xref: /freebsd/sys/dev/cxgbe/common/t4_hw.c (revision 2397aecf28352676c462122ead5ffe9b363b6cd0)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2012, 2016 Chelsio Communications, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_inet.h"
33 
34 #include <sys/param.h>
35 #include <sys/eventhandler.h>
36 
37 #include "common.h"
38 #include "t4_regs.h"
39 #include "t4_regs_values.h"
40 #include "firmware/t4fw_interface.h"
41 
42 #undef msleep
43 #define msleep(x) do { \
44 	if (cold) \
45 		DELAY((x) * 1000); \
46 	else \
47 		pause("t4hw", (x) * hz / 1000); \
48 } while (0)
49 
50 /**
51  *	t4_wait_op_done_val - wait until an operation is completed
52  *	@adapter: the adapter performing the operation
53  *	@reg: the register to check for completion
54  *	@mask: a single-bit field within @reg that indicates completion
55  *	@polarity: the value of the field when the operation is completed
56  *	@attempts: number of check iterations
57  *	@delay: delay in usecs between iterations
58  *	@valp: where to store the value of the register at completion time
59  *
60  *	Wait until an operation is completed by checking a bit in a register
61  *	up to @attempts times.  If @valp is not NULL the value of the register
62  *	at the time it indicated completion is stored there.  Returns 0 if the
63  *	operation completes and	-EAGAIN	otherwise.
64  */
65 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
66 			       int polarity, int attempts, int delay, u32 *valp)
67 {
68 	while (1) {
69 		u32 val = t4_read_reg(adapter, reg);
70 
71 		if (!!(val & mask) == polarity) {
72 			if (valp)
73 				*valp = val;
74 			return 0;
75 		}
76 		if (--attempts == 0)
77 			return -EAGAIN;
78 		if (delay)
79 			udelay(delay);
80 	}
81 }
82 
83 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
84 				  int polarity, int attempts, int delay)
85 {
86 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
87 				   delay, NULL);
88 }
89 
90 /**
91  *	t4_set_reg_field - set a register field to a value
92  *	@adapter: the adapter to program
93  *	@addr: the register address
94  *	@mask: specifies the portion of the register to modify
95  *	@val: the new value for the register field
96  *
97  *	Sets a register field specified by the supplied mask to the
98  *	given value.
99  */
100 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
101 		      u32 val)
102 {
103 	u32 v = t4_read_reg(adapter, addr) & ~mask;
104 
105 	t4_write_reg(adapter, addr, v | val);
106 	(void) t4_read_reg(adapter, addr);      /* flush */
107 }
108 
109 /**
110  *	t4_read_indirect - read indirectly addressed registers
111  *	@adap: the adapter
112  *	@addr_reg: register holding the indirect address
113  *	@data_reg: register holding the value of the indirect register
114  *	@vals: where the read register values are stored
115  *	@nregs: how many indirect registers to read
116  *	@start_idx: index of first indirect register to read
117  *
118  *	Reads registers that are accessed indirectly through an address/data
119  *	register pair.
120  */
121 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
122 			     unsigned int data_reg, u32 *vals,
123 			     unsigned int nregs, unsigned int start_idx)
124 {
125 	while (nregs--) {
126 		t4_write_reg(adap, addr_reg, start_idx);
127 		*vals++ = t4_read_reg(adap, data_reg);
128 		start_idx++;
129 	}
130 }
131 
132 /**
133  *	t4_write_indirect - write indirectly addressed registers
134  *	@adap: the adapter
135  *	@addr_reg: register holding the indirect addresses
136  *	@data_reg: register holding the value for the indirect registers
137  *	@vals: values to write
138  *	@nregs: how many indirect registers to write
139  *	@start_idx: address of first indirect register to write
140  *
141  *	Writes a sequential block of registers that are accessed indirectly
142  *	through an address/data register pair.
143  */
144 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
145 		       unsigned int data_reg, const u32 *vals,
146 		       unsigned int nregs, unsigned int start_idx)
147 {
148 	while (nregs--) {
149 		t4_write_reg(adap, addr_reg, start_idx++);
150 		t4_write_reg(adap, data_reg, *vals++);
151 	}
152 }
153 
154 /*
155  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
156  * mechanism.  This guarantees that we get the real value even if we're
157  * operating within a Virtual Machine and the Hypervisor is trapping our
158  * Configuration Space accesses.
159  *
160  * N.B. This routine should only be used as a last resort: the firmware uses
161  *      the backdoor registers on a regular basis and we can end up
162  *      conflicting with it's uses!
163  */
164 u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
165 {
166 	u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg);
167 	u32 val;
168 
169 	if (chip_id(adap) <= CHELSIO_T5)
170 		req |= F_ENABLE;
171 	else
172 		req |= F_T6_ENABLE;
173 
174 	if (is_t4(adap))
175 		req |= F_LOCALCFG;
176 
177 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req);
178 	val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
179 
180 	/*
181 	 * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
182 	 * Configuration Space read.  (None of the other fields matter when
183 	 * F_ENABLE is 0 so a simple register write is easier than a
184 	 * read-modify-write via t4_set_reg_field().)
185 	 */
186 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0);
187 
188 	return val;
189 }
190 
191 /*
192  * t4_report_fw_error - report firmware error
193  * @adap: the adapter
194  *
195  * The adapter firmware can indicate error conditions to the host.
196  * If the firmware has indicated an error, print out the reason for
197  * the firmware error.
198  */
199 static void t4_report_fw_error(struct adapter *adap)
200 {
201 	static const char *const reason[] = {
202 		"Crash",			/* PCIE_FW_EVAL_CRASH */
203 		"During Device Preparation",	/* PCIE_FW_EVAL_PREP */
204 		"During Device Configuration",	/* PCIE_FW_EVAL_CONF */
205 		"During Device Initialization",	/* PCIE_FW_EVAL_INIT */
206 		"Unexpected Event",		/* PCIE_FW_EVAL_UNEXPECTEDEVENT */
207 		"Insufficient Airflow",		/* PCIE_FW_EVAL_OVERHEAT */
208 		"Device Shutdown",		/* PCIE_FW_EVAL_DEVICESHUTDOWN */
209 		"Reserved",			/* reserved */
210 	};
211 	u32 pcie_fw;
212 
213 	pcie_fw = t4_read_reg(adap, A_PCIE_FW);
214 	if (pcie_fw & F_PCIE_FW_ERR)
215 		CH_ERR(adap, "Firmware reports adapter error: %s\n",
216 			reason[G_PCIE_FW_EVAL(pcie_fw)]);
217 }
218 
219 /*
220  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
221  */
222 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
223 			 u32 mbox_addr)
224 {
225 	for ( ; nflit; nflit--, mbox_addr += 8)
226 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
227 }
228 
229 /*
230  * Handle a FW assertion reported in a mailbox.
231  */
232 static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt)
233 {
234 	CH_ALERT(adap,
235 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
236 		  asrt->u.assert.filename_0_7,
237 		  be32_to_cpu(asrt->u.assert.line),
238 		  be32_to_cpu(asrt->u.assert.x),
239 		  be32_to_cpu(asrt->u.assert.y));
240 }
241 
242 #define X_CIM_PF_NOACCESS 0xeeeeeeee
243 /**
244  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
245  *	@adap: the adapter
246  *	@mbox: index of the mailbox to use
247  *	@cmd: the command to write
248  *	@size: command length in bytes
249  *	@rpl: where to optionally store the reply
250  *	@sleep_ok: if true we may sleep while awaiting command completion
251  *	@timeout: time to wait for command to finish before timing out
252  *		(negative implies @sleep_ok=false)
253  *
254  *	Sends the given command to FW through the selected mailbox and waits
255  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
256  *	store the FW's reply to the command.  The command and its optional
257  *	reply are of the same length.  Some FW commands like RESET and
258  *	INITIALIZE can take a considerable amount of time to execute.
259  *	@sleep_ok determines whether we may sleep while awaiting the response.
260  *	If sleeping is allowed we use progressive backoff otherwise we spin.
261  *	Note that passing in a negative @timeout is an alternate mechanism
262  *	for specifying @sleep_ok=false.  This is useful when a higher level
263  *	interface allows for specification of @timeout but not @sleep_ok ...
264  *
265  *	The return value is 0 on success or a negative errno on failure.  A
266  *	failure can happen either because we are not able to execute the
267  *	command or FW executes it but signals an error.  In the latter case
268  *	the return value is the error code indicated by FW (negated).
269  */
270 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
271 			    int size, void *rpl, bool sleep_ok, int timeout)
272 {
273 	/*
274 	 * We delay in small increments at first in an effort to maintain
275 	 * responsiveness for simple, fast executing commands but then back
276 	 * off to larger delays to a maximum retry delay.
277 	 */
278 	static const int delay[] = {
279 		1, 1, 3, 5, 10, 10, 20, 50, 100
280 	};
281 	u32 v;
282 	u64 res;
283 	int i, ms, delay_idx, ret;
284 	const __be64 *p = cmd;
285 	u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
286 	u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
287 	u32 ctl;
288 	__be64 cmd_rpl[MBOX_LEN/8];
289 	u32 pcie_fw;
290 
291 	if (adap->flags & CHK_MBOX_ACCESS)
292 		ASSERT_SYNCHRONIZED_OP(adap);
293 
294 	if ((size & 15) || size > MBOX_LEN)
295 		return -EINVAL;
296 
297 	if (adap->flags & IS_VF) {
298 		if (is_t6(adap))
299 			data_reg = FW_T6VF_MBDATA_BASE_ADDR;
300 		else
301 			data_reg = FW_T4VF_MBDATA_BASE_ADDR;
302 		ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL);
303 	}
304 
305 	/*
306 	 * If we have a negative timeout, that implies that we can't sleep.
307 	 */
308 	if (timeout < 0) {
309 		sleep_ok = false;
310 		timeout = -timeout;
311 	}
312 
313 	/*
314 	 * Attempt to gain access to the mailbox.
315 	 */
316 	for (i = 0; i < 4; i++) {
317 		ctl = t4_read_reg(adap, ctl_reg);
318 		v = G_MBOWNER(ctl);
319 		if (v != X_MBOWNER_NONE)
320 			break;
321 	}
322 
323 	/*
324 	 * If we were unable to gain access, dequeue ourselves from the
325 	 * mailbox atomic access list and report the error to our caller.
326 	 */
327 	if (v != X_MBOWNER_PL) {
328 		t4_report_fw_error(adap);
329 		ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
330 		return ret;
331 	}
332 
333 	/*
334 	 * If we gain ownership of the mailbox and there's a "valid" message
335 	 * in it, this is likely an asynchronous error message from the
336 	 * firmware.  So we'll report that and then proceed on with attempting
337 	 * to issue our own command ... which may well fail if the error
338 	 * presaged the firmware crashing ...
339 	 */
340 	if (ctl & F_MBMSGVALID) {
341 		CH_ERR(adap, "found VALID command in mbox %u: %016llx %016llx "
342 		       "%016llx %016llx %016llx %016llx %016llx %016llx\n",
343 		       mbox, (unsigned long long)t4_read_reg64(adap, data_reg),
344 		       (unsigned long long)t4_read_reg64(adap, data_reg + 8),
345 		       (unsigned long long)t4_read_reg64(adap, data_reg + 16),
346 		       (unsigned long long)t4_read_reg64(adap, data_reg + 24),
347 		       (unsigned long long)t4_read_reg64(adap, data_reg + 32),
348 		       (unsigned long long)t4_read_reg64(adap, data_reg + 40),
349 		       (unsigned long long)t4_read_reg64(adap, data_reg + 48),
350 		       (unsigned long long)t4_read_reg64(adap, data_reg + 56));
351 	}
352 
353 	/*
354 	 * Copy in the new mailbox command and send it on its way ...
355 	 */
356 	for (i = 0; i < size; i += 8, p++)
357 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p));
358 
359 	if (adap->flags & IS_VF) {
360 		/*
361 		 * For the VFs, the Mailbox Data "registers" are
362 		 * actually backed by T4's "MA" interface rather than
363 		 * PL Registers (as is the case for the PFs).  Because
364 		 * these are in different coherency domains, the write
365 		 * to the VF's PL-register-backed Mailbox Control can
366 		 * race in front of the writes to the MA-backed VF
367 		 * Mailbox Data "registers".  So we need to do a
368 		 * read-back on at least one byte of the VF Mailbox
369 		 * Data registers before doing the write to the VF
370 		 * Mailbox Control register.
371 		 */
372 		t4_read_reg(adap, data_reg);
373 	}
374 
375 	CH_DUMP_MBOX(adap, mbox, data_reg);
376 
377 	t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
378 	t4_read_reg(adap, ctl_reg);	/* flush write */
379 
380 	delay_idx = 0;
381 	ms = delay[0];
382 
383 	/*
384 	 * Loop waiting for the reply; bail out if we time out or the firmware
385 	 * reports an error.
386 	 */
387 	pcie_fw = 0;
388 	for (i = 0; i < timeout; i += ms) {
389 		if (!(adap->flags & IS_VF)) {
390 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
391 			if (pcie_fw & F_PCIE_FW_ERR)
392 				break;
393 		}
394 		if (sleep_ok) {
395 			ms = delay[delay_idx];  /* last element may repeat */
396 			if (delay_idx < ARRAY_SIZE(delay) - 1)
397 				delay_idx++;
398 			msleep(ms);
399 		} else {
400 			mdelay(ms);
401 		}
402 
403 		v = t4_read_reg(adap, ctl_reg);
404 		if (v == X_CIM_PF_NOACCESS)
405 			continue;
406 		if (G_MBOWNER(v) == X_MBOWNER_PL) {
407 			if (!(v & F_MBMSGVALID)) {
408 				t4_write_reg(adap, ctl_reg,
409 					     V_MBOWNER(X_MBOWNER_NONE));
410 				continue;
411 			}
412 
413 			/*
414 			 * Retrieve the command reply and release the mailbox.
415 			 */
416 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg);
417 			t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
418 
419 			CH_DUMP_MBOX(adap, mbox, data_reg);
420 
421 			res = be64_to_cpu(cmd_rpl[0]);
422 			if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
423 				fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl);
424 				res = V_FW_CMD_RETVAL(EIO);
425 			} else if (rpl)
426 				memcpy(rpl, cmd_rpl, size);
427 			return -G_FW_CMD_RETVAL((int)res);
428 		}
429 	}
430 
431 	/*
432 	 * We timed out waiting for a reply to our mailbox command.  Report
433 	 * the error and also check to see if the firmware reported any
434 	 * errors ...
435 	 */
436 	ret = (pcie_fw & F_PCIE_FW_ERR) ? -ENXIO : -ETIMEDOUT;
437 	CH_ERR(adap, "command %#x in mailbox %d timed out\n",
438 	       *(const u8 *)cmd, mbox);
439 
440 	/* If DUMP_MBOX is set the mbox has already been dumped */
441 	if ((adap->debug_flags & DF_DUMP_MBOX) == 0) {
442 		p = cmd;
443 		CH_ERR(adap, "mbox: %016llx %016llx %016llx %016llx "
444 		    "%016llx %016llx %016llx %016llx\n",
445 		    (unsigned long long)be64_to_cpu(p[0]),
446 		    (unsigned long long)be64_to_cpu(p[1]),
447 		    (unsigned long long)be64_to_cpu(p[2]),
448 		    (unsigned long long)be64_to_cpu(p[3]),
449 		    (unsigned long long)be64_to_cpu(p[4]),
450 		    (unsigned long long)be64_to_cpu(p[5]),
451 		    (unsigned long long)be64_to_cpu(p[6]),
452 		    (unsigned long long)be64_to_cpu(p[7]));
453 	}
454 
455 	t4_report_fw_error(adap);
456 	t4_fatal_err(adap);
457 	return ret;
458 }
459 
460 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
461 		    void *rpl, bool sleep_ok)
462 {
463 		return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl,
464 					       sleep_ok, FW_CMD_MAX_TIMEOUT);
465 
466 }
467 
468 static int t4_edc_err_read(struct adapter *adap, int idx)
469 {
470 	u32 edc_ecc_err_addr_reg;
471 	u32 edc_bist_status_rdata_reg;
472 
473 	if (is_t4(adap)) {
474 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
475 		return 0;
476 	}
477 	if (idx != MEM_EDC0 && idx != MEM_EDC1) {
478 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
479 		return 0;
480 	}
481 
482 	edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx);
483 	edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx);
484 
485 	CH_WARN(adap,
486 		"edc%d err addr 0x%x: 0x%x.\n",
487 		idx, edc_ecc_err_addr_reg,
488 		t4_read_reg(adap, edc_ecc_err_addr_reg));
489 	CH_WARN(adap,
490 	 	"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
491 		edc_bist_status_rdata_reg,
492 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg),
493 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8),
494 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16),
495 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24),
496 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32),
497 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40),
498 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48),
499 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56),
500 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64));
501 
502 	return 0;
503 }
504 
505 /**
506  *	t4_mc_read - read from MC through backdoor accesses
507  *	@adap: the adapter
508  *	@idx: which MC to access
509  *	@addr: address of first byte requested
510  *	@data: 64 bytes of data containing the requested address
511  *	@ecc: where to store the corresponding 64-bit ECC word
512  *
513  *	Read 64 bytes of data from MC starting at a 64-byte-aligned address
514  *	that covers the requested address @addr.  If @parity is not %NULL it
515  *	is assigned the 64-bit ECC word for the read data.
516  */
517 int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
518 {
519 	int i;
520 	u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
521 	u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
522 
523 	if (is_t4(adap)) {
524 		mc_bist_cmd_reg = A_MC_BIST_CMD;
525 		mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
526 		mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
527 		mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
528 		mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
529 	} else {
530 		mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
531 		mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
532 		mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
533 		mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA,
534 						  idx);
535 		mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN,
536 						  idx);
537 	}
538 
539 	if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
540 		return -EBUSY;
541 	t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
542 	t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
543 	t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
544 	t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
545 		     F_START_BIST | V_BIST_CMD_GAP(1));
546 	i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
547 	if (i)
548 		return i;
549 
550 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
551 
552 	for (i = 15; i >= 0; i--)
553 		*data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
554 	if (ecc)
555 		*ecc = t4_read_reg64(adap, MC_DATA(16));
556 #undef MC_DATA
557 	return 0;
558 }
559 
560 /**
561  *	t4_edc_read - read from EDC through backdoor accesses
562  *	@adap: the adapter
563  *	@idx: which EDC to access
564  *	@addr: address of first byte requested
565  *	@data: 64 bytes of data containing the requested address
566  *	@ecc: where to store the corresponding 64-bit ECC word
567  *
568  *	Read 64 bytes of data from EDC starting at a 64-byte-aligned address
569  *	that covers the requested address @addr.  If @parity is not %NULL it
570  *	is assigned the 64-bit ECC word for the read data.
571  */
572 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
573 {
574 	int i;
575 	u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
576 	u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
577 
578 	if (is_t4(adap)) {
579 		edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
580 		edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
581 		edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
582 		edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
583 						    idx);
584 		edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
585 						    idx);
586 	} else {
587 /*
588  * These macro are missing in t4_regs.h file.
589  * Added temporarily for testing.
590  */
591 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
592 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
593 		edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx);
594 		edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx);
595 		edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx);
596 		edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN,
597 						    idx);
598 		edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA,
599 						    idx);
600 #undef EDC_REG_T5
601 #undef EDC_STRIDE_T5
602 	}
603 
604 	if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
605 		return -EBUSY;
606 	t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
607 	t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
608 	t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
609 	t4_write_reg(adap, edc_bist_cmd_reg,
610 		     V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
611 	i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
612 	if (i)
613 		return i;
614 
615 #define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
616 
617 	for (i = 15; i >= 0; i--)
618 		*data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
619 	if (ecc)
620 		*ecc = t4_read_reg64(adap, EDC_DATA(16));
621 #undef EDC_DATA
622 	return 0;
623 }
624 
625 /**
626  *	t4_mem_read - read EDC 0, EDC 1 or MC into buffer
627  *	@adap: the adapter
628  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
629  *	@addr: address within indicated memory type
630  *	@len: amount of memory to read
631  *	@buf: host memory buffer
632  *
633  *	Reads an [almost] arbitrary memory region in the firmware: the
634  *	firmware memory address, length and host buffer must be aligned on
635  *	32-bit boudaries.  The memory is returned as a raw byte sequence from
636  *	the firmware's memory.  If this memory contains data structures which
637  *	contain multi-byte integers, it's the callers responsibility to
638  *	perform appropriate byte order conversions.
639  */
640 int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
641 		__be32 *buf)
642 {
643 	u32 pos, start, end, offset;
644 	int ret;
645 
646 	/*
647 	 * Argument sanity checks ...
648 	 */
649 	if ((addr & 0x3) || (len & 0x3))
650 		return -EINVAL;
651 
652 	/*
653 	 * The underlaying EDC/MC read routines read 64 bytes at a time so we
654 	 * need to round down the start and round up the end.  We'll start
655 	 * copying out of the first line at (addr - start) a word at a time.
656 	 */
657 	start = rounddown2(addr, 64);
658 	end = roundup2(addr + len, 64);
659 	offset = (addr - start)/sizeof(__be32);
660 
661 	for (pos = start; pos < end; pos += 64, offset = 0) {
662 		__be32 data[16];
663 
664 		/*
665 		 * Read the chip's memory block and bail if there's an error.
666 		 */
667 		if ((mtype == MEM_MC) || (mtype == MEM_MC1))
668 			ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
669 		else
670 			ret = t4_edc_read(adap, mtype, pos, data, NULL);
671 		if (ret)
672 			return ret;
673 
674 		/*
675 		 * Copy the data into the caller's memory buffer.
676 		 */
677 		while (offset < 16 && len > 0) {
678 			*buf++ = data[offset++];
679 			len -= sizeof(__be32);
680 		}
681 	}
682 
683 	return 0;
684 }
685 
686 /*
687  * Return the specified PCI-E Configuration Space register from our Physical
688  * Function.  We try first via a Firmware LDST Command (if fw_attach != 0)
689  * since we prefer to let the firmware own all of these registers, but if that
690  * fails we go for it directly ourselves.
691  */
692 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach)
693 {
694 
695 	/*
696 	 * If fw_attach != 0, construct and send the Firmware LDST Command to
697 	 * retrieve the specified PCI-E Configuration Space register.
698 	 */
699 	if (drv_fw_attach != 0) {
700 		struct fw_ldst_cmd ldst_cmd;
701 		int ret;
702 
703 		memset(&ldst_cmd, 0, sizeof(ldst_cmd));
704 		ldst_cmd.op_to_addrspace =
705 			cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
706 				    F_FW_CMD_REQUEST |
707 				    F_FW_CMD_READ |
708 				    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
709 		ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
710 		ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1);
711 		ldst_cmd.u.pcie.ctrl_to_fn =
712 			(F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf));
713 		ldst_cmd.u.pcie.r = reg;
714 
715 		/*
716 		 * If the LDST Command succeeds, return the result, otherwise
717 		 * fall through to reading it directly ourselves ...
718 		 */
719 		ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
720 				 &ldst_cmd);
721 		if (ret == 0)
722 			return be32_to_cpu(ldst_cmd.u.pcie.data[0]);
723 
724 		CH_WARN(adap, "Firmware failed to return "
725 			"Configuration Space register %d, err = %d\n",
726 			reg, -ret);
727 	}
728 
729 	/*
730 	 * Read the desired Configuration Space register via the PCI-E
731 	 * Backdoor mechanism.
732 	 */
733 	return t4_hw_pci_read_cfg4(adap, reg);
734 }
735 
736 /**
737  *	t4_get_regs_len - return the size of the chips register set
738  *	@adapter: the adapter
739  *
740  *	Returns the size of the chip's BAR0 register space.
741  */
742 unsigned int t4_get_regs_len(struct adapter *adapter)
743 {
744 	unsigned int chip_version = chip_id(adapter);
745 
746 	switch (chip_version) {
747 	case CHELSIO_T4:
748 		if (adapter->flags & IS_VF)
749 			return FW_T4VF_REGMAP_SIZE;
750 		return T4_REGMAP_SIZE;
751 
752 	case CHELSIO_T5:
753 	case CHELSIO_T6:
754 		if (adapter->flags & IS_VF)
755 			return FW_T4VF_REGMAP_SIZE;
756 		return T5_REGMAP_SIZE;
757 	}
758 
759 	CH_ERR(adapter,
760 		"Unsupported chip version %d\n", chip_version);
761 	return 0;
762 }
763 
764 /**
765  *	t4_get_regs - read chip registers into provided buffer
766  *	@adap: the adapter
767  *	@buf: register buffer
768  *	@buf_size: size (in bytes) of register buffer
769  *
770  *	If the provided register buffer isn't large enough for the chip's
771  *	full register range, the register dump will be truncated to the
772  *	register buffer's size.
773  */
774 void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size)
775 {
776 	static const unsigned int t4_reg_ranges[] = {
777 		0x1008, 0x1108,
778 		0x1180, 0x1184,
779 		0x1190, 0x1194,
780 		0x11a0, 0x11a4,
781 		0x11b0, 0x11b4,
782 		0x11fc, 0x123c,
783 		0x1300, 0x173c,
784 		0x1800, 0x18fc,
785 		0x3000, 0x30d8,
786 		0x30e0, 0x30e4,
787 		0x30ec, 0x5910,
788 		0x5920, 0x5924,
789 		0x5960, 0x5960,
790 		0x5968, 0x5968,
791 		0x5970, 0x5970,
792 		0x5978, 0x5978,
793 		0x5980, 0x5980,
794 		0x5988, 0x5988,
795 		0x5990, 0x5990,
796 		0x5998, 0x5998,
797 		0x59a0, 0x59d4,
798 		0x5a00, 0x5ae0,
799 		0x5ae8, 0x5ae8,
800 		0x5af0, 0x5af0,
801 		0x5af8, 0x5af8,
802 		0x6000, 0x6098,
803 		0x6100, 0x6150,
804 		0x6200, 0x6208,
805 		0x6240, 0x6248,
806 		0x6280, 0x62b0,
807 		0x62c0, 0x6338,
808 		0x6370, 0x638c,
809 		0x6400, 0x643c,
810 		0x6500, 0x6524,
811 		0x6a00, 0x6a04,
812 		0x6a14, 0x6a38,
813 		0x6a60, 0x6a70,
814 		0x6a78, 0x6a78,
815 		0x6b00, 0x6b0c,
816 		0x6b1c, 0x6b84,
817 		0x6bf0, 0x6bf8,
818 		0x6c00, 0x6c0c,
819 		0x6c1c, 0x6c84,
820 		0x6cf0, 0x6cf8,
821 		0x6d00, 0x6d0c,
822 		0x6d1c, 0x6d84,
823 		0x6df0, 0x6df8,
824 		0x6e00, 0x6e0c,
825 		0x6e1c, 0x6e84,
826 		0x6ef0, 0x6ef8,
827 		0x6f00, 0x6f0c,
828 		0x6f1c, 0x6f84,
829 		0x6ff0, 0x6ff8,
830 		0x7000, 0x700c,
831 		0x701c, 0x7084,
832 		0x70f0, 0x70f8,
833 		0x7100, 0x710c,
834 		0x711c, 0x7184,
835 		0x71f0, 0x71f8,
836 		0x7200, 0x720c,
837 		0x721c, 0x7284,
838 		0x72f0, 0x72f8,
839 		0x7300, 0x730c,
840 		0x731c, 0x7384,
841 		0x73f0, 0x73f8,
842 		0x7400, 0x7450,
843 		0x7500, 0x7530,
844 		0x7600, 0x760c,
845 		0x7614, 0x761c,
846 		0x7680, 0x76cc,
847 		0x7700, 0x7798,
848 		0x77c0, 0x77fc,
849 		0x7900, 0x79fc,
850 		0x7b00, 0x7b58,
851 		0x7b60, 0x7b84,
852 		0x7b8c, 0x7c38,
853 		0x7d00, 0x7d38,
854 		0x7d40, 0x7d80,
855 		0x7d8c, 0x7ddc,
856 		0x7de4, 0x7e04,
857 		0x7e10, 0x7e1c,
858 		0x7e24, 0x7e38,
859 		0x7e40, 0x7e44,
860 		0x7e4c, 0x7e78,
861 		0x7e80, 0x7ea4,
862 		0x7eac, 0x7edc,
863 		0x7ee8, 0x7efc,
864 		0x8dc0, 0x8e04,
865 		0x8e10, 0x8e1c,
866 		0x8e30, 0x8e78,
867 		0x8ea0, 0x8eb8,
868 		0x8ec0, 0x8f6c,
869 		0x8fc0, 0x9008,
870 		0x9010, 0x9058,
871 		0x9060, 0x9060,
872 		0x9068, 0x9074,
873 		0x90fc, 0x90fc,
874 		0x9400, 0x9408,
875 		0x9410, 0x9458,
876 		0x9600, 0x9600,
877 		0x9608, 0x9638,
878 		0x9640, 0x96bc,
879 		0x9800, 0x9808,
880 		0x9820, 0x983c,
881 		0x9850, 0x9864,
882 		0x9c00, 0x9c6c,
883 		0x9c80, 0x9cec,
884 		0x9d00, 0x9d6c,
885 		0x9d80, 0x9dec,
886 		0x9e00, 0x9e6c,
887 		0x9e80, 0x9eec,
888 		0x9f00, 0x9f6c,
889 		0x9f80, 0x9fec,
890 		0xd004, 0xd004,
891 		0xd010, 0xd03c,
892 		0xdfc0, 0xdfe0,
893 		0xe000, 0xea7c,
894 		0xf000, 0x11110,
895 		0x11118, 0x11190,
896 		0x19040, 0x1906c,
897 		0x19078, 0x19080,
898 		0x1908c, 0x190e4,
899 		0x190f0, 0x190f8,
900 		0x19100, 0x19110,
901 		0x19120, 0x19124,
902 		0x19150, 0x19194,
903 		0x1919c, 0x191b0,
904 		0x191d0, 0x191e8,
905 		0x19238, 0x1924c,
906 		0x193f8, 0x1943c,
907 		0x1944c, 0x19474,
908 		0x19490, 0x194e0,
909 		0x194f0, 0x194f8,
910 		0x19800, 0x19c08,
911 		0x19c10, 0x19c90,
912 		0x19ca0, 0x19ce4,
913 		0x19cf0, 0x19d40,
914 		0x19d50, 0x19d94,
915 		0x19da0, 0x19de8,
916 		0x19df0, 0x19e40,
917 		0x19e50, 0x19e90,
918 		0x19ea0, 0x19f4c,
919 		0x1a000, 0x1a004,
920 		0x1a010, 0x1a06c,
921 		0x1a0b0, 0x1a0e4,
922 		0x1a0ec, 0x1a0f4,
923 		0x1a100, 0x1a108,
924 		0x1a114, 0x1a120,
925 		0x1a128, 0x1a130,
926 		0x1a138, 0x1a138,
927 		0x1a190, 0x1a1c4,
928 		0x1a1fc, 0x1a1fc,
929 		0x1e040, 0x1e04c,
930 		0x1e284, 0x1e28c,
931 		0x1e2c0, 0x1e2c0,
932 		0x1e2e0, 0x1e2e0,
933 		0x1e300, 0x1e384,
934 		0x1e3c0, 0x1e3c8,
935 		0x1e440, 0x1e44c,
936 		0x1e684, 0x1e68c,
937 		0x1e6c0, 0x1e6c0,
938 		0x1e6e0, 0x1e6e0,
939 		0x1e700, 0x1e784,
940 		0x1e7c0, 0x1e7c8,
941 		0x1e840, 0x1e84c,
942 		0x1ea84, 0x1ea8c,
943 		0x1eac0, 0x1eac0,
944 		0x1eae0, 0x1eae0,
945 		0x1eb00, 0x1eb84,
946 		0x1ebc0, 0x1ebc8,
947 		0x1ec40, 0x1ec4c,
948 		0x1ee84, 0x1ee8c,
949 		0x1eec0, 0x1eec0,
950 		0x1eee0, 0x1eee0,
951 		0x1ef00, 0x1ef84,
952 		0x1efc0, 0x1efc8,
953 		0x1f040, 0x1f04c,
954 		0x1f284, 0x1f28c,
955 		0x1f2c0, 0x1f2c0,
956 		0x1f2e0, 0x1f2e0,
957 		0x1f300, 0x1f384,
958 		0x1f3c0, 0x1f3c8,
959 		0x1f440, 0x1f44c,
960 		0x1f684, 0x1f68c,
961 		0x1f6c0, 0x1f6c0,
962 		0x1f6e0, 0x1f6e0,
963 		0x1f700, 0x1f784,
964 		0x1f7c0, 0x1f7c8,
965 		0x1f840, 0x1f84c,
966 		0x1fa84, 0x1fa8c,
967 		0x1fac0, 0x1fac0,
968 		0x1fae0, 0x1fae0,
969 		0x1fb00, 0x1fb84,
970 		0x1fbc0, 0x1fbc8,
971 		0x1fc40, 0x1fc4c,
972 		0x1fe84, 0x1fe8c,
973 		0x1fec0, 0x1fec0,
974 		0x1fee0, 0x1fee0,
975 		0x1ff00, 0x1ff84,
976 		0x1ffc0, 0x1ffc8,
977 		0x20000, 0x2002c,
978 		0x20100, 0x2013c,
979 		0x20190, 0x201a0,
980 		0x201a8, 0x201b8,
981 		0x201c4, 0x201c8,
982 		0x20200, 0x20318,
983 		0x20400, 0x204b4,
984 		0x204c0, 0x20528,
985 		0x20540, 0x20614,
986 		0x21000, 0x21040,
987 		0x2104c, 0x21060,
988 		0x210c0, 0x210ec,
989 		0x21200, 0x21268,
990 		0x21270, 0x21284,
991 		0x212fc, 0x21388,
992 		0x21400, 0x21404,
993 		0x21500, 0x21500,
994 		0x21510, 0x21518,
995 		0x2152c, 0x21530,
996 		0x2153c, 0x2153c,
997 		0x21550, 0x21554,
998 		0x21600, 0x21600,
999 		0x21608, 0x2161c,
1000 		0x21624, 0x21628,
1001 		0x21630, 0x21634,
1002 		0x2163c, 0x2163c,
1003 		0x21700, 0x2171c,
1004 		0x21780, 0x2178c,
1005 		0x21800, 0x21818,
1006 		0x21820, 0x21828,
1007 		0x21830, 0x21848,
1008 		0x21850, 0x21854,
1009 		0x21860, 0x21868,
1010 		0x21870, 0x21870,
1011 		0x21878, 0x21898,
1012 		0x218a0, 0x218a8,
1013 		0x218b0, 0x218c8,
1014 		0x218d0, 0x218d4,
1015 		0x218e0, 0x218e8,
1016 		0x218f0, 0x218f0,
1017 		0x218f8, 0x21a18,
1018 		0x21a20, 0x21a28,
1019 		0x21a30, 0x21a48,
1020 		0x21a50, 0x21a54,
1021 		0x21a60, 0x21a68,
1022 		0x21a70, 0x21a70,
1023 		0x21a78, 0x21a98,
1024 		0x21aa0, 0x21aa8,
1025 		0x21ab0, 0x21ac8,
1026 		0x21ad0, 0x21ad4,
1027 		0x21ae0, 0x21ae8,
1028 		0x21af0, 0x21af0,
1029 		0x21af8, 0x21c18,
1030 		0x21c20, 0x21c20,
1031 		0x21c28, 0x21c30,
1032 		0x21c38, 0x21c38,
1033 		0x21c80, 0x21c98,
1034 		0x21ca0, 0x21ca8,
1035 		0x21cb0, 0x21cc8,
1036 		0x21cd0, 0x21cd4,
1037 		0x21ce0, 0x21ce8,
1038 		0x21cf0, 0x21cf0,
1039 		0x21cf8, 0x21d7c,
1040 		0x21e00, 0x21e04,
1041 		0x22000, 0x2202c,
1042 		0x22100, 0x2213c,
1043 		0x22190, 0x221a0,
1044 		0x221a8, 0x221b8,
1045 		0x221c4, 0x221c8,
1046 		0x22200, 0x22318,
1047 		0x22400, 0x224b4,
1048 		0x224c0, 0x22528,
1049 		0x22540, 0x22614,
1050 		0x23000, 0x23040,
1051 		0x2304c, 0x23060,
1052 		0x230c0, 0x230ec,
1053 		0x23200, 0x23268,
1054 		0x23270, 0x23284,
1055 		0x232fc, 0x23388,
1056 		0x23400, 0x23404,
1057 		0x23500, 0x23500,
1058 		0x23510, 0x23518,
1059 		0x2352c, 0x23530,
1060 		0x2353c, 0x2353c,
1061 		0x23550, 0x23554,
1062 		0x23600, 0x23600,
1063 		0x23608, 0x2361c,
1064 		0x23624, 0x23628,
1065 		0x23630, 0x23634,
1066 		0x2363c, 0x2363c,
1067 		0x23700, 0x2371c,
1068 		0x23780, 0x2378c,
1069 		0x23800, 0x23818,
1070 		0x23820, 0x23828,
1071 		0x23830, 0x23848,
1072 		0x23850, 0x23854,
1073 		0x23860, 0x23868,
1074 		0x23870, 0x23870,
1075 		0x23878, 0x23898,
1076 		0x238a0, 0x238a8,
1077 		0x238b0, 0x238c8,
1078 		0x238d0, 0x238d4,
1079 		0x238e0, 0x238e8,
1080 		0x238f0, 0x238f0,
1081 		0x238f8, 0x23a18,
1082 		0x23a20, 0x23a28,
1083 		0x23a30, 0x23a48,
1084 		0x23a50, 0x23a54,
1085 		0x23a60, 0x23a68,
1086 		0x23a70, 0x23a70,
1087 		0x23a78, 0x23a98,
1088 		0x23aa0, 0x23aa8,
1089 		0x23ab0, 0x23ac8,
1090 		0x23ad0, 0x23ad4,
1091 		0x23ae0, 0x23ae8,
1092 		0x23af0, 0x23af0,
1093 		0x23af8, 0x23c18,
1094 		0x23c20, 0x23c20,
1095 		0x23c28, 0x23c30,
1096 		0x23c38, 0x23c38,
1097 		0x23c80, 0x23c98,
1098 		0x23ca0, 0x23ca8,
1099 		0x23cb0, 0x23cc8,
1100 		0x23cd0, 0x23cd4,
1101 		0x23ce0, 0x23ce8,
1102 		0x23cf0, 0x23cf0,
1103 		0x23cf8, 0x23d7c,
1104 		0x23e00, 0x23e04,
1105 		0x24000, 0x2402c,
1106 		0x24100, 0x2413c,
1107 		0x24190, 0x241a0,
1108 		0x241a8, 0x241b8,
1109 		0x241c4, 0x241c8,
1110 		0x24200, 0x24318,
1111 		0x24400, 0x244b4,
1112 		0x244c0, 0x24528,
1113 		0x24540, 0x24614,
1114 		0x25000, 0x25040,
1115 		0x2504c, 0x25060,
1116 		0x250c0, 0x250ec,
1117 		0x25200, 0x25268,
1118 		0x25270, 0x25284,
1119 		0x252fc, 0x25388,
1120 		0x25400, 0x25404,
1121 		0x25500, 0x25500,
1122 		0x25510, 0x25518,
1123 		0x2552c, 0x25530,
1124 		0x2553c, 0x2553c,
1125 		0x25550, 0x25554,
1126 		0x25600, 0x25600,
1127 		0x25608, 0x2561c,
1128 		0x25624, 0x25628,
1129 		0x25630, 0x25634,
1130 		0x2563c, 0x2563c,
1131 		0x25700, 0x2571c,
1132 		0x25780, 0x2578c,
1133 		0x25800, 0x25818,
1134 		0x25820, 0x25828,
1135 		0x25830, 0x25848,
1136 		0x25850, 0x25854,
1137 		0x25860, 0x25868,
1138 		0x25870, 0x25870,
1139 		0x25878, 0x25898,
1140 		0x258a0, 0x258a8,
1141 		0x258b0, 0x258c8,
1142 		0x258d0, 0x258d4,
1143 		0x258e0, 0x258e8,
1144 		0x258f0, 0x258f0,
1145 		0x258f8, 0x25a18,
1146 		0x25a20, 0x25a28,
1147 		0x25a30, 0x25a48,
1148 		0x25a50, 0x25a54,
1149 		0x25a60, 0x25a68,
1150 		0x25a70, 0x25a70,
1151 		0x25a78, 0x25a98,
1152 		0x25aa0, 0x25aa8,
1153 		0x25ab0, 0x25ac8,
1154 		0x25ad0, 0x25ad4,
1155 		0x25ae0, 0x25ae8,
1156 		0x25af0, 0x25af0,
1157 		0x25af8, 0x25c18,
1158 		0x25c20, 0x25c20,
1159 		0x25c28, 0x25c30,
1160 		0x25c38, 0x25c38,
1161 		0x25c80, 0x25c98,
1162 		0x25ca0, 0x25ca8,
1163 		0x25cb0, 0x25cc8,
1164 		0x25cd0, 0x25cd4,
1165 		0x25ce0, 0x25ce8,
1166 		0x25cf0, 0x25cf0,
1167 		0x25cf8, 0x25d7c,
1168 		0x25e00, 0x25e04,
1169 		0x26000, 0x2602c,
1170 		0x26100, 0x2613c,
1171 		0x26190, 0x261a0,
1172 		0x261a8, 0x261b8,
1173 		0x261c4, 0x261c8,
1174 		0x26200, 0x26318,
1175 		0x26400, 0x264b4,
1176 		0x264c0, 0x26528,
1177 		0x26540, 0x26614,
1178 		0x27000, 0x27040,
1179 		0x2704c, 0x27060,
1180 		0x270c0, 0x270ec,
1181 		0x27200, 0x27268,
1182 		0x27270, 0x27284,
1183 		0x272fc, 0x27388,
1184 		0x27400, 0x27404,
1185 		0x27500, 0x27500,
1186 		0x27510, 0x27518,
1187 		0x2752c, 0x27530,
1188 		0x2753c, 0x2753c,
1189 		0x27550, 0x27554,
1190 		0x27600, 0x27600,
1191 		0x27608, 0x2761c,
1192 		0x27624, 0x27628,
1193 		0x27630, 0x27634,
1194 		0x2763c, 0x2763c,
1195 		0x27700, 0x2771c,
1196 		0x27780, 0x2778c,
1197 		0x27800, 0x27818,
1198 		0x27820, 0x27828,
1199 		0x27830, 0x27848,
1200 		0x27850, 0x27854,
1201 		0x27860, 0x27868,
1202 		0x27870, 0x27870,
1203 		0x27878, 0x27898,
1204 		0x278a0, 0x278a8,
1205 		0x278b0, 0x278c8,
1206 		0x278d0, 0x278d4,
1207 		0x278e0, 0x278e8,
1208 		0x278f0, 0x278f0,
1209 		0x278f8, 0x27a18,
1210 		0x27a20, 0x27a28,
1211 		0x27a30, 0x27a48,
1212 		0x27a50, 0x27a54,
1213 		0x27a60, 0x27a68,
1214 		0x27a70, 0x27a70,
1215 		0x27a78, 0x27a98,
1216 		0x27aa0, 0x27aa8,
1217 		0x27ab0, 0x27ac8,
1218 		0x27ad0, 0x27ad4,
1219 		0x27ae0, 0x27ae8,
1220 		0x27af0, 0x27af0,
1221 		0x27af8, 0x27c18,
1222 		0x27c20, 0x27c20,
1223 		0x27c28, 0x27c30,
1224 		0x27c38, 0x27c38,
1225 		0x27c80, 0x27c98,
1226 		0x27ca0, 0x27ca8,
1227 		0x27cb0, 0x27cc8,
1228 		0x27cd0, 0x27cd4,
1229 		0x27ce0, 0x27ce8,
1230 		0x27cf0, 0x27cf0,
1231 		0x27cf8, 0x27d7c,
1232 		0x27e00, 0x27e04,
1233 	};
1234 
1235 	static const unsigned int t4vf_reg_ranges[] = {
1236 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
1237 		VF_MPS_REG(A_MPS_VF_CTL),
1238 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
1239 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI),
1240 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
1241 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
1242 		FW_T4VF_MBDATA_BASE_ADDR,
1243 		FW_T4VF_MBDATA_BASE_ADDR +
1244 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
1245 	};
1246 
1247 	static const unsigned int t5_reg_ranges[] = {
1248 		0x1008, 0x10c0,
1249 		0x10cc, 0x10f8,
1250 		0x1100, 0x1100,
1251 		0x110c, 0x1148,
1252 		0x1180, 0x1184,
1253 		0x1190, 0x1194,
1254 		0x11a0, 0x11a4,
1255 		0x11b0, 0x11b4,
1256 		0x11fc, 0x123c,
1257 		0x1280, 0x173c,
1258 		0x1800, 0x18fc,
1259 		0x3000, 0x3028,
1260 		0x3060, 0x30b0,
1261 		0x30b8, 0x30d8,
1262 		0x30e0, 0x30fc,
1263 		0x3140, 0x357c,
1264 		0x35a8, 0x35cc,
1265 		0x35ec, 0x35ec,
1266 		0x3600, 0x5624,
1267 		0x56cc, 0x56ec,
1268 		0x56f4, 0x5720,
1269 		0x5728, 0x575c,
1270 		0x580c, 0x5814,
1271 		0x5890, 0x589c,
1272 		0x58a4, 0x58ac,
1273 		0x58b8, 0x58bc,
1274 		0x5940, 0x59c8,
1275 		0x59d0, 0x59dc,
1276 		0x59fc, 0x5a18,
1277 		0x5a60, 0x5a70,
1278 		0x5a80, 0x5a9c,
1279 		0x5b94, 0x5bfc,
1280 		0x6000, 0x6020,
1281 		0x6028, 0x6040,
1282 		0x6058, 0x609c,
1283 		0x60a8, 0x614c,
1284 		0x7700, 0x7798,
1285 		0x77c0, 0x78fc,
1286 		0x7b00, 0x7b58,
1287 		0x7b60, 0x7b84,
1288 		0x7b8c, 0x7c54,
1289 		0x7d00, 0x7d38,
1290 		0x7d40, 0x7d80,
1291 		0x7d8c, 0x7ddc,
1292 		0x7de4, 0x7e04,
1293 		0x7e10, 0x7e1c,
1294 		0x7e24, 0x7e38,
1295 		0x7e40, 0x7e44,
1296 		0x7e4c, 0x7e78,
1297 		0x7e80, 0x7edc,
1298 		0x7ee8, 0x7efc,
1299 		0x8dc0, 0x8de0,
1300 		0x8df8, 0x8e04,
1301 		0x8e10, 0x8e84,
1302 		0x8ea0, 0x8f84,
1303 		0x8fc0, 0x9058,
1304 		0x9060, 0x9060,
1305 		0x9068, 0x90f8,
1306 		0x9400, 0x9408,
1307 		0x9410, 0x9470,
1308 		0x9600, 0x9600,
1309 		0x9608, 0x9638,
1310 		0x9640, 0x96f4,
1311 		0x9800, 0x9808,
1312 		0x9820, 0x983c,
1313 		0x9850, 0x9864,
1314 		0x9c00, 0x9c6c,
1315 		0x9c80, 0x9cec,
1316 		0x9d00, 0x9d6c,
1317 		0x9d80, 0x9dec,
1318 		0x9e00, 0x9e6c,
1319 		0x9e80, 0x9eec,
1320 		0x9f00, 0x9f6c,
1321 		0x9f80, 0xa020,
1322 		0xd004, 0xd004,
1323 		0xd010, 0xd03c,
1324 		0xdfc0, 0xdfe0,
1325 		0xe000, 0x1106c,
1326 		0x11074, 0x11088,
1327 		0x1109c, 0x1117c,
1328 		0x11190, 0x11204,
1329 		0x19040, 0x1906c,
1330 		0x19078, 0x19080,
1331 		0x1908c, 0x190e8,
1332 		0x190f0, 0x190f8,
1333 		0x19100, 0x19110,
1334 		0x19120, 0x19124,
1335 		0x19150, 0x19194,
1336 		0x1919c, 0x191b0,
1337 		0x191d0, 0x191e8,
1338 		0x19238, 0x19290,
1339 		0x193f8, 0x19428,
1340 		0x19430, 0x19444,
1341 		0x1944c, 0x1946c,
1342 		0x19474, 0x19474,
1343 		0x19490, 0x194cc,
1344 		0x194f0, 0x194f8,
1345 		0x19c00, 0x19c08,
1346 		0x19c10, 0x19c60,
1347 		0x19c94, 0x19ce4,
1348 		0x19cf0, 0x19d40,
1349 		0x19d50, 0x19d94,
1350 		0x19da0, 0x19de8,
1351 		0x19df0, 0x19e10,
1352 		0x19e50, 0x19e90,
1353 		0x19ea0, 0x19f24,
1354 		0x19f34, 0x19f34,
1355 		0x19f40, 0x19f50,
1356 		0x19f90, 0x19fb4,
1357 		0x19fc4, 0x19fe4,
1358 		0x1a000, 0x1a004,
1359 		0x1a010, 0x1a06c,
1360 		0x1a0b0, 0x1a0e4,
1361 		0x1a0ec, 0x1a0f8,
1362 		0x1a100, 0x1a108,
1363 		0x1a114, 0x1a120,
1364 		0x1a128, 0x1a130,
1365 		0x1a138, 0x1a138,
1366 		0x1a190, 0x1a1c4,
1367 		0x1a1fc, 0x1a1fc,
1368 		0x1e008, 0x1e00c,
1369 		0x1e040, 0x1e044,
1370 		0x1e04c, 0x1e04c,
1371 		0x1e284, 0x1e290,
1372 		0x1e2c0, 0x1e2c0,
1373 		0x1e2e0, 0x1e2e0,
1374 		0x1e300, 0x1e384,
1375 		0x1e3c0, 0x1e3c8,
1376 		0x1e408, 0x1e40c,
1377 		0x1e440, 0x1e444,
1378 		0x1e44c, 0x1e44c,
1379 		0x1e684, 0x1e690,
1380 		0x1e6c0, 0x1e6c0,
1381 		0x1e6e0, 0x1e6e0,
1382 		0x1e700, 0x1e784,
1383 		0x1e7c0, 0x1e7c8,
1384 		0x1e808, 0x1e80c,
1385 		0x1e840, 0x1e844,
1386 		0x1e84c, 0x1e84c,
1387 		0x1ea84, 0x1ea90,
1388 		0x1eac0, 0x1eac0,
1389 		0x1eae0, 0x1eae0,
1390 		0x1eb00, 0x1eb84,
1391 		0x1ebc0, 0x1ebc8,
1392 		0x1ec08, 0x1ec0c,
1393 		0x1ec40, 0x1ec44,
1394 		0x1ec4c, 0x1ec4c,
1395 		0x1ee84, 0x1ee90,
1396 		0x1eec0, 0x1eec0,
1397 		0x1eee0, 0x1eee0,
1398 		0x1ef00, 0x1ef84,
1399 		0x1efc0, 0x1efc8,
1400 		0x1f008, 0x1f00c,
1401 		0x1f040, 0x1f044,
1402 		0x1f04c, 0x1f04c,
1403 		0x1f284, 0x1f290,
1404 		0x1f2c0, 0x1f2c0,
1405 		0x1f2e0, 0x1f2e0,
1406 		0x1f300, 0x1f384,
1407 		0x1f3c0, 0x1f3c8,
1408 		0x1f408, 0x1f40c,
1409 		0x1f440, 0x1f444,
1410 		0x1f44c, 0x1f44c,
1411 		0x1f684, 0x1f690,
1412 		0x1f6c0, 0x1f6c0,
1413 		0x1f6e0, 0x1f6e0,
1414 		0x1f700, 0x1f784,
1415 		0x1f7c0, 0x1f7c8,
1416 		0x1f808, 0x1f80c,
1417 		0x1f840, 0x1f844,
1418 		0x1f84c, 0x1f84c,
1419 		0x1fa84, 0x1fa90,
1420 		0x1fac0, 0x1fac0,
1421 		0x1fae0, 0x1fae0,
1422 		0x1fb00, 0x1fb84,
1423 		0x1fbc0, 0x1fbc8,
1424 		0x1fc08, 0x1fc0c,
1425 		0x1fc40, 0x1fc44,
1426 		0x1fc4c, 0x1fc4c,
1427 		0x1fe84, 0x1fe90,
1428 		0x1fec0, 0x1fec0,
1429 		0x1fee0, 0x1fee0,
1430 		0x1ff00, 0x1ff84,
1431 		0x1ffc0, 0x1ffc8,
1432 		0x30000, 0x30030,
1433 		0x30100, 0x30144,
1434 		0x30190, 0x301a0,
1435 		0x301a8, 0x301b8,
1436 		0x301c4, 0x301c8,
1437 		0x301d0, 0x301d0,
1438 		0x30200, 0x30318,
1439 		0x30400, 0x304b4,
1440 		0x304c0, 0x3052c,
1441 		0x30540, 0x3061c,
1442 		0x30800, 0x30828,
1443 		0x30834, 0x30834,
1444 		0x308c0, 0x30908,
1445 		0x30910, 0x309ac,
1446 		0x30a00, 0x30a14,
1447 		0x30a1c, 0x30a2c,
1448 		0x30a44, 0x30a50,
1449 		0x30a74, 0x30a74,
1450 		0x30a7c, 0x30afc,
1451 		0x30b08, 0x30c24,
1452 		0x30d00, 0x30d00,
1453 		0x30d08, 0x30d14,
1454 		0x30d1c, 0x30d20,
1455 		0x30d3c, 0x30d3c,
1456 		0x30d48, 0x30d50,
1457 		0x31200, 0x3120c,
1458 		0x31220, 0x31220,
1459 		0x31240, 0x31240,
1460 		0x31600, 0x3160c,
1461 		0x31a00, 0x31a1c,
1462 		0x31e00, 0x31e20,
1463 		0x31e38, 0x31e3c,
1464 		0x31e80, 0x31e80,
1465 		0x31e88, 0x31ea8,
1466 		0x31eb0, 0x31eb4,
1467 		0x31ec8, 0x31ed4,
1468 		0x31fb8, 0x32004,
1469 		0x32200, 0x32200,
1470 		0x32208, 0x32240,
1471 		0x32248, 0x32280,
1472 		0x32288, 0x322c0,
1473 		0x322c8, 0x322fc,
1474 		0x32600, 0x32630,
1475 		0x32a00, 0x32abc,
1476 		0x32b00, 0x32b10,
1477 		0x32b20, 0x32b30,
1478 		0x32b40, 0x32b50,
1479 		0x32b60, 0x32b70,
1480 		0x33000, 0x33028,
1481 		0x33030, 0x33048,
1482 		0x33060, 0x33068,
1483 		0x33070, 0x3309c,
1484 		0x330f0, 0x33128,
1485 		0x33130, 0x33148,
1486 		0x33160, 0x33168,
1487 		0x33170, 0x3319c,
1488 		0x331f0, 0x33238,
1489 		0x33240, 0x33240,
1490 		0x33248, 0x33250,
1491 		0x3325c, 0x33264,
1492 		0x33270, 0x332b8,
1493 		0x332c0, 0x332e4,
1494 		0x332f8, 0x33338,
1495 		0x33340, 0x33340,
1496 		0x33348, 0x33350,
1497 		0x3335c, 0x33364,
1498 		0x33370, 0x333b8,
1499 		0x333c0, 0x333e4,
1500 		0x333f8, 0x33428,
1501 		0x33430, 0x33448,
1502 		0x33460, 0x33468,
1503 		0x33470, 0x3349c,
1504 		0x334f0, 0x33528,
1505 		0x33530, 0x33548,
1506 		0x33560, 0x33568,
1507 		0x33570, 0x3359c,
1508 		0x335f0, 0x33638,
1509 		0x33640, 0x33640,
1510 		0x33648, 0x33650,
1511 		0x3365c, 0x33664,
1512 		0x33670, 0x336b8,
1513 		0x336c0, 0x336e4,
1514 		0x336f8, 0x33738,
1515 		0x33740, 0x33740,
1516 		0x33748, 0x33750,
1517 		0x3375c, 0x33764,
1518 		0x33770, 0x337b8,
1519 		0x337c0, 0x337e4,
1520 		0x337f8, 0x337fc,
1521 		0x33814, 0x33814,
1522 		0x3382c, 0x3382c,
1523 		0x33880, 0x3388c,
1524 		0x338e8, 0x338ec,
1525 		0x33900, 0x33928,
1526 		0x33930, 0x33948,
1527 		0x33960, 0x33968,
1528 		0x33970, 0x3399c,
1529 		0x339f0, 0x33a38,
1530 		0x33a40, 0x33a40,
1531 		0x33a48, 0x33a50,
1532 		0x33a5c, 0x33a64,
1533 		0x33a70, 0x33ab8,
1534 		0x33ac0, 0x33ae4,
1535 		0x33af8, 0x33b10,
1536 		0x33b28, 0x33b28,
1537 		0x33b3c, 0x33b50,
1538 		0x33bf0, 0x33c10,
1539 		0x33c28, 0x33c28,
1540 		0x33c3c, 0x33c50,
1541 		0x33cf0, 0x33cfc,
1542 		0x34000, 0x34030,
1543 		0x34100, 0x34144,
1544 		0x34190, 0x341a0,
1545 		0x341a8, 0x341b8,
1546 		0x341c4, 0x341c8,
1547 		0x341d0, 0x341d0,
1548 		0x34200, 0x34318,
1549 		0x34400, 0x344b4,
1550 		0x344c0, 0x3452c,
1551 		0x34540, 0x3461c,
1552 		0x34800, 0x34828,
1553 		0x34834, 0x34834,
1554 		0x348c0, 0x34908,
1555 		0x34910, 0x349ac,
1556 		0x34a00, 0x34a14,
1557 		0x34a1c, 0x34a2c,
1558 		0x34a44, 0x34a50,
1559 		0x34a74, 0x34a74,
1560 		0x34a7c, 0x34afc,
1561 		0x34b08, 0x34c24,
1562 		0x34d00, 0x34d00,
1563 		0x34d08, 0x34d14,
1564 		0x34d1c, 0x34d20,
1565 		0x34d3c, 0x34d3c,
1566 		0x34d48, 0x34d50,
1567 		0x35200, 0x3520c,
1568 		0x35220, 0x35220,
1569 		0x35240, 0x35240,
1570 		0x35600, 0x3560c,
1571 		0x35a00, 0x35a1c,
1572 		0x35e00, 0x35e20,
1573 		0x35e38, 0x35e3c,
1574 		0x35e80, 0x35e80,
1575 		0x35e88, 0x35ea8,
1576 		0x35eb0, 0x35eb4,
1577 		0x35ec8, 0x35ed4,
1578 		0x35fb8, 0x36004,
1579 		0x36200, 0x36200,
1580 		0x36208, 0x36240,
1581 		0x36248, 0x36280,
1582 		0x36288, 0x362c0,
1583 		0x362c8, 0x362fc,
1584 		0x36600, 0x36630,
1585 		0x36a00, 0x36abc,
1586 		0x36b00, 0x36b10,
1587 		0x36b20, 0x36b30,
1588 		0x36b40, 0x36b50,
1589 		0x36b60, 0x36b70,
1590 		0x37000, 0x37028,
1591 		0x37030, 0x37048,
1592 		0x37060, 0x37068,
1593 		0x37070, 0x3709c,
1594 		0x370f0, 0x37128,
1595 		0x37130, 0x37148,
1596 		0x37160, 0x37168,
1597 		0x37170, 0x3719c,
1598 		0x371f0, 0x37238,
1599 		0x37240, 0x37240,
1600 		0x37248, 0x37250,
1601 		0x3725c, 0x37264,
1602 		0x37270, 0x372b8,
1603 		0x372c0, 0x372e4,
1604 		0x372f8, 0x37338,
1605 		0x37340, 0x37340,
1606 		0x37348, 0x37350,
1607 		0x3735c, 0x37364,
1608 		0x37370, 0x373b8,
1609 		0x373c0, 0x373e4,
1610 		0x373f8, 0x37428,
1611 		0x37430, 0x37448,
1612 		0x37460, 0x37468,
1613 		0x37470, 0x3749c,
1614 		0x374f0, 0x37528,
1615 		0x37530, 0x37548,
1616 		0x37560, 0x37568,
1617 		0x37570, 0x3759c,
1618 		0x375f0, 0x37638,
1619 		0x37640, 0x37640,
1620 		0x37648, 0x37650,
1621 		0x3765c, 0x37664,
1622 		0x37670, 0x376b8,
1623 		0x376c0, 0x376e4,
1624 		0x376f8, 0x37738,
1625 		0x37740, 0x37740,
1626 		0x37748, 0x37750,
1627 		0x3775c, 0x37764,
1628 		0x37770, 0x377b8,
1629 		0x377c0, 0x377e4,
1630 		0x377f8, 0x377fc,
1631 		0x37814, 0x37814,
1632 		0x3782c, 0x3782c,
1633 		0x37880, 0x3788c,
1634 		0x378e8, 0x378ec,
1635 		0x37900, 0x37928,
1636 		0x37930, 0x37948,
1637 		0x37960, 0x37968,
1638 		0x37970, 0x3799c,
1639 		0x379f0, 0x37a38,
1640 		0x37a40, 0x37a40,
1641 		0x37a48, 0x37a50,
1642 		0x37a5c, 0x37a64,
1643 		0x37a70, 0x37ab8,
1644 		0x37ac0, 0x37ae4,
1645 		0x37af8, 0x37b10,
1646 		0x37b28, 0x37b28,
1647 		0x37b3c, 0x37b50,
1648 		0x37bf0, 0x37c10,
1649 		0x37c28, 0x37c28,
1650 		0x37c3c, 0x37c50,
1651 		0x37cf0, 0x37cfc,
1652 		0x38000, 0x38030,
1653 		0x38100, 0x38144,
1654 		0x38190, 0x381a0,
1655 		0x381a8, 0x381b8,
1656 		0x381c4, 0x381c8,
1657 		0x381d0, 0x381d0,
1658 		0x38200, 0x38318,
1659 		0x38400, 0x384b4,
1660 		0x384c0, 0x3852c,
1661 		0x38540, 0x3861c,
1662 		0x38800, 0x38828,
1663 		0x38834, 0x38834,
1664 		0x388c0, 0x38908,
1665 		0x38910, 0x389ac,
1666 		0x38a00, 0x38a14,
1667 		0x38a1c, 0x38a2c,
1668 		0x38a44, 0x38a50,
1669 		0x38a74, 0x38a74,
1670 		0x38a7c, 0x38afc,
1671 		0x38b08, 0x38c24,
1672 		0x38d00, 0x38d00,
1673 		0x38d08, 0x38d14,
1674 		0x38d1c, 0x38d20,
1675 		0x38d3c, 0x38d3c,
1676 		0x38d48, 0x38d50,
1677 		0x39200, 0x3920c,
1678 		0x39220, 0x39220,
1679 		0x39240, 0x39240,
1680 		0x39600, 0x3960c,
1681 		0x39a00, 0x39a1c,
1682 		0x39e00, 0x39e20,
1683 		0x39e38, 0x39e3c,
1684 		0x39e80, 0x39e80,
1685 		0x39e88, 0x39ea8,
1686 		0x39eb0, 0x39eb4,
1687 		0x39ec8, 0x39ed4,
1688 		0x39fb8, 0x3a004,
1689 		0x3a200, 0x3a200,
1690 		0x3a208, 0x3a240,
1691 		0x3a248, 0x3a280,
1692 		0x3a288, 0x3a2c0,
1693 		0x3a2c8, 0x3a2fc,
1694 		0x3a600, 0x3a630,
1695 		0x3aa00, 0x3aabc,
1696 		0x3ab00, 0x3ab10,
1697 		0x3ab20, 0x3ab30,
1698 		0x3ab40, 0x3ab50,
1699 		0x3ab60, 0x3ab70,
1700 		0x3b000, 0x3b028,
1701 		0x3b030, 0x3b048,
1702 		0x3b060, 0x3b068,
1703 		0x3b070, 0x3b09c,
1704 		0x3b0f0, 0x3b128,
1705 		0x3b130, 0x3b148,
1706 		0x3b160, 0x3b168,
1707 		0x3b170, 0x3b19c,
1708 		0x3b1f0, 0x3b238,
1709 		0x3b240, 0x3b240,
1710 		0x3b248, 0x3b250,
1711 		0x3b25c, 0x3b264,
1712 		0x3b270, 0x3b2b8,
1713 		0x3b2c0, 0x3b2e4,
1714 		0x3b2f8, 0x3b338,
1715 		0x3b340, 0x3b340,
1716 		0x3b348, 0x3b350,
1717 		0x3b35c, 0x3b364,
1718 		0x3b370, 0x3b3b8,
1719 		0x3b3c0, 0x3b3e4,
1720 		0x3b3f8, 0x3b428,
1721 		0x3b430, 0x3b448,
1722 		0x3b460, 0x3b468,
1723 		0x3b470, 0x3b49c,
1724 		0x3b4f0, 0x3b528,
1725 		0x3b530, 0x3b548,
1726 		0x3b560, 0x3b568,
1727 		0x3b570, 0x3b59c,
1728 		0x3b5f0, 0x3b638,
1729 		0x3b640, 0x3b640,
1730 		0x3b648, 0x3b650,
1731 		0x3b65c, 0x3b664,
1732 		0x3b670, 0x3b6b8,
1733 		0x3b6c0, 0x3b6e4,
1734 		0x3b6f8, 0x3b738,
1735 		0x3b740, 0x3b740,
1736 		0x3b748, 0x3b750,
1737 		0x3b75c, 0x3b764,
1738 		0x3b770, 0x3b7b8,
1739 		0x3b7c0, 0x3b7e4,
1740 		0x3b7f8, 0x3b7fc,
1741 		0x3b814, 0x3b814,
1742 		0x3b82c, 0x3b82c,
1743 		0x3b880, 0x3b88c,
1744 		0x3b8e8, 0x3b8ec,
1745 		0x3b900, 0x3b928,
1746 		0x3b930, 0x3b948,
1747 		0x3b960, 0x3b968,
1748 		0x3b970, 0x3b99c,
1749 		0x3b9f0, 0x3ba38,
1750 		0x3ba40, 0x3ba40,
1751 		0x3ba48, 0x3ba50,
1752 		0x3ba5c, 0x3ba64,
1753 		0x3ba70, 0x3bab8,
1754 		0x3bac0, 0x3bae4,
1755 		0x3baf8, 0x3bb10,
1756 		0x3bb28, 0x3bb28,
1757 		0x3bb3c, 0x3bb50,
1758 		0x3bbf0, 0x3bc10,
1759 		0x3bc28, 0x3bc28,
1760 		0x3bc3c, 0x3bc50,
1761 		0x3bcf0, 0x3bcfc,
1762 		0x3c000, 0x3c030,
1763 		0x3c100, 0x3c144,
1764 		0x3c190, 0x3c1a0,
1765 		0x3c1a8, 0x3c1b8,
1766 		0x3c1c4, 0x3c1c8,
1767 		0x3c1d0, 0x3c1d0,
1768 		0x3c200, 0x3c318,
1769 		0x3c400, 0x3c4b4,
1770 		0x3c4c0, 0x3c52c,
1771 		0x3c540, 0x3c61c,
1772 		0x3c800, 0x3c828,
1773 		0x3c834, 0x3c834,
1774 		0x3c8c0, 0x3c908,
1775 		0x3c910, 0x3c9ac,
1776 		0x3ca00, 0x3ca14,
1777 		0x3ca1c, 0x3ca2c,
1778 		0x3ca44, 0x3ca50,
1779 		0x3ca74, 0x3ca74,
1780 		0x3ca7c, 0x3cafc,
1781 		0x3cb08, 0x3cc24,
1782 		0x3cd00, 0x3cd00,
1783 		0x3cd08, 0x3cd14,
1784 		0x3cd1c, 0x3cd20,
1785 		0x3cd3c, 0x3cd3c,
1786 		0x3cd48, 0x3cd50,
1787 		0x3d200, 0x3d20c,
1788 		0x3d220, 0x3d220,
1789 		0x3d240, 0x3d240,
1790 		0x3d600, 0x3d60c,
1791 		0x3da00, 0x3da1c,
1792 		0x3de00, 0x3de20,
1793 		0x3de38, 0x3de3c,
1794 		0x3de80, 0x3de80,
1795 		0x3de88, 0x3dea8,
1796 		0x3deb0, 0x3deb4,
1797 		0x3dec8, 0x3ded4,
1798 		0x3dfb8, 0x3e004,
1799 		0x3e200, 0x3e200,
1800 		0x3e208, 0x3e240,
1801 		0x3e248, 0x3e280,
1802 		0x3e288, 0x3e2c0,
1803 		0x3e2c8, 0x3e2fc,
1804 		0x3e600, 0x3e630,
1805 		0x3ea00, 0x3eabc,
1806 		0x3eb00, 0x3eb10,
1807 		0x3eb20, 0x3eb30,
1808 		0x3eb40, 0x3eb50,
1809 		0x3eb60, 0x3eb70,
1810 		0x3f000, 0x3f028,
1811 		0x3f030, 0x3f048,
1812 		0x3f060, 0x3f068,
1813 		0x3f070, 0x3f09c,
1814 		0x3f0f0, 0x3f128,
1815 		0x3f130, 0x3f148,
1816 		0x3f160, 0x3f168,
1817 		0x3f170, 0x3f19c,
1818 		0x3f1f0, 0x3f238,
1819 		0x3f240, 0x3f240,
1820 		0x3f248, 0x3f250,
1821 		0x3f25c, 0x3f264,
1822 		0x3f270, 0x3f2b8,
1823 		0x3f2c0, 0x3f2e4,
1824 		0x3f2f8, 0x3f338,
1825 		0x3f340, 0x3f340,
1826 		0x3f348, 0x3f350,
1827 		0x3f35c, 0x3f364,
1828 		0x3f370, 0x3f3b8,
1829 		0x3f3c0, 0x3f3e4,
1830 		0x3f3f8, 0x3f428,
1831 		0x3f430, 0x3f448,
1832 		0x3f460, 0x3f468,
1833 		0x3f470, 0x3f49c,
1834 		0x3f4f0, 0x3f528,
1835 		0x3f530, 0x3f548,
1836 		0x3f560, 0x3f568,
1837 		0x3f570, 0x3f59c,
1838 		0x3f5f0, 0x3f638,
1839 		0x3f640, 0x3f640,
1840 		0x3f648, 0x3f650,
1841 		0x3f65c, 0x3f664,
1842 		0x3f670, 0x3f6b8,
1843 		0x3f6c0, 0x3f6e4,
1844 		0x3f6f8, 0x3f738,
1845 		0x3f740, 0x3f740,
1846 		0x3f748, 0x3f750,
1847 		0x3f75c, 0x3f764,
1848 		0x3f770, 0x3f7b8,
1849 		0x3f7c0, 0x3f7e4,
1850 		0x3f7f8, 0x3f7fc,
1851 		0x3f814, 0x3f814,
1852 		0x3f82c, 0x3f82c,
1853 		0x3f880, 0x3f88c,
1854 		0x3f8e8, 0x3f8ec,
1855 		0x3f900, 0x3f928,
1856 		0x3f930, 0x3f948,
1857 		0x3f960, 0x3f968,
1858 		0x3f970, 0x3f99c,
1859 		0x3f9f0, 0x3fa38,
1860 		0x3fa40, 0x3fa40,
1861 		0x3fa48, 0x3fa50,
1862 		0x3fa5c, 0x3fa64,
1863 		0x3fa70, 0x3fab8,
1864 		0x3fac0, 0x3fae4,
1865 		0x3faf8, 0x3fb10,
1866 		0x3fb28, 0x3fb28,
1867 		0x3fb3c, 0x3fb50,
1868 		0x3fbf0, 0x3fc10,
1869 		0x3fc28, 0x3fc28,
1870 		0x3fc3c, 0x3fc50,
1871 		0x3fcf0, 0x3fcfc,
1872 		0x40000, 0x4000c,
1873 		0x40040, 0x40050,
1874 		0x40060, 0x40068,
1875 		0x4007c, 0x4008c,
1876 		0x40094, 0x400b0,
1877 		0x400c0, 0x40144,
1878 		0x40180, 0x4018c,
1879 		0x40200, 0x40254,
1880 		0x40260, 0x40264,
1881 		0x40270, 0x40288,
1882 		0x40290, 0x40298,
1883 		0x402ac, 0x402c8,
1884 		0x402d0, 0x402e0,
1885 		0x402f0, 0x402f0,
1886 		0x40300, 0x4033c,
1887 		0x403f8, 0x403fc,
1888 		0x41304, 0x413c4,
1889 		0x41400, 0x4140c,
1890 		0x41414, 0x4141c,
1891 		0x41480, 0x414d0,
1892 		0x44000, 0x44054,
1893 		0x4405c, 0x44078,
1894 		0x440c0, 0x44174,
1895 		0x44180, 0x441ac,
1896 		0x441b4, 0x441b8,
1897 		0x441c0, 0x44254,
1898 		0x4425c, 0x44278,
1899 		0x442c0, 0x44374,
1900 		0x44380, 0x443ac,
1901 		0x443b4, 0x443b8,
1902 		0x443c0, 0x44454,
1903 		0x4445c, 0x44478,
1904 		0x444c0, 0x44574,
1905 		0x44580, 0x445ac,
1906 		0x445b4, 0x445b8,
1907 		0x445c0, 0x44654,
1908 		0x4465c, 0x44678,
1909 		0x446c0, 0x44774,
1910 		0x44780, 0x447ac,
1911 		0x447b4, 0x447b8,
1912 		0x447c0, 0x44854,
1913 		0x4485c, 0x44878,
1914 		0x448c0, 0x44974,
1915 		0x44980, 0x449ac,
1916 		0x449b4, 0x449b8,
1917 		0x449c0, 0x449fc,
1918 		0x45000, 0x45004,
1919 		0x45010, 0x45030,
1920 		0x45040, 0x45060,
1921 		0x45068, 0x45068,
1922 		0x45080, 0x45084,
1923 		0x450a0, 0x450b0,
1924 		0x45200, 0x45204,
1925 		0x45210, 0x45230,
1926 		0x45240, 0x45260,
1927 		0x45268, 0x45268,
1928 		0x45280, 0x45284,
1929 		0x452a0, 0x452b0,
1930 		0x460c0, 0x460e4,
1931 		0x47000, 0x4703c,
1932 		0x47044, 0x4708c,
1933 		0x47200, 0x47250,
1934 		0x47400, 0x47408,
1935 		0x47414, 0x47420,
1936 		0x47600, 0x47618,
1937 		0x47800, 0x47814,
1938 		0x48000, 0x4800c,
1939 		0x48040, 0x48050,
1940 		0x48060, 0x48068,
1941 		0x4807c, 0x4808c,
1942 		0x48094, 0x480b0,
1943 		0x480c0, 0x48144,
1944 		0x48180, 0x4818c,
1945 		0x48200, 0x48254,
1946 		0x48260, 0x48264,
1947 		0x48270, 0x48288,
1948 		0x48290, 0x48298,
1949 		0x482ac, 0x482c8,
1950 		0x482d0, 0x482e0,
1951 		0x482f0, 0x482f0,
1952 		0x48300, 0x4833c,
1953 		0x483f8, 0x483fc,
1954 		0x49304, 0x493c4,
1955 		0x49400, 0x4940c,
1956 		0x49414, 0x4941c,
1957 		0x49480, 0x494d0,
1958 		0x4c000, 0x4c054,
1959 		0x4c05c, 0x4c078,
1960 		0x4c0c0, 0x4c174,
1961 		0x4c180, 0x4c1ac,
1962 		0x4c1b4, 0x4c1b8,
1963 		0x4c1c0, 0x4c254,
1964 		0x4c25c, 0x4c278,
1965 		0x4c2c0, 0x4c374,
1966 		0x4c380, 0x4c3ac,
1967 		0x4c3b4, 0x4c3b8,
1968 		0x4c3c0, 0x4c454,
1969 		0x4c45c, 0x4c478,
1970 		0x4c4c0, 0x4c574,
1971 		0x4c580, 0x4c5ac,
1972 		0x4c5b4, 0x4c5b8,
1973 		0x4c5c0, 0x4c654,
1974 		0x4c65c, 0x4c678,
1975 		0x4c6c0, 0x4c774,
1976 		0x4c780, 0x4c7ac,
1977 		0x4c7b4, 0x4c7b8,
1978 		0x4c7c0, 0x4c854,
1979 		0x4c85c, 0x4c878,
1980 		0x4c8c0, 0x4c974,
1981 		0x4c980, 0x4c9ac,
1982 		0x4c9b4, 0x4c9b8,
1983 		0x4c9c0, 0x4c9fc,
1984 		0x4d000, 0x4d004,
1985 		0x4d010, 0x4d030,
1986 		0x4d040, 0x4d060,
1987 		0x4d068, 0x4d068,
1988 		0x4d080, 0x4d084,
1989 		0x4d0a0, 0x4d0b0,
1990 		0x4d200, 0x4d204,
1991 		0x4d210, 0x4d230,
1992 		0x4d240, 0x4d260,
1993 		0x4d268, 0x4d268,
1994 		0x4d280, 0x4d284,
1995 		0x4d2a0, 0x4d2b0,
1996 		0x4e0c0, 0x4e0e4,
1997 		0x4f000, 0x4f03c,
1998 		0x4f044, 0x4f08c,
1999 		0x4f200, 0x4f250,
2000 		0x4f400, 0x4f408,
2001 		0x4f414, 0x4f420,
2002 		0x4f600, 0x4f618,
2003 		0x4f800, 0x4f814,
2004 		0x50000, 0x50084,
2005 		0x50090, 0x500cc,
2006 		0x50400, 0x50400,
2007 		0x50800, 0x50884,
2008 		0x50890, 0x508cc,
2009 		0x50c00, 0x50c00,
2010 		0x51000, 0x5101c,
2011 		0x51300, 0x51308,
2012 	};
2013 
2014 	static const unsigned int t5vf_reg_ranges[] = {
2015 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2016 		VF_MPS_REG(A_MPS_VF_CTL),
2017 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2018 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2019 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2020 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2021 		FW_T4VF_MBDATA_BASE_ADDR,
2022 		FW_T4VF_MBDATA_BASE_ADDR +
2023 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2024 	};
2025 
2026 	static const unsigned int t6_reg_ranges[] = {
2027 		0x1008, 0x101c,
2028 		0x1024, 0x10a8,
2029 		0x10b4, 0x10f8,
2030 		0x1100, 0x1114,
2031 		0x111c, 0x112c,
2032 		0x1138, 0x113c,
2033 		0x1144, 0x114c,
2034 		0x1180, 0x1184,
2035 		0x1190, 0x1194,
2036 		0x11a0, 0x11a4,
2037 		0x11b0, 0x11b4,
2038 		0x11fc, 0x1274,
2039 		0x1280, 0x133c,
2040 		0x1800, 0x18fc,
2041 		0x3000, 0x302c,
2042 		0x3060, 0x30b0,
2043 		0x30b8, 0x30d8,
2044 		0x30e0, 0x30fc,
2045 		0x3140, 0x357c,
2046 		0x35a8, 0x35cc,
2047 		0x35ec, 0x35ec,
2048 		0x3600, 0x5624,
2049 		0x56cc, 0x56ec,
2050 		0x56f4, 0x5720,
2051 		0x5728, 0x575c,
2052 		0x580c, 0x5814,
2053 		0x5890, 0x589c,
2054 		0x58a4, 0x58ac,
2055 		0x58b8, 0x58bc,
2056 		0x5940, 0x595c,
2057 		0x5980, 0x598c,
2058 		0x59b0, 0x59c8,
2059 		0x59d0, 0x59dc,
2060 		0x59fc, 0x5a18,
2061 		0x5a60, 0x5a6c,
2062 		0x5a80, 0x5a8c,
2063 		0x5a94, 0x5a9c,
2064 		0x5b94, 0x5bfc,
2065 		0x5c10, 0x5e48,
2066 		0x5e50, 0x5e94,
2067 		0x5ea0, 0x5eb0,
2068 		0x5ec0, 0x5ec0,
2069 		0x5ec8, 0x5ed0,
2070 		0x5ee0, 0x5ee0,
2071 		0x5ef0, 0x5ef0,
2072 		0x5f00, 0x5f00,
2073 		0x6000, 0x6020,
2074 		0x6028, 0x6040,
2075 		0x6058, 0x609c,
2076 		0x60a8, 0x619c,
2077 		0x7700, 0x7798,
2078 		0x77c0, 0x7880,
2079 		0x78cc, 0x78fc,
2080 		0x7b00, 0x7b58,
2081 		0x7b60, 0x7b84,
2082 		0x7b8c, 0x7c54,
2083 		0x7d00, 0x7d38,
2084 		0x7d40, 0x7d84,
2085 		0x7d8c, 0x7ddc,
2086 		0x7de4, 0x7e04,
2087 		0x7e10, 0x7e1c,
2088 		0x7e24, 0x7e38,
2089 		0x7e40, 0x7e44,
2090 		0x7e4c, 0x7e78,
2091 		0x7e80, 0x7edc,
2092 		0x7ee8, 0x7efc,
2093 		0x8dc0, 0x8de4,
2094 		0x8df8, 0x8e04,
2095 		0x8e10, 0x8e84,
2096 		0x8ea0, 0x8f88,
2097 		0x8fb8, 0x9058,
2098 		0x9060, 0x9060,
2099 		0x9068, 0x90f8,
2100 		0x9100, 0x9124,
2101 		0x9400, 0x9470,
2102 		0x9600, 0x9600,
2103 		0x9608, 0x9638,
2104 		0x9640, 0x9704,
2105 		0x9710, 0x971c,
2106 		0x9800, 0x9808,
2107 		0x9820, 0x983c,
2108 		0x9850, 0x9864,
2109 		0x9c00, 0x9c6c,
2110 		0x9c80, 0x9cec,
2111 		0x9d00, 0x9d6c,
2112 		0x9d80, 0x9dec,
2113 		0x9e00, 0x9e6c,
2114 		0x9e80, 0x9eec,
2115 		0x9f00, 0x9f6c,
2116 		0x9f80, 0xa020,
2117 		0xd004, 0xd03c,
2118 		0xd100, 0xd118,
2119 		0xd200, 0xd214,
2120 		0xd220, 0xd234,
2121 		0xd240, 0xd254,
2122 		0xd260, 0xd274,
2123 		0xd280, 0xd294,
2124 		0xd2a0, 0xd2b4,
2125 		0xd2c0, 0xd2d4,
2126 		0xd2e0, 0xd2f4,
2127 		0xd300, 0xd31c,
2128 		0xdfc0, 0xdfe0,
2129 		0xe000, 0xf008,
2130 		0xf010, 0xf018,
2131 		0xf020, 0xf028,
2132 		0x11000, 0x11014,
2133 		0x11048, 0x1106c,
2134 		0x11074, 0x11088,
2135 		0x11098, 0x11120,
2136 		0x1112c, 0x1117c,
2137 		0x11190, 0x112e0,
2138 		0x11300, 0x1130c,
2139 		0x12000, 0x1206c,
2140 		0x19040, 0x1906c,
2141 		0x19078, 0x19080,
2142 		0x1908c, 0x190e8,
2143 		0x190f0, 0x190f8,
2144 		0x19100, 0x19110,
2145 		0x19120, 0x19124,
2146 		0x19150, 0x19194,
2147 		0x1919c, 0x191b0,
2148 		0x191d0, 0x191e8,
2149 		0x19238, 0x19290,
2150 		0x192a4, 0x192b0,
2151 		0x192bc, 0x192bc,
2152 		0x19348, 0x1934c,
2153 		0x193f8, 0x19418,
2154 		0x19420, 0x19428,
2155 		0x19430, 0x19444,
2156 		0x1944c, 0x1946c,
2157 		0x19474, 0x19474,
2158 		0x19490, 0x194cc,
2159 		0x194f0, 0x194f8,
2160 		0x19c00, 0x19c48,
2161 		0x19c50, 0x19c80,
2162 		0x19c94, 0x19c98,
2163 		0x19ca0, 0x19cbc,
2164 		0x19ce4, 0x19ce4,
2165 		0x19cf0, 0x19cf8,
2166 		0x19d00, 0x19d28,
2167 		0x19d50, 0x19d78,
2168 		0x19d94, 0x19d98,
2169 		0x19da0, 0x19dc8,
2170 		0x19df0, 0x19e10,
2171 		0x19e50, 0x19e6c,
2172 		0x19ea0, 0x19ebc,
2173 		0x19ec4, 0x19ef4,
2174 		0x19f04, 0x19f2c,
2175 		0x19f34, 0x19f34,
2176 		0x19f40, 0x19f50,
2177 		0x19f90, 0x19fac,
2178 		0x19fc4, 0x19fc8,
2179 		0x19fd0, 0x19fe4,
2180 		0x1a000, 0x1a004,
2181 		0x1a010, 0x1a06c,
2182 		0x1a0b0, 0x1a0e4,
2183 		0x1a0ec, 0x1a0f8,
2184 		0x1a100, 0x1a108,
2185 		0x1a114, 0x1a120,
2186 		0x1a128, 0x1a130,
2187 		0x1a138, 0x1a138,
2188 		0x1a190, 0x1a1c4,
2189 		0x1a1fc, 0x1a1fc,
2190 		0x1e008, 0x1e00c,
2191 		0x1e040, 0x1e044,
2192 		0x1e04c, 0x1e04c,
2193 		0x1e284, 0x1e290,
2194 		0x1e2c0, 0x1e2c0,
2195 		0x1e2e0, 0x1e2e0,
2196 		0x1e300, 0x1e384,
2197 		0x1e3c0, 0x1e3c8,
2198 		0x1e408, 0x1e40c,
2199 		0x1e440, 0x1e444,
2200 		0x1e44c, 0x1e44c,
2201 		0x1e684, 0x1e690,
2202 		0x1e6c0, 0x1e6c0,
2203 		0x1e6e0, 0x1e6e0,
2204 		0x1e700, 0x1e784,
2205 		0x1e7c0, 0x1e7c8,
2206 		0x1e808, 0x1e80c,
2207 		0x1e840, 0x1e844,
2208 		0x1e84c, 0x1e84c,
2209 		0x1ea84, 0x1ea90,
2210 		0x1eac0, 0x1eac0,
2211 		0x1eae0, 0x1eae0,
2212 		0x1eb00, 0x1eb84,
2213 		0x1ebc0, 0x1ebc8,
2214 		0x1ec08, 0x1ec0c,
2215 		0x1ec40, 0x1ec44,
2216 		0x1ec4c, 0x1ec4c,
2217 		0x1ee84, 0x1ee90,
2218 		0x1eec0, 0x1eec0,
2219 		0x1eee0, 0x1eee0,
2220 		0x1ef00, 0x1ef84,
2221 		0x1efc0, 0x1efc8,
2222 		0x1f008, 0x1f00c,
2223 		0x1f040, 0x1f044,
2224 		0x1f04c, 0x1f04c,
2225 		0x1f284, 0x1f290,
2226 		0x1f2c0, 0x1f2c0,
2227 		0x1f2e0, 0x1f2e0,
2228 		0x1f300, 0x1f384,
2229 		0x1f3c0, 0x1f3c8,
2230 		0x1f408, 0x1f40c,
2231 		0x1f440, 0x1f444,
2232 		0x1f44c, 0x1f44c,
2233 		0x1f684, 0x1f690,
2234 		0x1f6c0, 0x1f6c0,
2235 		0x1f6e0, 0x1f6e0,
2236 		0x1f700, 0x1f784,
2237 		0x1f7c0, 0x1f7c8,
2238 		0x1f808, 0x1f80c,
2239 		0x1f840, 0x1f844,
2240 		0x1f84c, 0x1f84c,
2241 		0x1fa84, 0x1fa90,
2242 		0x1fac0, 0x1fac0,
2243 		0x1fae0, 0x1fae0,
2244 		0x1fb00, 0x1fb84,
2245 		0x1fbc0, 0x1fbc8,
2246 		0x1fc08, 0x1fc0c,
2247 		0x1fc40, 0x1fc44,
2248 		0x1fc4c, 0x1fc4c,
2249 		0x1fe84, 0x1fe90,
2250 		0x1fec0, 0x1fec0,
2251 		0x1fee0, 0x1fee0,
2252 		0x1ff00, 0x1ff84,
2253 		0x1ffc0, 0x1ffc8,
2254 		0x30000, 0x30030,
2255 		0x30100, 0x30168,
2256 		0x30190, 0x301a0,
2257 		0x301a8, 0x301b8,
2258 		0x301c4, 0x301c8,
2259 		0x301d0, 0x301d0,
2260 		0x30200, 0x30320,
2261 		0x30400, 0x304b4,
2262 		0x304c0, 0x3052c,
2263 		0x30540, 0x3061c,
2264 		0x30800, 0x308a0,
2265 		0x308c0, 0x30908,
2266 		0x30910, 0x309b8,
2267 		0x30a00, 0x30a04,
2268 		0x30a0c, 0x30a14,
2269 		0x30a1c, 0x30a2c,
2270 		0x30a44, 0x30a50,
2271 		0x30a74, 0x30a74,
2272 		0x30a7c, 0x30afc,
2273 		0x30b08, 0x30c24,
2274 		0x30d00, 0x30d14,
2275 		0x30d1c, 0x30d3c,
2276 		0x30d44, 0x30d4c,
2277 		0x30d54, 0x30d74,
2278 		0x30d7c, 0x30d7c,
2279 		0x30de0, 0x30de0,
2280 		0x30e00, 0x30ed4,
2281 		0x30f00, 0x30fa4,
2282 		0x30fc0, 0x30fc4,
2283 		0x31000, 0x31004,
2284 		0x31080, 0x310fc,
2285 		0x31208, 0x31220,
2286 		0x3123c, 0x31254,
2287 		0x31300, 0x31300,
2288 		0x31308, 0x3131c,
2289 		0x31338, 0x3133c,
2290 		0x31380, 0x31380,
2291 		0x31388, 0x313a8,
2292 		0x313b4, 0x313b4,
2293 		0x31400, 0x31420,
2294 		0x31438, 0x3143c,
2295 		0x31480, 0x31480,
2296 		0x314a8, 0x314a8,
2297 		0x314b0, 0x314b4,
2298 		0x314c8, 0x314d4,
2299 		0x31a40, 0x31a4c,
2300 		0x31af0, 0x31b20,
2301 		0x31b38, 0x31b3c,
2302 		0x31b80, 0x31b80,
2303 		0x31ba8, 0x31ba8,
2304 		0x31bb0, 0x31bb4,
2305 		0x31bc8, 0x31bd4,
2306 		0x32140, 0x3218c,
2307 		0x321f0, 0x321f4,
2308 		0x32200, 0x32200,
2309 		0x32218, 0x32218,
2310 		0x32400, 0x32400,
2311 		0x32408, 0x3241c,
2312 		0x32618, 0x32620,
2313 		0x32664, 0x32664,
2314 		0x326a8, 0x326a8,
2315 		0x326ec, 0x326ec,
2316 		0x32a00, 0x32abc,
2317 		0x32b00, 0x32b18,
2318 		0x32b20, 0x32b38,
2319 		0x32b40, 0x32b58,
2320 		0x32b60, 0x32b78,
2321 		0x32c00, 0x32c00,
2322 		0x32c08, 0x32c3c,
2323 		0x33000, 0x3302c,
2324 		0x33034, 0x33050,
2325 		0x33058, 0x33058,
2326 		0x33060, 0x3308c,
2327 		0x3309c, 0x330ac,
2328 		0x330c0, 0x330c0,
2329 		0x330c8, 0x330d0,
2330 		0x330d8, 0x330e0,
2331 		0x330ec, 0x3312c,
2332 		0x33134, 0x33150,
2333 		0x33158, 0x33158,
2334 		0x33160, 0x3318c,
2335 		0x3319c, 0x331ac,
2336 		0x331c0, 0x331c0,
2337 		0x331c8, 0x331d0,
2338 		0x331d8, 0x331e0,
2339 		0x331ec, 0x33290,
2340 		0x33298, 0x332c4,
2341 		0x332e4, 0x33390,
2342 		0x33398, 0x333c4,
2343 		0x333e4, 0x3342c,
2344 		0x33434, 0x33450,
2345 		0x33458, 0x33458,
2346 		0x33460, 0x3348c,
2347 		0x3349c, 0x334ac,
2348 		0x334c0, 0x334c0,
2349 		0x334c8, 0x334d0,
2350 		0x334d8, 0x334e0,
2351 		0x334ec, 0x3352c,
2352 		0x33534, 0x33550,
2353 		0x33558, 0x33558,
2354 		0x33560, 0x3358c,
2355 		0x3359c, 0x335ac,
2356 		0x335c0, 0x335c0,
2357 		0x335c8, 0x335d0,
2358 		0x335d8, 0x335e0,
2359 		0x335ec, 0x33690,
2360 		0x33698, 0x336c4,
2361 		0x336e4, 0x33790,
2362 		0x33798, 0x337c4,
2363 		0x337e4, 0x337fc,
2364 		0x33814, 0x33814,
2365 		0x33854, 0x33868,
2366 		0x33880, 0x3388c,
2367 		0x338c0, 0x338d0,
2368 		0x338e8, 0x338ec,
2369 		0x33900, 0x3392c,
2370 		0x33934, 0x33950,
2371 		0x33958, 0x33958,
2372 		0x33960, 0x3398c,
2373 		0x3399c, 0x339ac,
2374 		0x339c0, 0x339c0,
2375 		0x339c8, 0x339d0,
2376 		0x339d8, 0x339e0,
2377 		0x339ec, 0x33a90,
2378 		0x33a98, 0x33ac4,
2379 		0x33ae4, 0x33b10,
2380 		0x33b24, 0x33b28,
2381 		0x33b38, 0x33b50,
2382 		0x33bf0, 0x33c10,
2383 		0x33c24, 0x33c28,
2384 		0x33c38, 0x33c50,
2385 		0x33cf0, 0x33cfc,
2386 		0x34000, 0x34030,
2387 		0x34100, 0x34168,
2388 		0x34190, 0x341a0,
2389 		0x341a8, 0x341b8,
2390 		0x341c4, 0x341c8,
2391 		0x341d0, 0x341d0,
2392 		0x34200, 0x34320,
2393 		0x34400, 0x344b4,
2394 		0x344c0, 0x3452c,
2395 		0x34540, 0x3461c,
2396 		0x34800, 0x348a0,
2397 		0x348c0, 0x34908,
2398 		0x34910, 0x349b8,
2399 		0x34a00, 0x34a04,
2400 		0x34a0c, 0x34a14,
2401 		0x34a1c, 0x34a2c,
2402 		0x34a44, 0x34a50,
2403 		0x34a74, 0x34a74,
2404 		0x34a7c, 0x34afc,
2405 		0x34b08, 0x34c24,
2406 		0x34d00, 0x34d14,
2407 		0x34d1c, 0x34d3c,
2408 		0x34d44, 0x34d4c,
2409 		0x34d54, 0x34d74,
2410 		0x34d7c, 0x34d7c,
2411 		0x34de0, 0x34de0,
2412 		0x34e00, 0x34ed4,
2413 		0x34f00, 0x34fa4,
2414 		0x34fc0, 0x34fc4,
2415 		0x35000, 0x35004,
2416 		0x35080, 0x350fc,
2417 		0x35208, 0x35220,
2418 		0x3523c, 0x35254,
2419 		0x35300, 0x35300,
2420 		0x35308, 0x3531c,
2421 		0x35338, 0x3533c,
2422 		0x35380, 0x35380,
2423 		0x35388, 0x353a8,
2424 		0x353b4, 0x353b4,
2425 		0x35400, 0x35420,
2426 		0x35438, 0x3543c,
2427 		0x35480, 0x35480,
2428 		0x354a8, 0x354a8,
2429 		0x354b0, 0x354b4,
2430 		0x354c8, 0x354d4,
2431 		0x35a40, 0x35a4c,
2432 		0x35af0, 0x35b20,
2433 		0x35b38, 0x35b3c,
2434 		0x35b80, 0x35b80,
2435 		0x35ba8, 0x35ba8,
2436 		0x35bb0, 0x35bb4,
2437 		0x35bc8, 0x35bd4,
2438 		0x36140, 0x3618c,
2439 		0x361f0, 0x361f4,
2440 		0x36200, 0x36200,
2441 		0x36218, 0x36218,
2442 		0x36400, 0x36400,
2443 		0x36408, 0x3641c,
2444 		0x36618, 0x36620,
2445 		0x36664, 0x36664,
2446 		0x366a8, 0x366a8,
2447 		0x366ec, 0x366ec,
2448 		0x36a00, 0x36abc,
2449 		0x36b00, 0x36b18,
2450 		0x36b20, 0x36b38,
2451 		0x36b40, 0x36b58,
2452 		0x36b60, 0x36b78,
2453 		0x36c00, 0x36c00,
2454 		0x36c08, 0x36c3c,
2455 		0x37000, 0x3702c,
2456 		0x37034, 0x37050,
2457 		0x37058, 0x37058,
2458 		0x37060, 0x3708c,
2459 		0x3709c, 0x370ac,
2460 		0x370c0, 0x370c0,
2461 		0x370c8, 0x370d0,
2462 		0x370d8, 0x370e0,
2463 		0x370ec, 0x3712c,
2464 		0x37134, 0x37150,
2465 		0x37158, 0x37158,
2466 		0x37160, 0x3718c,
2467 		0x3719c, 0x371ac,
2468 		0x371c0, 0x371c0,
2469 		0x371c8, 0x371d0,
2470 		0x371d8, 0x371e0,
2471 		0x371ec, 0x37290,
2472 		0x37298, 0x372c4,
2473 		0x372e4, 0x37390,
2474 		0x37398, 0x373c4,
2475 		0x373e4, 0x3742c,
2476 		0x37434, 0x37450,
2477 		0x37458, 0x37458,
2478 		0x37460, 0x3748c,
2479 		0x3749c, 0x374ac,
2480 		0x374c0, 0x374c0,
2481 		0x374c8, 0x374d0,
2482 		0x374d8, 0x374e0,
2483 		0x374ec, 0x3752c,
2484 		0x37534, 0x37550,
2485 		0x37558, 0x37558,
2486 		0x37560, 0x3758c,
2487 		0x3759c, 0x375ac,
2488 		0x375c0, 0x375c0,
2489 		0x375c8, 0x375d0,
2490 		0x375d8, 0x375e0,
2491 		0x375ec, 0x37690,
2492 		0x37698, 0x376c4,
2493 		0x376e4, 0x37790,
2494 		0x37798, 0x377c4,
2495 		0x377e4, 0x377fc,
2496 		0x37814, 0x37814,
2497 		0x37854, 0x37868,
2498 		0x37880, 0x3788c,
2499 		0x378c0, 0x378d0,
2500 		0x378e8, 0x378ec,
2501 		0x37900, 0x3792c,
2502 		0x37934, 0x37950,
2503 		0x37958, 0x37958,
2504 		0x37960, 0x3798c,
2505 		0x3799c, 0x379ac,
2506 		0x379c0, 0x379c0,
2507 		0x379c8, 0x379d0,
2508 		0x379d8, 0x379e0,
2509 		0x379ec, 0x37a90,
2510 		0x37a98, 0x37ac4,
2511 		0x37ae4, 0x37b10,
2512 		0x37b24, 0x37b28,
2513 		0x37b38, 0x37b50,
2514 		0x37bf0, 0x37c10,
2515 		0x37c24, 0x37c28,
2516 		0x37c38, 0x37c50,
2517 		0x37cf0, 0x37cfc,
2518 		0x40040, 0x40040,
2519 		0x40080, 0x40084,
2520 		0x40100, 0x40100,
2521 		0x40140, 0x401bc,
2522 		0x40200, 0x40214,
2523 		0x40228, 0x40228,
2524 		0x40240, 0x40258,
2525 		0x40280, 0x40280,
2526 		0x40304, 0x40304,
2527 		0x40330, 0x4033c,
2528 		0x41304, 0x413c8,
2529 		0x413d0, 0x413dc,
2530 		0x413f0, 0x413f0,
2531 		0x41400, 0x4140c,
2532 		0x41414, 0x4141c,
2533 		0x41480, 0x414d0,
2534 		0x44000, 0x4407c,
2535 		0x440c0, 0x441ac,
2536 		0x441b4, 0x4427c,
2537 		0x442c0, 0x443ac,
2538 		0x443b4, 0x4447c,
2539 		0x444c0, 0x445ac,
2540 		0x445b4, 0x4467c,
2541 		0x446c0, 0x447ac,
2542 		0x447b4, 0x4487c,
2543 		0x448c0, 0x449ac,
2544 		0x449b4, 0x44a7c,
2545 		0x44ac0, 0x44bac,
2546 		0x44bb4, 0x44c7c,
2547 		0x44cc0, 0x44dac,
2548 		0x44db4, 0x44e7c,
2549 		0x44ec0, 0x44fac,
2550 		0x44fb4, 0x4507c,
2551 		0x450c0, 0x451ac,
2552 		0x451b4, 0x451fc,
2553 		0x45800, 0x45804,
2554 		0x45810, 0x45830,
2555 		0x45840, 0x45860,
2556 		0x45868, 0x45868,
2557 		0x45880, 0x45884,
2558 		0x458a0, 0x458b0,
2559 		0x45a00, 0x45a04,
2560 		0x45a10, 0x45a30,
2561 		0x45a40, 0x45a60,
2562 		0x45a68, 0x45a68,
2563 		0x45a80, 0x45a84,
2564 		0x45aa0, 0x45ab0,
2565 		0x460c0, 0x460e4,
2566 		0x47000, 0x4703c,
2567 		0x47044, 0x4708c,
2568 		0x47200, 0x47250,
2569 		0x47400, 0x47408,
2570 		0x47414, 0x47420,
2571 		0x47600, 0x47618,
2572 		0x47800, 0x47814,
2573 		0x47820, 0x4782c,
2574 		0x50000, 0x50084,
2575 		0x50090, 0x500cc,
2576 		0x50300, 0x50384,
2577 		0x50400, 0x50400,
2578 		0x50800, 0x50884,
2579 		0x50890, 0x508cc,
2580 		0x50b00, 0x50b84,
2581 		0x50c00, 0x50c00,
2582 		0x51000, 0x51020,
2583 		0x51028, 0x510b0,
2584 		0x51300, 0x51324,
2585 	};
2586 
2587 	static const unsigned int t6vf_reg_ranges[] = {
2588 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2589 		VF_MPS_REG(A_MPS_VF_CTL),
2590 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2591 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2592 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2593 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2594 		FW_T6VF_MBDATA_BASE_ADDR,
2595 		FW_T6VF_MBDATA_BASE_ADDR +
2596 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2597 	};
2598 
2599 	u32 *buf_end = (u32 *)(buf + buf_size);
2600 	const unsigned int *reg_ranges;
2601 	int reg_ranges_size, range;
2602 	unsigned int chip_version = chip_id(adap);
2603 
2604 	/*
2605 	 * Select the right set of register ranges to dump depending on the
2606 	 * adapter chip type.
2607 	 */
2608 	switch (chip_version) {
2609 	case CHELSIO_T4:
2610 		if (adap->flags & IS_VF) {
2611 			reg_ranges = t4vf_reg_ranges;
2612 			reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges);
2613 		} else {
2614 			reg_ranges = t4_reg_ranges;
2615 			reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2616 		}
2617 		break;
2618 
2619 	case CHELSIO_T5:
2620 		if (adap->flags & IS_VF) {
2621 			reg_ranges = t5vf_reg_ranges;
2622 			reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges);
2623 		} else {
2624 			reg_ranges = t5_reg_ranges;
2625 			reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2626 		}
2627 		break;
2628 
2629 	case CHELSIO_T6:
2630 		if (adap->flags & IS_VF) {
2631 			reg_ranges = t6vf_reg_ranges;
2632 			reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges);
2633 		} else {
2634 			reg_ranges = t6_reg_ranges;
2635 			reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2636 		}
2637 		break;
2638 
2639 	default:
2640 		CH_ERR(adap,
2641 			"Unsupported chip version %d\n", chip_version);
2642 		return;
2643 	}
2644 
2645 	/*
2646 	 * Clear the register buffer and insert the appropriate register
2647 	 * values selected by the above register ranges.
2648 	 */
2649 	memset(buf, 0, buf_size);
2650 	for (range = 0; range < reg_ranges_size; range += 2) {
2651 		unsigned int reg = reg_ranges[range];
2652 		unsigned int last_reg = reg_ranges[range + 1];
2653 		u32 *bufp = (u32 *)(buf + reg);
2654 
2655 		/*
2656 		 * Iterate across the register range filling in the register
2657 		 * buffer but don't write past the end of the register buffer.
2658 		 */
2659 		while (reg <= last_reg && bufp < buf_end) {
2660 			*bufp++ = t4_read_reg(adap, reg);
2661 			reg += sizeof(u32);
2662 		}
2663 	}
2664 }
2665 
2666 /*
2667  * Partial EEPROM Vital Product Data structure.  The VPD starts with one ID
2668  * header followed by one or more VPD-R sections, each with its own header.
2669  */
2670 struct t4_vpd_hdr {
2671 	u8  id_tag;
2672 	u8  id_len[2];
2673 	u8  id_data[ID_LEN];
2674 };
2675 
2676 struct t4_vpdr_hdr {
2677 	u8  vpdr_tag;
2678 	u8  vpdr_len[2];
2679 };
2680 
2681 /*
2682  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
2683  */
2684 #define EEPROM_DELAY		10		/* 10us per poll spin */
2685 #define EEPROM_MAX_POLL		5000		/* x 5000 == 50ms */
2686 
2687 #define EEPROM_STAT_ADDR	0x7bfc
2688 #define VPD_SIZE		0x800
2689 #define VPD_BASE		0x400
2690 #define VPD_BASE_OLD		0
2691 #define VPD_LEN			1024
2692 #define VPD_INFO_FLD_HDR_SIZE	3
2693 #define CHELSIO_VPD_UNIQUE_ID	0x82
2694 
2695 /*
2696  * Small utility function to wait till any outstanding VPD Access is complete.
2697  * We have a per-adapter state variable "VPD Busy" to indicate when we have a
2698  * VPD Access in flight.  This allows us to handle the problem of having a
2699  * previous VPD Access time out and prevent an attempt to inject a new VPD
2700  * Request before any in-flight VPD reguest has completed.
2701  */
2702 static int t4_seeprom_wait(struct adapter *adapter)
2703 {
2704 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2705 	int max_poll;
2706 
2707 	/*
2708 	 * If no VPD Access is in flight, we can just return success right
2709 	 * away.
2710 	 */
2711 	if (!adapter->vpd_busy)
2712 		return 0;
2713 
2714 	/*
2715 	 * Poll the VPD Capability Address/Flag register waiting for it
2716 	 * to indicate that the operation is complete.
2717 	 */
2718 	max_poll = EEPROM_MAX_POLL;
2719 	do {
2720 		u16 val;
2721 
2722 		udelay(EEPROM_DELAY);
2723 		t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
2724 
2725 		/*
2726 		 * If the operation is complete, mark the VPD as no longer
2727 		 * busy and return success.
2728 		 */
2729 		if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
2730 			adapter->vpd_busy = 0;
2731 			return 0;
2732 		}
2733 	} while (--max_poll);
2734 
2735 	/*
2736 	 * Failure!  Note that we leave the VPD Busy status set in order to
2737 	 * avoid pushing a new VPD Access request into the VPD Capability till
2738 	 * the current operation eventually succeeds.  It's a bug to issue a
2739 	 * new request when an existing request is in flight and will result
2740 	 * in corrupt hardware state.
2741 	 */
2742 	return -ETIMEDOUT;
2743 }
2744 
2745 /**
2746  *	t4_seeprom_read - read a serial EEPROM location
2747  *	@adapter: adapter to read
2748  *	@addr: EEPROM virtual address
2749  *	@data: where to store the read data
2750  *
2751  *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
2752  *	VPD capability.  Note that this function must be called with a virtual
2753  *	address.
2754  */
2755 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2756 {
2757 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2758 	int ret;
2759 
2760 	/*
2761 	 * VPD Accesses must alway be 4-byte aligned!
2762 	 */
2763 	if (addr >= EEPROMVSIZE || (addr & 3))
2764 		return -EINVAL;
2765 
2766 	/*
2767 	 * Wait for any previous operation which may still be in flight to
2768 	 * complete.
2769 	 */
2770 	ret = t4_seeprom_wait(adapter);
2771 	if (ret) {
2772 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2773 		return ret;
2774 	}
2775 
2776 	/*
2777 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2778 	 * for our request to complete.  If it doesn't complete, note the
2779 	 * error and return it to our caller.  Note that we do not reset the
2780 	 * VPD Busy status!
2781 	 */
2782 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2783 	adapter->vpd_busy = 1;
2784 	adapter->vpd_flag = PCI_VPD_ADDR_F;
2785 	ret = t4_seeprom_wait(adapter);
2786 	if (ret) {
2787 		CH_ERR(adapter, "VPD read of address %#x failed\n", addr);
2788 		return ret;
2789 	}
2790 
2791 	/*
2792 	 * Grab the returned data, swizzle it into our endianness and
2793 	 * return success.
2794 	 */
2795 	t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2796 	*data = le32_to_cpu(*data);
2797 	return 0;
2798 }
2799 
2800 /**
2801  *	t4_seeprom_write - write a serial EEPROM location
2802  *	@adapter: adapter to write
2803  *	@addr: virtual EEPROM address
2804  *	@data: value to write
2805  *
2806  *	Write a 32-bit word to a location in serial EEPROM using the card's PCI
2807  *	VPD capability.  Note that this function must be called with a virtual
2808  *	address.
2809  */
2810 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2811 {
2812 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2813 	int ret;
2814 	u32 stats_reg;
2815 	int max_poll;
2816 
2817 	/*
2818 	 * VPD Accesses must alway be 4-byte aligned!
2819 	 */
2820 	if (addr >= EEPROMVSIZE || (addr & 3))
2821 		return -EINVAL;
2822 
2823 	/*
2824 	 * Wait for any previous operation which may still be in flight to
2825 	 * complete.
2826 	 */
2827 	ret = t4_seeprom_wait(adapter);
2828 	if (ret) {
2829 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2830 		return ret;
2831 	}
2832 
2833 	/*
2834 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2835 	 * for our request to complete.  If it doesn't complete, note the
2836 	 * error and return it to our caller.  Note that we do not reset the
2837 	 * VPD Busy status!
2838 	 */
2839 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2840 				 cpu_to_le32(data));
2841 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2842 				 (u16)addr | PCI_VPD_ADDR_F);
2843 	adapter->vpd_busy = 1;
2844 	adapter->vpd_flag = 0;
2845 	ret = t4_seeprom_wait(adapter);
2846 	if (ret) {
2847 		CH_ERR(adapter, "VPD write of address %#x failed\n", addr);
2848 		return ret;
2849 	}
2850 
2851 	/*
2852 	 * Reset PCI_VPD_DATA register after a transaction and wait for our
2853 	 * request to complete. If it doesn't complete, return error.
2854 	 */
2855 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2856 	max_poll = EEPROM_MAX_POLL;
2857 	do {
2858 		udelay(EEPROM_DELAY);
2859 		t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2860 	} while ((stats_reg & 0x1) && --max_poll);
2861 	if (!max_poll)
2862 		return -ETIMEDOUT;
2863 
2864 	/* Return success! */
2865 	return 0;
2866 }
2867 
2868 /**
2869  *	t4_eeprom_ptov - translate a physical EEPROM address to virtual
2870  *	@phys_addr: the physical EEPROM address
2871  *	@fn: the PCI function number
2872  *	@sz: size of function-specific area
2873  *
2874  *	Translate a physical EEPROM address to virtual.  The first 1K is
2875  *	accessed through virtual addresses starting at 31K, the rest is
2876  *	accessed through virtual addresses starting at 0.
2877  *
2878  *	The mapping is as follows:
2879  *	[0..1K) -> [31K..32K)
2880  *	[1K..1K+A) -> [ES-A..ES)
2881  *	[1K+A..ES) -> [0..ES-A-1K)
2882  *
2883  *	where A = @fn * @sz, and ES = EEPROM size.
2884  */
2885 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2886 {
2887 	fn *= sz;
2888 	if (phys_addr < 1024)
2889 		return phys_addr + (31 << 10);
2890 	if (phys_addr < 1024 + fn)
2891 		return EEPROMSIZE - fn + phys_addr - 1024;
2892 	if (phys_addr < EEPROMSIZE)
2893 		return phys_addr - 1024 - fn;
2894 	return -EINVAL;
2895 }
2896 
2897 /**
2898  *	t4_seeprom_wp - enable/disable EEPROM write protection
2899  *	@adapter: the adapter
2900  *	@enable: whether to enable or disable write protection
2901  *
2902  *	Enables or disables write protection on the serial EEPROM.
2903  */
2904 int t4_seeprom_wp(struct adapter *adapter, int enable)
2905 {
2906 	return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2907 }
2908 
2909 /**
2910  *	get_vpd_keyword_val - Locates an information field keyword in the VPD
2911  *	@vpd: Pointer to buffered vpd data structure
2912  *	@kw: The keyword to search for
2913  *	@region: VPD region to search (starting from 0)
2914  *
2915  *	Returns the value of the information field keyword or
2916  *	-ENOENT otherwise.
2917  */
2918 static int get_vpd_keyword_val(const u8 *vpd, const char *kw, int region)
2919 {
2920 	int i, tag;
2921 	unsigned int offset, len;
2922 	const struct t4_vpdr_hdr *vpdr;
2923 
2924 	offset = sizeof(struct t4_vpd_hdr);
2925 	vpdr = (const void *)(vpd + offset);
2926 	tag = vpdr->vpdr_tag;
2927 	len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2928 	while (region--) {
2929 		offset += sizeof(struct t4_vpdr_hdr) + len;
2930 		vpdr = (const void *)(vpd + offset);
2931 		if (++tag != vpdr->vpdr_tag)
2932 			return -ENOENT;
2933 		len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2934 	}
2935 	offset += sizeof(struct t4_vpdr_hdr);
2936 
2937 	if (offset + len > VPD_LEN) {
2938 		return -ENOENT;
2939 	}
2940 
2941 	for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
2942 		if (memcmp(vpd + i , kw , 2) == 0){
2943 			i += VPD_INFO_FLD_HDR_SIZE;
2944 			return i;
2945 		}
2946 
2947 		i += VPD_INFO_FLD_HDR_SIZE + vpd[i+2];
2948 	}
2949 
2950 	return -ENOENT;
2951 }
2952 
2953 
2954 /**
2955  *	get_vpd_params - read VPD parameters from VPD EEPROM
2956  *	@adapter: adapter to read
2957  *	@p: where to store the parameters
2958  *	@vpd: caller provided temporary space to read the VPD into
2959  *
2960  *	Reads card parameters stored in VPD EEPROM.
2961  */
2962 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p,
2963     uint16_t device_id, u32 *buf)
2964 {
2965 	int i, ret, addr;
2966 	int ec, sn, pn, na, md;
2967 	u8 csum;
2968 	const u8 *vpd = (const u8 *)buf;
2969 
2970 	/*
2971 	 * Card information normally starts at VPD_BASE but early cards had
2972 	 * it at 0.
2973 	 */
2974 	ret = t4_seeprom_read(adapter, VPD_BASE, buf);
2975 	if (ret)
2976 		return (ret);
2977 
2978 	/*
2979 	 * The VPD shall have a unique identifier specified by the PCI SIG.
2980 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2981 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2982 	 * is expected to automatically put this entry at the
2983 	 * beginning of the VPD.
2984 	 */
2985 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2986 
2987 	for (i = 0; i < VPD_LEN; i += 4) {
2988 		ret = t4_seeprom_read(adapter, addr + i, buf++);
2989 		if (ret)
2990 			return ret;
2991 	}
2992 
2993 #define FIND_VPD_KW(var,name) do { \
2994 	var = get_vpd_keyword_val(vpd, name, 0); \
2995 	if (var < 0) { \
2996 		CH_ERR(adapter, "missing VPD keyword " name "\n"); \
2997 		return -EINVAL; \
2998 	} \
2999 } while (0)
3000 
3001 	FIND_VPD_KW(i, "RV");
3002 	for (csum = 0; i >= 0; i--)
3003 		csum += vpd[i];
3004 
3005 	if (csum) {
3006 		CH_ERR(adapter,
3007 			"corrupted VPD EEPROM, actual csum %u\n", csum);
3008 		return -EINVAL;
3009 	}
3010 
3011 	FIND_VPD_KW(ec, "EC");
3012 	FIND_VPD_KW(sn, "SN");
3013 	FIND_VPD_KW(pn, "PN");
3014 	FIND_VPD_KW(na, "NA");
3015 #undef FIND_VPD_KW
3016 
3017 	memcpy(p->id, vpd + offsetof(struct t4_vpd_hdr, id_data), ID_LEN);
3018 	strstrip(p->id);
3019 	memcpy(p->ec, vpd + ec, EC_LEN);
3020 	strstrip(p->ec);
3021 	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
3022 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
3023 	strstrip(p->sn);
3024 	i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
3025 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
3026 	strstrip((char *)p->pn);
3027 	i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
3028 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
3029 	strstrip((char *)p->na);
3030 
3031 	if (device_id & 0x80)
3032 		return 0;	/* Custom card */
3033 
3034 	md = get_vpd_keyword_val(vpd, "VF", 1);
3035 	if (md < 0) {
3036 		snprintf(p->md, sizeof(p->md), "unknown");
3037 	} else {
3038 		i = vpd[md - VPD_INFO_FLD_HDR_SIZE + 2];
3039 		memcpy(p->md, vpd + md, min(i, MD_LEN));
3040 		strstrip((char *)p->md);
3041 	}
3042 
3043 	return 0;
3044 }
3045 
3046 /* serial flash and firmware constants and flash config file constants */
3047 enum {
3048 	SF_ATTEMPTS = 10,	/* max retries for SF operations */
3049 
3050 	/* flash command opcodes */
3051 	SF_PROG_PAGE    = 2,	/* program 256B page */
3052 	SF_WR_DISABLE   = 4,	/* disable writes */
3053 	SF_RD_STATUS    = 5,	/* read status register */
3054 	SF_WR_ENABLE    = 6,	/* enable writes */
3055 	SF_RD_DATA_FAST = 0xb,	/* read flash */
3056 	SF_RD_ID	= 0x9f,	/* read ID */
3057 	SF_ERASE_SECTOR = 0xd8,	/* erase 64KB sector */
3058 };
3059 
3060 /**
3061  *	sf1_read - read data from the serial flash
3062  *	@adapter: the adapter
3063  *	@byte_cnt: number of bytes to read
3064  *	@cont: whether another operation will be chained
3065  *	@lock: whether to lock SF for PL access only
3066  *	@valp: where to store the read data
3067  *
3068  *	Reads up to 4 bytes of data from the serial flash.  The location of
3069  *	the read needs to be specified prior to calling this by issuing the
3070  *	appropriate commands to the serial flash.
3071  */
3072 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
3073 		    int lock, u32 *valp)
3074 {
3075 	int ret;
3076 
3077 	if (!byte_cnt || byte_cnt > 4)
3078 		return -EINVAL;
3079 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3080 		return -EBUSY;
3081 	t4_write_reg(adapter, A_SF_OP,
3082 		     V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
3083 	ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3084 	if (!ret)
3085 		*valp = t4_read_reg(adapter, A_SF_DATA);
3086 	return ret;
3087 }
3088 
3089 /**
3090  *	sf1_write - write data to the serial flash
3091  *	@adapter: the adapter
3092  *	@byte_cnt: number of bytes to write
3093  *	@cont: whether another operation will be chained
3094  *	@lock: whether to lock SF for PL access only
3095  *	@val: value to write
3096  *
3097  *	Writes up to 4 bytes of data to the serial flash.  The location of
3098  *	the write needs to be specified prior to calling this by issuing the
3099  *	appropriate commands to the serial flash.
3100  */
3101 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
3102 		     int lock, u32 val)
3103 {
3104 	if (!byte_cnt || byte_cnt > 4)
3105 		return -EINVAL;
3106 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3107 		return -EBUSY;
3108 	t4_write_reg(adapter, A_SF_DATA, val);
3109 	t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
3110 		     V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
3111 	return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3112 }
3113 
3114 /**
3115  *	flash_wait_op - wait for a flash operation to complete
3116  *	@adapter: the adapter
3117  *	@attempts: max number of polls of the status register
3118  *	@delay: delay between polls in ms
3119  *
3120  *	Wait for a flash operation to complete by polling the status register.
3121  */
3122 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3123 {
3124 	int ret;
3125 	u32 status;
3126 
3127 	while (1) {
3128 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3129 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3130 			return ret;
3131 		if (!(status & 1))
3132 			return 0;
3133 		if (--attempts == 0)
3134 			return -EAGAIN;
3135 		if (delay)
3136 			msleep(delay);
3137 	}
3138 }
3139 
3140 /**
3141  *	t4_read_flash - read words from serial flash
3142  *	@adapter: the adapter
3143  *	@addr: the start address for the read
3144  *	@nwords: how many 32-bit words to read
3145  *	@data: where to store the read data
3146  *	@byte_oriented: whether to store data as bytes or as words
3147  *
3148  *	Read the specified number of 32-bit words from the serial flash.
3149  *	If @byte_oriented is set the read data is stored as a byte array
3150  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3151  *	natural endianness.
3152  */
3153 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3154 		  unsigned int nwords, u32 *data, int byte_oriented)
3155 {
3156 	int ret;
3157 
3158 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3159 		return -EINVAL;
3160 
3161 	addr = swab32(addr) | SF_RD_DATA_FAST;
3162 
3163 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3164 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3165 		return ret;
3166 
3167 	for ( ; nwords; nwords--, data++) {
3168 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3169 		if (nwords == 1)
3170 			t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3171 		if (ret)
3172 			return ret;
3173 		if (byte_oriented)
3174 			*data = (__force __u32)(cpu_to_be32(*data));
3175 	}
3176 	return 0;
3177 }
3178 
3179 /**
3180  *	t4_write_flash - write up to a page of data to the serial flash
3181  *	@adapter: the adapter
3182  *	@addr: the start address to write
3183  *	@n: length of data to write in bytes
3184  *	@data: the data to write
3185  *	@byte_oriented: whether to store data as bytes or as words
3186  *
3187  *	Writes up to a page of data (256 bytes) to the serial flash starting
3188  *	at the given address.  All the data must be written to the same page.
3189  *	If @byte_oriented is set the write data is stored as byte stream
3190  *	(i.e. matches what on disk), otherwise in big-endian.
3191  */
3192 int t4_write_flash(struct adapter *adapter, unsigned int addr,
3193 			  unsigned int n, const u8 *data, int byte_oriented)
3194 {
3195 	int ret;
3196 	u32 buf[SF_PAGE_SIZE / 4];
3197 	unsigned int i, c, left, val, offset = addr & 0xff;
3198 
3199 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3200 		return -EINVAL;
3201 
3202 	val = swab32(addr) | SF_PROG_PAGE;
3203 
3204 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3205 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3206 		goto unlock;
3207 
3208 	for (left = n; left; left -= c) {
3209 		c = min(left, 4U);
3210 		for (val = 0, i = 0; i < c; ++i)
3211 			val = (val << 8) + *data++;
3212 
3213 		if (!byte_oriented)
3214 			val = cpu_to_be32(val);
3215 
3216 		ret = sf1_write(adapter, c, c != left, 1, val);
3217 		if (ret)
3218 			goto unlock;
3219 	}
3220 	ret = flash_wait_op(adapter, 8, 1);
3221 	if (ret)
3222 		goto unlock;
3223 
3224 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3225 
3226 	/* Read the page to verify the write succeeded */
3227 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3228 			    byte_oriented);
3229 	if (ret)
3230 		return ret;
3231 
3232 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3233 		CH_ERR(adapter,
3234 			"failed to correctly write the flash page at %#x\n",
3235 			addr);
3236 		return -EIO;
3237 	}
3238 	return 0;
3239 
3240 unlock:
3241 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3242 	return ret;
3243 }
3244 
3245 /**
3246  *	t4_get_fw_version - read the firmware version
3247  *	@adapter: the adapter
3248  *	@vers: where to place the version
3249  *
3250  *	Reads the FW version from flash.
3251  */
3252 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3253 {
3254 	return t4_read_flash(adapter, FLASH_FW_START +
3255 			     offsetof(struct fw_hdr, fw_ver), 1,
3256 			     vers, 0);
3257 }
3258 
3259 /**
3260  *	t4_get_bs_version - read the firmware bootstrap version
3261  *	@adapter: the adapter
3262  *	@vers: where to place the version
3263  *
3264  *	Reads the FW Bootstrap version from flash.
3265  */
3266 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3267 {
3268 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3269 			     offsetof(struct fw_hdr, fw_ver), 1,
3270 			     vers, 0);
3271 }
3272 
3273 /**
3274  *	t4_get_tp_version - read the TP microcode version
3275  *	@adapter: the adapter
3276  *	@vers: where to place the version
3277  *
3278  *	Reads the TP microcode version from flash.
3279  */
3280 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3281 {
3282 	return t4_read_flash(adapter, FLASH_FW_START +
3283 			     offsetof(struct fw_hdr, tp_microcode_ver),
3284 			     1, vers, 0);
3285 }
3286 
3287 /**
3288  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3289  *	@adapter: the adapter
3290  *	@vers: where to place the version
3291  *
3292  *	Reads the Expansion ROM header from FLASH and returns the version
3293  *	number (if present) through the @vers return value pointer.  We return
3294  *	this in the Firmware Version Format since it's convenient.  Return
3295  *	0 on success, -ENOENT if no Expansion ROM is present.
3296  */
3297 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3298 {
3299 	struct exprom_header {
3300 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3301 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3302 	} *hdr;
3303 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3304 					   sizeof(u32))];
3305 	int ret;
3306 
3307 	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3308 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3309 			    0);
3310 	if (ret)
3311 		return ret;
3312 
3313 	hdr = (struct exprom_header *)exprom_header_buf;
3314 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3315 		return -ENOENT;
3316 
3317 	*vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
3318 		 V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
3319 		 V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
3320 		 V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
3321 	return 0;
3322 }
3323 
3324 /**
3325  *	t4_get_scfg_version - return the Serial Configuration version
3326  *	@adapter: the adapter
3327  *	@vers: where to place the version
3328  *
3329  *	Reads the Serial Configuration Version via the Firmware interface
3330  *	(thus this can only be called once we're ready to issue Firmware
3331  *	commands).  The format of the Serial Configuration version is
3332  *	adapter specific.  Returns 0 on success, an error on failure.
3333  *
3334  *	Note that early versions of the Firmware didn't include the ability
3335  *	to retrieve the Serial Configuration version, so we zero-out the
3336  *	return-value parameter in that case to avoid leaving it with
3337  *	garbage in it.
3338  *
3339  *	Also note that the Firmware will return its cached copy of the Serial
3340  *	Initialization Revision ID, not the actual Revision ID as written in
3341  *	the Serial EEPROM.  This is only an issue if a new VPD has been written
3342  *	and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3343  *	it's best to defer calling this routine till after a FW_RESET_CMD has
3344  *	been issued if the Host Driver will be performing a full adapter
3345  *	initialization.
3346  */
3347 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3348 {
3349 	u32 scfgrev_param;
3350 	int ret;
3351 
3352 	scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3353 			 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV));
3354 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3355 			      1, &scfgrev_param, vers);
3356 	if (ret)
3357 		*vers = 0;
3358 	return ret;
3359 }
3360 
3361 /**
3362  *	t4_get_vpd_version - return the VPD version
3363  *	@adapter: the adapter
3364  *	@vers: where to place the version
3365  *
3366  *	Reads the VPD via the Firmware interface (thus this can only be called
3367  *	once we're ready to issue Firmware commands).  The format of the
3368  *	VPD version is adapter specific.  Returns 0 on success, an error on
3369  *	failure.
3370  *
3371  *	Note that early versions of the Firmware didn't include the ability
3372  *	to retrieve the VPD version, so we zero-out the return-value parameter
3373  *	in that case to avoid leaving it with garbage in it.
3374  *
3375  *	Also note that the Firmware will return its cached copy of the VPD
3376  *	Revision ID, not the actual Revision ID as written in the Serial
3377  *	EEPROM.  This is only an issue if a new VPD has been written and the
3378  *	Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3379  *	to defer calling this routine till after a FW_RESET_CMD has been issued
3380  *	if the Host Driver will be performing a full adapter initialization.
3381  */
3382 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3383 {
3384 	u32 vpdrev_param;
3385 	int ret;
3386 
3387 	vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3388 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV));
3389 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3390 			      1, &vpdrev_param, vers);
3391 	if (ret)
3392 		*vers = 0;
3393 	return ret;
3394 }
3395 
3396 /**
3397  *	t4_get_version_info - extract various chip/firmware version information
3398  *	@adapter: the adapter
3399  *
3400  *	Reads various chip/firmware version numbers and stores them into the
3401  *	adapter Adapter Parameters structure.  If any of the efforts fails
3402  *	the first failure will be returned, but all of the version numbers
3403  *	will be read.
3404  */
3405 int t4_get_version_info(struct adapter *adapter)
3406 {
3407 	int ret = 0;
3408 
3409 	#define FIRST_RET(__getvinfo) \
3410 	do { \
3411 		int __ret = __getvinfo; \
3412 		if (__ret && !ret) \
3413 			ret = __ret; \
3414 	} while (0)
3415 
3416 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3417 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3418 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3419 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3420 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3421 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3422 
3423 	#undef FIRST_RET
3424 
3425 	return ret;
3426 }
3427 
3428 /**
3429  *	t4_flash_erase_sectors - erase a range of flash sectors
3430  *	@adapter: the adapter
3431  *	@start: the first sector to erase
3432  *	@end: the last sector to erase
3433  *
3434  *	Erases the sectors in the given inclusive range.
3435  */
3436 int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3437 {
3438 	int ret = 0;
3439 
3440 	if (end >= adapter->params.sf_nsec)
3441 		return -EINVAL;
3442 
3443 	while (start <= end) {
3444 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3445 		    (ret = sf1_write(adapter, 4, 0, 1,
3446 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3447 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3448 			CH_ERR(adapter,
3449 				"erase of flash sector %d failed, error %d\n",
3450 				start, ret);
3451 			break;
3452 		}
3453 		start++;
3454 	}
3455 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3456 	return ret;
3457 }
3458 
3459 /**
3460  *	t4_flash_cfg_addr - return the address of the flash configuration file
3461  *	@adapter: the adapter
3462  *
3463  *	Return the address within the flash where the Firmware Configuration
3464  *	File is stored, or an error if the device FLASH is too small to contain
3465  *	a Firmware Configuration File.
3466  */
3467 int t4_flash_cfg_addr(struct adapter *adapter)
3468 {
3469 	/*
3470 	 * If the device FLASH isn't large enough to hold a Firmware
3471 	 * Configuration File, return an error.
3472 	 */
3473 	if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
3474 		return -ENOSPC;
3475 
3476 	return FLASH_CFG_START;
3477 }
3478 
3479 /*
3480  * Return TRUE if the specified firmware matches the adapter.  I.e. T4
3481  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3482  * and emit an error message for mismatched firmware to save our caller the
3483  * effort ...
3484  */
3485 static int t4_fw_matches_chip(struct adapter *adap,
3486 			      const struct fw_hdr *hdr)
3487 {
3488 	/*
3489 	 * The expression below will return FALSE for any unsupported adapter
3490 	 * which will keep us "honest" in the future ...
3491 	 */
3492 	if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) ||
3493 	    (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) ||
3494 	    (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6))
3495 		return 1;
3496 
3497 	CH_ERR(adap,
3498 		"FW image (%d) is not suitable for this adapter (%d)\n",
3499 		hdr->chip, chip_id(adap));
3500 	return 0;
3501 }
3502 
3503 /**
3504  *	t4_load_fw - download firmware
3505  *	@adap: the adapter
3506  *	@fw_data: the firmware image to write
3507  *	@size: image size
3508  *
3509  *	Write the supplied firmware image to the card's serial flash.
3510  */
3511 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3512 {
3513 	u32 csum;
3514 	int ret, addr;
3515 	unsigned int i;
3516 	u8 first_page[SF_PAGE_SIZE];
3517 	const u32 *p = (const u32 *)fw_data;
3518 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3519 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3520 	unsigned int fw_start_sec;
3521 	unsigned int fw_start;
3522 	unsigned int fw_size;
3523 
3524 	if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) {
3525 		fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC;
3526 		fw_start = FLASH_FWBOOTSTRAP_START;
3527 		fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE;
3528 	} else {
3529 		fw_start_sec = FLASH_FW_START_SEC;
3530  		fw_start = FLASH_FW_START;
3531 		fw_size = FLASH_FW_MAX_SIZE;
3532 	}
3533 
3534 	if (!size) {
3535 		CH_ERR(adap, "FW image has no data\n");
3536 		return -EINVAL;
3537 	}
3538 	if (size & 511) {
3539 		CH_ERR(adap,
3540 			"FW image size not multiple of 512 bytes\n");
3541 		return -EINVAL;
3542 	}
3543 	if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) {
3544 		CH_ERR(adap,
3545 			"FW image size differs from size in FW header\n");
3546 		return -EINVAL;
3547 	}
3548 	if (size > fw_size) {
3549 		CH_ERR(adap, "FW image too large, max is %u bytes\n",
3550 			fw_size);
3551 		return -EFBIG;
3552 	}
3553 	if (!t4_fw_matches_chip(adap, hdr))
3554 		return -EINVAL;
3555 
3556 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3557 		csum += be32_to_cpu(p[i]);
3558 
3559 	if (csum != 0xffffffff) {
3560 		CH_ERR(adap,
3561 			"corrupted firmware image, checksum %#x\n", csum);
3562 		return -EINVAL;
3563 	}
3564 
3565 	i = DIV_ROUND_UP(size, sf_sec_size);	/* # of sectors spanned */
3566 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3567 	if (ret)
3568 		goto out;
3569 
3570 	/*
3571 	 * We write the correct version at the end so the driver can see a bad
3572 	 * version if the FW write fails.  Start by writing a copy of the
3573 	 * first page with a bad version.
3574 	 */
3575 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3576 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3577 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
3578 	if (ret)
3579 		goto out;
3580 
3581 	addr = fw_start;
3582 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3583 		addr += SF_PAGE_SIZE;
3584 		fw_data += SF_PAGE_SIZE;
3585 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
3586 		if (ret)
3587 			goto out;
3588 	}
3589 
3590 	ret = t4_write_flash(adap,
3591 			     fw_start + offsetof(struct fw_hdr, fw_ver),
3592 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
3593 out:
3594 	if (ret)
3595 		CH_ERR(adap, "firmware download failed, error %d\n",
3596 			ret);
3597 	return ret;
3598 }
3599 
3600 /**
3601  *	t4_fwcache - firmware cache operation
3602  *	@adap: the adapter
3603  *	@op  : the operation (flush or flush and invalidate)
3604  */
3605 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3606 {
3607 	struct fw_params_cmd c;
3608 
3609 	memset(&c, 0, sizeof(c));
3610 	c.op_to_vfn =
3611 	    cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3612 			    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3613 				V_FW_PARAMS_CMD_PFN(adap->pf) |
3614 				V_FW_PARAMS_CMD_VFN(0));
3615 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3616 	c.param[0].mnem =
3617 	    cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3618 			    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE));
3619 	c.param[0].val = (__force __be32)op;
3620 
3621 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3622 }
3623 
3624 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3625 			unsigned int *pif_req_wrptr,
3626 			unsigned int *pif_rsp_wrptr)
3627 {
3628 	int i, j;
3629 	u32 cfg, val, req, rsp;
3630 
3631 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3632 	if (cfg & F_LADBGEN)
3633 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3634 
3635 	val = t4_read_reg(adap, A_CIM_DEBUGSTS);
3636 	req = G_POLADBGWRPTR(val);
3637 	rsp = G_PILADBGWRPTR(val);
3638 	if (pif_req_wrptr)
3639 		*pif_req_wrptr = req;
3640 	if (pif_rsp_wrptr)
3641 		*pif_rsp_wrptr = rsp;
3642 
3643 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3644 		for (j = 0; j < 6; j++) {
3645 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
3646 				     V_PILADBGRDPTR(rsp));
3647 			*pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
3648 			*pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
3649 			req++;
3650 			rsp++;
3651 		}
3652 		req = (req + 2) & M_POLADBGRDPTR;
3653 		rsp = (rsp + 2) & M_PILADBGRDPTR;
3654 	}
3655 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3656 }
3657 
3658 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3659 {
3660 	u32 cfg;
3661 	int i, j, idx;
3662 
3663 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3664 	if (cfg & F_LADBGEN)
3665 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3666 
3667 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3668 		for (j = 0; j < 5; j++) {
3669 			idx = 8 * i + j;
3670 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
3671 				     V_PILADBGRDPTR(idx));
3672 			*ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
3673 			*ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
3674 		}
3675 	}
3676 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3677 }
3678 
3679 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3680 {
3681 	unsigned int i, j;
3682 
3683 	for (i = 0; i < 8; i++) {
3684 		u32 *p = la_buf + i;
3685 
3686 		t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
3687 		j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
3688 		t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
3689 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3690 			*p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
3691 	}
3692 }
3693 
3694 /**
3695  *	t4_link_l1cfg - apply link configuration to MAC/PHY
3696  *	@phy: the PHY to setup
3697  *	@mac: the MAC to setup
3698  *	@lc: the requested link configuration
3699  *
3700  *	Set up a port's MAC and PHY according to a desired link configuration.
3701  *	- If the PHY can auto-negotiate first decide what to advertise, then
3702  *	  enable/disable auto-negotiation as desired, and reset.
3703  *	- If the PHY does not auto-negotiate just reset it.
3704  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3705  *	  otherwise do it later based on the outcome of auto-negotiation.
3706  */
3707 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3708 		  struct link_config *lc)
3709 {
3710 	struct fw_port_cmd c;
3711 	unsigned int mdi = V_FW_PORT_CAP_MDI(FW_PORT_CAP_MDI_AUTO);
3712 	unsigned int aneg, fc, fec, speed, rcap;
3713 
3714 	fc = 0;
3715 	if (lc->requested_fc & PAUSE_RX)
3716 		fc |= FW_PORT_CAP_FC_RX;
3717 	if (lc->requested_fc & PAUSE_TX)
3718 		fc |= FW_PORT_CAP_FC_TX;
3719 
3720 	fec = 0;
3721 	if (lc->requested_fec & FEC_RS)
3722 		fec = FW_PORT_CAP_FEC_RS;
3723 	else if (lc->requested_fec & FEC_BASER_RS)
3724 		fec = FW_PORT_CAP_FEC_BASER_RS;
3725 
3726 	if (!(lc->supported & FW_PORT_CAP_ANEG) ||
3727 	    lc->requested_aneg == AUTONEG_DISABLE) {
3728 		aneg = 0;
3729 		switch (lc->requested_speed) {
3730 		case 100:
3731 			speed = FW_PORT_CAP_SPEED_100G;
3732 			break;
3733 		case 40:
3734 			speed = FW_PORT_CAP_SPEED_40G;
3735 			break;
3736 		case 25:
3737 			speed = FW_PORT_CAP_SPEED_25G;
3738 			break;
3739 		case 10:
3740 			speed = FW_PORT_CAP_SPEED_10G;
3741 			break;
3742 		case 1:
3743 			speed = FW_PORT_CAP_SPEED_1G;
3744 			break;
3745 		default:
3746 			return -EINVAL;
3747 			break;
3748 		}
3749 	} else {
3750 		aneg = FW_PORT_CAP_ANEG;
3751 		speed = lc->supported &
3752 		    V_FW_PORT_CAP_SPEED(M_FW_PORT_CAP_SPEED);
3753 	}
3754 
3755 	rcap = aneg | speed | fc | fec;
3756 	if ((rcap | lc->supported) != lc->supported) {
3757 #ifdef INVARIANTS
3758 		CH_WARN(adap, "rcap 0x%08x, pcap 0x%08x\n", rcap,
3759 		    lc->supported);
3760 #endif
3761 		rcap &= lc->supported;
3762 	}
3763 	rcap |= mdi;
3764 
3765 	memset(&c, 0, sizeof(c));
3766 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3767 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3768 				     V_FW_PORT_CMD_PORTID(port));
3769 	c.action_to_len16 =
3770 		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3771 			    FW_LEN16(c));
3772 	c.u.l1cfg.rcap = cpu_to_be32(rcap);
3773 
3774 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
3775 }
3776 
3777 /**
3778  *	t4_restart_aneg - restart autonegotiation
3779  *	@adap: the adapter
3780  *	@mbox: mbox to use for the FW command
3781  *	@port: the port id
3782  *
3783  *	Restarts autonegotiation for the selected port.
3784  */
3785 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3786 {
3787 	struct fw_port_cmd c;
3788 
3789 	memset(&c, 0, sizeof(c));
3790 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3791 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3792 				     V_FW_PORT_CMD_PORTID(port));
3793 	c.action_to_len16 =
3794 		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3795 			    FW_LEN16(c));
3796 	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3797 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3798 }
3799 
3800 typedef void (*int_handler_t)(struct adapter *adap);
3801 
3802 struct intr_info {
3803 	unsigned int mask;	/* bits to check in interrupt status */
3804 	const char *msg;	/* message to print or NULL */
3805 	short stat_idx;		/* stat counter to increment or -1 */
3806 	unsigned short fatal;	/* whether the condition reported is fatal */
3807 	int_handler_t int_handler;	/* platform-specific int handler */
3808 };
3809 
3810 /**
3811  *	t4_handle_intr_status - table driven interrupt handler
3812  *	@adapter: the adapter that generated the interrupt
3813  *	@reg: the interrupt status register to process
3814  *	@acts: table of interrupt actions
3815  *
3816  *	A table driven interrupt handler that applies a set of masks to an
3817  *	interrupt status word and performs the corresponding actions if the
3818  *	interrupts described by the mask have occurred.  The actions include
3819  *	optionally emitting a warning or alert message.  The table is terminated
3820  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
3821  *	conditions.
3822  */
3823 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
3824 				 const struct intr_info *acts)
3825 {
3826 	int fatal = 0;
3827 	unsigned int mask = 0;
3828 	unsigned int status = t4_read_reg(adapter, reg);
3829 
3830 	for ( ; acts->mask; ++acts) {
3831 		if (!(status & acts->mask))
3832 			continue;
3833 		if (acts->fatal) {
3834 			fatal++;
3835 			CH_ALERT(adapter, "%s (0x%x)\n", acts->msg,
3836 				  status & acts->mask);
3837 		} else if (acts->msg)
3838 			CH_WARN_RATELIMIT(adapter, "%s (0x%x)\n", acts->msg,
3839 				 status & acts->mask);
3840 		if (acts->int_handler)
3841 			acts->int_handler(adapter);
3842 		mask |= acts->mask;
3843 	}
3844 	status &= mask;
3845 	if (status)	/* clear processed interrupts */
3846 		t4_write_reg(adapter, reg, status);
3847 	return fatal;
3848 }
3849 
3850 /*
3851  * Interrupt handler for the PCIE module.
3852  */
3853 static void pcie_intr_handler(struct adapter *adapter)
3854 {
3855 	static const struct intr_info sysbus_intr_info[] = {
3856 		{ F_RNPP, "RXNP array parity error", -1, 1 },
3857 		{ F_RPCP, "RXPC array parity error", -1, 1 },
3858 		{ F_RCIP, "RXCIF array parity error", -1, 1 },
3859 		{ F_RCCP, "Rx completions control array parity error", -1, 1 },
3860 		{ F_RFTP, "RXFT array parity error", -1, 1 },
3861 		{ 0 }
3862 	};
3863 	static const struct intr_info pcie_port_intr_info[] = {
3864 		{ F_TPCP, "TXPC array parity error", -1, 1 },
3865 		{ F_TNPP, "TXNP array parity error", -1, 1 },
3866 		{ F_TFTP, "TXFT array parity error", -1, 1 },
3867 		{ F_TCAP, "TXCA array parity error", -1, 1 },
3868 		{ F_TCIP, "TXCIF array parity error", -1, 1 },
3869 		{ F_RCAP, "RXCA array parity error", -1, 1 },
3870 		{ F_OTDD, "outbound request TLP discarded", -1, 1 },
3871 		{ F_RDPE, "Rx data parity error", -1, 1 },
3872 		{ F_TDUE, "Tx uncorrectable data error", -1, 1 },
3873 		{ 0 }
3874 	};
3875 	static const struct intr_info pcie_intr_info[] = {
3876 		{ F_MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
3877 		{ F_MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
3878 		{ F_MSIDATAPERR, "MSI data parity error", -1, 1 },
3879 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
3880 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
3881 		{ F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
3882 		{ F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
3883 		{ F_PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
3884 		{ F_PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
3885 		{ F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
3886 		{ F_CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
3887 		{ F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
3888 		{ F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
3889 		{ F_DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
3890 		{ F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
3891 		{ F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
3892 		{ F_HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
3893 		{ F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
3894 		{ F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
3895 		{ F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
3896 		{ F_FIDPERR, "PCI FID parity error", -1, 1 },
3897 		{ F_INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
3898 		{ F_MATAGPERR, "PCI MA tag parity error", -1, 1 },
3899 		{ F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
3900 		{ F_RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
3901 		{ F_RXWRPERR, "PCI Rx write parity error", -1, 1 },
3902 		{ F_RPLPERR, "PCI replay buffer parity error", -1, 1 },
3903 		{ F_PCIESINT, "PCI core secondary fault", -1, 1 },
3904 		{ F_PCIEPINT, "PCI core primary fault", -1, 1 },
3905 		{ F_UNXSPLCPLERR, "PCI unexpected split completion error", -1,
3906 		  0 },
3907 		{ 0 }
3908 	};
3909 
3910 	static const struct intr_info t5_pcie_intr_info[] = {
3911 		{ F_MSTGRPPERR, "Master Response Read Queue parity error",
3912 		  -1, 1 },
3913 		{ F_MSTTIMEOUTPERR, "Master Timeout FIFO parity error", -1, 1 },
3914 		{ F_MSIXSTIPERR, "MSI-X STI SRAM parity error", -1, 1 },
3915 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
3916 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
3917 		{ F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
3918 		{ F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
3919 		{ F_PIOCPLGRPPERR, "PCI PIO completion Group FIFO parity error",
3920 		  -1, 1 },
3921 		{ F_PIOREQGRPPERR, "PCI PIO request Group FIFO parity error",
3922 		  -1, 1 },
3923 		{ F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
3924 		{ F_MSTTAGQPERR, "PCI master tag queue parity error", -1, 1 },
3925 		{ F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
3926 		{ F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
3927 		{ F_DREQWRPERR, "PCI DMA channel write request parity error",
3928 		  -1, 1 },
3929 		{ F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
3930 		{ F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
3931 		{ F_HREQWRPERR, "PCI HMA channel count parity error", -1, 1 },
3932 		{ F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
3933 		{ F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
3934 		{ F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
3935 		{ F_FIDPERR, "PCI FID parity error", -1, 1 },
3936 		{ F_VFIDPERR, "PCI INTx clear parity error", -1, 1 },
3937 		{ F_MAGRPPERR, "PCI MA group FIFO parity error", -1, 1 },
3938 		{ F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
3939 		{ F_IPRXHDRGRPPERR, "PCI IP Rx header group parity error",
3940 		  -1, 1 },
3941 		{ F_IPRXDATAGRPPERR, "PCI IP Rx data group parity error",
3942 		  -1, 1 },
3943 		{ F_RPLPERR, "PCI IP replay buffer parity error", -1, 1 },
3944 		{ F_IPSOTPERR, "PCI IP SOT buffer parity error", -1, 1 },
3945 		{ F_TRGT1GRPPERR, "PCI TRGT1 group FIFOs parity error", -1, 1 },
3946 		{ F_READRSPERR, "Outbound read error", -1,
3947 		  0 },
3948 		{ 0 }
3949 	};
3950 
3951 	int fat;
3952 
3953 	if (is_t4(adapter))
3954 		fat = t4_handle_intr_status(adapter,
3955 				A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
3956 				sysbus_intr_info) +
3957 			t4_handle_intr_status(adapter,
3958 					A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
3959 					pcie_port_intr_info) +
3960 			t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
3961 					      pcie_intr_info);
3962 	else
3963 		fat = t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
3964 					    t5_pcie_intr_info);
3965 	if (fat)
3966 		t4_fatal_err(adapter);
3967 }
3968 
3969 /*
3970  * TP interrupt handler.
3971  */
3972 static void tp_intr_handler(struct adapter *adapter)
3973 {
3974 	static const struct intr_info tp_intr_info[] = {
3975 		{ 0x3fffffff, "TP parity error", -1, 1 },
3976 		{ F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
3977 		{ 0 }
3978 	};
3979 
3980 	if (t4_handle_intr_status(adapter, A_TP_INT_CAUSE, tp_intr_info))
3981 		t4_fatal_err(adapter);
3982 }
3983 
3984 /*
3985  * SGE interrupt handler.
3986  */
3987 static void sge_intr_handler(struct adapter *adapter)
3988 {
3989 	u64 v;
3990 	u32 err;
3991 
3992 	static const struct intr_info sge_intr_info[] = {
3993 		{ F_ERR_CPL_EXCEED_IQE_SIZE,
3994 		  "SGE received CPL exceeding IQE size", -1, 1 },
3995 		{ F_ERR_INVALID_CIDX_INC,
3996 		  "SGE GTS CIDX increment too large", -1, 0 },
3997 		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
3998 		{ F_DBFIFO_LP_INT, NULL, -1, 0, t4_db_full },
3999 		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
4000 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
4001 		{ F_ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
4002 		  0 },
4003 		{ F_ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
4004 		  0 },
4005 		{ F_ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
4006 		  0 },
4007 		{ F_ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
4008 		  0 },
4009 		{ F_ERR_ING_CTXT_PRIO,
4010 		  "SGE too many priority ingress contexts", -1, 0 },
4011 		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
4012 		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
4013 		{ F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 |
4014 		  F_ERR_PCIE_ERROR2 | F_ERR_PCIE_ERROR3,
4015 		  "SGE PCIe error for a DBP thread", -1, 0 },
4016 		{ 0 }
4017 	};
4018 
4019 	static const struct intr_info t4t5_sge_intr_info[] = {
4020 		{ F_ERR_DROPPED_DB, NULL, -1, 0, t4_db_dropped },
4021 		{ F_DBFIFO_HP_INT, NULL, -1, 0, t4_db_full },
4022 		{ F_ERR_EGR_CTXT_PRIO,
4023 		  "SGE too many priority egress contexts", -1, 0 },
4024 		{ 0 }
4025 	};
4026 
4027 	/*
4028  	* For now, treat below interrupts as fatal so that we disable SGE and
4029  	* get better debug */
4030 	static const struct intr_info t6_sge_intr_info[] = {
4031 		{ F_FATAL_WRE_LEN,
4032 		  "SGE Actual WRE packet is less than advertized length",
4033 		  -1, 1 },
4034 		{ 0 }
4035 	};
4036 
4037 	v = (u64)t4_read_reg(adapter, A_SGE_INT_CAUSE1) |
4038 		((u64)t4_read_reg(adapter, A_SGE_INT_CAUSE2) << 32);
4039 	if (v) {
4040 		CH_ALERT(adapter, "SGE parity error (%#llx)\n",
4041 				(unsigned long long)v);
4042 		t4_write_reg(adapter, A_SGE_INT_CAUSE1, v);
4043 		t4_write_reg(adapter, A_SGE_INT_CAUSE2, v >> 32);
4044 	}
4045 
4046 	v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3, sge_intr_info);
4047 	if (chip_id(adapter) <= CHELSIO_T5)
4048 		v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3,
4049 					   t4t5_sge_intr_info);
4050 	else
4051 		v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3,
4052 					   t6_sge_intr_info);
4053 
4054 	err = t4_read_reg(adapter, A_SGE_ERROR_STATS);
4055 	if (err & F_ERROR_QID_VALID) {
4056 		CH_ERR(adapter, "SGE error for queue %u\n", G_ERROR_QID(err));
4057 		if (err & F_UNCAPTURED_ERROR)
4058 			CH_ERR(adapter, "SGE UNCAPTURED_ERROR set (clearing)\n");
4059 		t4_write_reg(adapter, A_SGE_ERROR_STATS, F_ERROR_QID_VALID |
4060 			     F_UNCAPTURED_ERROR);
4061 	}
4062 
4063 	if (v != 0)
4064 		t4_fatal_err(adapter);
4065 }
4066 
4067 #define CIM_OBQ_INTR (F_OBQULP0PARERR | F_OBQULP1PARERR | F_OBQULP2PARERR |\
4068 		      F_OBQULP3PARERR | F_OBQSGEPARERR | F_OBQNCSIPARERR)
4069 #define CIM_IBQ_INTR (F_IBQTP0PARERR | F_IBQTP1PARERR | F_IBQULPPARERR |\
4070 		      F_IBQSGEHIPARERR | F_IBQSGELOPARERR | F_IBQNCSIPARERR)
4071 
4072 /*
4073  * CIM interrupt handler.
4074  */
4075 static void cim_intr_handler(struct adapter *adapter)
4076 {
4077 	static const struct intr_info cim_intr_info[] = {
4078 		{ F_PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
4079 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4080 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4081 		{ F_MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
4082 		{ F_MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
4083 		{ F_TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
4084 		{ F_TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
4085 		{ F_TIMER0INT, "CIM TIMER0 interrupt", -1, 1 },
4086 		{ 0 }
4087 	};
4088 	static const struct intr_info cim_upintr_info[] = {
4089 		{ F_RSVDSPACEINT, "CIM reserved space access", -1, 1 },
4090 		{ F_ILLTRANSINT, "CIM illegal transaction", -1, 1 },
4091 		{ F_ILLWRINT, "CIM illegal write", -1, 1 },
4092 		{ F_ILLRDINT, "CIM illegal read", -1, 1 },
4093 		{ F_ILLRDBEINT, "CIM illegal read BE", -1, 1 },
4094 		{ F_ILLWRBEINT, "CIM illegal write BE", -1, 1 },
4095 		{ F_SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
4096 		{ F_SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
4097 		{ F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
4098 		{ F_SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
4099 		{ F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
4100 		{ F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
4101 		{ F_SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
4102 		{ F_SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
4103 		{ F_BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
4104 		{ F_BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
4105 		{ F_SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
4106 		{ F_SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
4107 		{ F_BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
4108 		{ F_BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
4109 		{ F_SGLRDPLINT , "CIM single read from PL space", -1, 1 },
4110 		{ F_SGLWRPLINT , "CIM single write to PL space", -1, 1 },
4111 		{ F_BLKRDPLINT , "CIM block read from PL space", -1, 1 },
4112 		{ F_BLKWRPLINT , "CIM block write to PL space", -1, 1 },
4113 		{ F_REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
4114 		{ F_RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
4115 		{ F_TIMEOUTINT , "CIM PIF timeout", -1, 1 },
4116 		{ F_TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
4117 		{ 0 }
4118 	};
4119 	u32 val, fw_err;
4120 	int fat;
4121 
4122 	fw_err = t4_read_reg(adapter, A_PCIE_FW);
4123 	if (fw_err & F_PCIE_FW_ERR)
4124 		t4_report_fw_error(adapter);
4125 
4126 	/* When the Firmware detects an internal error which normally wouldn't
4127 	 * raise a Host Interrupt, it forces a CIM Timer0 interrupt in order
4128 	 * to make sure the Host sees the Firmware Crash.  So if we have a
4129 	 * Timer0 interrupt and don't see a Firmware Crash, ignore the Timer0
4130 	 * interrupt.
4131 	 */
4132 	val = t4_read_reg(adapter, A_CIM_HOST_INT_CAUSE);
4133 	if (val & F_TIMER0INT)
4134 		if (!(fw_err & F_PCIE_FW_ERR) ||
4135 		    (G_PCIE_FW_EVAL(fw_err) != PCIE_FW_EVAL_CRASH))
4136 			t4_write_reg(adapter, A_CIM_HOST_INT_CAUSE,
4137 				     F_TIMER0INT);
4138 
4139 	fat = t4_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE,
4140 				    cim_intr_info) +
4141 	      t4_handle_intr_status(adapter, A_CIM_HOST_UPACC_INT_CAUSE,
4142 				    cim_upintr_info);
4143 	if (fat)
4144 		t4_fatal_err(adapter);
4145 }
4146 
4147 /*
4148  * ULP RX interrupt handler.
4149  */
4150 static void ulprx_intr_handler(struct adapter *adapter)
4151 {
4152 	static const struct intr_info ulprx_intr_info[] = {
4153 		{ F_CAUSE_CTX_1, "ULPRX channel 1 context error", -1, 1 },
4154 		{ F_CAUSE_CTX_0, "ULPRX channel 0 context error", -1, 1 },
4155 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
4156 		{ 0 }
4157 	};
4158 
4159 	if (t4_handle_intr_status(adapter, A_ULP_RX_INT_CAUSE, ulprx_intr_info))
4160 		t4_fatal_err(adapter);
4161 }
4162 
4163 /*
4164  * ULP TX interrupt handler.
4165  */
4166 static void ulptx_intr_handler(struct adapter *adapter)
4167 {
4168 	static const struct intr_info ulptx_intr_info[] = {
4169 		{ F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
4170 		  0 },
4171 		{ F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
4172 		  0 },
4173 		{ F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
4174 		  0 },
4175 		{ F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
4176 		  0 },
4177 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
4178 		{ 0 }
4179 	};
4180 
4181 	if (t4_handle_intr_status(adapter, A_ULP_TX_INT_CAUSE, ulptx_intr_info))
4182 		t4_fatal_err(adapter);
4183 }
4184 
4185 /*
4186  * PM TX interrupt handler.
4187  */
4188 static void pmtx_intr_handler(struct adapter *adapter)
4189 {
4190 	static const struct intr_info pmtx_intr_info[] = {
4191 		{ F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
4192 		{ F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
4193 		{ F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
4194 		{ F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
4195 		{ 0xffffff0, "PMTX framing error", -1, 1 },
4196 		{ F_OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
4197 		{ F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1,
4198 		  1 },
4199 		{ F_ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
4200 		{ F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
4201 		{ 0 }
4202 	};
4203 
4204 	if (t4_handle_intr_status(adapter, A_PM_TX_INT_CAUSE, pmtx_intr_info))
4205 		t4_fatal_err(adapter);
4206 }
4207 
4208 /*
4209  * PM RX interrupt handler.
4210  */
4211 static void pmrx_intr_handler(struct adapter *adapter)
4212 {
4213 	static const struct intr_info pmrx_intr_info[] = {
4214 		{ F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
4215 		{ 0x3ffff0, "PMRX framing error", -1, 1 },
4216 		{ F_OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
4217 		{ F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1,
4218 		  1 },
4219 		{ F_IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
4220 		{ F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
4221 		{ 0 }
4222 	};
4223 
4224 	if (t4_handle_intr_status(adapter, A_PM_RX_INT_CAUSE, pmrx_intr_info))
4225 		t4_fatal_err(adapter);
4226 }
4227 
4228 /*
4229  * CPL switch interrupt handler.
4230  */
4231 static void cplsw_intr_handler(struct adapter *adapter)
4232 {
4233 	static const struct intr_info cplsw_intr_info[] = {
4234 		{ F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
4235 		{ F_CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
4236 		{ F_TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
4237 		{ F_SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
4238 		{ F_CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
4239 		{ F_ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
4240 		{ 0 }
4241 	};
4242 
4243 	if (t4_handle_intr_status(adapter, A_CPL_INTR_CAUSE, cplsw_intr_info))
4244 		t4_fatal_err(adapter);
4245 }
4246 
4247 /*
4248  * LE interrupt handler.
4249  */
4250 static void le_intr_handler(struct adapter *adap)
4251 {
4252 	unsigned int chip_ver = chip_id(adap);
4253 	static const struct intr_info le_intr_info[] = {
4254 		{ F_LIPMISS, "LE LIP miss", -1, 0 },
4255 		{ F_LIP0, "LE 0 LIP error", -1, 0 },
4256 		{ F_PARITYERR, "LE parity error", -1, 1 },
4257 		{ F_UNKNOWNCMD, "LE unknown command", -1, 1 },
4258 		{ F_REQQPARERR, "LE request queue parity error", -1, 1 },
4259 		{ 0 }
4260 	};
4261 
4262 	static const struct intr_info t6_le_intr_info[] = {
4263 		{ F_T6_LIPMISS, "LE LIP miss", -1, 0 },
4264 		{ F_T6_LIP0, "LE 0 LIP error", -1, 0 },
4265 		{ F_TCAMINTPERR, "LE parity error", -1, 1 },
4266 		{ F_T6_UNKNOWNCMD, "LE unknown command", -1, 1 },
4267 		{ F_SSRAMINTPERR, "LE request queue parity error", -1, 1 },
4268 		{ 0 }
4269 	};
4270 
4271 	if (t4_handle_intr_status(adap, A_LE_DB_INT_CAUSE,
4272 				  (chip_ver <= CHELSIO_T5) ?
4273 				  le_intr_info : t6_le_intr_info))
4274 		t4_fatal_err(adap);
4275 }
4276 
4277 /*
4278  * MPS interrupt handler.
4279  */
4280 static void mps_intr_handler(struct adapter *adapter)
4281 {
4282 	static const struct intr_info mps_rx_intr_info[] = {
4283 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4284 		{ 0 }
4285 	};
4286 	static const struct intr_info mps_tx_intr_info[] = {
4287 		{ V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error", -1, 1 },
4288 		{ F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4289 		{ V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error",
4290 		  -1, 1 },
4291 		{ V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error",
4292 		  -1, 1 },
4293 		{ F_BUBBLE, "MPS Tx underflow", -1, 1 },
4294 		{ F_SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
4295 		{ F_FRMERR, "MPS Tx framing error", -1, 1 },
4296 		{ 0 }
4297 	};
4298 	static const struct intr_info mps_trc_intr_info[] = {
4299 		{ V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error", -1, 1 },
4300 		{ V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error", -1,
4301 		  1 },
4302 		{ F_MISCPERR, "MPS TRC misc parity error", -1, 1 },
4303 		{ 0 }
4304 	};
4305 	static const struct intr_info mps_stat_sram_intr_info[] = {
4306 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4307 		{ 0 }
4308 	};
4309 	static const struct intr_info mps_stat_tx_intr_info[] = {
4310 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4311 		{ 0 }
4312 	};
4313 	static const struct intr_info mps_stat_rx_intr_info[] = {
4314 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4315 		{ 0 }
4316 	};
4317 	static const struct intr_info mps_cls_intr_info[] = {
4318 		{ F_MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
4319 		{ F_MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
4320 		{ F_HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
4321 		{ 0 }
4322 	};
4323 
4324 	int fat;
4325 
4326 	fat = t4_handle_intr_status(adapter, A_MPS_RX_PERR_INT_CAUSE,
4327 				    mps_rx_intr_info) +
4328 	      t4_handle_intr_status(adapter, A_MPS_TX_INT_CAUSE,
4329 				    mps_tx_intr_info) +
4330 	      t4_handle_intr_status(adapter, A_MPS_TRC_INT_CAUSE,
4331 				    mps_trc_intr_info) +
4332 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_SRAM,
4333 				    mps_stat_sram_intr_info) +
4334 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
4335 				    mps_stat_tx_intr_info) +
4336 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
4337 				    mps_stat_rx_intr_info) +
4338 	      t4_handle_intr_status(adapter, A_MPS_CLS_INT_CAUSE,
4339 				    mps_cls_intr_info);
4340 
4341 	t4_write_reg(adapter, A_MPS_INT_CAUSE, 0);
4342 	t4_read_reg(adapter, A_MPS_INT_CAUSE);	/* flush */
4343 	if (fat)
4344 		t4_fatal_err(adapter);
4345 }
4346 
4347 #define MEM_INT_MASK (F_PERR_INT_CAUSE | F_ECC_CE_INT_CAUSE | \
4348 		      F_ECC_UE_INT_CAUSE)
4349 
4350 /*
4351  * EDC/MC interrupt handler.
4352  */
4353 static void mem_intr_handler(struct adapter *adapter, int idx)
4354 {
4355 	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4356 
4357 	unsigned int addr, cnt_addr, v;
4358 
4359 	if (idx <= MEM_EDC1) {
4360 		addr = EDC_REG(A_EDC_INT_CAUSE, idx);
4361 		cnt_addr = EDC_REG(A_EDC_ECC_STATUS, idx);
4362 	} else if (idx == MEM_MC) {
4363 		if (is_t4(adapter)) {
4364 			addr = A_MC_INT_CAUSE;
4365 			cnt_addr = A_MC_ECC_STATUS;
4366 		} else {
4367 			addr = A_MC_P_INT_CAUSE;
4368 			cnt_addr = A_MC_P_ECC_STATUS;
4369 		}
4370 	} else {
4371 		addr = MC_REG(A_MC_P_INT_CAUSE, 1);
4372 		cnt_addr = MC_REG(A_MC_P_ECC_STATUS, 1);
4373 	}
4374 
4375 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4376 	if (v & F_PERR_INT_CAUSE)
4377 		CH_ALERT(adapter, "%s FIFO parity error\n",
4378 			  name[idx]);
4379 	if (v & F_ECC_CE_INT_CAUSE) {
4380 		u32 cnt = G_ECC_CECNT(t4_read_reg(adapter, cnt_addr));
4381 
4382 		if (idx <= MEM_EDC1)
4383 			t4_edc_err_read(adapter, idx);
4384 
4385 		t4_write_reg(adapter, cnt_addr, V_ECC_CECNT(M_ECC_CECNT));
4386 		CH_WARN_RATELIMIT(adapter,
4387 				  "%u %s correctable ECC data error%s\n",
4388 				  cnt, name[idx], cnt > 1 ? "s" : "");
4389 	}
4390 	if (v & F_ECC_UE_INT_CAUSE)
4391 		CH_ALERT(adapter,
4392 			 "%s uncorrectable ECC data error\n", name[idx]);
4393 
4394 	t4_write_reg(adapter, addr, v);
4395 	if (v & (F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE))
4396 		t4_fatal_err(adapter);
4397 }
4398 
4399 /*
4400  * MA interrupt handler.
4401  */
4402 static void ma_intr_handler(struct adapter *adapter)
4403 {
4404 	u32 v, status = t4_read_reg(adapter, A_MA_INT_CAUSE);
4405 
4406 	if (status & F_MEM_PERR_INT_CAUSE) {
4407 		CH_ALERT(adapter,
4408 			  "MA parity error, parity status %#x\n",
4409 			  t4_read_reg(adapter, A_MA_PARITY_ERROR_STATUS1));
4410 		if (is_t5(adapter))
4411 			CH_ALERT(adapter,
4412 				  "MA parity error, parity status %#x\n",
4413 				  t4_read_reg(adapter,
4414 					      A_MA_PARITY_ERROR_STATUS2));
4415 	}
4416 	if (status & F_MEM_WRAP_INT_CAUSE) {
4417 		v = t4_read_reg(adapter, A_MA_INT_WRAP_STATUS);
4418 		CH_ALERT(adapter, "MA address wrap-around error by "
4419 			  "client %u to address %#x\n",
4420 			  G_MEM_WRAP_CLIENT_NUM(v),
4421 			  G_MEM_WRAP_ADDRESS(v) << 4);
4422 	}
4423 	t4_write_reg(adapter, A_MA_INT_CAUSE, status);
4424 	t4_fatal_err(adapter);
4425 }
4426 
4427 /*
4428  * SMB interrupt handler.
4429  */
4430 static void smb_intr_handler(struct adapter *adap)
4431 {
4432 	static const struct intr_info smb_intr_info[] = {
4433 		{ F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
4434 		{ F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
4435 		{ F_SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
4436 		{ 0 }
4437 	};
4438 
4439 	if (t4_handle_intr_status(adap, A_SMB_INT_CAUSE, smb_intr_info))
4440 		t4_fatal_err(adap);
4441 }
4442 
4443 /*
4444  * NC-SI interrupt handler.
4445  */
4446 static void ncsi_intr_handler(struct adapter *adap)
4447 {
4448 	static const struct intr_info ncsi_intr_info[] = {
4449 		{ F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
4450 		{ F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
4451 		{ F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
4452 		{ F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
4453 		{ 0 }
4454 	};
4455 
4456 	if (t4_handle_intr_status(adap, A_NCSI_INT_CAUSE, ncsi_intr_info))
4457 		t4_fatal_err(adap);
4458 }
4459 
4460 /*
4461  * XGMAC interrupt handler.
4462  */
4463 static void xgmac_intr_handler(struct adapter *adap, int port)
4464 {
4465 	u32 v, int_cause_reg;
4466 
4467 	if (is_t4(adap))
4468 		int_cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
4469 	else
4470 		int_cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
4471 
4472 	v = t4_read_reg(adap, int_cause_reg);
4473 
4474 	v &= (F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR);
4475 	if (!v)
4476 		return;
4477 
4478 	if (v & F_TXFIFO_PRTY_ERR)
4479 		CH_ALERT(adap, "XGMAC %d Tx FIFO parity error\n",
4480 			  port);
4481 	if (v & F_RXFIFO_PRTY_ERR)
4482 		CH_ALERT(adap, "XGMAC %d Rx FIFO parity error\n",
4483 			  port);
4484 	t4_write_reg(adap, int_cause_reg, v);
4485 	t4_fatal_err(adap);
4486 }
4487 
4488 /*
4489  * PL interrupt handler.
4490  */
4491 static void pl_intr_handler(struct adapter *adap)
4492 {
4493 	static const struct intr_info pl_intr_info[] = {
4494 		{ F_FATALPERR, "Fatal parity error", -1, 1 },
4495 		{ F_PERRVFID, "PL VFID_MAP parity error", -1, 1 },
4496 		{ 0 }
4497 	};
4498 
4499 	static const struct intr_info t5_pl_intr_info[] = {
4500 		{ F_FATALPERR, "Fatal parity error", -1, 1 },
4501 		{ 0 }
4502 	};
4503 
4504 	if (t4_handle_intr_status(adap, A_PL_PL_INT_CAUSE,
4505 				  is_t4(adap) ?
4506 				  pl_intr_info : t5_pl_intr_info))
4507 		t4_fatal_err(adap);
4508 }
4509 
4510 #define PF_INTR_MASK (F_PFSW | F_PFCIM)
4511 
4512 /**
4513  *	t4_slow_intr_handler - control path interrupt handler
4514  *	@adapter: the adapter
4515  *
4516  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
4517  *	The designation 'slow' is because it involves register reads, while
4518  *	data interrupts typically don't involve any MMIOs.
4519  */
4520 int t4_slow_intr_handler(struct adapter *adapter)
4521 {
4522 	u32 cause = t4_read_reg(adapter, A_PL_INT_CAUSE);
4523 
4524 	if (!(cause & GLBL_INTR_MASK))
4525 		return 0;
4526 	if (cause & F_CIM)
4527 		cim_intr_handler(adapter);
4528 	if (cause & F_MPS)
4529 		mps_intr_handler(adapter);
4530 	if (cause & F_NCSI)
4531 		ncsi_intr_handler(adapter);
4532 	if (cause & F_PL)
4533 		pl_intr_handler(adapter);
4534 	if (cause & F_SMB)
4535 		smb_intr_handler(adapter);
4536 	if (cause & F_MAC0)
4537 		xgmac_intr_handler(adapter, 0);
4538 	if (cause & F_MAC1)
4539 		xgmac_intr_handler(adapter, 1);
4540 	if (cause & F_MAC2)
4541 		xgmac_intr_handler(adapter, 2);
4542 	if (cause & F_MAC3)
4543 		xgmac_intr_handler(adapter, 3);
4544 	if (cause & F_PCIE)
4545 		pcie_intr_handler(adapter);
4546 	if (cause & F_MC0)
4547 		mem_intr_handler(adapter, MEM_MC);
4548 	if (is_t5(adapter) && (cause & F_MC1))
4549 		mem_intr_handler(adapter, MEM_MC1);
4550 	if (cause & F_EDC0)
4551 		mem_intr_handler(adapter, MEM_EDC0);
4552 	if (cause & F_EDC1)
4553 		mem_intr_handler(adapter, MEM_EDC1);
4554 	if (cause & F_LE)
4555 		le_intr_handler(adapter);
4556 	if (cause & F_TP)
4557 		tp_intr_handler(adapter);
4558 	if (cause & F_MA)
4559 		ma_intr_handler(adapter);
4560 	if (cause & F_PM_TX)
4561 		pmtx_intr_handler(adapter);
4562 	if (cause & F_PM_RX)
4563 		pmrx_intr_handler(adapter);
4564 	if (cause & F_ULP_RX)
4565 		ulprx_intr_handler(adapter);
4566 	if (cause & F_CPL_SWITCH)
4567 		cplsw_intr_handler(adapter);
4568 	if (cause & F_SGE)
4569 		sge_intr_handler(adapter);
4570 	if (cause & F_ULP_TX)
4571 		ulptx_intr_handler(adapter);
4572 
4573 	/* Clear the interrupts just processed for which we are the master. */
4574 	t4_write_reg(adapter, A_PL_INT_CAUSE, cause & GLBL_INTR_MASK);
4575 	(void)t4_read_reg(adapter, A_PL_INT_CAUSE); /* flush */
4576 	return 1;
4577 }
4578 
4579 /**
4580  *	t4_intr_enable - enable interrupts
4581  *	@adapter: the adapter whose interrupts should be enabled
4582  *
4583  *	Enable PF-specific interrupts for the calling function and the top-level
4584  *	interrupt concentrator for global interrupts.  Interrupts are already
4585  *	enabled at each module,	here we just enable the roots of the interrupt
4586  *	hierarchies.
4587  *
4588  *	Note: this function should be called only when the driver manages
4589  *	non PF-specific interrupts from the various HW modules.  Only one PCI
4590  *	function at a time should be doing this.
4591  */
4592 void t4_intr_enable(struct adapter *adapter)
4593 {
4594 	u32 val = 0;
4595 	u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4596 	u32 pf = (chip_id(adapter) <= CHELSIO_T5
4597 		  ? G_SOURCEPF(whoami)
4598 		  : G_T6_SOURCEPF(whoami));
4599 
4600 	if (chip_id(adapter) <= CHELSIO_T5)
4601 		val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
4602 	else
4603 		val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN;
4604 	t4_write_reg(adapter, A_SGE_INT_ENABLE3, F_ERR_CPL_EXCEED_IQE_SIZE |
4605 		     F_ERR_INVALID_CIDX_INC | F_ERR_CPL_OPCODE_0 |
4606 		     F_ERR_DATA_CPL_ON_HIGH_QID1 | F_INGRESS_SIZE_ERR |
4607 		     F_ERR_DATA_CPL_ON_HIGH_QID0 | F_ERR_BAD_DB_PIDX3 |
4608 		     F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4609 		     F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO |
4610 		     F_DBFIFO_LP_INT | F_EGRESS_SIZE_ERR | val);
4611 	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
4612 	t4_set_reg_field(adapter, A_PL_INT_MAP0, 0, 1 << pf);
4613 }
4614 
4615 /**
4616  *	t4_intr_disable - disable interrupts
4617  *	@adapter: the adapter whose interrupts should be disabled
4618  *
4619  *	Disable interrupts.  We only disable the top-level interrupt
4620  *	concentrators.  The caller must be a PCI function managing global
4621  *	interrupts.
4622  */
4623 void t4_intr_disable(struct adapter *adapter)
4624 {
4625 	u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4626 	u32 pf = (chip_id(adapter) <= CHELSIO_T5
4627 		  ? G_SOURCEPF(whoami)
4628 		  : G_T6_SOURCEPF(whoami));
4629 
4630 	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
4631 	t4_set_reg_field(adapter, A_PL_INT_MAP0, 1 << pf, 0);
4632 }
4633 
4634 /**
4635  *	t4_intr_clear - clear all interrupts
4636  *	@adapter: the adapter whose interrupts should be cleared
4637  *
4638  *	Clears all interrupts.  The caller must be a PCI function managing
4639  *	global interrupts.
4640  */
4641 void t4_intr_clear(struct adapter *adapter)
4642 {
4643 	static const unsigned int cause_reg[] = {
4644 		A_SGE_INT_CAUSE1, A_SGE_INT_CAUSE2, A_SGE_INT_CAUSE3,
4645 		A_PCIE_NONFAT_ERR, A_PCIE_INT_CAUSE,
4646 		A_MA_INT_WRAP_STATUS, A_MA_PARITY_ERROR_STATUS1, A_MA_INT_CAUSE,
4647 		A_EDC_INT_CAUSE, EDC_REG(A_EDC_INT_CAUSE, 1),
4648 		A_CIM_HOST_INT_CAUSE, A_CIM_HOST_UPACC_INT_CAUSE,
4649 		MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
4650 		A_TP_INT_CAUSE,
4651 		A_ULP_RX_INT_CAUSE, A_ULP_TX_INT_CAUSE,
4652 		A_PM_RX_INT_CAUSE, A_PM_TX_INT_CAUSE,
4653 		A_MPS_RX_PERR_INT_CAUSE,
4654 		A_CPL_INTR_CAUSE,
4655 		MYPF_REG(A_PL_PF_INT_CAUSE),
4656 		A_PL_PL_INT_CAUSE,
4657 		A_LE_DB_INT_CAUSE,
4658 	};
4659 
4660 	unsigned int i;
4661 
4662 	for (i = 0; i < ARRAY_SIZE(cause_reg); ++i)
4663 		t4_write_reg(adapter, cause_reg[i], 0xffffffff);
4664 
4665 	t4_write_reg(adapter, is_t4(adapter) ? A_MC_INT_CAUSE :
4666 				A_MC_P_INT_CAUSE, 0xffffffff);
4667 
4668 	if (is_t4(adapter)) {
4669 		t4_write_reg(adapter, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
4670 				0xffffffff);
4671 		t4_write_reg(adapter, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
4672 				0xffffffff);
4673 	} else
4674 		t4_write_reg(adapter, A_MA_PARITY_ERROR_STATUS2, 0xffffffff);
4675 
4676 	t4_write_reg(adapter, A_PL_INT_CAUSE, GLBL_INTR_MASK);
4677 	(void) t4_read_reg(adapter, A_PL_INT_CAUSE);          /* flush */
4678 }
4679 
4680 /**
4681  *	hash_mac_addr - return the hash value of a MAC address
4682  *	@addr: the 48-bit Ethernet MAC address
4683  *
4684  *	Hashes a MAC address according to the hash function used by HW inexact
4685  *	(hash) address matching.
4686  */
4687 static int hash_mac_addr(const u8 *addr)
4688 {
4689 	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
4690 	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
4691 	a ^= b;
4692 	a ^= (a >> 12);
4693 	a ^= (a >> 6);
4694 	return a & 0x3f;
4695 }
4696 
4697 /**
4698  *	t4_config_rss_range - configure a portion of the RSS mapping table
4699  *	@adapter: the adapter
4700  *	@mbox: mbox to use for the FW command
4701  *	@viid: virtual interface whose RSS subtable is to be written
4702  *	@start: start entry in the table to write
4703  *	@n: how many table entries to write
4704  *	@rspq: values for the "response queue" (Ingress Queue) lookup table
4705  *	@nrspq: number of values in @rspq
4706  *
4707  *	Programs the selected part of the VI's RSS mapping table with the
4708  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
4709  *	until the full table range is populated.
4710  *
4711  *	The caller must ensure the values in @rspq are in the range allowed for
4712  *	@viid.
4713  */
4714 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4715 			int start, int n, const u16 *rspq, unsigned int nrspq)
4716 {
4717 	int ret;
4718 	const u16 *rsp = rspq;
4719 	const u16 *rsp_end = rspq + nrspq;
4720 	struct fw_rss_ind_tbl_cmd cmd;
4721 
4722 	memset(&cmd, 0, sizeof(cmd));
4723 	cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
4724 				     F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4725 				     V_FW_RSS_IND_TBL_CMD_VIID(viid));
4726 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
4727 
4728 	/*
4729 	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
4730 	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
4731 	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
4732 	 * reserved.
4733 	 */
4734 	while (n > 0) {
4735 		int nq = min(n, 32);
4736 		int nq_packed = 0;
4737 		__be32 *qp = &cmd.iq0_to_iq2;
4738 
4739 		/*
4740 		 * Set up the firmware RSS command header to send the next
4741 		 * "nq" Ingress Queue IDs to the firmware.
4742 		 */
4743 		cmd.niqid = cpu_to_be16(nq);
4744 		cmd.startidx = cpu_to_be16(start);
4745 
4746 		/*
4747 		 * "nq" more done for the start of the next loop.
4748 		 */
4749 		start += nq;
4750 		n -= nq;
4751 
4752 		/*
4753 		 * While there are still Ingress Queue IDs to stuff into the
4754 		 * current firmware RSS command, retrieve them from the
4755 		 * Ingress Queue ID array and insert them into the command.
4756 		 */
4757 		while (nq > 0) {
4758 			/*
4759 			 * Grab up to the next 3 Ingress Queue IDs (wrapping
4760 			 * around the Ingress Queue ID array if necessary) and
4761 			 * insert them into the firmware RSS command at the
4762 			 * current 3-tuple position within the commad.
4763 			 */
4764 			u16 qbuf[3];
4765 			u16 *qbp = qbuf;
4766 			int nqbuf = min(3, nq);
4767 
4768 			nq -= nqbuf;
4769 			qbuf[0] = qbuf[1] = qbuf[2] = 0;
4770 			while (nqbuf && nq_packed < 32) {
4771 				nqbuf--;
4772 				nq_packed++;
4773 				*qbp++ = *rsp++;
4774 				if (rsp >= rsp_end)
4775 					rsp = rspq;
4776 			}
4777 			*qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
4778 					    V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
4779 					    V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
4780 		}
4781 
4782 		/*
4783 		 * Send this portion of the RRS table update to the firmware;
4784 		 * bail out on any errors.
4785 		 */
4786 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4787 		if (ret)
4788 			return ret;
4789 	}
4790 	return 0;
4791 }
4792 
4793 /**
4794  *	t4_config_glbl_rss - configure the global RSS mode
4795  *	@adapter: the adapter
4796  *	@mbox: mbox to use for the FW command
4797  *	@mode: global RSS mode
4798  *	@flags: mode-specific flags
4799  *
4800  *	Sets the global RSS mode.
4801  */
4802 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
4803 		       unsigned int flags)
4804 {
4805 	struct fw_rss_glb_config_cmd c;
4806 
4807 	memset(&c, 0, sizeof(c));
4808 	c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
4809 				    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
4810 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4811 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
4812 		c.u.manual.mode_pkd =
4813 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
4814 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
4815 		c.u.basicvirtual.mode_keymode =
4816 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
4817 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
4818 	} else
4819 		return -EINVAL;
4820 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4821 }
4822 
4823 /**
4824  *	t4_config_vi_rss - configure per VI RSS settings
4825  *	@adapter: the adapter
4826  *	@mbox: mbox to use for the FW command
4827  *	@viid: the VI id
4828  *	@flags: RSS flags
4829  *	@defq: id of the default RSS queue for the VI.
4830  *	@skeyidx: RSS secret key table index for non-global mode
4831  *	@skey: RSS vf_scramble key for VI.
4832  *
4833  *	Configures VI-specific RSS properties.
4834  */
4835 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
4836 		     unsigned int flags, unsigned int defq, unsigned int skeyidx,
4837 		     unsigned int skey)
4838 {
4839 	struct fw_rss_vi_config_cmd c;
4840 
4841 	memset(&c, 0, sizeof(c));
4842 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
4843 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4844 				   V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
4845 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4846 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
4847 					V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
4848 	c.u.basicvirtual.secretkeyidx_pkd = cpu_to_be32(
4849 					V_FW_RSS_VI_CONFIG_CMD_SECRETKEYIDX(skeyidx));
4850 	c.u.basicvirtual.secretkeyxor = cpu_to_be32(skey);
4851 
4852 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4853 }
4854 
4855 /* Read an RSS table row */
4856 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
4857 {
4858 	t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
4859 	return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
4860 				   5, 0, val);
4861 }
4862 
4863 /**
4864  *	t4_read_rss - read the contents of the RSS mapping table
4865  *	@adapter: the adapter
4866  *	@map: holds the contents of the RSS mapping table
4867  *
4868  *	Reads the contents of the RSS hash->queue mapping table.
4869  */
4870 int t4_read_rss(struct adapter *adapter, u16 *map)
4871 {
4872 	u32 val;
4873 	int i, ret;
4874 
4875 	for (i = 0; i < RSS_NENTRIES / 2; ++i) {
4876 		ret = rd_rss_row(adapter, i, &val);
4877 		if (ret)
4878 			return ret;
4879 		*map++ = G_LKPTBLQUEUE0(val);
4880 		*map++ = G_LKPTBLQUEUE1(val);
4881 	}
4882 	return 0;
4883 }
4884 
4885 /**
4886  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
4887  * @adap: the adapter
4888  * @cmd: TP fw ldst address space type
4889  * @vals: where the indirect register values are stored/written
4890  * @nregs: how many indirect registers to read/write
4891  * @start_idx: index of first indirect register to read/write
4892  * @rw: Read (1) or Write (0)
4893  * @sleep_ok: if true we may sleep while awaiting command completion
4894  *
4895  * Access TP indirect registers through LDST
4896  **/
4897 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
4898 			    unsigned int nregs, unsigned int start_index,
4899 			    unsigned int rw, bool sleep_ok)
4900 {
4901 	int ret = 0;
4902 	unsigned int i;
4903 	struct fw_ldst_cmd c;
4904 
4905 	for (i = 0; i < nregs; i++) {
4906 		memset(&c, 0, sizeof(c));
4907 		c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
4908 						F_FW_CMD_REQUEST |
4909 						(rw ? F_FW_CMD_READ :
4910 						      F_FW_CMD_WRITE) |
4911 						V_FW_LDST_CMD_ADDRSPACE(cmd));
4912 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4913 
4914 		c.u.addrval.addr = cpu_to_be32(start_index + i);
4915 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
4916 		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
4917 				      sleep_ok);
4918 		if (ret)
4919 			return ret;
4920 
4921 		if (rw)
4922 			vals[i] = be32_to_cpu(c.u.addrval.val);
4923 	}
4924 	return 0;
4925 }
4926 
4927 /**
4928  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
4929  * @adap: the adapter
4930  * @reg_addr: Address Register
4931  * @reg_data: Data register
4932  * @buff: where the indirect register values are stored/written
4933  * @nregs: how many indirect registers to read/write
4934  * @start_index: index of first indirect register to read/write
4935  * @rw: READ(1) or WRITE(0)
4936  * @sleep_ok: if true we may sleep while awaiting command completion
4937  *
4938  * Read/Write TP indirect registers through LDST if possible.
4939  * Else, use backdoor access
4940  **/
4941 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
4942 			      u32 *buff, u32 nregs, u32 start_index, int rw,
4943 			      bool sleep_ok)
4944 {
4945 	int rc = -EINVAL;
4946 	int cmd;
4947 
4948 	switch (reg_addr) {
4949 	case A_TP_PIO_ADDR:
4950 		cmd = FW_LDST_ADDRSPC_TP_PIO;
4951 		break;
4952 	case A_TP_TM_PIO_ADDR:
4953 		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
4954 		break;
4955 	case A_TP_MIB_INDEX:
4956 		cmd = FW_LDST_ADDRSPC_TP_MIB;
4957 		break;
4958 	default:
4959 		goto indirect_access;
4960 	}
4961 
4962 	if (t4_use_ldst(adap))
4963 		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
4964 				      sleep_ok);
4965 
4966 indirect_access:
4967 
4968 	if (rc) {
4969 		if (rw)
4970 			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
4971 					 start_index);
4972 		else
4973 			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
4974 					  start_index);
4975 	}
4976 }
4977 
4978 /**
4979  * t4_tp_pio_read - Read TP PIO registers
4980  * @adap: the adapter
4981  * @buff: where the indirect register values are written
4982  * @nregs: how many indirect registers to read
4983  * @start_index: index of first indirect register to read
4984  * @sleep_ok: if true we may sleep while awaiting command completion
4985  *
4986  * Read TP PIO Registers
4987  **/
4988 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
4989 		    u32 start_index, bool sleep_ok)
4990 {
4991 	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, buff, nregs,
4992 			  start_index, 1, sleep_ok);
4993 }
4994 
4995 /**
4996  * t4_tp_pio_write - Write TP PIO registers
4997  * @adap: the adapter
4998  * @buff: where the indirect register values are stored
4999  * @nregs: how many indirect registers to write
5000  * @start_index: index of first indirect register to write
5001  * @sleep_ok: if true we may sleep while awaiting command completion
5002  *
5003  * Write TP PIO Registers
5004  **/
5005 void t4_tp_pio_write(struct adapter *adap, const u32 *buff, u32 nregs,
5006 		     u32 start_index, bool sleep_ok)
5007 {
5008 	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5009 	    __DECONST(u32 *, buff), nregs, start_index, 0, sleep_ok);
5010 }
5011 
5012 /**
5013  * t4_tp_tm_pio_read - Read TP TM PIO registers
5014  * @adap: the adapter
5015  * @buff: where the indirect register values are written
5016  * @nregs: how many indirect registers to read
5017  * @start_index: index of first indirect register to read
5018  * @sleep_ok: if true we may sleep while awaiting command completion
5019  *
5020  * Read TP TM PIO Registers
5021  **/
5022 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5023 		       u32 start_index, bool sleep_ok)
5024 {
5025 	t4_tp_indirect_rw(adap, A_TP_TM_PIO_ADDR, A_TP_TM_PIO_DATA, buff,
5026 			  nregs, start_index, 1, sleep_ok);
5027 }
5028 
5029 /**
5030  * t4_tp_mib_read - Read TP MIB registers
5031  * @adap: the adapter
5032  * @buff: where the indirect register values are written
5033  * @nregs: how many indirect registers to read
5034  * @start_index: index of first indirect register to read
5035  * @sleep_ok: if true we may sleep while awaiting command completion
5036  *
5037  * Read TP MIB Registers
5038  **/
5039 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5040 		    bool sleep_ok)
5041 {
5042 	t4_tp_indirect_rw(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, buff, nregs,
5043 			  start_index, 1, sleep_ok);
5044 }
5045 
5046 /**
5047  *	t4_read_rss_key - read the global RSS key
5048  *	@adap: the adapter
5049  *	@key: 10-entry array holding the 320-bit RSS key
5050  * 	@sleep_ok: if true we may sleep while awaiting command completion
5051  *
5052  *	Reads the global 320-bit RSS key.
5053  */
5054 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5055 {
5056 	t4_tp_pio_read(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5057 }
5058 
5059 /**
5060  *	t4_write_rss_key - program one of the RSS keys
5061  *	@adap: the adapter
5062  *	@key: 10-entry array holding the 320-bit RSS key
5063  *	@idx: which RSS key to write
5064  * 	@sleep_ok: if true we may sleep while awaiting command completion
5065  *
5066  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5067  *	0..15 the corresponding entry in the RSS key table is written,
5068  *	otherwise the global RSS key is written.
5069  */
5070 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5071 		      bool sleep_ok)
5072 {
5073 	u8 rss_key_addr_cnt = 16;
5074 	u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
5075 
5076 	/*
5077 	 * T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5078 	 * allows access to key addresses 16-63 by using KeyWrAddrX
5079 	 * as index[5:4](upper 2) into key table
5080 	 */
5081 	if ((chip_id(adap) > CHELSIO_T5) &&
5082 	    (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
5083 		rss_key_addr_cnt = 32;
5084 
5085 	t4_tp_pio_write(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5086 
5087 	if (idx >= 0 && idx < rss_key_addr_cnt) {
5088 		if (rss_key_addr_cnt > 16)
5089 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5090 				     vrt | V_KEYWRADDRX(idx >> 4) |
5091 				     V_T6_VFWRADDR(idx) | F_KEYWREN);
5092 		else
5093 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5094 				     vrt| V_KEYWRADDR(idx) | F_KEYWREN);
5095 	}
5096 }
5097 
5098 /**
5099  *	t4_read_rss_pf_config - read PF RSS Configuration Table
5100  *	@adapter: the adapter
5101  *	@index: the entry in the PF RSS table to read
5102  *	@valp: where to store the returned value
5103  * 	@sleep_ok: if true we may sleep while awaiting command completion
5104  *
5105  *	Reads the PF RSS Configuration Table at the specified index and returns
5106  *	the value found there.
5107  */
5108 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5109 			   u32 *valp, bool sleep_ok)
5110 {
5111 	t4_tp_pio_read(adapter, valp, 1, A_TP_RSS_PF0_CONFIG + index, sleep_ok);
5112 }
5113 
5114 /**
5115  *	t4_write_rss_pf_config - write PF RSS Configuration Table
5116  *	@adapter: the adapter
5117  *	@index: the entry in the VF RSS table to read
5118  *	@val: the value to store
5119  * 	@sleep_ok: if true we may sleep while awaiting command completion
5120  *
5121  *	Writes the PF RSS Configuration Table at the specified index with the
5122  *	specified value.
5123  */
5124 void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index,
5125 			    u32 val, bool sleep_ok)
5126 {
5127 	t4_tp_pio_write(adapter, &val, 1, A_TP_RSS_PF0_CONFIG + index,
5128 			sleep_ok);
5129 }
5130 
5131 /**
5132  *	t4_read_rss_vf_config - read VF RSS Configuration Table
5133  *	@adapter: the adapter
5134  *	@index: the entry in the VF RSS table to read
5135  *	@vfl: where to store the returned VFL
5136  *	@vfh: where to store the returned VFH
5137  * 	@sleep_ok: if true we may sleep while awaiting command completion
5138  *
5139  *	Reads the VF RSS Configuration Table at the specified index and returns
5140  *	the (VFL, VFH) values found there.
5141  */
5142 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5143 			   u32 *vfl, u32 *vfh, bool sleep_ok)
5144 {
5145 	u32 vrt, mask, data;
5146 
5147 	if (chip_id(adapter) <= CHELSIO_T5) {
5148 		mask = V_VFWRADDR(M_VFWRADDR);
5149 		data = V_VFWRADDR(index);
5150 	} else {
5151 		 mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5152 		 data = V_T6_VFWRADDR(index);
5153 	}
5154 	/*
5155 	 * Request that the index'th VF Table values be read into VFL/VFH.
5156 	 */
5157 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5158 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5159 	vrt |= data | F_VFRDEN;
5160 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5161 
5162 	/*
5163 	 * Grab the VFL/VFH values ...
5164 	 */
5165 	t4_tp_pio_read(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
5166 	t4_tp_pio_read(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
5167 }
5168 
5169 /**
5170  *	t4_write_rss_vf_config - write VF RSS Configuration Table
5171  *
5172  *	@adapter: the adapter
5173  *	@index: the entry in the VF RSS table to write
5174  *	@vfl: the VFL to store
5175  *	@vfh: the VFH to store
5176  *
5177  *	Writes the VF RSS Configuration Table at the specified index with the
5178  *	specified (VFL, VFH) values.
5179  */
5180 void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
5181 			    u32 vfl, u32 vfh, bool sleep_ok)
5182 {
5183 	u32 vrt, mask, data;
5184 
5185 	if (chip_id(adapter) <= CHELSIO_T5) {
5186 		mask = V_VFWRADDR(M_VFWRADDR);
5187 		data = V_VFWRADDR(index);
5188 	} else {
5189 		mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5190 		data = V_T6_VFWRADDR(index);
5191 	}
5192 
5193 	/*
5194 	 * Load up VFL/VFH with the values to be written ...
5195 	 */
5196 	t4_tp_pio_write(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
5197 	t4_tp_pio_write(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
5198 
5199 	/*
5200 	 * Write the VFL/VFH into the VF Table at index'th location.
5201 	 */
5202 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5203 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5204 	vrt |= data | F_VFRDEN;
5205 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5206 }
5207 
5208 /**
5209  *	t4_read_rss_pf_map - read PF RSS Map
5210  *	@adapter: the adapter
5211  * 	@sleep_ok: if true we may sleep while awaiting command completion
5212  *
5213  *	Reads the PF RSS Map register and returns its value.
5214  */
5215 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5216 {
5217 	u32 pfmap;
5218 
5219 	t4_tp_pio_read(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
5220 
5221 	return pfmap;
5222 }
5223 
5224 /**
5225  *	t4_write_rss_pf_map - write PF RSS Map
5226  *	@adapter: the adapter
5227  *	@pfmap: PF RSS Map value
5228  *
5229  *	Writes the specified value to the PF RSS Map register.
5230  */
5231 void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap, bool sleep_ok)
5232 {
5233 	t4_tp_pio_write(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
5234 }
5235 
5236 /**
5237  *	t4_read_rss_pf_mask - read PF RSS Mask
5238  *	@adapter: the adapter
5239  * 	@sleep_ok: if true we may sleep while awaiting command completion
5240  *
5241  *	Reads the PF RSS Mask register and returns its value.
5242  */
5243 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5244 {
5245 	u32 pfmask;
5246 
5247 	t4_tp_pio_read(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
5248 
5249 	return pfmask;
5250 }
5251 
5252 /**
5253  *	t4_write_rss_pf_mask - write PF RSS Mask
5254  *	@adapter: the adapter
5255  *	@pfmask: PF RSS Mask value
5256  *
5257  *	Writes the specified value to the PF RSS Mask register.
5258  */
5259 void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask, bool sleep_ok)
5260 {
5261 	t4_tp_pio_write(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
5262 }
5263 
5264 /**
5265  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
5266  *	@adap: the adapter
5267  *	@v4: holds the TCP/IP counter values
5268  *	@v6: holds the TCP/IPv6 counter values
5269  * 	@sleep_ok: if true we may sleep while awaiting command completion
5270  *
5271  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5272  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5273  */
5274 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5275 			 struct tp_tcp_stats *v6, bool sleep_ok)
5276 {
5277 	u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
5278 
5279 #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
5280 #define STAT(x)     val[STAT_IDX(x)]
5281 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5282 
5283 	if (v4) {
5284 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5285 			       A_TP_MIB_TCP_OUT_RST, sleep_ok);
5286 		v4->tcp_out_rsts = STAT(OUT_RST);
5287 		v4->tcp_in_segs  = STAT64(IN_SEG);
5288 		v4->tcp_out_segs = STAT64(OUT_SEG);
5289 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
5290 	}
5291 	if (v6) {
5292 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5293 			       A_TP_MIB_TCP_V6OUT_RST, sleep_ok);
5294 		v6->tcp_out_rsts = STAT(OUT_RST);
5295 		v6->tcp_in_segs  = STAT64(IN_SEG);
5296 		v6->tcp_out_segs = STAT64(OUT_SEG);
5297 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
5298 	}
5299 #undef STAT64
5300 #undef STAT
5301 #undef STAT_IDX
5302 }
5303 
5304 /**
5305  *	t4_tp_get_err_stats - read TP's error MIB counters
5306  *	@adap: the adapter
5307  *	@st: holds the counter values
5308  * 	@sleep_ok: if true we may sleep while awaiting command completion
5309  *
5310  *	Returns the values of TP's error counters.
5311  */
5312 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
5313 			 bool sleep_ok)
5314 {
5315 	int nchan = adap->chip_params->nchan;
5316 
5317 	t4_tp_mib_read(adap, st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0,
5318 		       sleep_ok);
5319 
5320 	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0,
5321 		       sleep_ok);
5322 
5323 	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0,
5324 		       sleep_ok);
5325 
5326 	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
5327 		       A_TP_MIB_TNL_CNG_DROP_0, sleep_ok);
5328 
5329 	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
5330 		       A_TP_MIB_OFD_CHN_DROP_0, sleep_ok);
5331 
5332 	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0,
5333 		       sleep_ok);
5334 
5335 	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
5336 		       A_TP_MIB_OFD_VLN_DROP_0, sleep_ok);
5337 
5338 	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
5339 		       A_TP_MIB_TCP_V6IN_ERR_0, sleep_ok);
5340 
5341 	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP,
5342 		       sleep_ok);
5343 }
5344 
5345 /**
5346  *	t4_tp_get_proxy_stats - read TP's proxy MIB counters
5347  *	@adap: the adapter
5348  *	@st: holds the counter values
5349  *
5350  *	Returns the values of TP's proxy counters.
5351  */
5352 void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st,
5353     bool sleep_ok)
5354 {
5355 	int nchan = adap->chip_params->nchan;
5356 
5357 	t4_tp_mib_read(adap, st->proxy, nchan, A_TP_MIB_TNL_LPBK_0, sleep_ok);
5358 }
5359 
5360 /**
5361  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
5362  *	@adap: the adapter
5363  *	@st: holds the counter values
5364  * 	@sleep_ok: if true we may sleep while awaiting command completion
5365  *
5366  *	Returns the values of TP's CPL counters.
5367  */
5368 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
5369 			 bool sleep_ok)
5370 {
5371 	int nchan = adap->chip_params->nchan;
5372 
5373 	t4_tp_mib_read(adap, st->req, nchan, A_TP_MIB_CPL_IN_REQ_0, sleep_ok);
5374 
5375 	t4_tp_mib_read(adap, st->rsp, nchan, A_TP_MIB_CPL_OUT_RSP_0, sleep_ok);
5376 }
5377 
5378 /**
5379  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5380  *	@adap: the adapter
5381  *	@st: holds the counter values
5382  *
5383  *	Returns the values of TP's RDMA counters.
5384  */
5385 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
5386 			  bool sleep_ok)
5387 {
5388 	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, A_TP_MIB_RQE_DFR_PKT,
5389 		       sleep_ok);
5390 }
5391 
5392 /**
5393  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5394  *	@adap: the adapter
5395  *	@idx: the port index
5396  *	@st: holds the counter values
5397  * 	@sleep_ok: if true we may sleep while awaiting command completion
5398  *
5399  *	Returns the values of TP's FCoE counters for the selected port.
5400  */
5401 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5402 		       struct tp_fcoe_stats *st, bool sleep_ok)
5403 {
5404 	u32 val[2];
5405 
5406 	t4_tp_mib_read(adap, &st->frames_ddp, 1, A_TP_MIB_FCOE_DDP_0 + idx,
5407 		       sleep_ok);
5408 
5409 	t4_tp_mib_read(adap, &st->frames_drop, 1,
5410 		       A_TP_MIB_FCOE_DROP_0 + idx, sleep_ok);
5411 
5412 	t4_tp_mib_read(adap, val, 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx,
5413 		       sleep_ok);
5414 
5415 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
5416 }
5417 
5418 /**
5419  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5420  *	@adap: the adapter
5421  *	@st: holds the counter values
5422  * 	@sleep_ok: if true we may sleep while awaiting command completion
5423  *
5424  *	Returns the values of TP's counters for non-TCP directly-placed packets.
5425  */
5426 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
5427 		      bool sleep_ok)
5428 {
5429 	u32 val[4];
5430 
5431 	t4_tp_mib_read(adap, val, 4, A_TP_MIB_USM_PKTS, sleep_ok);
5432 
5433 	st->frames = val[0];
5434 	st->drops = val[1];
5435 	st->octets = ((u64)val[2] << 32) | val[3];
5436 }
5437 
5438 /**
5439  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
5440  *	@adap: the adapter
5441  *	@mtus: where to store the MTU values
5442  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
5443  *
5444  *	Reads the HW path MTU table.
5445  */
5446 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5447 {
5448 	u32 v;
5449 	int i;
5450 
5451 	for (i = 0; i < NMTUS; ++i) {
5452 		t4_write_reg(adap, A_TP_MTU_TABLE,
5453 			     V_MTUINDEX(0xff) | V_MTUVALUE(i));
5454 		v = t4_read_reg(adap, A_TP_MTU_TABLE);
5455 		mtus[i] = G_MTUVALUE(v);
5456 		if (mtu_log)
5457 			mtu_log[i] = G_MTUWIDTH(v);
5458 	}
5459 }
5460 
5461 /**
5462  *	t4_read_cong_tbl - reads the congestion control table
5463  *	@adap: the adapter
5464  *	@incr: where to store the alpha values
5465  *
5466  *	Reads the additive increments programmed into the HW congestion
5467  *	control table.
5468  */
5469 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5470 {
5471 	unsigned int mtu, w;
5472 
5473 	for (mtu = 0; mtu < NMTUS; ++mtu)
5474 		for (w = 0; w < NCCTRL_WIN; ++w) {
5475 			t4_write_reg(adap, A_TP_CCTRL_TABLE,
5476 				     V_ROWINDEX(0xffff) | (mtu << 5) | w);
5477 			incr[mtu][w] = (u16)t4_read_reg(adap,
5478 						A_TP_CCTRL_TABLE) & 0x1fff;
5479 		}
5480 }
5481 
5482 /**
5483  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5484  *	@adap: the adapter
5485  *	@addr: the indirect TP register address
5486  *	@mask: specifies the field within the register to modify
5487  *	@val: new value for the field
5488  *
5489  *	Sets a field of an indirect TP register to the given value.
5490  */
5491 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5492 			    unsigned int mask, unsigned int val)
5493 {
5494 	t4_write_reg(adap, A_TP_PIO_ADDR, addr);
5495 	val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
5496 	t4_write_reg(adap, A_TP_PIO_DATA, val);
5497 }
5498 
5499 /**
5500  *	init_cong_ctrl - initialize congestion control parameters
5501  *	@a: the alpha values for congestion control
5502  *	@b: the beta values for congestion control
5503  *
5504  *	Initialize the congestion control parameters.
5505  */
5506 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5507 {
5508 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5509 	a[9] = 2;
5510 	a[10] = 3;
5511 	a[11] = 4;
5512 	a[12] = 5;
5513 	a[13] = 6;
5514 	a[14] = 7;
5515 	a[15] = 8;
5516 	a[16] = 9;
5517 	a[17] = 10;
5518 	a[18] = 14;
5519 	a[19] = 17;
5520 	a[20] = 21;
5521 	a[21] = 25;
5522 	a[22] = 30;
5523 	a[23] = 35;
5524 	a[24] = 45;
5525 	a[25] = 60;
5526 	a[26] = 80;
5527 	a[27] = 100;
5528 	a[28] = 200;
5529 	a[29] = 300;
5530 	a[30] = 400;
5531 	a[31] = 500;
5532 
5533 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5534 	b[9] = b[10] = 1;
5535 	b[11] = b[12] = 2;
5536 	b[13] = b[14] = b[15] = b[16] = 3;
5537 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5538 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5539 	b[28] = b[29] = 6;
5540 	b[30] = b[31] = 7;
5541 }
5542 
5543 /* The minimum additive increment value for the congestion control table */
5544 #define CC_MIN_INCR 2U
5545 
5546 /**
5547  *	t4_load_mtus - write the MTU and congestion control HW tables
5548  *	@adap: the adapter
5549  *	@mtus: the values for the MTU table
5550  *	@alpha: the values for the congestion control alpha parameter
5551  *	@beta: the values for the congestion control beta parameter
5552  *
5553  *	Write the HW MTU table with the supplied MTUs and the high-speed
5554  *	congestion control table with the supplied alpha, beta, and MTUs.
5555  *	We write the two tables together because the additive increments
5556  *	depend on the MTUs.
5557  */
5558 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5559 		  const unsigned short *alpha, const unsigned short *beta)
5560 {
5561 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5562 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5563 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5564 		28672, 40960, 57344, 81920, 114688, 163840, 229376
5565 	};
5566 
5567 	unsigned int i, w;
5568 
5569 	for (i = 0; i < NMTUS; ++i) {
5570 		unsigned int mtu = mtus[i];
5571 		unsigned int log2 = fls(mtu);
5572 
5573 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5574 			log2--;
5575 		t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
5576 			     V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
5577 
5578 		for (w = 0; w < NCCTRL_WIN; ++w) {
5579 			unsigned int inc;
5580 
5581 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5582 				  CC_MIN_INCR);
5583 
5584 			t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
5585 				     (w << 16) | (beta[w] << 13) | inc);
5586 		}
5587 	}
5588 }
5589 
5590 /**
5591  *	t4_set_pace_tbl - set the pace table
5592  *	@adap: the adapter
5593  *	@pace_vals: the pace values in microseconds
5594  *	@start: index of the first entry in the HW pace table to set
5595  *	@n: how many entries to set
5596  *
5597  *	Sets (a subset of the) HW pace table.
5598  */
5599 int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
5600 		     unsigned int start, unsigned int n)
5601 {
5602 	unsigned int vals[NTX_SCHED], i;
5603 	unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
5604 
5605 	if (n > NTX_SCHED)
5606 	    return -ERANGE;
5607 
5608 	/* convert values from us to dack ticks, rounding to closest value */
5609 	for (i = 0; i < n; i++, pace_vals++) {
5610 		vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
5611 		if (vals[i] > 0x7ff)
5612 			return -ERANGE;
5613 		if (*pace_vals && vals[i] == 0)
5614 			return -ERANGE;
5615 	}
5616 	for (i = 0; i < n; i++, start++)
5617 		t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
5618 	return 0;
5619 }
5620 
5621 /**
5622  *	t4_set_sched_bps - set the bit rate for a HW traffic scheduler
5623  *	@adap: the adapter
5624  *	@kbps: target rate in Kbps
5625  *	@sched: the scheduler index
5626  *
5627  *	Configure a Tx HW scheduler for the target rate.
5628  */
5629 int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
5630 {
5631 	unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
5632 	unsigned int clk = adap->params.vpd.cclk * 1000;
5633 	unsigned int selected_cpt = 0, selected_bpt = 0;
5634 
5635 	if (kbps > 0) {
5636 		kbps *= 125;     /* -> bytes */
5637 		for (cpt = 1; cpt <= 255; cpt++) {
5638 			tps = clk / cpt;
5639 			bpt = (kbps + tps / 2) / tps;
5640 			if (bpt > 0 && bpt <= 255) {
5641 				v = bpt * tps;
5642 				delta = v >= kbps ? v - kbps : kbps - v;
5643 				if (delta < mindelta) {
5644 					mindelta = delta;
5645 					selected_cpt = cpt;
5646 					selected_bpt = bpt;
5647 				}
5648 			} else if (selected_cpt)
5649 				break;
5650 		}
5651 		if (!selected_cpt)
5652 			return -EINVAL;
5653 	}
5654 	t4_write_reg(adap, A_TP_TM_PIO_ADDR,
5655 		     A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
5656 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
5657 	if (sched & 1)
5658 		v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
5659 	else
5660 		v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
5661 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
5662 	return 0;
5663 }
5664 
5665 /**
5666  *	t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
5667  *	@adap: the adapter
5668  *	@sched: the scheduler index
5669  *	@ipg: the interpacket delay in tenths of nanoseconds
5670  *
5671  *	Set the interpacket delay for a HW packet rate scheduler.
5672  */
5673 int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
5674 {
5675 	unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
5676 
5677 	/* convert ipg to nearest number of core clocks */
5678 	ipg *= core_ticks_per_usec(adap);
5679 	ipg = (ipg + 5000) / 10000;
5680 	if (ipg > M_TXTIMERSEPQ0)
5681 		return -EINVAL;
5682 
5683 	t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
5684 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
5685 	if (sched & 1)
5686 		v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
5687 	else
5688 		v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
5689 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
5690 	t4_read_reg(adap, A_TP_TM_PIO_DATA);
5691 	return 0;
5692 }
5693 
5694 /*
5695  * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5696  * clocks.  The formula is
5697  *
5698  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5699  *
5700  * which is equivalent to
5701  *
5702  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5703  */
5704 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5705 {
5706 	u64 v = bytes256 * adap->params.vpd.cclk;
5707 
5708 	return v * 62 + v / 2;
5709 }
5710 
5711 /**
5712  *	t4_get_chan_txrate - get the current per channel Tx rates
5713  *	@adap: the adapter
5714  *	@nic_rate: rates for NIC traffic
5715  *	@ofld_rate: rates for offloaded traffic
5716  *
5717  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5718  *	for each channel.
5719  */
5720 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5721 {
5722 	u32 v;
5723 
5724 	v = t4_read_reg(adap, A_TP_TX_TRATE);
5725 	nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
5726 	nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
5727 	if (adap->chip_params->nchan > 2) {
5728 		nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
5729 		nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
5730 	}
5731 
5732 	v = t4_read_reg(adap, A_TP_TX_ORATE);
5733 	ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
5734 	ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
5735 	if (adap->chip_params->nchan > 2) {
5736 		ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
5737 		ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
5738 	}
5739 }
5740 
5741 /**
5742  *	t4_set_trace_filter - configure one of the tracing filters
5743  *	@adap: the adapter
5744  *	@tp: the desired trace filter parameters
5745  *	@idx: which filter to configure
5746  *	@enable: whether to enable or disable the filter
5747  *
5748  *	Configures one of the tracing filters available in HW.  If @tp is %NULL
5749  *	it indicates that the filter is already written in the register and it
5750  *	just needs to be enabled or disabled.
5751  */
5752 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5753     int idx, int enable)
5754 {
5755 	int i, ofst = idx * 4;
5756 	u32 data_reg, mask_reg, cfg;
5757 	u32 multitrc = F_TRCMULTIFILTER;
5758 	u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
5759 
5760 	if (idx < 0 || idx >= NTRACE)
5761 		return -EINVAL;
5762 
5763 	if (tp == NULL || !enable) {
5764 		t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en,
5765 		    enable ? en : 0);
5766 		return 0;
5767 	}
5768 
5769 	/*
5770 	 * TODO - After T4 data book is updated, specify the exact
5771 	 * section below.
5772 	 *
5773 	 * See T4 data book - MPS section for a complete description
5774 	 * of the below if..else handling of A_MPS_TRC_CFG register
5775 	 * value.
5776 	 */
5777 	cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
5778 	if (cfg & F_TRCMULTIFILTER) {
5779 		/*
5780 		 * If multiple tracers are enabled, then maximum
5781 		 * capture size is 2.5KB (FIFO size of a single channel)
5782 		 * minus 2 flits for CPL_TRACE_PKT header.
5783 		 */
5784 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5785 			return -EINVAL;
5786 	} else {
5787 		/*
5788 		 * If multiple tracers are disabled, to avoid deadlocks
5789 		 * maximum packet capture size of 9600 bytes is recommended.
5790 		 * Also in this mode, only trace0 can be enabled and running.
5791 		 */
5792 		multitrc = 0;
5793 		if (tp->snap_len > 9600 || idx)
5794 			return -EINVAL;
5795 	}
5796 
5797 	if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
5798 	    tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
5799 	    tp->min_len > M_TFMINPKTSIZE)
5800 		return -EINVAL;
5801 
5802 	/* stop the tracer we'll be changing */
5803 	t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0);
5804 
5805 	idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
5806 	data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
5807 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
5808 
5809 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5810 		t4_write_reg(adap, data_reg, tp->data[i]);
5811 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5812 	}
5813 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
5814 		     V_TFCAPTUREMAX(tp->snap_len) |
5815 		     V_TFMINPKTSIZE(tp->min_len));
5816 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
5817 		     V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en |
5818 		     (is_t4(adap) ?
5819 		     V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
5820 		     V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
5821 
5822 	return 0;
5823 }
5824 
5825 /**
5826  *	t4_get_trace_filter - query one of the tracing filters
5827  *	@adap: the adapter
5828  *	@tp: the current trace filter parameters
5829  *	@idx: which trace filter to query
5830  *	@enabled: non-zero if the filter is enabled
5831  *
5832  *	Returns the current settings of one of the HW tracing filters.
5833  */
5834 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5835 			 int *enabled)
5836 {
5837 	u32 ctla, ctlb;
5838 	int i, ofst = idx * 4;
5839 	u32 data_reg, mask_reg;
5840 
5841 	ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
5842 	ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
5843 
5844 	if (is_t4(adap)) {
5845 		*enabled = !!(ctla & F_TFEN);
5846 		tp->port =  G_TFPORT(ctla);
5847 		tp->invert = !!(ctla & F_TFINVERTMATCH);
5848 	} else {
5849 		*enabled = !!(ctla & F_T5_TFEN);
5850 		tp->port = G_T5_TFPORT(ctla);
5851 		tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
5852 	}
5853 	tp->snap_len = G_TFCAPTUREMAX(ctlb);
5854 	tp->min_len = G_TFMINPKTSIZE(ctlb);
5855 	tp->skip_ofst = G_TFOFFSET(ctla);
5856 	tp->skip_len = G_TFLENGTH(ctla);
5857 
5858 	ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
5859 	data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
5860 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
5861 
5862 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5863 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5864 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5865 	}
5866 }
5867 
5868 /**
5869  *	t4_pmtx_get_stats - returns the HW stats from PMTX
5870  *	@adap: the adapter
5871  *	@cnt: where to store the count statistics
5872  *	@cycles: where to store the cycle statistics
5873  *
5874  *	Returns performance statistics from PMTX.
5875  */
5876 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5877 {
5878 	int i;
5879 	u32 data[2];
5880 
5881 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
5882 		t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
5883 		cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
5884 		if (is_t4(adap))
5885 			cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
5886 		else {
5887 			t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
5888 					 A_PM_TX_DBG_DATA, data, 2,
5889 					 A_PM_TX_DBG_STAT_MSB);
5890 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5891 		}
5892 	}
5893 }
5894 
5895 /**
5896  *	t4_pmrx_get_stats - returns the HW stats from PMRX
5897  *	@adap: the adapter
5898  *	@cnt: where to store the count statistics
5899  *	@cycles: where to store the cycle statistics
5900  *
5901  *	Returns performance statistics from PMRX.
5902  */
5903 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5904 {
5905 	int i;
5906 	u32 data[2];
5907 
5908 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
5909 		t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
5910 		cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
5911 		if (is_t4(adap)) {
5912 			cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
5913 		} else {
5914 			t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
5915 					 A_PM_RX_DBG_DATA, data, 2,
5916 					 A_PM_RX_DBG_STAT_MSB);
5917 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5918 		}
5919 	}
5920 }
5921 
5922 /**
5923  *	t4_get_mps_bg_map - return the buffer groups associated with a port
5924  *	@adap: the adapter
5925  *	@idx: the port index
5926  *
5927  *	Returns a bitmap indicating which MPS buffer groups are associated
5928  *	with the given port.  Bit i is set if buffer group i is used by the
5929  *	port.
5930  */
5931 static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
5932 {
5933 	u32 n;
5934 
5935 	if (adap->params.mps_bg_map)
5936 		return ((adap->params.mps_bg_map >> (idx << 3)) & 0xff);
5937 
5938 	n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
5939 	if (n == 0)
5940 		return idx == 0 ? 0xf : 0;
5941 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
5942 		return idx < 2 ? (3 << (2 * idx)) : 0;
5943 	return 1 << idx;
5944 }
5945 
5946 /*
5947  * TP RX e-channels associated with the port.
5948  */
5949 static unsigned int t4_get_rx_e_chan_map(struct adapter *adap, int idx)
5950 {
5951 	u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
5952 
5953 	if (n == 0)
5954 		return idx == 0 ? 0xf : 0;
5955 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
5956 		return idx < 2 ? (3 << (2 * idx)) : 0;
5957 	return 1 << idx;
5958 }
5959 
5960 /**
5961  *      t4_get_port_type_description - return Port Type string description
5962  *      @port_type: firmware Port Type enumeration
5963  */
5964 const char *t4_get_port_type_description(enum fw_port_type port_type)
5965 {
5966 	static const char *const port_type_description[] = {
5967 		"Fiber_XFI",
5968 		"Fiber_XAUI",
5969 		"BT_SGMII",
5970 		"BT_XFI",
5971 		"BT_XAUI",
5972 		"KX4",
5973 		"CX4",
5974 		"KX",
5975 		"KR",
5976 		"SFP",
5977 		"BP_AP",
5978 		"BP4_AP",
5979 		"QSFP_10G",
5980 		"QSA",
5981 		"QSFP",
5982 		"BP40_BA",
5983 		"KR4_100G",
5984 		"CR4_QSFP",
5985 		"CR_QSFP",
5986 		"CR2_QSFP",
5987 		"SFP28",
5988 		"KR_SFP28",
5989 	};
5990 
5991 	if (port_type < ARRAY_SIZE(port_type_description))
5992 		return port_type_description[port_type];
5993 	return "UNKNOWN";
5994 }
5995 
5996 /**
5997  *      t4_get_port_stats_offset - collect port stats relative to a previous
5998  *				   snapshot
5999  *      @adap: The adapter
6000  *      @idx: The port
6001  *      @stats: Current stats to fill
6002  *      @offset: Previous stats snapshot
6003  */
6004 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6005 		struct port_stats *stats,
6006 		struct port_stats *offset)
6007 {
6008 	u64 *s, *o;
6009 	int i;
6010 
6011 	t4_get_port_stats(adap, idx, stats);
6012 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
6013 			i < (sizeof(struct port_stats)/sizeof(u64)) ;
6014 			i++, s++, o++)
6015 		*s -= *o;
6016 }
6017 
6018 /**
6019  *	t4_get_port_stats - collect port statistics
6020  *	@adap: the adapter
6021  *	@idx: the port index
6022  *	@p: the stats structure to fill
6023  *
6024  *	Collect statistics related to the given port from HW.
6025  */
6026 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6027 {
6028 	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
6029 	u32 stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
6030 
6031 #define GET_STAT(name) \
6032 	t4_read_reg64(adap, \
6033 	(is_t4(adap) ? PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) : \
6034 	T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
6035 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6036 
6037 	p->tx_pause		= GET_STAT(TX_PORT_PAUSE);
6038 	p->tx_octets		= GET_STAT(TX_PORT_BYTES);
6039 	p->tx_frames		= GET_STAT(TX_PORT_FRAMES);
6040 	p->tx_bcast_frames	= GET_STAT(TX_PORT_BCAST);
6041 	p->tx_mcast_frames	= GET_STAT(TX_PORT_MCAST);
6042 	p->tx_ucast_frames	= GET_STAT(TX_PORT_UCAST);
6043 	p->tx_error_frames	= GET_STAT(TX_PORT_ERROR);
6044 	p->tx_frames_64		= GET_STAT(TX_PORT_64B);
6045 	p->tx_frames_65_127	= GET_STAT(TX_PORT_65B_127B);
6046 	p->tx_frames_128_255	= GET_STAT(TX_PORT_128B_255B);
6047 	p->tx_frames_256_511	= GET_STAT(TX_PORT_256B_511B);
6048 	p->tx_frames_512_1023	= GET_STAT(TX_PORT_512B_1023B);
6049 	p->tx_frames_1024_1518	= GET_STAT(TX_PORT_1024B_1518B);
6050 	p->tx_frames_1519_max	= GET_STAT(TX_PORT_1519B_MAX);
6051 	p->tx_drop		= GET_STAT(TX_PORT_DROP);
6052 	p->tx_ppp0		= GET_STAT(TX_PORT_PPP0);
6053 	p->tx_ppp1		= GET_STAT(TX_PORT_PPP1);
6054 	p->tx_ppp2		= GET_STAT(TX_PORT_PPP2);
6055 	p->tx_ppp3		= GET_STAT(TX_PORT_PPP3);
6056 	p->tx_ppp4		= GET_STAT(TX_PORT_PPP4);
6057 	p->tx_ppp5		= GET_STAT(TX_PORT_PPP5);
6058 	p->tx_ppp6		= GET_STAT(TX_PORT_PPP6);
6059 	p->tx_ppp7		= GET_STAT(TX_PORT_PPP7);
6060 
6061 	if (chip_id(adap) >= CHELSIO_T5) {
6062 		if (stat_ctl & F_COUNTPAUSESTATTX) {
6063 			p->tx_frames -= p->tx_pause;
6064 			p->tx_octets -= p->tx_pause * 64;
6065 		}
6066 		if (stat_ctl & F_COUNTPAUSEMCTX)
6067 			p->tx_mcast_frames -= p->tx_pause;
6068 	}
6069 
6070 	p->rx_pause		= GET_STAT(RX_PORT_PAUSE);
6071 	p->rx_octets		= GET_STAT(RX_PORT_BYTES);
6072 	p->rx_frames		= GET_STAT(RX_PORT_FRAMES);
6073 	p->rx_bcast_frames	= GET_STAT(RX_PORT_BCAST);
6074 	p->rx_mcast_frames	= GET_STAT(RX_PORT_MCAST);
6075 	p->rx_ucast_frames	= GET_STAT(RX_PORT_UCAST);
6076 	p->rx_too_long		= GET_STAT(RX_PORT_MTU_ERROR);
6077 	p->rx_jabber		= GET_STAT(RX_PORT_MTU_CRC_ERROR);
6078 	p->rx_fcs_err		= GET_STAT(RX_PORT_CRC_ERROR);
6079 	p->rx_len_err		= GET_STAT(RX_PORT_LEN_ERROR);
6080 	p->rx_symbol_err	= GET_STAT(RX_PORT_SYM_ERROR);
6081 	p->rx_runt		= GET_STAT(RX_PORT_LESS_64B);
6082 	p->rx_frames_64		= GET_STAT(RX_PORT_64B);
6083 	p->rx_frames_65_127	= GET_STAT(RX_PORT_65B_127B);
6084 	p->rx_frames_128_255	= GET_STAT(RX_PORT_128B_255B);
6085 	p->rx_frames_256_511	= GET_STAT(RX_PORT_256B_511B);
6086 	p->rx_frames_512_1023	= GET_STAT(RX_PORT_512B_1023B);
6087 	p->rx_frames_1024_1518	= GET_STAT(RX_PORT_1024B_1518B);
6088 	p->rx_frames_1519_max	= GET_STAT(RX_PORT_1519B_MAX);
6089 	p->rx_ppp0		= GET_STAT(RX_PORT_PPP0);
6090 	p->rx_ppp1		= GET_STAT(RX_PORT_PPP1);
6091 	p->rx_ppp2		= GET_STAT(RX_PORT_PPP2);
6092 	p->rx_ppp3		= GET_STAT(RX_PORT_PPP3);
6093 	p->rx_ppp4		= GET_STAT(RX_PORT_PPP4);
6094 	p->rx_ppp5		= GET_STAT(RX_PORT_PPP5);
6095 	p->rx_ppp6		= GET_STAT(RX_PORT_PPP6);
6096 	p->rx_ppp7		= GET_STAT(RX_PORT_PPP7);
6097 
6098 	if (chip_id(adap) >= CHELSIO_T5) {
6099 		if (stat_ctl & F_COUNTPAUSESTATRX) {
6100 			p->rx_frames -= p->rx_pause;
6101 			p->rx_octets -= p->rx_pause * 64;
6102 		}
6103 		if (stat_ctl & F_COUNTPAUSEMCRX)
6104 			p->rx_mcast_frames -= p->rx_pause;
6105 	}
6106 
6107 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6108 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6109 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6110 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6111 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6112 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6113 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6114 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6115 
6116 #undef GET_STAT
6117 #undef GET_STAT_COM
6118 }
6119 
6120 /**
6121  *	t4_get_lb_stats - collect loopback port statistics
6122  *	@adap: the adapter
6123  *	@idx: the loopback port index
6124  *	@p: the stats structure to fill
6125  *
6126  *	Return HW statistics for the given loopback port.
6127  */
6128 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6129 {
6130 	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
6131 
6132 #define GET_STAT(name) \
6133 	t4_read_reg64(adap, \
6134 	(is_t4(adap) ? \
6135 	PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \
6136 	T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L)))
6137 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6138 
6139 	p->octets	= GET_STAT(BYTES);
6140 	p->frames	= GET_STAT(FRAMES);
6141 	p->bcast_frames	= GET_STAT(BCAST);
6142 	p->mcast_frames	= GET_STAT(MCAST);
6143 	p->ucast_frames	= GET_STAT(UCAST);
6144 	p->error_frames	= GET_STAT(ERROR);
6145 
6146 	p->frames_64		= GET_STAT(64B);
6147 	p->frames_65_127	= GET_STAT(65B_127B);
6148 	p->frames_128_255	= GET_STAT(128B_255B);
6149 	p->frames_256_511	= GET_STAT(256B_511B);
6150 	p->frames_512_1023	= GET_STAT(512B_1023B);
6151 	p->frames_1024_1518	= GET_STAT(1024B_1518B);
6152 	p->frames_1519_max	= GET_STAT(1519B_MAX);
6153 	p->drop			= GET_STAT(DROP_FRAMES);
6154 
6155 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6156 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6157 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6158 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6159 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6160 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6161 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6162 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6163 
6164 #undef GET_STAT
6165 #undef GET_STAT_COM
6166 }
6167 
6168 /**
6169  *	t4_wol_magic_enable - enable/disable magic packet WoL
6170  *	@adap: the adapter
6171  *	@port: the physical port index
6172  *	@addr: MAC address expected in magic packets, %NULL to disable
6173  *
6174  *	Enables/disables magic packet wake-on-LAN for the selected port.
6175  */
6176 void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
6177 			 const u8 *addr)
6178 {
6179 	u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
6180 
6181 	if (is_t4(adap)) {
6182 		mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
6183 		mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
6184 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
6185 	} else {
6186 		mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
6187 		mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
6188 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
6189 	}
6190 
6191 	if (addr) {
6192 		t4_write_reg(adap, mag_id_reg_l,
6193 			     (addr[2] << 24) | (addr[3] << 16) |
6194 			     (addr[4] << 8) | addr[5]);
6195 		t4_write_reg(adap, mag_id_reg_h,
6196 			     (addr[0] << 8) | addr[1]);
6197 	}
6198 	t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
6199 			 V_MAGICEN(addr != NULL));
6200 }
6201 
6202 /**
6203  *	t4_wol_pat_enable - enable/disable pattern-based WoL
6204  *	@adap: the adapter
6205  *	@port: the physical port index
6206  *	@map: bitmap of which HW pattern filters to set
6207  *	@mask0: byte mask for bytes 0-63 of a packet
6208  *	@mask1: byte mask for bytes 64-127 of a packet
6209  *	@crc: Ethernet CRC for selected bytes
6210  *	@enable: enable/disable switch
6211  *
6212  *	Sets the pattern filters indicated in @map to mask out the bytes
6213  *	specified in @mask0/@mask1 in received packets and compare the CRC of
6214  *	the resulting packet against @crc.  If @enable is %true pattern-based
6215  *	WoL is enabled, otherwise disabled.
6216  */
6217 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
6218 		      u64 mask0, u64 mask1, unsigned int crc, bool enable)
6219 {
6220 	int i;
6221 	u32 port_cfg_reg;
6222 
6223 	if (is_t4(adap))
6224 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
6225 	else
6226 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
6227 
6228 	if (!enable) {
6229 		t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
6230 		return 0;
6231 	}
6232 	if (map > 0xff)
6233 		return -EINVAL;
6234 
6235 #define EPIO_REG(name) \
6236 	(is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
6237 	T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
6238 
6239 	t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
6240 	t4_write_reg(adap, EPIO_REG(DATA2), mask1);
6241 	t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
6242 
6243 	for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
6244 		if (!(map & 1))
6245 			continue;
6246 
6247 		/* write byte masks */
6248 		t4_write_reg(adap, EPIO_REG(DATA0), mask0);
6249 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
6250 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
6251 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
6252 			return -ETIMEDOUT;
6253 
6254 		/* write CRC */
6255 		t4_write_reg(adap, EPIO_REG(DATA0), crc);
6256 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
6257 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
6258 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
6259 			return -ETIMEDOUT;
6260 	}
6261 #undef EPIO_REG
6262 
6263 	t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
6264 	return 0;
6265 }
6266 
6267 /*     t4_mk_filtdelwr - create a delete filter WR
6268  *     @ftid: the filter ID
6269  *     @wr: the filter work request to populate
6270  *     @qid: ingress queue to receive the delete notification
6271  *
6272  *     Creates a filter work request to delete the supplied filter.  If @qid is
6273  *     negative the delete notification is suppressed.
6274  */
6275 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6276 {
6277 	memset(wr, 0, sizeof(*wr));
6278 	wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR));
6279 	wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16));
6280 	wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) |
6281 				    V_FW_FILTER_WR_NOREPLY(qid < 0));
6282 	wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER);
6283 	if (qid >= 0)
6284 		wr->rx_chan_rx_rpl_iq =
6285 				cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid));
6286 }
6287 
6288 #define INIT_CMD(var, cmd, rd_wr) do { \
6289 	(var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
6290 					F_FW_CMD_REQUEST | \
6291 					F_FW_CMD_##rd_wr); \
6292 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6293 } while (0)
6294 
6295 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6296 			  u32 addr, u32 val)
6297 {
6298 	u32 ldst_addrspace;
6299 	struct fw_ldst_cmd c;
6300 
6301 	memset(&c, 0, sizeof(c));
6302 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE);
6303 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6304 					F_FW_CMD_REQUEST |
6305 					F_FW_CMD_WRITE |
6306 					ldst_addrspace);
6307 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6308 	c.u.addrval.addr = cpu_to_be32(addr);
6309 	c.u.addrval.val = cpu_to_be32(val);
6310 
6311 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6312 }
6313 
6314 /**
6315  *	t4_mdio_rd - read a PHY register through MDIO
6316  *	@adap: the adapter
6317  *	@mbox: mailbox to use for the FW command
6318  *	@phy_addr: the PHY address
6319  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6320  *	@reg: the register to read
6321  *	@valp: where to store the value
6322  *
6323  *	Issues a FW command through the given mailbox to read a PHY register.
6324  */
6325 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6326 	       unsigned int mmd, unsigned int reg, unsigned int *valp)
6327 {
6328 	int ret;
6329 	u32 ldst_addrspace;
6330 	struct fw_ldst_cmd c;
6331 
6332 	memset(&c, 0, sizeof(c));
6333 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
6334 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6335 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
6336 					ldst_addrspace);
6337 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6338 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
6339 					 V_FW_LDST_CMD_MMD(mmd));
6340 	c.u.mdio.raddr = cpu_to_be16(reg);
6341 
6342 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6343 	if (ret == 0)
6344 		*valp = be16_to_cpu(c.u.mdio.rval);
6345 	return ret;
6346 }
6347 
6348 /**
6349  *	t4_mdio_wr - write a PHY register through MDIO
6350  *	@adap: the adapter
6351  *	@mbox: mailbox to use for the FW command
6352  *	@phy_addr: the PHY address
6353  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6354  *	@reg: the register to write
6355  *	@valp: value to write
6356  *
6357  *	Issues a FW command through the given mailbox to write a PHY register.
6358  */
6359 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6360 	       unsigned int mmd, unsigned int reg, unsigned int val)
6361 {
6362 	u32 ldst_addrspace;
6363 	struct fw_ldst_cmd c;
6364 
6365 	memset(&c, 0, sizeof(c));
6366 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
6367 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6368 					F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
6369 					ldst_addrspace);
6370 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6371 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
6372 					 V_FW_LDST_CMD_MMD(mmd));
6373 	c.u.mdio.raddr = cpu_to_be16(reg);
6374 	c.u.mdio.rval = cpu_to_be16(val);
6375 
6376 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6377 }
6378 
6379 /**
6380  *
6381  *	t4_sge_decode_idma_state - decode the idma state
6382  *	@adap: the adapter
6383  *	@state: the state idma is stuck in
6384  */
6385 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6386 {
6387 	static const char * const t4_decode[] = {
6388 		"IDMA_IDLE",
6389 		"IDMA_PUSH_MORE_CPL_FIFO",
6390 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6391 		"Not used",
6392 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6393 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6394 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6395 		"IDMA_SEND_FIFO_TO_IMSG",
6396 		"IDMA_FL_REQ_DATA_FL_PREP",
6397 		"IDMA_FL_REQ_DATA_FL",
6398 		"IDMA_FL_DROP",
6399 		"IDMA_FL_H_REQ_HEADER_FL",
6400 		"IDMA_FL_H_SEND_PCIEHDR",
6401 		"IDMA_FL_H_PUSH_CPL_FIFO",
6402 		"IDMA_FL_H_SEND_CPL",
6403 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6404 		"IDMA_FL_H_SEND_IP_HDR",
6405 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6406 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6407 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6408 		"IDMA_FL_D_SEND_PCIEHDR",
6409 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6410 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6411 		"IDMA_FL_SEND_PCIEHDR",
6412 		"IDMA_FL_PUSH_CPL_FIFO",
6413 		"IDMA_FL_SEND_CPL",
6414 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6415 		"IDMA_FL_SEND_PAYLOAD",
6416 		"IDMA_FL_REQ_NEXT_DATA_FL",
6417 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6418 		"IDMA_FL_SEND_PADDING",
6419 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6420 		"IDMA_FL_SEND_FIFO_TO_IMSG",
6421 		"IDMA_FL_REQ_DATAFL_DONE",
6422 		"IDMA_FL_REQ_HEADERFL_DONE",
6423 	};
6424 	static const char * const t5_decode[] = {
6425 		"IDMA_IDLE",
6426 		"IDMA_ALMOST_IDLE",
6427 		"IDMA_PUSH_MORE_CPL_FIFO",
6428 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6429 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6430 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6431 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6432 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6433 		"IDMA_SEND_FIFO_TO_IMSG",
6434 		"IDMA_FL_REQ_DATA_FL",
6435 		"IDMA_FL_DROP",
6436 		"IDMA_FL_DROP_SEND_INC",
6437 		"IDMA_FL_H_REQ_HEADER_FL",
6438 		"IDMA_FL_H_SEND_PCIEHDR",
6439 		"IDMA_FL_H_PUSH_CPL_FIFO",
6440 		"IDMA_FL_H_SEND_CPL",
6441 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6442 		"IDMA_FL_H_SEND_IP_HDR",
6443 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6444 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6445 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6446 		"IDMA_FL_D_SEND_PCIEHDR",
6447 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6448 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6449 		"IDMA_FL_SEND_PCIEHDR",
6450 		"IDMA_FL_PUSH_CPL_FIFO",
6451 		"IDMA_FL_SEND_CPL",
6452 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6453 		"IDMA_FL_SEND_PAYLOAD",
6454 		"IDMA_FL_REQ_NEXT_DATA_FL",
6455 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6456 		"IDMA_FL_SEND_PADDING",
6457 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6458 	};
6459 	static const char * const t6_decode[] = {
6460 		"IDMA_IDLE",
6461 		"IDMA_PUSH_MORE_CPL_FIFO",
6462 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6463 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6464 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6465 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6466 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6467 		"IDMA_FL_REQ_DATA_FL",
6468 		"IDMA_FL_DROP",
6469 		"IDMA_FL_DROP_SEND_INC",
6470 		"IDMA_FL_H_REQ_HEADER_FL",
6471 		"IDMA_FL_H_SEND_PCIEHDR",
6472 		"IDMA_FL_H_PUSH_CPL_FIFO",
6473 		"IDMA_FL_H_SEND_CPL",
6474 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6475 		"IDMA_FL_H_SEND_IP_HDR",
6476 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6477 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6478 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6479 		"IDMA_FL_D_SEND_PCIEHDR",
6480 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6481 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6482 		"IDMA_FL_SEND_PCIEHDR",
6483 		"IDMA_FL_PUSH_CPL_FIFO",
6484 		"IDMA_FL_SEND_CPL",
6485 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6486 		"IDMA_FL_SEND_PAYLOAD",
6487 		"IDMA_FL_REQ_NEXT_DATA_FL",
6488 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6489 		"IDMA_FL_SEND_PADDING",
6490 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6491 	};
6492 	static const u32 sge_regs[] = {
6493 		A_SGE_DEBUG_DATA_LOW_INDEX_2,
6494 		A_SGE_DEBUG_DATA_LOW_INDEX_3,
6495 		A_SGE_DEBUG_DATA_HIGH_INDEX_10,
6496 	};
6497 	const char * const *sge_idma_decode;
6498 	int sge_idma_decode_nstates;
6499 	int i;
6500 	unsigned int chip_version = chip_id(adapter);
6501 
6502 	/* Select the right set of decode strings to dump depending on the
6503 	 * adapter chip type.
6504 	 */
6505 	switch (chip_version) {
6506 	case CHELSIO_T4:
6507 		sge_idma_decode = (const char * const *)t4_decode;
6508 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6509 		break;
6510 
6511 	case CHELSIO_T5:
6512 		sge_idma_decode = (const char * const *)t5_decode;
6513 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6514 		break;
6515 
6516 	case CHELSIO_T6:
6517 		sge_idma_decode = (const char * const *)t6_decode;
6518 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6519 		break;
6520 
6521 	default:
6522 		CH_ERR(adapter,	"Unsupported chip version %d\n", chip_version);
6523 		return;
6524 	}
6525 
6526 	if (state < sge_idma_decode_nstates)
6527 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6528 	else
6529 		CH_WARN(adapter, "idma state %d unknown\n", state);
6530 
6531 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6532 		CH_WARN(adapter, "SGE register %#x value %#x\n",
6533 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6534 }
6535 
6536 /**
6537  *      t4_sge_ctxt_flush - flush the SGE context cache
6538  *      @adap: the adapter
6539  *      @mbox: mailbox to use for the FW command
6540  *
6541  *      Issues a FW command through the given mailbox to flush the
6542  *      SGE context cache.
6543  */
6544 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
6545 {
6546 	int ret;
6547 	u32 ldst_addrspace;
6548 	struct fw_ldst_cmd c;
6549 
6550 	memset(&c, 0, sizeof(c));
6551 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_SGE_EGRC);
6552 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6553 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
6554 					ldst_addrspace);
6555 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6556 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH);
6557 
6558 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6559 	return ret;
6560 }
6561 
6562 /**
6563  *      t4_fw_hello - establish communication with FW
6564  *      @adap: the adapter
6565  *      @mbox: mailbox to use for the FW command
6566  *      @evt_mbox: mailbox to receive async FW events
6567  *      @master: specifies the caller's willingness to be the device master
6568  *	@state: returns the current device state (if non-NULL)
6569  *
6570  *	Issues a command to establish communication with FW.  Returns either
6571  *	an error (negative integer) or the mailbox of the Master PF.
6572  */
6573 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6574 		enum dev_master master, enum dev_state *state)
6575 {
6576 	int ret;
6577 	struct fw_hello_cmd c;
6578 	u32 v;
6579 	unsigned int master_mbox;
6580 	int retries = FW_CMD_HELLO_RETRIES;
6581 
6582 retry:
6583 	memset(&c, 0, sizeof(c));
6584 	INIT_CMD(c, HELLO, WRITE);
6585 	c.err_to_clearinit = cpu_to_be32(
6586 		V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
6587 		V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
6588 		V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ?
6589 					mbox : M_FW_HELLO_CMD_MBMASTER) |
6590 		V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
6591 		V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
6592 		F_FW_HELLO_CMD_CLEARINIT);
6593 
6594 	/*
6595 	 * Issue the HELLO command to the firmware.  If it's not successful
6596 	 * but indicates that we got a "busy" or "timeout" condition, retry
6597 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
6598 	 * retry limit, check to see if the firmware left us any error
6599 	 * information and report that if so ...
6600 	 */
6601 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6602 	if (ret != FW_SUCCESS) {
6603 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6604 			goto retry;
6605 		if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
6606 			t4_report_fw_error(adap);
6607 		return ret;
6608 	}
6609 
6610 	v = be32_to_cpu(c.err_to_clearinit);
6611 	master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
6612 	if (state) {
6613 		if (v & F_FW_HELLO_CMD_ERR)
6614 			*state = DEV_STATE_ERR;
6615 		else if (v & F_FW_HELLO_CMD_INIT)
6616 			*state = DEV_STATE_INIT;
6617 		else
6618 			*state = DEV_STATE_UNINIT;
6619 	}
6620 
6621 	/*
6622 	 * If we're not the Master PF then we need to wait around for the
6623 	 * Master PF Driver to finish setting up the adapter.
6624 	 *
6625 	 * Note that we also do this wait if we're a non-Master-capable PF and
6626 	 * there is no current Master PF; a Master PF may show up momentarily
6627 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
6628 	 * OS loads lots of different drivers rapidly at the same time).  In
6629 	 * this case, the Master PF returned by the firmware will be
6630 	 * M_PCIE_FW_MASTER so the test below will work ...
6631 	 */
6632 	if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
6633 	    master_mbox != mbox) {
6634 		int waiting = FW_CMD_HELLO_TIMEOUT;
6635 
6636 		/*
6637 		 * Wait for the firmware to either indicate an error or
6638 		 * initialized state.  If we see either of these we bail out
6639 		 * and report the issue to the caller.  If we exhaust the
6640 		 * "hello timeout" and we haven't exhausted our retries, try
6641 		 * again.  Otherwise bail with a timeout error.
6642 		 */
6643 		for (;;) {
6644 			u32 pcie_fw;
6645 
6646 			msleep(50);
6647 			waiting -= 50;
6648 
6649 			/*
6650 			 * If neither Error nor Initialialized are indicated
6651 			 * by the firmware keep waiting till we exhaust our
6652 			 * timeout ... and then retry if we haven't exhausted
6653 			 * our retries ...
6654 			 */
6655 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
6656 			if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
6657 				if (waiting <= 0) {
6658 					if (retries-- > 0)
6659 						goto retry;
6660 
6661 					return -ETIMEDOUT;
6662 				}
6663 				continue;
6664 			}
6665 
6666 			/*
6667 			 * We either have an Error or Initialized condition
6668 			 * report errors preferentially.
6669 			 */
6670 			if (state) {
6671 				if (pcie_fw & F_PCIE_FW_ERR)
6672 					*state = DEV_STATE_ERR;
6673 				else if (pcie_fw & F_PCIE_FW_INIT)
6674 					*state = DEV_STATE_INIT;
6675 			}
6676 
6677 			/*
6678 			 * If we arrived before a Master PF was selected and
6679 			 * there's not a valid Master PF, grab its identity
6680 			 * for our caller.
6681 			 */
6682 			if (master_mbox == M_PCIE_FW_MASTER &&
6683 			    (pcie_fw & F_PCIE_FW_MASTER_VLD))
6684 				master_mbox = G_PCIE_FW_MASTER(pcie_fw);
6685 			break;
6686 		}
6687 	}
6688 
6689 	return master_mbox;
6690 }
6691 
6692 /**
6693  *	t4_fw_bye - end communication with FW
6694  *	@adap: the adapter
6695  *	@mbox: mailbox to use for the FW command
6696  *
6697  *	Issues a command to terminate communication with FW.
6698  */
6699 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6700 {
6701 	struct fw_bye_cmd c;
6702 
6703 	memset(&c, 0, sizeof(c));
6704 	INIT_CMD(c, BYE, WRITE);
6705 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6706 }
6707 
6708 /**
6709  *	t4_fw_reset - issue a reset to FW
6710  *	@adap: the adapter
6711  *	@mbox: mailbox to use for the FW command
6712  *	@reset: specifies the type of reset to perform
6713  *
6714  *	Issues a reset command of the specified type to FW.
6715  */
6716 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6717 {
6718 	struct fw_reset_cmd c;
6719 
6720 	memset(&c, 0, sizeof(c));
6721 	INIT_CMD(c, RESET, WRITE);
6722 	c.val = cpu_to_be32(reset);
6723 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6724 }
6725 
6726 /**
6727  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6728  *	@adap: the adapter
6729  *	@mbox: mailbox to use for the FW RESET command (if desired)
6730  *	@force: force uP into RESET even if FW RESET command fails
6731  *
6732  *	Issues a RESET command to firmware (if desired) with a HALT indication
6733  *	and then puts the microprocessor into RESET state.  The RESET command
6734  *	will only be issued if a legitimate mailbox is provided (mbox <=
6735  *	M_PCIE_FW_MASTER).
6736  *
6737  *	This is generally used in order for the host to safely manipulate the
6738  *	adapter without fear of conflicting with whatever the firmware might
6739  *	be doing.  The only way out of this state is to RESTART the firmware
6740  *	...
6741  */
6742 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
6743 {
6744 	int ret = 0;
6745 
6746 	/*
6747 	 * If a legitimate mailbox is provided, issue a RESET command
6748 	 * with a HALT indication.
6749 	 */
6750 	if (mbox <= M_PCIE_FW_MASTER) {
6751 		struct fw_reset_cmd c;
6752 
6753 		memset(&c, 0, sizeof(c));
6754 		INIT_CMD(c, RESET, WRITE);
6755 		c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
6756 		c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
6757 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6758 	}
6759 
6760 	/*
6761 	 * Normally we won't complete the operation if the firmware RESET
6762 	 * command fails but if our caller insists we'll go ahead and put the
6763 	 * uP into RESET.  This can be useful if the firmware is hung or even
6764 	 * missing ...  We'll have to take the risk of putting the uP into
6765 	 * RESET without the cooperation of firmware in that case.
6766 	 *
6767 	 * We also force the firmware's HALT flag to be on in case we bypassed
6768 	 * the firmware RESET command above or we're dealing with old firmware
6769 	 * which doesn't have the HALT capability.  This will serve as a flag
6770 	 * for the incoming firmware to know that it's coming out of a HALT
6771 	 * rather than a RESET ... if it's new enough to understand that ...
6772 	 */
6773 	if (ret == 0 || force) {
6774 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
6775 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
6776 				 F_PCIE_FW_HALT);
6777 	}
6778 
6779 	/*
6780 	 * And we always return the result of the firmware RESET command
6781 	 * even when we force the uP into RESET ...
6782 	 */
6783 	return ret;
6784 }
6785 
6786 /**
6787  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
6788  *	@adap: the adapter
6789  *	@reset: if we want to do a RESET to restart things
6790  *
6791  *	Restart firmware previously halted by t4_fw_halt().  On successful
6792  *	return the previous PF Master remains as the new PF Master and there
6793  *	is no need to issue a new HELLO command, etc.
6794  *
6795  *	We do this in two ways:
6796  *
6797  *	 1. If we're dealing with newer firmware we'll simply want to take
6798  *	    the chip's microprocessor out of RESET.  This will cause the
6799  *	    firmware to start up from its start vector.  And then we'll loop
6800  *	    until the firmware indicates it's started again (PCIE_FW.HALT
6801  *	    reset to 0) or we timeout.
6802  *
6803  *	 2. If we're dealing with older firmware then we'll need to RESET
6804  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
6805  *	    flag and automatically RESET itself on startup.
6806  */
6807 int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6808 {
6809 	if (reset) {
6810 		/*
6811 		 * Since we're directing the RESET instead of the firmware
6812 		 * doing it automatically, we need to clear the PCIE_FW.HALT
6813 		 * bit.
6814 		 */
6815 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, 0);
6816 
6817 		/*
6818 		 * If we've been given a valid mailbox, first try to get the
6819 		 * firmware to do the RESET.  If that works, great and we can
6820 		 * return success.  Otherwise, if we haven't been given a
6821 		 * valid mailbox or the RESET command failed, fall back to
6822 		 * hitting the chip with a hammer.
6823 		 */
6824 		if (mbox <= M_PCIE_FW_MASTER) {
6825 			t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
6826 			msleep(100);
6827 			if (t4_fw_reset(adap, mbox,
6828 					F_PIORST | F_PIORSTMODE) == 0)
6829 				return 0;
6830 		}
6831 
6832 		t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE);
6833 		msleep(2000);
6834 	} else {
6835 		int ms;
6836 
6837 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
6838 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6839 			if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
6840 				return FW_SUCCESS;
6841 			msleep(100);
6842 			ms += 100;
6843 		}
6844 		return -ETIMEDOUT;
6845 	}
6846 	return 0;
6847 }
6848 
6849 /**
6850  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6851  *	@adap: the adapter
6852  *	@mbox: mailbox to use for the FW RESET command (if desired)
6853  *	@fw_data: the firmware image to write
6854  *	@size: image size
6855  *	@force: force upgrade even if firmware doesn't cooperate
6856  *
6857  *	Perform all of the steps necessary for upgrading an adapter's
6858  *	firmware image.  Normally this requires the cooperation of the
6859  *	existing firmware in order to halt all existing activities
6860  *	but if an invalid mailbox token is passed in we skip that step
6861  *	(though we'll still put the adapter microprocessor into RESET in
6862  *	that case).
6863  *
6864  *	On successful return the new firmware will have been loaded and
6865  *	the adapter will have been fully RESET losing all previous setup
6866  *	state.  On unsuccessful return the adapter may be completely hosed ...
6867  *	positive errno indicates that the adapter is ~probably~ intact, a
6868  *	negative errno indicates that things are looking bad ...
6869  */
6870 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6871 		  const u8 *fw_data, unsigned int size, int force)
6872 {
6873 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6874 	unsigned int bootstrap =
6875 	    be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
6876 	int reset, ret;
6877 
6878 	if (!t4_fw_matches_chip(adap, fw_hdr))
6879 		return -EINVAL;
6880 
6881 	if (!bootstrap) {
6882 		ret = t4_fw_halt(adap, mbox, force);
6883 		if (ret < 0 && !force)
6884 			return ret;
6885 	}
6886 
6887 	ret = t4_load_fw(adap, fw_data, size);
6888 	if (ret < 0 || bootstrap)
6889 		return ret;
6890 
6891 	/*
6892 	 * Older versions of the firmware don't understand the new
6893 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6894 	 * restart.  So for newly loaded older firmware we'll have to do the
6895 	 * RESET for it so it starts up on a clean slate.  We can tell if
6896 	 * the newly loaded firmware will handle this right by checking
6897 	 * its header flags to see if it advertises the capability.
6898 	 */
6899 	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
6900 	return t4_fw_restart(adap, mbox, reset);
6901 }
6902 
6903 /*
6904  * Card doesn't have a firmware, install one.
6905  */
6906 int t4_fw_forceinstall(struct adapter *adap, const u8 *fw_data,
6907     unsigned int size)
6908 {
6909 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6910 	unsigned int bootstrap =
6911 	    be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
6912 	int ret;
6913 
6914 	if (!t4_fw_matches_chip(adap, fw_hdr) || bootstrap)
6915 		return -EINVAL;
6916 
6917 	t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
6918 	t4_write_reg(adap, A_PCIE_FW, 0);	/* Clobber internal state */
6919 	ret = t4_load_fw(adap, fw_data, size);
6920 	if (ret < 0)
6921 		return ret;
6922 	t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE);
6923 	msleep(1000);
6924 
6925 	return (0);
6926 }
6927 
6928 /**
6929  *	t4_fw_initialize - ask FW to initialize the device
6930  *	@adap: the adapter
6931  *	@mbox: mailbox to use for the FW command
6932  *
6933  *	Issues a command to FW to partially initialize the device.  This
6934  *	performs initialization that generally doesn't depend on user input.
6935  */
6936 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
6937 {
6938 	struct fw_initialize_cmd c;
6939 
6940 	memset(&c, 0, sizeof(c));
6941 	INIT_CMD(c, INITIALIZE, WRITE);
6942 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6943 }
6944 
6945 /**
6946  *	t4_query_params_rw - query FW or device parameters
6947  *	@adap: the adapter
6948  *	@mbox: mailbox to use for the FW command
6949  *	@pf: the PF
6950  *	@vf: the VF
6951  *	@nparams: the number of parameters
6952  *	@params: the parameter names
6953  *	@val: the parameter values
6954  *	@rw: Write and read flag
6955  *
6956  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
6957  *	queried at once.
6958  */
6959 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
6960 		       unsigned int vf, unsigned int nparams, const u32 *params,
6961 		       u32 *val, int rw)
6962 {
6963 	int i, ret;
6964 	struct fw_params_cmd c;
6965 	__be32 *p = &c.param[0].mnem;
6966 
6967 	if (nparams > 7)
6968 		return -EINVAL;
6969 
6970 	memset(&c, 0, sizeof(c));
6971 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
6972 				  F_FW_CMD_REQUEST | F_FW_CMD_READ |
6973 				  V_FW_PARAMS_CMD_PFN(pf) |
6974 				  V_FW_PARAMS_CMD_VFN(vf));
6975 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6976 
6977 	for (i = 0; i < nparams; i++) {
6978 		*p++ = cpu_to_be32(*params++);
6979 		if (rw)
6980 			*p = cpu_to_be32(*(val + i));
6981 		p++;
6982 	}
6983 
6984 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6985 	if (ret == 0)
6986 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
6987 			*val++ = be32_to_cpu(*p);
6988 	return ret;
6989 }
6990 
6991 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6992 		    unsigned int vf, unsigned int nparams, const u32 *params,
6993 		    u32 *val)
6994 {
6995 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
6996 }
6997 
6998 /**
6999  *      t4_set_params_timeout - sets FW or device parameters
7000  *      @adap: the adapter
7001  *      @mbox: mailbox to use for the FW command
7002  *      @pf: the PF
7003  *      @vf: the VF
7004  *      @nparams: the number of parameters
7005  *      @params: the parameter names
7006  *      @val: the parameter values
7007  *      @timeout: the timeout time
7008  *
7009  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7010  *      specified at once.
7011  */
7012 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7013 			  unsigned int pf, unsigned int vf,
7014 			  unsigned int nparams, const u32 *params,
7015 			  const u32 *val, int timeout)
7016 {
7017 	struct fw_params_cmd c;
7018 	__be32 *p = &c.param[0].mnem;
7019 
7020 	if (nparams > 7)
7021 		return -EINVAL;
7022 
7023 	memset(&c, 0, sizeof(c));
7024 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7025 				  F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7026 				  V_FW_PARAMS_CMD_PFN(pf) |
7027 				  V_FW_PARAMS_CMD_VFN(vf));
7028 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7029 
7030 	while (nparams--) {
7031 		*p++ = cpu_to_be32(*params++);
7032 		*p++ = cpu_to_be32(*val++);
7033 	}
7034 
7035 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7036 }
7037 
7038 /**
7039  *	t4_set_params - sets FW or device parameters
7040  *	@adap: the adapter
7041  *	@mbox: mailbox to use for the FW command
7042  *	@pf: the PF
7043  *	@vf: the VF
7044  *	@nparams: the number of parameters
7045  *	@params: the parameter names
7046  *	@val: the parameter values
7047  *
7048  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7049  *	specified at once.
7050  */
7051 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7052 		  unsigned int vf, unsigned int nparams, const u32 *params,
7053 		  const u32 *val)
7054 {
7055 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7056 				     FW_CMD_MAX_TIMEOUT);
7057 }
7058 
7059 /**
7060  *	t4_cfg_pfvf - configure PF/VF resource limits
7061  *	@adap: the adapter
7062  *	@mbox: mailbox to use for the FW command
7063  *	@pf: the PF being configured
7064  *	@vf: the VF being configured
7065  *	@txq: the max number of egress queues
7066  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7067  *	@rxqi: the max number of interrupt-capable ingress queues
7068  *	@rxq: the max number of interruptless ingress queues
7069  *	@tc: the PCI traffic class
7070  *	@vi: the max number of virtual interfaces
7071  *	@cmask: the channel access rights mask for the PF/VF
7072  *	@pmask: the port access rights mask for the PF/VF
7073  *	@nexact: the maximum number of exact MPS filters
7074  *	@rcaps: read capabilities
7075  *	@wxcaps: write/execute capabilities
7076  *
7077  *	Configures resource limits and capabilities for a physical or virtual
7078  *	function.
7079  */
7080 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7081 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7082 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7083 		unsigned int vi, unsigned int cmask, unsigned int pmask,
7084 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7085 {
7086 	struct fw_pfvf_cmd c;
7087 
7088 	memset(&c, 0, sizeof(c));
7089 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
7090 				  F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
7091 				  V_FW_PFVF_CMD_VFN(vf));
7092 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7093 	c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
7094 				     V_FW_PFVF_CMD_NIQ(rxq));
7095 	c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) |
7096 				    V_FW_PFVF_CMD_PMASK(pmask) |
7097 				    V_FW_PFVF_CMD_NEQ(txq));
7098 	c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) |
7099 				      V_FW_PFVF_CMD_NVI(vi) |
7100 				      V_FW_PFVF_CMD_NEXACTF(nexact));
7101 	c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) |
7102 				     V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
7103 				     V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
7104 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7105 }
7106 
7107 /**
7108  *	t4_alloc_vi_func - allocate a virtual interface
7109  *	@adap: the adapter
7110  *	@mbox: mailbox to use for the FW command
7111  *	@port: physical port associated with the VI
7112  *	@pf: the PF owning the VI
7113  *	@vf: the VF owning the VI
7114  *	@nmac: number of MAC addresses needed (1 to 5)
7115  *	@mac: the MAC addresses of the VI
7116  *	@rss_size: size of RSS table slice associated with this VI
7117  *	@portfunc: which Port Application Function MAC Address is desired
7118  *	@idstype: Intrusion Detection Type
7119  *
7120  *	Allocates a virtual interface for the given physical port.  If @mac is
7121  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7122  *	If @rss_size is %NULL the VI is not assigned any RSS slice by FW.
7123  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7124  *	stored consecutively so the space needed is @nmac * 6 bytes.
7125  *	Returns a negative error number or the non-negative VI id.
7126  */
7127 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
7128 		     unsigned int port, unsigned int pf, unsigned int vf,
7129 		     unsigned int nmac, u8 *mac, u16 *rss_size,
7130 		     unsigned int portfunc, unsigned int idstype)
7131 {
7132 	int ret;
7133 	struct fw_vi_cmd c;
7134 
7135 	memset(&c, 0, sizeof(c));
7136 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
7137 				  F_FW_CMD_WRITE | F_FW_CMD_EXEC |
7138 				  V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
7139 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
7140 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
7141 				     V_FW_VI_CMD_FUNC(portfunc));
7142 	c.portid_pkd = V_FW_VI_CMD_PORTID(port);
7143 	c.nmac = nmac - 1;
7144 	if(!rss_size)
7145 		c.norss_rsssize = F_FW_VI_CMD_NORSS;
7146 
7147 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7148 	if (ret)
7149 		return ret;
7150 
7151 	if (mac) {
7152 		memcpy(mac, c.mac, sizeof(c.mac));
7153 		switch (nmac) {
7154 		case 5:
7155 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7156 		case 4:
7157 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7158 		case 3:
7159 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7160 		case 2:
7161 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7162 		}
7163 	}
7164 	if (rss_size)
7165 		*rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
7166 	return G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid));
7167 }
7168 
7169 /**
7170  *      t4_alloc_vi - allocate an [Ethernet Function] virtual interface
7171  *      @adap: the adapter
7172  *      @mbox: mailbox to use for the FW command
7173  *      @port: physical port associated with the VI
7174  *      @pf: the PF owning the VI
7175  *      @vf: the VF owning the VI
7176  *      @nmac: number of MAC addresses needed (1 to 5)
7177  *      @mac: the MAC addresses of the VI
7178  *      @rss_size: size of RSS table slice associated with this VI
7179  *
7180  *	backwards compatible and convieniance routine to allocate a Virtual
7181  *	Interface with a Ethernet Port Application Function and Intrustion
7182  *	Detection System disabled.
7183  */
7184 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7185 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7186 		u16 *rss_size)
7187 {
7188 	return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
7189 				FW_VI_FUNC_ETH, 0);
7190 }
7191 
7192 /**
7193  * 	t4_free_vi - free a virtual interface
7194  * 	@adap: the adapter
7195  * 	@mbox: mailbox to use for the FW command
7196  * 	@pf: the PF owning the VI
7197  * 	@vf: the VF owning the VI
7198  * 	@viid: virtual interface identifiler
7199  *
7200  * 	Free a previously allocated virtual interface.
7201  */
7202 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7203 	       unsigned int vf, unsigned int viid)
7204 {
7205 	struct fw_vi_cmd c;
7206 
7207 	memset(&c, 0, sizeof(c));
7208 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
7209 				  F_FW_CMD_REQUEST |
7210 				  F_FW_CMD_EXEC |
7211 				  V_FW_VI_CMD_PFN(pf) |
7212 				  V_FW_VI_CMD_VFN(vf));
7213 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
7214 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
7215 
7216 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7217 }
7218 
7219 /**
7220  *	t4_set_rxmode - set Rx properties of a virtual interface
7221  *	@adap: the adapter
7222  *	@mbox: mailbox to use for the FW command
7223  *	@viid: the VI id
7224  *	@mtu: the new MTU or -1
7225  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7226  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7227  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7228  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7229  *	@sleep_ok: if true we may sleep while awaiting command completion
7230  *
7231  *	Sets Rx properties of a virtual interface.
7232  */
7233 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7234 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
7235 		  bool sleep_ok)
7236 {
7237 	struct fw_vi_rxmode_cmd c;
7238 
7239 	/* convert to FW values */
7240 	if (mtu < 0)
7241 		mtu = M_FW_VI_RXMODE_CMD_MTU;
7242 	if (promisc < 0)
7243 		promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
7244 	if (all_multi < 0)
7245 		all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
7246 	if (bcast < 0)
7247 		bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
7248 	if (vlanex < 0)
7249 		vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
7250 
7251 	memset(&c, 0, sizeof(c));
7252 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
7253 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7254 				   V_FW_VI_RXMODE_CMD_VIID(viid));
7255 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7256 	c.mtu_to_vlanexen =
7257 		cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
7258 			    V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
7259 			    V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
7260 			    V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
7261 			    V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
7262 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7263 }
7264 
7265 /**
7266  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7267  *	@adap: the adapter
7268  *	@mbox: mailbox to use for the FW command
7269  *	@viid: the VI id
7270  *	@free: if true any existing filters for this VI id are first removed
7271  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7272  *	@addr: the MAC address(es)
7273  *	@idx: where to store the index of each allocated filter
7274  *	@hash: pointer to hash address filter bitmap
7275  *	@sleep_ok: call is allowed to sleep
7276  *
7277  *	Allocates an exact-match filter for each of the supplied addresses and
7278  *	sets it to the corresponding address.  If @idx is not %NULL it should
7279  *	have at least @naddr entries, each of which will be set to the index of
7280  *	the filter allocated for the corresponding MAC address.  If a filter
7281  *	could not be allocated for an address its index is set to 0xffff.
7282  *	If @hash is not %NULL addresses that fail to allocate an exact filter
7283  *	are hashed and update the hash filter bitmap pointed at by @hash.
7284  *
7285  *	Returns a negative error number or the number of filters allocated.
7286  */
7287 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7288 		      unsigned int viid, bool free, unsigned int naddr,
7289 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7290 {
7291 	int offset, ret = 0;
7292 	struct fw_vi_mac_cmd c;
7293 	unsigned int nfilters = 0;
7294 	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
7295 	unsigned int rem = naddr;
7296 
7297 	if (naddr > max_naddr)
7298 		return -EINVAL;
7299 
7300 	for (offset = 0; offset < naddr ; /**/) {
7301 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
7302 					 ? rem
7303 					 : ARRAY_SIZE(c.u.exact));
7304 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7305 						     u.exact[fw_naddr]), 16);
7306 		struct fw_vi_mac_exact *p;
7307 		int i;
7308 
7309 		memset(&c, 0, sizeof(c));
7310 		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7311 					   F_FW_CMD_REQUEST |
7312 					   F_FW_CMD_WRITE |
7313 					   V_FW_CMD_EXEC(free) |
7314 					   V_FW_VI_MAC_CMD_VIID(viid));
7315 		c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) |
7316 						  V_FW_CMD_LEN16(len16));
7317 
7318 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7319 			p->valid_to_idx =
7320 				cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
7321 					    V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
7322 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
7323 		}
7324 
7325 		/*
7326 		 * It's okay if we run out of space in our MAC address arena.
7327 		 * Some of the addresses we submit may get stored so we need
7328 		 * to run through the reply to see what the results were ...
7329 		 */
7330 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7331 		if (ret && ret != -FW_ENOMEM)
7332 			break;
7333 
7334 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7335 			u16 index = G_FW_VI_MAC_CMD_IDX(
7336 						be16_to_cpu(p->valid_to_idx));
7337 
7338 			if (idx)
7339 				idx[offset+i] = (index >=  max_naddr
7340 						 ? 0xffff
7341 						 : index);
7342 			if (index < max_naddr)
7343 				nfilters++;
7344 			else if (hash)
7345 				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
7346 		}
7347 
7348 		free = false;
7349 		offset += fw_naddr;
7350 		rem -= fw_naddr;
7351 	}
7352 
7353 	if (ret == 0 || ret == -FW_ENOMEM)
7354 		ret = nfilters;
7355 	return ret;
7356 }
7357 
7358 /**
7359  *	t4_change_mac - modifies the exact-match filter for a MAC address
7360  *	@adap: the adapter
7361  *	@mbox: mailbox to use for the FW command
7362  *	@viid: the VI id
7363  *	@idx: index of existing filter for old value of MAC address, or -1
7364  *	@addr: the new MAC address value
7365  *	@persist: whether a new MAC allocation should be persistent
7366  *	@add_smt: if true also add the address to the HW SMT
7367  *
7368  *	Modifies an exact-match filter and sets it to the new MAC address if
7369  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
7370  *	latter case the address is added persistently if @persist is %true.
7371  *
7372  *	Note that in general it is not possible to modify the value of a given
7373  *	filter so the generic way to modify an address filter is to free the one
7374  *	being used by the old address value and allocate a new filter for the
7375  *	new address value.
7376  *
7377  *	Returns a negative error number or the index of the filter with the new
7378  *	MAC value.  Note that this index may differ from @idx.
7379  */
7380 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
7381 		  int idx, const u8 *addr, bool persist, bool add_smt)
7382 {
7383 	int ret, mode;
7384 	struct fw_vi_mac_cmd c;
7385 	struct fw_vi_mac_exact *p = c.u.exact;
7386 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
7387 
7388 	if (idx < 0)		/* new allocation */
7389 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
7390 	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
7391 
7392 	memset(&c, 0, sizeof(c));
7393 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7394 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7395 				   V_FW_VI_MAC_CMD_VIID(viid));
7396 	c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
7397 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
7398 				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
7399 				      V_FW_VI_MAC_CMD_IDX(idx));
7400 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7401 
7402 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7403 	if (ret == 0) {
7404 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
7405 		if (ret >= max_mac_addr)
7406 			ret = -ENOMEM;
7407 	}
7408 	return ret;
7409 }
7410 
7411 /**
7412  *	t4_set_addr_hash - program the MAC inexact-match hash filter
7413  *	@adap: the adapter
7414  *	@mbox: mailbox to use for the FW command
7415  *	@viid: the VI id
7416  *	@ucast: whether the hash filter should also match unicast addresses
7417  *	@vec: the value to be written to the hash filter
7418  *	@sleep_ok: call is allowed to sleep
7419  *
7420  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
7421  */
7422 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
7423 		     bool ucast, u64 vec, bool sleep_ok)
7424 {
7425 	struct fw_vi_mac_cmd c;
7426 	u32 val;
7427 
7428 	memset(&c, 0, sizeof(c));
7429 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7430 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7431 				   V_FW_VI_ENABLE_CMD_VIID(viid));
7432 	val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) |
7433 	      V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1);
7434 	c.freemacs_to_len16 = cpu_to_be32(val);
7435 	c.u.hash.hashvec = cpu_to_be64(vec);
7436 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7437 }
7438 
7439 /**
7440  *      t4_enable_vi_params - enable/disable a virtual interface
7441  *      @adap: the adapter
7442  *      @mbox: mailbox to use for the FW command
7443  *      @viid: the VI id
7444  *      @rx_en: 1=enable Rx, 0=disable Rx
7445  *      @tx_en: 1=enable Tx, 0=disable Tx
7446  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
7447  *
7448  *      Enables/disables a virtual interface.  Note that setting DCB Enable
7449  *      only makes sense when enabling a Virtual Interface ...
7450  */
7451 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
7452 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
7453 {
7454 	struct fw_vi_enable_cmd c;
7455 
7456 	memset(&c, 0, sizeof(c));
7457 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
7458 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7459 				   V_FW_VI_ENABLE_CMD_VIID(viid));
7460 	c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
7461 				     V_FW_VI_ENABLE_CMD_EEN(tx_en) |
7462 				     V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
7463 				     FW_LEN16(c));
7464 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
7465 }
7466 
7467 /**
7468  *	t4_enable_vi - enable/disable a virtual interface
7469  *	@adap: the adapter
7470  *	@mbox: mailbox to use for the FW command
7471  *	@viid: the VI id
7472  *	@rx_en: 1=enable Rx, 0=disable Rx
7473  *	@tx_en: 1=enable Tx, 0=disable Tx
7474  *
7475  *	Enables/disables a virtual interface.  Note that setting DCB Enable
7476  *	only makes sense when enabling a Virtual Interface ...
7477  */
7478 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
7479 		 bool rx_en, bool tx_en)
7480 {
7481 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
7482 }
7483 
7484 /**
7485  *	t4_identify_port - identify a VI's port by blinking its LED
7486  *	@adap: the adapter
7487  *	@mbox: mailbox to use for the FW command
7488  *	@viid: the VI id
7489  *	@nblinks: how many times to blink LED at 2.5 Hz
7490  *
7491  *	Identifies a VI's port by blinking its LED.
7492  */
7493 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
7494 		     unsigned int nblinks)
7495 {
7496 	struct fw_vi_enable_cmd c;
7497 
7498 	memset(&c, 0, sizeof(c));
7499 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
7500 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7501 				   V_FW_VI_ENABLE_CMD_VIID(viid));
7502 	c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
7503 	c.blinkdur = cpu_to_be16(nblinks);
7504 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7505 }
7506 
7507 /**
7508  *	t4_iq_stop - stop an ingress queue and its FLs
7509  *	@adap: the adapter
7510  *	@mbox: mailbox to use for the FW command
7511  *	@pf: the PF owning the queues
7512  *	@vf: the VF owning the queues
7513  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7514  *	@iqid: ingress queue id
7515  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7516  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7517  *
7518  *	Stops an ingress queue and its associated FLs, if any.  This causes
7519  *	any current or future data/messages destined for these queues to be
7520  *	tossed.
7521  */
7522 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
7523 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7524 	       unsigned int fl0id, unsigned int fl1id)
7525 {
7526 	struct fw_iq_cmd c;
7527 
7528 	memset(&c, 0, sizeof(c));
7529 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
7530 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
7531 				  V_FW_IQ_CMD_VFN(vf));
7532 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c));
7533 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
7534 	c.iqid = cpu_to_be16(iqid);
7535 	c.fl0id = cpu_to_be16(fl0id);
7536 	c.fl1id = cpu_to_be16(fl1id);
7537 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7538 }
7539 
7540 /**
7541  *	t4_iq_free - free an ingress queue and its FLs
7542  *	@adap: the adapter
7543  *	@mbox: mailbox to use for the FW command
7544  *	@pf: the PF owning the queues
7545  *	@vf: the VF owning the queues
7546  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7547  *	@iqid: ingress queue id
7548  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7549  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7550  *
7551  *	Frees an ingress queue and its associated FLs, if any.
7552  */
7553 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7554 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7555 	       unsigned int fl0id, unsigned int fl1id)
7556 {
7557 	struct fw_iq_cmd c;
7558 
7559 	memset(&c, 0, sizeof(c));
7560 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
7561 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
7562 				  V_FW_IQ_CMD_VFN(vf));
7563 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
7564 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
7565 	c.iqid = cpu_to_be16(iqid);
7566 	c.fl0id = cpu_to_be16(fl0id);
7567 	c.fl1id = cpu_to_be16(fl1id);
7568 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7569 }
7570 
7571 /**
7572  *	t4_eth_eq_free - free an Ethernet egress queue
7573  *	@adap: the adapter
7574  *	@mbox: mailbox to use for the FW command
7575  *	@pf: the PF owning the queue
7576  *	@vf: the VF owning the queue
7577  *	@eqid: egress queue id
7578  *
7579  *	Frees an Ethernet egress queue.
7580  */
7581 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7582 		   unsigned int vf, unsigned int eqid)
7583 {
7584 	struct fw_eq_eth_cmd c;
7585 
7586 	memset(&c, 0, sizeof(c));
7587 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
7588 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7589 				  V_FW_EQ_ETH_CMD_PFN(pf) |
7590 				  V_FW_EQ_ETH_CMD_VFN(vf));
7591 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
7592 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
7593 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7594 }
7595 
7596 /**
7597  *	t4_ctrl_eq_free - free a control egress queue
7598  *	@adap: the adapter
7599  *	@mbox: mailbox to use for the FW command
7600  *	@pf: the PF owning the queue
7601  *	@vf: the VF owning the queue
7602  *	@eqid: egress queue id
7603  *
7604  *	Frees a control egress queue.
7605  */
7606 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7607 		    unsigned int vf, unsigned int eqid)
7608 {
7609 	struct fw_eq_ctrl_cmd c;
7610 
7611 	memset(&c, 0, sizeof(c));
7612 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
7613 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7614 				  V_FW_EQ_CTRL_CMD_PFN(pf) |
7615 				  V_FW_EQ_CTRL_CMD_VFN(vf));
7616 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
7617 	c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
7618 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7619 }
7620 
7621 /**
7622  *	t4_ofld_eq_free - free an offload egress queue
7623  *	@adap: the adapter
7624  *	@mbox: mailbox to use for the FW command
7625  *	@pf: the PF owning the queue
7626  *	@vf: the VF owning the queue
7627  *	@eqid: egress queue id
7628  *
7629  *	Frees a control egress queue.
7630  */
7631 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7632 		    unsigned int vf, unsigned int eqid)
7633 {
7634 	struct fw_eq_ofld_cmd c;
7635 
7636 	memset(&c, 0, sizeof(c));
7637 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) |
7638 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7639 				  V_FW_EQ_OFLD_CMD_PFN(pf) |
7640 				  V_FW_EQ_OFLD_CMD_VFN(vf));
7641 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
7642 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid));
7643 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7644 }
7645 
7646 /**
7647  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
7648  *	@link_down_rc: Link Down Reason Code
7649  *
7650  *	Returns a string representation of the Link Down Reason Code.
7651  */
7652 const char *t4_link_down_rc_str(unsigned char link_down_rc)
7653 {
7654 	static const char *reason[] = {
7655 		"Link Down",
7656 		"Remote Fault",
7657 		"Auto-negotiation Failure",
7658 		"Reserved3",
7659 		"Insufficient Airflow",
7660 		"Unable To Determine Reason",
7661 		"No RX Signal Detected",
7662 		"Reserved7",
7663 	};
7664 
7665 	if (link_down_rc >= ARRAY_SIZE(reason))
7666 		return "Bad Reason Code";
7667 
7668 	return reason[link_down_rc];
7669 }
7670 
7671 /*
7672  * Updates all fields owned by the common code in port_info and link_config
7673  * based on information provided by the firmware.  Does not touch any
7674  * requested_* field.
7675  */
7676 static void handle_port_info(struct port_info *pi, const struct fw_port_info *p)
7677 {
7678 	struct link_config *lc = &pi->link_cfg;
7679 	int speed;
7680 	unsigned char fc, fec;
7681 	u32 stat = be32_to_cpu(p->lstatus_to_modtype);
7682 
7683 	pi->port_type = G_FW_PORT_CMD_PTYPE(stat);
7684 	pi->mod_type = G_FW_PORT_CMD_MODTYPE(stat);
7685 	pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP ?
7686 	    G_FW_PORT_CMD_MDIOADDR(stat) : -1;
7687 
7688 	lc->supported = be16_to_cpu(p->pcap);
7689 	lc->advertising = be16_to_cpu(p->acap);
7690 	lc->lp_advertising = be16_to_cpu(p->lpacap);
7691 	lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
7692 	lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC(stat);
7693 
7694 	speed = 0;
7695 	if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
7696 		speed = 100;
7697 	else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
7698 		speed = 1000;
7699 	else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
7700 		speed = 10000;
7701 	else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G))
7702 		speed = 25000;
7703 	else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
7704 		speed = 40000;
7705 	else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G))
7706 		speed = 100000;
7707 	lc->speed = speed;
7708 
7709 	fc = 0;
7710 	if (stat & F_FW_PORT_CMD_RXPAUSE)
7711 		fc |= PAUSE_RX;
7712 	if (stat & F_FW_PORT_CMD_TXPAUSE)
7713 		fc |= PAUSE_TX;
7714 	lc->fc = fc;
7715 
7716 	fec = 0;
7717 	if (lc->advertising & FW_PORT_CAP_FEC_RS)
7718 		fec |= FEC_RS;
7719 	if (lc->advertising & FW_PORT_CAP_FEC_BASER_RS)
7720 		fec |= FEC_BASER_RS;
7721 	lc->fec = fec;
7722 }
7723 
7724 /**
7725  *	t4_update_port_info - retrieve and update port information if changed
7726  *	@pi: the port_info
7727  *
7728  *	We issue a Get Port Information Command to the Firmware and, if
7729  *	successful, we check to see if anything is different from what we
7730  *	last recorded and update things accordingly.
7731  */
7732  int t4_update_port_info(struct port_info *pi)
7733  {
7734 	struct fw_port_cmd port_cmd;
7735 	int ret;
7736 
7737 	memset(&port_cmd, 0, sizeof port_cmd);
7738 	port_cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
7739 					    F_FW_CMD_REQUEST | F_FW_CMD_READ |
7740 					    V_FW_PORT_CMD_PORTID(pi->tx_chan));
7741 	port_cmd.action_to_len16 = cpu_to_be32(
7742 		V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
7743 		FW_LEN16(port_cmd));
7744 	ret = t4_wr_mbox_ns(pi->adapter, pi->adapter->mbox,
7745 			 &port_cmd, sizeof(port_cmd), &port_cmd);
7746 	if (ret)
7747 		return ret;
7748 
7749 	handle_port_info(pi, &port_cmd.u.info);
7750 	return 0;
7751 }
7752 
7753 /**
7754  *	t4_handle_fw_rpl - process a FW reply message
7755  *	@adap: the adapter
7756  *	@rpl: start of the FW message
7757  *
7758  *	Processes a FW message, such as link state change messages.
7759  */
7760 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
7761 {
7762 	u8 opcode = *(const u8 *)rpl;
7763 	const struct fw_port_cmd *p = (const void *)rpl;
7764 	unsigned int action =
7765 			G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
7766 
7767 	if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO) {
7768 		/* link/module state change message */
7769 		int i, old_ptype, old_mtype;
7770 		int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
7771 		struct port_info *pi = NULL;
7772 		struct link_config *lc, *old_lc;
7773 
7774 		for_each_port(adap, i) {
7775 			pi = adap2pinfo(adap, i);
7776 			if (pi->tx_chan == chan)
7777 				break;
7778 		}
7779 
7780 		lc = &pi->link_cfg;
7781 		old_lc = &pi->old_link_cfg;
7782 		old_ptype = pi->port_type;
7783 		old_mtype = pi->mod_type;
7784 
7785 		handle_port_info(pi, &p->u.info);
7786 		if (old_ptype != pi->port_type || old_mtype != pi->mod_type) {
7787 			t4_os_portmod_changed(pi);
7788 		}
7789 		if (old_lc->link_ok != lc->link_ok ||
7790 		    old_lc->speed != lc->speed ||
7791 		    old_lc->fec != lc->fec ||
7792 		    old_lc->fc != lc->fc) {
7793 			t4_os_link_changed(pi);
7794 			*old_lc = *lc;
7795 		}
7796 	} else {
7797 		CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode);
7798 		return -EINVAL;
7799 	}
7800 	return 0;
7801 }
7802 
7803 /**
7804  *	get_pci_mode - determine a card's PCI mode
7805  *	@adapter: the adapter
7806  *	@p: where to store the PCI settings
7807  *
7808  *	Determines a card's PCI mode and associated parameters, such as speed
7809  *	and width.
7810  */
7811 static void get_pci_mode(struct adapter *adapter,
7812 				   struct pci_params *p)
7813 {
7814 	u16 val;
7815 	u32 pcie_cap;
7816 
7817 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
7818 	if (pcie_cap) {
7819 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
7820 		p->speed = val & PCI_EXP_LNKSTA_CLS;
7821 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
7822 	}
7823 }
7824 
7825 struct flash_desc {
7826 	u32 vendor_and_model_id;
7827 	u32 size_mb;
7828 };
7829 
7830 int t4_get_flash_params(struct adapter *adapter)
7831 {
7832 	/*
7833 	 * Table for non-standard supported Flash parts.  Note, all Flash
7834 	 * parts must have 64KB sectors.
7835 	 */
7836 	static struct flash_desc supported_flash[] = {
7837 		{ 0x00150201, 4 << 20 },	/* Spansion 4MB S25FL032P */
7838 	};
7839 
7840 	int ret;
7841 	u32 flashid = 0;
7842 	unsigned int part, manufacturer;
7843 	unsigned int density, size;
7844 
7845 
7846 	/*
7847 	 * Issue a Read ID Command to the Flash part.  We decode supported
7848 	 * Flash parts and their sizes from this.  There's a newer Query
7849 	 * Command which can retrieve detailed geometry information but many
7850 	 * Flash parts don't support it.
7851 	 */
7852 	ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
7853 	if (!ret)
7854 		ret = sf1_read(adapter, 3, 0, 1, &flashid);
7855 	t4_write_reg(adapter, A_SF_OP, 0);	/* unlock SF */
7856 	if (ret < 0)
7857 		return ret;
7858 
7859 	/*
7860 	 * Check to see if it's one of our non-standard supported Flash parts.
7861 	 */
7862 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
7863 		if (supported_flash[part].vendor_and_model_id == flashid) {
7864 			adapter->params.sf_size =
7865 				supported_flash[part].size_mb;
7866 			adapter->params.sf_nsec =
7867 				adapter->params.sf_size / SF_SEC_SIZE;
7868 			goto found;
7869 		}
7870 
7871 	/*
7872 	 * Decode Flash part size.  The code below looks repetative with
7873 	 * common encodings, but that's not guaranteed in the JEDEC
7874 	 * specification for the Read JADEC ID command.  The only thing that
7875 	 * we're guaranteed by the JADEC specification is where the
7876 	 * Manufacturer ID is in the returned result.  After that each
7877 	 * Manufacturer ~could~ encode things completely differently.
7878 	 * Note, all Flash parts must have 64KB sectors.
7879 	 */
7880 	manufacturer = flashid & 0xff;
7881 	switch (manufacturer) {
7882 	case 0x20: { /* Micron/Numonix */
7883 		/*
7884 		 * This Density -> Size decoding table is taken from Micron
7885 		 * Data Sheets.
7886 		 */
7887 		density = (flashid >> 16) & 0xff;
7888 		switch (density) {
7889 		case 0x14: size = 1 << 20; break; /*   1MB */
7890 		case 0x15: size = 1 << 21; break; /*   2MB */
7891 		case 0x16: size = 1 << 22; break; /*   4MB */
7892 		case 0x17: size = 1 << 23; break; /*   8MB */
7893 		case 0x18: size = 1 << 24; break; /*  16MB */
7894 		case 0x19: size = 1 << 25; break; /*  32MB */
7895 		case 0x20: size = 1 << 26; break; /*  64MB */
7896 		case 0x21: size = 1 << 27; break; /* 128MB */
7897 		case 0x22: size = 1 << 28; break; /* 256MB */
7898 
7899 		default:
7900 			CH_ERR(adapter, "Micron Flash Part has bad size, "
7901 			       "ID = %#x, Density code = %#x\n",
7902 			       flashid, density);
7903 			return -EINVAL;
7904 		}
7905 		break;
7906 	}
7907 
7908 	case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */
7909 		/*
7910 		 * This Density -> Size decoding table is taken from ISSI
7911 		 * Data Sheets.
7912 		 */
7913 		density = (flashid >> 16) & 0xff;
7914 		switch (density) {
7915 		case 0x16: size = 1 << 25; break; /*  32MB */
7916 		case 0x17: size = 1 << 26; break; /*  64MB */
7917 
7918 		default:
7919 			CH_ERR(adapter, "ISSI Flash Part has bad size, "
7920 			       "ID = %#x, Density code = %#x\n",
7921 			       flashid, density);
7922 			return -EINVAL;
7923 		}
7924 		break;
7925 	}
7926 
7927 	case 0xc2: { /* Macronix */
7928 		/*
7929 		 * This Density -> Size decoding table is taken from Macronix
7930 		 * Data Sheets.
7931 		 */
7932 		density = (flashid >> 16) & 0xff;
7933 		switch (density) {
7934 		case 0x17: size = 1 << 23; break; /*   8MB */
7935 		case 0x18: size = 1 << 24; break; /*  16MB */
7936 
7937 		default:
7938 			CH_ERR(adapter, "Macronix Flash Part has bad size, "
7939 			       "ID = %#x, Density code = %#x\n",
7940 			       flashid, density);
7941 			return -EINVAL;
7942 		}
7943 		break;
7944 	}
7945 
7946 	case 0xef: { /* Winbond */
7947 		/*
7948 		 * This Density -> Size decoding table is taken from Winbond
7949 		 * Data Sheets.
7950 		 */
7951 		density = (flashid >> 16) & 0xff;
7952 		switch (density) {
7953 		case 0x17: size = 1 << 23; break; /*   8MB */
7954 		case 0x18: size = 1 << 24; break; /*  16MB */
7955 
7956 		default:
7957 			CH_ERR(adapter, "Winbond Flash Part has bad size, "
7958 			       "ID = %#x, Density code = %#x\n",
7959 			       flashid, density);
7960 			return -EINVAL;
7961 		}
7962 		break;
7963 	}
7964 
7965 	default:
7966 		CH_ERR(adapter, "Unsupported Flash Part, ID = %#x\n", flashid);
7967 		return -EINVAL;
7968 	}
7969 
7970 	/*
7971 	 * Store decoded Flash size and fall through into vetting code.
7972 	 */
7973 	adapter->params.sf_size = size;
7974 	adapter->params.sf_nsec = size / SF_SEC_SIZE;
7975 
7976  found:
7977 	/*
7978 	 * We should ~probably~ reject adapters with FLASHes which are too
7979 	 * small but we have some legacy FPGAs with small FLASHes that we'd
7980 	 * still like to use.  So instead we emit a scary message ...
7981 	 */
7982 	if (adapter->params.sf_size < FLASH_MIN_SIZE)
7983 		CH_WARN(adapter, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
7984 			flashid, adapter->params.sf_size, FLASH_MIN_SIZE);
7985 
7986 	return 0;
7987 }
7988 
7989 static void set_pcie_completion_timeout(struct adapter *adapter,
7990 						  u8 range)
7991 {
7992 	u16 val;
7993 	u32 pcie_cap;
7994 
7995 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
7996 	if (pcie_cap) {
7997 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
7998 		val &= 0xfff0;
7999 		val |= range ;
8000 		t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
8001 	}
8002 }
8003 
8004 const struct chip_params *t4_get_chip_params(int chipid)
8005 {
8006 	static const struct chip_params chip_params[] = {
8007 		{
8008 			/* T4 */
8009 			.nchan = NCHAN,
8010 			.pm_stats_cnt = PM_NSTATS,
8011 			.cng_ch_bits_log = 2,
8012 			.nsched_cls = 15,
8013 			.cim_num_obq = CIM_NUM_OBQ,
8014 			.mps_rplc_size = 128,
8015 			.vfcount = 128,
8016 			.sge_fl_db = F_DBPRIO,
8017 			.mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES,
8018 		},
8019 		{
8020 			/* T5 */
8021 			.nchan = NCHAN,
8022 			.pm_stats_cnt = PM_NSTATS,
8023 			.cng_ch_bits_log = 2,
8024 			.nsched_cls = 16,
8025 			.cim_num_obq = CIM_NUM_OBQ_T5,
8026 			.mps_rplc_size = 128,
8027 			.vfcount = 128,
8028 			.sge_fl_db = F_DBPRIO | F_DBTYPE,
8029 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
8030 		},
8031 		{
8032 			/* T6 */
8033 			.nchan = T6_NCHAN,
8034 			.pm_stats_cnt = T6_PM_NSTATS,
8035 			.cng_ch_bits_log = 3,
8036 			.nsched_cls = 16,
8037 			.cim_num_obq = CIM_NUM_OBQ_T5,
8038 			.mps_rplc_size = 256,
8039 			.vfcount = 256,
8040 			.sge_fl_db = 0,
8041 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
8042 		},
8043 	};
8044 
8045 	chipid -= CHELSIO_T4;
8046 	if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params))
8047 		return NULL;
8048 
8049 	return &chip_params[chipid];
8050 }
8051 
8052 /**
8053  *	t4_prep_adapter - prepare SW and HW for operation
8054  *	@adapter: the adapter
8055  *	@buf: temporary space of at least VPD_LEN size provided by the caller.
8056  *
8057  *	Initialize adapter SW state for the various HW modules, set initial
8058  *	values for some adapter tunables, take PHYs out of reset, and
8059  *	initialize the MDIO interface.
8060  */
8061 int t4_prep_adapter(struct adapter *adapter, u32 *buf)
8062 {
8063 	int ret;
8064 	uint16_t device_id;
8065 	uint32_t pl_rev;
8066 
8067 	get_pci_mode(adapter, &adapter->params.pci);
8068 
8069 	pl_rev = t4_read_reg(adapter, A_PL_REV);
8070 	adapter->params.chipid = G_CHIPID(pl_rev);
8071 	adapter->params.rev = G_REV(pl_rev);
8072 	if (adapter->params.chipid == 0) {
8073 		/* T4 did not have chipid in PL_REV (T5 onwards do) */
8074 		adapter->params.chipid = CHELSIO_T4;
8075 
8076 		/* T4A1 chip is not supported */
8077 		if (adapter->params.rev == 1) {
8078 			CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
8079 			return -EINVAL;
8080 		}
8081 	}
8082 
8083 	adapter->chip_params = t4_get_chip_params(chip_id(adapter));
8084 	if (adapter->chip_params == NULL)
8085 		return -EINVAL;
8086 
8087 	adapter->params.pci.vpd_cap_addr =
8088 	    t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
8089 
8090 	ret = t4_get_flash_params(adapter);
8091 	if (ret < 0)
8092 		return ret;
8093 
8094 	/* Cards with real ASICs have the chipid in the PCIe device id */
8095 	t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
8096 	if (device_id >> 12 == chip_id(adapter))
8097 		adapter->params.cim_la_size = CIMLA_SIZE;
8098 	else {
8099 		/* FPGA */
8100 		adapter->params.fpga = 1;
8101 		adapter->params.cim_la_size = 2 * CIMLA_SIZE;
8102 	}
8103 
8104 	ret = get_vpd_params(adapter, &adapter->params.vpd, device_id, buf);
8105 	if (ret < 0)
8106 		return ret;
8107 
8108 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
8109 
8110 	/*
8111 	 * Default port and clock for debugging in case we can't reach FW.
8112 	 */
8113 	adapter->params.nports = 1;
8114 	adapter->params.portvec = 1;
8115 	adapter->params.vpd.cclk = 50000;
8116 
8117 	/* Set pci completion timeout value to 4 seconds. */
8118 	set_pcie_completion_timeout(adapter, 0xd);
8119 	return 0;
8120 }
8121 
8122 /**
8123  *	t4_shutdown_adapter - shut down adapter, host & wire
8124  *	@adapter: the adapter
8125  *
8126  *	Perform an emergency shutdown of the adapter and stop it from
8127  *	continuing any further communication on the ports or DMA to the
8128  *	host.  This is typically used when the adapter and/or firmware
8129  *	have crashed and we want to prevent any further accidental
8130  *	communication with the rest of the world.  This will also force
8131  *	the port Link Status to go down -- if register writes work --
8132  *	which should help our peers figure out that we're down.
8133  */
8134 int t4_shutdown_adapter(struct adapter *adapter)
8135 {
8136 	int port;
8137 
8138 	t4_intr_disable(adapter);
8139 	t4_write_reg(adapter, A_DBG_GPIO_EN, 0);
8140 	for_each_port(adapter, port) {
8141 		u32 a_port_cfg = is_t4(adapter) ?
8142 				 PORT_REG(port, A_XGMAC_PORT_CFG) :
8143 				 T5_PORT_REG(port, A_MAC_PORT_CFG);
8144 
8145 		t4_write_reg(adapter, a_port_cfg,
8146 			     t4_read_reg(adapter, a_port_cfg)
8147 			     & ~V_SIGNAL_DET(1));
8148 	}
8149 	t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0);
8150 
8151 	return 0;
8152 }
8153 
8154 /**
8155  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
8156  *	@adapter: the adapter
8157  *	@qid: the Queue ID
8158  *	@qtype: the Ingress or Egress type for @qid
8159  *	@user: true if this request is for a user mode queue
8160  *	@pbar2_qoffset: BAR2 Queue Offset
8161  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
8162  *
8163  *	Returns the BAR2 SGE Queue Registers information associated with the
8164  *	indicated Absolute Queue ID.  These are passed back in return value
8165  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
8166  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
8167  *
8168  *	This may return an error which indicates that BAR2 SGE Queue
8169  *	registers aren't available.  If an error is not returned, then the
8170  *	following values are returned:
8171  *
8172  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
8173  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
8174  *
8175  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
8176  *	require the "Inferred Queue ID" ability may be used.  E.g. the
8177  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
8178  *	then these "Inferred Queue ID" register may not be used.
8179  */
8180 int t4_bar2_sge_qregs(struct adapter *adapter,
8181 		      unsigned int qid,
8182 		      enum t4_bar2_qtype qtype,
8183 		      int user,
8184 		      u64 *pbar2_qoffset,
8185 		      unsigned int *pbar2_qid)
8186 {
8187 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
8188 	u64 bar2_page_offset, bar2_qoffset;
8189 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
8190 
8191 	/* T4 doesn't support BAR2 SGE Queue registers for kernel
8192 	 * mode queues.
8193 	 */
8194 	if (!user && is_t4(adapter))
8195 		return -EINVAL;
8196 
8197 	/* Get our SGE Page Size parameters.
8198 	 */
8199 	page_shift = adapter->params.sge.page_shift;
8200 	page_size = 1 << page_shift;
8201 
8202 	/* Get the right Queues per Page parameters for our Queue.
8203 	 */
8204 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
8205 		     ? adapter->params.sge.eq_s_qpp
8206 		     : adapter->params.sge.iq_s_qpp);
8207 	qpp_mask = (1 << qpp_shift) - 1;
8208 
8209 	/* Calculate the basics of the BAR2 SGE Queue register area:
8210 	 *  o The BAR2 page the Queue registers will be in.
8211 	 *  o The BAR2 Queue ID.
8212 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
8213 	 */
8214 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
8215 	bar2_qid = qid & qpp_mask;
8216 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
8217 
8218 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
8219 	 * hardware will infer the Absolute Queue ID simply from the writes to
8220 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
8221 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
8222 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
8223 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
8224 	 * from the BAR2 Page and BAR2 Queue ID.
8225 	 *
8226 	 * One important censequence of this is that some BAR2 SGE registers
8227 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
8228 	 * there.  But other registers synthesize the SGE Queue ID purely
8229 	 * from the writes to the registers -- the Write Combined Doorbell
8230 	 * Buffer is a good example.  These BAR2 SGE Registers are only
8231 	 * available for those BAR2 SGE Register areas where the SGE Absolute
8232 	 * Queue ID can be inferred from simple writes.
8233 	 */
8234 	bar2_qoffset = bar2_page_offset;
8235 	bar2_qinferred = (bar2_qid_offset < page_size);
8236 	if (bar2_qinferred) {
8237 		bar2_qoffset += bar2_qid_offset;
8238 		bar2_qid = 0;
8239 	}
8240 
8241 	*pbar2_qoffset = bar2_qoffset;
8242 	*pbar2_qid = bar2_qid;
8243 	return 0;
8244 }
8245 
8246 /**
8247  *	t4_init_devlog_params - initialize adapter->params.devlog
8248  *	@adap: the adapter
8249  *	@fw_attach: whether we can talk to the firmware
8250  *
8251  *	Initialize various fields of the adapter's Firmware Device Log
8252  *	Parameters structure.
8253  */
8254 int t4_init_devlog_params(struct adapter *adap, int fw_attach)
8255 {
8256 	struct devlog_params *dparams = &adap->params.devlog;
8257 	u32 pf_dparams;
8258 	unsigned int devlog_meminfo;
8259 	struct fw_devlog_cmd devlog_cmd;
8260 	int ret;
8261 
8262 	/* If we're dealing with newer firmware, the Device Log Paramerters
8263 	 * are stored in a designated register which allows us to access the
8264 	 * Device Log even if we can't talk to the firmware.
8265 	 */
8266 	pf_dparams =
8267 		t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG));
8268 	if (pf_dparams) {
8269 		unsigned int nentries, nentries128;
8270 
8271 		dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams);
8272 		dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4;
8273 
8274 		nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams);
8275 		nentries = (nentries128 + 1) * 128;
8276 		dparams->size = nentries * sizeof(struct fw_devlog_e);
8277 
8278 		return 0;
8279 	}
8280 
8281 	/*
8282 	 * For any failing returns ...
8283 	 */
8284 	memset(dparams, 0, sizeof *dparams);
8285 
8286 	/*
8287 	 * If we can't talk to the firmware, there's really nothing we can do
8288 	 * at this point.
8289 	 */
8290 	if (!fw_attach)
8291 		return -ENXIO;
8292 
8293 	/* Otherwise, ask the firmware for it's Device Log Parameters.
8294 	 */
8295 	memset(&devlog_cmd, 0, sizeof devlog_cmd);
8296 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
8297 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
8298 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
8299 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
8300 			 &devlog_cmd);
8301 	if (ret)
8302 		return ret;
8303 
8304 	devlog_meminfo =
8305 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
8306 	dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo);
8307 	dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4;
8308 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
8309 
8310 	return 0;
8311 }
8312 
8313 /**
8314  *	t4_init_sge_params - initialize adap->params.sge
8315  *	@adapter: the adapter
8316  *
8317  *	Initialize various fields of the adapter's SGE Parameters structure.
8318  */
8319 int t4_init_sge_params(struct adapter *adapter)
8320 {
8321 	u32 r;
8322 	struct sge_params *sp = &adapter->params.sge;
8323 	unsigned i, tscale = 1;
8324 
8325 	r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD);
8326 	sp->counter_val[0] = G_THRESHOLD_0(r);
8327 	sp->counter_val[1] = G_THRESHOLD_1(r);
8328 	sp->counter_val[2] = G_THRESHOLD_2(r);
8329 	sp->counter_val[3] = G_THRESHOLD_3(r);
8330 
8331 	if (chip_id(adapter) >= CHELSIO_T6) {
8332 		r = t4_read_reg(adapter, A_SGE_ITP_CONTROL);
8333 		tscale = G_TSCALE(r);
8334 		if (tscale == 0)
8335 			tscale = 1;
8336 		else
8337 			tscale += 2;
8338 	}
8339 
8340 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1);
8341 	sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r)) * tscale;
8342 	sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r)) * tscale;
8343 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3);
8344 	sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r)) * tscale;
8345 	sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r)) * tscale;
8346 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5);
8347 	sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r)) * tscale;
8348 	sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r)) * tscale;
8349 
8350 	r = t4_read_reg(adapter, A_SGE_CONM_CTRL);
8351 	sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
8352 	if (is_t4(adapter))
8353 		sp->fl_starve_threshold2 = sp->fl_starve_threshold;
8354 	else if (is_t5(adapter))
8355 		sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
8356 	else
8357 		sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(r) * 2 + 1;
8358 
8359 	/* egress queues: log2 of # of doorbells per BAR2 page */
8360 	r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
8361 	r >>= S_QUEUESPERPAGEPF0 +
8362 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
8363 	sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
8364 
8365 	/* ingress queues: log2 of # of doorbells per BAR2 page */
8366 	r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
8367 	r >>= S_QUEUESPERPAGEPF0 +
8368 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
8369 	sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
8370 
8371 	r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
8372 	r >>= S_HOSTPAGESIZEPF0 +
8373 	    (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf;
8374 	sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10;
8375 
8376 	r = t4_read_reg(adapter, A_SGE_CONTROL);
8377 	sp->sge_control = r;
8378 	sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64;
8379 	sp->fl_pktshift = G_PKTSHIFT(r);
8380 	if (chip_id(adapter) <= CHELSIO_T5) {
8381 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
8382 		    X_INGPADBOUNDARY_SHIFT);
8383 	} else {
8384 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
8385 		    X_T6_INGPADBOUNDARY_SHIFT);
8386 	}
8387 	if (is_t4(adapter))
8388 		sp->pack_boundary = sp->pad_boundary;
8389 	else {
8390 		r = t4_read_reg(adapter, A_SGE_CONTROL2);
8391 		if (G_INGPACKBOUNDARY(r) == 0)
8392 			sp->pack_boundary = 16;
8393 		else
8394 			sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5);
8395 	}
8396 	for (i = 0; i < SGE_FLBUF_SIZES; i++)
8397 		sp->sge_fl_buffer_size[i] = t4_read_reg(adapter,
8398 		    A_SGE_FL_BUFFER_SIZE0 + (4 * i));
8399 
8400 	return 0;
8401 }
8402 
8403 /*
8404  * Read and cache the adapter's compressed filter mode and ingress config.
8405  */
8406 static void read_filter_mode_and_ingress_config(struct adapter *adap,
8407     bool sleep_ok)
8408 {
8409 	uint32_t v;
8410 	struct tp_params *tpp = &adap->params.tp;
8411 
8412 	t4_tp_pio_read(adap, &tpp->vlan_pri_map, 1, A_TP_VLAN_PRI_MAP,
8413 	    sleep_ok);
8414 	t4_tp_pio_read(adap, &tpp->ingress_config, 1, A_TP_INGRESS_CONFIG,
8415 	    sleep_ok);
8416 
8417 	/*
8418 	 * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
8419 	 * shift positions of several elements of the Compressed Filter Tuple
8420 	 * for this adapter which we need frequently ...
8421 	 */
8422 	tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE);
8423 	tpp->port_shift = t4_filter_field_shift(adap, F_PORT);
8424 	tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
8425 	tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN);
8426 	tpp->tos_shift = t4_filter_field_shift(adap, F_TOS);
8427 	tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
8428 	tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE);
8429 	tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH);
8430 	tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE);
8431 	tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION);
8432 
8433 	if (chip_id(adap) > CHELSIO_T4) {
8434 		v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(3));
8435 		adap->params.tp.hash_filter_mask = v;
8436 		v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(4));
8437 		adap->params.tp.hash_filter_mask |= (u64)v << 32;
8438 	}
8439 }
8440 
8441 /**
8442  *      t4_init_tp_params - initialize adap->params.tp
8443  *      @adap: the adapter
8444  *
8445  *      Initialize various fields of the adapter's TP Parameters structure.
8446  */
8447 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
8448 {
8449 	int chan;
8450 	u32 v;
8451 	struct tp_params *tpp = &adap->params.tp;
8452 
8453 	v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
8454 	tpp->tre = G_TIMERRESOLUTION(v);
8455 	tpp->dack_re = G_DELAYEDACKRESOLUTION(v);
8456 
8457 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
8458 	for (chan = 0; chan < MAX_NCHAN; chan++)
8459 		tpp->tx_modq[chan] = chan;
8460 
8461 	read_filter_mode_and_ingress_config(adap, sleep_ok);
8462 
8463 	/*
8464 	 * Cache a mask of the bits that represent the error vector portion of
8465 	 * rx_pkt.err_vec.  T6+ can use a compressed error vector to make room
8466 	 * for information about outer encapsulation (GENEVE/VXLAN/NVGRE).
8467 	 */
8468 	tpp->err_vec_mask = htobe16(0xffff);
8469 	if (chip_id(adap) > CHELSIO_T5) {
8470 		v = t4_read_reg(adap, A_TP_OUT_CONFIG);
8471 		if (v & F_CRXPKTENC) {
8472 			tpp->err_vec_mask =
8473 			    htobe16(V_T6_COMPR_RXERR_VEC(M_T6_COMPR_RXERR_VEC));
8474 		}
8475 	}
8476 
8477 	return 0;
8478 }
8479 
8480 /**
8481  *      t4_filter_field_shift - calculate filter field shift
8482  *      @adap: the adapter
8483  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
8484  *
8485  *      Return the shift position of a filter field within the Compressed
8486  *      Filter Tuple.  The filter field is specified via its selection bit
8487  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
8488  */
8489 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
8490 {
8491 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
8492 	unsigned int sel;
8493 	int field_shift;
8494 
8495 	if ((filter_mode & filter_sel) == 0)
8496 		return -1;
8497 
8498 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
8499 		switch (filter_mode & sel) {
8500 		case F_FCOE:
8501 			field_shift += W_FT_FCOE;
8502 			break;
8503 		case F_PORT:
8504 			field_shift += W_FT_PORT;
8505 			break;
8506 		case F_VNIC_ID:
8507 			field_shift += W_FT_VNIC_ID;
8508 			break;
8509 		case F_VLAN:
8510 			field_shift += W_FT_VLAN;
8511 			break;
8512 		case F_TOS:
8513 			field_shift += W_FT_TOS;
8514 			break;
8515 		case F_PROTOCOL:
8516 			field_shift += W_FT_PROTOCOL;
8517 			break;
8518 		case F_ETHERTYPE:
8519 			field_shift += W_FT_ETHERTYPE;
8520 			break;
8521 		case F_MACMATCH:
8522 			field_shift += W_FT_MACMATCH;
8523 			break;
8524 		case F_MPSHITTYPE:
8525 			field_shift += W_FT_MPSHITTYPE;
8526 			break;
8527 		case F_FRAGMENTATION:
8528 			field_shift += W_FT_FRAGMENTATION;
8529 			break;
8530 		}
8531 	}
8532 	return field_shift;
8533 }
8534 
8535 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id)
8536 {
8537 	u8 addr[6];
8538 	int ret, i, j;
8539 	u16 rss_size;
8540 	struct port_info *p = adap2pinfo(adap, port_id);
8541 	u32 param, val;
8542 
8543 	for (i = 0, j = -1; i <= p->port_id; i++) {
8544 		do {
8545 			j++;
8546 		} while ((adap->params.portvec & (1 << j)) == 0);
8547 	}
8548 
8549 	if (!(adap->flags & IS_VF) ||
8550 	    adap->params.vfres.r_caps & FW_CMD_CAP_PORT) {
8551  		t4_update_port_info(p);
8552 	}
8553 
8554 	ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
8555 	if (ret < 0)
8556 		return ret;
8557 
8558 	p->vi[0].viid = ret;
8559 	if (chip_id(adap) <= CHELSIO_T5)
8560 		p->vi[0].smt_idx = (ret & 0x7f) << 1;
8561 	else
8562 		p->vi[0].smt_idx = (ret & 0x7f);
8563 	p->tx_chan = j;
8564 	p->mps_bg_map = t4_get_mps_bg_map(adap, j);
8565 	p->rx_e_chan_map = t4_get_rx_e_chan_map(adap, j);
8566 	p->lport = j;
8567 	p->vi[0].rss_size = rss_size;
8568 	t4_os_set_hw_addr(p, addr);
8569 
8570 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8571 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
8572 	    V_FW_PARAMS_PARAM_YZ(p->vi[0].viid);
8573 	ret = t4_query_params(adap, mbox, pf, vf, 1, &param, &val);
8574 	if (ret)
8575 		p->vi[0].rss_base = 0xffff;
8576 	else {
8577 		/* MPASS((val >> 16) == rss_size); */
8578 		p->vi[0].rss_base = val & 0xffff;
8579 	}
8580 
8581 	return 0;
8582 }
8583 
8584 /**
8585  *	t4_read_cimq_cfg - read CIM queue configuration
8586  *	@adap: the adapter
8587  *	@base: holds the queue base addresses in bytes
8588  *	@size: holds the queue sizes in bytes
8589  *	@thres: holds the queue full thresholds in bytes
8590  *
8591  *	Returns the current configuration of the CIM queues, starting with
8592  *	the IBQs, then the OBQs.
8593  */
8594 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
8595 {
8596 	unsigned int i, v;
8597 	int cim_num_obq = adap->chip_params->cim_num_obq;
8598 
8599 	for (i = 0; i < CIM_NUM_IBQ; i++) {
8600 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
8601 			     V_QUENUMSELECT(i));
8602 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8603 		/* value is in 256-byte units */
8604 		*base++ = G_CIMQBASE(v) * 256;
8605 		*size++ = G_CIMQSIZE(v) * 256;
8606 		*thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */
8607 	}
8608 	for (i = 0; i < cim_num_obq; i++) {
8609 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
8610 			     V_QUENUMSELECT(i));
8611 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8612 		/* value is in 256-byte units */
8613 		*base++ = G_CIMQBASE(v) * 256;
8614 		*size++ = G_CIMQSIZE(v) * 256;
8615 	}
8616 }
8617 
8618 /**
8619  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
8620  *	@adap: the adapter
8621  *	@qid: the queue index
8622  *	@data: where to store the queue contents
8623  *	@n: capacity of @data in 32-bit words
8624  *
8625  *	Reads the contents of the selected CIM queue starting at address 0 up
8626  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8627  *	error and the number of 32-bit words actually read on success.
8628  */
8629 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8630 {
8631 	int i, err, attempts;
8632 	unsigned int addr;
8633 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
8634 
8635 	if (qid > 5 || (n & 3))
8636 		return -EINVAL;
8637 
8638 	addr = qid * nwords;
8639 	if (n > nwords)
8640 		n = nwords;
8641 
8642 	/* It might take 3-10ms before the IBQ debug read access is allowed.
8643 	 * Wait for 1 Sec with a delay of 1 usec.
8644 	 */
8645 	attempts = 1000000;
8646 
8647 	for (i = 0; i < n; i++, addr++) {
8648 		t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
8649 			     F_IBQDBGEN);
8650 		err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
8651 				      attempts, 1);
8652 		if (err)
8653 			return err;
8654 		*data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
8655 	}
8656 	t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
8657 	return i;
8658 }
8659 
8660 /**
8661  *	t4_read_cim_obq - read the contents of a CIM outbound queue
8662  *	@adap: the adapter
8663  *	@qid: the queue index
8664  *	@data: where to store the queue contents
8665  *	@n: capacity of @data in 32-bit words
8666  *
8667  *	Reads the contents of the selected CIM queue starting at address 0 up
8668  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8669  *	error and the number of 32-bit words actually read on success.
8670  */
8671 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8672 {
8673 	int i, err;
8674 	unsigned int addr, v, nwords;
8675 	int cim_num_obq = adap->chip_params->cim_num_obq;
8676 
8677 	if ((qid > (cim_num_obq - 1)) || (n & 3))
8678 		return -EINVAL;
8679 
8680 	t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
8681 		     V_QUENUMSELECT(qid));
8682 	v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8683 
8684 	addr = G_CIMQBASE(v) * 64;    /* muliple of 256 -> muliple of 4 */
8685 	nwords = G_CIMQSIZE(v) * 64;  /* same */
8686 	if (n > nwords)
8687 		n = nwords;
8688 
8689 	for (i = 0; i < n; i++, addr++) {
8690 		t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
8691 			     F_OBQDBGEN);
8692 		err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
8693 				      2, 1);
8694 		if (err)
8695 			return err;
8696 		*data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
8697 	}
8698 	t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
8699 	return i;
8700 }
8701 
8702 enum {
8703 	CIM_QCTL_BASE     = 0,
8704 	CIM_CTL_BASE      = 0x2000,
8705 	CIM_PBT_ADDR_BASE = 0x2800,
8706 	CIM_PBT_LRF_BASE  = 0x3000,
8707 	CIM_PBT_DATA_BASE = 0x3800
8708 };
8709 
8710 /**
8711  *	t4_cim_read - read a block from CIM internal address space
8712  *	@adap: the adapter
8713  *	@addr: the start address within the CIM address space
8714  *	@n: number of words to read
8715  *	@valp: where to store the result
8716  *
8717  *	Reads a block of 4-byte words from the CIM intenal address space.
8718  */
8719 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
8720 		unsigned int *valp)
8721 {
8722 	int ret = 0;
8723 
8724 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
8725 		return -EBUSY;
8726 
8727 	for ( ; !ret && n--; addr += 4) {
8728 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
8729 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
8730 				      0, 5, 2);
8731 		if (!ret)
8732 			*valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
8733 	}
8734 	return ret;
8735 }
8736 
8737 /**
8738  *	t4_cim_write - write a block into CIM internal address space
8739  *	@adap: the adapter
8740  *	@addr: the start address within the CIM address space
8741  *	@n: number of words to write
8742  *	@valp: set of values to write
8743  *
8744  *	Writes a block of 4-byte words into the CIM intenal address space.
8745  */
8746 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
8747 		 const unsigned int *valp)
8748 {
8749 	int ret = 0;
8750 
8751 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
8752 		return -EBUSY;
8753 
8754 	for ( ; !ret && n--; addr += 4) {
8755 		t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
8756 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
8757 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
8758 				      0, 5, 2);
8759 	}
8760 	return ret;
8761 }
8762 
8763 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
8764 			 unsigned int val)
8765 {
8766 	return t4_cim_write(adap, addr, 1, &val);
8767 }
8768 
8769 /**
8770  *	t4_cim_ctl_read - read a block from CIM control region
8771  *	@adap: the adapter
8772  *	@addr: the start address within the CIM control region
8773  *	@n: number of words to read
8774  *	@valp: where to store the result
8775  *
8776  *	Reads a block of 4-byte words from the CIM control region.
8777  */
8778 int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
8779 		    unsigned int *valp)
8780 {
8781 	return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
8782 }
8783 
8784 /**
8785  *	t4_cim_read_la - read CIM LA capture buffer
8786  *	@adap: the adapter
8787  *	@la_buf: where to store the LA data
8788  *	@wrptr: the HW write pointer within the capture buffer
8789  *
8790  *	Reads the contents of the CIM LA buffer with the most recent entry at
8791  *	the end	of the returned data and with the entry at @wrptr first.
8792  *	We try to leave the LA in the running state we find it in.
8793  */
8794 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
8795 {
8796 	int i, ret;
8797 	unsigned int cfg, val, idx;
8798 
8799 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
8800 	if (ret)
8801 		return ret;
8802 
8803 	if (cfg & F_UPDBGLAEN) {	/* LA is running, freeze it */
8804 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
8805 		if (ret)
8806 			return ret;
8807 	}
8808 
8809 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
8810 	if (ret)
8811 		goto restart;
8812 
8813 	idx = G_UPDBGLAWRPTR(val);
8814 	if (wrptr)
8815 		*wrptr = idx;
8816 
8817 	for (i = 0; i < adap->params.cim_la_size; i++) {
8818 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
8819 				    V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
8820 		if (ret)
8821 			break;
8822 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
8823 		if (ret)
8824 			break;
8825 		if (val & F_UPDBGLARDEN) {
8826 			ret = -ETIMEDOUT;
8827 			break;
8828 		}
8829 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
8830 		if (ret)
8831 			break;
8832 
8833 		/* address can't exceed 0xfff (UpDbgLaRdPtr is of 12-bits) */
8834 		idx = (idx + 1) & M_UPDBGLARDPTR;
8835 		/*
8836 		 * Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
8837 		 * identify the 32-bit portion of the full 312-bit data
8838 		 */
8839 		if (is_t6(adap))
8840 			while ((idx & 0xf) > 9)
8841 				idx = (idx + 1) % M_UPDBGLARDPTR;
8842 	}
8843 restart:
8844 	if (cfg & F_UPDBGLAEN) {
8845 		int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
8846 				      cfg & ~F_UPDBGLARDEN);
8847 		if (!ret)
8848 			ret = r;
8849 	}
8850 	return ret;
8851 }
8852 
8853 /**
8854  *	t4_tp_read_la - read TP LA capture buffer
8855  *	@adap: the adapter
8856  *	@la_buf: where to store the LA data
8857  *	@wrptr: the HW write pointer within the capture buffer
8858  *
8859  *	Reads the contents of the TP LA buffer with the most recent entry at
8860  *	the end	of the returned data and with the entry at @wrptr first.
8861  *	We leave the LA in the running state we find it in.
8862  */
8863 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
8864 {
8865 	bool last_incomplete;
8866 	unsigned int i, cfg, val, idx;
8867 
8868 	cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
8869 	if (cfg & F_DBGLAENABLE)			/* freeze LA */
8870 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
8871 			     adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
8872 
8873 	val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
8874 	idx = G_DBGLAWPTR(val);
8875 	last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
8876 	if (last_incomplete)
8877 		idx = (idx + 1) & M_DBGLARPTR;
8878 	if (wrptr)
8879 		*wrptr = idx;
8880 
8881 	val &= 0xffff;
8882 	val &= ~V_DBGLARPTR(M_DBGLARPTR);
8883 	val |= adap->params.tp.la_mask;
8884 
8885 	for (i = 0; i < TPLA_SIZE; i++) {
8886 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
8887 		la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
8888 		idx = (idx + 1) & M_DBGLARPTR;
8889 	}
8890 
8891 	/* Wipe out last entry if it isn't valid */
8892 	if (last_incomplete)
8893 		la_buf[TPLA_SIZE - 1] = ~0ULL;
8894 
8895 	if (cfg & F_DBGLAENABLE)		/* restore running state */
8896 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
8897 			     cfg | adap->params.tp.la_mask);
8898 }
8899 
8900 /*
8901  * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
8902  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
8903  * state for more than the Warning Threshold then we'll issue a warning about
8904  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
8905  * appears to be hung every Warning Repeat second till the situation clears.
8906  * If the situation clears, we'll note that as well.
8907  */
8908 #define SGE_IDMA_WARN_THRESH 1
8909 #define SGE_IDMA_WARN_REPEAT 300
8910 
8911 /**
8912  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
8913  *	@adapter: the adapter
8914  *	@idma: the adapter IDMA Monitor state
8915  *
8916  *	Initialize the state of an SGE Ingress DMA Monitor.
8917  */
8918 void t4_idma_monitor_init(struct adapter *adapter,
8919 			  struct sge_idma_monitor_state *idma)
8920 {
8921 	/* Initialize the state variables for detecting an SGE Ingress DMA
8922 	 * hang.  The SGE has internal counters which count up on each clock
8923 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
8924 	 * same state they were on the previous clock tick.  The clock used is
8925 	 * the Core Clock so we have a limit on the maximum "time" they can
8926 	 * record; typically a very small number of seconds.  For instance,
8927 	 * with a 600MHz Core Clock, we can only count up to a bit more than
8928 	 * 7s.  So we'll synthesize a larger counter in order to not run the
8929 	 * risk of having the "timers" overflow and give us the flexibility to
8930 	 * maintain a Hung SGE State Machine of our own which operates across
8931 	 * a longer time frame.
8932 	 */
8933 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
8934 	idma->idma_stalled[0] = idma->idma_stalled[1] = 0;
8935 }
8936 
8937 /**
8938  *	t4_idma_monitor - monitor SGE Ingress DMA state
8939  *	@adapter: the adapter
8940  *	@idma: the adapter IDMA Monitor state
8941  *	@hz: number of ticks/second
8942  *	@ticks: number of ticks since the last IDMA Monitor call
8943  */
8944 void t4_idma_monitor(struct adapter *adapter,
8945 		     struct sge_idma_monitor_state *idma,
8946 		     int hz, int ticks)
8947 {
8948 	int i, idma_same_state_cnt[2];
8949 
8950 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
8951 	  * are counters inside the SGE which count up on each clock when the
8952 	  * SGE finds its Ingress DMA State Engines in the same states they
8953 	  * were in the previous clock.  The counters will peg out at
8954 	  * 0xffffffff without wrapping around so once they pass the 1s
8955 	  * threshold they'll stay above that till the IDMA state changes.
8956 	  */
8957 	t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13);
8958 	idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH);
8959 	idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8960 
8961 	for (i = 0; i < 2; i++) {
8962 		u32 debug0, debug11;
8963 
8964 		/* If the Ingress DMA Same State Counter ("timer") is less
8965 		 * than 1s, then we can reset our synthesized Stall Timer and
8966 		 * continue.  If we have previously emitted warnings about a
8967 		 * potential stalled Ingress Queue, issue a note indicating
8968 		 * that the Ingress Queue has resumed forward progress.
8969 		 */
8970 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
8971 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz)
8972 				CH_WARN(adapter, "SGE idma%d, queue %u, "
8973 					"resumed after %d seconds\n",
8974 					i, idma->idma_qid[i],
8975 					idma->idma_stalled[i]/hz);
8976 			idma->idma_stalled[i] = 0;
8977 			continue;
8978 		}
8979 
8980 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
8981 		 * domain.  The first time we get here it'll be because we
8982 		 * passed the 1s Threshold; each additional time it'll be
8983 		 * because the RX Timer Callback is being fired on its regular
8984 		 * schedule.
8985 		 *
8986 		 * If the stall is below our Potential Hung Ingress Queue
8987 		 * Warning Threshold, continue.
8988 		 */
8989 		if (idma->idma_stalled[i] == 0) {
8990 			idma->idma_stalled[i] = hz;
8991 			idma->idma_warn[i] = 0;
8992 		} else {
8993 			idma->idma_stalled[i] += ticks;
8994 			idma->idma_warn[i] -= ticks;
8995 		}
8996 
8997 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz)
8998 			continue;
8999 
9000 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
9001 		 */
9002 		if (idma->idma_warn[i] > 0)
9003 			continue;
9004 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz;
9005 
9006 		/* Read and save the SGE IDMA State and Queue ID information.
9007 		 * We do this every time in case it changes across time ...
9008 		 * can't be too careful ...
9009 		 */
9010 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0);
9011 		debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
9012 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
9013 
9014 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11);
9015 		debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
9016 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
9017 
9018 		CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in "
9019 			" state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
9020 			i, idma->idma_qid[i], idma->idma_state[i],
9021 			idma->idma_stalled[i]/hz,
9022 			debug0, debug11);
9023 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
9024 	}
9025 }
9026 
9027 /**
9028  *	t4_read_pace_tbl - read the pace table
9029  *	@adap: the adapter
9030  *	@pace_vals: holds the returned values
9031  *
9032  *	Returns the values of TP's pace table in microseconds.
9033  */
9034 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
9035 {
9036 	unsigned int i, v;
9037 
9038 	for (i = 0; i < NTX_SCHED; i++) {
9039 		t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
9040 		v = t4_read_reg(adap, A_TP_PACE_TABLE);
9041 		pace_vals[i] = dack_ticks_to_usec(adap, v);
9042 	}
9043 }
9044 
9045 /**
9046  *	t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
9047  *	@adap: the adapter
9048  *	@sched: the scheduler index
9049  *	@kbps: the byte rate in Kbps
9050  *	@ipg: the interpacket delay in tenths of nanoseconds
9051  *
9052  *	Return the current configuration of a HW Tx scheduler.
9053  */
9054 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
9055 		     unsigned int *ipg, bool sleep_ok)
9056 {
9057 	unsigned int v, addr, bpt, cpt;
9058 
9059 	if (kbps) {
9060 		addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
9061 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9062 		if (sched & 1)
9063 			v >>= 16;
9064 		bpt = (v >> 8) & 0xff;
9065 		cpt = v & 0xff;
9066 		if (!cpt)
9067 			*kbps = 0;	/* scheduler disabled */
9068 		else {
9069 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
9070 			*kbps = (v * bpt) / 125;
9071 		}
9072 	}
9073 	if (ipg) {
9074 		addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
9075 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9076 		if (sched & 1)
9077 			v >>= 16;
9078 		v &= 0xffff;
9079 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
9080 	}
9081 }
9082 
9083 /**
9084  *	t4_load_cfg - download config file
9085  *	@adap: the adapter
9086  *	@cfg_data: the cfg text file to write
9087  *	@size: text file size
9088  *
9089  *	Write the supplied config text file to the card's serial flash.
9090  */
9091 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
9092 {
9093 	int ret, i, n, cfg_addr;
9094 	unsigned int addr;
9095 	unsigned int flash_cfg_start_sec;
9096 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9097 
9098 	cfg_addr = t4_flash_cfg_addr(adap);
9099 	if (cfg_addr < 0)
9100 		return cfg_addr;
9101 
9102 	addr = cfg_addr;
9103 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
9104 
9105 	if (size > FLASH_CFG_MAX_SIZE) {
9106 		CH_ERR(adap, "cfg file too large, max is %u bytes\n",
9107 		       FLASH_CFG_MAX_SIZE);
9108 		return -EFBIG;
9109 	}
9110 
9111 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
9112 			 sf_sec_size);
9113 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9114 				     flash_cfg_start_sec + i - 1);
9115 	/*
9116 	 * If size == 0 then we're simply erasing the FLASH sectors associated
9117 	 * with the on-adapter Firmware Configuration File.
9118 	 */
9119 	if (ret || size == 0)
9120 		goto out;
9121 
9122 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
9123 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
9124 		if ( (size - i) <  SF_PAGE_SIZE)
9125 			n = size - i;
9126 		else
9127 			n = SF_PAGE_SIZE;
9128 		ret = t4_write_flash(adap, addr, n, cfg_data, 1);
9129 		if (ret)
9130 			goto out;
9131 
9132 		addr += SF_PAGE_SIZE;
9133 		cfg_data += SF_PAGE_SIZE;
9134 	}
9135 
9136 out:
9137 	if (ret)
9138 		CH_ERR(adap, "config file %s failed %d\n",
9139 		       (size == 0 ? "clear" : "download"), ret);
9140 	return ret;
9141 }
9142 
9143 /**
9144  *	t5_fw_init_extern_mem - initialize the external memory
9145  *	@adap: the adapter
9146  *
9147  *	Initializes the external memory on T5.
9148  */
9149 int t5_fw_init_extern_mem(struct adapter *adap)
9150 {
9151 	u32 params[1], val[1];
9152 	int ret;
9153 
9154 	if (!is_t5(adap))
9155 		return 0;
9156 
9157 	val[0] = 0xff; /* Initialize all MCs */
9158 	params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9159 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT));
9160 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val,
9161 			FW_CMD_MAX_TIMEOUT);
9162 
9163 	return ret;
9164 }
9165 
9166 /* BIOS boot headers */
9167 typedef struct pci_expansion_rom_header {
9168 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
9169 	u8	reserved[22]; /* Reserved per processor Architecture data */
9170 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
9171 } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
9172 
9173 /* Legacy PCI Expansion ROM Header */
9174 typedef struct legacy_pci_expansion_rom_header {
9175 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
9176 	u8	size512; /* Current Image Size in units of 512 bytes */
9177 	u8	initentry_point[4];
9178 	u8	cksum; /* Checksum computed on the entire Image */
9179 	u8	reserved[16]; /* Reserved */
9180 	u8	pcir_offset[2]; /* Offset to PCI Data Struture */
9181 } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
9182 
9183 /* EFI PCI Expansion ROM Header */
9184 typedef struct efi_pci_expansion_rom_header {
9185 	u8	signature[2]; // ROM signature. The value 0xaa55
9186 	u8	initialization_size[2]; /* Units 512. Includes this header */
9187 	u8	efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
9188 	u8	efi_subsystem[2]; /* Subsystem value for EFI image header */
9189 	u8	efi_machine_type[2]; /* Machine type from EFI image header */
9190 	u8	compression_type[2]; /* Compression type. */
9191 		/*
9192 		 * Compression type definition
9193 		 * 0x0: uncompressed
9194 		 * 0x1: Compressed
9195 		 * 0x2-0xFFFF: Reserved
9196 		 */
9197 	u8	reserved[8]; /* Reserved */
9198 	u8	efi_image_header_offset[2]; /* Offset to EFI Image */
9199 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
9200 } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
9201 
9202 /* PCI Data Structure Format */
9203 typedef struct pcir_data_structure { /* PCI Data Structure */
9204 	u8	signature[4]; /* Signature. The string "PCIR" */
9205 	u8	vendor_id[2]; /* Vendor Identification */
9206 	u8	device_id[2]; /* Device Identification */
9207 	u8	vital_product[2]; /* Pointer to Vital Product Data */
9208 	u8	length[2]; /* PCIR Data Structure Length */
9209 	u8	revision; /* PCIR Data Structure Revision */
9210 	u8	class_code[3]; /* Class Code */
9211 	u8	image_length[2]; /* Image Length. Multiple of 512B */
9212 	u8	code_revision[2]; /* Revision Level of Code/Data */
9213 	u8	code_type; /* Code Type. */
9214 		/*
9215 		 * PCI Expansion ROM Code Types
9216 		 * 0x00: Intel IA-32, PC-AT compatible. Legacy
9217 		 * 0x01: Open Firmware standard for PCI. FCODE
9218 		 * 0x02: Hewlett-Packard PA RISC. HP reserved
9219 		 * 0x03: EFI Image. EFI
9220 		 * 0x04-0xFF: Reserved.
9221 		 */
9222 	u8	indicator; /* Indicator. Identifies the last image in the ROM */
9223 	u8	reserved[2]; /* Reserved */
9224 } pcir_data_t; /* PCI__DATA_STRUCTURE */
9225 
9226 /* BOOT constants */
9227 enum {
9228 	BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
9229 	BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
9230 	BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
9231 	BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
9232 	BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
9233 	VENDOR_ID = 0x1425, /* Vendor ID */
9234 	PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
9235 };
9236 
9237 /*
9238  *	modify_device_id - Modifies the device ID of the Boot BIOS image
9239  *	@adatper: the device ID to write.
9240  *	@boot_data: the boot image to modify.
9241  *
9242  *	Write the supplied device ID to the boot BIOS image.
9243  */
9244 static void modify_device_id(int device_id, u8 *boot_data)
9245 {
9246 	legacy_pci_exp_rom_header_t *header;
9247 	pcir_data_t *pcir_header;
9248 	u32 cur_header = 0;
9249 
9250 	/*
9251 	 * Loop through all chained images and change the device ID's
9252 	 */
9253 	while (1) {
9254 		header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
9255 		pcir_header = (pcir_data_t *) &boot_data[cur_header +
9256 			      le16_to_cpu(*(u16*)header->pcir_offset)];
9257 
9258 		/*
9259 		 * Only modify the Device ID if code type is Legacy or HP.
9260 		 * 0x00: Okay to modify
9261 		 * 0x01: FCODE. Do not be modify
9262 		 * 0x03: Okay to modify
9263 		 * 0x04-0xFF: Do not modify
9264 		 */
9265 		if (pcir_header->code_type == 0x00) {
9266 			u8 csum = 0;
9267 			int i;
9268 
9269 			/*
9270 			 * Modify Device ID to match current adatper
9271 			 */
9272 			*(u16*) pcir_header->device_id = device_id;
9273 
9274 			/*
9275 			 * Set checksum temporarily to 0.
9276 			 * We will recalculate it later.
9277 			 */
9278 			header->cksum = 0x0;
9279 
9280 			/*
9281 			 * Calculate and update checksum
9282 			 */
9283 			for (i = 0; i < (header->size512 * 512); i++)
9284 				csum += (u8)boot_data[cur_header + i];
9285 
9286 			/*
9287 			 * Invert summed value to create the checksum
9288 			 * Writing new checksum value directly to the boot data
9289 			 */
9290 			boot_data[cur_header + 7] = -csum;
9291 
9292 		} else if (pcir_header->code_type == 0x03) {
9293 
9294 			/*
9295 			 * Modify Device ID to match current adatper
9296 			 */
9297 			*(u16*) pcir_header->device_id = device_id;
9298 
9299 		}
9300 
9301 
9302 		/*
9303 		 * Check indicator element to identify if this is the last
9304 		 * image in the ROM.
9305 		 */
9306 		if (pcir_header->indicator & 0x80)
9307 			break;
9308 
9309 		/*
9310 		 * Move header pointer up to the next image in the ROM.
9311 		 */
9312 		cur_header += header->size512 * 512;
9313 	}
9314 }
9315 
9316 /*
9317  *	t4_load_boot - download boot flash
9318  *	@adapter: the adapter
9319  *	@boot_data: the boot image to write
9320  *	@boot_addr: offset in flash to write boot_data
9321  *	@size: image size
9322  *
9323  *	Write the supplied boot image to the card's serial flash.
9324  *	The boot image has the following sections: a 28-byte header and the
9325  *	boot image.
9326  */
9327 int t4_load_boot(struct adapter *adap, u8 *boot_data,
9328 		 unsigned int boot_addr, unsigned int size)
9329 {
9330 	pci_exp_rom_header_t *header;
9331 	int pcir_offset ;
9332 	pcir_data_t *pcir_header;
9333 	int ret, addr;
9334 	uint16_t device_id;
9335 	unsigned int i;
9336 	unsigned int boot_sector = (boot_addr * 1024 );
9337 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9338 
9339 	/*
9340 	 * Make sure the boot image does not encroach on the firmware region
9341 	 */
9342 	if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
9343 		CH_ERR(adap, "boot image encroaching on firmware region\n");
9344 		return -EFBIG;
9345 	}
9346 
9347 	/*
9348 	 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
9349 	 * and Boot configuration data sections. These 3 boot sections span
9350 	 * sectors 0 to 7 in flash and live right before the FW image location.
9351 	 */
9352 	i = DIV_ROUND_UP(size ? size : FLASH_FW_START,
9353 			sf_sec_size);
9354 	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
9355 				     (boot_sector >> 16) + i - 1);
9356 
9357 	/*
9358 	 * If size == 0 then we're simply erasing the FLASH sectors associated
9359 	 * with the on-adapter option ROM file
9360 	 */
9361 	if (ret || (size == 0))
9362 		goto out;
9363 
9364 	/* Get boot header */
9365 	header = (pci_exp_rom_header_t *)boot_data;
9366 	pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
9367 	/* PCIR Data Structure */
9368 	pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
9369 
9370 	/*
9371 	 * Perform some primitive sanity testing to avoid accidentally
9372 	 * writing garbage over the boot sectors.  We ought to check for
9373 	 * more but it's not worth it for now ...
9374 	 */
9375 	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
9376 		CH_ERR(adap, "boot image too small/large\n");
9377 		return -EFBIG;
9378 	}
9379 
9380 #ifndef CHELSIO_T4_DIAGS
9381 	/*
9382 	 * Check BOOT ROM header signature
9383 	 */
9384 	if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
9385 		CH_ERR(adap, "Boot image missing signature\n");
9386 		return -EINVAL;
9387 	}
9388 
9389 	/*
9390 	 * Check PCI header signature
9391 	 */
9392 	if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
9393 		CH_ERR(adap, "PCI header missing signature\n");
9394 		return -EINVAL;
9395 	}
9396 
9397 	/*
9398 	 * Check Vendor ID matches Chelsio ID
9399 	 */
9400 	if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
9401 		CH_ERR(adap, "Vendor ID missing signature\n");
9402 		return -EINVAL;
9403 	}
9404 #endif
9405 
9406 	/*
9407 	 * Retrieve adapter's device ID
9408 	 */
9409 	t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
9410 	/* Want to deal with PF 0 so I strip off PF 4 indicator */
9411 	device_id = device_id & 0xf0ff;
9412 
9413 	/*
9414 	 * Check PCIE Device ID
9415 	 */
9416 	if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
9417 		/*
9418 		 * Change the device ID in the Boot BIOS image to match
9419 		 * the Device ID of the current adapter.
9420 		 */
9421 		modify_device_id(device_id, boot_data);
9422 	}
9423 
9424 	/*
9425 	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
9426 	 * we finish copying the rest of the boot image. This will ensure
9427 	 * that the BIOS boot header will only be written if the boot image
9428 	 * was written in full.
9429 	 */
9430 	addr = boot_sector;
9431 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
9432 		addr += SF_PAGE_SIZE;
9433 		boot_data += SF_PAGE_SIZE;
9434 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
9435 		if (ret)
9436 			goto out;
9437 	}
9438 
9439 	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
9440 			     (const u8 *)header, 0);
9441 
9442 out:
9443 	if (ret)
9444 		CH_ERR(adap, "boot image download failed, error %d\n", ret);
9445 	return ret;
9446 }
9447 
9448 /*
9449  *	t4_flash_bootcfg_addr - return the address of the flash optionrom configuration
9450  *	@adapter: the adapter
9451  *
9452  *	Return the address within the flash where the OptionROM Configuration
9453  *	is stored, or an error if the device FLASH is too small to contain
9454  *	a OptionROM Configuration.
9455  */
9456 static int t4_flash_bootcfg_addr(struct adapter *adapter)
9457 {
9458 	/*
9459 	 * If the device FLASH isn't large enough to hold a Firmware
9460 	 * Configuration File, return an error.
9461 	 */
9462 	if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
9463 		return -ENOSPC;
9464 
9465 	return FLASH_BOOTCFG_START;
9466 }
9467 
9468 int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size)
9469 {
9470 	int ret, i, n, cfg_addr;
9471 	unsigned int addr;
9472 	unsigned int flash_cfg_start_sec;
9473 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9474 
9475 	cfg_addr = t4_flash_bootcfg_addr(adap);
9476 	if (cfg_addr < 0)
9477 		return cfg_addr;
9478 
9479 	addr = cfg_addr;
9480 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
9481 
9482 	if (size > FLASH_BOOTCFG_MAX_SIZE) {
9483 		CH_ERR(adap, "bootcfg file too large, max is %u bytes\n",
9484 			FLASH_BOOTCFG_MAX_SIZE);
9485 		return -EFBIG;
9486 	}
9487 
9488 	i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */
9489 			 sf_sec_size);
9490 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9491 					flash_cfg_start_sec + i - 1);
9492 
9493 	/*
9494 	 * If size == 0 then we're simply erasing the FLASH sectors associated
9495 	 * with the on-adapter OptionROM Configuration File.
9496 	 */
9497 	if (ret || size == 0)
9498 		goto out;
9499 
9500 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
9501 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
9502 		if ( (size - i) <  SF_PAGE_SIZE)
9503 			n = size - i;
9504 		else
9505 			n = SF_PAGE_SIZE;
9506 		ret = t4_write_flash(adap, addr, n, cfg_data, 0);
9507 		if (ret)
9508 			goto out;
9509 
9510 		addr += SF_PAGE_SIZE;
9511 		cfg_data += SF_PAGE_SIZE;
9512 	}
9513 
9514 out:
9515 	if (ret)
9516 		CH_ERR(adap, "boot config data %s failed %d\n",
9517 				(size == 0 ? "clear" : "download"), ret);
9518 	return ret;
9519 }
9520 
9521 /**
9522  *	t4_set_filter_mode - configure the optional components of filter tuples
9523  *	@adap: the adapter
9524  *	@mode_map: a bitmap selcting which optional filter components to enable
9525  * 	@sleep_ok: if true we may sleep while awaiting command completion
9526  *
9527  *	Sets the filter mode by selecting the optional components to enable
9528  *	in filter tuples.  Returns 0 on success and a negative error if the
9529  *	requested mode needs more bits than are available for optional
9530  *	components.
9531  */
9532 int t4_set_filter_mode(struct adapter *adap, unsigned int mode_map,
9533 		       bool sleep_ok)
9534 {
9535 	static u8 width[] = { 1, 3, 17, 17, 8, 8, 16, 9, 3, 1 };
9536 
9537 	int i, nbits = 0;
9538 
9539 	for (i = S_FCOE; i <= S_FRAGMENTATION; i++)
9540 		if (mode_map & (1 << i))
9541 			nbits += width[i];
9542 	if (nbits > FILTER_OPT_LEN)
9543 		return -EINVAL;
9544 	t4_tp_pio_write(adap, &mode_map, 1, A_TP_VLAN_PRI_MAP, sleep_ok);
9545 	read_filter_mode_and_ingress_config(adap, sleep_ok);
9546 
9547 	return 0;
9548 }
9549 
9550 /**
9551  *	t4_clr_port_stats - clear port statistics
9552  *	@adap: the adapter
9553  *	@idx: the port index
9554  *
9555  *	Clear HW statistics for the given port.
9556  */
9557 void t4_clr_port_stats(struct adapter *adap, int idx)
9558 {
9559 	unsigned int i;
9560 	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
9561 	u32 port_base_addr;
9562 
9563 	if (is_t4(adap))
9564 		port_base_addr = PORT_BASE(idx);
9565 	else
9566 		port_base_addr = T5_PORT_BASE(idx);
9567 
9568 	for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
9569 			i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
9570 		t4_write_reg(adap, port_base_addr + i, 0);
9571 	for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
9572 			i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
9573 		t4_write_reg(adap, port_base_addr + i, 0);
9574 	for (i = 0; i < 4; i++)
9575 		if (bgmap & (1 << i)) {
9576 			t4_write_reg(adap,
9577 			A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
9578 			t4_write_reg(adap,
9579 			A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
9580 		}
9581 }
9582 
9583 /**
9584  *	t4_i2c_rd - read I2C data from adapter
9585  *	@adap: the adapter
9586  *	@port: Port number if per-port device; <0 if not
9587  *	@devid: per-port device ID or absolute device ID
9588  *	@offset: byte offset into device I2C space
9589  *	@len: byte length of I2C space data
9590  *	@buf: buffer in which to return I2C data
9591  *
9592  *	Reads the I2C data from the indicated device and location.
9593  */
9594 int t4_i2c_rd(struct adapter *adap, unsigned int mbox,
9595 	      int port, unsigned int devid,
9596 	      unsigned int offset, unsigned int len,
9597 	      u8 *buf)
9598 {
9599 	u32 ldst_addrspace;
9600 	struct fw_ldst_cmd ldst;
9601 	int ret;
9602 
9603 	if (port >= 4 ||
9604 	    devid >= 256 ||
9605 	    offset >= 256 ||
9606 	    len > sizeof ldst.u.i2c.data)
9607 		return -EINVAL;
9608 
9609 	memset(&ldst, 0, sizeof ldst);
9610 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
9611 	ldst.op_to_addrspace =
9612 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9613 			    F_FW_CMD_REQUEST |
9614 			    F_FW_CMD_READ |
9615 			    ldst_addrspace);
9616 	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
9617 	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
9618 	ldst.u.i2c.did = devid;
9619 	ldst.u.i2c.boffset = offset;
9620 	ldst.u.i2c.blen = len;
9621 	ret = t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
9622 	if (!ret)
9623 		memcpy(buf, ldst.u.i2c.data, len);
9624 	return ret;
9625 }
9626 
9627 /**
9628  *	t4_i2c_wr - write I2C data to adapter
9629  *	@adap: the adapter
9630  *	@port: Port number if per-port device; <0 if not
9631  *	@devid: per-port device ID or absolute device ID
9632  *	@offset: byte offset into device I2C space
9633  *	@len: byte length of I2C space data
9634  *	@buf: buffer containing new I2C data
9635  *
9636  *	Write the I2C data to the indicated device and location.
9637  */
9638 int t4_i2c_wr(struct adapter *adap, unsigned int mbox,
9639 	      int port, unsigned int devid,
9640 	      unsigned int offset, unsigned int len,
9641 	      u8 *buf)
9642 {
9643 	u32 ldst_addrspace;
9644 	struct fw_ldst_cmd ldst;
9645 
9646 	if (port >= 4 ||
9647 	    devid >= 256 ||
9648 	    offset >= 256 ||
9649 	    len > sizeof ldst.u.i2c.data)
9650 		return -EINVAL;
9651 
9652 	memset(&ldst, 0, sizeof ldst);
9653 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
9654 	ldst.op_to_addrspace =
9655 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9656 			    F_FW_CMD_REQUEST |
9657 			    F_FW_CMD_WRITE |
9658 			    ldst_addrspace);
9659 	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
9660 	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
9661 	ldst.u.i2c.did = devid;
9662 	ldst.u.i2c.boffset = offset;
9663 	ldst.u.i2c.blen = len;
9664 	memcpy(ldst.u.i2c.data, buf, len);
9665 	return t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
9666 }
9667 
9668 /**
9669  * 	t4_sge_ctxt_rd - read an SGE context through FW
9670  * 	@adap: the adapter
9671  * 	@mbox: mailbox to use for the FW command
9672  * 	@cid: the context id
9673  * 	@ctype: the context type
9674  * 	@data: where to store the context data
9675  *
9676  * 	Issues a FW command through the given mailbox to read an SGE context.
9677  */
9678 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
9679 		   enum ctxt_type ctype, u32 *data)
9680 {
9681 	int ret;
9682 	struct fw_ldst_cmd c;
9683 
9684 	if (ctype == CTXT_EGRESS)
9685 		ret = FW_LDST_ADDRSPC_SGE_EGRC;
9686 	else if (ctype == CTXT_INGRESS)
9687 		ret = FW_LDST_ADDRSPC_SGE_INGC;
9688 	else if (ctype == CTXT_FLM)
9689 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
9690 	else
9691 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
9692 
9693 	memset(&c, 0, sizeof(c));
9694 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9695 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
9696 					V_FW_LDST_CMD_ADDRSPACE(ret));
9697 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
9698 	c.u.idctxt.physid = cpu_to_be32(cid);
9699 
9700 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
9701 	if (ret == 0) {
9702 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
9703 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
9704 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
9705 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
9706 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
9707 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
9708 	}
9709 	return ret;
9710 }
9711 
9712 /**
9713  * 	t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
9714  * 	@adap: the adapter
9715  * 	@cid: the context id
9716  * 	@ctype: the context type
9717  * 	@data: where to store the context data
9718  *
9719  * 	Reads an SGE context directly, bypassing FW.  This is only for
9720  * 	debugging when FW is unavailable.
9721  */
9722 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
9723 		      u32 *data)
9724 {
9725 	int i, ret;
9726 
9727 	t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
9728 	ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
9729 	if (!ret)
9730 		for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
9731 			*data++ = t4_read_reg(adap, i);
9732 	return ret;
9733 }
9734 
9735 int t4_sched_config(struct adapter *adapter, int type, int minmaxen,
9736     int sleep_ok)
9737 {
9738 	struct fw_sched_cmd cmd;
9739 
9740 	memset(&cmd, 0, sizeof(cmd));
9741 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9742 				      F_FW_CMD_REQUEST |
9743 				      F_FW_CMD_WRITE);
9744 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9745 
9746 	cmd.u.config.sc = FW_SCHED_SC_CONFIG;
9747 	cmd.u.config.type = type;
9748 	cmd.u.config.minmaxen = minmaxen;
9749 
9750 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9751 			       NULL, sleep_ok);
9752 }
9753 
9754 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
9755 		    int rateunit, int ratemode, int channel, int cl,
9756 		    int minrate, int maxrate, int weight, int pktsize,
9757 		    int sleep_ok)
9758 {
9759 	struct fw_sched_cmd cmd;
9760 
9761 	memset(&cmd, 0, sizeof(cmd));
9762 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9763 				      F_FW_CMD_REQUEST |
9764 				      F_FW_CMD_WRITE);
9765 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9766 
9767 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9768 	cmd.u.params.type = type;
9769 	cmd.u.params.level = level;
9770 	cmd.u.params.mode = mode;
9771 	cmd.u.params.ch = channel;
9772 	cmd.u.params.cl = cl;
9773 	cmd.u.params.unit = rateunit;
9774 	cmd.u.params.rate = ratemode;
9775 	cmd.u.params.min = cpu_to_be32(minrate);
9776 	cmd.u.params.max = cpu_to_be32(maxrate);
9777 	cmd.u.params.weight = cpu_to_be16(weight);
9778 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
9779 
9780 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9781 			       NULL, sleep_ok);
9782 }
9783 
9784 int t4_sched_params_ch_rl(struct adapter *adapter, int channel, int ratemode,
9785     unsigned int maxrate, int sleep_ok)
9786 {
9787 	struct fw_sched_cmd cmd;
9788 
9789 	memset(&cmd, 0, sizeof(cmd));
9790 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9791 				      F_FW_CMD_REQUEST |
9792 				      F_FW_CMD_WRITE);
9793 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9794 
9795 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9796 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
9797 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CH_RL;
9798 	cmd.u.params.ch = channel;
9799 	cmd.u.params.rate = ratemode;		/* REL or ABS */
9800 	cmd.u.params.max = cpu_to_be32(maxrate);/*  %  or kbps */
9801 
9802 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9803 			       NULL, sleep_ok);
9804 }
9805 
9806 int t4_sched_params_cl_wrr(struct adapter *adapter, int channel, int cl,
9807     int weight, int sleep_ok)
9808 {
9809 	struct fw_sched_cmd cmd;
9810 
9811 	if (weight < 0 || weight > 100)
9812 		return -EINVAL;
9813 
9814 	memset(&cmd, 0, sizeof(cmd));
9815 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9816 				      F_FW_CMD_REQUEST |
9817 				      F_FW_CMD_WRITE);
9818 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9819 
9820 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9821 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
9822 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_WRR;
9823 	cmd.u.params.ch = channel;
9824 	cmd.u.params.cl = cl;
9825 	cmd.u.params.weight = cpu_to_be16(weight);
9826 
9827 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9828 			       NULL, sleep_ok);
9829 }
9830 
9831 int t4_sched_params_cl_rl_kbps(struct adapter *adapter, int channel, int cl,
9832     int mode, unsigned int maxrate, int pktsize, int sleep_ok)
9833 {
9834 	struct fw_sched_cmd cmd;
9835 
9836 	memset(&cmd, 0, sizeof(cmd));
9837 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9838 				      F_FW_CMD_REQUEST |
9839 				      F_FW_CMD_WRITE);
9840 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9841 
9842 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9843 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
9844 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_RL;
9845 	cmd.u.params.mode = mode;
9846 	cmd.u.params.ch = channel;
9847 	cmd.u.params.cl = cl;
9848 	cmd.u.params.unit = FW_SCHED_PARAMS_UNIT_BITRATE;
9849 	cmd.u.params.rate = FW_SCHED_PARAMS_RATE_ABS;
9850 	cmd.u.params.max = cpu_to_be32(maxrate);
9851 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
9852 
9853 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9854 			       NULL, sleep_ok);
9855 }
9856 
9857 /*
9858  *	t4_config_watchdog - configure (enable/disable) a watchdog timer
9859  *	@adapter: the adapter
9860  * 	@mbox: mailbox to use for the FW command
9861  * 	@pf: the PF owning the queue
9862  * 	@vf: the VF owning the queue
9863  *	@timeout: watchdog timeout in ms
9864  *	@action: watchdog timer / action
9865  *
9866  *	There are separate watchdog timers for each possible watchdog
9867  *	action.  Configure one of the watchdog timers by setting a non-zero
9868  *	timeout.  Disable a watchdog timer by using a timeout of zero.
9869  */
9870 int t4_config_watchdog(struct adapter *adapter, unsigned int mbox,
9871 		       unsigned int pf, unsigned int vf,
9872 		       unsigned int timeout, unsigned int action)
9873 {
9874 	struct fw_watchdog_cmd wdog;
9875 	unsigned int ticks;
9876 
9877 	/*
9878 	 * The watchdog command expects a timeout in units of 10ms so we need
9879 	 * to convert it here (via rounding) and force a minimum of one 10ms
9880 	 * "tick" if the timeout is non-zero but the conversion results in 0
9881 	 * ticks.
9882 	 */
9883 	ticks = (timeout + 5)/10;
9884 	if (timeout && !ticks)
9885 		ticks = 1;
9886 
9887 	memset(&wdog, 0, sizeof wdog);
9888 	wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) |
9889 				     F_FW_CMD_REQUEST |
9890 				     F_FW_CMD_WRITE |
9891 				     V_FW_PARAMS_CMD_PFN(pf) |
9892 				     V_FW_PARAMS_CMD_VFN(vf));
9893 	wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog));
9894 	wdog.timeout = cpu_to_be32(ticks);
9895 	wdog.action = cpu_to_be32(action);
9896 
9897 	return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL);
9898 }
9899 
9900 int t4_get_devlog_level(struct adapter *adapter, unsigned int *level)
9901 {
9902 	struct fw_devlog_cmd devlog_cmd;
9903 	int ret;
9904 
9905 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9906 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9907 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
9908 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9909 	ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
9910 			 sizeof(devlog_cmd), &devlog_cmd);
9911 	if (ret)
9912 		return ret;
9913 
9914 	*level = devlog_cmd.level;
9915 	return 0;
9916 }
9917 
9918 int t4_set_devlog_level(struct adapter *adapter, unsigned int level)
9919 {
9920 	struct fw_devlog_cmd devlog_cmd;
9921 
9922 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9923 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9924 					     F_FW_CMD_REQUEST |
9925 					     F_FW_CMD_WRITE);
9926 	devlog_cmd.level = level;
9927 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9928 	return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
9929 			  sizeof(devlog_cmd), &devlog_cmd);
9930 }
9931