xref: /freebsd/sys/dev/cxgbe/common/t4_hw.c (revision 4fdd48909c687995764d27decbd087146d3e9c00)
1 /*-
2  * Copyright (c) 2012 Chelsio Communications, Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_inet.h"
31 
32 #include <sys/param.h>
33 #include <sys/eventhandler.h>
34 
35 #include "common.h"
36 #include "t4_regs.h"
37 #include "t4_regs_values.h"
38 #include "firmware/t4fw_interface.h"
39 
40 #undef msleep
41 #define msleep(x) do { \
42 	if (cold) \
43 		DELAY((x) * 1000); \
44 	else \
45 		pause("t4hw", (x) * hz / 1000); \
46 } while (0)
47 
48 /**
49  *	t4_wait_op_done_val - wait until an operation is completed
50  *	@adapter: the adapter performing the operation
51  *	@reg: the register to check for completion
52  *	@mask: a single-bit field within @reg that indicates completion
53  *	@polarity: the value of the field when the operation is completed
54  *	@attempts: number of check iterations
55  *	@delay: delay in usecs between iterations
56  *	@valp: where to store the value of the register at completion time
57  *
58  *	Wait until an operation is completed by checking a bit in a register
59  *	up to @attempts times.  If @valp is not NULL the value of the register
60  *	at the time it indicated completion is stored there.  Returns 0 if the
61  *	operation completes and	-EAGAIN	otherwise.
62  */
63 int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
64 		        int polarity, int attempts, int delay, u32 *valp)
65 {
66 	while (1) {
67 		u32 val = t4_read_reg(adapter, reg);
68 
69 		if (!!(val & mask) == polarity) {
70 			if (valp)
71 				*valp = val;
72 			return 0;
73 		}
74 		if (--attempts == 0)
75 			return -EAGAIN;
76 		if (delay)
77 			udelay(delay);
78 	}
79 }
80 
81 /**
82  *	t4_set_reg_field - set a register field to a value
83  *	@adapter: the adapter to program
84  *	@addr: the register address
85  *	@mask: specifies the portion of the register to modify
86  *	@val: the new value for the register field
87  *
88  *	Sets a register field specified by the supplied mask to the
89  *	given value.
90  */
91 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
92 		      u32 val)
93 {
94 	u32 v = t4_read_reg(adapter, addr) & ~mask;
95 
96 	t4_write_reg(adapter, addr, v | val);
97 	(void) t4_read_reg(adapter, addr);      /* flush */
98 }
99 
100 /**
101  *	t4_read_indirect - read indirectly addressed registers
102  *	@adap: the adapter
103  *	@addr_reg: register holding the indirect address
104  *	@data_reg: register holding the value of the indirect register
105  *	@vals: where the read register values are stored
106  *	@nregs: how many indirect registers to read
107  *	@start_idx: index of first indirect register to read
108  *
109  *	Reads registers that are accessed indirectly through an address/data
110  *	register pair.
111  */
112 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
113 		      unsigned int data_reg, u32 *vals, unsigned int nregs,
114 		      unsigned int start_idx)
115 {
116 	while (nregs--) {
117 		t4_write_reg(adap, addr_reg, start_idx);
118 		*vals++ = t4_read_reg(adap, data_reg);
119 		start_idx++;
120 	}
121 }
122 
123 /**
124  *	t4_write_indirect - write indirectly addressed registers
125  *	@adap: the adapter
126  *	@addr_reg: register holding the indirect addresses
127  *	@data_reg: register holding the value for the indirect registers
128  *	@vals: values to write
129  *	@nregs: how many indirect registers to write
130  *	@start_idx: address of first indirect register to write
131  *
132  *	Writes a sequential block of registers that are accessed indirectly
133  *	through an address/data register pair.
134  */
135 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
136 		       unsigned int data_reg, const u32 *vals,
137 		       unsigned int nregs, unsigned int start_idx)
138 {
139 	while (nregs--) {
140 		t4_write_reg(adap, addr_reg, start_idx++);
141 		t4_write_reg(adap, data_reg, *vals++);
142 	}
143 }
144 
145 /*
146  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
147  * mechanism.  This guarantees that we get the real value even if we're
148  * operating within a Virtual Machine and the Hypervisor is trapping our
149  * Configuration Space accesses.
150  */
151 u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
152 {
153 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ,
154 		     F_ENABLE | F_LOCALCFG | V_FUNCTION(adap->pf) |
155 		     V_REGISTER(reg));
156 	return t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
157 }
158 
159 /*
160  *	t4_report_fw_error - report firmware error
161  *	@adap: the adapter
162  *
163  *	The adapter firmware can indicate error conditions to the host.
164  *	This routine prints out the reason for the firmware error (as
165  *	reported by the firmware).
166  */
167 static void t4_report_fw_error(struct adapter *adap)
168 {
169 	static const char *reason[] = {
170 		"Crash",			/* PCIE_FW_EVAL_CRASH */
171 		"During Device Preparation",	/* PCIE_FW_EVAL_PREP */
172 		"During Device Configuration",	/* PCIE_FW_EVAL_CONF */
173 		"During Device Initialization",	/* PCIE_FW_EVAL_INIT */
174 		"Unexpected Event",		/* PCIE_FW_EVAL_UNEXPECTEDEVENT */
175 		"Insufficient Airflow",		/* PCIE_FW_EVAL_OVERHEAT */
176 		"Device Shutdown",		/* PCIE_FW_EVAL_DEVICESHUTDOWN */
177 		"Reserved",			/* reserved */
178 	};
179 	u32 pcie_fw;
180 
181 	pcie_fw = t4_read_reg(adap, A_PCIE_FW);
182 	if (pcie_fw & F_PCIE_FW_ERR)
183 		CH_ERR(adap, "Firmware reports adapter error: %s\n",
184 		       reason[G_PCIE_FW_EVAL(pcie_fw)]);
185 }
186 
187 /*
188  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
189  */
190 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
191 			 u32 mbox_addr)
192 {
193 	for ( ; nflit; nflit--, mbox_addr += 8)
194 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
195 }
196 
197 /*
198  * Handle a FW assertion reported in a mailbox.
199  */
200 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
201 {
202 	struct fw_debug_cmd asrt;
203 
204 	get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
205 	CH_ALERT(adap, "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
206 		 asrt.u.assert.filename_0_7, ntohl(asrt.u.assert.line),
207 		 ntohl(asrt.u.assert.x), ntohl(asrt.u.assert.y));
208 }
209 
210 #define X_CIM_PF_NOACCESS 0xeeeeeeee
211 /**
212  *	t4_wr_mbox_meat - send a command to FW through the given mailbox
213  *	@adap: the adapter
214  *	@mbox: index of the mailbox to use
215  *	@cmd: the command to write
216  *	@size: command length in bytes
217  *	@rpl: where to optionally store the reply
218  *	@sleep_ok: if true we may sleep while awaiting command completion
219  *
220  *	Sends the given command to FW through the selected mailbox and waits
221  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
222  *	store the FW's reply to the command.  The command and its optional
223  *	reply are of the same length.  Some FW commands like RESET and
224  *	INITIALIZE can take a considerable amount of time to execute.
225  *	@sleep_ok determines whether we may sleep while awaiting the response.
226  *	If sleeping is allowed we use progressive backoff otherwise we spin.
227  *
228  *	The return value is 0 on success or a negative errno on failure.  A
229  *	failure can happen either because we are not able to execute the
230  *	command or FW executes it but signals an error.  In the latter case
231  *	the return value is the error code indicated by FW (negated).
232  */
233 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
234 		    void *rpl, bool sleep_ok)
235 {
236 	/*
237 	 * We delay in small increments at first in an effort to maintain
238 	 * responsiveness for simple, fast executing commands but then back
239 	 * off to larger delays to a maximum retry delay.
240 	 */
241 	static const int delay[] = {
242 		1, 1, 3, 5, 10, 10, 20, 50, 100
243 	};
244 
245 	u32 v;
246 	u64 res;
247 	int i, ms, delay_idx;
248 	const __be64 *p = cmd;
249 	u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
250 	u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
251 
252 	if ((size & 15) || size > MBOX_LEN)
253 		return -EINVAL;
254 
255 	v = G_MBOWNER(t4_read_reg(adap, ctl_reg));
256 	for (i = 0; v == X_MBOWNER_NONE && i < 3; i++)
257 		v = G_MBOWNER(t4_read_reg(adap, ctl_reg));
258 
259 	if (v != X_MBOWNER_PL)
260 		return v ? -EBUSY : -ETIMEDOUT;
261 
262 	for (i = 0; i < size; i += 8, p++)
263 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p));
264 
265 	CH_DUMP_MBOX(adap, mbox, data_reg);
266 
267 	t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
268 	t4_read_reg(adap, ctl_reg);          /* flush write */
269 
270 	delay_idx = 0;
271 	ms = delay[0];
272 
273 	for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
274 		if (sleep_ok) {
275 			ms = delay[delay_idx];  /* last element may repeat */
276 			if (delay_idx < ARRAY_SIZE(delay) - 1)
277 				delay_idx++;
278 			msleep(ms);
279 		} else
280 			mdelay(ms);
281 
282 		v = t4_read_reg(adap, ctl_reg);
283 		if (v == X_CIM_PF_NOACCESS)
284 			continue;
285 		if (G_MBOWNER(v) == X_MBOWNER_PL) {
286 			if (!(v & F_MBMSGVALID)) {
287 				t4_write_reg(adap, ctl_reg,
288 					     V_MBOWNER(X_MBOWNER_NONE));
289 				continue;
290 			}
291 
292 			CH_DUMP_MBOX(adap, mbox, data_reg);
293 
294 			res = t4_read_reg64(adap, data_reg);
295 			if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
296 				fw_asrt(adap, data_reg);
297 				res = V_FW_CMD_RETVAL(EIO);
298 			} else if (rpl)
299 				get_mbox_rpl(adap, rpl, size / 8, data_reg);
300 			t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
301 			return -G_FW_CMD_RETVAL((int)res);
302 		}
303 	}
304 
305 	/*
306 	 * We timed out waiting for a reply to our mailbox command.  Report
307 	 * the error and also check to see if the firmware reported any
308 	 * errors ...
309 	 */
310 	CH_ERR(adap, "command %#x in mailbox %d timed out\n",
311 	       *(const u8 *)cmd, mbox);
312 	if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
313 		t4_report_fw_error(adap);
314 	return -ETIMEDOUT;
315 }
316 
317 /**
318  *	t4_mc_read - read from MC through backdoor accesses
319  *	@adap: the adapter
320  *	@idx: which MC to access
321  *	@addr: address of first byte requested
322  *	@data: 64 bytes of data containing the requested address
323  *	@ecc: where to store the corresponding 64-bit ECC word
324  *
325  *	Read 64 bytes of data from MC starting at a 64-byte-aligned address
326  *	that covers the requested address @addr.  If @parity is not %NULL it
327  *	is assigned the 64-bit ECC word for the read data.
328  */
329 int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
330 {
331 	int i;
332 	u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
333 	u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
334 
335 	if (is_t4(adap)) {
336 		mc_bist_cmd_reg = A_MC_BIST_CMD;
337 		mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
338 		mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
339 		mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
340 		mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
341 	} else {
342 		mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
343 		mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
344 		mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
345 		mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA,
346 						  idx);
347 		mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN,
348 						  idx);
349 	}
350 
351 	if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
352 		return -EBUSY;
353 	t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
354 	t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
355 	t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
356 	t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
357 		     F_START_BIST | V_BIST_CMD_GAP(1));
358 	i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
359 	if (i)
360 		return i;
361 
362 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
363 
364 	for (i = 15; i >= 0; i--)
365 		*data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
366 	if (ecc)
367 		*ecc = t4_read_reg64(adap, MC_DATA(16));
368 #undef MC_DATA
369 	return 0;
370 }
371 
372 /**
373  *	t4_edc_read - read from EDC through backdoor accesses
374  *	@adap: the adapter
375  *	@idx: which EDC to access
376  *	@addr: address of first byte requested
377  *	@data: 64 bytes of data containing the requested address
378  *	@ecc: where to store the corresponding 64-bit ECC word
379  *
380  *	Read 64 bytes of data from EDC starting at a 64-byte-aligned address
381  *	that covers the requested address @addr.  If @parity is not %NULL it
382  *	is assigned the 64-bit ECC word for the read data.
383  */
384 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
385 {
386 	int i;
387 	u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
388 	u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
389 
390 	if (is_t4(adap)) {
391 		edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
392 		edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
393 		edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
394 		edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
395 						    idx);
396 		edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
397 						    idx);
398 	} else {
399 /*
400  * These macro are missing in t4_regs.h file.
401  * Added temporarily for testing.
402  */
403 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
404 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
405 		edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx);
406 		edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx);
407 		edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx);
408 		edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN,
409 						    idx);
410 		edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA,
411 						    idx);
412 #undef EDC_REG_T5
413 #undef EDC_STRIDE_T5
414 	}
415 
416 	if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
417 		return -EBUSY;
418 	t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
419 	t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
420 	t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
421 	t4_write_reg(adap, edc_bist_cmd_reg,
422 		     V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
423 	i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
424 	if (i)
425 		return i;
426 
427 #define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
428 
429 	for (i = 15; i >= 0; i--)
430 		*data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
431 	if (ecc)
432 		*ecc = t4_read_reg64(adap, EDC_DATA(16));
433 #undef EDC_DATA
434 	return 0;
435 }
436 
437 /**
438  *	t4_mem_read - read EDC 0, EDC 1 or MC into buffer
439  *	@adap: the adapter
440  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
441  *	@addr: address within indicated memory type
442  *	@len: amount of memory to read
443  *	@buf: host memory buffer
444  *
445  *	Reads an [almost] arbitrary memory region in the firmware: the
446  *	firmware memory address, length and host buffer must be aligned on
447  *	32-bit boudaries.  The memory is returned as a raw byte sequence from
448  *	the firmware's memory.  If this memory contains data structures which
449  *	contain multi-byte integers, it's the callers responsibility to
450  *	perform appropriate byte order conversions.
451  */
452 int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
453 		__be32 *buf)
454 {
455 	u32 pos, start, end, offset;
456 	int ret;
457 
458 	/*
459 	 * Argument sanity checks ...
460 	 */
461 	if ((addr & 0x3) || (len & 0x3))
462 		return -EINVAL;
463 
464 	/*
465 	 * The underlaying EDC/MC read routines read 64 bytes at a time so we
466 	 * need to round down the start and round up the end.  We'll start
467 	 * copying out of the first line at (addr - start) a word at a time.
468 	 */
469 	start = addr & ~(64-1);
470 	end = (addr + len + 64-1) & ~(64-1);
471 	offset = (addr - start)/sizeof(__be32);
472 
473 	for (pos = start; pos < end; pos += 64, offset = 0) {
474 		__be32 data[16];
475 
476 		/*
477 		 * Read the chip's memory block and bail if there's an error.
478 		 */
479 		if ((mtype == MEM_MC) || (mtype == MEM_MC1))
480 			ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
481 		else
482 			ret = t4_edc_read(adap, mtype, pos, data, NULL);
483 		if (ret)
484 			return ret;
485 
486 		/*
487 		 * Copy the data into the caller's memory buffer.
488 		 */
489 		while (offset < 16 && len > 0) {
490 			*buf++ = data[offset++];
491 			len -= sizeof(__be32);
492 		}
493 	}
494 
495 	return 0;
496 }
497 
498 /*
499  * Partial EEPROM Vital Product Data structure.  Includes only the ID and
500  * VPD-R header.
501  */
502 struct t4_vpd_hdr {
503 	u8  id_tag;
504 	u8  id_len[2];
505 	u8  id_data[ID_LEN];
506 	u8  vpdr_tag;
507 	u8  vpdr_len[2];
508 };
509 
510 /*
511  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
512  */
513 #define EEPROM_MAX_RD_POLL 40
514 #define EEPROM_MAX_WR_POLL 6
515 #define EEPROM_STAT_ADDR   0x7bfc
516 #define VPD_BASE           0x400
517 #define VPD_BASE_OLD       0
518 #define VPD_LEN            1024
519 #define VPD_INFO_FLD_HDR_SIZE	3
520 #define CHELSIO_VPD_UNIQUE_ID 0x82
521 
522 /**
523  *	t4_seeprom_read - read a serial EEPROM location
524  *	@adapter: adapter to read
525  *	@addr: EEPROM virtual address
526  *	@data: where to store the read data
527  *
528  *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
529  *	VPD capability.  Note that this function must be called with a virtual
530  *	address.
531  */
532 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
533 {
534 	u16 val;
535 	int attempts = EEPROM_MAX_RD_POLL;
536 	unsigned int base = adapter->params.pci.vpd_cap_addr;
537 
538 	if (addr >= EEPROMVSIZE || (addr & 3))
539 		return -EINVAL;
540 
541 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
542 	do {
543 		udelay(10);
544 		t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
545 	} while (!(val & PCI_VPD_ADDR_F) && --attempts);
546 
547 	if (!(val & PCI_VPD_ADDR_F)) {
548 		CH_ERR(adapter, "reading EEPROM address 0x%x failed\n", addr);
549 		return -EIO;
550 	}
551 	t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
552 	*data = le32_to_cpu(*data);
553 	return 0;
554 }
555 
556 /**
557  *	t4_seeprom_write - write a serial EEPROM location
558  *	@adapter: adapter to write
559  *	@addr: virtual EEPROM address
560  *	@data: value to write
561  *
562  *	Write a 32-bit word to a location in serial EEPROM using the card's PCI
563  *	VPD capability.  Note that this function must be called with a virtual
564  *	address.
565  */
566 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
567 {
568 	u16 val;
569 	int attempts = EEPROM_MAX_WR_POLL;
570 	unsigned int base = adapter->params.pci.vpd_cap_addr;
571 
572 	if (addr >= EEPROMVSIZE || (addr & 3))
573 		return -EINVAL;
574 
575 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
576 				 cpu_to_le32(data));
577 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
578 				 (u16)addr | PCI_VPD_ADDR_F);
579 	do {
580 		msleep(1);
581 		t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
582 	} while ((val & PCI_VPD_ADDR_F) && --attempts);
583 
584 	if (val & PCI_VPD_ADDR_F) {
585 		CH_ERR(adapter, "write to EEPROM address 0x%x failed\n", addr);
586 		return -EIO;
587 	}
588 	return 0;
589 }
590 
591 /**
592  *	t4_eeprom_ptov - translate a physical EEPROM address to virtual
593  *	@phys_addr: the physical EEPROM address
594  *	@fn: the PCI function number
595  *	@sz: size of function-specific area
596  *
597  *	Translate a physical EEPROM address to virtual.  The first 1K is
598  *	accessed through virtual addresses starting at 31K, the rest is
599  *	accessed through virtual addresses starting at 0.
600  *
601  *	The mapping is as follows:
602  *	[0..1K) -> [31K..32K)
603  *	[1K..1K+A) -> [ES-A..ES)
604  *	[1K+A..ES) -> [0..ES-A-1K)
605  *
606  *	where A = @fn * @sz, and ES = EEPROM size.
607  */
608 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
609 {
610 	fn *= sz;
611 	if (phys_addr < 1024)
612 		return phys_addr + (31 << 10);
613 	if (phys_addr < 1024 + fn)
614 		return EEPROMSIZE - fn + phys_addr - 1024;
615 	if (phys_addr < EEPROMSIZE)
616 		return phys_addr - 1024 - fn;
617 	return -EINVAL;
618 }
619 
620 /**
621  *	t4_seeprom_wp - enable/disable EEPROM write protection
622  *	@adapter: the adapter
623  *	@enable: whether to enable or disable write protection
624  *
625  *	Enables or disables write protection on the serial EEPROM.
626  */
627 int t4_seeprom_wp(struct adapter *adapter, int enable)
628 {
629 	return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
630 }
631 
632 /**
633  *	get_vpd_keyword_val - Locates an information field keyword in the VPD
634  *	@v: Pointer to buffered vpd data structure
635  *	@kw: The keyword to search for
636  *
637  *	Returns the value of the information field keyword or
638  *	-ENOENT otherwise.
639  */
640 static int get_vpd_keyword_val(const struct t4_vpd_hdr *v, const char *kw)
641 {
642          int i;
643 	 unsigned int offset , len;
644 	 const u8 *buf = &v->id_tag;
645 	 const u8 *vpdr_len = &v->vpdr_tag;
646 	 offset = sizeof(struct t4_vpd_hdr);
647 	 len =  (u16)vpdr_len[1] + ((u16)vpdr_len[2] << 8);
648 
649 	 if (len + sizeof(struct t4_vpd_hdr) > VPD_LEN) {
650 		 return -ENOENT;
651 	 }
652 
653          for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
654 		 if(memcmp(buf + i , kw , 2) == 0){
655 			 i += VPD_INFO_FLD_HDR_SIZE;
656                          return i;
657 		  }
658 
659                  i += VPD_INFO_FLD_HDR_SIZE + buf[i+2];
660          }
661 
662          return -ENOENT;
663 }
664 
665 
666 /**
667  *	get_vpd_params - read VPD parameters from VPD EEPROM
668  *	@adapter: adapter to read
669  *	@p: where to store the parameters
670  *
671  *	Reads card parameters stored in VPD EEPROM.
672  */
673 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
674 {
675 	int i, ret, addr;
676 	int ec, sn, pn, na;
677 	u8 vpd[VPD_LEN], csum;
678 	const struct t4_vpd_hdr *v;
679 
680 	/*
681 	 * Card information normally starts at VPD_BASE but early cards had
682 	 * it at 0.
683 	 */
684 	ret = t4_seeprom_read(adapter, VPD_BASE, (u32 *)(vpd));
685 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
686 
687 	for (i = 0; i < sizeof(vpd); i += 4) {
688 		ret = t4_seeprom_read(adapter, addr + i, (u32 *)(vpd + i));
689 		if (ret)
690 			return ret;
691 	}
692  	v = (const struct t4_vpd_hdr *)vpd;
693 
694 #define FIND_VPD_KW(var,name) do { \
695 	var = get_vpd_keyword_val(v , name); \
696 	if (var < 0) { \
697 		CH_ERR(adapter, "missing VPD keyword " name "\n"); \
698 		return -EINVAL; \
699 	} \
700 } while (0)
701 
702 	FIND_VPD_KW(i, "RV");
703 	for (csum = 0; i >= 0; i--)
704 		csum += vpd[i];
705 
706 	if (csum) {
707 		CH_ERR(adapter, "corrupted VPD EEPROM, actual csum %u\n", csum);
708 		return -EINVAL;
709 	}
710 	FIND_VPD_KW(ec, "EC");
711 	FIND_VPD_KW(sn, "SN");
712 	FIND_VPD_KW(pn, "PN");
713 	FIND_VPD_KW(na, "NA");
714 #undef FIND_VPD_KW
715 
716 	memcpy(p->id, v->id_data, ID_LEN);
717 	strstrip(p->id);
718 	memcpy(p->ec, vpd + ec, EC_LEN);
719 	strstrip(p->ec);
720 	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
721 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
722 	strstrip(p->sn);
723 	i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
724 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
725 	strstrip((char *)p->pn);
726 	i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
727 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
728 	strstrip((char *)p->na);
729 
730 	return 0;
731 }
732 
733 /* serial flash and firmware constants and flash config file constants */
734 enum {
735 	SF_ATTEMPTS = 10,             /* max retries for SF operations */
736 
737 	/* flash command opcodes */
738 	SF_PROG_PAGE    = 2,          /* program page */
739 	SF_WR_DISABLE   = 4,          /* disable writes */
740 	SF_RD_STATUS    = 5,          /* read status register */
741 	SF_WR_ENABLE    = 6,          /* enable writes */
742 	SF_RD_DATA_FAST = 0xb,        /* read flash */
743 	SF_RD_ID        = 0x9f,       /* read ID */
744 	SF_ERASE_SECTOR = 0xd8,       /* erase sector */
745 };
746 
747 /**
748  *	sf1_read - read data from the serial flash
749  *	@adapter: the adapter
750  *	@byte_cnt: number of bytes to read
751  *	@cont: whether another operation will be chained
752  *	@lock: whether to lock SF for PL access only
753  *	@valp: where to store the read data
754  *
755  *	Reads up to 4 bytes of data from the serial flash.  The location of
756  *	the read needs to be specified prior to calling this by issuing the
757  *	appropriate commands to the serial flash.
758  */
759 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
760 		    int lock, u32 *valp)
761 {
762 	int ret;
763 
764 	if (!byte_cnt || byte_cnt > 4)
765 		return -EINVAL;
766 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
767 		return -EBUSY;
768 	t4_write_reg(adapter, A_SF_OP,
769 		     V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
770 	ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
771 	if (!ret)
772 		*valp = t4_read_reg(adapter, A_SF_DATA);
773 	return ret;
774 }
775 
776 /**
777  *	sf1_write - write data to the serial flash
778  *	@adapter: the adapter
779  *	@byte_cnt: number of bytes to write
780  *	@cont: whether another operation will be chained
781  *	@lock: whether to lock SF for PL access only
782  *	@val: value to write
783  *
784  *	Writes up to 4 bytes of data to the serial flash.  The location of
785  *	the write needs to be specified prior to calling this by issuing the
786  *	appropriate commands to the serial flash.
787  */
788 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
789 		     int lock, u32 val)
790 {
791 	if (!byte_cnt || byte_cnt > 4)
792 		return -EINVAL;
793 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
794 		return -EBUSY;
795 	t4_write_reg(adapter, A_SF_DATA, val);
796 	t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
797 		     V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
798 	return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
799 }
800 
801 /**
802  *	flash_wait_op - wait for a flash operation to complete
803  *	@adapter: the adapter
804  *	@attempts: max number of polls of the status register
805  *	@delay: delay between polls in ms
806  *
807  *	Wait for a flash operation to complete by polling the status register.
808  */
809 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
810 {
811 	int ret;
812 	u32 status;
813 
814 	while (1) {
815 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
816 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
817 			return ret;
818 		if (!(status & 1))
819 			return 0;
820 		if (--attempts == 0)
821 			return -EAGAIN;
822 		if (delay)
823 			msleep(delay);
824 	}
825 }
826 
827 /**
828  *	t4_read_flash - read words from serial flash
829  *	@adapter: the adapter
830  *	@addr: the start address for the read
831  *	@nwords: how many 32-bit words to read
832  *	@data: where to store the read data
833  *	@byte_oriented: whether to store data as bytes or as words
834  *
835  *	Read the specified number of 32-bit words from the serial flash.
836  *	If @byte_oriented is set the read data is stored as a byte array
837  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
838  *	natural endianess.
839  */
840 int t4_read_flash(struct adapter *adapter, unsigned int addr,
841 		  unsigned int nwords, u32 *data, int byte_oriented)
842 {
843 	int ret;
844 
845 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
846 		return -EINVAL;
847 
848 	addr = swab32(addr) | SF_RD_DATA_FAST;
849 
850 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
851 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
852 		return ret;
853 
854 	for ( ; nwords; nwords--, data++) {
855 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
856 		if (nwords == 1)
857 			t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
858 		if (ret)
859 			return ret;
860 		if (byte_oriented)
861 			*data = htonl(*data);
862 	}
863 	return 0;
864 }
865 
866 /**
867  *	t4_write_flash - write up to a page of data to the serial flash
868  *	@adapter: the adapter
869  *	@addr: the start address to write
870  *	@n: length of data to write in bytes
871  *	@data: the data to write
872  *	@byte_oriented: whether to store data as bytes or as words
873  *
874  *	Writes up to a page of data (256 bytes) to the serial flash starting
875  *	at the given address.  All the data must be written to the same page.
876  *	If @byte_oriented is set the write data is stored as byte stream
877  *	(i.e. matches what on disk), otherwise in big-endian.
878  */
879 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
880 			  unsigned int n, const u8 *data, int byte_oriented)
881 {
882 	int ret;
883 	u32 buf[SF_PAGE_SIZE / 4];
884 	unsigned int i, c, left, val, offset = addr & 0xff;
885 
886 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
887 		return -EINVAL;
888 
889 	val = swab32(addr) | SF_PROG_PAGE;
890 
891 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
892 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
893 		goto unlock;
894 
895 	for (left = n; left; left -= c) {
896 		c = min(left, 4U);
897 		for (val = 0, i = 0; i < c; ++i)
898 			val = (val << 8) + *data++;
899 
900 		if (!byte_oriented)
901 			val = htonl(val);
902 
903 		ret = sf1_write(adapter, c, c != left, 1, val);
904 		if (ret)
905 			goto unlock;
906 	}
907 	ret = flash_wait_op(adapter, 8, 1);
908 	if (ret)
909 		goto unlock;
910 
911 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
912 
913 	/* Read the page to verify the write succeeded */
914 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
915 			    byte_oriented);
916 	if (ret)
917 		return ret;
918 
919 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
920 		CH_ERR(adapter, "failed to correctly write the flash page "
921 		       "at %#x\n", addr);
922 		return -EIO;
923 	}
924 	return 0;
925 
926 unlock:
927 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
928 	return ret;
929 }
930 
931 /**
932  *	t4_get_fw_version - read the firmware version
933  *	@adapter: the adapter
934  *	@vers: where to place the version
935  *
936  *	Reads the FW version from flash.
937  */
938 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
939 {
940 	return t4_read_flash(adapter,
941 			     FLASH_FW_START + offsetof(struct fw_hdr, fw_ver), 1,
942 			     vers, 0);
943 }
944 
945 /**
946  *	t4_get_tp_version - read the TP microcode version
947  *	@adapter: the adapter
948  *	@vers: where to place the version
949  *
950  *	Reads the TP microcode version from flash.
951  */
952 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
953 {
954 	return t4_read_flash(adapter, FLASH_FW_START + offsetof(struct fw_hdr,
955 							      tp_microcode_ver),
956 			     1, vers, 0);
957 }
958 
959 /**
960  *	t4_check_fw_version - check if the FW is compatible with this driver
961  *	@adapter: the adapter
962  *
963  *	Checks if an adapter's FW is compatible with the driver.  Returns 0
964  *	if there's exact match, a negative error if the version could not be
965  *	read or there's a major version mismatch, and a positive value if the
966  *	expected major version is found but there's a minor version mismatch.
967  */
968 int t4_check_fw_version(struct adapter *adapter)
969 {
970 	int ret, major, minor, micro;
971 	int exp_major, exp_minor, exp_micro;
972 
973 	ret = t4_get_fw_version(adapter, &adapter->params.fw_vers);
974 	if (!ret)
975 		ret = t4_get_tp_version(adapter, &adapter->params.tp_vers);
976 	if (ret)
977 		return ret;
978 
979 	major = G_FW_HDR_FW_VER_MAJOR(adapter->params.fw_vers);
980 	minor = G_FW_HDR_FW_VER_MINOR(adapter->params.fw_vers);
981 	micro = G_FW_HDR_FW_VER_MICRO(adapter->params.fw_vers);
982 
983 	switch (chip_id(adapter)) {
984 	case CHELSIO_T4:
985 		exp_major = T4FW_VERSION_MAJOR;
986 		exp_minor = T4FW_VERSION_MINOR;
987 		exp_micro = T4FW_VERSION_MICRO;
988 		break;
989 	case CHELSIO_T5:
990 		exp_major = T5FW_VERSION_MAJOR;
991 		exp_minor = T5FW_VERSION_MINOR;
992 		exp_micro = T5FW_VERSION_MICRO;
993 		break;
994 	default:
995 		CH_ERR(adapter, "Unsupported chip type, %x\n",
996 		    chip_id(adapter));
997 		return -EINVAL;
998 	}
999 
1000 	if (major != exp_major) {            /* major mismatch - fail */
1001 		CH_ERR(adapter, "card FW has major version %u, driver wants "
1002 		       "%u\n", major, exp_major);
1003 		return -EINVAL;
1004 	}
1005 
1006 	if (minor == exp_minor && micro == exp_micro)
1007 		return 0;                                   /* perfect match */
1008 
1009 	/* Minor/micro version mismatch.  Report it but often it's OK. */
1010 	return 1;
1011 }
1012 
1013 /**
1014  *	t4_flash_erase_sectors - erase a range of flash sectors
1015  *	@adapter: the adapter
1016  *	@start: the first sector to erase
1017  *	@end: the last sector to erase
1018  *
1019  *	Erases the sectors in the given inclusive range.
1020  */
1021 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
1022 {
1023 	int ret = 0;
1024 
1025 	while (start <= end) {
1026 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
1027 		    (ret = sf1_write(adapter, 4, 0, 1,
1028 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
1029 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
1030 			CH_ERR(adapter, "erase of flash sector %d failed, "
1031 			       "error %d\n", start, ret);
1032 			break;
1033 		}
1034 		start++;
1035 	}
1036 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
1037 	return ret;
1038 }
1039 
1040 /**
1041  *	t4_flash_cfg_addr - return the address of the flash configuration file
1042  *	@adapter: the adapter
1043  *
1044  *	Return the address within the flash where the Firmware Configuration
1045  *	File is stored, or an error if the device FLASH is too small to contain
1046  *	a Firmware Configuration File.
1047  */
1048 int t4_flash_cfg_addr(struct adapter *adapter)
1049 {
1050 	/*
1051 	 * If the device FLASH isn't large enough to hold a Firmware
1052 	 * Configuration File, return an error.
1053 	 */
1054 	if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
1055 		return -ENOSPC;
1056 
1057 	return FLASH_CFG_START;
1058 }
1059 
1060 /**
1061  *	t4_load_cfg - download config file
1062  *	@adap: the adapter
1063  *	@cfg_data: the cfg text file to write
1064  *	@size: text file size
1065  *
1066  *	Write the supplied config text file to the card's serial flash.
1067  */
1068 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
1069 {
1070 	int ret, i, n, cfg_addr;
1071 	unsigned int addr;
1072 	unsigned int flash_cfg_start_sec;
1073 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
1074 
1075 	cfg_addr = t4_flash_cfg_addr(adap);
1076 	if (cfg_addr < 0)
1077 		return cfg_addr;
1078 
1079 	addr = cfg_addr;
1080 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
1081 
1082 	if (size > FLASH_CFG_MAX_SIZE) {
1083 		CH_ERR(adap, "cfg file too large, max is %u bytes\n",
1084 		       FLASH_CFG_MAX_SIZE);
1085 		return -EFBIG;
1086 	}
1087 
1088 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
1089 			 sf_sec_size);
1090 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
1091 				     flash_cfg_start_sec + i - 1);
1092 	/*
1093 	 * If size == 0 then we're simply erasing the FLASH sectors associated
1094 	 * with the on-adapter Firmware Configuration File.
1095 	 */
1096 	if (ret || size == 0)
1097 		goto out;
1098 
1099 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
1100 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
1101 		if ( (size - i) <  SF_PAGE_SIZE)
1102 			n = size - i;
1103 		else
1104 			n = SF_PAGE_SIZE;
1105 		ret = t4_write_flash(adap, addr, n, cfg_data, 1);
1106 		if (ret)
1107 			goto out;
1108 
1109 		addr += SF_PAGE_SIZE;
1110 		cfg_data += SF_PAGE_SIZE;
1111 	}
1112 
1113 out:
1114 	if (ret)
1115 		CH_ERR(adap, "config file %s failed %d\n",
1116 		       (size == 0 ? "clear" : "download"), ret);
1117 	return ret;
1118 }
1119 
1120 
1121 /**
1122  *	t4_load_fw - download firmware
1123  *	@adap: the adapter
1124  *	@fw_data: the firmware image to write
1125  *	@size: image size
1126  *
1127  *	Write the supplied firmware image to the card's serial flash.
1128  */
1129 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
1130 {
1131 	u32 csum;
1132 	int ret, addr;
1133 	unsigned int i;
1134 	u8 first_page[SF_PAGE_SIZE];
1135 	const u32 *p = (const u32 *)fw_data;
1136 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
1137 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
1138 	unsigned int fw_start_sec;
1139 	unsigned int fw_start;
1140 	unsigned int fw_size;
1141 
1142 	if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) {
1143 		fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC;
1144 		fw_start = FLASH_FWBOOTSTRAP_START;
1145 		fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE;
1146 	} else {
1147 		fw_start_sec = FLASH_FW_START_SEC;
1148  		fw_start = FLASH_FW_START;
1149 		fw_size = FLASH_FW_MAX_SIZE;
1150 	}
1151 	if (!size) {
1152 		CH_ERR(adap, "FW image has no data\n");
1153 		return -EINVAL;
1154 	}
1155 	if (size & 511) {
1156 		CH_ERR(adap, "FW image size not multiple of 512 bytes\n");
1157 		return -EINVAL;
1158 	}
1159 	if (ntohs(hdr->len512) * 512 != size) {
1160 		CH_ERR(adap, "FW image size differs from size in FW header\n");
1161 		return -EINVAL;
1162 	}
1163 	if (size > fw_size) {
1164 		CH_ERR(adap, "FW image too large, max is %u bytes\n", fw_size);
1165 		return -EFBIG;
1166 	}
1167 	if ((is_t4(adap) && hdr->chip != FW_HDR_CHIP_T4) ||
1168 	    (is_t5(adap) && hdr->chip != FW_HDR_CHIP_T5)) {
1169 		CH_ERR(adap,
1170 		    "FW image (%d) is not suitable for this adapter (%d)\n",
1171 		    hdr->chip, chip_id(adap));
1172 		return -EINVAL;
1173 	}
1174 
1175 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
1176 		csum += ntohl(p[i]);
1177 
1178 	if (csum != 0xffffffff) {
1179 		CH_ERR(adap, "corrupted firmware image, checksum %#x\n",
1180 		       csum);
1181 		return -EINVAL;
1182 	}
1183 
1184 	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
1185 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
1186 	if (ret)
1187 		goto out;
1188 
1189 	/*
1190 	 * We write the correct version at the end so the driver can see a bad
1191 	 * version if the FW write fails.  Start by writing a copy of the
1192 	 * first page with a bad version.
1193 	 */
1194 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
1195 	((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
1196 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
1197 	if (ret)
1198 		goto out;
1199 
1200 	addr = fw_start;
1201 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
1202 		addr += SF_PAGE_SIZE;
1203 		fw_data += SF_PAGE_SIZE;
1204 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
1205 		if (ret)
1206 			goto out;
1207 	}
1208 
1209 	ret = t4_write_flash(adap,
1210 			     fw_start + offsetof(struct fw_hdr, fw_ver),
1211 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
1212 out:
1213 	if (ret)
1214 		CH_ERR(adap, "firmware download failed, error %d\n", ret);
1215 	return ret;
1216 }
1217 
1218 /* BIOS boot headers */
1219 typedef struct pci_expansion_rom_header {
1220 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
1221 	u8	reserved[22]; /* Reserved per processor Architecture data */
1222 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
1223 } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
1224 
1225 /* Legacy PCI Expansion ROM Header */
1226 typedef struct legacy_pci_expansion_rom_header {
1227 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
1228 	u8	size512; /* Current Image Size in units of 512 bytes */
1229 	u8	initentry_point[4];
1230 	u8	cksum; /* Checksum computed on the entire Image */
1231 	u8	reserved[16]; /* Reserved */
1232 	u8	pcir_offset[2]; /* Offset to PCI Data Struture */
1233 } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
1234 
1235 /* EFI PCI Expansion ROM Header */
1236 typedef struct efi_pci_expansion_rom_header {
1237 	u8	signature[2]; // ROM signature. The value 0xaa55
1238 	u8	initialization_size[2]; /* Units 512. Includes this header */
1239 	u8	efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
1240 	u8	efi_subsystem[2]; /* Subsystem value for EFI image header */
1241 	u8	efi_machine_type[2]; /* Machine type from EFI image header */
1242 	u8	compression_type[2]; /* Compression type. */
1243 		/*
1244 		 * Compression type definition
1245 		 * 0x0: uncompressed
1246 		 * 0x1: Compressed
1247 		 * 0x2-0xFFFF: Reserved
1248 		 */
1249 	u8	reserved[8]; /* Reserved */
1250 	u8	efi_image_header_offset[2]; /* Offset to EFI Image */
1251 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
1252 } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
1253 
1254 /* PCI Data Structure Format */
1255 typedef struct pcir_data_structure { /* PCI Data Structure */
1256 	u8	signature[4]; /* Signature. The string "PCIR" */
1257 	u8	vendor_id[2]; /* Vendor Identification */
1258 	u8	device_id[2]; /* Device Identification */
1259 	u8	vital_product[2]; /* Pointer to Vital Product Data */
1260 	u8	length[2]; /* PCIR Data Structure Length */
1261 	u8	revision; /* PCIR Data Structure Revision */
1262 	u8	class_code[3]; /* Class Code */
1263 	u8	image_length[2]; /* Image Length. Multiple of 512B */
1264 	u8	code_revision[2]; /* Revision Level of Code/Data */
1265 	u8	code_type; /* Code Type. */
1266 		/*
1267 		 * PCI Expansion ROM Code Types
1268 		 * 0x00: Intel IA-32, PC-AT compatible. Legacy
1269 		 * 0x01: Open Firmware standard for PCI. FCODE
1270 		 * 0x02: Hewlett-Packard PA RISC. HP reserved
1271 		 * 0x03: EFI Image. EFI
1272 		 * 0x04-0xFF: Reserved.
1273 		 */
1274 	u8	indicator; /* Indicator. Identifies the last image in the ROM */
1275 	u8	reserved[2]; /* Reserved */
1276 } pcir_data_t; /* PCI__DATA_STRUCTURE */
1277 
1278 /* BOOT constants */
1279 enum {
1280 	BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
1281 	BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
1282 	BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
1283 	BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
1284 	BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
1285 	VENDOR_ID = 0x1425, /* Vendor ID */
1286 	PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
1287 };
1288 
1289 /*
1290  *	modify_device_id - Modifies the device ID of the Boot BIOS image
1291  *	@adatper: the device ID to write.
1292  *	@boot_data: the boot image to modify.
1293  *
1294  *	Write the supplied device ID to the boot BIOS image.
1295  */
1296 static void modify_device_id(int device_id, u8 *boot_data)
1297 {
1298 	legacy_pci_exp_rom_header_t *header;
1299 	pcir_data_t *pcir_header;
1300 	u32 cur_header = 0;
1301 
1302 	/*
1303 	 * Loop through all chained images and change the device ID's
1304 	 */
1305 	while (1) {
1306 		header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
1307 		pcir_header = (pcir_data_t *) &boot_data[cur_header +
1308 		    le16_to_cpu(*(u16*)header->pcir_offset)];
1309 
1310 		/*
1311 		 * Only modify the Device ID if code type is Legacy or HP.
1312 		 * 0x00: Okay to modify
1313 		 * 0x01: FCODE. Do not be modify
1314 		 * 0x03: Okay to modify
1315 		 * 0x04-0xFF: Do not modify
1316 		 */
1317 		if (pcir_header->code_type == 0x00) {
1318 			u8 csum = 0;
1319 			int i;
1320 
1321 			/*
1322 			 * Modify Device ID to match current adatper
1323 			 */
1324 			*(u16*) pcir_header->device_id = device_id;
1325 
1326 			/*
1327 			 * Set checksum temporarily to 0.
1328 			 * We will recalculate it later.
1329 			 */
1330 			header->cksum = 0x0;
1331 
1332 			/*
1333 			 * Calculate and update checksum
1334 			 */
1335 			for (i = 0; i < (header->size512 * 512); i++)
1336 				csum += (u8)boot_data[cur_header + i];
1337 
1338 			/*
1339 			 * Invert summed value to create the checksum
1340 			 * Writing new checksum value directly to the boot data
1341 			 */
1342 			boot_data[cur_header + 7] = -csum;
1343 
1344 		} else if (pcir_header->code_type == 0x03) {
1345 
1346 			/*
1347 			 * Modify Device ID to match current adatper
1348 			 */
1349 			*(u16*) pcir_header->device_id = device_id;
1350 
1351 		}
1352 
1353 
1354 		/*
1355 		 * Check indicator element to identify if this is the last
1356 		 * image in the ROM.
1357 		 */
1358 		if (pcir_header->indicator & 0x80)
1359 			break;
1360 
1361 		/*
1362 		 * Move header pointer up to the next image in the ROM.
1363 		 */
1364 		cur_header += header->size512 * 512;
1365 	}
1366 }
1367 
1368 /*
1369  *	t4_load_boot - download boot flash
1370  *	@adapter: the adapter
1371  *	@boot_data: the boot image to write
1372  *	@boot_addr: offset in flash to write boot_data
1373  *	@size: image size
1374  *
1375  *	Write the supplied boot image to the card's serial flash.
1376  *	The boot image has the following sections: a 28-byte header and the
1377  *	boot image.
1378  */
1379 int t4_load_boot(struct adapter *adap, u8 *boot_data,
1380 		 unsigned int boot_addr, unsigned int size)
1381 {
1382 	pci_exp_rom_header_t *header;
1383 	int pcir_offset ;
1384 	pcir_data_t *pcir_header;
1385 	int ret, addr;
1386 	uint16_t device_id;
1387 	unsigned int i;
1388 	unsigned int boot_sector = boot_addr * 1024;
1389 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
1390 
1391 	/*
1392 	 * Make sure the boot image does not encroach on the firmware region
1393 	 */
1394 	if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
1395 		CH_ERR(adap, "boot image encroaching on firmware region\n");
1396 		return -EFBIG;
1397 	}
1398 
1399 	/*
1400 	 * Number of sectors spanned
1401 	 */
1402 	i = DIV_ROUND_UP(size ? size : FLASH_BOOTCFG_MAX_SIZE,
1403 			sf_sec_size);
1404 	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
1405 				     (boot_sector >> 16) + i - 1);
1406 
1407 	/*
1408 	 * If size == 0 then we're simply erasing the FLASH sectors associated
1409 	 * with the on-adapter option ROM file
1410 	 */
1411 	if (ret || (size == 0))
1412 		goto out;
1413 
1414 	/* Get boot header */
1415 	header = (pci_exp_rom_header_t *)boot_data;
1416 	pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
1417 	/* PCIR Data Structure */
1418 	pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
1419 
1420 	/*
1421 	 * Perform some primitive sanity testing to avoid accidentally
1422 	 * writing garbage over the boot sectors.  We ought to check for
1423 	 * more but it's not worth it for now ...
1424 	 */
1425 	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
1426 		CH_ERR(adap, "boot image too small/large\n");
1427 		return -EFBIG;
1428 	}
1429 
1430 	/*
1431 	 * Check BOOT ROM header signature
1432 	 */
1433 	if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
1434 		CH_ERR(adap, "Boot image missing signature\n");
1435 		return -EINVAL;
1436 	}
1437 
1438 	/*
1439 	 * Check PCI header signature
1440 	 */
1441 	if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
1442 		CH_ERR(adap, "PCI header missing signature\n");
1443 		return -EINVAL;
1444 	}
1445 
1446 	/*
1447 	 * Check Vendor ID matches Chelsio ID
1448 	 */
1449 	if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
1450 		CH_ERR(adap, "Vendor ID missing signature\n");
1451 		return -EINVAL;
1452 	}
1453 
1454 	/*
1455 	 * Retrieve adapter's device ID
1456 	 */
1457 	t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
1458 	/* Want to deal with PF 0 so I strip off PF 4 indicator */
1459 	device_id = (device_id & 0xff) | 0x4000;
1460 
1461 	/*
1462 	 * Check PCIE Device ID
1463 	 */
1464 	if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
1465 		/*
1466 		 * Change the device ID in the Boot BIOS image to match
1467 		 * the Device ID of the current adapter.
1468 		 */
1469 		modify_device_id(device_id, boot_data);
1470 	}
1471 
1472 	/*
1473 	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
1474 	 * we finish copying the rest of the boot image. This will ensure
1475 	 * that the BIOS boot header will only be written if the boot image
1476 	 * was written in full.
1477 	 */
1478 	addr = boot_sector;
1479 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
1480 		addr += SF_PAGE_SIZE;
1481 		boot_data += SF_PAGE_SIZE;
1482 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
1483 		if (ret)
1484 			goto out;
1485 	}
1486 
1487 	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE, boot_data, 0);
1488 
1489 out:
1490 	if (ret)
1491 		CH_ERR(adap, "boot image download failed, error %d\n", ret);
1492 	return ret;
1493 }
1494 
1495 /**
1496  *	t4_read_cimq_cfg - read CIM queue configuration
1497  *	@adap: the adapter
1498  *	@base: holds the queue base addresses in bytes
1499  *	@size: holds the queue sizes in bytes
1500  *	@thres: holds the queue full thresholds in bytes
1501  *
1502  *	Returns the current configuration of the CIM queues, starting with
1503  *	the IBQs, then the OBQs.
1504  */
1505 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
1506 {
1507 	unsigned int i, v;
1508 	int cim_num_obq = is_t4(adap) ? CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
1509 
1510 	for (i = 0; i < CIM_NUM_IBQ; i++) {
1511 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
1512 			     V_QUENUMSELECT(i));
1513 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
1514 		*base++ = G_CIMQBASE(v) * 256; /* value is in 256-byte units */
1515 		*size++ = G_CIMQSIZE(v) * 256; /* value is in 256-byte units */
1516 		*thres++ = G_QUEFULLTHRSH(v) * 8;   /* 8-byte unit */
1517 	}
1518 	for (i = 0; i < cim_num_obq; i++) {
1519 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
1520 			     V_QUENUMSELECT(i));
1521 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
1522 		*base++ = G_CIMQBASE(v) * 256; /* value is in 256-byte units */
1523 		*size++ = G_CIMQSIZE(v) * 256; /* value is in 256-byte units */
1524 	}
1525 }
1526 
1527 /**
1528  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
1529  *	@adap: the adapter
1530  *	@qid: the queue index
1531  *	@data: where to store the queue contents
1532  *	@n: capacity of @data in 32-bit words
1533  *
1534  *	Reads the contents of the selected CIM queue starting at address 0 up
1535  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
1536  *	error and the number of 32-bit words actually read on success.
1537  */
1538 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
1539 {
1540 	int i, err;
1541 	unsigned int addr;
1542 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
1543 
1544 	if (qid > 5 || (n & 3))
1545 		return -EINVAL;
1546 
1547 	addr = qid * nwords;
1548 	if (n > nwords)
1549 		n = nwords;
1550 
1551 	for (i = 0; i < n; i++, addr++) {
1552 		t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
1553 			     F_IBQDBGEN);
1554 		/*
1555 		 * It might take 3-10ms before the IBQ debug read access is
1556 		 * allowed.  Wait for 1 Sec with a delay of 1 usec.
1557 		 */
1558 		err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
1559 				      1000000, 1);
1560 		if (err)
1561 			return err;
1562 		*data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
1563 	}
1564 	t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
1565 	return i;
1566 }
1567 
1568 /**
1569  *	t4_read_cim_obq - read the contents of a CIM outbound queue
1570  *	@adap: the adapter
1571  *	@qid: the queue index
1572  *	@data: where to store the queue contents
1573  *	@n: capacity of @data in 32-bit words
1574  *
1575  *	Reads the contents of the selected CIM queue starting at address 0 up
1576  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
1577  *	error and the number of 32-bit words actually read on success.
1578  */
1579 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
1580 {
1581 	int i, err;
1582 	unsigned int addr, v, nwords;
1583 	int cim_num_obq = is_t4(adap) ? CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
1584 
1585 	if (qid >= cim_num_obq || (n & 3))
1586 		return -EINVAL;
1587 
1588 	t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
1589 		     V_QUENUMSELECT(qid));
1590 	v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
1591 
1592 	addr = G_CIMQBASE(v) * 64;    /* muliple of 256 -> muliple of 4 */
1593 	nwords = G_CIMQSIZE(v) * 64;  /* same */
1594 	if (n > nwords)
1595 		n = nwords;
1596 
1597 	for (i = 0; i < n; i++, addr++) {
1598 		t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
1599 			     F_OBQDBGEN);
1600 		err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
1601 				      2, 1);
1602 		if (err)
1603 			return err;
1604 		*data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
1605 	}
1606 	t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
1607 	return i;
1608 }
1609 
1610 enum {
1611 	CIM_QCTL_BASE     = 0,
1612 	CIM_CTL_BASE      = 0x2000,
1613 	CIM_PBT_ADDR_BASE = 0x2800,
1614 	CIM_PBT_LRF_BASE  = 0x3000,
1615 	CIM_PBT_DATA_BASE = 0x3800
1616 };
1617 
1618 /**
1619  *	t4_cim_read - read a block from CIM internal address space
1620  *	@adap: the adapter
1621  *	@addr: the start address within the CIM address space
1622  *	@n: number of words to read
1623  *	@valp: where to store the result
1624  *
1625  *	Reads a block of 4-byte words from the CIM intenal address space.
1626  */
1627 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
1628 		unsigned int *valp)
1629 {
1630 	int ret = 0;
1631 
1632 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
1633 		return -EBUSY;
1634 
1635 	for ( ; !ret && n--; addr += 4) {
1636 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
1637 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
1638 				      0, 5, 2);
1639 		if (!ret)
1640 			*valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
1641 	}
1642 	return ret;
1643 }
1644 
1645 /**
1646  *	t4_cim_write - write a block into CIM internal address space
1647  *	@adap: the adapter
1648  *	@addr: the start address within the CIM address space
1649  *	@n: number of words to write
1650  *	@valp: set of values to write
1651  *
1652  *	Writes a block of 4-byte words into the CIM intenal address space.
1653  */
1654 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
1655 		 const unsigned int *valp)
1656 {
1657 	int ret = 0;
1658 
1659 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
1660 		return -EBUSY;
1661 
1662 	for ( ; !ret && n--; addr += 4) {
1663 		t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
1664 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
1665 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
1666 				      0, 5, 2);
1667 	}
1668 	return ret;
1669 }
1670 
1671 static int t4_cim_write1(struct adapter *adap, unsigned int addr, unsigned int val)
1672 {
1673 	return t4_cim_write(adap, addr, 1, &val);
1674 }
1675 
1676 /**
1677  *	t4_cim_ctl_read - read a block from CIM control region
1678  *	@adap: the adapter
1679  *	@addr: the start address within the CIM control region
1680  *	@n: number of words to read
1681  *	@valp: where to store the result
1682  *
1683  *	Reads a block of 4-byte words from the CIM control region.
1684  */
1685 int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
1686 		    unsigned int *valp)
1687 {
1688 	return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
1689 }
1690 
1691 /**
1692  *	t4_cim_read_la - read CIM LA capture buffer
1693  *	@adap: the adapter
1694  *	@la_buf: where to store the LA data
1695  *	@wrptr: the HW write pointer within the capture buffer
1696  *
1697  *	Reads the contents of the CIM LA buffer with the most recent entry at
1698  *	the end	of the returned data and with the entry at @wrptr first.
1699  *	We try to leave the LA in the running state we find it in.
1700  */
1701 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
1702 {
1703 	int i, ret;
1704 	unsigned int cfg, val, idx;
1705 
1706 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
1707 	if (ret)
1708 		return ret;
1709 
1710 	if (cfg & F_UPDBGLAEN) {                /* LA is running, freeze it */
1711 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
1712 		if (ret)
1713 			return ret;
1714 	}
1715 
1716 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
1717 	if (ret)
1718 		goto restart;
1719 
1720 	idx = G_UPDBGLAWRPTR(val);
1721 	if (wrptr)
1722 		*wrptr = idx;
1723 
1724 	for (i = 0; i < adap->params.cim_la_size; i++) {
1725 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
1726 				    V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
1727 		if (ret)
1728 			break;
1729 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
1730 		if (ret)
1731 			break;
1732 		if (val & F_UPDBGLARDEN) {
1733 			ret = -ETIMEDOUT;
1734 			break;
1735 		}
1736 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
1737 		if (ret)
1738 			break;
1739 		idx = (idx + 1) & M_UPDBGLARDPTR;
1740 	}
1741 restart:
1742 	if (cfg & F_UPDBGLAEN) {
1743 		int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
1744 				      cfg & ~F_UPDBGLARDEN);
1745 		if (!ret)
1746 			ret = r;
1747 	}
1748 	return ret;
1749 }
1750 
1751 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
1752 			unsigned int *pif_req_wrptr,
1753 			unsigned int *pif_rsp_wrptr)
1754 {
1755 	int i, j;
1756 	u32 cfg, val, req, rsp;
1757 
1758 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
1759 	if (cfg & F_LADBGEN)
1760 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
1761 
1762 	val = t4_read_reg(adap, A_CIM_DEBUGSTS);
1763 	req = G_POLADBGWRPTR(val);
1764 	rsp = G_PILADBGWRPTR(val);
1765 	if (pif_req_wrptr)
1766 		*pif_req_wrptr = req;
1767 	if (pif_rsp_wrptr)
1768 		*pif_rsp_wrptr = rsp;
1769 
1770 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
1771 		for (j = 0; j < 6; j++) {
1772 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
1773 				     V_PILADBGRDPTR(rsp));
1774 			*pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
1775 			*pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
1776 			req++;
1777 			rsp++;
1778 		}
1779 		req = (req + 2) & M_POLADBGRDPTR;
1780 		rsp = (rsp + 2) & M_PILADBGRDPTR;
1781 	}
1782 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
1783 }
1784 
1785 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
1786 {
1787 	u32 cfg;
1788 	int i, j, idx;
1789 
1790 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
1791 	if (cfg & F_LADBGEN)
1792 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
1793 
1794 	for (i = 0; i < CIM_MALA_SIZE; i++) {
1795 		for (j = 0; j < 5; j++) {
1796 			idx = 8 * i + j;
1797 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
1798 				     V_PILADBGRDPTR(idx));
1799 			*ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
1800 			*ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
1801 		}
1802 	}
1803 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
1804 }
1805 
1806 /**
1807  *	t4_tp_read_la - read TP LA capture buffer
1808  *	@adap: the adapter
1809  *	@la_buf: where to store the LA data
1810  *	@wrptr: the HW write pointer within the capture buffer
1811  *
1812  *	Reads the contents of the TP LA buffer with the most recent entry at
1813  *	the end	of the returned data and with the entry at @wrptr first.
1814  *	We leave the LA in the running state we find it in.
1815  */
1816 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
1817 {
1818 	bool last_incomplete;
1819 	unsigned int i, cfg, val, idx;
1820 
1821 	cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
1822 	if (cfg & F_DBGLAENABLE)                    /* freeze LA */
1823 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
1824 			     adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
1825 
1826 	val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
1827 	idx = G_DBGLAWPTR(val);
1828 	last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
1829 	if (last_incomplete)
1830 		idx = (idx + 1) & M_DBGLARPTR;
1831 	if (wrptr)
1832 		*wrptr = idx;
1833 
1834 	val &= 0xffff;
1835 	val &= ~V_DBGLARPTR(M_DBGLARPTR);
1836 	val |= adap->params.tp.la_mask;
1837 
1838 	for (i = 0; i < TPLA_SIZE; i++) {
1839 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
1840 		la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
1841 		idx = (idx + 1) & M_DBGLARPTR;
1842 	}
1843 
1844 	/* Wipe out last entry if it isn't valid */
1845 	if (last_incomplete)
1846 		la_buf[TPLA_SIZE - 1] = ~0ULL;
1847 
1848 	if (cfg & F_DBGLAENABLE)                    /* restore running state */
1849 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
1850 			     cfg | adap->params.tp.la_mask);
1851 }
1852 
1853 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
1854 {
1855 	unsigned int i, j;
1856 
1857 	for (i = 0; i < 8; i++) {
1858 		u32 *p = la_buf + i;
1859 
1860 		t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
1861 		j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
1862 		t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
1863 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
1864 			*p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
1865 	}
1866 }
1867 
1868 #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
1869 		     FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
1870 		     FW_PORT_CAP_SPEED_100G | FW_PORT_CAP_ANEG)
1871 
1872 /**
1873  *	t4_link_start - apply link configuration to MAC/PHY
1874  *	@phy: the PHY to setup
1875  *	@mac: the MAC to setup
1876  *	@lc: the requested link configuration
1877  *
1878  *	Set up a port's MAC and PHY according to a desired link configuration.
1879  *	- If the PHY can auto-negotiate first decide what to advertise, then
1880  *	  enable/disable auto-negotiation as desired, and reset.
1881  *	- If the PHY does not auto-negotiate just reset it.
1882  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
1883  *	  otherwise do it later based on the outcome of auto-negotiation.
1884  */
1885 int t4_link_start(struct adapter *adap, unsigned int mbox, unsigned int port,
1886 		  struct link_config *lc)
1887 {
1888 	struct fw_port_cmd c;
1889 	unsigned int fc = 0, mdi = V_FW_PORT_CAP_MDI(FW_PORT_CAP_MDI_AUTO);
1890 
1891 	lc->link_ok = 0;
1892 	if (lc->requested_fc & PAUSE_RX)
1893 		fc |= FW_PORT_CAP_FC_RX;
1894 	if (lc->requested_fc & PAUSE_TX)
1895 		fc |= FW_PORT_CAP_FC_TX;
1896 
1897 	memset(&c, 0, sizeof(c));
1898 	c.op_to_portid = htonl(V_FW_CMD_OP(FW_PORT_CMD) | F_FW_CMD_REQUEST |
1899 			       F_FW_CMD_EXEC | V_FW_PORT_CMD_PORTID(port));
1900 	c.action_to_len16 = htonl(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
1901 				  FW_LEN16(c));
1902 
1903 	if (!(lc->supported & FW_PORT_CAP_ANEG)) {
1904 		c.u.l1cfg.rcap = htonl((lc->supported & ADVERT_MASK) | fc);
1905 		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1906 	} else if (lc->autoneg == AUTONEG_DISABLE) {
1907 		c.u.l1cfg.rcap = htonl(lc->requested_speed | fc | mdi);
1908 		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1909 	} else
1910 		c.u.l1cfg.rcap = htonl(lc->advertising | fc | mdi);
1911 
1912 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
1913 }
1914 
1915 /**
1916  *	t4_restart_aneg - restart autonegotiation
1917  *	@adap: the adapter
1918  *	@mbox: mbox to use for the FW command
1919  *	@port: the port id
1920  *
1921  *	Restarts autonegotiation for the selected port.
1922  */
1923 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
1924 {
1925 	struct fw_port_cmd c;
1926 
1927 	memset(&c, 0, sizeof(c));
1928 	c.op_to_portid = htonl(V_FW_CMD_OP(FW_PORT_CMD) | F_FW_CMD_REQUEST |
1929 			       F_FW_CMD_EXEC | V_FW_PORT_CMD_PORTID(port));
1930 	c.action_to_len16 = htonl(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
1931 				  FW_LEN16(c));
1932 	c.u.l1cfg.rcap = htonl(FW_PORT_CAP_ANEG);
1933 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
1934 }
1935 
1936 struct intr_info {
1937 	unsigned int mask;       /* bits to check in interrupt status */
1938 	const char *msg;         /* message to print or NULL */
1939 	short stat_idx;          /* stat counter to increment or -1 */
1940 	unsigned short fatal;    /* whether the condition reported is fatal */
1941 };
1942 
1943 /**
1944  *	t4_handle_intr_status - table driven interrupt handler
1945  *	@adapter: the adapter that generated the interrupt
1946  *	@reg: the interrupt status register to process
1947  *	@acts: table of interrupt actions
1948  *
1949  *	A table driven interrupt handler that applies a set of masks to an
1950  *	interrupt status word and performs the corresponding actions if the
1951  *	interrupts described by the mask have occured.  The actions include
1952  *	optionally emitting a warning or alert message.  The table is terminated
1953  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
1954  *	conditions.
1955  */
1956 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
1957 				 const struct intr_info *acts)
1958 {
1959 	int fatal = 0;
1960 	unsigned int mask = 0;
1961 	unsigned int status = t4_read_reg(adapter, reg);
1962 
1963 	for ( ; acts->mask; ++acts) {
1964 		if (!(status & acts->mask))
1965 			continue;
1966 		if (acts->fatal) {
1967 			fatal++;
1968 			CH_ALERT(adapter, "%s (0x%x)\n",
1969 				 acts->msg, status & acts->mask);
1970 		} else if (acts->msg)
1971 			CH_WARN_RATELIMIT(adapter, "%s (0x%x)\n",
1972 					  acts->msg, status & acts->mask);
1973 		mask |= acts->mask;
1974 	}
1975 	status &= mask;
1976 	if (status)                           /* clear processed interrupts */
1977 		t4_write_reg(adapter, reg, status);
1978 	return fatal;
1979 }
1980 
1981 /*
1982  * Interrupt handler for the PCIE module.
1983  */
1984 static void pcie_intr_handler(struct adapter *adapter)
1985 {
1986 	static struct intr_info sysbus_intr_info[] = {
1987 		{ F_RNPP, "RXNP array parity error", -1, 1 },
1988 		{ F_RPCP, "RXPC array parity error", -1, 1 },
1989 		{ F_RCIP, "RXCIF array parity error", -1, 1 },
1990 		{ F_RCCP, "Rx completions control array parity error", -1, 1 },
1991 		{ F_RFTP, "RXFT array parity error", -1, 1 },
1992 		{ 0 }
1993 	};
1994 	static struct intr_info pcie_port_intr_info[] = {
1995 		{ F_TPCP, "TXPC array parity error", -1, 1 },
1996 		{ F_TNPP, "TXNP array parity error", -1, 1 },
1997 		{ F_TFTP, "TXFT array parity error", -1, 1 },
1998 		{ F_TCAP, "TXCA array parity error", -1, 1 },
1999 		{ F_TCIP, "TXCIF array parity error", -1, 1 },
2000 		{ F_RCAP, "RXCA array parity error", -1, 1 },
2001 		{ F_OTDD, "outbound request TLP discarded", -1, 1 },
2002 		{ F_RDPE, "Rx data parity error", -1, 1 },
2003 		{ F_TDUE, "Tx uncorrectable data error", -1, 1 },
2004 		{ 0 }
2005 	};
2006 	static struct intr_info pcie_intr_info[] = {
2007 		{ F_MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
2008 		{ F_MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
2009 		{ F_MSIDATAPERR, "MSI data parity error", -1, 1 },
2010 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
2011 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
2012 		{ F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
2013 		{ F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
2014 		{ F_PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
2015 		{ F_PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
2016 		{ F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
2017 		{ F_CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
2018 		{ F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
2019 		{ F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
2020 		{ F_DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
2021 		{ F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
2022 		{ F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
2023 		{ F_HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
2024 		{ F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
2025 		{ F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
2026 		{ F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
2027 		{ F_FIDPERR, "PCI FID parity error", -1, 1 },
2028 		{ F_INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
2029 		{ F_MATAGPERR, "PCI MA tag parity error", -1, 1 },
2030 		{ F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
2031 		{ F_RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
2032 		{ F_RXWRPERR, "PCI Rx write parity error", -1, 1 },
2033 		{ F_RPLPERR, "PCI replay buffer parity error", -1, 1 },
2034 		{ F_PCIESINT, "PCI core secondary fault", -1, 1 },
2035 		{ F_PCIEPINT, "PCI core primary fault", -1, 1 },
2036 		{ F_UNXSPLCPLERR, "PCI unexpected split completion error", -1,
2037 		  0 },
2038 		{ 0 }
2039 	};
2040 
2041 	static struct intr_info t5_pcie_intr_info[] = {
2042 		{ F_MSTGRPPERR, "Master Response Read Queue parity error",
2043 		  -1, 1 },
2044 		{ F_MSTTIMEOUTPERR, "Master Timeout FIFO parity error", -1, 1 },
2045 		{ F_MSIXSTIPERR, "MSI-X STI SRAM parity error", -1, 1 },
2046 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
2047 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
2048 		{ F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
2049 		{ F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
2050 		{ F_PIOCPLGRPPERR, "PCI PIO completion Group FIFO parity error",
2051 		  -1, 1 },
2052 		{ F_PIOREQGRPPERR, "PCI PIO request Group FIFO parity error",
2053 		  -1, 1 },
2054 		{ F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
2055 		{ F_MSTTAGQPERR, "PCI master tag queue parity error", -1, 1 },
2056 		{ F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
2057 		{ F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
2058 		{ F_DREQWRPERR, "PCI DMA channel write request parity error",
2059 		  -1, 1 },
2060 		{ F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
2061 		{ F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
2062 		{ F_HREQWRPERR, "PCI HMA channel count parity error", -1, 1 },
2063 		{ F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
2064 		{ F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
2065 		{ F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
2066 		{ F_FIDPERR, "PCI FID parity error", -1, 1 },
2067 		{ F_VFIDPERR, "PCI INTx clear parity error", -1, 1 },
2068 		{ F_MAGRPPERR, "PCI MA group FIFO parity error", -1, 1 },
2069 		{ F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
2070 		{ F_IPRXHDRGRPPERR, "PCI IP Rx header group parity error",
2071 		  -1, 1 },
2072 		{ F_IPRXDATAGRPPERR, "PCI IP Rx data group parity error",
2073 		  -1, 1 },
2074 		{ F_RPLPERR, "PCI IP replay buffer parity error", -1, 1 },
2075 		{ F_IPSOTPERR, "PCI IP SOT buffer parity error", -1, 1 },
2076 		{ F_TRGT1GRPPERR, "PCI TRGT1 group FIFOs parity error", -1, 1 },
2077 		{ F_READRSPERR, "Outbound read error", -1,
2078 		  0 },
2079 		{ 0 }
2080 	};
2081 
2082 	int fat;
2083 
2084 	if (is_t4(adapter))
2085 		fat = t4_handle_intr_status(adapter,
2086 					    A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
2087 					    sysbus_intr_info) +
2088 		      t4_handle_intr_status(adapter,
2089 					    A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
2090 					    pcie_port_intr_info) +
2091 		      t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
2092 					    pcie_intr_info);
2093 	else
2094 		fat = t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
2095 					    t5_pcie_intr_info);
2096 	if (fat)
2097 		t4_fatal_err(adapter);
2098 }
2099 
2100 /*
2101  * TP interrupt handler.
2102  */
2103 static void tp_intr_handler(struct adapter *adapter)
2104 {
2105 	static struct intr_info tp_intr_info[] = {
2106 		{ 0x3fffffff, "TP parity error", -1, 1 },
2107 		{ F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
2108 		{ 0 }
2109 	};
2110 
2111 	if (t4_handle_intr_status(adapter, A_TP_INT_CAUSE, tp_intr_info))
2112 		t4_fatal_err(adapter);
2113 }
2114 
2115 /*
2116  * SGE interrupt handler.
2117  */
2118 static void sge_intr_handler(struct adapter *adapter)
2119 {
2120 	u64 v;
2121 	u32 err;
2122 
2123 	static struct intr_info sge_intr_info[] = {
2124 		{ F_ERR_CPL_EXCEED_IQE_SIZE,
2125 		  "SGE received CPL exceeding IQE size", -1, 1 },
2126 		{ F_ERR_INVALID_CIDX_INC,
2127 		  "SGE GTS CIDX increment too large", -1, 0 },
2128 		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
2129 		{ F_ERR_DROPPED_DB, "SGE doorbell dropped", -1, 0 },
2130 		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
2131 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
2132 		{ F_ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
2133 		  0 },
2134 		{ F_ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
2135 		  0 },
2136 		{ F_ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
2137 		  0 },
2138 		{ F_ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
2139 		  0 },
2140 		{ F_ERR_ING_CTXT_PRIO,
2141 		  "SGE too many priority ingress contexts", -1, 0 },
2142 		{ F_ERR_EGR_CTXT_PRIO,
2143 		  "SGE too many priority egress contexts", -1, 0 },
2144 		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
2145 		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
2146 		{ 0 }
2147 	};
2148 
2149 	v = (u64)t4_read_reg(adapter, A_SGE_INT_CAUSE1) |
2150 	    ((u64)t4_read_reg(adapter, A_SGE_INT_CAUSE2) << 32);
2151 	if (v) {
2152 		CH_ALERT(adapter, "SGE parity error (%#llx)\n",
2153 			 (unsigned long long)v);
2154 		t4_write_reg(adapter, A_SGE_INT_CAUSE1, v);
2155 		t4_write_reg(adapter, A_SGE_INT_CAUSE2, v >> 32);
2156 	}
2157 
2158 	v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3, sge_intr_info);
2159 
2160 	err = t4_read_reg(adapter, A_SGE_ERROR_STATS);
2161 	if (err & F_ERROR_QID_VALID) {
2162 		CH_ERR(adapter, "SGE error for queue %u\n", G_ERROR_QID(err));
2163 		if (err & F_UNCAPTURED_ERROR)
2164 			CH_ERR(adapter, "SGE UNCAPTURED_ERROR set (clearing)\n");
2165 		t4_write_reg(adapter, A_SGE_ERROR_STATS, F_ERROR_QID_VALID |
2166 			     F_UNCAPTURED_ERROR);
2167 	}
2168 
2169 	if (v != 0)
2170 		t4_fatal_err(adapter);
2171 }
2172 
2173 #define CIM_OBQ_INTR (F_OBQULP0PARERR | F_OBQULP1PARERR | F_OBQULP2PARERR |\
2174 		      F_OBQULP3PARERR | F_OBQSGEPARERR | F_OBQNCSIPARERR)
2175 #define CIM_IBQ_INTR (F_IBQTP0PARERR | F_IBQTP1PARERR | F_IBQULPPARERR |\
2176 		      F_IBQSGEHIPARERR | F_IBQSGELOPARERR | F_IBQNCSIPARERR)
2177 
2178 /*
2179  * CIM interrupt handler.
2180  */
2181 static void cim_intr_handler(struct adapter *adapter)
2182 {
2183 	static struct intr_info cim_intr_info[] = {
2184 		{ F_PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
2185 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
2186 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
2187 		{ F_MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
2188 		{ F_MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
2189 		{ F_TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
2190 		{ F_TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
2191 		{ 0 }
2192 	};
2193 	static struct intr_info cim_upintr_info[] = {
2194 		{ F_RSVDSPACEINT, "CIM reserved space access", -1, 1 },
2195 		{ F_ILLTRANSINT, "CIM illegal transaction", -1, 1 },
2196 		{ F_ILLWRINT, "CIM illegal write", -1, 1 },
2197 		{ F_ILLRDINT, "CIM illegal read", -1, 1 },
2198 		{ F_ILLRDBEINT, "CIM illegal read BE", -1, 1 },
2199 		{ F_ILLWRBEINT, "CIM illegal write BE", -1, 1 },
2200 		{ F_SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
2201 		{ F_SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
2202 		{ F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
2203 		{ F_SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
2204 		{ F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
2205 		{ F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
2206 		{ F_SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
2207 		{ F_SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
2208 		{ F_BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
2209 		{ F_BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
2210 		{ F_SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
2211 		{ F_SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
2212 		{ F_BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
2213 		{ F_BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
2214 		{ F_SGLRDPLINT , "CIM single read from PL space", -1, 1 },
2215 		{ F_SGLWRPLINT , "CIM single write to PL space", -1, 1 },
2216 		{ F_BLKRDPLINT , "CIM block read from PL space", -1, 1 },
2217 		{ F_BLKWRPLINT , "CIM block write to PL space", -1, 1 },
2218 		{ F_REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
2219 		{ F_RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
2220 		{ F_TIMEOUTINT , "CIM PIF timeout", -1, 1 },
2221 		{ F_TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
2222 		{ 0 }
2223 	};
2224 	int fat;
2225 
2226 	if (t4_read_reg(adapter, A_PCIE_FW) & F_PCIE_FW_ERR)
2227 		t4_report_fw_error(adapter);
2228 
2229 	fat = t4_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE,
2230 				    cim_intr_info) +
2231 	      t4_handle_intr_status(adapter, A_CIM_HOST_UPACC_INT_CAUSE,
2232 				    cim_upintr_info);
2233 	if (fat)
2234 		t4_fatal_err(adapter);
2235 }
2236 
2237 /*
2238  * ULP RX interrupt handler.
2239  */
2240 static void ulprx_intr_handler(struct adapter *adapter)
2241 {
2242 	static struct intr_info ulprx_intr_info[] = {
2243 		{ F_CAUSE_CTX_1, "ULPRX channel 1 context error", -1, 1 },
2244 		{ F_CAUSE_CTX_0, "ULPRX channel 0 context error", -1, 1 },
2245 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
2246 		{ 0 }
2247 	};
2248 
2249 	if (t4_handle_intr_status(adapter, A_ULP_RX_INT_CAUSE, ulprx_intr_info))
2250 		t4_fatal_err(adapter);
2251 }
2252 
2253 /*
2254  * ULP TX interrupt handler.
2255  */
2256 static void ulptx_intr_handler(struct adapter *adapter)
2257 {
2258 	static struct intr_info ulptx_intr_info[] = {
2259 		{ F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
2260 		  0 },
2261 		{ F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
2262 		  0 },
2263 		{ F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
2264 		  0 },
2265 		{ F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
2266 		  0 },
2267 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
2268 		{ 0 }
2269 	};
2270 
2271 	if (t4_handle_intr_status(adapter, A_ULP_TX_INT_CAUSE, ulptx_intr_info))
2272 		t4_fatal_err(adapter);
2273 }
2274 
2275 /*
2276  * PM TX interrupt handler.
2277  */
2278 static void pmtx_intr_handler(struct adapter *adapter)
2279 {
2280 	static struct intr_info pmtx_intr_info[] = {
2281 		{ F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
2282 		{ F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
2283 		{ F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
2284 		{ F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
2285 		{ 0xffffff0, "PMTX framing error", -1, 1 },
2286 		{ F_OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
2287 		{ F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1,
2288 		  1 },
2289 		{ F_ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
2290 		{ F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
2291 		{ 0 }
2292 	};
2293 
2294 	if (t4_handle_intr_status(adapter, A_PM_TX_INT_CAUSE, pmtx_intr_info))
2295 		t4_fatal_err(adapter);
2296 }
2297 
2298 /*
2299  * PM RX interrupt handler.
2300  */
2301 static void pmrx_intr_handler(struct adapter *adapter)
2302 {
2303 	static struct intr_info pmrx_intr_info[] = {
2304 		{ F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
2305 		{ 0x3ffff0, "PMRX framing error", -1, 1 },
2306 		{ F_OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
2307 		{ F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1,
2308 		  1 },
2309 		{ F_IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
2310 		{ F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
2311 		{ 0 }
2312 	};
2313 
2314 	if (t4_handle_intr_status(adapter, A_PM_RX_INT_CAUSE, pmrx_intr_info))
2315 		t4_fatal_err(adapter);
2316 }
2317 
2318 /*
2319  * CPL switch interrupt handler.
2320  */
2321 static void cplsw_intr_handler(struct adapter *adapter)
2322 {
2323 	static struct intr_info cplsw_intr_info[] = {
2324 		{ F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
2325 		{ F_CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
2326 		{ F_TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
2327 		{ F_SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
2328 		{ F_CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
2329 		{ F_ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
2330 		{ 0 }
2331 	};
2332 
2333 	if (t4_handle_intr_status(adapter, A_CPL_INTR_CAUSE, cplsw_intr_info))
2334 		t4_fatal_err(adapter);
2335 }
2336 
2337 /*
2338  * LE interrupt handler.
2339  */
2340 static void le_intr_handler(struct adapter *adap)
2341 {
2342 	static struct intr_info le_intr_info[] = {
2343 		{ F_LIPMISS, "LE LIP miss", -1, 0 },
2344 		{ F_LIP0, "LE 0 LIP error", -1, 0 },
2345 		{ F_PARITYERR, "LE parity error", -1, 1 },
2346 		{ F_UNKNOWNCMD, "LE unknown command", -1, 1 },
2347 		{ F_REQQPARERR, "LE request queue parity error", -1, 1 },
2348 		{ 0 }
2349 	};
2350 
2351 	if (t4_handle_intr_status(adap, A_LE_DB_INT_CAUSE, le_intr_info))
2352 		t4_fatal_err(adap);
2353 }
2354 
2355 /*
2356  * MPS interrupt handler.
2357  */
2358 static void mps_intr_handler(struct adapter *adapter)
2359 {
2360 	static struct intr_info mps_rx_intr_info[] = {
2361 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
2362 		{ 0 }
2363 	};
2364 	static struct intr_info mps_tx_intr_info[] = {
2365 		{ V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error", -1, 1 },
2366 		{ F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
2367 		{ V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error",
2368 		  -1, 1 },
2369 		{ V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error",
2370 		  -1, 1 },
2371 		{ F_BUBBLE, "MPS Tx underflow", -1, 1 },
2372 		{ F_SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
2373 		{ F_FRMERR, "MPS Tx framing error", -1, 1 },
2374 		{ 0 }
2375 	};
2376 	static struct intr_info mps_trc_intr_info[] = {
2377 		{ V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error", -1, 1 },
2378 		{ V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error", -1,
2379 		  1 },
2380 		{ F_MISCPERR, "MPS TRC misc parity error", -1, 1 },
2381 		{ 0 }
2382 	};
2383 	static struct intr_info mps_stat_sram_intr_info[] = {
2384 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
2385 		{ 0 }
2386 	};
2387 	static struct intr_info mps_stat_tx_intr_info[] = {
2388 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
2389 		{ 0 }
2390 	};
2391 	static struct intr_info mps_stat_rx_intr_info[] = {
2392 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
2393 		{ 0 }
2394 	};
2395 	static struct intr_info mps_cls_intr_info[] = {
2396 		{ F_MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
2397 		{ F_MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
2398 		{ F_HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
2399 		{ 0 }
2400 	};
2401 
2402 	int fat;
2403 
2404 	fat = t4_handle_intr_status(adapter, A_MPS_RX_PERR_INT_CAUSE,
2405 				    mps_rx_intr_info) +
2406 	      t4_handle_intr_status(adapter, A_MPS_TX_INT_CAUSE,
2407 				    mps_tx_intr_info) +
2408 	      t4_handle_intr_status(adapter, A_MPS_TRC_INT_CAUSE,
2409 				    mps_trc_intr_info) +
2410 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_SRAM,
2411 				    mps_stat_sram_intr_info) +
2412 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
2413 				    mps_stat_tx_intr_info) +
2414 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
2415 				    mps_stat_rx_intr_info) +
2416 	      t4_handle_intr_status(adapter, A_MPS_CLS_INT_CAUSE,
2417 				    mps_cls_intr_info);
2418 
2419 	t4_write_reg(adapter, A_MPS_INT_CAUSE, 0);
2420 	t4_read_reg(adapter, A_MPS_INT_CAUSE);                    /* flush */
2421 	if (fat)
2422 		t4_fatal_err(adapter);
2423 }
2424 
2425 #define MEM_INT_MASK (F_PERR_INT_CAUSE | F_ECC_CE_INT_CAUSE | F_ECC_UE_INT_CAUSE)
2426 
2427 /*
2428  * EDC/MC interrupt handler.
2429  */
2430 static void mem_intr_handler(struct adapter *adapter, int idx)
2431 {
2432 	static const char name[3][5] = { "EDC0", "EDC1", "MC" };
2433 
2434 	unsigned int addr, cnt_addr, v;
2435 
2436 	if (idx <= MEM_EDC1) {
2437 		addr = EDC_REG(A_EDC_INT_CAUSE, idx);
2438 		cnt_addr = EDC_REG(A_EDC_ECC_STATUS, idx);
2439 	} else {
2440 		if (is_t4(adapter)) {
2441 			addr = A_MC_INT_CAUSE;
2442 			cnt_addr = A_MC_ECC_STATUS;
2443 		} else {
2444 			addr = A_MC_P_INT_CAUSE;
2445 			cnt_addr = A_MC_P_ECC_STATUS;
2446 		}
2447 	}
2448 
2449 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
2450 	if (v & F_PERR_INT_CAUSE)
2451 		CH_ALERT(adapter, "%s FIFO parity error\n", name[idx]);
2452 	if (v & F_ECC_CE_INT_CAUSE) {
2453 		u32 cnt = G_ECC_CECNT(t4_read_reg(adapter, cnt_addr));
2454 
2455 		t4_write_reg(adapter, cnt_addr, V_ECC_CECNT(M_ECC_CECNT));
2456 		CH_WARN_RATELIMIT(adapter,
2457 				  "%u %s correctable ECC data error%s\n",
2458 				  cnt, name[idx], cnt > 1 ? "s" : "");
2459 	}
2460 	if (v & F_ECC_UE_INT_CAUSE)
2461 		CH_ALERT(adapter, "%s uncorrectable ECC data error\n",
2462 			 name[idx]);
2463 
2464 	t4_write_reg(adapter, addr, v);
2465 	if (v & (F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE))
2466 		t4_fatal_err(adapter);
2467 }
2468 
2469 /*
2470  * MA interrupt handler.
2471  */
2472 static void ma_intr_handler(struct adapter *adapter)
2473 {
2474 	u32 v, status = t4_read_reg(adapter, A_MA_INT_CAUSE);
2475 
2476 	if (status & F_MEM_PERR_INT_CAUSE) {
2477 		CH_ALERT(adapter, "MA parity error, parity status %#x\n",
2478 			 t4_read_reg(adapter, A_MA_PARITY_ERROR_STATUS1));
2479 		if (is_t5(adapter))
2480 			CH_ALERT(adapter,
2481 				 "MA parity error, parity status %#x\n",
2482 				 t4_read_reg(adapter,
2483 				 	     A_MA_PARITY_ERROR_STATUS2));
2484 	}
2485 	if (status & F_MEM_WRAP_INT_CAUSE) {
2486 		v = t4_read_reg(adapter, A_MA_INT_WRAP_STATUS);
2487 		CH_ALERT(adapter, "MA address wrap-around error by client %u to"
2488 			 " address %#x\n", G_MEM_WRAP_CLIENT_NUM(v),
2489 			 G_MEM_WRAP_ADDRESS(v) << 4);
2490 	}
2491 	t4_write_reg(adapter, A_MA_INT_CAUSE, status);
2492 	t4_fatal_err(adapter);
2493 }
2494 
2495 /*
2496  * SMB interrupt handler.
2497  */
2498 static void smb_intr_handler(struct adapter *adap)
2499 {
2500 	static struct intr_info smb_intr_info[] = {
2501 		{ F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
2502 		{ F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
2503 		{ F_SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
2504 		{ 0 }
2505 	};
2506 
2507 	if (t4_handle_intr_status(adap, A_SMB_INT_CAUSE, smb_intr_info))
2508 		t4_fatal_err(adap);
2509 }
2510 
2511 /*
2512  * NC-SI interrupt handler.
2513  */
2514 static void ncsi_intr_handler(struct adapter *adap)
2515 {
2516 	static struct intr_info ncsi_intr_info[] = {
2517 		{ F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
2518 		{ F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
2519 		{ F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
2520 		{ F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
2521 		{ 0 }
2522 	};
2523 
2524 	if (t4_handle_intr_status(adap, A_NCSI_INT_CAUSE, ncsi_intr_info))
2525 		t4_fatal_err(adap);
2526 }
2527 
2528 /*
2529  * XGMAC interrupt handler.
2530  */
2531 static void xgmac_intr_handler(struct adapter *adap, int port)
2532 {
2533 	u32 v, int_cause_reg;
2534 
2535 	if (is_t4(adap))
2536 		int_cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
2537 	else
2538 		int_cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
2539 
2540 	v = t4_read_reg(adap, int_cause_reg);
2541 	v &= (F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR);
2542 	if (!v)
2543 		return;
2544 
2545 	if (v & F_TXFIFO_PRTY_ERR)
2546 		CH_ALERT(adap, "XGMAC %d Tx FIFO parity error\n", port);
2547 	if (v & F_RXFIFO_PRTY_ERR)
2548 		CH_ALERT(adap, "XGMAC %d Rx FIFO parity error\n", port);
2549 	t4_write_reg(adap, int_cause_reg, v);
2550 	t4_fatal_err(adap);
2551 }
2552 
2553 /*
2554  * PL interrupt handler.
2555  */
2556 static void pl_intr_handler(struct adapter *adap)
2557 {
2558 	static struct intr_info pl_intr_info[] = {
2559 		{ F_FATALPERR, "Fatal parity error", -1, 1 },
2560 		{ F_PERRVFID, "PL VFID_MAP parity error", -1, 1 },
2561 		{ 0 }
2562 	};
2563 
2564 	static struct intr_info t5_pl_intr_info[] = {
2565 		{ F_PL_BUSPERR, "PL bus parity error", -1, 1 },
2566 		{ F_FATALPERR, "Fatal parity error", -1, 1 },
2567 		{ 0 }
2568 	};
2569 
2570 	if (t4_handle_intr_status(adap, A_PL_PL_INT_CAUSE,
2571 	    is_t4(adap) ?  pl_intr_info : t5_pl_intr_info))
2572 		t4_fatal_err(adap);
2573 }
2574 
2575 #define PF_INTR_MASK (F_PFSW | F_PFCIM)
2576 #define GLBL_INTR_MASK (F_CIM | F_MPS | F_PL | F_PCIE | F_MC | F_EDC0 | \
2577 		F_EDC1 | F_LE | F_TP | F_MA | F_PM_TX | F_PM_RX | F_ULP_RX | \
2578 		F_CPL_SWITCH | F_SGE | F_ULP_TX)
2579 
2580 /**
2581  *	t4_slow_intr_handler - control path interrupt handler
2582  *	@adapter: the adapter
2583  *
2584  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
2585  *	The designation 'slow' is because it involves register reads, while
2586  *	data interrupts typically don't involve any MMIOs.
2587  */
2588 int t4_slow_intr_handler(struct adapter *adapter)
2589 {
2590 	u32 cause = t4_read_reg(adapter, A_PL_INT_CAUSE);
2591 
2592 	if (!(cause & GLBL_INTR_MASK))
2593 		return 0;
2594 	if (cause & F_CIM)
2595 		cim_intr_handler(adapter);
2596 	if (cause & F_MPS)
2597 		mps_intr_handler(adapter);
2598 	if (cause & F_NCSI)
2599 		ncsi_intr_handler(adapter);
2600 	if (cause & F_PL)
2601 		pl_intr_handler(adapter);
2602 	if (cause & F_SMB)
2603 		smb_intr_handler(adapter);
2604 	if (cause & F_XGMAC0)
2605 		xgmac_intr_handler(adapter, 0);
2606 	if (cause & F_XGMAC1)
2607 		xgmac_intr_handler(adapter, 1);
2608 	if (cause & F_XGMAC_KR0)
2609 		xgmac_intr_handler(adapter, 2);
2610 	if (cause & F_XGMAC_KR1)
2611 		xgmac_intr_handler(adapter, 3);
2612 	if (cause & F_PCIE)
2613 		pcie_intr_handler(adapter);
2614 	if (cause & F_MC)
2615 		mem_intr_handler(adapter, MEM_MC);
2616 	if (cause & F_EDC0)
2617 		mem_intr_handler(adapter, MEM_EDC0);
2618 	if (cause & F_EDC1)
2619 		mem_intr_handler(adapter, MEM_EDC1);
2620 	if (cause & F_LE)
2621 		le_intr_handler(adapter);
2622 	if (cause & F_TP)
2623 		tp_intr_handler(adapter);
2624 	if (cause & F_MA)
2625 		ma_intr_handler(adapter);
2626 	if (cause & F_PM_TX)
2627 		pmtx_intr_handler(adapter);
2628 	if (cause & F_PM_RX)
2629 		pmrx_intr_handler(adapter);
2630 	if (cause & F_ULP_RX)
2631 		ulprx_intr_handler(adapter);
2632 	if (cause & F_CPL_SWITCH)
2633 		cplsw_intr_handler(adapter);
2634 	if (cause & F_SGE)
2635 		sge_intr_handler(adapter);
2636 	if (cause & F_ULP_TX)
2637 		ulptx_intr_handler(adapter);
2638 
2639 	/* Clear the interrupts just processed for which we are the master. */
2640 	t4_write_reg(adapter, A_PL_INT_CAUSE, cause & GLBL_INTR_MASK);
2641 	(void) t4_read_reg(adapter, A_PL_INT_CAUSE); /* flush */
2642 	return 1;
2643 }
2644 
2645 /**
2646  *	t4_intr_enable - enable interrupts
2647  *	@adapter: the adapter whose interrupts should be enabled
2648  *
2649  *	Enable PF-specific interrupts for the calling function and the top-level
2650  *	interrupt concentrator for global interrupts.  Interrupts are already
2651  *	enabled at each module,	here we just enable the roots of the interrupt
2652  *	hierarchies.
2653  *
2654  *	Note: this function should be called only when the driver manages
2655  *	non PF-specific interrupts from the various HW modules.  Only one PCI
2656  *	function at a time should be doing this.
2657  */
2658 void t4_intr_enable(struct adapter *adapter)
2659 {
2660 	u32 pf = G_SOURCEPF(t4_read_reg(adapter, A_PL_WHOAMI));
2661 
2662 	t4_write_reg(adapter, A_SGE_INT_ENABLE3, F_ERR_CPL_EXCEED_IQE_SIZE |
2663 		     F_ERR_INVALID_CIDX_INC | F_ERR_CPL_OPCODE_0 |
2664 		     F_ERR_DROPPED_DB | F_ERR_DATA_CPL_ON_HIGH_QID1 |
2665 		     F_ERR_DATA_CPL_ON_HIGH_QID0 | F_ERR_BAD_DB_PIDX3 |
2666 		     F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
2667 		     F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO |
2668 		     F_ERR_EGR_CTXT_PRIO | F_INGRESS_SIZE_ERR |
2669 		     F_EGRESS_SIZE_ERR);
2670 	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
2671 	t4_set_reg_field(adapter, A_PL_INT_MAP0, 0, 1 << pf);
2672 }
2673 
2674 /**
2675  *	t4_intr_disable - disable interrupts
2676  *	@adapter: the adapter whose interrupts should be disabled
2677  *
2678  *	Disable interrupts.  We only disable the top-level interrupt
2679  *	concentrators.  The caller must be a PCI function managing global
2680  *	interrupts.
2681  */
2682 void t4_intr_disable(struct adapter *adapter)
2683 {
2684 	u32 pf = G_SOURCEPF(t4_read_reg(adapter, A_PL_WHOAMI));
2685 
2686 	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
2687 	t4_set_reg_field(adapter, A_PL_INT_MAP0, 1 << pf, 0);
2688 }
2689 
2690 /**
2691  *	t4_intr_clear - clear all interrupts
2692  *	@adapter: the adapter whose interrupts should be cleared
2693  *
2694  *	Clears all interrupts.  The caller must be a PCI function managing
2695  *	global interrupts.
2696  */
2697 void t4_intr_clear(struct adapter *adapter)
2698 {
2699 	static const unsigned int cause_reg[] = {
2700 		A_SGE_INT_CAUSE1, A_SGE_INT_CAUSE2, A_SGE_INT_CAUSE3,
2701 		A_PCIE_NONFAT_ERR, A_PCIE_INT_CAUSE,
2702 		A_MA_INT_WRAP_STATUS, A_MA_PARITY_ERROR_STATUS1, A_MA_INT_CAUSE,
2703 		A_EDC_INT_CAUSE, EDC_REG(A_EDC_INT_CAUSE, 1),
2704 		A_CIM_HOST_INT_CAUSE, A_CIM_HOST_UPACC_INT_CAUSE,
2705 		MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
2706 		A_TP_INT_CAUSE,
2707 		A_ULP_RX_INT_CAUSE, A_ULP_TX_INT_CAUSE,
2708 		A_PM_RX_INT_CAUSE, A_PM_TX_INT_CAUSE,
2709 		A_MPS_RX_PERR_INT_CAUSE,
2710 		A_CPL_INTR_CAUSE,
2711 		MYPF_REG(A_PL_PF_INT_CAUSE),
2712 		A_PL_PL_INT_CAUSE,
2713 		A_LE_DB_INT_CAUSE,
2714 	};
2715 
2716 	unsigned int i;
2717 
2718 	for (i = 0; i < ARRAY_SIZE(cause_reg); ++i)
2719 		t4_write_reg(adapter, cause_reg[i], 0xffffffff);
2720 
2721 	t4_write_reg(adapter, is_t4(adapter) ? A_MC_INT_CAUSE :
2722 				A_MC_P_INT_CAUSE, 0xffffffff);
2723 
2724 	if (is_t4(adapter)) {
2725 		t4_write_reg(adapter, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
2726 				0xffffffff);
2727 		t4_write_reg(adapter, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
2728 				0xffffffff);
2729 	} else
2730 		t4_write_reg(adapter, A_MA_PARITY_ERROR_STATUS2, 0xffffffff);
2731 
2732 	t4_write_reg(adapter, A_PL_INT_CAUSE, GLBL_INTR_MASK);
2733 	(void) t4_read_reg(adapter, A_PL_INT_CAUSE);          /* flush */
2734 }
2735 
2736 /**
2737  *	hash_mac_addr - return the hash value of a MAC address
2738  *	@addr: the 48-bit Ethernet MAC address
2739  *
2740  *	Hashes a MAC address according to the hash function used by HW inexact
2741  *	(hash) address matching.
2742  */
2743 static int hash_mac_addr(const u8 *addr)
2744 {
2745 	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
2746 	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
2747 	a ^= b;
2748 	a ^= (a >> 12);
2749 	a ^= (a >> 6);
2750 	return a & 0x3f;
2751 }
2752 
2753 /**
2754  *	t4_config_rss_range - configure a portion of the RSS mapping table
2755  *	@adapter: the adapter
2756  *	@mbox: mbox to use for the FW command
2757  *	@viid: virtual interface whose RSS subtable is to be written
2758  *	@start: start entry in the table to write
2759  *	@n: how many table entries to write
2760  *	@rspq: values for the "response queue" (Ingress Queue) lookup table
2761  *	@nrspq: number of values in @rspq
2762  *
2763  *	Programs the selected part of the VI's RSS mapping table with the
2764  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
2765  *	until the full table range is populated.
2766  *
2767  *	The caller must ensure the values in @rspq are in the range allowed for
2768  *	@viid.
2769  */
2770 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
2771 			int start, int n, const u16 *rspq, unsigned int nrspq)
2772 {
2773 	int ret;
2774 	const u16 *rsp = rspq;
2775 	const u16 *rsp_end = rspq + nrspq;
2776 	struct fw_rss_ind_tbl_cmd cmd;
2777 
2778 	memset(&cmd, 0, sizeof(cmd));
2779 	cmd.op_to_viid = htonl(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
2780 			       F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
2781 			       V_FW_RSS_IND_TBL_CMD_VIID(viid));
2782 	cmd.retval_len16 = htonl(FW_LEN16(cmd));
2783 
2784 
2785 	/*
2786 	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
2787 	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
2788 	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
2789 	 * reserved.
2790 	 */
2791 	while (n > 0) {
2792 		int nq = min(n, 32);
2793 		int nq_packed = 0;
2794 		__be32 *qp = &cmd.iq0_to_iq2;
2795 
2796 		/*
2797 		 * Set up the firmware RSS command header to send the next
2798 		 * "nq" Ingress Queue IDs to the firmware.
2799 		 */
2800 		cmd.niqid = htons(nq);
2801 		cmd.startidx = htons(start);
2802 
2803 		/*
2804 		 * "nq" more done for the start of the next loop.
2805 		 */
2806 		start += nq;
2807 		n -= nq;
2808 
2809 		/*
2810 		 * While there are still Ingress Queue IDs to stuff into the
2811 		 * current firmware RSS command, retrieve them from the
2812 		 * Ingress Queue ID array and insert them into the command.
2813 		 */
2814 		while (nq > 0) {
2815 			/*
2816 			 * Grab up to the next 3 Ingress Queue IDs (wrapping
2817 			 * around the Ingress Queue ID array if necessary) and
2818 			 * insert them into the firmware RSS command at the
2819 			 * current 3-tuple position within the commad.
2820 			 */
2821 			u16 qbuf[3];
2822 			u16 *qbp = qbuf;
2823 			int nqbuf = min(3, nq);
2824 
2825 			nq -= nqbuf;
2826 			qbuf[0] = qbuf[1] = qbuf[2] = 0;
2827 			while (nqbuf && nq_packed < 32) {
2828 				nqbuf--;
2829 				nq_packed++;
2830 				*qbp++ = *rsp++;
2831 				if (rsp >= rsp_end)
2832 					rsp = rspq;
2833 			}
2834 			*qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
2835 					    V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
2836 					    V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
2837 		}
2838 
2839 		/*
2840 		 * Send this portion of the RRS table update to the firmware;
2841 		 * bail out on any errors.
2842 		 */
2843 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
2844 		if (ret)
2845 			return ret;
2846 	}
2847 
2848 	return 0;
2849 }
2850 
2851 /**
2852  *	t4_config_glbl_rss - configure the global RSS mode
2853  *	@adapter: the adapter
2854  *	@mbox: mbox to use for the FW command
2855  *	@mode: global RSS mode
2856  *	@flags: mode-specific flags
2857  *
2858  *	Sets the global RSS mode.
2859  */
2860 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
2861 		       unsigned int flags)
2862 {
2863 	struct fw_rss_glb_config_cmd c;
2864 
2865 	memset(&c, 0, sizeof(c));
2866 	c.op_to_write = htonl(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
2867 			      F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
2868 	c.retval_len16 = htonl(FW_LEN16(c));
2869 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
2870 		c.u.manual.mode_pkd = htonl(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
2871 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
2872 		c.u.basicvirtual.mode_pkd =
2873 			htonl(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
2874 		c.u.basicvirtual.synmapen_to_hashtoeplitz = htonl(flags);
2875 	} else
2876 		return -EINVAL;
2877 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
2878 }
2879 
2880 /**
2881  *	t4_config_vi_rss - configure per VI RSS settings
2882  *	@adapter: the adapter
2883  *	@mbox: mbox to use for the FW command
2884  *	@viid: the VI id
2885  *	@flags: RSS flags
2886  *	@defq: id of the default RSS queue for the VI.
2887  *
2888  *	Configures VI-specific RSS properties.
2889  */
2890 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
2891 		     unsigned int flags, unsigned int defq)
2892 {
2893 	struct fw_rss_vi_config_cmd c;
2894 
2895 	memset(&c, 0, sizeof(c));
2896 	c.op_to_viid = htonl(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
2897 			     F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
2898 			     V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
2899 	c.retval_len16 = htonl(FW_LEN16(c));
2900 	c.u.basicvirtual.defaultq_to_udpen = htonl(flags |
2901 					V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
2902 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
2903 }
2904 
2905 /* Read an RSS table row */
2906 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
2907 {
2908 	t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
2909 	return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
2910 				   5, 0, val);
2911 }
2912 
2913 /**
2914  *	t4_read_rss - read the contents of the RSS mapping table
2915  *	@adapter: the adapter
2916  *	@map: holds the contents of the RSS mapping table
2917  *
2918  *	Reads the contents of the RSS hash->queue mapping table.
2919  */
2920 int t4_read_rss(struct adapter *adapter, u16 *map)
2921 {
2922 	u32 val;
2923 	int i, ret;
2924 
2925 	for (i = 0; i < RSS_NENTRIES / 2; ++i) {
2926 		ret = rd_rss_row(adapter, i, &val);
2927 		if (ret)
2928 			return ret;
2929 		*map++ = G_LKPTBLQUEUE0(val);
2930 		*map++ = G_LKPTBLQUEUE1(val);
2931 	}
2932 	return 0;
2933 }
2934 
2935 /**
2936  *	t4_read_rss_key - read the global RSS key
2937  *	@adap: the adapter
2938  *	@key: 10-entry array holding the 320-bit RSS key
2939  *
2940  *	Reads the global 320-bit RSS key.
2941  */
2942 void t4_read_rss_key(struct adapter *adap, u32 *key)
2943 {
2944 	t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, key, 10,
2945 			 A_TP_RSS_SECRET_KEY0);
2946 }
2947 
2948 /**
2949  *	t4_write_rss_key - program one of the RSS keys
2950  *	@adap: the adapter
2951  *	@key: 10-entry array holding the 320-bit RSS key
2952  *	@idx: which RSS key to write
2953  *
2954  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
2955  *	0..15 the corresponding entry in the RSS key table is written,
2956  *	otherwise the global RSS key is written.
2957  */
2958 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx)
2959 {
2960 	t4_write_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, key, 10,
2961 			  A_TP_RSS_SECRET_KEY0);
2962 	if (idx >= 0 && idx < 16)
2963 		t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
2964 			     V_KEYWRADDR(idx) | F_KEYWREN);
2965 }
2966 
2967 /**
2968  *	t4_read_rss_pf_config - read PF RSS Configuration Table
2969  *	@adapter: the adapter
2970  *	@index: the entry in the PF RSS table to read
2971  *	@valp: where to store the returned value
2972  *
2973  *	Reads the PF RSS Configuration Table at the specified index and returns
2974  *	the value found there.
2975  */
2976 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index, u32 *valp)
2977 {
2978 	t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
2979 			 valp, 1, A_TP_RSS_PF0_CONFIG + index);
2980 }
2981 
2982 /**
2983  *	t4_write_rss_pf_config - write PF RSS Configuration Table
2984  *	@adapter: the adapter
2985  *	@index: the entry in the VF RSS table to read
2986  *	@val: the value to store
2987  *
2988  *	Writes the PF RSS Configuration Table at the specified index with the
2989  *	specified value.
2990  */
2991 void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index, u32 val)
2992 {
2993 	t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
2994 			  &val, 1, A_TP_RSS_PF0_CONFIG + index);
2995 }
2996 
2997 /**
2998  *	t4_read_rss_vf_config - read VF RSS Configuration Table
2999  *	@adapter: the adapter
3000  *	@index: the entry in the VF RSS table to read
3001  *	@vfl: where to store the returned VFL
3002  *	@vfh: where to store the returned VFH
3003  *
3004  *	Reads the VF RSS Configuration Table at the specified index and returns
3005  *	the (VFL, VFH) values found there.
3006  */
3007 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
3008 			   u32 *vfl, u32 *vfh)
3009 {
3010 	u32 vrt;
3011 
3012 	/*
3013 	 * Request that the index'th VF Table values be read into VFL/VFH.
3014 	 */
3015 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
3016 	vrt &= ~(F_VFRDRG | V_VFWRADDR(M_VFWRADDR) | F_VFWREN | F_KEYWREN);
3017 	vrt |= V_VFWRADDR(index) | F_VFRDEN;
3018 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
3019 
3020 	/*
3021 	 * Grab the VFL/VFH values ...
3022 	 */
3023 	t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
3024 			 vfl, 1, A_TP_RSS_VFL_CONFIG);
3025 	t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
3026 			 vfh, 1, A_TP_RSS_VFH_CONFIG);
3027 }
3028 
3029 /**
3030  *	t4_write_rss_vf_config - write VF RSS Configuration Table
3031  *
3032  *	@adapter: the adapter
3033  *	@index: the entry in the VF RSS table to write
3034  *	@vfl: the VFL to store
3035  *	@vfh: the VFH to store
3036  *
3037  *	Writes the VF RSS Configuration Table at the specified index with the
3038  *	specified (VFL, VFH) values.
3039  */
3040 void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
3041 			    u32 vfl, u32 vfh)
3042 {
3043 	u32 vrt;
3044 
3045 	/*
3046 	 * Load up VFL/VFH with the values to be written ...
3047 	 */
3048 	t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
3049 			  &vfl, 1, A_TP_RSS_VFL_CONFIG);
3050 	t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
3051 			  &vfh, 1, A_TP_RSS_VFH_CONFIG);
3052 
3053 	/*
3054 	 * Write the VFL/VFH into the VF Table at index'th location.
3055 	 */
3056 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
3057 	vrt &= ~(F_VFRDRG | F_VFRDEN | V_VFWRADDR(M_VFWRADDR) | F_KEYWREN);
3058 	vrt |= V_VFWRADDR(index) | F_VFWREN;
3059 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
3060 }
3061 
3062 /**
3063  *	t4_read_rss_pf_map - read PF RSS Map
3064  *	@adapter: the adapter
3065  *
3066  *	Reads the PF RSS Map register and returns its value.
3067  */
3068 u32 t4_read_rss_pf_map(struct adapter *adapter)
3069 {
3070 	u32 pfmap;
3071 
3072 	t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
3073 			 &pfmap, 1, A_TP_RSS_PF_MAP);
3074 	return pfmap;
3075 }
3076 
3077 /**
3078  *	t4_write_rss_pf_map - write PF RSS Map
3079  *	@adapter: the adapter
3080  *	@pfmap: PF RSS Map value
3081  *
3082  *	Writes the specified value to the PF RSS Map register.
3083  */
3084 void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap)
3085 {
3086 	t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
3087 			  &pfmap, 1, A_TP_RSS_PF_MAP);
3088 }
3089 
3090 /**
3091  *	t4_read_rss_pf_mask - read PF RSS Mask
3092  *	@adapter: the adapter
3093  *
3094  *	Reads the PF RSS Mask register and returns its value.
3095  */
3096 u32 t4_read_rss_pf_mask(struct adapter *adapter)
3097 {
3098 	u32 pfmask;
3099 
3100 	t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
3101 			 &pfmask, 1, A_TP_RSS_PF_MSK);
3102 	return pfmask;
3103 }
3104 
3105 /**
3106  *	t4_write_rss_pf_mask - write PF RSS Mask
3107  *	@adapter: the adapter
3108  *	@pfmask: PF RSS Mask value
3109  *
3110  *	Writes the specified value to the PF RSS Mask register.
3111  */
3112 void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask)
3113 {
3114 	t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
3115 			  &pfmask, 1, A_TP_RSS_PF_MSK);
3116 }
3117 
3118 static void refresh_vlan_pri_map(struct adapter *adap)
3119 {
3120 
3121         t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
3122                          &adap->params.tp.vlan_pri_map, 1,
3123                          A_TP_VLAN_PRI_MAP);
3124 
3125 	/*
3126 	 * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
3127 	 * shift positions of several elements of the Compressed Filter Tuple
3128 	 * for this adapter which we need frequently ...
3129 	 */
3130 	adap->params.tp.vlan_shift = t4_filter_field_shift(adap, F_VLAN);
3131 	adap->params.tp.vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
3132 	adap->params.tp.port_shift = t4_filter_field_shift(adap, F_PORT);
3133 	adap->params.tp.protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
3134 
3135 	/*
3136 	 * If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
3137 	 * represents the presense of an Outer VLAN instead of a VNIC ID.
3138 	 */
3139 	if ((adap->params.tp.ingress_config & F_VNIC) == 0)
3140 		adap->params.tp.vnic_shift = -1;
3141 }
3142 
3143 /**
3144  *	t4_set_filter_mode - configure the optional components of filter tuples
3145  *	@adap: the adapter
3146  *	@mode_map: a bitmap selcting which optional filter components to enable
3147  *
3148  *	Sets the filter mode by selecting the optional components to enable
3149  *	in filter tuples.  Returns 0 on success and a negative error if the
3150  *	requested mode needs more bits than are available for optional
3151  *	components.
3152  */
3153 int t4_set_filter_mode(struct adapter *adap, unsigned int mode_map)
3154 {
3155 	static u8 width[] = { 1, 3, 17, 17, 8, 8, 16, 9, 3, 1 };
3156 
3157 	int i, nbits = 0;
3158 
3159 	for (i = S_FCOE; i <= S_FRAGMENTATION; i++)
3160 		if (mode_map & (1 << i))
3161 			nbits += width[i];
3162 	if (nbits > FILTER_OPT_LEN)
3163 		return -EINVAL;
3164 	t4_write_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, &mode_map, 1,
3165 			  A_TP_VLAN_PRI_MAP);
3166 	refresh_vlan_pri_map(adap);
3167 
3168 	return 0;
3169 }
3170 
3171 /**
3172  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
3173  *	@adap: the adapter
3174  *	@v4: holds the TCP/IP counter values
3175  *	@v6: holds the TCP/IPv6 counter values
3176  *
3177  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
3178  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
3179  */
3180 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
3181 			 struct tp_tcp_stats *v6)
3182 {
3183 	u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
3184 
3185 #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
3186 #define STAT(x)     val[STAT_IDX(x)]
3187 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
3188 
3189 	if (v4) {
3190 		t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val,
3191 				 ARRAY_SIZE(val), A_TP_MIB_TCP_OUT_RST);
3192 		v4->tcpOutRsts = STAT(OUT_RST);
3193 		v4->tcpInSegs  = STAT64(IN_SEG);
3194 		v4->tcpOutSegs = STAT64(OUT_SEG);
3195 		v4->tcpRetransSegs = STAT64(RXT_SEG);
3196 	}
3197 	if (v6) {
3198 		t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val,
3199 				 ARRAY_SIZE(val), A_TP_MIB_TCP_V6OUT_RST);
3200 		v6->tcpOutRsts = STAT(OUT_RST);
3201 		v6->tcpInSegs  = STAT64(IN_SEG);
3202 		v6->tcpOutSegs = STAT64(OUT_SEG);
3203 		v6->tcpRetransSegs = STAT64(RXT_SEG);
3204 	}
3205 #undef STAT64
3206 #undef STAT
3207 #undef STAT_IDX
3208 }
3209 
3210 /**
3211  *	t4_tp_get_err_stats - read TP's error MIB counters
3212  *	@adap: the adapter
3213  *	@st: holds the counter values
3214  *
3215  *	Returns the values of TP's error counters.
3216  */
3217 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
3218 {
3219 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->macInErrs,
3220 			 12, A_TP_MIB_MAC_IN_ERR_0);
3221 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->tnlCongDrops,
3222 			 8, A_TP_MIB_TNL_CNG_DROP_0);
3223 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->tnlTxDrops,
3224 			 4, A_TP_MIB_TNL_DROP_0);
3225 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->ofldVlanDrops,
3226 			 4, A_TP_MIB_OFD_VLN_DROP_0);
3227 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->tcp6InErrs,
3228 			 4, A_TP_MIB_TCP_V6IN_ERR_0);
3229 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->ofldNoNeigh,
3230 			 2, A_TP_MIB_OFD_ARP_DROP);
3231 }
3232 
3233 /**
3234  *	t4_tp_get_proxy_stats - read TP's proxy MIB counters
3235  *	@adap: the adapter
3236  *	@st: holds the counter values
3237  *
3238  *	Returns the values of TP's proxy counters.
3239  */
3240 void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st)
3241 {
3242 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->proxy,
3243 			 4, A_TP_MIB_TNL_LPBK_0);
3244 }
3245 
3246 /**
3247  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
3248  *	@adap: the adapter
3249  *	@st: holds the counter values
3250  *
3251  *	Returns the values of TP's CPL counters.
3252  */
3253 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st)
3254 {
3255 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->req,
3256 			 8, A_TP_MIB_CPL_IN_REQ_0);
3257 }
3258 
3259 /**
3260  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
3261  *	@adap: the adapter
3262  *	@st: holds the counter values
3263  *
3264  *	Returns the values of TP's RDMA counters.
3265  */
3266 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st)
3267 {
3268 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->rqe_dfr_mod,
3269 			 2, A_TP_MIB_RQE_DFR_MOD);
3270 }
3271 
3272 /**
3273  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
3274  *	@adap: the adapter
3275  *	@idx: the port index
3276  *	@st: holds the counter values
3277  *
3278  *	Returns the values of TP's FCoE counters for the selected port.
3279  */
3280 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
3281 		       struct tp_fcoe_stats *st)
3282 {
3283 	u32 val[2];
3284 
3285 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->framesDDP,
3286 			 1, A_TP_MIB_FCOE_DDP_0 + idx);
3287 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->framesDrop,
3288 			 1, A_TP_MIB_FCOE_DROP_0 + idx);
3289 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val,
3290 			 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx);
3291 	st->octetsDDP = ((u64)val[0] << 32) | val[1];
3292 }
3293 
3294 /**
3295  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
3296  *	@adap: the adapter
3297  *	@st: holds the counter values
3298  *
3299  *	Returns the values of TP's counters for non-TCP directly-placed packets.
3300  */
3301 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st)
3302 {
3303 	u32 val[4];
3304 
3305 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val, 4,
3306 			 A_TP_MIB_USM_PKTS);
3307 	st->frames = val[0];
3308 	st->drops = val[1];
3309 	st->octets = ((u64)val[2] << 32) | val[3];
3310 }
3311 
3312 /**
3313  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
3314  *	@adap: the adapter
3315  *	@mtus: where to store the MTU values
3316  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
3317  *
3318  *	Reads the HW path MTU table.
3319  */
3320 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
3321 {
3322 	u32 v;
3323 	int i;
3324 
3325 	for (i = 0; i < NMTUS; ++i) {
3326 		t4_write_reg(adap, A_TP_MTU_TABLE,
3327 			     V_MTUINDEX(0xff) | V_MTUVALUE(i));
3328 		v = t4_read_reg(adap, A_TP_MTU_TABLE);
3329 		mtus[i] = G_MTUVALUE(v);
3330 		if (mtu_log)
3331 			mtu_log[i] = G_MTUWIDTH(v);
3332 	}
3333 }
3334 
3335 /**
3336  *	t4_read_cong_tbl - reads the congestion control table
3337  *	@adap: the adapter
3338  *	@incr: where to store the alpha values
3339  *
3340  *	Reads the additive increments programmed into the HW congestion
3341  *	control table.
3342  */
3343 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
3344 {
3345 	unsigned int mtu, w;
3346 
3347 	for (mtu = 0; mtu < NMTUS; ++mtu)
3348 		for (w = 0; w < NCCTRL_WIN; ++w) {
3349 			t4_write_reg(adap, A_TP_CCTRL_TABLE,
3350 				     V_ROWINDEX(0xffff) | (mtu << 5) | w);
3351 			incr[mtu][w] = (u16)t4_read_reg(adap,
3352 						A_TP_CCTRL_TABLE) & 0x1fff;
3353 		}
3354 }
3355 
3356 /**
3357  *	t4_read_pace_tbl - read the pace table
3358  *	@adap: the adapter
3359  *	@pace_vals: holds the returned values
3360  *
3361  *	Returns the values of TP's pace table in microseconds.
3362  */
3363 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
3364 {
3365 	unsigned int i, v;
3366 
3367 	for (i = 0; i < NTX_SCHED; i++) {
3368 		t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
3369 		v = t4_read_reg(adap, A_TP_PACE_TABLE);
3370 		pace_vals[i] = dack_ticks_to_usec(adap, v);
3371 	}
3372 }
3373 
3374 /**
3375  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
3376  *	@adap: the adapter
3377  *	@addr: the indirect TP register address
3378  *	@mask: specifies the field within the register to modify
3379  *	@val: new value for the field
3380  *
3381  *	Sets a field of an indirect TP register to the given value.
3382  */
3383 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
3384 			    unsigned int mask, unsigned int val)
3385 {
3386 	t4_write_reg(adap, A_TP_PIO_ADDR, addr);
3387 	val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
3388 	t4_write_reg(adap, A_TP_PIO_DATA, val);
3389 }
3390 
3391 /**
3392  *	init_cong_ctrl - initialize congestion control parameters
3393  *	@a: the alpha values for congestion control
3394  *	@b: the beta values for congestion control
3395  *
3396  *	Initialize the congestion control parameters.
3397  */
3398 static void __devinit init_cong_ctrl(unsigned short *a, unsigned short *b)
3399 {
3400 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
3401 	a[9] = 2;
3402 	a[10] = 3;
3403 	a[11] = 4;
3404 	a[12] = 5;
3405 	a[13] = 6;
3406 	a[14] = 7;
3407 	a[15] = 8;
3408 	a[16] = 9;
3409 	a[17] = 10;
3410 	a[18] = 14;
3411 	a[19] = 17;
3412 	a[20] = 21;
3413 	a[21] = 25;
3414 	a[22] = 30;
3415 	a[23] = 35;
3416 	a[24] = 45;
3417 	a[25] = 60;
3418 	a[26] = 80;
3419 	a[27] = 100;
3420 	a[28] = 200;
3421 	a[29] = 300;
3422 	a[30] = 400;
3423 	a[31] = 500;
3424 
3425 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
3426 	b[9] = b[10] = 1;
3427 	b[11] = b[12] = 2;
3428 	b[13] = b[14] = b[15] = b[16] = 3;
3429 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
3430 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
3431 	b[28] = b[29] = 6;
3432 	b[30] = b[31] = 7;
3433 }
3434 
3435 /* The minimum additive increment value for the congestion control table */
3436 #define CC_MIN_INCR 2U
3437 
3438 /**
3439  *	t4_load_mtus - write the MTU and congestion control HW tables
3440  *	@adap: the adapter
3441  *	@mtus: the values for the MTU table
3442  *	@alpha: the values for the congestion control alpha parameter
3443  *	@beta: the values for the congestion control beta parameter
3444  *
3445  *	Write the HW MTU table with the supplied MTUs and the high-speed
3446  *	congestion control table with the supplied alpha, beta, and MTUs.
3447  *	We write the two tables together because the additive increments
3448  *	depend on the MTUs.
3449  */
3450 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
3451 		  const unsigned short *alpha, const unsigned short *beta)
3452 {
3453 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
3454 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
3455 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
3456 		28672, 40960, 57344, 81920, 114688, 163840, 229376
3457 	};
3458 
3459 	unsigned int i, w;
3460 
3461 	for (i = 0; i < NMTUS; ++i) {
3462 		unsigned int mtu = mtus[i];
3463 		unsigned int log2 = fls(mtu);
3464 
3465 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
3466 			log2--;
3467 		t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
3468 			     V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
3469 
3470 		for (w = 0; w < NCCTRL_WIN; ++w) {
3471 			unsigned int inc;
3472 
3473 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
3474 				  CC_MIN_INCR);
3475 
3476 			t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
3477 				     (w << 16) | (beta[w] << 13) | inc);
3478 		}
3479 	}
3480 }
3481 
3482 /**
3483  *	t4_set_pace_tbl - set the pace table
3484  *	@adap: the adapter
3485  *	@pace_vals: the pace values in microseconds
3486  *	@start: index of the first entry in the HW pace table to set
3487  *	@n: how many entries to set
3488  *
3489  *	Sets (a subset of the) HW pace table.
3490  */
3491 int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
3492 		     unsigned int start, unsigned int n)
3493 {
3494 	unsigned int vals[NTX_SCHED], i;
3495 	unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
3496 
3497 	if (n > NTX_SCHED)
3498 	    return -ERANGE;
3499 
3500 	/* convert values from us to dack ticks, rounding to closest value */
3501 	for (i = 0; i < n; i++, pace_vals++) {
3502 		vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
3503 		if (vals[i] > 0x7ff)
3504 			return -ERANGE;
3505 		if (*pace_vals && vals[i] == 0)
3506 			return -ERANGE;
3507 	}
3508 	for (i = 0; i < n; i++, start++)
3509 		t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
3510 	return 0;
3511 }
3512 
3513 /**
3514  *	t4_set_sched_bps - set the bit rate for a HW traffic scheduler
3515  *	@adap: the adapter
3516  *	@kbps: target rate in Kbps
3517  *	@sched: the scheduler index
3518  *
3519  *	Configure a Tx HW scheduler for the target rate.
3520  */
3521 int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
3522 {
3523 	unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
3524 	unsigned int clk = adap->params.vpd.cclk * 1000;
3525 	unsigned int selected_cpt = 0, selected_bpt = 0;
3526 
3527 	if (kbps > 0) {
3528 		kbps *= 125;     /* -> bytes */
3529 		for (cpt = 1; cpt <= 255; cpt++) {
3530 			tps = clk / cpt;
3531 			bpt = (kbps + tps / 2) / tps;
3532 			if (bpt > 0 && bpt <= 255) {
3533 				v = bpt * tps;
3534 				delta = v >= kbps ? v - kbps : kbps - v;
3535 				if (delta < mindelta) {
3536 					mindelta = delta;
3537 					selected_cpt = cpt;
3538 					selected_bpt = bpt;
3539 				}
3540 			} else if (selected_cpt)
3541 				break;
3542 		}
3543 		if (!selected_cpt)
3544 			return -EINVAL;
3545 	}
3546 	t4_write_reg(adap, A_TP_TM_PIO_ADDR,
3547 		     A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
3548 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
3549 	if (sched & 1)
3550 		v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
3551 	else
3552 		v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
3553 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
3554 	return 0;
3555 }
3556 
3557 /**
3558  *	t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
3559  *	@adap: the adapter
3560  *	@sched: the scheduler index
3561  *	@ipg: the interpacket delay in tenths of nanoseconds
3562  *
3563  *	Set the interpacket delay for a HW packet rate scheduler.
3564  */
3565 int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
3566 {
3567 	unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
3568 
3569 	/* convert ipg to nearest number of core clocks */
3570 	ipg *= core_ticks_per_usec(adap);
3571 	ipg = (ipg + 5000) / 10000;
3572 	if (ipg > M_TXTIMERSEPQ0)
3573 		return -EINVAL;
3574 
3575 	t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
3576 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
3577 	if (sched & 1)
3578 		v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
3579 	else
3580 		v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
3581 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
3582 	t4_read_reg(adap, A_TP_TM_PIO_DATA);
3583 	return 0;
3584 }
3585 
3586 /**
3587  *	t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
3588  *	@adap: the adapter
3589  *	@sched: the scheduler index
3590  *	@kbps: the byte rate in Kbps
3591  *	@ipg: the interpacket delay in tenths of nanoseconds
3592  *
3593  *	Return the current configuration of a HW Tx scheduler.
3594  */
3595 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
3596 		     unsigned int *ipg)
3597 {
3598 	unsigned int v, addr, bpt, cpt;
3599 
3600 	if (kbps) {
3601 		addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
3602 		t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
3603 		v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
3604 		if (sched & 1)
3605 			v >>= 16;
3606 		bpt = (v >> 8) & 0xff;
3607 		cpt = v & 0xff;
3608 		if (!cpt)
3609 			*kbps = 0;        /* scheduler disabled */
3610 		else {
3611 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
3612 			*kbps = (v * bpt) / 125;
3613 		}
3614 	}
3615 	if (ipg) {
3616 		addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
3617 		t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
3618 		v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
3619 		if (sched & 1)
3620 			v >>= 16;
3621 		v &= 0xffff;
3622 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
3623 	}
3624 }
3625 
3626 /*
3627  * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
3628  * clocks.  The formula is
3629  *
3630  * bytes/s = bytes256 * 256 * ClkFreq / 4096
3631  *
3632  * which is equivalent to
3633  *
3634  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
3635  */
3636 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
3637 {
3638 	u64 v = bytes256 * adap->params.vpd.cclk;
3639 
3640 	return v * 62 + v / 2;
3641 }
3642 
3643 /**
3644  *	t4_get_chan_txrate - get the current per channel Tx rates
3645  *	@adap: the adapter
3646  *	@nic_rate: rates for NIC traffic
3647  *	@ofld_rate: rates for offloaded traffic
3648  *
3649  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
3650  *	for each channel.
3651  */
3652 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
3653 {
3654 	u32 v;
3655 
3656 	v = t4_read_reg(adap, A_TP_TX_TRATE);
3657 	nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
3658 	nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
3659 	nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
3660 	nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
3661 
3662 	v = t4_read_reg(adap, A_TP_TX_ORATE);
3663 	ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
3664 	ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
3665 	ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
3666 	ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
3667 }
3668 
3669 /**
3670  *	t4_set_trace_filter - configure one of the tracing filters
3671  *	@adap: the adapter
3672  *	@tp: the desired trace filter parameters
3673  *	@idx: which filter to configure
3674  *	@enable: whether to enable or disable the filter
3675  *
3676  *	Configures one of the tracing filters available in HW.  If @tp is %NULL
3677  *	it indicates that the filter is already written in the register and it
3678  *	just needs to be enabled or disabled.
3679  */
3680 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
3681     int idx, int enable)
3682 {
3683 	int i, ofst = idx * 4;
3684 	u32 data_reg, mask_reg, cfg;
3685 	u32 multitrc = F_TRCMULTIFILTER;
3686 	u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
3687 
3688 	if (idx < 0 || idx >= NTRACE)
3689 		return -EINVAL;
3690 
3691 	if (tp == NULL || !enable) {
3692 		t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en,
3693 		    enable ? en : 0);
3694 		return 0;
3695 	}
3696 
3697 	/*
3698 	 * TODO - After T4 data book is updated, specify the exact
3699 	 * section below.
3700 	 *
3701 	 * See T4 data book - MPS section for a complete description
3702 	 * of the below if..else handling of A_MPS_TRC_CFG register
3703 	 * value.
3704 	 */
3705 	cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
3706 	if (cfg & F_TRCMULTIFILTER) {
3707 		/*
3708 		 * If multiple tracers are enabled, then maximum
3709 		 * capture size is 2.5KB (FIFO size of a single channel)
3710 		 * minus 2 flits for CPL_TRACE_PKT header.
3711 		 */
3712 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
3713 			return -EINVAL;
3714 	} else {
3715 		/*
3716 		 * If multiple tracers are disabled, to avoid deadlocks
3717 		 * maximum packet capture size of 9600 bytes is recommended.
3718 		 * Also in this mode, only trace0 can be enabled and running.
3719 		 */
3720 		multitrc = 0;
3721 		if (tp->snap_len > 9600 || idx)
3722 			return -EINVAL;
3723 	}
3724 
3725 	if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
3726 	    tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
3727 	    tp->min_len > M_TFMINPKTSIZE)
3728 		return -EINVAL;
3729 
3730 	/* stop the tracer we'll be changing */
3731 	t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0);
3732 
3733 	idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
3734 	data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
3735 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
3736 
3737 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
3738 		t4_write_reg(adap, data_reg, tp->data[i]);
3739 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
3740 	}
3741 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
3742 		     V_TFCAPTUREMAX(tp->snap_len) |
3743 		     V_TFMINPKTSIZE(tp->min_len));
3744 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
3745 		     V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en |
3746 		     (is_t4(adap) ?
3747 		     V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
3748 		     V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
3749 
3750 	return 0;
3751 }
3752 
3753 /**
3754  *	t4_get_trace_filter - query one of the tracing filters
3755  *	@adap: the adapter
3756  *	@tp: the current trace filter parameters
3757  *	@idx: which trace filter to query
3758  *	@enabled: non-zero if the filter is enabled
3759  *
3760  *	Returns the current settings of one of the HW tracing filters.
3761  */
3762 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
3763 			 int *enabled)
3764 {
3765 	u32 ctla, ctlb;
3766 	int i, ofst = idx * 4;
3767 	u32 data_reg, mask_reg;
3768 
3769 	ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
3770 	ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
3771 
3772 	if (is_t4(adap)) {
3773 		*enabled = !!(ctla & F_TFEN);
3774 		tp->port =  G_TFPORT(ctla);
3775 		tp->invert = !!(ctla & F_TFINVERTMATCH);
3776 	} else {
3777 		*enabled = !!(ctla & F_T5_TFEN);
3778 		tp->port = G_T5_TFPORT(ctla);
3779 		tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
3780 	}
3781 	tp->snap_len = G_TFCAPTUREMAX(ctlb);
3782 	tp->min_len = G_TFMINPKTSIZE(ctlb);
3783 	tp->skip_ofst = G_TFOFFSET(ctla);
3784 	tp->skip_len = G_TFLENGTH(ctla);
3785 
3786 	ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
3787 	data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
3788 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
3789 
3790 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
3791 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
3792 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
3793 	}
3794 }
3795 
3796 /**
3797  *	t4_pmtx_get_stats - returns the HW stats from PMTX
3798  *	@adap: the adapter
3799  *	@cnt: where to store the count statistics
3800  *	@cycles: where to store the cycle statistics
3801  *
3802  *	Returns performance statistics from PMTX.
3803  */
3804 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
3805 {
3806 	int i;
3807 	u32 data[2];
3808 
3809 	for (i = 0; i < PM_NSTATS; i++) {
3810 		t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
3811 		cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
3812 		if (is_t4(adap))
3813 			cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
3814 		else {
3815 			t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
3816 					 A_PM_TX_DBG_DATA, data, 2,
3817 					 A_PM_TX_DBG_STAT_MSB);
3818 			cycles[i] = (((u64)data[0] << 32) | data[1]);
3819 		}
3820 	}
3821 }
3822 
3823 /**
3824  *	t4_pmrx_get_stats - returns the HW stats from PMRX
3825  *	@adap: the adapter
3826  *	@cnt: where to store the count statistics
3827  *	@cycles: where to store the cycle statistics
3828  *
3829  *	Returns performance statistics from PMRX.
3830  */
3831 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
3832 {
3833 	int i;
3834 	u32 data[2];
3835 
3836 	for (i = 0; i < PM_NSTATS; i++) {
3837 		t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
3838 		cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
3839 		if (is_t4(adap))
3840 			cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
3841 		else {
3842 			t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
3843 					 A_PM_RX_DBG_DATA, data, 2,
3844 					 A_PM_RX_DBG_STAT_MSB);
3845 			cycles[i] = (((u64)data[0] << 32) | data[1]);
3846 		}
3847 	}
3848 }
3849 
3850 /**
3851  *	get_mps_bg_map - return the buffer groups associated with a port
3852  *	@adap: the adapter
3853  *	@idx: the port index
3854  *
3855  *	Returns a bitmap indicating which MPS buffer groups are associated
3856  *	with the given port.  Bit i is set if buffer group i is used by the
3857  *	port.
3858  */
3859 static unsigned int get_mps_bg_map(struct adapter *adap, int idx)
3860 {
3861 	u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
3862 
3863 	if (n == 0)
3864 		return idx == 0 ? 0xf : 0;
3865 	if (n == 1)
3866 		return idx < 2 ? (3 << (2 * idx)) : 0;
3867 	return 1 << idx;
3868 }
3869 
3870 /**
3871  *      t4_get_port_stats_offset - collect port stats relative to a previous
3872  *                                 snapshot
3873  *      @adap: The adapter
3874  *      @idx: The port
3875  *      @stats: Current stats to fill
3876  *      @offset: Previous stats snapshot
3877  */
3878 void t4_get_port_stats_offset(struct adapter *adap, int idx,
3879 		struct port_stats *stats,
3880 		struct port_stats *offset)
3881 {
3882 	u64 *s, *o;
3883 	int i;
3884 
3885 	t4_get_port_stats(adap, idx, stats);
3886 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
3887 			i < (sizeof(struct port_stats)/sizeof(u64)) ;
3888 			i++, s++, o++)
3889 		*s -= *o;
3890 }
3891 
3892 /**
3893  *	t4_get_port_stats - collect port statistics
3894  *	@adap: the adapter
3895  *	@idx: the port index
3896  *	@p: the stats structure to fill
3897  *
3898  *	Collect statistics related to the given port from HW.
3899  */
3900 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
3901 {
3902 	u32 bgmap = get_mps_bg_map(adap, idx);
3903 
3904 #define GET_STAT(name) \
3905 	t4_read_reg64(adap, \
3906 	(is_t4(adap) ? PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) : \
3907 	T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
3908 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
3909 
3910 	p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
3911 	p->tx_octets           = GET_STAT(TX_PORT_BYTES);
3912 	p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
3913 	p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
3914 	p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
3915 	p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
3916 	p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
3917 	p->tx_frames_64        = GET_STAT(TX_PORT_64B);
3918 	p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
3919 	p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
3920 	p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
3921 	p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
3922 	p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
3923 	p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
3924 	p->tx_drop             = GET_STAT(TX_PORT_DROP);
3925 	p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
3926 	p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
3927 	p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
3928 	p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
3929 	p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
3930 	p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
3931 	p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
3932 	p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
3933 
3934 	p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
3935 	p->rx_octets           = GET_STAT(RX_PORT_BYTES);
3936 	p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
3937 	p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
3938 	p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
3939 	p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
3940 	p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
3941 	p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
3942 	p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
3943 	p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
3944 	p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
3945 	p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
3946 	p->rx_frames_64        = GET_STAT(RX_PORT_64B);
3947 	p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
3948 	p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
3949 	p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
3950 	p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
3951 	p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
3952 	p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
3953 	p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
3954 	p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
3955 	p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
3956 	p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
3957 	p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
3958 	p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
3959 	p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
3960 	p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
3961 
3962 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
3963 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
3964 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
3965 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
3966 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
3967 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
3968 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
3969 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
3970 
3971 #undef GET_STAT
3972 #undef GET_STAT_COM
3973 }
3974 
3975 /**
3976  *	t4_clr_port_stats - clear port statistics
3977  *	@adap: the adapter
3978  *	@idx: the port index
3979  *
3980  *	Clear HW statistics for the given port.
3981  */
3982 void t4_clr_port_stats(struct adapter *adap, int idx)
3983 {
3984 	unsigned int i;
3985 	u32 bgmap = get_mps_bg_map(adap, idx);
3986 	u32 port_base_addr;
3987 
3988 	if (is_t4(adap))
3989 		port_base_addr = PORT_BASE(idx);
3990 	else
3991 		port_base_addr = T5_PORT_BASE(idx);
3992 
3993 	for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
3994 			i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
3995 		t4_write_reg(adap, port_base_addr + i, 0);
3996 	for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
3997 			i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
3998 		t4_write_reg(adap, port_base_addr + i, 0);
3999 	for (i = 0; i < 4; i++)
4000 		if (bgmap & (1 << i)) {
4001 			t4_write_reg(adap,
4002 				A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
4003 			t4_write_reg(adap,
4004 				A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
4005 		}
4006 }
4007 
4008 /**
4009  *	t4_get_lb_stats - collect loopback port statistics
4010  *	@adap: the adapter
4011  *	@idx: the loopback port index
4012  *	@p: the stats structure to fill
4013  *
4014  *	Return HW statistics for the given loopback port.
4015  */
4016 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
4017 {
4018 	u32 bgmap = get_mps_bg_map(adap, idx);
4019 
4020 #define GET_STAT(name) \
4021 	t4_read_reg64(adap, \
4022 	(is_t4(adap) ? \
4023 	PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \
4024 	T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L)))
4025 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
4026 
4027 	p->octets           = GET_STAT(BYTES);
4028 	p->frames           = GET_STAT(FRAMES);
4029 	p->bcast_frames     = GET_STAT(BCAST);
4030 	p->mcast_frames     = GET_STAT(MCAST);
4031 	p->ucast_frames     = GET_STAT(UCAST);
4032 	p->error_frames     = GET_STAT(ERROR);
4033 
4034 	p->frames_64        = GET_STAT(64B);
4035 	p->frames_65_127    = GET_STAT(65B_127B);
4036 	p->frames_128_255   = GET_STAT(128B_255B);
4037 	p->frames_256_511   = GET_STAT(256B_511B);
4038 	p->frames_512_1023  = GET_STAT(512B_1023B);
4039 	p->frames_1024_1518 = GET_STAT(1024B_1518B);
4040 	p->frames_1519_max  = GET_STAT(1519B_MAX);
4041 	p->drop             = GET_STAT(DROP_FRAMES);
4042 
4043 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
4044 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
4045 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
4046 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
4047 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
4048 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
4049 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
4050 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
4051 
4052 #undef GET_STAT
4053 #undef GET_STAT_COM
4054 }
4055 
4056 /**
4057  *	t4_wol_magic_enable - enable/disable magic packet WoL
4058  *	@adap: the adapter
4059  *	@port: the physical port index
4060  *	@addr: MAC address expected in magic packets, %NULL to disable
4061  *
4062  *	Enables/disables magic packet wake-on-LAN for the selected port.
4063  */
4064 void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
4065 			 const u8 *addr)
4066 {
4067 	u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
4068 
4069 	if (is_t4(adap)) {
4070 		mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
4071 		mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
4072 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
4073 	} else {
4074 		mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
4075 		mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
4076 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
4077 	}
4078 
4079 	if (addr) {
4080 		t4_write_reg(adap, mag_id_reg_l,
4081 			     (addr[2] << 24) | (addr[3] << 16) |
4082 			     (addr[4] << 8) | addr[5]);
4083 		t4_write_reg(adap, mag_id_reg_h,
4084 			     (addr[0] << 8) | addr[1]);
4085 	}
4086 	t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
4087 			 V_MAGICEN(addr != NULL));
4088 }
4089 
4090 /**
4091  *	t4_wol_pat_enable - enable/disable pattern-based WoL
4092  *	@adap: the adapter
4093  *	@port: the physical port index
4094  *	@map: bitmap of which HW pattern filters to set
4095  *	@mask0: byte mask for bytes 0-63 of a packet
4096  *	@mask1: byte mask for bytes 64-127 of a packet
4097  *	@crc: Ethernet CRC for selected bytes
4098  *	@enable: enable/disable switch
4099  *
4100  *	Sets the pattern filters indicated in @map to mask out the bytes
4101  *	specified in @mask0/@mask1 in received packets and compare the CRC of
4102  *	the resulting packet against @crc.  If @enable is %true pattern-based
4103  *	WoL is enabled, otherwise disabled.
4104  */
4105 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
4106 		      u64 mask0, u64 mask1, unsigned int crc, bool enable)
4107 {
4108 	int i;
4109 	u32 port_cfg_reg;
4110 
4111 	if (is_t4(adap))
4112 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
4113 	else
4114 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
4115 
4116 	if (!enable) {
4117 		t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
4118 		return 0;
4119 	}
4120 	if (map > 0xff)
4121 		return -EINVAL;
4122 
4123 #define EPIO_REG(name) \
4124 	(is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
4125 	T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
4126 
4127 	t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
4128 	t4_write_reg(adap, EPIO_REG(DATA2), mask1);
4129 	t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
4130 
4131 	for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
4132 		if (!(map & 1))
4133 			continue;
4134 
4135 		/* write byte masks */
4136 		t4_write_reg(adap, EPIO_REG(DATA0), mask0);
4137 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
4138 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
4139 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
4140 			return -ETIMEDOUT;
4141 
4142 		/* write CRC */
4143 		t4_write_reg(adap, EPIO_REG(DATA0), crc);
4144 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
4145 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
4146 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
4147 			return -ETIMEDOUT;
4148 	}
4149 #undef EPIO_REG
4150 
4151 	t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
4152 	return 0;
4153 }
4154 
4155 /**
4156  *	t4_mk_filtdelwr - create a delete filter WR
4157  *	@ftid: the filter ID
4158  *	@wr: the filter work request to populate
4159  *	@qid: ingress queue to receive the delete notification
4160  *
4161  *	Creates a filter work request to delete the supplied filter.  If @qid is
4162  *	negative the delete notification is suppressed.
4163  */
4164 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
4165 {
4166 	memset(wr, 0, sizeof(*wr));
4167 	wr->op_pkd = htonl(V_FW_WR_OP(FW_FILTER_WR));
4168 	wr->len16_pkd = htonl(V_FW_WR_LEN16(sizeof(*wr) / 16));
4169 	wr->tid_to_iq = htonl(V_FW_FILTER_WR_TID(ftid) |
4170 			      V_FW_FILTER_WR_NOREPLY(qid < 0));
4171 	wr->del_filter_to_l2tix = htonl(F_FW_FILTER_WR_DEL_FILTER);
4172 	if (qid >= 0)
4173 		wr->rx_chan_rx_rpl_iq = htons(V_FW_FILTER_WR_RX_RPL_IQ(qid));
4174 }
4175 
4176 #define INIT_CMD(var, cmd, rd_wr) do { \
4177 	(var).op_to_write = htonl(V_FW_CMD_OP(FW_##cmd##_CMD) | \
4178 				  F_FW_CMD_REQUEST | F_FW_CMD_##rd_wr); \
4179 	(var).retval_len16 = htonl(FW_LEN16(var)); \
4180 } while (0)
4181 
4182 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox, u32 addr, u32 val)
4183 {
4184 	struct fw_ldst_cmd c;
4185 
4186 	memset(&c, 0, sizeof(c));
4187 	c.op_to_addrspace = htonl(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST |
4188 		F_FW_CMD_WRITE | V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE));
4189 	c.cycles_to_len16 = htonl(FW_LEN16(c));
4190 	c.u.addrval.addr = htonl(addr);
4191 	c.u.addrval.val = htonl(val);
4192 
4193 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4194 }
4195 
4196 /**
4197  *	t4_mdio_rd - read a PHY register through MDIO
4198  *	@adap: the adapter
4199  *	@mbox: mailbox to use for the FW command
4200  *	@phy_addr: the PHY address
4201  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
4202  *	@reg: the register to read
4203  *	@valp: where to store the value
4204  *
4205  *	Issues a FW command through the given mailbox to read a PHY register.
4206  */
4207 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
4208 	       unsigned int mmd, unsigned int reg, unsigned int *valp)
4209 {
4210 	int ret;
4211 	struct fw_ldst_cmd c;
4212 
4213 	memset(&c, 0, sizeof(c));
4214 	c.op_to_addrspace = htonl(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST |
4215 		F_FW_CMD_READ | V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO));
4216 	c.cycles_to_len16 = htonl(FW_LEN16(c));
4217 	c.u.mdio.paddr_mmd = htons(V_FW_LDST_CMD_PADDR(phy_addr) |
4218 				   V_FW_LDST_CMD_MMD(mmd));
4219 	c.u.mdio.raddr = htons(reg);
4220 
4221 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4222 	if (ret == 0)
4223 		*valp = ntohs(c.u.mdio.rval);
4224 	return ret;
4225 }
4226 
4227 /**
4228  *	t4_mdio_wr - write a PHY register through MDIO
4229  *	@adap: the adapter
4230  *	@mbox: mailbox to use for the FW command
4231  *	@phy_addr: the PHY address
4232  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
4233  *	@reg: the register to write
4234  *	@valp: value to write
4235  *
4236  *	Issues a FW command through the given mailbox to write a PHY register.
4237  */
4238 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
4239 	       unsigned int mmd, unsigned int reg, unsigned int val)
4240 {
4241 	struct fw_ldst_cmd c;
4242 
4243 	memset(&c, 0, sizeof(c));
4244 	c.op_to_addrspace = htonl(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST |
4245 		F_FW_CMD_WRITE | V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO));
4246 	c.cycles_to_len16 = htonl(FW_LEN16(c));
4247 	c.u.mdio.paddr_mmd = htons(V_FW_LDST_CMD_PADDR(phy_addr) |
4248 				   V_FW_LDST_CMD_MMD(mmd));
4249 	c.u.mdio.raddr = htons(reg);
4250 	c.u.mdio.rval = htons(val);
4251 
4252 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4253 }
4254 
4255 /**
4256  *	t4_i2c_rd - read I2C data from adapter
4257  *	@adap: the adapter
4258  *	@port: Port number if per-port device; <0 if not
4259  *	@devid: per-port device ID or absolute device ID
4260  *	@offset: byte offset into device I2C space
4261  *	@len: byte length of I2C space data
4262  *	@buf: buffer in which to return I2C data
4263  *
4264  *	Reads the I2C data from the indicated device and location.
4265  */
4266 int t4_i2c_rd(struct adapter *adap, unsigned int mbox,
4267 	      int port, unsigned int devid,
4268 	      unsigned int offset, unsigned int len,
4269 	      u8 *buf)
4270 {
4271 	struct fw_ldst_cmd ldst;
4272 	int ret;
4273 
4274 	if (port >= 4 ||
4275 	    devid >= 256 ||
4276 	    offset >= 256 ||
4277 	    len > sizeof ldst.u.i2c.data)
4278 		return -EINVAL;
4279 
4280 	memset(&ldst, 0, sizeof ldst);
4281 	ldst.op_to_addrspace =
4282 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
4283 			    F_FW_CMD_REQUEST |
4284 			    F_FW_CMD_READ |
4285 			    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C));
4286 	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
4287 	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
4288 	ldst.u.i2c.did = devid;
4289 	ldst.u.i2c.boffset = offset;
4290 	ldst.u.i2c.blen = len;
4291 	ret = t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
4292 	if (!ret)
4293 		memcpy(buf, ldst.u.i2c.data, len);
4294 	return ret;
4295 }
4296 
4297 /**
4298  *	t4_i2c_wr - write I2C data to adapter
4299  *	@adap: the adapter
4300  *	@port: Port number if per-port device; <0 if not
4301  *	@devid: per-port device ID or absolute device ID
4302  *	@offset: byte offset into device I2C space
4303  *	@len: byte length of I2C space data
4304  *	@buf: buffer containing new I2C data
4305  *
4306  *	Write the I2C data to the indicated device and location.
4307  */
4308 int t4_i2c_wr(struct adapter *adap, unsigned int mbox,
4309 	      int port, unsigned int devid,
4310 	      unsigned int offset, unsigned int len,
4311 	      u8 *buf)
4312 {
4313 	struct fw_ldst_cmd ldst;
4314 
4315 	if (port >= 4 ||
4316 	    devid >= 256 ||
4317 	    offset >= 256 ||
4318 	    len > sizeof ldst.u.i2c.data)
4319 		return -EINVAL;
4320 
4321 	memset(&ldst, 0, sizeof ldst);
4322 	ldst.op_to_addrspace =
4323 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
4324 			    F_FW_CMD_REQUEST |
4325 			    F_FW_CMD_WRITE |
4326 			    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C));
4327 	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
4328 	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
4329 	ldst.u.i2c.did = devid;
4330 	ldst.u.i2c.boffset = offset;
4331 	ldst.u.i2c.blen = len;
4332 	memcpy(ldst.u.i2c.data, buf, len);
4333 	return t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
4334 }
4335 
4336 /**
4337  *	t4_sge_ctxt_flush - flush the SGE context cache
4338  *	@adap: the adapter
4339  *	@mbox: mailbox to use for the FW command
4340  *
4341  *	Issues a FW command through the given mailbox to flush the
4342  *	SGE context cache.
4343  */
4344 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
4345 {
4346 	int ret;
4347 	struct fw_ldst_cmd c;
4348 
4349 	memset(&c, 0, sizeof(c));
4350 	c.op_to_addrspace = htonl(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST |
4351 			F_FW_CMD_READ |
4352 			V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_SGE_EGRC));
4353 	c.cycles_to_len16 = htonl(FW_LEN16(c));
4354 	c.u.idctxt.msg_ctxtflush = htonl(F_FW_LDST_CMD_CTXTFLUSH);
4355 
4356 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4357 	return ret;
4358 }
4359 
4360 /**
4361  *	t4_sge_ctxt_rd - read an SGE context through FW
4362  *	@adap: the adapter
4363  *	@mbox: mailbox to use for the FW command
4364  *	@cid: the context id
4365  *	@ctype: the context type
4366  *	@data: where to store the context data
4367  *
4368  *	Issues a FW command through the given mailbox to read an SGE context.
4369  */
4370 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
4371 		   enum ctxt_type ctype, u32 *data)
4372 {
4373 	int ret;
4374 	struct fw_ldst_cmd c;
4375 
4376 	if (ctype == CTXT_EGRESS)
4377 		ret = FW_LDST_ADDRSPC_SGE_EGRC;
4378 	else if (ctype == CTXT_INGRESS)
4379 		ret = FW_LDST_ADDRSPC_SGE_INGC;
4380 	else if (ctype == CTXT_FLM)
4381 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
4382 	else
4383 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
4384 
4385 	memset(&c, 0, sizeof(c));
4386 	c.op_to_addrspace = htonl(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST |
4387 				  F_FW_CMD_READ | V_FW_LDST_CMD_ADDRSPACE(ret));
4388 	c.cycles_to_len16 = htonl(FW_LEN16(c));
4389 	c.u.idctxt.physid = htonl(cid);
4390 
4391 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4392 	if (ret == 0) {
4393 		data[0] = ntohl(c.u.idctxt.ctxt_data0);
4394 		data[1] = ntohl(c.u.idctxt.ctxt_data1);
4395 		data[2] = ntohl(c.u.idctxt.ctxt_data2);
4396 		data[3] = ntohl(c.u.idctxt.ctxt_data3);
4397 		data[4] = ntohl(c.u.idctxt.ctxt_data4);
4398 		data[5] = ntohl(c.u.idctxt.ctxt_data5);
4399 	}
4400 	return ret;
4401 }
4402 
4403 /**
4404  *	t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
4405  *	@adap: the adapter
4406  *	@cid: the context id
4407  *	@ctype: the context type
4408  *	@data: where to store the context data
4409  *
4410  *	Reads an SGE context directly, bypassing FW.  This is only for
4411  *	debugging when FW is unavailable.
4412  */
4413 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
4414 		      u32 *data)
4415 {
4416 	int i, ret;
4417 
4418 	t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
4419 	ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
4420 	if (!ret)
4421 		for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
4422 			*data++ = t4_read_reg(adap, i);
4423 	return ret;
4424 }
4425 
4426 /**
4427  *	t4_fw_hello - establish communication with FW
4428  *	@adap: the adapter
4429  *	@mbox: mailbox to use for the FW command
4430  *	@evt_mbox: mailbox to receive async FW events
4431  *	@master: specifies the caller's willingness to be the device master
4432  *	@state: returns the current device state (if non-NULL)
4433  *
4434  *	Issues a command to establish communication with FW.  Returns either
4435  *	an error (negative integer) or the mailbox of the Master PF.
4436  */
4437 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
4438 		enum dev_master master, enum dev_state *state)
4439 {
4440 	int ret;
4441 	struct fw_hello_cmd c;
4442 	u32 v;
4443 	unsigned int master_mbox;
4444 	int retries = FW_CMD_HELLO_RETRIES;
4445 
4446 retry:
4447 	memset(&c, 0, sizeof(c));
4448 	INIT_CMD(c, HELLO, WRITE);
4449 	c.err_to_clearinit = htonl(
4450 		V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
4451 		V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
4452 		V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ? mbox :
4453 			M_FW_HELLO_CMD_MBMASTER) |
4454 		V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
4455 		V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
4456 		F_FW_HELLO_CMD_CLEARINIT);
4457 
4458 	/*
4459 	 * Issue the HELLO command to the firmware.  If it's not successful
4460 	 * but indicates that we got a "busy" or "timeout" condition, retry
4461 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
4462 	 * retry limit, check to see if the firmware left us any error
4463 	 * information and report that if so ...
4464 	 */
4465 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4466 	if (ret != FW_SUCCESS) {
4467 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
4468 			goto retry;
4469 		if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
4470 			t4_report_fw_error(adap);
4471 		return ret;
4472 	}
4473 
4474 	v = ntohl(c.err_to_clearinit);
4475 	master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
4476 	if (state) {
4477 		if (v & F_FW_HELLO_CMD_ERR)
4478 			*state = DEV_STATE_ERR;
4479 		else if (v & F_FW_HELLO_CMD_INIT)
4480 			*state = DEV_STATE_INIT;
4481 		else
4482 			*state = DEV_STATE_UNINIT;
4483 	}
4484 
4485 	/*
4486 	 * If we're not the Master PF then we need to wait around for the
4487 	 * Master PF Driver to finish setting up the adapter.
4488 	 *
4489 	 * Note that we also do this wait if we're a non-Master-capable PF and
4490 	 * there is no current Master PF; a Master PF may show up momentarily
4491 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
4492 	 * OS loads lots of different drivers rapidly at the same time).  In
4493 	 * this case, the Master PF returned by the firmware will be
4494 	 * M_PCIE_FW_MASTER so the test below will work ...
4495 	 */
4496 	if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
4497 	    master_mbox != mbox) {
4498 		int waiting = FW_CMD_HELLO_TIMEOUT;
4499 
4500 		/*
4501 		 * Wait for the firmware to either indicate an error or
4502 		 * initialized state.  If we see either of these we bail out
4503 		 * and report the issue to the caller.  If we exhaust the
4504 		 * "hello timeout" and we haven't exhausted our retries, try
4505 		 * again.  Otherwise bail with a timeout error.
4506 		 */
4507 		for (;;) {
4508 			u32 pcie_fw;
4509 
4510 			msleep(50);
4511 			waiting -= 50;
4512 
4513 			/*
4514 			 * If neither Error nor Initialialized are indicated
4515 			 * by the firmware keep waiting till we exhaust our
4516 			 * timeout ... and then retry if we haven't exhausted
4517 			 * our retries ...
4518 			 */
4519 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
4520 			if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
4521 				if (waiting <= 0) {
4522 					if (retries-- > 0)
4523 						goto retry;
4524 
4525 					return -ETIMEDOUT;
4526 				}
4527 				continue;
4528 			}
4529 
4530 			/*
4531 			 * We either have an Error or Initialized condition
4532 			 * report errors preferentially.
4533 			 */
4534 			if (state) {
4535 				if (pcie_fw & F_PCIE_FW_ERR)
4536 					*state = DEV_STATE_ERR;
4537 				else if (pcie_fw & F_PCIE_FW_INIT)
4538 					*state = DEV_STATE_INIT;
4539 			}
4540 
4541 			/*
4542 			 * If we arrived before a Master PF was selected and
4543 			 * there's not a valid Master PF, grab its identity
4544 			 * for our caller.
4545 			 */
4546 			if (master_mbox == M_PCIE_FW_MASTER &&
4547 			    (pcie_fw & F_PCIE_FW_MASTER_VLD))
4548 				master_mbox = G_PCIE_FW_MASTER(pcie_fw);
4549 			break;
4550 		}
4551 	}
4552 
4553 	return master_mbox;
4554 }
4555 
4556 /**
4557  *	t4_fw_bye - end communication with FW
4558  *	@adap: the adapter
4559  *	@mbox: mailbox to use for the FW command
4560  *
4561  *	Issues a command to terminate communication with FW.
4562  */
4563 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
4564 {
4565 	struct fw_bye_cmd c;
4566 
4567 	memset(&c, 0, sizeof(c));
4568 	INIT_CMD(c, BYE, WRITE);
4569 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4570 }
4571 
4572 /**
4573  *	t4_fw_reset - issue a reset to FW
4574  *	@adap: the adapter
4575  *	@mbox: mailbox to use for the FW command
4576  *	@reset: specifies the type of reset to perform
4577  *
4578  *	Issues a reset command of the specified type to FW.
4579  */
4580 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
4581 {
4582 	struct fw_reset_cmd c;
4583 
4584 	memset(&c, 0, sizeof(c));
4585 	INIT_CMD(c, RESET, WRITE);
4586 	c.val = htonl(reset);
4587 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4588 }
4589 
4590 /**
4591  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
4592  *	@adap: the adapter
4593  *	@mbox: mailbox to use for the FW RESET command (if desired)
4594  *	@force: force uP into RESET even if FW RESET command fails
4595  *
4596  *	Issues a RESET command to firmware (if desired) with a HALT indication
4597  *	and then puts the microprocessor into RESET state.  The RESET command
4598  *	will only be issued if a legitimate mailbox is provided (mbox <=
4599  *	M_PCIE_FW_MASTER).
4600  *
4601  *	This is generally used in order for the host to safely manipulate the
4602  *	adapter without fear of conflicting with whatever the firmware might
4603  *	be doing.  The only way out of this state is to RESTART the firmware
4604  *	...
4605  */
4606 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
4607 {
4608 	int ret = 0;
4609 
4610 	/*
4611 	 * If a legitimate mailbox is provided, issue a RESET command
4612 	 * with a HALT indication.
4613 	 */
4614 	if (mbox <= M_PCIE_FW_MASTER) {
4615 		struct fw_reset_cmd c;
4616 
4617 		memset(&c, 0, sizeof(c));
4618 		INIT_CMD(c, RESET, WRITE);
4619 		c.val = htonl(F_PIORST | F_PIORSTMODE);
4620 		c.halt_pkd = htonl(F_FW_RESET_CMD_HALT);
4621 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4622 	}
4623 
4624 	/*
4625 	 * Normally we won't complete the operation if the firmware RESET
4626 	 * command fails but if our caller insists we'll go ahead and put the
4627 	 * uP into RESET.  This can be useful if the firmware is hung or even
4628 	 * missing ...  We'll have to take the risk of putting the uP into
4629 	 * RESET without the cooperation of firmware in that case.
4630 	 *
4631 	 * We also force the firmware's HALT flag to be on in case we bypassed
4632 	 * the firmware RESET command above or we're dealing with old firmware
4633 	 * which doesn't have the HALT capability.  This will serve as a flag
4634 	 * for the incoming firmware to know that it's coming out of a HALT
4635 	 * rather than a RESET ... if it's new enough to understand that ...
4636 	 */
4637 	if (ret == 0 || force) {
4638 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
4639 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, F_PCIE_FW_HALT);
4640 	}
4641 
4642 	/*
4643 	 * And we always return the result of the firmware RESET command
4644 	 * even when we force the uP into RESET ...
4645 	 */
4646 	return ret;
4647 }
4648 
4649 /**
4650  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
4651  *	@adap: the adapter
4652  *	@reset: if we want to do a RESET to restart things
4653  *
4654  *	Restart firmware previously halted by t4_fw_halt().  On successful
4655  *	return the previous PF Master remains as the new PF Master and there
4656  *	is no need to issue a new HELLO command, etc.
4657  *
4658  *	We do this in two ways:
4659  *
4660  *	 1. If we're dealing with newer firmware we'll simply want to take
4661  *	    the chip's microprocessor out of RESET.  This will cause the
4662  *	    firmware to start up from its start vector.  And then we'll loop
4663  *	    until the firmware indicates it's started again (PCIE_FW.HALT
4664  *	    reset to 0) or we timeout.
4665  *
4666  *	 2. If we're dealing with older firmware then we'll need to RESET
4667  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
4668  *	    flag and automatically RESET itself on startup.
4669  */
4670 int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
4671 {
4672 	if (reset) {
4673 		/*
4674 		 * Since we're directing the RESET instead of the firmware
4675 		 * doing it automatically, we need to clear the PCIE_FW.HALT
4676 		 * bit.
4677 		 */
4678 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, 0);
4679 
4680 		/*
4681 		 * If we've been given a valid mailbox, first try to get the
4682 		 * firmware to do the RESET.  If that works, great and we can
4683 		 * return success.  Otherwise, if we haven't been given a
4684 		 * valid mailbox or the RESET command failed, fall back to
4685 		 * hitting the chip with a hammer.
4686 		 */
4687 		if (mbox <= M_PCIE_FW_MASTER) {
4688 			t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
4689 			msleep(100);
4690 			if (t4_fw_reset(adap, mbox,
4691 					F_PIORST | F_PIORSTMODE) == 0)
4692 				return 0;
4693 		}
4694 
4695 		t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE);
4696 		msleep(2000);
4697 	} else {
4698 		int ms;
4699 
4700 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
4701 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
4702 			if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
4703 				return FW_SUCCESS;
4704 			msleep(100);
4705 			ms += 100;
4706 		}
4707 		return -ETIMEDOUT;
4708 	}
4709 	return 0;
4710 }
4711 
4712 /**
4713  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
4714  *	@adap: the adapter
4715  *	@mbox: mailbox to use for the FW RESET command (if desired)
4716  *	@fw_data: the firmware image to write
4717  *	@size: image size
4718  *	@force: force upgrade even if firmware doesn't cooperate
4719  *
4720  *	Perform all of the steps necessary for upgrading an adapter's
4721  *	firmware image.  Normally this requires the cooperation of the
4722  *	existing firmware in order to halt all existing activities
4723  *	but if an invalid mailbox token is passed in we skip that step
4724  *	(though we'll still put the adapter microprocessor into RESET in
4725  *	that case).
4726  *
4727  *	On successful return the new firmware will have been loaded and
4728  *	the adapter will have been fully RESET losing all previous setup
4729  *	state.  On unsuccessful return the adapter may be completely hosed ...
4730  *	positive errno indicates that the adapter is ~probably~ intact, a
4731  *	negative errno indicates that things are looking bad ...
4732  */
4733 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
4734 		  const u8 *fw_data, unsigned int size, int force)
4735 {
4736 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
4737 	unsigned int bootstrap = ntohl(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
4738 	int reset, ret;
4739 
4740 	if (!bootstrap) {
4741 		ret = t4_fw_halt(adap, mbox, force);
4742 		if (ret < 0 && !force)
4743 			return ret;
4744 	}
4745 
4746 	ret = t4_load_fw(adap, fw_data, size);
4747 	if (ret < 0 || bootstrap)
4748 		return ret;
4749 
4750 	/*
4751 	 * Older versions of the firmware don't understand the new
4752 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
4753 	 * restart.  So for newly loaded older firmware we'll have to do the
4754 	 * RESET for it so it starts up on a clean slate.  We can tell if
4755 	 * the newly loaded firmware will handle this right by checking
4756 	 * its header flags to see if it advertises the capability.
4757 	 */
4758 	reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
4759 	return t4_fw_restart(adap, mbox, reset);
4760 }
4761 
4762 /**
4763  *	t4_fw_initialize - ask FW to initialize the device
4764  *	@adap: the adapter
4765  *	@mbox: mailbox to use for the FW command
4766  *
4767  *	Issues a command to FW to partially initialize the device.  This
4768  *	performs initialization that generally doesn't depend on user input.
4769  */
4770 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
4771 {
4772 	struct fw_initialize_cmd c;
4773 
4774 	memset(&c, 0, sizeof(c));
4775 	INIT_CMD(c, INITIALIZE, WRITE);
4776 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4777 }
4778 
4779 /**
4780  *	t4_query_params - query FW or device parameters
4781  *	@adap: the adapter
4782  *	@mbox: mailbox to use for the FW command
4783  *	@pf: the PF
4784  *	@vf: the VF
4785  *	@nparams: the number of parameters
4786  *	@params: the parameter names
4787  *	@val: the parameter values
4788  *
4789  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
4790  *	queried at once.
4791  */
4792 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
4793 		    unsigned int vf, unsigned int nparams, const u32 *params,
4794 		    u32 *val)
4795 {
4796 	int i, ret;
4797 	struct fw_params_cmd c;
4798 	__be32 *p = &c.param[0].mnem;
4799 
4800 	if (nparams > 7)
4801 		return -EINVAL;
4802 
4803 	memset(&c, 0, sizeof(c));
4804 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_PARAMS_CMD) | F_FW_CMD_REQUEST |
4805 			    F_FW_CMD_READ | V_FW_PARAMS_CMD_PFN(pf) |
4806 			    V_FW_PARAMS_CMD_VFN(vf));
4807 	c.retval_len16 = htonl(FW_LEN16(c));
4808 
4809 	for (i = 0; i < nparams; i++, p += 2, params++)
4810 		*p = htonl(*params);
4811 
4812 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4813 	if (ret == 0)
4814 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
4815 			*val++ = ntohl(*p);
4816 	return ret;
4817 }
4818 
4819 /**
4820  *	t4_set_params - sets FW or device parameters
4821  *	@adap: the adapter
4822  *	@mbox: mailbox to use for the FW command
4823  *	@pf: the PF
4824  *	@vf: the VF
4825  *	@nparams: the number of parameters
4826  *	@params: the parameter names
4827  *	@val: the parameter values
4828  *
4829  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
4830  *	specified at once.
4831  */
4832 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
4833 		  unsigned int vf, unsigned int nparams, const u32 *params,
4834 		  const u32 *val)
4835 {
4836 	struct fw_params_cmd c;
4837 	__be32 *p = &c.param[0].mnem;
4838 
4839 	if (nparams > 7)
4840 		return -EINVAL;
4841 
4842 	memset(&c, 0, sizeof(c));
4843 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_PARAMS_CMD) | F_FW_CMD_REQUEST |
4844 			    F_FW_CMD_WRITE | V_FW_PARAMS_CMD_PFN(pf) |
4845 			    V_FW_PARAMS_CMD_VFN(vf));
4846 	c.retval_len16 = htonl(FW_LEN16(c));
4847 
4848 	while (nparams--) {
4849 		*p++ = htonl(*params);
4850 		params++;
4851 		*p++ = htonl(*val);
4852 		val++;
4853 	}
4854 
4855 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4856 }
4857 
4858 /**
4859  *	t4_cfg_pfvf - configure PF/VF resource limits
4860  *	@adap: the adapter
4861  *	@mbox: mailbox to use for the FW command
4862  *	@pf: the PF being configured
4863  *	@vf: the VF being configured
4864  *	@txq: the max number of egress queues
4865  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
4866  *	@rxqi: the max number of interrupt-capable ingress queues
4867  *	@rxq: the max number of interruptless ingress queues
4868  *	@tc: the PCI traffic class
4869  *	@vi: the max number of virtual interfaces
4870  *	@cmask: the channel access rights mask for the PF/VF
4871  *	@pmask: the port access rights mask for the PF/VF
4872  *	@nexact: the maximum number of exact MPS filters
4873  *	@rcaps: read capabilities
4874  *	@wxcaps: write/execute capabilities
4875  *
4876  *	Configures resource limits and capabilities for a physical or virtual
4877  *	function.
4878  */
4879 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
4880 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
4881 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
4882 		unsigned int vi, unsigned int cmask, unsigned int pmask,
4883 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
4884 {
4885 	struct fw_pfvf_cmd c;
4886 
4887 	memset(&c, 0, sizeof(c));
4888 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
4889 			    F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
4890 			    V_FW_PFVF_CMD_VFN(vf));
4891 	c.retval_len16 = htonl(FW_LEN16(c));
4892 	c.niqflint_niq = htonl(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
4893 			       V_FW_PFVF_CMD_NIQ(rxq));
4894 	c.type_to_neq = htonl(V_FW_PFVF_CMD_CMASK(cmask) |
4895 			      V_FW_PFVF_CMD_PMASK(pmask) |
4896 			      V_FW_PFVF_CMD_NEQ(txq));
4897 	c.tc_to_nexactf = htonl(V_FW_PFVF_CMD_TC(tc) | V_FW_PFVF_CMD_NVI(vi) |
4898 				V_FW_PFVF_CMD_NEXACTF(nexact));
4899 	c.r_caps_to_nethctrl = htonl(V_FW_PFVF_CMD_R_CAPS(rcaps) |
4900 				     V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
4901 				     V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
4902 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4903 }
4904 
4905 /**
4906  *	t4_alloc_vi_func - allocate a virtual interface
4907  *	@adap: the adapter
4908  *	@mbox: mailbox to use for the FW command
4909  *	@port: physical port associated with the VI
4910  *	@pf: the PF owning the VI
4911  *	@vf: the VF owning the VI
4912  *	@nmac: number of MAC addresses needed (1 to 5)
4913  *	@mac: the MAC addresses of the VI
4914  *	@rss_size: size of RSS table slice associated with this VI
4915  *	@portfunc: which Port Application Function MAC Address is desired
4916  *	@idstype: Intrusion Detection Type
4917  *
4918  *	Allocates a virtual interface for the given physical port.  If @mac is
4919  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
4920  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
4921  *	stored consecutively so the space needed is @nmac * 6 bytes.
4922  *	Returns a negative error number or the non-negative VI id.
4923  */
4924 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
4925 		     unsigned int port, unsigned int pf, unsigned int vf,
4926 		     unsigned int nmac, u8 *mac, u16 *rss_size,
4927 		     unsigned int portfunc, unsigned int idstype)
4928 {
4929 	int ret;
4930 	struct fw_vi_cmd c;
4931 
4932 	memset(&c, 0, sizeof(c));
4933 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
4934 			    F_FW_CMD_WRITE | F_FW_CMD_EXEC |
4935 			    V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
4936 	c.alloc_to_len16 = htonl(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
4937 	c.type_to_viid = htons(V_FW_VI_CMD_TYPE(idstype) |
4938 			       V_FW_VI_CMD_FUNC(portfunc));
4939 	c.portid_pkd = V_FW_VI_CMD_PORTID(port);
4940 	c.nmac = nmac - 1;
4941 
4942 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4943 	if (ret)
4944 		return ret;
4945 
4946 	if (mac) {
4947 		memcpy(mac, c.mac, sizeof(c.mac));
4948 		switch (nmac) {
4949 		case 5:
4950 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
4951 		case 4:
4952 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
4953 		case 3:
4954 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
4955 		case 2:
4956 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
4957 		}
4958 	}
4959 	if (rss_size)
4960 		*rss_size = G_FW_VI_CMD_RSSSIZE(ntohs(c.norss_rsssize));
4961 	return G_FW_VI_CMD_VIID(htons(c.type_to_viid));
4962 }
4963 
4964 /**
4965  *	t4_alloc_vi - allocate an [Ethernet Function] virtual interface
4966  *	@adap: the adapter
4967  *	@mbox: mailbox to use for the FW command
4968  *	@port: physical port associated with the VI
4969  *	@pf: the PF owning the VI
4970  *	@vf: the VF owning the VI
4971  *	@nmac: number of MAC addresses needed (1 to 5)
4972  *	@mac: the MAC addresses of the VI
4973  *	@rss_size: size of RSS table slice associated with this VI
4974  *
4975  *	backwards compatible and convieniance routine to allocate a Virtual
4976  *	Interface with a Ethernet Port Application Function and Intrustion
4977  *	Detection System disabled.
4978  */
4979 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
4980 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
4981 		u16 *rss_size)
4982 {
4983 	return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
4984 				FW_VI_FUNC_ETH, 0);
4985 }
4986 
4987 /**
4988  *	t4_free_vi - free a virtual interface
4989  *	@adap: the adapter
4990  *	@mbox: mailbox to use for the FW command
4991  *	@pf: the PF owning the VI
4992  *	@vf: the VF owning the VI
4993  *	@viid: virtual interface identifiler
4994  *
4995  *	Free a previously allocated virtual interface.
4996  */
4997 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
4998 	       unsigned int vf, unsigned int viid)
4999 {
5000 	struct fw_vi_cmd c;
5001 
5002 	memset(&c, 0, sizeof(c));
5003 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_VI_CMD) |
5004 			    F_FW_CMD_REQUEST |
5005 			    F_FW_CMD_EXEC |
5006 			    V_FW_VI_CMD_PFN(pf) |
5007 			    V_FW_VI_CMD_VFN(vf));
5008 	c.alloc_to_len16 = htonl(F_FW_VI_CMD_FREE | FW_LEN16(c));
5009 	c.type_to_viid = htons(V_FW_VI_CMD_VIID(viid));
5010 
5011 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5012 }
5013 
5014 /**
5015  *	t4_set_rxmode - set Rx properties of a virtual interface
5016  *	@adap: the adapter
5017  *	@mbox: mailbox to use for the FW command
5018  *	@viid: the VI id
5019  *	@mtu: the new MTU or -1
5020  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
5021  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
5022  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
5023  *	@vlanex: 1 to enable HVLAN extraction, 0 to disable it, -1 no change
5024  *	@sleep_ok: if true we may sleep while awaiting command completion
5025  *
5026  *	Sets Rx properties of a virtual interface.
5027  */
5028 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
5029 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
5030 		  bool sleep_ok)
5031 {
5032 	struct fw_vi_rxmode_cmd c;
5033 
5034 	/* convert to FW values */
5035 	if (mtu < 0)
5036 		mtu = M_FW_VI_RXMODE_CMD_MTU;
5037 	if (promisc < 0)
5038 		promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
5039 	if (all_multi < 0)
5040 		all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
5041 	if (bcast < 0)
5042 		bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
5043 	if (vlanex < 0)
5044 		vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
5045 
5046 	memset(&c, 0, sizeof(c));
5047 	c.op_to_viid = htonl(V_FW_CMD_OP(FW_VI_RXMODE_CMD) | F_FW_CMD_REQUEST |
5048 			     F_FW_CMD_WRITE | V_FW_VI_RXMODE_CMD_VIID(viid));
5049 	c.retval_len16 = htonl(FW_LEN16(c));
5050 	c.mtu_to_vlanexen = htonl(V_FW_VI_RXMODE_CMD_MTU(mtu) |
5051 				  V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
5052 				  V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
5053 				  V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
5054 				  V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
5055 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
5056 }
5057 
5058 /**
5059  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
5060  *	@adap: the adapter
5061  *	@mbox: mailbox to use for the FW command
5062  *	@viid: the VI id
5063  *	@free: if true any existing filters for this VI id are first removed
5064  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
5065  *	@addr: the MAC address(es)
5066  *	@idx: where to store the index of each allocated filter
5067  *	@hash: pointer to hash address filter bitmap
5068  *	@sleep_ok: call is allowed to sleep
5069  *
5070  *	Allocates an exact-match filter for each of the supplied addresses and
5071  *	sets it to the corresponding address.  If @idx is not %NULL it should
5072  *	have at least @naddr entries, each of which will be set to the index of
5073  *	the filter allocated for the corresponding MAC address.  If a filter
5074  *	could not be allocated for an address its index is set to 0xffff.
5075  *	If @hash is not %NULL addresses that fail to allocate an exact filter
5076  *	are hashed and update the hash filter bitmap pointed at by @hash.
5077  *
5078  *	Returns a negative error number or the number of filters allocated.
5079  */
5080 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
5081 		      unsigned int viid, bool free, unsigned int naddr,
5082 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
5083 {
5084 	int offset, ret = 0;
5085 	struct fw_vi_mac_cmd c;
5086 	unsigned int nfilters = 0;
5087 	unsigned int max_naddr = is_t4(adap) ?
5088 				       NUM_MPS_CLS_SRAM_L_INSTANCES :
5089 				       NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
5090 	unsigned int rem = naddr;
5091 
5092 	if (naddr > max_naddr)
5093 		return -EINVAL;
5094 
5095 	for (offset = 0; offset < naddr ; /**/) {
5096 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
5097 					 ? rem
5098 					 : ARRAY_SIZE(c.u.exact));
5099 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
5100 						     u.exact[fw_naddr]), 16);
5101 		struct fw_vi_mac_exact *p;
5102 		int i;
5103 
5104 		memset(&c, 0, sizeof(c));
5105 		c.op_to_viid = htonl(V_FW_CMD_OP(FW_VI_MAC_CMD) |
5106 				     F_FW_CMD_REQUEST |
5107 				     F_FW_CMD_WRITE |
5108 				     V_FW_CMD_EXEC(free) |
5109 				     V_FW_VI_MAC_CMD_VIID(viid));
5110 		c.freemacs_to_len16 = htonl(V_FW_VI_MAC_CMD_FREEMACS(free) |
5111 					    V_FW_CMD_LEN16(len16));
5112 
5113 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
5114 			p->valid_to_idx = htons(
5115 				F_FW_VI_MAC_CMD_VALID |
5116 				V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
5117 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
5118 		}
5119 
5120 		/*
5121 		 * It's okay if we run out of space in our MAC address arena.
5122 		 * Some of the addresses we submit may get stored so we need
5123 		 * to run through the reply to see what the results were ...
5124 		 */
5125 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
5126 		if (ret && ret != -FW_ENOMEM)
5127 			break;
5128 
5129 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
5130 			u16 index = G_FW_VI_MAC_CMD_IDX(ntohs(p->valid_to_idx));
5131 
5132 			if (idx)
5133 				idx[offset+i] = (index >=  max_naddr
5134 						 ? 0xffff
5135 						 : index);
5136 			if (index < max_naddr)
5137 				nfilters++;
5138 			else if (hash)
5139 				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
5140 		}
5141 
5142 		free = false;
5143 		offset += fw_naddr;
5144 		rem -= fw_naddr;
5145 	}
5146 
5147 	if (ret == 0 || ret == -FW_ENOMEM)
5148 		ret = nfilters;
5149 	return ret;
5150 }
5151 
5152 /**
5153  *	t4_change_mac - modifies the exact-match filter for a MAC address
5154  *	@adap: the adapter
5155  *	@mbox: mailbox to use for the FW command
5156  *	@viid: the VI id
5157  *	@idx: index of existing filter for old value of MAC address, or -1
5158  *	@addr: the new MAC address value
5159  *	@persist: whether a new MAC allocation should be persistent
5160  *	@add_smt: if true also add the address to the HW SMT
5161  *
5162  *	Modifies an exact-match filter and sets it to the new MAC address if
5163  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
5164  *	latter case the address is added persistently if @persist is %true.
5165  *
5166  *	Note that in general it is not possible to modify the value of a given
5167  *	filter so the generic way to modify an address filter is to free the one
5168  *	being used by the old address value and allocate a new filter for the
5169  *	new address value.
5170  *
5171  *	Returns a negative error number or the index of the filter with the new
5172  *	MAC value.  Note that this index may differ from @idx.
5173  */
5174 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
5175 		  int idx, const u8 *addr, bool persist, bool add_smt)
5176 {
5177 	int ret, mode;
5178 	struct fw_vi_mac_cmd c;
5179 	struct fw_vi_mac_exact *p = c.u.exact;
5180 	unsigned int max_mac_addr = is_t4(adap) ?
5181 				    NUM_MPS_CLS_SRAM_L_INSTANCES :
5182 				    NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
5183 
5184 	if (idx < 0)                             /* new allocation */
5185 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
5186 	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
5187 
5188 	memset(&c, 0, sizeof(c));
5189 	c.op_to_viid = htonl(V_FW_CMD_OP(FW_VI_MAC_CMD) | F_FW_CMD_REQUEST |
5190 			     F_FW_CMD_WRITE | V_FW_VI_MAC_CMD_VIID(viid));
5191 	c.freemacs_to_len16 = htonl(V_FW_CMD_LEN16(1));
5192 	p->valid_to_idx = htons(F_FW_VI_MAC_CMD_VALID |
5193 				V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
5194 				V_FW_VI_MAC_CMD_IDX(idx));
5195 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
5196 
5197 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5198 	if (ret == 0) {
5199 		ret = G_FW_VI_MAC_CMD_IDX(ntohs(p->valid_to_idx));
5200 		if (ret >= max_mac_addr)
5201 			ret = -ENOMEM;
5202 	}
5203 	return ret;
5204 }
5205 
5206 /**
5207  *	t4_set_addr_hash - program the MAC inexact-match hash filter
5208  *	@adap: the adapter
5209  *	@mbox: mailbox to use for the FW command
5210  *	@viid: the VI id
5211  *	@ucast: whether the hash filter should also match unicast addresses
5212  *	@vec: the value to be written to the hash filter
5213  *	@sleep_ok: call is allowed to sleep
5214  *
5215  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
5216  */
5217 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
5218 		     bool ucast, u64 vec, bool sleep_ok)
5219 {
5220 	struct fw_vi_mac_cmd c;
5221 
5222 	memset(&c, 0, sizeof(c));
5223 	c.op_to_viid = htonl(V_FW_CMD_OP(FW_VI_MAC_CMD) | F_FW_CMD_REQUEST |
5224 			     F_FW_CMD_WRITE | V_FW_VI_ENABLE_CMD_VIID(viid));
5225 	c.freemacs_to_len16 = htonl(F_FW_VI_MAC_CMD_HASHVECEN |
5226 				    V_FW_VI_MAC_CMD_HASHUNIEN(ucast) |
5227 				    V_FW_CMD_LEN16(1));
5228 	c.u.hash.hashvec = cpu_to_be64(vec);
5229 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
5230 }
5231 
5232 /**
5233  *	t4_enable_vi - enable/disable a virtual interface
5234  *	@adap: the adapter
5235  *	@mbox: mailbox to use for the FW command
5236  *	@viid: the VI id
5237  *	@rx_en: 1=enable Rx, 0=disable Rx
5238  *	@tx_en: 1=enable Tx, 0=disable Tx
5239  *
5240  *	Enables/disables a virtual interface.
5241  */
5242 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
5243 		 bool rx_en, bool tx_en)
5244 {
5245 	struct fw_vi_enable_cmd c;
5246 
5247 	memset(&c, 0, sizeof(c));
5248 	c.op_to_viid = htonl(V_FW_CMD_OP(FW_VI_ENABLE_CMD) | F_FW_CMD_REQUEST |
5249 			     F_FW_CMD_EXEC | V_FW_VI_ENABLE_CMD_VIID(viid));
5250 	c.ien_to_len16 = htonl(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
5251 			       V_FW_VI_ENABLE_CMD_EEN(tx_en) | FW_LEN16(c));
5252 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5253 }
5254 
5255 /**
5256  *	t4_identify_port - identify a VI's port by blinking its LED
5257  *	@adap: the adapter
5258  *	@mbox: mailbox to use for the FW command
5259  *	@viid: the VI id
5260  *	@nblinks: how many times to blink LED at 2.5 Hz
5261  *
5262  *	Identifies a VI's port by blinking its LED.
5263  */
5264 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
5265 		     unsigned int nblinks)
5266 {
5267 	struct fw_vi_enable_cmd c;
5268 
5269 	memset(&c, 0, sizeof(c));
5270 	c.op_to_viid = htonl(V_FW_CMD_OP(FW_VI_ENABLE_CMD) | F_FW_CMD_REQUEST |
5271 			     F_FW_CMD_EXEC | V_FW_VI_ENABLE_CMD_VIID(viid));
5272 	c.ien_to_len16 = htonl(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
5273 	c.blinkdur = htons(nblinks);
5274 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5275 }
5276 
5277 /**
5278  *	t4_iq_start_stop - enable/disable an ingress queue and its FLs
5279  *	@adap: the adapter
5280  *	@mbox: mailbox to use for the FW command
5281  *	@start: %true to enable the queues, %false to disable them
5282  *	@pf: the PF owning the queues
5283  *	@vf: the VF owning the queues
5284  *	@iqid: ingress queue id
5285  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
5286  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
5287  *
5288  *	Starts or stops an ingress queue and its associated FLs, if any.
5289  */
5290 int t4_iq_start_stop(struct adapter *adap, unsigned int mbox, bool start,
5291 		     unsigned int pf, unsigned int vf, unsigned int iqid,
5292 		     unsigned int fl0id, unsigned int fl1id)
5293 {
5294 	struct fw_iq_cmd c;
5295 
5296 	memset(&c, 0, sizeof(c));
5297 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
5298 			    F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
5299 			    V_FW_IQ_CMD_VFN(vf));
5300 	c.alloc_to_len16 = htonl(V_FW_IQ_CMD_IQSTART(start) |
5301 				 V_FW_IQ_CMD_IQSTOP(!start) | FW_LEN16(c));
5302 	c.iqid = htons(iqid);
5303 	c.fl0id = htons(fl0id);
5304 	c.fl1id = htons(fl1id);
5305 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5306 }
5307 
5308 /**
5309  *	t4_iq_free - free an ingress queue and its FLs
5310  *	@adap: the adapter
5311  *	@mbox: mailbox to use for the FW command
5312  *	@pf: the PF owning the queues
5313  *	@vf: the VF owning the queues
5314  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
5315  *	@iqid: ingress queue id
5316  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
5317  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
5318  *
5319  *	Frees an ingress queue and its associated FLs, if any.
5320  */
5321 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
5322 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
5323 	       unsigned int fl0id, unsigned int fl1id)
5324 {
5325 	struct fw_iq_cmd c;
5326 
5327 	memset(&c, 0, sizeof(c));
5328 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
5329 			    F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
5330 			    V_FW_IQ_CMD_VFN(vf));
5331 	c.alloc_to_len16 = htonl(F_FW_IQ_CMD_FREE | FW_LEN16(c));
5332 	c.type_to_iqandstindex = htonl(V_FW_IQ_CMD_TYPE(iqtype));
5333 	c.iqid = htons(iqid);
5334 	c.fl0id = htons(fl0id);
5335 	c.fl1id = htons(fl1id);
5336 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5337 }
5338 
5339 /**
5340  *	t4_eth_eq_free - free an Ethernet egress queue
5341  *	@adap: the adapter
5342  *	@mbox: mailbox to use for the FW command
5343  *	@pf: the PF owning the queue
5344  *	@vf: the VF owning the queue
5345  *	@eqid: egress queue id
5346  *
5347  *	Frees an Ethernet egress queue.
5348  */
5349 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
5350 		   unsigned int vf, unsigned int eqid)
5351 {
5352 	struct fw_eq_eth_cmd c;
5353 
5354 	memset(&c, 0, sizeof(c));
5355 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
5356 			    F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(pf) |
5357 			    V_FW_EQ_ETH_CMD_VFN(vf));
5358 	c.alloc_to_len16 = htonl(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
5359 	c.eqid_pkd = htonl(V_FW_EQ_ETH_CMD_EQID(eqid));
5360 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5361 }
5362 
5363 /**
5364  *	t4_ctrl_eq_free - free a control egress queue
5365  *	@adap: the adapter
5366  *	@mbox: mailbox to use for the FW command
5367  *	@pf: the PF owning the queue
5368  *	@vf: the VF owning the queue
5369  *	@eqid: egress queue id
5370  *
5371  *	Frees a control egress queue.
5372  */
5373 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
5374 		    unsigned int vf, unsigned int eqid)
5375 {
5376 	struct fw_eq_ctrl_cmd c;
5377 
5378 	memset(&c, 0, sizeof(c));
5379 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
5380 			    F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(pf) |
5381 			    V_FW_EQ_CTRL_CMD_VFN(vf));
5382 	c.alloc_to_len16 = htonl(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
5383 	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_EQID(eqid));
5384 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5385 }
5386 
5387 /**
5388  *	t4_ofld_eq_free - free an offload egress queue
5389  *	@adap: the adapter
5390  *	@mbox: mailbox to use for the FW command
5391  *	@pf: the PF owning the queue
5392  *	@vf: the VF owning the queue
5393  *	@eqid: egress queue id
5394  *
5395  *	Frees a control egress queue.
5396  */
5397 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
5398 		    unsigned int vf, unsigned int eqid)
5399 {
5400 	struct fw_eq_ofld_cmd c;
5401 
5402 	memset(&c, 0, sizeof(c));
5403 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
5404 			    F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(pf) |
5405 			    V_FW_EQ_OFLD_CMD_VFN(vf));
5406 	c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
5407 	c.eqid_pkd = htonl(V_FW_EQ_OFLD_CMD_EQID(eqid));
5408 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5409 }
5410 
5411 /**
5412  *	t4_handle_fw_rpl - process a FW reply message
5413  *	@adap: the adapter
5414  *	@rpl: start of the FW message
5415  *
5416  *	Processes a FW message, such as link state change messages.
5417  */
5418 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
5419 {
5420 	u8 opcode = *(const u8 *)rpl;
5421 	const struct fw_port_cmd *p = (const void *)rpl;
5422 	unsigned int action = G_FW_PORT_CMD_ACTION(ntohl(p->action_to_len16));
5423 
5424 	if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO) {
5425 		/* link/module state change message */
5426 		int speed = 0, fc = 0, i;
5427 		int chan = G_FW_PORT_CMD_PORTID(ntohl(p->op_to_portid));
5428 		struct port_info *pi = NULL;
5429 		struct link_config *lc;
5430 		u32 stat = ntohl(p->u.info.lstatus_to_modtype);
5431 		int link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
5432 		u32 mod = G_FW_PORT_CMD_MODTYPE(stat);
5433 
5434 		if (stat & F_FW_PORT_CMD_RXPAUSE)
5435 			fc |= PAUSE_RX;
5436 		if (stat & F_FW_PORT_CMD_TXPAUSE)
5437 			fc |= PAUSE_TX;
5438 		if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
5439 			speed = SPEED_100;
5440 		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
5441 			speed = SPEED_1000;
5442 		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
5443 			speed = SPEED_10000;
5444 		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
5445 			speed = SPEED_40000;
5446 
5447 		for_each_port(adap, i) {
5448 			pi = adap2pinfo(adap, i);
5449 			if (pi->tx_chan == chan)
5450 				break;
5451 		}
5452 		lc = &pi->link_cfg;
5453 
5454 		if (mod != pi->mod_type) {
5455 			pi->mod_type = mod;
5456 			t4_os_portmod_changed(adap, i);
5457 		}
5458 		if (link_ok != lc->link_ok || speed != lc->speed ||
5459 		    fc != lc->fc) {                    /* something changed */
5460 			int reason;
5461 
5462 			if (!link_ok && lc->link_ok)
5463 				reason = G_FW_PORT_CMD_LINKDNRC(stat);
5464 			else
5465 				reason = -1;
5466 
5467 			lc->link_ok = link_ok;
5468 			lc->speed = speed;
5469 			lc->fc = fc;
5470 			lc->supported = ntohs(p->u.info.pcap);
5471 			t4_os_link_changed(adap, i, link_ok, reason);
5472 		}
5473 	} else {
5474 		CH_WARN_RATELIMIT(adap,
5475 		    "Unknown firmware reply 0x%x (0x%x)\n", opcode, action);
5476 		return -EINVAL;
5477 	}
5478 	return 0;
5479 }
5480 
5481 /**
5482  *	get_pci_mode - determine a card's PCI mode
5483  *	@adapter: the adapter
5484  *	@p: where to store the PCI settings
5485  *
5486  *	Determines a card's PCI mode and associated parameters, such as speed
5487  *	and width.
5488  */
5489 static void __devinit get_pci_mode(struct adapter *adapter,
5490 				   struct pci_params *p)
5491 {
5492 	u16 val;
5493 	u32 pcie_cap;
5494 
5495 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
5496 	if (pcie_cap) {
5497 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
5498 		p->speed = val & PCI_EXP_LNKSTA_CLS;
5499 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
5500 	}
5501 }
5502 
5503 /**
5504  *	init_link_config - initialize a link's SW state
5505  *	@lc: structure holding the link state
5506  *	@caps: link capabilities
5507  *
5508  *	Initializes the SW state maintained for each link, including the link's
5509  *	capabilities and default speed/flow-control/autonegotiation settings.
5510  */
5511 static void __devinit init_link_config(struct link_config *lc,
5512 				       unsigned int caps)
5513 {
5514 	lc->supported = caps;
5515 	lc->requested_speed = 0;
5516 	lc->speed = 0;
5517 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
5518 	if (lc->supported & FW_PORT_CAP_ANEG) {
5519 		lc->advertising = lc->supported & ADVERT_MASK;
5520 		lc->autoneg = AUTONEG_ENABLE;
5521 		lc->requested_fc |= PAUSE_AUTONEG;
5522 	} else {
5523 		lc->advertising = 0;
5524 		lc->autoneg = AUTONEG_DISABLE;
5525 	}
5526 }
5527 
5528 static int __devinit get_flash_params(struct adapter *adapter)
5529 {
5530 	int ret;
5531 	u32 info = 0;
5532 
5533 	ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
5534 	if (!ret)
5535 		ret = sf1_read(adapter, 3, 0, 1, &info);
5536 	t4_write_reg(adapter, A_SF_OP, 0);               /* unlock SF */
5537 	if (ret < 0)
5538 		return ret;
5539 
5540 	if ((info & 0xff) != 0x20)             /* not a Numonix flash */
5541 		return -EINVAL;
5542 	info >>= 16;                           /* log2 of size */
5543 	if (info >= 0x14 && info < 0x18)
5544 		adapter->params.sf_nsec = 1 << (info - 16);
5545 	else if (info == 0x18)
5546 		adapter->params.sf_nsec = 64;
5547 	else
5548 		return -EINVAL;
5549 	adapter->params.sf_size = 1 << info;
5550 	return 0;
5551 }
5552 
5553 static void __devinit set_pcie_completion_timeout(struct adapter *adapter,
5554 						  u8 range)
5555 {
5556 	u16 val;
5557 	u32 pcie_cap;
5558 
5559 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
5560 	if (pcie_cap) {
5561 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
5562 		val &= 0xfff0;
5563 		val |= range ;
5564 		t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
5565 	}
5566 }
5567 
5568 /**
5569  *	t4_prep_adapter - prepare SW and HW for operation
5570  *	@adapter: the adapter
5571  *	@reset: if true perform a HW reset
5572  *
5573  *	Initialize adapter SW state for the various HW modules, set initial
5574  *	values for some adapter tunables, take PHYs out of reset, and
5575  *	initialize the MDIO interface.
5576  */
5577 int __devinit t4_prep_adapter(struct adapter *adapter)
5578 {
5579 	int ret;
5580 	uint16_t device_id;
5581 	uint32_t pl_rev;
5582 
5583 	get_pci_mode(adapter, &adapter->params.pci);
5584 
5585 	pl_rev = t4_read_reg(adapter, A_PL_REV);
5586 	adapter->params.chipid = G_CHIPID(pl_rev);
5587 	adapter->params.rev = G_REV(pl_rev);
5588 	if (adapter->params.chipid == 0) {
5589 		/* T4 did not have chipid in PL_REV (T5 onwards do) */
5590 		adapter->params.chipid = CHELSIO_T4;
5591 
5592 		/* T4A1 chip is not supported */
5593 		if (adapter->params.rev == 1) {
5594 			CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
5595 			return -EINVAL;
5596 		}
5597 	}
5598 	adapter->params.pci.vpd_cap_addr =
5599 	    t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
5600 
5601 	ret = get_flash_params(adapter);
5602 	if (ret < 0)
5603 		return ret;
5604 
5605 	ret = get_vpd_params(adapter, &adapter->params.vpd);
5606 	if (ret < 0)
5607 		return ret;
5608 
5609 	/* Cards with real ASICs have the chipid in the PCIe device id */
5610 	t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
5611 	if (device_id >> 12 == adapter->params.chipid)
5612 		adapter->params.cim_la_size = CIMLA_SIZE;
5613 	else {
5614 		/* FPGA */
5615 		adapter->params.fpga = 1;
5616 		adapter->params.cim_la_size = 2 * CIMLA_SIZE;
5617 	}
5618 
5619 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
5620 
5621 	/*
5622 	 * Default port and clock for debugging in case we can't reach FW.
5623 	 */
5624 	adapter->params.nports = 1;
5625 	adapter->params.portvec = 1;
5626 	adapter->params.vpd.cclk = 50000;
5627 
5628 	/* Set pci completion timeout value to 4 seconds. */
5629 	set_pcie_completion_timeout(adapter, 0xd);
5630 	return 0;
5631 }
5632 
5633 /**
5634  *	t4_init_tp_params - initialize adap->params.tp
5635  *	@adap: the adapter
5636  *
5637  *	Initialize various fields of the adapter's TP Parameters structure.
5638  */
5639 int __devinit t4_init_tp_params(struct adapter *adap)
5640 {
5641 	int chan;
5642 	u32 v;
5643 
5644 	v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
5645 	adap->params.tp.tre = G_TIMERRESOLUTION(v);
5646 	adap->params.tp.dack_re = G_DELAYEDACKRESOLUTION(v);
5647 
5648 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
5649 	for (chan = 0; chan < NCHAN; chan++)
5650 		adap->params.tp.tx_modq[chan] = chan;
5651 
5652 	t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5653 			 &adap->params.tp.ingress_config, 1,
5654 			 A_TP_INGRESS_CONFIG);
5655 	refresh_vlan_pri_map(adap);
5656 
5657 	return 0;
5658 }
5659 
5660 /**
5661  *	t4_filter_field_shift - calculate filter field shift
5662  *	@adap: the adapter
5663  *	@filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
5664  *
5665  *	Return the shift position of a filter field within the Compressed
5666  *	Filter Tuple.  The filter field is specified via its selection bit
5667  *	within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
5668  */
5669 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
5670 {
5671 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
5672 	unsigned int sel;
5673 	int field_shift;
5674 
5675 	if ((filter_mode & filter_sel) == 0)
5676 		return -1;
5677 
5678 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
5679 	    switch (filter_mode & sel) {
5680 		case F_FCOE:          field_shift += W_FT_FCOE;          break;
5681 		case F_PORT:          field_shift += W_FT_PORT;          break;
5682 		case F_VNIC_ID:       field_shift += W_FT_VNIC_ID;       break;
5683 		case F_VLAN:          field_shift += W_FT_VLAN;          break;
5684 		case F_TOS:           field_shift += W_FT_TOS;           break;
5685 		case F_PROTOCOL:      field_shift += W_FT_PROTOCOL;      break;
5686 		case F_ETHERTYPE:     field_shift += W_FT_ETHERTYPE;     break;
5687 		case F_MACMATCH:      field_shift += W_FT_MACMATCH;      break;
5688 		case F_MPSHITTYPE:    field_shift += W_FT_MPSHITTYPE;    break;
5689 		case F_FRAGMENTATION: field_shift += W_FT_FRAGMENTATION; break;
5690 	    }
5691 	}
5692 	return field_shift;
5693 }
5694 
5695 int __devinit t4_port_init(struct port_info *p, int mbox, int pf, int vf)
5696 {
5697 	u8 addr[6];
5698 	int ret, i, j;
5699 	struct fw_port_cmd c;
5700 	u16 rss_size;
5701 	adapter_t *adap = p->adapter;
5702 	u32 param, val;
5703 
5704 	memset(&c, 0, sizeof(c));
5705 
5706 	for (i = 0, j = -1; i <= p->port_id; i++) {
5707 		do {
5708 			j++;
5709 		} while ((adap->params.portvec & (1 << j)) == 0);
5710 	}
5711 
5712 	c.op_to_portid = htonl(V_FW_CMD_OP(FW_PORT_CMD) |
5713 			       F_FW_CMD_REQUEST | F_FW_CMD_READ |
5714 			       V_FW_PORT_CMD_PORTID(j));
5715 	c.action_to_len16 = htonl(
5716 		V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
5717 		FW_LEN16(c));
5718 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5719 	if (ret)
5720 		return ret;
5721 
5722 	ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
5723 	if (ret < 0)
5724 		return ret;
5725 
5726 	p->vi[0].viid = ret;
5727 	p->tx_chan = j;
5728 	p->rx_chan_map = get_mps_bg_map(adap, j);
5729 	p->lport = j;
5730 	p->vi[0].rss_size = rss_size;
5731 	t4_os_set_hw_addr(adap, p->port_id, addr);
5732 
5733 	ret = ntohl(c.u.info.lstatus_to_modtype);
5734 	p->mdio_addr = (ret & F_FW_PORT_CMD_MDIOCAP) ?
5735 		G_FW_PORT_CMD_MDIOADDR(ret) : -1;
5736 	p->port_type = G_FW_PORT_CMD_PTYPE(ret);
5737 	p->mod_type = G_FW_PORT_CMD_MODTYPE(ret);
5738 
5739 	init_link_config(&p->link_cfg, ntohs(c.u.info.pcap));
5740 
5741 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5742 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
5743 	    V_FW_PARAMS_PARAM_YZ(p->vi[0].viid);
5744 	ret = t4_query_params(adap, mbox, pf, vf, 1, &param, &val);
5745 	if (ret)
5746 		p->vi[0].rss_base = 0xffff;
5747 	else {
5748 		/* MPASS((val >> 16) == rss_size); */
5749 		p->vi[0].rss_base = val & 0xffff;
5750 	}
5751 
5752 	return 0;
5753 }
5754 
5755 int t4_sched_config(struct adapter *adapter, int type, int minmaxen,
5756     		    int sleep_ok)
5757 {
5758 	struct fw_sched_cmd cmd;
5759 
5760 	memset(&cmd, 0, sizeof(cmd));
5761 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
5762 				      F_FW_CMD_REQUEST |
5763 				      F_FW_CMD_WRITE);
5764 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5765 
5766 	cmd.u.config.sc = FW_SCHED_SC_CONFIG;
5767 	cmd.u.config.type = type;
5768 	cmd.u.config.minmaxen = minmaxen;
5769 
5770 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
5771 			       NULL, sleep_ok);
5772 }
5773 
5774 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
5775 		    int rateunit, int ratemode, int channel, int cl,
5776 		    int minrate, int maxrate, int weight, int pktsize,
5777 		    int sleep_ok)
5778 {
5779 	struct fw_sched_cmd cmd;
5780 
5781 	memset(&cmd, 0, sizeof(cmd));
5782 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
5783 				      F_FW_CMD_REQUEST |
5784 				      F_FW_CMD_WRITE);
5785 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5786 
5787 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
5788 	cmd.u.params.type = type;
5789 	cmd.u.params.level = level;
5790 	cmd.u.params.mode = mode;
5791 	cmd.u.params.ch = channel;
5792 	cmd.u.params.cl = cl;
5793 	cmd.u.params.unit = rateunit;
5794 	cmd.u.params.rate = ratemode;
5795 	cmd.u.params.min = cpu_to_be32(minrate);
5796 	cmd.u.params.max = cpu_to_be32(maxrate);
5797 	cmd.u.params.weight = cpu_to_be16(weight);
5798 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
5799 
5800 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
5801 			       NULL, sleep_ok);
5802 }
5803