xref: /freebsd/sys/dev/cxgbe/common/t4_hw.c (revision 41ce62251c1ed0003fc13b8735de5f9eff4c5c03)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2012, 2016 Chelsio Communications, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_inet.h"
33 
34 #include <sys/param.h>
35 #include <sys/eventhandler.h>
36 
37 #include "common.h"
38 #include "t4_regs.h"
39 #include "t4_regs_values.h"
40 #include "firmware/t4fw_interface.h"
41 
42 #undef msleep
43 #define msleep(x) do { \
44 	if (cold) \
45 		DELAY((x) * 1000); \
46 	else \
47 		pause("t4hw", (x) * hz / 1000); \
48 } while (0)
49 
50 /**
51  *	t4_wait_op_done_val - wait until an operation is completed
52  *	@adapter: the adapter performing the operation
53  *	@reg: the register to check for completion
54  *	@mask: a single-bit field within @reg that indicates completion
55  *	@polarity: the value of the field when the operation is completed
56  *	@attempts: number of check iterations
57  *	@delay: delay in usecs between iterations
58  *	@valp: where to store the value of the register at completion time
59  *
60  *	Wait until an operation is completed by checking a bit in a register
61  *	up to @attempts times.  If @valp is not NULL the value of the register
62  *	at the time it indicated completion is stored there.  Returns 0 if the
63  *	operation completes and	-EAGAIN	otherwise.
64  */
65 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
66 			       int polarity, int attempts, int delay, u32 *valp)
67 {
68 	while (1) {
69 		u32 val = t4_read_reg(adapter, reg);
70 
71 		if (!!(val & mask) == polarity) {
72 			if (valp)
73 				*valp = val;
74 			return 0;
75 		}
76 		if (--attempts == 0)
77 			return -EAGAIN;
78 		if (delay)
79 			udelay(delay);
80 	}
81 }
82 
83 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
84 				  int polarity, int attempts, int delay)
85 {
86 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
87 				   delay, NULL);
88 }
89 
90 /**
91  *	t4_set_reg_field - set a register field to a value
92  *	@adapter: the adapter to program
93  *	@addr: the register address
94  *	@mask: specifies the portion of the register to modify
95  *	@val: the new value for the register field
96  *
97  *	Sets a register field specified by the supplied mask to the
98  *	given value.
99  */
100 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
101 		      u32 val)
102 {
103 	u32 v = t4_read_reg(adapter, addr) & ~mask;
104 
105 	t4_write_reg(adapter, addr, v | val);
106 	(void) t4_read_reg(adapter, addr);      /* flush */
107 }
108 
109 /**
110  *	t4_read_indirect - read indirectly addressed registers
111  *	@adap: the adapter
112  *	@addr_reg: register holding the indirect address
113  *	@data_reg: register holding the value of the indirect register
114  *	@vals: where the read register values are stored
115  *	@nregs: how many indirect registers to read
116  *	@start_idx: index of first indirect register to read
117  *
118  *	Reads registers that are accessed indirectly through an address/data
119  *	register pair.
120  */
121 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
122 			     unsigned int data_reg, u32 *vals,
123 			     unsigned int nregs, unsigned int start_idx)
124 {
125 	while (nregs--) {
126 		t4_write_reg(adap, addr_reg, start_idx);
127 		*vals++ = t4_read_reg(adap, data_reg);
128 		start_idx++;
129 	}
130 }
131 
132 /**
133  *	t4_write_indirect - write indirectly addressed registers
134  *	@adap: the adapter
135  *	@addr_reg: register holding the indirect addresses
136  *	@data_reg: register holding the value for the indirect registers
137  *	@vals: values to write
138  *	@nregs: how many indirect registers to write
139  *	@start_idx: address of first indirect register to write
140  *
141  *	Writes a sequential block of registers that are accessed indirectly
142  *	through an address/data register pair.
143  */
144 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
145 		       unsigned int data_reg, const u32 *vals,
146 		       unsigned int nregs, unsigned int start_idx)
147 {
148 	while (nregs--) {
149 		t4_write_reg(adap, addr_reg, start_idx++);
150 		t4_write_reg(adap, data_reg, *vals++);
151 	}
152 }
153 
154 /*
155  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
156  * mechanism.  This guarantees that we get the real value even if we're
157  * operating within a Virtual Machine and the Hypervisor is trapping our
158  * Configuration Space accesses.
159  *
160  * N.B. This routine should only be used as a last resort: the firmware uses
161  *      the backdoor registers on a regular basis and we can end up
162  *      conflicting with it's uses!
163  */
164 u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
165 {
166 	u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg);
167 	u32 val;
168 
169 	if (chip_id(adap) <= CHELSIO_T5)
170 		req |= F_ENABLE;
171 	else
172 		req |= F_T6_ENABLE;
173 
174 	if (is_t4(adap))
175 		req |= F_LOCALCFG;
176 
177 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req);
178 	val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
179 
180 	/*
181 	 * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
182 	 * Configuration Space read.  (None of the other fields matter when
183 	 * F_ENABLE is 0 so a simple register write is easier than a
184 	 * read-modify-write via t4_set_reg_field().)
185 	 */
186 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0);
187 
188 	return val;
189 }
190 
191 /*
192  * t4_report_fw_error - report firmware error
193  * @adap: the adapter
194  *
195  * The adapter firmware can indicate error conditions to the host.
196  * If the firmware has indicated an error, print out the reason for
197  * the firmware error.
198  */
199 static void t4_report_fw_error(struct adapter *adap)
200 {
201 	static const char *const reason[] = {
202 		"Crash",			/* PCIE_FW_EVAL_CRASH */
203 		"During Device Preparation",	/* PCIE_FW_EVAL_PREP */
204 		"During Device Configuration",	/* PCIE_FW_EVAL_CONF */
205 		"During Device Initialization",	/* PCIE_FW_EVAL_INIT */
206 		"Unexpected Event",		/* PCIE_FW_EVAL_UNEXPECTEDEVENT */
207 		"Insufficient Airflow",		/* PCIE_FW_EVAL_OVERHEAT */
208 		"Device Shutdown",		/* PCIE_FW_EVAL_DEVICESHUTDOWN */
209 		"Reserved",			/* reserved */
210 	};
211 	u32 pcie_fw;
212 
213 	pcie_fw = t4_read_reg(adap, A_PCIE_FW);
214 	if (pcie_fw & F_PCIE_FW_ERR) {
215 		adap->flags &= ~FW_OK;
216 		CH_ERR(adap, "firmware reports adapter error: %s (0x%08x)\n",
217 		    reason[G_PCIE_FW_EVAL(pcie_fw)], pcie_fw);
218 		if (pcie_fw != 0xffffffff)
219 			t4_os_dump_devlog(adap);
220 	}
221 }
222 
223 /*
224  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
225  */
226 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
227 			 u32 mbox_addr)
228 {
229 	for ( ; nflit; nflit--, mbox_addr += 8)
230 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
231 }
232 
233 /*
234  * Handle a FW assertion reported in a mailbox.
235  */
236 static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt)
237 {
238 	CH_ALERT(adap,
239 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
240 		  asrt->u.assert.filename_0_7,
241 		  be32_to_cpu(asrt->u.assert.line),
242 		  be32_to_cpu(asrt->u.assert.x),
243 		  be32_to_cpu(asrt->u.assert.y));
244 }
245 
246 struct port_tx_state {
247 	uint64_t rx_pause;
248 	uint64_t tx_frames;
249 };
250 
251 static void
252 read_tx_state_one(struct adapter *sc, int i, struct port_tx_state *tx_state)
253 {
254 	uint32_t rx_pause_reg, tx_frames_reg;
255 
256 	if (is_t4(sc)) {
257 		tx_frames_reg = PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
258 		rx_pause_reg = PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
259 	} else {
260 		tx_frames_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
261 		rx_pause_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
262 	}
263 
264 	tx_state->rx_pause = t4_read_reg64(sc, rx_pause_reg);
265 	tx_state->tx_frames = t4_read_reg64(sc, tx_frames_reg);
266 }
267 
268 static void
269 read_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
270 {
271 	int i;
272 
273 	for_each_port(sc, i)
274 		read_tx_state_one(sc, i, &tx_state[i]);
275 }
276 
277 static void
278 check_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
279 {
280 	uint32_t port_ctl_reg;
281 	uint64_t tx_frames, rx_pause;
282 	int i;
283 
284 	for_each_port(sc, i) {
285 		rx_pause = tx_state[i].rx_pause;
286 		tx_frames = tx_state[i].tx_frames;
287 		read_tx_state_one(sc, i, &tx_state[i]);	/* update */
288 
289 		if (is_t4(sc))
290 			port_ctl_reg = PORT_REG(i, A_MPS_PORT_CTL);
291 		else
292 			port_ctl_reg = T5_PORT_REG(i, A_MPS_PORT_CTL);
293 		if (t4_read_reg(sc, port_ctl_reg) & F_PORTTXEN &&
294 		    rx_pause != tx_state[i].rx_pause &&
295 		    tx_frames == tx_state[i].tx_frames) {
296 			t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, 0);
297 			mdelay(1);
298 			t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, F_PORTTXEN);
299 		}
300 	}
301 }
302 
303 #define X_CIM_PF_NOACCESS 0xeeeeeeee
304 /**
305  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
306  *	@adap: the adapter
307  *	@mbox: index of the mailbox to use
308  *	@cmd: the command to write
309  *	@size: command length in bytes
310  *	@rpl: where to optionally store the reply
311  *	@sleep_ok: if true we may sleep while awaiting command completion
312  *	@timeout: time to wait for command to finish before timing out
313  *		(negative implies @sleep_ok=false)
314  *
315  *	Sends the given command to FW through the selected mailbox and waits
316  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
317  *	store the FW's reply to the command.  The command and its optional
318  *	reply are of the same length.  Some FW commands like RESET and
319  *	INITIALIZE can take a considerable amount of time to execute.
320  *	@sleep_ok determines whether we may sleep while awaiting the response.
321  *	If sleeping is allowed we use progressive backoff otherwise we spin.
322  *	Note that passing in a negative @timeout is an alternate mechanism
323  *	for specifying @sleep_ok=false.  This is useful when a higher level
324  *	interface allows for specification of @timeout but not @sleep_ok ...
325  *
326  *	The return value is 0 on success or a negative errno on failure.  A
327  *	failure can happen either because we are not able to execute the
328  *	command or FW executes it but signals an error.  In the latter case
329  *	the return value is the error code indicated by FW (negated).
330  */
331 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
332 			    int size, void *rpl, bool sleep_ok, int timeout)
333 {
334 	/*
335 	 * We delay in small increments at first in an effort to maintain
336 	 * responsiveness for simple, fast executing commands but then back
337 	 * off to larger delays to a maximum retry delay.
338 	 */
339 	static const int delay[] = {
340 		1, 1, 3, 5, 10, 10, 20, 50, 100
341 	};
342 	u32 v;
343 	u64 res;
344 	int i, ms, delay_idx, ret, next_tx_check;
345 	u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
346 	u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
347 	u32 ctl;
348 	__be64 cmd_rpl[MBOX_LEN/8];
349 	u32 pcie_fw;
350 	struct port_tx_state tx_state[MAX_NPORTS];
351 
352 	if (adap->flags & CHK_MBOX_ACCESS)
353 		ASSERT_SYNCHRONIZED_OP(adap);
354 
355 	if (size <= 0 || (size & 15) || size > MBOX_LEN)
356 		return -EINVAL;
357 
358 	if (adap->flags & IS_VF) {
359 		if (is_t6(adap))
360 			data_reg = FW_T6VF_MBDATA_BASE_ADDR;
361 		else
362 			data_reg = FW_T4VF_MBDATA_BASE_ADDR;
363 		ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL);
364 	}
365 
366 	/*
367 	 * If we have a negative timeout, that implies that we can't sleep.
368 	 */
369 	if (timeout < 0) {
370 		sleep_ok = false;
371 		timeout = -timeout;
372 	}
373 
374 	/*
375 	 * Attempt to gain access to the mailbox.
376 	 */
377 	for (i = 0; i < 4; i++) {
378 		ctl = t4_read_reg(adap, ctl_reg);
379 		v = G_MBOWNER(ctl);
380 		if (v != X_MBOWNER_NONE)
381 			break;
382 	}
383 
384 	/*
385 	 * If we were unable to gain access, report the error to our caller.
386 	 */
387 	if (v != X_MBOWNER_PL) {
388 		t4_report_fw_error(adap);
389 		ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
390 		return ret;
391 	}
392 
393 	/*
394 	 * If we gain ownership of the mailbox and there's a "valid" message
395 	 * in it, this is likely an asynchronous error message from the
396 	 * firmware.  So we'll report that and then proceed on with attempting
397 	 * to issue our own command ... which may well fail if the error
398 	 * presaged the firmware crashing ...
399 	 */
400 	if (ctl & F_MBMSGVALID) {
401 		CH_DUMP_MBOX(adap, mbox, data_reg, "VLD", NULL, true);
402 	}
403 
404 	/*
405 	 * Copy in the new mailbox command and send it on its way ...
406 	 */
407 	memset(cmd_rpl, 0, sizeof(cmd_rpl));
408 	memcpy(cmd_rpl, cmd, size);
409 	CH_DUMP_MBOX(adap, mbox, 0, "cmd", cmd_rpl, false);
410 	for (i = 0; i < ARRAY_SIZE(cmd_rpl); i++)
411 		t4_write_reg64(adap, data_reg + i * 8, be64_to_cpu(cmd_rpl[i]));
412 
413 	if (adap->flags & IS_VF) {
414 		/*
415 		 * For the VFs, the Mailbox Data "registers" are
416 		 * actually backed by T4's "MA" interface rather than
417 		 * PL Registers (as is the case for the PFs).  Because
418 		 * these are in different coherency domains, the write
419 		 * to the VF's PL-register-backed Mailbox Control can
420 		 * race in front of the writes to the MA-backed VF
421 		 * Mailbox Data "registers".  So we need to do a
422 		 * read-back on at least one byte of the VF Mailbox
423 		 * Data registers before doing the write to the VF
424 		 * Mailbox Control register.
425 		 */
426 		t4_read_reg(adap, data_reg);
427 	}
428 
429 	t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
430 	read_tx_state(adap, &tx_state[0]);	/* also flushes the write_reg */
431 	next_tx_check = 1000;
432 	delay_idx = 0;
433 	ms = delay[0];
434 
435 	/*
436 	 * Loop waiting for the reply; bail out if we time out or the firmware
437 	 * reports an error.
438 	 */
439 	pcie_fw = 0;
440 	for (i = 0; i < timeout; i += ms) {
441 		if (!(adap->flags & IS_VF)) {
442 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
443 			if (pcie_fw & F_PCIE_FW_ERR)
444 				break;
445 		}
446 
447 		if (i >= next_tx_check) {
448 			check_tx_state(adap, &tx_state[0]);
449 			next_tx_check = i + 1000;
450 		}
451 
452 		if (sleep_ok) {
453 			ms = delay[delay_idx];  /* last element may repeat */
454 			if (delay_idx < ARRAY_SIZE(delay) - 1)
455 				delay_idx++;
456 			msleep(ms);
457 		} else {
458 			mdelay(ms);
459 		}
460 
461 		v = t4_read_reg(adap, ctl_reg);
462 		if (v == X_CIM_PF_NOACCESS)
463 			continue;
464 		if (G_MBOWNER(v) == X_MBOWNER_PL) {
465 			if (!(v & F_MBMSGVALID)) {
466 				t4_write_reg(adap, ctl_reg,
467 					     V_MBOWNER(X_MBOWNER_NONE));
468 				continue;
469 			}
470 
471 			/*
472 			 * Retrieve the command reply and release the mailbox.
473 			 */
474 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg);
475 			CH_DUMP_MBOX(adap, mbox, 0, "rpl", cmd_rpl, false);
476 			t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
477 
478 			res = be64_to_cpu(cmd_rpl[0]);
479 			if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
480 				fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl);
481 				res = V_FW_CMD_RETVAL(EIO);
482 			} else if (rpl)
483 				memcpy(rpl, cmd_rpl, size);
484 			return -G_FW_CMD_RETVAL((int)res);
485 		}
486 	}
487 
488 	/*
489 	 * We timed out waiting for a reply to our mailbox command.  Report
490 	 * the error and also check to see if the firmware reported any
491 	 * errors ...
492 	 */
493 	CH_ERR(adap, "command %#x in mbox %d timed out (0x%08x).\n",
494 	    *(const u8 *)cmd, mbox, pcie_fw);
495 	CH_DUMP_MBOX(adap, mbox, 0, "cmdsent", cmd_rpl, true);
496 	CH_DUMP_MBOX(adap, mbox, data_reg, "current", NULL, true);
497 
498 	if (pcie_fw & F_PCIE_FW_ERR) {
499 		ret = -ENXIO;
500 		t4_report_fw_error(adap);
501 	} else {
502 		ret = -ETIMEDOUT;
503 		t4_os_dump_devlog(adap);
504 	}
505 
506 	t4_fatal_err(adap, true);
507 	return ret;
508 }
509 
510 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
511 		    void *rpl, bool sleep_ok)
512 {
513 		return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl,
514 					       sleep_ok, FW_CMD_MAX_TIMEOUT);
515 
516 }
517 
518 static int t4_edc_err_read(struct adapter *adap, int idx)
519 {
520 	u32 edc_ecc_err_addr_reg;
521 	u32 edc_bist_status_rdata_reg;
522 
523 	if (is_t4(adap)) {
524 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
525 		return 0;
526 	}
527 	if (idx != MEM_EDC0 && idx != MEM_EDC1) {
528 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
529 		return 0;
530 	}
531 
532 	edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx);
533 	edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx);
534 
535 	CH_WARN(adap,
536 		"edc%d err addr 0x%x: 0x%x.\n",
537 		idx, edc_ecc_err_addr_reg,
538 		t4_read_reg(adap, edc_ecc_err_addr_reg));
539 	CH_WARN(adap,
540 	 	"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
541 		edc_bist_status_rdata_reg,
542 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg),
543 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8),
544 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16),
545 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24),
546 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32),
547 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40),
548 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48),
549 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56),
550 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64));
551 
552 	return 0;
553 }
554 
555 /**
556  *	t4_mc_read - read from MC through backdoor accesses
557  *	@adap: the adapter
558  *	@idx: which MC to access
559  *	@addr: address of first byte requested
560  *	@data: 64 bytes of data containing the requested address
561  *	@ecc: where to store the corresponding 64-bit ECC word
562  *
563  *	Read 64 bytes of data from MC starting at a 64-byte-aligned address
564  *	that covers the requested address @addr.  If @parity is not %NULL it
565  *	is assigned the 64-bit ECC word for the read data.
566  */
567 int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
568 {
569 	int i;
570 	u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
571 	u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
572 
573 	if (is_t4(adap)) {
574 		mc_bist_cmd_reg = A_MC_BIST_CMD;
575 		mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
576 		mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
577 		mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
578 		mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
579 	} else {
580 		mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
581 		mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
582 		mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
583 		mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA,
584 						  idx);
585 		mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN,
586 						  idx);
587 	}
588 
589 	if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
590 		return -EBUSY;
591 	t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
592 	t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
593 	t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
594 	t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
595 		     F_START_BIST | V_BIST_CMD_GAP(1));
596 	i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
597 	if (i)
598 		return i;
599 
600 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
601 
602 	for (i = 15; i >= 0; i--)
603 		*data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
604 	if (ecc)
605 		*ecc = t4_read_reg64(adap, MC_DATA(16));
606 #undef MC_DATA
607 	return 0;
608 }
609 
610 /**
611  *	t4_edc_read - read from EDC through backdoor accesses
612  *	@adap: the adapter
613  *	@idx: which EDC to access
614  *	@addr: address of first byte requested
615  *	@data: 64 bytes of data containing the requested address
616  *	@ecc: where to store the corresponding 64-bit ECC word
617  *
618  *	Read 64 bytes of data from EDC starting at a 64-byte-aligned address
619  *	that covers the requested address @addr.  If @parity is not %NULL it
620  *	is assigned the 64-bit ECC word for the read data.
621  */
622 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
623 {
624 	int i;
625 	u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
626 	u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
627 
628 	if (is_t4(adap)) {
629 		edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
630 		edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
631 		edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
632 		edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
633 						    idx);
634 		edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
635 						    idx);
636 	} else {
637 /*
638  * These macro are missing in t4_regs.h file.
639  * Added temporarily for testing.
640  */
641 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
642 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
643 		edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx);
644 		edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx);
645 		edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx);
646 		edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN,
647 						    idx);
648 		edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA,
649 						    idx);
650 #undef EDC_REG_T5
651 #undef EDC_STRIDE_T5
652 	}
653 
654 	if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
655 		return -EBUSY;
656 	t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
657 	t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
658 	t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
659 	t4_write_reg(adap, edc_bist_cmd_reg,
660 		     V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
661 	i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
662 	if (i)
663 		return i;
664 
665 #define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
666 
667 	for (i = 15; i >= 0; i--)
668 		*data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
669 	if (ecc)
670 		*ecc = t4_read_reg64(adap, EDC_DATA(16));
671 #undef EDC_DATA
672 	return 0;
673 }
674 
675 /**
676  *	t4_mem_read - read EDC 0, EDC 1 or MC into buffer
677  *	@adap: the adapter
678  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
679  *	@addr: address within indicated memory type
680  *	@len: amount of memory to read
681  *	@buf: host memory buffer
682  *
683  *	Reads an [almost] arbitrary memory region in the firmware: the
684  *	firmware memory address, length and host buffer must be aligned on
685  *	32-bit boudaries.  The memory is returned as a raw byte sequence from
686  *	the firmware's memory.  If this memory contains data structures which
687  *	contain multi-byte integers, it's the callers responsibility to
688  *	perform appropriate byte order conversions.
689  */
690 int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
691 		__be32 *buf)
692 {
693 	u32 pos, start, end, offset;
694 	int ret;
695 
696 	/*
697 	 * Argument sanity checks ...
698 	 */
699 	if ((addr & 0x3) || (len & 0x3))
700 		return -EINVAL;
701 
702 	/*
703 	 * The underlaying EDC/MC read routines read 64 bytes at a time so we
704 	 * need to round down the start and round up the end.  We'll start
705 	 * copying out of the first line at (addr - start) a word at a time.
706 	 */
707 	start = rounddown2(addr, 64);
708 	end = roundup2(addr + len, 64);
709 	offset = (addr - start)/sizeof(__be32);
710 
711 	for (pos = start; pos < end; pos += 64, offset = 0) {
712 		__be32 data[16];
713 
714 		/*
715 		 * Read the chip's memory block and bail if there's an error.
716 		 */
717 		if ((mtype == MEM_MC) || (mtype == MEM_MC1))
718 			ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
719 		else
720 			ret = t4_edc_read(adap, mtype, pos, data, NULL);
721 		if (ret)
722 			return ret;
723 
724 		/*
725 		 * Copy the data into the caller's memory buffer.
726 		 */
727 		while (offset < 16 && len > 0) {
728 			*buf++ = data[offset++];
729 			len -= sizeof(__be32);
730 		}
731 	}
732 
733 	return 0;
734 }
735 
736 /*
737  * Return the specified PCI-E Configuration Space register from our Physical
738  * Function.  We try first via a Firmware LDST Command (if fw_attach != 0)
739  * since we prefer to let the firmware own all of these registers, but if that
740  * fails we go for it directly ourselves.
741  */
742 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach)
743 {
744 
745 	/*
746 	 * If fw_attach != 0, construct and send the Firmware LDST Command to
747 	 * retrieve the specified PCI-E Configuration Space register.
748 	 */
749 	if (drv_fw_attach != 0) {
750 		struct fw_ldst_cmd ldst_cmd;
751 		int ret;
752 
753 		memset(&ldst_cmd, 0, sizeof(ldst_cmd));
754 		ldst_cmd.op_to_addrspace =
755 			cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
756 				    F_FW_CMD_REQUEST |
757 				    F_FW_CMD_READ |
758 				    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
759 		ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
760 		ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1);
761 		ldst_cmd.u.pcie.ctrl_to_fn =
762 			(F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf));
763 		ldst_cmd.u.pcie.r = reg;
764 
765 		/*
766 		 * If the LDST Command succeeds, return the result, otherwise
767 		 * fall through to reading it directly ourselves ...
768 		 */
769 		ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
770 				 &ldst_cmd);
771 		if (ret == 0)
772 			return be32_to_cpu(ldst_cmd.u.pcie.data[0]);
773 
774 		CH_WARN(adap, "Firmware failed to return "
775 			"Configuration Space register %d, err = %d\n",
776 			reg, -ret);
777 	}
778 
779 	/*
780 	 * Read the desired Configuration Space register via the PCI-E
781 	 * Backdoor mechanism.
782 	 */
783 	return t4_hw_pci_read_cfg4(adap, reg);
784 }
785 
786 /**
787  *	t4_get_regs_len - return the size of the chips register set
788  *	@adapter: the adapter
789  *
790  *	Returns the size of the chip's BAR0 register space.
791  */
792 unsigned int t4_get_regs_len(struct adapter *adapter)
793 {
794 	unsigned int chip_version = chip_id(adapter);
795 
796 	switch (chip_version) {
797 	case CHELSIO_T4:
798 		if (adapter->flags & IS_VF)
799 			return FW_T4VF_REGMAP_SIZE;
800 		return T4_REGMAP_SIZE;
801 
802 	case CHELSIO_T5:
803 	case CHELSIO_T6:
804 		if (adapter->flags & IS_VF)
805 			return FW_T4VF_REGMAP_SIZE;
806 		return T5_REGMAP_SIZE;
807 	}
808 
809 	CH_ERR(adapter,
810 		"Unsupported chip version %d\n", chip_version);
811 	return 0;
812 }
813 
814 /**
815  *	t4_get_regs - read chip registers into provided buffer
816  *	@adap: the adapter
817  *	@buf: register buffer
818  *	@buf_size: size (in bytes) of register buffer
819  *
820  *	If the provided register buffer isn't large enough for the chip's
821  *	full register range, the register dump will be truncated to the
822  *	register buffer's size.
823  */
824 void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size)
825 {
826 	static const unsigned int t4_reg_ranges[] = {
827 		0x1008, 0x1108,
828 		0x1180, 0x1184,
829 		0x1190, 0x1194,
830 		0x11a0, 0x11a4,
831 		0x11b0, 0x11b4,
832 		0x11fc, 0x123c,
833 		0x1300, 0x173c,
834 		0x1800, 0x18fc,
835 		0x3000, 0x30d8,
836 		0x30e0, 0x30e4,
837 		0x30ec, 0x5910,
838 		0x5920, 0x5924,
839 		0x5960, 0x5960,
840 		0x5968, 0x5968,
841 		0x5970, 0x5970,
842 		0x5978, 0x5978,
843 		0x5980, 0x5980,
844 		0x5988, 0x5988,
845 		0x5990, 0x5990,
846 		0x5998, 0x5998,
847 		0x59a0, 0x59d4,
848 		0x5a00, 0x5ae0,
849 		0x5ae8, 0x5ae8,
850 		0x5af0, 0x5af0,
851 		0x5af8, 0x5af8,
852 		0x6000, 0x6098,
853 		0x6100, 0x6150,
854 		0x6200, 0x6208,
855 		0x6240, 0x6248,
856 		0x6280, 0x62b0,
857 		0x62c0, 0x6338,
858 		0x6370, 0x638c,
859 		0x6400, 0x643c,
860 		0x6500, 0x6524,
861 		0x6a00, 0x6a04,
862 		0x6a14, 0x6a38,
863 		0x6a60, 0x6a70,
864 		0x6a78, 0x6a78,
865 		0x6b00, 0x6b0c,
866 		0x6b1c, 0x6b84,
867 		0x6bf0, 0x6bf8,
868 		0x6c00, 0x6c0c,
869 		0x6c1c, 0x6c84,
870 		0x6cf0, 0x6cf8,
871 		0x6d00, 0x6d0c,
872 		0x6d1c, 0x6d84,
873 		0x6df0, 0x6df8,
874 		0x6e00, 0x6e0c,
875 		0x6e1c, 0x6e84,
876 		0x6ef0, 0x6ef8,
877 		0x6f00, 0x6f0c,
878 		0x6f1c, 0x6f84,
879 		0x6ff0, 0x6ff8,
880 		0x7000, 0x700c,
881 		0x701c, 0x7084,
882 		0x70f0, 0x70f8,
883 		0x7100, 0x710c,
884 		0x711c, 0x7184,
885 		0x71f0, 0x71f8,
886 		0x7200, 0x720c,
887 		0x721c, 0x7284,
888 		0x72f0, 0x72f8,
889 		0x7300, 0x730c,
890 		0x731c, 0x7384,
891 		0x73f0, 0x73f8,
892 		0x7400, 0x7450,
893 		0x7500, 0x7530,
894 		0x7600, 0x760c,
895 		0x7614, 0x761c,
896 		0x7680, 0x76cc,
897 		0x7700, 0x7798,
898 		0x77c0, 0x77fc,
899 		0x7900, 0x79fc,
900 		0x7b00, 0x7b58,
901 		0x7b60, 0x7b84,
902 		0x7b8c, 0x7c38,
903 		0x7d00, 0x7d38,
904 		0x7d40, 0x7d80,
905 		0x7d8c, 0x7ddc,
906 		0x7de4, 0x7e04,
907 		0x7e10, 0x7e1c,
908 		0x7e24, 0x7e38,
909 		0x7e40, 0x7e44,
910 		0x7e4c, 0x7e78,
911 		0x7e80, 0x7ea4,
912 		0x7eac, 0x7edc,
913 		0x7ee8, 0x7efc,
914 		0x8dc0, 0x8e04,
915 		0x8e10, 0x8e1c,
916 		0x8e30, 0x8e78,
917 		0x8ea0, 0x8eb8,
918 		0x8ec0, 0x8f6c,
919 		0x8fc0, 0x9008,
920 		0x9010, 0x9058,
921 		0x9060, 0x9060,
922 		0x9068, 0x9074,
923 		0x90fc, 0x90fc,
924 		0x9400, 0x9408,
925 		0x9410, 0x9458,
926 		0x9600, 0x9600,
927 		0x9608, 0x9638,
928 		0x9640, 0x96bc,
929 		0x9800, 0x9808,
930 		0x9820, 0x983c,
931 		0x9850, 0x9864,
932 		0x9c00, 0x9c6c,
933 		0x9c80, 0x9cec,
934 		0x9d00, 0x9d6c,
935 		0x9d80, 0x9dec,
936 		0x9e00, 0x9e6c,
937 		0x9e80, 0x9eec,
938 		0x9f00, 0x9f6c,
939 		0x9f80, 0x9fec,
940 		0xd004, 0xd004,
941 		0xd010, 0xd03c,
942 		0xdfc0, 0xdfe0,
943 		0xe000, 0xea7c,
944 		0xf000, 0x11110,
945 		0x11118, 0x11190,
946 		0x19040, 0x1906c,
947 		0x19078, 0x19080,
948 		0x1908c, 0x190e4,
949 		0x190f0, 0x190f8,
950 		0x19100, 0x19110,
951 		0x19120, 0x19124,
952 		0x19150, 0x19194,
953 		0x1919c, 0x191b0,
954 		0x191d0, 0x191e8,
955 		0x19238, 0x1924c,
956 		0x193f8, 0x1943c,
957 		0x1944c, 0x19474,
958 		0x19490, 0x194e0,
959 		0x194f0, 0x194f8,
960 		0x19800, 0x19c08,
961 		0x19c10, 0x19c90,
962 		0x19ca0, 0x19ce4,
963 		0x19cf0, 0x19d40,
964 		0x19d50, 0x19d94,
965 		0x19da0, 0x19de8,
966 		0x19df0, 0x19e40,
967 		0x19e50, 0x19e90,
968 		0x19ea0, 0x19f4c,
969 		0x1a000, 0x1a004,
970 		0x1a010, 0x1a06c,
971 		0x1a0b0, 0x1a0e4,
972 		0x1a0ec, 0x1a0f4,
973 		0x1a100, 0x1a108,
974 		0x1a114, 0x1a120,
975 		0x1a128, 0x1a130,
976 		0x1a138, 0x1a138,
977 		0x1a190, 0x1a1c4,
978 		0x1a1fc, 0x1a1fc,
979 		0x1e040, 0x1e04c,
980 		0x1e284, 0x1e28c,
981 		0x1e2c0, 0x1e2c0,
982 		0x1e2e0, 0x1e2e0,
983 		0x1e300, 0x1e384,
984 		0x1e3c0, 0x1e3c8,
985 		0x1e440, 0x1e44c,
986 		0x1e684, 0x1e68c,
987 		0x1e6c0, 0x1e6c0,
988 		0x1e6e0, 0x1e6e0,
989 		0x1e700, 0x1e784,
990 		0x1e7c0, 0x1e7c8,
991 		0x1e840, 0x1e84c,
992 		0x1ea84, 0x1ea8c,
993 		0x1eac0, 0x1eac0,
994 		0x1eae0, 0x1eae0,
995 		0x1eb00, 0x1eb84,
996 		0x1ebc0, 0x1ebc8,
997 		0x1ec40, 0x1ec4c,
998 		0x1ee84, 0x1ee8c,
999 		0x1eec0, 0x1eec0,
1000 		0x1eee0, 0x1eee0,
1001 		0x1ef00, 0x1ef84,
1002 		0x1efc0, 0x1efc8,
1003 		0x1f040, 0x1f04c,
1004 		0x1f284, 0x1f28c,
1005 		0x1f2c0, 0x1f2c0,
1006 		0x1f2e0, 0x1f2e0,
1007 		0x1f300, 0x1f384,
1008 		0x1f3c0, 0x1f3c8,
1009 		0x1f440, 0x1f44c,
1010 		0x1f684, 0x1f68c,
1011 		0x1f6c0, 0x1f6c0,
1012 		0x1f6e0, 0x1f6e0,
1013 		0x1f700, 0x1f784,
1014 		0x1f7c0, 0x1f7c8,
1015 		0x1f840, 0x1f84c,
1016 		0x1fa84, 0x1fa8c,
1017 		0x1fac0, 0x1fac0,
1018 		0x1fae0, 0x1fae0,
1019 		0x1fb00, 0x1fb84,
1020 		0x1fbc0, 0x1fbc8,
1021 		0x1fc40, 0x1fc4c,
1022 		0x1fe84, 0x1fe8c,
1023 		0x1fec0, 0x1fec0,
1024 		0x1fee0, 0x1fee0,
1025 		0x1ff00, 0x1ff84,
1026 		0x1ffc0, 0x1ffc8,
1027 		0x20000, 0x2002c,
1028 		0x20100, 0x2013c,
1029 		0x20190, 0x201a0,
1030 		0x201a8, 0x201b8,
1031 		0x201c4, 0x201c8,
1032 		0x20200, 0x20318,
1033 		0x20400, 0x204b4,
1034 		0x204c0, 0x20528,
1035 		0x20540, 0x20614,
1036 		0x21000, 0x21040,
1037 		0x2104c, 0x21060,
1038 		0x210c0, 0x210ec,
1039 		0x21200, 0x21268,
1040 		0x21270, 0x21284,
1041 		0x212fc, 0x21388,
1042 		0x21400, 0x21404,
1043 		0x21500, 0x21500,
1044 		0x21510, 0x21518,
1045 		0x2152c, 0x21530,
1046 		0x2153c, 0x2153c,
1047 		0x21550, 0x21554,
1048 		0x21600, 0x21600,
1049 		0x21608, 0x2161c,
1050 		0x21624, 0x21628,
1051 		0x21630, 0x21634,
1052 		0x2163c, 0x2163c,
1053 		0x21700, 0x2171c,
1054 		0x21780, 0x2178c,
1055 		0x21800, 0x21818,
1056 		0x21820, 0x21828,
1057 		0x21830, 0x21848,
1058 		0x21850, 0x21854,
1059 		0x21860, 0x21868,
1060 		0x21870, 0x21870,
1061 		0x21878, 0x21898,
1062 		0x218a0, 0x218a8,
1063 		0x218b0, 0x218c8,
1064 		0x218d0, 0x218d4,
1065 		0x218e0, 0x218e8,
1066 		0x218f0, 0x218f0,
1067 		0x218f8, 0x21a18,
1068 		0x21a20, 0x21a28,
1069 		0x21a30, 0x21a48,
1070 		0x21a50, 0x21a54,
1071 		0x21a60, 0x21a68,
1072 		0x21a70, 0x21a70,
1073 		0x21a78, 0x21a98,
1074 		0x21aa0, 0x21aa8,
1075 		0x21ab0, 0x21ac8,
1076 		0x21ad0, 0x21ad4,
1077 		0x21ae0, 0x21ae8,
1078 		0x21af0, 0x21af0,
1079 		0x21af8, 0x21c18,
1080 		0x21c20, 0x21c20,
1081 		0x21c28, 0x21c30,
1082 		0x21c38, 0x21c38,
1083 		0x21c80, 0x21c98,
1084 		0x21ca0, 0x21ca8,
1085 		0x21cb0, 0x21cc8,
1086 		0x21cd0, 0x21cd4,
1087 		0x21ce0, 0x21ce8,
1088 		0x21cf0, 0x21cf0,
1089 		0x21cf8, 0x21d7c,
1090 		0x21e00, 0x21e04,
1091 		0x22000, 0x2202c,
1092 		0x22100, 0x2213c,
1093 		0x22190, 0x221a0,
1094 		0x221a8, 0x221b8,
1095 		0x221c4, 0x221c8,
1096 		0x22200, 0x22318,
1097 		0x22400, 0x224b4,
1098 		0x224c0, 0x22528,
1099 		0x22540, 0x22614,
1100 		0x23000, 0x23040,
1101 		0x2304c, 0x23060,
1102 		0x230c0, 0x230ec,
1103 		0x23200, 0x23268,
1104 		0x23270, 0x23284,
1105 		0x232fc, 0x23388,
1106 		0x23400, 0x23404,
1107 		0x23500, 0x23500,
1108 		0x23510, 0x23518,
1109 		0x2352c, 0x23530,
1110 		0x2353c, 0x2353c,
1111 		0x23550, 0x23554,
1112 		0x23600, 0x23600,
1113 		0x23608, 0x2361c,
1114 		0x23624, 0x23628,
1115 		0x23630, 0x23634,
1116 		0x2363c, 0x2363c,
1117 		0x23700, 0x2371c,
1118 		0x23780, 0x2378c,
1119 		0x23800, 0x23818,
1120 		0x23820, 0x23828,
1121 		0x23830, 0x23848,
1122 		0x23850, 0x23854,
1123 		0x23860, 0x23868,
1124 		0x23870, 0x23870,
1125 		0x23878, 0x23898,
1126 		0x238a0, 0x238a8,
1127 		0x238b0, 0x238c8,
1128 		0x238d0, 0x238d4,
1129 		0x238e0, 0x238e8,
1130 		0x238f0, 0x238f0,
1131 		0x238f8, 0x23a18,
1132 		0x23a20, 0x23a28,
1133 		0x23a30, 0x23a48,
1134 		0x23a50, 0x23a54,
1135 		0x23a60, 0x23a68,
1136 		0x23a70, 0x23a70,
1137 		0x23a78, 0x23a98,
1138 		0x23aa0, 0x23aa8,
1139 		0x23ab0, 0x23ac8,
1140 		0x23ad0, 0x23ad4,
1141 		0x23ae0, 0x23ae8,
1142 		0x23af0, 0x23af0,
1143 		0x23af8, 0x23c18,
1144 		0x23c20, 0x23c20,
1145 		0x23c28, 0x23c30,
1146 		0x23c38, 0x23c38,
1147 		0x23c80, 0x23c98,
1148 		0x23ca0, 0x23ca8,
1149 		0x23cb0, 0x23cc8,
1150 		0x23cd0, 0x23cd4,
1151 		0x23ce0, 0x23ce8,
1152 		0x23cf0, 0x23cf0,
1153 		0x23cf8, 0x23d7c,
1154 		0x23e00, 0x23e04,
1155 		0x24000, 0x2402c,
1156 		0x24100, 0x2413c,
1157 		0x24190, 0x241a0,
1158 		0x241a8, 0x241b8,
1159 		0x241c4, 0x241c8,
1160 		0x24200, 0x24318,
1161 		0x24400, 0x244b4,
1162 		0x244c0, 0x24528,
1163 		0x24540, 0x24614,
1164 		0x25000, 0x25040,
1165 		0x2504c, 0x25060,
1166 		0x250c0, 0x250ec,
1167 		0x25200, 0x25268,
1168 		0x25270, 0x25284,
1169 		0x252fc, 0x25388,
1170 		0x25400, 0x25404,
1171 		0x25500, 0x25500,
1172 		0x25510, 0x25518,
1173 		0x2552c, 0x25530,
1174 		0x2553c, 0x2553c,
1175 		0x25550, 0x25554,
1176 		0x25600, 0x25600,
1177 		0x25608, 0x2561c,
1178 		0x25624, 0x25628,
1179 		0x25630, 0x25634,
1180 		0x2563c, 0x2563c,
1181 		0x25700, 0x2571c,
1182 		0x25780, 0x2578c,
1183 		0x25800, 0x25818,
1184 		0x25820, 0x25828,
1185 		0x25830, 0x25848,
1186 		0x25850, 0x25854,
1187 		0x25860, 0x25868,
1188 		0x25870, 0x25870,
1189 		0x25878, 0x25898,
1190 		0x258a0, 0x258a8,
1191 		0x258b0, 0x258c8,
1192 		0x258d0, 0x258d4,
1193 		0x258e0, 0x258e8,
1194 		0x258f0, 0x258f0,
1195 		0x258f8, 0x25a18,
1196 		0x25a20, 0x25a28,
1197 		0x25a30, 0x25a48,
1198 		0x25a50, 0x25a54,
1199 		0x25a60, 0x25a68,
1200 		0x25a70, 0x25a70,
1201 		0x25a78, 0x25a98,
1202 		0x25aa0, 0x25aa8,
1203 		0x25ab0, 0x25ac8,
1204 		0x25ad0, 0x25ad4,
1205 		0x25ae0, 0x25ae8,
1206 		0x25af0, 0x25af0,
1207 		0x25af8, 0x25c18,
1208 		0x25c20, 0x25c20,
1209 		0x25c28, 0x25c30,
1210 		0x25c38, 0x25c38,
1211 		0x25c80, 0x25c98,
1212 		0x25ca0, 0x25ca8,
1213 		0x25cb0, 0x25cc8,
1214 		0x25cd0, 0x25cd4,
1215 		0x25ce0, 0x25ce8,
1216 		0x25cf0, 0x25cf0,
1217 		0x25cf8, 0x25d7c,
1218 		0x25e00, 0x25e04,
1219 		0x26000, 0x2602c,
1220 		0x26100, 0x2613c,
1221 		0x26190, 0x261a0,
1222 		0x261a8, 0x261b8,
1223 		0x261c4, 0x261c8,
1224 		0x26200, 0x26318,
1225 		0x26400, 0x264b4,
1226 		0x264c0, 0x26528,
1227 		0x26540, 0x26614,
1228 		0x27000, 0x27040,
1229 		0x2704c, 0x27060,
1230 		0x270c0, 0x270ec,
1231 		0x27200, 0x27268,
1232 		0x27270, 0x27284,
1233 		0x272fc, 0x27388,
1234 		0x27400, 0x27404,
1235 		0x27500, 0x27500,
1236 		0x27510, 0x27518,
1237 		0x2752c, 0x27530,
1238 		0x2753c, 0x2753c,
1239 		0x27550, 0x27554,
1240 		0x27600, 0x27600,
1241 		0x27608, 0x2761c,
1242 		0x27624, 0x27628,
1243 		0x27630, 0x27634,
1244 		0x2763c, 0x2763c,
1245 		0x27700, 0x2771c,
1246 		0x27780, 0x2778c,
1247 		0x27800, 0x27818,
1248 		0x27820, 0x27828,
1249 		0x27830, 0x27848,
1250 		0x27850, 0x27854,
1251 		0x27860, 0x27868,
1252 		0x27870, 0x27870,
1253 		0x27878, 0x27898,
1254 		0x278a0, 0x278a8,
1255 		0x278b0, 0x278c8,
1256 		0x278d0, 0x278d4,
1257 		0x278e0, 0x278e8,
1258 		0x278f0, 0x278f0,
1259 		0x278f8, 0x27a18,
1260 		0x27a20, 0x27a28,
1261 		0x27a30, 0x27a48,
1262 		0x27a50, 0x27a54,
1263 		0x27a60, 0x27a68,
1264 		0x27a70, 0x27a70,
1265 		0x27a78, 0x27a98,
1266 		0x27aa0, 0x27aa8,
1267 		0x27ab0, 0x27ac8,
1268 		0x27ad0, 0x27ad4,
1269 		0x27ae0, 0x27ae8,
1270 		0x27af0, 0x27af0,
1271 		0x27af8, 0x27c18,
1272 		0x27c20, 0x27c20,
1273 		0x27c28, 0x27c30,
1274 		0x27c38, 0x27c38,
1275 		0x27c80, 0x27c98,
1276 		0x27ca0, 0x27ca8,
1277 		0x27cb0, 0x27cc8,
1278 		0x27cd0, 0x27cd4,
1279 		0x27ce0, 0x27ce8,
1280 		0x27cf0, 0x27cf0,
1281 		0x27cf8, 0x27d7c,
1282 		0x27e00, 0x27e04,
1283 	};
1284 
1285 	static const unsigned int t4vf_reg_ranges[] = {
1286 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
1287 		VF_MPS_REG(A_MPS_VF_CTL),
1288 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
1289 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI),
1290 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
1291 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
1292 		FW_T4VF_MBDATA_BASE_ADDR,
1293 		FW_T4VF_MBDATA_BASE_ADDR +
1294 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
1295 	};
1296 
1297 	static const unsigned int t5_reg_ranges[] = {
1298 		0x1008, 0x10c0,
1299 		0x10cc, 0x10f8,
1300 		0x1100, 0x1100,
1301 		0x110c, 0x1148,
1302 		0x1180, 0x1184,
1303 		0x1190, 0x1194,
1304 		0x11a0, 0x11a4,
1305 		0x11b0, 0x11b4,
1306 		0x11fc, 0x123c,
1307 		0x1280, 0x173c,
1308 		0x1800, 0x18fc,
1309 		0x3000, 0x3028,
1310 		0x3060, 0x30b0,
1311 		0x30b8, 0x30d8,
1312 		0x30e0, 0x30fc,
1313 		0x3140, 0x357c,
1314 		0x35a8, 0x35cc,
1315 		0x35ec, 0x35ec,
1316 		0x3600, 0x5624,
1317 		0x56cc, 0x56ec,
1318 		0x56f4, 0x5720,
1319 		0x5728, 0x575c,
1320 		0x580c, 0x5814,
1321 		0x5890, 0x589c,
1322 		0x58a4, 0x58ac,
1323 		0x58b8, 0x58bc,
1324 		0x5940, 0x59c8,
1325 		0x59d0, 0x59dc,
1326 		0x59fc, 0x5a18,
1327 		0x5a60, 0x5a70,
1328 		0x5a80, 0x5a9c,
1329 		0x5b94, 0x5bfc,
1330 		0x6000, 0x6020,
1331 		0x6028, 0x6040,
1332 		0x6058, 0x609c,
1333 		0x60a8, 0x614c,
1334 		0x7700, 0x7798,
1335 		0x77c0, 0x78fc,
1336 		0x7b00, 0x7b58,
1337 		0x7b60, 0x7b84,
1338 		0x7b8c, 0x7c54,
1339 		0x7d00, 0x7d38,
1340 		0x7d40, 0x7d80,
1341 		0x7d8c, 0x7ddc,
1342 		0x7de4, 0x7e04,
1343 		0x7e10, 0x7e1c,
1344 		0x7e24, 0x7e38,
1345 		0x7e40, 0x7e44,
1346 		0x7e4c, 0x7e78,
1347 		0x7e80, 0x7edc,
1348 		0x7ee8, 0x7efc,
1349 		0x8dc0, 0x8de0,
1350 		0x8df8, 0x8e04,
1351 		0x8e10, 0x8e84,
1352 		0x8ea0, 0x8f84,
1353 		0x8fc0, 0x9058,
1354 		0x9060, 0x9060,
1355 		0x9068, 0x90f8,
1356 		0x9400, 0x9408,
1357 		0x9410, 0x9470,
1358 		0x9600, 0x9600,
1359 		0x9608, 0x9638,
1360 		0x9640, 0x96f4,
1361 		0x9800, 0x9808,
1362 		0x9810, 0x9864,
1363 		0x9c00, 0x9c6c,
1364 		0x9c80, 0x9cec,
1365 		0x9d00, 0x9d6c,
1366 		0x9d80, 0x9dec,
1367 		0x9e00, 0x9e6c,
1368 		0x9e80, 0x9eec,
1369 		0x9f00, 0x9f6c,
1370 		0x9f80, 0xa020,
1371 		0xd000, 0xd004,
1372 		0xd010, 0xd03c,
1373 		0xdfc0, 0xdfe0,
1374 		0xe000, 0x1106c,
1375 		0x11074, 0x11088,
1376 		0x1109c, 0x1117c,
1377 		0x11190, 0x11204,
1378 		0x19040, 0x1906c,
1379 		0x19078, 0x19080,
1380 		0x1908c, 0x190e8,
1381 		0x190f0, 0x190f8,
1382 		0x19100, 0x19110,
1383 		0x19120, 0x19124,
1384 		0x19150, 0x19194,
1385 		0x1919c, 0x191b0,
1386 		0x191d0, 0x191e8,
1387 		0x19238, 0x19290,
1388 		0x193f8, 0x19428,
1389 		0x19430, 0x19444,
1390 		0x1944c, 0x1946c,
1391 		0x19474, 0x19474,
1392 		0x19490, 0x194cc,
1393 		0x194f0, 0x194f8,
1394 		0x19c00, 0x19c08,
1395 		0x19c10, 0x19c60,
1396 		0x19c94, 0x19ce4,
1397 		0x19cf0, 0x19d40,
1398 		0x19d50, 0x19d94,
1399 		0x19da0, 0x19de8,
1400 		0x19df0, 0x19e10,
1401 		0x19e50, 0x19e90,
1402 		0x19ea0, 0x19f24,
1403 		0x19f34, 0x19f34,
1404 		0x19f40, 0x19f50,
1405 		0x19f90, 0x19fb4,
1406 		0x19fc4, 0x19fe4,
1407 		0x1a000, 0x1a004,
1408 		0x1a010, 0x1a06c,
1409 		0x1a0b0, 0x1a0e4,
1410 		0x1a0ec, 0x1a0f8,
1411 		0x1a100, 0x1a108,
1412 		0x1a114, 0x1a130,
1413 		0x1a138, 0x1a1c4,
1414 		0x1a1fc, 0x1a1fc,
1415 		0x1e008, 0x1e00c,
1416 		0x1e040, 0x1e044,
1417 		0x1e04c, 0x1e04c,
1418 		0x1e284, 0x1e290,
1419 		0x1e2c0, 0x1e2c0,
1420 		0x1e2e0, 0x1e2e0,
1421 		0x1e300, 0x1e384,
1422 		0x1e3c0, 0x1e3c8,
1423 		0x1e408, 0x1e40c,
1424 		0x1e440, 0x1e444,
1425 		0x1e44c, 0x1e44c,
1426 		0x1e684, 0x1e690,
1427 		0x1e6c0, 0x1e6c0,
1428 		0x1e6e0, 0x1e6e0,
1429 		0x1e700, 0x1e784,
1430 		0x1e7c0, 0x1e7c8,
1431 		0x1e808, 0x1e80c,
1432 		0x1e840, 0x1e844,
1433 		0x1e84c, 0x1e84c,
1434 		0x1ea84, 0x1ea90,
1435 		0x1eac0, 0x1eac0,
1436 		0x1eae0, 0x1eae0,
1437 		0x1eb00, 0x1eb84,
1438 		0x1ebc0, 0x1ebc8,
1439 		0x1ec08, 0x1ec0c,
1440 		0x1ec40, 0x1ec44,
1441 		0x1ec4c, 0x1ec4c,
1442 		0x1ee84, 0x1ee90,
1443 		0x1eec0, 0x1eec0,
1444 		0x1eee0, 0x1eee0,
1445 		0x1ef00, 0x1ef84,
1446 		0x1efc0, 0x1efc8,
1447 		0x1f008, 0x1f00c,
1448 		0x1f040, 0x1f044,
1449 		0x1f04c, 0x1f04c,
1450 		0x1f284, 0x1f290,
1451 		0x1f2c0, 0x1f2c0,
1452 		0x1f2e0, 0x1f2e0,
1453 		0x1f300, 0x1f384,
1454 		0x1f3c0, 0x1f3c8,
1455 		0x1f408, 0x1f40c,
1456 		0x1f440, 0x1f444,
1457 		0x1f44c, 0x1f44c,
1458 		0x1f684, 0x1f690,
1459 		0x1f6c0, 0x1f6c0,
1460 		0x1f6e0, 0x1f6e0,
1461 		0x1f700, 0x1f784,
1462 		0x1f7c0, 0x1f7c8,
1463 		0x1f808, 0x1f80c,
1464 		0x1f840, 0x1f844,
1465 		0x1f84c, 0x1f84c,
1466 		0x1fa84, 0x1fa90,
1467 		0x1fac0, 0x1fac0,
1468 		0x1fae0, 0x1fae0,
1469 		0x1fb00, 0x1fb84,
1470 		0x1fbc0, 0x1fbc8,
1471 		0x1fc08, 0x1fc0c,
1472 		0x1fc40, 0x1fc44,
1473 		0x1fc4c, 0x1fc4c,
1474 		0x1fe84, 0x1fe90,
1475 		0x1fec0, 0x1fec0,
1476 		0x1fee0, 0x1fee0,
1477 		0x1ff00, 0x1ff84,
1478 		0x1ffc0, 0x1ffc8,
1479 		0x30000, 0x30030,
1480 		0x30100, 0x30144,
1481 		0x30190, 0x301a0,
1482 		0x301a8, 0x301b8,
1483 		0x301c4, 0x301c8,
1484 		0x301d0, 0x301d0,
1485 		0x30200, 0x30318,
1486 		0x30400, 0x304b4,
1487 		0x304c0, 0x3052c,
1488 		0x30540, 0x3061c,
1489 		0x30800, 0x30828,
1490 		0x30834, 0x30834,
1491 		0x308c0, 0x30908,
1492 		0x30910, 0x309ac,
1493 		0x30a00, 0x30a14,
1494 		0x30a1c, 0x30a2c,
1495 		0x30a44, 0x30a50,
1496 		0x30a74, 0x30a74,
1497 		0x30a7c, 0x30afc,
1498 		0x30b08, 0x30c24,
1499 		0x30d00, 0x30d00,
1500 		0x30d08, 0x30d14,
1501 		0x30d1c, 0x30d20,
1502 		0x30d3c, 0x30d3c,
1503 		0x30d48, 0x30d50,
1504 		0x31200, 0x3120c,
1505 		0x31220, 0x31220,
1506 		0x31240, 0x31240,
1507 		0x31600, 0x3160c,
1508 		0x31a00, 0x31a1c,
1509 		0x31e00, 0x31e20,
1510 		0x31e38, 0x31e3c,
1511 		0x31e80, 0x31e80,
1512 		0x31e88, 0x31ea8,
1513 		0x31eb0, 0x31eb4,
1514 		0x31ec8, 0x31ed4,
1515 		0x31fb8, 0x32004,
1516 		0x32200, 0x32200,
1517 		0x32208, 0x32240,
1518 		0x32248, 0x32280,
1519 		0x32288, 0x322c0,
1520 		0x322c8, 0x322fc,
1521 		0x32600, 0x32630,
1522 		0x32a00, 0x32abc,
1523 		0x32b00, 0x32b10,
1524 		0x32b20, 0x32b30,
1525 		0x32b40, 0x32b50,
1526 		0x32b60, 0x32b70,
1527 		0x33000, 0x33028,
1528 		0x33030, 0x33048,
1529 		0x33060, 0x33068,
1530 		0x33070, 0x3309c,
1531 		0x330f0, 0x33128,
1532 		0x33130, 0x33148,
1533 		0x33160, 0x33168,
1534 		0x33170, 0x3319c,
1535 		0x331f0, 0x33238,
1536 		0x33240, 0x33240,
1537 		0x33248, 0x33250,
1538 		0x3325c, 0x33264,
1539 		0x33270, 0x332b8,
1540 		0x332c0, 0x332e4,
1541 		0x332f8, 0x33338,
1542 		0x33340, 0x33340,
1543 		0x33348, 0x33350,
1544 		0x3335c, 0x33364,
1545 		0x33370, 0x333b8,
1546 		0x333c0, 0x333e4,
1547 		0x333f8, 0x33428,
1548 		0x33430, 0x33448,
1549 		0x33460, 0x33468,
1550 		0x33470, 0x3349c,
1551 		0x334f0, 0x33528,
1552 		0x33530, 0x33548,
1553 		0x33560, 0x33568,
1554 		0x33570, 0x3359c,
1555 		0x335f0, 0x33638,
1556 		0x33640, 0x33640,
1557 		0x33648, 0x33650,
1558 		0x3365c, 0x33664,
1559 		0x33670, 0x336b8,
1560 		0x336c0, 0x336e4,
1561 		0x336f8, 0x33738,
1562 		0x33740, 0x33740,
1563 		0x33748, 0x33750,
1564 		0x3375c, 0x33764,
1565 		0x33770, 0x337b8,
1566 		0x337c0, 0x337e4,
1567 		0x337f8, 0x337fc,
1568 		0x33814, 0x33814,
1569 		0x3382c, 0x3382c,
1570 		0x33880, 0x3388c,
1571 		0x338e8, 0x338ec,
1572 		0x33900, 0x33928,
1573 		0x33930, 0x33948,
1574 		0x33960, 0x33968,
1575 		0x33970, 0x3399c,
1576 		0x339f0, 0x33a38,
1577 		0x33a40, 0x33a40,
1578 		0x33a48, 0x33a50,
1579 		0x33a5c, 0x33a64,
1580 		0x33a70, 0x33ab8,
1581 		0x33ac0, 0x33ae4,
1582 		0x33af8, 0x33b10,
1583 		0x33b28, 0x33b28,
1584 		0x33b3c, 0x33b50,
1585 		0x33bf0, 0x33c10,
1586 		0x33c28, 0x33c28,
1587 		0x33c3c, 0x33c50,
1588 		0x33cf0, 0x33cfc,
1589 		0x34000, 0x34030,
1590 		0x34100, 0x34144,
1591 		0x34190, 0x341a0,
1592 		0x341a8, 0x341b8,
1593 		0x341c4, 0x341c8,
1594 		0x341d0, 0x341d0,
1595 		0x34200, 0x34318,
1596 		0x34400, 0x344b4,
1597 		0x344c0, 0x3452c,
1598 		0x34540, 0x3461c,
1599 		0x34800, 0x34828,
1600 		0x34834, 0x34834,
1601 		0x348c0, 0x34908,
1602 		0x34910, 0x349ac,
1603 		0x34a00, 0x34a14,
1604 		0x34a1c, 0x34a2c,
1605 		0x34a44, 0x34a50,
1606 		0x34a74, 0x34a74,
1607 		0x34a7c, 0x34afc,
1608 		0x34b08, 0x34c24,
1609 		0x34d00, 0x34d00,
1610 		0x34d08, 0x34d14,
1611 		0x34d1c, 0x34d20,
1612 		0x34d3c, 0x34d3c,
1613 		0x34d48, 0x34d50,
1614 		0x35200, 0x3520c,
1615 		0x35220, 0x35220,
1616 		0x35240, 0x35240,
1617 		0x35600, 0x3560c,
1618 		0x35a00, 0x35a1c,
1619 		0x35e00, 0x35e20,
1620 		0x35e38, 0x35e3c,
1621 		0x35e80, 0x35e80,
1622 		0x35e88, 0x35ea8,
1623 		0x35eb0, 0x35eb4,
1624 		0x35ec8, 0x35ed4,
1625 		0x35fb8, 0x36004,
1626 		0x36200, 0x36200,
1627 		0x36208, 0x36240,
1628 		0x36248, 0x36280,
1629 		0x36288, 0x362c0,
1630 		0x362c8, 0x362fc,
1631 		0x36600, 0x36630,
1632 		0x36a00, 0x36abc,
1633 		0x36b00, 0x36b10,
1634 		0x36b20, 0x36b30,
1635 		0x36b40, 0x36b50,
1636 		0x36b60, 0x36b70,
1637 		0x37000, 0x37028,
1638 		0x37030, 0x37048,
1639 		0x37060, 0x37068,
1640 		0x37070, 0x3709c,
1641 		0x370f0, 0x37128,
1642 		0x37130, 0x37148,
1643 		0x37160, 0x37168,
1644 		0x37170, 0x3719c,
1645 		0x371f0, 0x37238,
1646 		0x37240, 0x37240,
1647 		0x37248, 0x37250,
1648 		0x3725c, 0x37264,
1649 		0x37270, 0x372b8,
1650 		0x372c0, 0x372e4,
1651 		0x372f8, 0x37338,
1652 		0x37340, 0x37340,
1653 		0x37348, 0x37350,
1654 		0x3735c, 0x37364,
1655 		0x37370, 0x373b8,
1656 		0x373c0, 0x373e4,
1657 		0x373f8, 0x37428,
1658 		0x37430, 0x37448,
1659 		0x37460, 0x37468,
1660 		0x37470, 0x3749c,
1661 		0x374f0, 0x37528,
1662 		0x37530, 0x37548,
1663 		0x37560, 0x37568,
1664 		0x37570, 0x3759c,
1665 		0x375f0, 0x37638,
1666 		0x37640, 0x37640,
1667 		0x37648, 0x37650,
1668 		0x3765c, 0x37664,
1669 		0x37670, 0x376b8,
1670 		0x376c0, 0x376e4,
1671 		0x376f8, 0x37738,
1672 		0x37740, 0x37740,
1673 		0x37748, 0x37750,
1674 		0x3775c, 0x37764,
1675 		0x37770, 0x377b8,
1676 		0x377c0, 0x377e4,
1677 		0x377f8, 0x377fc,
1678 		0x37814, 0x37814,
1679 		0x3782c, 0x3782c,
1680 		0x37880, 0x3788c,
1681 		0x378e8, 0x378ec,
1682 		0x37900, 0x37928,
1683 		0x37930, 0x37948,
1684 		0x37960, 0x37968,
1685 		0x37970, 0x3799c,
1686 		0x379f0, 0x37a38,
1687 		0x37a40, 0x37a40,
1688 		0x37a48, 0x37a50,
1689 		0x37a5c, 0x37a64,
1690 		0x37a70, 0x37ab8,
1691 		0x37ac0, 0x37ae4,
1692 		0x37af8, 0x37b10,
1693 		0x37b28, 0x37b28,
1694 		0x37b3c, 0x37b50,
1695 		0x37bf0, 0x37c10,
1696 		0x37c28, 0x37c28,
1697 		0x37c3c, 0x37c50,
1698 		0x37cf0, 0x37cfc,
1699 		0x38000, 0x38030,
1700 		0x38100, 0x38144,
1701 		0x38190, 0x381a0,
1702 		0x381a8, 0x381b8,
1703 		0x381c4, 0x381c8,
1704 		0x381d0, 0x381d0,
1705 		0x38200, 0x38318,
1706 		0x38400, 0x384b4,
1707 		0x384c0, 0x3852c,
1708 		0x38540, 0x3861c,
1709 		0x38800, 0x38828,
1710 		0x38834, 0x38834,
1711 		0x388c0, 0x38908,
1712 		0x38910, 0x389ac,
1713 		0x38a00, 0x38a14,
1714 		0x38a1c, 0x38a2c,
1715 		0x38a44, 0x38a50,
1716 		0x38a74, 0x38a74,
1717 		0x38a7c, 0x38afc,
1718 		0x38b08, 0x38c24,
1719 		0x38d00, 0x38d00,
1720 		0x38d08, 0x38d14,
1721 		0x38d1c, 0x38d20,
1722 		0x38d3c, 0x38d3c,
1723 		0x38d48, 0x38d50,
1724 		0x39200, 0x3920c,
1725 		0x39220, 0x39220,
1726 		0x39240, 0x39240,
1727 		0x39600, 0x3960c,
1728 		0x39a00, 0x39a1c,
1729 		0x39e00, 0x39e20,
1730 		0x39e38, 0x39e3c,
1731 		0x39e80, 0x39e80,
1732 		0x39e88, 0x39ea8,
1733 		0x39eb0, 0x39eb4,
1734 		0x39ec8, 0x39ed4,
1735 		0x39fb8, 0x3a004,
1736 		0x3a200, 0x3a200,
1737 		0x3a208, 0x3a240,
1738 		0x3a248, 0x3a280,
1739 		0x3a288, 0x3a2c0,
1740 		0x3a2c8, 0x3a2fc,
1741 		0x3a600, 0x3a630,
1742 		0x3aa00, 0x3aabc,
1743 		0x3ab00, 0x3ab10,
1744 		0x3ab20, 0x3ab30,
1745 		0x3ab40, 0x3ab50,
1746 		0x3ab60, 0x3ab70,
1747 		0x3b000, 0x3b028,
1748 		0x3b030, 0x3b048,
1749 		0x3b060, 0x3b068,
1750 		0x3b070, 0x3b09c,
1751 		0x3b0f0, 0x3b128,
1752 		0x3b130, 0x3b148,
1753 		0x3b160, 0x3b168,
1754 		0x3b170, 0x3b19c,
1755 		0x3b1f0, 0x3b238,
1756 		0x3b240, 0x3b240,
1757 		0x3b248, 0x3b250,
1758 		0x3b25c, 0x3b264,
1759 		0x3b270, 0x3b2b8,
1760 		0x3b2c0, 0x3b2e4,
1761 		0x3b2f8, 0x3b338,
1762 		0x3b340, 0x3b340,
1763 		0x3b348, 0x3b350,
1764 		0x3b35c, 0x3b364,
1765 		0x3b370, 0x3b3b8,
1766 		0x3b3c0, 0x3b3e4,
1767 		0x3b3f8, 0x3b428,
1768 		0x3b430, 0x3b448,
1769 		0x3b460, 0x3b468,
1770 		0x3b470, 0x3b49c,
1771 		0x3b4f0, 0x3b528,
1772 		0x3b530, 0x3b548,
1773 		0x3b560, 0x3b568,
1774 		0x3b570, 0x3b59c,
1775 		0x3b5f0, 0x3b638,
1776 		0x3b640, 0x3b640,
1777 		0x3b648, 0x3b650,
1778 		0x3b65c, 0x3b664,
1779 		0x3b670, 0x3b6b8,
1780 		0x3b6c0, 0x3b6e4,
1781 		0x3b6f8, 0x3b738,
1782 		0x3b740, 0x3b740,
1783 		0x3b748, 0x3b750,
1784 		0x3b75c, 0x3b764,
1785 		0x3b770, 0x3b7b8,
1786 		0x3b7c0, 0x3b7e4,
1787 		0x3b7f8, 0x3b7fc,
1788 		0x3b814, 0x3b814,
1789 		0x3b82c, 0x3b82c,
1790 		0x3b880, 0x3b88c,
1791 		0x3b8e8, 0x3b8ec,
1792 		0x3b900, 0x3b928,
1793 		0x3b930, 0x3b948,
1794 		0x3b960, 0x3b968,
1795 		0x3b970, 0x3b99c,
1796 		0x3b9f0, 0x3ba38,
1797 		0x3ba40, 0x3ba40,
1798 		0x3ba48, 0x3ba50,
1799 		0x3ba5c, 0x3ba64,
1800 		0x3ba70, 0x3bab8,
1801 		0x3bac0, 0x3bae4,
1802 		0x3baf8, 0x3bb10,
1803 		0x3bb28, 0x3bb28,
1804 		0x3bb3c, 0x3bb50,
1805 		0x3bbf0, 0x3bc10,
1806 		0x3bc28, 0x3bc28,
1807 		0x3bc3c, 0x3bc50,
1808 		0x3bcf0, 0x3bcfc,
1809 		0x3c000, 0x3c030,
1810 		0x3c100, 0x3c144,
1811 		0x3c190, 0x3c1a0,
1812 		0x3c1a8, 0x3c1b8,
1813 		0x3c1c4, 0x3c1c8,
1814 		0x3c1d0, 0x3c1d0,
1815 		0x3c200, 0x3c318,
1816 		0x3c400, 0x3c4b4,
1817 		0x3c4c0, 0x3c52c,
1818 		0x3c540, 0x3c61c,
1819 		0x3c800, 0x3c828,
1820 		0x3c834, 0x3c834,
1821 		0x3c8c0, 0x3c908,
1822 		0x3c910, 0x3c9ac,
1823 		0x3ca00, 0x3ca14,
1824 		0x3ca1c, 0x3ca2c,
1825 		0x3ca44, 0x3ca50,
1826 		0x3ca74, 0x3ca74,
1827 		0x3ca7c, 0x3cafc,
1828 		0x3cb08, 0x3cc24,
1829 		0x3cd00, 0x3cd00,
1830 		0x3cd08, 0x3cd14,
1831 		0x3cd1c, 0x3cd20,
1832 		0x3cd3c, 0x3cd3c,
1833 		0x3cd48, 0x3cd50,
1834 		0x3d200, 0x3d20c,
1835 		0x3d220, 0x3d220,
1836 		0x3d240, 0x3d240,
1837 		0x3d600, 0x3d60c,
1838 		0x3da00, 0x3da1c,
1839 		0x3de00, 0x3de20,
1840 		0x3de38, 0x3de3c,
1841 		0x3de80, 0x3de80,
1842 		0x3de88, 0x3dea8,
1843 		0x3deb0, 0x3deb4,
1844 		0x3dec8, 0x3ded4,
1845 		0x3dfb8, 0x3e004,
1846 		0x3e200, 0x3e200,
1847 		0x3e208, 0x3e240,
1848 		0x3e248, 0x3e280,
1849 		0x3e288, 0x3e2c0,
1850 		0x3e2c8, 0x3e2fc,
1851 		0x3e600, 0x3e630,
1852 		0x3ea00, 0x3eabc,
1853 		0x3eb00, 0x3eb10,
1854 		0x3eb20, 0x3eb30,
1855 		0x3eb40, 0x3eb50,
1856 		0x3eb60, 0x3eb70,
1857 		0x3f000, 0x3f028,
1858 		0x3f030, 0x3f048,
1859 		0x3f060, 0x3f068,
1860 		0x3f070, 0x3f09c,
1861 		0x3f0f0, 0x3f128,
1862 		0x3f130, 0x3f148,
1863 		0x3f160, 0x3f168,
1864 		0x3f170, 0x3f19c,
1865 		0x3f1f0, 0x3f238,
1866 		0x3f240, 0x3f240,
1867 		0x3f248, 0x3f250,
1868 		0x3f25c, 0x3f264,
1869 		0x3f270, 0x3f2b8,
1870 		0x3f2c0, 0x3f2e4,
1871 		0x3f2f8, 0x3f338,
1872 		0x3f340, 0x3f340,
1873 		0x3f348, 0x3f350,
1874 		0x3f35c, 0x3f364,
1875 		0x3f370, 0x3f3b8,
1876 		0x3f3c0, 0x3f3e4,
1877 		0x3f3f8, 0x3f428,
1878 		0x3f430, 0x3f448,
1879 		0x3f460, 0x3f468,
1880 		0x3f470, 0x3f49c,
1881 		0x3f4f0, 0x3f528,
1882 		0x3f530, 0x3f548,
1883 		0x3f560, 0x3f568,
1884 		0x3f570, 0x3f59c,
1885 		0x3f5f0, 0x3f638,
1886 		0x3f640, 0x3f640,
1887 		0x3f648, 0x3f650,
1888 		0x3f65c, 0x3f664,
1889 		0x3f670, 0x3f6b8,
1890 		0x3f6c0, 0x3f6e4,
1891 		0x3f6f8, 0x3f738,
1892 		0x3f740, 0x3f740,
1893 		0x3f748, 0x3f750,
1894 		0x3f75c, 0x3f764,
1895 		0x3f770, 0x3f7b8,
1896 		0x3f7c0, 0x3f7e4,
1897 		0x3f7f8, 0x3f7fc,
1898 		0x3f814, 0x3f814,
1899 		0x3f82c, 0x3f82c,
1900 		0x3f880, 0x3f88c,
1901 		0x3f8e8, 0x3f8ec,
1902 		0x3f900, 0x3f928,
1903 		0x3f930, 0x3f948,
1904 		0x3f960, 0x3f968,
1905 		0x3f970, 0x3f99c,
1906 		0x3f9f0, 0x3fa38,
1907 		0x3fa40, 0x3fa40,
1908 		0x3fa48, 0x3fa50,
1909 		0x3fa5c, 0x3fa64,
1910 		0x3fa70, 0x3fab8,
1911 		0x3fac0, 0x3fae4,
1912 		0x3faf8, 0x3fb10,
1913 		0x3fb28, 0x3fb28,
1914 		0x3fb3c, 0x3fb50,
1915 		0x3fbf0, 0x3fc10,
1916 		0x3fc28, 0x3fc28,
1917 		0x3fc3c, 0x3fc50,
1918 		0x3fcf0, 0x3fcfc,
1919 		0x40000, 0x4000c,
1920 		0x40040, 0x40050,
1921 		0x40060, 0x40068,
1922 		0x4007c, 0x4008c,
1923 		0x40094, 0x400b0,
1924 		0x400c0, 0x40144,
1925 		0x40180, 0x4018c,
1926 		0x40200, 0x40254,
1927 		0x40260, 0x40264,
1928 		0x40270, 0x40288,
1929 		0x40290, 0x40298,
1930 		0x402ac, 0x402c8,
1931 		0x402d0, 0x402e0,
1932 		0x402f0, 0x402f0,
1933 		0x40300, 0x4033c,
1934 		0x403f8, 0x403fc,
1935 		0x41304, 0x413c4,
1936 		0x41400, 0x4140c,
1937 		0x41414, 0x4141c,
1938 		0x41480, 0x414d0,
1939 		0x44000, 0x44054,
1940 		0x4405c, 0x44078,
1941 		0x440c0, 0x44174,
1942 		0x44180, 0x441ac,
1943 		0x441b4, 0x441b8,
1944 		0x441c0, 0x44254,
1945 		0x4425c, 0x44278,
1946 		0x442c0, 0x44374,
1947 		0x44380, 0x443ac,
1948 		0x443b4, 0x443b8,
1949 		0x443c0, 0x44454,
1950 		0x4445c, 0x44478,
1951 		0x444c0, 0x44574,
1952 		0x44580, 0x445ac,
1953 		0x445b4, 0x445b8,
1954 		0x445c0, 0x44654,
1955 		0x4465c, 0x44678,
1956 		0x446c0, 0x44774,
1957 		0x44780, 0x447ac,
1958 		0x447b4, 0x447b8,
1959 		0x447c0, 0x44854,
1960 		0x4485c, 0x44878,
1961 		0x448c0, 0x44974,
1962 		0x44980, 0x449ac,
1963 		0x449b4, 0x449b8,
1964 		0x449c0, 0x449fc,
1965 		0x45000, 0x45004,
1966 		0x45010, 0x45030,
1967 		0x45040, 0x45060,
1968 		0x45068, 0x45068,
1969 		0x45080, 0x45084,
1970 		0x450a0, 0x450b0,
1971 		0x45200, 0x45204,
1972 		0x45210, 0x45230,
1973 		0x45240, 0x45260,
1974 		0x45268, 0x45268,
1975 		0x45280, 0x45284,
1976 		0x452a0, 0x452b0,
1977 		0x460c0, 0x460e4,
1978 		0x47000, 0x4703c,
1979 		0x47044, 0x4708c,
1980 		0x47200, 0x47250,
1981 		0x47400, 0x47408,
1982 		0x47414, 0x47420,
1983 		0x47600, 0x47618,
1984 		0x47800, 0x47814,
1985 		0x48000, 0x4800c,
1986 		0x48040, 0x48050,
1987 		0x48060, 0x48068,
1988 		0x4807c, 0x4808c,
1989 		0x48094, 0x480b0,
1990 		0x480c0, 0x48144,
1991 		0x48180, 0x4818c,
1992 		0x48200, 0x48254,
1993 		0x48260, 0x48264,
1994 		0x48270, 0x48288,
1995 		0x48290, 0x48298,
1996 		0x482ac, 0x482c8,
1997 		0x482d0, 0x482e0,
1998 		0x482f0, 0x482f0,
1999 		0x48300, 0x4833c,
2000 		0x483f8, 0x483fc,
2001 		0x49304, 0x493c4,
2002 		0x49400, 0x4940c,
2003 		0x49414, 0x4941c,
2004 		0x49480, 0x494d0,
2005 		0x4c000, 0x4c054,
2006 		0x4c05c, 0x4c078,
2007 		0x4c0c0, 0x4c174,
2008 		0x4c180, 0x4c1ac,
2009 		0x4c1b4, 0x4c1b8,
2010 		0x4c1c0, 0x4c254,
2011 		0x4c25c, 0x4c278,
2012 		0x4c2c0, 0x4c374,
2013 		0x4c380, 0x4c3ac,
2014 		0x4c3b4, 0x4c3b8,
2015 		0x4c3c0, 0x4c454,
2016 		0x4c45c, 0x4c478,
2017 		0x4c4c0, 0x4c574,
2018 		0x4c580, 0x4c5ac,
2019 		0x4c5b4, 0x4c5b8,
2020 		0x4c5c0, 0x4c654,
2021 		0x4c65c, 0x4c678,
2022 		0x4c6c0, 0x4c774,
2023 		0x4c780, 0x4c7ac,
2024 		0x4c7b4, 0x4c7b8,
2025 		0x4c7c0, 0x4c854,
2026 		0x4c85c, 0x4c878,
2027 		0x4c8c0, 0x4c974,
2028 		0x4c980, 0x4c9ac,
2029 		0x4c9b4, 0x4c9b8,
2030 		0x4c9c0, 0x4c9fc,
2031 		0x4d000, 0x4d004,
2032 		0x4d010, 0x4d030,
2033 		0x4d040, 0x4d060,
2034 		0x4d068, 0x4d068,
2035 		0x4d080, 0x4d084,
2036 		0x4d0a0, 0x4d0b0,
2037 		0x4d200, 0x4d204,
2038 		0x4d210, 0x4d230,
2039 		0x4d240, 0x4d260,
2040 		0x4d268, 0x4d268,
2041 		0x4d280, 0x4d284,
2042 		0x4d2a0, 0x4d2b0,
2043 		0x4e0c0, 0x4e0e4,
2044 		0x4f000, 0x4f03c,
2045 		0x4f044, 0x4f08c,
2046 		0x4f200, 0x4f250,
2047 		0x4f400, 0x4f408,
2048 		0x4f414, 0x4f420,
2049 		0x4f600, 0x4f618,
2050 		0x4f800, 0x4f814,
2051 		0x50000, 0x50084,
2052 		0x50090, 0x500cc,
2053 		0x50400, 0x50400,
2054 		0x50800, 0x50884,
2055 		0x50890, 0x508cc,
2056 		0x50c00, 0x50c00,
2057 		0x51000, 0x5101c,
2058 		0x51300, 0x51308,
2059 	};
2060 
2061 	static const unsigned int t5vf_reg_ranges[] = {
2062 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2063 		VF_MPS_REG(A_MPS_VF_CTL),
2064 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2065 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2066 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2067 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2068 		FW_T4VF_MBDATA_BASE_ADDR,
2069 		FW_T4VF_MBDATA_BASE_ADDR +
2070 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2071 	};
2072 
2073 	static const unsigned int t6_reg_ranges[] = {
2074 		0x1008, 0x101c,
2075 		0x1024, 0x10a8,
2076 		0x10b4, 0x10f8,
2077 		0x1100, 0x1114,
2078 		0x111c, 0x112c,
2079 		0x1138, 0x113c,
2080 		0x1144, 0x114c,
2081 		0x1180, 0x1184,
2082 		0x1190, 0x1194,
2083 		0x11a0, 0x11a4,
2084 		0x11b0, 0x11c4,
2085 		0x11fc, 0x1274,
2086 		0x1280, 0x133c,
2087 		0x1800, 0x18fc,
2088 		0x3000, 0x302c,
2089 		0x3060, 0x30b0,
2090 		0x30b8, 0x30d8,
2091 		0x30e0, 0x30fc,
2092 		0x3140, 0x357c,
2093 		0x35a8, 0x35cc,
2094 		0x35ec, 0x35ec,
2095 		0x3600, 0x5624,
2096 		0x56cc, 0x56ec,
2097 		0x56f4, 0x5720,
2098 		0x5728, 0x575c,
2099 		0x580c, 0x5814,
2100 		0x5890, 0x589c,
2101 		0x58a4, 0x58ac,
2102 		0x58b8, 0x58bc,
2103 		0x5940, 0x595c,
2104 		0x5980, 0x598c,
2105 		0x59b0, 0x59c8,
2106 		0x59d0, 0x59dc,
2107 		0x59fc, 0x5a18,
2108 		0x5a60, 0x5a6c,
2109 		0x5a80, 0x5a8c,
2110 		0x5a94, 0x5a9c,
2111 		0x5b94, 0x5bfc,
2112 		0x5c10, 0x5e48,
2113 		0x5e50, 0x5e94,
2114 		0x5ea0, 0x5eb0,
2115 		0x5ec0, 0x5ec0,
2116 		0x5ec8, 0x5ed0,
2117 		0x5ee0, 0x5ee0,
2118 		0x5ef0, 0x5ef0,
2119 		0x5f00, 0x5f00,
2120 		0x6000, 0x6020,
2121 		0x6028, 0x6040,
2122 		0x6058, 0x609c,
2123 		0x60a8, 0x619c,
2124 		0x7700, 0x7798,
2125 		0x77c0, 0x7880,
2126 		0x78cc, 0x78fc,
2127 		0x7b00, 0x7b58,
2128 		0x7b60, 0x7b84,
2129 		0x7b8c, 0x7c54,
2130 		0x7d00, 0x7d38,
2131 		0x7d40, 0x7d84,
2132 		0x7d8c, 0x7ddc,
2133 		0x7de4, 0x7e04,
2134 		0x7e10, 0x7e1c,
2135 		0x7e24, 0x7e38,
2136 		0x7e40, 0x7e44,
2137 		0x7e4c, 0x7e78,
2138 		0x7e80, 0x7edc,
2139 		0x7ee8, 0x7efc,
2140 		0x8dc0, 0x8de0,
2141 		0x8df8, 0x8e04,
2142 		0x8e10, 0x8e84,
2143 		0x8ea0, 0x8f88,
2144 		0x8fb8, 0x9058,
2145 		0x9060, 0x9060,
2146 		0x9068, 0x90f8,
2147 		0x9100, 0x9124,
2148 		0x9400, 0x9470,
2149 		0x9600, 0x9600,
2150 		0x9608, 0x9638,
2151 		0x9640, 0x9704,
2152 		0x9710, 0x971c,
2153 		0x9800, 0x9808,
2154 		0x9810, 0x9864,
2155 		0x9c00, 0x9c6c,
2156 		0x9c80, 0x9cec,
2157 		0x9d00, 0x9d6c,
2158 		0x9d80, 0x9dec,
2159 		0x9e00, 0x9e6c,
2160 		0x9e80, 0x9eec,
2161 		0x9f00, 0x9f6c,
2162 		0x9f80, 0xa020,
2163 		0xd000, 0xd03c,
2164 		0xd100, 0xd118,
2165 		0xd200, 0xd214,
2166 		0xd220, 0xd234,
2167 		0xd240, 0xd254,
2168 		0xd260, 0xd274,
2169 		0xd280, 0xd294,
2170 		0xd2a0, 0xd2b4,
2171 		0xd2c0, 0xd2d4,
2172 		0xd2e0, 0xd2f4,
2173 		0xd300, 0xd31c,
2174 		0xdfc0, 0xdfe0,
2175 		0xe000, 0xf008,
2176 		0xf010, 0xf018,
2177 		0xf020, 0xf028,
2178 		0x11000, 0x11014,
2179 		0x11048, 0x1106c,
2180 		0x11074, 0x11088,
2181 		0x11098, 0x11120,
2182 		0x1112c, 0x1117c,
2183 		0x11190, 0x112e0,
2184 		0x11300, 0x1130c,
2185 		0x12000, 0x1206c,
2186 		0x19040, 0x1906c,
2187 		0x19078, 0x19080,
2188 		0x1908c, 0x190e8,
2189 		0x190f0, 0x190f8,
2190 		0x19100, 0x19110,
2191 		0x19120, 0x19124,
2192 		0x19150, 0x19194,
2193 		0x1919c, 0x191b0,
2194 		0x191d0, 0x191e8,
2195 		0x19238, 0x19290,
2196 		0x192a4, 0x192b0,
2197 		0x19348, 0x1934c,
2198 		0x193f8, 0x19418,
2199 		0x19420, 0x19428,
2200 		0x19430, 0x19444,
2201 		0x1944c, 0x1946c,
2202 		0x19474, 0x19474,
2203 		0x19490, 0x194cc,
2204 		0x194f0, 0x194f8,
2205 		0x19c00, 0x19c48,
2206 		0x19c50, 0x19c80,
2207 		0x19c94, 0x19c98,
2208 		0x19ca0, 0x19cbc,
2209 		0x19ce4, 0x19ce4,
2210 		0x19cf0, 0x19cf8,
2211 		0x19d00, 0x19d28,
2212 		0x19d50, 0x19d78,
2213 		0x19d94, 0x19d98,
2214 		0x19da0, 0x19de0,
2215 		0x19df0, 0x19e10,
2216 		0x19e50, 0x19e6c,
2217 		0x19ea0, 0x19ebc,
2218 		0x19ec4, 0x19ef4,
2219 		0x19f04, 0x19f2c,
2220 		0x19f34, 0x19f34,
2221 		0x19f40, 0x19f50,
2222 		0x19f90, 0x19fac,
2223 		0x19fc4, 0x19fc8,
2224 		0x19fd0, 0x19fe4,
2225 		0x1a000, 0x1a004,
2226 		0x1a010, 0x1a06c,
2227 		0x1a0b0, 0x1a0e4,
2228 		0x1a0ec, 0x1a0f8,
2229 		0x1a100, 0x1a108,
2230 		0x1a114, 0x1a130,
2231 		0x1a138, 0x1a1c4,
2232 		0x1a1fc, 0x1a1fc,
2233 		0x1e008, 0x1e00c,
2234 		0x1e040, 0x1e044,
2235 		0x1e04c, 0x1e04c,
2236 		0x1e284, 0x1e290,
2237 		0x1e2c0, 0x1e2c0,
2238 		0x1e2e0, 0x1e2e0,
2239 		0x1e300, 0x1e384,
2240 		0x1e3c0, 0x1e3c8,
2241 		0x1e408, 0x1e40c,
2242 		0x1e440, 0x1e444,
2243 		0x1e44c, 0x1e44c,
2244 		0x1e684, 0x1e690,
2245 		0x1e6c0, 0x1e6c0,
2246 		0x1e6e0, 0x1e6e0,
2247 		0x1e700, 0x1e784,
2248 		0x1e7c0, 0x1e7c8,
2249 		0x1e808, 0x1e80c,
2250 		0x1e840, 0x1e844,
2251 		0x1e84c, 0x1e84c,
2252 		0x1ea84, 0x1ea90,
2253 		0x1eac0, 0x1eac0,
2254 		0x1eae0, 0x1eae0,
2255 		0x1eb00, 0x1eb84,
2256 		0x1ebc0, 0x1ebc8,
2257 		0x1ec08, 0x1ec0c,
2258 		0x1ec40, 0x1ec44,
2259 		0x1ec4c, 0x1ec4c,
2260 		0x1ee84, 0x1ee90,
2261 		0x1eec0, 0x1eec0,
2262 		0x1eee0, 0x1eee0,
2263 		0x1ef00, 0x1ef84,
2264 		0x1efc0, 0x1efc8,
2265 		0x1f008, 0x1f00c,
2266 		0x1f040, 0x1f044,
2267 		0x1f04c, 0x1f04c,
2268 		0x1f284, 0x1f290,
2269 		0x1f2c0, 0x1f2c0,
2270 		0x1f2e0, 0x1f2e0,
2271 		0x1f300, 0x1f384,
2272 		0x1f3c0, 0x1f3c8,
2273 		0x1f408, 0x1f40c,
2274 		0x1f440, 0x1f444,
2275 		0x1f44c, 0x1f44c,
2276 		0x1f684, 0x1f690,
2277 		0x1f6c0, 0x1f6c0,
2278 		0x1f6e0, 0x1f6e0,
2279 		0x1f700, 0x1f784,
2280 		0x1f7c0, 0x1f7c8,
2281 		0x1f808, 0x1f80c,
2282 		0x1f840, 0x1f844,
2283 		0x1f84c, 0x1f84c,
2284 		0x1fa84, 0x1fa90,
2285 		0x1fac0, 0x1fac0,
2286 		0x1fae0, 0x1fae0,
2287 		0x1fb00, 0x1fb84,
2288 		0x1fbc0, 0x1fbc8,
2289 		0x1fc08, 0x1fc0c,
2290 		0x1fc40, 0x1fc44,
2291 		0x1fc4c, 0x1fc4c,
2292 		0x1fe84, 0x1fe90,
2293 		0x1fec0, 0x1fec0,
2294 		0x1fee0, 0x1fee0,
2295 		0x1ff00, 0x1ff84,
2296 		0x1ffc0, 0x1ffc8,
2297 		0x30000, 0x30030,
2298 		0x30100, 0x30168,
2299 		0x30190, 0x301a0,
2300 		0x301a8, 0x301b8,
2301 		0x301c4, 0x301c8,
2302 		0x301d0, 0x301d0,
2303 		0x30200, 0x30320,
2304 		0x30400, 0x304b4,
2305 		0x304c0, 0x3052c,
2306 		0x30540, 0x3061c,
2307 		0x30800, 0x308a0,
2308 		0x308c0, 0x30908,
2309 		0x30910, 0x309b8,
2310 		0x30a00, 0x30a04,
2311 		0x30a0c, 0x30a14,
2312 		0x30a1c, 0x30a2c,
2313 		0x30a44, 0x30a50,
2314 		0x30a74, 0x30a74,
2315 		0x30a7c, 0x30afc,
2316 		0x30b08, 0x30c24,
2317 		0x30d00, 0x30d14,
2318 		0x30d1c, 0x30d3c,
2319 		0x30d44, 0x30d4c,
2320 		0x30d54, 0x30d74,
2321 		0x30d7c, 0x30d7c,
2322 		0x30de0, 0x30de0,
2323 		0x30e00, 0x30ed4,
2324 		0x30f00, 0x30fa4,
2325 		0x30fc0, 0x30fc4,
2326 		0x31000, 0x31004,
2327 		0x31080, 0x310fc,
2328 		0x31208, 0x31220,
2329 		0x3123c, 0x31254,
2330 		0x31300, 0x31300,
2331 		0x31308, 0x3131c,
2332 		0x31338, 0x3133c,
2333 		0x31380, 0x31380,
2334 		0x31388, 0x313a8,
2335 		0x313b4, 0x313b4,
2336 		0x31400, 0x31420,
2337 		0x31438, 0x3143c,
2338 		0x31480, 0x31480,
2339 		0x314a8, 0x314a8,
2340 		0x314b0, 0x314b4,
2341 		0x314c8, 0x314d4,
2342 		0x31a40, 0x31a4c,
2343 		0x31af0, 0x31b20,
2344 		0x31b38, 0x31b3c,
2345 		0x31b80, 0x31b80,
2346 		0x31ba8, 0x31ba8,
2347 		0x31bb0, 0x31bb4,
2348 		0x31bc8, 0x31bd4,
2349 		0x32140, 0x3218c,
2350 		0x321f0, 0x321f4,
2351 		0x32200, 0x32200,
2352 		0x32218, 0x32218,
2353 		0x32400, 0x32400,
2354 		0x32408, 0x3241c,
2355 		0x32618, 0x32620,
2356 		0x32664, 0x32664,
2357 		0x326a8, 0x326a8,
2358 		0x326ec, 0x326ec,
2359 		0x32a00, 0x32abc,
2360 		0x32b00, 0x32b18,
2361 		0x32b20, 0x32b38,
2362 		0x32b40, 0x32b58,
2363 		0x32b60, 0x32b78,
2364 		0x32c00, 0x32c00,
2365 		0x32c08, 0x32c3c,
2366 		0x33000, 0x3302c,
2367 		0x33034, 0x33050,
2368 		0x33058, 0x33058,
2369 		0x33060, 0x3308c,
2370 		0x3309c, 0x330ac,
2371 		0x330c0, 0x330c0,
2372 		0x330c8, 0x330d0,
2373 		0x330d8, 0x330e0,
2374 		0x330ec, 0x3312c,
2375 		0x33134, 0x33150,
2376 		0x33158, 0x33158,
2377 		0x33160, 0x3318c,
2378 		0x3319c, 0x331ac,
2379 		0x331c0, 0x331c0,
2380 		0x331c8, 0x331d0,
2381 		0x331d8, 0x331e0,
2382 		0x331ec, 0x33290,
2383 		0x33298, 0x332c4,
2384 		0x332e4, 0x33390,
2385 		0x33398, 0x333c4,
2386 		0x333e4, 0x3342c,
2387 		0x33434, 0x33450,
2388 		0x33458, 0x33458,
2389 		0x33460, 0x3348c,
2390 		0x3349c, 0x334ac,
2391 		0x334c0, 0x334c0,
2392 		0x334c8, 0x334d0,
2393 		0x334d8, 0x334e0,
2394 		0x334ec, 0x3352c,
2395 		0x33534, 0x33550,
2396 		0x33558, 0x33558,
2397 		0x33560, 0x3358c,
2398 		0x3359c, 0x335ac,
2399 		0x335c0, 0x335c0,
2400 		0x335c8, 0x335d0,
2401 		0x335d8, 0x335e0,
2402 		0x335ec, 0x33690,
2403 		0x33698, 0x336c4,
2404 		0x336e4, 0x33790,
2405 		0x33798, 0x337c4,
2406 		0x337e4, 0x337fc,
2407 		0x33814, 0x33814,
2408 		0x33854, 0x33868,
2409 		0x33880, 0x3388c,
2410 		0x338c0, 0x338d0,
2411 		0x338e8, 0x338ec,
2412 		0x33900, 0x3392c,
2413 		0x33934, 0x33950,
2414 		0x33958, 0x33958,
2415 		0x33960, 0x3398c,
2416 		0x3399c, 0x339ac,
2417 		0x339c0, 0x339c0,
2418 		0x339c8, 0x339d0,
2419 		0x339d8, 0x339e0,
2420 		0x339ec, 0x33a90,
2421 		0x33a98, 0x33ac4,
2422 		0x33ae4, 0x33b10,
2423 		0x33b24, 0x33b28,
2424 		0x33b38, 0x33b50,
2425 		0x33bf0, 0x33c10,
2426 		0x33c24, 0x33c28,
2427 		0x33c38, 0x33c50,
2428 		0x33cf0, 0x33cfc,
2429 		0x34000, 0x34030,
2430 		0x34100, 0x34168,
2431 		0x34190, 0x341a0,
2432 		0x341a8, 0x341b8,
2433 		0x341c4, 0x341c8,
2434 		0x341d0, 0x341d0,
2435 		0x34200, 0x34320,
2436 		0x34400, 0x344b4,
2437 		0x344c0, 0x3452c,
2438 		0x34540, 0x3461c,
2439 		0x34800, 0x348a0,
2440 		0x348c0, 0x34908,
2441 		0x34910, 0x349b8,
2442 		0x34a00, 0x34a04,
2443 		0x34a0c, 0x34a14,
2444 		0x34a1c, 0x34a2c,
2445 		0x34a44, 0x34a50,
2446 		0x34a74, 0x34a74,
2447 		0x34a7c, 0x34afc,
2448 		0x34b08, 0x34c24,
2449 		0x34d00, 0x34d14,
2450 		0x34d1c, 0x34d3c,
2451 		0x34d44, 0x34d4c,
2452 		0x34d54, 0x34d74,
2453 		0x34d7c, 0x34d7c,
2454 		0x34de0, 0x34de0,
2455 		0x34e00, 0x34ed4,
2456 		0x34f00, 0x34fa4,
2457 		0x34fc0, 0x34fc4,
2458 		0x35000, 0x35004,
2459 		0x35080, 0x350fc,
2460 		0x35208, 0x35220,
2461 		0x3523c, 0x35254,
2462 		0x35300, 0x35300,
2463 		0x35308, 0x3531c,
2464 		0x35338, 0x3533c,
2465 		0x35380, 0x35380,
2466 		0x35388, 0x353a8,
2467 		0x353b4, 0x353b4,
2468 		0x35400, 0x35420,
2469 		0x35438, 0x3543c,
2470 		0x35480, 0x35480,
2471 		0x354a8, 0x354a8,
2472 		0x354b0, 0x354b4,
2473 		0x354c8, 0x354d4,
2474 		0x35a40, 0x35a4c,
2475 		0x35af0, 0x35b20,
2476 		0x35b38, 0x35b3c,
2477 		0x35b80, 0x35b80,
2478 		0x35ba8, 0x35ba8,
2479 		0x35bb0, 0x35bb4,
2480 		0x35bc8, 0x35bd4,
2481 		0x36140, 0x3618c,
2482 		0x361f0, 0x361f4,
2483 		0x36200, 0x36200,
2484 		0x36218, 0x36218,
2485 		0x36400, 0x36400,
2486 		0x36408, 0x3641c,
2487 		0x36618, 0x36620,
2488 		0x36664, 0x36664,
2489 		0x366a8, 0x366a8,
2490 		0x366ec, 0x366ec,
2491 		0x36a00, 0x36abc,
2492 		0x36b00, 0x36b18,
2493 		0x36b20, 0x36b38,
2494 		0x36b40, 0x36b58,
2495 		0x36b60, 0x36b78,
2496 		0x36c00, 0x36c00,
2497 		0x36c08, 0x36c3c,
2498 		0x37000, 0x3702c,
2499 		0x37034, 0x37050,
2500 		0x37058, 0x37058,
2501 		0x37060, 0x3708c,
2502 		0x3709c, 0x370ac,
2503 		0x370c0, 0x370c0,
2504 		0x370c8, 0x370d0,
2505 		0x370d8, 0x370e0,
2506 		0x370ec, 0x3712c,
2507 		0x37134, 0x37150,
2508 		0x37158, 0x37158,
2509 		0x37160, 0x3718c,
2510 		0x3719c, 0x371ac,
2511 		0x371c0, 0x371c0,
2512 		0x371c8, 0x371d0,
2513 		0x371d8, 0x371e0,
2514 		0x371ec, 0x37290,
2515 		0x37298, 0x372c4,
2516 		0x372e4, 0x37390,
2517 		0x37398, 0x373c4,
2518 		0x373e4, 0x3742c,
2519 		0x37434, 0x37450,
2520 		0x37458, 0x37458,
2521 		0x37460, 0x3748c,
2522 		0x3749c, 0x374ac,
2523 		0x374c0, 0x374c0,
2524 		0x374c8, 0x374d0,
2525 		0x374d8, 0x374e0,
2526 		0x374ec, 0x3752c,
2527 		0x37534, 0x37550,
2528 		0x37558, 0x37558,
2529 		0x37560, 0x3758c,
2530 		0x3759c, 0x375ac,
2531 		0x375c0, 0x375c0,
2532 		0x375c8, 0x375d0,
2533 		0x375d8, 0x375e0,
2534 		0x375ec, 0x37690,
2535 		0x37698, 0x376c4,
2536 		0x376e4, 0x37790,
2537 		0x37798, 0x377c4,
2538 		0x377e4, 0x377fc,
2539 		0x37814, 0x37814,
2540 		0x37854, 0x37868,
2541 		0x37880, 0x3788c,
2542 		0x378c0, 0x378d0,
2543 		0x378e8, 0x378ec,
2544 		0x37900, 0x3792c,
2545 		0x37934, 0x37950,
2546 		0x37958, 0x37958,
2547 		0x37960, 0x3798c,
2548 		0x3799c, 0x379ac,
2549 		0x379c0, 0x379c0,
2550 		0x379c8, 0x379d0,
2551 		0x379d8, 0x379e0,
2552 		0x379ec, 0x37a90,
2553 		0x37a98, 0x37ac4,
2554 		0x37ae4, 0x37b10,
2555 		0x37b24, 0x37b28,
2556 		0x37b38, 0x37b50,
2557 		0x37bf0, 0x37c10,
2558 		0x37c24, 0x37c28,
2559 		0x37c38, 0x37c50,
2560 		0x37cf0, 0x37cfc,
2561 		0x40040, 0x40040,
2562 		0x40080, 0x40084,
2563 		0x40100, 0x40100,
2564 		0x40140, 0x401bc,
2565 		0x40200, 0x40214,
2566 		0x40228, 0x40228,
2567 		0x40240, 0x40258,
2568 		0x40280, 0x40280,
2569 		0x40304, 0x40304,
2570 		0x40330, 0x4033c,
2571 		0x41304, 0x413c8,
2572 		0x413d0, 0x413dc,
2573 		0x413f0, 0x413f0,
2574 		0x41400, 0x4140c,
2575 		0x41414, 0x4141c,
2576 		0x41480, 0x414d0,
2577 		0x44000, 0x4407c,
2578 		0x440c0, 0x441ac,
2579 		0x441b4, 0x4427c,
2580 		0x442c0, 0x443ac,
2581 		0x443b4, 0x4447c,
2582 		0x444c0, 0x445ac,
2583 		0x445b4, 0x4467c,
2584 		0x446c0, 0x447ac,
2585 		0x447b4, 0x4487c,
2586 		0x448c0, 0x449ac,
2587 		0x449b4, 0x44a7c,
2588 		0x44ac0, 0x44bac,
2589 		0x44bb4, 0x44c7c,
2590 		0x44cc0, 0x44dac,
2591 		0x44db4, 0x44e7c,
2592 		0x44ec0, 0x44fac,
2593 		0x44fb4, 0x4507c,
2594 		0x450c0, 0x451ac,
2595 		0x451b4, 0x451fc,
2596 		0x45800, 0x45804,
2597 		0x45810, 0x45830,
2598 		0x45840, 0x45860,
2599 		0x45868, 0x45868,
2600 		0x45880, 0x45884,
2601 		0x458a0, 0x458b0,
2602 		0x45a00, 0x45a04,
2603 		0x45a10, 0x45a30,
2604 		0x45a40, 0x45a60,
2605 		0x45a68, 0x45a68,
2606 		0x45a80, 0x45a84,
2607 		0x45aa0, 0x45ab0,
2608 		0x460c0, 0x460e4,
2609 		0x47000, 0x4703c,
2610 		0x47044, 0x4708c,
2611 		0x47200, 0x47250,
2612 		0x47400, 0x47408,
2613 		0x47414, 0x47420,
2614 		0x47600, 0x47618,
2615 		0x47800, 0x47814,
2616 		0x47820, 0x4782c,
2617 		0x50000, 0x50084,
2618 		0x50090, 0x500cc,
2619 		0x50300, 0x50384,
2620 		0x50400, 0x50400,
2621 		0x50800, 0x50884,
2622 		0x50890, 0x508cc,
2623 		0x50b00, 0x50b84,
2624 		0x50c00, 0x50c00,
2625 		0x51000, 0x51020,
2626 		0x51028, 0x510b0,
2627 		0x51300, 0x51324,
2628 	};
2629 
2630 	static const unsigned int t6vf_reg_ranges[] = {
2631 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2632 		VF_MPS_REG(A_MPS_VF_CTL),
2633 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2634 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2635 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2636 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2637 		FW_T6VF_MBDATA_BASE_ADDR,
2638 		FW_T6VF_MBDATA_BASE_ADDR +
2639 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2640 	};
2641 
2642 	u32 *buf_end = (u32 *)(buf + buf_size);
2643 	const unsigned int *reg_ranges;
2644 	int reg_ranges_size, range;
2645 	unsigned int chip_version = chip_id(adap);
2646 
2647 	/*
2648 	 * Select the right set of register ranges to dump depending on the
2649 	 * adapter chip type.
2650 	 */
2651 	switch (chip_version) {
2652 	case CHELSIO_T4:
2653 		if (adap->flags & IS_VF) {
2654 			reg_ranges = t4vf_reg_ranges;
2655 			reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges);
2656 		} else {
2657 			reg_ranges = t4_reg_ranges;
2658 			reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2659 		}
2660 		break;
2661 
2662 	case CHELSIO_T5:
2663 		if (adap->flags & IS_VF) {
2664 			reg_ranges = t5vf_reg_ranges;
2665 			reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges);
2666 		} else {
2667 			reg_ranges = t5_reg_ranges;
2668 			reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2669 		}
2670 		break;
2671 
2672 	case CHELSIO_T6:
2673 		if (adap->flags & IS_VF) {
2674 			reg_ranges = t6vf_reg_ranges;
2675 			reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges);
2676 		} else {
2677 			reg_ranges = t6_reg_ranges;
2678 			reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2679 		}
2680 		break;
2681 
2682 	default:
2683 		CH_ERR(adap,
2684 			"Unsupported chip version %d\n", chip_version);
2685 		return;
2686 	}
2687 
2688 	/*
2689 	 * Clear the register buffer and insert the appropriate register
2690 	 * values selected by the above register ranges.
2691 	 */
2692 	memset(buf, 0, buf_size);
2693 	for (range = 0; range < reg_ranges_size; range += 2) {
2694 		unsigned int reg = reg_ranges[range];
2695 		unsigned int last_reg = reg_ranges[range + 1];
2696 		u32 *bufp = (u32 *)(buf + reg);
2697 
2698 		/*
2699 		 * Iterate across the register range filling in the register
2700 		 * buffer but don't write past the end of the register buffer.
2701 		 */
2702 		while (reg <= last_reg && bufp < buf_end) {
2703 			*bufp++ = t4_read_reg(adap, reg);
2704 			reg += sizeof(u32);
2705 		}
2706 	}
2707 }
2708 
2709 /*
2710  * Partial EEPROM Vital Product Data structure.  The VPD starts with one ID
2711  * header followed by one or more VPD-R sections, each with its own header.
2712  */
2713 struct t4_vpd_hdr {
2714 	u8  id_tag;
2715 	u8  id_len[2];
2716 	u8  id_data[ID_LEN];
2717 };
2718 
2719 struct t4_vpdr_hdr {
2720 	u8  vpdr_tag;
2721 	u8  vpdr_len[2];
2722 };
2723 
2724 /*
2725  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
2726  */
2727 #define EEPROM_DELAY		10		/* 10us per poll spin */
2728 #define EEPROM_MAX_POLL		5000		/* x 5000 == 50ms */
2729 
2730 #define EEPROM_STAT_ADDR	0x7bfc
2731 #define VPD_SIZE		0x800
2732 #define VPD_BASE		0x400
2733 #define VPD_BASE_OLD		0
2734 #define VPD_LEN			1024
2735 #define VPD_INFO_FLD_HDR_SIZE	3
2736 #define CHELSIO_VPD_UNIQUE_ID	0x82
2737 
2738 /*
2739  * Small utility function to wait till any outstanding VPD Access is complete.
2740  * We have a per-adapter state variable "VPD Busy" to indicate when we have a
2741  * VPD Access in flight.  This allows us to handle the problem of having a
2742  * previous VPD Access time out and prevent an attempt to inject a new VPD
2743  * Request before any in-flight VPD reguest has completed.
2744  */
2745 static int t4_seeprom_wait(struct adapter *adapter)
2746 {
2747 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2748 	int max_poll;
2749 
2750 	/*
2751 	 * If no VPD Access is in flight, we can just return success right
2752 	 * away.
2753 	 */
2754 	if (!adapter->vpd_busy)
2755 		return 0;
2756 
2757 	/*
2758 	 * Poll the VPD Capability Address/Flag register waiting for it
2759 	 * to indicate that the operation is complete.
2760 	 */
2761 	max_poll = EEPROM_MAX_POLL;
2762 	do {
2763 		u16 val;
2764 
2765 		udelay(EEPROM_DELAY);
2766 		t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
2767 
2768 		/*
2769 		 * If the operation is complete, mark the VPD as no longer
2770 		 * busy and return success.
2771 		 */
2772 		if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
2773 			adapter->vpd_busy = 0;
2774 			return 0;
2775 		}
2776 	} while (--max_poll);
2777 
2778 	/*
2779 	 * Failure!  Note that we leave the VPD Busy status set in order to
2780 	 * avoid pushing a new VPD Access request into the VPD Capability till
2781 	 * the current operation eventually succeeds.  It's a bug to issue a
2782 	 * new request when an existing request is in flight and will result
2783 	 * in corrupt hardware state.
2784 	 */
2785 	return -ETIMEDOUT;
2786 }
2787 
2788 /**
2789  *	t4_seeprom_read - read a serial EEPROM location
2790  *	@adapter: adapter to read
2791  *	@addr: EEPROM virtual address
2792  *	@data: where to store the read data
2793  *
2794  *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
2795  *	VPD capability.  Note that this function must be called with a virtual
2796  *	address.
2797  */
2798 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2799 {
2800 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2801 	int ret;
2802 
2803 	/*
2804 	 * VPD Accesses must alway be 4-byte aligned!
2805 	 */
2806 	if (addr >= EEPROMVSIZE || (addr & 3))
2807 		return -EINVAL;
2808 
2809 	/*
2810 	 * Wait for any previous operation which may still be in flight to
2811 	 * complete.
2812 	 */
2813 	ret = t4_seeprom_wait(adapter);
2814 	if (ret) {
2815 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2816 		return ret;
2817 	}
2818 
2819 	/*
2820 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2821 	 * for our request to complete.  If it doesn't complete, note the
2822 	 * error and return it to our caller.  Note that we do not reset the
2823 	 * VPD Busy status!
2824 	 */
2825 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2826 	adapter->vpd_busy = 1;
2827 	adapter->vpd_flag = PCI_VPD_ADDR_F;
2828 	ret = t4_seeprom_wait(adapter);
2829 	if (ret) {
2830 		CH_ERR(adapter, "VPD read of address %#x failed\n", addr);
2831 		return ret;
2832 	}
2833 
2834 	/*
2835 	 * Grab the returned data, swizzle it into our endianness and
2836 	 * return success.
2837 	 */
2838 	t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2839 	*data = le32_to_cpu(*data);
2840 	return 0;
2841 }
2842 
2843 /**
2844  *	t4_seeprom_write - write a serial EEPROM location
2845  *	@adapter: adapter to write
2846  *	@addr: virtual EEPROM address
2847  *	@data: value to write
2848  *
2849  *	Write a 32-bit word to a location in serial EEPROM using the card's PCI
2850  *	VPD capability.  Note that this function must be called with a virtual
2851  *	address.
2852  */
2853 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2854 {
2855 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2856 	int ret;
2857 	u32 stats_reg;
2858 	int max_poll;
2859 
2860 	/*
2861 	 * VPD Accesses must alway be 4-byte aligned!
2862 	 */
2863 	if (addr >= EEPROMVSIZE || (addr & 3))
2864 		return -EINVAL;
2865 
2866 	/*
2867 	 * Wait for any previous operation which may still be in flight to
2868 	 * complete.
2869 	 */
2870 	ret = t4_seeprom_wait(adapter);
2871 	if (ret) {
2872 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2873 		return ret;
2874 	}
2875 
2876 	/*
2877 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2878 	 * for our request to complete.  If it doesn't complete, note the
2879 	 * error and return it to our caller.  Note that we do not reset the
2880 	 * VPD Busy status!
2881 	 */
2882 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2883 				 cpu_to_le32(data));
2884 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2885 				 (u16)addr | PCI_VPD_ADDR_F);
2886 	adapter->vpd_busy = 1;
2887 	adapter->vpd_flag = 0;
2888 	ret = t4_seeprom_wait(adapter);
2889 	if (ret) {
2890 		CH_ERR(adapter, "VPD write of address %#x failed\n", addr);
2891 		return ret;
2892 	}
2893 
2894 	/*
2895 	 * Reset PCI_VPD_DATA register after a transaction and wait for our
2896 	 * request to complete. If it doesn't complete, return error.
2897 	 */
2898 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2899 	max_poll = EEPROM_MAX_POLL;
2900 	do {
2901 		udelay(EEPROM_DELAY);
2902 		t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2903 	} while ((stats_reg & 0x1) && --max_poll);
2904 	if (!max_poll)
2905 		return -ETIMEDOUT;
2906 
2907 	/* Return success! */
2908 	return 0;
2909 }
2910 
2911 /**
2912  *	t4_eeprom_ptov - translate a physical EEPROM address to virtual
2913  *	@phys_addr: the physical EEPROM address
2914  *	@fn: the PCI function number
2915  *	@sz: size of function-specific area
2916  *
2917  *	Translate a physical EEPROM address to virtual.  The first 1K is
2918  *	accessed through virtual addresses starting at 31K, the rest is
2919  *	accessed through virtual addresses starting at 0.
2920  *
2921  *	The mapping is as follows:
2922  *	[0..1K) -> [31K..32K)
2923  *	[1K..1K+A) -> [ES-A..ES)
2924  *	[1K+A..ES) -> [0..ES-A-1K)
2925  *
2926  *	where A = @fn * @sz, and ES = EEPROM size.
2927  */
2928 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2929 {
2930 	fn *= sz;
2931 	if (phys_addr < 1024)
2932 		return phys_addr + (31 << 10);
2933 	if (phys_addr < 1024 + fn)
2934 		return EEPROMSIZE - fn + phys_addr - 1024;
2935 	if (phys_addr < EEPROMSIZE)
2936 		return phys_addr - 1024 - fn;
2937 	return -EINVAL;
2938 }
2939 
2940 /**
2941  *	t4_seeprom_wp - enable/disable EEPROM write protection
2942  *	@adapter: the adapter
2943  *	@enable: whether to enable or disable write protection
2944  *
2945  *	Enables or disables write protection on the serial EEPROM.
2946  */
2947 int t4_seeprom_wp(struct adapter *adapter, int enable)
2948 {
2949 	return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2950 }
2951 
2952 /**
2953  *	get_vpd_keyword_val - Locates an information field keyword in the VPD
2954  *	@vpd: Pointer to buffered vpd data structure
2955  *	@kw: The keyword to search for
2956  *	@region: VPD region to search (starting from 0)
2957  *
2958  *	Returns the value of the information field keyword or
2959  *	-ENOENT otherwise.
2960  */
2961 static int get_vpd_keyword_val(const u8 *vpd, const char *kw, int region)
2962 {
2963 	int i, tag;
2964 	unsigned int offset, len;
2965 	const struct t4_vpdr_hdr *vpdr;
2966 
2967 	offset = sizeof(struct t4_vpd_hdr);
2968 	vpdr = (const void *)(vpd + offset);
2969 	tag = vpdr->vpdr_tag;
2970 	len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2971 	while (region--) {
2972 		offset += sizeof(struct t4_vpdr_hdr) + len;
2973 		vpdr = (const void *)(vpd + offset);
2974 		if (++tag != vpdr->vpdr_tag)
2975 			return -ENOENT;
2976 		len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2977 	}
2978 	offset += sizeof(struct t4_vpdr_hdr);
2979 
2980 	if (offset + len > VPD_LEN) {
2981 		return -ENOENT;
2982 	}
2983 
2984 	for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
2985 		if (memcmp(vpd + i , kw , 2) == 0){
2986 			i += VPD_INFO_FLD_HDR_SIZE;
2987 			return i;
2988 		}
2989 
2990 		i += VPD_INFO_FLD_HDR_SIZE + vpd[i+2];
2991 	}
2992 
2993 	return -ENOENT;
2994 }
2995 
2996 
2997 /**
2998  *	get_vpd_params - read VPD parameters from VPD EEPROM
2999  *	@adapter: adapter to read
3000  *	@p: where to store the parameters
3001  *	@vpd: caller provided temporary space to read the VPD into
3002  *
3003  *	Reads card parameters stored in VPD EEPROM.
3004  */
3005 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p,
3006     uint16_t device_id, u32 *buf)
3007 {
3008 	int i, ret, addr;
3009 	int ec, sn, pn, na, md;
3010 	u8 csum;
3011 	const u8 *vpd = (const u8 *)buf;
3012 
3013 	/*
3014 	 * Card information normally starts at VPD_BASE but early cards had
3015 	 * it at 0.
3016 	 */
3017 	ret = t4_seeprom_read(adapter, VPD_BASE, buf);
3018 	if (ret)
3019 		return (ret);
3020 
3021 	/*
3022 	 * The VPD shall have a unique identifier specified by the PCI SIG.
3023 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
3024 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
3025 	 * is expected to automatically put this entry at the
3026 	 * beginning of the VPD.
3027 	 */
3028 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
3029 
3030 	for (i = 0; i < VPD_LEN; i += 4) {
3031 		ret = t4_seeprom_read(adapter, addr + i, buf++);
3032 		if (ret)
3033 			return ret;
3034 	}
3035 
3036 #define FIND_VPD_KW(var,name) do { \
3037 	var = get_vpd_keyword_val(vpd, name, 0); \
3038 	if (var < 0) { \
3039 		CH_ERR(adapter, "missing VPD keyword " name "\n"); \
3040 		return -EINVAL; \
3041 	} \
3042 } while (0)
3043 
3044 	FIND_VPD_KW(i, "RV");
3045 	for (csum = 0; i >= 0; i--)
3046 		csum += vpd[i];
3047 
3048 	if (csum) {
3049 		CH_ERR(adapter,
3050 			"corrupted VPD EEPROM, actual csum %u\n", csum);
3051 		return -EINVAL;
3052 	}
3053 
3054 	FIND_VPD_KW(ec, "EC");
3055 	FIND_VPD_KW(sn, "SN");
3056 	FIND_VPD_KW(pn, "PN");
3057 	FIND_VPD_KW(na, "NA");
3058 #undef FIND_VPD_KW
3059 
3060 	memcpy(p->id, vpd + offsetof(struct t4_vpd_hdr, id_data), ID_LEN);
3061 	strstrip(p->id);
3062 	memcpy(p->ec, vpd + ec, EC_LEN);
3063 	strstrip(p->ec);
3064 	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
3065 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
3066 	strstrip(p->sn);
3067 	i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
3068 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
3069 	strstrip((char *)p->pn);
3070 	i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
3071 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
3072 	strstrip((char *)p->na);
3073 
3074 	if (device_id & 0x80)
3075 		return 0;	/* Custom card */
3076 
3077 	md = get_vpd_keyword_val(vpd, "VF", 1);
3078 	if (md < 0) {
3079 		snprintf(p->md, sizeof(p->md), "unknown");
3080 	} else {
3081 		i = vpd[md - VPD_INFO_FLD_HDR_SIZE + 2];
3082 		memcpy(p->md, vpd + md, min(i, MD_LEN));
3083 		strstrip((char *)p->md);
3084 	}
3085 
3086 	return 0;
3087 }
3088 
3089 /* serial flash and firmware constants and flash config file constants */
3090 enum {
3091 	SF_ATTEMPTS = 10,	/* max retries for SF operations */
3092 
3093 	/* flash command opcodes */
3094 	SF_PROG_PAGE    = 2,	/* program 256B page */
3095 	SF_WR_DISABLE   = 4,	/* disable writes */
3096 	SF_RD_STATUS    = 5,	/* read status register */
3097 	SF_WR_ENABLE    = 6,	/* enable writes */
3098 	SF_RD_DATA_FAST = 0xb,	/* read flash */
3099 	SF_RD_ID	= 0x9f,	/* read ID */
3100 	SF_ERASE_SECTOR = 0xd8,	/* erase 64KB sector */
3101 };
3102 
3103 /**
3104  *	sf1_read - read data from the serial flash
3105  *	@adapter: the adapter
3106  *	@byte_cnt: number of bytes to read
3107  *	@cont: whether another operation will be chained
3108  *	@lock: whether to lock SF for PL access only
3109  *	@valp: where to store the read data
3110  *
3111  *	Reads up to 4 bytes of data from the serial flash.  The location of
3112  *	the read needs to be specified prior to calling this by issuing the
3113  *	appropriate commands to the serial flash.
3114  */
3115 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
3116 		    int lock, u32 *valp)
3117 {
3118 	int ret;
3119 
3120 	if (!byte_cnt || byte_cnt > 4)
3121 		return -EINVAL;
3122 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3123 		return -EBUSY;
3124 	t4_write_reg(adapter, A_SF_OP,
3125 		     V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
3126 	ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3127 	if (!ret)
3128 		*valp = t4_read_reg(adapter, A_SF_DATA);
3129 	return ret;
3130 }
3131 
3132 /**
3133  *	sf1_write - write data to the serial flash
3134  *	@adapter: the adapter
3135  *	@byte_cnt: number of bytes to write
3136  *	@cont: whether another operation will be chained
3137  *	@lock: whether to lock SF for PL access only
3138  *	@val: value to write
3139  *
3140  *	Writes up to 4 bytes of data to the serial flash.  The location of
3141  *	the write needs to be specified prior to calling this by issuing the
3142  *	appropriate commands to the serial flash.
3143  */
3144 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
3145 		     int lock, u32 val)
3146 {
3147 	if (!byte_cnt || byte_cnt > 4)
3148 		return -EINVAL;
3149 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3150 		return -EBUSY;
3151 	t4_write_reg(adapter, A_SF_DATA, val);
3152 	t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
3153 		     V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
3154 	return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3155 }
3156 
3157 /**
3158  *	flash_wait_op - wait for a flash operation to complete
3159  *	@adapter: the adapter
3160  *	@attempts: max number of polls of the status register
3161  *	@delay: delay between polls in ms
3162  *
3163  *	Wait for a flash operation to complete by polling the status register.
3164  */
3165 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3166 {
3167 	int ret;
3168 	u32 status;
3169 
3170 	while (1) {
3171 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3172 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3173 			return ret;
3174 		if (!(status & 1))
3175 			return 0;
3176 		if (--attempts == 0)
3177 			return -EAGAIN;
3178 		if (delay)
3179 			msleep(delay);
3180 	}
3181 }
3182 
3183 /**
3184  *	t4_read_flash - read words from serial flash
3185  *	@adapter: the adapter
3186  *	@addr: the start address for the read
3187  *	@nwords: how many 32-bit words to read
3188  *	@data: where to store the read data
3189  *	@byte_oriented: whether to store data as bytes or as words
3190  *
3191  *	Read the specified number of 32-bit words from the serial flash.
3192  *	If @byte_oriented is set the read data is stored as a byte array
3193  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3194  *	natural endianness.
3195  */
3196 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3197 		  unsigned int nwords, u32 *data, int byte_oriented)
3198 {
3199 	int ret;
3200 
3201 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3202 		return -EINVAL;
3203 
3204 	addr = swab32(addr) | SF_RD_DATA_FAST;
3205 
3206 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3207 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3208 		return ret;
3209 
3210 	for ( ; nwords; nwords--, data++) {
3211 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3212 		if (nwords == 1)
3213 			t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3214 		if (ret)
3215 			return ret;
3216 		if (byte_oriented)
3217 			*data = (__force __u32)(cpu_to_be32(*data));
3218 	}
3219 	return 0;
3220 }
3221 
3222 /**
3223  *	t4_write_flash - write up to a page of data to the serial flash
3224  *	@adapter: the adapter
3225  *	@addr: the start address to write
3226  *	@n: length of data to write in bytes
3227  *	@data: the data to write
3228  *	@byte_oriented: whether to store data as bytes or as words
3229  *
3230  *	Writes up to a page of data (256 bytes) to the serial flash starting
3231  *	at the given address.  All the data must be written to the same page.
3232  *	If @byte_oriented is set the write data is stored as byte stream
3233  *	(i.e. matches what on disk), otherwise in big-endian.
3234  */
3235 int t4_write_flash(struct adapter *adapter, unsigned int addr,
3236 			  unsigned int n, const u8 *data, int byte_oriented)
3237 {
3238 	int ret;
3239 	u32 buf[SF_PAGE_SIZE / 4];
3240 	unsigned int i, c, left, val, offset = addr & 0xff;
3241 
3242 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3243 		return -EINVAL;
3244 
3245 	val = swab32(addr) | SF_PROG_PAGE;
3246 
3247 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3248 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3249 		goto unlock;
3250 
3251 	for (left = n; left; left -= c) {
3252 		c = min(left, 4U);
3253 		for (val = 0, i = 0; i < c; ++i)
3254 			val = (val << 8) + *data++;
3255 
3256 		if (!byte_oriented)
3257 			val = cpu_to_be32(val);
3258 
3259 		ret = sf1_write(adapter, c, c != left, 1, val);
3260 		if (ret)
3261 			goto unlock;
3262 	}
3263 	ret = flash_wait_op(adapter, 8, 1);
3264 	if (ret)
3265 		goto unlock;
3266 
3267 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3268 
3269 	/* Read the page to verify the write succeeded */
3270 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3271 			    byte_oriented);
3272 	if (ret)
3273 		return ret;
3274 
3275 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3276 		CH_ERR(adapter,
3277 			"failed to correctly write the flash page at %#x\n",
3278 			addr);
3279 		return -EIO;
3280 	}
3281 	return 0;
3282 
3283 unlock:
3284 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3285 	return ret;
3286 }
3287 
3288 /**
3289  *	t4_get_fw_version - read the firmware version
3290  *	@adapter: the adapter
3291  *	@vers: where to place the version
3292  *
3293  *	Reads the FW version from flash.
3294  */
3295 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3296 {
3297 	return t4_read_flash(adapter, FLASH_FW_START +
3298 			     offsetof(struct fw_hdr, fw_ver), 1,
3299 			     vers, 0);
3300 }
3301 
3302 /**
3303  *	t4_get_fw_hdr - read the firmware header
3304  *	@adapter: the adapter
3305  *	@hdr: where to place the version
3306  *
3307  *	Reads the FW header from flash into caller provided buffer.
3308  */
3309 int t4_get_fw_hdr(struct adapter *adapter, struct fw_hdr *hdr)
3310 {
3311 	return t4_read_flash(adapter, FLASH_FW_START,
3312 	    sizeof (*hdr) / sizeof (uint32_t), (uint32_t *)hdr, 1);
3313 }
3314 
3315 /**
3316  *	t4_get_bs_version - read the firmware bootstrap version
3317  *	@adapter: the adapter
3318  *	@vers: where to place the version
3319  *
3320  *	Reads the FW Bootstrap version from flash.
3321  */
3322 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3323 {
3324 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3325 			     offsetof(struct fw_hdr, fw_ver), 1,
3326 			     vers, 0);
3327 }
3328 
3329 /**
3330  *	t4_get_tp_version - read the TP microcode version
3331  *	@adapter: the adapter
3332  *	@vers: where to place the version
3333  *
3334  *	Reads the TP microcode version from flash.
3335  */
3336 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3337 {
3338 	return t4_read_flash(adapter, FLASH_FW_START +
3339 			     offsetof(struct fw_hdr, tp_microcode_ver),
3340 			     1, vers, 0);
3341 }
3342 
3343 /**
3344  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3345  *	@adapter: the adapter
3346  *	@vers: where to place the version
3347  *
3348  *	Reads the Expansion ROM header from FLASH and returns the version
3349  *	number (if present) through the @vers return value pointer.  We return
3350  *	this in the Firmware Version Format since it's convenient.  Return
3351  *	0 on success, -ENOENT if no Expansion ROM is present.
3352  */
3353 int t4_get_exprom_version(struct adapter *adapter, u32 *vers)
3354 {
3355 	struct exprom_header {
3356 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3357 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3358 	} *hdr;
3359 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3360 					   sizeof(u32))];
3361 	int ret;
3362 
3363 	ret = t4_read_flash(adapter, FLASH_EXP_ROM_START,
3364 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3365 			    0);
3366 	if (ret)
3367 		return ret;
3368 
3369 	hdr = (struct exprom_header *)exprom_header_buf;
3370 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3371 		return -ENOENT;
3372 
3373 	*vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
3374 		 V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
3375 		 V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
3376 		 V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
3377 	return 0;
3378 }
3379 
3380 /**
3381  *	t4_get_scfg_version - return the Serial Configuration version
3382  *	@adapter: the adapter
3383  *	@vers: where to place the version
3384  *
3385  *	Reads the Serial Configuration Version via the Firmware interface
3386  *	(thus this can only be called once we're ready to issue Firmware
3387  *	commands).  The format of the Serial Configuration version is
3388  *	adapter specific.  Returns 0 on success, an error on failure.
3389  *
3390  *	Note that early versions of the Firmware didn't include the ability
3391  *	to retrieve the Serial Configuration version, so we zero-out the
3392  *	return-value parameter in that case to avoid leaving it with
3393  *	garbage in it.
3394  *
3395  *	Also note that the Firmware will return its cached copy of the Serial
3396  *	Initialization Revision ID, not the actual Revision ID as written in
3397  *	the Serial EEPROM.  This is only an issue if a new VPD has been written
3398  *	and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3399  *	it's best to defer calling this routine till after a FW_RESET_CMD has
3400  *	been issued if the Host Driver will be performing a full adapter
3401  *	initialization.
3402  */
3403 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3404 {
3405 	u32 scfgrev_param;
3406 	int ret;
3407 
3408 	scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3409 			 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV));
3410 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3411 			      1, &scfgrev_param, vers);
3412 	if (ret)
3413 		*vers = 0;
3414 	return ret;
3415 }
3416 
3417 /**
3418  *	t4_get_vpd_version - return the VPD version
3419  *	@adapter: the adapter
3420  *	@vers: where to place the version
3421  *
3422  *	Reads the VPD via the Firmware interface (thus this can only be called
3423  *	once we're ready to issue Firmware commands).  The format of the
3424  *	VPD version is adapter specific.  Returns 0 on success, an error on
3425  *	failure.
3426  *
3427  *	Note that early versions of the Firmware didn't include the ability
3428  *	to retrieve the VPD version, so we zero-out the return-value parameter
3429  *	in that case to avoid leaving it with garbage in it.
3430  *
3431  *	Also note that the Firmware will return its cached copy of the VPD
3432  *	Revision ID, not the actual Revision ID as written in the Serial
3433  *	EEPROM.  This is only an issue if a new VPD has been written and the
3434  *	Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3435  *	to defer calling this routine till after a FW_RESET_CMD has been issued
3436  *	if the Host Driver will be performing a full adapter initialization.
3437  */
3438 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3439 {
3440 	u32 vpdrev_param;
3441 	int ret;
3442 
3443 	vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3444 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV));
3445 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3446 			      1, &vpdrev_param, vers);
3447 	if (ret)
3448 		*vers = 0;
3449 	return ret;
3450 }
3451 
3452 /**
3453  *	t4_get_version_info - extract various chip/firmware version information
3454  *	@adapter: the adapter
3455  *
3456  *	Reads various chip/firmware version numbers and stores them into the
3457  *	adapter Adapter Parameters structure.  If any of the efforts fails
3458  *	the first failure will be returned, but all of the version numbers
3459  *	will be read.
3460  */
3461 int t4_get_version_info(struct adapter *adapter)
3462 {
3463 	int ret = 0;
3464 
3465 	#define FIRST_RET(__getvinfo) \
3466 	do { \
3467 		int __ret = __getvinfo; \
3468 		if (__ret && !ret) \
3469 			ret = __ret; \
3470 	} while (0)
3471 
3472 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3473 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3474 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3475 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3476 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3477 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3478 
3479 	#undef FIRST_RET
3480 
3481 	return ret;
3482 }
3483 
3484 /**
3485  *	t4_flash_erase_sectors - erase a range of flash sectors
3486  *	@adapter: the adapter
3487  *	@start: the first sector to erase
3488  *	@end: the last sector to erase
3489  *
3490  *	Erases the sectors in the given inclusive range.
3491  */
3492 int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3493 {
3494 	int ret = 0;
3495 
3496 	if (end >= adapter->params.sf_nsec)
3497 		return -EINVAL;
3498 
3499 	while (start <= end) {
3500 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3501 		    (ret = sf1_write(adapter, 4, 0, 1,
3502 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3503 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3504 			CH_ERR(adapter,
3505 				"erase of flash sector %d failed, error %d\n",
3506 				start, ret);
3507 			break;
3508 		}
3509 		start++;
3510 	}
3511 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3512 	return ret;
3513 }
3514 
3515 /**
3516  *	t4_flash_cfg_addr - return the address of the flash configuration file
3517  *	@adapter: the adapter
3518  *
3519  *	Return the address within the flash where the Firmware Configuration
3520  *	File is stored, or an error if the device FLASH is too small to contain
3521  *	a Firmware Configuration File.
3522  */
3523 int t4_flash_cfg_addr(struct adapter *adapter)
3524 {
3525 	/*
3526 	 * If the device FLASH isn't large enough to hold a Firmware
3527 	 * Configuration File, return an error.
3528 	 */
3529 	if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
3530 		return -ENOSPC;
3531 
3532 	return FLASH_CFG_START;
3533 }
3534 
3535 /*
3536  * Return TRUE if the specified firmware matches the adapter.  I.e. T4
3537  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3538  * and emit an error message for mismatched firmware to save our caller the
3539  * effort ...
3540  */
3541 static int t4_fw_matches_chip(struct adapter *adap,
3542 			      const struct fw_hdr *hdr)
3543 {
3544 	/*
3545 	 * The expression below will return FALSE for any unsupported adapter
3546 	 * which will keep us "honest" in the future ...
3547 	 */
3548 	if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) ||
3549 	    (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) ||
3550 	    (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6))
3551 		return 1;
3552 
3553 	CH_ERR(adap,
3554 		"FW image (%d) is not suitable for this adapter (%d)\n",
3555 		hdr->chip, chip_id(adap));
3556 	return 0;
3557 }
3558 
3559 /**
3560  *	t4_load_fw - download firmware
3561  *	@adap: the adapter
3562  *	@fw_data: the firmware image to write
3563  *	@size: image size
3564  *
3565  *	Write the supplied firmware image to the card's serial flash.
3566  */
3567 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3568 {
3569 	u32 csum;
3570 	int ret, addr;
3571 	unsigned int i;
3572 	u8 first_page[SF_PAGE_SIZE];
3573 	const u32 *p = (const u32 *)fw_data;
3574 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3575 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3576 	unsigned int fw_start_sec;
3577 	unsigned int fw_start;
3578 	unsigned int fw_size;
3579 
3580 	if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) {
3581 		fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC;
3582 		fw_start = FLASH_FWBOOTSTRAP_START;
3583 		fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE;
3584 	} else {
3585 		fw_start_sec = FLASH_FW_START_SEC;
3586  		fw_start = FLASH_FW_START;
3587 		fw_size = FLASH_FW_MAX_SIZE;
3588 	}
3589 
3590 	if (!size) {
3591 		CH_ERR(adap, "FW image has no data\n");
3592 		return -EINVAL;
3593 	}
3594 	if (size & 511) {
3595 		CH_ERR(adap,
3596 			"FW image size not multiple of 512 bytes\n");
3597 		return -EINVAL;
3598 	}
3599 	if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) {
3600 		CH_ERR(adap,
3601 			"FW image size differs from size in FW header\n");
3602 		return -EINVAL;
3603 	}
3604 	if (size > fw_size) {
3605 		CH_ERR(adap, "FW image too large, max is %u bytes\n",
3606 			fw_size);
3607 		return -EFBIG;
3608 	}
3609 	if (!t4_fw_matches_chip(adap, hdr))
3610 		return -EINVAL;
3611 
3612 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3613 		csum += be32_to_cpu(p[i]);
3614 
3615 	if (csum != 0xffffffff) {
3616 		CH_ERR(adap,
3617 			"corrupted firmware image, checksum %#x\n", csum);
3618 		return -EINVAL;
3619 	}
3620 
3621 	i = DIV_ROUND_UP(size, sf_sec_size);	/* # of sectors spanned */
3622 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3623 	if (ret)
3624 		goto out;
3625 
3626 	/*
3627 	 * We write the correct version at the end so the driver can see a bad
3628 	 * version if the FW write fails.  Start by writing a copy of the
3629 	 * first page with a bad version.
3630 	 */
3631 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3632 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3633 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
3634 	if (ret)
3635 		goto out;
3636 
3637 	addr = fw_start;
3638 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3639 		addr += SF_PAGE_SIZE;
3640 		fw_data += SF_PAGE_SIZE;
3641 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
3642 		if (ret)
3643 			goto out;
3644 	}
3645 
3646 	ret = t4_write_flash(adap,
3647 			     fw_start + offsetof(struct fw_hdr, fw_ver),
3648 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
3649 out:
3650 	if (ret)
3651 		CH_ERR(adap, "firmware download failed, error %d\n",
3652 			ret);
3653 	return ret;
3654 }
3655 
3656 /**
3657  *	t4_fwcache - firmware cache operation
3658  *	@adap: the adapter
3659  *	@op  : the operation (flush or flush and invalidate)
3660  */
3661 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3662 {
3663 	struct fw_params_cmd c;
3664 
3665 	memset(&c, 0, sizeof(c));
3666 	c.op_to_vfn =
3667 	    cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3668 			    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3669 				V_FW_PARAMS_CMD_PFN(adap->pf) |
3670 				V_FW_PARAMS_CMD_VFN(0));
3671 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3672 	c.param[0].mnem =
3673 	    cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3674 			    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE));
3675 	c.param[0].val = (__force __be32)op;
3676 
3677 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3678 }
3679 
3680 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3681 			unsigned int *pif_req_wrptr,
3682 			unsigned int *pif_rsp_wrptr)
3683 {
3684 	int i, j;
3685 	u32 cfg, val, req, rsp;
3686 
3687 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3688 	if (cfg & F_LADBGEN)
3689 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3690 
3691 	val = t4_read_reg(adap, A_CIM_DEBUGSTS);
3692 	req = G_POLADBGWRPTR(val);
3693 	rsp = G_PILADBGWRPTR(val);
3694 	if (pif_req_wrptr)
3695 		*pif_req_wrptr = req;
3696 	if (pif_rsp_wrptr)
3697 		*pif_rsp_wrptr = rsp;
3698 
3699 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3700 		for (j = 0; j < 6; j++) {
3701 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
3702 				     V_PILADBGRDPTR(rsp));
3703 			*pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
3704 			*pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
3705 			req++;
3706 			rsp++;
3707 		}
3708 		req = (req + 2) & M_POLADBGRDPTR;
3709 		rsp = (rsp + 2) & M_PILADBGRDPTR;
3710 	}
3711 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3712 }
3713 
3714 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3715 {
3716 	u32 cfg;
3717 	int i, j, idx;
3718 
3719 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3720 	if (cfg & F_LADBGEN)
3721 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3722 
3723 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3724 		for (j = 0; j < 5; j++) {
3725 			idx = 8 * i + j;
3726 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
3727 				     V_PILADBGRDPTR(idx));
3728 			*ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
3729 			*ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
3730 		}
3731 	}
3732 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3733 }
3734 
3735 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3736 {
3737 	unsigned int i, j;
3738 
3739 	for (i = 0; i < 8; i++) {
3740 		u32 *p = la_buf + i;
3741 
3742 		t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
3743 		j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
3744 		t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
3745 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3746 			*p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
3747 	}
3748 }
3749 
3750 /**
3751  *	fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3752  *	@caps16: a 16-bit Port Capabilities value
3753  *
3754  *	Returns the equivalent 32-bit Port Capabilities value.
3755  */
3756 static uint32_t fwcaps16_to_caps32(uint16_t caps16)
3757 {
3758 	uint32_t caps32 = 0;
3759 
3760 	#define CAP16_TO_CAP32(__cap) \
3761 		do { \
3762 			if (caps16 & FW_PORT_CAP_##__cap) \
3763 				caps32 |= FW_PORT_CAP32_##__cap; \
3764 		} while (0)
3765 
3766 	CAP16_TO_CAP32(SPEED_100M);
3767 	CAP16_TO_CAP32(SPEED_1G);
3768 	CAP16_TO_CAP32(SPEED_25G);
3769 	CAP16_TO_CAP32(SPEED_10G);
3770 	CAP16_TO_CAP32(SPEED_40G);
3771 	CAP16_TO_CAP32(SPEED_100G);
3772 	CAP16_TO_CAP32(FC_RX);
3773 	CAP16_TO_CAP32(FC_TX);
3774 	CAP16_TO_CAP32(ANEG);
3775 	CAP16_TO_CAP32(FORCE_PAUSE);
3776 	CAP16_TO_CAP32(MDIAUTO);
3777 	CAP16_TO_CAP32(MDISTRAIGHT);
3778 	CAP16_TO_CAP32(FEC_RS);
3779 	CAP16_TO_CAP32(FEC_BASER_RS);
3780 	CAP16_TO_CAP32(802_3_PAUSE);
3781 	CAP16_TO_CAP32(802_3_ASM_DIR);
3782 
3783 	#undef CAP16_TO_CAP32
3784 
3785 	return caps32;
3786 }
3787 
3788 /**
3789  *	fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
3790  *	@caps32: a 32-bit Port Capabilities value
3791  *
3792  *	Returns the equivalent 16-bit Port Capabilities value.  Note that
3793  *	not all 32-bit Port Capabilities can be represented in the 16-bit
3794  *	Port Capabilities and some fields/values may not make it.
3795  */
3796 static uint16_t fwcaps32_to_caps16(uint32_t caps32)
3797 {
3798 	uint16_t caps16 = 0;
3799 
3800 	#define CAP32_TO_CAP16(__cap) \
3801 		do { \
3802 			if (caps32 & FW_PORT_CAP32_##__cap) \
3803 				caps16 |= FW_PORT_CAP_##__cap; \
3804 		} while (0)
3805 
3806 	CAP32_TO_CAP16(SPEED_100M);
3807 	CAP32_TO_CAP16(SPEED_1G);
3808 	CAP32_TO_CAP16(SPEED_10G);
3809 	CAP32_TO_CAP16(SPEED_25G);
3810 	CAP32_TO_CAP16(SPEED_40G);
3811 	CAP32_TO_CAP16(SPEED_100G);
3812 	CAP32_TO_CAP16(FC_RX);
3813 	CAP32_TO_CAP16(FC_TX);
3814 	CAP32_TO_CAP16(802_3_PAUSE);
3815 	CAP32_TO_CAP16(802_3_ASM_DIR);
3816 	CAP32_TO_CAP16(ANEG);
3817 	CAP32_TO_CAP16(FORCE_PAUSE);
3818 	CAP32_TO_CAP16(MDIAUTO);
3819 	CAP32_TO_CAP16(MDISTRAIGHT);
3820 	CAP32_TO_CAP16(FEC_RS);
3821 	CAP32_TO_CAP16(FEC_BASER_RS);
3822 
3823 	#undef CAP32_TO_CAP16
3824 
3825 	return caps16;
3826 }
3827 
3828 static bool
3829 is_bt(struct port_info *pi)
3830 {
3831 
3832 	return (pi->port_type == FW_PORT_TYPE_BT_SGMII ||
3833 	    pi->port_type == FW_PORT_TYPE_BT_XFI ||
3834 	    pi->port_type == FW_PORT_TYPE_BT_XAUI);
3835 }
3836 
3837 static int8_t fwcap_to_fec(uint32_t caps, bool unset_means_none)
3838 {
3839 	int8_t fec = 0;
3840 
3841 	if ((caps & V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC)) == 0)
3842 		return (unset_means_none ? FEC_NONE : 0);
3843 
3844 	if (caps & FW_PORT_CAP32_FEC_RS)
3845 		fec |= FEC_RS;
3846 	if (caps & FW_PORT_CAP32_FEC_BASER_RS)
3847 		fec |= FEC_BASER_RS;
3848 	if (caps & FW_PORT_CAP32_FEC_NO_FEC)
3849 		fec |= FEC_NONE;
3850 
3851 	return (fec);
3852 }
3853 
3854 /*
3855  * Note that 0 is not translated to NO_FEC.
3856  */
3857 static uint32_t fec_to_fwcap(int8_t fec)
3858 {
3859 	uint32_t caps = 0;
3860 
3861 	/* Only real FECs allowed. */
3862 	MPASS((fec & ~M_FW_PORT_CAP32_FEC) == 0);
3863 
3864 	if (fec & FEC_RS)
3865 		caps |= FW_PORT_CAP32_FEC_RS;
3866 	if (fec & FEC_BASER_RS)
3867 		caps |= FW_PORT_CAP32_FEC_BASER_RS;
3868 	if (fec & FEC_NONE)
3869 		caps |= FW_PORT_CAP32_FEC_NO_FEC;
3870 
3871 	return (caps);
3872 }
3873 
3874 /**
3875  *	t4_link_l1cfg - apply link configuration to MAC/PHY
3876  *	@phy: the PHY to setup
3877  *	@mac: the MAC to setup
3878  *	@lc: the requested link configuration
3879  *
3880  *	Set up a port's MAC and PHY according to a desired link configuration.
3881  *	- If the PHY can auto-negotiate first decide what to advertise, then
3882  *	  enable/disable auto-negotiation as desired, and reset.
3883  *	- If the PHY does not auto-negotiate just reset it.
3884  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3885  *	  otherwise do it later based on the outcome of auto-negotiation.
3886  */
3887 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3888 		  struct link_config *lc)
3889 {
3890 	struct fw_port_cmd c;
3891 	unsigned int mdi = V_FW_PORT_CAP32_MDI(FW_PORT_CAP32_MDI_AUTO);
3892 	unsigned int aneg, fc, fec, speed, rcap;
3893 
3894 	fc = 0;
3895 	if (lc->requested_fc & PAUSE_RX)
3896 		fc |= FW_PORT_CAP32_FC_RX;
3897 	if (lc->requested_fc & PAUSE_TX)
3898 		fc |= FW_PORT_CAP32_FC_TX;
3899 	if (!(lc->requested_fc & PAUSE_AUTONEG))
3900 		fc |= FW_PORT_CAP32_FORCE_PAUSE;
3901 
3902 	if (lc->requested_aneg == AUTONEG_DISABLE)
3903 		aneg = 0;
3904 	else if (lc->requested_aneg == AUTONEG_ENABLE)
3905 		aneg = FW_PORT_CAP32_ANEG;
3906 	else
3907 		aneg = lc->pcaps & FW_PORT_CAP32_ANEG;
3908 
3909 	if (aneg) {
3910 		speed = lc->pcaps &
3911 		    V_FW_PORT_CAP32_SPEED(M_FW_PORT_CAP32_SPEED);
3912 	} else if (lc->requested_speed != 0)
3913 		speed = speed_to_fwcap(lc->requested_speed);
3914 	else
3915 		speed = fwcap_top_speed(lc->pcaps);
3916 
3917 	fec = 0;
3918 	if (fec_supported(speed)) {
3919 		if (lc->requested_fec == FEC_AUTO) {
3920 			if (lc->pcaps & FW_PORT_CAP32_FORCE_FEC) {
3921 				if (speed & FW_PORT_CAP32_SPEED_100G) {
3922 					fec |= FW_PORT_CAP32_FEC_RS;
3923 					fec |= FW_PORT_CAP32_FEC_NO_FEC;
3924 				} else {
3925 					fec |= FW_PORT_CAP32_FEC_RS;
3926 					fec |= FW_PORT_CAP32_FEC_BASER_RS;
3927 					fec |= FW_PORT_CAP32_FEC_NO_FEC;
3928 				}
3929 			} else {
3930 				/* Set only 1b with old firmwares. */
3931 				fec |= fec_to_fwcap(lc->fec_hint);
3932 			}
3933 		} else {
3934 			fec |= fec_to_fwcap(lc->requested_fec &
3935 			    M_FW_PORT_CAP32_FEC);
3936 			if (lc->requested_fec & FEC_MODULE)
3937 				fec |= fec_to_fwcap(lc->fec_hint);
3938 		}
3939 
3940 		if (lc->pcaps & FW_PORT_CAP32_FORCE_FEC)
3941 			fec |= FW_PORT_CAP32_FORCE_FEC;
3942 		else if (fec == FW_PORT_CAP32_FEC_NO_FEC)
3943 			fec = 0;
3944 	}
3945 
3946 	/* Force AN on for BT cards. */
3947 	if (is_bt(adap->port[adap->chan_map[port]]))
3948 		aneg = lc->pcaps & FW_PORT_CAP32_ANEG;
3949 
3950 	rcap = aneg | speed | fc | fec;
3951 	if ((rcap | lc->pcaps) != lc->pcaps) {
3952 #ifdef INVARIANTS
3953 		CH_WARN(adap, "rcap 0x%08x, pcap 0x%08x, removed 0x%x\n", rcap,
3954 		    lc->pcaps, rcap & (rcap ^ lc->pcaps));
3955 #endif
3956 		rcap &= lc->pcaps;
3957 	}
3958 	rcap |= mdi;
3959 
3960 	memset(&c, 0, sizeof(c));
3961 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3962 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3963 				     V_FW_PORT_CMD_PORTID(port));
3964 	if (adap->params.port_caps32) {
3965 		c.action_to_len16 =
3966 		    cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG32) |
3967 			FW_LEN16(c));
3968 		c.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
3969 	} else {
3970 		c.action_to_len16 =
3971 		    cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3972 			    FW_LEN16(c));
3973 		c.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
3974 	}
3975 
3976 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
3977 }
3978 
3979 /**
3980  *	t4_restart_aneg - restart autonegotiation
3981  *	@adap: the adapter
3982  *	@mbox: mbox to use for the FW command
3983  *	@port: the port id
3984  *
3985  *	Restarts autonegotiation for the selected port.
3986  */
3987 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3988 {
3989 	struct fw_port_cmd c;
3990 
3991 	memset(&c, 0, sizeof(c));
3992 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3993 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3994 				     V_FW_PORT_CMD_PORTID(port));
3995 	c.action_to_len16 =
3996 		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3997 			    FW_LEN16(c));
3998 	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3999 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4000 }
4001 
4002 struct intr_details {
4003 	u32 mask;
4004 	const char *msg;
4005 };
4006 
4007 struct intr_action {
4008 	u32 mask;
4009 	int arg;
4010 	bool (*action)(struct adapter *, int, bool);
4011 };
4012 
4013 #define NONFATAL_IF_DISABLED 1
4014 struct intr_info {
4015 	const char *name;	/* name of the INT_CAUSE register */
4016 	int cause_reg;		/* INT_CAUSE register */
4017 	int enable_reg;		/* INT_ENABLE register */
4018 	u32 fatal;		/* bits that are fatal */
4019 	int flags;		/* hints */
4020 	const struct intr_details *details;
4021 	const struct intr_action *actions;
4022 };
4023 
4024 static inline char
4025 intr_alert_char(u32 cause, u32 enable, u32 fatal)
4026 {
4027 
4028 	if (cause & fatal)
4029 		return ('!');
4030 	if (cause & enable)
4031 		return ('*');
4032 	return ('-');
4033 }
4034 
4035 static void
4036 t4_show_intr_info(struct adapter *adap, const struct intr_info *ii, u32 cause)
4037 {
4038 	u32 enable, fatal, leftover;
4039 	const struct intr_details *details;
4040 	char alert;
4041 
4042 	enable = t4_read_reg(adap, ii->enable_reg);
4043 	if (ii->flags & NONFATAL_IF_DISABLED)
4044 		fatal = ii->fatal & t4_read_reg(adap, ii->enable_reg);
4045 	else
4046 		fatal = ii->fatal;
4047 	alert = intr_alert_char(cause, enable, fatal);
4048 	CH_ALERT(adap, "%c %s 0x%x = 0x%08x, E 0x%08x, F 0x%08x\n",
4049 	    alert, ii->name, ii->cause_reg, cause, enable, fatal);
4050 
4051 	leftover = cause;
4052 	for (details = ii->details; details && details->mask != 0; details++) {
4053 		u32 msgbits = details->mask & cause;
4054 		if (msgbits == 0)
4055 			continue;
4056 		alert = intr_alert_char(msgbits, enable, ii->fatal);
4057 		CH_ALERT(adap, "  %c [0x%08x] %s\n", alert, msgbits,
4058 		    details->msg);
4059 		leftover &= ~msgbits;
4060 	}
4061 	if (leftover != 0 && leftover != cause)
4062 		CH_ALERT(adap, "  ? [0x%08x]\n", leftover);
4063 }
4064 
4065 /*
4066  * Returns true for fatal error.
4067  */
4068 static bool
4069 t4_handle_intr(struct adapter *adap, const struct intr_info *ii,
4070     u32 additional_cause, bool verbose)
4071 {
4072 	u32 cause, fatal;
4073 	bool rc;
4074 	const struct intr_action *action;
4075 
4076 	/*
4077 	 * Read and display cause.  Note that the top level PL_INT_CAUSE is a
4078 	 * bit special and we need to completely ignore the bits that are not in
4079 	 * PL_INT_ENABLE.
4080 	 */
4081 	cause = t4_read_reg(adap, ii->cause_reg);
4082 	if (ii->cause_reg == A_PL_INT_CAUSE)
4083 		cause &= t4_read_reg(adap, ii->enable_reg);
4084 	if (verbose || cause != 0)
4085 		t4_show_intr_info(adap, ii, cause);
4086 	fatal = cause & ii->fatal;
4087 	if (fatal != 0 && ii->flags & NONFATAL_IF_DISABLED)
4088 		fatal &= t4_read_reg(adap, ii->enable_reg);
4089 	cause |= additional_cause;
4090 	if (cause == 0)
4091 		return (false);
4092 
4093 	rc = fatal != 0;
4094 	for (action = ii->actions; action && action->mask != 0; action++) {
4095 		if (!(action->mask & cause))
4096 			continue;
4097 		rc |= (action->action)(adap, action->arg, verbose);
4098 	}
4099 
4100 	/* clear */
4101 	t4_write_reg(adap, ii->cause_reg, cause);
4102 	(void)t4_read_reg(adap, ii->cause_reg);
4103 
4104 	return (rc);
4105 }
4106 
4107 /*
4108  * Interrupt handler for the PCIE module.
4109  */
4110 static bool pcie_intr_handler(struct adapter *adap, int arg, bool verbose)
4111 {
4112 	static const struct intr_details sysbus_intr_details[] = {
4113 		{ F_RNPP, "RXNP array parity error" },
4114 		{ F_RPCP, "RXPC array parity error" },
4115 		{ F_RCIP, "RXCIF array parity error" },
4116 		{ F_RCCP, "Rx completions control array parity error" },
4117 		{ F_RFTP, "RXFT array parity error" },
4118 		{ 0 }
4119 	};
4120 	static const struct intr_info sysbus_intr_info = {
4121 		.name = "PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS",
4122 		.cause_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
4123 		.enable_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_INTERRUPT_ENABLE,
4124 		.fatal = F_RFTP | F_RCCP | F_RCIP | F_RPCP | F_RNPP,
4125 		.flags = 0,
4126 		.details = sysbus_intr_details,
4127 		.actions = NULL,
4128 	};
4129 	static const struct intr_details pcie_port_intr_details[] = {
4130 		{ F_TPCP, "TXPC array parity error" },
4131 		{ F_TNPP, "TXNP array parity error" },
4132 		{ F_TFTP, "TXFT array parity error" },
4133 		{ F_TCAP, "TXCA array parity error" },
4134 		{ F_TCIP, "TXCIF array parity error" },
4135 		{ F_RCAP, "RXCA array parity error" },
4136 		{ F_OTDD, "outbound request TLP discarded" },
4137 		{ F_RDPE, "Rx data parity error" },
4138 		{ F_TDUE, "Tx uncorrectable data error" },
4139 		{ 0 }
4140 	};
4141 	static const struct intr_info pcie_port_intr_info = {
4142 		.name = "PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS",
4143 		.cause_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
4144 		.enable_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_INTERRUPT_ENABLE,
4145 		.fatal = F_TPCP | F_TNPP | F_TFTP | F_TCAP | F_TCIP | F_RCAP |
4146 		    F_OTDD | F_RDPE | F_TDUE,
4147 		.flags = 0,
4148 		.details = pcie_port_intr_details,
4149 		.actions = NULL,
4150 	};
4151 	static const struct intr_details pcie_intr_details[] = {
4152 		{ F_MSIADDRLPERR, "MSI AddrL parity error" },
4153 		{ F_MSIADDRHPERR, "MSI AddrH parity error" },
4154 		{ F_MSIDATAPERR, "MSI data parity error" },
4155 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error" },
4156 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error" },
4157 		{ F_MSIXDATAPERR, "MSI-X data parity error" },
4158 		{ F_MSIXDIPERR, "MSI-X DI parity error" },
4159 		{ F_PIOCPLPERR, "PCIe PIO completion FIFO parity error" },
4160 		{ F_PIOREQPERR, "PCIe PIO request FIFO parity error" },
4161 		{ F_TARTAGPERR, "PCIe target tag FIFO parity error" },
4162 		{ F_CCNTPERR, "PCIe CMD channel count parity error" },
4163 		{ F_CREQPERR, "PCIe CMD channel request parity error" },
4164 		{ F_CRSPPERR, "PCIe CMD channel response parity error" },
4165 		{ F_DCNTPERR, "PCIe DMA channel count parity error" },
4166 		{ F_DREQPERR, "PCIe DMA channel request parity error" },
4167 		{ F_DRSPPERR, "PCIe DMA channel response parity error" },
4168 		{ F_HCNTPERR, "PCIe HMA channel count parity error" },
4169 		{ F_HREQPERR, "PCIe HMA channel request parity error" },
4170 		{ F_HRSPPERR, "PCIe HMA channel response parity error" },
4171 		{ F_CFGSNPPERR, "PCIe config snoop FIFO parity error" },
4172 		{ F_FIDPERR, "PCIe FID parity error" },
4173 		{ F_INTXCLRPERR, "PCIe INTx clear parity error" },
4174 		{ F_MATAGPERR, "PCIe MA tag parity error" },
4175 		{ F_PIOTAGPERR, "PCIe PIO tag parity error" },
4176 		{ F_RXCPLPERR, "PCIe Rx completion parity error" },
4177 		{ F_RXWRPERR, "PCIe Rx write parity error" },
4178 		{ F_RPLPERR, "PCIe replay buffer parity error" },
4179 		{ F_PCIESINT, "PCIe core secondary fault" },
4180 		{ F_PCIEPINT, "PCIe core primary fault" },
4181 		{ F_UNXSPLCPLERR, "PCIe unexpected split completion error" },
4182 		{ 0 }
4183 	};
4184 	static const struct intr_details t5_pcie_intr_details[] = {
4185 		{ F_IPGRPPERR, "Parity errors observed by IP" },
4186 		{ F_NONFATALERR, "PCIe non-fatal error" },
4187 		{ F_READRSPERR, "Outbound read error" },
4188 		{ F_TRGT1GRPPERR, "PCIe TRGT1 group FIFOs parity error" },
4189 		{ F_IPSOTPERR, "PCIe IP SOT buffer SRAM parity error" },
4190 		{ F_IPRETRYPERR, "PCIe IP replay buffer parity error" },
4191 		{ F_IPRXDATAGRPPERR, "PCIe IP Rx data group SRAMs parity error" },
4192 		{ F_IPRXHDRGRPPERR, "PCIe IP Rx header group SRAMs parity error" },
4193 		{ F_PIOTAGQPERR, "PIO tag queue FIFO parity error" },
4194 		{ F_MAGRPPERR, "MA group FIFO parity error" },
4195 		{ F_VFIDPERR, "VFID SRAM parity error" },
4196 		{ F_FIDPERR, "FID SRAM parity error" },
4197 		{ F_CFGSNPPERR, "config snoop FIFO parity error" },
4198 		{ F_HRSPPERR, "HMA channel response data SRAM parity error" },
4199 		{ F_HREQRDPERR, "HMA channel read request SRAM parity error" },
4200 		{ F_HREQWRPERR, "HMA channel write request SRAM parity error" },
4201 		{ F_DRSPPERR, "DMA channel response data SRAM parity error" },
4202 		{ F_DREQRDPERR, "DMA channel write request SRAM parity error" },
4203 		{ F_CRSPPERR, "CMD channel response data SRAM parity error" },
4204 		{ F_CREQRDPERR, "CMD channel read request SRAM parity error" },
4205 		{ F_MSTTAGQPERR, "PCIe master tag queue SRAM parity error" },
4206 		{ F_TGTTAGQPERR, "PCIe target tag queue FIFO parity error" },
4207 		{ F_PIOREQGRPPERR, "PIO request group FIFOs parity error" },
4208 		{ F_PIOCPLGRPPERR, "PIO completion group FIFOs parity error" },
4209 		{ F_MSIXDIPERR, "MSI-X DI SRAM parity error" },
4210 		{ F_MSIXDATAPERR, "MSI-X data SRAM parity error" },
4211 		{ F_MSIXADDRHPERR, "MSI-X AddrH SRAM parity error" },
4212 		{ F_MSIXADDRLPERR, "MSI-X AddrL SRAM parity error" },
4213 		{ F_MSIXSTIPERR, "MSI-X STI SRAM parity error" },
4214 		{ F_MSTTIMEOUTPERR, "Master timeout FIFO parity error" },
4215 		{ F_MSTGRPPERR, "Master response read queue SRAM parity error" },
4216 		{ 0 }
4217 	};
4218 	struct intr_info pcie_intr_info = {
4219 		.name = "PCIE_INT_CAUSE",
4220 		.cause_reg = A_PCIE_INT_CAUSE,
4221 		.enable_reg = A_PCIE_INT_ENABLE,
4222 		.fatal = 0xffffffff,
4223 		.flags = NONFATAL_IF_DISABLED,
4224 		.details = NULL,
4225 		.actions = NULL,
4226 	};
4227 	bool fatal = false;
4228 
4229 	if (is_t4(adap)) {
4230 		fatal |= t4_handle_intr(adap, &sysbus_intr_info, 0, verbose);
4231 		fatal |= t4_handle_intr(adap, &pcie_port_intr_info, 0, verbose);
4232 
4233 		pcie_intr_info.details = pcie_intr_details;
4234 	} else {
4235 		pcie_intr_info.details = t5_pcie_intr_details;
4236 	}
4237 	fatal |= t4_handle_intr(adap, &pcie_intr_info, 0, verbose);
4238 
4239 	return (fatal);
4240 }
4241 
4242 /*
4243  * TP interrupt handler.
4244  */
4245 static bool tp_intr_handler(struct adapter *adap, int arg, bool verbose)
4246 {
4247 	static const struct intr_details tp_intr_details[] = {
4248 		{ 0x3fffffff, "TP parity error" },
4249 		{ F_FLMTXFLSTEMPTY, "TP out of Tx pages" },
4250 		{ 0 }
4251 	};
4252 	static const struct intr_info tp_intr_info = {
4253 		.name = "TP_INT_CAUSE",
4254 		.cause_reg = A_TP_INT_CAUSE,
4255 		.enable_reg = A_TP_INT_ENABLE,
4256 		.fatal = 0x7fffffff,
4257 		.flags = NONFATAL_IF_DISABLED,
4258 		.details = tp_intr_details,
4259 		.actions = NULL,
4260 	};
4261 
4262 	return (t4_handle_intr(adap, &tp_intr_info, 0, verbose));
4263 }
4264 
4265 /*
4266  * SGE interrupt handler.
4267  */
4268 static bool sge_intr_handler(struct adapter *adap, int arg, bool verbose)
4269 {
4270 	static const struct intr_info sge_int1_info = {
4271 		.name = "SGE_INT_CAUSE1",
4272 		.cause_reg = A_SGE_INT_CAUSE1,
4273 		.enable_reg = A_SGE_INT_ENABLE1,
4274 		.fatal = 0xffffffff,
4275 		.flags = NONFATAL_IF_DISABLED,
4276 		.details = NULL,
4277 		.actions = NULL,
4278 	};
4279 	static const struct intr_info sge_int2_info = {
4280 		.name = "SGE_INT_CAUSE2",
4281 		.cause_reg = A_SGE_INT_CAUSE2,
4282 		.enable_reg = A_SGE_INT_ENABLE2,
4283 		.fatal = 0xffffffff,
4284 		.flags = NONFATAL_IF_DISABLED,
4285 		.details = NULL,
4286 		.actions = NULL,
4287 	};
4288 	static const struct intr_details sge_int3_details[] = {
4289 		{ F_ERR_FLM_DBP,
4290 			"DBP pointer delivery for invalid context or QID" },
4291 		{ F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0,
4292 			"Invalid QID or header request by IDMA" },
4293 		{ F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" },
4294 		{ F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" },
4295 		{ F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" },
4296 		{ F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" },
4297 		{ F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" },
4298 		{ F_ERR_TIMER_ABOVE_MAX_QID,
4299 			"SGE GTS with timer 0-5 for IQID > 1023" },
4300 		{ F_ERR_CPL_EXCEED_IQE_SIZE,
4301 			"SGE received CPL exceeding IQE size" },
4302 		{ F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" },
4303 		{ F_ERR_ITP_TIME_PAUSED, "SGE ITP error" },
4304 		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" },
4305 		{ F_ERR_DROPPED_DB, "SGE DB dropped" },
4306 		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
4307 		  "SGE IQID > 1023 received CPL for FL" },
4308 		{ F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4309 			F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" },
4310 		{ F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" },
4311 		{ F_ERR_ING_CTXT_PRIO,
4312 			"Ingress context manager priority user error" },
4313 		{ F_ERR_EGR_CTXT_PRIO,
4314 			"Egress context manager priority user error" },
4315 		{ F_DBFIFO_HP_INT, "High priority DB FIFO threshold reached" },
4316 		{ F_DBFIFO_LP_INT, "Low priority DB FIFO threshold reached" },
4317 		{ F_REG_ADDRESS_ERR, "Undefined SGE register accessed" },
4318 		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" },
4319 		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID" },
4320 		{ 0x0000000f, "SGE context access for invalid queue" },
4321 		{ 0 }
4322 	};
4323 	static const struct intr_details t6_sge_int3_details[] = {
4324 		{ F_ERR_FLM_DBP,
4325 			"DBP pointer delivery for invalid context or QID" },
4326 		{ F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0,
4327 			"Invalid QID or header request by IDMA" },
4328 		{ F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" },
4329 		{ F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" },
4330 		{ F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" },
4331 		{ F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" },
4332 		{ F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" },
4333 		{ F_ERR_TIMER_ABOVE_MAX_QID,
4334 			"SGE GTS with timer 0-5 for IQID > 1023" },
4335 		{ F_ERR_CPL_EXCEED_IQE_SIZE,
4336 			"SGE received CPL exceeding IQE size" },
4337 		{ F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" },
4338 		{ F_ERR_ITP_TIME_PAUSED, "SGE ITP error" },
4339 		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" },
4340 		{ F_ERR_DROPPED_DB, "SGE DB dropped" },
4341 		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
4342 			"SGE IQID > 1023 received CPL for FL" },
4343 		{ F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4344 			F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" },
4345 		{ F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" },
4346 		{ F_ERR_ING_CTXT_PRIO,
4347 			"Ingress context manager priority user error" },
4348 		{ F_ERR_EGR_CTXT_PRIO,
4349 			"Egress context manager priority user error" },
4350 		{ F_DBP_TBUF_FULL, "SGE DBP tbuf full" },
4351 		{ F_FATAL_WRE_LEN,
4352 			"SGE WRE packet less than advertized length" },
4353 		{ F_REG_ADDRESS_ERR, "Undefined SGE register accessed" },
4354 		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" },
4355 		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID" },
4356 		{ 0x0000000f, "SGE context access for invalid queue" },
4357 		{ 0 }
4358 	};
4359 	struct intr_info sge_int3_info = {
4360 		.name = "SGE_INT_CAUSE3",
4361 		.cause_reg = A_SGE_INT_CAUSE3,
4362 		.enable_reg = A_SGE_INT_ENABLE3,
4363 		.fatal = F_ERR_CPL_EXCEED_IQE_SIZE,
4364 		.flags = 0,
4365 		.details = NULL,
4366 		.actions = NULL,
4367 	};
4368 	static const struct intr_info sge_int4_info = {
4369 		.name = "SGE_INT_CAUSE4",
4370 		.cause_reg = A_SGE_INT_CAUSE4,
4371 		.enable_reg = A_SGE_INT_ENABLE4,
4372 		.fatal = 0,
4373 		.flags = 0,
4374 		.details = NULL,
4375 		.actions = NULL,
4376 	};
4377 	static const struct intr_info sge_int5_info = {
4378 		.name = "SGE_INT_CAUSE5",
4379 		.cause_reg = A_SGE_INT_CAUSE5,
4380 		.enable_reg = A_SGE_INT_ENABLE5,
4381 		.fatal = 0xffffffff,
4382 		.flags = NONFATAL_IF_DISABLED,
4383 		.details = NULL,
4384 		.actions = NULL,
4385 	};
4386 	static const struct intr_info sge_int6_info = {
4387 		.name = "SGE_INT_CAUSE6",
4388 		.cause_reg = A_SGE_INT_CAUSE6,
4389 		.enable_reg = A_SGE_INT_ENABLE6,
4390 		.fatal = 0,
4391 		.flags = 0,
4392 		.details = NULL,
4393 		.actions = NULL,
4394 	};
4395 
4396 	bool fatal;
4397 	u32 v;
4398 
4399 	if (chip_id(adap) <= CHELSIO_T5) {
4400 		sge_int3_info.details = sge_int3_details;
4401 	} else {
4402 		sge_int3_info.details = t6_sge_int3_details;
4403 	}
4404 
4405 	fatal = false;
4406 	fatal |= t4_handle_intr(adap, &sge_int1_info, 0, verbose);
4407 	fatal |= t4_handle_intr(adap, &sge_int2_info, 0, verbose);
4408 	fatal |= t4_handle_intr(adap, &sge_int3_info, 0, verbose);
4409 	fatal |= t4_handle_intr(adap, &sge_int4_info, 0, verbose);
4410 	if (chip_id(adap) >= CHELSIO_T5)
4411 		fatal |= t4_handle_intr(adap, &sge_int5_info, 0, verbose);
4412 	if (chip_id(adap) >= CHELSIO_T6)
4413 		fatal |= t4_handle_intr(adap, &sge_int6_info, 0, verbose);
4414 
4415 	v = t4_read_reg(adap, A_SGE_ERROR_STATS);
4416 	if (v & F_ERROR_QID_VALID) {
4417 		CH_ERR(adap, "SGE error for QID %u\n", G_ERROR_QID(v));
4418 		if (v & F_UNCAPTURED_ERROR)
4419 			CH_ERR(adap, "SGE UNCAPTURED_ERROR set (clearing)\n");
4420 		t4_write_reg(adap, A_SGE_ERROR_STATS,
4421 		    F_ERROR_QID_VALID | F_UNCAPTURED_ERROR);
4422 	}
4423 
4424 	return (fatal);
4425 }
4426 
4427 /*
4428  * CIM interrupt handler.
4429  */
4430 static bool cim_intr_handler(struct adapter *adap, int arg, bool verbose)
4431 {
4432 	static const struct intr_action cim_host_intr_actions[] = {
4433 		{ F_TIMER0INT, 0, t4_os_dump_cimla },
4434 		{ 0 },
4435 	};
4436 	static const struct intr_details cim_host_intr_details[] = {
4437 		/* T6+ */
4438 		{ F_PCIE2CIMINTFPARERR, "CIM IBQ PCIe interface parity error" },
4439 
4440 		/* T5+ */
4441 		{ F_MA_CIM_INTFPERR, "MA2CIM interface parity error" },
4442 		{ F_PLCIM_MSTRSPDATAPARERR,
4443 			"PL2CIM master response data parity error" },
4444 		{ F_NCSI2CIMINTFPARERR, "CIM IBQ NC-SI interface parity error" },
4445 		{ F_SGE2CIMINTFPARERR, "CIM IBQ SGE interface parity error" },
4446 		{ F_ULP2CIMINTFPARERR, "CIM IBQ ULP_TX interface parity error" },
4447 		{ F_TP2CIMINTFPARERR, "CIM IBQ TP interface parity error" },
4448 		{ F_OBQSGERX1PARERR, "CIM OBQ SGE1_RX parity error" },
4449 		{ F_OBQSGERX0PARERR, "CIM OBQ SGE0_RX parity error" },
4450 
4451 		/* T4+ */
4452 		{ F_TIEQOUTPARERRINT, "CIM TIEQ outgoing FIFO parity error" },
4453 		{ F_TIEQINPARERRINT, "CIM TIEQ incoming FIFO parity error" },
4454 		{ F_MBHOSTPARERR, "CIM mailbox host read parity error" },
4455 		{ F_MBUPPARERR, "CIM mailbox uP parity error" },
4456 		{ F_IBQTP0PARERR, "CIM IBQ TP0 parity error" },
4457 		{ F_IBQTP1PARERR, "CIM IBQ TP1 parity error" },
4458 		{ F_IBQULPPARERR, "CIM IBQ ULP parity error" },
4459 		{ F_IBQSGELOPARERR, "CIM IBQ SGE_LO parity error" },
4460 		{ F_IBQSGEHIPARERR | F_IBQPCIEPARERR,	/* same bit */
4461 			"CIM IBQ PCIe/SGE_HI parity error" },
4462 		{ F_IBQNCSIPARERR, "CIM IBQ NC-SI parity error" },
4463 		{ F_OBQULP0PARERR, "CIM OBQ ULP0 parity error" },
4464 		{ F_OBQULP1PARERR, "CIM OBQ ULP1 parity error" },
4465 		{ F_OBQULP2PARERR, "CIM OBQ ULP2 parity error" },
4466 		{ F_OBQULP3PARERR, "CIM OBQ ULP3 parity error" },
4467 		{ F_OBQSGEPARERR, "CIM OBQ SGE parity error" },
4468 		{ F_OBQNCSIPARERR, "CIM OBQ NC-SI parity error" },
4469 		{ F_TIMER1INT, "CIM TIMER0 interrupt" },
4470 		{ F_TIMER0INT, "CIM TIMER0 interrupt" },
4471 		{ F_PREFDROPINT, "CIM control register prefetch drop" },
4472 		{ 0}
4473 	};
4474 	static const struct intr_info cim_host_intr_info = {
4475 		.name = "CIM_HOST_INT_CAUSE",
4476 		.cause_reg = A_CIM_HOST_INT_CAUSE,
4477 		.enable_reg = A_CIM_HOST_INT_ENABLE,
4478 		.fatal = 0x007fffe6,
4479 		.flags = NONFATAL_IF_DISABLED,
4480 		.details = cim_host_intr_details,
4481 		.actions = cim_host_intr_actions,
4482 	};
4483 	static const struct intr_details cim_host_upacc_intr_details[] = {
4484 		{ F_EEPROMWRINT, "CIM EEPROM came out of busy state" },
4485 		{ F_TIMEOUTMAINT, "CIM PIF MA timeout" },
4486 		{ F_TIMEOUTINT, "CIM PIF timeout" },
4487 		{ F_RSPOVRLOOKUPINT, "CIM response FIFO overwrite" },
4488 		{ F_REQOVRLOOKUPINT, "CIM request FIFO overwrite" },
4489 		{ F_BLKWRPLINT, "CIM block write to PL space" },
4490 		{ F_BLKRDPLINT, "CIM block read from PL space" },
4491 		{ F_SGLWRPLINT,
4492 			"CIM single write to PL space with illegal BEs" },
4493 		{ F_SGLRDPLINT,
4494 			"CIM single read from PL space with illegal BEs" },
4495 		{ F_BLKWRCTLINT, "CIM block write to CTL space" },
4496 		{ F_BLKRDCTLINT, "CIM block read from CTL space" },
4497 		{ F_SGLWRCTLINT,
4498 			"CIM single write to CTL space with illegal BEs" },
4499 		{ F_SGLRDCTLINT,
4500 			"CIM single read from CTL space with illegal BEs" },
4501 		{ F_BLKWREEPROMINT, "CIM block write to EEPROM space" },
4502 		{ F_BLKRDEEPROMINT, "CIM block read from EEPROM space" },
4503 		{ F_SGLWREEPROMINT,
4504 			"CIM single write to EEPROM space with illegal BEs" },
4505 		{ F_SGLRDEEPROMINT,
4506 			"CIM single read from EEPROM space with illegal BEs" },
4507 		{ F_BLKWRFLASHINT, "CIM block write to flash space" },
4508 		{ F_BLKRDFLASHINT, "CIM block read from flash space" },
4509 		{ F_SGLWRFLASHINT, "CIM single write to flash space" },
4510 		{ F_SGLRDFLASHINT,
4511 			"CIM single read from flash space with illegal BEs" },
4512 		{ F_BLKWRBOOTINT, "CIM block write to boot space" },
4513 		{ F_BLKRDBOOTINT, "CIM block read from boot space" },
4514 		{ F_SGLWRBOOTINT, "CIM single write to boot space" },
4515 		{ F_SGLRDBOOTINT,
4516 			"CIM single read from boot space with illegal BEs" },
4517 		{ F_ILLWRBEINT, "CIM illegal write BEs" },
4518 		{ F_ILLRDBEINT, "CIM illegal read BEs" },
4519 		{ F_ILLRDINT, "CIM illegal read" },
4520 		{ F_ILLWRINT, "CIM illegal write" },
4521 		{ F_ILLTRANSINT, "CIM illegal transaction" },
4522 		{ F_RSVDSPACEINT, "CIM reserved space access" },
4523 		{0}
4524 	};
4525 	static const struct intr_info cim_host_upacc_intr_info = {
4526 		.name = "CIM_HOST_UPACC_INT_CAUSE",
4527 		.cause_reg = A_CIM_HOST_UPACC_INT_CAUSE,
4528 		.enable_reg = A_CIM_HOST_UPACC_INT_ENABLE,
4529 		.fatal = 0x3fffeeff,
4530 		.flags = NONFATAL_IF_DISABLED,
4531 		.details = cim_host_upacc_intr_details,
4532 		.actions = NULL,
4533 	};
4534 	static const struct intr_info cim_pf_host_intr_info = {
4535 		.name = "CIM_PF_HOST_INT_CAUSE",
4536 		.cause_reg = MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
4537 		.enable_reg = MYPF_REG(A_CIM_PF_HOST_INT_ENABLE),
4538 		.fatal = 0,
4539 		.flags = 0,
4540 		.details = NULL,
4541 		.actions = NULL,
4542 	};
4543 	u32 val, fw_err;
4544 	bool fatal;
4545 
4546 	fw_err = t4_read_reg(adap, A_PCIE_FW);
4547 	if (fw_err & F_PCIE_FW_ERR)
4548 		t4_report_fw_error(adap);
4549 
4550 	/*
4551 	 * When the Firmware detects an internal error which normally wouldn't
4552 	 * raise a Host Interrupt, it forces a CIM Timer0 interrupt in order
4553 	 * to make sure the Host sees the Firmware Crash.  So if we have a
4554 	 * Timer0 interrupt and don't see a Firmware Crash, ignore the Timer0
4555 	 * interrupt.
4556 	 */
4557 	val = t4_read_reg(adap, A_CIM_HOST_INT_CAUSE);
4558 	if (val & F_TIMER0INT && (!(fw_err & F_PCIE_FW_ERR) ||
4559 	    G_PCIE_FW_EVAL(fw_err) != PCIE_FW_EVAL_CRASH)) {
4560 		t4_write_reg(adap, A_CIM_HOST_INT_CAUSE, F_TIMER0INT);
4561 	}
4562 
4563 	fatal = false;
4564 	fatal |= t4_handle_intr(adap, &cim_host_intr_info, 0, verbose);
4565 	fatal |= t4_handle_intr(adap, &cim_host_upacc_intr_info, 0, verbose);
4566 	fatal |= t4_handle_intr(adap, &cim_pf_host_intr_info, 0, verbose);
4567 
4568 	return (fatal);
4569 }
4570 
4571 /*
4572  * ULP RX interrupt handler.
4573  */
4574 static bool ulprx_intr_handler(struct adapter *adap, int arg, bool verbose)
4575 {
4576 	static const struct intr_details ulprx_intr_details[] = {
4577 		/* T5+ */
4578 		{ F_SE_CNT_MISMATCH_1, "ULPRX SE count mismatch in channel 1" },
4579 		{ F_SE_CNT_MISMATCH_0, "ULPRX SE count mismatch in channel 0" },
4580 
4581 		/* T4+ */
4582 		{ F_CAUSE_CTX_1, "ULPRX channel 1 context error" },
4583 		{ F_CAUSE_CTX_0, "ULPRX channel 0 context error" },
4584 		{ 0x007fffff, "ULPRX parity error" },
4585 		{ 0 }
4586 	};
4587 	static const struct intr_info ulprx_intr_info = {
4588 		.name = "ULP_RX_INT_CAUSE",
4589 		.cause_reg = A_ULP_RX_INT_CAUSE,
4590 		.enable_reg = A_ULP_RX_INT_ENABLE,
4591 		.fatal = 0x07ffffff,
4592 		.flags = NONFATAL_IF_DISABLED,
4593 		.details = ulprx_intr_details,
4594 		.actions = NULL,
4595 	};
4596 	static const struct intr_info ulprx_intr2_info = {
4597 		.name = "ULP_RX_INT_CAUSE_2",
4598 		.cause_reg = A_ULP_RX_INT_CAUSE_2,
4599 		.enable_reg = A_ULP_RX_INT_ENABLE_2,
4600 		.fatal = 0,
4601 		.flags = 0,
4602 		.details = NULL,
4603 		.actions = NULL,
4604 	};
4605 	bool fatal = false;
4606 
4607 	fatal |= t4_handle_intr(adap, &ulprx_intr_info, 0, verbose);
4608 	fatal |= t4_handle_intr(adap, &ulprx_intr2_info, 0, verbose);
4609 
4610 	return (fatal);
4611 }
4612 
4613 /*
4614  * ULP TX interrupt handler.
4615  */
4616 static bool ulptx_intr_handler(struct adapter *adap, int arg, bool verbose)
4617 {
4618 	static const struct intr_details ulptx_intr_details[] = {
4619 		{ F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds" },
4620 		{ F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds" },
4621 		{ F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds" },
4622 		{ F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds" },
4623 		{ 0x0fffffff, "ULPTX parity error" },
4624 		{ 0 }
4625 	};
4626 	static const struct intr_info ulptx_intr_info = {
4627 		.name = "ULP_TX_INT_CAUSE",
4628 		.cause_reg = A_ULP_TX_INT_CAUSE,
4629 		.enable_reg = A_ULP_TX_INT_ENABLE,
4630 		.fatal = 0x0fffffff,
4631 		.flags = NONFATAL_IF_DISABLED,
4632 		.details = ulptx_intr_details,
4633 		.actions = NULL,
4634 	};
4635 	static const struct intr_info ulptx_intr2_info = {
4636 		.name = "ULP_TX_INT_CAUSE_2",
4637 		.cause_reg = A_ULP_TX_INT_CAUSE_2,
4638 		.enable_reg = A_ULP_TX_INT_ENABLE_2,
4639 		.fatal = 0xf0,
4640 		.flags = NONFATAL_IF_DISABLED,
4641 		.details = NULL,
4642 		.actions = NULL,
4643 	};
4644 	bool fatal = false;
4645 
4646 	fatal |= t4_handle_intr(adap, &ulptx_intr_info, 0, verbose);
4647 	fatal |= t4_handle_intr(adap, &ulptx_intr2_info, 0, verbose);
4648 
4649 	return (fatal);
4650 }
4651 
4652 static bool pmtx_dump_dbg_stats(struct adapter *adap, int arg, bool verbose)
4653 {
4654 	int i;
4655 	u32 data[17];
4656 
4657 	t4_read_indirect(adap, A_PM_TX_DBG_CTRL, A_PM_TX_DBG_DATA, &data[0],
4658 	    ARRAY_SIZE(data), A_PM_TX_DBG_STAT0);
4659 	for (i = 0; i < ARRAY_SIZE(data); i++) {
4660 		CH_ALERT(adap, "  - PM_TX_DBG_STAT%u (0x%x) = 0x%08x\n", i,
4661 		    A_PM_TX_DBG_STAT0 + i, data[i]);
4662 	}
4663 
4664 	return (false);
4665 }
4666 
4667 /*
4668  * PM TX interrupt handler.
4669  */
4670 static bool pmtx_intr_handler(struct adapter *adap, int arg, bool verbose)
4671 {
4672 	static const struct intr_action pmtx_intr_actions[] = {
4673 		{ 0xffffffff, 0, pmtx_dump_dbg_stats },
4674 		{ 0 },
4675 	};
4676 	static const struct intr_details pmtx_intr_details[] = {
4677 		{ F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large" },
4678 		{ F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large" },
4679 		{ F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large" },
4680 		{ F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd" },
4681 		{ 0x0f000000, "PMTX icspi FIFO2X Rx framing error" },
4682 		{ 0x00f00000, "PMTX icspi FIFO Rx framing error" },
4683 		{ 0x000f0000, "PMTX icspi FIFO Tx framing error" },
4684 		{ 0x0000f000, "PMTX oespi FIFO Rx framing error" },
4685 		{ 0x00000f00, "PMTX oespi FIFO Tx framing error" },
4686 		{ 0x000000f0, "PMTX oespi FIFO2X Tx framing error" },
4687 		{ F_OESPI_PAR_ERROR, "PMTX oespi parity error" },
4688 		{ F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error" },
4689 		{ F_ICSPI_PAR_ERROR, "PMTX icspi parity error" },
4690 		{ F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error" },
4691 		{ 0 }
4692 	};
4693 	static const struct intr_info pmtx_intr_info = {
4694 		.name = "PM_TX_INT_CAUSE",
4695 		.cause_reg = A_PM_TX_INT_CAUSE,
4696 		.enable_reg = A_PM_TX_INT_ENABLE,
4697 		.fatal = 0xffffffff,
4698 		.flags = 0,
4699 		.details = pmtx_intr_details,
4700 		.actions = pmtx_intr_actions,
4701 	};
4702 
4703 	return (t4_handle_intr(adap, &pmtx_intr_info, 0, verbose));
4704 }
4705 
4706 /*
4707  * PM RX interrupt handler.
4708  */
4709 static bool pmrx_intr_handler(struct adapter *adap, int arg, bool verbose)
4710 {
4711 	static const struct intr_details pmrx_intr_details[] = {
4712 		/* T6+ */
4713 		{ 0x18000000, "PMRX ospi overflow" },
4714 		{ F_MA_INTF_SDC_ERR, "PMRX MA interface SDC parity error" },
4715 		{ F_BUNDLE_LEN_PARERR, "PMRX bundle len FIFO parity error" },
4716 		{ F_BUNDLE_LEN_OVFL, "PMRX bundle len FIFO overflow" },
4717 		{ F_SDC_ERR, "PMRX SDC error" },
4718 
4719 		/* T4+ */
4720 		{ F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd" },
4721 		{ 0x003c0000, "PMRX iespi FIFO2X Rx framing error" },
4722 		{ 0x0003c000, "PMRX iespi Rx framing error" },
4723 		{ 0x00003c00, "PMRX iespi Tx framing error" },
4724 		{ 0x00000300, "PMRX ocspi Rx framing error" },
4725 		{ 0x000000c0, "PMRX ocspi Tx framing error" },
4726 		{ 0x00000030, "PMRX ocspi FIFO2X Tx framing error" },
4727 		{ F_OCSPI_PAR_ERROR, "PMRX ocspi parity error" },
4728 		{ F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error" },
4729 		{ F_IESPI_PAR_ERROR, "PMRX iespi parity error" },
4730 		{ F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error"},
4731 		{ 0 }
4732 	};
4733 	static const struct intr_info pmrx_intr_info = {
4734 		.name = "PM_RX_INT_CAUSE",
4735 		.cause_reg = A_PM_RX_INT_CAUSE,
4736 		.enable_reg = A_PM_RX_INT_ENABLE,
4737 		.fatal = 0x1fffffff,
4738 		.flags = NONFATAL_IF_DISABLED,
4739 		.details = pmrx_intr_details,
4740 		.actions = NULL,
4741 	};
4742 
4743 	return (t4_handle_intr(adap, &pmrx_intr_info, 0, verbose));
4744 }
4745 
4746 /*
4747  * CPL switch interrupt handler.
4748  */
4749 static bool cplsw_intr_handler(struct adapter *adap, int arg, bool verbose)
4750 {
4751 	static const struct intr_details cplsw_intr_details[] = {
4752 		/* T5+ */
4753 		{ F_PERR_CPL_128TO128_1, "CPLSW 128TO128 FIFO1 parity error" },
4754 		{ F_PERR_CPL_128TO128_0, "CPLSW 128TO128 FIFO0 parity error" },
4755 
4756 		/* T4+ */
4757 		{ F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error" },
4758 		{ F_CIM_OVFL_ERROR, "CPLSW CIM overflow" },
4759 		{ F_TP_FRAMING_ERROR, "CPLSW TP framing error" },
4760 		{ F_SGE_FRAMING_ERROR, "CPLSW SGE framing error" },
4761 		{ F_CIM_FRAMING_ERROR, "CPLSW CIM framing error" },
4762 		{ F_ZERO_SWITCH_ERROR, "CPLSW no-switch error" },
4763 		{ 0 }
4764 	};
4765 	static const struct intr_info cplsw_intr_info = {
4766 		.name = "CPL_INTR_CAUSE",
4767 		.cause_reg = A_CPL_INTR_CAUSE,
4768 		.enable_reg = A_CPL_INTR_ENABLE,
4769 		.fatal = 0xff,
4770 		.flags = NONFATAL_IF_DISABLED,
4771 		.details = cplsw_intr_details,
4772 		.actions = NULL,
4773 	};
4774 
4775 	return (t4_handle_intr(adap, &cplsw_intr_info, 0, verbose));
4776 }
4777 
4778 #define T4_LE_FATAL_MASK (F_PARITYERR | F_UNKNOWNCMD | F_REQQPARERR)
4779 #define T5_LE_FATAL_MASK (T4_LE_FATAL_MASK | F_VFPARERR)
4780 #define T6_LE_PERRCRC_MASK (F_PIPELINEERR | F_CLIPTCAMACCFAIL | \
4781     F_SRVSRAMACCFAIL | F_CLCAMCRCPARERR | F_CLCAMINTPERR | F_SSRAMINTPERR | \
4782     F_SRVSRAMPERR | F_VFSRAMPERR | F_TCAMINTPERR | F_TCAMCRCERR | \
4783     F_HASHTBLMEMACCERR | F_MAIFWRINTPERR | F_HASHTBLMEMCRCERR)
4784 #define T6_LE_FATAL_MASK (T6_LE_PERRCRC_MASK | F_T6_UNKNOWNCMD | \
4785     F_TCAMACCFAIL | F_HASHTBLACCFAIL | F_CMDTIDERR | F_CMDPRSRINTERR | \
4786     F_TOTCNTERR | F_CLCAMFIFOERR | F_CLIPSUBERR)
4787 
4788 /*
4789  * LE interrupt handler.
4790  */
4791 static bool le_intr_handler(struct adapter *adap, int arg, bool verbose)
4792 {
4793 	static const struct intr_details le_intr_details[] = {
4794 		{ F_REQQPARERR, "LE request queue parity error" },
4795 		{ F_UNKNOWNCMD, "LE unknown command" },
4796 		{ F_ACTRGNFULL, "LE active region full" },
4797 		{ F_PARITYERR, "LE parity error" },
4798 		{ F_LIPMISS, "LE LIP miss" },
4799 		{ F_LIP0, "LE 0 LIP error" },
4800 		{ 0 }
4801 	};
4802 	static const struct intr_details t6_le_intr_details[] = {
4803 		{ F_CLIPSUBERR, "LE CLIP CAM reverse substitution error" },
4804 		{ F_CLCAMFIFOERR, "LE CLIP CAM internal FIFO error" },
4805 		{ F_CTCAMINVLDENT, "Invalid IPv6 CLIP TCAM entry" },
4806 		{ F_TCAMINVLDENT, "Invalid IPv6 TCAM entry" },
4807 		{ F_TOTCNTERR, "LE total active < TCAM count" },
4808 		{ F_CMDPRSRINTERR, "LE internal error in parser" },
4809 		{ F_CMDTIDERR, "Incorrect tid in LE command" },
4810 		{ F_T6_ACTRGNFULL, "LE active region full" },
4811 		{ F_T6_ACTCNTIPV6TZERO, "LE IPv6 active open TCAM counter -ve" },
4812 		{ F_T6_ACTCNTIPV4TZERO, "LE IPv4 active open TCAM counter -ve" },
4813 		{ F_T6_ACTCNTIPV6ZERO, "LE IPv6 active open counter -ve" },
4814 		{ F_T6_ACTCNTIPV4ZERO, "LE IPv4 active open counter -ve" },
4815 		{ F_HASHTBLACCFAIL, "Hash table read error (proto conflict)" },
4816 		{ F_TCAMACCFAIL, "LE TCAM access failure" },
4817 		{ F_T6_UNKNOWNCMD, "LE unknown command" },
4818 		{ F_T6_LIP0, "LE found 0 LIP during CLIP substitution" },
4819 		{ F_T6_LIPMISS, "LE CLIP lookup miss" },
4820 		{ T6_LE_PERRCRC_MASK, "LE parity/CRC error" },
4821 		{ 0 }
4822 	};
4823 	struct intr_info le_intr_info = {
4824 		.name = "LE_DB_INT_CAUSE",
4825 		.cause_reg = A_LE_DB_INT_CAUSE,
4826 		.enable_reg = A_LE_DB_INT_ENABLE,
4827 		.fatal = 0,
4828 		.flags = NONFATAL_IF_DISABLED,
4829 		.details = NULL,
4830 		.actions = NULL,
4831 	};
4832 
4833 	if (chip_id(adap) <= CHELSIO_T5) {
4834 		le_intr_info.details = le_intr_details;
4835 		le_intr_info.fatal = T5_LE_FATAL_MASK;
4836 	} else {
4837 		le_intr_info.details = t6_le_intr_details;
4838 		le_intr_info.fatal = T6_LE_FATAL_MASK;
4839 	}
4840 
4841 	return (t4_handle_intr(adap, &le_intr_info, 0, verbose));
4842 }
4843 
4844 /*
4845  * MPS interrupt handler.
4846  */
4847 static bool mps_intr_handler(struct adapter *adap, int arg, bool verbose)
4848 {
4849 	static const struct intr_details mps_rx_perr_intr_details[] = {
4850 		{ 0xffffffff, "MPS Rx parity error" },
4851 		{ 0 }
4852 	};
4853 	static const struct intr_info mps_rx_perr_intr_info = {
4854 		.name = "MPS_RX_PERR_INT_CAUSE",
4855 		.cause_reg = A_MPS_RX_PERR_INT_CAUSE,
4856 		.enable_reg = A_MPS_RX_PERR_INT_ENABLE,
4857 		.fatal = 0xffffffff,
4858 		.flags = NONFATAL_IF_DISABLED,
4859 		.details = mps_rx_perr_intr_details,
4860 		.actions = NULL,
4861 	};
4862 	static const struct intr_details mps_tx_intr_details[] = {
4863 		{ F_PORTERR, "MPS Tx destination port is disabled" },
4864 		{ F_FRMERR, "MPS Tx framing error" },
4865 		{ F_SECNTERR, "MPS Tx SOP/EOP error" },
4866 		{ F_BUBBLE, "MPS Tx underflow" },
4867 		{ V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error" },
4868 		{ V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error" },
4869 		{ F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error" },
4870 		{ V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error" },
4871 		{ 0 }
4872 	};
4873 	static const struct intr_info mps_tx_intr_info = {
4874 		.name = "MPS_TX_INT_CAUSE",
4875 		.cause_reg = A_MPS_TX_INT_CAUSE,
4876 		.enable_reg = A_MPS_TX_INT_ENABLE,
4877 		.fatal = 0x1ffff,
4878 		.flags = NONFATAL_IF_DISABLED,
4879 		.details = mps_tx_intr_details,
4880 		.actions = NULL,
4881 	};
4882 	static const struct intr_details mps_trc_intr_details[] = {
4883 		{ F_MISCPERR, "MPS TRC misc parity error" },
4884 		{ V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error" },
4885 		{ V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error" },
4886 		{ 0 }
4887 	};
4888 	static const struct intr_info mps_trc_intr_info = {
4889 		.name = "MPS_TRC_INT_CAUSE",
4890 		.cause_reg = A_MPS_TRC_INT_CAUSE,
4891 		.enable_reg = A_MPS_TRC_INT_ENABLE,
4892 		.fatal = F_MISCPERR | V_PKTFIFO(M_PKTFIFO) | V_FILTMEM(M_FILTMEM),
4893 		.flags = 0,
4894 		.details = mps_trc_intr_details,
4895 		.actions = NULL,
4896 	};
4897 	static const struct intr_details mps_stat_sram_intr_details[] = {
4898 		{ 0xffffffff, "MPS statistics SRAM parity error" },
4899 		{ 0 }
4900 	};
4901 	static const struct intr_info mps_stat_sram_intr_info = {
4902 		.name = "MPS_STAT_PERR_INT_CAUSE_SRAM",
4903 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM,
4904 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM,
4905 		.fatal = 0x1fffffff,
4906 		.flags = NONFATAL_IF_DISABLED,
4907 		.details = mps_stat_sram_intr_details,
4908 		.actions = NULL,
4909 	};
4910 	static const struct intr_details mps_stat_tx_intr_details[] = {
4911 		{ 0xffffff, "MPS statistics Tx FIFO parity error" },
4912 		{ 0 }
4913 	};
4914 	static const struct intr_info mps_stat_tx_intr_info = {
4915 		.name = "MPS_STAT_PERR_INT_CAUSE_TX_FIFO",
4916 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
4917 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_TX_FIFO,
4918 		.fatal =  0xffffff,
4919 		.flags = NONFATAL_IF_DISABLED,
4920 		.details = mps_stat_tx_intr_details,
4921 		.actions = NULL,
4922 	};
4923 	static const struct intr_details mps_stat_rx_intr_details[] = {
4924 		{ 0xffffff, "MPS statistics Rx FIFO parity error" },
4925 		{ 0 }
4926 	};
4927 	static const struct intr_info mps_stat_rx_intr_info = {
4928 		.name = "MPS_STAT_PERR_INT_CAUSE_RX_FIFO",
4929 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
4930 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_RX_FIFO,
4931 		.fatal =  0xffffff,
4932 		.flags = 0,
4933 		.details = mps_stat_rx_intr_details,
4934 		.actions = NULL,
4935 	};
4936 	static const struct intr_details mps_cls_intr_details[] = {
4937 		{ F_HASHSRAM, "MPS hash SRAM parity error" },
4938 		{ F_MATCHTCAM, "MPS match TCAM parity error" },
4939 		{ F_MATCHSRAM, "MPS match SRAM parity error" },
4940 		{ 0 }
4941 	};
4942 	static const struct intr_info mps_cls_intr_info = {
4943 		.name = "MPS_CLS_INT_CAUSE",
4944 		.cause_reg = A_MPS_CLS_INT_CAUSE,
4945 		.enable_reg = A_MPS_CLS_INT_ENABLE,
4946 		.fatal =  F_MATCHSRAM | F_MATCHTCAM | F_HASHSRAM,
4947 		.flags = 0,
4948 		.details = mps_cls_intr_details,
4949 		.actions = NULL,
4950 	};
4951 	static const struct intr_details mps_stat_sram1_intr_details[] = {
4952 		{ 0xff, "MPS statistics SRAM1 parity error" },
4953 		{ 0 }
4954 	};
4955 	static const struct intr_info mps_stat_sram1_intr_info = {
4956 		.name = "MPS_STAT_PERR_INT_CAUSE_SRAM1",
4957 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM1,
4958 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM1,
4959 		.fatal = 0xff,
4960 		.flags = 0,
4961 		.details = mps_stat_sram1_intr_details,
4962 		.actions = NULL,
4963 	};
4964 
4965 	bool fatal;
4966 
4967 	fatal = false;
4968 	fatal |= t4_handle_intr(adap, &mps_rx_perr_intr_info, 0, verbose);
4969 	fatal |= t4_handle_intr(adap, &mps_tx_intr_info, 0, verbose);
4970 	fatal |= t4_handle_intr(adap, &mps_trc_intr_info, 0, verbose);
4971 	fatal |= t4_handle_intr(adap, &mps_stat_sram_intr_info, 0, verbose);
4972 	fatal |= t4_handle_intr(adap, &mps_stat_tx_intr_info, 0, verbose);
4973 	fatal |= t4_handle_intr(adap, &mps_stat_rx_intr_info, 0, verbose);
4974 	fatal |= t4_handle_intr(adap, &mps_cls_intr_info, 0, verbose);
4975 	if (chip_id(adap) > CHELSIO_T4) {
4976 		fatal |= t4_handle_intr(adap, &mps_stat_sram1_intr_info, 0,
4977 		    verbose);
4978 	}
4979 
4980 	t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff);
4981 	t4_read_reg(adap, A_MPS_INT_CAUSE);	/* flush */
4982 
4983 	return (fatal);
4984 
4985 }
4986 
4987 /*
4988  * EDC/MC interrupt handler.
4989  */
4990 static bool mem_intr_handler(struct adapter *adap, int idx, bool verbose)
4991 {
4992 	static const char name[4][5] = { "EDC0", "EDC1", "MC0", "MC1" };
4993 	unsigned int count_reg, v;
4994 	static const struct intr_details mem_intr_details[] = {
4995 		{ F_ECC_UE_INT_CAUSE, "Uncorrectable ECC data error(s)" },
4996 		{ F_ECC_CE_INT_CAUSE, "Correctable ECC data error(s)" },
4997 		{ F_PERR_INT_CAUSE, "FIFO parity error" },
4998 		{ 0 }
4999 	};
5000 	struct intr_info ii = {
5001 		.fatal = F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE,
5002 		.details = mem_intr_details,
5003 		.flags = 0,
5004 		.actions = NULL,
5005 	};
5006 	bool fatal;
5007 
5008 	switch (idx) {
5009 	case MEM_EDC0:
5010 		ii.name = "EDC0_INT_CAUSE";
5011 		ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 0);
5012 		ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 0);
5013 		count_reg = EDC_REG(A_EDC_ECC_STATUS, 0);
5014 		break;
5015 	case MEM_EDC1:
5016 		ii.name = "EDC1_INT_CAUSE";
5017 		ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 1);
5018 		ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 1);
5019 		count_reg = EDC_REG(A_EDC_ECC_STATUS, 1);
5020 		break;
5021 	case MEM_MC0:
5022 		ii.name = "MC0_INT_CAUSE";
5023 		if (is_t4(adap)) {
5024 			ii.cause_reg = A_MC_INT_CAUSE;
5025 			ii.enable_reg = A_MC_INT_ENABLE;
5026 			count_reg = A_MC_ECC_STATUS;
5027 		} else {
5028 			ii.cause_reg = A_MC_P_INT_CAUSE;
5029 			ii.enable_reg = A_MC_P_INT_ENABLE;
5030 			count_reg = A_MC_P_ECC_STATUS;
5031 		}
5032 		break;
5033 	case MEM_MC1:
5034 		ii.name = "MC1_INT_CAUSE";
5035 		ii.cause_reg = MC_REG(A_MC_P_INT_CAUSE, 1);
5036 		ii.enable_reg = MC_REG(A_MC_P_INT_ENABLE, 1);
5037 		count_reg = MC_REG(A_MC_P_ECC_STATUS, 1);
5038 		break;
5039 	}
5040 
5041 	fatal = t4_handle_intr(adap, &ii, 0, verbose);
5042 
5043 	v = t4_read_reg(adap, count_reg);
5044 	if (v != 0) {
5045 		if (G_ECC_UECNT(v) != 0) {
5046 			CH_ALERT(adap,
5047 			    "%s: %u uncorrectable ECC data error(s)\n",
5048 			    name[idx], G_ECC_UECNT(v));
5049 		}
5050 		if (G_ECC_CECNT(v) != 0) {
5051 			if (idx <= MEM_EDC1)
5052 				t4_edc_err_read(adap, idx);
5053 			CH_WARN_RATELIMIT(adap,
5054 			    "%s: %u correctable ECC data error(s)\n",
5055 			    name[idx], G_ECC_CECNT(v));
5056 		}
5057 		t4_write_reg(adap, count_reg, 0xffffffff);
5058 	}
5059 
5060 	return (fatal);
5061 }
5062 
5063 static bool ma_wrap_status(struct adapter *adap, int arg, bool verbose)
5064 {
5065 	u32 v;
5066 
5067 	v = t4_read_reg(adap, A_MA_INT_WRAP_STATUS);
5068 	CH_ALERT(adap,
5069 	    "MA address wrap-around error by client %u to address %#x\n",
5070 	    G_MEM_WRAP_CLIENT_NUM(v), G_MEM_WRAP_ADDRESS(v) << 4);
5071 	t4_write_reg(adap, A_MA_INT_WRAP_STATUS, v);
5072 
5073 	return (false);
5074 }
5075 
5076 
5077 /*
5078  * MA interrupt handler.
5079  */
5080 static bool ma_intr_handler(struct adapter *adap, int arg, bool verbose)
5081 {
5082 	static const struct intr_action ma_intr_actions[] = {
5083 		{ F_MEM_WRAP_INT_CAUSE, 0, ma_wrap_status },
5084 		{ 0 },
5085 	};
5086 	static const struct intr_info ma_intr_info = {
5087 		.name = "MA_INT_CAUSE",
5088 		.cause_reg = A_MA_INT_CAUSE,
5089 		.enable_reg = A_MA_INT_ENABLE,
5090 		.fatal = F_MEM_PERR_INT_CAUSE | F_MEM_TO_INT_CAUSE,
5091 		.flags = NONFATAL_IF_DISABLED,
5092 		.details = NULL,
5093 		.actions = ma_intr_actions,
5094 	};
5095 	static const struct intr_info ma_perr_status1 = {
5096 		.name = "MA_PARITY_ERROR_STATUS1",
5097 		.cause_reg = A_MA_PARITY_ERROR_STATUS1,
5098 		.enable_reg = A_MA_PARITY_ERROR_ENABLE1,
5099 		.fatal = 0xffffffff,
5100 		.flags = 0,
5101 		.details = NULL,
5102 		.actions = NULL,
5103 	};
5104 	static const struct intr_info ma_perr_status2 = {
5105 		.name = "MA_PARITY_ERROR_STATUS2",
5106 		.cause_reg = A_MA_PARITY_ERROR_STATUS2,
5107 		.enable_reg = A_MA_PARITY_ERROR_ENABLE2,
5108 		.fatal = 0xffffffff,
5109 		.flags = 0,
5110 		.details = NULL,
5111 		.actions = NULL,
5112 	};
5113 	bool fatal;
5114 
5115 	fatal = false;
5116 	fatal |= t4_handle_intr(adap, &ma_intr_info, 0, verbose);
5117 	fatal |= t4_handle_intr(adap, &ma_perr_status1, 0, verbose);
5118 	if (chip_id(adap) > CHELSIO_T4)
5119 		fatal |= t4_handle_intr(adap, &ma_perr_status2, 0, verbose);
5120 
5121 	return (fatal);
5122 }
5123 
5124 /*
5125  * SMB interrupt handler.
5126  */
5127 static bool smb_intr_handler(struct adapter *adap, int arg, bool verbose)
5128 {
5129 	static const struct intr_details smb_intr_details[] = {
5130 		{ F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error" },
5131 		{ F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error" },
5132 		{ F_SLVFIFOPARINT, "SMB slave FIFO parity error" },
5133 		{ 0 }
5134 	};
5135 	static const struct intr_info smb_intr_info = {
5136 		.name = "SMB_INT_CAUSE",
5137 		.cause_reg = A_SMB_INT_CAUSE,
5138 		.enable_reg = A_SMB_INT_ENABLE,
5139 		.fatal = F_SLVFIFOPARINT | F_MSTRXFIFOPARINT | F_MSTTXFIFOPARINT,
5140 		.flags = 0,
5141 		.details = smb_intr_details,
5142 		.actions = NULL,
5143 	};
5144 
5145 	return (t4_handle_intr(adap, &smb_intr_info, 0, verbose));
5146 }
5147 
5148 /*
5149  * NC-SI interrupt handler.
5150  */
5151 static bool ncsi_intr_handler(struct adapter *adap, int arg, bool verbose)
5152 {
5153 	static const struct intr_details ncsi_intr_details[] = {
5154 		{ F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error" },
5155 		{ F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error" },
5156 		{ F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error" },
5157 		{ F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error" },
5158 		{ 0 }
5159 	};
5160 	static const struct intr_info ncsi_intr_info = {
5161 		.name = "NCSI_INT_CAUSE",
5162 		.cause_reg = A_NCSI_INT_CAUSE,
5163 		.enable_reg = A_NCSI_INT_ENABLE,
5164 		.fatal = F_RXFIFO_PRTY_ERR | F_TXFIFO_PRTY_ERR |
5165 		    F_MPS_DM_PRTY_ERR | F_CIM_DM_PRTY_ERR,
5166 		.flags = 0,
5167 		.details = ncsi_intr_details,
5168 		.actions = NULL,
5169 	};
5170 
5171 	return (t4_handle_intr(adap, &ncsi_intr_info, 0, verbose));
5172 }
5173 
5174 /*
5175  * MAC interrupt handler.
5176  */
5177 static bool mac_intr_handler(struct adapter *adap, int port, bool verbose)
5178 {
5179 	static const struct intr_details mac_intr_details[] = {
5180 		{ F_TXFIFO_PRTY_ERR, "MAC Tx FIFO parity error" },
5181 		{ F_RXFIFO_PRTY_ERR, "MAC Rx FIFO parity error" },
5182 		{ 0 }
5183 	};
5184 	char name[32];
5185 	struct intr_info ii;
5186 	bool fatal = false;
5187 
5188 	if (is_t4(adap)) {
5189 		snprintf(name, sizeof(name), "XGMAC_PORT%u_INT_CAUSE", port);
5190 		ii.name = &name[0];
5191 		ii.cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
5192 		ii.enable_reg = PORT_REG(port, A_XGMAC_PORT_INT_EN);
5193 		ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR;
5194 		ii.flags = 0;
5195 		ii.details = mac_intr_details;
5196 		ii.actions = NULL;
5197 	} else {
5198 		snprintf(name, sizeof(name), "MAC_PORT%u_INT_CAUSE", port);
5199 		ii.name = &name[0];
5200 		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
5201 		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_INT_EN);
5202 		ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR;
5203 		ii.flags = 0;
5204 		ii.details = mac_intr_details;
5205 		ii.actions = NULL;
5206 	}
5207 	fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5208 
5209 	if (chip_id(adap) >= CHELSIO_T5) {
5210 		snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE", port);
5211 		ii.name = &name[0];
5212 		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE);
5213 		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN);
5214 		ii.fatal = 0;
5215 		ii.flags = 0;
5216 		ii.details = NULL;
5217 		ii.actions = NULL;
5218 		fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5219 	}
5220 
5221 	if (chip_id(adap) >= CHELSIO_T6) {
5222 		snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE_100G", port);
5223 		ii.name = &name[0];
5224 		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE_100G);
5225 		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN_100G);
5226 		ii.fatal = 0;
5227 		ii.flags = 0;
5228 		ii.details = NULL;
5229 		ii.actions = NULL;
5230 		fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5231 	}
5232 
5233 	return (fatal);
5234 }
5235 
5236 static bool plpl_intr_handler(struct adapter *adap, int arg, bool verbose)
5237 {
5238 	static const struct intr_details plpl_intr_details[] = {
5239 		{ F_FATALPERR, "Fatal parity error" },
5240 		{ F_PERRVFID, "VFID_MAP parity error" },
5241 		{ 0 }
5242 	};
5243 	static const struct intr_info plpl_intr_info = {
5244 		.name = "PL_PL_INT_CAUSE",
5245 		.cause_reg = A_PL_PL_INT_CAUSE,
5246 		.enable_reg = A_PL_PL_INT_ENABLE,
5247 		.fatal = F_FATALPERR | F_PERRVFID,
5248 		.flags = NONFATAL_IF_DISABLED,
5249 		.details = plpl_intr_details,
5250 		.actions = NULL,
5251 	};
5252 
5253 	return (t4_handle_intr(adap, &plpl_intr_info, 0, verbose));
5254 }
5255 
5256 /**
5257  *	t4_slow_intr_handler - control path interrupt handler
5258  *	@adap: the adapter
5259  *	@verbose: increased verbosity, for debug
5260  *
5261  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
5262  *	The designation 'slow' is because it involves register reads, while
5263  *	data interrupts typically don't involve any MMIOs.
5264  */
5265 int t4_slow_intr_handler(struct adapter *adap, bool verbose)
5266 {
5267 	static const struct intr_details pl_intr_details[] = {
5268 		{ F_MC1, "MC1" },
5269 		{ F_UART, "UART" },
5270 		{ F_ULP_TX, "ULP TX" },
5271 		{ F_SGE, "SGE" },
5272 		{ F_HMA, "HMA" },
5273 		{ F_CPL_SWITCH, "CPL Switch" },
5274 		{ F_ULP_RX, "ULP RX" },
5275 		{ F_PM_RX, "PM RX" },
5276 		{ F_PM_TX, "PM TX" },
5277 		{ F_MA, "MA" },
5278 		{ F_TP, "TP" },
5279 		{ F_LE, "LE" },
5280 		{ F_EDC1, "EDC1" },
5281 		{ F_EDC0, "EDC0" },
5282 		{ F_MC, "MC0" },
5283 		{ F_PCIE, "PCIE" },
5284 		{ F_PMU, "PMU" },
5285 		{ F_MAC3, "MAC3" },
5286 		{ F_MAC2, "MAC2" },
5287 		{ F_MAC1, "MAC1" },
5288 		{ F_MAC0, "MAC0" },
5289 		{ F_SMB, "SMB" },
5290 		{ F_SF, "SF" },
5291 		{ F_PL, "PL" },
5292 		{ F_NCSI, "NC-SI" },
5293 		{ F_MPS, "MPS" },
5294 		{ F_MI, "MI" },
5295 		{ F_DBG, "DBG" },
5296 		{ F_I2CM, "I2CM" },
5297 		{ F_CIM, "CIM" },
5298 		{ 0 }
5299 	};
5300 	static const struct intr_info pl_perr_cause = {
5301 		.name = "PL_PERR_CAUSE",
5302 		.cause_reg = A_PL_PERR_CAUSE,
5303 		.enable_reg = A_PL_PERR_ENABLE,
5304 		.fatal = 0xffffffff,
5305 		.flags = 0,
5306 		.details = pl_intr_details,
5307 		.actions = NULL,
5308 	};
5309 	static const struct intr_action pl_intr_action[] = {
5310 		{ F_MC1, MEM_MC1, mem_intr_handler },
5311 		{ F_ULP_TX, -1, ulptx_intr_handler },
5312 		{ F_SGE, -1, sge_intr_handler },
5313 		{ F_CPL_SWITCH, -1, cplsw_intr_handler },
5314 		{ F_ULP_RX, -1, ulprx_intr_handler },
5315 		{ F_PM_RX, -1, pmrx_intr_handler},
5316 		{ F_PM_TX, -1, pmtx_intr_handler},
5317 		{ F_MA, -1, ma_intr_handler },
5318 		{ F_TP, -1, tp_intr_handler },
5319 		{ F_LE, -1, le_intr_handler },
5320 		{ F_EDC1, MEM_EDC1, mem_intr_handler },
5321 		{ F_EDC0, MEM_EDC0, mem_intr_handler },
5322 		{ F_MC0, MEM_MC0, mem_intr_handler },
5323 		{ F_PCIE, -1, pcie_intr_handler },
5324 		{ F_MAC3, 3, mac_intr_handler},
5325 		{ F_MAC2, 2, mac_intr_handler},
5326 		{ F_MAC1, 1, mac_intr_handler},
5327 		{ F_MAC0, 0, mac_intr_handler},
5328 		{ F_SMB, -1, smb_intr_handler},
5329 		{ F_PL, -1, plpl_intr_handler },
5330 		{ F_NCSI, -1, ncsi_intr_handler},
5331 		{ F_MPS, -1, mps_intr_handler },
5332 		{ F_CIM, -1, cim_intr_handler },
5333 		{ 0 }
5334 	};
5335 	static const struct intr_info pl_intr_info = {
5336 		.name = "PL_INT_CAUSE",
5337 		.cause_reg = A_PL_INT_CAUSE,
5338 		.enable_reg = A_PL_INT_ENABLE,
5339 		.fatal = 0,
5340 		.flags = 0,
5341 		.details = pl_intr_details,
5342 		.actions = pl_intr_action,
5343 	};
5344 	bool fatal;
5345 	u32 perr;
5346 
5347 	perr = t4_read_reg(adap, pl_perr_cause.cause_reg);
5348 	if (verbose || perr != 0) {
5349 		t4_show_intr_info(adap, &pl_perr_cause, perr);
5350 		if (perr != 0)
5351 			t4_write_reg(adap, pl_perr_cause.cause_reg, perr);
5352 		if (verbose)
5353 			perr |= t4_read_reg(adap, pl_intr_info.enable_reg);
5354 	}
5355 	fatal = t4_handle_intr(adap, &pl_intr_info, perr, verbose);
5356 	if (fatal)
5357 		t4_fatal_err(adap, false);
5358 
5359 	return (0);
5360 }
5361 
5362 #define PF_INTR_MASK (F_PFSW | F_PFCIM)
5363 
5364 /**
5365  *	t4_intr_enable - enable interrupts
5366  *	@adapter: the adapter whose interrupts should be enabled
5367  *
5368  *	Enable PF-specific interrupts for the calling function and the top-level
5369  *	interrupt concentrator for global interrupts.  Interrupts are already
5370  *	enabled at each module,	here we just enable the roots of the interrupt
5371  *	hierarchies.
5372  *
5373  *	Note: this function should be called only when the driver manages
5374  *	non PF-specific interrupts from the various HW modules.  Only one PCI
5375  *	function at a time should be doing this.
5376  */
5377 void t4_intr_enable(struct adapter *adap)
5378 {
5379 	u32 val = 0;
5380 
5381 	if (chip_id(adap) <= CHELSIO_T5)
5382 		val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
5383 	else
5384 		val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN;
5385 	val |= F_ERR_CPL_EXCEED_IQE_SIZE | F_ERR_INVALID_CIDX_INC |
5386 	    F_ERR_CPL_OPCODE_0 | F_ERR_DATA_CPL_ON_HIGH_QID1 |
5387 	    F_INGRESS_SIZE_ERR | F_ERR_DATA_CPL_ON_HIGH_QID0 |
5388 	    F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
5389 	    F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO | F_DBFIFO_LP_INT |
5390 	    F_EGRESS_SIZE_ERR;
5391 	t4_set_reg_field(adap, A_SGE_INT_ENABLE3, val, val);
5392 	t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
5393 	t4_set_reg_field(adap, A_PL_INT_ENABLE, F_SF | F_I2CM, 0);
5394 	t4_set_reg_field(adap, A_PL_INT_MAP0, 0, 1 << adap->pf);
5395 }
5396 
5397 /**
5398  *	t4_intr_disable - disable interrupts
5399  *	@adap: the adapter whose interrupts should be disabled
5400  *
5401  *	Disable interrupts.  We only disable the top-level interrupt
5402  *	concentrators.  The caller must be a PCI function managing global
5403  *	interrupts.
5404  */
5405 void t4_intr_disable(struct adapter *adap)
5406 {
5407 
5408 	t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
5409 	t4_set_reg_field(adap, A_PL_INT_MAP0, 1 << adap->pf, 0);
5410 }
5411 
5412 /**
5413  *	t4_intr_clear - clear all interrupts
5414  *	@adap: the adapter whose interrupts should be cleared
5415  *
5416  *	Clears all interrupts.  The caller must be a PCI function managing
5417  *	global interrupts.
5418  */
5419 void t4_intr_clear(struct adapter *adap)
5420 {
5421 	static const u32 cause_reg[] = {
5422 		A_CIM_HOST_INT_CAUSE,
5423 		A_CIM_HOST_UPACC_INT_CAUSE,
5424 		MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
5425 		A_CPL_INTR_CAUSE,
5426 		EDC_REG(A_EDC_INT_CAUSE, 0), EDC_REG(A_EDC_INT_CAUSE, 1),
5427 		A_LE_DB_INT_CAUSE,
5428 		A_MA_INT_WRAP_STATUS,
5429 		A_MA_PARITY_ERROR_STATUS1,
5430 		A_MA_INT_CAUSE,
5431 		A_MPS_CLS_INT_CAUSE,
5432 		A_MPS_RX_PERR_INT_CAUSE,
5433 		A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
5434 		A_MPS_STAT_PERR_INT_CAUSE_SRAM,
5435 		A_MPS_TRC_INT_CAUSE,
5436 		A_MPS_TX_INT_CAUSE,
5437 		A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
5438 		A_NCSI_INT_CAUSE,
5439 		A_PCIE_INT_CAUSE,
5440 		A_PCIE_NONFAT_ERR,
5441 		A_PL_PL_INT_CAUSE,
5442 		A_PM_RX_INT_CAUSE,
5443 		A_PM_TX_INT_CAUSE,
5444 		A_SGE_INT_CAUSE1,
5445 		A_SGE_INT_CAUSE2,
5446 		A_SGE_INT_CAUSE3,
5447 		A_SGE_INT_CAUSE4,
5448 		A_SMB_INT_CAUSE,
5449 		A_TP_INT_CAUSE,
5450 		A_ULP_RX_INT_CAUSE,
5451 		A_ULP_RX_INT_CAUSE_2,
5452 		A_ULP_TX_INT_CAUSE,
5453 		A_ULP_TX_INT_CAUSE_2,
5454 
5455 		MYPF_REG(A_PL_PF_INT_CAUSE),
5456 	};
5457 	int i;
5458 	const int nchan = adap->chip_params->nchan;
5459 
5460 	for (i = 0; i < ARRAY_SIZE(cause_reg); i++)
5461 		t4_write_reg(adap, cause_reg[i], 0xffffffff);
5462 
5463 	if (is_t4(adap)) {
5464 		t4_write_reg(adap, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
5465 		    0xffffffff);
5466 		t4_write_reg(adap, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
5467 		    0xffffffff);
5468 		t4_write_reg(adap, A_MC_INT_CAUSE, 0xffffffff);
5469 		for (i = 0; i < nchan; i++) {
5470 			t4_write_reg(adap, PORT_REG(i, A_XGMAC_PORT_INT_CAUSE),
5471 			    0xffffffff);
5472 		}
5473 	}
5474 	if (chip_id(adap) >= CHELSIO_T5) {
5475 		t4_write_reg(adap, A_MA_PARITY_ERROR_STATUS2, 0xffffffff);
5476 		t4_write_reg(adap, A_MPS_STAT_PERR_INT_CAUSE_SRAM1, 0xffffffff);
5477 		t4_write_reg(adap, A_SGE_INT_CAUSE5, 0xffffffff);
5478 		t4_write_reg(adap, A_MC_P_INT_CAUSE, 0xffffffff);
5479 		if (is_t5(adap)) {
5480 			t4_write_reg(adap, MC_REG(A_MC_P_INT_CAUSE, 1),
5481 			    0xffffffff);
5482 		}
5483 		for (i = 0; i < nchan; i++) {
5484 			t4_write_reg(adap, T5_PORT_REG(i,
5485 			    A_MAC_PORT_PERR_INT_CAUSE), 0xffffffff);
5486 			if (chip_id(adap) > CHELSIO_T5) {
5487 				t4_write_reg(adap, T5_PORT_REG(i,
5488 				    A_MAC_PORT_PERR_INT_CAUSE_100G),
5489 				    0xffffffff);
5490 			}
5491 			t4_write_reg(adap, T5_PORT_REG(i, A_MAC_PORT_INT_CAUSE),
5492 			    0xffffffff);
5493 		}
5494 	}
5495 	if (chip_id(adap) >= CHELSIO_T6) {
5496 		t4_write_reg(adap, A_SGE_INT_CAUSE6, 0xffffffff);
5497 	}
5498 
5499 	t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff);
5500 	t4_write_reg(adap, A_PL_PERR_CAUSE, 0xffffffff);
5501 	t4_write_reg(adap, A_PL_INT_CAUSE, 0xffffffff);
5502 	(void) t4_read_reg(adap, A_PL_INT_CAUSE);          /* flush */
5503 }
5504 
5505 /**
5506  *	hash_mac_addr - return the hash value of a MAC address
5507  *	@addr: the 48-bit Ethernet MAC address
5508  *
5509  *	Hashes a MAC address according to the hash function used by HW inexact
5510  *	(hash) address matching.
5511  */
5512 static int hash_mac_addr(const u8 *addr)
5513 {
5514 	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
5515 	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
5516 	a ^= b;
5517 	a ^= (a >> 12);
5518 	a ^= (a >> 6);
5519 	return a & 0x3f;
5520 }
5521 
5522 /**
5523  *	t4_config_rss_range - configure a portion of the RSS mapping table
5524  *	@adapter: the adapter
5525  *	@mbox: mbox to use for the FW command
5526  *	@viid: virtual interface whose RSS subtable is to be written
5527  *	@start: start entry in the table to write
5528  *	@n: how many table entries to write
5529  *	@rspq: values for the "response queue" (Ingress Queue) lookup table
5530  *	@nrspq: number of values in @rspq
5531  *
5532  *	Programs the selected part of the VI's RSS mapping table with the
5533  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
5534  *	until the full table range is populated.
5535  *
5536  *	The caller must ensure the values in @rspq are in the range allowed for
5537  *	@viid.
5538  */
5539 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5540 			int start, int n, const u16 *rspq, unsigned int nrspq)
5541 {
5542 	int ret;
5543 	const u16 *rsp = rspq;
5544 	const u16 *rsp_end = rspq + nrspq;
5545 	struct fw_rss_ind_tbl_cmd cmd;
5546 
5547 	memset(&cmd, 0, sizeof(cmd));
5548 	cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
5549 				     F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
5550 				     V_FW_RSS_IND_TBL_CMD_VIID(viid));
5551 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5552 
5553 	/*
5554 	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
5555 	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
5556 	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
5557 	 * reserved.
5558 	 */
5559 	while (n > 0) {
5560 		int nq = min(n, 32);
5561 		int nq_packed = 0;
5562 		__be32 *qp = &cmd.iq0_to_iq2;
5563 
5564 		/*
5565 		 * Set up the firmware RSS command header to send the next
5566 		 * "nq" Ingress Queue IDs to the firmware.
5567 		 */
5568 		cmd.niqid = cpu_to_be16(nq);
5569 		cmd.startidx = cpu_to_be16(start);
5570 
5571 		/*
5572 		 * "nq" more done for the start of the next loop.
5573 		 */
5574 		start += nq;
5575 		n -= nq;
5576 
5577 		/*
5578 		 * While there are still Ingress Queue IDs to stuff into the
5579 		 * current firmware RSS command, retrieve them from the
5580 		 * Ingress Queue ID array and insert them into the command.
5581 		 */
5582 		while (nq > 0) {
5583 			/*
5584 			 * Grab up to the next 3 Ingress Queue IDs (wrapping
5585 			 * around the Ingress Queue ID array if necessary) and
5586 			 * insert them into the firmware RSS command at the
5587 			 * current 3-tuple position within the commad.
5588 			 */
5589 			u16 qbuf[3];
5590 			u16 *qbp = qbuf;
5591 			int nqbuf = min(3, nq);
5592 
5593 			nq -= nqbuf;
5594 			qbuf[0] = qbuf[1] = qbuf[2] = 0;
5595 			while (nqbuf && nq_packed < 32) {
5596 				nqbuf--;
5597 				nq_packed++;
5598 				*qbp++ = *rsp++;
5599 				if (rsp >= rsp_end)
5600 					rsp = rspq;
5601 			}
5602 			*qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
5603 					    V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
5604 					    V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
5605 		}
5606 
5607 		/*
5608 		 * Send this portion of the RRS table update to the firmware;
5609 		 * bail out on any errors.
5610 		 */
5611 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5612 		if (ret)
5613 			return ret;
5614 	}
5615 	return 0;
5616 }
5617 
5618 /**
5619  *	t4_config_glbl_rss - configure the global RSS mode
5620  *	@adapter: the adapter
5621  *	@mbox: mbox to use for the FW command
5622  *	@mode: global RSS mode
5623  *	@flags: mode-specific flags
5624  *
5625  *	Sets the global RSS mode.
5626  */
5627 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5628 		       unsigned int flags)
5629 {
5630 	struct fw_rss_glb_config_cmd c;
5631 
5632 	memset(&c, 0, sizeof(c));
5633 	c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
5634 				    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
5635 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5636 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5637 		c.u.manual.mode_pkd =
5638 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
5639 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5640 		c.u.basicvirtual.mode_keymode =
5641 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
5642 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5643 	} else
5644 		return -EINVAL;
5645 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5646 }
5647 
5648 /**
5649  *	t4_config_vi_rss - configure per VI RSS settings
5650  *	@adapter: the adapter
5651  *	@mbox: mbox to use for the FW command
5652  *	@viid: the VI id
5653  *	@flags: RSS flags
5654  *	@defq: id of the default RSS queue for the VI.
5655  *	@skeyidx: RSS secret key table index for non-global mode
5656  *	@skey: RSS vf_scramble key for VI.
5657  *
5658  *	Configures VI-specific RSS properties.
5659  */
5660 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5661 		     unsigned int flags, unsigned int defq, unsigned int skeyidx,
5662 		     unsigned int skey)
5663 {
5664 	struct fw_rss_vi_config_cmd c;
5665 
5666 	memset(&c, 0, sizeof(c));
5667 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
5668 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
5669 				   V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
5670 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5671 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5672 					V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
5673 	c.u.basicvirtual.secretkeyidx_pkd = cpu_to_be32(
5674 					V_FW_RSS_VI_CONFIG_CMD_SECRETKEYIDX(skeyidx));
5675 	c.u.basicvirtual.secretkeyxor = cpu_to_be32(skey);
5676 
5677 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5678 }
5679 
5680 /* Read an RSS table row */
5681 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5682 {
5683 	t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
5684 	return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
5685 				   5, 0, val);
5686 }
5687 
5688 /**
5689  *	t4_read_rss - read the contents of the RSS mapping table
5690  *	@adapter: the adapter
5691  *	@map: holds the contents of the RSS mapping table
5692  *
5693  *	Reads the contents of the RSS hash->queue mapping table.
5694  */
5695 int t4_read_rss(struct adapter *adapter, u16 *map)
5696 {
5697 	u32 val;
5698 	int i, ret;
5699 	int rss_nentries = adapter->chip_params->rss_nentries;
5700 
5701 	for (i = 0; i < rss_nentries / 2; ++i) {
5702 		ret = rd_rss_row(adapter, i, &val);
5703 		if (ret)
5704 			return ret;
5705 		*map++ = G_LKPTBLQUEUE0(val);
5706 		*map++ = G_LKPTBLQUEUE1(val);
5707 	}
5708 	return 0;
5709 }
5710 
5711 /**
5712  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5713  * @adap: the adapter
5714  * @cmd: TP fw ldst address space type
5715  * @vals: where the indirect register values are stored/written
5716  * @nregs: how many indirect registers to read/write
5717  * @start_idx: index of first indirect register to read/write
5718  * @rw: Read (1) or Write (0)
5719  * @sleep_ok: if true we may sleep while awaiting command completion
5720  *
5721  * Access TP indirect registers through LDST
5722  **/
5723 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5724 			    unsigned int nregs, unsigned int start_index,
5725 			    unsigned int rw, bool sleep_ok)
5726 {
5727 	int ret = 0;
5728 	unsigned int i;
5729 	struct fw_ldst_cmd c;
5730 
5731 	for (i = 0; i < nregs; i++) {
5732 		memset(&c, 0, sizeof(c));
5733 		c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
5734 						F_FW_CMD_REQUEST |
5735 						(rw ? F_FW_CMD_READ :
5736 						      F_FW_CMD_WRITE) |
5737 						V_FW_LDST_CMD_ADDRSPACE(cmd));
5738 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5739 
5740 		c.u.addrval.addr = cpu_to_be32(start_index + i);
5741 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5742 		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5743 				      sleep_ok);
5744 		if (ret)
5745 			return ret;
5746 
5747 		if (rw)
5748 			vals[i] = be32_to_cpu(c.u.addrval.val);
5749 	}
5750 	return 0;
5751 }
5752 
5753 /**
5754  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5755  * @adap: the adapter
5756  * @reg_addr: Address Register
5757  * @reg_data: Data register
5758  * @buff: where the indirect register values are stored/written
5759  * @nregs: how many indirect registers to read/write
5760  * @start_index: index of first indirect register to read/write
5761  * @rw: READ(1) or WRITE(0)
5762  * @sleep_ok: if true we may sleep while awaiting command completion
5763  *
5764  * Read/Write TP indirect registers through LDST if possible.
5765  * Else, use backdoor access
5766  **/
5767 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5768 			      u32 *buff, u32 nregs, u32 start_index, int rw,
5769 			      bool sleep_ok)
5770 {
5771 	int rc = -EINVAL;
5772 	int cmd;
5773 
5774 	switch (reg_addr) {
5775 	case A_TP_PIO_ADDR:
5776 		cmd = FW_LDST_ADDRSPC_TP_PIO;
5777 		break;
5778 	case A_TP_TM_PIO_ADDR:
5779 		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5780 		break;
5781 	case A_TP_MIB_INDEX:
5782 		cmd = FW_LDST_ADDRSPC_TP_MIB;
5783 		break;
5784 	default:
5785 		goto indirect_access;
5786 	}
5787 
5788 	if (t4_use_ldst(adap))
5789 		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5790 				      sleep_ok);
5791 
5792 indirect_access:
5793 
5794 	if (rc) {
5795 		if (rw)
5796 			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5797 					 start_index);
5798 		else
5799 			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5800 					  start_index);
5801 	}
5802 }
5803 
5804 /**
5805  * t4_tp_pio_read - Read TP PIO registers
5806  * @adap: the adapter
5807  * @buff: where the indirect register values are written
5808  * @nregs: how many indirect registers to read
5809  * @start_index: index of first indirect register to read
5810  * @sleep_ok: if true we may sleep while awaiting command completion
5811  *
5812  * Read TP PIO Registers
5813  **/
5814 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5815 		    u32 start_index, bool sleep_ok)
5816 {
5817 	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, buff, nregs,
5818 			  start_index, 1, sleep_ok);
5819 }
5820 
5821 /**
5822  * t4_tp_pio_write - Write TP PIO registers
5823  * @adap: the adapter
5824  * @buff: where the indirect register values are stored
5825  * @nregs: how many indirect registers to write
5826  * @start_index: index of first indirect register to write
5827  * @sleep_ok: if true we may sleep while awaiting command completion
5828  *
5829  * Write TP PIO Registers
5830  **/
5831 void t4_tp_pio_write(struct adapter *adap, const u32 *buff, u32 nregs,
5832 		     u32 start_index, bool sleep_ok)
5833 {
5834 	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5835 	    __DECONST(u32 *, buff), nregs, start_index, 0, sleep_ok);
5836 }
5837 
5838 /**
5839  * t4_tp_tm_pio_read - Read TP TM PIO registers
5840  * @adap: the adapter
5841  * @buff: where the indirect register values are written
5842  * @nregs: how many indirect registers to read
5843  * @start_index: index of first indirect register to read
5844  * @sleep_ok: if true we may sleep while awaiting command completion
5845  *
5846  * Read TP TM PIO Registers
5847  **/
5848 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5849 		       u32 start_index, bool sleep_ok)
5850 {
5851 	t4_tp_indirect_rw(adap, A_TP_TM_PIO_ADDR, A_TP_TM_PIO_DATA, buff,
5852 			  nregs, start_index, 1, sleep_ok);
5853 }
5854 
5855 /**
5856  * t4_tp_mib_read - Read TP MIB registers
5857  * @adap: the adapter
5858  * @buff: where the indirect register values are written
5859  * @nregs: how many indirect registers to read
5860  * @start_index: index of first indirect register to read
5861  * @sleep_ok: if true we may sleep while awaiting command completion
5862  *
5863  * Read TP MIB Registers
5864  **/
5865 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5866 		    bool sleep_ok)
5867 {
5868 	t4_tp_indirect_rw(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, buff, nregs,
5869 			  start_index, 1, sleep_ok);
5870 }
5871 
5872 /**
5873  *	t4_read_rss_key - read the global RSS key
5874  *	@adap: the adapter
5875  *	@key: 10-entry array holding the 320-bit RSS key
5876  * 	@sleep_ok: if true we may sleep while awaiting command completion
5877  *
5878  *	Reads the global 320-bit RSS key.
5879  */
5880 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5881 {
5882 	t4_tp_pio_read(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5883 }
5884 
5885 /**
5886  *	t4_write_rss_key - program one of the RSS keys
5887  *	@adap: the adapter
5888  *	@key: 10-entry array holding the 320-bit RSS key
5889  *	@idx: which RSS key to write
5890  * 	@sleep_ok: if true we may sleep while awaiting command completion
5891  *
5892  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5893  *	0..15 the corresponding entry in the RSS key table is written,
5894  *	otherwise the global RSS key is written.
5895  */
5896 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5897 		      bool sleep_ok)
5898 {
5899 	u8 rss_key_addr_cnt = 16;
5900 	u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
5901 
5902 	/*
5903 	 * T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5904 	 * allows access to key addresses 16-63 by using KeyWrAddrX
5905 	 * as index[5:4](upper 2) into key table
5906 	 */
5907 	if ((chip_id(adap) > CHELSIO_T5) &&
5908 	    (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
5909 		rss_key_addr_cnt = 32;
5910 
5911 	t4_tp_pio_write(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5912 
5913 	if (idx >= 0 && idx < rss_key_addr_cnt) {
5914 		if (rss_key_addr_cnt > 16)
5915 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5916 				     vrt | V_KEYWRADDRX(idx >> 4) |
5917 				     V_T6_VFWRADDR(idx) | F_KEYWREN);
5918 		else
5919 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5920 				     vrt| V_KEYWRADDR(idx) | F_KEYWREN);
5921 	}
5922 }
5923 
5924 /**
5925  *	t4_read_rss_pf_config - read PF RSS Configuration Table
5926  *	@adapter: the adapter
5927  *	@index: the entry in the PF RSS table to read
5928  *	@valp: where to store the returned value
5929  * 	@sleep_ok: if true we may sleep while awaiting command completion
5930  *
5931  *	Reads the PF RSS Configuration Table at the specified index and returns
5932  *	the value found there.
5933  */
5934 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5935 			   u32 *valp, bool sleep_ok)
5936 {
5937 	t4_tp_pio_read(adapter, valp, 1, A_TP_RSS_PF0_CONFIG + index, sleep_ok);
5938 }
5939 
5940 /**
5941  *	t4_write_rss_pf_config - write PF RSS Configuration Table
5942  *	@adapter: the adapter
5943  *	@index: the entry in the VF RSS table to read
5944  *	@val: the value to store
5945  * 	@sleep_ok: if true we may sleep while awaiting command completion
5946  *
5947  *	Writes the PF RSS Configuration Table at the specified index with the
5948  *	specified value.
5949  */
5950 void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index,
5951 			    u32 val, bool sleep_ok)
5952 {
5953 	t4_tp_pio_write(adapter, &val, 1, A_TP_RSS_PF0_CONFIG + index,
5954 			sleep_ok);
5955 }
5956 
5957 /**
5958  *	t4_read_rss_vf_config - read VF RSS Configuration Table
5959  *	@adapter: the adapter
5960  *	@index: the entry in the VF RSS table to read
5961  *	@vfl: where to store the returned VFL
5962  *	@vfh: where to store the returned VFH
5963  * 	@sleep_ok: if true we may sleep while awaiting command completion
5964  *
5965  *	Reads the VF RSS Configuration Table at the specified index and returns
5966  *	the (VFL, VFH) values found there.
5967  */
5968 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5969 			   u32 *vfl, u32 *vfh, bool sleep_ok)
5970 {
5971 	u32 vrt, mask, data;
5972 
5973 	if (chip_id(adapter) <= CHELSIO_T5) {
5974 		mask = V_VFWRADDR(M_VFWRADDR);
5975 		data = V_VFWRADDR(index);
5976 	} else {
5977 		 mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5978 		 data = V_T6_VFWRADDR(index);
5979 	}
5980 	/*
5981 	 * Request that the index'th VF Table values be read into VFL/VFH.
5982 	 */
5983 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5984 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5985 	vrt |= data | F_VFRDEN;
5986 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5987 
5988 	/*
5989 	 * Grab the VFL/VFH values ...
5990 	 */
5991 	t4_tp_pio_read(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
5992 	t4_tp_pio_read(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
5993 }
5994 
5995 /**
5996  *	t4_write_rss_vf_config - write VF RSS Configuration Table
5997  *
5998  *	@adapter: the adapter
5999  *	@index: the entry in the VF RSS table to write
6000  *	@vfl: the VFL to store
6001  *	@vfh: the VFH to store
6002  *
6003  *	Writes the VF RSS Configuration Table at the specified index with the
6004  *	specified (VFL, VFH) values.
6005  */
6006 void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
6007 			    u32 vfl, u32 vfh, bool sleep_ok)
6008 {
6009 	u32 vrt, mask, data;
6010 
6011 	if (chip_id(adapter) <= CHELSIO_T5) {
6012 		mask = V_VFWRADDR(M_VFWRADDR);
6013 		data = V_VFWRADDR(index);
6014 	} else {
6015 		mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
6016 		data = V_T6_VFWRADDR(index);
6017 	}
6018 
6019 	/*
6020 	 * Load up VFL/VFH with the values to be written ...
6021 	 */
6022 	t4_tp_pio_write(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
6023 	t4_tp_pio_write(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
6024 
6025 	/*
6026 	 * Write the VFL/VFH into the VF Table at index'th location.
6027 	 */
6028 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
6029 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
6030 	vrt |= data | F_VFRDEN;
6031 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
6032 }
6033 
6034 /**
6035  *	t4_read_rss_pf_map - read PF RSS Map
6036  *	@adapter: the adapter
6037  * 	@sleep_ok: if true we may sleep while awaiting command completion
6038  *
6039  *	Reads the PF RSS Map register and returns its value.
6040  */
6041 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
6042 {
6043 	u32 pfmap;
6044 
6045 	t4_tp_pio_read(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
6046 
6047 	return pfmap;
6048 }
6049 
6050 /**
6051  *	t4_write_rss_pf_map - write PF RSS Map
6052  *	@adapter: the adapter
6053  *	@pfmap: PF RSS Map value
6054  *
6055  *	Writes the specified value to the PF RSS Map register.
6056  */
6057 void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap, bool sleep_ok)
6058 {
6059 	t4_tp_pio_write(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
6060 }
6061 
6062 /**
6063  *	t4_read_rss_pf_mask - read PF RSS Mask
6064  *	@adapter: the adapter
6065  * 	@sleep_ok: if true we may sleep while awaiting command completion
6066  *
6067  *	Reads the PF RSS Mask register and returns its value.
6068  */
6069 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
6070 {
6071 	u32 pfmask;
6072 
6073 	t4_tp_pio_read(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
6074 
6075 	return pfmask;
6076 }
6077 
6078 /**
6079  *	t4_write_rss_pf_mask - write PF RSS Mask
6080  *	@adapter: the adapter
6081  *	@pfmask: PF RSS Mask value
6082  *
6083  *	Writes the specified value to the PF RSS Mask register.
6084  */
6085 void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask, bool sleep_ok)
6086 {
6087 	t4_tp_pio_write(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
6088 }
6089 
6090 /**
6091  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
6092  *	@adap: the adapter
6093  *	@v4: holds the TCP/IP counter values
6094  *	@v6: holds the TCP/IPv6 counter values
6095  * 	@sleep_ok: if true we may sleep while awaiting command completion
6096  *
6097  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
6098  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
6099  */
6100 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
6101 			 struct tp_tcp_stats *v6, bool sleep_ok)
6102 {
6103 	u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
6104 
6105 #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
6106 #define STAT(x)     val[STAT_IDX(x)]
6107 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
6108 
6109 	if (v4) {
6110 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
6111 			       A_TP_MIB_TCP_OUT_RST, sleep_ok);
6112 		v4->tcp_out_rsts = STAT(OUT_RST);
6113 		v4->tcp_in_segs  = STAT64(IN_SEG);
6114 		v4->tcp_out_segs = STAT64(OUT_SEG);
6115 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
6116 	}
6117 	if (v6) {
6118 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
6119 			       A_TP_MIB_TCP_V6OUT_RST, sleep_ok);
6120 		v6->tcp_out_rsts = STAT(OUT_RST);
6121 		v6->tcp_in_segs  = STAT64(IN_SEG);
6122 		v6->tcp_out_segs = STAT64(OUT_SEG);
6123 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
6124 	}
6125 #undef STAT64
6126 #undef STAT
6127 #undef STAT_IDX
6128 }
6129 
6130 /**
6131  *	t4_tp_get_err_stats - read TP's error MIB counters
6132  *	@adap: the adapter
6133  *	@st: holds the counter values
6134  * 	@sleep_ok: if true we may sleep while awaiting command completion
6135  *
6136  *	Returns the values of TP's error counters.
6137  */
6138 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
6139 			 bool sleep_ok)
6140 {
6141 	int nchan = adap->chip_params->nchan;
6142 
6143 	t4_tp_mib_read(adap, st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0,
6144 		       sleep_ok);
6145 
6146 	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0,
6147 		       sleep_ok);
6148 
6149 	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0,
6150 		       sleep_ok);
6151 
6152 	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
6153 		       A_TP_MIB_TNL_CNG_DROP_0, sleep_ok);
6154 
6155 	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
6156 		       A_TP_MIB_OFD_CHN_DROP_0, sleep_ok);
6157 
6158 	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0,
6159 		       sleep_ok);
6160 
6161 	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
6162 		       A_TP_MIB_OFD_VLN_DROP_0, sleep_ok);
6163 
6164 	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
6165 		       A_TP_MIB_TCP_V6IN_ERR_0, sleep_ok);
6166 
6167 	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP,
6168 		       sleep_ok);
6169 }
6170 
6171 /**
6172  *	t4_tp_get_proxy_stats - read TP's proxy MIB counters
6173  *	@adap: the adapter
6174  *	@st: holds the counter values
6175  *
6176  *	Returns the values of TP's proxy counters.
6177  */
6178 void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st,
6179     bool sleep_ok)
6180 {
6181 	int nchan = adap->chip_params->nchan;
6182 
6183 	t4_tp_mib_read(adap, st->proxy, nchan, A_TP_MIB_TNL_LPBK_0, sleep_ok);
6184 }
6185 
6186 /**
6187  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
6188  *	@adap: the adapter
6189  *	@st: holds the counter values
6190  * 	@sleep_ok: if true we may sleep while awaiting command completion
6191  *
6192  *	Returns the values of TP's CPL counters.
6193  */
6194 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
6195 			 bool sleep_ok)
6196 {
6197 	int nchan = adap->chip_params->nchan;
6198 
6199 	t4_tp_mib_read(adap, st->req, nchan, A_TP_MIB_CPL_IN_REQ_0, sleep_ok);
6200 
6201 	t4_tp_mib_read(adap, st->rsp, nchan, A_TP_MIB_CPL_OUT_RSP_0, sleep_ok);
6202 }
6203 
6204 /**
6205  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
6206  *	@adap: the adapter
6207  *	@st: holds the counter values
6208  *
6209  *	Returns the values of TP's RDMA counters.
6210  */
6211 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
6212 			  bool sleep_ok)
6213 {
6214 	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, A_TP_MIB_RQE_DFR_PKT,
6215 		       sleep_ok);
6216 }
6217 
6218 /**
6219  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
6220  *	@adap: the adapter
6221  *	@idx: the port index
6222  *	@st: holds the counter values
6223  * 	@sleep_ok: if true we may sleep while awaiting command completion
6224  *
6225  *	Returns the values of TP's FCoE counters for the selected port.
6226  */
6227 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
6228 		       struct tp_fcoe_stats *st, bool sleep_ok)
6229 {
6230 	u32 val[2];
6231 
6232 	t4_tp_mib_read(adap, &st->frames_ddp, 1, A_TP_MIB_FCOE_DDP_0 + idx,
6233 		       sleep_ok);
6234 
6235 	t4_tp_mib_read(adap, &st->frames_drop, 1,
6236 		       A_TP_MIB_FCOE_DROP_0 + idx, sleep_ok);
6237 
6238 	t4_tp_mib_read(adap, val, 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx,
6239 		       sleep_ok);
6240 
6241 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
6242 }
6243 
6244 /**
6245  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
6246  *	@adap: the adapter
6247  *	@st: holds the counter values
6248  * 	@sleep_ok: if true we may sleep while awaiting command completion
6249  *
6250  *	Returns the values of TP's counters for non-TCP directly-placed packets.
6251  */
6252 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
6253 		      bool sleep_ok)
6254 {
6255 	u32 val[4];
6256 
6257 	t4_tp_mib_read(adap, val, 4, A_TP_MIB_USM_PKTS, sleep_ok);
6258 
6259 	st->frames = val[0];
6260 	st->drops = val[1];
6261 	st->octets = ((u64)val[2] << 32) | val[3];
6262 }
6263 
6264 /**
6265  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
6266  *	@adap: the adapter
6267  *	@mtus: where to store the MTU values
6268  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
6269  *
6270  *	Reads the HW path MTU table.
6271  */
6272 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
6273 {
6274 	u32 v;
6275 	int i;
6276 
6277 	for (i = 0; i < NMTUS; ++i) {
6278 		t4_write_reg(adap, A_TP_MTU_TABLE,
6279 			     V_MTUINDEX(0xff) | V_MTUVALUE(i));
6280 		v = t4_read_reg(adap, A_TP_MTU_TABLE);
6281 		mtus[i] = G_MTUVALUE(v);
6282 		if (mtu_log)
6283 			mtu_log[i] = G_MTUWIDTH(v);
6284 	}
6285 }
6286 
6287 /**
6288  *	t4_read_cong_tbl - reads the congestion control table
6289  *	@adap: the adapter
6290  *	@incr: where to store the alpha values
6291  *
6292  *	Reads the additive increments programmed into the HW congestion
6293  *	control table.
6294  */
6295 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
6296 {
6297 	unsigned int mtu, w;
6298 
6299 	for (mtu = 0; mtu < NMTUS; ++mtu)
6300 		for (w = 0; w < NCCTRL_WIN; ++w) {
6301 			t4_write_reg(adap, A_TP_CCTRL_TABLE,
6302 				     V_ROWINDEX(0xffff) | (mtu << 5) | w);
6303 			incr[mtu][w] = (u16)t4_read_reg(adap,
6304 						A_TP_CCTRL_TABLE) & 0x1fff;
6305 		}
6306 }
6307 
6308 /**
6309  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
6310  *	@adap: the adapter
6311  *	@addr: the indirect TP register address
6312  *	@mask: specifies the field within the register to modify
6313  *	@val: new value for the field
6314  *
6315  *	Sets a field of an indirect TP register to the given value.
6316  */
6317 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
6318 			    unsigned int mask, unsigned int val)
6319 {
6320 	t4_write_reg(adap, A_TP_PIO_ADDR, addr);
6321 	val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
6322 	t4_write_reg(adap, A_TP_PIO_DATA, val);
6323 }
6324 
6325 /**
6326  *	init_cong_ctrl - initialize congestion control parameters
6327  *	@a: the alpha values for congestion control
6328  *	@b: the beta values for congestion control
6329  *
6330  *	Initialize the congestion control parameters.
6331  */
6332 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
6333 {
6334 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
6335 	a[9] = 2;
6336 	a[10] = 3;
6337 	a[11] = 4;
6338 	a[12] = 5;
6339 	a[13] = 6;
6340 	a[14] = 7;
6341 	a[15] = 8;
6342 	a[16] = 9;
6343 	a[17] = 10;
6344 	a[18] = 14;
6345 	a[19] = 17;
6346 	a[20] = 21;
6347 	a[21] = 25;
6348 	a[22] = 30;
6349 	a[23] = 35;
6350 	a[24] = 45;
6351 	a[25] = 60;
6352 	a[26] = 80;
6353 	a[27] = 100;
6354 	a[28] = 200;
6355 	a[29] = 300;
6356 	a[30] = 400;
6357 	a[31] = 500;
6358 
6359 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
6360 	b[9] = b[10] = 1;
6361 	b[11] = b[12] = 2;
6362 	b[13] = b[14] = b[15] = b[16] = 3;
6363 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
6364 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
6365 	b[28] = b[29] = 6;
6366 	b[30] = b[31] = 7;
6367 }
6368 
6369 /* The minimum additive increment value for the congestion control table */
6370 #define CC_MIN_INCR 2U
6371 
6372 /**
6373  *	t4_load_mtus - write the MTU and congestion control HW tables
6374  *	@adap: the adapter
6375  *	@mtus: the values for the MTU table
6376  *	@alpha: the values for the congestion control alpha parameter
6377  *	@beta: the values for the congestion control beta parameter
6378  *
6379  *	Write the HW MTU table with the supplied MTUs and the high-speed
6380  *	congestion control table with the supplied alpha, beta, and MTUs.
6381  *	We write the two tables together because the additive increments
6382  *	depend on the MTUs.
6383  */
6384 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
6385 		  const unsigned short *alpha, const unsigned short *beta)
6386 {
6387 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
6388 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
6389 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
6390 		28672, 40960, 57344, 81920, 114688, 163840, 229376
6391 	};
6392 
6393 	unsigned int i, w;
6394 
6395 	for (i = 0; i < NMTUS; ++i) {
6396 		unsigned int mtu = mtus[i];
6397 		unsigned int log2 = fls(mtu);
6398 
6399 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
6400 			log2--;
6401 		t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
6402 			     V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
6403 
6404 		for (w = 0; w < NCCTRL_WIN; ++w) {
6405 			unsigned int inc;
6406 
6407 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
6408 				  CC_MIN_INCR);
6409 
6410 			t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
6411 				     (w << 16) | (beta[w] << 13) | inc);
6412 		}
6413 	}
6414 }
6415 
6416 /**
6417  *	t4_set_pace_tbl - set the pace table
6418  *	@adap: the adapter
6419  *	@pace_vals: the pace values in microseconds
6420  *	@start: index of the first entry in the HW pace table to set
6421  *	@n: how many entries to set
6422  *
6423  *	Sets (a subset of the) HW pace table.
6424  */
6425 int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
6426 		     unsigned int start, unsigned int n)
6427 {
6428 	unsigned int vals[NTX_SCHED], i;
6429 	unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
6430 
6431 	if (n > NTX_SCHED)
6432 	    return -ERANGE;
6433 
6434 	/* convert values from us to dack ticks, rounding to closest value */
6435 	for (i = 0; i < n; i++, pace_vals++) {
6436 		vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
6437 		if (vals[i] > 0x7ff)
6438 			return -ERANGE;
6439 		if (*pace_vals && vals[i] == 0)
6440 			return -ERANGE;
6441 	}
6442 	for (i = 0; i < n; i++, start++)
6443 		t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
6444 	return 0;
6445 }
6446 
6447 /**
6448  *	t4_set_sched_bps - set the bit rate for a HW traffic scheduler
6449  *	@adap: the adapter
6450  *	@kbps: target rate in Kbps
6451  *	@sched: the scheduler index
6452  *
6453  *	Configure a Tx HW scheduler for the target rate.
6454  */
6455 int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
6456 {
6457 	unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
6458 	unsigned int clk = adap->params.vpd.cclk * 1000;
6459 	unsigned int selected_cpt = 0, selected_bpt = 0;
6460 
6461 	if (kbps > 0) {
6462 		kbps *= 125;     /* -> bytes */
6463 		for (cpt = 1; cpt <= 255; cpt++) {
6464 			tps = clk / cpt;
6465 			bpt = (kbps + tps / 2) / tps;
6466 			if (bpt > 0 && bpt <= 255) {
6467 				v = bpt * tps;
6468 				delta = v >= kbps ? v - kbps : kbps - v;
6469 				if (delta < mindelta) {
6470 					mindelta = delta;
6471 					selected_cpt = cpt;
6472 					selected_bpt = bpt;
6473 				}
6474 			} else if (selected_cpt)
6475 				break;
6476 		}
6477 		if (!selected_cpt)
6478 			return -EINVAL;
6479 	}
6480 	t4_write_reg(adap, A_TP_TM_PIO_ADDR,
6481 		     A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
6482 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
6483 	if (sched & 1)
6484 		v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
6485 	else
6486 		v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
6487 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
6488 	return 0;
6489 }
6490 
6491 /**
6492  *	t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
6493  *	@adap: the adapter
6494  *	@sched: the scheduler index
6495  *	@ipg: the interpacket delay in tenths of nanoseconds
6496  *
6497  *	Set the interpacket delay for a HW packet rate scheduler.
6498  */
6499 int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
6500 {
6501 	unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
6502 
6503 	/* convert ipg to nearest number of core clocks */
6504 	ipg *= core_ticks_per_usec(adap);
6505 	ipg = (ipg + 5000) / 10000;
6506 	if (ipg > M_TXTIMERSEPQ0)
6507 		return -EINVAL;
6508 
6509 	t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
6510 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
6511 	if (sched & 1)
6512 		v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
6513 	else
6514 		v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
6515 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
6516 	t4_read_reg(adap, A_TP_TM_PIO_DATA);
6517 	return 0;
6518 }
6519 
6520 /*
6521  * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
6522  * clocks.  The formula is
6523  *
6524  * bytes/s = bytes256 * 256 * ClkFreq / 4096
6525  *
6526  * which is equivalent to
6527  *
6528  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
6529  */
6530 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
6531 {
6532 	u64 v = (u64)bytes256 * adap->params.vpd.cclk;
6533 
6534 	return v * 62 + v / 2;
6535 }
6536 
6537 /**
6538  *	t4_get_chan_txrate - get the current per channel Tx rates
6539  *	@adap: the adapter
6540  *	@nic_rate: rates for NIC traffic
6541  *	@ofld_rate: rates for offloaded traffic
6542  *
6543  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
6544  *	for each channel.
6545  */
6546 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
6547 {
6548 	u32 v;
6549 
6550 	v = t4_read_reg(adap, A_TP_TX_TRATE);
6551 	nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
6552 	nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
6553 	if (adap->chip_params->nchan > 2) {
6554 		nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
6555 		nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
6556 	}
6557 
6558 	v = t4_read_reg(adap, A_TP_TX_ORATE);
6559 	ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
6560 	ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
6561 	if (adap->chip_params->nchan > 2) {
6562 		ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
6563 		ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
6564 	}
6565 }
6566 
6567 /**
6568  *	t4_set_trace_filter - configure one of the tracing filters
6569  *	@adap: the adapter
6570  *	@tp: the desired trace filter parameters
6571  *	@idx: which filter to configure
6572  *	@enable: whether to enable or disable the filter
6573  *
6574  *	Configures one of the tracing filters available in HW.  If @tp is %NULL
6575  *	it indicates that the filter is already written in the register and it
6576  *	just needs to be enabled or disabled.
6577  */
6578 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
6579     int idx, int enable)
6580 {
6581 	int i, ofst = idx * 4;
6582 	u32 data_reg, mask_reg, cfg;
6583 	u32 multitrc = F_TRCMULTIFILTER;
6584 	u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
6585 
6586 	if (idx < 0 || idx >= NTRACE)
6587 		return -EINVAL;
6588 
6589 	if (tp == NULL || !enable) {
6590 		t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en,
6591 		    enable ? en : 0);
6592 		return 0;
6593 	}
6594 
6595 	/*
6596 	 * TODO - After T4 data book is updated, specify the exact
6597 	 * section below.
6598 	 *
6599 	 * See T4 data book - MPS section for a complete description
6600 	 * of the below if..else handling of A_MPS_TRC_CFG register
6601 	 * value.
6602 	 */
6603 	cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
6604 	if (cfg & F_TRCMULTIFILTER) {
6605 		/*
6606 		 * If multiple tracers are enabled, then maximum
6607 		 * capture size is 2.5KB (FIFO size of a single channel)
6608 		 * minus 2 flits for CPL_TRACE_PKT header.
6609 		 */
6610 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
6611 			return -EINVAL;
6612 	} else {
6613 		/*
6614 		 * If multiple tracers are disabled, to avoid deadlocks
6615 		 * maximum packet capture size of 9600 bytes is recommended.
6616 		 * Also in this mode, only trace0 can be enabled and running.
6617 		 */
6618 		multitrc = 0;
6619 		if (tp->snap_len > 9600 || idx)
6620 			return -EINVAL;
6621 	}
6622 
6623 	if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
6624 	    tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
6625 	    tp->min_len > M_TFMINPKTSIZE)
6626 		return -EINVAL;
6627 
6628 	/* stop the tracer we'll be changing */
6629 	t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0);
6630 
6631 	idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
6632 	data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
6633 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
6634 
6635 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6636 		t4_write_reg(adap, data_reg, tp->data[i]);
6637 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
6638 	}
6639 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
6640 		     V_TFCAPTUREMAX(tp->snap_len) |
6641 		     V_TFMINPKTSIZE(tp->min_len));
6642 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
6643 		     V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en |
6644 		     (is_t4(adap) ?
6645 		     V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
6646 		     V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
6647 
6648 	return 0;
6649 }
6650 
6651 /**
6652  *	t4_get_trace_filter - query one of the tracing filters
6653  *	@adap: the adapter
6654  *	@tp: the current trace filter parameters
6655  *	@idx: which trace filter to query
6656  *	@enabled: non-zero if the filter is enabled
6657  *
6658  *	Returns the current settings of one of the HW tracing filters.
6659  */
6660 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
6661 			 int *enabled)
6662 {
6663 	u32 ctla, ctlb;
6664 	int i, ofst = idx * 4;
6665 	u32 data_reg, mask_reg;
6666 
6667 	ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
6668 	ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
6669 
6670 	if (is_t4(adap)) {
6671 		*enabled = !!(ctla & F_TFEN);
6672 		tp->port =  G_TFPORT(ctla);
6673 		tp->invert = !!(ctla & F_TFINVERTMATCH);
6674 	} else {
6675 		*enabled = !!(ctla & F_T5_TFEN);
6676 		tp->port = G_T5_TFPORT(ctla);
6677 		tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
6678 	}
6679 	tp->snap_len = G_TFCAPTUREMAX(ctlb);
6680 	tp->min_len = G_TFMINPKTSIZE(ctlb);
6681 	tp->skip_ofst = G_TFOFFSET(ctla);
6682 	tp->skip_len = G_TFLENGTH(ctla);
6683 
6684 	ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
6685 	data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
6686 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
6687 
6688 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6689 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
6690 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
6691 	}
6692 }
6693 
6694 /**
6695  *	t4_pmtx_get_stats - returns the HW stats from PMTX
6696  *	@adap: the adapter
6697  *	@cnt: where to store the count statistics
6698  *	@cycles: where to store the cycle statistics
6699  *
6700  *	Returns performance statistics from PMTX.
6701  */
6702 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6703 {
6704 	int i;
6705 	u32 data[2];
6706 
6707 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
6708 		t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
6709 		cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
6710 		if (is_t4(adap))
6711 			cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
6712 		else {
6713 			t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
6714 					 A_PM_TX_DBG_DATA, data, 2,
6715 					 A_PM_TX_DBG_STAT_MSB);
6716 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6717 		}
6718 	}
6719 }
6720 
6721 /**
6722  *	t4_pmrx_get_stats - returns the HW stats from PMRX
6723  *	@adap: the adapter
6724  *	@cnt: where to store the count statistics
6725  *	@cycles: where to store the cycle statistics
6726  *
6727  *	Returns performance statistics from PMRX.
6728  */
6729 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6730 {
6731 	int i;
6732 	u32 data[2];
6733 
6734 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
6735 		t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
6736 		cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
6737 		if (is_t4(adap)) {
6738 			cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
6739 		} else {
6740 			t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
6741 					 A_PM_RX_DBG_DATA, data, 2,
6742 					 A_PM_RX_DBG_STAT_MSB);
6743 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6744 		}
6745 	}
6746 }
6747 
6748 /**
6749  *	t4_get_mps_bg_map - return the buffer groups associated with a port
6750  *	@adap: the adapter
6751  *	@idx: the port index
6752  *
6753  *	Returns a bitmap indicating which MPS buffer groups are associated
6754  *	with the given port.  Bit i is set if buffer group i is used by the
6755  *	port.
6756  */
6757 static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
6758 {
6759 	u32 n;
6760 
6761 	if (adap->params.mps_bg_map)
6762 		return ((adap->params.mps_bg_map >> (idx << 3)) & 0xff);
6763 
6764 	n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
6765 	if (n == 0)
6766 		return idx == 0 ? 0xf : 0;
6767 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
6768 		return idx < 2 ? (3 << (2 * idx)) : 0;
6769 	return 1 << idx;
6770 }
6771 
6772 /*
6773  * TP RX e-channels associated with the port.
6774  */
6775 static unsigned int t4_get_rx_e_chan_map(struct adapter *adap, int idx)
6776 {
6777 	u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
6778 	const u32 all_chan = (1 << adap->chip_params->nchan) - 1;
6779 
6780 	if (n == 0)
6781 		return idx == 0 ? all_chan : 0;
6782 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
6783 		return idx < 2 ? (3 << (2 * idx)) : 0;
6784 	return 1 << idx;
6785 }
6786 
6787 /**
6788  *      t4_get_port_type_description - return Port Type string description
6789  *      @port_type: firmware Port Type enumeration
6790  */
6791 const char *t4_get_port_type_description(enum fw_port_type port_type)
6792 {
6793 	static const char *const port_type_description[] = {
6794 		"Fiber_XFI",
6795 		"Fiber_XAUI",
6796 		"BT_SGMII",
6797 		"BT_XFI",
6798 		"BT_XAUI",
6799 		"KX4",
6800 		"CX4",
6801 		"KX",
6802 		"KR",
6803 		"SFP",
6804 		"BP_AP",
6805 		"BP4_AP",
6806 		"QSFP_10G",
6807 		"QSA",
6808 		"QSFP",
6809 		"BP40_BA",
6810 		"KR4_100G",
6811 		"CR4_QSFP",
6812 		"CR_QSFP",
6813 		"CR2_QSFP",
6814 		"SFP28",
6815 		"KR_SFP28",
6816 	};
6817 
6818 	if (port_type < ARRAY_SIZE(port_type_description))
6819 		return port_type_description[port_type];
6820 	return "UNKNOWN";
6821 }
6822 
6823 /**
6824  *      t4_get_port_stats_offset - collect port stats relative to a previous
6825  *				   snapshot
6826  *      @adap: The adapter
6827  *      @idx: The port
6828  *      @stats: Current stats to fill
6829  *      @offset: Previous stats snapshot
6830  */
6831 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6832 		struct port_stats *stats,
6833 		struct port_stats *offset)
6834 {
6835 	u64 *s, *o;
6836 	int i;
6837 
6838 	t4_get_port_stats(adap, idx, stats);
6839 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
6840 			i < (sizeof(struct port_stats)/sizeof(u64)) ;
6841 			i++, s++, o++)
6842 		*s -= *o;
6843 }
6844 
6845 /**
6846  *	t4_get_port_stats - collect port statistics
6847  *	@adap: the adapter
6848  *	@idx: the port index
6849  *	@p: the stats structure to fill
6850  *
6851  *	Collect statistics related to the given port from HW.
6852  */
6853 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6854 {
6855 	struct port_info *pi = adap->port[idx];
6856 	u32 bgmap = pi->mps_bg_map;
6857 	u32 stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
6858 
6859 #define GET_STAT(name) \
6860 	t4_read_reg64(adap, \
6861 	(is_t4(adap) ? PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) : \
6862 	T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
6863 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6864 
6865 	p->tx_pause		= GET_STAT(TX_PORT_PAUSE);
6866 	p->tx_octets		= GET_STAT(TX_PORT_BYTES);
6867 	p->tx_frames		= GET_STAT(TX_PORT_FRAMES);
6868 	p->tx_bcast_frames	= GET_STAT(TX_PORT_BCAST);
6869 	p->tx_mcast_frames	= GET_STAT(TX_PORT_MCAST);
6870 	p->tx_ucast_frames	= GET_STAT(TX_PORT_UCAST);
6871 	p->tx_error_frames	= GET_STAT(TX_PORT_ERROR);
6872 	p->tx_frames_64		= GET_STAT(TX_PORT_64B);
6873 	p->tx_frames_65_127	= GET_STAT(TX_PORT_65B_127B);
6874 	p->tx_frames_128_255	= GET_STAT(TX_PORT_128B_255B);
6875 	p->tx_frames_256_511	= GET_STAT(TX_PORT_256B_511B);
6876 	p->tx_frames_512_1023	= GET_STAT(TX_PORT_512B_1023B);
6877 	p->tx_frames_1024_1518	= GET_STAT(TX_PORT_1024B_1518B);
6878 	p->tx_frames_1519_max	= GET_STAT(TX_PORT_1519B_MAX);
6879 	p->tx_drop		= GET_STAT(TX_PORT_DROP);
6880 	p->tx_ppp0		= GET_STAT(TX_PORT_PPP0);
6881 	p->tx_ppp1		= GET_STAT(TX_PORT_PPP1);
6882 	p->tx_ppp2		= GET_STAT(TX_PORT_PPP2);
6883 	p->tx_ppp3		= GET_STAT(TX_PORT_PPP3);
6884 	p->tx_ppp4		= GET_STAT(TX_PORT_PPP4);
6885 	p->tx_ppp5		= GET_STAT(TX_PORT_PPP5);
6886 	p->tx_ppp6		= GET_STAT(TX_PORT_PPP6);
6887 	p->tx_ppp7		= GET_STAT(TX_PORT_PPP7);
6888 
6889 	if (chip_id(adap) >= CHELSIO_T5) {
6890 		if (stat_ctl & F_COUNTPAUSESTATTX) {
6891 			p->tx_frames -= p->tx_pause;
6892 			p->tx_octets -= p->tx_pause * 64;
6893 		}
6894 		if (stat_ctl & F_COUNTPAUSEMCTX)
6895 			p->tx_mcast_frames -= p->tx_pause;
6896 	}
6897 
6898 	p->rx_pause		= GET_STAT(RX_PORT_PAUSE);
6899 	p->rx_octets		= GET_STAT(RX_PORT_BYTES);
6900 	p->rx_frames		= GET_STAT(RX_PORT_FRAMES);
6901 	p->rx_bcast_frames	= GET_STAT(RX_PORT_BCAST);
6902 	p->rx_mcast_frames	= GET_STAT(RX_PORT_MCAST);
6903 	p->rx_ucast_frames	= GET_STAT(RX_PORT_UCAST);
6904 	p->rx_too_long		= GET_STAT(RX_PORT_MTU_ERROR);
6905 	p->rx_jabber		= GET_STAT(RX_PORT_MTU_CRC_ERROR);
6906 	p->rx_len_err		= GET_STAT(RX_PORT_LEN_ERROR);
6907 	p->rx_symbol_err	= GET_STAT(RX_PORT_SYM_ERROR);
6908 	p->rx_runt		= GET_STAT(RX_PORT_LESS_64B);
6909 	p->rx_frames_64		= GET_STAT(RX_PORT_64B);
6910 	p->rx_frames_65_127	= GET_STAT(RX_PORT_65B_127B);
6911 	p->rx_frames_128_255	= GET_STAT(RX_PORT_128B_255B);
6912 	p->rx_frames_256_511	= GET_STAT(RX_PORT_256B_511B);
6913 	p->rx_frames_512_1023	= GET_STAT(RX_PORT_512B_1023B);
6914 	p->rx_frames_1024_1518	= GET_STAT(RX_PORT_1024B_1518B);
6915 	p->rx_frames_1519_max	= GET_STAT(RX_PORT_1519B_MAX);
6916 	p->rx_ppp0		= GET_STAT(RX_PORT_PPP0);
6917 	p->rx_ppp1		= GET_STAT(RX_PORT_PPP1);
6918 	p->rx_ppp2		= GET_STAT(RX_PORT_PPP2);
6919 	p->rx_ppp3		= GET_STAT(RX_PORT_PPP3);
6920 	p->rx_ppp4		= GET_STAT(RX_PORT_PPP4);
6921 	p->rx_ppp5		= GET_STAT(RX_PORT_PPP5);
6922 	p->rx_ppp6		= GET_STAT(RX_PORT_PPP6);
6923 	p->rx_ppp7		= GET_STAT(RX_PORT_PPP7);
6924 
6925 	if (pi->fcs_reg != -1)
6926 		p->rx_fcs_err = t4_read_reg64(adap, pi->fcs_reg) - pi->fcs_base;
6927 
6928 	if (chip_id(adap) >= CHELSIO_T5) {
6929 		if (stat_ctl & F_COUNTPAUSESTATRX) {
6930 			p->rx_frames -= p->rx_pause;
6931 			p->rx_octets -= p->rx_pause * 64;
6932 		}
6933 		if (stat_ctl & F_COUNTPAUSEMCRX)
6934 			p->rx_mcast_frames -= p->rx_pause;
6935 	}
6936 
6937 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6938 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6939 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6940 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6941 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6942 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6943 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6944 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6945 
6946 #undef GET_STAT
6947 #undef GET_STAT_COM
6948 }
6949 
6950 /**
6951  *	t4_get_lb_stats - collect loopback port statistics
6952  *	@adap: the adapter
6953  *	@idx: the loopback port index
6954  *	@p: the stats structure to fill
6955  *
6956  *	Return HW statistics for the given loopback port.
6957  */
6958 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6959 {
6960 
6961 #define GET_STAT(name) \
6962 	t4_read_reg64(adap, \
6963 	(is_t4(adap) ? \
6964 	PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \
6965 	T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L)))
6966 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6967 
6968 	p->octets	= GET_STAT(BYTES);
6969 	p->frames	= GET_STAT(FRAMES);
6970 	p->bcast_frames	= GET_STAT(BCAST);
6971 	p->mcast_frames	= GET_STAT(MCAST);
6972 	p->ucast_frames	= GET_STAT(UCAST);
6973 	p->error_frames	= GET_STAT(ERROR);
6974 
6975 	p->frames_64		= GET_STAT(64B);
6976 	p->frames_65_127	= GET_STAT(65B_127B);
6977 	p->frames_128_255	= GET_STAT(128B_255B);
6978 	p->frames_256_511	= GET_STAT(256B_511B);
6979 	p->frames_512_1023	= GET_STAT(512B_1023B);
6980 	p->frames_1024_1518	= GET_STAT(1024B_1518B);
6981 	p->frames_1519_max	= GET_STAT(1519B_MAX);
6982 	p->drop			= GET_STAT(DROP_FRAMES);
6983 
6984 	if (idx < adap->params.nports) {
6985 		u32 bg = adap2pinfo(adap, idx)->mps_bg_map;
6986 
6987 		p->ovflow0 = (bg & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6988 		p->ovflow1 = (bg & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6989 		p->ovflow2 = (bg & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6990 		p->ovflow3 = (bg & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6991 		p->trunc0 = (bg & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6992 		p->trunc1 = (bg & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6993 		p->trunc2 = (bg & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6994 		p->trunc3 = (bg & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6995 	}
6996 
6997 #undef GET_STAT
6998 #undef GET_STAT_COM
6999 }
7000 
7001 /**
7002  *	t4_wol_magic_enable - enable/disable magic packet WoL
7003  *	@adap: the adapter
7004  *	@port: the physical port index
7005  *	@addr: MAC address expected in magic packets, %NULL to disable
7006  *
7007  *	Enables/disables magic packet wake-on-LAN for the selected port.
7008  */
7009 void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
7010 			 const u8 *addr)
7011 {
7012 	u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
7013 
7014 	if (is_t4(adap)) {
7015 		mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
7016 		mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
7017 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
7018 	} else {
7019 		mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
7020 		mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
7021 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
7022 	}
7023 
7024 	if (addr) {
7025 		t4_write_reg(adap, mag_id_reg_l,
7026 			     (addr[2] << 24) | (addr[3] << 16) |
7027 			     (addr[4] << 8) | addr[5]);
7028 		t4_write_reg(adap, mag_id_reg_h,
7029 			     (addr[0] << 8) | addr[1]);
7030 	}
7031 	t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
7032 			 V_MAGICEN(addr != NULL));
7033 }
7034 
7035 /**
7036  *	t4_wol_pat_enable - enable/disable pattern-based WoL
7037  *	@adap: the adapter
7038  *	@port: the physical port index
7039  *	@map: bitmap of which HW pattern filters to set
7040  *	@mask0: byte mask for bytes 0-63 of a packet
7041  *	@mask1: byte mask for bytes 64-127 of a packet
7042  *	@crc: Ethernet CRC for selected bytes
7043  *	@enable: enable/disable switch
7044  *
7045  *	Sets the pattern filters indicated in @map to mask out the bytes
7046  *	specified in @mask0/@mask1 in received packets and compare the CRC of
7047  *	the resulting packet against @crc.  If @enable is %true pattern-based
7048  *	WoL is enabled, otherwise disabled.
7049  */
7050 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
7051 		      u64 mask0, u64 mask1, unsigned int crc, bool enable)
7052 {
7053 	int i;
7054 	u32 port_cfg_reg;
7055 
7056 	if (is_t4(adap))
7057 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
7058 	else
7059 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
7060 
7061 	if (!enable) {
7062 		t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
7063 		return 0;
7064 	}
7065 	if (map > 0xff)
7066 		return -EINVAL;
7067 
7068 #define EPIO_REG(name) \
7069 	(is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
7070 	T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
7071 
7072 	t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
7073 	t4_write_reg(adap, EPIO_REG(DATA2), mask1);
7074 	t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
7075 
7076 	for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
7077 		if (!(map & 1))
7078 			continue;
7079 
7080 		/* write byte masks */
7081 		t4_write_reg(adap, EPIO_REG(DATA0), mask0);
7082 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
7083 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
7084 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
7085 			return -ETIMEDOUT;
7086 
7087 		/* write CRC */
7088 		t4_write_reg(adap, EPIO_REG(DATA0), crc);
7089 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
7090 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
7091 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
7092 			return -ETIMEDOUT;
7093 	}
7094 #undef EPIO_REG
7095 
7096 	t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
7097 	return 0;
7098 }
7099 
7100 /*     t4_mk_filtdelwr - create a delete filter WR
7101  *     @ftid: the filter ID
7102  *     @wr: the filter work request to populate
7103  *     @qid: ingress queue to receive the delete notification
7104  *
7105  *     Creates a filter work request to delete the supplied filter.  If @qid is
7106  *     negative the delete notification is suppressed.
7107  */
7108 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
7109 {
7110 	memset(wr, 0, sizeof(*wr));
7111 	wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR));
7112 	wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16));
7113 	wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) |
7114 				    V_FW_FILTER_WR_NOREPLY(qid < 0));
7115 	wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER);
7116 	if (qid >= 0)
7117 		wr->rx_chan_rx_rpl_iq =
7118 				cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid));
7119 }
7120 
7121 #define INIT_CMD(var, cmd, rd_wr) do { \
7122 	(var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
7123 					F_FW_CMD_REQUEST | \
7124 					F_FW_CMD_##rd_wr); \
7125 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
7126 } while (0)
7127 
7128 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
7129 			  u32 addr, u32 val)
7130 {
7131 	u32 ldst_addrspace;
7132 	struct fw_ldst_cmd c;
7133 
7134 	memset(&c, 0, sizeof(c));
7135 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE);
7136 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7137 					F_FW_CMD_REQUEST |
7138 					F_FW_CMD_WRITE |
7139 					ldst_addrspace);
7140 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7141 	c.u.addrval.addr = cpu_to_be32(addr);
7142 	c.u.addrval.val = cpu_to_be32(val);
7143 
7144 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7145 }
7146 
7147 /**
7148  *	t4_mdio_rd - read a PHY register through MDIO
7149  *	@adap: the adapter
7150  *	@mbox: mailbox to use for the FW command
7151  *	@phy_addr: the PHY address
7152  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
7153  *	@reg: the register to read
7154  *	@valp: where to store the value
7155  *
7156  *	Issues a FW command through the given mailbox to read a PHY register.
7157  */
7158 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
7159 	       unsigned int mmd, unsigned int reg, unsigned int *valp)
7160 {
7161 	int ret;
7162 	u32 ldst_addrspace;
7163 	struct fw_ldst_cmd c;
7164 
7165 	memset(&c, 0, sizeof(c));
7166 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
7167 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7168 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
7169 					ldst_addrspace);
7170 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7171 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
7172 					 V_FW_LDST_CMD_MMD(mmd));
7173 	c.u.mdio.raddr = cpu_to_be16(reg);
7174 
7175 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7176 	if (ret == 0)
7177 		*valp = be16_to_cpu(c.u.mdio.rval);
7178 	return ret;
7179 }
7180 
7181 /**
7182  *	t4_mdio_wr - write a PHY register through MDIO
7183  *	@adap: the adapter
7184  *	@mbox: mailbox to use for the FW command
7185  *	@phy_addr: the PHY address
7186  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
7187  *	@reg: the register to write
7188  *	@valp: value to write
7189  *
7190  *	Issues a FW command through the given mailbox to write a PHY register.
7191  */
7192 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
7193 	       unsigned int mmd, unsigned int reg, unsigned int val)
7194 {
7195 	u32 ldst_addrspace;
7196 	struct fw_ldst_cmd c;
7197 
7198 	memset(&c, 0, sizeof(c));
7199 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
7200 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7201 					F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7202 					ldst_addrspace);
7203 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7204 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
7205 					 V_FW_LDST_CMD_MMD(mmd));
7206 	c.u.mdio.raddr = cpu_to_be16(reg);
7207 	c.u.mdio.rval = cpu_to_be16(val);
7208 
7209 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7210 }
7211 
7212 /**
7213  *
7214  *	t4_sge_decode_idma_state - decode the idma state
7215  *	@adap: the adapter
7216  *	@state: the state idma is stuck in
7217  */
7218 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
7219 {
7220 	static const char * const t4_decode[] = {
7221 		"IDMA_IDLE",
7222 		"IDMA_PUSH_MORE_CPL_FIFO",
7223 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7224 		"Not used",
7225 		"IDMA_PHYSADDR_SEND_PCIEHDR",
7226 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7227 		"IDMA_PHYSADDR_SEND_PAYLOAD",
7228 		"IDMA_SEND_FIFO_TO_IMSG",
7229 		"IDMA_FL_REQ_DATA_FL_PREP",
7230 		"IDMA_FL_REQ_DATA_FL",
7231 		"IDMA_FL_DROP",
7232 		"IDMA_FL_H_REQ_HEADER_FL",
7233 		"IDMA_FL_H_SEND_PCIEHDR",
7234 		"IDMA_FL_H_PUSH_CPL_FIFO",
7235 		"IDMA_FL_H_SEND_CPL",
7236 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
7237 		"IDMA_FL_H_SEND_IP_HDR",
7238 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
7239 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
7240 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
7241 		"IDMA_FL_D_SEND_PCIEHDR",
7242 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7243 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
7244 		"IDMA_FL_SEND_PCIEHDR",
7245 		"IDMA_FL_PUSH_CPL_FIFO",
7246 		"IDMA_FL_SEND_CPL",
7247 		"IDMA_FL_SEND_PAYLOAD_FIRST",
7248 		"IDMA_FL_SEND_PAYLOAD",
7249 		"IDMA_FL_REQ_NEXT_DATA_FL",
7250 		"IDMA_FL_SEND_NEXT_PCIEHDR",
7251 		"IDMA_FL_SEND_PADDING",
7252 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
7253 		"IDMA_FL_SEND_FIFO_TO_IMSG",
7254 		"IDMA_FL_REQ_DATAFL_DONE",
7255 		"IDMA_FL_REQ_HEADERFL_DONE",
7256 	};
7257 	static const char * const t5_decode[] = {
7258 		"IDMA_IDLE",
7259 		"IDMA_ALMOST_IDLE",
7260 		"IDMA_PUSH_MORE_CPL_FIFO",
7261 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7262 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
7263 		"IDMA_PHYSADDR_SEND_PCIEHDR",
7264 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7265 		"IDMA_PHYSADDR_SEND_PAYLOAD",
7266 		"IDMA_SEND_FIFO_TO_IMSG",
7267 		"IDMA_FL_REQ_DATA_FL",
7268 		"IDMA_FL_DROP",
7269 		"IDMA_FL_DROP_SEND_INC",
7270 		"IDMA_FL_H_REQ_HEADER_FL",
7271 		"IDMA_FL_H_SEND_PCIEHDR",
7272 		"IDMA_FL_H_PUSH_CPL_FIFO",
7273 		"IDMA_FL_H_SEND_CPL",
7274 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
7275 		"IDMA_FL_H_SEND_IP_HDR",
7276 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
7277 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
7278 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
7279 		"IDMA_FL_D_SEND_PCIEHDR",
7280 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7281 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
7282 		"IDMA_FL_SEND_PCIEHDR",
7283 		"IDMA_FL_PUSH_CPL_FIFO",
7284 		"IDMA_FL_SEND_CPL",
7285 		"IDMA_FL_SEND_PAYLOAD_FIRST",
7286 		"IDMA_FL_SEND_PAYLOAD",
7287 		"IDMA_FL_REQ_NEXT_DATA_FL",
7288 		"IDMA_FL_SEND_NEXT_PCIEHDR",
7289 		"IDMA_FL_SEND_PADDING",
7290 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
7291 	};
7292 	static const char * const t6_decode[] = {
7293 		"IDMA_IDLE",
7294 		"IDMA_PUSH_MORE_CPL_FIFO",
7295 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7296 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
7297 		"IDMA_PHYSADDR_SEND_PCIEHDR",
7298 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7299 		"IDMA_PHYSADDR_SEND_PAYLOAD",
7300 		"IDMA_FL_REQ_DATA_FL",
7301 		"IDMA_FL_DROP",
7302 		"IDMA_FL_DROP_SEND_INC",
7303 		"IDMA_FL_H_REQ_HEADER_FL",
7304 		"IDMA_FL_H_SEND_PCIEHDR",
7305 		"IDMA_FL_H_PUSH_CPL_FIFO",
7306 		"IDMA_FL_H_SEND_CPL",
7307 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
7308 		"IDMA_FL_H_SEND_IP_HDR",
7309 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
7310 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
7311 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
7312 		"IDMA_FL_D_SEND_PCIEHDR",
7313 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7314 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
7315 		"IDMA_FL_SEND_PCIEHDR",
7316 		"IDMA_FL_PUSH_CPL_FIFO",
7317 		"IDMA_FL_SEND_CPL",
7318 		"IDMA_FL_SEND_PAYLOAD_FIRST",
7319 		"IDMA_FL_SEND_PAYLOAD",
7320 		"IDMA_FL_REQ_NEXT_DATA_FL",
7321 		"IDMA_FL_SEND_NEXT_PCIEHDR",
7322 		"IDMA_FL_SEND_PADDING",
7323 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
7324 	};
7325 	static const u32 sge_regs[] = {
7326 		A_SGE_DEBUG_DATA_LOW_INDEX_2,
7327 		A_SGE_DEBUG_DATA_LOW_INDEX_3,
7328 		A_SGE_DEBUG_DATA_HIGH_INDEX_10,
7329 	};
7330 	const char * const *sge_idma_decode;
7331 	int sge_idma_decode_nstates;
7332 	int i;
7333 	unsigned int chip_version = chip_id(adapter);
7334 
7335 	/* Select the right set of decode strings to dump depending on the
7336 	 * adapter chip type.
7337 	 */
7338 	switch (chip_version) {
7339 	case CHELSIO_T4:
7340 		sge_idma_decode = (const char * const *)t4_decode;
7341 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
7342 		break;
7343 
7344 	case CHELSIO_T5:
7345 		sge_idma_decode = (const char * const *)t5_decode;
7346 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
7347 		break;
7348 
7349 	case CHELSIO_T6:
7350 		sge_idma_decode = (const char * const *)t6_decode;
7351 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
7352 		break;
7353 
7354 	default:
7355 		CH_ERR(adapter,	"Unsupported chip version %d\n", chip_version);
7356 		return;
7357 	}
7358 
7359 	if (state < sge_idma_decode_nstates)
7360 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
7361 	else
7362 		CH_WARN(adapter, "idma state %d unknown\n", state);
7363 
7364 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
7365 		CH_WARN(adapter, "SGE register %#x value %#x\n",
7366 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
7367 }
7368 
7369 /**
7370  *      t4_sge_ctxt_flush - flush the SGE context cache
7371  *      @adap: the adapter
7372  *      @mbox: mailbox to use for the FW command
7373  *
7374  *      Issues a FW command through the given mailbox to flush the
7375  *      SGE context cache.
7376  */
7377 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type)
7378 {
7379 	int ret;
7380 	u32 ldst_addrspace;
7381 	struct fw_ldst_cmd c;
7382 
7383 	memset(&c, 0, sizeof(c));
7384 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(ctxt_type == CTXT_EGRESS ?
7385 						 FW_LDST_ADDRSPC_SGE_EGRC :
7386 						 FW_LDST_ADDRSPC_SGE_INGC);
7387 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7388 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
7389 					ldst_addrspace);
7390 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7391 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH);
7392 
7393 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7394 	return ret;
7395 }
7396 
7397 /**
7398  *      t4_fw_hello - establish communication with FW
7399  *      @adap: the adapter
7400  *      @mbox: mailbox to use for the FW command
7401  *      @evt_mbox: mailbox to receive async FW events
7402  *      @master: specifies the caller's willingness to be the device master
7403  *	@state: returns the current device state (if non-NULL)
7404  *
7405  *	Issues a command to establish communication with FW.  Returns either
7406  *	an error (negative integer) or the mailbox of the Master PF.
7407  */
7408 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
7409 		enum dev_master master, enum dev_state *state)
7410 {
7411 	int ret;
7412 	struct fw_hello_cmd c;
7413 	u32 v;
7414 	unsigned int master_mbox;
7415 	int retries = FW_CMD_HELLO_RETRIES;
7416 
7417 retry:
7418 	memset(&c, 0, sizeof(c));
7419 	INIT_CMD(c, HELLO, WRITE);
7420 	c.err_to_clearinit = cpu_to_be32(
7421 		V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
7422 		V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
7423 		V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ?
7424 					mbox : M_FW_HELLO_CMD_MBMASTER) |
7425 		V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
7426 		V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
7427 		F_FW_HELLO_CMD_CLEARINIT);
7428 
7429 	/*
7430 	 * Issue the HELLO command to the firmware.  If it's not successful
7431 	 * but indicates that we got a "busy" or "timeout" condition, retry
7432 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
7433 	 * retry limit, check to see if the firmware left us any error
7434 	 * information and report that if so ...
7435 	 */
7436 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7437 	if (ret != FW_SUCCESS) {
7438 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
7439 			goto retry;
7440 		if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
7441 			t4_report_fw_error(adap);
7442 		return ret;
7443 	}
7444 
7445 	v = be32_to_cpu(c.err_to_clearinit);
7446 	master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
7447 	if (state) {
7448 		if (v & F_FW_HELLO_CMD_ERR)
7449 			*state = DEV_STATE_ERR;
7450 		else if (v & F_FW_HELLO_CMD_INIT)
7451 			*state = DEV_STATE_INIT;
7452 		else
7453 			*state = DEV_STATE_UNINIT;
7454 	}
7455 
7456 	/*
7457 	 * If we're not the Master PF then we need to wait around for the
7458 	 * Master PF Driver to finish setting up the adapter.
7459 	 *
7460 	 * Note that we also do this wait if we're a non-Master-capable PF and
7461 	 * there is no current Master PF; a Master PF may show up momentarily
7462 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
7463 	 * OS loads lots of different drivers rapidly at the same time).  In
7464 	 * this case, the Master PF returned by the firmware will be
7465 	 * M_PCIE_FW_MASTER so the test below will work ...
7466 	 */
7467 	if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
7468 	    master_mbox != mbox) {
7469 		int waiting = FW_CMD_HELLO_TIMEOUT;
7470 
7471 		/*
7472 		 * Wait for the firmware to either indicate an error or
7473 		 * initialized state.  If we see either of these we bail out
7474 		 * and report the issue to the caller.  If we exhaust the
7475 		 * "hello timeout" and we haven't exhausted our retries, try
7476 		 * again.  Otherwise bail with a timeout error.
7477 		 */
7478 		for (;;) {
7479 			u32 pcie_fw;
7480 
7481 			msleep(50);
7482 			waiting -= 50;
7483 
7484 			/*
7485 			 * If neither Error nor Initialialized are indicated
7486 			 * by the firmware keep waiting till we exhaust our
7487 			 * timeout ... and then retry if we haven't exhausted
7488 			 * our retries ...
7489 			 */
7490 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
7491 			if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
7492 				if (waiting <= 0) {
7493 					if (retries-- > 0)
7494 						goto retry;
7495 
7496 					return -ETIMEDOUT;
7497 				}
7498 				continue;
7499 			}
7500 
7501 			/*
7502 			 * We either have an Error or Initialized condition
7503 			 * report errors preferentially.
7504 			 */
7505 			if (state) {
7506 				if (pcie_fw & F_PCIE_FW_ERR)
7507 					*state = DEV_STATE_ERR;
7508 				else if (pcie_fw & F_PCIE_FW_INIT)
7509 					*state = DEV_STATE_INIT;
7510 			}
7511 
7512 			/*
7513 			 * If we arrived before a Master PF was selected and
7514 			 * there's not a valid Master PF, grab its identity
7515 			 * for our caller.
7516 			 */
7517 			if (master_mbox == M_PCIE_FW_MASTER &&
7518 			    (pcie_fw & F_PCIE_FW_MASTER_VLD))
7519 				master_mbox = G_PCIE_FW_MASTER(pcie_fw);
7520 			break;
7521 		}
7522 	}
7523 
7524 	return master_mbox;
7525 }
7526 
7527 /**
7528  *	t4_fw_bye - end communication with FW
7529  *	@adap: the adapter
7530  *	@mbox: mailbox to use for the FW command
7531  *
7532  *	Issues a command to terminate communication with FW.
7533  */
7534 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
7535 {
7536 	struct fw_bye_cmd c;
7537 
7538 	memset(&c, 0, sizeof(c));
7539 	INIT_CMD(c, BYE, WRITE);
7540 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7541 }
7542 
7543 /**
7544  *	t4_fw_reset - issue a reset to FW
7545  *	@adap: the adapter
7546  *	@mbox: mailbox to use for the FW command
7547  *	@reset: specifies the type of reset to perform
7548  *
7549  *	Issues a reset command of the specified type to FW.
7550  */
7551 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
7552 {
7553 	struct fw_reset_cmd c;
7554 
7555 	memset(&c, 0, sizeof(c));
7556 	INIT_CMD(c, RESET, WRITE);
7557 	c.val = cpu_to_be32(reset);
7558 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7559 }
7560 
7561 /**
7562  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
7563  *	@adap: the adapter
7564  *	@mbox: mailbox to use for the FW RESET command (if desired)
7565  *	@force: force uP into RESET even if FW RESET command fails
7566  *
7567  *	Issues a RESET command to firmware (if desired) with a HALT indication
7568  *	and then puts the microprocessor into RESET state.  The RESET command
7569  *	will only be issued if a legitimate mailbox is provided (mbox <=
7570  *	M_PCIE_FW_MASTER).
7571  *
7572  *	This is generally used in order for the host to safely manipulate the
7573  *	adapter without fear of conflicting with whatever the firmware might
7574  *	be doing.  The only way out of this state is to RESTART the firmware
7575  *	...
7576  */
7577 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
7578 {
7579 	int ret = 0;
7580 
7581 	/*
7582 	 * If a legitimate mailbox is provided, issue a RESET command
7583 	 * with a HALT indication.
7584 	 */
7585 	if (adap->flags & FW_OK && mbox <= M_PCIE_FW_MASTER) {
7586 		struct fw_reset_cmd c;
7587 
7588 		memset(&c, 0, sizeof(c));
7589 		INIT_CMD(c, RESET, WRITE);
7590 		c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
7591 		c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
7592 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7593 	}
7594 
7595 	/*
7596 	 * Normally we won't complete the operation if the firmware RESET
7597 	 * command fails but if our caller insists we'll go ahead and put the
7598 	 * uP into RESET.  This can be useful if the firmware is hung or even
7599 	 * missing ...  We'll have to take the risk of putting the uP into
7600 	 * RESET without the cooperation of firmware in that case.
7601 	 *
7602 	 * We also force the firmware's HALT flag to be on in case we bypassed
7603 	 * the firmware RESET command above or we're dealing with old firmware
7604 	 * which doesn't have the HALT capability.  This will serve as a flag
7605 	 * for the incoming firmware to know that it's coming out of a HALT
7606 	 * rather than a RESET ... if it's new enough to understand that ...
7607 	 */
7608 	if (ret == 0 || force) {
7609 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
7610 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
7611 				 F_PCIE_FW_HALT);
7612 	}
7613 
7614 	/*
7615 	 * And we always return the result of the firmware RESET command
7616 	 * even when we force the uP into RESET ...
7617 	 */
7618 	return ret;
7619 }
7620 
7621 /**
7622  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
7623  *	@adap: the adapter
7624  *
7625  *	Restart firmware previously halted by t4_fw_halt().  On successful
7626  *	return the previous PF Master remains as the new PF Master and there
7627  *	is no need to issue a new HELLO command, etc.
7628  */
7629 int t4_fw_restart(struct adapter *adap, unsigned int mbox)
7630 {
7631 	int ms;
7632 
7633 	t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
7634 	for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
7635 		if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
7636 			return FW_SUCCESS;
7637 		msleep(100);
7638 		ms += 100;
7639 	}
7640 
7641 	return -ETIMEDOUT;
7642 }
7643 
7644 /**
7645  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
7646  *	@adap: the adapter
7647  *	@mbox: mailbox to use for the FW RESET command (if desired)
7648  *	@fw_data: the firmware image to write
7649  *	@size: image size
7650  *	@force: force upgrade even if firmware doesn't cooperate
7651  *
7652  *	Perform all of the steps necessary for upgrading an adapter's
7653  *	firmware image.  Normally this requires the cooperation of the
7654  *	existing firmware in order to halt all existing activities
7655  *	but if an invalid mailbox token is passed in we skip that step
7656  *	(though we'll still put the adapter microprocessor into RESET in
7657  *	that case).
7658  *
7659  *	On successful return the new firmware will have been loaded and
7660  *	the adapter will have been fully RESET losing all previous setup
7661  *	state.  On unsuccessful return the adapter may be completely hosed ...
7662  *	positive errno indicates that the adapter is ~probably~ intact, a
7663  *	negative errno indicates that things are looking bad ...
7664  */
7665 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
7666 		  const u8 *fw_data, unsigned int size, int force)
7667 {
7668 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7669 	unsigned int bootstrap =
7670 	    be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
7671 	int ret;
7672 
7673 	if (!t4_fw_matches_chip(adap, fw_hdr))
7674 		return -EINVAL;
7675 
7676 	if (!bootstrap) {
7677 		ret = t4_fw_halt(adap, mbox, force);
7678 		if (ret < 0 && !force)
7679 			return ret;
7680 	}
7681 
7682 	ret = t4_load_fw(adap, fw_data, size);
7683 	if (ret < 0 || bootstrap)
7684 		return ret;
7685 
7686 	return t4_fw_restart(adap, mbox);
7687 }
7688 
7689 /**
7690  *	t4_fw_initialize - ask FW to initialize the device
7691  *	@adap: the adapter
7692  *	@mbox: mailbox to use for the FW command
7693  *
7694  *	Issues a command to FW to partially initialize the device.  This
7695  *	performs initialization that generally doesn't depend on user input.
7696  */
7697 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7698 {
7699 	struct fw_initialize_cmd c;
7700 
7701 	memset(&c, 0, sizeof(c));
7702 	INIT_CMD(c, INITIALIZE, WRITE);
7703 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7704 }
7705 
7706 /**
7707  *	t4_query_params_rw - query FW or device parameters
7708  *	@adap: the adapter
7709  *	@mbox: mailbox to use for the FW command
7710  *	@pf: the PF
7711  *	@vf: the VF
7712  *	@nparams: the number of parameters
7713  *	@params: the parameter names
7714  *	@val: the parameter values
7715  *	@rw: Write and read flag
7716  *
7717  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
7718  *	queried at once.
7719  */
7720 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7721 		       unsigned int vf, unsigned int nparams, const u32 *params,
7722 		       u32 *val, int rw)
7723 {
7724 	int i, ret;
7725 	struct fw_params_cmd c;
7726 	__be32 *p = &c.param[0].mnem;
7727 
7728 	if (nparams > 7)
7729 		return -EINVAL;
7730 
7731 	memset(&c, 0, sizeof(c));
7732 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7733 				  F_FW_CMD_REQUEST | F_FW_CMD_READ |
7734 				  V_FW_PARAMS_CMD_PFN(pf) |
7735 				  V_FW_PARAMS_CMD_VFN(vf));
7736 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7737 
7738 	for (i = 0; i < nparams; i++) {
7739 		*p++ = cpu_to_be32(*params++);
7740 		if (rw)
7741 			*p = cpu_to_be32(*(val + i));
7742 		p++;
7743 	}
7744 
7745 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7746 	if (ret == 0)
7747 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7748 			*val++ = be32_to_cpu(*p);
7749 	return ret;
7750 }
7751 
7752 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7753 		    unsigned int vf, unsigned int nparams, const u32 *params,
7754 		    u32 *val)
7755 {
7756 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
7757 }
7758 
7759 /**
7760  *      t4_set_params_timeout - sets FW or device parameters
7761  *      @adap: the adapter
7762  *      @mbox: mailbox to use for the FW command
7763  *      @pf: the PF
7764  *      @vf: the VF
7765  *      @nparams: the number of parameters
7766  *      @params: the parameter names
7767  *      @val: the parameter values
7768  *      @timeout: the timeout time
7769  *
7770  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7771  *      specified at once.
7772  */
7773 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7774 			  unsigned int pf, unsigned int vf,
7775 			  unsigned int nparams, const u32 *params,
7776 			  const u32 *val, int timeout)
7777 {
7778 	struct fw_params_cmd c;
7779 	__be32 *p = &c.param[0].mnem;
7780 
7781 	if (nparams > 7)
7782 		return -EINVAL;
7783 
7784 	memset(&c, 0, sizeof(c));
7785 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7786 				  F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7787 				  V_FW_PARAMS_CMD_PFN(pf) |
7788 				  V_FW_PARAMS_CMD_VFN(vf));
7789 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7790 
7791 	while (nparams--) {
7792 		*p++ = cpu_to_be32(*params++);
7793 		*p++ = cpu_to_be32(*val++);
7794 	}
7795 
7796 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7797 }
7798 
7799 /**
7800  *	t4_set_params - sets FW or device parameters
7801  *	@adap: the adapter
7802  *	@mbox: mailbox to use for the FW command
7803  *	@pf: the PF
7804  *	@vf: the VF
7805  *	@nparams: the number of parameters
7806  *	@params: the parameter names
7807  *	@val: the parameter values
7808  *
7809  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7810  *	specified at once.
7811  */
7812 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7813 		  unsigned int vf, unsigned int nparams, const u32 *params,
7814 		  const u32 *val)
7815 {
7816 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7817 				     FW_CMD_MAX_TIMEOUT);
7818 }
7819 
7820 /**
7821  *	t4_cfg_pfvf - configure PF/VF resource limits
7822  *	@adap: the adapter
7823  *	@mbox: mailbox to use for the FW command
7824  *	@pf: the PF being configured
7825  *	@vf: the VF being configured
7826  *	@txq: the max number of egress queues
7827  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7828  *	@rxqi: the max number of interrupt-capable ingress queues
7829  *	@rxq: the max number of interruptless ingress queues
7830  *	@tc: the PCI traffic class
7831  *	@vi: the max number of virtual interfaces
7832  *	@cmask: the channel access rights mask for the PF/VF
7833  *	@pmask: the port access rights mask for the PF/VF
7834  *	@nexact: the maximum number of exact MPS filters
7835  *	@rcaps: read capabilities
7836  *	@wxcaps: write/execute capabilities
7837  *
7838  *	Configures resource limits and capabilities for a physical or virtual
7839  *	function.
7840  */
7841 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7842 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7843 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7844 		unsigned int vi, unsigned int cmask, unsigned int pmask,
7845 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7846 {
7847 	struct fw_pfvf_cmd c;
7848 
7849 	memset(&c, 0, sizeof(c));
7850 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
7851 				  F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
7852 				  V_FW_PFVF_CMD_VFN(vf));
7853 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7854 	c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
7855 				     V_FW_PFVF_CMD_NIQ(rxq));
7856 	c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) |
7857 				    V_FW_PFVF_CMD_PMASK(pmask) |
7858 				    V_FW_PFVF_CMD_NEQ(txq));
7859 	c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) |
7860 				      V_FW_PFVF_CMD_NVI(vi) |
7861 				      V_FW_PFVF_CMD_NEXACTF(nexact));
7862 	c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) |
7863 				     V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
7864 				     V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
7865 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7866 }
7867 
7868 /**
7869  *	t4_alloc_vi_func - allocate a virtual interface
7870  *	@adap: the adapter
7871  *	@mbox: mailbox to use for the FW command
7872  *	@port: physical port associated with the VI
7873  *	@pf: the PF owning the VI
7874  *	@vf: the VF owning the VI
7875  *	@nmac: number of MAC addresses needed (1 to 5)
7876  *	@mac: the MAC addresses of the VI
7877  *	@rss_size: size of RSS table slice associated with this VI
7878  *	@portfunc: which Port Application Function MAC Address is desired
7879  *	@idstype: Intrusion Detection Type
7880  *
7881  *	Allocates a virtual interface for the given physical port.  If @mac is
7882  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7883  *	If @rss_size is %NULL the VI is not assigned any RSS slice by FW.
7884  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7885  *	stored consecutively so the space needed is @nmac * 6 bytes.
7886  *	Returns a negative error number or the non-negative VI id.
7887  */
7888 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
7889 		     unsigned int port, unsigned int pf, unsigned int vf,
7890 		     unsigned int nmac, u8 *mac, u16 *rss_size,
7891 		     uint8_t *vfvld, uint16_t *vin,
7892 		     unsigned int portfunc, unsigned int idstype)
7893 {
7894 	int ret;
7895 	struct fw_vi_cmd c;
7896 
7897 	memset(&c, 0, sizeof(c));
7898 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
7899 				  F_FW_CMD_WRITE | F_FW_CMD_EXEC |
7900 				  V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
7901 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
7902 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
7903 				     V_FW_VI_CMD_FUNC(portfunc));
7904 	c.portid_pkd = V_FW_VI_CMD_PORTID(port);
7905 	c.nmac = nmac - 1;
7906 	if(!rss_size)
7907 		c.norss_rsssize = F_FW_VI_CMD_NORSS;
7908 
7909 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7910 	if (ret)
7911 		return ret;
7912 	ret = G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid));
7913 
7914 	if (mac) {
7915 		memcpy(mac, c.mac, sizeof(c.mac));
7916 		switch (nmac) {
7917 		case 5:
7918 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7919 		case 4:
7920 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7921 		case 3:
7922 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7923 		case 2:
7924 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7925 		}
7926 	}
7927 	if (rss_size)
7928 		*rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
7929 	if (vfvld) {
7930 		*vfvld = adap->params.viid_smt_extn_support ?
7931 		    G_FW_VI_CMD_VFVLD(be32_to_cpu(c.alloc_to_len16)) :
7932 		    G_FW_VIID_VIVLD(ret);
7933 	}
7934 	if (vin) {
7935 		*vin = adap->params.viid_smt_extn_support ?
7936 		    G_FW_VI_CMD_VIN(be32_to_cpu(c.alloc_to_len16)) :
7937 		    G_FW_VIID_VIN(ret);
7938 	}
7939 
7940 	return ret;
7941 }
7942 
7943 /**
7944  *      t4_alloc_vi - allocate an [Ethernet Function] virtual interface
7945  *      @adap: the adapter
7946  *      @mbox: mailbox to use for the FW command
7947  *      @port: physical port associated with the VI
7948  *      @pf: the PF owning the VI
7949  *      @vf: the VF owning the VI
7950  *      @nmac: number of MAC addresses needed (1 to 5)
7951  *      @mac: the MAC addresses of the VI
7952  *      @rss_size: size of RSS table slice associated with this VI
7953  *
7954  *	backwards compatible and convieniance routine to allocate a Virtual
7955  *	Interface with a Ethernet Port Application Function and Intrustion
7956  *	Detection System disabled.
7957  */
7958 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7959 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7960 		u16 *rss_size, uint8_t *vfvld, uint16_t *vin)
7961 {
7962 	return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
7963 				vfvld, vin, FW_VI_FUNC_ETH, 0);
7964 }
7965 
7966 /**
7967  * 	t4_free_vi - free a virtual interface
7968  * 	@adap: the adapter
7969  * 	@mbox: mailbox to use for the FW command
7970  * 	@pf: the PF owning the VI
7971  * 	@vf: the VF owning the VI
7972  * 	@viid: virtual interface identifiler
7973  *
7974  * 	Free a previously allocated virtual interface.
7975  */
7976 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7977 	       unsigned int vf, unsigned int viid)
7978 {
7979 	struct fw_vi_cmd c;
7980 
7981 	memset(&c, 0, sizeof(c));
7982 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
7983 				  F_FW_CMD_REQUEST |
7984 				  F_FW_CMD_EXEC |
7985 				  V_FW_VI_CMD_PFN(pf) |
7986 				  V_FW_VI_CMD_VFN(vf));
7987 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
7988 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
7989 
7990 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7991 }
7992 
7993 /**
7994  *	t4_set_rxmode - set Rx properties of a virtual interface
7995  *	@adap: the adapter
7996  *	@mbox: mailbox to use for the FW command
7997  *	@viid: the VI id
7998  *	@mtu: the new MTU or -1
7999  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
8000  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
8001  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
8002  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
8003  *	@sleep_ok: if true we may sleep while awaiting command completion
8004  *
8005  *	Sets Rx properties of a virtual interface.
8006  */
8007 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
8008 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
8009 		  bool sleep_ok)
8010 {
8011 	struct fw_vi_rxmode_cmd c;
8012 
8013 	/* convert to FW values */
8014 	if (mtu < 0)
8015 		mtu = M_FW_VI_RXMODE_CMD_MTU;
8016 	if (promisc < 0)
8017 		promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
8018 	if (all_multi < 0)
8019 		all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
8020 	if (bcast < 0)
8021 		bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
8022 	if (vlanex < 0)
8023 		vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
8024 
8025 	memset(&c, 0, sizeof(c));
8026 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
8027 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8028 				   V_FW_VI_RXMODE_CMD_VIID(viid));
8029 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
8030 	c.mtu_to_vlanexen =
8031 		cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
8032 			    V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
8033 			    V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
8034 			    V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
8035 			    V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
8036 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8037 }
8038 
8039 /**
8040  *	t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support
8041  *	@adap: the adapter
8042  *	@viid: the VI id
8043  *	@mac: the MAC address
8044  *	@mask: the mask
8045  *	@vni: the VNI id for the tunnel protocol
8046  *	@vni_mask: mask for the VNI id
8047  *	@dip_hit: to enable DIP match for the MPS entry
8048  *	@lookup_type: MAC address for inner (1) or outer (0) header
8049  *	@sleep_ok: call is allowed to sleep
8050  *
8051  *	Allocates an MPS entry with specified MAC address and VNI value.
8052  *
8053  *	Returns a negative error number or the allocated index for this mac.
8054  */
8055 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid,
8056 			    const u8 *addr, const u8 *mask, unsigned int vni,
8057 			    unsigned int vni_mask, u8 dip_hit, u8 lookup_type,
8058 			    bool sleep_ok)
8059 {
8060 	struct fw_vi_mac_cmd c;
8061 	struct fw_vi_mac_vni *p = c.u.exact_vni;
8062 	int ret = 0;
8063 	u32 val;
8064 
8065 	memset(&c, 0, sizeof(c));
8066 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8067 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8068 				   V_FW_VI_MAC_CMD_VIID(viid));
8069 	val = V_FW_CMD_LEN16(1) |
8070 	      V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_EXACTMAC_VNI);
8071 	c.freemacs_to_len16 = cpu_to_be32(val);
8072 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8073 				      V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
8074 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8075 	memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask));
8076 
8077 	p->lookup_type_to_vni = cpu_to_be32(V_FW_VI_MAC_CMD_VNI(vni) |
8078 					    V_FW_VI_MAC_CMD_DIP_HIT(dip_hit) |
8079 					    V_FW_VI_MAC_CMD_LOOKUP_TYPE(lookup_type));
8080 	p->vni_mask_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_VNI_MASK(vni_mask));
8081 
8082 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8083 	if (ret == 0)
8084 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
8085 	return ret;
8086 }
8087 
8088 /**
8089  *	t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam
8090  *	@adap: the adapter
8091  *	@viid: the VI id
8092  *	@mac: the MAC address
8093  *	@mask: the mask
8094  *	@idx: index at which to add this entry
8095  *	@port_id: the port index
8096  *	@lookup_type: MAC address for inner (1) or outer (0) header
8097  *	@sleep_ok: call is allowed to sleep
8098  *
8099  *	Adds the mac entry at the specified index using raw mac interface.
8100  *
8101  *	Returns a negative error number or the allocated index for this mac.
8102  */
8103 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
8104 			  const u8 *addr, const u8 *mask, unsigned int idx,
8105 			  u8 lookup_type, u8 port_id, bool sleep_ok)
8106 {
8107 	int ret = 0;
8108 	struct fw_vi_mac_cmd c;
8109 	struct fw_vi_mac_raw *p = &c.u.raw;
8110 	u32 val;
8111 
8112 	memset(&c, 0, sizeof(c));
8113 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8114 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8115 				   V_FW_VI_MAC_CMD_VIID(viid));
8116 	val = V_FW_CMD_LEN16(1) |
8117 	      V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_RAW);
8118 	c.freemacs_to_len16 = cpu_to_be32(val);
8119 
8120 	/* Specify that this is an inner mac address */
8121 	p->raw_idx_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_RAW_IDX(idx));
8122 
8123 	/* Lookup Type. Outer header: 0, Inner header: 1 */
8124 	p->data0_pkd = cpu_to_be32(V_DATALKPTYPE(lookup_type) |
8125 				   V_DATAPORTNUM(port_id));
8126 	/* Lookup mask and port mask */
8127 	p->data0m_pkd = cpu_to_be64(V_DATALKPTYPE(M_DATALKPTYPE) |
8128 				    V_DATAPORTNUM(M_DATAPORTNUM));
8129 
8130 	/* Copy the address and the mask */
8131 	memcpy((u8 *)&p->data1[0] + 2, addr, ETHER_ADDR_LEN);
8132 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETHER_ADDR_LEN);
8133 
8134 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8135 	if (ret == 0) {
8136 		ret = G_FW_VI_MAC_CMD_RAW_IDX(be32_to_cpu(p->raw_idx_pkd));
8137 		if (ret != idx)
8138 			ret = -ENOMEM;
8139 	}
8140 
8141 	return ret;
8142 }
8143 
8144 /**
8145  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
8146  *	@adap: the adapter
8147  *	@mbox: mailbox to use for the FW command
8148  *	@viid: the VI id
8149  *	@free: if true any existing filters for this VI id are first removed
8150  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
8151  *	@addr: the MAC address(es)
8152  *	@idx: where to store the index of each allocated filter
8153  *	@hash: pointer to hash address filter bitmap
8154  *	@sleep_ok: call is allowed to sleep
8155  *
8156  *	Allocates an exact-match filter for each of the supplied addresses and
8157  *	sets it to the corresponding address.  If @idx is not %NULL it should
8158  *	have at least @naddr entries, each of which will be set to the index of
8159  *	the filter allocated for the corresponding MAC address.  If a filter
8160  *	could not be allocated for an address its index is set to 0xffff.
8161  *	If @hash is not %NULL addresses that fail to allocate an exact filter
8162  *	are hashed and update the hash filter bitmap pointed at by @hash.
8163  *
8164  *	Returns a negative error number or the number of filters allocated.
8165  */
8166 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
8167 		      unsigned int viid, bool free, unsigned int naddr,
8168 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
8169 {
8170 	int offset, ret = 0;
8171 	struct fw_vi_mac_cmd c;
8172 	unsigned int nfilters = 0;
8173 	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
8174 	unsigned int rem = naddr;
8175 
8176 	if (naddr > max_naddr)
8177 		return -EINVAL;
8178 
8179 	for (offset = 0; offset < naddr ; /**/) {
8180 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8181 					 ? rem
8182 					 : ARRAY_SIZE(c.u.exact));
8183 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8184 						     u.exact[fw_naddr]), 16);
8185 		struct fw_vi_mac_exact *p;
8186 		int i;
8187 
8188 		memset(&c, 0, sizeof(c));
8189 		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8190 					   F_FW_CMD_REQUEST |
8191 					   F_FW_CMD_WRITE |
8192 					   V_FW_CMD_EXEC(free) |
8193 					   V_FW_VI_MAC_CMD_VIID(viid));
8194 		c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) |
8195 						  V_FW_CMD_LEN16(len16));
8196 
8197 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8198 			p->valid_to_idx =
8199 				cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8200 					    V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
8201 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8202 		}
8203 
8204 		/*
8205 		 * It's okay if we run out of space in our MAC address arena.
8206 		 * Some of the addresses we submit may get stored so we need
8207 		 * to run through the reply to see what the results were ...
8208 		 */
8209 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8210 		if (ret && ret != -FW_ENOMEM)
8211 			break;
8212 
8213 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8214 			u16 index = G_FW_VI_MAC_CMD_IDX(
8215 						be16_to_cpu(p->valid_to_idx));
8216 
8217 			if (idx)
8218 				idx[offset+i] = (index >=  max_naddr
8219 						 ? 0xffff
8220 						 : index);
8221 			if (index < max_naddr)
8222 				nfilters++;
8223 			else if (hash)
8224 				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
8225 		}
8226 
8227 		free = false;
8228 		offset += fw_naddr;
8229 		rem -= fw_naddr;
8230 	}
8231 
8232 	if (ret == 0 || ret == -FW_ENOMEM)
8233 		ret = nfilters;
8234 	return ret;
8235 }
8236 
8237 /**
8238  *	t4_free_encap_mac_filt - frees MPS entry at given index
8239  *	@adap: the adapter
8240  *	@viid: the VI id
8241  *	@idx: index of MPS entry to be freed
8242  *	@sleep_ok: call is allowed to sleep
8243  *
8244  *	Frees the MPS entry at supplied index
8245  *
8246  *	Returns a negative error number or zero on success
8247  */
8248 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid,
8249 			   int idx, bool sleep_ok)
8250 {
8251 	struct fw_vi_mac_exact *p;
8252 	struct fw_vi_mac_cmd c;
8253 	u8 addr[] = {0,0,0,0,0,0};
8254 	int ret = 0;
8255 	u32 exact;
8256 
8257 	memset(&c, 0, sizeof(c));
8258 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8259 				   F_FW_CMD_REQUEST |
8260 				   F_FW_CMD_WRITE |
8261 				   V_FW_CMD_EXEC(0) |
8262 				   V_FW_VI_MAC_CMD_VIID(viid));
8263 	exact = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_EXACTMAC);
8264 	c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) |
8265 					  exact |
8266 					  V_FW_CMD_LEN16(1));
8267 	p = c.u.exact;
8268 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8269 				      V_FW_VI_MAC_CMD_IDX(idx));
8270 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8271 
8272 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8273 	return ret;
8274 }
8275 
8276 /**
8277  *	t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
8278  *	@adap: the adapter
8279  *	@viid: the VI id
8280  *	@addr: the MAC address
8281  *	@mask: the mask
8282  *	@idx: index of the entry in mps tcam
8283  *	@lookup_type: MAC address for inner (1) or outer (0) header
8284  *	@port_id: the port index
8285  *	@sleep_ok: call is allowed to sleep
8286  *
8287  *	Removes the mac entry at the specified index using raw mac interface.
8288  *
8289  *	Returns a negative error number on failure.
8290  */
8291 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
8292 			 const u8 *addr, const u8 *mask, unsigned int idx,
8293 			 u8 lookup_type, u8 port_id, bool sleep_ok)
8294 {
8295 	struct fw_vi_mac_cmd c;
8296 	struct fw_vi_mac_raw *p = &c.u.raw;
8297 	u32 raw;
8298 
8299 	memset(&c, 0, sizeof(c));
8300 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8301 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8302 				   V_FW_CMD_EXEC(0) |
8303 				   V_FW_VI_MAC_CMD_VIID(viid));
8304 	raw = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_RAW);
8305 	c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) |
8306 					  raw |
8307 					  V_FW_CMD_LEN16(1));
8308 
8309 	p->raw_idx_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_RAW_IDX(idx) |
8310 				     FW_VI_MAC_ID_BASED_FREE);
8311 
8312 	/* Lookup Type. Outer header: 0, Inner header: 1 */
8313 	p->data0_pkd = cpu_to_be32(V_DATALKPTYPE(lookup_type) |
8314 				   V_DATAPORTNUM(port_id));
8315 	/* Lookup mask and port mask */
8316 	p->data0m_pkd = cpu_to_be64(V_DATALKPTYPE(M_DATALKPTYPE) |
8317 				    V_DATAPORTNUM(M_DATAPORTNUM));
8318 
8319 	/* Copy the address and the mask */
8320 	memcpy((u8 *)&p->data1[0] + 2, addr, ETHER_ADDR_LEN);
8321 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETHER_ADDR_LEN);
8322 
8323 	return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8324 }
8325 
8326 /**
8327  *	t4_free_mac_filt - frees exact-match filters of given MAC addresses
8328  *	@adap: the adapter
8329  *	@mbox: mailbox to use for the FW command
8330  *	@viid: the VI id
8331  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
8332  *	@addr: the MAC address(es)
8333  *	@sleep_ok: call is allowed to sleep
8334  *
8335  *	Frees the exact-match filter for each of the supplied addresses
8336  *
8337  *	Returns a negative error number or the number of filters freed.
8338  */
8339 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
8340 		      unsigned int viid, unsigned int naddr,
8341 		      const u8 **addr, bool sleep_ok)
8342 {
8343 	int offset, ret = 0;
8344 	struct fw_vi_mac_cmd c;
8345 	unsigned int nfilters = 0;
8346 	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
8347 	unsigned int rem = naddr;
8348 
8349 	if (naddr > max_naddr)
8350 		return -EINVAL;
8351 
8352 	for (offset = 0; offset < (int)naddr ; /**/) {
8353 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8354 					 ? rem
8355 					 : ARRAY_SIZE(c.u.exact));
8356 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8357 						     u.exact[fw_naddr]), 16);
8358 		struct fw_vi_mac_exact *p;
8359 		int i;
8360 
8361 		memset(&c, 0, sizeof(c));
8362 		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8363 				     F_FW_CMD_REQUEST |
8364 				     F_FW_CMD_WRITE |
8365 				     V_FW_CMD_EXEC(0) |
8366 				     V_FW_VI_MAC_CMD_VIID(viid));
8367 		c.freemacs_to_len16 =
8368 				cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) |
8369 					    V_FW_CMD_LEN16(len16));
8370 
8371 		for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
8372 			p->valid_to_idx = cpu_to_be16(
8373 				F_FW_VI_MAC_CMD_VALID |
8374 				V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_MAC_BASED_FREE));
8375 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8376 		}
8377 
8378 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8379 		if (ret)
8380 			break;
8381 
8382 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8383 			u16 index = G_FW_VI_MAC_CMD_IDX(
8384 						be16_to_cpu(p->valid_to_idx));
8385 
8386 			if (index < max_naddr)
8387 				nfilters++;
8388 		}
8389 
8390 		offset += fw_naddr;
8391 		rem -= fw_naddr;
8392 	}
8393 
8394 	if (ret == 0)
8395 		ret = nfilters;
8396 	return ret;
8397 }
8398 
8399 /**
8400  *	t4_change_mac - modifies the exact-match filter for a MAC address
8401  *	@adap: the adapter
8402  *	@mbox: mailbox to use for the FW command
8403  *	@viid: the VI id
8404  *	@idx: index of existing filter for old value of MAC address, or -1
8405  *	@addr: the new MAC address value
8406  *	@persist: whether a new MAC allocation should be persistent
8407  *	@smt_idx: add MAC to SMT and return its index, or NULL
8408  *
8409  *	Modifies an exact-match filter and sets it to the new MAC address if
8410  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
8411  *	latter case the address is added persistently if @persist is %true.
8412  *
8413  *	Note that in general it is not possible to modify the value of a given
8414  *	filter so the generic way to modify an address filter is to free the one
8415  *	being used by the old address value and allocate a new filter for the
8416  *	new address value.
8417  *
8418  *	Returns a negative error number or the index of the filter with the new
8419  *	MAC value.  Note that this index may differ from @idx.
8420  */
8421 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
8422 		  int idx, const u8 *addr, bool persist, uint16_t *smt_idx)
8423 {
8424 	int ret, mode;
8425 	struct fw_vi_mac_cmd c;
8426 	struct fw_vi_mac_exact *p = c.u.exact;
8427 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
8428 
8429 	if (idx < 0)		/* new allocation */
8430 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
8431 	mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
8432 
8433 	memset(&c, 0, sizeof(c));
8434 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8435 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8436 				   V_FW_VI_MAC_CMD_VIID(viid));
8437 	c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
8438 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8439 				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
8440 				      V_FW_VI_MAC_CMD_IDX(idx));
8441 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8442 
8443 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8444 	if (ret == 0) {
8445 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
8446 		if (ret >= max_mac_addr)
8447 			ret = -ENOMEM;
8448 		if (smt_idx) {
8449 			if (adap->params.viid_smt_extn_support)
8450 				*smt_idx = G_FW_VI_MAC_CMD_SMTID(be32_to_cpu(c.op_to_viid));
8451 			else {
8452 				if (chip_id(adap) <= CHELSIO_T5)
8453 					*smt_idx = (viid & M_FW_VIID_VIN) << 1;
8454 				else
8455 					*smt_idx = viid & M_FW_VIID_VIN;
8456 			}
8457 		}
8458 	}
8459 	return ret;
8460 }
8461 
8462 /**
8463  *	t4_set_addr_hash - program the MAC inexact-match hash filter
8464  *	@adap: the adapter
8465  *	@mbox: mailbox to use for the FW command
8466  *	@viid: the VI id
8467  *	@ucast: whether the hash filter should also match unicast addresses
8468  *	@vec: the value to be written to the hash filter
8469  *	@sleep_ok: call is allowed to sleep
8470  *
8471  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
8472  */
8473 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
8474 		     bool ucast, u64 vec, bool sleep_ok)
8475 {
8476 	struct fw_vi_mac_cmd c;
8477 	u32 val;
8478 
8479 	memset(&c, 0, sizeof(c));
8480 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8481 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8482 				   V_FW_VI_ENABLE_CMD_VIID(viid));
8483 	val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) |
8484 	      V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1);
8485 	c.freemacs_to_len16 = cpu_to_be32(val);
8486 	c.u.hash.hashvec = cpu_to_be64(vec);
8487 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8488 }
8489 
8490 /**
8491  *      t4_enable_vi_params - enable/disable a virtual interface
8492  *      @adap: the adapter
8493  *      @mbox: mailbox to use for the FW command
8494  *      @viid: the VI id
8495  *      @rx_en: 1=enable Rx, 0=disable Rx
8496  *      @tx_en: 1=enable Tx, 0=disable Tx
8497  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8498  *
8499  *      Enables/disables a virtual interface.  Note that setting DCB Enable
8500  *      only makes sense when enabling a Virtual Interface ...
8501  */
8502 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
8503 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
8504 {
8505 	struct fw_vi_enable_cmd c;
8506 
8507 	memset(&c, 0, sizeof(c));
8508 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
8509 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8510 				   V_FW_VI_ENABLE_CMD_VIID(viid));
8511 	c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
8512 				     V_FW_VI_ENABLE_CMD_EEN(tx_en) |
8513 				     V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
8514 				     FW_LEN16(c));
8515 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
8516 }
8517 
8518 /**
8519  *	t4_enable_vi - enable/disable a virtual interface
8520  *	@adap: the adapter
8521  *	@mbox: mailbox to use for the FW command
8522  *	@viid: the VI id
8523  *	@rx_en: 1=enable Rx, 0=disable Rx
8524  *	@tx_en: 1=enable Tx, 0=disable Tx
8525  *
8526  *	Enables/disables a virtual interface.  Note that setting DCB Enable
8527  *	only makes sense when enabling a Virtual Interface ...
8528  */
8529 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8530 		 bool rx_en, bool tx_en)
8531 {
8532 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8533 }
8534 
8535 /**
8536  *	t4_identify_port - identify a VI's port by blinking its LED
8537  *	@adap: the adapter
8538  *	@mbox: mailbox to use for the FW command
8539  *	@viid: the VI id
8540  *	@nblinks: how many times to blink LED at 2.5 Hz
8541  *
8542  *	Identifies a VI's port by blinking its LED.
8543  */
8544 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8545 		     unsigned int nblinks)
8546 {
8547 	struct fw_vi_enable_cmd c;
8548 
8549 	memset(&c, 0, sizeof(c));
8550 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
8551 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8552 				   V_FW_VI_ENABLE_CMD_VIID(viid));
8553 	c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
8554 	c.blinkdur = cpu_to_be16(nblinks);
8555 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8556 }
8557 
8558 /**
8559  *	t4_iq_stop - stop an ingress queue and its FLs
8560  *	@adap: the adapter
8561  *	@mbox: mailbox to use for the FW command
8562  *	@pf: the PF owning the queues
8563  *	@vf: the VF owning the queues
8564  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8565  *	@iqid: ingress queue id
8566  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8567  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8568  *
8569  *	Stops an ingress queue and its associated FLs, if any.  This causes
8570  *	any current or future data/messages destined for these queues to be
8571  *	tossed.
8572  */
8573 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8574 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8575 	       unsigned int fl0id, unsigned int fl1id)
8576 {
8577 	struct fw_iq_cmd c;
8578 
8579 	memset(&c, 0, sizeof(c));
8580 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
8581 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
8582 				  V_FW_IQ_CMD_VFN(vf));
8583 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c));
8584 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
8585 	c.iqid = cpu_to_be16(iqid);
8586 	c.fl0id = cpu_to_be16(fl0id);
8587 	c.fl1id = cpu_to_be16(fl1id);
8588 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8589 }
8590 
8591 /**
8592  *	t4_iq_free - free an ingress queue and its FLs
8593  *	@adap: the adapter
8594  *	@mbox: mailbox to use for the FW command
8595  *	@pf: the PF owning the queues
8596  *	@vf: the VF owning the queues
8597  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8598  *	@iqid: ingress queue id
8599  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8600  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8601  *
8602  *	Frees an ingress queue and its associated FLs, if any.
8603  */
8604 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8605 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8606 	       unsigned int fl0id, unsigned int fl1id)
8607 {
8608 	struct fw_iq_cmd c;
8609 
8610 	memset(&c, 0, sizeof(c));
8611 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
8612 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
8613 				  V_FW_IQ_CMD_VFN(vf));
8614 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
8615 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
8616 	c.iqid = cpu_to_be16(iqid);
8617 	c.fl0id = cpu_to_be16(fl0id);
8618 	c.fl1id = cpu_to_be16(fl1id);
8619 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8620 }
8621 
8622 /**
8623  *	t4_eth_eq_free - free an Ethernet egress queue
8624  *	@adap: the adapter
8625  *	@mbox: mailbox to use for the FW command
8626  *	@pf: the PF owning the queue
8627  *	@vf: the VF owning the queue
8628  *	@eqid: egress queue id
8629  *
8630  *	Frees an Ethernet egress queue.
8631  */
8632 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8633 		   unsigned int vf, unsigned int eqid)
8634 {
8635 	struct fw_eq_eth_cmd c;
8636 
8637 	memset(&c, 0, sizeof(c));
8638 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
8639 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8640 				  V_FW_EQ_ETH_CMD_PFN(pf) |
8641 				  V_FW_EQ_ETH_CMD_VFN(vf));
8642 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
8643 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
8644 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8645 }
8646 
8647 /**
8648  *	t4_ctrl_eq_free - free a control egress queue
8649  *	@adap: the adapter
8650  *	@mbox: mailbox to use for the FW command
8651  *	@pf: the PF owning the queue
8652  *	@vf: the VF owning the queue
8653  *	@eqid: egress queue id
8654  *
8655  *	Frees a control egress queue.
8656  */
8657 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8658 		    unsigned int vf, unsigned int eqid)
8659 {
8660 	struct fw_eq_ctrl_cmd c;
8661 
8662 	memset(&c, 0, sizeof(c));
8663 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
8664 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8665 				  V_FW_EQ_CTRL_CMD_PFN(pf) |
8666 				  V_FW_EQ_CTRL_CMD_VFN(vf));
8667 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
8668 	c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
8669 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8670 }
8671 
8672 /**
8673  *	t4_ofld_eq_free - free an offload egress queue
8674  *	@adap: the adapter
8675  *	@mbox: mailbox to use for the FW command
8676  *	@pf: the PF owning the queue
8677  *	@vf: the VF owning the queue
8678  *	@eqid: egress queue id
8679  *
8680  *	Frees a control egress queue.
8681  */
8682 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8683 		    unsigned int vf, unsigned int eqid)
8684 {
8685 	struct fw_eq_ofld_cmd c;
8686 
8687 	memset(&c, 0, sizeof(c));
8688 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) |
8689 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8690 				  V_FW_EQ_OFLD_CMD_PFN(pf) |
8691 				  V_FW_EQ_OFLD_CMD_VFN(vf));
8692 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
8693 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid));
8694 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8695 }
8696 
8697 /**
8698  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
8699  *	@link_down_rc: Link Down Reason Code
8700  *
8701  *	Returns a string representation of the Link Down Reason Code.
8702  */
8703 const char *t4_link_down_rc_str(unsigned char link_down_rc)
8704 {
8705 	static const char *reason[] = {
8706 		"Link Down",
8707 		"Remote Fault",
8708 		"Auto-negotiation Failure",
8709 		"Reserved3",
8710 		"Insufficient Airflow",
8711 		"Unable To Determine Reason",
8712 		"No RX Signal Detected",
8713 		"Reserved7",
8714 	};
8715 
8716 	if (link_down_rc >= ARRAY_SIZE(reason))
8717 		return "Bad Reason Code";
8718 
8719 	return reason[link_down_rc];
8720 }
8721 
8722 /*
8723  * Return the highest speed set in the port capabilities, in Mb/s.
8724  */
8725 unsigned int fwcap_to_speed(uint32_t caps)
8726 {
8727 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8728 		do { \
8729 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8730 				return __speed; \
8731 		} while (0)
8732 
8733 	TEST_SPEED_RETURN(400G, 400000);
8734 	TEST_SPEED_RETURN(200G, 200000);
8735 	TEST_SPEED_RETURN(100G, 100000);
8736 	TEST_SPEED_RETURN(50G,   50000);
8737 	TEST_SPEED_RETURN(40G,   40000);
8738 	TEST_SPEED_RETURN(25G,   25000);
8739 	TEST_SPEED_RETURN(10G,   10000);
8740 	TEST_SPEED_RETURN(1G,     1000);
8741 	TEST_SPEED_RETURN(100M,    100);
8742 
8743 	#undef TEST_SPEED_RETURN
8744 
8745 	return 0;
8746 }
8747 
8748 /*
8749  * Return the port capabilities bit for the given speed, which is in Mb/s.
8750  */
8751 uint32_t speed_to_fwcap(unsigned int speed)
8752 {
8753 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8754 		do { \
8755 			if (speed == __speed) \
8756 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8757 		} while (0)
8758 
8759 	TEST_SPEED_RETURN(400G, 400000);
8760 	TEST_SPEED_RETURN(200G, 200000);
8761 	TEST_SPEED_RETURN(100G, 100000);
8762 	TEST_SPEED_RETURN(50G,   50000);
8763 	TEST_SPEED_RETURN(40G,   40000);
8764 	TEST_SPEED_RETURN(25G,   25000);
8765 	TEST_SPEED_RETURN(10G,   10000);
8766 	TEST_SPEED_RETURN(1G,     1000);
8767 	TEST_SPEED_RETURN(100M,    100);
8768 
8769 	#undef TEST_SPEED_RETURN
8770 
8771 	return 0;
8772 }
8773 
8774 /*
8775  * Return the port capabilities bit for the highest speed in the capabilities.
8776  */
8777 uint32_t fwcap_top_speed(uint32_t caps)
8778 {
8779 	#define TEST_SPEED_RETURN(__caps_speed) \
8780 		do { \
8781 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8782 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8783 		} while (0)
8784 
8785 	TEST_SPEED_RETURN(400G);
8786 	TEST_SPEED_RETURN(200G);
8787 	TEST_SPEED_RETURN(100G);
8788 	TEST_SPEED_RETURN(50G);
8789 	TEST_SPEED_RETURN(40G);
8790 	TEST_SPEED_RETURN(25G);
8791 	TEST_SPEED_RETURN(10G);
8792 	TEST_SPEED_RETURN(1G);
8793 	TEST_SPEED_RETURN(100M);
8794 
8795 	#undef TEST_SPEED_RETURN
8796 
8797 	return 0;
8798 }
8799 
8800 /**
8801  *	lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8802  *	@lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8803  *
8804  *	Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8805  *	32-bit Port Capabilities value.
8806  */
8807 static uint32_t lstatus_to_fwcap(u32 lstatus)
8808 {
8809 	uint32_t linkattr = 0;
8810 
8811 	/*
8812 	 * Unfortunately the format of the Link Status in the old
8813 	 * 16-bit Port Information message isn't the same as the
8814 	 * 16-bit Port Capabilities bitfield used everywhere else ...
8815 	 */
8816 	if (lstatus & F_FW_PORT_CMD_RXPAUSE)
8817 		linkattr |= FW_PORT_CAP32_FC_RX;
8818 	if (lstatus & F_FW_PORT_CMD_TXPAUSE)
8819 		linkattr |= FW_PORT_CAP32_FC_TX;
8820 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
8821 		linkattr |= FW_PORT_CAP32_SPEED_100M;
8822 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
8823 		linkattr |= FW_PORT_CAP32_SPEED_1G;
8824 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
8825 		linkattr |= FW_PORT_CAP32_SPEED_10G;
8826 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G))
8827 		linkattr |= FW_PORT_CAP32_SPEED_25G;
8828 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
8829 		linkattr |= FW_PORT_CAP32_SPEED_40G;
8830 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G))
8831 		linkattr |= FW_PORT_CAP32_SPEED_100G;
8832 
8833 	return linkattr;
8834 }
8835 
8836 /*
8837  * Updates all fields owned by the common code in port_info and link_config
8838  * based on information provided by the firmware.  Does not touch any
8839  * requested_* field.
8840  */
8841 static void handle_port_info(struct port_info *pi, const struct fw_port_cmd *p,
8842     enum fw_port_action action, bool *mod_changed, bool *link_changed)
8843 {
8844 	struct link_config old_lc, *lc = &pi->link_cfg;
8845 	unsigned char fc;
8846 	u32 stat, linkattr;
8847 	int old_ptype, old_mtype;
8848 
8849 	old_ptype = pi->port_type;
8850 	old_mtype = pi->mod_type;
8851 	old_lc = *lc;
8852 	if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8853 		stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
8854 
8855 		pi->port_type = G_FW_PORT_CMD_PTYPE(stat);
8856 		pi->mod_type = G_FW_PORT_CMD_MODTYPE(stat);
8857 		pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP ?
8858 		    G_FW_PORT_CMD_MDIOADDR(stat) : -1;
8859 
8860 		lc->pcaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.pcap));
8861 		lc->acaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.acap));
8862 		lc->lpacaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.lpacap));
8863 		lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
8864 		lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC(stat);
8865 
8866 		linkattr = lstatus_to_fwcap(stat);
8867 	} else if (action == FW_PORT_ACTION_GET_PORT_INFO32) {
8868 		stat = be32_to_cpu(p->u.info32.lstatus32_to_cbllen32);
8869 
8870 		pi->port_type = G_FW_PORT_CMD_PORTTYPE32(stat);
8871 		pi->mod_type = G_FW_PORT_CMD_MODTYPE32(stat);
8872 		pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP32 ?
8873 		    G_FW_PORT_CMD_MDIOADDR32(stat) : -1;
8874 
8875 		lc->pcaps = be32_to_cpu(p->u.info32.pcaps32);
8876 		lc->acaps = be32_to_cpu(p->u.info32.acaps32);
8877 		lc->lpacaps = be32_to_cpu(p->u.info32.lpacaps32);
8878 		lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS32) != 0;
8879 		lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC32(stat);
8880 
8881 		linkattr = be32_to_cpu(p->u.info32.linkattr32);
8882 	} else {
8883 		CH_ERR(pi->adapter, "bad port_info action 0x%x\n", action);
8884 		return;
8885 	}
8886 
8887 	lc->speed = fwcap_to_speed(linkattr);
8888 	lc->fec = fwcap_to_fec(linkattr, true);
8889 
8890 	fc = 0;
8891 	if (linkattr & FW_PORT_CAP32_FC_RX)
8892 		fc |= PAUSE_RX;
8893 	if (linkattr & FW_PORT_CAP32_FC_TX)
8894 		fc |= PAUSE_TX;
8895 	lc->fc = fc;
8896 
8897 	if (mod_changed != NULL)
8898 		*mod_changed = false;
8899 	if (link_changed != NULL)
8900 		*link_changed = false;
8901 	if (old_ptype != pi->port_type || old_mtype != pi->mod_type ||
8902 	    old_lc.pcaps != lc->pcaps) {
8903 		if (pi->mod_type != FW_PORT_MOD_TYPE_NONE)
8904 			lc->fec_hint = fwcap_to_fec(lc->acaps, true);
8905 		if (mod_changed != NULL)
8906 			*mod_changed = true;
8907 	}
8908 	if (old_lc.link_ok != lc->link_ok || old_lc.speed != lc->speed ||
8909 	    old_lc.fec != lc->fec || old_lc.fc != lc->fc) {
8910 		if (link_changed != NULL)
8911 			*link_changed = true;
8912 	}
8913 }
8914 
8915 /**
8916  *	t4_update_port_info - retrieve and update port information if changed
8917  *	@pi: the port_info
8918  *
8919  *	We issue a Get Port Information Command to the Firmware and, if
8920  *	successful, we check to see if anything is different from what we
8921  *	last recorded and update things accordingly.
8922  */
8923  int t4_update_port_info(struct port_info *pi)
8924  {
8925 	struct adapter *sc = pi->adapter;
8926 	struct fw_port_cmd cmd;
8927 	enum fw_port_action action;
8928 	int ret;
8929 
8930 	memset(&cmd, 0, sizeof(cmd));
8931 	cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
8932 	    F_FW_CMD_REQUEST | F_FW_CMD_READ |
8933 	    V_FW_PORT_CMD_PORTID(pi->tx_chan));
8934 	action = sc->params.port_caps32 ? FW_PORT_ACTION_GET_PORT_INFO32 :
8935 	    FW_PORT_ACTION_GET_PORT_INFO;
8936 	cmd.action_to_len16 = cpu_to_be32(V_FW_PORT_CMD_ACTION(action) |
8937 	    FW_LEN16(cmd));
8938 	ret = t4_wr_mbox_ns(sc, sc->mbox, &cmd, sizeof(cmd), &cmd);
8939 	if (ret)
8940 		return ret;
8941 
8942 	handle_port_info(pi, &cmd, action, NULL, NULL);
8943 	return 0;
8944 }
8945 
8946 /**
8947  *	t4_handle_fw_rpl - process a FW reply message
8948  *	@adap: the adapter
8949  *	@rpl: start of the FW message
8950  *
8951  *	Processes a FW message, such as link state change messages.
8952  */
8953 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8954 {
8955 	u8 opcode = *(const u8 *)rpl;
8956 	const struct fw_port_cmd *p = (const void *)rpl;
8957 	enum fw_port_action action =
8958 	    G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
8959 	bool mod_changed, link_changed;
8960 
8961 	if (opcode == FW_PORT_CMD &&
8962 	    (action == FW_PORT_ACTION_GET_PORT_INFO ||
8963 	    action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8964 		/* link/module state change message */
8965 		int i;
8966 		int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
8967 		struct port_info *pi = NULL;
8968 		struct link_config *lc;
8969 
8970 		for_each_port(adap, i) {
8971 			pi = adap2pinfo(adap, i);
8972 			if (pi->tx_chan == chan)
8973 				break;
8974 		}
8975 
8976 		lc = &pi->link_cfg;
8977 		PORT_LOCK(pi);
8978 		handle_port_info(pi, p, action, &mod_changed, &link_changed);
8979 		PORT_UNLOCK(pi);
8980 		if (mod_changed)
8981 			t4_os_portmod_changed(pi);
8982 		if (link_changed) {
8983 			PORT_LOCK(pi);
8984 			t4_os_link_changed(pi);
8985 			PORT_UNLOCK(pi);
8986 		}
8987 	} else {
8988 		CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode);
8989 		return -EINVAL;
8990 	}
8991 	return 0;
8992 }
8993 
8994 /**
8995  *	get_pci_mode - determine a card's PCI mode
8996  *	@adapter: the adapter
8997  *	@p: where to store the PCI settings
8998  *
8999  *	Determines a card's PCI mode and associated parameters, such as speed
9000  *	and width.
9001  */
9002 static void get_pci_mode(struct adapter *adapter,
9003 				   struct pci_params *p)
9004 {
9005 	u16 val;
9006 	u32 pcie_cap;
9007 
9008 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
9009 	if (pcie_cap) {
9010 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
9011 		p->speed = val & PCI_EXP_LNKSTA_CLS;
9012 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
9013 	}
9014 }
9015 
9016 struct flash_desc {
9017 	u32 vendor_and_model_id;
9018 	u32 size_mb;
9019 };
9020 
9021 int t4_get_flash_params(struct adapter *adapter)
9022 {
9023 	/*
9024 	 * Table for non-standard supported Flash parts.  Note, all Flash
9025 	 * parts must have 64KB sectors.
9026 	 */
9027 	static struct flash_desc supported_flash[] = {
9028 		{ 0x00150201, 4 << 20 },	/* Spansion 4MB S25FL032P */
9029 	};
9030 
9031 	int ret;
9032 	u32 flashid = 0;
9033 	unsigned int part, manufacturer;
9034 	unsigned int density, size = 0;
9035 
9036 
9037 	/*
9038 	 * Issue a Read ID Command to the Flash part.  We decode supported
9039 	 * Flash parts and their sizes from this.  There's a newer Query
9040 	 * Command which can retrieve detailed geometry information but many
9041 	 * Flash parts don't support it.
9042 	 */
9043 	ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
9044 	if (!ret)
9045 		ret = sf1_read(adapter, 3, 0, 1, &flashid);
9046 	t4_write_reg(adapter, A_SF_OP, 0);	/* unlock SF */
9047 	if (ret < 0)
9048 		return ret;
9049 
9050 	/*
9051 	 * Check to see if it's one of our non-standard supported Flash parts.
9052 	 */
9053 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
9054 		if (supported_flash[part].vendor_and_model_id == flashid) {
9055 			adapter->params.sf_size =
9056 				supported_flash[part].size_mb;
9057 			adapter->params.sf_nsec =
9058 				adapter->params.sf_size / SF_SEC_SIZE;
9059 			goto found;
9060 		}
9061 
9062 	/*
9063 	 * Decode Flash part size.  The code below looks repetative with
9064 	 * common encodings, but that's not guaranteed in the JEDEC
9065 	 * specification for the Read JADEC ID command.  The only thing that
9066 	 * we're guaranteed by the JADEC specification is where the
9067 	 * Manufacturer ID is in the returned result.  After that each
9068 	 * Manufacturer ~could~ encode things completely differently.
9069 	 * Note, all Flash parts must have 64KB sectors.
9070 	 */
9071 	manufacturer = flashid & 0xff;
9072 	switch (manufacturer) {
9073 	case 0x20: /* Micron/Numonix */
9074 		/*
9075 		 * This Density -> Size decoding table is taken from Micron
9076 		 * Data Sheets.
9077 		 */
9078 		density = (flashid >> 16) & 0xff;
9079 		switch (density) {
9080 		case 0x14: size = 1 << 20; break; /*   1MB */
9081 		case 0x15: size = 1 << 21; break; /*   2MB */
9082 		case 0x16: size = 1 << 22; break; /*   4MB */
9083 		case 0x17: size = 1 << 23; break; /*   8MB */
9084 		case 0x18: size = 1 << 24; break; /*  16MB */
9085 		case 0x19: size = 1 << 25; break; /*  32MB */
9086 		case 0x20: size = 1 << 26; break; /*  64MB */
9087 		case 0x21: size = 1 << 27; break; /* 128MB */
9088 		case 0x22: size = 1 << 28; break; /* 256MB */
9089 		}
9090 		break;
9091 
9092 	case 0x9d: /* ISSI -- Integrated Silicon Solution, Inc. */
9093 		/*
9094 		 * This Density -> Size decoding table is taken from ISSI
9095 		 * Data Sheets.
9096 		 */
9097 		density = (flashid >> 16) & 0xff;
9098 		switch (density) {
9099 		case 0x16: size = 1 << 25; break; /*  32MB */
9100 		case 0x17: size = 1 << 26; break; /*  64MB */
9101 		}
9102 		break;
9103 
9104 	case 0xc2: /* Macronix */
9105 		/*
9106 		 * This Density -> Size decoding table is taken from Macronix
9107 		 * Data Sheets.
9108 		 */
9109 		density = (flashid >> 16) & 0xff;
9110 		switch (density) {
9111 		case 0x17: size = 1 << 23; break; /*   8MB */
9112 		case 0x18: size = 1 << 24; break; /*  16MB */
9113 		}
9114 		break;
9115 
9116 	case 0xef: /* Winbond */
9117 		/*
9118 		 * This Density -> Size decoding table is taken from Winbond
9119 		 * Data Sheets.
9120 		 */
9121 		density = (flashid >> 16) & 0xff;
9122 		switch (density) {
9123 		case 0x17: size = 1 << 23; break; /*   8MB */
9124 		case 0x18: size = 1 << 24; break; /*  16MB */
9125 		}
9126 		break;
9127 	}
9128 
9129 	/* If we didn't recognize the FLASH part, that's no real issue: the
9130 	 * Hardware/Software contract says that Hardware will _*ALWAYS*_
9131 	 * use a FLASH part which is at least 4MB in size and has 64KB
9132 	 * sectors.  The unrecognized FLASH part is likely to be much larger
9133 	 * than 4MB, but that's all we really need.
9134 	 */
9135 	if (size == 0) {
9136 		CH_WARN(adapter, "Unknown Flash Part, ID = %#x, assuming 4MB\n", flashid);
9137 		size = 1 << 22;
9138 	}
9139 
9140 	/*
9141 	 * Store decoded Flash size and fall through into vetting code.
9142 	 */
9143 	adapter->params.sf_size = size;
9144 	adapter->params.sf_nsec = size / SF_SEC_SIZE;
9145 
9146  found:
9147 	/*
9148 	 * We should ~probably~ reject adapters with FLASHes which are too
9149 	 * small but we have some legacy FPGAs with small FLASHes that we'd
9150 	 * still like to use.  So instead we emit a scary message ...
9151 	 */
9152 	if (adapter->params.sf_size < FLASH_MIN_SIZE)
9153 		CH_WARN(adapter, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
9154 			flashid, adapter->params.sf_size, FLASH_MIN_SIZE);
9155 
9156 	return 0;
9157 }
9158 
9159 static void set_pcie_completion_timeout(struct adapter *adapter,
9160 						  u8 range)
9161 {
9162 	u16 val;
9163 	u32 pcie_cap;
9164 
9165 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
9166 	if (pcie_cap) {
9167 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
9168 		val &= 0xfff0;
9169 		val |= range ;
9170 		t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
9171 	}
9172 }
9173 
9174 const struct chip_params *t4_get_chip_params(int chipid)
9175 {
9176 	static const struct chip_params chip_params[] = {
9177 		{
9178 			/* T4 */
9179 			.nchan = NCHAN,
9180 			.pm_stats_cnt = PM_NSTATS,
9181 			.cng_ch_bits_log = 2,
9182 			.nsched_cls = 15,
9183 			.cim_num_obq = CIM_NUM_OBQ,
9184 			.mps_rplc_size = 128,
9185 			.vfcount = 128,
9186 			.sge_fl_db = F_DBPRIO,
9187 			.mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES,
9188 			.rss_nentries = RSS_NENTRIES,
9189 		},
9190 		{
9191 			/* T5 */
9192 			.nchan = NCHAN,
9193 			.pm_stats_cnt = PM_NSTATS,
9194 			.cng_ch_bits_log = 2,
9195 			.nsched_cls = 16,
9196 			.cim_num_obq = CIM_NUM_OBQ_T5,
9197 			.mps_rplc_size = 128,
9198 			.vfcount = 128,
9199 			.sge_fl_db = F_DBPRIO | F_DBTYPE,
9200 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
9201 			.rss_nentries = RSS_NENTRIES,
9202 		},
9203 		{
9204 			/* T6 */
9205 			.nchan = T6_NCHAN,
9206 			.pm_stats_cnt = T6_PM_NSTATS,
9207 			.cng_ch_bits_log = 3,
9208 			.nsched_cls = 16,
9209 			.cim_num_obq = CIM_NUM_OBQ_T5,
9210 			.mps_rplc_size = 256,
9211 			.vfcount = 256,
9212 			.sge_fl_db = 0,
9213 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
9214 			.rss_nentries = T6_RSS_NENTRIES,
9215 		},
9216 	};
9217 
9218 	chipid -= CHELSIO_T4;
9219 	if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params))
9220 		return NULL;
9221 
9222 	return &chip_params[chipid];
9223 }
9224 
9225 /**
9226  *	t4_prep_adapter - prepare SW and HW for operation
9227  *	@adapter: the adapter
9228  *	@buf: temporary space of at least VPD_LEN size provided by the caller.
9229  *
9230  *	Initialize adapter SW state for the various HW modules, set initial
9231  *	values for some adapter tunables, take PHYs out of reset, and
9232  *	initialize the MDIO interface.
9233  */
9234 int t4_prep_adapter(struct adapter *adapter, u32 *buf)
9235 {
9236 	int ret;
9237 	uint16_t device_id;
9238 	uint32_t pl_rev;
9239 
9240 	get_pci_mode(adapter, &adapter->params.pci);
9241 
9242 	pl_rev = t4_read_reg(adapter, A_PL_REV);
9243 	adapter->params.chipid = G_CHIPID(pl_rev);
9244 	adapter->params.rev = G_REV(pl_rev);
9245 	if (adapter->params.chipid == 0) {
9246 		/* T4 did not have chipid in PL_REV (T5 onwards do) */
9247 		adapter->params.chipid = CHELSIO_T4;
9248 
9249 		/* T4A1 chip is not supported */
9250 		if (adapter->params.rev == 1) {
9251 			CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
9252 			return -EINVAL;
9253 		}
9254 	}
9255 
9256 	adapter->chip_params = t4_get_chip_params(chip_id(adapter));
9257 	if (adapter->chip_params == NULL)
9258 		return -EINVAL;
9259 
9260 	adapter->params.pci.vpd_cap_addr =
9261 	    t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
9262 
9263 	ret = t4_get_flash_params(adapter);
9264 	if (ret < 0)
9265 		return ret;
9266 
9267 	/* Cards with real ASICs have the chipid in the PCIe device id */
9268 	t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
9269 	if (device_id >> 12 == chip_id(adapter))
9270 		adapter->params.cim_la_size = CIMLA_SIZE;
9271 	else {
9272 		/* FPGA */
9273 		adapter->params.fpga = 1;
9274 		adapter->params.cim_la_size = 2 * CIMLA_SIZE;
9275 	}
9276 
9277 	ret = get_vpd_params(adapter, &adapter->params.vpd, device_id, buf);
9278 	if (ret < 0)
9279 		return ret;
9280 
9281 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
9282 
9283 	/*
9284 	 * Default port and clock for debugging in case we can't reach FW.
9285 	 */
9286 	adapter->params.nports = 1;
9287 	adapter->params.portvec = 1;
9288 	adapter->params.vpd.cclk = 50000;
9289 
9290 	/* Set pci completion timeout value to 4 seconds. */
9291 	set_pcie_completion_timeout(adapter, 0xd);
9292 	return 0;
9293 }
9294 
9295 /**
9296  *	t4_shutdown_adapter - shut down adapter, host & wire
9297  *	@adapter: the adapter
9298  *
9299  *	Perform an emergency shutdown of the adapter and stop it from
9300  *	continuing any further communication on the ports or DMA to the
9301  *	host.  This is typically used when the adapter and/or firmware
9302  *	have crashed and we want to prevent any further accidental
9303  *	communication with the rest of the world.  This will also force
9304  *	the port Link Status to go down -- if register writes work --
9305  *	which should help our peers figure out that we're down.
9306  */
9307 int t4_shutdown_adapter(struct adapter *adapter)
9308 {
9309 	int port;
9310 
9311 	t4_intr_disable(adapter);
9312 	t4_write_reg(adapter, A_DBG_GPIO_EN, 0);
9313 	for_each_port(adapter, port) {
9314 		u32 a_port_cfg = is_t4(adapter) ?
9315 				 PORT_REG(port, A_XGMAC_PORT_CFG) :
9316 				 T5_PORT_REG(port, A_MAC_PORT_CFG);
9317 
9318 		t4_write_reg(adapter, a_port_cfg,
9319 			     t4_read_reg(adapter, a_port_cfg)
9320 			     & ~V_SIGNAL_DET(1));
9321 	}
9322 	t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0);
9323 
9324 	return 0;
9325 }
9326 
9327 /**
9328  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
9329  *	@adapter: the adapter
9330  *	@qid: the Queue ID
9331  *	@qtype: the Ingress or Egress type for @qid
9332  *	@user: true if this request is for a user mode queue
9333  *	@pbar2_qoffset: BAR2 Queue Offset
9334  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
9335  *
9336  *	Returns the BAR2 SGE Queue Registers information associated with the
9337  *	indicated Absolute Queue ID.  These are passed back in return value
9338  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
9339  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
9340  *
9341  *	This may return an error which indicates that BAR2 SGE Queue
9342  *	registers aren't available.  If an error is not returned, then the
9343  *	following values are returned:
9344  *
9345  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
9346  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
9347  *
9348  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
9349  *	require the "Inferred Queue ID" ability may be used.  E.g. the
9350  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
9351  *	then these "Inferred Queue ID" register may not be used.
9352  */
9353 int t4_bar2_sge_qregs(struct adapter *adapter,
9354 		      unsigned int qid,
9355 		      enum t4_bar2_qtype qtype,
9356 		      int user,
9357 		      u64 *pbar2_qoffset,
9358 		      unsigned int *pbar2_qid)
9359 {
9360 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
9361 	u64 bar2_page_offset, bar2_qoffset;
9362 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
9363 
9364 	/* T4 doesn't support BAR2 SGE Queue registers for kernel
9365 	 * mode queues.
9366 	 */
9367 	if (!user && is_t4(adapter))
9368 		return -EINVAL;
9369 
9370 	/* Get our SGE Page Size parameters.
9371 	 */
9372 	page_shift = adapter->params.sge.page_shift;
9373 	page_size = 1 << page_shift;
9374 
9375 	/* Get the right Queues per Page parameters for our Queue.
9376 	 */
9377 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
9378 		     ? adapter->params.sge.eq_s_qpp
9379 		     : adapter->params.sge.iq_s_qpp);
9380 	qpp_mask = (1 << qpp_shift) - 1;
9381 
9382 	/* Calculate the basics of the BAR2 SGE Queue register area:
9383 	 *  o The BAR2 page the Queue registers will be in.
9384 	 *  o The BAR2 Queue ID.
9385 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
9386 	 */
9387 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
9388 	bar2_qid = qid & qpp_mask;
9389 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
9390 
9391 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
9392 	 * hardware will infer the Absolute Queue ID simply from the writes to
9393 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9394 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9395 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9396 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9397 	 * from the BAR2 Page and BAR2 Queue ID.
9398 	 *
9399 	 * One important censequence of this is that some BAR2 SGE registers
9400 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9401 	 * there.  But other registers synthesize the SGE Queue ID purely
9402 	 * from the writes to the registers -- the Write Combined Doorbell
9403 	 * Buffer is a good example.  These BAR2 SGE Registers are only
9404 	 * available for those BAR2 SGE Register areas where the SGE Absolute
9405 	 * Queue ID can be inferred from simple writes.
9406 	 */
9407 	bar2_qoffset = bar2_page_offset;
9408 	bar2_qinferred = (bar2_qid_offset < page_size);
9409 	if (bar2_qinferred) {
9410 		bar2_qoffset += bar2_qid_offset;
9411 		bar2_qid = 0;
9412 	}
9413 
9414 	*pbar2_qoffset = bar2_qoffset;
9415 	*pbar2_qid = bar2_qid;
9416 	return 0;
9417 }
9418 
9419 /**
9420  *	t4_init_devlog_params - initialize adapter->params.devlog
9421  *	@adap: the adapter
9422  *	@fw_attach: whether we can talk to the firmware
9423  *
9424  *	Initialize various fields of the adapter's Firmware Device Log
9425  *	Parameters structure.
9426  */
9427 int t4_init_devlog_params(struct adapter *adap, int fw_attach)
9428 {
9429 	struct devlog_params *dparams = &adap->params.devlog;
9430 	u32 pf_dparams;
9431 	unsigned int devlog_meminfo;
9432 	struct fw_devlog_cmd devlog_cmd;
9433 	int ret;
9434 
9435 	/* If we're dealing with newer firmware, the Device Log Paramerters
9436 	 * are stored in a designated register which allows us to access the
9437 	 * Device Log even if we can't talk to the firmware.
9438 	 */
9439 	pf_dparams =
9440 		t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG));
9441 	if (pf_dparams) {
9442 		unsigned int nentries, nentries128;
9443 
9444 		dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams);
9445 		dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4;
9446 
9447 		nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams);
9448 		nentries = (nentries128 + 1) * 128;
9449 		dparams->size = nentries * sizeof(struct fw_devlog_e);
9450 
9451 		return 0;
9452 	}
9453 
9454 	/*
9455 	 * For any failing returns ...
9456 	 */
9457 	memset(dparams, 0, sizeof *dparams);
9458 
9459 	/*
9460 	 * If we can't talk to the firmware, there's really nothing we can do
9461 	 * at this point.
9462 	 */
9463 	if (!fw_attach)
9464 		return -ENXIO;
9465 
9466 	/* Otherwise, ask the firmware for it's Device Log Parameters.
9467 	 */
9468 	memset(&devlog_cmd, 0, sizeof devlog_cmd);
9469 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9470 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
9471 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9472 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9473 			 &devlog_cmd);
9474 	if (ret)
9475 		return ret;
9476 
9477 	devlog_meminfo =
9478 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9479 	dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo);
9480 	dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4;
9481 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9482 
9483 	return 0;
9484 }
9485 
9486 /**
9487  *	t4_init_sge_params - initialize adap->params.sge
9488  *	@adapter: the adapter
9489  *
9490  *	Initialize various fields of the adapter's SGE Parameters structure.
9491  */
9492 int t4_init_sge_params(struct adapter *adapter)
9493 {
9494 	u32 r;
9495 	struct sge_params *sp = &adapter->params.sge;
9496 	unsigned i, tscale = 1;
9497 
9498 	r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD);
9499 	sp->counter_val[0] = G_THRESHOLD_0(r);
9500 	sp->counter_val[1] = G_THRESHOLD_1(r);
9501 	sp->counter_val[2] = G_THRESHOLD_2(r);
9502 	sp->counter_val[3] = G_THRESHOLD_3(r);
9503 
9504 	if (chip_id(adapter) >= CHELSIO_T6) {
9505 		r = t4_read_reg(adapter, A_SGE_ITP_CONTROL);
9506 		tscale = G_TSCALE(r);
9507 		if (tscale == 0)
9508 			tscale = 1;
9509 		else
9510 			tscale += 2;
9511 	}
9512 
9513 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1);
9514 	sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r)) * tscale;
9515 	sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r)) * tscale;
9516 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3);
9517 	sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r)) * tscale;
9518 	sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r)) * tscale;
9519 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5);
9520 	sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r)) * tscale;
9521 	sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r)) * tscale;
9522 
9523 	r = t4_read_reg(adapter, A_SGE_CONM_CTRL);
9524 	sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
9525 	if (is_t4(adapter))
9526 		sp->fl_starve_threshold2 = sp->fl_starve_threshold;
9527 	else if (is_t5(adapter))
9528 		sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
9529 	else
9530 		sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(r) * 2 + 1;
9531 
9532 	/* egress queues: log2 of # of doorbells per BAR2 page */
9533 	r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
9534 	r >>= S_QUEUESPERPAGEPF0 +
9535 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
9536 	sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
9537 
9538 	/* ingress queues: log2 of # of doorbells per BAR2 page */
9539 	r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
9540 	r >>= S_QUEUESPERPAGEPF0 +
9541 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
9542 	sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
9543 
9544 	r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
9545 	r >>= S_HOSTPAGESIZEPF0 +
9546 	    (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf;
9547 	sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10;
9548 
9549 	r = t4_read_reg(adapter, A_SGE_CONTROL);
9550 	sp->sge_control = r;
9551 	sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64;
9552 	sp->fl_pktshift = G_PKTSHIFT(r);
9553 	if (chip_id(adapter) <= CHELSIO_T5) {
9554 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
9555 		    X_INGPADBOUNDARY_SHIFT);
9556 	} else {
9557 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
9558 		    X_T6_INGPADBOUNDARY_SHIFT);
9559 	}
9560 	if (is_t4(adapter))
9561 		sp->pack_boundary = sp->pad_boundary;
9562 	else {
9563 		r = t4_read_reg(adapter, A_SGE_CONTROL2);
9564 		if (G_INGPACKBOUNDARY(r) == 0)
9565 			sp->pack_boundary = 16;
9566 		else
9567 			sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5);
9568 	}
9569 	for (i = 0; i < SGE_FLBUF_SIZES; i++)
9570 		sp->sge_fl_buffer_size[i] = t4_read_reg(adapter,
9571 		    A_SGE_FL_BUFFER_SIZE0 + (4 * i));
9572 
9573 	return 0;
9574 }
9575 
9576 /*
9577  * Read and cache the adapter's compressed filter mode and ingress config.
9578  */
9579 static void read_filter_mode_and_ingress_config(struct adapter *adap,
9580     bool sleep_ok)
9581 {
9582 	uint32_t v;
9583 	struct tp_params *tpp = &adap->params.tp;
9584 
9585 	t4_tp_pio_read(adap, &tpp->vlan_pri_map, 1, A_TP_VLAN_PRI_MAP,
9586 	    sleep_ok);
9587 	t4_tp_pio_read(adap, &tpp->ingress_config, 1, A_TP_INGRESS_CONFIG,
9588 	    sleep_ok);
9589 
9590 	/*
9591 	 * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9592 	 * shift positions of several elements of the Compressed Filter Tuple
9593 	 * for this adapter which we need frequently ...
9594 	 */
9595 	tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE);
9596 	tpp->port_shift = t4_filter_field_shift(adap, F_PORT);
9597 	tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
9598 	tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN);
9599 	tpp->tos_shift = t4_filter_field_shift(adap, F_TOS);
9600 	tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
9601 	tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE);
9602 	tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH);
9603 	tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE);
9604 	tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION);
9605 
9606 	if (chip_id(adap) > CHELSIO_T4) {
9607 		v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(3));
9608 		adap->params.tp.hash_filter_mask = v;
9609 		v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(4));
9610 		adap->params.tp.hash_filter_mask |= (u64)v << 32;
9611 	}
9612 }
9613 
9614 /**
9615  *      t4_init_tp_params - initialize adap->params.tp
9616  *      @adap: the adapter
9617  *
9618  *      Initialize various fields of the adapter's TP Parameters structure.
9619  */
9620 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
9621 {
9622 	int chan;
9623 	u32 tx_len, rx_len, r, v;
9624 	struct tp_params *tpp = &adap->params.tp;
9625 
9626 	v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
9627 	tpp->tre = G_TIMERRESOLUTION(v);
9628 	tpp->dack_re = G_DELAYEDACKRESOLUTION(v);
9629 
9630 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9631 	for (chan = 0; chan < MAX_NCHAN; chan++)
9632 		tpp->tx_modq[chan] = chan;
9633 
9634 	read_filter_mode_and_ingress_config(adap, sleep_ok);
9635 
9636 	if (chip_id(adap) > CHELSIO_T5) {
9637 		v = t4_read_reg(adap, A_TP_OUT_CONFIG);
9638 		tpp->rx_pkt_encap = v & F_CRXPKTENC;
9639 	} else
9640 		tpp->rx_pkt_encap = false;
9641 
9642 	rx_len = t4_read_reg(adap, A_TP_PMM_RX_PAGE_SIZE);
9643 	tx_len = t4_read_reg(adap, A_TP_PMM_TX_PAGE_SIZE);
9644 
9645 	r = t4_read_reg(adap, A_TP_PARA_REG2);
9646 	rx_len = min(rx_len, G_MAXRXDATA(r));
9647 	tx_len = min(tx_len, G_MAXRXDATA(r));
9648 
9649 	r = t4_read_reg(adap, A_TP_PARA_REG7);
9650 	v = min(G_PMMAXXFERLEN0(r), G_PMMAXXFERLEN1(r));
9651 	rx_len = min(rx_len, v);
9652 	tx_len = min(tx_len, v);
9653 
9654 	tpp->max_tx_pdu = tx_len;
9655 	tpp->max_rx_pdu = rx_len;
9656 
9657 	return 0;
9658 }
9659 
9660 /**
9661  *      t4_filter_field_shift - calculate filter field shift
9662  *      @adap: the adapter
9663  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9664  *
9665  *      Return the shift position of a filter field within the Compressed
9666  *      Filter Tuple.  The filter field is specified via its selection bit
9667  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9668  */
9669 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9670 {
9671 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
9672 	unsigned int sel;
9673 	int field_shift;
9674 
9675 	if ((filter_mode & filter_sel) == 0)
9676 		return -1;
9677 
9678 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9679 		switch (filter_mode & sel) {
9680 		case F_FCOE:
9681 			field_shift += W_FT_FCOE;
9682 			break;
9683 		case F_PORT:
9684 			field_shift += W_FT_PORT;
9685 			break;
9686 		case F_VNIC_ID:
9687 			field_shift += W_FT_VNIC_ID;
9688 			break;
9689 		case F_VLAN:
9690 			field_shift += W_FT_VLAN;
9691 			break;
9692 		case F_TOS:
9693 			field_shift += W_FT_TOS;
9694 			break;
9695 		case F_PROTOCOL:
9696 			field_shift += W_FT_PROTOCOL;
9697 			break;
9698 		case F_ETHERTYPE:
9699 			field_shift += W_FT_ETHERTYPE;
9700 			break;
9701 		case F_MACMATCH:
9702 			field_shift += W_FT_MACMATCH;
9703 			break;
9704 		case F_MPSHITTYPE:
9705 			field_shift += W_FT_MPSHITTYPE;
9706 			break;
9707 		case F_FRAGMENTATION:
9708 			field_shift += W_FT_FRAGMENTATION;
9709 			break;
9710 		}
9711 	}
9712 	return field_shift;
9713 }
9714 
9715 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id)
9716 {
9717 	u8 addr[6];
9718 	int ret, i, j;
9719 	struct port_info *p = adap2pinfo(adap, port_id);
9720 	u32 param, val;
9721 	struct vi_info *vi = &p->vi[0];
9722 
9723 	for (i = 0, j = -1; i <= p->port_id; i++) {
9724 		do {
9725 			j++;
9726 		} while ((adap->params.portvec & (1 << j)) == 0);
9727 	}
9728 
9729 	p->tx_chan = j;
9730 	p->mps_bg_map = t4_get_mps_bg_map(adap, j);
9731 	p->rx_e_chan_map = t4_get_rx_e_chan_map(adap, j);
9732 	p->lport = j;
9733 
9734 	if (!(adap->flags & IS_VF) ||
9735 	    adap->params.vfres.r_caps & FW_CMD_CAP_PORT) {
9736  		t4_update_port_info(p);
9737 	}
9738 
9739 	ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &vi->rss_size,
9740 	    &vi->vfvld, &vi->vin);
9741 	if (ret < 0)
9742 		return ret;
9743 
9744 	vi->viid = ret;
9745 	t4_os_set_hw_addr(p, addr);
9746 
9747 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9748 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
9749 	    V_FW_PARAMS_PARAM_YZ(vi->viid);
9750 	ret = t4_query_params(adap, mbox, pf, vf, 1, &param, &val);
9751 	if (ret)
9752 		vi->rss_base = 0xffff;
9753 	else {
9754 		/* MPASS((val >> 16) == rss_size); */
9755 		vi->rss_base = val & 0xffff;
9756 	}
9757 
9758 	return 0;
9759 }
9760 
9761 /**
9762  *	t4_read_cimq_cfg - read CIM queue configuration
9763  *	@adap: the adapter
9764  *	@base: holds the queue base addresses in bytes
9765  *	@size: holds the queue sizes in bytes
9766  *	@thres: holds the queue full thresholds in bytes
9767  *
9768  *	Returns the current configuration of the CIM queues, starting with
9769  *	the IBQs, then the OBQs.
9770  */
9771 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9772 {
9773 	unsigned int i, v;
9774 	int cim_num_obq = adap->chip_params->cim_num_obq;
9775 
9776 	for (i = 0; i < CIM_NUM_IBQ; i++) {
9777 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
9778 			     V_QUENUMSELECT(i));
9779 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9780 		/* value is in 256-byte units */
9781 		*base++ = G_CIMQBASE(v) * 256;
9782 		*size++ = G_CIMQSIZE(v) * 256;
9783 		*thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */
9784 	}
9785 	for (i = 0; i < cim_num_obq; i++) {
9786 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
9787 			     V_QUENUMSELECT(i));
9788 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9789 		/* value is in 256-byte units */
9790 		*base++ = G_CIMQBASE(v) * 256;
9791 		*size++ = G_CIMQSIZE(v) * 256;
9792 	}
9793 }
9794 
9795 /**
9796  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
9797  *	@adap: the adapter
9798  *	@qid: the queue index
9799  *	@data: where to store the queue contents
9800  *	@n: capacity of @data in 32-bit words
9801  *
9802  *	Reads the contents of the selected CIM queue starting at address 0 up
9803  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9804  *	error and the number of 32-bit words actually read on success.
9805  */
9806 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9807 {
9808 	int i, err, attempts;
9809 	unsigned int addr;
9810 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
9811 
9812 	if (qid > 5 || (n & 3))
9813 		return -EINVAL;
9814 
9815 	addr = qid * nwords;
9816 	if (n > nwords)
9817 		n = nwords;
9818 
9819 	/* It might take 3-10ms before the IBQ debug read access is allowed.
9820 	 * Wait for 1 Sec with a delay of 1 usec.
9821 	 */
9822 	attempts = 1000000;
9823 
9824 	for (i = 0; i < n; i++, addr++) {
9825 		t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
9826 			     F_IBQDBGEN);
9827 		err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
9828 				      attempts, 1);
9829 		if (err)
9830 			return err;
9831 		*data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
9832 	}
9833 	t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
9834 	return i;
9835 }
9836 
9837 /**
9838  *	t4_read_cim_obq - read the contents of a CIM outbound queue
9839  *	@adap: the adapter
9840  *	@qid: the queue index
9841  *	@data: where to store the queue contents
9842  *	@n: capacity of @data in 32-bit words
9843  *
9844  *	Reads the contents of the selected CIM queue starting at address 0 up
9845  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9846  *	error and the number of 32-bit words actually read on success.
9847  */
9848 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9849 {
9850 	int i, err;
9851 	unsigned int addr, v, nwords;
9852 	int cim_num_obq = adap->chip_params->cim_num_obq;
9853 
9854 	if ((qid > (cim_num_obq - 1)) || (n & 3))
9855 		return -EINVAL;
9856 
9857 	t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
9858 		     V_QUENUMSELECT(qid));
9859 	v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9860 
9861 	addr = G_CIMQBASE(v) * 64;    /* muliple of 256 -> muliple of 4 */
9862 	nwords = G_CIMQSIZE(v) * 64;  /* same */
9863 	if (n > nwords)
9864 		n = nwords;
9865 
9866 	for (i = 0; i < n; i++, addr++) {
9867 		t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
9868 			     F_OBQDBGEN);
9869 		err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
9870 				      2, 1);
9871 		if (err)
9872 			return err;
9873 		*data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
9874 	}
9875 	t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
9876 	return i;
9877 }
9878 
9879 enum {
9880 	CIM_QCTL_BASE     = 0,
9881 	CIM_CTL_BASE      = 0x2000,
9882 	CIM_PBT_ADDR_BASE = 0x2800,
9883 	CIM_PBT_LRF_BASE  = 0x3000,
9884 	CIM_PBT_DATA_BASE = 0x3800
9885 };
9886 
9887 /**
9888  *	t4_cim_read - read a block from CIM internal address space
9889  *	@adap: the adapter
9890  *	@addr: the start address within the CIM address space
9891  *	@n: number of words to read
9892  *	@valp: where to store the result
9893  *
9894  *	Reads a block of 4-byte words from the CIM intenal address space.
9895  */
9896 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9897 		unsigned int *valp)
9898 {
9899 	int ret = 0;
9900 
9901 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
9902 		return -EBUSY;
9903 
9904 	for ( ; !ret && n--; addr += 4) {
9905 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
9906 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
9907 				      0, 5, 2);
9908 		if (!ret)
9909 			*valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
9910 	}
9911 	return ret;
9912 }
9913 
9914 /**
9915  *	t4_cim_write - write a block into CIM internal address space
9916  *	@adap: the adapter
9917  *	@addr: the start address within the CIM address space
9918  *	@n: number of words to write
9919  *	@valp: set of values to write
9920  *
9921  *	Writes a block of 4-byte words into the CIM intenal address space.
9922  */
9923 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
9924 		 const unsigned int *valp)
9925 {
9926 	int ret = 0;
9927 
9928 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
9929 		return -EBUSY;
9930 
9931 	for ( ; !ret && n--; addr += 4) {
9932 		t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
9933 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
9934 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
9935 				      0, 5, 2);
9936 	}
9937 	return ret;
9938 }
9939 
9940 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
9941 			 unsigned int val)
9942 {
9943 	return t4_cim_write(adap, addr, 1, &val);
9944 }
9945 
9946 /**
9947  *	t4_cim_ctl_read - read a block from CIM control region
9948  *	@adap: the adapter
9949  *	@addr: the start address within the CIM control region
9950  *	@n: number of words to read
9951  *	@valp: where to store the result
9952  *
9953  *	Reads a block of 4-byte words from the CIM control region.
9954  */
9955 int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
9956 		    unsigned int *valp)
9957 {
9958 	return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
9959 }
9960 
9961 /**
9962  *	t4_cim_read_la - read CIM LA capture buffer
9963  *	@adap: the adapter
9964  *	@la_buf: where to store the LA data
9965  *	@wrptr: the HW write pointer within the capture buffer
9966  *
9967  *	Reads the contents of the CIM LA buffer with the most recent entry at
9968  *	the end	of the returned data and with the entry at @wrptr first.
9969  *	We try to leave the LA in the running state we find it in.
9970  */
9971 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9972 {
9973 	int i, ret;
9974 	unsigned int cfg, val, idx;
9975 
9976 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
9977 	if (ret)
9978 		return ret;
9979 
9980 	if (cfg & F_UPDBGLAEN) {	/* LA is running, freeze it */
9981 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
9982 		if (ret)
9983 			return ret;
9984 	}
9985 
9986 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
9987 	if (ret)
9988 		goto restart;
9989 
9990 	idx = G_UPDBGLAWRPTR(val);
9991 	if (wrptr)
9992 		*wrptr = idx;
9993 
9994 	for (i = 0; i < adap->params.cim_la_size; i++) {
9995 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
9996 				    V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
9997 		if (ret)
9998 			break;
9999 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
10000 		if (ret)
10001 			break;
10002 		if (val & F_UPDBGLARDEN) {
10003 			ret = -ETIMEDOUT;
10004 			break;
10005 		}
10006 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
10007 		if (ret)
10008 			break;
10009 
10010 		/* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
10011 		 * identify the 32-bit portion of the full 312-bit data
10012 		 */
10013 		if (is_t6(adap) && (idx & 0xf) >= 9)
10014 			idx = (idx & 0xff0) + 0x10;
10015 		else
10016 			idx++;
10017 		/* address can't exceed 0xfff */
10018 		idx &= M_UPDBGLARDPTR;
10019 	}
10020 restart:
10021 	if (cfg & F_UPDBGLAEN) {
10022 		int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
10023 				      cfg & ~F_UPDBGLARDEN);
10024 		if (!ret)
10025 			ret = r;
10026 	}
10027 	return ret;
10028 }
10029 
10030 /**
10031  *	t4_tp_read_la - read TP LA capture buffer
10032  *	@adap: the adapter
10033  *	@la_buf: where to store the LA data
10034  *	@wrptr: the HW write pointer within the capture buffer
10035  *
10036  *	Reads the contents of the TP LA buffer with the most recent entry at
10037  *	the end	of the returned data and with the entry at @wrptr first.
10038  *	We leave the LA in the running state we find it in.
10039  */
10040 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
10041 {
10042 	bool last_incomplete;
10043 	unsigned int i, cfg, val, idx;
10044 
10045 	cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
10046 	if (cfg & F_DBGLAENABLE)			/* freeze LA */
10047 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
10048 			     adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
10049 
10050 	val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
10051 	idx = G_DBGLAWPTR(val);
10052 	last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
10053 	if (last_incomplete)
10054 		idx = (idx + 1) & M_DBGLARPTR;
10055 	if (wrptr)
10056 		*wrptr = idx;
10057 
10058 	val &= 0xffff;
10059 	val &= ~V_DBGLARPTR(M_DBGLARPTR);
10060 	val |= adap->params.tp.la_mask;
10061 
10062 	for (i = 0; i < TPLA_SIZE; i++) {
10063 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
10064 		la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
10065 		idx = (idx + 1) & M_DBGLARPTR;
10066 	}
10067 
10068 	/* Wipe out last entry if it isn't valid */
10069 	if (last_incomplete)
10070 		la_buf[TPLA_SIZE - 1] = ~0ULL;
10071 
10072 	if (cfg & F_DBGLAENABLE)		/* restore running state */
10073 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
10074 			     cfg | adap->params.tp.la_mask);
10075 }
10076 
10077 /*
10078  * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
10079  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
10080  * state for more than the Warning Threshold then we'll issue a warning about
10081  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
10082  * appears to be hung every Warning Repeat second till the situation clears.
10083  * If the situation clears, we'll note that as well.
10084  */
10085 #define SGE_IDMA_WARN_THRESH 1
10086 #define SGE_IDMA_WARN_REPEAT 300
10087 
10088 /**
10089  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
10090  *	@adapter: the adapter
10091  *	@idma: the adapter IDMA Monitor state
10092  *
10093  *	Initialize the state of an SGE Ingress DMA Monitor.
10094  */
10095 void t4_idma_monitor_init(struct adapter *adapter,
10096 			  struct sge_idma_monitor_state *idma)
10097 {
10098 	/* Initialize the state variables for detecting an SGE Ingress DMA
10099 	 * hang.  The SGE has internal counters which count up on each clock
10100 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
10101 	 * same state they were on the previous clock tick.  The clock used is
10102 	 * the Core Clock so we have a limit on the maximum "time" they can
10103 	 * record; typically a very small number of seconds.  For instance,
10104 	 * with a 600MHz Core Clock, we can only count up to a bit more than
10105 	 * 7s.  So we'll synthesize a larger counter in order to not run the
10106 	 * risk of having the "timers" overflow and give us the flexibility to
10107 	 * maintain a Hung SGE State Machine of our own which operates across
10108 	 * a longer time frame.
10109 	 */
10110 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
10111 	idma->idma_stalled[0] = idma->idma_stalled[1] = 0;
10112 }
10113 
10114 /**
10115  *	t4_idma_monitor - monitor SGE Ingress DMA state
10116  *	@adapter: the adapter
10117  *	@idma: the adapter IDMA Monitor state
10118  *	@hz: number of ticks/second
10119  *	@ticks: number of ticks since the last IDMA Monitor call
10120  */
10121 void t4_idma_monitor(struct adapter *adapter,
10122 		     struct sge_idma_monitor_state *idma,
10123 		     int hz, int ticks)
10124 {
10125 	int i, idma_same_state_cnt[2];
10126 
10127 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
10128 	  * are counters inside the SGE which count up on each clock when the
10129 	  * SGE finds its Ingress DMA State Engines in the same states they
10130 	  * were in the previous clock.  The counters will peg out at
10131 	  * 0xffffffff without wrapping around so once they pass the 1s
10132 	  * threshold they'll stay above that till the IDMA state changes.
10133 	  */
10134 	t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13);
10135 	idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH);
10136 	idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
10137 
10138 	for (i = 0; i < 2; i++) {
10139 		u32 debug0, debug11;
10140 
10141 		/* If the Ingress DMA Same State Counter ("timer") is less
10142 		 * than 1s, then we can reset our synthesized Stall Timer and
10143 		 * continue.  If we have previously emitted warnings about a
10144 		 * potential stalled Ingress Queue, issue a note indicating
10145 		 * that the Ingress Queue has resumed forward progress.
10146 		 */
10147 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
10148 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz)
10149 				CH_WARN(adapter, "SGE idma%d, queue %u, "
10150 					"resumed after %d seconds\n",
10151 					i, idma->idma_qid[i],
10152 					idma->idma_stalled[i]/hz);
10153 			idma->idma_stalled[i] = 0;
10154 			continue;
10155 		}
10156 
10157 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
10158 		 * domain.  The first time we get here it'll be because we
10159 		 * passed the 1s Threshold; each additional time it'll be
10160 		 * because the RX Timer Callback is being fired on its regular
10161 		 * schedule.
10162 		 *
10163 		 * If the stall is below our Potential Hung Ingress Queue
10164 		 * Warning Threshold, continue.
10165 		 */
10166 		if (idma->idma_stalled[i] == 0) {
10167 			idma->idma_stalled[i] = hz;
10168 			idma->idma_warn[i] = 0;
10169 		} else {
10170 			idma->idma_stalled[i] += ticks;
10171 			idma->idma_warn[i] -= ticks;
10172 		}
10173 
10174 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz)
10175 			continue;
10176 
10177 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
10178 		 */
10179 		if (idma->idma_warn[i] > 0)
10180 			continue;
10181 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz;
10182 
10183 		/* Read and save the SGE IDMA State and Queue ID information.
10184 		 * We do this every time in case it changes across time ...
10185 		 * can't be too careful ...
10186 		 */
10187 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0);
10188 		debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
10189 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
10190 
10191 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11);
10192 		debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
10193 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
10194 
10195 		CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in "
10196 			" state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
10197 			i, idma->idma_qid[i], idma->idma_state[i],
10198 			idma->idma_stalled[i]/hz,
10199 			debug0, debug11);
10200 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
10201 	}
10202 }
10203 
10204 /**
10205  *     t4_set_vf_mac - Set MAC address for the specified VF
10206  *     @adapter: The adapter
10207  *     @pf: the PF used to instantiate the VFs
10208  *     @vf: one of the VFs instantiated by the specified PF
10209  *     @naddr: the number of MAC addresses
10210  *     @addr: the MAC address(es) to be set to the specified VF
10211  */
10212 int t4_set_vf_mac(struct adapter *adapter, unsigned int pf, unsigned int vf,
10213 		  unsigned int naddr, u8 *addr)
10214 {
10215 	struct fw_acl_mac_cmd cmd;
10216 
10217 	memset(&cmd, 0, sizeof(cmd));
10218 	cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_ACL_MAC_CMD) |
10219 				    F_FW_CMD_REQUEST |
10220 				    F_FW_CMD_WRITE |
10221 				    V_FW_ACL_MAC_CMD_PFN(pf) |
10222 				    V_FW_ACL_MAC_CMD_VFN(vf));
10223 
10224 	/* Note: Do not enable the ACL */
10225 	cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
10226 	cmd.nmac = naddr;
10227 
10228 	switch (pf) {
10229 	case 3:
10230 		memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
10231 		break;
10232 	case 2:
10233 		memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
10234 		break;
10235 	case 1:
10236 		memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
10237 		break;
10238 	case 0:
10239 		memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
10240 		break;
10241 	}
10242 
10243 	return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
10244 }
10245 
10246 /**
10247  *	t4_read_pace_tbl - read the pace table
10248  *	@adap: the adapter
10249  *	@pace_vals: holds the returned values
10250  *
10251  *	Returns the values of TP's pace table in microseconds.
10252  */
10253 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
10254 {
10255 	unsigned int i, v;
10256 
10257 	for (i = 0; i < NTX_SCHED; i++) {
10258 		t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
10259 		v = t4_read_reg(adap, A_TP_PACE_TABLE);
10260 		pace_vals[i] = dack_ticks_to_usec(adap, v);
10261 	}
10262 }
10263 
10264 /**
10265  *	t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
10266  *	@adap: the adapter
10267  *	@sched: the scheduler index
10268  *	@kbps: the byte rate in Kbps
10269  *	@ipg: the interpacket delay in tenths of nanoseconds
10270  *
10271  *	Return the current configuration of a HW Tx scheduler.
10272  */
10273 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
10274 		     unsigned int *ipg, bool sleep_ok)
10275 {
10276 	unsigned int v, addr, bpt, cpt;
10277 
10278 	if (kbps) {
10279 		addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
10280 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10281 		if (sched & 1)
10282 			v >>= 16;
10283 		bpt = (v >> 8) & 0xff;
10284 		cpt = v & 0xff;
10285 		if (!cpt)
10286 			*kbps = 0;	/* scheduler disabled */
10287 		else {
10288 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
10289 			*kbps = (v * bpt) / 125;
10290 		}
10291 	}
10292 	if (ipg) {
10293 		addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
10294 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10295 		if (sched & 1)
10296 			v >>= 16;
10297 		v &= 0xffff;
10298 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
10299 	}
10300 }
10301 
10302 /**
10303  *	t4_load_cfg - download config file
10304  *	@adap: the adapter
10305  *	@cfg_data: the cfg text file to write
10306  *	@size: text file size
10307  *
10308  *	Write the supplied config text file to the card's serial flash.
10309  */
10310 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10311 {
10312 	int ret, i, n, cfg_addr;
10313 	unsigned int addr;
10314 	unsigned int flash_cfg_start_sec;
10315 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10316 
10317 	cfg_addr = t4_flash_cfg_addr(adap);
10318 	if (cfg_addr < 0)
10319 		return cfg_addr;
10320 
10321 	addr = cfg_addr;
10322 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10323 
10324 	if (size > FLASH_CFG_MAX_SIZE) {
10325 		CH_ERR(adap, "cfg file too large, max is %u bytes\n",
10326 		       FLASH_CFG_MAX_SIZE);
10327 		return -EFBIG;
10328 	}
10329 
10330 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
10331 			 sf_sec_size);
10332 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10333 				     flash_cfg_start_sec + i - 1);
10334 	/*
10335 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10336 	 * with the on-adapter Firmware Configuration File.
10337 	 */
10338 	if (ret || size == 0)
10339 		goto out;
10340 
10341 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10342 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
10343 		if ( (size - i) <  SF_PAGE_SIZE)
10344 			n = size - i;
10345 		else
10346 			n = SF_PAGE_SIZE;
10347 		ret = t4_write_flash(adap, addr, n, cfg_data, 1);
10348 		if (ret)
10349 			goto out;
10350 
10351 		addr += SF_PAGE_SIZE;
10352 		cfg_data += SF_PAGE_SIZE;
10353 	}
10354 
10355 out:
10356 	if (ret)
10357 		CH_ERR(adap, "config file %s failed %d\n",
10358 		       (size == 0 ? "clear" : "download"), ret);
10359 	return ret;
10360 }
10361 
10362 /**
10363  *	t5_fw_init_extern_mem - initialize the external memory
10364  *	@adap: the adapter
10365  *
10366  *	Initializes the external memory on T5.
10367  */
10368 int t5_fw_init_extern_mem(struct adapter *adap)
10369 {
10370 	u32 params[1], val[1];
10371 	int ret;
10372 
10373 	if (!is_t5(adap))
10374 		return 0;
10375 
10376 	val[0] = 0xff; /* Initialize all MCs */
10377 	params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
10378 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT));
10379 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val,
10380 			FW_CMD_MAX_TIMEOUT);
10381 
10382 	return ret;
10383 }
10384 
10385 /* BIOS boot headers */
10386 typedef struct pci_expansion_rom_header {
10387 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
10388 	u8	reserved[22]; /* Reserved per processor Architecture data */
10389 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
10390 } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
10391 
10392 /* Legacy PCI Expansion ROM Header */
10393 typedef struct legacy_pci_expansion_rom_header {
10394 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
10395 	u8	size512; /* Current Image Size in units of 512 bytes */
10396 	u8	initentry_point[4];
10397 	u8	cksum; /* Checksum computed on the entire Image */
10398 	u8	reserved[16]; /* Reserved */
10399 	u8	pcir_offset[2]; /* Offset to PCI Data Struture */
10400 } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
10401 
10402 /* EFI PCI Expansion ROM Header */
10403 typedef struct efi_pci_expansion_rom_header {
10404 	u8	signature[2]; // ROM signature. The value 0xaa55
10405 	u8	initialization_size[2]; /* Units 512. Includes this header */
10406 	u8	efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
10407 	u8	efi_subsystem[2]; /* Subsystem value for EFI image header */
10408 	u8	efi_machine_type[2]; /* Machine type from EFI image header */
10409 	u8	compression_type[2]; /* Compression type. */
10410 		/*
10411 		 * Compression type definition
10412 		 * 0x0: uncompressed
10413 		 * 0x1: Compressed
10414 		 * 0x2-0xFFFF: Reserved
10415 		 */
10416 	u8	reserved[8]; /* Reserved */
10417 	u8	efi_image_header_offset[2]; /* Offset to EFI Image */
10418 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
10419 } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
10420 
10421 /* PCI Data Structure Format */
10422 typedef struct pcir_data_structure { /* PCI Data Structure */
10423 	u8	signature[4]; /* Signature. The string "PCIR" */
10424 	u8	vendor_id[2]; /* Vendor Identification */
10425 	u8	device_id[2]; /* Device Identification */
10426 	u8	vital_product[2]; /* Pointer to Vital Product Data */
10427 	u8	length[2]; /* PCIR Data Structure Length */
10428 	u8	revision; /* PCIR Data Structure Revision */
10429 	u8	class_code[3]; /* Class Code */
10430 	u8	image_length[2]; /* Image Length. Multiple of 512B */
10431 	u8	code_revision[2]; /* Revision Level of Code/Data */
10432 	u8	code_type; /* Code Type. */
10433 		/*
10434 		 * PCI Expansion ROM Code Types
10435 		 * 0x00: Intel IA-32, PC-AT compatible. Legacy
10436 		 * 0x01: Open Firmware standard for PCI. FCODE
10437 		 * 0x02: Hewlett-Packard PA RISC. HP reserved
10438 		 * 0x03: EFI Image. EFI
10439 		 * 0x04-0xFF: Reserved.
10440 		 */
10441 	u8	indicator; /* Indicator. Identifies the last image in the ROM */
10442 	u8	reserved[2]; /* Reserved */
10443 } pcir_data_t; /* PCI__DATA_STRUCTURE */
10444 
10445 /* BOOT constants */
10446 enum {
10447 	BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
10448 	BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
10449 	BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
10450 	BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
10451 	BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
10452 	VENDOR_ID = 0x1425, /* Vendor ID */
10453 	PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
10454 };
10455 
10456 /*
10457  *	modify_device_id - Modifies the device ID of the Boot BIOS image
10458  *	@adatper: the device ID to write.
10459  *	@boot_data: the boot image to modify.
10460  *
10461  *	Write the supplied device ID to the boot BIOS image.
10462  */
10463 static void modify_device_id(int device_id, u8 *boot_data)
10464 {
10465 	legacy_pci_exp_rom_header_t *header;
10466 	pcir_data_t *pcir_header;
10467 	u32 cur_header = 0;
10468 
10469 	/*
10470 	 * Loop through all chained images and change the device ID's
10471 	 */
10472 	while (1) {
10473 		header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
10474 		pcir_header = (pcir_data_t *) &boot_data[cur_header +
10475 			      le16_to_cpu(*(u16*)header->pcir_offset)];
10476 
10477 		/*
10478 		 * Only modify the Device ID if code type is Legacy or HP.
10479 		 * 0x00: Okay to modify
10480 		 * 0x01: FCODE. Do not be modify
10481 		 * 0x03: Okay to modify
10482 		 * 0x04-0xFF: Do not modify
10483 		 */
10484 		if (pcir_header->code_type == 0x00) {
10485 			u8 csum = 0;
10486 			int i;
10487 
10488 			/*
10489 			 * Modify Device ID to match current adatper
10490 			 */
10491 			*(u16*) pcir_header->device_id = device_id;
10492 
10493 			/*
10494 			 * Set checksum temporarily to 0.
10495 			 * We will recalculate it later.
10496 			 */
10497 			header->cksum = 0x0;
10498 
10499 			/*
10500 			 * Calculate and update checksum
10501 			 */
10502 			for (i = 0; i < (header->size512 * 512); i++)
10503 				csum += (u8)boot_data[cur_header + i];
10504 
10505 			/*
10506 			 * Invert summed value to create the checksum
10507 			 * Writing new checksum value directly to the boot data
10508 			 */
10509 			boot_data[cur_header + 7] = -csum;
10510 
10511 		} else if (pcir_header->code_type == 0x03) {
10512 
10513 			/*
10514 			 * Modify Device ID to match current adatper
10515 			 */
10516 			*(u16*) pcir_header->device_id = device_id;
10517 
10518 		}
10519 
10520 
10521 		/*
10522 		 * Check indicator element to identify if this is the last
10523 		 * image in the ROM.
10524 		 */
10525 		if (pcir_header->indicator & 0x80)
10526 			break;
10527 
10528 		/*
10529 		 * Move header pointer up to the next image in the ROM.
10530 		 */
10531 		cur_header += header->size512 * 512;
10532 	}
10533 }
10534 
10535 /*
10536  *	t4_load_boot - download boot flash
10537  *	@adapter: the adapter
10538  *	@boot_data: the boot image to write
10539  *	@boot_addr: offset in flash to write boot_data
10540  *	@size: image size
10541  *
10542  *	Write the supplied boot image to the card's serial flash.
10543  *	The boot image has the following sections: a 28-byte header and the
10544  *	boot image.
10545  */
10546 int t4_load_boot(struct adapter *adap, u8 *boot_data,
10547 		 unsigned int boot_addr, unsigned int size)
10548 {
10549 	pci_exp_rom_header_t *header;
10550 	int pcir_offset ;
10551 	pcir_data_t *pcir_header;
10552 	int ret, addr;
10553 	uint16_t device_id;
10554 	unsigned int i;
10555 	unsigned int boot_sector = (boot_addr * 1024 );
10556 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10557 
10558 	/*
10559 	 * Make sure the boot image does not encroach on the firmware region
10560 	 */
10561 	if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
10562 		CH_ERR(adap, "boot image encroaching on firmware region\n");
10563 		return -EFBIG;
10564 	}
10565 
10566 	/*
10567 	 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
10568 	 * and Boot configuration data sections. These 3 boot sections span
10569 	 * sectors 0 to 7 in flash and live right before the FW image location.
10570 	 */
10571 	i = DIV_ROUND_UP(size ? size : FLASH_FW_START,
10572 			sf_sec_size);
10573 	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
10574 				     (boot_sector >> 16) + i - 1);
10575 
10576 	/*
10577 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10578 	 * with the on-adapter option ROM file
10579 	 */
10580 	if (ret || (size == 0))
10581 		goto out;
10582 
10583 	/* Get boot header */
10584 	header = (pci_exp_rom_header_t *)boot_data;
10585 	pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
10586 	/* PCIR Data Structure */
10587 	pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
10588 
10589 	/*
10590 	 * Perform some primitive sanity testing to avoid accidentally
10591 	 * writing garbage over the boot sectors.  We ought to check for
10592 	 * more but it's not worth it for now ...
10593 	 */
10594 	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
10595 		CH_ERR(adap, "boot image too small/large\n");
10596 		return -EFBIG;
10597 	}
10598 
10599 #ifndef CHELSIO_T4_DIAGS
10600 	/*
10601 	 * Check BOOT ROM header signature
10602 	 */
10603 	if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
10604 		CH_ERR(adap, "Boot image missing signature\n");
10605 		return -EINVAL;
10606 	}
10607 
10608 	/*
10609 	 * Check PCI header signature
10610 	 */
10611 	if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
10612 		CH_ERR(adap, "PCI header missing signature\n");
10613 		return -EINVAL;
10614 	}
10615 
10616 	/*
10617 	 * Check Vendor ID matches Chelsio ID
10618 	 */
10619 	if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
10620 		CH_ERR(adap, "Vendor ID missing signature\n");
10621 		return -EINVAL;
10622 	}
10623 #endif
10624 
10625 	/*
10626 	 * Retrieve adapter's device ID
10627 	 */
10628 	t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
10629 	/* Want to deal with PF 0 so I strip off PF 4 indicator */
10630 	device_id = device_id & 0xf0ff;
10631 
10632 	/*
10633 	 * Check PCIE Device ID
10634 	 */
10635 	if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
10636 		/*
10637 		 * Change the device ID in the Boot BIOS image to match
10638 		 * the Device ID of the current adapter.
10639 		 */
10640 		modify_device_id(device_id, boot_data);
10641 	}
10642 
10643 	/*
10644 	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
10645 	 * we finish copying the rest of the boot image. This will ensure
10646 	 * that the BIOS boot header will only be written if the boot image
10647 	 * was written in full.
10648 	 */
10649 	addr = boot_sector;
10650 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
10651 		addr += SF_PAGE_SIZE;
10652 		boot_data += SF_PAGE_SIZE;
10653 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
10654 		if (ret)
10655 			goto out;
10656 	}
10657 
10658 	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
10659 			     (const u8 *)header, 0);
10660 
10661 out:
10662 	if (ret)
10663 		CH_ERR(adap, "boot image download failed, error %d\n", ret);
10664 	return ret;
10665 }
10666 
10667 /*
10668  *	t4_flash_bootcfg_addr - return the address of the flash optionrom configuration
10669  *	@adapter: the adapter
10670  *
10671  *	Return the address within the flash where the OptionROM Configuration
10672  *	is stored, or an error if the device FLASH is too small to contain
10673  *	a OptionROM Configuration.
10674  */
10675 static int t4_flash_bootcfg_addr(struct adapter *adapter)
10676 {
10677 	/*
10678 	 * If the device FLASH isn't large enough to hold a Firmware
10679 	 * Configuration File, return an error.
10680 	 */
10681 	if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
10682 		return -ENOSPC;
10683 
10684 	return FLASH_BOOTCFG_START;
10685 }
10686 
10687 int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size)
10688 {
10689 	int ret, i, n, cfg_addr;
10690 	unsigned int addr;
10691 	unsigned int flash_cfg_start_sec;
10692 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10693 
10694 	cfg_addr = t4_flash_bootcfg_addr(adap);
10695 	if (cfg_addr < 0)
10696 		return cfg_addr;
10697 
10698 	addr = cfg_addr;
10699 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10700 
10701 	if (size > FLASH_BOOTCFG_MAX_SIZE) {
10702 		CH_ERR(adap, "bootcfg file too large, max is %u bytes\n",
10703 			FLASH_BOOTCFG_MAX_SIZE);
10704 		return -EFBIG;
10705 	}
10706 
10707 	i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */
10708 			 sf_sec_size);
10709 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10710 					flash_cfg_start_sec + i - 1);
10711 
10712 	/*
10713 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10714 	 * with the on-adapter OptionROM Configuration File.
10715 	 */
10716 	if (ret || size == 0)
10717 		goto out;
10718 
10719 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10720 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
10721 		if ( (size - i) <  SF_PAGE_SIZE)
10722 			n = size - i;
10723 		else
10724 			n = SF_PAGE_SIZE;
10725 		ret = t4_write_flash(adap, addr, n, cfg_data, 0);
10726 		if (ret)
10727 			goto out;
10728 
10729 		addr += SF_PAGE_SIZE;
10730 		cfg_data += SF_PAGE_SIZE;
10731 	}
10732 
10733 out:
10734 	if (ret)
10735 		CH_ERR(adap, "boot config data %s failed %d\n",
10736 				(size == 0 ? "clear" : "download"), ret);
10737 	return ret;
10738 }
10739 
10740 /**
10741  *	t4_set_filter_mode - configure the optional components of filter tuples
10742  *	@adap: the adapter
10743  *	@mode_map: a bitmap selcting which optional filter components to enable
10744  * 	@sleep_ok: if true we may sleep while awaiting command completion
10745  *
10746  *	Sets the filter mode by selecting the optional components to enable
10747  *	in filter tuples.  Returns 0 on success and a negative error if the
10748  *	requested mode needs more bits than are available for optional
10749  *	components.
10750  */
10751 int t4_set_filter_mode(struct adapter *adap, unsigned int mode_map,
10752 		       bool sleep_ok)
10753 {
10754 	static u8 width[] = { 1, 3, 17, 17, 8, 8, 16, 9, 3, 1 };
10755 
10756 	int i, nbits = 0;
10757 
10758 	for (i = S_FCOE; i <= S_FRAGMENTATION; i++)
10759 		if (mode_map & (1 << i))
10760 			nbits += width[i];
10761 	if (nbits > FILTER_OPT_LEN)
10762 		return -EINVAL;
10763 	t4_tp_pio_write(adap, &mode_map, 1, A_TP_VLAN_PRI_MAP, sleep_ok);
10764 	read_filter_mode_and_ingress_config(adap, sleep_ok);
10765 
10766 	return 0;
10767 }
10768 
10769 /**
10770  *	t4_clr_port_stats - clear port statistics
10771  *	@adap: the adapter
10772  *	@idx: the port index
10773  *
10774  *	Clear HW statistics for the given port.
10775  */
10776 void t4_clr_port_stats(struct adapter *adap, int idx)
10777 {
10778 	unsigned int i;
10779 	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
10780 	u32 port_base_addr;
10781 
10782 	if (is_t4(adap))
10783 		port_base_addr = PORT_BASE(idx);
10784 	else
10785 		port_base_addr = T5_PORT_BASE(idx);
10786 
10787 	for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
10788 			i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
10789 		t4_write_reg(adap, port_base_addr + i, 0);
10790 	for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
10791 			i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
10792 		t4_write_reg(adap, port_base_addr + i, 0);
10793 	for (i = 0; i < 4; i++)
10794 		if (bgmap & (1 << i)) {
10795 			t4_write_reg(adap,
10796 			A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
10797 			t4_write_reg(adap,
10798 			A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
10799 		}
10800 }
10801 
10802 /**
10803  *	t4_i2c_io - read/write I2C data from adapter
10804  *	@adap: the adapter
10805  *	@port: Port number if per-port device; <0 if not
10806  *	@devid: per-port device ID or absolute device ID
10807  *	@offset: byte offset into device I2C space
10808  *	@len: byte length of I2C space data
10809  *	@buf: buffer in which to return I2C data for read
10810  *	      buffer which holds the I2C data for write
10811  *	@write: if true, do a write; else do a read
10812  *	Reads/Writes the I2C data from/to the indicated device and location.
10813  */
10814 int t4_i2c_io(struct adapter *adap, unsigned int mbox,
10815 	      int port, unsigned int devid,
10816 	      unsigned int offset, unsigned int len,
10817 	      u8 *buf, bool write)
10818 {
10819 	struct fw_ldst_cmd ldst_cmd, ldst_rpl;
10820 	unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data);
10821 	int ret = 0;
10822 
10823 	if (len > I2C_PAGE_SIZE)
10824 		return -EINVAL;
10825 
10826 	/* Dont allow reads that spans multiple pages */
10827 	if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE)
10828 		return -EINVAL;
10829 
10830 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10831 	ldst_cmd.op_to_addrspace =
10832 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
10833 			    F_FW_CMD_REQUEST |
10834 			    (write ? F_FW_CMD_WRITE : F_FW_CMD_READ) |
10835 			    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C));
10836 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
10837 	ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port);
10838 	ldst_cmd.u.i2c.did = devid;
10839 
10840 	while (len > 0) {
10841 		unsigned int i2c_len = (len < i2c_max) ? len : i2c_max;
10842 
10843 		ldst_cmd.u.i2c.boffset = offset;
10844 		ldst_cmd.u.i2c.blen = i2c_len;
10845 
10846 		if (write)
10847 			memcpy(ldst_cmd.u.i2c.data, buf, i2c_len);
10848 
10849 		ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd),
10850 				 write ? NULL : &ldst_rpl);
10851 		if (ret)
10852 			break;
10853 
10854 		if (!write)
10855 			memcpy(buf, ldst_rpl.u.i2c.data, i2c_len);
10856 		offset += i2c_len;
10857 		buf += i2c_len;
10858 		len -= i2c_len;
10859 	}
10860 
10861 	return ret;
10862 }
10863 
10864 int t4_i2c_rd(struct adapter *adap, unsigned int mbox,
10865 	      int port, unsigned int devid,
10866 	      unsigned int offset, unsigned int len,
10867 	      u8 *buf)
10868 {
10869 	return t4_i2c_io(adap, mbox, port, devid, offset, len, buf, false);
10870 }
10871 
10872 int t4_i2c_wr(struct adapter *adap, unsigned int mbox,
10873 	      int port, unsigned int devid,
10874 	      unsigned int offset, unsigned int len,
10875 	      u8 *buf)
10876 {
10877 	return t4_i2c_io(adap, mbox, port, devid, offset, len, buf, true);
10878 }
10879 
10880 /**
10881  * 	t4_sge_ctxt_rd - read an SGE context through FW
10882  * 	@adap: the adapter
10883  * 	@mbox: mailbox to use for the FW command
10884  * 	@cid: the context id
10885  * 	@ctype: the context type
10886  * 	@data: where to store the context data
10887  *
10888  * 	Issues a FW command through the given mailbox to read an SGE context.
10889  */
10890 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
10891 		   enum ctxt_type ctype, u32 *data)
10892 {
10893 	int ret;
10894 	struct fw_ldst_cmd c;
10895 
10896 	if (ctype == CTXT_EGRESS)
10897 		ret = FW_LDST_ADDRSPC_SGE_EGRC;
10898 	else if (ctype == CTXT_INGRESS)
10899 		ret = FW_LDST_ADDRSPC_SGE_INGC;
10900 	else if (ctype == CTXT_FLM)
10901 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
10902 	else
10903 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
10904 
10905 	memset(&c, 0, sizeof(c));
10906 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
10907 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
10908 					V_FW_LDST_CMD_ADDRSPACE(ret));
10909 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
10910 	c.u.idctxt.physid = cpu_to_be32(cid);
10911 
10912 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
10913 	if (ret == 0) {
10914 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
10915 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
10916 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
10917 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
10918 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
10919 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
10920 	}
10921 	return ret;
10922 }
10923 
10924 /**
10925  * 	t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
10926  * 	@adap: the adapter
10927  * 	@cid: the context id
10928  * 	@ctype: the context type
10929  * 	@data: where to store the context data
10930  *
10931  * 	Reads an SGE context directly, bypassing FW.  This is only for
10932  * 	debugging when FW is unavailable.
10933  */
10934 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
10935 		      u32 *data)
10936 {
10937 	int i, ret;
10938 
10939 	t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
10940 	ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
10941 	if (!ret)
10942 		for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
10943 			*data++ = t4_read_reg(adap, i);
10944 	return ret;
10945 }
10946 
10947 int t4_sched_config(struct adapter *adapter, int type, int minmaxen,
10948     int sleep_ok)
10949 {
10950 	struct fw_sched_cmd cmd;
10951 
10952 	memset(&cmd, 0, sizeof(cmd));
10953 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10954 				      F_FW_CMD_REQUEST |
10955 				      F_FW_CMD_WRITE);
10956 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10957 
10958 	cmd.u.config.sc = FW_SCHED_SC_CONFIG;
10959 	cmd.u.config.type = type;
10960 	cmd.u.config.minmaxen = minmaxen;
10961 
10962 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10963 			       NULL, sleep_ok);
10964 }
10965 
10966 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
10967 		    int rateunit, int ratemode, int channel, int cl,
10968 		    int minrate, int maxrate, int weight, int pktsize,
10969 		    int burstsize, int sleep_ok)
10970 {
10971 	struct fw_sched_cmd cmd;
10972 
10973 	memset(&cmd, 0, sizeof(cmd));
10974 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10975 				      F_FW_CMD_REQUEST |
10976 				      F_FW_CMD_WRITE);
10977 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10978 
10979 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10980 	cmd.u.params.type = type;
10981 	cmd.u.params.level = level;
10982 	cmd.u.params.mode = mode;
10983 	cmd.u.params.ch = channel;
10984 	cmd.u.params.cl = cl;
10985 	cmd.u.params.unit = rateunit;
10986 	cmd.u.params.rate = ratemode;
10987 	cmd.u.params.min = cpu_to_be32(minrate);
10988 	cmd.u.params.max = cpu_to_be32(maxrate);
10989 	cmd.u.params.weight = cpu_to_be16(weight);
10990 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
10991 	cmd.u.params.burstsize = cpu_to_be16(burstsize);
10992 
10993 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10994 			       NULL, sleep_ok);
10995 }
10996 
10997 int t4_sched_params_ch_rl(struct adapter *adapter, int channel, int ratemode,
10998     unsigned int maxrate, int sleep_ok)
10999 {
11000 	struct fw_sched_cmd cmd;
11001 
11002 	memset(&cmd, 0, sizeof(cmd));
11003 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11004 				      F_FW_CMD_REQUEST |
11005 				      F_FW_CMD_WRITE);
11006 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11007 
11008 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
11009 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
11010 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CH_RL;
11011 	cmd.u.params.ch = channel;
11012 	cmd.u.params.rate = ratemode;		/* REL or ABS */
11013 	cmd.u.params.max = cpu_to_be32(maxrate);/*  %  or kbps */
11014 
11015 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11016 			       NULL, sleep_ok);
11017 }
11018 
11019 int t4_sched_params_cl_wrr(struct adapter *adapter, int channel, int cl,
11020     int weight, int sleep_ok)
11021 {
11022 	struct fw_sched_cmd cmd;
11023 
11024 	if (weight < 0 || weight > 100)
11025 		return -EINVAL;
11026 
11027 	memset(&cmd, 0, sizeof(cmd));
11028 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11029 				      F_FW_CMD_REQUEST |
11030 				      F_FW_CMD_WRITE);
11031 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11032 
11033 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
11034 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
11035 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_WRR;
11036 	cmd.u.params.ch = channel;
11037 	cmd.u.params.cl = cl;
11038 	cmd.u.params.weight = cpu_to_be16(weight);
11039 
11040 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11041 			       NULL, sleep_ok);
11042 }
11043 
11044 int t4_sched_params_cl_rl_kbps(struct adapter *adapter, int channel, int cl,
11045     int mode, unsigned int maxrate, int pktsize, int sleep_ok)
11046 {
11047 	struct fw_sched_cmd cmd;
11048 
11049 	memset(&cmd, 0, sizeof(cmd));
11050 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11051 				      F_FW_CMD_REQUEST |
11052 				      F_FW_CMD_WRITE);
11053 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11054 
11055 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
11056 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
11057 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_RL;
11058 	cmd.u.params.mode = mode;
11059 	cmd.u.params.ch = channel;
11060 	cmd.u.params.cl = cl;
11061 	cmd.u.params.unit = FW_SCHED_PARAMS_UNIT_BITRATE;
11062 	cmd.u.params.rate = FW_SCHED_PARAMS_RATE_ABS;
11063 	cmd.u.params.max = cpu_to_be32(maxrate);
11064 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
11065 
11066 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11067 			       NULL, sleep_ok);
11068 }
11069 
11070 /*
11071  *	t4_config_watchdog - configure (enable/disable) a watchdog timer
11072  *	@adapter: the adapter
11073  * 	@mbox: mailbox to use for the FW command
11074  * 	@pf: the PF owning the queue
11075  * 	@vf: the VF owning the queue
11076  *	@timeout: watchdog timeout in ms
11077  *	@action: watchdog timer / action
11078  *
11079  *	There are separate watchdog timers for each possible watchdog
11080  *	action.  Configure one of the watchdog timers by setting a non-zero
11081  *	timeout.  Disable a watchdog timer by using a timeout of zero.
11082  */
11083 int t4_config_watchdog(struct adapter *adapter, unsigned int mbox,
11084 		       unsigned int pf, unsigned int vf,
11085 		       unsigned int timeout, unsigned int action)
11086 {
11087 	struct fw_watchdog_cmd wdog;
11088 	unsigned int ticks;
11089 
11090 	/*
11091 	 * The watchdog command expects a timeout in units of 10ms so we need
11092 	 * to convert it here (via rounding) and force a minimum of one 10ms
11093 	 * "tick" if the timeout is non-zero but the conversion results in 0
11094 	 * ticks.
11095 	 */
11096 	ticks = (timeout + 5)/10;
11097 	if (timeout && !ticks)
11098 		ticks = 1;
11099 
11100 	memset(&wdog, 0, sizeof wdog);
11101 	wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) |
11102 				     F_FW_CMD_REQUEST |
11103 				     F_FW_CMD_WRITE |
11104 				     V_FW_PARAMS_CMD_PFN(pf) |
11105 				     V_FW_PARAMS_CMD_VFN(vf));
11106 	wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog));
11107 	wdog.timeout = cpu_to_be32(ticks);
11108 	wdog.action = cpu_to_be32(action);
11109 
11110 	return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL);
11111 }
11112 
11113 int t4_get_devlog_level(struct adapter *adapter, unsigned int *level)
11114 {
11115 	struct fw_devlog_cmd devlog_cmd;
11116 	int ret;
11117 
11118 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
11119 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
11120 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
11121 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
11122 	ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
11123 			 sizeof(devlog_cmd), &devlog_cmd);
11124 	if (ret)
11125 		return ret;
11126 
11127 	*level = devlog_cmd.level;
11128 	return 0;
11129 }
11130 
11131 int t4_set_devlog_level(struct adapter *adapter, unsigned int level)
11132 {
11133 	struct fw_devlog_cmd devlog_cmd;
11134 
11135 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
11136 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
11137 					     F_FW_CMD_REQUEST |
11138 					     F_FW_CMD_WRITE);
11139 	devlog_cmd.level = level;
11140 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
11141 	return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
11142 			  sizeof(devlog_cmd), &devlog_cmd);
11143 }
11144 
11145 int t4_configure_add_smac(struct adapter *adap)
11146 {
11147 	unsigned int param, val;
11148 	int ret = 0;
11149 
11150 	adap->params.smac_add_support = 0;
11151 	param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
11152 		  V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_ADD_SMAC));
11153 	/* Query FW to check if FW supports adding source mac address
11154 	 * to TCAM feature or not.
11155 	 * If FW returns 1, driver can use this feature and driver need to send
11156 	 * FW_PARAMS_PARAM_DEV_ADD_SMAC write command with value 1 to
11157 	 * enable adding smac to TCAM.
11158 	 */
11159 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
11160 	if (ret)
11161 		return ret;
11162 
11163 	if (val == 1) {
11164 		ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
11165 				    &param, &val);
11166 		if (!ret)
11167 			/* Firmware allows adding explicit TCAM entries.
11168 			 * Save this internally.
11169 			 */
11170 			adap->params.smac_add_support = 1;
11171 	}
11172 
11173 	return ret;
11174 }
11175 
11176 int t4_configure_ringbb(struct adapter *adap)
11177 {
11178 	unsigned int param, val;
11179 	int ret = 0;
11180 
11181 	param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
11182 		  V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RING_BACKBONE));
11183 	/* Query FW to check if FW supports ring switch feature or not.
11184 	 * If FW returns 1, driver can use this feature and driver need to send
11185 	 * FW_PARAMS_PARAM_DEV_RING_BACKBONE write command with value 1 to
11186 	 * enable the ring backbone configuration.
11187 	 */
11188 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
11189 	if (ret < 0) {
11190 		CH_ERR(adap, "Querying FW using Ring backbone params command failed, err=%d\n",
11191 			ret);
11192 		goto out;
11193 	}
11194 
11195 	if (val != 1) {
11196 		CH_ERR(adap, "FW doesnot support ringbackbone features\n");
11197 		goto out;
11198 	}
11199 
11200 	ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
11201 	if (ret < 0) {
11202 		CH_ERR(adap, "Could not set Ringbackbone, err= %d\n",
11203 			ret);
11204 		goto out;
11205 	}
11206 
11207 out:
11208 	return ret;
11209 }
11210 
11211 /*
11212  *	t4_set_vlan_acl - Set a VLAN id for the specified VF
11213  *	@adapter: the adapter
11214  *	@mbox: mailbox to use for the FW command
11215  *	@vf: one of the VFs instantiated by the specified PF
11216  *	@vlan: The vlanid to be set
11217  *
11218  */
11219 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf,
11220 		    u16 vlan)
11221 {
11222 	struct fw_acl_vlan_cmd vlan_cmd;
11223 	unsigned int enable;
11224 
11225 	enable = (vlan ? F_FW_ACL_VLAN_CMD_EN : 0);
11226 	memset(&vlan_cmd, 0, sizeof(vlan_cmd));
11227 	vlan_cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_ACL_VLAN_CMD) |
11228 					 F_FW_CMD_REQUEST |
11229 					 F_FW_CMD_WRITE |
11230 					 F_FW_CMD_EXEC |
11231 					 V_FW_ACL_VLAN_CMD_PFN(adap->pf) |
11232 					 V_FW_ACL_VLAN_CMD_VFN(vf));
11233 	vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd));
11234 	/* Drop all packets that donot match vlan id */
11235 	vlan_cmd.dropnovlan_fm = (enable
11236 				  ? (F_FW_ACL_VLAN_CMD_DROPNOVLAN |
11237 				     F_FW_ACL_VLAN_CMD_FM)
11238 				  : 0);
11239 	if (enable != 0) {
11240 		vlan_cmd.nvlan = 1;
11241 		vlan_cmd.vlanid[0] = cpu_to_be16(vlan);
11242 	}
11243 
11244 	return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL);
11245 }
11246 
11247 /**
11248  *	t4_del_mac - Removes the exact-match filter for a MAC address
11249  *	@adap: the adapter
11250  *	@mbox: mailbox to use for the FW command
11251  *	@viid: the VI id
11252  *	@addr: the MAC address value
11253  *	@smac: if true, delete from only the smac region of MPS
11254  *
11255  *	Modifies an exact-match filter and sets it to the new MAC address if
11256  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
11257  *	latter case the address is added persistently if @persist is %true.
11258  *
11259  *	Returns a negative error number or the index of the filter with the new
11260  *	MAC value.  Note that this index may differ from @idx.
11261  */
11262 int t4_del_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
11263 	       const u8 *addr, bool smac)
11264 {
11265 	int ret;
11266 	struct fw_vi_mac_cmd c;
11267 	struct fw_vi_mac_exact *p = c.u.exact;
11268 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
11269 
11270 	memset(&c, 0, sizeof(c));
11271 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
11272 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
11273 				   V_FW_VI_MAC_CMD_VIID(viid));
11274 	c.freemacs_to_len16 = cpu_to_be32(
11275 					V_FW_CMD_LEN16(1) |
11276 					(smac ? F_FW_VI_MAC_CMD_IS_SMAC : 0));
11277 
11278 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
11279 	p->valid_to_idx = cpu_to_be16(
11280 				F_FW_VI_MAC_CMD_VALID |
11281 				V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_MAC_BASED_FREE));
11282 
11283 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
11284 	if (ret == 0) {
11285 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
11286 		if (ret < max_mac_addr)
11287 			return -ENOMEM;
11288 	}
11289 
11290 	return ret;
11291 }
11292 
11293 /**
11294  *	t4_add_mac - Adds an exact-match filter for a MAC address
11295  *	@adap: the adapter
11296  *	@mbox: mailbox to use for the FW command
11297  *	@viid: the VI id
11298  *	@idx: index of existing filter for old value of MAC address, or -1
11299  *	@addr: the new MAC address value
11300  *	@persist: whether a new MAC allocation should be persistent
11301  *	@add_smt: if true also add the address to the HW SMT
11302  *	@smac: if true, update only the smac region of MPS
11303  *
11304  *	Modifies an exact-match filter and sets it to the new MAC address if
11305  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
11306  *	latter case the address is added persistently if @persist is %true.
11307  *
11308  *	Returns a negative error number or the index of the filter with the new
11309  *	MAC value.  Note that this index may differ from @idx.
11310  */
11311 int t4_add_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
11312 	       int idx, const u8 *addr, bool persist, u8 *smt_idx, bool smac)
11313 {
11314 	int ret, mode;
11315 	struct fw_vi_mac_cmd c;
11316 	struct fw_vi_mac_exact *p = c.u.exact;
11317 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
11318 
11319 	if (idx < 0)		/* new allocation */
11320 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
11321 	mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
11322 
11323 	memset(&c, 0, sizeof(c));
11324 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
11325 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
11326 				   V_FW_VI_MAC_CMD_VIID(viid));
11327 	c.freemacs_to_len16 = cpu_to_be32(
11328 				V_FW_CMD_LEN16(1) |
11329 				(smac ? F_FW_VI_MAC_CMD_IS_SMAC : 0));
11330 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
11331 				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
11332 				      V_FW_VI_MAC_CMD_IDX(idx));
11333 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
11334 
11335 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
11336 	if (ret == 0) {
11337 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
11338 		if (ret >= max_mac_addr)
11339 			return -ENOMEM;
11340 		if (smt_idx) {
11341 			/* Does fw supports returning smt_idx? */
11342 			if (adap->params.viid_smt_extn_support)
11343 				*smt_idx = G_FW_VI_MAC_CMD_SMTID(be32_to_cpu(c.op_to_viid));
11344 			else {
11345 				/* In T4/T5, SMT contains 256 SMAC entries
11346 				 * organized in 128 rows of 2 entries each.
11347 				 * In T6, SMT contains 256 SMAC entries in
11348 				 * 256 rows.
11349 				 */
11350 				if (chip_id(adap) <= CHELSIO_T5)
11351 					*smt_idx = ((viid & M_FW_VIID_VIN) << 1);
11352 				else
11353 					*smt_idx = (viid & M_FW_VIID_VIN);
11354 			}
11355 		}
11356 	}
11357 
11358 	return ret;
11359 }
11360