xref: /freebsd/sys/dev/cxgbe/common/t4_hw.c (revision 49dae58b287906be26f56ba3e3dc693c3ba8cf37)
1 /*-
2  * Copyright (c) 2012, 2016 Chelsio Communications, Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_inet.h"
31 
32 #include <sys/param.h>
33 #include <sys/eventhandler.h>
34 
35 #include "common.h"
36 #include "t4_regs.h"
37 #include "t4_regs_values.h"
38 #include "firmware/t4fw_interface.h"
39 
40 #undef msleep
41 #define msleep(x) do { \
42 	if (cold) \
43 		DELAY((x) * 1000); \
44 	else \
45 		pause("t4hw", (x) * hz / 1000); \
46 } while (0)
47 
48 /**
49  *	t4_wait_op_done_val - wait until an operation is completed
50  *	@adapter: the adapter performing the operation
51  *	@reg: the register to check for completion
52  *	@mask: a single-bit field within @reg that indicates completion
53  *	@polarity: the value of the field when the operation is completed
54  *	@attempts: number of check iterations
55  *	@delay: delay in usecs between iterations
56  *	@valp: where to store the value of the register at completion time
57  *
58  *	Wait until an operation is completed by checking a bit in a register
59  *	up to @attempts times.  If @valp is not NULL the value of the register
60  *	at the time it indicated completion is stored there.  Returns 0 if the
61  *	operation completes and	-EAGAIN	otherwise.
62  */
63 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
64 			       int polarity, int attempts, int delay, u32 *valp)
65 {
66 	while (1) {
67 		u32 val = t4_read_reg(adapter, reg);
68 
69 		if (!!(val & mask) == polarity) {
70 			if (valp)
71 				*valp = val;
72 			return 0;
73 		}
74 		if (--attempts == 0)
75 			return -EAGAIN;
76 		if (delay)
77 			udelay(delay);
78 	}
79 }
80 
81 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
82 				  int polarity, int attempts, int delay)
83 {
84 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
85 				   delay, NULL);
86 }
87 
88 /**
89  *	t4_set_reg_field - set a register field to a value
90  *	@adapter: the adapter to program
91  *	@addr: the register address
92  *	@mask: specifies the portion of the register to modify
93  *	@val: the new value for the register field
94  *
95  *	Sets a register field specified by the supplied mask to the
96  *	given value.
97  */
98 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
99 		      u32 val)
100 {
101 	u32 v = t4_read_reg(adapter, addr) & ~mask;
102 
103 	t4_write_reg(adapter, addr, v | val);
104 	(void) t4_read_reg(adapter, addr);      /* flush */
105 }
106 
107 /**
108  *	t4_read_indirect - read indirectly addressed registers
109  *	@adap: the adapter
110  *	@addr_reg: register holding the indirect address
111  *	@data_reg: register holding the value of the indirect register
112  *	@vals: where the read register values are stored
113  *	@nregs: how many indirect registers to read
114  *	@start_idx: index of first indirect register to read
115  *
116  *	Reads registers that are accessed indirectly through an address/data
117  *	register pair.
118  */
119 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
120 			     unsigned int data_reg, u32 *vals,
121 			     unsigned int nregs, unsigned int start_idx)
122 {
123 	while (nregs--) {
124 		t4_write_reg(adap, addr_reg, start_idx);
125 		*vals++ = t4_read_reg(adap, data_reg);
126 		start_idx++;
127 	}
128 }
129 
130 /**
131  *	t4_write_indirect - write indirectly addressed registers
132  *	@adap: the adapter
133  *	@addr_reg: register holding the indirect addresses
134  *	@data_reg: register holding the value for the indirect registers
135  *	@vals: values to write
136  *	@nregs: how many indirect registers to write
137  *	@start_idx: address of first indirect register to write
138  *
139  *	Writes a sequential block of registers that are accessed indirectly
140  *	through an address/data register pair.
141  */
142 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
143 		       unsigned int data_reg, const u32 *vals,
144 		       unsigned int nregs, unsigned int start_idx)
145 {
146 	while (nregs--) {
147 		t4_write_reg(adap, addr_reg, start_idx++);
148 		t4_write_reg(adap, data_reg, *vals++);
149 	}
150 }
151 
152 /*
153  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
154  * mechanism.  This guarantees that we get the real value even if we're
155  * operating within a Virtual Machine and the Hypervisor is trapping our
156  * Configuration Space accesses.
157  *
158  * N.B. This routine should only be used as a last resort: the firmware uses
159  *      the backdoor registers on a regular basis and we can end up
160  *      conflicting with it's uses!
161  */
162 u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
163 {
164 	u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg);
165 	u32 val;
166 
167 	if (chip_id(adap) <= CHELSIO_T5)
168 		req |= F_ENABLE;
169 	else
170 		req |= F_T6_ENABLE;
171 
172 	if (is_t4(adap))
173 		req |= F_LOCALCFG;
174 
175 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req);
176 	val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
177 
178 	/*
179 	 * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
180 	 * Configuration Space read.  (None of the other fields matter when
181 	 * F_ENABLE is 0 so a simple register write is easier than a
182 	 * read-modify-write via t4_set_reg_field().)
183 	 */
184 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0);
185 
186 	return val;
187 }
188 
189 /*
190  * t4_report_fw_error - report firmware error
191  * @adap: the adapter
192  *
193  * The adapter firmware can indicate error conditions to the host.
194  * If the firmware has indicated an error, print out the reason for
195  * the firmware error.
196  */
197 static void t4_report_fw_error(struct adapter *adap)
198 {
199 	static const char *const reason[] = {
200 		"Crash",			/* PCIE_FW_EVAL_CRASH */
201 		"During Device Preparation",	/* PCIE_FW_EVAL_PREP */
202 		"During Device Configuration",	/* PCIE_FW_EVAL_CONF */
203 		"During Device Initialization",	/* PCIE_FW_EVAL_INIT */
204 		"Unexpected Event",		/* PCIE_FW_EVAL_UNEXPECTEDEVENT */
205 		"Insufficient Airflow",		/* PCIE_FW_EVAL_OVERHEAT */
206 		"Device Shutdown",		/* PCIE_FW_EVAL_DEVICESHUTDOWN */
207 		"Reserved",			/* reserved */
208 	};
209 	u32 pcie_fw;
210 
211 	pcie_fw = t4_read_reg(adap, A_PCIE_FW);
212 	if (pcie_fw & F_PCIE_FW_ERR)
213 		CH_ERR(adap, "Firmware reports adapter error: %s\n",
214 			reason[G_PCIE_FW_EVAL(pcie_fw)]);
215 }
216 
217 /*
218  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
219  */
220 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
221 			 u32 mbox_addr)
222 {
223 	for ( ; nflit; nflit--, mbox_addr += 8)
224 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
225 }
226 
227 /*
228  * Handle a FW assertion reported in a mailbox.
229  */
230 static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt)
231 {
232 	CH_ALERT(adap,
233 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
234 		  asrt->u.assert.filename_0_7,
235 		  be32_to_cpu(asrt->u.assert.line),
236 		  be32_to_cpu(asrt->u.assert.x),
237 		  be32_to_cpu(asrt->u.assert.y));
238 }
239 
240 #define X_CIM_PF_NOACCESS 0xeeeeeeee
241 /**
242  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
243  *	@adap: the adapter
244  *	@mbox: index of the mailbox to use
245  *	@cmd: the command to write
246  *	@size: command length in bytes
247  *	@rpl: where to optionally store the reply
248  *	@sleep_ok: if true we may sleep while awaiting command completion
249  *	@timeout: time to wait for command to finish before timing out
250  *		(negative implies @sleep_ok=false)
251  *
252  *	Sends the given command to FW through the selected mailbox and waits
253  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
254  *	store the FW's reply to the command.  The command and its optional
255  *	reply are of the same length.  Some FW commands like RESET and
256  *	INITIALIZE can take a considerable amount of time to execute.
257  *	@sleep_ok determines whether we may sleep while awaiting the response.
258  *	If sleeping is allowed we use progressive backoff otherwise we spin.
259  *	Note that passing in a negative @timeout is an alternate mechanism
260  *	for specifying @sleep_ok=false.  This is useful when a higher level
261  *	interface allows for specification of @timeout but not @sleep_ok ...
262  *
263  *	The return value is 0 on success or a negative errno on failure.  A
264  *	failure can happen either because we are not able to execute the
265  *	command or FW executes it but signals an error.  In the latter case
266  *	the return value is the error code indicated by FW (negated).
267  */
268 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
269 			    int size, void *rpl, bool sleep_ok, int timeout)
270 {
271 	/*
272 	 * We delay in small increments at first in an effort to maintain
273 	 * responsiveness for simple, fast executing commands but then back
274 	 * off to larger delays to a maximum retry delay.
275 	 */
276 	static const int delay[] = {
277 		1, 1, 3, 5, 10, 10, 20, 50, 100
278 	};
279 	u32 v;
280 	u64 res;
281 	int i, ms, delay_idx, ret;
282 	const __be64 *p = cmd;
283 	u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
284 	u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
285 	u32 ctl;
286 	__be64 cmd_rpl[MBOX_LEN/8];
287 	u32 pcie_fw;
288 
289 	if ((size & 15) || size > MBOX_LEN)
290 		return -EINVAL;
291 
292 	/*
293 	 * If we have a negative timeout, that implies that we can't sleep.
294 	 */
295 	if (timeout < 0) {
296 		sleep_ok = false;
297 		timeout = -timeout;
298 	}
299 
300 	/*
301 	 * Attempt to gain access to the mailbox.
302 	 */
303 	for (i = 0; i < 4; i++) {
304 		ctl = t4_read_reg(adap, ctl_reg);
305 		v = G_MBOWNER(ctl);
306 		if (v != X_MBOWNER_NONE)
307 			break;
308 	}
309 
310 	/*
311 	 * If we were unable to gain access, dequeue ourselves from the
312 	 * mailbox atomic access list and report the error to our caller.
313 	 */
314 	if (v != X_MBOWNER_PL) {
315 		t4_report_fw_error(adap);
316 		ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
317 		return ret;
318 	}
319 
320 	/*
321 	 * If we gain ownership of the mailbox and there's a "valid" message
322 	 * in it, this is likely an asynchronous error message from the
323 	 * firmware.  So we'll report that and then proceed on with attempting
324 	 * to issue our own command ... which may well fail if the error
325 	 * presaged the firmware crashing ...
326 	 */
327 	if (ctl & F_MBMSGVALID) {
328 		CH_ERR(adap, "found VALID command in mbox %u: "
329 		       "%llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
330 		       (unsigned long long)t4_read_reg64(adap, data_reg),
331 		       (unsigned long long)t4_read_reg64(adap, data_reg + 8),
332 		       (unsigned long long)t4_read_reg64(adap, data_reg + 16),
333 		       (unsigned long long)t4_read_reg64(adap, data_reg + 24),
334 		       (unsigned long long)t4_read_reg64(adap, data_reg + 32),
335 		       (unsigned long long)t4_read_reg64(adap, data_reg + 40),
336 		       (unsigned long long)t4_read_reg64(adap, data_reg + 48),
337 		       (unsigned long long)t4_read_reg64(adap, data_reg + 56));
338 	}
339 
340 	/*
341 	 * Copy in the new mailbox command and send it on its way ...
342 	 */
343 	for (i = 0; i < size; i += 8, p++)
344 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p));
345 
346 	CH_DUMP_MBOX(adap, mbox, data_reg);
347 
348 	t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
349 	t4_read_reg(adap, ctl_reg);	/* flush write */
350 
351 	delay_idx = 0;
352 	ms = delay[0];
353 
354 	/*
355 	 * Loop waiting for the reply; bail out if we time out or the firmware
356 	 * reports an error.
357 	 */
358 	for (i = 0;
359 	     !((pcie_fw = t4_read_reg(adap, A_PCIE_FW)) & F_PCIE_FW_ERR) &&
360 	     i < timeout;
361 	     i += ms) {
362 		if (sleep_ok) {
363 			ms = delay[delay_idx];  /* last element may repeat */
364 			if (delay_idx < ARRAY_SIZE(delay) - 1)
365 				delay_idx++;
366 			msleep(ms);
367 		} else {
368 			mdelay(ms);
369 		}
370 
371 		v = t4_read_reg(adap, ctl_reg);
372 		if (v == X_CIM_PF_NOACCESS)
373 			continue;
374 		if (G_MBOWNER(v) == X_MBOWNER_PL) {
375 			if (!(v & F_MBMSGVALID)) {
376 				t4_write_reg(adap, ctl_reg,
377 					     V_MBOWNER(X_MBOWNER_NONE));
378 				continue;
379 			}
380 
381 			/*
382 			 * Retrieve the command reply and release the mailbox.
383 			 */
384 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg);
385 			t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
386 
387 			CH_DUMP_MBOX(adap, mbox, data_reg);
388 
389 			res = be64_to_cpu(cmd_rpl[0]);
390 			if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
391 				fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl);
392 				res = V_FW_CMD_RETVAL(EIO);
393 			} else if (rpl)
394 				memcpy(rpl, cmd_rpl, size);
395 			return -G_FW_CMD_RETVAL((int)res);
396 		}
397 	}
398 
399 	/*
400 	 * We timed out waiting for a reply to our mailbox command.  Report
401 	 * the error and also check to see if the firmware reported any
402 	 * errors ...
403 	 */
404 	ret = (pcie_fw & F_PCIE_FW_ERR) ? -ENXIO : -ETIMEDOUT;
405 	CH_ERR(adap, "command %#x in mailbox %d timed out\n",
406 	       *(const u8 *)cmd, mbox);
407 
408 	t4_report_fw_error(adap);
409 	t4_fatal_err(adap);
410 	return ret;
411 }
412 
413 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
414 		    void *rpl, bool sleep_ok)
415 {
416 		return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl,
417 					       sleep_ok, FW_CMD_MAX_TIMEOUT);
418 
419 }
420 
421 static int t4_edc_err_read(struct adapter *adap, int idx)
422 {
423 	u32 edc_ecc_err_addr_reg;
424 	u32 edc_bist_status_rdata_reg;
425 
426 	if (is_t4(adap)) {
427 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
428 		return 0;
429 	}
430 	if (idx != 0 && idx != 1) {
431 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
432 		return 0;
433 	}
434 
435 	edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx);
436 	edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx);
437 
438 	CH_WARN(adap,
439 		"edc%d err addr 0x%x: 0x%x.\n",
440 		idx, edc_ecc_err_addr_reg,
441 		t4_read_reg(adap, edc_ecc_err_addr_reg));
442 	CH_WARN(adap,
443 	 	"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
444 		edc_bist_status_rdata_reg,
445 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg),
446 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8),
447 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16),
448 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24),
449 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32),
450 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40),
451 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48),
452 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56),
453 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64));
454 
455 	return 0;
456 }
457 
458 /**
459  *	t4_mc_read - read from MC through backdoor accesses
460  *	@adap: the adapter
461  *	@idx: which MC to access
462  *	@addr: address of first byte requested
463  *	@data: 64 bytes of data containing the requested address
464  *	@ecc: where to store the corresponding 64-bit ECC word
465  *
466  *	Read 64 bytes of data from MC starting at a 64-byte-aligned address
467  *	that covers the requested address @addr.  If @parity is not %NULL it
468  *	is assigned the 64-bit ECC word for the read data.
469  */
470 int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
471 {
472 	int i;
473 	u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
474 	u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
475 
476 	if (is_t4(adap)) {
477 		mc_bist_cmd_reg = A_MC_BIST_CMD;
478 		mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
479 		mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
480 		mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
481 		mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
482 	} else {
483 		mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
484 		mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
485 		mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
486 		mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA,
487 						  idx);
488 		mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN,
489 						  idx);
490 	}
491 
492 	if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
493 		return -EBUSY;
494 	t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
495 	t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
496 	t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
497 	t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
498 		     F_START_BIST | V_BIST_CMD_GAP(1));
499 	i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
500 	if (i)
501 		return i;
502 
503 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
504 
505 	for (i = 15; i >= 0; i--)
506 		*data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
507 	if (ecc)
508 		*ecc = t4_read_reg64(adap, MC_DATA(16));
509 #undef MC_DATA
510 	return 0;
511 }
512 
513 /**
514  *	t4_edc_read - read from EDC through backdoor accesses
515  *	@adap: the adapter
516  *	@idx: which EDC to access
517  *	@addr: address of first byte requested
518  *	@data: 64 bytes of data containing the requested address
519  *	@ecc: where to store the corresponding 64-bit ECC word
520  *
521  *	Read 64 bytes of data from EDC starting at a 64-byte-aligned address
522  *	that covers the requested address @addr.  If @parity is not %NULL it
523  *	is assigned the 64-bit ECC word for the read data.
524  */
525 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
526 {
527 	int i;
528 	u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
529 	u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
530 
531 	if (is_t4(adap)) {
532 		edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
533 		edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
534 		edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
535 		edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
536 						    idx);
537 		edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
538 						    idx);
539 	} else {
540 /*
541  * These macro are missing in t4_regs.h file.
542  * Added temporarily for testing.
543  */
544 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
545 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
546 		edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx);
547 		edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx);
548 		edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx);
549 		edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN,
550 						    idx);
551 		edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA,
552 						    idx);
553 #undef EDC_REG_T5
554 #undef EDC_STRIDE_T5
555 	}
556 
557 	if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
558 		return -EBUSY;
559 	t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
560 	t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
561 	t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
562 	t4_write_reg(adap, edc_bist_cmd_reg,
563 		     V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
564 	i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
565 	if (i)
566 		return i;
567 
568 #define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
569 
570 	for (i = 15; i >= 0; i--)
571 		*data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
572 	if (ecc)
573 		*ecc = t4_read_reg64(adap, EDC_DATA(16));
574 #undef EDC_DATA
575 	return 0;
576 }
577 
578 /**
579  *	t4_mem_read - read EDC 0, EDC 1 or MC into buffer
580  *	@adap: the adapter
581  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
582  *	@addr: address within indicated memory type
583  *	@len: amount of memory to read
584  *	@buf: host memory buffer
585  *
586  *	Reads an [almost] arbitrary memory region in the firmware: the
587  *	firmware memory address, length and host buffer must be aligned on
588  *	32-bit boudaries.  The memory is returned as a raw byte sequence from
589  *	the firmware's memory.  If this memory contains data structures which
590  *	contain multi-byte integers, it's the callers responsibility to
591  *	perform appropriate byte order conversions.
592  */
593 int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
594 		__be32 *buf)
595 {
596 	u32 pos, start, end, offset;
597 	int ret;
598 
599 	/*
600 	 * Argument sanity checks ...
601 	 */
602 	if ((addr & 0x3) || (len & 0x3))
603 		return -EINVAL;
604 
605 	/*
606 	 * The underlaying EDC/MC read routines read 64 bytes at a time so we
607 	 * need to round down the start and round up the end.  We'll start
608 	 * copying out of the first line at (addr - start) a word at a time.
609 	 */
610 	start = rounddown2(addr, 64);
611 	end = roundup2(addr + len, 64);
612 	offset = (addr - start)/sizeof(__be32);
613 
614 	for (pos = start; pos < end; pos += 64, offset = 0) {
615 		__be32 data[16];
616 
617 		/*
618 		 * Read the chip's memory block and bail if there's an error.
619 		 */
620 		if ((mtype == MEM_MC) || (mtype == MEM_MC1))
621 			ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
622 		else
623 			ret = t4_edc_read(adap, mtype, pos, data, NULL);
624 		if (ret)
625 			return ret;
626 
627 		/*
628 		 * Copy the data into the caller's memory buffer.
629 		 */
630 		while (offset < 16 && len > 0) {
631 			*buf++ = data[offset++];
632 			len -= sizeof(__be32);
633 		}
634 	}
635 
636 	return 0;
637 }
638 
639 /*
640  * Return the specified PCI-E Configuration Space register from our Physical
641  * Function.  We try first via a Firmware LDST Command (if fw_attach != 0)
642  * since we prefer to let the firmware own all of these registers, but if that
643  * fails we go for it directly ourselves.
644  */
645 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach)
646 {
647 
648 	/*
649 	 * If fw_attach != 0, construct and send the Firmware LDST Command to
650 	 * retrieve the specified PCI-E Configuration Space register.
651 	 */
652 	if (drv_fw_attach != 0) {
653 		struct fw_ldst_cmd ldst_cmd;
654 		int ret;
655 
656 		memset(&ldst_cmd, 0, sizeof(ldst_cmd));
657 		ldst_cmd.op_to_addrspace =
658 			cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
659 				    F_FW_CMD_REQUEST |
660 				    F_FW_CMD_READ |
661 				    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
662 		ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
663 		ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1);
664 		ldst_cmd.u.pcie.ctrl_to_fn =
665 			(F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf));
666 		ldst_cmd.u.pcie.r = reg;
667 
668 		/*
669 		 * If the LDST Command succeeds, return the result, otherwise
670 		 * fall through to reading it directly ourselves ...
671 		 */
672 		ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
673 				 &ldst_cmd);
674 		if (ret == 0)
675 			return be32_to_cpu(ldst_cmd.u.pcie.data[0]);
676 
677 		CH_WARN(adap, "Firmware failed to return "
678 			"Configuration Space register %d, err = %d\n",
679 			reg, -ret);
680 	}
681 
682 	/*
683 	 * Read the desired Configuration Space register via the PCI-E
684 	 * Backdoor mechanism.
685 	 */
686 	return t4_hw_pci_read_cfg4(adap, reg);
687 }
688 
689 /**
690  *	t4_get_regs_len - return the size of the chips register set
691  *	@adapter: the adapter
692  *
693  *	Returns the size of the chip's BAR0 register space.
694  */
695 unsigned int t4_get_regs_len(struct adapter *adapter)
696 {
697 	unsigned int chip_version = chip_id(adapter);
698 
699 	switch (chip_version) {
700 	case CHELSIO_T4:
701 		return T4_REGMAP_SIZE;
702 
703 	case CHELSIO_T5:
704 	case CHELSIO_T6:
705 		return T5_REGMAP_SIZE;
706 	}
707 
708 	CH_ERR(adapter,
709 		"Unsupported chip version %d\n", chip_version);
710 	return 0;
711 }
712 
713 /**
714  *	t4_get_regs - read chip registers into provided buffer
715  *	@adap: the adapter
716  *	@buf: register buffer
717  *	@buf_size: size (in bytes) of register buffer
718  *
719  *	If the provided register buffer isn't large enough for the chip's
720  *	full register range, the register dump will be truncated to the
721  *	register buffer's size.
722  */
723 void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size)
724 {
725 	static const unsigned int t4_reg_ranges[] = {
726 		0x1008, 0x1108,
727 		0x1180, 0x1184,
728 		0x1190, 0x1194,
729 		0x11a0, 0x11a4,
730 		0x11b0, 0x11b4,
731 		0x11fc, 0x123c,
732 		0x1300, 0x173c,
733 		0x1800, 0x18fc,
734 		0x3000, 0x30d8,
735 		0x30e0, 0x30e4,
736 		0x30ec, 0x5910,
737 		0x5920, 0x5924,
738 		0x5960, 0x5960,
739 		0x5968, 0x5968,
740 		0x5970, 0x5970,
741 		0x5978, 0x5978,
742 		0x5980, 0x5980,
743 		0x5988, 0x5988,
744 		0x5990, 0x5990,
745 		0x5998, 0x5998,
746 		0x59a0, 0x59d4,
747 		0x5a00, 0x5ae0,
748 		0x5ae8, 0x5ae8,
749 		0x5af0, 0x5af0,
750 		0x5af8, 0x5af8,
751 		0x6000, 0x6098,
752 		0x6100, 0x6150,
753 		0x6200, 0x6208,
754 		0x6240, 0x6248,
755 		0x6280, 0x62b0,
756 		0x62c0, 0x6338,
757 		0x6370, 0x638c,
758 		0x6400, 0x643c,
759 		0x6500, 0x6524,
760 		0x6a00, 0x6a04,
761 		0x6a14, 0x6a38,
762 		0x6a60, 0x6a70,
763 		0x6a78, 0x6a78,
764 		0x6b00, 0x6b0c,
765 		0x6b1c, 0x6b84,
766 		0x6bf0, 0x6bf8,
767 		0x6c00, 0x6c0c,
768 		0x6c1c, 0x6c84,
769 		0x6cf0, 0x6cf8,
770 		0x6d00, 0x6d0c,
771 		0x6d1c, 0x6d84,
772 		0x6df0, 0x6df8,
773 		0x6e00, 0x6e0c,
774 		0x6e1c, 0x6e84,
775 		0x6ef0, 0x6ef8,
776 		0x6f00, 0x6f0c,
777 		0x6f1c, 0x6f84,
778 		0x6ff0, 0x6ff8,
779 		0x7000, 0x700c,
780 		0x701c, 0x7084,
781 		0x70f0, 0x70f8,
782 		0x7100, 0x710c,
783 		0x711c, 0x7184,
784 		0x71f0, 0x71f8,
785 		0x7200, 0x720c,
786 		0x721c, 0x7284,
787 		0x72f0, 0x72f8,
788 		0x7300, 0x730c,
789 		0x731c, 0x7384,
790 		0x73f0, 0x73f8,
791 		0x7400, 0x7450,
792 		0x7500, 0x7530,
793 		0x7600, 0x760c,
794 		0x7614, 0x761c,
795 		0x7680, 0x76cc,
796 		0x7700, 0x7798,
797 		0x77c0, 0x77fc,
798 		0x7900, 0x79fc,
799 		0x7b00, 0x7b58,
800 		0x7b60, 0x7b84,
801 		0x7b8c, 0x7c38,
802 		0x7d00, 0x7d38,
803 		0x7d40, 0x7d80,
804 		0x7d8c, 0x7ddc,
805 		0x7de4, 0x7e04,
806 		0x7e10, 0x7e1c,
807 		0x7e24, 0x7e38,
808 		0x7e40, 0x7e44,
809 		0x7e4c, 0x7e78,
810 		0x7e80, 0x7ea4,
811 		0x7eac, 0x7edc,
812 		0x7ee8, 0x7efc,
813 		0x8dc0, 0x8e04,
814 		0x8e10, 0x8e1c,
815 		0x8e30, 0x8e78,
816 		0x8ea0, 0x8eb8,
817 		0x8ec0, 0x8f6c,
818 		0x8fc0, 0x9008,
819 		0x9010, 0x9058,
820 		0x9060, 0x9060,
821 		0x9068, 0x9074,
822 		0x90fc, 0x90fc,
823 		0x9400, 0x9408,
824 		0x9410, 0x9458,
825 		0x9600, 0x9600,
826 		0x9608, 0x9638,
827 		0x9640, 0x96bc,
828 		0x9800, 0x9808,
829 		0x9820, 0x983c,
830 		0x9850, 0x9864,
831 		0x9c00, 0x9c6c,
832 		0x9c80, 0x9cec,
833 		0x9d00, 0x9d6c,
834 		0x9d80, 0x9dec,
835 		0x9e00, 0x9e6c,
836 		0x9e80, 0x9eec,
837 		0x9f00, 0x9f6c,
838 		0x9f80, 0x9fec,
839 		0xd004, 0xd004,
840 		0xd010, 0xd03c,
841 		0xdfc0, 0xdfe0,
842 		0xe000, 0xea7c,
843 		0xf000, 0x11190,
844 		0x19040, 0x1906c,
845 		0x19078, 0x19080,
846 		0x1908c, 0x190e4,
847 		0x190f0, 0x190f8,
848 		0x19100, 0x19110,
849 		0x19120, 0x19124,
850 		0x19150, 0x19194,
851 		0x1919c, 0x191b0,
852 		0x191d0, 0x191e8,
853 		0x19238, 0x1924c,
854 		0x193f8, 0x1943c,
855 		0x1944c, 0x19474,
856 		0x19490, 0x194e0,
857 		0x194f0, 0x194f8,
858 		0x19800, 0x19c08,
859 		0x19c10, 0x19c90,
860 		0x19ca0, 0x19ce4,
861 		0x19cf0, 0x19d40,
862 		0x19d50, 0x19d94,
863 		0x19da0, 0x19de8,
864 		0x19df0, 0x19e40,
865 		0x19e50, 0x19e90,
866 		0x19ea0, 0x19f4c,
867 		0x1a000, 0x1a004,
868 		0x1a010, 0x1a06c,
869 		0x1a0b0, 0x1a0e4,
870 		0x1a0ec, 0x1a0f4,
871 		0x1a100, 0x1a108,
872 		0x1a114, 0x1a120,
873 		0x1a128, 0x1a130,
874 		0x1a138, 0x1a138,
875 		0x1a190, 0x1a1c4,
876 		0x1a1fc, 0x1a1fc,
877 		0x1e040, 0x1e04c,
878 		0x1e284, 0x1e28c,
879 		0x1e2c0, 0x1e2c0,
880 		0x1e2e0, 0x1e2e0,
881 		0x1e300, 0x1e384,
882 		0x1e3c0, 0x1e3c8,
883 		0x1e440, 0x1e44c,
884 		0x1e684, 0x1e68c,
885 		0x1e6c0, 0x1e6c0,
886 		0x1e6e0, 0x1e6e0,
887 		0x1e700, 0x1e784,
888 		0x1e7c0, 0x1e7c8,
889 		0x1e840, 0x1e84c,
890 		0x1ea84, 0x1ea8c,
891 		0x1eac0, 0x1eac0,
892 		0x1eae0, 0x1eae0,
893 		0x1eb00, 0x1eb84,
894 		0x1ebc0, 0x1ebc8,
895 		0x1ec40, 0x1ec4c,
896 		0x1ee84, 0x1ee8c,
897 		0x1eec0, 0x1eec0,
898 		0x1eee0, 0x1eee0,
899 		0x1ef00, 0x1ef84,
900 		0x1efc0, 0x1efc8,
901 		0x1f040, 0x1f04c,
902 		0x1f284, 0x1f28c,
903 		0x1f2c0, 0x1f2c0,
904 		0x1f2e0, 0x1f2e0,
905 		0x1f300, 0x1f384,
906 		0x1f3c0, 0x1f3c8,
907 		0x1f440, 0x1f44c,
908 		0x1f684, 0x1f68c,
909 		0x1f6c0, 0x1f6c0,
910 		0x1f6e0, 0x1f6e0,
911 		0x1f700, 0x1f784,
912 		0x1f7c0, 0x1f7c8,
913 		0x1f840, 0x1f84c,
914 		0x1fa84, 0x1fa8c,
915 		0x1fac0, 0x1fac0,
916 		0x1fae0, 0x1fae0,
917 		0x1fb00, 0x1fb84,
918 		0x1fbc0, 0x1fbc8,
919 		0x1fc40, 0x1fc4c,
920 		0x1fe84, 0x1fe8c,
921 		0x1fec0, 0x1fec0,
922 		0x1fee0, 0x1fee0,
923 		0x1ff00, 0x1ff84,
924 		0x1ffc0, 0x1ffc8,
925 		0x20000, 0x2002c,
926 		0x20100, 0x2013c,
927 		0x20190, 0x201a0,
928 		0x201a8, 0x201b8,
929 		0x201c4, 0x201c8,
930 		0x20200, 0x20318,
931 		0x20400, 0x204b4,
932 		0x204c0, 0x20528,
933 		0x20540, 0x20614,
934 		0x21000, 0x21040,
935 		0x2104c, 0x21060,
936 		0x210c0, 0x210ec,
937 		0x21200, 0x21268,
938 		0x21270, 0x21284,
939 		0x212fc, 0x21388,
940 		0x21400, 0x21404,
941 		0x21500, 0x21500,
942 		0x21510, 0x21518,
943 		0x2152c, 0x21530,
944 		0x2153c, 0x2153c,
945 		0x21550, 0x21554,
946 		0x21600, 0x21600,
947 		0x21608, 0x2161c,
948 		0x21624, 0x21628,
949 		0x21630, 0x21634,
950 		0x2163c, 0x2163c,
951 		0x21700, 0x2171c,
952 		0x21780, 0x2178c,
953 		0x21800, 0x21818,
954 		0x21820, 0x21828,
955 		0x21830, 0x21848,
956 		0x21850, 0x21854,
957 		0x21860, 0x21868,
958 		0x21870, 0x21870,
959 		0x21878, 0x21898,
960 		0x218a0, 0x218a8,
961 		0x218b0, 0x218c8,
962 		0x218d0, 0x218d4,
963 		0x218e0, 0x218e8,
964 		0x218f0, 0x218f0,
965 		0x218f8, 0x21a18,
966 		0x21a20, 0x21a28,
967 		0x21a30, 0x21a48,
968 		0x21a50, 0x21a54,
969 		0x21a60, 0x21a68,
970 		0x21a70, 0x21a70,
971 		0x21a78, 0x21a98,
972 		0x21aa0, 0x21aa8,
973 		0x21ab0, 0x21ac8,
974 		0x21ad0, 0x21ad4,
975 		0x21ae0, 0x21ae8,
976 		0x21af0, 0x21af0,
977 		0x21af8, 0x21c18,
978 		0x21c20, 0x21c20,
979 		0x21c28, 0x21c30,
980 		0x21c38, 0x21c38,
981 		0x21c80, 0x21c98,
982 		0x21ca0, 0x21ca8,
983 		0x21cb0, 0x21cc8,
984 		0x21cd0, 0x21cd4,
985 		0x21ce0, 0x21ce8,
986 		0x21cf0, 0x21cf0,
987 		0x21cf8, 0x21d7c,
988 		0x21e00, 0x21e04,
989 		0x22000, 0x2202c,
990 		0x22100, 0x2213c,
991 		0x22190, 0x221a0,
992 		0x221a8, 0x221b8,
993 		0x221c4, 0x221c8,
994 		0x22200, 0x22318,
995 		0x22400, 0x224b4,
996 		0x224c0, 0x22528,
997 		0x22540, 0x22614,
998 		0x23000, 0x23040,
999 		0x2304c, 0x23060,
1000 		0x230c0, 0x230ec,
1001 		0x23200, 0x23268,
1002 		0x23270, 0x23284,
1003 		0x232fc, 0x23388,
1004 		0x23400, 0x23404,
1005 		0x23500, 0x23500,
1006 		0x23510, 0x23518,
1007 		0x2352c, 0x23530,
1008 		0x2353c, 0x2353c,
1009 		0x23550, 0x23554,
1010 		0x23600, 0x23600,
1011 		0x23608, 0x2361c,
1012 		0x23624, 0x23628,
1013 		0x23630, 0x23634,
1014 		0x2363c, 0x2363c,
1015 		0x23700, 0x2371c,
1016 		0x23780, 0x2378c,
1017 		0x23800, 0x23818,
1018 		0x23820, 0x23828,
1019 		0x23830, 0x23848,
1020 		0x23850, 0x23854,
1021 		0x23860, 0x23868,
1022 		0x23870, 0x23870,
1023 		0x23878, 0x23898,
1024 		0x238a0, 0x238a8,
1025 		0x238b0, 0x238c8,
1026 		0x238d0, 0x238d4,
1027 		0x238e0, 0x238e8,
1028 		0x238f0, 0x238f0,
1029 		0x238f8, 0x23a18,
1030 		0x23a20, 0x23a28,
1031 		0x23a30, 0x23a48,
1032 		0x23a50, 0x23a54,
1033 		0x23a60, 0x23a68,
1034 		0x23a70, 0x23a70,
1035 		0x23a78, 0x23a98,
1036 		0x23aa0, 0x23aa8,
1037 		0x23ab0, 0x23ac8,
1038 		0x23ad0, 0x23ad4,
1039 		0x23ae0, 0x23ae8,
1040 		0x23af0, 0x23af0,
1041 		0x23af8, 0x23c18,
1042 		0x23c20, 0x23c20,
1043 		0x23c28, 0x23c30,
1044 		0x23c38, 0x23c38,
1045 		0x23c80, 0x23c98,
1046 		0x23ca0, 0x23ca8,
1047 		0x23cb0, 0x23cc8,
1048 		0x23cd0, 0x23cd4,
1049 		0x23ce0, 0x23ce8,
1050 		0x23cf0, 0x23cf0,
1051 		0x23cf8, 0x23d7c,
1052 		0x23e00, 0x23e04,
1053 		0x24000, 0x2402c,
1054 		0x24100, 0x2413c,
1055 		0x24190, 0x241a0,
1056 		0x241a8, 0x241b8,
1057 		0x241c4, 0x241c8,
1058 		0x24200, 0x24318,
1059 		0x24400, 0x244b4,
1060 		0x244c0, 0x24528,
1061 		0x24540, 0x24614,
1062 		0x25000, 0x25040,
1063 		0x2504c, 0x25060,
1064 		0x250c0, 0x250ec,
1065 		0x25200, 0x25268,
1066 		0x25270, 0x25284,
1067 		0x252fc, 0x25388,
1068 		0x25400, 0x25404,
1069 		0x25500, 0x25500,
1070 		0x25510, 0x25518,
1071 		0x2552c, 0x25530,
1072 		0x2553c, 0x2553c,
1073 		0x25550, 0x25554,
1074 		0x25600, 0x25600,
1075 		0x25608, 0x2561c,
1076 		0x25624, 0x25628,
1077 		0x25630, 0x25634,
1078 		0x2563c, 0x2563c,
1079 		0x25700, 0x2571c,
1080 		0x25780, 0x2578c,
1081 		0x25800, 0x25818,
1082 		0x25820, 0x25828,
1083 		0x25830, 0x25848,
1084 		0x25850, 0x25854,
1085 		0x25860, 0x25868,
1086 		0x25870, 0x25870,
1087 		0x25878, 0x25898,
1088 		0x258a0, 0x258a8,
1089 		0x258b0, 0x258c8,
1090 		0x258d0, 0x258d4,
1091 		0x258e0, 0x258e8,
1092 		0x258f0, 0x258f0,
1093 		0x258f8, 0x25a18,
1094 		0x25a20, 0x25a28,
1095 		0x25a30, 0x25a48,
1096 		0x25a50, 0x25a54,
1097 		0x25a60, 0x25a68,
1098 		0x25a70, 0x25a70,
1099 		0x25a78, 0x25a98,
1100 		0x25aa0, 0x25aa8,
1101 		0x25ab0, 0x25ac8,
1102 		0x25ad0, 0x25ad4,
1103 		0x25ae0, 0x25ae8,
1104 		0x25af0, 0x25af0,
1105 		0x25af8, 0x25c18,
1106 		0x25c20, 0x25c20,
1107 		0x25c28, 0x25c30,
1108 		0x25c38, 0x25c38,
1109 		0x25c80, 0x25c98,
1110 		0x25ca0, 0x25ca8,
1111 		0x25cb0, 0x25cc8,
1112 		0x25cd0, 0x25cd4,
1113 		0x25ce0, 0x25ce8,
1114 		0x25cf0, 0x25cf0,
1115 		0x25cf8, 0x25d7c,
1116 		0x25e00, 0x25e04,
1117 		0x26000, 0x2602c,
1118 		0x26100, 0x2613c,
1119 		0x26190, 0x261a0,
1120 		0x261a8, 0x261b8,
1121 		0x261c4, 0x261c8,
1122 		0x26200, 0x26318,
1123 		0x26400, 0x264b4,
1124 		0x264c0, 0x26528,
1125 		0x26540, 0x26614,
1126 		0x27000, 0x27040,
1127 		0x2704c, 0x27060,
1128 		0x270c0, 0x270ec,
1129 		0x27200, 0x27268,
1130 		0x27270, 0x27284,
1131 		0x272fc, 0x27388,
1132 		0x27400, 0x27404,
1133 		0x27500, 0x27500,
1134 		0x27510, 0x27518,
1135 		0x2752c, 0x27530,
1136 		0x2753c, 0x2753c,
1137 		0x27550, 0x27554,
1138 		0x27600, 0x27600,
1139 		0x27608, 0x2761c,
1140 		0x27624, 0x27628,
1141 		0x27630, 0x27634,
1142 		0x2763c, 0x2763c,
1143 		0x27700, 0x2771c,
1144 		0x27780, 0x2778c,
1145 		0x27800, 0x27818,
1146 		0x27820, 0x27828,
1147 		0x27830, 0x27848,
1148 		0x27850, 0x27854,
1149 		0x27860, 0x27868,
1150 		0x27870, 0x27870,
1151 		0x27878, 0x27898,
1152 		0x278a0, 0x278a8,
1153 		0x278b0, 0x278c8,
1154 		0x278d0, 0x278d4,
1155 		0x278e0, 0x278e8,
1156 		0x278f0, 0x278f0,
1157 		0x278f8, 0x27a18,
1158 		0x27a20, 0x27a28,
1159 		0x27a30, 0x27a48,
1160 		0x27a50, 0x27a54,
1161 		0x27a60, 0x27a68,
1162 		0x27a70, 0x27a70,
1163 		0x27a78, 0x27a98,
1164 		0x27aa0, 0x27aa8,
1165 		0x27ab0, 0x27ac8,
1166 		0x27ad0, 0x27ad4,
1167 		0x27ae0, 0x27ae8,
1168 		0x27af0, 0x27af0,
1169 		0x27af8, 0x27c18,
1170 		0x27c20, 0x27c20,
1171 		0x27c28, 0x27c30,
1172 		0x27c38, 0x27c38,
1173 		0x27c80, 0x27c98,
1174 		0x27ca0, 0x27ca8,
1175 		0x27cb0, 0x27cc8,
1176 		0x27cd0, 0x27cd4,
1177 		0x27ce0, 0x27ce8,
1178 		0x27cf0, 0x27cf0,
1179 		0x27cf8, 0x27d7c,
1180 		0x27e00, 0x27e04,
1181 	};
1182 
1183 	static const unsigned int t5_reg_ranges[] = {
1184 		0x1008, 0x10c0,
1185 		0x10cc, 0x10f8,
1186 		0x1100, 0x1100,
1187 		0x110c, 0x1148,
1188 		0x1180, 0x1184,
1189 		0x1190, 0x1194,
1190 		0x11a0, 0x11a4,
1191 		0x11b0, 0x11b4,
1192 		0x11fc, 0x123c,
1193 		0x1280, 0x173c,
1194 		0x1800, 0x18fc,
1195 		0x3000, 0x3028,
1196 		0x3060, 0x30b0,
1197 		0x30b8, 0x30d8,
1198 		0x30e0, 0x30fc,
1199 		0x3140, 0x357c,
1200 		0x35a8, 0x35cc,
1201 		0x35ec, 0x35ec,
1202 		0x3600, 0x5624,
1203 		0x56cc, 0x56ec,
1204 		0x56f4, 0x5720,
1205 		0x5728, 0x575c,
1206 		0x580c, 0x5814,
1207 		0x5890, 0x589c,
1208 		0x58a4, 0x58ac,
1209 		0x58b8, 0x58bc,
1210 		0x5940, 0x59c8,
1211 		0x59d0, 0x59dc,
1212 		0x59fc, 0x5a18,
1213 		0x5a60, 0x5a70,
1214 		0x5a80, 0x5a9c,
1215 		0x5b94, 0x5bfc,
1216 		0x6000, 0x6020,
1217 		0x6028, 0x6040,
1218 		0x6058, 0x609c,
1219 		0x60a8, 0x614c,
1220 		0x7700, 0x7798,
1221 		0x77c0, 0x78fc,
1222 		0x7b00, 0x7b58,
1223 		0x7b60, 0x7b84,
1224 		0x7b8c, 0x7c54,
1225 		0x7d00, 0x7d38,
1226 		0x7d40, 0x7d80,
1227 		0x7d8c, 0x7ddc,
1228 		0x7de4, 0x7e04,
1229 		0x7e10, 0x7e1c,
1230 		0x7e24, 0x7e38,
1231 		0x7e40, 0x7e44,
1232 		0x7e4c, 0x7e78,
1233 		0x7e80, 0x7edc,
1234 		0x7ee8, 0x7efc,
1235 		0x8dc0, 0x8de0,
1236 		0x8df8, 0x8e04,
1237 		0x8e10, 0x8e84,
1238 		0x8ea0, 0x8f84,
1239 		0x8fc0, 0x9058,
1240 		0x9060, 0x9060,
1241 		0x9068, 0x90f8,
1242 		0x9400, 0x9408,
1243 		0x9410, 0x9470,
1244 		0x9600, 0x9600,
1245 		0x9608, 0x9638,
1246 		0x9640, 0x96f4,
1247 		0x9800, 0x9808,
1248 		0x9820, 0x983c,
1249 		0x9850, 0x9864,
1250 		0x9c00, 0x9c6c,
1251 		0x9c80, 0x9cec,
1252 		0x9d00, 0x9d6c,
1253 		0x9d80, 0x9dec,
1254 		0x9e00, 0x9e6c,
1255 		0x9e80, 0x9eec,
1256 		0x9f00, 0x9f6c,
1257 		0x9f80, 0xa020,
1258 		0xd004, 0xd004,
1259 		0xd010, 0xd03c,
1260 		0xdfc0, 0xdfe0,
1261 		0xe000, 0x1106c,
1262 		0x11074, 0x11088,
1263 		0x1109c, 0x1117c,
1264 		0x11190, 0x11204,
1265 		0x19040, 0x1906c,
1266 		0x19078, 0x19080,
1267 		0x1908c, 0x190e8,
1268 		0x190f0, 0x190f8,
1269 		0x19100, 0x19110,
1270 		0x19120, 0x19124,
1271 		0x19150, 0x19194,
1272 		0x1919c, 0x191b0,
1273 		0x191d0, 0x191e8,
1274 		0x19238, 0x19290,
1275 		0x193f8, 0x19428,
1276 		0x19430, 0x19444,
1277 		0x1944c, 0x1946c,
1278 		0x19474, 0x19474,
1279 		0x19490, 0x194cc,
1280 		0x194f0, 0x194f8,
1281 		0x19c00, 0x19c08,
1282 		0x19c10, 0x19c60,
1283 		0x19c94, 0x19ce4,
1284 		0x19cf0, 0x19d40,
1285 		0x19d50, 0x19d94,
1286 		0x19da0, 0x19de8,
1287 		0x19df0, 0x19e10,
1288 		0x19e50, 0x19e90,
1289 		0x19ea0, 0x19f24,
1290 		0x19f34, 0x19f34,
1291 		0x19f40, 0x19f50,
1292 		0x19f90, 0x19fb4,
1293 		0x19fc4, 0x19fe4,
1294 		0x1a000, 0x1a004,
1295 		0x1a010, 0x1a06c,
1296 		0x1a0b0, 0x1a0e4,
1297 		0x1a0ec, 0x1a0f8,
1298 		0x1a100, 0x1a108,
1299 		0x1a114, 0x1a120,
1300 		0x1a128, 0x1a130,
1301 		0x1a138, 0x1a138,
1302 		0x1a190, 0x1a1c4,
1303 		0x1a1fc, 0x1a1fc,
1304 		0x1e008, 0x1e00c,
1305 		0x1e040, 0x1e044,
1306 		0x1e04c, 0x1e04c,
1307 		0x1e284, 0x1e290,
1308 		0x1e2c0, 0x1e2c0,
1309 		0x1e2e0, 0x1e2e0,
1310 		0x1e300, 0x1e384,
1311 		0x1e3c0, 0x1e3c8,
1312 		0x1e408, 0x1e40c,
1313 		0x1e440, 0x1e444,
1314 		0x1e44c, 0x1e44c,
1315 		0x1e684, 0x1e690,
1316 		0x1e6c0, 0x1e6c0,
1317 		0x1e6e0, 0x1e6e0,
1318 		0x1e700, 0x1e784,
1319 		0x1e7c0, 0x1e7c8,
1320 		0x1e808, 0x1e80c,
1321 		0x1e840, 0x1e844,
1322 		0x1e84c, 0x1e84c,
1323 		0x1ea84, 0x1ea90,
1324 		0x1eac0, 0x1eac0,
1325 		0x1eae0, 0x1eae0,
1326 		0x1eb00, 0x1eb84,
1327 		0x1ebc0, 0x1ebc8,
1328 		0x1ec08, 0x1ec0c,
1329 		0x1ec40, 0x1ec44,
1330 		0x1ec4c, 0x1ec4c,
1331 		0x1ee84, 0x1ee90,
1332 		0x1eec0, 0x1eec0,
1333 		0x1eee0, 0x1eee0,
1334 		0x1ef00, 0x1ef84,
1335 		0x1efc0, 0x1efc8,
1336 		0x1f008, 0x1f00c,
1337 		0x1f040, 0x1f044,
1338 		0x1f04c, 0x1f04c,
1339 		0x1f284, 0x1f290,
1340 		0x1f2c0, 0x1f2c0,
1341 		0x1f2e0, 0x1f2e0,
1342 		0x1f300, 0x1f384,
1343 		0x1f3c0, 0x1f3c8,
1344 		0x1f408, 0x1f40c,
1345 		0x1f440, 0x1f444,
1346 		0x1f44c, 0x1f44c,
1347 		0x1f684, 0x1f690,
1348 		0x1f6c0, 0x1f6c0,
1349 		0x1f6e0, 0x1f6e0,
1350 		0x1f700, 0x1f784,
1351 		0x1f7c0, 0x1f7c8,
1352 		0x1f808, 0x1f80c,
1353 		0x1f840, 0x1f844,
1354 		0x1f84c, 0x1f84c,
1355 		0x1fa84, 0x1fa90,
1356 		0x1fac0, 0x1fac0,
1357 		0x1fae0, 0x1fae0,
1358 		0x1fb00, 0x1fb84,
1359 		0x1fbc0, 0x1fbc8,
1360 		0x1fc08, 0x1fc0c,
1361 		0x1fc40, 0x1fc44,
1362 		0x1fc4c, 0x1fc4c,
1363 		0x1fe84, 0x1fe90,
1364 		0x1fec0, 0x1fec0,
1365 		0x1fee0, 0x1fee0,
1366 		0x1ff00, 0x1ff84,
1367 		0x1ffc0, 0x1ffc8,
1368 		0x30000, 0x30030,
1369 		0x30038, 0x30038,
1370 		0x30040, 0x30040,
1371 		0x30100, 0x30144,
1372 		0x30190, 0x301a0,
1373 		0x301a8, 0x301b8,
1374 		0x301c4, 0x301c8,
1375 		0x301d0, 0x301d0,
1376 		0x30200, 0x30318,
1377 		0x30400, 0x304b4,
1378 		0x304c0, 0x3052c,
1379 		0x30540, 0x3061c,
1380 		0x30800, 0x30828,
1381 		0x30834, 0x30834,
1382 		0x308c0, 0x30908,
1383 		0x30910, 0x309ac,
1384 		0x30a00, 0x30a14,
1385 		0x30a1c, 0x30a2c,
1386 		0x30a44, 0x30a50,
1387 		0x30a74, 0x30a74,
1388 		0x30a7c, 0x30afc,
1389 		0x30b08, 0x30c24,
1390 		0x30d00, 0x30d00,
1391 		0x30d08, 0x30d14,
1392 		0x30d1c, 0x30d20,
1393 		0x30d3c, 0x30d3c,
1394 		0x30d48, 0x30d50,
1395 		0x31200, 0x3120c,
1396 		0x31220, 0x31220,
1397 		0x31240, 0x31240,
1398 		0x31600, 0x3160c,
1399 		0x31a00, 0x31a1c,
1400 		0x31e00, 0x31e20,
1401 		0x31e38, 0x31e3c,
1402 		0x31e80, 0x31e80,
1403 		0x31e88, 0x31ea8,
1404 		0x31eb0, 0x31eb4,
1405 		0x31ec8, 0x31ed4,
1406 		0x31fb8, 0x32004,
1407 		0x32200, 0x32200,
1408 		0x32208, 0x32240,
1409 		0x32248, 0x32280,
1410 		0x32288, 0x322c0,
1411 		0x322c8, 0x322fc,
1412 		0x32600, 0x32630,
1413 		0x32a00, 0x32abc,
1414 		0x32b00, 0x32b10,
1415 		0x32b20, 0x32b30,
1416 		0x32b40, 0x32b50,
1417 		0x32b60, 0x32b70,
1418 		0x33000, 0x33028,
1419 		0x33030, 0x33048,
1420 		0x33060, 0x33068,
1421 		0x33070, 0x3309c,
1422 		0x330f0, 0x33128,
1423 		0x33130, 0x33148,
1424 		0x33160, 0x33168,
1425 		0x33170, 0x3319c,
1426 		0x331f0, 0x33238,
1427 		0x33240, 0x33240,
1428 		0x33248, 0x33250,
1429 		0x3325c, 0x33264,
1430 		0x33270, 0x332b8,
1431 		0x332c0, 0x332e4,
1432 		0x332f8, 0x33338,
1433 		0x33340, 0x33340,
1434 		0x33348, 0x33350,
1435 		0x3335c, 0x33364,
1436 		0x33370, 0x333b8,
1437 		0x333c0, 0x333e4,
1438 		0x333f8, 0x33428,
1439 		0x33430, 0x33448,
1440 		0x33460, 0x33468,
1441 		0x33470, 0x3349c,
1442 		0x334f0, 0x33528,
1443 		0x33530, 0x33548,
1444 		0x33560, 0x33568,
1445 		0x33570, 0x3359c,
1446 		0x335f0, 0x33638,
1447 		0x33640, 0x33640,
1448 		0x33648, 0x33650,
1449 		0x3365c, 0x33664,
1450 		0x33670, 0x336b8,
1451 		0x336c0, 0x336e4,
1452 		0x336f8, 0x33738,
1453 		0x33740, 0x33740,
1454 		0x33748, 0x33750,
1455 		0x3375c, 0x33764,
1456 		0x33770, 0x337b8,
1457 		0x337c0, 0x337e4,
1458 		0x337f8, 0x337fc,
1459 		0x33814, 0x33814,
1460 		0x3382c, 0x3382c,
1461 		0x33880, 0x3388c,
1462 		0x338e8, 0x338ec,
1463 		0x33900, 0x33928,
1464 		0x33930, 0x33948,
1465 		0x33960, 0x33968,
1466 		0x33970, 0x3399c,
1467 		0x339f0, 0x33a38,
1468 		0x33a40, 0x33a40,
1469 		0x33a48, 0x33a50,
1470 		0x33a5c, 0x33a64,
1471 		0x33a70, 0x33ab8,
1472 		0x33ac0, 0x33ae4,
1473 		0x33af8, 0x33b10,
1474 		0x33b28, 0x33b28,
1475 		0x33b3c, 0x33b50,
1476 		0x33bf0, 0x33c10,
1477 		0x33c28, 0x33c28,
1478 		0x33c3c, 0x33c50,
1479 		0x33cf0, 0x33cfc,
1480 		0x34000, 0x34030,
1481 		0x34038, 0x34038,
1482 		0x34040, 0x34040,
1483 		0x34100, 0x34144,
1484 		0x34190, 0x341a0,
1485 		0x341a8, 0x341b8,
1486 		0x341c4, 0x341c8,
1487 		0x341d0, 0x341d0,
1488 		0x34200, 0x34318,
1489 		0x34400, 0x344b4,
1490 		0x344c0, 0x3452c,
1491 		0x34540, 0x3461c,
1492 		0x34800, 0x34828,
1493 		0x34834, 0x34834,
1494 		0x348c0, 0x34908,
1495 		0x34910, 0x349ac,
1496 		0x34a00, 0x34a14,
1497 		0x34a1c, 0x34a2c,
1498 		0x34a44, 0x34a50,
1499 		0x34a74, 0x34a74,
1500 		0x34a7c, 0x34afc,
1501 		0x34b08, 0x34c24,
1502 		0x34d00, 0x34d00,
1503 		0x34d08, 0x34d14,
1504 		0x34d1c, 0x34d20,
1505 		0x34d3c, 0x34d3c,
1506 		0x34d48, 0x34d50,
1507 		0x35200, 0x3520c,
1508 		0x35220, 0x35220,
1509 		0x35240, 0x35240,
1510 		0x35600, 0x3560c,
1511 		0x35a00, 0x35a1c,
1512 		0x35e00, 0x35e20,
1513 		0x35e38, 0x35e3c,
1514 		0x35e80, 0x35e80,
1515 		0x35e88, 0x35ea8,
1516 		0x35eb0, 0x35eb4,
1517 		0x35ec8, 0x35ed4,
1518 		0x35fb8, 0x36004,
1519 		0x36200, 0x36200,
1520 		0x36208, 0x36240,
1521 		0x36248, 0x36280,
1522 		0x36288, 0x362c0,
1523 		0x362c8, 0x362fc,
1524 		0x36600, 0x36630,
1525 		0x36a00, 0x36abc,
1526 		0x36b00, 0x36b10,
1527 		0x36b20, 0x36b30,
1528 		0x36b40, 0x36b50,
1529 		0x36b60, 0x36b70,
1530 		0x37000, 0x37028,
1531 		0x37030, 0x37048,
1532 		0x37060, 0x37068,
1533 		0x37070, 0x3709c,
1534 		0x370f0, 0x37128,
1535 		0x37130, 0x37148,
1536 		0x37160, 0x37168,
1537 		0x37170, 0x3719c,
1538 		0x371f0, 0x37238,
1539 		0x37240, 0x37240,
1540 		0x37248, 0x37250,
1541 		0x3725c, 0x37264,
1542 		0x37270, 0x372b8,
1543 		0x372c0, 0x372e4,
1544 		0x372f8, 0x37338,
1545 		0x37340, 0x37340,
1546 		0x37348, 0x37350,
1547 		0x3735c, 0x37364,
1548 		0x37370, 0x373b8,
1549 		0x373c0, 0x373e4,
1550 		0x373f8, 0x37428,
1551 		0x37430, 0x37448,
1552 		0x37460, 0x37468,
1553 		0x37470, 0x3749c,
1554 		0x374f0, 0x37528,
1555 		0x37530, 0x37548,
1556 		0x37560, 0x37568,
1557 		0x37570, 0x3759c,
1558 		0x375f0, 0x37638,
1559 		0x37640, 0x37640,
1560 		0x37648, 0x37650,
1561 		0x3765c, 0x37664,
1562 		0x37670, 0x376b8,
1563 		0x376c0, 0x376e4,
1564 		0x376f8, 0x37738,
1565 		0x37740, 0x37740,
1566 		0x37748, 0x37750,
1567 		0x3775c, 0x37764,
1568 		0x37770, 0x377b8,
1569 		0x377c0, 0x377e4,
1570 		0x377f8, 0x377fc,
1571 		0x37814, 0x37814,
1572 		0x3782c, 0x3782c,
1573 		0x37880, 0x3788c,
1574 		0x378e8, 0x378ec,
1575 		0x37900, 0x37928,
1576 		0x37930, 0x37948,
1577 		0x37960, 0x37968,
1578 		0x37970, 0x3799c,
1579 		0x379f0, 0x37a38,
1580 		0x37a40, 0x37a40,
1581 		0x37a48, 0x37a50,
1582 		0x37a5c, 0x37a64,
1583 		0x37a70, 0x37ab8,
1584 		0x37ac0, 0x37ae4,
1585 		0x37af8, 0x37b10,
1586 		0x37b28, 0x37b28,
1587 		0x37b3c, 0x37b50,
1588 		0x37bf0, 0x37c10,
1589 		0x37c28, 0x37c28,
1590 		0x37c3c, 0x37c50,
1591 		0x37cf0, 0x37cfc,
1592 		0x38000, 0x38030,
1593 		0x38038, 0x38038,
1594 		0x38040, 0x38040,
1595 		0x38100, 0x38144,
1596 		0x38190, 0x381a0,
1597 		0x381a8, 0x381b8,
1598 		0x381c4, 0x381c8,
1599 		0x381d0, 0x381d0,
1600 		0x38200, 0x38318,
1601 		0x38400, 0x384b4,
1602 		0x384c0, 0x3852c,
1603 		0x38540, 0x3861c,
1604 		0x38800, 0x38828,
1605 		0x38834, 0x38834,
1606 		0x388c0, 0x38908,
1607 		0x38910, 0x389ac,
1608 		0x38a00, 0x38a14,
1609 		0x38a1c, 0x38a2c,
1610 		0x38a44, 0x38a50,
1611 		0x38a74, 0x38a74,
1612 		0x38a7c, 0x38afc,
1613 		0x38b08, 0x38c24,
1614 		0x38d00, 0x38d00,
1615 		0x38d08, 0x38d14,
1616 		0x38d1c, 0x38d20,
1617 		0x38d3c, 0x38d3c,
1618 		0x38d48, 0x38d50,
1619 		0x39200, 0x3920c,
1620 		0x39220, 0x39220,
1621 		0x39240, 0x39240,
1622 		0x39600, 0x3960c,
1623 		0x39a00, 0x39a1c,
1624 		0x39e00, 0x39e20,
1625 		0x39e38, 0x39e3c,
1626 		0x39e80, 0x39e80,
1627 		0x39e88, 0x39ea8,
1628 		0x39eb0, 0x39eb4,
1629 		0x39ec8, 0x39ed4,
1630 		0x39fb8, 0x3a004,
1631 		0x3a200, 0x3a200,
1632 		0x3a208, 0x3a240,
1633 		0x3a248, 0x3a280,
1634 		0x3a288, 0x3a2c0,
1635 		0x3a2c8, 0x3a2fc,
1636 		0x3a600, 0x3a630,
1637 		0x3aa00, 0x3aabc,
1638 		0x3ab00, 0x3ab10,
1639 		0x3ab20, 0x3ab30,
1640 		0x3ab40, 0x3ab50,
1641 		0x3ab60, 0x3ab70,
1642 		0x3b000, 0x3b028,
1643 		0x3b030, 0x3b048,
1644 		0x3b060, 0x3b068,
1645 		0x3b070, 0x3b09c,
1646 		0x3b0f0, 0x3b128,
1647 		0x3b130, 0x3b148,
1648 		0x3b160, 0x3b168,
1649 		0x3b170, 0x3b19c,
1650 		0x3b1f0, 0x3b238,
1651 		0x3b240, 0x3b240,
1652 		0x3b248, 0x3b250,
1653 		0x3b25c, 0x3b264,
1654 		0x3b270, 0x3b2b8,
1655 		0x3b2c0, 0x3b2e4,
1656 		0x3b2f8, 0x3b338,
1657 		0x3b340, 0x3b340,
1658 		0x3b348, 0x3b350,
1659 		0x3b35c, 0x3b364,
1660 		0x3b370, 0x3b3b8,
1661 		0x3b3c0, 0x3b3e4,
1662 		0x3b3f8, 0x3b428,
1663 		0x3b430, 0x3b448,
1664 		0x3b460, 0x3b468,
1665 		0x3b470, 0x3b49c,
1666 		0x3b4f0, 0x3b528,
1667 		0x3b530, 0x3b548,
1668 		0x3b560, 0x3b568,
1669 		0x3b570, 0x3b59c,
1670 		0x3b5f0, 0x3b638,
1671 		0x3b640, 0x3b640,
1672 		0x3b648, 0x3b650,
1673 		0x3b65c, 0x3b664,
1674 		0x3b670, 0x3b6b8,
1675 		0x3b6c0, 0x3b6e4,
1676 		0x3b6f8, 0x3b738,
1677 		0x3b740, 0x3b740,
1678 		0x3b748, 0x3b750,
1679 		0x3b75c, 0x3b764,
1680 		0x3b770, 0x3b7b8,
1681 		0x3b7c0, 0x3b7e4,
1682 		0x3b7f8, 0x3b7fc,
1683 		0x3b814, 0x3b814,
1684 		0x3b82c, 0x3b82c,
1685 		0x3b880, 0x3b88c,
1686 		0x3b8e8, 0x3b8ec,
1687 		0x3b900, 0x3b928,
1688 		0x3b930, 0x3b948,
1689 		0x3b960, 0x3b968,
1690 		0x3b970, 0x3b99c,
1691 		0x3b9f0, 0x3ba38,
1692 		0x3ba40, 0x3ba40,
1693 		0x3ba48, 0x3ba50,
1694 		0x3ba5c, 0x3ba64,
1695 		0x3ba70, 0x3bab8,
1696 		0x3bac0, 0x3bae4,
1697 		0x3baf8, 0x3bb10,
1698 		0x3bb28, 0x3bb28,
1699 		0x3bb3c, 0x3bb50,
1700 		0x3bbf0, 0x3bc10,
1701 		0x3bc28, 0x3bc28,
1702 		0x3bc3c, 0x3bc50,
1703 		0x3bcf0, 0x3bcfc,
1704 		0x3c000, 0x3c030,
1705 		0x3c038, 0x3c038,
1706 		0x3c040, 0x3c040,
1707 		0x3c100, 0x3c144,
1708 		0x3c190, 0x3c1a0,
1709 		0x3c1a8, 0x3c1b8,
1710 		0x3c1c4, 0x3c1c8,
1711 		0x3c1d0, 0x3c1d0,
1712 		0x3c200, 0x3c318,
1713 		0x3c400, 0x3c4b4,
1714 		0x3c4c0, 0x3c52c,
1715 		0x3c540, 0x3c61c,
1716 		0x3c800, 0x3c828,
1717 		0x3c834, 0x3c834,
1718 		0x3c8c0, 0x3c908,
1719 		0x3c910, 0x3c9ac,
1720 		0x3ca00, 0x3ca14,
1721 		0x3ca1c, 0x3ca2c,
1722 		0x3ca44, 0x3ca50,
1723 		0x3ca74, 0x3ca74,
1724 		0x3ca7c, 0x3cafc,
1725 		0x3cb08, 0x3cc24,
1726 		0x3cd00, 0x3cd00,
1727 		0x3cd08, 0x3cd14,
1728 		0x3cd1c, 0x3cd20,
1729 		0x3cd3c, 0x3cd3c,
1730 		0x3cd48, 0x3cd50,
1731 		0x3d200, 0x3d20c,
1732 		0x3d220, 0x3d220,
1733 		0x3d240, 0x3d240,
1734 		0x3d600, 0x3d60c,
1735 		0x3da00, 0x3da1c,
1736 		0x3de00, 0x3de20,
1737 		0x3de38, 0x3de3c,
1738 		0x3de80, 0x3de80,
1739 		0x3de88, 0x3dea8,
1740 		0x3deb0, 0x3deb4,
1741 		0x3dec8, 0x3ded4,
1742 		0x3dfb8, 0x3e004,
1743 		0x3e200, 0x3e200,
1744 		0x3e208, 0x3e240,
1745 		0x3e248, 0x3e280,
1746 		0x3e288, 0x3e2c0,
1747 		0x3e2c8, 0x3e2fc,
1748 		0x3e600, 0x3e630,
1749 		0x3ea00, 0x3eabc,
1750 		0x3eb00, 0x3eb10,
1751 		0x3eb20, 0x3eb30,
1752 		0x3eb40, 0x3eb50,
1753 		0x3eb60, 0x3eb70,
1754 		0x3f000, 0x3f028,
1755 		0x3f030, 0x3f048,
1756 		0x3f060, 0x3f068,
1757 		0x3f070, 0x3f09c,
1758 		0x3f0f0, 0x3f128,
1759 		0x3f130, 0x3f148,
1760 		0x3f160, 0x3f168,
1761 		0x3f170, 0x3f19c,
1762 		0x3f1f0, 0x3f238,
1763 		0x3f240, 0x3f240,
1764 		0x3f248, 0x3f250,
1765 		0x3f25c, 0x3f264,
1766 		0x3f270, 0x3f2b8,
1767 		0x3f2c0, 0x3f2e4,
1768 		0x3f2f8, 0x3f338,
1769 		0x3f340, 0x3f340,
1770 		0x3f348, 0x3f350,
1771 		0x3f35c, 0x3f364,
1772 		0x3f370, 0x3f3b8,
1773 		0x3f3c0, 0x3f3e4,
1774 		0x3f3f8, 0x3f428,
1775 		0x3f430, 0x3f448,
1776 		0x3f460, 0x3f468,
1777 		0x3f470, 0x3f49c,
1778 		0x3f4f0, 0x3f528,
1779 		0x3f530, 0x3f548,
1780 		0x3f560, 0x3f568,
1781 		0x3f570, 0x3f59c,
1782 		0x3f5f0, 0x3f638,
1783 		0x3f640, 0x3f640,
1784 		0x3f648, 0x3f650,
1785 		0x3f65c, 0x3f664,
1786 		0x3f670, 0x3f6b8,
1787 		0x3f6c0, 0x3f6e4,
1788 		0x3f6f8, 0x3f738,
1789 		0x3f740, 0x3f740,
1790 		0x3f748, 0x3f750,
1791 		0x3f75c, 0x3f764,
1792 		0x3f770, 0x3f7b8,
1793 		0x3f7c0, 0x3f7e4,
1794 		0x3f7f8, 0x3f7fc,
1795 		0x3f814, 0x3f814,
1796 		0x3f82c, 0x3f82c,
1797 		0x3f880, 0x3f88c,
1798 		0x3f8e8, 0x3f8ec,
1799 		0x3f900, 0x3f928,
1800 		0x3f930, 0x3f948,
1801 		0x3f960, 0x3f968,
1802 		0x3f970, 0x3f99c,
1803 		0x3f9f0, 0x3fa38,
1804 		0x3fa40, 0x3fa40,
1805 		0x3fa48, 0x3fa50,
1806 		0x3fa5c, 0x3fa64,
1807 		0x3fa70, 0x3fab8,
1808 		0x3fac0, 0x3fae4,
1809 		0x3faf8, 0x3fb10,
1810 		0x3fb28, 0x3fb28,
1811 		0x3fb3c, 0x3fb50,
1812 		0x3fbf0, 0x3fc10,
1813 		0x3fc28, 0x3fc28,
1814 		0x3fc3c, 0x3fc50,
1815 		0x3fcf0, 0x3fcfc,
1816 		0x40000, 0x4000c,
1817 		0x40040, 0x40050,
1818 		0x40060, 0x40068,
1819 		0x4007c, 0x4008c,
1820 		0x40094, 0x400b0,
1821 		0x400c0, 0x40144,
1822 		0x40180, 0x4018c,
1823 		0x40200, 0x40254,
1824 		0x40260, 0x40264,
1825 		0x40270, 0x40288,
1826 		0x40290, 0x40298,
1827 		0x402ac, 0x402c8,
1828 		0x402d0, 0x402e0,
1829 		0x402f0, 0x402f0,
1830 		0x40300, 0x4033c,
1831 		0x403f8, 0x403fc,
1832 		0x41304, 0x413c4,
1833 		0x41400, 0x4140c,
1834 		0x41414, 0x4141c,
1835 		0x41480, 0x414d0,
1836 		0x44000, 0x44054,
1837 		0x4405c, 0x44078,
1838 		0x440c0, 0x44174,
1839 		0x44180, 0x441ac,
1840 		0x441b4, 0x441b8,
1841 		0x441c0, 0x44254,
1842 		0x4425c, 0x44278,
1843 		0x442c0, 0x44374,
1844 		0x44380, 0x443ac,
1845 		0x443b4, 0x443b8,
1846 		0x443c0, 0x44454,
1847 		0x4445c, 0x44478,
1848 		0x444c0, 0x44574,
1849 		0x44580, 0x445ac,
1850 		0x445b4, 0x445b8,
1851 		0x445c0, 0x44654,
1852 		0x4465c, 0x44678,
1853 		0x446c0, 0x44774,
1854 		0x44780, 0x447ac,
1855 		0x447b4, 0x447b8,
1856 		0x447c0, 0x44854,
1857 		0x4485c, 0x44878,
1858 		0x448c0, 0x44974,
1859 		0x44980, 0x449ac,
1860 		0x449b4, 0x449b8,
1861 		0x449c0, 0x449fc,
1862 		0x45000, 0x45004,
1863 		0x45010, 0x45030,
1864 		0x45040, 0x45060,
1865 		0x45068, 0x45068,
1866 		0x45080, 0x45084,
1867 		0x450a0, 0x450b0,
1868 		0x45200, 0x45204,
1869 		0x45210, 0x45230,
1870 		0x45240, 0x45260,
1871 		0x45268, 0x45268,
1872 		0x45280, 0x45284,
1873 		0x452a0, 0x452b0,
1874 		0x460c0, 0x460e4,
1875 		0x47000, 0x4703c,
1876 		0x47044, 0x4708c,
1877 		0x47200, 0x47250,
1878 		0x47400, 0x47408,
1879 		0x47414, 0x47420,
1880 		0x47600, 0x47618,
1881 		0x47800, 0x47814,
1882 		0x48000, 0x4800c,
1883 		0x48040, 0x48050,
1884 		0x48060, 0x48068,
1885 		0x4807c, 0x4808c,
1886 		0x48094, 0x480b0,
1887 		0x480c0, 0x48144,
1888 		0x48180, 0x4818c,
1889 		0x48200, 0x48254,
1890 		0x48260, 0x48264,
1891 		0x48270, 0x48288,
1892 		0x48290, 0x48298,
1893 		0x482ac, 0x482c8,
1894 		0x482d0, 0x482e0,
1895 		0x482f0, 0x482f0,
1896 		0x48300, 0x4833c,
1897 		0x483f8, 0x483fc,
1898 		0x49304, 0x493c4,
1899 		0x49400, 0x4940c,
1900 		0x49414, 0x4941c,
1901 		0x49480, 0x494d0,
1902 		0x4c000, 0x4c054,
1903 		0x4c05c, 0x4c078,
1904 		0x4c0c0, 0x4c174,
1905 		0x4c180, 0x4c1ac,
1906 		0x4c1b4, 0x4c1b8,
1907 		0x4c1c0, 0x4c254,
1908 		0x4c25c, 0x4c278,
1909 		0x4c2c0, 0x4c374,
1910 		0x4c380, 0x4c3ac,
1911 		0x4c3b4, 0x4c3b8,
1912 		0x4c3c0, 0x4c454,
1913 		0x4c45c, 0x4c478,
1914 		0x4c4c0, 0x4c574,
1915 		0x4c580, 0x4c5ac,
1916 		0x4c5b4, 0x4c5b8,
1917 		0x4c5c0, 0x4c654,
1918 		0x4c65c, 0x4c678,
1919 		0x4c6c0, 0x4c774,
1920 		0x4c780, 0x4c7ac,
1921 		0x4c7b4, 0x4c7b8,
1922 		0x4c7c0, 0x4c854,
1923 		0x4c85c, 0x4c878,
1924 		0x4c8c0, 0x4c974,
1925 		0x4c980, 0x4c9ac,
1926 		0x4c9b4, 0x4c9b8,
1927 		0x4c9c0, 0x4c9fc,
1928 		0x4d000, 0x4d004,
1929 		0x4d010, 0x4d030,
1930 		0x4d040, 0x4d060,
1931 		0x4d068, 0x4d068,
1932 		0x4d080, 0x4d084,
1933 		0x4d0a0, 0x4d0b0,
1934 		0x4d200, 0x4d204,
1935 		0x4d210, 0x4d230,
1936 		0x4d240, 0x4d260,
1937 		0x4d268, 0x4d268,
1938 		0x4d280, 0x4d284,
1939 		0x4d2a0, 0x4d2b0,
1940 		0x4e0c0, 0x4e0e4,
1941 		0x4f000, 0x4f03c,
1942 		0x4f044, 0x4f08c,
1943 		0x4f200, 0x4f250,
1944 		0x4f400, 0x4f408,
1945 		0x4f414, 0x4f420,
1946 		0x4f600, 0x4f618,
1947 		0x4f800, 0x4f814,
1948 		0x50000, 0x50084,
1949 		0x50090, 0x500cc,
1950 		0x50400, 0x50400,
1951 		0x50800, 0x50884,
1952 		0x50890, 0x508cc,
1953 		0x50c00, 0x50c00,
1954 		0x51000, 0x5101c,
1955 		0x51300, 0x51308,
1956 	};
1957 
1958 	static const unsigned int t6_reg_ranges[] = {
1959 		0x1008, 0x101c,
1960 		0x1024, 0x10a8,
1961 		0x10b4, 0x10f8,
1962 		0x1100, 0x1114,
1963 		0x111c, 0x112c,
1964 		0x1138, 0x113c,
1965 		0x1144, 0x114c,
1966 		0x1180, 0x1184,
1967 		0x1190, 0x1194,
1968 		0x11a0, 0x11a4,
1969 		0x11b0, 0x11b4,
1970 		0x11fc, 0x1274,
1971 		0x1280, 0x133c,
1972 		0x1800, 0x18fc,
1973 		0x3000, 0x302c,
1974 		0x3060, 0x30b0,
1975 		0x30b8, 0x30d8,
1976 		0x30e0, 0x30fc,
1977 		0x3140, 0x357c,
1978 		0x35a8, 0x35cc,
1979 		0x35ec, 0x35ec,
1980 		0x3600, 0x5624,
1981 		0x56cc, 0x56ec,
1982 		0x56f4, 0x5720,
1983 		0x5728, 0x575c,
1984 		0x580c, 0x5814,
1985 		0x5890, 0x589c,
1986 		0x58a4, 0x58ac,
1987 		0x58b8, 0x58bc,
1988 		0x5940, 0x595c,
1989 		0x5980, 0x598c,
1990 		0x59b0, 0x59c8,
1991 		0x59d0, 0x59dc,
1992 		0x59fc, 0x5a18,
1993 		0x5a60, 0x5a6c,
1994 		0x5a80, 0x5a8c,
1995 		0x5a94, 0x5a9c,
1996 		0x5b94, 0x5bfc,
1997 		0x5c10, 0x5e48,
1998 		0x5e50, 0x5e94,
1999 		0x5ea0, 0x5eb0,
2000 		0x5ec0, 0x5ec0,
2001 		0x5ec8, 0x5ed0,
2002 		0x5ee0, 0x5ee0,
2003 		0x5ef0, 0x5ef0,
2004 		0x5f00, 0x5f00,
2005 		0x6000, 0x6020,
2006 		0x6028, 0x6040,
2007 		0x6058, 0x609c,
2008 		0x60a8, 0x619c,
2009 		0x7700, 0x7798,
2010 		0x77c0, 0x7880,
2011 		0x78cc, 0x78fc,
2012 		0x7b00, 0x7b58,
2013 		0x7b60, 0x7b84,
2014 		0x7b8c, 0x7c54,
2015 		0x7d00, 0x7d38,
2016 		0x7d40, 0x7d84,
2017 		0x7d8c, 0x7ddc,
2018 		0x7de4, 0x7e04,
2019 		0x7e10, 0x7e1c,
2020 		0x7e24, 0x7e38,
2021 		0x7e40, 0x7e44,
2022 		0x7e4c, 0x7e78,
2023 		0x7e80, 0x7edc,
2024 		0x7ee8, 0x7efc,
2025 		0x8dc0, 0x8de4,
2026 		0x8df8, 0x8e04,
2027 		0x8e10, 0x8e84,
2028 		0x8ea0, 0x8f88,
2029 		0x8fb8, 0x9058,
2030 		0x9060, 0x9060,
2031 		0x9068, 0x90f8,
2032 		0x9100, 0x9124,
2033 		0x9400, 0x9470,
2034 		0x9600, 0x9600,
2035 		0x9608, 0x9638,
2036 		0x9640, 0x9704,
2037 		0x9710, 0x971c,
2038 		0x9800, 0x9808,
2039 		0x9820, 0x983c,
2040 		0x9850, 0x9864,
2041 		0x9c00, 0x9c6c,
2042 		0x9c80, 0x9cec,
2043 		0x9d00, 0x9d6c,
2044 		0x9d80, 0x9dec,
2045 		0x9e00, 0x9e6c,
2046 		0x9e80, 0x9eec,
2047 		0x9f00, 0x9f6c,
2048 		0x9f80, 0xa020,
2049 		0xd004, 0xd03c,
2050 		0xd100, 0xd118,
2051 		0xd200, 0xd214,
2052 		0xd220, 0xd234,
2053 		0xd240, 0xd254,
2054 		0xd260, 0xd274,
2055 		0xd280, 0xd294,
2056 		0xd2a0, 0xd2b4,
2057 		0xd2c0, 0xd2d4,
2058 		0xd2e0, 0xd2f4,
2059 		0xd300, 0xd31c,
2060 		0xdfc0, 0xdfe0,
2061 		0xe000, 0xf008,
2062 		0xf010, 0xf018,
2063 		0xf020, 0xf028,
2064 		0x11000, 0x11014,
2065 		0x11048, 0x1106c,
2066 		0x11074, 0x11088,
2067 		0x11098, 0x11120,
2068 		0x1112c, 0x1117c,
2069 		0x11190, 0x112e0,
2070 		0x11300, 0x1130c,
2071 		0x12000, 0x1206c,
2072 		0x19040, 0x1906c,
2073 		0x19078, 0x19080,
2074 		0x1908c, 0x190e8,
2075 		0x190f0, 0x190f8,
2076 		0x19100, 0x19110,
2077 		0x19120, 0x19124,
2078 		0x19150, 0x19194,
2079 		0x1919c, 0x191b0,
2080 		0x191d0, 0x191e8,
2081 		0x19238, 0x19290,
2082 		0x192a4, 0x192b0,
2083 		0x192bc, 0x192bc,
2084 		0x19348, 0x1934c,
2085 		0x193f8, 0x19418,
2086 		0x19420, 0x19428,
2087 		0x19430, 0x19444,
2088 		0x1944c, 0x1946c,
2089 		0x19474, 0x19474,
2090 		0x19490, 0x194cc,
2091 		0x194f0, 0x194f8,
2092 		0x19c00, 0x19c48,
2093 		0x19c50, 0x19c80,
2094 		0x19c94, 0x19c98,
2095 		0x19ca0, 0x19cbc,
2096 		0x19ce4, 0x19ce4,
2097 		0x19cf0, 0x19cf8,
2098 		0x19d00, 0x19d28,
2099 		0x19d50, 0x19d78,
2100 		0x19d94, 0x19d98,
2101 		0x19da0, 0x19dc8,
2102 		0x19df0, 0x19e10,
2103 		0x19e50, 0x19e6c,
2104 		0x19ea0, 0x19ebc,
2105 		0x19ec4, 0x19ef4,
2106 		0x19f04, 0x19f2c,
2107 		0x19f34, 0x19f34,
2108 		0x19f40, 0x19f50,
2109 		0x19f90, 0x19fac,
2110 		0x19fc4, 0x19fc8,
2111 		0x19fd0, 0x19fe4,
2112 		0x1a000, 0x1a004,
2113 		0x1a010, 0x1a06c,
2114 		0x1a0b0, 0x1a0e4,
2115 		0x1a0ec, 0x1a0f8,
2116 		0x1a100, 0x1a108,
2117 		0x1a114, 0x1a120,
2118 		0x1a128, 0x1a130,
2119 		0x1a138, 0x1a138,
2120 		0x1a190, 0x1a1c4,
2121 		0x1a1fc, 0x1a1fc,
2122 		0x1e008, 0x1e00c,
2123 		0x1e040, 0x1e044,
2124 		0x1e04c, 0x1e04c,
2125 		0x1e284, 0x1e290,
2126 		0x1e2c0, 0x1e2c0,
2127 		0x1e2e0, 0x1e2e0,
2128 		0x1e300, 0x1e384,
2129 		0x1e3c0, 0x1e3c8,
2130 		0x1e408, 0x1e40c,
2131 		0x1e440, 0x1e444,
2132 		0x1e44c, 0x1e44c,
2133 		0x1e684, 0x1e690,
2134 		0x1e6c0, 0x1e6c0,
2135 		0x1e6e0, 0x1e6e0,
2136 		0x1e700, 0x1e784,
2137 		0x1e7c0, 0x1e7c8,
2138 		0x1e808, 0x1e80c,
2139 		0x1e840, 0x1e844,
2140 		0x1e84c, 0x1e84c,
2141 		0x1ea84, 0x1ea90,
2142 		0x1eac0, 0x1eac0,
2143 		0x1eae0, 0x1eae0,
2144 		0x1eb00, 0x1eb84,
2145 		0x1ebc0, 0x1ebc8,
2146 		0x1ec08, 0x1ec0c,
2147 		0x1ec40, 0x1ec44,
2148 		0x1ec4c, 0x1ec4c,
2149 		0x1ee84, 0x1ee90,
2150 		0x1eec0, 0x1eec0,
2151 		0x1eee0, 0x1eee0,
2152 		0x1ef00, 0x1ef84,
2153 		0x1efc0, 0x1efc8,
2154 		0x1f008, 0x1f00c,
2155 		0x1f040, 0x1f044,
2156 		0x1f04c, 0x1f04c,
2157 		0x1f284, 0x1f290,
2158 		0x1f2c0, 0x1f2c0,
2159 		0x1f2e0, 0x1f2e0,
2160 		0x1f300, 0x1f384,
2161 		0x1f3c0, 0x1f3c8,
2162 		0x1f408, 0x1f40c,
2163 		0x1f440, 0x1f444,
2164 		0x1f44c, 0x1f44c,
2165 		0x1f684, 0x1f690,
2166 		0x1f6c0, 0x1f6c0,
2167 		0x1f6e0, 0x1f6e0,
2168 		0x1f700, 0x1f784,
2169 		0x1f7c0, 0x1f7c8,
2170 		0x1f808, 0x1f80c,
2171 		0x1f840, 0x1f844,
2172 		0x1f84c, 0x1f84c,
2173 		0x1fa84, 0x1fa90,
2174 		0x1fac0, 0x1fac0,
2175 		0x1fae0, 0x1fae0,
2176 		0x1fb00, 0x1fb84,
2177 		0x1fbc0, 0x1fbc8,
2178 		0x1fc08, 0x1fc0c,
2179 		0x1fc40, 0x1fc44,
2180 		0x1fc4c, 0x1fc4c,
2181 		0x1fe84, 0x1fe90,
2182 		0x1fec0, 0x1fec0,
2183 		0x1fee0, 0x1fee0,
2184 		0x1ff00, 0x1ff84,
2185 		0x1ffc0, 0x1ffc8,
2186 		0x30000, 0x30030,
2187 		0x30038, 0x30038,
2188 		0x30040, 0x30040,
2189 		0x30048, 0x30048,
2190 		0x30050, 0x30050,
2191 		0x3005c, 0x30060,
2192 		0x30068, 0x30068,
2193 		0x30070, 0x30070,
2194 		0x30100, 0x30168,
2195 		0x30190, 0x301a0,
2196 		0x301a8, 0x301b8,
2197 		0x301c4, 0x301c8,
2198 		0x301d0, 0x301d0,
2199 		0x30200, 0x30320,
2200 		0x30400, 0x304b4,
2201 		0x304c0, 0x3052c,
2202 		0x30540, 0x3061c,
2203 		0x30800, 0x308a0,
2204 		0x308c0, 0x30908,
2205 		0x30910, 0x309b8,
2206 		0x30a00, 0x30a04,
2207 		0x30a0c, 0x30a14,
2208 		0x30a1c, 0x30a2c,
2209 		0x30a44, 0x30a50,
2210 		0x30a74, 0x30a74,
2211 		0x30a7c, 0x30afc,
2212 		0x30b08, 0x30c24,
2213 		0x30d00, 0x30d14,
2214 		0x30d1c, 0x30d3c,
2215 		0x30d44, 0x30d4c,
2216 		0x30d54, 0x30d74,
2217 		0x30d7c, 0x30d7c,
2218 		0x30de0, 0x30de0,
2219 		0x30e00, 0x30ed4,
2220 		0x30f00, 0x30fa4,
2221 		0x30fc0, 0x30fc4,
2222 		0x31000, 0x31004,
2223 		0x31080, 0x310fc,
2224 		0x31208, 0x31220,
2225 		0x3123c, 0x31254,
2226 		0x31300, 0x31300,
2227 		0x31308, 0x3131c,
2228 		0x31338, 0x3133c,
2229 		0x31380, 0x31380,
2230 		0x31388, 0x313a8,
2231 		0x313b4, 0x313b4,
2232 		0x31400, 0x31420,
2233 		0x31438, 0x3143c,
2234 		0x31480, 0x31480,
2235 		0x314a8, 0x314a8,
2236 		0x314b0, 0x314b4,
2237 		0x314c8, 0x314d4,
2238 		0x31a40, 0x31a4c,
2239 		0x31af0, 0x31b20,
2240 		0x31b38, 0x31b3c,
2241 		0x31b80, 0x31b80,
2242 		0x31ba8, 0x31ba8,
2243 		0x31bb0, 0x31bb4,
2244 		0x31bc8, 0x31bd4,
2245 		0x32140, 0x3218c,
2246 		0x321f0, 0x321f4,
2247 		0x32200, 0x32200,
2248 		0x32218, 0x32218,
2249 		0x32400, 0x32400,
2250 		0x32408, 0x3241c,
2251 		0x32618, 0x32620,
2252 		0x32664, 0x32664,
2253 		0x326a8, 0x326a8,
2254 		0x326ec, 0x326ec,
2255 		0x32a00, 0x32abc,
2256 		0x32b00, 0x32b38,
2257 		0x32b40, 0x32b58,
2258 		0x32b60, 0x32b78,
2259 		0x32c00, 0x32c00,
2260 		0x32c08, 0x32c3c,
2261 		0x32e00, 0x32e2c,
2262 		0x32f00, 0x32f2c,
2263 		0x33000, 0x3302c,
2264 		0x33034, 0x33050,
2265 		0x33058, 0x33058,
2266 		0x33060, 0x3308c,
2267 		0x3309c, 0x330ac,
2268 		0x330c0, 0x330c0,
2269 		0x330c8, 0x330d0,
2270 		0x330d8, 0x330e0,
2271 		0x330ec, 0x3312c,
2272 		0x33134, 0x33150,
2273 		0x33158, 0x33158,
2274 		0x33160, 0x3318c,
2275 		0x3319c, 0x331ac,
2276 		0x331c0, 0x331c0,
2277 		0x331c8, 0x331d0,
2278 		0x331d8, 0x331e0,
2279 		0x331ec, 0x33290,
2280 		0x33298, 0x332c4,
2281 		0x332e4, 0x33390,
2282 		0x33398, 0x333c4,
2283 		0x333e4, 0x3342c,
2284 		0x33434, 0x33450,
2285 		0x33458, 0x33458,
2286 		0x33460, 0x3348c,
2287 		0x3349c, 0x334ac,
2288 		0x334c0, 0x334c0,
2289 		0x334c8, 0x334d0,
2290 		0x334d8, 0x334e0,
2291 		0x334ec, 0x3352c,
2292 		0x33534, 0x33550,
2293 		0x33558, 0x33558,
2294 		0x33560, 0x3358c,
2295 		0x3359c, 0x335ac,
2296 		0x335c0, 0x335c0,
2297 		0x335c8, 0x335d0,
2298 		0x335d8, 0x335e0,
2299 		0x335ec, 0x33690,
2300 		0x33698, 0x336c4,
2301 		0x336e4, 0x33790,
2302 		0x33798, 0x337c4,
2303 		0x337e4, 0x337fc,
2304 		0x33814, 0x33814,
2305 		0x33854, 0x33868,
2306 		0x33880, 0x3388c,
2307 		0x338c0, 0x338d0,
2308 		0x338e8, 0x338ec,
2309 		0x33900, 0x3392c,
2310 		0x33934, 0x33950,
2311 		0x33958, 0x33958,
2312 		0x33960, 0x3398c,
2313 		0x3399c, 0x339ac,
2314 		0x339c0, 0x339c0,
2315 		0x339c8, 0x339d0,
2316 		0x339d8, 0x339e0,
2317 		0x339ec, 0x33a90,
2318 		0x33a98, 0x33ac4,
2319 		0x33ae4, 0x33b10,
2320 		0x33b24, 0x33b28,
2321 		0x33b38, 0x33b50,
2322 		0x33bf0, 0x33c10,
2323 		0x33c24, 0x33c28,
2324 		0x33c38, 0x33c50,
2325 		0x33cf0, 0x33cfc,
2326 		0x34000, 0x34030,
2327 		0x34038, 0x34038,
2328 		0x34040, 0x34040,
2329 		0x34048, 0x34048,
2330 		0x34050, 0x34050,
2331 		0x3405c, 0x34060,
2332 		0x34068, 0x34068,
2333 		0x34070, 0x34070,
2334 		0x34100, 0x34168,
2335 		0x34190, 0x341a0,
2336 		0x341a8, 0x341b8,
2337 		0x341c4, 0x341c8,
2338 		0x341d0, 0x341d0,
2339 		0x34200, 0x34320,
2340 		0x34400, 0x344b4,
2341 		0x344c0, 0x3452c,
2342 		0x34540, 0x3461c,
2343 		0x34800, 0x348a0,
2344 		0x348c0, 0x34908,
2345 		0x34910, 0x349b8,
2346 		0x34a00, 0x34a04,
2347 		0x34a0c, 0x34a14,
2348 		0x34a1c, 0x34a2c,
2349 		0x34a44, 0x34a50,
2350 		0x34a74, 0x34a74,
2351 		0x34a7c, 0x34afc,
2352 		0x34b08, 0x34c24,
2353 		0x34d00, 0x34d14,
2354 		0x34d1c, 0x34d3c,
2355 		0x34d44, 0x34d4c,
2356 		0x34d54, 0x34d74,
2357 		0x34d7c, 0x34d7c,
2358 		0x34de0, 0x34de0,
2359 		0x34e00, 0x34ed4,
2360 		0x34f00, 0x34fa4,
2361 		0x34fc0, 0x34fc4,
2362 		0x35000, 0x35004,
2363 		0x35080, 0x350fc,
2364 		0x35208, 0x35220,
2365 		0x3523c, 0x35254,
2366 		0x35300, 0x35300,
2367 		0x35308, 0x3531c,
2368 		0x35338, 0x3533c,
2369 		0x35380, 0x35380,
2370 		0x35388, 0x353a8,
2371 		0x353b4, 0x353b4,
2372 		0x35400, 0x35420,
2373 		0x35438, 0x3543c,
2374 		0x35480, 0x35480,
2375 		0x354a8, 0x354a8,
2376 		0x354b0, 0x354b4,
2377 		0x354c8, 0x354d4,
2378 		0x35a40, 0x35a4c,
2379 		0x35af0, 0x35b20,
2380 		0x35b38, 0x35b3c,
2381 		0x35b80, 0x35b80,
2382 		0x35ba8, 0x35ba8,
2383 		0x35bb0, 0x35bb4,
2384 		0x35bc8, 0x35bd4,
2385 		0x36140, 0x3618c,
2386 		0x361f0, 0x361f4,
2387 		0x36200, 0x36200,
2388 		0x36218, 0x36218,
2389 		0x36400, 0x36400,
2390 		0x36408, 0x3641c,
2391 		0x36618, 0x36620,
2392 		0x36664, 0x36664,
2393 		0x366a8, 0x366a8,
2394 		0x366ec, 0x366ec,
2395 		0x36a00, 0x36abc,
2396 		0x36b00, 0x36b38,
2397 		0x36b40, 0x36b58,
2398 		0x36b60, 0x36b78,
2399 		0x36c00, 0x36c00,
2400 		0x36c08, 0x36c3c,
2401 		0x36e00, 0x36e2c,
2402 		0x36f00, 0x36f2c,
2403 		0x37000, 0x3702c,
2404 		0x37034, 0x37050,
2405 		0x37058, 0x37058,
2406 		0x37060, 0x3708c,
2407 		0x3709c, 0x370ac,
2408 		0x370c0, 0x370c0,
2409 		0x370c8, 0x370d0,
2410 		0x370d8, 0x370e0,
2411 		0x370ec, 0x3712c,
2412 		0x37134, 0x37150,
2413 		0x37158, 0x37158,
2414 		0x37160, 0x3718c,
2415 		0x3719c, 0x371ac,
2416 		0x371c0, 0x371c0,
2417 		0x371c8, 0x371d0,
2418 		0x371d8, 0x371e0,
2419 		0x371ec, 0x37290,
2420 		0x37298, 0x372c4,
2421 		0x372e4, 0x37390,
2422 		0x37398, 0x373c4,
2423 		0x373e4, 0x3742c,
2424 		0x37434, 0x37450,
2425 		0x37458, 0x37458,
2426 		0x37460, 0x3748c,
2427 		0x3749c, 0x374ac,
2428 		0x374c0, 0x374c0,
2429 		0x374c8, 0x374d0,
2430 		0x374d8, 0x374e0,
2431 		0x374ec, 0x3752c,
2432 		0x37534, 0x37550,
2433 		0x37558, 0x37558,
2434 		0x37560, 0x3758c,
2435 		0x3759c, 0x375ac,
2436 		0x375c0, 0x375c0,
2437 		0x375c8, 0x375d0,
2438 		0x375d8, 0x375e0,
2439 		0x375ec, 0x37690,
2440 		0x37698, 0x376c4,
2441 		0x376e4, 0x37790,
2442 		0x37798, 0x377c4,
2443 		0x377e4, 0x377fc,
2444 		0x37814, 0x37814,
2445 		0x37854, 0x37868,
2446 		0x37880, 0x3788c,
2447 		0x378c0, 0x378d0,
2448 		0x378e8, 0x378ec,
2449 		0x37900, 0x3792c,
2450 		0x37934, 0x37950,
2451 		0x37958, 0x37958,
2452 		0x37960, 0x3798c,
2453 		0x3799c, 0x379ac,
2454 		0x379c0, 0x379c0,
2455 		0x379c8, 0x379d0,
2456 		0x379d8, 0x379e0,
2457 		0x379ec, 0x37a90,
2458 		0x37a98, 0x37ac4,
2459 		0x37ae4, 0x37b10,
2460 		0x37b24, 0x37b28,
2461 		0x37b38, 0x37b50,
2462 		0x37bf0, 0x37c10,
2463 		0x37c24, 0x37c28,
2464 		0x37c38, 0x37c50,
2465 		0x37cf0, 0x37cfc,
2466 		0x40040, 0x40040,
2467 		0x40080, 0x40084,
2468 		0x40100, 0x40100,
2469 		0x40140, 0x401bc,
2470 		0x40200, 0x40214,
2471 		0x40228, 0x40228,
2472 		0x40240, 0x40258,
2473 		0x40280, 0x40280,
2474 		0x40304, 0x40304,
2475 		0x40330, 0x4033c,
2476 		0x41304, 0x413c8,
2477 		0x413d0, 0x413dc,
2478 		0x413f0, 0x413f0,
2479 		0x41400, 0x4140c,
2480 		0x41414, 0x4141c,
2481 		0x41480, 0x414d0,
2482 		0x44000, 0x4407c,
2483 		0x440c0, 0x441ac,
2484 		0x441b4, 0x4427c,
2485 		0x442c0, 0x443ac,
2486 		0x443b4, 0x4447c,
2487 		0x444c0, 0x445ac,
2488 		0x445b4, 0x4467c,
2489 		0x446c0, 0x447ac,
2490 		0x447b4, 0x4487c,
2491 		0x448c0, 0x449ac,
2492 		0x449b4, 0x44a7c,
2493 		0x44ac0, 0x44bac,
2494 		0x44bb4, 0x44c7c,
2495 		0x44cc0, 0x44dac,
2496 		0x44db4, 0x44e7c,
2497 		0x44ec0, 0x44fac,
2498 		0x44fb4, 0x4507c,
2499 		0x450c0, 0x451ac,
2500 		0x451b4, 0x451fc,
2501 		0x45800, 0x45804,
2502 		0x45810, 0x45830,
2503 		0x45840, 0x45860,
2504 		0x45868, 0x45868,
2505 		0x45880, 0x45884,
2506 		0x458a0, 0x458b0,
2507 		0x45a00, 0x45a04,
2508 		0x45a10, 0x45a30,
2509 		0x45a40, 0x45a60,
2510 		0x45a68, 0x45a68,
2511 		0x45a80, 0x45a84,
2512 		0x45aa0, 0x45ab0,
2513 		0x460c0, 0x460e4,
2514 		0x47000, 0x4703c,
2515 		0x47044, 0x4708c,
2516 		0x47200, 0x47250,
2517 		0x47400, 0x47408,
2518 		0x47414, 0x47420,
2519 		0x47600, 0x47618,
2520 		0x47800, 0x47814,
2521 		0x47820, 0x4782c,
2522 		0x50000, 0x50084,
2523 		0x50090, 0x500cc,
2524 		0x50300, 0x50384,
2525 		0x50400, 0x50400,
2526 		0x50800, 0x50884,
2527 		0x50890, 0x508cc,
2528 		0x50b00, 0x50b84,
2529 		0x50c00, 0x50c00,
2530 		0x51000, 0x51020,
2531 		0x51028, 0x510b0,
2532 		0x51300, 0x51324,
2533 	};
2534 
2535 	u32 *buf_end = (u32 *)(buf + buf_size);
2536 	const unsigned int *reg_ranges;
2537 	int reg_ranges_size, range;
2538 	unsigned int chip_version = chip_id(adap);
2539 
2540 	/*
2541 	 * Select the right set of register ranges to dump depending on the
2542 	 * adapter chip type.
2543 	 */
2544 	switch (chip_version) {
2545 	case CHELSIO_T4:
2546 		reg_ranges = t4_reg_ranges;
2547 		reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2548 		break;
2549 
2550 	case CHELSIO_T5:
2551 		reg_ranges = t5_reg_ranges;
2552 		reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2553 		break;
2554 
2555 	case CHELSIO_T6:
2556 		reg_ranges = t6_reg_ranges;
2557 		reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2558 		break;
2559 
2560 	default:
2561 		CH_ERR(adap,
2562 			"Unsupported chip version %d\n", chip_version);
2563 		return;
2564 	}
2565 
2566 	/*
2567 	 * Clear the register buffer and insert the appropriate register
2568 	 * values selected by the above register ranges.
2569 	 */
2570 	memset(buf, 0, buf_size);
2571 	for (range = 0; range < reg_ranges_size; range += 2) {
2572 		unsigned int reg = reg_ranges[range];
2573 		unsigned int last_reg = reg_ranges[range + 1];
2574 		u32 *bufp = (u32 *)(buf + reg);
2575 
2576 		/*
2577 		 * Iterate across the register range filling in the register
2578 		 * buffer but don't write past the end of the register buffer.
2579 		 */
2580 		while (reg <= last_reg && bufp < buf_end) {
2581 			*bufp++ = t4_read_reg(adap, reg);
2582 			reg += sizeof(u32);
2583 		}
2584 	}
2585 }
2586 
2587 /*
2588  * Partial EEPROM Vital Product Data structure.  Includes only the ID and
2589  * VPD-R sections.
2590  */
2591 struct t4_vpd_hdr {
2592 	u8  id_tag;
2593 	u8  id_len[2];
2594 	u8  id_data[ID_LEN];
2595 	u8  vpdr_tag;
2596 	u8  vpdr_len[2];
2597 };
2598 
2599 /*
2600  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
2601  */
2602 #define EEPROM_DELAY		10		/* 10us per poll spin */
2603 #define EEPROM_MAX_POLL		5000		/* x 5000 == 50ms */
2604 
2605 #define EEPROM_STAT_ADDR	0x7bfc
2606 #define VPD_BASE		0x400
2607 #define VPD_BASE_OLD		0
2608 #define VPD_LEN			1024
2609 #define VPD_INFO_FLD_HDR_SIZE	3
2610 #define CHELSIO_VPD_UNIQUE_ID	0x82
2611 
2612 /*
2613  * Small utility function to wait till any outstanding VPD Access is complete.
2614  * We have a per-adapter state variable "VPD Busy" to indicate when we have a
2615  * VPD Access in flight.  This allows us to handle the problem of having a
2616  * previous VPD Access time out and prevent an attempt to inject a new VPD
2617  * Request before any in-flight VPD reguest has completed.
2618  */
2619 static int t4_seeprom_wait(struct adapter *adapter)
2620 {
2621 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2622 	int max_poll;
2623 
2624 	/*
2625 	 * If no VPD Access is in flight, we can just return success right
2626 	 * away.
2627 	 */
2628 	if (!adapter->vpd_busy)
2629 		return 0;
2630 
2631 	/*
2632 	 * Poll the VPD Capability Address/Flag register waiting for it
2633 	 * to indicate that the operation is complete.
2634 	 */
2635 	max_poll = EEPROM_MAX_POLL;
2636 	do {
2637 		u16 val;
2638 
2639 		udelay(EEPROM_DELAY);
2640 		t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
2641 
2642 		/*
2643 		 * If the operation is complete, mark the VPD as no longer
2644 		 * busy and return success.
2645 		 */
2646 		if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
2647 			adapter->vpd_busy = 0;
2648 			return 0;
2649 		}
2650 	} while (--max_poll);
2651 
2652 	/*
2653 	 * Failure!  Note that we leave the VPD Busy status set in order to
2654 	 * avoid pushing a new VPD Access request into the VPD Capability till
2655 	 * the current operation eventually succeeds.  It's a bug to issue a
2656 	 * new request when an existing request is in flight and will result
2657 	 * in corrupt hardware state.
2658 	 */
2659 	return -ETIMEDOUT;
2660 }
2661 
2662 /**
2663  *	t4_seeprom_read - read a serial EEPROM location
2664  *	@adapter: adapter to read
2665  *	@addr: EEPROM virtual address
2666  *	@data: where to store the read data
2667  *
2668  *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
2669  *	VPD capability.  Note that this function must be called with a virtual
2670  *	address.
2671  */
2672 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2673 {
2674 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2675 	int ret;
2676 
2677 	/*
2678 	 * VPD Accesses must alway be 4-byte aligned!
2679 	 */
2680 	if (addr >= EEPROMVSIZE || (addr & 3))
2681 		return -EINVAL;
2682 
2683 	/*
2684 	 * Wait for any previous operation which may still be in flight to
2685 	 * complete.
2686 	 */
2687 	ret = t4_seeprom_wait(adapter);
2688 	if (ret) {
2689 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2690 		return ret;
2691 	}
2692 
2693 	/*
2694 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2695 	 * for our request to complete.  If it doesn't complete, note the
2696 	 * error and return it to our caller.  Note that we do not reset the
2697 	 * VPD Busy status!
2698 	 */
2699 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2700 	adapter->vpd_busy = 1;
2701 	adapter->vpd_flag = PCI_VPD_ADDR_F;
2702 	ret = t4_seeprom_wait(adapter);
2703 	if (ret) {
2704 		CH_ERR(adapter, "VPD read of address %#x failed\n", addr);
2705 		return ret;
2706 	}
2707 
2708 	/*
2709 	 * Grab the returned data, swizzle it into our endianess and
2710 	 * return success.
2711 	 */
2712 	t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2713 	*data = le32_to_cpu(*data);
2714 	return 0;
2715 }
2716 
2717 /**
2718  *	t4_seeprom_write - write a serial EEPROM location
2719  *	@adapter: adapter to write
2720  *	@addr: virtual EEPROM address
2721  *	@data: value to write
2722  *
2723  *	Write a 32-bit word to a location in serial EEPROM using the card's PCI
2724  *	VPD capability.  Note that this function must be called with a virtual
2725  *	address.
2726  */
2727 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2728 {
2729 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2730 	int ret;
2731 	u32 stats_reg;
2732 	int max_poll;
2733 
2734 	/*
2735 	 * VPD Accesses must alway be 4-byte aligned!
2736 	 */
2737 	if (addr >= EEPROMVSIZE || (addr & 3))
2738 		return -EINVAL;
2739 
2740 	/*
2741 	 * Wait for any previous operation which may still be in flight to
2742 	 * complete.
2743 	 */
2744 	ret = t4_seeprom_wait(adapter);
2745 	if (ret) {
2746 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2747 		return ret;
2748 	}
2749 
2750 	/*
2751 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2752 	 * for our request to complete.  If it doesn't complete, note the
2753 	 * error and return it to our caller.  Note that we do not reset the
2754 	 * VPD Busy status!
2755 	 */
2756 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2757 				 cpu_to_le32(data));
2758 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2759 				 (u16)addr | PCI_VPD_ADDR_F);
2760 	adapter->vpd_busy = 1;
2761 	adapter->vpd_flag = 0;
2762 	ret = t4_seeprom_wait(adapter);
2763 	if (ret) {
2764 		CH_ERR(adapter, "VPD write of address %#x failed\n", addr);
2765 		return ret;
2766 	}
2767 
2768 	/*
2769 	 * Reset PCI_VPD_DATA register after a transaction and wait for our
2770 	 * request to complete. If it doesn't complete, return error.
2771 	 */
2772 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2773 	max_poll = EEPROM_MAX_POLL;
2774 	do {
2775 		udelay(EEPROM_DELAY);
2776 		t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2777 	} while ((stats_reg & 0x1) && --max_poll);
2778 	if (!max_poll)
2779 		return -ETIMEDOUT;
2780 
2781 	/* Return success! */
2782 	return 0;
2783 }
2784 
2785 /**
2786  *	t4_eeprom_ptov - translate a physical EEPROM address to virtual
2787  *	@phys_addr: the physical EEPROM address
2788  *	@fn: the PCI function number
2789  *	@sz: size of function-specific area
2790  *
2791  *	Translate a physical EEPROM address to virtual.  The first 1K is
2792  *	accessed through virtual addresses starting at 31K, the rest is
2793  *	accessed through virtual addresses starting at 0.
2794  *
2795  *	The mapping is as follows:
2796  *	[0..1K) -> [31K..32K)
2797  *	[1K..1K+A) -> [ES-A..ES)
2798  *	[1K+A..ES) -> [0..ES-A-1K)
2799  *
2800  *	where A = @fn * @sz, and ES = EEPROM size.
2801  */
2802 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2803 {
2804 	fn *= sz;
2805 	if (phys_addr < 1024)
2806 		return phys_addr + (31 << 10);
2807 	if (phys_addr < 1024 + fn)
2808 		return EEPROMSIZE - fn + phys_addr - 1024;
2809 	if (phys_addr < EEPROMSIZE)
2810 		return phys_addr - 1024 - fn;
2811 	return -EINVAL;
2812 }
2813 
2814 /**
2815  *	t4_seeprom_wp - enable/disable EEPROM write protection
2816  *	@adapter: the adapter
2817  *	@enable: whether to enable or disable write protection
2818  *
2819  *	Enables or disables write protection on the serial EEPROM.
2820  */
2821 int t4_seeprom_wp(struct adapter *adapter, int enable)
2822 {
2823 	return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2824 }
2825 
2826 /**
2827  *	get_vpd_keyword_val - Locates an information field keyword in the VPD
2828  *	@v: Pointer to buffered vpd data structure
2829  *	@kw: The keyword to search for
2830  *
2831  *	Returns the value of the information field keyword or
2832  *	-ENOENT otherwise.
2833  */
2834 static int get_vpd_keyword_val(const struct t4_vpd_hdr *v, const char *kw)
2835 {
2836 	int i;
2837 	unsigned int offset , len;
2838 	const u8 *buf = (const u8 *)v;
2839 	const u8 *vpdr_len = &v->vpdr_len[0];
2840 	offset = sizeof(struct t4_vpd_hdr);
2841 	len =  (u16)vpdr_len[0] + ((u16)vpdr_len[1] << 8);
2842 
2843 	if (len + sizeof(struct t4_vpd_hdr) > VPD_LEN) {
2844 		return -ENOENT;
2845 	}
2846 
2847 	for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
2848 		if(memcmp(buf + i , kw , 2) == 0){
2849 			i += VPD_INFO_FLD_HDR_SIZE;
2850 			return i;
2851 		}
2852 
2853 		i += VPD_INFO_FLD_HDR_SIZE + buf[i+2];
2854 	}
2855 
2856 	return -ENOENT;
2857 }
2858 
2859 
2860 /**
2861  *	get_vpd_params - read VPD parameters from VPD EEPROM
2862  *	@adapter: adapter to read
2863  *	@p: where to store the parameters
2864  *	@vpd: caller provided temporary space to read the VPD into
2865  *
2866  *	Reads card parameters stored in VPD EEPROM.
2867  */
2868 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p,
2869     u8 *vpd)
2870 {
2871 	int i, ret, addr;
2872 	int ec, sn, pn, na;
2873 	u8 csum;
2874 	const struct t4_vpd_hdr *v;
2875 
2876 	/*
2877 	 * Card information normally starts at VPD_BASE but early cards had
2878 	 * it at 0.
2879 	 */
2880 	ret = t4_seeprom_read(adapter, VPD_BASE, (u32 *)(vpd));
2881 	if (ret)
2882 		return (ret);
2883 
2884 	/*
2885 	 * The VPD shall have a unique identifier specified by the PCI SIG.
2886 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2887 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2888 	 * is expected to automatically put this entry at the
2889 	 * beginning of the VPD.
2890 	 */
2891 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2892 
2893 	for (i = 0; i < VPD_LEN; i += 4) {
2894 		ret = t4_seeprom_read(adapter, addr + i, (u32 *)(vpd + i));
2895 		if (ret)
2896 			return ret;
2897 	}
2898  	v = (const struct t4_vpd_hdr *)vpd;
2899 
2900 #define FIND_VPD_KW(var,name) do { \
2901 	var = get_vpd_keyword_val(v , name); \
2902 	if (var < 0) { \
2903 		CH_ERR(adapter, "missing VPD keyword " name "\n"); \
2904 		return -EINVAL; \
2905 	} \
2906 } while (0)
2907 
2908 	FIND_VPD_KW(i, "RV");
2909 	for (csum = 0; i >= 0; i--)
2910 		csum += vpd[i];
2911 
2912 	if (csum) {
2913 		CH_ERR(adapter,
2914 			"corrupted VPD EEPROM, actual csum %u\n", csum);
2915 		return -EINVAL;
2916 	}
2917 
2918 	FIND_VPD_KW(ec, "EC");
2919 	FIND_VPD_KW(sn, "SN");
2920 	FIND_VPD_KW(pn, "PN");
2921 	FIND_VPD_KW(na, "NA");
2922 #undef FIND_VPD_KW
2923 
2924 	memcpy(p->id, v->id_data, ID_LEN);
2925 	strstrip(p->id);
2926 	memcpy(p->ec, vpd + ec, EC_LEN);
2927 	strstrip(p->ec);
2928 	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
2929 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2930 	strstrip(p->sn);
2931 	i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
2932 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2933 	strstrip((char *)p->pn);
2934 	i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
2935 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2936 	strstrip((char *)p->na);
2937 
2938 	return 0;
2939 }
2940 
2941 /* serial flash and firmware constants and flash config file constants */
2942 enum {
2943 	SF_ATTEMPTS = 10,	/* max retries for SF operations */
2944 
2945 	/* flash command opcodes */
2946 	SF_PROG_PAGE    = 2,	/* program page */
2947 	SF_WR_DISABLE   = 4,	/* disable writes */
2948 	SF_RD_STATUS    = 5,	/* read status register */
2949 	SF_WR_ENABLE    = 6,	/* enable writes */
2950 	SF_RD_DATA_FAST = 0xb,	/* read flash */
2951 	SF_RD_ID	= 0x9f,	/* read ID */
2952 	SF_ERASE_SECTOR = 0xd8,	/* erase sector */
2953 };
2954 
2955 /**
2956  *	sf1_read - read data from the serial flash
2957  *	@adapter: the adapter
2958  *	@byte_cnt: number of bytes to read
2959  *	@cont: whether another operation will be chained
2960  *	@lock: whether to lock SF for PL access only
2961  *	@valp: where to store the read data
2962  *
2963  *	Reads up to 4 bytes of data from the serial flash.  The location of
2964  *	the read needs to be specified prior to calling this by issuing the
2965  *	appropriate commands to the serial flash.
2966  */
2967 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2968 		    int lock, u32 *valp)
2969 {
2970 	int ret;
2971 
2972 	if (!byte_cnt || byte_cnt > 4)
2973 		return -EINVAL;
2974 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
2975 		return -EBUSY;
2976 	t4_write_reg(adapter, A_SF_OP,
2977 		     V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
2978 	ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
2979 	if (!ret)
2980 		*valp = t4_read_reg(adapter, A_SF_DATA);
2981 	return ret;
2982 }
2983 
2984 /**
2985  *	sf1_write - write data to the serial flash
2986  *	@adapter: the adapter
2987  *	@byte_cnt: number of bytes to write
2988  *	@cont: whether another operation will be chained
2989  *	@lock: whether to lock SF for PL access only
2990  *	@val: value to write
2991  *
2992  *	Writes up to 4 bytes of data to the serial flash.  The location of
2993  *	the write needs to be specified prior to calling this by issuing the
2994  *	appropriate commands to the serial flash.
2995  */
2996 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2997 		     int lock, u32 val)
2998 {
2999 	if (!byte_cnt || byte_cnt > 4)
3000 		return -EINVAL;
3001 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3002 		return -EBUSY;
3003 	t4_write_reg(adapter, A_SF_DATA, val);
3004 	t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
3005 		     V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
3006 	return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3007 }
3008 
3009 /**
3010  *	flash_wait_op - wait for a flash operation to complete
3011  *	@adapter: the adapter
3012  *	@attempts: max number of polls of the status register
3013  *	@delay: delay between polls in ms
3014  *
3015  *	Wait for a flash operation to complete by polling the status register.
3016  */
3017 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3018 {
3019 	int ret;
3020 	u32 status;
3021 
3022 	while (1) {
3023 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3024 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3025 			return ret;
3026 		if (!(status & 1))
3027 			return 0;
3028 		if (--attempts == 0)
3029 			return -EAGAIN;
3030 		if (delay)
3031 			msleep(delay);
3032 	}
3033 }
3034 
3035 /**
3036  *	t4_read_flash - read words from serial flash
3037  *	@adapter: the adapter
3038  *	@addr: the start address for the read
3039  *	@nwords: how many 32-bit words to read
3040  *	@data: where to store the read data
3041  *	@byte_oriented: whether to store data as bytes or as words
3042  *
3043  *	Read the specified number of 32-bit words from the serial flash.
3044  *	If @byte_oriented is set the read data is stored as a byte array
3045  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3046  *	natural endianness.
3047  */
3048 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3049 		  unsigned int nwords, u32 *data, int byte_oriented)
3050 {
3051 	int ret;
3052 
3053 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3054 		return -EINVAL;
3055 
3056 	addr = swab32(addr) | SF_RD_DATA_FAST;
3057 
3058 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3059 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3060 		return ret;
3061 
3062 	for ( ; nwords; nwords--, data++) {
3063 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3064 		if (nwords == 1)
3065 			t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3066 		if (ret)
3067 			return ret;
3068 		if (byte_oriented)
3069 			*data = (__force __u32)(cpu_to_be32(*data));
3070 	}
3071 	return 0;
3072 }
3073 
3074 /**
3075  *	t4_write_flash - write up to a page of data to the serial flash
3076  *	@adapter: the adapter
3077  *	@addr: the start address to write
3078  *	@n: length of data to write in bytes
3079  *	@data: the data to write
3080  *	@byte_oriented: whether to store data as bytes or as words
3081  *
3082  *	Writes up to a page of data (256 bytes) to the serial flash starting
3083  *	at the given address.  All the data must be written to the same page.
3084  *	If @byte_oriented is set the write data is stored as byte stream
3085  *	(i.e. matches what on disk), otherwise in big-endian.
3086  */
3087 int t4_write_flash(struct adapter *adapter, unsigned int addr,
3088 			  unsigned int n, const u8 *data, int byte_oriented)
3089 {
3090 	int ret;
3091 	u32 buf[SF_PAGE_SIZE / 4];
3092 	unsigned int i, c, left, val, offset = addr & 0xff;
3093 
3094 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3095 		return -EINVAL;
3096 
3097 	val = swab32(addr) | SF_PROG_PAGE;
3098 
3099 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3100 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3101 		goto unlock;
3102 
3103 	for (left = n; left; left -= c) {
3104 		c = min(left, 4U);
3105 		for (val = 0, i = 0; i < c; ++i)
3106 			val = (val << 8) + *data++;
3107 
3108 		if (!byte_oriented)
3109 			val = cpu_to_be32(val);
3110 
3111 		ret = sf1_write(adapter, c, c != left, 1, val);
3112 		if (ret)
3113 			goto unlock;
3114 	}
3115 	ret = flash_wait_op(adapter, 8, 1);
3116 	if (ret)
3117 		goto unlock;
3118 
3119 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3120 
3121 	/* Read the page to verify the write succeeded */
3122 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3123 			    byte_oriented);
3124 	if (ret)
3125 		return ret;
3126 
3127 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3128 		CH_ERR(adapter,
3129 			"failed to correctly write the flash page at %#x\n",
3130 			addr);
3131 		return -EIO;
3132 	}
3133 	return 0;
3134 
3135 unlock:
3136 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3137 	return ret;
3138 }
3139 
3140 /**
3141  *	t4_get_fw_version - read the firmware version
3142  *	@adapter: the adapter
3143  *	@vers: where to place the version
3144  *
3145  *	Reads the FW version from flash.
3146  */
3147 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3148 {
3149 	return t4_read_flash(adapter, FLASH_FW_START +
3150 			     offsetof(struct fw_hdr, fw_ver), 1,
3151 			     vers, 0);
3152 }
3153 
3154 /**
3155  *	t4_get_tp_version - read the TP microcode version
3156  *	@adapter: the adapter
3157  *	@vers: where to place the version
3158  *
3159  *	Reads the TP microcode version from flash.
3160  */
3161 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3162 {
3163 	return t4_read_flash(adapter, FLASH_FW_START +
3164 			     offsetof(struct fw_hdr, tp_microcode_ver),
3165 			     1, vers, 0);
3166 }
3167 
3168 /**
3169  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3170  *	@adapter: the adapter
3171  *	@vers: where to place the version
3172  *
3173  *	Reads the Expansion ROM header from FLASH and returns the version
3174  *	number (if present) through the @vers return value pointer.  We return
3175  *	this in the Firmware Version Format since it's convenient.  Return
3176  *	0 on success, -ENOENT if no Expansion ROM is present.
3177  */
3178 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3179 {
3180 	struct exprom_header {
3181 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3182 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3183 	} *hdr;
3184 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3185 					   sizeof(u32))];
3186 	int ret;
3187 
3188 	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3189 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3190 			    0);
3191 	if (ret)
3192 		return ret;
3193 
3194 	hdr = (struct exprom_header *)exprom_header_buf;
3195 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3196 		return -ENOENT;
3197 
3198 	*vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
3199 		 V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
3200 		 V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
3201 		 V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
3202 	return 0;
3203 }
3204 
3205 /**
3206  *	t4_flash_erase_sectors - erase a range of flash sectors
3207  *	@adapter: the adapter
3208  *	@start: the first sector to erase
3209  *	@end: the last sector to erase
3210  *
3211  *	Erases the sectors in the given inclusive range.
3212  */
3213 int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3214 {
3215 	int ret = 0;
3216 
3217 	if (end >= adapter->params.sf_nsec)
3218 		return -EINVAL;
3219 
3220 	while (start <= end) {
3221 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3222 		    (ret = sf1_write(adapter, 4, 0, 1,
3223 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3224 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3225 			CH_ERR(adapter,
3226 				"erase of flash sector %d failed, error %d\n",
3227 				start, ret);
3228 			break;
3229 		}
3230 		start++;
3231 	}
3232 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3233 	return ret;
3234 }
3235 
3236 /**
3237  *	t4_flash_cfg_addr - return the address of the flash configuration file
3238  *	@adapter: the adapter
3239  *
3240  *	Return the address within the flash where the Firmware Configuration
3241  *	File is stored, or an error if the device FLASH is too small to contain
3242  *	a Firmware Configuration File.
3243  */
3244 int t4_flash_cfg_addr(struct adapter *adapter)
3245 {
3246 	/*
3247 	 * If the device FLASH isn't large enough to hold a Firmware
3248 	 * Configuration File, return an error.
3249 	 */
3250 	if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
3251 		return -ENOSPC;
3252 
3253 	return FLASH_CFG_START;
3254 }
3255 
3256 /*
3257  * Return TRUE if the specified firmware matches the adapter.  I.e. T4
3258  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3259  * and emit an error message for mismatched firmware to save our caller the
3260  * effort ...
3261  */
3262 static int t4_fw_matches_chip(struct adapter *adap,
3263 			      const struct fw_hdr *hdr)
3264 {
3265 	/*
3266 	 * The expression below will return FALSE for any unsupported adapter
3267 	 * which will keep us "honest" in the future ...
3268 	 */
3269 	if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) ||
3270 	    (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) ||
3271 	    (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6))
3272 		return 1;
3273 
3274 	CH_ERR(adap,
3275 		"FW image (%d) is not suitable for this adapter (%d)\n",
3276 		hdr->chip, chip_id(adap));
3277 	return 0;
3278 }
3279 
3280 /**
3281  *	t4_load_fw - download firmware
3282  *	@adap: the adapter
3283  *	@fw_data: the firmware image to write
3284  *	@size: image size
3285  *
3286  *	Write the supplied firmware image to the card's serial flash.
3287  */
3288 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3289 {
3290 	u32 csum;
3291 	int ret, addr;
3292 	unsigned int i;
3293 	u8 first_page[SF_PAGE_SIZE];
3294 	const u32 *p = (const u32 *)fw_data;
3295 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3296 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3297 	unsigned int fw_start_sec;
3298 	unsigned int fw_start;
3299 	unsigned int fw_size;
3300 
3301 	if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) {
3302 		fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC;
3303 		fw_start = FLASH_FWBOOTSTRAP_START;
3304 		fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE;
3305 	} else {
3306 		fw_start_sec = FLASH_FW_START_SEC;
3307  		fw_start = FLASH_FW_START;
3308 		fw_size = FLASH_FW_MAX_SIZE;
3309 	}
3310 
3311 	if (!size) {
3312 		CH_ERR(adap, "FW image has no data\n");
3313 		return -EINVAL;
3314 	}
3315 	if (size & 511) {
3316 		CH_ERR(adap,
3317 			"FW image size not multiple of 512 bytes\n");
3318 		return -EINVAL;
3319 	}
3320 	if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) {
3321 		CH_ERR(adap,
3322 			"FW image size differs from size in FW header\n");
3323 		return -EINVAL;
3324 	}
3325 	if (size > fw_size) {
3326 		CH_ERR(adap, "FW image too large, max is %u bytes\n",
3327 			fw_size);
3328 		return -EFBIG;
3329 	}
3330 	if (!t4_fw_matches_chip(adap, hdr))
3331 		return -EINVAL;
3332 
3333 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3334 		csum += be32_to_cpu(p[i]);
3335 
3336 	if (csum != 0xffffffff) {
3337 		CH_ERR(adap,
3338 			"corrupted firmware image, checksum %#x\n", csum);
3339 		return -EINVAL;
3340 	}
3341 
3342 	i = DIV_ROUND_UP(size, sf_sec_size);	/* # of sectors spanned */
3343 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3344 	if (ret)
3345 		goto out;
3346 
3347 	/*
3348 	 * We write the correct version at the end so the driver can see a bad
3349 	 * version if the FW write fails.  Start by writing a copy of the
3350 	 * first page with a bad version.
3351 	 */
3352 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3353 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3354 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
3355 	if (ret)
3356 		goto out;
3357 
3358 	addr = fw_start;
3359 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3360 		addr += SF_PAGE_SIZE;
3361 		fw_data += SF_PAGE_SIZE;
3362 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
3363 		if (ret)
3364 			goto out;
3365 	}
3366 
3367 	ret = t4_write_flash(adap,
3368 			     fw_start + offsetof(struct fw_hdr, fw_ver),
3369 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
3370 out:
3371 	if (ret)
3372 		CH_ERR(adap, "firmware download failed, error %d\n",
3373 			ret);
3374 	return ret;
3375 }
3376 
3377 /**
3378  *	t4_fwcache - firmware cache operation
3379  *	@adap: the adapter
3380  *	@op  : the operation (flush or flush and invalidate)
3381  */
3382 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3383 {
3384 	struct fw_params_cmd c;
3385 
3386 	memset(&c, 0, sizeof(c));
3387 	c.op_to_vfn =
3388 	    cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3389 			    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3390 				V_FW_PARAMS_CMD_PFN(adap->pf) |
3391 				V_FW_PARAMS_CMD_VFN(0));
3392 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3393 	c.param[0].mnem =
3394 	    cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3395 			    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE));
3396 	c.param[0].val = (__force __be32)op;
3397 
3398 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3399 }
3400 
3401 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3402 			unsigned int *pif_req_wrptr,
3403 			unsigned int *pif_rsp_wrptr)
3404 {
3405 	int i, j;
3406 	u32 cfg, val, req, rsp;
3407 
3408 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3409 	if (cfg & F_LADBGEN)
3410 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3411 
3412 	val = t4_read_reg(adap, A_CIM_DEBUGSTS);
3413 	req = G_POLADBGWRPTR(val);
3414 	rsp = G_PILADBGWRPTR(val);
3415 	if (pif_req_wrptr)
3416 		*pif_req_wrptr = req;
3417 	if (pif_rsp_wrptr)
3418 		*pif_rsp_wrptr = rsp;
3419 
3420 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3421 		for (j = 0; j < 6; j++) {
3422 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
3423 				     V_PILADBGRDPTR(rsp));
3424 			*pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
3425 			*pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
3426 			req++;
3427 			rsp++;
3428 		}
3429 		req = (req + 2) & M_POLADBGRDPTR;
3430 		rsp = (rsp + 2) & M_PILADBGRDPTR;
3431 	}
3432 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3433 }
3434 
3435 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3436 {
3437 	u32 cfg;
3438 	int i, j, idx;
3439 
3440 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3441 	if (cfg & F_LADBGEN)
3442 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3443 
3444 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3445 		for (j = 0; j < 5; j++) {
3446 			idx = 8 * i + j;
3447 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
3448 				     V_PILADBGRDPTR(idx));
3449 			*ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
3450 			*ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
3451 		}
3452 	}
3453 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3454 }
3455 
3456 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3457 {
3458 	unsigned int i, j;
3459 
3460 	for (i = 0; i < 8; i++) {
3461 		u32 *p = la_buf + i;
3462 
3463 		t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
3464 		j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
3465 		t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
3466 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3467 			*p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
3468 	}
3469 }
3470 
3471 #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
3472 		     FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
3473 		     FW_PORT_CAP_SPEED_100G | FW_PORT_CAP_ANEG)
3474 
3475 /**
3476  *	t4_link_l1cfg - apply link configuration to MAC/PHY
3477  *	@phy: the PHY to setup
3478  *	@mac: the MAC to setup
3479  *	@lc: the requested link configuration
3480  *
3481  *	Set up a port's MAC and PHY according to a desired link configuration.
3482  *	- If the PHY can auto-negotiate first decide what to advertise, then
3483  *	  enable/disable auto-negotiation as desired, and reset.
3484  *	- If the PHY does not auto-negotiate just reset it.
3485  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3486  *	  otherwise do it later based on the outcome of auto-negotiation.
3487  */
3488 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3489 		  struct link_config *lc)
3490 {
3491 	struct fw_port_cmd c;
3492 	unsigned int fc = 0, mdi = V_FW_PORT_CAP_MDI(FW_PORT_CAP_MDI_AUTO);
3493 
3494 	lc->link_ok = 0;
3495 	if (lc->requested_fc & PAUSE_RX)
3496 		fc |= FW_PORT_CAP_FC_RX;
3497 	if (lc->requested_fc & PAUSE_TX)
3498 		fc |= FW_PORT_CAP_FC_TX;
3499 
3500 	memset(&c, 0, sizeof(c));
3501 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3502 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3503 				     V_FW_PORT_CMD_PORTID(port));
3504 	c.action_to_len16 =
3505 		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3506 			    FW_LEN16(c));
3507 
3508 	if (!(lc->supported & FW_PORT_CAP_ANEG)) {
3509 		c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) |
3510 					     fc);
3511 		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3512 	} else if (lc->autoneg == AUTONEG_DISABLE) {
3513 		c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed | fc | mdi);
3514 		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3515 	} else
3516 		c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc | mdi);
3517 
3518 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3519 }
3520 
3521 /**
3522  *	t4_restart_aneg - restart autonegotiation
3523  *	@adap: the adapter
3524  *	@mbox: mbox to use for the FW command
3525  *	@port: the port id
3526  *
3527  *	Restarts autonegotiation for the selected port.
3528  */
3529 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3530 {
3531 	struct fw_port_cmd c;
3532 
3533 	memset(&c, 0, sizeof(c));
3534 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3535 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3536 				     V_FW_PORT_CMD_PORTID(port));
3537 	c.action_to_len16 =
3538 		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3539 			    FW_LEN16(c));
3540 	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3541 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3542 }
3543 
3544 typedef void (*int_handler_t)(struct adapter *adap);
3545 
3546 struct intr_info {
3547 	unsigned int mask;	/* bits to check in interrupt status */
3548 	const char *msg;	/* message to print or NULL */
3549 	short stat_idx;		/* stat counter to increment or -1 */
3550 	unsigned short fatal;	/* whether the condition reported is fatal */
3551 	int_handler_t int_handler;	/* platform-specific int handler */
3552 };
3553 
3554 /**
3555  *	t4_handle_intr_status - table driven interrupt handler
3556  *	@adapter: the adapter that generated the interrupt
3557  *	@reg: the interrupt status register to process
3558  *	@acts: table of interrupt actions
3559  *
3560  *	A table driven interrupt handler that applies a set of masks to an
3561  *	interrupt status word and performs the corresponding actions if the
3562  *	interrupts described by the mask have occurred.  The actions include
3563  *	optionally emitting a warning or alert message.  The table is terminated
3564  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
3565  *	conditions.
3566  */
3567 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
3568 				 const struct intr_info *acts)
3569 {
3570 	int fatal = 0;
3571 	unsigned int mask = 0;
3572 	unsigned int status = t4_read_reg(adapter, reg);
3573 
3574 	for ( ; acts->mask; ++acts) {
3575 		if (!(status & acts->mask))
3576 			continue;
3577 		if (acts->fatal) {
3578 			fatal++;
3579 			CH_ALERT(adapter, "%s (0x%x)\n", acts->msg,
3580 				  status & acts->mask);
3581 		} else if (acts->msg)
3582 			CH_WARN_RATELIMIT(adapter, "%s (0x%x)\n", acts->msg,
3583 				 status & acts->mask);
3584 		if (acts->int_handler)
3585 			acts->int_handler(adapter);
3586 		mask |= acts->mask;
3587 	}
3588 	status &= mask;
3589 	if (status)	/* clear processed interrupts */
3590 		t4_write_reg(adapter, reg, status);
3591 	return fatal;
3592 }
3593 
3594 /*
3595  * Interrupt handler for the PCIE module.
3596  */
3597 static void pcie_intr_handler(struct adapter *adapter)
3598 {
3599 	static const struct intr_info sysbus_intr_info[] = {
3600 		{ F_RNPP, "RXNP array parity error", -1, 1 },
3601 		{ F_RPCP, "RXPC array parity error", -1, 1 },
3602 		{ F_RCIP, "RXCIF array parity error", -1, 1 },
3603 		{ F_RCCP, "Rx completions control array parity error", -1, 1 },
3604 		{ F_RFTP, "RXFT array parity error", -1, 1 },
3605 		{ 0 }
3606 	};
3607 	static const struct intr_info pcie_port_intr_info[] = {
3608 		{ F_TPCP, "TXPC array parity error", -1, 1 },
3609 		{ F_TNPP, "TXNP array parity error", -1, 1 },
3610 		{ F_TFTP, "TXFT array parity error", -1, 1 },
3611 		{ F_TCAP, "TXCA array parity error", -1, 1 },
3612 		{ F_TCIP, "TXCIF array parity error", -1, 1 },
3613 		{ F_RCAP, "RXCA array parity error", -1, 1 },
3614 		{ F_OTDD, "outbound request TLP discarded", -1, 1 },
3615 		{ F_RDPE, "Rx data parity error", -1, 1 },
3616 		{ F_TDUE, "Tx uncorrectable data error", -1, 1 },
3617 		{ 0 }
3618 	};
3619 	static const struct intr_info pcie_intr_info[] = {
3620 		{ F_MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
3621 		{ F_MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
3622 		{ F_MSIDATAPERR, "MSI data parity error", -1, 1 },
3623 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
3624 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
3625 		{ F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
3626 		{ F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
3627 		{ F_PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
3628 		{ F_PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
3629 		{ F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
3630 		{ F_CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
3631 		{ F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
3632 		{ F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
3633 		{ F_DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
3634 		{ F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
3635 		{ F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
3636 		{ F_HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
3637 		{ F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
3638 		{ F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
3639 		{ F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
3640 		{ F_FIDPERR, "PCI FID parity error", -1, 1 },
3641 		{ F_INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
3642 		{ F_MATAGPERR, "PCI MA tag parity error", -1, 1 },
3643 		{ F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
3644 		{ F_RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
3645 		{ F_RXWRPERR, "PCI Rx write parity error", -1, 1 },
3646 		{ F_RPLPERR, "PCI replay buffer parity error", -1, 1 },
3647 		{ F_PCIESINT, "PCI core secondary fault", -1, 1 },
3648 		{ F_PCIEPINT, "PCI core primary fault", -1, 1 },
3649 		{ F_UNXSPLCPLERR, "PCI unexpected split completion error", -1,
3650 		  0 },
3651 		{ 0 }
3652 	};
3653 
3654 	static const struct intr_info t5_pcie_intr_info[] = {
3655 		{ F_MSTGRPPERR, "Master Response Read Queue parity error",
3656 		  -1, 1 },
3657 		{ F_MSTTIMEOUTPERR, "Master Timeout FIFO parity error", -1, 1 },
3658 		{ F_MSIXSTIPERR, "MSI-X STI SRAM parity error", -1, 1 },
3659 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
3660 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
3661 		{ F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
3662 		{ F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
3663 		{ F_PIOCPLGRPPERR, "PCI PIO completion Group FIFO parity error",
3664 		  -1, 1 },
3665 		{ F_PIOREQGRPPERR, "PCI PIO request Group FIFO parity error",
3666 		  -1, 1 },
3667 		{ F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
3668 		{ F_MSTTAGQPERR, "PCI master tag queue parity error", -1, 1 },
3669 		{ F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
3670 		{ F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
3671 		{ F_DREQWRPERR, "PCI DMA channel write request parity error",
3672 		  -1, 1 },
3673 		{ F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
3674 		{ F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
3675 		{ F_HREQWRPERR, "PCI HMA channel count parity error", -1, 1 },
3676 		{ F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
3677 		{ F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
3678 		{ F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
3679 		{ F_FIDPERR, "PCI FID parity error", -1, 1 },
3680 		{ F_VFIDPERR, "PCI INTx clear parity error", -1, 1 },
3681 		{ F_MAGRPPERR, "PCI MA group FIFO parity error", -1, 1 },
3682 		{ F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
3683 		{ F_IPRXHDRGRPPERR, "PCI IP Rx header group parity error",
3684 		  -1, 1 },
3685 		{ F_IPRXDATAGRPPERR, "PCI IP Rx data group parity error",
3686 		  -1, 1 },
3687 		{ F_RPLPERR, "PCI IP replay buffer parity error", -1, 1 },
3688 		{ F_IPSOTPERR, "PCI IP SOT buffer parity error", -1, 1 },
3689 		{ F_TRGT1GRPPERR, "PCI TRGT1 group FIFOs parity error", -1, 1 },
3690 		{ F_READRSPERR, "Outbound read error", -1,
3691 		  0 },
3692 		{ 0 }
3693 	};
3694 
3695 	int fat;
3696 
3697 	if (is_t4(adapter))
3698 		fat = t4_handle_intr_status(adapter,
3699 				A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
3700 				sysbus_intr_info) +
3701 			t4_handle_intr_status(adapter,
3702 					A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
3703 					pcie_port_intr_info) +
3704 			t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
3705 					      pcie_intr_info);
3706 	else
3707 		fat = t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
3708 					    t5_pcie_intr_info);
3709 	if (fat)
3710 		t4_fatal_err(adapter);
3711 }
3712 
3713 /*
3714  * TP interrupt handler.
3715  */
3716 static void tp_intr_handler(struct adapter *adapter)
3717 {
3718 	static const struct intr_info tp_intr_info[] = {
3719 		{ 0x3fffffff, "TP parity error", -1, 1 },
3720 		{ F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
3721 		{ 0 }
3722 	};
3723 
3724 	if (t4_handle_intr_status(adapter, A_TP_INT_CAUSE, tp_intr_info))
3725 		t4_fatal_err(adapter);
3726 }
3727 
3728 /*
3729  * SGE interrupt handler.
3730  */
3731 static void sge_intr_handler(struct adapter *adapter)
3732 {
3733 	u64 v;
3734 	u32 err;
3735 
3736 	static const struct intr_info sge_intr_info[] = {
3737 		{ F_ERR_CPL_EXCEED_IQE_SIZE,
3738 		  "SGE received CPL exceeding IQE size", -1, 1 },
3739 		{ F_ERR_INVALID_CIDX_INC,
3740 		  "SGE GTS CIDX increment too large", -1, 0 },
3741 		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
3742 		{ F_DBFIFO_LP_INT, NULL, -1, 0, t4_db_full },
3743 		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
3744 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
3745 		{ F_ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
3746 		  0 },
3747 		{ F_ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
3748 		  0 },
3749 		{ F_ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
3750 		  0 },
3751 		{ F_ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
3752 		  0 },
3753 		{ F_ERR_ING_CTXT_PRIO,
3754 		  "SGE too many priority ingress contexts", -1, 0 },
3755 		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
3756 		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
3757 		{ 0 }
3758 	};
3759 
3760 	static const struct intr_info t4t5_sge_intr_info[] = {
3761 		{ F_ERR_DROPPED_DB, NULL, -1, 0, t4_db_dropped },
3762 		{ F_DBFIFO_HP_INT, NULL, -1, 0, t4_db_full },
3763 		{ F_ERR_EGR_CTXT_PRIO,
3764 		  "SGE too many priority egress contexts", -1, 0 },
3765 		{ 0 }
3766 	};
3767 
3768 	/*
3769  	* For now, treat below interrupts as fatal so that we disable SGE and
3770  	* get better debug */
3771 	static const struct intr_info t6_sge_intr_info[] = {
3772 		{ F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1,
3773 		  "SGE PCIe error for a DBP thread", -1, 1 },
3774 		{ F_FATAL_WRE_LEN,
3775 		  "SGE Actual WRE packet is less than advertized length",
3776 		  -1, 1 },
3777 		{ 0 }
3778 	};
3779 
3780 	v = (u64)t4_read_reg(adapter, A_SGE_INT_CAUSE1) |
3781 		((u64)t4_read_reg(adapter, A_SGE_INT_CAUSE2) << 32);
3782 	if (v) {
3783 		CH_ALERT(adapter, "SGE parity error (%#llx)\n",
3784 				(unsigned long long)v);
3785 		t4_write_reg(adapter, A_SGE_INT_CAUSE1, v);
3786 		t4_write_reg(adapter, A_SGE_INT_CAUSE2, v >> 32);
3787 	}
3788 
3789 	v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3, sge_intr_info);
3790 	if (chip_id(adapter) <= CHELSIO_T5)
3791 		v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3,
3792 					   t4t5_sge_intr_info);
3793 	else
3794 		v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3,
3795 					   t6_sge_intr_info);
3796 
3797 	err = t4_read_reg(adapter, A_SGE_ERROR_STATS);
3798 	if (err & F_ERROR_QID_VALID) {
3799 		CH_ERR(adapter, "SGE error for queue %u\n", G_ERROR_QID(err));
3800 		if (err & F_UNCAPTURED_ERROR)
3801 			CH_ERR(adapter, "SGE UNCAPTURED_ERROR set (clearing)\n");
3802 		t4_write_reg(adapter, A_SGE_ERROR_STATS, F_ERROR_QID_VALID |
3803 			     F_UNCAPTURED_ERROR);
3804 	}
3805 
3806 	if (v != 0)
3807 		t4_fatal_err(adapter);
3808 }
3809 
3810 #define CIM_OBQ_INTR (F_OBQULP0PARERR | F_OBQULP1PARERR | F_OBQULP2PARERR |\
3811 		      F_OBQULP3PARERR | F_OBQSGEPARERR | F_OBQNCSIPARERR)
3812 #define CIM_IBQ_INTR (F_IBQTP0PARERR | F_IBQTP1PARERR | F_IBQULPPARERR |\
3813 		      F_IBQSGEHIPARERR | F_IBQSGELOPARERR | F_IBQNCSIPARERR)
3814 
3815 /*
3816  * CIM interrupt handler.
3817  */
3818 static void cim_intr_handler(struct adapter *adapter)
3819 {
3820 	static const struct intr_info cim_intr_info[] = {
3821 		{ F_PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
3822 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
3823 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
3824 		{ F_MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
3825 		{ F_MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
3826 		{ F_TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
3827 		{ F_TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
3828 		{ 0 }
3829 	};
3830 	static const struct intr_info cim_upintr_info[] = {
3831 		{ F_RSVDSPACEINT, "CIM reserved space access", -1, 1 },
3832 		{ F_ILLTRANSINT, "CIM illegal transaction", -1, 1 },
3833 		{ F_ILLWRINT, "CIM illegal write", -1, 1 },
3834 		{ F_ILLRDINT, "CIM illegal read", -1, 1 },
3835 		{ F_ILLRDBEINT, "CIM illegal read BE", -1, 1 },
3836 		{ F_ILLWRBEINT, "CIM illegal write BE", -1, 1 },
3837 		{ F_SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
3838 		{ F_SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
3839 		{ F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
3840 		{ F_SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
3841 		{ F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
3842 		{ F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
3843 		{ F_SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
3844 		{ F_SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
3845 		{ F_BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
3846 		{ F_BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
3847 		{ F_SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
3848 		{ F_SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
3849 		{ F_BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
3850 		{ F_BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
3851 		{ F_SGLRDPLINT , "CIM single read from PL space", -1, 1 },
3852 		{ F_SGLWRPLINT , "CIM single write to PL space", -1, 1 },
3853 		{ F_BLKRDPLINT , "CIM block read from PL space", -1, 1 },
3854 		{ F_BLKWRPLINT , "CIM block write to PL space", -1, 1 },
3855 		{ F_REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
3856 		{ F_RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
3857 		{ F_TIMEOUTINT , "CIM PIF timeout", -1, 1 },
3858 		{ F_TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
3859 		{ 0 }
3860 	};
3861 	int fat;
3862 
3863 	if (t4_read_reg(adapter, A_PCIE_FW) & F_PCIE_FW_ERR)
3864 		t4_report_fw_error(adapter);
3865 
3866 	fat = t4_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE,
3867 				    cim_intr_info) +
3868 	      t4_handle_intr_status(adapter, A_CIM_HOST_UPACC_INT_CAUSE,
3869 				    cim_upintr_info);
3870 	if (fat)
3871 		t4_fatal_err(adapter);
3872 }
3873 
3874 /*
3875  * ULP RX interrupt handler.
3876  */
3877 static void ulprx_intr_handler(struct adapter *adapter)
3878 {
3879 	static const struct intr_info ulprx_intr_info[] = {
3880 		{ F_CAUSE_CTX_1, "ULPRX channel 1 context error", -1, 1 },
3881 		{ F_CAUSE_CTX_0, "ULPRX channel 0 context error", -1, 1 },
3882 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
3883 		{ 0 }
3884 	};
3885 
3886 	if (t4_handle_intr_status(adapter, A_ULP_RX_INT_CAUSE, ulprx_intr_info))
3887 		t4_fatal_err(adapter);
3888 }
3889 
3890 /*
3891  * ULP TX interrupt handler.
3892  */
3893 static void ulptx_intr_handler(struct adapter *adapter)
3894 {
3895 	static const struct intr_info ulptx_intr_info[] = {
3896 		{ F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
3897 		  0 },
3898 		{ F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
3899 		  0 },
3900 		{ F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
3901 		  0 },
3902 		{ F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
3903 		  0 },
3904 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
3905 		{ 0 }
3906 	};
3907 
3908 	if (t4_handle_intr_status(adapter, A_ULP_TX_INT_CAUSE, ulptx_intr_info))
3909 		t4_fatal_err(adapter);
3910 }
3911 
3912 /*
3913  * PM TX interrupt handler.
3914  */
3915 static void pmtx_intr_handler(struct adapter *adapter)
3916 {
3917 	static const struct intr_info pmtx_intr_info[] = {
3918 		{ F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
3919 		{ F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
3920 		{ F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
3921 		{ F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
3922 		{ 0xffffff0, "PMTX framing error", -1, 1 },
3923 		{ F_OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
3924 		{ F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1,
3925 		  1 },
3926 		{ F_ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
3927 		{ F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
3928 		{ 0 }
3929 	};
3930 
3931 	if (t4_handle_intr_status(adapter, A_PM_TX_INT_CAUSE, pmtx_intr_info))
3932 		t4_fatal_err(adapter);
3933 }
3934 
3935 /*
3936  * PM RX interrupt handler.
3937  */
3938 static void pmrx_intr_handler(struct adapter *adapter)
3939 {
3940 	static const struct intr_info pmrx_intr_info[] = {
3941 		{ F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
3942 		{ 0x3ffff0, "PMRX framing error", -1, 1 },
3943 		{ F_OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
3944 		{ F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1,
3945 		  1 },
3946 		{ F_IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
3947 		{ F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
3948 		{ 0 }
3949 	};
3950 
3951 	if (t4_handle_intr_status(adapter, A_PM_RX_INT_CAUSE, pmrx_intr_info))
3952 		t4_fatal_err(adapter);
3953 }
3954 
3955 /*
3956  * CPL switch interrupt handler.
3957  */
3958 static void cplsw_intr_handler(struct adapter *adapter)
3959 {
3960 	static const struct intr_info cplsw_intr_info[] = {
3961 		{ F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
3962 		{ F_CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
3963 		{ F_TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
3964 		{ F_SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
3965 		{ F_CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
3966 		{ F_ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
3967 		{ 0 }
3968 	};
3969 
3970 	if (t4_handle_intr_status(adapter, A_CPL_INTR_CAUSE, cplsw_intr_info))
3971 		t4_fatal_err(adapter);
3972 }
3973 
3974 /*
3975  * LE interrupt handler.
3976  */
3977 static void le_intr_handler(struct adapter *adap)
3978 {
3979 	unsigned int chip_ver = chip_id(adap);
3980 	static const struct intr_info le_intr_info[] = {
3981 		{ F_LIPMISS, "LE LIP miss", -1, 0 },
3982 		{ F_LIP0, "LE 0 LIP error", -1, 0 },
3983 		{ F_PARITYERR, "LE parity error", -1, 1 },
3984 		{ F_UNKNOWNCMD, "LE unknown command", -1, 1 },
3985 		{ F_REQQPARERR, "LE request queue parity error", -1, 1 },
3986 		{ 0 }
3987 	};
3988 
3989 	static const struct intr_info t6_le_intr_info[] = {
3990 		{ F_T6_LIPMISS, "LE LIP miss", -1, 0 },
3991 		{ F_T6_LIP0, "LE 0 LIP error", -1, 0 },
3992 		{ F_TCAMINTPERR, "LE parity error", -1, 1 },
3993 		{ F_T6_UNKNOWNCMD, "LE unknown command", -1, 1 },
3994 		{ F_SSRAMINTPERR, "LE request queue parity error", -1, 1 },
3995 		{ 0 }
3996 	};
3997 
3998 	if (t4_handle_intr_status(adap, A_LE_DB_INT_CAUSE,
3999 				  (chip_ver <= CHELSIO_T5) ?
4000 				  le_intr_info : t6_le_intr_info))
4001 		t4_fatal_err(adap);
4002 }
4003 
4004 /*
4005  * MPS interrupt handler.
4006  */
4007 static void mps_intr_handler(struct adapter *adapter)
4008 {
4009 	static const struct intr_info mps_rx_intr_info[] = {
4010 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4011 		{ 0 }
4012 	};
4013 	static const struct intr_info mps_tx_intr_info[] = {
4014 		{ V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error", -1, 1 },
4015 		{ F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4016 		{ V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error",
4017 		  -1, 1 },
4018 		{ V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error",
4019 		  -1, 1 },
4020 		{ F_BUBBLE, "MPS Tx underflow", -1, 1 },
4021 		{ F_SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
4022 		{ F_FRMERR, "MPS Tx framing error", -1, 1 },
4023 		{ 0 }
4024 	};
4025 	static const struct intr_info mps_trc_intr_info[] = {
4026 		{ V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error", -1, 1 },
4027 		{ V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error", -1,
4028 		  1 },
4029 		{ F_MISCPERR, "MPS TRC misc parity error", -1, 1 },
4030 		{ 0 }
4031 	};
4032 	static const struct intr_info mps_stat_sram_intr_info[] = {
4033 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4034 		{ 0 }
4035 	};
4036 	static const struct intr_info mps_stat_tx_intr_info[] = {
4037 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4038 		{ 0 }
4039 	};
4040 	static const struct intr_info mps_stat_rx_intr_info[] = {
4041 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4042 		{ 0 }
4043 	};
4044 	static const struct intr_info mps_cls_intr_info[] = {
4045 		{ F_MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
4046 		{ F_MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
4047 		{ F_HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
4048 		{ 0 }
4049 	};
4050 
4051 	int fat;
4052 
4053 	fat = t4_handle_intr_status(adapter, A_MPS_RX_PERR_INT_CAUSE,
4054 				    mps_rx_intr_info) +
4055 	      t4_handle_intr_status(adapter, A_MPS_TX_INT_CAUSE,
4056 				    mps_tx_intr_info) +
4057 	      t4_handle_intr_status(adapter, A_MPS_TRC_INT_CAUSE,
4058 				    mps_trc_intr_info) +
4059 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_SRAM,
4060 				    mps_stat_sram_intr_info) +
4061 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
4062 				    mps_stat_tx_intr_info) +
4063 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
4064 				    mps_stat_rx_intr_info) +
4065 	      t4_handle_intr_status(adapter, A_MPS_CLS_INT_CAUSE,
4066 				    mps_cls_intr_info);
4067 
4068 	t4_write_reg(adapter, A_MPS_INT_CAUSE, 0);
4069 	t4_read_reg(adapter, A_MPS_INT_CAUSE);	/* flush */
4070 	if (fat)
4071 		t4_fatal_err(adapter);
4072 }
4073 
4074 #define MEM_INT_MASK (F_PERR_INT_CAUSE | F_ECC_CE_INT_CAUSE | \
4075 		      F_ECC_UE_INT_CAUSE)
4076 
4077 /*
4078  * EDC/MC interrupt handler.
4079  */
4080 static void mem_intr_handler(struct adapter *adapter, int idx)
4081 {
4082 	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4083 
4084 	unsigned int addr, cnt_addr, v;
4085 
4086 	if (idx <= MEM_EDC1) {
4087 		addr = EDC_REG(A_EDC_INT_CAUSE, idx);
4088 		cnt_addr = EDC_REG(A_EDC_ECC_STATUS, idx);
4089 	} else if (idx == MEM_MC) {
4090 		if (is_t4(adapter)) {
4091 			addr = A_MC_INT_CAUSE;
4092 			cnt_addr = A_MC_ECC_STATUS;
4093 		} else {
4094 			addr = A_MC_P_INT_CAUSE;
4095 			cnt_addr = A_MC_P_ECC_STATUS;
4096 		}
4097 	} else {
4098 		addr = MC_REG(A_MC_P_INT_CAUSE, 1);
4099 		cnt_addr = MC_REG(A_MC_P_ECC_STATUS, 1);
4100 	}
4101 
4102 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4103 	if (v & F_PERR_INT_CAUSE)
4104 		CH_ALERT(adapter, "%s FIFO parity error\n",
4105 			  name[idx]);
4106 	if (v & F_ECC_CE_INT_CAUSE) {
4107 		u32 cnt = G_ECC_CECNT(t4_read_reg(adapter, cnt_addr));
4108 
4109 		t4_edc_err_read(adapter, idx);
4110 
4111 		t4_write_reg(adapter, cnt_addr, V_ECC_CECNT(M_ECC_CECNT));
4112 		CH_WARN_RATELIMIT(adapter,
4113 				  "%u %s correctable ECC data error%s\n",
4114 				  cnt, name[idx], cnt > 1 ? "s" : "");
4115 	}
4116 	if (v & F_ECC_UE_INT_CAUSE)
4117 		CH_ALERT(adapter,
4118 			 "%s uncorrectable ECC data error\n", name[idx]);
4119 
4120 	t4_write_reg(adapter, addr, v);
4121 	if (v & (F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE))
4122 		t4_fatal_err(adapter);
4123 }
4124 
4125 /*
4126  * MA interrupt handler.
4127  */
4128 static void ma_intr_handler(struct adapter *adapter)
4129 {
4130 	u32 v, status = t4_read_reg(adapter, A_MA_INT_CAUSE);
4131 
4132 	if (status & F_MEM_PERR_INT_CAUSE) {
4133 		CH_ALERT(adapter,
4134 			  "MA parity error, parity status %#x\n",
4135 			  t4_read_reg(adapter, A_MA_PARITY_ERROR_STATUS1));
4136 		if (is_t5(adapter))
4137 			CH_ALERT(adapter,
4138 				  "MA parity error, parity status %#x\n",
4139 				  t4_read_reg(adapter,
4140 					      A_MA_PARITY_ERROR_STATUS2));
4141 	}
4142 	if (status & F_MEM_WRAP_INT_CAUSE) {
4143 		v = t4_read_reg(adapter, A_MA_INT_WRAP_STATUS);
4144 		CH_ALERT(adapter, "MA address wrap-around error by "
4145 			  "client %u to address %#x\n",
4146 			  G_MEM_WRAP_CLIENT_NUM(v),
4147 			  G_MEM_WRAP_ADDRESS(v) << 4);
4148 	}
4149 	t4_write_reg(adapter, A_MA_INT_CAUSE, status);
4150 	t4_fatal_err(adapter);
4151 }
4152 
4153 /*
4154  * SMB interrupt handler.
4155  */
4156 static void smb_intr_handler(struct adapter *adap)
4157 {
4158 	static const struct intr_info smb_intr_info[] = {
4159 		{ F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
4160 		{ F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
4161 		{ F_SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
4162 		{ 0 }
4163 	};
4164 
4165 	if (t4_handle_intr_status(adap, A_SMB_INT_CAUSE, smb_intr_info))
4166 		t4_fatal_err(adap);
4167 }
4168 
4169 /*
4170  * NC-SI interrupt handler.
4171  */
4172 static void ncsi_intr_handler(struct adapter *adap)
4173 {
4174 	static const struct intr_info ncsi_intr_info[] = {
4175 		{ F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
4176 		{ F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
4177 		{ F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
4178 		{ F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
4179 		{ 0 }
4180 	};
4181 
4182 	if (t4_handle_intr_status(adap, A_NCSI_INT_CAUSE, ncsi_intr_info))
4183 		t4_fatal_err(adap);
4184 }
4185 
4186 /*
4187  * XGMAC interrupt handler.
4188  */
4189 static void xgmac_intr_handler(struct adapter *adap, int port)
4190 {
4191 	u32 v, int_cause_reg;
4192 
4193 	if (is_t4(adap))
4194 		int_cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
4195 	else
4196 		int_cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
4197 
4198 	v = t4_read_reg(adap, int_cause_reg);
4199 
4200 	v &= (F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR);
4201 	if (!v)
4202 		return;
4203 
4204 	if (v & F_TXFIFO_PRTY_ERR)
4205 		CH_ALERT(adap, "XGMAC %d Tx FIFO parity error\n",
4206 			  port);
4207 	if (v & F_RXFIFO_PRTY_ERR)
4208 		CH_ALERT(adap, "XGMAC %d Rx FIFO parity error\n",
4209 			  port);
4210 	t4_write_reg(adap, int_cause_reg, v);
4211 	t4_fatal_err(adap);
4212 }
4213 
4214 /*
4215  * PL interrupt handler.
4216  */
4217 static void pl_intr_handler(struct adapter *adap)
4218 {
4219 	static const struct intr_info pl_intr_info[] = {
4220 		{ F_FATALPERR, "Fatal parity error", -1, 1 },
4221 		{ F_PERRVFID, "PL VFID_MAP parity error", -1, 1 },
4222 		{ 0 }
4223 	};
4224 
4225 	static const struct intr_info t5_pl_intr_info[] = {
4226 		{ F_FATALPERR, "Fatal parity error", -1, 1 },
4227 		{ 0 }
4228 	};
4229 
4230 	if (t4_handle_intr_status(adap, A_PL_PL_INT_CAUSE,
4231 				  is_t4(adap) ?
4232 				  pl_intr_info : t5_pl_intr_info))
4233 		t4_fatal_err(adap);
4234 }
4235 
4236 #define PF_INTR_MASK (F_PFSW | F_PFCIM)
4237 
4238 /**
4239  *	t4_slow_intr_handler - control path interrupt handler
4240  *	@adapter: the adapter
4241  *
4242  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
4243  *	The designation 'slow' is because it involves register reads, while
4244  *	data interrupts typically don't involve any MMIOs.
4245  */
4246 int t4_slow_intr_handler(struct adapter *adapter)
4247 {
4248 	u32 cause = t4_read_reg(adapter, A_PL_INT_CAUSE);
4249 
4250 	if (!(cause & GLBL_INTR_MASK))
4251 		return 0;
4252 	if (cause & F_CIM)
4253 		cim_intr_handler(adapter);
4254 	if (cause & F_MPS)
4255 		mps_intr_handler(adapter);
4256 	if (cause & F_NCSI)
4257 		ncsi_intr_handler(adapter);
4258 	if (cause & F_PL)
4259 		pl_intr_handler(adapter);
4260 	if (cause & F_SMB)
4261 		smb_intr_handler(adapter);
4262 	if (cause & F_MAC0)
4263 		xgmac_intr_handler(adapter, 0);
4264 	if (cause & F_MAC1)
4265 		xgmac_intr_handler(adapter, 1);
4266 	if (cause & F_MAC2)
4267 		xgmac_intr_handler(adapter, 2);
4268 	if (cause & F_MAC3)
4269 		xgmac_intr_handler(adapter, 3);
4270 	if (cause & F_PCIE)
4271 		pcie_intr_handler(adapter);
4272 	if (cause & F_MC0)
4273 		mem_intr_handler(adapter, MEM_MC);
4274 	if (is_t5(adapter) && (cause & F_MC1))
4275 		mem_intr_handler(adapter, MEM_MC1);
4276 	if (cause & F_EDC0)
4277 		mem_intr_handler(adapter, MEM_EDC0);
4278 	if (cause & F_EDC1)
4279 		mem_intr_handler(adapter, MEM_EDC1);
4280 	if (cause & F_LE)
4281 		le_intr_handler(adapter);
4282 	if (cause & F_TP)
4283 		tp_intr_handler(adapter);
4284 	if (cause & F_MA)
4285 		ma_intr_handler(adapter);
4286 	if (cause & F_PM_TX)
4287 		pmtx_intr_handler(adapter);
4288 	if (cause & F_PM_RX)
4289 		pmrx_intr_handler(adapter);
4290 	if (cause & F_ULP_RX)
4291 		ulprx_intr_handler(adapter);
4292 	if (cause & F_CPL_SWITCH)
4293 		cplsw_intr_handler(adapter);
4294 	if (cause & F_SGE)
4295 		sge_intr_handler(adapter);
4296 	if (cause & F_ULP_TX)
4297 		ulptx_intr_handler(adapter);
4298 
4299 	/* Clear the interrupts just processed for which we are the master. */
4300 	t4_write_reg(adapter, A_PL_INT_CAUSE, cause & GLBL_INTR_MASK);
4301 	(void)t4_read_reg(adapter, A_PL_INT_CAUSE); /* flush */
4302 	return 1;
4303 }
4304 
4305 /**
4306  *	t4_intr_enable - enable interrupts
4307  *	@adapter: the adapter whose interrupts should be enabled
4308  *
4309  *	Enable PF-specific interrupts for the calling function and the top-level
4310  *	interrupt concentrator for global interrupts.  Interrupts are already
4311  *	enabled at each module,	here we just enable the roots of the interrupt
4312  *	hierarchies.
4313  *
4314  *	Note: this function should be called only when the driver manages
4315  *	non PF-specific interrupts from the various HW modules.  Only one PCI
4316  *	function at a time should be doing this.
4317  */
4318 void t4_intr_enable(struct adapter *adapter)
4319 {
4320 	u32 val = 0;
4321 	u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4322 	u32 pf = (chip_id(adapter) <= CHELSIO_T5
4323 		  ? G_SOURCEPF(whoami)
4324 		  : G_T6_SOURCEPF(whoami));
4325 
4326 	if (chip_id(adapter) <= CHELSIO_T5)
4327 		val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
4328 	else
4329 		val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN;
4330 	t4_write_reg(adapter, A_SGE_INT_ENABLE3, F_ERR_CPL_EXCEED_IQE_SIZE |
4331 		     F_ERR_INVALID_CIDX_INC | F_ERR_CPL_OPCODE_0 |
4332 		     F_ERR_DATA_CPL_ON_HIGH_QID1 | F_INGRESS_SIZE_ERR |
4333 		     F_ERR_DATA_CPL_ON_HIGH_QID0 | F_ERR_BAD_DB_PIDX3 |
4334 		     F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4335 		     F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO |
4336 		     F_DBFIFO_LP_INT | F_EGRESS_SIZE_ERR | val);
4337 	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
4338 	t4_set_reg_field(adapter, A_PL_INT_MAP0, 0, 1 << pf);
4339 }
4340 
4341 /**
4342  *	t4_intr_disable - disable interrupts
4343  *	@adapter: the adapter whose interrupts should be disabled
4344  *
4345  *	Disable interrupts.  We only disable the top-level interrupt
4346  *	concentrators.  The caller must be a PCI function managing global
4347  *	interrupts.
4348  */
4349 void t4_intr_disable(struct adapter *adapter)
4350 {
4351 	u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4352 	u32 pf = (chip_id(adapter) <= CHELSIO_T5
4353 		  ? G_SOURCEPF(whoami)
4354 		  : G_T6_SOURCEPF(whoami));
4355 
4356 	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
4357 	t4_set_reg_field(adapter, A_PL_INT_MAP0, 1 << pf, 0);
4358 }
4359 
4360 /**
4361  *	t4_intr_clear - clear all interrupts
4362  *	@adapter: the adapter whose interrupts should be cleared
4363  *
4364  *	Clears all interrupts.  The caller must be a PCI function managing
4365  *	global interrupts.
4366  */
4367 void t4_intr_clear(struct adapter *adapter)
4368 {
4369 	static const unsigned int cause_reg[] = {
4370 		A_SGE_INT_CAUSE1, A_SGE_INT_CAUSE2, A_SGE_INT_CAUSE3,
4371 		A_PCIE_NONFAT_ERR, A_PCIE_INT_CAUSE,
4372 		A_MA_INT_WRAP_STATUS, A_MA_PARITY_ERROR_STATUS1, A_MA_INT_CAUSE,
4373 		A_EDC_INT_CAUSE, EDC_REG(A_EDC_INT_CAUSE, 1),
4374 		A_CIM_HOST_INT_CAUSE, A_CIM_HOST_UPACC_INT_CAUSE,
4375 		MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
4376 		A_TP_INT_CAUSE,
4377 		A_ULP_RX_INT_CAUSE, A_ULP_TX_INT_CAUSE,
4378 		A_PM_RX_INT_CAUSE, A_PM_TX_INT_CAUSE,
4379 		A_MPS_RX_PERR_INT_CAUSE,
4380 		A_CPL_INTR_CAUSE,
4381 		MYPF_REG(A_PL_PF_INT_CAUSE),
4382 		A_PL_PL_INT_CAUSE,
4383 		A_LE_DB_INT_CAUSE,
4384 	};
4385 
4386 	unsigned int i;
4387 
4388 	for (i = 0; i < ARRAY_SIZE(cause_reg); ++i)
4389 		t4_write_reg(adapter, cause_reg[i], 0xffffffff);
4390 
4391 	t4_write_reg(adapter, is_t4(adapter) ? A_MC_INT_CAUSE :
4392 				A_MC_P_INT_CAUSE, 0xffffffff);
4393 
4394 	if (is_t4(adapter)) {
4395 		t4_write_reg(adapter, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
4396 				0xffffffff);
4397 		t4_write_reg(adapter, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
4398 				0xffffffff);
4399 	} else
4400 		t4_write_reg(adapter, A_MA_PARITY_ERROR_STATUS2, 0xffffffff);
4401 
4402 	t4_write_reg(adapter, A_PL_INT_CAUSE, GLBL_INTR_MASK);
4403 	(void) t4_read_reg(adapter, A_PL_INT_CAUSE);          /* flush */
4404 }
4405 
4406 /**
4407  *	hash_mac_addr - return the hash value of a MAC address
4408  *	@addr: the 48-bit Ethernet MAC address
4409  *
4410  *	Hashes a MAC address according to the hash function used by HW inexact
4411  *	(hash) address matching.
4412  */
4413 static int hash_mac_addr(const u8 *addr)
4414 {
4415 	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
4416 	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
4417 	a ^= b;
4418 	a ^= (a >> 12);
4419 	a ^= (a >> 6);
4420 	return a & 0x3f;
4421 }
4422 
4423 /**
4424  *	t4_config_rss_range - configure a portion of the RSS mapping table
4425  *	@adapter: the adapter
4426  *	@mbox: mbox to use for the FW command
4427  *	@viid: virtual interface whose RSS subtable is to be written
4428  *	@start: start entry in the table to write
4429  *	@n: how many table entries to write
4430  *	@rspq: values for the "response queue" (Ingress Queue) lookup table
4431  *	@nrspq: number of values in @rspq
4432  *
4433  *	Programs the selected part of the VI's RSS mapping table with the
4434  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
4435  *	until the full table range is populated.
4436  *
4437  *	The caller must ensure the values in @rspq are in the range allowed for
4438  *	@viid.
4439  */
4440 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4441 			int start, int n, const u16 *rspq, unsigned int nrspq)
4442 {
4443 	int ret;
4444 	const u16 *rsp = rspq;
4445 	const u16 *rsp_end = rspq + nrspq;
4446 	struct fw_rss_ind_tbl_cmd cmd;
4447 
4448 	memset(&cmd, 0, sizeof(cmd));
4449 	cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
4450 				     F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4451 				     V_FW_RSS_IND_TBL_CMD_VIID(viid));
4452 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
4453 
4454 	/*
4455 	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
4456 	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
4457 	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
4458 	 * reserved.
4459 	 */
4460 	while (n > 0) {
4461 		int nq = min(n, 32);
4462 		int nq_packed = 0;
4463 		__be32 *qp = &cmd.iq0_to_iq2;
4464 
4465 		/*
4466 		 * Set up the firmware RSS command header to send the next
4467 		 * "nq" Ingress Queue IDs to the firmware.
4468 		 */
4469 		cmd.niqid = cpu_to_be16(nq);
4470 		cmd.startidx = cpu_to_be16(start);
4471 
4472 		/*
4473 		 * "nq" more done for the start of the next loop.
4474 		 */
4475 		start += nq;
4476 		n -= nq;
4477 
4478 		/*
4479 		 * While there are still Ingress Queue IDs to stuff into the
4480 		 * current firmware RSS command, retrieve them from the
4481 		 * Ingress Queue ID array and insert them into the command.
4482 		 */
4483 		while (nq > 0) {
4484 			/*
4485 			 * Grab up to the next 3 Ingress Queue IDs (wrapping
4486 			 * around the Ingress Queue ID array if necessary) and
4487 			 * insert them into the firmware RSS command at the
4488 			 * current 3-tuple position within the commad.
4489 			 */
4490 			u16 qbuf[3];
4491 			u16 *qbp = qbuf;
4492 			int nqbuf = min(3, nq);
4493 
4494 			nq -= nqbuf;
4495 			qbuf[0] = qbuf[1] = qbuf[2] = 0;
4496 			while (nqbuf && nq_packed < 32) {
4497 				nqbuf--;
4498 				nq_packed++;
4499 				*qbp++ = *rsp++;
4500 				if (rsp >= rsp_end)
4501 					rsp = rspq;
4502 			}
4503 			*qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
4504 					    V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
4505 					    V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
4506 		}
4507 
4508 		/*
4509 		 * Send this portion of the RRS table update to the firmware;
4510 		 * bail out on any errors.
4511 		 */
4512 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4513 		if (ret)
4514 			return ret;
4515 	}
4516 	return 0;
4517 }
4518 
4519 /**
4520  *	t4_config_glbl_rss - configure the global RSS mode
4521  *	@adapter: the adapter
4522  *	@mbox: mbox to use for the FW command
4523  *	@mode: global RSS mode
4524  *	@flags: mode-specific flags
4525  *
4526  *	Sets the global RSS mode.
4527  */
4528 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
4529 		       unsigned int flags)
4530 {
4531 	struct fw_rss_glb_config_cmd c;
4532 
4533 	memset(&c, 0, sizeof(c));
4534 	c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
4535 				    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
4536 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4537 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
4538 		c.u.manual.mode_pkd =
4539 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
4540 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
4541 		c.u.basicvirtual.mode_pkd =
4542 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
4543 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
4544 	} else
4545 		return -EINVAL;
4546 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4547 }
4548 
4549 /**
4550  *	t4_config_vi_rss - configure per VI RSS settings
4551  *	@adapter: the adapter
4552  *	@mbox: mbox to use for the FW command
4553  *	@viid: the VI id
4554  *	@flags: RSS flags
4555  *	@defq: id of the default RSS queue for the VI.
4556  *
4557  *	Configures VI-specific RSS properties.
4558  */
4559 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
4560 		     unsigned int flags, unsigned int defq)
4561 {
4562 	struct fw_rss_vi_config_cmd c;
4563 
4564 	memset(&c, 0, sizeof(c));
4565 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
4566 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4567 				   V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
4568 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4569 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
4570 					V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
4571 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4572 }
4573 
4574 /* Read an RSS table row */
4575 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
4576 {
4577 	t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
4578 	return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
4579 				   5, 0, val);
4580 }
4581 
4582 /**
4583  *	t4_read_rss - read the contents of the RSS mapping table
4584  *	@adapter: the adapter
4585  *	@map: holds the contents of the RSS mapping table
4586  *
4587  *	Reads the contents of the RSS hash->queue mapping table.
4588  */
4589 int t4_read_rss(struct adapter *adapter, u16 *map)
4590 {
4591 	u32 val;
4592 	int i, ret;
4593 
4594 	for (i = 0; i < RSS_NENTRIES / 2; ++i) {
4595 		ret = rd_rss_row(adapter, i, &val);
4596 		if (ret)
4597 			return ret;
4598 		*map++ = G_LKPTBLQUEUE0(val);
4599 		*map++ = G_LKPTBLQUEUE1(val);
4600 	}
4601 	return 0;
4602 }
4603 
4604 /**
4605  *	t4_fw_tp_pio_rw - Access TP PIO through LDST
4606  *	@adap: the adapter
4607  *	@vals: where the indirect register values are stored/written
4608  *	@nregs: how many indirect registers to read/write
4609  *	@start_idx: index of first indirect register to read/write
4610  *	@rw: Read (1) or Write (0)
4611  *
4612  *	Access TP PIO registers through LDST
4613  */
4614 void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs,
4615 		     unsigned int start_index, unsigned int rw)
4616 {
4617 	int ret, i;
4618 	int cmd = FW_LDST_ADDRSPC_TP_PIO;
4619 	struct fw_ldst_cmd c;
4620 
4621 	for (i = 0 ; i < nregs; i++) {
4622 		memset(&c, 0, sizeof(c));
4623 		c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
4624 						F_FW_CMD_REQUEST |
4625 						(rw ? F_FW_CMD_READ :
4626 						     F_FW_CMD_WRITE) |
4627 						V_FW_LDST_CMD_ADDRSPACE(cmd));
4628 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4629 
4630 		c.u.addrval.addr = cpu_to_be32(start_index + i);
4631 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
4632 		ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4633 		if (ret == 0) {
4634 			if (rw)
4635 				vals[i] = be32_to_cpu(c.u.addrval.val);
4636 		}
4637 	}
4638 }
4639 
4640 /**
4641  *	t4_read_rss_key - read the global RSS key
4642  *	@adap: the adapter
4643  *	@key: 10-entry array holding the 320-bit RSS key
4644  *
4645  *	Reads the global 320-bit RSS key.
4646  */
4647 void t4_read_rss_key(struct adapter *adap, u32 *key)
4648 {
4649 	if (t4_use_ldst(adap))
4650 		t4_fw_tp_pio_rw(adap, key, 10, A_TP_RSS_SECRET_KEY0, 1);
4651 	else
4652 		t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, key, 10,
4653 				 A_TP_RSS_SECRET_KEY0);
4654 }
4655 
4656 /**
4657  *	t4_write_rss_key - program one of the RSS keys
4658  *	@adap: the adapter
4659  *	@key: 10-entry array holding the 320-bit RSS key
4660  *	@idx: which RSS key to write
4661  *
4662  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
4663  *	0..15 the corresponding entry in the RSS key table is written,
4664  *	otherwise the global RSS key is written.
4665  */
4666 void t4_write_rss_key(struct adapter *adap, u32 *key, int idx)
4667 {
4668 	u8 rss_key_addr_cnt = 16;
4669 	u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
4670 
4671 	/*
4672 	 * T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
4673 	 * allows access to key addresses 16-63 by using KeyWrAddrX
4674 	 * as index[5:4](upper 2) into key table
4675 	 */
4676 	if ((chip_id(adap) > CHELSIO_T5) &&
4677 	    (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
4678 		rss_key_addr_cnt = 32;
4679 
4680 	if (t4_use_ldst(adap))
4681 		t4_fw_tp_pio_rw(adap, key, 10, A_TP_RSS_SECRET_KEY0, 0);
4682 	else
4683 		t4_write_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, key, 10,
4684 				  A_TP_RSS_SECRET_KEY0);
4685 
4686 	if (idx >= 0 && idx < rss_key_addr_cnt) {
4687 		if (rss_key_addr_cnt > 16)
4688 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
4689 				     V_KEYWRADDRX(idx >> 4) |
4690 				     V_T6_VFWRADDR(idx) | F_KEYWREN);
4691 		else
4692 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
4693 				     V_KEYWRADDR(idx) | F_KEYWREN);
4694 	}
4695 }
4696 
4697 /**
4698  *	t4_read_rss_pf_config - read PF RSS Configuration Table
4699  *	@adapter: the adapter
4700  *	@index: the entry in the PF RSS table to read
4701  *	@valp: where to store the returned value
4702  *
4703  *	Reads the PF RSS Configuration Table at the specified index and returns
4704  *	the value found there.
4705  */
4706 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
4707 			   u32 *valp)
4708 {
4709 	if (t4_use_ldst(adapter))
4710 		t4_fw_tp_pio_rw(adapter, valp, 1,
4711 				A_TP_RSS_PF0_CONFIG + index, 1);
4712 	else
4713 		t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4714 				 valp, 1, A_TP_RSS_PF0_CONFIG + index);
4715 }
4716 
4717 /**
4718  *	t4_write_rss_pf_config - write PF RSS Configuration Table
4719  *	@adapter: the adapter
4720  *	@index: the entry in the VF RSS table to read
4721  *	@val: the value to store
4722  *
4723  *	Writes the PF RSS Configuration Table at the specified index with the
4724  *	specified value.
4725  */
4726 void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index,
4727 			    u32 val)
4728 {
4729 	if (t4_use_ldst(adapter))
4730 		t4_fw_tp_pio_rw(adapter, &val, 1,
4731 				A_TP_RSS_PF0_CONFIG + index, 0);
4732 	else
4733 		t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4734 				  &val, 1, A_TP_RSS_PF0_CONFIG + index);
4735 }
4736 
4737 /**
4738  *	t4_read_rss_vf_config - read VF RSS Configuration Table
4739  *	@adapter: the adapter
4740  *	@index: the entry in the VF RSS table to read
4741  *	@vfl: where to store the returned VFL
4742  *	@vfh: where to store the returned VFH
4743  *
4744  *	Reads the VF RSS Configuration Table at the specified index and returns
4745  *	the (VFL, VFH) values found there.
4746  */
4747 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
4748 			   u32 *vfl, u32 *vfh)
4749 {
4750 	u32 vrt, mask, data;
4751 
4752 	if (chip_id(adapter) <= CHELSIO_T5) {
4753 		mask = V_VFWRADDR(M_VFWRADDR);
4754 		data = V_VFWRADDR(index);
4755 	} else {
4756 		 mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
4757 		 data = V_T6_VFWRADDR(index);
4758 	}
4759 	/*
4760 	 * Request that the index'th VF Table values be read into VFL/VFH.
4761 	 */
4762 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
4763 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
4764 	vrt |= data | F_VFRDEN;
4765 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
4766 
4767 	/*
4768 	 * Grab the VFL/VFH values ...
4769 	 */
4770 	if (t4_use_ldst(adapter)) {
4771 		t4_fw_tp_pio_rw(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, 1);
4772 		t4_fw_tp_pio_rw(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, 1);
4773 	} else {
4774 		t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4775 				 vfl, 1, A_TP_RSS_VFL_CONFIG);
4776 		t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4777 				 vfh, 1, A_TP_RSS_VFH_CONFIG);
4778 	}
4779 }
4780 
4781 /**
4782  *	t4_write_rss_vf_config - write VF RSS Configuration Table
4783  *
4784  *	@adapter: the adapter
4785  *	@index: the entry in the VF RSS table to write
4786  *	@vfl: the VFL to store
4787  *	@vfh: the VFH to store
4788  *
4789  *	Writes the VF RSS Configuration Table at the specified index with the
4790  *	specified (VFL, VFH) values.
4791  */
4792 void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
4793 			    u32 vfl, u32 vfh)
4794 {
4795 	u32 vrt, mask, data;
4796 
4797 	if (chip_id(adapter) <= CHELSIO_T5) {
4798 		mask = V_VFWRADDR(M_VFWRADDR);
4799 		data = V_VFWRADDR(index);
4800 	} else {
4801 		mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
4802 		data = V_T6_VFWRADDR(index);
4803 	}
4804 
4805 	/*
4806 	 * Load up VFL/VFH with the values to be written ...
4807 	 */
4808 	if (t4_use_ldst(adapter)) {
4809 		t4_fw_tp_pio_rw(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, 0);
4810 		t4_fw_tp_pio_rw(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, 0);
4811 	} else {
4812 		t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4813 				  &vfl, 1, A_TP_RSS_VFL_CONFIG);
4814 		t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4815 				  &vfh, 1, A_TP_RSS_VFH_CONFIG);
4816 	}
4817 
4818 	/*
4819 	 * Write the VFL/VFH into the VF Table at index'th location.
4820 	 */
4821 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
4822 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
4823 	vrt |= data | F_VFRDEN;
4824 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
4825 }
4826 
4827 /**
4828  *	t4_read_rss_pf_map - read PF RSS Map
4829  *	@adapter: the adapter
4830  *
4831  *	Reads the PF RSS Map register and returns its value.
4832  */
4833 u32 t4_read_rss_pf_map(struct adapter *adapter)
4834 {
4835 	u32 pfmap;
4836 
4837 	if (t4_use_ldst(adapter))
4838 		t4_fw_tp_pio_rw(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, 1);
4839 	else
4840 		t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4841 				 &pfmap, 1, A_TP_RSS_PF_MAP);
4842 	return pfmap;
4843 }
4844 
4845 /**
4846  *	t4_write_rss_pf_map - write PF RSS Map
4847  *	@adapter: the adapter
4848  *	@pfmap: PF RSS Map value
4849  *
4850  *	Writes the specified value to the PF RSS Map register.
4851  */
4852 void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap)
4853 {
4854 	if (t4_use_ldst(adapter))
4855 		t4_fw_tp_pio_rw(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, 0);
4856 	else
4857 		t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4858 				  &pfmap, 1, A_TP_RSS_PF_MAP);
4859 }
4860 
4861 /**
4862  *	t4_read_rss_pf_mask - read PF RSS Mask
4863  *	@adapter: the adapter
4864  *
4865  *	Reads the PF RSS Mask register and returns its value.
4866  */
4867 u32 t4_read_rss_pf_mask(struct adapter *adapter)
4868 {
4869 	u32 pfmask;
4870 
4871 	if (t4_use_ldst(adapter))
4872 		t4_fw_tp_pio_rw(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, 1);
4873 	else
4874 		t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4875 				 &pfmask, 1, A_TP_RSS_PF_MSK);
4876 	return pfmask;
4877 }
4878 
4879 /**
4880  *	t4_write_rss_pf_mask - write PF RSS Mask
4881  *	@adapter: the adapter
4882  *	@pfmask: PF RSS Mask value
4883  *
4884  *	Writes the specified value to the PF RSS Mask register.
4885  */
4886 void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask)
4887 {
4888 	if (t4_use_ldst(adapter))
4889 		t4_fw_tp_pio_rw(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, 0);
4890 	else
4891 		t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4892 				  &pfmask, 1, A_TP_RSS_PF_MSK);
4893 }
4894 
4895 /**
4896  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
4897  *	@adap: the adapter
4898  *	@v4: holds the TCP/IP counter values
4899  *	@v6: holds the TCP/IPv6 counter values
4900  *
4901  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
4902  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
4903  */
4904 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
4905 			 struct tp_tcp_stats *v6)
4906 {
4907 	u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
4908 
4909 #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
4910 #define STAT(x)     val[STAT_IDX(x)]
4911 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
4912 
4913 	if (v4) {
4914 		t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val,
4915 				 ARRAY_SIZE(val), A_TP_MIB_TCP_OUT_RST);
4916 		v4->tcp_out_rsts = STAT(OUT_RST);
4917 		v4->tcp_in_segs  = STAT64(IN_SEG);
4918 		v4->tcp_out_segs = STAT64(OUT_SEG);
4919 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
4920 	}
4921 	if (v6) {
4922 		t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val,
4923 				 ARRAY_SIZE(val), A_TP_MIB_TCP_V6OUT_RST);
4924 		v6->tcp_out_rsts = STAT(OUT_RST);
4925 		v6->tcp_in_segs  = STAT64(IN_SEG);
4926 		v6->tcp_out_segs = STAT64(OUT_SEG);
4927 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
4928 	}
4929 #undef STAT64
4930 #undef STAT
4931 #undef STAT_IDX
4932 }
4933 
4934 /**
4935  *	t4_tp_get_err_stats - read TP's error MIB counters
4936  *	@adap: the adapter
4937  *	@st: holds the counter values
4938  *
4939  *	Returns the values of TP's error counters.
4940  */
4941 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
4942 {
4943 	int nchan = adap->chip_params->nchan;
4944 
4945 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
4946 			st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0);
4947 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
4948 			st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0);
4949 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
4950 			st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0);
4951 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
4952 			st->tnl_cong_drops, nchan, A_TP_MIB_TNL_CNG_DROP_0);
4953 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
4954 			st->ofld_chan_drops, nchan, A_TP_MIB_OFD_CHN_DROP_0);
4955 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
4956 			st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0);
4957 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
4958 			st->ofld_vlan_drops, nchan, A_TP_MIB_OFD_VLN_DROP_0);
4959 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
4960 			st->tcp6_in_errs, nchan, A_TP_MIB_TCP_V6IN_ERR_0);
4961 
4962 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
4963 			 &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP);
4964 }
4965 
4966 /**
4967  *	t4_tp_get_proxy_stats - read TP's proxy MIB counters
4968  *	@adap: the adapter
4969  *	@st: holds the counter values
4970  *
4971  *	Returns the values of TP's proxy counters.
4972  */
4973 void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st)
4974 {
4975 	int nchan = adap->chip_params->nchan;
4976 
4977 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->proxy,
4978 			 nchan, A_TP_MIB_TNL_LPBK_0);
4979 }
4980 
4981 /**
4982  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
4983  *	@adap: the adapter
4984  *	@st: holds the counter values
4985  *
4986  *	Returns the values of TP's CPL counters.
4987  */
4988 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st)
4989 {
4990 	int nchan = adap->chip_params->nchan;
4991 
4992 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->req,
4993 			 nchan, A_TP_MIB_CPL_IN_REQ_0);
4994 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->rsp,
4995 			 nchan, A_TP_MIB_CPL_OUT_RSP_0);
4996 }
4997 
4998 /**
4999  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5000  *	@adap: the adapter
5001  *	@st: holds the counter values
5002  *
5003  *	Returns the values of TP's RDMA counters.
5004  */
5005 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st)
5006 {
5007 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->rqe_dfr_pkt,
5008 			 2, A_TP_MIB_RQE_DFR_PKT);
5009 }
5010 
5011 /**
5012  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5013  *	@adap: the adapter
5014  *	@idx: the port index
5015  *	@st: holds the counter values
5016  *
5017  *	Returns the values of TP's FCoE counters for the selected port.
5018  */
5019 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5020 		       struct tp_fcoe_stats *st)
5021 {
5022 	u32 val[2];
5023 
5024 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->frames_ddp,
5025 			 1, A_TP_MIB_FCOE_DDP_0 + idx);
5026 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->frames_drop,
5027 			 1, A_TP_MIB_FCOE_DROP_0 + idx);
5028 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val,
5029 			 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx);
5030 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
5031 }
5032 
5033 /**
5034  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5035  *	@adap: the adapter
5036  *	@st: holds the counter values
5037  *
5038  *	Returns the values of TP's counters for non-TCP directly-placed packets.
5039  */
5040 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st)
5041 {
5042 	u32 val[4];
5043 
5044 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val, 4,
5045 			 A_TP_MIB_USM_PKTS);
5046 	st->frames = val[0];
5047 	st->drops = val[1];
5048 	st->octets = ((u64)val[2] << 32) | val[3];
5049 }
5050 
5051 /**
5052  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
5053  *	@adap: the adapter
5054  *	@mtus: where to store the MTU values
5055  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
5056  *
5057  *	Reads the HW path MTU table.
5058  */
5059 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5060 {
5061 	u32 v;
5062 	int i;
5063 
5064 	for (i = 0; i < NMTUS; ++i) {
5065 		t4_write_reg(adap, A_TP_MTU_TABLE,
5066 			     V_MTUINDEX(0xff) | V_MTUVALUE(i));
5067 		v = t4_read_reg(adap, A_TP_MTU_TABLE);
5068 		mtus[i] = G_MTUVALUE(v);
5069 		if (mtu_log)
5070 			mtu_log[i] = G_MTUWIDTH(v);
5071 	}
5072 }
5073 
5074 /**
5075  *	t4_read_cong_tbl - reads the congestion control table
5076  *	@adap: the adapter
5077  *	@incr: where to store the alpha values
5078  *
5079  *	Reads the additive increments programmed into the HW congestion
5080  *	control table.
5081  */
5082 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5083 {
5084 	unsigned int mtu, w;
5085 
5086 	for (mtu = 0; mtu < NMTUS; ++mtu)
5087 		for (w = 0; w < NCCTRL_WIN; ++w) {
5088 			t4_write_reg(adap, A_TP_CCTRL_TABLE,
5089 				     V_ROWINDEX(0xffff) | (mtu << 5) | w);
5090 			incr[mtu][w] = (u16)t4_read_reg(adap,
5091 						A_TP_CCTRL_TABLE) & 0x1fff;
5092 		}
5093 }
5094 
5095 /**
5096  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5097  *	@adap: the adapter
5098  *	@addr: the indirect TP register address
5099  *	@mask: specifies the field within the register to modify
5100  *	@val: new value for the field
5101  *
5102  *	Sets a field of an indirect TP register to the given value.
5103  */
5104 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5105 			    unsigned int mask, unsigned int val)
5106 {
5107 	t4_write_reg(adap, A_TP_PIO_ADDR, addr);
5108 	val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
5109 	t4_write_reg(adap, A_TP_PIO_DATA, val);
5110 }
5111 
5112 /**
5113  *	init_cong_ctrl - initialize congestion control parameters
5114  *	@a: the alpha values for congestion control
5115  *	@b: the beta values for congestion control
5116  *
5117  *	Initialize the congestion control parameters.
5118  */
5119 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5120 {
5121 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5122 	a[9] = 2;
5123 	a[10] = 3;
5124 	a[11] = 4;
5125 	a[12] = 5;
5126 	a[13] = 6;
5127 	a[14] = 7;
5128 	a[15] = 8;
5129 	a[16] = 9;
5130 	a[17] = 10;
5131 	a[18] = 14;
5132 	a[19] = 17;
5133 	a[20] = 21;
5134 	a[21] = 25;
5135 	a[22] = 30;
5136 	a[23] = 35;
5137 	a[24] = 45;
5138 	a[25] = 60;
5139 	a[26] = 80;
5140 	a[27] = 100;
5141 	a[28] = 200;
5142 	a[29] = 300;
5143 	a[30] = 400;
5144 	a[31] = 500;
5145 
5146 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5147 	b[9] = b[10] = 1;
5148 	b[11] = b[12] = 2;
5149 	b[13] = b[14] = b[15] = b[16] = 3;
5150 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5151 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5152 	b[28] = b[29] = 6;
5153 	b[30] = b[31] = 7;
5154 }
5155 
5156 /* The minimum additive increment value for the congestion control table */
5157 #define CC_MIN_INCR 2U
5158 
5159 /**
5160  *	t4_load_mtus - write the MTU and congestion control HW tables
5161  *	@adap: the adapter
5162  *	@mtus: the values for the MTU table
5163  *	@alpha: the values for the congestion control alpha parameter
5164  *	@beta: the values for the congestion control beta parameter
5165  *
5166  *	Write the HW MTU table with the supplied MTUs and the high-speed
5167  *	congestion control table with the supplied alpha, beta, and MTUs.
5168  *	We write the two tables together because the additive increments
5169  *	depend on the MTUs.
5170  */
5171 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5172 		  const unsigned short *alpha, const unsigned short *beta)
5173 {
5174 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5175 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5176 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5177 		28672, 40960, 57344, 81920, 114688, 163840, 229376
5178 	};
5179 
5180 	unsigned int i, w;
5181 
5182 	for (i = 0; i < NMTUS; ++i) {
5183 		unsigned int mtu = mtus[i];
5184 		unsigned int log2 = fls(mtu);
5185 
5186 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5187 			log2--;
5188 		t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
5189 			     V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
5190 
5191 		for (w = 0; w < NCCTRL_WIN; ++w) {
5192 			unsigned int inc;
5193 
5194 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5195 				  CC_MIN_INCR);
5196 
5197 			t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
5198 				     (w << 16) | (beta[w] << 13) | inc);
5199 		}
5200 	}
5201 }
5202 
5203 /**
5204  *	t4_set_pace_tbl - set the pace table
5205  *	@adap: the adapter
5206  *	@pace_vals: the pace values in microseconds
5207  *	@start: index of the first entry in the HW pace table to set
5208  *	@n: how many entries to set
5209  *
5210  *	Sets (a subset of the) HW pace table.
5211  */
5212 int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
5213 		     unsigned int start, unsigned int n)
5214 {
5215 	unsigned int vals[NTX_SCHED], i;
5216 	unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
5217 
5218 	if (n > NTX_SCHED)
5219 	    return -ERANGE;
5220 
5221 	/* convert values from us to dack ticks, rounding to closest value */
5222 	for (i = 0; i < n; i++, pace_vals++) {
5223 		vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
5224 		if (vals[i] > 0x7ff)
5225 			return -ERANGE;
5226 		if (*pace_vals && vals[i] == 0)
5227 			return -ERANGE;
5228 	}
5229 	for (i = 0; i < n; i++, start++)
5230 		t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
5231 	return 0;
5232 }
5233 
5234 /**
5235  *	t4_set_sched_bps - set the bit rate for a HW traffic scheduler
5236  *	@adap: the adapter
5237  *	@kbps: target rate in Kbps
5238  *	@sched: the scheduler index
5239  *
5240  *	Configure a Tx HW scheduler for the target rate.
5241  */
5242 int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
5243 {
5244 	unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
5245 	unsigned int clk = adap->params.vpd.cclk * 1000;
5246 	unsigned int selected_cpt = 0, selected_bpt = 0;
5247 
5248 	if (kbps > 0) {
5249 		kbps *= 125;     /* -> bytes */
5250 		for (cpt = 1; cpt <= 255; cpt++) {
5251 			tps = clk / cpt;
5252 			bpt = (kbps + tps / 2) / tps;
5253 			if (bpt > 0 && bpt <= 255) {
5254 				v = bpt * tps;
5255 				delta = v >= kbps ? v - kbps : kbps - v;
5256 				if (delta < mindelta) {
5257 					mindelta = delta;
5258 					selected_cpt = cpt;
5259 					selected_bpt = bpt;
5260 				}
5261 			} else if (selected_cpt)
5262 				break;
5263 		}
5264 		if (!selected_cpt)
5265 			return -EINVAL;
5266 	}
5267 	t4_write_reg(adap, A_TP_TM_PIO_ADDR,
5268 		     A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
5269 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
5270 	if (sched & 1)
5271 		v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
5272 	else
5273 		v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
5274 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
5275 	return 0;
5276 }
5277 
5278 /**
5279  *	t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
5280  *	@adap: the adapter
5281  *	@sched: the scheduler index
5282  *	@ipg: the interpacket delay in tenths of nanoseconds
5283  *
5284  *	Set the interpacket delay for a HW packet rate scheduler.
5285  */
5286 int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
5287 {
5288 	unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
5289 
5290 	/* convert ipg to nearest number of core clocks */
5291 	ipg *= core_ticks_per_usec(adap);
5292 	ipg = (ipg + 5000) / 10000;
5293 	if (ipg > M_TXTIMERSEPQ0)
5294 		return -EINVAL;
5295 
5296 	t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
5297 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
5298 	if (sched & 1)
5299 		v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
5300 	else
5301 		v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
5302 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
5303 	t4_read_reg(adap, A_TP_TM_PIO_DATA);
5304 	return 0;
5305 }
5306 
5307 /*
5308  * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5309  * clocks.  The formula is
5310  *
5311  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5312  *
5313  * which is equivalent to
5314  *
5315  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5316  */
5317 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5318 {
5319 	u64 v = bytes256 * adap->params.vpd.cclk;
5320 
5321 	return v * 62 + v / 2;
5322 }
5323 
5324 /**
5325  *	t4_get_chan_txrate - get the current per channel Tx rates
5326  *	@adap: the adapter
5327  *	@nic_rate: rates for NIC traffic
5328  *	@ofld_rate: rates for offloaded traffic
5329  *
5330  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5331  *	for each channel.
5332  */
5333 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5334 {
5335 	u32 v;
5336 
5337 	v = t4_read_reg(adap, A_TP_TX_TRATE);
5338 	nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
5339 	nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
5340 	if (adap->chip_params->nchan > 2) {
5341 		nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
5342 		nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
5343 	}
5344 
5345 	v = t4_read_reg(adap, A_TP_TX_ORATE);
5346 	ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
5347 	ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
5348 	if (adap->chip_params->nchan > 2) {
5349 		ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
5350 		ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
5351 	}
5352 }
5353 
5354 /**
5355  *	t4_set_trace_filter - configure one of the tracing filters
5356  *	@adap: the adapter
5357  *	@tp: the desired trace filter parameters
5358  *	@idx: which filter to configure
5359  *	@enable: whether to enable or disable the filter
5360  *
5361  *	Configures one of the tracing filters available in HW.  If @tp is %NULL
5362  *	it indicates that the filter is already written in the register and it
5363  *	just needs to be enabled or disabled.
5364  */
5365 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5366     int idx, int enable)
5367 {
5368 	int i, ofst = idx * 4;
5369 	u32 data_reg, mask_reg, cfg;
5370 	u32 multitrc = F_TRCMULTIFILTER;
5371 	u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
5372 
5373 	if (idx < 0 || idx >= NTRACE)
5374 		return -EINVAL;
5375 
5376 	if (tp == NULL || !enable) {
5377 		t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en,
5378 		    enable ? en : 0);
5379 		return 0;
5380 	}
5381 
5382 	/*
5383 	 * TODO - After T4 data book is updated, specify the exact
5384 	 * section below.
5385 	 *
5386 	 * See T4 data book - MPS section for a complete description
5387 	 * of the below if..else handling of A_MPS_TRC_CFG register
5388 	 * value.
5389 	 */
5390 	cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
5391 	if (cfg & F_TRCMULTIFILTER) {
5392 		/*
5393 		 * If multiple tracers are enabled, then maximum
5394 		 * capture size is 2.5KB (FIFO size of a single channel)
5395 		 * minus 2 flits for CPL_TRACE_PKT header.
5396 		 */
5397 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5398 			return -EINVAL;
5399 	} else {
5400 		/*
5401 		 * If multiple tracers are disabled, to avoid deadlocks
5402 		 * maximum packet capture size of 9600 bytes is recommended.
5403 		 * Also in this mode, only trace0 can be enabled and running.
5404 		 */
5405 		multitrc = 0;
5406 		if (tp->snap_len > 9600 || idx)
5407 			return -EINVAL;
5408 	}
5409 
5410 	if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
5411 	    tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
5412 	    tp->min_len > M_TFMINPKTSIZE)
5413 		return -EINVAL;
5414 
5415 	/* stop the tracer we'll be changing */
5416 	t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0);
5417 
5418 	idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
5419 	data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
5420 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
5421 
5422 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5423 		t4_write_reg(adap, data_reg, tp->data[i]);
5424 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5425 	}
5426 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
5427 		     V_TFCAPTUREMAX(tp->snap_len) |
5428 		     V_TFMINPKTSIZE(tp->min_len));
5429 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
5430 		     V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en |
5431 		     (is_t4(adap) ?
5432 		     V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
5433 		     V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
5434 
5435 	return 0;
5436 }
5437 
5438 /**
5439  *	t4_get_trace_filter - query one of the tracing filters
5440  *	@adap: the adapter
5441  *	@tp: the current trace filter parameters
5442  *	@idx: which trace filter to query
5443  *	@enabled: non-zero if the filter is enabled
5444  *
5445  *	Returns the current settings of one of the HW tracing filters.
5446  */
5447 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5448 			 int *enabled)
5449 {
5450 	u32 ctla, ctlb;
5451 	int i, ofst = idx * 4;
5452 	u32 data_reg, mask_reg;
5453 
5454 	ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
5455 	ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
5456 
5457 	if (is_t4(adap)) {
5458 		*enabled = !!(ctla & F_TFEN);
5459 		tp->port =  G_TFPORT(ctla);
5460 		tp->invert = !!(ctla & F_TFINVERTMATCH);
5461 	} else {
5462 		*enabled = !!(ctla & F_T5_TFEN);
5463 		tp->port = G_T5_TFPORT(ctla);
5464 		tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
5465 	}
5466 	tp->snap_len = G_TFCAPTUREMAX(ctlb);
5467 	tp->min_len = G_TFMINPKTSIZE(ctlb);
5468 	tp->skip_ofst = G_TFOFFSET(ctla);
5469 	tp->skip_len = G_TFLENGTH(ctla);
5470 
5471 	ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
5472 	data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
5473 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
5474 
5475 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5476 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5477 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5478 	}
5479 }
5480 
5481 /**
5482  *	t4_pmtx_get_stats - returns the HW stats from PMTX
5483  *	@adap: the adapter
5484  *	@cnt: where to store the count statistics
5485  *	@cycles: where to store the cycle statistics
5486  *
5487  *	Returns performance statistics from PMTX.
5488  */
5489 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5490 {
5491 	int i;
5492 	u32 data[2];
5493 
5494 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
5495 		t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
5496 		cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
5497 		if (is_t4(adap))
5498 			cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
5499 		else {
5500 			t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
5501 					 A_PM_TX_DBG_DATA, data, 2,
5502 					 A_PM_TX_DBG_STAT_MSB);
5503 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5504 		}
5505 	}
5506 }
5507 
5508 /**
5509  *	t4_pmrx_get_stats - returns the HW stats from PMRX
5510  *	@adap: the adapter
5511  *	@cnt: where to store the count statistics
5512  *	@cycles: where to store the cycle statistics
5513  *
5514  *	Returns performance statistics from PMRX.
5515  */
5516 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5517 {
5518 	int i;
5519 	u32 data[2];
5520 
5521 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
5522 		t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
5523 		cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
5524 		if (is_t4(adap)) {
5525 			cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
5526 		} else {
5527 			t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
5528 					 A_PM_RX_DBG_DATA, data, 2,
5529 					 A_PM_RX_DBG_STAT_MSB);
5530 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5531 		}
5532 	}
5533 }
5534 
5535 /**
5536  *	t4_get_mps_bg_map - return the buffer groups associated with a port
5537  *	@adap: the adapter
5538  *	@idx: the port index
5539  *
5540  *	Returns a bitmap indicating which MPS buffer groups are associated
5541  *	with the given port.  Bit i is set if buffer group i is used by the
5542  *	port.
5543  */
5544 static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
5545 {
5546 	u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
5547 
5548 	if (n == 0)
5549 		return idx == 0 ? 0xf : 0;
5550 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
5551 		return idx < 2 ? (3 << (2 * idx)) : 0;
5552 	return 1 << idx;
5553 }
5554 
5555 /**
5556  *      t4_get_port_type_description - return Port Type string description
5557  *      @port_type: firmware Port Type enumeration
5558  */
5559 const char *t4_get_port_type_description(enum fw_port_type port_type)
5560 {
5561 	static const char *const port_type_description[] = {
5562 		"Fiber_XFI",
5563 		"Fiber_XAUI",
5564 		"BT_SGMII",
5565 		"BT_XFI",
5566 		"BT_XAUI",
5567 		"KX4",
5568 		"CX4",
5569 		"KX",
5570 		"KR",
5571 		"SFP",
5572 		"BP_AP",
5573 		"BP4_AP",
5574 		"QSFP_10G",
5575 		"QSA",
5576 		"QSFP",
5577 		"BP40_BA",
5578 	};
5579 
5580 	if (port_type < ARRAY_SIZE(port_type_description))
5581 		return port_type_description[port_type];
5582 	return "UNKNOWN";
5583 }
5584 
5585 /**
5586  *      t4_get_port_stats_offset - collect port stats relative to a previous
5587  *				   snapshot
5588  *      @adap: The adapter
5589  *      @idx: The port
5590  *      @stats: Current stats to fill
5591  *      @offset: Previous stats snapshot
5592  */
5593 void t4_get_port_stats_offset(struct adapter *adap, int idx,
5594 		struct port_stats *stats,
5595 		struct port_stats *offset)
5596 {
5597 	u64 *s, *o;
5598 	int i;
5599 
5600 	t4_get_port_stats(adap, idx, stats);
5601 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
5602 			i < (sizeof(struct port_stats)/sizeof(u64)) ;
5603 			i++, s++, o++)
5604 		*s -= *o;
5605 }
5606 
5607 /**
5608  *	t4_get_port_stats - collect port statistics
5609  *	@adap: the adapter
5610  *	@idx: the port index
5611  *	@p: the stats structure to fill
5612  *
5613  *	Collect statistics related to the given port from HW.
5614  */
5615 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
5616 {
5617 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
5618 	u32 stat_ctl;
5619 
5620 #define GET_STAT(name) \
5621 	t4_read_reg64(adap, \
5622 	(is_t4(adap) ? PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) : \
5623 	T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
5624 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
5625 
5626 	stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
5627 
5628 	p->tx_pause		= GET_STAT(TX_PORT_PAUSE);
5629 	p->tx_octets		= GET_STAT(TX_PORT_BYTES);
5630 	p->tx_frames		= GET_STAT(TX_PORT_FRAMES);
5631 	p->tx_bcast_frames	= GET_STAT(TX_PORT_BCAST);
5632 	p->tx_mcast_frames	= GET_STAT(TX_PORT_MCAST);
5633 	p->tx_ucast_frames	= GET_STAT(TX_PORT_UCAST);
5634 	p->tx_error_frames	= GET_STAT(TX_PORT_ERROR);
5635 	p->tx_frames_64		= GET_STAT(TX_PORT_64B);
5636 	p->tx_frames_65_127	= GET_STAT(TX_PORT_65B_127B);
5637 	p->tx_frames_128_255	= GET_STAT(TX_PORT_128B_255B);
5638 	p->tx_frames_256_511	= GET_STAT(TX_PORT_256B_511B);
5639 	p->tx_frames_512_1023	= GET_STAT(TX_PORT_512B_1023B);
5640 	p->tx_frames_1024_1518	= GET_STAT(TX_PORT_1024B_1518B);
5641 	p->tx_frames_1519_max	= GET_STAT(TX_PORT_1519B_MAX);
5642 	p->tx_drop		= GET_STAT(TX_PORT_DROP);
5643 	p->tx_ppp0		= GET_STAT(TX_PORT_PPP0);
5644 	p->tx_ppp1		= GET_STAT(TX_PORT_PPP1);
5645 	p->tx_ppp2		= GET_STAT(TX_PORT_PPP2);
5646 	p->tx_ppp3		= GET_STAT(TX_PORT_PPP3);
5647 	p->tx_ppp4		= GET_STAT(TX_PORT_PPP4);
5648 	p->tx_ppp5		= GET_STAT(TX_PORT_PPP5);
5649 	p->tx_ppp6		= GET_STAT(TX_PORT_PPP6);
5650 	p->tx_ppp7		= GET_STAT(TX_PORT_PPP7);
5651 
5652 	if (stat_ctl & F_COUNTPAUSESTATTX) {
5653 		p->tx_frames -= p->tx_pause;
5654 		p->tx_octets -= p->tx_pause * 64;
5655 		p->tx_mcast_frames -= p->tx_pause;
5656 	}
5657 
5658 	p->rx_pause		= GET_STAT(RX_PORT_PAUSE);
5659 	p->rx_octets		= GET_STAT(RX_PORT_BYTES);
5660 	p->rx_frames		= GET_STAT(RX_PORT_FRAMES);
5661 	p->rx_bcast_frames	= GET_STAT(RX_PORT_BCAST);
5662 	p->rx_mcast_frames	= GET_STAT(RX_PORT_MCAST);
5663 	p->rx_ucast_frames	= GET_STAT(RX_PORT_UCAST);
5664 	p->rx_too_long		= GET_STAT(RX_PORT_MTU_ERROR);
5665 	p->rx_jabber		= GET_STAT(RX_PORT_MTU_CRC_ERROR);
5666 	p->rx_fcs_err		= GET_STAT(RX_PORT_CRC_ERROR);
5667 	p->rx_len_err		= GET_STAT(RX_PORT_LEN_ERROR);
5668 	p->rx_symbol_err	= GET_STAT(RX_PORT_SYM_ERROR);
5669 	p->rx_runt		= GET_STAT(RX_PORT_LESS_64B);
5670 	p->rx_frames_64		= GET_STAT(RX_PORT_64B);
5671 	p->rx_frames_65_127	= GET_STAT(RX_PORT_65B_127B);
5672 	p->rx_frames_128_255	= GET_STAT(RX_PORT_128B_255B);
5673 	p->rx_frames_256_511	= GET_STAT(RX_PORT_256B_511B);
5674 	p->rx_frames_512_1023	= GET_STAT(RX_PORT_512B_1023B);
5675 	p->rx_frames_1024_1518	= GET_STAT(RX_PORT_1024B_1518B);
5676 	p->rx_frames_1519_max	= GET_STAT(RX_PORT_1519B_MAX);
5677 	p->rx_ppp0		= GET_STAT(RX_PORT_PPP0);
5678 	p->rx_ppp1		= GET_STAT(RX_PORT_PPP1);
5679 	p->rx_ppp2		= GET_STAT(RX_PORT_PPP2);
5680 	p->rx_ppp3		= GET_STAT(RX_PORT_PPP3);
5681 	p->rx_ppp4		= GET_STAT(RX_PORT_PPP4);
5682 	p->rx_ppp5		= GET_STAT(RX_PORT_PPP5);
5683 	p->rx_ppp6		= GET_STAT(RX_PORT_PPP6);
5684 	p->rx_ppp7		= GET_STAT(RX_PORT_PPP7);
5685 
5686 	if (stat_ctl & F_COUNTPAUSESTATRX) {
5687 		p->rx_frames -= p->rx_pause;
5688 		p->rx_octets -= p->rx_pause * 64;
5689 		p->rx_mcast_frames -= p->rx_pause;
5690 	}
5691 
5692 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
5693 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
5694 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
5695 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
5696 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
5697 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
5698 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
5699 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
5700 
5701 #undef GET_STAT
5702 #undef GET_STAT_COM
5703 }
5704 
5705 /**
5706  *	t4_get_lb_stats - collect loopback port statistics
5707  *	@adap: the adapter
5708  *	@idx: the loopback port index
5709  *	@p: the stats structure to fill
5710  *
5711  *	Return HW statistics for the given loopback port.
5712  */
5713 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
5714 {
5715 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
5716 
5717 #define GET_STAT(name) \
5718 	t4_read_reg64(adap, \
5719 	(is_t4(adap) ? \
5720 	PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \
5721 	T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L)))
5722 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
5723 
5724 	p->octets	= GET_STAT(BYTES);
5725 	p->frames	= GET_STAT(FRAMES);
5726 	p->bcast_frames	= GET_STAT(BCAST);
5727 	p->mcast_frames	= GET_STAT(MCAST);
5728 	p->ucast_frames	= GET_STAT(UCAST);
5729 	p->error_frames	= GET_STAT(ERROR);
5730 
5731 	p->frames_64		= GET_STAT(64B);
5732 	p->frames_65_127	= GET_STAT(65B_127B);
5733 	p->frames_128_255	= GET_STAT(128B_255B);
5734 	p->frames_256_511	= GET_STAT(256B_511B);
5735 	p->frames_512_1023	= GET_STAT(512B_1023B);
5736 	p->frames_1024_1518	= GET_STAT(1024B_1518B);
5737 	p->frames_1519_max	= GET_STAT(1519B_MAX);
5738 	p->drop			= GET_STAT(DROP_FRAMES);
5739 
5740 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
5741 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
5742 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
5743 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
5744 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
5745 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
5746 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
5747 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
5748 
5749 #undef GET_STAT
5750 #undef GET_STAT_COM
5751 }
5752 
5753 /**
5754  *	t4_wol_magic_enable - enable/disable magic packet WoL
5755  *	@adap: the adapter
5756  *	@port: the physical port index
5757  *	@addr: MAC address expected in magic packets, %NULL to disable
5758  *
5759  *	Enables/disables magic packet wake-on-LAN for the selected port.
5760  */
5761 void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
5762 			 const u8 *addr)
5763 {
5764 	u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
5765 
5766 	if (is_t4(adap)) {
5767 		mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
5768 		mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
5769 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
5770 	} else {
5771 		mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
5772 		mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
5773 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
5774 	}
5775 
5776 	if (addr) {
5777 		t4_write_reg(adap, mag_id_reg_l,
5778 			     (addr[2] << 24) | (addr[3] << 16) |
5779 			     (addr[4] << 8) | addr[5]);
5780 		t4_write_reg(adap, mag_id_reg_h,
5781 			     (addr[0] << 8) | addr[1]);
5782 	}
5783 	t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
5784 			 V_MAGICEN(addr != NULL));
5785 }
5786 
5787 /**
5788  *	t4_wol_pat_enable - enable/disable pattern-based WoL
5789  *	@adap: the adapter
5790  *	@port: the physical port index
5791  *	@map: bitmap of which HW pattern filters to set
5792  *	@mask0: byte mask for bytes 0-63 of a packet
5793  *	@mask1: byte mask for bytes 64-127 of a packet
5794  *	@crc: Ethernet CRC for selected bytes
5795  *	@enable: enable/disable switch
5796  *
5797  *	Sets the pattern filters indicated in @map to mask out the bytes
5798  *	specified in @mask0/@mask1 in received packets and compare the CRC of
5799  *	the resulting packet against @crc.  If @enable is %true pattern-based
5800  *	WoL is enabled, otherwise disabled.
5801  */
5802 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
5803 		      u64 mask0, u64 mask1, unsigned int crc, bool enable)
5804 {
5805 	int i;
5806 	u32 port_cfg_reg;
5807 
5808 	if (is_t4(adap))
5809 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
5810 	else
5811 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
5812 
5813 	if (!enable) {
5814 		t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
5815 		return 0;
5816 	}
5817 	if (map > 0xff)
5818 		return -EINVAL;
5819 
5820 #define EPIO_REG(name) \
5821 	(is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
5822 	T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
5823 
5824 	t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
5825 	t4_write_reg(adap, EPIO_REG(DATA2), mask1);
5826 	t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
5827 
5828 	for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
5829 		if (!(map & 1))
5830 			continue;
5831 
5832 		/* write byte masks */
5833 		t4_write_reg(adap, EPIO_REG(DATA0), mask0);
5834 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
5835 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
5836 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
5837 			return -ETIMEDOUT;
5838 
5839 		/* write CRC */
5840 		t4_write_reg(adap, EPIO_REG(DATA0), crc);
5841 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
5842 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
5843 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
5844 			return -ETIMEDOUT;
5845 	}
5846 #undef EPIO_REG
5847 
5848 	t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
5849 	return 0;
5850 }
5851 
5852 /*     t4_mk_filtdelwr - create a delete filter WR
5853  *     @ftid: the filter ID
5854  *     @wr: the filter work request to populate
5855  *     @qid: ingress queue to receive the delete notification
5856  *
5857  *     Creates a filter work request to delete the supplied filter.  If @qid is
5858  *     negative the delete notification is suppressed.
5859  */
5860 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
5861 {
5862 	memset(wr, 0, sizeof(*wr));
5863 	wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR));
5864 	wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16));
5865 	wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) |
5866 				    V_FW_FILTER_WR_NOREPLY(qid < 0));
5867 	wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER);
5868 	if (qid >= 0)
5869 		wr->rx_chan_rx_rpl_iq =
5870 				cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid));
5871 }
5872 
5873 #define INIT_CMD(var, cmd, rd_wr) do { \
5874 	(var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
5875 					F_FW_CMD_REQUEST | \
5876 					F_FW_CMD_##rd_wr); \
5877 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
5878 } while (0)
5879 
5880 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
5881 			  u32 addr, u32 val)
5882 {
5883 	u32 ldst_addrspace;
5884 	struct fw_ldst_cmd c;
5885 
5886 	memset(&c, 0, sizeof(c));
5887 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE);
5888 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
5889 					F_FW_CMD_REQUEST |
5890 					F_FW_CMD_WRITE |
5891 					ldst_addrspace);
5892 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5893 	c.u.addrval.addr = cpu_to_be32(addr);
5894 	c.u.addrval.val = cpu_to_be32(val);
5895 
5896 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5897 }
5898 
5899 /**
5900  *	t4_mdio_rd - read a PHY register through MDIO
5901  *	@adap: the adapter
5902  *	@mbox: mailbox to use for the FW command
5903  *	@phy_addr: the PHY address
5904  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
5905  *	@reg: the register to read
5906  *	@valp: where to store the value
5907  *
5908  *	Issues a FW command through the given mailbox to read a PHY register.
5909  */
5910 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
5911 	       unsigned int mmd, unsigned int reg, unsigned int *valp)
5912 {
5913 	int ret;
5914 	u32 ldst_addrspace;
5915 	struct fw_ldst_cmd c;
5916 
5917 	memset(&c, 0, sizeof(c));
5918 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
5919 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
5920 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
5921 					ldst_addrspace);
5922 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5923 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
5924 					 V_FW_LDST_CMD_MMD(mmd));
5925 	c.u.mdio.raddr = cpu_to_be16(reg);
5926 
5927 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5928 	if (ret == 0)
5929 		*valp = be16_to_cpu(c.u.mdio.rval);
5930 	return ret;
5931 }
5932 
5933 /**
5934  *	t4_mdio_wr - write a PHY register through MDIO
5935  *	@adap: the adapter
5936  *	@mbox: mailbox to use for the FW command
5937  *	@phy_addr: the PHY address
5938  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
5939  *	@reg: the register to write
5940  *	@valp: value to write
5941  *
5942  *	Issues a FW command through the given mailbox to write a PHY register.
5943  */
5944 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
5945 	       unsigned int mmd, unsigned int reg, unsigned int val)
5946 {
5947 	u32 ldst_addrspace;
5948 	struct fw_ldst_cmd c;
5949 
5950 	memset(&c, 0, sizeof(c));
5951 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
5952 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
5953 					F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
5954 					ldst_addrspace);
5955 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5956 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
5957 					 V_FW_LDST_CMD_MMD(mmd));
5958 	c.u.mdio.raddr = cpu_to_be16(reg);
5959 	c.u.mdio.rval = cpu_to_be16(val);
5960 
5961 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5962 }
5963 
5964 /**
5965  *
5966  *	t4_sge_decode_idma_state - decode the idma state
5967  *	@adap: the adapter
5968  *	@state: the state idma is stuck in
5969  */
5970 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
5971 {
5972 	static const char * const t4_decode[] = {
5973 		"IDMA_IDLE",
5974 		"IDMA_PUSH_MORE_CPL_FIFO",
5975 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5976 		"Not used",
5977 		"IDMA_PHYSADDR_SEND_PCIEHDR",
5978 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5979 		"IDMA_PHYSADDR_SEND_PAYLOAD",
5980 		"IDMA_SEND_FIFO_TO_IMSG",
5981 		"IDMA_FL_REQ_DATA_FL_PREP",
5982 		"IDMA_FL_REQ_DATA_FL",
5983 		"IDMA_FL_DROP",
5984 		"IDMA_FL_H_REQ_HEADER_FL",
5985 		"IDMA_FL_H_SEND_PCIEHDR",
5986 		"IDMA_FL_H_PUSH_CPL_FIFO",
5987 		"IDMA_FL_H_SEND_CPL",
5988 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
5989 		"IDMA_FL_H_SEND_IP_HDR",
5990 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
5991 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
5992 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
5993 		"IDMA_FL_D_SEND_PCIEHDR",
5994 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5995 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
5996 		"IDMA_FL_SEND_PCIEHDR",
5997 		"IDMA_FL_PUSH_CPL_FIFO",
5998 		"IDMA_FL_SEND_CPL",
5999 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6000 		"IDMA_FL_SEND_PAYLOAD",
6001 		"IDMA_FL_REQ_NEXT_DATA_FL",
6002 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6003 		"IDMA_FL_SEND_PADDING",
6004 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6005 		"IDMA_FL_SEND_FIFO_TO_IMSG",
6006 		"IDMA_FL_REQ_DATAFL_DONE",
6007 		"IDMA_FL_REQ_HEADERFL_DONE",
6008 	};
6009 	static const char * const t5_decode[] = {
6010 		"IDMA_IDLE",
6011 		"IDMA_ALMOST_IDLE",
6012 		"IDMA_PUSH_MORE_CPL_FIFO",
6013 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6014 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6015 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6016 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6017 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6018 		"IDMA_SEND_FIFO_TO_IMSG",
6019 		"IDMA_FL_REQ_DATA_FL",
6020 		"IDMA_FL_DROP",
6021 		"IDMA_FL_DROP_SEND_INC",
6022 		"IDMA_FL_H_REQ_HEADER_FL",
6023 		"IDMA_FL_H_SEND_PCIEHDR",
6024 		"IDMA_FL_H_PUSH_CPL_FIFO",
6025 		"IDMA_FL_H_SEND_CPL",
6026 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6027 		"IDMA_FL_H_SEND_IP_HDR",
6028 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6029 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6030 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6031 		"IDMA_FL_D_SEND_PCIEHDR",
6032 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6033 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6034 		"IDMA_FL_SEND_PCIEHDR",
6035 		"IDMA_FL_PUSH_CPL_FIFO",
6036 		"IDMA_FL_SEND_CPL",
6037 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6038 		"IDMA_FL_SEND_PAYLOAD",
6039 		"IDMA_FL_REQ_NEXT_DATA_FL",
6040 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6041 		"IDMA_FL_SEND_PADDING",
6042 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6043 	};
6044 	static const char * const t6_decode[] = {
6045 		"IDMA_IDLE",
6046 		"IDMA_PUSH_MORE_CPL_FIFO",
6047 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6048 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6049 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6050 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6051 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6052 		"IDMA_FL_REQ_DATA_FL",
6053 		"IDMA_FL_DROP",
6054 		"IDMA_FL_DROP_SEND_INC",
6055 		"IDMA_FL_H_REQ_HEADER_FL",
6056 		"IDMA_FL_H_SEND_PCIEHDR",
6057 		"IDMA_FL_H_PUSH_CPL_FIFO",
6058 		"IDMA_FL_H_SEND_CPL",
6059 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6060 		"IDMA_FL_H_SEND_IP_HDR",
6061 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6062 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6063 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6064 		"IDMA_FL_D_SEND_PCIEHDR",
6065 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6066 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6067 		"IDMA_FL_SEND_PCIEHDR",
6068 		"IDMA_FL_PUSH_CPL_FIFO",
6069 		"IDMA_FL_SEND_CPL",
6070 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6071 		"IDMA_FL_SEND_PAYLOAD",
6072 		"IDMA_FL_REQ_NEXT_DATA_FL",
6073 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6074 		"IDMA_FL_SEND_PADDING",
6075 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6076 	};
6077 	static const u32 sge_regs[] = {
6078 		A_SGE_DEBUG_DATA_LOW_INDEX_2,
6079 		A_SGE_DEBUG_DATA_LOW_INDEX_3,
6080 		A_SGE_DEBUG_DATA_HIGH_INDEX_10,
6081 	};
6082 	const char * const *sge_idma_decode;
6083 	int sge_idma_decode_nstates;
6084 	int i;
6085 	unsigned int chip_version = chip_id(adapter);
6086 
6087 	/* Select the right set of decode strings to dump depending on the
6088 	 * adapter chip type.
6089 	 */
6090 	switch (chip_version) {
6091 	case CHELSIO_T4:
6092 		sge_idma_decode = (const char * const *)t4_decode;
6093 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6094 		break;
6095 
6096 	case CHELSIO_T5:
6097 		sge_idma_decode = (const char * const *)t5_decode;
6098 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6099 		break;
6100 
6101 	case CHELSIO_T6:
6102 		sge_idma_decode = (const char * const *)t6_decode;
6103 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6104 		break;
6105 
6106 	default:
6107 		CH_ERR(adapter,	"Unsupported chip version %d\n", chip_version);
6108 		return;
6109 	}
6110 
6111 	if (state < sge_idma_decode_nstates)
6112 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6113 	else
6114 		CH_WARN(adapter, "idma state %d unknown\n", state);
6115 
6116 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6117 		CH_WARN(adapter, "SGE register %#x value %#x\n",
6118 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6119 }
6120 
6121 /**
6122  *      t4_sge_ctxt_flush - flush the SGE context cache
6123  *      @adap: the adapter
6124  *      @mbox: mailbox to use for the FW command
6125  *
6126  *      Issues a FW command through the given mailbox to flush the
6127  *      SGE context cache.
6128  */
6129 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
6130 {
6131 	int ret;
6132 	u32 ldst_addrspace;
6133 	struct fw_ldst_cmd c;
6134 
6135 	memset(&c, 0, sizeof(c));
6136 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_SGE_EGRC);
6137 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6138 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
6139 					ldst_addrspace);
6140 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6141 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH);
6142 
6143 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6144 	return ret;
6145 }
6146 
6147 /**
6148  *      t4_fw_hello - establish communication with FW
6149  *      @adap: the adapter
6150  *      @mbox: mailbox to use for the FW command
6151  *      @evt_mbox: mailbox to receive async FW events
6152  *      @master: specifies the caller's willingness to be the device master
6153  *	@state: returns the current device state (if non-NULL)
6154  *
6155  *	Issues a command to establish communication with FW.  Returns either
6156  *	an error (negative integer) or the mailbox of the Master PF.
6157  */
6158 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6159 		enum dev_master master, enum dev_state *state)
6160 {
6161 	int ret;
6162 	struct fw_hello_cmd c;
6163 	u32 v;
6164 	unsigned int master_mbox;
6165 	int retries = FW_CMD_HELLO_RETRIES;
6166 
6167 retry:
6168 	memset(&c, 0, sizeof(c));
6169 	INIT_CMD(c, HELLO, WRITE);
6170 	c.err_to_clearinit = cpu_to_be32(
6171 		V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
6172 		V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
6173 		V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ?
6174 					mbox : M_FW_HELLO_CMD_MBMASTER) |
6175 		V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
6176 		V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
6177 		F_FW_HELLO_CMD_CLEARINIT);
6178 
6179 	/*
6180 	 * Issue the HELLO command to the firmware.  If it's not successful
6181 	 * but indicates that we got a "busy" or "timeout" condition, retry
6182 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
6183 	 * retry limit, check to see if the firmware left us any error
6184 	 * information and report that if so ...
6185 	 */
6186 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6187 	if (ret != FW_SUCCESS) {
6188 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6189 			goto retry;
6190 		if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
6191 			t4_report_fw_error(adap);
6192 		return ret;
6193 	}
6194 
6195 	v = be32_to_cpu(c.err_to_clearinit);
6196 	master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
6197 	if (state) {
6198 		if (v & F_FW_HELLO_CMD_ERR)
6199 			*state = DEV_STATE_ERR;
6200 		else if (v & F_FW_HELLO_CMD_INIT)
6201 			*state = DEV_STATE_INIT;
6202 		else
6203 			*state = DEV_STATE_UNINIT;
6204 	}
6205 
6206 	/*
6207 	 * If we're not the Master PF then we need to wait around for the
6208 	 * Master PF Driver to finish setting up the adapter.
6209 	 *
6210 	 * Note that we also do this wait if we're a non-Master-capable PF and
6211 	 * there is no current Master PF; a Master PF may show up momentarily
6212 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
6213 	 * OS loads lots of different drivers rapidly at the same time).  In
6214 	 * this case, the Master PF returned by the firmware will be
6215 	 * M_PCIE_FW_MASTER so the test below will work ...
6216 	 */
6217 	if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
6218 	    master_mbox != mbox) {
6219 		int waiting = FW_CMD_HELLO_TIMEOUT;
6220 
6221 		/*
6222 		 * Wait for the firmware to either indicate an error or
6223 		 * initialized state.  If we see either of these we bail out
6224 		 * and report the issue to the caller.  If we exhaust the
6225 		 * "hello timeout" and we haven't exhausted our retries, try
6226 		 * again.  Otherwise bail with a timeout error.
6227 		 */
6228 		for (;;) {
6229 			u32 pcie_fw;
6230 
6231 			msleep(50);
6232 			waiting -= 50;
6233 
6234 			/*
6235 			 * If neither Error nor Initialialized are indicated
6236 			 * by the firmware keep waiting till we exhaust our
6237 			 * timeout ... and then retry if we haven't exhausted
6238 			 * our retries ...
6239 			 */
6240 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
6241 			if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
6242 				if (waiting <= 0) {
6243 					if (retries-- > 0)
6244 						goto retry;
6245 
6246 					return -ETIMEDOUT;
6247 				}
6248 				continue;
6249 			}
6250 
6251 			/*
6252 			 * We either have an Error or Initialized condition
6253 			 * report errors preferentially.
6254 			 */
6255 			if (state) {
6256 				if (pcie_fw & F_PCIE_FW_ERR)
6257 					*state = DEV_STATE_ERR;
6258 				else if (pcie_fw & F_PCIE_FW_INIT)
6259 					*state = DEV_STATE_INIT;
6260 			}
6261 
6262 			/*
6263 			 * If we arrived before a Master PF was selected and
6264 			 * there's not a valid Master PF, grab its identity
6265 			 * for our caller.
6266 			 */
6267 			if (master_mbox == M_PCIE_FW_MASTER &&
6268 			    (pcie_fw & F_PCIE_FW_MASTER_VLD))
6269 				master_mbox = G_PCIE_FW_MASTER(pcie_fw);
6270 			break;
6271 		}
6272 	}
6273 
6274 	return master_mbox;
6275 }
6276 
6277 /**
6278  *	t4_fw_bye - end communication with FW
6279  *	@adap: the adapter
6280  *	@mbox: mailbox to use for the FW command
6281  *
6282  *	Issues a command to terminate communication with FW.
6283  */
6284 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6285 {
6286 	struct fw_bye_cmd c;
6287 
6288 	memset(&c, 0, sizeof(c));
6289 	INIT_CMD(c, BYE, WRITE);
6290 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6291 }
6292 
6293 /**
6294  *	t4_fw_reset - issue a reset to FW
6295  *	@adap: the adapter
6296  *	@mbox: mailbox to use for the FW command
6297  *	@reset: specifies the type of reset to perform
6298  *
6299  *	Issues a reset command of the specified type to FW.
6300  */
6301 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6302 {
6303 	struct fw_reset_cmd c;
6304 
6305 	memset(&c, 0, sizeof(c));
6306 	INIT_CMD(c, RESET, WRITE);
6307 	c.val = cpu_to_be32(reset);
6308 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6309 }
6310 
6311 /**
6312  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6313  *	@adap: the adapter
6314  *	@mbox: mailbox to use for the FW RESET command (if desired)
6315  *	@force: force uP into RESET even if FW RESET command fails
6316  *
6317  *	Issues a RESET command to firmware (if desired) with a HALT indication
6318  *	and then puts the microprocessor into RESET state.  The RESET command
6319  *	will only be issued if a legitimate mailbox is provided (mbox <=
6320  *	M_PCIE_FW_MASTER).
6321  *
6322  *	This is generally used in order for the host to safely manipulate the
6323  *	adapter without fear of conflicting with whatever the firmware might
6324  *	be doing.  The only way out of this state is to RESTART the firmware
6325  *	...
6326  */
6327 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
6328 {
6329 	int ret = 0;
6330 
6331 	/*
6332 	 * If a legitimate mailbox is provided, issue a RESET command
6333 	 * with a HALT indication.
6334 	 */
6335 	if (mbox <= M_PCIE_FW_MASTER) {
6336 		struct fw_reset_cmd c;
6337 
6338 		memset(&c, 0, sizeof(c));
6339 		INIT_CMD(c, RESET, WRITE);
6340 		c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
6341 		c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
6342 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6343 	}
6344 
6345 	/*
6346 	 * Normally we won't complete the operation if the firmware RESET
6347 	 * command fails but if our caller insists we'll go ahead and put the
6348 	 * uP into RESET.  This can be useful if the firmware is hung or even
6349 	 * missing ...  We'll have to take the risk of putting the uP into
6350 	 * RESET without the cooperation of firmware in that case.
6351 	 *
6352 	 * We also force the firmware's HALT flag to be on in case we bypassed
6353 	 * the firmware RESET command above or we're dealing with old firmware
6354 	 * which doesn't have the HALT capability.  This will serve as a flag
6355 	 * for the incoming firmware to know that it's coming out of a HALT
6356 	 * rather than a RESET ... if it's new enough to understand that ...
6357 	 */
6358 	if (ret == 0 || force) {
6359 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
6360 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
6361 				 F_PCIE_FW_HALT);
6362 	}
6363 
6364 	/*
6365 	 * And we always return the result of the firmware RESET command
6366 	 * even when we force the uP into RESET ...
6367 	 */
6368 	return ret;
6369 }
6370 
6371 /**
6372  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
6373  *	@adap: the adapter
6374  *	@reset: if we want to do a RESET to restart things
6375  *
6376  *	Restart firmware previously halted by t4_fw_halt().  On successful
6377  *	return the previous PF Master remains as the new PF Master and there
6378  *	is no need to issue a new HELLO command, etc.
6379  *
6380  *	We do this in two ways:
6381  *
6382  *	 1. If we're dealing with newer firmware we'll simply want to take
6383  *	    the chip's microprocessor out of RESET.  This will cause the
6384  *	    firmware to start up from its start vector.  And then we'll loop
6385  *	    until the firmware indicates it's started again (PCIE_FW.HALT
6386  *	    reset to 0) or we timeout.
6387  *
6388  *	 2. If we're dealing with older firmware then we'll need to RESET
6389  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
6390  *	    flag and automatically RESET itself on startup.
6391  */
6392 int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6393 {
6394 	if (reset) {
6395 		/*
6396 		 * Since we're directing the RESET instead of the firmware
6397 		 * doing it automatically, we need to clear the PCIE_FW.HALT
6398 		 * bit.
6399 		 */
6400 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, 0);
6401 
6402 		/*
6403 		 * If we've been given a valid mailbox, first try to get the
6404 		 * firmware to do the RESET.  If that works, great and we can
6405 		 * return success.  Otherwise, if we haven't been given a
6406 		 * valid mailbox or the RESET command failed, fall back to
6407 		 * hitting the chip with a hammer.
6408 		 */
6409 		if (mbox <= M_PCIE_FW_MASTER) {
6410 			t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
6411 			msleep(100);
6412 			if (t4_fw_reset(adap, mbox,
6413 					F_PIORST | F_PIORSTMODE) == 0)
6414 				return 0;
6415 		}
6416 
6417 		t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE);
6418 		msleep(2000);
6419 	} else {
6420 		int ms;
6421 
6422 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
6423 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6424 			if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
6425 				return FW_SUCCESS;
6426 			msleep(100);
6427 			ms += 100;
6428 		}
6429 		return -ETIMEDOUT;
6430 	}
6431 	return 0;
6432 }
6433 
6434 /**
6435  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6436  *	@adap: the adapter
6437  *	@mbox: mailbox to use for the FW RESET command (if desired)
6438  *	@fw_data: the firmware image to write
6439  *	@size: image size
6440  *	@force: force upgrade even if firmware doesn't cooperate
6441  *
6442  *	Perform all of the steps necessary for upgrading an adapter's
6443  *	firmware image.  Normally this requires the cooperation of the
6444  *	existing firmware in order to halt all existing activities
6445  *	but if an invalid mailbox token is passed in we skip that step
6446  *	(though we'll still put the adapter microprocessor into RESET in
6447  *	that case).
6448  *
6449  *	On successful return the new firmware will have been loaded and
6450  *	the adapter will have been fully RESET losing all previous setup
6451  *	state.  On unsuccessful return the adapter may be completely hosed ...
6452  *	positive errno indicates that the adapter is ~probably~ intact, a
6453  *	negative errno indicates that things are looking bad ...
6454  */
6455 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6456 		  const u8 *fw_data, unsigned int size, int force)
6457 {
6458 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6459 	unsigned int bootstrap =
6460 	    be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
6461 	int reset, ret;
6462 
6463 	if (!t4_fw_matches_chip(adap, fw_hdr))
6464 		return -EINVAL;
6465 
6466 	if (!bootstrap) {
6467 		ret = t4_fw_halt(adap, mbox, force);
6468 		if (ret < 0 && !force)
6469 			return ret;
6470 	}
6471 
6472 	ret = t4_load_fw(adap, fw_data, size);
6473 	if (ret < 0 || bootstrap)
6474 		return ret;
6475 
6476 	/*
6477 	 * Older versions of the firmware don't understand the new
6478 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6479 	 * restart.  So for newly loaded older firmware we'll have to do the
6480 	 * RESET for it so it starts up on a clean slate.  We can tell if
6481 	 * the newly loaded firmware will handle this right by checking
6482 	 * its header flags to see if it advertises the capability.
6483 	 */
6484 	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
6485 	return t4_fw_restart(adap, mbox, reset);
6486 }
6487 
6488 /**
6489  *	t4_fw_initialize - ask FW to initialize the device
6490  *	@adap: the adapter
6491  *	@mbox: mailbox to use for the FW command
6492  *
6493  *	Issues a command to FW to partially initialize the device.  This
6494  *	performs initialization that generally doesn't depend on user input.
6495  */
6496 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
6497 {
6498 	struct fw_initialize_cmd c;
6499 
6500 	memset(&c, 0, sizeof(c));
6501 	INIT_CMD(c, INITIALIZE, WRITE);
6502 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6503 }
6504 
6505 /**
6506  *	t4_query_params_rw - query FW or device parameters
6507  *	@adap: the adapter
6508  *	@mbox: mailbox to use for the FW command
6509  *	@pf: the PF
6510  *	@vf: the VF
6511  *	@nparams: the number of parameters
6512  *	@params: the parameter names
6513  *	@val: the parameter values
6514  *	@rw: Write and read flag
6515  *
6516  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
6517  *	queried at once.
6518  */
6519 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
6520 		       unsigned int vf, unsigned int nparams, const u32 *params,
6521 		       u32 *val, int rw)
6522 {
6523 	int i, ret;
6524 	struct fw_params_cmd c;
6525 	__be32 *p = &c.param[0].mnem;
6526 
6527 	if (nparams > 7)
6528 		return -EINVAL;
6529 
6530 	memset(&c, 0, sizeof(c));
6531 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
6532 				  F_FW_CMD_REQUEST | F_FW_CMD_READ |
6533 				  V_FW_PARAMS_CMD_PFN(pf) |
6534 				  V_FW_PARAMS_CMD_VFN(vf));
6535 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6536 
6537 	for (i = 0; i < nparams; i++) {
6538 		*p++ = cpu_to_be32(*params++);
6539 		if (rw)
6540 			*p = cpu_to_be32(*(val + i));
6541 		p++;
6542 	}
6543 
6544 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6545 	if (ret == 0)
6546 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
6547 			*val++ = be32_to_cpu(*p);
6548 	return ret;
6549 }
6550 
6551 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6552 		    unsigned int vf, unsigned int nparams, const u32 *params,
6553 		    u32 *val)
6554 {
6555 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
6556 }
6557 
6558 /**
6559  *      t4_set_params_timeout - sets FW or device parameters
6560  *      @adap: the adapter
6561  *      @mbox: mailbox to use for the FW command
6562  *      @pf: the PF
6563  *      @vf: the VF
6564  *      @nparams: the number of parameters
6565  *      @params: the parameter names
6566  *      @val: the parameter values
6567  *      @timeout: the timeout time
6568  *
6569  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
6570  *      specified at once.
6571  */
6572 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
6573 			  unsigned int pf, unsigned int vf,
6574 			  unsigned int nparams, const u32 *params,
6575 			  const u32 *val, int timeout)
6576 {
6577 	struct fw_params_cmd c;
6578 	__be32 *p = &c.param[0].mnem;
6579 
6580 	if (nparams > 7)
6581 		return -EINVAL;
6582 
6583 	memset(&c, 0, sizeof(c));
6584 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
6585 				  F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
6586 				  V_FW_PARAMS_CMD_PFN(pf) |
6587 				  V_FW_PARAMS_CMD_VFN(vf));
6588 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6589 
6590 	while (nparams--) {
6591 		*p++ = cpu_to_be32(*params++);
6592 		*p++ = cpu_to_be32(*val++);
6593 	}
6594 
6595 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
6596 }
6597 
6598 /**
6599  *	t4_set_params - sets FW or device parameters
6600  *	@adap: the adapter
6601  *	@mbox: mailbox to use for the FW command
6602  *	@pf: the PF
6603  *	@vf: the VF
6604  *	@nparams: the number of parameters
6605  *	@params: the parameter names
6606  *	@val: the parameter values
6607  *
6608  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
6609  *	specified at once.
6610  */
6611 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6612 		  unsigned int vf, unsigned int nparams, const u32 *params,
6613 		  const u32 *val)
6614 {
6615 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
6616 				     FW_CMD_MAX_TIMEOUT);
6617 }
6618 
6619 /**
6620  *	t4_cfg_pfvf - configure PF/VF resource limits
6621  *	@adap: the adapter
6622  *	@mbox: mailbox to use for the FW command
6623  *	@pf: the PF being configured
6624  *	@vf: the VF being configured
6625  *	@txq: the max number of egress queues
6626  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
6627  *	@rxqi: the max number of interrupt-capable ingress queues
6628  *	@rxq: the max number of interruptless ingress queues
6629  *	@tc: the PCI traffic class
6630  *	@vi: the max number of virtual interfaces
6631  *	@cmask: the channel access rights mask for the PF/VF
6632  *	@pmask: the port access rights mask for the PF/VF
6633  *	@nexact: the maximum number of exact MPS filters
6634  *	@rcaps: read capabilities
6635  *	@wxcaps: write/execute capabilities
6636  *
6637  *	Configures resource limits and capabilities for a physical or virtual
6638  *	function.
6639  */
6640 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
6641 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
6642 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
6643 		unsigned int vi, unsigned int cmask, unsigned int pmask,
6644 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
6645 {
6646 	struct fw_pfvf_cmd c;
6647 
6648 	memset(&c, 0, sizeof(c));
6649 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
6650 				  F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
6651 				  V_FW_PFVF_CMD_VFN(vf));
6652 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6653 	c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
6654 				     V_FW_PFVF_CMD_NIQ(rxq));
6655 	c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) |
6656 				    V_FW_PFVF_CMD_PMASK(pmask) |
6657 				    V_FW_PFVF_CMD_NEQ(txq));
6658 	c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) |
6659 				      V_FW_PFVF_CMD_NVI(vi) |
6660 				      V_FW_PFVF_CMD_NEXACTF(nexact));
6661 	c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) |
6662 				     V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
6663 				     V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
6664 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6665 }
6666 
6667 /**
6668  *	t4_alloc_vi_func - allocate a virtual interface
6669  *	@adap: the adapter
6670  *	@mbox: mailbox to use for the FW command
6671  *	@port: physical port associated with the VI
6672  *	@pf: the PF owning the VI
6673  *	@vf: the VF owning the VI
6674  *	@nmac: number of MAC addresses needed (1 to 5)
6675  *	@mac: the MAC addresses of the VI
6676  *	@rss_size: size of RSS table slice associated with this VI
6677  *	@portfunc: which Port Application Function MAC Address is desired
6678  *	@idstype: Intrusion Detection Type
6679  *
6680  *	Allocates a virtual interface for the given physical port.  If @mac is
6681  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
6682  *	If @rss_size is %NULL the VI is not assigned any RSS slice by FW.
6683  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
6684  *	stored consecutively so the space needed is @nmac * 6 bytes.
6685  *	Returns a negative error number or the non-negative VI id.
6686  */
6687 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
6688 		     unsigned int port, unsigned int pf, unsigned int vf,
6689 		     unsigned int nmac, u8 *mac, u16 *rss_size,
6690 		     unsigned int portfunc, unsigned int idstype)
6691 {
6692 	int ret;
6693 	struct fw_vi_cmd c;
6694 
6695 	memset(&c, 0, sizeof(c));
6696 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
6697 				  F_FW_CMD_WRITE | F_FW_CMD_EXEC |
6698 				  V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
6699 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
6700 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
6701 				     V_FW_VI_CMD_FUNC(portfunc));
6702 	c.portid_pkd = V_FW_VI_CMD_PORTID(port);
6703 	c.nmac = nmac - 1;
6704 	if(!rss_size)
6705 		c.norss_rsssize = F_FW_VI_CMD_NORSS;
6706 
6707 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6708 	if (ret)
6709 		return ret;
6710 
6711 	if (mac) {
6712 		memcpy(mac, c.mac, sizeof(c.mac));
6713 		switch (nmac) {
6714 		case 5:
6715 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
6716 		case 4:
6717 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
6718 		case 3:
6719 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
6720 		case 2:
6721 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
6722 		}
6723 	}
6724 	if (rss_size)
6725 		*rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
6726 	return G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid));
6727 }
6728 
6729 /**
6730  *      t4_alloc_vi - allocate an [Ethernet Function] virtual interface
6731  *      @adap: the adapter
6732  *      @mbox: mailbox to use for the FW command
6733  *      @port: physical port associated with the VI
6734  *      @pf: the PF owning the VI
6735  *      @vf: the VF owning the VI
6736  *      @nmac: number of MAC addresses needed (1 to 5)
6737  *      @mac: the MAC addresses of the VI
6738  *      @rss_size: size of RSS table slice associated with this VI
6739  *
6740  *	backwards compatible and convieniance routine to allocate a Virtual
6741  *	Interface with a Ethernet Port Application Function and Intrustion
6742  *	Detection System disabled.
6743  */
6744 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
6745 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
6746 		u16 *rss_size)
6747 {
6748 	return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
6749 				FW_VI_FUNC_ETH, 0);
6750 }
6751 
6752 /**
6753  * 	t4_free_vi - free a virtual interface
6754  * 	@adap: the adapter
6755  * 	@mbox: mailbox to use for the FW command
6756  * 	@pf: the PF owning the VI
6757  * 	@vf: the VF owning the VI
6758  * 	@viid: virtual interface identifiler
6759  *
6760  * 	Free a previously allocated virtual interface.
6761  */
6762 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
6763 	       unsigned int vf, unsigned int viid)
6764 {
6765 	struct fw_vi_cmd c;
6766 
6767 	memset(&c, 0, sizeof(c));
6768 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
6769 				  F_FW_CMD_REQUEST |
6770 				  F_FW_CMD_EXEC |
6771 				  V_FW_VI_CMD_PFN(pf) |
6772 				  V_FW_VI_CMD_VFN(vf));
6773 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
6774 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
6775 
6776 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6777 }
6778 
6779 /**
6780  *	t4_set_rxmode - set Rx properties of a virtual interface
6781  *	@adap: the adapter
6782  *	@mbox: mailbox to use for the FW command
6783  *	@viid: the VI id
6784  *	@mtu: the new MTU or -1
6785  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
6786  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
6787  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
6788  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
6789  *	@sleep_ok: if true we may sleep while awaiting command completion
6790  *
6791  *	Sets Rx properties of a virtual interface.
6792  */
6793 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
6794 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
6795 		  bool sleep_ok)
6796 {
6797 	struct fw_vi_rxmode_cmd c;
6798 
6799 	/* convert to FW values */
6800 	if (mtu < 0)
6801 		mtu = M_FW_VI_RXMODE_CMD_MTU;
6802 	if (promisc < 0)
6803 		promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
6804 	if (all_multi < 0)
6805 		all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
6806 	if (bcast < 0)
6807 		bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
6808 	if (vlanex < 0)
6809 		vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
6810 
6811 	memset(&c, 0, sizeof(c));
6812 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
6813 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
6814 				   V_FW_VI_RXMODE_CMD_VIID(viid));
6815 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6816 	c.mtu_to_vlanexen =
6817 		cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
6818 			    V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
6819 			    V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
6820 			    V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
6821 			    V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
6822 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
6823 }
6824 
6825 /**
6826  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
6827  *	@adap: the adapter
6828  *	@mbox: mailbox to use for the FW command
6829  *	@viid: the VI id
6830  *	@free: if true any existing filters for this VI id are first removed
6831  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
6832  *	@addr: the MAC address(es)
6833  *	@idx: where to store the index of each allocated filter
6834  *	@hash: pointer to hash address filter bitmap
6835  *	@sleep_ok: call is allowed to sleep
6836  *
6837  *	Allocates an exact-match filter for each of the supplied addresses and
6838  *	sets it to the corresponding address.  If @idx is not %NULL it should
6839  *	have at least @naddr entries, each of which will be set to the index of
6840  *	the filter allocated for the corresponding MAC address.  If a filter
6841  *	could not be allocated for an address its index is set to 0xffff.
6842  *	If @hash is not %NULL addresses that fail to allocate an exact filter
6843  *	are hashed and update the hash filter bitmap pointed at by @hash.
6844  *
6845  *	Returns a negative error number or the number of filters allocated.
6846  */
6847 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
6848 		      unsigned int viid, bool free, unsigned int naddr,
6849 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
6850 {
6851 	int offset, ret = 0;
6852 	struct fw_vi_mac_cmd c;
6853 	unsigned int nfilters = 0;
6854 	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
6855 	unsigned int rem = naddr;
6856 
6857 	if (naddr > max_naddr)
6858 		return -EINVAL;
6859 
6860 	for (offset = 0; offset < naddr ; /**/) {
6861 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
6862 					 ? rem
6863 					 : ARRAY_SIZE(c.u.exact));
6864 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
6865 						     u.exact[fw_naddr]), 16);
6866 		struct fw_vi_mac_exact *p;
6867 		int i;
6868 
6869 		memset(&c, 0, sizeof(c));
6870 		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
6871 					   F_FW_CMD_REQUEST |
6872 					   F_FW_CMD_WRITE |
6873 					   V_FW_CMD_EXEC(free) |
6874 					   V_FW_VI_MAC_CMD_VIID(viid));
6875 		c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) |
6876 						  V_FW_CMD_LEN16(len16));
6877 
6878 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6879 			p->valid_to_idx =
6880 				cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
6881 					    V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
6882 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
6883 		}
6884 
6885 		/*
6886 		 * It's okay if we run out of space in our MAC address arena.
6887 		 * Some of the addresses we submit may get stored so we need
6888 		 * to run through the reply to see what the results were ...
6889 		 */
6890 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
6891 		if (ret && ret != -FW_ENOMEM)
6892 			break;
6893 
6894 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6895 			u16 index = G_FW_VI_MAC_CMD_IDX(
6896 						be16_to_cpu(p->valid_to_idx));
6897 
6898 			if (idx)
6899 				idx[offset+i] = (index >=  max_naddr
6900 						 ? 0xffff
6901 						 : index);
6902 			if (index < max_naddr)
6903 				nfilters++;
6904 			else if (hash)
6905 				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
6906 		}
6907 
6908 		free = false;
6909 		offset += fw_naddr;
6910 		rem -= fw_naddr;
6911 	}
6912 
6913 	if (ret == 0 || ret == -FW_ENOMEM)
6914 		ret = nfilters;
6915 	return ret;
6916 }
6917 
6918 /**
6919  *	t4_change_mac - modifies the exact-match filter for a MAC address
6920  *	@adap: the adapter
6921  *	@mbox: mailbox to use for the FW command
6922  *	@viid: the VI id
6923  *	@idx: index of existing filter for old value of MAC address, or -1
6924  *	@addr: the new MAC address value
6925  *	@persist: whether a new MAC allocation should be persistent
6926  *	@add_smt: if true also add the address to the HW SMT
6927  *
6928  *	Modifies an exact-match filter and sets it to the new MAC address if
6929  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
6930  *	latter case the address is added persistently if @persist is %true.
6931  *
6932  *	Note that in general it is not possible to modify the value of a given
6933  *	filter so the generic way to modify an address filter is to free the one
6934  *	being used by the old address value and allocate a new filter for the
6935  *	new address value.
6936  *
6937  *	Returns a negative error number or the index of the filter with the new
6938  *	MAC value.  Note that this index may differ from @idx.
6939  */
6940 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
6941 		  int idx, const u8 *addr, bool persist, bool add_smt)
6942 {
6943 	int ret, mode;
6944 	struct fw_vi_mac_cmd c;
6945 	struct fw_vi_mac_exact *p = c.u.exact;
6946 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
6947 
6948 	if (idx < 0)		/* new allocation */
6949 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
6950 	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
6951 
6952 	memset(&c, 0, sizeof(c));
6953 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
6954 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
6955 				   V_FW_VI_MAC_CMD_VIID(viid));
6956 	c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
6957 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
6958 				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
6959 				      V_FW_VI_MAC_CMD_IDX(idx));
6960 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
6961 
6962 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6963 	if (ret == 0) {
6964 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
6965 		if (ret >= max_mac_addr)
6966 			ret = -ENOMEM;
6967 	}
6968 	return ret;
6969 }
6970 
6971 /**
6972  *	t4_set_addr_hash - program the MAC inexact-match hash filter
6973  *	@adap: the adapter
6974  *	@mbox: mailbox to use for the FW command
6975  *	@viid: the VI id
6976  *	@ucast: whether the hash filter should also match unicast addresses
6977  *	@vec: the value to be written to the hash filter
6978  *	@sleep_ok: call is allowed to sleep
6979  *
6980  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
6981  */
6982 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
6983 		     bool ucast, u64 vec, bool sleep_ok)
6984 {
6985 	struct fw_vi_mac_cmd c;
6986 	u32 val;
6987 
6988 	memset(&c, 0, sizeof(c));
6989 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
6990 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
6991 				   V_FW_VI_ENABLE_CMD_VIID(viid));
6992 	val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) |
6993 	      V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1);
6994 	c.freemacs_to_len16 = cpu_to_be32(val);
6995 	c.u.hash.hashvec = cpu_to_be64(vec);
6996 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
6997 }
6998 
6999 /**
7000  *      t4_enable_vi_params - enable/disable a virtual interface
7001  *      @adap: the adapter
7002  *      @mbox: mailbox to use for the FW command
7003  *      @viid: the VI id
7004  *      @rx_en: 1=enable Rx, 0=disable Rx
7005  *      @tx_en: 1=enable Tx, 0=disable Tx
7006  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
7007  *
7008  *      Enables/disables a virtual interface.  Note that setting DCB Enable
7009  *      only makes sense when enabling a Virtual Interface ...
7010  */
7011 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
7012 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
7013 {
7014 	struct fw_vi_enable_cmd c;
7015 
7016 	memset(&c, 0, sizeof(c));
7017 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
7018 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7019 				   V_FW_VI_ENABLE_CMD_VIID(viid));
7020 	c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
7021 				     V_FW_VI_ENABLE_CMD_EEN(tx_en) |
7022 				     V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
7023 				     FW_LEN16(c));
7024 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
7025 }
7026 
7027 /**
7028  *	t4_enable_vi - enable/disable a virtual interface
7029  *	@adap: the adapter
7030  *	@mbox: mailbox to use for the FW command
7031  *	@viid: the VI id
7032  *	@rx_en: 1=enable Rx, 0=disable Rx
7033  *	@tx_en: 1=enable Tx, 0=disable Tx
7034  *
7035  *	Enables/disables a virtual interface.  Note that setting DCB Enable
7036  *	only makes sense when enabling a Virtual Interface ...
7037  */
7038 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
7039 		 bool rx_en, bool tx_en)
7040 {
7041 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
7042 }
7043 
7044 /**
7045  *	t4_identify_port - identify a VI's port by blinking its LED
7046  *	@adap: the adapter
7047  *	@mbox: mailbox to use for the FW command
7048  *	@viid: the VI id
7049  *	@nblinks: how many times to blink LED at 2.5 Hz
7050  *
7051  *	Identifies a VI's port by blinking its LED.
7052  */
7053 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
7054 		     unsigned int nblinks)
7055 {
7056 	struct fw_vi_enable_cmd c;
7057 
7058 	memset(&c, 0, sizeof(c));
7059 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
7060 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7061 				   V_FW_VI_ENABLE_CMD_VIID(viid));
7062 	c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
7063 	c.blinkdur = cpu_to_be16(nblinks);
7064 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7065 }
7066 
7067 /**
7068  *	t4_iq_stop - stop an ingress queue and its FLs
7069  *	@adap: the adapter
7070  *	@mbox: mailbox to use for the FW command
7071  *	@pf: the PF owning the queues
7072  *	@vf: the VF owning the queues
7073  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7074  *	@iqid: ingress queue id
7075  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7076  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7077  *
7078  *	Stops an ingress queue and its associated FLs, if any.  This causes
7079  *	any current or future data/messages destined for these queues to be
7080  *	tossed.
7081  */
7082 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
7083 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7084 	       unsigned int fl0id, unsigned int fl1id)
7085 {
7086 	struct fw_iq_cmd c;
7087 
7088 	memset(&c, 0, sizeof(c));
7089 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
7090 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
7091 				  V_FW_IQ_CMD_VFN(vf));
7092 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c));
7093 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
7094 	c.iqid = cpu_to_be16(iqid);
7095 	c.fl0id = cpu_to_be16(fl0id);
7096 	c.fl1id = cpu_to_be16(fl1id);
7097 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7098 }
7099 
7100 /**
7101  *	t4_iq_free - free an ingress queue and its FLs
7102  *	@adap: the adapter
7103  *	@mbox: mailbox to use for the FW command
7104  *	@pf: the PF owning the queues
7105  *	@vf: the VF owning the queues
7106  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7107  *	@iqid: ingress queue id
7108  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7109  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7110  *
7111  *	Frees an ingress queue and its associated FLs, if any.
7112  */
7113 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7114 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7115 	       unsigned int fl0id, unsigned int fl1id)
7116 {
7117 	struct fw_iq_cmd c;
7118 
7119 	memset(&c, 0, sizeof(c));
7120 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
7121 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
7122 				  V_FW_IQ_CMD_VFN(vf));
7123 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
7124 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
7125 	c.iqid = cpu_to_be16(iqid);
7126 	c.fl0id = cpu_to_be16(fl0id);
7127 	c.fl1id = cpu_to_be16(fl1id);
7128 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7129 }
7130 
7131 /**
7132  *	t4_eth_eq_free - free an Ethernet egress queue
7133  *	@adap: the adapter
7134  *	@mbox: mailbox to use for the FW command
7135  *	@pf: the PF owning the queue
7136  *	@vf: the VF owning the queue
7137  *	@eqid: egress queue id
7138  *
7139  *	Frees an Ethernet egress queue.
7140  */
7141 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7142 		   unsigned int vf, unsigned int eqid)
7143 {
7144 	struct fw_eq_eth_cmd c;
7145 
7146 	memset(&c, 0, sizeof(c));
7147 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
7148 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7149 				  V_FW_EQ_ETH_CMD_PFN(pf) |
7150 				  V_FW_EQ_ETH_CMD_VFN(vf));
7151 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
7152 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
7153 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7154 }
7155 
7156 /**
7157  *	t4_ctrl_eq_free - free a control egress queue
7158  *	@adap: the adapter
7159  *	@mbox: mailbox to use for the FW command
7160  *	@pf: the PF owning the queue
7161  *	@vf: the VF owning the queue
7162  *	@eqid: egress queue id
7163  *
7164  *	Frees a control egress queue.
7165  */
7166 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7167 		    unsigned int vf, unsigned int eqid)
7168 {
7169 	struct fw_eq_ctrl_cmd c;
7170 
7171 	memset(&c, 0, sizeof(c));
7172 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
7173 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7174 				  V_FW_EQ_CTRL_CMD_PFN(pf) |
7175 				  V_FW_EQ_CTRL_CMD_VFN(vf));
7176 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
7177 	c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
7178 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7179 }
7180 
7181 /**
7182  *	t4_ofld_eq_free - free an offload egress queue
7183  *	@adap: the adapter
7184  *	@mbox: mailbox to use for the FW command
7185  *	@pf: the PF owning the queue
7186  *	@vf: the VF owning the queue
7187  *	@eqid: egress queue id
7188  *
7189  *	Frees a control egress queue.
7190  */
7191 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7192 		    unsigned int vf, unsigned int eqid)
7193 {
7194 	struct fw_eq_ofld_cmd c;
7195 
7196 	memset(&c, 0, sizeof(c));
7197 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) |
7198 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7199 				  V_FW_EQ_OFLD_CMD_PFN(pf) |
7200 				  V_FW_EQ_OFLD_CMD_VFN(vf));
7201 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
7202 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid));
7203 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7204 }
7205 
7206 /**
7207  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
7208  *	@link_down_rc: Link Down Reason Code
7209  *
7210  *	Returns a string representation of the Link Down Reason Code.
7211  */
7212 const char *t4_link_down_rc_str(unsigned char link_down_rc)
7213 {
7214 	static const char *reason[] = {
7215 		"Link Down",
7216 		"Remote Fault",
7217 		"Auto-negotiation Failure",
7218 		"Reserved3",
7219 		"Insufficient Airflow",
7220 		"Unable To Determine Reason",
7221 		"No RX Signal Detected",
7222 		"Reserved7",
7223 	};
7224 
7225 	if (link_down_rc >= ARRAY_SIZE(reason))
7226 		return "Bad Reason Code";
7227 
7228 	return reason[link_down_rc];
7229 }
7230 
7231 /**
7232  *	t4_handle_fw_rpl - process a FW reply message
7233  *	@adap: the adapter
7234  *	@rpl: start of the FW message
7235  *
7236  *	Processes a FW message, such as link state change messages.
7237  */
7238 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
7239 {
7240 	u8 opcode = *(const u8 *)rpl;
7241 	const struct fw_port_cmd *p = (const void *)rpl;
7242 	unsigned int action =
7243 			G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
7244 
7245 	if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO) {
7246 		/* link/module state change message */
7247 		int speed = 0, fc = 0, i;
7248 		int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
7249 		struct port_info *pi = NULL;
7250 		struct link_config *lc;
7251 		u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
7252 		int link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
7253 		u32 mod = G_FW_PORT_CMD_MODTYPE(stat);
7254 
7255 		if (stat & F_FW_PORT_CMD_RXPAUSE)
7256 			fc |= PAUSE_RX;
7257 		if (stat & F_FW_PORT_CMD_TXPAUSE)
7258 			fc |= PAUSE_TX;
7259 		if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
7260 			speed = 100;
7261 		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
7262 			speed = 1000;
7263 		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
7264 			speed = 10000;
7265 		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
7266 			speed = 40000;
7267 
7268 		for_each_port(adap, i) {
7269 			pi = adap2pinfo(adap, i);
7270 			if (pi->tx_chan == chan)
7271 				break;
7272 		}
7273 		lc = &pi->link_cfg;
7274 
7275 		if (mod != pi->mod_type) {
7276 			pi->mod_type = mod;
7277 			t4_os_portmod_changed(adap, i);
7278 		}
7279 		if (link_ok != lc->link_ok || speed != lc->speed ||
7280 		    fc != lc->fc) {                    /* something changed */
7281 			int reason;
7282 
7283 			if (!link_ok && lc->link_ok)
7284 				reason = G_FW_PORT_CMD_LINKDNRC(stat);
7285 			else
7286 				reason = -1;
7287 
7288 			lc->link_ok = link_ok;
7289 			lc->speed = speed;
7290 			lc->fc = fc;
7291 			lc->supported = be16_to_cpu(p->u.info.pcap);
7292 			t4_os_link_changed(adap, i, link_ok, reason);
7293 		}
7294 	} else {
7295 		CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode);
7296 		return -EINVAL;
7297 	}
7298 	return 0;
7299 }
7300 
7301 /**
7302  *	get_pci_mode - determine a card's PCI mode
7303  *	@adapter: the adapter
7304  *	@p: where to store the PCI settings
7305  *
7306  *	Determines a card's PCI mode and associated parameters, such as speed
7307  *	and width.
7308  */
7309 static void get_pci_mode(struct adapter *adapter,
7310 				   struct pci_params *p)
7311 {
7312 	u16 val;
7313 	u32 pcie_cap;
7314 
7315 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
7316 	if (pcie_cap) {
7317 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
7318 		p->speed = val & PCI_EXP_LNKSTA_CLS;
7319 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
7320 	}
7321 }
7322 
7323 /**
7324  *	init_link_config - initialize a link's SW state
7325  *	@lc: structure holding the link state
7326  *	@caps: link capabilities
7327  *
7328  *	Initializes the SW state maintained for each link, including the link's
7329  *	capabilities and default speed/flow-control/autonegotiation settings.
7330  */
7331 static void init_link_config(struct link_config *lc, unsigned int caps)
7332 {
7333 	lc->supported = caps;
7334 	lc->requested_speed = 0;
7335 	lc->speed = 0;
7336 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
7337 	if (lc->supported & FW_PORT_CAP_ANEG) {
7338 		lc->advertising = lc->supported & ADVERT_MASK;
7339 		lc->autoneg = AUTONEG_ENABLE;
7340 		lc->requested_fc |= PAUSE_AUTONEG;
7341 	} else {
7342 		lc->advertising = 0;
7343 		lc->autoneg = AUTONEG_DISABLE;
7344 	}
7345 }
7346 
7347 struct flash_desc {
7348 	u32 vendor_and_model_id;
7349 	u32 size_mb;
7350 };
7351 
7352 int t4_get_flash_params(struct adapter *adapter)
7353 {
7354 	/*
7355 	 * Table for non-Numonix supported flash parts.  Numonix parts are left
7356 	 * to the preexisting well-tested code.  All flash parts have 64KB
7357 	 * sectors.
7358 	 */
7359 	static struct flash_desc supported_flash[] = {
7360 		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
7361 	};
7362 
7363 	int ret;
7364 	u32 info = 0;
7365 
7366 	ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
7367 	if (!ret)
7368 		ret = sf1_read(adapter, 3, 0, 1, &info);
7369 	t4_write_reg(adapter, A_SF_OP, 0);	/* unlock SF */
7370 	if (ret < 0)
7371 		return ret;
7372 
7373 	for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
7374 		if (supported_flash[ret].vendor_and_model_id == info) {
7375 			adapter->params.sf_size = supported_flash[ret].size_mb;
7376 			adapter->params.sf_nsec =
7377 				adapter->params.sf_size / SF_SEC_SIZE;
7378 			return 0;
7379 		}
7380 
7381 	if ((info & 0xff) != 0x20)		/* not a Numonix flash */
7382 		return -EINVAL;
7383 	info >>= 16;				/* log2 of size */
7384 	if (info >= 0x14 && info < 0x18)
7385 		adapter->params.sf_nsec = 1 << (info - 16);
7386 	else if (info == 0x18)
7387 		adapter->params.sf_nsec = 64;
7388 	else
7389 		return -EINVAL;
7390 	adapter->params.sf_size = 1 << info;
7391 
7392 	/*
7393 	 * We should ~probably~ reject adapters with FLASHes which are too
7394 	 * small but we have some legacy FPGAs with small FLASHes that we'd
7395 	 * still like to use.  So instead we emit a scary message ...
7396 	 */
7397 	if (adapter->params.sf_size < FLASH_MIN_SIZE)
7398 		CH_WARN(adapter, "WARNING!!! FLASH size %#x < %#x!!!\n",
7399 			adapter->params.sf_size, FLASH_MIN_SIZE);
7400 
7401 	return 0;
7402 }
7403 
7404 static void set_pcie_completion_timeout(struct adapter *adapter,
7405 						  u8 range)
7406 {
7407 	u16 val;
7408 	u32 pcie_cap;
7409 
7410 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
7411 	if (pcie_cap) {
7412 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
7413 		val &= 0xfff0;
7414 		val |= range ;
7415 		t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
7416 	}
7417 }
7418 
7419 static const struct chip_params *get_chip_params(int chipid)
7420 {
7421 	static const struct chip_params chip_params[] = {
7422 		{
7423 			/* T4 */
7424 			.nchan = NCHAN,
7425 			.pm_stats_cnt = PM_NSTATS,
7426 			.cng_ch_bits_log = 2,
7427 			.nsched_cls = 15,
7428 			.cim_num_obq = CIM_NUM_OBQ,
7429 			.mps_rplc_size = 128,
7430 			.vfcount = 128,
7431 			.sge_fl_db = F_DBPRIO,
7432 			.mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES,
7433 		},
7434 		{
7435 			/* T5 */
7436 			.nchan = NCHAN,
7437 			.pm_stats_cnt = PM_NSTATS,
7438 			.cng_ch_bits_log = 2,
7439 			.nsched_cls = 16,
7440 			.cim_num_obq = CIM_NUM_OBQ_T5,
7441 			.mps_rplc_size = 128,
7442 			.vfcount = 128,
7443 			.sge_fl_db = F_DBPRIO | F_DBTYPE,
7444 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
7445 		},
7446 		{
7447 			/* T6 */
7448 			.nchan = T6_NCHAN,
7449 			.pm_stats_cnt = T6_PM_NSTATS,
7450 			.cng_ch_bits_log = 3,
7451 			.nsched_cls = 16,
7452 			.cim_num_obq = CIM_NUM_OBQ_T5,
7453 			.mps_rplc_size = 256,
7454 			.vfcount = 256,
7455 			.sge_fl_db = 0,
7456 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
7457 		},
7458 	};
7459 
7460 	chipid -= CHELSIO_T4;
7461 	if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params))
7462 		return NULL;
7463 
7464 	return &chip_params[chipid];
7465 }
7466 
7467 /**
7468  *	t4_prep_adapter - prepare SW and HW for operation
7469  *	@adapter: the adapter
7470  *	@buf: temporary space of at least VPD_LEN size provided by the caller.
7471  *
7472  *	Initialize adapter SW state for the various HW modules, set initial
7473  *	values for some adapter tunables, take PHYs out of reset, and
7474  *	initialize the MDIO interface.
7475  */
7476 int t4_prep_adapter(struct adapter *adapter, u8 *buf)
7477 {
7478 	int ret;
7479 	uint16_t device_id;
7480 	uint32_t pl_rev;
7481 
7482 	get_pci_mode(adapter, &adapter->params.pci);
7483 
7484 	pl_rev = t4_read_reg(adapter, A_PL_REV);
7485 	adapter->params.chipid = G_CHIPID(pl_rev);
7486 	adapter->params.rev = G_REV(pl_rev);
7487 	if (adapter->params.chipid == 0) {
7488 		/* T4 did not have chipid in PL_REV (T5 onwards do) */
7489 		adapter->params.chipid = CHELSIO_T4;
7490 
7491 		/* T4A1 chip is not supported */
7492 		if (adapter->params.rev == 1) {
7493 			CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
7494 			return -EINVAL;
7495 		}
7496 	}
7497 
7498 	adapter->chip_params = get_chip_params(chip_id(adapter));
7499 	if (adapter->chip_params == NULL)
7500 		return -EINVAL;
7501 
7502 	adapter->params.pci.vpd_cap_addr =
7503 	    t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
7504 
7505 	ret = t4_get_flash_params(adapter);
7506 	if (ret < 0)
7507 		return ret;
7508 
7509 	ret = get_vpd_params(adapter, &adapter->params.vpd, buf);
7510 	if (ret < 0)
7511 		return ret;
7512 
7513 	/* Cards with real ASICs have the chipid in the PCIe device id */
7514 	t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
7515 	if (device_id >> 12 == chip_id(adapter))
7516 		adapter->params.cim_la_size = CIMLA_SIZE;
7517 	else {
7518 		/* FPGA */
7519 		adapter->params.fpga = 1;
7520 		adapter->params.cim_la_size = 2 * CIMLA_SIZE;
7521 	}
7522 
7523 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
7524 
7525 	/*
7526 	 * Default port and clock for debugging in case we can't reach FW.
7527 	 */
7528 	adapter->params.nports = 1;
7529 	adapter->params.portvec = 1;
7530 	adapter->params.vpd.cclk = 50000;
7531 
7532 	/* Set pci completion timeout value to 4 seconds. */
7533 	set_pcie_completion_timeout(adapter, 0xd);
7534 	return 0;
7535 }
7536 
7537 /**
7538  *	t4_shutdown_adapter - shut down adapter, host & wire
7539  *	@adapter: the adapter
7540  *
7541  *	Perform an emergency shutdown of the adapter and stop it from
7542  *	continuing any further communication on the ports or DMA to the
7543  *	host.  This is typically used when the adapter and/or firmware
7544  *	have crashed and we want to prevent any further accidental
7545  *	communication with the rest of the world.  This will also force
7546  *	the port Link Status to go down -- if register writes work --
7547  *	which should help our peers figure out that we're down.
7548  */
7549 int t4_shutdown_adapter(struct adapter *adapter)
7550 {
7551 	int port;
7552 
7553 	t4_intr_disable(adapter);
7554 	t4_write_reg(adapter, A_DBG_GPIO_EN, 0);
7555 	for_each_port(adapter, port) {
7556 		u32 a_port_cfg = PORT_REG(port,
7557 					  is_t4(adapter)
7558 					  ? A_XGMAC_PORT_CFG
7559 					  : A_MAC_PORT_CFG);
7560 
7561 		t4_write_reg(adapter, a_port_cfg,
7562 			     t4_read_reg(adapter, a_port_cfg)
7563 			     & ~V_SIGNAL_DET(1));
7564 	}
7565 	t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0);
7566 
7567 	return 0;
7568 }
7569 
7570 /**
7571  *	t4_init_devlog_params - initialize adapter->params.devlog
7572  *	@adap: the adapter
7573  *	@fw_attach: whether we can talk to the firmware
7574  *
7575  *	Initialize various fields of the adapter's Firmware Device Log
7576  *	Parameters structure.
7577  */
7578 int t4_init_devlog_params(struct adapter *adap, int fw_attach)
7579 {
7580 	struct devlog_params *dparams = &adap->params.devlog;
7581 	u32 pf_dparams;
7582 	unsigned int devlog_meminfo;
7583 	struct fw_devlog_cmd devlog_cmd;
7584 	int ret;
7585 
7586 	/* If we're dealing with newer firmware, the Device Log Paramerters
7587 	 * are stored in a designated register which allows us to access the
7588 	 * Device Log even if we can't talk to the firmware.
7589 	 */
7590 	pf_dparams =
7591 		t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG));
7592 	if (pf_dparams) {
7593 		unsigned int nentries, nentries128;
7594 
7595 		dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams);
7596 		dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4;
7597 
7598 		nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams);
7599 		nentries = (nentries128 + 1) * 128;
7600 		dparams->size = nentries * sizeof(struct fw_devlog_e);
7601 
7602 		return 0;
7603 	}
7604 
7605 	/*
7606 	 * For any failing returns ...
7607 	 */
7608 	memset(dparams, 0, sizeof *dparams);
7609 
7610 	/*
7611 	 * If we can't talk to the firmware, there's really nothing we can do
7612 	 * at this point.
7613 	 */
7614 	if (!fw_attach)
7615 		return -ENXIO;
7616 
7617 	/* Otherwise, ask the firmware for it's Device Log Parameters.
7618 	 */
7619 	memset(&devlog_cmd, 0, sizeof devlog_cmd);
7620 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
7621 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
7622 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
7623 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
7624 			 &devlog_cmd);
7625 	if (ret)
7626 		return ret;
7627 
7628 	devlog_meminfo =
7629 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
7630 	dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo);
7631 	dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4;
7632 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
7633 
7634 	return 0;
7635 }
7636 
7637 /**
7638  *	t4_init_sge_params - initialize adap->params.sge
7639  *	@adapter: the adapter
7640  *
7641  *	Initialize various fields of the adapter's SGE Parameters structure.
7642  */
7643 int t4_init_sge_params(struct adapter *adapter)
7644 {
7645 	u32 r;
7646 	struct sge_params *sp = &adapter->params.sge;
7647 
7648 	r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD);
7649 	sp->counter_val[0] = G_THRESHOLD_0(r);
7650 	sp->counter_val[1] = G_THRESHOLD_1(r);
7651 	sp->counter_val[2] = G_THRESHOLD_2(r);
7652 	sp->counter_val[3] = G_THRESHOLD_3(r);
7653 
7654 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1);
7655 	sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r));
7656 	sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r));
7657 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3);
7658 	sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r));
7659 	sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r));
7660 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5);
7661 	sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r));
7662 	sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r));
7663 
7664 	r = t4_read_reg(adapter, A_SGE_CONM_CTRL);
7665 	sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
7666 	if (is_t4(adapter))
7667 		sp->fl_starve_threshold2 = sp->fl_starve_threshold;
7668 	else
7669 		sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
7670 
7671 	/* egress queues: log2 of # of doorbells per BAR2 page */
7672 	r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
7673 	r >>= S_QUEUESPERPAGEPF0 +
7674 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
7675 	sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
7676 
7677 	/* ingress queues: log2 of # of doorbells per BAR2 page */
7678 	r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
7679 	r >>= S_QUEUESPERPAGEPF0 +
7680 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
7681 	sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
7682 
7683 	r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
7684 	r >>= S_HOSTPAGESIZEPF0 +
7685 	    (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf;
7686 	sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10;
7687 
7688 	r = t4_read_reg(adapter, A_SGE_CONTROL);
7689 	sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64;
7690 	sp->fl_pktshift = G_PKTSHIFT(r);
7691 	sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) + 5);
7692 	if (is_t4(adapter))
7693 		sp->pack_boundary = sp->pad_boundary;
7694 	else {
7695 		r = t4_read_reg(adapter, A_SGE_CONTROL2);
7696 		if (G_INGPACKBOUNDARY(r) == 0)
7697 			sp->pack_boundary = 16;
7698 		else
7699 			sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5);
7700 	}
7701 
7702 	return 0;
7703 }
7704 
7705 /*
7706  * Read and cache the adapter's compressed filter mode and ingress config.
7707  */
7708 static void read_filter_mode_and_ingress_config(struct adapter *adap)
7709 {
7710 	struct tp_params *tpp = &adap->params.tp;
7711 
7712 	if (t4_use_ldst(adap)) {
7713 		t4_fw_tp_pio_rw(adap, &tpp->vlan_pri_map, 1,
7714 				A_TP_VLAN_PRI_MAP, 1);
7715 		t4_fw_tp_pio_rw(adap, &tpp->ingress_config, 1,
7716 				A_TP_INGRESS_CONFIG, 1);
7717 	} else {
7718 		t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
7719 				 &tpp->vlan_pri_map, 1, A_TP_VLAN_PRI_MAP);
7720 		t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
7721 				 &tpp->ingress_config, 1, A_TP_INGRESS_CONFIG);
7722 	}
7723 
7724 	/*
7725 	 * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
7726 	 * shift positions of several elements of the Compressed Filter Tuple
7727 	 * for this adapter which we need frequently ...
7728 	 */
7729 	tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE);
7730 	tpp->port_shift = t4_filter_field_shift(adap, F_PORT);
7731 	tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
7732 	tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN);
7733 	tpp->tos_shift = t4_filter_field_shift(adap, F_TOS);
7734 	tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
7735 	tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE);
7736 	tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH);
7737 	tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE);
7738 	tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION);
7739 
7740 	/*
7741 	 * If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
7742 	 * represents the presense of an Outer VLAN instead of a VNIC ID.
7743 	 */
7744 	if ((tpp->ingress_config & F_VNIC) == 0)
7745 		tpp->vnic_shift = -1;
7746 }
7747 
7748 /**
7749  *      t4_init_tp_params - initialize adap->params.tp
7750  *      @adap: the adapter
7751  *
7752  *      Initialize various fields of the adapter's TP Parameters structure.
7753  */
7754 int t4_init_tp_params(struct adapter *adap)
7755 {
7756 	int chan;
7757 	u32 v;
7758 	struct tp_params *tpp = &adap->params.tp;
7759 
7760 	v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
7761 	tpp->tre = G_TIMERRESOLUTION(v);
7762 	tpp->dack_re = G_DELAYEDACKRESOLUTION(v);
7763 
7764 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
7765 	for (chan = 0; chan < MAX_NCHAN; chan++)
7766 		tpp->tx_modq[chan] = chan;
7767 
7768 	read_filter_mode_and_ingress_config(adap);
7769 
7770 	/*
7771 	 * For T6, cache the adapter's compressed error vector
7772 	 * and passing outer header info for encapsulated packets.
7773 	 */
7774 	if (chip_id(adap) > CHELSIO_T5) {
7775 		v = t4_read_reg(adap, A_TP_OUT_CONFIG);
7776 		tpp->rx_pkt_encap = (v & F_CRXPKTENC) ? 1 : 0;
7777 	}
7778 
7779 	return 0;
7780 }
7781 
7782 /**
7783  *      t4_filter_field_shift - calculate filter field shift
7784  *      @adap: the adapter
7785  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
7786  *
7787  *      Return the shift position of a filter field within the Compressed
7788  *      Filter Tuple.  The filter field is specified via its selection bit
7789  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
7790  */
7791 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
7792 {
7793 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
7794 	unsigned int sel;
7795 	int field_shift;
7796 
7797 	if ((filter_mode & filter_sel) == 0)
7798 		return -1;
7799 
7800 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
7801 		switch (filter_mode & sel) {
7802 		case F_FCOE:
7803 			field_shift += W_FT_FCOE;
7804 			break;
7805 		case F_PORT:
7806 			field_shift += W_FT_PORT;
7807 			break;
7808 		case F_VNIC_ID:
7809 			field_shift += W_FT_VNIC_ID;
7810 			break;
7811 		case F_VLAN:
7812 			field_shift += W_FT_VLAN;
7813 			break;
7814 		case F_TOS:
7815 			field_shift += W_FT_TOS;
7816 			break;
7817 		case F_PROTOCOL:
7818 			field_shift += W_FT_PROTOCOL;
7819 			break;
7820 		case F_ETHERTYPE:
7821 			field_shift += W_FT_ETHERTYPE;
7822 			break;
7823 		case F_MACMATCH:
7824 			field_shift += W_FT_MACMATCH;
7825 			break;
7826 		case F_MPSHITTYPE:
7827 			field_shift += W_FT_MPSHITTYPE;
7828 			break;
7829 		case F_FRAGMENTATION:
7830 			field_shift += W_FT_FRAGMENTATION;
7831 			break;
7832 		}
7833 	}
7834 	return field_shift;
7835 }
7836 
7837 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id)
7838 {
7839 	u8 addr[6];
7840 	int ret, i, j;
7841 	struct fw_port_cmd c;
7842 	u16 rss_size;
7843 	struct port_info *p = adap2pinfo(adap, port_id);
7844 	u32 param, val;
7845 
7846 	memset(&c, 0, sizeof(c));
7847 
7848 	for (i = 0, j = -1; i <= p->port_id; i++) {
7849 		do {
7850 			j++;
7851 		} while ((adap->params.portvec & (1 << j)) == 0);
7852 	}
7853 
7854 	c.op_to_portid = htonl(V_FW_CMD_OP(FW_PORT_CMD) |
7855 			       F_FW_CMD_REQUEST | F_FW_CMD_READ |
7856 			       V_FW_PORT_CMD_PORTID(j));
7857 	c.action_to_len16 = htonl(
7858 		V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
7859 		FW_LEN16(c));
7860 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7861 	if (ret)
7862 		return ret;
7863 
7864 	ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
7865 	if (ret < 0)
7866 		return ret;
7867 
7868 	p->vi[0].viid = ret;
7869 	p->tx_chan = j;
7870 	p->rx_chan_map = t4_get_mps_bg_map(adap, j);
7871 	p->lport = j;
7872 	p->vi[0].rss_size = rss_size;
7873 	t4_os_set_hw_addr(adap, p->port_id, addr);
7874 
7875 	ret = be32_to_cpu(c.u.info.lstatus_to_modtype);
7876 	p->mdio_addr = (ret & F_FW_PORT_CMD_MDIOCAP) ?
7877 		G_FW_PORT_CMD_MDIOADDR(ret) : -1;
7878 	p->port_type = G_FW_PORT_CMD_PTYPE(ret);
7879 	p->mod_type = G_FW_PORT_CMD_MODTYPE(ret);
7880 
7881 	init_link_config(&p->link_cfg, be16_to_cpu(c.u.info.pcap));
7882 
7883 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
7884 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
7885 	    V_FW_PARAMS_PARAM_YZ(p->vi[0].viid);
7886 	ret = t4_query_params(adap, mbox, pf, vf, 1, &param, &val);
7887 	if (ret)
7888 		p->vi[0].rss_base = 0xffff;
7889 	else {
7890 		/* MPASS((val >> 16) == rss_size); */
7891 		p->vi[0].rss_base = val & 0xffff;
7892 	}
7893 
7894 	return 0;
7895 }
7896 
7897 /**
7898  *	t4_read_cimq_cfg - read CIM queue configuration
7899  *	@adap: the adapter
7900  *	@base: holds the queue base addresses in bytes
7901  *	@size: holds the queue sizes in bytes
7902  *	@thres: holds the queue full thresholds in bytes
7903  *
7904  *	Returns the current configuration of the CIM queues, starting with
7905  *	the IBQs, then the OBQs.
7906  */
7907 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
7908 {
7909 	unsigned int i, v;
7910 	int cim_num_obq = adap->chip_params->cim_num_obq;
7911 
7912 	for (i = 0; i < CIM_NUM_IBQ; i++) {
7913 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
7914 			     V_QUENUMSELECT(i));
7915 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
7916 		/* value is in 256-byte units */
7917 		*base++ = G_CIMQBASE(v) * 256;
7918 		*size++ = G_CIMQSIZE(v) * 256;
7919 		*thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */
7920 	}
7921 	for (i = 0; i < cim_num_obq; i++) {
7922 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
7923 			     V_QUENUMSELECT(i));
7924 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
7925 		/* value is in 256-byte units */
7926 		*base++ = G_CIMQBASE(v) * 256;
7927 		*size++ = G_CIMQSIZE(v) * 256;
7928 	}
7929 }
7930 
7931 /**
7932  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
7933  *	@adap: the adapter
7934  *	@qid: the queue index
7935  *	@data: where to store the queue contents
7936  *	@n: capacity of @data in 32-bit words
7937  *
7938  *	Reads the contents of the selected CIM queue starting at address 0 up
7939  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
7940  *	error and the number of 32-bit words actually read on success.
7941  */
7942 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
7943 {
7944 	int i, err, attempts;
7945 	unsigned int addr;
7946 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
7947 
7948 	if (qid > 5 || (n & 3))
7949 		return -EINVAL;
7950 
7951 	addr = qid * nwords;
7952 	if (n > nwords)
7953 		n = nwords;
7954 
7955 	/* It might take 3-10ms before the IBQ debug read access is allowed.
7956 	 * Wait for 1 Sec with a delay of 1 usec.
7957 	 */
7958 	attempts = 1000000;
7959 
7960 	for (i = 0; i < n; i++, addr++) {
7961 		t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
7962 			     F_IBQDBGEN);
7963 		err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
7964 				      attempts, 1);
7965 		if (err)
7966 			return err;
7967 		*data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
7968 	}
7969 	t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
7970 	return i;
7971 }
7972 
7973 /**
7974  *	t4_read_cim_obq - read the contents of a CIM outbound queue
7975  *	@adap: the adapter
7976  *	@qid: the queue index
7977  *	@data: where to store the queue contents
7978  *	@n: capacity of @data in 32-bit words
7979  *
7980  *	Reads the contents of the selected CIM queue starting at address 0 up
7981  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
7982  *	error and the number of 32-bit words actually read on success.
7983  */
7984 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
7985 {
7986 	int i, err;
7987 	unsigned int addr, v, nwords;
7988 	int cim_num_obq = adap->chip_params->cim_num_obq;
7989 
7990 	if ((qid > (cim_num_obq - 1)) || (n & 3))
7991 		return -EINVAL;
7992 
7993 	t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
7994 		     V_QUENUMSELECT(qid));
7995 	v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
7996 
7997 	addr = G_CIMQBASE(v) * 64;    /* muliple of 256 -> muliple of 4 */
7998 	nwords = G_CIMQSIZE(v) * 64;  /* same */
7999 	if (n > nwords)
8000 		n = nwords;
8001 
8002 	for (i = 0; i < n; i++, addr++) {
8003 		t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
8004 			     F_OBQDBGEN);
8005 		err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
8006 				      2, 1);
8007 		if (err)
8008 			return err;
8009 		*data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
8010 	}
8011 	t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
8012 	return i;
8013 }
8014 
8015 enum {
8016 	CIM_QCTL_BASE     = 0,
8017 	CIM_CTL_BASE      = 0x2000,
8018 	CIM_PBT_ADDR_BASE = 0x2800,
8019 	CIM_PBT_LRF_BASE  = 0x3000,
8020 	CIM_PBT_DATA_BASE = 0x3800
8021 };
8022 
8023 /**
8024  *	t4_cim_read - read a block from CIM internal address space
8025  *	@adap: the adapter
8026  *	@addr: the start address within the CIM address space
8027  *	@n: number of words to read
8028  *	@valp: where to store the result
8029  *
8030  *	Reads a block of 4-byte words from the CIM intenal address space.
8031  */
8032 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
8033 		unsigned int *valp)
8034 {
8035 	int ret = 0;
8036 
8037 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
8038 		return -EBUSY;
8039 
8040 	for ( ; !ret && n--; addr += 4) {
8041 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
8042 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
8043 				      0, 5, 2);
8044 		if (!ret)
8045 			*valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
8046 	}
8047 	return ret;
8048 }
8049 
8050 /**
8051  *	t4_cim_write - write a block into CIM internal address space
8052  *	@adap: the adapter
8053  *	@addr: the start address within the CIM address space
8054  *	@n: number of words to write
8055  *	@valp: set of values to write
8056  *
8057  *	Writes a block of 4-byte words into the CIM intenal address space.
8058  */
8059 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
8060 		 const unsigned int *valp)
8061 {
8062 	int ret = 0;
8063 
8064 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
8065 		return -EBUSY;
8066 
8067 	for ( ; !ret && n--; addr += 4) {
8068 		t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
8069 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
8070 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
8071 				      0, 5, 2);
8072 	}
8073 	return ret;
8074 }
8075 
8076 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
8077 			 unsigned int val)
8078 {
8079 	return t4_cim_write(adap, addr, 1, &val);
8080 }
8081 
8082 /**
8083  *	t4_cim_ctl_read - read a block from CIM control region
8084  *	@adap: the adapter
8085  *	@addr: the start address within the CIM control region
8086  *	@n: number of words to read
8087  *	@valp: where to store the result
8088  *
8089  *	Reads a block of 4-byte words from the CIM control region.
8090  */
8091 int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
8092 		    unsigned int *valp)
8093 {
8094 	return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
8095 }
8096 
8097 /**
8098  *	t4_cim_read_la - read CIM LA capture buffer
8099  *	@adap: the adapter
8100  *	@la_buf: where to store the LA data
8101  *	@wrptr: the HW write pointer within the capture buffer
8102  *
8103  *	Reads the contents of the CIM LA buffer with the most recent entry at
8104  *	the end	of the returned data and with the entry at @wrptr first.
8105  *	We try to leave the LA in the running state we find it in.
8106  */
8107 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
8108 {
8109 	int i, ret;
8110 	unsigned int cfg, val, idx;
8111 
8112 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
8113 	if (ret)
8114 		return ret;
8115 
8116 	if (cfg & F_UPDBGLAEN) {	/* LA is running, freeze it */
8117 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
8118 		if (ret)
8119 			return ret;
8120 	}
8121 
8122 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
8123 	if (ret)
8124 		goto restart;
8125 
8126 	idx = G_UPDBGLAWRPTR(val);
8127 	if (wrptr)
8128 		*wrptr = idx;
8129 
8130 	for (i = 0; i < adap->params.cim_la_size; i++) {
8131 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
8132 				    V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
8133 		if (ret)
8134 			break;
8135 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
8136 		if (ret)
8137 			break;
8138 		if (val & F_UPDBGLARDEN) {
8139 			ret = -ETIMEDOUT;
8140 			break;
8141 		}
8142 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
8143 		if (ret)
8144 			break;
8145 
8146 		/* address can't exceed 0xfff (UpDbgLaRdPtr is of 12-bits) */
8147 		idx = (idx + 1) & M_UPDBGLARDPTR;
8148 		/*
8149 		 * Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
8150 		 * identify the 32-bit portion of the full 312-bit data
8151 		 */
8152 		if (is_t6(adap))
8153 			while ((idx & 0xf) > 9)
8154 				idx = (idx + 1) % M_UPDBGLARDPTR;
8155 	}
8156 restart:
8157 	if (cfg & F_UPDBGLAEN) {
8158 		int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
8159 				      cfg & ~F_UPDBGLARDEN);
8160 		if (!ret)
8161 			ret = r;
8162 	}
8163 	return ret;
8164 }
8165 
8166 /**
8167  *	t4_tp_read_la - read TP LA capture buffer
8168  *	@adap: the adapter
8169  *	@la_buf: where to store the LA data
8170  *	@wrptr: the HW write pointer within the capture buffer
8171  *
8172  *	Reads the contents of the TP LA buffer with the most recent entry at
8173  *	the end	of the returned data and with the entry at @wrptr first.
8174  *	We leave the LA in the running state we find it in.
8175  */
8176 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
8177 {
8178 	bool last_incomplete;
8179 	unsigned int i, cfg, val, idx;
8180 
8181 	cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
8182 	if (cfg & F_DBGLAENABLE)			/* freeze LA */
8183 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
8184 			     adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
8185 
8186 	val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
8187 	idx = G_DBGLAWPTR(val);
8188 	last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
8189 	if (last_incomplete)
8190 		idx = (idx + 1) & M_DBGLARPTR;
8191 	if (wrptr)
8192 		*wrptr = idx;
8193 
8194 	val &= 0xffff;
8195 	val &= ~V_DBGLARPTR(M_DBGLARPTR);
8196 	val |= adap->params.tp.la_mask;
8197 
8198 	for (i = 0; i < TPLA_SIZE; i++) {
8199 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
8200 		la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
8201 		idx = (idx + 1) & M_DBGLARPTR;
8202 	}
8203 
8204 	/* Wipe out last entry if it isn't valid */
8205 	if (last_incomplete)
8206 		la_buf[TPLA_SIZE - 1] = ~0ULL;
8207 
8208 	if (cfg & F_DBGLAENABLE)		/* restore running state */
8209 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
8210 			     cfg | adap->params.tp.la_mask);
8211 }
8212 
8213 /*
8214  * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
8215  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
8216  * state for more than the Warning Threshold then we'll issue a warning about
8217  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
8218  * appears to be hung every Warning Repeat second till the situation clears.
8219  * If the situation clears, we'll note that as well.
8220  */
8221 #define SGE_IDMA_WARN_THRESH 1
8222 #define SGE_IDMA_WARN_REPEAT 300
8223 
8224 /**
8225  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
8226  *	@adapter: the adapter
8227  *	@idma: the adapter IDMA Monitor state
8228  *
8229  *	Initialize the state of an SGE Ingress DMA Monitor.
8230  */
8231 void t4_idma_monitor_init(struct adapter *adapter,
8232 			  struct sge_idma_monitor_state *idma)
8233 {
8234 	/* Initialize the state variables for detecting an SGE Ingress DMA
8235 	 * hang.  The SGE has internal counters which count up on each clock
8236 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
8237 	 * same state they were on the previous clock tick.  The clock used is
8238 	 * the Core Clock so we have a limit on the maximum "time" they can
8239 	 * record; typically a very small number of seconds.  For instance,
8240 	 * with a 600MHz Core Clock, we can only count up to a bit more than
8241 	 * 7s.  So we'll synthesize a larger counter in order to not run the
8242 	 * risk of having the "timers" overflow and give us the flexibility to
8243 	 * maintain a Hung SGE State Machine of our own which operates across
8244 	 * a longer time frame.
8245 	 */
8246 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
8247 	idma->idma_stalled[0] = idma->idma_stalled[1] = 0;
8248 }
8249 
8250 /**
8251  *	t4_idma_monitor - monitor SGE Ingress DMA state
8252  *	@adapter: the adapter
8253  *	@idma: the adapter IDMA Monitor state
8254  *	@hz: number of ticks/second
8255  *	@ticks: number of ticks since the last IDMA Monitor call
8256  */
8257 void t4_idma_monitor(struct adapter *adapter,
8258 		     struct sge_idma_monitor_state *idma,
8259 		     int hz, int ticks)
8260 {
8261 	int i, idma_same_state_cnt[2];
8262 
8263 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
8264 	  * are counters inside the SGE which count up on each clock when the
8265 	  * SGE finds its Ingress DMA State Engines in the same states they
8266 	  * were in the previous clock.  The counters will peg out at
8267 	  * 0xffffffff without wrapping around so once they pass the 1s
8268 	  * threshold they'll stay above that till the IDMA state changes.
8269 	  */
8270 	t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13);
8271 	idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH);
8272 	idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8273 
8274 	for (i = 0; i < 2; i++) {
8275 		u32 debug0, debug11;
8276 
8277 		/* If the Ingress DMA Same State Counter ("timer") is less
8278 		 * than 1s, then we can reset our synthesized Stall Timer and
8279 		 * continue.  If we have previously emitted warnings about a
8280 		 * potential stalled Ingress Queue, issue a note indicating
8281 		 * that the Ingress Queue has resumed forward progress.
8282 		 */
8283 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
8284 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz)
8285 				CH_WARN(adapter, "SGE idma%d, queue %u, "
8286 					"resumed after %d seconds\n",
8287 					i, idma->idma_qid[i],
8288 					idma->idma_stalled[i]/hz);
8289 			idma->idma_stalled[i] = 0;
8290 			continue;
8291 		}
8292 
8293 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
8294 		 * domain.  The first time we get here it'll be because we
8295 		 * passed the 1s Threshold; each additional time it'll be
8296 		 * because the RX Timer Callback is being fired on its regular
8297 		 * schedule.
8298 		 *
8299 		 * If the stall is below our Potential Hung Ingress Queue
8300 		 * Warning Threshold, continue.
8301 		 */
8302 		if (idma->idma_stalled[i] == 0) {
8303 			idma->idma_stalled[i] = hz;
8304 			idma->idma_warn[i] = 0;
8305 		} else {
8306 			idma->idma_stalled[i] += ticks;
8307 			idma->idma_warn[i] -= ticks;
8308 		}
8309 
8310 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz)
8311 			continue;
8312 
8313 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
8314 		 */
8315 		if (idma->idma_warn[i] > 0)
8316 			continue;
8317 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz;
8318 
8319 		/* Read and save the SGE IDMA State and Queue ID information.
8320 		 * We do this every time in case it changes across time ...
8321 		 * can't be too careful ...
8322 		 */
8323 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0);
8324 		debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8325 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
8326 
8327 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11);
8328 		debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8329 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
8330 
8331 		CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in "
8332 			" state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
8333 			i, idma->idma_qid[i], idma->idma_state[i],
8334 			idma->idma_stalled[i]/hz,
8335 			debug0, debug11);
8336 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
8337 	}
8338 }
8339 
8340 /**
8341  *	t4_read_pace_tbl - read the pace table
8342  *	@adap: the adapter
8343  *	@pace_vals: holds the returned values
8344  *
8345  *	Returns the values of TP's pace table in microseconds.
8346  */
8347 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
8348 {
8349 	unsigned int i, v;
8350 
8351 	for (i = 0; i < NTX_SCHED; i++) {
8352 		t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
8353 		v = t4_read_reg(adap, A_TP_PACE_TABLE);
8354 		pace_vals[i] = dack_ticks_to_usec(adap, v);
8355 	}
8356 }
8357 
8358 /**
8359  *	t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
8360  *	@adap: the adapter
8361  *	@sched: the scheduler index
8362  *	@kbps: the byte rate in Kbps
8363  *	@ipg: the interpacket delay in tenths of nanoseconds
8364  *
8365  *	Return the current configuration of a HW Tx scheduler.
8366  */
8367 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
8368 		     unsigned int *ipg)
8369 {
8370 	unsigned int v, addr, bpt, cpt;
8371 
8372 	if (kbps) {
8373 		addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
8374 		t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
8375 		v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
8376 		if (sched & 1)
8377 			v >>= 16;
8378 		bpt = (v >> 8) & 0xff;
8379 		cpt = v & 0xff;
8380 		if (!cpt)
8381 			*kbps = 0;	/* scheduler disabled */
8382 		else {
8383 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
8384 			*kbps = (v * bpt) / 125;
8385 		}
8386 	}
8387 	if (ipg) {
8388 		addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
8389 		t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
8390 		v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
8391 		if (sched & 1)
8392 			v >>= 16;
8393 		v &= 0xffff;
8394 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
8395 	}
8396 }
8397 
8398 /**
8399  *	t4_load_cfg - download config file
8400  *	@adap: the adapter
8401  *	@cfg_data: the cfg text file to write
8402  *	@size: text file size
8403  *
8404  *	Write the supplied config text file to the card's serial flash.
8405  */
8406 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
8407 {
8408 	int ret, i, n, cfg_addr;
8409 	unsigned int addr;
8410 	unsigned int flash_cfg_start_sec;
8411 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
8412 
8413 	cfg_addr = t4_flash_cfg_addr(adap);
8414 	if (cfg_addr < 0)
8415 		return cfg_addr;
8416 
8417 	addr = cfg_addr;
8418 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
8419 
8420 	if (size > FLASH_CFG_MAX_SIZE) {
8421 		CH_ERR(adap, "cfg file too large, max is %u bytes\n",
8422 		       FLASH_CFG_MAX_SIZE);
8423 		return -EFBIG;
8424 	}
8425 
8426 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
8427 			 sf_sec_size);
8428 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
8429 				     flash_cfg_start_sec + i - 1);
8430 	/*
8431 	 * If size == 0 then we're simply erasing the FLASH sectors associated
8432 	 * with the on-adapter Firmware Configuration File.
8433 	 */
8434 	if (ret || size == 0)
8435 		goto out;
8436 
8437 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
8438 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
8439 		if ( (size - i) <  SF_PAGE_SIZE)
8440 			n = size - i;
8441 		else
8442 			n = SF_PAGE_SIZE;
8443 		ret = t4_write_flash(adap, addr, n, cfg_data, 1);
8444 		if (ret)
8445 			goto out;
8446 
8447 		addr += SF_PAGE_SIZE;
8448 		cfg_data += SF_PAGE_SIZE;
8449 	}
8450 
8451 out:
8452 	if (ret)
8453 		CH_ERR(adap, "config file %s failed %d\n",
8454 		       (size == 0 ? "clear" : "download"), ret);
8455 	return ret;
8456 }
8457 
8458 /**
8459  *	t5_fw_init_extern_mem - initialize the external memory
8460  *	@adap: the adapter
8461  *
8462  *	Initializes the external memory on T5.
8463  */
8464 int t5_fw_init_extern_mem(struct adapter *adap)
8465 {
8466 	u32 params[1], val[1];
8467 	int ret;
8468 
8469 	if (!is_t5(adap))
8470 		return 0;
8471 
8472 	val[0] = 0xff; /* Initialize all MCs */
8473 	params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8474 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT));
8475 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val,
8476 			FW_CMD_MAX_TIMEOUT);
8477 
8478 	return ret;
8479 }
8480 
8481 /* BIOS boot headers */
8482 typedef struct pci_expansion_rom_header {
8483 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
8484 	u8	reserved[22]; /* Reserved per processor Architecture data */
8485 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
8486 } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
8487 
8488 /* Legacy PCI Expansion ROM Header */
8489 typedef struct legacy_pci_expansion_rom_header {
8490 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
8491 	u8	size512; /* Current Image Size in units of 512 bytes */
8492 	u8	initentry_point[4];
8493 	u8	cksum; /* Checksum computed on the entire Image */
8494 	u8	reserved[16]; /* Reserved */
8495 	u8	pcir_offset[2]; /* Offset to PCI Data Struture */
8496 } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
8497 
8498 /* EFI PCI Expansion ROM Header */
8499 typedef struct efi_pci_expansion_rom_header {
8500 	u8	signature[2]; // ROM signature. The value 0xaa55
8501 	u8	initialization_size[2]; /* Units 512. Includes this header */
8502 	u8	efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
8503 	u8	efi_subsystem[2]; /* Subsystem value for EFI image header */
8504 	u8	efi_machine_type[2]; /* Machine type from EFI image header */
8505 	u8	compression_type[2]; /* Compression type. */
8506 		/*
8507 		 * Compression type definition
8508 		 * 0x0: uncompressed
8509 		 * 0x1: Compressed
8510 		 * 0x2-0xFFFF: Reserved
8511 		 */
8512 	u8	reserved[8]; /* Reserved */
8513 	u8	efi_image_header_offset[2]; /* Offset to EFI Image */
8514 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
8515 } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
8516 
8517 /* PCI Data Structure Format */
8518 typedef struct pcir_data_structure { /* PCI Data Structure */
8519 	u8	signature[4]; /* Signature. The string "PCIR" */
8520 	u8	vendor_id[2]; /* Vendor Identification */
8521 	u8	device_id[2]; /* Device Identification */
8522 	u8	vital_product[2]; /* Pointer to Vital Product Data */
8523 	u8	length[2]; /* PCIR Data Structure Length */
8524 	u8	revision; /* PCIR Data Structure Revision */
8525 	u8	class_code[3]; /* Class Code */
8526 	u8	image_length[2]; /* Image Length. Multiple of 512B */
8527 	u8	code_revision[2]; /* Revision Level of Code/Data */
8528 	u8	code_type; /* Code Type. */
8529 		/*
8530 		 * PCI Expansion ROM Code Types
8531 		 * 0x00: Intel IA-32, PC-AT compatible. Legacy
8532 		 * 0x01: Open Firmware standard for PCI. FCODE
8533 		 * 0x02: Hewlett-Packard PA RISC. HP reserved
8534 		 * 0x03: EFI Image. EFI
8535 		 * 0x04-0xFF: Reserved.
8536 		 */
8537 	u8	indicator; /* Indicator. Identifies the last image in the ROM */
8538 	u8	reserved[2]; /* Reserved */
8539 } pcir_data_t; /* PCI__DATA_STRUCTURE */
8540 
8541 /* BOOT constants */
8542 enum {
8543 	BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
8544 	BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
8545 	BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
8546 	BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
8547 	BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
8548 	VENDOR_ID = 0x1425, /* Vendor ID */
8549 	PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
8550 };
8551 
8552 /*
8553  *	modify_device_id - Modifies the device ID of the Boot BIOS image
8554  *	@adatper: the device ID to write.
8555  *	@boot_data: the boot image to modify.
8556  *
8557  *	Write the supplied device ID to the boot BIOS image.
8558  */
8559 static void modify_device_id(int device_id, u8 *boot_data)
8560 {
8561 	legacy_pci_exp_rom_header_t *header;
8562 	pcir_data_t *pcir_header;
8563 	u32 cur_header = 0;
8564 
8565 	/*
8566 	 * Loop through all chained images and change the device ID's
8567 	 */
8568 	while (1) {
8569 		header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
8570 		pcir_header = (pcir_data_t *) &boot_data[cur_header +
8571 			      le16_to_cpu(*(u16*)header->pcir_offset)];
8572 
8573 		/*
8574 		 * Only modify the Device ID if code type is Legacy or HP.
8575 		 * 0x00: Okay to modify
8576 		 * 0x01: FCODE. Do not be modify
8577 		 * 0x03: Okay to modify
8578 		 * 0x04-0xFF: Do not modify
8579 		 */
8580 		if (pcir_header->code_type == 0x00) {
8581 			u8 csum = 0;
8582 			int i;
8583 
8584 			/*
8585 			 * Modify Device ID to match current adatper
8586 			 */
8587 			*(u16*) pcir_header->device_id = device_id;
8588 
8589 			/*
8590 			 * Set checksum temporarily to 0.
8591 			 * We will recalculate it later.
8592 			 */
8593 			header->cksum = 0x0;
8594 
8595 			/*
8596 			 * Calculate and update checksum
8597 			 */
8598 			for (i = 0; i < (header->size512 * 512); i++)
8599 				csum += (u8)boot_data[cur_header + i];
8600 
8601 			/*
8602 			 * Invert summed value to create the checksum
8603 			 * Writing new checksum value directly to the boot data
8604 			 */
8605 			boot_data[cur_header + 7] = -csum;
8606 
8607 		} else if (pcir_header->code_type == 0x03) {
8608 
8609 			/*
8610 			 * Modify Device ID to match current adatper
8611 			 */
8612 			*(u16*) pcir_header->device_id = device_id;
8613 
8614 		}
8615 
8616 
8617 		/*
8618 		 * Check indicator element to identify if this is the last
8619 		 * image in the ROM.
8620 		 */
8621 		if (pcir_header->indicator & 0x80)
8622 			break;
8623 
8624 		/*
8625 		 * Move header pointer up to the next image in the ROM.
8626 		 */
8627 		cur_header += header->size512 * 512;
8628 	}
8629 }
8630 
8631 /*
8632  *	t4_load_boot - download boot flash
8633  *	@adapter: the adapter
8634  *	@boot_data: the boot image to write
8635  *	@boot_addr: offset in flash to write boot_data
8636  *	@size: image size
8637  *
8638  *	Write the supplied boot image to the card's serial flash.
8639  *	The boot image has the following sections: a 28-byte header and the
8640  *	boot image.
8641  */
8642 int t4_load_boot(struct adapter *adap, u8 *boot_data,
8643 		 unsigned int boot_addr, unsigned int size)
8644 {
8645 	pci_exp_rom_header_t *header;
8646 	int pcir_offset ;
8647 	pcir_data_t *pcir_header;
8648 	int ret, addr;
8649 	uint16_t device_id;
8650 	unsigned int i;
8651 	unsigned int boot_sector = (boot_addr * 1024 );
8652 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
8653 
8654 	/*
8655 	 * Make sure the boot image does not encroach on the firmware region
8656 	 */
8657 	if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
8658 		CH_ERR(adap, "boot image encroaching on firmware region\n");
8659 		return -EFBIG;
8660 	}
8661 
8662 	/*
8663 	 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
8664 	 * and Boot configuration data sections. These 3 boot sections span
8665 	 * sectors 0 to 7 in flash and live right before the FW image location.
8666 	 */
8667 	i = DIV_ROUND_UP(size ? size : FLASH_FW_START,
8668 			sf_sec_size);
8669 	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
8670 				     (boot_sector >> 16) + i - 1);
8671 
8672 	/*
8673 	 * If size == 0 then we're simply erasing the FLASH sectors associated
8674 	 * with the on-adapter option ROM file
8675 	 */
8676 	if (ret || (size == 0))
8677 		goto out;
8678 
8679 	/* Get boot header */
8680 	header = (pci_exp_rom_header_t *)boot_data;
8681 	pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
8682 	/* PCIR Data Structure */
8683 	pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
8684 
8685 	/*
8686 	 * Perform some primitive sanity testing to avoid accidentally
8687 	 * writing garbage over the boot sectors.  We ought to check for
8688 	 * more but it's not worth it for now ...
8689 	 */
8690 	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
8691 		CH_ERR(adap, "boot image too small/large\n");
8692 		return -EFBIG;
8693 	}
8694 
8695 #ifndef CHELSIO_T4_DIAGS
8696 	/*
8697 	 * Check BOOT ROM header signature
8698 	 */
8699 	if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
8700 		CH_ERR(adap, "Boot image missing signature\n");
8701 		return -EINVAL;
8702 	}
8703 
8704 	/*
8705 	 * Check PCI header signature
8706 	 */
8707 	if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
8708 		CH_ERR(adap, "PCI header missing signature\n");
8709 		return -EINVAL;
8710 	}
8711 
8712 	/*
8713 	 * Check Vendor ID matches Chelsio ID
8714 	 */
8715 	if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
8716 		CH_ERR(adap, "Vendor ID missing signature\n");
8717 		return -EINVAL;
8718 	}
8719 #endif
8720 
8721 	/*
8722 	 * Retrieve adapter's device ID
8723 	 */
8724 	t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
8725 	/* Want to deal with PF 0 so I strip off PF 4 indicator */
8726 	device_id = device_id & 0xf0ff;
8727 
8728 	/*
8729 	 * Check PCIE Device ID
8730 	 */
8731 	if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
8732 		/*
8733 		 * Change the device ID in the Boot BIOS image to match
8734 		 * the Device ID of the current adapter.
8735 		 */
8736 		modify_device_id(device_id, boot_data);
8737 	}
8738 
8739 	/*
8740 	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
8741 	 * we finish copying the rest of the boot image. This will ensure
8742 	 * that the BIOS boot header will only be written if the boot image
8743 	 * was written in full.
8744 	 */
8745 	addr = boot_sector;
8746 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
8747 		addr += SF_PAGE_SIZE;
8748 		boot_data += SF_PAGE_SIZE;
8749 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
8750 		if (ret)
8751 			goto out;
8752 	}
8753 
8754 	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
8755 			     (const u8 *)header, 0);
8756 
8757 out:
8758 	if (ret)
8759 		CH_ERR(adap, "boot image download failed, error %d\n", ret);
8760 	return ret;
8761 }
8762 
8763 /*
8764  *	t4_flash_bootcfg_addr - return the address of the flash optionrom configuration
8765  *	@adapter: the adapter
8766  *
8767  *	Return the address within the flash where the OptionROM Configuration
8768  *	is stored, or an error if the device FLASH is too small to contain
8769  *	a OptionROM Configuration.
8770  */
8771 static int t4_flash_bootcfg_addr(struct adapter *adapter)
8772 {
8773 	/*
8774 	 * If the device FLASH isn't large enough to hold a Firmware
8775 	 * Configuration File, return an error.
8776 	 */
8777 	if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
8778 		return -ENOSPC;
8779 
8780 	return FLASH_BOOTCFG_START;
8781 }
8782 
8783 int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size)
8784 {
8785 	int ret, i, n, cfg_addr;
8786 	unsigned int addr;
8787 	unsigned int flash_cfg_start_sec;
8788 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
8789 
8790 	cfg_addr = t4_flash_bootcfg_addr(adap);
8791 	if (cfg_addr < 0)
8792 		return cfg_addr;
8793 
8794 	addr = cfg_addr;
8795 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
8796 
8797 	if (size > FLASH_BOOTCFG_MAX_SIZE) {
8798 		CH_ERR(adap, "bootcfg file too large, max is %u bytes\n",
8799 			FLASH_BOOTCFG_MAX_SIZE);
8800 		return -EFBIG;
8801 	}
8802 
8803 	i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */
8804 			 sf_sec_size);
8805 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
8806 					flash_cfg_start_sec + i - 1);
8807 
8808 	/*
8809 	 * If size == 0 then we're simply erasing the FLASH sectors associated
8810 	 * with the on-adapter OptionROM Configuration File.
8811 	 */
8812 	if (ret || size == 0)
8813 		goto out;
8814 
8815 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
8816 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
8817 		if ( (size - i) <  SF_PAGE_SIZE)
8818 			n = size - i;
8819 		else
8820 			n = SF_PAGE_SIZE;
8821 		ret = t4_write_flash(adap, addr, n, cfg_data, 0);
8822 		if (ret)
8823 			goto out;
8824 
8825 		addr += SF_PAGE_SIZE;
8826 		cfg_data += SF_PAGE_SIZE;
8827 	}
8828 
8829 out:
8830 	if (ret)
8831 		CH_ERR(adap, "boot config data %s failed %d\n",
8832 				(size == 0 ? "clear" : "download"), ret);
8833 	return ret;
8834 }
8835 
8836 /**
8837  *	t4_set_filter_mode - configure the optional components of filter tuples
8838  *	@adap: the adapter
8839  *	@mode_map: a bitmap selcting which optional filter components to enable
8840  *
8841  *	Sets the filter mode by selecting the optional components to enable
8842  *	in filter tuples.  Returns 0 on success and a negative error if the
8843  *	requested mode needs more bits than are available for optional
8844  *	components.
8845  */
8846 int t4_set_filter_mode(struct adapter *adap, unsigned int mode_map)
8847 {
8848 	static u8 width[] = { 1, 3, 17, 17, 8, 8, 16, 9, 3, 1 };
8849 
8850 	int i, nbits = 0;
8851 
8852 	for (i = S_FCOE; i <= S_FRAGMENTATION; i++)
8853 		if (mode_map & (1 << i))
8854 			nbits += width[i];
8855 	if (nbits > FILTER_OPT_LEN)
8856 		return -EINVAL;
8857 	if (t4_use_ldst(adap))
8858 		t4_fw_tp_pio_rw(adap, &mode_map, 1, A_TP_VLAN_PRI_MAP, 0);
8859 	else
8860 		t4_write_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, &mode_map,
8861 				  1, A_TP_VLAN_PRI_MAP);
8862 	read_filter_mode_and_ingress_config(adap);
8863 
8864 	return 0;
8865 }
8866 
8867 /**
8868  *	t4_clr_port_stats - clear port statistics
8869  *	@adap: the adapter
8870  *	@idx: the port index
8871  *
8872  *	Clear HW statistics for the given port.
8873  */
8874 void t4_clr_port_stats(struct adapter *adap, int idx)
8875 {
8876 	unsigned int i;
8877 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
8878 	u32 port_base_addr;
8879 
8880 	if (is_t4(adap))
8881 		port_base_addr = PORT_BASE(idx);
8882 	else
8883 		port_base_addr = T5_PORT_BASE(idx);
8884 
8885 	for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
8886 			i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
8887 		t4_write_reg(adap, port_base_addr + i, 0);
8888 	for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
8889 			i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
8890 		t4_write_reg(adap, port_base_addr + i, 0);
8891 	for (i = 0; i < 4; i++)
8892 		if (bgmap & (1 << i)) {
8893 			t4_write_reg(adap,
8894 			A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
8895 			t4_write_reg(adap,
8896 			A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
8897 		}
8898 }
8899 
8900 /**
8901  *	t4_i2c_rd - read I2C data from adapter
8902  *	@adap: the adapter
8903  *	@port: Port number if per-port device; <0 if not
8904  *	@devid: per-port device ID or absolute device ID
8905  *	@offset: byte offset into device I2C space
8906  *	@len: byte length of I2C space data
8907  *	@buf: buffer in which to return I2C data
8908  *
8909  *	Reads the I2C data from the indicated device and location.
8910  */
8911 int t4_i2c_rd(struct adapter *adap, unsigned int mbox,
8912 	      int port, unsigned int devid,
8913 	      unsigned int offset, unsigned int len,
8914 	      u8 *buf)
8915 {
8916 	u32 ldst_addrspace;
8917 	struct fw_ldst_cmd ldst;
8918 	int ret;
8919 
8920 	if (port >= 4 ||
8921 	    devid >= 256 ||
8922 	    offset >= 256 ||
8923 	    len > sizeof ldst.u.i2c.data)
8924 		return -EINVAL;
8925 
8926 	memset(&ldst, 0, sizeof ldst);
8927 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
8928 	ldst.op_to_addrspace =
8929 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
8930 			    F_FW_CMD_REQUEST |
8931 			    F_FW_CMD_READ |
8932 			    ldst_addrspace);
8933 	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
8934 	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
8935 	ldst.u.i2c.did = devid;
8936 	ldst.u.i2c.boffset = offset;
8937 	ldst.u.i2c.blen = len;
8938 	ret = t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
8939 	if (!ret)
8940 		memcpy(buf, ldst.u.i2c.data, len);
8941 	return ret;
8942 }
8943 
8944 /**
8945  *	t4_i2c_wr - write I2C data to adapter
8946  *	@adap: the adapter
8947  *	@port: Port number if per-port device; <0 if not
8948  *	@devid: per-port device ID or absolute device ID
8949  *	@offset: byte offset into device I2C space
8950  *	@len: byte length of I2C space data
8951  *	@buf: buffer containing new I2C data
8952  *
8953  *	Write the I2C data to the indicated device and location.
8954  */
8955 int t4_i2c_wr(struct adapter *adap, unsigned int mbox,
8956 	      int port, unsigned int devid,
8957 	      unsigned int offset, unsigned int len,
8958 	      u8 *buf)
8959 {
8960 	u32 ldst_addrspace;
8961 	struct fw_ldst_cmd ldst;
8962 
8963 	if (port >= 4 ||
8964 	    devid >= 256 ||
8965 	    offset >= 256 ||
8966 	    len > sizeof ldst.u.i2c.data)
8967 		return -EINVAL;
8968 
8969 	memset(&ldst, 0, sizeof ldst);
8970 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
8971 	ldst.op_to_addrspace =
8972 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
8973 			    F_FW_CMD_REQUEST |
8974 			    F_FW_CMD_WRITE |
8975 			    ldst_addrspace);
8976 	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
8977 	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
8978 	ldst.u.i2c.did = devid;
8979 	ldst.u.i2c.boffset = offset;
8980 	ldst.u.i2c.blen = len;
8981 	memcpy(ldst.u.i2c.data, buf, len);
8982 	return t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
8983 }
8984 
8985 /**
8986  * 	t4_sge_ctxt_rd - read an SGE context through FW
8987  * 	@adap: the adapter
8988  * 	@mbox: mailbox to use for the FW command
8989  * 	@cid: the context id
8990  * 	@ctype: the context type
8991  * 	@data: where to store the context data
8992  *
8993  * 	Issues a FW command through the given mailbox to read an SGE context.
8994  */
8995 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
8996 		   enum ctxt_type ctype, u32 *data)
8997 {
8998 	int ret;
8999 	struct fw_ldst_cmd c;
9000 
9001 	if (ctype == CTXT_EGRESS)
9002 		ret = FW_LDST_ADDRSPC_SGE_EGRC;
9003 	else if (ctype == CTXT_INGRESS)
9004 		ret = FW_LDST_ADDRSPC_SGE_INGC;
9005 	else if (ctype == CTXT_FLM)
9006 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
9007 	else
9008 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
9009 
9010 	memset(&c, 0, sizeof(c));
9011 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9012 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
9013 					V_FW_LDST_CMD_ADDRSPACE(ret));
9014 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
9015 	c.u.idctxt.physid = cpu_to_be32(cid);
9016 
9017 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
9018 	if (ret == 0) {
9019 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
9020 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
9021 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
9022 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
9023 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
9024 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
9025 	}
9026 	return ret;
9027 }
9028 
9029 /**
9030  * 	t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
9031  * 	@adap: the adapter
9032  * 	@cid: the context id
9033  * 	@ctype: the context type
9034  * 	@data: where to store the context data
9035  *
9036  * 	Reads an SGE context directly, bypassing FW.  This is only for
9037  * 	debugging when FW is unavailable.
9038  */
9039 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
9040 		      u32 *data)
9041 {
9042 	int i, ret;
9043 
9044 	t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
9045 	ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
9046 	if (!ret)
9047 		for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
9048 			*data++ = t4_read_reg(adap, i);
9049 	return ret;
9050 }
9051 
9052 int t4_sched_config(struct adapter *adapter, int type, int minmaxen,
9053     		    int sleep_ok)
9054 {
9055 	struct fw_sched_cmd cmd;
9056 
9057 	memset(&cmd, 0, sizeof(cmd));
9058 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9059 				      F_FW_CMD_REQUEST |
9060 				      F_FW_CMD_WRITE);
9061 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9062 
9063 	cmd.u.config.sc = FW_SCHED_SC_CONFIG;
9064 	cmd.u.config.type = type;
9065 	cmd.u.config.minmaxen = minmaxen;
9066 
9067 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9068 			       NULL, sleep_ok);
9069 }
9070 
9071 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
9072 		    int rateunit, int ratemode, int channel, int cl,
9073 		    int minrate, int maxrate, int weight, int pktsize,
9074 		    int sleep_ok)
9075 {
9076 	struct fw_sched_cmd cmd;
9077 
9078 	memset(&cmd, 0, sizeof(cmd));
9079 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9080 				      F_FW_CMD_REQUEST |
9081 				      F_FW_CMD_WRITE);
9082 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9083 
9084 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9085 	cmd.u.params.type = type;
9086 	cmd.u.params.level = level;
9087 	cmd.u.params.mode = mode;
9088 	cmd.u.params.ch = channel;
9089 	cmd.u.params.cl = cl;
9090 	cmd.u.params.unit = rateunit;
9091 	cmd.u.params.rate = ratemode;
9092 	cmd.u.params.min = cpu_to_be32(minrate);
9093 	cmd.u.params.max = cpu_to_be32(maxrate);
9094 	cmd.u.params.weight = cpu_to_be16(weight);
9095 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
9096 
9097 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9098 			       NULL, sleep_ok);
9099 }
9100 
9101 /*
9102  *	t4_config_watchdog - configure (enable/disable) a watchdog timer
9103  *	@adapter: the adapter
9104  * 	@mbox: mailbox to use for the FW command
9105  * 	@pf: the PF owning the queue
9106  * 	@vf: the VF owning the queue
9107  *	@timeout: watchdog timeout in ms
9108  *	@action: watchdog timer / action
9109  *
9110  *	There are separate watchdog timers for each possible watchdog
9111  *	action.  Configure one of the watchdog timers by setting a non-zero
9112  *	timeout.  Disable a watchdog timer by using a timeout of zero.
9113  */
9114 int t4_config_watchdog(struct adapter *adapter, unsigned int mbox,
9115 		       unsigned int pf, unsigned int vf,
9116 		       unsigned int timeout, unsigned int action)
9117 {
9118 	struct fw_watchdog_cmd wdog;
9119 	unsigned int ticks;
9120 
9121 	/*
9122 	 * The watchdog command expects a timeout in units of 10ms so we need
9123 	 * to convert it here (via rounding) and force a minimum of one 10ms
9124 	 * "tick" if the timeout is non-zero but the convertion results in 0
9125 	 * ticks.
9126 	 */
9127 	ticks = (timeout + 5)/10;
9128 	if (timeout && !ticks)
9129 		ticks = 1;
9130 
9131 	memset(&wdog, 0, sizeof wdog);
9132 	wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) |
9133 				     F_FW_CMD_REQUEST |
9134 				     F_FW_CMD_WRITE |
9135 				     V_FW_PARAMS_CMD_PFN(pf) |
9136 				     V_FW_PARAMS_CMD_VFN(vf));
9137 	wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog));
9138 	wdog.timeout = cpu_to_be32(ticks);
9139 	wdog.action = cpu_to_be32(action);
9140 
9141 	return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL);
9142 }
9143 
9144 int t4_get_devlog_level(struct adapter *adapter, unsigned int *level)
9145 {
9146 	struct fw_devlog_cmd devlog_cmd;
9147 	int ret;
9148 
9149 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9150 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9151 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
9152 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9153 	ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
9154 			 sizeof(devlog_cmd), &devlog_cmd);
9155 	if (ret)
9156 		return ret;
9157 
9158 	*level = devlog_cmd.level;
9159 	return 0;
9160 }
9161 
9162 int t4_set_devlog_level(struct adapter *adapter, unsigned int level)
9163 {
9164 	struct fw_devlog_cmd devlog_cmd;
9165 
9166 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9167 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9168 					     F_FW_CMD_REQUEST |
9169 					     F_FW_CMD_WRITE);
9170 	devlog_cmd.level = level;
9171 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9172 	return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
9173 			  sizeof(devlog_cmd), &devlog_cmd);
9174 }
9175