end = roundup2(addr + len, 64);
709 	offset = (addr - start)/sizeof(__be32);
710 
711 	for (pos = start; pos < end; pos += 64, offset = 0) {
712 		__be32 data[16];
713 
714 		/*
715 		 * Read the chip's memory block and bail if there's an error.
716 		 */
717 		if ((mtype == MEM_MC) || (mtype == MEM_MC1))
718 			ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
719 		else
720 			ret = t4_edc_read(adap, mtype, pos, data, NULL);
721 		if (ret)
722 			return ret;
723 
724 		/*
725 		 * Copy the data into the caller's memory buffer.
726 		 */
727 		while (offset < 16 && len > 0) {
728 			*buf++ = data[offset++];
729 			len -= sizeof(__be32);
730 		}
731 	}
732 
733 	return 0;
734 }
735 
736 /*
737  * Return the specified PCI-E Configuration Space register from our Physical
738  * Function.  We try first via a Firmware LDST Command (if fw_attach != 0)
739  * since we prefer to let the firmware own all of these registers, but if that
740  * fails we go for it directly ourselves.
741  */
742 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach)
743 {
744 
745 	/*
746 	 * If fw_attach != 0, construct and send the Firmware LDST Command to
747 	 * retrieve the specified PCI-E Configuration Space register.
748 	 */
749 	if (drv_fw_attach != 0) {
750 		struct fw_ldst_cmd ldst_cmd;
751 		int ret;
752 
753 		memset(&ldst_cmd, 0, sizeof(ldst_cmd));
754 		ldst_cmd.op_to_addrspace =
755 			cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
756 				    F_FW_CMD_REQUEST |
757 				    F_FW_CMD_READ |
758 				    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
759 		ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
760 		ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1);
761 		ldst_cmd.u.pcie.ctrl_to_fn =
762 			(F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf));
763 		ldst_cmd.u.pcie.r = reg;
764 
765 		/*
766 		 * If the LDST Command succeeds, return the result, otherwise
767 		 * fall through to reading it directly ourselves ...
768 		 */
769 		ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
770 				 &ldst_cmd);
771 		if (ret == 0)
772 			return be32_to_cpu(ldst_cmd.u.pcie.data[0]);
773 
774 		CH_WARN(adap, "Firmware failed to return "
775 			"Configuration Space register %d, err = %d\n",
776 			reg, -ret);
777 	}
778 
779 	/*
780 	 * Read the desired Configuration Space register via the PCI-E
781 	 * Backdoor mechanism.
782 	 */
783 	return t4_hw_pci_read_cfg4(adap, reg);
784 }
785 
786 /**
787  *	t4_get_regs_len - return the size of the chips register set
788  *	@adapter: the adapter
789  *
790  *	Returns the size of the chip's BAR0 register space.
791  */
792 unsigned int t4_get_regs_len(struct adapter *adapter)
793 {
794 	unsigned int chip_version = chip_id(adapter);
795 
796 	switch (chip_version) {
797 	case CHELSIO_T4:
798 		if (adapter->flags & IS_VF)
799 			return FW_T4VF_REGMAP_SIZE;
800 		return T4_REGMAP_SIZE;
801 
802 	case CHELSIO_T5:
803 	case CHELSIO_T6:
804 		if (adapter->flags & IS_VF)
805 			return FW_T4VF_REGMAP_SIZE;
806 		return T5_REGMAP_SIZE;
807 	}
808 
809 	CH_ERR(adapter,
810 		"Unsupported chip version %d\n", chip_version);
811 	return 0;
812 }
813 
814 /**
815  *	t4_get_regs - read chip registers into provided buffer
816  *	@adap: the adapter
817  *	@buf: register buffer
818  *	@buf_size: size (in bytes) of register buffer
819  *
820  *	If the provided register buffer isn't large enough for the chip's
821  *	full register range, the register dump will be truncated to the
822  *	register buffer's size.
823  */
824 void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size)
825 {
826 	static const unsigned int t4_reg_ranges[] = {
827 		0x1008, 0x1108,
828 		0x1180, 0x1184,
829 		0x1190, 0x1194,
830 		0x11a0, 0x11a4,
831 		0x11b0, 0x11b4,
832 		0x11fc, 0x123c,
833 		0x1300, 0x173c,
834 		0x1800, 0x18fc,
835 		0x3000, 0x30d8,
836 		0x30e0, 0x30e4,
837 		0x30ec, 0x5910,
838 		0x5920, 0x5924,
839 		0x5960, 0x5960,
840 		0x5968, 0x5968,
841 		0x5970, 0x5970,
842 		0x5978, 0x5978,
843 		0x5980, 0x5980,
844 		0x5988, 0x5988,
845 		0x5990, 0x5990,
846 		0x5998, 0x5998,
847 		0x59a0, 0x59d4,
848 		0x5a00, 0x5ae0,
849 		0x5ae8, 0x5ae8,
850 		0x5af0, 0x5af0,
851 		0x5af8, 0x5af8,
852 		0x6000, 0x6098,
853 		0x6100, 0x6150,
854 		0x6200, 0x6208,
855 		0x6240, 0x6248,
856 		0x6280, 0x62b0,
857 		0x62c0, 0x6338,
858 		0x6370, 0x638c,
859 		0x6400, 0x643c,
860 		0x6500, 0x6524,
861 		0x6a00, 0x6a04,
862 		0x6a14, 0x6a38,
863 		0x6a60, 0x6a70,
864 		0x6a78, 0x6a78,
865 		0x6b00, 0x6b0c,
866 		0x6b1c, 0x6b84,
867 		0x6bf0, 0x6bf8,
868 		0x6c00, 0x6c0c,
869 		0x6c1c, 0x6c84,
870 		0x6cf0, 0x6cf8,
871 		0x6d00, 0x6d0c,
872 		0x6d1c, 0x6d84,
873 		0x6df0, 0x6df8,
874 		0x6e00, 0x6e0c,
875 		0x6e1c, 0x6e84,
876 		0x6ef0, 0x6ef8,
877 		0x6f00, 0x6f0c,
878 		0x6f1c, 0x6f84,
879 		0x6ff0, 0x6ff8,
880 		0x7000, 0x700c,
881 		0x701c, 0x7084,
882 		0x70f0, 0x70f8,
883 		0x7100, 0x710c,
884 		0x711c, 0x7184,
885 		0x71f0, 0x71f8,
886 		0x7200, 0x720c,
887 		0x721c, 0x7284,
888 		0x72f0, 0x72f8,
889 		0x7300, 0x730c,
890 		0x731c, 0x7384,
891 		0x73f0, 0x73f8,
892 		0x7400, 0x7450,
893 		0x7500, 0x7530,
894 		0x7600, 0x760c,
895 		0x7614, 0x761c,
896 		0x7680, 0x76cc,
897 		0x7700, 0x7798,
898 		0x77c0, 0x77fc,
899 		0x7900, 0x79fc,
900 		0x7b00, 0x7b58,
901 		0x7b60, 0x7b84,
902 		0x7b8c, 0x7c38,
903 		0x7d00, 0x7d38,
904 		0x7d40, 0x7d80,
905 		0x7d8c, 0x7ddc,
906 		0x7de4, 0x7e04,
907 		0x7e10, 0x7e1c,
908 		0x7e24, 0x7e38,
909 		0x7e40, 0x7e44,
910 		0x7e4c, 0x7e78,
911 		0x7e80, 0x7ea4,
912 		0x7eac, 0x7edc,
913 		0x7ee8, 0x7efc,
914 		0x8dc0, 0x8e04,
915 		0x8e10, 0x8e1c,
916 		0x8e30, 0x8e78,
917 		0x8ea0, 0x8eb8,
918 		0x8ec0, 0x8f6c,
919 		0x8fc0, 0x9008,
920 		0x9010, 0x9058,
921 		0x9060, 0x9060,
922 		0x9068, 0x9074,
923 		0x90fc, 0x90fc,
924 		0x9400, 0x9408,
925 		0x9410, 0x9458,
926 		0x9600, 0x9600,
927 		0x9608, 0x9638,
928 		0x9640, 0x96bc,
929 		0x9800, 0x9808,
930 		0x9820, 0x983c,
931 		0x9850, 0x9864,
932 		0x9c00, 0x9c6c,
933 		0x9c80, 0x9cec,
934 		0x9d00, 0x9d6c,
935 		0x9d80, 0x9dec,
936 		0x9e00, 0x9e6c,
937 		0x9e80, 0x9eec,
938 		0x9f00, 0x9f6c,
939 		0x9f80, 0x9fec,
940 		0xd004, 0xd004,
941 		0xd010, 0xd03c,
942 		0xdfc0, 0xdfe0,
943 		0xe000, 0xea7c,
944 		0xf000, 0x11110,
945 		0x11118, 0x11190,
946 		0x19040, 0x1906c,
947 		0x19078, 0x19080,
948 		0x1908c, 0x190e4,
949 		0x190f0, 0x190f8,
950 		0x19100, 0x19110,
951 		0x19120, 0x19124,
952 		0x19150, 0x19194,
953 		0x1919c, 0x191b0,
954 		0x191d0, 0x191e8,
955 		0x19238, 0x1924c,
956 		0x193f8, 0x1943c,
957 		0x1944c, 0x19474,
958 		0x19490, 0x194e0,
959 		0x194f0, 0x194f8,
960 		0x19800, 0x19c08,
961 		0x19c10, 0x19c90,
962 		0x19ca0, 0x19ce4,
963 		0x19cf0, 0x19d40,
964 		0x19d50, 0x19d94,
965 		0x19da0, 0x19de8,
966 		0x19df0, 0x19e40,
967 		0x19e50, 0x19e90,
968 		0x19ea0, 0x19f4c,
969 		0x1a000, 0x1a004,
970 		0x1a010, 0x1a06c,
971 		0x1a0b0, 0x1a0e4,
972 		0x1a0ec, 0x1a0f4,
973 		0x1a100, 0x1a108,
974 		0x1a114, 0x1a120,
975 		0x1a128, 0x1a130,
976 		0x1a138, 0x1a138,
977 		0x1a190, 0x1a1c4,
978 		0x1a1fc, 0x1a1fc,
979 		0x1e040, 0x1e04c,
980 		0x1e284, 0x1e28c,
981 		0x1e2c0, 0x1e2c0,
982 		0x1e2e0, 0x1e2e0,
983 		0x1e300, 0x1e384,
984 		0x1e3c0, 0x1e3c8,
985 		0x1e440, 0x1e44c,
986 		0x1e684, 0x1e68c,
987 		0x1e6c0, 0x1e6c0,
988 		0x1e6e0, 0x1e6e0,
989 		0x1e700, 0x1e784,
990 		0x1e7c0, 0x1e7c8,
991 		0x1e840, 0x1e84c,
992 		0x1ea84, 0x1ea8c,
993 		0x1eac0, 0x1eac0,
994 		0x1eae0, 0x1eae0,
995 		0x1eb00, 0x1eb84,
996 		0x1ebc0, 0x1ebc8,
997 		0x1ec40, 0x1ec4c,
998 		0x1ee84, 0x1ee8c,
999 		0x1eec0, 0x1eec0,
1000 		0x1eee0, 0x1eee0,
1001 		0x1ef00, 0x1ef84,
1002 		0x1efc0, 0x1efc8,
1003 		0x1f040, 0x1f04c,
1004 		0x1f284, 0x1f28c,
1005 		0x1f2c0, 0x1f2c0,
1006 		0x1f2e0, 0x1f2e0,
1007 		0x1f300, 0x1f384,
1008 		0x1f3c0, 0x1f3c8,
1009 		0x1f440, 0x1f44c,
1010 		0x1f684, 0x1f68c,
1011 		0x1f6c0, 0x1f6c0,
1012 		0x1f6e0, 0x1f6e0,
1013 		0x1f700, 0x1f784,
1014 		0x1f7c0, 0x1f7c8,
1015 		0x1f840, 0x1f84c,
1016 		0x1fa84, 0x1fa8c,
1017 		0x1fac0, 0x1fac0,
1018 		0x1fae0, 0x1fae0,
1019 		0x1fb00, 0x1fb84,
1020 		0x1fbc0, 0x1fbc8,
1021 		0x1fc40, 0x1fc4c,
1022 		0x1fe84, 0x1fe8c,
1023 		0x1fec0, 0x1fec0,
1024 		0x1fee0, 0x1fee0,
1025 		0x1ff00, 0x1ff84,
1026 		0x1ffc0, 0x1ffc8,
1027 		0x20000, 0x2002c,
1028 		0x20100, 0x2013c,
1029 		0x20190, 0x201a0,
1030 		0x201a8, 0x201b8,
1031 		0x201c4, 0x201c8,
1032 		0x20200, 0x20318,
1033 		0x20400, 0x204b4,
1034 		0x204c0, 0x20528,
1035 		0x20540, 0x20614,
1036 		0x21000, 0x21040,
1037 		0x2104c, 0x21060,
1038 		0x210c0, 0x210ec,
1039 		0x21200, 0x21268,
1040 		0x21270, 0x21284,
1041 		0x212fc, 0x21388,
1042 		0x21400, 0x21404,
1043 		0x21500, 0x21500,
1044 		0x21510, 0x21518,
1045 		0x2152c, 0x21530,
1046 		0x2153c, 0x2153c,
1047 		0x21550, 0x21554,
1048 		0x21600, 0x21600,
1049 		0x21608, 0x2161c,
1050 		0x21624, 0x21628,
1051 		0x21630, 0x21634,
1052 		0x2163c, 0x2163c,
1053 		0x21700, 0x2171c,
1054 		0x21780, 0x2178c,
1055 		0x21800, 0x21818,
1056 		0x21820, 0x21828,
1057 		0x21830, 0x21848,
1058 		0x21850, 0x21854,
1059 		0x21860, 0x21868,
1060 		0x21870, 0x21870,
1061 		0x21878, 0x21898,
1062 		0x218a0, 0x218a8,
1063 		0x218b0, 0x218c8,
1064 		0x218d0, 0x218d4,
1065 		0x218e0, 0x218e8,
1066 		0x218f0, 0x218f0,
1067 		0x218f8, 0x21a18,
1068 		0x21a20, 0x21a28,
1069 		0x21a30, 0x21a48,
1070 		0x21a50, 0x21a54,
1071 		0x21a60, 0x21a68,
1072 		0x21a70, 0x21a70,
1073 		0x21a78, 0x21a98,
1074 		0x21aa0, 0x21aa8,
1075 		0x21ab0, 0x21ac8,
1076 		0x21ad0, 0x21ad4,
1077 		0x21ae0, 0x21ae8,
1078 		0x21af0, 0x21af0,
1079 		0x21af8, 0x21c18,
1080 		0x21c20, 0x21c20,
1081 		0x21c28, 0x21c30,
1082 		0x21c38, 0x21c38,
1083 		0x21c80, 0x21c98,
1084 		0x21ca0, 0x21ca8,
1085 		0x21cb0, 0x21cc8,
1086 		0x21cd0, 0x21cd4,
1087 		0x21ce0, 0x21ce8,
1088 		0x21cf0, 0x21cf0,
1089 		0x21cf8, 0x21d7c,
1090 		0x21e00, 0x21e04,
1091 		0x22000, 0x2202c,
1092 		0x22100, 0x2213c,
1093 		0x22190, 0x221a0,
1094 		0x221a8, 0x221b8,
1095 		0x221c4, 0x221c8,
1096 		0x22200, 0x22318,
1097 		0x22400, 0x224b4,
1098 		0x224c0, 0x22528,
1099 		0x22540, 0x22614,
1100 		0x23000, 0x23040,
1101 		0x2304c, 0x23060,
1102 		0x230c0, 0x230ec,
1103 		0x23200, 0x23268,
1104 		0x23270, 0x23284,
1105 		0x232fc, 0x23388,
1106 		0x23400, 0x23404,
1107 		0x23500, 0x23500,
1108 		0x23510, 0x23518,
1109 		0x2352c, 0x23530,
1110 		0x2353c, 0x2353c,
1111 		0x23550, 0x23554,
1112 		0x23600, 0x23600,
1113 		0x23608, 0x2361c,
1114 		0x23624, 0x23628,
1115 		0x23630, 0x23634,
1116 		0x2363c, 0x2363c,
1117 		0x23700, 0x2371c,
1118 		0x23780, 0x2378c,
1119 		0x23800, 0x23818,
1120 		0x23820, 0x23828,
1121 		0x23830, 0x23848,
1122 		0x23850, 0x23854,
1123 		0x23860, 0x23868,
1124 		0x23870, 0x23870,
1125 		0x23878, 0x23898,
1126 		0x238a0, 0x238a8,
1127 		0x238b0, 0x238c8,
1128 		0x238d0, 0x238d4,
1129 		0x238e0, 0x238e8,
1130 		0x238f0, 0x238f0,
1131 		0x238f8, 0x23a18,
1132 		0x23a20, 0x23a28,
1133 		0x23a30, 0x23a48,
1134 		0x23a50, 0x23a54,
1135 		0x23a60, 0x23a68,
1136 		0x23a70, 0x23a70,
1137 		0x23a78, 0x23a98,
1138 		0x23aa0, 0x23aa8,
1139 		0x23ab0, 0x23ac8,
1140 		0x23ad0, 0x23ad4,
1141 		0x23ae0, 0x23ae8,
1142 		0x23af0, 0x23af0,
1143 		0x23af8, 0x23c18,
1144 		0x23c20, 0x23c20,
1145 		0x23c28, 0x23c30,
1146 		0x23c38, 0x23c38,
1147 		0x23c80, 0x23c98,
1148 		0x23ca0, 0x23ca8,
1149 		0x23cb0, 0x23cc8,
1150 		0x23cd0, 0x23cd4,
1151 		0x23ce0, 0x23ce8,
1152 		0x23cf0, 0x23cf0,
1153 		0x23cf8, 0x23d7c,
1154 		0x23e00, 0x23e04,
1155 		0x24000, 0x2402c,
1156 		0x24100, 0x2413c,
1157 		0x24190, 0x241a0,
1158 		0x241a8, 0x241b8,
1159 		0x241c4, 0x241c8,
1160 		0x24200, 0x24318,
1161 		0x24400, 0x244b4,
1162 		0x244c0, 0x24528,
1163 		0x24540, 0x24614,
1164 		0x25000, 0x25040,
1165 		0x2504c, 0x25060,
1166 		0x250c0, 0x250ec,
1167 		0x25200, 0x25268,
1168 		0x25270, 0x25284,
1169 		0x252fc, 0x25388,
1170 		0x25400, 0x25404,
1171 		0x25500, 0x25500,
1172 		0x25510, 0x25518,
1173 		0x2552c, 0x25530,
1174 		0x2553c, 0x2553c,
1175 		0x25550, 0x25554,
1176 		0x25600, 0x25600,
1177 		0x25608, 0x2561c,
1178 		0x25624, 0x25628,
1179 		0x25630, 0x25634,
1180 		0x2563c, 0x2563c,
1181 		0x25700, 0x2571c,
1182 		0x25780, 0x2578c,
1183 		0x25800, 0x25818,
1184 		0x25820, 0x25828,
1185 		0x25830, 0x25848,
1186 		0x25850, 0x25854,
1187 		0x25860, 0x25868,
1188 		0x25870, 0x25870,
1189 		0x25878, 0x25898,
1190 		0x258a0, 0x258a8,
1191 		0x258b0, 0x258c8,
1192 		0x258d0, 0x258d4,
1193 		0x258e0, 0x258e8,
1194 		0x258f0, 0x258f0,
1195 		0x258f8, 0x25a18,
1196 		0x25a20, 0x25a28,
1197 		0x25a30, 0x25a48,
1198 		0x25a50, 0x25a54,
1199 		0x25a60, 0x25a68,
1200 		0x25a70, 0x25a70,
1201 		0x25a78, 0x25a98,
1202 		0x25aa0, 0x25aa8,
1203 		0x25ab0, 0x25ac8,
1204 		0x25ad0, 0x25ad4,
1205 		0x25ae0, 0x25ae8,
1206 		0x25af0, 0x25af0,
1207 		0x25af8, 0x25c18,
1208 		0x25c20, 0x25c20,
1209 		0x25c28, 0x25c30,
1210 		0x25c38, 0x25c38,
1211 		0x25c80, 0x25c98,
1212 		0x25ca0, 0x25ca8,
1213 		0x25cb0, 0x25cc8,
1214 		0x25cd0, 0x25cd4,
1215 		0x25ce0, 0x25ce8,
1216 		0x25cf0, 0x25cf0,
1217 		0x25cf8, 0x25d7c,
1218 		0x25e00, 0x25e04,
1219 		0x26000, 0x2602c,
1220 		0x26100, 0x2613c,
1221 		0x26190, 0x261a0,
1222 		0x261a8, 0x261b8,
1223 		0x261c4, 0x261c8,
1224 		0x26200, 0x26318,
1225 		0x26400, 0x264b4,
1226 		0x264c0, 0x26528,
1227 		0x26540, 0x26614,
1228 		0x27000, 0x27040,
1229 		0x2704c, 0x27060,
1230 		0x270c0, 0x270ec,
1231 		0x27200, 0x27268,
1232 		0x27270, 0x27284,
1233 		0x272fc, 0x27388,
1234 		0x27400, 0x27404,
1235 		0x27500, 0x27500,
1236 		0x27510, 0x27518,
1237 		0x2752c, 0x27530,
1238 		0x2753c, 0x2753c,
1239 		0x27550, 0x27554,
1240 		0x27600, 0x27600,
1241 		0x27608, 0x2761c,
1242 		0x27624, 0x27628,
1243 		0x27630, 0x27634,
1244 		0x2763c, 0x2763c,
1245 		0x27700, 0x2771c,
1246 		0x27780, 0x2778c,
1247 		0x27800, 0x27818,
1248 		0x27820, 0x27828,
1249 		0x27830, 0x27848,
1250 		0x27850, 0x27854,
1251 		0x27860, 0x27868,
1252 		0x27870, 0x27870,
1253 		0x27878, 0x27898,
1254 		0x278a0, 0x278a8,
1255 		0x278b0, 0x278c8,
1256 		0x278d0, 0x278d4,
1257 		0x278e0, 0x278e8,
1258 		0x278f0, 0x278f0,
1259 		0x278f8, 0x27a18,
1260 		0x27a20, 0x27a28,
1261 		0x27a30, 0x27a48,
1262 		0x27a50, 0x27a54,
1263 		0x27a60, 0x27a68,
1264 		0x27a70, 0x27a70,
1265 		0x27a78, 0x27a98,
1266 		0x27aa0, 0x27aa8,
1267 		0x27ab0, 0x27ac8,
1268 		0x27ad0, 0x27ad4,
1269 		0x27ae0, 0x27ae8,
1270 		0x27af0, 0x27af0,
1271 		0x27af8, 0x27c18,
1272 		0x27c20, 0x27c20,
1273 		0x27c28, 0x27c30,
1274 		0x27c38, 0x27c38,
1275 		0x27c80, 0x27c98,
1276 		0x27ca0, 0x27ca8,
1277 		0x27cb0, 0x27cc8,
1278 		0x27cd0, 0x27cd4,
1279 		0x27ce0, 0x27ce8,
1280 		0x27cf0, 0x27cf0,
1281 		0x27cf8, 0x27d7c,
1282 		0x27e00, 0x27e04,
1283 	};
1284 
1285 	static const unsigned int t4vf_reg_ranges[] = {
1286 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
1287 		VF_MPS_REG(A_MPS_VF_CTL),
1288 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
1289 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI),
1290 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
1291 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
1292 		FW_T4VF_MBDATA_BASE_ADDR,
1293 		FW_T4VF_MBDATA_BASE_ADDR +
1294 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
1295 	};
1296 
1297 	static const unsigned int t5_reg_ranges[] = {
1298 		0x1008, 0x10c0,
1299 		0x10cc, 0x10f8,
1300 		0x1100, 0x1100,
1301 		0x110c, 0x1148,
1302 		0x1180, 0x1184,
1303 		0x1190, 0x1194,
1304 		0x11a0, 0x11a4,
1305 		0x11b0, 0x11b4,
1306 		0x11fc, 0x123c,
1307 		0x1280, 0x173c,
1308 		0x1800, 0x18fc,
1309 		0x3000, 0x3028,
1310 		0x3060, 0x30b0,
1311 		0x30b8, 0x30d8,
1312 		0x30e0, 0x30fc,
1313 		0x3140, 0x357c,
1314 		0x35a8, 0x35cc,
1315 		0x35ec, 0x35ec,
1316 		0x3600, 0x5624,
1317 		0x56cc, 0x56ec,
1318 		0x56f4, 0x5720,
1319 		0x5728, 0x575c,
1320 		0x580c, 0x5814,
1321 		0x5890, 0x589c,
1322 		0x58a4, 0x58ac,
1323 		0x58b8, 0x58bc,
1324 		0x5940, 0x59c8,
1325 		0x59d0, 0x59dc,
1326 		0x59fc, 0x5a18,
1327 		0x5a60, 0x5a70,
1328 		0x5a80, 0x5a9c,
1329 		0x5b94, 0x5bfc,
1330 		0x6000, 0x6020,
1331 		0x6028, 0x6040,
1332 		0x6058, 0x609c,
1333 		0x60a8, 0x614c,
1334 		0x7700, 0x7798,
1335 		0x77c0, 0x78fc,
1336 		0x7b00, 0x7b58,
1337 		0x7b60, 0x7b84,
1338 		0x7b8c, 0x7c54,
1339 		0x7d00, 0x7d38,
1340 		0x7d40, 0x7d80,
1341 		0x7d8c, 0x7ddc,
1342 		0x7de4, 0x7e04,
1343 		0x7e10, 0x7e1c,
1344 		0x7e24, 0x7e38,
1345 		0x7e40, 0x7e44,
1346 		0x7e4c, 0x7e78,
1347 		0x7e80, 0x7edc,
1348 		0x7ee8, 0x7efc,
1349 		0x8dc0, 0x8de0,
1350 		0x8df8, 0x8e04,
1351 		0x8e10, 0x8e84,
1352 		0x8ea0, 0x8f84,
1353 		0x8fc0, 0x9058,
1354 		0x9060, 0x9060,
1355 		0x9068, 0x90f8,
1356 		0x9400, 0x9408,
1357 		0x9410, 0x9470,
1358 		0x9600, 0x9600,
1359 		0x9608, 0x9638,
1360 		0x9640, 0x96f4,
1361 		0x9800, 0x9808,
1362 		0x9810, 0x9864,
1363 		0x9c00, 0x9c6c,
1364 		0x9c80, 0x9cec,
1365 		0x9d00, 0x9d6c,
1366 		0x9d80, 0x9dec,
1367 		0x9e00, 0x9e6c,
1368 		0x9e80, 0x9eec,
1369 		0x9f00, 0x9f6c,
1370 		0x9f80, 0xa020,
1371 		0xd000, 0xd004,
1372 		0xd010, 0xd03c,
1373 		0xdfc0, 0xdfe0,
1374 		0xe000, 0x1106c,
1375 		0x11074, 0x11088,
1376 		0x1109c, 0x11110,
1377 		0x11118, 0x1117c,
1378 		0x11190, 0x11204,
1379 		0x19040, 0x1906c,
1380 		0x19078, 0x19080,
1381 		0x1908c, 0x190e8,
1382 		0x190f0, 0x190f8,
1383 		0x19100, 0x19110,
1384 		0x19120, 0x19124,
1385 		0x19150, 0x19194,
1386 		0x1919c, 0x191b0,
1387 		0x191d0, 0x191e8,
1388 		0x19238, 0x19290,
1389 		0x193f8, 0x19428,
1390 		0x19430, 0x19444,
1391 		0x1944c, 0x1946c,
1392 		0x19474, 0x19474,
1393 		0x19490, 0x194cc,
1394 		0x194f0, 0x194f8,
1395 		0x19c00, 0x19c08,
1396 		0x19c10, 0x19c60,
1397 		0x19c94, 0x19ce4,
1398 		0x19cf0, 0x19d40,
1399 		0x19d50, 0x19d94,
1400 		0x19da0, 0x19de8,
1401 		0x19df0, 0x19e10,
1402 		0x19e50, 0x19e90,
1403 		0x19ea0, 0x19f24,
1404 		0x19f34, 0x19f34,
1405 		0x19f40, 0x19f50,
1406 		0x19f90, 0x19fb4,
1407 		0x19fc4, 0x19fe4,
1408 		0x1a000, 0x1a004,
1409 		0x1a010, 0x1a06c,
1410 		0x1a0b0, 0x1a0e4,
1411 		0x1a0ec, 0x1a0f8,
1412 		0x1a100, 0x1a108,
1413 		0x1a114, 0x1a130,
1414 		0x1a138, 0x1a1c4,
1415 		0x1a1fc, 0x1a1fc,
1416 		0x1e008, 0x1e00c,
1417 		0x1e040, 0x1e044,
1418 		0x1e04c, 0x1e04c,
1419 		0x1e284, 0x1e290,
1420 		0x1e2c0, 0x1e2c0,
1421 		0x1e2e0, 0x1e2e0,
1422 		0x1e300, 0x1e384,
1423 		0x1e3c0, 0x1e3c8,
1424 		0x1e408, 0x1e40c,
1425 		0x1e440, 0x1e444,
1426 		0x1e44c, 0x1e44c,
1427 		0x1e684, 0x1e690,
1428 		0x1e6c0, 0x1e6c0,
1429 		0x1e6e0, 0x1e6e0,
1430 		0x1e700, 0x1e784,
1431 		0x1e7c0, 0x1e7c8,
1432 		0x1e808, 0x1e80c,
1433 		0x1e840, 0x1e844,
1434 		0x1e84c, 0x1e84c,
1435 		0x1ea84, 0x1ea90,
1436 		0x1eac0, 0x1eac0,
1437 		0x1eae0, 0x1eae0,
1438 		0x1eb00, 0x1eb84,
1439 		0x1ebc0, 0x1ebc8,
1440 		0x1ec08, 0x1ec0c,
1441 		0x1ec40, 0x1ec44,
1442 		0x1ec4c, 0x1ec4c,
1443 		0x1ee84, 0x1ee90,
1444 		0x1eec0, 0x1eec0,
1445 		0x1eee0, 0x1eee0,
1446 		0x1ef00, 0x1ef84,
1447 		0x1efc0, 0x1efc8,
1448 		0x1f008, 0x1f00c,
1449 		0x1f040, 0x1f044,
1450 		0x1f04c, 0x1f04c,
1451 		0x1f284, 0x1f290,
1452 		0x1f2c0, 0x1f2c0,
1453 		0x1f2e0, 0x1f2e0,
1454 		0x1f300, 0x1f384,
1455 		0x1f3c0, 0x1f3c8,
1456 		0x1f408, 0x1f40c,
1457 		0x1f440, 0x1f444,
1458 		0x1f44c, 0x1f44c,
1459 		0x1f684, 0x1f690,
1460 		0x1f6c0, 0x1f6c0,
1461 		0x1f6e0, 0x1f6e0,
1462 		0x1f700, 0x1f784,
1463 		0x1f7c0, 0x1f7c8,
1464 		0x1f808, 0x1f80c,
1465 		0x1f840, 0x1f844,
1466 		0x1f84c, 0x1f84c,
1467 		0x1fa84, 0x1fa90,
1468 		0x1fac0, 0x1fac0,
1469 		0x1fae0, 0x1fae0,
1470 		0x1fb00, 0x1fb84,
1471 		0x1fbc0, 0x1fbc8,
1472 		0x1fc08, 0x1fc0c,
1473 		0x1fc40, 0x1fc44,
1474 		0x1fc4c, 0x1fc4c,
1475 		0x1fe84, 0x1fe90,
1476 		0x1fec0, 0x1fec0,
1477 		0x1fee0, 0x1fee0,
1478 		0x1ff00, 0x1ff84,
1479 		0x1ffc0, 0x1ffc8,
1480 		0x30000, 0x30030,
1481 		0x30100, 0x30144,
1482 		0x30190, 0x301a0,
1483 		0x301a8, 0x301b8,
1484 		0x301c4, 0x301c8,
1485 		0x301d0, 0x301d0,
1486 		0x30200, 0x30318,
1487 		0x30400, 0x304b4,
1488 		0x304c0, 0x3052c,
1489 		0x30540, 0x3061c,
1490 		0x30800, 0x30828,
1491 		0x30834, 0x30834,
1492 		0x308c0, 0x30908,
1493 		0x30910, 0x309ac,
1494 		0x30a00, 0x30a14,
1495 		0x30a1c, 0x30a2c,
1496 		0x30a44, 0x30a50,
1497 		0x30a74, 0x30a74,
1498 		0x30a7c, 0x30afc,
1499 		0x30b08, 0x30c24,
1500 		0x30d00, 0x30d00,
1501 		0x30d08, 0x30d14,
1502 		0x30d1c, 0x30d20,
1503 		0x30d3c, 0x30d3c,
1504 		0x30d48, 0x30d50,
1505 		0x31200, 0x3120c,
1506 		0x31220, 0x31220,
1507 		0x31240, 0x31240,
1508 		0x31600, 0x3160c,
1509 		0x31a00, 0x31a1c,
1510 		0x31e00, 0x31e20,
1511 		0x31e38, 0x31e3c,
1512 		0x31e80, 0x31e80,
1513 		0x31e88, 0x31ea8,
1514 		0x31eb0, 0x31eb4,
1515 		0x31ec8, 0x31ed4,
1516 		0x31fb8, 0x32004,
1517 		0x32200, 0x32200,
1518 		0x32208, 0x32240,
1519 		0x32248, 0x32280,
1520 		0x32288, 0x322c0,
1521 		0x322c8, 0x322fc,
1522 		0x32600, 0x32630,
1523 		0x32a00, 0x32abc,
1524 		0x32b00, 0x32b10,
1525 		0x32b20, 0x32b30,
1526 		0x32b40, 0x32b50,
1527 		0x32b60, 0x32b70,
1528 		0x33000, 0x33028,
1529 		0x33030, 0x33048,
1530 		0x33060, 0x33068,
1531 		0x33070, 0x3309c,
1532 		0x330f0, 0x33128,
1533 		0x33130, 0x33148,
1534 		0x33160, 0x33168,
1535 		0x33170, 0x3319c,
1536 		0x331f0, 0x33238,
1537 		0x33240, 0x33240,
1538 		0x33248, 0x33250,
1539 		0x3325c, 0x33264,
1540 		0x33270, 0x332b8,
1541 		0x332c0, 0x332e4,
1542 		0x332f8, 0x33338,
1543 		0x33340, 0x33340,
1544 		0x33348, 0x33350,
1545 		0x3335c, 0x33364,
1546 		0x33370, 0x333b8,
1547 		0x333c0, 0x333e4,
1548 		0x333f8, 0x33428,
1549 		0x33430, 0x33448,
1550 		0x33460, 0x33468,
1551 		0x33470, 0x3349c,
1552 		0x334f0, 0x33528,
1553 		0x33530, 0x33548,
1554 		0x33560, 0x33568,
1555 		0x33570, 0x3359c,
1556 		0x335f0, 0x33638,
1557 		0x33640, 0x33640,
1558 		0x33648, 0x33650,
1559 		0x3365c, 0x33664,
1560 		0x33670, 0x336b8,
1561 		0x336c0, 0x336e4,
1562 		0x336f8, 0x33738,
1563 		0x33740, 0x33740,
1564 		0x33748, 0x33750,
1565 		0x3375c, 0x33764,
1566 		0x33770, 0x337b8,
1567 		0x337c0, 0x337e4,
1568 		0x337f8, 0x337fc,
1569 		0x33814, 0x33814,
1570 		0x3382c, 0x3382c,
1571 		0x33880, 0x3388c,
1572 		0x338e8, 0x338ec,
1573 		0x33900, 0x33928,
1574 		0x33930, 0x33948,
1575 		0x33960, 0x33968,
1576 		0x33970, 0x3399c,
1577 		0x339f0, 0x33a38,
1578 		0x33a40, 0x33a40,
1579 		0x33a48, 0x33a50,
1580 		0x33a5c, 0x33a64,
1581 		0x33a70, 0x33ab8,
1582 		0x33ac0, 0x33ae4,
1583 		0x33af8, 0x33b10,
1584 		0x33b28, 0x33b28,
1585 		0x33b3c, 0x33b50,
1586 		0x33bf0, 0x33c10,
1587 		0x33c28, 0x33c28,
1588 		0x33c3c, 0x33c50,
1589 		0x33cf0, 0x33cfc,
1590 		0x34000, 0x34030,
1591 		0x34100, 0x34144,
1592 		0x34190, 0x341a0,
1593 		0x341a8, 0x341b8,
1594 		0x341c4, 0x341c8,
1595 		0x341d0, 0x341d0,
1596 		0x34200, 0x34318,
1597 		0x34400, 0x344b4,
1598 		0x344c0, 0x3452c,
1599 		0x34540, 0x3461c,
1600 		0x34800, 0x34828,
1601 		0x34834, 0x34834,
1602 		0x348c0, 0x34908,
1603 		0x34910, 0x349ac,
1604 		0x34a00, 0x34a14,
1605 		0x34a1c, 0x34a2c,
1606 		0x34a44, 0x34a50,
1607 		0x34a74, 0x34a74,
1608 		0x34a7c, 0x34afc,
1609 		0x34b08, 0x34c24,
1610 		0x34d00, 0x34d00,
1611 		0x34d08, 0x34d14,
1612 		0x34d1c, 0x34d20,
1613 		0x34d3c, 0x34d3c,
1614 		0x34d48, 0x34d50,
1615 		0x35200, 0x3520c,
1616 		0x35220, 0x35220,
1617 		0x35240, 0x35240,
1618 		0x35600, 0x3560c,
1619 		0x35a00, 0x35a1c,
1620 		0x35e00, 0x35e20,
1621 		0x35e38, 0x35e3c,
1622 		0x35e80, 0x35e80,
1623 		0x35e88, 0x35ea8,
1624 		0x35eb0, 0x35eb4,
1625 		0x35ec8, 0x35ed4,
1626 		0x35fb8, 0x36004,
1627 		0x36200, 0x36200,
1628 		0x36208, 0x36240,
1629 		0x36248, 0x36280,
1630 		0x36288, 0x362c0,
1631 		0x362c8, 0x362fc,
1632 		0x36600, 0x36630,
1633 		0x36a00, 0x36abc,
1634 		0x36b00, 0x36b10,
1635 		0x36b20, 0x36b30,
1636 		0x36b40, 0x36b50,
1637 		0x36b60, 0x36b70,
1638 		0x37000, 0x37028,
1639 		0x37030, 0x37048,
1640 		0x37060, 0x37068,
1641 		0x37070, 0x3709c,
1642 		0x370f0, 0x37128,
1643 		0x37130, 0x37148,
1644 		0x37160, 0x37168,
1645 		0x37170, 0x3719c,
1646 		0x371f0, 0x37238,
1647 		0x37240, 0x37240,
1648 		0x37248, 0x37250,
1649 		0x3725c, 0x37264,
1650 		0x37270, 0x372b8,
1651 		0x372c0, 0x372e4,
1652 		0x372f8, 0x37338,
1653 		0x37340, 0x37340,
1654 		0x37348, 0x37350,
1655 		0x3735c, 0x37364,
1656 		0x37370, 0x373b8,
1657 		0x373c0, 0x373e4,
1658 		0x373f8, 0x37428,
1659 		0x37430, 0x37448,
1660 		0x37460, 0x37468,
1661 		0x37470, 0x3749c,
1662 		0x374f0, 0x37528,
1663 		0x37530, 0x37548,
1664 		0x37560, 0x37568,
1665 		0x37570, 0x3759c,
1666 		0x375f0, 0x37638,
1667 		0x37640, 0x37640,
1668 		0x37648, 0x37650,
1669 		0x3765c, 0x37664,
1670 		0x37670, 0x376b8,
1671 		0x376c0, 0x376e4,
1672 		0x376f8, 0x37738,
1673 		0x37740, 0x37740,
1674 		0x37748, 0x37750,
1675 		0x3775c, 0x37764,
1676 		0x37770, 0x377b8,
1677 		0x377c0, 0x377e4,
1678 		0x377f8, 0x377fc,
1679 		0x37814, 0x37814,
1680 		0x3782c, 0x3782c,
1681 		0x37880, 0x3788c,
1682 		0x378e8, 0x378ec,
1683 		0x37900, 0x37928,
1684 		0x37930, 0x37948,
1685 		0x37960, 0x37968,
1686 		0x37970, 0x3799c,
1687 		0x379f0, 0x37a38,
1688 		0x37a40, 0x37a40,
1689 		0x37a48, 0x37a50,
1690 		0x37a5c, 0x37a64,
1691 		0x37a70, 0x37ab8,
1692 		0x37ac0, 0x37ae4,
1693 		0x37af8, 0x37b10,
1694 		0x37b28, 0x37b28,
1695 		0x37b3c, 0x37b50,
1696 		0x37bf0, 0x37c10,
1697 		0x37c28, 0x37c28,
1698 		0x37c3c, 0x37c50,
1699 		0x37cf0, 0x37cfc,
1700 		0x38000, 0x38030,
1701 		0x38100, 0x38144,
1702 		0x38190, 0x381a0,
1703 		0x381a8, 0x381b8,
1704 		0x381c4, 0x381c8,
1705 		0x381d0, 0x381d0,
1706 		0x38200, 0x38318,
1707 		0x38400, 0x384b4,
1708 		0x384c0, 0x3852c,
1709 		0x38540, 0x3861c,
1710 		0x38800, 0x38828,
1711 		0x38834, 0x38834,
1712 		0x388c0, 0x38908,
1713 		0x38910, 0x389ac,
1714 		0x38a00, 0x38a14,
1715 		0x38a1c, 0x38a2c,
1716 		0x38a44, 0x38a50,
1717 		0x38a74, 0x38a74,
1718 		0x38a7c, 0x38afc,
1719 		0x38b08, 0x38c24,
1720 		0x38d00, 0x38d00,
1721 		0x38d08, 0x38d14,
1722 		0x38d1c, 0x38d20,
1723 		0x38d3c, 0x38d3c,
1724 		0x38d48, 0x38d50,
1725 		0x39200, 0x3920c,
1726 		0x39220, 0x39220,
1727 		0x39240, 0x39240,
1728 		0x39600, 0x3960c,
1729 		0x39a00, 0x39a1c,
1730 		0x39e00, 0x39e20,
1731 		0x39e38, 0x39e3c,
1732 		0x39e80, 0x39e80,
1733 		0x39e88, 0x39ea8,
1734 		0x39eb0, 0x39eb4,
1735 		0x39ec8, 0x39ed4,
1736 		0x39fb8, 0x3a004,
1737 		0x3a200, 0x3a200,
1738 		0x3a208, 0x3a240,
1739 		0x3a248, 0x3a280,
1740 		0x3a288, 0x3a2c0,
1741 		0x3a2c8, 0x3a2fc,
1742 		0x3a600, 0x3a630,
1743 		0x3aa00, 0x3aabc,
1744 		0x3ab00, 0x3ab10,
1745 		0x3ab20, 0x3ab30,
1746 		0x3ab40, 0x3ab50,
1747 		0x3ab60, 0x3ab70,
1748 		0x3b000, 0x3b028,
1749 		0x3b030, 0x3b048,
1750 		0x3b060, 0x3b068,
1751 		0x3b070, 0x3b09c,
1752 		0x3b0f0, 0x3b128,
1753 		0x3b130, 0x3b148,
1754 		0x3b160, 0x3b168,
1755 		0x3b170, 0x3b19c,
1756 		0x3b1f0, 0x3b238,
1757 		0x3b240, 0x3b240,
1758 		0x3b248, 0x3b250,
1759 		0x3b25c, 0x3b264,
1760 		0x3b270, 0x3b2b8,
1761 		0x3b2c0, 0x3b2e4,
1762 		0x3b2f8, 0x3b338,
1763 		0x3b340, 0x3b340,
1764 		0x3b348, 0x3b350,
1765 		0x3b35c, 0x3b364,
1766 		0x3b370, 0x3b3b8,
1767 		0x3b3c0, 0x3b3e4,
1768 		0x3b3f8, 0x3b428,
1769 		0x3b430, 0x3b448,
1770 		0x3b460, 0x3b468,
1771 		0x3b470, 0x3b49c,
1772 		0x3b4f0, 0x3b528,
1773 		0x3b530, 0x3b548,
1774 		0x3b560, 0x3b568,
1775 		0x3b570, 0x3b59c,
1776 		0x3b5f0, 0x3b638,
1777 		0x3b640, 0x3b640,
1778 		0x3b648, 0x3b650,
1779 		0x3b65c, 0x3b664,
1780 		0x3b670, 0x3b6b8,
1781 		0x3b6c0, 0x3b6e4,
1782 		0x3b6f8, 0x3b738,
1783 		0x3b740, 0x3b740,
1784 		0x3b748, 0x3b750,
1785 		0x3b75c, 0x3b764,
1786 		0x3b770, 0x3b7b8,
1787 		0x3b7c0, 0x3b7e4,
1788 		0x3b7f8, 0x3b7fc,
1789 		0x3b814, 0x3b814,
1790 		0x3b82c, 0x3b82c,
1791 		0x3b880, 0x3b88c,
1792 		0x3b8e8, 0x3b8ec,
1793 		0x3b900, 0x3b928,
1794 		0x3b930, 0x3b948,
1795 		0x3b960, 0x3b968,
1796 		0x3b970, 0x3b99c,
1797 		0x3b9f0, 0x3ba38,
1798 		0x3ba40, 0x3ba40,
1799 		0x3ba48, 0x3ba50,
1800 		0x3ba5c, 0x3ba64,
1801 		0x3ba70, 0x3bab8,
1802 		0x3bac0, 0x3bae4,
1803 		0x3baf8, 0x3bb10,
1804 		0x3bb28, 0x3bb28,
1805 		0x3bb3c, 0x3bb50,
1806 		0x3bbf0, 0x3bc10,
1807 		0x3bc28, 0x3bc28,
1808 		0x3bc3c, 0x3bc50,
1809 		0x3bcf0, 0x3bcfc,
1810 		0x3c000, 0x3c030,
1811 		0x3c100, 0x3c144,
1812 		0x3c190, 0x3c1a0,
1813 		0x3c1a8, 0x3c1b8,
1814 		0x3c1c4, 0x3c1c8,
1815 		0x3c1d0, 0x3c1d0,
1816 		0x3c200, 0x3c318,
1817 		0x3c400, 0x3c4b4,
1818 		0x3c4c0, 0x3c52c,
1819 		0x3c540, 0x3c61c,
1820 		0x3c800, 0x3c828,
1821 		0x3c834, 0x3c834,
1822 		0x3c8c0, 0x3c908,
1823 		0x3c910, 0x3c9ac,
1824 		0x3ca00, 0x3ca14,
1825 		0x3ca1c, 0x3ca2c,
1826 		0x3ca44, 0x3ca50,
1827 		0x3ca74, 0x3ca74,
1828 		0x3ca7c, 0x3cafc,
1829 		0x3cb08, 0x3cc24,
1830 		0x3cd00, 0x3cd00,
1831 		0x3cd08, 0x3cd14,
1832 		0x3cd1c, 0x3cd20,
1833 		0x3cd3c, 0x3cd3c,
1834 		0x3cd48, 0x3cd50,
1835 		0x3d200, 0x3d20c,
1836 		0x3d220, 0x3d220,
1837 		0x3d240, 0x3d240,
1838 		0x3d600, 0x3d60c,
1839 		0x3da00, 0x3da1c,
1840 		0x3de00, 0x3de20,
1841 		0x3de38, 0x3de3c,
1842 		0x3de80, 0x3de80,
1843 		0x3de88, 0x3dea8,
1844 		0x3deb0, 0x3deb4,
1845 		0x3dec8, 0x3ded4,
1846 		0x3dfb8, 0x3e004,
1847 		0x3e200, 0x3e200,
1848 		0x3e208, 0x3e240,
1849 		0x3e248, 0x3e280,
1850 		0x3e288, 0x3e2c0,
1851 		0x3e2c8, 0x3e2fc,
1852 		0x3e600, 0x3e630,
1853 		0x3ea00, 0x3eabc,
1854 		0x3eb00, 0x3eb10,
1855 		0x3eb20, 0x3eb30,
1856 		0x3eb40, 0x3eb50,
1857 		0x3eb60, 0x3eb70,
1858 		0x3f000, 0x3f028,
1859 		0x3f030, 0x3f048,
1860 		0x3f060, 0x3f068,
1861 		0x3f070, 0x3f09c,
1862 		0x3f0f0, 0x3f128,
1863 		0x3f130, 0x3f148,
1864 		0x3f160, 0x3f168,
1865 		0x3f170, 0x3f19c,
1866 		0x3f1f0, 0x3f238,
1867 		0x3f240, 0x3f240,
1868 		0x3f248, 0x3f250,
1869 		0x3f25c, 0x3f264,
1870 		0x3f270, 0x3f2b8,
1871 		0x3f2c0, 0x3f2e4,
1872 		0x3f2f8, 0x3f338,
1873 		0x3f340, 0x3f340,
1874 		0x3f348, 0x3f350,
1875 		0x3f35c, 0x3f364,
1876 		0x3f370, 0x3f3b8,
1877 		0x3f3c0, 0x3f3e4,
1878 		0x3f3f8, 0x3f428,
1879 		0x3f430, 0x3f448,
1880 		0x3f460, 0x3f468,
1881 		0x3f470, 0x3f49c,
1882 		0x3f4f0, 0x3f528,
1883 		0x3f530, 0x3f548,
1884 		0x3f560, 0x3f568,
1885 		0x3f570, 0x3f59c,
1886 		0x3f5f0, 0x3f638,
1887 		0x3f640, 0x3f640,
1888 		0x3f648, 0x3f650,
1889 		0x3f65c, 0x3f664,
1890 		0x3f670, 0x3f6b8,
1891 		0x3f6c0, 0x3f6e4,
1892 		0x3f6f8, 0x3f738,
1893 		0x3f740, 0x3f740,
1894 		0x3f748, 0x3f750,
1895 		0x3f75c, 0x3f764,
1896 		0x3f770, 0x3f7b8,
1897 		0x3f7c0, 0x3f7e4,
1898 		0x3f7f8, 0x3f7fc,
1899 		0x3f814, 0x3f814,
1900 		0x3f82c, 0x3f82c,
1901 		0x3f880, 0x3f88c,
1902 		0x3f8e8, 0x3f8ec,
1903 		0x3f900, 0x3f928,
1904 		0x3f930, 0x3f948,
1905 		0x3f960, 0x3f968,
1906 		0x3f970, 0x3f99c,
1907 		0x3f9f0, 0x3fa38,
1908 		0x3fa40, 0x3fa40,
1909 		0x3fa48, 0x3fa50,
1910 		0x3fa5c, 0x3fa64,
1911 		0x3fa70, 0x3fab8,
1912 		0x3fac0, 0x3fae4,
1913 		0x3faf8, 0x3fb10,
1914 		0x3fb28, 0x3fb28,
1915 		0x3fb3c, 0x3fb50,
1916 		0x3fbf0, 0x3fc10,
1917 		0x3fc28, 0x3fc28,
1918 		0x3fc3c, 0x3fc50,
1919 		0x3fcf0, 0x3fcfc,
1920 		0x40000, 0x4000c,
1921 		0x40040, 0x40050,
1922 		0x40060, 0x40068,
1923 		0x4007c, 0x4008c,
1924 		0x40094, 0x400b0,
1925 		0x400c0, 0x40144,
1926 		0x40180, 0x4018c,
1927 		0x40200, 0x40254,
1928 		0x40260, 0x40264,
1929 		0x40270, 0x40288,
1930 		0x40290, 0x40298,
1931 		0x402ac, 0x402c8,
1932 		0x402d0, 0x402e0,
1933 		0x402f0, 0x402f0,
1934 		0x40300, 0x4033c,
1935 		0x403f8, 0x403fc,
1936 		0x41304, 0x413c4,
1937 		0x41400, 0x4140c,
1938 		0x41414, 0x4141c,
1939 		0x41480, 0x414d0,
1940 		0x44000, 0x44054,
1941 		0x4405c, 0x44078,
1942 		0x440c0, 0x44174,
1943 		0x44180, 0x441ac,
1944 		0x441b4, 0x441b8,
1945 		0x441c0, 0x44254,
1946 		0x4425c, 0x44278,
1947 		0x442c0, 0x44374,
1948 		0x44380, 0x443ac,
1949 		0x443b4, 0x443b8,
1950 		0x443c0, 0x44454,
1951 		0x4445c, 0x44478,
1952 		0x444c0, 0x44574,
1953 		0x44580, 0x445ac,
1954 		0x445b4, 0x445b8,
1955 		0x445c0, 0x44654,
1956 		0x4465c, 0x44678,
1957 		0x446c0, 0x44774,
1958 		0x44780, 0x447ac,
1959 		0x447b4, 0x447b8,
1960 		0x447c0, 0x44854,
1961 		0x4485c, 0x44878,
1962 		0x448c0, 0x44974,
1963 		0x44980, 0x449ac,
1964 		0x449b4, 0x449b8,
1965 		0x449c0, 0x449fc,
1966 		0x45000, 0x45004,
1967 		0x45010, 0x45030,
1968 		0x45040, 0x45060,
1969 		0x45068, 0x45068,
1970 		0x45080, 0x45084,
1971 		0x450a0, 0x450b0,
1972 		0x45200, 0x45204,
1973 		0x45210, 0x45230,
1974 		0x45240, 0x45260,
1975 		0x45268, 0x45268,
1976 		0x45280, 0x45284,
1977 		0x452a0, 0x452b0,
1978 		0x460c0, 0x460e4,
1979 		0x47000, 0x4703c,
1980 		0x47044, 0x4708c,
1981 		0x47200, 0x47250,
1982 		0x47400, 0x47408,
1983 		0x47414, 0x47420,
1984 		0x47600, 0x47618,
1985 		0x47800, 0x47814,
1986 		0x48000, 0x4800c,
1987 		0x48040, 0x48050,
1988 		0x48060, 0x48068,
1989 		0x4807c, 0x4808c,
1990 		0x48094, 0x480b0,
1991 		0x480c0, 0x48144,
1992 		0x48180, 0x4818c,
1993 		0x48200, 0x48254,
1994 		0x48260, 0x48264,
1995 		0x48270, 0x48288,
1996 		0x48290, 0x48298,
1997 		0x482ac, 0x482c8,
1998 		0x482d0, 0x482e0,
1999 		0x482f0, 0x482f0,
2000 		0x48300, 0x4833c,
2001 		0x483f8, 0x483fc,
2002 		0x49304, 0x493c4,
2003 		0x49400, 0x4940c,
2004 		0x49414, 0x4941c,
2005 		0x49480, 0x494d0,
2006 		0x4c000, 0x4c054,
2007 		0x4c05c, 0x4c078,
2008 		0x4c0c0, 0x4c174,
2009 		0x4c180, 0x4c1ac,
2010 		0x4c1b4, 0x4c1b8,
2011 		0x4c1c0, 0x4c254,
2012 		0x4c25c, 0x4c278,
2013 		0x4c2c0, 0x4c374,
2014 		0x4c380, 0x4c3ac,
2015 		0x4c3b4, 0x4c3b8,
2016 		0x4c3c0, 0x4c454,
2017 		0x4c45c, 0x4c478,
2018 		0x4c4c0, 0x4c574,
2019 		0x4c580, 0x4c5ac,
2020 		0x4c5b4, 0x4c5b8,
2021 		0x4c5c0, 0x4c654,
2022 		0x4c65c, 0x4c678,
2023 		0x4c6c0, 0x4c774,
2024 		0x4c780, 0x4c7ac,
2025 		0x4c7b4, 0x4c7b8,
2026 		0x4c7c0, 0x4c854,
2027 		0x4c85c, 0x4c878,
2028 		0x4c8c0, 0x4c974,
2029 		0x4c980, 0x4c9ac,
2030 		0x4c9b4, 0x4c9b8,
2031 		0x4c9c0, 0x4c9fc,
2032 		0x4d000, 0x4d004,
2033 		0x4d010, 0x4d030,
2034 		0x4d040, 0x4d060,
2035 		0x4d068, 0x4d068,
2036 		0x4d080, 0x4d084,
2037 		0x4d0a0, 0x4d0b0,
2038 		0x4d200, 0x4d204,
2039 		0x4d210, 0x4d230,
2040 		0x4d240, 0x4d260,
2041 		0x4d268, 0x4d268,
2042 		0x4d280, 0x4d284,
2043 		0x4d2a0, 0x4d2b0,
2044 		0x4e0c0, 0x4e0e4,
2045 		0x4f000, 0x4f03c,
2046 		0x4f044, 0x4f08c,
2047 		0x4f200, 0x4f250,
2048 		0x4f400, 0x4f408,
2049 		0x4f414, 0x4f420,
2050 		0x4f600, 0x4f618,
2051 		0x4f800, 0x4f814,
2052 		0x50000, 0x50084,
2053 		0x50090, 0x500cc,
2054 		0x50400, 0x50400,
2055 		0x50800, 0x50884,
2056 		0x50890, 0x508cc,
2057 		0x50c00, 0x50c00,
2058 		0x51000, 0x5101c,
2059 		0x51300, 0x51308,
2060 	};
2061 
2062 	static const unsigned int t5vf_reg_ranges[] = {
2063 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2064 		VF_MPS_REG(A_MPS_VF_CTL),
2065 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2066 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2067 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2068 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2069 		FW_T4VF_MBDATA_BASE_ADDR,
2070 		FW_T4VF_MBDATA_BASE_ADDR +
2071 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2072 	};
2073 
2074 	static const unsigned int t6_reg_ranges[] = {
2075 		0x1008, 0x101c,
2076 		0x1024, 0x10a8,
2077 		0x10b4, 0x10f8,
2078 		0x1100, 0x1114,
2079 		0x111c, 0x112c,
2080 		0x1138, 0x113c,
2081 		0x1144, 0x114c,
2082 		0x1180, 0x1184,
2083 		0x1190, 0x1194,
2084 		0x11a0, 0x11a4,
2085 		0x11b0, 0x11c4,
2086 		0x11fc, 0x123c,
2087 		0x1254, 0x1274,
2088 		0x1280, 0x133c,
2089 		0x1800, 0x18fc,
2090 		0x3000, 0x302c,
2091 		0x3060, 0x30b0,
2092 		0x30b8, 0x30d8,
2093 		0x30e0, 0x30fc,
2094 		0x3140, 0x357c,
2095 		0x35a8, 0x35cc,
2096 		0x35ec, 0x35ec,
2097 		0x3600, 0x5624,
2098 		0x56cc, 0x56ec,
2099 		0x56f4, 0x5720,
2100 		0x5728, 0x575c,
2101 		0x580c, 0x5814,
2102 		0x5890, 0x589c,
2103 		0x58a4, 0x58ac,
2104 		0x58b8, 0x58bc,
2105 		0x5940, 0x595c,
2106 		0x5980, 0x598c,
2107 		0x59b0, 0x59c8,
2108 		0x59d0, 0x59dc,
2109 		0x59fc, 0x5a18,
2110 		0x5a60, 0x5a6c,
2111 		0x5a80, 0x5a8c,
2112 		0x5a94, 0x5a9c,
2113 		0x5b94, 0x5bfc,
2114 		0x5c10, 0x5e48,
2115 		0x5e50, 0x5e94,
2116 		0x5ea0, 0x5eb0,
2117 		0x5ec0, 0x5ec0,
2118 		0x5ec8, 0x5ed0,
2119 		0x5ee0, 0x5ee0,
2120 		0x5ef0, 0x5ef0,
2121 		0x5f00, 0x5f00,
2122 		0x6000, 0x6020,
2123 		0x6028, 0x6040,
2124 		0x6058, 0x609c,
2125 		0x60a8, 0x619c,
2126 		0x7700, 0x7798,
2127 		0x77c0, 0x7880,
2128 		0x78cc, 0x78fc,
2129 		0x7b00, 0x7b58,
2130 		0x7b60, 0x7b84,
2131 		0x7b8c, 0x7c54,
2132 		0x7d00, 0x7d38,
2133 		0x7d40, 0x7d84,
2134 		0x7d8c, 0x7ddc,
2135 		0x7de4, 0x7e04,
2136 		0x7e10, 0x7e1c,
2137 		0x7e24, 0x7e38,
2138 		0x7e40, 0x7e44,
2139 		0x7e4c, 0x7e78,
2140 		0x7e80, 0x7edc,
2141 		0x7ee8, 0x7efc,
2142 		0x8dc0, 0x8de0,
2143 		0x8df8, 0x8e04,
2144 		0x8e10, 0x8e84,
2145 		0x8ea0, 0x8f88,
2146 		0x8fb8, 0x9058,
2147 		0x9060, 0x9060,
2148 		0x9068, 0x90f8,
2149 		0x9100, 0x9124,
2150 		0x9400, 0x9470,
2151 		0x9600, 0x9600,
2152 		0x9608, 0x9638,
2153 		0x9640, 0x9704,
2154 		0x9710, 0x971c,
2155 		0x9800, 0x9808,
2156 		0x9810, 0x9864,
2157 		0x9c00, 0x9c6c,
2158 		0x9c80, 0x9cec,
2159 		0x9d00, 0x9d6c,
2160 		0x9d80, 0x9dec,
2161 		0x9e00, 0x9e6c,
2162 		0x9e80, 0x9eec,
2163 		0x9f00, 0x9f6c,
2164 		0x9f80, 0xa020,
2165 		0xd000, 0xd03c,
2166 		0xd100, 0xd118,
2167 		0xd200, 0xd214,
2168 		0xd220, 0xd234,
2169 		0xd240, 0xd254,
2170 		0xd260, 0xd274,
2171 		0xd280, 0xd294,
2172 		0xd2a0, 0xd2b4,
2173 		0xd2c0, 0xd2d4,
2174 		0xd2e0, 0xd2f4,
2175 		0xd300, 0xd31c,
2176 		0xdfc0, 0xdfe0,
2177 		0xe000, 0xf008,
2178 		0xf010, 0xf018,
2179 		0xf020, 0xf028,
2180 		0x11000, 0x11014,
2181 		0x11048, 0x1106c,
2182 		0x11074, 0x11088,
2183 		0x11098, 0x11120,
2184 		0x1112c, 0x1117c,
2185 		0x11190, 0x112e0,
2186 		0x11300, 0x1130c,
2187 		0x12000, 0x1206c,
2188 		0x19040, 0x1906c,
2189 		0x19078, 0x19080,
2190 		0x1908c, 0x190e8,
2191 		0x190f0, 0x190f8,
2192 		0x19100, 0x19110,
2193 		0x19120, 0x19124,
2194 		0x19150, 0x19194,
2195 		0x1919c, 0x191b0,
2196 		0x191d0, 0x191e8,
2197 		0x19238, 0x19290,
2198 		0x192a4, 0x192b0,
2199 		0x19348, 0x1934c,
2200 		0x193f8, 0x19418,
2201 		0x19420, 0x19428,
2202 		0x19430, 0x19444,
2203 		0x1944c, 0x1946c,
2204 		0x19474, 0x19474,
2205 		0x19490, 0x194cc,
2206 		0x194f0, 0x194f8,
2207 		0x19c00, 0x19c48,
2208 		0x19c50, 0x19c80,
2209 		0x19c94, 0x19c98,
2210 		0x19ca0, 0x19cbc,
2211 		0x19ce4, 0x19ce4,
2212 		0x19cf0, 0x19cf8,
2213 		0x19d00, 0x19d28,
2214 		0x19d50, 0x19d78,
2215 		0x19d94, 0x19d98,
2216 		0x19da0, 0x19de0,
2217 		0x19df0, 0x19e10,
2218 		0x19e50, 0x19e6c,
2219 		0x19ea0, 0x19ebc,
2220 		0x19ec4, 0x19ef4,
2221 		0x19f04, 0x19f2c,
2222 		0x19f34, 0x19f34,
2223 		0x19f40, 0x19f50,
2224 		0x19f90, 0x19fac,
2225 		0x19fc4, 0x19fc8,
2226 		0x19fd0, 0x19fe4,
2227 		0x1a000, 0x1a004,
2228 		0x1a010, 0x1a06c,
2229 		0x1a0b0, 0x1a0e4,
2230 		0x1a0ec, 0x1a0f8,
2231 		0x1a100, 0x1a108,
2232 		0x1a114, 0x1a130,
2233 		0x1a138, 0x1a1c4,
2234 		0x1a1fc, 0x1a1fc,
2235 		0x1e008, 0x1e00c,
2236 		0x1e040, 0x1e044,
2237 		0x1e04c, 0x1e04c,
2238 		0x1e284, 0x1e290,
2239 		0x1e2c0, 0x1e2c0,
2240 		0x1e2e0, 0x1e2e0,
2241 		0x1e300, 0x1e384,
2242 		0x1e3c0, 0x1e3c8,
2243 		0x1e408, 0x1e40c,
2244 		0x1e440, 0x1e444,
2245 		0x1e44c, 0x1e44c,
2246 		0x1e684, 0x1e690,
2247 		0x1e6c0, 0x1e6c0,
2248 		0x1e6e0, 0x1e6e0,
2249 		0x1e700, 0x1e784,
2250 		0x1e7c0, 0x1e7c8,
2251 		0x1e808, 0x1e80c,
2252 		0x1e840, 0x1e844,
2253 		0x1e84c, 0x1e84c,
2254 		0x1ea84, 0x1ea90,
2255 		0x1eac0, 0x1eac0,
2256 		0x1eae0, 0x1eae0,
2257 		0x1eb00, 0x1eb84,
2258 		0x1ebc0, 0x1ebc8,
2259 		0x1ec08, 0x1ec0c,
2260 		0x1ec40, 0x1ec44,
2261 		0x1ec4c, 0x1ec4c,
2262 		0x1ee84, 0x1ee90,
2263 		0x1eec0, 0x1eec0,
2264 		0x1eee0, 0x1eee0,
2265 		0x1ef00, 0x1ef84,
2266 		0x1efc0, 0x1efc8,
2267 		0x1f008, 0x1f00c,
2268 		0x1f040, 0x1f044,
2269 		0x1f04c, 0x1f04c,
2270 		0x1f284, 0x1f290,
2271 		0x1f2c0, 0x1f2c0,
2272 		0x1f2e0, 0x1f2e0,
2273 		0x1f300, 0x1f384,
2274 		0x1f3c0, 0x1f3c8,
2275 		0x1f408, 0x1f40c,
2276 		0x1f440, 0x1f444,
2277 		0x1f44c, 0x1f44c,
2278 		0x1f684, 0x1f690,
2279 		0x1f6c0, 0x1f6c0,
2280 		0x1f6e0, 0x1f6e0,
2281 		0x1f700, 0x1f784,
2282 		0x1f7c0, 0x1f7c8,
2283 		0x1f808, 0x1f80c,
2284 		0x1f840, 0x1f844,
2285 		0x1f84c, 0x1f84c,
2286 		0x1fa84, 0x1fa90,
2287 		0x1fac0, 0x1fac0,
2288 		0x1fae0, 0x1fae0,
2289 		0x1fb00, 0x1fb84,
2290 		0x1fbc0, 0x1fbc8,
2291 		0x1fc08, 0x1fc0c,
2292 		0x1fc40, 0x1fc44,
2293 		0x1fc4c, 0x1fc4c,
2294 		0x1fe84, 0x1fe90,
2295 		0x1fec0, 0x1fec0,
2296 		0x1fee0, 0x1fee0,
2297 		0x1ff00, 0x1ff84,
2298 		0x1ffc0, 0x1ffc8,
2299 		0x30000, 0x30030,
2300 		0x30100, 0x30168,
2301 		0x30190, 0x301a0,
2302 		0x301a8, 0x301b8,
2303 		0x301c4, 0x301c8,
2304 		0x301d0, 0x301d0,
2305 		0x30200, 0x30320,
2306 		0x30400, 0x304b4,
2307 		0x304c0, 0x3052c,
2308 		0x30540, 0x3061c,
2309 		0x30800, 0x308a0,
2310 		0x308c0, 0x30908,
2311 		0x30910, 0x309b8,
2312 		0x30a00, 0x30a04,
2313 		0x30a0c, 0x30a14,
2314 		0x30a1c, 0x30a2c,
2315 		0x30a44, 0x30a50,
2316 		0x30a74, 0x30a74,
2317 		0x30a7c, 0x30afc,
2318 		0x30b08, 0x30c24,
2319 		0x30d00, 0x30d14,
2320 		0x30d1c, 0x30d3c,
2321 		0x30d44, 0x30d4c,
2322 		0x30d54, 0x30d74,
2323 		0x30d7c, 0x30d7c,
2324 		0x30de0, 0x30de0,
2325 		0x30e00, 0x30ed4,
2326 		0x30f00, 0x30fa4,
2327 		0x30fc0, 0x30fc4,
2328 		0x31000, 0x31004,
2329 		0x31080, 0x310fc,
2330 		0x31208, 0x31220,
2331 		0x3123c, 0x31254,
2332 		0x31300, 0x31300,
2333 		0x31308, 0x3131c,
2334 		0x31338, 0x3133c,
2335 		0x31380, 0x31380,
2336 		0x31388, 0x313a8,
2337 		0x313b4, 0x313b4,
2338 		0x31400, 0x31420,
2339 		0x31438, 0x3143c,
2340 		0x31480, 0x31480,
2341 		0x314a8, 0x314a8,
2342 		0x314b0, 0x314b4,
2343 		0x314c8, 0x314d4,
2344 		0x31a40, 0x31a4c,
2345 		0x31af0, 0x31b20,
2346 		0x31b38, 0x31b3c,
2347 		0x31b80, 0x31b80,
2348 		0x31ba8, 0x31ba8,
2349 		0x31bb0, 0x31bb4,
2350 		0x31bc8, 0x31bd4,
2351 		0x32140, 0x3218c,
2352 		0x321f0, 0x321f4,
2353 		0x32200, 0x32200,
2354 		0x32218, 0x32218,
2355 		0x32400, 0x32400,
2356 		0x32408, 0x3241c,
2357 		0x32618, 0x32620,
2358 		0x32664, 0x32664,
2359 		0x326a8, 0x326a8,
2360 		0x326ec, 0x326ec,
2361 		0x32a00, 0x32abc,
2362 		0x32b00, 0x32b18,
2363 		0x32b20, 0x32b38,
2364 		0x32b40, 0x32b58,
2365 		0x32b60, 0x32b78,
2366 		0x32c00, 0x32c00,
2367 		0x32c08, 0x32c3c,
2368 		0x33000, 0x3302c,
2369 		0x33034, 0x33050,
2370 		0x33058, 0x33058,
2371 		0x33060, 0x3308c,
2372 		0x3309c, 0x330ac,
2373 		0x330c0, 0x330c0,
2374 		0x330c8, 0x330d0,
2375 		0x330d8, 0x330e0,
2376 		0x330ec, 0x3312c,
2377 		0x33134, 0x33150,
2378 		0x33158, 0x33158,
2379 		0x33160, 0x3318c,
2380 		0x3319c, 0x331ac,
2381 		0x331c0, 0x331c0,
2382 		0x331c8, 0x331d0,
2383 		0x331d8, 0x331e0,
2384 		0x331ec, 0x33290,
2385 		0x33298, 0x332c4,
2386 		0x332e4, 0x33390,
2387 		0x33398, 0x333c4,
2388 		0x333e4, 0x3342c,
2389 		0x33434, 0x33450,
2390 		0x33458, 0x33458,
2391 		0x33460, 0x3348c,
2392 		0x3349c, 0x334ac,
2393 		0x334c0, 0x334c0,
2394 		0x334c8, 0x334d0,
2395 		0x334d8, 0x334e0,
2396 		0x334ec, 0x3352c,
2397 		0x33534, 0x33550,
2398 		0x33558, 0x33558,
2399 		0x33560, 0x3358c,
2400 		0x3359c, 0x335ac,
2401 		0x335c0, 0x335c0,
2402 		0x335c8, 0x335d0,
2403 		0x335d8, 0x335e0,
2404 		0x335ec, 0x33690,
2405 		0x33698, 0x336c4,
2406 		0x336e4, 0x33790,
2407 		0x33798, 0x337c4,
2408 		0x337e4, 0x337fc,
2409 		0x33814, 0x33814,
2410 		0x33854, 0x33868,
2411 		0x33880, 0x3388c,
2412 		0x338c0, 0x338d0,
2413 		0x338e8, 0x338ec,
2414 		0x33900, 0x3392c,
2415 		0x33934, 0x33950,
2416 		0x33958, 0x33958,
2417 		0x33960, 0x3398c,
2418 		0x3399c, 0x339ac,
2419 		0x339c0, 0x339c0,
2420 		0x339c8, 0x339d0,
2421 		0x339d8, 0x339e0,
2422 		0x339ec, 0x33a90,
2423 		0x33a98, 0x33ac4,
2424 		0x33ae4, 0x33b10,
2425 		0x33b24, 0x33b28,
2426 		0x33b38, 0x33b50,
2427 		0x33bf0, 0x33c10,
2428 		0x33c24, 0x33c28,
2429 		0x33c38, 0x33c50,
2430 		0x33cf0, 0x33cfc,
2431 		0x34000, 0x34030,
2432 		0x34100, 0x34168,
2433 		0x34190, 0x341a0,
2434 		0x341a8, 0x341b8,
2435 		0x341c4, 0x341c8,
2436 		0x341d0, 0x341d0,
2437 		0x34200, 0x34320,
2438 		0x34400, 0x344b4,
2439 		0x344c0, 0x3452c,
2440 		0x34540, 0x3461c,
2441 		0x34800, 0x348a0,
2442 		0x348c0, 0x34908,
2443 		0x34910, 0x349b8,
2444 		0x34a00, 0x34a04,
2445 		0x34a0c, 0x34a14,
2446 		0x34a1c, 0x34a2c,
2447 		0x34a44, 0x34a50,
2448 		0x34a74, 0x34a74,
2449 		0x34a7c, 0x34afc,
2450 		0x34b08, 0x34c24,
2451 		0x34d00, 0x34d14,
2452 		0x34d1c, 0x34d3c,
2453 		0x34d44, 0x34d4c,
2454 		0x34d54, 0x34d74,
2455 		0x34d7c, 0x34d7c,
2456 		0x34de0, 0x34de0,
2457 		0x34e00, 0x34ed4,
2458 		0x34f00, 0x34fa4,
2459 		0x34fc0, 0x34fc4,
2460 		0x35000, 0x35004,
2461 		0x35080, 0x350fc,
2462 		0x35208, 0x35220,
2463 		0x3523c, 0x35254,
2464 		0x35300, 0x35300,
2465 		0x35308, 0x3531c,
2466 		0x35338, 0x3533c,
2467 		0x35380, 0x35380,
2468 		0x35388, 0x353a8,
2469 		0x353b4, 0x353b4,
2470 		0x35400, 0x35420,
2471 		0x35438, 0x3543c,
2472 		0x35480, 0x35480,
2473 		0x354a8, 0x354a8,
2474 		0x354b0, 0x354b4,
2475 		0x354c8, 0x354d4,
2476 		0x35a40, 0x35a4c,
2477 		0x35af0, 0x35b20,
2478 		0x35b38, 0x35b3c,
2479 		0x35b80, 0x35b80,
2480 		0x35ba8, 0x35ba8,
2481 		0x35bb0, 0x35bb4,
2482 		0x35bc8, 0x35bd4,
2483 		0x36140, 0x3618c,
2484 		0x361f0, 0x361f4,
2485 		0x36200, 0x36200,
2486 		0x36218, 0x36218,
2487 		0x36400, 0x36400,
2488 		0x36408, 0x3641c,
2489 		0x36618, 0x36620,
2490 		0x36664, 0x36664,
2491 		0x366a8, 0x366a8,
2492 		0x366ec, 0x366ec,
2493 		0x36a00, 0x36abc,
2494 		0x36b00, 0x36b18,
2495 		0x36b20, 0x36b38,
2496 		0x36b40, 0x36b58,
2497 		0x36b60, 0x36b78,
2498 		0x36c00, 0x36c00,
2499 		0x36c08, 0x36c3c,
2500 		0x37000, 0x3702c,
2501 		0x37034, 0x37050,
2502 		0x37058, 0x37058,
2503 		0x37060, 0x3708c,
2504 		0x3709c, 0x370ac,
2505 		0x370c0, 0x370c0,
2506 		0x370c8, 0x370d0,
2507 		0x370d8, 0x370e0,
2508 		0x370ec, 0x3712c,
2509 		0x37134, 0x37150,
2510 		0x37158, 0x37158,
2511 		0x37160, 0x3718c,
2512 		0x3719c, 0x371ac,
2513 		0x371c0, 0x371c0,
2514 		0x371c8, 0x371d0,
2515 		0x371d8, 0x371e0,
2516 		0x371ec, 0x37290,
2517 		0x37298, 0x372c4,
2518 		0x372e4, 0x37390,
2519 		0x37398, 0x373c4,
2520 		0x373e4, 0x3742c,
2521 		0x37434, 0x37450,
2522 		0x37458, 0x37458,
2523 		0x37460, 0x3748c,
2524 		0x3749c, 0x374ac,
2525 		0x374c0, 0x374c0,
2526 		0x374c8, 0x374d0,
2527 		0x374d8, 0x374e0,
2528 		0x374ec, 0x3752c,
2529 		0x37534, 0x37550,
2530 		0x37558, 0x37558,
2531 		0x37560, 0x3758c,
2532 		0x3759c, 0x375ac,
2533 		0x375c0, 0x375c0,
2534 		0x375c8, 0x375d0,
2535 		0x375d8, 0x375e0,
2536 		0x375ec, 0x37690,
2537 		0x37698, 0x376c4,
2538 		0x376e4, 0x37790,
2539 		0x37798, 0x377c4,
2540 		0x377e4, 0x377fc,
2541 		0x37814, 0x37814,
2542 		0x37854, 0x37868,
2543 		0x37880, 0x3788c,
2544 		0x378c0, 0x378d0,
2545 		0x378e8, 0x378ec,
2546 		0x37900, 0x3792c,
2547 		0x37934, 0x37950,
2548 		0x37958, 0x37958,
2549 		0x37960, 0x3798c,
2550 		0x3799c, 0x379ac,
2551 		0x379c0, 0x379c0,
2552 		0x379c8, 0x379d0,
2553 		0x379d8, 0x379e0,
2554 		0x379ec, 0x37a90,
2555 		0x37a98, 0x37ac4,
2556 		0x37ae4, 0x37b10,
2557 		0x37b24, 0x37b28,
2558 		0x37b38, 0x37b50,
2559 		0x37bf0, 0x37c10,
2560 		0x37c24, 0x37c28,
2561 		0x37c38, 0x37c50,
2562 		0x37cf0, 0x37cfc,
2563 		0x40040, 0x40040,
2564 		0x40080, 0x40084,
2565 		0x40100, 0x40100,
2566 		0x40140, 0x401bc,
2567 		0x40200, 0x40214,
2568 		0x40228, 0x40228,
2569 		0x40240, 0x40258,
2570 		0x40280, 0x40280,
2571 		0x40304, 0x40304,
2572 		0x40330, 0x4033c,
2573 		0x41304, 0x413c8,
2574 		0x413d0, 0x413dc,
2575 		0x413f0, 0x413f0,
2576 		0x41400, 0x4140c,
2577 		0x41414, 0x4141c,
2578 		0x41480, 0x414d0,
2579 		0x44000, 0x4407c,
2580 		0x440c0, 0x441ac,
2581 		0x441b4, 0x4427c,
2582 		0x442c0, 0x443ac,
2583 		0x443b4, 0x4447c,
2584 		0x444c0, 0x445ac,
2585 		0x445b4, 0x4467c,
2586 		0x446c0, 0x447ac,
2587 		0x447b4, 0x4487c,
2588 		0x448c0, 0x449ac,
2589 		0x449b4, 0x44a7c,
2590 		0x44ac0, 0x44bac,
2591 		0x44bb4, 0x44c7c,
2592 		0x44cc0, 0x44dac,
2593 		0x44db4, 0x44e7c,
2594 		0x44ec0, 0x44fac,
2595 		0x44fb4, 0x4507c,
2596 		0x450c0, 0x451ac,
2597 		0x451b4, 0x451fc,
2598 		0x45800, 0x45804,
2599 		0x45810, 0x45830,
2600 		0x45840, 0x45860,
2601 		0x45868, 0x45868,
2602 		0x45880, 0x45884,
2603 		0x458a0, 0x458b0,
2604 		0x45a00, 0x45a04,
2605 		0x45a10, 0x45a30,
2606 		0x45a40, 0x45a60,
2607 		0x45a68, 0x45a68,
2608 		0x45a80, 0x45a84,
2609 		0x45aa0, 0x45ab0,
2610 		0x460c0, 0x460e4,
2611 		0x47000, 0x4703c,
2612 		0x47044, 0x4708c,
2613 		0x47200, 0x47250,
2614 		0x47400, 0x47408,
2615 		0x47414, 0x47420,
2616 		0x47600, 0x47618,
2617 		0x47800, 0x47814,
2618 		0x47820, 0x4782c,
2619 		0x50000, 0x50084,
2620 		0x50090, 0x500cc,
2621 		0x50300, 0x50384,
2622 		0x50400, 0x50400,
2623 		0x50800, 0x50884,
2624 		0x50890, 0x508cc,
2625 		0x50b00, 0x50b84,
2626 		0x50c00, 0x50c00,
2627 		0x51000, 0x51020,
2628 		0x51028, 0x510b0,
2629 		0x51300, 0x51324,
2630 	};
2631 
2632 	static const unsigned int t6vf_reg_ranges[] = {
2633 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2634 		VF_MPS_REG(A_MPS_VF_CTL),
2635 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2636 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2637 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2638 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2639 		FW_T6VF_MBDATA_BASE_ADDR,
2640 		FW_T6VF_MBDATA_BASE_ADDR +
2641 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2642 	};
2643 
2644 	u32 *buf_end = (u32 *)(buf + buf_size);
2645 	const unsigned int *reg_ranges;
2646 	int reg_ranges_size, range;
2647 	unsigned int chip_version = chip_id(adap);
2648 
2649 	/*
2650 	 * Select the right set of register ranges to dump depending on the
2651 	 * adapter chip type.
2652 	 */
2653 	switch (chip_version) {
2654 	case CHELSIO_T4:
2655 		if (adap->flags & IS_VF) {
2656 			reg_ranges = t4vf_reg_ranges;
2657 			reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges);
2658 		} else {
2659 			reg_ranges = t4_reg_ranges;
2660 			reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2661 		}
2662 		break;
2663 
2664 	case CHELSIO_T5:
2665 		if (adap->flags & IS_VF) {
2666 			reg_ranges = t5vf_reg_ranges;
2667 			reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges);
2668 		} else {
2669 			reg_ranges = t5_reg_ranges;
2670 			reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2671 		}
2672 		break;
2673 
2674 	case CHELSIO_T6:
2675 		if (adap->flags & IS_VF) {
2676 			reg_ranges = t6vf_reg_ranges;
2677 			reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges);
2678 		} else {
2679 			reg_ranges = t6_reg_ranges;
2680 			reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2681 		}
2682 		break;
2683 
2684 	default:
2685 		CH_ERR(adap,
2686 			"Unsupported chip version %d\n", chip_version);
2687 		return;
2688 	}
2689 
2690 	/*
2691 	 * Clear the register buffer and insert the appropriate register
2692 	 * values selected by the above register ranges.
2693 	 */
2694 	memset(buf, 0, buf_size);
2695 	for (range = 0; range < reg_ranges_size; range += 2) {
2696 		unsigned int reg = reg_ranges[range];
2697 		unsigned int last_reg = reg_ranges[range + 1];
2698 		u32 *bufp = (u32 *)(buf + reg);
2699 
2700 		/*
2701 		 * Iterate across the register range filling in the register
2702 		 * buffer but don't write past the end of the register buffer.
2703 		 */
2704 		while (reg <= last_reg && bufp < buf_end) {
2705 			*bufp++ = t4_read_reg(adap, reg);
2706 			reg += sizeof(u32);
2707 		}
2708 	}
2709 }
2710 
2711 /*
2712  * Partial EEPROM Vital Product Data structure.  The VPD starts with one ID
2713  * header followed by one or more VPD-R sections, each with its own header.
2714  */
2715 struct t4_vpd_hdr {
2716 	u8  id_tag;
2717 	u8  id_len[2];
2718 	u8  id_data[ID_LEN];
2719 };
2720 
2721 struct t4_vpdr_hdr {
2722 	u8  vpdr_tag;
2723 	u8  vpdr_len[2];
2724 };
2725 
2726 /*
2727  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
2728  */
2729 #define EEPROM_DELAY		10		/* 10us per poll spin */
2730 #define EEPROM_MAX_POLL		5000		/* x 5000 == 50ms */
2731 
2732 #define EEPROM_STAT_ADDR	0x7bfc
2733 #define VPD_SIZE		0x800
2734 #define VPD_BASE		0x400
2735 #define VPD_BASE_OLD		0
2736 #define VPD_LEN			1024
2737 #define VPD_INFO_FLD_HDR_SIZE	3
2738 #define CHELSIO_VPD_UNIQUE_ID	0x82
2739 
2740 /*
2741  * Small utility function to wait till any outstanding VPD Access is complete.
2742  * We have a per-adapter state variable "VPD Busy" to indicate when we have a
2743  * VPD Access in flight.  This allows us to handle the problem of having a
2744  * previous VPD Access time out and prevent an attempt to inject a new VPD
2745  * Request before any in-flight VPD reguest has completed.
2746  */
2747 static int t4_seeprom_wait(struct adapter *adapter)
2748 {
2749 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2750 	int max_poll;
2751 
2752 	/*
2753 	 * If no VPD Access is in flight, we can just return success right
2754 	 * away.
2755 	 */
2756 	if (!adapter->vpd_busy)
2757 		return 0;
2758 
2759 	/*
2760 	 * Poll the VPD Capability Address/Flag register waiting for it
2761 	 * to indicate that the operation is complete.
2762 	 */
2763 	max_poll = EEPROM_MAX_POLL;
2764 	do {
2765 		u16 val;
2766 
2767 		udelay(EEPROM_DELAY);
2768 		t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
2769 
2770 		/*
2771 		 * If the operation is complete, mark the VPD as no longer
2772 		 * busy and return success.
2773 		 */
2774 		if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
2775 			adapter->vpd_busy = 0;
2776 			return 0;
2777 		}
2778 	} while (--max_poll);
2779 
2780 	/*
2781 	 * Failure!  Note that we leave the VPD Busy status set in order to
2782 	 * avoid pushing a new VPD Access request into the VPD Capability till
2783 	 * the current operation eventually succeeds.  It's a bug to issue a
2784 	 * new request when an existing request is in flight and will result
2785 	 * in corrupt hardware state.
2786 	 */
2787 	return -ETIMEDOUT;
2788 }
2789 
2790 /**
2791  *	t4_seeprom_read - read a serial EEPROM location
2792  *	@adapter: adapter to read
2793  *	@addr: EEPROM virtual address
2794  *	@data: where to store the read data
2795  *
2796  *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
2797  *	VPD capability.  Note that this function must be called with a virtual
2798  *	address.
2799  */
2800 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2801 {
2802 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2803 	int ret;
2804 
2805 	/*
2806 	 * VPD Accesses must alway be 4-byte aligned!
2807 	 */
2808 	if (addr >= EEPROMVSIZE || (addr & 3))
2809 		return -EINVAL;
2810 
2811 	/*
2812 	 * Wait for any previous operation which may still be in flight to
2813 	 * complete.
2814 	 */
2815 	ret = t4_seeprom_wait(adapter);
2816 	if (ret) {
2817 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2818 		return ret;
2819 	}
2820 
2821 	/*
2822 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2823 	 * for our request to complete.  If it doesn't complete, note the
2824 	 * error and return it to our caller.  Note that we do not reset the
2825 	 * VPD Busy status!
2826 	 */
2827 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2828 	adapter->vpd_busy = 1;
2829 	adapter->vpd_flag = PCI_VPD_ADDR_F;
2830 	ret = t4_seeprom_wait(adapter);
2831 	if (ret) {
2832 		CH_ERR(adapter, "VPD read of address %#x failed\n", addr);
2833 		return ret;
2834 	}
2835 
2836 	/*
2837 	 * Grab the returned data, swizzle it into our endianness and
2838 	 * return success.
2839 	 */
2840 	t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2841 	*data = le32_to_cpu(*data);
2842 	return 0;
2843 }
2844 
2845 /**
2846  *	t4_seeprom_write - write a serial EEPROM location
2847  *	@adapter: adapter to write
2848  *	@addr: virtual EEPROM address
2849  *	@data: value to write
2850  *
2851  *	Write a 32-bit word to a location in serial EEPROM using the card's PCI
2852  *	VPD capability.  Note that this function must be called with a virtual
2853  *	address.
2854  */
2855 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2856 {
2857 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2858 	int ret;
2859 	u32 stats_reg;
2860 	int max_poll;
2861 
2862 	/*
2863 	 * VPD Accesses must alway be 4-byte aligned!
2864 	 */
2865 	if (addr >= EEPROMVSIZE || (addr & 3))
2866 		return -EINVAL;
2867 
2868 	/*
2869 	 * Wait for any previous operation which may still be in flight to
2870 	 * complete.
2871 	 */
2872 	ret = t4_seeprom_wait(adapter);
2873 	if (ret) {
2874 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2875 		return ret;
2876 	}
2877 
2878 	/*
2879 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2880 	 * for our request to complete.  If it doesn't complete, note the
2881 	 * error and return it to our caller.  Note that we do not reset the
2882 	 * VPD Busy status!
2883 	 */
2884 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2885 				 cpu_to_le32(data));
2886 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2887 				 (u16)addr | PCI_VPD_ADDR_F);
2888 	adapter->vpd_busy = 1;
2889 	adapter->vpd_flag = 0;
2890 	ret = t4_seeprom_wait(adapter);
2891 	if (ret) {
2892 		CH_ERR(adapter, "VPD write of address %#x failed\n", addr);
2893 		return ret;
2894 	}
2895 
2896 	/*
2897 	 * Reset PCI_VPD_DATA register after a transaction and wait for our
2898 	 * request to complete. If it doesn't complete, return error.
2899 	 */
2900 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2901 	max_poll = EEPROM_MAX_POLL;
2902 	do {
2903 		udelay(EEPROM_DELAY);
2904 		t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2905 	} while ((stats_reg & 0x1) && --max_poll);
2906 	if (!max_poll)
2907 		return -ETIMEDOUT;
2908 
2909 	/* Return success! */
2910 	return 0;
2911 }
2912 
2913 /**
2914  *	t4_eeprom_ptov - translate a physical EEPROM address to virtual
2915  *	@phys_addr: the physical EEPROM address
2916  *	@fn: the PCI function number
2917  *	@sz: size of function-specific area
2918  *
2919  *	Translate a physical EEPROM address to virtual.  The first 1K is
2920  *	accessed through virtual addresses starting at 31K, the rest is
2921  *	accessed through virtual addresses starting at 0.
2922  *
2923  *	The mapping is as follows:
2924  *	[0..1K) -> [31K..32K)
2925  *	[1K..1K+A) -> [ES-A..ES)
2926  *	[1K+A..ES) -> [0..ES-A-1K)
2927  *
2928  *	where A = @fn * @sz, and ES = EEPROM size.
2929  */
2930 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2931 {
2932 	fn *= sz;
2933 	if (phys_addr < 1024)
2934 		return phys_addr + (31 << 10);
2935 	if (phys_addr < 1024 + fn)
2936 		return EEPROMSIZE - fn + phys_addr - 1024;
2937 	if (phys_addr < EEPROMSIZE)
2938 		return phys_addr - 1024 - fn;
2939 	return -EINVAL;
2940 }
2941 
2942 /**
2943  *	t4_seeprom_wp - enable/disable EEPROM write protection
2944  *	@adapter: the adapter
2945  *	@enable: whether to enable or disable write protection
2946  *
2947  *	Enables or disables write protection on the serial EEPROM.
2948  */
2949 int t4_seeprom_wp(struct adapter *adapter, int enable)
2950 {
2951 	return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2952 }
2953 
2954 /**
2955  *	get_vpd_keyword_val - Locates an information field keyword in the VPD
2956  *	@vpd: Pointer to buffered vpd data structure
2957  *	@kw: The keyword to search for
2958  *	@region: VPD region to search (starting from 0)
2959  *
2960  *	Returns the value of the information field keyword or
2961  *	-ENOENT otherwise.
2962  */
2963 static int get_vpd_keyword_val(const u8 *vpd, const char *kw, int region)
2964 {
2965 	int i, tag;
2966 	unsigned int offset, len;
2967 	const struct t4_vpdr_hdr *vpdr;
2968 
2969 	offset = sizeof(struct t4_vpd_hdr);
2970 	vpdr = (const void *)(vpd + offset);
2971 	tag = vpdr->vpdr_tag;
2972 	len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2973 	while (region--) {
2974 		offset += sizeof(struct t4_vpdr_hdr) + len;
2975 		vpdr = (const void *)(vpd + offset);
2976 		if (++tag != vpdr->vpdr_tag)
2977 			return -ENOENT;
2978 		len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2979 	}
2980 	offset += sizeof(struct t4_vpdr_hdr);
2981 
2982 	if (offset + len > VPD_LEN) {
2983 		return -ENOENT;
2984 	}
2985 
2986 	for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
2987 		if (memcmp(vpd + i , kw , 2) == 0){
2988 			i += VPD_INFO_FLD_HDR_SIZE;
2989 			return i;
2990 		}
2991 
2992 		i += VPD_INFO_FLD_HDR_SIZE + vpd[i+2];
2993 	}
2994 
2995 	return -ENOENT;
2996 }
2997 
2998 
2999 /**
3000  *	get_vpd_params - read VPD parameters from VPD EEPROM
3001  *	@adapter: adapter to read
3002  *	@p: where to store the parameters
3003  *	@vpd: caller provided temporary space to read the VPD into
3004  *
3005  *	Reads card parameters stored in VPD EEPROM.
3006  */
3007 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p,
3008     uint16_t device_id, u32 *buf)
3009 {
3010 	int i, ret, addr;
3011 	int ec, sn, pn, na, md;
3012 	u8 csum;
3013 	const u8 *vpd = (const u8 *)buf;
3014 
3015 	/*
3016 	 * Card information normally starts at VPD_BASE but early cards had
3017 	 * it at 0.
3018 	 */
3019 	ret = t4_seeprom_read(adapter, VPD_BASE, buf);
3020 	if (ret)
3021 		return (ret);
3022 
3023 	/*
3024 	 * The VPD shall have a unique identifier specified by the PCI SIG.
3025 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
3026 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
3027 	 * is expected to automatically put this entry at the
3028 	 * beginning of the VPD.
3029 	 */
3030 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
3031 
3032 	for (i = 0; i < VPD_LEN; i += 4) {
3033 		ret = t4_seeprom_read(adapter, addr + i, buf++);
3034 		if (ret)
3035 			return ret;
3036 	}
3037 
3038 #define FIND_VPD_KW(var,name) do { \
3039 	var = get_vpd_keyword_val(vpd, name, 0); \
3040 	if (var < 0) { \
3041 		CH_ERR(adapter, "missing VPD keyword " name "\n"); \
3042 		return -EINVAL; \
3043 	} \
3044 } while (0)
3045 
3046 	FIND_VPD_KW(i, "RV");
3047 	for (csum = 0; i >= 0; i--)
3048 		csum += vpd[i];
3049 
3050 	if (csum) {
3051 		CH_ERR(adapter,
3052 			"corrupted VPD EEPROM, actual csum %u\n", csum);
3053 		return -EINVAL;
3054 	}
3055 
3056 	FIND_VPD_KW(ec, "EC");
3057 	FIND_VPD_KW(sn, "SN");
3058 	FIND_VPD_KW(pn, "PN");
3059 	FIND_VPD_KW(na, "NA");
3060 #undef FIND_VPD_KW
3061 
3062 	memcpy(p->id, vpd + offsetof(struct t4_vpd_hdr, id_data), ID_LEN);
3063 	strstrip(p->id);
3064 	memcpy(p->ec, vpd + ec, EC_LEN);
3065 	strstrip(p->ec);
3066 	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
3067 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
3068 	strstrip(p->sn);
3069 	i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
3070 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
3071 	strstrip((char *)p->pn);
3072 	i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
3073 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
3074 	strstrip((char *)p->na);
3075 
3076 	if (device_id & 0x80)
3077 		return 0;	/* Custom card */
3078 
3079 	md = get_vpd_keyword_val(vpd, "VF", 1);
3080 	if (md < 0) {
3081 		snprintf(p->md, sizeof(p->md), "unknown");
3082 	} else {
3083 		i = vpd[md - VPD_INFO_FLD_HDR_SIZE + 2];
3084 		memcpy(p->md, vpd + md, min(i, MD_LEN));
3085 		strstrip((char *)p->md);
3086 	}
3087 
3088 	return 0;
3089 }
3090 
3091 /* serial flash and firmware constants and flash config file constants */
3092 enum {
3093 	SF_ATTEMPTS = 10,	/* max retries for SF operations */
3094 
3095 	/* flash command opcodes */
3096 	SF_PROG_PAGE    = 2,	/* program 256B page */
3097 	SF_WR_DISABLE   = 4,	/* disable writes */
3098 	SF_RD_STATUS    = 5,	/* read status register */
3099 	SF_WR_ENABLE    = 6,	/* enable writes */
3100 	SF_RD_DATA_FAST = 0xb,	/* read flash */
3101 	SF_RD_ID	= 0x9f,	/* read ID */
3102 	SF_ERASE_SECTOR = 0xd8,	/* erase 64KB sector */
3103 };
3104 
3105 /**
3106  *	sf1_read - read data from the serial flash
3107  *	@adapter: the adapter
3108  *	@byte_cnt: number of bytes to read
3109  *	@cont: whether another operation will be chained
3110  *	@lock: whether to lock SF for PL access only
3111  *	@valp: where to store the read data
3112  *
3113  *	Reads up to 4 bytes of data from the serial flash.  The location of
3114  *	the read needs to be specified prior to calling this by issuing the
3115  *	appropriate commands to the serial flash.
3116  */
3117 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
3118 		    int lock, u32 *valp)
3119 {
3120 	int ret;
3121 
3122 	if (!byte_cnt || byte_cnt > 4)
3123 		return -EINVAL;
3124 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3125 		return -EBUSY;
3126 	t4_write_reg(adapter, A_SF_OP,
3127 		     V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
3128 	ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3129 	if (!ret)
3130 		*valp = t4_read_reg(adapter, A_SF_DATA);
3131 	return ret;
3132 }
3133 
3134 /**
3135  *	sf1_write - write data to the serial flash
3136  *	@adapter: the adapter
3137  *	@byte_cnt: number of bytes to write
3138  *	@cont: whether another operation will be chained
3139  *	@lock: whether to lock SF for PL access only
3140  *	@val: value to write
3141  *
3142  *	Writes up to 4 bytes of data to the serial flash.  The location of
3143  *	the write needs to be specified prior to calling this by issuing the
3144  *	appropriate commands to the serial flash.
3145  */
3146 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
3147 		     int lock, u32 val)
3148 {
3149 	if (!byte_cnt || byte_cnt > 4)
3150 		return -EINVAL;
3151 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3152 		return -EBUSY;
3153 	t4_write_reg(adapter, A_SF_DATA, val);
3154 	t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
3155 		     V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
3156 	return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3157 }
3158 
3159 /**
3160  *	flash_wait_op - wait for a flash operation to complete
3161  *	@adapter: the adapter
3162  *	@attempts: max number of polls of the status register
3163  *	@delay: delay between polls in ms
3164  *
3165  *	Wait for a flash operation to complete by polling the status register.
3166  */
3167 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3168 {
3169 	int ret;
3170 	u32 status;
3171 
3172 	while (1) {
3173 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3174 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3175 			return ret;
3176 		if (!(status & 1))
3177 			return 0;
3178 		if (--attempts == 0)
3179 			return -EAGAIN;
3180 		if (delay)
3181 			msleep(delay);
3182 	}
3183 }
3184 
3185 /**
3186  *	t4_read_flash - read words from serial flash
3187  *	@adapter: the adapter
3188  *	@addr: the start address for the read
3189  *	@nwords: how many 32-bit words to read
3190  *	@data: where to store the read data
3191  *	@byte_oriented: whether to store data as bytes or as words
3192  *
3193  *	Read the specified number of 32-bit words from the serial flash.
3194  *	If @byte_oriented is set the read data is stored as a byte array
3195  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3196  *	natural endianness.
3197  */
3198 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3199 		  unsigned int nwords, u32 *data, int byte_oriented)
3200 {
3201 	int ret;
3202 
3203 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3204 		return -EINVAL;
3205 
3206 	addr = swab32(addr) | SF_RD_DATA_FAST;
3207 
3208 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3209 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3210 		return ret;
3211 
3212 	for ( ; nwords; nwords--, data++) {
3213 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3214 		if (nwords == 1)
3215 			t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3216 		if (ret)
3217 			return ret;
3218 		if (byte_oriented)
3219 			*data = (__force __u32)(cpu_to_be32(*data));
3220 	}
3221 	return 0;
3222 }
3223 
3224 /**
3225  *	t4_write_flash - write up to a page of data to the serial flash
3226  *	@adapter: the adapter
3227  *	@addr: the start address to write
3228  *	@n: length of data to write in bytes
3229  *	@data: the data to write
3230  *	@byte_oriented: whether to store data as bytes or as words
3231  *
3232  *	Writes up to a page of data (256 bytes) to the serial flash starting
3233  *	at the given address.  All the data must be written to the same page.
3234  *	If @byte_oriented is set the write data is stored as byte stream
3235  *	(i.e. matches what on disk), otherwise in big-endian.
3236  */
3237 int t4_write_flash(struct adapter *adapter, unsigned int addr,
3238 			  unsigned int n, const u8 *data, int byte_oriented)
3239 {
3240 	int ret;
3241 	u32 buf[SF_PAGE_SIZE / 4];
3242 	unsigned int i, c, left, val, offset = addr & 0xff;
3243 
3244 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3245 		return -EINVAL;
3246 
3247 	val = swab32(addr) | SF_PROG_PAGE;
3248 
3249 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3250 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3251 		goto unlock;
3252 
3253 	for (left = n; left; left -= c) {
3254 		c = min(left, 4U);
3255 		for (val = 0, i = 0; i < c; ++i)
3256 			val = (val << 8) + *data++;
3257 
3258 		if (!byte_oriented)
3259 			val = cpu_to_be32(val);
3260 
3261 		ret = sf1_write(adapter, c, c != left, 1, val);
3262 		if (ret)
3263 			goto unlock;
3264 	}
3265 	ret = flash_wait_op(adapter, 8, 1);
3266 	if (ret)
3267 		goto unlock;
3268 
3269 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3270 
3271 	/* Read the page to verify the write succeeded */
3272 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3273 			    byte_oriented);
3274 	if (ret)
3275 		return ret;
3276 
3277 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3278 		CH_ERR(adapter,
3279 			"failed to correctly write the flash page at %#x\n",
3280 			addr);
3281 		return -EIO;
3282 	}
3283 	return 0;
3284 
3285 unlock:
3286 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3287 	return ret;
3288 }
3289 
3290 /**
3291  *	t4_get_fw_version - read the firmware version
3292  *	@adapter: the adapter
3293  *	@vers: where to place the version
3294  *
3295  *	Reads the FW version from flash.
3296  */
3297 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3298 {
3299 	return t4_read_flash(adapter, FLASH_FW_START +
3300 			     offsetof(struct fw_hdr, fw_ver), 1,
3301 			     vers, 0);
3302 }
3303 
3304 /**
3305  *	t4_get_fw_hdr - read the firmware header
3306  *	@adapter: the adapter
3307  *	@hdr: where to place the version
3308  *
3309  *	Reads the FW header from flash into caller provided buffer.
3310  */
3311 int t4_get_fw_hdr(struct adapter *adapter, struct fw_hdr *hdr)
3312 {
3313 	return t4_read_flash(adapter, FLASH_FW_START,
3314 	    sizeof (*hdr) / sizeof (uint32_t), (uint32_t *)hdr, 1);
3315 }
3316 
3317 /**
3318  *	t4_get_bs_version - read the firmware bootstrap version
3319  *	@adapter: the adapter
3320  *	@vers: where to place the version
3321  *
3322  *	Reads the FW Bootstrap version from flash.
3323  */
3324 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3325 {
3326 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3327 			     offsetof(struct fw_hdr, fw_ver), 1,
3328 			     vers, 0);
3329 }
3330 
3331 /**
3332  *	t4_get_tp_version - read the TP microcode version
3333  *	@adapter: the adapter
3334  *	@vers: where to place the version
3335  *
3336  *	Reads the TP microcode version from flash.
3337  */
3338 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3339 {
3340 	return t4_read_flash(adapter, FLASH_FW_START +
3341 			     offsetof(struct fw_hdr, tp_microcode_ver),
3342 			     1, vers, 0);
3343 }
3344 
3345 /**
3346  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3347  *	@adapter: the adapter
3348  *	@vers: where to place the version
3349  *
3350  *	Reads the Expansion ROM header from FLASH and returns the version
3351  *	number (if present) through the @vers return value pointer.  We return
3352  *	this in the Firmware Version Format since it's convenient.  Return
3353  *	0 on success, -ENOENT if no Expansion ROM is present.
3354  */
3355 int t4_get_exprom_version(struct adapter *adapter, u32 *vers)
3356 {
3357 	struct exprom_header {
3358 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3359 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3360 	} *hdr;
3361 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3362 					   sizeof(u32))];
3363 	int ret;
3364 
3365 	ret = t4_read_flash(adapter, FLASH_EXP_ROM_START,
3366 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3367 			    0);
3368 	if (ret)
3369 		return ret;
3370 
3371 	hdr = (struct exprom_header *)exprom_header_buf;
3372 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3373 		return -ENOENT;
3374 
3375 	*vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
3376 		 V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
3377 		 V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
3378 		 V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
3379 	return 0;
3380 }
3381 
3382 /**
3383  *	t4_get_scfg_version - return the Serial Configuration version
3384  *	@adapter: the adapter
3385  *	@vers: where to place the version
3386  *
3387  *	Reads the Serial Configuration Version via the Firmware interface
3388  *	(thus this can only be called once we're ready to issue Firmware
3389  *	commands).  The format of the Serial Configuration version is
3390  *	adapter specific.  Returns 0 on success, an error on failure.
3391  *
3392  *	Note that early versions of the Firmware didn't include the ability
3393  *	to retrieve the Serial Configuration version, so we zero-out the
3394  *	return-value parameter in that case to avoid leaving it with
3395  *	garbage in it.
3396  *
3397  *	Also note that the Firmware will return its cached copy of the Serial
3398  *	Initialization Revision ID, not the actual Revision ID as written in
3399  *	the Serial EEPROM.  This is only an issue if a new VPD has been written
3400  *	and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3401  *	it's best to defer calling this routine till after a FW_RESET_CMD has
3402  *	been issued if the Host Driver will be performing a full adapter
3403  *	initialization.
3404  */
3405 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3406 {
3407 	u32 scfgrev_param;
3408 	int ret;
3409 
3410 	scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3411 			 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV));
3412 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3413 			      1, &scfgrev_param, vers);
3414 	if (ret)
3415 		*vers = 0;
3416 	return ret;
3417 }
3418 
3419 /**
3420  *	t4_get_vpd_version - return the VPD version
3421  *	@adapter: the adapter
3422  *	@vers: where to place the version
3423  *
3424  *	Reads the VPD via the Firmware interface (thus this can only be called
3425  *	once we're ready to issue Firmware commands).  The format of the
3426  *	VPD version is adapter specific.  Returns 0 on success, an error on
3427  *	failure.
3428  *
3429  *	Note that early versions of the Firmware didn't include the ability
3430  *	to retrieve the VPD version, so we zero-out the return-value parameter
3431  *	in that case to avoid leaving it with garbage in it.
3432  *
3433  *	Also note that the Firmware will return its cached copy of the VPD
3434  *	Revision ID, not the actual Revision ID as written in the Serial
3435  *	EEPROM.  This is only an issue if a new VPD has been written and the
3436  *	Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3437  *	to defer calling this routine till after a FW_RESET_CMD has been issued
3438  *	if the Host Driver will be performing a full adapter initialization.
3439  */
3440 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3441 {
3442 	u32 vpdrev_param;
3443 	int ret;
3444 
3445 	vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3446 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV));
3447 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3448 			      1, &vpdrev_param, vers);
3449 	if (ret)
3450 		*vers = 0;
3451 	return ret;
3452 }
3453 
3454 /**
3455  *	t4_get_version_info - extract various chip/firmware version information
3456  *	@adapter: the adapter
3457  *
3458  *	Reads various chip/firmware version numbers and stores them into the
3459  *	adapter Adapter Parameters structure.  If any of the efforts fails
3460  *	the first failure will be returned, but all of the version numbers
3461  *	will be read.
3462  */
3463 int t4_get_version_info(struct adapter *adapter)
3464 {
3465 	int ret = 0;
3466 
3467 	#define FIRST_RET(__getvinfo) \
3468 	do { \
3469 		int __ret = __getvinfo; \
3470 		if (__ret && !ret) \
3471 			ret = __ret; \
3472 	} while (0)
3473 
3474 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3475 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3476 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3477 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3478 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3479 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3480 
3481 	#undef FIRST_RET
3482 
3483 	return ret;
3484 }
3485 
3486 /**
3487  *	t4_flash_erase_sectors - erase a range of flash sectors
3488  *	@adapter: the adapter
3489  *	@start: the first sector to erase
3490  *	@end: the last sector to erase
3491  *
3492  *	Erases the sectors in the given inclusive range.
3493  */
3494 int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3495 {
3496 	int ret = 0;
3497 
3498 	if (end >= adapter->params.sf_nsec)
3499 		return -EINVAL;
3500 
3501 	while (start <= end) {
3502 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3503 		    (ret = sf1_write(adapter, 4, 0, 1,
3504 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3505 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3506 			CH_ERR(adapter,
3507 				"erase of flash sector %d failed, error %d\n",
3508 				start, ret);
3509 			break;
3510 		}
3511 		start++;
3512 	}
3513 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3514 	return ret;
3515 }
3516 
3517 /**
3518  *	t4_flash_cfg_addr - return the address of the flash configuration file
3519  *	@adapter: the adapter
3520  *
3521  *	Return the address within the flash where the Firmware Configuration
3522  *	File is stored, or an error if the device FLASH is too small to contain
3523  *	a Firmware Configuration File.
3524  */
3525 int t4_flash_cfg_addr(struct adapter *adapter)
3526 {
3527 	/*
3528 	 * If the device FLASH isn't large enough to hold a Firmware
3529 	 * Configuration File, return an error.
3530 	 */
3531 	if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
3532 		return -ENOSPC;
3533 
3534 	return FLASH_CFG_START;
3535 }
3536 
3537 /*
3538  * Return TRUE if the specified firmware matches the adapter.  I.e. T4
3539  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3540  * and emit an error message for mismatched firmware to save our caller the
3541  * effort ...
3542  */
3543 static int t4_fw_matches_chip(struct adapter *adap,
3544 			      const struct fw_hdr *hdr)
3545 {
3546 	/*
3547 	 * The expression below will return FALSE for any unsupported adapter
3548 	 * which will keep us "honest" in the future ...
3549 	 */
3550 	if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) ||
3551 	    (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) ||
3552 	    (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6))
3553 		return 1;
3554 
3555 	CH_ERR(adap,
3556 		"FW image (%d) is not suitable for this adapter (%d)\n",
3557 		hdr->chip, chip_id(adap));
3558 	return 0;
3559 }
3560 
3561 /**
3562  *	t4_load_fw - download firmware
3563  *	@adap: the adapter
3564  *	@fw_data: the firmware image to write
3565  *	@size: image size
3566  *
3567  *	Write the supplied firmware image to the card's serial flash.
3568  */
3569 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3570 {
3571 	u32 csum;
3572 	int ret, addr;
3573 	unsigned int i;
3574 	u8 first_page[SF_PAGE_SIZE];
3575 	const u32 *p = (const u32 *)fw_data;
3576 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3577 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3578 	unsigned int fw_start_sec;
3579 	unsigned int fw_start;
3580 	unsigned int fw_size;
3581 
3582 	if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) {
3583 		fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC;
3584 		fw_start = FLASH_FWBOOTSTRAP_START;
3585 		fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE;
3586 	} else {
3587 		fw_start_sec = FLASH_FW_START_SEC;
3588  		fw_start = FLASH_FW_START;
3589 		fw_size = FLASH_FW_MAX_SIZE;
3590 	}
3591 
3592 	if (!size) {
3593 		CH_ERR(adap, "FW image has no data\n");
3594 		return -EINVAL;
3595 	}
3596 	if (size & 511) {
3597 		CH_ERR(adap,
3598 			"FW image size not multiple of 512 bytes\n");
3599 		return -EINVAL;
3600 	}
3601 	if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) {
3602 		CH_ERR(adap,
3603 			"FW image size differs from size in FW header\n");
3604 		return -EINVAL;
3605 	}
3606 	if (size > fw_size) {
3607 		CH_ERR(adap, "FW image too large, max is %u bytes\n",
3608 			fw_size);
3609 		return -EFBIG;
3610 	}
3611 	if (!t4_fw_matches_chip(adap, hdr))
3612 		return -EINVAL;
3613 
3614 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3615 		csum += be32_to_cpu(p[i]);
3616 
3617 	if (csum != 0xffffffff) {
3618 		CH_ERR(adap,
3619 			"corrupted firmware image, checksum %#x\n", csum);
3620 		return -EINVAL;
3621 	}
3622 
3623 	i = DIV_ROUND_UP(size, sf_sec_size);	/* # of sectors spanned */
3624 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3625 	if (ret)
3626 		goto out;
3627 
3628 	/*
3629 	 * We write the correct version at the end so the driver can see a bad
3630 	 * version if the FW write fails.  Start by writing a copy of the
3631 	 * first page with a bad version.
3632 	 */
3633 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3634 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3635 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
3636 	if (ret)
3637 		goto out;
3638 
3639 	addr = fw_start;
3640 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3641 		addr += SF_PAGE_SIZE;
3642 		fw_data += SF_PAGE_SIZE;
3643 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
3644 		if (ret)
3645 			goto out;
3646 	}
3647 
3648 	ret = t4_write_flash(adap,
3649 			     fw_start + offsetof(struct fw_hdr, fw_ver),
3650 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
3651 out:
3652 	if (ret)
3653 		CH_ERR(adap, "firmware download failed, error %d\n",
3654 			ret);
3655 	return ret;
3656 }
3657 
3658 /**
3659  *	t4_fwcache - firmware cache operation
3660  *	@adap: the adapter
3661  *	@op  : the operation (flush or flush and invalidate)
3662  */
3663 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3664 {
3665 	struct fw_params_cmd c;
3666 
3667 	memset(&c, 0, sizeof(c));
3668 	c.op_to_vfn =
3669 	    cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3670 			    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3671 				V_FW_PARAMS_CMD_PFN(adap->pf) |
3672 				V_FW_PARAMS_CMD_VFN(0));
3673 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3674 	c.param[0].mnem =
3675 	    cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3676 			    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE));
3677 	c.param[0].val = (__force __be32)op;
3678 
3679 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3680 }
3681 
3682 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3683 			unsigned int *pif_req_wrptr,
3684 			unsigned int *pif_rsp_wrptr)
3685 {
3686 	int i, j;
3687 	u32 cfg, val, req, rsp;
3688 
3689 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3690 	if (cfg & F_LADBGEN)
3691 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3692 
3693 	val = t4_read_reg(adap, A_CIM_DEBUGSTS);
3694 	req = G_POLADBGWRPTR(val);
3695 	rsp = G_PILADBGWRPTR(val);
3696 	if (pif_req_wrptr)
3697 		*pif_req_wrptr = req;
3698 	if (pif_rsp_wrptr)
3699 		*pif_rsp_wrptr = rsp;
3700 
3701 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3702 		for (j = 0; j < 6; j++) {
3703 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
3704 				     V_PILADBGRDPTR(rsp));
3705 			*pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
3706 			*pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
3707 			req++;
3708 			rsp++;
3709 		}
3710 		req = (req + 2) & M_POLADBGRDPTR;
3711 		rsp = (rsp + 2) & M_PILADBGRDPTR;
3712 	}
3713 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3714 }
3715 
3716 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3717 {
3718 	u32 cfg;
3719 	int i, j, idx;
3720 
3721 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3722 	if (cfg & F_LADBGEN)
3723 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3724 
3725 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3726 		for (j = 0; j < 5; j++) {
3727 			idx = 8 * i + j;
3728 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
3729 				     V_PILADBGRDPTR(idx));
3730 			*ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
3731 			*ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
3732 		}
3733 	}
3734 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3735 }
3736 
3737 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3738 {
3739 	unsigned int i, j;
3740 
3741 	for (i = 0; i < 8; i++) {
3742 		u32 *p = la_buf + i;
3743 
3744 		t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
3745 		j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
3746 		t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
3747 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3748 			*p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
3749 	}
3750 }
3751 
3752 /**
3753  *	fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3754  *	@caps16: a 16-bit Port Capabilities value
3755  *
3756  *	Returns the equivalent 32-bit Port Capabilities value.
3757  */
3758 static uint32_t fwcaps16_to_caps32(uint16_t caps16)
3759 {
3760 	uint32_t caps32 = 0;
3761 
3762 	#define CAP16_TO_CAP32(__cap) \
3763 		do { \
3764 			if (caps16 & FW_PORT_CAP_##__cap) \
3765 				caps32 |= FW_PORT_CAP32_##__cap; \
3766 		} while (0)
3767 
3768 	CAP16_TO_CAP32(SPEED_100M);
3769 	CAP16_TO_CAP32(SPEED_1G);
3770 	CAP16_TO_CAP32(SPEED_25G);
3771 	CAP16_TO_CAP32(SPEED_10G);
3772 	CAP16_TO_CAP32(SPEED_40G);
3773 	CAP16_TO_CAP32(SPEED_100G);
3774 	CAP16_TO_CAP32(FC_RX);
3775 	CAP16_TO_CAP32(FC_TX);
3776 	CAP16_TO_CAP32(ANEG);
3777 	CAP16_TO_CAP32(FORCE_PAUSE);
3778 	CAP16_TO_CAP32(MDIAUTO);
3779 	CAP16_TO_CAP32(MDISTRAIGHT);
3780 	CAP16_TO_CAP32(FEC_RS);
3781 	CAP16_TO_CAP32(FEC_BASER_RS);
3782 	CAP16_TO_CAP32(802_3_PAUSE);
3783 	CAP16_TO_CAP32(802_3_ASM_DIR);
3784 
3785 	#undef CAP16_TO_CAP32
3786 
3787 	return caps32;
3788 }
3789 
3790 /**
3791  *	fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
3792  *	@caps32: a 32-bit Port Capabilities value
3793  *
3794  *	Returns the equivalent 16-bit Port Capabilities value.  Note that
3795  *	not all 32-bit Port Capabilities can be represented in the 16-bit
3796  *	Port Capabilities and some fields/values may not make it.
3797  */
3798 static uint16_t fwcaps32_to_caps16(uint32_t caps32)
3799 {
3800 	uint16_t caps16 = 0;
3801 
3802 	#define CAP32_TO_CAP16(__cap) \
3803 		do { \
3804 			if (caps32 & FW_PORT_CAP32_##__cap) \
3805 				caps16 |= FW_PORT_CAP_##__cap; \
3806 		} while (0)
3807 
3808 	CAP32_TO_CAP16(SPEED_100M);
3809 	CAP32_TO_CAP16(SPEED_1G);
3810 	CAP32_TO_CAP16(SPEED_10G);
3811 	CAP32_TO_CAP16(SPEED_25G);
3812 	CAP32_TO_CAP16(SPEED_40G);
3813 	CAP32_TO_CAP16(SPEED_100G);
3814 	CAP32_TO_CAP16(FC_RX);
3815 	CAP32_TO_CAP16(FC_TX);
3816 	CAP32_TO_CAP16(802_3_PAUSE);
3817 	CAP32_TO_CAP16(802_3_ASM_DIR);
3818 	CAP32_TO_CAP16(ANEG);
3819 	CAP32_TO_CAP16(FORCE_PAUSE);
3820 	CAP32_TO_CAP16(MDIAUTO);
3821 	CAP32_TO_CAP16(MDISTRAIGHT);
3822 	CAP32_TO_CAP16(FEC_RS);
3823 	CAP32_TO_CAP16(FEC_BASER_RS);
3824 
3825 	#undef CAP32_TO_CAP16
3826 
3827 	return caps16;
3828 }
3829 
3830 static int8_t fwcap_to_fec(uint32_t caps, bool unset_means_none)
3831 {
3832 	int8_t fec = 0;
3833 
3834 	if ((caps & V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC)) == 0)
3835 		return (unset_means_none ? FEC_NONE : 0);
3836 
3837 	if (caps & FW_PORT_CAP32_FEC_RS)
3838 		fec |= FEC_RS;
3839 	if (caps & FW_PORT_CAP32_FEC_BASER_RS)
3840 		fec |= FEC_BASER_RS;
3841 	if (caps & FW_PORT_CAP32_FEC_NO_FEC)
3842 		fec |= FEC_NONE;
3843 
3844 	return (fec);
3845 }
3846 
3847 /*
3848  * Note that 0 is not translated to NO_FEC.
3849  */
3850 static uint32_t fec_to_fwcap(int8_t fec)
3851 {
3852 	uint32_t caps = 0;
3853 
3854 	/* Only real FECs allowed. */
3855 	MPASS((fec & ~M_FW_PORT_CAP32_FEC) == 0);
3856 
3857 	if (fec & FEC_RS)
3858 		caps |= FW_PORT_CAP32_FEC_RS;
3859 	if (fec & FEC_BASER_RS)
3860 		caps |= FW_PORT_CAP32_FEC_BASER_RS;
3861 	if (fec & FEC_NONE)
3862 		caps |= FW_PORT_CAP32_FEC_NO_FEC;
3863 
3864 	return (caps);
3865 }
3866 
3867 /**
3868  *	t4_link_l1cfg - apply link configuration to MAC/PHY
3869  *	@phy: the PHY to setup
3870  *	@mac: the MAC to setup
3871  *	@lc: the requested link configuration
3872  *
3873  *	Set up a port's MAC and PHY according to a desired link configuration.
3874  *	- If the PHY can auto-negotiate first decide what to advertise, then
3875  *	  enable/disable auto-negotiation as desired, and reset.
3876  *	- If the PHY does not auto-negotiate just reset it.
3877  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3878  *	  otherwise do it later based on the outcome of auto-negotiation.
3879  */
3880 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3881 		  struct link_config *lc)
3882 {
3883 	struct fw_port_cmd c;
3884 	unsigned int mdi = V_FW_PORT_CAP32_MDI(FW_PORT_CAP32_MDI_AUTO);
3885 	unsigned int aneg, fc, fec, speed, rcap;
3886 
3887 	fc = 0;
3888 	if (lc->requested_fc & PAUSE_RX)
3889 		fc |= FW_PORT_CAP32_FC_RX;
3890 	if (lc->requested_fc & PAUSE_TX)
3891 		fc |= FW_PORT_CAP32_FC_TX;
3892 	if (!(lc->requested_fc & PAUSE_AUTONEG))
3893 		fc |= FW_PORT_CAP32_FORCE_PAUSE;
3894 
3895 	if (lc->requested_aneg == AUTONEG_DISABLE)
3896 		aneg = 0;
3897 	else if (lc->requested_aneg == AUTONEG_ENABLE)
3898 		aneg = FW_PORT_CAP32_ANEG;
3899 	else
3900 		aneg = lc->pcaps & FW_PORT_CAP32_ANEG;
3901 
3902 	if (aneg) {
3903 		speed = lc->pcaps &
3904 		    V_FW_PORT_CAP32_SPEED(M_FW_PORT_CAP32_SPEED);
3905 	} else if (lc->requested_speed != 0)
3906 		speed = speed_to_fwcap(lc->requested_speed);
3907 	else
3908 		speed = fwcap_top_speed(lc->pcaps);
3909 
3910 	fec = 0;
3911 #ifdef INVARIANTS
3912 	if (lc->force_fec != 0)
3913 		MPASS(lc->pcaps & FW_PORT_CAP32_FORCE_FEC);
3914 #endif
3915 	if (fec_supported(speed)) {
3916 		if (lc->requested_fec == FEC_AUTO) {
3917 			if (lc->force_fec > 0) {
3918 				/*
3919 				 * Must use FORCE_FEC even though requested FEC
3920 				 * is AUTO. Set all the FEC bits valid for the
3921 				 * speed and let the firmware pick one.
3922 				 */
3923 				fec |= FW_PORT_CAP32_FORCE_FEC;
3924 				if (speed & FW_PORT_CAP32_SPEED_100G) {
3925 					fec |= FW_PORT_CAP32_FEC_RS;
3926 					fec |= FW_PORT_CAP32_FEC_NO_FEC;
3927 				} else if (speed & FW_PORT_CAP32_SPEED_50G) {
3928 					fec |= FW_PORT_CAP32_FEC_BASER_RS;
3929 					fec |= FW_PORT_CAP32_FEC_NO_FEC;
3930 				} else {
3931 					fec |= FW_PORT_CAP32_FEC_RS;
3932 					fec |= FW_PORT_CAP32_FEC_BASER_RS;
3933 					fec |= FW_PORT_CAP32_FEC_NO_FEC;
3934 				}
3935 			} else {
3936 				/*
3937 				 * Set only 1b. Old firmwares can't deal with
3938 				 * multiple bits and new firmwares are free to
3939 				 * ignore this and try whatever FECs they want
3940 				 * because we aren't setting FORCE_FEC here.
3941 				 */
3942 				fec |= fec_to_fwcap(lc->fec_hint);
3943 				MPASS(powerof2(fec));
3944 
3945 				/*
3946 				 * Override the hint if the FEC is not valid for
3947 				 * the potential top speed.  Request the best
3948 				 * FEC at that speed instead.
3949 				 */
3950 				if (speed & FW_PORT_CAP32_SPEED_100G) {
3951 					if (fec == FW_PORT_CAP32_FEC_BASER_RS)
3952 						fec = FW_PORT_CAP32_FEC_RS;
3953 				} else if (speed & FW_PORT_CAP32_SPEED_50G) {
3954 					if (fec == FW_PORT_CAP32_FEC_RS)
3955 						fec = FW_PORT_CAP32_FEC_BASER_RS;
3956 				}
3957 			}
3958 		} else {
3959 			/*
3960 			 * User has explicitly requested some FEC(s). Set
3961 			 * FORCE_FEC unless prohibited from using it.
3962 			 */
3963 			if (lc->force_fec != 0)
3964 				fec |= FW_PORT_CAP32_FORCE_FEC;
3965 			fec |= fec_to_fwcap(lc->requested_fec &
3966 			    M_FW_PORT_CAP32_FEC);
3967 			if (lc->requested_fec & FEC_MODULE)
3968 				fec |= fec_to_fwcap(lc->fec_hint);
3969 		}
3970 
3971 		/*
3972 		 * This is for compatibility with old firmwares. The original
3973 		 * way to request NO_FEC was to not set any of the FEC bits. New
3974 		 * firmwares understand this too.
3975 		 */
3976 		if (fec == FW_PORT_CAP32_FEC_NO_FEC)
3977 			fec = 0;
3978 	}
3979 
3980 	/* Force AN on for BT cards. */
3981 	if (isset(&adap->bt_map, port))
3982 		aneg = lc->pcaps & FW_PORT_CAP32_ANEG;
3983 
3984 	rcap = aneg | speed | fc | fec;
3985 	if ((rcap | lc->pcaps) != lc->pcaps) {
3986 #ifdef INVARIANTS
3987 		CH_WARN(adap, "rcap 0x%08x, pcap 0x%08x, removed 0x%x\n", rcap,
3988 		    lc->pcaps, rcap & (rcap ^ lc->pcaps));
3989 #endif
3990 		rcap &= lc->pcaps;
3991 	}
3992 	rcap |= mdi;
3993 
3994 	memset(&c, 0, sizeof(c));
3995 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3996 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3997 				     V_FW_PORT_CMD_PORTID(port));
3998 	if (adap->params.port_caps32) {
3999 		c.action_to_len16 =
4000 		    cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG32) |
4001 			FW_LEN16(c));
4002 		c.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
4003 	} else {
4004 		c.action_to_len16 =
4005 		    cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
4006 			    FW_LEN16(c));
4007 		c.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
4008 	}
4009 
4010 	lc->requested_caps = rcap;
4011 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
4012 }
4013 
4014 /**
4015  *	t4_restart_aneg - restart autonegotiation
4016  *	@adap: the adapter
4017  *	@mbox: mbox to use for the FW command
4018  *	@port: the port id
4019  *
4020  *	Restarts autonegotiation for the selected port.
4021  */
4022 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
4023 {
4024 	struct fw_port_cmd c;
4025 
4026 	memset(&c, 0, sizeof(c));
4027 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
4028 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
4029 				     V_FW_PORT_CMD_PORTID(port));
4030 	c.action_to_len16 =
4031 		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
4032 			    FW_LEN16(c));
4033 	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
4034 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4035 }
4036 
4037 struct intr_details {
4038 	u32 mask;
4039 	const char *msg;
4040 };
4041 
4042 struct intr_action {
4043 	u32 mask;
4044 	int arg;
4045 	bool (*action)(struct adapter *, int, bool);
4046 };
4047 
4048 #define NONFATAL_IF_DISABLED 1
4049 struct intr_info {
4050 	const char *name;	/* name of the INT_CAUSE register */
4051 	int cause_reg;		/* INT_CAUSE register */
4052 	int enable_reg;		/* INT_ENABLE register */
4053 	u32 fatal;		/* bits that are fatal */
4054 	int flags;		/* hints */
4055 	const struct intr_details *details;
4056 	const struct intr_action *actions;
4057 };
4058 
4059 static inline char
4060 intr_alert_char(u32 cause, u32 enable, u32 fatal)
4061 {
4062 
4063 	if (cause & fatal)
4064 		return ('!');
4065 	if (cause & enable)
4066 		return ('*');
4067 	return ('-');
4068 }
4069 
4070 static void
4071 t4_show_intr_info(struct adapter *adap, const struct intr_info *ii, u32 cause)
4072 {
4073 	u32 enable, fatal, leftover;
4074 	const struct intr_details *details;
4075 	char alert;
4076 
4077 	enable = t4_read_reg(adap, ii->enable_reg);
4078 	if (ii->flags & NONFATAL_IF_DISABLED)
4079 		fatal = ii->fatal & t4_read_reg(adap, ii->enable_reg);
4080 	else
4081 		fatal = ii->fatal;
4082 	alert = intr_alert_char(cause, enable, fatal);
4083 	CH_ALERT(adap, "%c %s 0x%x = 0x%08x, E 0x%08x, F 0x%08x\n",
4084 	    alert, ii->name, ii->cause_reg, cause, enable, fatal);
4085 
4086 	leftover = cause;
4087 	for (details = ii->details; details && details->mask != 0; details++) {
4088 		u32 msgbits = details->mask & cause;
4089 		if (msgbits == 0)
4090 			continue;
4091 		alert = intr_alert_char(msgbits, enable, ii->fatal);
4092 		CH_ALERT(adap, "  %c [0x%08x] %s\n", alert, msgbits,
4093 		    details->msg);
4094 		leftover &= ~msgbits;
4095 	}
4096 	if (leftover != 0 && leftover != cause)
4097 		CH_ALERT(adap, "  ? [0x%08x]\n", leftover);
4098 }
4099 
4100 /*
4101  * Returns true for fatal error.
4102  */
4103 static bool
4104 t4_handle_intr(struct adapter *adap, const struct intr_info *ii,
4105     u32 additional_cause, bool verbose)
4106 {
4107 	u32 cause, fatal;
4108 	bool rc;
4109 	const struct intr_action *action;
4110 
4111 	/*
4112 	 * Read and display cause.  Note that the top level PL_INT_CAUSE is a
4113 	 * bit special and we need to completely ignore the bits that are not in
4114 	 * PL_INT_ENABLE.
4115 	 */
4116 	cause = t4_read_reg(adap, ii->cause_reg);
4117 	if (ii->cause_reg == A_PL_INT_CAUSE)
4118 		cause &= t4_read_reg(adap, ii->enable_reg);
4119 	if (verbose || cause != 0)
4120 		t4_show_intr_info(adap, ii, cause);
4121 	fatal = cause & ii->fatal;
4122 	if (fatal != 0 && ii->flags & NONFATAL_IF_DISABLED)
4123 		fatal &= t4_read_reg(adap, ii->enable_reg);
4124 	cause |= additional_cause;
4125 	if (cause == 0)
4126 		return (false);
4127 
4128 	rc = fatal != 0;
4129 	for (action = ii->actions; action && action->mask != 0; action++) {
4130 		if (!(action->mask & cause))
4131 			continue;
4132 		rc |= (action->action)(adap, action->arg, verbose);
4133 	}
4134 
4135 	/* clear */
4136 	t4_write_reg(adap, ii->cause_reg, cause);
4137 	(void)t4_read_reg(adap, ii->cause_reg);
4138 
4139 	return (rc);
4140 }
4141 
4142 /*
4143  * Interrupt handler for the PCIE module.
4144  */
4145 static bool pcie_intr_handler(struct adapter *adap, int arg, bool verbose)
4146 {
4147 	static const struct intr_details sysbus_intr_details[] = {
4148 		{ F_RNPP, "RXNP array parity error" },
4149 		{ F_RPCP, "RXPC array parity error" },
4150 		{ F_RCIP, "RXCIF array parity error" },
4151 		{ F_RCCP, "Rx completions control array parity error" },
4152 		{ F_RFTP, "RXFT array parity error" },
4153 		{ 0 }
4154 	};
4155 	static const struct intr_info sysbus_intr_info = {
4156 		.name = "PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS",
4157 		.cause_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
4158 		.enable_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_INTERRUPT_ENABLE,
4159 		.fatal = F_RFTP | F_RCCP | F_RCIP | F_RPCP | F_RNPP,
4160 		.flags = 0,
4161 		.details = sysbus_intr_details,
4162 		.actions = NULL,
4163 	};
4164 	static const struct intr_details pcie_port_intr_details[] = {
4165 		{ F_TPCP, "TXPC array parity error" },
4166 		{ F_TNPP, "TXNP array parity error" },
4167 		{ F_TFTP, "TXFT array parity error" },
4168 		{ F_TCAP, "TXCA array parity error" },
4169 		{ F_TCIP, "TXCIF array parity error" },
4170 		{ F_RCAP, "RXCA array parity error" },
4171 		{ F_OTDD, "outbound request TLP discarded" },
4172 		{ F_RDPE, "Rx data parity error" },
4173 		{ F_TDUE, "Tx uncorrectable data error" },
4174 		{ 0 }
4175 	};
4176 	static const struct intr_info pcie_port_intr_info = {
4177 		.name = "PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS",
4178 		.cause_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
4179 		.enable_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_INTERRUPT_ENABLE,
4180 		.fatal = F_TPCP | F_TNPP | F_TFTP | F_TCAP | F_TCIP | F_RCAP |
4181 		    F_OTDD | F_RDPE | F_TDUE,
4182 		.flags = 0,
4183 		.details = pcie_port_intr_details,
4184 		.actions = NULL,
4185 	};
4186 	static const struct intr_details pcie_intr_details[] = {
4187 		{ F_MSIADDRLPERR, "MSI AddrL parity error" },
4188 		{ F_MSIADDRHPERR, "MSI AddrH parity error" },
4189 		{ F_MSIDATAPERR, "MSI data parity error" },
4190 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error" },
4191 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error" },
4192 		{ F_MSIXDATAPERR, "MSI-X data parity error" },
4193 		{ F_MSIXDIPERR, "MSI-X DI parity error" },
4194 		{ F_PIOCPLPERR, "PCIe PIO completion FIFO parity error" },
4195 		{ F_PIOREQPERR, "PCIe PIO request FIFO parity error" },
4196 		{ F_TARTAGPERR, "PCIe target tag FIFO parity error" },
4197 		{ F_CCNTPERR, "PCIe CMD channel count parity error" },
4198 		{ F_CREQPERR, "PCIe CMD channel request parity error" },
4199 		{ F_CRSPPERR, "PCIe CMD channel response parity error" },
4200 		{ F_DCNTPERR, "PCIe DMA channel count parity error" },
4201 		{ F_DREQPERR, "PCIe DMA channel request parity error" },
4202 		{ F_DRSPPERR, "PCIe DMA channel response parity error" },
4203 		{ F_HCNTPERR, "PCIe HMA channel count parity error" },
4204 		{ F_HREQPERR, "PCIe HMA channel request parity error" },
4205 		{ F_HRSPPERR, "PCIe HMA channel response parity error" },
4206 		{ F_CFGSNPPERR, "PCIe config snoop FIFO parity error" },
4207 		{ F_FIDPERR, "PCIe FID parity error" },
4208 		{ F_INTXCLRPERR, "PCIe INTx clear parity error" },
4209 		{ F_MATAGPERR, "PCIe MA tag parity error" },
4210 		{ F_PIOTAGPERR, "PCIe PIO tag parity error" },
4211 		{ F_RXCPLPERR, "PCIe Rx completion parity error" },
4212 		{ F_RXWRPERR, "PCIe Rx write parity error" },
4213 		{ F_RPLPERR, "PCIe replay buffer parity error" },
4214 		{ F_PCIESINT, "PCIe core secondary fault" },
4215 		{ F_PCIEPINT, "PCIe core primary fault" },
4216 		{ F_UNXSPLCPLERR, "PCIe unexpected split completion error" },
4217 		{ 0 }
4218 	};
4219 	static const struct intr_details t5_pcie_intr_details[] = {
4220 		{ F_IPGRPPERR, "Parity errors observed by IP" },
4221 		{ F_NONFATALERR, "PCIe non-fatal error" },
4222 		{ F_READRSPERR, "Outbound read error" },
4223 		{ F_TRGT1GRPPERR, "PCIe TRGT1 group FIFOs parity error" },
4224 		{ F_IPSOTPERR, "PCIe IP SOT buffer SRAM parity error" },
4225 		{ F_IPRETRYPERR, "PCIe IP replay buffer parity error" },
4226 		{ F_IPRXDATAGRPPERR, "PCIe IP Rx data group SRAMs parity error" },
4227 		{ F_IPRXHDRGRPPERR, "PCIe IP Rx header group SRAMs parity error" },
4228 		{ F_PIOTAGQPERR, "PIO tag queue FIFO parity error" },
4229 		{ F_MAGRPPERR, "MA group FIFO parity error" },
4230 		{ F_VFIDPERR, "VFID SRAM parity error" },
4231 		{ F_FIDPERR, "FID SRAM parity error" },
4232 		{ F_CFGSNPPERR, "config snoop FIFO parity error" },
4233 		{ F_HRSPPERR, "HMA channel response data SRAM parity error" },
4234 		{ F_HREQRDPERR, "HMA channel read request SRAM parity error" },
4235 		{ F_HREQWRPERR, "HMA channel write request SRAM parity error" },
4236 		{ F_DRSPPERR, "DMA channel response data SRAM parity error" },
4237 		{ F_DREQRDPERR, "DMA channel write request SRAM parity error" },
4238 		{ F_CRSPPERR, "CMD channel response data SRAM parity error" },
4239 		{ F_CREQRDPERR, "CMD channel read request SRAM parity error" },
4240 		{ F_MSTTAGQPERR, "PCIe master tag queue SRAM parity error" },
4241 		{ F_TGTTAGQPERR, "PCIe target tag queue FIFO parity error" },
4242 		{ F_PIOREQGRPPERR, "PIO request group FIFOs parity error" },
4243 		{ F_PIOCPLGRPPERR, "PIO completion group FIFOs parity error" },
4244 		{ F_MSIXDIPERR, "MSI-X DI SRAM parity error" },
4245 		{ F_MSIXDATAPERR, "MSI-X data SRAM parity error" },
4246 		{ F_MSIXADDRHPERR, "MSI-X AddrH SRAM parity error" },
4247 		{ F_MSIXADDRLPERR, "MSI-X AddrL SRAM parity error" },
4248 		{ F_MSIXSTIPERR, "MSI-X STI SRAM parity error" },
4249 		{ F_MSTTIMEOUTPERR, "Master timeout FIFO parity error" },
4250 		{ F_MSTGRPPERR, "Master response read queue SRAM parity error" },
4251 		{ 0 }
4252 	};
4253 	struct intr_info pcie_intr_info = {
4254 		.name = "PCIE_INT_CAUSE",
4255 		.cause_reg = A_PCIE_INT_CAUSE,
4256 		.enable_reg = A_PCIE_INT_ENABLE,
4257 		.fatal = 0xffffffff,
4258 		.flags = NONFATAL_IF_DISABLED,
4259 		.details = NULL,
4260 		.actions = NULL,
4261 	};
4262 	bool fatal = false;
4263 
4264 	if (is_t4(adap)) {
4265 		fatal |= t4_handle_intr(adap, &sysbus_intr_info, 0, verbose);
4266 		fatal |= t4_handle_intr(adap, &pcie_port_intr_info, 0, verbose);
4267 
4268 		pcie_intr_info.details = pcie_intr_details;
4269 	} else {
4270 		pcie_intr_info.details = t5_pcie_intr_details;
4271 	}
4272 	fatal |= t4_handle_intr(adap, &pcie_intr_info, 0, verbose);
4273 
4274 	return (fatal);
4275 }
4276 
4277 /*
4278  * TP interrupt handler.
4279  */
4280 static bool tp_intr_handler(struct adapter *adap, int arg, bool verbose)
4281 {
4282 	static const struct intr_details tp_intr_details[] = {
4283 		{ 0x3fffffff, "TP parity error" },
4284 		{ F_FLMTXFLSTEMPTY, "TP out of Tx pages" },
4285 		{ 0 }
4286 	};
4287 	static const struct intr_info tp_intr_info = {
4288 		.name = "TP_INT_CAUSE",
4289 		.cause_reg = A_TP_INT_CAUSE,
4290 		.enable_reg = A_TP_INT_ENABLE,
4291 		.fatal = 0x7fffffff,
4292 		.flags = NONFATAL_IF_DISABLED,
4293 		.details = tp_intr_details,
4294 		.actions = NULL,
4295 	};
4296 
4297 	return (t4_handle_intr(adap, &tp_intr_info, 0, verbose));
4298 }
4299 
4300 /*
4301  * SGE interrupt handler.
4302  */
4303 static bool sge_intr_handler(struct adapter *adap, int arg, bool verbose)
4304 {
4305 	static const struct intr_info sge_int1_info = {
4306 		.name = "SGE_INT_CAUSE1",
4307 		.cause_reg = A_SGE_INT_CAUSE1,
4308 		.enable_reg = A_SGE_INT_ENABLE1,
4309 		.fatal = 0xffffffff,
4310 		.flags = NONFATAL_IF_DISABLED,
4311 		.details = NULL,
4312 		.actions = NULL,
4313 	};
4314 	static const struct intr_info sge_int2_info = {
4315 		.name = "SGE_INT_CAUSE2",
4316 		.cause_reg = A_SGE_INT_CAUSE2,
4317 		.enable_reg = A_SGE_INT_ENABLE2,
4318 		.fatal = 0xffffffff,
4319 		.flags = NONFATAL_IF_DISABLED,
4320 		.details = NULL,
4321 		.actions = NULL,
4322 	};
4323 	static const struct intr_details sge_int3_details[] = {
4324 		{ F_ERR_FLM_DBP,
4325 			"DBP pointer delivery for invalid context or QID" },
4326 		{ F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0,
4327 			"Invalid QID or header request by IDMA" },
4328 		{ F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" },
4329 		{ F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" },
4330 		{ F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" },
4331 		{ F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" },
4332 		{ F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" },
4333 		{ F_ERR_TIMER_ABOVE_MAX_QID,
4334 			"SGE GTS with timer 0-5 for IQID > 1023" },
4335 		{ F_ERR_CPL_EXCEED_IQE_SIZE,
4336 			"SGE received CPL exceeding IQE size" },
4337 		{ F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" },
4338 		{ F_ERR_ITP_TIME_PAUSED, "SGE ITP error" },
4339 		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" },
4340 		{ F_ERR_DROPPED_DB, "SGE DB dropped" },
4341 		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
4342 		  "SGE IQID > 1023 received CPL for FL" },
4343 		{ F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4344 			F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" },
4345 		{ F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" },
4346 		{ F_ERR_ING_CTXT_PRIO,
4347 			"Ingress context manager priority user error" },
4348 		{ F_ERR_EGR_CTXT_PRIO,
4349 			"Egress context manager priority user error" },
4350 		{ F_DBFIFO_HP_INT, "High priority DB FIFO threshold reached" },
4351 		{ F_DBFIFO_LP_INT, "Low priority DB FIFO threshold reached" },
4352 		{ F_REG_ADDRESS_ERR, "Undefined SGE register accessed" },
4353 		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" },
4354 		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID" },
4355 		{ 0x0000000f, "SGE context access for invalid queue" },
4356 		{ 0 }
4357 	};
4358 	static const struct intr_details t6_sge_int3_details[] = {
4359 		{ F_ERR_FLM_DBP,
4360 			"DBP pointer delivery for invalid context or QID" },
4361 		{ F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0,
4362 			"Invalid QID or header request by IDMA" },
4363 		{ F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" },
4364 		{ F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" },
4365 		{ F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" },
4366 		{ F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" },
4367 		{ F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" },
4368 		{ F_ERR_TIMER_ABOVE_MAX_QID,
4369 			"SGE GTS with timer 0-5 for IQID > 1023" },
4370 		{ F_ERR_CPL_EXCEED_IQE_SIZE,
4371 			"SGE received CPL exceeding IQE size" },
4372 		{ F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" },
4373 		{ F_ERR_ITP_TIME_PAUSED, "SGE ITP error" },
4374 		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" },
4375 		{ F_ERR_DROPPED_DB, "SGE DB dropped" },
4376 		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
4377 			"SGE IQID > 1023 received CPL for FL" },
4378 		{ F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4379 			F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" },
4380 		{ F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" },
4381 		{ F_ERR_ING_CTXT_PRIO,
4382 			"Ingress context manager priority user error" },
4383 		{ F_ERR_EGR_CTXT_PRIO,
4384 			"Egress context manager priority user error" },
4385 		{ F_DBP_TBUF_FULL, "SGE DBP tbuf full" },
4386 		{ F_FATAL_WRE_LEN,
4387 			"SGE WRE packet less than advertized length" },
4388 		{ F_REG_ADDRESS_ERR, "Undefined SGE register accessed" },
4389 		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" },
4390 		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID" },
4391 		{ 0x0000000f, "SGE context access for invalid queue" },
4392 		{ 0 }
4393 	};
4394 	struct intr_info sge_int3_info = {
4395 		.name = "SGE_INT_CAUSE3",
4396 		.cause_reg = A_SGE_INT_CAUSE3,
4397 		.enable_reg = A_SGE_INT_ENABLE3,
4398 		.fatal = F_ERR_CPL_EXCEED_IQE_SIZE,
4399 		.flags = 0,
4400 		.details = NULL,
4401 		.actions = NULL,
4402 	};
4403 	static const struct intr_info sge_int4_info = {
4404 		.name = "SGE_INT_CAUSE4",
4405 		.cause_reg = A_SGE_INT_CAUSE4,
4406 		.enable_reg = A_SGE_INT_ENABLE4,
4407 		.fatal = 0,
4408 		.flags = 0,
4409 		.details = NULL,
4410 		.actions = NULL,
4411 	};
4412 	static const struct intr_info sge_int5_info = {
4413 		.name = "SGE_INT_CAUSE5",
4414 		.cause_reg = A_SGE_INT_CAUSE5,
4415 		.enable_reg = A_SGE_INT_ENABLE5,
4416 		.fatal = 0xffffffff,
4417 		.flags = NONFATAL_IF_DISABLED,
4418 		.details = NULL,
4419 		.actions = NULL,
4420 	};
4421 	static const struct intr_info sge_int6_info = {
4422 		.name = "SGE_INT_CAUSE6",
4423 		.cause_reg = A_SGE_INT_CAUSE6,
4424 		.enable_reg = A_SGE_INT_ENABLE6,
4425 		.fatal = 0,
4426 		.flags = 0,
4427 		.details = NULL,
4428 		.actions = NULL,
4429 	};
4430 
4431 	bool fatal;
4432 	u32 v;
4433 
4434 	if (chip_id(adap) <= CHELSIO_T5) {
4435 		sge_int3_info.details = sge_int3_details;
4436 	} else {
4437 		sge_int3_info.details = t6_sge_int3_details;
4438 	}
4439 
4440 	fatal = false;
4441 	fatal |= t4_handle_intr(adap, &sge_int1_info, 0, verbose);
4442 	fatal |= t4_handle_intr(adap, &sge_int2_info, 0, verbose);
4443 	fatal |= t4_handle_intr(adap, &sge_int3_info, 0, verbose);
4444 	fatal |= t4_handle_intr(adap, &sge_int4_info, 0, verbose);
4445 	if (chip_id(adap) >= CHELSIO_T5)
4446 		fatal |= t4_handle_intr(adap, &sge_int5_info, 0, verbose);
4447 	if (chip_id(adap) >= CHELSIO_T6)
4448 		fatal |= t4_handle_intr(adap, &sge_int6_info, 0, verbose);
4449 
4450 	v = t4_read_reg(adap, A_SGE_ERROR_STATS);
4451 	if (v & F_ERROR_QID_VALID) {
4452 		CH_ERR(adap, "SGE error for QID %u\n", G_ERROR_QID(v));
4453 		if (v & F_UNCAPTURED_ERROR)
4454 			CH_ERR(adap, "SGE UNCAPTURED_ERROR set (clearing)\n");
4455 		t4_write_reg(adap, A_SGE_ERROR_STATS,
4456 		    F_ERROR_QID_VALID | F_UNCAPTURED_ERROR);
4457 	}
4458 
4459 	return (fatal);
4460 }
4461 
4462 /*
4463  * CIM interrupt handler.
4464  */
4465 static bool cim_intr_handler(struct adapter *adap, int arg, bool verbose)
4466 {
4467 	static const struct intr_details cim_host_intr_details[] = {
4468 		/* T6+ */
4469 		{ F_PCIE2CIMINTFPARERR, "CIM IBQ PCIe interface parity error" },
4470 
4471 		/* T5+ */
4472 		{ F_MA_CIM_INTFPERR, "MA2CIM interface parity error" },
4473 		{ F_PLCIM_MSTRSPDATAPARERR,
4474 			"PL2CIM master response data parity error" },
4475 		{ F_NCSI2CIMINTFPARERR, "CIM IBQ NC-SI interface parity error" },
4476 		{ F_SGE2CIMINTFPARERR, "CIM IBQ SGE interface parity error" },
4477 		{ F_ULP2CIMINTFPARERR, "CIM IBQ ULP_TX interface parity error" },
4478 		{ F_TP2CIMINTFPARERR, "CIM IBQ TP interface parity error" },
4479 		{ F_OBQSGERX1PARERR, "CIM OBQ SGE1_RX parity error" },
4480 		{ F_OBQSGERX0PARERR, "CIM OBQ SGE0_RX parity error" },
4481 
4482 		/* T4+ */
4483 		{ F_TIEQOUTPARERRINT, "CIM TIEQ outgoing FIFO parity error" },
4484 		{ F_TIEQINPARERRINT, "CIM TIEQ incoming FIFO parity error" },
4485 		{ F_MBHOSTPARERR, "CIM mailbox host read parity error" },
4486 		{ F_MBUPPARERR, "CIM mailbox uP parity error" },
4487 		{ F_IBQTP0PARERR, "CIM IBQ TP0 parity error" },
4488 		{ F_IBQTP1PARERR, "CIM IBQ TP1 parity error" },
4489 		{ F_IBQULPPARERR, "CIM IBQ ULP parity error" },
4490 		{ F_IBQSGELOPARERR, "CIM IBQ SGE_LO parity error" },
4491 		{ F_IBQSGEHIPARERR | F_IBQPCIEPARERR,	/* same bit */
4492 			"CIM IBQ PCIe/SGE_HI parity error" },
4493 		{ F_IBQNCSIPARERR, "CIM IBQ NC-SI parity error" },
4494 		{ F_OBQULP0PARERR, "CIM OBQ ULP0 parity error" },
4495 		{ F_OBQULP1PARERR, "CIM OBQ ULP1 parity error" },
4496 		{ F_OBQULP2PARERR, "CIM OBQ ULP2 parity error" },
4497 		{ F_OBQULP3PARERR, "CIM OBQ ULP3 parity error" },
4498 		{ F_OBQSGEPARERR, "CIM OBQ SGE parity error" },
4499 		{ F_OBQNCSIPARERR, "CIM OBQ NC-SI parity error" },
4500 		{ F_TIMER1INT, "CIM TIMER0 interrupt" },
4501 		{ F_TIMER0INT, "CIM TIMER0 interrupt" },
4502 		{ F_PREFDROPINT, "CIM control register prefetch drop" },
4503 		{ 0}
4504 	};
4505 	static const struct intr_info cim_host_intr_info = {
4506 		.name = "CIM_HOST_INT_CAUSE",
4507 		.cause_reg = A_CIM_HOST_INT_CAUSE,
4508 		.enable_reg = A_CIM_HOST_INT_ENABLE,
4509 		.fatal = 0x007fffe6,
4510 		.flags = NONFATAL_IF_DISABLED,
4511 		.details = cim_host_intr_details,
4512 		.actions = NULL,
4513 	};
4514 	static const struct intr_details cim_host_upacc_intr_details[] = {
4515 		{ F_EEPROMWRINT, "CIM EEPROM came out of busy state" },
4516 		{ F_TIMEOUTMAINT, "CIM PIF MA timeout" },
4517 		{ F_TIMEOUTINT, "CIM PIF timeout" },
4518 		{ F_RSPOVRLOOKUPINT, "CIM response FIFO overwrite" },
4519 		{ F_REQOVRLOOKUPINT, "CIM request FIFO overwrite" },
4520 		{ F_BLKWRPLINT, "CIM block write to PL space" },
4521 		{ F_BLKRDPLINT, "CIM block read from PL space" },
4522 		{ F_SGLWRPLINT,
4523 			"CIM single write to PL space with illegal BEs" },
4524 		{ F_SGLRDPLINT,
4525 			"CIM single read from PL space with illegal BEs" },
4526 		{ F_BLKWRCTLINT, "CIM block write to CTL space" },
4527 		{ F_BLKRDCTLINT, "CIM block read from CTL space" },
4528 		{ F_SGLWRCTLINT,
4529 			"CIM single write to CTL space with illegal BEs" },
4530 		{ F_SGLRDCTLINT,
4531 			"CIM single read from CTL space with illegal BEs" },
4532 		{ F_BLKWREEPROMINT, "CIM block write to EEPROM space" },
4533 		{ F_BLKRDEEPROMINT, "CIM block read from EEPROM space" },
4534 		{ F_SGLWREEPROMINT,
4535 			"CIM single write to EEPROM space with illegal BEs" },
4536 		{ F_SGLRDEEPROMINT,
4537 			"CIM single read from EEPROM space with illegal BEs" },
4538 		{ F_BLKWRFLASHINT, "CIM block write to flash space" },
4539 		{ F_BLKRDFLASHINT, "CIM block read from flash space" },
4540 		{ F_SGLWRFLASHINT, "CIM single write to flash space" },
4541 		{ F_SGLRDFLASHINT,
4542 			"CIM single read from flash space with illegal BEs" },
4543 		{ F_BLKWRBOOTINT, "CIM block write to boot space" },
4544 		{ F_BLKRDBOOTINT, "CIM block read from boot space" },
4545 		{ F_SGLWRBOOTINT, "CIM single write to boot space" },
4546 		{ F_SGLRDBOOTINT,
4547 			"CIM single read from boot space with illegal BEs" },
4548 		{ F_ILLWRBEINT, "CIM illegal write BEs" },
4549 		{ F_ILLRDBEINT, "CIM illegal read BEs" },
4550 		{ F_ILLRDINT, "CIM illegal read" },
4551 		{ F_ILLWRINT, "CIM illegal write" },
4552 		{ F_ILLTRANSINT, "CIM illegal transaction" },
4553 		{ F_RSVDSPACEINT, "CIM reserved space access" },
4554 		{0}
4555 	};
4556 	static const struct intr_info cim_host_upacc_intr_info = {
4557 		.name = "CIM_HOST_UPACC_INT_CAUSE",
4558 		.cause_reg = A_CIM_HOST_UPACC_INT_CAUSE,
4559 		.enable_reg = A_CIM_HOST_UPACC_INT_ENABLE,
4560 		.fatal = 0x3fffeeff,
4561 		.flags = NONFATAL_IF_DISABLED,
4562 		.details = cim_host_upacc_intr_details,
4563 		.actions = NULL,
4564 	};
4565 	static const struct intr_info cim_pf_host_intr_info = {
4566 		.name = "CIM_PF_HOST_INT_CAUSE",
4567 		.cause_reg = MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
4568 		.enable_reg = MYPF_REG(A_CIM_PF_HOST_INT_ENABLE),
4569 		.fatal = 0,
4570 		.flags = 0,
4571 		.details = NULL,
4572 		.actions = NULL,
4573 	};
4574 	u32 val, fw_err;
4575 	bool fatal;
4576 
4577 	/*
4578 	 * When the Firmware detects an internal error which normally wouldn't
4579 	 * raise a Host Interrupt, it forces a CIM Timer0 interrupt in order
4580 	 * to make sure the Host sees the Firmware Crash.  So if we have a
4581 	 * Timer0 interrupt and don't see a Firmware Crash, ignore the Timer0
4582 	 * interrupt.
4583 	 */
4584 	fw_err = t4_read_reg(adap, A_PCIE_FW);
4585 	val = t4_read_reg(adap, A_CIM_HOST_INT_CAUSE);
4586 	if (val & F_TIMER0INT && (!(fw_err & F_PCIE_FW_ERR) ||
4587 	    G_PCIE_FW_EVAL(fw_err) != PCIE_FW_EVAL_CRASH)) {
4588 		t4_write_reg(adap, A_CIM_HOST_INT_CAUSE, F_TIMER0INT);
4589 	}
4590 
4591 	fatal = (fw_err & F_PCIE_FW_ERR) != 0;
4592 	fatal |= t4_handle_intr(adap, &cim_host_intr_info, 0, verbose);
4593 	fatal |= t4_handle_intr(adap, &cim_host_upacc_intr_info, 0, verbose);
4594 	fatal |= t4_handle_intr(adap, &cim_pf_host_intr_info, 0, verbose);
4595 	if (fatal)
4596 		t4_os_cim_err(adap);
4597 
4598 	return (fatal);
4599 }
4600 
4601 /*
4602  * ULP RX interrupt handler.
4603  */
4604 static bool ulprx_intr_handler(struct adapter *adap, int arg, bool verbose)
4605 {
4606 	static const struct intr_details ulprx_intr_details[] = {
4607 		/* T5+ */
4608 		{ F_SE_CNT_MISMATCH_1, "ULPRX SE count mismatch in channel 1" },
4609 		{ F_SE_CNT_MISMATCH_0, "ULPRX SE count mismatch in channel 0" },
4610 
4611 		/* T4+ */
4612 		{ F_CAUSE_CTX_1, "ULPRX channel 1 context error" },
4613 		{ F_CAUSE_CTX_0, "ULPRX channel 0 context error" },
4614 		{ 0x007fffff, "ULPRX parity error" },
4615 		{ 0 }
4616 	};
4617 	static const struct intr_info ulprx_intr_info = {
4618 		.name = "ULP_RX_INT_CAUSE",
4619 		.cause_reg = A_ULP_RX_INT_CAUSE,
4620 		.enable_reg = A_ULP_RX_INT_ENABLE,
4621 		.fatal = 0x07ffffff,
4622 		.flags = NONFATAL_IF_DISABLED,
4623 		.details = ulprx_intr_details,
4624 		.actions = NULL,
4625 	};
4626 	static const struct intr_info ulprx_intr2_info = {
4627 		.name = "ULP_RX_INT_CAUSE_2",
4628 		.cause_reg = A_ULP_RX_INT_CAUSE_2,
4629 		.enable_reg = A_ULP_RX_INT_ENABLE_2,
4630 		.fatal = 0,
4631 		.flags = 0,
4632 		.details = NULL,
4633 		.actions = NULL,
4634 	};
4635 	bool fatal = false;
4636 
4637 	fatal |= t4_handle_intr(adap, &ulprx_intr_info, 0, verbose);
4638 	fatal |= t4_handle_intr(adap, &ulprx_intr2_info, 0, verbose);
4639 
4640 	return (fatal);
4641 }
4642 
4643 /*
4644  * ULP TX interrupt handler.
4645  */
4646 static bool ulptx_intr_handler(struct adapter *adap, int arg, bool verbose)
4647 {
4648 	static const struct intr_details ulptx_intr_details[] = {
4649 		{ F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds" },
4650 		{ F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds" },
4651 		{ F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds" },
4652 		{ F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds" },
4653 		{ 0x0fffffff, "ULPTX parity error" },
4654 		{ 0 }
4655 	};
4656 	static const struct intr_info ulptx_intr_info = {
4657 		.name = "ULP_TX_INT_CAUSE",
4658 		.cause_reg = A_ULP_TX_INT_CAUSE,
4659 		.enable_reg = A_ULP_TX_INT_ENABLE,
4660 		.fatal = 0x0fffffff,
4661 		.flags = NONFATAL_IF_DISABLED,
4662 		.details = ulptx_intr_details,
4663 		.actions = NULL,
4664 	};
4665 	static const struct intr_info ulptx_intr2_info = {
4666 		.name = "ULP_TX_INT_CAUSE_2",
4667 		.cause_reg = A_ULP_TX_INT_CAUSE_2,
4668 		.enable_reg = A_ULP_TX_INT_ENABLE_2,
4669 		.fatal = 0xf0,
4670 		.flags = NONFATAL_IF_DISABLED,
4671 		.details = NULL,
4672 		.actions = NULL,
4673 	};
4674 	bool fatal = false;
4675 
4676 	fatal |= t4_handle_intr(adap, &ulptx_intr_info, 0, verbose);
4677 	fatal |= t4_handle_intr(adap, &ulptx_intr2_info, 0, verbose);
4678 
4679 	return (fatal);
4680 }
4681 
4682 static bool pmtx_dump_dbg_stats(struct adapter *adap, int arg, bool verbose)
4683 {
4684 	int i;
4685 	u32 data[17];
4686 
4687 	t4_read_indirect(adap, A_PM_TX_DBG_CTRL, A_PM_TX_DBG_DATA, &data[0],
4688 	    ARRAY_SIZE(data), A_PM_TX_DBG_STAT0);
4689 	for (i = 0; i < ARRAY_SIZE(data); i++) {
4690 		CH_ALERT(adap, "  - PM_TX_DBG_STAT%u (0x%x) = 0x%08x\n", i,
4691 		    A_PM_TX_DBG_STAT0 + i, data[i]);
4692 	}
4693 
4694 	return (false);
4695 }
4696 
4697 /*
4698  * PM TX interrupt handler.
4699  */
4700 static bool pmtx_intr_handler(struct adapter *adap, int arg, bool verbose)
4701 {
4702 	static const struct intr_action pmtx_intr_actions[] = {
4703 		{ 0xffffffff, 0, pmtx_dump_dbg_stats },
4704 		{ 0 },
4705 	};
4706 	static const struct intr_details pmtx_intr_details[] = {
4707 		{ F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large" },
4708 		{ F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large" },
4709 		{ F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large" },
4710 		{ F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd" },
4711 		{ 0x0f000000, "PMTX icspi FIFO2X Rx framing error" },
4712 		{ 0x00f00000, "PMTX icspi FIFO Rx framing error" },
4713 		{ 0x000f0000, "PMTX icspi FIFO Tx framing error" },
4714 		{ 0x0000f000, "PMTX oespi FIFO Rx framing error" },
4715 		{ 0x00000f00, "PMTX oespi FIFO Tx framing error" },
4716 		{ 0x000000f0, "PMTX oespi FIFO2X Tx framing error" },
4717 		{ F_OESPI_PAR_ERROR, "PMTX oespi parity error" },
4718 		{ F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error" },
4719 		{ F_ICSPI_PAR_ERROR, "PMTX icspi parity error" },
4720 		{ F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error" },
4721 		{ 0 }
4722 	};
4723 	static const struct intr_info pmtx_intr_info = {
4724 		.name = "PM_TX_INT_CAUSE",
4725 		.cause_reg = A_PM_TX_INT_CAUSE,
4726 		.enable_reg = A_PM_TX_INT_ENABLE,
4727 		.fatal = 0xffffffff,
4728 		.flags = 0,
4729 		.details = pmtx_intr_details,
4730 		.actions = pmtx_intr_actions,
4731 	};
4732 
4733 	return (t4_handle_intr(adap, &pmtx_intr_info, 0, verbose));
4734 }
4735 
4736 /*
4737  * PM RX interrupt handler.
4738  */
4739 static bool pmrx_intr_handler(struct adapter *adap, int arg, bool verbose)
4740 {
4741 	static const struct intr_details pmrx_intr_details[] = {
4742 		/* T6+ */
4743 		{ 0x18000000, "PMRX ospi overflow" },
4744 		{ F_MA_INTF_SDC_ERR, "PMRX MA interface SDC parity error" },
4745 		{ F_BUNDLE_LEN_PARERR, "PMRX bundle len FIFO parity error" },
4746 		{ F_BUNDLE_LEN_OVFL, "PMRX bundle len FIFO overflow" },
4747 		{ F_SDC_ERR, "PMRX SDC error" },
4748 
4749 		/* T4+ */
4750 		{ F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd" },
4751 		{ 0x003c0000, "PMRX iespi FIFO2X Rx framing error" },
4752 		{ 0x0003c000, "PMRX iespi Rx framing error" },
4753 		{ 0x00003c00, "PMRX iespi Tx framing error" },
4754 		{ 0x00000300, "PMRX ocspi Rx framing error" },
4755 		{ 0x000000c0, "PMRX ocspi Tx framing error" },
4756 		{ 0x00000030, "PMRX ocspi FIFO2X Tx framing error" },
4757 		{ F_OCSPI_PAR_ERROR, "PMRX ocspi parity error" },
4758 		{ F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error" },
4759 		{ F_IESPI_PAR_ERROR, "PMRX iespi parity error" },
4760 		{ F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error"},
4761 		{ 0 }
4762 	};
4763 	static const struct intr_info pmrx_intr_info = {
4764 		.name = "PM_RX_INT_CAUSE",
4765 		.cause_reg = A_PM_RX_INT_CAUSE,
4766 		.enable_reg = A_PM_RX_INT_ENABLE,
4767 		.fatal = 0x1fffffff,
4768 		.flags = NONFATAL_IF_DISABLED,
4769 		.details = pmrx_intr_details,
4770 		.actions = NULL,
4771 	};
4772 
4773 	return (t4_handle_intr(adap, &pmrx_intr_info, 0, verbose));
4774 }
4775 
4776 /*
4777  * CPL switch interrupt handler.
4778  */
4779 static bool cplsw_intr_handler(struct adapter *adap, int arg, bool verbose)
4780 {
4781 	static const struct intr_details cplsw_intr_details[] = {
4782 		/* T5+ */
4783 		{ F_PERR_CPL_128TO128_1, "CPLSW 128TO128 FIFO1 parity error" },
4784 		{ F_PERR_CPL_128TO128_0, "CPLSW 128TO128 FIFO0 parity error" },
4785 
4786 		/* T4+ */
4787 		{ F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error" },
4788 		{ F_CIM_OVFL_ERROR, "CPLSW CIM overflow" },
4789 		{ F_TP_FRAMING_ERROR, "CPLSW TP framing error" },
4790 		{ F_SGE_FRAMING_ERROR, "CPLSW SGE framing error" },
4791 		{ F_CIM_FRAMING_ERROR, "CPLSW CIM framing error" },
4792 		{ F_ZERO_SWITCH_ERROR, "CPLSW no-switch error" },
4793 		{ 0 }
4794 	};
4795 	static const struct intr_info cplsw_intr_info = {
4796 		.name = "CPL_INTR_CAUSE",
4797 		.cause_reg = A_CPL_INTR_CAUSE,
4798 		.enable_reg = A_CPL_INTR_ENABLE,
4799 		.fatal = 0xff,
4800 		.flags = NONFATAL_IF_DISABLED,
4801 		.details = cplsw_intr_details,
4802 		.actions = NULL,
4803 	};
4804 
4805 	return (t4_handle_intr(adap, &cplsw_intr_info, 0, verbose));
4806 }
4807 
4808 #define T4_LE_FATAL_MASK (F_PARITYERR | F_UNKNOWNCMD | F_REQQPARERR)
4809 #define T5_LE_FATAL_MASK (T4_LE_FATAL_MASK | F_VFPARERR)
4810 #define T6_LE_PERRCRC_MASK (F_PIPELINEERR | F_CLIPTCAMACCFAIL | \
4811     F_SRVSRAMACCFAIL | F_CLCAMCRCPARERR | F_CLCAMINTPERR | F_SSRAMINTPERR | \
4812     F_SRVSRAMPERR | F_VFSRAMPERR | F_TCAMINTPERR | F_TCAMCRCERR | \
4813     F_HASHTBLMEMACCERR | F_MAIFWRINTPERR | F_HASHTBLMEMCRCERR)
4814 #define T6_LE_FATAL_MASK (T6_LE_PERRCRC_MASK | F_T6_UNKNOWNCMD | \
4815     F_TCAMACCFAIL | F_HASHTBLACCFAIL | F_CMDTIDERR | F_CMDPRSRINTERR | \
4816     F_TOTCNTERR | F_CLCAMFIFOERR | F_CLIPSUBERR)
4817 
4818 /*
4819  * LE interrupt handler.
4820  */
4821 static bool le_intr_handler(struct adapter *adap, int arg, bool verbose)
4822 {
4823 	static const struct intr_details le_intr_details[] = {
4824 		{ F_REQQPARERR, "LE request queue parity error" },
4825 		{ F_UNKNOWNCMD, "LE unknown command" },
4826 		{ F_ACTRGNFULL, "LE active region full" },
4827 		{ F_PARITYERR, "LE parity error" },
4828 		{ F_LIPMISS, "LE LIP miss" },
4829 		{ F_LIP0, "LE 0 LIP error" },
4830 		{ 0 }
4831 	};
4832 	static const struct intr_details t6_le_intr_details[] = {
4833 		{ F_CLIPSUBERR, "LE CLIP CAM reverse substitution error" },
4834 		{ F_CLCAMFIFOERR, "LE CLIP CAM internal FIFO error" },
4835 		{ F_CTCAMINVLDENT, "Invalid IPv6 CLIP TCAM entry" },
4836 		{ F_TCAMINVLDENT, "Invalid IPv6 TCAM entry" },
4837 		{ F_TOTCNTERR, "LE total active < TCAM count" },
4838 		{ F_CMDPRSRINTERR, "LE internal error in parser" },
4839 		{ F_CMDTIDERR, "Incorrect tid in LE command" },
4840 		{ F_T6_ACTRGNFULL, "LE active region full" },
4841 		{ F_T6_ACTCNTIPV6TZERO, "LE IPv6 active open TCAM counter -ve" },
4842 		{ F_T6_ACTCNTIPV4TZERO, "LE IPv4 active open TCAM counter -ve" },
4843 		{ F_T6_ACTCNTIPV6ZERO, "LE IPv6 active open counter -ve" },
4844 		{ F_T6_ACTCNTIPV4ZERO, "LE IPv4 active open counter -ve" },
4845 		{ F_HASHTBLACCFAIL, "Hash table read error (proto conflict)" },
4846 		{ F_TCAMACCFAIL, "LE TCAM access failure" },
4847 		{ F_T6_UNKNOWNCMD, "LE unknown command" },
4848 		{ F_T6_LIP0, "LE found 0 LIP during CLIP substitution" },
4849 		{ F_T6_LIPMISS, "LE CLIP lookup miss" },
4850 		{ T6_LE_PERRCRC_MASK, "LE parity/CRC error" },
4851 		{ 0 }
4852 	};
4853 	struct intr_info le_intr_info = {
4854 		.name = "LE_DB_INT_CAUSE",
4855 		.cause_reg = A_LE_DB_INT_CAUSE,
4856 		.enable_reg = A_LE_DB_INT_ENABLE,
4857 		.fatal = 0,
4858 		.flags = NONFATAL_IF_DISABLED,
4859 		.details = NULL,
4860 		.actions = NULL,
4861 	};
4862 
4863 	if (chip_id(adap) <= CHELSIO_T5) {
4864 		le_intr_info.details = le_intr_details;
4865 		le_intr_info.fatal = T5_LE_FATAL_MASK;
4866 	} else {
4867 		le_intr_info.details = t6_le_intr_details;
4868 		le_intr_info.fatal = T6_LE_FATAL_MASK;
4869 	}
4870 
4871 	return (t4_handle_intr(adap, &le_intr_info, 0, verbose));
4872 }
4873 
4874 /*
4875  * MPS interrupt handler.
4876  */
4877 static bool mps_intr_handler(struct adapter *adap, int arg, bool verbose)
4878 {
4879 	static const struct intr_details mps_rx_perr_intr_details[] = {
4880 		{ 0xffffffff, "MPS Rx parity error" },
4881 		{ 0 }
4882 	};
4883 	static const struct intr_info mps_rx_perr_intr_info = {
4884 		.name = "MPS_RX_PERR_INT_CAUSE",
4885 		.cause_reg = A_MPS_RX_PERR_INT_CAUSE,
4886 		.enable_reg = A_MPS_RX_PERR_INT_ENABLE,
4887 		.fatal = 0xffffffff,
4888 		.flags = NONFATAL_IF_DISABLED,
4889 		.details = mps_rx_perr_intr_details,
4890 		.actions = NULL,
4891 	};
4892 	static const struct intr_details mps_tx_intr_details[] = {
4893 		{ F_PORTERR, "MPS Tx destination port is disabled" },
4894 		{ F_FRMERR, "MPS Tx framing error" },
4895 		{ F_SECNTERR, "MPS Tx SOP/EOP error" },
4896 		{ F_BUBBLE, "MPS Tx underflow" },
4897 		{ V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error" },
4898 		{ V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error" },
4899 		{ F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error" },
4900 		{ V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error" },
4901 		{ 0 }
4902 	};
4903 	static const struct intr_info mps_tx_intr_info = {
4904 		.name = "MPS_TX_INT_CAUSE",
4905 		.cause_reg = A_MPS_TX_INT_CAUSE,
4906 		.enable_reg = A_MPS_TX_INT_ENABLE,
4907 		.fatal = 0x1ffff,
4908 		.flags = NONFATAL_IF_DISABLED,
4909 		.details = mps_tx_intr_details,
4910 		.actions = NULL,
4911 	};
4912 	static const struct intr_details mps_trc_intr_details[] = {
4913 		{ F_MISCPERR, "MPS TRC misc parity error" },
4914 		{ V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error" },
4915 		{ V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error" },
4916 		{ 0 }
4917 	};
4918 	static const struct intr_info mps_trc_intr_info = {
4919 		.name = "MPS_TRC_INT_CAUSE",
4920 		.cause_reg = A_MPS_TRC_INT_CAUSE,
4921 		.enable_reg = A_MPS_TRC_INT_ENABLE,
4922 		.fatal = F_MISCPERR | V_PKTFIFO(M_PKTFIFO) | V_FILTMEM(M_FILTMEM),
4923 		.flags = 0,
4924 		.details = mps_trc_intr_details,
4925 		.actions = NULL,
4926 	};
4927 	static const struct intr_details mps_stat_sram_intr_details[] = {
4928 		{ 0xffffffff, "MPS statistics SRAM parity error" },
4929 		{ 0 }
4930 	};
4931 	static const struct intr_info mps_stat_sram_intr_info = {
4932 		.name = "MPS_STAT_PERR_INT_CAUSE_SRAM",
4933 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM,
4934 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM,
4935 		.fatal = 0x1fffffff,
4936 		.flags = NONFATAL_IF_DISABLED,
4937 		.details = mps_stat_sram_intr_details,
4938 		.actions = NULL,
4939 	};
4940 	static const struct intr_details mps_stat_tx_intr_details[] = {
4941 		{ 0xffffff, "MPS statistics Tx FIFO parity error" },
4942 		{ 0 }
4943 	};
4944 	static const struct intr_info mps_stat_tx_intr_info = {
4945 		.name = "MPS_STAT_PERR_INT_CAUSE_TX_FIFO",
4946 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
4947 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_TX_FIFO,
4948 		.fatal =  0xffffff,
4949 		.flags = NONFATAL_IF_DISABLED,
4950 		.details = mps_stat_tx_intr_details,
4951 		.actions = NULL,
4952 	};
4953 	static const struct intr_details mps_stat_rx_intr_details[] = {
4954 		{ 0xffffff, "MPS statistics Rx FIFO parity error" },
4955 		{ 0 }
4956 	};
4957 	static const struct intr_info mps_stat_rx_intr_info = {
4958 		.name = "MPS_STAT_PERR_INT_CAUSE_RX_FIFO",
4959 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
4960 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_RX_FIFO,
4961 		.fatal =  0xffffff,
4962 		.flags = 0,
4963 		.details = mps_stat_rx_intr_details,
4964 		.actions = NULL,
4965 	};
4966 	static const struct intr_details mps_cls_intr_details[] = {
4967 		{ F_HASHSRAM, "MPS hash SRAM parity error" },
4968 		{ F_MATCHTCAM, "MPS match TCAM parity error" },
4969 		{ F_MATCHSRAM, "MPS match SRAM parity error" },
4970 		{ 0 }
4971 	};
4972 	static const struct intr_info mps_cls_intr_info = {
4973 		.name = "MPS_CLS_INT_CAUSE",
4974 		.cause_reg = A_MPS_CLS_INT_CAUSE,
4975 		.enable_reg = A_MPS_CLS_INT_ENABLE,
4976 		.fatal =  F_MATCHSRAM | F_MATCHTCAM | F_HASHSRAM,
4977 		.flags = 0,
4978 		.details = mps_cls_intr_details,
4979 		.actions = NULL,
4980 	};
4981 	static const struct intr_details mps_stat_sram1_intr_details[] = {
4982 		{ 0xff, "MPS statistics SRAM1 parity error" },
4983 		{ 0 }
4984 	};
4985 	static const struct intr_info mps_stat_sram1_intr_info = {
4986 		.name = "MPS_STAT_PERR_INT_CAUSE_SRAM1",
4987 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM1,
4988 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM1,
4989 		.fatal = 0xff,
4990 		.flags = 0,
4991 		.details = mps_stat_sram1_intr_details,
4992 		.actions = NULL,
4993 	};
4994 
4995 	bool fatal;
4996 
4997 	fatal = false;
4998 	fatal |= t4_handle_intr(adap, &mps_rx_perr_intr_info, 0, verbose);
4999 	fatal |= t4_handle_intr(adap, &mps_tx_intr_info, 0, verbose);
5000 	fatal |= t4_handle_intr(adap, &mps_trc_intr_info, 0, verbose);
5001 	fatal |= t4_handle_intr(adap, &mps_stat_sram_intr_info, 0, verbose);
5002 	fatal |= t4_handle_intr(adap, &mps_stat_tx_intr_info, 0, verbose);
5003 	fatal |= t4_handle_intr(adap, &mps_stat_rx_intr_info, 0, verbose);
5004 	fatal |= t4_handle_intr(adap, &mps_cls_intr_info, 0, verbose);
5005 	if (chip_id(adap) > CHELSIO_T4) {
5006 		fatal |= t4_handle_intr(adap, &mps_stat_sram1_intr_info, 0,
5007 		    verbose);
5008 	}
5009 
5010 	t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff);
5011 	t4_read_reg(adap, A_MPS_INT_CAUSE);	/* flush */
5012 
5013 	return (fatal);
5014 
5015 }
5016 
5017 /*
5018  * EDC/MC interrupt handler.
5019  */
5020 static bool mem_intr_handler(struct adapter *adap, int idx, bool verbose)
5021 {
5022 	static const char name[4][5] = { "EDC0", "EDC1", "MC0", "MC1" };
5023 	unsigned int count_reg, v;
5024 	static const struct intr_details mem_intr_details[] = {
5025 		{ F_ECC_UE_INT_CAUSE, "Uncorrectable ECC data error(s)" },
5026 		{ F_ECC_CE_INT_CAUSE, "Correctable ECC data error(s)" },
5027 		{ F_PERR_INT_CAUSE, "FIFO parity error" },
5028 		{ 0 }
5029 	};
5030 	struct intr_info ii = {
5031 		.fatal = F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE,
5032 		.details = mem_intr_details,
5033 		.flags = 0,
5034 		.actions = NULL,
5035 	};
5036 	bool fatal;
5037 
5038 	switch (idx) {
5039 	case MEM_EDC0:
5040 		ii.name = "EDC0_INT_CAUSE";
5041 		ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 0);
5042 		ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 0);
5043 		count_reg = EDC_REG(A_EDC_ECC_STATUS, 0);
5044 		break;
5045 	case MEM_EDC1:
5046 		ii.name = "EDC1_INT_CAUSE";
5047 		ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 1);
5048 		ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 1);
5049 		count_reg = EDC_REG(A_EDC_ECC_STATUS, 1);
5050 		break;
5051 	case MEM_MC0:
5052 		ii.name = "MC0_INT_CAUSE";
5053 		if (is_t4(adap)) {
5054 			ii.cause_reg = A_MC_INT_CAUSE;
5055 			ii.enable_reg = A_MC_INT_ENABLE;
5056 			count_reg = A_MC_ECC_STATUS;
5057 		} else {
5058 			ii.cause_reg = A_MC_P_INT_CAUSE;
5059 			ii.enable_reg = A_MC_P_INT_ENABLE;
5060 			count_reg = A_MC_P_ECC_STATUS;
5061 		}
5062 		break;
5063 	case MEM_MC1:
5064 		ii.name = "MC1_INT_CAUSE";
5065 		ii.cause_reg = MC_REG(A_MC_P_INT_CAUSE, 1);
5066 		ii.enable_reg = MC_REG(A_MC_P_INT_ENABLE, 1);
5067 		count_reg = MC_REG(A_MC_P_ECC_STATUS, 1);
5068 		break;
5069 	}
5070 
5071 	fatal = t4_handle_intr(adap, &ii, 0, verbose);
5072 
5073 	v = t4_read_reg(adap, count_reg);
5074 	if (v != 0) {
5075 		if (G_ECC_UECNT(v) != 0) {
5076 			CH_ALERT(adap,
5077 			    "%s: %u uncorrectable ECC data error(s)\n",
5078 			    name[idx], G_ECC_UECNT(v));
5079 		}
5080 		if (G_ECC_CECNT(v) != 0) {
5081 			if (idx <= MEM_EDC1)
5082 				t4_edc_err_read(adap, idx);
5083 			CH_WARN_RATELIMIT(adap,
5084 			    "%s: %u correctable ECC data error(s)\n",
5085 			    name[idx], G_ECC_CECNT(v));
5086 		}
5087 		t4_write_reg(adap, count_reg, 0xffffffff);
5088 	}
5089 
5090 	return (fatal);
5091 }
5092 
5093 static bool ma_wrap_status(struct adapter *adap, int arg, bool verbose)
5094 {
5095 	u32 v;
5096 
5097 	v = t4_read_reg(adap, A_MA_INT_WRAP_STATUS);
5098 	CH_ALERT(adap,
5099 	    "MA address wrap-around error by client %u to address %#x\n",
5100 	    G_MEM_WRAP_CLIENT_NUM(v), G_MEM_WRAP_ADDRESS(v) << 4);
5101 	t4_write_reg(adap, A_MA_INT_WRAP_STATUS, v);
5102 
5103 	return (false);
5104 }
5105 
5106 
5107 /*
5108  * MA interrupt handler.
5109  */
5110 static bool ma_intr_handler(struct adapter *adap, int arg, bool verbose)
5111 {
5112 	static const struct intr_action ma_intr_actions[] = {
5113 		{ F_MEM_WRAP_INT_CAUSE, 0, ma_wrap_status },
5114 		{ 0 },
5115 	};
5116 	static const struct intr_info ma_intr_info = {
5117 		.name = "MA_INT_CAUSE",
5118 		.cause_reg = A_MA_INT_CAUSE,
5119 		.enable_reg = A_MA_INT_ENABLE,
5120 		.fatal = F_MEM_PERR_INT_CAUSE | F_MEM_TO_INT_CAUSE,
5121 		.flags = NONFATAL_IF_DISABLED,
5122 		.details = NULL,
5123 		.actions = ma_intr_actions,
5124 	};
5125 	static const struct intr_info ma_perr_status1 = {
5126 		.name = "MA_PARITY_ERROR_STATUS1",
5127 		.cause_reg = A_MA_PARITY_ERROR_STATUS1,
5128 		.enable_reg = A_MA_PARITY_ERROR_ENABLE1,
5129 		.fatal = 0xffffffff,
5130 		.flags = 0,
5131 		.details = NULL,
5132 		.actions = NULL,
5133 	};
5134 	static const struct intr_info ma_perr_status2 = {
5135 		.name = "MA_PARITY_ERROR_STATUS2",
5136 		.cause_reg = A_MA_PARITY_ERROR_STATUS2,
5137 		.enable_reg = A_MA_PARITY_ERROR_ENABLE2,
5138 		.fatal = 0xffffffff,
5139 		.flags = 0,
5140 		.details = NULL,
5141 		.actions = NULL,
5142 	};
5143 	bool fatal;
5144 
5145 	fatal = false;
5146 	fatal |= t4_handle_intr(adap, &ma_intr_info, 0, verbose);
5147 	fatal |= t4_handle_intr(adap, &ma_perr_status1, 0, verbose);
5148 	if (chip_id(adap) > CHELSIO_T4)
5149 		fatal |= t4_handle_intr(adap, &ma_perr_status2, 0, verbose);
5150 
5151 	return (fatal);
5152 }
5153 
5154 /*
5155  * SMB interrupt handler.
5156  */
5157 static bool smb_intr_handler(struct adapter *adap, int arg, bool verbose)
5158 {
5159 	static const struct intr_details smb_intr_details[] = {
5160 		{ F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error" },
5161 		{ F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error" },
5162 		{ F_SLVFIFOPARINT, "SMB slave FIFO parity error" },
5163 		{ 0 }
5164 	};
5165 	static const struct intr_info smb_intr_info = {
5166 		.name = "SMB_INT_CAUSE",
5167 		.cause_reg = A_SMB_INT_CAUSE,
5168 		.enable_reg = A_SMB_INT_ENABLE,
5169 		.fatal = F_SLVFIFOPARINT | F_MSTRXFIFOPARINT | F_MSTTXFIFOPARINT,
5170 		.flags = 0,
5171 		.details = smb_intr_details,
5172 		.actions = NULL,
5173 	};
5174 
5175 	return (t4_handle_intr(adap, &smb_intr_info, 0, verbose));
5176 }
5177 
5178 /*
5179  * NC-SI interrupt handler.
5180  */
5181 static bool ncsi_intr_handler(struct adapter *adap, int arg, bool verbose)
5182 {
5183 	static const struct intr_details ncsi_intr_details[] = {
5184 		{ F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error" },
5185 		{ F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error" },
5186 		{ F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error" },
5187 		{ F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error" },
5188 		{ 0 }
5189 	};
5190 	static const struct intr_info ncsi_intr_info = {
5191 		.name = "NCSI_INT_CAUSE",
5192 		.cause_reg = A_NCSI_INT_CAUSE,
5193 		.enable_reg = A_NCSI_INT_ENABLE,
5194 		.fatal = F_RXFIFO_PRTY_ERR | F_TXFIFO_PRTY_ERR |
5195 		    F_MPS_DM_PRTY_ERR | F_CIM_DM_PRTY_ERR,
5196 		.flags = 0,
5197 		.details = ncsi_intr_details,
5198 		.actions = NULL,
5199 	};
5200 
5201 	return (t4_handle_intr(adap, &ncsi_intr_info, 0, verbose));
5202 }
5203 
5204 /*
5205  * MAC interrupt handler.
5206  */
5207 static bool mac_intr_handler(struct adapter *adap, int port, bool verbose)
5208 {
5209 	static const struct intr_details mac_intr_details[] = {
5210 		{ F_TXFIFO_PRTY_ERR, "MAC Tx FIFO parity error" },
5211 		{ F_RXFIFO_PRTY_ERR, "MAC Rx FIFO parity error" },
5212 		{ 0 }
5213 	};
5214 	char name[32];
5215 	struct intr_info ii;
5216 	bool fatal = false;
5217 
5218 	if (is_t4(adap)) {
5219 		snprintf(name, sizeof(name), "XGMAC_PORT%u_INT_CAUSE", port);
5220 		ii.name = &name[0];
5221 		ii.cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
5222 		ii.enable_reg = PORT_REG(port, A_XGMAC_PORT_INT_EN);
5223 		ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR;
5224 		ii.flags = 0;
5225 		ii.details = mac_intr_details;
5226 		ii.actions = NULL;
5227 	} else {
5228 		snprintf(name, sizeof(name), "MAC_PORT%u_INT_CAUSE", port);
5229 		ii.name = &name[0];
5230 		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
5231 		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_INT_EN);
5232 		ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR;
5233 		ii.flags = 0;
5234 		ii.details = mac_intr_details;
5235 		ii.actions = NULL;
5236 	}
5237 	fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5238 
5239 	if (chip_id(adap) >= CHELSIO_T5) {
5240 		snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE", port);
5241 		ii.name = &name[0];
5242 		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE);
5243 		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN);
5244 		ii.fatal = 0;
5245 		ii.flags = 0;
5246 		ii.details = NULL;
5247 		ii.actions = NULL;
5248 		fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5249 	}
5250 
5251 	if (chip_id(adap) >= CHELSIO_T6) {
5252 		snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE_100G", port);
5253 		ii.name = &name[0];
5254 		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE_100G);
5255 		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN_100G);
5256 		ii.fatal = 0;
5257 		ii.flags = 0;
5258 		ii.details = NULL;
5259 		ii.actions = NULL;
5260 		fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5261 	}
5262 
5263 	return (fatal);
5264 }
5265 
5266 static bool plpl_intr_handler(struct adapter *adap, int arg, bool verbose)
5267 {
5268 	static const struct intr_details plpl_intr_details[] = {
5269 		{ F_FATALPERR, "Fatal parity error" },
5270 		{ F_PERRVFID, "VFID_MAP parity error" },
5271 		{ 0 }
5272 	};
5273 	static const struct intr_info plpl_intr_info = {
5274 		.name = "PL_PL_INT_CAUSE",
5275 		.cause_reg = A_PL_PL_INT_CAUSE,
5276 		.enable_reg = A_PL_PL_INT_ENABLE,
5277 		.fatal = F_FATALPERR | F_PERRVFID,
5278 		.flags = NONFATAL_IF_DISABLED,
5279 		.details = plpl_intr_details,
5280 		.actions = NULL,
5281 	};
5282 
5283 	return (t4_handle_intr(adap, &plpl_intr_info, 0, verbose));
5284 }
5285 
5286 /**
5287  *	t4_slow_intr_handler - control path interrupt handler
5288  *	@adap: the adapter
5289  *	@verbose: increased verbosity, for debug
5290  *
5291  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
5292  *	The designation 'slow' is because it involves register reads, while
5293  *	data interrupts typically don't involve any MMIOs.
5294  */
5295 bool t4_slow_intr_handler(struct adapter *adap, bool verbose)
5296 {
5297 	static const struct intr_details pl_intr_details[] = {
5298 		{ F_MC1, "MC1" },
5299 		{ F_UART, "UART" },
5300 		{ F_ULP_TX, "ULP TX" },
5301 		{ F_SGE, "SGE" },
5302 		{ F_HMA, "HMA" },
5303 		{ F_CPL_SWITCH, "CPL Switch" },
5304 		{ F_ULP_RX, "ULP RX" },
5305 		{ F_PM_RX, "PM RX" },
5306 		{ F_PM_TX, "PM TX" },
5307 		{ F_MA, "MA" },
5308 		{ F_TP, "TP" },
5309 		{ F_LE, "LE" },
5310 		{ F_EDC1, "EDC1" },
5311 		{ F_EDC0, "EDC0" },
5312 		{ F_MC, "MC0" },
5313 		{ F_PCIE, "PCIE" },
5314 		{ F_PMU, "PMU" },
5315 		{ F_MAC3, "MAC3" },
5316 		{ F_MAC2, "MAC2" },
5317 		{ F_MAC1, "MAC1" },
5318 		{ F_MAC0, "MAC0" },
5319 		{ F_SMB, "SMB" },
5320 		{ F_SF, "SF" },
5321 		{ F_PL, "PL" },
5322 		{ F_NCSI, "NC-SI" },
5323 		{ F_MPS, "MPS" },
5324 		{ F_MI, "MI" },
5325 		{ F_DBG, "DBG" },
5326 		{ F_I2CM, "I2CM" },
5327 		{ F_CIM, "CIM" },
5328 		{ 0 }
5329 	};
5330 	static const struct intr_info pl_perr_cause = {
5331 		.name = "PL_PERR_CAUSE",
5332 		.cause_reg = A_PL_PERR_CAUSE,
5333 		.enable_reg = A_PL_PERR_ENABLE,
5334 		.fatal = 0xffffffff,
5335 		.flags = 0,
5336 		.details = pl_intr_details,
5337 		.actions = NULL,
5338 	};
5339 	static const struct intr_action pl_intr_action[] = {
5340 		{ F_MC1, MEM_MC1, mem_intr_handler },
5341 		{ F_ULP_TX, -1, ulptx_intr_handler },
5342 		{ F_SGE, -1, sge_intr_handler },
5343 		{ F_CPL_SWITCH, -1, cplsw_intr_handler },
5344 		{ F_ULP_RX, -1, ulprx_intr_handler },
5345 		{ F_PM_RX, -1, pmrx_intr_handler},
5346 		{ F_PM_TX, -1, pmtx_intr_handler},
5347 		{ F_MA, -1, ma_intr_handler },
5348 		{ F_TP, -1, tp_intr_handler },
5349 		{ F_LE, -1, le_intr_handler },
5350 		{ F_EDC1, MEM_EDC1, mem_intr_handler },
5351 		{ F_EDC0, MEM_EDC0, mem_intr_handler },
5352 		{ F_MC0, MEM_MC0, mem_intr_handler },
5353 		{ F_PCIE, -1, pcie_intr_handler },
5354 		{ F_MAC3, 3, mac_intr_handler},
5355 		{ F_MAC2, 2, mac_intr_handler},
5356 		{ F_MAC1, 1, mac_intr_handler},
5357 		{ F_MAC0, 0, mac_intr_handler},
5358 		{ F_SMB, -1, smb_intr_handler},
5359 		{ F_PL, -1, plpl_intr_handler },
5360 		{ F_NCSI, -1, ncsi_intr_handler},
5361 		{ F_MPS, -1, mps_intr_handler },
5362 		{ F_CIM, -1, cim_intr_handler },
5363 		{ 0 }
5364 	};
5365 	static const struct intr_info pl_intr_info = {
5366 		.name = "PL_INT_CAUSE",
5367 		.cause_reg = A_PL_INT_CAUSE,
5368 		.enable_reg = A_PL_INT_ENABLE,
5369 		.fatal = 0,
5370 		.flags = 0,
5371 		.details = pl_intr_details,
5372 		.actions = pl_intr_action,
5373 	};
5374 	u32 perr;
5375 
5376 	perr = t4_read_reg(adap, pl_perr_cause.cause_reg);
5377 	if (verbose || perr != 0) {
5378 		t4_show_intr_info(adap, &pl_perr_cause, perr);
5379 		if (perr != 0)
5380 			t4_write_reg(adap, pl_perr_cause.cause_reg, perr);
5381 		if (verbose)
5382 			perr |= t4_read_reg(adap, pl_intr_info.enable_reg);
5383 	}
5384 
5385 	return (t4_handle_intr(adap, &pl_intr_info, perr, verbose));
5386 }
5387 
5388 #define PF_INTR_MASK (F_PFSW | F_PFCIM)
5389 
5390 /**
5391  *	t4_intr_enable - enable interrupts
5392  *	@adapter: the adapter whose interrupts should be enabled
5393  *
5394  *	Enable PF-specific interrupts for the calling function and the top-level
5395  *	interrupt concentrator for global interrupts.  Interrupts are already
5396  *	enabled at each module,	here we just enable the roots of the interrupt
5397  *	hierarchies.
5398  *
5399  *	Note: this function should be called only when the driver manages
5400  *	non PF-specific interrupts from the various HW modules.  Only one PCI
5401  *	function at a time should be doing this.
5402  */
5403 void t4_intr_enable(struct adapter *adap)
5404 {
5405 	u32 val = 0;
5406 
5407 	if (chip_id(adap) <= CHELSIO_T5)
5408 		val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
5409 	else
5410 		val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN;
5411 	val |= F_ERR_CPL_EXCEED_IQE_SIZE | F_ERR_INVALID_CIDX_INC |
5412 	    F_ERR_CPL_OPCODE_0 | F_ERR_DATA_CPL_ON_HIGH_QID1 |
5413 	    F_INGRESS_SIZE_ERR | F_ERR_DATA_CPL_ON_HIGH_QID0 |
5414 	    F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
5415 	    F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO | F_DBFIFO_LP_INT |
5416 	    F_EGRESS_SIZE_ERR;
5417 	t4_set_reg_field(adap, A_SGE_INT_ENABLE3, val, val);
5418 	t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
5419 	t4_set_reg_field(adap, A_PL_INT_ENABLE, F_SF | F_I2CM, 0);
5420 	t4_set_reg_field(adap, A_PL_INT_MAP0, 0, 1 << adap->pf);
5421 }
5422 
5423 /**
5424  *	t4_intr_disable - disable interrupts
5425  *	@adap: the adapter whose interrupts should be disabled
5426  *
5427  *	Disable interrupts.  We only disable the top-level interrupt
5428  *	concentrators.  The caller must be a PCI function managing global
5429  *	interrupts.
5430  */
5431 void t4_intr_disable(struct adapter *adap)
5432 {
5433 
5434 	t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
5435 	t4_set_reg_field(adap, A_PL_INT_MAP0, 1 << adap->pf, 0);
5436 }
5437 
5438 /**
5439  *	t4_intr_clear - clear all interrupts
5440  *	@adap: the adapter whose interrupts should be cleared
5441  *
5442  *	Clears all interrupts.  The caller must be a PCI function managing
5443  *	global interrupts.
5444  */
5445 void t4_intr_clear(struct adapter *adap)
5446 {
5447 	static const u32 cause_reg[] = {
5448 		A_CIM_HOST_INT_CAUSE,
5449 		A_CIM_HOST_UPACC_INT_CAUSE,
5450 		MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
5451 		A_CPL_INTR_CAUSE,
5452 		EDC_REG(A_EDC_INT_CAUSE, 0), EDC_REG(A_EDC_INT_CAUSE, 1),
5453 		A_LE_DB_INT_CAUSE,
5454 		A_MA_INT_WRAP_STATUS,
5455 		A_MA_PARITY_ERROR_STATUS1,
5456 		A_MA_INT_CAUSE,
5457 		A_MPS_CLS_INT_CAUSE,
5458 		A_MPS_RX_PERR_INT_CAUSE,
5459 		A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
5460 		A_MPS_STAT_PERR_INT_CAUSE_SRAM,
5461 		A_MPS_TRC_INT_CAUSE,
5462 		A_MPS_TX_INT_CAUSE,
5463 		A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
5464 		A_NCSI_INT_CAUSE,
5465 		A_PCIE_INT_CAUSE,
5466 		A_PCIE_NONFAT_ERR,
5467 		A_PL_PL_INT_CAUSE,
5468 		A_PM_RX_INT_CAUSE,
5469 		A_PM_TX_INT_CAUSE,
5470 		A_SGE_INT_CAUSE1,
5471 		A_SGE_INT_CAUSE2,
5472 		A_SGE_INT_CAUSE3,
5473 		A_SGE_INT_CAUSE4,
5474 		A_SMB_INT_CAUSE,
5475 		A_TP_INT_CAUSE,
5476 		A_ULP_RX_INT_CAUSE,
5477 		A_ULP_RX_INT_CAUSE_2,
5478 		A_ULP_TX_INT_CAUSE,
5479 		A_ULP_TX_INT_CAUSE_2,
5480 
5481 		MYPF_REG(A_PL_PF_INT_CAUSE),
5482 	};
5483 	int i;
5484 	const int nchan = adap->chip_params->nchan;
5485 
5486 	for (i = 0; i < ARRAY_SIZE(cause_reg); i++)
5487 		t4_write_reg(adap, cause_reg[i], 0xffffffff);
5488 
5489 	if (is_t4(adap)) {
5490 		t4_write_reg(adap, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
5491 		    0xffffffff);
5492 		t4_write_reg(adap, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
5493 		    0xffffffff);
5494 		t4_write_reg(adap, A_MC_INT_CAUSE, 0xffffffff);
5495 		for (i = 0; i < nchan; i++) {
5496 			t4_write_reg(adap, PORT_REG(i, A_XGMAC_PORT_INT_CAUSE),
5497 			    0xffffffff);
5498 		}
5499 	}
5500 	if (chip_id(adap) >= CHELSIO_T5) {
5501 		t4_write_reg(adap, A_MA_PARITY_ERROR_STATUS2, 0xffffffff);
5502 		t4_write_reg(adap, A_MPS_STAT_PERR_INT_CAUSE_SRAM1, 0xffffffff);
5503 		t4_write_reg(adap, A_SGE_INT_CAUSE5, 0xffffffff);
5504 		t4_write_reg(adap, A_MC_P_INT_CAUSE, 0xffffffff);
5505 		if (is_t5(adap)) {
5506 			t4_write_reg(adap, MC_REG(A_MC_P_INT_CAUSE, 1),
5507 			    0xffffffff);
5508 		}
5509 		for (i = 0; i < nchan; i++) {
5510 			t4_write_reg(adap, T5_PORT_REG(i,
5511 			    A_MAC_PORT_PERR_INT_CAUSE), 0xffffffff);
5512 			if (chip_id(adap) > CHELSIO_T5) {
5513 				t4_write_reg(adap, T5_PORT_REG(i,
5514 				    A_MAC_PORT_PERR_INT_CAUSE_100G),
5515 				    0xffffffff);
5516 			}
5517 			t4_write_reg(adap, T5_PORT_REG(i, A_MAC_PORT_INT_CAUSE),
5518 			    0xffffffff);
5519 		}
5520 	}
5521 	if (chip_id(adap) >= CHELSIO_T6) {
5522 		t4_write_reg(adap, A_SGE_INT_CAUSE6, 0xffffffff);
5523 	}
5524 
5525 	t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff);
5526 	t4_write_reg(adap, A_PL_PERR_CAUSE, 0xffffffff);
5527 	t4_write_reg(adap, A_PL_INT_CAUSE, 0xffffffff);
5528 	(void) t4_read_reg(adap, A_PL_INT_CAUSE);          /* flush */
5529 }
5530 
5531 /**
5532  *	hash_mac_addr - return the hash value of a MAC address
5533  *	@addr: the 48-bit Ethernet MAC address
5534  *
5535  *	Hashes a MAC address according to the hash function used by HW inexact
5536  *	(hash) address matching.
5537  */
5538 static int hash_mac_addr(const u8 *addr)
5539 {
5540 	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
5541 	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
5542 	a ^= b;
5543 	a ^= (a >> 12);
5544 	a ^= (a >> 6);
5545 	return a & 0x3f;
5546 }
5547 
5548 /**
5549  *	t4_config_rss_range - configure a portion of the RSS mapping table
5550  *	@adapter: the adapter
5551  *	@mbox: mbox to use for the FW command
5552  *	@viid: virtual interface whose RSS subtable is to be written
5553  *	@start: start entry in the table to write
5554  *	@n: how many table entries to write
5555  *	@rspq: values for the "response queue" (Ingress Queue) lookup table
5556  *	@nrspq: number of values in @rspq
5557  *
5558  *	Programs the selected part of the VI's RSS mapping table with the
5559  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
5560  *	until the full table range is populated.
5561  *
5562  *	The caller must ensure the values in @rspq are in the range allowed for
5563  *	@viid.
5564  */
5565 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5566 			int start, int n, const u16 *rspq, unsigned int nrspq)
5567 {
5568 	int ret;
5569 	const u16 *rsp = rspq;
5570 	const u16 *rsp_end = rspq + nrspq;
5571 	struct fw_rss_ind_tbl_cmd cmd;
5572 
5573 	memset(&cmd, 0, sizeof(cmd));
5574 	cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
5575 				     F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
5576 				     V_FW_RSS_IND_TBL_CMD_VIID(viid));
5577 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5578 
5579 	/*
5580 	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
5581 	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
5582 	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
5583 	 * reserved.
5584 	 */
5585 	while (n > 0) {
5586 		int nq = min(n, 32);
5587 		int nq_packed = 0;
5588 		__be32 *qp = &cmd.iq0_to_iq2;
5589 
5590 		/*
5591 		 * Set up the firmware RSS command header to send the next
5592 		 * "nq" Ingress Queue IDs to the firmware.
5593 		 */
5594 		cmd.niqid = cpu_to_be16(nq);
5595 		cmd.startidx = cpu_to_be16(start);
5596 
5597 		/*
5598 		 * "nq" more done for the start of the next loop.
5599 		 */
5600 		start += nq;
5601 		n -= nq;
5602 
5603 		/*
5604 		 * While there are still Ingress Queue IDs to stuff into the
5605 		 * current firmware RSS command, retrieve them from the
5606 		 * Ingress Queue ID array and insert them into the command.
5607 		 */
5608 		while (nq > 0) {
5609 			/*
5610 			 * Grab up to the next 3 Ingress Queue IDs (wrapping
5611 			 * around the Ingress Queue ID array if necessary) and
5612 			 * insert them into the firmware RSS command at the
5613 			 * current 3-tuple position within the commad.
5614 			 */
5615 			u16 qbuf[3];
5616 			u16 *qbp = qbuf;
5617 			int nqbuf = min(3, nq);
5618 
5619 			nq -= nqbuf;
5620 			qbuf[0] = qbuf[1] = qbuf[2] = 0;
5621 			while (nqbuf && nq_packed < 32) {
5622 				nqbuf--;
5623 				nq_packed++;
5624 				*qbp++ = *rsp++;
5625 				if (rsp >= rsp_end)
5626 					rsp = rspq;
5627 			}
5628 			*qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
5629 					    V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
5630 					    V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
5631 		}
5632 
5633 		/*
5634 		 * Send this portion of the RRS table update to the firmware;
5635 		 * bail out on any errors.
5636 		 */
5637 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5638 		if (ret)
5639 			return ret;
5640 	}
5641 	return 0;
5642 }
5643 
5644 /**
5645  *	t4_config_glbl_rss - configure the global RSS mode
5646  *	@adapter: the adapter
5647  *	@mbox: mbox to use for the FW command
5648  *	@mode: global RSS mode
5649  *	@flags: mode-specific flags
5650  *
5651  *	Sets the global RSS mode.
5652  */
5653 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5654 		       unsigned int flags)
5655 {
5656 	struct fw_rss_glb_config_cmd c;
5657 
5658 	memset(&c, 0, sizeof(c));
5659 	c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
5660 				    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
5661 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5662 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5663 		c.u.manual.mode_pkd =
5664 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
5665 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5666 		c.u.basicvirtual.mode_keymode =
5667 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
5668 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5669 	} else
5670 		return -EINVAL;
5671 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5672 }
5673 
5674 /**
5675  *	t4_config_vi_rss - configure per VI RSS settings
5676  *	@adapter: the adapter
5677  *	@mbox: mbox to use for the FW command
5678  *	@viid: the VI id
5679  *	@flags: RSS flags
5680  *	@defq: id of the default RSS queue for the VI.
5681  *	@skeyidx: RSS secret key table index for non-global mode
5682  *	@skey: RSS vf_scramble key for VI.
5683  *
5684  *	Configures VI-specific RSS properties.
5685  */
5686 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5687 		     unsigned int flags, unsigned int defq, unsigned int skeyidx,
5688 		     unsigned int skey)
5689 {
5690 	struct fw_rss_vi_config_cmd c;
5691 
5692 	memset(&c, 0, sizeof(c));
5693 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
5694 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
5695 				   V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
5696 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5697 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5698 					V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
5699 	c.u.basicvirtual.secretkeyidx_pkd = cpu_to_be32(
5700 					V_FW_RSS_VI_CONFIG_CMD_SECRETKEYIDX(skeyidx));
5701 	c.u.basicvirtual.secretkeyxor = cpu_to_be32(skey);
5702 
5703 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5704 }
5705 
5706 /* Read an RSS table row */
5707 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5708 {
5709 	t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
5710 	return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
5711 				   5, 0, val);
5712 }
5713 
5714 /**
5715  *	t4_read_rss - read the contents of the RSS mapping table
5716  *	@adapter: the adapter
5717  *	@map: holds the contents of the RSS mapping table
5718  *
5719  *	Reads the contents of the RSS hash->queue mapping table.
5720  */
5721 int t4_read_rss(struct adapter *adapter, u16 *map)
5722 {
5723 	u32 val;
5724 	int i, ret;
5725 	int rss_nentries = adapter->chip_params->rss_nentries;
5726 
5727 	for (i = 0; i < rss_nentries / 2; ++i) {
5728 		ret = rd_rss_row(adapter, i, &val);
5729 		if (ret)
5730 			return ret;
5731 		*map++ = G_LKPTBLQUEUE0(val);
5732 		*map++ = G_LKPTBLQUEUE1(val);
5733 	}
5734 	return 0;
5735 }
5736 
5737 /**
5738  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5739  * @adap: the adapter
5740  * @cmd: TP fw ldst address space type
5741  * @vals: where the indirect register values are stored/written
5742  * @nregs: how many indirect registers to read/write
5743  * @start_idx: index of first indirect register to read/write
5744  * @rw: Read (1) or Write (0)
5745  * @sleep_ok: if true we may sleep while awaiting command completion
5746  *
5747  * Access TP indirect registers through LDST
5748  **/
5749 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5750 			    unsigned int nregs, unsigned int start_index,
5751 			    unsigned int rw, bool sleep_ok)
5752 {
5753 	int ret = 0;
5754 	unsigned int i;
5755 	struct fw_ldst_cmd c;
5756 
5757 	for (i = 0; i < nregs; i++) {
5758 		memset(&c, 0, sizeof(c));
5759 		c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
5760 						F_FW_CMD_REQUEST |
5761 						(rw ? F_FW_CMD_READ :
5762 						      F_FW_CMD_WRITE) |
5763 						V_FW_LDST_CMD_ADDRSPACE(cmd));
5764 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5765 
5766 		c.u.addrval.addr = cpu_to_be32(start_index + i);
5767 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5768 		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5769 				      sleep_ok);
5770 		if (ret)
5771 			return ret;
5772 
5773 		if (rw)
5774 			vals[i] = be32_to_cpu(c.u.addrval.val);
5775 	}
5776 	return 0;
5777 }
5778 
5779 /**
5780  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5781  * @adap: the adapter
5782  * @reg_addr: Address Register
5783  * @reg_data: Data register
5784  * @buff: where the indirect register values are stored/written
5785  * @nregs: how many indirect registers to read/write
5786  * @start_index: index of first indirect register to read/write
5787  * @rw: READ(1) or WRITE(0)
5788  * @sleep_ok: if true we may sleep while awaiting command completion
5789  *
5790  * Read/Write TP indirect registers through LDST if possible.
5791  * Else, use backdoor access
5792  **/
5793 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5794 			      u32 *buff, u32 nregs, u32 start_index, int rw,
5795 			      bool sleep_ok)
5796 {
5797 	int rc = -EINVAL;
5798 	int cmd;
5799 
5800 	switch (reg_addr) {
5801 	case A_TP_PIO_ADDR:
5802 		cmd = FW_LDST_ADDRSPC_TP_PIO;
5803 		break;
5804 	case A_TP_TM_PIO_ADDR:
5805 		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5806 		break;
5807 	case A_TP_MIB_INDEX:
5808 		cmd = FW_LDST_ADDRSPC_TP_MIB;
5809 		break;
5810 	default:
5811 		goto indirect_access;
5812 	}
5813 
5814 	if (t4_use_ldst(adap))
5815 		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5816 				      sleep_ok);
5817 
5818 indirect_access:
5819 
5820 	if (rc) {
5821 		if (rw)
5822 			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5823 					 start_index);
5824 		else
5825 			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5826 					  start_index);
5827 	}
5828 }
5829 
5830 /**
5831  * t4_tp_pio_read - Read TP PIO registers
5832  * @adap: the adapter
5833  * @buff: where the indirect register values are written
5834  * @nregs: how many indirect registers to read
5835  * @start_index: index of first indirect register to read
5836  * @sleep_ok: if true we may sleep while awaiting command completion
5837  *
5838  * Read TP PIO Registers
5839  **/
5840 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5841 		    u32 start_index, bool sleep_ok)
5842 {
5843 	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, buff, nregs,
5844 			  start_index, 1, sleep_ok);
5845 }
5846 
5847 /**
5848  * t4_tp_pio_write - Write TP PIO registers
5849  * @adap: the adapter
5850  * @buff: where the indirect register values are stored
5851  * @nregs: how many indirect registers to write
5852  * @start_index: index of first indirect register to write
5853  * @sleep_ok: if true we may sleep while awaiting command completion
5854  *
5855  * Write TP PIO Registers
5856  **/
5857 void t4_tp_pio_write(struct adapter *adap, const u32 *buff, u32 nregs,
5858 		     u32 start_index, bool sleep_ok)
5859 {
5860 	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5861 	    __DECONST(u32 *, buff), nregs, start_index, 0, sleep_ok);
5862 }
5863 
5864 /**
5865  * t4_tp_tm_pio_read - Read TP TM PIO registers
5866  * @adap: the adapter
5867  * @buff: where the indirect register values are written
5868  * @nregs: how many indirect registers to read
5869  * @start_index: index of first indirect register to read
5870  * @sleep_ok: if true we may sleep while awaiting command completion
5871  *
5872  * Read TP TM PIO Registers
5873  **/
5874 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5875 		       u32 start_index, bool sleep_ok)
5876 {
5877 	t4_tp_indirect_rw(adap, A_TP_TM_PIO_ADDR, A_TP_TM_PIO_DATA, buff,
5878 			  nregs, start_index, 1, sleep_ok);
5879 }
5880 
5881 /**
5882  * t4_tp_mib_read - Read TP MIB registers
5883  * @adap: the adapter
5884  * @buff: where the indirect register values are written
5885  * @nregs: how many indirect registers to read
5886  * @start_index: index of first indirect register to read
5887  * @sleep_ok: if true we may sleep while awaiting command completion
5888  *
5889  * Read TP MIB Registers
5890  **/
5891 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5892 		    bool sleep_ok)
5893 {
5894 	t4_tp_indirect_rw(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, buff, nregs,
5895 			  start_index, 1, sleep_ok);
5896 }
5897 
5898 /**
5899  *	t4_read_rss_key - read the global RSS key
5900  *	@adap: the adapter
5901  *	@key: 10-entry array holding the 320-bit RSS key
5902  * 	@sleep_ok: if true we may sleep while awaiting command completion
5903  *
5904  *	Reads the global 320-bit RSS key.
5905  */
5906 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5907 {
5908 	t4_tp_pio_read(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5909 }
5910 
5911 /**
5912  *	t4_write_rss_key - program one of the RSS keys
5913  *	@adap: the adapter
5914  *	@key: 10-entry array holding the 320-bit RSS key
5915  *	@idx: which RSS key to write
5916  * 	@sleep_ok: if true we may sleep while awaiting command completion
5917  *
5918  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5919  *	0..15 the corresponding entry in the RSS key table is written,
5920  *	otherwise the global RSS key is written.
5921  */
5922 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5923 		      bool sleep_ok)
5924 {
5925 	u8 rss_key_addr_cnt = 16;
5926 	u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
5927 
5928 	/*
5929 	 * T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5930 	 * allows access to key addresses 16-63 by using KeyWrAddrX
5931 	 * as index[5:4](upper 2) into key table
5932 	 */
5933 	if ((chip_id(adap) > CHELSIO_T5) &&
5934 	    (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
5935 		rss_key_addr_cnt = 32;
5936 
5937 	t4_tp_pio_write(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5938 
5939 	if (idx >= 0 && idx < rss_key_addr_cnt) {
5940 		if (rss_key_addr_cnt > 16)
5941 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5942 				     vrt | V_KEYWRADDRX(idx >> 4) |
5943 				     V_T6_VFWRADDR(idx) | F_KEYWREN);
5944 		else
5945 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5946 				     vrt| V_KEYWRADDR(idx) | F_KEYWREN);
5947 	}
5948 }
5949 
5950 /**
5951  *	t4_read_rss_pf_config - read PF RSS Configuration Table
5952  *	@adapter: the adapter
5953  *	@index: the entry in the PF RSS table to read
5954  *	@valp: where to store the returned value
5955  * 	@sleep_ok: if true we may sleep while awaiting command completion
5956  *
5957  *	Reads the PF RSS Configuration Table at the specified index and returns
5958  *	the value found there.
5959  */
5960 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5961 			   u32 *valp, bool sleep_ok)
5962 {
5963 	t4_tp_pio_read(adapter, valp, 1, A_TP_RSS_PF0_CONFIG + index, sleep_ok);
5964 }
5965 
5966 /**
5967  *	t4_write_rss_pf_config - write PF RSS Configuration Table
5968  *	@adapter: the adapter
5969  *	@index: the entry in the VF RSS table to read
5970  *	@val: the value to store
5971  * 	@sleep_ok: if true we may sleep while awaiting command completion
5972  *
5973  *	Writes the PF RSS Configuration Table at the specified index with the
5974  *	specified value.
5975  */
5976 void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index,
5977 			    u32 val, bool sleep_ok)
5978 {
5979 	t4_tp_pio_write(adapter, &val, 1, A_TP_RSS_PF0_CONFIG + index,
5980 			sleep_ok);
5981 }
5982 
5983 /**
5984  *	t4_read_rss_vf_config - read VF RSS Configuration Table
5985  *	@adapter: the adapter
5986  *	@index: the entry in the VF RSS table to read
5987  *	@vfl: where to store the returned VFL
5988  *	@vfh: where to store the returned VFH
5989  * 	@sleep_ok: if true we may sleep while awaiting command completion
5990  *
5991  *	Reads the VF RSS Configuration Table at the specified index and returns
5992  *	the (VFL, VFH) values found there.
5993  */
5994 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5995 			   u32 *vfl, u32 *vfh, bool sleep_ok)
5996 {
5997 	u32 vrt, mask, data;
5998 
5999 	if (chip_id(adapter) <= CHELSIO_T5) {
6000 		mask = V_VFWRADDR(M_VFWRADDR);
6001 		data = V_VFWRADDR(index);
6002 	} else {
6003 		 mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
6004 		 data = V_T6_VFWRADDR(index);
6005 	}
6006 	/*
6007 	 * Request that the index'th VF Table values be read into VFL/VFH.
6008 	 */
6009 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
6010 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
6011 	vrt |= data | F_VFRDEN;
6012 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
6013 
6014 	/*
6015 	 * Grab the VFL/VFH values ...
6016 	 */
6017 	t4_tp_pio_read(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
6018 	t4_tp_pio_read(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
6019 }
6020 
6021 /**
6022  *	t4_write_rss_vf_config - write VF RSS Configuration Table
6023  *
6024  *	@adapter: the adapter
6025  *	@index: the entry in the VF RSS table to write
6026  *	@vfl: the VFL to store
6027  *	@vfh: the VFH to store
6028  *
6029  *	Writes the VF RSS Configuration Table at the specified index with the
6030  *	specified (VFL, VFH) values.
6031  */
6032 void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
6033 			    u32 vfl, u32 vfh, bool sleep_ok)
6034 {
6035 	u32 vrt, mask, data;
6036 
6037 	if (chip_id(adapter) <= CHELSIO_T5) {
6038 		mask = V_VFWRADDR(M_VFWRADDR);
6039 		data = V_VFWRADDR(index);
6040 	} else {
6041 		mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
6042 		data = V_T6_VFWRADDR(index);
6043 	}
6044 
6045 	/*
6046 	 * Load up VFL/VFH with the values to be written ...
6047 	 */
6048 	t4_tp_pio_write(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
6049 	t4_tp_pio_write(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
6050 
6051 	/*
6052 	 * Write the VFL/VFH into the VF Table at index'th location.
6053 	 */
6054 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
6055 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
6056 	vrt |= data | F_VFRDEN;
6057 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
6058 }
6059 
6060 /**
6061  *	t4_read_rss_pf_map - read PF RSS Map
6062  *	@adapter: the adapter
6063  * 	@sleep_ok: if true we may sleep while awaiting command completion
6064  *
6065  *	Reads the PF RSS Map register and returns its value.
6066  */
6067 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
6068 {
6069 	u32 pfmap;
6070 
6071 	t4_tp_pio_read(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
6072 
6073 	return pfmap;
6074 }
6075 
6076 /**
6077  *	t4_write_rss_pf_map - write PF RSS Map
6078  *	@adapter: the adapter
6079  *	@pfmap: PF RSS Map value
6080  *
6081  *	Writes the specified value to the PF RSS Map register.
6082  */
6083 void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap, bool sleep_ok)
6084 {
6085 	t4_tp_pio_write(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
6086 }
6087 
6088 /**
6089  *	t4_read_rss_pf_mask - read PF RSS Mask
6090  *	@adapter: the adapter
6091  * 	@sleep_ok: if true we may sleep while awaiting command completion
6092  *
6093  *	Reads the PF RSS Mask register and returns its value.
6094  */
6095 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
6096 {
6097 	u32 pfmask;
6098 
6099 	t4_tp_pio_read(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
6100 
6101 	return pfmask;
6102 }
6103 
6104 /**
6105  *	t4_write_rss_pf_mask - write PF RSS Mask
6106  *	@adapter: the adapter
6107  *	@pfmask: PF RSS Mask value
6108  *
6109  *	Writes the specified value to the PF RSS Mask register.
6110  */
6111 void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask, bool sleep_ok)
6112 {
6113 	t4_tp_pio_write(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
6114 }
6115 
6116 /**
6117  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
6118  *	@adap: the adapter
6119  *	@v4: holds the TCP/IP counter values
6120  *	@v6: holds the TCP/IPv6 counter values
6121  * 	@sleep_ok: if true we may sleep while awaiting command completion
6122  *
6123  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
6124  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
6125  */
6126 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
6127 			 struct tp_tcp_stats *v6, bool sleep_ok)
6128 {
6129 	u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
6130 
6131 #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
6132 #define STAT(x)     val[STAT_IDX(x)]
6133 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
6134 
6135 	if (v4) {
6136 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
6137 			       A_TP_MIB_TCP_OUT_RST, sleep_ok);
6138 		v4->tcp_out_rsts = STAT(OUT_RST);
6139 		v4->tcp_in_segs  = STAT64(IN_SEG);
6140 		v4->tcp_out_segs = STAT64(OUT_SEG);
6141 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
6142 	}
6143 	if (v6) {
6144 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
6145 			       A_TP_MIB_TCP_V6OUT_RST, sleep_ok);
6146 		v6->tcp_out_rsts = STAT(OUT_RST);
6147 		v6->tcp_in_segs  = STAT64(IN_SEG);
6148 		v6->tcp_out_segs = STAT64(OUT_SEG);
6149 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
6150 	}
6151 #undef STAT64
6152 #undef STAT
6153 #undef STAT_IDX
6154 }
6155 
6156 /**
6157  *	t4_tp_get_err_stats - read TP's error MIB counters
6158  *	@adap: the adapter
6159  *	@st: holds the counter values
6160  * 	@sleep_ok: if true we may sleep while awaiting command completion
6161  *
6162  *	Returns the values of TP's error counters.
6163  */
6164 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
6165 			 bool sleep_ok)
6166 {
6167 	int nchan = adap->chip_params->nchan;
6168 
6169 	t4_tp_mib_read(adap, st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0,
6170 		       sleep_ok);
6171 
6172 	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0,
6173 		       sleep_ok);
6174 
6175 	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0,
6176 		       sleep_ok);
6177 
6178 	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
6179 		       A_TP_MIB_TNL_CNG_DROP_0, sleep_ok);
6180 
6181 	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
6182 		       A_TP_MIB_OFD_CHN_DROP_0, sleep_ok);
6183 
6184 	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0,
6185 		       sleep_ok);
6186 
6187 	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
6188 		       A_TP_MIB_OFD_VLN_DROP_0, sleep_ok);
6189 
6190 	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
6191 		       A_TP_MIB_TCP_V6IN_ERR_0, sleep_ok);
6192 
6193 	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP,
6194 		       sleep_ok);
6195 }
6196 
6197 /**
6198  *	t4_tp_get_err_stats - read TP's error MIB counters
6199  *	@adap: the adapter
6200  *	@st: holds the counter values
6201  * 	@sleep_ok: if true we may sleep while awaiting command completion
6202  *
6203  *	Returns the values of TP's error counters.
6204  */
6205 void t4_tp_get_tnl_stats(struct adapter *adap, struct tp_tnl_stats *st,
6206 			 bool sleep_ok)
6207 {
6208 	int nchan = adap->chip_params->nchan;
6209 
6210 	t4_tp_mib_read(adap, st->out_pkt, nchan, A_TP_MIB_TNL_OUT_PKT_0,
6211 		       sleep_ok);
6212 	t4_tp_mib_read(adap, st->in_pkt, nchan, A_TP_MIB_TNL_IN_PKT_0,
6213 		       sleep_ok);
6214 }
6215 
6216 /**
6217  *	t4_tp_get_proxy_stats - read TP's proxy MIB counters
6218  *	@adap: the adapter
6219  *	@st: holds the counter values
6220  *
6221  *	Returns the values of TP's proxy counters.
6222  */
6223 void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st,
6224     bool sleep_ok)
6225 {
6226 	int nchan = adap->chip_params->nchan;
6227 
6228 	t4_tp_mib_read(adap, st->proxy, nchan, A_TP_MIB_TNL_LPBK_0, sleep_ok);
6229 }
6230 
6231 /**
6232  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
6233  *	@adap: the adapter
6234  *	@st: holds the counter values
6235  * 	@sleep_ok: if true we may sleep while awaiting command completion
6236  *
6237  *	Returns the values of TP's CPL counters.
6238  */
6239 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
6240 			 bool sleep_ok)
6241 {
6242 	int nchan = adap->chip_params->nchan;
6243 
6244 	t4_tp_mib_read(adap, st->req, nchan, A_TP_MIB_CPL_IN_REQ_0, sleep_ok);
6245 
6246 	t4_tp_mib_read(adap, st->rsp, nchan, A_TP_MIB_CPL_OUT_RSP_0, sleep_ok);
6247 }
6248 
6249 /**
6250  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
6251  *	@adap: the adapter
6252  *	@st: holds the counter values
6253  *
6254  *	Returns the values of TP's RDMA counters.
6255  */
6256 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
6257 			  bool sleep_ok)
6258 {
6259 	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, A_TP_MIB_RQE_DFR_PKT,
6260 		       sleep_ok);
6261 }
6262 
6263 /**
6264  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
6265  *	@adap: the adapter
6266  *	@idx: the port index
6267  *	@st: holds the counter values
6268  * 	@sleep_ok: if true we may sleep while awaiting command completion
6269  *
6270  *	Returns the values of TP's FCoE counters for the selected port.
6271  */
6272 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
6273 		       struct tp_fcoe_stats *st, bool sleep_ok)
6274 {
6275 	u32 val[2];
6276 
6277 	t4_tp_mib_read(adap, &st->frames_ddp, 1, A_TP_MIB_FCOE_DDP_0 + idx,
6278 		       sleep_ok);
6279 
6280 	t4_tp_mib_read(adap, &st->frames_drop, 1,
6281 		       A_TP_MIB_FCOE_DROP_0 + idx, sleep_ok);
6282 
6283 	t4_tp_mib_read(adap, val, 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx,
6284 		       sleep_ok);
6285 
6286 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
6287 }
6288 
6289 /**
6290  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
6291  *	@adap: the adapter
6292  *	@st: holds the counter values
6293  * 	@sleep_ok: if true we may sleep while awaiting command completion
6294  *
6295  *	Returns the values of TP's counters for non-TCP directly-placed packets.
6296  */
6297 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
6298 		      bool sleep_ok)
6299 {
6300 	u32 val[4];
6301 
6302 	t4_tp_mib_read(adap, val, 4, A_TP_MIB_USM_PKTS, sleep_ok);
6303 
6304 	st->frames = val[0];
6305 	st->drops = val[1];
6306 	st->octets = ((u64)val[2] << 32) | val[3];
6307 }
6308 
6309 /**
6310  *	t4_tp_get_tid_stats - read TP's tid MIB counters.
6311  *	@adap: the adapter
6312  *	@st: holds the counter values
6313  * 	@sleep_ok: if true we may sleep while awaiting command completion
6314  *
6315  *	Returns the values of TP's counters for tids.
6316  */
6317 void t4_tp_get_tid_stats(struct adapter *adap, struct tp_tid_stats *st,
6318 		      bool sleep_ok)
6319 {
6320 
6321 	t4_tp_mib_read(adap, &st->del, 4, A_TP_MIB_TID_DEL, sleep_ok);
6322 }
6323 
6324 /**
6325  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
6326  *	@adap: the adapter
6327  *	@mtus: where to store the MTU values
6328  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
6329  *
6330  *	Reads the HW path MTU table.
6331  */
6332 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
6333 {
6334 	u32 v;
6335 	int i;
6336 
6337 	for (i = 0; i < NMTUS; ++i) {
6338 		t4_write_reg(adap, A_TP_MTU_TABLE,
6339 			     V_MTUINDEX(0xff) | V_MTUVALUE(i));
6340 		v = t4_read_reg(adap, A_TP_MTU_TABLE);
6341 		mtus[i] = G_MTUVALUE(v);
6342 		if (mtu_log)
6343 			mtu_log[i] = G_MTUWIDTH(v);
6344 	}
6345 }
6346 
6347 /**
6348  *	t4_read_cong_tbl - reads the congestion control table
6349  *	@adap: the adapter
6350  *	@incr: where to store the alpha values
6351  *
6352  *	Reads the additive increments programmed into the HW congestion
6353  *	control table.
6354  */
6355 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
6356 {
6357 	unsigned int mtu, w;
6358 
6359 	for (mtu = 0; mtu < NMTUS; ++mtu)
6360 		for (w = 0; w < NCCTRL_WIN; ++w) {
6361 			t4_write_reg(adap, A_TP_CCTRL_TABLE,
6362 				     V_ROWINDEX(0xffff) | (mtu << 5) | w);
6363 			incr[mtu][w] = (u16)t4_read_reg(adap,
6364 						A_TP_CCTRL_TABLE) & 0x1fff;
6365 		}
6366 }
6367 
6368 /**
6369  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
6370  *	@adap: the adapter
6371  *	@addr: the indirect TP register address
6372  *	@mask: specifies the field within the register to modify
6373  *	@val: new value for the field
6374  *
6375  *	Sets a field of an indirect TP register to the given value.
6376  */
6377 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
6378 			    unsigned int mask, unsigned int val)
6379 {
6380 	t4_write_reg(adap, A_TP_PIO_ADDR, addr);
6381 	val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
6382 	t4_write_reg(adap, A_TP_PIO_DATA, val);
6383 }
6384 
6385 /**
6386  *	init_cong_ctrl - initialize congestion control parameters
6387  *	@a: the alpha values for congestion control
6388  *	@b: the beta values for congestion control
6389  *
6390  *	Initialize the congestion control parameters.
6391  */
6392 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
6393 {
6394 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
6395 	a[9] = 2;
6396 	a[10] = 3;
6397 	a[11] = 4;
6398 	a[12] = 5;
6399 	a[13] = 6;
6400 	a[14] = 7;
6401 	a[15] = 8;
6402 	a[16] = 9;
6403 	a[17] = 10;
6404 	a[18] = 14;
6405 	a[19] = 17;
6406 	a[20] = 21;
6407 	a[21] = 25;
6408 	a[22] = 30;
6409 	a[23] = 35;
6410 	a[24] = 45;
6411 	a[25] = 60;
6412 	a[26] = 80;
6413 	a[27] = 100;
6414 	a[28] = 200;
6415 	a[29] = 300;
6416 	a[30] = 400;
6417 	a[31] = 500;
6418 
6419 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
6420 	b[9] = b[10] = 1;
6421 	b[11] = b[12] = 2;
6422 	b[13] = b[14] = b[15] = b[16] = 3;
6423 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
6424 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
6425 	b[28] = b[29] = 6;
6426 	b[30] = b[31] = 7;
6427 }
6428 
6429 /* The minimum additive increment value for the congestion control table */
6430 #define CC_MIN_INCR 2U
6431 
6432 /**
6433  *	t4_load_mtus - write the MTU and congestion control HW tables
6434  *	@adap: the adapter
6435  *	@mtus: the values for the MTU table
6436  *	@alpha: the values for the congestion control alpha parameter
6437  *	@beta: the values for the congestion control beta parameter
6438  *
6439  *	Write the HW MTU table with the supplied MTUs and the high-speed
6440  *	congestion control table with the supplied alpha, beta, and MTUs.
6441  *	We write the two tables together because the additive increments
6442  *	depend on the MTUs.
6443  */
6444 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
6445 		  const unsigned short *alpha, const unsigned short *beta)
6446 {
6447 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
6448 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
6449 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
6450 		28672, 40960, 57344, 81920, 114688, 163840, 229376
6451 	};
6452 
6453 	unsigned int i, w;
6454 
6455 	for (i = 0; i < NMTUS; ++i) {
6456 		unsigned int mtu = mtus[i];
6457 		unsigned int log2 = fls(mtu);
6458 
6459 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
6460 			log2--;
6461 		t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
6462 			     V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
6463 
6464 		for (w = 0; w < NCCTRL_WIN; ++w) {
6465 			unsigned int inc;
6466 
6467 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
6468 				  CC_MIN_INCR);
6469 
6470 			t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
6471 				     (w << 16) | (beta[w] << 13) | inc);
6472 		}
6473 	}
6474 }
6475 
6476 /**
6477  *	t4_set_pace_tbl - set the pace table
6478  *	@adap: the adapter
6479  *	@pace_vals: the pace values in microseconds
6480  *	@start: index of the first entry in the HW pace table to set
6481  *	@n: how many entries to set
6482  *
6483  *	Sets (a subset of the) HW pace table.
6484  */
6485 int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
6486 		     unsigned int start, unsigned int n)
6487 {
6488 	unsigned int vals[NTX_SCHED], i;
6489 	unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
6490 
6491 	if (n > NTX_SCHED)
6492 	    return -ERANGE;
6493 
6494 	/* convert values from us to dack ticks, rounding to closest value */
6495 	for (i = 0; i < n; i++, pace_vals++) {
6496 		vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
6497 		if (vals[i] > 0x7ff)
6498 			return -ERANGE;
6499 		if (*pace_vals && vals[i] == 0)
6500 			return -ERANGE;
6501 	}
6502 	for (i = 0; i < n; i++, start++)
6503 		t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
6504 	return 0;
6505 }
6506 
6507 /**
6508  *	t4_set_sched_bps - set the bit rate for a HW traffic scheduler
6509  *	@adap: the adapter
6510  *	@kbps: target rate in Kbps
6511  *	@sched: the scheduler index
6512  *
6513  *	Configure a Tx HW scheduler for the target rate.
6514  */
6515 int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
6516 {
6517 	unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
6518 	unsigned int clk = adap->params.vpd.cclk * 1000;
6519 	unsigned int selected_cpt = 0, selected_bpt = 0;
6520 
6521 	if (kbps > 0) {
6522 		kbps *= 125;     /* -> bytes */
6523 		for (cpt = 1; cpt <= 255; cpt++) {
6524 			tps = clk / cpt;
6525 			bpt = (kbps + tps / 2) / tps;
6526 			if (bpt > 0 && bpt <= 255) {
6527 				v = bpt * tps;
6528 				delta = v >= kbps ? v - kbps : kbps - v;
6529 				if (delta < mindelta) {
6530 					mindelta = delta;
6531 					selected_cpt = cpt;
6532 					selected_bpt = bpt;
6533 				}
6534 			} else if (selected_cpt)
6535 				break;
6536 		}
6537 		if (!selected_cpt)
6538 			return -EINVAL;
6539 	}
6540 	t4_write_reg(adap, A_TP_TM_PIO_ADDR,
6541 		     A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
6542 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
6543 	if (sched & 1)
6544 		v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
6545 	else
6546 		v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
6547 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
6548 	return 0;
6549 }
6550 
6551 /**
6552  *	t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
6553  *	@adap: the adapter
6554  *	@sched: the scheduler index
6555  *	@ipg: the interpacket delay in tenths of nanoseconds
6556  *
6557  *	Set the interpacket delay for a HW packet rate scheduler.
6558  */
6559 int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
6560 {
6561 	unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
6562 
6563 	/* convert ipg to nearest number of core clocks */
6564 	ipg *= core_ticks_per_usec(adap);
6565 	ipg = (ipg + 5000) / 10000;
6566 	if (ipg > M_TXTIMERSEPQ0)
6567 		return -EINVAL;
6568 
6569 	t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
6570 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
6571 	if (sched & 1)
6572 		v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
6573 	else
6574 		v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
6575 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
6576 	t4_read_reg(adap, A_TP_TM_PIO_DATA);
6577 	return 0;
6578 }
6579 
6580 /*
6581  * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
6582  * clocks.  The formula is
6583  *
6584  * bytes/s = bytes256 * 256 * ClkFreq / 4096
6585  *
6586  * which is equivalent to
6587  *
6588  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
6589  */
6590 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
6591 {
6592 	u64 v = (u64)bytes256 * adap->params.vpd.cclk;
6593 
6594 	return v * 62 + v / 2;
6595 }
6596 
6597 /**
6598  *	t4_get_chan_txrate - get the current per channel Tx rates
6599  *	@adap: the adapter
6600  *	@nic_rate: rates for NIC traffic
6601  *	@ofld_rate: rates for offloaded traffic
6602  *
6603  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
6604  *	for each channel.
6605  */
6606 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
6607 {
6608 	u32 v;
6609 
6610 	v = t4_read_reg(adap, A_TP_TX_TRATE);
6611 	nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
6612 	nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
6613 	if (adap->chip_params->nchan > 2) {
6614 		nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
6615 		nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
6616 	}
6617 
6618 	v = t4_read_reg(adap, A_TP_TX_ORATE);
6619 	ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
6620 	ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
6621 	if (adap->chip_params->nchan > 2) {
6622 		ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
6623 		ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
6624 	}
6625 }
6626 
6627 /**
6628  *	t4_set_trace_filter - configure one of the tracing filters
6629  *	@adap: the adapter
6630  *	@tp: the desired trace filter parameters
6631  *	@idx: which filter to configure
6632  *	@enable: whether to enable or disable the filter
6633  *
6634  *	Configures one of the tracing filters available in HW.  If @tp is %NULL
6635  *	it indicates that the filter is already written in the register and it
6636  *	just needs to be enabled or disabled.
6637  */
6638 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
6639     int idx, int enable)
6640 {
6641 	int i, ofst = idx * 4;
6642 	u32 data_reg, mask_reg, cfg;
6643 	u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
6644 
6645 	if (idx < 0 || idx >= NTRACE)
6646 		return -EINVAL;
6647 
6648 	if (tp == NULL || !enable) {
6649 		t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en,
6650 		    enable ? en : 0);
6651 		return 0;
6652 	}
6653 
6654 	/*
6655 	 * TODO - After T4 data book is updated, specify the exact
6656 	 * section below.
6657 	 *
6658 	 * See T4 data book - MPS section for a complete description
6659 	 * of the below if..else handling of A_MPS_TRC_CFG register
6660 	 * value.
6661 	 */
6662 	cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
6663 	if (cfg & F_TRCMULTIFILTER) {
6664 		/*
6665 		 * If multiple tracers are enabled, then maximum
6666 		 * capture size is 2.5KB (FIFO size of a single channel)
6667 		 * minus 2 flits for CPL_TRACE_PKT header.
6668 		 */
6669 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
6670 			return -EINVAL;
6671 	} else {
6672 		/*
6673 		 * If multiple tracers are disabled, to avoid deadlocks
6674 		 * maximum packet capture size of 9600 bytes is recommended.
6675 		 * Also in this mode, only trace0 can be enabled and running.
6676 		 */
6677 		if (tp->snap_len > 9600 || idx)
6678 			return -EINVAL;
6679 	}
6680 
6681 	if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
6682 	    tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
6683 	    tp->min_len > M_TFMINPKTSIZE)
6684 		return -EINVAL;
6685 
6686 	/* stop the tracer we'll be changing */
6687 	t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0);
6688 
6689 	idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
6690 	data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
6691 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
6692 
6693 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6694 		t4_write_reg(adap, data_reg, tp->data[i]);
6695 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
6696 	}
6697 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
6698 		     V_TFCAPTUREMAX(tp->snap_len) |
6699 		     V_TFMINPKTSIZE(tp->min_len));
6700 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
6701 		     V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en |
6702 		     (is_t4(adap) ?
6703 		     V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
6704 		     V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
6705 
6706 	return 0;
6707 }
6708 
6709 /**
6710  *	t4_get_trace_filter - query one of the tracing filters
6711  *	@adap: the adapter
6712  *	@tp: the current trace filter parameters
6713  *	@idx: which trace filter to query
6714  *	@enabled: non-zero if the filter is enabled
6715  *
6716  *	Returns the current settings of one of the HW tracing filters.
6717  */
6718 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
6719 			 int *enabled)
6720 {
6721 	u32 ctla, ctlb;
6722 	int i, ofst = idx * 4;
6723 	u32 data_reg, mask_reg;
6724 
6725 	ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
6726 	ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
6727 
6728 	if (is_t4(adap)) {
6729 		*enabled = !!(ctla & F_TFEN);
6730 		tp->port =  G_TFPORT(ctla);
6731 		tp->invert = !!(ctla & F_TFINVERTMATCH);
6732 	} else {
6733 		*enabled = !!(ctla & F_T5_TFEN);
6734 		tp->port = G_T5_TFPORT(ctla);
6735 		tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
6736 	}
6737 	tp->snap_len = G_TFCAPTUREMAX(ctlb);
6738 	tp->min_len = G_TFMINPKTSIZE(ctlb);
6739 	tp->skip_ofst = G_TFOFFSET(ctla);
6740 	tp->skip_len = G_TFLENGTH(ctla);
6741 
6742 	ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
6743 	data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
6744 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
6745 
6746 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6747 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
6748 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
6749 	}
6750 }
6751 
6752 /**
6753  *	t4_pmtx_get_stats - returns the HW stats from PMTX
6754  *	@adap: the adapter
6755  *	@cnt: where to store the count statistics
6756  *	@cycles: where to store the cycle statistics
6757  *
6758  *	Returns performance statistics from PMTX.
6759  */
6760 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6761 {
6762 	int i;
6763 	u32 data[2];
6764 
6765 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
6766 		t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
6767 		cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
6768 		if (is_t4(adap))
6769 			cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
6770 		else {
6771 			t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
6772 					 A_PM_TX_DBG_DATA, data, 2,
6773 					 A_PM_TX_DBG_STAT_MSB);
6774 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6775 		}
6776 	}
6777 }
6778 
6779 /**
6780  *	t4_pmrx_get_stats - returns the HW stats from PMRX
6781  *	@adap: the adapter
6782  *	@cnt: where to store the count statistics
6783  *	@cycles: where to store the cycle statistics
6784  *
6785  *	Returns performance statistics from PMRX.
6786  */
6787 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6788 {
6789 	int i;
6790 	u32 data[2];
6791 
6792 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
6793 		t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
6794 		cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
6795 		if (is_t4(adap)) {
6796 			cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
6797 		} else {
6798 			t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
6799 					 A_PM_RX_DBG_DATA, data, 2,
6800 					 A_PM_RX_DBG_STAT_MSB);
6801 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6802 		}
6803 	}
6804 }
6805 
6806 /**
6807  *	t4_get_mps_bg_map - return the buffer groups associated with a port
6808  *	@adap: the adapter
6809  *	@idx: the port index
6810  *
6811  *	Returns a bitmap indicating which MPS buffer groups are associated
6812  *	with the given port.  Bit i is set if buffer group i is used by the
6813  *	port.
6814  */
6815 static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
6816 {
6817 	u32 n;
6818 
6819 	if (adap->params.mps_bg_map)
6820 		return ((adap->params.mps_bg_map >> (idx << 3)) & 0xff);
6821 
6822 	n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
6823 	if (n == 0)
6824 		return idx == 0 ? 0xf : 0;
6825 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
6826 		return idx < 2 ? (3 << (2 * idx)) : 0;
6827 	return 1 << idx;
6828 }
6829 
6830 /*
6831  * TP RX e-channels associated with the port.
6832  */
6833 static unsigned int t4_get_rx_e_chan_map(struct adapter *adap, int idx)
6834 {
6835 	u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
6836 	const u32 all_chan = (1 << adap->chip_params->nchan) - 1;
6837 
6838 	if (n == 0)
6839 		return idx == 0 ? all_chan : 0;
6840 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
6841 		return idx < 2 ? (3 << (2 * idx)) : 0;
6842 	return 1 << idx;
6843 }
6844 
6845 /*
6846  * TP RX c-channel associated with the port.
6847  */
6848 static unsigned int t4_get_rx_c_chan(struct adapter *adap, int idx)
6849 {
6850 	u32 param, val;
6851 	int ret;
6852 
6853 	param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
6854 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_TPCHMAP));
6855 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
6856 	if (!ret)
6857 		return (val >> (8 * idx)) & 0xff;
6858 
6859         return 0;
6860 }
6861 
6862 /**
6863  *      t4_get_port_type_description - return Port Type string description
6864  *      @port_type: firmware Port Type enumeration
6865  */
6866 const char *t4_get_port_type_description(enum fw_port_type port_type)
6867 {
6868 	static const char *const port_type_description[] = {
6869 		"Fiber_XFI",
6870 		"Fiber_XAUI",
6871 		"BT_SGMII",
6872 		"BT_XFI",
6873 		"BT_XAUI",
6874 		"KX4",
6875 		"CX4",
6876 		"KX",
6877 		"KR",
6878 		"SFP",
6879 		"BP_AP",
6880 		"BP4_AP",
6881 		"QSFP_10G",
6882 		"QSA",
6883 		"QSFP",
6884 		"BP40_BA",
6885 		"KR4_100G",
6886 		"CR4_QSFP",
6887 		"CR_QSFP",
6888 		"CR2_QSFP",
6889 		"SFP28",
6890 		"KR_SFP28",
6891 	};
6892 
6893 	if (port_type < ARRAY_SIZE(port_type_description))
6894 		return port_type_description[port_type];
6895 	return "UNKNOWN";
6896 }
6897 
6898 /**
6899  *      t4_get_port_stats_offset - collect port stats relative to a previous
6900  *				   snapshot
6901  *      @adap: The adapter
6902  *      @idx: The port
6903  *      @stats: Current stats to fill
6904  *      @offset: Previous stats snapshot
6905  */
6906 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6907 		struct port_stats *stats,
6908 		struct port_stats *offset)
6909 {
6910 	u64 *s, *o;
6911 	int i;
6912 
6913 	t4_get_port_stats(adap, idx, stats);
6914 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
6915 			i < (sizeof(struct port_stats)/sizeof(u64)) ;
6916 			i++, s++, o++)
6917 		*s -= *o;
6918 }
6919 
6920 /**
6921  *	t4_get_port_stats - collect port statistics
6922  *	@adap: the adapter
6923  *	@idx: the port index
6924  *	@p: the stats structure to fill
6925  *
6926  *	Collect statistics related to the given port from HW.
6927  */
6928 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6929 {
6930 	struct port_info *pi = adap->port[idx];
6931 	u32 bgmap = pi->mps_bg_map;
6932 	u32 stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
6933 
6934 #define GET_STAT(name) \
6935 	t4_read_reg64(adap, \
6936 	(is_t4(adap) ? PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_##name##_L) : \
6937 	T5_PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_##name##_L)))
6938 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6939 
6940 	p->tx_pause		= GET_STAT(TX_PORT_PAUSE);
6941 	p->tx_octets		= GET_STAT(TX_PORT_BYTES);
6942 	p->tx_frames		= GET_STAT(TX_PORT_FRAMES);
6943 	p->tx_bcast_frames	= GET_STAT(TX_PORT_BCAST);
6944 	p->tx_mcast_frames	= GET_STAT(TX_PORT_MCAST);
6945 	p->tx_ucast_frames	= GET_STAT(TX_PORT_UCAST);
6946 	p->tx_error_frames	= GET_STAT(TX_PORT_ERROR);
6947 	p->tx_frames_64		= GET_STAT(TX_PORT_64B);
6948 	p->tx_frames_65_127	= GET_STAT(TX_PORT_65B_127B);
6949 	p->tx_frames_128_255	= GET_STAT(TX_PORT_128B_255B);
6950 	p->tx_frames_256_511	= GET_STAT(TX_PORT_256B_511B);
6951 	p->tx_frames_512_1023	= GET_STAT(TX_PORT_512B_1023B);
6952 	p->tx_frames_1024_1518	= GET_STAT(TX_PORT_1024B_1518B);
6953 	p->tx_frames_1519_max	= GET_STAT(TX_PORT_1519B_MAX);
6954 	p->tx_drop		= GET_STAT(TX_PORT_DROP);
6955 	p->tx_ppp0		= GET_STAT(TX_PORT_PPP0);
6956 	p->tx_ppp1		= GET_STAT(TX_PORT_PPP1);
6957 	p->tx_ppp2		= GET_STAT(TX_PORT_PPP2);
6958 	p->tx_ppp3		= GET_STAT(TX_PORT_PPP3);
6959 	p->tx_ppp4		= GET_STAT(TX_PORT_PPP4);
6960 	p->tx_ppp5		= GET_STAT(TX_PORT_PPP5);
6961 	p->tx_ppp6		= GET_STAT(TX_PORT_PPP6);
6962 	p->tx_ppp7		= GET_STAT(TX_PORT_PPP7);
6963 
6964 	if (chip_id(adap) >= CHELSIO_T5) {
6965 		if (stat_ctl & F_COUNTPAUSESTATTX) {
6966 			p->tx_frames -= p->tx_pause;
6967 			p->tx_octets -= p->tx_pause * 64;
6968 		}
6969 		if (stat_ctl & F_COUNTPAUSEMCTX)
6970 			p->tx_mcast_frames -= p->tx_pause;
6971 	}
6972 
6973 	p->rx_pause		= GET_STAT(RX_PORT_PAUSE);
6974 	p->rx_octets		= GET_STAT(RX_PORT_BYTES);
6975 	p->rx_frames		= GET_STAT(RX_PORT_FRAMES);
6976 	p->rx_bcast_frames	= GET_STAT(RX_PORT_BCAST);
6977 	p->rx_mcast_frames	= GET_STAT(RX_PORT_MCAST);
6978 	p->rx_ucast_frames	= GET_STAT(RX_PORT_UCAST);
6979 	p->rx_too_long		= GET_STAT(RX_PORT_MTU_ERROR);
6980 	p->rx_jabber		= GET_STAT(RX_PORT_MTU_CRC_ERROR);
6981 	p->rx_len_err		= GET_STAT(RX_PORT_LEN_ERROR);
6982 	p->rx_symbol_err	= GET_STAT(RX_PORT_SYM_ERROR);
6983 	p->rx_runt		= GET_STAT(RX_PORT_LESS_64B);
6984 	p->rx_frames_64		= GET_STAT(RX_PORT_64B);
6985 	p->rx_frames_65_127	= GET_STAT(RX_PORT_65B_127B);
6986 	p->rx_frames_128_255	= GET_STAT(RX_PORT_128B_255B);
6987 	p->rx_frames_256_511	= GET_STAT(RX_PORT_256B_511B);
6988 	p->rx_frames_512_1023	= GET_STAT(RX_PORT_512B_1023B);
6989 	p->rx_frames_1024_1518	= GET_STAT(RX_PORT_1024B_1518B);
6990 	p->rx_frames_1519_max	= GET_STAT(RX_PORT_1519B_MAX);
6991 	p->rx_ppp0		= GET_STAT(RX_PORT_PPP0);
6992 	p->rx_ppp1		= GET_STAT(RX_PORT_PPP1);
6993 	p->rx_ppp2		= GET_STAT(RX_PORT_PPP2);
6994 	p->rx_ppp3		= GET_STAT(RX_PORT_PPP3);
6995 	p->rx_ppp4		= GET_STAT(RX_PORT_PPP4);
6996 	p->rx_ppp5		= GET_STAT(RX_PORT_PPP5);
6997 	p->rx_ppp6		= GET_STAT(RX_PORT_PPP6);
6998 	p->rx_ppp7		= GET_STAT(RX_PORT_PPP7);
6999 
7000 	if (pi->fcs_reg != -1)
7001 		p->rx_fcs_err = t4_read_reg64(adap, pi->fcs_reg) - pi->fcs_base;
7002 
7003 	if (chip_id(adap) >= CHELSIO_T5) {
7004 		if (stat_ctl & F_COUNTPAUSESTATRX) {
7005 			p->rx_frames -= p->rx_pause;
7006 			p->rx_octets -= p->rx_pause * 64;
7007 		}
7008 		if (stat_ctl & F_COUNTPAUSEMCRX)
7009 			p->rx_mcast_frames -= p->rx_pause;
7010 	}
7011 
7012 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
7013 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
7014 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
7015 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
7016 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
7017 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
7018 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
7019 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
7020 
7021 #undef GET_STAT
7022 #undef GET_STAT_COM
7023 }
7024 
7025 /**
7026  *	t4_get_lb_stats - collect loopback port statistics
7027  *	@adap: the adapter
7028  *	@idx: the loopback port index
7029  *	@p: the stats structure to fill
7030  *
7031  *	Return HW statistics for the given loopback port.
7032  */
7033 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
7034 {
7035 
7036 #define GET_STAT(name) \
7037 	t4_read_reg64(adap, \
7038 	(is_t4(adap) ? \
7039 	PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \
7040 	T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L)))
7041 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
7042 
7043 	p->octets	= GET_STAT(BYTES);
7044 	p->frames	= GET_STAT(FRAMES);
7045 	p->bcast_frames	= GET_STAT(BCAST);
7046 	p->mcast_frames	= GET_STAT(MCAST);
7047 	p->ucast_frames	= GET_STAT(UCAST);
7048 	p->error_frames	= GET_STAT(ERROR);
7049 
7050 	p->frames_64		= GET_STAT(64B);
7051 	p->frames_65_127	= GET_STAT(65B_127B);
7052 	p->frames_128_255	= GET_STAT(128B_255B);
7053 	p->frames_256_511	= GET_STAT(256B_511B);
7054 	p->frames_512_1023	= GET_STAT(512B_1023B);
7055 	p->frames_1024_1518	= GET_STAT(1024B_1518B);
7056 	p->frames_1519_max	= GET_STAT(1519B_MAX);
7057 	p->drop			= GET_STAT(DROP_FRAMES);
7058 
7059 	if (idx < adap->params.nports) {
7060 		u32 bg = adap2pinfo(adap, idx)->mps_bg_map;
7061 
7062 		p->ovflow0 = (bg & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
7063 		p->ovflow1 = (bg & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
7064 		p->ovflow2 = (bg & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
7065 		p->ovflow3 = (bg & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
7066 		p->trunc0 = (bg & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
7067 		p->trunc1 = (bg & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
7068 		p->trunc2 = (bg & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
7069 		p->trunc3 = (bg & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
7070 	}
7071 
7072 #undef GET_STAT
7073 #undef GET_STAT_COM
7074 }
7075 
7076 /**
7077  *	t4_wol_magic_enable - enable/disable magic packet WoL
7078  *	@adap: the adapter
7079  *	@port: the physical port index
7080  *	@addr: MAC address expected in magic packets, %NULL to disable
7081  *
7082  *	Enables/disables magic packet wake-on-LAN for the selected port.
7083  */
7084 void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
7085 			 const u8 *addr)
7086 {
7087 	u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
7088 
7089 	if (is_t4(adap)) {
7090 		mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
7091 		mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
7092 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
7093 	} else {
7094 		mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
7095 		mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
7096 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
7097 	}
7098 
7099 	if (addr) {
7100 		t4_write_reg(adap, mag_id_reg_l,
7101 			     (addr[2] << 24) | (addr[3] << 16) |
7102 			     (addr[4] << 8) | addr[5]);
7103 		t4_write_reg(adap, mag_id_reg_h,
7104 			     (addr[0] << 8) | addr[1]);
7105 	}
7106 	t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
7107 			 V_MAGICEN(addr != NULL));
7108 }
7109 
7110 /**
7111  *	t4_wol_pat_enable - enable/disable pattern-based WoL
7112  *	@adap: the adapter
7113  *	@port: the physical port index
7114  *	@map: bitmap of which HW pattern filters to set
7115  *	@mask0: byte mask for bytes 0-63 of a packet
7116  *	@mask1: byte mask for bytes 64-127 of a packet
7117  *	@crc: Ethernet CRC for selected bytes
7118  *	@enable: enable/disable switch
7119  *
7120  *	Sets the pattern filters indicated in @map to mask out the bytes
7121  *	specified in @mask0/@mask1 in received packets and compare the CRC of
7122  *	the resulting packet against @crc.  If @enable is %true pattern-based
7123  *	WoL is enabled, otherwise disabled.
7124  */
7125 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
7126 		      u64 mask0, u64 mask1, unsigned int crc, bool enable)
7127 {
7128 	int i;
7129 	u32 port_cfg_reg;
7130 
7131 	if (is_t4(adap))
7132 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
7133 	else
7134 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
7135 
7136 	if (!enable) {
7137 		t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
7138 		return 0;
7139 	}
7140 	if (map > 0xff)
7141 		return -EINVAL;
7142 
7143 #define EPIO_REG(name) \
7144 	(is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
7145 	T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
7146 
7147 	t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
7148 	t4_write_reg(adap, EPIO_REG(DATA2), mask1);
7149 	t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
7150 
7151 	for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
7152 		if (!(map & 1))
7153 			continue;
7154 
7155 		/* write byte masks */
7156 		t4_write_reg(adap, EPIO_REG(DATA0), mask0);
7157 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
7158 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
7159 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
7160 			return -ETIMEDOUT;
7161 
7162 		/* write CRC */
7163 		t4_write_reg(adap, EPIO_REG(DATA0), crc);
7164 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
7165 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
7166 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
7167 			return -ETIMEDOUT;
7168 	}
7169 #undef EPIO_REG
7170 
7171 	t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
7172 	return 0;
7173 }
7174 
7175 /*     t4_mk_filtdelwr - create a delete filter WR
7176  *     @ftid: the filter ID
7177  *     @wr: the filter work request to populate
7178  *     @qid: ingress queue to receive the delete notification
7179  *
7180  *     Creates a filter work request to delete the supplied filter.  If @qid is
7181  *     negative the delete notification is suppressed.
7182  */
7183 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
7184 {
7185 	memset(wr, 0, sizeof(*wr));
7186 	wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR));
7187 	wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16));
7188 	wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) |
7189 				    V_FW_FILTER_WR_NOREPLY(qid < 0));
7190 	wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER);
7191 	if (qid >= 0)
7192 		wr->rx_chan_rx_rpl_iq =
7193 				cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid));
7194 }
7195 
7196 #define INIT_CMD(var, cmd, rd_wr) do { \
7197 	(var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
7198 					F_FW_CMD_REQUEST | \
7199 					F_FW_CMD_##rd_wr); \
7200 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
7201 } while (0)
7202 
7203 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
7204 			  u32 addr, u32 val)
7205 {
7206 	u32 ldst_addrspace;
7207 	struct fw_ldst_cmd c;
7208 
7209 	memset(&c, 0, sizeof(c));
7210 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE);
7211 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7212 					F_FW_CMD_REQUEST |
7213 					F_FW_CMD_WRITE |
7214 					ldst_addrspace);
7215 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7216 	c.u.addrval.addr = cpu_to_be32(addr);
7217 	c.u.addrval.val = cpu_to_be32(val);
7218 
7219 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7220 }
7221 
7222 /**
7223  *	t4_mdio_rd - read a PHY register through MDIO
7224  *	@adap: the adapter
7225  *	@mbox: mailbox to use for the FW command
7226  *	@phy_addr: the PHY address
7227  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
7228  *	@reg: the register to read
7229  *	@valp: where to store the value
7230  *
7231  *	Issues a FW command through the given mailbox to read a PHY register.
7232  */
7233 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
7234 	       unsigned int mmd, unsigned int reg, unsigned int *valp)
7235 {
7236 	int ret;
7237 	u32 ldst_addrspace;
7238 	struct fw_ldst_cmd c;
7239 
7240 	memset(&c, 0, sizeof(c));
7241 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
7242 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7243 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
7244 					ldst_addrspace);
7245 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7246 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
7247 					 V_FW_LDST_CMD_MMD(mmd));
7248 	c.u.mdio.raddr = cpu_to_be16(reg);
7249 
7250 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7251 	if (ret == 0)
7252 		*valp = be16_to_cpu(c.u.mdio.rval);
7253 	return ret;
7254 }
7255 
7256 /**
7257  *	t4_mdio_wr - write a PHY register through MDIO
7258  *	@adap: the adapter
7259  *	@mbox: mailbox to use for the FW command
7260  *	@phy_addr: the PHY address
7261  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
7262  *	@reg: the register to write
7263  *	@valp: value to write
7264  *
7265  *	Issues a FW command through the given mailbox to write a PHY register.
7266  */
7267 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
7268 	       unsigned int mmd, unsigned int reg, unsigned int val)
7269 {
7270 	u32 ldst_addrspace;
7271 	struct fw_ldst_cmd c;
7272 
7273 	memset(&c, 0, sizeof(c));
7274 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
7275 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7276 					F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7277 					ldst_addrspace);
7278 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7279 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
7280 					 V_FW_LDST_CMD_MMD(mmd));
7281 	c.u.mdio.raddr = cpu_to_be16(reg);
7282 	c.u.mdio.rval = cpu_to_be16(val);
7283 
7284 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7285 }
7286 
7287 /**
7288  *
7289  *	t4_sge_decode_idma_state - decode the idma state
7290  *	@adap: the adapter
7291  *	@state: the state idma is stuck in
7292  */
7293 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
7294 {
7295 	static const char * const t4_decode[] = {
7296 		"IDMA_IDLE",
7297 		"IDMA_PUSH_MORE_CPL_FIFO",
7298 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7299 		"Not used",
7300 		"IDMA_PHYSADDR_SEND_PCIEHDR",
7301 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7302 		"IDMA_PHYSADDR_SEND_PAYLOAD",
7303 		"IDMA_SEND_FIFO_TO_IMSG",
7304 		"IDMA_FL_REQ_DATA_FL_PREP",
7305 		"IDMA_FL_REQ_DATA_FL",
7306 		"IDMA_FL_DROP",
7307 		"IDMA_FL_H_REQ_HEADER_FL",
7308 		"IDMA_FL_H_SEND_PCIEHDR",
7309 		"IDMA_FL_H_PUSH_CPL_FIFO",
7310 		"IDMA_FL_H_SEND_CPL",
7311 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
7312 		"IDMA_FL_H_SEND_IP_HDR",
7313 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
7314 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
7315 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
7316 		"IDMA_FL_D_SEND_PCIEHDR",
7317 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7318 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
7319 		"IDMA_FL_SEND_PCIEHDR",
7320 		"IDMA_FL_PUSH_CPL_FIFO",
7321 		"IDMA_FL_SEND_CPL",
7322 		"IDMA_FL_SEND_PAYLOAD_FIRST",
7323 		"IDMA_FL_SEND_PAYLOAD",
7324 		"IDMA_FL_REQ_NEXT_DATA_FL",
7325 		"IDMA_FL_SEND_NEXT_PCIEHDR",
7326 		"IDMA_FL_SEND_PADDING",
7327 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
7328 		"IDMA_FL_SEND_FIFO_TO_IMSG",
7329 		"IDMA_FL_REQ_DATAFL_DONE",
7330 		"IDMA_FL_REQ_HEADERFL_DONE",
7331 	};
7332 	static const char * const t5_decode[] = {
7333 		"IDMA_IDLE",
7334 		"IDMA_ALMOST_IDLE",
7335 		"IDMA_PUSH_MORE_CPL_FIFO",
7336 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7337 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
7338 		"IDMA_PHYSADDR_SEND_PCIEHDR",
7339 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7340 		"IDMA_PHYSADDR_SEND_PAYLOAD",
7341 		"IDMA_SEND_FIFO_TO_IMSG",
7342 		"IDMA_FL_REQ_DATA_FL",
7343 		"IDMA_FL_DROP",
7344 		"IDMA_FL_DROP_SEND_INC",
7345 		"IDMA_FL_H_REQ_HEADER_FL",
7346 		"IDMA_FL_H_SEND_PCIEHDR",
7347 		"IDMA_FL_H_PUSH_CPL_FIFO",
7348 		"IDMA_FL_H_SEND_CPL",
7349 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
7350 		"IDMA_FL_H_SEND_IP_HDR",
7351 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
7352 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
7353 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
7354 		"IDMA_FL_D_SEND_PCIEHDR",
7355 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7356 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
7357 		"IDMA_FL_SEND_PCIEHDR",
7358 		"IDMA_FL_PUSH_CPL_FIFO",
7359 		"IDMA_FL_SEND_CPL",
7360 		"IDMA_FL_SEND_PAYLOAD_FIRST",
7361 		"IDMA_FL_SEND_PAYLOAD",
7362 		"IDMA_FL_REQ_NEXT_DATA_FL",
7363 		"IDMA_FL_SEND_NEXT_PCIEHDR",
7364 		"IDMA_FL_SEND_PADDING",
7365 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
7366 	};
7367 	static const char * const t6_decode[] = {
7368 		"IDMA_IDLE",
7369 		"IDMA_PUSH_MORE_CPL_FIFO",
7370 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7371 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
7372 		"IDMA_PHYSADDR_SEND_PCIEHDR",
7373 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7374 		"IDMA_PHYSADDR_SEND_PAYLOAD",
7375 		"IDMA_FL_REQ_DATA_FL",
7376 		"IDMA_FL_DROP",
7377 		"IDMA_FL_DROP_SEND_INC",
7378 		"IDMA_FL_H_REQ_HEADER_FL",
7379 		"IDMA_FL_H_SEND_PCIEHDR",
7380 		"IDMA_FL_H_PUSH_CPL_FIFO",
7381 		"IDMA_FL_H_SEND_CPL",
7382 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
7383 		"IDMA_FL_H_SEND_IP_HDR",
7384 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
7385 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
7386 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
7387 		"IDMA_FL_D_SEND_PCIEHDR",
7388 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7389 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
7390 		"IDMA_FL_SEND_PCIEHDR",
7391 		"IDMA_FL_PUSH_CPL_FIFO",
7392 		"IDMA_FL_SEND_CPL",
7393 		"IDMA_FL_SEND_PAYLOAD_FIRST",
7394 		"IDMA_FL_SEND_PAYLOAD",
7395 		"IDMA_FL_REQ_NEXT_DATA_FL",
7396 		"IDMA_FL_SEND_NEXT_PCIEHDR",
7397 		"IDMA_FL_SEND_PADDING",
7398 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
7399 	};
7400 	static const u32 sge_regs[] = {
7401 		A_SGE_DEBUG_DATA_LOW_INDEX_2,
7402 		A_SGE_DEBUG_DATA_LOW_INDEX_3,
7403 		A_SGE_DEBUG_DATA_HIGH_INDEX_10,
7404 	};
7405 	const char * const *sge_idma_decode;
7406 	int sge_idma_decode_nstates;
7407 	int i;
7408 	unsigned int chip_version = chip_id(adapter);
7409 
7410 	/* Select the right set of decode strings to dump depending on the
7411 	 * adapter chip type.
7412 	 */
7413 	switch (chip_version) {
7414 	case CHELSIO_T4:
7415 		sge_idma_decode = (const char * const *)t4_decode;
7416 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
7417 		break;
7418 
7419 	case CHELSIO_T5:
7420 		sge_idma_decode = (const char * const *)t5_decode;
7421 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
7422 		break;
7423 
7424 	case CHELSIO_T6:
7425 		sge_idma_decode = (const char * const *)t6_decode;
7426 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
7427 		break;
7428 
7429 	default:
7430 		CH_ERR(adapter,	"Unsupported chip version %d\n", chip_version);
7431 		return;
7432 	}
7433 
7434 	if (state < sge_idma_decode_nstates)
7435 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
7436 	else
7437 		CH_WARN(adapter, "idma state %d unknown\n", state);
7438 
7439 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
7440 		CH_WARN(adapter, "SGE register %#x value %#x\n",
7441 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
7442 }
7443 
7444 /**
7445  *      t4_sge_ctxt_flush - flush the SGE context cache
7446  *      @adap: the adapter
7447  *      @mbox: mailbox to use for the FW command
7448  *
7449  *      Issues a FW command through the given mailbox to flush the
7450  *      SGE context cache.
7451  */
7452 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type)
7453 {
7454 	int ret;
7455 	u32 ldst_addrspace;
7456 	struct fw_ldst_cmd c;
7457 
7458 	memset(&c, 0, sizeof(c));
7459 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(ctxt_type == CTXT_EGRESS ?
7460 						 FW_LDST_ADDRSPC_SGE_EGRC :
7461 						 FW_LDST_ADDRSPC_SGE_INGC);
7462 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7463 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
7464 					ldst_addrspace);
7465 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7466 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH);
7467 
7468 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7469 	return ret;
7470 }
7471 
7472 /**
7473  *      t4_fw_hello - establish communication with FW
7474  *      @adap: the adapter
7475  *      @mbox: mailbox to use for the FW command
7476  *      @evt_mbox: mailbox to receive async FW events
7477  *      @master: specifies the caller's willingness to be the device master
7478  *	@state: returns the current device state (if non-NULL)
7479  *
7480  *	Issues a command to establish communication with FW.  Returns either
7481  *	an error (negative integer) or the mailbox of the Master PF.
7482  */
7483 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
7484 		enum dev_master master, enum dev_state *state)
7485 {
7486 	int ret;
7487 	struct fw_hello_cmd c;
7488 	u32 v;
7489 	unsigned int master_mbox;
7490 	int retries = FW_CMD_HELLO_RETRIES;
7491 
7492 retry:
7493 	memset(&c, 0, sizeof(c));
7494 	INIT_CMD(c, HELLO, WRITE);
7495 	c.err_to_clearinit = cpu_to_be32(
7496 		V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
7497 		V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
7498 		V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ?
7499 					mbox : M_FW_HELLO_CMD_MBMASTER) |
7500 		V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
7501 		V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
7502 		F_FW_HELLO_CMD_CLEARINIT);
7503 
7504 	/*
7505 	 * Issue the HELLO command to the firmware.  If it's not successful
7506 	 * but indicates that we got a "busy" or "timeout" condition, retry
7507 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
7508 	 * retry limit, check to see if the firmware left us any error
7509 	 * information and report that if so ...
7510 	 */
7511 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7512 	if (ret != FW_SUCCESS) {
7513 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
7514 			goto retry;
7515 		return ret;
7516 	}
7517 
7518 	v = be32_to_cpu(c.err_to_clearinit);
7519 	master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
7520 	if (state) {
7521 		if (v & F_FW_HELLO_CMD_ERR)
7522 			*state = DEV_STATE_ERR;
7523 		else if (v & F_FW_HELLO_CMD_INIT)
7524 			*state = DEV_STATE_INIT;
7525 		else
7526 			*state = DEV_STATE_UNINIT;
7527 	}
7528 
7529 	/*
7530 	 * If we're not the Master PF then we need to wait around for the
7531 	 * Master PF Driver to finish setting up the adapter.
7532 	 *
7533 	 * Note that we also do this wait if we're a non-Master-capable PF and
7534 	 * there is no current Master PF; a Master PF may show up momentarily
7535 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
7536 	 * OS loads lots of different drivers rapidly at the same time).  In
7537 	 * this case, the Master PF returned by the firmware will be
7538 	 * M_PCIE_FW_MASTER so the test below will work ...
7539 	 */
7540 	if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
7541 	    master_mbox != mbox) {
7542 		int waiting = FW_CMD_HELLO_TIMEOUT;
7543 
7544 		/*
7545 		 * Wait for the firmware to either indicate an error or
7546 		 * initialized state.  If we see either of these we bail out
7547 		 * and report the issue to the caller.  If we exhaust the
7548 		 * "hello timeout" and we haven't exhausted our retries, try
7549 		 * again.  Otherwise bail with a timeout error.
7550 		 */
7551 		for (;;) {
7552 			u32 pcie_fw;
7553 
7554 			msleep(50);
7555 			waiting -= 50;
7556 
7557 			/*
7558 			 * If neither Error nor Initialialized are indicated
7559 			 * by the firmware keep waiting till we exhaust our
7560 			 * timeout ... and then retry if we haven't exhausted
7561 			 * our retries ...
7562 			 */
7563 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
7564 			if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
7565 				if (waiting <= 0) {
7566 					if (retries-- > 0)
7567 						goto retry;
7568 
7569 					return -ETIMEDOUT;
7570 				}
7571 				continue;
7572 			}
7573 
7574 			/*
7575 			 * We either have an Error or Initialized condition
7576 			 * report errors preferentially.
7577 			 */
7578 			if (state) {
7579 				if (pcie_fw & F_PCIE_FW_ERR)
7580 					*state = DEV_STATE_ERR;
7581 				else if (pcie_fw & F_PCIE_FW_INIT)
7582 					*state = DEV_STATE_INIT;
7583 			}
7584 
7585 			/*
7586 			 * If we arrived before a Master PF was selected and
7587 			 * there's not a valid Master PF, grab its identity
7588 			 * for our caller.
7589 			 */
7590 			if (master_mbox == M_PCIE_FW_MASTER &&
7591 			    (pcie_fw & F_PCIE_FW_MASTER_VLD))
7592 				master_mbox = G_PCIE_FW_MASTER(pcie_fw);
7593 			break;
7594 		}
7595 	}
7596 
7597 	return master_mbox;
7598 }
7599 
7600 /**
7601  *	t4_fw_bye - end communication with FW
7602  *	@adap: the adapter
7603  *	@mbox: mailbox to use for the FW command
7604  *
7605  *	Issues a command to terminate communication with FW.
7606  */
7607 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
7608 {
7609 	struct fw_bye_cmd c;
7610 
7611 	memset(&c, 0, sizeof(c));
7612 	INIT_CMD(c, BYE, WRITE);
7613 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7614 }
7615 
7616 /**
7617  *	t4_fw_reset - issue a reset to FW
7618  *	@adap: the adapter
7619  *	@mbox: mailbox to use for the FW command
7620  *	@reset: specifies the type of reset to perform
7621  *
7622  *	Issues a reset command of the specified type to FW.
7623  */
7624 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
7625 {
7626 	struct fw_reset_cmd c;
7627 
7628 	memset(&c, 0, sizeof(c));
7629 	INIT_CMD(c, RESET, WRITE);
7630 	c.val = cpu_to_be32(reset);
7631 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7632 }
7633 
7634 /**
7635  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
7636  *	@adap: the adapter
7637  *	@mbox: mailbox to use for the FW RESET command (if desired)
7638  *	@force: force uP into RESET even if FW RESET command fails
7639  *
7640  *	Issues a RESET command to firmware (if desired) with a HALT indication
7641  *	and then puts the microprocessor into RESET state.  The RESET command
7642  *	will only be issued if a legitimate mailbox is provided (mbox <=
7643  *	M_PCIE_FW_MASTER).
7644  *
7645  *	This is generally used in order for the host to safely manipulate the
7646  *	adapter without fear of conflicting with whatever the firmware might
7647  *	be doing.  The only way out of this state is to RESTART the firmware
7648  *	...
7649  */
7650 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
7651 {
7652 	int ret = 0;
7653 
7654 	/*
7655 	 * If a legitimate mailbox is provided, issue a RESET command
7656 	 * with a HALT indication.
7657 	 */
7658 	if (adap->flags & FW_OK && mbox <= M_PCIE_FW_MASTER) {
7659 		struct fw_reset_cmd c;
7660 
7661 		memset(&c, 0, sizeof(c));
7662 		INIT_CMD(c, RESET, WRITE);
7663 		c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
7664 		c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
7665 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7666 	}
7667 
7668 	/*
7669 	 * Normally we won't complete the operation if the firmware RESET
7670 	 * command fails but if our caller insists we'll go ahead and put the
7671 	 * uP into RESET.  This can be useful if the firmware is hung or even
7672 	 * missing ...  We'll have to take the risk of putting the uP into
7673 	 * RESET without the cooperation of firmware in that case.
7674 	 *
7675 	 * We also force the firmware's HALT flag to be on in case we bypassed
7676 	 * the firmware RESET command above or we're dealing with old firmware
7677 	 * which doesn't have the HALT capability.  This will serve as a flag
7678 	 * for the incoming firmware to know that it's coming out of a HALT
7679 	 * rather than a RESET ... if it's new enough to understand that ...
7680 	 */
7681 	if (ret == 0 || force) {
7682 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
7683 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
7684 				 F_PCIE_FW_HALT);
7685 	}
7686 
7687 	/*
7688 	 * And we always return the result of the firmware RESET command
7689 	 * even when we force the uP into RESET ...
7690 	 */
7691 	return ret;
7692 }
7693 
7694 /**
7695  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
7696  *	@adap: the adapter
7697  *
7698  *	Restart firmware previously halted by t4_fw_halt().  On successful
7699  *	return the previous PF Master remains as the new PF Master and there
7700  *	is no need to issue a new HELLO command, etc.
7701  */
7702 int t4_fw_restart(struct adapter *adap, unsigned int mbox)
7703 {
7704 	int ms;
7705 
7706 	t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
7707 	for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
7708 		if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
7709 			return FW_SUCCESS;
7710 		msleep(100);
7711 		ms += 100;
7712 	}
7713 
7714 	return -ETIMEDOUT;
7715 }
7716 
7717 /**
7718  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
7719  *	@adap: the adapter
7720  *	@mbox: mailbox to use for the FW RESET command (if desired)
7721  *	@fw_data: the firmware image to write
7722  *	@size: image size
7723  *	@force: force upgrade even if firmware doesn't cooperate
7724  *
7725  *	Perform all of the steps necessary for upgrading an adapter's
7726  *	firmware image.  Normally this requires the cooperation of the
7727  *	existing firmware in order to halt all existing activities
7728  *	but if an invalid mailbox token is passed in we skip that step
7729  *	(though we'll still put the adapter microprocessor into RESET in
7730  *	that case).
7731  *
7732  *	On successful return the new firmware will have been loaded and
7733  *	the adapter will have been fully RESET losing all previous setup
7734  *	state.  On unsuccessful return the adapter may be completely hosed ...
7735  *	positive errno indicates that the adapter is ~probably~ intact, a
7736  *	negative errno indicates that things are looking bad ...
7737  */
7738 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
7739 		  const u8 *fw_data, unsigned int size, int force)
7740 {
7741 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7742 	unsigned int bootstrap =
7743 	    be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
7744 	int ret;
7745 
7746 	if (!t4_fw_matches_chip(adap, fw_hdr))
7747 		return -EINVAL;
7748 
7749 	if (!bootstrap) {
7750 		ret = t4_fw_halt(adap, mbox, force);
7751 		if (ret < 0 && !force)
7752 			return ret;
7753 	}
7754 
7755 	ret = t4_load_fw(adap, fw_data, size);
7756 	if (ret < 0 || bootstrap)
7757 		return ret;
7758 
7759 	return t4_fw_restart(adap, mbox);
7760 }
7761 
7762 /**
7763  *	t4_fw_initialize - ask FW to initialize the device
7764  *	@adap: the adapter
7765  *	@mbox: mailbox to use for the FW command
7766  *
7767  *	Issues a command to FW to partially initialize the device.  This
7768  *	performs initialization that generally doesn't depend on user input.
7769  */
7770 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7771 {
7772 	struct fw_initialize_cmd c;
7773 
7774 	memset(&c, 0, sizeof(c));
7775 	INIT_CMD(c, INITIALIZE, WRITE);
7776 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7777 }
7778 
7779 /**
7780  *	t4_query_params_rw - query FW or device parameters
7781  *	@adap: the adapter
7782  *	@mbox: mailbox to use for the FW command
7783  *	@pf: the PF
7784  *	@vf: the VF
7785  *	@nparams: the number of parameters
7786  *	@params: the parameter names
7787  *	@val: the parameter values
7788  *	@rw: Write and read flag
7789  *
7790  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
7791  *	queried at once.
7792  */
7793 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7794 		       unsigned int vf, unsigned int nparams, const u32 *params,
7795 		       u32 *val, int rw)
7796 {
7797 	int i, ret;
7798 	struct fw_params_cmd c;
7799 	__be32 *p = &c.param[0].mnem;
7800 
7801 	if (nparams > 7)
7802 		return -EINVAL;
7803 
7804 	memset(&c, 0, sizeof(c));
7805 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7806 				  F_FW_CMD_REQUEST | F_FW_CMD_READ |
7807 				  V_FW_PARAMS_CMD_PFN(pf) |
7808 				  V_FW_PARAMS_CMD_VFN(vf));
7809 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7810 
7811 	for (i = 0; i < nparams; i++) {
7812 		*p++ = cpu_to_be32(*params++);
7813 		if (rw)
7814 			*p = cpu_to_be32(*(val + i));
7815 		p++;
7816 	}
7817 
7818 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7819 	if (ret == 0)
7820 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7821 			*val++ = be32_to_cpu(*p);
7822 	return ret;
7823 }
7824 
7825 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7826 		    unsigned int vf, unsigned int nparams, const u32 *params,
7827 		    u32 *val)
7828 {
7829 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
7830 }
7831 
7832 /**
7833  *      t4_set_params_timeout - sets FW or device parameters
7834  *      @adap: the adapter
7835  *      @mbox: mailbox to use for the FW command
7836  *      @pf: the PF
7837  *      @vf: the VF
7838  *      @nparams: the number of parameters
7839  *      @params: the parameter names
7840  *      @val: the parameter values
7841  *      @timeout: the timeout time
7842  *
7843  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7844  *      specified at once.
7845  */
7846 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7847 			  unsigned int pf, unsigned int vf,
7848 			  unsigned int nparams, const u32 *params,
7849 			  const u32 *val, int timeout)
7850 {
7851 	struct fw_params_cmd c;
7852 	__be32 *p = &c.param[0].mnem;
7853 
7854 	if (nparams > 7)
7855 		return -EINVAL;
7856 
7857 	memset(&c, 0, sizeof(c));
7858 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7859 				  F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7860 				  V_FW_PARAMS_CMD_PFN(pf) |
7861 				  V_FW_PARAMS_CMD_VFN(vf));
7862 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7863 
7864 	while (nparams--) {
7865 		*p++ = cpu_to_be32(*params++);
7866 		*p++ = cpu_to_be32(*val++);
7867 	}
7868 
7869 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7870 }
7871 
7872 /**
7873  *	t4_set_params - sets FW or device parameters
7874  *	@adap: the adapter
7875  *	@mbox: mailbox to use for the FW command
7876  *	@pf: the PF
7877  *	@vf: the VF
7878  *	@nparams: the number of parameters
7879  *	@params: the parameter names
7880  *	@val: the parameter values
7881  *
7882  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7883  *	specified at once.
7884  */
7885 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7886 		  unsigned int vf, unsigned int nparams, const u32 *params,
7887 		  const u32 *val)
7888 {
7889 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7890 				     FW_CMD_MAX_TIMEOUT);
7891 }
7892 
7893 /**
7894  *	t4_cfg_pfvf - configure PF/VF resource limits
7895  *	@adap: the adapter
7896  *	@mbox: mailbox to use for the FW command
7897  *	@pf: the PF being configured
7898  *	@vf: the VF being configured
7899  *	@txq: the max number of egress queues
7900  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7901  *	@rxqi: the max number of interrupt-capable ingress queues
7902  *	@rxq: the max number of interruptless ingress queues
7903  *	@tc: the PCI traffic class
7904  *	@vi: the max number of virtual interfaces
7905  *	@cmask: the channel access rights mask for the PF/VF
7906  *	@pmask: the port access rights mask for the PF/VF
7907  *	@nexact: the maximum number of exact MPS filters
7908  *	@rcaps: read capabilities
7909  *	@wxcaps: write/execute capabilities
7910  *
7911  *	Configures resource limits and capabilities for a physical or virtual
7912  *	function.
7913  */
7914 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7915 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7916 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7917 		unsigned int vi, unsigned int cmask, unsigned int pmask,
7918 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7919 {
7920 	struct fw_pfvf_cmd c;
7921 
7922 	memset(&c, 0, sizeof(c));
7923 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
7924 				  F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
7925 				  V_FW_PFVF_CMD_VFN(vf));
7926 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7927 	c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
7928 				     V_FW_PFVF_CMD_NIQ(rxq));
7929 	c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) |
7930 				    V_FW_PFVF_CMD_PMASK(pmask) |
7931 				    V_FW_PFVF_CMD_NEQ(txq));
7932 	c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) |
7933 				      V_FW_PFVF_CMD_NVI(vi) |
7934 				      V_FW_PFVF_CMD_NEXACTF(nexact));
7935 	c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) |
7936 				     V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
7937 				     V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
7938 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7939 }
7940 
7941 /**
7942  *	t4_alloc_vi_func - allocate a virtual interface
7943  *	@adap: the adapter
7944  *	@mbox: mailbox to use for the FW command
7945  *	@port: physical port associated with the VI
7946  *	@pf: the PF owning the VI
7947  *	@vf: the VF owning the VI
7948  *	@nmac: number of MAC addresses needed (1 to 5)
7949  *	@mac: the MAC addresses of the VI
7950  *	@rss_size: size of RSS table slice associated with this VI
7951  *	@portfunc: which Port Application Function MAC Address is desired
7952  *	@idstype: Intrusion Detection Type
7953  *
7954  *	Allocates a virtual interface for the given physical port.  If @mac is
7955  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7956  *	If @rss_size is %NULL the VI is not assigned any RSS slice by FW.
7957  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7958  *	stored consecutively so the space needed is @nmac * 6 bytes.
7959  *	Returns a negative error number or the non-negative VI id.
7960  */
7961 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
7962 		     unsigned int port, unsigned int pf, unsigned int vf,
7963 		     unsigned int nmac, u8 *mac, u16 *rss_size,
7964 		     uint8_t *vfvld, uint16_t *vin,
7965 		     unsigned int portfunc, unsigned int idstype)
7966 {
7967 	int ret;
7968 	struct fw_vi_cmd c;
7969 
7970 	memset(&c, 0, sizeof(c));
7971 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
7972 				  F_FW_CMD_WRITE | F_FW_CMD_EXEC |
7973 				  V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
7974 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
7975 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
7976 				     V_FW_VI_CMD_FUNC(portfunc));
7977 	c.portid_pkd = V_FW_VI_CMD_PORTID(port);
7978 	c.nmac = nmac - 1;
7979 	if(!rss_size)
7980 		c.norss_rsssize = F_FW_VI_CMD_NORSS;
7981 
7982 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7983 	if (ret)
7984 		return ret;
7985 	ret = G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid));
7986 
7987 	if (mac) {
7988 		memcpy(mac, c.mac, sizeof(c.mac));
7989 		switch (nmac) {
7990 		case 5:
7991 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7992 		case 4:
7993 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7994 		case 3:
7995 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7996 		case 2:
7997 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7998 		}
7999 	}
8000 	if (rss_size)
8001 		*rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
8002 	if (vfvld) {
8003 		*vfvld = adap->params.viid_smt_extn_support ?
8004 		    G_FW_VI_CMD_VFVLD(be32_to_cpu(c.alloc_to_len16)) :
8005 		    G_FW_VIID_VIVLD(ret);
8006 	}
8007 	if (vin) {
8008 		*vin = adap->params.viid_smt_extn_support ?
8009 		    G_FW_VI_CMD_VIN(be32_to_cpu(c.alloc_to_len16)) :
8010 		    G_FW_VIID_VIN(ret);
8011 	}
8012 
8013 	return ret;
8014 }
8015 
8016 /**
8017  *      t4_alloc_vi - allocate an [Ethernet Function] virtual interface
8018  *      @adap: the adapter
8019  *      @mbox: mailbox to use for the FW command
8020  *      @port: physical port associated with the VI
8021  *      @pf: the PF owning the VI
8022  *      @vf: the VF owning the VI
8023  *      @nmac: number of MAC addresses needed (1 to 5)
8024  *      @mac: the MAC addresses of the VI
8025  *      @rss_size: size of RSS table slice associated with this VI
8026  *
8027  *	backwards compatible and convieniance routine to allocate a Virtual
8028  *	Interface with a Ethernet Port Application Function and Intrustion
8029  *	Detection System disabled.
8030  */
8031 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
8032 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
8033 		u16 *rss_size, uint8_t *vfvld, uint16_t *vin)
8034 {
8035 	return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
8036 				vfvld, vin, FW_VI_FUNC_ETH, 0);
8037 }
8038 
8039 /**
8040  * 	t4_free_vi - free a virtual interface
8041  * 	@adap: the adapter
8042  * 	@mbox: mailbox to use for the FW command
8043  * 	@pf: the PF owning the VI
8044  * 	@vf: the VF owning the VI
8045  * 	@viid: virtual interface identifiler
8046  *
8047  * 	Free a previously allocated virtual interface.
8048  */
8049 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
8050 	       unsigned int vf, unsigned int viid)
8051 {
8052 	struct fw_vi_cmd c;
8053 
8054 	memset(&c, 0, sizeof(c));
8055 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
8056 				  F_FW_CMD_REQUEST |
8057 				  F_FW_CMD_EXEC |
8058 				  V_FW_VI_CMD_PFN(pf) |
8059 				  V_FW_VI_CMD_VFN(vf));
8060 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
8061 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
8062 
8063 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8064 }
8065 
8066 /**
8067  *	t4_set_rxmode - set Rx properties of a virtual interface
8068  *	@adap: the adapter
8069  *	@mbox: mailbox to use for the FW command
8070  *	@viid: the VI id
8071  *	@mtu: the new MTU or -1
8072  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
8073  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
8074  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
8075  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
8076  *	@sleep_ok: if true we may sleep while awaiting command completion
8077  *
8078  *	Sets Rx properties of a virtual interface.
8079  */
8080 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
8081 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
8082 		  bool sleep_ok)
8083 {
8084 	struct fw_vi_rxmode_cmd c;
8085 
8086 	/* convert to FW values */
8087 	if (mtu < 0)
8088 		mtu = M_FW_VI_RXMODE_CMD_MTU;
8089 	if (promisc < 0)
8090 		promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
8091 	if (all_multi < 0)
8092 		all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
8093 	if (bcast < 0)
8094 		bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
8095 	if (vlanex < 0)
8096 		vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
8097 
8098 	memset(&c, 0, sizeof(c));
8099 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
8100 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8101 				   V_FW_VI_RXMODE_CMD_VIID(viid));
8102 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
8103 	c.mtu_to_vlanexen =
8104 		cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
8105 			    V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
8106 			    V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
8107 			    V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
8108 			    V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
8109 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8110 }
8111 
8112 /**
8113  *	t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support
8114  *	@adap: the adapter
8115  *	@viid: the VI id
8116  *	@mac: the MAC address
8117  *	@mask: the mask
8118  *	@vni: the VNI id for the tunnel protocol
8119  *	@vni_mask: mask for the VNI id
8120  *	@dip_hit: to enable DIP match for the MPS entry
8121  *	@lookup_type: MAC address for inner (1) or outer (0) header
8122  *	@sleep_ok: call is allowed to sleep
8123  *
8124  *	Allocates an MPS entry with specified MAC address and VNI value.
8125  *
8126  *	Returns a negative error number or the allocated index for this mac.
8127  */
8128 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid,
8129 			    const u8 *addr, const u8 *mask, unsigned int vni,
8130 			    unsigned int vni_mask, u8 dip_hit, u8 lookup_type,
8131 			    bool sleep_ok)
8132 {
8133 	struct fw_vi_mac_cmd c;
8134 	struct fw_vi_mac_vni *p = c.u.exact_vni;
8135 	int ret = 0;
8136 	u32 val;
8137 
8138 	memset(&c, 0, sizeof(c));
8139 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8140 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8141 				   V_FW_VI_MAC_CMD_VIID(viid));
8142 	val = V_FW_CMD_LEN16(1) |
8143 	      V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_EXACTMAC_VNI);
8144 	c.freemacs_to_len16 = cpu_to_be32(val);
8145 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8146 				      V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
8147 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8148 	memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask));
8149 
8150 	p->lookup_type_to_vni = cpu_to_be32(V_FW_VI_MAC_CMD_VNI(vni) |
8151 					    V_FW_VI_MAC_CMD_DIP_HIT(dip_hit) |
8152 					    V_FW_VI_MAC_CMD_LOOKUP_TYPE(lookup_type));
8153 	p->vni_mask_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_VNI_MASK(vni_mask));
8154 
8155 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8156 	if (ret == 0)
8157 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
8158 	return ret;
8159 }
8160 
8161 /**
8162  *	t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam
8163  *	@adap: the adapter
8164  *	@viid: the VI id
8165  *	@mac: the MAC address
8166  *	@mask: the mask
8167  *	@idx: index at which to add this entry
8168  *	@port_id: the port index
8169  *	@lookup_type: MAC address for inner (1) or outer (0) header
8170  *	@sleep_ok: call is allowed to sleep
8171  *
8172  *	Adds the mac entry at the specified index using raw mac interface.
8173  *
8174  *	Returns a negative error number or the allocated index for this mac.
8175  */
8176 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
8177 			  const u8 *addr, const u8 *mask, unsigned int idx,
8178 			  u8 lookup_type, u8 port_id, bool sleep_ok)
8179 {
8180 	int ret = 0;
8181 	struct fw_vi_mac_cmd c;
8182 	struct fw_vi_mac_raw *p = &c.u.raw;
8183 	u32 val;
8184 
8185 	memset(&c, 0, sizeof(c));
8186 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8187 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8188 				   V_FW_VI_MAC_CMD_VIID(viid));
8189 	val = V_FW_CMD_LEN16(1) |
8190 	      V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_RAW);
8191 	c.freemacs_to_len16 = cpu_to_be32(val);
8192 
8193 	/* Specify that this is an inner mac address */
8194 	p->raw_idx_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_RAW_IDX(idx));
8195 
8196 	/* Lookup Type. Outer header: 0, Inner header: 1 */
8197 	p->data0_pkd = cpu_to_be32(V_DATALKPTYPE(lookup_type) |
8198 				   V_DATAPORTNUM(port_id));
8199 	/* Lookup mask and port mask */
8200 	p->data0m_pkd = cpu_to_be64(V_DATALKPTYPE(M_DATALKPTYPE) |
8201 				    V_DATAPORTNUM(M_DATAPORTNUM));
8202 
8203 	/* Copy the address and the mask */
8204 	memcpy((u8 *)&p->data1[0] + 2, addr, ETHER_ADDR_LEN);
8205 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETHER_ADDR_LEN);
8206 
8207 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8208 	if (ret == 0) {
8209 		ret = G_FW_VI_MAC_CMD_RAW_IDX(be32_to_cpu(p->raw_idx_pkd));
8210 		if (ret != idx)
8211 			ret = -ENOMEM;
8212 	}
8213 
8214 	return ret;
8215 }
8216 
8217 /**
8218  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
8219  *	@adap: the adapter
8220  *	@mbox: mailbox to use for the FW command
8221  *	@viid: the VI id
8222  *	@free: if true any existing filters for this VI id are first removed
8223  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
8224  *	@addr: the MAC address(es)
8225  *	@idx: where to store the index of each allocated filter
8226  *	@hash: pointer to hash address filter bitmap
8227  *	@sleep_ok: call is allowed to sleep
8228  *
8229  *	Allocates an exact-match filter for each of the supplied addresses and
8230  *	sets it to the corresponding address.  If @idx is not %NULL it should
8231  *	have at least @naddr entries, each of which will be set to the index of
8232  *	the filter allocated for the corresponding MAC address.  If a filter
8233  *	could not be allocated for an address its index is set to 0xffff.
8234  *	If @hash is not %NULL addresses that fail to allocate an exact filter
8235  *	are hashed and update the hash filter bitmap pointed at by @hash.
8236  *
8237  *	Returns a negative error number or the number of filters allocated.
8238  */
8239 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
8240 		      unsigned int viid, bool free, unsigned int naddr,
8241 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
8242 {
8243 	int offset, ret = 0;
8244 	struct fw_vi_mac_cmd c;
8245 	unsigned int nfilters = 0;
8246 	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
8247 	unsigned int rem = naddr;
8248 
8249 	if (naddr > max_naddr)
8250 		return -EINVAL;
8251 
8252 	for (offset = 0; offset < naddr ; /**/) {
8253 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8254 					 ? rem
8255 					 : ARRAY_SIZE(c.u.exact));
8256 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8257 						     u.exact[fw_naddr]), 16);
8258 		struct fw_vi_mac_exact *p;
8259 		int i;
8260 
8261 		memset(&c, 0, sizeof(c));
8262 		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8263 					   F_FW_CMD_REQUEST |
8264 					   F_FW_CMD_WRITE |
8265 					   V_FW_CMD_EXEC(free) |
8266 					   V_FW_VI_MAC_CMD_VIID(viid));
8267 		c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) |
8268 						  V_FW_CMD_LEN16(len16));
8269 
8270 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8271 			p->valid_to_idx =
8272 				cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8273 					    V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
8274 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8275 		}
8276 
8277 		/*
8278 		 * It's okay if we run out of space in our MAC address arena.
8279 		 * Some of the addresses we submit may get stored so we need
8280 		 * to run through the reply to see what the results were ...
8281 		 */
8282 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8283 		if (ret && ret != -FW_ENOMEM)
8284 			break;
8285 
8286 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8287 			u16 index = G_FW_VI_MAC_CMD_IDX(
8288 						be16_to_cpu(p->valid_to_idx));
8289 
8290 			if (idx)
8291 				idx[offset+i] = (index >=  max_naddr
8292 						 ? 0xffff
8293 						 : index);
8294 			if (index < max_naddr)
8295 				nfilters++;
8296 			else if (hash)
8297 				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
8298 		}
8299 
8300 		free = false;
8301 		offset += fw_naddr;
8302 		rem -= fw_naddr;
8303 	}
8304 
8305 	if (ret == 0 || ret == -FW_ENOMEM)
8306 		ret = nfilters;
8307 	return ret;
8308 }
8309 
8310 /**
8311  *	t4_free_encap_mac_filt - frees MPS entry at given index
8312  *	@adap: the adapter
8313  *	@viid: the VI id
8314  *	@idx: index of MPS entry to be freed
8315  *	@sleep_ok: call is allowed to sleep
8316  *
8317  *	Frees the MPS entry at supplied index
8318  *
8319  *	Returns a negative error number or zero on success
8320  */
8321 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid,
8322 			   int idx, bool sleep_ok)
8323 {
8324 	struct fw_vi_mac_exact *p;
8325 	struct fw_vi_mac_cmd c;
8326 	u8 addr[] = {0,0,0,0,0,0};
8327 	int ret = 0;
8328 	u32 exact;
8329 
8330 	memset(&c, 0, sizeof(c));
8331 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8332 				   F_FW_CMD_REQUEST |
8333 				   F_FW_CMD_WRITE |
8334 				   V_FW_CMD_EXEC(0) |
8335 				   V_FW_VI_MAC_CMD_VIID(viid));
8336 	exact = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_EXACTMAC);
8337 	c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) |
8338 					  exact |
8339 					  V_FW_CMD_LEN16(1));
8340 	p = c.u.exact;
8341 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8342 				      V_FW_VI_MAC_CMD_IDX(idx));
8343 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8344 
8345 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8346 	return ret;
8347 }
8348 
8349 /**
8350  *	t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
8351  *	@adap: the adapter
8352  *	@viid: the VI id
8353  *	@addr: the MAC address
8354  *	@mask: the mask
8355  *	@idx: index of the entry in mps tcam
8356  *	@lookup_type: MAC address for inner (1) or outer (0) header
8357  *	@port_id: the port index
8358  *	@sleep_ok: call is allowed to sleep
8359  *
8360  *	Removes the mac entry at the specified index using raw mac interface.
8361  *
8362  *	Returns a negative error number on failure.
8363  */
8364 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
8365 			 const u8 *addr, const u8 *mask, unsigned int idx,
8366 			 u8 lookup_type, u8 port_id, bool sleep_ok)
8367 {
8368 	struct fw_vi_mac_cmd c;
8369 	struct fw_vi_mac_raw *p = &c.u.raw;
8370 	u32 raw;
8371 
8372 	memset(&c, 0, sizeof(c));
8373 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8374 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8375 				   V_FW_CMD_EXEC(0) |
8376 				   V_FW_VI_MAC_CMD_VIID(viid));
8377 	raw = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_RAW);
8378 	c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) |
8379 					  raw |
8380 					  V_FW_CMD_LEN16(1));
8381 
8382 	p->raw_idx_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_RAW_IDX(idx) |
8383 				     FW_VI_MAC_ID_BASED_FREE);
8384 
8385 	/* Lookup Type. Outer header: 0, Inner header: 1 */
8386 	p->data0_pkd = cpu_to_be32(V_DATALKPTYPE(lookup_type) |
8387 				   V_DATAPORTNUM(port_id));
8388 	/* Lookup mask and port mask */
8389 	p->data0m_pkd = cpu_to_be64(V_DATALKPTYPE(M_DATALKPTYPE) |
8390 				    V_DATAPORTNUM(M_DATAPORTNUM));
8391 
8392 	/* Copy the address and the mask */
8393 	memcpy((u8 *)&p->data1[0] + 2, addr, ETHER_ADDR_LEN);
8394 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETHER_ADDR_LEN);
8395 
8396 	return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8397 }
8398 
8399 /**
8400  *	t4_free_mac_filt - frees exact-match filters of given MAC addresses
8401  *	@adap: the adapter
8402  *	@mbox: mailbox to use for the FW command
8403  *	@viid: the VI id
8404  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
8405  *	@addr: the MAC address(es)
8406  *	@sleep_ok: call is allowed to sleep
8407  *
8408  *	Frees the exact-match filter for each of the supplied addresses
8409  *
8410  *	Returns a negative error number or the number of filters freed.
8411  */
8412 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
8413 		      unsigned int viid, unsigned int naddr,
8414 		      const u8 **addr, bool sleep_ok)
8415 {
8416 	int offset, ret = 0;
8417 	struct fw_vi_mac_cmd c;
8418 	unsigned int nfilters = 0;
8419 	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
8420 	unsigned int rem = naddr;
8421 
8422 	if (naddr > max_naddr)
8423 		return -EINVAL;
8424 
8425 	for (offset = 0; offset < (int)naddr ; /**/) {
8426 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8427 					 ? rem
8428 					 : ARRAY_SIZE(c.u.exact));
8429 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8430 						     u.exact[fw_naddr]), 16);
8431 		struct fw_vi_mac_exact *p;
8432 		int i;
8433 
8434 		memset(&c, 0, sizeof(c));
8435 		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8436 				     F_FW_CMD_REQUEST |
8437 				     F_FW_CMD_WRITE |
8438 				     V_FW_CMD_EXEC(0) |
8439 				     V_FW_VI_MAC_CMD_VIID(viid));
8440 		c.freemacs_to_len16 =
8441 				cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) |
8442 					    V_FW_CMD_LEN16(len16));
8443 
8444 		for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
8445 			p->valid_to_idx = cpu_to_be16(
8446 				F_FW_VI_MAC_CMD_VALID |
8447 				V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_MAC_BASED_FREE));
8448 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8449 		}
8450 
8451 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8452 		if (ret)
8453 			break;
8454 
8455 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8456 			u16 index = G_FW_VI_MAC_CMD_IDX(
8457 						be16_to_cpu(p->valid_to_idx));
8458 
8459 			if (index < max_naddr)
8460 				nfilters++;
8461 		}
8462 
8463 		offset += fw_naddr;
8464 		rem -= fw_naddr;
8465 	}
8466 
8467 	if (ret == 0)
8468 		ret = nfilters;
8469 	return ret;
8470 }
8471 
8472 /**
8473  *	t4_change_mac - modifies the exact-match filter for a MAC address
8474  *	@adap: the adapter
8475  *	@mbox: mailbox to use for the FW command
8476  *	@viid: the VI id
8477  *	@idx: index of existing filter for old value of MAC address, or -1
8478  *	@addr: the new MAC address value
8479  *	@persist: whether a new MAC allocation should be persistent
8480  *	@smt_idx: add MAC to SMT and return its index, or NULL
8481  *
8482  *	Modifies an exact-match filter and sets it to the new MAC address if
8483  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
8484  *	latter case the address is added persistently if @persist is %true.
8485  *
8486  *	Note that in general it is not possible to modify the value of a given
8487  *	filter so the generic way to modify an address filter is to free the one
8488  *	being used by the old address value and allocate a new filter for the
8489  *	new address value.
8490  *
8491  *	Returns a negative error number or the index of the filter with the new
8492  *	MAC value.  Note that this index may differ from @idx.
8493  */
8494 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
8495 		  int idx, const u8 *addr, bool persist, uint16_t *smt_idx)
8496 {
8497 	int ret, mode;
8498 	struct fw_vi_mac_cmd c;
8499 	struct fw_vi_mac_exact *p = c.u.exact;
8500 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
8501 
8502 	if (idx < 0)		/* new allocation */
8503 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
8504 	mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
8505 
8506 	memset(&c, 0, sizeof(c));
8507 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8508 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8509 				   V_FW_VI_MAC_CMD_VIID(viid));
8510 	c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
8511 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8512 				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
8513 				      V_FW_VI_MAC_CMD_IDX(idx));
8514 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8515 
8516 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8517 	if (ret == 0) {
8518 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
8519 		if (ret >= max_mac_addr)
8520 			ret = -ENOMEM;
8521 		if (smt_idx) {
8522 			if (adap->params.viid_smt_extn_support)
8523 				*smt_idx = G_FW_VI_MAC_CMD_SMTID(be32_to_cpu(c.op_to_viid));
8524 			else {
8525 				if (chip_id(adap) <= CHELSIO_T5)
8526 					*smt_idx = (viid & M_FW_VIID_VIN) << 1;
8527 				else
8528 					*smt_idx = viid & M_FW_VIID_VIN;
8529 			}
8530 		}
8531 	}
8532 	return ret;
8533 }
8534 
8535 /**
8536  *	t4_set_addr_hash - program the MAC inexact-match hash filter
8537  *	@adap: the adapter
8538  *	@mbox: mailbox to use for the FW command
8539  *	@viid: the VI id
8540  *	@ucast: whether the hash filter should also match unicast addresses
8541  *	@vec: the value to be written to the hash filter
8542  *	@sleep_ok: call is allowed to sleep
8543  *
8544  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
8545  */
8546 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
8547 		     bool ucast, u64 vec, bool sleep_ok)
8548 {
8549 	struct fw_vi_mac_cmd c;
8550 	u32 val;
8551 
8552 	memset(&c, 0, sizeof(c));
8553 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8554 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8555 				   V_FW_VI_ENABLE_CMD_VIID(viid));
8556 	val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) |
8557 	      V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1);
8558 	c.freemacs_to_len16 = cpu_to_be32(val);
8559 	c.u.hash.hashvec = cpu_to_be64(vec);
8560 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8561 }
8562 
8563 /**
8564  *      t4_enable_vi_params - enable/disable a virtual interface
8565  *      @adap: the adapter
8566  *      @mbox: mailbox to use for the FW command
8567  *      @viid: the VI id
8568  *      @rx_en: 1=enable Rx, 0=disable Rx
8569  *      @tx_en: 1=enable Tx, 0=disable Tx
8570  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8571  *
8572  *      Enables/disables a virtual interface.  Note that setting DCB Enable
8573  *      only makes sense when enabling a Virtual Interface ...
8574  */
8575 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
8576 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
8577 {
8578 	struct fw_vi_enable_cmd c;
8579 
8580 	memset(&c, 0, sizeof(c));
8581 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
8582 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8583 				   V_FW_VI_ENABLE_CMD_VIID(viid));
8584 	c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
8585 				     V_FW_VI_ENABLE_CMD_EEN(tx_en) |
8586 				     V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
8587 				     FW_LEN16(c));
8588 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
8589 }
8590 
8591 /**
8592  *	t4_enable_vi - enable/disable a virtual interface
8593  *	@adap: the adapter
8594  *	@mbox: mailbox to use for the FW command
8595  *	@viid: the VI id
8596  *	@rx_en: 1=enable Rx, 0=disable Rx
8597  *	@tx_en: 1=enable Tx, 0=disable Tx
8598  *
8599  *	Enables/disables a virtual interface.  Note that setting DCB Enable
8600  *	only makes sense when enabling a Virtual Interface ...
8601  */
8602 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8603 		 bool rx_en, bool tx_en)
8604 {
8605 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8606 }
8607 
8608 /**
8609  *	t4_identify_port - identify a VI's port by blinking its LED
8610  *	@adap: the adapter
8611  *	@mbox: mailbox to use for the FW command
8612  *	@viid: the VI id
8613  *	@nblinks: how many times to blink LED at 2.5 Hz
8614  *
8615  *	Identifies a VI's port by blinking its LED.
8616  */
8617 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8618 		     unsigned int nblinks)
8619 {
8620 	struct fw_vi_enable_cmd c;
8621 
8622 	memset(&c, 0, sizeof(c));
8623 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
8624 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8625 				   V_FW_VI_ENABLE_CMD_VIID(viid));
8626 	c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
8627 	c.blinkdur = cpu_to_be16(nblinks);
8628 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8629 }
8630 
8631 /**
8632  *	t4_iq_stop - stop an ingress queue and its FLs
8633  *	@adap: the adapter
8634  *	@mbox: mailbox to use for the FW command
8635  *	@pf: the PF owning the queues
8636  *	@vf: the VF owning the queues
8637  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8638  *	@iqid: ingress queue id
8639  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8640  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8641  *
8642  *	Stops an ingress queue and its associated FLs, if any.  This causes
8643  *	any current or future data/messages destined for these queues to be
8644  *	tossed.
8645  */
8646 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8647 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8648 	       unsigned int fl0id, unsigned int fl1id)
8649 {
8650 	struct fw_iq_cmd c;
8651 
8652 	memset(&c, 0, sizeof(c));
8653 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
8654 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
8655 				  V_FW_IQ_CMD_VFN(vf));
8656 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c));
8657 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
8658 	c.iqid = cpu_to_be16(iqid);
8659 	c.fl0id = cpu_to_be16(fl0id);
8660 	c.fl1id = cpu_to_be16(fl1id);
8661 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8662 }
8663 
8664 /**
8665  *	t4_iq_free - free an ingress queue and its FLs
8666  *	@adap: the adapter
8667  *	@mbox: mailbox to use for the FW command
8668  *	@pf: the PF owning the queues
8669  *	@vf: the VF owning the queues
8670  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8671  *	@iqid: ingress queue id
8672  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8673  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8674  *
8675  *	Frees an ingress queue and its associated FLs, if any.
8676  */
8677 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8678 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8679 	       unsigned int fl0id, unsigned int fl1id)
8680 {
8681 	struct fw_iq_cmd c;
8682 
8683 	memset(&c, 0, sizeof(c));
8684 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
8685 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
8686 				  V_FW_IQ_CMD_VFN(vf));
8687 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
8688 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
8689 	c.iqid = cpu_to_be16(iqid);
8690 	c.fl0id = cpu_to_be16(fl0id);
8691 	c.fl1id = cpu_to_be16(fl1id);
8692 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8693 }
8694 
8695 /**
8696  *	t4_eth_eq_stop - stop an Ethernet egress queue
8697  *	@adap: the adapter
8698  *	@mbox: mailbox to use for the FW command
8699  *	@pf: the PF owning the queues
8700  *	@vf: the VF owning the queues
8701  *	@eqid: egress queue id
8702  *
8703  *	Stops an Ethernet egress queue.  The queue can be reinitialized or
8704  *	freed but is not otherwise functional after this call.
8705  */
8706 int t4_eth_eq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8707                    unsigned int vf, unsigned int eqid)
8708 {
8709 	struct fw_eq_eth_cmd c;
8710 
8711 	memset(&c, 0, sizeof(c));
8712 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
8713 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8714 				  V_FW_EQ_ETH_CMD_PFN(pf) |
8715 				  V_FW_EQ_ETH_CMD_VFN(vf));
8716 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_EQSTOP | FW_LEN16(c));
8717 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
8718 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8719 }
8720 
8721 /**
8722  *	t4_eth_eq_free - free an Ethernet egress queue
8723  *	@adap: the adapter
8724  *	@mbox: mailbox to use for the FW command
8725  *	@pf: the PF owning the queue
8726  *	@vf: the VF owning the queue
8727  *	@eqid: egress queue id
8728  *
8729  *	Frees an Ethernet egress queue.
8730  */
8731 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8732 		   unsigned int vf, unsigned int eqid)
8733 {
8734 	struct fw_eq_eth_cmd c;
8735 
8736 	memset(&c, 0, sizeof(c));
8737 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
8738 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8739 				  V_FW_EQ_ETH_CMD_PFN(pf) |
8740 				  V_FW_EQ_ETH_CMD_VFN(vf));
8741 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
8742 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
8743 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8744 }
8745 
8746 /**
8747  *	t4_ctrl_eq_free - free a control egress queue
8748  *	@adap: the adapter
8749  *	@mbox: mailbox to use for the FW command
8750  *	@pf: the PF owning the queue
8751  *	@vf: the VF owning the queue
8752  *	@eqid: egress queue id
8753  *
8754  *	Frees a control egress queue.
8755  */
8756 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8757 		    unsigned int vf, unsigned int eqid)
8758 {
8759 	struct fw_eq_ctrl_cmd c;
8760 
8761 	memset(&c, 0, sizeof(c));
8762 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
8763 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8764 				  V_FW_EQ_CTRL_CMD_PFN(pf) |
8765 				  V_FW_EQ_CTRL_CMD_VFN(vf));
8766 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
8767 	c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
8768 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8769 }
8770 
8771 /**
8772  *	t4_ofld_eq_free - free an offload egress queue
8773  *	@adap: the adapter
8774  *	@mbox: mailbox to use for the FW command
8775  *	@pf: the PF owning the queue
8776  *	@vf: the VF owning the queue
8777  *	@eqid: egress queue id
8778  *
8779  *	Frees a control egress queue.
8780  */
8781 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8782 		    unsigned int vf, unsigned int eqid)
8783 {
8784 	struct fw_eq_ofld_cmd c;
8785 
8786 	memset(&c, 0, sizeof(c));
8787 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) |
8788 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8789 				  V_FW_EQ_OFLD_CMD_PFN(pf) |
8790 				  V_FW_EQ_OFLD_CMD_VFN(vf));
8791 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
8792 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid));
8793 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8794 }
8795 
8796 /**
8797  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
8798  *	@link_down_rc: Link Down Reason Code
8799  *
8800  *	Returns a string representation of the Link Down Reason Code.
8801  */
8802 const char *t4_link_down_rc_str(unsigned char link_down_rc)
8803 {
8804 	static const char *reason[] = {
8805 		"Link Down",
8806 		"Remote Fault",
8807 		"Auto-negotiation Failure",
8808 		"Reserved3",
8809 		"Insufficient Airflow",
8810 		"Unable To Determine Reason",
8811 		"No RX Signal Detected",
8812 		"Reserved7",
8813 	};
8814 
8815 	if (link_down_rc >= ARRAY_SIZE(reason))
8816 		return "Bad Reason Code";
8817 
8818 	return reason[link_down_rc];
8819 }
8820 
8821 /*
8822  * Return the highest speed set in the port capabilities, in Mb/s.
8823  */
8824 unsigned int fwcap_to_speed(uint32_t caps)
8825 {
8826 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8827 		do { \
8828 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8829 				return __speed; \
8830 		} while (0)
8831 
8832 	TEST_SPEED_RETURN(400G, 400000);
8833 	TEST_SPEED_RETURN(200G, 200000);
8834 	TEST_SPEED_RETURN(100G, 100000);
8835 	TEST_SPEED_RETURN(50G,   50000);
8836 	TEST_SPEED_RETURN(40G,   40000);
8837 	TEST_SPEED_RETURN(25G,   25000);
8838 	TEST_SPEED_RETURN(10G,   10000);
8839 	TEST_SPEED_RETURN(1G,     1000);
8840 	TEST_SPEED_RETURN(100M,    100);
8841 
8842 	#undef TEST_SPEED_RETURN
8843 
8844 	return 0;
8845 }
8846 
8847 /*
8848  * Return the port capabilities bit for the given speed, which is in Mb/s.
8849  */
8850 uint32_t speed_to_fwcap(unsigned int speed)
8851 {
8852 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8853 		do { \
8854 			if (speed == __speed) \
8855 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8856 		} while (0)
8857 
8858 	TEST_SPEED_RETURN(400G, 400000);
8859 	TEST_SPEED_RETURN(200G, 200000);
8860 	TEST_SPEED_RETURN(100G, 100000);
8861 	TEST_SPEED_RETURN(50G,   50000);
8862 	TEST_SPEED_RETURN(40G,   40000);
8863 	TEST_SPEED_RETURN(25G,   25000);
8864 	TEST_SPEED_RETURN(10G,   10000);
8865 	TEST_SPEED_RETURN(1G,     1000);
8866 	TEST_SPEED_RETURN(100M,    100);
8867 
8868 	#undef TEST_SPEED_RETURN
8869 
8870 	return 0;
8871 }
8872 
8873 /*
8874  * Return the port capabilities bit for the highest speed in the capabilities.
8875  */
8876 uint32_t fwcap_top_speed(uint32_t caps)
8877 {
8878 	#define TEST_SPEED_RETURN(__caps_speed) \
8879 		do { \
8880 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8881 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8882 		} while (0)
8883 
8884 	TEST_SPEED_RETURN(400G);
8885 	TEST_SPEED_RETURN(200G);
8886 	TEST_SPEED_RETURN(100G);
8887 	TEST_SPEED_RETURN(50G);
8888 	TEST_SPEED_RETURN(40G);
8889 	TEST_SPEED_RETURN(25G);
8890 	TEST_SPEED_RETURN(10G);
8891 	TEST_SPEED_RETURN(1G);
8892 	TEST_SPEED_RETURN(100M);
8893 
8894 	#undef TEST_SPEED_RETURN
8895 
8896 	return 0;
8897 }
8898 
8899 /**
8900  *	lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8901  *	@lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8902  *
8903  *	Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8904  *	32-bit Port Capabilities value.
8905  */
8906 static uint32_t lstatus_to_fwcap(u32 lstatus)
8907 {
8908 	uint32_t linkattr = 0;
8909 
8910 	/*
8911 	 * Unfortunately the format of the Link Status in the old
8912 	 * 16-bit Port Information message isn't the same as the
8913 	 * 16-bit Port Capabilities bitfield used everywhere else ...
8914 	 */
8915 	if (lstatus & F_FW_PORT_CMD_RXPAUSE)
8916 		linkattr |= FW_PORT_CAP32_FC_RX;
8917 	if (lstatus & F_FW_PORT_CMD_TXPAUSE)
8918 		linkattr |= FW_PORT_CAP32_FC_TX;
8919 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
8920 		linkattr |= FW_PORT_CAP32_SPEED_100M;
8921 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
8922 		linkattr |= FW_PORT_CAP32_SPEED_1G;
8923 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
8924 		linkattr |= FW_PORT_CAP32_SPEED_10G;
8925 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G))
8926 		linkattr |= FW_PORT_CAP32_SPEED_25G;
8927 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
8928 		linkattr |= FW_PORT_CAP32_SPEED_40G;
8929 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G))
8930 		linkattr |= FW_PORT_CAP32_SPEED_100G;
8931 
8932 	return linkattr;
8933 }
8934 
8935 /*
8936  * Updates all fields owned by the common code in port_info and link_config
8937  * based on information provided by the firmware.  Does not touch any
8938  * requested_* field.
8939  */
8940 static void handle_port_info(struct port_info *pi, const struct fw_port_cmd *p,
8941     enum fw_port_action action, bool *mod_changed, bool *link_changed)
8942 {
8943 	struct link_config old_lc, *lc = &pi->link_cfg;
8944 	unsigned char fc;
8945 	u32 stat, linkattr;
8946 	int old_ptype, old_mtype;
8947 
8948 	old_ptype = pi->port_type;
8949 	old_mtype = pi->mod_type;
8950 	old_lc = *lc;
8951 	if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8952 		stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
8953 
8954 		pi->port_type = G_FW_PORT_CMD_PTYPE(stat);
8955 		pi->mod_type = G_FW_PORT_CMD_MODTYPE(stat);
8956 		pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP ?
8957 		    G_FW_PORT_CMD_MDIOADDR(stat) : -1;
8958 
8959 		lc->pcaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.pcap));
8960 		lc->acaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.acap));
8961 		lc->lpacaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.lpacap));
8962 		lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
8963 		lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC(stat);
8964 
8965 		linkattr = lstatus_to_fwcap(stat);
8966 	} else if (action == FW_PORT_ACTION_GET_PORT_INFO32) {
8967 		stat = be32_to_cpu(p->u.info32.lstatus32_to_cbllen32);
8968 
8969 		pi->port_type = G_FW_PORT_CMD_PORTTYPE32(stat);
8970 		pi->mod_type = G_FW_PORT_CMD_MODTYPE32(stat);
8971 		pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP32 ?
8972 		    G_FW_PORT_CMD_MDIOADDR32(stat) : -1;
8973 
8974 		lc->pcaps = be32_to_cpu(p->u.info32.pcaps32);
8975 		lc->acaps = be32_to_cpu(p->u.info32.acaps32);
8976 		lc->lpacaps = be32_to_cpu(p->u.info32.lpacaps32);
8977 		lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS32) != 0;
8978 		lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC32(stat);
8979 
8980 		linkattr = be32_to_cpu(p->u.info32.linkattr32);
8981 	} else {
8982 		CH_ERR(pi->adapter, "bad port_info action 0x%x\n", action);
8983 		return;
8984 	}
8985 
8986 	lc->speed = fwcap_to_speed(linkattr);
8987 	lc->fec = fwcap_to_fec(linkattr, true);
8988 
8989 	fc = 0;
8990 	if (linkattr & FW_PORT_CAP32_FC_RX)
8991 		fc |= PAUSE_RX;
8992 	if (linkattr & FW_PORT_CAP32_FC_TX)
8993 		fc |= PAUSE_TX;
8994 	lc->fc = fc;
8995 
8996 	if (mod_changed != NULL)
8997 		*mod_changed = false;
8998 	if (link_changed != NULL)
8999 		*link_changed = false;
9000 	if (old_ptype != pi->port_type || old_mtype != pi->mod_type ||
9001 	    old_lc.pcaps != lc->pcaps) {
9002 		if (pi->mod_type != FW_PORT_MOD_TYPE_NONE)
9003 			lc->fec_hint = fwcap_to_fec(lc->acaps, true);
9004 		if (mod_changed != NULL)
9005 			*mod_changed = true;
9006 	}
9007 	if (old_lc.link_ok != lc->link_ok || old_lc.speed != lc->speed ||
9008 	    old_lc.fec != lc->fec || old_lc.fc != lc->fc) {
9009 		if (link_changed != NULL)
9010 			*link_changed = true;
9011 	}
9012 }
9013 
9014 /**
9015  *	t4_update_port_info - retrieve and update port information if changed
9016  *	@pi: the port_info
9017  *
9018  *	We issue a Get Port Information Command to the Firmware and, if
9019  *	successful, we check to see if anything is different from what we
9020  *	last recorded and update things accordingly.
9021  */
9022  int t4_update_port_info(struct port_info *pi)
9023  {
9024 	struct adapter *sc = pi->adapter;
9025 	struct fw_port_cmd cmd;
9026 	enum fw_port_action action;
9027 	int ret;
9028 
9029 	memset(&cmd, 0, sizeof(cmd));
9030 	cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
9031 	    F_FW_CMD_REQUEST | F_FW_CMD_READ |
9032 	    V_FW_PORT_CMD_PORTID(pi->tx_chan));
9033 	action = sc->params.port_caps32 ? FW_PORT_ACTION_GET_PORT_INFO32 :
9034 	    FW_PORT_ACTION_GET_PORT_INFO;
9035 	cmd.action_to_len16 = cpu_to_be32(V_FW_PORT_CMD_ACTION(action) |
9036 	    FW_LEN16(cmd));
9037 	ret = t4_wr_mbox_ns(sc, sc->mbox, &cmd, sizeof(cmd), &cmd);
9038 	if (ret)
9039 		return ret;
9040 
9041 	handle_port_info(pi, &cmd, action, NULL, NULL);
9042 	return 0;
9043 }
9044 
9045 /**
9046  *	t4_handle_fw_rpl - process a FW reply message
9047  *	@adap: the adapter
9048  *	@rpl: start of the FW message
9049  *
9050  *	Processes a FW message, such as link state change messages.
9051  */
9052 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
9053 {
9054 	u8 opcode = *(const u8 *)rpl;
9055 	const struct fw_port_cmd *p = (const void *)rpl;
9056 	enum fw_port_action action =
9057 	    G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
9058 	bool mod_changed, link_changed;
9059 
9060 	if (opcode == FW_PORT_CMD &&
9061 	    (action == FW_PORT_ACTION_GET_PORT_INFO ||
9062 	    action == FW_PORT_ACTION_GET_PORT_INFO32)) {
9063 		/* link/module state change message */
9064 		int i;
9065 		int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
9066 		struct port_info *pi = NULL;
9067 
9068 		for_each_port(adap, i) {
9069 			pi = adap2pinfo(adap, i);
9070 			if (pi->tx_chan == chan)
9071 				break;
9072 		}
9073 
9074 		PORT_LOCK(pi);
9075 		handle_port_info(pi, p, action, &mod_changed, &link_changed);
9076 		PORT_UNLOCK(pi);
9077 		if (mod_changed)
9078 			t4_os_portmod_changed(pi);
9079 		if (link_changed) {
9080 			PORT_LOCK(pi);
9081 			t4_os_link_changed(pi);
9082 			PORT_UNLOCK(pi);
9083 		}
9084 	} else {
9085 		CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode);
9086 		return -EINVAL;
9087 	}
9088 	return 0;
9089 }
9090 
9091 /**
9092  *	get_pci_mode - determine a card's PCI mode
9093  *	@adapter: the adapter
9094  *	@p: where to store the PCI settings
9095  *
9096  *	Determines a card's PCI mode and associated parameters, such as speed
9097  *	and width.
9098  */
9099 static void get_pci_mode(struct adapter *adapter,
9100 				   struct pci_params *p)
9101 {
9102 	u16 val;
9103 	u32 pcie_cap;
9104 
9105 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
9106 	if (pcie_cap) {
9107 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
9108 		p->speed = val & PCI_EXP_LNKSTA_CLS;
9109 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
9110 	}
9111 }
9112 
9113 struct flash_desc {
9114 	u32 vendor_and_model_id;
9115 	u32 size_mb;
9116 };
9117 
9118 int t4_get_flash_params(struct adapter *adapter)
9119 {
9120 	/*
9121 	 * Table for non-standard supported Flash parts.  Note, all Flash
9122 	 * parts must have 64KB sectors.
9123 	 */
9124 	static struct flash_desc supported_flash[] = {
9125 		{ 0x00150201, 4 << 20 },	/* Spansion 4MB S25FL032P */
9126 	};
9127 
9128 	int ret;
9129 	u32 flashid = 0;
9130 	unsigned int part, manufacturer;
9131 	unsigned int density, size = 0;
9132 
9133 
9134 	/*
9135 	 * Issue a Read ID Command to the Flash part.  We decode supported
9136 	 * Flash parts and their sizes from this.  There's a newer Query
9137 	 * Command which can retrieve detailed geometry information but many
9138 	 * Flash parts don't support it.
9139 	 */
9140 	ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
9141 	if (!ret)
9142 		ret = sf1_read(adapter, 3, 0, 1, &flashid);
9143 	t4_write_reg(adapter, A_SF_OP, 0);	/* unlock SF */
9144 	if (ret < 0)
9145 		return ret;
9146 
9147 	/*
9148 	 * Check to see if it's one of our non-standard supported Flash parts.
9149 	 */
9150 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
9151 		if (supported_flash[part].vendor_and_model_id == flashid) {
9152 			adapter->params.sf_size =
9153 				supported_flash[part].size_mb;
9154 			adapter->params.sf_nsec =
9155 				adapter->params.sf_size / SF_SEC_SIZE;
9156 			goto found;
9157 		}
9158 
9159 	/*
9160 	 * Decode Flash part size.  The code below looks repetative with
9161 	 * common encodings, but that's not guaranteed in the JEDEC
9162 	 * specification for the Read JADEC ID command.  The only thing that
9163 	 * we're guaranteed by the JADEC specification is where the
9164 	 * Manufacturer ID is in the returned result.  After that each
9165 	 * Manufacturer ~could~ encode things completely differently.
9166 	 * Note, all Flash parts must have 64KB sectors.
9167 	 */
9168 	manufacturer = flashid & 0xff;
9169 	switch (manufacturer) {
9170 	case 0x20: /* Micron/Numonix */
9171 		/*
9172 		 * This Density -> Size decoding table is taken from Micron
9173 		 * Data Sheets.
9174 		 */
9175 		density = (flashid >> 16) & 0xff;
9176 		switch (density) {
9177 		case 0x14: size = 1 << 20; break; /*   1MB */
9178 		case 0x15: size = 1 << 21; break; /*   2MB */
9179 		case 0x16: size = 1 << 22; break; /*   4MB */
9180 		case 0x17: size = 1 << 23; break; /*   8MB */
9181 		case 0x18: size = 1 << 24; break; /*  16MB */
9182 		case 0x19: size = 1 << 25; break; /*  32MB */
9183 		case 0x20: size = 1 << 26; break; /*  64MB */
9184 		case 0x21: size = 1 << 27; break; /* 128MB */
9185 		case 0x22: size = 1 << 28; break; /* 256MB */
9186 		}
9187 		break;
9188 
9189 	case 0x9d: /* ISSI -- Integrated Silicon Solution, Inc. */
9190 		/*
9191 		 * This Density -> Size decoding table is taken from ISSI
9192 		 * Data Sheets.
9193 		 */
9194 		density = (flashid >> 16) & 0xff;
9195 		switch (density) {
9196 		case 0x16: size = 1 << 25; break; /*  32MB */
9197 		case 0x17: size = 1 << 26; break; /*  64MB */
9198 		}
9199 		break;
9200 
9201 	case 0xc2: /* Macronix */
9202 		/*
9203 		 * This Density -> Size decoding table is taken from Macronix
9204 		 * Data Sheets.
9205 		 */
9206 		density = (flashid >> 16) & 0xff;
9207 		switch (density) {
9208 		case 0x17: size = 1 << 23; break; /*   8MB */
9209 		case 0x18: size = 1 << 24; break; /*  16MB */
9210 		}
9211 		break;
9212 
9213 	case 0xef: /* Winbond */
9214 		/*
9215 		 * This Density -> Size decoding table is taken from Winbond
9216 		 * Data Sheets.
9217 		 */
9218 		density = (flashid >> 16) & 0xff;
9219 		switch (density) {
9220 		case 0x17: size = 1 << 23; break; /*   8MB */
9221 		case 0x18: size = 1 << 24; break; /*  16MB */
9222 		}
9223 		break;
9224 	}
9225 
9226 	/* If we didn't recognize the FLASH part, that's no real issue: the
9227 	 * Hardware/Software contract says that Hardware will _*ALWAYS*_
9228 	 * use a FLASH part which is at least 4MB in size and has 64KB
9229 	 * sectors.  The unrecognized FLASH part is likely to be much larger
9230 	 * than 4MB, but that's all we really need.
9231 	 */
9232 	if (size == 0) {
9233 		CH_WARN(adapter, "Unknown Flash Part, ID = %#x, assuming 4MB\n", flashid);
9234 		size = 1 << 22;
9235 	}
9236 
9237 	/*
9238 	 * Store decoded Flash size and fall through into vetting code.
9239 	 */
9240 	adapter->params.sf_size = size;
9241 	adapter->params.sf_nsec = size / SF_SEC_SIZE;
9242 
9243  found:
9244 	/*
9245 	 * We should ~probably~ reject adapters with FLASHes which are too
9246 	 * small but we have some legacy FPGAs with small FLASHes that we'd
9247 	 * still like to use.  So instead we emit a scary message ...
9248 	 */
9249 	if (adapter->params.sf_size < FLASH_MIN_SIZE)
9250 		CH_WARN(adapter, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
9251 			flashid, adapter->params.sf_size, FLASH_MIN_SIZE);
9252 
9253 	return 0;
9254 }
9255 
9256 static void set_pcie_completion_timeout(struct adapter *adapter,
9257 						  u8 range)
9258 {
9259 	u16 val;
9260 	u32 pcie_cap;
9261 
9262 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
9263 	if (pcie_cap) {
9264 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
9265 		val &= 0xfff0;
9266 		val |= range ;
9267 		t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
9268 	}
9269 }
9270 
9271 const struct chip_params *t4_get_chip_params(int chipid)
9272 {
9273 	static const struct chip_params chip_params[] = {
9274 		{
9275 			/* T4 */
9276 			.nchan = NCHAN,
9277 			.pm_stats_cnt = PM_NSTATS,
9278 			.cng_ch_bits_log = 2,
9279 			.nsched_cls = 15,
9280 			.cim_num_obq = CIM_NUM_OBQ,
9281 			.filter_opt_len = FILTER_OPT_LEN,
9282 			.mps_rplc_size = 128,
9283 			.vfcount = 128,
9284 			.sge_fl_db = F_DBPRIO,
9285 			.mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES,
9286 			.rss_nentries = RSS_NENTRIES,
9287 		},
9288 		{
9289 			/* T5 */
9290 			.nchan = NCHAN,
9291 			.pm_stats_cnt = PM_NSTATS,
9292 			.cng_ch_bits_log = 2,
9293 			.nsched_cls = 16,
9294 			.cim_num_obq = CIM_NUM_OBQ_T5,
9295 			.filter_opt_len = T5_FILTER_OPT_LEN,
9296 			.mps_rplc_size = 128,
9297 			.vfcount = 128,
9298 			.sge_fl_db = F_DBPRIO | F_DBTYPE,
9299 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
9300 			.rss_nentries = RSS_NENTRIES,
9301 		},
9302 		{
9303 			/* T6 */
9304 			.nchan = T6_NCHAN,
9305 			.pm_stats_cnt = T6_PM_NSTATS,
9306 			.cng_ch_bits_log = 3,
9307 			.nsched_cls = 16,
9308 			.cim_num_obq = CIM_NUM_OBQ_T5,
9309 			.filter_opt_len = T5_FILTER_OPT_LEN,
9310 			.mps_rplc_size = 256,
9311 			.vfcount = 256,
9312 			.sge_fl_db = 0,
9313 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
9314 			.rss_nentries = T6_RSS_NENTRIES,
9315 		},
9316 	};
9317 
9318 	chipid -= CHELSIO_T4;
9319 	if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params))
9320 		return NULL;
9321 
9322 	return &chip_params[chipid];
9323 }
9324 
9325 /**
9326  *	t4_prep_adapter - prepare SW and HW for operation
9327  *	@adapter: the adapter
9328  *	@buf: temporary space of at least VPD_LEN size provided by the caller.
9329  *
9330  *	Initialize adapter SW state for the various HW modules, set initial
9331  *	values for some adapter tunables, take PHYs out of reset, and
9332  *	initialize the MDIO interface.
9333  */
9334 int t4_prep_adapter(struct adapter *adapter, u32 *buf)
9335 {
9336 	int ret;
9337 	uint16_t device_id;
9338 	uint32_t pl_rev;
9339 
9340 	get_pci_mode(adapter, &adapter->params.pci);
9341 
9342 	pl_rev = t4_read_reg(adapter, A_PL_REV);
9343 	adapter->params.chipid = G_CHIPID(pl_rev);
9344 	adapter->params.rev = G_REV(pl_rev);
9345 	if (adapter->params.chipid == 0) {
9346 		/* T4 did not have chipid in PL_REV (T5 onwards do) */
9347 		adapter->params.chipid = CHELSIO_T4;
9348 
9349 		/* T4A1 chip is not supported */
9350 		if (adapter->params.rev == 1) {
9351 			CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
9352 			return -EINVAL;
9353 		}
9354 	}
9355 
9356 	adapter->chip_params = t4_get_chip_params(chip_id(adapter));
9357 	if (adapter->chip_params == NULL)
9358 		return -EINVAL;
9359 
9360 	adapter->params.pci.vpd_cap_addr =
9361 	    t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
9362 
9363 	ret = t4_get_flash_params(adapter);
9364 	if (ret < 0)
9365 		return ret;
9366 
9367 	/* Cards with real ASICs have the chipid in the PCIe device id */
9368 	t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
9369 	if (device_id >> 12 == chip_id(adapter))
9370 		adapter->params.cim_la_size = CIMLA_SIZE;
9371 	else {
9372 		/* FPGA */
9373 		adapter->params.fpga = 1;
9374 		adapter->params.cim_la_size = 2 * CIMLA_SIZE;
9375 	}
9376 
9377 	ret = get_vpd_params(adapter, &adapter->params.vpd, device_id, buf);
9378 	if (ret < 0)
9379 		return ret;
9380 
9381 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
9382 
9383 	/*
9384 	 * Default port and clock for debugging in case we can't reach FW.
9385 	 */
9386 	adapter->params.nports = 1;
9387 	adapter->params.portvec = 1;
9388 	adapter->params.vpd.cclk = 50000;
9389 
9390 	/* Set pci completion timeout value to 4 seconds. */
9391 	set_pcie_completion_timeout(adapter, 0xd);
9392 	return 0;
9393 }
9394 
9395 /**
9396  *	t4_shutdown_adapter - shut down adapter, host & wire
9397  *	@adapter: the adapter
9398  *
9399  *	Perform an emergency shutdown of the adapter and stop it from
9400  *	continuing any further communication on the ports or DMA to the
9401  *	host.  This is typically used when the adapter and/or firmware
9402  *	have crashed and we want to prevent any further accidental
9403  *	communication with the rest of the world.  This will also force
9404  *	the port Link Status to go down -- if register writes work --
9405  *	which should help our peers figure out that we're down.
9406  */
9407 int t4_shutdown_adapter(struct adapter *adapter)
9408 {
9409 	int port;
9410 	const bool bt = adapter->bt_map != 0;
9411 
9412 	t4_intr_disable(adapter);
9413 	if (bt)
9414 		t4_write_reg(adapter, A_DBG_GPIO_EN, 0xffff0000);
9415 	for_each_port(adapter, port) {
9416 		u32 a_port_cfg = is_t4(adapter) ?
9417 				 PORT_REG(port, A_XGMAC_PORT_CFG) :
9418 				 T5_PORT_REG(port, A_MAC_PORT_CFG);
9419 
9420 		t4_write_reg(adapter, a_port_cfg,
9421 			     t4_read_reg(adapter, a_port_cfg)
9422 			     & ~V_SIGNAL_DET(1));
9423 		if (!bt) {
9424 			u32 hss_cfg0 = is_t4(adapter) ?
9425 					 PORT_REG(port, A_XGMAC_PORT_HSS_CFG0) :
9426 					 T5_PORT_REG(port, A_MAC_PORT_HSS_CFG0);
9427 			t4_set_reg_field(adapter, hss_cfg0, F_HSSPDWNPLLB |
9428 			    F_HSSPDWNPLLA | F_HSSPLLBYPB | F_HSSPLLBYPA,
9429 			    F_HSSPDWNPLLB | F_HSSPDWNPLLA | F_HSSPLLBYPB |
9430 			    F_HSSPLLBYPA);
9431 		}
9432 	}
9433 	t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0);
9434 
9435 	return 0;
9436 }
9437 
9438 /**
9439  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
9440  *	@adapter: the adapter
9441  *	@qid: the Queue ID
9442  *	@qtype: the Ingress or Egress type for @qid
9443  *	@user: true if this request is for a user mode queue
9444  *	@pbar2_qoffset: BAR2 Queue Offset
9445  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
9446  *
9447  *	Returns the BAR2 SGE Queue Registers information associated with the
9448  *	indicated Absolute Queue ID.  These are passed back in return value
9449  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
9450  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
9451  *
9452  *	This may return an error which indicates that BAR2 SGE Queue
9453  *	registers aren't available.  If an error is not returned, then the
9454  *	following values are returned:
9455  *
9456  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
9457  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
9458  *
9459  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
9460  *	require the "Inferred Queue ID" ability may be used.  E.g. the
9461  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
9462  *	then these "Inferred Queue ID" register may not be used.
9463  */
9464 int t4_bar2_sge_qregs(struct adapter *adapter,
9465 		      unsigned int qid,
9466 		      enum t4_bar2_qtype qtype,
9467 		      int user,
9468 		      u64 *pbar2_qoffset,
9469 		      unsigned int *pbar2_qid)
9470 {
9471 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
9472 	u64 bar2_page_offset, bar2_qoffset;
9473 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
9474 
9475 	/* T4 doesn't support BAR2 SGE Queue registers for kernel
9476 	 * mode queues.
9477 	 */
9478 	if (!user && is_t4(adapter))
9479 		return -EINVAL;
9480 
9481 	/* Get our SGE Page Size parameters.
9482 	 */
9483 	page_shift = adapter->params.sge.page_shift;
9484 	page_size = 1 << page_shift;
9485 
9486 	/* Get the right Queues per Page parameters for our Queue.
9487 	 */
9488 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
9489 		     ? adapter->params.sge.eq_s_qpp
9490 		     : adapter->params.sge.iq_s_qpp);
9491 	qpp_mask = (1 << qpp_shift) - 1;
9492 
9493 	/* Calculate the basics of the BAR2 SGE Queue register area:
9494 	 *  o The BAR2 page the Queue registers will be in.
9495 	 *  o The BAR2 Queue ID.
9496 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
9497 	 */
9498 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
9499 	bar2_qid = qid & qpp_mask;
9500 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
9501 
9502 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
9503 	 * hardware will infer the Absolute Queue ID simply from the writes to
9504 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9505 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9506 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9507 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9508 	 * from the BAR2 Page and BAR2 Queue ID.
9509 	 *
9510 	 * One important censequence of this is that some BAR2 SGE registers
9511 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9512 	 * there.  But other registers synthesize the SGE Queue ID purely
9513 	 * from the writes to the registers -- the Write Combined Doorbell
9514 	 * Buffer is a good example.  These BAR2 SGE Registers are only
9515 	 * available for those BAR2 SGE Register areas where the SGE Absolute
9516 	 * Queue ID can be inferred from simple writes.
9517 	 */
9518 	bar2_qoffset = bar2_page_offset;
9519 	bar2_qinferred = (bar2_qid_offset < page_size);
9520 	if (bar2_qinferred) {
9521 		bar2_qoffset += bar2_qid_offset;
9522 		bar2_qid = 0;
9523 	}
9524 
9525 	*pbar2_qoffset = bar2_qoffset;
9526 	*pbar2_qid = bar2_qid;
9527 	return 0;
9528 }
9529 
9530 /**
9531  *	t4_init_devlog_params - initialize adapter->params.devlog
9532  *	@adap: the adapter
9533  *	@fw_attach: whether we can talk to the firmware
9534  *
9535  *	Initialize various fields of the adapter's Firmware Device Log
9536  *	Parameters structure.
9537  */
9538 int t4_init_devlog_params(struct adapter *adap, int fw_attach)
9539 {
9540 	struct devlog_params *dparams = &adap->params.devlog;
9541 	u32 pf_dparams;
9542 	unsigned int devlog_meminfo;
9543 	struct fw_devlog_cmd devlog_cmd;
9544 	int ret;
9545 
9546 	/* If we're dealing with newer firmware, the Device Log Paramerters
9547 	 * are stored in a designated register which allows us to access the
9548 	 * Device Log even if we can't talk to the firmware.
9549 	 */
9550 	pf_dparams =
9551 		t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG));
9552 	if (pf_dparams) {
9553 		unsigned int nentries, nentries128;
9554 
9555 		dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams);
9556 		dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4;
9557 
9558 		nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams);
9559 		nentries = (nentries128 + 1) * 128;
9560 		dparams->size = nentries * sizeof(struct fw_devlog_e);
9561 
9562 		return 0;
9563 	}
9564 
9565 	/*
9566 	 * For any failing returns ...
9567 	 */
9568 	memset(dparams, 0, sizeof *dparams);
9569 
9570 	/*
9571 	 * If we can't talk to the firmware, there's really nothing we can do
9572 	 * at this point.
9573 	 */
9574 	if (!fw_attach)
9575 		return -ENXIO;
9576 
9577 	/* Otherwise, ask the firmware for it's Device Log Parameters.
9578 	 */
9579 	memset(&devlog_cmd, 0, sizeof devlog_cmd);
9580 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9581 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
9582 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9583 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9584 			 &devlog_cmd);
9585 	if (ret)
9586 		return ret;
9587 
9588 	devlog_meminfo =
9589 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9590 	dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo);
9591 	dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4;
9592 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9593 
9594 	return 0;
9595 }
9596 
9597 /**
9598  *	t4_init_sge_params - initialize adap->params.sge
9599  *	@adapter: the adapter
9600  *
9601  *	Initialize various fields of the adapter's SGE Parameters structure.
9602  */
9603 int t4_init_sge_params(struct adapter *adapter)
9604 {
9605 	u32 r;
9606 	struct sge_params *sp = &adapter->params.sge;
9607 	unsigned i, tscale = 1;
9608 
9609 	r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD);
9610 	sp->counter_val[0] = G_THRESHOLD_0(r);
9611 	sp->counter_val[1] = G_THRESHOLD_1(r);
9612 	sp->counter_val[2] = G_THRESHOLD_2(r);
9613 	sp->counter_val[3] = G_THRESHOLD_3(r);
9614 
9615 	if (chip_id(adapter) >= CHELSIO_T6) {
9616 		r = t4_read_reg(adapter, A_SGE_ITP_CONTROL);
9617 		tscale = G_TSCALE(r);
9618 		if (tscale == 0)
9619 			tscale = 1;
9620 		else
9621 			tscale += 2;
9622 	}
9623 
9624 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1);
9625 	sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r)) * tscale;
9626 	sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r)) * tscale;
9627 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3);
9628 	sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r)) * tscale;
9629 	sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r)) * tscale;
9630 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5);
9631 	sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r)) * tscale;
9632 	sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r)) * tscale;
9633 
9634 	r = t4_read_reg(adapter, A_SGE_CONM_CTRL);
9635 	sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
9636 	if (is_t4(adapter))
9637 		sp->fl_starve_threshold2 = sp->fl_starve_threshold;
9638 	else if (is_t5(adapter))
9639 		sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
9640 	else
9641 		sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(r) * 2 + 1;
9642 
9643 	/* egress queues: log2 of # of doorbells per BAR2 page */
9644 	r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
9645 	r >>= S_QUEUESPERPAGEPF0 +
9646 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
9647 	sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
9648 
9649 	/* ingress queues: log2 of # of doorbells per BAR2 page */
9650 	r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
9651 	r >>= S_QUEUESPERPAGEPF0 +
9652 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
9653 	sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
9654 
9655 	r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
9656 	r >>= S_HOSTPAGESIZEPF0 +
9657 	    (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf;
9658 	sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10;
9659 
9660 	r = t4_read_reg(adapter, A_SGE_CONTROL);
9661 	sp->sge_control = r;
9662 	sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64;
9663 	sp->fl_pktshift = G_PKTSHIFT(r);
9664 	if (chip_id(adapter) <= CHELSIO_T5) {
9665 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
9666 		    X_INGPADBOUNDARY_SHIFT);
9667 	} else {
9668 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
9669 		    X_T6_INGPADBOUNDARY_SHIFT);
9670 	}
9671 	if (is_t4(adapter))
9672 		sp->pack_boundary = sp->pad_boundary;
9673 	else {
9674 		r = t4_read_reg(adapter, A_SGE_CONTROL2);
9675 		if (G_INGPACKBOUNDARY(r) == 0)
9676 			sp->pack_boundary = 16;
9677 		else
9678 			sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5);
9679 	}
9680 	for (i = 0; i < SGE_FLBUF_SIZES; i++)
9681 		sp->sge_fl_buffer_size[i] = t4_read_reg(adapter,
9682 		    A_SGE_FL_BUFFER_SIZE0 + (4 * i));
9683 
9684 	return 0;
9685 }
9686 
9687 /* Convert the LE's hardware hash mask to a shorter filter mask. */
9688 static inline uint16_t
9689 hashmask_to_filtermask(uint64_t hashmask, uint16_t filter_mode)
9690 {
9691 	static const uint8_t width[] = {1, 3, 17, 17, 8, 8, 16, 9, 3, 1};
9692 	int i;
9693 	uint16_t filter_mask;
9694 	uint64_t mask;		/* field mask */
9695 
9696 	filter_mask = 0;
9697 	for (i = S_FCOE; i <= S_FRAGMENTATION; i++) {
9698 		if ((filter_mode & (1 << i)) == 0)
9699 			continue;
9700 		mask = (1 << width[i]) - 1;
9701 		if ((hashmask & mask) == mask)
9702 			filter_mask |= 1 << i;
9703 		hashmask >>= width[i];
9704 	}
9705 
9706 	return (filter_mask);
9707 }
9708 
9709 /*
9710  * Read and cache the adapter's compressed filter mode and ingress config.
9711  */
9712 static void
9713 read_filter_mode_and_ingress_config(struct adapter *adap)
9714 {
9715 	int rc;
9716 	uint32_t v, param[2], val[2];
9717 	struct tp_params *tpp = &adap->params.tp;
9718 	uint64_t hash_mask;
9719 
9720 	param[0] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9721 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) |
9722 	    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_MODE_MASK);
9723 	param[1] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9724 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) |
9725 	    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_VNIC_MODE);
9726 	rc = -t4_query_params(adap, adap->mbox, adap->pf, 0, 2, param, val);
9727 	if (rc == 0) {
9728 		tpp->filter_mode = G_FW_PARAMS_PARAM_FILTER_MODE(val[0]);
9729 		tpp->filter_mask = G_FW_PARAMS_PARAM_FILTER_MASK(val[0]);
9730 		tpp->vnic_mode = val[1];
9731 	} else {
9732 		/*
9733 		 * Old firmware.  Read filter mode/mask and ingress config
9734 		 * straight from the hardware.
9735 		 */
9736 		t4_tp_pio_read(adap, &v, 1, A_TP_VLAN_PRI_MAP, true);
9737 		tpp->filter_mode = v & 0xffff;
9738 
9739 		hash_mask = 0;
9740 		if (chip_id(adap) > CHELSIO_T4) {
9741 			v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(3));
9742 			hash_mask = v;
9743 			v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(4));
9744 			hash_mask |= (u64)v << 32;
9745 		}
9746 		tpp->filter_mask = hashmask_to_filtermask(hash_mask,
9747 		    tpp->filter_mode);
9748 
9749 		t4_tp_pio_read(adap, &v, 1, A_TP_INGRESS_CONFIG, true);
9750 		if (v & F_VNIC)
9751 			tpp->vnic_mode = FW_VNIC_MODE_PF_VF;
9752 		else
9753 			tpp->vnic_mode = FW_VNIC_MODE_OUTER_VLAN;
9754 	}
9755 
9756 	/*
9757 	 * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9758 	 * shift positions of several elements of the Compressed Filter Tuple
9759 	 * for this adapter which we need frequently ...
9760 	 */
9761 	tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE);
9762 	tpp->port_shift = t4_filter_field_shift(adap, F_PORT);
9763 	tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
9764 	tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN);
9765 	tpp->tos_shift = t4_filter_field_shift(adap, F_TOS);
9766 	tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
9767 	tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE);
9768 	tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH);
9769 	tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE);
9770 	tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION);
9771 }
9772 
9773 /**
9774  *      t4_init_tp_params - initialize adap->params.tp
9775  *      @adap: the adapter
9776  *
9777  *      Initialize various fields of the adapter's TP Parameters structure.
9778  */
9779 int t4_init_tp_params(struct adapter *adap)
9780 {
9781 	int chan;
9782 	u32 tx_len, rx_len, r, v;
9783 	struct tp_params *tpp = &adap->params.tp;
9784 
9785 	v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
9786 	tpp->tre = G_TIMERRESOLUTION(v);
9787 	tpp->dack_re = G_DELAYEDACKRESOLUTION(v);
9788 
9789 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9790 	for (chan = 0; chan < MAX_NCHAN; chan++)
9791 		tpp->tx_modq[chan] = chan;
9792 
9793 	read_filter_mode_and_ingress_config(adap);
9794 
9795 	if (chip_id(adap) > CHELSIO_T5) {
9796 		v = t4_read_reg(adap, A_TP_OUT_CONFIG);
9797 		tpp->rx_pkt_encap = v & F_CRXPKTENC;
9798 	} else
9799 		tpp->rx_pkt_encap = false;
9800 
9801 	rx_len = t4_read_reg(adap, A_TP_PMM_RX_PAGE_SIZE);
9802 	tx_len = t4_read_reg(adap, A_TP_PMM_TX_PAGE_SIZE);
9803 
9804 	r = t4_read_reg(adap, A_TP_PARA_REG2);
9805 	rx_len = min(rx_len, G_MAXRXDATA(r));
9806 	tx_len = min(tx_len, G_MAXRXDATA(r));
9807 
9808 	r = t4_read_reg(adap, A_TP_PARA_REG7);
9809 	v = min(G_PMMAXXFERLEN0(r), G_PMMAXXFERLEN1(r));
9810 	rx_len = min(rx_len, v);
9811 	tx_len = min(tx_len, v);
9812 
9813 	tpp->max_tx_pdu = tx_len;
9814 	tpp->max_rx_pdu = rx_len;
9815 
9816 	return 0;
9817 }
9818 
9819 /**
9820  *      t4_filter_field_shift - calculate filter field shift
9821  *      @adap: the adapter
9822  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9823  *
9824  *      Return the shift position of a filter field within the Compressed
9825  *      Filter Tuple.  The filter field is specified via its selection bit
9826  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9827  */
9828 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9829 {
9830 	const unsigned int filter_mode = adap->params.tp.filter_mode;
9831 	unsigned int sel;
9832 	int field_shift;
9833 
9834 	if ((filter_mode & filter_sel) == 0)
9835 		return -1;
9836 
9837 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9838 		switch (filter_mode & sel) {
9839 		case F_FCOE:
9840 			field_shift += W_FT_FCOE;
9841 			break;
9842 		case F_PORT:
9843 			field_shift += W_FT_PORT;
9844 			break;
9845 		case F_VNIC_ID:
9846 			field_shift += W_FT_VNIC_ID;
9847 			break;
9848 		case F_VLAN:
9849 			field_shift += W_FT_VLAN;
9850 			break;
9851 		case F_TOS:
9852 			field_shift += W_FT_TOS;
9853 			break;
9854 		case F_PROTOCOL:
9855 			field_shift += W_FT_PROTOCOL;
9856 			break;
9857 		case F_ETHERTYPE:
9858 			field_shift += W_FT_ETHERTYPE;
9859 			break;
9860 		case F_MACMATCH:
9861 			field_shift += W_FT_MACMATCH;
9862 			break;
9863 		case F_MPSHITTYPE:
9864 			field_shift += W_FT_MPSHITTYPE;
9865 			break;
9866 		case F_FRAGMENTATION:
9867 			field_shift += W_FT_FRAGMENTATION;
9868 			break;
9869 		}
9870 	}
9871 	return field_shift;
9872 }
9873 
9874 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id)
9875 {
9876 	u8 addr[6];
9877 	int ret, i, j;
9878 	struct port_info *p = adap2pinfo(adap, port_id);
9879 	u32 param, val;
9880 	struct vi_info *vi = &p->vi[0];
9881 
9882 	for (i = 0, j = -1; i <= p->port_id; i++) {
9883 		do {
9884 			j++;
9885 		} while ((adap->params.portvec & (1 << j)) == 0);
9886 	}
9887 
9888 	p->tx_chan = j;
9889 	p->mps_bg_map = t4_get_mps_bg_map(adap, j);
9890 	p->rx_e_chan_map = t4_get_rx_e_chan_map(adap, j);
9891 	p->rx_c_chan = t4_get_rx_c_chan(adap, j);
9892 	p->lport = j;
9893 
9894 	if (!(adap->flags & IS_VF) ||
9895 	    adap->params.vfres.r_caps & FW_CMD_CAP_PORT) {
9896  		t4_update_port_info(p);
9897 	}
9898 
9899 	ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &vi->rss_size,
9900 	    &vi->vfvld, &vi->vin);
9901 	if (ret < 0)
9902 		return ret;
9903 
9904 	vi->viid = ret;
9905 	t4_os_set_hw_addr(p, addr);
9906 
9907 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9908 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
9909 	    V_FW_PARAMS_PARAM_YZ(vi->viid);
9910 	ret = t4_query_params(adap, mbox, pf, vf, 1, &param, &val);
9911 	if (ret)
9912 		vi->rss_base = 0xffff;
9913 	else {
9914 		/* MPASS((val >> 16) == rss_size); */
9915 		vi->rss_base = val & 0xffff;
9916 	}
9917 
9918 	return 0;
9919 }
9920 
9921 /**
9922  *	t4_read_cimq_cfg - read CIM queue configuration
9923  *	@adap: the adapter
9924  *	@base: holds the queue base addresses in bytes
9925  *	@size: holds the queue sizes in bytes
9926  *	@thres: holds the queue full thresholds in bytes
9927  *
9928  *	Returns the current configuration of the CIM queues, starting with
9929  *	the IBQs, then the OBQs.
9930  */
9931 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9932 {
9933 	unsigned int i, v;
9934 	int cim_num_obq = adap->chip_params->cim_num_obq;
9935 
9936 	for (i = 0; i < CIM_NUM_IBQ; i++) {
9937 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
9938 			     V_QUENUMSELECT(i));
9939 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9940 		/* value is in 256-byte units */
9941 		*base++ = G_CIMQBASE(v) * 256;
9942 		*size++ = G_CIMQSIZE(v) * 256;
9943 		*thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */
9944 	}
9945 	for (i = 0; i < cim_num_obq; i++) {
9946 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
9947 			     V_QUENUMSELECT(i));
9948 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9949 		/* value is in 256-byte units */
9950 		*base++ = G_CIMQBASE(v) * 256;
9951 		*size++ = G_CIMQSIZE(v) * 256;
9952 	}
9953 }
9954 
9955 /**
9956  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
9957  *	@adap: the adapter
9958  *	@qid: the queue index
9959  *	@data: where to store the queue contents
9960  *	@n: capacity of @data in 32-bit words
9961  *
9962  *	Reads the contents of the selected CIM queue starting at address 0 up
9963  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9964  *	error and the number of 32-bit words actually read on success.
9965  */
9966 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9967 {
9968 	int i, err, attempts;
9969 	unsigned int addr;
9970 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
9971 
9972 	if (qid > 5 || (n & 3))
9973 		return -EINVAL;
9974 
9975 	addr = qid * nwords;
9976 	if (n > nwords)
9977 		n = nwords;
9978 
9979 	/* It might take 3-10ms before the IBQ debug read access is allowed.
9980 	 * Wait for 1 Sec with a delay of 1 usec.
9981 	 */
9982 	attempts = 1000000;
9983 
9984 	for (i = 0; i < n; i++, addr++) {
9985 		t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
9986 			     F_IBQDBGEN);
9987 		err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
9988 				      attempts, 1);
9989 		if (err)
9990 			return err;
9991 		*data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
9992 	}
9993 	t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
9994 	return i;
9995 }
9996 
9997 /**
9998  *	t4_read_cim_obq - read the contents of a CIM outbound queue
9999  *	@adap: the adapter
10000  *	@qid: the queue index
10001  *	@data: where to store the queue contents
10002  *	@n: capacity of @data in 32-bit words
10003  *
10004  *	Reads the contents of the selected CIM queue starting at address 0 up
10005  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
10006  *	error and the number of 32-bit words actually read on success.
10007  */
10008 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
10009 {
10010 	int i, err;
10011 	unsigned int addr, v, nwords;
10012 	int cim_num_obq = adap->chip_params->cim_num_obq;
10013 
10014 	if ((qid > (cim_num_obq - 1)) || (n & 3))
10015 		return -EINVAL;
10016 
10017 	t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
10018 		     V_QUENUMSELECT(qid));
10019 	v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
10020 
10021 	addr = G_CIMQBASE(v) * 64;    /* muliple of 256 -> muliple of 4 */
10022 	nwords = G_CIMQSIZE(v) * 64;  /* same */
10023 	if (n > nwords)
10024 		n = nwords;
10025 
10026 	for (i = 0; i < n; i++, addr++) {
10027 		t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
10028 			     F_OBQDBGEN);
10029 		err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
10030 				      2, 1);
10031 		if (err)
10032 			return err;
10033 		*data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
10034 	}
10035 	t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
10036 	return i;
10037 }
10038 
10039 enum {
10040 	CIM_QCTL_BASE     = 0,
10041 	CIM_CTL_BASE      = 0x2000,
10042 	CIM_PBT_ADDR_BASE = 0x2800,
10043 	CIM_PBT_LRF_BASE  = 0x3000,
10044 	CIM_PBT_DATA_BASE = 0x3800
10045 };
10046 
10047 /**
10048  *	t4_cim_read - read a block from CIM internal address space
10049  *	@adap: the adapter
10050  *	@addr: the start address within the CIM address space
10051  *	@n: number of words to read
10052  *	@valp: where to store the result
10053  *
10054  *	Reads a block of 4-byte words from the CIM intenal address space.
10055  */
10056 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
10057 		unsigned int *valp)
10058 {
10059 	int ret = 0;
10060 
10061 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
10062 		return -EBUSY;
10063 
10064 	for ( ; !ret && n--; addr += 4) {
10065 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
10066 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
10067 				      0, 5, 2);
10068 		if (!ret)
10069 			*valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
10070 	}
10071 	return ret;
10072 }
10073 
10074 /**
10075  *	t4_cim_write - write a block into CIM internal address space
10076  *	@adap: the adapter
10077  *	@addr: the start address within the CIM address space
10078  *	@n: number of words to write
10079  *	@valp: set of values to write
10080  *
10081  *	Writes a block of 4-byte words into the CIM intenal address space.
10082  */
10083 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
10084 		 const unsigned int *valp)
10085 {
10086 	int ret = 0;
10087 
10088 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
10089 		return -EBUSY;
10090 
10091 	for ( ; !ret && n--; addr += 4) {
10092 		t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
10093 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
10094 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
10095 				      0, 5, 2);
10096 	}
10097 	return ret;
10098 }
10099 
10100 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
10101 			 unsigned int val)
10102 {
10103 	return t4_cim_write(adap, addr, 1, &val);
10104 }
10105 
10106 /**
10107  *	t4_cim_ctl_read - read a block from CIM control region
10108  *	@adap: the adapter
10109  *	@addr: the start address within the CIM control region
10110  *	@n: number of words to read
10111  *	@valp: where to store the result
10112  *
10113  *	Reads a block of 4-byte words from the CIM control region.
10114  */
10115 int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
10116 		    unsigned int *valp)
10117 {
10118 	return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
10119 }
10120 
10121 /**
10122  *	t4_cim_read_la - read CIM LA capture buffer
10123  *	@adap: the adapter
10124  *	@la_buf: where to store the LA data
10125  *	@wrptr: the HW write pointer within the capture buffer
10126  *
10127  *	Reads the contents of the CIM LA buffer with the most recent entry at
10128  *	the end	of the returned data and with the entry at @wrptr first.
10129  *	We try to leave the LA in the running state we find it in.
10130  */
10131 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
10132 {
10133 	int i, ret;
10134 	unsigned int cfg, val, idx;
10135 
10136 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
10137 	if (ret)
10138 		return ret;
10139 
10140 	if (cfg & F_UPDBGLAEN) {	/* LA is running, freeze it */
10141 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
10142 		if (ret)
10143 			return ret;
10144 	}
10145 
10146 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
10147 	if (ret)
10148 		goto restart;
10149 
10150 	idx = G_UPDBGLAWRPTR(val);
10151 	if (wrptr)
10152 		*wrptr = idx;
10153 
10154 	for (i = 0; i < adap->params.cim_la_size; i++) {
10155 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
10156 				    V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
10157 		if (ret)
10158 			break;
10159 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
10160 		if (ret)
10161 			break;
10162 		if (val & F_UPDBGLARDEN) {
10163 			ret = -ETIMEDOUT;
10164 			break;
10165 		}
10166 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
10167 		if (ret)
10168 			break;
10169 
10170 		/* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
10171 		 * identify the 32-bit portion of the full 312-bit data
10172 		 */
10173 		if (is_t6(adap) && (idx & 0xf) >= 9)
10174 			idx = (idx & 0xff0) + 0x10;
10175 		else
10176 			idx++;
10177 		/* address can't exceed 0xfff */
10178 		idx &= M_UPDBGLARDPTR;
10179 	}
10180 restart:
10181 	if (cfg & F_UPDBGLAEN) {
10182 		int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
10183 				      cfg & ~F_UPDBGLARDEN);
10184 		if (!ret)
10185 			ret = r;
10186 	}
10187 	return ret;
10188 }
10189 
10190 /**
10191  *	t4_tp_read_la - read TP LA capture buffer
10192  *	@adap: the adapter
10193  *	@la_buf: where to store the LA data
10194  *	@wrptr: the HW write pointer within the capture buffer
10195  *
10196  *	Reads the contents of the TP LA buffer with the most recent entry at
10197  *	the end	of the returned data and with the entry at @wrptr first.
10198  *	We leave the LA in the running state we find it in.
10199  */
10200 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
10201 {
10202 	bool last_incomplete;
10203 	unsigned int i, cfg, val, idx;
10204 
10205 	cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
10206 	if (cfg & F_DBGLAENABLE)			/* freeze LA */
10207 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
10208 			     adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
10209 
10210 	val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
10211 	idx = G_DBGLAWPTR(val);
10212 	last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
10213 	if (last_incomplete)
10214 		idx = (idx + 1) & M_DBGLARPTR;
10215 	if (wrptr)
10216 		*wrptr = idx;
10217 
10218 	val &= 0xffff;
10219 	val &= ~V_DBGLARPTR(M_DBGLARPTR);
10220 	val |= adap->params.tp.la_mask;
10221 
10222 	for (i = 0; i < TPLA_SIZE; i++) {
10223 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
10224 		la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
10225 		idx = (idx + 1) & M_DBGLARPTR;
10226 	}
10227 
10228 	/* Wipe out last entry if it isn't valid */
10229 	if (last_incomplete)
10230 		la_buf[TPLA_SIZE - 1] = ~0ULL;
10231 
10232 	if (cfg & F_DBGLAENABLE)		/* restore running state */
10233 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
10234 			     cfg | adap->params.tp.la_mask);
10235 }
10236 
10237 /*
10238  * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
10239  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
10240  * state for more than the Warning Threshold then we'll issue a warning about
10241  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
10242  * appears to be hung every Warning Repeat second till the situation clears.
10243  * If the situation clears, we'll note that as well.
10244  */
10245 #define SGE_IDMA_WARN_THRESH 1
10246 #define SGE_IDMA_WARN_REPEAT 300
10247 
10248 /**
10249  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
10250  *	@adapter: the adapter
10251  *	@idma: the adapter IDMA Monitor state
10252  *
10253  *	Initialize the state of an SGE Ingress DMA Monitor.
10254  */
10255 void t4_idma_monitor_init(struct adapter *adapter,
10256 			  struct sge_idma_monitor_state *idma)
10257 {
10258 	/* Initialize the state variables for detecting an SGE Ingress DMA
10259 	 * hang.  The SGE has internal counters which count up on each clock
10260 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
10261 	 * same state they were on the previous clock tick.  The clock used is
10262 	 * the Core Clock so we have a limit on the maximum "time" they can
10263 	 * record; typically a very small number of seconds.  For instance,
10264 	 * with a 600MHz Core Clock, we can only count up to a bit more than
10265 	 * 7s.  So we'll synthesize a larger counter in order to not run the
10266 	 * risk of having the "timers" overflow and give us the flexibility to
10267 	 * maintain a Hung SGE State Machine of our own which operates across
10268 	 * a longer time frame.
10269 	 */
10270 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
10271 	idma->idma_stalled[0] = idma->idma_stalled[1] = 0;
10272 }
10273 
10274 /**
10275  *	t4_idma_monitor - monitor SGE Ingress DMA state
10276  *	@adapter: the adapter
10277  *	@idma: the adapter IDMA Monitor state
10278  *	@hz: number of ticks/second
10279  *	@ticks: number of ticks since the last IDMA Monitor call
10280  */
10281 void t4_idma_monitor(struct adapter *adapter,
10282 		     struct sge_idma_monitor_state *idma,
10283 		     int hz, int ticks)
10284 {
10285 	int i, idma_same_state_cnt[2];
10286 
10287 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
10288 	  * are counters inside the SGE which count up on each clock when the
10289 	  * SGE finds its Ingress DMA State Engines in the same states they
10290 	  * were in the previous clock.  The counters will peg out at
10291 	  * 0xffffffff without wrapping around so once they pass the 1s
10292 	  * threshold they'll stay above that till the IDMA state changes.
10293 	  */
10294 	t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13);
10295 	idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH);
10296 	idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
10297 
10298 	for (i = 0; i < 2; i++) {
10299 		u32 debug0, debug11;
10300 
10301 		/* If the Ingress DMA Same State Counter ("timer") is less
10302 		 * than 1s, then we can reset our synthesized Stall Timer and
10303 		 * continue.  If we have previously emitted warnings about a
10304 		 * potential stalled Ingress Queue, issue a note indicating
10305 		 * that the Ingress Queue has resumed forward progress.
10306 		 */
10307 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
10308 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz)
10309 				CH_WARN(adapter, "SGE idma%d, queue %u, "
10310 					"resumed after %d seconds\n",
10311 					i, idma->idma_qid[i],
10312 					idma->idma_stalled[i]/hz);
10313 			idma->idma_stalled[i] = 0;
10314 			continue;
10315 		}
10316 
10317 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
10318 		 * domain.  The first time we get here it'll be because we
10319 		 * passed the 1s Threshold; each additional time it'll be
10320 		 * because the RX Timer Callback is being fired on its regular
10321 		 * schedule.
10322 		 *
10323 		 * If the stall is below our Potential Hung Ingress Queue
10324 		 * Warning Threshold, continue.
10325 		 */
10326 		if (idma->idma_stalled[i] == 0) {
10327 			idma->idma_stalled[i] = hz;
10328 			idma->idma_warn[i] = 0;
10329 		} else {
10330 			idma->idma_stalled[i] += ticks;
10331 			idma->idma_warn[i] -= ticks;
10332 		}
10333 
10334 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz)
10335 			continue;
10336 
10337 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
10338 		 */
10339 		if (idma->idma_warn[i] > 0)
10340 			continue;
10341 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz;
10342 
10343 		/* Read and save the SGE IDMA State and Queue ID information.
10344 		 * We do this every time in case it changes across time ...
10345 		 * can't be too careful ...
10346 		 */
10347 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0);
10348 		debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
10349 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
10350 
10351 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11);
10352 		debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
10353 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
10354 
10355 		CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in "
10356 			" state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
10357 			i, idma->idma_qid[i], idma->idma_state[i],
10358 			idma->idma_stalled[i]/hz,
10359 			debug0, debug11);
10360 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
10361 	}
10362 }
10363 
10364 /**
10365  *     t4_set_vf_mac - Set MAC address for the specified VF
10366  *     @adapter: The adapter
10367  *     @pf: the PF used to instantiate the VFs
10368  *     @vf: one of the VFs instantiated by the specified PF
10369  *     @naddr: the number of MAC addresses
10370  *     @addr: the MAC address(es) to be set to the specified VF
10371  */
10372 int t4_set_vf_mac(struct adapter *adapter, unsigned int pf, unsigned int vf,
10373 		  unsigned int naddr, u8 *addr)
10374 {
10375 	struct fw_acl_mac_cmd cmd;
10376 
10377 	memset(&cmd, 0, sizeof(cmd));
10378 	cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_ACL_MAC_CMD) |
10379 				    F_FW_CMD_REQUEST |
10380 				    F_FW_CMD_WRITE |
10381 				    V_FW_ACL_MAC_CMD_PFN(pf) |
10382 				    V_FW_ACL_MAC_CMD_VFN(vf));
10383 
10384 	/* Note: Do not enable the ACL */
10385 	cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
10386 	cmd.nmac = naddr;
10387 
10388 	switch (pf) {
10389 	case 3:
10390 		memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
10391 		break;
10392 	case 2:
10393 		memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
10394 		break;
10395 	case 1:
10396 		memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
10397 		break;
10398 	case 0:
10399 		memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
10400 		break;
10401 	}
10402 
10403 	return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
10404 }
10405 
10406 /**
10407  *	t4_read_pace_tbl - read the pace table
10408  *	@adap: the adapter
10409  *	@pace_vals: holds the returned values
10410  *
10411  *	Returns the values of TP's pace table in microseconds.
10412  */
10413 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
10414 {
10415 	unsigned int i, v;
10416 
10417 	for (i = 0; i < NTX_SCHED; i++) {
10418 		t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
10419 		v = t4_read_reg(adap, A_TP_PACE_TABLE);
10420 		pace_vals[i] = dack_ticks_to_usec(adap, v);
10421 	}
10422 }
10423 
10424 /**
10425  *	t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
10426  *	@adap: the adapter
10427  *	@sched: the scheduler index
10428  *	@kbps: the byte rate in Kbps
10429  *	@ipg: the interpacket delay in tenths of nanoseconds
10430  *
10431  *	Return the current configuration of a HW Tx scheduler.
10432  */
10433 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
10434 		     unsigned int *ipg, bool sleep_ok)
10435 {
10436 	unsigned int v, addr, bpt, cpt;
10437 
10438 	if (kbps) {
10439 		addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
10440 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10441 		if (sched & 1)
10442 			v >>= 16;
10443 		bpt = (v >> 8) & 0xff;
10444 		cpt = v & 0xff;
10445 		if (!cpt)
10446 			*kbps = 0;	/* scheduler disabled */
10447 		else {
10448 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
10449 			*kbps = (v * bpt) / 125;
10450 		}
10451 	}
10452 	if (ipg) {
10453 		addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
10454 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10455 		if (sched & 1)
10456 			v >>= 16;
10457 		v &= 0xffff;
10458 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
10459 	}
10460 }
10461 
10462 /**
10463  *	t4_load_cfg - download config file
10464  *	@adap: the adapter
10465  *	@cfg_data: the cfg text file to write
10466  *	@size: text file size
10467  *
10468  *	Write the supplied config text file to the card's serial flash.
10469  */
10470 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10471 {
10472 	int ret, i, n, cfg_addr;
10473 	unsigned int addr;
10474 	unsigned int flash_cfg_start_sec;
10475 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10476 
10477 	cfg_addr = t4_flash_cfg_addr(adap);
10478 	if (cfg_addr < 0)
10479 		return cfg_addr;
10480 
10481 	addr = cfg_addr;
10482 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10483 
10484 	if (size > FLASH_CFG_MAX_SIZE) {
10485 		CH_ERR(adap, "cfg file too large, max is %u bytes\n",
10486 		       FLASH_CFG_MAX_SIZE);
10487 		return -EFBIG;
10488 	}
10489 
10490 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
10491 			 sf_sec_size);
10492 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10493 				     flash_cfg_start_sec + i - 1);
10494 	/*
10495 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10496 	 * with the on-adapter Firmware Configuration File.
10497 	 */
10498 	if (ret || size == 0)
10499 		goto out;
10500 
10501 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10502 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
10503 		if ( (size - i) <  SF_PAGE_SIZE)
10504 			n = size - i;
10505 		else
10506 			n = SF_PAGE_SIZE;
10507 		ret = t4_write_flash(adap, addr, n, cfg_data, 1);
10508 		if (ret)
10509 			goto out;
10510 
10511 		addr += SF_PAGE_SIZE;
10512 		cfg_data += SF_PAGE_SIZE;
10513 	}
10514 
10515 out:
10516 	if (ret)
10517 		CH_ERR(adap, "config file %s failed %d\n",
10518 		       (size == 0 ? "clear" : "download"), ret);
10519 	return ret;
10520 }
10521 
10522 /**
10523  *	t5_fw_init_extern_mem - initialize the external memory
10524  *	@adap: the adapter
10525  *
10526  *	Initializes the external memory on T5.
10527  */
10528 int t5_fw_init_extern_mem(struct adapter *adap)
10529 {
10530 	u32 params[1], val[1];
10531 	int ret;
10532 
10533 	if (!is_t5(adap))
10534 		return 0;
10535 
10536 	val[0] = 0xff; /* Initialize all MCs */
10537 	params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
10538 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT));
10539 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val,
10540 			FW_CMD_MAX_TIMEOUT);
10541 
10542 	return ret;
10543 }
10544 
10545 /* BIOS boot headers */
10546 typedef struct pci_expansion_rom_header {
10547 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
10548 	u8	reserved[22]; /* Reserved per processor Architecture data */
10549 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
10550 } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
10551 
10552 /* Legacy PCI Expansion ROM Header */
10553 typedef struct legacy_pci_expansion_rom_header {
10554 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
10555 	u8	size512; /* Current Image Size in units of 512 bytes */
10556 	u8	initentry_point[4];
10557 	u8	cksum; /* Checksum computed on the entire Image */
10558 	u8	reserved[16]; /* Reserved */
10559 	u8	pcir_offset[2]; /* Offset to PCI Data Struture */
10560 } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
10561 
10562 /* EFI PCI Expansion ROM Header */
10563 typedef struct efi_pci_expansion_rom_header {
10564 	u8	signature[2]; // ROM signature. The value 0xaa55
10565 	u8	initialization_size[2]; /* Units 512. Includes this header */
10566 	u8	efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
10567 	u8	efi_subsystem[2]; /* Subsystem value for EFI image header */
10568 	u8	efi_machine_type[2]; /* Machine type from EFI image header */
10569 	u8	compression_type[2]; /* Compression type. */
10570 		/*
10571 		 * Compression type definition
10572 		 * 0x0: uncompressed
10573 		 * 0x1: Compressed
10574 		 * 0x2-0xFFFF: Reserved
10575 		 */
10576 	u8	reserved[8]; /* Reserved */
10577 	u8	efi_image_header_offset[2]; /* Offset to EFI Image */
10578 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
10579 } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
10580 
10581 /* PCI Data Structure Format */
10582 typedef struct pcir_data_structure { /* PCI Data Structure */
10583 	u8	signature[4]; /* Signature. The string "PCIR" */
10584 	u8	vendor_id[2]; /* Vendor Identification */
10585 	u8	device_id[2]; /* Device Identification */
10586 	u8	vital_product[2]; /* Pointer to Vital Product Data */
10587 	u8	length[2]; /* PCIR Data Structure Length */
10588 	u8	revision; /* PCIR Data Structure Revision */
10589 	u8	class_code[3]; /* Class Code */
10590 	u8	image_length[2]; /* Image Length. Multiple of 512B */
10591 	u8	code_revision[2]; /* Revision Level of Code/Data */
10592 	u8	code_type; /* Code Type. */
10593 		/*
10594 		 * PCI Expansion ROM Code Types
10595 		 * 0x00: Intel IA-32, PC-AT compatible. Legacy
10596 		 * 0x01: Open Firmware standard for PCI. FCODE
10597 		 * 0x02: Hewlett-Packard PA RISC. HP reserved
10598 		 * 0x03: EFI Image. EFI
10599 		 * 0x04-0xFF: Reserved.
10600 		 */
10601 	u8	indicator; /* Indicator. Identifies the last image in the ROM */
10602 	u8	reserved[2]; /* Reserved */
10603 } pcir_data_t; /* PCI__DATA_STRUCTURE */
10604 
10605 /* BOOT constants */
10606 enum {
10607 	BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
10608 	BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
10609 	BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
10610 	BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
10611 	BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
10612 	VENDOR_ID = 0x1425, /* Vendor ID */
10613 	PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
10614 };
10615 
10616 /*
10617  *	modify_device_id - Modifies the device ID of the Boot BIOS image
10618  *	@adatper: the device ID to write.
10619  *	@boot_data: the boot image to modify.
10620  *
10621  *	Write the supplied device ID to the boot BIOS image.
10622  */
10623 static void modify_device_id(int device_id, u8 *boot_data)
10624 {
10625 	legacy_pci_exp_rom_header_t *header;
10626 	pcir_data_t *pcir_header;
10627 	u32 cur_header = 0;
10628 
10629 	/*
10630 	 * Loop through all chained images and change the device ID's
10631 	 */
10632 	while (1) {
10633 		header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
10634 		pcir_header = (pcir_data_t *) &boot_data[cur_header +
10635 			      le16_to_cpu(*(u16*)header->pcir_offset)];
10636 
10637 		/*
10638 		 * Only modify the Device ID if code type is Legacy or HP.
10639 		 * 0x00: Okay to modify
10640 		 * 0x01: FCODE. Do not be modify
10641 		 * 0x03: Okay to modify
10642 		 * 0x04-0xFF: Do not modify
10643 		 */
10644 		if (pcir_header->code_type == 0x00) {
10645 			u8 csum = 0;
10646 			int i;
10647 
10648 			/*
10649 			 * Modify Device ID to match current adatper
10650 			 */
10651 			*(u16*) pcir_header->device_id = device_id;
10652 
10653 			/*
10654 			 * Set checksum temporarily to 0.
10655 			 * We will recalculate it later.
10656 			 */
10657 			header->cksum = 0x0;
10658 
10659 			/*
10660 			 * Calculate and update checksum
10661 			 */
10662 			for (i = 0; i < (header->size512 * 512); i++)
10663 				csum += (u8)boot_data[cur_header + i];
10664 
10665 			/*
10666 			 * Invert summed value to create the checksum
10667 			 * Writing new checksum value directly to the boot data
10668 			 */
10669 			boot_data[cur_header + 7] = -csum;
10670 
10671 		} else if (pcir_header->code_type == 0x03) {
10672 
10673 			/*
10674 			 * Modify Device ID to match current adatper
10675 			 */
10676 			*(u16*) pcir_header->device_id = device_id;
10677 
10678 		}
10679 
10680 
10681 		/*
10682 		 * Check indicator element to identify if this is the last
10683 		 * image in the ROM.
10684 		 */
10685 		if (pcir_header->indicator & 0x80)
10686 			break;
10687 
10688 		/*
10689 		 * Move header pointer up to the next image in the ROM.
10690 		 */
10691 		cur_header += header->size512 * 512;
10692 	}
10693 }
10694 
10695 /*
10696  *	t4_load_boot - download boot flash
10697  *	@adapter: the adapter
10698  *	@boot_data: the boot image to write
10699  *	@boot_addr: offset in flash to write boot_data
10700  *	@size: image size
10701  *
10702  *	Write the supplied boot image to the card's serial flash.
10703  *	The boot image has the following sections: a 28-byte header and the
10704  *	boot image.
10705  */
10706 int t4_load_boot(struct adapter *adap, u8 *boot_data,
10707 		 unsigned int boot_addr, unsigned int size)
10708 {
10709 	pci_exp_rom_header_t *header;
10710 	int pcir_offset ;
10711 	pcir_data_t *pcir_header;
10712 	int ret, addr;
10713 	uint16_t device_id;
10714 	unsigned int i;
10715 	unsigned int boot_sector = (boot_addr * 1024 );
10716 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10717 
10718 	/*
10719 	 * Make sure the boot image does not encroach on the firmware region
10720 	 */
10721 	if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
10722 		CH_ERR(adap, "boot image encroaching on firmware region\n");
10723 		return -EFBIG;
10724 	}
10725 
10726 	/*
10727 	 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
10728 	 * and Boot configuration data sections. These 3 boot sections span
10729 	 * sectors 0 to 7 in flash and live right before the FW image location.
10730 	 */
10731 	i = DIV_ROUND_UP(size ? size : FLASH_FW_START,
10732 			sf_sec_size);
10733 	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
10734 				     (boot_sector >> 16) + i - 1);
10735 
10736 	/*
10737 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10738 	 * with the on-adapter option ROM file
10739 	 */
10740 	if (ret || (size == 0))
10741 		goto out;
10742 
10743 	/* Get boot header */
10744 	header = (pci_exp_rom_header_t *)boot_data;
10745 	pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
10746 	/* PCIR Data Structure */
10747 	pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
10748 
10749 	/*
10750 	 * Perform some primitive sanity testing to avoid accidentally
10751 	 * writing garbage over the boot sectors.  We ought to check for
10752 	 * more but it's not worth it for now ...
10753 	 */
10754 	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
10755 		CH_ERR(adap, "boot image too small/large\n");
10756 		return -EFBIG;
10757 	}
10758 
10759 #ifndef CHELSIO_T4_DIAGS
10760 	/*
10761 	 * Check BOOT ROM header signature
10762 	 */
10763 	if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
10764 		CH_ERR(adap, "Boot image missing signature\n");
10765 		return -EINVAL;
10766 	}
10767 
10768 	/*
10769 	 * Check PCI header signature
10770 	 */
10771 	if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
10772 		CH_ERR(adap, "PCI header missing signature\n");
10773 		return -EINVAL;
10774 	}
10775 
10776 	/*
10777 	 * Check Vendor ID matches Chelsio ID
10778 	 */
10779 	if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
10780 		CH_ERR(adap, "Vendor ID missing signature\n");
10781 		return -EINVAL;
10782 	}
10783 #endif
10784 
10785 	/*
10786 	 * Retrieve adapter's device ID
10787 	 */
10788 	t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
10789 	/* Want to deal with PF 0 so I strip off PF 4 indicator */
10790 	device_id = device_id & 0xf0ff;
10791 
10792 	/*
10793 	 * Check PCIE Device ID
10794 	 */
10795 	if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
10796 		/*
10797 		 * Change the device ID in the Boot BIOS image to match
10798 		 * the Device ID of the current adapter.
10799 		 */
10800 		modify_device_id(device_id, boot_data);
10801 	}
10802 
10803 	/*
10804 	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
10805 	 * we finish copying the rest of the boot image. This will ensure
10806 	 * that the BIOS boot header will only be written if the boot image
10807 	 * was written in full.
10808 	 */
10809 	addr = boot_sector;
10810 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
10811 		addr += SF_PAGE_SIZE;
10812 		boot_data += SF_PAGE_SIZE;
10813 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
10814 		if (ret)
10815 			goto out;
10816 	}
10817 
10818 	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
10819 			     (const u8 *)header, 0);
10820 
10821 out:
10822 	if (ret)
10823 		CH_ERR(adap, "boot image download failed, error %d\n", ret);
10824 	return ret;
10825 }
10826 
10827 /*
10828  *	t4_flash_bootcfg_addr - return the address of the flash optionrom configuration
10829  *	@adapter: the adapter
10830  *
10831  *	Return the address within the flash where the OptionROM Configuration
10832  *	is stored, or an error if the device FLASH is too small to contain
10833  *	a OptionROM Configuration.
10834  */
10835 static int t4_flash_bootcfg_addr(struct adapter *adapter)
10836 {
10837 	/*
10838 	 * If the device FLASH isn't large enough to hold a Firmware
10839 	 * Configuration File, return an error.
10840 	 */
10841 	if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
10842 		return -ENOSPC;
10843 
10844 	return FLASH_BOOTCFG_START;
10845 }
10846 
10847 int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size)
10848 {
10849 	int ret, i, n, cfg_addr;
10850 	unsigned int addr;
10851 	unsigned int flash_cfg_start_sec;
10852 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10853 
10854 	cfg_addr = t4_flash_bootcfg_addr(adap);
10855 	if (cfg_addr < 0)
10856 		return cfg_addr;
10857 
10858 	addr = cfg_addr;
10859 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10860 
10861 	if (size > FLASH_BOOTCFG_MAX_SIZE) {
10862 		CH_ERR(adap, "bootcfg file too large, max is %u bytes\n",
10863 			FLASH_BOOTCFG_MAX_SIZE);
10864 		return -EFBIG;
10865 	}
10866 
10867 	i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */
10868 			 sf_sec_size);
10869 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10870 					flash_cfg_start_sec + i - 1);
10871 
10872 	/*
10873 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10874 	 * with the on-adapter OptionROM Configuration File.
10875 	 */
10876 	if (ret || size == 0)
10877 		goto out;
10878 
10879 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10880 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
10881 		if ( (size - i) <  SF_PAGE_SIZE)
10882 			n = size - i;
10883 		else
10884 			n = SF_PAGE_SIZE;
10885 		ret = t4_write_flash(adap, addr, n, cfg_data, 0);
10886 		if (ret)
10887 			goto out;
10888 
10889 		addr += SF_PAGE_SIZE;
10890 		cfg_data += SF_PAGE_SIZE;
10891 	}
10892 
10893 out:
10894 	if (ret)
10895 		CH_ERR(adap, "boot config data %s failed %d\n",
10896 				(size == 0 ? "clear" : "download"), ret);
10897 	return ret;
10898 }
10899 
10900 /**
10901  *	t4_set_filter_cfg - set up filter mode/mask and ingress config.
10902  *	@adap: the adapter
10903  *	@mode: a bitmap selecting which optional filter components to enable
10904  *	@mask: a bitmap selecting which components to enable in filter mask
10905  *	@vnic_mode: the ingress config/vnic mode setting
10906  *
10907  *	Sets the filter mode and mask by selecting the optional components to
10908  *	enable in filter tuples.  Returns 0 on success and a negative error if
10909  *	the requested mode needs more bits than are available for optional
10910  *	components.  The filter mask must be a subset of the filter mode.
10911  */
10912 int t4_set_filter_cfg(struct adapter *adap, int mode, int mask, int vnic_mode)
10913 {
10914 	static const uint8_t width[] = {1, 3, 17, 17, 8, 8, 16, 9, 3, 1};
10915 	int i, nbits, rc;
10916 	uint32_t param, val;
10917 	uint16_t fmode, fmask;
10918 	const int maxbits = adap->chip_params->filter_opt_len;
10919 
10920 	if (mode != -1 || mask != -1) {
10921 		if (mode != -1) {
10922 			fmode = mode;
10923 			nbits = 0;
10924 			for (i = S_FCOE; i <= S_FRAGMENTATION; i++) {
10925 				if (fmode & (1 << i))
10926 					nbits += width[i];
10927 			}
10928 			if (nbits > maxbits) {
10929 				CH_ERR(adap, "optional fields in the filter "
10930 				    "mode (0x%x) add up to %d bits "
10931 				    "(must be <= %db).  Remove some fields and "
10932 				    "try again.\n", fmode, nbits, maxbits);
10933 				return -E2BIG;
10934 			}
10935 
10936 			/*
10937 			 * Hardware wants the bits to be maxed out.  Keep
10938 			 * setting them until there's no room for more.
10939 			 */
10940 			for (i = S_FCOE; i <= S_FRAGMENTATION; i++) {
10941 				if (fmode & (1 << i))
10942 					continue;
10943 				if (nbits + width[i] <= maxbits) {
10944 					fmode |= 1 << i;
10945 					nbits += width[i];
10946 					if (nbits == maxbits)
10947 						break;
10948 				}
10949 			}
10950 
10951 			fmask = fmode & adap->params.tp.filter_mask;
10952 			if (fmask != adap->params.tp.filter_mask) {
10953 				CH_WARN(adap,
10954 				    "filter mask will be changed from 0x%x to "
10955 				    "0x%x to comply with the filter mode (0x%x).\n",
10956 				    adap->params.tp.filter_mask, fmask, fmode);
10957 			}
10958 		} else {
10959 			fmode = adap->params.tp.filter_mode;
10960 			fmask = mask;
10961 			if ((fmode | fmask) != fmode) {
10962 				CH_ERR(adap,
10963 				    "filter mask (0x%x) must be a subset of "
10964 				    "the filter mode (0x%x).\n", fmask, fmode);
10965 				return -EINVAL;
10966 			}
10967 		}
10968 
10969 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
10970 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) |
10971 		    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_MODE_MASK);
10972 		val = V_FW_PARAMS_PARAM_FILTER_MODE(fmode) |
10973 		    V_FW_PARAMS_PARAM_FILTER_MASK(fmask);
10974 		rc = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param,
10975 		    &val);
10976 		if (rc < 0)
10977 			return rc;
10978 	}
10979 
10980 	if (vnic_mode != -1) {
10981 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
10982 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) |
10983 		    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_VNIC_MODE);
10984 		val = vnic_mode;
10985 		rc = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param,
10986 		    &val);
10987 		if (rc < 0)
10988 			return rc;
10989 	}
10990 
10991 	/* Refresh. */
10992 	read_filter_mode_and_ingress_config(adap);
10993 
10994 	return 0;
10995 }
10996 
10997 /**
10998  *	t4_clr_port_stats - clear port statistics
10999  *	@adap: the adapter
11000  *	@idx: the port index
11001  *
11002  *	Clear HW statistics for the given port.
11003  */
11004 void t4_clr_port_stats(struct adapter *adap, int idx)
11005 {
11006 	unsigned int i;
11007 	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
11008 	u32 port_base_addr;
11009 
11010 	if (is_t4(adap))
11011 		port_base_addr = PORT_BASE(idx);
11012 	else
11013 		port_base_addr = T5_PORT_BASE(idx);
11014 
11015 	for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
11016 			i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
11017 		t4_write_reg(adap, port_base_addr + i, 0);
11018 	for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
11019 			i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
11020 		t4_write_reg(adap, port_base_addr + i, 0);
11021 	for (i = 0; i < 4; i++)
11022 		if (bgmap & (1 << i)) {
11023 			t4_write_reg(adap,
11024 			A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
11025 			t4_write_reg(adap,
11026 			A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
11027 		}
11028 }
11029 
11030 /**
11031  *	t4_i2c_io - read/write I2C data from adapter
11032  *	@adap: the adapter
11033  *	@port: Port number if per-port device; <0 if not
11034  *	@devid: per-port device ID or absolute device ID
11035  *	@offset: byte offset into device I2C space
11036  *	@len: byte length of I2C space data
11037  *	@buf: buffer in which to return I2C data for read
11038  *	      buffer which holds the I2C data for write
11039  *	@write: if true, do a write; else do a read
11040  *	Reads/Writes the I2C data from/to the indicated device and location.
11041  */
11042 int t4_i2c_io(struct adapter *adap, unsigned int mbox,
11043 	      int port, unsigned int devid,
11044 	      unsigned int offset, unsigned int len,
11045 	      u8 *buf, bool write)
11046 {
11047 	struct fw_ldst_cmd ldst_cmd, ldst_rpl;
11048 	unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data);
11049 	int ret = 0;
11050 
11051 	if (len > I2C_PAGE_SIZE)
11052 		return -EINVAL;
11053 
11054 	/* Dont allow reads that spans multiple pages */
11055 	if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE)
11056 		return -EINVAL;
11057 
11058 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
11059 	ldst_cmd.op_to_addrspace =
11060 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
11061 			    F_FW_CMD_REQUEST |
11062 			    (write ? F_FW_CMD_WRITE : F_FW_CMD_READ) |
11063 			    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C));
11064 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
11065 	ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port);
11066 	ldst_cmd.u.i2c.did = devid;
11067 
11068 	while (len > 0) {
11069 		unsigned int i2c_len = (len < i2c_max) ? len : i2c_max;
11070 
11071 		ldst_cmd.u.i2c.boffset = offset;
11072 		ldst_cmd.u.i2c.blen = i2c_len;
11073 
11074 		if (write)
11075 			memcpy(ldst_cmd.u.i2c.data, buf, i2c_len);
11076 
11077 		ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd),
11078 				 write ? NULL : &ldst_rpl);
11079 		if (ret)
11080 			break;
11081 
11082 		if (!write)
11083 			memcpy(buf, ldst_rpl.u.i2c.data, i2c_len);
11084 		offset += i2c_len;
11085 		buf += i2c_len;
11086 		len -= i2c_len;
11087 	}
11088 
11089 	return ret;
11090 }
11091 
11092 int t4_i2c_rd(struct adapter *adap, unsigned int mbox,
11093 	      int port, unsigned int devid,
11094 	      unsigned int offset, unsigned int len,
11095 	      u8 *buf)
11096 {
11097 	return t4_i2c_io(adap, mbox, port, devid, offset, len, buf, false);
11098 }
11099 
11100 int t4_i2c_wr(struct adapter *adap, unsigned int mbox,
11101 	      int port, unsigned int devid,
11102 	      unsigned int offset, unsigned int len,
11103 	      u8 *buf)
11104 {
11105 	return t4_i2c_io(adap, mbox, port, devid, offset, len, buf, true);
11106 }
11107 
11108 /**
11109  * 	t4_sge_ctxt_rd - read an SGE context through FW
11110  * 	@adap: the adapter
11111  * 	@mbox: mailbox to use for the FW command
11112  * 	@cid: the context id
11113  * 	@ctype: the context type
11114  * 	@data: where to store the context data
11115  *
11116  * 	Issues a FW command through the given mailbox to read an SGE context.
11117  */
11118 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
11119 		   enum ctxt_type ctype, u32 *data)
11120 {
11121 	int ret;
11122 	struct fw_ldst_cmd c;
11123 
11124 	if (ctype == CTXT_EGRESS)
11125 		ret = FW_LDST_ADDRSPC_SGE_EGRC;
11126 	else if (ctype == CTXT_INGRESS)
11127 		ret = FW_LDST_ADDRSPC_SGE_INGC;
11128 	else if (ctype == CTXT_FLM)
11129 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
11130 	else
11131 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
11132 
11133 	memset(&c, 0, sizeof(c));
11134 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
11135 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
11136 					V_FW_LDST_CMD_ADDRSPACE(ret));
11137 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
11138 	c.u.idctxt.physid = cpu_to_be32(cid);
11139 
11140 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
11141 	if (ret == 0) {
11142 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
11143 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
11144 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
11145 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
11146 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
11147 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
11148 	}
11149 	return ret;
11150 }
11151 
11152 /**
11153  * 	t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
11154  * 	@adap: the adapter
11155  * 	@cid: the context id
11156  * 	@ctype: the context type
11157  * 	@data: where to store the context data
11158  *
11159  * 	Reads an SGE context directly, bypassing FW.  This is only for
11160  * 	debugging when FW is unavailable.
11161  */
11162 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
11163 		      u32 *data)
11164 {
11165 	int i, ret;
11166 
11167 	t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
11168 	ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
11169 	if (!ret)
11170 		for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
11171 			*data++ = t4_read_reg(adap, i);
11172 	return ret;
11173 }
11174 
11175 int t4_sched_config(struct adapter *adapter, int type, int minmaxen,
11176     int sleep_ok)
11177 {
11178 	struct fw_sched_cmd cmd;
11179 
11180 	memset(&cmd, 0, sizeof(cmd));
11181 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11182 				      F_FW_CMD_REQUEST |
11183 				      F_FW_CMD_WRITE);
11184 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11185 
11186 	cmd.u.config.sc = FW_SCHED_SC_CONFIG;
11187 	cmd.u.config.type = type;
11188 	cmd.u.config.minmaxen = minmaxen;
11189 
11190 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11191 			       NULL, sleep_ok);
11192 }
11193 
11194 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
11195 		    int rateunit, int ratemode, int channel, int cl,
11196 		    int minrate, int maxrate, int weight, int pktsize,
11197 		    int burstsize, int sleep_ok)
11198 {
11199 	struct fw_sched_cmd cmd;
11200 
11201 	memset(&cmd, 0, sizeof(cmd));
11202 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11203 				      F_FW_CMD_REQUEST |
11204 				      F_FW_CMD_WRITE);
11205 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11206 
11207 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
11208 	cmd.u.params.type = type;
11209 	cmd.u.params.level = level;
11210 	cmd.u.params.mode = mode;
11211 	cmd.u.params.ch = channel;
11212 	cmd.u.params.cl = cl;
11213 	cmd.u.params.unit = rateunit;
11214 	cmd.u.params.rate = ratemode;
11215 	cmd.u.params.min = cpu_to_be32(minrate);
11216 	cmd.u.params.max = cpu_to_be32(maxrate);
11217 	cmd.u.params.weight = cpu_to_be16(weight);
11218 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
11219 	cmd.u.params.burstsize = cpu_to_be16(burstsize);
11220 
11221 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11222 			       NULL, sleep_ok);
11223 }
11224 
11225 int t4_sched_params_ch_rl(struct adapter *adapter, int channel, int ratemode,
11226     unsigned int maxrate, int sleep_ok)
11227 {
11228 	struct fw_sched_cmd cmd;
11229 
11230 	memset(&cmd, 0, sizeof(cmd));
11231 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11232 				      F_FW_CMD_REQUEST |
11233 				      F_FW_CMD_WRITE);
11234 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11235 
11236 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
11237 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
11238 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CH_RL;
11239 	cmd.u.params.ch = channel;
11240 	cmd.u.params.rate = ratemode;		/* REL or ABS */
11241 	cmd.u.params.max = cpu_to_be32(maxrate);/*  %  or kbps */
11242 
11243 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11244 			       NULL, sleep_ok);
11245 }
11246 
11247 int t4_sched_params_cl_wrr(struct adapter *adapter, int channel, int cl,
11248     int weight, int sleep_ok)
11249 {
11250 	struct fw_sched_cmd cmd;
11251 
11252 	if (weight < 0 || weight > 100)
11253 		return -EINVAL;
11254 
11255 	memset(&cmd, 0, sizeof(cmd));
11256 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11257 				      F_FW_CMD_REQUEST |
11258 				      F_FW_CMD_WRITE);
11259 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11260 
11261 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
11262 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
11263 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_WRR;
11264 	cmd.u.params.ch = channel;
11265 	cmd.u.params.cl = cl;
11266 	cmd.u.params.weight = cpu_to_be16(weight);
11267 
11268 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11269 			       NULL, sleep_ok);
11270 }
11271 
11272 int t4_sched_params_cl_rl_kbps(struct adapter *adapter, int channel, int cl,
11273     int mode, unsigned int maxrate, int pktsize, int sleep_ok)
11274 {
11275 	struct fw_sched_cmd cmd;
11276 
11277 	memset(&cmd, 0, sizeof(cmd));
11278 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11279 				      F_FW_CMD_REQUEST |
11280 				      F_FW_CMD_WRITE);
11281 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11282 
11283 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
11284 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
11285 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_RL;
11286 	cmd.u.params.mode = mode;
11287 	cmd.u.params.ch = channel;
11288 	cmd.u.params.cl = cl;
11289 	cmd.u.params.unit = FW_SCHED_PARAMS_UNIT_BITRATE;
11290 	cmd.u.params.rate = FW_SCHED_PARAMS_RATE_ABS;
11291 	cmd.u.params.max = cpu_to_be32(maxrate);
11292 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
11293 
11294 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11295 			       NULL, sleep_ok);
11296 }
11297 
11298 /*
11299  *	t4_config_watchdog - configure (enable/disable) a watchdog timer
11300  *	@adapter: the adapter
11301  * 	@mbox: mailbox to use for the FW command
11302  * 	@pf: the PF owning the queue
11303  * 	@vf: the VF owning the queue
11304  *	@timeout: watchdog timeout in ms
11305  *	@action: watchdog timer / action
11306  *
11307  *	There are separate watchdog timers for each possible watchdog
11308  *	action.  Configure one of the watchdog timers by setting a non-zero
11309  *	timeout.  Disable a watchdog timer by using a timeout of zero.
11310  */
11311 int t4_config_watchdog(struct adapter *adapter, unsigned int mbox,
11312 		       unsigned int pf, unsigned int vf,
11313 		       unsigned int timeout, unsigned int action)
11314 {
11315 	struct fw_watchdog_cmd wdog;
11316 	unsigned int ticks;
11317 
11318 	/*
11319 	 * The watchdog command expects a timeout in units of 10ms so we need
11320 	 * to convert it here (via rounding) and force a minimum of one 10ms
11321 	 * "tick" if the timeout is non-zero but the conversion results in 0
11322 	 * ticks.
11323 	 */
11324 	ticks = (timeout + 5)/10;
11325 	if (timeout && !ticks)
11326 		ticks = 1;
11327 
11328 	memset(&wdog, 0, sizeof wdog);
11329 	wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) |
11330 				     F_FW_CMD_REQUEST |
11331 				     F_FW_CMD_WRITE |
11332 				     V_FW_PARAMS_CMD_PFN(pf) |
11333 				     V_FW_PARAMS_CMD_VFN(vf));
11334 	wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog));
11335 	wdog.timeout = cpu_to_be32(ticks);
11336 	wdog.action = cpu_to_be32(action);
11337 
11338 	return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL);
11339 }
11340 
11341 int t4_get_devlog_level(struct adapter *adapter, unsigned int *level)
11342 {
11343 	struct fw_devlog_cmd devlog_cmd;
11344 	int ret;
11345 
11346 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
11347 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
11348 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
11349 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
11350 	ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
11351 			 sizeof(devlog_cmd), &devlog_cmd);
11352 	if (ret)
11353 		return ret;
11354 
11355 	*level = devlog_cmd.level;
11356 	return 0;
11357 }
11358 
11359 int t4_set_devlog_level(struct adapter *adapter, unsigned int level)
11360 {
11361 	struct fw_devlog_cmd devlog_cmd;
11362 
11363 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
11364 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
11365 					     F_FW_CMD_REQUEST |
11366 					     F_FW_CMD_WRITE);
11367 	devlog_cmd.level = level;
11368 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
11369 	return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
11370 			  sizeof(devlog_cmd), &devlog_cmd);
11371 }
11372 
11373 int t4_configure_add_smac(struct adapter *adap)
11374 {
11375 	unsigned int param, val;
11376 	int ret = 0;
11377 
11378 	adap->params.smac_add_support = 0;
11379 	param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
11380 		  V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_ADD_SMAC));
11381 	/* Query FW to check if FW supports adding source mac address
11382 	 * to TCAM feature or not.
11383 	 * If FW returns 1, driver can use this feature and driver need to send
11384 	 * FW_PARAMS_PARAM_DEV_ADD_SMAC write command with value 1 to
11385 	 * enable adding smac to TCAM.
11386 	 */
11387 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
11388 	if (ret)
11389 		return ret;
11390 
11391 	if (val == 1) {
11392 		ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
11393 				    &param, &val);
11394 		if (!ret)
11395 			/* Firmware allows adding explicit TCAM entries.
11396 			 * Save this internally.
11397 			 */
11398 			adap->params.smac_add_support = 1;
11399 	}
11400 
11401 	return ret;
11402 }
11403 
11404 int t4_configure_ringbb(struct adapter *adap)
11405 {
11406 	unsigned int param, val;
11407 	int ret = 0;
11408 
11409 	param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
11410 		  V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RING_BACKBONE));
11411 	/* Query FW to check if FW supports ring switch feature or not.
11412 	 * If FW returns 1, driver can use this feature and driver need to send
11413 	 * FW_PARAMS_PARAM_DEV_RING_BACKBONE write command with value 1 to
11414 	 * enable the ring backbone configuration.
11415 	 */
11416 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
11417 	if (ret < 0) {
11418 		CH_ERR(adap, "Querying FW using Ring backbone params command failed, err=%d\n",
11419 			ret);
11420 		goto out;
11421 	}
11422 
11423 	if (val != 1) {
11424 		CH_ERR(adap, "FW doesnot support ringbackbone features\n");
11425 		goto out;
11426 	}
11427 
11428 	ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
11429 	if (ret < 0) {
11430 		CH_ERR(adap, "Could not set Ringbackbone, err= %d\n",
11431 			ret);
11432 		goto out;
11433 	}
11434 
11435 out:
11436 	return ret;
11437 }
11438 
11439 /*
11440  *	t4_set_vlan_acl - Set a VLAN id for the specified VF
11441  *	@adapter: the adapter
11442  *	@mbox: mailbox to use for the FW command
11443  *	@vf: one of the VFs instantiated by the specified PF
11444  *	@vlan: The vlanid to be set
11445  *
11446  */
11447 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf,
11448 		    u16 vlan)
11449 {
11450 	struct fw_acl_vlan_cmd vlan_cmd;
11451 	unsigned int enable;
11452 
11453 	enable = (vlan ? F_FW_ACL_VLAN_CMD_EN : 0);
11454 	memset(&vlan_cmd, 0, sizeof(vlan_cmd));
11455 	vlan_cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_ACL_VLAN_CMD) |
11456 					 F_FW_CMD_REQUEST |
11457 					 F_FW_CMD_WRITE |
11458 					 F_FW_CMD_EXEC |
11459 					 V_FW_ACL_VLAN_CMD_PFN(adap->pf) |
11460 					 V_FW_ACL_VLAN_CMD_VFN(vf));
11461 	vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd));
11462 	/* Drop all packets that donot match vlan id */
11463 	vlan_cmd.dropnovlan_fm = (enable
11464 				  ? (F_FW_ACL_VLAN_CMD_DROPNOVLAN |
11465 				     F_FW_ACL_VLAN_CMD_FM)
11466 				  : 0);
11467 	if (enable != 0) {
11468 		vlan_cmd.nvlan = 1;
11469 		vlan_cmd.vlanid[0] = cpu_to_be16(vlan);
11470 	}
11471 
11472 	return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL);
11473 }
11474 
11475 /**
11476  *	t4_del_mac - Removes the exact-match filter for a MAC address
11477  *	@adap: the adapter
11478  *	@mbox: mailbox to use for the FW command
11479  *	@viid: the VI id
11480  *	@addr: the MAC address value
11481  *	@smac: if true, delete from only the smac region of MPS
11482  *
11483  *	Modifies an exact-match filter and sets it to the new MAC address if
11484  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
11485  *	latter case the address is added persistently if @persist is %true.
11486  *
11487  *	Returns a negative error number or the index of the filter with the new
11488  *	MAC value.  Note that this index may differ from @idx.
11489  */
11490 int t4_del_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
11491 	       const u8 *addr, bool smac)
11492 {
11493 	int ret;
11494 	struct fw_vi_mac_cmd c;
11495 	struct fw_vi_mac_exact *p = c.u.exact;
11496 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
11497 
11498 	memset(&c, 0, sizeof(c));
11499 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
11500 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
11501 				   V_FW_VI_MAC_CMD_VIID(viid));
11502 	c.freemacs_to_len16 = cpu_to_be32(
11503 					V_FW_CMD_LEN16(1) |
11504 					(smac ? F_FW_VI_MAC_CMD_IS_SMAC : 0));
11505 
11506 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
11507 	p->valid_to_idx = cpu_to_be16(
11508 				F_FW_VI_MAC_CMD_VALID |
11509 				V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_MAC_BASED_FREE));
11510 
11511 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
11512 	if (ret == 0) {
11513 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
11514 		if (ret < max_mac_addr)
11515 			return -ENOMEM;
11516 	}
11517 
11518 	return ret;
11519 }
11520 
11521 /**
11522  *	t4_add_mac - Adds an exact-match filter for a MAC address
11523  *	@adap: the adapter
11524  *	@mbox: mailbox to use for the FW command
11525  *	@viid: the VI id
11526  *	@idx: index of existing filter for old value of MAC address, or -1
11527  *	@addr: the new MAC address value
11528  *	@persist: whether a new MAC allocation should be persistent
11529  *	@add_smt: if true also add the address to the HW SMT
11530  *	@smac: if true, update only the smac region of MPS
11531  *
11532  *	Modifies an exact-match filter and sets it to the new MAC address if
11533  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
11534  *	latter case the address is added persistently if @persist is %true.
11535  *
11536  *	Returns a negative error number or the index of the filter with the new
11537  *	MAC value.  Note that this index may differ from @idx.
11538  */
11539 int t4_add_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
11540 	       int idx, const u8 *addr, bool persist, u8 *smt_idx, bool smac)
11541 {
11542 	int ret, mode;
11543 	struct fw_vi_mac_cmd c;
11544 	struct fw_vi_mac_exact *p = c.u.exact;
11545 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
11546 
11547 	if (idx < 0)		/* new allocation */
11548 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
11549 	mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
11550 
11551 	memset(&c, 0, sizeof(c));
11552 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
11553 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
11554 				   V_FW_VI_MAC_CMD_VIID(viid));
11555 	c.freemacs_to_len16 = cpu_to_be32(
11556 				V_FW_CMD_LEN16(1) |
11557 				(smac ? F_FW_VI_MAC_CMD_IS_SMAC : 0));
11558 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
11559 				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
11560 				      V_FW_VI_MAC_CMD_IDX(idx));
11561 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
11562 
11563 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
11564 	if (ret == 0) {
11565 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
11566 		if (ret >= max_mac_addr)
11567 			return -ENOMEM;
11568 		if (smt_idx) {
11569 			/* Does fw supports returning smt_idx? */
11570 			if (adap->params.viid_smt_extn_support)
11571 				*smt_idx = G_FW_VI_MAC_CMD_SMTID(be32_to_cpu(c.op_to_viid));
11572 			else {
11573 				/* In T4/T5, SMT contains 256 SMAC entries
11574 				 * organized in 128 rows of 2 entries each.
11575 				 * In T6, SMT contains 256 SMAC entries in
11576 				 * 256 rows.
11577 				 */
11578 				if (chip_id(adap) <= CHELSIO_T5)
11579 					*smt_idx = ((viid & M_FW_VIID_VIN) << 1);
11580 				else
11581 					*smt_idx = (viid & M_FW_VIID_VIN);
11582 			}
11583 		}
11584 	}
11585 
11586 	return ret;
11587 }
11588