xref: /freebsd/sys/dev/cxgbe/common/t4_hw.c (revision 184c1b943937986c81e1996d999d21626ec7a4ff)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2012, 2016 Chelsio Communications, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_inet.h"
33 
34 #include <sys/param.h>
35 #include <sys/eventhandler.h>
36 
37 #include "common.h"
38 #include "t4_regs.h"
39 #include "t4_regs_values.h"
40 #include "firmware/t4fw_interface.h"
41 
42 #undef msleep
43 #define msleep(x) do { \
44 	if (cold) \
45 		DELAY((x) * 1000); \
46 	else \
47 		pause("t4hw", (x) * hz / 1000); \
48 } while (0)
49 
50 /**
51  *	t4_wait_op_done_val - wait until an operation is completed
52  *	@adapter: the adapter performing the operation
53  *	@reg: the register to check for completion
54  *	@mask: a single-bit field within @reg that indicates completion
55  *	@polarity: the value of the field when the operation is completed
56  *	@attempts: number of check iterations
57  *	@delay: delay in usecs between iterations
58  *	@valp: where to store the value of the register at completion time
59  *
60  *	Wait until an operation is completed by checking a bit in a register
61  *	up to @attempts times.  If @valp is not NULL the value of the register
62  *	at the time it indicated completion is stored there.  Returns 0 if the
63  *	operation completes and	-EAGAIN	otherwise.
64  */
65 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
66 			       int polarity, int attempts, int delay, u32 *valp)
67 {
68 	while (1) {
69 		u32 val = t4_read_reg(adapter, reg);
70 
71 		if (!!(val & mask) == polarity) {
72 			if (valp)
73 				*valp = val;
74 			return 0;
75 		}
76 		if (--attempts == 0)
77 			return -EAGAIN;
78 		if (delay)
79 			udelay(delay);
80 	}
81 }
82 
83 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
84 				  int polarity, int attempts, int delay)
85 {
86 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
87 				   delay, NULL);
88 }
89 
90 /**
91  *	t4_set_reg_field - set a register field to a value
92  *	@adapter: the adapter to program
93  *	@addr: the register address
94  *	@mask: specifies the portion of the register to modify
95  *	@val: the new value for the register field
96  *
97  *	Sets a register field specified by the supplied mask to the
98  *	given value.
99  */
100 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
101 		      u32 val)
102 {
103 	u32 v = t4_read_reg(adapter, addr) & ~mask;
104 
105 	t4_write_reg(adapter, addr, v | val);
106 	(void) t4_read_reg(adapter, addr);      /* flush */
107 }
108 
109 /**
110  *	t4_read_indirect - read indirectly addressed registers
111  *	@adap: the adapter
112  *	@addr_reg: register holding the indirect address
113  *	@data_reg: register holding the value of the indirect register
114  *	@vals: where the read register values are stored
115  *	@nregs: how many indirect registers to read
116  *	@start_idx: index of first indirect register to read
117  *
118  *	Reads registers that are accessed indirectly through an address/data
119  *	register pair.
120  */
121 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
122 			     unsigned int data_reg, u32 *vals,
123 			     unsigned int nregs, unsigned int start_idx)
124 {
125 	while (nregs--) {
126 		t4_write_reg(adap, addr_reg, start_idx);
127 		*vals++ = t4_read_reg(adap, data_reg);
128 		start_idx++;
129 	}
130 }
131 
132 /**
133  *	t4_write_indirect - write indirectly addressed registers
134  *	@adap: the adapter
135  *	@addr_reg: register holding the indirect addresses
136  *	@data_reg: register holding the value for the indirect registers
137  *	@vals: values to write
138  *	@nregs: how many indirect registers to write
139  *	@start_idx: address of first indirect register to write
140  *
141  *	Writes a sequential block of registers that are accessed indirectly
142  *	through an address/data register pair.
143  */
144 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
145 		       unsigned int data_reg, const u32 *vals,
146 		       unsigned int nregs, unsigned int start_idx)
147 {
148 	while (nregs--) {
149 		t4_write_reg(adap, addr_reg, start_idx++);
150 		t4_write_reg(adap, data_reg, *vals++);
151 	}
152 }
153 
154 /*
155  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
156  * mechanism.  This guarantees that we get the real value even if we're
157  * operating within a Virtual Machine and the Hypervisor is trapping our
158  * Configuration Space accesses.
159  *
160  * N.B. This routine should only be used as a last resort: the firmware uses
161  *      the backdoor registers on a regular basis and we can end up
162  *      conflicting with it's uses!
163  */
164 u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
165 {
166 	u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg);
167 	u32 val;
168 
169 	if (chip_id(adap) <= CHELSIO_T5)
170 		req |= F_ENABLE;
171 	else
172 		req |= F_T6_ENABLE;
173 
174 	if (is_t4(adap))
175 		req |= F_LOCALCFG;
176 
177 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req);
178 	val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
179 
180 	/*
181 	 * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
182 	 * Configuration Space read.  (None of the other fields matter when
183 	 * F_ENABLE is 0 so a simple register write is easier than a
184 	 * read-modify-write via t4_set_reg_field().)
185 	 */
186 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0);
187 
188 	return val;
189 }
190 
191 /*
192  * t4_report_fw_error - report firmware error
193  * @adap: the adapter
194  *
195  * The adapter firmware can indicate error conditions to the host.
196  * If the firmware has indicated an error, print out the reason for
197  * the firmware error.
198  */
199 static void t4_report_fw_error(struct adapter *adap)
200 {
201 	static const char *const reason[] = {
202 		"Crash",			/* PCIE_FW_EVAL_CRASH */
203 		"During Device Preparation",	/* PCIE_FW_EVAL_PREP */
204 		"During Device Configuration",	/* PCIE_FW_EVAL_CONF */
205 		"During Device Initialization",	/* PCIE_FW_EVAL_INIT */
206 		"Unexpected Event",		/* PCIE_FW_EVAL_UNEXPECTEDEVENT */
207 		"Insufficient Airflow",		/* PCIE_FW_EVAL_OVERHEAT */
208 		"Device Shutdown",		/* PCIE_FW_EVAL_DEVICESHUTDOWN */
209 		"Reserved",			/* reserved */
210 	};
211 	u32 pcie_fw;
212 
213 	pcie_fw = t4_read_reg(adap, A_PCIE_FW);
214 	if (pcie_fw & F_PCIE_FW_ERR) {
215 		adap->flags &= ~FW_OK;
216 		CH_ERR(adap, "firmware reports adapter error: %s (0x%08x)\n",
217 		    reason[G_PCIE_FW_EVAL(pcie_fw)], pcie_fw);
218 		if (pcie_fw != 0xffffffff)
219 			t4_os_dump_devlog(adap);
220 	}
221 }
222 
223 /*
224  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
225  */
226 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
227 			 u32 mbox_addr)
228 {
229 	for ( ; nflit; nflit--, mbox_addr += 8)
230 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
231 }
232 
233 /*
234  * Handle a FW assertion reported in a mailbox.
235  */
236 static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt)
237 {
238 	CH_ALERT(adap,
239 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
240 		  asrt->u.assert.filename_0_7,
241 		  be32_to_cpu(asrt->u.assert.line),
242 		  be32_to_cpu(asrt->u.assert.x),
243 		  be32_to_cpu(asrt->u.assert.y));
244 }
245 
246 struct port_tx_state {
247 	uint64_t rx_pause;
248 	uint64_t tx_frames;
249 };
250 
251 static void
252 read_tx_state_one(struct adapter *sc, int i, struct port_tx_state *tx_state)
253 {
254 	uint32_t rx_pause_reg, tx_frames_reg;
255 
256 	if (is_t4(sc)) {
257 		tx_frames_reg = PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
258 		rx_pause_reg = PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
259 	} else {
260 		tx_frames_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
261 		rx_pause_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
262 	}
263 
264 	tx_state->rx_pause = t4_read_reg64(sc, rx_pause_reg);
265 	tx_state->tx_frames = t4_read_reg64(sc, tx_frames_reg);
266 }
267 
268 static void
269 read_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
270 {
271 	int i;
272 
273 	for_each_port(sc, i)
274 		read_tx_state_one(sc, i, &tx_state[i]);
275 }
276 
277 static void
278 check_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
279 {
280 	uint32_t port_ctl_reg;
281 	uint64_t tx_frames, rx_pause;
282 	int i;
283 
284 	for_each_port(sc, i) {
285 		rx_pause = tx_state[i].rx_pause;
286 		tx_frames = tx_state[i].tx_frames;
287 		read_tx_state_one(sc, i, &tx_state[i]);	/* update */
288 
289 		if (is_t4(sc))
290 			port_ctl_reg = PORT_REG(i, A_MPS_PORT_CTL);
291 		else
292 			port_ctl_reg = T5_PORT_REG(i, A_MPS_PORT_CTL);
293 		if (t4_read_reg(sc, port_ctl_reg) & F_PORTTXEN &&
294 		    rx_pause != tx_state[i].rx_pause &&
295 		    tx_frames == tx_state[i].tx_frames) {
296 			t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, 0);
297 			mdelay(1);
298 			t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, F_PORTTXEN);
299 		}
300 	}
301 }
302 
303 #define X_CIM_PF_NOACCESS 0xeeeeeeee
304 /**
305  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
306  *	@adap: the adapter
307  *	@mbox: index of the mailbox to use
308  *	@cmd: the command to write
309  *	@size: command length in bytes
310  *	@rpl: where to optionally store the reply
311  *	@sleep_ok: if true we may sleep while awaiting command completion
312  *	@timeout: time to wait for command to finish before timing out
313  *		(negative implies @sleep_ok=false)
314  *
315  *	Sends the given command to FW through the selected mailbox and waits
316  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
317  *	store the FW's reply to the command.  The command and its optional
318  *	reply are of the same length.  Some FW commands like RESET and
319  *	INITIALIZE can take a considerable amount of time to execute.
320  *	@sleep_ok determines whether we may sleep while awaiting the response.
321  *	If sleeping is allowed we use progressive backoff otherwise we spin.
322  *	Note that passing in a negative @timeout is an alternate mechanism
323  *	for specifying @sleep_ok=false.  This is useful when a higher level
324  *	interface allows for specification of @timeout but not @sleep_ok ...
325  *
326  *	The return value is 0 on success or a negative errno on failure.  A
327  *	failure can happen either because we are not able to execute the
328  *	command or FW executes it but signals an error.  In the latter case
329  *	the return value is the error code indicated by FW (negated).
330  */
331 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
332 			    int size, void *rpl, bool sleep_ok, int timeout)
333 {
334 	/*
335 	 * We delay in small increments at first in an effort to maintain
336 	 * responsiveness for simple, fast executing commands but then back
337 	 * off to larger delays to a maximum retry delay.
338 	 */
339 	static const int delay[] = {
340 		1, 1, 3, 5, 10, 10, 20, 50, 100
341 	};
342 	u32 v;
343 	u64 res;
344 	int i, ms, delay_idx, ret, next_tx_check;
345 	u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
346 	u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
347 	u32 ctl;
348 	__be64 cmd_rpl[MBOX_LEN/8];
349 	u32 pcie_fw;
350 	struct port_tx_state tx_state[MAX_NPORTS];
351 
352 	if (adap->flags & CHK_MBOX_ACCESS)
353 		ASSERT_SYNCHRONIZED_OP(adap);
354 
355 	if (size <= 0 || (size & 15) || size > MBOX_LEN)
356 		return -EINVAL;
357 
358 	if (adap->flags & IS_VF) {
359 		if (is_t6(adap))
360 			data_reg = FW_T6VF_MBDATA_BASE_ADDR;
361 		else
362 			data_reg = FW_T4VF_MBDATA_BASE_ADDR;
363 		ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL);
364 	}
365 
366 	/*
367 	 * If we have a negative timeout, that implies that we can't sleep.
368 	 */
369 	if (timeout < 0) {
370 		sleep_ok = false;
371 		timeout = -timeout;
372 	}
373 
374 	/*
375 	 * Attempt to gain access to the mailbox.
376 	 */
377 	for (i = 0; i < 4; i++) {
378 		ctl = t4_read_reg(adap, ctl_reg);
379 		v = G_MBOWNER(ctl);
380 		if (v != X_MBOWNER_NONE)
381 			break;
382 	}
383 
384 	/*
385 	 * If we were unable to gain access, report the error to our caller.
386 	 */
387 	if (v != X_MBOWNER_PL) {
388 		t4_report_fw_error(adap);
389 		ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
390 		return ret;
391 	}
392 
393 	/*
394 	 * If we gain ownership of the mailbox and there's a "valid" message
395 	 * in it, this is likely an asynchronous error message from the
396 	 * firmware.  So we'll report that and then proceed on with attempting
397 	 * to issue our own command ... which may well fail if the error
398 	 * presaged the firmware crashing ...
399 	 */
400 	if (ctl & F_MBMSGVALID) {
401 		CH_DUMP_MBOX(adap, mbox, data_reg, "VLD", NULL, true);
402 	}
403 
404 	/*
405 	 * Copy in the new mailbox command and send it on its way ...
406 	 */
407 	memset(cmd_rpl, 0, sizeof(cmd_rpl));
408 	memcpy(cmd_rpl, cmd, size);
409 	CH_DUMP_MBOX(adap, mbox, 0, "cmd", cmd_rpl, false);
410 	for (i = 0; i < ARRAY_SIZE(cmd_rpl); i++)
411 		t4_write_reg64(adap, data_reg + i * 8, be64_to_cpu(cmd_rpl[i]));
412 
413 	if (adap->flags & IS_VF) {
414 		/*
415 		 * For the VFs, the Mailbox Data "registers" are
416 		 * actually backed by T4's "MA" interface rather than
417 		 * PL Registers (as is the case for the PFs).  Because
418 		 * these are in different coherency domains, the write
419 		 * to the VF's PL-register-backed Mailbox Control can
420 		 * race in front of the writes to the MA-backed VF
421 		 * Mailbox Data "registers".  So we need to do a
422 		 * read-back on at least one byte of the VF Mailbox
423 		 * Data registers before doing the write to the VF
424 		 * Mailbox Control register.
425 		 */
426 		t4_read_reg(adap, data_reg);
427 	}
428 
429 	t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
430 	read_tx_state(adap, &tx_state[0]);	/* also flushes the write_reg */
431 	next_tx_check = 1000;
432 	delay_idx = 0;
433 	ms = delay[0];
434 
435 	/*
436 	 * Loop waiting for the reply; bail out if we time out or the firmware
437 	 * reports an error.
438 	 */
439 	pcie_fw = 0;
440 	for (i = 0; i < timeout; i += ms) {
441 		if (!(adap->flags & IS_VF)) {
442 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
443 			if (pcie_fw & F_PCIE_FW_ERR)
444 				break;
445 		}
446 
447 		if (i >= next_tx_check) {
448 			check_tx_state(adap, &tx_state[0]);
449 			next_tx_check = i + 1000;
450 		}
451 
452 		if (sleep_ok) {
453 			ms = delay[delay_idx];  /* last element may repeat */
454 			if (delay_idx < ARRAY_SIZE(delay) - 1)
455 				delay_idx++;
456 			msleep(ms);
457 		} else {
458 			mdelay(ms);
459 		}
460 
461 		v = t4_read_reg(adap, ctl_reg);
462 		if (v == X_CIM_PF_NOACCESS)
463 			continue;
464 		if (G_MBOWNER(v) == X_MBOWNER_PL) {
465 			if (!(v & F_MBMSGVALID)) {
466 				t4_write_reg(adap, ctl_reg,
467 					     V_MBOWNER(X_MBOWNER_NONE));
468 				continue;
469 			}
470 
471 			/*
472 			 * Retrieve the command reply and release the mailbox.
473 			 */
474 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg);
475 			CH_DUMP_MBOX(adap, mbox, 0, "rpl", cmd_rpl, false);
476 			t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
477 
478 			res = be64_to_cpu(cmd_rpl[0]);
479 			if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
480 				fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl);
481 				res = V_FW_CMD_RETVAL(EIO);
482 			} else if (rpl)
483 				memcpy(rpl, cmd_rpl, size);
484 			return -G_FW_CMD_RETVAL((int)res);
485 		}
486 	}
487 
488 	/*
489 	 * We timed out waiting for a reply to our mailbox command.  Report
490 	 * the error and also check to see if the firmware reported any
491 	 * errors ...
492 	 */
493 	CH_ERR(adap, "command %#x in mbox %d timed out (0x%08x).\n",
494 	    *(const u8 *)cmd, mbox, pcie_fw);
495 	CH_DUMP_MBOX(adap, mbox, 0, "cmdsent", cmd_rpl, true);
496 	CH_DUMP_MBOX(adap, mbox, data_reg, "current", NULL, true);
497 
498 	if (pcie_fw & F_PCIE_FW_ERR) {
499 		ret = -ENXIO;
500 		t4_report_fw_error(adap);
501 	} else {
502 		ret = -ETIMEDOUT;
503 		t4_os_dump_devlog(adap);
504 	}
505 
506 	t4_fatal_err(adap, true);
507 	return ret;
508 }
509 
510 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
511 		    void *rpl, bool sleep_ok)
512 {
513 		return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl,
514 					       sleep_ok, FW_CMD_MAX_TIMEOUT);
515 
516 }
517 
518 static int t4_edc_err_read(struct adapter *adap, int idx)
519 {
520 	u32 edc_ecc_err_addr_reg;
521 	u32 edc_bist_status_rdata_reg;
522 
523 	if (is_t4(adap)) {
524 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
525 		return 0;
526 	}
527 	if (idx != MEM_EDC0 && idx != MEM_EDC1) {
528 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
529 		return 0;
530 	}
531 
532 	edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx);
533 	edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx);
534 
535 	CH_WARN(adap,
536 		"edc%d err addr 0x%x: 0x%x.\n",
537 		idx, edc_ecc_err_addr_reg,
538 		t4_read_reg(adap, edc_ecc_err_addr_reg));
539 	CH_WARN(adap,
540 	 	"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
541 		edc_bist_status_rdata_reg,
542 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg),
543 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8),
544 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16),
545 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24),
546 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32),
547 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40),
548 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48),
549 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56),
550 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64));
551 
552 	return 0;
553 }
554 
555 /**
556  *	t4_mc_read - read from MC through backdoor accesses
557  *	@adap: the adapter
558  *	@idx: which MC to access
559  *	@addr: address of first byte requested
560  *	@data: 64 bytes of data containing the requested address
561  *	@ecc: where to store the corresponding 64-bit ECC word
562  *
563  *	Read 64 bytes of data from MC starting at a 64-byte-aligned address
564  *	that covers the requested address @addr.  If @parity is not %NULL it
565  *	is assigned the 64-bit ECC word for the read data.
566  */
567 int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
568 {
569 	int i;
570 	u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
571 	u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
572 
573 	if (is_t4(adap)) {
574 		mc_bist_cmd_reg = A_MC_BIST_CMD;
575 		mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
576 		mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
577 		mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
578 		mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
579 	} else {
580 		mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
581 		mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
582 		mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
583 		mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA,
584 						  idx);
585 		mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN,
586 						  idx);
587 	}
588 
589 	if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
590 		return -EBUSY;
591 	t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
592 	t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
593 	t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
594 	t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
595 		     F_START_BIST | V_BIST_CMD_GAP(1));
596 	i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
597 	if (i)
598 		return i;
599 
600 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
601 
602 	for (i = 15; i >= 0; i--)
603 		*data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
604 	if (ecc)
605 		*ecc = t4_read_reg64(adap, MC_DATA(16));
606 #undef MC_DATA
607 	return 0;
608 }
609 
610 /**
611  *	t4_edc_read - read from EDC through backdoor accesses
612  *	@adap: the adapter
613  *	@idx: which EDC to access
614  *	@addr: address of first byte requested
615  *	@data: 64 bytes of data containing the requested address
616  *	@ecc: where to store the corresponding 64-bit ECC word
617  *
618  *	Read 64 bytes of data from EDC starting at a 64-byte-aligned address
619  *	that covers the requested address @addr.  If @parity is not %NULL it
620  *	is assigned the 64-bit ECC word for the read data.
621  */
622 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
623 {
624 	int i;
625 	u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
626 	u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
627 
628 	if (is_t4(adap)) {
629 		edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
630 		edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
631 		edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
632 		edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
633 						    idx);
634 		edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
635 						    idx);
636 	} else {
637 /*
638  * These macro are missing in t4_regs.h file.
639  * Added temporarily for testing.
640  */
641 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
642 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
643 		edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx);
644 		edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx);
645 		edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx);
646 		edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN,
647 						    idx);
648 		edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA,
649 						    idx);
650 #undef EDC_REG_T5
651 #undef EDC_STRIDE_T5
652 	}
653 
654 	if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
655 		return -EBUSY;
656 	t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
657 	t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
658 	t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
659 	t4_write_reg(adap, edc_bist_cmd_reg,
660 		     V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
661 	i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
662 	if (i)
663 		return i;
664 
665 #define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
666 
667 	for (i = 15; i >= 0; i--)
668 		*data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
669 	if (ecc)
670 		*ecc = t4_read_reg64(adap, EDC_DATA(16));
671 #undef EDC_DATA
672 	return 0;
673 }
674 
675 /**
676  *	t4_mem_read - read EDC 0, EDC 1 or MC into buffer
677  *	@adap: the adapter
678  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
679  *	@addr: address within indicated memory type
680  *	@len: amount of memory to read
681  *	@buf: host memory buffer
682  *
683  *	Reads an [almost] arbitrary memory region in the firmware: the
684  *	firmware memory address, length and host buffer must be aligned on
685  *	32-bit boudaries.  The memory is returned as a raw byte sequence from
686  *	the firmware's memory.  If this memory contains data structures which
687  *	contain multi-byte integers, it's the callers responsibility to
688  *	perform appropriate byte order conversions.
689  */
690 int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
691 		__be32 *buf)
692 {
693 	u32 pos, start, end, offset;
694 	int ret;
695 
696 	/*
697 	 * Argument sanity checks ...
698 	 */
699 	if ((addr & 0x3) || (len & 0x3))
700 		return -EINVAL;
701 
702 	/*
703 	 * The underlaying EDC/MC read routines read 64 bytes at a time so we
704 	 * need to round down the start and round up the end.  We'll start
705 	 * copying out of the first line at (addr - start) a word at a time.
706 	 */
707 	start = rounddown2(addr, 64);
708 	end = roundup2(addr + len, 64);
709 	offset = (addr - start)/sizeof(__be32);
710 
711 	for (pos = start; pos < end; pos += 64, offset = 0) {
712 		__be32 data[16];
713 
714 		/*
715 		 * Read the chip's memory block and bail if there's an error.
716 		 */
717 		if ((mtype == MEM_MC) || (mtype == MEM_MC1))
718 			ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
719 		else
720 			ret = t4_edc_read(adap, mtype, pos, data, NULL);
721 		if (ret)
722 			return ret;
723 
724 		/*
725 		 * Copy the data into the caller's memory buffer.
726 		 */
727 		while (offset < 16 && len > 0) {
728 			*buf++ = data[offset++];
729 			len -= sizeof(__be32);
730 		}
731 	}
732 
733 	return 0;
734 }
735 
736 /*
737  * Return the specified PCI-E Configuration Space register from our Physical
738  * Function.  We try first via a Firmware LDST Command (if fw_attach != 0)
739  * since we prefer to let the firmware own all of these registers, but if that
740  * fails we go for it directly ourselves.
741  */
742 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach)
743 {
744 
745 	/*
746 	 * If fw_attach != 0, construct and send the Firmware LDST Command to
747 	 * retrieve the specified PCI-E Configuration Space register.
748 	 */
749 	if (drv_fw_attach != 0) {
750 		struct fw_ldst_cmd ldst_cmd;
751 		int ret;
752 
753 		memset(&ldst_cmd, 0, sizeof(ldst_cmd));
754 		ldst_cmd.op_to_addrspace =
755 			cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
756 				    F_FW_CMD_REQUEST |
757 				    F_FW_CMD_READ |
758 				    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
759 		ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
760 		ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1);
761 		ldst_cmd.u.pcie.ctrl_to_fn =
762 			(F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf));
763 		ldst_cmd.u.pcie.r = reg;
764 
765 		/*
766 		 * If the LDST Command succeeds, return the result, otherwise
767 		 * fall through to reading it directly ourselves ...
768 		 */
769 		ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
770 				 &ldst_cmd);
771 		if (ret == 0)
772 			return be32_to_cpu(ldst_cmd.u.pcie.data[0]);
773 
774 		CH_WARN(adap, "Firmware failed to return "
775 			"Configuration Space register %d, err = %d\n",
776 			reg, -ret);
777 	}
778 
779 	/*
780 	 * Read the desired Configuration Space register via the PCI-E
781 	 * Backdoor mechanism.
782 	 */
783 	return t4_hw_pci_read_cfg4(adap, reg);
784 }
785 
786 /**
787  *	t4_get_regs_len - return the size of the chips register set
788  *	@adapter: the adapter
789  *
790  *	Returns the size of the chip's BAR0 register space.
791  */
792 unsigned int t4_get_regs_len(struct adapter *adapter)
793 {
794 	unsigned int chip_version = chip_id(adapter);
795 
796 	switch (chip_version) {
797 	case CHELSIO_T4:
798 		if (adapter->flags & IS_VF)
799 			return FW_T4VF_REGMAP_SIZE;
800 		return T4_REGMAP_SIZE;
801 
802 	case CHELSIO_T5:
803 	case CHELSIO_T6:
804 		if (adapter->flags & IS_VF)
805 			return FW_T4VF_REGMAP_SIZE;
806 		return T5_REGMAP_SIZE;
807 	}
808 
809 	CH_ERR(adapter,
810 		"Unsupported chip version %d\n", chip_version);
811 	return 0;
812 }
813 
814 /**
815  *	t4_get_regs - read chip registers into provided buffer
816  *	@adap: the adapter
817  *	@buf: register buffer
818  *	@buf_size: size (in bytes) of register buffer
819  *
820  *	If the provided register buffer isn't large enough for the chip's
821  *	full register range, the register dump will be truncated to the
822  *	register buffer's size.
823  */
824 void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size)
825 {
826 	static const unsigned int t4_reg_ranges[] = {
827 		0x1008, 0x1108,
828 		0x1180, 0x1184,
829 		0x1190, 0x1194,
830 		0x11a0, 0x11a4,
831 		0x11b0, 0x11b4,
832 		0x11fc, 0x123c,
833 		0x1300, 0x173c,
834 		0x1800, 0x18fc,
835 		0x3000, 0x30d8,
836 		0x30e0, 0x30e4,
837 		0x30ec, 0x5910,
838 		0x5920, 0x5924,
839 		0x5960, 0x5960,
840 		0x5968, 0x5968,
841 		0x5970, 0x5970,
842 		0x5978, 0x5978,
843 		0x5980, 0x5980,
844 		0x5988, 0x5988,
845 		0x5990, 0x5990,
846 		0x5998, 0x5998,
847 		0x59a0, 0x59d4,
848 		0x5a00, 0x5ae0,
849 		0x5ae8, 0x5ae8,
850 		0x5af0, 0x5af0,
851 		0x5af8, 0x5af8,
852 		0x6000, 0x6098,
853 		0x6100, 0x6150,
854 		0x6200, 0x6208,
855 		0x6240, 0x6248,
856 		0x6280, 0x62b0,
857 		0x62c0, 0x6338,
858 		0x6370, 0x638c,
859 		0x6400, 0x643c,
860 		0x6500, 0x6524,
861 		0x6a00, 0x6a04,
862 		0x6a14, 0x6a38,
863 		0x6a60, 0x6a70,
864 		0x6a78, 0x6a78,
865 		0x6b00, 0x6b0c,
866 		0x6b1c, 0x6b84,
867 		0x6bf0, 0x6bf8,
868 		0x6c00, 0x6c0c,
869 		0x6c1c, 0x6c84,
870 		0x6cf0, 0x6cf8,
871 		0x6d00, 0x6d0c,
872 		0x6d1c, 0x6d84,
873 		0x6df0, 0x6df8,
874 		0x6e00, 0x6e0c,
875 		0x6e1c, 0x6e84,
876 		0x6ef0, 0x6ef8,
877 		0x6f00, 0x6f0c,
878 		0x6f1c, 0x6f84,
879 		0x6ff0, 0x6ff8,
880 		0x7000, 0x700c,
881 		0x701c, 0x7084,
882 		0x70f0, 0x70f8,
883 		0x7100, 0x710c,
884 		0x711c, 0x7184,
885 		0x71f0, 0x71f8,
886 		0x7200, 0x720c,
887 		0x721c, 0x7284,
888 		0x72f0, 0x72f8,
889 		0x7300, 0x730c,
890 		0x731c, 0x7384,
891 		0x73f0, 0x73f8,
892 		0x7400, 0x7450,
893 		0x7500, 0x7530,
894 		0x7600, 0x760c,
895 		0x7614, 0x761c,
896 		0x7680, 0x76cc,
897 		0x7700, 0x7798,
898 		0x77c0, 0x77fc,
899 		0x7900, 0x79fc,
900 		0x7b00, 0x7b58,
901 		0x7b60, 0x7b84,
902 		0x7b8c, 0x7c38,
903 		0x7d00, 0x7d38,
904 		0x7d40, 0x7d80,
905 		0x7d8c, 0x7ddc,
906 		0x7de4, 0x7e04,
907 		0x7e10, 0x7e1c,
908 		0x7e24, 0x7e38,
909 		0x7e40, 0x7e44,
910 		0x7e4c, 0x7e78,
911 		0x7e80, 0x7ea4,
912 		0x7eac, 0x7edc,
913 		0x7ee8, 0x7efc,
914 		0x8dc0, 0x8e04,
915 		0x8e10, 0x8e1c,
916 		0x8e30, 0x8e78,
917 		0x8ea0, 0x8eb8,
918 		0x8ec0, 0x8f6c,
919 		0x8fc0, 0x9008,
920 		0x9010, 0x9058,
921 		0x9060, 0x9060,
922 		0x9068, 0x9074,
923 		0x90fc, 0x90fc,
924 		0x9400, 0x9408,
925 		0x9410, 0x9458,
926 		0x9600, 0x9600,
927 		0x9608, 0x9638,
928 		0x9640, 0x96bc,
929 		0x9800, 0x9808,
930 		0x9820, 0x983c,
931 		0x9850, 0x9864,
932 		0x9c00, 0x9c6c,
933 		0x9c80, 0x9cec,
934 		0x9d00, 0x9d6c,
935 		0x9d80, 0x9dec,
936 		0x9e00, 0x9e6c,
937 		0x9e80, 0x9eec,
938 		0x9f00, 0x9f6c,
939 		0x9f80, 0x9fec,
940 		0xd004, 0xd004,
941 		0xd010, 0xd03c,
942 		0xdfc0, 0xdfe0,
943 		0xe000, 0xea7c,
944 		0xf000, 0x11110,
945 		0x11118, 0x11190,
946 		0x19040, 0x1906c,
947 		0x19078, 0x19080,
948 		0x1908c, 0x190e4,
949 		0x190f0, 0x190f8,
950 		0x19100, 0x19110,
951 		0x19120, 0x19124,
952 		0x19150, 0x19194,
953 		0x1919c, 0x191b0,
954 		0x191d0, 0x191e8,
955 		0x19238, 0x1924c,
956 		0x193f8, 0x1943c,
957 		0x1944c, 0x19474,
958 		0x19490, 0x194e0,
959 		0x194f0, 0x194f8,
960 		0x19800, 0x19c08,
961 		0x19c10, 0x19c90,
962 		0x19ca0, 0x19ce4,
963 		0x19cf0, 0x19d40,
964 		0x19d50, 0x19d94,
965 		0x19da0, 0x19de8,
966 		0x19df0, 0x19e40,
967 		0x19e50, 0x19e90,
968 		0x19ea0, 0x19f4c,
969 		0x1a000, 0x1a004,
970 		0x1a010, 0x1a06c,
971 		0x1a0b0, 0x1a0e4,
972 		0x1a0ec, 0x1a0f4,
973 		0x1a100, 0x1a108,
974 		0x1a114, 0x1a120,
975 		0x1a128, 0x1a130,
976 		0x1a138, 0x1a138,
977 		0x1a190, 0x1a1c4,
978 		0x1a1fc, 0x1a1fc,
979 		0x1e040, 0x1e04c,
980 		0x1e284, 0x1e28c,
981 		0x1e2c0, 0x1e2c0,
982 		0x1e2e0, 0x1e2e0,
983 		0x1e300, 0x1e384,
984 		0x1e3c0, 0x1e3c8,
985 		0x1e440, 0x1e44c,
986 		0x1e684, 0x1e68c,
987 		0x1e6c0, 0x1e6c0,
988 		0x1e6e0, 0x1e6e0,
989 		0x1e700, 0x1e784,
990 		0x1e7c0, 0x1e7c8,
991 		0x1e840, 0x1e84c,
992 		0x1ea84, 0x1ea8c,
993 		0x1eac0, 0x1eac0,
994 		0x1eae0, 0x1eae0,
995 		0x1eb00, 0x1eb84,
996 		0x1ebc0, 0x1ebc8,
997 		0x1ec40, 0x1ec4c,
998 		0x1ee84, 0x1ee8c,
999 		0x1eec0, 0x1eec0,
1000 		0x1eee0, 0x1eee0,
1001 		0x1ef00, 0x1ef84,
1002 		0x1efc0, 0x1efc8,
1003 		0x1f040, 0x1f04c,
1004 		0x1f284, 0x1f28c,
1005 		0x1f2c0, 0x1f2c0,
1006 		0x1f2e0, 0x1f2e0,
1007 		0x1f300, 0x1f384,
1008 		0x1f3c0, 0x1f3c8,
1009 		0x1f440, 0x1f44c,
1010 		0x1f684, 0x1f68c,
1011 		0x1f6c0, 0x1f6c0,
1012 		0x1f6e0, 0x1f6e0,
1013 		0x1f700, 0x1f784,
1014 		0x1f7c0, 0x1f7c8,
1015 		0x1f840, 0x1f84c,
1016 		0x1fa84, 0x1fa8c,
1017 		0x1fac0, 0x1fac0,
1018 		0x1fae0, 0x1fae0,
1019 		0x1fb00, 0x1fb84,
1020 		0x1fbc0, 0x1fbc8,
1021 		0x1fc40, 0x1fc4c,
1022 		0x1fe84, 0x1fe8c,
1023 		0x1fec0, 0x1fec0,
1024 		0x1fee0, 0x1fee0,
1025 		0x1ff00, 0x1ff84,
1026 		0x1ffc0, 0x1ffc8,
1027 		0x20000, 0x2002c,
1028 		0x20100, 0x2013c,
1029 		0x20190, 0x201a0,
1030 		0x201a8, 0x201b8,
1031 		0x201c4, 0x201c8,
1032 		0x20200, 0x20318,
1033 		0x20400, 0x204b4,
1034 		0x204c0, 0x20528,
1035 		0x20540, 0x20614,
1036 		0x21000, 0x21040,
1037 		0x2104c, 0x21060,
1038 		0x210c0, 0x210ec,
1039 		0x21200, 0x21268,
1040 		0x21270, 0x21284,
1041 		0x212fc, 0x21388,
1042 		0x21400, 0x21404,
1043 		0x21500, 0x21500,
1044 		0x21510, 0x21518,
1045 		0x2152c, 0x21530,
1046 		0x2153c, 0x2153c,
1047 		0x21550, 0x21554,
1048 		0x21600, 0x21600,
1049 		0x21608, 0x2161c,
1050 		0x21624, 0x21628,
1051 		0x21630, 0x21634,
1052 		0x2163c, 0x2163c,
1053 		0x21700, 0x2171c,
1054 		0x21780, 0x2178c,
1055 		0x21800, 0x21818,
1056 		0x21820, 0x21828,
1057 		0x21830, 0x21848,
1058 		0x21850, 0x21854,
1059 		0x21860, 0x21868,
1060 		0x21870, 0x21870,
1061 		0x21878, 0x21898,
1062 		0x218a0, 0x218a8,
1063 		0x218b0, 0x218c8,
1064 		0x218d0, 0x218d4,
1065 		0x218e0, 0x218e8,
1066 		0x218f0, 0x218f0,
1067 		0x218f8, 0x21a18,
1068 		0x21a20, 0x21a28,
1069 		0x21a30, 0x21a48,
1070 		0x21a50, 0x21a54,
1071 		0x21a60, 0x21a68,
1072 		0x21a70, 0x21a70,
1073 		0x21a78, 0x21a98,
1074 		0x21aa0, 0x21aa8,
1075 		0x21ab0, 0x21ac8,
1076 		0x21ad0, 0x21ad4,
1077 		0x21ae0, 0x21ae8,
1078 		0x21af0, 0x21af0,
1079 		0x21af8, 0x21c18,
1080 		0x21c20, 0x21c20,
1081 		0x21c28, 0x21c30,
1082 		0x21c38, 0x21c38,
1083 		0x21c80, 0x21c98,
1084 		0x21ca0, 0x21ca8,
1085 		0x21cb0, 0x21cc8,
1086 		0x21cd0, 0x21cd4,
1087 		0x21ce0, 0x21ce8,
1088 		0x21cf0, 0x21cf0,
1089 		0x21cf8, 0x21d7c,
1090 		0x21e00, 0x21e04,
1091 		0x22000, 0x2202c,
1092 		0x22100, 0x2213c,
1093 		0x22190, 0x221a0,
1094 		0x221a8, 0x221b8,
1095 		0x221c4, 0x221c8,
1096 		0x22200, 0x22318,
1097 		0x22400, 0x224b4,
1098 		0x224c0, 0x22528,
1099 		0x22540, 0x22614,
1100 		0x23000, 0x23040,
1101 		0x2304c, 0x23060,
1102 		0x230c0, 0x230ec,
1103 		0x23200, 0x23268,
1104 		0x23270, 0x23284,
1105 		0x232fc, 0x23388,
1106 		0x23400, 0x23404,
1107 		0x23500, 0x23500,
1108 		0x23510, 0x23518,
1109 		0x2352c, 0x23530,
1110 		0x2353c, 0x2353c,
1111 		0x23550, 0x23554,
1112 		0x23600, 0x23600,
1113 		0x23608, 0x2361c,
1114 		0x23624, 0x23628,
1115 		0x23630, 0x23634,
1116 		0x2363c, 0x2363c,
1117 		0x23700, 0x2371c,
1118 		0x23780, 0x2378c,
1119 		0x23800, 0x23818,
1120 		0x23820, 0x23828,
1121 		0x23830, 0x23848,
1122 		0x23850, 0x23854,
1123 		0x23860, 0x23868,
1124 		0x23870, 0x23870,
1125 		0x23878, 0x23898,
1126 		0x238a0, 0x238a8,
1127 		0x238b0, 0x238c8,
1128 		0x238d0, 0x238d4,
1129 		0x238e0, 0x238e8,
1130 		0x238f0, 0x238f0,
1131 		0x238f8, 0x23a18,
1132 		0x23a20, 0x23a28,
1133 		0x23a30, 0x23a48,
1134 		0x23a50, 0x23a54,
1135 		0x23a60, 0x23a68,
1136 		0x23a70, 0x23a70,
1137 		0x23a78, 0x23a98,
1138 		0x23aa0, 0x23aa8,
1139 		0x23ab0, 0x23ac8,
1140 		0x23ad0, 0x23ad4,
1141 		0x23ae0, 0x23ae8,
1142 		0x23af0, 0x23af0,
1143 		0x23af8, 0x23c18,
1144 		0x23c20, 0x23c20,
1145 		0x23c28, 0x23c30,
1146 		0x23c38, 0x23c38,
1147 		0x23c80, 0x23c98,
1148 		0x23ca0, 0x23ca8,
1149 		0x23cb0, 0x23cc8,
1150 		0x23cd0, 0x23cd4,
1151 		0x23ce0, 0x23ce8,
1152 		0x23cf0, 0x23cf0,
1153 		0x23cf8, 0x23d7c,
1154 		0x23e00, 0x23e04,
1155 		0x24000, 0x2402c,
1156 		0x24100, 0x2413c,
1157 		0x24190, 0x241a0,
1158 		0x241a8, 0x241b8,
1159 		0x241c4, 0x241c8,
1160 		0x24200, 0x24318,
1161 		0x24400, 0x244b4,
1162 		0x244c0, 0x24528,
1163 		0x24540, 0x24614,
1164 		0x25000, 0x25040,
1165 		0x2504c, 0x25060,
1166 		0x250c0, 0x250ec,
1167 		0x25200, 0x25268,
1168 		0x25270, 0x25284,
1169 		0x252fc, 0x25388,
1170 		0x25400, 0x25404,
1171 		0x25500, 0x25500,
1172 		0x25510, 0x25518,
1173 		0x2552c, 0x25530,
1174 		0x2553c, 0x2553c,
1175 		0x25550, 0x25554,
1176 		0x25600, 0x25600,
1177 		0x25608, 0x2561c,
1178 		0x25624, 0x25628,
1179 		0x25630, 0x25634,
1180 		0x2563c, 0x2563c,
1181 		0x25700, 0x2571c,
1182 		0x25780, 0x2578c,
1183 		0x25800, 0x25818,
1184 		0x25820, 0x25828,
1185 		0x25830, 0x25848,
1186 		0x25850, 0x25854,
1187 		0x25860, 0x25868,
1188 		0x25870, 0x25870,
1189 		0x25878, 0x25898,
1190 		0x258a0, 0x258a8,
1191 		0x258b0, 0x258c8,
1192 		0x258d0, 0x258d4,
1193 		0x258e0, 0x258e8,
1194 		0x258f0, 0x258f0,
1195 		0x258f8, 0x25a18,
1196 		0x25a20, 0x25a28,
1197 		0x25a30, 0x25a48,
1198 		0x25a50, 0x25a54,
1199 		0x25a60, 0x25a68,
1200 		0x25a70, 0x25a70,
1201 		0x25a78, 0x25a98,
1202 		0x25aa0, 0x25aa8,
1203 		0x25ab0, 0x25ac8,
1204 		0x25ad0, 0x25ad4,
1205 		0x25ae0, 0x25ae8,
1206 		0x25af0, 0x25af0,
1207 		0x25af8, 0x25c18,
1208 		0x25c20, 0x25c20,
1209 		0x25c28, 0x25c30,
1210 		0x25c38, 0x25c38,
1211 		0x25c80, 0x25c98,
1212 		0x25ca0, 0x25ca8,
1213 		0x25cb0, 0x25cc8,
1214 		0x25cd0, 0x25cd4,
1215 		0x25ce0, 0x25ce8,
1216 		0x25cf0, 0x25cf0,
1217 		0x25cf8, 0x25d7c,
1218 		0x25e00, 0x25e04,
1219 		0x26000, 0x2602c,
1220 		0x26100, 0x2613c,
1221 		0x26190, 0x261a0,
1222 		0x261a8, 0x261b8,
1223 		0x261c4, 0x261c8,
1224 		0x26200, 0x26318,
1225 		0x26400, 0x264b4,
1226 		0x264c0, 0x26528,
1227 		0x26540, 0x26614,
1228 		0x27000, 0x27040,
1229 		0x2704c, 0x27060,
1230 		0x270c0, 0x270ec,
1231 		0x27200, 0x27268,
1232 		0x27270, 0x27284,
1233 		0x272fc, 0x27388,
1234 		0x27400, 0x27404,
1235 		0x27500, 0x27500,
1236 		0x27510, 0x27518,
1237 		0x2752c, 0x27530,
1238 		0x2753c, 0x2753c,
1239 		0x27550, 0x27554,
1240 		0x27600, 0x27600,
1241 		0x27608, 0x2761c,
1242 		0x27624, 0x27628,
1243 		0x27630, 0x27634,
1244 		0x2763c, 0x2763c,
1245 		0x27700, 0x2771c,
1246 		0x27780, 0x2778c,
1247 		0x27800, 0x27818,
1248 		0x27820, 0x27828,
1249 		0x27830, 0x27848,
1250 		0x27850, 0x27854,
1251 		0x27860, 0x27868,
1252 		0x27870, 0x27870,
1253 		0x27878, 0x27898,
1254 		0x278a0, 0x278a8,
1255 		0x278b0, 0x278c8,
1256 		0x278d0, 0x278d4,
1257 		0x278e0, 0x278e8,
1258 		0x278f0, 0x278f0,
1259 		0x278f8, 0x27a18,
1260 		0x27a20, 0x27a28,
1261 		0x27a30, 0x27a48,
1262 		0x27a50, 0x27a54,
1263 		0x27a60, 0x27a68,
1264 		0x27a70, 0x27a70,
1265 		0x27a78, 0x27a98,
1266 		0x27aa0, 0x27aa8,
1267 		0x27ab0, 0x27ac8,
1268 		0x27ad0, 0x27ad4,
1269 		0x27ae0, 0x27ae8,
1270 		0x27af0, 0x27af0,
1271 		0x27af8, 0x27c18,
1272 		0x27c20, 0x27c20,
1273 		0x27c28, 0x27c30,
1274 		0x27c38, 0x27c38,
1275 		0x27c80, 0x27c98,
1276 		0x27ca0, 0x27ca8,
1277 		0x27cb0, 0x27cc8,
1278 		0x27cd0, 0x27cd4,
1279 		0x27ce0, 0x27ce8,
1280 		0x27cf0, 0x27cf0,
1281 		0x27cf8, 0x27d7c,
1282 		0x27e00, 0x27e04,
1283 	};
1284 
1285 	static const unsigned int t4vf_reg_ranges[] = {
1286 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
1287 		VF_MPS_REG(A_MPS_VF_CTL),
1288 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
1289 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI),
1290 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
1291 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
1292 		FW_T4VF_MBDATA_BASE_ADDR,
1293 		FW_T4VF_MBDATA_BASE_ADDR +
1294 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
1295 	};
1296 
1297 	static const unsigned int t5_reg_ranges[] = {
1298 		0x1008, 0x10c0,
1299 		0x10cc, 0x10f8,
1300 		0x1100, 0x1100,
1301 		0x110c, 0x1148,
1302 		0x1180, 0x1184,
1303 		0x1190, 0x1194,
1304 		0x11a0, 0x11a4,
1305 		0x11b0, 0x11b4,
1306 		0x11fc, 0x123c,
1307 		0x1280, 0x173c,
1308 		0x1800, 0x18fc,
1309 		0x3000, 0x3028,
1310 		0x3060, 0x30b0,
1311 		0x30b8, 0x30d8,
1312 		0x30e0, 0x30fc,
1313 		0x3140, 0x357c,
1314 		0x35a8, 0x35cc,
1315 		0x35ec, 0x35ec,
1316 		0x3600, 0x5624,
1317 		0x56cc, 0x56ec,
1318 		0x56f4, 0x5720,
1319 		0x5728, 0x575c,
1320 		0x580c, 0x5814,
1321 		0x5890, 0x589c,
1322 		0x58a4, 0x58ac,
1323 		0x58b8, 0x58bc,
1324 		0x5940, 0x59c8,
1325 		0x59d0, 0x59dc,
1326 		0x59fc, 0x5a18,
1327 		0x5a60, 0x5a70,
1328 		0x5a80, 0x5a9c,
1329 		0x5b94, 0x5bfc,
1330 		0x6000, 0x6020,
1331 		0x6028, 0x6040,
1332 		0x6058, 0x609c,
1333 		0x60a8, 0x614c,
1334 		0x7700, 0x7798,
1335 		0x77c0, 0x78fc,
1336 		0x7b00, 0x7b58,
1337 		0x7b60, 0x7b84,
1338 		0x7b8c, 0x7c54,
1339 		0x7d00, 0x7d38,
1340 		0x7d40, 0x7d80,
1341 		0x7d8c, 0x7ddc,
1342 		0x7de4, 0x7e04,
1343 		0x7e10, 0x7e1c,
1344 		0x7e24, 0x7e38,
1345 		0x7e40, 0x7e44,
1346 		0x7e4c, 0x7e78,
1347 		0x7e80, 0x7edc,
1348 		0x7ee8, 0x7efc,
1349 		0x8dc0, 0x8de0,
1350 		0x8df8, 0x8e04,
1351 		0x8e10, 0x8e84,
1352 		0x8ea0, 0x8f84,
1353 		0x8fc0, 0x9058,
1354 		0x9060, 0x9060,
1355 		0x9068, 0x90f8,
1356 		0x9400, 0x9408,
1357 		0x9410, 0x9470,
1358 		0x9600, 0x9600,
1359 		0x9608, 0x9638,
1360 		0x9640, 0x96f4,
1361 		0x9800, 0x9808,
1362 		0x9810, 0x9864,
1363 		0x9c00, 0x9c6c,
1364 		0x9c80, 0x9cec,
1365 		0x9d00, 0x9d6c,
1366 		0x9d80, 0x9dec,
1367 		0x9e00, 0x9e6c,
1368 		0x9e80, 0x9eec,
1369 		0x9f00, 0x9f6c,
1370 		0x9f80, 0xa020,
1371 		0xd000, 0xd004,
1372 		0xd010, 0xd03c,
1373 		0xdfc0, 0xdfe0,
1374 		0xe000, 0x1106c,
1375 		0x11074, 0x11088,
1376 		0x1109c, 0x1117c,
1377 		0x11190, 0x11204,
1378 		0x19040, 0x1906c,
1379 		0x19078, 0x19080,
1380 		0x1908c, 0x190e8,
1381 		0x190f0, 0x190f8,
1382 		0x19100, 0x19110,
1383 		0x19120, 0x19124,
1384 		0x19150, 0x19194,
1385 		0x1919c, 0x191b0,
1386 		0x191d0, 0x191e8,
1387 		0x19238, 0x19290,
1388 		0x193f8, 0x19428,
1389 		0x19430, 0x19444,
1390 		0x1944c, 0x1946c,
1391 		0x19474, 0x19474,
1392 		0x19490, 0x194cc,
1393 		0x194f0, 0x194f8,
1394 		0x19c00, 0x19c08,
1395 		0x19c10, 0x19c60,
1396 		0x19c94, 0x19ce4,
1397 		0x19cf0, 0x19d40,
1398 		0x19d50, 0x19d94,
1399 		0x19da0, 0x19de8,
1400 		0x19df0, 0x19e10,
1401 		0x19e50, 0x19e90,
1402 		0x19ea0, 0x19f24,
1403 		0x19f34, 0x19f34,
1404 		0x19f40, 0x19f50,
1405 		0x19f90, 0x19fb4,
1406 		0x19fc4, 0x19fe4,
1407 		0x1a000, 0x1a004,
1408 		0x1a010, 0x1a06c,
1409 		0x1a0b0, 0x1a0e4,
1410 		0x1a0ec, 0x1a0f8,
1411 		0x1a100, 0x1a108,
1412 		0x1a114, 0x1a130,
1413 		0x1a138, 0x1a1c4,
1414 		0x1a1fc, 0x1a1fc,
1415 		0x1e008, 0x1e00c,
1416 		0x1e040, 0x1e044,
1417 		0x1e04c, 0x1e04c,
1418 		0x1e284, 0x1e290,
1419 		0x1e2c0, 0x1e2c0,
1420 		0x1e2e0, 0x1e2e0,
1421 		0x1e300, 0x1e384,
1422 		0x1e3c0, 0x1e3c8,
1423 		0x1e408, 0x1e40c,
1424 		0x1e440, 0x1e444,
1425 		0x1e44c, 0x1e44c,
1426 		0x1e684, 0x1e690,
1427 		0x1e6c0, 0x1e6c0,
1428 		0x1e6e0, 0x1e6e0,
1429 		0x1e700, 0x1e784,
1430 		0x1e7c0, 0x1e7c8,
1431 		0x1e808, 0x1e80c,
1432 		0x1e840, 0x1e844,
1433 		0x1e84c, 0x1e84c,
1434 		0x1ea84, 0x1ea90,
1435 		0x1eac0, 0x1eac0,
1436 		0x1eae0, 0x1eae0,
1437 		0x1eb00, 0x1eb84,
1438 		0x1ebc0, 0x1ebc8,
1439 		0x1ec08, 0x1ec0c,
1440 		0x1ec40, 0x1ec44,
1441 		0x1ec4c, 0x1ec4c,
1442 		0x1ee84, 0x1ee90,
1443 		0x1eec0, 0x1eec0,
1444 		0x1eee0, 0x1eee0,
1445 		0x1ef00, 0x1ef84,
1446 		0x1efc0, 0x1efc8,
1447 		0x1f008, 0x1f00c,
1448 		0x1f040, 0x1f044,
1449 		0x1f04c, 0x1f04c,
1450 		0x1f284, 0x1f290,
1451 		0x1f2c0, 0x1f2c0,
1452 		0x1f2e0, 0x1f2e0,
1453 		0x1f300, 0x1f384,
1454 		0x1f3c0, 0x1f3c8,
1455 		0x1f408, 0x1f40c,
1456 		0x1f440, 0x1f444,
1457 		0x1f44c, 0x1f44c,
1458 		0x1f684, 0x1f690,
1459 		0x1f6c0, 0x1f6c0,
1460 		0x1f6e0, 0x1f6e0,
1461 		0x1f700, 0x1f784,
1462 		0x1f7c0, 0x1f7c8,
1463 		0x1f808, 0x1f80c,
1464 		0x1f840, 0x1f844,
1465 		0x1f84c, 0x1f84c,
1466 		0x1fa84, 0x1fa90,
1467 		0x1fac0, 0x1fac0,
1468 		0x1fae0, 0x1fae0,
1469 		0x1fb00, 0x1fb84,
1470 		0x1fbc0, 0x1fbc8,
1471 		0x1fc08, 0x1fc0c,
1472 		0x1fc40, 0x1fc44,
1473 		0x1fc4c, 0x1fc4c,
1474 		0x1fe84, 0x1fe90,
1475 		0x1fec0, 0x1fec0,
1476 		0x1fee0, 0x1fee0,
1477 		0x1ff00, 0x1ff84,
1478 		0x1ffc0, 0x1ffc8,
1479 		0x30000, 0x30030,
1480 		0x30100, 0x30144,
1481 		0x30190, 0x301a0,
1482 		0x301a8, 0x301b8,
1483 		0x301c4, 0x301c8,
1484 		0x301d0, 0x301d0,
1485 		0x30200, 0x30318,
1486 		0x30400, 0x304b4,
1487 		0x304c0, 0x3052c,
1488 		0x30540, 0x3061c,
1489 		0x30800, 0x30828,
1490 		0x30834, 0x30834,
1491 		0x308c0, 0x30908,
1492 		0x30910, 0x309ac,
1493 		0x30a00, 0x30a14,
1494 		0x30a1c, 0x30a2c,
1495 		0x30a44, 0x30a50,
1496 		0x30a74, 0x30a74,
1497 		0x30a7c, 0x30afc,
1498 		0x30b08, 0x30c24,
1499 		0x30d00, 0x30d00,
1500 		0x30d08, 0x30d14,
1501 		0x30d1c, 0x30d20,
1502 		0x30d3c, 0x30d3c,
1503 		0x30d48, 0x30d50,
1504 		0x31200, 0x3120c,
1505 		0x31220, 0x31220,
1506 		0x31240, 0x31240,
1507 		0x31600, 0x3160c,
1508 		0x31a00, 0x31a1c,
1509 		0x31e00, 0x31e20,
1510 		0x31e38, 0x31e3c,
1511 		0x31e80, 0x31e80,
1512 		0x31e88, 0x31ea8,
1513 		0x31eb0, 0x31eb4,
1514 		0x31ec8, 0x31ed4,
1515 		0x31fb8, 0x32004,
1516 		0x32200, 0x32200,
1517 		0x32208, 0x32240,
1518 		0x32248, 0x32280,
1519 		0x32288, 0x322c0,
1520 		0x322c8, 0x322fc,
1521 		0x32600, 0x32630,
1522 		0x32a00, 0x32abc,
1523 		0x32b00, 0x32b10,
1524 		0x32b20, 0x32b30,
1525 		0x32b40, 0x32b50,
1526 		0x32b60, 0x32b70,
1527 		0x33000, 0x33028,
1528 		0x33030, 0x33048,
1529 		0x33060, 0x33068,
1530 		0x33070, 0x3309c,
1531 		0x330f0, 0x33128,
1532 		0x33130, 0x33148,
1533 		0x33160, 0x33168,
1534 		0x33170, 0x3319c,
1535 		0x331f0, 0x33238,
1536 		0x33240, 0x33240,
1537 		0x33248, 0x33250,
1538 		0x3325c, 0x33264,
1539 		0x33270, 0x332b8,
1540 		0x332c0, 0x332e4,
1541 		0x332f8, 0x33338,
1542 		0x33340, 0x33340,
1543 		0x33348, 0x33350,
1544 		0x3335c, 0x33364,
1545 		0x33370, 0x333b8,
1546 		0x333c0, 0x333e4,
1547 		0x333f8, 0x33428,
1548 		0x33430, 0x33448,
1549 		0x33460, 0x33468,
1550 		0x33470, 0x3349c,
1551 		0x334f0, 0x33528,
1552 		0x33530, 0x33548,
1553 		0x33560, 0x33568,
1554 		0x33570, 0x3359c,
1555 		0x335f0, 0x33638,
1556 		0x33640, 0x33640,
1557 		0x33648, 0x33650,
1558 		0x3365c, 0x33664,
1559 		0x33670, 0x336b8,
1560 		0x336c0, 0x336e4,
1561 		0x336f8, 0x33738,
1562 		0x33740, 0x33740,
1563 		0x33748, 0x33750,
1564 		0x3375c, 0x33764,
1565 		0x33770, 0x337b8,
1566 		0x337c0, 0x337e4,
1567 		0x337f8, 0x337fc,
1568 		0x33814, 0x33814,
1569 		0x3382c, 0x3382c,
1570 		0x33880, 0x3388c,
1571 		0x338e8, 0x338ec,
1572 		0x33900, 0x33928,
1573 		0x33930, 0x33948,
1574 		0x33960, 0x33968,
1575 		0x33970, 0x3399c,
1576 		0x339f0, 0x33a38,
1577 		0x33a40, 0x33a40,
1578 		0x33a48, 0x33a50,
1579 		0x33a5c, 0x33a64,
1580 		0x33a70, 0x33ab8,
1581 		0x33ac0, 0x33ae4,
1582 		0x33af8, 0x33b10,
1583 		0x33b28, 0x33b28,
1584 		0x33b3c, 0x33b50,
1585 		0x33bf0, 0x33c10,
1586 		0x33c28, 0x33c28,
1587 		0x33c3c, 0x33c50,
1588 		0x33cf0, 0x33cfc,
1589 		0x34000, 0x34030,
1590 		0x34100, 0x34144,
1591 		0x34190, 0x341a0,
1592 		0x341a8, 0x341b8,
1593 		0x341c4, 0x341c8,
1594 		0x341d0, 0x341d0,
1595 		0x34200, 0x34318,
1596 		0x34400, 0x344b4,
1597 		0x344c0, 0x3452c,
1598 		0x34540, 0x3461c,
1599 		0x34800, 0x34828,
1600 		0x34834, 0x34834,
1601 		0x348c0, 0x34908,
1602 		0x34910, 0x349ac,
1603 		0x34a00, 0x34a14,
1604 		0x34a1c, 0x34a2c,
1605 		0x34a44, 0x34a50,
1606 		0x34a74, 0x34a74,
1607 		0x34a7c, 0x34afc,
1608 		0x34b08, 0x34c24,
1609 		0x34d00, 0x34d00,
1610 		0x34d08, 0x34d14,
1611 		0x34d1c, 0x34d20,
1612 		0x34d3c, 0x34d3c,
1613 		0x34d48, 0x34d50,
1614 		0x35200, 0x3520c,
1615 		0x35220, 0x35220,
1616 		0x35240, 0x35240,
1617 		0x35600, 0x3560c,
1618 		0x35a00, 0x35a1c,
1619 		0x35e00, 0x35e20,
1620 		0x35e38, 0x35e3c,
1621 		0x35e80, 0x35e80,
1622 		0x35e88, 0x35ea8,
1623 		0x35eb0, 0x35eb4,
1624 		0x35ec8, 0x35ed4,
1625 		0x35fb8, 0x36004,
1626 		0x36200, 0x36200,
1627 		0x36208, 0x36240,
1628 		0x36248, 0x36280,
1629 		0x36288, 0x362c0,
1630 		0x362c8, 0x362fc,
1631 		0x36600, 0x36630,
1632 		0x36a00, 0x36abc,
1633 		0x36b00, 0x36b10,
1634 		0x36b20, 0x36b30,
1635 		0x36b40, 0x36b50,
1636 		0x36b60, 0x36b70,
1637 		0x37000, 0x37028,
1638 		0x37030, 0x37048,
1639 		0x37060, 0x37068,
1640 		0x37070, 0x3709c,
1641 		0x370f0, 0x37128,
1642 		0x37130, 0x37148,
1643 		0x37160, 0x37168,
1644 		0x37170, 0x3719c,
1645 		0x371f0, 0x37238,
1646 		0x37240, 0x37240,
1647 		0x37248, 0x37250,
1648 		0x3725c, 0x37264,
1649 		0x37270, 0x372b8,
1650 		0x372c0, 0x372e4,
1651 		0x372f8, 0x37338,
1652 		0x37340, 0x37340,
1653 		0x37348, 0x37350,
1654 		0x3735c, 0x37364,
1655 		0x37370, 0x373b8,
1656 		0x373c0, 0x373e4,
1657 		0x373f8, 0x37428,
1658 		0x37430, 0x37448,
1659 		0x37460, 0x37468,
1660 		0x37470, 0x3749c,
1661 		0x374f0, 0x37528,
1662 		0x37530, 0x37548,
1663 		0x37560, 0x37568,
1664 		0x37570, 0x3759c,
1665 		0x375f0, 0x37638,
1666 		0x37640, 0x37640,
1667 		0x37648, 0x37650,
1668 		0x3765c, 0x37664,
1669 		0x37670, 0x376b8,
1670 		0x376c0, 0x376e4,
1671 		0x376f8, 0x37738,
1672 		0x37740, 0x37740,
1673 		0x37748, 0x37750,
1674 		0x3775c, 0x37764,
1675 		0x37770, 0x377b8,
1676 		0x377c0, 0x377e4,
1677 		0x377f8, 0x377fc,
1678 		0x37814, 0x37814,
1679 		0x3782c, 0x3782c,
1680 		0x37880, 0x3788c,
1681 		0x378e8, 0x378ec,
1682 		0x37900, 0x37928,
1683 		0x37930, 0x37948,
1684 		0x37960, 0x37968,
1685 		0x37970, 0x3799c,
1686 		0x379f0, 0x37a38,
1687 		0x37a40, 0x37a40,
1688 		0x37a48, 0x37a50,
1689 		0x37a5c, 0x37a64,
1690 		0x37a70, 0x37ab8,
1691 		0x37ac0, 0x37ae4,
1692 		0x37af8, 0x37b10,
1693 		0x37b28, 0x37b28,
1694 		0x37b3c, 0x37b50,
1695 		0x37bf0, 0x37c10,
1696 		0x37c28, 0x37c28,
1697 		0x37c3c, 0x37c50,
1698 		0x37cf0, 0x37cfc,
1699 		0x38000, 0x38030,
1700 		0x38100, 0x38144,
1701 		0x38190, 0x381a0,
1702 		0x381a8, 0x381b8,
1703 		0x381c4, 0x381c8,
1704 		0x381d0, 0x381d0,
1705 		0x38200, 0x38318,
1706 		0x38400, 0x384b4,
1707 		0x384c0, 0x3852c,
1708 		0x38540, 0x3861c,
1709 		0x38800, 0x38828,
1710 		0x38834, 0x38834,
1711 		0x388c0, 0x38908,
1712 		0x38910, 0x389ac,
1713 		0x38a00, 0x38a14,
1714 		0x38a1c, 0x38a2c,
1715 		0x38a44, 0x38a50,
1716 		0x38a74, 0x38a74,
1717 		0x38a7c, 0x38afc,
1718 		0x38b08, 0x38c24,
1719 		0x38d00, 0x38d00,
1720 		0x38d08, 0x38d14,
1721 		0x38d1c, 0x38d20,
1722 		0x38d3c, 0x38d3c,
1723 		0x38d48, 0x38d50,
1724 		0x39200, 0x3920c,
1725 		0x39220, 0x39220,
1726 		0x39240, 0x39240,
1727 		0x39600, 0x3960c,
1728 		0x39a00, 0x39a1c,
1729 		0x39e00, 0x39e20,
1730 		0x39e38, 0x39e3c,
1731 		0x39e80, 0x39e80,
1732 		0x39e88, 0x39ea8,
1733 		0x39eb0, 0x39eb4,
1734 		0x39ec8, 0x39ed4,
1735 		0x39fb8, 0x3a004,
1736 		0x3a200, 0x3a200,
1737 		0x3a208, 0x3a240,
1738 		0x3a248, 0x3a280,
1739 		0x3a288, 0x3a2c0,
1740 		0x3a2c8, 0x3a2fc,
1741 		0x3a600, 0x3a630,
1742 		0x3aa00, 0x3aabc,
1743 		0x3ab00, 0x3ab10,
1744 		0x3ab20, 0x3ab30,
1745 		0x3ab40, 0x3ab50,
1746 		0x3ab60, 0x3ab70,
1747 		0x3b000, 0x3b028,
1748 		0x3b030, 0x3b048,
1749 		0x3b060, 0x3b068,
1750 		0x3b070, 0x3b09c,
1751 		0x3b0f0, 0x3b128,
1752 		0x3b130, 0x3b148,
1753 		0x3b160, 0x3b168,
1754 		0x3b170, 0x3b19c,
1755 		0x3b1f0, 0x3b238,
1756 		0x3b240, 0x3b240,
1757 		0x3b248, 0x3b250,
1758 		0x3b25c, 0x3b264,
1759 		0x3b270, 0x3b2b8,
1760 		0x3b2c0, 0x3b2e4,
1761 		0x3b2f8, 0x3b338,
1762 		0x3b340, 0x3b340,
1763 		0x3b348, 0x3b350,
1764 		0x3b35c, 0x3b364,
1765 		0x3b370, 0x3b3b8,
1766 		0x3b3c0, 0x3b3e4,
1767 		0x3b3f8, 0x3b428,
1768 		0x3b430, 0x3b448,
1769 		0x3b460, 0x3b468,
1770 		0x3b470, 0x3b49c,
1771 		0x3b4f0, 0x3b528,
1772 		0x3b530, 0x3b548,
1773 		0x3b560, 0x3b568,
1774 		0x3b570, 0x3b59c,
1775 		0x3b5f0, 0x3b638,
1776 		0x3b640, 0x3b640,
1777 		0x3b648, 0x3b650,
1778 		0x3b65c, 0x3b664,
1779 		0x3b670, 0x3b6b8,
1780 		0x3b6c0, 0x3b6e4,
1781 		0x3b6f8, 0x3b738,
1782 		0x3b740, 0x3b740,
1783 		0x3b748, 0x3b750,
1784 		0x3b75c, 0x3b764,
1785 		0x3b770, 0x3b7b8,
1786 		0x3b7c0, 0x3b7e4,
1787 		0x3b7f8, 0x3b7fc,
1788 		0x3b814, 0x3b814,
1789 		0x3b82c, 0x3b82c,
1790 		0x3b880, 0x3b88c,
1791 		0x3b8e8, 0x3b8ec,
1792 		0x3b900, 0x3b928,
1793 		0x3b930, 0x3b948,
1794 		0x3b960, 0x3b968,
1795 		0x3b970, 0x3b99c,
1796 		0x3b9f0, 0x3ba38,
1797 		0x3ba40, 0x3ba40,
1798 		0x3ba48, 0x3ba50,
1799 		0x3ba5c, 0x3ba64,
1800 		0x3ba70, 0x3bab8,
1801 		0x3bac0, 0x3bae4,
1802 		0x3baf8, 0x3bb10,
1803 		0x3bb28, 0x3bb28,
1804 		0x3bb3c, 0x3bb50,
1805 		0x3bbf0, 0x3bc10,
1806 		0x3bc28, 0x3bc28,
1807 		0x3bc3c, 0x3bc50,
1808 		0x3bcf0, 0x3bcfc,
1809 		0x3c000, 0x3c030,
1810 		0x3c100, 0x3c144,
1811 		0x3c190, 0x3c1a0,
1812 		0x3c1a8, 0x3c1b8,
1813 		0x3c1c4, 0x3c1c8,
1814 		0x3c1d0, 0x3c1d0,
1815 		0x3c200, 0x3c318,
1816 		0x3c400, 0x3c4b4,
1817 		0x3c4c0, 0x3c52c,
1818 		0x3c540, 0x3c61c,
1819 		0x3c800, 0x3c828,
1820 		0x3c834, 0x3c834,
1821 		0x3c8c0, 0x3c908,
1822 		0x3c910, 0x3c9ac,
1823 		0x3ca00, 0x3ca14,
1824 		0x3ca1c, 0x3ca2c,
1825 		0x3ca44, 0x3ca50,
1826 		0x3ca74, 0x3ca74,
1827 		0x3ca7c, 0x3cafc,
1828 		0x3cb08, 0x3cc24,
1829 		0x3cd00, 0x3cd00,
1830 		0x3cd08, 0x3cd14,
1831 		0x3cd1c, 0x3cd20,
1832 		0x3cd3c, 0x3cd3c,
1833 		0x3cd48, 0x3cd50,
1834 		0x3d200, 0x3d20c,
1835 		0x3d220, 0x3d220,
1836 		0x3d240, 0x3d240,
1837 		0x3d600, 0x3d60c,
1838 		0x3da00, 0x3da1c,
1839 		0x3de00, 0x3de20,
1840 		0x3de38, 0x3de3c,
1841 		0x3de80, 0x3de80,
1842 		0x3de88, 0x3dea8,
1843 		0x3deb0, 0x3deb4,
1844 		0x3dec8, 0x3ded4,
1845 		0x3dfb8, 0x3e004,
1846 		0x3e200, 0x3e200,
1847 		0x3e208, 0x3e240,
1848 		0x3e248, 0x3e280,
1849 		0x3e288, 0x3e2c0,
1850 		0x3e2c8, 0x3e2fc,
1851 		0x3e600, 0x3e630,
1852 		0x3ea00, 0x3eabc,
1853 		0x3eb00, 0x3eb10,
1854 		0x3eb20, 0x3eb30,
1855 		0x3eb40, 0x3eb50,
1856 		0x3eb60, 0x3eb70,
1857 		0x3f000, 0x3f028,
1858 		0x3f030, 0x3f048,
1859 		0x3f060, 0x3f068,
1860 		0x3f070, 0x3f09c,
1861 		0x3f0f0, 0x3f128,
1862 		0x3f130, 0x3f148,
1863 		0x3f160, 0x3f168,
1864 		0x3f170, 0x3f19c,
1865 		0x3f1f0, 0x3f238,
1866 		0x3f240, 0x3f240,
1867 		0x3f248, 0x3f250,
1868 		0x3f25c, 0x3f264,
1869 		0x3f270, 0x3f2b8,
1870 		0x3f2c0, 0x3f2e4,
1871 		0x3f2f8, 0x3f338,
1872 		0x3f340, 0x3f340,
1873 		0x3f348, 0x3f350,
1874 		0x3f35c, 0x3f364,
1875 		0x3f370, 0x3f3b8,
1876 		0x3f3c0, 0x3f3e4,
1877 		0x3f3f8, 0x3f428,
1878 		0x3f430, 0x3f448,
1879 		0x3f460, 0x3f468,
1880 		0x3f470, 0x3f49c,
1881 		0x3f4f0, 0x3f528,
1882 		0x3f530, 0x3f548,
1883 		0x3f560, 0x3f568,
1884 		0x3f570, 0x3f59c,
1885 		0x3f5f0, 0x3f638,
1886 		0x3f640, 0x3f640,
1887 		0x3f648, 0x3f650,
1888 		0x3f65c, 0x3f664,
1889 		0x3f670, 0x3f6b8,
1890 		0x3f6c0, 0x3f6e4,
1891 		0x3f6f8, 0x3f738,
1892 		0x3f740, 0x3f740,
1893 		0x3f748, 0x3f750,
1894 		0x3f75c, 0x3f764,
1895 		0x3f770, 0x3f7b8,
1896 		0x3f7c0, 0x3f7e4,
1897 		0x3f7f8, 0x3f7fc,
1898 		0x3f814, 0x3f814,
1899 		0x3f82c, 0x3f82c,
1900 		0x3f880, 0x3f88c,
1901 		0x3f8e8, 0x3f8ec,
1902 		0x3f900, 0x3f928,
1903 		0x3f930, 0x3f948,
1904 		0x3f960, 0x3f968,
1905 		0x3f970, 0x3f99c,
1906 		0x3f9f0, 0x3fa38,
1907 		0x3fa40, 0x3fa40,
1908 		0x3fa48, 0x3fa50,
1909 		0x3fa5c, 0x3fa64,
1910 		0x3fa70, 0x3fab8,
1911 		0x3fac0, 0x3fae4,
1912 		0x3faf8, 0x3fb10,
1913 		0x3fb28, 0x3fb28,
1914 		0x3fb3c, 0x3fb50,
1915 		0x3fbf0, 0x3fc10,
1916 		0x3fc28, 0x3fc28,
1917 		0x3fc3c, 0x3fc50,
1918 		0x3fcf0, 0x3fcfc,
1919 		0x40000, 0x4000c,
1920 		0x40040, 0x40050,
1921 		0x40060, 0x40068,
1922 		0x4007c, 0x4008c,
1923 		0x40094, 0x400b0,
1924 		0x400c0, 0x40144,
1925 		0x40180, 0x4018c,
1926 		0x40200, 0x40254,
1927 		0x40260, 0x40264,
1928 		0x40270, 0x40288,
1929 		0x40290, 0x40298,
1930 		0x402ac, 0x402c8,
1931 		0x402d0, 0x402e0,
1932 		0x402f0, 0x402f0,
1933 		0x40300, 0x4033c,
1934 		0x403f8, 0x403fc,
1935 		0x41304, 0x413c4,
1936 		0x41400, 0x4140c,
1937 		0x41414, 0x4141c,
1938 		0x41480, 0x414d0,
1939 		0x44000, 0x44054,
1940 		0x4405c, 0x44078,
1941 		0x440c0, 0x44174,
1942 		0x44180, 0x441ac,
1943 		0x441b4, 0x441b8,
1944 		0x441c0, 0x44254,
1945 		0x4425c, 0x44278,
1946 		0x442c0, 0x44374,
1947 		0x44380, 0x443ac,
1948 		0x443b4, 0x443b8,
1949 		0x443c0, 0x44454,
1950 		0x4445c, 0x44478,
1951 		0x444c0, 0x44574,
1952 		0x44580, 0x445ac,
1953 		0x445b4, 0x445b8,
1954 		0x445c0, 0x44654,
1955 		0x4465c, 0x44678,
1956 		0x446c0, 0x44774,
1957 		0x44780, 0x447ac,
1958 		0x447b4, 0x447b8,
1959 		0x447c0, 0x44854,
1960 		0x4485c, 0x44878,
1961 		0x448c0, 0x44974,
1962 		0x44980, 0x449ac,
1963 		0x449b4, 0x449b8,
1964 		0x449c0, 0x449fc,
1965 		0x45000, 0x45004,
1966 		0x45010, 0x45030,
1967 		0x45040, 0x45060,
1968 		0x45068, 0x45068,
1969 		0x45080, 0x45084,
1970 		0x450a0, 0x450b0,
1971 		0x45200, 0x45204,
1972 		0x45210, 0x45230,
1973 		0x45240, 0x45260,
1974 		0x45268, 0x45268,
1975 		0x45280, 0x45284,
1976 		0x452a0, 0x452b0,
1977 		0x460c0, 0x460e4,
1978 		0x47000, 0x4703c,
1979 		0x47044, 0x4708c,
1980 		0x47200, 0x47250,
1981 		0x47400, 0x47408,
1982 		0x47414, 0x47420,
1983 		0x47600, 0x47618,
1984 		0x47800, 0x47814,
1985 		0x48000, 0x4800c,
1986 		0x48040, 0x48050,
1987 		0x48060, 0x48068,
1988 		0x4807c, 0x4808c,
1989 		0x48094, 0x480b0,
1990 		0x480c0, 0x48144,
1991 		0x48180, 0x4818c,
1992 		0x48200, 0x48254,
1993 		0x48260, 0x48264,
1994 		0x48270, 0x48288,
1995 		0x48290, 0x48298,
1996 		0x482ac, 0x482c8,
1997 		0x482d0, 0x482e0,
1998 		0x482f0, 0x482f0,
1999 		0x48300, 0x4833c,
2000 		0x483f8, 0x483fc,
2001 		0x49304, 0x493c4,
2002 		0x49400, 0x4940c,
2003 		0x49414, 0x4941c,
2004 		0x49480, 0x494d0,
2005 		0x4c000, 0x4c054,
2006 		0x4c05c, 0x4c078,
2007 		0x4c0c0, 0x4c174,
2008 		0x4c180, 0x4c1ac,
2009 		0x4c1b4, 0x4c1b8,
2010 		0x4c1c0, 0x4c254,
2011 		0x4c25c, 0x4c278,
2012 		0x4c2c0, 0x4c374,
2013 		0x4c380, 0x4c3ac,
2014 		0x4c3b4, 0x4c3b8,
2015 		0x4c3c0, 0x4c454,
2016 		0x4c45c, 0x4c478,
2017 		0x4c4c0, 0x4c574,
2018 		0x4c580, 0x4c5ac,
2019 		0x4c5b4, 0x4c5b8,
2020 		0x4c5c0, 0x4c654,
2021 		0x4c65c, 0x4c678,
2022 		0x4c6c0, 0x4c774,
2023 		0x4c780, 0x4c7ac,
2024 		0x4c7b4, 0x4c7b8,
2025 		0x4c7c0, 0x4c854,
2026 		0x4c85c, 0x4c878,
2027 		0x4c8c0, 0x4c974,
2028 		0x4c980, 0x4c9ac,
2029 		0x4c9b4, 0x4c9b8,
2030 		0x4c9c0, 0x4c9fc,
2031 		0x4d000, 0x4d004,
2032 		0x4d010, 0x4d030,
2033 		0x4d040, 0x4d060,
2034 		0x4d068, 0x4d068,
2035 		0x4d080, 0x4d084,
2036 		0x4d0a0, 0x4d0b0,
2037 		0x4d200, 0x4d204,
2038 		0x4d210, 0x4d230,
2039 		0x4d240, 0x4d260,
2040 		0x4d268, 0x4d268,
2041 		0x4d280, 0x4d284,
2042 		0x4d2a0, 0x4d2b0,
2043 		0x4e0c0, 0x4e0e4,
2044 		0x4f000, 0x4f03c,
2045 		0x4f044, 0x4f08c,
2046 		0x4f200, 0x4f250,
2047 		0x4f400, 0x4f408,
2048 		0x4f414, 0x4f420,
2049 		0x4f600, 0x4f618,
2050 		0x4f800, 0x4f814,
2051 		0x50000, 0x50084,
2052 		0x50090, 0x500cc,
2053 		0x50400, 0x50400,
2054 		0x50800, 0x50884,
2055 		0x50890, 0x508cc,
2056 		0x50c00, 0x50c00,
2057 		0x51000, 0x5101c,
2058 		0x51300, 0x51308,
2059 	};
2060 
2061 	static const unsigned int t5vf_reg_ranges[] = {
2062 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2063 		VF_MPS_REG(A_MPS_VF_CTL),
2064 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2065 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2066 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2067 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2068 		FW_T4VF_MBDATA_BASE_ADDR,
2069 		FW_T4VF_MBDATA_BASE_ADDR +
2070 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2071 	};
2072 
2073 	static const unsigned int t6_reg_ranges[] = {
2074 		0x1008, 0x101c,
2075 		0x1024, 0x10a8,
2076 		0x10b4, 0x10f8,
2077 		0x1100, 0x1114,
2078 		0x111c, 0x112c,
2079 		0x1138, 0x113c,
2080 		0x1144, 0x114c,
2081 		0x1180, 0x1184,
2082 		0x1190, 0x1194,
2083 		0x11a0, 0x11a4,
2084 		0x11b0, 0x11c4,
2085 		0x11fc, 0x1274,
2086 		0x1280, 0x133c,
2087 		0x1800, 0x18fc,
2088 		0x3000, 0x302c,
2089 		0x3060, 0x30b0,
2090 		0x30b8, 0x30d8,
2091 		0x30e0, 0x30fc,
2092 		0x3140, 0x357c,
2093 		0x35a8, 0x35cc,
2094 		0x35ec, 0x35ec,
2095 		0x3600, 0x5624,
2096 		0x56cc, 0x56ec,
2097 		0x56f4, 0x5720,
2098 		0x5728, 0x575c,
2099 		0x580c, 0x5814,
2100 		0x5890, 0x589c,
2101 		0x58a4, 0x58ac,
2102 		0x58b8, 0x58bc,
2103 		0x5940, 0x595c,
2104 		0x5980, 0x598c,
2105 		0x59b0, 0x59c8,
2106 		0x59d0, 0x59dc,
2107 		0x59fc, 0x5a18,
2108 		0x5a60, 0x5a6c,
2109 		0x5a80, 0x5a8c,
2110 		0x5a94, 0x5a9c,
2111 		0x5b94, 0x5bfc,
2112 		0x5c10, 0x5e48,
2113 		0x5e50, 0x5e94,
2114 		0x5ea0, 0x5eb0,
2115 		0x5ec0, 0x5ec0,
2116 		0x5ec8, 0x5ed0,
2117 		0x5ee0, 0x5ee0,
2118 		0x5ef0, 0x5ef0,
2119 		0x5f00, 0x5f00,
2120 		0x6000, 0x6020,
2121 		0x6028, 0x6040,
2122 		0x6058, 0x609c,
2123 		0x60a8, 0x619c,
2124 		0x7700, 0x7798,
2125 		0x77c0, 0x7880,
2126 		0x78cc, 0x78fc,
2127 		0x7b00, 0x7b58,
2128 		0x7b60, 0x7b84,
2129 		0x7b8c, 0x7c54,
2130 		0x7d00, 0x7d38,
2131 		0x7d40, 0x7d84,
2132 		0x7d8c, 0x7ddc,
2133 		0x7de4, 0x7e04,
2134 		0x7e10, 0x7e1c,
2135 		0x7e24, 0x7e38,
2136 		0x7e40, 0x7e44,
2137 		0x7e4c, 0x7e78,
2138 		0x7e80, 0x7edc,
2139 		0x7ee8, 0x7efc,
2140 		0x8dc0, 0x8de0,
2141 		0x8df8, 0x8e04,
2142 		0x8e10, 0x8e84,
2143 		0x8ea0, 0x8f88,
2144 		0x8fb8, 0x9058,
2145 		0x9060, 0x9060,
2146 		0x9068, 0x90f8,
2147 		0x9100, 0x9124,
2148 		0x9400, 0x9470,
2149 		0x9600, 0x9600,
2150 		0x9608, 0x9638,
2151 		0x9640, 0x9704,
2152 		0x9710, 0x971c,
2153 		0x9800, 0x9808,
2154 		0x9810, 0x9864,
2155 		0x9c00, 0x9c6c,
2156 		0x9c80, 0x9cec,
2157 		0x9d00, 0x9d6c,
2158 		0x9d80, 0x9dec,
2159 		0x9e00, 0x9e6c,
2160 		0x9e80, 0x9eec,
2161 		0x9f00, 0x9f6c,
2162 		0x9f80, 0xa020,
2163 		0xd000, 0xd03c,
2164 		0xd100, 0xd118,
2165 		0xd200, 0xd214,
2166 		0xd220, 0xd234,
2167 		0xd240, 0xd254,
2168 		0xd260, 0xd274,
2169 		0xd280, 0xd294,
2170 		0xd2a0, 0xd2b4,
2171 		0xd2c0, 0xd2d4,
2172 		0xd2e0, 0xd2f4,
2173 		0xd300, 0xd31c,
2174 		0xdfc0, 0xdfe0,
2175 		0xe000, 0xf008,
2176 		0xf010, 0xf018,
2177 		0xf020, 0xf028,
2178 		0x11000, 0x11014,
2179 		0x11048, 0x1106c,
2180 		0x11074, 0x11088,
2181 		0x11098, 0x11120,
2182 		0x1112c, 0x1117c,
2183 		0x11190, 0x112e0,
2184 		0x11300, 0x1130c,
2185 		0x12000, 0x1206c,
2186 		0x19040, 0x1906c,
2187 		0x19078, 0x19080,
2188 		0x1908c, 0x190e8,
2189 		0x190f0, 0x190f8,
2190 		0x19100, 0x19110,
2191 		0x19120, 0x19124,
2192 		0x19150, 0x19194,
2193 		0x1919c, 0x191b0,
2194 		0x191d0, 0x191e8,
2195 		0x19238, 0x19290,
2196 		0x192a4, 0x192b0,
2197 		0x19348, 0x1934c,
2198 		0x193f8, 0x19418,
2199 		0x19420, 0x19428,
2200 		0x19430, 0x19444,
2201 		0x1944c, 0x1946c,
2202 		0x19474, 0x19474,
2203 		0x19490, 0x194cc,
2204 		0x194f0, 0x194f8,
2205 		0x19c00, 0x19c48,
2206 		0x19c50, 0x19c80,
2207 		0x19c94, 0x19c98,
2208 		0x19ca0, 0x19cbc,
2209 		0x19ce4, 0x19ce4,
2210 		0x19cf0, 0x19cf8,
2211 		0x19d00, 0x19d28,
2212 		0x19d50, 0x19d78,
2213 		0x19d94, 0x19d98,
2214 		0x19da0, 0x19de0,
2215 		0x19df0, 0x19e10,
2216 		0x19e50, 0x19e6c,
2217 		0x19ea0, 0x19ebc,
2218 		0x19ec4, 0x19ef4,
2219 		0x19f04, 0x19f2c,
2220 		0x19f34, 0x19f34,
2221 		0x19f40, 0x19f50,
2222 		0x19f90, 0x19fac,
2223 		0x19fc4, 0x19fc8,
2224 		0x19fd0, 0x19fe4,
2225 		0x1a000, 0x1a004,
2226 		0x1a010, 0x1a06c,
2227 		0x1a0b0, 0x1a0e4,
2228 		0x1a0ec, 0x1a0f8,
2229 		0x1a100, 0x1a108,
2230 		0x1a114, 0x1a130,
2231 		0x1a138, 0x1a1c4,
2232 		0x1a1fc, 0x1a1fc,
2233 		0x1e008, 0x1e00c,
2234 		0x1e040, 0x1e044,
2235 		0x1e04c, 0x1e04c,
2236 		0x1e284, 0x1e290,
2237 		0x1e2c0, 0x1e2c0,
2238 		0x1e2e0, 0x1e2e0,
2239 		0x1e300, 0x1e384,
2240 		0x1e3c0, 0x1e3c8,
2241 		0x1e408, 0x1e40c,
2242 		0x1e440, 0x1e444,
2243 		0x1e44c, 0x1e44c,
2244 		0x1e684, 0x1e690,
2245 		0x1e6c0, 0x1e6c0,
2246 		0x1e6e0, 0x1e6e0,
2247 		0x1e700, 0x1e784,
2248 		0x1e7c0, 0x1e7c8,
2249 		0x1e808, 0x1e80c,
2250 		0x1e840, 0x1e844,
2251 		0x1e84c, 0x1e84c,
2252 		0x1ea84, 0x1ea90,
2253 		0x1eac0, 0x1eac0,
2254 		0x1eae0, 0x1eae0,
2255 		0x1eb00, 0x1eb84,
2256 		0x1ebc0, 0x1ebc8,
2257 		0x1ec08, 0x1ec0c,
2258 		0x1ec40, 0x1ec44,
2259 		0x1ec4c, 0x1ec4c,
2260 		0x1ee84, 0x1ee90,
2261 		0x1eec0, 0x1eec0,
2262 		0x1eee0, 0x1eee0,
2263 		0x1ef00, 0x1ef84,
2264 		0x1efc0, 0x1efc8,
2265 		0x1f008, 0x1f00c,
2266 		0x1f040, 0x1f044,
2267 		0x1f04c, 0x1f04c,
2268 		0x1f284, 0x1f290,
2269 		0x1f2c0, 0x1f2c0,
2270 		0x1f2e0, 0x1f2e0,
2271 		0x1f300, 0x1f384,
2272 		0x1f3c0, 0x1f3c8,
2273 		0x1f408, 0x1f40c,
2274 		0x1f440, 0x1f444,
2275 		0x1f44c, 0x1f44c,
2276 		0x1f684, 0x1f690,
2277 		0x1f6c0, 0x1f6c0,
2278 		0x1f6e0, 0x1f6e0,
2279 		0x1f700, 0x1f784,
2280 		0x1f7c0, 0x1f7c8,
2281 		0x1f808, 0x1f80c,
2282 		0x1f840, 0x1f844,
2283 		0x1f84c, 0x1f84c,
2284 		0x1fa84, 0x1fa90,
2285 		0x1fac0, 0x1fac0,
2286 		0x1fae0, 0x1fae0,
2287 		0x1fb00, 0x1fb84,
2288 		0x1fbc0, 0x1fbc8,
2289 		0x1fc08, 0x1fc0c,
2290 		0x1fc40, 0x1fc44,
2291 		0x1fc4c, 0x1fc4c,
2292 		0x1fe84, 0x1fe90,
2293 		0x1fec0, 0x1fec0,
2294 		0x1fee0, 0x1fee0,
2295 		0x1ff00, 0x1ff84,
2296 		0x1ffc0, 0x1ffc8,
2297 		0x30000, 0x30030,
2298 		0x30100, 0x30168,
2299 		0x30190, 0x301a0,
2300 		0x301a8, 0x301b8,
2301 		0x301c4, 0x301c8,
2302 		0x301d0, 0x301d0,
2303 		0x30200, 0x30320,
2304 		0x30400, 0x304b4,
2305 		0x304c0, 0x3052c,
2306 		0x30540, 0x3061c,
2307 		0x30800, 0x308a0,
2308 		0x308c0, 0x30908,
2309 		0x30910, 0x309b8,
2310 		0x30a00, 0x30a04,
2311 		0x30a0c, 0x30a14,
2312 		0x30a1c, 0x30a2c,
2313 		0x30a44, 0x30a50,
2314 		0x30a74, 0x30a74,
2315 		0x30a7c, 0x30afc,
2316 		0x30b08, 0x30c24,
2317 		0x30d00, 0x30d14,
2318 		0x30d1c, 0x30d3c,
2319 		0x30d44, 0x30d4c,
2320 		0x30d54, 0x30d74,
2321 		0x30d7c, 0x30d7c,
2322 		0x30de0, 0x30de0,
2323 		0x30e00, 0x30ed4,
2324 		0x30f00, 0x30fa4,
2325 		0x30fc0, 0x30fc4,
2326 		0x31000, 0x31004,
2327 		0x31080, 0x310fc,
2328 		0x31208, 0x31220,
2329 		0x3123c, 0x31254,
2330 		0x31300, 0x31300,
2331 		0x31308, 0x3131c,
2332 		0x31338, 0x3133c,
2333 		0x31380, 0x31380,
2334 		0x31388, 0x313a8,
2335 		0x313b4, 0x313b4,
2336 		0x31400, 0x31420,
2337 		0x31438, 0x3143c,
2338 		0x31480, 0x31480,
2339 		0x314a8, 0x314a8,
2340 		0x314b0, 0x314b4,
2341 		0x314c8, 0x314d4,
2342 		0x31a40, 0x31a4c,
2343 		0x31af0, 0x31b20,
2344 		0x31b38, 0x31b3c,
2345 		0x31b80, 0x31b80,
2346 		0x31ba8, 0x31ba8,
2347 		0x31bb0, 0x31bb4,
2348 		0x31bc8, 0x31bd4,
2349 		0x32140, 0x3218c,
2350 		0x321f0, 0x321f4,
2351 		0x32200, 0x32200,
2352 		0x32218, 0x32218,
2353 		0x32400, 0x32400,
2354 		0x32408, 0x3241c,
2355 		0x32618, 0x32620,
2356 		0x32664, 0x32664,
2357 		0x326a8, 0x326a8,
2358 		0x326ec, 0x326ec,
2359 		0x32a00, 0x32abc,
2360 		0x32b00, 0x32b18,
2361 		0x32b20, 0x32b38,
2362 		0x32b40, 0x32b58,
2363 		0x32b60, 0x32b78,
2364 		0x32c00, 0x32c00,
2365 		0x32c08, 0x32c3c,
2366 		0x33000, 0x3302c,
2367 		0x33034, 0x33050,
2368 		0x33058, 0x33058,
2369 		0x33060, 0x3308c,
2370 		0x3309c, 0x330ac,
2371 		0x330c0, 0x330c0,
2372 		0x330c8, 0x330d0,
2373 		0x330d8, 0x330e0,
2374 		0x330ec, 0x3312c,
2375 		0x33134, 0x33150,
2376 		0x33158, 0x33158,
2377 		0x33160, 0x3318c,
2378 		0x3319c, 0x331ac,
2379 		0x331c0, 0x331c0,
2380 		0x331c8, 0x331d0,
2381 		0x331d8, 0x331e0,
2382 		0x331ec, 0x33290,
2383 		0x33298, 0x332c4,
2384 		0x332e4, 0x33390,
2385 		0x33398, 0x333c4,
2386 		0x333e4, 0x3342c,
2387 		0x33434, 0x33450,
2388 		0x33458, 0x33458,
2389 		0x33460, 0x3348c,
2390 		0x3349c, 0x334ac,
2391 		0x334c0, 0x334c0,
2392 		0x334c8, 0x334d0,
2393 		0x334d8, 0x334e0,
2394 		0x334ec, 0x3352c,
2395 		0x33534, 0x33550,
2396 		0x33558, 0x33558,
2397 		0x33560, 0x3358c,
2398 		0x3359c, 0x335ac,
2399 		0x335c0, 0x335c0,
2400 		0x335c8, 0x335d0,
2401 		0x335d8, 0x335e0,
2402 		0x335ec, 0x33690,
2403 		0x33698, 0x336c4,
2404 		0x336e4, 0x33790,
2405 		0x33798, 0x337c4,
2406 		0x337e4, 0x337fc,
2407 		0x33814, 0x33814,
2408 		0x33854, 0x33868,
2409 		0x33880, 0x3388c,
2410 		0x338c0, 0x338d0,
2411 		0x338e8, 0x338ec,
2412 		0x33900, 0x3392c,
2413 		0x33934, 0x33950,
2414 		0x33958, 0x33958,
2415 		0x33960, 0x3398c,
2416 		0x3399c, 0x339ac,
2417 		0x339c0, 0x339c0,
2418 		0x339c8, 0x339d0,
2419 		0x339d8, 0x339e0,
2420 		0x339ec, 0x33a90,
2421 		0x33a98, 0x33ac4,
2422 		0x33ae4, 0x33b10,
2423 		0x33b24, 0x33b28,
2424 		0x33b38, 0x33b50,
2425 		0x33bf0, 0x33c10,
2426 		0x33c24, 0x33c28,
2427 		0x33c38, 0x33c50,
2428 		0x33cf0, 0x33cfc,
2429 		0x34000, 0x34030,
2430 		0x34100, 0x34168,
2431 		0x34190, 0x341a0,
2432 		0x341a8, 0x341b8,
2433 		0x341c4, 0x341c8,
2434 		0x341d0, 0x341d0,
2435 		0x34200, 0x34320,
2436 		0x34400, 0x344b4,
2437 		0x344c0, 0x3452c,
2438 		0x34540, 0x3461c,
2439 		0x34800, 0x348a0,
2440 		0x348c0, 0x34908,
2441 		0x34910, 0x349b8,
2442 		0x34a00, 0x34a04,
2443 		0x34a0c, 0x34a14,
2444 		0x34a1c, 0x34a2c,
2445 		0x34a44, 0x34a50,
2446 		0x34a74, 0x34a74,
2447 		0x34a7c, 0x34afc,
2448 		0x34b08, 0x34c24,
2449 		0x34d00, 0x34d14,
2450 		0x34d1c, 0x34d3c,
2451 		0x34d44, 0x34d4c,
2452 		0x34d54, 0x34d74,
2453 		0x34d7c, 0x34d7c,
2454 		0x34de0, 0x34de0,
2455 		0x34e00, 0x34ed4,
2456 		0x34f00, 0x34fa4,
2457 		0x34fc0, 0x34fc4,
2458 		0x35000, 0x35004,
2459 		0x35080, 0x350fc,
2460 		0x35208, 0x35220,
2461 		0x3523c, 0x35254,
2462 		0x35300, 0x35300,
2463 		0x35308, 0x3531c,
2464 		0x35338, 0x3533c,
2465 		0x35380, 0x35380,
2466 		0x35388, 0x353a8,
2467 		0x353b4, 0x353b4,
2468 		0x35400, 0x35420,
2469 		0x35438, 0x3543c,
2470 		0x35480, 0x35480,
2471 		0x354a8, 0x354a8,
2472 		0x354b0, 0x354b4,
2473 		0x354c8, 0x354d4,
2474 		0x35a40, 0x35a4c,
2475 		0x35af0, 0x35b20,
2476 		0x35b38, 0x35b3c,
2477 		0x35b80, 0x35b80,
2478 		0x35ba8, 0x35ba8,
2479 		0x35bb0, 0x35bb4,
2480 		0x35bc8, 0x35bd4,
2481 		0x36140, 0x3618c,
2482 		0x361f0, 0x361f4,
2483 		0x36200, 0x36200,
2484 		0x36218, 0x36218,
2485 		0x36400, 0x36400,
2486 		0x36408, 0x3641c,
2487 		0x36618, 0x36620,
2488 		0x36664, 0x36664,
2489 		0x366a8, 0x366a8,
2490 		0x366ec, 0x366ec,
2491 		0x36a00, 0x36abc,
2492 		0x36b00, 0x36b18,
2493 		0x36b20, 0x36b38,
2494 		0x36b40, 0x36b58,
2495 		0x36b60, 0x36b78,
2496 		0x36c00, 0x36c00,
2497 		0x36c08, 0x36c3c,
2498 		0x37000, 0x3702c,
2499 		0x37034, 0x37050,
2500 		0x37058, 0x37058,
2501 		0x37060, 0x3708c,
2502 		0x3709c, 0x370ac,
2503 		0x370c0, 0x370c0,
2504 		0x370c8, 0x370d0,
2505 		0x370d8, 0x370e0,
2506 		0x370ec, 0x3712c,
2507 		0x37134, 0x37150,
2508 		0x37158, 0x37158,
2509 		0x37160, 0x3718c,
2510 		0x3719c, 0x371ac,
2511 		0x371c0, 0x371c0,
2512 		0x371c8, 0x371d0,
2513 		0x371d8, 0x371e0,
2514 		0x371ec, 0x37290,
2515 		0x37298, 0x372c4,
2516 		0x372e4, 0x37390,
2517 		0x37398, 0x373c4,
2518 		0x373e4, 0x3742c,
2519 		0x37434, 0x37450,
2520 		0x37458, 0x37458,
2521 		0x37460, 0x3748c,
2522 		0x3749c, 0x374ac,
2523 		0x374c0, 0x374c0,
2524 		0x374c8, 0x374d0,
2525 		0x374d8, 0x374e0,
2526 		0x374ec, 0x3752c,
2527 		0x37534, 0x37550,
2528 		0x37558, 0x37558,
2529 		0x37560, 0x3758c,
2530 		0x3759c, 0x375ac,
2531 		0x375c0, 0x375c0,
2532 		0x375c8, 0x375d0,
2533 		0x375d8, 0x375e0,
2534 		0x375ec, 0x37690,
2535 		0x37698, 0x376c4,
2536 		0x376e4, 0x37790,
2537 		0x37798, 0x377c4,
2538 		0x377e4, 0x377fc,
2539 		0x37814, 0x37814,
2540 		0x37854, 0x37868,
2541 		0x37880, 0x3788c,
2542 		0x378c0, 0x378d0,
2543 		0x378e8, 0x378ec,
2544 		0x37900, 0x3792c,
2545 		0x37934, 0x37950,
2546 		0x37958, 0x37958,
2547 		0x37960, 0x3798c,
2548 		0x3799c, 0x379ac,
2549 		0x379c0, 0x379c0,
2550 		0x379c8, 0x379d0,
2551 		0x379d8, 0x379e0,
2552 		0x379ec, 0x37a90,
2553 		0x37a98, 0x37ac4,
2554 		0x37ae4, 0x37b10,
2555 		0x37b24, 0x37b28,
2556 		0x37b38, 0x37b50,
2557 		0x37bf0, 0x37c10,
2558 		0x37c24, 0x37c28,
2559 		0x37c38, 0x37c50,
2560 		0x37cf0, 0x37cfc,
2561 		0x40040, 0x40040,
2562 		0x40080, 0x40084,
2563 		0x40100, 0x40100,
2564 		0x40140, 0x401bc,
2565 		0x40200, 0x40214,
2566 		0x40228, 0x40228,
2567 		0x40240, 0x40258,
2568 		0x40280, 0x40280,
2569 		0x40304, 0x40304,
2570 		0x40330, 0x4033c,
2571 		0x41304, 0x413c8,
2572 		0x413d0, 0x413dc,
2573 		0x413f0, 0x413f0,
2574 		0x41400, 0x4140c,
2575 		0x41414, 0x4141c,
2576 		0x41480, 0x414d0,
2577 		0x44000, 0x4407c,
2578 		0x440c0, 0x441ac,
2579 		0x441b4, 0x4427c,
2580 		0x442c0, 0x443ac,
2581 		0x443b4, 0x4447c,
2582 		0x444c0, 0x445ac,
2583 		0x445b4, 0x4467c,
2584 		0x446c0, 0x447ac,
2585 		0x447b4, 0x4487c,
2586 		0x448c0, 0x449ac,
2587 		0x449b4, 0x44a7c,
2588 		0x44ac0, 0x44bac,
2589 		0x44bb4, 0x44c7c,
2590 		0x44cc0, 0x44dac,
2591 		0x44db4, 0x44e7c,
2592 		0x44ec0, 0x44fac,
2593 		0x44fb4, 0x4507c,
2594 		0x450c0, 0x451ac,
2595 		0x451b4, 0x451fc,
2596 		0x45800, 0x45804,
2597 		0x45810, 0x45830,
2598 		0x45840, 0x45860,
2599 		0x45868, 0x45868,
2600 		0x45880, 0x45884,
2601 		0x458a0, 0x458b0,
2602 		0x45a00, 0x45a04,
2603 		0x45a10, 0x45a30,
2604 		0x45a40, 0x45a60,
2605 		0x45a68, 0x45a68,
2606 		0x45a80, 0x45a84,
2607 		0x45aa0, 0x45ab0,
2608 		0x460c0, 0x460e4,
2609 		0x47000, 0x4703c,
2610 		0x47044, 0x4708c,
2611 		0x47200, 0x47250,
2612 		0x47400, 0x47408,
2613 		0x47414, 0x47420,
2614 		0x47600, 0x47618,
2615 		0x47800, 0x47814,
2616 		0x47820, 0x4782c,
2617 		0x50000, 0x50084,
2618 		0x50090, 0x500cc,
2619 		0x50300, 0x50384,
2620 		0x50400, 0x50400,
2621 		0x50800, 0x50884,
2622 		0x50890, 0x508cc,
2623 		0x50b00, 0x50b84,
2624 		0x50c00, 0x50c00,
2625 		0x51000, 0x51020,
2626 		0x51028, 0x510b0,
2627 		0x51300, 0x51324,
2628 	};
2629 
2630 	static const unsigned int t6vf_reg_ranges[] = {
2631 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2632 		VF_MPS_REG(A_MPS_VF_CTL),
2633 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2634 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2635 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2636 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2637 		FW_T6VF_MBDATA_BASE_ADDR,
2638 		FW_T6VF_MBDATA_BASE_ADDR +
2639 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2640 	};
2641 
2642 	u32 *buf_end = (u32 *)(buf + buf_size);
2643 	const unsigned int *reg_ranges;
2644 	int reg_ranges_size, range;
2645 	unsigned int chip_version = chip_id(adap);
2646 
2647 	/*
2648 	 * Select the right set of register ranges to dump depending on the
2649 	 * adapter chip type.
2650 	 */
2651 	switch (chip_version) {
2652 	case CHELSIO_T4:
2653 		if (adap->flags & IS_VF) {
2654 			reg_ranges = t4vf_reg_ranges;
2655 			reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges);
2656 		} else {
2657 			reg_ranges = t4_reg_ranges;
2658 			reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2659 		}
2660 		break;
2661 
2662 	case CHELSIO_T5:
2663 		if (adap->flags & IS_VF) {
2664 			reg_ranges = t5vf_reg_ranges;
2665 			reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges);
2666 		} else {
2667 			reg_ranges = t5_reg_ranges;
2668 			reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2669 		}
2670 		break;
2671 
2672 	case CHELSIO_T6:
2673 		if (adap->flags & IS_VF) {
2674 			reg_ranges = t6vf_reg_ranges;
2675 			reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges);
2676 		} else {
2677 			reg_ranges = t6_reg_ranges;
2678 			reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2679 		}
2680 		break;
2681 
2682 	default:
2683 		CH_ERR(adap,
2684 			"Unsupported chip version %d\n", chip_version);
2685 		return;
2686 	}
2687 
2688 	/*
2689 	 * Clear the register buffer and insert the appropriate register
2690 	 * values selected by the above register ranges.
2691 	 */
2692 	memset(buf, 0, buf_size);
2693 	for (range = 0; range < reg_ranges_size; range += 2) {
2694 		unsigned int reg = reg_ranges[range];
2695 		unsigned int last_reg = reg_ranges[range + 1];
2696 		u32 *bufp = (u32 *)(buf + reg);
2697 
2698 		/*
2699 		 * Iterate across the register range filling in the register
2700 		 * buffer but don't write past the end of the register buffer.
2701 		 */
2702 		while (reg <= last_reg && bufp < buf_end) {
2703 			*bufp++ = t4_read_reg(adap, reg);
2704 			reg += sizeof(u32);
2705 		}
2706 	}
2707 }
2708 
2709 /*
2710  * Partial EEPROM Vital Product Data structure.  The VPD starts with one ID
2711  * header followed by one or more VPD-R sections, each with its own header.
2712  */
2713 struct t4_vpd_hdr {
2714 	u8  id_tag;
2715 	u8  id_len[2];
2716 	u8  id_data[ID_LEN];
2717 };
2718 
2719 struct t4_vpdr_hdr {
2720 	u8  vpdr_tag;
2721 	u8  vpdr_len[2];
2722 };
2723 
2724 /*
2725  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
2726  */
2727 #define EEPROM_DELAY		10		/* 10us per poll spin */
2728 #define EEPROM_MAX_POLL		5000		/* x 5000 == 50ms */
2729 
2730 #define EEPROM_STAT_ADDR	0x7bfc
2731 #define VPD_SIZE		0x800
2732 #define VPD_BASE		0x400
2733 #define VPD_BASE_OLD		0
2734 #define VPD_LEN			1024
2735 #define VPD_INFO_FLD_HDR_SIZE	3
2736 #define CHELSIO_VPD_UNIQUE_ID	0x82
2737 
2738 /*
2739  * Small utility function to wait till any outstanding VPD Access is complete.
2740  * We have a per-adapter state variable "VPD Busy" to indicate when we have a
2741  * VPD Access in flight.  This allows us to handle the problem of having a
2742  * previous VPD Access time out and prevent an attempt to inject a new VPD
2743  * Request before any in-flight VPD reguest has completed.
2744  */
2745 static int t4_seeprom_wait(struct adapter *adapter)
2746 {
2747 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2748 	int max_poll;
2749 
2750 	/*
2751 	 * If no VPD Access is in flight, we can just return success right
2752 	 * away.
2753 	 */
2754 	if (!adapter->vpd_busy)
2755 		return 0;
2756 
2757 	/*
2758 	 * Poll the VPD Capability Address/Flag register waiting for it
2759 	 * to indicate that the operation is complete.
2760 	 */
2761 	max_poll = EEPROM_MAX_POLL;
2762 	do {
2763 		u16 val;
2764 
2765 		udelay(EEPROM_DELAY);
2766 		t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
2767 
2768 		/*
2769 		 * If the operation is complete, mark the VPD as no longer
2770 		 * busy and return success.
2771 		 */
2772 		if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
2773 			adapter->vpd_busy = 0;
2774 			return 0;
2775 		}
2776 	} while (--max_poll);
2777 
2778 	/*
2779 	 * Failure!  Note that we leave the VPD Busy status set in order to
2780 	 * avoid pushing a new VPD Access request into the VPD Capability till
2781 	 * the current operation eventually succeeds.  It's a bug to issue a
2782 	 * new request when an existing request is in flight and will result
2783 	 * in corrupt hardware state.
2784 	 */
2785 	return -ETIMEDOUT;
2786 }
2787 
2788 /**
2789  *	t4_seeprom_read - read a serial EEPROM location
2790  *	@adapter: adapter to read
2791  *	@addr: EEPROM virtual address
2792  *	@data: where to store the read data
2793  *
2794  *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
2795  *	VPD capability.  Note that this function must be called with a virtual
2796  *	address.
2797  */
2798 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2799 {
2800 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2801 	int ret;
2802 
2803 	/*
2804 	 * VPD Accesses must alway be 4-byte aligned!
2805 	 */
2806 	if (addr >= EEPROMVSIZE || (addr & 3))
2807 		return -EINVAL;
2808 
2809 	/*
2810 	 * Wait for any previous operation which may still be in flight to
2811 	 * complete.
2812 	 */
2813 	ret = t4_seeprom_wait(adapter);
2814 	if (ret) {
2815 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2816 		return ret;
2817 	}
2818 
2819 	/*
2820 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2821 	 * for our request to complete.  If it doesn't complete, note the
2822 	 * error and return it to our caller.  Note that we do not reset the
2823 	 * VPD Busy status!
2824 	 */
2825 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2826 	adapter->vpd_busy = 1;
2827 	adapter->vpd_flag = PCI_VPD_ADDR_F;
2828 	ret = t4_seeprom_wait(adapter);
2829 	if (ret) {
2830 		CH_ERR(adapter, "VPD read of address %#x failed\n", addr);
2831 		return ret;
2832 	}
2833 
2834 	/*
2835 	 * Grab the returned data, swizzle it into our endianness and
2836 	 * return success.
2837 	 */
2838 	t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2839 	*data = le32_to_cpu(*data);
2840 	return 0;
2841 }
2842 
2843 /**
2844  *	t4_seeprom_write - write a serial EEPROM location
2845  *	@adapter: adapter to write
2846  *	@addr: virtual EEPROM address
2847  *	@data: value to write
2848  *
2849  *	Write a 32-bit word to a location in serial EEPROM using the card's PCI
2850  *	VPD capability.  Note that this function must be called with a virtual
2851  *	address.
2852  */
2853 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2854 {
2855 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2856 	int ret;
2857 	u32 stats_reg;
2858 	int max_poll;
2859 
2860 	/*
2861 	 * VPD Accesses must alway be 4-byte aligned!
2862 	 */
2863 	if (addr >= EEPROMVSIZE || (addr & 3))
2864 		return -EINVAL;
2865 
2866 	/*
2867 	 * Wait for any previous operation which may still be in flight to
2868 	 * complete.
2869 	 */
2870 	ret = t4_seeprom_wait(adapter);
2871 	if (ret) {
2872 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2873 		return ret;
2874 	}
2875 
2876 	/*
2877 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2878 	 * for our request to complete.  If it doesn't complete, note the
2879 	 * error and return it to our caller.  Note that we do not reset the
2880 	 * VPD Busy status!
2881 	 */
2882 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2883 				 cpu_to_le32(data));
2884 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2885 				 (u16)addr | PCI_VPD_ADDR_F);
2886 	adapter->vpd_busy = 1;
2887 	adapter->vpd_flag = 0;
2888 	ret = t4_seeprom_wait(adapter);
2889 	if (ret) {
2890 		CH_ERR(adapter, "VPD write of address %#x failed\n", addr);
2891 		return ret;
2892 	}
2893 
2894 	/*
2895 	 * Reset PCI_VPD_DATA register after a transaction and wait for our
2896 	 * request to complete. If it doesn't complete, return error.
2897 	 */
2898 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2899 	max_poll = EEPROM_MAX_POLL;
2900 	do {
2901 		udelay(EEPROM_DELAY);
2902 		t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2903 	} while ((stats_reg & 0x1) && --max_poll);
2904 	if (!max_poll)
2905 		return -ETIMEDOUT;
2906 
2907 	/* Return success! */
2908 	return 0;
2909 }
2910 
2911 /**
2912  *	t4_eeprom_ptov - translate a physical EEPROM address to virtual
2913  *	@phys_addr: the physical EEPROM address
2914  *	@fn: the PCI function number
2915  *	@sz: size of function-specific area
2916  *
2917  *	Translate a physical EEPROM address to virtual.  The first 1K is
2918  *	accessed through virtual addresses starting at 31K, the rest is
2919  *	accessed through virtual addresses starting at 0.
2920  *
2921  *	The mapping is as follows:
2922  *	[0..1K) -> [31K..32K)
2923  *	[1K..1K+A) -> [ES-A..ES)
2924  *	[1K+A..ES) -> [0..ES-A-1K)
2925  *
2926  *	where A = @fn * @sz, and ES = EEPROM size.
2927  */
2928 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2929 {
2930 	fn *= sz;
2931 	if (phys_addr < 1024)
2932 		return phys_addr + (31 << 10);
2933 	if (phys_addr < 1024 + fn)
2934 		return EEPROMSIZE - fn + phys_addr - 1024;
2935 	if (phys_addr < EEPROMSIZE)
2936 		return phys_addr - 1024 - fn;
2937 	return -EINVAL;
2938 }
2939 
2940 /**
2941  *	t4_seeprom_wp - enable/disable EEPROM write protection
2942  *	@adapter: the adapter
2943  *	@enable: whether to enable or disable write protection
2944  *
2945  *	Enables or disables write protection on the serial EEPROM.
2946  */
2947 int t4_seeprom_wp(struct adapter *adapter, int enable)
2948 {
2949 	return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2950 }
2951 
2952 /**
2953  *	get_vpd_keyword_val - Locates an information field keyword in the VPD
2954  *	@vpd: Pointer to buffered vpd data structure
2955  *	@kw: The keyword to search for
2956  *	@region: VPD region to search (starting from 0)
2957  *
2958  *	Returns the value of the information field keyword or
2959  *	-ENOENT otherwise.
2960  */
2961 static int get_vpd_keyword_val(const u8 *vpd, const char *kw, int region)
2962 {
2963 	int i, tag;
2964 	unsigned int offset, len;
2965 	const struct t4_vpdr_hdr *vpdr;
2966 
2967 	offset = sizeof(struct t4_vpd_hdr);
2968 	vpdr = (const void *)(vpd + offset);
2969 	tag = vpdr->vpdr_tag;
2970 	len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2971 	while (region--) {
2972 		offset += sizeof(struct t4_vpdr_hdr) + len;
2973 		vpdr = (const void *)(vpd + offset);
2974 		if (++tag != vpdr->vpdr_tag)
2975 			return -ENOENT;
2976 		len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2977 	}
2978 	offset += sizeof(struct t4_vpdr_hdr);
2979 
2980 	if (offset + len > VPD_LEN) {
2981 		return -ENOENT;
2982 	}
2983 
2984 	for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
2985 		if (memcmp(vpd + i , kw , 2) == 0){
2986 			i += VPD_INFO_FLD_HDR_SIZE;
2987 			return i;
2988 		}
2989 
2990 		i += VPD_INFO_FLD_HDR_SIZE + vpd[i+2];
2991 	}
2992 
2993 	return -ENOENT;
2994 }
2995 
2996 
2997 /**
2998  *	get_vpd_params - read VPD parameters from VPD EEPROM
2999  *	@adapter: adapter to read
3000  *	@p: where to store the parameters
3001  *	@vpd: caller provided temporary space to read the VPD into
3002  *
3003  *	Reads card parameters stored in VPD EEPROM.
3004  */
3005 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p,
3006     uint16_t device_id, u32 *buf)
3007 {
3008 	int i, ret, addr;
3009 	int ec, sn, pn, na, md;
3010 	u8 csum;
3011 	const u8 *vpd = (const u8 *)buf;
3012 
3013 	/*
3014 	 * Card information normally starts at VPD_BASE but early cards had
3015 	 * it at 0.
3016 	 */
3017 	ret = t4_seeprom_read(adapter, VPD_BASE, buf);
3018 	if (ret)
3019 		return (ret);
3020 
3021 	/*
3022 	 * The VPD shall have a unique identifier specified by the PCI SIG.
3023 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
3024 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
3025 	 * is expected to automatically put this entry at the
3026 	 * beginning of the VPD.
3027 	 */
3028 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
3029 
3030 	for (i = 0; i < VPD_LEN; i += 4) {
3031 		ret = t4_seeprom_read(adapter, addr + i, buf++);
3032 		if (ret)
3033 			return ret;
3034 	}
3035 
3036 #define FIND_VPD_KW(var,name) do { \
3037 	var = get_vpd_keyword_val(vpd, name, 0); \
3038 	if (var < 0) { \
3039 		CH_ERR(adapter, "missing VPD keyword " name "\n"); \
3040 		return -EINVAL; \
3041 	} \
3042 } while (0)
3043 
3044 	FIND_VPD_KW(i, "RV");
3045 	for (csum = 0; i >= 0; i--)
3046 		csum += vpd[i];
3047 
3048 	if (csum) {
3049 		CH_ERR(adapter,
3050 			"corrupted VPD EEPROM, actual csum %u\n", csum);
3051 		return -EINVAL;
3052 	}
3053 
3054 	FIND_VPD_KW(ec, "EC");
3055 	FIND_VPD_KW(sn, "SN");
3056 	FIND_VPD_KW(pn, "PN");
3057 	FIND_VPD_KW(na, "NA");
3058 #undef FIND_VPD_KW
3059 
3060 	memcpy(p->id, vpd + offsetof(struct t4_vpd_hdr, id_data), ID_LEN);
3061 	strstrip(p->id);
3062 	memcpy(p->ec, vpd + ec, EC_LEN);
3063 	strstrip(p->ec);
3064 	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
3065 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
3066 	strstrip(p->sn);
3067 	i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
3068 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
3069 	strstrip((char *)p->pn);
3070 	i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
3071 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
3072 	strstrip((char *)p->na);
3073 
3074 	if (device_id & 0x80)
3075 		return 0;	/* Custom card */
3076 
3077 	md = get_vpd_keyword_val(vpd, "VF", 1);
3078 	if (md < 0) {
3079 		snprintf(p->md, sizeof(p->md), "unknown");
3080 	} else {
3081 		i = vpd[md - VPD_INFO_FLD_HDR_SIZE + 2];
3082 		memcpy(p->md, vpd + md, min(i, MD_LEN));
3083 		strstrip((char *)p->md);
3084 	}
3085 
3086 	return 0;
3087 }
3088 
3089 /* serial flash and firmware constants and flash config file constants */
3090 enum {
3091 	SF_ATTEMPTS = 10,	/* max retries for SF operations */
3092 
3093 	/* flash command opcodes */
3094 	SF_PROG_PAGE    = 2,	/* program 256B page */
3095 	SF_WR_DISABLE   = 4,	/* disable writes */
3096 	SF_RD_STATUS    = 5,	/* read status register */
3097 	SF_WR_ENABLE    = 6,	/* enable writes */
3098 	SF_RD_DATA_FAST = 0xb,	/* read flash */
3099 	SF_RD_ID	= 0x9f,	/* read ID */
3100 	SF_ERASE_SECTOR = 0xd8,	/* erase 64KB sector */
3101 };
3102 
3103 /**
3104  *	sf1_read - read data from the serial flash
3105  *	@adapter: the adapter
3106  *	@byte_cnt: number of bytes to read
3107  *	@cont: whether another operation will be chained
3108  *	@lock: whether to lock SF for PL access only
3109  *	@valp: where to store the read data
3110  *
3111  *	Reads up to 4 bytes of data from the serial flash.  The location of
3112  *	the read needs to be specified prior to calling this by issuing the
3113  *	appropriate commands to the serial flash.
3114  */
3115 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
3116 		    int lock, u32 *valp)
3117 {
3118 	int ret;
3119 
3120 	if (!byte_cnt || byte_cnt > 4)
3121 		return -EINVAL;
3122 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3123 		return -EBUSY;
3124 	t4_write_reg(adapter, A_SF_OP,
3125 		     V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
3126 	ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3127 	if (!ret)
3128 		*valp = t4_read_reg(adapter, A_SF_DATA);
3129 	return ret;
3130 }
3131 
3132 /**
3133  *	sf1_write - write data to the serial flash
3134  *	@adapter: the adapter
3135  *	@byte_cnt: number of bytes to write
3136  *	@cont: whether another operation will be chained
3137  *	@lock: whether to lock SF for PL access only
3138  *	@val: value to write
3139  *
3140  *	Writes up to 4 bytes of data to the serial flash.  The location of
3141  *	the write needs to be specified prior to calling this by issuing the
3142  *	appropriate commands to the serial flash.
3143  */
3144 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
3145 		     int lock, u32 val)
3146 {
3147 	if (!byte_cnt || byte_cnt > 4)
3148 		return -EINVAL;
3149 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3150 		return -EBUSY;
3151 	t4_write_reg(adapter, A_SF_DATA, val);
3152 	t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
3153 		     V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
3154 	return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3155 }
3156 
3157 /**
3158  *	flash_wait_op - wait for a flash operation to complete
3159  *	@adapter: the adapter
3160  *	@attempts: max number of polls of the status register
3161  *	@delay: delay between polls in ms
3162  *
3163  *	Wait for a flash operation to complete by polling the status register.
3164  */
3165 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3166 {
3167 	int ret;
3168 	u32 status;
3169 
3170 	while (1) {
3171 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3172 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3173 			return ret;
3174 		if (!(status & 1))
3175 			return 0;
3176 		if (--attempts == 0)
3177 			return -EAGAIN;
3178 		if (delay)
3179 			msleep(delay);
3180 	}
3181 }
3182 
3183 /**
3184  *	t4_read_flash - read words from serial flash
3185  *	@adapter: the adapter
3186  *	@addr: the start address for the read
3187  *	@nwords: how many 32-bit words to read
3188  *	@data: where to store the read data
3189  *	@byte_oriented: whether to store data as bytes or as words
3190  *
3191  *	Read the specified number of 32-bit words from the serial flash.
3192  *	If @byte_oriented is set the read data is stored as a byte array
3193  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3194  *	natural endianness.
3195  */
3196 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3197 		  unsigned int nwords, u32 *data, int byte_oriented)
3198 {
3199 	int ret;
3200 
3201 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3202 		return -EINVAL;
3203 
3204 	addr = swab32(addr) | SF_RD_DATA_FAST;
3205 
3206 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3207 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3208 		return ret;
3209 
3210 	for ( ; nwords; nwords--, data++) {
3211 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3212 		if (nwords == 1)
3213 			t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3214 		if (ret)
3215 			return ret;
3216 		if (byte_oriented)
3217 			*data = (__force __u32)(cpu_to_be32(*data));
3218 	}
3219 	return 0;
3220 }
3221 
3222 /**
3223  *	t4_write_flash - write up to a page of data to the serial flash
3224  *	@adapter: the adapter
3225  *	@addr: the start address to write
3226  *	@n: length of data to write in bytes
3227  *	@data: the data to write
3228  *	@byte_oriented: whether to store data as bytes or as words
3229  *
3230  *	Writes up to a page of data (256 bytes) to the serial flash starting
3231  *	at the given address.  All the data must be written to the same page.
3232  *	If @byte_oriented is set the write data is stored as byte stream
3233  *	(i.e. matches what on disk), otherwise in big-endian.
3234  */
3235 int t4_write_flash(struct adapter *adapter, unsigned int addr,
3236 			  unsigned int n, const u8 *data, int byte_oriented)
3237 {
3238 	int ret;
3239 	u32 buf[SF_PAGE_SIZE / 4];
3240 	unsigned int i, c, left, val, offset = addr & 0xff;
3241 
3242 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3243 		return -EINVAL;
3244 
3245 	val = swab32(addr) | SF_PROG_PAGE;
3246 
3247 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3248 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3249 		goto unlock;
3250 
3251 	for (left = n; left; left -= c) {
3252 		c = min(left, 4U);
3253 		for (val = 0, i = 0; i < c; ++i)
3254 			val = (val << 8) + *data++;
3255 
3256 		if (!byte_oriented)
3257 			val = cpu_to_be32(val);
3258 
3259 		ret = sf1_write(adapter, c, c != left, 1, val);
3260 		if (ret)
3261 			goto unlock;
3262 	}
3263 	ret = flash_wait_op(adapter, 8, 1);
3264 	if (ret)
3265 		goto unlock;
3266 
3267 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3268 
3269 	/* Read the page to verify the write succeeded */
3270 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3271 			    byte_oriented);
3272 	if (ret)
3273 		return ret;
3274 
3275 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3276 		CH_ERR(adapter,
3277 			"failed to correctly write the flash page at %#x\n",
3278 			addr);
3279 		return -EIO;
3280 	}
3281 	return 0;
3282 
3283 unlock:
3284 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3285 	return ret;
3286 }
3287 
3288 /**
3289  *	t4_get_fw_version - read the firmware version
3290  *	@adapter: the adapter
3291  *	@vers: where to place the version
3292  *
3293  *	Reads the FW version from flash.
3294  */
3295 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3296 {
3297 	return t4_read_flash(adapter, FLASH_FW_START +
3298 			     offsetof(struct fw_hdr, fw_ver), 1,
3299 			     vers, 0);
3300 }
3301 
3302 /**
3303  *	t4_get_fw_hdr - read the firmware header
3304  *	@adapter: the adapter
3305  *	@hdr: where to place the version
3306  *
3307  *	Reads the FW header from flash into caller provided buffer.
3308  */
3309 int t4_get_fw_hdr(struct adapter *adapter, struct fw_hdr *hdr)
3310 {
3311 	return t4_read_flash(adapter, FLASH_FW_START,
3312 	    sizeof (*hdr) / sizeof (uint32_t), (uint32_t *)hdr, 1);
3313 }
3314 
3315 /**
3316  *	t4_get_bs_version - read the firmware bootstrap version
3317  *	@adapter: the adapter
3318  *	@vers: where to place the version
3319  *
3320  *	Reads the FW Bootstrap version from flash.
3321  */
3322 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3323 {
3324 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3325 			     offsetof(struct fw_hdr, fw_ver), 1,
3326 			     vers, 0);
3327 }
3328 
3329 /**
3330  *	t4_get_tp_version - read the TP microcode version
3331  *	@adapter: the adapter
3332  *	@vers: where to place the version
3333  *
3334  *	Reads the TP microcode version from flash.
3335  */
3336 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3337 {
3338 	return t4_read_flash(adapter, FLASH_FW_START +
3339 			     offsetof(struct fw_hdr, tp_microcode_ver),
3340 			     1, vers, 0);
3341 }
3342 
3343 /**
3344  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3345  *	@adapter: the adapter
3346  *	@vers: where to place the version
3347  *
3348  *	Reads the Expansion ROM header from FLASH and returns the version
3349  *	number (if present) through the @vers return value pointer.  We return
3350  *	this in the Firmware Version Format since it's convenient.  Return
3351  *	0 on success, -ENOENT if no Expansion ROM is present.
3352  */
3353 int t4_get_exprom_version(struct adapter *adapter, u32 *vers)
3354 {
3355 	struct exprom_header {
3356 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3357 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3358 	} *hdr;
3359 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3360 					   sizeof(u32))];
3361 	int ret;
3362 
3363 	ret = t4_read_flash(adapter, FLASH_EXP_ROM_START,
3364 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3365 			    0);
3366 	if (ret)
3367 		return ret;
3368 
3369 	hdr = (struct exprom_header *)exprom_header_buf;
3370 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3371 		return -ENOENT;
3372 
3373 	*vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
3374 		 V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
3375 		 V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
3376 		 V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
3377 	return 0;
3378 }
3379 
3380 /**
3381  *	t4_get_scfg_version - return the Serial Configuration version
3382  *	@adapter: the adapter
3383  *	@vers: where to place the version
3384  *
3385  *	Reads the Serial Configuration Version via the Firmware interface
3386  *	(thus this can only be called once we're ready to issue Firmware
3387  *	commands).  The format of the Serial Configuration version is
3388  *	adapter specific.  Returns 0 on success, an error on failure.
3389  *
3390  *	Note that early versions of the Firmware didn't include the ability
3391  *	to retrieve the Serial Configuration version, so we zero-out the
3392  *	return-value parameter in that case to avoid leaving it with
3393  *	garbage in it.
3394  *
3395  *	Also note that the Firmware will return its cached copy of the Serial
3396  *	Initialization Revision ID, not the actual Revision ID as written in
3397  *	the Serial EEPROM.  This is only an issue if a new VPD has been written
3398  *	and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3399  *	it's best to defer calling this routine till after a FW_RESET_CMD has
3400  *	been issued if the Host Driver will be performing a full adapter
3401  *	initialization.
3402  */
3403 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3404 {
3405 	u32 scfgrev_param;
3406 	int ret;
3407 
3408 	scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3409 			 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV));
3410 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3411 			      1, &scfgrev_param, vers);
3412 	if (ret)
3413 		*vers = 0;
3414 	return ret;
3415 }
3416 
3417 /**
3418  *	t4_get_vpd_version - return the VPD version
3419  *	@adapter: the adapter
3420  *	@vers: where to place the version
3421  *
3422  *	Reads the VPD via the Firmware interface (thus this can only be called
3423  *	once we're ready to issue Firmware commands).  The format of the
3424  *	VPD version is adapter specific.  Returns 0 on success, an error on
3425  *	failure.
3426  *
3427  *	Note that early versions of the Firmware didn't include the ability
3428  *	to retrieve the VPD version, so we zero-out the return-value parameter
3429  *	in that case to avoid leaving it with garbage in it.
3430  *
3431  *	Also note that the Firmware will return its cached copy of the VPD
3432  *	Revision ID, not the actual Revision ID as written in the Serial
3433  *	EEPROM.  This is only an issue if a new VPD has been written and the
3434  *	Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3435  *	to defer calling this routine till after a FW_RESET_CMD has been issued
3436  *	if the Host Driver will be performing a full adapter initialization.
3437  */
3438 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3439 {
3440 	u32 vpdrev_param;
3441 	int ret;
3442 
3443 	vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3444 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV));
3445 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3446 			      1, &vpdrev_param, vers);
3447 	if (ret)
3448 		*vers = 0;
3449 	return ret;
3450 }
3451 
3452 /**
3453  *	t4_get_version_info - extract various chip/firmware version information
3454  *	@adapter: the adapter
3455  *
3456  *	Reads various chip/firmware version numbers and stores them into the
3457  *	adapter Adapter Parameters structure.  If any of the efforts fails
3458  *	the first failure will be returned, but all of the version numbers
3459  *	will be read.
3460  */
3461 int t4_get_version_info(struct adapter *adapter)
3462 {
3463 	int ret = 0;
3464 
3465 	#define FIRST_RET(__getvinfo) \
3466 	do { \
3467 		int __ret = __getvinfo; \
3468 		if (__ret && !ret) \
3469 			ret = __ret; \
3470 	} while (0)
3471 
3472 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3473 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3474 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3475 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3476 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3477 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3478 
3479 	#undef FIRST_RET
3480 
3481 	return ret;
3482 }
3483 
3484 /**
3485  *	t4_flash_erase_sectors - erase a range of flash sectors
3486  *	@adapter: the adapter
3487  *	@start: the first sector to erase
3488  *	@end: the last sector to erase
3489  *
3490  *	Erases the sectors in the given inclusive range.
3491  */
3492 int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3493 {
3494 	int ret = 0;
3495 
3496 	if (end >= adapter->params.sf_nsec)
3497 		return -EINVAL;
3498 
3499 	while (start <= end) {
3500 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3501 		    (ret = sf1_write(adapter, 4, 0, 1,
3502 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3503 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3504 			CH_ERR(adapter,
3505 				"erase of flash sector %d failed, error %d\n",
3506 				start, ret);
3507 			break;
3508 		}
3509 		start++;
3510 	}
3511 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3512 	return ret;
3513 }
3514 
3515 /**
3516  *	t4_flash_cfg_addr - return the address of the flash configuration file
3517  *	@adapter: the adapter
3518  *
3519  *	Return the address within the flash where the Firmware Configuration
3520  *	File is stored, or an error if the device FLASH is too small to contain
3521  *	a Firmware Configuration File.
3522  */
3523 int t4_flash_cfg_addr(struct adapter *adapter)
3524 {
3525 	/*
3526 	 * If the device FLASH isn't large enough to hold a Firmware
3527 	 * Configuration File, return an error.
3528 	 */
3529 	if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
3530 		return -ENOSPC;
3531 
3532 	return FLASH_CFG_START;
3533 }
3534 
3535 /*
3536  * Return TRUE if the specified firmware matches the adapter.  I.e. T4
3537  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3538  * and emit an error message for mismatched firmware to save our caller the
3539  * effort ...
3540  */
3541 static int t4_fw_matches_chip(struct adapter *adap,
3542 			      const struct fw_hdr *hdr)
3543 {
3544 	/*
3545 	 * The expression below will return FALSE for any unsupported adapter
3546 	 * which will keep us "honest" in the future ...
3547 	 */
3548 	if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) ||
3549 	    (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) ||
3550 	    (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6))
3551 		return 1;
3552 
3553 	CH_ERR(adap,
3554 		"FW image (%d) is not suitable for this adapter (%d)\n",
3555 		hdr->chip, chip_id(adap));
3556 	return 0;
3557 }
3558 
3559 /**
3560  *	t4_load_fw - download firmware
3561  *	@adap: the adapter
3562  *	@fw_data: the firmware image to write
3563  *	@size: image size
3564  *
3565  *	Write the supplied firmware image to the card's serial flash.
3566  */
3567 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3568 {
3569 	u32 csum;
3570 	int ret, addr;
3571 	unsigned int i;
3572 	u8 first_page[SF_PAGE_SIZE];
3573 	const u32 *p = (const u32 *)fw_data;
3574 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3575 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3576 	unsigned int fw_start_sec;
3577 	unsigned int fw_start;
3578 	unsigned int fw_size;
3579 
3580 	if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) {
3581 		fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC;
3582 		fw_start = FLASH_FWBOOTSTRAP_START;
3583 		fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE;
3584 	} else {
3585 		fw_start_sec = FLASH_FW_START_SEC;
3586  		fw_start = FLASH_FW_START;
3587 		fw_size = FLASH_FW_MAX_SIZE;
3588 	}
3589 
3590 	if (!size) {
3591 		CH_ERR(adap, "FW image has no data\n");
3592 		return -EINVAL;
3593 	}
3594 	if (size & 511) {
3595 		CH_ERR(adap,
3596 			"FW image size not multiple of 512 bytes\n");
3597 		return -EINVAL;
3598 	}
3599 	if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) {
3600 		CH_ERR(adap,
3601 			"FW image size differs from size in FW header\n");
3602 		return -EINVAL;
3603 	}
3604 	if (size > fw_size) {
3605 		CH_ERR(adap, "FW image too large, max is %u bytes\n",
3606 			fw_size);
3607 		return -EFBIG;
3608 	}
3609 	if (!t4_fw_matches_chip(adap, hdr))
3610 		return -EINVAL;
3611 
3612 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3613 		csum += be32_to_cpu(p[i]);
3614 
3615 	if (csum != 0xffffffff) {
3616 		CH_ERR(adap,
3617 			"corrupted firmware image, checksum %#x\n", csum);
3618 		return -EINVAL;
3619 	}
3620 
3621 	i = DIV_ROUND_UP(size, sf_sec_size);	/* # of sectors spanned */
3622 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3623 	if (ret)
3624 		goto out;
3625 
3626 	/*
3627 	 * We write the correct version at the end so the driver can see a bad
3628 	 * version if the FW write fails.  Start by writing a copy of the
3629 	 * first page with a bad version.
3630 	 */
3631 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3632 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3633 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
3634 	if (ret)
3635 		goto out;
3636 
3637 	addr = fw_start;
3638 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3639 		addr += SF_PAGE_SIZE;
3640 		fw_data += SF_PAGE_SIZE;
3641 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
3642 		if (ret)
3643 			goto out;
3644 	}
3645 
3646 	ret = t4_write_flash(adap,
3647 			     fw_start + offsetof(struct fw_hdr, fw_ver),
3648 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
3649 out:
3650 	if (ret)
3651 		CH_ERR(adap, "firmware download failed, error %d\n",
3652 			ret);
3653 	return ret;
3654 }
3655 
3656 /**
3657  *	t4_fwcache - firmware cache operation
3658  *	@adap: the adapter
3659  *	@op  : the operation (flush or flush and invalidate)
3660  */
3661 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3662 {
3663 	struct fw_params_cmd c;
3664 
3665 	memset(&c, 0, sizeof(c));
3666 	c.op_to_vfn =
3667 	    cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3668 			    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3669 				V_FW_PARAMS_CMD_PFN(adap->pf) |
3670 				V_FW_PARAMS_CMD_VFN(0));
3671 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3672 	c.param[0].mnem =
3673 	    cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3674 			    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE));
3675 	c.param[0].val = (__force __be32)op;
3676 
3677 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3678 }
3679 
3680 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3681 			unsigned int *pif_req_wrptr,
3682 			unsigned int *pif_rsp_wrptr)
3683 {
3684 	int i, j;
3685 	u32 cfg, val, req, rsp;
3686 
3687 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3688 	if (cfg & F_LADBGEN)
3689 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3690 
3691 	val = t4_read_reg(adap, A_CIM_DEBUGSTS);
3692 	req = G_POLADBGWRPTR(val);
3693 	rsp = G_PILADBGWRPTR(val);
3694 	if (pif_req_wrptr)
3695 		*pif_req_wrptr = req;
3696 	if (pif_rsp_wrptr)
3697 		*pif_rsp_wrptr = rsp;
3698 
3699 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3700 		for (j = 0; j < 6; j++) {
3701 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
3702 				     V_PILADBGRDPTR(rsp));
3703 			*pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
3704 			*pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
3705 			req++;
3706 			rsp++;
3707 		}
3708 		req = (req + 2) & M_POLADBGRDPTR;
3709 		rsp = (rsp + 2) & M_PILADBGRDPTR;
3710 	}
3711 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3712 }
3713 
3714 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3715 {
3716 	u32 cfg;
3717 	int i, j, idx;
3718 
3719 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3720 	if (cfg & F_LADBGEN)
3721 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3722 
3723 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3724 		for (j = 0; j < 5; j++) {
3725 			idx = 8 * i + j;
3726 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
3727 				     V_PILADBGRDPTR(idx));
3728 			*ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
3729 			*ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
3730 		}
3731 	}
3732 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3733 }
3734 
3735 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3736 {
3737 	unsigned int i, j;
3738 
3739 	for (i = 0; i < 8; i++) {
3740 		u32 *p = la_buf + i;
3741 
3742 		t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
3743 		j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
3744 		t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
3745 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3746 			*p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
3747 	}
3748 }
3749 
3750 /**
3751  *	fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3752  *	@caps16: a 16-bit Port Capabilities value
3753  *
3754  *	Returns the equivalent 32-bit Port Capabilities value.
3755  */
3756 static uint32_t fwcaps16_to_caps32(uint16_t caps16)
3757 {
3758 	uint32_t caps32 = 0;
3759 
3760 	#define CAP16_TO_CAP32(__cap) \
3761 		do { \
3762 			if (caps16 & FW_PORT_CAP_##__cap) \
3763 				caps32 |= FW_PORT_CAP32_##__cap; \
3764 		} while (0)
3765 
3766 	CAP16_TO_CAP32(SPEED_100M);
3767 	CAP16_TO_CAP32(SPEED_1G);
3768 	CAP16_TO_CAP32(SPEED_25G);
3769 	CAP16_TO_CAP32(SPEED_10G);
3770 	CAP16_TO_CAP32(SPEED_40G);
3771 	CAP16_TO_CAP32(SPEED_100G);
3772 	CAP16_TO_CAP32(FC_RX);
3773 	CAP16_TO_CAP32(FC_TX);
3774 	CAP16_TO_CAP32(ANEG);
3775 	CAP16_TO_CAP32(FORCE_PAUSE);
3776 	CAP16_TO_CAP32(MDIAUTO);
3777 	CAP16_TO_CAP32(MDISTRAIGHT);
3778 	CAP16_TO_CAP32(FEC_RS);
3779 	CAP16_TO_CAP32(FEC_BASER_RS);
3780 	CAP16_TO_CAP32(802_3_PAUSE);
3781 	CAP16_TO_CAP32(802_3_ASM_DIR);
3782 
3783 	#undef CAP16_TO_CAP32
3784 
3785 	return caps32;
3786 }
3787 
3788 /**
3789  *	fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
3790  *	@caps32: a 32-bit Port Capabilities value
3791  *
3792  *	Returns the equivalent 16-bit Port Capabilities value.  Note that
3793  *	not all 32-bit Port Capabilities can be represented in the 16-bit
3794  *	Port Capabilities and some fields/values may not make it.
3795  */
3796 static uint16_t fwcaps32_to_caps16(uint32_t caps32)
3797 {
3798 	uint16_t caps16 = 0;
3799 
3800 	#define CAP32_TO_CAP16(__cap) \
3801 		do { \
3802 			if (caps32 & FW_PORT_CAP32_##__cap) \
3803 				caps16 |= FW_PORT_CAP_##__cap; \
3804 		} while (0)
3805 
3806 	CAP32_TO_CAP16(SPEED_100M);
3807 	CAP32_TO_CAP16(SPEED_1G);
3808 	CAP32_TO_CAP16(SPEED_10G);
3809 	CAP32_TO_CAP16(SPEED_25G);
3810 	CAP32_TO_CAP16(SPEED_40G);
3811 	CAP32_TO_CAP16(SPEED_100G);
3812 	CAP32_TO_CAP16(FC_RX);
3813 	CAP32_TO_CAP16(FC_TX);
3814 	CAP32_TO_CAP16(802_3_PAUSE);
3815 	CAP32_TO_CAP16(802_3_ASM_DIR);
3816 	CAP32_TO_CAP16(ANEG);
3817 	CAP32_TO_CAP16(FORCE_PAUSE);
3818 	CAP32_TO_CAP16(MDIAUTO);
3819 	CAP32_TO_CAP16(MDISTRAIGHT);
3820 	CAP32_TO_CAP16(FEC_RS);
3821 	CAP32_TO_CAP16(FEC_BASER_RS);
3822 
3823 	#undef CAP32_TO_CAP16
3824 
3825 	return caps16;
3826 }
3827 
3828 static bool
3829 is_bt(struct port_info *pi)
3830 {
3831 
3832 	return (pi->port_type == FW_PORT_TYPE_BT_SGMII ||
3833 	    pi->port_type == FW_PORT_TYPE_BT_XFI ||
3834 	    pi->port_type == FW_PORT_TYPE_BT_XAUI);
3835 }
3836 
3837 static int8_t fwcap_to_fec(uint32_t caps, bool unset_means_none)
3838 {
3839 	int8_t fec = 0;
3840 
3841 	if ((caps & V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC)) == 0)
3842 		return (unset_means_none ? FEC_NONE : 0);
3843 
3844 	if (caps & FW_PORT_CAP32_FEC_RS)
3845 		fec |= FEC_RS;
3846 	if (caps & FW_PORT_CAP32_FEC_BASER_RS)
3847 		fec |= FEC_BASER_RS;
3848 	if (caps & FW_PORT_CAP32_FEC_NO_FEC)
3849 		fec |= FEC_NONE;
3850 
3851 	return (fec);
3852 }
3853 
3854 /*
3855  * Note that 0 is not translated to NO_FEC.
3856  */
3857 static uint32_t fec_to_fwcap(int8_t fec)
3858 {
3859 	uint32_t caps = 0;
3860 
3861 	/* Only real FECs allowed. */
3862 	MPASS((fec & ~M_FW_PORT_CAP32_FEC) == 0);
3863 
3864 	if (fec & FEC_RS)
3865 		caps |= FW_PORT_CAP32_FEC_RS;
3866 	if (fec & FEC_BASER_RS)
3867 		caps |= FW_PORT_CAP32_FEC_BASER_RS;
3868 	if (fec & FEC_NONE)
3869 		caps |= FW_PORT_CAP32_FEC_NO_FEC;
3870 
3871 	return (caps);
3872 }
3873 
3874 /**
3875  *	t4_link_l1cfg - apply link configuration to MAC/PHY
3876  *	@phy: the PHY to setup
3877  *	@mac: the MAC to setup
3878  *	@lc: the requested link configuration
3879  *
3880  *	Set up a port's MAC and PHY according to a desired link configuration.
3881  *	- If the PHY can auto-negotiate first decide what to advertise, then
3882  *	  enable/disable auto-negotiation as desired, and reset.
3883  *	- If the PHY does not auto-negotiate just reset it.
3884  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3885  *	  otherwise do it later based on the outcome of auto-negotiation.
3886  */
3887 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3888 		  struct link_config *lc)
3889 {
3890 	struct fw_port_cmd c;
3891 	unsigned int mdi = V_FW_PORT_CAP32_MDI(FW_PORT_CAP32_MDI_AUTO);
3892 	unsigned int aneg, fc, fec, speed, rcap;
3893 
3894 	fc = 0;
3895 	if (lc->requested_fc & PAUSE_RX)
3896 		fc |= FW_PORT_CAP32_FC_RX;
3897 	if (lc->requested_fc & PAUSE_TX)
3898 		fc |= FW_PORT_CAP32_FC_TX;
3899 	if (!(lc->requested_fc & PAUSE_AUTONEG))
3900 		fc |= FW_PORT_CAP32_FORCE_PAUSE;
3901 
3902 	if (lc->requested_aneg == AUTONEG_DISABLE)
3903 		aneg = 0;
3904 	else if (lc->requested_aneg == AUTONEG_ENABLE)
3905 		aneg = FW_PORT_CAP32_ANEG;
3906 	else
3907 		aneg = lc->pcaps & FW_PORT_CAP32_ANEG;
3908 
3909 	if (aneg) {
3910 		speed = lc->pcaps &
3911 		    V_FW_PORT_CAP32_SPEED(M_FW_PORT_CAP32_SPEED);
3912 	} else if (lc->requested_speed != 0)
3913 		speed = speed_to_fwcap(lc->requested_speed);
3914 	else
3915 		speed = fwcap_top_speed(lc->pcaps);
3916 
3917 	fec = 0;
3918 	if (fec_supported(speed)) {
3919 		if (lc->requested_fec == FEC_AUTO) {
3920 			if (lc->pcaps & FW_PORT_CAP32_FORCE_FEC) {
3921 				if (speed & FW_PORT_CAP32_SPEED_100G) {
3922 					fec |= FW_PORT_CAP32_FEC_RS;
3923 					fec |= FW_PORT_CAP32_FEC_NO_FEC;
3924 				} else {
3925 					fec |= FW_PORT_CAP32_FEC_RS;
3926 					fec |= FW_PORT_CAP32_FEC_BASER_RS;
3927 					fec |= FW_PORT_CAP32_FEC_NO_FEC;
3928 				}
3929 			} else {
3930 				/* Set only 1b with old firmwares. */
3931 				fec |= fec_to_fwcap(lc->fec_hint);
3932 			}
3933 		} else {
3934 			fec |= fec_to_fwcap(lc->requested_fec &
3935 			    M_FW_PORT_CAP32_FEC);
3936 			if (lc->requested_fec & FEC_MODULE)
3937 				fec |= fec_to_fwcap(lc->fec_hint);
3938 		}
3939 
3940 		if (lc->pcaps & FW_PORT_CAP32_FORCE_FEC)
3941 			fec |= FW_PORT_CAP32_FORCE_FEC;
3942 		else if (fec == FW_PORT_CAP32_FEC_NO_FEC)
3943 			fec = 0;
3944 	}
3945 
3946 	/* Force AN on for BT cards. */
3947 	if (is_bt(adap->port[adap->chan_map[port]]))
3948 		aneg = lc->pcaps & FW_PORT_CAP32_ANEG;
3949 
3950 	rcap = aneg | speed | fc | fec;
3951 	if ((rcap | lc->pcaps) != lc->pcaps) {
3952 #ifdef INVARIANTS
3953 		CH_WARN(adap, "rcap 0x%08x, pcap 0x%08x, removed 0x%x\n", rcap,
3954 		    lc->pcaps, rcap & (rcap ^ lc->pcaps));
3955 #endif
3956 		rcap &= lc->pcaps;
3957 	}
3958 	rcap |= mdi;
3959 
3960 	memset(&c, 0, sizeof(c));
3961 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3962 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3963 				     V_FW_PORT_CMD_PORTID(port));
3964 	if (adap->params.port_caps32) {
3965 		c.action_to_len16 =
3966 		    cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG32) |
3967 			FW_LEN16(c));
3968 		c.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
3969 	} else {
3970 		c.action_to_len16 =
3971 		    cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3972 			    FW_LEN16(c));
3973 		c.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
3974 	}
3975 
3976 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
3977 }
3978 
3979 /**
3980  *	t4_restart_aneg - restart autonegotiation
3981  *	@adap: the adapter
3982  *	@mbox: mbox to use for the FW command
3983  *	@port: the port id
3984  *
3985  *	Restarts autonegotiation for the selected port.
3986  */
3987 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3988 {
3989 	struct fw_port_cmd c;
3990 
3991 	memset(&c, 0, sizeof(c));
3992 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3993 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3994 				     V_FW_PORT_CMD_PORTID(port));
3995 	c.action_to_len16 =
3996 		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3997 			    FW_LEN16(c));
3998 	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3999 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4000 }
4001 
4002 struct intr_details {
4003 	u32 mask;
4004 	const char *msg;
4005 };
4006 
4007 struct intr_action {
4008 	u32 mask;
4009 	int arg;
4010 	bool (*action)(struct adapter *, int, bool);
4011 };
4012 
4013 #define NONFATAL_IF_DISABLED 1
4014 struct intr_info {
4015 	const char *name;	/* name of the INT_CAUSE register */
4016 	int cause_reg;		/* INT_CAUSE register */
4017 	int enable_reg;		/* INT_ENABLE register */
4018 	u32 fatal;		/* bits that are fatal */
4019 	int flags;		/* hints */
4020 	const struct intr_details *details;
4021 	const struct intr_action *actions;
4022 };
4023 
4024 static inline char
4025 intr_alert_char(u32 cause, u32 enable, u32 fatal)
4026 {
4027 
4028 	if (cause & fatal)
4029 		return ('!');
4030 	if (cause & enable)
4031 		return ('*');
4032 	return ('-');
4033 }
4034 
4035 static void
4036 t4_show_intr_info(struct adapter *adap, const struct intr_info *ii, u32 cause)
4037 {
4038 	u32 enable, fatal, leftover;
4039 	const struct intr_details *details;
4040 	char alert;
4041 
4042 	enable = t4_read_reg(adap, ii->enable_reg);
4043 	if (ii->flags & NONFATAL_IF_DISABLED)
4044 		fatal = ii->fatal & t4_read_reg(adap, ii->enable_reg);
4045 	else
4046 		fatal = ii->fatal;
4047 	alert = intr_alert_char(cause, enable, fatal);
4048 	CH_ALERT(adap, "%c %s 0x%x = 0x%08x, E 0x%08x, F 0x%08x\n",
4049 	    alert, ii->name, ii->cause_reg, cause, enable, fatal);
4050 
4051 	leftover = cause;
4052 	for (details = ii->details; details && details->mask != 0; details++) {
4053 		u32 msgbits = details->mask & cause;
4054 		if (msgbits == 0)
4055 			continue;
4056 		alert = intr_alert_char(msgbits, enable, ii->fatal);
4057 		CH_ALERT(adap, "  %c [0x%08x] %s\n", alert, msgbits,
4058 		    details->msg);
4059 		leftover &= ~msgbits;
4060 	}
4061 	if (leftover != 0 && leftover != cause)
4062 		CH_ALERT(adap, "  ? [0x%08x]\n", leftover);
4063 }
4064 
4065 /*
4066  * Returns true for fatal error.
4067  */
4068 static bool
4069 t4_handle_intr(struct adapter *adap, const struct intr_info *ii,
4070     u32 additional_cause, bool verbose)
4071 {
4072 	u32 cause, fatal;
4073 	bool rc;
4074 	const struct intr_action *action;
4075 
4076 	/*
4077 	 * Read and display cause.  Note that the top level PL_INT_CAUSE is a
4078 	 * bit special and we need to completely ignore the bits that are not in
4079 	 * PL_INT_ENABLE.
4080 	 */
4081 	cause = t4_read_reg(adap, ii->cause_reg);
4082 	if (ii->cause_reg == A_PL_INT_CAUSE)
4083 		cause &= t4_read_reg(adap, ii->enable_reg);
4084 	if (verbose || cause != 0)
4085 		t4_show_intr_info(adap, ii, cause);
4086 	fatal = cause & ii->fatal;
4087 	if (fatal != 0 && ii->flags & NONFATAL_IF_DISABLED)
4088 		fatal &= t4_read_reg(adap, ii->enable_reg);
4089 	cause |= additional_cause;
4090 	if (cause == 0)
4091 		return (false);
4092 
4093 	rc = fatal != 0;
4094 	for (action = ii->actions; action && action->mask != 0; action++) {
4095 		if (!(action->mask & cause))
4096 			continue;
4097 		rc |= (action->action)(adap, action->arg, verbose);
4098 	}
4099 
4100 	/* clear */
4101 	t4_write_reg(adap, ii->cause_reg, cause);
4102 	(void)t4_read_reg(adap, ii->cause_reg);
4103 
4104 	return (rc);
4105 }
4106 
4107 /*
4108  * Interrupt handler for the PCIE module.
4109  */
4110 static bool pcie_intr_handler(struct adapter *adap, int arg, bool verbose)
4111 {
4112 	static const struct intr_details sysbus_intr_details[] = {
4113 		{ F_RNPP, "RXNP array parity error" },
4114 		{ F_RPCP, "RXPC array parity error" },
4115 		{ F_RCIP, "RXCIF array parity error" },
4116 		{ F_RCCP, "Rx completions control array parity error" },
4117 		{ F_RFTP, "RXFT array parity error" },
4118 		{ 0 }
4119 	};
4120 	static const struct intr_info sysbus_intr_info = {
4121 		.name = "PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS",
4122 		.cause_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
4123 		.enable_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_INTERRUPT_ENABLE,
4124 		.fatal = F_RFTP | F_RCCP | F_RCIP | F_RPCP | F_RNPP,
4125 		.flags = 0,
4126 		.details = sysbus_intr_details,
4127 		.actions = NULL,
4128 	};
4129 	static const struct intr_details pcie_port_intr_details[] = {
4130 		{ F_TPCP, "TXPC array parity error" },
4131 		{ F_TNPP, "TXNP array parity error" },
4132 		{ F_TFTP, "TXFT array parity error" },
4133 		{ F_TCAP, "TXCA array parity error" },
4134 		{ F_TCIP, "TXCIF array parity error" },
4135 		{ F_RCAP, "RXCA array parity error" },
4136 		{ F_OTDD, "outbound request TLP discarded" },
4137 		{ F_RDPE, "Rx data parity error" },
4138 		{ F_TDUE, "Tx uncorrectable data error" },
4139 		{ 0 }
4140 	};
4141 	static const struct intr_info pcie_port_intr_info = {
4142 		.name = "PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS",
4143 		.cause_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
4144 		.enable_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_INTERRUPT_ENABLE,
4145 		.fatal = F_TPCP | F_TNPP | F_TFTP | F_TCAP | F_TCIP | F_RCAP |
4146 		    F_OTDD | F_RDPE | F_TDUE,
4147 		.flags = 0,
4148 		.details = pcie_port_intr_details,
4149 		.actions = NULL,
4150 	};
4151 	static const struct intr_details pcie_intr_details[] = {
4152 		{ F_MSIADDRLPERR, "MSI AddrL parity error" },
4153 		{ F_MSIADDRHPERR, "MSI AddrH parity error" },
4154 		{ F_MSIDATAPERR, "MSI data parity error" },
4155 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error" },
4156 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error" },
4157 		{ F_MSIXDATAPERR, "MSI-X data parity error" },
4158 		{ F_MSIXDIPERR, "MSI-X DI parity error" },
4159 		{ F_PIOCPLPERR, "PCIe PIO completion FIFO parity error" },
4160 		{ F_PIOREQPERR, "PCIe PIO request FIFO parity error" },
4161 		{ F_TARTAGPERR, "PCIe target tag FIFO parity error" },
4162 		{ F_CCNTPERR, "PCIe CMD channel count parity error" },
4163 		{ F_CREQPERR, "PCIe CMD channel request parity error" },
4164 		{ F_CRSPPERR, "PCIe CMD channel response parity error" },
4165 		{ F_DCNTPERR, "PCIe DMA channel count parity error" },
4166 		{ F_DREQPERR, "PCIe DMA channel request parity error" },
4167 		{ F_DRSPPERR, "PCIe DMA channel response parity error" },
4168 		{ F_HCNTPERR, "PCIe HMA channel count parity error" },
4169 		{ F_HREQPERR, "PCIe HMA channel request parity error" },
4170 		{ F_HRSPPERR, "PCIe HMA channel response parity error" },
4171 		{ F_CFGSNPPERR, "PCIe config snoop FIFO parity error" },
4172 		{ F_FIDPERR, "PCIe FID parity error" },
4173 		{ F_INTXCLRPERR, "PCIe INTx clear parity error" },
4174 		{ F_MATAGPERR, "PCIe MA tag parity error" },
4175 		{ F_PIOTAGPERR, "PCIe PIO tag parity error" },
4176 		{ F_RXCPLPERR, "PCIe Rx completion parity error" },
4177 		{ F_RXWRPERR, "PCIe Rx write parity error" },
4178 		{ F_RPLPERR, "PCIe replay buffer parity error" },
4179 		{ F_PCIESINT, "PCIe core secondary fault" },
4180 		{ F_PCIEPINT, "PCIe core primary fault" },
4181 		{ F_UNXSPLCPLERR, "PCIe unexpected split completion error" },
4182 		{ 0 }
4183 	};
4184 	static const struct intr_details t5_pcie_intr_details[] = {
4185 		{ F_IPGRPPERR, "Parity errors observed by IP" },
4186 		{ F_NONFATALERR, "PCIe non-fatal error" },
4187 		{ F_READRSPERR, "Outbound read error" },
4188 		{ F_TRGT1GRPPERR, "PCIe TRGT1 group FIFOs parity error" },
4189 		{ F_IPSOTPERR, "PCIe IP SOT buffer SRAM parity error" },
4190 		{ F_IPRETRYPERR, "PCIe IP replay buffer parity error" },
4191 		{ F_IPRXDATAGRPPERR, "PCIe IP Rx data group SRAMs parity error" },
4192 		{ F_IPRXHDRGRPPERR, "PCIe IP Rx header group SRAMs parity error" },
4193 		{ F_PIOTAGQPERR, "PIO tag queue FIFO parity error" },
4194 		{ F_MAGRPPERR, "MA group FIFO parity error" },
4195 		{ F_VFIDPERR, "VFID SRAM parity error" },
4196 		{ F_FIDPERR, "FID SRAM parity error" },
4197 		{ F_CFGSNPPERR, "config snoop FIFO parity error" },
4198 		{ F_HRSPPERR, "HMA channel response data SRAM parity error" },
4199 		{ F_HREQRDPERR, "HMA channel read request SRAM parity error" },
4200 		{ F_HREQWRPERR, "HMA channel write request SRAM parity error" },
4201 		{ F_DRSPPERR, "DMA channel response data SRAM parity error" },
4202 		{ F_DREQRDPERR, "DMA channel write request SRAM parity error" },
4203 		{ F_CRSPPERR, "CMD channel response data SRAM parity error" },
4204 		{ F_CREQRDPERR, "CMD channel read request SRAM parity error" },
4205 		{ F_MSTTAGQPERR, "PCIe master tag queue SRAM parity error" },
4206 		{ F_TGTTAGQPERR, "PCIe target tag queue FIFO parity error" },
4207 		{ F_PIOREQGRPPERR, "PIO request group FIFOs parity error" },
4208 		{ F_PIOCPLGRPPERR, "PIO completion group FIFOs parity error" },
4209 		{ F_MSIXDIPERR, "MSI-X DI SRAM parity error" },
4210 		{ F_MSIXDATAPERR, "MSI-X data SRAM parity error" },
4211 		{ F_MSIXADDRHPERR, "MSI-X AddrH SRAM parity error" },
4212 		{ F_MSIXADDRLPERR, "MSI-X AddrL SRAM parity error" },
4213 		{ F_MSIXSTIPERR, "MSI-X STI SRAM parity error" },
4214 		{ F_MSTTIMEOUTPERR, "Master timeout FIFO parity error" },
4215 		{ F_MSTGRPPERR, "Master response read queue SRAM parity error" },
4216 		{ 0 }
4217 	};
4218 	struct intr_info pcie_intr_info = {
4219 		.name = "PCIE_INT_CAUSE",
4220 		.cause_reg = A_PCIE_INT_CAUSE,
4221 		.enable_reg = A_PCIE_INT_ENABLE,
4222 		.fatal = 0xffffffff,
4223 		.flags = NONFATAL_IF_DISABLED,
4224 		.details = NULL,
4225 		.actions = NULL,
4226 	};
4227 	bool fatal = false;
4228 
4229 	if (is_t4(adap)) {
4230 		fatal |= t4_handle_intr(adap, &sysbus_intr_info, 0, verbose);
4231 		fatal |= t4_handle_intr(adap, &pcie_port_intr_info, 0, verbose);
4232 
4233 		pcie_intr_info.details = pcie_intr_details;
4234 	} else {
4235 		pcie_intr_info.details = t5_pcie_intr_details;
4236 	}
4237 	fatal |= t4_handle_intr(adap, &pcie_intr_info, 0, verbose);
4238 
4239 	return (fatal);
4240 }
4241 
4242 /*
4243  * TP interrupt handler.
4244  */
4245 static bool tp_intr_handler(struct adapter *adap, int arg, bool verbose)
4246 {
4247 	static const struct intr_details tp_intr_details[] = {
4248 		{ 0x3fffffff, "TP parity error" },
4249 		{ F_FLMTXFLSTEMPTY, "TP out of Tx pages" },
4250 		{ 0 }
4251 	};
4252 	static const struct intr_info tp_intr_info = {
4253 		.name = "TP_INT_CAUSE",
4254 		.cause_reg = A_TP_INT_CAUSE,
4255 		.enable_reg = A_TP_INT_ENABLE,
4256 		.fatal = 0x7fffffff,
4257 		.flags = NONFATAL_IF_DISABLED,
4258 		.details = tp_intr_details,
4259 		.actions = NULL,
4260 	};
4261 
4262 	return (t4_handle_intr(adap, &tp_intr_info, 0, verbose));
4263 }
4264 
4265 /*
4266  * SGE interrupt handler.
4267  */
4268 static bool sge_intr_handler(struct adapter *adap, int arg, bool verbose)
4269 {
4270 	static const struct intr_info sge_int1_info = {
4271 		.name = "SGE_INT_CAUSE1",
4272 		.cause_reg = A_SGE_INT_CAUSE1,
4273 		.enable_reg = A_SGE_INT_ENABLE1,
4274 		.fatal = 0xffffffff,
4275 		.flags = NONFATAL_IF_DISABLED,
4276 		.details = NULL,
4277 		.actions = NULL,
4278 	};
4279 	static const struct intr_info sge_int2_info = {
4280 		.name = "SGE_INT_CAUSE2",
4281 		.cause_reg = A_SGE_INT_CAUSE2,
4282 		.enable_reg = A_SGE_INT_ENABLE2,
4283 		.fatal = 0xffffffff,
4284 		.flags = NONFATAL_IF_DISABLED,
4285 		.details = NULL,
4286 		.actions = NULL,
4287 	};
4288 	static const struct intr_details sge_int3_details[] = {
4289 		{ F_ERR_FLM_DBP,
4290 			"DBP pointer delivery for invalid context or QID" },
4291 		{ F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0,
4292 			"Invalid QID or header request by IDMA" },
4293 		{ F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" },
4294 		{ F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" },
4295 		{ F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" },
4296 		{ F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" },
4297 		{ F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" },
4298 		{ F_ERR_TIMER_ABOVE_MAX_QID,
4299 			"SGE GTS with timer 0-5 for IQID > 1023" },
4300 		{ F_ERR_CPL_EXCEED_IQE_SIZE,
4301 			"SGE received CPL exceeding IQE size" },
4302 		{ F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" },
4303 		{ F_ERR_ITP_TIME_PAUSED, "SGE ITP error" },
4304 		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" },
4305 		{ F_ERR_DROPPED_DB, "SGE DB dropped" },
4306 		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
4307 		  "SGE IQID > 1023 received CPL for FL" },
4308 		{ F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4309 			F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" },
4310 		{ F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" },
4311 		{ F_ERR_ING_CTXT_PRIO,
4312 			"Ingress context manager priority user error" },
4313 		{ F_ERR_EGR_CTXT_PRIO,
4314 			"Egress context manager priority user error" },
4315 		{ F_DBFIFO_HP_INT, "High priority DB FIFO threshold reached" },
4316 		{ F_DBFIFO_LP_INT, "Low priority DB FIFO threshold reached" },
4317 		{ F_REG_ADDRESS_ERR, "Undefined SGE register accessed" },
4318 		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" },
4319 		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID" },
4320 		{ 0x0000000f, "SGE context access for invalid queue" },
4321 		{ 0 }
4322 	};
4323 	static const struct intr_details t6_sge_int3_details[] = {
4324 		{ F_ERR_FLM_DBP,
4325 			"DBP pointer delivery for invalid context or QID" },
4326 		{ F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0,
4327 			"Invalid QID or header request by IDMA" },
4328 		{ F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" },
4329 		{ F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" },
4330 		{ F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" },
4331 		{ F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" },
4332 		{ F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" },
4333 		{ F_ERR_TIMER_ABOVE_MAX_QID,
4334 			"SGE GTS with timer 0-5 for IQID > 1023" },
4335 		{ F_ERR_CPL_EXCEED_IQE_SIZE,
4336 			"SGE received CPL exceeding IQE size" },
4337 		{ F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" },
4338 		{ F_ERR_ITP_TIME_PAUSED, "SGE ITP error" },
4339 		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" },
4340 		{ F_ERR_DROPPED_DB, "SGE DB dropped" },
4341 		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
4342 			"SGE IQID > 1023 received CPL for FL" },
4343 		{ F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4344 			F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" },
4345 		{ F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" },
4346 		{ F_ERR_ING_CTXT_PRIO,
4347 			"Ingress context manager priority user error" },
4348 		{ F_ERR_EGR_CTXT_PRIO,
4349 			"Egress context manager priority user error" },
4350 		{ F_DBP_TBUF_FULL, "SGE DBP tbuf full" },
4351 		{ F_FATAL_WRE_LEN,
4352 			"SGE WRE packet less than advertized length" },
4353 		{ F_REG_ADDRESS_ERR, "Undefined SGE register accessed" },
4354 		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" },
4355 		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID" },
4356 		{ 0x0000000f, "SGE context access for invalid queue" },
4357 		{ 0 }
4358 	};
4359 	struct intr_info sge_int3_info = {
4360 		.name = "SGE_INT_CAUSE3",
4361 		.cause_reg = A_SGE_INT_CAUSE3,
4362 		.enable_reg = A_SGE_INT_ENABLE3,
4363 		.fatal = F_ERR_CPL_EXCEED_IQE_SIZE,
4364 		.flags = 0,
4365 		.details = NULL,
4366 		.actions = NULL,
4367 	};
4368 	static const struct intr_info sge_int4_info = {
4369 		.name = "SGE_INT_CAUSE4",
4370 		.cause_reg = A_SGE_INT_CAUSE4,
4371 		.enable_reg = A_SGE_INT_ENABLE4,
4372 		.fatal = 0,
4373 		.flags = 0,
4374 		.details = NULL,
4375 		.actions = NULL,
4376 	};
4377 	static const struct intr_info sge_int5_info = {
4378 		.name = "SGE_INT_CAUSE5",
4379 		.cause_reg = A_SGE_INT_CAUSE5,
4380 		.enable_reg = A_SGE_INT_ENABLE5,
4381 		.fatal = 0xffffffff,
4382 		.flags = NONFATAL_IF_DISABLED,
4383 		.details = NULL,
4384 		.actions = NULL,
4385 	};
4386 	static const struct intr_info sge_int6_info = {
4387 		.name = "SGE_INT_CAUSE6",
4388 		.cause_reg = A_SGE_INT_CAUSE6,
4389 		.enable_reg = A_SGE_INT_ENABLE6,
4390 		.fatal = 0,
4391 		.flags = 0,
4392 		.details = NULL,
4393 		.actions = NULL,
4394 	};
4395 
4396 	bool fatal;
4397 	u32 v;
4398 
4399 	if (chip_id(adap) <= CHELSIO_T5) {
4400 		sge_int3_info.details = sge_int3_details;
4401 	} else {
4402 		sge_int3_info.details = t6_sge_int3_details;
4403 	}
4404 
4405 	fatal = false;
4406 	fatal |= t4_handle_intr(adap, &sge_int1_info, 0, verbose);
4407 	fatal |= t4_handle_intr(adap, &sge_int2_info, 0, verbose);
4408 	fatal |= t4_handle_intr(adap, &sge_int3_info, 0, verbose);
4409 	fatal |= t4_handle_intr(adap, &sge_int4_info, 0, verbose);
4410 	if (chip_id(adap) >= CHELSIO_T5)
4411 		fatal |= t4_handle_intr(adap, &sge_int5_info, 0, verbose);
4412 	if (chip_id(adap) >= CHELSIO_T6)
4413 		fatal |= t4_handle_intr(adap, &sge_int6_info, 0, verbose);
4414 
4415 	v = t4_read_reg(adap, A_SGE_ERROR_STATS);
4416 	if (v & F_ERROR_QID_VALID) {
4417 		CH_ERR(adap, "SGE error for QID %u\n", G_ERROR_QID(v));
4418 		if (v & F_UNCAPTURED_ERROR)
4419 			CH_ERR(adap, "SGE UNCAPTURED_ERROR set (clearing)\n");
4420 		t4_write_reg(adap, A_SGE_ERROR_STATS,
4421 		    F_ERROR_QID_VALID | F_UNCAPTURED_ERROR);
4422 	}
4423 
4424 	return (fatal);
4425 }
4426 
4427 /*
4428  * CIM interrupt handler.
4429  */
4430 static bool cim_intr_handler(struct adapter *adap, int arg, bool verbose)
4431 {
4432 	static const struct intr_action cim_host_intr_actions[] = {
4433 		{ F_TIMER0INT, 0, t4_os_dump_cimla },
4434 		{ 0 },
4435 	};
4436 	static const struct intr_details cim_host_intr_details[] = {
4437 		/* T6+ */
4438 		{ F_PCIE2CIMINTFPARERR, "CIM IBQ PCIe interface parity error" },
4439 
4440 		/* T5+ */
4441 		{ F_MA_CIM_INTFPERR, "MA2CIM interface parity error" },
4442 		{ F_PLCIM_MSTRSPDATAPARERR,
4443 			"PL2CIM master response data parity error" },
4444 		{ F_NCSI2CIMINTFPARERR, "CIM IBQ NC-SI interface parity error" },
4445 		{ F_SGE2CIMINTFPARERR, "CIM IBQ SGE interface parity error" },
4446 		{ F_ULP2CIMINTFPARERR, "CIM IBQ ULP_TX interface parity error" },
4447 		{ F_TP2CIMINTFPARERR, "CIM IBQ TP interface parity error" },
4448 		{ F_OBQSGERX1PARERR, "CIM OBQ SGE1_RX parity error" },
4449 		{ F_OBQSGERX0PARERR, "CIM OBQ SGE0_RX parity error" },
4450 
4451 		/* T4+ */
4452 		{ F_TIEQOUTPARERRINT, "CIM TIEQ outgoing FIFO parity error" },
4453 		{ F_TIEQINPARERRINT, "CIM TIEQ incoming FIFO parity error" },
4454 		{ F_MBHOSTPARERR, "CIM mailbox host read parity error" },
4455 		{ F_MBUPPARERR, "CIM mailbox uP parity error" },
4456 		{ F_IBQTP0PARERR, "CIM IBQ TP0 parity error" },
4457 		{ F_IBQTP1PARERR, "CIM IBQ TP1 parity error" },
4458 		{ F_IBQULPPARERR, "CIM IBQ ULP parity error" },
4459 		{ F_IBQSGELOPARERR, "CIM IBQ SGE_LO parity error" },
4460 		{ F_IBQSGEHIPARERR | F_IBQPCIEPARERR,	/* same bit */
4461 			"CIM IBQ PCIe/SGE_HI parity error" },
4462 		{ F_IBQNCSIPARERR, "CIM IBQ NC-SI parity error" },
4463 		{ F_OBQULP0PARERR, "CIM OBQ ULP0 parity error" },
4464 		{ F_OBQULP1PARERR, "CIM OBQ ULP1 parity error" },
4465 		{ F_OBQULP2PARERR, "CIM OBQ ULP2 parity error" },
4466 		{ F_OBQULP3PARERR, "CIM OBQ ULP3 parity error" },
4467 		{ F_OBQSGEPARERR, "CIM OBQ SGE parity error" },
4468 		{ F_OBQNCSIPARERR, "CIM OBQ NC-SI parity error" },
4469 		{ F_TIMER1INT, "CIM TIMER0 interrupt" },
4470 		{ F_TIMER0INT, "CIM TIMER0 interrupt" },
4471 		{ F_PREFDROPINT, "CIM control register prefetch drop" },
4472 		{ 0}
4473 	};
4474 	static const struct intr_info cim_host_intr_info = {
4475 		.name = "CIM_HOST_INT_CAUSE",
4476 		.cause_reg = A_CIM_HOST_INT_CAUSE,
4477 		.enable_reg = A_CIM_HOST_INT_ENABLE,
4478 		.fatal = 0x007fffe6,
4479 		.flags = NONFATAL_IF_DISABLED,
4480 		.details = cim_host_intr_details,
4481 		.actions = cim_host_intr_actions,
4482 	};
4483 	static const struct intr_details cim_host_upacc_intr_details[] = {
4484 		{ F_EEPROMWRINT, "CIM EEPROM came out of busy state" },
4485 		{ F_TIMEOUTMAINT, "CIM PIF MA timeout" },
4486 		{ F_TIMEOUTINT, "CIM PIF timeout" },
4487 		{ F_RSPOVRLOOKUPINT, "CIM response FIFO overwrite" },
4488 		{ F_REQOVRLOOKUPINT, "CIM request FIFO overwrite" },
4489 		{ F_BLKWRPLINT, "CIM block write to PL space" },
4490 		{ F_BLKRDPLINT, "CIM block read from PL space" },
4491 		{ F_SGLWRPLINT,
4492 			"CIM single write to PL space with illegal BEs" },
4493 		{ F_SGLRDPLINT,
4494 			"CIM single read from PL space with illegal BEs" },
4495 		{ F_BLKWRCTLINT, "CIM block write to CTL space" },
4496 		{ F_BLKRDCTLINT, "CIM block read from CTL space" },
4497 		{ F_SGLWRCTLINT,
4498 			"CIM single write to CTL space with illegal BEs" },
4499 		{ F_SGLRDCTLINT,
4500 			"CIM single read from CTL space with illegal BEs" },
4501 		{ F_BLKWREEPROMINT, "CIM block write to EEPROM space" },
4502 		{ F_BLKRDEEPROMINT, "CIM block read from EEPROM space" },
4503 		{ F_SGLWREEPROMINT,
4504 			"CIM single write to EEPROM space with illegal BEs" },
4505 		{ F_SGLRDEEPROMINT,
4506 			"CIM single read from EEPROM space with illegal BEs" },
4507 		{ F_BLKWRFLASHINT, "CIM block write to flash space" },
4508 		{ F_BLKRDFLASHINT, "CIM block read from flash space" },
4509 		{ F_SGLWRFLASHINT, "CIM single write to flash space" },
4510 		{ F_SGLRDFLASHINT,
4511 			"CIM single read from flash space with illegal BEs" },
4512 		{ F_BLKWRBOOTINT, "CIM block write to boot space" },
4513 		{ F_BLKRDBOOTINT, "CIM block read from boot space" },
4514 		{ F_SGLWRBOOTINT, "CIM single write to boot space" },
4515 		{ F_SGLRDBOOTINT,
4516 			"CIM single read from boot space with illegal BEs" },
4517 		{ F_ILLWRBEINT, "CIM illegal write BEs" },
4518 		{ F_ILLRDBEINT, "CIM illegal read BEs" },
4519 		{ F_ILLRDINT, "CIM illegal read" },
4520 		{ F_ILLWRINT, "CIM illegal write" },
4521 		{ F_ILLTRANSINT, "CIM illegal transaction" },
4522 		{ F_RSVDSPACEINT, "CIM reserved space access" },
4523 		{0}
4524 	};
4525 	static const struct intr_info cim_host_upacc_intr_info = {
4526 		.name = "CIM_HOST_UPACC_INT_CAUSE",
4527 		.cause_reg = A_CIM_HOST_UPACC_INT_CAUSE,
4528 		.enable_reg = A_CIM_HOST_UPACC_INT_ENABLE,
4529 		.fatal = 0x3fffeeff,
4530 		.flags = NONFATAL_IF_DISABLED,
4531 		.details = cim_host_upacc_intr_details,
4532 		.actions = NULL,
4533 	};
4534 	static const struct intr_info cim_pf_host_intr_info = {
4535 		.name = "CIM_PF_HOST_INT_CAUSE",
4536 		.cause_reg = MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
4537 		.enable_reg = MYPF_REG(A_CIM_PF_HOST_INT_ENABLE),
4538 		.fatal = 0,
4539 		.flags = 0,
4540 		.details = NULL,
4541 		.actions = NULL,
4542 	};
4543 	u32 val, fw_err;
4544 	bool fatal;
4545 
4546 	fw_err = t4_read_reg(adap, A_PCIE_FW);
4547 	if (fw_err & F_PCIE_FW_ERR)
4548 		t4_report_fw_error(adap);
4549 
4550 	/*
4551 	 * When the Firmware detects an internal error which normally wouldn't
4552 	 * raise a Host Interrupt, it forces a CIM Timer0 interrupt in order
4553 	 * to make sure the Host sees the Firmware Crash.  So if we have a
4554 	 * Timer0 interrupt and don't see a Firmware Crash, ignore the Timer0
4555 	 * interrupt.
4556 	 */
4557 	val = t4_read_reg(adap, A_CIM_HOST_INT_CAUSE);
4558 	if (val & F_TIMER0INT && (!(fw_err & F_PCIE_FW_ERR) ||
4559 	    G_PCIE_FW_EVAL(fw_err) != PCIE_FW_EVAL_CRASH)) {
4560 		t4_write_reg(adap, A_CIM_HOST_INT_CAUSE, F_TIMER0INT);
4561 	}
4562 
4563 	fatal = false;
4564 	fatal |= t4_handle_intr(adap, &cim_host_intr_info, 0, verbose);
4565 	fatal |= t4_handle_intr(adap, &cim_host_upacc_intr_info, 0, verbose);
4566 	fatal |= t4_handle_intr(adap, &cim_pf_host_intr_info, 0, verbose);
4567 
4568 	return (fatal);
4569 }
4570 
4571 /*
4572  * ULP RX interrupt handler.
4573  */
4574 static bool ulprx_intr_handler(struct adapter *adap, int arg, bool verbose)
4575 {
4576 	static const struct intr_details ulprx_intr_details[] = {
4577 		/* T5+ */
4578 		{ F_SE_CNT_MISMATCH_1, "ULPRX SE count mismatch in channel 1" },
4579 		{ F_SE_CNT_MISMATCH_0, "ULPRX SE count mismatch in channel 0" },
4580 
4581 		/* T4+ */
4582 		{ F_CAUSE_CTX_1, "ULPRX channel 1 context error" },
4583 		{ F_CAUSE_CTX_0, "ULPRX channel 0 context error" },
4584 		{ 0x007fffff, "ULPRX parity error" },
4585 		{ 0 }
4586 	};
4587 	static const struct intr_info ulprx_intr_info = {
4588 		.name = "ULP_RX_INT_CAUSE",
4589 		.cause_reg = A_ULP_RX_INT_CAUSE,
4590 		.enable_reg = A_ULP_RX_INT_ENABLE,
4591 		.fatal = 0x07ffffff,
4592 		.flags = NONFATAL_IF_DISABLED,
4593 		.details = ulprx_intr_details,
4594 		.actions = NULL,
4595 	};
4596 	static const struct intr_info ulprx_intr2_info = {
4597 		.name = "ULP_RX_INT_CAUSE_2",
4598 		.cause_reg = A_ULP_RX_INT_CAUSE_2,
4599 		.enable_reg = A_ULP_RX_INT_ENABLE_2,
4600 		.fatal = 0,
4601 		.flags = 0,
4602 		.details = NULL,
4603 		.actions = NULL,
4604 	};
4605 	bool fatal = false;
4606 
4607 	fatal |= t4_handle_intr(adap, &ulprx_intr_info, 0, verbose);
4608 	fatal |= t4_handle_intr(adap, &ulprx_intr2_info, 0, verbose);
4609 
4610 	return (fatal);
4611 }
4612 
4613 /*
4614  * ULP TX interrupt handler.
4615  */
4616 static bool ulptx_intr_handler(struct adapter *adap, int arg, bool verbose)
4617 {
4618 	static const struct intr_details ulptx_intr_details[] = {
4619 		{ F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds" },
4620 		{ F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds" },
4621 		{ F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds" },
4622 		{ F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds" },
4623 		{ 0x0fffffff, "ULPTX parity error" },
4624 		{ 0 }
4625 	};
4626 	static const struct intr_info ulptx_intr_info = {
4627 		.name = "ULP_TX_INT_CAUSE",
4628 		.cause_reg = A_ULP_TX_INT_CAUSE,
4629 		.enable_reg = A_ULP_TX_INT_ENABLE,
4630 		.fatal = 0x0fffffff,
4631 		.flags = NONFATAL_IF_DISABLED,
4632 		.details = ulptx_intr_details,
4633 		.actions = NULL,
4634 	};
4635 	static const struct intr_info ulptx_intr2_info = {
4636 		.name = "ULP_TX_INT_CAUSE_2",
4637 		.cause_reg = A_ULP_TX_INT_CAUSE_2,
4638 		.enable_reg = A_ULP_TX_INT_ENABLE_2,
4639 		.fatal = 0xf0,
4640 		.flags = NONFATAL_IF_DISABLED,
4641 		.details = NULL,
4642 		.actions = NULL,
4643 	};
4644 	bool fatal = false;
4645 
4646 	fatal |= t4_handle_intr(adap, &ulptx_intr_info, 0, verbose);
4647 	fatal |= t4_handle_intr(adap, &ulptx_intr2_info, 0, verbose);
4648 
4649 	return (fatal);
4650 }
4651 
4652 static bool pmtx_dump_dbg_stats(struct adapter *adap, int arg, bool verbose)
4653 {
4654 	int i;
4655 	u32 data[17];
4656 
4657 	t4_read_indirect(adap, A_PM_TX_DBG_CTRL, A_PM_TX_DBG_DATA, &data[0],
4658 	    ARRAY_SIZE(data), A_PM_TX_DBG_STAT0);
4659 	for (i = 0; i < ARRAY_SIZE(data); i++) {
4660 		CH_ALERT(adap, "  - PM_TX_DBG_STAT%u (0x%x) = 0x%08x\n", i,
4661 		    A_PM_TX_DBG_STAT0 + i, data[i]);
4662 	}
4663 
4664 	return (false);
4665 }
4666 
4667 /*
4668  * PM TX interrupt handler.
4669  */
4670 static bool pmtx_intr_handler(struct adapter *adap, int arg, bool verbose)
4671 {
4672 	static const struct intr_action pmtx_intr_actions[] = {
4673 		{ 0xffffffff, 0, pmtx_dump_dbg_stats },
4674 		{ 0 },
4675 	};
4676 	static const struct intr_details pmtx_intr_details[] = {
4677 		{ F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large" },
4678 		{ F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large" },
4679 		{ F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large" },
4680 		{ F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd" },
4681 		{ 0x0f000000, "PMTX icspi FIFO2X Rx framing error" },
4682 		{ 0x00f00000, "PMTX icspi FIFO Rx framing error" },
4683 		{ 0x000f0000, "PMTX icspi FIFO Tx framing error" },
4684 		{ 0x0000f000, "PMTX oespi FIFO Rx framing error" },
4685 		{ 0x00000f00, "PMTX oespi FIFO Tx framing error" },
4686 		{ 0x000000f0, "PMTX oespi FIFO2X Tx framing error" },
4687 		{ F_OESPI_PAR_ERROR, "PMTX oespi parity error" },
4688 		{ F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error" },
4689 		{ F_ICSPI_PAR_ERROR, "PMTX icspi parity error" },
4690 		{ F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error" },
4691 		{ 0 }
4692 	};
4693 	static const struct intr_info pmtx_intr_info = {
4694 		.name = "PM_TX_INT_CAUSE",
4695 		.cause_reg = A_PM_TX_INT_CAUSE,
4696 		.enable_reg = A_PM_TX_INT_ENABLE,
4697 		.fatal = 0xffffffff,
4698 		.flags = 0,
4699 		.details = pmtx_intr_details,
4700 		.actions = pmtx_intr_actions,
4701 	};
4702 
4703 	return (t4_handle_intr(adap, &pmtx_intr_info, 0, verbose));
4704 }
4705 
4706 /*
4707  * PM RX interrupt handler.
4708  */
4709 static bool pmrx_intr_handler(struct adapter *adap, int arg, bool verbose)
4710 {
4711 	static const struct intr_details pmrx_intr_details[] = {
4712 		/* T6+ */
4713 		{ 0x18000000, "PMRX ospi overflow" },
4714 		{ F_MA_INTF_SDC_ERR, "PMRX MA interface SDC parity error" },
4715 		{ F_BUNDLE_LEN_PARERR, "PMRX bundle len FIFO parity error" },
4716 		{ F_BUNDLE_LEN_OVFL, "PMRX bundle len FIFO overflow" },
4717 		{ F_SDC_ERR, "PMRX SDC error" },
4718 
4719 		/* T4+ */
4720 		{ F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd" },
4721 		{ 0x003c0000, "PMRX iespi FIFO2X Rx framing error" },
4722 		{ 0x0003c000, "PMRX iespi Rx framing error" },
4723 		{ 0x00003c00, "PMRX iespi Tx framing error" },
4724 		{ 0x00000300, "PMRX ocspi Rx framing error" },
4725 		{ 0x000000c0, "PMRX ocspi Tx framing error" },
4726 		{ 0x00000030, "PMRX ocspi FIFO2X Tx framing error" },
4727 		{ F_OCSPI_PAR_ERROR, "PMRX ocspi parity error" },
4728 		{ F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error" },
4729 		{ F_IESPI_PAR_ERROR, "PMRX iespi parity error" },
4730 		{ F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error"},
4731 		{ 0 }
4732 	};
4733 	static const struct intr_info pmrx_intr_info = {
4734 		.name = "PM_RX_INT_CAUSE",
4735 		.cause_reg = A_PM_RX_INT_CAUSE,
4736 		.enable_reg = A_PM_RX_INT_ENABLE,
4737 		.fatal = 0x1fffffff,
4738 		.flags = NONFATAL_IF_DISABLED,
4739 		.details = pmrx_intr_details,
4740 		.actions = NULL,
4741 	};
4742 
4743 	return (t4_handle_intr(adap, &pmrx_intr_info, 0, verbose));
4744 }
4745 
4746 /*
4747  * CPL switch interrupt handler.
4748  */
4749 static bool cplsw_intr_handler(struct adapter *adap, int arg, bool verbose)
4750 {
4751 	static const struct intr_details cplsw_intr_details[] = {
4752 		/* T5+ */
4753 		{ F_PERR_CPL_128TO128_1, "CPLSW 128TO128 FIFO1 parity error" },
4754 		{ F_PERR_CPL_128TO128_0, "CPLSW 128TO128 FIFO0 parity error" },
4755 
4756 		/* T4+ */
4757 		{ F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error" },
4758 		{ F_CIM_OVFL_ERROR, "CPLSW CIM overflow" },
4759 		{ F_TP_FRAMING_ERROR, "CPLSW TP framing error" },
4760 		{ F_SGE_FRAMING_ERROR, "CPLSW SGE framing error" },
4761 		{ F_CIM_FRAMING_ERROR, "CPLSW CIM framing error" },
4762 		{ F_ZERO_SWITCH_ERROR, "CPLSW no-switch error" },
4763 		{ 0 }
4764 	};
4765 	static const struct intr_info cplsw_intr_info = {
4766 		.name = "CPL_INTR_CAUSE",
4767 		.cause_reg = A_CPL_INTR_CAUSE,
4768 		.enable_reg = A_CPL_INTR_ENABLE,
4769 		.fatal = 0xff,
4770 		.flags = NONFATAL_IF_DISABLED,
4771 		.details = cplsw_intr_details,
4772 		.actions = NULL,
4773 	};
4774 
4775 	return (t4_handle_intr(adap, &cplsw_intr_info, 0, verbose));
4776 }
4777 
4778 #define T4_LE_FATAL_MASK (F_PARITYERR | F_UNKNOWNCMD | F_REQQPARERR)
4779 #define T5_LE_FATAL_MASK (T4_LE_FATAL_MASK | F_VFPARERR)
4780 #define T6_LE_PERRCRC_MASK (F_PIPELINEERR | F_CLIPTCAMACCFAIL | \
4781     F_SRVSRAMACCFAIL | F_CLCAMCRCPARERR | F_CLCAMINTPERR | F_SSRAMINTPERR | \
4782     F_SRVSRAMPERR | F_VFSRAMPERR | F_TCAMINTPERR | F_TCAMCRCERR | \
4783     F_HASHTBLMEMACCERR | F_MAIFWRINTPERR | F_HASHTBLMEMCRCERR)
4784 #define T6_LE_FATAL_MASK (T6_LE_PERRCRC_MASK | F_T6_UNKNOWNCMD | \
4785     F_TCAMACCFAIL | F_HASHTBLACCFAIL | F_CMDTIDERR | F_CMDPRSRINTERR | \
4786     F_TOTCNTERR | F_CLCAMFIFOERR | F_CLIPSUBERR)
4787 
4788 /*
4789  * LE interrupt handler.
4790  */
4791 static bool le_intr_handler(struct adapter *adap, int arg, bool verbose)
4792 {
4793 	static const struct intr_details le_intr_details[] = {
4794 		{ F_REQQPARERR, "LE request queue parity error" },
4795 		{ F_UNKNOWNCMD, "LE unknown command" },
4796 		{ F_ACTRGNFULL, "LE active region full" },
4797 		{ F_PARITYERR, "LE parity error" },
4798 		{ F_LIPMISS, "LE LIP miss" },
4799 		{ F_LIP0, "LE 0 LIP error" },
4800 		{ 0 }
4801 	};
4802 	static const struct intr_details t6_le_intr_details[] = {
4803 		{ F_CLIPSUBERR, "LE CLIP CAM reverse substitution error" },
4804 		{ F_CLCAMFIFOERR, "LE CLIP CAM internal FIFO error" },
4805 		{ F_CTCAMINVLDENT, "Invalid IPv6 CLIP TCAM entry" },
4806 		{ F_TCAMINVLDENT, "Invalid IPv6 TCAM entry" },
4807 		{ F_TOTCNTERR, "LE total active < TCAM count" },
4808 		{ F_CMDPRSRINTERR, "LE internal error in parser" },
4809 		{ F_CMDTIDERR, "Incorrect tid in LE command" },
4810 		{ F_T6_ACTRGNFULL, "LE active region full" },
4811 		{ F_T6_ACTCNTIPV6TZERO, "LE IPv6 active open TCAM counter -ve" },
4812 		{ F_T6_ACTCNTIPV4TZERO, "LE IPv4 active open TCAM counter -ve" },
4813 		{ F_T6_ACTCNTIPV6ZERO, "LE IPv6 active open counter -ve" },
4814 		{ F_T6_ACTCNTIPV4ZERO, "LE IPv4 active open counter -ve" },
4815 		{ F_HASHTBLACCFAIL, "Hash table read error (proto conflict)" },
4816 		{ F_TCAMACCFAIL, "LE TCAM access failure" },
4817 		{ F_T6_UNKNOWNCMD, "LE unknown command" },
4818 		{ F_T6_LIP0, "LE found 0 LIP during CLIP substitution" },
4819 		{ F_T6_LIPMISS, "LE CLIP lookup miss" },
4820 		{ T6_LE_PERRCRC_MASK, "LE parity/CRC error" },
4821 		{ 0 }
4822 	};
4823 	struct intr_info le_intr_info = {
4824 		.name = "LE_DB_INT_CAUSE",
4825 		.cause_reg = A_LE_DB_INT_CAUSE,
4826 		.enable_reg = A_LE_DB_INT_ENABLE,
4827 		.fatal = 0,
4828 		.flags = NONFATAL_IF_DISABLED,
4829 		.details = NULL,
4830 		.actions = NULL,
4831 	};
4832 
4833 	if (chip_id(adap) <= CHELSIO_T5) {
4834 		le_intr_info.details = le_intr_details;
4835 		le_intr_info.fatal = T5_LE_FATAL_MASK;
4836 	} else {
4837 		le_intr_info.details = t6_le_intr_details;
4838 		le_intr_info.fatal = T6_LE_FATAL_MASK;
4839 	}
4840 
4841 	return (t4_handle_intr(adap, &le_intr_info, 0, verbose));
4842 }
4843 
4844 /*
4845  * MPS interrupt handler.
4846  */
4847 static bool mps_intr_handler(struct adapter *adap, int arg, bool verbose)
4848 {
4849 	static const struct intr_details mps_rx_perr_intr_details[] = {
4850 		{ 0xffffffff, "MPS Rx parity error" },
4851 		{ 0 }
4852 	};
4853 	static const struct intr_info mps_rx_perr_intr_info = {
4854 		.name = "MPS_RX_PERR_INT_CAUSE",
4855 		.cause_reg = A_MPS_RX_PERR_INT_CAUSE,
4856 		.enable_reg = A_MPS_RX_PERR_INT_ENABLE,
4857 		.fatal = 0xffffffff,
4858 		.flags = NONFATAL_IF_DISABLED,
4859 		.details = mps_rx_perr_intr_details,
4860 		.actions = NULL,
4861 	};
4862 	static const struct intr_details mps_tx_intr_details[] = {
4863 		{ F_PORTERR, "MPS Tx destination port is disabled" },
4864 		{ F_FRMERR, "MPS Tx framing error" },
4865 		{ F_SECNTERR, "MPS Tx SOP/EOP error" },
4866 		{ F_BUBBLE, "MPS Tx underflow" },
4867 		{ V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error" },
4868 		{ V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error" },
4869 		{ F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error" },
4870 		{ V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error" },
4871 		{ 0 }
4872 	};
4873 	static const struct intr_info mps_tx_intr_info = {
4874 		.name = "MPS_TX_INT_CAUSE",
4875 		.cause_reg = A_MPS_TX_INT_CAUSE,
4876 		.enable_reg = A_MPS_TX_INT_ENABLE,
4877 		.fatal = 0x1ffff,
4878 		.flags = NONFATAL_IF_DISABLED,
4879 		.details = mps_tx_intr_details,
4880 		.actions = NULL,
4881 	};
4882 	static const struct intr_details mps_trc_intr_details[] = {
4883 		{ F_MISCPERR, "MPS TRC misc parity error" },
4884 		{ V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error" },
4885 		{ V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error" },
4886 		{ 0 }
4887 	};
4888 	static const struct intr_info mps_trc_intr_info = {
4889 		.name = "MPS_TRC_INT_CAUSE",
4890 		.cause_reg = A_MPS_TRC_INT_CAUSE,
4891 		.enable_reg = A_MPS_TRC_INT_ENABLE,
4892 		.fatal = F_MISCPERR | V_PKTFIFO(M_PKTFIFO) | V_FILTMEM(M_FILTMEM),
4893 		.flags = 0,
4894 		.details = mps_trc_intr_details,
4895 		.actions = NULL,
4896 	};
4897 	static const struct intr_details mps_stat_sram_intr_details[] = {
4898 		{ 0xffffffff, "MPS statistics SRAM parity error" },
4899 		{ 0 }
4900 	};
4901 	static const struct intr_info mps_stat_sram_intr_info = {
4902 		.name = "MPS_STAT_PERR_INT_CAUSE_SRAM",
4903 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM,
4904 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM,
4905 		.fatal = 0x1fffffff,
4906 		.flags = NONFATAL_IF_DISABLED,
4907 		.details = mps_stat_sram_intr_details,
4908 		.actions = NULL,
4909 	};
4910 	static const struct intr_details mps_stat_tx_intr_details[] = {
4911 		{ 0xffffff, "MPS statistics Tx FIFO parity error" },
4912 		{ 0 }
4913 	};
4914 	static const struct intr_info mps_stat_tx_intr_info = {
4915 		.name = "MPS_STAT_PERR_INT_CAUSE_TX_FIFO",
4916 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
4917 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_TX_FIFO,
4918 		.fatal =  0xffffff,
4919 		.flags = NONFATAL_IF_DISABLED,
4920 		.details = mps_stat_tx_intr_details,
4921 		.actions = NULL,
4922 	};
4923 	static const struct intr_details mps_stat_rx_intr_details[] = {
4924 		{ 0xffffff, "MPS statistics Rx FIFO parity error" },
4925 		{ 0 }
4926 	};
4927 	static const struct intr_info mps_stat_rx_intr_info = {
4928 		.name = "MPS_STAT_PERR_INT_CAUSE_RX_FIFO",
4929 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
4930 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_RX_FIFO,
4931 		.fatal =  0xffffff,
4932 		.flags = 0,
4933 		.details = mps_stat_rx_intr_details,
4934 		.actions = NULL,
4935 	};
4936 	static const struct intr_details mps_cls_intr_details[] = {
4937 		{ F_HASHSRAM, "MPS hash SRAM parity error" },
4938 		{ F_MATCHTCAM, "MPS match TCAM parity error" },
4939 		{ F_MATCHSRAM, "MPS match SRAM parity error" },
4940 		{ 0 }
4941 	};
4942 	static const struct intr_info mps_cls_intr_info = {
4943 		.name = "MPS_CLS_INT_CAUSE",
4944 		.cause_reg = A_MPS_CLS_INT_CAUSE,
4945 		.enable_reg = A_MPS_CLS_INT_ENABLE,
4946 		.fatal =  F_MATCHSRAM | F_MATCHTCAM | F_HASHSRAM,
4947 		.flags = 0,
4948 		.details = mps_cls_intr_details,
4949 		.actions = NULL,
4950 	};
4951 	static const struct intr_details mps_stat_sram1_intr_details[] = {
4952 		{ 0xff, "MPS statistics SRAM1 parity error" },
4953 		{ 0 }
4954 	};
4955 	static const struct intr_info mps_stat_sram1_intr_info = {
4956 		.name = "MPS_STAT_PERR_INT_CAUSE_SRAM1",
4957 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM1,
4958 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM1,
4959 		.fatal = 0xff,
4960 		.flags = 0,
4961 		.details = mps_stat_sram1_intr_details,
4962 		.actions = NULL,
4963 	};
4964 
4965 	bool fatal;
4966 
4967 	fatal = false;
4968 	fatal |= t4_handle_intr(adap, &mps_rx_perr_intr_info, 0, verbose);
4969 	fatal |= t4_handle_intr(adap, &mps_tx_intr_info, 0, verbose);
4970 	fatal |= t4_handle_intr(adap, &mps_trc_intr_info, 0, verbose);
4971 	fatal |= t4_handle_intr(adap, &mps_stat_sram_intr_info, 0, verbose);
4972 	fatal |= t4_handle_intr(adap, &mps_stat_tx_intr_info, 0, verbose);
4973 	fatal |= t4_handle_intr(adap, &mps_stat_rx_intr_info, 0, verbose);
4974 	fatal |= t4_handle_intr(adap, &mps_cls_intr_info, 0, verbose);
4975 	if (chip_id(adap) > CHELSIO_T4) {
4976 		fatal |= t4_handle_intr(adap, &mps_stat_sram1_intr_info, 0,
4977 		    verbose);
4978 	}
4979 
4980 	t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff);
4981 	t4_read_reg(adap, A_MPS_INT_CAUSE);	/* flush */
4982 
4983 	return (fatal);
4984 
4985 }
4986 
4987 /*
4988  * EDC/MC interrupt handler.
4989  */
4990 static bool mem_intr_handler(struct adapter *adap, int idx, bool verbose)
4991 {
4992 	static const char name[4][5] = { "EDC0", "EDC1", "MC0", "MC1" };
4993 	unsigned int count_reg, v;
4994 	static const struct intr_details mem_intr_details[] = {
4995 		{ F_ECC_UE_INT_CAUSE, "Uncorrectable ECC data error(s)" },
4996 		{ F_ECC_CE_INT_CAUSE, "Correctable ECC data error(s)" },
4997 		{ F_PERR_INT_CAUSE, "FIFO parity error" },
4998 		{ 0 }
4999 	};
5000 	struct intr_info ii = {
5001 		.fatal = F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE,
5002 		.details = mem_intr_details,
5003 		.flags = 0,
5004 		.actions = NULL,
5005 	};
5006 	bool fatal;
5007 
5008 	switch (idx) {
5009 	case MEM_EDC0:
5010 		ii.name = "EDC0_INT_CAUSE";
5011 		ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 0);
5012 		ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 0);
5013 		count_reg = EDC_REG(A_EDC_ECC_STATUS, 0);
5014 		break;
5015 	case MEM_EDC1:
5016 		ii.name = "EDC1_INT_CAUSE";
5017 		ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 1);
5018 		ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 1);
5019 		count_reg = EDC_REG(A_EDC_ECC_STATUS, 1);
5020 		break;
5021 	case MEM_MC0:
5022 		ii.name = "MC0_INT_CAUSE";
5023 		if (is_t4(adap)) {
5024 			ii.cause_reg = A_MC_INT_CAUSE;
5025 			ii.enable_reg = A_MC_INT_ENABLE;
5026 			count_reg = A_MC_ECC_STATUS;
5027 		} else {
5028 			ii.cause_reg = A_MC_P_INT_CAUSE;
5029 			ii.enable_reg = A_MC_P_INT_ENABLE;
5030 			count_reg = A_MC_P_ECC_STATUS;
5031 		}
5032 		break;
5033 	case MEM_MC1:
5034 		ii.name = "MC1_INT_CAUSE";
5035 		ii.cause_reg = MC_REG(A_MC_P_INT_CAUSE, 1);
5036 		ii.enable_reg = MC_REG(A_MC_P_INT_ENABLE, 1);
5037 		count_reg = MC_REG(A_MC_P_ECC_STATUS, 1);
5038 		break;
5039 	}
5040 
5041 	fatal = t4_handle_intr(adap, &ii, 0, verbose);
5042 
5043 	v = t4_read_reg(adap, count_reg);
5044 	if (v != 0) {
5045 		if (G_ECC_UECNT(v) != 0) {
5046 			CH_ALERT(adap,
5047 			    "%s: %u uncorrectable ECC data error(s)\n",
5048 			    name[idx], G_ECC_UECNT(v));
5049 		}
5050 		if (G_ECC_CECNT(v) != 0) {
5051 			if (idx <= MEM_EDC1)
5052 				t4_edc_err_read(adap, idx);
5053 			CH_WARN_RATELIMIT(adap,
5054 			    "%s: %u correctable ECC data error(s)\n",
5055 			    name[idx], G_ECC_CECNT(v));
5056 		}
5057 		t4_write_reg(adap, count_reg, 0xffffffff);
5058 	}
5059 
5060 	return (fatal);
5061 }
5062 
5063 static bool ma_wrap_status(struct adapter *adap, int arg, bool verbose)
5064 {
5065 	u32 v;
5066 
5067 	v = t4_read_reg(adap, A_MA_INT_WRAP_STATUS);
5068 	CH_ALERT(adap,
5069 	    "MA address wrap-around error by client %u to address %#x\n",
5070 	    G_MEM_WRAP_CLIENT_NUM(v), G_MEM_WRAP_ADDRESS(v) << 4);
5071 	t4_write_reg(adap, A_MA_INT_WRAP_STATUS, v);
5072 
5073 	return (false);
5074 }
5075 
5076 
5077 /*
5078  * MA interrupt handler.
5079  */
5080 static bool ma_intr_handler(struct adapter *adap, int arg, bool verbose)
5081 {
5082 	static const struct intr_action ma_intr_actions[] = {
5083 		{ F_MEM_WRAP_INT_CAUSE, 0, ma_wrap_status },
5084 		{ 0 },
5085 	};
5086 	static const struct intr_info ma_intr_info = {
5087 		.name = "MA_INT_CAUSE",
5088 		.cause_reg = A_MA_INT_CAUSE,
5089 		.enable_reg = A_MA_INT_ENABLE,
5090 		.fatal = F_MEM_PERR_INT_CAUSE | F_MEM_TO_INT_CAUSE,
5091 		.flags = NONFATAL_IF_DISABLED,
5092 		.details = NULL,
5093 		.actions = ma_intr_actions,
5094 	};
5095 	static const struct intr_info ma_perr_status1 = {
5096 		.name = "MA_PARITY_ERROR_STATUS1",
5097 		.cause_reg = A_MA_PARITY_ERROR_STATUS1,
5098 		.enable_reg = A_MA_PARITY_ERROR_ENABLE1,
5099 		.fatal = 0xffffffff,
5100 		.flags = 0,
5101 		.details = NULL,
5102 		.actions = NULL,
5103 	};
5104 	static const struct intr_info ma_perr_status2 = {
5105 		.name = "MA_PARITY_ERROR_STATUS2",
5106 		.cause_reg = A_MA_PARITY_ERROR_STATUS2,
5107 		.enable_reg = A_MA_PARITY_ERROR_ENABLE2,
5108 		.fatal = 0xffffffff,
5109 		.flags = 0,
5110 		.details = NULL,
5111 		.actions = NULL,
5112 	};
5113 	bool fatal;
5114 
5115 	fatal = false;
5116 	fatal |= t4_handle_intr(adap, &ma_intr_info, 0, verbose);
5117 	fatal |= t4_handle_intr(adap, &ma_perr_status1, 0, verbose);
5118 	if (chip_id(adap) > CHELSIO_T4)
5119 		fatal |= t4_handle_intr(adap, &ma_perr_status2, 0, verbose);
5120 
5121 	return (fatal);
5122 }
5123 
5124 /*
5125  * SMB interrupt handler.
5126  */
5127 static bool smb_intr_handler(struct adapter *adap, int arg, bool verbose)
5128 {
5129 	static const struct intr_details smb_intr_details[] = {
5130 		{ F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error" },
5131 		{ F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error" },
5132 		{ F_SLVFIFOPARINT, "SMB slave FIFO parity error" },
5133 		{ 0 }
5134 	};
5135 	static const struct intr_info smb_intr_info = {
5136 		.name = "SMB_INT_CAUSE",
5137 		.cause_reg = A_SMB_INT_CAUSE,
5138 		.enable_reg = A_SMB_INT_ENABLE,
5139 		.fatal = F_SLVFIFOPARINT | F_MSTRXFIFOPARINT | F_MSTTXFIFOPARINT,
5140 		.flags = 0,
5141 		.details = smb_intr_details,
5142 		.actions = NULL,
5143 	};
5144 
5145 	return (t4_handle_intr(adap, &smb_intr_info, 0, verbose));
5146 }
5147 
5148 /*
5149  * NC-SI interrupt handler.
5150  */
5151 static bool ncsi_intr_handler(struct adapter *adap, int arg, bool verbose)
5152 {
5153 	static const struct intr_details ncsi_intr_details[] = {
5154 		{ F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error" },
5155 		{ F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error" },
5156 		{ F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error" },
5157 		{ F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error" },
5158 		{ 0 }
5159 	};
5160 	static const struct intr_info ncsi_intr_info = {
5161 		.name = "NCSI_INT_CAUSE",
5162 		.cause_reg = A_NCSI_INT_CAUSE,
5163 		.enable_reg = A_NCSI_INT_ENABLE,
5164 		.fatal = F_RXFIFO_PRTY_ERR | F_TXFIFO_PRTY_ERR |
5165 		    F_MPS_DM_PRTY_ERR | F_CIM_DM_PRTY_ERR,
5166 		.flags = 0,
5167 		.details = ncsi_intr_details,
5168 		.actions = NULL,
5169 	};
5170 
5171 	return (t4_handle_intr(adap, &ncsi_intr_info, 0, verbose));
5172 }
5173 
5174 /*
5175  * MAC interrupt handler.
5176  */
5177 static bool mac_intr_handler(struct adapter *adap, int port, bool verbose)
5178 {
5179 	static const struct intr_details mac_intr_details[] = {
5180 		{ F_TXFIFO_PRTY_ERR, "MAC Tx FIFO parity error" },
5181 		{ F_RXFIFO_PRTY_ERR, "MAC Rx FIFO parity error" },
5182 		{ 0 }
5183 	};
5184 	char name[32];
5185 	struct intr_info ii;
5186 	bool fatal = false;
5187 
5188 	if (is_t4(adap)) {
5189 		snprintf(name, sizeof(name), "XGMAC_PORT%u_INT_CAUSE", port);
5190 		ii.name = &name[0];
5191 		ii.cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
5192 		ii.enable_reg = PORT_REG(port, A_XGMAC_PORT_INT_EN);
5193 		ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR;
5194 		ii.flags = 0;
5195 		ii.details = mac_intr_details;
5196 		ii.actions = NULL;
5197 	} else {
5198 		snprintf(name, sizeof(name), "MAC_PORT%u_INT_CAUSE", port);
5199 		ii.name = &name[0];
5200 		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
5201 		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_INT_EN);
5202 		ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR;
5203 		ii.flags = 0;
5204 		ii.details = mac_intr_details;
5205 		ii.actions = NULL;
5206 	}
5207 	fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5208 
5209 	if (chip_id(adap) >= CHELSIO_T5) {
5210 		snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE", port);
5211 		ii.name = &name[0];
5212 		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE);
5213 		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN);
5214 		ii.fatal = 0;
5215 		ii.flags = 0;
5216 		ii.details = NULL;
5217 		ii.actions = NULL;
5218 		fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5219 	}
5220 
5221 	if (chip_id(adap) >= CHELSIO_T6) {
5222 		snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE_100G", port);
5223 		ii.name = &name[0];
5224 		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE_100G);
5225 		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN_100G);
5226 		ii.fatal = 0;
5227 		ii.flags = 0;
5228 		ii.details = NULL;
5229 		ii.actions = NULL;
5230 		fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5231 	}
5232 
5233 	return (fatal);
5234 }
5235 
5236 static bool plpl_intr_handler(struct adapter *adap, int arg, bool verbose)
5237 {
5238 	static const struct intr_details plpl_intr_details[] = {
5239 		{ F_FATALPERR, "Fatal parity error" },
5240 		{ F_PERRVFID, "VFID_MAP parity error" },
5241 		{ 0 }
5242 	};
5243 	static const struct intr_info plpl_intr_info = {
5244 		.name = "PL_PL_INT_CAUSE",
5245 		.cause_reg = A_PL_PL_INT_CAUSE,
5246 		.enable_reg = A_PL_PL_INT_ENABLE,
5247 		.fatal = F_FATALPERR | F_PERRVFID,
5248 		.flags = NONFATAL_IF_DISABLED,
5249 		.details = plpl_intr_details,
5250 		.actions = NULL,
5251 	};
5252 
5253 	return (t4_handle_intr(adap, &plpl_intr_info, 0, verbose));
5254 }
5255 
5256 /**
5257  *	t4_slow_intr_handler - control path interrupt handler
5258  *	@adap: the adapter
5259  *	@verbose: increased verbosity, for debug
5260  *
5261  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
5262  *	The designation 'slow' is because it involves register reads, while
5263  *	data interrupts typically don't involve any MMIOs.
5264  */
5265 int t4_slow_intr_handler(struct adapter *adap, bool verbose)
5266 {
5267 	static const struct intr_details pl_intr_details[] = {
5268 		{ F_MC1, "MC1" },
5269 		{ F_UART, "UART" },
5270 		{ F_ULP_TX, "ULP TX" },
5271 		{ F_SGE, "SGE" },
5272 		{ F_HMA, "HMA" },
5273 		{ F_CPL_SWITCH, "CPL Switch" },
5274 		{ F_ULP_RX, "ULP RX" },
5275 		{ F_PM_RX, "PM RX" },
5276 		{ F_PM_TX, "PM TX" },
5277 		{ F_MA, "MA" },
5278 		{ F_TP, "TP" },
5279 		{ F_LE, "LE" },
5280 		{ F_EDC1, "EDC1" },
5281 		{ F_EDC0, "EDC0" },
5282 		{ F_MC, "MC0" },
5283 		{ F_PCIE, "PCIE" },
5284 		{ F_PMU, "PMU" },
5285 		{ F_MAC3, "MAC3" },
5286 		{ F_MAC2, "MAC2" },
5287 		{ F_MAC1, "MAC1" },
5288 		{ F_MAC0, "MAC0" },
5289 		{ F_SMB, "SMB" },
5290 		{ F_SF, "SF" },
5291 		{ F_PL, "PL" },
5292 		{ F_NCSI, "NC-SI" },
5293 		{ F_MPS, "MPS" },
5294 		{ F_MI, "MI" },
5295 		{ F_DBG, "DBG" },
5296 		{ F_I2CM, "I2CM" },
5297 		{ F_CIM, "CIM" },
5298 		{ 0 }
5299 	};
5300 	static const struct intr_info pl_perr_cause = {
5301 		.name = "PL_PERR_CAUSE",
5302 		.cause_reg = A_PL_PERR_CAUSE,
5303 		.enable_reg = A_PL_PERR_ENABLE,
5304 		.fatal = 0xffffffff,
5305 		.flags = 0,
5306 		.details = pl_intr_details,
5307 		.actions = NULL,
5308 	};
5309 	static const struct intr_action pl_intr_action[] = {
5310 		{ F_MC1, MEM_MC1, mem_intr_handler },
5311 		{ F_ULP_TX, -1, ulptx_intr_handler },
5312 		{ F_SGE, -1, sge_intr_handler },
5313 		{ F_CPL_SWITCH, -1, cplsw_intr_handler },
5314 		{ F_ULP_RX, -1, ulprx_intr_handler },
5315 		{ F_PM_RX, -1, pmrx_intr_handler},
5316 		{ F_PM_TX, -1, pmtx_intr_handler},
5317 		{ F_MA, -1, ma_intr_handler },
5318 		{ F_TP, -1, tp_intr_handler },
5319 		{ F_LE, -1, le_intr_handler },
5320 		{ F_EDC1, MEM_EDC1, mem_intr_handler },
5321 		{ F_EDC0, MEM_EDC0, mem_intr_handler },
5322 		{ F_MC0, MEM_MC0, mem_intr_handler },
5323 		{ F_PCIE, -1, pcie_intr_handler },
5324 		{ F_MAC3, 3, mac_intr_handler},
5325 		{ F_MAC2, 2, mac_intr_handler},
5326 		{ F_MAC1, 1, mac_intr_handler},
5327 		{ F_MAC0, 0, mac_intr_handler},
5328 		{ F_SMB, -1, smb_intr_handler},
5329 		{ F_PL, -1, plpl_intr_handler },
5330 		{ F_NCSI, -1, ncsi_intr_handler},
5331 		{ F_MPS, -1, mps_intr_handler },
5332 		{ F_CIM, -1, cim_intr_handler },
5333 		{ 0 }
5334 	};
5335 	static const struct intr_info pl_intr_info = {
5336 		.name = "PL_INT_CAUSE",
5337 		.cause_reg = A_PL_INT_CAUSE,
5338 		.enable_reg = A_PL_INT_ENABLE,
5339 		.fatal = 0,
5340 		.flags = 0,
5341 		.details = pl_intr_details,
5342 		.actions = pl_intr_action,
5343 	};
5344 	bool fatal;
5345 	u32 perr;
5346 
5347 	perr = t4_read_reg(adap, pl_perr_cause.cause_reg);
5348 	if (verbose || perr != 0) {
5349 		t4_show_intr_info(adap, &pl_perr_cause, perr);
5350 		if (perr != 0)
5351 			t4_write_reg(adap, pl_perr_cause.cause_reg, perr);
5352 		if (verbose)
5353 			perr |= t4_read_reg(adap, pl_intr_info.enable_reg);
5354 	}
5355 	fatal = t4_handle_intr(adap, &pl_intr_info, perr, verbose);
5356 	if (fatal)
5357 		t4_fatal_err(adap, false);
5358 
5359 	return (0);
5360 }
5361 
5362 #define PF_INTR_MASK (F_PFSW | F_PFCIM)
5363 
5364 /**
5365  *	t4_intr_enable - enable interrupts
5366  *	@adapter: the adapter whose interrupts should be enabled
5367  *
5368  *	Enable PF-specific interrupts for the calling function and the top-level
5369  *	interrupt concentrator for global interrupts.  Interrupts are already
5370  *	enabled at each module,	here we just enable the roots of the interrupt
5371  *	hierarchies.
5372  *
5373  *	Note: this function should be called only when the driver manages
5374  *	non PF-specific interrupts from the various HW modules.  Only one PCI
5375  *	function at a time should be doing this.
5376  */
5377 void t4_intr_enable(struct adapter *adap)
5378 {
5379 	u32 val = 0;
5380 
5381 	if (chip_id(adap) <= CHELSIO_T5)
5382 		val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
5383 	else
5384 		val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN;
5385 	val |= F_ERR_CPL_EXCEED_IQE_SIZE | F_ERR_INVALID_CIDX_INC |
5386 	    F_ERR_CPL_OPCODE_0 | F_ERR_DATA_CPL_ON_HIGH_QID1 |
5387 	    F_INGRESS_SIZE_ERR | F_ERR_DATA_CPL_ON_HIGH_QID0 |
5388 	    F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
5389 	    F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO | F_DBFIFO_LP_INT |
5390 	    F_EGRESS_SIZE_ERR;
5391 	t4_set_reg_field(adap, A_SGE_INT_ENABLE3, val, val);
5392 	t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
5393 	t4_set_reg_field(adap, A_PL_INT_ENABLE, F_SF | F_I2CM, 0);
5394 	t4_set_reg_field(adap, A_PL_INT_MAP0, 0, 1 << adap->pf);
5395 }
5396 
5397 /**
5398  *	t4_intr_disable - disable interrupts
5399  *	@adap: the adapter whose interrupts should be disabled
5400  *
5401  *	Disable interrupts.  We only disable the top-level interrupt
5402  *	concentrators.  The caller must be a PCI function managing global
5403  *	interrupts.
5404  */
5405 void t4_intr_disable(struct adapter *adap)
5406 {
5407 
5408 	t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
5409 	t4_set_reg_field(adap, A_PL_INT_MAP0, 1 << adap->pf, 0);
5410 }
5411 
5412 /**
5413  *	t4_intr_clear - clear all interrupts
5414  *	@adap: the adapter whose interrupts should be cleared
5415  *
5416  *	Clears all interrupts.  The caller must be a PCI function managing
5417  *	global interrupts.
5418  */
5419 void t4_intr_clear(struct adapter *adap)
5420 {
5421 	static const u32 cause_reg[] = {
5422 		A_CIM_HOST_INT_CAUSE,
5423 		A_CIM_HOST_UPACC_INT_CAUSE,
5424 		MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
5425 		A_CPL_INTR_CAUSE,
5426 		EDC_REG(A_EDC_INT_CAUSE, 0), EDC_REG(A_EDC_INT_CAUSE, 1),
5427 		A_LE_DB_INT_CAUSE,
5428 		A_MA_INT_WRAP_STATUS,
5429 		A_MA_PARITY_ERROR_STATUS1,
5430 		A_MA_INT_CAUSE,
5431 		A_MPS_CLS_INT_CAUSE,
5432 		A_MPS_RX_PERR_INT_CAUSE,
5433 		A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
5434 		A_MPS_STAT_PERR_INT_CAUSE_SRAM,
5435 		A_MPS_TRC_INT_CAUSE,
5436 		A_MPS_TX_INT_CAUSE,
5437 		A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
5438 		A_NCSI_INT_CAUSE,
5439 		A_PCIE_INT_CAUSE,
5440 		A_PCIE_NONFAT_ERR,
5441 		A_PL_PL_INT_CAUSE,
5442 		A_PM_RX_INT_CAUSE,
5443 		A_PM_TX_INT_CAUSE,
5444 		A_SGE_INT_CAUSE1,
5445 		A_SGE_INT_CAUSE2,
5446 		A_SGE_INT_CAUSE3,
5447 		A_SGE_INT_CAUSE4,
5448 		A_SMB_INT_CAUSE,
5449 		A_TP_INT_CAUSE,
5450 		A_ULP_RX_INT_CAUSE,
5451 		A_ULP_RX_INT_CAUSE_2,
5452 		A_ULP_TX_INT_CAUSE,
5453 		A_ULP_TX_INT_CAUSE_2,
5454 
5455 		MYPF_REG(A_PL_PF_INT_CAUSE),
5456 	};
5457 	int i;
5458 	const int nchan = adap->chip_params->nchan;
5459 
5460 	for (i = 0; i < ARRAY_SIZE(cause_reg); i++)
5461 		t4_write_reg(adap, cause_reg[i], 0xffffffff);
5462 
5463 	if (is_t4(adap)) {
5464 		t4_write_reg(adap, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
5465 		    0xffffffff);
5466 		t4_write_reg(adap, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
5467 		    0xffffffff);
5468 		t4_write_reg(adap, A_MC_INT_CAUSE, 0xffffffff);
5469 		for (i = 0; i < nchan; i++) {
5470 			t4_write_reg(adap, PORT_REG(i, A_XGMAC_PORT_INT_CAUSE),
5471 			    0xffffffff);
5472 		}
5473 	}
5474 	if (chip_id(adap) >= CHELSIO_T5) {
5475 		t4_write_reg(adap, A_MA_PARITY_ERROR_STATUS2, 0xffffffff);
5476 		t4_write_reg(adap, A_MPS_STAT_PERR_INT_CAUSE_SRAM1, 0xffffffff);
5477 		t4_write_reg(adap, A_SGE_INT_CAUSE5, 0xffffffff);
5478 		t4_write_reg(adap, A_MC_P_INT_CAUSE, 0xffffffff);
5479 		if (is_t5(adap)) {
5480 			t4_write_reg(adap, MC_REG(A_MC_P_INT_CAUSE, 1),
5481 			    0xffffffff);
5482 		}
5483 		for (i = 0; i < nchan; i++) {
5484 			t4_write_reg(adap, T5_PORT_REG(i,
5485 			    A_MAC_PORT_PERR_INT_CAUSE), 0xffffffff);
5486 			if (chip_id(adap) > CHELSIO_T5) {
5487 				t4_write_reg(adap, T5_PORT_REG(i,
5488 				    A_MAC_PORT_PERR_INT_CAUSE_100G),
5489 				    0xffffffff);
5490 			}
5491 			t4_write_reg(adap, T5_PORT_REG(i, A_MAC_PORT_INT_CAUSE),
5492 			    0xffffffff);
5493 		}
5494 	}
5495 	if (chip_id(adap) >= CHELSIO_T6) {
5496 		t4_write_reg(adap, A_SGE_INT_CAUSE6, 0xffffffff);
5497 	}
5498 
5499 	t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff);
5500 	t4_write_reg(adap, A_PL_PERR_CAUSE, 0xffffffff);
5501 	t4_write_reg(adap, A_PL_INT_CAUSE, 0xffffffff);
5502 	(void) t4_read_reg(adap, A_PL_INT_CAUSE);          /* flush */
5503 }
5504 
5505 /**
5506  *	hash_mac_addr - return the hash value of a MAC address
5507  *	@addr: the 48-bit Ethernet MAC address
5508  *
5509  *	Hashes a MAC address according to the hash function used by HW inexact
5510  *	(hash) address matching.
5511  */
5512 static int hash_mac_addr(const u8 *addr)
5513 {
5514 	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
5515 	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
5516 	a ^= b;
5517 	a ^= (a >> 12);
5518 	a ^= (a >> 6);
5519 	return a & 0x3f;
5520 }
5521 
5522 /**
5523  *	t4_config_rss_range - configure a portion of the RSS mapping table
5524  *	@adapter: the adapter
5525  *	@mbox: mbox to use for the FW command
5526  *	@viid: virtual interface whose RSS subtable is to be written
5527  *	@start: start entry in the table to write
5528  *	@n: how many table entries to write
5529  *	@rspq: values for the "response queue" (Ingress Queue) lookup table
5530  *	@nrspq: number of values in @rspq
5531  *
5532  *	Programs the selected part of the VI's RSS mapping table with the
5533  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
5534  *	until the full table range is populated.
5535  *
5536  *	The caller must ensure the values in @rspq are in the range allowed for
5537  *	@viid.
5538  */
5539 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5540 			int start, int n, const u16 *rspq, unsigned int nrspq)
5541 {
5542 	int ret;
5543 	const u16 *rsp = rspq;
5544 	const u16 *rsp_end = rspq + nrspq;
5545 	struct fw_rss_ind_tbl_cmd cmd;
5546 
5547 	memset(&cmd, 0, sizeof(cmd));
5548 	cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
5549 				     F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
5550 				     V_FW_RSS_IND_TBL_CMD_VIID(viid));
5551 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5552 
5553 	/*
5554 	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
5555 	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
5556 	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
5557 	 * reserved.
5558 	 */
5559 	while (n > 0) {
5560 		int nq = min(n, 32);
5561 		int nq_packed = 0;
5562 		__be32 *qp = &cmd.iq0_to_iq2;
5563 
5564 		/*
5565 		 * Set up the firmware RSS command header to send the next
5566 		 * "nq" Ingress Queue IDs to the firmware.
5567 		 */
5568 		cmd.niqid = cpu_to_be16(nq);
5569 		cmd.startidx = cpu_to_be16(start);
5570 
5571 		/*
5572 		 * "nq" more done for the start of the next loop.
5573 		 */
5574 		start += nq;
5575 		n -= nq;
5576 
5577 		/*
5578 		 * While there are still Ingress Queue IDs to stuff into the
5579 		 * current firmware RSS command, retrieve them from the
5580 		 * Ingress Queue ID array and insert them into the command.
5581 		 */
5582 		while (nq > 0) {
5583 			/*
5584 			 * Grab up to the next 3 Ingress Queue IDs (wrapping
5585 			 * around the Ingress Queue ID array if necessary) and
5586 			 * insert them into the firmware RSS command at the
5587 			 * current 3-tuple position within the commad.
5588 			 */
5589 			u16 qbuf[3];
5590 			u16 *qbp = qbuf;
5591 			int nqbuf = min(3, nq);
5592 
5593 			nq -= nqbuf;
5594 			qbuf[0] = qbuf[1] = qbuf[2] = 0;
5595 			while (nqbuf && nq_packed < 32) {
5596 				nqbuf--;
5597 				nq_packed++;
5598 				*qbp++ = *rsp++;
5599 				if (rsp >= rsp_end)
5600 					rsp = rspq;
5601 			}
5602 			*qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
5603 					    V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
5604 					    V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
5605 		}
5606 
5607 		/*
5608 		 * Send this portion of the RRS table update to the firmware;
5609 		 * bail out on any errors.
5610 		 */
5611 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5612 		if (ret)
5613 			return ret;
5614 	}
5615 	return 0;
5616 }
5617 
5618 /**
5619  *	t4_config_glbl_rss - configure the global RSS mode
5620  *	@adapter: the adapter
5621  *	@mbox: mbox to use for the FW command
5622  *	@mode: global RSS mode
5623  *	@flags: mode-specific flags
5624  *
5625  *	Sets the global RSS mode.
5626  */
5627 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5628 		       unsigned int flags)
5629 {
5630 	struct fw_rss_glb_config_cmd c;
5631 
5632 	memset(&c, 0, sizeof(c));
5633 	c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
5634 				    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
5635 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5636 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5637 		c.u.manual.mode_pkd =
5638 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
5639 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5640 		c.u.basicvirtual.mode_keymode =
5641 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
5642 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5643 	} else
5644 		return -EINVAL;
5645 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5646 }
5647 
5648 /**
5649  *	t4_config_vi_rss - configure per VI RSS settings
5650  *	@adapter: the adapter
5651  *	@mbox: mbox to use for the FW command
5652  *	@viid: the VI id
5653  *	@flags: RSS flags
5654  *	@defq: id of the default RSS queue for the VI.
5655  *	@skeyidx: RSS secret key table index for non-global mode
5656  *	@skey: RSS vf_scramble key for VI.
5657  *
5658  *	Configures VI-specific RSS properties.
5659  */
5660 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5661 		     unsigned int flags, unsigned int defq, unsigned int skeyidx,
5662 		     unsigned int skey)
5663 {
5664 	struct fw_rss_vi_config_cmd c;
5665 
5666 	memset(&c, 0, sizeof(c));
5667 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
5668 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
5669 				   V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
5670 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5671 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5672 					V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
5673 	c.u.basicvirtual.secretkeyidx_pkd = cpu_to_be32(
5674 					V_FW_RSS_VI_CONFIG_CMD_SECRETKEYIDX(skeyidx));
5675 	c.u.basicvirtual.secretkeyxor = cpu_to_be32(skey);
5676 
5677 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5678 }
5679 
5680 /* Read an RSS table row */
5681 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5682 {
5683 	t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
5684 	return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
5685 				   5, 0, val);
5686 }
5687 
5688 /**
5689  *	t4_read_rss - read the contents of the RSS mapping table
5690  *	@adapter: the adapter
5691  *	@map: holds the contents of the RSS mapping table
5692  *
5693  *	Reads the contents of the RSS hash->queue mapping table.
5694  */
5695 int t4_read_rss(struct adapter *adapter, u16 *map)
5696 {
5697 	u32 val;
5698 	int i, ret;
5699 	int rss_nentries = adapter->chip_params->rss_nentries;
5700 
5701 	for (i = 0; i < rss_nentries / 2; ++i) {
5702 		ret = rd_rss_row(adapter, i, &val);
5703 		if (ret)
5704 			return ret;
5705 		*map++ = G_LKPTBLQUEUE0(val);
5706 		*map++ = G_LKPTBLQUEUE1(val);
5707 	}
5708 	return 0;
5709 }
5710 
5711 /**
5712  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5713  * @adap: the adapter
5714  * @cmd: TP fw ldst address space type
5715  * @vals: where the indirect register values are stored/written
5716  * @nregs: how many indirect registers to read/write
5717  * @start_idx: index of first indirect register to read/write
5718  * @rw: Read (1) or Write (0)
5719  * @sleep_ok: if true we may sleep while awaiting command completion
5720  *
5721  * Access TP indirect registers through LDST
5722  **/
5723 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5724 			    unsigned int nregs, unsigned int start_index,
5725 			    unsigned int rw, bool sleep_ok)
5726 {
5727 	int ret = 0;
5728 	unsigned int i;
5729 	struct fw_ldst_cmd c;
5730 
5731 	for (i = 0; i < nregs; i++) {
5732 		memset(&c, 0, sizeof(c));
5733 		c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
5734 						F_FW_CMD_REQUEST |
5735 						(rw ? F_FW_CMD_READ :
5736 						      F_FW_CMD_WRITE) |
5737 						V_FW_LDST_CMD_ADDRSPACE(cmd));
5738 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5739 
5740 		c.u.addrval.addr = cpu_to_be32(start_index + i);
5741 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5742 		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5743 				      sleep_ok);
5744 		if (ret)
5745 			return ret;
5746 
5747 		if (rw)
5748 			vals[i] = be32_to_cpu(c.u.addrval.val);
5749 	}
5750 	return 0;
5751 }
5752 
5753 /**
5754  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5755  * @adap: the adapter
5756  * @reg_addr: Address Register
5757  * @reg_data: Data register
5758  * @buff: where the indirect register values are stored/written
5759  * @nregs: how many indirect registers to read/write
5760  * @start_index: index of first indirect register to read/write
5761  * @rw: READ(1) or WRITE(0)
5762  * @sleep_ok: if true we may sleep while awaiting command completion
5763  *
5764  * Read/Write TP indirect registers through LDST if possible.
5765  * Else, use backdoor access
5766  **/
5767 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5768 			      u32 *buff, u32 nregs, u32 start_index, int rw,
5769 			      bool sleep_ok)
5770 {
5771 	int rc = -EINVAL;
5772 	int cmd;
5773 
5774 	switch (reg_addr) {
5775 	case A_TP_PIO_ADDR:
5776 		cmd = FW_LDST_ADDRSPC_TP_PIO;
5777 		break;
5778 	case A_TP_TM_PIO_ADDR:
5779 		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5780 		break;
5781 	case A_TP_MIB_INDEX:
5782 		cmd = FW_LDST_ADDRSPC_TP_MIB;
5783 		break;
5784 	default:
5785 		goto indirect_access;
5786 	}
5787 
5788 	if (t4_use_ldst(adap))
5789 		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5790 				      sleep_ok);
5791 
5792 indirect_access:
5793 
5794 	if (rc) {
5795 		if (rw)
5796 			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5797 					 start_index);
5798 		else
5799 			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5800 					  start_index);
5801 	}
5802 }
5803 
5804 /**
5805  * t4_tp_pio_read - Read TP PIO registers
5806  * @adap: the adapter
5807  * @buff: where the indirect register values are written
5808  * @nregs: how many indirect registers to read
5809  * @start_index: index of first indirect register to read
5810  * @sleep_ok: if true we may sleep while awaiting command completion
5811  *
5812  * Read TP PIO Registers
5813  **/
5814 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5815 		    u32 start_index, bool sleep_ok)
5816 {
5817 	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, buff, nregs,
5818 			  start_index, 1, sleep_ok);
5819 }
5820 
5821 /**
5822  * t4_tp_pio_write - Write TP PIO registers
5823  * @adap: the adapter
5824  * @buff: where the indirect register values are stored
5825  * @nregs: how many indirect registers to write
5826  * @start_index: index of first indirect register to write
5827  * @sleep_ok: if true we may sleep while awaiting command completion
5828  *
5829  * Write TP PIO Registers
5830  **/
5831 void t4_tp_pio_write(struct adapter *adap, const u32 *buff, u32 nregs,
5832 		     u32 start_index, bool sleep_ok)
5833 {
5834 	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5835 	    __DECONST(u32 *, buff), nregs, start_index, 0, sleep_ok);
5836 }
5837 
5838 /**
5839  * t4_tp_tm_pio_read - Read TP TM PIO registers
5840  * @adap: the adapter
5841  * @buff: where the indirect register values are written
5842  * @nregs: how many indirect registers to read
5843  * @start_index: index of first indirect register to read
5844  * @sleep_ok: if true we may sleep while awaiting command completion
5845  *
5846  * Read TP TM PIO Registers
5847  **/
5848 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5849 		       u32 start_index, bool sleep_ok)
5850 {
5851 	t4_tp_indirect_rw(adap, A_TP_TM_PIO_ADDR, A_TP_TM_PIO_DATA, buff,
5852 			  nregs, start_index, 1, sleep_ok);
5853 }
5854 
5855 /**
5856  * t4_tp_mib_read - Read TP MIB registers
5857  * @adap: the adapter
5858  * @buff: where the indirect register values are written
5859  * @nregs: how many indirect registers to read
5860  * @start_index: index of first indirect register to read
5861  * @sleep_ok: if true we may sleep while awaiting command completion
5862  *
5863  * Read TP MIB Registers
5864  **/
5865 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5866 		    bool sleep_ok)
5867 {
5868 	t4_tp_indirect_rw(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, buff, nregs,
5869 			  start_index, 1, sleep_ok);
5870 }
5871 
5872 /**
5873  *	t4_read_rss_key - read the global RSS key
5874  *	@adap: the adapter
5875  *	@key: 10-entry array holding the 320-bit RSS key
5876  * 	@sleep_ok: if true we may sleep while awaiting command completion
5877  *
5878  *	Reads the global 320-bit RSS key.
5879  */
5880 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5881 {
5882 	t4_tp_pio_read(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5883 }
5884 
5885 /**
5886  *	t4_write_rss_key - program one of the RSS keys
5887  *	@adap: the adapter
5888  *	@key: 10-entry array holding the 320-bit RSS key
5889  *	@idx: which RSS key to write
5890  * 	@sleep_ok: if true we may sleep while awaiting command completion
5891  *
5892  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5893  *	0..15 the corresponding entry in the RSS key table is written,
5894  *	otherwise the global RSS key is written.
5895  */
5896 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5897 		      bool sleep_ok)
5898 {
5899 	u8 rss_key_addr_cnt = 16;
5900 	u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
5901 
5902 	/*
5903 	 * T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5904 	 * allows access to key addresses 16-63 by using KeyWrAddrX
5905 	 * as index[5:4](upper 2) into key table
5906 	 */
5907 	if ((chip_id(adap) > CHELSIO_T5) &&
5908 	    (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
5909 		rss_key_addr_cnt = 32;
5910 
5911 	t4_tp_pio_write(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5912 
5913 	if (idx >= 0 && idx < rss_key_addr_cnt) {
5914 		if (rss_key_addr_cnt > 16)
5915 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5916 				     vrt | V_KEYWRADDRX(idx >> 4) |
5917 				     V_T6_VFWRADDR(idx) | F_KEYWREN);
5918 		else
5919 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5920 				     vrt| V_KEYWRADDR(idx) | F_KEYWREN);
5921 	}
5922 }
5923 
5924 /**
5925  *	t4_read_rss_pf_config - read PF RSS Configuration Table
5926  *	@adapter: the adapter
5927  *	@index: the entry in the PF RSS table to read
5928  *	@valp: where to store the returned value
5929  * 	@sleep_ok: if true we may sleep while awaiting command completion
5930  *
5931  *	Reads the PF RSS Configuration Table at the specified index and returns
5932  *	the value found there.
5933  */
5934 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5935 			   u32 *valp, bool sleep_ok)
5936 {
5937 	t4_tp_pio_read(adapter, valp, 1, A_TP_RSS_PF0_CONFIG + index, sleep_ok);
5938 }
5939 
5940 /**
5941  *	t4_write_rss_pf_config - write PF RSS Configuration Table
5942  *	@adapter: the adapter
5943  *	@index: the entry in the VF RSS table to read
5944  *	@val: the value to store
5945  * 	@sleep_ok: if true we may sleep while awaiting command completion
5946  *
5947  *	Writes the PF RSS Configuration Table at the specified index with the
5948  *	specified value.
5949  */
5950 void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index,
5951 			    u32 val, bool sleep_ok)
5952 {
5953 	t4_tp_pio_write(adapter, &val, 1, A_TP_RSS_PF0_CONFIG + index,
5954 			sleep_ok);
5955 }
5956 
5957 /**
5958  *	t4_read_rss_vf_config - read VF RSS Configuration Table
5959  *	@adapter: the adapter
5960  *	@index: the entry in the VF RSS table to read
5961  *	@vfl: where to store the returned VFL
5962  *	@vfh: where to store the returned VFH
5963  * 	@sleep_ok: if true we may sleep while awaiting command completion
5964  *
5965  *	Reads the VF RSS Configuration Table at the specified index and returns
5966  *	the (VFL, VFH) values found there.
5967  */
5968 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5969 			   u32 *vfl, u32 *vfh, bool sleep_ok)
5970 {
5971 	u32 vrt, mask, data;
5972 
5973 	if (chip_id(adapter) <= CHELSIO_T5) {
5974 		mask = V_VFWRADDR(M_VFWRADDR);
5975 		data = V_VFWRADDR(index);
5976 	} else {
5977 		 mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5978 		 data = V_T6_VFWRADDR(index);
5979 	}
5980 	/*
5981 	 * Request that the index'th VF Table values be read into VFL/VFH.
5982 	 */
5983 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5984 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5985 	vrt |= data | F_VFRDEN;
5986 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5987 
5988 	/*
5989 	 * Grab the VFL/VFH values ...
5990 	 */
5991 	t4_tp_pio_read(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
5992 	t4_tp_pio_read(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
5993 }
5994 
5995 /**
5996  *	t4_write_rss_vf_config - write VF RSS Configuration Table
5997  *
5998  *	@adapter: the adapter
5999  *	@index: the entry in the VF RSS table to write
6000  *	@vfl: the VFL to store
6001  *	@vfh: the VFH to store
6002  *
6003  *	Writes the VF RSS Configuration Table at the specified index with the
6004  *	specified (VFL, VFH) values.
6005  */
6006 void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
6007 			    u32 vfl, u32 vfh, bool sleep_ok)
6008 {
6009 	u32 vrt, mask, data;
6010 
6011 	if (chip_id(adapter) <= CHELSIO_T5) {
6012 		mask = V_VFWRADDR(M_VFWRADDR);
6013 		data = V_VFWRADDR(index);
6014 	} else {
6015 		mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
6016 		data = V_T6_VFWRADDR(index);
6017 	}
6018 
6019 	/*
6020 	 * Load up VFL/VFH with the values to be written ...
6021 	 */
6022 	t4_tp_pio_write(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
6023 	t4_tp_pio_write(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
6024 
6025 	/*
6026 	 * Write the VFL/VFH into the VF Table at index'th location.
6027 	 */
6028 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
6029 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
6030 	vrt |= data | F_VFRDEN;
6031 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
6032 }
6033 
6034 /**
6035  *	t4_read_rss_pf_map - read PF RSS Map
6036  *	@adapter: the adapter
6037  * 	@sleep_ok: if true we may sleep while awaiting command completion
6038  *
6039  *	Reads the PF RSS Map register and returns its value.
6040  */
6041 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
6042 {
6043 	u32 pfmap;
6044 
6045 	t4_tp_pio_read(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
6046 
6047 	return pfmap;
6048 }
6049 
6050 /**
6051  *	t4_write_rss_pf_map - write PF RSS Map
6052  *	@adapter: the adapter
6053  *	@pfmap: PF RSS Map value
6054  *
6055  *	Writes the specified value to the PF RSS Map register.
6056  */
6057 void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap, bool sleep_ok)
6058 {
6059 	t4_tp_pio_write(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
6060 }
6061 
6062 /**
6063  *	t4_read_rss_pf_mask - read PF RSS Mask
6064  *	@adapter: the adapter
6065  * 	@sleep_ok: if true we may sleep while awaiting command completion
6066  *
6067  *	Reads the PF RSS Mask register and returns its value.
6068  */
6069 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
6070 {
6071 	u32 pfmask;
6072 
6073 	t4_tp_pio_read(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
6074 
6075 	return pfmask;
6076 }
6077 
6078 /**
6079  *	t4_write_rss_pf_mask - write PF RSS Mask
6080  *	@adapter: the adapter
6081  *	@pfmask: PF RSS Mask value
6082  *
6083  *	Writes the specified value to the PF RSS Mask register.
6084  */
6085 void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask, bool sleep_ok)
6086 {
6087 	t4_tp_pio_write(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
6088 }
6089 
6090 /**
6091  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
6092  *	@adap: the adapter
6093  *	@v4: holds the TCP/IP counter values
6094  *	@v6: holds the TCP/IPv6 counter values
6095  * 	@sleep_ok: if true we may sleep while awaiting command completion
6096  *
6097  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
6098  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
6099  */
6100 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
6101 			 struct tp_tcp_stats *v6, bool sleep_ok)
6102 {
6103 	u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
6104 
6105 #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
6106 #define STAT(x)     val[STAT_IDX(x)]
6107 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
6108 
6109 	if (v4) {
6110 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
6111 			       A_TP_MIB_TCP_OUT_RST, sleep_ok);
6112 		v4->tcp_out_rsts = STAT(OUT_RST);
6113 		v4->tcp_in_segs  = STAT64(IN_SEG);
6114 		v4->tcp_out_segs = STAT64(OUT_SEG);
6115 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
6116 	}
6117 	if (v6) {
6118 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
6119 			       A_TP_MIB_TCP_V6OUT_RST, sleep_ok);
6120 		v6->tcp_out_rsts = STAT(OUT_RST);
6121 		v6->tcp_in_segs  = STAT64(IN_SEG);
6122 		v6->tcp_out_segs = STAT64(OUT_SEG);
6123 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
6124 	}
6125 #undef STAT64
6126 #undef STAT
6127 #undef STAT_IDX
6128 }
6129 
6130 /**
6131  *	t4_tp_get_err_stats - read TP's error MIB counters
6132  *	@adap: the adapter
6133  *	@st: holds the counter values
6134  * 	@sleep_ok: if true we may sleep while awaiting command completion
6135  *
6136  *	Returns the values of TP's error counters.
6137  */
6138 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
6139 			 bool sleep_ok)
6140 {
6141 	int nchan = adap->chip_params->nchan;
6142 
6143 	t4_tp_mib_read(adap, st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0,
6144 		       sleep_ok);
6145 
6146 	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0,
6147 		       sleep_ok);
6148 
6149 	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0,
6150 		       sleep_ok);
6151 
6152 	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
6153 		       A_TP_MIB_TNL_CNG_DROP_0, sleep_ok);
6154 
6155 	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
6156 		       A_TP_MIB_OFD_CHN_DROP_0, sleep_ok);
6157 
6158 	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0,
6159 		       sleep_ok);
6160 
6161 	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
6162 		       A_TP_MIB_OFD_VLN_DROP_0, sleep_ok);
6163 
6164 	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
6165 		       A_TP_MIB_TCP_V6IN_ERR_0, sleep_ok);
6166 
6167 	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP,
6168 		       sleep_ok);
6169 }
6170 
6171 /**
6172  *	t4_tp_get_err_stats - read TP's error MIB counters
6173  *	@adap: the adapter
6174  *	@st: holds the counter values
6175  * 	@sleep_ok: if true we may sleep while awaiting command completion
6176  *
6177  *	Returns the values of TP's error counters.
6178  */
6179 void t4_tp_get_tnl_stats(struct adapter *adap, struct tp_tnl_stats *st,
6180 			 bool sleep_ok)
6181 {
6182 	int nchan = adap->chip_params->nchan;
6183 
6184 	t4_tp_mib_read(adap, st->out_pkt, nchan, A_TP_MIB_TNL_OUT_PKT_0,
6185 		       sleep_ok);
6186 	t4_tp_mib_read(adap, st->in_pkt, nchan, A_TP_MIB_TNL_IN_PKT_0,
6187 		       sleep_ok);
6188 }
6189 
6190 /**
6191  *	t4_tp_get_proxy_stats - read TP's proxy MIB counters
6192  *	@adap: the adapter
6193  *	@st: holds the counter values
6194  *
6195  *	Returns the values of TP's proxy counters.
6196  */
6197 void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st,
6198     bool sleep_ok)
6199 {
6200 	int nchan = adap->chip_params->nchan;
6201 
6202 	t4_tp_mib_read(adap, st->proxy, nchan, A_TP_MIB_TNL_LPBK_0, sleep_ok);
6203 }
6204 
6205 /**
6206  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
6207  *	@adap: the adapter
6208  *	@st: holds the counter values
6209  * 	@sleep_ok: if true we may sleep while awaiting command completion
6210  *
6211  *	Returns the values of TP's CPL counters.
6212  */
6213 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
6214 			 bool sleep_ok)
6215 {
6216 	int nchan = adap->chip_params->nchan;
6217 
6218 	t4_tp_mib_read(adap, st->req, nchan, A_TP_MIB_CPL_IN_REQ_0, sleep_ok);
6219 
6220 	t4_tp_mib_read(adap, st->rsp, nchan, A_TP_MIB_CPL_OUT_RSP_0, sleep_ok);
6221 }
6222 
6223 /**
6224  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
6225  *	@adap: the adapter
6226  *	@st: holds the counter values
6227  *
6228  *	Returns the values of TP's RDMA counters.
6229  */
6230 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
6231 			  bool sleep_ok)
6232 {
6233 	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, A_TP_MIB_RQE_DFR_PKT,
6234 		       sleep_ok);
6235 }
6236 
6237 /**
6238  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
6239  *	@adap: the adapter
6240  *	@idx: the port index
6241  *	@st: holds the counter values
6242  * 	@sleep_ok: if true we may sleep while awaiting command completion
6243  *
6244  *	Returns the values of TP's FCoE counters for the selected port.
6245  */
6246 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
6247 		       struct tp_fcoe_stats *st, bool sleep_ok)
6248 {
6249 	u32 val[2];
6250 
6251 	t4_tp_mib_read(adap, &st->frames_ddp, 1, A_TP_MIB_FCOE_DDP_0 + idx,
6252 		       sleep_ok);
6253 
6254 	t4_tp_mib_read(adap, &st->frames_drop, 1,
6255 		       A_TP_MIB_FCOE_DROP_0 + idx, sleep_ok);
6256 
6257 	t4_tp_mib_read(adap, val, 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx,
6258 		       sleep_ok);
6259 
6260 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
6261 }
6262 
6263 /**
6264  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
6265  *	@adap: the adapter
6266  *	@st: holds the counter values
6267  * 	@sleep_ok: if true we may sleep while awaiting command completion
6268  *
6269  *	Returns the values of TP's counters for non-TCP directly-placed packets.
6270  */
6271 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
6272 		      bool sleep_ok)
6273 {
6274 	u32 val[4];
6275 
6276 	t4_tp_mib_read(adap, val, 4, A_TP_MIB_USM_PKTS, sleep_ok);
6277 
6278 	st->frames = val[0];
6279 	st->drops = val[1];
6280 	st->octets = ((u64)val[2] << 32) | val[3];
6281 }
6282 
6283 /**
6284  *	t4_tp_get_tid_stats - read TP's tid MIB counters.
6285  *	@adap: the adapter
6286  *	@st: holds the counter values
6287  * 	@sleep_ok: if true we may sleep while awaiting command completion
6288  *
6289  *	Returns the values of TP's counters for tids.
6290  */
6291 void t4_tp_get_tid_stats(struct adapter *adap, struct tp_tid_stats *st,
6292 		      bool sleep_ok)
6293 {
6294 
6295 	t4_tp_mib_read(adap, &st->del, 4, A_TP_MIB_TID_DEL, sleep_ok);
6296 }
6297 
6298 /**
6299  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
6300  *	@adap: the adapter
6301  *	@mtus: where to store the MTU values
6302  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
6303  *
6304  *	Reads the HW path MTU table.
6305  */
6306 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
6307 {
6308 	u32 v;
6309 	int i;
6310 
6311 	for (i = 0; i < NMTUS; ++i) {
6312 		t4_write_reg(adap, A_TP_MTU_TABLE,
6313 			     V_MTUINDEX(0xff) | V_MTUVALUE(i));
6314 		v = t4_read_reg(adap, A_TP_MTU_TABLE);
6315 		mtus[i] = G_MTUVALUE(v);
6316 		if (mtu_log)
6317 			mtu_log[i] = G_MTUWIDTH(v);
6318 	}
6319 }
6320 
6321 /**
6322  *	t4_read_cong_tbl - reads the congestion control table
6323  *	@adap: the adapter
6324  *	@incr: where to store the alpha values
6325  *
6326  *	Reads the additive increments programmed into the HW congestion
6327  *	control table.
6328  */
6329 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
6330 {
6331 	unsigned int mtu, w;
6332 
6333 	for (mtu = 0; mtu < NMTUS; ++mtu)
6334 		for (w = 0; w < NCCTRL_WIN; ++w) {
6335 			t4_write_reg(adap, A_TP_CCTRL_TABLE,
6336 				     V_ROWINDEX(0xffff) | (mtu << 5) | w);
6337 			incr[mtu][w] = (u16)t4_read_reg(adap,
6338 						A_TP_CCTRL_TABLE) & 0x1fff;
6339 		}
6340 }
6341 
6342 /**
6343  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
6344  *	@adap: the adapter
6345  *	@addr: the indirect TP register address
6346  *	@mask: specifies the field within the register to modify
6347  *	@val: new value for the field
6348  *
6349  *	Sets a field of an indirect TP register to the given value.
6350  */
6351 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
6352 			    unsigned int mask, unsigned int val)
6353 {
6354 	t4_write_reg(adap, A_TP_PIO_ADDR, addr);
6355 	val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
6356 	t4_write_reg(adap, A_TP_PIO_DATA, val);
6357 }
6358 
6359 /**
6360  *	init_cong_ctrl - initialize congestion control parameters
6361  *	@a: the alpha values for congestion control
6362  *	@b: the beta values for congestion control
6363  *
6364  *	Initialize the congestion control parameters.
6365  */
6366 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
6367 {
6368 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
6369 	a[9] = 2;
6370 	a[10] = 3;
6371 	a[11] = 4;
6372 	a[12] = 5;
6373 	a[13] = 6;
6374 	a[14] = 7;
6375 	a[15] = 8;
6376 	a[16] = 9;
6377 	a[17] = 10;
6378 	a[18] = 14;
6379 	a[19] = 17;
6380 	a[20] = 21;
6381 	a[21] = 25;
6382 	a[22] = 30;
6383 	a[23] = 35;
6384 	a[24] = 45;
6385 	a[25] = 60;
6386 	a[26] = 80;
6387 	a[27] = 100;
6388 	a[28] = 200;
6389 	a[29] = 300;
6390 	a[30] = 400;
6391 	a[31] = 500;
6392 
6393 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
6394 	b[9] = b[10] = 1;
6395 	b[11] = b[12] = 2;
6396 	b[13] = b[14] = b[15] = b[16] = 3;
6397 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
6398 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
6399 	b[28] = b[29] = 6;
6400 	b[30] = b[31] = 7;
6401 }
6402 
6403 /* The minimum additive increment value for the congestion control table */
6404 #define CC_MIN_INCR 2U
6405 
6406 /**
6407  *	t4_load_mtus - write the MTU and congestion control HW tables
6408  *	@adap: the adapter
6409  *	@mtus: the values for the MTU table
6410  *	@alpha: the values for the congestion control alpha parameter
6411  *	@beta: the values for the congestion control beta parameter
6412  *
6413  *	Write the HW MTU table with the supplied MTUs and the high-speed
6414  *	congestion control table with the supplied alpha, beta, and MTUs.
6415  *	We write the two tables together because the additive increments
6416  *	depend on the MTUs.
6417  */
6418 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
6419 		  const unsigned short *alpha, const unsigned short *beta)
6420 {
6421 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
6422 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
6423 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
6424 		28672, 40960, 57344, 81920, 114688, 163840, 229376
6425 	};
6426 
6427 	unsigned int i, w;
6428 
6429 	for (i = 0; i < NMTUS; ++i) {
6430 		unsigned int mtu = mtus[i];
6431 		unsigned int log2 = fls(mtu);
6432 
6433 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
6434 			log2--;
6435 		t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
6436 			     V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
6437 
6438 		for (w = 0; w < NCCTRL_WIN; ++w) {
6439 			unsigned int inc;
6440 
6441 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
6442 				  CC_MIN_INCR);
6443 
6444 			t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
6445 				     (w << 16) | (beta[w] << 13) | inc);
6446 		}
6447 	}
6448 }
6449 
6450 /**
6451  *	t4_set_pace_tbl - set the pace table
6452  *	@adap: the adapter
6453  *	@pace_vals: the pace values in microseconds
6454  *	@start: index of the first entry in the HW pace table to set
6455  *	@n: how many entries to set
6456  *
6457  *	Sets (a subset of the) HW pace table.
6458  */
6459 int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
6460 		     unsigned int start, unsigned int n)
6461 {
6462 	unsigned int vals[NTX_SCHED], i;
6463 	unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
6464 
6465 	if (n > NTX_SCHED)
6466 	    return -ERANGE;
6467 
6468 	/* convert values from us to dack ticks, rounding to closest value */
6469 	for (i = 0; i < n; i++, pace_vals++) {
6470 		vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
6471 		if (vals[i] > 0x7ff)
6472 			return -ERANGE;
6473 		if (*pace_vals && vals[i] == 0)
6474 			return -ERANGE;
6475 	}
6476 	for (i = 0; i < n; i++, start++)
6477 		t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
6478 	return 0;
6479 }
6480 
6481 /**
6482  *	t4_set_sched_bps - set the bit rate for a HW traffic scheduler
6483  *	@adap: the adapter
6484  *	@kbps: target rate in Kbps
6485  *	@sched: the scheduler index
6486  *
6487  *	Configure a Tx HW scheduler for the target rate.
6488  */
6489 int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
6490 {
6491 	unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
6492 	unsigned int clk = adap->params.vpd.cclk * 1000;
6493 	unsigned int selected_cpt = 0, selected_bpt = 0;
6494 
6495 	if (kbps > 0) {
6496 		kbps *= 125;     /* -> bytes */
6497 		for (cpt = 1; cpt <= 255; cpt++) {
6498 			tps = clk / cpt;
6499 			bpt = (kbps + tps / 2) / tps;
6500 			if (bpt > 0 && bpt <= 255) {
6501 				v = bpt * tps;
6502 				delta = v >= kbps ? v - kbps : kbps - v;
6503 				if (delta < mindelta) {
6504 					mindelta = delta;
6505 					selected_cpt = cpt;
6506 					selected_bpt = bpt;
6507 				}
6508 			} else if (selected_cpt)
6509 				break;
6510 		}
6511 		if (!selected_cpt)
6512 			return -EINVAL;
6513 	}
6514 	t4_write_reg(adap, A_TP_TM_PIO_ADDR,
6515 		     A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
6516 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
6517 	if (sched & 1)
6518 		v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
6519 	else
6520 		v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
6521 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
6522 	return 0;
6523 }
6524 
6525 /**
6526  *	t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
6527  *	@adap: the adapter
6528  *	@sched: the scheduler index
6529  *	@ipg: the interpacket delay in tenths of nanoseconds
6530  *
6531  *	Set the interpacket delay for a HW packet rate scheduler.
6532  */
6533 int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
6534 {
6535 	unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
6536 
6537 	/* convert ipg to nearest number of core clocks */
6538 	ipg *= core_ticks_per_usec(adap);
6539 	ipg = (ipg + 5000) / 10000;
6540 	if (ipg > M_TXTIMERSEPQ0)
6541 		return -EINVAL;
6542 
6543 	t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
6544 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
6545 	if (sched & 1)
6546 		v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
6547 	else
6548 		v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
6549 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
6550 	t4_read_reg(adap, A_TP_TM_PIO_DATA);
6551 	return 0;
6552 }
6553 
6554 /*
6555  * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
6556  * clocks.  The formula is
6557  *
6558  * bytes/s = bytes256 * 256 * ClkFreq / 4096
6559  *
6560  * which is equivalent to
6561  *
6562  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
6563  */
6564 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
6565 {
6566 	u64 v = (u64)bytes256 * adap->params.vpd.cclk;
6567 
6568 	return v * 62 + v / 2;
6569 }
6570 
6571 /**
6572  *	t4_get_chan_txrate - get the current per channel Tx rates
6573  *	@adap: the adapter
6574  *	@nic_rate: rates for NIC traffic
6575  *	@ofld_rate: rates for offloaded traffic
6576  *
6577  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
6578  *	for each channel.
6579  */
6580 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
6581 {
6582 	u32 v;
6583 
6584 	v = t4_read_reg(adap, A_TP_TX_TRATE);
6585 	nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
6586 	nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
6587 	if (adap->chip_params->nchan > 2) {
6588 		nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
6589 		nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
6590 	}
6591 
6592 	v = t4_read_reg(adap, A_TP_TX_ORATE);
6593 	ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
6594 	ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
6595 	if (adap->chip_params->nchan > 2) {
6596 		ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
6597 		ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
6598 	}
6599 }
6600 
6601 /**
6602  *	t4_set_trace_filter - configure one of the tracing filters
6603  *	@adap: the adapter
6604  *	@tp: the desired trace filter parameters
6605  *	@idx: which filter to configure
6606  *	@enable: whether to enable or disable the filter
6607  *
6608  *	Configures one of the tracing filters available in HW.  If @tp is %NULL
6609  *	it indicates that the filter is already written in the register and it
6610  *	just needs to be enabled or disabled.
6611  */
6612 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
6613     int idx, int enable)
6614 {
6615 	int i, ofst = idx * 4;
6616 	u32 data_reg, mask_reg, cfg;
6617 	u32 multitrc = F_TRCMULTIFILTER;
6618 	u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
6619 
6620 	if (idx < 0 || idx >= NTRACE)
6621 		return -EINVAL;
6622 
6623 	if (tp == NULL || !enable) {
6624 		t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en,
6625 		    enable ? en : 0);
6626 		return 0;
6627 	}
6628 
6629 	/*
6630 	 * TODO - After T4 data book is updated, specify the exact
6631 	 * section below.
6632 	 *
6633 	 * See T4 data book - MPS section for a complete description
6634 	 * of the below if..else handling of A_MPS_TRC_CFG register
6635 	 * value.
6636 	 */
6637 	cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
6638 	if (cfg & F_TRCMULTIFILTER) {
6639 		/*
6640 		 * If multiple tracers are enabled, then maximum
6641 		 * capture size is 2.5KB (FIFO size of a single channel)
6642 		 * minus 2 flits for CPL_TRACE_PKT header.
6643 		 */
6644 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
6645 			return -EINVAL;
6646 	} else {
6647 		/*
6648 		 * If multiple tracers are disabled, to avoid deadlocks
6649 		 * maximum packet capture size of 9600 bytes is recommended.
6650 		 * Also in this mode, only trace0 can be enabled and running.
6651 		 */
6652 		multitrc = 0;
6653 		if (tp->snap_len > 9600 || idx)
6654 			return -EINVAL;
6655 	}
6656 
6657 	if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
6658 	    tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
6659 	    tp->min_len > M_TFMINPKTSIZE)
6660 		return -EINVAL;
6661 
6662 	/* stop the tracer we'll be changing */
6663 	t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0);
6664 
6665 	idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
6666 	data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
6667 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
6668 
6669 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6670 		t4_write_reg(adap, data_reg, tp->data[i]);
6671 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
6672 	}
6673 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
6674 		     V_TFCAPTUREMAX(tp->snap_len) |
6675 		     V_TFMINPKTSIZE(tp->min_len));
6676 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
6677 		     V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en |
6678 		     (is_t4(adap) ?
6679 		     V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
6680 		     V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
6681 
6682 	return 0;
6683 }
6684 
6685 /**
6686  *	t4_get_trace_filter - query one of the tracing filters
6687  *	@adap: the adapter
6688  *	@tp: the current trace filter parameters
6689  *	@idx: which trace filter to query
6690  *	@enabled: non-zero if the filter is enabled
6691  *
6692  *	Returns the current settings of one of the HW tracing filters.
6693  */
6694 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
6695 			 int *enabled)
6696 {
6697 	u32 ctla, ctlb;
6698 	int i, ofst = idx * 4;
6699 	u32 data_reg, mask_reg;
6700 
6701 	ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
6702 	ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
6703 
6704 	if (is_t4(adap)) {
6705 		*enabled = !!(ctla & F_TFEN);
6706 		tp->port =  G_TFPORT(ctla);
6707 		tp->invert = !!(ctla & F_TFINVERTMATCH);
6708 	} else {
6709 		*enabled = !!(ctla & F_T5_TFEN);
6710 		tp->port = G_T5_TFPORT(ctla);
6711 		tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
6712 	}
6713 	tp->snap_len = G_TFCAPTUREMAX(ctlb);
6714 	tp->min_len = G_TFMINPKTSIZE(ctlb);
6715 	tp->skip_ofst = G_TFOFFSET(ctla);
6716 	tp->skip_len = G_TFLENGTH(ctla);
6717 
6718 	ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
6719 	data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
6720 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
6721 
6722 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6723 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
6724 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
6725 	}
6726 }
6727 
6728 /**
6729  *	t4_pmtx_get_stats - returns the HW stats from PMTX
6730  *	@adap: the adapter
6731  *	@cnt: where to store the count statistics
6732  *	@cycles: where to store the cycle statistics
6733  *
6734  *	Returns performance statistics from PMTX.
6735  */
6736 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6737 {
6738 	int i;
6739 	u32 data[2];
6740 
6741 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
6742 		t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
6743 		cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
6744 		if (is_t4(adap))
6745 			cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
6746 		else {
6747 			t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
6748 					 A_PM_TX_DBG_DATA, data, 2,
6749 					 A_PM_TX_DBG_STAT_MSB);
6750 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6751 		}
6752 	}
6753 }
6754 
6755 /**
6756  *	t4_pmrx_get_stats - returns the HW stats from PMRX
6757  *	@adap: the adapter
6758  *	@cnt: where to store the count statistics
6759  *	@cycles: where to store the cycle statistics
6760  *
6761  *	Returns performance statistics from PMRX.
6762  */
6763 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6764 {
6765 	int i;
6766 	u32 data[2];
6767 
6768 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
6769 		t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
6770 		cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
6771 		if (is_t4(adap)) {
6772 			cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
6773 		} else {
6774 			t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
6775 					 A_PM_RX_DBG_DATA, data, 2,
6776 					 A_PM_RX_DBG_STAT_MSB);
6777 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6778 		}
6779 	}
6780 }
6781 
6782 /**
6783  *	t4_get_mps_bg_map - return the buffer groups associated with a port
6784  *	@adap: the adapter
6785  *	@idx: the port index
6786  *
6787  *	Returns a bitmap indicating which MPS buffer groups are associated
6788  *	with the given port.  Bit i is set if buffer group i is used by the
6789  *	port.
6790  */
6791 static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
6792 {
6793 	u32 n;
6794 
6795 	if (adap->params.mps_bg_map)
6796 		return ((adap->params.mps_bg_map >> (idx << 3)) & 0xff);
6797 
6798 	n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
6799 	if (n == 0)
6800 		return idx == 0 ? 0xf : 0;
6801 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
6802 		return idx < 2 ? (3 << (2 * idx)) : 0;
6803 	return 1 << idx;
6804 }
6805 
6806 /*
6807  * TP RX e-channels associated with the port.
6808  */
6809 static unsigned int t4_get_rx_e_chan_map(struct adapter *adap, int idx)
6810 {
6811 	u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
6812 	const u32 all_chan = (1 << adap->chip_params->nchan) - 1;
6813 
6814 	if (n == 0)
6815 		return idx == 0 ? all_chan : 0;
6816 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
6817 		return idx < 2 ? (3 << (2 * idx)) : 0;
6818 	return 1 << idx;
6819 }
6820 
6821 /**
6822  *      t4_get_port_type_description - return Port Type string description
6823  *      @port_type: firmware Port Type enumeration
6824  */
6825 const char *t4_get_port_type_description(enum fw_port_type port_type)
6826 {
6827 	static const char *const port_type_description[] = {
6828 		"Fiber_XFI",
6829 		"Fiber_XAUI",
6830 		"BT_SGMII",
6831 		"BT_XFI",
6832 		"BT_XAUI",
6833 		"KX4",
6834 		"CX4",
6835 		"KX",
6836 		"KR",
6837 		"SFP",
6838 		"BP_AP",
6839 		"BP4_AP",
6840 		"QSFP_10G",
6841 		"QSA",
6842 		"QSFP",
6843 		"BP40_BA",
6844 		"KR4_100G",
6845 		"CR4_QSFP",
6846 		"CR_QSFP",
6847 		"CR2_QSFP",
6848 		"SFP28",
6849 		"KR_SFP28",
6850 	};
6851 
6852 	if (port_type < ARRAY_SIZE(port_type_description))
6853 		return port_type_description[port_type];
6854 	return "UNKNOWN";
6855 }
6856 
6857 /**
6858  *      t4_get_port_stats_offset - collect port stats relative to a previous
6859  *				   snapshot
6860  *      @adap: The adapter
6861  *      @idx: The port
6862  *      @stats: Current stats to fill
6863  *      @offset: Previous stats snapshot
6864  */
6865 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6866 		struct port_stats *stats,
6867 		struct port_stats *offset)
6868 {
6869 	u64 *s, *o;
6870 	int i;
6871 
6872 	t4_get_port_stats(adap, idx, stats);
6873 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
6874 			i < (sizeof(struct port_stats)/sizeof(u64)) ;
6875 			i++, s++, o++)
6876 		*s -= *o;
6877 }
6878 
6879 /**
6880  *	t4_get_port_stats - collect port statistics
6881  *	@adap: the adapter
6882  *	@idx: the port index
6883  *	@p: the stats structure to fill
6884  *
6885  *	Collect statistics related to the given port from HW.
6886  */
6887 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6888 {
6889 	struct port_info *pi = adap->port[idx];
6890 	u32 bgmap = pi->mps_bg_map;
6891 	u32 stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
6892 
6893 #define GET_STAT(name) \
6894 	t4_read_reg64(adap, \
6895 	(is_t4(adap) ? PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) : \
6896 	T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
6897 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6898 
6899 	p->tx_pause		= GET_STAT(TX_PORT_PAUSE);
6900 	p->tx_octets		= GET_STAT(TX_PORT_BYTES);
6901 	p->tx_frames		= GET_STAT(TX_PORT_FRAMES);
6902 	p->tx_bcast_frames	= GET_STAT(TX_PORT_BCAST);
6903 	p->tx_mcast_frames	= GET_STAT(TX_PORT_MCAST);
6904 	p->tx_ucast_frames	= GET_STAT(TX_PORT_UCAST);
6905 	p->tx_error_frames	= GET_STAT(TX_PORT_ERROR);
6906 	p->tx_frames_64		= GET_STAT(TX_PORT_64B);
6907 	p->tx_frames_65_127	= GET_STAT(TX_PORT_65B_127B);
6908 	p->tx_frames_128_255	= GET_STAT(TX_PORT_128B_255B);
6909 	p->tx_frames_256_511	= GET_STAT(TX_PORT_256B_511B);
6910 	p->tx_frames_512_1023	= GET_STAT(TX_PORT_512B_1023B);
6911 	p->tx_frames_1024_1518	= GET_STAT(TX_PORT_1024B_1518B);
6912 	p->tx_frames_1519_max	= GET_STAT(TX_PORT_1519B_MAX);
6913 	p->tx_drop		= GET_STAT(TX_PORT_DROP);
6914 	p->tx_ppp0		= GET_STAT(TX_PORT_PPP0);
6915 	p->tx_ppp1		= GET_STAT(TX_PORT_PPP1);
6916 	p->tx_ppp2		= GET_STAT(TX_PORT_PPP2);
6917 	p->tx_ppp3		= GET_STAT(TX_PORT_PPP3);
6918 	p->tx_ppp4		= GET_STAT(TX_PORT_PPP4);
6919 	p->tx_ppp5		= GET_STAT(TX_PORT_PPP5);
6920 	p->tx_ppp6		= GET_STAT(TX_PORT_PPP6);
6921 	p->tx_ppp7		= GET_STAT(TX_PORT_PPP7);
6922 
6923 	if (chip_id(adap) >= CHELSIO_T5) {
6924 		if (stat_ctl & F_COUNTPAUSESTATTX) {
6925 			p->tx_frames -= p->tx_pause;
6926 			p->tx_octets -= p->tx_pause * 64;
6927 		}
6928 		if (stat_ctl & F_COUNTPAUSEMCTX)
6929 			p->tx_mcast_frames -= p->tx_pause;
6930 	}
6931 
6932 	p->rx_pause		= GET_STAT(RX_PORT_PAUSE);
6933 	p->rx_octets		= GET_STAT(RX_PORT_BYTES);
6934 	p->rx_frames		= GET_STAT(RX_PORT_FRAMES);
6935 	p->rx_bcast_frames	= GET_STAT(RX_PORT_BCAST);
6936 	p->rx_mcast_frames	= GET_STAT(RX_PORT_MCAST);
6937 	p->rx_ucast_frames	= GET_STAT(RX_PORT_UCAST);
6938 	p->rx_too_long		= GET_STAT(RX_PORT_MTU_ERROR);
6939 	p->rx_jabber		= GET_STAT(RX_PORT_MTU_CRC_ERROR);
6940 	p->rx_len_err		= GET_STAT(RX_PORT_LEN_ERROR);
6941 	p->rx_symbol_err	= GET_STAT(RX_PORT_SYM_ERROR);
6942 	p->rx_runt		= GET_STAT(RX_PORT_LESS_64B);
6943 	p->rx_frames_64		= GET_STAT(RX_PORT_64B);
6944 	p->rx_frames_65_127	= GET_STAT(RX_PORT_65B_127B);
6945 	p->rx_frames_128_255	= GET_STAT(RX_PORT_128B_255B);
6946 	p->rx_frames_256_511	= GET_STAT(RX_PORT_256B_511B);
6947 	p->rx_frames_512_1023	= GET_STAT(RX_PORT_512B_1023B);
6948 	p->rx_frames_1024_1518	= GET_STAT(RX_PORT_1024B_1518B);
6949 	p->rx_frames_1519_max	= GET_STAT(RX_PORT_1519B_MAX);
6950 	p->rx_ppp0		= GET_STAT(RX_PORT_PPP0);
6951 	p->rx_ppp1		= GET_STAT(RX_PORT_PPP1);
6952 	p->rx_ppp2		= GET_STAT(RX_PORT_PPP2);
6953 	p->rx_ppp3		= GET_STAT(RX_PORT_PPP3);
6954 	p->rx_ppp4		= GET_STAT(RX_PORT_PPP4);
6955 	p->rx_ppp5		= GET_STAT(RX_PORT_PPP5);
6956 	p->rx_ppp6		= GET_STAT(RX_PORT_PPP6);
6957 	p->rx_ppp7		= GET_STAT(RX_PORT_PPP7);
6958 
6959 	if (pi->fcs_reg != -1)
6960 		p->rx_fcs_err = t4_read_reg64(adap, pi->fcs_reg) - pi->fcs_base;
6961 
6962 	if (chip_id(adap) >= CHELSIO_T5) {
6963 		if (stat_ctl & F_COUNTPAUSESTATRX) {
6964 			p->rx_frames -= p->rx_pause;
6965 			p->rx_octets -= p->rx_pause * 64;
6966 		}
6967 		if (stat_ctl & F_COUNTPAUSEMCRX)
6968 			p->rx_mcast_frames -= p->rx_pause;
6969 	}
6970 
6971 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6972 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6973 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6974 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6975 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6976 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6977 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6978 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6979 
6980 #undef GET_STAT
6981 #undef GET_STAT_COM
6982 }
6983 
6984 /**
6985  *	t4_get_lb_stats - collect loopback port statistics
6986  *	@adap: the adapter
6987  *	@idx: the loopback port index
6988  *	@p: the stats structure to fill
6989  *
6990  *	Return HW statistics for the given loopback port.
6991  */
6992 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6993 {
6994 
6995 #define GET_STAT(name) \
6996 	t4_read_reg64(adap, \
6997 	(is_t4(adap) ? \
6998 	PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \
6999 	T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L)))
7000 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
7001 
7002 	p->octets	= GET_STAT(BYTES);
7003 	p->frames	= GET_STAT(FRAMES);
7004 	p->bcast_frames	= GET_STAT(BCAST);
7005 	p->mcast_frames	= GET_STAT(MCAST);
7006 	p->ucast_frames	= GET_STAT(UCAST);
7007 	p->error_frames	= GET_STAT(ERROR);
7008 
7009 	p->frames_64		= GET_STAT(64B);
7010 	p->frames_65_127	= GET_STAT(65B_127B);
7011 	p->frames_128_255	= GET_STAT(128B_255B);
7012 	p->frames_256_511	= GET_STAT(256B_511B);
7013 	p->frames_512_1023	= GET_STAT(512B_1023B);
7014 	p->frames_1024_1518	= GET_STAT(1024B_1518B);
7015 	p->frames_1519_max	= GET_STAT(1519B_MAX);
7016 	p->drop			= GET_STAT(DROP_FRAMES);
7017 
7018 	if (idx < adap->params.nports) {
7019 		u32 bg = adap2pinfo(adap, idx)->mps_bg_map;
7020 
7021 		p->ovflow0 = (bg & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
7022 		p->ovflow1 = (bg & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
7023 		p->ovflow2 = (bg & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
7024 		p->ovflow3 = (bg & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
7025 		p->trunc0 = (bg & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
7026 		p->trunc1 = (bg & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
7027 		p->trunc2 = (bg & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
7028 		p->trunc3 = (bg & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
7029 	}
7030 
7031 #undef GET_STAT
7032 #undef GET_STAT_COM
7033 }
7034 
7035 /**
7036  *	t4_wol_magic_enable - enable/disable magic packet WoL
7037  *	@adap: the adapter
7038  *	@port: the physical port index
7039  *	@addr: MAC address expected in magic packets, %NULL to disable
7040  *
7041  *	Enables/disables magic packet wake-on-LAN for the selected port.
7042  */
7043 void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
7044 			 const u8 *addr)
7045 {
7046 	u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
7047 
7048 	if (is_t4(adap)) {
7049 		mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
7050 		mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
7051 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
7052 	} else {
7053 		mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
7054 		mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
7055 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
7056 	}
7057 
7058 	if (addr) {
7059 		t4_write_reg(adap, mag_id_reg_l,
7060 			     (addr[2] << 24) | (addr[3] << 16) |
7061 			     (addr[4] << 8) | addr[5]);
7062 		t4_write_reg(adap, mag_id_reg_h,
7063 			     (addr[0] << 8) | addr[1]);
7064 	}
7065 	t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
7066 			 V_MAGICEN(addr != NULL));
7067 }
7068 
7069 /**
7070  *	t4_wol_pat_enable - enable/disable pattern-based WoL
7071  *	@adap: the adapter
7072  *	@port: the physical port index
7073  *	@map: bitmap of which HW pattern filters to set
7074  *	@mask0: byte mask for bytes 0-63 of a packet
7075  *	@mask1: byte mask for bytes 64-127 of a packet
7076  *	@crc: Ethernet CRC for selected bytes
7077  *	@enable: enable/disable switch
7078  *
7079  *	Sets the pattern filters indicated in @map to mask out the bytes
7080  *	specified in @mask0/@mask1 in received packets and compare the CRC of
7081  *	the resulting packet against @crc.  If @enable is %true pattern-based
7082  *	WoL is enabled, otherwise disabled.
7083  */
7084 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
7085 		      u64 mask0, u64 mask1, unsigned int crc, bool enable)
7086 {
7087 	int i;
7088 	u32 port_cfg_reg;
7089 
7090 	if (is_t4(adap))
7091 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
7092 	else
7093 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
7094 
7095 	if (!enable) {
7096 		t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
7097 		return 0;
7098 	}
7099 	if (map > 0xff)
7100 		return -EINVAL;
7101 
7102 #define EPIO_REG(name) \
7103 	(is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
7104 	T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
7105 
7106 	t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
7107 	t4_write_reg(adap, EPIO_REG(DATA2), mask1);
7108 	t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
7109 
7110 	for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
7111 		if (!(map & 1))
7112 			continue;
7113 
7114 		/* write byte masks */
7115 		t4_write_reg(adap, EPIO_REG(DATA0), mask0);
7116 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
7117 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
7118 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
7119 			return -ETIMEDOUT;
7120 
7121 		/* write CRC */
7122 		t4_write_reg(adap, EPIO_REG(DATA0), crc);
7123 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
7124 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
7125 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
7126 			return -ETIMEDOUT;
7127 	}
7128 #undef EPIO_REG
7129 
7130 	t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
7131 	return 0;
7132 }
7133 
7134 /*     t4_mk_filtdelwr - create a delete filter WR
7135  *     @ftid: the filter ID
7136  *     @wr: the filter work request to populate
7137  *     @qid: ingress queue to receive the delete notification
7138  *
7139  *     Creates a filter work request to delete the supplied filter.  If @qid is
7140  *     negative the delete notification is suppressed.
7141  */
7142 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
7143 {
7144 	memset(wr, 0, sizeof(*wr));
7145 	wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR));
7146 	wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16));
7147 	wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) |
7148 				    V_FW_FILTER_WR_NOREPLY(qid < 0));
7149 	wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER);
7150 	if (qid >= 0)
7151 		wr->rx_chan_rx_rpl_iq =
7152 				cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid));
7153 }
7154 
7155 #define INIT_CMD(var, cmd, rd_wr) do { \
7156 	(var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
7157 					F_FW_CMD_REQUEST | \
7158 					F_FW_CMD_##rd_wr); \
7159 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
7160 } while (0)
7161 
7162 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
7163 			  u32 addr, u32 val)
7164 {
7165 	u32 ldst_addrspace;
7166 	struct fw_ldst_cmd c;
7167 
7168 	memset(&c, 0, sizeof(c));
7169 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE);
7170 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7171 					F_FW_CMD_REQUEST |
7172 					F_FW_CMD_WRITE |
7173 					ldst_addrspace);
7174 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7175 	c.u.addrval.addr = cpu_to_be32(addr);
7176 	c.u.addrval.val = cpu_to_be32(val);
7177 
7178 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7179 }
7180 
7181 /**
7182  *	t4_mdio_rd - read a PHY register through MDIO
7183  *	@adap: the adapter
7184  *	@mbox: mailbox to use for the FW command
7185  *	@phy_addr: the PHY address
7186  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
7187  *	@reg: the register to read
7188  *	@valp: where to store the value
7189  *
7190  *	Issues a FW command through the given mailbox to read a PHY register.
7191  */
7192 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
7193 	       unsigned int mmd, unsigned int reg, unsigned int *valp)
7194 {
7195 	int ret;
7196 	u32 ldst_addrspace;
7197 	struct fw_ldst_cmd c;
7198 
7199 	memset(&c, 0, sizeof(c));
7200 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
7201 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7202 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
7203 					ldst_addrspace);
7204 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7205 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
7206 					 V_FW_LDST_CMD_MMD(mmd));
7207 	c.u.mdio.raddr = cpu_to_be16(reg);
7208 
7209 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7210 	if (ret == 0)
7211 		*valp = be16_to_cpu(c.u.mdio.rval);
7212 	return ret;
7213 }
7214 
7215 /**
7216  *	t4_mdio_wr - write a PHY register through MDIO
7217  *	@adap: the adapter
7218  *	@mbox: mailbox to use for the FW command
7219  *	@phy_addr: the PHY address
7220  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
7221  *	@reg: the register to write
7222  *	@valp: value to write
7223  *
7224  *	Issues a FW command through the given mailbox to write a PHY register.
7225  */
7226 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
7227 	       unsigned int mmd, unsigned int reg, unsigned int val)
7228 {
7229 	u32 ldst_addrspace;
7230 	struct fw_ldst_cmd c;
7231 
7232 	memset(&c, 0, sizeof(c));
7233 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
7234 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7235 					F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7236 					ldst_addrspace);
7237 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7238 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
7239 					 V_FW_LDST_CMD_MMD(mmd));
7240 	c.u.mdio.raddr = cpu_to_be16(reg);
7241 	c.u.mdio.rval = cpu_to_be16(val);
7242 
7243 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7244 }
7245 
7246 /**
7247  *
7248  *	t4_sge_decode_idma_state - decode the idma state
7249  *	@adap: the adapter
7250  *	@state: the state idma is stuck in
7251  */
7252 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
7253 {
7254 	static const char * const t4_decode[] = {
7255 		"IDMA_IDLE",
7256 		"IDMA_PUSH_MORE_CPL_FIFO",
7257 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7258 		"Not used",
7259 		"IDMA_PHYSADDR_SEND_PCIEHDR",
7260 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7261 		"IDMA_PHYSADDR_SEND_PAYLOAD",
7262 		"IDMA_SEND_FIFO_TO_IMSG",
7263 		"IDMA_FL_REQ_DATA_FL_PREP",
7264 		"IDMA_FL_REQ_DATA_FL",
7265 		"IDMA_FL_DROP",
7266 		"IDMA_FL_H_REQ_HEADER_FL",
7267 		"IDMA_FL_H_SEND_PCIEHDR",
7268 		"IDMA_FL_H_PUSH_CPL_FIFO",
7269 		"IDMA_FL_H_SEND_CPL",
7270 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
7271 		"IDMA_FL_H_SEND_IP_HDR",
7272 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
7273 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
7274 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
7275 		"IDMA_FL_D_SEND_PCIEHDR",
7276 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7277 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
7278 		"IDMA_FL_SEND_PCIEHDR",
7279 		"IDMA_FL_PUSH_CPL_FIFO",
7280 		"IDMA_FL_SEND_CPL",
7281 		"IDMA_FL_SEND_PAYLOAD_FIRST",
7282 		"IDMA_FL_SEND_PAYLOAD",
7283 		"IDMA_FL_REQ_NEXT_DATA_FL",
7284 		"IDMA_FL_SEND_NEXT_PCIEHDR",
7285 		"IDMA_FL_SEND_PADDING",
7286 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
7287 		"IDMA_FL_SEND_FIFO_TO_IMSG",
7288 		"IDMA_FL_REQ_DATAFL_DONE",
7289 		"IDMA_FL_REQ_HEADERFL_DONE",
7290 	};
7291 	static const char * const t5_decode[] = {
7292 		"IDMA_IDLE",
7293 		"IDMA_ALMOST_IDLE",
7294 		"IDMA_PUSH_MORE_CPL_FIFO",
7295 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7296 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
7297 		"IDMA_PHYSADDR_SEND_PCIEHDR",
7298 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7299 		"IDMA_PHYSADDR_SEND_PAYLOAD",
7300 		"IDMA_SEND_FIFO_TO_IMSG",
7301 		"IDMA_FL_REQ_DATA_FL",
7302 		"IDMA_FL_DROP",
7303 		"IDMA_FL_DROP_SEND_INC",
7304 		"IDMA_FL_H_REQ_HEADER_FL",
7305 		"IDMA_FL_H_SEND_PCIEHDR",
7306 		"IDMA_FL_H_PUSH_CPL_FIFO",
7307 		"IDMA_FL_H_SEND_CPL",
7308 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
7309 		"IDMA_FL_H_SEND_IP_HDR",
7310 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
7311 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
7312 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
7313 		"IDMA_FL_D_SEND_PCIEHDR",
7314 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7315 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
7316 		"IDMA_FL_SEND_PCIEHDR",
7317 		"IDMA_FL_PUSH_CPL_FIFO",
7318 		"IDMA_FL_SEND_CPL",
7319 		"IDMA_FL_SEND_PAYLOAD_FIRST",
7320 		"IDMA_FL_SEND_PAYLOAD",
7321 		"IDMA_FL_REQ_NEXT_DATA_FL",
7322 		"IDMA_FL_SEND_NEXT_PCIEHDR",
7323 		"IDMA_FL_SEND_PADDING",
7324 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
7325 	};
7326 	static const char * const t6_decode[] = {
7327 		"IDMA_IDLE",
7328 		"IDMA_PUSH_MORE_CPL_FIFO",
7329 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7330 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
7331 		"IDMA_PHYSADDR_SEND_PCIEHDR",
7332 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7333 		"IDMA_PHYSADDR_SEND_PAYLOAD",
7334 		"IDMA_FL_REQ_DATA_FL",
7335 		"IDMA_FL_DROP",
7336 		"IDMA_FL_DROP_SEND_INC",
7337 		"IDMA_FL_H_REQ_HEADER_FL",
7338 		"IDMA_FL_H_SEND_PCIEHDR",
7339 		"IDMA_FL_H_PUSH_CPL_FIFO",
7340 		"IDMA_FL_H_SEND_CPL",
7341 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
7342 		"IDMA_FL_H_SEND_IP_HDR",
7343 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
7344 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
7345 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
7346 		"IDMA_FL_D_SEND_PCIEHDR",
7347 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7348 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
7349 		"IDMA_FL_SEND_PCIEHDR",
7350 		"IDMA_FL_PUSH_CPL_FIFO",
7351 		"IDMA_FL_SEND_CPL",
7352 		"IDMA_FL_SEND_PAYLOAD_FIRST",
7353 		"IDMA_FL_SEND_PAYLOAD",
7354 		"IDMA_FL_REQ_NEXT_DATA_FL",
7355 		"IDMA_FL_SEND_NEXT_PCIEHDR",
7356 		"IDMA_FL_SEND_PADDING",
7357 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
7358 	};
7359 	static const u32 sge_regs[] = {
7360 		A_SGE_DEBUG_DATA_LOW_INDEX_2,
7361 		A_SGE_DEBUG_DATA_LOW_INDEX_3,
7362 		A_SGE_DEBUG_DATA_HIGH_INDEX_10,
7363 	};
7364 	const char * const *sge_idma_decode;
7365 	int sge_idma_decode_nstates;
7366 	int i;
7367 	unsigned int chip_version = chip_id(adapter);
7368 
7369 	/* Select the right set of decode strings to dump depending on the
7370 	 * adapter chip type.
7371 	 */
7372 	switch (chip_version) {
7373 	case CHELSIO_T4:
7374 		sge_idma_decode = (const char * const *)t4_decode;
7375 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
7376 		break;
7377 
7378 	case CHELSIO_T5:
7379 		sge_idma_decode = (const char * const *)t5_decode;
7380 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
7381 		break;
7382 
7383 	case CHELSIO_T6:
7384 		sge_idma_decode = (const char * const *)t6_decode;
7385 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
7386 		break;
7387 
7388 	default:
7389 		CH_ERR(adapter,	"Unsupported chip version %d\n", chip_version);
7390 		return;
7391 	}
7392 
7393 	if (state < sge_idma_decode_nstates)
7394 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
7395 	else
7396 		CH_WARN(adapter, "idma state %d unknown\n", state);
7397 
7398 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
7399 		CH_WARN(adapter, "SGE register %#x value %#x\n",
7400 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
7401 }
7402 
7403 /**
7404  *      t4_sge_ctxt_flush - flush the SGE context cache
7405  *      @adap: the adapter
7406  *      @mbox: mailbox to use for the FW command
7407  *
7408  *      Issues a FW command through the given mailbox to flush the
7409  *      SGE context cache.
7410  */
7411 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type)
7412 {
7413 	int ret;
7414 	u32 ldst_addrspace;
7415 	struct fw_ldst_cmd c;
7416 
7417 	memset(&c, 0, sizeof(c));
7418 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(ctxt_type == CTXT_EGRESS ?
7419 						 FW_LDST_ADDRSPC_SGE_EGRC :
7420 						 FW_LDST_ADDRSPC_SGE_INGC);
7421 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7422 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
7423 					ldst_addrspace);
7424 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7425 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH);
7426 
7427 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7428 	return ret;
7429 }
7430 
7431 /**
7432  *      t4_fw_hello - establish communication with FW
7433  *      @adap: the adapter
7434  *      @mbox: mailbox to use for the FW command
7435  *      @evt_mbox: mailbox to receive async FW events
7436  *      @master: specifies the caller's willingness to be the device master
7437  *	@state: returns the current device state (if non-NULL)
7438  *
7439  *	Issues a command to establish communication with FW.  Returns either
7440  *	an error (negative integer) or the mailbox of the Master PF.
7441  */
7442 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
7443 		enum dev_master master, enum dev_state *state)
7444 {
7445 	int ret;
7446 	struct fw_hello_cmd c;
7447 	u32 v;
7448 	unsigned int master_mbox;
7449 	int retries = FW_CMD_HELLO_RETRIES;
7450 
7451 retry:
7452 	memset(&c, 0, sizeof(c));
7453 	INIT_CMD(c, HELLO, WRITE);
7454 	c.err_to_clearinit = cpu_to_be32(
7455 		V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
7456 		V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
7457 		V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ?
7458 					mbox : M_FW_HELLO_CMD_MBMASTER) |
7459 		V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
7460 		V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
7461 		F_FW_HELLO_CMD_CLEARINIT);
7462 
7463 	/*
7464 	 * Issue the HELLO command to the firmware.  If it's not successful
7465 	 * but indicates that we got a "busy" or "timeout" condition, retry
7466 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
7467 	 * retry limit, check to see if the firmware left us any error
7468 	 * information and report that if so ...
7469 	 */
7470 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7471 	if (ret != FW_SUCCESS) {
7472 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
7473 			goto retry;
7474 		if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
7475 			t4_report_fw_error(adap);
7476 		return ret;
7477 	}
7478 
7479 	v = be32_to_cpu(c.err_to_clearinit);
7480 	master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
7481 	if (state) {
7482 		if (v & F_FW_HELLO_CMD_ERR)
7483 			*state = DEV_STATE_ERR;
7484 		else if (v & F_FW_HELLO_CMD_INIT)
7485 			*state = DEV_STATE_INIT;
7486 		else
7487 			*state = DEV_STATE_UNINIT;
7488 	}
7489 
7490 	/*
7491 	 * If we're not the Master PF then we need to wait around for the
7492 	 * Master PF Driver to finish setting up the adapter.
7493 	 *
7494 	 * Note that we also do this wait if we're a non-Master-capable PF and
7495 	 * there is no current Master PF; a Master PF may show up momentarily
7496 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
7497 	 * OS loads lots of different drivers rapidly at the same time).  In
7498 	 * this case, the Master PF returned by the firmware will be
7499 	 * M_PCIE_FW_MASTER so the test below will work ...
7500 	 */
7501 	if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
7502 	    master_mbox != mbox) {
7503 		int waiting = FW_CMD_HELLO_TIMEOUT;
7504 
7505 		/*
7506 		 * Wait for the firmware to either indicate an error or
7507 		 * initialized state.  If we see either of these we bail out
7508 		 * and report the issue to the caller.  If we exhaust the
7509 		 * "hello timeout" and we haven't exhausted our retries, try
7510 		 * again.  Otherwise bail with a timeout error.
7511 		 */
7512 		for (;;) {
7513 			u32 pcie_fw;
7514 
7515 			msleep(50);
7516 			waiting -= 50;
7517 
7518 			/*
7519 			 * If neither Error nor Initialialized are indicated
7520 			 * by the firmware keep waiting till we exhaust our
7521 			 * timeout ... and then retry if we haven't exhausted
7522 			 * our retries ...
7523 			 */
7524 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
7525 			if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
7526 				if (waiting <= 0) {
7527 					if (retries-- > 0)
7528 						goto retry;
7529 
7530 					return -ETIMEDOUT;
7531 				}
7532 				continue;
7533 			}
7534 
7535 			/*
7536 			 * We either have an Error or Initialized condition
7537 			 * report errors preferentially.
7538 			 */
7539 			if (state) {
7540 				if (pcie_fw & F_PCIE_FW_ERR)
7541 					*state = DEV_STATE_ERR;
7542 				else if (pcie_fw & F_PCIE_FW_INIT)
7543 					*state = DEV_STATE_INIT;
7544 			}
7545 
7546 			/*
7547 			 * If we arrived before a Master PF was selected and
7548 			 * there's not a valid Master PF, grab its identity
7549 			 * for our caller.
7550 			 */
7551 			if (master_mbox == M_PCIE_FW_MASTER &&
7552 			    (pcie_fw & F_PCIE_FW_MASTER_VLD))
7553 				master_mbox = G_PCIE_FW_MASTER(pcie_fw);
7554 			break;
7555 		}
7556 	}
7557 
7558 	return master_mbox;
7559 }
7560 
7561 /**
7562  *	t4_fw_bye - end communication with FW
7563  *	@adap: the adapter
7564  *	@mbox: mailbox to use for the FW command
7565  *
7566  *	Issues a command to terminate communication with FW.
7567  */
7568 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
7569 {
7570 	struct fw_bye_cmd c;
7571 
7572 	memset(&c, 0, sizeof(c));
7573 	INIT_CMD(c, BYE, WRITE);
7574 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7575 }
7576 
7577 /**
7578  *	t4_fw_reset - issue a reset to FW
7579  *	@adap: the adapter
7580  *	@mbox: mailbox to use for the FW command
7581  *	@reset: specifies the type of reset to perform
7582  *
7583  *	Issues a reset command of the specified type to FW.
7584  */
7585 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
7586 {
7587 	struct fw_reset_cmd c;
7588 
7589 	memset(&c, 0, sizeof(c));
7590 	INIT_CMD(c, RESET, WRITE);
7591 	c.val = cpu_to_be32(reset);
7592 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7593 }
7594 
7595 /**
7596  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
7597  *	@adap: the adapter
7598  *	@mbox: mailbox to use for the FW RESET command (if desired)
7599  *	@force: force uP into RESET even if FW RESET command fails
7600  *
7601  *	Issues a RESET command to firmware (if desired) with a HALT indication
7602  *	and then puts the microprocessor into RESET state.  The RESET command
7603  *	will only be issued if a legitimate mailbox is provided (mbox <=
7604  *	M_PCIE_FW_MASTER).
7605  *
7606  *	This is generally used in order for the host to safely manipulate the
7607  *	adapter without fear of conflicting with whatever the firmware might
7608  *	be doing.  The only way out of this state is to RESTART the firmware
7609  *	...
7610  */
7611 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
7612 {
7613 	int ret = 0;
7614 
7615 	/*
7616 	 * If a legitimate mailbox is provided, issue a RESET command
7617 	 * with a HALT indication.
7618 	 */
7619 	if (adap->flags & FW_OK && mbox <= M_PCIE_FW_MASTER) {
7620 		struct fw_reset_cmd c;
7621 
7622 		memset(&c, 0, sizeof(c));
7623 		INIT_CMD(c, RESET, WRITE);
7624 		c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
7625 		c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
7626 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7627 	}
7628 
7629 	/*
7630 	 * Normally we won't complete the operation if the firmware RESET
7631 	 * command fails but if our caller insists we'll go ahead and put the
7632 	 * uP into RESET.  This can be useful if the firmware is hung or even
7633 	 * missing ...  We'll have to take the risk of putting the uP into
7634 	 * RESET without the cooperation of firmware in that case.
7635 	 *
7636 	 * We also force the firmware's HALT flag to be on in case we bypassed
7637 	 * the firmware RESET command above or we're dealing with old firmware
7638 	 * which doesn't have the HALT capability.  This will serve as a flag
7639 	 * for the incoming firmware to know that it's coming out of a HALT
7640 	 * rather than a RESET ... if it's new enough to understand that ...
7641 	 */
7642 	if (ret == 0 || force) {
7643 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
7644 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
7645 				 F_PCIE_FW_HALT);
7646 	}
7647 
7648 	/*
7649 	 * And we always return the result of the firmware RESET command
7650 	 * even when we force the uP into RESET ...
7651 	 */
7652 	return ret;
7653 }
7654 
7655 /**
7656  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
7657  *	@adap: the adapter
7658  *
7659  *	Restart firmware previously halted by t4_fw_halt().  On successful
7660  *	return the previous PF Master remains as the new PF Master and there
7661  *	is no need to issue a new HELLO command, etc.
7662  */
7663 int t4_fw_restart(struct adapter *adap, unsigned int mbox)
7664 {
7665 	int ms;
7666 
7667 	t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
7668 	for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
7669 		if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
7670 			return FW_SUCCESS;
7671 		msleep(100);
7672 		ms += 100;
7673 	}
7674 
7675 	return -ETIMEDOUT;
7676 }
7677 
7678 /**
7679  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
7680  *	@adap: the adapter
7681  *	@mbox: mailbox to use for the FW RESET command (if desired)
7682  *	@fw_data: the firmware image to write
7683  *	@size: image size
7684  *	@force: force upgrade even if firmware doesn't cooperate
7685  *
7686  *	Perform all of the steps necessary for upgrading an adapter's
7687  *	firmware image.  Normally this requires the cooperation of the
7688  *	existing firmware in order to halt all existing activities
7689  *	but if an invalid mailbox token is passed in we skip that step
7690  *	(though we'll still put the adapter microprocessor into RESET in
7691  *	that case).
7692  *
7693  *	On successful return the new firmware will have been loaded and
7694  *	the adapter will have been fully RESET losing all previous setup
7695  *	state.  On unsuccessful return the adapter may be completely hosed ...
7696  *	positive errno indicates that the adapter is ~probably~ intact, a
7697  *	negative errno indicates that things are looking bad ...
7698  */
7699 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
7700 		  const u8 *fw_data, unsigned int size, int force)
7701 {
7702 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7703 	unsigned int bootstrap =
7704 	    be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
7705 	int ret;
7706 
7707 	if (!t4_fw_matches_chip(adap, fw_hdr))
7708 		return -EINVAL;
7709 
7710 	if (!bootstrap) {
7711 		ret = t4_fw_halt(adap, mbox, force);
7712 		if (ret < 0 && !force)
7713 			return ret;
7714 	}
7715 
7716 	ret = t4_load_fw(adap, fw_data, size);
7717 	if (ret < 0 || bootstrap)
7718 		return ret;
7719 
7720 	return t4_fw_restart(adap, mbox);
7721 }
7722 
7723 /**
7724  *	t4_fw_initialize - ask FW to initialize the device
7725  *	@adap: the adapter
7726  *	@mbox: mailbox to use for the FW command
7727  *
7728  *	Issues a command to FW to partially initialize the device.  This
7729  *	performs initialization that generally doesn't depend on user input.
7730  */
7731 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7732 {
7733 	struct fw_initialize_cmd c;
7734 
7735 	memset(&c, 0, sizeof(c));
7736 	INIT_CMD(c, INITIALIZE, WRITE);
7737 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7738 }
7739 
7740 /**
7741  *	t4_query_params_rw - query FW or device parameters
7742  *	@adap: the adapter
7743  *	@mbox: mailbox to use for the FW command
7744  *	@pf: the PF
7745  *	@vf: the VF
7746  *	@nparams: the number of parameters
7747  *	@params: the parameter names
7748  *	@val: the parameter values
7749  *	@rw: Write and read flag
7750  *
7751  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
7752  *	queried at once.
7753  */
7754 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7755 		       unsigned int vf, unsigned int nparams, const u32 *params,
7756 		       u32 *val, int rw)
7757 {
7758 	int i, ret;
7759 	struct fw_params_cmd c;
7760 	__be32 *p = &c.param[0].mnem;
7761 
7762 	if (nparams > 7)
7763 		return -EINVAL;
7764 
7765 	memset(&c, 0, sizeof(c));
7766 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7767 				  F_FW_CMD_REQUEST | F_FW_CMD_READ |
7768 				  V_FW_PARAMS_CMD_PFN(pf) |
7769 				  V_FW_PARAMS_CMD_VFN(vf));
7770 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7771 
7772 	for (i = 0; i < nparams; i++) {
7773 		*p++ = cpu_to_be32(*params++);
7774 		if (rw)
7775 			*p = cpu_to_be32(*(val + i));
7776 		p++;
7777 	}
7778 
7779 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7780 	if (ret == 0)
7781 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7782 			*val++ = be32_to_cpu(*p);
7783 	return ret;
7784 }
7785 
7786 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7787 		    unsigned int vf, unsigned int nparams, const u32 *params,
7788 		    u32 *val)
7789 {
7790 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
7791 }
7792 
7793 /**
7794  *      t4_set_params_timeout - sets FW or device parameters
7795  *      @adap: the adapter
7796  *      @mbox: mailbox to use for the FW command
7797  *      @pf: the PF
7798  *      @vf: the VF
7799  *      @nparams: the number of parameters
7800  *      @params: the parameter names
7801  *      @val: the parameter values
7802  *      @timeout: the timeout time
7803  *
7804  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7805  *      specified at once.
7806  */
7807 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7808 			  unsigned int pf, unsigned int vf,
7809 			  unsigned int nparams, const u32 *params,
7810 			  const u32 *val, int timeout)
7811 {
7812 	struct fw_params_cmd c;
7813 	__be32 *p = &c.param[0].mnem;
7814 
7815 	if (nparams > 7)
7816 		return -EINVAL;
7817 
7818 	memset(&c, 0, sizeof(c));
7819 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7820 				  F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7821 				  V_FW_PARAMS_CMD_PFN(pf) |
7822 				  V_FW_PARAMS_CMD_VFN(vf));
7823 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7824 
7825 	while (nparams--) {
7826 		*p++ = cpu_to_be32(*params++);
7827 		*p++ = cpu_to_be32(*val++);
7828 	}
7829 
7830 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7831 }
7832 
7833 /**
7834  *	t4_set_params - sets FW or device parameters
7835  *	@adap: the adapter
7836  *	@mbox: mailbox to use for the FW command
7837  *	@pf: the PF
7838  *	@vf: the VF
7839  *	@nparams: the number of parameters
7840  *	@params: the parameter names
7841  *	@val: the parameter values
7842  *
7843  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7844  *	specified at once.
7845  */
7846 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7847 		  unsigned int vf, unsigned int nparams, const u32 *params,
7848 		  const u32 *val)
7849 {
7850 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7851 				     FW_CMD_MAX_TIMEOUT);
7852 }
7853 
7854 /**
7855  *	t4_cfg_pfvf - configure PF/VF resource limits
7856  *	@adap: the adapter
7857  *	@mbox: mailbox to use for the FW command
7858  *	@pf: the PF being configured
7859  *	@vf: the VF being configured
7860  *	@txq: the max number of egress queues
7861  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7862  *	@rxqi: the max number of interrupt-capable ingress queues
7863  *	@rxq: the max number of interruptless ingress queues
7864  *	@tc: the PCI traffic class
7865  *	@vi: the max number of virtual interfaces
7866  *	@cmask: the channel access rights mask for the PF/VF
7867  *	@pmask: the port access rights mask for the PF/VF
7868  *	@nexact: the maximum number of exact MPS filters
7869  *	@rcaps: read capabilities
7870  *	@wxcaps: write/execute capabilities
7871  *
7872  *	Configures resource limits and capabilities for a physical or virtual
7873  *	function.
7874  */
7875 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7876 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7877 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7878 		unsigned int vi, unsigned int cmask, unsigned int pmask,
7879 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7880 {
7881 	struct fw_pfvf_cmd c;
7882 
7883 	memset(&c, 0, sizeof(c));
7884 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
7885 				  F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
7886 				  V_FW_PFVF_CMD_VFN(vf));
7887 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7888 	c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
7889 				     V_FW_PFVF_CMD_NIQ(rxq));
7890 	c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) |
7891 				    V_FW_PFVF_CMD_PMASK(pmask) |
7892 				    V_FW_PFVF_CMD_NEQ(txq));
7893 	c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) |
7894 				      V_FW_PFVF_CMD_NVI(vi) |
7895 				      V_FW_PFVF_CMD_NEXACTF(nexact));
7896 	c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) |
7897 				     V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
7898 				     V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
7899 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7900 }
7901 
7902 /**
7903  *	t4_alloc_vi_func - allocate a virtual interface
7904  *	@adap: the adapter
7905  *	@mbox: mailbox to use for the FW command
7906  *	@port: physical port associated with the VI
7907  *	@pf: the PF owning the VI
7908  *	@vf: the VF owning the VI
7909  *	@nmac: number of MAC addresses needed (1 to 5)
7910  *	@mac: the MAC addresses of the VI
7911  *	@rss_size: size of RSS table slice associated with this VI
7912  *	@portfunc: which Port Application Function MAC Address is desired
7913  *	@idstype: Intrusion Detection Type
7914  *
7915  *	Allocates a virtual interface for the given physical port.  If @mac is
7916  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7917  *	If @rss_size is %NULL the VI is not assigned any RSS slice by FW.
7918  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7919  *	stored consecutively so the space needed is @nmac * 6 bytes.
7920  *	Returns a negative error number or the non-negative VI id.
7921  */
7922 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
7923 		     unsigned int port, unsigned int pf, unsigned int vf,
7924 		     unsigned int nmac, u8 *mac, u16 *rss_size,
7925 		     uint8_t *vfvld, uint16_t *vin,
7926 		     unsigned int portfunc, unsigned int idstype)
7927 {
7928 	int ret;
7929 	struct fw_vi_cmd c;
7930 
7931 	memset(&c, 0, sizeof(c));
7932 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
7933 				  F_FW_CMD_WRITE | F_FW_CMD_EXEC |
7934 				  V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
7935 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
7936 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
7937 				     V_FW_VI_CMD_FUNC(portfunc));
7938 	c.portid_pkd = V_FW_VI_CMD_PORTID(port);
7939 	c.nmac = nmac - 1;
7940 	if(!rss_size)
7941 		c.norss_rsssize = F_FW_VI_CMD_NORSS;
7942 
7943 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7944 	if (ret)
7945 		return ret;
7946 	ret = G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid));
7947 
7948 	if (mac) {
7949 		memcpy(mac, c.mac, sizeof(c.mac));
7950 		switch (nmac) {
7951 		case 5:
7952 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7953 		case 4:
7954 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7955 		case 3:
7956 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7957 		case 2:
7958 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7959 		}
7960 	}
7961 	if (rss_size)
7962 		*rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
7963 	if (vfvld) {
7964 		*vfvld = adap->params.viid_smt_extn_support ?
7965 		    G_FW_VI_CMD_VFVLD(be32_to_cpu(c.alloc_to_len16)) :
7966 		    G_FW_VIID_VIVLD(ret);
7967 	}
7968 	if (vin) {
7969 		*vin = adap->params.viid_smt_extn_support ?
7970 		    G_FW_VI_CMD_VIN(be32_to_cpu(c.alloc_to_len16)) :
7971 		    G_FW_VIID_VIN(ret);
7972 	}
7973 
7974 	return ret;
7975 }
7976 
7977 /**
7978  *      t4_alloc_vi - allocate an [Ethernet Function] virtual interface
7979  *      @adap: the adapter
7980  *      @mbox: mailbox to use for the FW command
7981  *      @port: physical port associated with the VI
7982  *      @pf: the PF owning the VI
7983  *      @vf: the VF owning the VI
7984  *      @nmac: number of MAC addresses needed (1 to 5)
7985  *      @mac: the MAC addresses of the VI
7986  *      @rss_size: size of RSS table slice associated with this VI
7987  *
7988  *	backwards compatible and convieniance routine to allocate a Virtual
7989  *	Interface with a Ethernet Port Application Function and Intrustion
7990  *	Detection System disabled.
7991  */
7992 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7993 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7994 		u16 *rss_size, uint8_t *vfvld, uint16_t *vin)
7995 {
7996 	return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
7997 				vfvld, vin, FW_VI_FUNC_ETH, 0);
7998 }
7999 
8000 /**
8001  * 	t4_free_vi - free a virtual interface
8002  * 	@adap: the adapter
8003  * 	@mbox: mailbox to use for the FW command
8004  * 	@pf: the PF owning the VI
8005  * 	@vf: the VF owning the VI
8006  * 	@viid: virtual interface identifiler
8007  *
8008  * 	Free a previously allocated virtual interface.
8009  */
8010 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
8011 	       unsigned int vf, unsigned int viid)
8012 {
8013 	struct fw_vi_cmd c;
8014 
8015 	memset(&c, 0, sizeof(c));
8016 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
8017 				  F_FW_CMD_REQUEST |
8018 				  F_FW_CMD_EXEC |
8019 				  V_FW_VI_CMD_PFN(pf) |
8020 				  V_FW_VI_CMD_VFN(vf));
8021 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
8022 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
8023 
8024 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8025 }
8026 
8027 /**
8028  *	t4_set_rxmode - set Rx properties of a virtual interface
8029  *	@adap: the adapter
8030  *	@mbox: mailbox to use for the FW command
8031  *	@viid: the VI id
8032  *	@mtu: the new MTU or -1
8033  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
8034  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
8035  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
8036  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
8037  *	@sleep_ok: if true we may sleep while awaiting command completion
8038  *
8039  *	Sets Rx properties of a virtual interface.
8040  */
8041 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
8042 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
8043 		  bool sleep_ok)
8044 {
8045 	struct fw_vi_rxmode_cmd c;
8046 
8047 	/* convert to FW values */
8048 	if (mtu < 0)
8049 		mtu = M_FW_VI_RXMODE_CMD_MTU;
8050 	if (promisc < 0)
8051 		promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
8052 	if (all_multi < 0)
8053 		all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
8054 	if (bcast < 0)
8055 		bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
8056 	if (vlanex < 0)
8057 		vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
8058 
8059 	memset(&c, 0, sizeof(c));
8060 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
8061 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8062 				   V_FW_VI_RXMODE_CMD_VIID(viid));
8063 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
8064 	c.mtu_to_vlanexen =
8065 		cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
8066 			    V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
8067 			    V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
8068 			    V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
8069 			    V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
8070 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8071 }
8072 
8073 /**
8074  *	t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support
8075  *	@adap: the adapter
8076  *	@viid: the VI id
8077  *	@mac: the MAC address
8078  *	@mask: the mask
8079  *	@vni: the VNI id for the tunnel protocol
8080  *	@vni_mask: mask for the VNI id
8081  *	@dip_hit: to enable DIP match for the MPS entry
8082  *	@lookup_type: MAC address for inner (1) or outer (0) header
8083  *	@sleep_ok: call is allowed to sleep
8084  *
8085  *	Allocates an MPS entry with specified MAC address and VNI value.
8086  *
8087  *	Returns a negative error number or the allocated index for this mac.
8088  */
8089 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid,
8090 			    const u8 *addr, const u8 *mask, unsigned int vni,
8091 			    unsigned int vni_mask, u8 dip_hit, u8 lookup_type,
8092 			    bool sleep_ok)
8093 {
8094 	struct fw_vi_mac_cmd c;
8095 	struct fw_vi_mac_vni *p = c.u.exact_vni;
8096 	int ret = 0;
8097 	u32 val;
8098 
8099 	memset(&c, 0, sizeof(c));
8100 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8101 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8102 				   V_FW_VI_MAC_CMD_VIID(viid));
8103 	val = V_FW_CMD_LEN16(1) |
8104 	      V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_EXACTMAC_VNI);
8105 	c.freemacs_to_len16 = cpu_to_be32(val);
8106 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8107 				      V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
8108 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8109 	memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask));
8110 
8111 	p->lookup_type_to_vni = cpu_to_be32(V_FW_VI_MAC_CMD_VNI(vni) |
8112 					    V_FW_VI_MAC_CMD_DIP_HIT(dip_hit) |
8113 					    V_FW_VI_MAC_CMD_LOOKUP_TYPE(lookup_type));
8114 	p->vni_mask_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_VNI_MASK(vni_mask));
8115 
8116 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8117 	if (ret == 0)
8118 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
8119 	return ret;
8120 }
8121 
8122 /**
8123  *	t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam
8124  *	@adap: the adapter
8125  *	@viid: the VI id
8126  *	@mac: the MAC address
8127  *	@mask: the mask
8128  *	@idx: index at which to add this entry
8129  *	@port_id: the port index
8130  *	@lookup_type: MAC address for inner (1) or outer (0) header
8131  *	@sleep_ok: call is allowed to sleep
8132  *
8133  *	Adds the mac entry at the specified index using raw mac interface.
8134  *
8135  *	Returns a negative error number or the allocated index for this mac.
8136  */
8137 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
8138 			  const u8 *addr, const u8 *mask, unsigned int idx,
8139 			  u8 lookup_type, u8 port_id, bool sleep_ok)
8140 {
8141 	int ret = 0;
8142 	struct fw_vi_mac_cmd c;
8143 	struct fw_vi_mac_raw *p = &c.u.raw;
8144 	u32 val;
8145 
8146 	memset(&c, 0, sizeof(c));
8147 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8148 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8149 				   V_FW_VI_MAC_CMD_VIID(viid));
8150 	val = V_FW_CMD_LEN16(1) |
8151 	      V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_RAW);
8152 	c.freemacs_to_len16 = cpu_to_be32(val);
8153 
8154 	/* Specify that this is an inner mac address */
8155 	p->raw_idx_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_RAW_IDX(idx));
8156 
8157 	/* Lookup Type. Outer header: 0, Inner header: 1 */
8158 	p->data0_pkd = cpu_to_be32(V_DATALKPTYPE(lookup_type) |
8159 				   V_DATAPORTNUM(port_id));
8160 	/* Lookup mask and port mask */
8161 	p->data0m_pkd = cpu_to_be64(V_DATALKPTYPE(M_DATALKPTYPE) |
8162 				    V_DATAPORTNUM(M_DATAPORTNUM));
8163 
8164 	/* Copy the address and the mask */
8165 	memcpy((u8 *)&p->data1[0] + 2, addr, ETHER_ADDR_LEN);
8166 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETHER_ADDR_LEN);
8167 
8168 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8169 	if (ret == 0) {
8170 		ret = G_FW_VI_MAC_CMD_RAW_IDX(be32_to_cpu(p->raw_idx_pkd));
8171 		if (ret != idx)
8172 			ret = -ENOMEM;
8173 	}
8174 
8175 	return ret;
8176 }
8177 
8178 /**
8179  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
8180  *	@adap: the adapter
8181  *	@mbox: mailbox to use for the FW command
8182  *	@viid: the VI id
8183  *	@free: if true any existing filters for this VI id are first removed
8184  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
8185  *	@addr: the MAC address(es)
8186  *	@idx: where to store the index of each allocated filter
8187  *	@hash: pointer to hash address filter bitmap
8188  *	@sleep_ok: call is allowed to sleep
8189  *
8190  *	Allocates an exact-match filter for each of the supplied addresses and
8191  *	sets it to the corresponding address.  If @idx is not %NULL it should
8192  *	have at least @naddr entries, each of which will be set to the index of
8193  *	the filter allocated for the corresponding MAC address.  If a filter
8194  *	could not be allocated for an address its index is set to 0xffff.
8195  *	If @hash is not %NULL addresses that fail to allocate an exact filter
8196  *	are hashed and update the hash filter bitmap pointed at by @hash.
8197  *
8198  *	Returns a negative error number or the number of filters allocated.
8199  */
8200 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
8201 		      unsigned int viid, bool free, unsigned int naddr,
8202 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
8203 {
8204 	int offset, ret = 0;
8205 	struct fw_vi_mac_cmd c;
8206 	unsigned int nfilters = 0;
8207 	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
8208 	unsigned int rem = naddr;
8209 
8210 	if (naddr > max_naddr)
8211 		return -EINVAL;
8212 
8213 	for (offset = 0; offset < naddr ; /**/) {
8214 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8215 					 ? rem
8216 					 : ARRAY_SIZE(c.u.exact));
8217 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8218 						     u.exact[fw_naddr]), 16);
8219 		struct fw_vi_mac_exact *p;
8220 		int i;
8221 
8222 		memset(&c, 0, sizeof(c));
8223 		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8224 					   F_FW_CMD_REQUEST |
8225 					   F_FW_CMD_WRITE |
8226 					   V_FW_CMD_EXEC(free) |
8227 					   V_FW_VI_MAC_CMD_VIID(viid));
8228 		c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) |
8229 						  V_FW_CMD_LEN16(len16));
8230 
8231 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8232 			p->valid_to_idx =
8233 				cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8234 					    V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
8235 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8236 		}
8237 
8238 		/*
8239 		 * It's okay if we run out of space in our MAC address arena.
8240 		 * Some of the addresses we submit may get stored so we need
8241 		 * to run through the reply to see what the results were ...
8242 		 */
8243 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8244 		if (ret && ret != -FW_ENOMEM)
8245 			break;
8246 
8247 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8248 			u16 index = G_FW_VI_MAC_CMD_IDX(
8249 						be16_to_cpu(p->valid_to_idx));
8250 
8251 			if (idx)
8252 				idx[offset+i] = (index >=  max_naddr
8253 						 ? 0xffff
8254 						 : index);
8255 			if (index < max_naddr)
8256 				nfilters++;
8257 			else if (hash)
8258 				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
8259 		}
8260 
8261 		free = false;
8262 		offset += fw_naddr;
8263 		rem -= fw_naddr;
8264 	}
8265 
8266 	if (ret == 0 || ret == -FW_ENOMEM)
8267 		ret = nfilters;
8268 	return ret;
8269 }
8270 
8271 /**
8272  *	t4_free_encap_mac_filt - frees MPS entry at given index
8273  *	@adap: the adapter
8274  *	@viid: the VI id
8275  *	@idx: index of MPS entry to be freed
8276  *	@sleep_ok: call is allowed to sleep
8277  *
8278  *	Frees the MPS entry at supplied index
8279  *
8280  *	Returns a negative error number or zero on success
8281  */
8282 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid,
8283 			   int idx, bool sleep_ok)
8284 {
8285 	struct fw_vi_mac_exact *p;
8286 	struct fw_vi_mac_cmd c;
8287 	u8 addr[] = {0,0,0,0,0,0};
8288 	int ret = 0;
8289 	u32 exact;
8290 
8291 	memset(&c, 0, sizeof(c));
8292 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8293 				   F_FW_CMD_REQUEST |
8294 				   F_FW_CMD_WRITE |
8295 				   V_FW_CMD_EXEC(0) |
8296 				   V_FW_VI_MAC_CMD_VIID(viid));
8297 	exact = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_EXACTMAC);
8298 	c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) |
8299 					  exact |
8300 					  V_FW_CMD_LEN16(1));
8301 	p = c.u.exact;
8302 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8303 				      V_FW_VI_MAC_CMD_IDX(idx));
8304 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8305 
8306 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8307 	return ret;
8308 }
8309 
8310 /**
8311  *	t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
8312  *	@adap: the adapter
8313  *	@viid: the VI id
8314  *	@addr: the MAC address
8315  *	@mask: the mask
8316  *	@idx: index of the entry in mps tcam
8317  *	@lookup_type: MAC address for inner (1) or outer (0) header
8318  *	@port_id: the port index
8319  *	@sleep_ok: call is allowed to sleep
8320  *
8321  *	Removes the mac entry at the specified index using raw mac interface.
8322  *
8323  *	Returns a negative error number on failure.
8324  */
8325 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
8326 			 const u8 *addr, const u8 *mask, unsigned int idx,
8327 			 u8 lookup_type, u8 port_id, bool sleep_ok)
8328 {
8329 	struct fw_vi_mac_cmd c;
8330 	struct fw_vi_mac_raw *p = &c.u.raw;
8331 	u32 raw;
8332 
8333 	memset(&c, 0, sizeof(c));
8334 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8335 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8336 				   V_FW_CMD_EXEC(0) |
8337 				   V_FW_VI_MAC_CMD_VIID(viid));
8338 	raw = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_RAW);
8339 	c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) |
8340 					  raw |
8341 					  V_FW_CMD_LEN16(1));
8342 
8343 	p->raw_idx_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_RAW_IDX(idx) |
8344 				     FW_VI_MAC_ID_BASED_FREE);
8345 
8346 	/* Lookup Type. Outer header: 0, Inner header: 1 */
8347 	p->data0_pkd = cpu_to_be32(V_DATALKPTYPE(lookup_type) |
8348 				   V_DATAPORTNUM(port_id));
8349 	/* Lookup mask and port mask */
8350 	p->data0m_pkd = cpu_to_be64(V_DATALKPTYPE(M_DATALKPTYPE) |
8351 				    V_DATAPORTNUM(M_DATAPORTNUM));
8352 
8353 	/* Copy the address and the mask */
8354 	memcpy((u8 *)&p->data1[0] + 2, addr, ETHER_ADDR_LEN);
8355 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETHER_ADDR_LEN);
8356 
8357 	return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8358 }
8359 
8360 /**
8361  *	t4_free_mac_filt - frees exact-match filters of given MAC addresses
8362  *	@adap: the adapter
8363  *	@mbox: mailbox to use for the FW command
8364  *	@viid: the VI id
8365  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
8366  *	@addr: the MAC address(es)
8367  *	@sleep_ok: call is allowed to sleep
8368  *
8369  *	Frees the exact-match filter for each of the supplied addresses
8370  *
8371  *	Returns a negative error number or the number of filters freed.
8372  */
8373 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
8374 		      unsigned int viid, unsigned int naddr,
8375 		      const u8 **addr, bool sleep_ok)
8376 {
8377 	int offset, ret = 0;
8378 	struct fw_vi_mac_cmd c;
8379 	unsigned int nfilters = 0;
8380 	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
8381 	unsigned int rem = naddr;
8382 
8383 	if (naddr > max_naddr)
8384 		return -EINVAL;
8385 
8386 	for (offset = 0; offset < (int)naddr ; /**/) {
8387 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8388 					 ? rem
8389 					 : ARRAY_SIZE(c.u.exact));
8390 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8391 						     u.exact[fw_naddr]), 16);
8392 		struct fw_vi_mac_exact *p;
8393 		int i;
8394 
8395 		memset(&c, 0, sizeof(c));
8396 		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8397 				     F_FW_CMD_REQUEST |
8398 				     F_FW_CMD_WRITE |
8399 				     V_FW_CMD_EXEC(0) |
8400 				     V_FW_VI_MAC_CMD_VIID(viid));
8401 		c.freemacs_to_len16 =
8402 				cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) |
8403 					    V_FW_CMD_LEN16(len16));
8404 
8405 		for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
8406 			p->valid_to_idx = cpu_to_be16(
8407 				F_FW_VI_MAC_CMD_VALID |
8408 				V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_MAC_BASED_FREE));
8409 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8410 		}
8411 
8412 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8413 		if (ret)
8414 			break;
8415 
8416 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8417 			u16 index = G_FW_VI_MAC_CMD_IDX(
8418 						be16_to_cpu(p->valid_to_idx));
8419 
8420 			if (index < max_naddr)
8421 				nfilters++;
8422 		}
8423 
8424 		offset += fw_naddr;
8425 		rem -= fw_naddr;
8426 	}
8427 
8428 	if (ret == 0)
8429 		ret = nfilters;
8430 	return ret;
8431 }
8432 
8433 /**
8434  *	t4_change_mac - modifies the exact-match filter for a MAC address
8435  *	@adap: the adapter
8436  *	@mbox: mailbox to use for the FW command
8437  *	@viid: the VI id
8438  *	@idx: index of existing filter for old value of MAC address, or -1
8439  *	@addr: the new MAC address value
8440  *	@persist: whether a new MAC allocation should be persistent
8441  *	@smt_idx: add MAC to SMT and return its index, or NULL
8442  *
8443  *	Modifies an exact-match filter and sets it to the new MAC address if
8444  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
8445  *	latter case the address is added persistently if @persist is %true.
8446  *
8447  *	Note that in general it is not possible to modify the value of a given
8448  *	filter so the generic way to modify an address filter is to free the one
8449  *	being used by the old address value and allocate a new filter for the
8450  *	new address value.
8451  *
8452  *	Returns a negative error number or the index of the filter with the new
8453  *	MAC value.  Note that this index may differ from @idx.
8454  */
8455 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
8456 		  int idx, const u8 *addr, bool persist, uint16_t *smt_idx)
8457 {
8458 	int ret, mode;
8459 	struct fw_vi_mac_cmd c;
8460 	struct fw_vi_mac_exact *p = c.u.exact;
8461 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
8462 
8463 	if (idx < 0)		/* new allocation */
8464 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
8465 	mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
8466 
8467 	memset(&c, 0, sizeof(c));
8468 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8469 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8470 				   V_FW_VI_MAC_CMD_VIID(viid));
8471 	c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
8472 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8473 				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
8474 				      V_FW_VI_MAC_CMD_IDX(idx));
8475 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8476 
8477 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8478 	if (ret == 0) {
8479 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
8480 		if (ret >= max_mac_addr)
8481 			ret = -ENOMEM;
8482 		if (smt_idx) {
8483 			if (adap->params.viid_smt_extn_support)
8484 				*smt_idx = G_FW_VI_MAC_CMD_SMTID(be32_to_cpu(c.op_to_viid));
8485 			else {
8486 				if (chip_id(adap) <= CHELSIO_T5)
8487 					*smt_idx = (viid & M_FW_VIID_VIN) << 1;
8488 				else
8489 					*smt_idx = viid & M_FW_VIID_VIN;
8490 			}
8491 		}
8492 	}
8493 	return ret;
8494 }
8495 
8496 /**
8497  *	t4_set_addr_hash - program the MAC inexact-match hash filter
8498  *	@adap: the adapter
8499  *	@mbox: mailbox to use for the FW command
8500  *	@viid: the VI id
8501  *	@ucast: whether the hash filter should also match unicast addresses
8502  *	@vec: the value to be written to the hash filter
8503  *	@sleep_ok: call is allowed to sleep
8504  *
8505  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
8506  */
8507 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
8508 		     bool ucast, u64 vec, bool sleep_ok)
8509 {
8510 	struct fw_vi_mac_cmd c;
8511 	u32 val;
8512 
8513 	memset(&c, 0, sizeof(c));
8514 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8515 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8516 				   V_FW_VI_ENABLE_CMD_VIID(viid));
8517 	val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) |
8518 	      V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1);
8519 	c.freemacs_to_len16 = cpu_to_be32(val);
8520 	c.u.hash.hashvec = cpu_to_be64(vec);
8521 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8522 }
8523 
8524 /**
8525  *      t4_enable_vi_params - enable/disable a virtual interface
8526  *      @adap: the adapter
8527  *      @mbox: mailbox to use for the FW command
8528  *      @viid: the VI id
8529  *      @rx_en: 1=enable Rx, 0=disable Rx
8530  *      @tx_en: 1=enable Tx, 0=disable Tx
8531  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8532  *
8533  *      Enables/disables a virtual interface.  Note that setting DCB Enable
8534  *      only makes sense when enabling a Virtual Interface ...
8535  */
8536 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
8537 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
8538 {
8539 	struct fw_vi_enable_cmd c;
8540 
8541 	memset(&c, 0, sizeof(c));
8542 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
8543 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8544 				   V_FW_VI_ENABLE_CMD_VIID(viid));
8545 	c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
8546 				     V_FW_VI_ENABLE_CMD_EEN(tx_en) |
8547 				     V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
8548 				     FW_LEN16(c));
8549 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
8550 }
8551 
8552 /**
8553  *	t4_enable_vi - enable/disable a virtual interface
8554  *	@adap: the adapter
8555  *	@mbox: mailbox to use for the FW command
8556  *	@viid: the VI id
8557  *	@rx_en: 1=enable Rx, 0=disable Rx
8558  *	@tx_en: 1=enable Tx, 0=disable Tx
8559  *
8560  *	Enables/disables a virtual interface.  Note that setting DCB Enable
8561  *	only makes sense when enabling a Virtual Interface ...
8562  */
8563 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8564 		 bool rx_en, bool tx_en)
8565 {
8566 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8567 }
8568 
8569 /**
8570  *	t4_identify_port - identify a VI's port by blinking its LED
8571  *	@adap: the adapter
8572  *	@mbox: mailbox to use for the FW command
8573  *	@viid: the VI id
8574  *	@nblinks: how many times to blink LED at 2.5 Hz
8575  *
8576  *	Identifies a VI's port by blinking its LED.
8577  */
8578 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8579 		     unsigned int nblinks)
8580 {
8581 	struct fw_vi_enable_cmd c;
8582 
8583 	memset(&c, 0, sizeof(c));
8584 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
8585 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8586 				   V_FW_VI_ENABLE_CMD_VIID(viid));
8587 	c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
8588 	c.blinkdur = cpu_to_be16(nblinks);
8589 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8590 }
8591 
8592 /**
8593  *	t4_iq_stop - stop an ingress queue and its FLs
8594  *	@adap: the adapter
8595  *	@mbox: mailbox to use for the FW command
8596  *	@pf: the PF owning the queues
8597  *	@vf: the VF owning the queues
8598  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8599  *	@iqid: ingress queue id
8600  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8601  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8602  *
8603  *	Stops an ingress queue and its associated FLs, if any.  This causes
8604  *	any current or future data/messages destined for these queues to be
8605  *	tossed.
8606  */
8607 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8608 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8609 	       unsigned int fl0id, unsigned int fl1id)
8610 {
8611 	struct fw_iq_cmd c;
8612 
8613 	memset(&c, 0, sizeof(c));
8614 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
8615 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
8616 				  V_FW_IQ_CMD_VFN(vf));
8617 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c));
8618 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
8619 	c.iqid = cpu_to_be16(iqid);
8620 	c.fl0id = cpu_to_be16(fl0id);
8621 	c.fl1id = cpu_to_be16(fl1id);
8622 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8623 }
8624 
8625 /**
8626  *	t4_iq_free - free an ingress queue and its FLs
8627  *	@adap: the adapter
8628  *	@mbox: mailbox to use for the FW command
8629  *	@pf: the PF owning the queues
8630  *	@vf: the VF owning the queues
8631  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8632  *	@iqid: ingress queue id
8633  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8634  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8635  *
8636  *	Frees an ingress queue and its associated FLs, if any.
8637  */
8638 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8639 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8640 	       unsigned int fl0id, unsigned int fl1id)
8641 {
8642 	struct fw_iq_cmd c;
8643 
8644 	memset(&c, 0, sizeof(c));
8645 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
8646 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
8647 				  V_FW_IQ_CMD_VFN(vf));
8648 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
8649 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
8650 	c.iqid = cpu_to_be16(iqid);
8651 	c.fl0id = cpu_to_be16(fl0id);
8652 	c.fl1id = cpu_to_be16(fl1id);
8653 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8654 }
8655 
8656 /**
8657  *	t4_eth_eq_stop - stop an Ethernet egress queue
8658  *	@adap: the adapter
8659  *	@mbox: mailbox to use for the FW command
8660  *	@pf: the PF owning the queues
8661  *	@vf: the VF owning the queues
8662  *	@eqid: egress queue id
8663  *
8664  *	Stops an Ethernet egress queue.  The queue can be reinitialized or
8665  *	freed but is not otherwise functional after this call.
8666  */
8667 int t4_eth_eq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8668                    unsigned int vf, unsigned int eqid)
8669 {
8670 	struct fw_eq_eth_cmd c;
8671 
8672 	memset(&c, 0, sizeof(c));
8673 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
8674 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8675 				  V_FW_EQ_ETH_CMD_PFN(pf) |
8676 				  V_FW_EQ_ETH_CMD_VFN(vf));
8677 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_EQSTOP | FW_LEN16(c));
8678 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
8679 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8680 }
8681 
8682 /**
8683  *	t4_eth_eq_free - free an Ethernet egress queue
8684  *	@adap: the adapter
8685  *	@mbox: mailbox to use for the FW command
8686  *	@pf: the PF owning the queue
8687  *	@vf: the VF owning the queue
8688  *	@eqid: egress queue id
8689  *
8690  *	Frees an Ethernet egress queue.
8691  */
8692 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8693 		   unsigned int vf, unsigned int eqid)
8694 {
8695 	struct fw_eq_eth_cmd c;
8696 
8697 	memset(&c, 0, sizeof(c));
8698 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
8699 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8700 				  V_FW_EQ_ETH_CMD_PFN(pf) |
8701 				  V_FW_EQ_ETH_CMD_VFN(vf));
8702 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
8703 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
8704 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8705 }
8706 
8707 /**
8708  *	t4_ctrl_eq_free - free a control egress queue
8709  *	@adap: the adapter
8710  *	@mbox: mailbox to use for the FW command
8711  *	@pf: the PF owning the queue
8712  *	@vf: the VF owning the queue
8713  *	@eqid: egress queue id
8714  *
8715  *	Frees a control egress queue.
8716  */
8717 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8718 		    unsigned int vf, unsigned int eqid)
8719 {
8720 	struct fw_eq_ctrl_cmd c;
8721 
8722 	memset(&c, 0, sizeof(c));
8723 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
8724 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8725 				  V_FW_EQ_CTRL_CMD_PFN(pf) |
8726 				  V_FW_EQ_CTRL_CMD_VFN(vf));
8727 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
8728 	c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
8729 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8730 }
8731 
8732 /**
8733  *	t4_ofld_eq_free - free an offload egress queue
8734  *	@adap: the adapter
8735  *	@mbox: mailbox to use for the FW command
8736  *	@pf: the PF owning the queue
8737  *	@vf: the VF owning the queue
8738  *	@eqid: egress queue id
8739  *
8740  *	Frees a control egress queue.
8741  */
8742 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8743 		    unsigned int vf, unsigned int eqid)
8744 {
8745 	struct fw_eq_ofld_cmd c;
8746 
8747 	memset(&c, 0, sizeof(c));
8748 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) |
8749 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8750 				  V_FW_EQ_OFLD_CMD_PFN(pf) |
8751 				  V_FW_EQ_OFLD_CMD_VFN(vf));
8752 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
8753 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid));
8754 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8755 }
8756 
8757 /**
8758  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
8759  *	@link_down_rc: Link Down Reason Code
8760  *
8761  *	Returns a string representation of the Link Down Reason Code.
8762  */
8763 const char *t4_link_down_rc_str(unsigned char link_down_rc)
8764 {
8765 	static const char *reason[] = {
8766 		"Link Down",
8767 		"Remote Fault",
8768 		"Auto-negotiation Failure",
8769 		"Reserved3",
8770 		"Insufficient Airflow",
8771 		"Unable To Determine Reason",
8772 		"No RX Signal Detected",
8773 		"Reserved7",
8774 	};
8775 
8776 	if (link_down_rc >= ARRAY_SIZE(reason))
8777 		return "Bad Reason Code";
8778 
8779 	return reason[link_down_rc];
8780 }
8781 
8782 /*
8783  * Return the highest speed set in the port capabilities, in Mb/s.
8784  */
8785 unsigned int fwcap_to_speed(uint32_t caps)
8786 {
8787 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8788 		do { \
8789 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8790 				return __speed; \
8791 		} while (0)
8792 
8793 	TEST_SPEED_RETURN(400G, 400000);
8794 	TEST_SPEED_RETURN(200G, 200000);
8795 	TEST_SPEED_RETURN(100G, 100000);
8796 	TEST_SPEED_RETURN(50G,   50000);
8797 	TEST_SPEED_RETURN(40G,   40000);
8798 	TEST_SPEED_RETURN(25G,   25000);
8799 	TEST_SPEED_RETURN(10G,   10000);
8800 	TEST_SPEED_RETURN(1G,     1000);
8801 	TEST_SPEED_RETURN(100M,    100);
8802 
8803 	#undef TEST_SPEED_RETURN
8804 
8805 	return 0;
8806 }
8807 
8808 /*
8809  * Return the port capabilities bit for the given speed, which is in Mb/s.
8810  */
8811 uint32_t speed_to_fwcap(unsigned int speed)
8812 {
8813 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8814 		do { \
8815 			if (speed == __speed) \
8816 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8817 		} while (0)
8818 
8819 	TEST_SPEED_RETURN(400G, 400000);
8820 	TEST_SPEED_RETURN(200G, 200000);
8821 	TEST_SPEED_RETURN(100G, 100000);
8822 	TEST_SPEED_RETURN(50G,   50000);
8823 	TEST_SPEED_RETURN(40G,   40000);
8824 	TEST_SPEED_RETURN(25G,   25000);
8825 	TEST_SPEED_RETURN(10G,   10000);
8826 	TEST_SPEED_RETURN(1G,     1000);
8827 	TEST_SPEED_RETURN(100M,    100);
8828 
8829 	#undef TEST_SPEED_RETURN
8830 
8831 	return 0;
8832 }
8833 
8834 /*
8835  * Return the port capabilities bit for the highest speed in the capabilities.
8836  */
8837 uint32_t fwcap_top_speed(uint32_t caps)
8838 {
8839 	#define TEST_SPEED_RETURN(__caps_speed) \
8840 		do { \
8841 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8842 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8843 		} while (0)
8844 
8845 	TEST_SPEED_RETURN(400G);
8846 	TEST_SPEED_RETURN(200G);
8847 	TEST_SPEED_RETURN(100G);
8848 	TEST_SPEED_RETURN(50G);
8849 	TEST_SPEED_RETURN(40G);
8850 	TEST_SPEED_RETURN(25G);
8851 	TEST_SPEED_RETURN(10G);
8852 	TEST_SPEED_RETURN(1G);
8853 	TEST_SPEED_RETURN(100M);
8854 
8855 	#undef TEST_SPEED_RETURN
8856 
8857 	return 0;
8858 }
8859 
8860 /**
8861  *	lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8862  *	@lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8863  *
8864  *	Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8865  *	32-bit Port Capabilities value.
8866  */
8867 static uint32_t lstatus_to_fwcap(u32 lstatus)
8868 {
8869 	uint32_t linkattr = 0;
8870 
8871 	/*
8872 	 * Unfortunately the format of the Link Status in the old
8873 	 * 16-bit Port Information message isn't the same as the
8874 	 * 16-bit Port Capabilities bitfield used everywhere else ...
8875 	 */
8876 	if (lstatus & F_FW_PORT_CMD_RXPAUSE)
8877 		linkattr |= FW_PORT_CAP32_FC_RX;
8878 	if (lstatus & F_FW_PORT_CMD_TXPAUSE)
8879 		linkattr |= FW_PORT_CAP32_FC_TX;
8880 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
8881 		linkattr |= FW_PORT_CAP32_SPEED_100M;
8882 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
8883 		linkattr |= FW_PORT_CAP32_SPEED_1G;
8884 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
8885 		linkattr |= FW_PORT_CAP32_SPEED_10G;
8886 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G))
8887 		linkattr |= FW_PORT_CAP32_SPEED_25G;
8888 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
8889 		linkattr |= FW_PORT_CAP32_SPEED_40G;
8890 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G))
8891 		linkattr |= FW_PORT_CAP32_SPEED_100G;
8892 
8893 	return linkattr;
8894 }
8895 
8896 /*
8897  * Updates all fields owned by the common code in port_info and link_config
8898  * based on information provided by the firmware.  Does not touch any
8899  * requested_* field.
8900  */
8901 static void handle_port_info(struct port_info *pi, const struct fw_port_cmd *p,
8902     enum fw_port_action action, bool *mod_changed, bool *link_changed)
8903 {
8904 	struct link_config old_lc, *lc = &pi->link_cfg;
8905 	unsigned char fc;
8906 	u32 stat, linkattr;
8907 	int old_ptype, old_mtype;
8908 
8909 	old_ptype = pi->port_type;
8910 	old_mtype = pi->mod_type;
8911 	old_lc = *lc;
8912 	if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8913 		stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
8914 
8915 		pi->port_type = G_FW_PORT_CMD_PTYPE(stat);
8916 		pi->mod_type = G_FW_PORT_CMD_MODTYPE(stat);
8917 		pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP ?
8918 		    G_FW_PORT_CMD_MDIOADDR(stat) : -1;
8919 
8920 		lc->pcaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.pcap));
8921 		lc->acaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.acap));
8922 		lc->lpacaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.lpacap));
8923 		lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
8924 		lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC(stat);
8925 
8926 		linkattr = lstatus_to_fwcap(stat);
8927 	} else if (action == FW_PORT_ACTION_GET_PORT_INFO32) {
8928 		stat = be32_to_cpu(p->u.info32.lstatus32_to_cbllen32);
8929 
8930 		pi->port_type = G_FW_PORT_CMD_PORTTYPE32(stat);
8931 		pi->mod_type = G_FW_PORT_CMD_MODTYPE32(stat);
8932 		pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP32 ?
8933 		    G_FW_PORT_CMD_MDIOADDR32(stat) : -1;
8934 
8935 		lc->pcaps = be32_to_cpu(p->u.info32.pcaps32);
8936 		lc->acaps = be32_to_cpu(p->u.info32.acaps32);
8937 		lc->lpacaps = be32_to_cpu(p->u.info32.lpacaps32);
8938 		lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS32) != 0;
8939 		lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC32(stat);
8940 
8941 		linkattr = be32_to_cpu(p->u.info32.linkattr32);
8942 	} else {
8943 		CH_ERR(pi->adapter, "bad port_info action 0x%x\n", action);
8944 		return;
8945 	}
8946 
8947 	lc->speed = fwcap_to_speed(linkattr);
8948 	lc->fec = fwcap_to_fec(linkattr, true);
8949 
8950 	fc = 0;
8951 	if (linkattr & FW_PORT_CAP32_FC_RX)
8952 		fc |= PAUSE_RX;
8953 	if (linkattr & FW_PORT_CAP32_FC_TX)
8954 		fc |= PAUSE_TX;
8955 	lc->fc = fc;
8956 
8957 	if (mod_changed != NULL)
8958 		*mod_changed = false;
8959 	if (link_changed != NULL)
8960 		*link_changed = false;
8961 	if (old_ptype != pi->port_type || old_mtype != pi->mod_type ||
8962 	    old_lc.pcaps != lc->pcaps) {
8963 		if (pi->mod_type != FW_PORT_MOD_TYPE_NONE)
8964 			lc->fec_hint = fwcap_to_fec(lc->acaps, true);
8965 		if (mod_changed != NULL)
8966 			*mod_changed = true;
8967 	}
8968 	if (old_lc.link_ok != lc->link_ok || old_lc.speed != lc->speed ||
8969 	    old_lc.fec != lc->fec || old_lc.fc != lc->fc) {
8970 		if (link_changed != NULL)
8971 			*link_changed = true;
8972 	}
8973 }
8974 
8975 /**
8976  *	t4_update_port_info - retrieve and update port information if changed
8977  *	@pi: the port_info
8978  *
8979  *	We issue a Get Port Information Command to the Firmware and, if
8980  *	successful, we check to see if anything is different from what we
8981  *	last recorded and update things accordingly.
8982  */
8983  int t4_update_port_info(struct port_info *pi)
8984  {
8985 	struct adapter *sc = pi->adapter;
8986 	struct fw_port_cmd cmd;
8987 	enum fw_port_action action;
8988 	int ret;
8989 
8990 	memset(&cmd, 0, sizeof(cmd));
8991 	cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
8992 	    F_FW_CMD_REQUEST | F_FW_CMD_READ |
8993 	    V_FW_PORT_CMD_PORTID(pi->tx_chan));
8994 	action = sc->params.port_caps32 ? FW_PORT_ACTION_GET_PORT_INFO32 :
8995 	    FW_PORT_ACTION_GET_PORT_INFO;
8996 	cmd.action_to_len16 = cpu_to_be32(V_FW_PORT_CMD_ACTION(action) |
8997 	    FW_LEN16(cmd));
8998 	ret = t4_wr_mbox_ns(sc, sc->mbox, &cmd, sizeof(cmd), &cmd);
8999 	if (ret)
9000 		return ret;
9001 
9002 	handle_port_info(pi, &cmd, action, NULL, NULL);
9003 	return 0;
9004 }
9005 
9006 /**
9007  *	t4_handle_fw_rpl - process a FW reply message
9008  *	@adap: the adapter
9009  *	@rpl: start of the FW message
9010  *
9011  *	Processes a FW message, such as link state change messages.
9012  */
9013 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
9014 {
9015 	u8 opcode = *(const u8 *)rpl;
9016 	const struct fw_port_cmd *p = (const void *)rpl;
9017 	enum fw_port_action action =
9018 	    G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
9019 	bool mod_changed, link_changed;
9020 
9021 	if (opcode == FW_PORT_CMD &&
9022 	    (action == FW_PORT_ACTION_GET_PORT_INFO ||
9023 	    action == FW_PORT_ACTION_GET_PORT_INFO32)) {
9024 		/* link/module state change message */
9025 		int i;
9026 		int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
9027 		struct port_info *pi = NULL;
9028 		struct link_config *lc;
9029 
9030 		for_each_port(adap, i) {
9031 			pi = adap2pinfo(adap, i);
9032 			if (pi->tx_chan == chan)
9033 				break;
9034 		}
9035 
9036 		lc = &pi->link_cfg;
9037 		PORT_LOCK(pi);
9038 		handle_port_info(pi, p, action, &mod_changed, &link_changed);
9039 		PORT_UNLOCK(pi);
9040 		if (mod_changed)
9041 			t4_os_portmod_changed(pi);
9042 		if (link_changed) {
9043 			PORT_LOCK(pi);
9044 			t4_os_link_changed(pi);
9045 			PORT_UNLOCK(pi);
9046 		}
9047 	} else {
9048 		CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode);
9049 		return -EINVAL;
9050 	}
9051 	return 0;
9052 }
9053 
9054 /**
9055  *	get_pci_mode - determine a card's PCI mode
9056  *	@adapter: the adapter
9057  *	@p: where to store the PCI settings
9058  *
9059  *	Determines a card's PCI mode and associated parameters, such as speed
9060  *	and width.
9061  */
9062 static void get_pci_mode(struct adapter *adapter,
9063 				   struct pci_params *p)
9064 {
9065 	u16 val;
9066 	u32 pcie_cap;
9067 
9068 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
9069 	if (pcie_cap) {
9070 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
9071 		p->speed = val & PCI_EXP_LNKSTA_CLS;
9072 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
9073 	}
9074 }
9075 
9076 struct flash_desc {
9077 	u32 vendor_and_model_id;
9078 	u32 size_mb;
9079 };
9080 
9081 int t4_get_flash_params(struct adapter *adapter)
9082 {
9083 	/*
9084 	 * Table for non-standard supported Flash parts.  Note, all Flash
9085 	 * parts must have 64KB sectors.
9086 	 */
9087 	static struct flash_desc supported_flash[] = {
9088 		{ 0x00150201, 4 << 20 },	/* Spansion 4MB S25FL032P */
9089 	};
9090 
9091 	int ret;
9092 	u32 flashid = 0;
9093 	unsigned int part, manufacturer;
9094 	unsigned int density, size = 0;
9095 
9096 
9097 	/*
9098 	 * Issue a Read ID Command to the Flash part.  We decode supported
9099 	 * Flash parts and their sizes from this.  There's a newer Query
9100 	 * Command which can retrieve detailed geometry information but many
9101 	 * Flash parts don't support it.
9102 	 */
9103 	ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
9104 	if (!ret)
9105 		ret = sf1_read(adapter, 3, 0, 1, &flashid);
9106 	t4_write_reg(adapter, A_SF_OP, 0);	/* unlock SF */
9107 	if (ret < 0)
9108 		return ret;
9109 
9110 	/*
9111 	 * Check to see if it's one of our non-standard supported Flash parts.
9112 	 */
9113 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
9114 		if (supported_flash[part].vendor_and_model_id == flashid) {
9115 			adapter->params.sf_size =
9116 				supported_flash[part].size_mb;
9117 			adapter->params.sf_nsec =
9118 				adapter->params.sf_size / SF_SEC_SIZE;
9119 			goto found;
9120 		}
9121 
9122 	/*
9123 	 * Decode Flash part size.  The code below looks repetative with
9124 	 * common encodings, but that's not guaranteed in the JEDEC
9125 	 * specification for the Read JADEC ID command.  The only thing that
9126 	 * we're guaranteed by the JADEC specification is where the
9127 	 * Manufacturer ID is in the returned result.  After that each
9128 	 * Manufacturer ~could~ encode things completely differently.
9129 	 * Note, all Flash parts must have 64KB sectors.
9130 	 */
9131 	manufacturer = flashid & 0xff;
9132 	switch (manufacturer) {
9133 	case 0x20: /* Micron/Numonix */
9134 		/*
9135 		 * This Density -> Size decoding table is taken from Micron
9136 		 * Data Sheets.
9137 		 */
9138 		density = (flashid >> 16) & 0xff;
9139 		switch (density) {
9140 		case 0x14: size = 1 << 20; break; /*   1MB */
9141 		case 0x15: size = 1 << 21; break; /*   2MB */
9142 		case 0x16: size = 1 << 22; break; /*   4MB */
9143 		case 0x17: size = 1 << 23; break; /*   8MB */
9144 		case 0x18: size = 1 << 24; break; /*  16MB */
9145 		case 0x19: size = 1 << 25; break; /*  32MB */
9146 		case 0x20: size = 1 << 26; break; /*  64MB */
9147 		case 0x21: size = 1 << 27; break; /* 128MB */
9148 		case 0x22: size = 1 << 28; break; /* 256MB */
9149 		}
9150 		break;
9151 
9152 	case 0x9d: /* ISSI -- Integrated Silicon Solution, Inc. */
9153 		/*
9154 		 * This Density -> Size decoding table is taken from ISSI
9155 		 * Data Sheets.
9156 		 */
9157 		density = (flashid >> 16) & 0xff;
9158 		switch (density) {
9159 		case 0x16: size = 1 << 25; break; /*  32MB */
9160 		case 0x17: size = 1 << 26; break; /*  64MB */
9161 		}
9162 		break;
9163 
9164 	case 0xc2: /* Macronix */
9165 		/*
9166 		 * This Density -> Size decoding table is taken from Macronix
9167 		 * Data Sheets.
9168 		 */
9169 		density = (flashid >> 16) & 0xff;
9170 		switch (density) {
9171 		case 0x17: size = 1 << 23; break; /*   8MB */
9172 		case 0x18: size = 1 << 24; break; /*  16MB */
9173 		}
9174 		break;
9175 
9176 	case 0xef: /* Winbond */
9177 		/*
9178 		 * This Density -> Size decoding table is taken from Winbond
9179 		 * Data Sheets.
9180 		 */
9181 		density = (flashid >> 16) & 0xff;
9182 		switch (density) {
9183 		case 0x17: size = 1 << 23; break; /*   8MB */
9184 		case 0x18: size = 1 << 24; break; /*  16MB */
9185 		}
9186 		break;
9187 	}
9188 
9189 	/* If we didn't recognize the FLASH part, that's no real issue: the
9190 	 * Hardware/Software contract says that Hardware will _*ALWAYS*_
9191 	 * use a FLASH part which is at least 4MB in size and has 64KB
9192 	 * sectors.  The unrecognized FLASH part is likely to be much larger
9193 	 * than 4MB, but that's all we really need.
9194 	 */
9195 	if (size == 0) {
9196 		CH_WARN(adapter, "Unknown Flash Part, ID = %#x, assuming 4MB\n", flashid);
9197 		size = 1 << 22;
9198 	}
9199 
9200 	/*
9201 	 * Store decoded Flash size and fall through into vetting code.
9202 	 */
9203 	adapter->params.sf_size = size;
9204 	adapter->params.sf_nsec = size / SF_SEC_SIZE;
9205 
9206  found:
9207 	/*
9208 	 * We should ~probably~ reject adapters with FLASHes which are too
9209 	 * small but we have some legacy FPGAs with small FLASHes that we'd
9210 	 * still like to use.  So instead we emit a scary message ...
9211 	 */
9212 	if (adapter->params.sf_size < FLASH_MIN_SIZE)
9213 		CH_WARN(adapter, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
9214 			flashid, adapter->params.sf_size, FLASH_MIN_SIZE);
9215 
9216 	return 0;
9217 }
9218 
9219 static void set_pcie_completion_timeout(struct adapter *adapter,
9220 						  u8 range)
9221 {
9222 	u16 val;
9223 	u32 pcie_cap;
9224 
9225 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
9226 	if (pcie_cap) {
9227 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
9228 		val &= 0xfff0;
9229 		val |= range ;
9230 		t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
9231 	}
9232 }
9233 
9234 const struct chip_params *t4_get_chip_params(int chipid)
9235 {
9236 	static const struct chip_params chip_params[] = {
9237 		{
9238 			/* T4 */
9239 			.nchan = NCHAN,
9240 			.pm_stats_cnt = PM_NSTATS,
9241 			.cng_ch_bits_log = 2,
9242 			.nsched_cls = 15,
9243 			.cim_num_obq = CIM_NUM_OBQ,
9244 			.mps_rplc_size = 128,
9245 			.vfcount = 128,
9246 			.sge_fl_db = F_DBPRIO,
9247 			.mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES,
9248 			.rss_nentries = RSS_NENTRIES,
9249 		},
9250 		{
9251 			/* T5 */
9252 			.nchan = NCHAN,
9253 			.pm_stats_cnt = PM_NSTATS,
9254 			.cng_ch_bits_log = 2,
9255 			.nsched_cls = 16,
9256 			.cim_num_obq = CIM_NUM_OBQ_T5,
9257 			.mps_rplc_size = 128,
9258 			.vfcount = 128,
9259 			.sge_fl_db = F_DBPRIO | F_DBTYPE,
9260 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
9261 			.rss_nentries = RSS_NENTRIES,
9262 		},
9263 		{
9264 			/* T6 */
9265 			.nchan = T6_NCHAN,
9266 			.pm_stats_cnt = T6_PM_NSTATS,
9267 			.cng_ch_bits_log = 3,
9268 			.nsched_cls = 16,
9269 			.cim_num_obq = CIM_NUM_OBQ_T5,
9270 			.mps_rplc_size = 256,
9271 			.vfcount = 256,
9272 			.sge_fl_db = 0,
9273 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
9274 			.rss_nentries = T6_RSS_NENTRIES,
9275 		},
9276 	};
9277 
9278 	chipid -= CHELSIO_T4;
9279 	if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params))
9280 		return NULL;
9281 
9282 	return &chip_params[chipid];
9283 }
9284 
9285 /**
9286  *	t4_prep_adapter - prepare SW and HW for operation
9287  *	@adapter: the adapter
9288  *	@buf: temporary space of at least VPD_LEN size provided by the caller.
9289  *
9290  *	Initialize adapter SW state for the various HW modules, set initial
9291  *	values for some adapter tunables, take PHYs out of reset, and
9292  *	initialize the MDIO interface.
9293  */
9294 int t4_prep_adapter(struct adapter *adapter, u32 *buf)
9295 {
9296 	int ret;
9297 	uint16_t device_id;
9298 	uint32_t pl_rev;
9299 
9300 	get_pci_mode(adapter, &adapter->params.pci);
9301 
9302 	pl_rev = t4_read_reg(adapter, A_PL_REV);
9303 	adapter->params.chipid = G_CHIPID(pl_rev);
9304 	adapter->params.rev = G_REV(pl_rev);
9305 	if (adapter->params.chipid == 0) {
9306 		/* T4 did not have chipid in PL_REV (T5 onwards do) */
9307 		adapter->params.chipid = CHELSIO_T4;
9308 
9309 		/* T4A1 chip is not supported */
9310 		if (adapter->params.rev == 1) {
9311 			CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
9312 			return -EINVAL;
9313 		}
9314 	}
9315 
9316 	adapter->chip_params = t4_get_chip_params(chip_id(adapter));
9317 	if (adapter->chip_params == NULL)
9318 		return -EINVAL;
9319 
9320 	adapter->params.pci.vpd_cap_addr =
9321 	    t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
9322 
9323 	ret = t4_get_flash_params(adapter);
9324 	if (ret < 0)
9325 		return ret;
9326 
9327 	/* Cards with real ASICs have the chipid in the PCIe device id */
9328 	t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
9329 	if (device_id >> 12 == chip_id(adapter))
9330 		adapter->params.cim_la_size = CIMLA_SIZE;
9331 	else {
9332 		/* FPGA */
9333 		adapter->params.fpga = 1;
9334 		adapter->params.cim_la_size = 2 * CIMLA_SIZE;
9335 	}
9336 
9337 	ret = get_vpd_params(adapter, &adapter->params.vpd, device_id, buf);
9338 	if (ret < 0)
9339 		return ret;
9340 
9341 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
9342 
9343 	/*
9344 	 * Default port and clock for debugging in case we can't reach FW.
9345 	 */
9346 	adapter->params.nports = 1;
9347 	adapter->params.portvec = 1;
9348 	adapter->params.vpd.cclk = 50000;
9349 
9350 	/* Set pci completion timeout value to 4 seconds. */
9351 	set_pcie_completion_timeout(adapter, 0xd);
9352 	return 0;
9353 }
9354 
9355 /**
9356  *	t4_shutdown_adapter - shut down adapter, host & wire
9357  *	@adapter: the adapter
9358  *
9359  *	Perform an emergency shutdown of the adapter and stop it from
9360  *	continuing any further communication on the ports or DMA to the
9361  *	host.  This is typically used when the adapter and/or firmware
9362  *	have crashed and we want to prevent any further accidental
9363  *	communication with the rest of the world.  This will also force
9364  *	the port Link Status to go down -- if register writes work --
9365  *	which should help our peers figure out that we're down.
9366  */
9367 int t4_shutdown_adapter(struct adapter *adapter)
9368 {
9369 	int port;
9370 
9371 	t4_intr_disable(adapter);
9372 	t4_write_reg(adapter, A_DBG_GPIO_EN, 0);
9373 	for_each_port(adapter, port) {
9374 		u32 a_port_cfg = is_t4(adapter) ?
9375 				 PORT_REG(port, A_XGMAC_PORT_CFG) :
9376 				 T5_PORT_REG(port, A_MAC_PORT_CFG);
9377 
9378 		t4_write_reg(adapter, a_port_cfg,
9379 			     t4_read_reg(adapter, a_port_cfg)
9380 			     & ~V_SIGNAL_DET(1));
9381 	}
9382 	t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0);
9383 
9384 	return 0;
9385 }
9386 
9387 /**
9388  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
9389  *	@adapter: the adapter
9390  *	@qid: the Queue ID
9391  *	@qtype: the Ingress or Egress type for @qid
9392  *	@user: true if this request is for a user mode queue
9393  *	@pbar2_qoffset: BAR2 Queue Offset
9394  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
9395  *
9396  *	Returns the BAR2 SGE Queue Registers information associated with the
9397  *	indicated Absolute Queue ID.  These are passed back in return value
9398  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
9399  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
9400  *
9401  *	This may return an error which indicates that BAR2 SGE Queue
9402  *	registers aren't available.  If an error is not returned, then the
9403  *	following values are returned:
9404  *
9405  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
9406  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
9407  *
9408  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
9409  *	require the "Inferred Queue ID" ability may be used.  E.g. the
9410  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
9411  *	then these "Inferred Queue ID" register may not be used.
9412  */
9413 int t4_bar2_sge_qregs(struct adapter *adapter,
9414 		      unsigned int qid,
9415 		      enum t4_bar2_qtype qtype,
9416 		      int user,
9417 		      u64 *pbar2_qoffset,
9418 		      unsigned int *pbar2_qid)
9419 {
9420 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
9421 	u64 bar2_page_offset, bar2_qoffset;
9422 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
9423 
9424 	/* T4 doesn't support BAR2 SGE Queue registers for kernel
9425 	 * mode queues.
9426 	 */
9427 	if (!user && is_t4(adapter))
9428 		return -EINVAL;
9429 
9430 	/* Get our SGE Page Size parameters.
9431 	 */
9432 	page_shift = adapter->params.sge.page_shift;
9433 	page_size = 1 << page_shift;
9434 
9435 	/* Get the right Queues per Page parameters for our Queue.
9436 	 */
9437 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
9438 		     ? adapter->params.sge.eq_s_qpp
9439 		     : adapter->params.sge.iq_s_qpp);
9440 	qpp_mask = (1 << qpp_shift) - 1;
9441 
9442 	/* Calculate the basics of the BAR2 SGE Queue register area:
9443 	 *  o The BAR2 page the Queue registers will be in.
9444 	 *  o The BAR2 Queue ID.
9445 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
9446 	 */
9447 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
9448 	bar2_qid = qid & qpp_mask;
9449 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
9450 
9451 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
9452 	 * hardware will infer the Absolute Queue ID simply from the writes to
9453 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9454 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9455 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9456 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9457 	 * from the BAR2 Page and BAR2 Queue ID.
9458 	 *
9459 	 * One important censequence of this is that some BAR2 SGE registers
9460 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9461 	 * there.  But other registers synthesize the SGE Queue ID purely
9462 	 * from the writes to the registers -- the Write Combined Doorbell
9463 	 * Buffer is a good example.  These BAR2 SGE Registers are only
9464 	 * available for those BAR2 SGE Register areas where the SGE Absolute
9465 	 * Queue ID can be inferred from simple writes.
9466 	 */
9467 	bar2_qoffset = bar2_page_offset;
9468 	bar2_qinferred = (bar2_qid_offset < page_size);
9469 	if (bar2_qinferred) {
9470 		bar2_qoffset += bar2_qid_offset;
9471 		bar2_qid = 0;
9472 	}
9473 
9474 	*pbar2_qoffset = bar2_qoffset;
9475 	*pbar2_qid = bar2_qid;
9476 	return 0;
9477 }
9478 
9479 /**
9480  *	t4_init_devlog_params - initialize adapter->params.devlog
9481  *	@adap: the adapter
9482  *	@fw_attach: whether we can talk to the firmware
9483  *
9484  *	Initialize various fields of the adapter's Firmware Device Log
9485  *	Parameters structure.
9486  */
9487 int t4_init_devlog_params(struct adapter *adap, int fw_attach)
9488 {
9489 	struct devlog_params *dparams = &adap->params.devlog;
9490 	u32 pf_dparams;
9491 	unsigned int devlog_meminfo;
9492 	struct fw_devlog_cmd devlog_cmd;
9493 	int ret;
9494 
9495 	/* If we're dealing with newer firmware, the Device Log Paramerters
9496 	 * are stored in a designated register which allows us to access the
9497 	 * Device Log even if we can't talk to the firmware.
9498 	 */
9499 	pf_dparams =
9500 		t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG));
9501 	if (pf_dparams) {
9502 		unsigned int nentries, nentries128;
9503 
9504 		dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams);
9505 		dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4;
9506 
9507 		nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams);
9508 		nentries = (nentries128 + 1) * 128;
9509 		dparams->size = nentries * sizeof(struct fw_devlog_e);
9510 
9511 		return 0;
9512 	}
9513 
9514 	/*
9515 	 * For any failing returns ...
9516 	 */
9517 	memset(dparams, 0, sizeof *dparams);
9518 
9519 	/*
9520 	 * If we can't talk to the firmware, there's really nothing we can do
9521 	 * at this point.
9522 	 */
9523 	if (!fw_attach)
9524 		return -ENXIO;
9525 
9526 	/* Otherwise, ask the firmware for it's Device Log Parameters.
9527 	 */
9528 	memset(&devlog_cmd, 0, sizeof devlog_cmd);
9529 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9530 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
9531 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9532 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9533 			 &devlog_cmd);
9534 	if (ret)
9535 		return ret;
9536 
9537 	devlog_meminfo =
9538 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9539 	dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo);
9540 	dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4;
9541 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9542 
9543 	return 0;
9544 }
9545 
9546 /**
9547  *	t4_init_sge_params - initialize adap->params.sge
9548  *	@adapter: the adapter
9549  *
9550  *	Initialize various fields of the adapter's SGE Parameters structure.
9551  */
9552 int t4_init_sge_params(struct adapter *adapter)
9553 {
9554 	u32 r;
9555 	struct sge_params *sp = &adapter->params.sge;
9556 	unsigned i, tscale = 1;
9557 
9558 	r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD);
9559 	sp->counter_val[0] = G_THRESHOLD_0(r);
9560 	sp->counter_val[1] = G_THRESHOLD_1(r);
9561 	sp->counter_val[2] = G_THRESHOLD_2(r);
9562 	sp->counter_val[3] = G_THRESHOLD_3(r);
9563 
9564 	if (chip_id(adapter) >= CHELSIO_T6) {
9565 		r = t4_read_reg(adapter, A_SGE_ITP_CONTROL);
9566 		tscale = G_TSCALE(r);
9567 		if (tscale == 0)
9568 			tscale = 1;
9569 		else
9570 			tscale += 2;
9571 	}
9572 
9573 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1);
9574 	sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r)) * tscale;
9575 	sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r)) * tscale;
9576 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3);
9577 	sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r)) * tscale;
9578 	sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r)) * tscale;
9579 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5);
9580 	sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r)) * tscale;
9581 	sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r)) * tscale;
9582 
9583 	r = t4_read_reg(adapter, A_SGE_CONM_CTRL);
9584 	sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
9585 	if (is_t4(adapter))
9586 		sp->fl_starve_threshold2 = sp->fl_starve_threshold;
9587 	else if (is_t5(adapter))
9588 		sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
9589 	else
9590 		sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(r) * 2 + 1;
9591 
9592 	/* egress queues: log2 of # of doorbells per BAR2 page */
9593 	r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
9594 	r >>= S_QUEUESPERPAGEPF0 +
9595 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
9596 	sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
9597 
9598 	/* ingress queues: log2 of # of doorbells per BAR2 page */
9599 	r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
9600 	r >>= S_QUEUESPERPAGEPF0 +
9601 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
9602 	sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
9603 
9604 	r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
9605 	r >>= S_HOSTPAGESIZEPF0 +
9606 	    (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf;
9607 	sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10;
9608 
9609 	r = t4_read_reg(adapter, A_SGE_CONTROL);
9610 	sp->sge_control = r;
9611 	sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64;
9612 	sp->fl_pktshift = G_PKTSHIFT(r);
9613 	if (chip_id(adapter) <= CHELSIO_T5) {
9614 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
9615 		    X_INGPADBOUNDARY_SHIFT);
9616 	} else {
9617 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
9618 		    X_T6_INGPADBOUNDARY_SHIFT);
9619 	}
9620 	if (is_t4(adapter))
9621 		sp->pack_boundary = sp->pad_boundary;
9622 	else {
9623 		r = t4_read_reg(adapter, A_SGE_CONTROL2);
9624 		if (G_INGPACKBOUNDARY(r) == 0)
9625 			sp->pack_boundary = 16;
9626 		else
9627 			sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5);
9628 	}
9629 	for (i = 0; i < SGE_FLBUF_SIZES; i++)
9630 		sp->sge_fl_buffer_size[i] = t4_read_reg(adapter,
9631 		    A_SGE_FL_BUFFER_SIZE0 + (4 * i));
9632 
9633 	return 0;
9634 }
9635 
9636 /*
9637  * Read and cache the adapter's compressed filter mode and ingress config.
9638  */
9639 static void read_filter_mode_and_ingress_config(struct adapter *adap,
9640     bool sleep_ok)
9641 {
9642 	uint32_t v;
9643 	struct tp_params *tpp = &adap->params.tp;
9644 
9645 	t4_tp_pio_read(adap, &tpp->vlan_pri_map, 1, A_TP_VLAN_PRI_MAP,
9646 	    sleep_ok);
9647 	t4_tp_pio_read(adap, &tpp->ingress_config, 1, A_TP_INGRESS_CONFIG,
9648 	    sleep_ok);
9649 
9650 	/*
9651 	 * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9652 	 * shift positions of several elements of the Compressed Filter Tuple
9653 	 * for this adapter which we need frequently ...
9654 	 */
9655 	tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE);
9656 	tpp->port_shift = t4_filter_field_shift(adap, F_PORT);
9657 	tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
9658 	tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN);
9659 	tpp->tos_shift = t4_filter_field_shift(adap, F_TOS);
9660 	tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
9661 	tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE);
9662 	tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH);
9663 	tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE);
9664 	tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION);
9665 
9666 	if (chip_id(adap) > CHELSIO_T4) {
9667 		v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(3));
9668 		adap->params.tp.hash_filter_mask = v;
9669 		v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(4));
9670 		adap->params.tp.hash_filter_mask |= (u64)v << 32;
9671 	}
9672 }
9673 
9674 /**
9675  *      t4_init_tp_params - initialize adap->params.tp
9676  *      @adap: the adapter
9677  *
9678  *      Initialize various fields of the adapter's TP Parameters structure.
9679  */
9680 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
9681 {
9682 	int chan;
9683 	u32 tx_len, rx_len, r, v;
9684 	struct tp_params *tpp = &adap->params.tp;
9685 
9686 	v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
9687 	tpp->tre = G_TIMERRESOLUTION(v);
9688 	tpp->dack_re = G_DELAYEDACKRESOLUTION(v);
9689 
9690 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9691 	for (chan = 0; chan < MAX_NCHAN; chan++)
9692 		tpp->tx_modq[chan] = chan;
9693 
9694 	read_filter_mode_and_ingress_config(adap, sleep_ok);
9695 
9696 	if (chip_id(adap) > CHELSIO_T5) {
9697 		v = t4_read_reg(adap, A_TP_OUT_CONFIG);
9698 		tpp->rx_pkt_encap = v & F_CRXPKTENC;
9699 	} else
9700 		tpp->rx_pkt_encap = false;
9701 
9702 	rx_len = t4_read_reg(adap, A_TP_PMM_RX_PAGE_SIZE);
9703 	tx_len = t4_read_reg(adap, A_TP_PMM_TX_PAGE_SIZE);
9704 
9705 	r = t4_read_reg(adap, A_TP_PARA_REG2);
9706 	rx_len = min(rx_len, G_MAXRXDATA(r));
9707 	tx_len = min(tx_len, G_MAXRXDATA(r));
9708 
9709 	r = t4_read_reg(adap, A_TP_PARA_REG7);
9710 	v = min(G_PMMAXXFERLEN0(r), G_PMMAXXFERLEN1(r));
9711 	rx_len = min(rx_len, v);
9712 	tx_len = min(tx_len, v);
9713 
9714 	tpp->max_tx_pdu = tx_len;
9715 	tpp->max_rx_pdu = rx_len;
9716 
9717 	return 0;
9718 }
9719 
9720 /**
9721  *      t4_filter_field_shift - calculate filter field shift
9722  *      @adap: the adapter
9723  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9724  *
9725  *      Return the shift position of a filter field within the Compressed
9726  *      Filter Tuple.  The filter field is specified via its selection bit
9727  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9728  */
9729 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9730 {
9731 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
9732 	unsigned int sel;
9733 	int field_shift;
9734 
9735 	if ((filter_mode & filter_sel) == 0)
9736 		return -1;
9737 
9738 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9739 		switch (filter_mode & sel) {
9740 		case F_FCOE:
9741 			field_shift += W_FT_FCOE;
9742 			break;
9743 		case F_PORT:
9744 			field_shift += W_FT_PORT;
9745 			break;
9746 		case F_VNIC_ID:
9747 			field_shift += W_FT_VNIC_ID;
9748 			break;
9749 		case F_VLAN:
9750 			field_shift += W_FT_VLAN;
9751 			break;
9752 		case F_TOS:
9753 			field_shift += W_FT_TOS;
9754 			break;
9755 		case F_PROTOCOL:
9756 			field_shift += W_FT_PROTOCOL;
9757 			break;
9758 		case F_ETHERTYPE:
9759 			field_shift += W_FT_ETHERTYPE;
9760 			break;
9761 		case F_MACMATCH:
9762 			field_shift += W_FT_MACMATCH;
9763 			break;
9764 		case F_MPSHITTYPE:
9765 			field_shift += W_FT_MPSHITTYPE;
9766 			break;
9767 		case F_FRAGMENTATION:
9768 			field_shift += W_FT_FRAGMENTATION;
9769 			break;
9770 		}
9771 	}
9772 	return field_shift;
9773 }
9774 
9775 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id)
9776 {
9777 	u8 addr[6];
9778 	int ret, i, j;
9779 	struct port_info *p = adap2pinfo(adap, port_id);
9780 	u32 param, val;
9781 	struct vi_info *vi = &p->vi[0];
9782 
9783 	for (i = 0, j = -1; i <= p->port_id; i++) {
9784 		do {
9785 			j++;
9786 		} while ((adap->params.portvec & (1 << j)) == 0);
9787 	}
9788 
9789 	p->tx_chan = j;
9790 	p->mps_bg_map = t4_get_mps_bg_map(adap, j);
9791 	p->rx_e_chan_map = t4_get_rx_e_chan_map(adap, j);
9792 	p->lport = j;
9793 
9794 	if (!(adap->flags & IS_VF) ||
9795 	    adap->params.vfres.r_caps & FW_CMD_CAP_PORT) {
9796  		t4_update_port_info(p);
9797 	}
9798 
9799 	ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &vi->rss_size,
9800 	    &vi->vfvld, &vi->vin);
9801 	if (ret < 0)
9802 		return ret;
9803 
9804 	vi->viid = ret;
9805 	t4_os_set_hw_addr(p, addr);
9806 
9807 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9808 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
9809 	    V_FW_PARAMS_PARAM_YZ(vi->viid);
9810 	ret = t4_query_params(adap, mbox, pf, vf, 1, &param, &val);
9811 	if (ret)
9812 		vi->rss_base = 0xffff;
9813 	else {
9814 		/* MPASS((val >> 16) == rss_size); */
9815 		vi->rss_base = val & 0xffff;
9816 	}
9817 
9818 	return 0;
9819 }
9820 
9821 /**
9822  *	t4_read_cimq_cfg - read CIM queue configuration
9823  *	@adap: the adapter
9824  *	@base: holds the queue base addresses in bytes
9825  *	@size: holds the queue sizes in bytes
9826  *	@thres: holds the queue full thresholds in bytes
9827  *
9828  *	Returns the current configuration of the CIM queues, starting with
9829  *	the IBQs, then the OBQs.
9830  */
9831 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9832 {
9833 	unsigned int i, v;
9834 	int cim_num_obq = adap->chip_params->cim_num_obq;
9835 
9836 	for (i = 0; i < CIM_NUM_IBQ; i++) {
9837 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
9838 			     V_QUENUMSELECT(i));
9839 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9840 		/* value is in 256-byte units */
9841 		*base++ = G_CIMQBASE(v) * 256;
9842 		*size++ = G_CIMQSIZE(v) * 256;
9843 		*thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */
9844 	}
9845 	for (i = 0; i < cim_num_obq; i++) {
9846 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
9847 			     V_QUENUMSELECT(i));
9848 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9849 		/* value is in 256-byte units */
9850 		*base++ = G_CIMQBASE(v) * 256;
9851 		*size++ = G_CIMQSIZE(v) * 256;
9852 	}
9853 }
9854 
9855 /**
9856  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
9857  *	@adap: the adapter
9858  *	@qid: the queue index
9859  *	@data: where to store the queue contents
9860  *	@n: capacity of @data in 32-bit words
9861  *
9862  *	Reads the contents of the selected CIM queue starting at address 0 up
9863  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9864  *	error and the number of 32-bit words actually read on success.
9865  */
9866 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9867 {
9868 	int i, err, attempts;
9869 	unsigned int addr;
9870 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
9871 
9872 	if (qid > 5 || (n & 3))
9873 		return -EINVAL;
9874 
9875 	addr = qid * nwords;
9876 	if (n > nwords)
9877 		n = nwords;
9878 
9879 	/* It might take 3-10ms before the IBQ debug read access is allowed.
9880 	 * Wait for 1 Sec with a delay of 1 usec.
9881 	 */
9882 	attempts = 1000000;
9883 
9884 	for (i = 0; i < n; i++, addr++) {
9885 		t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
9886 			     F_IBQDBGEN);
9887 		err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
9888 				      attempts, 1);
9889 		if (err)
9890 			return err;
9891 		*data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
9892 	}
9893 	t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
9894 	return i;
9895 }
9896 
9897 /**
9898  *	t4_read_cim_obq - read the contents of a CIM outbound queue
9899  *	@adap: the adapter
9900  *	@qid: the queue index
9901  *	@data: where to store the queue contents
9902  *	@n: capacity of @data in 32-bit words
9903  *
9904  *	Reads the contents of the selected CIM queue starting at address 0 up
9905  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9906  *	error and the number of 32-bit words actually read on success.
9907  */
9908 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9909 {
9910 	int i, err;
9911 	unsigned int addr, v, nwords;
9912 	int cim_num_obq = adap->chip_params->cim_num_obq;
9913 
9914 	if ((qid > (cim_num_obq - 1)) || (n & 3))
9915 		return -EINVAL;
9916 
9917 	t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
9918 		     V_QUENUMSELECT(qid));
9919 	v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9920 
9921 	addr = G_CIMQBASE(v) * 64;    /* muliple of 256 -> muliple of 4 */
9922 	nwords = G_CIMQSIZE(v) * 64;  /* same */
9923 	if (n > nwords)
9924 		n = nwords;
9925 
9926 	for (i = 0; i < n; i++, addr++) {
9927 		t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
9928 			     F_OBQDBGEN);
9929 		err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
9930 				      2, 1);
9931 		if (err)
9932 			return err;
9933 		*data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
9934 	}
9935 	t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
9936 	return i;
9937 }
9938 
9939 enum {
9940 	CIM_QCTL_BASE     = 0,
9941 	CIM_CTL_BASE      = 0x2000,
9942 	CIM_PBT_ADDR_BASE = 0x2800,
9943 	CIM_PBT_LRF_BASE  = 0x3000,
9944 	CIM_PBT_DATA_BASE = 0x3800
9945 };
9946 
9947 /**
9948  *	t4_cim_read - read a block from CIM internal address space
9949  *	@adap: the adapter
9950  *	@addr: the start address within the CIM address space
9951  *	@n: number of words to read
9952  *	@valp: where to store the result
9953  *
9954  *	Reads a block of 4-byte words from the CIM intenal address space.
9955  */
9956 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9957 		unsigned int *valp)
9958 {
9959 	int ret = 0;
9960 
9961 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
9962 		return -EBUSY;
9963 
9964 	for ( ; !ret && n--; addr += 4) {
9965 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
9966 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
9967 				      0, 5, 2);
9968 		if (!ret)
9969 			*valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
9970 	}
9971 	return ret;
9972 }
9973 
9974 /**
9975  *	t4_cim_write - write a block into CIM internal address space
9976  *	@adap: the adapter
9977  *	@addr: the start address within the CIM address space
9978  *	@n: number of words to write
9979  *	@valp: set of values to write
9980  *
9981  *	Writes a block of 4-byte words into the CIM intenal address space.
9982  */
9983 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
9984 		 const unsigned int *valp)
9985 {
9986 	int ret = 0;
9987 
9988 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
9989 		return -EBUSY;
9990 
9991 	for ( ; !ret && n--; addr += 4) {
9992 		t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
9993 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
9994 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
9995 				      0, 5, 2);
9996 	}
9997 	return ret;
9998 }
9999 
10000 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
10001 			 unsigned int val)
10002 {
10003 	return t4_cim_write(adap, addr, 1, &val);
10004 }
10005 
10006 /**
10007  *	t4_cim_ctl_read - read a block from CIM control region
10008  *	@adap: the adapter
10009  *	@addr: the start address within the CIM control region
10010  *	@n: number of words to read
10011  *	@valp: where to store the result
10012  *
10013  *	Reads a block of 4-byte words from the CIM control region.
10014  */
10015 int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
10016 		    unsigned int *valp)
10017 {
10018 	return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
10019 }
10020 
10021 /**
10022  *	t4_cim_read_la - read CIM LA capture buffer
10023  *	@adap: the adapter
10024  *	@la_buf: where to store the LA data
10025  *	@wrptr: the HW write pointer within the capture buffer
10026  *
10027  *	Reads the contents of the CIM LA buffer with the most recent entry at
10028  *	the end	of the returned data and with the entry at @wrptr first.
10029  *	We try to leave the LA in the running state we find it in.
10030  */
10031 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
10032 {
10033 	int i, ret;
10034 	unsigned int cfg, val, idx;
10035 
10036 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
10037 	if (ret)
10038 		return ret;
10039 
10040 	if (cfg & F_UPDBGLAEN) {	/* LA is running, freeze it */
10041 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
10042 		if (ret)
10043 			return ret;
10044 	}
10045 
10046 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
10047 	if (ret)
10048 		goto restart;
10049 
10050 	idx = G_UPDBGLAWRPTR(val);
10051 	if (wrptr)
10052 		*wrptr = idx;
10053 
10054 	for (i = 0; i < adap->params.cim_la_size; i++) {
10055 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
10056 				    V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
10057 		if (ret)
10058 			break;
10059 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
10060 		if (ret)
10061 			break;
10062 		if (val & F_UPDBGLARDEN) {
10063 			ret = -ETIMEDOUT;
10064 			break;
10065 		}
10066 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
10067 		if (ret)
10068 			break;
10069 
10070 		/* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
10071 		 * identify the 32-bit portion of the full 312-bit data
10072 		 */
10073 		if (is_t6(adap) && (idx & 0xf) >= 9)
10074 			idx = (idx & 0xff0) + 0x10;
10075 		else
10076 			idx++;
10077 		/* address can't exceed 0xfff */
10078 		idx &= M_UPDBGLARDPTR;
10079 	}
10080 restart:
10081 	if (cfg & F_UPDBGLAEN) {
10082 		int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
10083 				      cfg & ~F_UPDBGLARDEN);
10084 		if (!ret)
10085 			ret = r;
10086 	}
10087 	return ret;
10088 }
10089 
10090 /**
10091  *	t4_tp_read_la - read TP LA capture buffer
10092  *	@adap: the adapter
10093  *	@la_buf: where to store the LA data
10094  *	@wrptr: the HW write pointer within the capture buffer
10095  *
10096  *	Reads the contents of the TP LA buffer with the most recent entry at
10097  *	the end	of the returned data and with the entry at @wrptr first.
10098  *	We leave the LA in the running state we find it in.
10099  */
10100 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
10101 {
10102 	bool last_incomplete;
10103 	unsigned int i, cfg, val, idx;
10104 
10105 	cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
10106 	if (cfg & F_DBGLAENABLE)			/* freeze LA */
10107 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
10108 			     adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
10109 
10110 	val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
10111 	idx = G_DBGLAWPTR(val);
10112 	last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
10113 	if (last_incomplete)
10114 		idx = (idx + 1) & M_DBGLARPTR;
10115 	if (wrptr)
10116 		*wrptr = idx;
10117 
10118 	val &= 0xffff;
10119 	val &= ~V_DBGLARPTR(M_DBGLARPTR);
10120 	val |= adap->params.tp.la_mask;
10121 
10122 	for (i = 0; i < TPLA_SIZE; i++) {
10123 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
10124 		la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
10125 		idx = (idx + 1) & M_DBGLARPTR;
10126 	}
10127 
10128 	/* Wipe out last entry if it isn't valid */
10129 	if (last_incomplete)
10130 		la_buf[TPLA_SIZE - 1] = ~0ULL;
10131 
10132 	if (cfg & F_DBGLAENABLE)		/* restore running state */
10133 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
10134 			     cfg | adap->params.tp.la_mask);
10135 }
10136 
10137 /*
10138  * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
10139  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
10140  * state for more than the Warning Threshold then we'll issue a warning about
10141  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
10142  * appears to be hung every Warning Repeat second till the situation clears.
10143  * If the situation clears, we'll note that as well.
10144  */
10145 #define SGE_IDMA_WARN_THRESH 1
10146 #define SGE_IDMA_WARN_REPEAT 300
10147 
10148 /**
10149  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
10150  *	@adapter: the adapter
10151  *	@idma: the adapter IDMA Monitor state
10152  *
10153  *	Initialize the state of an SGE Ingress DMA Monitor.
10154  */
10155 void t4_idma_monitor_init(struct adapter *adapter,
10156 			  struct sge_idma_monitor_state *idma)
10157 {
10158 	/* Initialize the state variables for detecting an SGE Ingress DMA
10159 	 * hang.  The SGE has internal counters which count up on each clock
10160 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
10161 	 * same state they were on the previous clock tick.  The clock used is
10162 	 * the Core Clock so we have a limit on the maximum "time" they can
10163 	 * record; typically a very small number of seconds.  For instance,
10164 	 * with a 600MHz Core Clock, we can only count up to a bit more than
10165 	 * 7s.  So we'll synthesize a larger counter in order to not run the
10166 	 * risk of having the "timers" overflow and give us the flexibility to
10167 	 * maintain a Hung SGE State Machine of our own which operates across
10168 	 * a longer time frame.
10169 	 */
10170 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
10171 	idma->idma_stalled[0] = idma->idma_stalled[1] = 0;
10172 }
10173 
10174 /**
10175  *	t4_idma_monitor - monitor SGE Ingress DMA state
10176  *	@adapter: the adapter
10177  *	@idma: the adapter IDMA Monitor state
10178  *	@hz: number of ticks/second
10179  *	@ticks: number of ticks since the last IDMA Monitor call
10180  */
10181 void t4_idma_monitor(struct adapter *adapter,
10182 		     struct sge_idma_monitor_state *idma,
10183 		     int hz, int ticks)
10184 {
10185 	int i, idma_same_state_cnt[2];
10186 
10187 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
10188 	  * are counters inside the SGE which count up on each clock when the
10189 	  * SGE finds its Ingress DMA State Engines in the same states they
10190 	  * were in the previous clock.  The counters will peg out at
10191 	  * 0xffffffff without wrapping around so once they pass the 1s
10192 	  * threshold they'll stay above that till the IDMA state changes.
10193 	  */
10194 	t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13);
10195 	idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH);
10196 	idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
10197 
10198 	for (i = 0; i < 2; i++) {
10199 		u32 debug0, debug11;
10200 
10201 		/* If the Ingress DMA Same State Counter ("timer") is less
10202 		 * than 1s, then we can reset our synthesized Stall Timer and
10203 		 * continue.  If we have previously emitted warnings about a
10204 		 * potential stalled Ingress Queue, issue a note indicating
10205 		 * that the Ingress Queue has resumed forward progress.
10206 		 */
10207 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
10208 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz)
10209 				CH_WARN(adapter, "SGE idma%d, queue %u, "
10210 					"resumed after %d seconds\n",
10211 					i, idma->idma_qid[i],
10212 					idma->idma_stalled[i]/hz);
10213 			idma->idma_stalled[i] = 0;
10214 			continue;
10215 		}
10216 
10217 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
10218 		 * domain.  The first time we get here it'll be because we
10219 		 * passed the 1s Threshold; each additional time it'll be
10220 		 * because the RX Timer Callback is being fired on its regular
10221 		 * schedule.
10222 		 *
10223 		 * If the stall is below our Potential Hung Ingress Queue
10224 		 * Warning Threshold, continue.
10225 		 */
10226 		if (idma->idma_stalled[i] == 0) {
10227 			idma->idma_stalled[i] = hz;
10228 			idma->idma_warn[i] = 0;
10229 		} else {
10230 			idma->idma_stalled[i] += ticks;
10231 			idma->idma_warn[i] -= ticks;
10232 		}
10233 
10234 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz)
10235 			continue;
10236 
10237 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
10238 		 */
10239 		if (idma->idma_warn[i] > 0)
10240 			continue;
10241 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz;
10242 
10243 		/* Read and save the SGE IDMA State and Queue ID information.
10244 		 * We do this every time in case it changes across time ...
10245 		 * can't be too careful ...
10246 		 */
10247 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0);
10248 		debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
10249 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
10250 
10251 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11);
10252 		debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
10253 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
10254 
10255 		CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in "
10256 			" state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
10257 			i, idma->idma_qid[i], idma->idma_state[i],
10258 			idma->idma_stalled[i]/hz,
10259 			debug0, debug11);
10260 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
10261 	}
10262 }
10263 
10264 /**
10265  *     t4_set_vf_mac - Set MAC address for the specified VF
10266  *     @adapter: The adapter
10267  *     @pf: the PF used to instantiate the VFs
10268  *     @vf: one of the VFs instantiated by the specified PF
10269  *     @naddr: the number of MAC addresses
10270  *     @addr: the MAC address(es) to be set to the specified VF
10271  */
10272 int t4_set_vf_mac(struct adapter *adapter, unsigned int pf, unsigned int vf,
10273 		  unsigned int naddr, u8 *addr)
10274 {
10275 	struct fw_acl_mac_cmd cmd;
10276 
10277 	memset(&cmd, 0, sizeof(cmd));
10278 	cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_ACL_MAC_CMD) |
10279 				    F_FW_CMD_REQUEST |
10280 				    F_FW_CMD_WRITE |
10281 				    V_FW_ACL_MAC_CMD_PFN(pf) |
10282 				    V_FW_ACL_MAC_CMD_VFN(vf));
10283 
10284 	/* Note: Do not enable the ACL */
10285 	cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
10286 	cmd.nmac = naddr;
10287 
10288 	switch (pf) {
10289 	case 3:
10290 		memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
10291 		break;
10292 	case 2:
10293 		memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
10294 		break;
10295 	case 1:
10296 		memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
10297 		break;
10298 	case 0:
10299 		memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
10300 		break;
10301 	}
10302 
10303 	return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
10304 }
10305 
10306 /**
10307  *	t4_read_pace_tbl - read the pace table
10308  *	@adap: the adapter
10309  *	@pace_vals: holds the returned values
10310  *
10311  *	Returns the values of TP's pace table in microseconds.
10312  */
10313 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
10314 {
10315 	unsigned int i, v;
10316 
10317 	for (i = 0; i < NTX_SCHED; i++) {
10318 		t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
10319 		v = t4_read_reg(adap, A_TP_PACE_TABLE);
10320 		pace_vals[i] = dack_ticks_to_usec(adap, v);
10321 	}
10322 }
10323 
10324 /**
10325  *	t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
10326  *	@adap: the adapter
10327  *	@sched: the scheduler index
10328  *	@kbps: the byte rate in Kbps
10329  *	@ipg: the interpacket delay in tenths of nanoseconds
10330  *
10331  *	Return the current configuration of a HW Tx scheduler.
10332  */
10333 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
10334 		     unsigned int *ipg, bool sleep_ok)
10335 {
10336 	unsigned int v, addr, bpt, cpt;
10337 
10338 	if (kbps) {
10339 		addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
10340 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10341 		if (sched & 1)
10342 			v >>= 16;
10343 		bpt = (v >> 8) & 0xff;
10344 		cpt = v & 0xff;
10345 		if (!cpt)
10346 			*kbps = 0;	/* scheduler disabled */
10347 		else {
10348 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
10349 			*kbps = (v * bpt) / 125;
10350 		}
10351 	}
10352 	if (ipg) {
10353 		addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
10354 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10355 		if (sched & 1)
10356 			v >>= 16;
10357 		v &= 0xffff;
10358 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
10359 	}
10360 }
10361 
10362 /**
10363  *	t4_load_cfg - download config file
10364  *	@adap: the adapter
10365  *	@cfg_data: the cfg text file to write
10366  *	@size: text file size
10367  *
10368  *	Write the supplied config text file to the card's serial flash.
10369  */
10370 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10371 {
10372 	int ret, i, n, cfg_addr;
10373 	unsigned int addr;
10374 	unsigned int flash_cfg_start_sec;
10375 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10376 
10377 	cfg_addr = t4_flash_cfg_addr(adap);
10378 	if (cfg_addr < 0)
10379 		return cfg_addr;
10380 
10381 	addr = cfg_addr;
10382 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10383 
10384 	if (size > FLASH_CFG_MAX_SIZE) {
10385 		CH_ERR(adap, "cfg file too large, max is %u bytes\n",
10386 		       FLASH_CFG_MAX_SIZE);
10387 		return -EFBIG;
10388 	}
10389 
10390 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
10391 			 sf_sec_size);
10392 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10393 				     flash_cfg_start_sec + i - 1);
10394 	/*
10395 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10396 	 * with the on-adapter Firmware Configuration File.
10397 	 */
10398 	if (ret || size == 0)
10399 		goto out;
10400 
10401 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10402 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
10403 		if ( (size - i) <  SF_PAGE_SIZE)
10404 			n = size - i;
10405 		else
10406 			n = SF_PAGE_SIZE;
10407 		ret = t4_write_flash(adap, addr, n, cfg_data, 1);
10408 		if (ret)
10409 			goto out;
10410 
10411 		addr += SF_PAGE_SIZE;
10412 		cfg_data += SF_PAGE_SIZE;
10413 	}
10414 
10415 out:
10416 	if (ret)
10417 		CH_ERR(adap, "config file %s failed %d\n",
10418 		       (size == 0 ? "clear" : "download"), ret);
10419 	return ret;
10420 }
10421 
10422 /**
10423  *	t5_fw_init_extern_mem - initialize the external memory
10424  *	@adap: the adapter
10425  *
10426  *	Initializes the external memory on T5.
10427  */
10428 int t5_fw_init_extern_mem(struct adapter *adap)
10429 {
10430 	u32 params[1], val[1];
10431 	int ret;
10432 
10433 	if (!is_t5(adap))
10434 		return 0;
10435 
10436 	val[0] = 0xff; /* Initialize all MCs */
10437 	params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
10438 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT));
10439 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val,
10440 			FW_CMD_MAX_TIMEOUT);
10441 
10442 	return ret;
10443 }
10444 
10445 /* BIOS boot headers */
10446 typedef struct pci_expansion_rom_header {
10447 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
10448 	u8	reserved[22]; /* Reserved per processor Architecture data */
10449 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
10450 } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
10451 
10452 /* Legacy PCI Expansion ROM Header */
10453 typedef struct legacy_pci_expansion_rom_header {
10454 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
10455 	u8	size512; /* Current Image Size in units of 512 bytes */
10456 	u8	initentry_point[4];
10457 	u8	cksum; /* Checksum computed on the entire Image */
10458 	u8	reserved[16]; /* Reserved */
10459 	u8	pcir_offset[2]; /* Offset to PCI Data Struture */
10460 } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
10461 
10462 /* EFI PCI Expansion ROM Header */
10463 typedef struct efi_pci_expansion_rom_header {
10464 	u8	signature[2]; // ROM signature. The value 0xaa55
10465 	u8	initialization_size[2]; /* Units 512. Includes this header */
10466 	u8	efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
10467 	u8	efi_subsystem[2]; /* Subsystem value for EFI image header */
10468 	u8	efi_machine_type[2]; /* Machine type from EFI image header */
10469 	u8	compression_type[2]; /* Compression type. */
10470 		/*
10471 		 * Compression type definition
10472 		 * 0x0: uncompressed
10473 		 * 0x1: Compressed
10474 		 * 0x2-0xFFFF: Reserved
10475 		 */
10476 	u8	reserved[8]; /* Reserved */
10477 	u8	efi_image_header_offset[2]; /* Offset to EFI Image */
10478 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
10479 } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
10480 
10481 /* PCI Data Structure Format */
10482 typedef struct pcir_data_structure { /* PCI Data Structure */
10483 	u8	signature[4]; /* Signature. The string "PCIR" */
10484 	u8	vendor_id[2]; /* Vendor Identification */
10485 	u8	device_id[2]; /* Device Identification */
10486 	u8	vital_product[2]; /* Pointer to Vital Product Data */
10487 	u8	length[2]; /* PCIR Data Structure Length */
10488 	u8	revision; /* PCIR Data Structure Revision */
10489 	u8	class_code[3]; /* Class Code */
10490 	u8	image_length[2]; /* Image Length. Multiple of 512B */
10491 	u8	code_revision[2]; /* Revision Level of Code/Data */
10492 	u8	code_type; /* Code Type. */
10493 		/*
10494 		 * PCI Expansion ROM Code Types
10495 		 * 0x00: Intel IA-32, PC-AT compatible. Legacy
10496 		 * 0x01: Open Firmware standard for PCI. FCODE
10497 		 * 0x02: Hewlett-Packard PA RISC. HP reserved
10498 		 * 0x03: EFI Image. EFI
10499 		 * 0x04-0xFF: Reserved.
10500 		 */
10501 	u8	indicator; /* Indicator. Identifies the last image in the ROM */
10502 	u8	reserved[2]; /* Reserved */
10503 } pcir_data_t; /* PCI__DATA_STRUCTURE */
10504 
10505 /* BOOT constants */
10506 enum {
10507 	BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
10508 	BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
10509 	BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
10510 	BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
10511 	BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
10512 	VENDOR_ID = 0x1425, /* Vendor ID */
10513 	PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
10514 };
10515 
10516 /*
10517  *	modify_device_id - Modifies the device ID of the Boot BIOS image
10518  *	@adatper: the device ID to write.
10519  *	@boot_data: the boot image to modify.
10520  *
10521  *	Write the supplied device ID to the boot BIOS image.
10522  */
10523 static void modify_device_id(int device_id, u8 *boot_data)
10524 {
10525 	legacy_pci_exp_rom_header_t *header;
10526 	pcir_data_t *pcir_header;
10527 	u32 cur_header = 0;
10528 
10529 	/*
10530 	 * Loop through all chained images and change the device ID's
10531 	 */
10532 	while (1) {
10533 		header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
10534 		pcir_header = (pcir_data_t *) &boot_data[cur_header +
10535 			      le16_to_cpu(*(u16*)header->pcir_offset)];
10536 
10537 		/*
10538 		 * Only modify the Device ID if code type is Legacy or HP.
10539 		 * 0x00: Okay to modify
10540 		 * 0x01: FCODE. Do not be modify
10541 		 * 0x03: Okay to modify
10542 		 * 0x04-0xFF: Do not modify
10543 		 */
10544 		if (pcir_header->code_type == 0x00) {
10545 			u8 csum = 0;
10546 			int i;
10547 
10548 			/*
10549 			 * Modify Device ID to match current adatper
10550 			 */
10551 			*(u16*) pcir_header->device_id = device_id;
10552 
10553 			/*
10554 			 * Set checksum temporarily to 0.
10555 			 * We will recalculate it later.
10556 			 */
10557 			header->cksum = 0x0;
10558 
10559 			/*
10560 			 * Calculate and update checksum
10561 			 */
10562 			for (i = 0; i < (header->size512 * 512); i++)
10563 				csum += (u8)boot_data[cur_header + i];
10564 
10565 			/*
10566 			 * Invert summed value to create the checksum
10567 			 * Writing new checksum value directly to the boot data
10568 			 */
10569 			boot_data[cur_header + 7] = -csum;
10570 
10571 		} else if (pcir_header->code_type == 0x03) {
10572 
10573 			/*
10574 			 * Modify Device ID to match current adatper
10575 			 */
10576 			*(u16*) pcir_header->device_id = device_id;
10577 
10578 		}
10579 
10580 
10581 		/*
10582 		 * Check indicator element to identify if this is the last
10583 		 * image in the ROM.
10584 		 */
10585 		if (pcir_header->indicator & 0x80)
10586 			break;
10587 
10588 		/*
10589 		 * Move header pointer up to the next image in the ROM.
10590 		 */
10591 		cur_header += header->size512 * 512;
10592 	}
10593 }
10594 
10595 /*
10596  *	t4_load_boot - download boot flash
10597  *	@adapter: the adapter
10598  *	@boot_data: the boot image to write
10599  *	@boot_addr: offset in flash to write boot_data
10600  *	@size: image size
10601  *
10602  *	Write the supplied boot image to the card's serial flash.
10603  *	The boot image has the following sections: a 28-byte header and the
10604  *	boot image.
10605  */
10606 int t4_load_boot(struct adapter *adap, u8 *boot_data,
10607 		 unsigned int boot_addr, unsigned int size)
10608 {
10609 	pci_exp_rom_header_t *header;
10610 	int pcir_offset ;
10611 	pcir_data_t *pcir_header;
10612 	int ret, addr;
10613 	uint16_t device_id;
10614 	unsigned int i;
10615 	unsigned int boot_sector = (boot_addr * 1024 );
10616 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10617 
10618 	/*
10619 	 * Make sure the boot image does not encroach on the firmware region
10620 	 */
10621 	if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
10622 		CH_ERR(adap, "boot image encroaching on firmware region\n");
10623 		return -EFBIG;
10624 	}
10625 
10626 	/*
10627 	 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
10628 	 * and Boot configuration data sections. These 3 boot sections span
10629 	 * sectors 0 to 7 in flash and live right before the FW image location.
10630 	 */
10631 	i = DIV_ROUND_UP(size ? size : FLASH_FW_START,
10632 			sf_sec_size);
10633 	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
10634 				     (boot_sector >> 16) + i - 1);
10635 
10636 	/*
10637 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10638 	 * with the on-adapter option ROM file
10639 	 */
10640 	if (ret || (size == 0))
10641 		goto out;
10642 
10643 	/* Get boot header */
10644 	header = (pci_exp_rom_header_t *)boot_data;
10645 	pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
10646 	/* PCIR Data Structure */
10647 	pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
10648 
10649 	/*
10650 	 * Perform some primitive sanity testing to avoid accidentally
10651 	 * writing garbage over the boot sectors.  We ought to check for
10652 	 * more but it's not worth it for now ...
10653 	 */
10654 	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
10655 		CH_ERR(adap, "boot image too small/large\n");
10656 		return -EFBIG;
10657 	}
10658 
10659 #ifndef CHELSIO_T4_DIAGS
10660 	/*
10661 	 * Check BOOT ROM header signature
10662 	 */
10663 	if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
10664 		CH_ERR(adap, "Boot image missing signature\n");
10665 		return -EINVAL;
10666 	}
10667 
10668 	/*
10669 	 * Check PCI header signature
10670 	 */
10671 	if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
10672 		CH_ERR(adap, "PCI header missing signature\n");
10673 		return -EINVAL;
10674 	}
10675 
10676 	/*
10677 	 * Check Vendor ID matches Chelsio ID
10678 	 */
10679 	if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
10680 		CH_ERR(adap, "Vendor ID missing signature\n");
10681 		return -EINVAL;
10682 	}
10683 #endif
10684 
10685 	/*
10686 	 * Retrieve adapter's device ID
10687 	 */
10688 	t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
10689 	/* Want to deal with PF 0 so I strip off PF 4 indicator */
10690 	device_id = device_id & 0xf0ff;
10691 
10692 	/*
10693 	 * Check PCIE Device ID
10694 	 */
10695 	if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
10696 		/*
10697 		 * Change the device ID in the Boot BIOS image to match
10698 		 * the Device ID of the current adapter.
10699 		 */
10700 		modify_device_id(device_id, boot_data);
10701 	}
10702 
10703 	/*
10704 	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
10705 	 * we finish copying the rest of the boot image. This will ensure
10706 	 * that the BIOS boot header will only be written if the boot image
10707 	 * was written in full.
10708 	 */
10709 	addr = boot_sector;
10710 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
10711 		addr += SF_PAGE_SIZE;
10712 		boot_data += SF_PAGE_SIZE;
10713 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
10714 		if (ret)
10715 			goto out;
10716 	}
10717 
10718 	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
10719 			     (const u8 *)header, 0);
10720 
10721 out:
10722 	if (ret)
10723 		CH_ERR(adap, "boot image download failed, error %d\n", ret);
10724 	return ret;
10725 }
10726 
10727 /*
10728  *	t4_flash_bootcfg_addr - return the address of the flash optionrom configuration
10729  *	@adapter: the adapter
10730  *
10731  *	Return the address within the flash where the OptionROM Configuration
10732  *	is stored, or an error if the device FLASH is too small to contain
10733  *	a OptionROM Configuration.
10734  */
10735 static int t4_flash_bootcfg_addr(struct adapter *adapter)
10736 {
10737 	/*
10738 	 * If the device FLASH isn't large enough to hold a Firmware
10739 	 * Configuration File, return an error.
10740 	 */
10741 	if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
10742 		return -ENOSPC;
10743 
10744 	return FLASH_BOOTCFG_START;
10745 }
10746 
10747 int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size)
10748 {
10749 	int ret, i, n, cfg_addr;
10750 	unsigned int addr;
10751 	unsigned int flash_cfg_start_sec;
10752 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10753 
10754 	cfg_addr = t4_flash_bootcfg_addr(adap);
10755 	if (cfg_addr < 0)
10756 		return cfg_addr;
10757 
10758 	addr = cfg_addr;
10759 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10760 
10761 	if (size > FLASH_BOOTCFG_MAX_SIZE) {
10762 		CH_ERR(adap, "bootcfg file too large, max is %u bytes\n",
10763 			FLASH_BOOTCFG_MAX_SIZE);
10764 		return -EFBIG;
10765 	}
10766 
10767 	i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */
10768 			 sf_sec_size);
10769 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10770 					flash_cfg_start_sec + i - 1);
10771 
10772 	/*
10773 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10774 	 * with the on-adapter OptionROM Configuration File.
10775 	 */
10776 	if (ret || size == 0)
10777 		goto out;
10778 
10779 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10780 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
10781 		if ( (size - i) <  SF_PAGE_SIZE)
10782 			n = size - i;
10783 		else
10784 			n = SF_PAGE_SIZE;
10785 		ret = t4_write_flash(adap, addr, n, cfg_data, 0);
10786 		if (ret)
10787 			goto out;
10788 
10789 		addr += SF_PAGE_SIZE;
10790 		cfg_data += SF_PAGE_SIZE;
10791 	}
10792 
10793 out:
10794 	if (ret)
10795 		CH_ERR(adap, "boot config data %s failed %d\n",
10796 				(size == 0 ? "clear" : "download"), ret);
10797 	return ret;
10798 }
10799 
10800 /**
10801  *	t4_set_filter_mode - configure the optional components of filter tuples
10802  *	@adap: the adapter
10803  *	@mode_map: a bitmap selcting which optional filter components to enable
10804  * 	@sleep_ok: if true we may sleep while awaiting command completion
10805  *
10806  *	Sets the filter mode by selecting the optional components to enable
10807  *	in filter tuples.  Returns 0 on success and a negative error if the
10808  *	requested mode needs more bits than are available for optional
10809  *	components.
10810  */
10811 int t4_set_filter_mode(struct adapter *adap, unsigned int mode_map,
10812 		       bool sleep_ok)
10813 {
10814 	static u8 width[] = { 1, 3, 17, 17, 8, 8, 16, 9, 3, 1 };
10815 
10816 	int i, nbits = 0;
10817 
10818 	for (i = S_FCOE; i <= S_FRAGMENTATION; i++)
10819 		if (mode_map & (1 << i))
10820 			nbits += width[i];
10821 	if (nbits > FILTER_OPT_LEN)
10822 		return -EINVAL;
10823 	t4_tp_pio_write(adap, &mode_map, 1, A_TP_VLAN_PRI_MAP, sleep_ok);
10824 	read_filter_mode_and_ingress_config(adap, sleep_ok);
10825 
10826 	return 0;
10827 }
10828 
10829 /**
10830  *	t4_clr_port_stats - clear port statistics
10831  *	@adap: the adapter
10832  *	@idx: the port index
10833  *
10834  *	Clear HW statistics for the given port.
10835  */
10836 void t4_clr_port_stats(struct adapter *adap, int idx)
10837 {
10838 	unsigned int i;
10839 	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
10840 	u32 port_base_addr;
10841 
10842 	if (is_t4(adap))
10843 		port_base_addr = PORT_BASE(idx);
10844 	else
10845 		port_base_addr = T5_PORT_BASE(idx);
10846 
10847 	for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
10848 			i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
10849 		t4_write_reg(adap, port_base_addr + i, 0);
10850 	for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
10851 			i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
10852 		t4_write_reg(adap, port_base_addr + i, 0);
10853 	for (i = 0; i < 4; i++)
10854 		if (bgmap & (1 << i)) {
10855 			t4_write_reg(adap,
10856 			A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
10857 			t4_write_reg(adap,
10858 			A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
10859 		}
10860 }
10861 
10862 /**
10863  *	t4_i2c_io - read/write I2C data from adapter
10864  *	@adap: the adapter
10865  *	@port: Port number if per-port device; <0 if not
10866  *	@devid: per-port device ID or absolute device ID
10867  *	@offset: byte offset into device I2C space
10868  *	@len: byte length of I2C space data
10869  *	@buf: buffer in which to return I2C data for read
10870  *	      buffer which holds the I2C data for write
10871  *	@write: if true, do a write; else do a read
10872  *	Reads/Writes the I2C data from/to the indicated device and location.
10873  */
10874 int t4_i2c_io(struct adapter *adap, unsigned int mbox,
10875 	      int port, unsigned int devid,
10876 	      unsigned int offset, unsigned int len,
10877 	      u8 *buf, bool write)
10878 {
10879 	struct fw_ldst_cmd ldst_cmd, ldst_rpl;
10880 	unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data);
10881 	int ret = 0;
10882 
10883 	if (len > I2C_PAGE_SIZE)
10884 		return -EINVAL;
10885 
10886 	/* Dont allow reads that spans multiple pages */
10887 	if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE)
10888 		return -EINVAL;
10889 
10890 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10891 	ldst_cmd.op_to_addrspace =
10892 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
10893 			    F_FW_CMD_REQUEST |
10894 			    (write ? F_FW_CMD_WRITE : F_FW_CMD_READ) |
10895 			    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C));
10896 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
10897 	ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port);
10898 	ldst_cmd.u.i2c.did = devid;
10899 
10900 	while (len > 0) {
10901 		unsigned int i2c_len = (len < i2c_max) ? len : i2c_max;
10902 
10903 		ldst_cmd.u.i2c.boffset = offset;
10904 		ldst_cmd.u.i2c.blen = i2c_len;
10905 
10906 		if (write)
10907 			memcpy(ldst_cmd.u.i2c.data, buf, i2c_len);
10908 
10909 		ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd),
10910 				 write ? NULL : &ldst_rpl);
10911 		if (ret)
10912 			break;
10913 
10914 		if (!write)
10915 			memcpy(buf, ldst_rpl.u.i2c.data, i2c_len);
10916 		offset += i2c_len;
10917 		buf += i2c_len;
10918 		len -= i2c_len;
10919 	}
10920 
10921 	return ret;
10922 }
10923 
10924 int t4_i2c_rd(struct adapter *adap, unsigned int mbox,
10925 	      int port, unsigned int devid,
10926 	      unsigned int offset, unsigned int len,
10927 	      u8 *buf)
10928 {
10929 	return t4_i2c_io(adap, mbox, port, devid, offset, len, buf, false);
10930 }
10931 
10932 int t4_i2c_wr(struct adapter *adap, unsigned int mbox,
10933 	      int port, unsigned int devid,
10934 	      unsigned int offset, unsigned int len,
10935 	      u8 *buf)
10936 {
10937 	return t4_i2c_io(adap, mbox, port, devid, offset, len, buf, true);
10938 }
10939 
10940 /**
10941  * 	t4_sge_ctxt_rd - read an SGE context through FW
10942  * 	@adap: the adapter
10943  * 	@mbox: mailbox to use for the FW command
10944  * 	@cid: the context id
10945  * 	@ctype: the context type
10946  * 	@data: where to store the context data
10947  *
10948  * 	Issues a FW command through the given mailbox to read an SGE context.
10949  */
10950 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
10951 		   enum ctxt_type ctype, u32 *data)
10952 {
10953 	int ret;
10954 	struct fw_ldst_cmd c;
10955 
10956 	if (ctype == CTXT_EGRESS)
10957 		ret = FW_LDST_ADDRSPC_SGE_EGRC;
10958 	else if (ctype == CTXT_INGRESS)
10959 		ret = FW_LDST_ADDRSPC_SGE_INGC;
10960 	else if (ctype == CTXT_FLM)
10961 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
10962 	else
10963 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
10964 
10965 	memset(&c, 0, sizeof(c));
10966 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
10967 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
10968 					V_FW_LDST_CMD_ADDRSPACE(ret));
10969 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
10970 	c.u.idctxt.physid = cpu_to_be32(cid);
10971 
10972 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
10973 	if (ret == 0) {
10974 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
10975 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
10976 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
10977 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
10978 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
10979 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
10980 	}
10981 	return ret;
10982 }
10983 
10984 /**
10985  * 	t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
10986  * 	@adap: the adapter
10987  * 	@cid: the context id
10988  * 	@ctype: the context type
10989  * 	@data: where to store the context data
10990  *
10991  * 	Reads an SGE context directly, bypassing FW.  This is only for
10992  * 	debugging when FW is unavailable.
10993  */
10994 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
10995 		      u32 *data)
10996 {
10997 	int i, ret;
10998 
10999 	t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
11000 	ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
11001 	if (!ret)
11002 		for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
11003 			*data++ = t4_read_reg(adap, i);
11004 	return ret;
11005 }
11006 
11007 int t4_sched_config(struct adapter *adapter, int type, int minmaxen,
11008     int sleep_ok)
11009 {
11010 	struct fw_sched_cmd cmd;
11011 
11012 	memset(&cmd, 0, sizeof(cmd));
11013 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11014 				      F_FW_CMD_REQUEST |
11015 				      F_FW_CMD_WRITE);
11016 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11017 
11018 	cmd.u.config.sc = FW_SCHED_SC_CONFIG;
11019 	cmd.u.config.type = type;
11020 	cmd.u.config.minmaxen = minmaxen;
11021 
11022 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11023 			       NULL, sleep_ok);
11024 }
11025 
11026 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
11027 		    int rateunit, int ratemode, int channel, int cl,
11028 		    int minrate, int maxrate, int weight, int pktsize,
11029 		    int burstsize, int sleep_ok)
11030 {
11031 	struct fw_sched_cmd cmd;
11032 
11033 	memset(&cmd, 0, sizeof(cmd));
11034 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11035 				      F_FW_CMD_REQUEST |
11036 				      F_FW_CMD_WRITE);
11037 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11038 
11039 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
11040 	cmd.u.params.type = type;
11041 	cmd.u.params.level = level;
11042 	cmd.u.params.mode = mode;
11043 	cmd.u.params.ch = channel;
11044 	cmd.u.params.cl = cl;
11045 	cmd.u.params.unit = rateunit;
11046 	cmd.u.params.rate = ratemode;
11047 	cmd.u.params.min = cpu_to_be32(minrate);
11048 	cmd.u.params.max = cpu_to_be32(maxrate);
11049 	cmd.u.params.weight = cpu_to_be16(weight);
11050 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
11051 	cmd.u.params.burstsize = cpu_to_be16(burstsize);
11052 
11053 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11054 			       NULL, sleep_ok);
11055 }
11056 
11057 int t4_sched_params_ch_rl(struct adapter *adapter, int channel, int ratemode,
11058     unsigned int maxrate, int sleep_ok)
11059 {
11060 	struct fw_sched_cmd cmd;
11061 
11062 	memset(&cmd, 0, sizeof(cmd));
11063 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11064 				      F_FW_CMD_REQUEST |
11065 				      F_FW_CMD_WRITE);
11066 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11067 
11068 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
11069 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
11070 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CH_RL;
11071 	cmd.u.params.ch = channel;
11072 	cmd.u.params.rate = ratemode;		/* REL or ABS */
11073 	cmd.u.params.max = cpu_to_be32(maxrate);/*  %  or kbps */
11074 
11075 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11076 			       NULL, sleep_ok);
11077 }
11078 
11079 int t4_sched_params_cl_wrr(struct adapter *adapter, int channel, int cl,
11080     int weight, int sleep_ok)
11081 {
11082 	struct fw_sched_cmd cmd;
11083 
11084 	if (weight < 0 || weight > 100)
11085 		return -EINVAL;
11086 
11087 	memset(&cmd, 0, sizeof(cmd));
11088 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11089 				      F_FW_CMD_REQUEST |
11090 				      F_FW_CMD_WRITE);
11091 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11092 
11093 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
11094 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
11095 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_WRR;
11096 	cmd.u.params.ch = channel;
11097 	cmd.u.params.cl = cl;
11098 	cmd.u.params.weight = cpu_to_be16(weight);
11099 
11100 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11101 			       NULL, sleep_ok);
11102 }
11103 
11104 int t4_sched_params_cl_rl_kbps(struct adapter *adapter, int channel, int cl,
11105     int mode, unsigned int maxrate, int pktsize, int sleep_ok)
11106 {
11107 	struct fw_sched_cmd cmd;
11108 
11109 	memset(&cmd, 0, sizeof(cmd));
11110 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11111 				      F_FW_CMD_REQUEST |
11112 				      F_FW_CMD_WRITE);
11113 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11114 
11115 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
11116 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
11117 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_RL;
11118 	cmd.u.params.mode = mode;
11119 	cmd.u.params.ch = channel;
11120 	cmd.u.params.cl = cl;
11121 	cmd.u.params.unit = FW_SCHED_PARAMS_UNIT_BITRATE;
11122 	cmd.u.params.rate = FW_SCHED_PARAMS_RATE_ABS;
11123 	cmd.u.params.max = cpu_to_be32(maxrate);
11124 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
11125 
11126 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11127 			       NULL, sleep_ok);
11128 }
11129 
11130 /*
11131  *	t4_config_watchdog - configure (enable/disable) a watchdog timer
11132  *	@adapter: the adapter
11133  * 	@mbox: mailbox to use for the FW command
11134  * 	@pf: the PF owning the queue
11135  * 	@vf: the VF owning the queue
11136  *	@timeout: watchdog timeout in ms
11137  *	@action: watchdog timer / action
11138  *
11139  *	There are separate watchdog timers for each possible watchdog
11140  *	action.  Configure one of the watchdog timers by setting a non-zero
11141  *	timeout.  Disable a watchdog timer by using a timeout of zero.
11142  */
11143 int t4_config_watchdog(struct adapter *adapter, unsigned int mbox,
11144 		       unsigned int pf, unsigned int vf,
11145 		       unsigned int timeout, unsigned int action)
11146 {
11147 	struct fw_watchdog_cmd wdog;
11148 	unsigned int ticks;
11149 
11150 	/*
11151 	 * The watchdog command expects a timeout in units of 10ms so we need
11152 	 * to convert it here (via rounding) and force a minimum of one 10ms
11153 	 * "tick" if the timeout is non-zero but the conversion results in 0
11154 	 * ticks.
11155 	 */
11156 	ticks = (timeout + 5)/10;
11157 	if (timeout && !ticks)
11158 		ticks = 1;
11159 
11160 	memset(&wdog, 0, sizeof wdog);
11161 	wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) |
11162 				     F_FW_CMD_REQUEST |
11163 				     F_FW_CMD_WRITE |
11164 				     V_FW_PARAMS_CMD_PFN(pf) |
11165 				     V_FW_PARAMS_CMD_VFN(vf));
11166 	wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog));
11167 	wdog.timeout = cpu_to_be32(ticks);
11168 	wdog.action = cpu_to_be32(action);
11169 
11170 	return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL);
11171 }
11172 
11173 int t4_get_devlog_level(struct adapter *adapter, unsigned int *level)
11174 {
11175 	struct fw_devlog_cmd devlog_cmd;
11176 	int ret;
11177 
11178 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
11179 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
11180 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
11181 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
11182 	ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
11183 			 sizeof(devlog_cmd), &devlog_cmd);
11184 	if (ret)
11185 		return ret;
11186 
11187 	*level = devlog_cmd.level;
11188 	return 0;
11189 }
11190 
11191 int t4_set_devlog_level(struct adapter *adapter, unsigned int level)
11192 {
11193 	struct fw_devlog_cmd devlog_cmd;
11194 
11195 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
11196 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
11197 					     F_FW_CMD_REQUEST |
11198 					     F_FW_CMD_WRITE);
11199 	devlog_cmd.level = level;
11200 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
11201 	return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
11202 			  sizeof(devlog_cmd), &devlog_cmd);
11203 }
11204 
11205 int t4_configure_add_smac(struct adapter *adap)
11206 {
11207 	unsigned int param, val;
11208 	int ret = 0;
11209 
11210 	adap->params.smac_add_support = 0;
11211 	param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
11212 		  V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_ADD_SMAC));
11213 	/* Query FW to check if FW supports adding source mac address
11214 	 * to TCAM feature or not.
11215 	 * If FW returns 1, driver can use this feature and driver need to send
11216 	 * FW_PARAMS_PARAM_DEV_ADD_SMAC write command with value 1 to
11217 	 * enable adding smac to TCAM.
11218 	 */
11219 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
11220 	if (ret)
11221 		return ret;
11222 
11223 	if (val == 1) {
11224 		ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
11225 				    &param, &val);
11226 		if (!ret)
11227 			/* Firmware allows adding explicit TCAM entries.
11228 			 * Save this internally.
11229 			 */
11230 			adap->params.smac_add_support = 1;
11231 	}
11232 
11233 	return ret;
11234 }
11235 
11236 int t4_configure_ringbb(struct adapter *adap)
11237 {
11238 	unsigned int param, val;
11239 	int ret = 0;
11240 
11241 	param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
11242 		  V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RING_BACKBONE));
11243 	/* Query FW to check if FW supports ring switch feature or not.
11244 	 * If FW returns 1, driver can use this feature and driver need to send
11245 	 * FW_PARAMS_PARAM_DEV_RING_BACKBONE write command with value 1 to
11246 	 * enable the ring backbone configuration.
11247 	 */
11248 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
11249 	if (ret < 0) {
11250 		CH_ERR(adap, "Querying FW using Ring backbone params command failed, err=%d\n",
11251 			ret);
11252 		goto out;
11253 	}
11254 
11255 	if (val != 1) {
11256 		CH_ERR(adap, "FW doesnot support ringbackbone features\n");
11257 		goto out;
11258 	}
11259 
11260 	ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
11261 	if (ret < 0) {
11262 		CH_ERR(adap, "Could not set Ringbackbone, err= %d\n",
11263 			ret);
11264 		goto out;
11265 	}
11266 
11267 out:
11268 	return ret;
11269 }
11270 
11271 /*
11272  *	t4_set_vlan_acl - Set a VLAN id for the specified VF
11273  *	@adapter: the adapter
11274  *	@mbox: mailbox to use for the FW command
11275  *	@vf: one of the VFs instantiated by the specified PF
11276  *	@vlan: The vlanid to be set
11277  *
11278  */
11279 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf,
11280 		    u16 vlan)
11281 {
11282 	struct fw_acl_vlan_cmd vlan_cmd;
11283 	unsigned int enable;
11284 
11285 	enable = (vlan ? F_FW_ACL_VLAN_CMD_EN : 0);
11286 	memset(&vlan_cmd, 0, sizeof(vlan_cmd));
11287 	vlan_cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_ACL_VLAN_CMD) |
11288 					 F_FW_CMD_REQUEST |
11289 					 F_FW_CMD_WRITE |
11290 					 F_FW_CMD_EXEC |
11291 					 V_FW_ACL_VLAN_CMD_PFN(adap->pf) |
11292 					 V_FW_ACL_VLAN_CMD_VFN(vf));
11293 	vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd));
11294 	/* Drop all packets that donot match vlan id */
11295 	vlan_cmd.dropnovlan_fm = (enable
11296 				  ? (F_FW_ACL_VLAN_CMD_DROPNOVLAN |
11297 				     F_FW_ACL_VLAN_CMD_FM)
11298 				  : 0);
11299 	if (enable != 0) {
11300 		vlan_cmd.nvlan = 1;
11301 		vlan_cmd.vlanid[0] = cpu_to_be16(vlan);
11302 	}
11303 
11304 	return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL);
11305 }
11306 
11307 /**
11308  *	t4_del_mac - Removes the exact-match filter for a MAC address
11309  *	@adap: the adapter
11310  *	@mbox: mailbox to use for the FW command
11311  *	@viid: the VI id
11312  *	@addr: the MAC address value
11313  *	@smac: if true, delete from only the smac region of MPS
11314  *
11315  *	Modifies an exact-match filter and sets it to the new MAC address if
11316  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
11317  *	latter case the address is added persistently if @persist is %true.
11318  *
11319  *	Returns a negative error number or the index of the filter with the new
11320  *	MAC value.  Note that this index may differ from @idx.
11321  */
11322 int t4_del_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
11323 	       const u8 *addr, bool smac)
11324 {
11325 	int ret;
11326 	struct fw_vi_mac_cmd c;
11327 	struct fw_vi_mac_exact *p = c.u.exact;
11328 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
11329 
11330 	memset(&c, 0, sizeof(c));
11331 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
11332 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
11333 				   V_FW_VI_MAC_CMD_VIID(viid));
11334 	c.freemacs_to_len16 = cpu_to_be32(
11335 					V_FW_CMD_LEN16(1) |
11336 					(smac ? F_FW_VI_MAC_CMD_IS_SMAC : 0));
11337 
11338 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
11339 	p->valid_to_idx = cpu_to_be16(
11340 				F_FW_VI_MAC_CMD_VALID |
11341 				V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_MAC_BASED_FREE));
11342 
11343 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
11344 	if (ret == 0) {
11345 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
11346 		if (ret < max_mac_addr)
11347 			return -ENOMEM;
11348 	}
11349 
11350 	return ret;
11351 }
11352 
11353 /**
11354  *	t4_add_mac - Adds an exact-match filter for a MAC address
11355  *	@adap: the adapter
11356  *	@mbox: mailbox to use for the FW command
11357  *	@viid: the VI id
11358  *	@idx: index of existing filter for old value of MAC address, or -1
11359  *	@addr: the new MAC address value
11360  *	@persist: whether a new MAC allocation should be persistent
11361  *	@add_smt: if true also add the address to the HW SMT
11362  *	@smac: if true, update only the smac region of MPS
11363  *
11364  *	Modifies an exact-match filter and sets it to the new MAC address if
11365  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
11366  *	latter case the address is added persistently if @persist is %true.
11367  *
11368  *	Returns a negative error number or the index of the filter with the new
11369  *	MAC value.  Note that this index may differ from @idx.
11370  */
11371 int t4_add_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
11372 	       int idx, const u8 *addr, bool persist, u8 *smt_idx, bool smac)
11373 {
11374 	int ret, mode;
11375 	struct fw_vi_mac_cmd c;
11376 	struct fw_vi_mac_exact *p = c.u.exact;
11377 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
11378 
11379 	if (idx < 0)		/* new allocation */
11380 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
11381 	mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
11382 
11383 	memset(&c, 0, sizeof(c));
11384 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
11385 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
11386 				   V_FW_VI_MAC_CMD_VIID(viid));
11387 	c.freemacs_to_len16 = cpu_to_be32(
11388 				V_FW_CMD_LEN16(1) |
11389 				(smac ? F_FW_VI_MAC_CMD_IS_SMAC : 0));
11390 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
11391 				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
11392 				      V_FW_VI_MAC_CMD_IDX(idx));
11393 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
11394 
11395 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
11396 	if (ret == 0) {
11397 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
11398 		if (ret >= max_mac_addr)
11399 			return -ENOMEM;
11400 		if (smt_idx) {
11401 			/* Does fw supports returning smt_idx? */
11402 			if (adap->params.viid_smt_extn_support)
11403 				*smt_idx = G_FW_VI_MAC_CMD_SMTID(be32_to_cpu(c.op_to_viid));
11404 			else {
11405 				/* In T4/T5, SMT contains 256 SMAC entries
11406 				 * organized in 128 rows of 2 entries each.
11407 				 * In T6, SMT contains 256 SMAC entries in
11408 				 * 256 rows.
11409 				 */
11410 				if (chip_id(adap) <= CHELSIO_T5)
11411 					*smt_idx = ((viid & M_FW_VIID_VIN) << 1);
11412 				else
11413 					*smt_idx = (viid & M_FW_VIID_VIN);
11414 			}
11415 		}
11416 	}
11417 
11418 	return ret;
11419 }
11420