xref: /freebsd/sys/dev/cxgbe/common/t4_hw.c (revision 23f6875a43f7ce365f2d52cf857da010c47fb03b)
1 /*-
2  * Copyright (c) 2012, 2016 Chelsio Communications, Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_inet.h"
31 
32 #include <sys/param.h>
33 #include <sys/eventhandler.h>
34 
35 #include "common.h"
36 #include "t4_regs.h"
37 #include "t4_regs_values.h"
38 #include "firmware/t4fw_interface.h"
39 
40 #undef msleep
41 #define msleep(x) do { \
42 	if (cold) \
43 		DELAY((x) * 1000); \
44 	else \
45 		pause("t4hw", (x) * hz / 1000); \
46 } while (0)
47 
48 /**
49  *	t4_wait_op_done_val - wait until an operation is completed
50  *	@adapter: the adapter performing the operation
51  *	@reg: the register to check for completion
52  *	@mask: a single-bit field within @reg that indicates completion
53  *	@polarity: the value of the field when the operation is completed
54  *	@attempts: number of check iterations
55  *	@delay: delay in usecs between iterations
56  *	@valp: where to store the value of the register at completion time
57  *
58  *	Wait until an operation is completed by checking a bit in a register
59  *	up to @attempts times.  If @valp is not NULL the value of the register
60  *	at the time it indicated completion is stored there.  Returns 0 if the
61  *	operation completes and	-EAGAIN	otherwise.
62  */
63 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
64 			       int polarity, int attempts, int delay, u32 *valp)
65 {
66 	while (1) {
67 		u32 val = t4_read_reg(adapter, reg);
68 
69 		if (!!(val & mask) == polarity) {
70 			if (valp)
71 				*valp = val;
72 			return 0;
73 		}
74 		if (--attempts == 0)
75 			return -EAGAIN;
76 		if (delay)
77 			udelay(delay);
78 	}
79 }
80 
81 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
82 				  int polarity, int attempts, int delay)
83 {
84 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
85 				   delay, NULL);
86 }
87 
88 /**
89  *	t4_set_reg_field - set a register field to a value
90  *	@adapter: the adapter to program
91  *	@addr: the register address
92  *	@mask: specifies the portion of the register to modify
93  *	@val: the new value for the register field
94  *
95  *	Sets a register field specified by the supplied mask to the
96  *	given value.
97  */
98 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
99 		      u32 val)
100 {
101 	u32 v = t4_read_reg(adapter, addr) & ~mask;
102 
103 	t4_write_reg(adapter, addr, v | val);
104 	(void) t4_read_reg(adapter, addr);      /* flush */
105 }
106 
107 /**
108  *	t4_read_indirect - read indirectly addressed registers
109  *	@adap: the adapter
110  *	@addr_reg: register holding the indirect address
111  *	@data_reg: register holding the value of the indirect register
112  *	@vals: where the read register values are stored
113  *	@nregs: how many indirect registers to read
114  *	@start_idx: index of first indirect register to read
115  *
116  *	Reads registers that are accessed indirectly through an address/data
117  *	register pair.
118  */
119 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
120 			     unsigned int data_reg, u32 *vals,
121 			     unsigned int nregs, unsigned int start_idx)
122 {
123 	while (nregs--) {
124 		t4_write_reg(adap, addr_reg, start_idx);
125 		*vals++ = t4_read_reg(adap, data_reg);
126 		start_idx++;
127 	}
128 }
129 
130 /**
131  *	t4_write_indirect - write indirectly addressed registers
132  *	@adap: the adapter
133  *	@addr_reg: register holding the indirect addresses
134  *	@data_reg: register holding the value for the indirect registers
135  *	@vals: values to write
136  *	@nregs: how many indirect registers to write
137  *	@start_idx: address of first indirect register to write
138  *
139  *	Writes a sequential block of registers that are accessed indirectly
140  *	through an address/data register pair.
141  */
142 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
143 		       unsigned int data_reg, const u32 *vals,
144 		       unsigned int nregs, unsigned int start_idx)
145 {
146 	while (nregs--) {
147 		t4_write_reg(adap, addr_reg, start_idx++);
148 		t4_write_reg(adap, data_reg, *vals++);
149 	}
150 }
151 
152 /*
153  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
154  * mechanism.  This guarantees that we get the real value even if we're
155  * operating within a Virtual Machine and the Hypervisor is trapping our
156  * Configuration Space accesses.
157  *
158  * N.B. This routine should only be used as a last resort: the firmware uses
159  *      the backdoor registers on a regular basis and we can end up
160  *      conflicting with it's uses!
161  */
162 u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
163 {
164 	u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg);
165 	u32 val;
166 
167 	if (chip_id(adap) <= CHELSIO_T5)
168 		req |= F_ENABLE;
169 	else
170 		req |= F_T6_ENABLE;
171 
172 	if (is_t4(adap))
173 		req |= F_LOCALCFG;
174 
175 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req);
176 	val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
177 
178 	/*
179 	 * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
180 	 * Configuration Space read.  (None of the other fields matter when
181 	 * F_ENABLE is 0 so a simple register write is easier than a
182 	 * read-modify-write via t4_set_reg_field().)
183 	 */
184 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0);
185 
186 	return val;
187 }
188 
189 /*
190  * t4_report_fw_error - report firmware error
191  * @adap: the adapter
192  *
193  * The adapter firmware can indicate error conditions to the host.
194  * If the firmware has indicated an error, print out the reason for
195  * the firmware error.
196  */
197 static void t4_report_fw_error(struct adapter *adap)
198 {
199 	static const char *const reason[] = {
200 		"Crash",			/* PCIE_FW_EVAL_CRASH */
201 		"During Device Preparation",	/* PCIE_FW_EVAL_PREP */
202 		"During Device Configuration",	/* PCIE_FW_EVAL_CONF */
203 		"During Device Initialization",	/* PCIE_FW_EVAL_INIT */
204 		"Unexpected Event",		/* PCIE_FW_EVAL_UNEXPECTEDEVENT */
205 		"Insufficient Airflow",		/* PCIE_FW_EVAL_OVERHEAT */
206 		"Device Shutdown",		/* PCIE_FW_EVAL_DEVICESHUTDOWN */
207 		"Reserved",			/* reserved */
208 	};
209 	u32 pcie_fw;
210 
211 	pcie_fw = t4_read_reg(adap, A_PCIE_FW);
212 	if (pcie_fw & F_PCIE_FW_ERR)
213 		CH_ERR(adap, "Firmware reports adapter error: %s\n",
214 			reason[G_PCIE_FW_EVAL(pcie_fw)]);
215 }
216 
217 /*
218  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
219  */
220 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
221 			 u32 mbox_addr)
222 {
223 	for ( ; nflit; nflit--, mbox_addr += 8)
224 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
225 }
226 
227 /*
228  * Handle a FW assertion reported in a mailbox.
229  */
230 static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt)
231 {
232 	CH_ALERT(adap,
233 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
234 		  asrt->u.assert.filename_0_7,
235 		  be32_to_cpu(asrt->u.assert.line),
236 		  be32_to_cpu(asrt->u.assert.x),
237 		  be32_to_cpu(asrt->u.assert.y));
238 }
239 
240 #define X_CIM_PF_NOACCESS 0xeeeeeeee
241 /**
242  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
243  *	@adap: the adapter
244  *	@mbox: index of the mailbox to use
245  *	@cmd: the command to write
246  *	@size: command length in bytes
247  *	@rpl: where to optionally store the reply
248  *	@sleep_ok: if true we may sleep while awaiting command completion
249  *	@timeout: time to wait for command to finish before timing out
250  *		(negative implies @sleep_ok=false)
251  *
252  *	Sends the given command to FW through the selected mailbox and waits
253  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
254  *	store the FW's reply to the command.  The command and its optional
255  *	reply are of the same length.  Some FW commands like RESET and
256  *	INITIALIZE can take a considerable amount of time to execute.
257  *	@sleep_ok determines whether we may sleep while awaiting the response.
258  *	If sleeping is allowed we use progressive backoff otherwise we spin.
259  *	Note that passing in a negative @timeout is an alternate mechanism
260  *	for specifying @sleep_ok=false.  This is useful when a higher level
261  *	interface allows for specification of @timeout but not @sleep_ok ...
262  *
263  *	The return value is 0 on success or a negative errno on failure.  A
264  *	failure can happen either because we are not able to execute the
265  *	command or FW executes it but signals an error.  In the latter case
266  *	the return value is the error code indicated by FW (negated).
267  */
268 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
269 			    int size, void *rpl, bool sleep_ok, int timeout)
270 {
271 	/*
272 	 * We delay in small increments at first in an effort to maintain
273 	 * responsiveness for simple, fast executing commands but then back
274 	 * off to larger delays to a maximum retry delay.
275 	 */
276 	static const int delay[] = {
277 		1, 1, 3, 5, 10, 10, 20, 50, 100
278 	};
279 	u32 v;
280 	u64 res;
281 	int i, ms, delay_idx, ret;
282 	const __be64 *p = cmd;
283 	u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
284 	u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
285 	u32 ctl;
286 	__be64 cmd_rpl[MBOX_LEN/8];
287 	u32 pcie_fw;
288 
289 	if ((size & 15) || size > MBOX_LEN)
290 		return -EINVAL;
291 
292 	if (adap->flags & IS_VF) {
293 		if (is_t6(adap))
294 			data_reg = FW_T6VF_MBDATA_BASE_ADDR;
295 		else
296 			data_reg = FW_T4VF_MBDATA_BASE_ADDR;
297 		ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL);
298 	}
299 
300 	/*
301 	 * If we have a negative timeout, that implies that we can't sleep.
302 	 */
303 	if (timeout < 0) {
304 		sleep_ok = false;
305 		timeout = -timeout;
306 	}
307 
308 	/*
309 	 * Attempt to gain access to the mailbox.
310 	 */
311 	for (i = 0; i < 4; i++) {
312 		ctl = t4_read_reg(adap, ctl_reg);
313 		v = G_MBOWNER(ctl);
314 		if (v != X_MBOWNER_NONE)
315 			break;
316 	}
317 
318 	/*
319 	 * If we were unable to gain access, dequeue ourselves from the
320 	 * mailbox atomic access list and report the error to our caller.
321 	 */
322 	if (v != X_MBOWNER_PL) {
323 		t4_report_fw_error(adap);
324 		ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
325 		return ret;
326 	}
327 
328 	/*
329 	 * If we gain ownership of the mailbox and there's a "valid" message
330 	 * in it, this is likely an asynchronous error message from the
331 	 * firmware.  So we'll report that and then proceed on with attempting
332 	 * to issue our own command ... which may well fail if the error
333 	 * presaged the firmware crashing ...
334 	 */
335 	if (ctl & F_MBMSGVALID) {
336 		CH_ERR(adap, "found VALID command in mbox %u: "
337 		       "%llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
338 		       (unsigned long long)t4_read_reg64(adap, data_reg),
339 		       (unsigned long long)t4_read_reg64(adap, data_reg + 8),
340 		       (unsigned long long)t4_read_reg64(adap, data_reg + 16),
341 		       (unsigned long long)t4_read_reg64(adap, data_reg + 24),
342 		       (unsigned long long)t4_read_reg64(adap, data_reg + 32),
343 		       (unsigned long long)t4_read_reg64(adap, data_reg + 40),
344 		       (unsigned long long)t4_read_reg64(adap, data_reg + 48),
345 		       (unsigned long long)t4_read_reg64(adap, data_reg + 56));
346 	}
347 
348 	/*
349 	 * Copy in the new mailbox command and send it on its way ...
350 	 */
351 	for (i = 0; i < size; i += 8, p++)
352 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p));
353 
354 	if (adap->flags & IS_VF) {
355 		/*
356 		 * For the VFs, the Mailbox Data "registers" are
357 		 * actually backed by T4's "MA" interface rather than
358 		 * PL Registers (as is the case for the PFs).  Because
359 		 * these are in different coherency domains, the write
360 		 * to the VF's PL-register-backed Mailbox Control can
361 		 * race in front of the writes to the MA-backed VF
362 		 * Mailbox Data "registers".  So we need to do a
363 		 * read-back on at least one byte of the VF Mailbox
364 		 * Data registers before doing the write to the VF
365 		 * Mailbox Control register.
366 		 */
367 		t4_read_reg(adap, data_reg);
368 	}
369 
370 	CH_DUMP_MBOX(adap, mbox, data_reg);
371 
372 	t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
373 	t4_read_reg(adap, ctl_reg);	/* flush write */
374 
375 	delay_idx = 0;
376 	ms = delay[0];
377 
378 	/*
379 	 * Loop waiting for the reply; bail out if we time out or the firmware
380 	 * reports an error.
381 	 */
382 	pcie_fw = 0;
383 	for (i = 0; i < timeout; i += ms) {
384 		if (!(adap->flags & IS_VF)) {
385 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
386 			if (pcie_fw & F_PCIE_FW_ERR)
387 				break;
388 		}
389 		if (sleep_ok) {
390 			ms = delay[delay_idx];  /* last element may repeat */
391 			if (delay_idx < ARRAY_SIZE(delay) - 1)
392 				delay_idx++;
393 			msleep(ms);
394 		} else {
395 			mdelay(ms);
396 		}
397 
398 		v = t4_read_reg(adap, ctl_reg);
399 		if (v == X_CIM_PF_NOACCESS)
400 			continue;
401 		if (G_MBOWNER(v) == X_MBOWNER_PL) {
402 			if (!(v & F_MBMSGVALID)) {
403 				t4_write_reg(adap, ctl_reg,
404 					     V_MBOWNER(X_MBOWNER_NONE));
405 				continue;
406 			}
407 
408 			/*
409 			 * Retrieve the command reply and release the mailbox.
410 			 */
411 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg);
412 			t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
413 
414 			CH_DUMP_MBOX(adap, mbox, data_reg);
415 
416 			res = be64_to_cpu(cmd_rpl[0]);
417 			if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
418 				fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl);
419 				res = V_FW_CMD_RETVAL(EIO);
420 			} else if (rpl)
421 				memcpy(rpl, cmd_rpl, size);
422 			return -G_FW_CMD_RETVAL((int)res);
423 		}
424 	}
425 
426 	/*
427 	 * We timed out waiting for a reply to our mailbox command.  Report
428 	 * the error and also check to see if the firmware reported any
429 	 * errors ...
430 	 */
431 	ret = (pcie_fw & F_PCIE_FW_ERR) ? -ENXIO : -ETIMEDOUT;
432 	CH_ERR(adap, "command %#x in mailbox %d timed out\n",
433 	       *(const u8 *)cmd, mbox);
434 
435 	/* If DUMP_MBOX is set the mbox has already been dumped */
436 	if ((adap->debug_flags & DF_DUMP_MBOX) == 0) {
437 		p = cmd;
438 		CH_ERR(adap, "mbox: %016llx %016llx %016llx %016llx "
439 		    "%016llx %016llx %016llx %016llx\n",
440 		    (unsigned long long)be64_to_cpu(p[0]),
441 		    (unsigned long long)be64_to_cpu(p[1]),
442 		    (unsigned long long)be64_to_cpu(p[2]),
443 		    (unsigned long long)be64_to_cpu(p[3]),
444 		    (unsigned long long)be64_to_cpu(p[4]),
445 		    (unsigned long long)be64_to_cpu(p[5]),
446 		    (unsigned long long)be64_to_cpu(p[6]),
447 		    (unsigned long long)be64_to_cpu(p[7]));
448 	}
449 
450 	t4_report_fw_error(adap);
451 	t4_fatal_err(adap);
452 	return ret;
453 }
454 
455 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
456 		    void *rpl, bool sleep_ok)
457 {
458 		return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl,
459 					       sleep_ok, FW_CMD_MAX_TIMEOUT);
460 
461 }
462 
463 static int t4_edc_err_read(struct adapter *adap, int idx)
464 {
465 	u32 edc_ecc_err_addr_reg;
466 	u32 edc_bist_status_rdata_reg;
467 
468 	if (is_t4(adap)) {
469 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
470 		return 0;
471 	}
472 	if (idx != 0 && idx != 1) {
473 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
474 		return 0;
475 	}
476 
477 	edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx);
478 	edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx);
479 
480 	CH_WARN(adap,
481 		"edc%d err addr 0x%x: 0x%x.\n",
482 		idx, edc_ecc_err_addr_reg,
483 		t4_read_reg(adap, edc_ecc_err_addr_reg));
484 	CH_WARN(adap,
485 	 	"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
486 		edc_bist_status_rdata_reg,
487 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg),
488 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8),
489 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16),
490 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24),
491 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32),
492 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40),
493 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48),
494 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56),
495 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64));
496 
497 	return 0;
498 }
499 
500 /**
501  *	t4_mc_read - read from MC through backdoor accesses
502  *	@adap: the adapter
503  *	@idx: which MC to access
504  *	@addr: address of first byte requested
505  *	@data: 64 bytes of data containing the requested address
506  *	@ecc: where to store the corresponding 64-bit ECC word
507  *
508  *	Read 64 bytes of data from MC starting at a 64-byte-aligned address
509  *	that covers the requested address @addr.  If @parity is not %NULL it
510  *	is assigned the 64-bit ECC word for the read data.
511  */
512 int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
513 {
514 	int i;
515 	u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
516 	u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
517 
518 	if (is_t4(adap)) {
519 		mc_bist_cmd_reg = A_MC_BIST_CMD;
520 		mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
521 		mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
522 		mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
523 		mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
524 	} else {
525 		mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
526 		mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
527 		mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
528 		mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA,
529 						  idx);
530 		mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN,
531 						  idx);
532 	}
533 
534 	if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
535 		return -EBUSY;
536 	t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
537 	t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
538 	t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
539 	t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
540 		     F_START_BIST | V_BIST_CMD_GAP(1));
541 	i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
542 	if (i)
543 		return i;
544 
545 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
546 
547 	for (i = 15; i >= 0; i--)
548 		*data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
549 	if (ecc)
550 		*ecc = t4_read_reg64(adap, MC_DATA(16));
551 #undef MC_DATA
552 	return 0;
553 }
554 
555 /**
556  *	t4_edc_read - read from EDC through backdoor accesses
557  *	@adap: the adapter
558  *	@idx: which EDC to access
559  *	@addr: address of first byte requested
560  *	@data: 64 bytes of data containing the requested address
561  *	@ecc: where to store the corresponding 64-bit ECC word
562  *
563  *	Read 64 bytes of data from EDC starting at a 64-byte-aligned address
564  *	that covers the requested address @addr.  If @parity is not %NULL it
565  *	is assigned the 64-bit ECC word for the read data.
566  */
567 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
568 {
569 	int i;
570 	u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
571 	u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
572 
573 	if (is_t4(adap)) {
574 		edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
575 		edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
576 		edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
577 		edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
578 						    idx);
579 		edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
580 						    idx);
581 	} else {
582 /*
583  * These macro are missing in t4_regs.h file.
584  * Added temporarily for testing.
585  */
586 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
587 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
588 		edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx);
589 		edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx);
590 		edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx);
591 		edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN,
592 						    idx);
593 		edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA,
594 						    idx);
595 #undef EDC_REG_T5
596 #undef EDC_STRIDE_T5
597 	}
598 
599 	if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
600 		return -EBUSY;
601 	t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
602 	t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
603 	t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
604 	t4_write_reg(adap, edc_bist_cmd_reg,
605 		     V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
606 	i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
607 	if (i)
608 		return i;
609 
610 #define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
611 
612 	for (i = 15; i >= 0; i--)
613 		*data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
614 	if (ecc)
615 		*ecc = t4_read_reg64(adap, EDC_DATA(16));
616 #undef EDC_DATA
617 	return 0;
618 }
619 
620 /**
621  *	t4_mem_read - read EDC 0, EDC 1 or MC into buffer
622  *	@adap: the adapter
623  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
624  *	@addr: address within indicated memory type
625  *	@len: amount of memory to read
626  *	@buf: host memory buffer
627  *
628  *	Reads an [almost] arbitrary memory region in the firmware: the
629  *	firmware memory address, length and host buffer must be aligned on
630  *	32-bit boudaries.  The memory is returned as a raw byte sequence from
631  *	the firmware's memory.  If this memory contains data structures which
632  *	contain multi-byte integers, it's the callers responsibility to
633  *	perform appropriate byte order conversions.
634  */
635 int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
636 		__be32 *buf)
637 {
638 	u32 pos, start, end, offset;
639 	int ret;
640 
641 	/*
642 	 * Argument sanity checks ...
643 	 */
644 	if ((addr & 0x3) || (len & 0x3))
645 		return -EINVAL;
646 
647 	/*
648 	 * The underlaying EDC/MC read routines read 64 bytes at a time so we
649 	 * need to round down the start and round up the end.  We'll start
650 	 * copying out of the first line at (addr - start) a word at a time.
651 	 */
652 	start = rounddown2(addr, 64);
653 	end = roundup2(addr + len, 64);
654 	offset = (addr - start)/sizeof(__be32);
655 
656 	for (pos = start; pos < end; pos += 64, offset = 0) {
657 		__be32 data[16];
658 
659 		/*
660 		 * Read the chip's memory block and bail if there's an error.
661 		 */
662 		if ((mtype == MEM_MC) || (mtype == MEM_MC1))
663 			ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
664 		else
665 			ret = t4_edc_read(adap, mtype, pos, data, NULL);
666 		if (ret)
667 			return ret;
668 
669 		/*
670 		 * Copy the data into the caller's memory buffer.
671 		 */
672 		while (offset < 16 && len > 0) {
673 			*buf++ = data[offset++];
674 			len -= sizeof(__be32);
675 		}
676 	}
677 
678 	return 0;
679 }
680 
681 /*
682  * Return the specified PCI-E Configuration Space register from our Physical
683  * Function.  We try first via a Firmware LDST Command (if fw_attach != 0)
684  * since we prefer to let the firmware own all of these registers, but if that
685  * fails we go for it directly ourselves.
686  */
687 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach)
688 {
689 
690 	/*
691 	 * If fw_attach != 0, construct and send the Firmware LDST Command to
692 	 * retrieve the specified PCI-E Configuration Space register.
693 	 */
694 	if (drv_fw_attach != 0) {
695 		struct fw_ldst_cmd ldst_cmd;
696 		int ret;
697 
698 		memset(&ldst_cmd, 0, sizeof(ldst_cmd));
699 		ldst_cmd.op_to_addrspace =
700 			cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
701 				    F_FW_CMD_REQUEST |
702 				    F_FW_CMD_READ |
703 				    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
704 		ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
705 		ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1);
706 		ldst_cmd.u.pcie.ctrl_to_fn =
707 			(F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf));
708 		ldst_cmd.u.pcie.r = reg;
709 
710 		/*
711 		 * If the LDST Command succeeds, return the result, otherwise
712 		 * fall through to reading it directly ourselves ...
713 		 */
714 		ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
715 				 &ldst_cmd);
716 		if (ret == 0)
717 			return be32_to_cpu(ldst_cmd.u.pcie.data[0]);
718 
719 		CH_WARN(adap, "Firmware failed to return "
720 			"Configuration Space register %d, err = %d\n",
721 			reg, -ret);
722 	}
723 
724 	/*
725 	 * Read the desired Configuration Space register via the PCI-E
726 	 * Backdoor mechanism.
727 	 */
728 	return t4_hw_pci_read_cfg4(adap, reg);
729 }
730 
731 /**
732  *	t4_get_regs_len - return the size of the chips register set
733  *	@adapter: the adapter
734  *
735  *	Returns the size of the chip's BAR0 register space.
736  */
737 unsigned int t4_get_regs_len(struct adapter *adapter)
738 {
739 	unsigned int chip_version = chip_id(adapter);
740 
741 	switch (chip_version) {
742 	case CHELSIO_T4:
743 		if (adapter->flags & IS_VF)
744 			return FW_T4VF_REGMAP_SIZE;
745 		return T4_REGMAP_SIZE;
746 
747 	case CHELSIO_T5:
748 	case CHELSIO_T6:
749 		if (adapter->flags & IS_VF)
750 			return FW_T4VF_REGMAP_SIZE;
751 		return T5_REGMAP_SIZE;
752 	}
753 
754 	CH_ERR(adapter,
755 		"Unsupported chip version %d\n", chip_version);
756 	return 0;
757 }
758 
759 /**
760  *	t4_get_regs - read chip registers into provided buffer
761  *	@adap: the adapter
762  *	@buf: register buffer
763  *	@buf_size: size (in bytes) of register buffer
764  *
765  *	If the provided register buffer isn't large enough for the chip's
766  *	full register range, the register dump will be truncated to the
767  *	register buffer's size.
768  */
769 void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size)
770 {
771 	static const unsigned int t4_reg_ranges[] = {
772 		0x1008, 0x1108,
773 		0x1180, 0x1184,
774 		0x1190, 0x1194,
775 		0x11a0, 0x11a4,
776 		0x11b0, 0x11b4,
777 		0x11fc, 0x123c,
778 		0x1300, 0x173c,
779 		0x1800, 0x18fc,
780 		0x3000, 0x30d8,
781 		0x30e0, 0x30e4,
782 		0x30ec, 0x5910,
783 		0x5920, 0x5924,
784 		0x5960, 0x5960,
785 		0x5968, 0x5968,
786 		0x5970, 0x5970,
787 		0x5978, 0x5978,
788 		0x5980, 0x5980,
789 		0x5988, 0x5988,
790 		0x5990, 0x5990,
791 		0x5998, 0x5998,
792 		0x59a0, 0x59d4,
793 		0x5a00, 0x5ae0,
794 		0x5ae8, 0x5ae8,
795 		0x5af0, 0x5af0,
796 		0x5af8, 0x5af8,
797 		0x6000, 0x6098,
798 		0x6100, 0x6150,
799 		0x6200, 0x6208,
800 		0x6240, 0x6248,
801 		0x6280, 0x62b0,
802 		0x62c0, 0x6338,
803 		0x6370, 0x638c,
804 		0x6400, 0x643c,
805 		0x6500, 0x6524,
806 		0x6a00, 0x6a04,
807 		0x6a14, 0x6a38,
808 		0x6a60, 0x6a70,
809 		0x6a78, 0x6a78,
810 		0x6b00, 0x6b0c,
811 		0x6b1c, 0x6b84,
812 		0x6bf0, 0x6bf8,
813 		0x6c00, 0x6c0c,
814 		0x6c1c, 0x6c84,
815 		0x6cf0, 0x6cf8,
816 		0x6d00, 0x6d0c,
817 		0x6d1c, 0x6d84,
818 		0x6df0, 0x6df8,
819 		0x6e00, 0x6e0c,
820 		0x6e1c, 0x6e84,
821 		0x6ef0, 0x6ef8,
822 		0x6f00, 0x6f0c,
823 		0x6f1c, 0x6f84,
824 		0x6ff0, 0x6ff8,
825 		0x7000, 0x700c,
826 		0x701c, 0x7084,
827 		0x70f0, 0x70f8,
828 		0x7100, 0x710c,
829 		0x711c, 0x7184,
830 		0x71f0, 0x71f8,
831 		0x7200, 0x720c,
832 		0x721c, 0x7284,
833 		0x72f0, 0x72f8,
834 		0x7300, 0x730c,
835 		0x731c, 0x7384,
836 		0x73f0, 0x73f8,
837 		0x7400, 0x7450,
838 		0x7500, 0x7530,
839 		0x7600, 0x760c,
840 		0x7614, 0x761c,
841 		0x7680, 0x76cc,
842 		0x7700, 0x7798,
843 		0x77c0, 0x77fc,
844 		0x7900, 0x79fc,
845 		0x7b00, 0x7b58,
846 		0x7b60, 0x7b84,
847 		0x7b8c, 0x7c38,
848 		0x7d00, 0x7d38,
849 		0x7d40, 0x7d80,
850 		0x7d8c, 0x7ddc,
851 		0x7de4, 0x7e04,
852 		0x7e10, 0x7e1c,
853 		0x7e24, 0x7e38,
854 		0x7e40, 0x7e44,
855 		0x7e4c, 0x7e78,
856 		0x7e80, 0x7ea4,
857 		0x7eac, 0x7edc,
858 		0x7ee8, 0x7efc,
859 		0x8dc0, 0x8e04,
860 		0x8e10, 0x8e1c,
861 		0x8e30, 0x8e78,
862 		0x8ea0, 0x8eb8,
863 		0x8ec0, 0x8f6c,
864 		0x8fc0, 0x9008,
865 		0x9010, 0x9058,
866 		0x9060, 0x9060,
867 		0x9068, 0x9074,
868 		0x90fc, 0x90fc,
869 		0x9400, 0x9408,
870 		0x9410, 0x9458,
871 		0x9600, 0x9600,
872 		0x9608, 0x9638,
873 		0x9640, 0x96bc,
874 		0x9800, 0x9808,
875 		0x9820, 0x983c,
876 		0x9850, 0x9864,
877 		0x9c00, 0x9c6c,
878 		0x9c80, 0x9cec,
879 		0x9d00, 0x9d6c,
880 		0x9d80, 0x9dec,
881 		0x9e00, 0x9e6c,
882 		0x9e80, 0x9eec,
883 		0x9f00, 0x9f6c,
884 		0x9f80, 0x9fec,
885 		0xd004, 0xd004,
886 		0xd010, 0xd03c,
887 		0xdfc0, 0xdfe0,
888 		0xe000, 0xea7c,
889 		0xf000, 0x11190,
890 		0x19040, 0x1906c,
891 		0x19078, 0x19080,
892 		0x1908c, 0x190e4,
893 		0x190f0, 0x190f8,
894 		0x19100, 0x19110,
895 		0x19120, 0x19124,
896 		0x19150, 0x19194,
897 		0x1919c, 0x191b0,
898 		0x191d0, 0x191e8,
899 		0x19238, 0x1924c,
900 		0x193f8, 0x1943c,
901 		0x1944c, 0x19474,
902 		0x19490, 0x194e0,
903 		0x194f0, 0x194f8,
904 		0x19800, 0x19c08,
905 		0x19c10, 0x19c90,
906 		0x19ca0, 0x19ce4,
907 		0x19cf0, 0x19d40,
908 		0x19d50, 0x19d94,
909 		0x19da0, 0x19de8,
910 		0x19df0, 0x19e40,
911 		0x19e50, 0x19e90,
912 		0x19ea0, 0x19f4c,
913 		0x1a000, 0x1a004,
914 		0x1a010, 0x1a06c,
915 		0x1a0b0, 0x1a0e4,
916 		0x1a0ec, 0x1a0f4,
917 		0x1a100, 0x1a108,
918 		0x1a114, 0x1a120,
919 		0x1a128, 0x1a130,
920 		0x1a138, 0x1a138,
921 		0x1a190, 0x1a1c4,
922 		0x1a1fc, 0x1a1fc,
923 		0x1e040, 0x1e04c,
924 		0x1e284, 0x1e28c,
925 		0x1e2c0, 0x1e2c0,
926 		0x1e2e0, 0x1e2e0,
927 		0x1e300, 0x1e384,
928 		0x1e3c0, 0x1e3c8,
929 		0x1e440, 0x1e44c,
930 		0x1e684, 0x1e68c,
931 		0x1e6c0, 0x1e6c0,
932 		0x1e6e0, 0x1e6e0,
933 		0x1e700, 0x1e784,
934 		0x1e7c0, 0x1e7c8,
935 		0x1e840, 0x1e84c,
936 		0x1ea84, 0x1ea8c,
937 		0x1eac0, 0x1eac0,
938 		0x1eae0, 0x1eae0,
939 		0x1eb00, 0x1eb84,
940 		0x1ebc0, 0x1ebc8,
941 		0x1ec40, 0x1ec4c,
942 		0x1ee84, 0x1ee8c,
943 		0x1eec0, 0x1eec0,
944 		0x1eee0, 0x1eee0,
945 		0x1ef00, 0x1ef84,
946 		0x1efc0, 0x1efc8,
947 		0x1f040, 0x1f04c,
948 		0x1f284, 0x1f28c,
949 		0x1f2c0, 0x1f2c0,
950 		0x1f2e0, 0x1f2e0,
951 		0x1f300, 0x1f384,
952 		0x1f3c0, 0x1f3c8,
953 		0x1f440, 0x1f44c,
954 		0x1f684, 0x1f68c,
955 		0x1f6c0, 0x1f6c0,
956 		0x1f6e0, 0x1f6e0,
957 		0x1f700, 0x1f784,
958 		0x1f7c0, 0x1f7c8,
959 		0x1f840, 0x1f84c,
960 		0x1fa84, 0x1fa8c,
961 		0x1fac0, 0x1fac0,
962 		0x1fae0, 0x1fae0,
963 		0x1fb00, 0x1fb84,
964 		0x1fbc0, 0x1fbc8,
965 		0x1fc40, 0x1fc4c,
966 		0x1fe84, 0x1fe8c,
967 		0x1fec0, 0x1fec0,
968 		0x1fee0, 0x1fee0,
969 		0x1ff00, 0x1ff84,
970 		0x1ffc0, 0x1ffc8,
971 		0x20000, 0x2002c,
972 		0x20100, 0x2013c,
973 		0x20190, 0x201a0,
974 		0x201a8, 0x201b8,
975 		0x201c4, 0x201c8,
976 		0x20200, 0x20318,
977 		0x20400, 0x204b4,
978 		0x204c0, 0x20528,
979 		0x20540, 0x20614,
980 		0x21000, 0x21040,
981 		0x2104c, 0x21060,
982 		0x210c0, 0x210ec,
983 		0x21200, 0x21268,
984 		0x21270, 0x21284,
985 		0x212fc, 0x21388,
986 		0x21400, 0x21404,
987 		0x21500, 0x21500,
988 		0x21510, 0x21518,
989 		0x2152c, 0x21530,
990 		0x2153c, 0x2153c,
991 		0x21550, 0x21554,
992 		0x21600, 0x21600,
993 		0x21608, 0x2161c,
994 		0x21624, 0x21628,
995 		0x21630, 0x21634,
996 		0x2163c, 0x2163c,
997 		0x21700, 0x2171c,
998 		0x21780, 0x2178c,
999 		0x21800, 0x21818,
1000 		0x21820, 0x21828,
1001 		0x21830, 0x21848,
1002 		0x21850, 0x21854,
1003 		0x21860, 0x21868,
1004 		0x21870, 0x21870,
1005 		0x21878, 0x21898,
1006 		0x218a0, 0x218a8,
1007 		0x218b0, 0x218c8,
1008 		0x218d0, 0x218d4,
1009 		0x218e0, 0x218e8,
1010 		0x218f0, 0x218f0,
1011 		0x218f8, 0x21a18,
1012 		0x21a20, 0x21a28,
1013 		0x21a30, 0x21a48,
1014 		0x21a50, 0x21a54,
1015 		0x21a60, 0x21a68,
1016 		0x21a70, 0x21a70,
1017 		0x21a78, 0x21a98,
1018 		0x21aa0, 0x21aa8,
1019 		0x21ab0, 0x21ac8,
1020 		0x21ad0, 0x21ad4,
1021 		0x21ae0, 0x21ae8,
1022 		0x21af0, 0x21af0,
1023 		0x21af8, 0x21c18,
1024 		0x21c20, 0x21c20,
1025 		0x21c28, 0x21c30,
1026 		0x21c38, 0x21c38,
1027 		0x21c80, 0x21c98,
1028 		0x21ca0, 0x21ca8,
1029 		0x21cb0, 0x21cc8,
1030 		0x21cd0, 0x21cd4,
1031 		0x21ce0, 0x21ce8,
1032 		0x21cf0, 0x21cf0,
1033 		0x21cf8, 0x21d7c,
1034 		0x21e00, 0x21e04,
1035 		0x22000, 0x2202c,
1036 		0x22100, 0x2213c,
1037 		0x22190, 0x221a0,
1038 		0x221a8, 0x221b8,
1039 		0x221c4, 0x221c8,
1040 		0x22200, 0x22318,
1041 		0x22400, 0x224b4,
1042 		0x224c0, 0x22528,
1043 		0x22540, 0x22614,
1044 		0x23000, 0x23040,
1045 		0x2304c, 0x23060,
1046 		0x230c0, 0x230ec,
1047 		0x23200, 0x23268,
1048 		0x23270, 0x23284,
1049 		0x232fc, 0x23388,
1050 		0x23400, 0x23404,
1051 		0x23500, 0x23500,
1052 		0x23510, 0x23518,
1053 		0x2352c, 0x23530,
1054 		0x2353c, 0x2353c,
1055 		0x23550, 0x23554,
1056 		0x23600, 0x23600,
1057 		0x23608, 0x2361c,
1058 		0x23624, 0x23628,
1059 		0x23630, 0x23634,
1060 		0x2363c, 0x2363c,
1061 		0x23700, 0x2371c,
1062 		0x23780, 0x2378c,
1063 		0x23800, 0x23818,
1064 		0x23820, 0x23828,
1065 		0x23830, 0x23848,
1066 		0x23850, 0x23854,
1067 		0x23860, 0x23868,
1068 		0x23870, 0x23870,
1069 		0x23878, 0x23898,
1070 		0x238a0, 0x238a8,
1071 		0x238b0, 0x238c8,
1072 		0x238d0, 0x238d4,
1073 		0x238e0, 0x238e8,
1074 		0x238f0, 0x238f0,
1075 		0x238f8, 0x23a18,
1076 		0x23a20, 0x23a28,
1077 		0x23a30, 0x23a48,
1078 		0x23a50, 0x23a54,
1079 		0x23a60, 0x23a68,
1080 		0x23a70, 0x23a70,
1081 		0x23a78, 0x23a98,
1082 		0x23aa0, 0x23aa8,
1083 		0x23ab0, 0x23ac8,
1084 		0x23ad0, 0x23ad4,
1085 		0x23ae0, 0x23ae8,
1086 		0x23af0, 0x23af0,
1087 		0x23af8, 0x23c18,
1088 		0x23c20, 0x23c20,
1089 		0x23c28, 0x23c30,
1090 		0x23c38, 0x23c38,
1091 		0x23c80, 0x23c98,
1092 		0x23ca0, 0x23ca8,
1093 		0x23cb0, 0x23cc8,
1094 		0x23cd0, 0x23cd4,
1095 		0x23ce0, 0x23ce8,
1096 		0x23cf0, 0x23cf0,
1097 		0x23cf8, 0x23d7c,
1098 		0x23e00, 0x23e04,
1099 		0x24000, 0x2402c,
1100 		0x24100, 0x2413c,
1101 		0x24190, 0x241a0,
1102 		0x241a8, 0x241b8,
1103 		0x241c4, 0x241c8,
1104 		0x24200, 0x24318,
1105 		0x24400, 0x244b4,
1106 		0x244c0, 0x24528,
1107 		0x24540, 0x24614,
1108 		0x25000, 0x25040,
1109 		0x2504c, 0x25060,
1110 		0x250c0, 0x250ec,
1111 		0x25200, 0x25268,
1112 		0x25270, 0x25284,
1113 		0x252fc, 0x25388,
1114 		0x25400, 0x25404,
1115 		0x25500, 0x25500,
1116 		0x25510, 0x25518,
1117 		0x2552c, 0x25530,
1118 		0x2553c, 0x2553c,
1119 		0x25550, 0x25554,
1120 		0x25600, 0x25600,
1121 		0x25608, 0x2561c,
1122 		0x25624, 0x25628,
1123 		0x25630, 0x25634,
1124 		0x2563c, 0x2563c,
1125 		0x25700, 0x2571c,
1126 		0x25780, 0x2578c,
1127 		0x25800, 0x25818,
1128 		0x25820, 0x25828,
1129 		0x25830, 0x25848,
1130 		0x25850, 0x25854,
1131 		0x25860, 0x25868,
1132 		0x25870, 0x25870,
1133 		0x25878, 0x25898,
1134 		0x258a0, 0x258a8,
1135 		0x258b0, 0x258c8,
1136 		0x258d0, 0x258d4,
1137 		0x258e0, 0x258e8,
1138 		0x258f0, 0x258f0,
1139 		0x258f8, 0x25a18,
1140 		0x25a20, 0x25a28,
1141 		0x25a30, 0x25a48,
1142 		0x25a50, 0x25a54,
1143 		0x25a60, 0x25a68,
1144 		0x25a70, 0x25a70,
1145 		0x25a78, 0x25a98,
1146 		0x25aa0, 0x25aa8,
1147 		0x25ab0, 0x25ac8,
1148 		0x25ad0, 0x25ad4,
1149 		0x25ae0, 0x25ae8,
1150 		0x25af0, 0x25af0,
1151 		0x25af8, 0x25c18,
1152 		0x25c20, 0x25c20,
1153 		0x25c28, 0x25c30,
1154 		0x25c38, 0x25c38,
1155 		0x25c80, 0x25c98,
1156 		0x25ca0, 0x25ca8,
1157 		0x25cb0, 0x25cc8,
1158 		0x25cd0, 0x25cd4,
1159 		0x25ce0, 0x25ce8,
1160 		0x25cf0, 0x25cf0,
1161 		0x25cf8, 0x25d7c,
1162 		0x25e00, 0x25e04,
1163 		0x26000, 0x2602c,
1164 		0x26100, 0x2613c,
1165 		0x26190, 0x261a0,
1166 		0x261a8, 0x261b8,
1167 		0x261c4, 0x261c8,
1168 		0x26200, 0x26318,
1169 		0x26400, 0x264b4,
1170 		0x264c0, 0x26528,
1171 		0x26540, 0x26614,
1172 		0x27000, 0x27040,
1173 		0x2704c, 0x27060,
1174 		0x270c0, 0x270ec,
1175 		0x27200, 0x27268,
1176 		0x27270, 0x27284,
1177 		0x272fc, 0x27388,
1178 		0x27400, 0x27404,
1179 		0x27500, 0x27500,
1180 		0x27510, 0x27518,
1181 		0x2752c, 0x27530,
1182 		0x2753c, 0x2753c,
1183 		0x27550, 0x27554,
1184 		0x27600, 0x27600,
1185 		0x27608, 0x2761c,
1186 		0x27624, 0x27628,
1187 		0x27630, 0x27634,
1188 		0x2763c, 0x2763c,
1189 		0x27700, 0x2771c,
1190 		0x27780, 0x2778c,
1191 		0x27800, 0x27818,
1192 		0x27820, 0x27828,
1193 		0x27830, 0x27848,
1194 		0x27850, 0x27854,
1195 		0x27860, 0x27868,
1196 		0x27870, 0x27870,
1197 		0x27878, 0x27898,
1198 		0x278a0, 0x278a8,
1199 		0x278b0, 0x278c8,
1200 		0x278d0, 0x278d4,
1201 		0x278e0, 0x278e8,
1202 		0x278f0, 0x278f0,
1203 		0x278f8, 0x27a18,
1204 		0x27a20, 0x27a28,
1205 		0x27a30, 0x27a48,
1206 		0x27a50, 0x27a54,
1207 		0x27a60, 0x27a68,
1208 		0x27a70, 0x27a70,
1209 		0x27a78, 0x27a98,
1210 		0x27aa0, 0x27aa8,
1211 		0x27ab0, 0x27ac8,
1212 		0x27ad0, 0x27ad4,
1213 		0x27ae0, 0x27ae8,
1214 		0x27af0, 0x27af0,
1215 		0x27af8, 0x27c18,
1216 		0x27c20, 0x27c20,
1217 		0x27c28, 0x27c30,
1218 		0x27c38, 0x27c38,
1219 		0x27c80, 0x27c98,
1220 		0x27ca0, 0x27ca8,
1221 		0x27cb0, 0x27cc8,
1222 		0x27cd0, 0x27cd4,
1223 		0x27ce0, 0x27ce8,
1224 		0x27cf0, 0x27cf0,
1225 		0x27cf8, 0x27d7c,
1226 		0x27e00, 0x27e04,
1227 	};
1228 
1229 	static const unsigned int t4vf_reg_ranges[] = {
1230 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
1231 		VF_MPS_REG(A_MPS_VF_CTL),
1232 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
1233 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI),
1234 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
1235 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
1236 		FW_T4VF_MBDATA_BASE_ADDR,
1237 		FW_T4VF_MBDATA_BASE_ADDR +
1238 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
1239 	};
1240 
1241 	static const unsigned int t5_reg_ranges[] = {
1242 		0x1008, 0x10c0,
1243 		0x10cc, 0x10f8,
1244 		0x1100, 0x1100,
1245 		0x110c, 0x1148,
1246 		0x1180, 0x1184,
1247 		0x1190, 0x1194,
1248 		0x11a0, 0x11a4,
1249 		0x11b0, 0x11b4,
1250 		0x11fc, 0x123c,
1251 		0x1280, 0x173c,
1252 		0x1800, 0x18fc,
1253 		0x3000, 0x3028,
1254 		0x3060, 0x30b0,
1255 		0x30b8, 0x30d8,
1256 		0x30e0, 0x30fc,
1257 		0x3140, 0x357c,
1258 		0x35a8, 0x35cc,
1259 		0x35ec, 0x35ec,
1260 		0x3600, 0x5624,
1261 		0x56cc, 0x56ec,
1262 		0x56f4, 0x5720,
1263 		0x5728, 0x575c,
1264 		0x580c, 0x5814,
1265 		0x5890, 0x589c,
1266 		0x58a4, 0x58ac,
1267 		0x58b8, 0x58bc,
1268 		0x5940, 0x59c8,
1269 		0x59d0, 0x59dc,
1270 		0x59fc, 0x5a18,
1271 		0x5a60, 0x5a70,
1272 		0x5a80, 0x5a9c,
1273 		0x5b94, 0x5bfc,
1274 		0x6000, 0x6020,
1275 		0x6028, 0x6040,
1276 		0x6058, 0x609c,
1277 		0x60a8, 0x614c,
1278 		0x7700, 0x7798,
1279 		0x77c0, 0x78fc,
1280 		0x7b00, 0x7b58,
1281 		0x7b60, 0x7b84,
1282 		0x7b8c, 0x7c54,
1283 		0x7d00, 0x7d38,
1284 		0x7d40, 0x7d80,
1285 		0x7d8c, 0x7ddc,
1286 		0x7de4, 0x7e04,
1287 		0x7e10, 0x7e1c,
1288 		0x7e24, 0x7e38,
1289 		0x7e40, 0x7e44,
1290 		0x7e4c, 0x7e78,
1291 		0x7e80, 0x7edc,
1292 		0x7ee8, 0x7efc,
1293 		0x8dc0, 0x8de0,
1294 		0x8df8, 0x8e04,
1295 		0x8e10, 0x8e84,
1296 		0x8ea0, 0x8f84,
1297 		0x8fc0, 0x9058,
1298 		0x9060, 0x9060,
1299 		0x9068, 0x90f8,
1300 		0x9400, 0x9408,
1301 		0x9410, 0x9470,
1302 		0x9600, 0x9600,
1303 		0x9608, 0x9638,
1304 		0x9640, 0x96f4,
1305 		0x9800, 0x9808,
1306 		0x9820, 0x983c,
1307 		0x9850, 0x9864,
1308 		0x9c00, 0x9c6c,
1309 		0x9c80, 0x9cec,
1310 		0x9d00, 0x9d6c,
1311 		0x9d80, 0x9dec,
1312 		0x9e00, 0x9e6c,
1313 		0x9e80, 0x9eec,
1314 		0x9f00, 0x9f6c,
1315 		0x9f80, 0xa020,
1316 		0xd004, 0xd004,
1317 		0xd010, 0xd03c,
1318 		0xdfc0, 0xdfe0,
1319 		0xe000, 0x1106c,
1320 		0x11074, 0x11088,
1321 		0x1109c, 0x1117c,
1322 		0x11190, 0x11204,
1323 		0x19040, 0x1906c,
1324 		0x19078, 0x19080,
1325 		0x1908c, 0x190e8,
1326 		0x190f0, 0x190f8,
1327 		0x19100, 0x19110,
1328 		0x19120, 0x19124,
1329 		0x19150, 0x19194,
1330 		0x1919c, 0x191b0,
1331 		0x191d0, 0x191e8,
1332 		0x19238, 0x19290,
1333 		0x193f8, 0x19428,
1334 		0x19430, 0x19444,
1335 		0x1944c, 0x1946c,
1336 		0x19474, 0x19474,
1337 		0x19490, 0x194cc,
1338 		0x194f0, 0x194f8,
1339 		0x19c00, 0x19c08,
1340 		0x19c10, 0x19c60,
1341 		0x19c94, 0x19ce4,
1342 		0x19cf0, 0x19d40,
1343 		0x19d50, 0x19d94,
1344 		0x19da0, 0x19de8,
1345 		0x19df0, 0x19e10,
1346 		0x19e50, 0x19e90,
1347 		0x19ea0, 0x19f24,
1348 		0x19f34, 0x19f34,
1349 		0x19f40, 0x19f50,
1350 		0x19f90, 0x19fb4,
1351 		0x19fc4, 0x19fe4,
1352 		0x1a000, 0x1a004,
1353 		0x1a010, 0x1a06c,
1354 		0x1a0b0, 0x1a0e4,
1355 		0x1a0ec, 0x1a0f8,
1356 		0x1a100, 0x1a108,
1357 		0x1a114, 0x1a120,
1358 		0x1a128, 0x1a130,
1359 		0x1a138, 0x1a138,
1360 		0x1a190, 0x1a1c4,
1361 		0x1a1fc, 0x1a1fc,
1362 		0x1e008, 0x1e00c,
1363 		0x1e040, 0x1e044,
1364 		0x1e04c, 0x1e04c,
1365 		0x1e284, 0x1e290,
1366 		0x1e2c0, 0x1e2c0,
1367 		0x1e2e0, 0x1e2e0,
1368 		0x1e300, 0x1e384,
1369 		0x1e3c0, 0x1e3c8,
1370 		0x1e408, 0x1e40c,
1371 		0x1e440, 0x1e444,
1372 		0x1e44c, 0x1e44c,
1373 		0x1e684, 0x1e690,
1374 		0x1e6c0, 0x1e6c0,
1375 		0x1e6e0, 0x1e6e0,
1376 		0x1e700, 0x1e784,
1377 		0x1e7c0, 0x1e7c8,
1378 		0x1e808, 0x1e80c,
1379 		0x1e840, 0x1e844,
1380 		0x1e84c, 0x1e84c,
1381 		0x1ea84, 0x1ea90,
1382 		0x1eac0, 0x1eac0,
1383 		0x1eae0, 0x1eae0,
1384 		0x1eb00, 0x1eb84,
1385 		0x1ebc0, 0x1ebc8,
1386 		0x1ec08, 0x1ec0c,
1387 		0x1ec40, 0x1ec44,
1388 		0x1ec4c, 0x1ec4c,
1389 		0x1ee84, 0x1ee90,
1390 		0x1eec0, 0x1eec0,
1391 		0x1eee0, 0x1eee0,
1392 		0x1ef00, 0x1ef84,
1393 		0x1efc0, 0x1efc8,
1394 		0x1f008, 0x1f00c,
1395 		0x1f040, 0x1f044,
1396 		0x1f04c, 0x1f04c,
1397 		0x1f284, 0x1f290,
1398 		0x1f2c0, 0x1f2c0,
1399 		0x1f2e0, 0x1f2e0,
1400 		0x1f300, 0x1f384,
1401 		0x1f3c0, 0x1f3c8,
1402 		0x1f408, 0x1f40c,
1403 		0x1f440, 0x1f444,
1404 		0x1f44c, 0x1f44c,
1405 		0x1f684, 0x1f690,
1406 		0x1f6c0, 0x1f6c0,
1407 		0x1f6e0, 0x1f6e0,
1408 		0x1f700, 0x1f784,
1409 		0x1f7c0, 0x1f7c8,
1410 		0x1f808, 0x1f80c,
1411 		0x1f840, 0x1f844,
1412 		0x1f84c, 0x1f84c,
1413 		0x1fa84, 0x1fa90,
1414 		0x1fac0, 0x1fac0,
1415 		0x1fae0, 0x1fae0,
1416 		0x1fb00, 0x1fb84,
1417 		0x1fbc0, 0x1fbc8,
1418 		0x1fc08, 0x1fc0c,
1419 		0x1fc40, 0x1fc44,
1420 		0x1fc4c, 0x1fc4c,
1421 		0x1fe84, 0x1fe90,
1422 		0x1fec0, 0x1fec0,
1423 		0x1fee0, 0x1fee0,
1424 		0x1ff00, 0x1ff84,
1425 		0x1ffc0, 0x1ffc8,
1426 		0x30000, 0x30030,
1427 		0x30038, 0x30038,
1428 		0x30040, 0x30040,
1429 		0x30100, 0x30144,
1430 		0x30190, 0x301a0,
1431 		0x301a8, 0x301b8,
1432 		0x301c4, 0x301c8,
1433 		0x301d0, 0x301d0,
1434 		0x30200, 0x30318,
1435 		0x30400, 0x304b4,
1436 		0x304c0, 0x3052c,
1437 		0x30540, 0x3061c,
1438 		0x30800, 0x30828,
1439 		0x30834, 0x30834,
1440 		0x308c0, 0x30908,
1441 		0x30910, 0x309ac,
1442 		0x30a00, 0x30a14,
1443 		0x30a1c, 0x30a2c,
1444 		0x30a44, 0x30a50,
1445 		0x30a74, 0x30a74,
1446 		0x30a7c, 0x30afc,
1447 		0x30b08, 0x30c24,
1448 		0x30d00, 0x30d00,
1449 		0x30d08, 0x30d14,
1450 		0x30d1c, 0x30d20,
1451 		0x30d3c, 0x30d3c,
1452 		0x30d48, 0x30d50,
1453 		0x31200, 0x3120c,
1454 		0x31220, 0x31220,
1455 		0x31240, 0x31240,
1456 		0x31600, 0x3160c,
1457 		0x31a00, 0x31a1c,
1458 		0x31e00, 0x31e20,
1459 		0x31e38, 0x31e3c,
1460 		0x31e80, 0x31e80,
1461 		0x31e88, 0x31ea8,
1462 		0x31eb0, 0x31eb4,
1463 		0x31ec8, 0x31ed4,
1464 		0x31fb8, 0x32004,
1465 		0x32200, 0x32200,
1466 		0x32208, 0x32240,
1467 		0x32248, 0x32280,
1468 		0x32288, 0x322c0,
1469 		0x322c8, 0x322fc,
1470 		0x32600, 0x32630,
1471 		0x32a00, 0x32abc,
1472 		0x32b00, 0x32b10,
1473 		0x32b20, 0x32b30,
1474 		0x32b40, 0x32b50,
1475 		0x32b60, 0x32b70,
1476 		0x33000, 0x33028,
1477 		0x33030, 0x33048,
1478 		0x33060, 0x33068,
1479 		0x33070, 0x3309c,
1480 		0x330f0, 0x33128,
1481 		0x33130, 0x33148,
1482 		0x33160, 0x33168,
1483 		0x33170, 0x3319c,
1484 		0x331f0, 0x33238,
1485 		0x33240, 0x33240,
1486 		0x33248, 0x33250,
1487 		0x3325c, 0x33264,
1488 		0x33270, 0x332b8,
1489 		0x332c0, 0x332e4,
1490 		0x332f8, 0x33338,
1491 		0x33340, 0x33340,
1492 		0x33348, 0x33350,
1493 		0x3335c, 0x33364,
1494 		0x33370, 0x333b8,
1495 		0x333c0, 0x333e4,
1496 		0x333f8, 0x33428,
1497 		0x33430, 0x33448,
1498 		0x33460, 0x33468,
1499 		0x33470, 0x3349c,
1500 		0x334f0, 0x33528,
1501 		0x33530, 0x33548,
1502 		0x33560, 0x33568,
1503 		0x33570, 0x3359c,
1504 		0x335f0, 0x33638,
1505 		0x33640, 0x33640,
1506 		0x33648, 0x33650,
1507 		0x3365c, 0x33664,
1508 		0x33670, 0x336b8,
1509 		0x336c0, 0x336e4,
1510 		0x336f8, 0x33738,
1511 		0x33740, 0x33740,
1512 		0x33748, 0x33750,
1513 		0x3375c, 0x33764,
1514 		0x33770, 0x337b8,
1515 		0x337c0, 0x337e4,
1516 		0x337f8, 0x337fc,
1517 		0x33814, 0x33814,
1518 		0x3382c, 0x3382c,
1519 		0x33880, 0x3388c,
1520 		0x338e8, 0x338ec,
1521 		0x33900, 0x33928,
1522 		0x33930, 0x33948,
1523 		0x33960, 0x33968,
1524 		0x33970, 0x3399c,
1525 		0x339f0, 0x33a38,
1526 		0x33a40, 0x33a40,
1527 		0x33a48, 0x33a50,
1528 		0x33a5c, 0x33a64,
1529 		0x33a70, 0x33ab8,
1530 		0x33ac0, 0x33ae4,
1531 		0x33af8, 0x33b10,
1532 		0x33b28, 0x33b28,
1533 		0x33b3c, 0x33b50,
1534 		0x33bf0, 0x33c10,
1535 		0x33c28, 0x33c28,
1536 		0x33c3c, 0x33c50,
1537 		0x33cf0, 0x33cfc,
1538 		0x34000, 0x34030,
1539 		0x34038, 0x34038,
1540 		0x34040, 0x34040,
1541 		0x34100, 0x34144,
1542 		0x34190, 0x341a0,
1543 		0x341a8, 0x341b8,
1544 		0x341c4, 0x341c8,
1545 		0x341d0, 0x341d0,
1546 		0x34200, 0x34318,
1547 		0x34400, 0x344b4,
1548 		0x344c0, 0x3452c,
1549 		0x34540, 0x3461c,
1550 		0x34800, 0x34828,
1551 		0x34834, 0x34834,
1552 		0x348c0, 0x34908,
1553 		0x34910, 0x349ac,
1554 		0x34a00, 0x34a14,
1555 		0x34a1c, 0x34a2c,
1556 		0x34a44, 0x34a50,
1557 		0x34a74, 0x34a74,
1558 		0x34a7c, 0x34afc,
1559 		0x34b08, 0x34c24,
1560 		0x34d00, 0x34d00,
1561 		0x34d08, 0x34d14,
1562 		0x34d1c, 0x34d20,
1563 		0x34d3c, 0x34d3c,
1564 		0x34d48, 0x34d50,
1565 		0x35200, 0x3520c,
1566 		0x35220, 0x35220,
1567 		0x35240, 0x35240,
1568 		0x35600, 0x3560c,
1569 		0x35a00, 0x35a1c,
1570 		0x35e00, 0x35e20,
1571 		0x35e38, 0x35e3c,
1572 		0x35e80, 0x35e80,
1573 		0x35e88, 0x35ea8,
1574 		0x35eb0, 0x35eb4,
1575 		0x35ec8, 0x35ed4,
1576 		0x35fb8, 0x36004,
1577 		0x36200, 0x36200,
1578 		0x36208, 0x36240,
1579 		0x36248, 0x36280,
1580 		0x36288, 0x362c0,
1581 		0x362c8, 0x362fc,
1582 		0x36600, 0x36630,
1583 		0x36a00, 0x36abc,
1584 		0x36b00, 0x36b10,
1585 		0x36b20, 0x36b30,
1586 		0x36b40, 0x36b50,
1587 		0x36b60, 0x36b70,
1588 		0x37000, 0x37028,
1589 		0x37030, 0x37048,
1590 		0x37060, 0x37068,
1591 		0x37070, 0x3709c,
1592 		0x370f0, 0x37128,
1593 		0x37130, 0x37148,
1594 		0x37160, 0x37168,
1595 		0x37170, 0x3719c,
1596 		0x371f0, 0x37238,
1597 		0x37240, 0x37240,
1598 		0x37248, 0x37250,
1599 		0x3725c, 0x37264,
1600 		0x37270, 0x372b8,
1601 		0x372c0, 0x372e4,
1602 		0x372f8, 0x37338,
1603 		0x37340, 0x37340,
1604 		0x37348, 0x37350,
1605 		0x3735c, 0x37364,
1606 		0x37370, 0x373b8,
1607 		0x373c0, 0x373e4,
1608 		0x373f8, 0x37428,
1609 		0x37430, 0x37448,
1610 		0x37460, 0x37468,
1611 		0x37470, 0x3749c,
1612 		0x374f0, 0x37528,
1613 		0x37530, 0x37548,
1614 		0x37560, 0x37568,
1615 		0x37570, 0x3759c,
1616 		0x375f0, 0x37638,
1617 		0x37640, 0x37640,
1618 		0x37648, 0x37650,
1619 		0x3765c, 0x37664,
1620 		0x37670, 0x376b8,
1621 		0x376c0, 0x376e4,
1622 		0x376f8, 0x37738,
1623 		0x37740, 0x37740,
1624 		0x37748, 0x37750,
1625 		0x3775c, 0x37764,
1626 		0x37770, 0x377b8,
1627 		0x377c0, 0x377e4,
1628 		0x377f8, 0x377fc,
1629 		0x37814, 0x37814,
1630 		0x3782c, 0x3782c,
1631 		0x37880, 0x3788c,
1632 		0x378e8, 0x378ec,
1633 		0x37900, 0x37928,
1634 		0x37930, 0x37948,
1635 		0x37960, 0x37968,
1636 		0x37970, 0x3799c,
1637 		0x379f0, 0x37a38,
1638 		0x37a40, 0x37a40,
1639 		0x37a48, 0x37a50,
1640 		0x37a5c, 0x37a64,
1641 		0x37a70, 0x37ab8,
1642 		0x37ac0, 0x37ae4,
1643 		0x37af8, 0x37b10,
1644 		0x37b28, 0x37b28,
1645 		0x37b3c, 0x37b50,
1646 		0x37bf0, 0x37c10,
1647 		0x37c28, 0x37c28,
1648 		0x37c3c, 0x37c50,
1649 		0x37cf0, 0x37cfc,
1650 		0x38000, 0x38030,
1651 		0x38038, 0x38038,
1652 		0x38040, 0x38040,
1653 		0x38100, 0x38144,
1654 		0x38190, 0x381a0,
1655 		0x381a8, 0x381b8,
1656 		0x381c4, 0x381c8,
1657 		0x381d0, 0x381d0,
1658 		0x38200, 0x38318,
1659 		0x38400, 0x384b4,
1660 		0x384c0, 0x3852c,
1661 		0x38540, 0x3861c,
1662 		0x38800, 0x38828,
1663 		0x38834, 0x38834,
1664 		0x388c0, 0x38908,
1665 		0x38910, 0x389ac,
1666 		0x38a00, 0x38a14,
1667 		0x38a1c, 0x38a2c,
1668 		0x38a44, 0x38a50,
1669 		0x38a74, 0x38a74,
1670 		0x38a7c, 0x38afc,
1671 		0x38b08, 0x38c24,
1672 		0x38d00, 0x38d00,
1673 		0x38d08, 0x38d14,
1674 		0x38d1c, 0x38d20,
1675 		0x38d3c, 0x38d3c,
1676 		0x38d48, 0x38d50,
1677 		0x39200, 0x3920c,
1678 		0x39220, 0x39220,
1679 		0x39240, 0x39240,
1680 		0x39600, 0x3960c,
1681 		0x39a00, 0x39a1c,
1682 		0x39e00, 0x39e20,
1683 		0x39e38, 0x39e3c,
1684 		0x39e80, 0x39e80,
1685 		0x39e88, 0x39ea8,
1686 		0x39eb0, 0x39eb4,
1687 		0x39ec8, 0x39ed4,
1688 		0x39fb8, 0x3a004,
1689 		0x3a200, 0x3a200,
1690 		0x3a208, 0x3a240,
1691 		0x3a248, 0x3a280,
1692 		0x3a288, 0x3a2c0,
1693 		0x3a2c8, 0x3a2fc,
1694 		0x3a600, 0x3a630,
1695 		0x3aa00, 0x3aabc,
1696 		0x3ab00, 0x3ab10,
1697 		0x3ab20, 0x3ab30,
1698 		0x3ab40, 0x3ab50,
1699 		0x3ab60, 0x3ab70,
1700 		0x3b000, 0x3b028,
1701 		0x3b030, 0x3b048,
1702 		0x3b060, 0x3b068,
1703 		0x3b070, 0x3b09c,
1704 		0x3b0f0, 0x3b128,
1705 		0x3b130, 0x3b148,
1706 		0x3b160, 0x3b168,
1707 		0x3b170, 0x3b19c,
1708 		0x3b1f0, 0x3b238,
1709 		0x3b240, 0x3b240,
1710 		0x3b248, 0x3b250,
1711 		0x3b25c, 0x3b264,
1712 		0x3b270, 0x3b2b8,
1713 		0x3b2c0, 0x3b2e4,
1714 		0x3b2f8, 0x3b338,
1715 		0x3b340, 0x3b340,
1716 		0x3b348, 0x3b350,
1717 		0x3b35c, 0x3b364,
1718 		0x3b370, 0x3b3b8,
1719 		0x3b3c0, 0x3b3e4,
1720 		0x3b3f8, 0x3b428,
1721 		0x3b430, 0x3b448,
1722 		0x3b460, 0x3b468,
1723 		0x3b470, 0x3b49c,
1724 		0x3b4f0, 0x3b528,
1725 		0x3b530, 0x3b548,
1726 		0x3b560, 0x3b568,
1727 		0x3b570, 0x3b59c,
1728 		0x3b5f0, 0x3b638,
1729 		0x3b640, 0x3b640,
1730 		0x3b648, 0x3b650,
1731 		0x3b65c, 0x3b664,
1732 		0x3b670, 0x3b6b8,
1733 		0x3b6c0, 0x3b6e4,
1734 		0x3b6f8, 0x3b738,
1735 		0x3b740, 0x3b740,
1736 		0x3b748, 0x3b750,
1737 		0x3b75c, 0x3b764,
1738 		0x3b770, 0x3b7b8,
1739 		0x3b7c0, 0x3b7e4,
1740 		0x3b7f8, 0x3b7fc,
1741 		0x3b814, 0x3b814,
1742 		0x3b82c, 0x3b82c,
1743 		0x3b880, 0x3b88c,
1744 		0x3b8e8, 0x3b8ec,
1745 		0x3b900, 0x3b928,
1746 		0x3b930, 0x3b948,
1747 		0x3b960, 0x3b968,
1748 		0x3b970, 0x3b99c,
1749 		0x3b9f0, 0x3ba38,
1750 		0x3ba40, 0x3ba40,
1751 		0x3ba48, 0x3ba50,
1752 		0x3ba5c, 0x3ba64,
1753 		0x3ba70, 0x3bab8,
1754 		0x3bac0, 0x3bae4,
1755 		0x3baf8, 0x3bb10,
1756 		0x3bb28, 0x3bb28,
1757 		0x3bb3c, 0x3bb50,
1758 		0x3bbf0, 0x3bc10,
1759 		0x3bc28, 0x3bc28,
1760 		0x3bc3c, 0x3bc50,
1761 		0x3bcf0, 0x3bcfc,
1762 		0x3c000, 0x3c030,
1763 		0x3c038, 0x3c038,
1764 		0x3c040, 0x3c040,
1765 		0x3c100, 0x3c144,
1766 		0x3c190, 0x3c1a0,
1767 		0x3c1a8, 0x3c1b8,
1768 		0x3c1c4, 0x3c1c8,
1769 		0x3c1d0, 0x3c1d0,
1770 		0x3c200, 0x3c318,
1771 		0x3c400, 0x3c4b4,
1772 		0x3c4c0, 0x3c52c,
1773 		0x3c540, 0x3c61c,
1774 		0x3c800, 0x3c828,
1775 		0x3c834, 0x3c834,
1776 		0x3c8c0, 0x3c908,
1777 		0x3c910, 0x3c9ac,
1778 		0x3ca00, 0x3ca14,
1779 		0x3ca1c, 0x3ca2c,
1780 		0x3ca44, 0x3ca50,
1781 		0x3ca74, 0x3ca74,
1782 		0x3ca7c, 0x3cafc,
1783 		0x3cb08, 0x3cc24,
1784 		0x3cd00, 0x3cd00,
1785 		0x3cd08, 0x3cd14,
1786 		0x3cd1c, 0x3cd20,
1787 		0x3cd3c, 0x3cd3c,
1788 		0x3cd48, 0x3cd50,
1789 		0x3d200, 0x3d20c,
1790 		0x3d220, 0x3d220,
1791 		0x3d240, 0x3d240,
1792 		0x3d600, 0x3d60c,
1793 		0x3da00, 0x3da1c,
1794 		0x3de00, 0x3de20,
1795 		0x3de38, 0x3de3c,
1796 		0x3de80, 0x3de80,
1797 		0x3de88, 0x3dea8,
1798 		0x3deb0, 0x3deb4,
1799 		0x3dec8, 0x3ded4,
1800 		0x3dfb8, 0x3e004,
1801 		0x3e200, 0x3e200,
1802 		0x3e208, 0x3e240,
1803 		0x3e248, 0x3e280,
1804 		0x3e288, 0x3e2c0,
1805 		0x3e2c8, 0x3e2fc,
1806 		0x3e600, 0x3e630,
1807 		0x3ea00, 0x3eabc,
1808 		0x3eb00, 0x3eb10,
1809 		0x3eb20, 0x3eb30,
1810 		0x3eb40, 0x3eb50,
1811 		0x3eb60, 0x3eb70,
1812 		0x3f000, 0x3f028,
1813 		0x3f030, 0x3f048,
1814 		0x3f060, 0x3f068,
1815 		0x3f070, 0x3f09c,
1816 		0x3f0f0, 0x3f128,
1817 		0x3f130, 0x3f148,
1818 		0x3f160, 0x3f168,
1819 		0x3f170, 0x3f19c,
1820 		0x3f1f0, 0x3f238,
1821 		0x3f240, 0x3f240,
1822 		0x3f248, 0x3f250,
1823 		0x3f25c, 0x3f264,
1824 		0x3f270, 0x3f2b8,
1825 		0x3f2c0, 0x3f2e4,
1826 		0x3f2f8, 0x3f338,
1827 		0x3f340, 0x3f340,
1828 		0x3f348, 0x3f350,
1829 		0x3f35c, 0x3f364,
1830 		0x3f370, 0x3f3b8,
1831 		0x3f3c0, 0x3f3e4,
1832 		0x3f3f8, 0x3f428,
1833 		0x3f430, 0x3f448,
1834 		0x3f460, 0x3f468,
1835 		0x3f470, 0x3f49c,
1836 		0x3f4f0, 0x3f528,
1837 		0x3f530, 0x3f548,
1838 		0x3f560, 0x3f568,
1839 		0x3f570, 0x3f59c,
1840 		0x3f5f0, 0x3f638,
1841 		0x3f640, 0x3f640,
1842 		0x3f648, 0x3f650,
1843 		0x3f65c, 0x3f664,
1844 		0x3f670, 0x3f6b8,
1845 		0x3f6c0, 0x3f6e4,
1846 		0x3f6f8, 0x3f738,
1847 		0x3f740, 0x3f740,
1848 		0x3f748, 0x3f750,
1849 		0x3f75c, 0x3f764,
1850 		0x3f770, 0x3f7b8,
1851 		0x3f7c0, 0x3f7e4,
1852 		0x3f7f8, 0x3f7fc,
1853 		0x3f814, 0x3f814,
1854 		0x3f82c, 0x3f82c,
1855 		0x3f880, 0x3f88c,
1856 		0x3f8e8, 0x3f8ec,
1857 		0x3f900, 0x3f928,
1858 		0x3f930, 0x3f948,
1859 		0x3f960, 0x3f968,
1860 		0x3f970, 0x3f99c,
1861 		0x3f9f0, 0x3fa38,
1862 		0x3fa40, 0x3fa40,
1863 		0x3fa48, 0x3fa50,
1864 		0x3fa5c, 0x3fa64,
1865 		0x3fa70, 0x3fab8,
1866 		0x3fac0, 0x3fae4,
1867 		0x3faf8, 0x3fb10,
1868 		0x3fb28, 0x3fb28,
1869 		0x3fb3c, 0x3fb50,
1870 		0x3fbf0, 0x3fc10,
1871 		0x3fc28, 0x3fc28,
1872 		0x3fc3c, 0x3fc50,
1873 		0x3fcf0, 0x3fcfc,
1874 		0x40000, 0x4000c,
1875 		0x40040, 0x40050,
1876 		0x40060, 0x40068,
1877 		0x4007c, 0x4008c,
1878 		0x40094, 0x400b0,
1879 		0x400c0, 0x40144,
1880 		0x40180, 0x4018c,
1881 		0x40200, 0x40254,
1882 		0x40260, 0x40264,
1883 		0x40270, 0x40288,
1884 		0x40290, 0x40298,
1885 		0x402ac, 0x402c8,
1886 		0x402d0, 0x402e0,
1887 		0x402f0, 0x402f0,
1888 		0x40300, 0x4033c,
1889 		0x403f8, 0x403fc,
1890 		0x41304, 0x413c4,
1891 		0x41400, 0x4140c,
1892 		0x41414, 0x4141c,
1893 		0x41480, 0x414d0,
1894 		0x44000, 0x44054,
1895 		0x4405c, 0x44078,
1896 		0x440c0, 0x44174,
1897 		0x44180, 0x441ac,
1898 		0x441b4, 0x441b8,
1899 		0x441c0, 0x44254,
1900 		0x4425c, 0x44278,
1901 		0x442c0, 0x44374,
1902 		0x44380, 0x443ac,
1903 		0x443b4, 0x443b8,
1904 		0x443c0, 0x44454,
1905 		0x4445c, 0x44478,
1906 		0x444c0, 0x44574,
1907 		0x44580, 0x445ac,
1908 		0x445b4, 0x445b8,
1909 		0x445c0, 0x44654,
1910 		0x4465c, 0x44678,
1911 		0x446c0, 0x44774,
1912 		0x44780, 0x447ac,
1913 		0x447b4, 0x447b8,
1914 		0x447c0, 0x44854,
1915 		0x4485c, 0x44878,
1916 		0x448c0, 0x44974,
1917 		0x44980, 0x449ac,
1918 		0x449b4, 0x449b8,
1919 		0x449c0, 0x449fc,
1920 		0x45000, 0x45004,
1921 		0x45010, 0x45030,
1922 		0x45040, 0x45060,
1923 		0x45068, 0x45068,
1924 		0x45080, 0x45084,
1925 		0x450a0, 0x450b0,
1926 		0x45200, 0x45204,
1927 		0x45210, 0x45230,
1928 		0x45240, 0x45260,
1929 		0x45268, 0x45268,
1930 		0x45280, 0x45284,
1931 		0x452a0, 0x452b0,
1932 		0x460c0, 0x460e4,
1933 		0x47000, 0x4703c,
1934 		0x47044, 0x4708c,
1935 		0x47200, 0x47250,
1936 		0x47400, 0x47408,
1937 		0x47414, 0x47420,
1938 		0x47600, 0x47618,
1939 		0x47800, 0x47814,
1940 		0x48000, 0x4800c,
1941 		0x48040, 0x48050,
1942 		0x48060, 0x48068,
1943 		0x4807c, 0x4808c,
1944 		0x48094, 0x480b0,
1945 		0x480c0, 0x48144,
1946 		0x48180, 0x4818c,
1947 		0x48200, 0x48254,
1948 		0x48260, 0x48264,
1949 		0x48270, 0x48288,
1950 		0x48290, 0x48298,
1951 		0x482ac, 0x482c8,
1952 		0x482d0, 0x482e0,
1953 		0x482f0, 0x482f0,
1954 		0x48300, 0x4833c,
1955 		0x483f8, 0x483fc,
1956 		0x49304, 0x493c4,
1957 		0x49400, 0x4940c,
1958 		0x49414, 0x4941c,
1959 		0x49480, 0x494d0,
1960 		0x4c000, 0x4c054,
1961 		0x4c05c, 0x4c078,
1962 		0x4c0c0, 0x4c174,
1963 		0x4c180, 0x4c1ac,
1964 		0x4c1b4, 0x4c1b8,
1965 		0x4c1c0, 0x4c254,
1966 		0x4c25c, 0x4c278,
1967 		0x4c2c0, 0x4c374,
1968 		0x4c380, 0x4c3ac,
1969 		0x4c3b4, 0x4c3b8,
1970 		0x4c3c0, 0x4c454,
1971 		0x4c45c, 0x4c478,
1972 		0x4c4c0, 0x4c574,
1973 		0x4c580, 0x4c5ac,
1974 		0x4c5b4, 0x4c5b8,
1975 		0x4c5c0, 0x4c654,
1976 		0x4c65c, 0x4c678,
1977 		0x4c6c0, 0x4c774,
1978 		0x4c780, 0x4c7ac,
1979 		0x4c7b4, 0x4c7b8,
1980 		0x4c7c0, 0x4c854,
1981 		0x4c85c, 0x4c878,
1982 		0x4c8c0, 0x4c974,
1983 		0x4c980, 0x4c9ac,
1984 		0x4c9b4, 0x4c9b8,
1985 		0x4c9c0, 0x4c9fc,
1986 		0x4d000, 0x4d004,
1987 		0x4d010, 0x4d030,
1988 		0x4d040, 0x4d060,
1989 		0x4d068, 0x4d068,
1990 		0x4d080, 0x4d084,
1991 		0x4d0a0, 0x4d0b0,
1992 		0x4d200, 0x4d204,
1993 		0x4d210, 0x4d230,
1994 		0x4d240, 0x4d260,
1995 		0x4d268, 0x4d268,
1996 		0x4d280, 0x4d284,
1997 		0x4d2a0, 0x4d2b0,
1998 		0x4e0c0, 0x4e0e4,
1999 		0x4f000, 0x4f03c,
2000 		0x4f044, 0x4f08c,
2001 		0x4f200, 0x4f250,
2002 		0x4f400, 0x4f408,
2003 		0x4f414, 0x4f420,
2004 		0x4f600, 0x4f618,
2005 		0x4f800, 0x4f814,
2006 		0x50000, 0x50084,
2007 		0x50090, 0x500cc,
2008 		0x50400, 0x50400,
2009 		0x50800, 0x50884,
2010 		0x50890, 0x508cc,
2011 		0x50c00, 0x50c00,
2012 		0x51000, 0x5101c,
2013 		0x51300, 0x51308,
2014 	};
2015 
2016 	static const unsigned int t5vf_reg_ranges[] = {
2017 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2018 		VF_MPS_REG(A_MPS_VF_CTL),
2019 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2020 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2021 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2022 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2023 		FW_T4VF_MBDATA_BASE_ADDR,
2024 		FW_T4VF_MBDATA_BASE_ADDR +
2025 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2026 	};
2027 
2028 	static const unsigned int t6_reg_ranges[] = {
2029 		0x1008, 0x101c,
2030 		0x1024, 0x10a8,
2031 		0x10b4, 0x10f8,
2032 		0x1100, 0x1114,
2033 		0x111c, 0x112c,
2034 		0x1138, 0x113c,
2035 		0x1144, 0x114c,
2036 		0x1180, 0x1184,
2037 		0x1190, 0x1194,
2038 		0x11a0, 0x11a4,
2039 		0x11b0, 0x11b4,
2040 		0x11fc, 0x1274,
2041 		0x1280, 0x133c,
2042 		0x1800, 0x18fc,
2043 		0x3000, 0x302c,
2044 		0x3060, 0x30b0,
2045 		0x30b8, 0x30d8,
2046 		0x30e0, 0x30fc,
2047 		0x3140, 0x357c,
2048 		0x35a8, 0x35cc,
2049 		0x35ec, 0x35ec,
2050 		0x3600, 0x5624,
2051 		0x56cc, 0x56ec,
2052 		0x56f4, 0x5720,
2053 		0x5728, 0x575c,
2054 		0x580c, 0x5814,
2055 		0x5890, 0x589c,
2056 		0x58a4, 0x58ac,
2057 		0x58b8, 0x58bc,
2058 		0x5940, 0x595c,
2059 		0x5980, 0x598c,
2060 		0x59b0, 0x59c8,
2061 		0x59d0, 0x59dc,
2062 		0x59fc, 0x5a18,
2063 		0x5a60, 0x5a6c,
2064 		0x5a80, 0x5a8c,
2065 		0x5a94, 0x5a9c,
2066 		0x5b94, 0x5bfc,
2067 		0x5c10, 0x5e48,
2068 		0x5e50, 0x5e94,
2069 		0x5ea0, 0x5eb0,
2070 		0x5ec0, 0x5ec0,
2071 		0x5ec8, 0x5ed0,
2072 		0x5ee0, 0x5ee0,
2073 		0x5ef0, 0x5ef0,
2074 		0x5f00, 0x5f00,
2075 		0x6000, 0x6020,
2076 		0x6028, 0x6040,
2077 		0x6058, 0x609c,
2078 		0x60a8, 0x619c,
2079 		0x7700, 0x7798,
2080 		0x77c0, 0x7880,
2081 		0x78cc, 0x78fc,
2082 		0x7b00, 0x7b58,
2083 		0x7b60, 0x7b84,
2084 		0x7b8c, 0x7c54,
2085 		0x7d00, 0x7d38,
2086 		0x7d40, 0x7d84,
2087 		0x7d8c, 0x7ddc,
2088 		0x7de4, 0x7e04,
2089 		0x7e10, 0x7e1c,
2090 		0x7e24, 0x7e38,
2091 		0x7e40, 0x7e44,
2092 		0x7e4c, 0x7e78,
2093 		0x7e80, 0x7edc,
2094 		0x7ee8, 0x7efc,
2095 		0x8dc0, 0x8de4,
2096 		0x8df8, 0x8e04,
2097 		0x8e10, 0x8e84,
2098 		0x8ea0, 0x8f88,
2099 		0x8fb8, 0x9058,
2100 		0x9060, 0x9060,
2101 		0x9068, 0x90f8,
2102 		0x9100, 0x9124,
2103 		0x9400, 0x9470,
2104 		0x9600, 0x9600,
2105 		0x9608, 0x9638,
2106 		0x9640, 0x9704,
2107 		0x9710, 0x971c,
2108 		0x9800, 0x9808,
2109 		0x9820, 0x983c,
2110 		0x9850, 0x9864,
2111 		0x9c00, 0x9c6c,
2112 		0x9c80, 0x9cec,
2113 		0x9d00, 0x9d6c,
2114 		0x9d80, 0x9dec,
2115 		0x9e00, 0x9e6c,
2116 		0x9e80, 0x9eec,
2117 		0x9f00, 0x9f6c,
2118 		0x9f80, 0xa020,
2119 		0xd004, 0xd03c,
2120 		0xd100, 0xd118,
2121 		0xd200, 0xd214,
2122 		0xd220, 0xd234,
2123 		0xd240, 0xd254,
2124 		0xd260, 0xd274,
2125 		0xd280, 0xd294,
2126 		0xd2a0, 0xd2b4,
2127 		0xd2c0, 0xd2d4,
2128 		0xd2e0, 0xd2f4,
2129 		0xd300, 0xd31c,
2130 		0xdfc0, 0xdfe0,
2131 		0xe000, 0xf008,
2132 		0xf010, 0xf018,
2133 		0xf020, 0xf028,
2134 		0x11000, 0x11014,
2135 		0x11048, 0x1106c,
2136 		0x11074, 0x11088,
2137 		0x11098, 0x11120,
2138 		0x1112c, 0x1117c,
2139 		0x11190, 0x112e0,
2140 		0x11300, 0x1130c,
2141 		0x12000, 0x1206c,
2142 		0x19040, 0x1906c,
2143 		0x19078, 0x19080,
2144 		0x1908c, 0x190e8,
2145 		0x190f0, 0x190f8,
2146 		0x19100, 0x19110,
2147 		0x19120, 0x19124,
2148 		0x19150, 0x19194,
2149 		0x1919c, 0x191b0,
2150 		0x191d0, 0x191e8,
2151 		0x19238, 0x19290,
2152 		0x192a4, 0x192b0,
2153 		0x192bc, 0x192bc,
2154 		0x19348, 0x1934c,
2155 		0x193f8, 0x19418,
2156 		0x19420, 0x19428,
2157 		0x19430, 0x19444,
2158 		0x1944c, 0x1946c,
2159 		0x19474, 0x19474,
2160 		0x19490, 0x194cc,
2161 		0x194f0, 0x194f8,
2162 		0x19c00, 0x19c48,
2163 		0x19c50, 0x19c80,
2164 		0x19c94, 0x19c98,
2165 		0x19ca0, 0x19cbc,
2166 		0x19ce4, 0x19ce4,
2167 		0x19cf0, 0x19cf8,
2168 		0x19d00, 0x19d28,
2169 		0x19d50, 0x19d78,
2170 		0x19d94, 0x19d98,
2171 		0x19da0, 0x19dc8,
2172 		0x19df0, 0x19e10,
2173 		0x19e50, 0x19e6c,
2174 		0x19ea0, 0x19ebc,
2175 		0x19ec4, 0x19ef4,
2176 		0x19f04, 0x19f2c,
2177 		0x19f34, 0x19f34,
2178 		0x19f40, 0x19f50,
2179 		0x19f90, 0x19fac,
2180 		0x19fc4, 0x19fc8,
2181 		0x19fd0, 0x19fe4,
2182 		0x1a000, 0x1a004,
2183 		0x1a010, 0x1a06c,
2184 		0x1a0b0, 0x1a0e4,
2185 		0x1a0ec, 0x1a0f8,
2186 		0x1a100, 0x1a108,
2187 		0x1a114, 0x1a120,
2188 		0x1a128, 0x1a130,
2189 		0x1a138, 0x1a138,
2190 		0x1a190, 0x1a1c4,
2191 		0x1a1fc, 0x1a1fc,
2192 		0x1e008, 0x1e00c,
2193 		0x1e040, 0x1e044,
2194 		0x1e04c, 0x1e04c,
2195 		0x1e284, 0x1e290,
2196 		0x1e2c0, 0x1e2c0,
2197 		0x1e2e0, 0x1e2e0,
2198 		0x1e300, 0x1e384,
2199 		0x1e3c0, 0x1e3c8,
2200 		0x1e408, 0x1e40c,
2201 		0x1e440, 0x1e444,
2202 		0x1e44c, 0x1e44c,
2203 		0x1e684, 0x1e690,
2204 		0x1e6c0, 0x1e6c0,
2205 		0x1e6e0, 0x1e6e0,
2206 		0x1e700, 0x1e784,
2207 		0x1e7c0, 0x1e7c8,
2208 		0x1e808, 0x1e80c,
2209 		0x1e840, 0x1e844,
2210 		0x1e84c, 0x1e84c,
2211 		0x1ea84, 0x1ea90,
2212 		0x1eac0, 0x1eac0,
2213 		0x1eae0, 0x1eae0,
2214 		0x1eb00, 0x1eb84,
2215 		0x1ebc0, 0x1ebc8,
2216 		0x1ec08, 0x1ec0c,
2217 		0x1ec40, 0x1ec44,
2218 		0x1ec4c, 0x1ec4c,
2219 		0x1ee84, 0x1ee90,
2220 		0x1eec0, 0x1eec0,
2221 		0x1eee0, 0x1eee0,
2222 		0x1ef00, 0x1ef84,
2223 		0x1efc0, 0x1efc8,
2224 		0x1f008, 0x1f00c,
2225 		0x1f040, 0x1f044,
2226 		0x1f04c, 0x1f04c,
2227 		0x1f284, 0x1f290,
2228 		0x1f2c0, 0x1f2c0,
2229 		0x1f2e0, 0x1f2e0,
2230 		0x1f300, 0x1f384,
2231 		0x1f3c0, 0x1f3c8,
2232 		0x1f408, 0x1f40c,
2233 		0x1f440, 0x1f444,
2234 		0x1f44c, 0x1f44c,
2235 		0x1f684, 0x1f690,
2236 		0x1f6c0, 0x1f6c0,
2237 		0x1f6e0, 0x1f6e0,
2238 		0x1f700, 0x1f784,
2239 		0x1f7c0, 0x1f7c8,
2240 		0x1f808, 0x1f80c,
2241 		0x1f840, 0x1f844,
2242 		0x1f84c, 0x1f84c,
2243 		0x1fa84, 0x1fa90,
2244 		0x1fac0, 0x1fac0,
2245 		0x1fae0, 0x1fae0,
2246 		0x1fb00, 0x1fb84,
2247 		0x1fbc0, 0x1fbc8,
2248 		0x1fc08, 0x1fc0c,
2249 		0x1fc40, 0x1fc44,
2250 		0x1fc4c, 0x1fc4c,
2251 		0x1fe84, 0x1fe90,
2252 		0x1fec0, 0x1fec0,
2253 		0x1fee0, 0x1fee0,
2254 		0x1ff00, 0x1ff84,
2255 		0x1ffc0, 0x1ffc8,
2256 		0x30000, 0x30030,
2257 		0x30038, 0x30038,
2258 		0x30040, 0x30040,
2259 		0x30048, 0x30048,
2260 		0x30050, 0x30050,
2261 		0x3005c, 0x30060,
2262 		0x30068, 0x30068,
2263 		0x30070, 0x30070,
2264 		0x30100, 0x30168,
2265 		0x30190, 0x301a0,
2266 		0x301a8, 0x301b8,
2267 		0x301c4, 0x301c8,
2268 		0x301d0, 0x301d0,
2269 		0x30200, 0x30320,
2270 		0x30400, 0x304b4,
2271 		0x304c0, 0x3052c,
2272 		0x30540, 0x3061c,
2273 		0x30800, 0x308a0,
2274 		0x308c0, 0x30908,
2275 		0x30910, 0x309b8,
2276 		0x30a00, 0x30a04,
2277 		0x30a0c, 0x30a14,
2278 		0x30a1c, 0x30a2c,
2279 		0x30a44, 0x30a50,
2280 		0x30a74, 0x30a74,
2281 		0x30a7c, 0x30afc,
2282 		0x30b08, 0x30c24,
2283 		0x30d00, 0x30d14,
2284 		0x30d1c, 0x30d3c,
2285 		0x30d44, 0x30d4c,
2286 		0x30d54, 0x30d74,
2287 		0x30d7c, 0x30d7c,
2288 		0x30de0, 0x30de0,
2289 		0x30e00, 0x30ed4,
2290 		0x30f00, 0x30fa4,
2291 		0x30fc0, 0x30fc4,
2292 		0x31000, 0x31004,
2293 		0x31080, 0x310fc,
2294 		0x31208, 0x31220,
2295 		0x3123c, 0x31254,
2296 		0x31300, 0x31300,
2297 		0x31308, 0x3131c,
2298 		0x31338, 0x3133c,
2299 		0x31380, 0x31380,
2300 		0x31388, 0x313a8,
2301 		0x313b4, 0x313b4,
2302 		0x31400, 0x31420,
2303 		0x31438, 0x3143c,
2304 		0x31480, 0x31480,
2305 		0x314a8, 0x314a8,
2306 		0x314b0, 0x314b4,
2307 		0x314c8, 0x314d4,
2308 		0x31a40, 0x31a4c,
2309 		0x31af0, 0x31b20,
2310 		0x31b38, 0x31b3c,
2311 		0x31b80, 0x31b80,
2312 		0x31ba8, 0x31ba8,
2313 		0x31bb0, 0x31bb4,
2314 		0x31bc8, 0x31bd4,
2315 		0x32140, 0x3218c,
2316 		0x321f0, 0x321f4,
2317 		0x32200, 0x32200,
2318 		0x32218, 0x32218,
2319 		0x32400, 0x32400,
2320 		0x32408, 0x3241c,
2321 		0x32618, 0x32620,
2322 		0x32664, 0x32664,
2323 		0x326a8, 0x326a8,
2324 		0x326ec, 0x326ec,
2325 		0x32a00, 0x32abc,
2326 		0x32b00, 0x32b38,
2327 		0x32b40, 0x32b58,
2328 		0x32b60, 0x32b78,
2329 		0x32c00, 0x32c00,
2330 		0x32c08, 0x32c3c,
2331 		0x32e00, 0x32e2c,
2332 		0x32f00, 0x32f2c,
2333 		0x33000, 0x3302c,
2334 		0x33034, 0x33050,
2335 		0x33058, 0x33058,
2336 		0x33060, 0x3308c,
2337 		0x3309c, 0x330ac,
2338 		0x330c0, 0x330c0,
2339 		0x330c8, 0x330d0,
2340 		0x330d8, 0x330e0,
2341 		0x330ec, 0x3312c,
2342 		0x33134, 0x33150,
2343 		0x33158, 0x33158,
2344 		0x33160, 0x3318c,
2345 		0x3319c, 0x331ac,
2346 		0x331c0, 0x331c0,
2347 		0x331c8, 0x331d0,
2348 		0x331d8, 0x331e0,
2349 		0x331ec, 0x33290,
2350 		0x33298, 0x332c4,
2351 		0x332e4, 0x33390,
2352 		0x33398, 0x333c4,
2353 		0x333e4, 0x3342c,
2354 		0x33434, 0x33450,
2355 		0x33458, 0x33458,
2356 		0x33460, 0x3348c,
2357 		0x3349c, 0x334ac,
2358 		0x334c0, 0x334c0,
2359 		0x334c8, 0x334d0,
2360 		0x334d8, 0x334e0,
2361 		0x334ec, 0x3352c,
2362 		0x33534, 0x33550,
2363 		0x33558, 0x33558,
2364 		0x33560, 0x3358c,
2365 		0x3359c, 0x335ac,
2366 		0x335c0, 0x335c0,
2367 		0x335c8, 0x335d0,
2368 		0x335d8, 0x335e0,
2369 		0x335ec, 0x33690,
2370 		0x33698, 0x336c4,
2371 		0x336e4, 0x33790,
2372 		0x33798, 0x337c4,
2373 		0x337e4, 0x337fc,
2374 		0x33814, 0x33814,
2375 		0x33854, 0x33868,
2376 		0x33880, 0x3388c,
2377 		0x338c0, 0x338d0,
2378 		0x338e8, 0x338ec,
2379 		0x33900, 0x3392c,
2380 		0x33934, 0x33950,
2381 		0x33958, 0x33958,
2382 		0x33960, 0x3398c,
2383 		0x3399c, 0x339ac,
2384 		0x339c0, 0x339c0,
2385 		0x339c8, 0x339d0,
2386 		0x339d8, 0x339e0,
2387 		0x339ec, 0x33a90,
2388 		0x33a98, 0x33ac4,
2389 		0x33ae4, 0x33b10,
2390 		0x33b24, 0x33b28,
2391 		0x33b38, 0x33b50,
2392 		0x33bf0, 0x33c10,
2393 		0x33c24, 0x33c28,
2394 		0x33c38, 0x33c50,
2395 		0x33cf0, 0x33cfc,
2396 		0x34000, 0x34030,
2397 		0x34038, 0x34038,
2398 		0x34040, 0x34040,
2399 		0x34048, 0x34048,
2400 		0x34050, 0x34050,
2401 		0x3405c, 0x34060,
2402 		0x34068, 0x34068,
2403 		0x34070, 0x34070,
2404 		0x34100, 0x34168,
2405 		0x34190, 0x341a0,
2406 		0x341a8, 0x341b8,
2407 		0x341c4, 0x341c8,
2408 		0x341d0, 0x341d0,
2409 		0x34200, 0x34320,
2410 		0x34400, 0x344b4,
2411 		0x344c0, 0x3452c,
2412 		0x34540, 0x3461c,
2413 		0x34800, 0x348a0,
2414 		0x348c0, 0x34908,
2415 		0x34910, 0x349b8,
2416 		0x34a00, 0x34a04,
2417 		0x34a0c, 0x34a14,
2418 		0x34a1c, 0x34a2c,
2419 		0x34a44, 0x34a50,
2420 		0x34a74, 0x34a74,
2421 		0x34a7c, 0x34afc,
2422 		0x34b08, 0x34c24,
2423 		0x34d00, 0x34d14,
2424 		0x34d1c, 0x34d3c,
2425 		0x34d44, 0x34d4c,
2426 		0x34d54, 0x34d74,
2427 		0x34d7c, 0x34d7c,
2428 		0x34de0, 0x34de0,
2429 		0x34e00, 0x34ed4,
2430 		0x34f00, 0x34fa4,
2431 		0x34fc0, 0x34fc4,
2432 		0x35000, 0x35004,
2433 		0x35080, 0x350fc,
2434 		0x35208, 0x35220,
2435 		0x3523c, 0x35254,
2436 		0x35300, 0x35300,
2437 		0x35308, 0x3531c,
2438 		0x35338, 0x3533c,
2439 		0x35380, 0x35380,
2440 		0x35388, 0x353a8,
2441 		0x353b4, 0x353b4,
2442 		0x35400, 0x35420,
2443 		0x35438, 0x3543c,
2444 		0x35480, 0x35480,
2445 		0x354a8, 0x354a8,
2446 		0x354b0, 0x354b4,
2447 		0x354c8, 0x354d4,
2448 		0x35a40, 0x35a4c,
2449 		0x35af0, 0x35b20,
2450 		0x35b38, 0x35b3c,
2451 		0x35b80, 0x35b80,
2452 		0x35ba8, 0x35ba8,
2453 		0x35bb0, 0x35bb4,
2454 		0x35bc8, 0x35bd4,
2455 		0x36140, 0x3618c,
2456 		0x361f0, 0x361f4,
2457 		0x36200, 0x36200,
2458 		0x36218, 0x36218,
2459 		0x36400, 0x36400,
2460 		0x36408, 0x3641c,
2461 		0x36618, 0x36620,
2462 		0x36664, 0x36664,
2463 		0x366a8, 0x366a8,
2464 		0x366ec, 0x366ec,
2465 		0x36a00, 0x36abc,
2466 		0x36b00, 0x36b38,
2467 		0x36b40, 0x36b58,
2468 		0x36b60, 0x36b78,
2469 		0x36c00, 0x36c00,
2470 		0x36c08, 0x36c3c,
2471 		0x36e00, 0x36e2c,
2472 		0x36f00, 0x36f2c,
2473 		0x37000, 0x3702c,
2474 		0x37034, 0x37050,
2475 		0x37058, 0x37058,
2476 		0x37060, 0x3708c,
2477 		0x3709c, 0x370ac,
2478 		0x370c0, 0x370c0,
2479 		0x370c8, 0x370d0,
2480 		0x370d8, 0x370e0,
2481 		0x370ec, 0x3712c,
2482 		0x37134, 0x37150,
2483 		0x37158, 0x37158,
2484 		0x37160, 0x3718c,
2485 		0x3719c, 0x371ac,
2486 		0x371c0, 0x371c0,
2487 		0x371c8, 0x371d0,
2488 		0x371d8, 0x371e0,
2489 		0x371ec, 0x37290,
2490 		0x37298, 0x372c4,
2491 		0x372e4, 0x37390,
2492 		0x37398, 0x373c4,
2493 		0x373e4, 0x3742c,
2494 		0x37434, 0x37450,
2495 		0x37458, 0x37458,
2496 		0x37460, 0x3748c,
2497 		0x3749c, 0x374ac,
2498 		0x374c0, 0x374c0,
2499 		0x374c8, 0x374d0,
2500 		0x374d8, 0x374e0,
2501 		0x374ec, 0x3752c,
2502 		0x37534, 0x37550,
2503 		0x37558, 0x37558,
2504 		0x37560, 0x3758c,
2505 		0x3759c, 0x375ac,
2506 		0x375c0, 0x375c0,
2507 		0x375c8, 0x375d0,
2508 		0x375d8, 0x375e0,
2509 		0x375ec, 0x37690,
2510 		0x37698, 0x376c4,
2511 		0x376e4, 0x37790,
2512 		0x37798, 0x377c4,
2513 		0x377e4, 0x377fc,
2514 		0x37814, 0x37814,
2515 		0x37854, 0x37868,
2516 		0x37880, 0x3788c,
2517 		0x378c0, 0x378d0,
2518 		0x378e8, 0x378ec,
2519 		0x37900, 0x3792c,
2520 		0x37934, 0x37950,
2521 		0x37958, 0x37958,
2522 		0x37960, 0x3798c,
2523 		0x3799c, 0x379ac,
2524 		0x379c0, 0x379c0,
2525 		0x379c8, 0x379d0,
2526 		0x379d8, 0x379e0,
2527 		0x379ec, 0x37a90,
2528 		0x37a98, 0x37ac4,
2529 		0x37ae4, 0x37b10,
2530 		0x37b24, 0x37b28,
2531 		0x37b38, 0x37b50,
2532 		0x37bf0, 0x37c10,
2533 		0x37c24, 0x37c28,
2534 		0x37c38, 0x37c50,
2535 		0x37cf0, 0x37cfc,
2536 		0x40040, 0x40040,
2537 		0x40080, 0x40084,
2538 		0x40100, 0x40100,
2539 		0x40140, 0x401bc,
2540 		0x40200, 0x40214,
2541 		0x40228, 0x40228,
2542 		0x40240, 0x40258,
2543 		0x40280, 0x40280,
2544 		0x40304, 0x40304,
2545 		0x40330, 0x4033c,
2546 		0x41304, 0x413c8,
2547 		0x413d0, 0x413dc,
2548 		0x413f0, 0x413f0,
2549 		0x41400, 0x4140c,
2550 		0x41414, 0x4141c,
2551 		0x41480, 0x414d0,
2552 		0x44000, 0x4407c,
2553 		0x440c0, 0x441ac,
2554 		0x441b4, 0x4427c,
2555 		0x442c0, 0x443ac,
2556 		0x443b4, 0x4447c,
2557 		0x444c0, 0x445ac,
2558 		0x445b4, 0x4467c,
2559 		0x446c0, 0x447ac,
2560 		0x447b4, 0x4487c,
2561 		0x448c0, 0x449ac,
2562 		0x449b4, 0x44a7c,
2563 		0x44ac0, 0x44bac,
2564 		0x44bb4, 0x44c7c,
2565 		0x44cc0, 0x44dac,
2566 		0x44db4, 0x44e7c,
2567 		0x44ec0, 0x44fac,
2568 		0x44fb4, 0x4507c,
2569 		0x450c0, 0x451ac,
2570 		0x451b4, 0x451fc,
2571 		0x45800, 0x45804,
2572 		0x45810, 0x45830,
2573 		0x45840, 0x45860,
2574 		0x45868, 0x45868,
2575 		0x45880, 0x45884,
2576 		0x458a0, 0x458b0,
2577 		0x45a00, 0x45a04,
2578 		0x45a10, 0x45a30,
2579 		0x45a40, 0x45a60,
2580 		0x45a68, 0x45a68,
2581 		0x45a80, 0x45a84,
2582 		0x45aa0, 0x45ab0,
2583 		0x460c0, 0x460e4,
2584 		0x47000, 0x4703c,
2585 		0x47044, 0x4708c,
2586 		0x47200, 0x47250,
2587 		0x47400, 0x47408,
2588 		0x47414, 0x47420,
2589 		0x47600, 0x47618,
2590 		0x47800, 0x47814,
2591 		0x47820, 0x4782c,
2592 		0x50000, 0x50084,
2593 		0x50090, 0x500cc,
2594 		0x50300, 0x50384,
2595 		0x50400, 0x50400,
2596 		0x50800, 0x50884,
2597 		0x50890, 0x508cc,
2598 		0x50b00, 0x50b84,
2599 		0x50c00, 0x50c00,
2600 		0x51000, 0x51020,
2601 		0x51028, 0x510b0,
2602 		0x51300, 0x51324,
2603 	};
2604 
2605 	static const unsigned int t6vf_reg_ranges[] = {
2606 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2607 		VF_MPS_REG(A_MPS_VF_CTL),
2608 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2609 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2610 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2611 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2612 		FW_T6VF_MBDATA_BASE_ADDR,
2613 		FW_T6VF_MBDATA_BASE_ADDR +
2614 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2615 	};
2616 
2617 	u32 *buf_end = (u32 *)(buf + buf_size);
2618 	const unsigned int *reg_ranges;
2619 	int reg_ranges_size, range;
2620 	unsigned int chip_version = chip_id(adap);
2621 
2622 	/*
2623 	 * Select the right set of register ranges to dump depending on the
2624 	 * adapter chip type.
2625 	 */
2626 	switch (chip_version) {
2627 	case CHELSIO_T4:
2628 		if (adap->flags & IS_VF) {
2629 			reg_ranges = t4vf_reg_ranges;
2630 			reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges);
2631 		} else {
2632 			reg_ranges = t4_reg_ranges;
2633 			reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2634 		}
2635 		break;
2636 
2637 	case CHELSIO_T5:
2638 		if (adap->flags & IS_VF) {
2639 			reg_ranges = t5vf_reg_ranges;
2640 			reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges);
2641 		} else {
2642 			reg_ranges = t5_reg_ranges;
2643 			reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2644 		}
2645 		break;
2646 
2647 	case CHELSIO_T6:
2648 		if (adap->flags & IS_VF) {
2649 			reg_ranges = t6vf_reg_ranges;
2650 			reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges);
2651 		} else {
2652 			reg_ranges = t6_reg_ranges;
2653 			reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2654 		}
2655 		break;
2656 
2657 	default:
2658 		CH_ERR(adap,
2659 			"Unsupported chip version %d\n", chip_version);
2660 		return;
2661 	}
2662 
2663 	/*
2664 	 * Clear the register buffer and insert the appropriate register
2665 	 * values selected by the above register ranges.
2666 	 */
2667 	memset(buf, 0, buf_size);
2668 	for (range = 0; range < reg_ranges_size; range += 2) {
2669 		unsigned int reg = reg_ranges[range];
2670 		unsigned int last_reg = reg_ranges[range + 1];
2671 		u32 *bufp = (u32 *)(buf + reg);
2672 
2673 		/*
2674 		 * Iterate across the register range filling in the register
2675 		 * buffer but don't write past the end of the register buffer.
2676 		 */
2677 		while (reg <= last_reg && bufp < buf_end) {
2678 			*bufp++ = t4_read_reg(adap, reg);
2679 			reg += sizeof(u32);
2680 		}
2681 	}
2682 }
2683 
2684 /*
2685  * Partial EEPROM Vital Product Data structure.  Includes only the ID and
2686  * VPD-R sections.
2687  */
2688 struct t4_vpd_hdr {
2689 	u8  id_tag;
2690 	u8  id_len[2];
2691 	u8  id_data[ID_LEN];
2692 	u8  vpdr_tag;
2693 	u8  vpdr_len[2];
2694 };
2695 
2696 /*
2697  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
2698  */
2699 #define EEPROM_DELAY		10		/* 10us per poll spin */
2700 #define EEPROM_MAX_POLL		5000		/* x 5000 == 50ms */
2701 
2702 #define EEPROM_STAT_ADDR	0x7bfc
2703 #define VPD_BASE		0x400
2704 #define VPD_BASE_OLD		0
2705 #define VPD_LEN			1024
2706 #define VPD_INFO_FLD_HDR_SIZE	3
2707 #define CHELSIO_VPD_UNIQUE_ID	0x82
2708 
2709 /*
2710  * Small utility function to wait till any outstanding VPD Access is complete.
2711  * We have a per-adapter state variable "VPD Busy" to indicate when we have a
2712  * VPD Access in flight.  This allows us to handle the problem of having a
2713  * previous VPD Access time out and prevent an attempt to inject a new VPD
2714  * Request before any in-flight VPD reguest has completed.
2715  */
2716 static int t4_seeprom_wait(struct adapter *adapter)
2717 {
2718 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2719 	int max_poll;
2720 
2721 	/*
2722 	 * If no VPD Access is in flight, we can just return success right
2723 	 * away.
2724 	 */
2725 	if (!adapter->vpd_busy)
2726 		return 0;
2727 
2728 	/*
2729 	 * Poll the VPD Capability Address/Flag register waiting for it
2730 	 * to indicate that the operation is complete.
2731 	 */
2732 	max_poll = EEPROM_MAX_POLL;
2733 	do {
2734 		u16 val;
2735 
2736 		udelay(EEPROM_DELAY);
2737 		t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
2738 
2739 		/*
2740 		 * If the operation is complete, mark the VPD as no longer
2741 		 * busy and return success.
2742 		 */
2743 		if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
2744 			adapter->vpd_busy = 0;
2745 			return 0;
2746 		}
2747 	} while (--max_poll);
2748 
2749 	/*
2750 	 * Failure!  Note that we leave the VPD Busy status set in order to
2751 	 * avoid pushing a new VPD Access request into the VPD Capability till
2752 	 * the current operation eventually succeeds.  It's a bug to issue a
2753 	 * new request when an existing request is in flight and will result
2754 	 * in corrupt hardware state.
2755 	 */
2756 	return -ETIMEDOUT;
2757 }
2758 
2759 /**
2760  *	t4_seeprom_read - read a serial EEPROM location
2761  *	@adapter: adapter to read
2762  *	@addr: EEPROM virtual address
2763  *	@data: where to store the read data
2764  *
2765  *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
2766  *	VPD capability.  Note that this function must be called with a virtual
2767  *	address.
2768  */
2769 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2770 {
2771 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2772 	int ret;
2773 
2774 	/*
2775 	 * VPD Accesses must alway be 4-byte aligned!
2776 	 */
2777 	if (addr >= EEPROMVSIZE || (addr & 3))
2778 		return -EINVAL;
2779 
2780 	/*
2781 	 * Wait for any previous operation which may still be in flight to
2782 	 * complete.
2783 	 */
2784 	ret = t4_seeprom_wait(adapter);
2785 	if (ret) {
2786 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2787 		return ret;
2788 	}
2789 
2790 	/*
2791 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2792 	 * for our request to complete.  If it doesn't complete, note the
2793 	 * error and return it to our caller.  Note that we do not reset the
2794 	 * VPD Busy status!
2795 	 */
2796 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2797 	adapter->vpd_busy = 1;
2798 	adapter->vpd_flag = PCI_VPD_ADDR_F;
2799 	ret = t4_seeprom_wait(adapter);
2800 	if (ret) {
2801 		CH_ERR(adapter, "VPD read of address %#x failed\n", addr);
2802 		return ret;
2803 	}
2804 
2805 	/*
2806 	 * Grab the returned data, swizzle it into our endianness and
2807 	 * return success.
2808 	 */
2809 	t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2810 	*data = le32_to_cpu(*data);
2811 	return 0;
2812 }
2813 
2814 /**
2815  *	t4_seeprom_write - write a serial EEPROM location
2816  *	@adapter: adapter to write
2817  *	@addr: virtual EEPROM address
2818  *	@data: value to write
2819  *
2820  *	Write a 32-bit word to a location in serial EEPROM using the card's PCI
2821  *	VPD capability.  Note that this function must be called with a virtual
2822  *	address.
2823  */
2824 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2825 {
2826 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2827 	int ret;
2828 	u32 stats_reg;
2829 	int max_poll;
2830 
2831 	/*
2832 	 * VPD Accesses must alway be 4-byte aligned!
2833 	 */
2834 	if (addr >= EEPROMVSIZE || (addr & 3))
2835 		return -EINVAL;
2836 
2837 	/*
2838 	 * Wait for any previous operation which may still be in flight to
2839 	 * complete.
2840 	 */
2841 	ret = t4_seeprom_wait(adapter);
2842 	if (ret) {
2843 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2844 		return ret;
2845 	}
2846 
2847 	/*
2848 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2849 	 * for our request to complete.  If it doesn't complete, note the
2850 	 * error and return it to our caller.  Note that we do not reset the
2851 	 * VPD Busy status!
2852 	 */
2853 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2854 				 cpu_to_le32(data));
2855 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2856 				 (u16)addr | PCI_VPD_ADDR_F);
2857 	adapter->vpd_busy = 1;
2858 	adapter->vpd_flag = 0;
2859 	ret = t4_seeprom_wait(adapter);
2860 	if (ret) {
2861 		CH_ERR(adapter, "VPD write of address %#x failed\n", addr);
2862 		return ret;
2863 	}
2864 
2865 	/*
2866 	 * Reset PCI_VPD_DATA register after a transaction and wait for our
2867 	 * request to complete. If it doesn't complete, return error.
2868 	 */
2869 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2870 	max_poll = EEPROM_MAX_POLL;
2871 	do {
2872 		udelay(EEPROM_DELAY);
2873 		t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2874 	} while ((stats_reg & 0x1) && --max_poll);
2875 	if (!max_poll)
2876 		return -ETIMEDOUT;
2877 
2878 	/* Return success! */
2879 	return 0;
2880 }
2881 
2882 /**
2883  *	t4_eeprom_ptov - translate a physical EEPROM address to virtual
2884  *	@phys_addr: the physical EEPROM address
2885  *	@fn: the PCI function number
2886  *	@sz: size of function-specific area
2887  *
2888  *	Translate a physical EEPROM address to virtual.  The first 1K is
2889  *	accessed through virtual addresses starting at 31K, the rest is
2890  *	accessed through virtual addresses starting at 0.
2891  *
2892  *	The mapping is as follows:
2893  *	[0..1K) -> [31K..32K)
2894  *	[1K..1K+A) -> [ES-A..ES)
2895  *	[1K+A..ES) -> [0..ES-A-1K)
2896  *
2897  *	where A = @fn * @sz, and ES = EEPROM size.
2898  */
2899 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2900 {
2901 	fn *= sz;
2902 	if (phys_addr < 1024)
2903 		return phys_addr + (31 << 10);
2904 	if (phys_addr < 1024 + fn)
2905 		return EEPROMSIZE - fn + phys_addr - 1024;
2906 	if (phys_addr < EEPROMSIZE)
2907 		return phys_addr - 1024 - fn;
2908 	return -EINVAL;
2909 }
2910 
2911 /**
2912  *	t4_seeprom_wp - enable/disable EEPROM write protection
2913  *	@adapter: the adapter
2914  *	@enable: whether to enable or disable write protection
2915  *
2916  *	Enables or disables write protection on the serial EEPROM.
2917  */
2918 int t4_seeprom_wp(struct adapter *adapter, int enable)
2919 {
2920 	return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2921 }
2922 
2923 /**
2924  *	get_vpd_keyword_val - Locates an information field keyword in the VPD
2925  *	@v: Pointer to buffered vpd data structure
2926  *	@kw: The keyword to search for
2927  *
2928  *	Returns the value of the information field keyword or
2929  *	-ENOENT otherwise.
2930  */
2931 static int get_vpd_keyword_val(const struct t4_vpd_hdr *v, const char *kw)
2932 {
2933 	int i;
2934 	unsigned int offset , len;
2935 	const u8 *buf = (const u8 *)v;
2936 	const u8 *vpdr_len = &v->vpdr_len[0];
2937 	offset = sizeof(struct t4_vpd_hdr);
2938 	len =  (u16)vpdr_len[0] + ((u16)vpdr_len[1] << 8);
2939 
2940 	if (len + sizeof(struct t4_vpd_hdr) > VPD_LEN) {
2941 		return -ENOENT;
2942 	}
2943 
2944 	for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
2945 		if(memcmp(buf + i , kw , 2) == 0){
2946 			i += VPD_INFO_FLD_HDR_SIZE;
2947 			return i;
2948 		}
2949 
2950 		i += VPD_INFO_FLD_HDR_SIZE + buf[i+2];
2951 	}
2952 
2953 	return -ENOENT;
2954 }
2955 
2956 
2957 /**
2958  *	get_vpd_params - read VPD parameters from VPD EEPROM
2959  *	@adapter: adapter to read
2960  *	@p: where to store the parameters
2961  *	@vpd: caller provided temporary space to read the VPD into
2962  *
2963  *	Reads card parameters stored in VPD EEPROM.
2964  */
2965 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p,
2966     u8 *vpd)
2967 {
2968 	int i, ret, addr;
2969 	int ec, sn, pn, na;
2970 	u8 csum;
2971 	const struct t4_vpd_hdr *v;
2972 
2973 	/*
2974 	 * Card information normally starts at VPD_BASE but early cards had
2975 	 * it at 0.
2976 	 */
2977 	ret = t4_seeprom_read(adapter, VPD_BASE, (u32 *)(vpd));
2978 	if (ret)
2979 		return (ret);
2980 
2981 	/*
2982 	 * The VPD shall have a unique identifier specified by the PCI SIG.
2983 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2984 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2985 	 * is expected to automatically put this entry at the
2986 	 * beginning of the VPD.
2987 	 */
2988 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2989 
2990 	for (i = 0; i < VPD_LEN; i += 4) {
2991 		ret = t4_seeprom_read(adapter, addr + i, (u32 *)(vpd + i));
2992 		if (ret)
2993 			return ret;
2994 	}
2995  	v = (const struct t4_vpd_hdr *)vpd;
2996 
2997 #define FIND_VPD_KW(var,name) do { \
2998 	var = get_vpd_keyword_val(v , name); \
2999 	if (var < 0) { \
3000 		CH_ERR(adapter, "missing VPD keyword " name "\n"); \
3001 		return -EINVAL; \
3002 	} \
3003 } while (0)
3004 
3005 	FIND_VPD_KW(i, "RV");
3006 	for (csum = 0; i >= 0; i--)
3007 		csum += vpd[i];
3008 
3009 	if (csum) {
3010 		CH_ERR(adapter,
3011 			"corrupted VPD EEPROM, actual csum %u\n", csum);
3012 		return -EINVAL;
3013 	}
3014 
3015 	FIND_VPD_KW(ec, "EC");
3016 	FIND_VPD_KW(sn, "SN");
3017 	FIND_VPD_KW(pn, "PN");
3018 	FIND_VPD_KW(na, "NA");
3019 #undef FIND_VPD_KW
3020 
3021 	memcpy(p->id, v->id_data, ID_LEN);
3022 	strstrip(p->id);
3023 	memcpy(p->ec, vpd + ec, EC_LEN);
3024 	strstrip(p->ec);
3025 	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
3026 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
3027 	strstrip(p->sn);
3028 	i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
3029 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
3030 	strstrip((char *)p->pn);
3031 	i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
3032 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
3033 	strstrip((char *)p->na);
3034 
3035 	return 0;
3036 }
3037 
3038 /* serial flash and firmware constants and flash config file constants */
3039 enum {
3040 	SF_ATTEMPTS = 10,	/* max retries for SF operations */
3041 
3042 	/* flash command opcodes */
3043 	SF_PROG_PAGE    = 2,	/* program page */
3044 	SF_WR_DISABLE   = 4,	/* disable writes */
3045 	SF_RD_STATUS    = 5,	/* read status register */
3046 	SF_WR_ENABLE    = 6,	/* enable writes */
3047 	SF_RD_DATA_FAST = 0xb,	/* read flash */
3048 	SF_RD_ID	= 0x9f,	/* read ID */
3049 	SF_ERASE_SECTOR = 0xd8,	/* erase sector */
3050 };
3051 
3052 /**
3053  *	sf1_read - read data from the serial flash
3054  *	@adapter: the adapter
3055  *	@byte_cnt: number of bytes to read
3056  *	@cont: whether another operation will be chained
3057  *	@lock: whether to lock SF for PL access only
3058  *	@valp: where to store the read data
3059  *
3060  *	Reads up to 4 bytes of data from the serial flash.  The location of
3061  *	the read needs to be specified prior to calling this by issuing the
3062  *	appropriate commands to the serial flash.
3063  */
3064 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
3065 		    int lock, u32 *valp)
3066 {
3067 	int ret;
3068 
3069 	if (!byte_cnt || byte_cnt > 4)
3070 		return -EINVAL;
3071 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3072 		return -EBUSY;
3073 	t4_write_reg(adapter, A_SF_OP,
3074 		     V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
3075 	ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3076 	if (!ret)
3077 		*valp = t4_read_reg(adapter, A_SF_DATA);
3078 	return ret;
3079 }
3080 
3081 /**
3082  *	sf1_write - write data to the serial flash
3083  *	@adapter: the adapter
3084  *	@byte_cnt: number of bytes to write
3085  *	@cont: whether another operation will be chained
3086  *	@lock: whether to lock SF for PL access only
3087  *	@val: value to write
3088  *
3089  *	Writes up to 4 bytes of data to the serial flash.  The location of
3090  *	the write needs to be specified prior to calling this by issuing the
3091  *	appropriate commands to the serial flash.
3092  */
3093 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
3094 		     int lock, u32 val)
3095 {
3096 	if (!byte_cnt || byte_cnt > 4)
3097 		return -EINVAL;
3098 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3099 		return -EBUSY;
3100 	t4_write_reg(adapter, A_SF_DATA, val);
3101 	t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
3102 		     V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
3103 	return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3104 }
3105 
3106 /**
3107  *	flash_wait_op - wait for a flash operation to complete
3108  *	@adapter: the adapter
3109  *	@attempts: max number of polls of the status register
3110  *	@delay: delay between polls in ms
3111  *
3112  *	Wait for a flash operation to complete by polling the status register.
3113  */
3114 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3115 {
3116 	int ret;
3117 	u32 status;
3118 
3119 	while (1) {
3120 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3121 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3122 			return ret;
3123 		if (!(status & 1))
3124 			return 0;
3125 		if (--attempts == 0)
3126 			return -EAGAIN;
3127 		if (delay)
3128 			msleep(delay);
3129 	}
3130 }
3131 
3132 /**
3133  *	t4_read_flash - read words from serial flash
3134  *	@adapter: the adapter
3135  *	@addr: the start address for the read
3136  *	@nwords: how many 32-bit words to read
3137  *	@data: where to store the read data
3138  *	@byte_oriented: whether to store data as bytes or as words
3139  *
3140  *	Read the specified number of 32-bit words from the serial flash.
3141  *	If @byte_oriented is set the read data is stored as a byte array
3142  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3143  *	natural endianness.
3144  */
3145 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3146 		  unsigned int nwords, u32 *data, int byte_oriented)
3147 {
3148 	int ret;
3149 
3150 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3151 		return -EINVAL;
3152 
3153 	addr = swab32(addr) | SF_RD_DATA_FAST;
3154 
3155 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3156 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3157 		return ret;
3158 
3159 	for ( ; nwords; nwords--, data++) {
3160 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3161 		if (nwords == 1)
3162 			t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3163 		if (ret)
3164 			return ret;
3165 		if (byte_oriented)
3166 			*data = (__force __u32)(cpu_to_be32(*data));
3167 	}
3168 	return 0;
3169 }
3170 
3171 /**
3172  *	t4_write_flash - write up to a page of data to the serial flash
3173  *	@adapter: the adapter
3174  *	@addr: the start address to write
3175  *	@n: length of data to write in bytes
3176  *	@data: the data to write
3177  *	@byte_oriented: whether to store data as bytes or as words
3178  *
3179  *	Writes up to a page of data (256 bytes) to the serial flash starting
3180  *	at the given address.  All the data must be written to the same page.
3181  *	If @byte_oriented is set the write data is stored as byte stream
3182  *	(i.e. matches what on disk), otherwise in big-endian.
3183  */
3184 int t4_write_flash(struct adapter *adapter, unsigned int addr,
3185 			  unsigned int n, const u8 *data, int byte_oriented)
3186 {
3187 	int ret;
3188 	u32 buf[SF_PAGE_SIZE / 4];
3189 	unsigned int i, c, left, val, offset = addr & 0xff;
3190 
3191 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3192 		return -EINVAL;
3193 
3194 	val = swab32(addr) | SF_PROG_PAGE;
3195 
3196 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3197 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3198 		goto unlock;
3199 
3200 	for (left = n; left; left -= c) {
3201 		c = min(left, 4U);
3202 		for (val = 0, i = 0; i < c; ++i)
3203 			val = (val << 8) + *data++;
3204 
3205 		if (!byte_oriented)
3206 			val = cpu_to_be32(val);
3207 
3208 		ret = sf1_write(adapter, c, c != left, 1, val);
3209 		if (ret)
3210 			goto unlock;
3211 	}
3212 	ret = flash_wait_op(adapter, 8, 1);
3213 	if (ret)
3214 		goto unlock;
3215 
3216 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3217 
3218 	/* Read the page to verify the write succeeded */
3219 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3220 			    byte_oriented);
3221 	if (ret)
3222 		return ret;
3223 
3224 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3225 		CH_ERR(adapter,
3226 			"failed to correctly write the flash page at %#x\n",
3227 			addr);
3228 		return -EIO;
3229 	}
3230 	return 0;
3231 
3232 unlock:
3233 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3234 	return ret;
3235 }
3236 
3237 /**
3238  *	t4_get_fw_version - read the firmware version
3239  *	@adapter: the adapter
3240  *	@vers: where to place the version
3241  *
3242  *	Reads the FW version from flash.
3243  */
3244 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3245 {
3246 	return t4_read_flash(adapter, FLASH_FW_START +
3247 			     offsetof(struct fw_hdr, fw_ver), 1,
3248 			     vers, 0);
3249 }
3250 
3251 /**
3252  *	t4_get_bs_version - read the firmware bootstrap version
3253  *	@adapter: the adapter
3254  *	@vers: where to place the version
3255  *
3256  *	Reads the FW Bootstrap version from flash.
3257  */
3258 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3259 {
3260 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3261 			     offsetof(struct fw_hdr, fw_ver), 1,
3262 			     vers, 0);
3263 }
3264 
3265 /**
3266  *	t4_get_tp_version - read the TP microcode version
3267  *	@adapter: the adapter
3268  *	@vers: where to place the version
3269  *
3270  *	Reads the TP microcode version from flash.
3271  */
3272 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3273 {
3274 	return t4_read_flash(adapter, FLASH_FW_START +
3275 			     offsetof(struct fw_hdr, tp_microcode_ver),
3276 			     1, vers, 0);
3277 }
3278 
3279 /**
3280  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3281  *	@adapter: the adapter
3282  *	@vers: where to place the version
3283  *
3284  *	Reads the Expansion ROM header from FLASH and returns the version
3285  *	number (if present) through the @vers return value pointer.  We return
3286  *	this in the Firmware Version Format since it's convenient.  Return
3287  *	0 on success, -ENOENT if no Expansion ROM is present.
3288  */
3289 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3290 {
3291 	struct exprom_header {
3292 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3293 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3294 	} *hdr;
3295 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3296 					   sizeof(u32))];
3297 	int ret;
3298 
3299 	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3300 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3301 			    0);
3302 	if (ret)
3303 		return ret;
3304 
3305 	hdr = (struct exprom_header *)exprom_header_buf;
3306 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3307 		return -ENOENT;
3308 
3309 	*vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
3310 		 V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
3311 		 V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
3312 		 V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
3313 	return 0;
3314 }
3315 
3316 /**
3317  *	t4_get_scfg_version - return the Serial Configuration version
3318  *	@adapter: the adapter
3319  *	@vers: where to place the version
3320  *
3321  *	Reads the Serial Configuration Version via the Firmware interface
3322  *	(thus this can only be called once we're ready to issue Firmware
3323  *	commands).  The format of the Serial Configuration version is
3324  *	adapter specific.  Returns 0 on success, an error on failure.
3325  *
3326  *	Note that early versions of the Firmware didn't include the ability
3327  *	to retrieve the Serial Configuration version, so we zero-out the
3328  *	return-value parameter in that case to avoid leaving it with
3329  *	garbage in it.
3330  *
3331  *	Also note that the Firmware will return its cached copy of the Serial
3332  *	Initialization Revision ID, not the actual Revision ID as written in
3333  *	the Serial EEPROM.  This is only an issue if a new VPD has been written
3334  *	and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3335  *	it's best to defer calling this routine till after a FW_RESET_CMD has
3336  *	been issued if the Host Driver will be performing a full adapter
3337  *	initialization.
3338  */
3339 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3340 {
3341 	u32 scfgrev_param;
3342 	int ret;
3343 
3344 	scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3345 			 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV));
3346 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3347 			      1, &scfgrev_param, vers);
3348 	if (ret)
3349 		*vers = 0;
3350 	return ret;
3351 }
3352 
3353 /**
3354  *	t4_get_vpd_version - return the VPD version
3355  *	@adapter: the adapter
3356  *	@vers: where to place the version
3357  *
3358  *	Reads the VPD via the Firmware interface (thus this can only be called
3359  *	once we're ready to issue Firmware commands).  The format of the
3360  *	VPD version is adapter specific.  Returns 0 on success, an error on
3361  *	failure.
3362  *
3363  *	Note that early versions of the Firmware didn't include the ability
3364  *	to retrieve the VPD version, so we zero-out the return-value parameter
3365  *	in that case to avoid leaving it with garbage in it.
3366  *
3367  *	Also note that the Firmware will return its cached copy of the VPD
3368  *	Revision ID, not the actual Revision ID as written in the Serial
3369  *	EEPROM.  This is only an issue if a new VPD has been written and the
3370  *	Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3371  *	to defer calling this routine till after a FW_RESET_CMD has been issued
3372  *	if the Host Driver will be performing a full adapter initialization.
3373  */
3374 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3375 {
3376 	u32 vpdrev_param;
3377 	int ret;
3378 
3379 	vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3380 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV));
3381 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3382 			      1, &vpdrev_param, vers);
3383 	if (ret)
3384 		*vers = 0;
3385 	return ret;
3386 }
3387 
3388 /**
3389  *	t4_get_version_info - extract various chip/firmware version information
3390  *	@adapter: the adapter
3391  *
3392  *	Reads various chip/firmware version numbers and stores them into the
3393  *	adapter Adapter Parameters structure.  If any of the efforts fails
3394  *	the first failure will be returned, but all of the version numbers
3395  *	will be read.
3396  */
3397 int t4_get_version_info(struct adapter *adapter)
3398 {
3399 	int ret = 0;
3400 
3401 	#define FIRST_RET(__getvinfo) \
3402 	do { \
3403 		int __ret = __getvinfo; \
3404 		if (__ret && !ret) \
3405 			ret = __ret; \
3406 	} while (0)
3407 
3408 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3409 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3410 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3411 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3412 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3413 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3414 
3415 	#undef FIRST_RET
3416 
3417 	return ret;
3418 }
3419 
3420 /**
3421  *	t4_flash_erase_sectors - erase a range of flash sectors
3422  *	@adapter: the adapter
3423  *	@start: the first sector to erase
3424  *	@end: the last sector to erase
3425  *
3426  *	Erases the sectors in the given inclusive range.
3427  */
3428 int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3429 {
3430 	int ret = 0;
3431 
3432 	if (end >= adapter->params.sf_nsec)
3433 		return -EINVAL;
3434 
3435 	while (start <= end) {
3436 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3437 		    (ret = sf1_write(adapter, 4, 0, 1,
3438 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3439 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3440 			CH_ERR(adapter,
3441 				"erase of flash sector %d failed, error %d\n",
3442 				start, ret);
3443 			break;
3444 		}
3445 		start++;
3446 	}
3447 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3448 	return ret;
3449 }
3450 
3451 /**
3452  *	t4_flash_cfg_addr - return the address of the flash configuration file
3453  *	@adapter: the adapter
3454  *
3455  *	Return the address within the flash where the Firmware Configuration
3456  *	File is stored, or an error if the device FLASH is too small to contain
3457  *	a Firmware Configuration File.
3458  */
3459 int t4_flash_cfg_addr(struct adapter *adapter)
3460 {
3461 	/*
3462 	 * If the device FLASH isn't large enough to hold a Firmware
3463 	 * Configuration File, return an error.
3464 	 */
3465 	if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
3466 		return -ENOSPC;
3467 
3468 	return FLASH_CFG_START;
3469 }
3470 
3471 /*
3472  * Return TRUE if the specified firmware matches the adapter.  I.e. T4
3473  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3474  * and emit an error message for mismatched firmware to save our caller the
3475  * effort ...
3476  */
3477 static int t4_fw_matches_chip(struct adapter *adap,
3478 			      const struct fw_hdr *hdr)
3479 {
3480 	/*
3481 	 * The expression below will return FALSE for any unsupported adapter
3482 	 * which will keep us "honest" in the future ...
3483 	 */
3484 	if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) ||
3485 	    (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) ||
3486 	    (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6))
3487 		return 1;
3488 
3489 	CH_ERR(adap,
3490 		"FW image (%d) is not suitable for this adapter (%d)\n",
3491 		hdr->chip, chip_id(adap));
3492 	return 0;
3493 }
3494 
3495 /**
3496  *	t4_load_fw - download firmware
3497  *	@adap: the adapter
3498  *	@fw_data: the firmware image to write
3499  *	@size: image size
3500  *
3501  *	Write the supplied firmware image to the card's serial flash.
3502  */
3503 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3504 {
3505 	u32 csum;
3506 	int ret, addr;
3507 	unsigned int i;
3508 	u8 first_page[SF_PAGE_SIZE];
3509 	const u32 *p = (const u32 *)fw_data;
3510 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3511 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3512 	unsigned int fw_start_sec;
3513 	unsigned int fw_start;
3514 	unsigned int fw_size;
3515 
3516 	if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) {
3517 		fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC;
3518 		fw_start = FLASH_FWBOOTSTRAP_START;
3519 		fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE;
3520 	} else {
3521 		fw_start_sec = FLASH_FW_START_SEC;
3522  		fw_start = FLASH_FW_START;
3523 		fw_size = FLASH_FW_MAX_SIZE;
3524 	}
3525 
3526 	if (!size) {
3527 		CH_ERR(adap, "FW image has no data\n");
3528 		return -EINVAL;
3529 	}
3530 	if (size & 511) {
3531 		CH_ERR(adap,
3532 			"FW image size not multiple of 512 bytes\n");
3533 		return -EINVAL;
3534 	}
3535 	if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) {
3536 		CH_ERR(adap,
3537 			"FW image size differs from size in FW header\n");
3538 		return -EINVAL;
3539 	}
3540 	if (size > fw_size) {
3541 		CH_ERR(adap, "FW image too large, max is %u bytes\n",
3542 			fw_size);
3543 		return -EFBIG;
3544 	}
3545 	if (!t4_fw_matches_chip(adap, hdr))
3546 		return -EINVAL;
3547 
3548 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3549 		csum += be32_to_cpu(p[i]);
3550 
3551 	if (csum != 0xffffffff) {
3552 		CH_ERR(adap,
3553 			"corrupted firmware image, checksum %#x\n", csum);
3554 		return -EINVAL;
3555 	}
3556 
3557 	i = DIV_ROUND_UP(size, sf_sec_size);	/* # of sectors spanned */
3558 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3559 	if (ret)
3560 		goto out;
3561 
3562 	/*
3563 	 * We write the correct version at the end so the driver can see a bad
3564 	 * version if the FW write fails.  Start by writing a copy of the
3565 	 * first page with a bad version.
3566 	 */
3567 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3568 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3569 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
3570 	if (ret)
3571 		goto out;
3572 
3573 	addr = fw_start;
3574 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3575 		addr += SF_PAGE_SIZE;
3576 		fw_data += SF_PAGE_SIZE;
3577 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
3578 		if (ret)
3579 			goto out;
3580 	}
3581 
3582 	ret = t4_write_flash(adap,
3583 			     fw_start + offsetof(struct fw_hdr, fw_ver),
3584 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
3585 out:
3586 	if (ret)
3587 		CH_ERR(adap, "firmware download failed, error %d\n",
3588 			ret);
3589 	return ret;
3590 }
3591 
3592 /**
3593  *	t4_fwcache - firmware cache operation
3594  *	@adap: the adapter
3595  *	@op  : the operation (flush or flush and invalidate)
3596  */
3597 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3598 {
3599 	struct fw_params_cmd c;
3600 
3601 	memset(&c, 0, sizeof(c));
3602 	c.op_to_vfn =
3603 	    cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3604 			    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3605 				V_FW_PARAMS_CMD_PFN(adap->pf) |
3606 				V_FW_PARAMS_CMD_VFN(0));
3607 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3608 	c.param[0].mnem =
3609 	    cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3610 			    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE));
3611 	c.param[0].val = (__force __be32)op;
3612 
3613 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3614 }
3615 
3616 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3617 			unsigned int *pif_req_wrptr,
3618 			unsigned int *pif_rsp_wrptr)
3619 {
3620 	int i, j;
3621 	u32 cfg, val, req, rsp;
3622 
3623 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3624 	if (cfg & F_LADBGEN)
3625 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3626 
3627 	val = t4_read_reg(adap, A_CIM_DEBUGSTS);
3628 	req = G_POLADBGWRPTR(val);
3629 	rsp = G_PILADBGWRPTR(val);
3630 	if (pif_req_wrptr)
3631 		*pif_req_wrptr = req;
3632 	if (pif_rsp_wrptr)
3633 		*pif_rsp_wrptr = rsp;
3634 
3635 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3636 		for (j = 0; j < 6; j++) {
3637 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
3638 				     V_PILADBGRDPTR(rsp));
3639 			*pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
3640 			*pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
3641 			req++;
3642 			rsp++;
3643 		}
3644 		req = (req + 2) & M_POLADBGRDPTR;
3645 		rsp = (rsp + 2) & M_PILADBGRDPTR;
3646 	}
3647 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3648 }
3649 
3650 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3651 {
3652 	u32 cfg;
3653 	int i, j, idx;
3654 
3655 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3656 	if (cfg & F_LADBGEN)
3657 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3658 
3659 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3660 		for (j = 0; j < 5; j++) {
3661 			idx = 8 * i + j;
3662 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
3663 				     V_PILADBGRDPTR(idx));
3664 			*ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
3665 			*ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
3666 		}
3667 	}
3668 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3669 }
3670 
3671 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3672 {
3673 	unsigned int i, j;
3674 
3675 	for (i = 0; i < 8; i++) {
3676 		u32 *p = la_buf + i;
3677 
3678 		t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
3679 		j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
3680 		t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
3681 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3682 			*p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
3683 	}
3684 }
3685 
3686 #define ADVERT_MASK (V_FW_PORT_CAP_SPEED(M_FW_PORT_CAP_SPEED) | \
3687 		     FW_PORT_CAP_ANEG)
3688 
3689 /**
3690  *	t4_link_l1cfg - apply link configuration to MAC/PHY
3691  *	@phy: the PHY to setup
3692  *	@mac: the MAC to setup
3693  *	@lc: the requested link configuration
3694  *
3695  *	Set up a port's MAC and PHY according to a desired link configuration.
3696  *	- If the PHY can auto-negotiate first decide what to advertise, then
3697  *	  enable/disable auto-negotiation as desired, and reset.
3698  *	- If the PHY does not auto-negotiate just reset it.
3699  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3700  *	  otherwise do it later based on the outcome of auto-negotiation.
3701  */
3702 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3703 		  struct link_config *lc)
3704 {
3705 	struct fw_port_cmd c;
3706 	unsigned int mdi = V_FW_PORT_CAP_MDI(FW_PORT_CAP_MDI_AUTO);
3707 	unsigned int fc, fec;
3708 
3709 	fc = 0;
3710 	if (lc->requested_fc & PAUSE_RX)
3711 		fc |= FW_PORT_CAP_FC_RX;
3712 	if (lc->requested_fc & PAUSE_TX)
3713 		fc |= FW_PORT_CAP_FC_TX;
3714 
3715 	fec = 0;
3716 	if (lc->requested_fec & FEC_RS)
3717 		fec |= FW_PORT_CAP_FEC_RS;
3718 	if (lc->requested_fec & FEC_BASER_RS)
3719 		fec |= FW_PORT_CAP_FEC_BASER_RS;
3720 	if (lc->requested_fec & FEC_RESERVED)
3721 		fec |= FW_PORT_CAP_FEC_RESERVED;
3722 
3723 	memset(&c, 0, sizeof(c));
3724 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3725 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3726 				     V_FW_PORT_CMD_PORTID(port));
3727 	c.action_to_len16 =
3728 		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3729 			    FW_LEN16(c));
3730 
3731 	if (!(lc->supported & FW_PORT_CAP_ANEG)) {
3732 		c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) |
3733 					     fc | fec);
3734 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
3735 		lc->fec = lc->requested_fec;
3736 	} else if (lc->autoneg == AUTONEG_DISABLE) {
3737 		c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed |
3738 					     fc | fec | mdi);
3739 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
3740 		lc->fec = lc->requested_fec;
3741 	} else
3742 		c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc | fec | mdi);
3743 
3744 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3745 }
3746 
3747 /**
3748  *	t4_restart_aneg - restart autonegotiation
3749  *	@adap: the adapter
3750  *	@mbox: mbox to use for the FW command
3751  *	@port: the port id
3752  *
3753  *	Restarts autonegotiation for the selected port.
3754  */
3755 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3756 {
3757 	struct fw_port_cmd c;
3758 
3759 	memset(&c, 0, sizeof(c));
3760 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3761 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3762 				     V_FW_PORT_CMD_PORTID(port));
3763 	c.action_to_len16 =
3764 		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3765 			    FW_LEN16(c));
3766 	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3767 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3768 }
3769 
3770 typedef void (*int_handler_t)(struct adapter *adap);
3771 
3772 struct intr_info {
3773 	unsigned int mask;	/* bits to check in interrupt status */
3774 	const char *msg;	/* message to print or NULL */
3775 	short stat_idx;		/* stat counter to increment or -1 */
3776 	unsigned short fatal;	/* whether the condition reported is fatal */
3777 	int_handler_t int_handler;	/* platform-specific int handler */
3778 };
3779 
3780 /**
3781  *	t4_handle_intr_status - table driven interrupt handler
3782  *	@adapter: the adapter that generated the interrupt
3783  *	@reg: the interrupt status register to process
3784  *	@acts: table of interrupt actions
3785  *
3786  *	A table driven interrupt handler that applies a set of masks to an
3787  *	interrupt status word and performs the corresponding actions if the
3788  *	interrupts described by the mask have occurred.  The actions include
3789  *	optionally emitting a warning or alert message.  The table is terminated
3790  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
3791  *	conditions.
3792  */
3793 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
3794 				 const struct intr_info *acts)
3795 {
3796 	int fatal = 0;
3797 	unsigned int mask = 0;
3798 	unsigned int status = t4_read_reg(adapter, reg);
3799 
3800 	for ( ; acts->mask; ++acts) {
3801 		if (!(status & acts->mask))
3802 			continue;
3803 		if (acts->fatal) {
3804 			fatal++;
3805 			CH_ALERT(adapter, "%s (0x%x)\n", acts->msg,
3806 				  status & acts->mask);
3807 		} else if (acts->msg)
3808 			CH_WARN_RATELIMIT(adapter, "%s (0x%x)\n", acts->msg,
3809 				 status & acts->mask);
3810 		if (acts->int_handler)
3811 			acts->int_handler(adapter);
3812 		mask |= acts->mask;
3813 	}
3814 	status &= mask;
3815 	if (status)	/* clear processed interrupts */
3816 		t4_write_reg(adapter, reg, status);
3817 	return fatal;
3818 }
3819 
3820 /*
3821  * Interrupt handler for the PCIE module.
3822  */
3823 static void pcie_intr_handler(struct adapter *adapter)
3824 {
3825 	static const struct intr_info sysbus_intr_info[] = {
3826 		{ F_RNPP, "RXNP array parity error", -1, 1 },
3827 		{ F_RPCP, "RXPC array parity error", -1, 1 },
3828 		{ F_RCIP, "RXCIF array parity error", -1, 1 },
3829 		{ F_RCCP, "Rx completions control array parity error", -1, 1 },
3830 		{ F_RFTP, "RXFT array parity error", -1, 1 },
3831 		{ 0 }
3832 	};
3833 	static const struct intr_info pcie_port_intr_info[] = {
3834 		{ F_TPCP, "TXPC array parity error", -1, 1 },
3835 		{ F_TNPP, "TXNP array parity error", -1, 1 },
3836 		{ F_TFTP, "TXFT array parity error", -1, 1 },
3837 		{ F_TCAP, "TXCA array parity error", -1, 1 },
3838 		{ F_TCIP, "TXCIF array parity error", -1, 1 },
3839 		{ F_RCAP, "RXCA array parity error", -1, 1 },
3840 		{ F_OTDD, "outbound request TLP discarded", -1, 1 },
3841 		{ F_RDPE, "Rx data parity error", -1, 1 },
3842 		{ F_TDUE, "Tx uncorrectable data error", -1, 1 },
3843 		{ 0 }
3844 	};
3845 	static const struct intr_info pcie_intr_info[] = {
3846 		{ F_MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
3847 		{ F_MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
3848 		{ F_MSIDATAPERR, "MSI data parity error", -1, 1 },
3849 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
3850 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
3851 		{ F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
3852 		{ F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
3853 		{ F_PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
3854 		{ F_PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
3855 		{ F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
3856 		{ F_CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
3857 		{ F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
3858 		{ F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
3859 		{ F_DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
3860 		{ F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
3861 		{ F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
3862 		{ F_HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
3863 		{ F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
3864 		{ F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
3865 		{ F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
3866 		{ F_FIDPERR, "PCI FID parity error", -1, 1 },
3867 		{ F_INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
3868 		{ F_MATAGPERR, "PCI MA tag parity error", -1, 1 },
3869 		{ F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
3870 		{ F_RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
3871 		{ F_RXWRPERR, "PCI Rx write parity error", -1, 1 },
3872 		{ F_RPLPERR, "PCI replay buffer parity error", -1, 1 },
3873 		{ F_PCIESINT, "PCI core secondary fault", -1, 1 },
3874 		{ F_PCIEPINT, "PCI core primary fault", -1, 1 },
3875 		{ F_UNXSPLCPLERR, "PCI unexpected split completion error", -1,
3876 		  0 },
3877 		{ 0 }
3878 	};
3879 
3880 	static const struct intr_info t5_pcie_intr_info[] = {
3881 		{ F_MSTGRPPERR, "Master Response Read Queue parity error",
3882 		  -1, 1 },
3883 		{ F_MSTTIMEOUTPERR, "Master Timeout FIFO parity error", -1, 1 },
3884 		{ F_MSIXSTIPERR, "MSI-X STI SRAM parity error", -1, 1 },
3885 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
3886 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
3887 		{ F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
3888 		{ F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
3889 		{ F_PIOCPLGRPPERR, "PCI PIO completion Group FIFO parity error",
3890 		  -1, 1 },
3891 		{ F_PIOREQGRPPERR, "PCI PIO request Group FIFO parity error",
3892 		  -1, 1 },
3893 		{ F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
3894 		{ F_MSTTAGQPERR, "PCI master tag queue parity error", -1, 1 },
3895 		{ F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
3896 		{ F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
3897 		{ F_DREQWRPERR, "PCI DMA channel write request parity error",
3898 		  -1, 1 },
3899 		{ F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
3900 		{ F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
3901 		{ F_HREQWRPERR, "PCI HMA channel count parity error", -1, 1 },
3902 		{ F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
3903 		{ F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
3904 		{ F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
3905 		{ F_FIDPERR, "PCI FID parity error", -1, 1 },
3906 		{ F_VFIDPERR, "PCI INTx clear parity error", -1, 1 },
3907 		{ F_MAGRPPERR, "PCI MA group FIFO parity error", -1, 1 },
3908 		{ F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
3909 		{ F_IPRXHDRGRPPERR, "PCI IP Rx header group parity error",
3910 		  -1, 1 },
3911 		{ F_IPRXDATAGRPPERR, "PCI IP Rx data group parity error",
3912 		  -1, 1 },
3913 		{ F_RPLPERR, "PCI IP replay buffer parity error", -1, 1 },
3914 		{ F_IPSOTPERR, "PCI IP SOT buffer parity error", -1, 1 },
3915 		{ F_TRGT1GRPPERR, "PCI TRGT1 group FIFOs parity error", -1, 1 },
3916 		{ F_READRSPERR, "Outbound read error", -1,
3917 		  0 },
3918 		{ 0 }
3919 	};
3920 
3921 	int fat;
3922 
3923 	if (is_t4(adapter))
3924 		fat = t4_handle_intr_status(adapter,
3925 				A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
3926 				sysbus_intr_info) +
3927 			t4_handle_intr_status(adapter,
3928 					A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
3929 					pcie_port_intr_info) +
3930 			t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
3931 					      pcie_intr_info);
3932 	else
3933 		fat = t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
3934 					    t5_pcie_intr_info);
3935 	if (fat)
3936 		t4_fatal_err(adapter);
3937 }
3938 
3939 /*
3940  * TP interrupt handler.
3941  */
3942 static void tp_intr_handler(struct adapter *adapter)
3943 {
3944 	static const struct intr_info tp_intr_info[] = {
3945 		{ 0x3fffffff, "TP parity error", -1, 1 },
3946 		{ F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
3947 		{ 0 }
3948 	};
3949 
3950 	if (t4_handle_intr_status(adapter, A_TP_INT_CAUSE, tp_intr_info))
3951 		t4_fatal_err(adapter);
3952 }
3953 
3954 /*
3955  * SGE interrupt handler.
3956  */
3957 static void sge_intr_handler(struct adapter *adapter)
3958 {
3959 	u64 v;
3960 	u32 err;
3961 
3962 	static const struct intr_info sge_intr_info[] = {
3963 		{ F_ERR_CPL_EXCEED_IQE_SIZE,
3964 		  "SGE received CPL exceeding IQE size", -1, 1 },
3965 		{ F_ERR_INVALID_CIDX_INC,
3966 		  "SGE GTS CIDX increment too large", -1, 0 },
3967 		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
3968 		{ F_DBFIFO_LP_INT, NULL, -1, 0, t4_db_full },
3969 		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
3970 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
3971 		{ F_ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
3972 		  0 },
3973 		{ F_ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
3974 		  0 },
3975 		{ F_ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
3976 		  0 },
3977 		{ F_ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
3978 		  0 },
3979 		{ F_ERR_ING_CTXT_PRIO,
3980 		  "SGE too many priority ingress contexts", -1, 0 },
3981 		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
3982 		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
3983 		{ 0 }
3984 	};
3985 
3986 	static const struct intr_info t4t5_sge_intr_info[] = {
3987 		{ F_ERR_DROPPED_DB, NULL, -1, 0, t4_db_dropped },
3988 		{ F_DBFIFO_HP_INT, NULL, -1, 0, t4_db_full },
3989 		{ F_ERR_EGR_CTXT_PRIO,
3990 		  "SGE too many priority egress contexts", -1, 0 },
3991 		{ 0 }
3992 	};
3993 
3994 	/*
3995  	* For now, treat below interrupts as fatal so that we disable SGE and
3996  	* get better debug */
3997 	static const struct intr_info t6_sge_intr_info[] = {
3998 		{ F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1,
3999 		  "SGE PCIe error for a DBP thread", -1, 1 },
4000 		{ F_FATAL_WRE_LEN,
4001 		  "SGE Actual WRE packet is less than advertized length",
4002 		  -1, 1 },
4003 		{ 0 }
4004 	};
4005 
4006 	v = (u64)t4_read_reg(adapter, A_SGE_INT_CAUSE1) |
4007 		((u64)t4_read_reg(adapter, A_SGE_INT_CAUSE2) << 32);
4008 	if (v) {
4009 		CH_ALERT(adapter, "SGE parity error (%#llx)\n",
4010 				(unsigned long long)v);
4011 		t4_write_reg(adapter, A_SGE_INT_CAUSE1, v);
4012 		t4_write_reg(adapter, A_SGE_INT_CAUSE2, v >> 32);
4013 	}
4014 
4015 	v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3, sge_intr_info);
4016 	if (chip_id(adapter) <= CHELSIO_T5)
4017 		v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3,
4018 					   t4t5_sge_intr_info);
4019 	else
4020 		v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3,
4021 					   t6_sge_intr_info);
4022 
4023 	err = t4_read_reg(adapter, A_SGE_ERROR_STATS);
4024 	if (err & F_ERROR_QID_VALID) {
4025 		CH_ERR(adapter, "SGE error for queue %u\n", G_ERROR_QID(err));
4026 		if (err & F_UNCAPTURED_ERROR)
4027 			CH_ERR(adapter, "SGE UNCAPTURED_ERROR set (clearing)\n");
4028 		t4_write_reg(adapter, A_SGE_ERROR_STATS, F_ERROR_QID_VALID |
4029 			     F_UNCAPTURED_ERROR);
4030 	}
4031 
4032 	if (v != 0)
4033 		t4_fatal_err(adapter);
4034 }
4035 
4036 #define CIM_OBQ_INTR (F_OBQULP0PARERR | F_OBQULP1PARERR | F_OBQULP2PARERR |\
4037 		      F_OBQULP3PARERR | F_OBQSGEPARERR | F_OBQNCSIPARERR)
4038 #define CIM_IBQ_INTR (F_IBQTP0PARERR | F_IBQTP1PARERR | F_IBQULPPARERR |\
4039 		      F_IBQSGEHIPARERR | F_IBQSGELOPARERR | F_IBQNCSIPARERR)
4040 
4041 /*
4042  * CIM interrupt handler.
4043  */
4044 static void cim_intr_handler(struct adapter *adapter)
4045 {
4046 	static const struct intr_info cim_intr_info[] = {
4047 		{ F_PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
4048 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4049 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4050 		{ F_MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
4051 		{ F_MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
4052 		{ F_TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
4053 		{ F_TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
4054 		{ 0 }
4055 	};
4056 	static const struct intr_info cim_upintr_info[] = {
4057 		{ F_RSVDSPACEINT, "CIM reserved space access", -1, 1 },
4058 		{ F_ILLTRANSINT, "CIM illegal transaction", -1, 1 },
4059 		{ F_ILLWRINT, "CIM illegal write", -1, 1 },
4060 		{ F_ILLRDINT, "CIM illegal read", -1, 1 },
4061 		{ F_ILLRDBEINT, "CIM illegal read BE", -1, 1 },
4062 		{ F_ILLWRBEINT, "CIM illegal write BE", -1, 1 },
4063 		{ F_SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
4064 		{ F_SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
4065 		{ F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
4066 		{ F_SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
4067 		{ F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
4068 		{ F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
4069 		{ F_SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
4070 		{ F_SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
4071 		{ F_BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
4072 		{ F_BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
4073 		{ F_SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
4074 		{ F_SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
4075 		{ F_BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
4076 		{ F_BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
4077 		{ F_SGLRDPLINT , "CIM single read from PL space", -1, 1 },
4078 		{ F_SGLWRPLINT , "CIM single write to PL space", -1, 1 },
4079 		{ F_BLKRDPLINT , "CIM block read from PL space", -1, 1 },
4080 		{ F_BLKWRPLINT , "CIM block write to PL space", -1, 1 },
4081 		{ F_REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
4082 		{ F_RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
4083 		{ F_TIMEOUTINT , "CIM PIF timeout", -1, 1 },
4084 		{ F_TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
4085 		{ 0 }
4086 	};
4087 	int fat;
4088 
4089 	if (t4_read_reg(adapter, A_PCIE_FW) & F_PCIE_FW_ERR)
4090 		t4_report_fw_error(adapter);
4091 
4092 	fat = t4_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE,
4093 				    cim_intr_info) +
4094 	      t4_handle_intr_status(adapter, A_CIM_HOST_UPACC_INT_CAUSE,
4095 				    cim_upintr_info);
4096 	if (fat)
4097 		t4_fatal_err(adapter);
4098 }
4099 
4100 /*
4101  * ULP RX interrupt handler.
4102  */
4103 static void ulprx_intr_handler(struct adapter *adapter)
4104 {
4105 	static const struct intr_info ulprx_intr_info[] = {
4106 		{ F_CAUSE_CTX_1, "ULPRX channel 1 context error", -1, 1 },
4107 		{ F_CAUSE_CTX_0, "ULPRX channel 0 context error", -1, 1 },
4108 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
4109 		{ 0 }
4110 	};
4111 
4112 	if (t4_handle_intr_status(adapter, A_ULP_RX_INT_CAUSE, ulprx_intr_info))
4113 		t4_fatal_err(adapter);
4114 }
4115 
4116 /*
4117  * ULP TX interrupt handler.
4118  */
4119 static void ulptx_intr_handler(struct adapter *adapter)
4120 {
4121 	static const struct intr_info ulptx_intr_info[] = {
4122 		{ F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
4123 		  0 },
4124 		{ F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
4125 		  0 },
4126 		{ F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
4127 		  0 },
4128 		{ F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
4129 		  0 },
4130 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
4131 		{ 0 }
4132 	};
4133 
4134 	if (t4_handle_intr_status(adapter, A_ULP_TX_INT_CAUSE, ulptx_intr_info))
4135 		t4_fatal_err(adapter);
4136 }
4137 
4138 /*
4139  * PM TX interrupt handler.
4140  */
4141 static void pmtx_intr_handler(struct adapter *adapter)
4142 {
4143 	static const struct intr_info pmtx_intr_info[] = {
4144 		{ F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
4145 		{ F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
4146 		{ F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
4147 		{ F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
4148 		{ 0xffffff0, "PMTX framing error", -1, 1 },
4149 		{ F_OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
4150 		{ F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1,
4151 		  1 },
4152 		{ F_ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
4153 		{ F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
4154 		{ 0 }
4155 	};
4156 
4157 	if (t4_handle_intr_status(adapter, A_PM_TX_INT_CAUSE, pmtx_intr_info))
4158 		t4_fatal_err(adapter);
4159 }
4160 
4161 /*
4162  * PM RX interrupt handler.
4163  */
4164 static void pmrx_intr_handler(struct adapter *adapter)
4165 {
4166 	static const struct intr_info pmrx_intr_info[] = {
4167 		{ F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
4168 		{ 0x3ffff0, "PMRX framing error", -1, 1 },
4169 		{ F_OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
4170 		{ F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1,
4171 		  1 },
4172 		{ F_IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
4173 		{ F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
4174 		{ 0 }
4175 	};
4176 
4177 	if (t4_handle_intr_status(adapter, A_PM_RX_INT_CAUSE, pmrx_intr_info))
4178 		t4_fatal_err(adapter);
4179 }
4180 
4181 /*
4182  * CPL switch interrupt handler.
4183  */
4184 static void cplsw_intr_handler(struct adapter *adapter)
4185 {
4186 	static const struct intr_info cplsw_intr_info[] = {
4187 		{ F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
4188 		{ F_CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
4189 		{ F_TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
4190 		{ F_SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
4191 		{ F_CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
4192 		{ F_ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
4193 		{ 0 }
4194 	};
4195 
4196 	if (t4_handle_intr_status(adapter, A_CPL_INTR_CAUSE, cplsw_intr_info))
4197 		t4_fatal_err(adapter);
4198 }
4199 
4200 /*
4201  * LE interrupt handler.
4202  */
4203 static void le_intr_handler(struct adapter *adap)
4204 {
4205 	unsigned int chip_ver = chip_id(adap);
4206 	static const struct intr_info le_intr_info[] = {
4207 		{ F_LIPMISS, "LE LIP miss", -1, 0 },
4208 		{ F_LIP0, "LE 0 LIP error", -1, 0 },
4209 		{ F_PARITYERR, "LE parity error", -1, 1 },
4210 		{ F_UNKNOWNCMD, "LE unknown command", -1, 1 },
4211 		{ F_REQQPARERR, "LE request queue parity error", -1, 1 },
4212 		{ 0 }
4213 	};
4214 
4215 	static const struct intr_info t6_le_intr_info[] = {
4216 		{ F_T6_LIPMISS, "LE LIP miss", -1, 0 },
4217 		{ F_T6_LIP0, "LE 0 LIP error", -1, 0 },
4218 		{ F_TCAMINTPERR, "LE parity error", -1, 1 },
4219 		{ F_T6_UNKNOWNCMD, "LE unknown command", -1, 1 },
4220 		{ F_SSRAMINTPERR, "LE request queue parity error", -1, 1 },
4221 		{ 0 }
4222 	};
4223 
4224 	if (t4_handle_intr_status(adap, A_LE_DB_INT_CAUSE,
4225 				  (chip_ver <= CHELSIO_T5) ?
4226 				  le_intr_info : t6_le_intr_info))
4227 		t4_fatal_err(adap);
4228 }
4229 
4230 /*
4231  * MPS interrupt handler.
4232  */
4233 static void mps_intr_handler(struct adapter *adapter)
4234 {
4235 	static const struct intr_info mps_rx_intr_info[] = {
4236 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4237 		{ 0 }
4238 	};
4239 	static const struct intr_info mps_tx_intr_info[] = {
4240 		{ V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error", -1, 1 },
4241 		{ F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4242 		{ V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error",
4243 		  -1, 1 },
4244 		{ V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error",
4245 		  -1, 1 },
4246 		{ F_BUBBLE, "MPS Tx underflow", -1, 1 },
4247 		{ F_SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
4248 		{ F_FRMERR, "MPS Tx framing error", -1, 1 },
4249 		{ 0 }
4250 	};
4251 	static const struct intr_info mps_trc_intr_info[] = {
4252 		{ V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error", -1, 1 },
4253 		{ V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error", -1,
4254 		  1 },
4255 		{ F_MISCPERR, "MPS TRC misc parity error", -1, 1 },
4256 		{ 0 }
4257 	};
4258 	static const struct intr_info mps_stat_sram_intr_info[] = {
4259 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4260 		{ 0 }
4261 	};
4262 	static const struct intr_info mps_stat_tx_intr_info[] = {
4263 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4264 		{ 0 }
4265 	};
4266 	static const struct intr_info mps_stat_rx_intr_info[] = {
4267 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4268 		{ 0 }
4269 	};
4270 	static const struct intr_info mps_cls_intr_info[] = {
4271 		{ F_MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
4272 		{ F_MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
4273 		{ F_HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
4274 		{ 0 }
4275 	};
4276 
4277 	int fat;
4278 
4279 	fat = t4_handle_intr_status(adapter, A_MPS_RX_PERR_INT_CAUSE,
4280 				    mps_rx_intr_info) +
4281 	      t4_handle_intr_status(adapter, A_MPS_TX_INT_CAUSE,
4282 				    mps_tx_intr_info) +
4283 	      t4_handle_intr_status(adapter, A_MPS_TRC_INT_CAUSE,
4284 				    mps_trc_intr_info) +
4285 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_SRAM,
4286 				    mps_stat_sram_intr_info) +
4287 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
4288 				    mps_stat_tx_intr_info) +
4289 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
4290 				    mps_stat_rx_intr_info) +
4291 	      t4_handle_intr_status(adapter, A_MPS_CLS_INT_CAUSE,
4292 				    mps_cls_intr_info);
4293 
4294 	t4_write_reg(adapter, A_MPS_INT_CAUSE, 0);
4295 	t4_read_reg(adapter, A_MPS_INT_CAUSE);	/* flush */
4296 	if (fat)
4297 		t4_fatal_err(adapter);
4298 }
4299 
4300 #define MEM_INT_MASK (F_PERR_INT_CAUSE | F_ECC_CE_INT_CAUSE | \
4301 		      F_ECC_UE_INT_CAUSE)
4302 
4303 /*
4304  * EDC/MC interrupt handler.
4305  */
4306 static void mem_intr_handler(struct adapter *adapter, int idx)
4307 {
4308 	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4309 
4310 	unsigned int addr, cnt_addr, v;
4311 
4312 	if (idx <= MEM_EDC1) {
4313 		addr = EDC_REG(A_EDC_INT_CAUSE, idx);
4314 		cnt_addr = EDC_REG(A_EDC_ECC_STATUS, idx);
4315 	} else if (idx == MEM_MC) {
4316 		if (is_t4(adapter)) {
4317 			addr = A_MC_INT_CAUSE;
4318 			cnt_addr = A_MC_ECC_STATUS;
4319 		} else {
4320 			addr = A_MC_P_INT_CAUSE;
4321 			cnt_addr = A_MC_P_ECC_STATUS;
4322 		}
4323 	} else {
4324 		addr = MC_REG(A_MC_P_INT_CAUSE, 1);
4325 		cnt_addr = MC_REG(A_MC_P_ECC_STATUS, 1);
4326 	}
4327 
4328 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4329 	if (v & F_PERR_INT_CAUSE)
4330 		CH_ALERT(adapter, "%s FIFO parity error\n",
4331 			  name[idx]);
4332 	if (v & F_ECC_CE_INT_CAUSE) {
4333 		u32 cnt = G_ECC_CECNT(t4_read_reg(adapter, cnt_addr));
4334 
4335 		t4_edc_err_read(adapter, idx);
4336 
4337 		t4_write_reg(adapter, cnt_addr, V_ECC_CECNT(M_ECC_CECNT));
4338 		CH_WARN_RATELIMIT(adapter,
4339 				  "%u %s correctable ECC data error%s\n",
4340 				  cnt, name[idx], cnt > 1 ? "s" : "");
4341 	}
4342 	if (v & F_ECC_UE_INT_CAUSE)
4343 		CH_ALERT(adapter,
4344 			 "%s uncorrectable ECC data error\n", name[idx]);
4345 
4346 	t4_write_reg(adapter, addr, v);
4347 	if (v & (F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE))
4348 		t4_fatal_err(adapter);
4349 }
4350 
4351 /*
4352  * MA interrupt handler.
4353  */
4354 static void ma_intr_handler(struct adapter *adapter)
4355 {
4356 	u32 v, status = t4_read_reg(adapter, A_MA_INT_CAUSE);
4357 
4358 	if (status & F_MEM_PERR_INT_CAUSE) {
4359 		CH_ALERT(adapter,
4360 			  "MA parity error, parity status %#x\n",
4361 			  t4_read_reg(adapter, A_MA_PARITY_ERROR_STATUS1));
4362 		if (is_t5(adapter))
4363 			CH_ALERT(adapter,
4364 				  "MA parity error, parity status %#x\n",
4365 				  t4_read_reg(adapter,
4366 					      A_MA_PARITY_ERROR_STATUS2));
4367 	}
4368 	if (status & F_MEM_WRAP_INT_CAUSE) {
4369 		v = t4_read_reg(adapter, A_MA_INT_WRAP_STATUS);
4370 		CH_ALERT(adapter, "MA address wrap-around error by "
4371 			  "client %u to address %#x\n",
4372 			  G_MEM_WRAP_CLIENT_NUM(v),
4373 			  G_MEM_WRAP_ADDRESS(v) << 4);
4374 	}
4375 	t4_write_reg(adapter, A_MA_INT_CAUSE, status);
4376 	t4_fatal_err(adapter);
4377 }
4378 
4379 /*
4380  * SMB interrupt handler.
4381  */
4382 static void smb_intr_handler(struct adapter *adap)
4383 {
4384 	static const struct intr_info smb_intr_info[] = {
4385 		{ F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
4386 		{ F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
4387 		{ F_SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
4388 		{ 0 }
4389 	};
4390 
4391 	if (t4_handle_intr_status(adap, A_SMB_INT_CAUSE, smb_intr_info))
4392 		t4_fatal_err(adap);
4393 }
4394 
4395 /*
4396  * NC-SI interrupt handler.
4397  */
4398 static void ncsi_intr_handler(struct adapter *adap)
4399 {
4400 	static const struct intr_info ncsi_intr_info[] = {
4401 		{ F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
4402 		{ F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
4403 		{ F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
4404 		{ F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
4405 		{ 0 }
4406 	};
4407 
4408 	if (t4_handle_intr_status(adap, A_NCSI_INT_CAUSE, ncsi_intr_info))
4409 		t4_fatal_err(adap);
4410 }
4411 
4412 /*
4413  * XGMAC interrupt handler.
4414  */
4415 static void xgmac_intr_handler(struct adapter *adap, int port)
4416 {
4417 	u32 v, int_cause_reg;
4418 
4419 	if (is_t4(adap))
4420 		int_cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
4421 	else
4422 		int_cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
4423 
4424 	v = t4_read_reg(adap, int_cause_reg);
4425 
4426 	v &= (F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR);
4427 	if (!v)
4428 		return;
4429 
4430 	if (v & F_TXFIFO_PRTY_ERR)
4431 		CH_ALERT(adap, "XGMAC %d Tx FIFO parity error\n",
4432 			  port);
4433 	if (v & F_RXFIFO_PRTY_ERR)
4434 		CH_ALERT(adap, "XGMAC %d Rx FIFO parity error\n",
4435 			  port);
4436 	t4_write_reg(adap, int_cause_reg, v);
4437 	t4_fatal_err(adap);
4438 }
4439 
4440 /*
4441  * PL interrupt handler.
4442  */
4443 static void pl_intr_handler(struct adapter *adap)
4444 {
4445 	static const struct intr_info pl_intr_info[] = {
4446 		{ F_FATALPERR, "Fatal parity error", -1, 1 },
4447 		{ F_PERRVFID, "PL VFID_MAP parity error", -1, 1 },
4448 		{ 0 }
4449 	};
4450 
4451 	static const struct intr_info t5_pl_intr_info[] = {
4452 		{ F_FATALPERR, "Fatal parity error", -1, 1 },
4453 		{ 0 }
4454 	};
4455 
4456 	if (t4_handle_intr_status(adap, A_PL_PL_INT_CAUSE,
4457 				  is_t4(adap) ?
4458 				  pl_intr_info : t5_pl_intr_info))
4459 		t4_fatal_err(adap);
4460 }
4461 
4462 #define PF_INTR_MASK (F_PFSW | F_PFCIM)
4463 
4464 /**
4465  *	t4_slow_intr_handler - control path interrupt handler
4466  *	@adapter: the adapter
4467  *
4468  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
4469  *	The designation 'slow' is because it involves register reads, while
4470  *	data interrupts typically don't involve any MMIOs.
4471  */
4472 int t4_slow_intr_handler(struct adapter *adapter)
4473 {
4474 	u32 cause = t4_read_reg(adapter, A_PL_INT_CAUSE);
4475 
4476 	if (!(cause & GLBL_INTR_MASK))
4477 		return 0;
4478 	if (cause & F_CIM)
4479 		cim_intr_handler(adapter);
4480 	if (cause & F_MPS)
4481 		mps_intr_handler(adapter);
4482 	if (cause & F_NCSI)
4483 		ncsi_intr_handler(adapter);
4484 	if (cause & F_PL)
4485 		pl_intr_handler(adapter);
4486 	if (cause & F_SMB)
4487 		smb_intr_handler(adapter);
4488 	if (cause & F_MAC0)
4489 		xgmac_intr_handler(adapter, 0);
4490 	if (cause & F_MAC1)
4491 		xgmac_intr_handler(adapter, 1);
4492 	if (cause & F_MAC2)
4493 		xgmac_intr_handler(adapter, 2);
4494 	if (cause & F_MAC3)
4495 		xgmac_intr_handler(adapter, 3);
4496 	if (cause & F_PCIE)
4497 		pcie_intr_handler(adapter);
4498 	if (cause & F_MC0)
4499 		mem_intr_handler(adapter, MEM_MC);
4500 	if (is_t5(adapter) && (cause & F_MC1))
4501 		mem_intr_handler(adapter, MEM_MC1);
4502 	if (cause & F_EDC0)
4503 		mem_intr_handler(adapter, MEM_EDC0);
4504 	if (cause & F_EDC1)
4505 		mem_intr_handler(adapter, MEM_EDC1);
4506 	if (cause & F_LE)
4507 		le_intr_handler(adapter);
4508 	if (cause & F_TP)
4509 		tp_intr_handler(adapter);
4510 	if (cause & F_MA)
4511 		ma_intr_handler(adapter);
4512 	if (cause & F_PM_TX)
4513 		pmtx_intr_handler(adapter);
4514 	if (cause & F_PM_RX)
4515 		pmrx_intr_handler(adapter);
4516 	if (cause & F_ULP_RX)
4517 		ulprx_intr_handler(adapter);
4518 	if (cause & F_CPL_SWITCH)
4519 		cplsw_intr_handler(adapter);
4520 	if (cause & F_SGE)
4521 		sge_intr_handler(adapter);
4522 	if (cause & F_ULP_TX)
4523 		ulptx_intr_handler(adapter);
4524 
4525 	/* Clear the interrupts just processed for which we are the master. */
4526 	t4_write_reg(adapter, A_PL_INT_CAUSE, cause & GLBL_INTR_MASK);
4527 	(void)t4_read_reg(adapter, A_PL_INT_CAUSE); /* flush */
4528 	return 1;
4529 }
4530 
4531 /**
4532  *	t4_intr_enable - enable interrupts
4533  *	@adapter: the adapter whose interrupts should be enabled
4534  *
4535  *	Enable PF-specific interrupts for the calling function and the top-level
4536  *	interrupt concentrator for global interrupts.  Interrupts are already
4537  *	enabled at each module,	here we just enable the roots of the interrupt
4538  *	hierarchies.
4539  *
4540  *	Note: this function should be called only when the driver manages
4541  *	non PF-specific interrupts from the various HW modules.  Only one PCI
4542  *	function at a time should be doing this.
4543  */
4544 void t4_intr_enable(struct adapter *adapter)
4545 {
4546 	u32 val = 0;
4547 	u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4548 	u32 pf = (chip_id(adapter) <= CHELSIO_T5
4549 		  ? G_SOURCEPF(whoami)
4550 		  : G_T6_SOURCEPF(whoami));
4551 
4552 	if (chip_id(adapter) <= CHELSIO_T5)
4553 		val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
4554 	else
4555 		val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN;
4556 	t4_write_reg(adapter, A_SGE_INT_ENABLE3, F_ERR_CPL_EXCEED_IQE_SIZE |
4557 		     F_ERR_INVALID_CIDX_INC | F_ERR_CPL_OPCODE_0 |
4558 		     F_ERR_DATA_CPL_ON_HIGH_QID1 | F_INGRESS_SIZE_ERR |
4559 		     F_ERR_DATA_CPL_ON_HIGH_QID0 | F_ERR_BAD_DB_PIDX3 |
4560 		     F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4561 		     F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO |
4562 		     F_DBFIFO_LP_INT | F_EGRESS_SIZE_ERR | val);
4563 	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
4564 	t4_set_reg_field(adapter, A_PL_INT_MAP0, 0, 1 << pf);
4565 }
4566 
4567 /**
4568  *	t4_intr_disable - disable interrupts
4569  *	@adapter: the adapter whose interrupts should be disabled
4570  *
4571  *	Disable interrupts.  We only disable the top-level interrupt
4572  *	concentrators.  The caller must be a PCI function managing global
4573  *	interrupts.
4574  */
4575 void t4_intr_disable(struct adapter *adapter)
4576 {
4577 	u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4578 	u32 pf = (chip_id(adapter) <= CHELSIO_T5
4579 		  ? G_SOURCEPF(whoami)
4580 		  : G_T6_SOURCEPF(whoami));
4581 
4582 	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
4583 	t4_set_reg_field(adapter, A_PL_INT_MAP0, 1 << pf, 0);
4584 }
4585 
4586 /**
4587  *	t4_intr_clear - clear all interrupts
4588  *	@adapter: the adapter whose interrupts should be cleared
4589  *
4590  *	Clears all interrupts.  The caller must be a PCI function managing
4591  *	global interrupts.
4592  */
4593 void t4_intr_clear(struct adapter *adapter)
4594 {
4595 	static const unsigned int cause_reg[] = {
4596 		A_SGE_INT_CAUSE1, A_SGE_INT_CAUSE2, A_SGE_INT_CAUSE3,
4597 		A_PCIE_NONFAT_ERR, A_PCIE_INT_CAUSE,
4598 		A_MA_INT_WRAP_STATUS, A_MA_PARITY_ERROR_STATUS1, A_MA_INT_CAUSE,
4599 		A_EDC_INT_CAUSE, EDC_REG(A_EDC_INT_CAUSE, 1),
4600 		A_CIM_HOST_INT_CAUSE, A_CIM_HOST_UPACC_INT_CAUSE,
4601 		MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
4602 		A_TP_INT_CAUSE,
4603 		A_ULP_RX_INT_CAUSE, A_ULP_TX_INT_CAUSE,
4604 		A_PM_RX_INT_CAUSE, A_PM_TX_INT_CAUSE,
4605 		A_MPS_RX_PERR_INT_CAUSE,
4606 		A_CPL_INTR_CAUSE,
4607 		MYPF_REG(A_PL_PF_INT_CAUSE),
4608 		A_PL_PL_INT_CAUSE,
4609 		A_LE_DB_INT_CAUSE,
4610 	};
4611 
4612 	unsigned int i;
4613 
4614 	for (i = 0; i < ARRAY_SIZE(cause_reg); ++i)
4615 		t4_write_reg(adapter, cause_reg[i], 0xffffffff);
4616 
4617 	t4_write_reg(adapter, is_t4(adapter) ? A_MC_INT_CAUSE :
4618 				A_MC_P_INT_CAUSE, 0xffffffff);
4619 
4620 	if (is_t4(adapter)) {
4621 		t4_write_reg(adapter, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
4622 				0xffffffff);
4623 		t4_write_reg(adapter, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
4624 				0xffffffff);
4625 	} else
4626 		t4_write_reg(adapter, A_MA_PARITY_ERROR_STATUS2, 0xffffffff);
4627 
4628 	t4_write_reg(adapter, A_PL_INT_CAUSE, GLBL_INTR_MASK);
4629 	(void) t4_read_reg(adapter, A_PL_INT_CAUSE);          /* flush */
4630 }
4631 
4632 /**
4633  *	hash_mac_addr - return the hash value of a MAC address
4634  *	@addr: the 48-bit Ethernet MAC address
4635  *
4636  *	Hashes a MAC address according to the hash function used by HW inexact
4637  *	(hash) address matching.
4638  */
4639 static int hash_mac_addr(const u8 *addr)
4640 {
4641 	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
4642 	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
4643 	a ^= b;
4644 	a ^= (a >> 12);
4645 	a ^= (a >> 6);
4646 	return a & 0x3f;
4647 }
4648 
4649 /**
4650  *	t4_config_rss_range - configure a portion of the RSS mapping table
4651  *	@adapter: the adapter
4652  *	@mbox: mbox to use for the FW command
4653  *	@viid: virtual interface whose RSS subtable is to be written
4654  *	@start: start entry in the table to write
4655  *	@n: how many table entries to write
4656  *	@rspq: values for the "response queue" (Ingress Queue) lookup table
4657  *	@nrspq: number of values in @rspq
4658  *
4659  *	Programs the selected part of the VI's RSS mapping table with the
4660  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
4661  *	until the full table range is populated.
4662  *
4663  *	The caller must ensure the values in @rspq are in the range allowed for
4664  *	@viid.
4665  */
4666 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4667 			int start, int n, const u16 *rspq, unsigned int nrspq)
4668 {
4669 	int ret;
4670 	const u16 *rsp = rspq;
4671 	const u16 *rsp_end = rspq + nrspq;
4672 	struct fw_rss_ind_tbl_cmd cmd;
4673 
4674 	memset(&cmd, 0, sizeof(cmd));
4675 	cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
4676 				     F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4677 				     V_FW_RSS_IND_TBL_CMD_VIID(viid));
4678 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
4679 
4680 	/*
4681 	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
4682 	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
4683 	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
4684 	 * reserved.
4685 	 */
4686 	while (n > 0) {
4687 		int nq = min(n, 32);
4688 		int nq_packed = 0;
4689 		__be32 *qp = &cmd.iq0_to_iq2;
4690 
4691 		/*
4692 		 * Set up the firmware RSS command header to send the next
4693 		 * "nq" Ingress Queue IDs to the firmware.
4694 		 */
4695 		cmd.niqid = cpu_to_be16(nq);
4696 		cmd.startidx = cpu_to_be16(start);
4697 
4698 		/*
4699 		 * "nq" more done for the start of the next loop.
4700 		 */
4701 		start += nq;
4702 		n -= nq;
4703 
4704 		/*
4705 		 * While there are still Ingress Queue IDs to stuff into the
4706 		 * current firmware RSS command, retrieve them from the
4707 		 * Ingress Queue ID array and insert them into the command.
4708 		 */
4709 		while (nq > 0) {
4710 			/*
4711 			 * Grab up to the next 3 Ingress Queue IDs (wrapping
4712 			 * around the Ingress Queue ID array if necessary) and
4713 			 * insert them into the firmware RSS command at the
4714 			 * current 3-tuple position within the commad.
4715 			 */
4716 			u16 qbuf[3];
4717 			u16 *qbp = qbuf;
4718 			int nqbuf = min(3, nq);
4719 
4720 			nq -= nqbuf;
4721 			qbuf[0] = qbuf[1] = qbuf[2] = 0;
4722 			while (nqbuf && nq_packed < 32) {
4723 				nqbuf--;
4724 				nq_packed++;
4725 				*qbp++ = *rsp++;
4726 				if (rsp >= rsp_end)
4727 					rsp = rspq;
4728 			}
4729 			*qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
4730 					    V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
4731 					    V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
4732 		}
4733 
4734 		/*
4735 		 * Send this portion of the RRS table update to the firmware;
4736 		 * bail out on any errors.
4737 		 */
4738 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4739 		if (ret)
4740 			return ret;
4741 	}
4742 	return 0;
4743 }
4744 
4745 /**
4746  *	t4_config_glbl_rss - configure the global RSS mode
4747  *	@adapter: the adapter
4748  *	@mbox: mbox to use for the FW command
4749  *	@mode: global RSS mode
4750  *	@flags: mode-specific flags
4751  *
4752  *	Sets the global RSS mode.
4753  */
4754 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
4755 		       unsigned int flags)
4756 {
4757 	struct fw_rss_glb_config_cmd c;
4758 
4759 	memset(&c, 0, sizeof(c));
4760 	c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
4761 				    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
4762 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4763 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
4764 		c.u.manual.mode_pkd =
4765 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
4766 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
4767 		c.u.basicvirtual.mode_keymode =
4768 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
4769 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
4770 	} else
4771 		return -EINVAL;
4772 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4773 }
4774 
4775 /**
4776  *	t4_config_vi_rss - configure per VI RSS settings
4777  *	@adapter: the adapter
4778  *	@mbox: mbox to use for the FW command
4779  *	@viid: the VI id
4780  *	@flags: RSS flags
4781  *	@defq: id of the default RSS queue for the VI.
4782  *	@skeyidx: RSS secret key table index for non-global mode
4783  *	@skey: RSS vf_scramble key for VI.
4784  *
4785  *	Configures VI-specific RSS properties.
4786  */
4787 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
4788 		     unsigned int flags, unsigned int defq, unsigned int skeyidx,
4789 		     unsigned int skey)
4790 {
4791 	struct fw_rss_vi_config_cmd c;
4792 
4793 	memset(&c, 0, sizeof(c));
4794 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
4795 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4796 				   V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
4797 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4798 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
4799 					V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
4800 	c.u.basicvirtual.secretkeyidx_pkd = cpu_to_be32(
4801 					V_FW_RSS_VI_CONFIG_CMD_SECRETKEYIDX(skeyidx));
4802 	c.u.basicvirtual.secretkeyxor = cpu_to_be32(skey);
4803 
4804 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4805 }
4806 
4807 /* Read an RSS table row */
4808 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
4809 {
4810 	t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
4811 	return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
4812 				   5, 0, val);
4813 }
4814 
4815 /**
4816  *	t4_read_rss - read the contents of the RSS mapping table
4817  *	@adapter: the adapter
4818  *	@map: holds the contents of the RSS mapping table
4819  *
4820  *	Reads the contents of the RSS hash->queue mapping table.
4821  */
4822 int t4_read_rss(struct adapter *adapter, u16 *map)
4823 {
4824 	u32 val;
4825 	int i, ret;
4826 
4827 	for (i = 0; i < RSS_NENTRIES / 2; ++i) {
4828 		ret = rd_rss_row(adapter, i, &val);
4829 		if (ret)
4830 			return ret;
4831 		*map++ = G_LKPTBLQUEUE0(val);
4832 		*map++ = G_LKPTBLQUEUE1(val);
4833 	}
4834 	return 0;
4835 }
4836 
4837 /**
4838  *	t4_fw_tp_pio_rw - Access TP PIO through LDST
4839  *	@adap: the adapter
4840  *	@vals: where the indirect register values are stored/written
4841  *	@nregs: how many indirect registers to read/write
4842  *	@start_idx: index of first indirect register to read/write
4843  *	@rw: Read (1) or Write (0)
4844  *
4845  *	Access TP PIO registers through LDST
4846  */
4847 void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs,
4848 		     unsigned int start_index, unsigned int rw)
4849 {
4850 	int ret, i;
4851 	int cmd = FW_LDST_ADDRSPC_TP_PIO;
4852 	struct fw_ldst_cmd c;
4853 
4854 	for (i = 0 ; i < nregs; i++) {
4855 		memset(&c, 0, sizeof(c));
4856 		c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
4857 						F_FW_CMD_REQUEST |
4858 						(rw ? F_FW_CMD_READ :
4859 						     F_FW_CMD_WRITE) |
4860 						V_FW_LDST_CMD_ADDRSPACE(cmd));
4861 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4862 
4863 		c.u.addrval.addr = cpu_to_be32(start_index + i);
4864 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
4865 		ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4866 		if (ret == 0) {
4867 			if (rw)
4868 				vals[i] = be32_to_cpu(c.u.addrval.val);
4869 		}
4870 	}
4871 }
4872 
4873 /**
4874  *	t4_read_rss_key - read the global RSS key
4875  *	@adap: the adapter
4876  *	@key: 10-entry array holding the 320-bit RSS key
4877  *
4878  *	Reads the global 320-bit RSS key.
4879  */
4880 void t4_read_rss_key(struct adapter *adap, u32 *key)
4881 {
4882 	if (t4_use_ldst(adap))
4883 		t4_fw_tp_pio_rw(adap, key, 10, A_TP_RSS_SECRET_KEY0, 1);
4884 	else
4885 		t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, key, 10,
4886 				 A_TP_RSS_SECRET_KEY0);
4887 }
4888 
4889 /**
4890  *	t4_write_rss_key - program one of the RSS keys
4891  *	@adap: the adapter
4892  *	@key: 10-entry array holding the 320-bit RSS key
4893  *	@idx: which RSS key to write
4894  *
4895  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
4896  *	0..15 the corresponding entry in the RSS key table is written,
4897  *	otherwise the global RSS key is written.
4898  */
4899 void t4_write_rss_key(struct adapter *adap, u32 *key, int idx)
4900 {
4901 	u8 rss_key_addr_cnt = 16;
4902 	u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
4903 
4904 	/*
4905 	 * T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
4906 	 * allows access to key addresses 16-63 by using KeyWrAddrX
4907 	 * as index[5:4](upper 2) into key table
4908 	 */
4909 	if ((chip_id(adap) > CHELSIO_T5) &&
4910 	    (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
4911 		rss_key_addr_cnt = 32;
4912 
4913 	if (t4_use_ldst(adap))
4914 		t4_fw_tp_pio_rw(adap, key, 10, A_TP_RSS_SECRET_KEY0, 0);
4915 	else
4916 		t4_write_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, key, 10,
4917 				  A_TP_RSS_SECRET_KEY0);
4918 
4919 	if (idx >= 0 && idx < rss_key_addr_cnt) {
4920 		if (rss_key_addr_cnt > 16)
4921 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
4922 				     vrt | V_KEYWRADDRX(idx >> 4) |
4923 				     V_T6_VFWRADDR(idx) | F_KEYWREN);
4924 		else
4925 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
4926 				     vrt| V_KEYWRADDR(idx) | F_KEYWREN);
4927 	}
4928 }
4929 
4930 /**
4931  *	t4_read_rss_pf_config - read PF RSS Configuration Table
4932  *	@adapter: the adapter
4933  *	@index: the entry in the PF RSS table to read
4934  *	@valp: where to store the returned value
4935  *
4936  *	Reads the PF RSS Configuration Table at the specified index and returns
4937  *	the value found there.
4938  */
4939 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
4940 			   u32 *valp)
4941 {
4942 	if (t4_use_ldst(adapter))
4943 		t4_fw_tp_pio_rw(adapter, valp, 1,
4944 				A_TP_RSS_PF0_CONFIG + index, 1);
4945 	else
4946 		t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4947 				 valp, 1, A_TP_RSS_PF0_CONFIG + index);
4948 }
4949 
4950 /**
4951  *	t4_write_rss_pf_config - write PF RSS Configuration Table
4952  *	@adapter: the adapter
4953  *	@index: the entry in the VF RSS table to read
4954  *	@val: the value to store
4955  *
4956  *	Writes the PF RSS Configuration Table at the specified index with the
4957  *	specified value.
4958  */
4959 void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index,
4960 			    u32 val)
4961 {
4962 	if (t4_use_ldst(adapter))
4963 		t4_fw_tp_pio_rw(adapter, &val, 1,
4964 				A_TP_RSS_PF0_CONFIG + index, 0);
4965 	else
4966 		t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4967 				  &val, 1, A_TP_RSS_PF0_CONFIG + index);
4968 }
4969 
4970 /**
4971  *	t4_read_rss_vf_config - read VF RSS Configuration Table
4972  *	@adapter: the adapter
4973  *	@index: the entry in the VF RSS table to read
4974  *	@vfl: where to store the returned VFL
4975  *	@vfh: where to store the returned VFH
4976  *
4977  *	Reads the VF RSS Configuration Table at the specified index and returns
4978  *	the (VFL, VFH) values found there.
4979  */
4980 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
4981 			   u32 *vfl, u32 *vfh)
4982 {
4983 	u32 vrt, mask, data;
4984 
4985 	if (chip_id(adapter) <= CHELSIO_T5) {
4986 		mask = V_VFWRADDR(M_VFWRADDR);
4987 		data = V_VFWRADDR(index);
4988 	} else {
4989 		 mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
4990 		 data = V_T6_VFWRADDR(index);
4991 	}
4992 	/*
4993 	 * Request that the index'th VF Table values be read into VFL/VFH.
4994 	 */
4995 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
4996 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
4997 	vrt |= data | F_VFRDEN;
4998 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
4999 
5000 	/*
5001 	 * Grab the VFL/VFH values ...
5002 	 */
5003 	if (t4_use_ldst(adapter)) {
5004 		t4_fw_tp_pio_rw(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, 1);
5005 		t4_fw_tp_pio_rw(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, 1);
5006 	} else {
5007 		t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5008 				 vfl, 1, A_TP_RSS_VFL_CONFIG);
5009 		t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5010 				 vfh, 1, A_TP_RSS_VFH_CONFIG);
5011 	}
5012 }
5013 
5014 /**
5015  *	t4_write_rss_vf_config - write VF RSS Configuration Table
5016  *
5017  *	@adapter: the adapter
5018  *	@index: the entry in the VF RSS table to write
5019  *	@vfl: the VFL to store
5020  *	@vfh: the VFH to store
5021  *
5022  *	Writes the VF RSS Configuration Table at the specified index with the
5023  *	specified (VFL, VFH) values.
5024  */
5025 void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
5026 			    u32 vfl, u32 vfh)
5027 {
5028 	u32 vrt, mask, data;
5029 
5030 	if (chip_id(adapter) <= CHELSIO_T5) {
5031 		mask = V_VFWRADDR(M_VFWRADDR);
5032 		data = V_VFWRADDR(index);
5033 	} else {
5034 		mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5035 		data = V_T6_VFWRADDR(index);
5036 	}
5037 
5038 	/*
5039 	 * Load up VFL/VFH with the values to be written ...
5040 	 */
5041 	if (t4_use_ldst(adapter)) {
5042 		t4_fw_tp_pio_rw(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, 0);
5043 		t4_fw_tp_pio_rw(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, 0);
5044 	} else {
5045 		t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5046 				  &vfl, 1, A_TP_RSS_VFL_CONFIG);
5047 		t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5048 				  &vfh, 1, A_TP_RSS_VFH_CONFIG);
5049 	}
5050 
5051 	/*
5052 	 * Write the VFL/VFH into the VF Table at index'th location.
5053 	 */
5054 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5055 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5056 	vrt |= data | F_VFRDEN;
5057 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5058 }
5059 
5060 /**
5061  *	t4_read_rss_pf_map - read PF RSS Map
5062  *	@adapter: the adapter
5063  *
5064  *	Reads the PF RSS Map register and returns its value.
5065  */
5066 u32 t4_read_rss_pf_map(struct adapter *adapter)
5067 {
5068 	u32 pfmap;
5069 
5070 	if (t4_use_ldst(adapter))
5071 		t4_fw_tp_pio_rw(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, 1);
5072 	else
5073 		t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5074 				 &pfmap, 1, A_TP_RSS_PF_MAP);
5075 	return pfmap;
5076 }
5077 
5078 /**
5079  *	t4_write_rss_pf_map - write PF RSS Map
5080  *	@adapter: the adapter
5081  *	@pfmap: PF RSS Map value
5082  *
5083  *	Writes the specified value to the PF RSS Map register.
5084  */
5085 void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap)
5086 {
5087 	if (t4_use_ldst(adapter))
5088 		t4_fw_tp_pio_rw(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, 0);
5089 	else
5090 		t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5091 				  &pfmap, 1, A_TP_RSS_PF_MAP);
5092 }
5093 
5094 /**
5095  *	t4_read_rss_pf_mask - read PF RSS Mask
5096  *	@adapter: the adapter
5097  *
5098  *	Reads the PF RSS Mask register and returns its value.
5099  */
5100 u32 t4_read_rss_pf_mask(struct adapter *adapter)
5101 {
5102 	u32 pfmask;
5103 
5104 	if (t4_use_ldst(adapter))
5105 		t4_fw_tp_pio_rw(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, 1);
5106 	else
5107 		t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5108 				 &pfmask, 1, A_TP_RSS_PF_MSK);
5109 	return pfmask;
5110 }
5111 
5112 /**
5113  *	t4_write_rss_pf_mask - write PF RSS Mask
5114  *	@adapter: the adapter
5115  *	@pfmask: PF RSS Mask value
5116  *
5117  *	Writes the specified value to the PF RSS Mask register.
5118  */
5119 void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask)
5120 {
5121 	if (t4_use_ldst(adapter))
5122 		t4_fw_tp_pio_rw(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, 0);
5123 	else
5124 		t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5125 				  &pfmask, 1, A_TP_RSS_PF_MSK);
5126 }
5127 
5128 /**
5129  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
5130  *	@adap: the adapter
5131  *	@v4: holds the TCP/IP counter values
5132  *	@v6: holds the TCP/IPv6 counter values
5133  *
5134  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5135  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5136  */
5137 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5138 			 struct tp_tcp_stats *v6)
5139 {
5140 	u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
5141 
5142 #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
5143 #define STAT(x)     val[STAT_IDX(x)]
5144 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5145 
5146 	if (v4) {
5147 		t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val,
5148 				 ARRAY_SIZE(val), A_TP_MIB_TCP_OUT_RST);
5149 		v4->tcp_out_rsts = STAT(OUT_RST);
5150 		v4->tcp_in_segs  = STAT64(IN_SEG);
5151 		v4->tcp_out_segs = STAT64(OUT_SEG);
5152 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
5153 	}
5154 	if (v6) {
5155 		t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val,
5156 				 ARRAY_SIZE(val), A_TP_MIB_TCP_V6OUT_RST);
5157 		v6->tcp_out_rsts = STAT(OUT_RST);
5158 		v6->tcp_in_segs  = STAT64(IN_SEG);
5159 		v6->tcp_out_segs = STAT64(OUT_SEG);
5160 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
5161 	}
5162 #undef STAT64
5163 #undef STAT
5164 #undef STAT_IDX
5165 }
5166 
5167 /**
5168  *	t4_tp_get_err_stats - read TP's error MIB counters
5169  *	@adap: the adapter
5170  *	@st: holds the counter values
5171  *
5172  *	Returns the values of TP's error counters.
5173  */
5174 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
5175 {
5176 	int nchan = adap->chip_params->nchan;
5177 
5178 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5179 			st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0);
5180 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5181 			st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0);
5182 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5183 			st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0);
5184 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5185 			st->tnl_cong_drops, nchan, A_TP_MIB_TNL_CNG_DROP_0);
5186 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5187 			st->ofld_chan_drops, nchan, A_TP_MIB_OFD_CHN_DROP_0);
5188 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5189 			st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0);
5190 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5191 			st->ofld_vlan_drops, nchan, A_TP_MIB_OFD_VLN_DROP_0);
5192 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5193 			st->tcp6_in_errs, nchan, A_TP_MIB_TCP_V6IN_ERR_0);
5194 
5195 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5196 			 &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP);
5197 }
5198 
5199 /**
5200  *	t4_tp_get_proxy_stats - read TP's proxy MIB counters
5201  *	@adap: the adapter
5202  *	@st: holds the counter values
5203  *
5204  *	Returns the values of TP's proxy counters.
5205  */
5206 void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st)
5207 {
5208 	int nchan = adap->chip_params->nchan;
5209 
5210 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->proxy,
5211 			 nchan, A_TP_MIB_TNL_LPBK_0);
5212 }
5213 
5214 /**
5215  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
5216  *	@adap: the adapter
5217  *	@st: holds the counter values
5218  *
5219  *	Returns the values of TP's CPL counters.
5220  */
5221 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st)
5222 {
5223 	int nchan = adap->chip_params->nchan;
5224 
5225 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->req,
5226 			 nchan, A_TP_MIB_CPL_IN_REQ_0);
5227 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->rsp,
5228 			 nchan, A_TP_MIB_CPL_OUT_RSP_0);
5229 }
5230 
5231 /**
5232  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5233  *	@adap: the adapter
5234  *	@st: holds the counter values
5235  *
5236  *	Returns the values of TP's RDMA counters.
5237  */
5238 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st)
5239 {
5240 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->rqe_dfr_pkt,
5241 			 2, A_TP_MIB_RQE_DFR_PKT);
5242 }
5243 
5244 /**
5245  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5246  *	@adap: the adapter
5247  *	@idx: the port index
5248  *	@st: holds the counter values
5249  *
5250  *	Returns the values of TP's FCoE counters for the selected port.
5251  */
5252 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5253 		       struct tp_fcoe_stats *st)
5254 {
5255 	u32 val[2];
5256 
5257 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->frames_ddp,
5258 			 1, A_TP_MIB_FCOE_DDP_0 + idx);
5259 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->frames_drop,
5260 			 1, A_TP_MIB_FCOE_DROP_0 + idx);
5261 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val,
5262 			 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx);
5263 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
5264 }
5265 
5266 /**
5267  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5268  *	@adap: the adapter
5269  *	@st: holds the counter values
5270  *
5271  *	Returns the values of TP's counters for non-TCP directly-placed packets.
5272  */
5273 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st)
5274 {
5275 	u32 val[4];
5276 
5277 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val, 4,
5278 			 A_TP_MIB_USM_PKTS);
5279 	st->frames = val[0];
5280 	st->drops = val[1];
5281 	st->octets = ((u64)val[2] << 32) | val[3];
5282 }
5283 
5284 /**
5285  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
5286  *	@adap: the adapter
5287  *	@mtus: where to store the MTU values
5288  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
5289  *
5290  *	Reads the HW path MTU table.
5291  */
5292 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5293 {
5294 	u32 v;
5295 	int i;
5296 
5297 	for (i = 0; i < NMTUS; ++i) {
5298 		t4_write_reg(adap, A_TP_MTU_TABLE,
5299 			     V_MTUINDEX(0xff) | V_MTUVALUE(i));
5300 		v = t4_read_reg(adap, A_TP_MTU_TABLE);
5301 		mtus[i] = G_MTUVALUE(v);
5302 		if (mtu_log)
5303 			mtu_log[i] = G_MTUWIDTH(v);
5304 	}
5305 }
5306 
5307 /**
5308  *	t4_read_cong_tbl - reads the congestion control table
5309  *	@adap: the adapter
5310  *	@incr: where to store the alpha values
5311  *
5312  *	Reads the additive increments programmed into the HW congestion
5313  *	control table.
5314  */
5315 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5316 {
5317 	unsigned int mtu, w;
5318 
5319 	for (mtu = 0; mtu < NMTUS; ++mtu)
5320 		for (w = 0; w < NCCTRL_WIN; ++w) {
5321 			t4_write_reg(adap, A_TP_CCTRL_TABLE,
5322 				     V_ROWINDEX(0xffff) | (mtu << 5) | w);
5323 			incr[mtu][w] = (u16)t4_read_reg(adap,
5324 						A_TP_CCTRL_TABLE) & 0x1fff;
5325 		}
5326 }
5327 
5328 /**
5329  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5330  *	@adap: the adapter
5331  *	@addr: the indirect TP register address
5332  *	@mask: specifies the field within the register to modify
5333  *	@val: new value for the field
5334  *
5335  *	Sets a field of an indirect TP register to the given value.
5336  */
5337 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5338 			    unsigned int mask, unsigned int val)
5339 {
5340 	t4_write_reg(adap, A_TP_PIO_ADDR, addr);
5341 	val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
5342 	t4_write_reg(adap, A_TP_PIO_DATA, val);
5343 }
5344 
5345 /**
5346  *	init_cong_ctrl - initialize congestion control parameters
5347  *	@a: the alpha values for congestion control
5348  *	@b: the beta values for congestion control
5349  *
5350  *	Initialize the congestion control parameters.
5351  */
5352 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5353 {
5354 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5355 	a[9] = 2;
5356 	a[10] = 3;
5357 	a[11] = 4;
5358 	a[12] = 5;
5359 	a[13] = 6;
5360 	a[14] = 7;
5361 	a[15] = 8;
5362 	a[16] = 9;
5363 	a[17] = 10;
5364 	a[18] = 14;
5365 	a[19] = 17;
5366 	a[20] = 21;
5367 	a[21] = 25;
5368 	a[22] = 30;
5369 	a[23] = 35;
5370 	a[24] = 45;
5371 	a[25] = 60;
5372 	a[26] = 80;
5373 	a[27] = 100;
5374 	a[28] = 200;
5375 	a[29] = 300;
5376 	a[30] = 400;
5377 	a[31] = 500;
5378 
5379 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5380 	b[9] = b[10] = 1;
5381 	b[11] = b[12] = 2;
5382 	b[13] = b[14] = b[15] = b[16] = 3;
5383 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5384 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5385 	b[28] = b[29] = 6;
5386 	b[30] = b[31] = 7;
5387 }
5388 
5389 /* The minimum additive increment value for the congestion control table */
5390 #define CC_MIN_INCR 2U
5391 
5392 /**
5393  *	t4_load_mtus - write the MTU and congestion control HW tables
5394  *	@adap: the adapter
5395  *	@mtus: the values for the MTU table
5396  *	@alpha: the values for the congestion control alpha parameter
5397  *	@beta: the values for the congestion control beta parameter
5398  *
5399  *	Write the HW MTU table with the supplied MTUs and the high-speed
5400  *	congestion control table with the supplied alpha, beta, and MTUs.
5401  *	We write the two tables together because the additive increments
5402  *	depend on the MTUs.
5403  */
5404 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5405 		  const unsigned short *alpha, const unsigned short *beta)
5406 {
5407 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5408 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5409 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5410 		28672, 40960, 57344, 81920, 114688, 163840, 229376
5411 	};
5412 
5413 	unsigned int i, w;
5414 
5415 	for (i = 0; i < NMTUS; ++i) {
5416 		unsigned int mtu = mtus[i];
5417 		unsigned int log2 = fls(mtu);
5418 
5419 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5420 			log2--;
5421 		t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
5422 			     V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
5423 
5424 		for (w = 0; w < NCCTRL_WIN; ++w) {
5425 			unsigned int inc;
5426 
5427 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5428 				  CC_MIN_INCR);
5429 
5430 			t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
5431 				     (w << 16) | (beta[w] << 13) | inc);
5432 		}
5433 	}
5434 }
5435 
5436 /**
5437  *	t4_set_pace_tbl - set the pace table
5438  *	@adap: the adapter
5439  *	@pace_vals: the pace values in microseconds
5440  *	@start: index of the first entry in the HW pace table to set
5441  *	@n: how many entries to set
5442  *
5443  *	Sets (a subset of the) HW pace table.
5444  */
5445 int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
5446 		     unsigned int start, unsigned int n)
5447 {
5448 	unsigned int vals[NTX_SCHED], i;
5449 	unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
5450 
5451 	if (n > NTX_SCHED)
5452 	    return -ERANGE;
5453 
5454 	/* convert values from us to dack ticks, rounding to closest value */
5455 	for (i = 0; i < n; i++, pace_vals++) {
5456 		vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
5457 		if (vals[i] > 0x7ff)
5458 			return -ERANGE;
5459 		if (*pace_vals && vals[i] == 0)
5460 			return -ERANGE;
5461 	}
5462 	for (i = 0; i < n; i++, start++)
5463 		t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
5464 	return 0;
5465 }
5466 
5467 /**
5468  *	t4_set_sched_bps - set the bit rate for a HW traffic scheduler
5469  *	@adap: the adapter
5470  *	@kbps: target rate in Kbps
5471  *	@sched: the scheduler index
5472  *
5473  *	Configure a Tx HW scheduler for the target rate.
5474  */
5475 int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
5476 {
5477 	unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
5478 	unsigned int clk = adap->params.vpd.cclk * 1000;
5479 	unsigned int selected_cpt = 0, selected_bpt = 0;
5480 
5481 	if (kbps > 0) {
5482 		kbps *= 125;     /* -> bytes */
5483 		for (cpt = 1; cpt <= 255; cpt++) {
5484 			tps = clk / cpt;
5485 			bpt = (kbps + tps / 2) / tps;
5486 			if (bpt > 0 && bpt <= 255) {
5487 				v = bpt * tps;
5488 				delta = v >= kbps ? v - kbps : kbps - v;
5489 				if (delta < mindelta) {
5490 					mindelta = delta;
5491 					selected_cpt = cpt;
5492 					selected_bpt = bpt;
5493 				}
5494 			} else if (selected_cpt)
5495 				break;
5496 		}
5497 		if (!selected_cpt)
5498 			return -EINVAL;
5499 	}
5500 	t4_write_reg(adap, A_TP_TM_PIO_ADDR,
5501 		     A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
5502 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
5503 	if (sched & 1)
5504 		v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
5505 	else
5506 		v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
5507 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
5508 	return 0;
5509 }
5510 
5511 /**
5512  *	t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
5513  *	@adap: the adapter
5514  *	@sched: the scheduler index
5515  *	@ipg: the interpacket delay in tenths of nanoseconds
5516  *
5517  *	Set the interpacket delay for a HW packet rate scheduler.
5518  */
5519 int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
5520 {
5521 	unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
5522 
5523 	/* convert ipg to nearest number of core clocks */
5524 	ipg *= core_ticks_per_usec(adap);
5525 	ipg = (ipg + 5000) / 10000;
5526 	if (ipg > M_TXTIMERSEPQ0)
5527 		return -EINVAL;
5528 
5529 	t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
5530 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
5531 	if (sched & 1)
5532 		v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
5533 	else
5534 		v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
5535 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
5536 	t4_read_reg(adap, A_TP_TM_PIO_DATA);
5537 	return 0;
5538 }
5539 
5540 /*
5541  * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5542  * clocks.  The formula is
5543  *
5544  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5545  *
5546  * which is equivalent to
5547  *
5548  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5549  */
5550 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5551 {
5552 	u64 v = bytes256 * adap->params.vpd.cclk;
5553 
5554 	return v * 62 + v / 2;
5555 }
5556 
5557 /**
5558  *	t4_get_chan_txrate - get the current per channel Tx rates
5559  *	@adap: the adapter
5560  *	@nic_rate: rates for NIC traffic
5561  *	@ofld_rate: rates for offloaded traffic
5562  *
5563  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5564  *	for each channel.
5565  */
5566 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5567 {
5568 	u32 v;
5569 
5570 	v = t4_read_reg(adap, A_TP_TX_TRATE);
5571 	nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
5572 	nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
5573 	if (adap->chip_params->nchan > 2) {
5574 		nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
5575 		nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
5576 	}
5577 
5578 	v = t4_read_reg(adap, A_TP_TX_ORATE);
5579 	ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
5580 	ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
5581 	if (adap->chip_params->nchan > 2) {
5582 		ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
5583 		ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
5584 	}
5585 }
5586 
5587 /**
5588  *	t4_set_trace_filter - configure one of the tracing filters
5589  *	@adap: the adapter
5590  *	@tp: the desired trace filter parameters
5591  *	@idx: which filter to configure
5592  *	@enable: whether to enable or disable the filter
5593  *
5594  *	Configures one of the tracing filters available in HW.  If @tp is %NULL
5595  *	it indicates that the filter is already written in the register and it
5596  *	just needs to be enabled or disabled.
5597  */
5598 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5599     int idx, int enable)
5600 {
5601 	int i, ofst = idx * 4;
5602 	u32 data_reg, mask_reg, cfg;
5603 	u32 multitrc = F_TRCMULTIFILTER;
5604 	u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
5605 
5606 	if (idx < 0 || idx >= NTRACE)
5607 		return -EINVAL;
5608 
5609 	if (tp == NULL || !enable) {
5610 		t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en,
5611 		    enable ? en : 0);
5612 		return 0;
5613 	}
5614 
5615 	/*
5616 	 * TODO - After T4 data book is updated, specify the exact
5617 	 * section below.
5618 	 *
5619 	 * See T4 data book - MPS section for a complete description
5620 	 * of the below if..else handling of A_MPS_TRC_CFG register
5621 	 * value.
5622 	 */
5623 	cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
5624 	if (cfg & F_TRCMULTIFILTER) {
5625 		/*
5626 		 * If multiple tracers are enabled, then maximum
5627 		 * capture size is 2.5KB (FIFO size of a single channel)
5628 		 * minus 2 flits for CPL_TRACE_PKT header.
5629 		 */
5630 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5631 			return -EINVAL;
5632 	} else {
5633 		/*
5634 		 * If multiple tracers are disabled, to avoid deadlocks
5635 		 * maximum packet capture size of 9600 bytes is recommended.
5636 		 * Also in this mode, only trace0 can be enabled and running.
5637 		 */
5638 		multitrc = 0;
5639 		if (tp->snap_len > 9600 || idx)
5640 			return -EINVAL;
5641 	}
5642 
5643 	if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
5644 	    tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
5645 	    tp->min_len > M_TFMINPKTSIZE)
5646 		return -EINVAL;
5647 
5648 	/* stop the tracer we'll be changing */
5649 	t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0);
5650 
5651 	idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
5652 	data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
5653 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
5654 
5655 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5656 		t4_write_reg(adap, data_reg, tp->data[i]);
5657 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5658 	}
5659 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
5660 		     V_TFCAPTUREMAX(tp->snap_len) |
5661 		     V_TFMINPKTSIZE(tp->min_len));
5662 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
5663 		     V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en |
5664 		     (is_t4(adap) ?
5665 		     V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
5666 		     V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
5667 
5668 	return 0;
5669 }
5670 
5671 /**
5672  *	t4_get_trace_filter - query one of the tracing filters
5673  *	@adap: the adapter
5674  *	@tp: the current trace filter parameters
5675  *	@idx: which trace filter to query
5676  *	@enabled: non-zero if the filter is enabled
5677  *
5678  *	Returns the current settings of one of the HW tracing filters.
5679  */
5680 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5681 			 int *enabled)
5682 {
5683 	u32 ctla, ctlb;
5684 	int i, ofst = idx * 4;
5685 	u32 data_reg, mask_reg;
5686 
5687 	ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
5688 	ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
5689 
5690 	if (is_t4(adap)) {
5691 		*enabled = !!(ctla & F_TFEN);
5692 		tp->port =  G_TFPORT(ctla);
5693 		tp->invert = !!(ctla & F_TFINVERTMATCH);
5694 	} else {
5695 		*enabled = !!(ctla & F_T5_TFEN);
5696 		tp->port = G_T5_TFPORT(ctla);
5697 		tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
5698 	}
5699 	tp->snap_len = G_TFCAPTUREMAX(ctlb);
5700 	tp->min_len = G_TFMINPKTSIZE(ctlb);
5701 	tp->skip_ofst = G_TFOFFSET(ctla);
5702 	tp->skip_len = G_TFLENGTH(ctla);
5703 
5704 	ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
5705 	data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
5706 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
5707 
5708 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5709 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5710 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5711 	}
5712 }
5713 
5714 /**
5715  *	t4_pmtx_get_stats - returns the HW stats from PMTX
5716  *	@adap: the adapter
5717  *	@cnt: where to store the count statistics
5718  *	@cycles: where to store the cycle statistics
5719  *
5720  *	Returns performance statistics from PMTX.
5721  */
5722 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5723 {
5724 	int i;
5725 	u32 data[2];
5726 
5727 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
5728 		t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
5729 		cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
5730 		if (is_t4(adap))
5731 			cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
5732 		else {
5733 			t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
5734 					 A_PM_TX_DBG_DATA, data, 2,
5735 					 A_PM_TX_DBG_STAT_MSB);
5736 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5737 		}
5738 	}
5739 }
5740 
5741 /**
5742  *	t4_pmrx_get_stats - returns the HW stats from PMRX
5743  *	@adap: the adapter
5744  *	@cnt: where to store the count statistics
5745  *	@cycles: where to store the cycle statistics
5746  *
5747  *	Returns performance statistics from PMRX.
5748  */
5749 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5750 {
5751 	int i;
5752 	u32 data[2];
5753 
5754 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
5755 		t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
5756 		cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
5757 		if (is_t4(adap)) {
5758 			cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
5759 		} else {
5760 			t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
5761 					 A_PM_RX_DBG_DATA, data, 2,
5762 					 A_PM_RX_DBG_STAT_MSB);
5763 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5764 		}
5765 	}
5766 }
5767 
5768 /**
5769  *	t4_get_mps_bg_map - return the buffer groups associated with a port
5770  *	@adap: the adapter
5771  *	@idx: the port index
5772  *
5773  *	Returns a bitmap indicating which MPS buffer groups are associated
5774  *	with the given port.  Bit i is set if buffer group i is used by the
5775  *	port.
5776  */
5777 static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
5778 {
5779 	u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
5780 
5781 	if (n == 0)
5782 		return idx == 0 ? 0xf : 0;
5783 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
5784 		return idx < 2 ? (3 << (2 * idx)) : 0;
5785 	return 1 << idx;
5786 }
5787 
5788 /**
5789  *      t4_get_port_type_description - return Port Type string description
5790  *      @port_type: firmware Port Type enumeration
5791  */
5792 const char *t4_get_port_type_description(enum fw_port_type port_type)
5793 {
5794 	static const char *const port_type_description[] = {
5795 		"Fiber_XFI",
5796 		"Fiber_XAUI",
5797 		"BT_SGMII",
5798 		"BT_XFI",
5799 		"BT_XAUI",
5800 		"KX4",
5801 		"CX4",
5802 		"KX",
5803 		"KR",
5804 		"SFP",
5805 		"BP_AP",
5806 		"BP4_AP",
5807 		"QSFP_10G",
5808 		"QSA",
5809 		"QSFP",
5810 		"BP40_BA",
5811 		"KR4_100G",
5812 		"CR4_QSFP",
5813 		"CR_QSFP",
5814 		"CR2_QSFP",
5815 		"SFP28",
5816 		"KR_SFP28",
5817 	};
5818 
5819 	if (port_type < ARRAY_SIZE(port_type_description))
5820 		return port_type_description[port_type];
5821 	return "UNKNOWN";
5822 }
5823 
5824 /**
5825  *      t4_get_port_stats_offset - collect port stats relative to a previous
5826  *				   snapshot
5827  *      @adap: The adapter
5828  *      @idx: The port
5829  *      @stats: Current stats to fill
5830  *      @offset: Previous stats snapshot
5831  */
5832 void t4_get_port_stats_offset(struct adapter *adap, int idx,
5833 		struct port_stats *stats,
5834 		struct port_stats *offset)
5835 {
5836 	u64 *s, *o;
5837 	int i;
5838 
5839 	t4_get_port_stats(adap, idx, stats);
5840 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
5841 			i < (sizeof(struct port_stats)/sizeof(u64)) ;
5842 			i++, s++, o++)
5843 		*s -= *o;
5844 }
5845 
5846 /**
5847  *	t4_get_port_stats - collect port statistics
5848  *	@adap: the adapter
5849  *	@idx: the port index
5850  *	@p: the stats structure to fill
5851  *
5852  *	Collect statistics related to the given port from HW.
5853  */
5854 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
5855 {
5856 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
5857 	u32 stat_ctl;
5858 
5859 #define GET_STAT(name) \
5860 	t4_read_reg64(adap, \
5861 	(is_t4(adap) ? PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) : \
5862 	T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
5863 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
5864 
5865 	stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
5866 
5867 	p->tx_pause		= GET_STAT(TX_PORT_PAUSE);
5868 	p->tx_octets		= GET_STAT(TX_PORT_BYTES);
5869 	p->tx_frames		= GET_STAT(TX_PORT_FRAMES);
5870 	p->tx_bcast_frames	= GET_STAT(TX_PORT_BCAST);
5871 	p->tx_mcast_frames	= GET_STAT(TX_PORT_MCAST);
5872 	p->tx_ucast_frames	= GET_STAT(TX_PORT_UCAST);
5873 	p->tx_error_frames	= GET_STAT(TX_PORT_ERROR);
5874 	p->tx_frames_64		= GET_STAT(TX_PORT_64B);
5875 	p->tx_frames_65_127	= GET_STAT(TX_PORT_65B_127B);
5876 	p->tx_frames_128_255	= GET_STAT(TX_PORT_128B_255B);
5877 	p->tx_frames_256_511	= GET_STAT(TX_PORT_256B_511B);
5878 	p->tx_frames_512_1023	= GET_STAT(TX_PORT_512B_1023B);
5879 	p->tx_frames_1024_1518	= GET_STAT(TX_PORT_1024B_1518B);
5880 	p->tx_frames_1519_max	= GET_STAT(TX_PORT_1519B_MAX);
5881 	p->tx_drop		= GET_STAT(TX_PORT_DROP);
5882 	p->tx_ppp0		= GET_STAT(TX_PORT_PPP0);
5883 	p->tx_ppp1		= GET_STAT(TX_PORT_PPP1);
5884 	p->tx_ppp2		= GET_STAT(TX_PORT_PPP2);
5885 	p->tx_ppp3		= GET_STAT(TX_PORT_PPP3);
5886 	p->tx_ppp4		= GET_STAT(TX_PORT_PPP4);
5887 	p->tx_ppp5		= GET_STAT(TX_PORT_PPP5);
5888 	p->tx_ppp6		= GET_STAT(TX_PORT_PPP6);
5889 	p->tx_ppp7		= GET_STAT(TX_PORT_PPP7);
5890 
5891 	if (chip_id(adap) >= CHELSIO_T5) {
5892 		if (stat_ctl & F_COUNTPAUSESTATTX) {
5893 			p->tx_frames -= p->tx_pause;
5894 			p->tx_octets -= p->tx_pause * 64;
5895 		}
5896 		if (stat_ctl & F_COUNTPAUSEMCTX)
5897 			p->tx_mcast_frames -= p->tx_pause;
5898 	}
5899 
5900 	p->rx_pause		= GET_STAT(RX_PORT_PAUSE);
5901 	p->rx_octets		= GET_STAT(RX_PORT_BYTES);
5902 	p->rx_frames		= GET_STAT(RX_PORT_FRAMES);
5903 	p->rx_bcast_frames	= GET_STAT(RX_PORT_BCAST);
5904 	p->rx_mcast_frames	= GET_STAT(RX_PORT_MCAST);
5905 	p->rx_ucast_frames	= GET_STAT(RX_PORT_UCAST);
5906 	p->rx_too_long		= GET_STAT(RX_PORT_MTU_ERROR);
5907 	p->rx_jabber		= GET_STAT(RX_PORT_MTU_CRC_ERROR);
5908 	p->rx_fcs_err		= GET_STAT(RX_PORT_CRC_ERROR);
5909 	p->rx_len_err		= GET_STAT(RX_PORT_LEN_ERROR);
5910 	p->rx_symbol_err	= GET_STAT(RX_PORT_SYM_ERROR);
5911 	p->rx_runt		= GET_STAT(RX_PORT_LESS_64B);
5912 	p->rx_frames_64		= GET_STAT(RX_PORT_64B);
5913 	p->rx_frames_65_127	= GET_STAT(RX_PORT_65B_127B);
5914 	p->rx_frames_128_255	= GET_STAT(RX_PORT_128B_255B);
5915 	p->rx_frames_256_511	= GET_STAT(RX_PORT_256B_511B);
5916 	p->rx_frames_512_1023	= GET_STAT(RX_PORT_512B_1023B);
5917 	p->rx_frames_1024_1518	= GET_STAT(RX_PORT_1024B_1518B);
5918 	p->rx_frames_1519_max	= GET_STAT(RX_PORT_1519B_MAX);
5919 	p->rx_ppp0		= GET_STAT(RX_PORT_PPP0);
5920 	p->rx_ppp1		= GET_STAT(RX_PORT_PPP1);
5921 	p->rx_ppp2		= GET_STAT(RX_PORT_PPP2);
5922 	p->rx_ppp3		= GET_STAT(RX_PORT_PPP3);
5923 	p->rx_ppp4		= GET_STAT(RX_PORT_PPP4);
5924 	p->rx_ppp5		= GET_STAT(RX_PORT_PPP5);
5925 	p->rx_ppp6		= GET_STAT(RX_PORT_PPP6);
5926 	p->rx_ppp7		= GET_STAT(RX_PORT_PPP7);
5927 
5928 	if (chip_id(adap) >= CHELSIO_T5) {
5929 		if (stat_ctl & F_COUNTPAUSESTATRX) {
5930 			p->rx_frames -= p->rx_pause;
5931 			p->rx_octets -= p->rx_pause * 64;
5932 		}
5933 		if (stat_ctl & F_COUNTPAUSEMCRX)
5934 			p->rx_mcast_frames -= p->rx_pause;
5935 	}
5936 
5937 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
5938 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
5939 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
5940 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
5941 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
5942 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
5943 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
5944 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
5945 
5946 #undef GET_STAT
5947 #undef GET_STAT_COM
5948 }
5949 
5950 /**
5951  *	t4_get_lb_stats - collect loopback port statistics
5952  *	@adap: the adapter
5953  *	@idx: the loopback port index
5954  *	@p: the stats structure to fill
5955  *
5956  *	Return HW statistics for the given loopback port.
5957  */
5958 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
5959 {
5960 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
5961 
5962 #define GET_STAT(name) \
5963 	t4_read_reg64(adap, \
5964 	(is_t4(adap) ? \
5965 	PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \
5966 	T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L)))
5967 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
5968 
5969 	p->octets	= GET_STAT(BYTES);
5970 	p->frames	= GET_STAT(FRAMES);
5971 	p->bcast_frames	= GET_STAT(BCAST);
5972 	p->mcast_frames	= GET_STAT(MCAST);
5973 	p->ucast_frames	= GET_STAT(UCAST);
5974 	p->error_frames	= GET_STAT(ERROR);
5975 
5976 	p->frames_64		= GET_STAT(64B);
5977 	p->frames_65_127	= GET_STAT(65B_127B);
5978 	p->frames_128_255	= GET_STAT(128B_255B);
5979 	p->frames_256_511	= GET_STAT(256B_511B);
5980 	p->frames_512_1023	= GET_STAT(512B_1023B);
5981 	p->frames_1024_1518	= GET_STAT(1024B_1518B);
5982 	p->frames_1519_max	= GET_STAT(1519B_MAX);
5983 	p->drop			= GET_STAT(DROP_FRAMES);
5984 
5985 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
5986 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
5987 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
5988 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
5989 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
5990 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
5991 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
5992 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
5993 
5994 #undef GET_STAT
5995 #undef GET_STAT_COM
5996 }
5997 
5998 /**
5999  *	t4_wol_magic_enable - enable/disable magic packet WoL
6000  *	@adap: the adapter
6001  *	@port: the physical port index
6002  *	@addr: MAC address expected in magic packets, %NULL to disable
6003  *
6004  *	Enables/disables magic packet wake-on-LAN for the selected port.
6005  */
6006 void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
6007 			 const u8 *addr)
6008 {
6009 	u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
6010 
6011 	if (is_t4(adap)) {
6012 		mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
6013 		mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
6014 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
6015 	} else {
6016 		mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
6017 		mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
6018 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
6019 	}
6020 
6021 	if (addr) {
6022 		t4_write_reg(adap, mag_id_reg_l,
6023 			     (addr[2] << 24) | (addr[3] << 16) |
6024 			     (addr[4] << 8) | addr[5]);
6025 		t4_write_reg(adap, mag_id_reg_h,
6026 			     (addr[0] << 8) | addr[1]);
6027 	}
6028 	t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
6029 			 V_MAGICEN(addr != NULL));
6030 }
6031 
6032 /**
6033  *	t4_wol_pat_enable - enable/disable pattern-based WoL
6034  *	@adap: the adapter
6035  *	@port: the physical port index
6036  *	@map: bitmap of which HW pattern filters to set
6037  *	@mask0: byte mask for bytes 0-63 of a packet
6038  *	@mask1: byte mask for bytes 64-127 of a packet
6039  *	@crc: Ethernet CRC for selected bytes
6040  *	@enable: enable/disable switch
6041  *
6042  *	Sets the pattern filters indicated in @map to mask out the bytes
6043  *	specified in @mask0/@mask1 in received packets and compare the CRC of
6044  *	the resulting packet against @crc.  If @enable is %true pattern-based
6045  *	WoL is enabled, otherwise disabled.
6046  */
6047 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
6048 		      u64 mask0, u64 mask1, unsigned int crc, bool enable)
6049 {
6050 	int i;
6051 	u32 port_cfg_reg;
6052 
6053 	if (is_t4(adap))
6054 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
6055 	else
6056 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
6057 
6058 	if (!enable) {
6059 		t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
6060 		return 0;
6061 	}
6062 	if (map > 0xff)
6063 		return -EINVAL;
6064 
6065 #define EPIO_REG(name) \
6066 	(is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
6067 	T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
6068 
6069 	t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
6070 	t4_write_reg(adap, EPIO_REG(DATA2), mask1);
6071 	t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
6072 
6073 	for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
6074 		if (!(map & 1))
6075 			continue;
6076 
6077 		/* write byte masks */
6078 		t4_write_reg(adap, EPIO_REG(DATA0), mask0);
6079 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
6080 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
6081 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
6082 			return -ETIMEDOUT;
6083 
6084 		/* write CRC */
6085 		t4_write_reg(adap, EPIO_REG(DATA0), crc);
6086 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
6087 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
6088 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
6089 			return -ETIMEDOUT;
6090 	}
6091 #undef EPIO_REG
6092 
6093 	t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
6094 	return 0;
6095 }
6096 
6097 /*     t4_mk_filtdelwr - create a delete filter WR
6098  *     @ftid: the filter ID
6099  *     @wr: the filter work request to populate
6100  *     @qid: ingress queue to receive the delete notification
6101  *
6102  *     Creates a filter work request to delete the supplied filter.  If @qid is
6103  *     negative the delete notification is suppressed.
6104  */
6105 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6106 {
6107 	memset(wr, 0, sizeof(*wr));
6108 	wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR));
6109 	wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16));
6110 	wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) |
6111 				    V_FW_FILTER_WR_NOREPLY(qid < 0));
6112 	wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER);
6113 	if (qid >= 0)
6114 		wr->rx_chan_rx_rpl_iq =
6115 				cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid));
6116 }
6117 
6118 #define INIT_CMD(var, cmd, rd_wr) do { \
6119 	(var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
6120 					F_FW_CMD_REQUEST | \
6121 					F_FW_CMD_##rd_wr); \
6122 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6123 } while (0)
6124 
6125 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6126 			  u32 addr, u32 val)
6127 {
6128 	u32 ldst_addrspace;
6129 	struct fw_ldst_cmd c;
6130 
6131 	memset(&c, 0, sizeof(c));
6132 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE);
6133 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6134 					F_FW_CMD_REQUEST |
6135 					F_FW_CMD_WRITE |
6136 					ldst_addrspace);
6137 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6138 	c.u.addrval.addr = cpu_to_be32(addr);
6139 	c.u.addrval.val = cpu_to_be32(val);
6140 
6141 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6142 }
6143 
6144 /**
6145  *	t4_mdio_rd - read a PHY register through MDIO
6146  *	@adap: the adapter
6147  *	@mbox: mailbox to use for the FW command
6148  *	@phy_addr: the PHY address
6149  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6150  *	@reg: the register to read
6151  *	@valp: where to store the value
6152  *
6153  *	Issues a FW command through the given mailbox to read a PHY register.
6154  */
6155 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6156 	       unsigned int mmd, unsigned int reg, unsigned int *valp)
6157 {
6158 	int ret;
6159 	u32 ldst_addrspace;
6160 	struct fw_ldst_cmd c;
6161 
6162 	memset(&c, 0, sizeof(c));
6163 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
6164 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6165 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
6166 					ldst_addrspace);
6167 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6168 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
6169 					 V_FW_LDST_CMD_MMD(mmd));
6170 	c.u.mdio.raddr = cpu_to_be16(reg);
6171 
6172 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6173 	if (ret == 0)
6174 		*valp = be16_to_cpu(c.u.mdio.rval);
6175 	return ret;
6176 }
6177 
6178 /**
6179  *	t4_mdio_wr - write a PHY register through MDIO
6180  *	@adap: the adapter
6181  *	@mbox: mailbox to use for the FW command
6182  *	@phy_addr: the PHY address
6183  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6184  *	@reg: the register to write
6185  *	@valp: value to write
6186  *
6187  *	Issues a FW command through the given mailbox to write a PHY register.
6188  */
6189 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6190 	       unsigned int mmd, unsigned int reg, unsigned int val)
6191 {
6192 	u32 ldst_addrspace;
6193 	struct fw_ldst_cmd c;
6194 
6195 	memset(&c, 0, sizeof(c));
6196 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
6197 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6198 					F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
6199 					ldst_addrspace);
6200 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6201 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
6202 					 V_FW_LDST_CMD_MMD(mmd));
6203 	c.u.mdio.raddr = cpu_to_be16(reg);
6204 	c.u.mdio.rval = cpu_to_be16(val);
6205 
6206 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6207 }
6208 
6209 /**
6210  *
6211  *	t4_sge_decode_idma_state - decode the idma state
6212  *	@adap: the adapter
6213  *	@state: the state idma is stuck in
6214  */
6215 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6216 {
6217 	static const char * const t4_decode[] = {
6218 		"IDMA_IDLE",
6219 		"IDMA_PUSH_MORE_CPL_FIFO",
6220 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6221 		"Not used",
6222 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6223 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6224 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6225 		"IDMA_SEND_FIFO_TO_IMSG",
6226 		"IDMA_FL_REQ_DATA_FL_PREP",
6227 		"IDMA_FL_REQ_DATA_FL",
6228 		"IDMA_FL_DROP",
6229 		"IDMA_FL_H_REQ_HEADER_FL",
6230 		"IDMA_FL_H_SEND_PCIEHDR",
6231 		"IDMA_FL_H_PUSH_CPL_FIFO",
6232 		"IDMA_FL_H_SEND_CPL",
6233 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6234 		"IDMA_FL_H_SEND_IP_HDR",
6235 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6236 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6237 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6238 		"IDMA_FL_D_SEND_PCIEHDR",
6239 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6240 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6241 		"IDMA_FL_SEND_PCIEHDR",
6242 		"IDMA_FL_PUSH_CPL_FIFO",
6243 		"IDMA_FL_SEND_CPL",
6244 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6245 		"IDMA_FL_SEND_PAYLOAD",
6246 		"IDMA_FL_REQ_NEXT_DATA_FL",
6247 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6248 		"IDMA_FL_SEND_PADDING",
6249 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6250 		"IDMA_FL_SEND_FIFO_TO_IMSG",
6251 		"IDMA_FL_REQ_DATAFL_DONE",
6252 		"IDMA_FL_REQ_HEADERFL_DONE",
6253 	};
6254 	static const char * const t5_decode[] = {
6255 		"IDMA_IDLE",
6256 		"IDMA_ALMOST_IDLE",
6257 		"IDMA_PUSH_MORE_CPL_FIFO",
6258 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6259 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6260 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6261 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6262 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6263 		"IDMA_SEND_FIFO_TO_IMSG",
6264 		"IDMA_FL_REQ_DATA_FL",
6265 		"IDMA_FL_DROP",
6266 		"IDMA_FL_DROP_SEND_INC",
6267 		"IDMA_FL_H_REQ_HEADER_FL",
6268 		"IDMA_FL_H_SEND_PCIEHDR",
6269 		"IDMA_FL_H_PUSH_CPL_FIFO",
6270 		"IDMA_FL_H_SEND_CPL",
6271 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6272 		"IDMA_FL_H_SEND_IP_HDR",
6273 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6274 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6275 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6276 		"IDMA_FL_D_SEND_PCIEHDR",
6277 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6278 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6279 		"IDMA_FL_SEND_PCIEHDR",
6280 		"IDMA_FL_PUSH_CPL_FIFO",
6281 		"IDMA_FL_SEND_CPL",
6282 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6283 		"IDMA_FL_SEND_PAYLOAD",
6284 		"IDMA_FL_REQ_NEXT_DATA_FL",
6285 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6286 		"IDMA_FL_SEND_PADDING",
6287 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6288 	};
6289 	static const char * const t6_decode[] = {
6290 		"IDMA_IDLE",
6291 		"IDMA_PUSH_MORE_CPL_FIFO",
6292 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6293 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6294 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6295 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6296 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6297 		"IDMA_FL_REQ_DATA_FL",
6298 		"IDMA_FL_DROP",
6299 		"IDMA_FL_DROP_SEND_INC",
6300 		"IDMA_FL_H_REQ_HEADER_FL",
6301 		"IDMA_FL_H_SEND_PCIEHDR",
6302 		"IDMA_FL_H_PUSH_CPL_FIFO",
6303 		"IDMA_FL_H_SEND_CPL",
6304 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6305 		"IDMA_FL_H_SEND_IP_HDR",
6306 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6307 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6308 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6309 		"IDMA_FL_D_SEND_PCIEHDR",
6310 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6311 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6312 		"IDMA_FL_SEND_PCIEHDR",
6313 		"IDMA_FL_PUSH_CPL_FIFO",
6314 		"IDMA_FL_SEND_CPL",
6315 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6316 		"IDMA_FL_SEND_PAYLOAD",
6317 		"IDMA_FL_REQ_NEXT_DATA_FL",
6318 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6319 		"IDMA_FL_SEND_PADDING",
6320 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6321 	};
6322 	static const u32 sge_regs[] = {
6323 		A_SGE_DEBUG_DATA_LOW_INDEX_2,
6324 		A_SGE_DEBUG_DATA_LOW_INDEX_3,
6325 		A_SGE_DEBUG_DATA_HIGH_INDEX_10,
6326 	};
6327 	const char * const *sge_idma_decode;
6328 	int sge_idma_decode_nstates;
6329 	int i;
6330 	unsigned int chip_version = chip_id(adapter);
6331 
6332 	/* Select the right set of decode strings to dump depending on the
6333 	 * adapter chip type.
6334 	 */
6335 	switch (chip_version) {
6336 	case CHELSIO_T4:
6337 		sge_idma_decode = (const char * const *)t4_decode;
6338 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6339 		break;
6340 
6341 	case CHELSIO_T5:
6342 		sge_idma_decode = (const char * const *)t5_decode;
6343 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6344 		break;
6345 
6346 	case CHELSIO_T6:
6347 		sge_idma_decode = (const char * const *)t6_decode;
6348 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6349 		break;
6350 
6351 	default:
6352 		CH_ERR(adapter,	"Unsupported chip version %d\n", chip_version);
6353 		return;
6354 	}
6355 
6356 	if (state < sge_idma_decode_nstates)
6357 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6358 	else
6359 		CH_WARN(adapter, "idma state %d unknown\n", state);
6360 
6361 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6362 		CH_WARN(adapter, "SGE register %#x value %#x\n",
6363 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6364 }
6365 
6366 /**
6367  *      t4_sge_ctxt_flush - flush the SGE context cache
6368  *      @adap: the adapter
6369  *      @mbox: mailbox to use for the FW command
6370  *
6371  *      Issues a FW command through the given mailbox to flush the
6372  *      SGE context cache.
6373  */
6374 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
6375 {
6376 	int ret;
6377 	u32 ldst_addrspace;
6378 	struct fw_ldst_cmd c;
6379 
6380 	memset(&c, 0, sizeof(c));
6381 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_SGE_EGRC);
6382 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6383 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
6384 					ldst_addrspace);
6385 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6386 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH);
6387 
6388 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6389 	return ret;
6390 }
6391 
6392 /**
6393  *      t4_fw_hello - establish communication with FW
6394  *      @adap: the adapter
6395  *      @mbox: mailbox to use for the FW command
6396  *      @evt_mbox: mailbox to receive async FW events
6397  *      @master: specifies the caller's willingness to be the device master
6398  *	@state: returns the current device state (if non-NULL)
6399  *
6400  *	Issues a command to establish communication with FW.  Returns either
6401  *	an error (negative integer) or the mailbox of the Master PF.
6402  */
6403 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6404 		enum dev_master master, enum dev_state *state)
6405 {
6406 	int ret;
6407 	struct fw_hello_cmd c;
6408 	u32 v;
6409 	unsigned int master_mbox;
6410 	int retries = FW_CMD_HELLO_RETRIES;
6411 
6412 retry:
6413 	memset(&c, 0, sizeof(c));
6414 	INIT_CMD(c, HELLO, WRITE);
6415 	c.err_to_clearinit = cpu_to_be32(
6416 		V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
6417 		V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
6418 		V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ?
6419 					mbox : M_FW_HELLO_CMD_MBMASTER) |
6420 		V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
6421 		V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
6422 		F_FW_HELLO_CMD_CLEARINIT);
6423 
6424 	/*
6425 	 * Issue the HELLO command to the firmware.  If it's not successful
6426 	 * but indicates that we got a "busy" or "timeout" condition, retry
6427 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
6428 	 * retry limit, check to see if the firmware left us any error
6429 	 * information and report that if so ...
6430 	 */
6431 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6432 	if (ret != FW_SUCCESS) {
6433 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6434 			goto retry;
6435 		if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
6436 			t4_report_fw_error(adap);
6437 		return ret;
6438 	}
6439 
6440 	v = be32_to_cpu(c.err_to_clearinit);
6441 	master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
6442 	if (state) {
6443 		if (v & F_FW_HELLO_CMD_ERR)
6444 			*state = DEV_STATE_ERR;
6445 		else if (v & F_FW_HELLO_CMD_INIT)
6446 			*state = DEV_STATE_INIT;
6447 		else
6448 			*state = DEV_STATE_UNINIT;
6449 	}
6450 
6451 	/*
6452 	 * If we're not the Master PF then we need to wait around for the
6453 	 * Master PF Driver to finish setting up the adapter.
6454 	 *
6455 	 * Note that we also do this wait if we're a non-Master-capable PF and
6456 	 * there is no current Master PF; a Master PF may show up momentarily
6457 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
6458 	 * OS loads lots of different drivers rapidly at the same time).  In
6459 	 * this case, the Master PF returned by the firmware will be
6460 	 * M_PCIE_FW_MASTER so the test below will work ...
6461 	 */
6462 	if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
6463 	    master_mbox != mbox) {
6464 		int waiting = FW_CMD_HELLO_TIMEOUT;
6465 
6466 		/*
6467 		 * Wait for the firmware to either indicate an error or
6468 		 * initialized state.  If we see either of these we bail out
6469 		 * and report the issue to the caller.  If we exhaust the
6470 		 * "hello timeout" and we haven't exhausted our retries, try
6471 		 * again.  Otherwise bail with a timeout error.
6472 		 */
6473 		for (;;) {
6474 			u32 pcie_fw;
6475 
6476 			msleep(50);
6477 			waiting -= 50;
6478 
6479 			/*
6480 			 * If neither Error nor Initialialized are indicated
6481 			 * by the firmware keep waiting till we exhaust our
6482 			 * timeout ... and then retry if we haven't exhausted
6483 			 * our retries ...
6484 			 */
6485 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
6486 			if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
6487 				if (waiting <= 0) {
6488 					if (retries-- > 0)
6489 						goto retry;
6490 
6491 					return -ETIMEDOUT;
6492 				}
6493 				continue;
6494 			}
6495 
6496 			/*
6497 			 * We either have an Error or Initialized condition
6498 			 * report errors preferentially.
6499 			 */
6500 			if (state) {
6501 				if (pcie_fw & F_PCIE_FW_ERR)
6502 					*state = DEV_STATE_ERR;
6503 				else if (pcie_fw & F_PCIE_FW_INIT)
6504 					*state = DEV_STATE_INIT;
6505 			}
6506 
6507 			/*
6508 			 * If we arrived before a Master PF was selected and
6509 			 * there's not a valid Master PF, grab its identity
6510 			 * for our caller.
6511 			 */
6512 			if (master_mbox == M_PCIE_FW_MASTER &&
6513 			    (pcie_fw & F_PCIE_FW_MASTER_VLD))
6514 				master_mbox = G_PCIE_FW_MASTER(pcie_fw);
6515 			break;
6516 		}
6517 	}
6518 
6519 	return master_mbox;
6520 }
6521 
6522 /**
6523  *	t4_fw_bye - end communication with FW
6524  *	@adap: the adapter
6525  *	@mbox: mailbox to use for the FW command
6526  *
6527  *	Issues a command to terminate communication with FW.
6528  */
6529 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6530 {
6531 	struct fw_bye_cmd c;
6532 
6533 	memset(&c, 0, sizeof(c));
6534 	INIT_CMD(c, BYE, WRITE);
6535 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6536 }
6537 
6538 /**
6539  *	t4_fw_reset - issue a reset to FW
6540  *	@adap: the adapter
6541  *	@mbox: mailbox to use for the FW command
6542  *	@reset: specifies the type of reset to perform
6543  *
6544  *	Issues a reset command of the specified type to FW.
6545  */
6546 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6547 {
6548 	struct fw_reset_cmd c;
6549 
6550 	memset(&c, 0, sizeof(c));
6551 	INIT_CMD(c, RESET, WRITE);
6552 	c.val = cpu_to_be32(reset);
6553 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6554 }
6555 
6556 /**
6557  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6558  *	@adap: the adapter
6559  *	@mbox: mailbox to use for the FW RESET command (if desired)
6560  *	@force: force uP into RESET even if FW RESET command fails
6561  *
6562  *	Issues a RESET command to firmware (if desired) with a HALT indication
6563  *	and then puts the microprocessor into RESET state.  The RESET command
6564  *	will only be issued if a legitimate mailbox is provided (mbox <=
6565  *	M_PCIE_FW_MASTER).
6566  *
6567  *	This is generally used in order for the host to safely manipulate the
6568  *	adapter without fear of conflicting with whatever the firmware might
6569  *	be doing.  The only way out of this state is to RESTART the firmware
6570  *	...
6571  */
6572 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
6573 {
6574 	int ret = 0;
6575 
6576 	/*
6577 	 * If a legitimate mailbox is provided, issue a RESET command
6578 	 * with a HALT indication.
6579 	 */
6580 	if (mbox <= M_PCIE_FW_MASTER) {
6581 		struct fw_reset_cmd c;
6582 
6583 		memset(&c, 0, sizeof(c));
6584 		INIT_CMD(c, RESET, WRITE);
6585 		c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
6586 		c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
6587 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6588 	}
6589 
6590 	/*
6591 	 * Normally we won't complete the operation if the firmware RESET
6592 	 * command fails but if our caller insists we'll go ahead and put the
6593 	 * uP into RESET.  This can be useful if the firmware is hung or even
6594 	 * missing ...  We'll have to take the risk of putting the uP into
6595 	 * RESET without the cooperation of firmware in that case.
6596 	 *
6597 	 * We also force the firmware's HALT flag to be on in case we bypassed
6598 	 * the firmware RESET command above or we're dealing with old firmware
6599 	 * which doesn't have the HALT capability.  This will serve as a flag
6600 	 * for the incoming firmware to know that it's coming out of a HALT
6601 	 * rather than a RESET ... if it's new enough to understand that ...
6602 	 */
6603 	if (ret == 0 || force) {
6604 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
6605 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
6606 				 F_PCIE_FW_HALT);
6607 	}
6608 
6609 	/*
6610 	 * And we always return the result of the firmware RESET command
6611 	 * even when we force the uP into RESET ...
6612 	 */
6613 	return ret;
6614 }
6615 
6616 /**
6617  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
6618  *	@adap: the adapter
6619  *	@reset: if we want to do a RESET to restart things
6620  *
6621  *	Restart firmware previously halted by t4_fw_halt().  On successful
6622  *	return the previous PF Master remains as the new PF Master and there
6623  *	is no need to issue a new HELLO command, etc.
6624  *
6625  *	We do this in two ways:
6626  *
6627  *	 1. If we're dealing with newer firmware we'll simply want to take
6628  *	    the chip's microprocessor out of RESET.  This will cause the
6629  *	    firmware to start up from its start vector.  And then we'll loop
6630  *	    until the firmware indicates it's started again (PCIE_FW.HALT
6631  *	    reset to 0) or we timeout.
6632  *
6633  *	 2. If we're dealing with older firmware then we'll need to RESET
6634  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
6635  *	    flag and automatically RESET itself on startup.
6636  */
6637 int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6638 {
6639 	if (reset) {
6640 		/*
6641 		 * Since we're directing the RESET instead of the firmware
6642 		 * doing it automatically, we need to clear the PCIE_FW.HALT
6643 		 * bit.
6644 		 */
6645 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, 0);
6646 
6647 		/*
6648 		 * If we've been given a valid mailbox, first try to get the
6649 		 * firmware to do the RESET.  If that works, great and we can
6650 		 * return success.  Otherwise, if we haven't been given a
6651 		 * valid mailbox or the RESET command failed, fall back to
6652 		 * hitting the chip with a hammer.
6653 		 */
6654 		if (mbox <= M_PCIE_FW_MASTER) {
6655 			t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
6656 			msleep(100);
6657 			if (t4_fw_reset(adap, mbox,
6658 					F_PIORST | F_PIORSTMODE) == 0)
6659 				return 0;
6660 		}
6661 
6662 		t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE);
6663 		msleep(2000);
6664 	} else {
6665 		int ms;
6666 
6667 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
6668 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6669 			if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
6670 				return FW_SUCCESS;
6671 			msleep(100);
6672 			ms += 100;
6673 		}
6674 		return -ETIMEDOUT;
6675 	}
6676 	return 0;
6677 }
6678 
6679 /**
6680  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6681  *	@adap: the adapter
6682  *	@mbox: mailbox to use for the FW RESET command (if desired)
6683  *	@fw_data: the firmware image to write
6684  *	@size: image size
6685  *	@force: force upgrade even if firmware doesn't cooperate
6686  *
6687  *	Perform all of the steps necessary for upgrading an adapter's
6688  *	firmware image.  Normally this requires the cooperation of the
6689  *	existing firmware in order to halt all existing activities
6690  *	but if an invalid mailbox token is passed in we skip that step
6691  *	(though we'll still put the adapter microprocessor into RESET in
6692  *	that case).
6693  *
6694  *	On successful return the new firmware will have been loaded and
6695  *	the adapter will have been fully RESET losing all previous setup
6696  *	state.  On unsuccessful return the adapter may be completely hosed ...
6697  *	positive errno indicates that the adapter is ~probably~ intact, a
6698  *	negative errno indicates that things are looking bad ...
6699  */
6700 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6701 		  const u8 *fw_data, unsigned int size, int force)
6702 {
6703 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6704 	unsigned int bootstrap =
6705 	    be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
6706 	int reset, ret;
6707 
6708 	if (!t4_fw_matches_chip(adap, fw_hdr))
6709 		return -EINVAL;
6710 
6711 	if (!bootstrap) {
6712 		ret = t4_fw_halt(adap, mbox, force);
6713 		if (ret < 0 && !force)
6714 			return ret;
6715 	}
6716 
6717 	ret = t4_load_fw(adap, fw_data, size);
6718 	if (ret < 0 || bootstrap)
6719 		return ret;
6720 
6721 	/*
6722 	 * Older versions of the firmware don't understand the new
6723 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6724 	 * restart.  So for newly loaded older firmware we'll have to do the
6725 	 * RESET for it so it starts up on a clean slate.  We can tell if
6726 	 * the newly loaded firmware will handle this right by checking
6727 	 * its header flags to see if it advertises the capability.
6728 	 */
6729 	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
6730 	return t4_fw_restart(adap, mbox, reset);
6731 }
6732 
6733 /**
6734  *	t4_fw_initialize - ask FW to initialize the device
6735  *	@adap: the adapter
6736  *	@mbox: mailbox to use for the FW command
6737  *
6738  *	Issues a command to FW to partially initialize the device.  This
6739  *	performs initialization that generally doesn't depend on user input.
6740  */
6741 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
6742 {
6743 	struct fw_initialize_cmd c;
6744 
6745 	memset(&c, 0, sizeof(c));
6746 	INIT_CMD(c, INITIALIZE, WRITE);
6747 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6748 }
6749 
6750 /**
6751  *	t4_query_params_rw - query FW or device parameters
6752  *	@adap: the adapter
6753  *	@mbox: mailbox to use for the FW command
6754  *	@pf: the PF
6755  *	@vf: the VF
6756  *	@nparams: the number of parameters
6757  *	@params: the parameter names
6758  *	@val: the parameter values
6759  *	@rw: Write and read flag
6760  *
6761  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
6762  *	queried at once.
6763  */
6764 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
6765 		       unsigned int vf, unsigned int nparams, const u32 *params,
6766 		       u32 *val, int rw)
6767 {
6768 	int i, ret;
6769 	struct fw_params_cmd c;
6770 	__be32 *p = &c.param[0].mnem;
6771 
6772 	if (nparams > 7)
6773 		return -EINVAL;
6774 
6775 	memset(&c, 0, sizeof(c));
6776 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
6777 				  F_FW_CMD_REQUEST | F_FW_CMD_READ |
6778 				  V_FW_PARAMS_CMD_PFN(pf) |
6779 				  V_FW_PARAMS_CMD_VFN(vf));
6780 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6781 
6782 	for (i = 0; i < nparams; i++) {
6783 		*p++ = cpu_to_be32(*params++);
6784 		if (rw)
6785 			*p = cpu_to_be32(*(val + i));
6786 		p++;
6787 	}
6788 
6789 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6790 	if (ret == 0)
6791 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
6792 			*val++ = be32_to_cpu(*p);
6793 	return ret;
6794 }
6795 
6796 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6797 		    unsigned int vf, unsigned int nparams, const u32 *params,
6798 		    u32 *val)
6799 {
6800 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
6801 }
6802 
6803 /**
6804  *      t4_set_params_timeout - sets FW or device parameters
6805  *      @adap: the adapter
6806  *      @mbox: mailbox to use for the FW command
6807  *      @pf: the PF
6808  *      @vf: the VF
6809  *      @nparams: the number of parameters
6810  *      @params: the parameter names
6811  *      @val: the parameter values
6812  *      @timeout: the timeout time
6813  *
6814  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
6815  *      specified at once.
6816  */
6817 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
6818 			  unsigned int pf, unsigned int vf,
6819 			  unsigned int nparams, const u32 *params,
6820 			  const u32 *val, int timeout)
6821 {
6822 	struct fw_params_cmd c;
6823 	__be32 *p = &c.param[0].mnem;
6824 
6825 	if (nparams > 7)
6826 		return -EINVAL;
6827 
6828 	memset(&c, 0, sizeof(c));
6829 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
6830 				  F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
6831 				  V_FW_PARAMS_CMD_PFN(pf) |
6832 				  V_FW_PARAMS_CMD_VFN(vf));
6833 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6834 
6835 	while (nparams--) {
6836 		*p++ = cpu_to_be32(*params++);
6837 		*p++ = cpu_to_be32(*val++);
6838 	}
6839 
6840 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
6841 }
6842 
6843 /**
6844  *	t4_set_params - sets FW or device parameters
6845  *	@adap: the adapter
6846  *	@mbox: mailbox to use for the FW command
6847  *	@pf: the PF
6848  *	@vf: the VF
6849  *	@nparams: the number of parameters
6850  *	@params: the parameter names
6851  *	@val: the parameter values
6852  *
6853  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
6854  *	specified at once.
6855  */
6856 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6857 		  unsigned int vf, unsigned int nparams, const u32 *params,
6858 		  const u32 *val)
6859 {
6860 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
6861 				     FW_CMD_MAX_TIMEOUT);
6862 }
6863 
6864 /**
6865  *	t4_cfg_pfvf - configure PF/VF resource limits
6866  *	@adap: the adapter
6867  *	@mbox: mailbox to use for the FW command
6868  *	@pf: the PF being configured
6869  *	@vf: the VF being configured
6870  *	@txq: the max number of egress queues
6871  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
6872  *	@rxqi: the max number of interrupt-capable ingress queues
6873  *	@rxq: the max number of interruptless ingress queues
6874  *	@tc: the PCI traffic class
6875  *	@vi: the max number of virtual interfaces
6876  *	@cmask: the channel access rights mask for the PF/VF
6877  *	@pmask: the port access rights mask for the PF/VF
6878  *	@nexact: the maximum number of exact MPS filters
6879  *	@rcaps: read capabilities
6880  *	@wxcaps: write/execute capabilities
6881  *
6882  *	Configures resource limits and capabilities for a physical or virtual
6883  *	function.
6884  */
6885 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
6886 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
6887 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
6888 		unsigned int vi, unsigned int cmask, unsigned int pmask,
6889 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
6890 {
6891 	struct fw_pfvf_cmd c;
6892 
6893 	memset(&c, 0, sizeof(c));
6894 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
6895 				  F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
6896 				  V_FW_PFVF_CMD_VFN(vf));
6897 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6898 	c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
6899 				     V_FW_PFVF_CMD_NIQ(rxq));
6900 	c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) |
6901 				    V_FW_PFVF_CMD_PMASK(pmask) |
6902 				    V_FW_PFVF_CMD_NEQ(txq));
6903 	c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) |
6904 				      V_FW_PFVF_CMD_NVI(vi) |
6905 				      V_FW_PFVF_CMD_NEXACTF(nexact));
6906 	c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) |
6907 				     V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
6908 				     V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
6909 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6910 }
6911 
6912 /**
6913  *	t4_alloc_vi_func - allocate a virtual interface
6914  *	@adap: the adapter
6915  *	@mbox: mailbox to use for the FW command
6916  *	@port: physical port associated with the VI
6917  *	@pf: the PF owning the VI
6918  *	@vf: the VF owning the VI
6919  *	@nmac: number of MAC addresses needed (1 to 5)
6920  *	@mac: the MAC addresses of the VI
6921  *	@rss_size: size of RSS table slice associated with this VI
6922  *	@portfunc: which Port Application Function MAC Address is desired
6923  *	@idstype: Intrusion Detection Type
6924  *
6925  *	Allocates a virtual interface for the given physical port.  If @mac is
6926  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
6927  *	If @rss_size is %NULL the VI is not assigned any RSS slice by FW.
6928  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
6929  *	stored consecutively so the space needed is @nmac * 6 bytes.
6930  *	Returns a negative error number or the non-negative VI id.
6931  */
6932 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
6933 		     unsigned int port, unsigned int pf, unsigned int vf,
6934 		     unsigned int nmac, u8 *mac, u16 *rss_size,
6935 		     unsigned int portfunc, unsigned int idstype)
6936 {
6937 	int ret;
6938 	struct fw_vi_cmd c;
6939 
6940 	memset(&c, 0, sizeof(c));
6941 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
6942 				  F_FW_CMD_WRITE | F_FW_CMD_EXEC |
6943 				  V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
6944 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
6945 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
6946 				     V_FW_VI_CMD_FUNC(portfunc));
6947 	c.portid_pkd = V_FW_VI_CMD_PORTID(port);
6948 	c.nmac = nmac - 1;
6949 	if(!rss_size)
6950 		c.norss_rsssize = F_FW_VI_CMD_NORSS;
6951 
6952 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6953 	if (ret)
6954 		return ret;
6955 
6956 	if (mac) {
6957 		memcpy(mac, c.mac, sizeof(c.mac));
6958 		switch (nmac) {
6959 		case 5:
6960 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
6961 		case 4:
6962 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
6963 		case 3:
6964 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
6965 		case 2:
6966 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
6967 		}
6968 	}
6969 	if (rss_size)
6970 		*rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
6971 	return G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid));
6972 }
6973 
6974 /**
6975  *      t4_alloc_vi - allocate an [Ethernet Function] virtual interface
6976  *      @adap: the adapter
6977  *      @mbox: mailbox to use for the FW command
6978  *      @port: physical port associated with the VI
6979  *      @pf: the PF owning the VI
6980  *      @vf: the VF owning the VI
6981  *      @nmac: number of MAC addresses needed (1 to 5)
6982  *      @mac: the MAC addresses of the VI
6983  *      @rss_size: size of RSS table slice associated with this VI
6984  *
6985  *	backwards compatible and convieniance routine to allocate a Virtual
6986  *	Interface with a Ethernet Port Application Function and Intrustion
6987  *	Detection System disabled.
6988  */
6989 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
6990 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
6991 		u16 *rss_size)
6992 {
6993 	return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
6994 				FW_VI_FUNC_ETH, 0);
6995 }
6996 
6997 /**
6998  * 	t4_free_vi - free a virtual interface
6999  * 	@adap: the adapter
7000  * 	@mbox: mailbox to use for the FW command
7001  * 	@pf: the PF owning the VI
7002  * 	@vf: the VF owning the VI
7003  * 	@viid: virtual interface identifiler
7004  *
7005  * 	Free a previously allocated virtual interface.
7006  */
7007 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7008 	       unsigned int vf, unsigned int viid)
7009 {
7010 	struct fw_vi_cmd c;
7011 
7012 	memset(&c, 0, sizeof(c));
7013 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
7014 				  F_FW_CMD_REQUEST |
7015 				  F_FW_CMD_EXEC |
7016 				  V_FW_VI_CMD_PFN(pf) |
7017 				  V_FW_VI_CMD_VFN(vf));
7018 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
7019 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
7020 
7021 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7022 }
7023 
7024 /**
7025  *	t4_set_rxmode - set Rx properties of a virtual interface
7026  *	@adap: the adapter
7027  *	@mbox: mailbox to use for the FW command
7028  *	@viid: the VI id
7029  *	@mtu: the new MTU or -1
7030  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7031  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7032  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7033  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7034  *	@sleep_ok: if true we may sleep while awaiting command completion
7035  *
7036  *	Sets Rx properties of a virtual interface.
7037  */
7038 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7039 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
7040 		  bool sleep_ok)
7041 {
7042 	struct fw_vi_rxmode_cmd c;
7043 
7044 	/* convert to FW values */
7045 	if (mtu < 0)
7046 		mtu = M_FW_VI_RXMODE_CMD_MTU;
7047 	if (promisc < 0)
7048 		promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
7049 	if (all_multi < 0)
7050 		all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
7051 	if (bcast < 0)
7052 		bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
7053 	if (vlanex < 0)
7054 		vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
7055 
7056 	memset(&c, 0, sizeof(c));
7057 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
7058 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7059 				   V_FW_VI_RXMODE_CMD_VIID(viid));
7060 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7061 	c.mtu_to_vlanexen =
7062 		cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
7063 			    V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
7064 			    V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
7065 			    V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
7066 			    V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
7067 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7068 }
7069 
7070 /**
7071  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7072  *	@adap: the adapter
7073  *	@mbox: mailbox to use for the FW command
7074  *	@viid: the VI id
7075  *	@free: if true any existing filters for this VI id are first removed
7076  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7077  *	@addr: the MAC address(es)
7078  *	@idx: where to store the index of each allocated filter
7079  *	@hash: pointer to hash address filter bitmap
7080  *	@sleep_ok: call is allowed to sleep
7081  *
7082  *	Allocates an exact-match filter for each of the supplied addresses and
7083  *	sets it to the corresponding address.  If @idx is not %NULL it should
7084  *	have at least @naddr entries, each of which will be set to the index of
7085  *	the filter allocated for the corresponding MAC address.  If a filter
7086  *	could not be allocated for an address its index is set to 0xffff.
7087  *	If @hash is not %NULL addresses that fail to allocate an exact filter
7088  *	are hashed and update the hash filter bitmap pointed at by @hash.
7089  *
7090  *	Returns a negative error number or the number of filters allocated.
7091  */
7092 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7093 		      unsigned int viid, bool free, unsigned int naddr,
7094 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7095 {
7096 	int offset, ret = 0;
7097 	struct fw_vi_mac_cmd c;
7098 	unsigned int nfilters = 0;
7099 	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
7100 	unsigned int rem = naddr;
7101 
7102 	if (naddr > max_naddr)
7103 		return -EINVAL;
7104 
7105 	for (offset = 0; offset < naddr ; /**/) {
7106 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
7107 					 ? rem
7108 					 : ARRAY_SIZE(c.u.exact));
7109 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7110 						     u.exact[fw_naddr]), 16);
7111 		struct fw_vi_mac_exact *p;
7112 		int i;
7113 
7114 		memset(&c, 0, sizeof(c));
7115 		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7116 					   F_FW_CMD_REQUEST |
7117 					   F_FW_CMD_WRITE |
7118 					   V_FW_CMD_EXEC(free) |
7119 					   V_FW_VI_MAC_CMD_VIID(viid));
7120 		c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) |
7121 						  V_FW_CMD_LEN16(len16));
7122 
7123 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7124 			p->valid_to_idx =
7125 				cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
7126 					    V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
7127 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
7128 		}
7129 
7130 		/*
7131 		 * It's okay if we run out of space in our MAC address arena.
7132 		 * Some of the addresses we submit may get stored so we need
7133 		 * to run through the reply to see what the results were ...
7134 		 */
7135 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7136 		if (ret && ret != -FW_ENOMEM)
7137 			break;
7138 
7139 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7140 			u16 index = G_FW_VI_MAC_CMD_IDX(
7141 						be16_to_cpu(p->valid_to_idx));
7142 
7143 			if (idx)
7144 				idx[offset+i] = (index >=  max_naddr
7145 						 ? 0xffff
7146 						 : index);
7147 			if (index < max_naddr)
7148 				nfilters++;
7149 			else if (hash)
7150 				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
7151 		}
7152 
7153 		free = false;
7154 		offset += fw_naddr;
7155 		rem -= fw_naddr;
7156 	}
7157 
7158 	if (ret == 0 || ret == -FW_ENOMEM)
7159 		ret = nfilters;
7160 	return ret;
7161 }
7162 
7163 /**
7164  *	t4_change_mac - modifies the exact-match filter for a MAC address
7165  *	@adap: the adapter
7166  *	@mbox: mailbox to use for the FW command
7167  *	@viid: the VI id
7168  *	@idx: index of existing filter for old value of MAC address, or -1
7169  *	@addr: the new MAC address value
7170  *	@persist: whether a new MAC allocation should be persistent
7171  *	@add_smt: if true also add the address to the HW SMT
7172  *
7173  *	Modifies an exact-match filter and sets it to the new MAC address if
7174  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
7175  *	latter case the address is added persistently if @persist is %true.
7176  *
7177  *	Note that in general it is not possible to modify the value of a given
7178  *	filter so the generic way to modify an address filter is to free the one
7179  *	being used by the old address value and allocate a new filter for the
7180  *	new address value.
7181  *
7182  *	Returns a negative error number or the index of the filter with the new
7183  *	MAC value.  Note that this index may differ from @idx.
7184  */
7185 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
7186 		  int idx, const u8 *addr, bool persist, bool add_smt)
7187 {
7188 	int ret, mode;
7189 	struct fw_vi_mac_cmd c;
7190 	struct fw_vi_mac_exact *p = c.u.exact;
7191 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
7192 
7193 	if (idx < 0)		/* new allocation */
7194 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
7195 	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
7196 
7197 	memset(&c, 0, sizeof(c));
7198 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7199 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7200 				   V_FW_VI_MAC_CMD_VIID(viid));
7201 	c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
7202 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
7203 				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
7204 				      V_FW_VI_MAC_CMD_IDX(idx));
7205 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7206 
7207 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7208 	if (ret == 0) {
7209 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
7210 		if (ret >= max_mac_addr)
7211 			ret = -ENOMEM;
7212 	}
7213 	return ret;
7214 }
7215 
7216 /**
7217  *	t4_set_addr_hash - program the MAC inexact-match hash filter
7218  *	@adap: the adapter
7219  *	@mbox: mailbox to use for the FW command
7220  *	@viid: the VI id
7221  *	@ucast: whether the hash filter should also match unicast addresses
7222  *	@vec: the value to be written to the hash filter
7223  *	@sleep_ok: call is allowed to sleep
7224  *
7225  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
7226  */
7227 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
7228 		     bool ucast, u64 vec, bool sleep_ok)
7229 {
7230 	struct fw_vi_mac_cmd c;
7231 	u32 val;
7232 
7233 	memset(&c, 0, sizeof(c));
7234 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7235 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7236 				   V_FW_VI_ENABLE_CMD_VIID(viid));
7237 	val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) |
7238 	      V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1);
7239 	c.freemacs_to_len16 = cpu_to_be32(val);
7240 	c.u.hash.hashvec = cpu_to_be64(vec);
7241 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7242 }
7243 
7244 /**
7245  *      t4_enable_vi_params - enable/disable a virtual interface
7246  *      @adap: the adapter
7247  *      @mbox: mailbox to use for the FW command
7248  *      @viid: the VI id
7249  *      @rx_en: 1=enable Rx, 0=disable Rx
7250  *      @tx_en: 1=enable Tx, 0=disable Tx
7251  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
7252  *
7253  *      Enables/disables a virtual interface.  Note that setting DCB Enable
7254  *      only makes sense when enabling a Virtual Interface ...
7255  */
7256 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
7257 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
7258 {
7259 	struct fw_vi_enable_cmd c;
7260 
7261 	memset(&c, 0, sizeof(c));
7262 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
7263 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7264 				   V_FW_VI_ENABLE_CMD_VIID(viid));
7265 	c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
7266 				     V_FW_VI_ENABLE_CMD_EEN(tx_en) |
7267 				     V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
7268 				     FW_LEN16(c));
7269 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
7270 }
7271 
7272 /**
7273  *	t4_enable_vi - enable/disable a virtual interface
7274  *	@adap: the adapter
7275  *	@mbox: mailbox to use for the FW command
7276  *	@viid: the VI id
7277  *	@rx_en: 1=enable Rx, 0=disable Rx
7278  *	@tx_en: 1=enable Tx, 0=disable Tx
7279  *
7280  *	Enables/disables a virtual interface.  Note that setting DCB Enable
7281  *	only makes sense when enabling a Virtual Interface ...
7282  */
7283 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
7284 		 bool rx_en, bool tx_en)
7285 {
7286 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
7287 }
7288 
7289 /**
7290  *	t4_identify_port - identify a VI's port by blinking its LED
7291  *	@adap: the adapter
7292  *	@mbox: mailbox to use for the FW command
7293  *	@viid: the VI id
7294  *	@nblinks: how many times to blink LED at 2.5 Hz
7295  *
7296  *	Identifies a VI's port by blinking its LED.
7297  */
7298 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
7299 		     unsigned int nblinks)
7300 {
7301 	struct fw_vi_enable_cmd c;
7302 
7303 	memset(&c, 0, sizeof(c));
7304 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
7305 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7306 				   V_FW_VI_ENABLE_CMD_VIID(viid));
7307 	c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
7308 	c.blinkdur = cpu_to_be16(nblinks);
7309 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7310 }
7311 
7312 /**
7313  *	t4_iq_stop - stop an ingress queue and its FLs
7314  *	@adap: the adapter
7315  *	@mbox: mailbox to use for the FW command
7316  *	@pf: the PF owning the queues
7317  *	@vf: the VF owning the queues
7318  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7319  *	@iqid: ingress queue id
7320  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7321  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7322  *
7323  *	Stops an ingress queue and its associated FLs, if any.  This causes
7324  *	any current or future data/messages destined for these queues to be
7325  *	tossed.
7326  */
7327 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
7328 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7329 	       unsigned int fl0id, unsigned int fl1id)
7330 {
7331 	struct fw_iq_cmd c;
7332 
7333 	memset(&c, 0, sizeof(c));
7334 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
7335 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
7336 				  V_FW_IQ_CMD_VFN(vf));
7337 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c));
7338 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
7339 	c.iqid = cpu_to_be16(iqid);
7340 	c.fl0id = cpu_to_be16(fl0id);
7341 	c.fl1id = cpu_to_be16(fl1id);
7342 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7343 }
7344 
7345 /**
7346  *	t4_iq_free - free an ingress queue and its FLs
7347  *	@adap: the adapter
7348  *	@mbox: mailbox to use for the FW command
7349  *	@pf: the PF owning the queues
7350  *	@vf: the VF owning the queues
7351  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7352  *	@iqid: ingress queue id
7353  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7354  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7355  *
7356  *	Frees an ingress queue and its associated FLs, if any.
7357  */
7358 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7359 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7360 	       unsigned int fl0id, unsigned int fl1id)
7361 {
7362 	struct fw_iq_cmd c;
7363 
7364 	memset(&c, 0, sizeof(c));
7365 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
7366 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
7367 				  V_FW_IQ_CMD_VFN(vf));
7368 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
7369 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
7370 	c.iqid = cpu_to_be16(iqid);
7371 	c.fl0id = cpu_to_be16(fl0id);
7372 	c.fl1id = cpu_to_be16(fl1id);
7373 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7374 }
7375 
7376 /**
7377  *	t4_eth_eq_free - free an Ethernet egress queue
7378  *	@adap: the adapter
7379  *	@mbox: mailbox to use for the FW command
7380  *	@pf: the PF owning the queue
7381  *	@vf: the VF owning the queue
7382  *	@eqid: egress queue id
7383  *
7384  *	Frees an Ethernet egress queue.
7385  */
7386 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7387 		   unsigned int vf, unsigned int eqid)
7388 {
7389 	struct fw_eq_eth_cmd c;
7390 
7391 	memset(&c, 0, sizeof(c));
7392 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
7393 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7394 				  V_FW_EQ_ETH_CMD_PFN(pf) |
7395 				  V_FW_EQ_ETH_CMD_VFN(vf));
7396 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
7397 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
7398 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7399 }
7400 
7401 /**
7402  *	t4_ctrl_eq_free - free a control egress queue
7403  *	@adap: the adapter
7404  *	@mbox: mailbox to use for the FW command
7405  *	@pf: the PF owning the queue
7406  *	@vf: the VF owning the queue
7407  *	@eqid: egress queue id
7408  *
7409  *	Frees a control egress queue.
7410  */
7411 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7412 		    unsigned int vf, unsigned int eqid)
7413 {
7414 	struct fw_eq_ctrl_cmd c;
7415 
7416 	memset(&c, 0, sizeof(c));
7417 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
7418 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7419 				  V_FW_EQ_CTRL_CMD_PFN(pf) |
7420 				  V_FW_EQ_CTRL_CMD_VFN(vf));
7421 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
7422 	c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
7423 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7424 }
7425 
7426 /**
7427  *	t4_ofld_eq_free - free an offload egress queue
7428  *	@adap: the adapter
7429  *	@mbox: mailbox to use for the FW command
7430  *	@pf: the PF owning the queue
7431  *	@vf: the VF owning the queue
7432  *	@eqid: egress queue id
7433  *
7434  *	Frees a control egress queue.
7435  */
7436 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7437 		    unsigned int vf, unsigned int eqid)
7438 {
7439 	struct fw_eq_ofld_cmd c;
7440 
7441 	memset(&c, 0, sizeof(c));
7442 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) |
7443 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7444 				  V_FW_EQ_OFLD_CMD_PFN(pf) |
7445 				  V_FW_EQ_OFLD_CMD_VFN(vf));
7446 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
7447 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid));
7448 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7449 }
7450 
7451 /**
7452  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
7453  *	@link_down_rc: Link Down Reason Code
7454  *
7455  *	Returns a string representation of the Link Down Reason Code.
7456  */
7457 const char *t4_link_down_rc_str(unsigned char link_down_rc)
7458 {
7459 	static const char *reason[] = {
7460 		"Link Down",
7461 		"Remote Fault",
7462 		"Auto-negotiation Failure",
7463 		"Reserved3",
7464 		"Insufficient Airflow",
7465 		"Unable To Determine Reason",
7466 		"No RX Signal Detected",
7467 		"Reserved7",
7468 	};
7469 
7470 	if (link_down_rc >= ARRAY_SIZE(reason))
7471 		return "Bad Reason Code";
7472 
7473 	return reason[link_down_rc];
7474 }
7475 
7476 /**
7477  *	t4_handle_fw_rpl - process a FW reply message
7478  *	@adap: the adapter
7479  *	@rpl: start of the FW message
7480  *
7481  *	Processes a FW message, such as link state change messages.
7482  */
7483 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
7484 {
7485 	u8 opcode = *(const u8 *)rpl;
7486 	const struct fw_port_cmd *p = (const void *)rpl;
7487 	unsigned int action =
7488 			G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
7489 
7490 	if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO) {
7491 		/* link/module state change message */
7492 		int speed = 0, fc = 0, i;
7493 		int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
7494 		struct port_info *pi = NULL;
7495 		struct link_config *lc;
7496 		u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
7497 		int link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
7498 		u32 mod = G_FW_PORT_CMD_MODTYPE(stat);
7499 
7500 		if (stat & F_FW_PORT_CMD_RXPAUSE)
7501 			fc |= PAUSE_RX;
7502 		if (stat & F_FW_PORT_CMD_TXPAUSE)
7503 			fc |= PAUSE_TX;
7504 		if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
7505 			speed = 100;
7506 		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
7507 			speed = 1000;
7508 		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
7509 			speed = 10000;
7510 		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G))
7511 			speed = 25000;
7512 		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
7513 			speed = 40000;
7514 		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G))
7515 			speed = 100000;
7516 
7517 		for_each_port(adap, i) {
7518 			pi = adap2pinfo(adap, i);
7519 			if (pi->tx_chan == chan)
7520 				break;
7521 		}
7522 		lc = &pi->link_cfg;
7523 
7524 		if (mod != pi->mod_type) {
7525 			pi->mod_type = mod;
7526 			t4_os_portmod_changed(adap, i);
7527 		}
7528 		if (link_ok != lc->link_ok || speed != lc->speed ||
7529 		    fc != lc->fc) {                    /* something changed */
7530 			if (!link_ok && lc->link_ok)
7531 				lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC(stat);
7532 			lc->link_ok = link_ok;
7533 			lc->speed = speed;
7534 			lc->fc = fc;
7535 			lc->supported = be16_to_cpu(p->u.info.pcap);
7536 			lc->lp_advertising = be16_to_cpu(p->u.info.lpacap);
7537 			t4_os_link_changed(adap, i, link_ok);
7538 		}
7539 	} else {
7540 		CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode);
7541 		return -EINVAL;
7542 	}
7543 	return 0;
7544 }
7545 
7546 /**
7547  *	get_pci_mode - determine a card's PCI mode
7548  *	@adapter: the adapter
7549  *	@p: where to store the PCI settings
7550  *
7551  *	Determines a card's PCI mode and associated parameters, such as speed
7552  *	and width.
7553  */
7554 static void get_pci_mode(struct adapter *adapter,
7555 				   struct pci_params *p)
7556 {
7557 	u16 val;
7558 	u32 pcie_cap;
7559 
7560 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
7561 	if (pcie_cap) {
7562 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
7563 		p->speed = val & PCI_EXP_LNKSTA_CLS;
7564 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
7565 	}
7566 }
7567 
7568 /**
7569  *	init_link_config - initialize a link's SW state
7570  *	@lc: structure holding the link state
7571  *	@pcaps: supported link capabilities
7572  *	@acaps: advertised link capabilities
7573  *
7574  *	Initializes the SW state maintained for each link, including the link's
7575  *	capabilities and default speed/flow-control/autonegotiation settings.
7576  */
7577 static void init_link_config(struct link_config *lc, unsigned int pcaps,
7578     			     unsigned int acaps)
7579 {
7580 	unsigned int fec;
7581 
7582 	lc->supported = pcaps;
7583 	lc->lp_advertising = 0;
7584 	lc->requested_speed = 0;
7585 	lc->speed = 0;
7586 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
7587 	lc->link_ok = 0;
7588 	lc->link_down_rc = 255;
7589 
7590 	fec = 0;
7591 	if (acaps & FW_PORT_CAP_FEC_RS)
7592 		fec |= FEC_RS;
7593 	if (acaps & FW_PORT_CAP_FEC_BASER_RS)
7594 		fec |= FEC_BASER_RS;
7595 	if (acaps & FW_PORT_CAP_FEC_RESERVED)
7596 		fec |= FEC_RESERVED;
7597 	lc->requested_fec = lc->fec = fec;
7598 
7599 	if (lc->supported & FW_PORT_CAP_ANEG) {
7600 		lc->advertising = lc->supported & ADVERT_MASK;
7601 		lc->autoneg = AUTONEG_ENABLE;
7602 		lc->requested_fc |= PAUSE_AUTONEG;
7603 	} else {
7604 		lc->advertising = 0;
7605 		lc->autoneg = AUTONEG_DISABLE;
7606 	}
7607 }
7608 
7609 struct flash_desc {
7610 	u32 vendor_and_model_id;
7611 	u32 size_mb;
7612 };
7613 
7614 int t4_get_flash_params(struct adapter *adapter)
7615 {
7616 	/*
7617 	 * Table for non-Numonix supported flash parts.  Numonix parts are left
7618 	 * to the preexisting well-tested code.  All flash parts have 64KB
7619 	 * sectors.
7620 	 */
7621 	static struct flash_desc supported_flash[] = {
7622 		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
7623 	};
7624 
7625 	int ret;
7626 	u32 info = 0;
7627 
7628 	ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
7629 	if (!ret)
7630 		ret = sf1_read(adapter, 3, 0, 1, &info);
7631 	t4_write_reg(adapter, A_SF_OP, 0);	/* unlock SF */
7632 	if (ret < 0)
7633 		return ret;
7634 
7635 	for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
7636 		if (supported_flash[ret].vendor_and_model_id == info) {
7637 			adapter->params.sf_size = supported_flash[ret].size_mb;
7638 			adapter->params.sf_nsec =
7639 				adapter->params.sf_size / SF_SEC_SIZE;
7640 			return 0;
7641 		}
7642 
7643 	if ((info & 0xff) != 0x20)		/* not a Numonix flash */
7644 		return -EINVAL;
7645 	info >>= 16;				/* log2 of size */
7646 	if (info >= 0x14 && info < 0x18)
7647 		adapter->params.sf_nsec = 1 << (info - 16);
7648 	else if (info == 0x18)
7649 		adapter->params.sf_nsec = 64;
7650 	else
7651 		return -EINVAL;
7652 	adapter->params.sf_size = 1 << info;
7653 
7654 	/*
7655 	 * We should ~probably~ reject adapters with FLASHes which are too
7656 	 * small but we have some legacy FPGAs with small FLASHes that we'd
7657 	 * still like to use.  So instead we emit a scary message ...
7658 	 */
7659 	if (adapter->params.sf_size < FLASH_MIN_SIZE)
7660 		CH_WARN(adapter, "WARNING!!! FLASH size %#x < %#x!!!\n",
7661 			adapter->params.sf_size, FLASH_MIN_SIZE);
7662 
7663 	return 0;
7664 }
7665 
7666 static void set_pcie_completion_timeout(struct adapter *adapter,
7667 						  u8 range)
7668 {
7669 	u16 val;
7670 	u32 pcie_cap;
7671 
7672 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
7673 	if (pcie_cap) {
7674 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
7675 		val &= 0xfff0;
7676 		val |= range ;
7677 		t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
7678 	}
7679 }
7680 
7681 const struct chip_params *t4_get_chip_params(int chipid)
7682 {
7683 	static const struct chip_params chip_params[] = {
7684 		{
7685 			/* T4 */
7686 			.nchan = NCHAN,
7687 			.pm_stats_cnt = PM_NSTATS,
7688 			.cng_ch_bits_log = 2,
7689 			.nsched_cls = 15,
7690 			.cim_num_obq = CIM_NUM_OBQ,
7691 			.mps_rplc_size = 128,
7692 			.vfcount = 128,
7693 			.sge_fl_db = F_DBPRIO,
7694 			.mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES,
7695 		},
7696 		{
7697 			/* T5 */
7698 			.nchan = NCHAN,
7699 			.pm_stats_cnt = PM_NSTATS,
7700 			.cng_ch_bits_log = 2,
7701 			.nsched_cls = 16,
7702 			.cim_num_obq = CIM_NUM_OBQ_T5,
7703 			.mps_rplc_size = 128,
7704 			.vfcount = 128,
7705 			.sge_fl_db = F_DBPRIO | F_DBTYPE,
7706 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
7707 		},
7708 		{
7709 			/* T6 */
7710 			.nchan = T6_NCHAN,
7711 			.pm_stats_cnt = T6_PM_NSTATS,
7712 			.cng_ch_bits_log = 3,
7713 			.nsched_cls = 16,
7714 			.cim_num_obq = CIM_NUM_OBQ_T5,
7715 			.mps_rplc_size = 256,
7716 			.vfcount = 256,
7717 			.sge_fl_db = 0,
7718 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
7719 		},
7720 	};
7721 
7722 	chipid -= CHELSIO_T4;
7723 	if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params))
7724 		return NULL;
7725 
7726 	return &chip_params[chipid];
7727 }
7728 
7729 /**
7730  *	t4_prep_adapter - prepare SW and HW for operation
7731  *	@adapter: the adapter
7732  *	@buf: temporary space of at least VPD_LEN size provided by the caller.
7733  *
7734  *	Initialize adapter SW state for the various HW modules, set initial
7735  *	values for some adapter tunables, take PHYs out of reset, and
7736  *	initialize the MDIO interface.
7737  */
7738 int t4_prep_adapter(struct adapter *adapter, u8 *buf)
7739 {
7740 	int ret;
7741 	uint16_t device_id;
7742 	uint32_t pl_rev;
7743 
7744 	get_pci_mode(adapter, &adapter->params.pci);
7745 
7746 	pl_rev = t4_read_reg(adapter, A_PL_REV);
7747 	adapter->params.chipid = G_CHIPID(pl_rev);
7748 	adapter->params.rev = G_REV(pl_rev);
7749 	if (adapter->params.chipid == 0) {
7750 		/* T4 did not have chipid in PL_REV (T5 onwards do) */
7751 		adapter->params.chipid = CHELSIO_T4;
7752 
7753 		/* T4A1 chip is not supported */
7754 		if (adapter->params.rev == 1) {
7755 			CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
7756 			return -EINVAL;
7757 		}
7758 	}
7759 
7760 	adapter->chip_params = t4_get_chip_params(chip_id(adapter));
7761 	if (adapter->chip_params == NULL)
7762 		return -EINVAL;
7763 
7764 	adapter->params.pci.vpd_cap_addr =
7765 	    t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
7766 
7767 	ret = t4_get_flash_params(adapter);
7768 	if (ret < 0)
7769 		return ret;
7770 
7771 	ret = get_vpd_params(adapter, &adapter->params.vpd, buf);
7772 	if (ret < 0)
7773 		return ret;
7774 
7775 	/* Cards with real ASICs have the chipid in the PCIe device id */
7776 	t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
7777 	if (device_id >> 12 == chip_id(adapter))
7778 		adapter->params.cim_la_size = CIMLA_SIZE;
7779 	else {
7780 		/* FPGA */
7781 		adapter->params.fpga = 1;
7782 		adapter->params.cim_la_size = 2 * CIMLA_SIZE;
7783 	}
7784 
7785 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
7786 
7787 	/*
7788 	 * Default port and clock for debugging in case we can't reach FW.
7789 	 */
7790 	adapter->params.nports = 1;
7791 	adapter->params.portvec = 1;
7792 	adapter->params.vpd.cclk = 50000;
7793 
7794 	/* Set pci completion timeout value to 4 seconds. */
7795 	set_pcie_completion_timeout(adapter, 0xd);
7796 	return 0;
7797 }
7798 
7799 /**
7800  *	t4_shutdown_adapter - shut down adapter, host & wire
7801  *	@adapter: the adapter
7802  *
7803  *	Perform an emergency shutdown of the adapter and stop it from
7804  *	continuing any further communication on the ports or DMA to the
7805  *	host.  This is typically used when the adapter and/or firmware
7806  *	have crashed and we want to prevent any further accidental
7807  *	communication with the rest of the world.  This will also force
7808  *	the port Link Status to go down -- if register writes work --
7809  *	which should help our peers figure out that we're down.
7810  */
7811 int t4_shutdown_adapter(struct adapter *adapter)
7812 {
7813 	int port;
7814 
7815 	t4_intr_disable(adapter);
7816 	t4_write_reg(adapter, A_DBG_GPIO_EN, 0);
7817 	for_each_port(adapter, port) {
7818 		u32 a_port_cfg = PORT_REG(port,
7819 					  is_t4(adapter)
7820 					  ? A_XGMAC_PORT_CFG
7821 					  : A_MAC_PORT_CFG);
7822 
7823 		t4_write_reg(adapter, a_port_cfg,
7824 			     t4_read_reg(adapter, a_port_cfg)
7825 			     & ~V_SIGNAL_DET(1));
7826 	}
7827 	t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0);
7828 
7829 	return 0;
7830 }
7831 
7832 /**
7833  *	t4_init_devlog_params - initialize adapter->params.devlog
7834  *	@adap: the adapter
7835  *	@fw_attach: whether we can talk to the firmware
7836  *
7837  *	Initialize various fields of the adapter's Firmware Device Log
7838  *	Parameters structure.
7839  */
7840 int t4_init_devlog_params(struct adapter *adap, int fw_attach)
7841 {
7842 	struct devlog_params *dparams = &adap->params.devlog;
7843 	u32 pf_dparams;
7844 	unsigned int devlog_meminfo;
7845 	struct fw_devlog_cmd devlog_cmd;
7846 	int ret;
7847 
7848 	/* If we're dealing with newer firmware, the Device Log Paramerters
7849 	 * are stored in a designated register which allows us to access the
7850 	 * Device Log even if we can't talk to the firmware.
7851 	 */
7852 	pf_dparams =
7853 		t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG));
7854 	if (pf_dparams) {
7855 		unsigned int nentries, nentries128;
7856 
7857 		dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams);
7858 		dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4;
7859 
7860 		nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams);
7861 		nentries = (nentries128 + 1) * 128;
7862 		dparams->size = nentries * sizeof(struct fw_devlog_e);
7863 
7864 		return 0;
7865 	}
7866 
7867 	/*
7868 	 * For any failing returns ...
7869 	 */
7870 	memset(dparams, 0, sizeof *dparams);
7871 
7872 	/*
7873 	 * If we can't talk to the firmware, there's really nothing we can do
7874 	 * at this point.
7875 	 */
7876 	if (!fw_attach)
7877 		return -ENXIO;
7878 
7879 	/* Otherwise, ask the firmware for it's Device Log Parameters.
7880 	 */
7881 	memset(&devlog_cmd, 0, sizeof devlog_cmd);
7882 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
7883 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
7884 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
7885 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
7886 			 &devlog_cmd);
7887 	if (ret)
7888 		return ret;
7889 
7890 	devlog_meminfo =
7891 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
7892 	dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo);
7893 	dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4;
7894 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
7895 
7896 	return 0;
7897 }
7898 
7899 /**
7900  *	t4_init_sge_params - initialize adap->params.sge
7901  *	@adapter: the adapter
7902  *
7903  *	Initialize various fields of the adapter's SGE Parameters structure.
7904  */
7905 int t4_init_sge_params(struct adapter *adapter)
7906 {
7907 	u32 r;
7908 	struct sge_params *sp = &adapter->params.sge;
7909 	unsigned i;
7910 
7911 	r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD);
7912 	sp->counter_val[0] = G_THRESHOLD_0(r);
7913 	sp->counter_val[1] = G_THRESHOLD_1(r);
7914 	sp->counter_val[2] = G_THRESHOLD_2(r);
7915 	sp->counter_val[3] = G_THRESHOLD_3(r);
7916 
7917 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1);
7918 	sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r));
7919 	sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r));
7920 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3);
7921 	sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r));
7922 	sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r));
7923 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5);
7924 	sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r));
7925 	sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r));
7926 
7927 	r = t4_read_reg(adapter, A_SGE_CONM_CTRL);
7928 	sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
7929 	if (is_t4(adapter))
7930 		sp->fl_starve_threshold2 = sp->fl_starve_threshold;
7931 	else if (is_t5(adapter))
7932 		sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
7933 	else
7934 		sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(r) * 2 + 1;
7935 
7936 	/* egress queues: log2 of # of doorbells per BAR2 page */
7937 	r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
7938 	r >>= S_QUEUESPERPAGEPF0 +
7939 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
7940 	sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
7941 
7942 	/* ingress queues: log2 of # of doorbells per BAR2 page */
7943 	r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
7944 	r >>= S_QUEUESPERPAGEPF0 +
7945 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
7946 	sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
7947 
7948 	r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
7949 	r >>= S_HOSTPAGESIZEPF0 +
7950 	    (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf;
7951 	sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10;
7952 
7953 	r = t4_read_reg(adapter, A_SGE_CONTROL);
7954 	sp->sge_control = r;
7955 	sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64;
7956 	sp->fl_pktshift = G_PKTSHIFT(r);
7957 	if (chip_id(adapter) <= CHELSIO_T5) {
7958 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
7959 		    X_INGPADBOUNDARY_SHIFT);
7960 	} else {
7961 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
7962 		    X_T6_INGPADBOUNDARY_SHIFT);
7963 	}
7964 	if (is_t4(adapter))
7965 		sp->pack_boundary = sp->pad_boundary;
7966 	else {
7967 		r = t4_read_reg(adapter, A_SGE_CONTROL2);
7968 		if (G_INGPACKBOUNDARY(r) == 0)
7969 			sp->pack_boundary = 16;
7970 		else
7971 			sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5);
7972 	}
7973 	for (i = 0; i < SGE_FLBUF_SIZES; i++)
7974 		sp->sge_fl_buffer_size[i] = t4_read_reg(adapter,
7975 		    A_SGE_FL_BUFFER_SIZE0 + (4 * i));
7976 
7977 	return 0;
7978 }
7979 
7980 /*
7981  * Read and cache the adapter's compressed filter mode and ingress config.
7982  */
7983 static void read_filter_mode_and_ingress_config(struct adapter *adap)
7984 {
7985 	struct tp_params *tpp = &adap->params.tp;
7986 
7987 	if (t4_use_ldst(adap)) {
7988 		t4_fw_tp_pio_rw(adap, &tpp->vlan_pri_map, 1,
7989 				A_TP_VLAN_PRI_MAP, 1);
7990 		t4_fw_tp_pio_rw(adap, &tpp->ingress_config, 1,
7991 				A_TP_INGRESS_CONFIG, 1);
7992 	} else {
7993 		t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
7994 				 &tpp->vlan_pri_map, 1, A_TP_VLAN_PRI_MAP);
7995 		t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
7996 				 &tpp->ingress_config, 1, A_TP_INGRESS_CONFIG);
7997 	}
7998 
7999 	/*
8000 	 * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
8001 	 * shift positions of several elements of the Compressed Filter Tuple
8002 	 * for this adapter which we need frequently ...
8003 	 */
8004 	tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE);
8005 	tpp->port_shift = t4_filter_field_shift(adap, F_PORT);
8006 	tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
8007 	tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN);
8008 	tpp->tos_shift = t4_filter_field_shift(adap, F_TOS);
8009 	tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
8010 	tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE);
8011 	tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH);
8012 	tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE);
8013 	tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION);
8014 
8015 	/*
8016 	 * If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
8017 	 * represents the presence of an Outer VLAN instead of a VNIC ID.
8018 	 */
8019 	if ((tpp->ingress_config & F_VNIC) == 0)
8020 		tpp->vnic_shift = -1;
8021 }
8022 
8023 /**
8024  *      t4_init_tp_params - initialize adap->params.tp
8025  *      @adap: the adapter
8026  *
8027  *      Initialize various fields of the adapter's TP Parameters structure.
8028  */
8029 int t4_init_tp_params(struct adapter *adap)
8030 {
8031 	int chan;
8032 	u32 v;
8033 	struct tp_params *tpp = &adap->params.tp;
8034 
8035 	v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
8036 	tpp->tre = G_TIMERRESOLUTION(v);
8037 	tpp->dack_re = G_DELAYEDACKRESOLUTION(v);
8038 
8039 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
8040 	for (chan = 0; chan < MAX_NCHAN; chan++)
8041 		tpp->tx_modq[chan] = chan;
8042 
8043 	read_filter_mode_and_ingress_config(adap);
8044 
8045 	/*
8046 	 * Cache a mask of the bits that represent the error vector portion of
8047 	 * rx_pkt.err_vec.  T6+ can use a compressed error vector to make room
8048 	 * for information about outer encapsulation (GENEVE/VXLAN/NVGRE).
8049 	 */
8050 	tpp->err_vec_mask = htobe16(0xffff);
8051 	if (chip_id(adap) > CHELSIO_T5) {
8052 		v = t4_read_reg(adap, A_TP_OUT_CONFIG);
8053 		if (v & F_CRXPKTENC) {
8054 			tpp->err_vec_mask =
8055 			    htobe16(V_T6_COMPR_RXERR_VEC(M_T6_COMPR_RXERR_VEC));
8056 		}
8057 	}
8058 
8059 	return 0;
8060 }
8061 
8062 /**
8063  *      t4_filter_field_shift - calculate filter field shift
8064  *      @adap: the adapter
8065  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
8066  *
8067  *      Return the shift position of a filter field within the Compressed
8068  *      Filter Tuple.  The filter field is specified via its selection bit
8069  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
8070  */
8071 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
8072 {
8073 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
8074 	unsigned int sel;
8075 	int field_shift;
8076 
8077 	if ((filter_mode & filter_sel) == 0)
8078 		return -1;
8079 
8080 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
8081 		switch (filter_mode & sel) {
8082 		case F_FCOE:
8083 			field_shift += W_FT_FCOE;
8084 			break;
8085 		case F_PORT:
8086 			field_shift += W_FT_PORT;
8087 			break;
8088 		case F_VNIC_ID:
8089 			field_shift += W_FT_VNIC_ID;
8090 			break;
8091 		case F_VLAN:
8092 			field_shift += W_FT_VLAN;
8093 			break;
8094 		case F_TOS:
8095 			field_shift += W_FT_TOS;
8096 			break;
8097 		case F_PROTOCOL:
8098 			field_shift += W_FT_PROTOCOL;
8099 			break;
8100 		case F_ETHERTYPE:
8101 			field_shift += W_FT_ETHERTYPE;
8102 			break;
8103 		case F_MACMATCH:
8104 			field_shift += W_FT_MACMATCH;
8105 			break;
8106 		case F_MPSHITTYPE:
8107 			field_shift += W_FT_MPSHITTYPE;
8108 			break;
8109 		case F_FRAGMENTATION:
8110 			field_shift += W_FT_FRAGMENTATION;
8111 			break;
8112 		}
8113 	}
8114 	return field_shift;
8115 }
8116 
8117 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id)
8118 {
8119 	u8 addr[6];
8120 	int ret, i, j;
8121 	struct fw_port_cmd c;
8122 	u16 rss_size;
8123 	struct port_info *p = adap2pinfo(adap, port_id);
8124 	u32 param, val;
8125 
8126 	memset(&c, 0, sizeof(c));
8127 
8128 	for (i = 0, j = -1; i <= p->port_id; i++) {
8129 		do {
8130 			j++;
8131 		} while ((adap->params.portvec & (1 << j)) == 0);
8132 	}
8133 
8134 	if (!(adap->flags & IS_VF) ||
8135 	    adap->params.vfres.r_caps & FW_CMD_CAP_PORT) {
8136 		c.op_to_portid = htonl(V_FW_CMD_OP(FW_PORT_CMD) |
8137 				       F_FW_CMD_REQUEST | F_FW_CMD_READ |
8138 				       V_FW_PORT_CMD_PORTID(j));
8139 		c.action_to_len16 = htonl(
8140 			V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
8141 			FW_LEN16(c));
8142 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8143 		if (ret)
8144 			return ret;
8145 
8146 		ret = be32_to_cpu(c.u.info.lstatus_to_modtype);
8147 		p->mdio_addr = (ret & F_FW_PORT_CMD_MDIOCAP) ?
8148 			G_FW_PORT_CMD_MDIOADDR(ret) : -1;
8149 		p->port_type = G_FW_PORT_CMD_PTYPE(ret);
8150 		p->mod_type = G_FW_PORT_CMD_MODTYPE(ret);
8151 
8152 		init_link_config(&p->link_cfg, be16_to_cpu(c.u.info.pcap),
8153 		    		 be16_to_cpu(c.u.info.acap));
8154 	}
8155 
8156 	ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
8157 	if (ret < 0)
8158 		return ret;
8159 
8160 	p->vi[0].viid = ret;
8161 	if (chip_id(adap) <= CHELSIO_T5)
8162 		p->vi[0].smt_idx = (ret & 0x7f) << 1;
8163 	else
8164 		p->vi[0].smt_idx = (ret & 0x7f);
8165 	p->tx_chan = j;
8166 	p->rx_chan_map = t4_get_mps_bg_map(adap, j);
8167 	p->lport = j;
8168 	p->vi[0].rss_size = rss_size;
8169 	t4_os_set_hw_addr(adap, p->port_id, addr);
8170 
8171 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8172 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
8173 	    V_FW_PARAMS_PARAM_YZ(p->vi[0].viid);
8174 	ret = t4_query_params(adap, mbox, pf, vf, 1, &param, &val);
8175 	if (ret)
8176 		p->vi[0].rss_base = 0xffff;
8177 	else {
8178 		/* MPASS((val >> 16) == rss_size); */
8179 		p->vi[0].rss_base = val & 0xffff;
8180 	}
8181 
8182 	return 0;
8183 }
8184 
8185 /**
8186  *	t4_read_cimq_cfg - read CIM queue configuration
8187  *	@adap: the adapter
8188  *	@base: holds the queue base addresses in bytes
8189  *	@size: holds the queue sizes in bytes
8190  *	@thres: holds the queue full thresholds in bytes
8191  *
8192  *	Returns the current configuration of the CIM queues, starting with
8193  *	the IBQs, then the OBQs.
8194  */
8195 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
8196 {
8197 	unsigned int i, v;
8198 	int cim_num_obq = adap->chip_params->cim_num_obq;
8199 
8200 	for (i = 0; i < CIM_NUM_IBQ; i++) {
8201 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
8202 			     V_QUENUMSELECT(i));
8203 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8204 		/* value is in 256-byte units */
8205 		*base++ = G_CIMQBASE(v) * 256;
8206 		*size++ = G_CIMQSIZE(v) * 256;
8207 		*thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */
8208 	}
8209 	for (i = 0; i < cim_num_obq; i++) {
8210 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
8211 			     V_QUENUMSELECT(i));
8212 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8213 		/* value is in 256-byte units */
8214 		*base++ = G_CIMQBASE(v) * 256;
8215 		*size++ = G_CIMQSIZE(v) * 256;
8216 	}
8217 }
8218 
8219 /**
8220  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
8221  *	@adap: the adapter
8222  *	@qid: the queue index
8223  *	@data: where to store the queue contents
8224  *	@n: capacity of @data in 32-bit words
8225  *
8226  *	Reads the contents of the selected CIM queue starting at address 0 up
8227  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8228  *	error and the number of 32-bit words actually read on success.
8229  */
8230 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8231 {
8232 	int i, err, attempts;
8233 	unsigned int addr;
8234 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
8235 
8236 	if (qid > 5 || (n & 3))
8237 		return -EINVAL;
8238 
8239 	addr = qid * nwords;
8240 	if (n > nwords)
8241 		n = nwords;
8242 
8243 	/* It might take 3-10ms before the IBQ debug read access is allowed.
8244 	 * Wait for 1 Sec with a delay of 1 usec.
8245 	 */
8246 	attempts = 1000000;
8247 
8248 	for (i = 0; i < n; i++, addr++) {
8249 		t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
8250 			     F_IBQDBGEN);
8251 		err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
8252 				      attempts, 1);
8253 		if (err)
8254 			return err;
8255 		*data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
8256 	}
8257 	t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
8258 	return i;
8259 }
8260 
8261 /**
8262  *	t4_read_cim_obq - read the contents of a CIM outbound queue
8263  *	@adap: the adapter
8264  *	@qid: the queue index
8265  *	@data: where to store the queue contents
8266  *	@n: capacity of @data in 32-bit words
8267  *
8268  *	Reads the contents of the selected CIM queue starting at address 0 up
8269  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8270  *	error and the number of 32-bit words actually read on success.
8271  */
8272 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8273 {
8274 	int i, err;
8275 	unsigned int addr, v, nwords;
8276 	int cim_num_obq = adap->chip_params->cim_num_obq;
8277 
8278 	if ((qid > (cim_num_obq - 1)) || (n & 3))
8279 		return -EINVAL;
8280 
8281 	t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
8282 		     V_QUENUMSELECT(qid));
8283 	v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8284 
8285 	addr = G_CIMQBASE(v) * 64;    /* muliple of 256 -> muliple of 4 */
8286 	nwords = G_CIMQSIZE(v) * 64;  /* same */
8287 	if (n > nwords)
8288 		n = nwords;
8289 
8290 	for (i = 0; i < n; i++, addr++) {
8291 		t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
8292 			     F_OBQDBGEN);
8293 		err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
8294 				      2, 1);
8295 		if (err)
8296 			return err;
8297 		*data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
8298 	}
8299 	t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
8300 	return i;
8301 }
8302 
8303 enum {
8304 	CIM_QCTL_BASE     = 0,
8305 	CIM_CTL_BASE      = 0x2000,
8306 	CIM_PBT_ADDR_BASE = 0x2800,
8307 	CIM_PBT_LRF_BASE  = 0x3000,
8308 	CIM_PBT_DATA_BASE = 0x3800
8309 };
8310 
8311 /**
8312  *	t4_cim_read - read a block from CIM internal address space
8313  *	@adap: the adapter
8314  *	@addr: the start address within the CIM address space
8315  *	@n: number of words to read
8316  *	@valp: where to store the result
8317  *
8318  *	Reads a block of 4-byte words from the CIM intenal address space.
8319  */
8320 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
8321 		unsigned int *valp)
8322 {
8323 	int ret = 0;
8324 
8325 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
8326 		return -EBUSY;
8327 
8328 	for ( ; !ret && n--; addr += 4) {
8329 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
8330 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
8331 				      0, 5, 2);
8332 		if (!ret)
8333 			*valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
8334 	}
8335 	return ret;
8336 }
8337 
8338 /**
8339  *	t4_cim_write - write a block into CIM internal address space
8340  *	@adap: the adapter
8341  *	@addr: the start address within the CIM address space
8342  *	@n: number of words to write
8343  *	@valp: set of values to write
8344  *
8345  *	Writes a block of 4-byte words into the CIM intenal address space.
8346  */
8347 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
8348 		 const unsigned int *valp)
8349 {
8350 	int ret = 0;
8351 
8352 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
8353 		return -EBUSY;
8354 
8355 	for ( ; !ret && n--; addr += 4) {
8356 		t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
8357 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
8358 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
8359 				      0, 5, 2);
8360 	}
8361 	return ret;
8362 }
8363 
8364 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
8365 			 unsigned int val)
8366 {
8367 	return t4_cim_write(adap, addr, 1, &val);
8368 }
8369 
8370 /**
8371  *	t4_cim_ctl_read - read a block from CIM control region
8372  *	@adap: the adapter
8373  *	@addr: the start address within the CIM control region
8374  *	@n: number of words to read
8375  *	@valp: where to store the result
8376  *
8377  *	Reads a block of 4-byte words from the CIM control region.
8378  */
8379 int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
8380 		    unsigned int *valp)
8381 {
8382 	return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
8383 }
8384 
8385 /**
8386  *	t4_cim_read_la - read CIM LA capture buffer
8387  *	@adap: the adapter
8388  *	@la_buf: where to store the LA data
8389  *	@wrptr: the HW write pointer within the capture buffer
8390  *
8391  *	Reads the contents of the CIM LA buffer with the most recent entry at
8392  *	the end	of the returned data and with the entry at @wrptr first.
8393  *	We try to leave the LA in the running state we find it in.
8394  */
8395 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
8396 {
8397 	int i, ret;
8398 	unsigned int cfg, val, idx;
8399 
8400 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
8401 	if (ret)
8402 		return ret;
8403 
8404 	if (cfg & F_UPDBGLAEN) {	/* LA is running, freeze it */
8405 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
8406 		if (ret)
8407 			return ret;
8408 	}
8409 
8410 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
8411 	if (ret)
8412 		goto restart;
8413 
8414 	idx = G_UPDBGLAWRPTR(val);
8415 	if (wrptr)
8416 		*wrptr = idx;
8417 
8418 	for (i = 0; i < adap->params.cim_la_size; i++) {
8419 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
8420 				    V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
8421 		if (ret)
8422 			break;
8423 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
8424 		if (ret)
8425 			break;
8426 		if (val & F_UPDBGLARDEN) {
8427 			ret = -ETIMEDOUT;
8428 			break;
8429 		}
8430 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
8431 		if (ret)
8432 			break;
8433 
8434 		/* address can't exceed 0xfff (UpDbgLaRdPtr is of 12-bits) */
8435 		idx = (idx + 1) & M_UPDBGLARDPTR;
8436 		/*
8437 		 * Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
8438 		 * identify the 32-bit portion of the full 312-bit data
8439 		 */
8440 		if (is_t6(adap))
8441 			while ((idx & 0xf) > 9)
8442 				idx = (idx + 1) % M_UPDBGLARDPTR;
8443 	}
8444 restart:
8445 	if (cfg & F_UPDBGLAEN) {
8446 		int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
8447 				      cfg & ~F_UPDBGLARDEN);
8448 		if (!ret)
8449 			ret = r;
8450 	}
8451 	return ret;
8452 }
8453 
8454 /**
8455  *	t4_tp_read_la - read TP LA capture buffer
8456  *	@adap: the adapter
8457  *	@la_buf: where to store the LA data
8458  *	@wrptr: the HW write pointer within the capture buffer
8459  *
8460  *	Reads the contents of the TP LA buffer with the most recent entry at
8461  *	the end	of the returned data and with the entry at @wrptr first.
8462  *	We leave the LA in the running state we find it in.
8463  */
8464 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
8465 {
8466 	bool last_incomplete;
8467 	unsigned int i, cfg, val, idx;
8468 
8469 	cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
8470 	if (cfg & F_DBGLAENABLE)			/* freeze LA */
8471 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
8472 			     adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
8473 
8474 	val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
8475 	idx = G_DBGLAWPTR(val);
8476 	last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
8477 	if (last_incomplete)
8478 		idx = (idx + 1) & M_DBGLARPTR;
8479 	if (wrptr)
8480 		*wrptr = idx;
8481 
8482 	val &= 0xffff;
8483 	val &= ~V_DBGLARPTR(M_DBGLARPTR);
8484 	val |= adap->params.tp.la_mask;
8485 
8486 	for (i = 0; i < TPLA_SIZE; i++) {
8487 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
8488 		la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
8489 		idx = (idx + 1) & M_DBGLARPTR;
8490 	}
8491 
8492 	/* Wipe out last entry if it isn't valid */
8493 	if (last_incomplete)
8494 		la_buf[TPLA_SIZE - 1] = ~0ULL;
8495 
8496 	if (cfg & F_DBGLAENABLE)		/* restore running state */
8497 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
8498 			     cfg | adap->params.tp.la_mask);
8499 }
8500 
8501 /*
8502  * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
8503  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
8504  * state for more than the Warning Threshold then we'll issue a warning about
8505  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
8506  * appears to be hung every Warning Repeat second till the situation clears.
8507  * If the situation clears, we'll note that as well.
8508  */
8509 #define SGE_IDMA_WARN_THRESH 1
8510 #define SGE_IDMA_WARN_REPEAT 300
8511 
8512 /**
8513  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
8514  *	@adapter: the adapter
8515  *	@idma: the adapter IDMA Monitor state
8516  *
8517  *	Initialize the state of an SGE Ingress DMA Monitor.
8518  */
8519 void t4_idma_monitor_init(struct adapter *adapter,
8520 			  struct sge_idma_monitor_state *idma)
8521 {
8522 	/* Initialize the state variables for detecting an SGE Ingress DMA
8523 	 * hang.  The SGE has internal counters which count up on each clock
8524 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
8525 	 * same state they were on the previous clock tick.  The clock used is
8526 	 * the Core Clock so we have a limit on the maximum "time" they can
8527 	 * record; typically a very small number of seconds.  For instance,
8528 	 * with a 600MHz Core Clock, we can only count up to a bit more than
8529 	 * 7s.  So we'll synthesize a larger counter in order to not run the
8530 	 * risk of having the "timers" overflow and give us the flexibility to
8531 	 * maintain a Hung SGE State Machine of our own which operates across
8532 	 * a longer time frame.
8533 	 */
8534 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
8535 	idma->idma_stalled[0] = idma->idma_stalled[1] = 0;
8536 }
8537 
8538 /**
8539  *	t4_idma_monitor - monitor SGE Ingress DMA state
8540  *	@adapter: the adapter
8541  *	@idma: the adapter IDMA Monitor state
8542  *	@hz: number of ticks/second
8543  *	@ticks: number of ticks since the last IDMA Monitor call
8544  */
8545 void t4_idma_monitor(struct adapter *adapter,
8546 		     struct sge_idma_monitor_state *idma,
8547 		     int hz, int ticks)
8548 {
8549 	int i, idma_same_state_cnt[2];
8550 
8551 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
8552 	  * are counters inside the SGE which count up on each clock when the
8553 	  * SGE finds its Ingress DMA State Engines in the same states they
8554 	  * were in the previous clock.  The counters will peg out at
8555 	  * 0xffffffff without wrapping around so once they pass the 1s
8556 	  * threshold they'll stay above that till the IDMA state changes.
8557 	  */
8558 	t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13);
8559 	idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH);
8560 	idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8561 
8562 	for (i = 0; i < 2; i++) {
8563 		u32 debug0, debug11;
8564 
8565 		/* If the Ingress DMA Same State Counter ("timer") is less
8566 		 * than 1s, then we can reset our synthesized Stall Timer and
8567 		 * continue.  If we have previously emitted warnings about a
8568 		 * potential stalled Ingress Queue, issue a note indicating
8569 		 * that the Ingress Queue has resumed forward progress.
8570 		 */
8571 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
8572 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz)
8573 				CH_WARN(adapter, "SGE idma%d, queue %u, "
8574 					"resumed after %d seconds\n",
8575 					i, idma->idma_qid[i],
8576 					idma->idma_stalled[i]/hz);
8577 			idma->idma_stalled[i] = 0;
8578 			continue;
8579 		}
8580 
8581 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
8582 		 * domain.  The first time we get here it'll be because we
8583 		 * passed the 1s Threshold; each additional time it'll be
8584 		 * because the RX Timer Callback is being fired on its regular
8585 		 * schedule.
8586 		 *
8587 		 * If the stall is below our Potential Hung Ingress Queue
8588 		 * Warning Threshold, continue.
8589 		 */
8590 		if (idma->idma_stalled[i] == 0) {
8591 			idma->idma_stalled[i] = hz;
8592 			idma->idma_warn[i] = 0;
8593 		} else {
8594 			idma->idma_stalled[i] += ticks;
8595 			idma->idma_warn[i] -= ticks;
8596 		}
8597 
8598 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz)
8599 			continue;
8600 
8601 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
8602 		 */
8603 		if (idma->idma_warn[i] > 0)
8604 			continue;
8605 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz;
8606 
8607 		/* Read and save the SGE IDMA State and Queue ID information.
8608 		 * We do this every time in case it changes across time ...
8609 		 * can't be too careful ...
8610 		 */
8611 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0);
8612 		debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8613 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
8614 
8615 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11);
8616 		debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8617 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
8618 
8619 		CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in "
8620 			" state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
8621 			i, idma->idma_qid[i], idma->idma_state[i],
8622 			idma->idma_stalled[i]/hz,
8623 			debug0, debug11);
8624 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
8625 	}
8626 }
8627 
8628 /**
8629  *	t4_read_pace_tbl - read the pace table
8630  *	@adap: the adapter
8631  *	@pace_vals: holds the returned values
8632  *
8633  *	Returns the values of TP's pace table in microseconds.
8634  */
8635 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
8636 {
8637 	unsigned int i, v;
8638 
8639 	for (i = 0; i < NTX_SCHED; i++) {
8640 		t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
8641 		v = t4_read_reg(adap, A_TP_PACE_TABLE);
8642 		pace_vals[i] = dack_ticks_to_usec(adap, v);
8643 	}
8644 }
8645 
8646 /**
8647  *	t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
8648  *	@adap: the adapter
8649  *	@sched: the scheduler index
8650  *	@kbps: the byte rate in Kbps
8651  *	@ipg: the interpacket delay in tenths of nanoseconds
8652  *
8653  *	Return the current configuration of a HW Tx scheduler.
8654  */
8655 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
8656 		     unsigned int *ipg)
8657 {
8658 	unsigned int v, addr, bpt, cpt;
8659 
8660 	if (kbps) {
8661 		addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
8662 		t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
8663 		v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
8664 		if (sched & 1)
8665 			v >>= 16;
8666 		bpt = (v >> 8) & 0xff;
8667 		cpt = v & 0xff;
8668 		if (!cpt)
8669 			*kbps = 0;	/* scheduler disabled */
8670 		else {
8671 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
8672 			*kbps = (v * bpt) / 125;
8673 		}
8674 	}
8675 	if (ipg) {
8676 		addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
8677 		t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
8678 		v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
8679 		if (sched & 1)
8680 			v >>= 16;
8681 		v &= 0xffff;
8682 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
8683 	}
8684 }
8685 
8686 /**
8687  *	t4_load_cfg - download config file
8688  *	@adap: the adapter
8689  *	@cfg_data: the cfg text file to write
8690  *	@size: text file size
8691  *
8692  *	Write the supplied config text file to the card's serial flash.
8693  */
8694 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
8695 {
8696 	int ret, i, n, cfg_addr;
8697 	unsigned int addr;
8698 	unsigned int flash_cfg_start_sec;
8699 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
8700 
8701 	cfg_addr = t4_flash_cfg_addr(adap);
8702 	if (cfg_addr < 0)
8703 		return cfg_addr;
8704 
8705 	addr = cfg_addr;
8706 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
8707 
8708 	if (size > FLASH_CFG_MAX_SIZE) {
8709 		CH_ERR(adap, "cfg file too large, max is %u bytes\n",
8710 		       FLASH_CFG_MAX_SIZE);
8711 		return -EFBIG;
8712 	}
8713 
8714 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
8715 			 sf_sec_size);
8716 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
8717 				     flash_cfg_start_sec + i - 1);
8718 	/*
8719 	 * If size == 0 then we're simply erasing the FLASH sectors associated
8720 	 * with the on-adapter Firmware Configuration File.
8721 	 */
8722 	if (ret || size == 0)
8723 		goto out;
8724 
8725 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
8726 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
8727 		if ( (size - i) <  SF_PAGE_SIZE)
8728 			n = size - i;
8729 		else
8730 			n = SF_PAGE_SIZE;
8731 		ret = t4_write_flash(adap, addr, n, cfg_data, 1);
8732 		if (ret)
8733 			goto out;
8734 
8735 		addr += SF_PAGE_SIZE;
8736 		cfg_data += SF_PAGE_SIZE;
8737 	}
8738 
8739 out:
8740 	if (ret)
8741 		CH_ERR(adap, "config file %s failed %d\n",
8742 		       (size == 0 ? "clear" : "download"), ret);
8743 	return ret;
8744 }
8745 
8746 /**
8747  *	t5_fw_init_extern_mem - initialize the external memory
8748  *	@adap: the adapter
8749  *
8750  *	Initializes the external memory on T5.
8751  */
8752 int t5_fw_init_extern_mem(struct adapter *adap)
8753 {
8754 	u32 params[1], val[1];
8755 	int ret;
8756 
8757 	if (!is_t5(adap))
8758 		return 0;
8759 
8760 	val[0] = 0xff; /* Initialize all MCs */
8761 	params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8762 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT));
8763 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val,
8764 			FW_CMD_MAX_TIMEOUT);
8765 
8766 	return ret;
8767 }
8768 
8769 /* BIOS boot headers */
8770 typedef struct pci_expansion_rom_header {
8771 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
8772 	u8	reserved[22]; /* Reserved per processor Architecture data */
8773 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
8774 } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
8775 
8776 /* Legacy PCI Expansion ROM Header */
8777 typedef struct legacy_pci_expansion_rom_header {
8778 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
8779 	u8	size512; /* Current Image Size in units of 512 bytes */
8780 	u8	initentry_point[4];
8781 	u8	cksum; /* Checksum computed on the entire Image */
8782 	u8	reserved[16]; /* Reserved */
8783 	u8	pcir_offset[2]; /* Offset to PCI Data Struture */
8784 } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
8785 
8786 /* EFI PCI Expansion ROM Header */
8787 typedef struct efi_pci_expansion_rom_header {
8788 	u8	signature[2]; // ROM signature. The value 0xaa55
8789 	u8	initialization_size[2]; /* Units 512. Includes this header */
8790 	u8	efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
8791 	u8	efi_subsystem[2]; /* Subsystem value for EFI image header */
8792 	u8	efi_machine_type[2]; /* Machine type from EFI image header */
8793 	u8	compression_type[2]; /* Compression type. */
8794 		/*
8795 		 * Compression type definition
8796 		 * 0x0: uncompressed
8797 		 * 0x1: Compressed
8798 		 * 0x2-0xFFFF: Reserved
8799 		 */
8800 	u8	reserved[8]; /* Reserved */
8801 	u8	efi_image_header_offset[2]; /* Offset to EFI Image */
8802 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
8803 } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
8804 
8805 /* PCI Data Structure Format */
8806 typedef struct pcir_data_structure { /* PCI Data Structure */
8807 	u8	signature[4]; /* Signature. The string "PCIR" */
8808 	u8	vendor_id[2]; /* Vendor Identification */
8809 	u8	device_id[2]; /* Device Identification */
8810 	u8	vital_product[2]; /* Pointer to Vital Product Data */
8811 	u8	length[2]; /* PCIR Data Structure Length */
8812 	u8	revision; /* PCIR Data Structure Revision */
8813 	u8	class_code[3]; /* Class Code */
8814 	u8	image_length[2]; /* Image Length. Multiple of 512B */
8815 	u8	code_revision[2]; /* Revision Level of Code/Data */
8816 	u8	code_type; /* Code Type. */
8817 		/*
8818 		 * PCI Expansion ROM Code Types
8819 		 * 0x00: Intel IA-32, PC-AT compatible. Legacy
8820 		 * 0x01: Open Firmware standard for PCI. FCODE
8821 		 * 0x02: Hewlett-Packard PA RISC. HP reserved
8822 		 * 0x03: EFI Image. EFI
8823 		 * 0x04-0xFF: Reserved.
8824 		 */
8825 	u8	indicator; /* Indicator. Identifies the last image in the ROM */
8826 	u8	reserved[2]; /* Reserved */
8827 } pcir_data_t; /* PCI__DATA_STRUCTURE */
8828 
8829 /* BOOT constants */
8830 enum {
8831 	BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
8832 	BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
8833 	BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
8834 	BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
8835 	BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
8836 	VENDOR_ID = 0x1425, /* Vendor ID */
8837 	PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
8838 };
8839 
8840 /*
8841  *	modify_device_id - Modifies the device ID of the Boot BIOS image
8842  *	@adatper: the device ID to write.
8843  *	@boot_data: the boot image to modify.
8844  *
8845  *	Write the supplied device ID to the boot BIOS image.
8846  */
8847 static void modify_device_id(int device_id, u8 *boot_data)
8848 {
8849 	legacy_pci_exp_rom_header_t *header;
8850 	pcir_data_t *pcir_header;
8851 	u32 cur_header = 0;
8852 
8853 	/*
8854 	 * Loop through all chained images and change the device ID's
8855 	 */
8856 	while (1) {
8857 		header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
8858 		pcir_header = (pcir_data_t *) &boot_data[cur_header +
8859 			      le16_to_cpu(*(u16*)header->pcir_offset)];
8860 
8861 		/*
8862 		 * Only modify the Device ID if code type is Legacy or HP.
8863 		 * 0x00: Okay to modify
8864 		 * 0x01: FCODE. Do not be modify
8865 		 * 0x03: Okay to modify
8866 		 * 0x04-0xFF: Do not modify
8867 		 */
8868 		if (pcir_header->code_type == 0x00) {
8869 			u8 csum = 0;
8870 			int i;
8871 
8872 			/*
8873 			 * Modify Device ID to match current adatper
8874 			 */
8875 			*(u16*) pcir_header->device_id = device_id;
8876 
8877 			/*
8878 			 * Set checksum temporarily to 0.
8879 			 * We will recalculate it later.
8880 			 */
8881 			header->cksum = 0x0;
8882 
8883 			/*
8884 			 * Calculate and update checksum
8885 			 */
8886 			for (i = 0; i < (header->size512 * 512); i++)
8887 				csum += (u8)boot_data[cur_header + i];
8888 
8889 			/*
8890 			 * Invert summed value to create the checksum
8891 			 * Writing new checksum value directly to the boot data
8892 			 */
8893 			boot_data[cur_header + 7] = -csum;
8894 
8895 		} else if (pcir_header->code_type == 0x03) {
8896 
8897 			/*
8898 			 * Modify Device ID to match current adatper
8899 			 */
8900 			*(u16*) pcir_header->device_id = device_id;
8901 
8902 		}
8903 
8904 
8905 		/*
8906 		 * Check indicator element to identify if this is the last
8907 		 * image in the ROM.
8908 		 */
8909 		if (pcir_header->indicator & 0x80)
8910 			break;
8911 
8912 		/*
8913 		 * Move header pointer up to the next image in the ROM.
8914 		 */
8915 		cur_header += header->size512 * 512;
8916 	}
8917 }
8918 
8919 /*
8920  *	t4_load_boot - download boot flash
8921  *	@adapter: the adapter
8922  *	@boot_data: the boot image to write
8923  *	@boot_addr: offset in flash to write boot_data
8924  *	@size: image size
8925  *
8926  *	Write the supplied boot image to the card's serial flash.
8927  *	The boot image has the following sections: a 28-byte header and the
8928  *	boot image.
8929  */
8930 int t4_load_boot(struct adapter *adap, u8 *boot_data,
8931 		 unsigned int boot_addr, unsigned int size)
8932 {
8933 	pci_exp_rom_header_t *header;
8934 	int pcir_offset ;
8935 	pcir_data_t *pcir_header;
8936 	int ret, addr;
8937 	uint16_t device_id;
8938 	unsigned int i;
8939 	unsigned int boot_sector = (boot_addr * 1024 );
8940 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
8941 
8942 	/*
8943 	 * Make sure the boot image does not encroach on the firmware region
8944 	 */
8945 	if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
8946 		CH_ERR(adap, "boot image encroaching on firmware region\n");
8947 		return -EFBIG;
8948 	}
8949 
8950 	/*
8951 	 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
8952 	 * and Boot configuration data sections. These 3 boot sections span
8953 	 * sectors 0 to 7 in flash and live right before the FW image location.
8954 	 */
8955 	i = DIV_ROUND_UP(size ? size : FLASH_FW_START,
8956 			sf_sec_size);
8957 	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
8958 				     (boot_sector >> 16) + i - 1);
8959 
8960 	/*
8961 	 * If size == 0 then we're simply erasing the FLASH sectors associated
8962 	 * with the on-adapter option ROM file
8963 	 */
8964 	if (ret || (size == 0))
8965 		goto out;
8966 
8967 	/* Get boot header */
8968 	header = (pci_exp_rom_header_t *)boot_data;
8969 	pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
8970 	/* PCIR Data Structure */
8971 	pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
8972 
8973 	/*
8974 	 * Perform some primitive sanity testing to avoid accidentally
8975 	 * writing garbage over the boot sectors.  We ought to check for
8976 	 * more but it's not worth it for now ...
8977 	 */
8978 	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
8979 		CH_ERR(adap, "boot image too small/large\n");
8980 		return -EFBIG;
8981 	}
8982 
8983 #ifndef CHELSIO_T4_DIAGS
8984 	/*
8985 	 * Check BOOT ROM header signature
8986 	 */
8987 	if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
8988 		CH_ERR(adap, "Boot image missing signature\n");
8989 		return -EINVAL;
8990 	}
8991 
8992 	/*
8993 	 * Check PCI header signature
8994 	 */
8995 	if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
8996 		CH_ERR(adap, "PCI header missing signature\n");
8997 		return -EINVAL;
8998 	}
8999 
9000 	/*
9001 	 * Check Vendor ID matches Chelsio ID
9002 	 */
9003 	if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
9004 		CH_ERR(adap, "Vendor ID missing signature\n");
9005 		return -EINVAL;
9006 	}
9007 #endif
9008 
9009 	/*
9010 	 * Retrieve adapter's device ID
9011 	 */
9012 	t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
9013 	/* Want to deal with PF 0 so I strip off PF 4 indicator */
9014 	device_id = device_id & 0xf0ff;
9015 
9016 	/*
9017 	 * Check PCIE Device ID
9018 	 */
9019 	if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
9020 		/*
9021 		 * Change the device ID in the Boot BIOS image to match
9022 		 * the Device ID of the current adapter.
9023 		 */
9024 		modify_device_id(device_id, boot_data);
9025 	}
9026 
9027 	/*
9028 	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
9029 	 * we finish copying the rest of the boot image. This will ensure
9030 	 * that the BIOS boot header will only be written if the boot image
9031 	 * was written in full.
9032 	 */
9033 	addr = boot_sector;
9034 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
9035 		addr += SF_PAGE_SIZE;
9036 		boot_data += SF_PAGE_SIZE;
9037 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
9038 		if (ret)
9039 			goto out;
9040 	}
9041 
9042 	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
9043 			     (const u8 *)header, 0);
9044 
9045 out:
9046 	if (ret)
9047 		CH_ERR(adap, "boot image download failed, error %d\n", ret);
9048 	return ret;
9049 }
9050 
9051 /*
9052  *	t4_flash_bootcfg_addr - return the address of the flash optionrom configuration
9053  *	@adapter: the adapter
9054  *
9055  *	Return the address within the flash where the OptionROM Configuration
9056  *	is stored, or an error if the device FLASH is too small to contain
9057  *	a OptionROM Configuration.
9058  */
9059 static int t4_flash_bootcfg_addr(struct adapter *adapter)
9060 {
9061 	/*
9062 	 * If the device FLASH isn't large enough to hold a Firmware
9063 	 * Configuration File, return an error.
9064 	 */
9065 	if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
9066 		return -ENOSPC;
9067 
9068 	return FLASH_BOOTCFG_START;
9069 }
9070 
9071 int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size)
9072 {
9073 	int ret, i, n, cfg_addr;
9074 	unsigned int addr;
9075 	unsigned int flash_cfg_start_sec;
9076 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9077 
9078 	cfg_addr = t4_flash_bootcfg_addr(adap);
9079 	if (cfg_addr < 0)
9080 		return cfg_addr;
9081 
9082 	addr = cfg_addr;
9083 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
9084 
9085 	if (size > FLASH_BOOTCFG_MAX_SIZE) {
9086 		CH_ERR(adap, "bootcfg file too large, max is %u bytes\n",
9087 			FLASH_BOOTCFG_MAX_SIZE);
9088 		return -EFBIG;
9089 	}
9090 
9091 	i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */
9092 			 sf_sec_size);
9093 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9094 					flash_cfg_start_sec + i - 1);
9095 
9096 	/*
9097 	 * If size == 0 then we're simply erasing the FLASH sectors associated
9098 	 * with the on-adapter OptionROM Configuration File.
9099 	 */
9100 	if (ret || size == 0)
9101 		goto out;
9102 
9103 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
9104 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
9105 		if ( (size - i) <  SF_PAGE_SIZE)
9106 			n = size - i;
9107 		else
9108 			n = SF_PAGE_SIZE;
9109 		ret = t4_write_flash(adap, addr, n, cfg_data, 0);
9110 		if (ret)
9111 			goto out;
9112 
9113 		addr += SF_PAGE_SIZE;
9114 		cfg_data += SF_PAGE_SIZE;
9115 	}
9116 
9117 out:
9118 	if (ret)
9119 		CH_ERR(adap, "boot config data %s failed %d\n",
9120 				(size == 0 ? "clear" : "download"), ret);
9121 	return ret;
9122 }
9123 
9124 /**
9125  *	t4_set_filter_mode - configure the optional components of filter tuples
9126  *	@adap: the adapter
9127  *	@mode_map: a bitmap selcting which optional filter components to enable
9128  *
9129  *	Sets the filter mode by selecting the optional components to enable
9130  *	in filter tuples.  Returns 0 on success and a negative error if the
9131  *	requested mode needs more bits than are available for optional
9132  *	components.
9133  */
9134 int t4_set_filter_mode(struct adapter *adap, unsigned int mode_map)
9135 {
9136 	static u8 width[] = { 1, 3, 17, 17, 8, 8, 16, 9, 3, 1 };
9137 
9138 	int i, nbits = 0;
9139 
9140 	for (i = S_FCOE; i <= S_FRAGMENTATION; i++)
9141 		if (mode_map & (1 << i))
9142 			nbits += width[i];
9143 	if (nbits > FILTER_OPT_LEN)
9144 		return -EINVAL;
9145 	if (t4_use_ldst(adap))
9146 		t4_fw_tp_pio_rw(adap, &mode_map, 1, A_TP_VLAN_PRI_MAP, 0);
9147 	else
9148 		t4_write_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, &mode_map,
9149 				  1, A_TP_VLAN_PRI_MAP);
9150 	read_filter_mode_and_ingress_config(adap);
9151 
9152 	return 0;
9153 }
9154 
9155 /**
9156  *	t4_clr_port_stats - clear port statistics
9157  *	@adap: the adapter
9158  *	@idx: the port index
9159  *
9160  *	Clear HW statistics for the given port.
9161  */
9162 void t4_clr_port_stats(struct adapter *adap, int idx)
9163 {
9164 	unsigned int i;
9165 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
9166 	u32 port_base_addr;
9167 
9168 	if (is_t4(adap))
9169 		port_base_addr = PORT_BASE(idx);
9170 	else
9171 		port_base_addr = T5_PORT_BASE(idx);
9172 
9173 	for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
9174 			i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
9175 		t4_write_reg(adap, port_base_addr + i, 0);
9176 	for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
9177 			i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
9178 		t4_write_reg(adap, port_base_addr + i, 0);
9179 	for (i = 0; i < 4; i++)
9180 		if (bgmap & (1 << i)) {
9181 			t4_write_reg(adap,
9182 			A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
9183 			t4_write_reg(adap,
9184 			A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
9185 		}
9186 }
9187 
9188 /**
9189  *	t4_i2c_rd - read I2C data from adapter
9190  *	@adap: the adapter
9191  *	@port: Port number if per-port device; <0 if not
9192  *	@devid: per-port device ID or absolute device ID
9193  *	@offset: byte offset into device I2C space
9194  *	@len: byte length of I2C space data
9195  *	@buf: buffer in which to return I2C data
9196  *
9197  *	Reads the I2C data from the indicated device and location.
9198  */
9199 int t4_i2c_rd(struct adapter *adap, unsigned int mbox,
9200 	      int port, unsigned int devid,
9201 	      unsigned int offset, unsigned int len,
9202 	      u8 *buf)
9203 {
9204 	u32 ldst_addrspace;
9205 	struct fw_ldst_cmd ldst;
9206 	int ret;
9207 
9208 	if (port >= 4 ||
9209 	    devid >= 256 ||
9210 	    offset >= 256 ||
9211 	    len > sizeof ldst.u.i2c.data)
9212 		return -EINVAL;
9213 
9214 	memset(&ldst, 0, sizeof ldst);
9215 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
9216 	ldst.op_to_addrspace =
9217 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9218 			    F_FW_CMD_REQUEST |
9219 			    F_FW_CMD_READ |
9220 			    ldst_addrspace);
9221 	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
9222 	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
9223 	ldst.u.i2c.did = devid;
9224 	ldst.u.i2c.boffset = offset;
9225 	ldst.u.i2c.blen = len;
9226 	ret = t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
9227 	if (!ret)
9228 		memcpy(buf, ldst.u.i2c.data, len);
9229 	return ret;
9230 }
9231 
9232 /**
9233  *	t4_i2c_wr - write I2C data to adapter
9234  *	@adap: the adapter
9235  *	@port: Port number if per-port device; <0 if not
9236  *	@devid: per-port device ID or absolute device ID
9237  *	@offset: byte offset into device I2C space
9238  *	@len: byte length of I2C space data
9239  *	@buf: buffer containing new I2C data
9240  *
9241  *	Write the I2C data to the indicated device and location.
9242  */
9243 int t4_i2c_wr(struct adapter *adap, unsigned int mbox,
9244 	      int port, unsigned int devid,
9245 	      unsigned int offset, unsigned int len,
9246 	      u8 *buf)
9247 {
9248 	u32 ldst_addrspace;
9249 	struct fw_ldst_cmd ldst;
9250 
9251 	if (port >= 4 ||
9252 	    devid >= 256 ||
9253 	    offset >= 256 ||
9254 	    len > sizeof ldst.u.i2c.data)
9255 		return -EINVAL;
9256 
9257 	memset(&ldst, 0, sizeof ldst);
9258 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
9259 	ldst.op_to_addrspace =
9260 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9261 			    F_FW_CMD_REQUEST |
9262 			    F_FW_CMD_WRITE |
9263 			    ldst_addrspace);
9264 	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
9265 	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
9266 	ldst.u.i2c.did = devid;
9267 	ldst.u.i2c.boffset = offset;
9268 	ldst.u.i2c.blen = len;
9269 	memcpy(ldst.u.i2c.data, buf, len);
9270 	return t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
9271 }
9272 
9273 /**
9274  * 	t4_sge_ctxt_rd - read an SGE context through FW
9275  * 	@adap: the adapter
9276  * 	@mbox: mailbox to use for the FW command
9277  * 	@cid: the context id
9278  * 	@ctype: the context type
9279  * 	@data: where to store the context data
9280  *
9281  * 	Issues a FW command through the given mailbox to read an SGE context.
9282  */
9283 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
9284 		   enum ctxt_type ctype, u32 *data)
9285 {
9286 	int ret;
9287 	struct fw_ldst_cmd c;
9288 
9289 	if (ctype == CTXT_EGRESS)
9290 		ret = FW_LDST_ADDRSPC_SGE_EGRC;
9291 	else if (ctype == CTXT_INGRESS)
9292 		ret = FW_LDST_ADDRSPC_SGE_INGC;
9293 	else if (ctype == CTXT_FLM)
9294 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
9295 	else
9296 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
9297 
9298 	memset(&c, 0, sizeof(c));
9299 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9300 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
9301 					V_FW_LDST_CMD_ADDRSPACE(ret));
9302 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
9303 	c.u.idctxt.physid = cpu_to_be32(cid);
9304 
9305 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
9306 	if (ret == 0) {
9307 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
9308 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
9309 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
9310 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
9311 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
9312 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
9313 	}
9314 	return ret;
9315 }
9316 
9317 /**
9318  * 	t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
9319  * 	@adap: the adapter
9320  * 	@cid: the context id
9321  * 	@ctype: the context type
9322  * 	@data: where to store the context data
9323  *
9324  * 	Reads an SGE context directly, bypassing FW.  This is only for
9325  * 	debugging when FW is unavailable.
9326  */
9327 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
9328 		      u32 *data)
9329 {
9330 	int i, ret;
9331 
9332 	t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
9333 	ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
9334 	if (!ret)
9335 		for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
9336 			*data++ = t4_read_reg(adap, i);
9337 	return ret;
9338 }
9339 
9340 int t4_sched_config(struct adapter *adapter, int type, int minmaxen,
9341     		    int sleep_ok)
9342 {
9343 	struct fw_sched_cmd cmd;
9344 
9345 	memset(&cmd, 0, sizeof(cmd));
9346 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9347 				      F_FW_CMD_REQUEST |
9348 				      F_FW_CMD_WRITE);
9349 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9350 
9351 	cmd.u.config.sc = FW_SCHED_SC_CONFIG;
9352 	cmd.u.config.type = type;
9353 	cmd.u.config.minmaxen = minmaxen;
9354 
9355 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9356 			       NULL, sleep_ok);
9357 }
9358 
9359 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
9360 		    int rateunit, int ratemode, int channel, int cl,
9361 		    int minrate, int maxrate, int weight, int pktsize,
9362 		    int sleep_ok)
9363 {
9364 	struct fw_sched_cmd cmd;
9365 
9366 	memset(&cmd, 0, sizeof(cmd));
9367 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9368 				      F_FW_CMD_REQUEST |
9369 				      F_FW_CMD_WRITE);
9370 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9371 
9372 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9373 	cmd.u.params.type = type;
9374 	cmd.u.params.level = level;
9375 	cmd.u.params.mode = mode;
9376 	cmd.u.params.ch = channel;
9377 	cmd.u.params.cl = cl;
9378 	cmd.u.params.unit = rateunit;
9379 	cmd.u.params.rate = ratemode;
9380 	cmd.u.params.min = cpu_to_be32(minrate);
9381 	cmd.u.params.max = cpu_to_be32(maxrate);
9382 	cmd.u.params.weight = cpu_to_be16(weight);
9383 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
9384 
9385 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9386 			       NULL, sleep_ok);
9387 }
9388 
9389 /*
9390  *	t4_config_watchdog - configure (enable/disable) a watchdog timer
9391  *	@adapter: the adapter
9392  * 	@mbox: mailbox to use for the FW command
9393  * 	@pf: the PF owning the queue
9394  * 	@vf: the VF owning the queue
9395  *	@timeout: watchdog timeout in ms
9396  *	@action: watchdog timer / action
9397  *
9398  *	There are separate watchdog timers for each possible watchdog
9399  *	action.  Configure one of the watchdog timers by setting a non-zero
9400  *	timeout.  Disable a watchdog timer by using a timeout of zero.
9401  */
9402 int t4_config_watchdog(struct adapter *adapter, unsigned int mbox,
9403 		       unsigned int pf, unsigned int vf,
9404 		       unsigned int timeout, unsigned int action)
9405 {
9406 	struct fw_watchdog_cmd wdog;
9407 	unsigned int ticks;
9408 
9409 	/*
9410 	 * The watchdog command expects a timeout in units of 10ms so we need
9411 	 * to convert it here (via rounding) and force a minimum of one 10ms
9412 	 * "tick" if the timeout is non-zero but the conversion results in 0
9413 	 * ticks.
9414 	 */
9415 	ticks = (timeout + 5)/10;
9416 	if (timeout && !ticks)
9417 		ticks = 1;
9418 
9419 	memset(&wdog, 0, sizeof wdog);
9420 	wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) |
9421 				     F_FW_CMD_REQUEST |
9422 				     F_FW_CMD_WRITE |
9423 				     V_FW_PARAMS_CMD_PFN(pf) |
9424 				     V_FW_PARAMS_CMD_VFN(vf));
9425 	wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog));
9426 	wdog.timeout = cpu_to_be32(ticks);
9427 	wdog.action = cpu_to_be32(action);
9428 
9429 	return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL);
9430 }
9431 
9432 int t4_get_devlog_level(struct adapter *adapter, unsigned int *level)
9433 {
9434 	struct fw_devlog_cmd devlog_cmd;
9435 	int ret;
9436 
9437 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9438 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9439 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
9440 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9441 	ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
9442 			 sizeof(devlog_cmd), &devlog_cmd);
9443 	if (ret)
9444 		return ret;
9445 
9446 	*level = devlog_cmd.level;
9447 	return 0;
9448 }
9449 
9450 int t4_set_devlog_level(struct adapter *adapter, unsigned int level)
9451 {
9452 	struct fw_devlog_cmd devlog_cmd;
9453 
9454 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9455 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9456 					     F_FW_CMD_REQUEST |
9457 					     F_FW_CMD_WRITE);
9458 	devlog_cmd.level = level;
9459 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9460 	return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
9461 			  sizeof(devlog_cmd), &devlog_cmd);
9462 }
9463