xref: /freebsd/sys/dev/cxgbe/common/t4_hw.c (revision 3332f1b444d4a73238e9f59cca27bfc95fe936bd)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2012, 2016 Chelsio Communications, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_inet.h"
33 
34 #include <sys/param.h>
35 #include <sys/eventhandler.h>
36 
37 #include "common.h"
38 #include "t4_regs.h"
39 #include "t4_regs_values.h"
40 #include "firmware/t4fw_interface.h"
41 
42 #undef msleep
43 #define msleep(x) do { \
44 	if (cold) \
45 		DELAY((x) * 1000); \
46 	else \
47 		pause("t4hw", (x) * hz / 1000); \
48 } while (0)
49 
50 /**
51  *	t4_wait_op_done_val - wait until an operation is completed
52  *	@adapter: the adapter performing the operation
53  *	@reg: the register to check for completion
54  *	@mask: a single-bit field within @reg that indicates completion
55  *	@polarity: the value of the field when the operation is completed
56  *	@attempts: number of check iterations
57  *	@delay: delay in usecs between iterations
58  *	@valp: where to store the value of the register at completion time
59  *
60  *	Wait until an operation is completed by checking a bit in a register
61  *	up to @attempts times.  If @valp is not NULL the value of the register
62  *	at the time it indicated completion is stored there.  Returns 0 if the
63  *	operation completes and	-EAGAIN	otherwise.
64  */
65 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
66 			       int polarity, int attempts, int delay, u32 *valp)
67 {
68 	while (1) {
69 		u32 val = t4_read_reg(adapter, reg);
70 
71 		if (!!(val & mask) == polarity) {
72 			if (valp)
73 				*valp = val;
74 			return 0;
75 		}
76 		if (--attempts == 0)
77 			return -EAGAIN;
78 		if (delay)
79 			udelay(delay);
80 	}
81 }
82 
83 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
84 				  int polarity, int attempts, int delay)
85 {
86 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
87 				   delay, NULL);
88 }
89 
90 /**
91  *	t4_set_reg_field - set a register field to a value
92  *	@adapter: the adapter to program
93  *	@addr: the register address
94  *	@mask: specifies the portion of the register to modify
95  *	@val: the new value for the register field
96  *
97  *	Sets a register field specified by the supplied mask to the
98  *	given value.
99  */
100 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
101 		      u32 val)
102 {
103 	u32 v = t4_read_reg(adapter, addr) & ~mask;
104 
105 	t4_write_reg(adapter, addr, v | val);
106 	(void) t4_read_reg(adapter, addr);      /* flush */
107 }
108 
109 /**
110  *	t4_read_indirect - read indirectly addressed registers
111  *	@adap: the adapter
112  *	@addr_reg: register holding the indirect address
113  *	@data_reg: register holding the value of the indirect register
114  *	@vals: where the read register values are stored
115  *	@nregs: how many indirect registers to read
116  *	@start_idx: index of first indirect register to read
117  *
118  *	Reads registers that are accessed indirectly through an address/data
119  *	register pair.
120  */
121 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
122 			     unsigned int data_reg, u32 *vals,
123 			     unsigned int nregs, unsigned int start_idx)
124 {
125 	while (nregs--) {
126 		t4_write_reg(adap, addr_reg, start_idx);
127 		*vals++ = t4_read_reg(adap, data_reg);
128 		start_idx++;
129 	}
130 }
131 
132 /**
133  *	t4_write_indirect - write indirectly addressed registers
134  *	@adap: the adapter
135  *	@addr_reg: register holding the indirect addresses
136  *	@data_reg: register holding the value for the indirect registers
137  *	@vals: values to write
138  *	@nregs: how many indirect registers to write
139  *	@start_idx: address of first indirect register to write
140  *
141  *	Writes a sequential block of registers that are accessed indirectly
142  *	through an address/data register pair.
143  */
144 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
145 		       unsigned int data_reg, const u32 *vals,
146 		       unsigned int nregs, unsigned int start_idx)
147 {
148 	while (nregs--) {
149 		t4_write_reg(adap, addr_reg, start_idx++);
150 		t4_write_reg(adap, data_reg, *vals++);
151 	}
152 }
153 
154 /*
155  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
156  * mechanism.  This guarantees that we get the real value even if we're
157  * operating within a Virtual Machine and the Hypervisor is trapping our
158  * Configuration Space accesses.
159  *
160  * N.B. This routine should only be used as a last resort: the firmware uses
161  *      the backdoor registers on a regular basis and we can end up
162  *      conflicting with it's uses!
163  */
164 u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
165 {
166 	u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg);
167 	u32 val;
168 
169 	if (chip_id(adap) <= CHELSIO_T5)
170 		req |= F_ENABLE;
171 	else
172 		req |= F_T6_ENABLE;
173 
174 	if (is_t4(adap))
175 		req |= F_LOCALCFG;
176 
177 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req);
178 	val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
179 
180 	/*
181 	 * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
182 	 * Configuration Space read.  (None of the other fields matter when
183 	 * F_ENABLE is 0 so a simple register write is easier than a
184 	 * read-modify-write via t4_set_reg_field().)
185 	 */
186 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0);
187 
188 	return val;
189 }
190 
191 /*
192  * t4_report_fw_error - report firmware error
193  * @adap: the adapter
194  *
195  * The adapter firmware can indicate error conditions to the host.
196  * If the firmware has indicated an error, print out the reason for
197  * the firmware error.
198  */
199 static void t4_report_fw_error(struct adapter *adap)
200 {
201 	static const char *const reason[] = {
202 		"Crash",			/* PCIE_FW_EVAL_CRASH */
203 		"During Device Preparation",	/* PCIE_FW_EVAL_PREP */
204 		"During Device Configuration",	/* PCIE_FW_EVAL_CONF */
205 		"During Device Initialization",	/* PCIE_FW_EVAL_INIT */
206 		"Unexpected Event",		/* PCIE_FW_EVAL_UNEXPECTEDEVENT */
207 		"Insufficient Airflow",		/* PCIE_FW_EVAL_OVERHEAT */
208 		"Device Shutdown",		/* PCIE_FW_EVAL_DEVICESHUTDOWN */
209 		"Reserved",			/* reserved */
210 	};
211 	u32 pcie_fw;
212 
213 	pcie_fw = t4_read_reg(adap, A_PCIE_FW);
214 	if (pcie_fw & F_PCIE_FW_ERR) {
215 		adap->flags &= ~FW_OK;
216 		CH_ERR(adap, "firmware reports adapter error: %s (0x%08x)\n",
217 		    reason[G_PCIE_FW_EVAL(pcie_fw)], pcie_fw);
218 		if (pcie_fw != 0xffffffff)
219 			t4_os_dump_devlog(adap);
220 	}
221 }
222 
223 /*
224  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
225  */
226 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
227 			 u32 mbox_addr)
228 {
229 	for ( ; nflit; nflit--, mbox_addr += 8)
230 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
231 }
232 
233 /*
234  * Handle a FW assertion reported in a mailbox.
235  */
236 static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt)
237 {
238 	CH_ALERT(adap,
239 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
240 		  asrt->u.assert.filename_0_7,
241 		  be32_to_cpu(asrt->u.assert.line),
242 		  be32_to_cpu(asrt->u.assert.x),
243 		  be32_to_cpu(asrt->u.assert.y));
244 }
245 
246 struct port_tx_state {
247 	uint64_t rx_pause;
248 	uint64_t tx_frames;
249 };
250 
251 static void
252 read_tx_state_one(struct adapter *sc, int i, struct port_tx_state *tx_state)
253 {
254 	uint32_t rx_pause_reg, tx_frames_reg;
255 
256 	if (is_t4(sc)) {
257 		tx_frames_reg = PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
258 		rx_pause_reg = PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
259 	} else {
260 		tx_frames_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
261 		rx_pause_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
262 	}
263 
264 	tx_state->rx_pause = t4_read_reg64(sc, rx_pause_reg);
265 	tx_state->tx_frames = t4_read_reg64(sc, tx_frames_reg);
266 }
267 
268 static void
269 read_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
270 {
271 	int i;
272 
273 	for_each_port(sc, i)
274 		read_tx_state_one(sc, i, &tx_state[i]);
275 }
276 
277 static void
278 check_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
279 {
280 	uint32_t port_ctl_reg;
281 	uint64_t tx_frames, rx_pause;
282 	int i;
283 
284 	for_each_port(sc, i) {
285 		rx_pause = tx_state[i].rx_pause;
286 		tx_frames = tx_state[i].tx_frames;
287 		read_tx_state_one(sc, i, &tx_state[i]);	/* update */
288 
289 		if (is_t4(sc))
290 			port_ctl_reg = PORT_REG(i, A_MPS_PORT_CTL);
291 		else
292 			port_ctl_reg = T5_PORT_REG(i, A_MPS_PORT_CTL);
293 		if (t4_read_reg(sc, port_ctl_reg) & F_PORTTXEN &&
294 		    rx_pause != tx_state[i].rx_pause &&
295 		    tx_frames == tx_state[i].tx_frames) {
296 			t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, 0);
297 			mdelay(1);
298 			t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, F_PORTTXEN);
299 		}
300 	}
301 }
302 
303 #define X_CIM_PF_NOACCESS 0xeeeeeeee
304 /**
305  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
306  *	@adap: the adapter
307  *	@mbox: index of the mailbox to use
308  *	@cmd: the command to write
309  *	@size: command length in bytes
310  *	@rpl: where to optionally store the reply
311  *	@sleep_ok: if true we may sleep while awaiting command completion
312  *	@timeout: time to wait for command to finish before timing out
313  *		(negative implies @sleep_ok=false)
314  *
315  *	Sends the given command to FW through the selected mailbox and waits
316  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
317  *	store the FW's reply to the command.  The command and its optional
318  *	reply are of the same length.  Some FW commands like RESET and
319  *	INITIALIZE can take a considerable amount of time to execute.
320  *	@sleep_ok determines whether we may sleep while awaiting the response.
321  *	If sleeping is allowed we use progressive backoff otherwise we spin.
322  *	Note that passing in a negative @timeout is an alternate mechanism
323  *	for specifying @sleep_ok=false.  This is useful when a higher level
324  *	interface allows for specification of @timeout but not @sleep_ok ...
325  *
326  *	The return value is 0 on success or a negative errno on failure.  A
327  *	failure can happen either because we are not able to execute the
328  *	command or FW executes it but signals an error.  In the latter case
329  *	the return value is the error code indicated by FW (negated).
330  */
331 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
332 			    int size, void *rpl, bool sleep_ok, int timeout)
333 {
334 	/*
335 	 * We delay in small increments at first in an effort to maintain
336 	 * responsiveness for simple, fast executing commands but then back
337 	 * off to larger delays to a maximum retry delay.
338 	 */
339 	static const int delay[] = {
340 		1, 1, 3, 5, 10, 10, 20, 50, 100
341 	};
342 	u32 v;
343 	u64 res;
344 	int i, ms, delay_idx, ret, next_tx_check;
345 	u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
346 	u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
347 	u32 ctl;
348 	__be64 cmd_rpl[MBOX_LEN/8];
349 	u32 pcie_fw;
350 	struct port_tx_state tx_state[MAX_NPORTS];
351 
352 	if (adap->flags & CHK_MBOX_ACCESS)
353 		ASSERT_SYNCHRONIZED_OP(adap);
354 
355 	if (size <= 0 || (size & 15) || size > MBOX_LEN)
356 		return -EINVAL;
357 
358 	if (adap->flags & IS_VF) {
359 		if (is_t6(adap))
360 			data_reg = FW_T6VF_MBDATA_BASE_ADDR;
361 		else
362 			data_reg = FW_T4VF_MBDATA_BASE_ADDR;
363 		ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL);
364 	}
365 
366 	/*
367 	 * If we have a negative timeout, that implies that we can't sleep.
368 	 */
369 	if (timeout < 0) {
370 		sleep_ok = false;
371 		timeout = -timeout;
372 	}
373 
374 	/*
375 	 * Attempt to gain access to the mailbox.
376 	 */
377 	for (i = 0; i < 4; i++) {
378 		ctl = t4_read_reg(adap, ctl_reg);
379 		v = G_MBOWNER(ctl);
380 		if (v != X_MBOWNER_NONE)
381 			break;
382 	}
383 
384 	/*
385 	 * If we were unable to gain access, report the error to our caller.
386 	 */
387 	if (v != X_MBOWNER_PL) {
388 		t4_report_fw_error(adap);
389 		ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
390 		return ret;
391 	}
392 
393 	/*
394 	 * If we gain ownership of the mailbox and there's a "valid" message
395 	 * in it, this is likely an asynchronous error message from the
396 	 * firmware.  So we'll report that and then proceed on with attempting
397 	 * to issue our own command ... which may well fail if the error
398 	 * presaged the firmware crashing ...
399 	 */
400 	if (ctl & F_MBMSGVALID) {
401 		CH_DUMP_MBOX(adap, mbox, data_reg, "VLD", NULL, true);
402 	}
403 
404 	/*
405 	 * Copy in the new mailbox command and send it on its way ...
406 	 */
407 	memset(cmd_rpl, 0, sizeof(cmd_rpl));
408 	memcpy(cmd_rpl, cmd, size);
409 	CH_DUMP_MBOX(adap, mbox, 0, "cmd", cmd_rpl, false);
410 	for (i = 0; i < ARRAY_SIZE(cmd_rpl); i++)
411 		t4_write_reg64(adap, data_reg + i * 8, be64_to_cpu(cmd_rpl[i]));
412 
413 	if (adap->flags & IS_VF) {
414 		/*
415 		 * For the VFs, the Mailbox Data "registers" are
416 		 * actually backed by T4's "MA" interface rather than
417 		 * PL Registers (as is the case for the PFs).  Because
418 		 * these are in different coherency domains, the write
419 		 * to the VF's PL-register-backed Mailbox Control can
420 		 * race in front of the writes to the MA-backed VF
421 		 * Mailbox Data "registers".  So we need to do a
422 		 * read-back on at least one byte of the VF Mailbox
423 		 * Data registers before doing the write to the VF
424 		 * Mailbox Control register.
425 		 */
426 		t4_read_reg(adap, data_reg);
427 	}
428 
429 	t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
430 	read_tx_state(adap, &tx_state[0]);	/* also flushes the write_reg */
431 	next_tx_check = 1000;
432 	delay_idx = 0;
433 	ms = delay[0];
434 
435 	/*
436 	 * Loop waiting for the reply; bail out if we time out or the firmware
437 	 * reports an error.
438 	 */
439 	pcie_fw = 0;
440 	for (i = 0; i < timeout; i += ms) {
441 		if (!(adap->flags & IS_VF)) {
442 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
443 			if (pcie_fw & F_PCIE_FW_ERR)
444 				break;
445 		}
446 
447 		if (i >= next_tx_check) {
448 			check_tx_state(adap, &tx_state[0]);
449 			next_tx_check = i + 1000;
450 		}
451 
452 		if (sleep_ok) {
453 			ms = delay[delay_idx];  /* last element may repeat */
454 			if (delay_idx < ARRAY_SIZE(delay) - 1)
455 				delay_idx++;
456 			msleep(ms);
457 		} else {
458 			mdelay(ms);
459 		}
460 
461 		v = t4_read_reg(adap, ctl_reg);
462 		if (v == X_CIM_PF_NOACCESS)
463 			continue;
464 		if (G_MBOWNER(v) == X_MBOWNER_PL) {
465 			if (!(v & F_MBMSGVALID)) {
466 				t4_write_reg(adap, ctl_reg,
467 					     V_MBOWNER(X_MBOWNER_NONE));
468 				continue;
469 			}
470 
471 			/*
472 			 * Retrieve the command reply and release the mailbox.
473 			 */
474 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg);
475 			CH_DUMP_MBOX(adap, mbox, 0, "rpl", cmd_rpl, false);
476 			t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
477 
478 			res = be64_to_cpu(cmd_rpl[0]);
479 			if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
480 				fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl);
481 				res = V_FW_CMD_RETVAL(EIO);
482 			} else if (rpl)
483 				memcpy(rpl, cmd_rpl, size);
484 			return -G_FW_CMD_RETVAL((int)res);
485 		}
486 	}
487 
488 	/*
489 	 * We timed out waiting for a reply to our mailbox command.  Report
490 	 * the error and also check to see if the firmware reported any
491 	 * errors ...
492 	 */
493 	CH_ERR(adap, "command %#x in mbox %d timed out (0x%08x).\n",
494 	    *(const u8 *)cmd, mbox, pcie_fw);
495 	CH_DUMP_MBOX(adap, mbox, 0, "cmdsent", cmd_rpl, true);
496 	CH_DUMP_MBOX(adap, mbox, data_reg, "current", NULL, true);
497 
498 	if (pcie_fw & F_PCIE_FW_ERR) {
499 		ret = -ENXIO;
500 		t4_report_fw_error(adap);
501 	} else {
502 		ret = -ETIMEDOUT;
503 		t4_os_dump_devlog(adap);
504 	}
505 
506 	t4_fatal_err(adap, true);
507 	return ret;
508 }
509 
510 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
511 		    void *rpl, bool sleep_ok)
512 {
513 		return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl,
514 					       sleep_ok, FW_CMD_MAX_TIMEOUT);
515 
516 }
517 
518 static int t4_edc_err_read(struct adapter *adap, int idx)
519 {
520 	u32 edc_ecc_err_addr_reg;
521 	u32 edc_bist_status_rdata_reg;
522 
523 	if (is_t4(adap)) {
524 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
525 		return 0;
526 	}
527 	if (idx != MEM_EDC0 && idx != MEM_EDC1) {
528 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
529 		return 0;
530 	}
531 
532 	edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx);
533 	edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx);
534 
535 	CH_WARN(adap,
536 		"edc%d err addr 0x%x: 0x%x.\n",
537 		idx, edc_ecc_err_addr_reg,
538 		t4_read_reg(adap, edc_ecc_err_addr_reg));
539 	CH_WARN(adap,
540 	 	"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
541 		edc_bist_status_rdata_reg,
542 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg),
543 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8),
544 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16),
545 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24),
546 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32),
547 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40),
548 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48),
549 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56),
550 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64));
551 
552 	return 0;
553 }
554 
555 /**
556  *	t4_mc_read - read from MC through backdoor accesses
557  *	@adap: the adapter
558  *	@idx: which MC to access
559  *	@addr: address of first byte requested
560  *	@data: 64 bytes of data containing the requested address
561  *	@ecc: where to store the corresponding 64-bit ECC word
562  *
563  *	Read 64 bytes of data from MC starting at a 64-byte-aligned address
564  *	that covers the requested address @addr.  If @parity is not %NULL it
565  *	is assigned the 64-bit ECC word for the read data.
566  */
567 int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
568 {
569 	int i;
570 	u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
571 	u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
572 
573 	if (is_t4(adap)) {
574 		mc_bist_cmd_reg = A_MC_BIST_CMD;
575 		mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
576 		mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
577 		mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
578 		mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
579 	} else {
580 		mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
581 		mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
582 		mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
583 		mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA,
584 						  idx);
585 		mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN,
586 						  idx);
587 	}
588 
589 	if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
590 		return -EBUSY;
591 	t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
592 	t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
593 	t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
594 	t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
595 		     F_START_BIST | V_BIST_CMD_GAP(1));
596 	i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
597 	if (i)
598 		return i;
599 
600 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
601 
602 	for (i = 15; i >= 0; i--)
603 		*data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
604 	if (ecc)
605 		*ecc = t4_read_reg64(adap, MC_DATA(16));
606 #undef MC_DATA
607 	return 0;
608 }
609 
610 /**
611  *	t4_edc_read - read from EDC through backdoor accesses
612  *	@adap: the adapter
613  *	@idx: which EDC to access
614  *	@addr: address of first byte requested
615  *	@data: 64 bytes of data containing the requested address
616  *	@ecc: where to store the corresponding 64-bit ECC word
617  *
618  *	Read 64 bytes of data from EDC starting at a 64-byte-aligned address
619  *	that covers the requested address @addr.  If @parity is not %NULL it
620  *	is assigned the 64-bit ECC word for the read data.
621  */
622 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
623 {
624 	int i;
625 	u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
626 	u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
627 
628 	if (is_t4(adap)) {
629 		edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
630 		edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
631 		edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
632 		edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
633 						    idx);
634 		edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
635 						    idx);
636 	} else {
637 /*
638  * These macro are missing in t4_regs.h file.
639  * Added temporarily for testing.
640  */
641 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
642 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
643 		edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx);
644 		edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx);
645 		edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx);
646 		edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN,
647 						    idx);
648 		edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA,
649 						    idx);
650 #undef EDC_REG_T5
651 #undef EDC_STRIDE_T5
652 	}
653 
654 	if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
655 		return -EBUSY;
656 	t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
657 	t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
658 	t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
659 	t4_write_reg(adap, edc_bist_cmd_reg,
660 		     V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
661 	i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
662 	if (i)
663 		return i;
664 
665 #define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
666 
667 	for (i = 15; i >= 0; i--)
668 		*data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
669 	if (ecc)
670 		*ecc = t4_read_reg64(adap, EDC_DATA(16));
671 #undef EDC_DATA
672 	return 0;
673 }
674 
675 /**
676  *	t4_mem_read - read EDC 0, EDC 1 or MC into buffer
677  *	@adap: the adapter
678  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
679  *	@addr: address within indicated memory type
680  *	@len: amount of memory to read
681  *	@buf: host memory buffer
682  *
683  *	Reads an [almost] arbitrary memory region in the firmware: the
684  *	firmware memory address, length and host buffer must be aligned on
685  *	32-bit boudaries.  The memory is returned as a raw byte sequence from
686  *	the firmware's memory.  If this memory contains data structures which
687  *	contain multi-byte integers, it's the callers responsibility to
688  *	perform appropriate byte order conversions.
689  */
690 int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
691 		__be32 *buf)
692 {
693 	u32 pos, start, end, offset;
694 	int ret;
695 
696 	/*
697 	 * Argument sanity checks ...
698 	 */
699 	if ((addr & 0x3) || (len & 0x3))
700 		return -EINVAL;
701 
702 	/*
703 	 * The underlaying EDC/MC read routines read 64 bytes at a time so we
704 	 * need to round down the start and round up the end.  We'll start
705 	 * copying out of the first line at (addr - start) a word at a time.
706 	 */
707 	start = rounddown2(addr, 64);
708 	end = roundup2(addr + len, 64);
709 	offset = (addr - start)/sizeof(__be32);
710 
711 	for (pos = start; pos < end; pos += 64, offset = 0) {
712 		__be32 data[16];
713 
714 		/*
715 		 * Read the chip's memory block and bail if there's an error.
716 		 */
717 		if ((mtype == MEM_MC) || (mtype == MEM_MC1))
718 			ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
719 		else
720 			ret = t4_edc_read(adap, mtype, pos, data, NULL);
721 		if (ret)
722 			return ret;
723 
724 		/*
725 		 * Copy the data into the caller's memory buffer.
726 		 */
727 		while (offset < 16 && len > 0) {
728 			*buf++ = data[offset++];
729 			len -= sizeof(__be32);
730 		}
731 	}
732 
733 	return 0;
734 }
735 
736 /*
737  * Return the specified PCI-E Configuration Space register from our Physical
738  * Function.  We try first via a Firmware LDST Command (if fw_attach != 0)
739  * since we prefer to let the firmware own all of these registers, but if that
740  * fails we go for it directly ourselves.
741  */
742 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach)
743 {
744 
745 	/*
746 	 * If fw_attach != 0, construct and send the Firmware LDST Command to
747 	 * retrieve the specified PCI-E Configuration Space register.
748 	 */
749 	if (drv_fw_attach != 0) {
750 		struct fw_ldst_cmd ldst_cmd;
751 		int ret;
752 
753 		memset(&ldst_cmd, 0, sizeof(ldst_cmd));
754 		ldst_cmd.op_to_addrspace =
755 			cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
756 				    F_FW_CMD_REQUEST |
757 				    F_FW_CMD_READ |
758 				    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
759 		ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
760 		ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1);
761 		ldst_cmd.u.pcie.ctrl_to_fn =
762 			(F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf));
763 		ldst_cmd.u.pcie.r = reg;
764 
765 		/*
766 		 * If the LDST Command succeeds, return the result, otherwise
767 		 * fall through to reading it directly ourselves ...
768 		 */
769 		ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
770 				 &ldst_cmd);
771 		if (ret == 0)
772 			return be32_to_cpu(ldst_cmd.u.pcie.data[0]);
773 
774 		CH_WARN(adap, "Firmware failed to return "
775 			"Configuration Space register %d, err = %d\n",
776 			reg, -ret);
777 	}
778 
779 	/*
780 	 * Read the desired Configuration Space register via the PCI-E
781 	 * Backdoor mechanism.
782 	 */
783 	return t4_hw_pci_read_cfg4(adap, reg);
784 }
785 
786 /**
787  *	t4_get_regs_len - return the size of the chips register set
788  *	@adapter: the adapter
789  *
790  *	Returns the size of the chip's BAR0 register space.
791  */
792 unsigned int t4_get_regs_len(struct adapter *adapter)
793 {
794 	unsigned int chip_version = chip_id(adapter);
795 
796 	switch (chip_version) {
797 	case CHELSIO_T4:
798 		if (adapter->flags & IS_VF)
799 			return FW_T4VF_REGMAP_SIZE;
800 		return T4_REGMAP_SIZE;
801 
802 	case CHELSIO_T5:
803 	case CHELSIO_T6:
804 		if (adapter->flags & IS_VF)
805 			return FW_T4VF_REGMAP_SIZE;
806 		return T5_REGMAP_SIZE;
807 	}
808 
809 	CH_ERR(adapter,
810 		"Unsupported chip version %d\n", chip_version);
811 	return 0;
812 }
813 
814 /**
815  *	t4_get_regs - read chip registers into provided buffer
816  *	@adap: the adapter
817  *	@buf: register buffer
818  *	@buf_size: size (in bytes) of register buffer
819  *
820  *	If the provided register buffer isn't large enough for the chip's
821  *	full register range, the register dump will be truncated to the
822  *	register buffer's size.
823  */
824 void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size)
825 {
826 	static const unsigned int t4_reg_ranges[] = {
827 		0x1008, 0x1108,
828 		0x1180, 0x1184,
829 		0x1190, 0x1194,
830 		0x11a0, 0x11a4,
831 		0x11b0, 0x11b4,
832 		0x11fc, 0x123c,
833 		0x1300, 0x173c,
834 		0x1800, 0x18fc,
835 		0x3000, 0x30d8,
836 		0x30e0, 0x30e4,
837 		0x30ec, 0x5910,
838 		0x5920, 0x5924,
839 		0x5960, 0x5960,
840 		0x5968, 0x5968,
841 		0x5970, 0x5970,
842 		0x5978, 0x5978,
843 		0x5980, 0x5980,
844 		0x5988, 0x5988,
845 		0x5990, 0x5990,
846 		0x5998, 0x5998,
847 		0x59a0, 0x59d4,
848 		0x5a00, 0x5ae0,
849 		0x5ae8, 0x5ae8,
850 		0x5af0, 0x5af0,
851 		0x5af8, 0x5af8,
852 		0x6000, 0x6098,
853 		0x6100, 0x6150,
854 		0x6200, 0x6208,
855 		0x6240, 0x6248,
856 		0x6280, 0x62b0,
857 		0x62c0, 0x6338,
858 		0x6370, 0x638c,
859 		0x6400, 0x643c,
860 		0x6500, 0x6524,
861 		0x6a00, 0x6a04,
862 		0x6a14, 0x6a38,
863 		0x6a60, 0x6a70,
864 		0x6a78, 0x6a78,
865 		0x6b00, 0x6b0c,
866 		0x6b1c, 0x6b84,
867 		0x6bf0, 0x6bf8,
868 		0x6c00, 0x6c0c,
869 		0x6c1c, 0x6c84,
870 		0x6cf0, 0x6cf8,
871 		0x6d00, 0x6d0c,
872 		0x6d1c, 0x6d84,
873 		0x6df0, 0x6df8,
874 		0x6e00, 0x6e0c,
875 		0x6e1c, 0x6e84,
876 		0x6ef0, 0x6ef8,
877 		0x6f00, 0x6f0c,
878 		0x6f1c, 0x6f84,
879 		0x6ff0, 0x6ff8,
880 		0x7000, 0x700c,
881 		0x701c, 0x7084,
882 		0x70f0, 0x70f8,
883 		0x7100, 0x710c,
884 		0x711c, 0x7184,
885 		0x71f0, 0x71f8,
886 		0x7200, 0x720c,
887 		0x721c, 0x7284,
888 		0x72f0, 0x72f8,
889 		0x7300, 0x730c,
890 		0x731c, 0x7384,
891 		0x73f0, 0x73f8,
892 		0x7400, 0x7450,
893 		0x7500, 0x7530,
894 		0x7600, 0x760c,
895 		0x7614, 0x761c,
896 		0x7680, 0x76cc,
897 		0x7700, 0x7798,
898 		0x77c0, 0x77fc,
899 		0x7900, 0x79fc,
900 		0x7b00, 0x7b58,
901 		0x7b60, 0x7b84,
902 		0x7b8c, 0x7c38,
903 		0x7d00, 0x7d38,
904 		0x7d40, 0x7d80,
905 		0x7d8c, 0x7ddc,
906 		0x7de4, 0x7e04,
907 		0x7e10, 0x7e1c,
908 		0x7e24, 0x7e38,
909 		0x7e40, 0x7e44,
910 		0x7e4c, 0x7e78,
911 		0x7e80, 0x7ea4,
912 		0x7eac, 0x7edc,
913 		0x7ee8, 0x7efc,
914 		0x8dc0, 0x8e04,
915 		0x8e10, 0x8e1c,
916 		0x8e30, 0x8e78,
917 		0x8ea0, 0x8eb8,
918 		0x8ec0, 0x8f6c,
919 		0x8fc0, 0x9008,
920 		0x9010, 0x9058,
921 		0x9060, 0x9060,
922 		0x9068, 0x9074,
923 		0x90fc, 0x90fc,
924 		0x9400, 0x9408,
925 		0x9410, 0x9458,
926 		0x9600, 0x9600,
927 		0x9608, 0x9638,
928 		0x9640, 0x96bc,
929 		0x9800, 0x9808,
930 		0x9820, 0x983c,
931 		0x9850, 0x9864,
932 		0x9c00, 0x9c6c,
933 		0x9c80, 0x9cec,
934 		0x9d00, 0x9d6c,
935 		0x9d80, 0x9dec,
936 		0x9e00, 0x9e6c,
937 		0x9e80, 0x9eec,
938 		0x9f00, 0x9f6c,
939 		0x9f80, 0x9fec,
940 		0xd004, 0xd004,
941 		0xd010, 0xd03c,
942 		0xdfc0, 0xdfe0,
943 		0xe000, 0xea7c,
944 		0xf000, 0x11110,
945 		0x11118, 0x11190,
946 		0x19040, 0x1906c,
947 		0x19078, 0x19080,
948 		0x1908c, 0x190e4,
949 		0x190f0, 0x190f8,
950 		0x19100, 0x19110,
951 		0x19120, 0x19124,
952 		0x19150, 0x19194,
953 		0x1919c, 0x191b0,
954 		0x191d0, 0x191e8,
955 		0x19238, 0x1924c,
956 		0x193f8, 0x1943c,
957 		0x1944c, 0x19474,
958 		0x19490, 0x194e0,
959 		0x194f0, 0x194f8,
960 		0x19800, 0x19c08,
961 		0x19c10, 0x19c90,
962 		0x19ca0, 0x19ce4,
963 		0x19cf0, 0x19d40,
964 		0x19d50, 0x19d94,
965 		0x19da0, 0x19de8,
966 		0x19df0, 0x19e40,
967 		0x19e50, 0x19e90,
968 		0x19ea0, 0x19f4c,
969 		0x1a000, 0x1a004,
970 		0x1a010, 0x1a06c,
971 		0x1a0b0, 0x1a0e4,
972 		0x1a0ec, 0x1a0f4,
973 		0x1a100, 0x1a108,
974 		0x1a114, 0x1a120,
975 		0x1a128, 0x1a130,
976 		0x1a138, 0x1a138,
977 		0x1a190, 0x1a1c4,
978 		0x1a1fc, 0x1a1fc,
979 		0x1e040, 0x1e04c,
980 		0x1e284, 0x1e28c,
981 		0x1e2c0, 0x1e2c0,
982 		0x1e2e0, 0x1e2e0,
983 		0x1e300, 0x1e384,
984 		0x1e3c0, 0x1e3c8,
985 		0x1e440, 0x1e44c,
986 		0x1e684, 0x1e68c,
987 		0x1e6c0, 0x1e6c0,
988 		0x1e6e0, 0x1e6e0,
989 		0x1e700, 0x1e784,
990 		0x1e7c0, 0x1e7c8,
991 		0x1e840, 0x1e84c,
992 		0x1ea84, 0x1ea8c,
993 		0x1eac0, 0x1eac0,
994 		0x1eae0, 0x1eae0,
995 		0x1eb00, 0x1eb84,
996 		0x1ebc0, 0x1ebc8,
997 		0x1ec40, 0x1ec4c,
998 		0x1ee84, 0x1ee8c,
999 		0x1eec0, 0x1eec0,
1000 		0x1eee0, 0x1eee0,
1001 		0x1ef00, 0x1ef84,
1002 		0x1efc0, 0x1efc8,
1003 		0x1f040, 0x1f04c,
1004 		0x1f284, 0x1f28c,
1005 		0x1f2c0, 0x1f2c0,
1006 		0x1f2e0, 0x1f2e0,
1007 		0x1f300, 0x1f384,
1008 		0x1f3c0, 0x1f3c8,
1009 		0x1f440, 0x1f44c,
1010 		0x1f684, 0x1f68c,
1011 		0x1f6c0, 0x1f6c0,
1012 		0x1f6e0, 0x1f6e0,
1013 		0x1f700, 0x1f784,
1014 		0x1f7c0, 0x1f7c8,
1015 		0x1f840, 0x1f84c,
1016 		0x1fa84, 0x1fa8c,
1017 		0x1fac0, 0x1fac0,
1018 		0x1fae0, 0x1fae0,
1019 		0x1fb00, 0x1fb84,
1020 		0x1fbc0, 0x1fbc8,
1021 		0x1fc40, 0x1fc4c,
1022 		0x1fe84, 0x1fe8c,
1023 		0x1fec0, 0x1fec0,
1024 		0x1fee0, 0x1fee0,
1025 		0x1ff00, 0x1ff84,
1026 		0x1ffc0, 0x1ffc8,
1027 		0x20000, 0x2002c,
1028 		0x20100, 0x2013c,
1029 		0x20190, 0x201a0,
1030 		0x201a8, 0x201b8,
1031 		0x201c4, 0x201c8,
1032 		0x20200, 0x20318,
1033 		0x20400, 0x204b4,
1034 		0x204c0, 0x20528,
1035 		0x20540, 0x20614,
1036 		0x21000, 0x21040,
1037 		0x2104c, 0x21060,
1038 		0x210c0, 0x210ec,
1039 		0x21200, 0x21268,
1040 		0x21270, 0x21284,
1041 		0x212fc, 0x21388,
1042 		0x21400, 0x21404,
1043 		0x21500, 0x21500,
1044 		0x21510, 0x21518,
1045 		0x2152c, 0x21530,
1046 		0x2153c, 0x2153c,
1047 		0x21550, 0x21554,
1048 		0x21600, 0x21600,
1049 		0x21608, 0x2161c,
1050 		0x21624, 0x21628,
1051 		0x21630, 0x21634,
1052 		0x2163c, 0x2163c,
1053 		0x21700, 0x2171c,
1054 		0x21780, 0x2178c,
1055 		0x21800, 0x21818,
1056 		0x21820, 0x21828,
1057 		0x21830, 0x21848,
1058 		0x21850, 0x21854,
1059 		0x21860, 0x21868,
1060 		0x21870, 0x21870,
1061 		0x21878, 0x21898,
1062 		0x218a0, 0x218a8,
1063 		0x218b0, 0x218c8,
1064 		0x218d0, 0x218d4,
1065 		0x218e0, 0x218e8,
1066 		0x218f0, 0x218f0,
1067 		0x218f8, 0x21a18,
1068 		0x21a20, 0x21a28,
1069 		0x21a30, 0x21a48,
1070 		0x21a50, 0x21a54,
1071 		0x21a60, 0x21a68,
1072 		0x21a70, 0x21a70,
1073 		0x21a78, 0x21a98,
1074 		0x21aa0, 0x21aa8,
1075 		0x21ab0, 0x21ac8,
1076 		0x21ad0, 0x21ad4,
1077 		0x21ae0, 0x21ae8,
1078 		0x21af0, 0x21af0,
1079 		0x21af8, 0x21c18,
1080 		0x21c20, 0x21c20,
1081 		0x21c28, 0x21c30,
1082 		0x21c38, 0x21c38,
1083 		0x21c80, 0x21c98,
1084 		0x21ca0, 0x21ca8,
1085 		0x21cb0, 0x21cc8,
1086 		0x21cd0, 0x21cd4,
1087 		0x21ce0, 0x21ce8,
1088 		0x21cf0, 0x21cf0,
1089 		0x21cf8, 0x21d7c,
1090 		0x21e00, 0x21e04,
1091 		0x22000, 0x2202c,
1092 		0x22100, 0x2213c,
1093 		0x22190, 0x221a0,
1094 		0x221a8, 0x221b8,
1095 		0x221c4, 0x221c8,
1096 		0x22200, 0x22318,
1097 		0x22400, 0x224b4,
1098 		0x224c0, 0x22528,
1099 		0x22540, 0x22614,
1100 		0x23000, 0x23040,
1101 		0x2304c, 0x23060,
1102 		0x230c0, 0x230ec,
1103 		0x23200, 0x23268,
1104 		0x23270, 0x23284,
1105 		0x232fc, 0x23388,
1106 		0x23400, 0x23404,
1107 		0x23500, 0x23500,
1108 		0x23510, 0x23518,
1109 		0x2352c, 0x23530,
1110 		0x2353c, 0x2353c,
1111 		0x23550, 0x23554,
1112 		0x23600, 0x23600,
1113 		0x23608, 0x2361c,
1114 		0x23624, 0x23628,
1115 		0x23630, 0x23634,
1116 		0x2363c, 0x2363c,
1117 		0x23700, 0x2371c,
1118 		0x23780, 0x2378c,
1119 		0x23800, 0x23818,
1120 		0x23820, 0x23828,
1121 		0x23830, 0x23848,
1122 		0x23850, 0x23854,
1123 		0x23860, 0x23868,
1124 		0x23870, 0x23870,
1125 		0x23878, 0x23898,
1126 		0x238a0, 0x238a8,
1127 		0x238b0, 0x238c8,
1128 		0x238d0, 0x238d4,
1129 		0x238e0, 0x238e8,
1130 		0x238f0, 0x238f0,
1131 		0x238f8, 0x23a18,
1132 		0x23a20, 0x23a28,
1133 		0x23a30, 0x23a48,
1134 		0x23a50, 0x23a54,
1135 		0x23a60, 0x23a68,
1136 		0x23a70, 0x23a70,
1137 		0x23a78, 0x23a98,
1138 		0x23aa0, 0x23aa8,
1139 		0x23ab0, 0x23ac8,
1140 		0x23ad0, 0x23ad4,
1141 		0x23ae0, 0x23ae8,
1142 		0x23af0, 0x23af0,
1143 		0x23af8, 0x23c18,
1144 		0x23c20, 0x23c20,
1145 		0x23c28, 0x23c30,
1146 		0x23c38, 0x23c38,
1147 		0x23c80, 0x23c98,
1148 		0x23ca0, 0x23ca8,
1149 		0x23cb0, 0x23cc8,
1150 		0x23cd0, 0x23cd4,
1151 		0x23ce0, 0x23ce8,
1152 		0x23cf0, 0x23cf0,
1153 		0x23cf8, 0x23d7c,
1154 		0x23e00, 0x23e04,
1155 		0x24000, 0x2402c,
1156 		0x24100, 0x2413c,
1157 		0x24190, 0x241a0,
1158 		0x241a8, 0x241b8,
1159 		0x241c4, 0x241c8,
1160 		0x24200, 0x24318,
1161 		0x24400, 0x244b4,
1162 		0x244c0, 0x24528,
1163 		0x24540, 0x24614,
1164 		0x25000, 0x25040,
1165 		0x2504c, 0x25060,
1166 		0x250c0, 0x250ec,
1167 		0x25200, 0x25268,
1168 		0x25270, 0x25284,
1169 		0x252fc, 0x25388,
1170 		0x25400, 0x25404,
1171 		0x25500, 0x25500,
1172 		0x25510, 0x25518,
1173 		0x2552c, 0x25530,
1174 		0x2553c, 0x2553c,
1175 		0x25550, 0x25554,
1176 		0x25600, 0x25600,
1177 		0x25608, 0x2561c,
1178 		0x25624, 0x25628,
1179 		0x25630, 0x25634,
1180 		0x2563c, 0x2563c,
1181 		0x25700, 0x2571c,
1182 		0x25780, 0x2578c,
1183 		0x25800, 0x25818,
1184 		0x25820, 0x25828,
1185 		0x25830, 0x25848,
1186 		0x25850, 0x25854,
1187 		0x25860, 0x25868,
1188 		0x25870, 0x25870,
1189 		0x25878, 0x25898,
1190 		0x258a0, 0x258a8,
1191 		0x258b0, 0x258c8,
1192 		0x258d0, 0x258d4,
1193 		0x258e0, 0x258e8,
1194 		0x258f0, 0x258f0,
1195 		0x258f8, 0x25a18,
1196 		0x25a20, 0x25a28,
1197 		0x25a30, 0x25a48,
1198 		0x25a50, 0x25a54,
1199 		0x25a60, 0x25a68,
1200 		0x25a70, 0x25a70,
1201 		0x25a78, 0x25a98,
1202 		0x25aa0, 0x25aa8,
1203 		0x25ab0, 0x25ac8,
1204 		0x25ad0, 0x25ad4,
1205 		0x25ae0, 0x25ae8,
1206 		0x25af0, 0x25af0,
1207 		0x25af8, 0x25c18,
1208 		0x25c20, 0x25c20,
1209 		0x25c28, 0x25c30,
1210 		0x25c38, 0x25c38,
1211 		0x25c80, 0x25c98,
1212 		0x25ca0, 0x25ca8,
1213 		0x25cb0, 0x25cc8,
1214 		0x25cd0, 0x25cd4,
1215 		0x25ce0, 0x25ce8,
1216 		0x25cf0, 0x25cf0,
1217 		0x25cf8, 0x25d7c,
1218 		0x25e00, 0x25e04,
1219 		0x26000, 0x2602c,
1220 		0x26100, 0x2613c,
1221 		0x26190, 0x261a0,
1222 		0x261a8, 0x261b8,
1223 		0x261c4, 0x261c8,
1224 		0x26200, 0x26318,
1225 		0x26400, 0x264b4,
1226 		0x264c0, 0x26528,
1227 		0x26540, 0x26614,
1228 		0x27000, 0x27040,
1229 		0x2704c, 0x27060,
1230 		0x270c0, 0x270ec,
1231 		0x27200, 0x27268,
1232 		0x27270, 0x27284,
1233 		0x272fc, 0x27388,
1234 		0x27400, 0x27404,
1235 		0x27500, 0x27500,
1236 		0x27510, 0x27518,
1237 		0x2752c, 0x27530,
1238 		0x2753c, 0x2753c,
1239 		0x27550, 0x27554,
1240 		0x27600, 0x27600,
1241 		0x27608, 0x2761c,
1242 		0x27624, 0x27628,
1243 		0x27630, 0x27634,
1244 		0x2763c, 0x2763c,
1245 		0x27700, 0x2771c,
1246 		0x27780, 0x2778c,
1247 		0x27800, 0x27818,
1248 		0x27820, 0x27828,
1249 		0x27830, 0x27848,
1250 		0x27850, 0x27854,
1251 		0x27860, 0x27868,
1252 		0x27870, 0x27870,
1253 		0x27878, 0x27898,
1254 		0x278a0, 0x278a8,
1255 		0x278b0, 0x278c8,
1256 		0x278d0, 0x278d4,
1257 		0x278e0, 0x278e8,
1258 		0x278f0, 0x278f0,
1259 		0x278f8, 0x27a18,
1260 		0x27a20, 0x27a28,
1261 		0x27a30, 0x27a48,
1262 		0x27a50, 0x27a54,
1263 		0x27a60, 0x27a68,
1264 		0x27a70, 0x27a70,
1265 		0x27a78, 0x27a98,
1266 		0x27aa0, 0x27aa8,
1267 		0x27ab0, 0x27ac8,
1268 		0x27ad0, 0x27ad4,
1269 		0x27ae0, 0x27ae8,
1270 		0x27af0, 0x27af0,
1271 		0x27af8, 0x27c18,
1272 		0x27c20, 0x27c20,
1273 		0x27c28, 0x27c30,
1274 		0x27c38, 0x27c38,
1275 		0x27c80, 0x27c98,
1276 		0x27ca0, 0x27ca8,
1277 		0x27cb0, 0x27cc8,
1278 		0x27cd0, 0x27cd4,
1279 		0x27ce0, 0x27ce8,
1280 		0x27cf0, 0x27cf0,
1281 		0x27cf8, 0x27d7c,
1282 		0x27e00, 0x27e04,
1283 	};
1284 
1285 	static const unsigned int t4vf_reg_ranges[] = {
1286 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
1287 		VF_MPS_REG(A_MPS_VF_CTL),
1288 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
1289 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI),
1290 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
1291 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
1292 		FW_T4VF_MBDATA_BASE_ADDR,
1293 		FW_T4VF_MBDATA_BASE_ADDR +
1294 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
1295 	};
1296 
1297 	static const unsigned int t5_reg_ranges[] = {
1298 		0x1008, 0x10c0,
1299 		0x10cc, 0x10f8,
1300 		0x1100, 0x1100,
1301 		0x110c, 0x1148,
1302 		0x1180, 0x1184,
1303 		0x1190, 0x1194,
1304 		0x11a0, 0x11a4,
1305 		0x11b0, 0x11b4,
1306 		0x11fc, 0x123c,
1307 		0x1280, 0x173c,
1308 		0x1800, 0x18fc,
1309 		0x3000, 0x3028,
1310 		0x3060, 0x30b0,
1311 		0x30b8, 0x30d8,
1312 		0x30e0, 0x30fc,
1313 		0x3140, 0x357c,
1314 		0x35a8, 0x35cc,
1315 		0x35ec, 0x35ec,
1316 		0x3600, 0x5624,
1317 		0x56cc, 0x56ec,
1318 		0x56f4, 0x5720,
1319 		0x5728, 0x575c,
1320 		0x580c, 0x5814,
1321 		0x5890, 0x589c,
1322 		0x58a4, 0x58ac,
1323 		0x58b8, 0x58bc,
1324 		0x5940, 0x59c8,
1325 		0x59d0, 0x59dc,
1326 		0x59fc, 0x5a18,
1327 		0x5a60, 0x5a70,
1328 		0x5a80, 0x5a9c,
1329 		0x5b94, 0x5bfc,
1330 		0x6000, 0x6020,
1331 		0x6028, 0x6040,
1332 		0x6058, 0x609c,
1333 		0x60a8, 0x614c,
1334 		0x7700, 0x7798,
1335 		0x77c0, 0x78fc,
1336 		0x7b00, 0x7b58,
1337 		0x7b60, 0x7b84,
1338 		0x7b8c, 0x7c54,
1339 		0x7d00, 0x7d38,
1340 		0x7d40, 0x7d80,
1341 		0x7d8c, 0x7ddc,
1342 		0x7de4, 0x7e04,
1343 		0x7e10, 0x7e1c,
1344 		0x7e24, 0x7e38,
1345 		0x7e40, 0x7e44,
1346 		0x7e4c, 0x7e78,
1347 		0x7e80, 0x7edc,
1348 		0x7ee8, 0x7efc,
1349 		0x8dc0, 0x8de0,
1350 		0x8df8, 0x8e04,
1351 		0x8e10, 0x8e84,
1352 		0x8ea0, 0x8f84,
1353 		0x8fc0, 0x9058,
1354 		0x9060, 0x9060,
1355 		0x9068, 0x90f8,
1356 		0x9400, 0x9408,
1357 		0x9410, 0x9470,
1358 		0x9600, 0x9600,
1359 		0x9608, 0x9638,
1360 		0x9640, 0x96f4,
1361 		0x9800, 0x9808,
1362 		0x9810, 0x9864,
1363 		0x9c00, 0x9c6c,
1364 		0x9c80, 0x9cec,
1365 		0x9d00, 0x9d6c,
1366 		0x9d80, 0x9dec,
1367 		0x9e00, 0x9e6c,
1368 		0x9e80, 0x9eec,
1369 		0x9f00, 0x9f6c,
1370 		0x9f80, 0xa020,
1371 		0xd000, 0xd004,
1372 		0xd010, 0xd03c,
1373 		0xdfc0, 0xdfe0,
1374 		0xe000, 0x1106c,
1375 		0x11074, 0x11088,
1376 		0x1109c, 0x11110,
1377 		0x11118, 0x1117c,
1378 		0x11190, 0x11204,
1379 		0x19040, 0x1906c,
1380 		0x19078, 0x19080,
1381 		0x1908c, 0x190e8,
1382 		0x190f0, 0x190f8,
1383 		0x19100, 0x19110,
1384 		0x19120, 0x19124,
1385 		0x19150, 0x19194,
1386 		0x1919c, 0x191b0,
1387 		0x191d0, 0x191e8,
1388 		0x19238, 0x19290,
1389 		0x193f8, 0x19428,
1390 		0x19430, 0x19444,
1391 		0x1944c, 0x1946c,
1392 		0x19474, 0x19474,
1393 		0x19490, 0x194cc,
1394 		0x194f0, 0x194f8,
1395 		0x19c00, 0x19c08,
1396 		0x19c10, 0x19c60,
1397 		0x19c94, 0x19ce4,
1398 		0x19cf0, 0x19d40,
1399 		0x19d50, 0x19d94,
1400 		0x19da0, 0x19de8,
1401 		0x19df0, 0x19e10,
1402 		0x19e50, 0x19e90,
1403 		0x19ea0, 0x19f24,
1404 		0x19f34, 0x19f34,
1405 		0x19f40, 0x19f50,
1406 		0x19f90, 0x19fb4,
1407 		0x19fc4, 0x19fe4,
1408 		0x1a000, 0x1a004,
1409 		0x1a010, 0x1a06c,
1410 		0x1a0b0, 0x1a0e4,
1411 		0x1a0ec, 0x1a0f8,
1412 		0x1a100, 0x1a108,
1413 		0x1a114, 0x1a130,
1414 		0x1a138, 0x1a1c4,
1415 		0x1a1fc, 0x1a1fc,
1416 		0x1e008, 0x1e00c,
1417 		0x1e040, 0x1e044,
1418 		0x1e04c, 0x1e04c,
1419 		0x1e284, 0x1e290,
1420 		0x1e2c0, 0x1e2c0,
1421 		0x1e2e0, 0x1e2e0,
1422 		0x1e300, 0x1e384,
1423 		0x1e3c0, 0x1e3c8,
1424 		0x1e408, 0x1e40c,
1425 		0x1e440, 0x1e444,
1426 		0x1e44c, 0x1e44c,
1427 		0x1e684, 0x1e690,
1428 		0x1e6c0, 0x1e6c0,
1429 		0x1e6e0, 0x1e6e0,
1430 		0x1e700, 0x1e784,
1431 		0x1e7c0, 0x1e7c8,
1432 		0x1e808, 0x1e80c,
1433 		0x1e840, 0x1e844,
1434 		0x1e84c, 0x1e84c,
1435 		0x1ea84, 0x1ea90,
1436 		0x1eac0, 0x1eac0,
1437 		0x1eae0, 0x1eae0,
1438 		0x1eb00, 0x1eb84,
1439 		0x1ebc0, 0x1ebc8,
1440 		0x1ec08, 0x1ec0c,
1441 		0x1ec40, 0x1ec44,
1442 		0x1ec4c, 0x1ec4c,
1443 		0x1ee84, 0x1ee90,
1444 		0x1eec0, 0x1eec0,
1445 		0x1eee0, 0x1eee0,
1446 		0x1ef00, 0x1ef84,
1447 		0x1efc0, 0x1efc8,
1448 		0x1f008, 0x1f00c,
1449 		0x1f040, 0x1f044,
1450 		0x1f04c, 0x1f04c,
1451 		0x1f284, 0x1f290,
1452 		0x1f2c0, 0x1f2c0,
1453 		0x1f2e0, 0x1f2e0,
1454 		0x1f300, 0x1f384,
1455 		0x1f3c0, 0x1f3c8,
1456 		0x1f408, 0x1f40c,
1457 		0x1f440, 0x1f444,
1458 		0x1f44c, 0x1f44c,
1459 		0x1f684, 0x1f690,
1460 		0x1f6c0, 0x1f6c0,
1461 		0x1f6e0, 0x1f6e0,
1462 		0x1f700, 0x1f784,
1463 		0x1f7c0, 0x1f7c8,
1464 		0x1f808, 0x1f80c,
1465 		0x1f840, 0x1f844,
1466 		0x1f84c, 0x1f84c,
1467 		0x1fa84, 0x1fa90,
1468 		0x1fac0, 0x1fac0,
1469 		0x1fae0, 0x1fae0,
1470 		0x1fb00, 0x1fb84,
1471 		0x1fbc0, 0x1fbc8,
1472 		0x1fc08, 0x1fc0c,
1473 		0x1fc40, 0x1fc44,
1474 		0x1fc4c, 0x1fc4c,
1475 		0x1fe84, 0x1fe90,
1476 		0x1fec0, 0x1fec0,
1477 		0x1fee0, 0x1fee0,
1478 		0x1ff00, 0x1ff84,
1479 		0x1ffc0, 0x1ffc8,
1480 		0x30000, 0x30030,
1481 		0x30100, 0x30144,
1482 		0x30190, 0x301a0,
1483 		0x301a8, 0x301b8,
1484 		0x301c4, 0x301c8,
1485 		0x301d0, 0x301d0,
1486 		0x30200, 0x30318,
1487 		0x30400, 0x304b4,
1488 		0x304c0, 0x3052c,
1489 		0x30540, 0x3061c,
1490 		0x30800, 0x30828,
1491 		0x30834, 0x30834,
1492 		0x308c0, 0x30908,
1493 		0x30910, 0x309ac,
1494 		0x30a00, 0x30a14,
1495 		0x30a1c, 0x30a2c,
1496 		0x30a44, 0x30a50,
1497 		0x30a74, 0x30a74,
1498 		0x30a7c, 0x30afc,
1499 		0x30b08, 0x30c24,
1500 		0x30d00, 0x30d00,
1501 		0x30d08, 0x30d14,
1502 		0x30d1c, 0x30d20,
1503 		0x30d3c, 0x30d3c,
1504 		0x30d48, 0x30d50,
1505 		0x31200, 0x3120c,
1506 		0x31220, 0x31220,
1507 		0x31240, 0x31240,
1508 		0x31600, 0x3160c,
1509 		0x31a00, 0x31a1c,
1510 		0x31e00, 0x31e20,
1511 		0x31e38, 0x31e3c,
1512 		0x31e80, 0x31e80,
1513 		0x31e88, 0x31ea8,
1514 		0x31eb0, 0x31eb4,
1515 		0x31ec8, 0x31ed4,
1516 		0x31fb8, 0x32004,
1517 		0x32200, 0x32200,
1518 		0x32208, 0x32240,
1519 		0x32248, 0x32280,
1520 		0x32288, 0x322c0,
1521 		0x322c8, 0x322fc,
1522 		0x32600, 0x32630,
1523 		0x32a00, 0x32abc,
1524 		0x32b00, 0x32b10,
1525 		0x32b20, 0x32b30,
1526 		0x32b40, 0x32b50,
1527 		0x32b60, 0x32b70,
1528 		0x33000, 0x33028,
1529 		0x33030, 0x33048,
1530 		0x33060, 0x33068,
1531 		0x33070, 0x3309c,
1532 		0x330f0, 0x33128,
1533 		0x33130, 0x33148,
1534 		0x33160, 0x33168,
1535 		0x33170, 0x3319c,
1536 		0x331f0, 0x33238,
1537 		0x33240, 0x33240,
1538 		0x33248, 0x33250,
1539 		0x3325c, 0x33264,
1540 		0x33270, 0x332b8,
1541 		0x332c0, 0x332e4,
1542 		0x332f8, 0x33338,
1543 		0x33340, 0x33340,
1544 		0x33348, 0x33350,
1545 		0x3335c, 0x33364,
1546 		0x33370, 0x333b8,
1547 		0x333c0, 0x333e4,
1548 		0x333f8, 0x33428,
1549 		0x33430, 0x33448,
1550 		0x33460, 0x33468,
1551 		0x33470, 0x3349c,
1552 		0x334f0, 0x33528,
1553 		0x33530, 0x33548,
1554 		0x33560, 0x33568,
1555 		0x33570, 0x3359c,
1556 		0x335f0, 0x33638,
1557 		0x33640, 0x33640,
1558 		0x33648, 0x33650,
1559 		0x3365c, 0x33664,
1560 		0x33670, 0x336b8,
1561 		0x336c0, 0x336e4,
1562 		0x336f8, 0x33738,
1563 		0x33740, 0x33740,
1564 		0x33748, 0x33750,
1565 		0x3375c, 0x33764,
1566 		0x33770, 0x337b8,
1567 		0x337c0, 0x337e4,
1568 		0x337f8, 0x337fc,
1569 		0x33814, 0x33814,
1570 		0x3382c, 0x3382c,
1571 		0x33880, 0x3388c,
1572 		0x338e8, 0x338ec,
1573 		0x33900, 0x33928,
1574 		0x33930, 0x33948,
1575 		0x33960, 0x33968,
1576 		0x33970, 0x3399c,
1577 		0x339f0, 0x33a38,
1578 		0x33a40, 0x33a40,
1579 		0x33a48, 0x33a50,
1580 		0x33a5c, 0x33a64,
1581 		0x33a70, 0x33ab8,
1582 		0x33ac0, 0x33ae4,
1583 		0x33af8, 0x33b10,
1584 		0x33b28, 0x33b28,
1585 		0x33b3c, 0x33b50,
1586 		0x33bf0, 0x33c10,
1587 		0x33c28, 0x33c28,
1588 		0x33c3c, 0x33c50,
1589 		0x33cf0, 0x33cfc,
1590 		0x34000, 0x34030,
1591 		0x34100, 0x34144,
1592 		0x34190, 0x341a0,
1593 		0x341a8, 0x341b8,
1594 		0x341c4, 0x341c8,
1595 		0x341d0, 0x341d0,
1596 		0x34200, 0x34318,
1597 		0x34400, 0x344b4,
1598 		0x344c0, 0x3452c,
1599 		0x34540, 0x3461c,
1600 		0x34800, 0x34828,
1601 		0x34834, 0x34834,
1602 		0x348c0, 0x34908,
1603 		0x34910, 0x349ac,
1604 		0x34a00, 0x34a14,
1605 		0x34a1c, 0x34a2c,
1606 		0x34a44, 0x34a50,
1607 		0x34a74, 0x34a74,
1608 		0x34a7c, 0x34afc,
1609 		0x34b08, 0x34c24,
1610 		0x34d00, 0x34d00,
1611 		0x34d08, 0x34d14,
1612 		0x34d1c, 0x34d20,
1613 		0x34d3c, 0x34d3c,
1614 		0x34d48, 0x34d50,
1615 		0x35200, 0x3520c,
1616 		0x35220, 0x35220,
1617 		0x35240, 0x35240,
1618 		0x35600, 0x3560c,
1619 		0x35a00, 0x35a1c,
1620 		0x35e00, 0x35e20,
1621 		0x35e38, 0x35e3c,
1622 		0x35e80, 0x35e80,
1623 		0x35e88, 0x35ea8,
1624 		0x35eb0, 0x35eb4,
1625 		0x35ec8, 0x35ed4,
1626 		0x35fb8, 0x36004,
1627 		0x36200, 0x36200,
1628 		0x36208, 0x36240,
1629 		0x36248, 0x36280,
1630 		0x36288, 0x362c0,
1631 		0x362c8, 0x362fc,
1632 		0x36600, 0x36630,
1633 		0x36a00, 0x36abc,
1634 		0x36b00, 0x36b10,
1635 		0x36b20, 0x36b30,
1636 		0x36b40, 0x36b50,
1637 		0x36b60, 0x36b70,
1638 		0x37000, 0x37028,
1639 		0x37030, 0x37048,
1640 		0x37060, 0x37068,
1641 		0x37070, 0x3709c,
1642 		0x370f0, 0x37128,
1643 		0x37130, 0x37148,
1644 		0x37160, 0x37168,
1645 		0x37170, 0x3719c,
1646 		0x371f0, 0x37238,
1647 		0x37240, 0x37240,
1648 		0x37248, 0x37250,
1649 		0x3725c, 0x37264,
1650 		0x37270, 0x372b8,
1651 		0x372c0, 0x372e4,
1652 		0x372f8, 0x37338,
1653 		0x37340, 0x37340,
1654 		0x37348, 0x37350,
1655 		0x3735c, 0x37364,
1656 		0x37370, 0x373b8,
1657 		0x373c0, 0x373e4,
1658 		0x373f8, 0x37428,
1659 		0x37430, 0x37448,
1660 		0x37460, 0x37468,
1661 		0x37470, 0x3749c,
1662 		0x374f0, 0x37528,
1663 		0x37530, 0x37548,
1664 		0x37560, 0x37568,
1665 		0x37570, 0x3759c,
1666 		0x375f0, 0x37638,
1667 		0x37640, 0x37640,
1668 		0x37648, 0x37650,
1669 		0x3765c, 0x37664,
1670 		0x37670, 0x376b8,
1671 		0x376c0, 0x376e4,
1672 		0x376f8, 0x37738,
1673 		0x37740, 0x37740,
1674 		0x37748, 0x37750,
1675 		0x3775c, 0x37764,
1676 		0x37770, 0x377b8,
1677 		0x377c0, 0x377e4,
1678 		0x377f8, 0x377fc,
1679 		0x37814, 0x37814,
1680 		0x3782c, 0x3782c,
1681 		0x37880, 0x3788c,
1682 		0x378e8, 0x378ec,
1683 		0x37900, 0x37928,
1684 		0x37930, 0x37948,
1685 		0x37960, 0x37968,
1686 		0x37970, 0x3799c,
1687 		0x379f0, 0x37a38,
1688 		0x37a40, 0x37a40,
1689 		0x37a48, 0x37a50,
1690 		0x37a5c, 0x37a64,
1691 		0x37a70, 0x37ab8,
1692 		0x37ac0, 0x37ae4,
1693 		0x37af8, 0x37b10,
1694 		0x37b28, 0x37b28,
1695 		0x37b3c, 0x37b50,
1696 		0x37bf0, 0x37c10,
1697 		0x37c28, 0x37c28,
1698 		0x37c3c, 0x37c50,
1699 		0x37cf0, 0x37cfc,
1700 		0x38000, 0x38030,
1701 		0x38100, 0x38144,
1702 		0x38190, 0x381a0,
1703 		0x381a8, 0x381b8,
1704 		0x381c4, 0x381c8,
1705 		0x381d0, 0x381d0,
1706 		0x38200, 0x38318,
1707 		0x38400, 0x384b4,
1708 		0x384c0, 0x3852c,
1709 		0x38540, 0x3861c,
1710 		0x38800, 0x38828,
1711 		0x38834, 0x38834,
1712 		0x388c0, 0x38908,
1713 		0x38910, 0x389ac,
1714 		0x38a00, 0x38a14,
1715 		0x38a1c, 0x38a2c,
1716 		0x38a44, 0x38a50,
1717 		0x38a74, 0x38a74,
1718 		0x38a7c, 0x38afc,
1719 		0x38b08, 0x38c24,
1720 		0x38d00, 0x38d00,
1721 		0x38d08, 0x38d14,
1722 		0x38d1c, 0x38d20,
1723 		0x38d3c, 0x38d3c,
1724 		0x38d48, 0x38d50,
1725 		0x39200, 0x3920c,
1726 		0x39220, 0x39220,
1727 		0x39240, 0x39240,
1728 		0x39600, 0x3960c,
1729 		0x39a00, 0x39a1c,
1730 		0x39e00, 0x39e20,
1731 		0x39e38, 0x39e3c,
1732 		0x39e80, 0x39e80,
1733 		0x39e88, 0x39ea8,
1734 		0x39eb0, 0x39eb4,
1735 		0x39ec8, 0x39ed4,
1736 		0x39fb8, 0x3a004,
1737 		0x3a200, 0x3a200,
1738 		0x3a208, 0x3a240,
1739 		0x3a248, 0x3a280,
1740 		0x3a288, 0x3a2c0,
1741 		0x3a2c8, 0x3a2fc,
1742 		0x3a600, 0x3a630,
1743 		0x3aa00, 0x3aabc,
1744 		0x3ab00, 0x3ab10,
1745 		0x3ab20, 0x3ab30,
1746 		0x3ab40, 0x3ab50,
1747 		0x3ab60, 0x3ab70,
1748 		0x3b000, 0x3b028,
1749 		0x3b030, 0x3b048,
1750 		0x3b060, 0x3b068,
1751 		0x3b070, 0x3b09c,
1752 		0x3b0f0, 0x3b128,
1753 		0x3b130, 0x3b148,
1754 		0x3b160, 0x3b168,
1755 		0x3b170, 0x3b19c,
1756 		0x3b1f0, 0x3b238,
1757 		0x3b240, 0x3b240,
1758 		0x3b248, 0x3b250,
1759 		0x3b25c, 0x3b264,
1760 		0x3b270, 0x3b2b8,
1761 		0x3b2c0, 0x3b2e4,
1762 		0x3b2f8, 0x3b338,
1763 		0x3b340, 0x3b340,
1764 		0x3b348, 0x3b350,
1765 		0x3b35c, 0x3b364,
1766 		0x3b370, 0x3b3b8,
1767 		0x3b3c0, 0x3b3e4,
1768 		0x3b3f8, 0x3b428,
1769 		0x3b430, 0x3b448,
1770 		0x3b460, 0x3b468,
1771 		0x3b470, 0x3b49c,
1772 		0x3b4f0, 0x3b528,
1773 		0x3b530, 0x3b548,
1774 		0x3b560, 0x3b568,
1775 		0x3b570, 0x3b59c,
1776 		0x3b5f0, 0x3b638,
1777 		0x3b640, 0x3b640,
1778 		0x3b648, 0x3b650,
1779 		0x3b65c, 0x3b664,
1780 		0x3b670, 0x3b6b8,
1781 		0x3b6c0, 0x3b6e4,
1782 		0x3b6f8, 0x3b738,
1783 		0x3b740, 0x3b740,
1784 		0x3b748, 0x3b750,
1785 		0x3b75c, 0x3b764,
1786 		0x3b770, 0x3b7b8,
1787 		0x3b7c0, 0x3b7e4,
1788 		0x3b7f8, 0x3b7fc,
1789 		0x3b814, 0x3b814,
1790 		0x3b82c, 0x3b82c,
1791 		0x3b880, 0x3b88c,
1792 		0x3b8e8, 0x3b8ec,
1793 		0x3b900, 0x3b928,
1794 		0x3b930, 0x3b948,
1795 		0x3b960, 0x3b968,
1796 		0x3b970, 0x3b99c,
1797 		0x3b9f0, 0x3ba38,
1798 		0x3ba40, 0x3ba40,
1799 		0x3ba48, 0x3ba50,
1800 		0x3ba5c, 0x3ba64,
1801 		0x3ba70, 0x3bab8,
1802 		0x3bac0, 0x3bae4,
1803 		0x3baf8, 0x3bb10,
1804 		0x3bb28, 0x3bb28,
1805 		0x3bb3c, 0x3bb50,
1806 		0x3bbf0, 0x3bc10,
1807 		0x3bc28, 0x3bc28,
1808 		0x3bc3c, 0x3bc50,
1809 		0x3bcf0, 0x3bcfc,
1810 		0x3c000, 0x3c030,
1811 		0x3c100, 0x3c144,
1812 		0x3c190, 0x3c1a0,
1813 		0x3c1a8, 0x3c1b8,
1814 		0x3c1c4, 0x3c1c8,
1815 		0x3c1d0, 0x3c1d0,
1816 		0x3c200, 0x3c318,
1817 		0x3c400, 0x3c4b4,
1818 		0x3c4c0, 0x3c52c,
1819 		0x3c540, 0x3c61c,
1820 		0x3c800, 0x3c828,
1821 		0x3c834, 0x3c834,
1822 		0x3c8c0, 0x3c908,
1823 		0x3c910, 0x3c9ac,
1824 		0x3ca00, 0x3ca14,
1825 		0x3ca1c, 0x3ca2c,
1826 		0x3ca44, 0x3ca50,
1827 		0x3ca74, 0x3ca74,
1828 		0x3ca7c, 0x3cafc,
1829 		0x3cb08, 0x3cc24,
1830 		0x3cd00, 0x3cd00,
1831 		0x3cd08, 0x3cd14,
1832 		0x3cd1c, 0x3cd20,
1833 		0x3cd3c, 0x3cd3c,
1834 		0x3cd48, 0x3cd50,
1835 		0x3d200, 0x3d20c,
1836 		0x3d220, 0x3d220,
1837 		0x3d240, 0x3d240,
1838 		0x3d600, 0x3d60c,
1839 		0x3da00, 0x3da1c,
1840 		0x3de00, 0x3de20,
1841 		0x3de38, 0x3de3c,
1842 		0x3de80, 0x3de80,
1843 		0x3de88, 0x3dea8,
1844 		0x3deb0, 0x3deb4,
1845 		0x3dec8, 0x3ded4,
1846 		0x3dfb8, 0x3e004,
1847 		0x3e200, 0x3e200,
1848 		0x3e208, 0x3e240,
1849 		0x3e248, 0x3e280,
1850 		0x3e288, 0x3e2c0,
1851 		0x3e2c8, 0x3e2fc,
1852 		0x3e600, 0x3e630,
1853 		0x3ea00, 0x3eabc,
1854 		0x3eb00, 0x3eb10,
1855 		0x3eb20, 0x3eb30,
1856 		0x3eb40, 0x3eb50,
1857 		0x3eb60, 0x3eb70,
1858 		0x3f000, 0x3f028,
1859 		0x3f030, 0x3f048,
1860 		0x3f060, 0x3f068,
1861 		0x3f070, 0x3f09c,
1862 		0x3f0f0, 0x3f128,
1863 		0x3f130, 0x3f148,
1864 		0x3f160, 0x3f168,
1865 		0x3f170, 0x3f19c,
1866 		0x3f1f0, 0x3f238,
1867 		0x3f240, 0x3f240,
1868 		0x3f248, 0x3f250,
1869 		0x3f25c, 0x3f264,
1870 		0x3f270, 0x3f2b8,
1871 		0x3f2c0, 0x3f2e4,
1872 		0x3f2f8, 0x3f338,
1873 		0x3f340, 0x3f340,
1874 		0x3f348, 0x3f350,
1875 		0x3f35c, 0x3f364,
1876 		0x3f370, 0x3f3b8,
1877 		0x3f3c0, 0x3f3e4,
1878 		0x3f3f8, 0x3f428,
1879 		0x3f430, 0x3f448,
1880 		0x3f460, 0x3f468,
1881 		0x3f470, 0x3f49c,
1882 		0x3f4f0, 0x3f528,
1883 		0x3f530, 0x3f548,
1884 		0x3f560, 0x3f568,
1885 		0x3f570, 0x3f59c,
1886 		0x3f5f0, 0x3f638,
1887 		0x3f640, 0x3f640,
1888 		0x3f648, 0x3f650,
1889 		0x3f65c, 0x3f664,
1890 		0x3f670, 0x3f6b8,
1891 		0x3f6c0, 0x3f6e4,
1892 		0x3f6f8, 0x3f738,
1893 		0x3f740, 0x3f740,
1894 		0x3f748, 0x3f750,
1895 		0x3f75c, 0x3f764,
1896 		0x3f770, 0x3f7b8,
1897 		0x3f7c0, 0x3f7e4,
1898 		0x3f7f8, 0x3f7fc,
1899 		0x3f814, 0x3f814,
1900 		0x3f82c, 0x3f82c,
1901 		0x3f880, 0x3f88c,
1902 		0x3f8e8, 0x3f8ec,
1903 		0x3f900, 0x3f928,
1904 		0x3f930, 0x3f948,
1905 		0x3f960, 0x3f968,
1906 		0x3f970, 0x3f99c,
1907 		0x3f9f0, 0x3fa38,
1908 		0x3fa40, 0x3fa40,
1909 		0x3fa48, 0x3fa50,
1910 		0x3fa5c, 0x3fa64,
1911 		0x3fa70, 0x3fab8,
1912 		0x3fac0, 0x3fae4,
1913 		0x3faf8, 0x3fb10,
1914 		0x3fb28, 0x3fb28,
1915 		0x3fb3c, 0x3fb50,
1916 		0x3fbf0, 0x3fc10,
1917 		0x3fc28, 0x3fc28,
1918 		0x3fc3c, 0x3fc50,
1919 		0x3fcf0, 0x3fcfc,
1920 		0x40000, 0x4000c,
1921 		0x40040, 0x40050,
1922 		0x40060, 0x40068,
1923 		0x4007c, 0x4008c,
1924 		0x40094, 0x400b0,
1925 		0x400c0, 0x40144,
1926 		0x40180, 0x4018c,
1927 		0x40200, 0x40254,
1928 		0x40260, 0x40264,
1929 		0x40270, 0x40288,
1930 		0x40290, 0x40298,
1931 		0x402ac, 0x402c8,
1932 		0x402d0, 0x402e0,
1933 		0x402f0, 0x402f0,
1934 		0x40300, 0x4033c,
1935 		0x403f8, 0x403fc,
1936 		0x41304, 0x413c4,
1937 		0x41400, 0x4140c,
1938 		0x41414, 0x4141c,
1939 		0x41480, 0x414d0,
1940 		0x44000, 0x44054,
1941 		0x4405c, 0x44078,
1942 		0x440c0, 0x44174,
1943 		0x44180, 0x441ac,
1944 		0x441b4, 0x441b8,
1945 		0x441c0, 0x44254,
1946 		0x4425c, 0x44278,
1947 		0x442c0, 0x44374,
1948 		0x44380, 0x443ac,
1949 		0x443b4, 0x443b8,
1950 		0x443c0, 0x44454,
1951 		0x4445c, 0x44478,
1952 		0x444c0, 0x44574,
1953 		0x44580, 0x445ac,
1954 		0x445b4, 0x445b8,
1955 		0x445c0, 0x44654,
1956 		0x4465c, 0x44678,
1957 		0x446c0, 0x44774,
1958 		0x44780, 0x447ac,
1959 		0x447b4, 0x447b8,
1960 		0x447c0, 0x44854,
1961 		0x4485c, 0x44878,
1962 		0x448c0, 0x44974,
1963 		0x44980, 0x449ac,
1964 		0x449b4, 0x449b8,
1965 		0x449c0, 0x449fc,
1966 		0x45000, 0x45004,
1967 		0x45010, 0x45030,
1968 		0x45040, 0x45060,
1969 		0x45068, 0x45068,
1970 		0x45080, 0x45084,
1971 		0x450a0, 0x450b0,
1972 		0x45200, 0x45204,
1973 		0x45210, 0x45230,
1974 		0x45240, 0x45260,
1975 		0x45268, 0x45268,
1976 		0x45280, 0x45284,
1977 		0x452a0, 0x452b0,
1978 		0x460c0, 0x460e4,
1979 		0x47000, 0x4703c,
1980 		0x47044, 0x4708c,
1981 		0x47200, 0x47250,
1982 		0x47400, 0x47408,
1983 		0x47414, 0x47420,
1984 		0x47600, 0x47618,
1985 		0x47800, 0x47814,
1986 		0x48000, 0x4800c,
1987 		0x48040, 0x48050,
1988 		0x48060, 0x48068,
1989 		0x4807c, 0x4808c,
1990 		0x48094, 0x480b0,
1991 		0x480c0, 0x48144,
1992 		0x48180, 0x4818c,
1993 		0x48200, 0x48254,
1994 		0x48260, 0x48264,
1995 		0x48270, 0x48288,
1996 		0x48290, 0x48298,
1997 		0x482ac, 0x482c8,
1998 		0x482d0, 0x482e0,
1999 		0x482f0, 0x482f0,
2000 		0x48300, 0x4833c,
2001 		0x483f8, 0x483fc,
2002 		0x49304, 0x493c4,
2003 		0x49400, 0x4940c,
2004 		0x49414, 0x4941c,
2005 		0x49480, 0x494d0,
2006 		0x4c000, 0x4c054,
2007 		0x4c05c, 0x4c078,
2008 		0x4c0c0, 0x4c174,
2009 		0x4c180, 0x4c1ac,
2010 		0x4c1b4, 0x4c1b8,
2011 		0x4c1c0, 0x4c254,
2012 		0x4c25c, 0x4c278,
2013 		0x4c2c0, 0x4c374,
2014 		0x4c380, 0x4c3ac,
2015 		0x4c3b4, 0x4c3b8,
2016 		0x4c3c0, 0x4c454,
2017 		0x4c45c, 0x4c478,
2018 		0x4c4c0, 0x4c574,
2019 		0x4c580, 0x4c5ac,
2020 		0x4c5b4, 0x4c5b8,
2021 		0x4c5c0, 0x4c654,
2022 		0x4c65c, 0x4c678,
2023 		0x4c6c0, 0x4c774,
2024 		0x4c780, 0x4c7ac,
2025 		0x4c7b4, 0x4c7b8,
2026 		0x4c7c0, 0x4c854,
2027 		0x4c85c, 0x4c878,
2028 		0x4c8c0, 0x4c974,
2029 		0x4c980, 0x4c9ac,
2030 		0x4c9b4, 0x4c9b8,
2031 		0x4c9c0, 0x4c9fc,
2032 		0x4d000, 0x4d004,
2033 		0x4d010, 0x4d030,
2034 		0x4d040, 0x4d060,
2035 		0x4d068, 0x4d068,
2036 		0x4d080, 0x4d084,
2037 		0x4d0a0, 0x4d0b0,
2038 		0x4d200, 0x4d204,
2039 		0x4d210, 0x4d230,
2040 		0x4d240, 0x4d260,
2041 		0x4d268, 0x4d268,
2042 		0x4d280, 0x4d284,
2043 		0x4d2a0, 0x4d2b0,
2044 		0x4e0c0, 0x4e0e4,
2045 		0x4f000, 0x4f03c,
2046 		0x4f044, 0x4f08c,
2047 		0x4f200, 0x4f250,
2048 		0x4f400, 0x4f408,
2049 		0x4f414, 0x4f420,
2050 		0x4f600, 0x4f618,
2051 		0x4f800, 0x4f814,
2052 		0x50000, 0x50084,
2053 		0x50090, 0x500cc,
2054 		0x50400, 0x50400,
2055 		0x50800, 0x50884,
2056 		0x50890, 0x508cc,
2057 		0x50c00, 0x50c00,
2058 		0x51000, 0x5101c,
2059 		0x51300, 0x51308,
2060 	};
2061 
2062 	static const unsigned int t5vf_reg_ranges[] = {
2063 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2064 		VF_MPS_REG(A_MPS_VF_CTL),
2065 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2066 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2067 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2068 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2069 		FW_T4VF_MBDATA_BASE_ADDR,
2070 		FW_T4VF_MBDATA_BASE_ADDR +
2071 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2072 	};
2073 
2074 	static const unsigned int t6_reg_ranges[] = {
2075 		0x1008, 0x101c,
2076 		0x1024, 0x10a8,
2077 		0x10b4, 0x10f8,
2078 		0x1100, 0x1114,
2079 		0x111c, 0x112c,
2080 		0x1138, 0x113c,
2081 		0x1144, 0x114c,
2082 		0x1180, 0x1184,
2083 		0x1190, 0x1194,
2084 		0x11a0, 0x11a4,
2085 		0x11b0, 0x11c4,
2086 		0x11fc, 0x123c,
2087 		0x1254, 0x1274,
2088 		0x1280, 0x133c,
2089 		0x1800, 0x18fc,
2090 		0x3000, 0x302c,
2091 		0x3060, 0x30b0,
2092 		0x30b8, 0x30d8,
2093 		0x30e0, 0x30fc,
2094 		0x3140, 0x357c,
2095 		0x35a8, 0x35cc,
2096 		0x35ec, 0x35ec,
2097 		0x3600, 0x5624,
2098 		0x56cc, 0x56ec,
2099 		0x56f4, 0x5720,
2100 		0x5728, 0x575c,
2101 		0x580c, 0x5814,
2102 		0x5890, 0x589c,
2103 		0x58a4, 0x58ac,
2104 		0x58b8, 0x58bc,
2105 		0x5940, 0x595c,
2106 		0x5980, 0x598c,
2107 		0x59b0, 0x59c8,
2108 		0x59d0, 0x59dc,
2109 		0x59fc, 0x5a18,
2110 		0x5a60, 0x5a6c,
2111 		0x5a80, 0x5a8c,
2112 		0x5a94, 0x5a9c,
2113 		0x5b94, 0x5bfc,
2114 		0x5c10, 0x5e48,
2115 		0x5e50, 0x5e94,
2116 		0x5ea0, 0x5eb0,
2117 		0x5ec0, 0x5ec0,
2118 		0x5ec8, 0x5ed0,
2119 		0x5ee0, 0x5ee0,
2120 		0x5ef0, 0x5ef0,
2121 		0x5f00, 0x5f00,
2122 		0x6000, 0x6020,
2123 		0x6028, 0x6040,
2124 		0x6058, 0x609c,
2125 		0x60a8, 0x619c,
2126 		0x7700, 0x7798,
2127 		0x77c0, 0x7880,
2128 		0x78cc, 0x78fc,
2129 		0x7b00, 0x7b58,
2130 		0x7b60, 0x7b84,
2131 		0x7b8c, 0x7c54,
2132 		0x7d00, 0x7d38,
2133 		0x7d40, 0x7d84,
2134 		0x7d8c, 0x7ddc,
2135 		0x7de4, 0x7e04,
2136 		0x7e10, 0x7e1c,
2137 		0x7e24, 0x7e38,
2138 		0x7e40, 0x7e44,
2139 		0x7e4c, 0x7e78,
2140 		0x7e80, 0x7edc,
2141 		0x7ee8, 0x7efc,
2142 		0x8dc0, 0x8de0,
2143 		0x8df8, 0x8e04,
2144 		0x8e10, 0x8e84,
2145 		0x8ea0, 0x8f88,
2146 		0x8fb8, 0x9058,
2147 		0x9060, 0x9060,
2148 		0x9068, 0x90f8,
2149 		0x9100, 0x9124,
2150 		0x9400, 0x9470,
2151 		0x9600, 0x9600,
2152 		0x9608, 0x9638,
2153 		0x9640, 0x9704,
2154 		0x9710, 0x971c,
2155 		0x9800, 0x9808,
2156 		0x9810, 0x9864,
2157 		0x9c00, 0x9c6c,
2158 		0x9c80, 0x9cec,
2159 		0x9d00, 0x9d6c,
2160 		0x9d80, 0x9dec,
2161 		0x9e00, 0x9e6c,
2162 		0x9e80, 0x9eec,
2163 		0x9f00, 0x9f6c,
2164 		0x9f80, 0xa020,
2165 		0xd000, 0xd03c,
2166 		0xd100, 0xd118,
2167 		0xd200, 0xd214,
2168 		0xd220, 0xd234,
2169 		0xd240, 0xd254,
2170 		0xd260, 0xd274,
2171 		0xd280, 0xd294,
2172 		0xd2a0, 0xd2b4,
2173 		0xd2c0, 0xd2d4,
2174 		0xd2e0, 0xd2f4,
2175 		0xd300, 0xd31c,
2176 		0xdfc0, 0xdfe0,
2177 		0xe000, 0xf008,
2178 		0xf010, 0xf018,
2179 		0xf020, 0xf028,
2180 		0x11000, 0x11014,
2181 		0x11048, 0x1106c,
2182 		0x11074, 0x11088,
2183 		0x11098, 0x11120,
2184 		0x1112c, 0x1117c,
2185 		0x11190, 0x112e0,
2186 		0x11300, 0x1130c,
2187 		0x12000, 0x1206c,
2188 		0x19040, 0x1906c,
2189 		0x19078, 0x19080,
2190 		0x1908c, 0x190e8,
2191 		0x190f0, 0x190f8,
2192 		0x19100, 0x19110,
2193 		0x19120, 0x19124,
2194 		0x19150, 0x19194,
2195 		0x1919c, 0x191b0,
2196 		0x191d0, 0x191e8,
2197 		0x19238, 0x19290,
2198 		0x192a4, 0x192b0,
2199 		0x19348, 0x1934c,
2200 		0x193f8, 0x19418,
2201 		0x19420, 0x19428,
2202 		0x19430, 0x19444,
2203 		0x1944c, 0x1946c,
2204 		0x19474, 0x19474,
2205 		0x19490, 0x194cc,
2206 		0x194f0, 0x194f8,
2207 		0x19c00, 0x19c48,
2208 		0x19c50, 0x19c80,
2209 		0x19c94, 0x19c98,
2210 		0x19ca0, 0x19cbc,
2211 		0x19ce4, 0x19ce4,
2212 		0x19cf0, 0x19cf8,
2213 		0x19d00, 0x19d28,
2214 		0x19d50, 0x19d78,
2215 		0x19d94, 0x19d98,
2216 		0x19da0, 0x19de0,
2217 		0x19df0, 0x19e10,
2218 		0x19e50, 0x19e6c,
2219 		0x19ea0, 0x19ebc,
2220 		0x19ec4, 0x19ef4,
2221 		0x19f04, 0x19f2c,
2222 		0x19f34, 0x19f34,
2223 		0x19f40, 0x19f50,
2224 		0x19f90, 0x19fac,
2225 		0x19fc4, 0x19fc8,
2226 		0x19fd0, 0x19fe4,
2227 		0x1a000, 0x1a004,
2228 		0x1a010, 0x1a06c,
2229 		0x1a0b0, 0x1a0e4,
2230 		0x1a0ec, 0x1a0f8,
2231 		0x1a100, 0x1a108,
2232 		0x1a114, 0x1a130,
2233 		0x1a138, 0x1a1c4,
2234 		0x1a1fc, 0x1a1fc,
2235 		0x1e008, 0x1e00c,
2236 		0x1e040, 0x1e044,
2237 		0x1e04c, 0x1e04c,
2238 		0x1e284, 0x1e290,
2239 		0x1e2c0, 0x1e2c0,
2240 		0x1e2e0, 0x1e2e0,
2241 		0x1e300, 0x1e384,
2242 		0x1e3c0, 0x1e3c8,
2243 		0x1e408, 0x1e40c,
2244 		0x1e440, 0x1e444,
2245 		0x1e44c, 0x1e44c,
2246 		0x1e684, 0x1e690,
2247 		0x1e6c0, 0x1e6c0,
2248 		0x1e6e0, 0x1e6e0,
2249 		0x1e700, 0x1e784,
2250 		0x1e7c0, 0x1e7c8,
2251 		0x1e808, 0x1e80c,
2252 		0x1e840, 0x1e844,
2253 		0x1e84c, 0x1e84c,
2254 		0x1ea84, 0x1ea90,
2255 		0x1eac0, 0x1eac0,
2256 		0x1eae0, 0x1eae0,
2257 		0x1eb00, 0x1eb84,
2258 		0x1ebc0, 0x1ebc8,
2259 		0x1ec08, 0x1ec0c,
2260 		0x1ec40, 0x1ec44,
2261 		0x1ec4c, 0x1ec4c,
2262 		0x1ee84, 0x1ee90,
2263 		0x1eec0, 0x1eec0,
2264 		0x1eee0, 0x1eee0,
2265 		0x1ef00, 0x1ef84,
2266 		0x1efc0, 0x1efc8,
2267 		0x1f008, 0x1f00c,
2268 		0x1f040, 0x1f044,
2269 		0x1f04c, 0x1f04c,
2270 		0x1f284, 0x1f290,
2271 		0x1f2c0, 0x1f2c0,
2272 		0x1f2e0, 0x1f2e0,
2273 		0x1f300, 0x1f384,
2274 		0x1f3c0, 0x1f3c8,
2275 		0x1f408, 0x1f40c,
2276 		0x1f440, 0x1f444,
2277 		0x1f44c, 0x1f44c,
2278 		0x1f684, 0x1f690,
2279 		0x1f6c0, 0x1f6c0,
2280 		0x1f6e0, 0x1f6e0,
2281 		0x1f700, 0x1f784,
2282 		0x1f7c0, 0x1f7c8,
2283 		0x1f808, 0x1f80c,
2284 		0x1f840, 0x1f844,
2285 		0x1f84c, 0x1f84c,
2286 		0x1fa84, 0x1fa90,
2287 		0x1fac0, 0x1fac0,
2288 		0x1fae0, 0x1fae0,
2289 		0x1fb00, 0x1fb84,
2290 		0x1fbc0, 0x1fbc8,
2291 		0x1fc08, 0x1fc0c,
2292 		0x1fc40, 0x1fc44,
2293 		0x1fc4c, 0x1fc4c,
2294 		0x1fe84, 0x1fe90,
2295 		0x1fec0, 0x1fec0,
2296 		0x1fee0, 0x1fee0,
2297 		0x1ff00, 0x1ff84,
2298 		0x1ffc0, 0x1ffc8,
2299 		0x30000, 0x30030,
2300 		0x30100, 0x30168,
2301 		0x30190, 0x301a0,
2302 		0x301a8, 0x301b8,
2303 		0x301c4, 0x301c8,
2304 		0x301d0, 0x301d0,
2305 		0x30200, 0x30320,
2306 		0x30400, 0x304b4,
2307 		0x304c0, 0x3052c,
2308 		0x30540, 0x3061c,
2309 		0x30800, 0x308a0,
2310 		0x308c0, 0x30908,
2311 		0x30910, 0x309b8,
2312 		0x30a00, 0x30a04,
2313 		0x30a0c, 0x30a14,
2314 		0x30a1c, 0x30a2c,
2315 		0x30a44, 0x30a50,
2316 		0x30a74, 0x30a74,
2317 		0x30a7c, 0x30afc,
2318 		0x30b08, 0x30c24,
2319 		0x30d00, 0x30d14,
2320 		0x30d1c, 0x30d3c,
2321 		0x30d44, 0x30d4c,
2322 		0x30d54, 0x30d74,
2323 		0x30d7c, 0x30d7c,
2324 		0x30de0, 0x30de0,
2325 		0x30e00, 0x30ed4,
2326 		0x30f00, 0x30fa4,
2327 		0x30fc0, 0x30fc4,
2328 		0x31000, 0x31004,
2329 		0x31080, 0x310fc,
2330 		0x31208, 0x31220,
2331 		0x3123c, 0x31254,
2332 		0x31300, 0x31300,
2333 		0x31308, 0x3131c,
2334 		0x31338, 0x3133c,
2335 		0x31380, 0x31380,
2336 		0x31388, 0x313a8,
2337 		0x313b4, 0x313b4,
2338 		0x31400, 0x31420,
2339 		0x31438, 0x3143c,
2340 		0x31480, 0x31480,
2341 		0x314a8, 0x314a8,
2342 		0x314b0, 0x314b4,
2343 		0x314c8, 0x314d4,
2344 		0x31a40, 0x31a4c,
2345 		0x31af0, 0x31b20,
2346 		0x31b38, 0x31b3c,
2347 		0x31b80, 0x31b80,
2348 		0x31ba8, 0x31ba8,
2349 		0x31bb0, 0x31bb4,
2350 		0x31bc8, 0x31bd4,
2351 		0x32140, 0x3218c,
2352 		0x321f0, 0x321f4,
2353 		0x32200, 0x32200,
2354 		0x32218, 0x32218,
2355 		0x32400, 0x32400,
2356 		0x32408, 0x3241c,
2357 		0x32618, 0x32620,
2358 		0x32664, 0x32664,
2359 		0x326a8, 0x326a8,
2360 		0x326ec, 0x326ec,
2361 		0x32a00, 0x32abc,
2362 		0x32b00, 0x32b18,
2363 		0x32b20, 0x32b38,
2364 		0x32b40, 0x32b58,
2365 		0x32b60, 0x32b78,
2366 		0x32c00, 0x32c00,
2367 		0x32c08, 0x32c3c,
2368 		0x33000, 0x3302c,
2369 		0x33034, 0x33050,
2370 		0x33058, 0x33058,
2371 		0x33060, 0x3308c,
2372 		0x3309c, 0x330ac,
2373 		0x330c0, 0x330c0,
2374 		0x330c8, 0x330d0,
2375 		0x330d8, 0x330e0,
2376 		0x330ec, 0x3312c,
2377 		0x33134, 0x33150,
2378 		0x33158, 0x33158,
2379 		0x33160, 0x3318c,
2380 		0x3319c, 0x331ac,
2381 		0x331c0, 0x331c0,
2382 		0x331c8, 0x331d0,
2383 		0x331d8, 0x331e0,
2384 		0x331ec, 0x33290,
2385 		0x33298, 0x332c4,
2386 		0x332e4, 0x33390,
2387 		0x33398, 0x333c4,
2388 		0x333e4, 0x3342c,
2389 		0x33434, 0x33450,
2390 		0x33458, 0x33458,
2391 		0x33460, 0x3348c,
2392 		0x3349c, 0x334ac,
2393 		0x334c0, 0x334c0,
2394 		0x334c8, 0x334d0,
2395 		0x334d8, 0x334e0,
2396 		0x334ec, 0x3352c,
2397 		0x33534, 0x33550,
2398 		0x33558, 0x33558,
2399 		0x33560, 0x3358c,
2400 		0x3359c, 0x335ac,
2401 		0x335c0, 0x335c0,
2402 		0x335c8, 0x335d0,
2403 		0x335d8, 0x335e0,
2404 		0x335ec, 0x33690,
2405 		0x33698, 0x336c4,
2406 		0x336e4, 0x33790,
2407 		0x33798, 0x337c4,
2408 		0x337e4, 0x337fc,
2409 		0x33814, 0x33814,
2410 		0x33854, 0x33868,
2411 		0x33880, 0x3388c,
2412 		0x338c0, 0x338d0,
2413 		0x338e8, 0x338ec,
2414 		0x33900, 0x3392c,
2415 		0x33934, 0x33950,
2416 		0x33958, 0x33958,
2417 		0x33960, 0x3398c,
2418 		0x3399c, 0x339ac,
2419 		0x339c0, 0x339c0,
2420 		0x339c8, 0x339d0,
2421 		0x339d8, 0x339e0,
2422 		0x339ec, 0x33a90,
2423 		0x33a98, 0x33ac4,
2424 		0x33ae4, 0x33b10,
2425 		0x33b24, 0x33b28,
2426 		0x33b38, 0x33b50,
2427 		0x33bf0, 0x33c10,
2428 		0x33c24, 0x33c28,
2429 		0x33c38, 0x33c50,
2430 		0x33cf0, 0x33cfc,
2431 		0x34000, 0x34030,
2432 		0x34100, 0x34168,
2433 		0x34190, 0x341a0,
2434 		0x341a8, 0x341b8,
2435 		0x341c4, 0x341c8,
2436 		0x341d0, 0x341d0,
2437 		0x34200, 0x34320,
2438 		0x34400, 0x344b4,
2439 		0x344c0, 0x3452c,
2440 		0x34540, 0x3461c,
2441 		0x34800, 0x348a0,
2442 		0x348c0, 0x34908,
2443 		0x34910, 0x349b8,
2444 		0x34a00, 0x34a04,
2445 		0x34a0c, 0x34a14,
2446 		0x34a1c, 0x34a2c,
2447 		0x34a44, 0x34a50,
2448 		0x34a74, 0x34a74,
2449 		0x34a7c, 0x34afc,
2450 		0x34b08, 0x34c24,
2451 		0x34d00, 0x34d14,
2452 		0x34d1c, 0x34d3c,
2453 		0x34d44, 0x34d4c,
2454 		0x34d54, 0x34d74,
2455 		0x34d7c, 0x34d7c,
2456 		0x34de0, 0x34de0,
2457 		0x34e00, 0x34ed4,
2458 		0x34f00, 0x34fa4,
2459 		0x34fc0, 0x34fc4,
2460 		0x35000, 0x35004,
2461 		0x35080, 0x350fc,
2462 		0x35208, 0x35220,
2463 		0x3523c, 0x35254,
2464 		0x35300, 0x35300,
2465 		0x35308, 0x3531c,
2466 		0x35338, 0x3533c,
2467 		0x35380, 0x35380,
2468 		0x35388, 0x353a8,
2469 		0x353b4, 0x353b4,
2470 		0x35400, 0x35420,
2471 		0x35438, 0x3543c,
2472 		0x35480, 0x35480,
2473 		0x354a8, 0x354a8,
2474 		0x354b0, 0x354b4,
2475 		0x354c8, 0x354d4,
2476 		0x35a40, 0x35a4c,
2477 		0x35af0, 0x35b20,
2478 		0x35b38, 0x35b3c,
2479 		0x35b80, 0x35b80,
2480 		0x35ba8, 0x35ba8,
2481 		0x35bb0, 0x35bb4,
2482 		0x35bc8, 0x35bd4,
2483 		0x36140, 0x3618c,
2484 		0x361f0, 0x361f4,
2485 		0x36200, 0x36200,
2486 		0x36218, 0x36218,
2487 		0x36400, 0x36400,
2488 		0x36408, 0x3641c,
2489 		0x36618, 0x36620,
2490 		0x36664, 0x36664,
2491 		0x366a8, 0x366a8,
2492 		0x366ec, 0x366ec,
2493 		0x36a00, 0x36abc,
2494 		0x36b00, 0x36b18,
2495 		0x36b20, 0x36b38,
2496 		0x36b40, 0x36b58,
2497 		0x36b60, 0x36b78,
2498 		0x36c00, 0x36c00,
2499 		0x36c08, 0x36c3c,
2500 		0x37000, 0x3702c,
2501 		0x37034, 0x37050,
2502 		0x37058, 0x37058,
2503 		0x37060, 0x3708c,
2504 		0x3709c, 0x370ac,
2505 		0x370c0, 0x370c0,
2506 		0x370c8, 0x370d0,
2507 		0x370d8, 0x370e0,
2508 		0x370ec, 0x3712c,
2509 		0x37134, 0x37150,
2510 		0x37158, 0x37158,
2511 		0x37160, 0x3718c,
2512 		0x3719c, 0x371ac,
2513 		0x371c0, 0x371c0,
2514 		0x371c8, 0x371d0,
2515 		0x371d8, 0x371e0,
2516 		0x371ec, 0x37290,
2517 		0x37298, 0x372c4,
2518 		0x372e4, 0x37390,
2519 		0x37398, 0x373c4,
2520 		0x373e4, 0x3742c,
2521 		0x37434, 0x37450,
2522 		0x37458, 0x37458,
2523 		0x37460, 0x3748c,
2524 		0x3749c, 0x374ac,
2525 		0x374c0, 0x374c0,
2526 		0x374c8, 0x374d0,
2527 		0x374d8, 0x374e0,
2528 		0x374ec, 0x3752c,
2529 		0x37534, 0x37550,
2530 		0x37558, 0x37558,
2531 		0x37560, 0x3758c,
2532 		0x3759c, 0x375ac,
2533 		0x375c0, 0x375c0,
2534 		0x375c8, 0x375d0,
2535 		0x375d8, 0x375e0,
2536 		0x375ec, 0x37690,
2537 		0x37698, 0x376c4,
2538 		0x376e4, 0x37790,
2539 		0x37798, 0x377c4,
2540 		0x377e4, 0x377fc,
2541 		0x37814, 0x37814,
2542 		0x37854, 0x37868,
2543 		0x37880, 0x3788c,
2544 		0x378c0, 0x378d0,
2545 		0x378e8, 0x378ec,
2546 		0x37900, 0x3792c,
2547 		0x37934, 0x37950,
2548 		0x37958, 0x37958,
2549 		0x37960, 0x3798c,
2550 		0x3799c, 0x379ac,
2551 		0x379c0, 0x379c0,
2552 		0x379c8, 0x379d0,
2553 		0x379d8, 0x379e0,
2554 		0x379ec, 0x37a90,
2555 		0x37a98, 0x37ac4,
2556 		0x37ae4, 0x37b10,
2557 		0x37b24, 0x37b28,
2558 		0x37b38, 0x37b50,
2559 		0x37bf0, 0x37c10,
2560 		0x37c24, 0x37c28,
2561 		0x37c38, 0x37c50,
2562 		0x37cf0, 0x37cfc,
2563 		0x40040, 0x40040,
2564 		0x40080, 0x40084,
2565 		0x40100, 0x40100,
2566 		0x40140, 0x401bc,
2567 		0x40200, 0x40214,
2568 		0x40228, 0x40228,
2569 		0x40240, 0x40258,
2570 		0x40280, 0x40280,
2571 		0x40304, 0x40304,
2572 		0x40330, 0x4033c,
2573 		0x41304, 0x413c8,
2574 		0x413d0, 0x413dc,
2575 		0x413f0, 0x413f0,
2576 		0x41400, 0x4140c,
2577 		0x41414, 0x4141c,
2578 		0x41480, 0x414d0,
2579 		0x44000, 0x4407c,
2580 		0x440c0, 0x441ac,
2581 		0x441b4, 0x4427c,
2582 		0x442c0, 0x443ac,
2583 		0x443b4, 0x4447c,
2584 		0x444c0, 0x445ac,
2585 		0x445b4, 0x4467c,
2586 		0x446c0, 0x447ac,
2587 		0x447b4, 0x4487c,
2588 		0x448c0, 0x449ac,
2589 		0x449b4, 0x44a7c,
2590 		0x44ac0, 0x44bac,
2591 		0x44bb4, 0x44c7c,
2592 		0x44cc0, 0x44dac,
2593 		0x44db4, 0x44e7c,
2594 		0x44ec0, 0x44fac,
2595 		0x44fb4, 0x4507c,
2596 		0x450c0, 0x451ac,
2597 		0x451b4, 0x451fc,
2598 		0x45800, 0x45804,
2599 		0x45810, 0x45830,
2600 		0x45840, 0x45860,
2601 		0x45868, 0x45868,
2602 		0x45880, 0x45884,
2603 		0x458a0, 0x458b0,
2604 		0x45a00, 0x45a04,
2605 		0x45a10, 0x45a30,
2606 		0x45a40, 0x45a60,
2607 		0x45a68, 0x45a68,
2608 		0x45a80, 0x45a84,
2609 		0x45aa0, 0x45ab0,
2610 		0x460c0, 0x460e4,
2611 		0x47000, 0x4703c,
2612 		0x47044, 0x4708c,
2613 		0x47200, 0x47250,
2614 		0x47400, 0x47408,
2615 		0x47414, 0x47420,
2616 		0x47600, 0x47618,
2617 		0x47800, 0x47814,
2618 		0x47820, 0x4782c,
2619 		0x50000, 0x50084,
2620 		0x50090, 0x500cc,
2621 		0x50300, 0x50384,
2622 		0x50400, 0x50400,
2623 		0x50800, 0x50884,
2624 		0x50890, 0x508cc,
2625 		0x50b00, 0x50b84,
2626 		0x50c00, 0x50c00,
2627 		0x51000, 0x51020,
2628 		0x51028, 0x510b0,
2629 		0x51300, 0x51324,
2630 	};
2631 
2632 	static const unsigned int t6vf_reg_ranges[] = {
2633 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2634 		VF_MPS_REG(A_MPS_VF_CTL),
2635 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2636 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2637 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2638 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2639 		FW_T6VF_MBDATA_BASE_ADDR,
2640 		FW_T6VF_MBDATA_BASE_ADDR +
2641 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2642 	};
2643 
2644 	u32 *buf_end = (u32 *)(buf + buf_size);
2645 	const unsigned int *reg_ranges;
2646 	int reg_ranges_size, range;
2647 	unsigned int chip_version = chip_id(adap);
2648 
2649 	/*
2650 	 * Select the right set of register ranges to dump depending on the
2651 	 * adapter chip type.
2652 	 */
2653 	switch (chip_version) {
2654 	case CHELSIO_T4:
2655 		if (adap->flags & IS_VF) {
2656 			reg_ranges = t4vf_reg_ranges;
2657 			reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges);
2658 		} else {
2659 			reg_ranges = t4_reg_ranges;
2660 			reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2661 		}
2662 		break;
2663 
2664 	case CHELSIO_T5:
2665 		if (adap->flags & IS_VF) {
2666 			reg_ranges = t5vf_reg_ranges;
2667 			reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges);
2668 		} else {
2669 			reg_ranges = t5_reg_ranges;
2670 			reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2671 		}
2672 		break;
2673 
2674 	case CHELSIO_T6:
2675 		if (adap->flags & IS_VF) {
2676 			reg_ranges = t6vf_reg_ranges;
2677 			reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges);
2678 		} else {
2679 			reg_ranges = t6_reg_ranges;
2680 			reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2681 		}
2682 		break;
2683 
2684 	default:
2685 		CH_ERR(adap,
2686 			"Unsupported chip version %d\n", chip_version);
2687 		return;
2688 	}
2689 
2690 	/*
2691 	 * Clear the register buffer and insert the appropriate register
2692 	 * values selected by the above register ranges.
2693 	 */
2694 	memset(buf, 0, buf_size);
2695 	for (range = 0; range < reg_ranges_size; range += 2) {
2696 		unsigned int reg = reg_ranges[range];
2697 		unsigned int last_reg = reg_ranges[range + 1];
2698 		u32 *bufp = (u32 *)(buf + reg);
2699 
2700 		/*
2701 		 * Iterate across the register range filling in the register
2702 		 * buffer but don't write past the end of the register buffer.
2703 		 */
2704 		while (reg <= last_reg && bufp < buf_end) {
2705 			*bufp++ = t4_read_reg(adap, reg);
2706 			reg += sizeof(u32);
2707 		}
2708 	}
2709 }
2710 
2711 /*
2712  * Partial EEPROM Vital Product Data structure.  The VPD starts with one ID
2713  * header followed by one or more VPD-R sections, each with its own header.
2714  */
2715 struct t4_vpd_hdr {
2716 	u8  id_tag;
2717 	u8  id_len[2];
2718 	u8  id_data[ID_LEN];
2719 };
2720 
2721 struct t4_vpdr_hdr {
2722 	u8  vpdr_tag;
2723 	u8  vpdr_len[2];
2724 };
2725 
2726 /*
2727  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
2728  */
2729 #define EEPROM_DELAY		10		/* 10us per poll spin */
2730 #define EEPROM_MAX_POLL		5000		/* x 5000 == 50ms */
2731 
2732 #define EEPROM_STAT_ADDR	0x7bfc
2733 #define VPD_SIZE		0x800
2734 #define VPD_BASE		0x400
2735 #define VPD_BASE_OLD		0
2736 #define VPD_LEN			1024
2737 #define VPD_INFO_FLD_HDR_SIZE	3
2738 #define CHELSIO_VPD_UNIQUE_ID	0x82
2739 
2740 /*
2741  * Small utility function to wait till any outstanding VPD Access is complete.
2742  * We have a per-adapter state variable "VPD Busy" to indicate when we have a
2743  * VPD Access in flight.  This allows us to handle the problem of having a
2744  * previous VPD Access time out and prevent an attempt to inject a new VPD
2745  * Request before any in-flight VPD reguest has completed.
2746  */
2747 static int t4_seeprom_wait(struct adapter *adapter)
2748 {
2749 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2750 	int max_poll;
2751 
2752 	/*
2753 	 * If no VPD Access is in flight, we can just return success right
2754 	 * away.
2755 	 */
2756 	if (!adapter->vpd_busy)
2757 		return 0;
2758 
2759 	/*
2760 	 * Poll the VPD Capability Address/Flag register waiting for it
2761 	 * to indicate that the operation is complete.
2762 	 */
2763 	max_poll = EEPROM_MAX_POLL;
2764 	do {
2765 		u16 val;
2766 
2767 		udelay(EEPROM_DELAY);
2768 		t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
2769 
2770 		/*
2771 		 * If the operation is complete, mark the VPD as no longer
2772 		 * busy and return success.
2773 		 */
2774 		if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
2775 			adapter->vpd_busy = 0;
2776 			return 0;
2777 		}
2778 	} while (--max_poll);
2779 
2780 	/*
2781 	 * Failure!  Note that we leave the VPD Busy status set in order to
2782 	 * avoid pushing a new VPD Access request into the VPD Capability till
2783 	 * the current operation eventually succeeds.  It's a bug to issue a
2784 	 * new request when an existing request is in flight and will result
2785 	 * in corrupt hardware state.
2786 	 */
2787 	return -ETIMEDOUT;
2788 }
2789 
2790 /**
2791  *	t4_seeprom_read - read a serial EEPROM location
2792  *	@adapter: adapter to read
2793  *	@addr: EEPROM virtual address
2794  *	@data: where to store the read data
2795  *
2796  *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
2797  *	VPD capability.  Note that this function must be called with a virtual
2798  *	address.
2799  */
2800 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2801 {
2802 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2803 	int ret;
2804 
2805 	/*
2806 	 * VPD Accesses must alway be 4-byte aligned!
2807 	 */
2808 	if (addr >= EEPROMVSIZE || (addr & 3))
2809 		return -EINVAL;
2810 
2811 	/*
2812 	 * Wait for any previous operation which may still be in flight to
2813 	 * complete.
2814 	 */
2815 	ret = t4_seeprom_wait(adapter);
2816 	if (ret) {
2817 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2818 		return ret;
2819 	}
2820 
2821 	/*
2822 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2823 	 * for our request to complete.  If it doesn't complete, note the
2824 	 * error and return it to our caller.  Note that we do not reset the
2825 	 * VPD Busy status!
2826 	 */
2827 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2828 	adapter->vpd_busy = 1;
2829 	adapter->vpd_flag = PCI_VPD_ADDR_F;
2830 	ret = t4_seeprom_wait(adapter);
2831 	if (ret) {
2832 		CH_ERR(adapter, "VPD read of address %#x failed\n", addr);
2833 		return ret;
2834 	}
2835 
2836 	/*
2837 	 * Grab the returned data, swizzle it into our endianness and
2838 	 * return success.
2839 	 */
2840 	t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2841 	*data = le32_to_cpu(*data);
2842 	return 0;
2843 }
2844 
2845 /**
2846  *	t4_seeprom_write - write a serial EEPROM location
2847  *	@adapter: adapter to write
2848  *	@addr: virtual EEPROM address
2849  *	@data: value to write
2850  *
2851  *	Write a 32-bit word to a location in serial EEPROM using the card's PCI
2852  *	VPD capability.  Note that this function must be called with a virtual
2853  *	address.
2854  */
2855 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2856 {
2857 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2858 	int ret;
2859 	u32 stats_reg;
2860 	int max_poll;
2861 
2862 	/*
2863 	 * VPD Accesses must alway be 4-byte aligned!
2864 	 */
2865 	if (addr >= EEPROMVSIZE || (addr & 3))
2866 		return -EINVAL;
2867 
2868 	/*
2869 	 * Wait for any previous operation which may still be in flight to
2870 	 * complete.
2871 	 */
2872 	ret = t4_seeprom_wait(adapter);
2873 	if (ret) {
2874 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2875 		return ret;
2876 	}
2877 
2878 	/*
2879 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2880 	 * for our request to complete.  If it doesn't complete, note the
2881 	 * error and return it to our caller.  Note that we do not reset the
2882 	 * VPD Busy status!
2883 	 */
2884 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2885 				 cpu_to_le32(data));
2886 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2887 				 (u16)addr | PCI_VPD_ADDR_F);
2888 	adapter->vpd_busy = 1;
2889 	adapter->vpd_flag = 0;
2890 	ret = t4_seeprom_wait(adapter);
2891 	if (ret) {
2892 		CH_ERR(adapter, "VPD write of address %#x failed\n", addr);
2893 		return ret;
2894 	}
2895 
2896 	/*
2897 	 * Reset PCI_VPD_DATA register after a transaction and wait for our
2898 	 * request to complete. If it doesn't complete, return error.
2899 	 */
2900 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2901 	max_poll = EEPROM_MAX_POLL;
2902 	do {
2903 		udelay(EEPROM_DELAY);
2904 		t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2905 	} while ((stats_reg & 0x1) && --max_poll);
2906 	if (!max_poll)
2907 		return -ETIMEDOUT;
2908 
2909 	/* Return success! */
2910 	return 0;
2911 }
2912 
2913 /**
2914  *	t4_eeprom_ptov - translate a physical EEPROM address to virtual
2915  *	@phys_addr: the physical EEPROM address
2916  *	@fn: the PCI function number
2917  *	@sz: size of function-specific area
2918  *
2919  *	Translate a physical EEPROM address to virtual.  The first 1K is
2920  *	accessed through virtual addresses starting at 31K, the rest is
2921  *	accessed through virtual addresses starting at 0.
2922  *
2923  *	The mapping is as follows:
2924  *	[0..1K) -> [31K..32K)
2925  *	[1K..1K+A) -> [ES-A..ES)
2926  *	[1K+A..ES) -> [0..ES-A-1K)
2927  *
2928  *	where A = @fn * @sz, and ES = EEPROM size.
2929  */
2930 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2931 {
2932 	fn *= sz;
2933 	if (phys_addr < 1024)
2934 		return phys_addr + (31 << 10);
2935 	if (phys_addr < 1024 + fn)
2936 		return EEPROMSIZE - fn + phys_addr - 1024;
2937 	if (phys_addr < EEPROMSIZE)
2938 		return phys_addr - 1024 - fn;
2939 	return -EINVAL;
2940 }
2941 
2942 /**
2943  *	t4_seeprom_wp - enable/disable EEPROM write protection
2944  *	@adapter: the adapter
2945  *	@enable: whether to enable or disable write protection
2946  *
2947  *	Enables or disables write protection on the serial EEPROM.
2948  */
2949 int t4_seeprom_wp(struct adapter *adapter, int enable)
2950 {
2951 	return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2952 }
2953 
2954 /**
2955  *	get_vpd_keyword_val - Locates an information field keyword in the VPD
2956  *	@vpd: Pointer to buffered vpd data structure
2957  *	@kw: The keyword to search for
2958  *	@region: VPD region to search (starting from 0)
2959  *
2960  *	Returns the value of the information field keyword or
2961  *	-ENOENT otherwise.
2962  */
2963 static int get_vpd_keyword_val(const u8 *vpd, const char *kw, int region)
2964 {
2965 	int i, tag;
2966 	unsigned int offset, len;
2967 	const struct t4_vpdr_hdr *vpdr;
2968 
2969 	offset = sizeof(struct t4_vpd_hdr);
2970 	vpdr = (const void *)(vpd + offset);
2971 	tag = vpdr->vpdr_tag;
2972 	len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2973 	while (region--) {
2974 		offset += sizeof(struct t4_vpdr_hdr) + len;
2975 		vpdr = (const void *)(vpd + offset);
2976 		if (++tag != vpdr->vpdr_tag)
2977 			return -ENOENT;
2978 		len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2979 	}
2980 	offset += sizeof(struct t4_vpdr_hdr);
2981 
2982 	if (offset + len > VPD_LEN) {
2983 		return -ENOENT;
2984 	}
2985 
2986 	for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
2987 		if (memcmp(vpd + i , kw , 2) == 0){
2988 			i += VPD_INFO_FLD_HDR_SIZE;
2989 			return i;
2990 		}
2991 
2992 		i += VPD_INFO_FLD_HDR_SIZE + vpd[i+2];
2993 	}
2994 
2995 	return -ENOENT;
2996 }
2997 
2998 
2999 /**
3000  *	get_vpd_params - read VPD parameters from VPD EEPROM
3001  *	@adapter: adapter to read
3002  *	@p: where to store the parameters
3003  *	@vpd: caller provided temporary space to read the VPD into
3004  *
3005  *	Reads card parameters stored in VPD EEPROM.
3006  */
3007 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p,
3008     uint16_t device_id, u32 *buf)
3009 {
3010 	int i, ret, addr;
3011 	int ec, sn, pn, na, md;
3012 	u8 csum;
3013 	const u8 *vpd = (const u8 *)buf;
3014 
3015 	/*
3016 	 * Card information normally starts at VPD_BASE but early cards had
3017 	 * it at 0.
3018 	 */
3019 	ret = t4_seeprom_read(adapter, VPD_BASE, buf);
3020 	if (ret)
3021 		return (ret);
3022 
3023 	/*
3024 	 * The VPD shall have a unique identifier specified by the PCI SIG.
3025 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
3026 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
3027 	 * is expected to automatically put this entry at the
3028 	 * beginning of the VPD.
3029 	 */
3030 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
3031 
3032 	for (i = 0; i < VPD_LEN; i += 4) {
3033 		ret = t4_seeprom_read(adapter, addr + i, buf++);
3034 		if (ret)
3035 			return ret;
3036 	}
3037 
3038 #define FIND_VPD_KW(var,name) do { \
3039 	var = get_vpd_keyword_val(vpd, name, 0); \
3040 	if (var < 0) { \
3041 		CH_ERR(adapter, "missing VPD keyword " name "\n"); \
3042 		return -EINVAL; \
3043 	} \
3044 } while (0)
3045 
3046 	FIND_VPD_KW(i, "RV");
3047 	for (csum = 0; i >= 0; i--)
3048 		csum += vpd[i];
3049 
3050 	if (csum) {
3051 		CH_ERR(adapter,
3052 			"corrupted VPD EEPROM, actual csum %u\n", csum);
3053 		return -EINVAL;
3054 	}
3055 
3056 	FIND_VPD_KW(ec, "EC");
3057 	FIND_VPD_KW(sn, "SN");
3058 	FIND_VPD_KW(pn, "PN");
3059 	FIND_VPD_KW(na, "NA");
3060 #undef FIND_VPD_KW
3061 
3062 	memcpy(p->id, vpd + offsetof(struct t4_vpd_hdr, id_data), ID_LEN);
3063 	strstrip(p->id);
3064 	memcpy(p->ec, vpd + ec, EC_LEN);
3065 	strstrip(p->ec);
3066 	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
3067 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
3068 	strstrip(p->sn);
3069 	i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
3070 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
3071 	strstrip((char *)p->pn);
3072 	i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
3073 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
3074 	strstrip((char *)p->na);
3075 
3076 	if (device_id & 0x80)
3077 		return 0;	/* Custom card */
3078 
3079 	md = get_vpd_keyword_val(vpd, "VF", 1);
3080 	if (md < 0) {
3081 		snprintf(p->md, sizeof(p->md), "unknown");
3082 	} else {
3083 		i = vpd[md - VPD_INFO_FLD_HDR_SIZE + 2];
3084 		memcpy(p->md, vpd + md, min(i, MD_LEN));
3085 		strstrip((char *)p->md);
3086 	}
3087 
3088 	return 0;
3089 }
3090 
3091 /* serial flash and firmware constants and flash config file constants */
3092 enum {
3093 	SF_ATTEMPTS = 10,	/* max retries for SF operations */
3094 
3095 	/* flash command opcodes */
3096 	SF_PROG_PAGE    = 2,	/* program 256B page */
3097 	SF_WR_DISABLE   = 4,	/* disable writes */
3098 	SF_RD_STATUS    = 5,	/* read status register */
3099 	SF_WR_ENABLE    = 6,	/* enable writes */
3100 	SF_RD_DATA_FAST = 0xb,	/* read flash */
3101 	SF_RD_ID	= 0x9f,	/* read ID */
3102 	SF_ERASE_SECTOR = 0xd8,	/* erase 64KB sector */
3103 };
3104 
3105 /**
3106  *	sf1_read - read data from the serial flash
3107  *	@adapter: the adapter
3108  *	@byte_cnt: number of bytes to read
3109  *	@cont: whether another operation will be chained
3110  *	@lock: whether to lock SF for PL access only
3111  *	@valp: where to store the read data
3112  *
3113  *	Reads up to 4 bytes of data from the serial flash.  The location of
3114  *	the read needs to be specified prior to calling this by issuing the
3115  *	appropriate commands to the serial flash.
3116  */
3117 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
3118 		    int lock, u32 *valp)
3119 {
3120 	int ret;
3121 
3122 	if (!byte_cnt || byte_cnt > 4)
3123 		return -EINVAL;
3124 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3125 		return -EBUSY;
3126 	t4_write_reg(adapter, A_SF_OP,
3127 		     V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
3128 	ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3129 	if (!ret)
3130 		*valp = t4_read_reg(adapter, A_SF_DATA);
3131 	return ret;
3132 }
3133 
3134 /**
3135  *	sf1_write - write data to the serial flash
3136  *	@adapter: the adapter
3137  *	@byte_cnt: number of bytes to write
3138  *	@cont: whether another operation will be chained
3139  *	@lock: whether to lock SF for PL access only
3140  *	@val: value to write
3141  *
3142  *	Writes up to 4 bytes of data to the serial flash.  The location of
3143  *	the write needs to be specified prior to calling this by issuing the
3144  *	appropriate commands to the serial flash.
3145  */
3146 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
3147 		     int lock, u32 val)
3148 {
3149 	if (!byte_cnt || byte_cnt > 4)
3150 		return -EINVAL;
3151 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3152 		return -EBUSY;
3153 	t4_write_reg(adapter, A_SF_DATA, val);
3154 	t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
3155 		     V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
3156 	return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3157 }
3158 
3159 /**
3160  *	flash_wait_op - wait for a flash operation to complete
3161  *	@adapter: the adapter
3162  *	@attempts: max number of polls of the status register
3163  *	@delay: delay between polls in ms
3164  *
3165  *	Wait for a flash operation to complete by polling the status register.
3166  */
3167 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3168 {
3169 	int ret;
3170 	u32 status;
3171 
3172 	while (1) {
3173 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3174 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3175 			return ret;
3176 		if (!(status & 1))
3177 			return 0;
3178 		if (--attempts == 0)
3179 			return -EAGAIN;
3180 		if (delay)
3181 			msleep(delay);
3182 	}
3183 }
3184 
3185 /**
3186  *	t4_read_flash - read words from serial flash
3187  *	@adapter: the adapter
3188  *	@addr: the start address for the read
3189  *	@nwords: how many 32-bit words to read
3190  *	@data: where to store the read data
3191  *	@byte_oriented: whether to store data as bytes or as words
3192  *
3193  *	Read the specified number of 32-bit words from the serial flash.
3194  *	If @byte_oriented is set the read data is stored as a byte array
3195  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3196  *	natural endianness.
3197  */
3198 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3199 		  unsigned int nwords, u32 *data, int byte_oriented)
3200 {
3201 	int ret;
3202 
3203 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3204 		return -EINVAL;
3205 
3206 	addr = swab32(addr) | SF_RD_DATA_FAST;
3207 
3208 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3209 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3210 		return ret;
3211 
3212 	for ( ; nwords; nwords--, data++) {
3213 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3214 		if (nwords == 1)
3215 			t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3216 		if (ret)
3217 			return ret;
3218 		if (byte_oriented)
3219 			*data = (__force __u32)(cpu_to_be32(*data));
3220 	}
3221 	return 0;
3222 }
3223 
3224 /**
3225  *	t4_write_flash - write up to a page of data to the serial flash
3226  *	@adapter: the adapter
3227  *	@addr: the start address to write
3228  *	@n: length of data to write in bytes
3229  *	@data: the data to write
3230  *	@byte_oriented: whether to store data as bytes or as words
3231  *
3232  *	Writes up to a page of data (256 bytes) to the serial flash starting
3233  *	at the given address.  All the data must be written to the same page.
3234  *	If @byte_oriented is set the write data is stored as byte stream
3235  *	(i.e. matches what on disk), otherwise in big-endian.
3236  */
3237 int t4_write_flash(struct adapter *adapter, unsigned int addr,
3238 			  unsigned int n, const u8 *data, int byte_oriented)
3239 {
3240 	int ret;
3241 	u32 buf[SF_PAGE_SIZE / 4];
3242 	unsigned int i, c, left, val, offset = addr & 0xff;
3243 
3244 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3245 		return -EINVAL;
3246 
3247 	val = swab32(addr) | SF_PROG_PAGE;
3248 
3249 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3250 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3251 		goto unlock;
3252 
3253 	for (left = n; left; left -= c) {
3254 		c = min(left, 4U);
3255 		for (val = 0, i = 0; i < c; ++i)
3256 			val = (val << 8) + *data++;
3257 
3258 		if (!byte_oriented)
3259 			val = cpu_to_be32(val);
3260 
3261 		ret = sf1_write(adapter, c, c != left, 1, val);
3262 		if (ret)
3263 			goto unlock;
3264 	}
3265 	ret = flash_wait_op(adapter, 8, 1);
3266 	if (ret)
3267 		goto unlock;
3268 
3269 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3270 
3271 	/* Read the page to verify the write succeeded */
3272 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3273 			    byte_oriented);
3274 	if (ret)
3275 		return ret;
3276 
3277 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3278 		CH_ERR(adapter,
3279 			"failed to correctly write the flash page at %#x\n",
3280 			addr);
3281 		return -EIO;
3282 	}
3283 	return 0;
3284 
3285 unlock:
3286 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3287 	return ret;
3288 }
3289 
3290 /**
3291  *	t4_get_fw_version - read the firmware version
3292  *	@adapter: the adapter
3293  *	@vers: where to place the version
3294  *
3295  *	Reads the FW version from flash.
3296  */
3297 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3298 {
3299 	return t4_read_flash(adapter, FLASH_FW_START +
3300 			     offsetof(struct fw_hdr, fw_ver), 1,
3301 			     vers, 0);
3302 }
3303 
3304 /**
3305  *	t4_get_fw_hdr - read the firmware header
3306  *	@adapter: the adapter
3307  *	@hdr: where to place the version
3308  *
3309  *	Reads the FW header from flash into caller provided buffer.
3310  */
3311 int t4_get_fw_hdr(struct adapter *adapter, struct fw_hdr *hdr)
3312 {
3313 	return t4_read_flash(adapter, FLASH_FW_START,
3314 	    sizeof (*hdr) / sizeof (uint32_t), (uint32_t *)hdr, 1);
3315 }
3316 
3317 /**
3318  *	t4_get_bs_version - read the firmware bootstrap version
3319  *	@adapter: the adapter
3320  *	@vers: where to place the version
3321  *
3322  *	Reads the FW Bootstrap version from flash.
3323  */
3324 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3325 {
3326 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3327 			     offsetof(struct fw_hdr, fw_ver), 1,
3328 			     vers, 0);
3329 }
3330 
3331 /**
3332  *	t4_get_tp_version - read the TP microcode version
3333  *	@adapter: the adapter
3334  *	@vers: where to place the version
3335  *
3336  *	Reads the TP microcode version from flash.
3337  */
3338 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3339 {
3340 	return t4_read_flash(adapter, FLASH_FW_START +
3341 			     offsetof(struct fw_hdr, tp_microcode_ver),
3342 			     1, vers, 0);
3343 }
3344 
3345 /**
3346  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3347  *	@adapter: the adapter
3348  *	@vers: where to place the version
3349  *
3350  *	Reads the Expansion ROM header from FLASH and returns the version
3351  *	number (if present) through the @vers return value pointer.  We return
3352  *	this in the Firmware Version Format since it's convenient.  Return
3353  *	0 on success, -ENOENT if no Expansion ROM is present.
3354  */
3355 int t4_get_exprom_version(struct adapter *adapter, u32 *vers)
3356 {
3357 	struct exprom_header {
3358 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3359 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3360 	} *hdr;
3361 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3362 					   sizeof(u32))];
3363 	int ret;
3364 
3365 	ret = t4_read_flash(adapter, FLASH_EXP_ROM_START,
3366 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3367 			    0);
3368 	if (ret)
3369 		return ret;
3370 
3371 	hdr = (struct exprom_header *)exprom_header_buf;
3372 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3373 		return -ENOENT;
3374 
3375 	*vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
3376 		 V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
3377 		 V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
3378 		 V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
3379 	return 0;
3380 }
3381 
3382 /**
3383  *	t4_get_scfg_version - return the Serial Configuration version
3384  *	@adapter: the adapter
3385  *	@vers: where to place the version
3386  *
3387  *	Reads the Serial Configuration Version via the Firmware interface
3388  *	(thus this can only be called once we're ready to issue Firmware
3389  *	commands).  The format of the Serial Configuration version is
3390  *	adapter specific.  Returns 0 on success, an error on failure.
3391  *
3392  *	Note that early versions of the Firmware didn't include the ability
3393  *	to retrieve the Serial Configuration version, so we zero-out the
3394  *	return-value parameter in that case to avoid leaving it with
3395  *	garbage in it.
3396  *
3397  *	Also note that the Firmware will return its cached copy of the Serial
3398  *	Initialization Revision ID, not the actual Revision ID as written in
3399  *	the Serial EEPROM.  This is only an issue if a new VPD has been written
3400  *	and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3401  *	it's best to defer calling this routine till after a FW_RESET_CMD has
3402  *	been issued if the Host Driver will be performing a full adapter
3403  *	initialization.
3404  */
3405 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3406 {
3407 	u32 scfgrev_param;
3408 	int ret;
3409 
3410 	scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3411 			 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV));
3412 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3413 			      1, &scfgrev_param, vers);
3414 	if (ret)
3415 		*vers = 0;
3416 	return ret;
3417 }
3418 
3419 /**
3420  *	t4_get_vpd_version - return the VPD version
3421  *	@adapter: the adapter
3422  *	@vers: where to place the version
3423  *
3424  *	Reads the VPD via the Firmware interface (thus this can only be called
3425  *	once we're ready to issue Firmware commands).  The format of the
3426  *	VPD version is adapter specific.  Returns 0 on success, an error on
3427  *	failure.
3428  *
3429  *	Note that early versions of the Firmware didn't include the ability
3430  *	to retrieve the VPD version, so we zero-out the return-value parameter
3431  *	in that case to avoid leaving it with garbage in it.
3432  *
3433  *	Also note that the Firmware will return its cached copy of the VPD
3434  *	Revision ID, not the actual Revision ID as written in the Serial
3435  *	EEPROM.  This is only an issue if a new VPD has been written and the
3436  *	Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3437  *	to defer calling this routine till after a FW_RESET_CMD has been issued
3438  *	if the Host Driver will be performing a full adapter initialization.
3439  */
3440 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3441 {
3442 	u32 vpdrev_param;
3443 	int ret;
3444 
3445 	vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3446 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV));
3447 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3448 			      1, &vpdrev_param, vers);
3449 	if (ret)
3450 		*vers = 0;
3451 	return ret;
3452 }
3453 
3454 /**
3455  *	t4_get_version_info - extract various chip/firmware version information
3456  *	@adapter: the adapter
3457  *
3458  *	Reads various chip/firmware version numbers and stores them into the
3459  *	adapter Adapter Parameters structure.  If any of the efforts fails
3460  *	the first failure will be returned, but all of the version numbers
3461  *	will be read.
3462  */
3463 int t4_get_version_info(struct adapter *adapter)
3464 {
3465 	int ret = 0;
3466 
3467 	#define FIRST_RET(__getvinfo) \
3468 	do { \
3469 		int __ret = __getvinfo; \
3470 		if (__ret && !ret) \
3471 			ret = __ret; \
3472 	} while (0)
3473 
3474 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3475 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3476 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3477 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3478 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3479 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3480 
3481 	#undef FIRST_RET
3482 
3483 	return ret;
3484 }
3485 
3486 /**
3487  *	t4_flash_erase_sectors - erase a range of flash sectors
3488  *	@adapter: the adapter
3489  *	@start: the first sector to erase
3490  *	@end: the last sector to erase
3491  *
3492  *	Erases the sectors in the given inclusive range.
3493  */
3494 int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3495 {
3496 	int ret = 0;
3497 
3498 	if (end >= adapter->params.sf_nsec)
3499 		return -EINVAL;
3500 
3501 	while (start <= end) {
3502 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3503 		    (ret = sf1_write(adapter, 4, 0, 1,
3504 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3505 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3506 			CH_ERR(adapter,
3507 				"erase of flash sector %d failed, error %d\n",
3508 				start, ret);
3509 			break;
3510 		}
3511 		start++;
3512 	}
3513 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3514 	return ret;
3515 }
3516 
3517 /**
3518  *	t4_flash_cfg_addr - return the address of the flash configuration file
3519  *	@adapter: the adapter
3520  *
3521  *	Return the address within the flash where the Firmware Configuration
3522  *	File is stored, or an error if the device FLASH is too small to contain
3523  *	a Firmware Configuration File.
3524  */
3525 int t4_flash_cfg_addr(struct adapter *adapter)
3526 {
3527 	/*
3528 	 * If the device FLASH isn't large enough to hold a Firmware
3529 	 * Configuration File, return an error.
3530 	 */
3531 	if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
3532 		return -ENOSPC;
3533 
3534 	return FLASH_CFG_START;
3535 }
3536 
3537 /*
3538  * Return TRUE if the specified firmware matches the adapter.  I.e. T4
3539  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3540  * and emit an error message for mismatched firmware to save our caller the
3541  * effort ...
3542  */
3543 static int t4_fw_matches_chip(struct adapter *adap,
3544 			      const struct fw_hdr *hdr)
3545 {
3546 	/*
3547 	 * The expression below will return FALSE for any unsupported adapter
3548 	 * which will keep us "honest" in the future ...
3549 	 */
3550 	if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) ||
3551 	    (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) ||
3552 	    (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6))
3553 		return 1;
3554 
3555 	CH_ERR(adap,
3556 		"FW image (%d) is not suitable for this adapter (%d)\n",
3557 		hdr->chip, chip_id(adap));
3558 	return 0;
3559 }
3560 
3561 /**
3562  *	t4_load_fw - download firmware
3563  *	@adap: the adapter
3564  *	@fw_data: the firmware image to write
3565  *	@size: image size
3566  *
3567  *	Write the supplied firmware image to the card's serial flash.
3568  */
3569 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3570 {
3571 	u32 csum;
3572 	int ret, addr;
3573 	unsigned int i;
3574 	u8 first_page[SF_PAGE_SIZE];
3575 	const u32 *p = (const u32 *)fw_data;
3576 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3577 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3578 	unsigned int fw_start_sec;
3579 	unsigned int fw_start;
3580 	unsigned int fw_size;
3581 
3582 	if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) {
3583 		fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC;
3584 		fw_start = FLASH_FWBOOTSTRAP_START;
3585 		fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE;
3586 	} else {
3587 		fw_start_sec = FLASH_FW_START_SEC;
3588  		fw_start = FLASH_FW_START;
3589 		fw_size = FLASH_FW_MAX_SIZE;
3590 	}
3591 
3592 	if (!size) {
3593 		CH_ERR(adap, "FW image has no data\n");
3594 		return -EINVAL;
3595 	}
3596 	if (size & 511) {
3597 		CH_ERR(adap,
3598 			"FW image size not multiple of 512 bytes\n");
3599 		return -EINVAL;
3600 	}
3601 	if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) {
3602 		CH_ERR(adap,
3603 			"FW image size differs from size in FW header\n");
3604 		return -EINVAL;
3605 	}
3606 	if (size > fw_size) {
3607 		CH_ERR(adap, "FW image too large, max is %u bytes\n",
3608 			fw_size);
3609 		return -EFBIG;
3610 	}
3611 	if (!t4_fw_matches_chip(adap, hdr))
3612 		return -EINVAL;
3613 
3614 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3615 		csum += be32_to_cpu(p[i]);
3616 
3617 	if (csum != 0xffffffff) {
3618 		CH_ERR(adap,
3619 			"corrupted firmware image, checksum %#x\n", csum);
3620 		return -EINVAL;
3621 	}
3622 
3623 	i = DIV_ROUND_UP(size, sf_sec_size);	/* # of sectors spanned */
3624 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3625 	if (ret)
3626 		goto out;
3627 
3628 	/*
3629 	 * We write the correct version at the end so the driver can see a bad
3630 	 * version if the FW write fails.  Start by writing a copy of the
3631 	 * first page with a bad version.
3632 	 */
3633 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3634 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3635 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
3636 	if (ret)
3637 		goto out;
3638 
3639 	addr = fw_start;
3640 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3641 		addr += SF_PAGE_SIZE;
3642 		fw_data += SF_PAGE_SIZE;
3643 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
3644 		if (ret)
3645 			goto out;
3646 	}
3647 
3648 	ret = t4_write_flash(adap,
3649 			     fw_start + offsetof(struct fw_hdr, fw_ver),
3650 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
3651 out:
3652 	if (ret)
3653 		CH_ERR(adap, "firmware download failed, error %d\n",
3654 			ret);
3655 	return ret;
3656 }
3657 
3658 /**
3659  *	t4_fwcache - firmware cache operation
3660  *	@adap: the adapter
3661  *	@op  : the operation (flush or flush and invalidate)
3662  */
3663 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3664 {
3665 	struct fw_params_cmd c;
3666 
3667 	memset(&c, 0, sizeof(c));
3668 	c.op_to_vfn =
3669 	    cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3670 			    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3671 				V_FW_PARAMS_CMD_PFN(adap->pf) |
3672 				V_FW_PARAMS_CMD_VFN(0));
3673 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3674 	c.param[0].mnem =
3675 	    cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3676 			    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE));
3677 	c.param[0].val = (__force __be32)op;
3678 
3679 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3680 }
3681 
3682 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3683 			unsigned int *pif_req_wrptr,
3684 			unsigned int *pif_rsp_wrptr)
3685 {
3686 	int i, j;
3687 	u32 cfg, val, req, rsp;
3688 
3689 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3690 	if (cfg & F_LADBGEN)
3691 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3692 
3693 	val = t4_read_reg(adap, A_CIM_DEBUGSTS);
3694 	req = G_POLADBGWRPTR(val);
3695 	rsp = G_PILADBGWRPTR(val);
3696 	if (pif_req_wrptr)
3697 		*pif_req_wrptr = req;
3698 	if (pif_rsp_wrptr)
3699 		*pif_rsp_wrptr = rsp;
3700 
3701 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3702 		for (j = 0; j < 6; j++) {
3703 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
3704 				     V_PILADBGRDPTR(rsp));
3705 			*pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
3706 			*pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
3707 			req++;
3708 			rsp++;
3709 		}
3710 		req = (req + 2) & M_POLADBGRDPTR;
3711 		rsp = (rsp + 2) & M_PILADBGRDPTR;
3712 	}
3713 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3714 }
3715 
3716 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3717 {
3718 	u32 cfg;
3719 	int i, j, idx;
3720 
3721 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3722 	if (cfg & F_LADBGEN)
3723 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3724 
3725 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3726 		for (j = 0; j < 5; j++) {
3727 			idx = 8 * i + j;
3728 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
3729 				     V_PILADBGRDPTR(idx));
3730 			*ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
3731 			*ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
3732 		}
3733 	}
3734 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3735 }
3736 
3737 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3738 {
3739 	unsigned int i, j;
3740 
3741 	for (i = 0; i < 8; i++) {
3742 		u32 *p = la_buf + i;
3743 
3744 		t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
3745 		j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
3746 		t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
3747 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3748 			*p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
3749 	}
3750 }
3751 
3752 /**
3753  *	fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3754  *	@caps16: a 16-bit Port Capabilities value
3755  *
3756  *	Returns the equivalent 32-bit Port Capabilities value.
3757  */
3758 static uint32_t fwcaps16_to_caps32(uint16_t caps16)
3759 {
3760 	uint32_t caps32 = 0;
3761 
3762 	#define CAP16_TO_CAP32(__cap) \
3763 		do { \
3764 			if (caps16 & FW_PORT_CAP_##__cap) \
3765 				caps32 |= FW_PORT_CAP32_##__cap; \
3766 		} while (0)
3767 
3768 	CAP16_TO_CAP32(SPEED_100M);
3769 	CAP16_TO_CAP32(SPEED_1G);
3770 	CAP16_TO_CAP32(SPEED_25G);
3771 	CAP16_TO_CAP32(SPEED_10G);
3772 	CAP16_TO_CAP32(SPEED_40G);
3773 	CAP16_TO_CAP32(SPEED_100G);
3774 	CAP16_TO_CAP32(FC_RX);
3775 	CAP16_TO_CAP32(FC_TX);
3776 	CAP16_TO_CAP32(ANEG);
3777 	CAP16_TO_CAP32(FORCE_PAUSE);
3778 	CAP16_TO_CAP32(MDIAUTO);
3779 	CAP16_TO_CAP32(MDISTRAIGHT);
3780 	CAP16_TO_CAP32(FEC_RS);
3781 	CAP16_TO_CAP32(FEC_BASER_RS);
3782 	CAP16_TO_CAP32(802_3_PAUSE);
3783 	CAP16_TO_CAP32(802_3_ASM_DIR);
3784 
3785 	#undef CAP16_TO_CAP32
3786 
3787 	return caps32;
3788 }
3789 
3790 /**
3791  *	fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
3792  *	@caps32: a 32-bit Port Capabilities value
3793  *
3794  *	Returns the equivalent 16-bit Port Capabilities value.  Note that
3795  *	not all 32-bit Port Capabilities can be represented in the 16-bit
3796  *	Port Capabilities and some fields/values may not make it.
3797  */
3798 static uint16_t fwcaps32_to_caps16(uint32_t caps32)
3799 {
3800 	uint16_t caps16 = 0;
3801 
3802 	#define CAP32_TO_CAP16(__cap) \
3803 		do { \
3804 			if (caps32 & FW_PORT_CAP32_##__cap) \
3805 				caps16 |= FW_PORT_CAP_##__cap; \
3806 		} while (0)
3807 
3808 	CAP32_TO_CAP16(SPEED_100M);
3809 	CAP32_TO_CAP16(SPEED_1G);
3810 	CAP32_TO_CAP16(SPEED_10G);
3811 	CAP32_TO_CAP16(SPEED_25G);
3812 	CAP32_TO_CAP16(SPEED_40G);
3813 	CAP32_TO_CAP16(SPEED_100G);
3814 	CAP32_TO_CAP16(FC_RX);
3815 	CAP32_TO_CAP16(FC_TX);
3816 	CAP32_TO_CAP16(802_3_PAUSE);
3817 	CAP32_TO_CAP16(802_3_ASM_DIR);
3818 	CAP32_TO_CAP16(ANEG);
3819 	CAP32_TO_CAP16(FORCE_PAUSE);
3820 	CAP32_TO_CAP16(MDIAUTO);
3821 	CAP32_TO_CAP16(MDISTRAIGHT);
3822 	CAP32_TO_CAP16(FEC_RS);
3823 	CAP32_TO_CAP16(FEC_BASER_RS);
3824 
3825 	#undef CAP32_TO_CAP16
3826 
3827 	return caps16;
3828 }
3829 
3830 static bool
3831 is_bt(struct port_info *pi)
3832 {
3833 
3834 	return (pi->port_type == FW_PORT_TYPE_BT_SGMII ||
3835 	    pi->port_type == FW_PORT_TYPE_BT_XFI ||
3836 	    pi->port_type == FW_PORT_TYPE_BT_XAUI);
3837 }
3838 
3839 static int8_t fwcap_to_fec(uint32_t caps, bool unset_means_none)
3840 {
3841 	int8_t fec = 0;
3842 
3843 	if ((caps & V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC)) == 0)
3844 		return (unset_means_none ? FEC_NONE : 0);
3845 
3846 	if (caps & FW_PORT_CAP32_FEC_RS)
3847 		fec |= FEC_RS;
3848 	if (caps & FW_PORT_CAP32_FEC_BASER_RS)
3849 		fec |= FEC_BASER_RS;
3850 	if (caps & FW_PORT_CAP32_FEC_NO_FEC)
3851 		fec |= FEC_NONE;
3852 
3853 	return (fec);
3854 }
3855 
3856 /*
3857  * Note that 0 is not translated to NO_FEC.
3858  */
3859 static uint32_t fec_to_fwcap(int8_t fec)
3860 {
3861 	uint32_t caps = 0;
3862 
3863 	/* Only real FECs allowed. */
3864 	MPASS((fec & ~M_FW_PORT_CAP32_FEC) == 0);
3865 
3866 	if (fec & FEC_RS)
3867 		caps |= FW_PORT_CAP32_FEC_RS;
3868 	if (fec & FEC_BASER_RS)
3869 		caps |= FW_PORT_CAP32_FEC_BASER_RS;
3870 	if (fec & FEC_NONE)
3871 		caps |= FW_PORT_CAP32_FEC_NO_FEC;
3872 
3873 	return (caps);
3874 }
3875 
3876 /**
3877  *	t4_link_l1cfg - apply link configuration to MAC/PHY
3878  *	@phy: the PHY to setup
3879  *	@mac: the MAC to setup
3880  *	@lc: the requested link configuration
3881  *
3882  *	Set up a port's MAC and PHY according to a desired link configuration.
3883  *	- If the PHY can auto-negotiate first decide what to advertise, then
3884  *	  enable/disable auto-negotiation as desired, and reset.
3885  *	- If the PHY does not auto-negotiate just reset it.
3886  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3887  *	  otherwise do it later based on the outcome of auto-negotiation.
3888  */
3889 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3890 		  struct link_config *lc)
3891 {
3892 	struct fw_port_cmd c;
3893 	unsigned int mdi = V_FW_PORT_CAP32_MDI(FW_PORT_CAP32_MDI_AUTO);
3894 	unsigned int aneg, fc, fec, speed, rcap;
3895 
3896 	fc = 0;
3897 	if (lc->requested_fc & PAUSE_RX)
3898 		fc |= FW_PORT_CAP32_FC_RX;
3899 	if (lc->requested_fc & PAUSE_TX)
3900 		fc |= FW_PORT_CAP32_FC_TX;
3901 	if (!(lc->requested_fc & PAUSE_AUTONEG))
3902 		fc |= FW_PORT_CAP32_FORCE_PAUSE;
3903 
3904 	if (lc->requested_aneg == AUTONEG_DISABLE)
3905 		aneg = 0;
3906 	else if (lc->requested_aneg == AUTONEG_ENABLE)
3907 		aneg = FW_PORT_CAP32_ANEG;
3908 	else
3909 		aneg = lc->pcaps & FW_PORT_CAP32_ANEG;
3910 
3911 	if (aneg) {
3912 		speed = lc->pcaps &
3913 		    V_FW_PORT_CAP32_SPEED(M_FW_PORT_CAP32_SPEED);
3914 	} else if (lc->requested_speed != 0)
3915 		speed = speed_to_fwcap(lc->requested_speed);
3916 	else
3917 		speed = fwcap_top_speed(lc->pcaps);
3918 
3919 	fec = 0;
3920 #ifdef INVARIANTS
3921 	if (lc->force_fec != 0)
3922 		MPASS(lc->pcaps & FW_PORT_CAP32_FORCE_FEC);
3923 #endif
3924 	if (fec_supported(speed)) {
3925 		if (lc->requested_fec == FEC_AUTO) {
3926 			if (lc->force_fec > 0) {
3927 				/*
3928 				 * Must use FORCE_FEC even though requested FEC
3929 				 * is AUTO. Set all the FEC bits valid for the
3930 				 * speed and let the firmware pick one.
3931 				 */
3932 				fec |= FW_PORT_CAP32_FORCE_FEC;
3933 				if (speed & FW_PORT_CAP32_SPEED_100G) {
3934 					fec |= FW_PORT_CAP32_FEC_RS;
3935 					fec |= FW_PORT_CAP32_FEC_NO_FEC;
3936 				} else {
3937 					fec |= FW_PORT_CAP32_FEC_RS;
3938 					fec |= FW_PORT_CAP32_FEC_BASER_RS;
3939 					fec |= FW_PORT_CAP32_FEC_NO_FEC;
3940 				}
3941 			} else {
3942 				/*
3943 				 * Set only 1b. Old firmwares can't deal with
3944 				 * multiple bits and new firmwares are free to
3945 				 * ignore this and try whatever FECs they want
3946 				 * because we aren't setting FORCE_FEC here.
3947 				 */
3948 				fec |= fec_to_fwcap(lc->fec_hint);
3949 			}
3950 		} else {
3951 			/*
3952 			 * User has explicitly requested some FEC(s). Set
3953 			 * FORCE_FEC unless prohibited from using it.
3954 			 */
3955 			if (lc->force_fec != 0)
3956 				fec |= FW_PORT_CAP32_FORCE_FEC;
3957 			fec |= fec_to_fwcap(lc->requested_fec &
3958 			    M_FW_PORT_CAP32_FEC);
3959 			if (lc->requested_fec & FEC_MODULE)
3960 				fec |= fec_to_fwcap(lc->fec_hint);
3961 		}
3962 	}
3963 
3964 	/* Force AN on for BT cards. */
3965 	if (is_bt(adap->port[adap->chan_map[port]]))
3966 		aneg = lc->pcaps & FW_PORT_CAP32_ANEG;
3967 
3968 	rcap = aneg | speed | fc | fec;
3969 	if ((rcap | lc->pcaps) != lc->pcaps) {
3970 #ifdef INVARIANTS
3971 		CH_WARN(adap, "rcap 0x%08x, pcap 0x%08x, removed 0x%x\n", rcap,
3972 		    lc->pcaps, rcap & (rcap ^ lc->pcaps));
3973 #endif
3974 		rcap &= lc->pcaps;
3975 	}
3976 	rcap |= mdi;
3977 
3978 	memset(&c, 0, sizeof(c));
3979 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3980 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3981 				     V_FW_PORT_CMD_PORTID(port));
3982 	if (adap->params.port_caps32) {
3983 		c.action_to_len16 =
3984 		    cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG32) |
3985 			FW_LEN16(c));
3986 		c.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
3987 	} else {
3988 		c.action_to_len16 =
3989 		    cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3990 			    FW_LEN16(c));
3991 		c.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
3992 	}
3993 
3994 	lc->requested_caps = rcap;
3995 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
3996 }
3997 
3998 /**
3999  *	t4_restart_aneg - restart autonegotiation
4000  *	@adap: the adapter
4001  *	@mbox: mbox to use for the FW command
4002  *	@port: the port id
4003  *
4004  *	Restarts autonegotiation for the selected port.
4005  */
4006 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
4007 {
4008 	struct fw_port_cmd c;
4009 
4010 	memset(&c, 0, sizeof(c));
4011 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
4012 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
4013 				     V_FW_PORT_CMD_PORTID(port));
4014 	c.action_to_len16 =
4015 		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
4016 			    FW_LEN16(c));
4017 	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
4018 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4019 }
4020 
4021 struct intr_details {
4022 	u32 mask;
4023 	const char *msg;
4024 };
4025 
4026 struct intr_action {
4027 	u32 mask;
4028 	int arg;
4029 	bool (*action)(struct adapter *, int, bool);
4030 };
4031 
4032 #define NONFATAL_IF_DISABLED 1
4033 struct intr_info {
4034 	const char *name;	/* name of the INT_CAUSE register */
4035 	int cause_reg;		/* INT_CAUSE register */
4036 	int enable_reg;		/* INT_ENABLE register */
4037 	u32 fatal;		/* bits that are fatal */
4038 	int flags;		/* hints */
4039 	const struct intr_details *details;
4040 	const struct intr_action *actions;
4041 };
4042 
4043 static inline char
4044 intr_alert_char(u32 cause, u32 enable, u32 fatal)
4045 {
4046 
4047 	if (cause & fatal)
4048 		return ('!');
4049 	if (cause & enable)
4050 		return ('*');
4051 	return ('-');
4052 }
4053 
4054 static void
4055 t4_show_intr_info(struct adapter *adap, const struct intr_info *ii, u32 cause)
4056 {
4057 	u32 enable, fatal, leftover;
4058 	const struct intr_details *details;
4059 	char alert;
4060 
4061 	enable = t4_read_reg(adap, ii->enable_reg);
4062 	if (ii->flags & NONFATAL_IF_DISABLED)
4063 		fatal = ii->fatal & t4_read_reg(adap, ii->enable_reg);
4064 	else
4065 		fatal = ii->fatal;
4066 	alert = intr_alert_char(cause, enable, fatal);
4067 	CH_ALERT(adap, "%c %s 0x%x = 0x%08x, E 0x%08x, F 0x%08x\n",
4068 	    alert, ii->name, ii->cause_reg, cause, enable, fatal);
4069 
4070 	leftover = cause;
4071 	for (details = ii->details; details && details->mask != 0; details++) {
4072 		u32 msgbits = details->mask & cause;
4073 		if (msgbits == 0)
4074 			continue;
4075 		alert = intr_alert_char(msgbits, enable, ii->fatal);
4076 		CH_ALERT(adap, "  %c [0x%08x] %s\n", alert, msgbits,
4077 		    details->msg);
4078 		leftover &= ~msgbits;
4079 	}
4080 	if (leftover != 0 && leftover != cause)
4081 		CH_ALERT(adap, "  ? [0x%08x]\n", leftover);
4082 }
4083 
4084 /*
4085  * Returns true for fatal error.
4086  */
4087 static bool
4088 t4_handle_intr(struct adapter *adap, const struct intr_info *ii,
4089     u32 additional_cause, bool verbose)
4090 {
4091 	u32 cause, fatal;
4092 	bool rc;
4093 	const struct intr_action *action;
4094 
4095 	/*
4096 	 * Read and display cause.  Note that the top level PL_INT_CAUSE is a
4097 	 * bit special and we need to completely ignore the bits that are not in
4098 	 * PL_INT_ENABLE.
4099 	 */
4100 	cause = t4_read_reg(adap, ii->cause_reg);
4101 	if (ii->cause_reg == A_PL_INT_CAUSE)
4102 		cause &= t4_read_reg(adap, ii->enable_reg);
4103 	if (verbose || cause != 0)
4104 		t4_show_intr_info(adap, ii, cause);
4105 	fatal = cause & ii->fatal;
4106 	if (fatal != 0 && ii->flags & NONFATAL_IF_DISABLED)
4107 		fatal &= t4_read_reg(adap, ii->enable_reg);
4108 	cause |= additional_cause;
4109 	if (cause == 0)
4110 		return (false);
4111 
4112 	rc = fatal != 0;
4113 	for (action = ii->actions; action && action->mask != 0; action++) {
4114 		if (!(action->mask & cause))
4115 			continue;
4116 		rc |= (action->action)(adap, action->arg, verbose);
4117 	}
4118 
4119 	/* clear */
4120 	t4_write_reg(adap, ii->cause_reg, cause);
4121 	(void)t4_read_reg(adap, ii->cause_reg);
4122 
4123 	return (rc);
4124 }
4125 
4126 /*
4127  * Interrupt handler for the PCIE module.
4128  */
4129 static bool pcie_intr_handler(struct adapter *adap, int arg, bool verbose)
4130 {
4131 	static const struct intr_details sysbus_intr_details[] = {
4132 		{ F_RNPP, "RXNP array parity error" },
4133 		{ F_RPCP, "RXPC array parity error" },
4134 		{ F_RCIP, "RXCIF array parity error" },
4135 		{ F_RCCP, "Rx completions control array parity error" },
4136 		{ F_RFTP, "RXFT array parity error" },
4137 		{ 0 }
4138 	};
4139 	static const struct intr_info sysbus_intr_info = {
4140 		.name = "PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS",
4141 		.cause_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
4142 		.enable_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_INTERRUPT_ENABLE,
4143 		.fatal = F_RFTP | F_RCCP | F_RCIP | F_RPCP | F_RNPP,
4144 		.flags = 0,
4145 		.details = sysbus_intr_details,
4146 		.actions = NULL,
4147 	};
4148 	static const struct intr_details pcie_port_intr_details[] = {
4149 		{ F_TPCP, "TXPC array parity error" },
4150 		{ F_TNPP, "TXNP array parity error" },
4151 		{ F_TFTP, "TXFT array parity error" },
4152 		{ F_TCAP, "TXCA array parity error" },
4153 		{ F_TCIP, "TXCIF array parity error" },
4154 		{ F_RCAP, "RXCA array parity error" },
4155 		{ F_OTDD, "outbound request TLP discarded" },
4156 		{ F_RDPE, "Rx data parity error" },
4157 		{ F_TDUE, "Tx uncorrectable data error" },
4158 		{ 0 }
4159 	};
4160 	static const struct intr_info pcie_port_intr_info = {
4161 		.name = "PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS",
4162 		.cause_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
4163 		.enable_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_INTERRUPT_ENABLE,
4164 		.fatal = F_TPCP | F_TNPP | F_TFTP | F_TCAP | F_TCIP | F_RCAP |
4165 		    F_OTDD | F_RDPE | F_TDUE,
4166 		.flags = 0,
4167 		.details = pcie_port_intr_details,
4168 		.actions = NULL,
4169 	};
4170 	static const struct intr_details pcie_intr_details[] = {
4171 		{ F_MSIADDRLPERR, "MSI AddrL parity error" },
4172 		{ F_MSIADDRHPERR, "MSI AddrH parity error" },
4173 		{ F_MSIDATAPERR, "MSI data parity error" },
4174 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error" },
4175 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error" },
4176 		{ F_MSIXDATAPERR, "MSI-X data parity error" },
4177 		{ F_MSIXDIPERR, "MSI-X DI parity error" },
4178 		{ F_PIOCPLPERR, "PCIe PIO completion FIFO parity error" },
4179 		{ F_PIOREQPERR, "PCIe PIO request FIFO parity error" },
4180 		{ F_TARTAGPERR, "PCIe target tag FIFO parity error" },
4181 		{ F_CCNTPERR, "PCIe CMD channel count parity error" },
4182 		{ F_CREQPERR, "PCIe CMD channel request parity error" },
4183 		{ F_CRSPPERR, "PCIe CMD channel response parity error" },
4184 		{ F_DCNTPERR, "PCIe DMA channel count parity error" },
4185 		{ F_DREQPERR, "PCIe DMA channel request parity error" },
4186 		{ F_DRSPPERR, "PCIe DMA channel response parity error" },
4187 		{ F_HCNTPERR, "PCIe HMA channel count parity error" },
4188 		{ F_HREQPERR, "PCIe HMA channel request parity error" },
4189 		{ F_HRSPPERR, "PCIe HMA channel response parity error" },
4190 		{ F_CFGSNPPERR, "PCIe config snoop FIFO parity error" },
4191 		{ F_FIDPERR, "PCIe FID parity error" },
4192 		{ F_INTXCLRPERR, "PCIe INTx clear parity error" },
4193 		{ F_MATAGPERR, "PCIe MA tag parity error" },
4194 		{ F_PIOTAGPERR, "PCIe PIO tag parity error" },
4195 		{ F_RXCPLPERR, "PCIe Rx completion parity error" },
4196 		{ F_RXWRPERR, "PCIe Rx write parity error" },
4197 		{ F_RPLPERR, "PCIe replay buffer parity error" },
4198 		{ F_PCIESINT, "PCIe core secondary fault" },
4199 		{ F_PCIEPINT, "PCIe core primary fault" },
4200 		{ F_UNXSPLCPLERR, "PCIe unexpected split completion error" },
4201 		{ 0 }
4202 	};
4203 	static const struct intr_details t5_pcie_intr_details[] = {
4204 		{ F_IPGRPPERR, "Parity errors observed by IP" },
4205 		{ F_NONFATALERR, "PCIe non-fatal error" },
4206 		{ F_READRSPERR, "Outbound read error" },
4207 		{ F_TRGT1GRPPERR, "PCIe TRGT1 group FIFOs parity error" },
4208 		{ F_IPSOTPERR, "PCIe IP SOT buffer SRAM parity error" },
4209 		{ F_IPRETRYPERR, "PCIe IP replay buffer parity error" },
4210 		{ F_IPRXDATAGRPPERR, "PCIe IP Rx data group SRAMs parity error" },
4211 		{ F_IPRXHDRGRPPERR, "PCIe IP Rx header group SRAMs parity error" },
4212 		{ F_PIOTAGQPERR, "PIO tag queue FIFO parity error" },
4213 		{ F_MAGRPPERR, "MA group FIFO parity error" },
4214 		{ F_VFIDPERR, "VFID SRAM parity error" },
4215 		{ F_FIDPERR, "FID SRAM parity error" },
4216 		{ F_CFGSNPPERR, "config snoop FIFO parity error" },
4217 		{ F_HRSPPERR, "HMA channel response data SRAM parity error" },
4218 		{ F_HREQRDPERR, "HMA channel read request SRAM parity error" },
4219 		{ F_HREQWRPERR, "HMA channel write request SRAM parity error" },
4220 		{ F_DRSPPERR, "DMA channel response data SRAM parity error" },
4221 		{ F_DREQRDPERR, "DMA channel write request SRAM parity error" },
4222 		{ F_CRSPPERR, "CMD channel response data SRAM parity error" },
4223 		{ F_CREQRDPERR, "CMD channel read request SRAM parity error" },
4224 		{ F_MSTTAGQPERR, "PCIe master tag queue SRAM parity error" },
4225 		{ F_TGTTAGQPERR, "PCIe target tag queue FIFO parity error" },
4226 		{ F_PIOREQGRPPERR, "PIO request group FIFOs parity error" },
4227 		{ F_PIOCPLGRPPERR, "PIO completion group FIFOs parity error" },
4228 		{ F_MSIXDIPERR, "MSI-X DI SRAM parity error" },
4229 		{ F_MSIXDATAPERR, "MSI-X data SRAM parity error" },
4230 		{ F_MSIXADDRHPERR, "MSI-X AddrH SRAM parity error" },
4231 		{ F_MSIXADDRLPERR, "MSI-X AddrL SRAM parity error" },
4232 		{ F_MSIXSTIPERR, "MSI-X STI SRAM parity error" },
4233 		{ F_MSTTIMEOUTPERR, "Master timeout FIFO parity error" },
4234 		{ F_MSTGRPPERR, "Master response read queue SRAM parity error" },
4235 		{ 0 }
4236 	};
4237 	struct intr_info pcie_intr_info = {
4238 		.name = "PCIE_INT_CAUSE",
4239 		.cause_reg = A_PCIE_INT_CAUSE,
4240 		.enable_reg = A_PCIE_INT_ENABLE,
4241 		.fatal = 0xffffffff,
4242 		.flags = NONFATAL_IF_DISABLED,
4243 		.details = NULL,
4244 		.actions = NULL,
4245 	};
4246 	bool fatal = false;
4247 
4248 	if (is_t4(adap)) {
4249 		fatal |= t4_handle_intr(adap, &sysbus_intr_info, 0, verbose);
4250 		fatal |= t4_handle_intr(adap, &pcie_port_intr_info, 0, verbose);
4251 
4252 		pcie_intr_info.details = pcie_intr_details;
4253 	} else {
4254 		pcie_intr_info.details = t5_pcie_intr_details;
4255 	}
4256 	fatal |= t4_handle_intr(adap, &pcie_intr_info, 0, verbose);
4257 
4258 	return (fatal);
4259 }
4260 
4261 /*
4262  * TP interrupt handler.
4263  */
4264 static bool tp_intr_handler(struct adapter *adap, int arg, bool verbose)
4265 {
4266 	static const struct intr_details tp_intr_details[] = {
4267 		{ 0x3fffffff, "TP parity error" },
4268 		{ F_FLMTXFLSTEMPTY, "TP out of Tx pages" },
4269 		{ 0 }
4270 	};
4271 	static const struct intr_info tp_intr_info = {
4272 		.name = "TP_INT_CAUSE",
4273 		.cause_reg = A_TP_INT_CAUSE,
4274 		.enable_reg = A_TP_INT_ENABLE,
4275 		.fatal = 0x7fffffff,
4276 		.flags = NONFATAL_IF_DISABLED,
4277 		.details = tp_intr_details,
4278 		.actions = NULL,
4279 	};
4280 
4281 	return (t4_handle_intr(adap, &tp_intr_info, 0, verbose));
4282 }
4283 
4284 /*
4285  * SGE interrupt handler.
4286  */
4287 static bool sge_intr_handler(struct adapter *adap, int arg, bool verbose)
4288 {
4289 	static const struct intr_info sge_int1_info = {
4290 		.name = "SGE_INT_CAUSE1",
4291 		.cause_reg = A_SGE_INT_CAUSE1,
4292 		.enable_reg = A_SGE_INT_ENABLE1,
4293 		.fatal = 0xffffffff,
4294 		.flags = NONFATAL_IF_DISABLED,
4295 		.details = NULL,
4296 		.actions = NULL,
4297 	};
4298 	static const struct intr_info sge_int2_info = {
4299 		.name = "SGE_INT_CAUSE2",
4300 		.cause_reg = A_SGE_INT_CAUSE2,
4301 		.enable_reg = A_SGE_INT_ENABLE2,
4302 		.fatal = 0xffffffff,
4303 		.flags = NONFATAL_IF_DISABLED,
4304 		.details = NULL,
4305 		.actions = NULL,
4306 	};
4307 	static const struct intr_details sge_int3_details[] = {
4308 		{ F_ERR_FLM_DBP,
4309 			"DBP pointer delivery for invalid context or QID" },
4310 		{ F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0,
4311 			"Invalid QID or header request by IDMA" },
4312 		{ F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" },
4313 		{ F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" },
4314 		{ F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" },
4315 		{ F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" },
4316 		{ F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" },
4317 		{ F_ERR_TIMER_ABOVE_MAX_QID,
4318 			"SGE GTS with timer 0-5 for IQID > 1023" },
4319 		{ F_ERR_CPL_EXCEED_IQE_SIZE,
4320 			"SGE received CPL exceeding IQE size" },
4321 		{ F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" },
4322 		{ F_ERR_ITP_TIME_PAUSED, "SGE ITP error" },
4323 		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" },
4324 		{ F_ERR_DROPPED_DB, "SGE DB dropped" },
4325 		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
4326 		  "SGE IQID > 1023 received CPL for FL" },
4327 		{ F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4328 			F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" },
4329 		{ F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" },
4330 		{ F_ERR_ING_CTXT_PRIO,
4331 			"Ingress context manager priority user error" },
4332 		{ F_ERR_EGR_CTXT_PRIO,
4333 			"Egress context manager priority user error" },
4334 		{ F_DBFIFO_HP_INT, "High priority DB FIFO threshold reached" },
4335 		{ F_DBFIFO_LP_INT, "Low priority DB FIFO threshold reached" },
4336 		{ F_REG_ADDRESS_ERR, "Undefined SGE register accessed" },
4337 		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" },
4338 		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID" },
4339 		{ 0x0000000f, "SGE context access for invalid queue" },
4340 		{ 0 }
4341 	};
4342 	static const struct intr_details t6_sge_int3_details[] = {
4343 		{ F_ERR_FLM_DBP,
4344 			"DBP pointer delivery for invalid context or QID" },
4345 		{ F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0,
4346 			"Invalid QID or header request by IDMA" },
4347 		{ F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" },
4348 		{ F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" },
4349 		{ F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" },
4350 		{ F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" },
4351 		{ F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" },
4352 		{ F_ERR_TIMER_ABOVE_MAX_QID,
4353 			"SGE GTS with timer 0-5 for IQID > 1023" },
4354 		{ F_ERR_CPL_EXCEED_IQE_SIZE,
4355 			"SGE received CPL exceeding IQE size" },
4356 		{ F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" },
4357 		{ F_ERR_ITP_TIME_PAUSED, "SGE ITP error" },
4358 		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" },
4359 		{ F_ERR_DROPPED_DB, "SGE DB dropped" },
4360 		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
4361 			"SGE IQID > 1023 received CPL for FL" },
4362 		{ F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4363 			F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" },
4364 		{ F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" },
4365 		{ F_ERR_ING_CTXT_PRIO,
4366 			"Ingress context manager priority user error" },
4367 		{ F_ERR_EGR_CTXT_PRIO,
4368 			"Egress context manager priority user error" },
4369 		{ F_DBP_TBUF_FULL, "SGE DBP tbuf full" },
4370 		{ F_FATAL_WRE_LEN,
4371 			"SGE WRE packet less than advertized length" },
4372 		{ F_REG_ADDRESS_ERR, "Undefined SGE register accessed" },
4373 		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" },
4374 		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID" },
4375 		{ 0x0000000f, "SGE context access for invalid queue" },
4376 		{ 0 }
4377 	};
4378 	struct intr_info sge_int3_info = {
4379 		.name = "SGE_INT_CAUSE3",
4380 		.cause_reg = A_SGE_INT_CAUSE3,
4381 		.enable_reg = A_SGE_INT_ENABLE3,
4382 		.fatal = F_ERR_CPL_EXCEED_IQE_SIZE,
4383 		.flags = 0,
4384 		.details = NULL,
4385 		.actions = NULL,
4386 	};
4387 	static const struct intr_info sge_int4_info = {
4388 		.name = "SGE_INT_CAUSE4",
4389 		.cause_reg = A_SGE_INT_CAUSE4,
4390 		.enable_reg = A_SGE_INT_ENABLE4,
4391 		.fatal = 0,
4392 		.flags = 0,
4393 		.details = NULL,
4394 		.actions = NULL,
4395 	};
4396 	static const struct intr_info sge_int5_info = {
4397 		.name = "SGE_INT_CAUSE5",
4398 		.cause_reg = A_SGE_INT_CAUSE5,
4399 		.enable_reg = A_SGE_INT_ENABLE5,
4400 		.fatal = 0xffffffff,
4401 		.flags = NONFATAL_IF_DISABLED,
4402 		.details = NULL,
4403 		.actions = NULL,
4404 	};
4405 	static const struct intr_info sge_int6_info = {
4406 		.name = "SGE_INT_CAUSE6",
4407 		.cause_reg = A_SGE_INT_CAUSE6,
4408 		.enable_reg = A_SGE_INT_ENABLE6,
4409 		.fatal = 0,
4410 		.flags = 0,
4411 		.details = NULL,
4412 		.actions = NULL,
4413 	};
4414 
4415 	bool fatal;
4416 	u32 v;
4417 
4418 	if (chip_id(adap) <= CHELSIO_T5) {
4419 		sge_int3_info.details = sge_int3_details;
4420 	} else {
4421 		sge_int3_info.details = t6_sge_int3_details;
4422 	}
4423 
4424 	fatal = false;
4425 	fatal |= t4_handle_intr(adap, &sge_int1_info, 0, verbose);
4426 	fatal |= t4_handle_intr(adap, &sge_int2_info, 0, verbose);
4427 	fatal |= t4_handle_intr(adap, &sge_int3_info, 0, verbose);
4428 	fatal |= t4_handle_intr(adap, &sge_int4_info, 0, verbose);
4429 	if (chip_id(adap) >= CHELSIO_T5)
4430 		fatal |= t4_handle_intr(adap, &sge_int5_info, 0, verbose);
4431 	if (chip_id(adap) >= CHELSIO_T6)
4432 		fatal |= t4_handle_intr(adap, &sge_int6_info, 0, verbose);
4433 
4434 	v = t4_read_reg(adap, A_SGE_ERROR_STATS);
4435 	if (v & F_ERROR_QID_VALID) {
4436 		CH_ERR(adap, "SGE error for QID %u\n", G_ERROR_QID(v));
4437 		if (v & F_UNCAPTURED_ERROR)
4438 			CH_ERR(adap, "SGE UNCAPTURED_ERROR set (clearing)\n");
4439 		t4_write_reg(adap, A_SGE_ERROR_STATS,
4440 		    F_ERROR_QID_VALID | F_UNCAPTURED_ERROR);
4441 	}
4442 
4443 	return (fatal);
4444 }
4445 
4446 /*
4447  * CIM interrupt handler.
4448  */
4449 static bool cim_intr_handler(struct adapter *adap, int arg, bool verbose)
4450 {
4451 	static const struct intr_action cim_host_intr_actions[] = {
4452 		{ F_TIMER0INT, 0, t4_os_dump_cimla },
4453 		{ 0 },
4454 	};
4455 	static const struct intr_details cim_host_intr_details[] = {
4456 		/* T6+ */
4457 		{ F_PCIE2CIMINTFPARERR, "CIM IBQ PCIe interface parity error" },
4458 
4459 		/* T5+ */
4460 		{ F_MA_CIM_INTFPERR, "MA2CIM interface parity error" },
4461 		{ F_PLCIM_MSTRSPDATAPARERR,
4462 			"PL2CIM master response data parity error" },
4463 		{ F_NCSI2CIMINTFPARERR, "CIM IBQ NC-SI interface parity error" },
4464 		{ F_SGE2CIMINTFPARERR, "CIM IBQ SGE interface parity error" },
4465 		{ F_ULP2CIMINTFPARERR, "CIM IBQ ULP_TX interface parity error" },
4466 		{ F_TP2CIMINTFPARERR, "CIM IBQ TP interface parity error" },
4467 		{ F_OBQSGERX1PARERR, "CIM OBQ SGE1_RX parity error" },
4468 		{ F_OBQSGERX0PARERR, "CIM OBQ SGE0_RX parity error" },
4469 
4470 		/* T4+ */
4471 		{ F_TIEQOUTPARERRINT, "CIM TIEQ outgoing FIFO parity error" },
4472 		{ F_TIEQINPARERRINT, "CIM TIEQ incoming FIFO parity error" },
4473 		{ F_MBHOSTPARERR, "CIM mailbox host read parity error" },
4474 		{ F_MBUPPARERR, "CIM mailbox uP parity error" },
4475 		{ F_IBQTP0PARERR, "CIM IBQ TP0 parity error" },
4476 		{ F_IBQTP1PARERR, "CIM IBQ TP1 parity error" },
4477 		{ F_IBQULPPARERR, "CIM IBQ ULP parity error" },
4478 		{ F_IBQSGELOPARERR, "CIM IBQ SGE_LO parity error" },
4479 		{ F_IBQSGEHIPARERR | F_IBQPCIEPARERR,	/* same bit */
4480 			"CIM IBQ PCIe/SGE_HI parity error" },
4481 		{ F_IBQNCSIPARERR, "CIM IBQ NC-SI parity error" },
4482 		{ F_OBQULP0PARERR, "CIM OBQ ULP0 parity error" },
4483 		{ F_OBQULP1PARERR, "CIM OBQ ULP1 parity error" },
4484 		{ F_OBQULP2PARERR, "CIM OBQ ULP2 parity error" },
4485 		{ F_OBQULP3PARERR, "CIM OBQ ULP3 parity error" },
4486 		{ F_OBQSGEPARERR, "CIM OBQ SGE parity error" },
4487 		{ F_OBQNCSIPARERR, "CIM OBQ NC-SI parity error" },
4488 		{ F_TIMER1INT, "CIM TIMER0 interrupt" },
4489 		{ F_TIMER0INT, "CIM TIMER0 interrupt" },
4490 		{ F_PREFDROPINT, "CIM control register prefetch drop" },
4491 		{ 0}
4492 	};
4493 	static const struct intr_info cim_host_intr_info = {
4494 		.name = "CIM_HOST_INT_CAUSE",
4495 		.cause_reg = A_CIM_HOST_INT_CAUSE,
4496 		.enable_reg = A_CIM_HOST_INT_ENABLE,
4497 		.fatal = 0x007fffe6,
4498 		.flags = NONFATAL_IF_DISABLED,
4499 		.details = cim_host_intr_details,
4500 		.actions = cim_host_intr_actions,
4501 	};
4502 	static const struct intr_details cim_host_upacc_intr_details[] = {
4503 		{ F_EEPROMWRINT, "CIM EEPROM came out of busy state" },
4504 		{ F_TIMEOUTMAINT, "CIM PIF MA timeout" },
4505 		{ F_TIMEOUTINT, "CIM PIF timeout" },
4506 		{ F_RSPOVRLOOKUPINT, "CIM response FIFO overwrite" },
4507 		{ F_REQOVRLOOKUPINT, "CIM request FIFO overwrite" },
4508 		{ F_BLKWRPLINT, "CIM block write to PL space" },
4509 		{ F_BLKRDPLINT, "CIM block read from PL space" },
4510 		{ F_SGLWRPLINT,
4511 			"CIM single write to PL space with illegal BEs" },
4512 		{ F_SGLRDPLINT,
4513 			"CIM single read from PL space with illegal BEs" },
4514 		{ F_BLKWRCTLINT, "CIM block write to CTL space" },
4515 		{ F_BLKRDCTLINT, "CIM block read from CTL space" },
4516 		{ F_SGLWRCTLINT,
4517 			"CIM single write to CTL space with illegal BEs" },
4518 		{ F_SGLRDCTLINT,
4519 			"CIM single read from CTL space with illegal BEs" },
4520 		{ F_BLKWREEPROMINT, "CIM block write to EEPROM space" },
4521 		{ F_BLKRDEEPROMINT, "CIM block read from EEPROM space" },
4522 		{ F_SGLWREEPROMINT,
4523 			"CIM single write to EEPROM space with illegal BEs" },
4524 		{ F_SGLRDEEPROMINT,
4525 			"CIM single read from EEPROM space with illegal BEs" },
4526 		{ F_BLKWRFLASHINT, "CIM block write to flash space" },
4527 		{ F_BLKRDFLASHINT, "CIM block read from flash space" },
4528 		{ F_SGLWRFLASHINT, "CIM single write to flash space" },
4529 		{ F_SGLRDFLASHINT,
4530 			"CIM single read from flash space with illegal BEs" },
4531 		{ F_BLKWRBOOTINT, "CIM block write to boot space" },
4532 		{ F_BLKRDBOOTINT, "CIM block read from boot space" },
4533 		{ F_SGLWRBOOTINT, "CIM single write to boot space" },
4534 		{ F_SGLRDBOOTINT,
4535 			"CIM single read from boot space with illegal BEs" },
4536 		{ F_ILLWRBEINT, "CIM illegal write BEs" },
4537 		{ F_ILLRDBEINT, "CIM illegal read BEs" },
4538 		{ F_ILLRDINT, "CIM illegal read" },
4539 		{ F_ILLWRINT, "CIM illegal write" },
4540 		{ F_ILLTRANSINT, "CIM illegal transaction" },
4541 		{ F_RSVDSPACEINT, "CIM reserved space access" },
4542 		{0}
4543 	};
4544 	static const struct intr_info cim_host_upacc_intr_info = {
4545 		.name = "CIM_HOST_UPACC_INT_CAUSE",
4546 		.cause_reg = A_CIM_HOST_UPACC_INT_CAUSE,
4547 		.enable_reg = A_CIM_HOST_UPACC_INT_ENABLE,
4548 		.fatal = 0x3fffeeff,
4549 		.flags = NONFATAL_IF_DISABLED,
4550 		.details = cim_host_upacc_intr_details,
4551 		.actions = NULL,
4552 	};
4553 	static const struct intr_info cim_pf_host_intr_info = {
4554 		.name = "CIM_PF_HOST_INT_CAUSE",
4555 		.cause_reg = MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
4556 		.enable_reg = MYPF_REG(A_CIM_PF_HOST_INT_ENABLE),
4557 		.fatal = 0,
4558 		.flags = 0,
4559 		.details = NULL,
4560 		.actions = NULL,
4561 	};
4562 	u32 val, fw_err;
4563 	bool fatal;
4564 
4565 	fw_err = t4_read_reg(adap, A_PCIE_FW);
4566 	if (fw_err & F_PCIE_FW_ERR)
4567 		t4_report_fw_error(adap);
4568 
4569 	/*
4570 	 * When the Firmware detects an internal error which normally wouldn't
4571 	 * raise a Host Interrupt, it forces a CIM Timer0 interrupt in order
4572 	 * to make sure the Host sees the Firmware Crash.  So if we have a
4573 	 * Timer0 interrupt and don't see a Firmware Crash, ignore the Timer0
4574 	 * interrupt.
4575 	 */
4576 	val = t4_read_reg(adap, A_CIM_HOST_INT_CAUSE);
4577 	if (val & F_TIMER0INT && (!(fw_err & F_PCIE_FW_ERR) ||
4578 	    G_PCIE_FW_EVAL(fw_err) != PCIE_FW_EVAL_CRASH)) {
4579 		t4_write_reg(adap, A_CIM_HOST_INT_CAUSE, F_TIMER0INT);
4580 	}
4581 
4582 	fatal = false;
4583 	fatal |= t4_handle_intr(adap, &cim_host_intr_info, 0, verbose);
4584 	fatal |= t4_handle_intr(adap, &cim_host_upacc_intr_info, 0, verbose);
4585 	fatal |= t4_handle_intr(adap, &cim_pf_host_intr_info, 0, verbose);
4586 
4587 	return (fatal);
4588 }
4589 
4590 /*
4591  * ULP RX interrupt handler.
4592  */
4593 static bool ulprx_intr_handler(struct adapter *adap, int arg, bool verbose)
4594 {
4595 	static const struct intr_details ulprx_intr_details[] = {
4596 		/* T5+ */
4597 		{ F_SE_CNT_MISMATCH_1, "ULPRX SE count mismatch in channel 1" },
4598 		{ F_SE_CNT_MISMATCH_0, "ULPRX SE count mismatch in channel 0" },
4599 
4600 		/* T4+ */
4601 		{ F_CAUSE_CTX_1, "ULPRX channel 1 context error" },
4602 		{ F_CAUSE_CTX_0, "ULPRX channel 0 context error" },
4603 		{ 0x007fffff, "ULPRX parity error" },
4604 		{ 0 }
4605 	};
4606 	static const struct intr_info ulprx_intr_info = {
4607 		.name = "ULP_RX_INT_CAUSE",
4608 		.cause_reg = A_ULP_RX_INT_CAUSE,
4609 		.enable_reg = A_ULP_RX_INT_ENABLE,
4610 		.fatal = 0x07ffffff,
4611 		.flags = NONFATAL_IF_DISABLED,
4612 		.details = ulprx_intr_details,
4613 		.actions = NULL,
4614 	};
4615 	static const struct intr_info ulprx_intr2_info = {
4616 		.name = "ULP_RX_INT_CAUSE_2",
4617 		.cause_reg = A_ULP_RX_INT_CAUSE_2,
4618 		.enable_reg = A_ULP_RX_INT_ENABLE_2,
4619 		.fatal = 0,
4620 		.flags = 0,
4621 		.details = NULL,
4622 		.actions = NULL,
4623 	};
4624 	bool fatal = false;
4625 
4626 	fatal |= t4_handle_intr(adap, &ulprx_intr_info, 0, verbose);
4627 	fatal |= t4_handle_intr(adap, &ulprx_intr2_info, 0, verbose);
4628 
4629 	return (fatal);
4630 }
4631 
4632 /*
4633  * ULP TX interrupt handler.
4634  */
4635 static bool ulptx_intr_handler(struct adapter *adap, int arg, bool verbose)
4636 {
4637 	static const struct intr_details ulptx_intr_details[] = {
4638 		{ F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds" },
4639 		{ F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds" },
4640 		{ F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds" },
4641 		{ F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds" },
4642 		{ 0x0fffffff, "ULPTX parity error" },
4643 		{ 0 }
4644 	};
4645 	static const struct intr_info ulptx_intr_info = {
4646 		.name = "ULP_TX_INT_CAUSE",
4647 		.cause_reg = A_ULP_TX_INT_CAUSE,
4648 		.enable_reg = A_ULP_TX_INT_ENABLE,
4649 		.fatal = 0x0fffffff,
4650 		.flags = NONFATAL_IF_DISABLED,
4651 		.details = ulptx_intr_details,
4652 		.actions = NULL,
4653 	};
4654 	static const struct intr_info ulptx_intr2_info = {
4655 		.name = "ULP_TX_INT_CAUSE_2",
4656 		.cause_reg = A_ULP_TX_INT_CAUSE_2,
4657 		.enable_reg = A_ULP_TX_INT_ENABLE_2,
4658 		.fatal = 0xf0,
4659 		.flags = NONFATAL_IF_DISABLED,
4660 		.details = NULL,
4661 		.actions = NULL,
4662 	};
4663 	bool fatal = false;
4664 
4665 	fatal |= t4_handle_intr(adap, &ulptx_intr_info, 0, verbose);
4666 	fatal |= t4_handle_intr(adap, &ulptx_intr2_info, 0, verbose);
4667 
4668 	return (fatal);
4669 }
4670 
4671 static bool pmtx_dump_dbg_stats(struct adapter *adap, int arg, bool verbose)
4672 {
4673 	int i;
4674 	u32 data[17];
4675 
4676 	t4_read_indirect(adap, A_PM_TX_DBG_CTRL, A_PM_TX_DBG_DATA, &data[0],
4677 	    ARRAY_SIZE(data), A_PM_TX_DBG_STAT0);
4678 	for (i = 0; i < ARRAY_SIZE(data); i++) {
4679 		CH_ALERT(adap, "  - PM_TX_DBG_STAT%u (0x%x) = 0x%08x\n", i,
4680 		    A_PM_TX_DBG_STAT0 + i, data[i]);
4681 	}
4682 
4683 	return (false);
4684 }
4685 
4686 /*
4687  * PM TX interrupt handler.
4688  */
4689 static bool pmtx_intr_handler(struct adapter *adap, int arg, bool verbose)
4690 {
4691 	static const struct intr_action pmtx_intr_actions[] = {
4692 		{ 0xffffffff, 0, pmtx_dump_dbg_stats },
4693 		{ 0 },
4694 	};
4695 	static const struct intr_details pmtx_intr_details[] = {
4696 		{ F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large" },
4697 		{ F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large" },
4698 		{ F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large" },
4699 		{ F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd" },
4700 		{ 0x0f000000, "PMTX icspi FIFO2X Rx framing error" },
4701 		{ 0x00f00000, "PMTX icspi FIFO Rx framing error" },
4702 		{ 0x000f0000, "PMTX icspi FIFO Tx framing error" },
4703 		{ 0x0000f000, "PMTX oespi FIFO Rx framing error" },
4704 		{ 0x00000f00, "PMTX oespi FIFO Tx framing error" },
4705 		{ 0x000000f0, "PMTX oespi FIFO2X Tx framing error" },
4706 		{ F_OESPI_PAR_ERROR, "PMTX oespi parity error" },
4707 		{ F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error" },
4708 		{ F_ICSPI_PAR_ERROR, "PMTX icspi parity error" },
4709 		{ F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error" },
4710 		{ 0 }
4711 	};
4712 	static const struct intr_info pmtx_intr_info = {
4713 		.name = "PM_TX_INT_CAUSE",
4714 		.cause_reg = A_PM_TX_INT_CAUSE,
4715 		.enable_reg = A_PM_TX_INT_ENABLE,
4716 		.fatal = 0xffffffff,
4717 		.flags = 0,
4718 		.details = pmtx_intr_details,
4719 		.actions = pmtx_intr_actions,
4720 	};
4721 
4722 	return (t4_handle_intr(adap, &pmtx_intr_info, 0, verbose));
4723 }
4724 
4725 /*
4726  * PM RX interrupt handler.
4727  */
4728 static bool pmrx_intr_handler(struct adapter *adap, int arg, bool verbose)
4729 {
4730 	static const struct intr_details pmrx_intr_details[] = {
4731 		/* T6+ */
4732 		{ 0x18000000, "PMRX ospi overflow" },
4733 		{ F_MA_INTF_SDC_ERR, "PMRX MA interface SDC parity error" },
4734 		{ F_BUNDLE_LEN_PARERR, "PMRX bundle len FIFO parity error" },
4735 		{ F_BUNDLE_LEN_OVFL, "PMRX bundle len FIFO overflow" },
4736 		{ F_SDC_ERR, "PMRX SDC error" },
4737 
4738 		/* T4+ */
4739 		{ F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd" },
4740 		{ 0x003c0000, "PMRX iespi FIFO2X Rx framing error" },
4741 		{ 0x0003c000, "PMRX iespi Rx framing error" },
4742 		{ 0x00003c00, "PMRX iespi Tx framing error" },
4743 		{ 0x00000300, "PMRX ocspi Rx framing error" },
4744 		{ 0x000000c0, "PMRX ocspi Tx framing error" },
4745 		{ 0x00000030, "PMRX ocspi FIFO2X Tx framing error" },
4746 		{ F_OCSPI_PAR_ERROR, "PMRX ocspi parity error" },
4747 		{ F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error" },
4748 		{ F_IESPI_PAR_ERROR, "PMRX iespi parity error" },
4749 		{ F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error"},
4750 		{ 0 }
4751 	};
4752 	static const struct intr_info pmrx_intr_info = {
4753 		.name = "PM_RX_INT_CAUSE",
4754 		.cause_reg = A_PM_RX_INT_CAUSE,
4755 		.enable_reg = A_PM_RX_INT_ENABLE,
4756 		.fatal = 0x1fffffff,
4757 		.flags = NONFATAL_IF_DISABLED,
4758 		.details = pmrx_intr_details,
4759 		.actions = NULL,
4760 	};
4761 
4762 	return (t4_handle_intr(adap, &pmrx_intr_info, 0, verbose));
4763 }
4764 
4765 /*
4766  * CPL switch interrupt handler.
4767  */
4768 static bool cplsw_intr_handler(struct adapter *adap, int arg, bool verbose)
4769 {
4770 	static const struct intr_details cplsw_intr_details[] = {
4771 		/* T5+ */
4772 		{ F_PERR_CPL_128TO128_1, "CPLSW 128TO128 FIFO1 parity error" },
4773 		{ F_PERR_CPL_128TO128_0, "CPLSW 128TO128 FIFO0 parity error" },
4774 
4775 		/* T4+ */
4776 		{ F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error" },
4777 		{ F_CIM_OVFL_ERROR, "CPLSW CIM overflow" },
4778 		{ F_TP_FRAMING_ERROR, "CPLSW TP framing error" },
4779 		{ F_SGE_FRAMING_ERROR, "CPLSW SGE framing error" },
4780 		{ F_CIM_FRAMING_ERROR, "CPLSW CIM framing error" },
4781 		{ F_ZERO_SWITCH_ERROR, "CPLSW no-switch error" },
4782 		{ 0 }
4783 	};
4784 	static const struct intr_info cplsw_intr_info = {
4785 		.name = "CPL_INTR_CAUSE",
4786 		.cause_reg = A_CPL_INTR_CAUSE,
4787 		.enable_reg = A_CPL_INTR_ENABLE,
4788 		.fatal = 0xff,
4789 		.flags = NONFATAL_IF_DISABLED,
4790 		.details = cplsw_intr_details,
4791 		.actions = NULL,
4792 	};
4793 
4794 	return (t4_handle_intr(adap, &cplsw_intr_info, 0, verbose));
4795 }
4796 
4797 #define T4_LE_FATAL_MASK (F_PARITYERR | F_UNKNOWNCMD | F_REQQPARERR)
4798 #define T5_LE_FATAL_MASK (T4_LE_FATAL_MASK | F_VFPARERR)
4799 #define T6_LE_PERRCRC_MASK (F_PIPELINEERR | F_CLIPTCAMACCFAIL | \
4800     F_SRVSRAMACCFAIL | F_CLCAMCRCPARERR | F_CLCAMINTPERR | F_SSRAMINTPERR | \
4801     F_SRVSRAMPERR | F_VFSRAMPERR | F_TCAMINTPERR | F_TCAMCRCERR | \
4802     F_HASHTBLMEMACCERR | F_MAIFWRINTPERR | F_HASHTBLMEMCRCERR)
4803 #define T6_LE_FATAL_MASK (T6_LE_PERRCRC_MASK | F_T6_UNKNOWNCMD | \
4804     F_TCAMACCFAIL | F_HASHTBLACCFAIL | F_CMDTIDERR | F_CMDPRSRINTERR | \
4805     F_TOTCNTERR | F_CLCAMFIFOERR | F_CLIPSUBERR)
4806 
4807 /*
4808  * LE interrupt handler.
4809  */
4810 static bool le_intr_handler(struct adapter *adap, int arg, bool verbose)
4811 {
4812 	static const struct intr_details le_intr_details[] = {
4813 		{ F_REQQPARERR, "LE request queue parity error" },
4814 		{ F_UNKNOWNCMD, "LE unknown command" },
4815 		{ F_ACTRGNFULL, "LE active region full" },
4816 		{ F_PARITYERR, "LE parity error" },
4817 		{ F_LIPMISS, "LE LIP miss" },
4818 		{ F_LIP0, "LE 0 LIP error" },
4819 		{ 0 }
4820 	};
4821 	static const struct intr_details t6_le_intr_details[] = {
4822 		{ F_CLIPSUBERR, "LE CLIP CAM reverse substitution error" },
4823 		{ F_CLCAMFIFOERR, "LE CLIP CAM internal FIFO error" },
4824 		{ F_CTCAMINVLDENT, "Invalid IPv6 CLIP TCAM entry" },
4825 		{ F_TCAMINVLDENT, "Invalid IPv6 TCAM entry" },
4826 		{ F_TOTCNTERR, "LE total active < TCAM count" },
4827 		{ F_CMDPRSRINTERR, "LE internal error in parser" },
4828 		{ F_CMDTIDERR, "Incorrect tid in LE command" },
4829 		{ F_T6_ACTRGNFULL, "LE active region full" },
4830 		{ F_T6_ACTCNTIPV6TZERO, "LE IPv6 active open TCAM counter -ve" },
4831 		{ F_T6_ACTCNTIPV4TZERO, "LE IPv4 active open TCAM counter -ve" },
4832 		{ F_T6_ACTCNTIPV6ZERO, "LE IPv6 active open counter -ve" },
4833 		{ F_T6_ACTCNTIPV4ZERO, "LE IPv4 active open counter -ve" },
4834 		{ F_HASHTBLACCFAIL, "Hash table read error (proto conflict)" },
4835 		{ F_TCAMACCFAIL, "LE TCAM access failure" },
4836 		{ F_T6_UNKNOWNCMD, "LE unknown command" },
4837 		{ F_T6_LIP0, "LE found 0 LIP during CLIP substitution" },
4838 		{ F_T6_LIPMISS, "LE CLIP lookup miss" },
4839 		{ T6_LE_PERRCRC_MASK, "LE parity/CRC error" },
4840 		{ 0 }
4841 	};
4842 	struct intr_info le_intr_info = {
4843 		.name = "LE_DB_INT_CAUSE",
4844 		.cause_reg = A_LE_DB_INT_CAUSE,
4845 		.enable_reg = A_LE_DB_INT_ENABLE,
4846 		.fatal = 0,
4847 		.flags = NONFATAL_IF_DISABLED,
4848 		.details = NULL,
4849 		.actions = NULL,
4850 	};
4851 
4852 	if (chip_id(adap) <= CHELSIO_T5) {
4853 		le_intr_info.details = le_intr_details;
4854 		le_intr_info.fatal = T5_LE_FATAL_MASK;
4855 	} else {
4856 		le_intr_info.details = t6_le_intr_details;
4857 		le_intr_info.fatal = T6_LE_FATAL_MASK;
4858 	}
4859 
4860 	return (t4_handle_intr(adap, &le_intr_info, 0, verbose));
4861 }
4862 
4863 /*
4864  * MPS interrupt handler.
4865  */
4866 static bool mps_intr_handler(struct adapter *adap, int arg, bool verbose)
4867 {
4868 	static const struct intr_details mps_rx_perr_intr_details[] = {
4869 		{ 0xffffffff, "MPS Rx parity error" },
4870 		{ 0 }
4871 	};
4872 	static const struct intr_info mps_rx_perr_intr_info = {
4873 		.name = "MPS_RX_PERR_INT_CAUSE",
4874 		.cause_reg = A_MPS_RX_PERR_INT_CAUSE,
4875 		.enable_reg = A_MPS_RX_PERR_INT_ENABLE,
4876 		.fatal = 0xffffffff,
4877 		.flags = NONFATAL_IF_DISABLED,
4878 		.details = mps_rx_perr_intr_details,
4879 		.actions = NULL,
4880 	};
4881 	static const struct intr_details mps_tx_intr_details[] = {
4882 		{ F_PORTERR, "MPS Tx destination port is disabled" },
4883 		{ F_FRMERR, "MPS Tx framing error" },
4884 		{ F_SECNTERR, "MPS Tx SOP/EOP error" },
4885 		{ F_BUBBLE, "MPS Tx underflow" },
4886 		{ V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error" },
4887 		{ V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error" },
4888 		{ F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error" },
4889 		{ V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error" },
4890 		{ 0 }
4891 	};
4892 	static const struct intr_info mps_tx_intr_info = {
4893 		.name = "MPS_TX_INT_CAUSE",
4894 		.cause_reg = A_MPS_TX_INT_CAUSE,
4895 		.enable_reg = A_MPS_TX_INT_ENABLE,
4896 		.fatal = 0x1ffff,
4897 		.flags = NONFATAL_IF_DISABLED,
4898 		.details = mps_tx_intr_details,
4899 		.actions = NULL,
4900 	};
4901 	static const struct intr_details mps_trc_intr_details[] = {
4902 		{ F_MISCPERR, "MPS TRC misc parity error" },
4903 		{ V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error" },
4904 		{ V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error" },
4905 		{ 0 }
4906 	};
4907 	static const struct intr_info mps_trc_intr_info = {
4908 		.name = "MPS_TRC_INT_CAUSE",
4909 		.cause_reg = A_MPS_TRC_INT_CAUSE,
4910 		.enable_reg = A_MPS_TRC_INT_ENABLE,
4911 		.fatal = F_MISCPERR | V_PKTFIFO(M_PKTFIFO) | V_FILTMEM(M_FILTMEM),
4912 		.flags = 0,
4913 		.details = mps_trc_intr_details,
4914 		.actions = NULL,
4915 	};
4916 	static const struct intr_details mps_stat_sram_intr_details[] = {
4917 		{ 0xffffffff, "MPS statistics SRAM parity error" },
4918 		{ 0 }
4919 	};
4920 	static const struct intr_info mps_stat_sram_intr_info = {
4921 		.name = "MPS_STAT_PERR_INT_CAUSE_SRAM",
4922 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM,
4923 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM,
4924 		.fatal = 0x1fffffff,
4925 		.flags = NONFATAL_IF_DISABLED,
4926 		.details = mps_stat_sram_intr_details,
4927 		.actions = NULL,
4928 	};
4929 	static const struct intr_details mps_stat_tx_intr_details[] = {
4930 		{ 0xffffff, "MPS statistics Tx FIFO parity error" },
4931 		{ 0 }
4932 	};
4933 	static const struct intr_info mps_stat_tx_intr_info = {
4934 		.name = "MPS_STAT_PERR_INT_CAUSE_TX_FIFO",
4935 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
4936 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_TX_FIFO,
4937 		.fatal =  0xffffff,
4938 		.flags = NONFATAL_IF_DISABLED,
4939 		.details = mps_stat_tx_intr_details,
4940 		.actions = NULL,
4941 	};
4942 	static const struct intr_details mps_stat_rx_intr_details[] = {
4943 		{ 0xffffff, "MPS statistics Rx FIFO parity error" },
4944 		{ 0 }
4945 	};
4946 	static const struct intr_info mps_stat_rx_intr_info = {
4947 		.name = "MPS_STAT_PERR_INT_CAUSE_RX_FIFO",
4948 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
4949 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_RX_FIFO,
4950 		.fatal =  0xffffff,
4951 		.flags = 0,
4952 		.details = mps_stat_rx_intr_details,
4953 		.actions = NULL,
4954 	};
4955 	static const struct intr_details mps_cls_intr_details[] = {
4956 		{ F_HASHSRAM, "MPS hash SRAM parity error" },
4957 		{ F_MATCHTCAM, "MPS match TCAM parity error" },
4958 		{ F_MATCHSRAM, "MPS match SRAM parity error" },
4959 		{ 0 }
4960 	};
4961 	static const struct intr_info mps_cls_intr_info = {
4962 		.name = "MPS_CLS_INT_CAUSE",
4963 		.cause_reg = A_MPS_CLS_INT_CAUSE,
4964 		.enable_reg = A_MPS_CLS_INT_ENABLE,
4965 		.fatal =  F_MATCHSRAM | F_MATCHTCAM | F_HASHSRAM,
4966 		.flags = 0,
4967 		.details = mps_cls_intr_details,
4968 		.actions = NULL,
4969 	};
4970 	static const struct intr_details mps_stat_sram1_intr_details[] = {
4971 		{ 0xff, "MPS statistics SRAM1 parity error" },
4972 		{ 0 }
4973 	};
4974 	static const struct intr_info mps_stat_sram1_intr_info = {
4975 		.name = "MPS_STAT_PERR_INT_CAUSE_SRAM1",
4976 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM1,
4977 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM1,
4978 		.fatal = 0xff,
4979 		.flags = 0,
4980 		.details = mps_stat_sram1_intr_details,
4981 		.actions = NULL,
4982 	};
4983 
4984 	bool fatal;
4985 
4986 	fatal = false;
4987 	fatal |= t4_handle_intr(adap, &mps_rx_perr_intr_info, 0, verbose);
4988 	fatal |= t4_handle_intr(adap, &mps_tx_intr_info, 0, verbose);
4989 	fatal |= t4_handle_intr(adap, &mps_trc_intr_info, 0, verbose);
4990 	fatal |= t4_handle_intr(adap, &mps_stat_sram_intr_info, 0, verbose);
4991 	fatal |= t4_handle_intr(adap, &mps_stat_tx_intr_info, 0, verbose);
4992 	fatal |= t4_handle_intr(adap, &mps_stat_rx_intr_info, 0, verbose);
4993 	fatal |= t4_handle_intr(adap, &mps_cls_intr_info, 0, verbose);
4994 	if (chip_id(adap) > CHELSIO_T4) {
4995 		fatal |= t4_handle_intr(adap, &mps_stat_sram1_intr_info, 0,
4996 		    verbose);
4997 	}
4998 
4999 	t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff);
5000 	t4_read_reg(adap, A_MPS_INT_CAUSE);	/* flush */
5001 
5002 	return (fatal);
5003 
5004 }
5005 
5006 /*
5007  * EDC/MC interrupt handler.
5008  */
5009 static bool mem_intr_handler(struct adapter *adap, int idx, bool verbose)
5010 {
5011 	static const char name[4][5] = { "EDC0", "EDC1", "MC0", "MC1" };
5012 	unsigned int count_reg, v;
5013 	static const struct intr_details mem_intr_details[] = {
5014 		{ F_ECC_UE_INT_CAUSE, "Uncorrectable ECC data error(s)" },
5015 		{ F_ECC_CE_INT_CAUSE, "Correctable ECC data error(s)" },
5016 		{ F_PERR_INT_CAUSE, "FIFO parity error" },
5017 		{ 0 }
5018 	};
5019 	struct intr_info ii = {
5020 		.fatal = F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE,
5021 		.details = mem_intr_details,
5022 		.flags = 0,
5023 		.actions = NULL,
5024 	};
5025 	bool fatal;
5026 
5027 	switch (idx) {
5028 	case MEM_EDC0:
5029 		ii.name = "EDC0_INT_CAUSE";
5030 		ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 0);
5031 		ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 0);
5032 		count_reg = EDC_REG(A_EDC_ECC_STATUS, 0);
5033 		break;
5034 	case MEM_EDC1:
5035 		ii.name = "EDC1_INT_CAUSE";
5036 		ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 1);
5037 		ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 1);
5038 		count_reg = EDC_REG(A_EDC_ECC_STATUS, 1);
5039 		break;
5040 	case MEM_MC0:
5041 		ii.name = "MC0_INT_CAUSE";
5042 		if (is_t4(adap)) {
5043 			ii.cause_reg = A_MC_INT_CAUSE;
5044 			ii.enable_reg = A_MC_INT_ENABLE;
5045 			count_reg = A_MC_ECC_STATUS;
5046 		} else {
5047 			ii.cause_reg = A_MC_P_INT_CAUSE;
5048 			ii.enable_reg = A_MC_P_INT_ENABLE;
5049 			count_reg = A_MC_P_ECC_STATUS;
5050 		}
5051 		break;
5052 	case MEM_MC1:
5053 		ii.name = "MC1_INT_CAUSE";
5054 		ii.cause_reg = MC_REG(A_MC_P_INT_CAUSE, 1);
5055 		ii.enable_reg = MC_REG(A_MC_P_INT_ENABLE, 1);
5056 		count_reg = MC_REG(A_MC_P_ECC_STATUS, 1);
5057 		break;
5058 	}
5059 
5060 	fatal = t4_handle_intr(adap, &ii, 0, verbose);
5061 
5062 	v = t4_read_reg(adap, count_reg);
5063 	if (v != 0) {
5064 		if (G_ECC_UECNT(v) != 0) {
5065 			CH_ALERT(adap,
5066 			    "%s: %u uncorrectable ECC data error(s)\n",
5067 			    name[idx], G_ECC_UECNT(v));
5068 		}
5069 		if (G_ECC_CECNT(v) != 0) {
5070 			if (idx <= MEM_EDC1)
5071 				t4_edc_err_read(adap, idx);
5072 			CH_WARN_RATELIMIT(adap,
5073 			    "%s: %u correctable ECC data error(s)\n",
5074 			    name[idx], G_ECC_CECNT(v));
5075 		}
5076 		t4_write_reg(adap, count_reg, 0xffffffff);
5077 	}
5078 
5079 	return (fatal);
5080 }
5081 
5082 static bool ma_wrap_status(struct adapter *adap, int arg, bool verbose)
5083 {
5084 	u32 v;
5085 
5086 	v = t4_read_reg(adap, A_MA_INT_WRAP_STATUS);
5087 	CH_ALERT(adap,
5088 	    "MA address wrap-around error by client %u to address %#x\n",
5089 	    G_MEM_WRAP_CLIENT_NUM(v), G_MEM_WRAP_ADDRESS(v) << 4);
5090 	t4_write_reg(adap, A_MA_INT_WRAP_STATUS, v);
5091 
5092 	return (false);
5093 }
5094 
5095 
5096 /*
5097  * MA interrupt handler.
5098  */
5099 static bool ma_intr_handler(struct adapter *adap, int arg, bool verbose)
5100 {
5101 	static const struct intr_action ma_intr_actions[] = {
5102 		{ F_MEM_WRAP_INT_CAUSE, 0, ma_wrap_status },
5103 		{ 0 },
5104 	};
5105 	static const struct intr_info ma_intr_info = {
5106 		.name = "MA_INT_CAUSE",
5107 		.cause_reg = A_MA_INT_CAUSE,
5108 		.enable_reg = A_MA_INT_ENABLE,
5109 		.fatal = F_MEM_PERR_INT_CAUSE | F_MEM_TO_INT_CAUSE,
5110 		.flags = NONFATAL_IF_DISABLED,
5111 		.details = NULL,
5112 		.actions = ma_intr_actions,
5113 	};
5114 	static const struct intr_info ma_perr_status1 = {
5115 		.name = "MA_PARITY_ERROR_STATUS1",
5116 		.cause_reg = A_MA_PARITY_ERROR_STATUS1,
5117 		.enable_reg = A_MA_PARITY_ERROR_ENABLE1,
5118 		.fatal = 0xffffffff,
5119 		.flags = 0,
5120 		.details = NULL,
5121 		.actions = NULL,
5122 	};
5123 	static const struct intr_info ma_perr_status2 = {
5124 		.name = "MA_PARITY_ERROR_STATUS2",
5125 		.cause_reg = A_MA_PARITY_ERROR_STATUS2,
5126 		.enable_reg = A_MA_PARITY_ERROR_ENABLE2,
5127 		.fatal = 0xffffffff,
5128 		.flags = 0,
5129 		.details = NULL,
5130 		.actions = NULL,
5131 	};
5132 	bool fatal;
5133 
5134 	fatal = false;
5135 	fatal |= t4_handle_intr(adap, &ma_intr_info, 0, verbose);
5136 	fatal |= t4_handle_intr(adap, &ma_perr_status1, 0, verbose);
5137 	if (chip_id(adap) > CHELSIO_T4)
5138 		fatal |= t4_handle_intr(adap, &ma_perr_status2, 0, verbose);
5139 
5140 	return (fatal);
5141 }
5142 
5143 /*
5144  * SMB interrupt handler.
5145  */
5146 static bool smb_intr_handler(struct adapter *adap, int arg, bool verbose)
5147 {
5148 	static const struct intr_details smb_intr_details[] = {
5149 		{ F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error" },
5150 		{ F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error" },
5151 		{ F_SLVFIFOPARINT, "SMB slave FIFO parity error" },
5152 		{ 0 }
5153 	};
5154 	static const struct intr_info smb_intr_info = {
5155 		.name = "SMB_INT_CAUSE",
5156 		.cause_reg = A_SMB_INT_CAUSE,
5157 		.enable_reg = A_SMB_INT_ENABLE,
5158 		.fatal = F_SLVFIFOPARINT | F_MSTRXFIFOPARINT | F_MSTTXFIFOPARINT,
5159 		.flags = 0,
5160 		.details = smb_intr_details,
5161 		.actions = NULL,
5162 	};
5163 
5164 	return (t4_handle_intr(adap, &smb_intr_info, 0, verbose));
5165 }
5166 
5167 /*
5168  * NC-SI interrupt handler.
5169  */
5170 static bool ncsi_intr_handler(struct adapter *adap, int arg, bool verbose)
5171 {
5172 	static const struct intr_details ncsi_intr_details[] = {
5173 		{ F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error" },
5174 		{ F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error" },
5175 		{ F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error" },
5176 		{ F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error" },
5177 		{ 0 }
5178 	};
5179 	static const struct intr_info ncsi_intr_info = {
5180 		.name = "NCSI_INT_CAUSE",
5181 		.cause_reg = A_NCSI_INT_CAUSE,
5182 		.enable_reg = A_NCSI_INT_ENABLE,
5183 		.fatal = F_RXFIFO_PRTY_ERR | F_TXFIFO_PRTY_ERR |
5184 		    F_MPS_DM_PRTY_ERR | F_CIM_DM_PRTY_ERR,
5185 		.flags = 0,
5186 		.details = ncsi_intr_details,
5187 		.actions = NULL,
5188 	};
5189 
5190 	return (t4_handle_intr(adap, &ncsi_intr_info, 0, verbose));
5191 }
5192 
5193 /*
5194  * MAC interrupt handler.
5195  */
5196 static bool mac_intr_handler(struct adapter *adap, int port, bool verbose)
5197 {
5198 	static const struct intr_details mac_intr_details[] = {
5199 		{ F_TXFIFO_PRTY_ERR, "MAC Tx FIFO parity error" },
5200 		{ F_RXFIFO_PRTY_ERR, "MAC Rx FIFO parity error" },
5201 		{ 0 }
5202 	};
5203 	char name[32];
5204 	struct intr_info ii;
5205 	bool fatal = false;
5206 
5207 	if (is_t4(adap)) {
5208 		snprintf(name, sizeof(name), "XGMAC_PORT%u_INT_CAUSE", port);
5209 		ii.name = &name[0];
5210 		ii.cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
5211 		ii.enable_reg = PORT_REG(port, A_XGMAC_PORT_INT_EN);
5212 		ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR;
5213 		ii.flags = 0;
5214 		ii.details = mac_intr_details;
5215 		ii.actions = NULL;
5216 	} else {
5217 		snprintf(name, sizeof(name), "MAC_PORT%u_INT_CAUSE", port);
5218 		ii.name = &name[0];
5219 		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
5220 		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_INT_EN);
5221 		ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR;
5222 		ii.flags = 0;
5223 		ii.details = mac_intr_details;
5224 		ii.actions = NULL;
5225 	}
5226 	fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5227 
5228 	if (chip_id(adap) >= CHELSIO_T5) {
5229 		snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE", port);
5230 		ii.name = &name[0];
5231 		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE);
5232 		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN);
5233 		ii.fatal = 0;
5234 		ii.flags = 0;
5235 		ii.details = NULL;
5236 		ii.actions = NULL;
5237 		fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5238 	}
5239 
5240 	if (chip_id(adap) >= CHELSIO_T6) {
5241 		snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE_100G", port);
5242 		ii.name = &name[0];
5243 		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE_100G);
5244 		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN_100G);
5245 		ii.fatal = 0;
5246 		ii.flags = 0;
5247 		ii.details = NULL;
5248 		ii.actions = NULL;
5249 		fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5250 	}
5251 
5252 	return (fatal);
5253 }
5254 
5255 static bool plpl_intr_handler(struct adapter *adap, int arg, bool verbose)
5256 {
5257 	static const struct intr_details plpl_intr_details[] = {
5258 		{ F_FATALPERR, "Fatal parity error" },
5259 		{ F_PERRVFID, "VFID_MAP parity error" },
5260 		{ 0 }
5261 	};
5262 	static const struct intr_info plpl_intr_info = {
5263 		.name = "PL_PL_INT_CAUSE",
5264 		.cause_reg = A_PL_PL_INT_CAUSE,
5265 		.enable_reg = A_PL_PL_INT_ENABLE,
5266 		.fatal = F_FATALPERR | F_PERRVFID,
5267 		.flags = NONFATAL_IF_DISABLED,
5268 		.details = plpl_intr_details,
5269 		.actions = NULL,
5270 	};
5271 
5272 	return (t4_handle_intr(adap, &plpl_intr_info, 0, verbose));
5273 }
5274 
5275 /**
5276  *	t4_slow_intr_handler - control path interrupt handler
5277  *	@adap: the adapter
5278  *	@verbose: increased verbosity, for debug
5279  *
5280  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
5281  *	The designation 'slow' is because it involves register reads, while
5282  *	data interrupts typically don't involve any MMIOs.
5283  */
5284 int t4_slow_intr_handler(struct adapter *adap, bool verbose)
5285 {
5286 	static const struct intr_details pl_intr_details[] = {
5287 		{ F_MC1, "MC1" },
5288 		{ F_UART, "UART" },
5289 		{ F_ULP_TX, "ULP TX" },
5290 		{ F_SGE, "SGE" },
5291 		{ F_HMA, "HMA" },
5292 		{ F_CPL_SWITCH, "CPL Switch" },
5293 		{ F_ULP_RX, "ULP RX" },
5294 		{ F_PM_RX, "PM RX" },
5295 		{ F_PM_TX, "PM TX" },
5296 		{ F_MA, "MA" },
5297 		{ F_TP, "TP" },
5298 		{ F_LE, "LE" },
5299 		{ F_EDC1, "EDC1" },
5300 		{ F_EDC0, "EDC0" },
5301 		{ F_MC, "MC0" },
5302 		{ F_PCIE, "PCIE" },
5303 		{ F_PMU, "PMU" },
5304 		{ F_MAC3, "MAC3" },
5305 		{ F_MAC2, "MAC2" },
5306 		{ F_MAC1, "MAC1" },
5307 		{ F_MAC0, "MAC0" },
5308 		{ F_SMB, "SMB" },
5309 		{ F_SF, "SF" },
5310 		{ F_PL, "PL" },
5311 		{ F_NCSI, "NC-SI" },
5312 		{ F_MPS, "MPS" },
5313 		{ F_MI, "MI" },
5314 		{ F_DBG, "DBG" },
5315 		{ F_I2CM, "I2CM" },
5316 		{ F_CIM, "CIM" },
5317 		{ 0 }
5318 	};
5319 	static const struct intr_info pl_perr_cause = {
5320 		.name = "PL_PERR_CAUSE",
5321 		.cause_reg = A_PL_PERR_CAUSE,
5322 		.enable_reg = A_PL_PERR_ENABLE,
5323 		.fatal = 0xffffffff,
5324 		.flags = 0,
5325 		.details = pl_intr_details,
5326 		.actions = NULL,
5327 	};
5328 	static const struct intr_action pl_intr_action[] = {
5329 		{ F_MC1, MEM_MC1, mem_intr_handler },
5330 		{ F_ULP_TX, -1, ulptx_intr_handler },
5331 		{ F_SGE, -1, sge_intr_handler },
5332 		{ F_CPL_SWITCH, -1, cplsw_intr_handler },
5333 		{ F_ULP_RX, -1, ulprx_intr_handler },
5334 		{ F_PM_RX, -1, pmrx_intr_handler},
5335 		{ F_PM_TX, -1, pmtx_intr_handler},
5336 		{ F_MA, -1, ma_intr_handler },
5337 		{ F_TP, -1, tp_intr_handler },
5338 		{ F_LE, -1, le_intr_handler },
5339 		{ F_EDC1, MEM_EDC1, mem_intr_handler },
5340 		{ F_EDC0, MEM_EDC0, mem_intr_handler },
5341 		{ F_MC0, MEM_MC0, mem_intr_handler },
5342 		{ F_PCIE, -1, pcie_intr_handler },
5343 		{ F_MAC3, 3, mac_intr_handler},
5344 		{ F_MAC2, 2, mac_intr_handler},
5345 		{ F_MAC1, 1, mac_intr_handler},
5346 		{ F_MAC0, 0, mac_intr_handler},
5347 		{ F_SMB, -1, smb_intr_handler},
5348 		{ F_PL, -1, plpl_intr_handler },
5349 		{ F_NCSI, -1, ncsi_intr_handler},
5350 		{ F_MPS, -1, mps_intr_handler },
5351 		{ F_CIM, -1, cim_intr_handler },
5352 		{ 0 }
5353 	};
5354 	static const struct intr_info pl_intr_info = {
5355 		.name = "PL_INT_CAUSE",
5356 		.cause_reg = A_PL_INT_CAUSE,
5357 		.enable_reg = A_PL_INT_ENABLE,
5358 		.fatal = 0,
5359 		.flags = 0,
5360 		.details = pl_intr_details,
5361 		.actions = pl_intr_action,
5362 	};
5363 	bool fatal;
5364 	u32 perr;
5365 
5366 	perr = t4_read_reg(adap, pl_perr_cause.cause_reg);
5367 	if (verbose || perr != 0) {
5368 		t4_show_intr_info(adap, &pl_perr_cause, perr);
5369 		if (perr != 0)
5370 			t4_write_reg(adap, pl_perr_cause.cause_reg, perr);
5371 		if (verbose)
5372 			perr |= t4_read_reg(adap, pl_intr_info.enable_reg);
5373 	}
5374 	fatal = t4_handle_intr(adap, &pl_intr_info, perr, verbose);
5375 	if (fatal)
5376 		t4_fatal_err(adap, false);
5377 
5378 	return (0);
5379 }
5380 
5381 #define PF_INTR_MASK (F_PFSW | F_PFCIM)
5382 
5383 /**
5384  *	t4_intr_enable - enable interrupts
5385  *	@adapter: the adapter whose interrupts should be enabled
5386  *
5387  *	Enable PF-specific interrupts for the calling function and the top-level
5388  *	interrupt concentrator for global interrupts.  Interrupts are already
5389  *	enabled at each module,	here we just enable the roots of the interrupt
5390  *	hierarchies.
5391  *
5392  *	Note: this function should be called only when the driver manages
5393  *	non PF-specific interrupts from the various HW modules.  Only one PCI
5394  *	function at a time should be doing this.
5395  */
5396 void t4_intr_enable(struct adapter *adap)
5397 {
5398 	u32 val = 0;
5399 
5400 	if (chip_id(adap) <= CHELSIO_T5)
5401 		val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
5402 	else
5403 		val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN;
5404 	val |= F_ERR_CPL_EXCEED_IQE_SIZE | F_ERR_INVALID_CIDX_INC |
5405 	    F_ERR_CPL_OPCODE_0 | F_ERR_DATA_CPL_ON_HIGH_QID1 |
5406 	    F_INGRESS_SIZE_ERR | F_ERR_DATA_CPL_ON_HIGH_QID0 |
5407 	    F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
5408 	    F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO | F_DBFIFO_LP_INT |
5409 	    F_EGRESS_SIZE_ERR;
5410 	t4_set_reg_field(adap, A_SGE_INT_ENABLE3, val, val);
5411 	t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
5412 	t4_set_reg_field(adap, A_PL_INT_ENABLE, F_SF | F_I2CM, 0);
5413 	t4_set_reg_field(adap, A_PL_INT_MAP0, 0, 1 << adap->pf);
5414 }
5415 
5416 /**
5417  *	t4_intr_disable - disable interrupts
5418  *	@adap: the adapter whose interrupts should be disabled
5419  *
5420  *	Disable interrupts.  We only disable the top-level interrupt
5421  *	concentrators.  The caller must be a PCI function managing global
5422  *	interrupts.
5423  */
5424 void t4_intr_disable(struct adapter *adap)
5425 {
5426 
5427 	t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
5428 	t4_set_reg_field(adap, A_PL_INT_MAP0, 1 << adap->pf, 0);
5429 }
5430 
5431 /**
5432  *	t4_intr_clear - clear all interrupts
5433  *	@adap: the adapter whose interrupts should be cleared
5434  *
5435  *	Clears all interrupts.  The caller must be a PCI function managing
5436  *	global interrupts.
5437  */
5438 void t4_intr_clear(struct adapter *adap)
5439 {
5440 	static const u32 cause_reg[] = {
5441 		A_CIM_HOST_INT_CAUSE,
5442 		A_CIM_HOST_UPACC_INT_CAUSE,
5443 		MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
5444 		A_CPL_INTR_CAUSE,
5445 		EDC_REG(A_EDC_INT_CAUSE, 0), EDC_REG(A_EDC_INT_CAUSE, 1),
5446 		A_LE_DB_INT_CAUSE,
5447 		A_MA_INT_WRAP_STATUS,
5448 		A_MA_PARITY_ERROR_STATUS1,
5449 		A_MA_INT_CAUSE,
5450 		A_MPS_CLS_INT_CAUSE,
5451 		A_MPS_RX_PERR_INT_CAUSE,
5452 		A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
5453 		A_MPS_STAT_PERR_INT_CAUSE_SRAM,
5454 		A_MPS_TRC_INT_CAUSE,
5455 		A_MPS_TX_INT_CAUSE,
5456 		A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
5457 		A_NCSI_INT_CAUSE,
5458 		A_PCIE_INT_CAUSE,
5459 		A_PCIE_NONFAT_ERR,
5460 		A_PL_PL_INT_CAUSE,
5461 		A_PM_RX_INT_CAUSE,
5462 		A_PM_TX_INT_CAUSE,
5463 		A_SGE_INT_CAUSE1,
5464 		A_SGE_INT_CAUSE2,
5465 		A_SGE_INT_CAUSE3,
5466 		A_SGE_INT_CAUSE4,
5467 		A_SMB_INT_CAUSE,
5468 		A_TP_INT_CAUSE,
5469 		A_ULP_RX_INT_CAUSE,
5470 		A_ULP_RX_INT_CAUSE_2,
5471 		A_ULP_TX_INT_CAUSE,
5472 		A_ULP_TX_INT_CAUSE_2,
5473 
5474 		MYPF_REG(A_PL_PF_INT_CAUSE),
5475 	};
5476 	int i;
5477 	const int nchan = adap->chip_params->nchan;
5478 
5479 	for (i = 0; i < ARRAY_SIZE(cause_reg); i++)
5480 		t4_write_reg(adap, cause_reg[i], 0xffffffff);
5481 
5482 	if (is_t4(adap)) {
5483 		t4_write_reg(adap, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
5484 		    0xffffffff);
5485 		t4_write_reg(adap, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
5486 		    0xffffffff);
5487 		t4_write_reg(adap, A_MC_INT_CAUSE, 0xffffffff);
5488 		for (i = 0; i < nchan; i++) {
5489 			t4_write_reg(adap, PORT_REG(i, A_XGMAC_PORT_INT_CAUSE),
5490 			    0xffffffff);
5491 		}
5492 	}
5493 	if (chip_id(adap) >= CHELSIO_T5) {
5494 		t4_write_reg(adap, A_MA_PARITY_ERROR_STATUS2, 0xffffffff);
5495 		t4_write_reg(adap, A_MPS_STAT_PERR_INT_CAUSE_SRAM1, 0xffffffff);
5496 		t4_write_reg(adap, A_SGE_INT_CAUSE5, 0xffffffff);
5497 		t4_write_reg(adap, A_MC_P_INT_CAUSE, 0xffffffff);
5498 		if (is_t5(adap)) {
5499 			t4_write_reg(adap, MC_REG(A_MC_P_INT_CAUSE, 1),
5500 			    0xffffffff);
5501 		}
5502 		for (i = 0; i < nchan; i++) {
5503 			t4_write_reg(adap, T5_PORT_REG(i,
5504 			    A_MAC_PORT_PERR_INT_CAUSE), 0xffffffff);
5505 			if (chip_id(adap) > CHELSIO_T5) {
5506 				t4_write_reg(adap, T5_PORT_REG(i,
5507 				    A_MAC_PORT_PERR_INT_CAUSE_100G),
5508 				    0xffffffff);
5509 			}
5510 			t4_write_reg(adap, T5_PORT_REG(i, A_MAC_PORT_INT_CAUSE),
5511 			    0xffffffff);
5512 		}
5513 	}
5514 	if (chip_id(adap) >= CHELSIO_T6) {
5515 		t4_write_reg(adap, A_SGE_INT_CAUSE6, 0xffffffff);
5516 	}
5517 
5518 	t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff);
5519 	t4_write_reg(adap, A_PL_PERR_CAUSE, 0xffffffff);
5520 	t4_write_reg(adap, A_PL_INT_CAUSE, 0xffffffff);
5521 	(void) t4_read_reg(adap, A_PL_INT_CAUSE);          /* flush */
5522 }
5523 
5524 /**
5525  *	hash_mac_addr - return the hash value of a MAC address
5526  *	@addr: the 48-bit Ethernet MAC address
5527  *
5528  *	Hashes a MAC address according to the hash function used by HW inexact
5529  *	(hash) address matching.
5530  */
5531 static int hash_mac_addr(const u8 *addr)
5532 {
5533 	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
5534 	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
5535 	a ^= b;
5536 	a ^= (a >> 12);
5537 	a ^= (a >> 6);
5538 	return a & 0x3f;
5539 }
5540 
5541 /**
5542  *	t4_config_rss_range - configure a portion of the RSS mapping table
5543  *	@adapter: the adapter
5544  *	@mbox: mbox to use for the FW command
5545  *	@viid: virtual interface whose RSS subtable is to be written
5546  *	@start: start entry in the table to write
5547  *	@n: how many table entries to write
5548  *	@rspq: values for the "response queue" (Ingress Queue) lookup table
5549  *	@nrspq: number of values in @rspq
5550  *
5551  *	Programs the selected part of the VI's RSS mapping table with the
5552  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
5553  *	until the full table range is populated.
5554  *
5555  *	The caller must ensure the values in @rspq are in the range allowed for
5556  *	@viid.
5557  */
5558 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5559 			int start, int n, const u16 *rspq, unsigned int nrspq)
5560 {
5561 	int ret;
5562 	const u16 *rsp = rspq;
5563 	const u16 *rsp_end = rspq + nrspq;
5564 	struct fw_rss_ind_tbl_cmd cmd;
5565 
5566 	memset(&cmd, 0, sizeof(cmd));
5567 	cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
5568 				     F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
5569 				     V_FW_RSS_IND_TBL_CMD_VIID(viid));
5570 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5571 
5572 	/*
5573 	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
5574 	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
5575 	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
5576 	 * reserved.
5577 	 */
5578 	while (n > 0) {
5579 		int nq = min(n, 32);
5580 		int nq_packed = 0;
5581 		__be32 *qp = &cmd.iq0_to_iq2;
5582 
5583 		/*
5584 		 * Set up the firmware RSS command header to send the next
5585 		 * "nq" Ingress Queue IDs to the firmware.
5586 		 */
5587 		cmd.niqid = cpu_to_be16(nq);
5588 		cmd.startidx = cpu_to_be16(start);
5589 
5590 		/*
5591 		 * "nq" more done for the start of the next loop.
5592 		 */
5593 		start += nq;
5594 		n -= nq;
5595 
5596 		/*
5597 		 * While there are still Ingress Queue IDs to stuff into the
5598 		 * current firmware RSS command, retrieve them from the
5599 		 * Ingress Queue ID array and insert them into the command.
5600 		 */
5601 		while (nq > 0) {
5602 			/*
5603 			 * Grab up to the next 3 Ingress Queue IDs (wrapping
5604 			 * around the Ingress Queue ID array if necessary) and
5605 			 * insert them into the firmware RSS command at the
5606 			 * current 3-tuple position within the commad.
5607 			 */
5608 			u16 qbuf[3];
5609 			u16 *qbp = qbuf;
5610 			int nqbuf = min(3, nq);
5611 
5612 			nq -= nqbuf;
5613 			qbuf[0] = qbuf[1] = qbuf[2] = 0;
5614 			while (nqbuf && nq_packed < 32) {
5615 				nqbuf--;
5616 				nq_packed++;
5617 				*qbp++ = *rsp++;
5618 				if (rsp >= rsp_end)
5619 					rsp = rspq;
5620 			}
5621 			*qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
5622 					    V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
5623 					    V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
5624 		}
5625 
5626 		/*
5627 		 * Send this portion of the RRS table update to the firmware;
5628 		 * bail out on any errors.
5629 		 */
5630 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5631 		if (ret)
5632 			return ret;
5633 	}
5634 	return 0;
5635 }
5636 
5637 /**
5638  *	t4_config_glbl_rss - configure the global RSS mode
5639  *	@adapter: the adapter
5640  *	@mbox: mbox to use for the FW command
5641  *	@mode: global RSS mode
5642  *	@flags: mode-specific flags
5643  *
5644  *	Sets the global RSS mode.
5645  */
5646 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5647 		       unsigned int flags)
5648 {
5649 	struct fw_rss_glb_config_cmd c;
5650 
5651 	memset(&c, 0, sizeof(c));
5652 	c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
5653 				    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
5654 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5655 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5656 		c.u.manual.mode_pkd =
5657 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
5658 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5659 		c.u.basicvirtual.mode_keymode =
5660 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
5661 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5662 	} else
5663 		return -EINVAL;
5664 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5665 }
5666 
5667 /**
5668  *	t4_config_vi_rss - configure per VI RSS settings
5669  *	@adapter: the adapter
5670  *	@mbox: mbox to use for the FW command
5671  *	@viid: the VI id
5672  *	@flags: RSS flags
5673  *	@defq: id of the default RSS queue for the VI.
5674  *	@skeyidx: RSS secret key table index for non-global mode
5675  *	@skey: RSS vf_scramble key for VI.
5676  *
5677  *	Configures VI-specific RSS properties.
5678  */
5679 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5680 		     unsigned int flags, unsigned int defq, unsigned int skeyidx,
5681 		     unsigned int skey)
5682 {
5683 	struct fw_rss_vi_config_cmd c;
5684 
5685 	memset(&c, 0, sizeof(c));
5686 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
5687 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
5688 				   V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
5689 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5690 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5691 					V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
5692 	c.u.basicvirtual.secretkeyidx_pkd = cpu_to_be32(
5693 					V_FW_RSS_VI_CONFIG_CMD_SECRETKEYIDX(skeyidx));
5694 	c.u.basicvirtual.secretkeyxor = cpu_to_be32(skey);
5695 
5696 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5697 }
5698 
5699 /* Read an RSS table row */
5700 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5701 {
5702 	t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
5703 	return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
5704 				   5, 0, val);
5705 }
5706 
5707 /**
5708  *	t4_read_rss - read the contents of the RSS mapping table
5709  *	@adapter: the adapter
5710  *	@map: holds the contents of the RSS mapping table
5711  *
5712  *	Reads the contents of the RSS hash->queue mapping table.
5713  */
5714 int t4_read_rss(struct adapter *adapter, u16 *map)
5715 {
5716 	u32 val;
5717 	int i, ret;
5718 	int rss_nentries = adapter->chip_params->rss_nentries;
5719 
5720 	for (i = 0; i < rss_nentries / 2; ++i) {
5721 		ret = rd_rss_row(adapter, i, &val);
5722 		if (ret)
5723 			return ret;
5724 		*map++ = G_LKPTBLQUEUE0(val);
5725 		*map++ = G_LKPTBLQUEUE1(val);
5726 	}
5727 	return 0;
5728 }
5729 
5730 /**
5731  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5732  * @adap: the adapter
5733  * @cmd: TP fw ldst address space type
5734  * @vals: where the indirect register values are stored/written
5735  * @nregs: how many indirect registers to read/write
5736  * @start_idx: index of first indirect register to read/write
5737  * @rw: Read (1) or Write (0)
5738  * @sleep_ok: if true we may sleep while awaiting command completion
5739  *
5740  * Access TP indirect registers through LDST
5741  **/
5742 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5743 			    unsigned int nregs, unsigned int start_index,
5744 			    unsigned int rw, bool sleep_ok)
5745 {
5746 	int ret = 0;
5747 	unsigned int i;
5748 	struct fw_ldst_cmd c;
5749 
5750 	for (i = 0; i < nregs; i++) {
5751 		memset(&c, 0, sizeof(c));
5752 		c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
5753 						F_FW_CMD_REQUEST |
5754 						(rw ? F_FW_CMD_READ :
5755 						      F_FW_CMD_WRITE) |
5756 						V_FW_LDST_CMD_ADDRSPACE(cmd));
5757 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5758 
5759 		c.u.addrval.addr = cpu_to_be32(start_index + i);
5760 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5761 		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5762 				      sleep_ok);
5763 		if (ret)
5764 			return ret;
5765 
5766 		if (rw)
5767 			vals[i] = be32_to_cpu(c.u.addrval.val);
5768 	}
5769 	return 0;
5770 }
5771 
5772 /**
5773  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5774  * @adap: the adapter
5775  * @reg_addr: Address Register
5776  * @reg_data: Data register
5777  * @buff: where the indirect register values are stored/written
5778  * @nregs: how many indirect registers to read/write
5779  * @start_index: index of first indirect register to read/write
5780  * @rw: READ(1) or WRITE(0)
5781  * @sleep_ok: if true we may sleep while awaiting command completion
5782  *
5783  * Read/Write TP indirect registers through LDST if possible.
5784  * Else, use backdoor access
5785  **/
5786 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5787 			      u32 *buff, u32 nregs, u32 start_index, int rw,
5788 			      bool sleep_ok)
5789 {
5790 	int rc = -EINVAL;
5791 	int cmd;
5792 
5793 	switch (reg_addr) {
5794 	case A_TP_PIO_ADDR:
5795 		cmd = FW_LDST_ADDRSPC_TP_PIO;
5796 		break;
5797 	case A_TP_TM_PIO_ADDR:
5798 		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5799 		break;
5800 	case A_TP_MIB_INDEX:
5801 		cmd = FW_LDST_ADDRSPC_TP_MIB;
5802 		break;
5803 	default:
5804 		goto indirect_access;
5805 	}
5806 
5807 	if (t4_use_ldst(adap))
5808 		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5809 				      sleep_ok);
5810 
5811 indirect_access:
5812 
5813 	if (rc) {
5814 		if (rw)
5815 			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5816 					 start_index);
5817 		else
5818 			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5819 					  start_index);
5820 	}
5821 }
5822 
5823 /**
5824  * t4_tp_pio_read - Read TP PIO registers
5825  * @adap: the adapter
5826  * @buff: where the indirect register values are written
5827  * @nregs: how many indirect registers to read
5828  * @start_index: index of first indirect register to read
5829  * @sleep_ok: if true we may sleep while awaiting command completion
5830  *
5831  * Read TP PIO Registers
5832  **/
5833 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5834 		    u32 start_index, bool sleep_ok)
5835 {
5836 	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, buff, nregs,
5837 			  start_index, 1, sleep_ok);
5838 }
5839 
5840 /**
5841  * t4_tp_pio_write - Write TP PIO registers
5842  * @adap: the adapter
5843  * @buff: where the indirect register values are stored
5844  * @nregs: how many indirect registers to write
5845  * @start_index: index of first indirect register to write
5846  * @sleep_ok: if true we may sleep while awaiting command completion
5847  *
5848  * Write TP PIO Registers
5849  **/
5850 void t4_tp_pio_write(struct adapter *adap, const u32 *buff, u32 nregs,
5851 		     u32 start_index, bool sleep_ok)
5852 {
5853 	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5854 	    __DECONST(u32 *, buff), nregs, start_index, 0, sleep_ok);
5855 }
5856 
5857 /**
5858  * t4_tp_tm_pio_read - Read TP TM PIO registers
5859  * @adap: the adapter
5860  * @buff: where the indirect register values are written
5861  * @nregs: how many indirect registers to read
5862  * @start_index: index of first indirect register to read
5863  * @sleep_ok: if true we may sleep while awaiting command completion
5864  *
5865  * Read TP TM PIO Registers
5866  **/
5867 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5868 		       u32 start_index, bool sleep_ok)
5869 {
5870 	t4_tp_indirect_rw(adap, A_TP_TM_PIO_ADDR, A_TP_TM_PIO_DATA, buff,
5871 			  nregs, start_index, 1, sleep_ok);
5872 }
5873 
5874 /**
5875  * t4_tp_mib_read - Read TP MIB registers
5876  * @adap: the adapter
5877  * @buff: where the indirect register values are written
5878  * @nregs: how many indirect registers to read
5879  * @start_index: index of first indirect register to read
5880  * @sleep_ok: if true we may sleep while awaiting command completion
5881  *
5882  * Read TP MIB Registers
5883  **/
5884 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5885 		    bool sleep_ok)
5886 {
5887 	t4_tp_indirect_rw(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, buff, nregs,
5888 			  start_index, 1, sleep_ok);
5889 }
5890 
5891 /**
5892  *	t4_read_rss_key - read the global RSS key
5893  *	@adap: the adapter
5894  *	@key: 10-entry array holding the 320-bit RSS key
5895  * 	@sleep_ok: if true we may sleep while awaiting command completion
5896  *
5897  *	Reads the global 320-bit RSS key.
5898  */
5899 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5900 {
5901 	t4_tp_pio_read(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5902 }
5903 
5904 /**
5905  *	t4_write_rss_key - program one of the RSS keys
5906  *	@adap: the adapter
5907  *	@key: 10-entry array holding the 320-bit RSS key
5908  *	@idx: which RSS key to write
5909  * 	@sleep_ok: if true we may sleep while awaiting command completion
5910  *
5911  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5912  *	0..15 the corresponding entry in the RSS key table is written,
5913  *	otherwise the global RSS key is written.
5914  */
5915 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5916 		      bool sleep_ok)
5917 {
5918 	u8 rss_key_addr_cnt = 16;
5919 	u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
5920 
5921 	/*
5922 	 * T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5923 	 * allows access to key addresses 16-63 by using KeyWrAddrX
5924 	 * as index[5:4](upper 2) into key table
5925 	 */
5926 	if ((chip_id(adap) > CHELSIO_T5) &&
5927 	    (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
5928 		rss_key_addr_cnt = 32;
5929 
5930 	t4_tp_pio_write(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5931 
5932 	if (idx >= 0 && idx < rss_key_addr_cnt) {
5933 		if (rss_key_addr_cnt > 16)
5934 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5935 				     vrt | V_KEYWRADDRX(idx >> 4) |
5936 				     V_T6_VFWRADDR(idx) | F_KEYWREN);
5937 		else
5938 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5939 				     vrt| V_KEYWRADDR(idx) | F_KEYWREN);
5940 	}
5941 }
5942 
5943 /**
5944  *	t4_read_rss_pf_config - read PF RSS Configuration Table
5945  *	@adapter: the adapter
5946  *	@index: the entry in the PF RSS table to read
5947  *	@valp: where to store the returned value
5948  * 	@sleep_ok: if true we may sleep while awaiting command completion
5949  *
5950  *	Reads the PF RSS Configuration Table at the specified index and returns
5951  *	the value found there.
5952  */
5953 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5954 			   u32 *valp, bool sleep_ok)
5955 {
5956 	t4_tp_pio_read(adapter, valp, 1, A_TP_RSS_PF0_CONFIG + index, sleep_ok);
5957 }
5958 
5959 /**
5960  *	t4_write_rss_pf_config - write PF RSS Configuration Table
5961  *	@adapter: the adapter
5962  *	@index: the entry in the VF RSS table to read
5963  *	@val: the value to store
5964  * 	@sleep_ok: if true we may sleep while awaiting command completion
5965  *
5966  *	Writes the PF RSS Configuration Table at the specified index with the
5967  *	specified value.
5968  */
5969 void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index,
5970 			    u32 val, bool sleep_ok)
5971 {
5972 	t4_tp_pio_write(adapter, &val, 1, A_TP_RSS_PF0_CONFIG + index,
5973 			sleep_ok);
5974 }
5975 
5976 /**
5977  *	t4_read_rss_vf_config - read VF RSS Configuration Table
5978  *	@adapter: the adapter
5979  *	@index: the entry in the VF RSS table to read
5980  *	@vfl: where to store the returned VFL
5981  *	@vfh: where to store the returned VFH
5982  * 	@sleep_ok: if true we may sleep while awaiting command completion
5983  *
5984  *	Reads the VF RSS Configuration Table at the specified index and returns
5985  *	the (VFL, VFH) values found there.
5986  */
5987 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5988 			   u32 *vfl, u32 *vfh, bool sleep_ok)
5989 {
5990 	u32 vrt, mask, data;
5991 
5992 	if (chip_id(adapter) <= CHELSIO_T5) {
5993 		mask = V_VFWRADDR(M_VFWRADDR);
5994 		data = V_VFWRADDR(index);
5995 	} else {
5996 		 mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5997 		 data = V_T6_VFWRADDR(index);
5998 	}
5999 	/*
6000 	 * Request that the index'th VF Table values be read into VFL/VFH.
6001 	 */
6002 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
6003 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
6004 	vrt |= data | F_VFRDEN;
6005 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
6006 
6007 	/*
6008 	 * Grab the VFL/VFH values ...
6009 	 */
6010 	t4_tp_pio_read(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
6011 	t4_tp_pio_read(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
6012 }
6013 
6014 /**
6015  *	t4_write_rss_vf_config - write VF RSS Configuration Table
6016  *
6017  *	@adapter: the adapter
6018  *	@index: the entry in the VF RSS table to write
6019  *	@vfl: the VFL to store
6020  *	@vfh: the VFH to store
6021  *
6022  *	Writes the VF RSS Configuration Table at the specified index with the
6023  *	specified (VFL, VFH) values.
6024  */
6025 void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
6026 			    u32 vfl, u32 vfh, bool sleep_ok)
6027 {
6028 	u32 vrt, mask, data;
6029 
6030 	if (chip_id(adapter) <= CHELSIO_T5) {
6031 		mask = V_VFWRADDR(M_VFWRADDR);
6032 		data = V_VFWRADDR(index);
6033 	} else {
6034 		mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
6035 		data = V_T6_VFWRADDR(index);
6036 	}
6037 
6038 	/*
6039 	 * Load up VFL/VFH with the values to be written ...
6040 	 */
6041 	t4_tp_pio_write(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
6042 	t4_tp_pio_write(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
6043 
6044 	/*
6045 	 * Write the VFL/VFH into the VF Table at index'th location.
6046 	 */
6047 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
6048 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
6049 	vrt |= data | F_VFRDEN;
6050 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
6051 }
6052 
6053 /**
6054  *	t4_read_rss_pf_map - read PF RSS Map
6055  *	@adapter: the adapter
6056  * 	@sleep_ok: if true we may sleep while awaiting command completion
6057  *
6058  *	Reads the PF RSS Map register and returns its value.
6059  */
6060 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
6061 {
6062 	u32 pfmap;
6063 
6064 	t4_tp_pio_read(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
6065 
6066 	return pfmap;
6067 }
6068 
6069 /**
6070  *	t4_write_rss_pf_map - write PF RSS Map
6071  *	@adapter: the adapter
6072  *	@pfmap: PF RSS Map value
6073  *
6074  *	Writes the specified value to the PF RSS Map register.
6075  */
6076 void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap, bool sleep_ok)
6077 {
6078 	t4_tp_pio_write(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
6079 }
6080 
6081 /**
6082  *	t4_read_rss_pf_mask - read PF RSS Mask
6083  *	@adapter: the adapter
6084  * 	@sleep_ok: if true we may sleep while awaiting command completion
6085  *
6086  *	Reads the PF RSS Mask register and returns its value.
6087  */
6088 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
6089 {
6090 	u32 pfmask;
6091 
6092 	t4_tp_pio_read(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
6093 
6094 	return pfmask;
6095 }
6096 
6097 /**
6098  *	t4_write_rss_pf_mask - write PF RSS Mask
6099  *	@adapter: the adapter
6100  *	@pfmask: PF RSS Mask value
6101  *
6102  *	Writes the specified value to the PF RSS Mask register.
6103  */
6104 void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask, bool sleep_ok)
6105 {
6106 	t4_tp_pio_write(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
6107 }
6108 
6109 /**
6110  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
6111  *	@adap: the adapter
6112  *	@v4: holds the TCP/IP counter values
6113  *	@v6: holds the TCP/IPv6 counter values
6114  * 	@sleep_ok: if true we may sleep while awaiting command completion
6115  *
6116  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
6117  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
6118  */
6119 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
6120 			 struct tp_tcp_stats *v6, bool sleep_ok)
6121 {
6122 	u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
6123 
6124 #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
6125 #define STAT(x)     val[STAT_IDX(x)]
6126 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
6127 
6128 	if (v4) {
6129 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
6130 			       A_TP_MIB_TCP_OUT_RST, sleep_ok);
6131 		v4->tcp_out_rsts = STAT(OUT_RST);
6132 		v4->tcp_in_segs  = STAT64(IN_SEG);
6133 		v4->tcp_out_segs = STAT64(OUT_SEG);
6134 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
6135 	}
6136 	if (v6) {
6137 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
6138 			       A_TP_MIB_TCP_V6OUT_RST, sleep_ok);
6139 		v6->tcp_out_rsts = STAT(OUT_RST);
6140 		v6->tcp_in_segs  = STAT64(IN_SEG);
6141 		v6->tcp_out_segs = STAT64(OUT_SEG);
6142 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
6143 	}
6144 #undef STAT64
6145 #undef STAT
6146 #undef STAT_IDX
6147 }
6148 
6149 /**
6150  *	t4_tp_get_err_stats - read TP's error MIB counters
6151  *	@adap: the adapter
6152  *	@st: holds the counter values
6153  * 	@sleep_ok: if true we may sleep while awaiting command completion
6154  *
6155  *	Returns the values of TP's error counters.
6156  */
6157 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
6158 			 bool sleep_ok)
6159 {
6160 	int nchan = adap->chip_params->nchan;
6161 
6162 	t4_tp_mib_read(adap, st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0,
6163 		       sleep_ok);
6164 
6165 	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0,
6166 		       sleep_ok);
6167 
6168 	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0,
6169 		       sleep_ok);
6170 
6171 	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
6172 		       A_TP_MIB_TNL_CNG_DROP_0, sleep_ok);
6173 
6174 	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
6175 		       A_TP_MIB_OFD_CHN_DROP_0, sleep_ok);
6176 
6177 	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0,
6178 		       sleep_ok);
6179 
6180 	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
6181 		       A_TP_MIB_OFD_VLN_DROP_0, sleep_ok);
6182 
6183 	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
6184 		       A_TP_MIB_TCP_V6IN_ERR_0, sleep_ok);
6185 
6186 	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP,
6187 		       sleep_ok);
6188 }
6189 
6190 /**
6191  *	t4_tp_get_err_stats - read TP's error MIB counters
6192  *	@adap: the adapter
6193  *	@st: holds the counter values
6194  * 	@sleep_ok: if true we may sleep while awaiting command completion
6195  *
6196  *	Returns the values of TP's error counters.
6197  */
6198 void t4_tp_get_tnl_stats(struct adapter *adap, struct tp_tnl_stats *st,
6199 			 bool sleep_ok)
6200 {
6201 	int nchan = adap->chip_params->nchan;
6202 
6203 	t4_tp_mib_read(adap, st->out_pkt, nchan, A_TP_MIB_TNL_OUT_PKT_0,
6204 		       sleep_ok);
6205 	t4_tp_mib_read(adap, st->in_pkt, nchan, A_TP_MIB_TNL_IN_PKT_0,
6206 		       sleep_ok);
6207 }
6208 
6209 /**
6210  *	t4_tp_get_proxy_stats - read TP's proxy MIB counters
6211  *	@adap: the adapter
6212  *	@st: holds the counter values
6213  *
6214  *	Returns the values of TP's proxy counters.
6215  */
6216 void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st,
6217     bool sleep_ok)
6218 {
6219 	int nchan = adap->chip_params->nchan;
6220 
6221 	t4_tp_mib_read(adap, st->proxy, nchan, A_TP_MIB_TNL_LPBK_0, sleep_ok);
6222 }
6223 
6224 /**
6225  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
6226  *	@adap: the adapter
6227  *	@st: holds the counter values
6228  * 	@sleep_ok: if true we may sleep while awaiting command completion
6229  *
6230  *	Returns the values of TP's CPL counters.
6231  */
6232 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
6233 			 bool sleep_ok)
6234 {
6235 	int nchan = adap->chip_params->nchan;
6236 
6237 	t4_tp_mib_read(adap, st->req, nchan, A_TP_MIB_CPL_IN_REQ_0, sleep_ok);
6238 
6239 	t4_tp_mib_read(adap, st->rsp, nchan, A_TP_MIB_CPL_OUT_RSP_0, sleep_ok);
6240 }
6241 
6242 /**
6243  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
6244  *	@adap: the adapter
6245  *	@st: holds the counter values
6246  *
6247  *	Returns the values of TP's RDMA counters.
6248  */
6249 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
6250 			  bool sleep_ok)
6251 {
6252 	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, A_TP_MIB_RQE_DFR_PKT,
6253 		       sleep_ok);
6254 }
6255 
6256 /**
6257  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
6258  *	@adap: the adapter
6259  *	@idx: the port index
6260  *	@st: holds the counter values
6261  * 	@sleep_ok: if true we may sleep while awaiting command completion
6262  *
6263  *	Returns the values of TP's FCoE counters for the selected port.
6264  */
6265 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
6266 		       struct tp_fcoe_stats *st, bool sleep_ok)
6267 {
6268 	u32 val[2];
6269 
6270 	t4_tp_mib_read(adap, &st->frames_ddp, 1, A_TP_MIB_FCOE_DDP_0 + idx,
6271 		       sleep_ok);
6272 
6273 	t4_tp_mib_read(adap, &st->frames_drop, 1,
6274 		       A_TP_MIB_FCOE_DROP_0 + idx, sleep_ok);
6275 
6276 	t4_tp_mib_read(adap, val, 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx,
6277 		       sleep_ok);
6278 
6279 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
6280 }
6281 
6282 /**
6283  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
6284  *	@adap: the adapter
6285  *	@st: holds the counter values
6286  * 	@sleep_ok: if true we may sleep while awaiting command completion
6287  *
6288  *	Returns the values of TP's counters for non-TCP directly-placed packets.
6289  */
6290 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
6291 		      bool sleep_ok)
6292 {
6293 	u32 val[4];
6294 
6295 	t4_tp_mib_read(adap, val, 4, A_TP_MIB_USM_PKTS, sleep_ok);
6296 
6297 	st->frames = val[0];
6298 	st->drops = val[1];
6299 	st->octets = ((u64)val[2] << 32) | val[3];
6300 }
6301 
6302 /**
6303  *	t4_tp_get_tid_stats - read TP's tid MIB counters.
6304  *	@adap: the adapter
6305  *	@st: holds the counter values
6306  * 	@sleep_ok: if true we may sleep while awaiting command completion
6307  *
6308  *	Returns the values of TP's counters for tids.
6309  */
6310 void t4_tp_get_tid_stats(struct adapter *adap, struct tp_tid_stats *st,
6311 		      bool sleep_ok)
6312 {
6313 
6314 	t4_tp_mib_read(adap, &st->del, 4, A_TP_MIB_TID_DEL, sleep_ok);
6315 }
6316 
6317 /**
6318  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
6319  *	@adap: the adapter
6320  *	@mtus: where to store the MTU values
6321  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
6322  *
6323  *	Reads the HW path MTU table.
6324  */
6325 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
6326 {
6327 	u32 v;
6328 	int i;
6329 
6330 	for (i = 0; i < NMTUS; ++i) {
6331 		t4_write_reg(adap, A_TP_MTU_TABLE,
6332 			     V_MTUINDEX(0xff) | V_MTUVALUE(i));
6333 		v = t4_read_reg(adap, A_TP_MTU_TABLE);
6334 		mtus[i] = G_MTUVALUE(v);
6335 		if (mtu_log)
6336 			mtu_log[i] = G_MTUWIDTH(v);
6337 	}
6338 }
6339 
6340 /**
6341  *	t4_read_cong_tbl - reads the congestion control table
6342  *	@adap: the adapter
6343  *	@incr: where to store the alpha values
6344  *
6345  *	Reads the additive increments programmed into the HW congestion
6346  *	control table.
6347  */
6348 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
6349 {
6350 	unsigned int mtu, w;
6351 
6352 	for (mtu = 0; mtu < NMTUS; ++mtu)
6353 		for (w = 0; w < NCCTRL_WIN; ++w) {
6354 			t4_write_reg(adap, A_TP_CCTRL_TABLE,
6355 				     V_ROWINDEX(0xffff) | (mtu << 5) | w);
6356 			incr[mtu][w] = (u16)t4_read_reg(adap,
6357 						A_TP_CCTRL_TABLE) & 0x1fff;
6358 		}
6359 }
6360 
6361 /**
6362  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
6363  *	@adap: the adapter
6364  *	@addr: the indirect TP register address
6365  *	@mask: specifies the field within the register to modify
6366  *	@val: new value for the field
6367  *
6368  *	Sets a field of an indirect TP register to the given value.
6369  */
6370 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
6371 			    unsigned int mask, unsigned int val)
6372 {
6373 	t4_write_reg(adap, A_TP_PIO_ADDR, addr);
6374 	val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
6375 	t4_write_reg(adap, A_TP_PIO_DATA, val);
6376 }
6377 
6378 /**
6379  *	init_cong_ctrl - initialize congestion control parameters
6380  *	@a: the alpha values for congestion control
6381  *	@b: the beta values for congestion control
6382  *
6383  *	Initialize the congestion control parameters.
6384  */
6385 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
6386 {
6387 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
6388 	a[9] = 2;
6389 	a[10] = 3;
6390 	a[11] = 4;
6391 	a[12] = 5;
6392 	a[13] = 6;
6393 	a[14] = 7;
6394 	a[15] = 8;
6395 	a[16] = 9;
6396 	a[17] = 10;
6397 	a[18] = 14;
6398 	a[19] = 17;
6399 	a[20] = 21;
6400 	a[21] = 25;
6401 	a[22] = 30;
6402 	a[23] = 35;
6403 	a[24] = 45;
6404 	a[25] = 60;
6405 	a[26] = 80;
6406 	a[27] = 100;
6407 	a[28] = 200;
6408 	a[29] = 300;
6409 	a[30] = 400;
6410 	a[31] = 500;
6411 
6412 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
6413 	b[9] = b[10] = 1;
6414 	b[11] = b[12] = 2;
6415 	b[13] = b[14] = b[15] = b[16] = 3;
6416 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
6417 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
6418 	b[28] = b[29] = 6;
6419 	b[30] = b[31] = 7;
6420 }
6421 
6422 /* The minimum additive increment value for the congestion control table */
6423 #define CC_MIN_INCR 2U
6424 
6425 /**
6426  *	t4_load_mtus - write the MTU and congestion control HW tables
6427  *	@adap: the adapter
6428  *	@mtus: the values for the MTU table
6429  *	@alpha: the values for the congestion control alpha parameter
6430  *	@beta: the values for the congestion control beta parameter
6431  *
6432  *	Write the HW MTU table with the supplied MTUs and the high-speed
6433  *	congestion control table with the supplied alpha, beta, and MTUs.
6434  *	We write the two tables together because the additive increments
6435  *	depend on the MTUs.
6436  */
6437 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
6438 		  const unsigned short *alpha, const unsigned short *beta)
6439 {
6440 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
6441 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
6442 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
6443 		28672, 40960, 57344, 81920, 114688, 163840, 229376
6444 	};
6445 
6446 	unsigned int i, w;
6447 
6448 	for (i = 0; i < NMTUS; ++i) {
6449 		unsigned int mtu = mtus[i];
6450 		unsigned int log2 = fls(mtu);
6451 
6452 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
6453 			log2--;
6454 		t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
6455 			     V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
6456 
6457 		for (w = 0; w < NCCTRL_WIN; ++w) {
6458 			unsigned int inc;
6459 
6460 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
6461 				  CC_MIN_INCR);
6462 
6463 			t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
6464 				     (w << 16) | (beta[w] << 13) | inc);
6465 		}
6466 	}
6467 }
6468 
6469 /**
6470  *	t4_set_pace_tbl - set the pace table
6471  *	@adap: the adapter
6472  *	@pace_vals: the pace values in microseconds
6473  *	@start: index of the first entry in the HW pace table to set
6474  *	@n: how many entries to set
6475  *
6476  *	Sets (a subset of the) HW pace table.
6477  */
6478 int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
6479 		     unsigned int start, unsigned int n)
6480 {
6481 	unsigned int vals[NTX_SCHED], i;
6482 	unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
6483 
6484 	if (n > NTX_SCHED)
6485 	    return -ERANGE;
6486 
6487 	/* convert values from us to dack ticks, rounding to closest value */
6488 	for (i = 0; i < n; i++, pace_vals++) {
6489 		vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
6490 		if (vals[i] > 0x7ff)
6491 			return -ERANGE;
6492 		if (*pace_vals && vals[i] == 0)
6493 			return -ERANGE;
6494 	}
6495 	for (i = 0; i < n; i++, start++)
6496 		t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
6497 	return 0;
6498 }
6499 
6500 /**
6501  *	t4_set_sched_bps - set the bit rate for a HW traffic scheduler
6502  *	@adap: the adapter
6503  *	@kbps: target rate in Kbps
6504  *	@sched: the scheduler index
6505  *
6506  *	Configure a Tx HW scheduler for the target rate.
6507  */
6508 int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
6509 {
6510 	unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
6511 	unsigned int clk = adap->params.vpd.cclk * 1000;
6512 	unsigned int selected_cpt = 0, selected_bpt = 0;
6513 
6514 	if (kbps > 0) {
6515 		kbps *= 125;     /* -> bytes */
6516 		for (cpt = 1; cpt <= 255; cpt++) {
6517 			tps = clk / cpt;
6518 			bpt = (kbps + tps / 2) / tps;
6519 			if (bpt > 0 && bpt <= 255) {
6520 				v = bpt * tps;
6521 				delta = v >= kbps ? v - kbps : kbps - v;
6522 				if (delta < mindelta) {
6523 					mindelta = delta;
6524 					selected_cpt = cpt;
6525 					selected_bpt = bpt;
6526 				}
6527 			} else if (selected_cpt)
6528 				break;
6529 		}
6530 		if (!selected_cpt)
6531 			return -EINVAL;
6532 	}
6533 	t4_write_reg(adap, A_TP_TM_PIO_ADDR,
6534 		     A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
6535 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
6536 	if (sched & 1)
6537 		v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
6538 	else
6539 		v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
6540 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
6541 	return 0;
6542 }
6543 
6544 /**
6545  *	t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
6546  *	@adap: the adapter
6547  *	@sched: the scheduler index
6548  *	@ipg: the interpacket delay in tenths of nanoseconds
6549  *
6550  *	Set the interpacket delay for a HW packet rate scheduler.
6551  */
6552 int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
6553 {
6554 	unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
6555 
6556 	/* convert ipg to nearest number of core clocks */
6557 	ipg *= core_ticks_per_usec(adap);
6558 	ipg = (ipg + 5000) / 10000;
6559 	if (ipg > M_TXTIMERSEPQ0)
6560 		return -EINVAL;
6561 
6562 	t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
6563 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
6564 	if (sched & 1)
6565 		v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
6566 	else
6567 		v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
6568 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
6569 	t4_read_reg(adap, A_TP_TM_PIO_DATA);
6570 	return 0;
6571 }
6572 
6573 /*
6574  * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
6575  * clocks.  The formula is
6576  *
6577  * bytes/s = bytes256 * 256 * ClkFreq / 4096
6578  *
6579  * which is equivalent to
6580  *
6581  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
6582  */
6583 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
6584 {
6585 	u64 v = (u64)bytes256 * adap->params.vpd.cclk;
6586 
6587 	return v * 62 + v / 2;
6588 }
6589 
6590 /**
6591  *	t4_get_chan_txrate - get the current per channel Tx rates
6592  *	@adap: the adapter
6593  *	@nic_rate: rates for NIC traffic
6594  *	@ofld_rate: rates for offloaded traffic
6595  *
6596  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
6597  *	for each channel.
6598  */
6599 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
6600 {
6601 	u32 v;
6602 
6603 	v = t4_read_reg(adap, A_TP_TX_TRATE);
6604 	nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
6605 	nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
6606 	if (adap->chip_params->nchan > 2) {
6607 		nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
6608 		nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
6609 	}
6610 
6611 	v = t4_read_reg(adap, A_TP_TX_ORATE);
6612 	ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
6613 	ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
6614 	if (adap->chip_params->nchan > 2) {
6615 		ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
6616 		ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
6617 	}
6618 }
6619 
6620 /**
6621  *	t4_set_trace_filter - configure one of the tracing filters
6622  *	@adap: the adapter
6623  *	@tp: the desired trace filter parameters
6624  *	@idx: which filter to configure
6625  *	@enable: whether to enable or disable the filter
6626  *
6627  *	Configures one of the tracing filters available in HW.  If @tp is %NULL
6628  *	it indicates that the filter is already written in the register and it
6629  *	just needs to be enabled or disabled.
6630  */
6631 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
6632     int idx, int enable)
6633 {
6634 	int i, ofst = idx * 4;
6635 	u32 data_reg, mask_reg, cfg;
6636 	u32 multitrc = F_TRCMULTIFILTER;
6637 	u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
6638 
6639 	if (idx < 0 || idx >= NTRACE)
6640 		return -EINVAL;
6641 
6642 	if (tp == NULL || !enable) {
6643 		t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en,
6644 		    enable ? en : 0);
6645 		return 0;
6646 	}
6647 
6648 	/*
6649 	 * TODO - After T4 data book is updated, specify the exact
6650 	 * section below.
6651 	 *
6652 	 * See T4 data book - MPS section for a complete description
6653 	 * of the below if..else handling of A_MPS_TRC_CFG register
6654 	 * value.
6655 	 */
6656 	cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
6657 	if (cfg & F_TRCMULTIFILTER) {
6658 		/*
6659 		 * If multiple tracers are enabled, then maximum
6660 		 * capture size is 2.5KB (FIFO size of a single channel)
6661 		 * minus 2 flits for CPL_TRACE_PKT header.
6662 		 */
6663 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
6664 			return -EINVAL;
6665 	} else {
6666 		/*
6667 		 * If multiple tracers are disabled, to avoid deadlocks
6668 		 * maximum packet capture size of 9600 bytes is recommended.
6669 		 * Also in this mode, only trace0 can be enabled and running.
6670 		 */
6671 		multitrc = 0;
6672 		if (tp->snap_len > 9600 || idx)
6673 			return -EINVAL;
6674 	}
6675 
6676 	if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
6677 	    tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
6678 	    tp->min_len > M_TFMINPKTSIZE)
6679 		return -EINVAL;
6680 
6681 	/* stop the tracer we'll be changing */
6682 	t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0);
6683 
6684 	idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
6685 	data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
6686 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
6687 
6688 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6689 		t4_write_reg(adap, data_reg, tp->data[i]);
6690 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
6691 	}
6692 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
6693 		     V_TFCAPTUREMAX(tp->snap_len) |
6694 		     V_TFMINPKTSIZE(tp->min_len));
6695 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
6696 		     V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en |
6697 		     (is_t4(adap) ?
6698 		     V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
6699 		     V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
6700 
6701 	return 0;
6702 }
6703 
6704 /**
6705  *	t4_get_trace_filter - query one of the tracing filters
6706  *	@adap: the adapter
6707  *	@tp: the current trace filter parameters
6708  *	@idx: which trace filter to query
6709  *	@enabled: non-zero if the filter is enabled
6710  *
6711  *	Returns the current settings of one of the HW tracing filters.
6712  */
6713 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
6714 			 int *enabled)
6715 {
6716 	u32 ctla, ctlb;
6717 	int i, ofst = idx * 4;
6718 	u32 data_reg, mask_reg;
6719 
6720 	ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
6721 	ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
6722 
6723 	if (is_t4(adap)) {
6724 		*enabled = !!(ctla & F_TFEN);
6725 		tp->port =  G_TFPORT(ctla);
6726 		tp->invert = !!(ctla & F_TFINVERTMATCH);
6727 	} else {
6728 		*enabled = !!(ctla & F_T5_TFEN);
6729 		tp->port = G_T5_TFPORT(ctla);
6730 		tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
6731 	}
6732 	tp->snap_len = G_TFCAPTUREMAX(ctlb);
6733 	tp->min_len = G_TFMINPKTSIZE(ctlb);
6734 	tp->skip_ofst = G_TFOFFSET(ctla);
6735 	tp->skip_len = G_TFLENGTH(ctla);
6736 
6737 	ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
6738 	data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
6739 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
6740 
6741 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6742 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
6743 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
6744 	}
6745 }
6746 
6747 /**
6748  *	t4_pmtx_get_stats - returns the HW stats from PMTX
6749  *	@adap: the adapter
6750  *	@cnt: where to store the count statistics
6751  *	@cycles: where to store the cycle statistics
6752  *
6753  *	Returns performance statistics from PMTX.
6754  */
6755 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6756 {
6757 	int i;
6758 	u32 data[2];
6759 
6760 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
6761 		t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
6762 		cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
6763 		if (is_t4(adap))
6764 			cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
6765 		else {
6766 			t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
6767 					 A_PM_TX_DBG_DATA, data, 2,
6768 					 A_PM_TX_DBG_STAT_MSB);
6769 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6770 		}
6771 	}
6772 }
6773 
6774 /**
6775  *	t4_pmrx_get_stats - returns the HW stats from PMRX
6776  *	@adap: the adapter
6777  *	@cnt: where to store the count statistics
6778  *	@cycles: where to store the cycle statistics
6779  *
6780  *	Returns performance statistics from PMRX.
6781  */
6782 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6783 {
6784 	int i;
6785 	u32 data[2];
6786 
6787 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
6788 		t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
6789 		cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
6790 		if (is_t4(adap)) {
6791 			cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
6792 		} else {
6793 			t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
6794 					 A_PM_RX_DBG_DATA, data, 2,
6795 					 A_PM_RX_DBG_STAT_MSB);
6796 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6797 		}
6798 	}
6799 }
6800 
6801 /**
6802  *	t4_get_mps_bg_map - return the buffer groups associated with a port
6803  *	@adap: the adapter
6804  *	@idx: the port index
6805  *
6806  *	Returns a bitmap indicating which MPS buffer groups are associated
6807  *	with the given port.  Bit i is set if buffer group i is used by the
6808  *	port.
6809  */
6810 static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
6811 {
6812 	u32 n;
6813 
6814 	if (adap->params.mps_bg_map)
6815 		return ((adap->params.mps_bg_map >> (idx << 3)) & 0xff);
6816 
6817 	n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
6818 	if (n == 0)
6819 		return idx == 0 ? 0xf : 0;
6820 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
6821 		return idx < 2 ? (3 << (2 * idx)) : 0;
6822 	return 1 << idx;
6823 }
6824 
6825 /*
6826  * TP RX e-channels associated with the port.
6827  */
6828 static unsigned int t4_get_rx_e_chan_map(struct adapter *adap, int idx)
6829 {
6830 	u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
6831 	const u32 all_chan = (1 << adap->chip_params->nchan) - 1;
6832 
6833 	if (n == 0)
6834 		return idx == 0 ? all_chan : 0;
6835 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
6836 		return idx < 2 ? (3 << (2 * idx)) : 0;
6837 	return 1 << idx;
6838 }
6839 
6840 /*
6841  * TP RX c-channel associated with the port.
6842  */
6843 static unsigned int t4_get_rx_c_chan(struct adapter *adap, int idx)
6844 {
6845 	u32 param, val;
6846 	int ret;
6847 
6848 	param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
6849 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_TPCHMAP));
6850 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
6851 	if (!ret)
6852 		return (val >> (8 * idx)) & 0xff;
6853 
6854         return 0;
6855 }
6856 
6857 /**
6858  *      t4_get_port_type_description - return Port Type string description
6859  *      @port_type: firmware Port Type enumeration
6860  */
6861 const char *t4_get_port_type_description(enum fw_port_type port_type)
6862 {
6863 	static const char *const port_type_description[] = {
6864 		"Fiber_XFI",
6865 		"Fiber_XAUI",
6866 		"BT_SGMII",
6867 		"BT_XFI",
6868 		"BT_XAUI",
6869 		"KX4",
6870 		"CX4",
6871 		"KX",
6872 		"KR",
6873 		"SFP",
6874 		"BP_AP",
6875 		"BP4_AP",
6876 		"QSFP_10G",
6877 		"QSA",
6878 		"QSFP",
6879 		"BP40_BA",
6880 		"KR4_100G",
6881 		"CR4_QSFP",
6882 		"CR_QSFP",
6883 		"CR2_QSFP",
6884 		"SFP28",
6885 		"KR_SFP28",
6886 	};
6887 
6888 	if (port_type < ARRAY_SIZE(port_type_description))
6889 		return port_type_description[port_type];
6890 	return "UNKNOWN";
6891 }
6892 
6893 /**
6894  *      t4_get_port_stats_offset - collect port stats relative to a previous
6895  *				   snapshot
6896  *      @adap: The adapter
6897  *      @idx: The port
6898  *      @stats: Current stats to fill
6899  *      @offset: Previous stats snapshot
6900  */
6901 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6902 		struct port_stats *stats,
6903 		struct port_stats *offset)
6904 {
6905 	u64 *s, *o;
6906 	int i;
6907 
6908 	t4_get_port_stats(adap, idx, stats);
6909 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
6910 			i < (sizeof(struct port_stats)/sizeof(u64)) ;
6911 			i++, s++, o++)
6912 		*s -= *o;
6913 }
6914 
6915 /**
6916  *	t4_get_port_stats - collect port statistics
6917  *	@adap: the adapter
6918  *	@idx: the port index
6919  *	@p: the stats structure to fill
6920  *
6921  *	Collect statistics related to the given port from HW.
6922  */
6923 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6924 {
6925 	struct port_info *pi = adap->port[idx];
6926 	u32 bgmap = pi->mps_bg_map;
6927 	u32 stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
6928 
6929 #define GET_STAT(name) \
6930 	t4_read_reg64(adap, \
6931 	(is_t4(adap) ? PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) : \
6932 	T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
6933 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6934 
6935 	p->tx_pause		= GET_STAT(TX_PORT_PAUSE);
6936 	p->tx_octets		= GET_STAT(TX_PORT_BYTES);
6937 	p->tx_frames		= GET_STAT(TX_PORT_FRAMES);
6938 	p->tx_bcast_frames	= GET_STAT(TX_PORT_BCAST);
6939 	p->tx_mcast_frames	= GET_STAT(TX_PORT_MCAST);
6940 	p->tx_ucast_frames	= GET_STAT(TX_PORT_UCAST);
6941 	p->tx_error_frames	= GET_STAT(TX_PORT_ERROR);
6942 	p->tx_frames_64		= GET_STAT(TX_PORT_64B);
6943 	p->tx_frames_65_127	= GET_STAT(TX_PORT_65B_127B);
6944 	p->tx_frames_128_255	= GET_STAT(TX_PORT_128B_255B);
6945 	p->tx_frames_256_511	= GET_STAT(TX_PORT_256B_511B);
6946 	p->tx_frames_512_1023	= GET_STAT(TX_PORT_512B_1023B);
6947 	p->tx_frames_1024_1518	= GET_STAT(TX_PORT_1024B_1518B);
6948 	p->tx_frames_1519_max	= GET_STAT(TX_PORT_1519B_MAX);
6949 	p->tx_drop		= GET_STAT(TX_PORT_DROP);
6950 	p->tx_ppp0		= GET_STAT(TX_PORT_PPP0);
6951 	p->tx_ppp1		= GET_STAT(TX_PORT_PPP1);
6952 	p->tx_ppp2		= GET_STAT(TX_PORT_PPP2);
6953 	p->tx_ppp3		= GET_STAT(TX_PORT_PPP3);
6954 	p->tx_ppp4		= GET_STAT(TX_PORT_PPP4);
6955 	p->tx_ppp5		= GET_STAT(TX_PORT_PPP5);
6956 	p->tx_ppp6		= GET_STAT(TX_PORT_PPP6);
6957 	p->tx_ppp7		= GET_STAT(TX_PORT_PPP7);
6958 
6959 	if (chip_id(adap) >= CHELSIO_T5) {
6960 		if (stat_ctl & F_COUNTPAUSESTATTX) {
6961 			p->tx_frames -= p->tx_pause;
6962 			p->tx_octets -= p->tx_pause * 64;
6963 		}
6964 		if (stat_ctl & F_COUNTPAUSEMCTX)
6965 			p->tx_mcast_frames -= p->tx_pause;
6966 	}
6967 
6968 	p->rx_pause		= GET_STAT(RX_PORT_PAUSE);
6969 	p->rx_octets		= GET_STAT(RX_PORT_BYTES);
6970 	p->rx_frames		= GET_STAT(RX_PORT_FRAMES);
6971 	p->rx_bcast_frames	= GET_STAT(RX_PORT_BCAST);
6972 	p->rx_mcast_frames	= GET_STAT(RX_PORT_MCAST);
6973 	p->rx_ucast_frames	= GET_STAT(RX_PORT_UCAST);
6974 	p->rx_too_long		= GET_STAT(RX_PORT_MTU_ERROR);
6975 	p->rx_jabber		= GET_STAT(RX_PORT_MTU_CRC_ERROR);
6976 	p->rx_len_err		= GET_STAT(RX_PORT_LEN_ERROR);
6977 	p->rx_symbol_err	= GET_STAT(RX_PORT_SYM_ERROR);
6978 	p->rx_runt		= GET_STAT(RX_PORT_LESS_64B);
6979 	p->rx_frames_64		= GET_STAT(RX_PORT_64B);
6980 	p->rx_frames_65_127	= GET_STAT(RX_PORT_65B_127B);
6981 	p->rx_frames_128_255	= GET_STAT(RX_PORT_128B_255B);
6982 	p->rx_frames_256_511	= GET_STAT(RX_PORT_256B_511B);
6983 	p->rx_frames_512_1023	= GET_STAT(RX_PORT_512B_1023B);
6984 	p->rx_frames_1024_1518	= GET_STAT(RX_PORT_1024B_1518B);
6985 	p->rx_frames_1519_max	= GET_STAT(RX_PORT_1519B_MAX);
6986 	p->rx_ppp0		= GET_STAT(RX_PORT_PPP0);
6987 	p->rx_ppp1		= GET_STAT(RX_PORT_PPP1);
6988 	p->rx_ppp2		= GET_STAT(RX_PORT_PPP2);
6989 	p->rx_ppp3		= GET_STAT(RX_PORT_PPP3);
6990 	p->rx_ppp4		= GET_STAT(RX_PORT_PPP4);
6991 	p->rx_ppp5		= GET_STAT(RX_PORT_PPP5);
6992 	p->rx_ppp6		= GET_STAT(RX_PORT_PPP6);
6993 	p->rx_ppp7		= GET_STAT(RX_PORT_PPP7);
6994 
6995 	if (pi->fcs_reg != -1)
6996 		p->rx_fcs_err = t4_read_reg64(adap, pi->fcs_reg) - pi->fcs_base;
6997 
6998 	if (chip_id(adap) >= CHELSIO_T5) {
6999 		if (stat_ctl & F_COUNTPAUSESTATRX) {
7000 			p->rx_frames -= p->rx_pause;
7001 			p->rx_octets -= p->rx_pause * 64;
7002 		}
7003 		if (stat_ctl & F_COUNTPAUSEMCRX)
7004 			p->rx_mcast_frames -= p->rx_pause;
7005 	}
7006 
7007 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
7008 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
7009 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
7010 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
7011 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
7012 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
7013 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
7014 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
7015 
7016 #undef GET_STAT
7017 #undef GET_STAT_COM
7018 }
7019 
7020 /**
7021  *	t4_get_lb_stats - collect loopback port statistics
7022  *	@adap: the adapter
7023  *	@idx: the loopback port index
7024  *	@p: the stats structure to fill
7025  *
7026  *	Return HW statistics for the given loopback port.
7027  */
7028 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
7029 {
7030 
7031 #define GET_STAT(name) \
7032 	t4_read_reg64(adap, \
7033 	(is_t4(adap) ? \
7034 	PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \
7035 	T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L)))
7036 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
7037 
7038 	p->octets	= GET_STAT(BYTES);
7039 	p->frames	= GET_STAT(FRAMES);
7040 	p->bcast_frames	= GET_STAT(BCAST);
7041 	p->mcast_frames	= GET_STAT(MCAST);
7042 	p->ucast_frames	= GET_STAT(UCAST);
7043 	p->error_frames	= GET_STAT(ERROR);
7044 
7045 	p->frames_64		= GET_STAT(64B);
7046 	p->frames_65_127	= GET_STAT(65B_127B);
7047 	p->frames_128_255	= GET_STAT(128B_255B);
7048 	p->frames_256_511	= GET_STAT(256B_511B);
7049 	p->frames_512_1023	= GET_STAT(512B_1023B);
7050 	p->frames_1024_1518	= GET_STAT(1024B_1518B);
7051 	p->frames_1519_max	= GET_STAT(1519B_MAX);
7052 	p->drop			= GET_STAT(DROP_FRAMES);
7053 
7054 	if (idx < adap->params.nports) {
7055 		u32 bg = adap2pinfo(adap, idx)->mps_bg_map;
7056 
7057 		p->ovflow0 = (bg & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
7058 		p->ovflow1 = (bg & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
7059 		p->ovflow2 = (bg & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
7060 		p->ovflow3 = (bg & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
7061 		p->trunc0 = (bg & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
7062 		p->trunc1 = (bg & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
7063 		p->trunc2 = (bg & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
7064 		p->trunc3 = (bg & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
7065 	}
7066 
7067 #undef GET_STAT
7068 #undef GET_STAT_COM
7069 }
7070 
7071 /**
7072  *	t4_wol_magic_enable - enable/disable magic packet WoL
7073  *	@adap: the adapter
7074  *	@port: the physical port index
7075  *	@addr: MAC address expected in magic packets, %NULL to disable
7076  *
7077  *	Enables/disables magic packet wake-on-LAN for the selected port.
7078  */
7079 void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
7080 			 const u8 *addr)
7081 {
7082 	u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
7083 
7084 	if (is_t4(adap)) {
7085 		mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
7086 		mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
7087 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
7088 	} else {
7089 		mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
7090 		mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
7091 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
7092 	}
7093 
7094 	if (addr) {
7095 		t4_write_reg(adap, mag_id_reg_l,
7096 			     (addr[2] << 24) | (addr[3] << 16) |
7097 			     (addr[4] << 8) | addr[5]);
7098 		t4_write_reg(adap, mag_id_reg_h,
7099 			     (addr[0] << 8) | addr[1]);
7100 	}
7101 	t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
7102 			 V_MAGICEN(addr != NULL));
7103 }
7104 
7105 /**
7106  *	t4_wol_pat_enable - enable/disable pattern-based WoL
7107  *	@adap: the adapter
7108  *	@port: the physical port index
7109  *	@map: bitmap of which HW pattern filters to set
7110  *	@mask0: byte mask for bytes 0-63 of a packet
7111  *	@mask1: byte mask for bytes 64-127 of a packet
7112  *	@crc: Ethernet CRC for selected bytes
7113  *	@enable: enable/disable switch
7114  *
7115  *	Sets the pattern filters indicated in @map to mask out the bytes
7116  *	specified in @mask0/@mask1 in received packets and compare the CRC of
7117  *	the resulting packet against @crc.  If @enable is %true pattern-based
7118  *	WoL is enabled, otherwise disabled.
7119  */
7120 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
7121 		      u64 mask0, u64 mask1, unsigned int crc, bool enable)
7122 {
7123 	int i;
7124 	u32 port_cfg_reg;
7125 
7126 	if (is_t4(adap))
7127 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
7128 	else
7129 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
7130 
7131 	if (!enable) {
7132 		t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
7133 		return 0;
7134 	}
7135 	if (map > 0xff)
7136 		return -EINVAL;
7137 
7138 #define EPIO_REG(name) \
7139 	(is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
7140 	T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
7141 
7142 	t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
7143 	t4_write_reg(adap, EPIO_REG(DATA2), mask1);
7144 	t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
7145 
7146 	for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
7147 		if (!(map & 1))
7148 			continue;
7149 
7150 		/* write byte masks */
7151 		t4_write_reg(adap, EPIO_REG(DATA0), mask0);
7152 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
7153 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
7154 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
7155 			return -ETIMEDOUT;
7156 
7157 		/* write CRC */
7158 		t4_write_reg(adap, EPIO_REG(DATA0), crc);
7159 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
7160 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
7161 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
7162 			return -ETIMEDOUT;
7163 	}
7164 #undef EPIO_REG
7165 
7166 	t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
7167 	return 0;
7168 }
7169 
7170 /*     t4_mk_filtdelwr - create a delete filter WR
7171  *     @ftid: the filter ID
7172  *     @wr: the filter work request to populate
7173  *     @qid: ingress queue to receive the delete notification
7174  *
7175  *     Creates a filter work request to delete the supplied filter.  If @qid is
7176  *     negative the delete notification is suppressed.
7177  */
7178 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
7179 {
7180 	memset(wr, 0, sizeof(*wr));
7181 	wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR));
7182 	wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16));
7183 	wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) |
7184 				    V_FW_FILTER_WR_NOREPLY(qid < 0));
7185 	wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER);
7186 	if (qid >= 0)
7187 		wr->rx_chan_rx_rpl_iq =
7188 				cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid));
7189 }
7190 
7191 #define INIT_CMD(var, cmd, rd_wr) do { \
7192 	(var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
7193 					F_FW_CMD_REQUEST | \
7194 					F_FW_CMD_##rd_wr); \
7195 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
7196 } while (0)
7197 
7198 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
7199 			  u32 addr, u32 val)
7200 {
7201 	u32 ldst_addrspace;
7202 	struct fw_ldst_cmd c;
7203 
7204 	memset(&c, 0, sizeof(c));
7205 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE);
7206 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7207 					F_FW_CMD_REQUEST |
7208 					F_FW_CMD_WRITE |
7209 					ldst_addrspace);
7210 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7211 	c.u.addrval.addr = cpu_to_be32(addr);
7212 	c.u.addrval.val = cpu_to_be32(val);
7213 
7214 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7215 }
7216 
7217 /**
7218  *	t4_mdio_rd - read a PHY register through MDIO
7219  *	@adap: the adapter
7220  *	@mbox: mailbox to use for the FW command
7221  *	@phy_addr: the PHY address
7222  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
7223  *	@reg: the register to read
7224  *	@valp: where to store the value
7225  *
7226  *	Issues a FW command through the given mailbox to read a PHY register.
7227  */
7228 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
7229 	       unsigned int mmd, unsigned int reg, unsigned int *valp)
7230 {
7231 	int ret;
7232 	u32 ldst_addrspace;
7233 	struct fw_ldst_cmd c;
7234 
7235 	memset(&c, 0, sizeof(c));
7236 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
7237 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7238 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
7239 					ldst_addrspace);
7240 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7241 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
7242 					 V_FW_LDST_CMD_MMD(mmd));
7243 	c.u.mdio.raddr = cpu_to_be16(reg);
7244 
7245 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7246 	if (ret == 0)
7247 		*valp = be16_to_cpu(c.u.mdio.rval);
7248 	return ret;
7249 }
7250 
7251 /**
7252  *	t4_mdio_wr - write a PHY register through MDIO
7253  *	@adap: the adapter
7254  *	@mbox: mailbox to use for the FW command
7255  *	@phy_addr: the PHY address
7256  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
7257  *	@reg: the register to write
7258  *	@valp: value to write
7259  *
7260  *	Issues a FW command through the given mailbox to write a PHY register.
7261  */
7262 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
7263 	       unsigned int mmd, unsigned int reg, unsigned int val)
7264 {
7265 	u32 ldst_addrspace;
7266 	struct fw_ldst_cmd c;
7267 
7268 	memset(&c, 0, sizeof(c));
7269 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
7270 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7271 					F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7272 					ldst_addrspace);
7273 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7274 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
7275 					 V_FW_LDST_CMD_MMD(mmd));
7276 	c.u.mdio.raddr = cpu_to_be16(reg);
7277 	c.u.mdio.rval = cpu_to_be16(val);
7278 
7279 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7280 }
7281 
7282 /**
7283  *
7284  *	t4_sge_decode_idma_state - decode the idma state
7285  *	@adap: the adapter
7286  *	@state: the state idma is stuck in
7287  */
7288 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
7289 {
7290 	static const char * const t4_decode[] = {
7291 		"IDMA_IDLE",
7292 		"IDMA_PUSH_MORE_CPL_FIFO",
7293 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7294 		"Not used",
7295 		"IDMA_PHYSADDR_SEND_PCIEHDR",
7296 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7297 		"IDMA_PHYSADDR_SEND_PAYLOAD",
7298 		"IDMA_SEND_FIFO_TO_IMSG",
7299 		"IDMA_FL_REQ_DATA_FL_PREP",
7300 		"IDMA_FL_REQ_DATA_FL",
7301 		"IDMA_FL_DROP",
7302 		"IDMA_FL_H_REQ_HEADER_FL",
7303 		"IDMA_FL_H_SEND_PCIEHDR",
7304 		"IDMA_FL_H_PUSH_CPL_FIFO",
7305 		"IDMA_FL_H_SEND_CPL",
7306 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
7307 		"IDMA_FL_H_SEND_IP_HDR",
7308 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
7309 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
7310 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
7311 		"IDMA_FL_D_SEND_PCIEHDR",
7312 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7313 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
7314 		"IDMA_FL_SEND_PCIEHDR",
7315 		"IDMA_FL_PUSH_CPL_FIFO",
7316 		"IDMA_FL_SEND_CPL",
7317 		"IDMA_FL_SEND_PAYLOAD_FIRST",
7318 		"IDMA_FL_SEND_PAYLOAD",
7319 		"IDMA_FL_REQ_NEXT_DATA_FL",
7320 		"IDMA_FL_SEND_NEXT_PCIEHDR",
7321 		"IDMA_FL_SEND_PADDING",
7322 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
7323 		"IDMA_FL_SEND_FIFO_TO_IMSG",
7324 		"IDMA_FL_REQ_DATAFL_DONE",
7325 		"IDMA_FL_REQ_HEADERFL_DONE",
7326 	};
7327 	static const char * const t5_decode[] = {
7328 		"IDMA_IDLE",
7329 		"IDMA_ALMOST_IDLE",
7330 		"IDMA_PUSH_MORE_CPL_FIFO",
7331 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7332 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
7333 		"IDMA_PHYSADDR_SEND_PCIEHDR",
7334 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7335 		"IDMA_PHYSADDR_SEND_PAYLOAD",
7336 		"IDMA_SEND_FIFO_TO_IMSG",
7337 		"IDMA_FL_REQ_DATA_FL",
7338 		"IDMA_FL_DROP",
7339 		"IDMA_FL_DROP_SEND_INC",
7340 		"IDMA_FL_H_REQ_HEADER_FL",
7341 		"IDMA_FL_H_SEND_PCIEHDR",
7342 		"IDMA_FL_H_PUSH_CPL_FIFO",
7343 		"IDMA_FL_H_SEND_CPL",
7344 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
7345 		"IDMA_FL_H_SEND_IP_HDR",
7346 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
7347 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
7348 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
7349 		"IDMA_FL_D_SEND_PCIEHDR",
7350 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7351 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
7352 		"IDMA_FL_SEND_PCIEHDR",
7353 		"IDMA_FL_PUSH_CPL_FIFO",
7354 		"IDMA_FL_SEND_CPL",
7355 		"IDMA_FL_SEND_PAYLOAD_FIRST",
7356 		"IDMA_FL_SEND_PAYLOAD",
7357 		"IDMA_FL_REQ_NEXT_DATA_FL",
7358 		"IDMA_FL_SEND_NEXT_PCIEHDR",
7359 		"IDMA_FL_SEND_PADDING",
7360 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
7361 	};
7362 	static const char * const t6_decode[] = {
7363 		"IDMA_IDLE",
7364 		"IDMA_PUSH_MORE_CPL_FIFO",
7365 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7366 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
7367 		"IDMA_PHYSADDR_SEND_PCIEHDR",
7368 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7369 		"IDMA_PHYSADDR_SEND_PAYLOAD",
7370 		"IDMA_FL_REQ_DATA_FL",
7371 		"IDMA_FL_DROP",
7372 		"IDMA_FL_DROP_SEND_INC",
7373 		"IDMA_FL_H_REQ_HEADER_FL",
7374 		"IDMA_FL_H_SEND_PCIEHDR",
7375 		"IDMA_FL_H_PUSH_CPL_FIFO",
7376 		"IDMA_FL_H_SEND_CPL",
7377 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
7378 		"IDMA_FL_H_SEND_IP_HDR",
7379 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
7380 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
7381 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
7382 		"IDMA_FL_D_SEND_PCIEHDR",
7383 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7384 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
7385 		"IDMA_FL_SEND_PCIEHDR",
7386 		"IDMA_FL_PUSH_CPL_FIFO",
7387 		"IDMA_FL_SEND_CPL",
7388 		"IDMA_FL_SEND_PAYLOAD_FIRST",
7389 		"IDMA_FL_SEND_PAYLOAD",
7390 		"IDMA_FL_REQ_NEXT_DATA_FL",
7391 		"IDMA_FL_SEND_NEXT_PCIEHDR",
7392 		"IDMA_FL_SEND_PADDING",
7393 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
7394 	};
7395 	static const u32 sge_regs[] = {
7396 		A_SGE_DEBUG_DATA_LOW_INDEX_2,
7397 		A_SGE_DEBUG_DATA_LOW_INDEX_3,
7398 		A_SGE_DEBUG_DATA_HIGH_INDEX_10,
7399 	};
7400 	const char * const *sge_idma_decode;
7401 	int sge_idma_decode_nstates;
7402 	int i;
7403 	unsigned int chip_version = chip_id(adapter);
7404 
7405 	/* Select the right set of decode strings to dump depending on the
7406 	 * adapter chip type.
7407 	 */
7408 	switch (chip_version) {
7409 	case CHELSIO_T4:
7410 		sge_idma_decode = (const char * const *)t4_decode;
7411 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
7412 		break;
7413 
7414 	case CHELSIO_T5:
7415 		sge_idma_decode = (const char * const *)t5_decode;
7416 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
7417 		break;
7418 
7419 	case CHELSIO_T6:
7420 		sge_idma_decode = (const char * const *)t6_decode;
7421 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
7422 		break;
7423 
7424 	default:
7425 		CH_ERR(adapter,	"Unsupported chip version %d\n", chip_version);
7426 		return;
7427 	}
7428 
7429 	if (state < sge_idma_decode_nstates)
7430 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
7431 	else
7432 		CH_WARN(adapter, "idma state %d unknown\n", state);
7433 
7434 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
7435 		CH_WARN(adapter, "SGE register %#x value %#x\n",
7436 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
7437 }
7438 
7439 /**
7440  *      t4_sge_ctxt_flush - flush the SGE context cache
7441  *      @adap: the adapter
7442  *      @mbox: mailbox to use for the FW command
7443  *
7444  *      Issues a FW command through the given mailbox to flush the
7445  *      SGE context cache.
7446  */
7447 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type)
7448 {
7449 	int ret;
7450 	u32 ldst_addrspace;
7451 	struct fw_ldst_cmd c;
7452 
7453 	memset(&c, 0, sizeof(c));
7454 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(ctxt_type == CTXT_EGRESS ?
7455 						 FW_LDST_ADDRSPC_SGE_EGRC :
7456 						 FW_LDST_ADDRSPC_SGE_INGC);
7457 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7458 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
7459 					ldst_addrspace);
7460 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7461 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH);
7462 
7463 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7464 	return ret;
7465 }
7466 
7467 /**
7468  *      t4_fw_hello - establish communication with FW
7469  *      @adap: the adapter
7470  *      @mbox: mailbox to use for the FW command
7471  *      @evt_mbox: mailbox to receive async FW events
7472  *      @master: specifies the caller's willingness to be the device master
7473  *	@state: returns the current device state (if non-NULL)
7474  *
7475  *	Issues a command to establish communication with FW.  Returns either
7476  *	an error (negative integer) or the mailbox of the Master PF.
7477  */
7478 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
7479 		enum dev_master master, enum dev_state *state)
7480 {
7481 	int ret;
7482 	struct fw_hello_cmd c;
7483 	u32 v;
7484 	unsigned int master_mbox;
7485 	int retries = FW_CMD_HELLO_RETRIES;
7486 
7487 retry:
7488 	memset(&c, 0, sizeof(c));
7489 	INIT_CMD(c, HELLO, WRITE);
7490 	c.err_to_clearinit = cpu_to_be32(
7491 		V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
7492 		V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
7493 		V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ?
7494 					mbox : M_FW_HELLO_CMD_MBMASTER) |
7495 		V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
7496 		V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
7497 		F_FW_HELLO_CMD_CLEARINIT);
7498 
7499 	/*
7500 	 * Issue the HELLO command to the firmware.  If it's not successful
7501 	 * but indicates that we got a "busy" or "timeout" condition, retry
7502 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
7503 	 * retry limit, check to see if the firmware left us any error
7504 	 * information and report that if so ...
7505 	 */
7506 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7507 	if (ret != FW_SUCCESS) {
7508 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
7509 			goto retry;
7510 		if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
7511 			t4_report_fw_error(adap);
7512 		return ret;
7513 	}
7514 
7515 	v = be32_to_cpu(c.err_to_clearinit);
7516 	master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
7517 	if (state) {
7518 		if (v & F_FW_HELLO_CMD_ERR)
7519 			*state = DEV_STATE_ERR;
7520 		else if (v & F_FW_HELLO_CMD_INIT)
7521 			*state = DEV_STATE_INIT;
7522 		else
7523 			*state = DEV_STATE_UNINIT;
7524 	}
7525 
7526 	/*
7527 	 * If we're not the Master PF then we need to wait around for the
7528 	 * Master PF Driver to finish setting up the adapter.
7529 	 *
7530 	 * Note that we also do this wait if we're a non-Master-capable PF and
7531 	 * there is no current Master PF; a Master PF may show up momentarily
7532 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
7533 	 * OS loads lots of different drivers rapidly at the same time).  In
7534 	 * this case, the Master PF returned by the firmware will be
7535 	 * M_PCIE_FW_MASTER so the test below will work ...
7536 	 */
7537 	if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
7538 	    master_mbox != mbox) {
7539 		int waiting = FW_CMD_HELLO_TIMEOUT;
7540 
7541 		/*
7542 		 * Wait for the firmware to either indicate an error or
7543 		 * initialized state.  If we see either of these we bail out
7544 		 * and report the issue to the caller.  If we exhaust the
7545 		 * "hello timeout" and we haven't exhausted our retries, try
7546 		 * again.  Otherwise bail with a timeout error.
7547 		 */
7548 		for (;;) {
7549 			u32 pcie_fw;
7550 
7551 			msleep(50);
7552 			waiting -= 50;
7553 
7554 			/*
7555 			 * If neither Error nor Initialialized are indicated
7556 			 * by the firmware keep waiting till we exhaust our
7557 			 * timeout ... and then retry if we haven't exhausted
7558 			 * our retries ...
7559 			 */
7560 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
7561 			if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
7562 				if (waiting <= 0) {
7563 					if (retries-- > 0)
7564 						goto retry;
7565 
7566 					return -ETIMEDOUT;
7567 				}
7568 				continue;
7569 			}
7570 
7571 			/*
7572 			 * We either have an Error or Initialized condition
7573 			 * report errors preferentially.
7574 			 */
7575 			if (state) {
7576 				if (pcie_fw & F_PCIE_FW_ERR)
7577 					*state = DEV_STATE_ERR;
7578 				else if (pcie_fw & F_PCIE_FW_INIT)
7579 					*state = DEV_STATE_INIT;
7580 			}
7581 
7582 			/*
7583 			 * If we arrived before a Master PF was selected and
7584 			 * there's not a valid Master PF, grab its identity
7585 			 * for our caller.
7586 			 */
7587 			if (master_mbox == M_PCIE_FW_MASTER &&
7588 			    (pcie_fw & F_PCIE_FW_MASTER_VLD))
7589 				master_mbox = G_PCIE_FW_MASTER(pcie_fw);
7590 			break;
7591 		}
7592 	}
7593 
7594 	return master_mbox;
7595 }
7596 
7597 /**
7598  *	t4_fw_bye - end communication with FW
7599  *	@adap: the adapter
7600  *	@mbox: mailbox to use for the FW command
7601  *
7602  *	Issues a command to terminate communication with FW.
7603  */
7604 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
7605 {
7606 	struct fw_bye_cmd c;
7607 
7608 	memset(&c, 0, sizeof(c));
7609 	INIT_CMD(c, BYE, WRITE);
7610 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7611 }
7612 
7613 /**
7614  *	t4_fw_reset - issue a reset to FW
7615  *	@adap: the adapter
7616  *	@mbox: mailbox to use for the FW command
7617  *	@reset: specifies the type of reset to perform
7618  *
7619  *	Issues a reset command of the specified type to FW.
7620  */
7621 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
7622 {
7623 	struct fw_reset_cmd c;
7624 
7625 	memset(&c, 0, sizeof(c));
7626 	INIT_CMD(c, RESET, WRITE);
7627 	c.val = cpu_to_be32(reset);
7628 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7629 }
7630 
7631 /**
7632  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
7633  *	@adap: the adapter
7634  *	@mbox: mailbox to use for the FW RESET command (if desired)
7635  *	@force: force uP into RESET even if FW RESET command fails
7636  *
7637  *	Issues a RESET command to firmware (if desired) with a HALT indication
7638  *	and then puts the microprocessor into RESET state.  The RESET command
7639  *	will only be issued if a legitimate mailbox is provided (mbox <=
7640  *	M_PCIE_FW_MASTER).
7641  *
7642  *	This is generally used in order for the host to safely manipulate the
7643  *	adapter without fear of conflicting with whatever the firmware might
7644  *	be doing.  The only way out of this state is to RESTART the firmware
7645  *	...
7646  */
7647 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
7648 {
7649 	int ret = 0;
7650 
7651 	/*
7652 	 * If a legitimate mailbox is provided, issue a RESET command
7653 	 * with a HALT indication.
7654 	 */
7655 	if (adap->flags & FW_OK && mbox <= M_PCIE_FW_MASTER) {
7656 		struct fw_reset_cmd c;
7657 
7658 		memset(&c, 0, sizeof(c));
7659 		INIT_CMD(c, RESET, WRITE);
7660 		c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
7661 		c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
7662 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7663 	}
7664 
7665 	/*
7666 	 * Normally we won't complete the operation if the firmware RESET
7667 	 * command fails but if our caller insists we'll go ahead and put the
7668 	 * uP into RESET.  This can be useful if the firmware is hung or even
7669 	 * missing ...  We'll have to take the risk of putting the uP into
7670 	 * RESET without the cooperation of firmware in that case.
7671 	 *
7672 	 * We also force the firmware's HALT flag to be on in case we bypassed
7673 	 * the firmware RESET command above or we're dealing with old firmware
7674 	 * which doesn't have the HALT capability.  This will serve as a flag
7675 	 * for the incoming firmware to know that it's coming out of a HALT
7676 	 * rather than a RESET ... if it's new enough to understand that ...
7677 	 */
7678 	if (ret == 0 || force) {
7679 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
7680 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
7681 				 F_PCIE_FW_HALT);
7682 	}
7683 
7684 	/*
7685 	 * And we always return the result of the firmware RESET command
7686 	 * even when we force the uP into RESET ...
7687 	 */
7688 	return ret;
7689 }
7690 
7691 /**
7692  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
7693  *	@adap: the adapter
7694  *
7695  *	Restart firmware previously halted by t4_fw_halt().  On successful
7696  *	return the previous PF Master remains as the new PF Master and there
7697  *	is no need to issue a new HELLO command, etc.
7698  */
7699 int t4_fw_restart(struct adapter *adap, unsigned int mbox)
7700 {
7701 	int ms;
7702 
7703 	t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
7704 	for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
7705 		if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
7706 			return FW_SUCCESS;
7707 		msleep(100);
7708 		ms += 100;
7709 	}
7710 
7711 	return -ETIMEDOUT;
7712 }
7713 
7714 /**
7715  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
7716  *	@adap: the adapter
7717  *	@mbox: mailbox to use for the FW RESET command (if desired)
7718  *	@fw_data: the firmware image to write
7719  *	@size: image size
7720  *	@force: force upgrade even if firmware doesn't cooperate
7721  *
7722  *	Perform all of the steps necessary for upgrading an adapter's
7723  *	firmware image.  Normally this requires the cooperation of the
7724  *	existing firmware in order to halt all existing activities
7725  *	but if an invalid mailbox token is passed in we skip that step
7726  *	(though we'll still put the adapter microprocessor into RESET in
7727  *	that case).
7728  *
7729  *	On successful return the new firmware will have been loaded and
7730  *	the adapter will have been fully RESET losing all previous setup
7731  *	state.  On unsuccessful return the adapter may be completely hosed ...
7732  *	positive errno indicates that the adapter is ~probably~ intact, a
7733  *	negative errno indicates that things are looking bad ...
7734  */
7735 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
7736 		  const u8 *fw_data, unsigned int size, int force)
7737 {
7738 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7739 	unsigned int bootstrap =
7740 	    be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
7741 	int ret;
7742 
7743 	if (!t4_fw_matches_chip(adap, fw_hdr))
7744 		return -EINVAL;
7745 
7746 	if (!bootstrap) {
7747 		ret = t4_fw_halt(adap, mbox, force);
7748 		if (ret < 0 && !force)
7749 			return ret;
7750 	}
7751 
7752 	ret = t4_load_fw(adap, fw_data, size);
7753 	if (ret < 0 || bootstrap)
7754 		return ret;
7755 
7756 	return t4_fw_restart(adap, mbox);
7757 }
7758 
7759 /**
7760  *	t4_fw_initialize - ask FW to initialize the device
7761  *	@adap: the adapter
7762  *	@mbox: mailbox to use for the FW command
7763  *
7764  *	Issues a command to FW to partially initialize the device.  This
7765  *	performs initialization that generally doesn't depend on user input.
7766  */
7767 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7768 {
7769 	struct fw_initialize_cmd c;
7770 
7771 	memset(&c, 0, sizeof(c));
7772 	INIT_CMD(c, INITIALIZE, WRITE);
7773 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7774 }
7775 
7776 /**
7777  *	t4_query_params_rw - query FW or device parameters
7778  *	@adap: the adapter
7779  *	@mbox: mailbox to use for the FW command
7780  *	@pf: the PF
7781  *	@vf: the VF
7782  *	@nparams: the number of parameters
7783  *	@params: the parameter names
7784  *	@val: the parameter values
7785  *	@rw: Write and read flag
7786  *
7787  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
7788  *	queried at once.
7789  */
7790 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7791 		       unsigned int vf, unsigned int nparams, const u32 *params,
7792 		       u32 *val, int rw)
7793 {
7794 	int i, ret;
7795 	struct fw_params_cmd c;
7796 	__be32 *p = &c.param[0].mnem;
7797 
7798 	if (nparams > 7)
7799 		return -EINVAL;
7800 
7801 	memset(&c, 0, sizeof(c));
7802 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7803 				  F_FW_CMD_REQUEST | F_FW_CMD_READ |
7804 				  V_FW_PARAMS_CMD_PFN(pf) |
7805 				  V_FW_PARAMS_CMD_VFN(vf));
7806 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7807 
7808 	for (i = 0; i < nparams; i++) {
7809 		*p++ = cpu_to_be32(*params++);
7810 		if (rw)
7811 			*p = cpu_to_be32(*(val + i));
7812 		p++;
7813 	}
7814 
7815 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7816 	if (ret == 0)
7817 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7818 			*val++ = be32_to_cpu(*p);
7819 	return ret;
7820 }
7821 
7822 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7823 		    unsigned int vf, unsigned int nparams, const u32 *params,
7824 		    u32 *val)
7825 {
7826 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
7827 }
7828 
7829 /**
7830  *      t4_set_params_timeout - sets FW or device parameters
7831  *      @adap: the adapter
7832  *      @mbox: mailbox to use for the FW command
7833  *      @pf: the PF
7834  *      @vf: the VF
7835  *      @nparams: the number of parameters
7836  *      @params: the parameter names
7837  *      @val: the parameter values
7838  *      @timeout: the timeout time
7839  *
7840  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7841  *      specified at once.
7842  */
7843 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7844 			  unsigned int pf, unsigned int vf,
7845 			  unsigned int nparams, const u32 *params,
7846 			  const u32 *val, int timeout)
7847 {
7848 	struct fw_params_cmd c;
7849 	__be32 *p = &c.param[0].mnem;
7850 
7851 	if (nparams > 7)
7852 		return -EINVAL;
7853 
7854 	memset(&c, 0, sizeof(c));
7855 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7856 				  F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7857 				  V_FW_PARAMS_CMD_PFN(pf) |
7858 				  V_FW_PARAMS_CMD_VFN(vf));
7859 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7860 
7861 	while (nparams--) {
7862 		*p++ = cpu_to_be32(*params++);
7863 		*p++ = cpu_to_be32(*val++);
7864 	}
7865 
7866 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7867 }
7868 
7869 /**
7870  *	t4_set_params - sets FW or device parameters
7871  *	@adap: the adapter
7872  *	@mbox: mailbox to use for the FW command
7873  *	@pf: the PF
7874  *	@vf: the VF
7875  *	@nparams: the number of parameters
7876  *	@params: the parameter names
7877  *	@val: the parameter values
7878  *
7879  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7880  *	specified at once.
7881  */
7882 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7883 		  unsigned int vf, unsigned int nparams, const u32 *params,
7884 		  const u32 *val)
7885 {
7886 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7887 				     FW_CMD_MAX_TIMEOUT);
7888 }
7889 
7890 /**
7891  *	t4_cfg_pfvf - configure PF/VF resource limits
7892  *	@adap: the adapter
7893  *	@mbox: mailbox to use for the FW command
7894  *	@pf: the PF being configured
7895  *	@vf: the VF being configured
7896  *	@txq: the max number of egress queues
7897  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7898  *	@rxqi: the max number of interrupt-capable ingress queues
7899  *	@rxq: the max number of interruptless ingress queues
7900  *	@tc: the PCI traffic class
7901  *	@vi: the max number of virtual interfaces
7902  *	@cmask: the channel access rights mask for the PF/VF
7903  *	@pmask: the port access rights mask for the PF/VF
7904  *	@nexact: the maximum number of exact MPS filters
7905  *	@rcaps: read capabilities
7906  *	@wxcaps: write/execute capabilities
7907  *
7908  *	Configures resource limits and capabilities for a physical or virtual
7909  *	function.
7910  */
7911 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7912 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7913 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7914 		unsigned int vi, unsigned int cmask, unsigned int pmask,
7915 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7916 {
7917 	struct fw_pfvf_cmd c;
7918 
7919 	memset(&c, 0, sizeof(c));
7920 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
7921 				  F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
7922 				  V_FW_PFVF_CMD_VFN(vf));
7923 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7924 	c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
7925 				     V_FW_PFVF_CMD_NIQ(rxq));
7926 	c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) |
7927 				    V_FW_PFVF_CMD_PMASK(pmask) |
7928 				    V_FW_PFVF_CMD_NEQ(txq));
7929 	c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) |
7930 				      V_FW_PFVF_CMD_NVI(vi) |
7931 				      V_FW_PFVF_CMD_NEXACTF(nexact));
7932 	c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) |
7933 				     V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
7934 				     V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
7935 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7936 }
7937 
7938 /**
7939  *	t4_alloc_vi_func - allocate a virtual interface
7940  *	@adap: the adapter
7941  *	@mbox: mailbox to use for the FW command
7942  *	@port: physical port associated with the VI
7943  *	@pf: the PF owning the VI
7944  *	@vf: the VF owning the VI
7945  *	@nmac: number of MAC addresses needed (1 to 5)
7946  *	@mac: the MAC addresses of the VI
7947  *	@rss_size: size of RSS table slice associated with this VI
7948  *	@portfunc: which Port Application Function MAC Address is desired
7949  *	@idstype: Intrusion Detection Type
7950  *
7951  *	Allocates a virtual interface for the given physical port.  If @mac is
7952  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7953  *	If @rss_size is %NULL the VI is not assigned any RSS slice by FW.
7954  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7955  *	stored consecutively so the space needed is @nmac * 6 bytes.
7956  *	Returns a negative error number or the non-negative VI id.
7957  */
7958 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
7959 		     unsigned int port, unsigned int pf, unsigned int vf,
7960 		     unsigned int nmac, u8 *mac, u16 *rss_size,
7961 		     uint8_t *vfvld, uint16_t *vin,
7962 		     unsigned int portfunc, unsigned int idstype)
7963 {
7964 	int ret;
7965 	struct fw_vi_cmd c;
7966 
7967 	memset(&c, 0, sizeof(c));
7968 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
7969 				  F_FW_CMD_WRITE | F_FW_CMD_EXEC |
7970 				  V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
7971 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
7972 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
7973 				     V_FW_VI_CMD_FUNC(portfunc));
7974 	c.portid_pkd = V_FW_VI_CMD_PORTID(port);
7975 	c.nmac = nmac - 1;
7976 	if(!rss_size)
7977 		c.norss_rsssize = F_FW_VI_CMD_NORSS;
7978 
7979 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7980 	if (ret)
7981 		return ret;
7982 	ret = G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid));
7983 
7984 	if (mac) {
7985 		memcpy(mac, c.mac, sizeof(c.mac));
7986 		switch (nmac) {
7987 		case 5:
7988 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7989 		case 4:
7990 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7991 		case 3:
7992 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7993 		case 2:
7994 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7995 		}
7996 	}
7997 	if (rss_size)
7998 		*rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
7999 	if (vfvld) {
8000 		*vfvld = adap->params.viid_smt_extn_support ?
8001 		    G_FW_VI_CMD_VFVLD(be32_to_cpu(c.alloc_to_len16)) :
8002 		    G_FW_VIID_VIVLD(ret);
8003 	}
8004 	if (vin) {
8005 		*vin = adap->params.viid_smt_extn_support ?
8006 		    G_FW_VI_CMD_VIN(be32_to_cpu(c.alloc_to_len16)) :
8007 		    G_FW_VIID_VIN(ret);
8008 	}
8009 
8010 	return ret;
8011 }
8012 
8013 /**
8014  *      t4_alloc_vi - allocate an [Ethernet Function] virtual interface
8015  *      @adap: the adapter
8016  *      @mbox: mailbox to use for the FW command
8017  *      @port: physical port associated with the VI
8018  *      @pf: the PF owning the VI
8019  *      @vf: the VF owning the VI
8020  *      @nmac: number of MAC addresses needed (1 to 5)
8021  *      @mac: the MAC addresses of the VI
8022  *      @rss_size: size of RSS table slice associated with this VI
8023  *
8024  *	backwards compatible and convieniance routine to allocate a Virtual
8025  *	Interface with a Ethernet Port Application Function and Intrustion
8026  *	Detection System disabled.
8027  */
8028 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
8029 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
8030 		u16 *rss_size, uint8_t *vfvld, uint16_t *vin)
8031 {
8032 	return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
8033 				vfvld, vin, FW_VI_FUNC_ETH, 0);
8034 }
8035 
8036 /**
8037  * 	t4_free_vi - free a virtual interface
8038  * 	@adap: the adapter
8039  * 	@mbox: mailbox to use for the FW command
8040  * 	@pf: the PF owning the VI
8041  * 	@vf: the VF owning the VI
8042  * 	@viid: virtual interface identifiler
8043  *
8044  * 	Free a previously allocated virtual interface.
8045  */
8046 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
8047 	       unsigned int vf, unsigned int viid)
8048 {
8049 	struct fw_vi_cmd c;
8050 
8051 	memset(&c, 0, sizeof(c));
8052 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
8053 				  F_FW_CMD_REQUEST |
8054 				  F_FW_CMD_EXEC |
8055 				  V_FW_VI_CMD_PFN(pf) |
8056 				  V_FW_VI_CMD_VFN(vf));
8057 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
8058 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
8059 
8060 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8061 }
8062 
8063 /**
8064  *	t4_set_rxmode - set Rx properties of a virtual interface
8065  *	@adap: the adapter
8066  *	@mbox: mailbox to use for the FW command
8067  *	@viid: the VI id
8068  *	@mtu: the new MTU or -1
8069  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
8070  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
8071  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
8072  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
8073  *	@sleep_ok: if true we may sleep while awaiting command completion
8074  *
8075  *	Sets Rx properties of a virtual interface.
8076  */
8077 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
8078 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
8079 		  bool sleep_ok)
8080 {
8081 	struct fw_vi_rxmode_cmd c;
8082 
8083 	/* convert to FW values */
8084 	if (mtu < 0)
8085 		mtu = M_FW_VI_RXMODE_CMD_MTU;
8086 	if (promisc < 0)
8087 		promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
8088 	if (all_multi < 0)
8089 		all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
8090 	if (bcast < 0)
8091 		bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
8092 	if (vlanex < 0)
8093 		vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
8094 
8095 	memset(&c, 0, sizeof(c));
8096 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
8097 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8098 				   V_FW_VI_RXMODE_CMD_VIID(viid));
8099 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
8100 	c.mtu_to_vlanexen =
8101 		cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
8102 			    V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
8103 			    V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
8104 			    V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
8105 			    V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
8106 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8107 }
8108 
8109 /**
8110  *	t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support
8111  *	@adap: the adapter
8112  *	@viid: the VI id
8113  *	@mac: the MAC address
8114  *	@mask: the mask
8115  *	@vni: the VNI id for the tunnel protocol
8116  *	@vni_mask: mask for the VNI id
8117  *	@dip_hit: to enable DIP match for the MPS entry
8118  *	@lookup_type: MAC address for inner (1) or outer (0) header
8119  *	@sleep_ok: call is allowed to sleep
8120  *
8121  *	Allocates an MPS entry with specified MAC address and VNI value.
8122  *
8123  *	Returns a negative error number or the allocated index for this mac.
8124  */
8125 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid,
8126 			    const u8 *addr, const u8 *mask, unsigned int vni,
8127 			    unsigned int vni_mask, u8 dip_hit, u8 lookup_type,
8128 			    bool sleep_ok)
8129 {
8130 	struct fw_vi_mac_cmd c;
8131 	struct fw_vi_mac_vni *p = c.u.exact_vni;
8132 	int ret = 0;
8133 	u32 val;
8134 
8135 	memset(&c, 0, sizeof(c));
8136 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8137 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8138 				   V_FW_VI_MAC_CMD_VIID(viid));
8139 	val = V_FW_CMD_LEN16(1) |
8140 	      V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_EXACTMAC_VNI);
8141 	c.freemacs_to_len16 = cpu_to_be32(val);
8142 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8143 				      V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
8144 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8145 	memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask));
8146 
8147 	p->lookup_type_to_vni = cpu_to_be32(V_FW_VI_MAC_CMD_VNI(vni) |
8148 					    V_FW_VI_MAC_CMD_DIP_HIT(dip_hit) |
8149 					    V_FW_VI_MAC_CMD_LOOKUP_TYPE(lookup_type));
8150 	p->vni_mask_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_VNI_MASK(vni_mask));
8151 
8152 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8153 	if (ret == 0)
8154 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
8155 	return ret;
8156 }
8157 
8158 /**
8159  *	t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam
8160  *	@adap: the adapter
8161  *	@viid: the VI id
8162  *	@mac: the MAC address
8163  *	@mask: the mask
8164  *	@idx: index at which to add this entry
8165  *	@port_id: the port index
8166  *	@lookup_type: MAC address for inner (1) or outer (0) header
8167  *	@sleep_ok: call is allowed to sleep
8168  *
8169  *	Adds the mac entry at the specified index using raw mac interface.
8170  *
8171  *	Returns a negative error number or the allocated index for this mac.
8172  */
8173 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
8174 			  const u8 *addr, const u8 *mask, unsigned int idx,
8175 			  u8 lookup_type, u8 port_id, bool sleep_ok)
8176 {
8177 	int ret = 0;
8178 	struct fw_vi_mac_cmd c;
8179 	struct fw_vi_mac_raw *p = &c.u.raw;
8180 	u32 val;
8181 
8182 	memset(&c, 0, sizeof(c));
8183 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8184 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8185 				   V_FW_VI_MAC_CMD_VIID(viid));
8186 	val = V_FW_CMD_LEN16(1) |
8187 	      V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_RAW);
8188 	c.freemacs_to_len16 = cpu_to_be32(val);
8189 
8190 	/* Specify that this is an inner mac address */
8191 	p->raw_idx_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_RAW_IDX(idx));
8192 
8193 	/* Lookup Type. Outer header: 0, Inner header: 1 */
8194 	p->data0_pkd = cpu_to_be32(V_DATALKPTYPE(lookup_type) |
8195 				   V_DATAPORTNUM(port_id));
8196 	/* Lookup mask and port mask */
8197 	p->data0m_pkd = cpu_to_be64(V_DATALKPTYPE(M_DATALKPTYPE) |
8198 				    V_DATAPORTNUM(M_DATAPORTNUM));
8199 
8200 	/* Copy the address and the mask */
8201 	memcpy((u8 *)&p->data1[0] + 2, addr, ETHER_ADDR_LEN);
8202 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETHER_ADDR_LEN);
8203 
8204 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8205 	if (ret == 0) {
8206 		ret = G_FW_VI_MAC_CMD_RAW_IDX(be32_to_cpu(p->raw_idx_pkd));
8207 		if (ret != idx)
8208 			ret = -ENOMEM;
8209 	}
8210 
8211 	return ret;
8212 }
8213 
8214 /**
8215  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
8216  *	@adap: the adapter
8217  *	@mbox: mailbox to use for the FW command
8218  *	@viid: the VI id
8219  *	@free: if true any existing filters for this VI id are first removed
8220  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
8221  *	@addr: the MAC address(es)
8222  *	@idx: where to store the index of each allocated filter
8223  *	@hash: pointer to hash address filter bitmap
8224  *	@sleep_ok: call is allowed to sleep
8225  *
8226  *	Allocates an exact-match filter for each of the supplied addresses and
8227  *	sets it to the corresponding address.  If @idx is not %NULL it should
8228  *	have at least @naddr entries, each of which will be set to the index of
8229  *	the filter allocated for the corresponding MAC address.  If a filter
8230  *	could not be allocated for an address its index is set to 0xffff.
8231  *	If @hash is not %NULL addresses that fail to allocate an exact filter
8232  *	are hashed and update the hash filter bitmap pointed at by @hash.
8233  *
8234  *	Returns a negative error number or the number of filters allocated.
8235  */
8236 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
8237 		      unsigned int viid, bool free, unsigned int naddr,
8238 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
8239 {
8240 	int offset, ret = 0;
8241 	struct fw_vi_mac_cmd c;
8242 	unsigned int nfilters = 0;
8243 	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
8244 	unsigned int rem = naddr;
8245 
8246 	if (naddr > max_naddr)
8247 		return -EINVAL;
8248 
8249 	for (offset = 0; offset < naddr ; /**/) {
8250 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8251 					 ? rem
8252 					 : ARRAY_SIZE(c.u.exact));
8253 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8254 						     u.exact[fw_naddr]), 16);
8255 		struct fw_vi_mac_exact *p;
8256 		int i;
8257 
8258 		memset(&c, 0, sizeof(c));
8259 		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8260 					   F_FW_CMD_REQUEST |
8261 					   F_FW_CMD_WRITE |
8262 					   V_FW_CMD_EXEC(free) |
8263 					   V_FW_VI_MAC_CMD_VIID(viid));
8264 		c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) |
8265 						  V_FW_CMD_LEN16(len16));
8266 
8267 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8268 			p->valid_to_idx =
8269 				cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8270 					    V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
8271 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8272 		}
8273 
8274 		/*
8275 		 * It's okay if we run out of space in our MAC address arena.
8276 		 * Some of the addresses we submit may get stored so we need
8277 		 * to run through the reply to see what the results were ...
8278 		 */
8279 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8280 		if (ret && ret != -FW_ENOMEM)
8281 			break;
8282 
8283 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8284 			u16 index = G_FW_VI_MAC_CMD_IDX(
8285 						be16_to_cpu(p->valid_to_idx));
8286 
8287 			if (idx)
8288 				idx[offset+i] = (index >=  max_naddr
8289 						 ? 0xffff
8290 						 : index);
8291 			if (index < max_naddr)
8292 				nfilters++;
8293 			else if (hash)
8294 				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
8295 		}
8296 
8297 		free = false;
8298 		offset += fw_naddr;
8299 		rem -= fw_naddr;
8300 	}
8301 
8302 	if (ret == 0 || ret == -FW_ENOMEM)
8303 		ret = nfilters;
8304 	return ret;
8305 }
8306 
8307 /**
8308  *	t4_free_encap_mac_filt - frees MPS entry at given index
8309  *	@adap: the adapter
8310  *	@viid: the VI id
8311  *	@idx: index of MPS entry to be freed
8312  *	@sleep_ok: call is allowed to sleep
8313  *
8314  *	Frees the MPS entry at supplied index
8315  *
8316  *	Returns a negative error number or zero on success
8317  */
8318 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid,
8319 			   int idx, bool sleep_ok)
8320 {
8321 	struct fw_vi_mac_exact *p;
8322 	struct fw_vi_mac_cmd c;
8323 	u8 addr[] = {0,0,0,0,0,0};
8324 	int ret = 0;
8325 	u32 exact;
8326 
8327 	memset(&c, 0, sizeof(c));
8328 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8329 				   F_FW_CMD_REQUEST |
8330 				   F_FW_CMD_WRITE |
8331 				   V_FW_CMD_EXEC(0) |
8332 				   V_FW_VI_MAC_CMD_VIID(viid));
8333 	exact = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_EXACTMAC);
8334 	c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) |
8335 					  exact |
8336 					  V_FW_CMD_LEN16(1));
8337 	p = c.u.exact;
8338 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8339 				      V_FW_VI_MAC_CMD_IDX(idx));
8340 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8341 
8342 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8343 	return ret;
8344 }
8345 
8346 /**
8347  *	t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
8348  *	@adap: the adapter
8349  *	@viid: the VI id
8350  *	@addr: the MAC address
8351  *	@mask: the mask
8352  *	@idx: index of the entry in mps tcam
8353  *	@lookup_type: MAC address for inner (1) or outer (0) header
8354  *	@port_id: the port index
8355  *	@sleep_ok: call is allowed to sleep
8356  *
8357  *	Removes the mac entry at the specified index using raw mac interface.
8358  *
8359  *	Returns a negative error number on failure.
8360  */
8361 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
8362 			 const u8 *addr, const u8 *mask, unsigned int idx,
8363 			 u8 lookup_type, u8 port_id, bool sleep_ok)
8364 {
8365 	struct fw_vi_mac_cmd c;
8366 	struct fw_vi_mac_raw *p = &c.u.raw;
8367 	u32 raw;
8368 
8369 	memset(&c, 0, sizeof(c));
8370 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8371 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8372 				   V_FW_CMD_EXEC(0) |
8373 				   V_FW_VI_MAC_CMD_VIID(viid));
8374 	raw = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_RAW);
8375 	c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) |
8376 					  raw |
8377 					  V_FW_CMD_LEN16(1));
8378 
8379 	p->raw_idx_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_RAW_IDX(idx) |
8380 				     FW_VI_MAC_ID_BASED_FREE);
8381 
8382 	/* Lookup Type. Outer header: 0, Inner header: 1 */
8383 	p->data0_pkd = cpu_to_be32(V_DATALKPTYPE(lookup_type) |
8384 				   V_DATAPORTNUM(port_id));
8385 	/* Lookup mask and port mask */
8386 	p->data0m_pkd = cpu_to_be64(V_DATALKPTYPE(M_DATALKPTYPE) |
8387 				    V_DATAPORTNUM(M_DATAPORTNUM));
8388 
8389 	/* Copy the address and the mask */
8390 	memcpy((u8 *)&p->data1[0] + 2, addr, ETHER_ADDR_LEN);
8391 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETHER_ADDR_LEN);
8392 
8393 	return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8394 }
8395 
8396 /**
8397  *	t4_free_mac_filt - frees exact-match filters of given MAC addresses
8398  *	@adap: the adapter
8399  *	@mbox: mailbox to use for the FW command
8400  *	@viid: the VI id
8401  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
8402  *	@addr: the MAC address(es)
8403  *	@sleep_ok: call is allowed to sleep
8404  *
8405  *	Frees the exact-match filter for each of the supplied addresses
8406  *
8407  *	Returns a negative error number or the number of filters freed.
8408  */
8409 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
8410 		      unsigned int viid, unsigned int naddr,
8411 		      const u8 **addr, bool sleep_ok)
8412 {
8413 	int offset, ret = 0;
8414 	struct fw_vi_mac_cmd c;
8415 	unsigned int nfilters = 0;
8416 	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
8417 	unsigned int rem = naddr;
8418 
8419 	if (naddr > max_naddr)
8420 		return -EINVAL;
8421 
8422 	for (offset = 0; offset < (int)naddr ; /**/) {
8423 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8424 					 ? rem
8425 					 : ARRAY_SIZE(c.u.exact));
8426 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8427 						     u.exact[fw_naddr]), 16);
8428 		struct fw_vi_mac_exact *p;
8429 		int i;
8430 
8431 		memset(&c, 0, sizeof(c));
8432 		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8433 				     F_FW_CMD_REQUEST |
8434 				     F_FW_CMD_WRITE |
8435 				     V_FW_CMD_EXEC(0) |
8436 				     V_FW_VI_MAC_CMD_VIID(viid));
8437 		c.freemacs_to_len16 =
8438 				cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) |
8439 					    V_FW_CMD_LEN16(len16));
8440 
8441 		for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
8442 			p->valid_to_idx = cpu_to_be16(
8443 				F_FW_VI_MAC_CMD_VALID |
8444 				V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_MAC_BASED_FREE));
8445 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8446 		}
8447 
8448 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8449 		if (ret)
8450 			break;
8451 
8452 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8453 			u16 index = G_FW_VI_MAC_CMD_IDX(
8454 						be16_to_cpu(p->valid_to_idx));
8455 
8456 			if (index < max_naddr)
8457 				nfilters++;
8458 		}
8459 
8460 		offset += fw_naddr;
8461 		rem -= fw_naddr;
8462 	}
8463 
8464 	if (ret == 0)
8465 		ret = nfilters;
8466 	return ret;
8467 }
8468 
8469 /**
8470  *	t4_change_mac - modifies the exact-match filter for a MAC address
8471  *	@adap: the adapter
8472  *	@mbox: mailbox to use for the FW command
8473  *	@viid: the VI id
8474  *	@idx: index of existing filter for old value of MAC address, or -1
8475  *	@addr: the new MAC address value
8476  *	@persist: whether a new MAC allocation should be persistent
8477  *	@smt_idx: add MAC to SMT and return its index, or NULL
8478  *
8479  *	Modifies an exact-match filter and sets it to the new MAC address if
8480  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
8481  *	latter case the address is added persistently if @persist is %true.
8482  *
8483  *	Note that in general it is not possible to modify the value of a given
8484  *	filter so the generic way to modify an address filter is to free the one
8485  *	being used by the old address value and allocate a new filter for the
8486  *	new address value.
8487  *
8488  *	Returns a negative error number or the index of the filter with the new
8489  *	MAC value.  Note that this index may differ from @idx.
8490  */
8491 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
8492 		  int idx, const u8 *addr, bool persist, uint16_t *smt_idx)
8493 {
8494 	int ret, mode;
8495 	struct fw_vi_mac_cmd c;
8496 	struct fw_vi_mac_exact *p = c.u.exact;
8497 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
8498 
8499 	if (idx < 0)		/* new allocation */
8500 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
8501 	mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
8502 
8503 	memset(&c, 0, sizeof(c));
8504 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8505 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8506 				   V_FW_VI_MAC_CMD_VIID(viid));
8507 	c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
8508 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8509 				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
8510 				      V_FW_VI_MAC_CMD_IDX(idx));
8511 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8512 
8513 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8514 	if (ret == 0) {
8515 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
8516 		if (ret >= max_mac_addr)
8517 			ret = -ENOMEM;
8518 		if (smt_idx) {
8519 			if (adap->params.viid_smt_extn_support)
8520 				*smt_idx = G_FW_VI_MAC_CMD_SMTID(be32_to_cpu(c.op_to_viid));
8521 			else {
8522 				if (chip_id(adap) <= CHELSIO_T5)
8523 					*smt_idx = (viid & M_FW_VIID_VIN) << 1;
8524 				else
8525 					*smt_idx = viid & M_FW_VIID_VIN;
8526 			}
8527 		}
8528 	}
8529 	return ret;
8530 }
8531 
8532 /**
8533  *	t4_set_addr_hash - program the MAC inexact-match hash filter
8534  *	@adap: the adapter
8535  *	@mbox: mailbox to use for the FW command
8536  *	@viid: the VI id
8537  *	@ucast: whether the hash filter should also match unicast addresses
8538  *	@vec: the value to be written to the hash filter
8539  *	@sleep_ok: call is allowed to sleep
8540  *
8541  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
8542  */
8543 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
8544 		     bool ucast, u64 vec, bool sleep_ok)
8545 {
8546 	struct fw_vi_mac_cmd c;
8547 	u32 val;
8548 
8549 	memset(&c, 0, sizeof(c));
8550 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8551 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8552 				   V_FW_VI_ENABLE_CMD_VIID(viid));
8553 	val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) |
8554 	      V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1);
8555 	c.freemacs_to_len16 = cpu_to_be32(val);
8556 	c.u.hash.hashvec = cpu_to_be64(vec);
8557 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8558 }
8559 
8560 /**
8561  *      t4_enable_vi_params - enable/disable a virtual interface
8562  *      @adap: the adapter
8563  *      @mbox: mailbox to use for the FW command
8564  *      @viid: the VI id
8565  *      @rx_en: 1=enable Rx, 0=disable Rx
8566  *      @tx_en: 1=enable Tx, 0=disable Tx
8567  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8568  *
8569  *      Enables/disables a virtual interface.  Note that setting DCB Enable
8570  *      only makes sense when enabling a Virtual Interface ...
8571  */
8572 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
8573 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
8574 {
8575 	struct fw_vi_enable_cmd c;
8576 
8577 	memset(&c, 0, sizeof(c));
8578 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
8579 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8580 				   V_FW_VI_ENABLE_CMD_VIID(viid));
8581 	c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
8582 				     V_FW_VI_ENABLE_CMD_EEN(tx_en) |
8583 				     V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
8584 				     FW_LEN16(c));
8585 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
8586 }
8587 
8588 /**
8589  *	t4_enable_vi - enable/disable a virtual interface
8590  *	@adap: the adapter
8591  *	@mbox: mailbox to use for the FW command
8592  *	@viid: the VI id
8593  *	@rx_en: 1=enable Rx, 0=disable Rx
8594  *	@tx_en: 1=enable Tx, 0=disable Tx
8595  *
8596  *	Enables/disables a virtual interface.  Note that setting DCB Enable
8597  *	only makes sense when enabling a Virtual Interface ...
8598  */
8599 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8600 		 bool rx_en, bool tx_en)
8601 {
8602 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8603 }
8604 
8605 /**
8606  *	t4_identify_port - identify a VI's port by blinking its LED
8607  *	@adap: the adapter
8608  *	@mbox: mailbox to use for the FW command
8609  *	@viid: the VI id
8610  *	@nblinks: how many times to blink LED at 2.5 Hz
8611  *
8612  *	Identifies a VI's port by blinking its LED.
8613  */
8614 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8615 		     unsigned int nblinks)
8616 {
8617 	struct fw_vi_enable_cmd c;
8618 
8619 	memset(&c, 0, sizeof(c));
8620 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
8621 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8622 				   V_FW_VI_ENABLE_CMD_VIID(viid));
8623 	c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
8624 	c.blinkdur = cpu_to_be16(nblinks);
8625 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8626 }
8627 
8628 /**
8629  *	t4_iq_stop - stop an ingress queue and its FLs
8630  *	@adap: the adapter
8631  *	@mbox: mailbox to use for the FW command
8632  *	@pf: the PF owning the queues
8633  *	@vf: the VF owning the queues
8634  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8635  *	@iqid: ingress queue id
8636  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8637  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8638  *
8639  *	Stops an ingress queue and its associated FLs, if any.  This causes
8640  *	any current or future data/messages destined for these queues to be
8641  *	tossed.
8642  */
8643 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8644 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8645 	       unsigned int fl0id, unsigned int fl1id)
8646 {
8647 	struct fw_iq_cmd c;
8648 
8649 	memset(&c, 0, sizeof(c));
8650 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
8651 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
8652 				  V_FW_IQ_CMD_VFN(vf));
8653 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c));
8654 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
8655 	c.iqid = cpu_to_be16(iqid);
8656 	c.fl0id = cpu_to_be16(fl0id);
8657 	c.fl1id = cpu_to_be16(fl1id);
8658 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8659 }
8660 
8661 /**
8662  *	t4_iq_free - free an ingress queue and its FLs
8663  *	@adap: the adapter
8664  *	@mbox: mailbox to use for the FW command
8665  *	@pf: the PF owning the queues
8666  *	@vf: the VF owning the queues
8667  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8668  *	@iqid: ingress queue id
8669  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8670  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8671  *
8672  *	Frees an ingress queue and its associated FLs, if any.
8673  */
8674 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8675 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8676 	       unsigned int fl0id, unsigned int fl1id)
8677 {
8678 	struct fw_iq_cmd c;
8679 
8680 	memset(&c, 0, sizeof(c));
8681 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
8682 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
8683 				  V_FW_IQ_CMD_VFN(vf));
8684 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
8685 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
8686 	c.iqid = cpu_to_be16(iqid);
8687 	c.fl0id = cpu_to_be16(fl0id);
8688 	c.fl1id = cpu_to_be16(fl1id);
8689 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8690 }
8691 
8692 /**
8693  *	t4_eth_eq_stop - stop an Ethernet egress queue
8694  *	@adap: the adapter
8695  *	@mbox: mailbox to use for the FW command
8696  *	@pf: the PF owning the queues
8697  *	@vf: the VF owning the queues
8698  *	@eqid: egress queue id
8699  *
8700  *	Stops an Ethernet egress queue.  The queue can be reinitialized or
8701  *	freed but is not otherwise functional after this call.
8702  */
8703 int t4_eth_eq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8704                    unsigned int vf, unsigned int eqid)
8705 {
8706 	struct fw_eq_eth_cmd c;
8707 
8708 	memset(&c, 0, sizeof(c));
8709 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
8710 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8711 				  V_FW_EQ_ETH_CMD_PFN(pf) |
8712 				  V_FW_EQ_ETH_CMD_VFN(vf));
8713 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_EQSTOP | FW_LEN16(c));
8714 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
8715 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8716 }
8717 
8718 /**
8719  *	t4_eth_eq_free - free an Ethernet egress queue
8720  *	@adap: the adapter
8721  *	@mbox: mailbox to use for the FW command
8722  *	@pf: the PF owning the queue
8723  *	@vf: the VF owning the queue
8724  *	@eqid: egress queue id
8725  *
8726  *	Frees an Ethernet egress queue.
8727  */
8728 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8729 		   unsigned int vf, unsigned int eqid)
8730 {
8731 	struct fw_eq_eth_cmd c;
8732 
8733 	memset(&c, 0, sizeof(c));
8734 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
8735 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8736 				  V_FW_EQ_ETH_CMD_PFN(pf) |
8737 				  V_FW_EQ_ETH_CMD_VFN(vf));
8738 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
8739 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
8740 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8741 }
8742 
8743 /**
8744  *	t4_ctrl_eq_free - free a control egress queue
8745  *	@adap: the adapter
8746  *	@mbox: mailbox to use for the FW command
8747  *	@pf: the PF owning the queue
8748  *	@vf: the VF owning the queue
8749  *	@eqid: egress queue id
8750  *
8751  *	Frees a control egress queue.
8752  */
8753 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8754 		    unsigned int vf, unsigned int eqid)
8755 {
8756 	struct fw_eq_ctrl_cmd c;
8757 
8758 	memset(&c, 0, sizeof(c));
8759 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
8760 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8761 				  V_FW_EQ_CTRL_CMD_PFN(pf) |
8762 				  V_FW_EQ_CTRL_CMD_VFN(vf));
8763 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
8764 	c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
8765 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8766 }
8767 
8768 /**
8769  *	t4_ofld_eq_free - free an offload egress queue
8770  *	@adap: the adapter
8771  *	@mbox: mailbox to use for the FW command
8772  *	@pf: the PF owning the queue
8773  *	@vf: the VF owning the queue
8774  *	@eqid: egress queue id
8775  *
8776  *	Frees a control egress queue.
8777  */
8778 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8779 		    unsigned int vf, unsigned int eqid)
8780 {
8781 	struct fw_eq_ofld_cmd c;
8782 
8783 	memset(&c, 0, sizeof(c));
8784 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) |
8785 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8786 				  V_FW_EQ_OFLD_CMD_PFN(pf) |
8787 				  V_FW_EQ_OFLD_CMD_VFN(vf));
8788 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
8789 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid));
8790 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8791 }
8792 
8793 /**
8794  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
8795  *	@link_down_rc: Link Down Reason Code
8796  *
8797  *	Returns a string representation of the Link Down Reason Code.
8798  */
8799 const char *t4_link_down_rc_str(unsigned char link_down_rc)
8800 {
8801 	static const char *reason[] = {
8802 		"Link Down",
8803 		"Remote Fault",
8804 		"Auto-negotiation Failure",
8805 		"Reserved3",
8806 		"Insufficient Airflow",
8807 		"Unable To Determine Reason",
8808 		"No RX Signal Detected",
8809 		"Reserved7",
8810 	};
8811 
8812 	if (link_down_rc >= ARRAY_SIZE(reason))
8813 		return "Bad Reason Code";
8814 
8815 	return reason[link_down_rc];
8816 }
8817 
8818 /*
8819  * Return the highest speed set in the port capabilities, in Mb/s.
8820  */
8821 unsigned int fwcap_to_speed(uint32_t caps)
8822 {
8823 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8824 		do { \
8825 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8826 				return __speed; \
8827 		} while (0)
8828 
8829 	TEST_SPEED_RETURN(400G, 400000);
8830 	TEST_SPEED_RETURN(200G, 200000);
8831 	TEST_SPEED_RETURN(100G, 100000);
8832 	TEST_SPEED_RETURN(50G,   50000);
8833 	TEST_SPEED_RETURN(40G,   40000);
8834 	TEST_SPEED_RETURN(25G,   25000);
8835 	TEST_SPEED_RETURN(10G,   10000);
8836 	TEST_SPEED_RETURN(1G,     1000);
8837 	TEST_SPEED_RETURN(100M,    100);
8838 
8839 	#undef TEST_SPEED_RETURN
8840 
8841 	return 0;
8842 }
8843 
8844 /*
8845  * Return the port capabilities bit for the given speed, which is in Mb/s.
8846  */
8847 uint32_t speed_to_fwcap(unsigned int speed)
8848 {
8849 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8850 		do { \
8851 			if (speed == __speed) \
8852 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8853 		} while (0)
8854 
8855 	TEST_SPEED_RETURN(400G, 400000);
8856 	TEST_SPEED_RETURN(200G, 200000);
8857 	TEST_SPEED_RETURN(100G, 100000);
8858 	TEST_SPEED_RETURN(50G,   50000);
8859 	TEST_SPEED_RETURN(40G,   40000);
8860 	TEST_SPEED_RETURN(25G,   25000);
8861 	TEST_SPEED_RETURN(10G,   10000);
8862 	TEST_SPEED_RETURN(1G,     1000);
8863 	TEST_SPEED_RETURN(100M,    100);
8864 
8865 	#undef TEST_SPEED_RETURN
8866 
8867 	return 0;
8868 }
8869 
8870 /*
8871  * Return the port capabilities bit for the highest speed in the capabilities.
8872  */
8873 uint32_t fwcap_top_speed(uint32_t caps)
8874 {
8875 	#define TEST_SPEED_RETURN(__caps_speed) \
8876 		do { \
8877 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8878 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8879 		} while (0)
8880 
8881 	TEST_SPEED_RETURN(400G);
8882 	TEST_SPEED_RETURN(200G);
8883 	TEST_SPEED_RETURN(100G);
8884 	TEST_SPEED_RETURN(50G);
8885 	TEST_SPEED_RETURN(40G);
8886 	TEST_SPEED_RETURN(25G);
8887 	TEST_SPEED_RETURN(10G);
8888 	TEST_SPEED_RETURN(1G);
8889 	TEST_SPEED_RETURN(100M);
8890 
8891 	#undef TEST_SPEED_RETURN
8892 
8893 	return 0;
8894 }
8895 
8896 /**
8897  *	lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8898  *	@lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8899  *
8900  *	Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8901  *	32-bit Port Capabilities value.
8902  */
8903 static uint32_t lstatus_to_fwcap(u32 lstatus)
8904 {
8905 	uint32_t linkattr = 0;
8906 
8907 	/*
8908 	 * Unfortunately the format of the Link Status in the old
8909 	 * 16-bit Port Information message isn't the same as the
8910 	 * 16-bit Port Capabilities bitfield used everywhere else ...
8911 	 */
8912 	if (lstatus & F_FW_PORT_CMD_RXPAUSE)
8913 		linkattr |= FW_PORT_CAP32_FC_RX;
8914 	if (lstatus & F_FW_PORT_CMD_TXPAUSE)
8915 		linkattr |= FW_PORT_CAP32_FC_TX;
8916 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
8917 		linkattr |= FW_PORT_CAP32_SPEED_100M;
8918 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
8919 		linkattr |= FW_PORT_CAP32_SPEED_1G;
8920 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
8921 		linkattr |= FW_PORT_CAP32_SPEED_10G;
8922 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G))
8923 		linkattr |= FW_PORT_CAP32_SPEED_25G;
8924 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
8925 		linkattr |= FW_PORT_CAP32_SPEED_40G;
8926 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G))
8927 		linkattr |= FW_PORT_CAP32_SPEED_100G;
8928 
8929 	return linkattr;
8930 }
8931 
8932 /*
8933  * Updates all fields owned by the common code in port_info and link_config
8934  * based on information provided by the firmware.  Does not touch any
8935  * requested_* field.
8936  */
8937 static void handle_port_info(struct port_info *pi, const struct fw_port_cmd *p,
8938     enum fw_port_action action, bool *mod_changed, bool *link_changed)
8939 {
8940 	struct link_config old_lc, *lc = &pi->link_cfg;
8941 	unsigned char fc;
8942 	u32 stat, linkattr;
8943 	int old_ptype, old_mtype;
8944 
8945 	old_ptype = pi->port_type;
8946 	old_mtype = pi->mod_type;
8947 	old_lc = *lc;
8948 	if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8949 		stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
8950 
8951 		pi->port_type = G_FW_PORT_CMD_PTYPE(stat);
8952 		pi->mod_type = G_FW_PORT_CMD_MODTYPE(stat);
8953 		pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP ?
8954 		    G_FW_PORT_CMD_MDIOADDR(stat) : -1;
8955 
8956 		lc->pcaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.pcap));
8957 		lc->acaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.acap));
8958 		lc->lpacaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.lpacap));
8959 		lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
8960 		lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC(stat);
8961 
8962 		linkattr = lstatus_to_fwcap(stat);
8963 	} else if (action == FW_PORT_ACTION_GET_PORT_INFO32) {
8964 		stat = be32_to_cpu(p->u.info32.lstatus32_to_cbllen32);
8965 
8966 		pi->port_type = G_FW_PORT_CMD_PORTTYPE32(stat);
8967 		pi->mod_type = G_FW_PORT_CMD_MODTYPE32(stat);
8968 		pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP32 ?
8969 		    G_FW_PORT_CMD_MDIOADDR32(stat) : -1;
8970 
8971 		lc->pcaps = be32_to_cpu(p->u.info32.pcaps32);
8972 		lc->acaps = be32_to_cpu(p->u.info32.acaps32);
8973 		lc->lpacaps = be32_to_cpu(p->u.info32.lpacaps32);
8974 		lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS32) != 0;
8975 		lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC32(stat);
8976 
8977 		linkattr = be32_to_cpu(p->u.info32.linkattr32);
8978 	} else {
8979 		CH_ERR(pi->adapter, "bad port_info action 0x%x\n", action);
8980 		return;
8981 	}
8982 
8983 	lc->speed = fwcap_to_speed(linkattr);
8984 	lc->fec = fwcap_to_fec(linkattr, true);
8985 
8986 	fc = 0;
8987 	if (linkattr & FW_PORT_CAP32_FC_RX)
8988 		fc |= PAUSE_RX;
8989 	if (linkattr & FW_PORT_CAP32_FC_TX)
8990 		fc |= PAUSE_TX;
8991 	lc->fc = fc;
8992 
8993 	if (mod_changed != NULL)
8994 		*mod_changed = false;
8995 	if (link_changed != NULL)
8996 		*link_changed = false;
8997 	if (old_ptype != pi->port_type || old_mtype != pi->mod_type ||
8998 	    old_lc.pcaps != lc->pcaps) {
8999 		if (pi->mod_type != FW_PORT_MOD_TYPE_NONE)
9000 			lc->fec_hint = fwcap_to_fec(lc->acaps, true);
9001 		if (mod_changed != NULL)
9002 			*mod_changed = true;
9003 	}
9004 	if (old_lc.link_ok != lc->link_ok || old_lc.speed != lc->speed ||
9005 	    old_lc.fec != lc->fec || old_lc.fc != lc->fc) {
9006 		if (link_changed != NULL)
9007 			*link_changed = true;
9008 	}
9009 }
9010 
9011 /**
9012  *	t4_update_port_info - retrieve and update port information if changed
9013  *	@pi: the port_info
9014  *
9015  *	We issue a Get Port Information Command to the Firmware and, if
9016  *	successful, we check to see if anything is different from what we
9017  *	last recorded and update things accordingly.
9018  */
9019  int t4_update_port_info(struct port_info *pi)
9020  {
9021 	struct adapter *sc = pi->adapter;
9022 	struct fw_port_cmd cmd;
9023 	enum fw_port_action action;
9024 	int ret;
9025 
9026 	memset(&cmd, 0, sizeof(cmd));
9027 	cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
9028 	    F_FW_CMD_REQUEST | F_FW_CMD_READ |
9029 	    V_FW_PORT_CMD_PORTID(pi->tx_chan));
9030 	action = sc->params.port_caps32 ? FW_PORT_ACTION_GET_PORT_INFO32 :
9031 	    FW_PORT_ACTION_GET_PORT_INFO;
9032 	cmd.action_to_len16 = cpu_to_be32(V_FW_PORT_CMD_ACTION(action) |
9033 	    FW_LEN16(cmd));
9034 	ret = t4_wr_mbox_ns(sc, sc->mbox, &cmd, sizeof(cmd), &cmd);
9035 	if (ret)
9036 		return ret;
9037 
9038 	handle_port_info(pi, &cmd, action, NULL, NULL);
9039 	return 0;
9040 }
9041 
9042 /**
9043  *	t4_handle_fw_rpl - process a FW reply message
9044  *	@adap: the adapter
9045  *	@rpl: start of the FW message
9046  *
9047  *	Processes a FW message, such as link state change messages.
9048  */
9049 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
9050 {
9051 	u8 opcode = *(const u8 *)rpl;
9052 	const struct fw_port_cmd *p = (const void *)rpl;
9053 	enum fw_port_action action =
9054 	    G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
9055 	bool mod_changed, link_changed;
9056 
9057 	if (opcode == FW_PORT_CMD &&
9058 	    (action == FW_PORT_ACTION_GET_PORT_INFO ||
9059 	    action == FW_PORT_ACTION_GET_PORT_INFO32)) {
9060 		/* link/module state change message */
9061 		int i;
9062 		int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
9063 		struct port_info *pi = NULL;
9064 		struct link_config *lc;
9065 
9066 		for_each_port(adap, i) {
9067 			pi = adap2pinfo(adap, i);
9068 			if (pi->tx_chan == chan)
9069 				break;
9070 		}
9071 
9072 		lc = &pi->link_cfg;
9073 		PORT_LOCK(pi);
9074 		handle_port_info(pi, p, action, &mod_changed, &link_changed);
9075 		PORT_UNLOCK(pi);
9076 		if (mod_changed)
9077 			t4_os_portmod_changed(pi);
9078 		if (link_changed) {
9079 			PORT_LOCK(pi);
9080 			t4_os_link_changed(pi);
9081 			PORT_UNLOCK(pi);
9082 		}
9083 	} else {
9084 		CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode);
9085 		return -EINVAL;
9086 	}
9087 	return 0;
9088 }
9089 
9090 /**
9091  *	get_pci_mode - determine a card's PCI mode
9092  *	@adapter: the adapter
9093  *	@p: where to store the PCI settings
9094  *
9095  *	Determines a card's PCI mode and associated parameters, such as speed
9096  *	and width.
9097  */
9098 static void get_pci_mode(struct adapter *adapter,
9099 				   struct pci_params *p)
9100 {
9101 	u16 val;
9102 	u32 pcie_cap;
9103 
9104 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
9105 	if (pcie_cap) {
9106 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
9107 		p->speed = val & PCI_EXP_LNKSTA_CLS;
9108 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
9109 	}
9110 }
9111 
9112 struct flash_desc {
9113 	u32 vendor_and_model_id;
9114 	u32 size_mb;
9115 };
9116 
9117 int t4_get_flash_params(struct adapter *adapter)
9118 {
9119 	/*
9120 	 * Table for non-standard supported Flash parts.  Note, all Flash
9121 	 * parts must have 64KB sectors.
9122 	 */
9123 	static struct flash_desc supported_flash[] = {
9124 		{ 0x00150201, 4 << 20 },	/* Spansion 4MB S25FL032P */
9125 	};
9126 
9127 	int ret;
9128 	u32 flashid = 0;
9129 	unsigned int part, manufacturer;
9130 	unsigned int density, size = 0;
9131 
9132 
9133 	/*
9134 	 * Issue a Read ID Command to the Flash part.  We decode supported
9135 	 * Flash parts and their sizes from this.  There's a newer Query
9136 	 * Command which can retrieve detailed geometry information but many
9137 	 * Flash parts don't support it.
9138 	 */
9139 	ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
9140 	if (!ret)
9141 		ret = sf1_read(adapter, 3, 0, 1, &flashid);
9142 	t4_write_reg(adapter, A_SF_OP, 0);	/* unlock SF */
9143 	if (ret < 0)
9144 		return ret;
9145 
9146 	/*
9147 	 * Check to see if it's one of our non-standard supported Flash parts.
9148 	 */
9149 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
9150 		if (supported_flash[part].vendor_and_model_id == flashid) {
9151 			adapter->params.sf_size =
9152 				supported_flash[part].size_mb;
9153 			adapter->params.sf_nsec =
9154 				adapter->params.sf_size / SF_SEC_SIZE;
9155 			goto found;
9156 		}
9157 
9158 	/*
9159 	 * Decode Flash part size.  The code below looks repetative with
9160 	 * common encodings, but that's not guaranteed in the JEDEC
9161 	 * specification for the Read JADEC ID command.  The only thing that
9162 	 * we're guaranteed by the JADEC specification is where the
9163 	 * Manufacturer ID is in the returned result.  After that each
9164 	 * Manufacturer ~could~ encode things completely differently.
9165 	 * Note, all Flash parts must have 64KB sectors.
9166 	 */
9167 	manufacturer = flashid & 0xff;
9168 	switch (manufacturer) {
9169 	case 0x20: /* Micron/Numonix */
9170 		/*
9171 		 * This Density -> Size decoding table is taken from Micron
9172 		 * Data Sheets.
9173 		 */
9174 		density = (flashid >> 16) & 0xff;
9175 		switch (density) {
9176 		case 0x14: size = 1 << 20; break; /*   1MB */
9177 		case 0x15: size = 1 << 21; break; /*   2MB */
9178 		case 0x16: size = 1 << 22; break; /*   4MB */
9179 		case 0x17: size = 1 << 23; break; /*   8MB */
9180 		case 0x18: size = 1 << 24; break; /*  16MB */
9181 		case 0x19: size = 1 << 25; break; /*  32MB */
9182 		case 0x20: size = 1 << 26; break; /*  64MB */
9183 		case 0x21: size = 1 << 27; break; /* 128MB */
9184 		case 0x22: size = 1 << 28; break; /* 256MB */
9185 		}
9186 		break;
9187 
9188 	case 0x9d: /* ISSI -- Integrated Silicon Solution, Inc. */
9189 		/*
9190 		 * This Density -> Size decoding table is taken from ISSI
9191 		 * Data Sheets.
9192 		 */
9193 		density = (flashid >> 16) & 0xff;
9194 		switch (density) {
9195 		case 0x16: size = 1 << 25; break; /*  32MB */
9196 		case 0x17: size = 1 << 26; break; /*  64MB */
9197 		}
9198 		break;
9199 
9200 	case 0xc2: /* Macronix */
9201 		/*
9202 		 * This Density -> Size decoding table is taken from Macronix
9203 		 * Data Sheets.
9204 		 */
9205 		density = (flashid >> 16) & 0xff;
9206 		switch (density) {
9207 		case 0x17: size = 1 << 23; break; /*   8MB */
9208 		case 0x18: size = 1 << 24; break; /*  16MB */
9209 		}
9210 		break;
9211 
9212 	case 0xef: /* Winbond */
9213 		/*
9214 		 * This Density -> Size decoding table is taken from Winbond
9215 		 * Data Sheets.
9216 		 */
9217 		density = (flashid >> 16) & 0xff;
9218 		switch (density) {
9219 		case 0x17: size = 1 << 23; break; /*   8MB */
9220 		case 0x18: size = 1 << 24; break; /*  16MB */
9221 		}
9222 		break;
9223 	}
9224 
9225 	/* If we didn't recognize the FLASH part, that's no real issue: the
9226 	 * Hardware/Software contract says that Hardware will _*ALWAYS*_
9227 	 * use a FLASH part which is at least 4MB in size and has 64KB
9228 	 * sectors.  The unrecognized FLASH part is likely to be much larger
9229 	 * than 4MB, but that's all we really need.
9230 	 */
9231 	if (size == 0) {
9232 		CH_WARN(adapter, "Unknown Flash Part, ID = %#x, assuming 4MB\n", flashid);
9233 		size = 1 << 22;
9234 	}
9235 
9236 	/*
9237 	 * Store decoded Flash size and fall through into vetting code.
9238 	 */
9239 	adapter->params.sf_size = size;
9240 	adapter->params.sf_nsec = size / SF_SEC_SIZE;
9241 
9242  found:
9243 	/*
9244 	 * We should ~probably~ reject adapters with FLASHes which are too
9245 	 * small but we have some legacy FPGAs with small FLASHes that we'd
9246 	 * still like to use.  So instead we emit a scary message ...
9247 	 */
9248 	if (adapter->params.sf_size < FLASH_MIN_SIZE)
9249 		CH_WARN(adapter, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
9250 			flashid, adapter->params.sf_size, FLASH_MIN_SIZE);
9251 
9252 	return 0;
9253 }
9254 
9255 static void set_pcie_completion_timeout(struct adapter *adapter,
9256 						  u8 range)
9257 {
9258 	u16 val;
9259 	u32 pcie_cap;
9260 
9261 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
9262 	if (pcie_cap) {
9263 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
9264 		val &= 0xfff0;
9265 		val |= range ;
9266 		t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
9267 	}
9268 }
9269 
9270 const struct chip_params *t4_get_chip_params(int chipid)
9271 {
9272 	static const struct chip_params chip_params[] = {
9273 		{
9274 			/* T4 */
9275 			.nchan = NCHAN,
9276 			.pm_stats_cnt = PM_NSTATS,
9277 			.cng_ch_bits_log = 2,
9278 			.nsched_cls = 15,
9279 			.cim_num_obq = CIM_NUM_OBQ,
9280 			.filter_opt_len = FILTER_OPT_LEN,
9281 			.mps_rplc_size = 128,
9282 			.vfcount = 128,
9283 			.sge_fl_db = F_DBPRIO,
9284 			.mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES,
9285 			.rss_nentries = RSS_NENTRIES,
9286 		},
9287 		{
9288 			/* T5 */
9289 			.nchan = NCHAN,
9290 			.pm_stats_cnt = PM_NSTATS,
9291 			.cng_ch_bits_log = 2,
9292 			.nsched_cls = 16,
9293 			.cim_num_obq = CIM_NUM_OBQ_T5,
9294 			.filter_opt_len = T5_FILTER_OPT_LEN,
9295 			.mps_rplc_size = 128,
9296 			.vfcount = 128,
9297 			.sge_fl_db = F_DBPRIO | F_DBTYPE,
9298 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
9299 			.rss_nentries = RSS_NENTRIES,
9300 		},
9301 		{
9302 			/* T6 */
9303 			.nchan = T6_NCHAN,
9304 			.pm_stats_cnt = T6_PM_NSTATS,
9305 			.cng_ch_bits_log = 3,
9306 			.nsched_cls = 16,
9307 			.cim_num_obq = CIM_NUM_OBQ_T5,
9308 			.filter_opt_len = T5_FILTER_OPT_LEN,
9309 			.mps_rplc_size = 256,
9310 			.vfcount = 256,
9311 			.sge_fl_db = 0,
9312 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
9313 			.rss_nentries = T6_RSS_NENTRIES,
9314 		},
9315 	};
9316 
9317 	chipid -= CHELSIO_T4;
9318 	if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params))
9319 		return NULL;
9320 
9321 	return &chip_params[chipid];
9322 }
9323 
9324 /**
9325  *	t4_prep_adapter - prepare SW and HW for operation
9326  *	@adapter: the adapter
9327  *	@buf: temporary space of at least VPD_LEN size provided by the caller.
9328  *
9329  *	Initialize adapter SW state for the various HW modules, set initial
9330  *	values for some adapter tunables, take PHYs out of reset, and
9331  *	initialize the MDIO interface.
9332  */
9333 int t4_prep_adapter(struct adapter *adapter, u32 *buf)
9334 {
9335 	int ret;
9336 	uint16_t device_id;
9337 	uint32_t pl_rev;
9338 
9339 	get_pci_mode(adapter, &adapter->params.pci);
9340 
9341 	pl_rev = t4_read_reg(adapter, A_PL_REV);
9342 	adapter->params.chipid = G_CHIPID(pl_rev);
9343 	adapter->params.rev = G_REV(pl_rev);
9344 	if (adapter->params.chipid == 0) {
9345 		/* T4 did not have chipid in PL_REV (T5 onwards do) */
9346 		adapter->params.chipid = CHELSIO_T4;
9347 
9348 		/* T4A1 chip is not supported */
9349 		if (adapter->params.rev == 1) {
9350 			CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
9351 			return -EINVAL;
9352 		}
9353 	}
9354 
9355 	adapter->chip_params = t4_get_chip_params(chip_id(adapter));
9356 	if (adapter->chip_params == NULL)
9357 		return -EINVAL;
9358 
9359 	adapter->params.pci.vpd_cap_addr =
9360 	    t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
9361 
9362 	ret = t4_get_flash_params(adapter);
9363 	if (ret < 0)
9364 		return ret;
9365 
9366 	/* Cards with real ASICs have the chipid in the PCIe device id */
9367 	t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
9368 	if (device_id >> 12 == chip_id(adapter))
9369 		adapter->params.cim_la_size = CIMLA_SIZE;
9370 	else {
9371 		/* FPGA */
9372 		adapter->params.fpga = 1;
9373 		adapter->params.cim_la_size = 2 * CIMLA_SIZE;
9374 	}
9375 
9376 	ret = get_vpd_params(adapter, &adapter->params.vpd, device_id, buf);
9377 	if (ret < 0)
9378 		return ret;
9379 
9380 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
9381 
9382 	/*
9383 	 * Default port and clock for debugging in case we can't reach FW.
9384 	 */
9385 	adapter->params.nports = 1;
9386 	adapter->params.portvec = 1;
9387 	adapter->params.vpd.cclk = 50000;
9388 
9389 	/* Set pci completion timeout value to 4 seconds. */
9390 	set_pcie_completion_timeout(adapter, 0xd);
9391 	return 0;
9392 }
9393 
9394 /**
9395  *	t4_shutdown_adapter - shut down adapter, host & wire
9396  *	@adapter: the adapter
9397  *
9398  *	Perform an emergency shutdown of the adapter and stop it from
9399  *	continuing any further communication on the ports or DMA to the
9400  *	host.  This is typically used when the adapter and/or firmware
9401  *	have crashed and we want to prevent any further accidental
9402  *	communication with the rest of the world.  This will also force
9403  *	the port Link Status to go down -- if register writes work --
9404  *	which should help our peers figure out that we're down.
9405  */
9406 int t4_shutdown_adapter(struct adapter *adapter)
9407 {
9408 	int port;
9409 
9410 	t4_intr_disable(adapter);
9411 	t4_write_reg(adapter, A_DBG_GPIO_EN, 0);
9412 	for_each_port(adapter, port) {
9413 		u32 a_port_cfg = is_t4(adapter) ?
9414 				 PORT_REG(port, A_XGMAC_PORT_CFG) :
9415 				 T5_PORT_REG(port, A_MAC_PORT_CFG);
9416 
9417 		t4_write_reg(adapter, a_port_cfg,
9418 			     t4_read_reg(adapter, a_port_cfg)
9419 			     & ~V_SIGNAL_DET(1));
9420 	}
9421 	t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0);
9422 
9423 	return 0;
9424 }
9425 
9426 /**
9427  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
9428  *	@adapter: the adapter
9429  *	@qid: the Queue ID
9430  *	@qtype: the Ingress or Egress type for @qid
9431  *	@user: true if this request is for a user mode queue
9432  *	@pbar2_qoffset: BAR2 Queue Offset
9433  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
9434  *
9435  *	Returns the BAR2 SGE Queue Registers information associated with the
9436  *	indicated Absolute Queue ID.  These are passed back in return value
9437  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
9438  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
9439  *
9440  *	This may return an error which indicates that BAR2 SGE Queue
9441  *	registers aren't available.  If an error is not returned, then the
9442  *	following values are returned:
9443  *
9444  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
9445  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
9446  *
9447  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
9448  *	require the "Inferred Queue ID" ability may be used.  E.g. the
9449  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
9450  *	then these "Inferred Queue ID" register may not be used.
9451  */
9452 int t4_bar2_sge_qregs(struct adapter *adapter,
9453 		      unsigned int qid,
9454 		      enum t4_bar2_qtype qtype,
9455 		      int user,
9456 		      u64 *pbar2_qoffset,
9457 		      unsigned int *pbar2_qid)
9458 {
9459 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
9460 	u64 bar2_page_offset, bar2_qoffset;
9461 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
9462 
9463 	/* T4 doesn't support BAR2 SGE Queue registers for kernel
9464 	 * mode queues.
9465 	 */
9466 	if (!user && is_t4(adapter))
9467 		return -EINVAL;
9468 
9469 	/* Get our SGE Page Size parameters.
9470 	 */
9471 	page_shift = adapter->params.sge.page_shift;
9472 	page_size = 1 << page_shift;
9473 
9474 	/* Get the right Queues per Page parameters for our Queue.
9475 	 */
9476 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
9477 		     ? adapter->params.sge.eq_s_qpp
9478 		     : adapter->params.sge.iq_s_qpp);
9479 	qpp_mask = (1 << qpp_shift) - 1;
9480 
9481 	/* Calculate the basics of the BAR2 SGE Queue register area:
9482 	 *  o The BAR2 page the Queue registers will be in.
9483 	 *  o The BAR2 Queue ID.
9484 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
9485 	 */
9486 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
9487 	bar2_qid = qid & qpp_mask;
9488 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
9489 
9490 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
9491 	 * hardware will infer the Absolute Queue ID simply from the writes to
9492 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9493 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9494 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9495 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9496 	 * from the BAR2 Page and BAR2 Queue ID.
9497 	 *
9498 	 * One important censequence of this is that some BAR2 SGE registers
9499 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9500 	 * there.  But other registers synthesize the SGE Queue ID purely
9501 	 * from the writes to the registers -- the Write Combined Doorbell
9502 	 * Buffer is a good example.  These BAR2 SGE Registers are only
9503 	 * available for those BAR2 SGE Register areas where the SGE Absolute
9504 	 * Queue ID can be inferred from simple writes.
9505 	 */
9506 	bar2_qoffset = bar2_page_offset;
9507 	bar2_qinferred = (bar2_qid_offset < page_size);
9508 	if (bar2_qinferred) {
9509 		bar2_qoffset += bar2_qid_offset;
9510 		bar2_qid = 0;
9511 	}
9512 
9513 	*pbar2_qoffset = bar2_qoffset;
9514 	*pbar2_qid = bar2_qid;
9515 	return 0;
9516 }
9517 
9518 /**
9519  *	t4_init_devlog_params - initialize adapter->params.devlog
9520  *	@adap: the adapter
9521  *	@fw_attach: whether we can talk to the firmware
9522  *
9523  *	Initialize various fields of the adapter's Firmware Device Log
9524  *	Parameters structure.
9525  */
9526 int t4_init_devlog_params(struct adapter *adap, int fw_attach)
9527 {
9528 	struct devlog_params *dparams = &adap->params.devlog;
9529 	u32 pf_dparams;
9530 	unsigned int devlog_meminfo;
9531 	struct fw_devlog_cmd devlog_cmd;
9532 	int ret;
9533 
9534 	/* If we're dealing with newer firmware, the Device Log Paramerters
9535 	 * are stored in a designated register which allows us to access the
9536 	 * Device Log even if we can't talk to the firmware.
9537 	 */
9538 	pf_dparams =
9539 		t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG));
9540 	if (pf_dparams) {
9541 		unsigned int nentries, nentries128;
9542 
9543 		dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams);
9544 		dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4;
9545 
9546 		nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams);
9547 		nentries = (nentries128 + 1) * 128;
9548 		dparams->size = nentries * sizeof(struct fw_devlog_e);
9549 
9550 		return 0;
9551 	}
9552 
9553 	/*
9554 	 * For any failing returns ...
9555 	 */
9556 	memset(dparams, 0, sizeof *dparams);
9557 
9558 	/*
9559 	 * If we can't talk to the firmware, there's really nothing we can do
9560 	 * at this point.
9561 	 */
9562 	if (!fw_attach)
9563 		return -ENXIO;
9564 
9565 	/* Otherwise, ask the firmware for it's Device Log Parameters.
9566 	 */
9567 	memset(&devlog_cmd, 0, sizeof devlog_cmd);
9568 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9569 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
9570 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9571 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9572 			 &devlog_cmd);
9573 	if (ret)
9574 		return ret;
9575 
9576 	devlog_meminfo =
9577 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9578 	dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo);
9579 	dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4;
9580 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9581 
9582 	return 0;
9583 }
9584 
9585 /**
9586  *	t4_init_sge_params - initialize adap->params.sge
9587  *	@adapter: the adapter
9588  *
9589  *	Initialize various fields of the adapter's SGE Parameters structure.
9590  */
9591 int t4_init_sge_params(struct adapter *adapter)
9592 {
9593 	u32 r;
9594 	struct sge_params *sp = &adapter->params.sge;
9595 	unsigned i, tscale = 1;
9596 
9597 	r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD);
9598 	sp->counter_val[0] = G_THRESHOLD_0(r);
9599 	sp->counter_val[1] = G_THRESHOLD_1(r);
9600 	sp->counter_val[2] = G_THRESHOLD_2(r);
9601 	sp->counter_val[3] = G_THRESHOLD_3(r);
9602 
9603 	if (chip_id(adapter) >= CHELSIO_T6) {
9604 		r = t4_read_reg(adapter, A_SGE_ITP_CONTROL);
9605 		tscale = G_TSCALE(r);
9606 		if (tscale == 0)
9607 			tscale = 1;
9608 		else
9609 			tscale += 2;
9610 	}
9611 
9612 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1);
9613 	sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r)) * tscale;
9614 	sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r)) * tscale;
9615 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3);
9616 	sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r)) * tscale;
9617 	sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r)) * tscale;
9618 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5);
9619 	sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r)) * tscale;
9620 	sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r)) * tscale;
9621 
9622 	r = t4_read_reg(adapter, A_SGE_CONM_CTRL);
9623 	sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
9624 	if (is_t4(adapter))
9625 		sp->fl_starve_threshold2 = sp->fl_starve_threshold;
9626 	else if (is_t5(adapter))
9627 		sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
9628 	else
9629 		sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(r) * 2 + 1;
9630 
9631 	/* egress queues: log2 of # of doorbells per BAR2 page */
9632 	r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
9633 	r >>= S_QUEUESPERPAGEPF0 +
9634 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
9635 	sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
9636 
9637 	/* ingress queues: log2 of # of doorbells per BAR2 page */
9638 	r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
9639 	r >>= S_QUEUESPERPAGEPF0 +
9640 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
9641 	sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
9642 
9643 	r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
9644 	r >>= S_HOSTPAGESIZEPF0 +
9645 	    (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf;
9646 	sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10;
9647 
9648 	r = t4_read_reg(adapter, A_SGE_CONTROL);
9649 	sp->sge_control = r;
9650 	sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64;
9651 	sp->fl_pktshift = G_PKTSHIFT(r);
9652 	if (chip_id(adapter) <= CHELSIO_T5) {
9653 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
9654 		    X_INGPADBOUNDARY_SHIFT);
9655 	} else {
9656 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
9657 		    X_T6_INGPADBOUNDARY_SHIFT);
9658 	}
9659 	if (is_t4(adapter))
9660 		sp->pack_boundary = sp->pad_boundary;
9661 	else {
9662 		r = t4_read_reg(adapter, A_SGE_CONTROL2);
9663 		if (G_INGPACKBOUNDARY(r) == 0)
9664 			sp->pack_boundary = 16;
9665 		else
9666 			sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5);
9667 	}
9668 	for (i = 0; i < SGE_FLBUF_SIZES; i++)
9669 		sp->sge_fl_buffer_size[i] = t4_read_reg(adapter,
9670 		    A_SGE_FL_BUFFER_SIZE0 + (4 * i));
9671 
9672 	return 0;
9673 }
9674 
9675 /* Convert the LE's hardware hash mask to a shorter filter mask. */
9676 static inline uint16_t
9677 hashmask_to_filtermask(uint64_t hashmask, uint16_t filter_mode)
9678 {
9679 	static const uint8_t width[] = {1, 3, 17, 17, 8, 8, 16, 9, 3, 1};
9680 	int i;
9681 	uint16_t filter_mask;
9682 	uint64_t mask;		/* field mask */
9683 
9684 	filter_mask = 0;
9685 	for (i = S_FCOE; i <= S_FRAGMENTATION; i++) {
9686 		if ((filter_mode & (1 << i)) == 0)
9687 			continue;
9688 		mask = (1 << width[i]) - 1;
9689 		if ((hashmask & mask) == mask)
9690 			filter_mask |= 1 << i;
9691 		hashmask >>= width[i];
9692 	}
9693 
9694 	return (filter_mask);
9695 }
9696 
9697 /*
9698  * Read and cache the adapter's compressed filter mode and ingress config.
9699  */
9700 static void
9701 read_filter_mode_and_ingress_config(struct adapter *adap)
9702 {
9703 	int rc;
9704 	uint32_t v, param[2], val[2];
9705 	struct tp_params *tpp = &adap->params.tp;
9706 	uint64_t hash_mask;
9707 
9708 	param[0] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9709 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) |
9710 	    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_MODE_MASK);
9711 	param[1] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9712 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) |
9713 	    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_VNIC_MODE);
9714 	rc = -t4_query_params(adap, adap->mbox, adap->pf, 0, 2, param, val);
9715 	if (rc == 0) {
9716 		tpp->filter_mode = G_FW_PARAMS_PARAM_FILTER_MODE(val[0]);
9717 		tpp->filter_mask = G_FW_PARAMS_PARAM_FILTER_MASK(val[0]);
9718 		tpp->vnic_mode = val[1];
9719 	} else {
9720 		/*
9721 		 * Old firmware.  Read filter mode/mask and ingress config
9722 		 * straight from the hardware.
9723 		 */
9724 		t4_tp_pio_read(adap, &v, 1, A_TP_VLAN_PRI_MAP, true);
9725 		tpp->filter_mode = v & 0xffff;
9726 
9727 		hash_mask = 0;
9728 		if (chip_id(adap) > CHELSIO_T4) {
9729 			v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(3));
9730 			hash_mask = v;
9731 			v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(4));
9732 			hash_mask |= (u64)v << 32;
9733 		}
9734 		tpp->filter_mask = hashmask_to_filtermask(hash_mask,
9735 		    tpp->filter_mode);
9736 
9737 		t4_tp_pio_read(adap, &v, 1, A_TP_INGRESS_CONFIG, true);
9738 		if (v & F_VNIC)
9739 			tpp->vnic_mode = FW_VNIC_MODE_PF_VF;
9740 		else
9741 			tpp->vnic_mode = FW_VNIC_MODE_OUTER_VLAN;
9742 	}
9743 
9744 	/*
9745 	 * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9746 	 * shift positions of several elements of the Compressed Filter Tuple
9747 	 * for this adapter which we need frequently ...
9748 	 */
9749 	tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE);
9750 	tpp->port_shift = t4_filter_field_shift(adap, F_PORT);
9751 	tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
9752 	tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN);
9753 	tpp->tos_shift = t4_filter_field_shift(adap, F_TOS);
9754 	tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
9755 	tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE);
9756 	tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH);
9757 	tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE);
9758 	tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION);
9759 }
9760 
9761 /**
9762  *      t4_init_tp_params - initialize adap->params.tp
9763  *      @adap: the adapter
9764  *
9765  *      Initialize various fields of the adapter's TP Parameters structure.
9766  */
9767 int t4_init_tp_params(struct adapter *adap)
9768 {
9769 	int chan;
9770 	u32 tx_len, rx_len, r, v;
9771 	struct tp_params *tpp = &adap->params.tp;
9772 
9773 	v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
9774 	tpp->tre = G_TIMERRESOLUTION(v);
9775 	tpp->dack_re = G_DELAYEDACKRESOLUTION(v);
9776 
9777 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9778 	for (chan = 0; chan < MAX_NCHAN; chan++)
9779 		tpp->tx_modq[chan] = chan;
9780 
9781 	read_filter_mode_and_ingress_config(adap);
9782 
9783 	if (chip_id(adap) > CHELSIO_T5) {
9784 		v = t4_read_reg(adap, A_TP_OUT_CONFIG);
9785 		tpp->rx_pkt_encap = v & F_CRXPKTENC;
9786 	} else
9787 		tpp->rx_pkt_encap = false;
9788 
9789 	rx_len = t4_read_reg(adap, A_TP_PMM_RX_PAGE_SIZE);
9790 	tx_len = t4_read_reg(adap, A_TP_PMM_TX_PAGE_SIZE);
9791 
9792 	r = t4_read_reg(adap, A_TP_PARA_REG2);
9793 	rx_len = min(rx_len, G_MAXRXDATA(r));
9794 	tx_len = min(tx_len, G_MAXRXDATA(r));
9795 
9796 	r = t4_read_reg(adap, A_TP_PARA_REG7);
9797 	v = min(G_PMMAXXFERLEN0(r), G_PMMAXXFERLEN1(r));
9798 	rx_len = min(rx_len, v);
9799 	tx_len = min(tx_len, v);
9800 
9801 	tpp->max_tx_pdu = tx_len;
9802 	tpp->max_rx_pdu = rx_len;
9803 
9804 	return 0;
9805 }
9806 
9807 /**
9808  *      t4_filter_field_shift - calculate filter field shift
9809  *      @adap: the adapter
9810  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9811  *
9812  *      Return the shift position of a filter field within the Compressed
9813  *      Filter Tuple.  The filter field is specified via its selection bit
9814  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9815  */
9816 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9817 {
9818 	const unsigned int filter_mode = adap->params.tp.filter_mode;
9819 	unsigned int sel;
9820 	int field_shift;
9821 
9822 	if ((filter_mode & filter_sel) == 0)
9823 		return -1;
9824 
9825 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9826 		switch (filter_mode & sel) {
9827 		case F_FCOE:
9828 			field_shift += W_FT_FCOE;
9829 			break;
9830 		case F_PORT:
9831 			field_shift += W_FT_PORT;
9832 			break;
9833 		case F_VNIC_ID:
9834 			field_shift += W_FT_VNIC_ID;
9835 			break;
9836 		case F_VLAN:
9837 			field_shift += W_FT_VLAN;
9838 			break;
9839 		case F_TOS:
9840 			field_shift += W_FT_TOS;
9841 			break;
9842 		case F_PROTOCOL:
9843 			field_shift += W_FT_PROTOCOL;
9844 			break;
9845 		case F_ETHERTYPE:
9846 			field_shift += W_FT_ETHERTYPE;
9847 			break;
9848 		case F_MACMATCH:
9849 			field_shift += W_FT_MACMATCH;
9850 			break;
9851 		case F_MPSHITTYPE:
9852 			field_shift += W_FT_MPSHITTYPE;
9853 			break;
9854 		case F_FRAGMENTATION:
9855 			field_shift += W_FT_FRAGMENTATION;
9856 			break;
9857 		}
9858 	}
9859 	return field_shift;
9860 }
9861 
9862 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id)
9863 {
9864 	u8 addr[6];
9865 	int ret, i, j;
9866 	struct port_info *p = adap2pinfo(adap, port_id);
9867 	u32 param, val;
9868 	struct vi_info *vi = &p->vi[0];
9869 
9870 	for (i = 0, j = -1; i <= p->port_id; i++) {
9871 		do {
9872 			j++;
9873 		} while ((adap->params.portvec & (1 << j)) == 0);
9874 	}
9875 
9876 	p->tx_chan = j;
9877 	p->mps_bg_map = t4_get_mps_bg_map(adap, j);
9878 	p->rx_e_chan_map = t4_get_rx_e_chan_map(adap, j);
9879 	p->rx_c_chan = t4_get_rx_c_chan(adap, j);
9880 	p->lport = j;
9881 
9882 	if (!(adap->flags & IS_VF) ||
9883 	    adap->params.vfres.r_caps & FW_CMD_CAP_PORT) {
9884  		t4_update_port_info(p);
9885 	}
9886 
9887 	ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &vi->rss_size,
9888 	    &vi->vfvld, &vi->vin);
9889 	if (ret < 0)
9890 		return ret;
9891 
9892 	vi->viid = ret;
9893 	t4_os_set_hw_addr(p, addr);
9894 
9895 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9896 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
9897 	    V_FW_PARAMS_PARAM_YZ(vi->viid);
9898 	ret = t4_query_params(adap, mbox, pf, vf, 1, &param, &val);
9899 	if (ret)
9900 		vi->rss_base = 0xffff;
9901 	else {
9902 		/* MPASS((val >> 16) == rss_size); */
9903 		vi->rss_base = val & 0xffff;
9904 	}
9905 
9906 	return 0;
9907 }
9908 
9909 /**
9910  *	t4_read_cimq_cfg - read CIM queue configuration
9911  *	@adap: the adapter
9912  *	@base: holds the queue base addresses in bytes
9913  *	@size: holds the queue sizes in bytes
9914  *	@thres: holds the queue full thresholds in bytes
9915  *
9916  *	Returns the current configuration of the CIM queues, starting with
9917  *	the IBQs, then the OBQs.
9918  */
9919 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9920 {
9921 	unsigned int i, v;
9922 	int cim_num_obq = adap->chip_params->cim_num_obq;
9923 
9924 	for (i = 0; i < CIM_NUM_IBQ; i++) {
9925 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
9926 			     V_QUENUMSELECT(i));
9927 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9928 		/* value is in 256-byte units */
9929 		*base++ = G_CIMQBASE(v) * 256;
9930 		*size++ = G_CIMQSIZE(v) * 256;
9931 		*thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */
9932 	}
9933 	for (i = 0; i < cim_num_obq; i++) {
9934 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
9935 			     V_QUENUMSELECT(i));
9936 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9937 		/* value is in 256-byte units */
9938 		*base++ = G_CIMQBASE(v) * 256;
9939 		*size++ = G_CIMQSIZE(v) * 256;
9940 	}
9941 }
9942 
9943 /**
9944  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
9945  *	@adap: the adapter
9946  *	@qid: the queue index
9947  *	@data: where to store the queue contents
9948  *	@n: capacity of @data in 32-bit words
9949  *
9950  *	Reads the contents of the selected CIM queue starting at address 0 up
9951  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9952  *	error and the number of 32-bit words actually read on success.
9953  */
9954 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9955 {
9956 	int i, err, attempts;
9957 	unsigned int addr;
9958 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
9959 
9960 	if (qid > 5 || (n & 3))
9961 		return -EINVAL;
9962 
9963 	addr = qid * nwords;
9964 	if (n > nwords)
9965 		n = nwords;
9966 
9967 	/* It might take 3-10ms before the IBQ debug read access is allowed.
9968 	 * Wait for 1 Sec with a delay of 1 usec.
9969 	 */
9970 	attempts = 1000000;
9971 
9972 	for (i = 0; i < n; i++, addr++) {
9973 		t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
9974 			     F_IBQDBGEN);
9975 		err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
9976 				      attempts, 1);
9977 		if (err)
9978 			return err;
9979 		*data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
9980 	}
9981 	t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
9982 	return i;
9983 }
9984 
9985 /**
9986  *	t4_read_cim_obq - read the contents of a CIM outbound queue
9987  *	@adap: the adapter
9988  *	@qid: the queue index
9989  *	@data: where to store the queue contents
9990  *	@n: capacity of @data in 32-bit words
9991  *
9992  *	Reads the contents of the selected CIM queue starting at address 0 up
9993  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9994  *	error and the number of 32-bit words actually read on success.
9995  */
9996 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9997 {
9998 	int i, err;
9999 	unsigned int addr, v, nwords;
10000 	int cim_num_obq = adap->chip_params->cim_num_obq;
10001 
10002 	if ((qid > (cim_num_obq - 1)) || (n & 3))
10003 		return -EINVAL;
10004 
10005 	t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
10006 		     V_QUENUMSELECT(qid));
10007 	v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
10008 
10009 	addr = G_CIMQBASE(v) * 64;    /* muliple of 256 -> muliple of 4 */
10010 	nwords = G_CIMQSIZE(v) * 64;  /* same */
10011 	if (n > nwords)
10012 		n = nwords;
10013 
10014 	for (i = 0; i < n; i++, addr++) {
10015 		t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
10016 			     F_OBQDBGEN);
10017 		err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
10018 				      2, 1);
10019 		if (err)
10020 			return err;
10021 		*data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
10022 	}
10023 	t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
10024 	return i;
10025 }
10026 
10027 enum {
10028 	CIM_QCTL_BASE     = 0,
10029 	CIM_CTL_BASE      = 0x2000,
10030 	CIM_PBT_ADDR_BASE = 0x2800,
10031 	CIM_PBT_LRF_BASE  = 0x3000,
10032 	CIM_PBT_DATA_BASE = 0x3800
10033 };
10034 
10035 /**
10036  *	t4_cim_read - read a block from CIM internal address space
10037  *	@adap: the adapter
10038  *	@addr: the start address within the CIM address space
10039  *	@n: number of words to read
10040  *	@valp: where to store the result
10041  *
10042  *	Reads a block of 4-byte words from the CIM intenal address space.
10043  */
10044 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
10045 		unsigned int *valp)
10046 {
10047 	int ret = 0;
10048 
10049 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
10050 		return -EBUSY;
10051 
10052 	for ( ; !ret && n--; addr += 4) {
10053 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
10054 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
10055 				      0, 5, 2);
10056 		if (!ret)
10057 			*valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
10058 	}
10059 	return ret;
10060 }
10061 
10062 /**
10063  *	t4_cim_write - write a block into CIM internal address space
10064  *	@adap: the adapter
10065  *	@addr: the start address within the CIM address space
10066  *	@n: number of words to write
10067  *	@valp: set of values to write
10068  *
10069  *	Writes a block of 4-byte words into the CIM intenal address space.
10070  */
10071 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
10072 		 const unsigned int *valp)
10073 {
10074 	int ret = 0;
10075 
10076 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
10077 		return -EBUSY;
10078 
10079 	for ( ; !ret && n--; addr += 4) {
10080 		t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
10081 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
10082 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
10083 				      0, 5, 2);
10084 	}
10085 	return ret;
10086 }
10087 
10088 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
10089 			 unsigned int val)
10090 {
10091 	return t4_cim_write(adap, addr, 1, &val);
10092 }
10093 
10094 /**
10095  *	t4_cim_ctl_read - read a block from CIM control region
10096  *	@adap: the adapter
10097  *	@addr: the start address within the CIM control region
10098  *	@n: number of words to read
10099  *	@valp: where to store the result
10100  *
10101  *	Reads a block of 4-byte words from the CIM control region.
10102  */
10103 int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
10104 		    unsigned int *valp)
10105 {
10106 	return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
10107 }
10108 
10109 /**
10110  *	t4_cim_read_la - read CIM LA capture buffer
10111  *	@adap: the adapter
10112  *	@la_buf: where to store the LA data
10113  *	@wrptr: the HW write pointer within the capture buffer
10114  *
10115  *	Reads the contents of the CIM LA buffer with the most recent entry at
10116  *	the end	of the returned data and with the entry at @wrptr first.
10117  *	We try to leave the LA in the running state we find it in.
10118  */
10119 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
10120 {
10121 	int i, ret;
10122 	unsigned int cfg, val, idx;
10123 
10124 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
10125 	if (ret)
10126 		return ret;
10127 
10128 	if (cfg & F_UPDBGLAEN) {	/* LA is running, freeze it */
10129 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
10130 		if (ret)
10131 			return ret;
10132 	}
10133 
10134 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
10135 	if (ret)
10136 		goto restart;
10137 
10138 	idx = G_UPDBGLAWRPTR(val);
10139 	if (wrptr)
10140 		*wrptr = idx;
10141 
10142 	for (i = 0; i < adap->params.cim_la_size; i++) {
10143 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
10144 				    V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
10145 		if (ret)
10146 			break;
10147 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
10148 		if (ret)
10149 			break;
10150 		if (val & F_UPDBGLARDEN) {
10151 			ret = -ETIMEDOUT;
10152 			break;
10153 		}
10154 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
10155 		if (ret)
10156 			break;
10157 
10158 		/* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
10159 		 * identify the 32-bit portion of the full 312-bit data
10160 		 */
10161 		if (is_t6(adap) && (idx & 0xf) >= 9)
10162 			idx = (idx & 0xff0) + 0x10;
10163 		else
10164 			idx++;
10165 		/* address can't exceed 0xfff */
10166 		idx &= M_UPDBGLARDPTR;
10167 	}
10168 restart:
10169 	if (cfg & F_UPDBGLAEN) {
10170 		int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
10171 				      cfg & ~F_UPDBGLARDEN);
10172 		if (!ret)
10173 			ret = r;
10174 	}
10175 	return ret;
10176 }
10177 
10178 /**
10179  *	t4_tp_read_la - read TP LA capture buffer
10180  *	@adap: the adapter
10181  *	@la_buf: where to store the LA data
10182  *	@wrptr: the HW write pointer within the capture buffer
10183  *
10184  *	Reads the contents of the TP LA buffer with the most recent entry at
10185  *	the end	of the returned data and with the entry at @wrptr first.
10186  *	We leave the LA in the running state we find it in.
10187  */
10188 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
10189 {
10190 	bool last_incomplete;
10191 	unsigned int i, cfg, val, idx;
10192 
10193 	cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
10194 	if (cfg & F_DBGLAENABLE)			/* freeze LA */
10195 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
10196 			     adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
10197 
10198 	val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
10199 	idx = G_DBGLAWPTR(val);
10200 	last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
10201 	if (last_incomplete)
10202 		idx = (idx + 1) & M_DBGLARPTR;
10203 	if (wrptr)
10204 		*wrptr = idx;
10205 
10206 	val &= 0xffff;
10207 	val &= ~V_DBGLARPTR(M_DBGLARPTR);
10208 	val |= adap->params.tp.la_mask;
10209 
10210 	for (i = 0; i < TPLA_SIZE; i++) {
10211 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
10212 		la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
10213 		idx = (idx + 1) & M_DBGLARPTR;
10214 	}
10215 
10216 	/* Wipe out last entry if it isn't valid */
10217 	if (last_incomplete)
10218 		la_buf[TPLA_SIZE - 1] = ~0ULL;
10219 
10220 	if (cfg & F_DBGLAENABLE)		/* restore running state */
10221 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
10222 			     cfg | adap->params.tp.la_mask);
10223 }
10224 
10225 /*
10226  * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
10227  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
10228  * state for more than the Warning Threshold then we'll issue a warning about
10229  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
10230  * appears to be hung every Warning Repeat second till the situation clears.
10231  * If the situation clears, we'll note that as well.
10232  */
10233 #define SGE_IDMA_WARN_THRESH 1
10234 #define SGE_IDMA_WARN_REPEAT 300
10235 
10236 /**
10237  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
10238  *	@adapter: the adapter
10239  *	@idma: the adapter IDMA Monitor state
10240  *
10241  *	Initialize the state of an SGE Ingress DMA Monitor.
10242  */
10243 void t4_idma_monitor_init(struct adapter *adapter,
10244 			  struct sge_idma_monitor_state *idma)
10245 {
10246 	/* Initialize the state variables for detecting an SGE Ingress DMA
10247 	 * hang.  The SGE has internal counters which count up on each clock
10248 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
10249 	 * same state they were on the previous clock tick.  The clock used is
10250 	 * the Core Clock so we have a limit on the maximum "time" they can
10251 	 * record; typically a very small number of seconds.  For instance,
10252 	 * with a 600MHz Core Clock, we can only count up to a bit more than
10253 	 * 7s.  So we'll synthesize a larger counter in order to not run the
10254 	 * risk of having the "timers" overflow and give us the flexibility to
10255 	 * maintain a Hung SGE State Machine of our own which operates across
10256 	 * a longer time frame.
10257 	 */
10258 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
10259 	idma->idma_stalled[0] = idma->idma_stalled[1] = 0;
10260 }
10261 
10262 /**
10263  *	t4_idma_monitor - monitor SGE Ingress DMA state
10264  *	@adapter: the adapter
10265  *	@idma: the adapter IDMA Monitor state
10266  *	@hz: number of ticks/second
10267  *	@ticks: number of ticks since the last IDMA Monitor call
10268  */
10269 void t4_idma_monitor(struct adapter *adapter,
10270 		     struct sge_idma_monitor_state *idma,
10271 		     int hz, int ticks)
10272 {
10273 	int i, idma_same_state_cnt[2];
10274 
10275 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
10276 	  * are counters inside the SGE which count up on each clock when the
10277 	  * SGE finds its Ingress DMA State Engines in the same states they
10278 	  * were in the previous clock.  The counters will peg out at
10279 	  * 0xffffffff without wrapping around so once they pass the 1s
10280 	  * threshold they'll stay above that till the IDMA state changes.
10281 	  */
10282 	t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13);
10283 	idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH);
10284 	idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
10285 
10286 	for (i = 0; i < 2; i++) {
10287 		u32 debug0, debug11;
10288 
10289 		/* If the Ingress DMA Same State Counter ("timer") is less
10290 		 * than 1s, then we can reset our synthesized Stall Timer and
10291 		 * continue.  If we have previously emitted warnings about a
10292 		 * potential stalled Ingress Queue, issue a note indicating
10293 		 * that the Ingress Queue has resumed forward progress.
10294 		 */
10295 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
10296 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz)
10297 				CH_WARN(adapter, "SGE idma%d, queue %u, "
10298 					"resumed after %d seconds\n",
10299 					i, idma->idma_qid[i],
10300 					idma->idma_stalled[i]/hz);
10301 			idma->idma_stalled[i] = 0;
10302 			continue;
10303 		}
10304 
10305 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
10306 		 * domain.  The first time we get here it'll be because we
10307 		 * passed the 1s Threshold; each additional time it'll be
10308 		 * because the RX Timer Callback is being fired on its regular
10309 		 * schedule.
10310 		 *
10311 		 * If the stall is below our Potential Hung Ingress Queue
10312 		 * Warning Threshold, continue.
10313 		 */
10314 		if (idma->idma_stalled[i] == 0) {
10315 			idma->idma_stalled[i] = hz;
10316 			idma->idma_warn[i] = 0;
10317 		} else {
10318 			idma->idma_stalled[i] += ticks;
10319 			idma->idma_warn[i] -= ticks;
10320 		}
10321 
10322 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz)
10323 			continue;
10324 
10325 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
10326 		 */
10327 		if (idma->idma_warn[i] > 0)
10328 			continue;
10329 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz;
10330 
10331 		/* Read and save the SGE IDMA State and Queue ID information.
10332 		 * We do this every time in case it changes across time ...
10333 		 * can't be too careful ...
10334 		 */
10335 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0);
10336 		debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
10337 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
10338 
10339 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11);
10340 		debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
10341 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
10342 
10343 		CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in "
10344 			" state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
10345 			i, idma->idma_qid[i], idma->idma_state[i],
10346 			idma->idma_stalled[i]/hz,
10347 			debug0, debug11);
10348 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
10349 	}
10350 }
10351 
10352 /**
10353  *     t4_set_vf_mac - Set MAC address for the specified VF
10354  *     @adapter: The adapter
10355  *     @pf: the PF used to instantiate the VFs
10356  *     @vf: one of the VFs instantiated by the specified PF
10357  *     @naddr: the number of MAC addresses
10358  *     @addr: the MAC address(es) to be set to the specified VF
10359  */
10360 int t4_set_vf_mac(struct adapter *adapter, unsigned int pf, unsigned int vf,
10361 		  unsigned int naddr, u8 *addr)
10362 {
10363 	struct fw_acl_mac_cmd cmd;
10364 
10365 	memset(&cmd, 0, sizeof(cmd));
10366 	cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_ACL_MAC_CMD) |
10367 				    F_FW_CMD_REQUEST |
10368 				    F_FW_CMD_WRITE |
10369 				    V_FW_ACL_MAC_CMD_PFN(pf) |
10370 				    V_FW_ACL_MAC_CMD_VFN(vf));
10371 
10372 	/* Note: Do not enable the ACL */
10373 	cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
10374 	cmd.nmac = naddr;
10375 
10376 	switch (pf) {
10377 	case 3:
10378 		memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
10379 		break;
10380 	case 2:
10381 		memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
10382 		break;
10383 	case 1:
10384 		memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
10385 		break;
10386 	case 0:
10387 		memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
10388 		break;
10389 	}
10390 
10391 	return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
10392 }
10393 
10394 /**
10395  *	t4_read_pace_tbl - read the pace table
10396  *	@adap: the adapter
10397  *	@pace_vals: holds the returned values
10398  *
10399  *	Returns the values of TP's pace table in microseconds.
10400  */
10401 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
10402 {
10403 	unsigned int i, v;
10404 
10405 	for (i = 0; i < NTX_SCHED; i++) {
10406 		t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
10407 		v = t4_read_reg(adap, A_TP_PACE_TABLE);
10408 		pace_vals[i] = dack_ticks_to_usec(adap, v);
10409 	}
10410 }
10411 
10412 /**
10413  *	t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
10414  *	@adap: the adapter
10415  *	@sched: the scheduler index
10416  *	@kbps: the byte rate in Kbps
10417  *	@ipg: the interpacket delay in tenths of nanoseconds
10418  *
10419  *	Return the current configuration of a HW Tx scheduler.
10420  */
10421 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
10422 		     unsigned int *ipg, bool sleep_ok)
10423 {
10424 	unsigned int v, addr, bpt, cpt;
10425 
10426 	if (kbps) {
10427 		addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
10428 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10429 		if (sched & 1)
10430 			v >>= 16;
10431 		bpt = (v >> 8) & 0xff;
10432 		cpt = v & 0xff;
10433 		if (!cpt)
10434 			*kbps = 0;	/* scheduler disabled */
10435 		else {
10436 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
10437 			*kbps = (v * bpt) / 125;
10438 		}
10439 	}
10440 	if (ipg) {
10441 		addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
10442 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10443 		if (sched & 1)
10444 			v >>= 16;
10445 		v &= 0xffff;
10446 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
10447 	}
10448 }
10449 
10450 /**
10451  *	t4_load_cfg - download config file
10452  *	@adap: the adapter
10453  *	@cfg_data: the cfg text file to write
10454  *	@size: text file size
10455  *
10456  *	Write the supplied config text file to the card's serial flash.
10457  */
10458 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10459 {
10460 	int ret, i, n, cfg_addr;
10461 	unsigned int addr;
10462 	unsigned int flash_cfg_start_sec;
10463 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10464 
10465 	cfg_addr = t4_flash_cfg_addr(adap);
10466 	if (cfg_addr < 0)
10467 		return cfg_addr;
10468 
10469 	addr = cfg_addr;
10470 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10471 
10472 	if (size > FLASH_CFG_MAX_SIZE) {
10473 		CH_ERR(adap, "cfg file too large, max is %u bytes\n",
10474 		       FLASH_CFG_MAX_SIZE);
10475 		return -EFBIG;
10476 	}
10477 
10478 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
10479 			 sf_sec_size);
10480 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10481 				     flash_cfg_start_sec + i - 1);
10482 	/*
10483 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10484 	 * with the on-adapter Firmware Configuration File.
10485 	 */
10486 	if (ret || size == 0)
10487 		goto out;
10488 
10489 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10490 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
10491 		if ( (size - i) <  SF_PAGE_SIZE)
10492 			n = size - i;
10493 		else
10494 			n = SF_PAGE_SIZE;
10495 		ret = t4_write_flash(adap, addr, n, cfg_data, 1);
10496 		if (ret)
10497 			goto out;
10498 
10499 		addr += SF_PAGE_SIZE;
10500 		cfg_data += SF_PAGE_SIZE;
10501 	}
10502 
10503 out:
10504 	if (ret)
10505 		CH_ERR(adap, "config file %s failed %d\n",
10506 		       (size == 0 ? "clear" : "download"), ret);
10507 	return ret;
10508 }
10509 
10510 /**
10511  *	t5_fw_init_extern_mem - initialize the external memory
10512  *	@adap: the adapter
10513  *
10514  *	Initializes the external memory on T5.
10515  */
10516 int t5_fw_init_extern_mem(struct adapter *adap)
10517 {
10518 	u32 params[1], val[1];
10519 	int ret;
10520 
10521 	if (!is_t5(adap))
10522 		return 0;
10523 
10524 	val[0] = 0xff; /* Initialize all MCs */
10525 	params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
10526 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT));
10527 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val,
10528 			FW_CMD_MAX_TIMEOUT);
10529 
10530 	return ret;
10531 }
10532 
10533 /* BIOS boot headers */
10534 typedef struct pci_expansion_rom_header {
10535 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
10536 	u8	reserved[22]; /* Reserved per processor Architecture data */
10537 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
10538 } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
10539 
10540 /* Legacy PCI Expansion ROM Header */
10541 typedef struct legacy_pci_expansion_rom_header {
10542 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
10543 	u8	size512; /* Current Image Size in units of 512 bytes */
10544 	u8	initentry_point[4];
10545 	u8	cksum; /* Checksum computed on the entire Image */
10546 	u8	reserved[16]; /* Reserved */
10547 	u8	pcir_offset[2]; /* Offset to PCI Data Struture */
10548 } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
10549 
10550 /* EFI PCI Expansion ROM Header */
10551 typedef struct efi_pci_expansion_rom_header {
10552 	u8	signature[2]; // ROM signature. The value 0xaa55
10553 	u8	initialization_size[2]; /* Units 512. Includes this header */
10554 	u8	efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
10555 	u8	efi_subsystem[2]; /* Subsystem value for EFI image header */
10556 	u8	efi_machine_type[2]; /* Machine type from EFI image header */
10557 	u8	compression_type[2]; /* Compression type. */
10558 		/*
10559 		 * Compression type definition
10560 		 * 0x0: uncompressed
10561 		 * 0x1: Compressed
10562 		 * 0x2-0xFFFF: Reserved
10563 		 */
10564 	u8	reserved[8]; /* Reserved */
10565 	u8	efi_image_header_offset[2]; /* Offset to EFI Image */
10566 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
10567 } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
10568 
10569 /* PCI Data Structure Format */
10570 typedef struct pcir_data_structure { /* PCI Data Structure */
10571 	u8	signature[4]; /* Signature. The string "PCIR" */
10572 	u8	vendor_id[2]; /* Vendor Identification */
10573 	u8	device_id[2]; /* Device Identification */
10574 	u8	vital_product[2]; /* Pointer to Vital Product Data */
10575 	u8	length[2]; /* PCIR Data Structure Length */
10576 	u8	revision; /* PCIR Data Structure Revision */
10577 	u8	class_code[3]; /* Class Code */
10578 	u8	image_length[2]; /* Image Length. Multiple of 512B */
10579 	u8	code_revision[2]; /* Revision Level of Code/Data */
10580 	u8	code_type; /* Code Type. */
10581 		/*
10582 		 * PCI Expansion ROM Code Types
10583 		 * 0x00: Intel IA-32, PC-AT compatible. Legacy
10584 		 * 0x01: Open Firmware standard for PCI. FCODE
10585 		 * 0x02: Hewlett-Packard PA RISC. HP reserved
10586 		 * 0x03: EFI Image. EFI
10587 		 * 0x04-0xFF: Reserved.
10588 		 */
10589 	u8	indicator; /* Indicator. Identifies the last image in the ROM */
10590 	u8	reserved[2]; /* Reserved */
10591 } pcir_data_t; /* PCI__DATA_STRUCTURE */
10592 
10593 /* BOOT constants */
10594 enum {
10595 	BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
10596 	BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
10597 	BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
10598 	BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
10599 	BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
10600 	VENDOR_ID = 0x1425, /* Vendor ID */
10601 	PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
10602 };
10603 
10604 /*
10605  *	modify_device_id - Modifies the device ID of the Boot BIOS image
10606  *	@adatper: the device ID to write.
10607  *	@boot_data: the boot image to modify.
10608  *
10609  *	Write the supplied device ID to the boot BIOS image.
10610  */
10611 static void modify_device_id(int device_id, u8 *boot_data)
10612 {
10613 	legacy_pci_exp_rom_header_t *header;
10614 	pcir_data_t *pcir_header;
10615 	u32 cur_header = 0;
10616 
10617 	/*
10618 	 * Loop through all chained images and change the device ID's
10619 	 */
10620 	while (1) {
10621 		header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
10622 		pcir_header = (pcir_data_t *) &boot_data[cur_header +
10623 			      le16_to_cpu(*(u16*)header->pcir_offset)];
10624 
10625 		/*
10626 		 * Only modify the Device ID if code type is Legacy or HP.
10627 		 * 0x00: Okay to modify
10628 		 * 0x01: FCODE. Do not be modify
10629 		 * 0x03: Okay to modify
10630 		 * 0x04-0xFF: Do not modify
10631 		 */
10632 		if (pcir_header->code_type == 0x00) {
10633 			u8 csum = 0;
10634 			int i;
10635 
10636 			/*
10637 			 * Modify Device ID to match current adatper
10638 			 */
10639 			*(u16*) pcir_header->device_id = device_id;
10640 
10641 			/*
10642 			 * Set checksum temporarily to 0.
10643 			 * We will recalculate it later.
10644 			 */
10645 			header->cksum = 0x0;
10646 
10647 			/*
10648 			 * Calculate and update checksum
10649 			 */
10650 			for (i = 0; i < (header->size512 * 512); i++)
10651 				csum += (u8)boot_data[cur_header + i];
10652 
10653 			/*
10654 			 * Invert summed value to create the checksum
10655 			 * Writing new checksum value directly to the boot data
10656 			 */
10657 			boot_data[cur_header + 7] = -csum;
10658 
10659 		} else if (pcir_header->code_type == 0x03) {
10660 
10661 			/*
10662 			 * Modify Device ID to match current adatper
10663 			 */
10664 			*(u16*) pcir_header->device_id = device_id;
10665 
10666 		}
10667 
10668 
10669 		/*
10670 		 * Check indicator element to identify if this is the last
10671 		 * image in the ROM.
10672 		 */
10673 		if (pcir_header->indicator & 0x80)
10674 			break;
10675 
10676 		/*
10677 		 * Move header pointer up to the next image in the ROM.
10678 		 */
10679 		cur_header += header->size512 * 512;
10680 	}
10681 }
10682 
10683 /*
10684  *	t4_load_boot - download boot flash
10685  *	@adapter: the adapter
10686  *	@boot_data: the boot image to write
10687  *	@boot_addr: offset in flash to write boot_data
10688  *	@size: image size
10689  *
10690  *	Write the supplied boot image to the card's serial flash.
10691  *	The boot image has the following sections: a 28-byte header and the
10692  *	boot image.
10693  */
10694 int t4_load_boot(struct adapter *adap, u8 *boot_data,
10695 		 unsigned int boot_addr, unsigned int size)
10696 {
10697 	pci_exp_rom_header_t *header;
10698 	int pcir_offset ;
10699 	pcir_data_t *pcir_header;
10700 	int ret, addr;
10701 	uint16_t device_id;
10702 	unsigned int i;
10703 	unsigned int boot_sector = (boot_addr * 1024 );
10704 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10705 
10706 	/*
10707 	 * Make sure the boot image does not encroach on the firmware region
10708 	 */
10709 	if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
10710 		CH_ERR(adap, "boot image encroaching on firmware region\n");
10711 		return -EFBIG;
10712 	}
10713 
10714 	/*
10715 	 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
10716 	 * and Boot configuration data sections. These 3 boot sections span
10717 	 * sectors 0 to 7 in flash and live right before the FW image location.
10718 	 */
10719 	i = DIV_ROUND_UP(size ? size : FLASH_FW_START,
10720 			sf_sec_size);
10721 	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
10722 				     (boot_sector >> 16) + i - 1);
10723 
10724 	/*
10725 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10726 	 * with the on-adapter option ROM file
10727 	 */
10728 	if (ret || (size == 0))
10729 		goto out;
10730 
10731 	/* Get boot header */
10732 	header = (pci_exp_rom_header_t *)boot_data;
10733 	pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
10734 	/* PCIR Data Structure */
10735 	pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
10736 
10737 	/*
10738 	 * Perform some primitive sanity testing to avoid accidentally
10739 	 * writing garbage over the boot sectors.  We ought to check for
10740 	 * more but it's not worth it for now ...
10741 	 */
10742 	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
10743 		CH_ERR(adap, "boot image too small/large\n");
10744 		return -EFBIG;
10745 	}
10746 
10747 #ifndef CHELSIO_T4_DIAGS
10748 	/*
10749 	 * Check BOOT ROM header signature
10750 	 */
10751 	if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
10752 		CH_ERR(adap, "Boot image missing signature\n");
10753 		return -EINVAL;
10754 	}
10755 
10756 	/*
10757 	 * Check PCI header signature
10758 	 */
10759 	if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
10760 		CH_ERR(adap, "PCI header missing signature\n");
10761 		return -EINVAL;
10762 	}
10763 
10764 	/*
10765 	 * Check Vendor ID matches Chelsio ID
10766 	 */
10767 	if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
10768 		CH_ERR(adap, "Vendor ID missing signature\n");
10769 		return -EINVAL;
10770 	}
10771 #endif
10772 
10773 	/*
10774 	 * Retrieve adapter's device ID
10775 	 */
10776 	t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
10777 	/* Want to deal with PF 0 so I strip off PF 4 indicator */
10778 	device_id = device_id & 0xf0ff;
10779 
10780 	/*
10781 	 * Check PCIE Device ID
10782 	 */
10783 	if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
10784 		/*
10785 		 * Change the device ID in the Boot BIOS image to match
10786 		 * the Device ID of the current adapter.
10787 		 */
10788 		modify_device_id(device_id, boot_data);
10789 	}
10790 
10791 	/*
10792 	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
10793 	 * we finish copying the rest of the boot image. This will ensure
10794 	 * that the BIOS boot header will only be written if the boot image
10795 	 * was written in full.
10796 	 */
10797 	addr = boot_sector;
10798 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
10799 		addr += SF_PAGE_SIZE;
10800 		boot_data += SF_PAGE_SIZE;
10801 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
10802 		if (ret)
10803 			goto out;
10804 	}
10805 
10806 	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
10807 			     (const u8 *)header, 0);
10808 
10809 out:
10810 	if (ret)
10811 		CH_ERR(adap, "boot image download failed, error %d\n", ret);
10812 	return ret;
10813 }
10814 
10815 /*
10816  *	t4_flash_bootcfg_addr - return the address of the flash optionrom configuration
10817  *	@adapter: the adapter
10818  *
10819  *	Return the address within the flash where the OptionROM Configuration
10820  *	is stored, or an error if the device FLASH is too small to contain
10821  *	a OptionROM Configuration.
10822  */
10823 static int t4_flash_bootcfg_addr(struct adapter *adapter)
10824 {
10825 	/*
10826 	 * If the device FLASH isn't large enough to hold a Firmware
10827 	 * Configuration File, return an error.
10828 	 */
10829 	if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
10830 		return -ENOSPC;
10831 
10832 	return FLASH_BOOTCFG_START;
10833 }
10834 
10835 int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size)
10836 {
10837 	int ret, i, n, cfg_addr;
10838 	unsigned int addr;
10839 	unsigned int flash_cfg_start_sec;
10840 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10841 
10842 	cfg_addr = t4_flash_bootcfg_addr(adap);
10843 	if (cfg_addr < 0)
10844 		return cfg_addr;
10845 
10846 	addr = cfg_addr;
10847 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10848 
10849 	if (size > FLASH_BOOTCFG_MAX_SIZE) {
10850 		CH_ERR(adap, "bootcfg file too large, max is %u bytes\n",
10851 			FLASH_BOOTCFG_MAX_SIZE);
10852 		return -EFBIG;
10853 	}
10854 
10855 	i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */
10856 			 sf_sec_size);
10857 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10858 					flash_cfg_start_sec + i - 1);
10859 
10860 	/*
10861 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10862 	 * with the on-adapter OptionROM Configuration File.
10863 	 */
10864 	if (ret || size == 0)
10865 		goto out;
10866 
10867 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10868 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
10869 		if ( (size - i) <  SF_PAGE_SIZE)
10870 			n = size - i;
10871 		else
10872 			n = SF_PAGE_SIZE;
10873 		ret = t4_write_flash(adap, addr, n, cfg_data, 0);
10874 		if (ret)
10875 			goto out;
10876 
10877 		addr += SF_PAGE_SIZE;
10878 		cfg_data += SF_PAGE_SIZE;
10879 	}
10880 
10881 out:
10882 	if (ret)
10883 		CH_ERR(adap, "boot config data %s failed %d\n",
10884 				(size == 0 ? "clear" : "download"), ret);
10885 	return ret;
10886 }
10887 
10888 /**
10889  *	t4_set_filter_cfg - set up filter mode/mask and ingress config.
10890  *	@adap: the adapter
10891  *	@mode: a bitmap selecting which optional filter components to enable
10892  *	@mask: a bitmap selecting which components to enable in filter mask
10893  *	@vnic_mode: the ingress config/vnic mode setting
10894  *
10895  *	Sets the filter mode and mask by selecting the optional components to
10896  *	enable in filter tuples.  Returns 0 on success and a negative error if
10897  *	the requested mode needs more bits than are available for optional
10898  *	components.  The filter mask must be a subset of the filter mode.
10899  */
10900 int t4_set_filter_cfg(struct adapter *adap, int mode, int mask, int vnic_mode)
10901 {
10902 	static const uint8_t width[] = {1, 3, 17, 17, 8, 8, 16, 9, 3, 1};
10903 	int i, nbits, rc;
10904 	uint32_t param, val;
10905 	uint16_t fmode, fmask;
10906 	const int maxbits = adap->chip_params->filter_opt_len;
10907 
10908 	if (mode != -1 || mask != -1) {
10909 		if (mode != -1) {
10910 			fmode = mode;
10911 			nbits = 0;
10912 			for (i = S_FCOE; i <= S_FRAGMENTATION; i++) {
10913 				if (fmode & (1 << i))
10914 					nbits += width[i];
10915 			}
10916 			if (nbits > maxbits) {
10917 				CH_ERR(adap, "optional fields in the filter "
10918 				    "mode (0x%x) add up to %d bits "
10919 				    "(must be <= %db).  Remove some fields and "
10920 				    "try again.\n", fmode, nbits, maxbits);
10921 				return -E2BIG;
10922 			}
10923 
10924 			/*
10925 			 * Hardware wants the bits to be maxed out.  Keep
10926 			 * setting them until there's no room for more.
10927 			 */
10928 			for (i = S_FCOE; i <= S_FRAGMENTATION; i++) {
10929 				if (fmode & (1 << i))
10930 					continue;
10931 				if (nbits + width[i] <= maxbits) {
10932 					fmode |= 1 << i;
10933 					nbits += width[i];
10934 					if (nbits == maxbits)
10935 						break;
10936 				}
10937 			}
10938 
10939 			fmask = fmode & adap->params.tp.filter_mask;
10940 			if (fmask != adap->params.tp.filter_mask) {
10941 				CH_WARN(adap,
10942 				    "filter mask will be changed from 0x%x to "
10943 				    "0x%x to comply with the filter mode (0x%x).\n",
10944 				    adap->params.tp.filter_mask, fmask, fmode);
10945 			}
10946 		} else {
10947 			fmode = adap->params.tp.filter_mode;
10948 			fmask = mask;
10949 			if ((fmode | fmask) != fmode) {
10950 				CH_ERR(adap,
10951 				    "filter mask (0x%x) must be a subset of "
10952 				    "the filter mode (0x%x).\n", fmask, fmode);
10953 				return -EINVAL;
10954 			}
10955 		}
10956 
10957 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
10958 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) |
10959 		    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_MODE_MASK);
10960 		val = V_FW_PARAMS_PARAM_FILTER_MODE(fmode) |
10961 		    V_FW_PARAMS_PARAM_FILTER_MASK(fmask);
10962 		rc = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param,
10963 		    &val);
10964 		if (rc < 0)
10965 			return rc;
10966 	}
10967 
10968 	if (vnic_mode != -1) {
10969 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
10970 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) |
10971 		    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_VNIC_MODE);
10972 		val = vnic_mode;
10973 		rc = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param,
10974 		    &val);
10975 		if (rc < 0)
10976 			return rc;
10977 	}
10978 
10979 	/* Refresh. */
10980 	read_filter_mode_and_ingress_config(adap);
10981 
10982 	return 0;
10983 }
10984 
10985 /**
10986  *	t4_clr_port_stats - clear port statistics
10987  *	@adap: the adapter
10988  *	@idx: the port index
10989  *
10990  *	Clear HW statistics for the given port.
10991  */
10992 void t4_clr_port_stats(struct adapter *adap, int idx)
10993 {
10994 	unsigned int i;
10995 	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
10996 	u32 port_base_addr;
10997 
10998 	if (is_t4(adap))
10999 		port_base_addr = PORT_BASE(idx);
11000 	else
11001 		port_base_addr = T5_PORT_BASE(idx);
11002 
11003 	for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
11004 			i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
11005 		t4_write_reg(adap, port_base_addr + i, 0);
11006 	for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
11007 			i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
11008 		t4_write_reg(adap, port_base_addr + i, 0);
11009 	for (i = 0; i < 4; i++)
11010 		if (bgmap & (1 << i)) {
11011 			t4_write_reg(adap,
11012 			A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
11013 			t4_write_reg(adap,
11014 			A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
11015 		}
11016 }
11017 
11018 /**
11019  *	t4_i2c_io - read/write I2C data from adapter
11020  *	@adap: the adapter
11021  *	@port: Port number if per-port device; <0 if not
11022  *	@devid: per-port device ID or absolute device ID
11023  *	@offset: byte offset into device I2C space
11024  *	@len: byte length of I2C space data
11025  *	@buf: buffer in which to return I2C data for read
11026  *	      buffer which holds the I2C data for write
11027  *	@write: if true, do a write; else do a read
11028  *	Reads/Writes the I2C data from/to the indicated device and location.
11029  */
11030 int t4_i2c_io(struct adapter *adap, unsigned int mbox,
11031 	      int port, unsigned int devid,
11032 	      unsigned int offset, unsigned int len,
11033 	      u8 *buf, bool write)
11034 {
11035 	struct fw_ldst_cmd ldst_cmd, ldst_rpl;
11036 	unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data);
11037 	int ret = 0;
11038 
11039 	if (len > I2C_PAGE_SIZE)
11040 		return -EINVAL;
11041 
11042 	/* Dont allow reads that spans multiple pages */
11043 	if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE)
11044 		return -EINVAL;
11045 
11046 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
11047 	ldst_cmd.op_to_addrspace =
11048 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
11049 			    F_FW_CMD_REQUEST |
11050 			    (write ? F_FW_CMD_WRITE : F_FW_CMD_READ) |
11051 			    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C));
11052 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
11053 	ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port);
11054 	ldst_cmd.u.i2c.did = devid;
11055 
11056 	while (len > 0) {
11057 		unsigned int i2c_len = (len < i2c_max) ? len : i2c_max;
11058 
11059 		ldst_cmd.u.i2c.boffset = offset;
11060 		ldst_cmd.u.i2c.blen = i2c_len;
11061 
11062 		if (write)
11063 			memcpy(ldst_cmd.u.i2c.data, buf, i2c_len);
11064 
11065 		ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd),
11066 				 write ? NULL : &ldst_rpl);
11067 		if (ret)
11068 			break;
11069 
11070 		if (!write)
11071 			memcpy(buf, ldst_rpl.u.i2c.data, i2c_len);
11072 		offset += i2c_len;
11073 		buf += i2c_len;
11074 		len -= i2c_len;
11075 	}
11076 
11077 	return ret;
11078 }
11079 
11080 int t4_i2c_rd(struct adapter *adap, unsigned int mbox,
11081 	      int port, unsigned int devid,
11082 	      unsigned int offset, unsigned int len,
11083 	      u8 *buf)
11084 {
11085 	return t4_i2c_io(adap, mbox, port, devid, offset, len, buf, false);
11086 }
11087 
11088 int t4_i2c_wr(struct adapter *adap, unsigned int mbox,
11089 	      int port, unsigned int devid,
11090 	      unsigned int offset, unsigned int len,
11091 	      u8 *buf)
11092 {
11093 	return t4_i2c_io(adap, mbox, port, devid, offset, len, buf, true);
11094 }
11095 
11096 /**
11097  * 	t4_sge_ctxt_rd - read an SGE context through FW
11098  * 	@adap: the adapter
11099  * 	@mbox: mailbox to use for the FW command
11100  * 	@cid: the context id
11101  * 	@ctype: the context type
11102  * 	@data: where to store the context data
11103  *
11104  * 	Issues a FW command through the given mailbox to read an SGE context.
11105  */
11106 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
11107 		   enum ctxt_type ctype, u32 *data)
11108 {
11109 	int ret;
11110 	struct fw_ldst_cmd c;
11111 
11112 	if (ctype == CTXT_EGRESS)
11113 		ret = FW_LDST_ADDRSPC_SGE_EGRC;
11114 	else if (ctype == CTXT_INGRESS)
11115 		ret = FW_LDST_ADDRSPC_SGE_INGC;
11116 	else if (ctype == CTXT_FLM)
11117 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
11118 	else
11119 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
11120 
11121 	memset(&c, 0, sizeof(c));
11122 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
11123 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
11124 					V_FW_LDST_CMD_ADDRSPACE(ret));
11125 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
11126 	c.u.idctxt.physid = cpu_to_be32(cid);
11127 
11128 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
11129 	if (ret == 0) {
11130 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
11131 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
11132 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
11133 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
11134 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
11135 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
11136 	}
11137 	return ret;
11138 }
11139 
11140 /**
11141  * 	t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
11142  * 	@adap: the adapter
11143  * 	@cid: the context id
11144  * 	@ctype: the context type
11145  * 	@data: where to store the context data
11146  *
11147  * 	Reads an SGE context directly, bypassing FW.  This is only for
11148  * 	debugging when FW is unavailable.
11149  */
11150 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
11151 		      u32 *data)
11152 {
11153 	int i, ret;
11154 
11155 	t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
11156 	ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
11157 	if (!ret)
11158 		for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
11159 			*data++ = t4_read_reg(adap, i);
11160 	return ret;
11161 }
11162 
11163 int t4_sched_config(struct adapter *adapter, int type, int minmaxen,
11164     int sleep_ok)
11165 {
11166 	struct fw_sched_cmd cmd;
11167 
11168 	memset(&cmd, 0, sizeof(cmd));
11169 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11170 				      F_FW_CMD_REQUEST |
11171 				      F_FW_CMD_WRITE);
11172 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11173 
11174 	cmd.u.config.sc = FW_SCHED_SC_CONFIG;
11175 	cmd.u.config.type = type;
11176 	cmd.u.config.minmaxen = minmaxen;
11177 
11178 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11179 			       NULL, sleep_ok);
11180 }
11181 
11182 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
11183 		    int rateunit, int ratemode, int channel, int cl,
11184 		    int minrate, int maxrate, int weight, int pktsize,
11185 		    int burstsize, int sleep_ok)
11186 {
11187 	struct fw_sched_cmd cmd;
11188 
11189 	memset(&cmd, 0, sizeof(cmd));
11190 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11191 				      F_FW_CMD_REQUEST |
11192 				      F_FW_CMD_WRITE);
11193 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11194 
11195 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
11196 	cmd.u.params.type = type;
11197 	cmd.u.params.level = level;
11198 	cmd.u.params.mode = mode;
11199 	cmd.u.params.ch = channel;
11200 	cmd.u.params.cl = cl;
11201 	cmd.u.params.unit = rateunit;
11202 	cmd.u.params.rate = ratemode;
11203 	cmd.u.params.min = cpu_to_be32(minrate);
11204 	cmd.u.params.max = cpu_to_be32(maxrate);
11205 	cmd.u.params.weight = cpu_to_be16(weight);
11206 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
11207 	cmd.u.params.burstsize = cpu_to_be16(burstsize);
11208 
11209 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11210 			       NULL, sleep_ok);
11211 }
11212 
11213 int t4_sched_params_ch_rl(struct adapter *adapter, int channel, int ratemode,
11214     unsigned int maxrate, int sleep_ok)
11215 {
11216 	struct fw_sched_cmd cmd;
11217 
11218 	memset(&cmd, 0, sizeof(cmd));
11219 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11220 				      F_FW_CMD_REQUEST |
11221 				      F_FW_CMD_WRITE);
11222 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11223 
11224 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
11225 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
11226 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CH_RL;
11227 	cmd.u.params.ch = channel;
11228 	cmd.u.params.rate = ratemode;		/* REL or ABS */
11229 	cmd.u.params.max = cpu_to_be32(maxrate);/*  %  or kbps */
11230 
11231 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11232 			       NULL, sleep_ok);
11233 }
11234 
11235 int t4_sched_params_cl_wrr(struct adapter *adapter, int channel, int cl,
11236     int weight, int sleep_ok)
11237 {
11238 	struct fw_sched_cmd cmd;
11239 
11240 	if (weight < 0 || weight > 100)
11241 		return -EINVAL;
11242 
11243 	memset(&cmd, 0, sizeof(cmd));
11244 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11245 				      F_FW_CMD_REQUEST |
11246 				      F_FW_CMD_WRITE);
11247 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11248 
11249 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
11250 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
11251 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_WRR;
11252 	cmd.u.params.ch = channel;
11253 	cmd.u.params.cl = cl;
11254 	cmd.u.params.weight = cpu_to_be16(weight);
11255 
11256 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11257 			       NULL, sleep_ok);
11258 }
11259 
11260 int t4_sched_params_cl_rl_kbps(struct adapter *adapter, int channel, int cl,
11261     int mode, unsigned int maxrate, int pktsize, int sleep_ok)
11262 {
11263 	struct fw_sched_cmd cmd;
11264 
11265 	memset(&cmd, 0, sizeof(cmd));
11266 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11267 				      F_FW_CMD_REQUEST |
11268 				      F_FW_CMD_WRITE);
11269 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11270 
11271 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
11272 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
11273 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_RL;
11274 	cmd.u.params.mode = mode;
11275 	cmd.u.params.ch = channel;
11276 	cmd.u.params.cl = cl;
11277 	cmd.u.params.unit = FW_SCHED_PARAMS_UNIT_BITRATE;
11278 	cmd.u.params.rate = FW_SCHED_PARAMS_RATE_ABS;
11279 	cmd.u.params.max = cpu_to_be32(maxrate);
11280 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
11281 
11282 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11283 			       NULL, sleep_ok);
11284 }
11285 
11286 /*
11287  *	t4_config_watchdog - configure (enable/disable) a watchdog timer
11288  *	@adapter: the adapter
11289  * 	@mbox: mailbox to use for the FW command
11290  * 	@pf: the PF owning the queue
11291  * 	@vf: the VF owning the queue
11292  *	@timeout: watchdog timeout in ms
11293  *	@action: watchdog timer / action
11294  *
11295  *	There are separate watchdog timers for each possible watchdog
11296  *	action.  Configure one of the watchdog timers by setting a non-zero
11297  *	timeout.  Disable a watchdog timer by using a timeout of zero.
11298  */
11299 int t4_config_watchdog(struct adapter *adapter, unsigned int mbox,
11300 		       unsigned int pf, unsigned int vf,
11301 		       unsigned int timeout, unsigned int action)
11302 {
11303 	struct fw_watchdog_cmd wdog;
11304 	unsigned int ticks;
11305 
11306 	/*
11307 	 * The watchdog command expects a timeout in units of 10ms so we need
11308 	 * to convert it here (via rounding) and force a minimum of one 10ms
11309 	 * "tick" if the timeout is non-zero but the conversion results in 0
11310 	 * ticks.
11311 	 */
11312 	ticks = (timeout + 5)/10;
11313 	if (timeout && !ticks)
11314 		ticks = 1;
11315 
11316 	memset(&wdog, 0, sizeof wdog);
11317 	wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) |
11318 				     F_FW_CMD_REQUEST |
11319 				     F_FW_CMD_WRITE |
11320 				     V_FW_PARAMS_CMD_PFN(pf) |
11321 				     V_FW_PARAMS_CMD_VFN(vf));
11322 	wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog));
11323 	wdog.timeout = cpu_to_be32(ticks);
11324 	wdog.action = cpu_to_be32(action);
11325 
11326 	return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL);
11327 }
11328 
11329 int t4_get_devlog_level(struct adapter *adapter, unsigned int *level)
11330 {
11331 	struct fw_devlog_cmd devlog_cmd;
11332 	int ret;
11333 
11334 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
11335 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
11336 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
11337 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
11338 	ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
11339 			 sizeof(devlog_cmd), &devlog_cmd);
11340 	if (ret)
11341 		return ret;
11342 
11343 	*level = devlog_cmd.level;
11344 	return 0;
11345 }
11346 
11347 int t4_set_devlog_level(struct adapter *adapter, unsigned int level)
11348 {
11349 	struct fw_devlog_cmd devlog_cmd;
11350 
11351 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
11352 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
11353 					     F_FW_CMD_REQUEST |
11354 					     F_FW_CMD_WRITE);
11355 	devlog_cmd.level = level;
11356 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
11357 	return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
11358 			  sizeof(devlog_cmd), &devlog_cmd);
11359 }
11360 
11361 int t4_configure_add_smac(struct adapter *adap)
11362 {
11363 	unsigned int param, val;
11364 	int ret = 0;
11365 
11366 	adap->params.smac_add_support = 0;
11367 	param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
11368 		  V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_ADD_SMAC));
11369 	/* Query FW to check if FW supports adding source mac address
11370 	 * to TCAM feature or not.
11371 	 * If FW returns 1, driver can use this feature and driver need to send
11372 	 * FW_PARAMS_PARAM_DEV_ADD_SMAC write command with value 1 to
11373 	 * enable adding smac to TCAM.
11374 	 */
11375 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
11376 	if (ret)
11377 		return ret;
11378 
11379 	if (val == 1) {
11380 		ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
11381 				    &param, &val);
11382 		if (!ret)
11383 			/* Firmware allows adding explicit TCAM entries.
11384 			 * Save this internally.
11385 			 */
11386 			adap->params.smac_add_support = 1;
11387 	}
11388 
11389 	return ret;
11390 }
11391 
11392 int t4_configure_ringbb(struct adapter *adap)
11393 {
11394 	unsigned int param, val;
11395 	int ret = 0;
11396 
11397 	param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
11398 		  V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RING_BACKBONE));
11399 	/* Query FW to check if FW supports ring switch feature or not.
11400 	 * If FW returns 1, driver can use this feature and driver need to send
11401 	 * FW_PARAMS_PARAM_DEV_RING_BACKBONE write command with value 1 to
11402 	 * enable the ring backbone configuration.
11403 	 */
11404 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
11405 	if (ret < 0) {
11406 		CH_ERR(adap, "Querying FW using Ring backbone params command failed, err=%d\n",
11407 			ret);
11408 		goto out;
11409 	}
11410 
11411 	if (val != 1) {
11412 		CH_ERR(adap, "FW doesnot support ringbackbone features\n");
11413 		goto out;
11414 	}
11415 
11416 	ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
11417 	if (ret < 0) {
11418 		CH_ERR(adap, "Could not set Ringbackbone, err= %d\n",
11419 			ret);
11420 		goto out;
11421 	}
11422 
11423 out:
11424 	return ret;
11425 }
11426 
11427 /*
11428  *	t4_set_vlan_acl - Set a VLAN id for the specified VF
11429  *	@adapter: the adapter
11430  *	@mbox: mailbox to use for the FW command
11431  *	@vf: one of the VFs instantiated by the specified PF
11432  *	@vlan: The vlanid to be set
11433  *
11434  */
11435 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf,
11436 		    u16 vlan)
11437 {
11438 	struct fw_acl_vlan_cmd vlan_cmd;
11439 	unsigned int enable;
11440 
11441 	enable = (vlan ? F_FW_ACL_VLAN_CMD_EN : 0);
11442 	memset(&vlan_cmd, 0, sizeof(vlan_cmd));
11443 	vlan_cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_ACL_VLAN_CMD) |
11444 					 F_FW_CMD_REQUEST |
11445 					 F_FW_CMD_WRITE |
11446 					 F_FW_CMD_EXEC |
11447 					 V_FW_ACL_VLAN_CMD_PFN(adap->pf) |
11448 					 V_FW_ACL_VLAN_CMD_VFN(vf));
11449 	vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd));
11450 	/* Drop all packets that donot match vlan id */
11451 	vlan_cmd.dropnovlan_fm = (enable
11452 				  ? (F_FW_ACL_VLAN_CMD_DROPNOVLAN |
11453 				     F_FW_ACL_VLAN_CMD_FM)
11454 				  : 0);
11455 	if (enable != 0) {
11456 		vlan_cmd.nvlan = 1;
11457 		vlan_cmd.vlanid[0] = cpu_to_be16(vlan);
11458 	}
11459 
11460 	return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL);
11461 }
11462 
11463 /**
11464  *	t4_del_mac - Removes the exact-match filter for a MAC address
11465  *	@adap: the adapter
11466  *	@mbox: mailbox to use for the FW command
11467  *	@viid: the VI id
11468  *	@addr: the MAC address value
11469  *	@smac: if true, delete from only the smac region of MPS
11470  *
11471  *	Modifies an exact-match filter and sets it to the new MAC address if
11472  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
11473  *	latter case the address is added persistently if @persist is %true.
11474  *
11475  *	Returns a negative error number or the index of the filter with the new
11476  *	MAC value.  Note that this index may differ from @idx.
11477  */
11478 int t4_del_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
11479 	       const u8 *addr, bool smac)
11480 {
11481 	int ret;
11482 	struct fw_vi_mac_cmd c;
11483 	struct fw_vi_mac_exact *p = c.u.exact;
11484 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
11485 
11486 	memset(&c, 0, sizeof(c));
11487 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
11488 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
11489 				   V_FW_VI_MAC_CMD_VIID(viid));
11490 	c.freemacs_to_len16 = cpu_to_be32(
11491 					V_FW_CMD_LEN16(1) |
11492 					(smac ? F_FW_VI_MAC_CMD_IS_SMAC : 0));
11493 
11494 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
11495 	p->valid_to_idx = cpu_to_be16(
11496 				F_FW_VI_MAC_CMD_VALID |
11497 				V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_MAC_BASED_FREE));
11498 
11499 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
11500 	if (ret == 0) {
11501 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
11502 		if (ret < max_mac_addr)
11503 			return -ENOMEM;
11504 	}
11505 
11506 	return ret;
11507 }
11508 
11509 /**
11510  *	t4_add_mac - Adds an exact-match filter for a MAC address
11511  *	@adap: the adapter
11512  *	@mbox: mailbox to use for the FW command
11513  *	@viid: the VI id
11514  *	@idx: index of existing filter for old value of MAC address, or -1
11515  *	@addr: the new MAC address value
11516  *	@persist: whether a new MAC allocation should be persistent
11517  *	@add_smt: if true also add the address to the HW SMT
11518  *	@smac: if true, update only the smac region of MPS
11519  *
11520  *	Modifies an exact-match filter and sets it to the new MAC address if
11521  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
11522  *	latter case the address is added persistently if @persist is %true.
11523  *
11524  *	Returns a negative error number or the index of the filter with the new
11525  *	MAC value.  Note that this index may differ from @idx.
11526  */
11527 int t4_add_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
11528 	       int idx, const u8 *addr, bool persist, u8 *smt_idx, bool smac)
11529 {
11530 	int ret, mode;
11531 	struct fw_vi_mac_cmd c;
11532 	struct fw_vi_mac_exact *p = c.u.exact;
11533 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
11534 
11535 	if (idx < 0)		/* new allocation */
11536 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
11537 	mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
11538 
11539 	memset(&c, 0, sizeof(c));
11540 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
11541 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
11542 				   V_FW_VI_MAC_CMD_VIID(viid));
11543 	c.freemacs_to_len16 = cpu_to_be32(
11544 				V_FW_CMD_LEN16(1) |
11545 				(smac ? F_FW_VI_MAC_CMD_IS_SMAC : 0));
11546 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
11547 				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
11548 				      V_FW_VI_MAC_CMD_IDX(idx));
11549 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
11550 
11551 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
11552 	if (ret == 0) {
11553 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
11554 		if (ret >= max_mac_addr)
11555 			return -ENOMEM;
11556 		if (smt_idx) {
11557 			/* Does fw supports returning smt_idx? */
11558 			if (adap->params.viid_smt_extn_support)
11559 				*smt_idx = G_FW_VI_MAC_CMD_SMTID(be32_to_cpu(c.op_to_viid));
11560 			else {
11561 				/* In T4/T5, SMT contains 256 SMAC entries
11562 				 * organized in 128 rows of 2 entries each.
11563 				 * In T6, SMT contains 256 SMAC entries in
11564 				 * 256 rows.
11565 				 */
11566 				if (chip_id(adap) <= CHELSIO_T5)
11567 					*smt_idx = ((viid & M_FW_VIID_VIN) << 1);
11568 				else
11569 					*smt_idx = (viid & M_FW_VIID_VIN);
11570 			}
11571 		}
11572 	}
11573 
11574 	return ret;
11575 }
11576