xref: /freebsd/sys/dev/cxgbe/common/t4_hw.c (revision 08c4a937a6685f05667996228898521fc453f8f3)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2012, 2016 Chelsio Communications, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_inet.h"
33 
34 #include <sys/param.h>
35 #include <sys/eventhandler.h>
36 
37 #include "common.h"
38 #include "t4_regs.h"
39 #include "t4_regs_values.h"
40 #include "firmware/t4fw_interface.h"
41 
42 #undef msleep
43 #define msleep(x) do { \
44 	if (cold) \
45 		DELAY((x) * 1000); \
46 	else \
47 		pause("t4hw", (x) * hz / 1000); \
48 } while (0)
49 
50 /**
51  *	t4_wait_op_done_val - wait until an operation is completed
52  *	@adapter: the adapter performing the operation
53  *	@reg: the register to check for completion
54  *	@mask: a single-bit field within @reg that indicates completion
55  *	@polarity: the value of the field when the operation is completed
56  *	@attempts: number of check iterations
57  *	@delay: delay in usecs between iterations
58  *	@valp: where to store the value of the register at completion time
59  *
60  *	Wait until an operation is completed by checking a bit in a register
61  *	up to @attempts times.  If @valp is not NULL the value of the register
62  *	at the time it indicated completion is stored there.  Returns 0 if the
63  *	operation completes and	-EAGAIN	otherwise.
64  */
65 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
66 			       int polarity, int attempts, int delay, u32 *valp)
67 {
68 	while (1) {
69 		u32 val = t4_read_reg(adapter, reg);
70 
71 		if (!!(val & mask) == polarity) {
72 			if (valp)
73 				*valp = val;
74 			return 0;
75 		}
76 		if (--attempts == 0)
77 			return -EAGAIN;
78 		if (delay)
79 			udelay(delay);
80 	}
81 }
82 
83 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
84 				  int polarity, int attempts, int delay)
85 {
86 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
87 				   delay, NULL);
88 }
89 
90 /**
91  *	t4_set_reg_field - set a register field to a value
92  *	@adapter: the adapter to program
93  *	@addr: the register address
94  *	@mask: specifies the portion of the register to modify
95  *	@val: the new value for the register field
96  *
97  *	Sets a register field specified by the supplied mask to the
98  *	given value.
99  */
100 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
101 		      u32 val)
102 {
103 	u32 v = t4_read_reg(adapter, addr) & ~mask;
104 
105 	t4_write_reg(adapter, addr, v | val);
106 	(void) t4_read_reg(adapter, addr);      /* flush */
107 }
108 
109 /**
110  *	t4_read_indirect - read indirectly addressed registers
111  *	@adap: the adapter
112  *	@addr_reg: register holding the indirect address
113  *	@data_reg: register holding the value of the indirect register
114  *	@vals: where the read register values are stored
115  *	@nregs: how many indirect registers to read
116  *	@start_idx: index of first indirect register to read
117  *
118  *	Reads registers that are accessed indirectly through an address/data
119  *	register pair.
120  */
121 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
122 			     unsigned int data_reg, u32 *vals,
123 			     unsigned int nregs, unsigned int start_idx)
124 {
125 	while (nregs--) {
126 		t4_write_reg(adap, addr_reg, start_idx);
127 		*vals++ = t4_read_reg(adap, data_reg);
128 		start_idx++;
129 	}
130 }
131 
132 /**
133  *	t4_write_indirect - write indirectly addressed registers
134  *	@adap: the adapter
135  *	@addr_reg: register holding the indirect addresses
136  *	@data_reg: register holding the value for the indirect registers
137  *	@vals: values to write
138  *	@nregs: how many indirect registers to write
139  *	@start_idx: address of first indirect register to write
140  *
141  *	Writes a sequential block of registers that are accessed indirectly
142  *	through an address/data register pair.
143  */
144 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
145 		       unsigned int data_reg, const u32 *vals,
146 		       unsigned int nregs, unsigned int start_idx)
147 {
148 	while (nregs--) {
149 		t4_write_reg(adap, addr_reg, start_idx++);
150 		t4_write_reg(adap, data_reg, *vals++);
151 	}
152 }
153 
154 /*
155  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
156  * mechanism.  This guarantees that we get the real value even if we're
157  * operating within a Virtual Machine and the Hypervisor is trapping our
158  * Configuration Space accesses.
159  *
160  * N.B. This routine should only be used as a last resort: the firmware uses
161  *      the backdoor registers on a regular basis and we can end up
162  *      conflicting with it's uses!
163  */
164 u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
165 {
166 	u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg);
167 	u32 val;
168 
169 	if (chip_id(adap) <= CHELSIO_T5)
170 		req |= F_ENABLE;
171 	else
172 		req |= F_T6_ENABLE;
173 
174 	if (is_t4(adap))
175 		req |= F_LOCALCFG;
176 
177 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req);
178 	val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
179 
180 	/*
181 	 * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
182 	 * Configuration Space read.  (None of the other fields matter when
183 	 * F_ENABLE is 0 so a simple register write is easier than a
184 	 * read-modify-write via t4_set_reg_field().)
185 	 */
186 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0);
187 
188 	return val;
189 }
190 
191 /*
192  * t4_report_fw_error - report firmware error
193  * @adap: the adapter
194  *
195  * The adapter firmware can indicate error conditions to the host.
196  * If the firmware has indicated an error, print out the reason for
197  * the firmware error.
198  */
199 static void t4_report_fw_error(struct adapter *adap)
200 {
201 	static const char *const reason[] = {
202 		"Crash",			/* PCIE_FW_EVAL_CRASH */
203 		"During Device Preparation",	/* PCIE_FW_EVAL_PREP */
204 		"During Device Configuration",	/* PCIE_FW_EVAL_CONF */
205 		"During Device Initialization",	/* PCIE_FW_EVAL_INIT */
206 		"Unexpected Event",		/* PCIE_FW_EVAL_UNEXPECTEDEVENT */
207 		"Insufficient Airflow",		/* PCIE_FW_EVAL_OVERHEAT */
208 		"Device Shutdown",		/* PCIE_FW_EVAL_DEVICESHUTDOWN */
209 		"Reserved",			/* reserved */
210 	};
211 	u32 pcie_fw;
212 
213 	pcie_fw = t4_read_reg(adap, A_PCIE_FW);
214 	if (pcie_fw & F_PCIE_FW_ERR)
215 		CH_ERR(adap, "Firmware reports adapter error: %s\n",
216 			reason[G_PCIE_FW_EVAL(pcie_fw)]);
217 }
218 
219 /*
220  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
221  */
222 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
223 			 u32 mbox_addr)
224 {
225 	for ( ; nflit; nflit--, mbox_addr += 8)
226 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
227 }
228 
229 /*
230  * Handle a FW assertion reported in a mailbox.
231  */
232 static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt)
233 {
234 	CH_ALERT(adap,
235 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
236 		  asrt->u.assert.filename_0_7,
237 		  be32_to_cpu(asrt->u.assert.line),
238 		  be32_to_cpu(asrt->u.assert.x),
239 		  be32_to_cpu(asrt->u.assert.y));
240 }
241 
242 struct port_tx_state {
243 	uint64_t rx_pause;
244 	uint64_t tx_frames;
245 };
246 
247 static void
248 read_tx_state_one(struct adapter *sc, int i, struct port_tx_state *tx_state)
249 {
250 	uint32_t rx_pause_reg, tx_frames_reg;
251 
252 	if (is_t4(sc)) {
253 		tx_frames_reg = PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
254 		rx_pause_reg = PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
255 	} else {
256 		tx_frames_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
257 		rx_pause_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
258 	}
259 
260 	tx_state->rx_pause = t4_read_reg64(sc, rx_pause_reg);
261 	tx_state->tx_frames = t4_read_reg64(sc, tx_frames_reg);
262 }
263 
264 static void
265 read_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
266 {
267 	int i;
268 
269 	for_each_port(sc, i)
270 		read_tx_state_one(sc, i, &tx_state[i]);
271 }
272 
273 static void
274 check_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
275 {
276 	uint32_t port_ctl_reg;
277 	uint64_t tx_frames, rx_pause;
278 	int i;
279 
280 	for_each_port(sc, i) {
281 		rx_pause = tx_state[i].rx_pause;
282 		tx_frames = tx_state[i].tx_frames;
283 		read_tx_state_one(sc, i, &tx_state[i]);	/* update */
284 
285 		if (is_t4(sc))
286 			port_ctl_reg = PORT_REG(i, A_MPS_PORT_CTL);
287 		else
288 			port_ctl_reg = T5_PORT_REG(i, A_MPS_PORT_CTL);
289 		if (t4_read_reg(sc, port_ctl_reg) & F_PORTTXEN &&
290 		    rx_pause != tx_state[i].rx_pause &&
291 		    tx_frames == tx_state[i].tx_frames) {
292 			t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, 0);
293 			mdelay(1);
294 			t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, F_PORTTXEN);
295 		}
296 	}
297 }
298 
299 #define X_CIM_PF_NOACCESS 0xeeeeeeee
300 /**
301  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
302  *	@adap: the adapter
303  *	@mbox: index of the mailbox to use
304  *	@cmd: the command to write
305  *	@size: command length in bytes
306  *	@rpl: where to optionally store the reply
307  *	@sleep_ok: if true we may sleep while awaiting command completion
308  *	@timeout: time to wait for command to finish before timing out
309  *		(negative implies @sleep_ok=false)
310  *
311  *	Sends the given command to FW through the selected mailbox and waits
312  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
313  *	store the FW's reply to the command.  The command and its optional
314  *	reply are of the same length.  Some FW commands like RESET and
315  *	INITIALIZE can take a considerable amount of time to execute.
316  *	@sleep_ok determines whether we may sleep while awaiting the response.
317  *	If sleeping is allowed we use progressive backoff otherwise we spin.
318  *	Note that passing in a negative @timeout is an alternate mechanism
319  *	for specifying @sleep_ok=false.  This is useful when a higher level
320  *	interface allows for specification of @timeout but not @sleep_ok ...
321  *
322  *	The return value is 0 on success or a negative errno on failure.  A
323  *	failure can happen either because we are not able to execute the
324  *	command or FW executes it but signals an error.  In the latter case
325  *	the return value is the error code indicated by FW (negated).
326  */
327 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
328 			    int size, void *rpl, bool sleep_ok, int timeout)
329 {
330 	/*
331 	 * We delay in small increments at first in an effort to maintain
332 	 * responsiveness for simple, fast executing commands but then back
333 	 * off to larger delays to a maximum retry delay.
334 	 */
335 	static const int delay[] = {
336 		1, 1, 3, 5, 10, 10, 20, 50, 100
337 	};
338 	u32 v;
339 	u64 res;
340 	int i, ms, delay_idx, ret, next_tx_check;
341 	const __be64 *p = cmd;
342 	u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
343 	u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
344 	u32 ctl;
345 	__be64 cmd_rpl[MBOX_LEN/8];
346 	u32 pcie_fw;
347 	struct port_tx_state tx_state[MAX_NPORTS];
348 
349 	if (adap->flags & CHK_MBOX_ACCESS)
350 		ASSERT_SYNCHRONIZED_OP(adap);
351 
352 	if ((size & 15) || size > MBOX_LEN)
353 		return -EINVAL;
354 
355 	if (adap->flags & IS_VF) {
356 		if (is_t6(adap))
357 			data_reg = FW_T6VF_MBDATA_BASE_ADDR;
358 		else
359 			data_reg = FW_T4VF_MBDATA_BASE_ADDR;
360 		ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL);
361 	}
362 
363 	/*
364 	 * If we have a negative timeout, that implies that we can't sleep.
365 	 */
366 	if (timeout < 0) {
367 		sleep_ok = false;
368 		timeout = -timeout;
369 	}
370 
371 	/*
372 	 * Attempt to gain access to the mailbox.
373 	 */
374 	for (i = 0; i < 4; i++) {
375 		ctl = t4_read_reg(adap, ctl_reg);
376 		v = G_MBOWNER(ctl);
377 		if (v != X_MBOWNER_NONE)
378 			break;
379 	}
380 
381 	/*
382 	 * If we were unable to gain access, dequeue ourselves from the
383 	 * mailbox atomic access list and report the error to our caller.
384 	 */
385 	if (v != X_MBOWNER_PL) {
386 		t4_report_fw_error(adap);
387 		ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
388 		return ret;
389 	}
390 
391 	/*
392 	 * If we gain ownership of the mailbox and there's a "valid" message
393 	 * in it, this is likely an asynchronous error message from the
394 	 * firmware.  So we'll report that and then proceed on with attempting
395 	 * to issue our own command ... which may well fail if the error
396 	 * presaged the firmware crashing ...
397 	 */
398 	if (ctl & F_MBMSGVALID) {
399 		CH_ERR(adap, "found VALID command in mbox %u: %016llx %016llx "
400 		       "%016llx %016llx %016llx %016llx %016llx %016llx\n",
401 		       mbox, (unsigned long long)t4_read_reg64(adap, data_reg),
402 		       (unsigned long long)t4_read_reg64(adap, data_reg + 8),
403 		       (unsigned long long)t4_read_reg64(adap, data_reg + 16),
404 		       (unsigned long long)t4_read_reg64(adap, data_reg + 24),
405 		       (unsigned long long)t4_read_reg64(adap, data_reg + 32),
406 		       (unsigned long long)t4_read_reg64(adap, data_reg + 40),
407 		       (unsigned long long)t4_read_reg64(adap, data_reg + 48),
408 		       (unsigned long long)t4_read_reg64(adap, data_reg + 56));
409 	}
410 
411 	/*
412 	 * Copy in the new mailbox command and send it on its way ...
413 	 */
414 	for (i = 0; i < size; i += 8, p++)
415 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p));
416 
417 	if (adap->flags & IS_VF) {
418 		/*
419 		 * For the VFs, the Mailbox Data "registers" are
420 		 * actually backed by T4's "MA" interface rather than
421 		 * PL Registers (as is the case for the PFs).  Because
422 		 * these are in different coherency domains, the write
423 		 * to the VF's PL-register-backed Mailbox Control can
424 		 * race in front of the writes to the MA-backed VF
425 		 * Mailbox Data "registers".  So we need to do a
426 		 * read-back on at least one byte of the VF Mailbox
427 		 * Data registers before doing the write to the VF
428 		 * Mailbox Control register.
429 		 */
430 		t4_read_reg(adap, data_reg);
431 	}
432 
433 	CH_DUMP_MBOX(adap, mbox, data_reg);
434 
435 	t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
436 	read_tx_state(adap, &tx_state[0]);	/* also flushes the write_reg */
437 	next_tx_check = 1000;
438 	delay_idx = 0;
439 	ms = delay[0];
440 
441 	/*
442 	 * Loop waiting for the reply; bail out if we time out or the firmware
443 	 * reports an error.
444 	 */
445 	pcie_fw = 0;
446 	for (i = 0; i < timeout; i += ms) {
447 		if (!(adap->flags & IS_VF)) {
448 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
449 			if (pcie_fw & F_PCIE_FW_ERR)
450 				break;
451 		}
452 
453 		if (i >= next_tx_check) {
454 			check_tx_state(adap, &tx_state[0]);
455 			next_tx_check = i + 1000;
456 		}
457 
458 		if (sleep_ok) {
459 			ms = delay[delay_idx];  /* last element may repeat */
460 			if (delay_idx < ARRAY_SIZE(delay) - 1)
461 				delay_idx++;
462 			msleep(ms);
463 		} else {
464 			mdelay(ms);
465 		}
466 
467 		v = t4_read_reg(adap, ctl_reg);
468 		if (v == X_CIM_PF_NOACCESS)
469 			continue;
470 		if (G_MBOWNER(v) == X_MBOWNER_PL) {
471 			if (!(v & F_MBMSGVALID)) {
472 				t4_write_reg(adap, ctl_reg,
473 					     V_MBOWNER(X_MBOWNER_NONE));
474 				continue;
475 			}
476 
477 			/*
478 			 * Retrieve the command reply and release the mailbox.
479 			 */
480 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg);
481 			t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
482 
483 			CH_DUMP_MBOX(adap, mbox, data_reg);
484 
485 			res = be64_to_cpu(cmd_rpl[0]);
486 			if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
487 				fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl);
488 				res = V_FW_CMD_RETVAL(EIO);
489 			} else if (rpl)
490 				memcpy(rpl, cmd_rpl, size);
491 			return -G_FW_CMD_RETVAL((int)res);
492 		}
493 	}
494 
495 	/*
496 	 * We timed out waiting for a reply to our mailbox command.  Report
497 	 * the error and also check to see if the firmware reported any
498 	 * errors ...
499 	 */
500 	ret = (pcie_fw & F_PCIE_FW_ERR) ? -ENXIO : -ETIMEDOUT;
501 	CH_ERR(adap, "command %#x in mailbox %d timed out\n",
502 	       *(const u8 *)cmd, mbox);
503 
504 	/* If DUMP_MBOX is set the mbox has already been dumped */
505 	if ((adap->debug_flags & DF_DUMP_MBOX) == 0) {
506 		p = cmd;
507 		CH_ERR(adap, "mbox: %016llx %016llx %016llx %016llx "
508 		    "%016llx %016llx %016llx %016llx\n",
509 		    (unsigned long long)be64_to_cpu(p[0]),
510 		    (unsigned long long)be64_to_cpu(p[1]),
511 		    (unsigned long long)be64_to_cpu(p[2]),
512 		    (unsigned long long)be64_to_cpu(p[3]),
513 		    (unsigned long long)be64_to_cpu(p[4]),
514 		    (unsigned long long)be64_to_cpu(p[5]),
515 		    (unsigned long long)be64_to_cpu(p[6]),
516 		    (unsigned long long)be64_to_cpu(p[7]));
517 	}
518 
519 	t4_report_fw_error(adap);
520 	t4_fatal_err(adap);
521 	return ret;
522 }
523 
524 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
525 		    void *rpl, bool sleep_ok)
526 {
527 		return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl,
528 					       sleep_ok, FW_CMD_MAX_TIMEOUT);
529 
530 }
531 
532 static int t4_edc_err_read(struct adapter *adap, int idx)
533 {
534 	u32 edc_ecc_err_addr_reg;
535 	u32 edc_bist_status_rdata_reg;
536 
537 	if (is_t4(adap)) {
538 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
539 		return 0;
540 	}
541 	if (idx != MEM_EDC0 && idx != MEM_EDC1) {
542 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
543 		return 0;
544 	}
545 
546 	edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx);
547 	edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx);
548 
549 	CH_WARN(adap,
550 		"edc%d err addr 0x%x: 0x%x.\n",
551 		idx, edc_ecc_err_addr_reg,
552 		t4_read_reg(adap, edc_ecc_err_addr_reg));
553 	CH_WARN(adap,
554 	 	"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
555 		edc_bist_status_rdata_reg,
556 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg),
557 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8),
558 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16),
559 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24),
560 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32),
561 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40),
562 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48),
563 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56),
564 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64));
565 
566 	return 0;
567 }
568 
569 /**
570  *	t4_mc_read - read from MC through backdoor accesses
571  *	@adap: the adapter
572  *	@idx: which MC to access
573  *	@addr: address of first byte requested
574  *	@data: 64 bytes of data containing the requested address
575  *	@ecc: where to store the corresponding 64-bit ECC word
576  *
577  *	Read 64 bytes of data from MC starting at a 64-byte-aligned address
578  *	that covers the requested address @addr.  If @parity is not %NULL it
579  *	is assigned the 64-bit ECC word for the read data.
580  */
581 int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
582 {
583 	int i;
584 	u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
585 	u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
586 
587 	if (is_t4(adap)) {
588 		mc_bist_cmd_reg = A_MC_BIST_CMD;
589 		mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
590 		mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
591 		mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
592 		mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
593 	} else {
594 		mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
595 		mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
596 		mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
597 		mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA,
598 						  idx);
599 		mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN,
600 						  idx);
601 	}
602 
603 	if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
604 		return -EBUSY;
605 	t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
606 	t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
607 	t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
608 	t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
609 		     F_START_BIST | V_BIST_CMD_GAP(1));
610 	i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
611 	if (i)
612 		return i;
613 
614 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
615 
616 	for (i = 15; i >= 0; i--)
617 		*data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
618 	if (ecc)
619 		*ecc = t4_read_reg64(adap, MC_DATA(16));
620 #undef MC_DATA
621 	return 0;
622 }
623 
624 /**
625  *	t4_edc_read - read from EDC through backdoor accesses
626  *	@adap: the adapter
627  *	@idx: which EDC to access
628  *	@addr: address of first byte requested
629  *	@data: 64 bytes of data containing the requested address
630  *	@ecc: where to store the corresponding 64-bit ECC word
631  *
632  *	Read 64 bytes of data from EDC starting at a 64-byte-aligned address
633  *	that covers the requested address @addr.  If @parity is not %NULL it
634  *	is assigned the 64-bit ECC word for the read data.
635  */
636 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
637 {
638 	int i;
639 	u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
640 	u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
641 
642 	if (is_t4(adap)) {
643 		edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
644 		edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
645 		edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
646 		edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
647 						    idx);
648 		edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
649 						    idx);
650 	} else {
651 /*
652  * These macro are missing in t4_regs.h file.
653  * Added temporarily for testing.
654  */
655 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
656 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
657 		edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx);
658 		edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx);
659 		edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx);
660 		edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN,
661 						    idx);
662 		edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA,
663 						    idx);
664 #undef EDC_REG_T5
665 #undef EDC_STRIDE_T5
666 	}
667 
668 	if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
669 		return -EBUSY;
670 	t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
671 	t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
672 	t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
673 	t4_write_reg(adap, edc_bist_cmd_reg,
674 		     V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
675 	i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
676 	if (i)
677 		return i;
678 
679 #define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
680 
681 	for (i = 15; i >= 0; i--)
682 		*data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
683 	if (ecc)
684 		*ecc = t4_read_reg64(adap, EDC_DATA(16));
685 #undef EDC_DATA
686 	return 0;
687 }
688 
689 /**
690  *	t4_mem_read - read EDC 0, EDC 1 or MC into buffer
691  *	@adap: the adapter
692  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
693  *	@addr: address within indicated memory type
694  *	@len: amount of memory to read
695  *	@buf: host memory buffer
696  *
697  *	Reads an [almost] arbitrary memory region in the firmware: the
698  *	firmware memory address, length and host buffer must be aligned on
699  *	32-bit boudaries.  The memory is returned as a raw byte sequence from
700  *	the firmware's memory.  If this memory contains data structures which
701  *	contain multi-byte integers, it's the callers responsibility to
702  *	perform appropriate byte order conversions.
703  */
704 int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
705 		__be32 *buf)
706 {
707 	u32 pos, start, end, offset;
708 	int ret;
709 
710 	/*
711 	 * Argument sanity checks ...
712 	 */
713 	if ((addr & 0x3) || (len & 0x3))
714 		return -EINVAL;
715 
716 	/*
717 	 * The underlaying EDC/MC read routines read 64 bytes at a time so we
718 	 * need to round down the start and round up the end.  We'll start
719 	 * copying out of the first line at (addr - start) a word at a time.
720 	 */
721 	start = rounddown2(addr, 64);
722 	end = roundup2(addr + len, 64);
723 	offset = (addr - start)/sizeof(__be32);
724 
725 	for (pos = start; pos < end; pos += 64, offset = 0) {
726 		__be32 data[16];
727 
728 		/*
729 		 * Read the chip's memory block and bail if there's an error.
730 		 */
731 		if ((mtype == MEM_MC) || (mtype == MEM_MC1))
732 			ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
733 		else
734 			ret = t4_edc_read(adap, mtype, pos, data, NULL);
735 		if (ret)
736 			return ret;
737 
738 		/*
739 		 * Copy the data into the caller's memory buffer.
740 		 */
741 		while (offset < 16 && len > 0) {
742 			*buf++ = data[offset++];
743 			len -= sizeof(__be32);
744 		}
745 	}
746 
747 	return 0;
748 }
749 
750 /*
751  * Return the specified PCI-E Configuration Space register from our Physical
752  * Function.  We try first via a Firmware LDST Command (if fw_attach != 0)
753  * since we prefer to let the firmware own all of these registers, but if that
754  * fails we go for it directly ourselves.
755  */
756 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach)
757 {
758 
759 	/*
760 	 * If fw_attach != 0, construct and send the Firmware LDST Command to
761 	 * retrieve the specified PCI-E Configuration Space register.
762 	 */
763 	if (drv_fw_attach != 0) {
764 		struct fw_ldst_cmd ldst_cmd;
765 		int ret;
766 
767 		memset(&ldst_cmd, 0, sizeof(ldst_cmd));
768 		ldst_cmd.op_to_addrspace =
769 			cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
770 				    F_FW_CMD_REQUEST |
771 				    F_FW_CMD_READ |
772 				    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
773 		ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
774 		ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1);
775 		ldst_cmd.u.pcie.ctrl_to_fn =
776 			(F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf));
777 		ldst_cmd.u.pcie.r = reg;
778 
779 		/*
780 		 * If the LDST Command succeeds, return the result, otherwise
781 		 * fall through to reading it directly ourselves ...
782 		 */
783 		ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
784 				 &ldst_cmd);
785 		if (ret == 0)
786 			return be32_to_cpu(ldst_cmd.u.pcie.data[0]);
787 
788 		CH_WARN(adap, "Firmware failed to return "
789 			"Configuration Space register %d, err = %d\n",
790 			reg, -ret);
791 	}
792 
793 	/*
794 	 * Read the desired Configuration Space register via the PCI-E
795 	 * Backdoor mechanism.
796 	 */
797 	return t4_hw_pci_read_cfg4(adap, reg);
798 }
799 
800 /**
801  *	t4_get_regs_len - return the size of the chips register set
802  *	@adapter: the adapter
803  *
804  *	Returns the size of the chip's BAR0 register space.
805  */
806 unsigned int t4_get_regs_len(struct adapter *adapter)
807 {
808 	unsigned int chip_version = chip_id(adapter);
809 
810 	switch (chip_version) {
811 	case CHELSIO_T4:
812 		if (adapter->flags & IS_VF)
813 			return FW_T4VF_REGMAP_SIZE;
814 		return T4_REGMAP_SIZE;
815 
816 	case CHELSIO_T5:
817 	case CHELSIO_T6:
818 		if (adapter->flags & IS_VF)
819 			return FW_T4VF_REGMAP_SIZE;
820 		return T5_REGMAP_SIZE;
821 	}
822 
823 	CH_ERR(adapter,
824 		"Unsupported chip version %d\n", chip_version);
825 	return 0;
826 }
827 
828 /**
829  *	t4_get_regs - read chip registers into provided buffer
830  *	@adap: the adapter
831  *	@buf: register buffer
832  *	@buf_size: size (in bytes) of register buffer
833  *
834  *	If the provided register buffer isn't large enough for the chip's
835  *	full register range, the register dump will be truncated to the
836  *	register buffer's size.
837  */
838 void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size)
839 {
840 	static const unsigned int t4_reg_ranges[] = {
841 		0x1008, 0x1108,
842 		0x1180, 0x1184,
843 		0x1190, 0x1194,
844 		0x11a0, 0x11a4,
845 		0x11b0, 0x11b4,
846 		0x11fc, 0x123c,
847 		0x1300, 0x173c,
848 		0x1800, 0x18fc,
849 		0x3000, 0x30d8,
850 		0x30e0, 0x30e4,
851 		0x30ec, 0x5910,
852 		0x5920, 0x5924,
853 		0x5960, 0x5960,
854 		0x5968, 0x5968,
855 		0x5970, 0x5970,
856 		0x5978, 0x5978,
857 		0x5980, 0x5980,
858 		0x5988, 0x5988,
859 		0x5990, 0x5990,
860 		0x5998, 0x5998,
861 		0x59a0, 0x59d4,
862 		0x5a00, 0x5ae0,
863 		0x5ae8, 0x5ae8,
864 		0x5af0, 0x5af0,
865 		0x5af8, 0x5af8,
866 		0x6000, 0x6098,
867 		0x6100, 0x6150,
868 		0x6200, 0x6208,
869 		0x6240, 0x6248,
870 		0x6280, 0x62b0,
871 		0x62c0, 0x6338,
872 		0x6370, 0x638c,
873 		0x6400, 0x643c,
874 		0x6500, 0x6524,
875 		0x6a00, 0x6a04,
876 		0x6a14, 0x6a38,
877 		0x6a60, 0x6a70,
878 		0x6a78, 0x6a78,
879 		0x6b00, 0x6b0c,
880 		0x6b1c, 0x6b84,
881 		0x6bf0, 0x6bf8,
882 		0x6c00, 0x6c0c,
883 		0x6c1c, 0x6c84,
884 		0x6cf0, 0x6cf8,
885 		0x6d00, 0x6d0c,
886 		0x6d1c, 0x6d84,
887 		0x6df0, 0x6df8,
888 		0x6e00, 0x6e0c,
889 		0x6e1c, 0x6e84,
890 		0x6ef0, 0x6ef8,
891 		0x6f00, 0x6f0c,
892 		0x6f1c, 0x6f84,
893 		0x6ff0, 0x6ff8,
894 		0x7000, 0x700c,
895 		0x701c, 0x7084,
896 		0x70f0, 0x70f8,
897 		0x7100, 0x710c,
898 		0x711c, 0x7184,
899 		0x71f0, 0x71f8,
900 		0x7200, 0x720c,
901 		0x721c, 0x7284,
902 		0x72f0, 0x72f8,
903 		0x7300, 0x730c,
904 		0x731c, 0x7384,
905 		0x73f0, 0x73f8,
906 		0x7400, 0x7450,
907 		0x7500, 0x7530,
908 		0x7600, 0x760c,
909 		0x7614, 0x761c,
910 		0x7680, 0x76cc,
911 		0x7700, 0x7798,
912 		0x77c0, 0x77fc,
913 		0x7900, 0x79fc,
914 		0x7b00, 0x7b58,
915 		0x7b60, 0x7b84,
916 		0x7b8c, 0x7c38,
917 		0x7d00, 0x7d38,
918 		0x7d40, 0x7d80,
919 		0x7d8c, 0x7ddc,
920 		0x7de4, 0x7e04,
921 		0x7e10, 0x7e1c,
922 		0x7e24, 0x7e38,
923 		0x7e40, 0x7e44,
924 		0x7e4c, 0x7e78,
925 		0x7e80, 0x7ea4,
926 		0x7eac, 0x7edc,
927 		0x7ee8, 0x7efc,
928 		0x8dc0, 0x8e04,
929 		0x8e10, 0x8e1c,
930 		0x8e30, 0x8e78,
931 		0x8ea0, 0x8eb8,
932 		0x8ec0, 0x8f6c,
933 		0x8fc0, 0x9008,
934 		0x9010, 0x9058,
935 		0x9060, 0x9060,
936 		0x9068, 0x9074,
937 		0x90fc, 0x90fc,
938 		0x9400, 0x9408,
939 		0x9410, 0x9458,
940 		0x9600, 0x9600,
941 		0x9608, 0x9638,
942 		0x9640, 0x96bc,
943 		0x9800, 0x9808,
944 		0x9820, 0x983c,
945 		0x9850, 0x9864,
946 		0x9c00, 0x9c6c,
947 		0x9c80, 0x9cec,
948 		0x9d00, 0x9d6c,
949 		0x9d80, 0x9dec,
950 		0x9e00, 0x9e6c,
951 		0x9e80, 0x9eec,
952 		0x9f00, 0x9f6c,
953 		0x9f80, 0x9fec,
954 		0xd004, 0xd004,
955 		0xd010, 0xd03c,
956 		0xdfc0, 0xdfe0,
957 		0xe000, 0xea7c,
958 		0xf000, 0x11110,
959 		0x11118, 0x11190,
960 		0x19040, 0x1906c,
961 		0x19078, 0x19080,
962 		0x1908c, 0x190e4,
963 		0x190f0, 0x190f8,
964 		0x19100, 0x19110,
965 		0x19120, 0x19124,
966 		0x19150, 0x19194,
967 		0x1919c, 0x191b0,
968 		0x191d0, 0x191e8,
969 		0x19238, 0x1924c,
970 		0x193f8, 0x1943c,
971 		0x1944c, 0x19474,
972 		0x19490, 0x194e0,
973 		0x194f0, 0x194f8,
974 		0x19800, 0x19c08,
975 		0x19c10, 0x19c90,
976 		0x19ca0, 0x19ce4,
977 		0x19cf0, 0x19d40,
978 		0x19d50, 0x19d94,
979 		0x19da0, 0x19de8,
980 		0x19df0, 0x19e40,
981 		0x19e50, 0x19e90,
982 		0x19ea0, 0x19f4c,
983 		0x1a000, 0x1a004,
984 		0x1a010, 0x1a06c,
985 		0x1a0b0, 0x1a0e4,
986 		0x1a0ec, 0x1a0f4,
987 		0x1a100, 0x1a108,
988 		0x1a114, 0x1a120,
989 		0x1a128, 0x1a130,
990 		0x1a138, 0x1a138,
991 		0x1a190, 0x1a1c4,
992 		0x1a1fc, 0x1a1fc,
993 		0x1e040, 0x1e04c,
994 		0x1e284, 0x1e28c,
995 		0x1e2c0, 0x1e2c0,
996 		0x1e2e0, 0x1e2e0,
997 		0x1e300, 0x1e384,
998 		0x1e3c0, 0x1e3c8,
999 		0x1e440, 0x1e44c,
1000 		0x1e684, 0x1e68c,
1001 		0x1e6c0, 0x1e6c0,
1002 		0x1e6e0, 0x1e6e0,
1003 		0x1e700, 0x1e784,
1004 		0x1e7c0, 0x1e7c8,
1005 		0x1e840, 0x1e84c,
1006 		0x1ea84, 0x1ea8c,
1007 		0x1eac0, 0x1eac0,
1008 		0x1eae0, 0x1eae0,
1009 		0x1eb00, 0x1eb84,
1010 		0x1ebc0, 0x1ebc8,
1011 		0x1ec40, 0x1ec4c,
1012 		0x1ee84, 0x1ee8c,
1013 		0x1eec0, 0x1eec0,
1014 		0x1eee0, 0x1eee0,
1015 		0x1ef00, 0x1ef84,
1016 		0x1efc0, 0x1efc8,
1017 		0x1f040, 0x1f04c,
1018 		0x1f284, 0x1f28c,
1019 		0x1f2c0, 0x1f2c0,
1020 		0x1f2e0, 0x1f2e0,
1021 		0x1f300, 0x1f384,
1022 		0x1f3c0, 0x1f3c8,
1023 		0x1f440, 0x1f44c,
1024 		0x1f684, 0x1f68c,
1025 		0x1f6c0, 0x1f6c0,
1026 		0x1f6e0, 0x1f6e0,
1027 		0x1f700, 0x1f784,
1028 		0x1f7c0, 0x1f7c8,
1029 		0x1f840, 0x1f84c,
1030 		0x1fa84, 0x1fa8c,
1031 		0x1fac0, 0x1fac0,
1032 		0x1fae0, 0x1fae0,
1033 		0x1fb00, 0x1fb84,
1034 		0x1fbc0, 0x1fbc8,
1035 		0x1fc40, 0x1fc4c,
1036 		0x1fe84, 0x1fe8c,
1037 		0x1fec0, 0x1fec0,
1038 		0x1fee0, 0x1fee0,
1039 		0x1ff00, 0x1ff84,
1040 		0x1ffc0, 0x1ffc8,
1041 		0x20000, 0x2002c,
1042 		0x20100, 0x2013c,
1043 		0x20190, 0x201a0,
1044 		0x201a8, 0x201b8,
1045 		0x201c4, 0x201c8,
1046 		0x20200, 0x20318,
1047 		0x20400, 0x204b4,
1048 		0x204c0, 0x20528,
1049 		0x20540, 0x20614,
1050 		0x21000, 0x21040,
1051 		0x2104c, 0x21060,
1052 		0x210c0, 0x210ec,
1053 		0x21200, 0x21268,
1054 		0x21270, 0x21284,
1055 		0x212fc, 0x21388,
1056 		0x21400, 0x21404,
1057 		0x21500, 0x21500,
1058 		0x21510, 0x21518,
1059 		0x2152c, 0x21530,
1060 		0x2153c, 0x2153c,
1061 		0x21550, 0x21554,
1062 		0x21600, 0x21600,
1063 		0x21608, 0x2161c,
1064 		0x21624, 0x21628,
1065 		0x21630, 0x21634,
1066 		0x2163c, 0x2163c,
1067 		0x21700, 0x2171c,
1068 		0x21780, 0x2178c,
1069 		0x21800, 0x21818,
1070 		0x21820, 0x21828,
1071 		0x21830, 0x21848,
1072 		0x21850, 0x21854,
1073 		0x21860, 0x21868,
1074 		0x21870, 0x21870,
1075 		0x21878, 0x21898,
1076 		0x218a0, 0x218a8,
1077 		0x218b0, 0x218c8,
1078 		0x218d0, 0x218d4,
1079 		0x218e0, 0x218e8,
1080 		0x218f0, 0x218f0,
1081 		0x218f8, 0x21a18,
1082 		0x21a20, 0x21a28,
1083 		0x21a30, 0x21a48,
1084 		0x21a50, 0x21a54,
1085 		0x21a60, 0x21a68,
1086 		0x21a70, 0x21a70,
1087 		0x21a78, 0x21a98,
1088 		0x21aa0, 0x21aa8,
1089 		0x21ab0, 0x21ac8,
1090 		0x21ad0, 0x21ad4,
1091 		0x21ae0, 0x21ae8,
1092 		0x21af0, 0x21af0,
1093 		0x21af8, 0x21c18,
1094 		0x21c20, 0x21c20,
1095 		0x21c28, 0x21c30,
1096 		0x21c38, 0x21c38,
1097 		0x21c80, 0x21c98,
1098 		0x21ca0, 0x21ca8,
1099 		0x21cb0, 0x21cc8,
1100 		0x21cd0, 0x21cd4,
1101 		0x21ce0, 0x21ce8,
1102 		0x21cf0, 0x21cf0,
1103 		0x21cf8, 0x21d7c,
1104 		0x21e00, 0x21e04,
1105 		0x22000, 0x2202c,
1106 		0x22100, 0x2213c,
1107 		0x22190, 0x221a0,
1108 		0x221a8, 0x221b8,
1109 		0x221c4, 0x221c8,
1110 		0x22200, 0x22318,
1111 		0x22400, 0x224b4,
1112 		0x224c0, 0x22528,
1113 		0x22540, 0x22614,
1114 		0x23000, 0x23040,
1115 		0x2304c, 0x23060,
1116 		0x230c0, 0x230ec,
1117 		0x23200, 0x23268,
1118 		0x23270, 0x23284,
1119 		0x232fc, 0x23388,
1120 		0x23400, 0x23404,
1121 		0x23500, 0x23500,
1122 		0x23510, 0x23518,
1123 		0x2352c, 0x23530,
1124 		0x2353c, 0x2353c,
1125 		0x23550, 0x23554,
1126 		0x23600, 0x23600,
1127 		0x23608, 0x2361c,
1128 		0x23624, 0x23628,
1129 		0x23630, 0x23634,
1130 		0x2363c, 0x2363c,
1131 		0x23700, 0x2371c,
1132 		0x23780, 0x2378c,
1133 		0x23800, 0x23818,
1134 		0x23820, 0x23828,
1135 		0x23830, 0x23848,
1136 		0x23850, 0x23854,
1137 		0x23860, 0x23868,
1138 		0x23870, 0x23870,
1139 		0x23878, 0x23898,
1140 		0x238a0, 0x238a8,
1141 		0x238b0, 0x238c8,
1142 		0x238d0, 0x238d4,
1143 		0x238e0, 0x238e8,
1144 		0x238f0, 0x238f0,
1145 		0x238f8, 0x23a18,
1146 		0x23a20, 0x23a28,
1147 		0x23a30, 0x23a48,
1148 		0x23a50, 0x23a54,
1149 		0x23a60, 0x23a68,
1150 		0x23a70, 0x23a70,
1151 		0x23a78, 0x23a98,
1152 		0x23aa0, 0x23aa8,
1153 		0x23ab0, 0x23ac8,
1154 		0x23ad0, 0x23ad4,
1155 		0x23ae0, 0x23ae8,
1156 		0x23af0, 0x23af0,
1157 		0x23af8, 0x23c18,
1158 		0x23c20, 0x23c20,
1159 		0x23c28, 0x23c30,
1160 		0x23c38, 0x23c38,
1161 		0x23c80, 0x23c98,
1162 		0x23ca0, 0x23ca8,
1163 		0x23cb0, 0x23cc8,
1164 		0x23cd0, 0x23cd4,
1165 		0x23ce0, 0x23ce8,
1166 		0x23cf0, 0x23cf0,
1167 		0x23cf8, 0x23d7c,
1168 		0x23e00, 0x23e04,
1169 		0x24000, 0x2402c,
1170 		0x24100, 0x2413c,
1171 		0x24190, 0x241a0,
1172 		0x241a8, 0x241b8,
1173 		0x241c4, 0x241c8,
1174 		0x24200, 0x24318,
1175 		0x24400, 0x244b4,
1176 		0x244c0, 0x24528,
1177 		0x24540, 0x24614,
1178 		0x25000, 0x25040,
1179 		0x2504c, 0x25060,
1180 		0x250c0, 0x250ec,
1181 		0x25200, 0x25268,
1182 		0x25270, 0x25284,
1183 		0x252fc, 0x25388,
1184 		0x25400, 0x25404,
1185 		0x25500, 0x25500,
1186 		0x25510, 0x25518,
1187 		0x2552c, 0x25530,
1188 		0x2553c, 0x2553c,
1189 		0x25550, 0x25554,
1190 		0x25600, 0x25600,
1191 		0x25608, 0x2561c,
1192 		0x25624, 0x25628,
1193 		0x25630, 0x25634,
1194 		0x2563c, 0x2563c,
1195 		0x25700, 0x2571c,
1196 		0x25780, 0x2578c,
1197 		0x25800, 0x25818,
1198 		0x25820, 0x25828,
1199 		0x25830, 0x25848,
1200 		0x25850, 0x25854,
1201 		0x25860, 0x25868,
1202 		0x25870, 0x25870,
1203 		0x25878, 0x25898,
1204 		0x258a0, 0x258a8,
1205 		0x258b0, 0x258c8,
1206 		0x258d0, 0x258d4,
1207 		0x258e0, 0x258e8,
1208 		0x258f0, 0x258f0,
1209 		0x258f8, 0x25a18,
1210 		0x25a20, 0x25a28,
1211 		0x25a30, 0x25a48,
1212 		0x25a50, 0x25a54,
1213 		0x25a60, 0x25a68,
1214 		0x25a70, 0x25a70,
1215 		0x25a78, 0x25a98,
1216 		0x25aa0, 0x25aa8,
1217 		0x25ab0, 0x25ac8,
1218 		0x25ad0, 0x25ad4,
1219 		0x25ae0, 0x25ae8,
1220 		0x25af0, 0x25af0,
1221 		0x25af8, 0x25c18,
1222 		0x25c20, 0x25c20,
1223 		0x25c28, 0x25c30,
1224 		0x25c38, 0x25c38,
1225 		0x25c80, 0x25c98,
1226 		0x25ca0, 0x25ca8,
1227 		0x25cb0, 0x25cc8,
1228 		0x25cd0, 0x25cd4,
1229 		0x25ce0, 0x25ce8,
1230 		0x25cf0, 0x25cf0,
1231 		0x25cf8, 0x25d7c,
1232 		0x25e00, 0x25e04,
1233 		0x26000, 0x2602c,
1234 		0x26100, 0x2613c,
1235 		0x26190, 0x261a0,
1236 		0x261a8, 0x261b8,
1237 		0x261c4, 0x261c8,
1238 		0x26200, 0x26318,
1239 		0x26400, 0x264b4,
1240 		0x264c0, 0x26528,
1241 		0x26540, 0x26614,
1242 		0x27000, 0x27040,
1243 		0x2704c, 0x27060,
1244 		0x270c0, 0x270ec,
1245 		0x27200, 0x27268,
1246 		0x27270, 0x27284,
1247 		0x272fc, 0x27388,
1248 		0x27400, 0x27404,
1249 		0x27500, 0x27500,
1250 		0x27510, 0x27518,
1251 		0x2752c, 0x27530,
1252 		0x2753c, 0x2753c,
1253 		0x27550, 0x27554,
1254 		0x27600, 0x27600,
1255 		0x27608, 0x2761c,
1256 		0x27624, 0x27628,
1257 		0x27630, 0x27634,
1258 		0x2763c, 0x2763c,
1259 		0x27700, 0x2771c,
1260 		0x27780, 0x2778c,
1261 		0x27800, 0x27818,
1262 		0x27820, 0x27828,
1263 		0x27830, 0x27848,
1264 		0x27850, 0x27854,
1265 		0x27860, 0x27868,
1266 		0x27870, 0x27870,
1267 		0x27878, 0x27898,
1268 		0x278a0, 0x278a8,
1269 		0x278b0, 0x278c8,
1270 		0x278d0, 0x278d4,
1271 		0x278e0, 0x278e8,
1272 		0x278f0, 0x278f0,
1273 		0x278f8, 0x27a18,
1274 		0x27a20, 0x27a28,
1275 		0x27a30, 0x27a48,
1276 		0x27a50, 0x27a54,
1277 		0x27a60, 0x27a68,
1278 		0x27a70, 0x27a70,
1279 		0x27a78, 0x27a98,
1280 		0x27aa0, 0x27aa8,
1281 		0x27ab0, 0x27ac8,
1282 		0x27ad0, 0x27ad4,
1283 		0x27ae0, 0x27ae8,
1284 		0x27af0, 0x27af0,
1285 		0x27af8, 0x27c18,
1286 		0x27c20, 0x27c20,
1287 		0x27c28, 0x27c30,
1288 		0x27c38, 0x27c38,
1289 		0x27c80, 0x27c98,
1290 		0x27ca0, 0x27ca8,
1291 		0x27cb0, 0x27cc8,
1292 		0x27cd0, 0x27cd4,
1293 		0x27ce0, 0x27ce8,
1294 		0x27cf0, 0x27cf0,
1295 		0x27cf8, 0x27d7c,
1296 		0x27e00, 0x27e04,
1297 	};
1298 
1299 	static const unsigned int t4vf_reg_ranges[] = {
1300 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
1301 		VF_MPS_REG(A_MPS_VF_CTL),
1302 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
1303 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI),
1304 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
1305 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
1306 		FW_T4VF_MBDATA_BASE_ADDR,
1307 		FW_T4VF_MBDATA_BASE_ADDR +
1308 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
1309 	};
1310 
1311 	static const unsigned int t5_reg_ranges[] = {
1312 		0x1008, 0x10c0,
1313 		0x10cc, 0x10f8,
1314 		0x1100, 0x1100,
1315 		0x110c, 0x1148,
1316 		0x1180, 0x1184,
1317 		0x1190, 0x1194,
1318 		0x11a0, 0x11a4,
1319 		0x11b0, 0x11b4,
1320 		0x11fc, 0x123c,
1321 		0x1280, 0x173c,
1322 		0x1800, 0x18fc,
1323 		0x3000, 0x3028,
1324 		0x3060, 0x30b0,
1325 		0x30b8, 0x30d8,
1326 		0x30e0, 0x30fc,
1327 		0x3140, 0x357c,
1328 		0x35a8, 0x35cc,
1329 		0x35ec, 0x35ec,
1330 		0x3600, 0x5624,
1331 		0x56cc, 0x56ec,
1332 		0x56f4, 0x5720,
1333 		0x5728, 0x575c,
1334 		0x580c, 0x5814,
1335 		0x5890, 0x589c,
1336 		0x58a4, 0x58ac,
1337 		0x58b8, 0x58bc,
1338 		0x5940, 0x59c8,
1339 		0x59d0, 0x59dc,
1340 		0x59fc, 0x5a18,
1341 		0x5a60, 0x5a70,
1342 		0x5a80, 0x5a9c,
1343 		0x5b94, 0x5bfc,
1344 		0x6000, 0x6020,
1345 		0x6028, 0x6040,
1346 		0x6058, 0x609c,
1347 		0x60a8, 0x614c,
1348 		0x7700, 0x7798,
1349 		0x77c0, 0x78fc,
1350 		0x7b00, 0x7b58,
1351 		0x7b60, 0x7b84,
1352 		0x7b8c, 0x7c54,
1353 		0x7d00, 0x7d38,
1354 		0x7d40, 0x7d80,
1355 		0x7d8c, 0x7ddc,
1356 		0x7de4, 0x7e04,
1357 		0x7e10, 0x7e1c,
1358 		0x7e24, 0x7e38,
1359 		0x7e40, 0x7e44,
1360 		0x7e4c, 0x7e78,
1361 		0x7e80, 0x7edc,
1362 		0x7ee8, 0x7efc,
1363 		0x8dc0, 0x8de0,
1364 		0x8df8, 0x8e04,
1365 		0x8e10, 0x8e84,
1366 		0x8ea0, 0x8f84,
1367 		0x8fc0, 0x9058,
1368 		0x9060, 0x9060,
1369 		0x9068, 0x90f8,
1370 		0x9400, 0x9408,
1371 		0x9410, 0x9470,
1372 		0x9600, 0x9600,
1373 		0x9608, 0x9638,
1374 		0x9640, 0x96f4,
1375 		0x9800, 0x9808,
1376 		0x9820, 0x983c,
1377 		0x9850, 0x9864,
1378 		0x9c00, 0x9c6c,
1379 		0x9c80, 0x9cec,
1380 		0x9d00, 0x9d6c,
1381 		0x9d80, 0x9dec,
1382 		0x9e00, 0x9e6c,
1383 		0x9e80, 0x9eec,
1384 		0x9f00, 0x9f6c,
1385 		0x9f80, 0xa020,
1386 		0xd004, 0xd004,
1387 		0xd010, 0xd03c,
1388 		0xdfc0, 0xdfe0,
1389 		0xe000, 0x1106c,
1390 		0x11074, 0x11088,
1391 		0x1109c, 0x1117c,
1392 		0x11190, 0x11204,
1393 		0x19040, 0x1906c,
1394 		0x19078, 0x19080,
1395 		0x1908c, 0x190e8,
1396 		0x190f0, 0x190f8,
1397 		0x19100, 0x19110,
1398 		0x19120, 0x19124,
1399 		0x19150, 0x19194,
1400 		0x1919c, 0x191b0,
1401 		0x191d0, 0x191e8,
1402 		0x19238, 0x19290,
1403 		0x193f8, 0x19428,
1404 		0x19430, 0x19444,
1405 		0x1944c, 0x1946c,
1406 		0x19474, 0x19474,
1407 		0x19490, 0x194cc,
1408 		0x194f0, 0x194f8,
1409 		0x19c00, 0x19c08,
1410 		0x19c10, 0x19c60,
1411 		0x19c94, 0x19ce4,
1412 		0x19cf0, 0x19d40,
1413 		0x19d50, 0x19d94,
1414 		0x19da0, 0x19de8,
1415 		0x19df0, 0x19e10,
1416 		0x19e50, 0x19e90,
1417 		0x19ea0, 0x19f24,
1418 		0x19f34, 0x19f34,
1419 		0x19f40, 0x19f50,
1420 		0x19f90, 0x19fb4,
1421 		0x19fc4, 0x19fe4,
1422 		0x1a000, 0x1a004,
1423 		0x1a010, 0x1a06c,
1424 		0x1a0b0, 0x1a0e4,
1425 		0x1a0ec, 0x1a0f8,
1426 		0x1a100, 0x1a108,
1427 		0x1a114, 0x1a120,
1428 		0x1a128, 0x1a130,
1429 		0x1a138, 0x1a138,
1430 		0x1a190, 0x1a1c4,
1431 		0x1a1fc, 0x1a1fc,
1432 		0x1e008, 0x1e00c,
1433 		0x1e040, 0x1e044,
1434 		0x1e04c, 0x1e04c,
1435 		0x1e284, 0x1e290,
1436 		0x1e2c0, 0x1e2c0,
1437 		0x1e2e0, 0x1e2e0,
1438 		0x1e300, 0x1e384,
1439 		0x1e3c0, 0x1e3c8,
1440 		0x1e408, 0x1e40c,
1441 		0x1e440, 0x1e444,
1442 		0x1e44c, 0x1e44c,
1443 		0x1e684, 0x1e690,
1444 		0x1e6c0, 0x1e6c0,
1445 		0x1e6e0, 0x1e6e0,
1446 		0x1e700, 0x1e784,
1447 		0x1e7c0, 0x1e7c8,
1448 		0x1e808, 0x1e80c,
1449 		0x1e840, 0x1e844,
1450 		0x1e84c, 0x1e84c,
1451 		0x1ea84, 0x1ea90,
1452 		0x1eac0, 0x1eac0,
1453 		0x1eae0, 0x1eae0,
1454 		0x1eb00, 0x1eb84,
1455 		0x1ebc0, 0x1ebc8,
1456 		0x1ec08, 0x1ec0c,
1457 		0x1ec40, 0x1ec44,
1458 		0x1ec4c, 0x1ec4c,
1459 		0x1ee84, 0x1ee90,
1460 		0x1eec0, 0x1eec0,
1461 		0x1eee0, 0x1eee0,
1462 		0x1ef00, 0x1ef84,
1463 		0x1efc0, 0x1efc8,
1464 		0x1f008, 0x1f00c,
1465 		0x1f040, 0x1f044,
1466 		0x1f04c, 0x1f04c,
1467 		0x1f284, 0x1f290,
1468 		0x1f2c0, 0x1f2c0,
1469 		0x1f2e0, 0x1f2e0,
1470 		0x1f300, 0x1f384,
1471 		0x1f3c0, 0x1f3c8,
1472 		0x1f408, 0x1f40c,
1473 		0x1f440, 0x1f444,
1474 		0x1f44c, 0x1f44c,
1475 		0x1f684, 0x1f690,
1476 		0x1f6c0, 0x1f6c0,
1477 		0x1f6e0, 0x1f6e0,
1478 		0x1f700, 0x1f784,
1479 		0x1f7c0, 0x1f7c8,
1480 		0x1f808, 0x1f80c,
1481 		0x1f840, 0x1f844,
1482 		0x1f84c, 0x1f84c,
1483 		0x1fa84, 0x1fa90,
1484 		0x1fac0, 0x1fac0,
1485 		0x1fae0, 0x1fae0,
1486 		0x1fb00, 0x1fb84,
1487 		0x1fbc0, 0x1fbc8,
1488 		0x1fc08, 0x1fc0c,
1489 		0x1fc40, 0x1fc44,
1490 		0x1fc4c, 0x1fc4c,
1491 		0x1fe84, 0x1fe90,
1492 		0x1fec0, 0x1fec0,
1493 		0x1fee0, 0x1fee0,
1494 		0x1ff00, 0x1ff84,
1495 		0x1ffc0, 0x1ffc8,
1496 		0x30000, 0x30030,
1497 		0x30100, 0x30144,
1498 		0x30190, 0x301a0,
1499 		0x301a8, 0x301b8,
1500 		0x301c4, 0x301c8,
1501 		0x301d0, 0x301d0,
1502 		0x30200, 0x30318,
1503 		0x30400, 0x304b4,
1504 		0x304c0, 0x3052c,
1505 		0x30540, 0x3061c,
1506 		0x30800, 0x30828,
1507 		0x30834, 0x30834,
1508 		0x308c0, 0x30908,
1509 		0x30910, 0x309ac,
1510 		0x30a00, 0x30a14,
1511 		0x30a1c, 0x30a2c,
1512 		0x30a44, 0x30a50,
1513 		0x30a74, 0x30a74,
1514 		0x30a7c, 0x30afc,
1515 		0x30b08, 0x30c24,
1516 		0x30d00, 0x30d00,
1517 		0x30d08, 0x30d14,
1518 		0x30d1c, 0x30d20,
1519 		0x30d3c, 0x30d3c,
1520 		0x30d48, 0x30d50,
1521 		0x31200, 0x3120c,
1522 		0x31220, 0x31220,
1523 		0x31240, 0x31240,
1524 		0x31600, 0x3160c,
1525 		0x31a00, 0x31a1c,
1526 		0x31e00, 0x31e20,
1527 		0x31e38, 0x31e3c,
1528 		0x31e80, 0x31e80,
1529 		0x31e88, 0x31ea8,
1530 		0x31eb0, 0x31eb4,
1531 		0x31ec8, 0x31ed4,
1532 		0x31fb8, 0x32004,
1533 		0x32200, 0x32200,
1534 		0x32208, 0x32240,
1535 		0x32248, 0x32280,
1536 		0x32288, 0x322c0,
1537 		0x322c8, 0x322fc,
1538 		0x32600, 0x32630,
1539 		0x32a00, 0x32abc,
1540 		0x32b00, 0x32b10,
1541 		0x32b20, 0x32b30,
1542 		0x32b40, 0x32b50,
1543 		0x32b60, 0x32b70,
1544 		0x33000, 0x33028,
1545 		0x33030, 0x33048,
1546 		0x33060, 0x33068,
1547 		0x33070, 0x3309c,
1548 		0x330f0, 0x33128,
1549 		0x33130, 0x33148,
1550 		0x33160, 0x33168,
1551 		0x33170, 0x3319c,
1552 		0x331f0, 0x33238,
1553 		0x33240, 0x33240,
1554 		0x33248, 0x33250,
1555 		0x3325c, 0x33264,
1556 		0x33270, 0x332b8,
1557 		0x332c0, 0x332e4,
1558 		0x332f8, 0x33338,
1559 		0x33340, 0x33340,
1560 		0x33348, 0x33350,
1561 		0x3335c, 0x33364,
1562 		0x33370, 0x333b8,
1563 		0x333c0, 0x333e4,
1564 		0x333f8, 0x33428,
1565 		0x33430, 0x33448,
1566 		0x33460, 0x33468,
1567 		0x33470, 0x3349c,
1568 		0x334f0, 0x33528,
1569 		0x33530, 0x33548,
1570 		0x33560, 0x33568,
1571 		0x33570, 0x3359c,
1572 		0x335f0, 0x33638,
1573 		0x33640, 0x33640,
1574 		0x33648, 0x33650,
1575 		0x3365c, 0x33664,
1576 		0x33670, 0x336b8,
1577 		0x336c0, 0x336e4,
1578 		0x336f8, 0x33738,
1579 		0x33740, 0x33740,
1580 		0x33748, 0x33750,
1581 		0x3375c, 0x33764,
1582 		0x33770, 0x337b8,
1583 		0x337c0, 0x337e4,
1584 		0x337f8, 0x337fc,
1585 		0x33814, 0x33814,
1586 		0x3382c, 0x3382c,
1587 		0x33880, 0x3388c,
1588 		0x338e8, 0x338ec,
1589 		0x33900, 0x33928,
1590 		0x33930, 0x33948,
1591 		0x33960, 0x33968,
1592 		0x33970, 0x3399c,
1593 		0x339f0, 0x33a38,
1594 		0x33a40, 0x33a40,
1595 		0x33a48, 0x33a50,
1596 		0x33a5c, 0x33a64,
1597 		0x33a70, 0x33ab8,
1598 		0x33ac0, 0x33ae4,
1599 		0x33af8, 0x33b10,
1600 		0x33b28, 0x33b28,
1601 		0x33b3c, 0x33b50,
1602 		0x33bf0, 0x33c10,
1603 		0x33c28, 0x33c28,
1604 		0x33c3c, 0x33c50,
1605 		0x33cf0, 0x33cfc,
1606 		0x34000, 0x34030,
1607 		0x34100, 0x34144,
1608 		0x34190, 0x341a0,
1609 		0x341a8, 0x341b8,
1610 		0x341c4, 0x341c8,
1611 		0x341d0, 0x341d0,
1612 		0x34200, 0x34318,
1613 		0x34400, 0x344b4,
1614 		0x344c0, 0x3452c,
1615 		0x34540, 0x3461c,
1616 		0x34800, 0x34828,
1617 		0x34834, 0x34834,
1618 		0x348c0, 0x34908,
1619 		0x34910, 0x349ac,
1620 		0x34a00, 0x34a14,
1621 		0x34a1c, 0x34a2c,
1622 		0x34a44, 0x34a50,
1623 		0x34a74, 0x34a74,
1624 		0x34a7c, 0x34afc,
1625 		0x34b08, 0x34c24,
1626 		0x34d00, 0x34d00,
1627 		0x34d08, 0x34d14,
1628 		0x34d1c, 0x34d20,
1629 		0x34d3c, 0x34d3c,
1630 		0x34d48, 0x34d50,
1631 		0x35200, 0x3520c,
1632 		0x35220, 0x35220,
1633 		0x35240, 0x35240,
1634 		0x35600, 0x3560c,
1635 		0x35a00, 0x35a1c,
1636 		0x35e00, 0x35e20,
1637 		0x35e38, 0x35e3c,
1638 		0x35e80, 0x35e80,
1639 		0x35e88, 0x35ea8,
1640 		0x35eb0, 0x35eb4,
1641 		0x35ec8, 0x35ed4,
1642 		0x35fb8, 0x36004,
1643 		0x36200, 0x36200,
1644 		0x36208, 0x36240,
1645 		0x36248, 0x36280,
1646 		0x36288, 0x362c0,
1647 		0x362c8, 0x362fc,
1648 		0x36600, 0x36630,
1649 		0x36a00, 0x36abc,
1650 		0x36b00, 0x36b10,
1651 		0x36b20, 0x36b30,
1652 		0x36b40, 0x36b50,
1653 		0x36b60, 0x36b70,
1654 		0x37000, 0x37028,
1655 		0x37030, 0x37048,
1656 		0x37060, 0x37068,
1657 		0x37070, 0x3709c,
1658 		0x370f0, 0x37128,
1659 		0x37130, 0x37148,
1660 		0x37160, 0x37168,
1661 		0x37170, 0x3719c,
1662 		0x371f0, 0x37238,
1663 		0x37240, 0x37240,
1664 		0x37248, 0x37250,
1665 		0x3725c, 0x37264,
1666 		0x37270, 0x372b8,
1667 		0x372c0, 0x372e4,
1668 		0x372f8, 0x37338,
1669 		0x37340, 0x37340,
1670 		0x37348, 0x37350,
1671 		0x3735c, 0x37364,
1672 		0x37370, 0x373b8,
1673 		0x373c0, 0x373e4,
1674 		0x373f8, 0x37428,
1675 		0x37430, 0x37448,
1676 		0x37460, 0x37468,
1677 		0x37470, 0x3749c,
1678 		0x374f0, 0x37528,
1679 		0x37530, 0x37548,
1680 		0x37560, 0x37568,
1681 		0x37570, 0x3759c,
1682 		0x375f0, 0x37638,
1683 		0x37640, 0x37640,
1684 		0x37648, 0x37650,
1685 		0x3765c, 0x37664,
1686 		0x37670, 0x376b8,
1687 		0x376c0, 0x376e4,
1688 		0x376f8, 0x37738,
1689 		0x37740, 0x37740,
1690 		0x37748, 0x37750,
1691 		0x3775c, 0x37764,
1692 		0x37770, 0x377b8,
1693 		0x377c0, 0x377e4,
1694 		0x377f8, 0x377fc,
1695 		0x37814, 0x37814,
1696 		0x3782c, 0x3782c,
1697 		0x37880, 0x3788c,
1698 		0x378e8, 0x378ec,
1699 		0x37900, 0x37928,
1700 		0x37930, 0x37948,
1701 		0x37960, 0x37968,
1702 		0x37970, 0x3799c,
1703 		0x379f0, 0x37a38,
1704 		0x37a40, 0x37a40,
1705 		0x37a48, 0x37a50,
1706 		0x37a5c, 0x37a64,
1707 		0x37a70, 0x37ab8,
1708 		0x37ac0, 0x37ae4,
1709 		0x37af8, 0x37b10,
1710 		0x37b28, 0x37b28,
1711 		0x37b3c, 0x37b50,
1712 		0x37bf0, 0x37c10,
1713 		0x37c28, 0x37c28,
1714 		0x37c3c, 0x37c50,
1715 		0x37cf0, 0x37cfc,
1716 		0x38000, 0x38030,
1717 		0x38100, 0x38144,
1718 		0x38190, 0x381a0,
1719 		0x381a8, 0x381b8,
1720 		0x381c4, 0x381c8,
1721 		0x381d0, 0x381d0,
1722 		0x38200, 0x38318,
1723 		0x38400, 0x384b4,
1724 		0x384c0, 0x3852c,
1725 		0x38540, 0x3861c,
1726 		0x38800, 0x38828,
1727 		0x38834, 0x38834,
1728 		0x388c0, 0x38908,
1729 		0x38910, 0x389ac,
1730 		0x38a00, 0x38a14,
1731 		0x38a1c, 0x38a2c,
1732 		0x38a44, 0x38a50,
1733 		0x38a74, 0x38a74,
1734 		0x38a7c, 0x38afc,
1735 		0x38b08, 0x38c24,
1736 		0x38d00, 0x38d00,
1737 		0x38d08, 0x38d14,
1738 		0x38d1c, 0x38d20,
1739 		0x38d3c, 0x38d3c,
1740 		0x38d48, 0x38d50,
1741 		0x39200, 0x3920c,
1742 		0x39220, 0x39220,
1743 		0x39240, 0x39240,
1744 		0x39600, 0x3960c,
1745 		0x39a00, 0x39a1c,
1746 		0x39e00, 0x39e20,
1747 		0x39e38, 0x39e3c,
1748 		0x39e80, 0x39e80,
1749 		0x39e88, 0x39ea8,
1750 		0x39eb0, 0x39eb4,
1751 		0x39ec8, 0x39ed4,
1752 		0x39fb8, 0x3a004,
1753 		0x3a200, 0x3a200,
1754 		0x3a208, 0x3a240,
1755 		0x3a248, 0x3a280,
1756 		0x3a288, 0x3a2c0,
1757 		0x3a2c8, 0x3a2fc,
1758 		0x3a600, 0x3a630,
1759 		0x3aa00, 0x3aabc,
1760 		0x3ab00, 0x3ab10,
1761 		0x3ab20, 0x3ab30,
1762 		0x3ab40, 0x3ab50,
1763 		0x3ab60, 0x3ab70,
1764 		0x3b000, 0x3b028,
1765 		0x3b030, 0x3b048,
1766 		0x3b060, 0x3b068,
1767 		0x3b070, 0x3b09c,
1768 		0x3b0f0, 0x3b128,
1769 		0x3b130, 0x3b148,
1770 		0x3b160, 0x3b168,
1771 		0x3b170, 0x3b19c,
1772 		0x3b1f0, 0x3b238,
1773 		0x3b240, 0x3b240,
1774 		0x3b248, 0x3b250,
1775 		0x3b25c, 0x3b264,
1776 		0x3b270, 0x3b2b8,
1777 		0x3b2c0, 0x3b2e4,
1778 		0x3b2f8, 0x3b338,
1779 		0x3b340, 0x3b340,
1780 		0x3b348, 0x3b350,
1781 		0x3b35c, 0x3b364,
1782 		0x3b370, 0x3b3b8,
1783 		0x3b3c0, 0x3b3e4,
1784 		0x3b3f8, 0x3b428,
1785 		0x3b430, 0x3b448,
1786 		0x3b460, 0x3b468,
1787 		0x3b470, 0x3b49c,
1788 		0x3b4f0, 0x3b528,
1789 		0x3b530, 0x3b548,
1790 		0x3b560, 0x3b568,
1791 		0x3b570, 0x3b59c,
1792 		0x3b5f0, 0x3b638,
1793 		0x3b640, 0x3b640,
1794 		0x3b648, 0x3b650,
1795 		0x3b65c, 0x3b664,
1796 		0x3b670, 0x3b6b8,
1797 		0x3b6c0, 0x3b6e4,
1798 		0x3b6f8, 0x3b738,
1799 		0x3b740, 0x3b740,
1800 		0x3b748, 0x3b750,
1801 		0x3b75c, 0x3b764,
1802 		0x3b770, 0x3b7b8,
1803 		0x3b7c0, 0x3b7e4,
1804 		0x3b7f8, 0x3b7fc,
1805 		0x3b814, 0x3b814,
1806 		0x3b82c, 0x3b82c,
1807 		0x3b880, 0x3b88c,
1808 		0x3b8e8, 0x3b8ec,
1809 		0x3b900, 0x3b928,
1810 		0x3b930, 0x3b948,
1811 		0x3b960, 0x3b968,
1812 		0x3b970, 0x3b99c,
1813 		0x3b9f0, 0x3ba38,
1814 		0x3ba40, 0x3ba40,
1815 		0x3ba48, 0x3ba50,
1816 		0x3ba5c, 0x3ba64,
1817 		0x3ba70, 0x3bab8,
1818 		0x3bac0, 0x3bae4,
1819 		0x3baf8, 0x3bb10,
1820 		0x3bb28, 0x3bb28,
1821 		0x3bb3c, 0x3bb50,
1822 		0x3bbf0, 0x3bc10,
1823 		0x3bc28, 0x3bc28,
1824 		0x3bc3c, 0x3bc50,
1825 		0x3bcf0, 0x3bcfc,
1826 		0x3c000, 0x3c030,
1827 		0x3c100, 0x3c144,
1828 		0x3c190, 0x3c1a0,
1829 		0x3c1a8, 0x3c1b8,
1830 		0x3c1c4, 0x3c1c8,
1831 		0x3c1d0, 0x3c1d0,
1832 		0x3c200, 0x3c318,
1833 		0x3c400, 0x3c4b4,
1834 		0x3c4c0, 0x3c52c,
1835 		0x3c540, 0x3c61c,
1836 		0x3c800, 0x3c828,
1837 		0x3c834, 0x3c834,
1838 		0x3c8c0, 0x3c908,
1839 		0x3c910, 0x3c9ac,
1840 		0x3ca00, 0x3ca14,
1841 		0x3ca1c, 0x3ca2c,
1842 		0x3ca44, 0x3ca50,
1843 		0x3ca74, 0x3ca74,
1844 		0x3ca7c, 0x3cafc,
1845 		0x3cb08, 0x3cc24,
1846 		0x3cd00, 0x3cd00,
1847 		0x3cd08, 0x3cd14,
1848 		0x3cd1c, 0x3cd20,
1849 		0x3cd3c, 0x3cd3c,
1850 		0x3cd48, 0x3cd50,
1851 		0x3d200, 0x3d20c,
1852 		0x3d220, 0x3d220,
1853 		0x3d240, 0x3d240,
1854 		0x3d600, 0x3d60c,
1855 		0x3da00, 0x3da1c,
1856 		0x3de00, 0x3de20,
1857 		0x3de38, 0x3de3c,
1858 		0x3de80, 0x3de80,
1859 		0x3de88, 0x3dea8,
1860 		0x3deb0, 0x3deb4,
1861 		0x3dec8, 0x3ded4,
1862 		0x3dfb8, 0x3e004,
1863 		0x3e200, 0x3e200,
1864 		0x3e208, 0x3e240,
1865 		0x3e248, 0x3e280,
1866 		0x3e288, 0x3e2c0,
1867 		0x3e2c8, 0x3e2fc,
1868 		0x3e600, 0x3e630,
1869 		0x3ea00, 0x3eabc,
1870 		0x3eb00, 0x3eb10,
1871 		0x3eb20, 0x3eb30,
1872 		0x3eb40, 0x3eb50,
1873 		0x3eb60, 0x3eb70,
1874 		0x3f000, 0x3f028,
1875 		0x3f030, 0x3f048,
1876 		0x3f060, 0x3f068,
1877 		0x3f070, 0x3f09c,
1878 		0x3f0f0, 0x3f128,
1879 		0x3f130, 0x3f148,
1880 		0x3f160, 0x3f168,
1881 		0x3f170, 0x3f19c,
1882 		0x3f1f0, 0x3f238,
1883 		0x3f240, 0x3f240,
1884 		0x3f248, 0x3f250,
1885 		0x3f25c, 0x3f264,
1886 		0x3f270, 0x3f2b8,
1887 		0x3f2c0, 0x3f2e4,
1888 		0x3f2f8, 0x3f338,
1889 		0x3f340, 0x3f340,
1890 		0x3f348, 0x3f350,
1891 		0x3f35c, 0x3f364,
1892 		0x3f370, 0x3f3b8,
1893 		0x3f3c0, 0x3f3e4,
1894 		0x3f3f8, 0x3f428,
1895 		0x3f430, 0x3f448,
1896 		0x3f460, 0x3f468,
1897 		0x3f470, 0x3f49c,
1898 		0x3f4f0, 0x3f528,
1899 		0x3f530, 0x3f548,
1900 		0x3f560, 0x3f568,
1901 		0x3f570, 0x3f59c,
1902 		0x3f5f0, 0x3f638,
1903 		0x3f640, 0x3f640,
1904 		0x3f648, 0x3f650,
1905 		0x3f65c, 0x3f664,
1906 		0x3f670, 0x3f6b8,
1907 		0x3f6c0, 0x3f6e4,
1908 		0x3f6f8, 0x3f738,
1909 		0x3f740, 0x3f740,
1910 		0x3f748, 0x3f750,
1911 		0x3f75c, 0x3f764,
1912 		0x3f770, 0x3f7b8,
1913 		0x3f7c0, 0x3f7e4,
1914 		0x3f7f8, 0x3f7fc,
1915 		0x3f814, 0x3f814,
1916 		0x3f82c, 0x3f82c,
1917 		0x3f880, 0x3f88c,
1918 		0x3f8e8, 0x3f8ec,
1919 		0x3f900, 0x3f928,
1920 		0x3f930, 0x3f948,
1921 		0x3f960, 0x3f968,
1922 		0x3f970, 0x3f99c,
1923 		0x3f9f0, 0x3fa38,
1924 		0x3fa40, 0x3fa40,
1925 		0x3fa48, 0x3fa50,
1926 		0x3fa5c, 0x3fa64,
1927 		0x3fa70, 0x3fab8,
1928 		0x3fac0, 0x3fae4,
1929 		0x3faf8, 0x3fb10,
1930 		0x3fb28, 0x3fb28,
1931 		0x3fb3c, 0x3fb50,
1932 		0x3fbf0, 0x3fc10,
1933 		0x3fc28, 0x3fc28,
1934 		0x3fc3c, 0x3fc50,
1935 		0x3fcf0, 0x3fcfc,
1936 		0x40000, 0x4000c,
1937 		0x40040, 0x40050,
1938 		0x40060, 0x40068,
1939 		0x4007c, 0x4008c,
1940 		0x40094, 0x400b0,
1941 		0x400c0, 0x40144,
1942 		0x40180, 0x4018c,
1943 		0x40200, 0x40254,
1944 		0x40260, 0x40264,
1945 		0x40270, 0x40288,
1946 		0x40290, 0x40298,
1947 		0x402ac, 0x402c8,
1948 		0x402d0, 0x402e0,
1949 		0x402f0, 0x402f0,
1950 		0x40300, 0x4033c,
1951 		0x403f8, 0x403fc,
1952 		0x41304, 0x413c4,
1953 		0x41400, 0x4140c,
1954 		0x41414, 0x4141c,
1955 		0x41480, 0x414d0,
1956 		0x44000, 0x44054,
1957 		0x4405c, 0x44078,
1958 		0x440c0, 0x44174,
1959 		0x44180, 0x441ac,
1960 		0x441b4, 0x441b8,
1961 		0x441c0, 0x44254,
1962 		0x4425c, 0x44278,
1963 		0x442c0, 0x44374,
1964 		0x44380, 0x443ac,
1965 		0x443b4, 0x443b8,
1966 		0x443c0, 0x44454,
1967 		0x4445c, 0x44478,
1968 		0x444c0, 0x44574,
1969 		0x44580, 0x445ac,
1970 		0x445b4, 0x445b8,
1971 		0x445c0, 0x44654,
1972 		0x4465c, 0x44678,
1973 		0x446c0, 0x44774,
1974 		0x44780, 0x447ac,
1975 		0x447b4, 0x447b8,
1976 		0x447c0, 0x44854,
1977 		0x4485c, 0x44878,
1978 		0x448c0, 0x44974,
1979 		0x44980, 0x449ac,
1980 		0x449b4, 0x449b8,
1981 		0x449c0, 0x449fc,
1982 		0x45000, 0x45004,
1983 		0x45010, 0x45030,
1984 		0x45040, 0x45060,
1985 		0x45068, 0x45068,
1986 		0x45080, 0x45084,
1987 		0x450a0, 0x450b0,
1988 		0x45200, 0x45204,
1989 		0x45210, 0x45230,
1990 		0x45240, 0x45260,
1991 		0x45268, 0x45268,
1992 		0x45280, 0x45284,
1993 		0x452a0, 0x452b0,
1994 		0x460c0, 0x460e4,
1995 		0x47000, 0x4703c,
1996 		0x47044, 0x4708c,
1997 		0x47200, 0x47250,
1998 		0x47400, 0x47408,
1999 		0x47414, 0x47420,
2000 		0x47600, 0x47618,
2001 		0x47800, 0x47814,
2002 		0x48000, 0x4800c,
2003 		0x48040, 0x48050,
2004 		0x48060, 0x48068,
2005 		0x4807c, 0x4808c,
2006 		0x48094, 0x480b0,
2007 		0x480c0, 0x48144,
2008 		0x48180, 0x4818c,
2009 		0x48200, 0x48254,
2010 		0x48260, 0x48264,
2011 		0x48270, 0x48288,
2012 		0x48290, 0x48298,
2013 		0x482ac, 0x482c8,
2014 		0x482d0, 0x482e0,
2015 		0x482f0, 0x482f0,
2016 		0x48300, 0x4833c,
2017 		0x483f8, 0x483fc,
2018 		0x49304, 0x493c4,
2019 		0x49400, 0x4940c,
2020 		0x49414, 0x4941c,
2021 		0x49480, 0x494d0,
2022 		0x4c000, 0x4c054,
2023 		0x4c05c, 0x4c078,
2024 		0x4c0c0, 0x4c174,
2025 		0x4c180, 0x4c1ac,
2026 		0x4c1b4, 0x4c1b8,
2027 		0x4c1c0, 0x4c254,
2028 		0x4c25c, 0x4c278,
2029 		0x4c2c0, 0x4c374,
2030 		0x4c380, 0x4c3ac,
2031 		0x4c3b4, 0x4c3b8,
2032 		0x4c3c0, 0x4c454,
2033 		0x4c45c, 0x4c478,
2034 		0x4c4c0, 0x4c574,
2035 		0x4c580, 0x4c5ac,
2036 		0x4c5b4, 0x4c5b8,
2037 		0x4c5c0, 0x4c654,
2038 		0x4c65c, 0x4c678,
2039 		0x4c6c0, 0x4c774,
2040 		0x4c780, 0x4c7ac,
2041 		0x4c7b4, 0x4c7b8,
2042 		0x4c7c0, 0x4c854,
2043 		0x4c85c, 0x4c878,
2044 		0x4c8c0, 0x4c974,
2045 		0x4c980, 0x4c9ac,
2046 		0x4c9b4, 0x4c9b8,
2047 		0x4c9c0, 0x4c9fc,
2048 		0x4d000, 0x4d004,
2049 		0x4d010, 0x4d030,
2050 		0x4d040, 0x4d060,
2051 		0x4d068, 0x4d068,
2052 		0x4d080, 0x4d084,
2053 		0x4d0a0, 0x4d0b0,
2054 		0x4d200, 0x4d204,
2055 		0x4d210, 0x4d230,
2056 		0x4d240, 0x4d260,
2057 		0x4d268, 0x4d268,
2058 		0x4d280, 0x4d284,
2059 		0x4d2a0, 0x4d2b0,
2060 		0x4e0c0, 0x4e0e4,
2061 		0x4f000, 0x4f03c,
2062 		0x4f044, 0x4f08c,
2063 		0x4f200, 0x4f250,
2064 		0x4f400, 0x4f408,
2065 		0x4f414, 0x4f420,
2066 		0x4f600, 0x4f618,
2067 		0x4f800, 0x4f814,
2068 		0x50000, 0x50084,
2069 		0x50090, 0x500cc,
2070 		0x50400, 0x50400,
2071 		0x50800, 0x50884,
2072 		0x50890, 0x508cc,
2073 		0x50c00, 0x50c00,
2074 		0x51000, 0x5101c,
2075 		0x51300, 0x51308,
2076 	};
2077 
2078 	static const unsigned int t5vf_reg_ranges[] = {
2079 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2080 		VF_MPS_REG(A_MPS_VF_CTL),
2081 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2082 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2083 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2084 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2085 		FW_T4VF_MBDATA_BASE_ADDR,
2086 		FW_T4VF_MBDATA_BASE_ADDR +
2087 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2088 	};
2089 
2090 	static const unsigned int t6_reg_ranges[] = {
2091 		0x1008, 0x101c,
2092 		0x1024, 0x10a8,
2093 		0x10b4, 0x10f8,
2094 		0x1100, 0x1114,
2095 		0x111c, 0x112c,
2096 		0x1138, 0x113c,
2097 		0x1144, 0x114c,
2098 		0x1180, 0x1184,
2099 		0x1190, 0x1194,
2100 		0x11a0, 0x11a4,
2101 		0x11b0, 0x11b4,
2102 		0x11fc, 0x1274,
2103 		0x1280, 0x133c,
2104 		0x1800, 0x18fc,
2105 		0x3000, 0x302c,
2106 		0x3060, 0x30b0,
2107 		0x30b8, 0x30d8,
2108 		0x30e0, 0x30fc,
2109 		0x3140, 0x357c,
2110 		0x35a8, 0x35cc,
2111 		0x35ec, 0x35ec,
2112 		0x3600, 0x5624,
2113 		0x56cc, 0x56ec,
2114 		0x56f4, 0x5720,
2115 		0x5728, 0x575c,
2116 		0x580c, 0x5814,
2117 		0x5890, 0x589c,
2118 		0x58a4, 0x58ac,
2119 		0x58b8, 0x58bc,
2120 		0x5940, 0x595c,
2121 		0x5980, 0x598c,
2122 		0x59b0, 0x59c8,
2123 		0x59d0, 0x59dc,
2124 		0x59fc, 0x5a18,
2125 		0x5a60, 0x5a6c,
2126 		0x5a80, 0x5a8c,
2127 		0x5a94, 0x5a9c,
2128 		0x5b94, 0x5bfc,
2129 		0x5c10, 0x5e48,
2130 		0x5e50, 0x5e94,
2131 		0x5ea0, 0x5eb0,
2132 		0x5ec0, 0x5ec0,
2133 		0x5ec8, 0x5ed0,
2134 		0x5ee0, 0x5ee0,
2135 		0x5ef0, 0x5ef0,
2136 		0x5f00, 0x5f00,
2137 		0x6000, 0x6020,
2138 		0x6028, 0x6040,
2139 		0x6058, 0x609c,
2140 		0x60a8, 0x619c,
2141 		0x7700, 0x7798,
2142 		0x77c0, 0x7880,
2143 		0x78cc, 0x78fc,
2144 		0x7b00, 0x7b58,
2145 		0x7b60, 0x7b84,
2146 		0x7b8c, 0x7c54,
2147 		0x7d00, 0x7d38,
2148 		0x7d40, 0x7d84,
2149 		0x7d8c, 0x7ddc,
2150 		0x7de4, 0x7e04,
2151 		0x7e10, 0x7e1c,
2152 		0x7e24, 0x7e38,
2153 		0x7e40, 0x7e44,
2154 		0x7e4c, 0x7e78,
2155 		0x7e80, 0x7edc,
2156 		0x7ee8, 0x7efc,
2157 		0x8dc0, 0x8de4,
2158 		0x8df8, 0x8e04,
2159 		0x8e10, 0x8e84,
2160 		0x8ea0, 0x8f88,
2161 		0x8fb8, 0x9058,
2162 		0x9060, 0x9060,
2163 		0x9068, 0x90f8,
2164 		0x9100, 0x9124,
2165 		0x9400, 0x9470,
2166 		0x9600, 0x9600,
2167 		0x9608, 0x9638,
2168 		0x9640, 0x9704,
2169 		0x9710, 0x971c,
2170 		0x9800, 0x9808,
2171 		0x9820, 0x983c,
2172 		0x9850, 0x9864,
2173 		0x9c00, 0x9c6c,
2174 		0x9c80, 0x9cec,
2175 		0x9d00, 0x9d6c,
2176 		0x9d80, 0x9dec,
2177 		0x9e00, 0x9e6c,
2178 		0x9e80, 0x9eec,
2179 		0x9f00, 0x9f6c,
2180 		0x9f80, 0xa020,
2181 		0xd004, 0xd03c,
2182 		0xd100, 0xd118,
2183 		0xd200, 0xd214,
2184 		0xd220, 0xd234,
2185 		0xd240, 0xd254,
2186 		0xd260, 0xd274,
2187 		0xd280, 0xd294,
2188 		0xd2a0, 0xd2b4,
2189 		0xd2c0, 0xd2d4,
2190 		0xd2e0, 0xd2f4,
2191 		0xd300, 0xd31c,
2192 		0xdfc0, 0xdfe0,
2193 		0xe000, 0xf008,
2194 		0xf010, 0xf018,
2195 		0xf020, 0xf028,
2196 		0x11000, 0x11014,
2197 		0x11048, 0x1106c,
2198 		0x11074, 0x11088,
2199 		0x11098, 0x11120,
2200 		0x1112c, 0x1117c,
2201 		0x11190, 0x112e0,
2202 		0x11300, 0x1130c,
2203 		0x12000, 0x1206c,
2204 		0x19040, 0x1906c,
2205 		0x19078, 0x19080,
2206 		0x1908c, 0x190e8,
2207 		0x190f0, 0x190f8,
2208 		0x19100, 0x19110,
2209 		0x19120, 0x19124,
2210 		0x19150, 0x19194,
2211 		0x1919c, 0x191b0,
2212 		0x191d0, 0x191e8,
2213 		0x19238, 0x19290,
2214 		0x192a4, 0x192b0,
2215 		0x192bc, 0x192bc,
2216 		0x19348, 0x1934c,
2217 		0x193f8, 0x19418,
2218 		0x19420, 0x19428,
2219 		0x19430, 0x19444,
2220 		0x1944c, 0x1946c,
2221 		0x19474, 0x19474,
2222 		0x19490, 0x194cc,
2223 		0x194f0, 0x194f8,
2224 		0x19c00, 0x19c48,
2225 		0x19c50, 0x19c80,
2226 		0x19c94, 0x19c98,
2227 		0x19ca0, 0x19cbc,
2228 		0x19ce4, 0x19ce4,
2229 		0x19cf0, 0x19cf8,
2230 		0x19d00, 0x19d28,
2231 		0x19d50, 0x19d78,
2232 		0x19d94, 0x19d98,
2233 		0x19da0, 0x19dc8,
2234 		0x19df0, 0x19e10,
2235 		0x19e50, 0x19e6c,
2236 		0x19ea0, 0x19ebc,
2237 		0x19ec4, 0x19ef4,
2238 		0x19f04, 0x19f2c,
2239 		0x19f34, 0x19f34,
2240 		0x19f40, 0x19f50,
2241 		0x19f90, 0x19fac,
2242 		0x19fc4, 0x19fc8,
2243 		0x19fd0, 0x19fe4,
2244 		0x1a000, 0x1a004,
2245 		0x1a010, 0x1a06c,
2246 		0x1a0b0, 0x1a0e4,
2247 		0x1a0ec, 0x1a0f8,
2248 		0x1a100, 0x1a108,
2249 		0x1a114, 0x1a120,
2250 		0x1a128, 0x1a130,
2251 		0x1a138, 0x1a138,
2252 		0x1a190, 0x1a1c4,
2253 		0x1a1fc, 0x1a1fc,
2254 		0x1e008, 0x1e00c,
2255 		0x1e040, 0x1e044,
2256 		0x1e04c, 0x1e04c,
2257 		0x1e284, 0x1e290,
2258 		0x1e2c0, 0x1e2c0,
2259 		0x1e2e0, 0x1e2e0,
2260 		0x1e300, 0x1e384,
2261 		0x1e3c0, 0x1e3c8,
2262 		0x1e408, 0x1e40c,
2263 		0x1e440, 0x1e444,
2264 		0x1e44c, 0x1e44c,
2265 		0x1e684, 0x1e690,
2266 		0x1e6c0, 0x1e6c0,
2267 		0x1e6e0, 0x1e6e0,
2268 		0x1e700, 0x1e784,
2269 		0x1e7c0, 0x1e7c8,
2270 		0x1e808, 0x1e80c,
2271 		0x1e840, 0x1e844,
2272 		0x1e84c, 0x1e84c,
2273 		0x1ea84, 0x1ea90,
2274 		0x1eac0, 0x1eac0,
2275 		0x1eae0, 0x1eae0,
2276 		0x1eb00, 0x1eb84,
2277 		0x1ebc0, 0x1ebc8,
2278 		0x1ec08, 0x1ec0c,
2279 		0x1ec40, 0x1ec44,
2280 		0x1ec4c, 0x1ec4c,
2281 		0x1ee84, 0x1ee90,
2282 		0x1eec0, 0x1eec0,
2283 		0x1eee0, 0x1eee0,
2284 		0x1ef00, 0x1ef84,
2285 		0x1efc0, 0x1efc8,
2286 		0x1f008, 0x1f00c,
2287 		0x1f040, 0x1f044,
2288 		0x1f04c, 0x1f04c,
2289 		0x1f284, 0x1f290,
2290 		0x1f2c0, 0x1f2c0,
2291 		0x1f2e0, 0x1f2e0,
2292 		0x1f300, 0x1f384,
2293 		0x1f3c0, 0x1f3c8,
2294 		0x1f408, 0x1f40c,
2295 		0x1f440, 0x1f444,
2296 		0x1f44c, 0x1f44c,
2297 		0x1f684, 0x1f690,
2298 		0x1f6c0, 0x1f6c0,
2299 		0x1f6e0, 0x1f6e0,
2300 		0x1f700, 0x1f784,
2301 		0x1f7c0, 0x1f7c8,
2302 		0x1f808, 0x1f80c,
2303 		0x1f840, 0x1f844,
2304 		0x1f84c, 0x1f84c,
2305 		0x1fa84, 0x1fa90,
2306 		0x1fac0, 0x1fac0,
2307 		0x1fae0, 0x1fae0,
2308 		0x1fb00, 0x1fb84,
2309 		0x1fbc0, 0x1fbc8,
2310 		0x1fc08, 0x1fc0c,
2311 		0x1fc40, 0x1fc44,
2312 		0x1fc4c, 0x1fc4c,
2313 		0x1fe84, 0x1fe90,
2314 		0x1fec0, 0x1fec0,
2315 		0x1fee0, 0x1fee0,
2316 		0x1ff00, 0x1ff84,
2317 		0x1ffc0, 0x1ffc8,
2318 		0x30000, 0x30030,
2319 		0x30100, 0x30168,
2320 		0x30190, 0x301a0,
2321 		0x301a8, 0x301b8,
2322 		0x301c4, 0x301c8,
2323 		0x301d0, 0x301d0,
2324 		0x30200, 0x30320,
2325 		0x30400, 0x304b4,
2326 		0x304c0, 0x3052c,
2327 		0x30540, 0x3061c,
2328 		0x30800, 0x308a0,
2329 		0x308c0, 0x30908,
2330 		0x30910, 0x309b8,
2331 		0x30a00, 0x30a04,
2332 		0x30a0c, 0x30a14,
2333 		0x30a1c, 0x30a2c,
2334 		0x30a44, 0x30a50,
2335 		0x30a74, 0x30a74,
2336 		0x30a7c, 0x30afc,
2337 		0x30b08, 0x30c24,
2338 		0x30d00, 0x30d14,
2339 		0x30d1c, 0x30d3c,
2340 		0x30d44, 0x30d4c,
2341 		0x30d54, 0x30d74,
2342 		0x30d7c, 0x30d7c,
2343 		0x30de0, 0x30de0,
2344 		0x30e00, 0x30ed4,
2345 		0x30f00, 0x30fa4,
2346 		0x30fc0, 0x30fc4,
2347 		0x31000, 0x31004,
2348 		0x31080, 0x310fc,
2349 		0x31208, 0x31220,
2350 		0x3123c, 0x31254,
2351 		0x31300, 0x31300,
2352 		0x31308, 0x3131c,
2353 		0x31338, 0x3133c,
2354 		0x31380, 0x31380,
2355 		0x31388, 0x313a8,
2356 		0x313b4, 0x313b4,
2357 		0x31400, 0x31420,
2358 		0x31438, 0x3143c,
2359 		0x31480, 0x31480,
2360 		0x314a8, 0x314a8,
2361 		0x314b0, 0x314b4,
2362 		0x314c8, 0x314d4,
2363 		0x31a40, 0x31a4c,
2364 		0x31af0, 0x31b20,
2365 		0x31b38, 0x31b3c,
2366 		0x31b80, 0x31b80,
2367 		0x31ba8, 0x31ba8,
2368 		0x31bb0, 0x31bb4,
2369 		0x31bc8, 0x31bd4,
2370 		0x32140, 0x3218c,
2371 		0x321f0, 0x321f4,
2372 		0x32200, 0x32200,
2373 		0x32218, 0x32218,
2374 		0x32400, 0x32400,
2375 		0x32408, 0x3241c,
2376 		0x32618, 0x32620,
2377 		0x32664, 0x32664,
2378 		0x326a8, 0x326a8,
2379 		0x326ec, 0x326ec,
2380 		0x32a00, 0x32abc,
2381 		0x32b00, 0x32b18,
2382 		0x32b20, 0x32b38,
2383 		0x32b40, 0x32b58,
2384 		0x32b60, 0x32b78,
2385 		0x32c00, 0x32c00,
2386 		0x32c08, 0x32c3c,
2387 		0x33000, 0x3302c,
2388 		0x33034, 0x33050,
2389 		0x33058, 0x33058,
2390 		0x33060, 0x3308c,
2391 		0x3309c, 0x330ac,
2392 		0x330c0, 0x330c0,
2393 		0x330c8, 0x330d0,
2394 		0x330d8, 0x330e0,
2395 		0x330ec, 0x3312c,
2396 		0x33134, 0x33150,
2397 		0x33158, 0x33158,
2398 		0x33160, 0x3318c,
2399 		0x3319c, 0x331ac,
2400 		0x331c0, 0x331c0,
2401 		0x331c8, 0x331d0,
2402 		0x331d8, 0x331e0,
2403 		0x331ec, 0x33290,
2404 		0x33298, 0x332c4,
2405 		0x332e4, 0x33390,
2406 		0x33398, 0x333c4,
2407 		0x333e4, 0x3342c,
2408 		0x33434, 0x33450,
2409 		0x33458, 0x33458,
2410 		0x33460, 0x3348c,
2411 		0x3349c, 0x334ac,
2412 		0x334c0, 0x334c0,
2413 		0x334c8, 0x334d0,
2414 		0x334d8, 0x334e0,
2415 		0x334ec, 0x3352c,
2416 		0x33534, 0x33550,
2417 		0x33558, 0x33558,
2418 		0x33560, 0x3358c,
2419 		0x3359c, 0x335ac,
2420 		0x335c0, 0x335c0,
2421 		0x335c8, 0x335d0,
2422 		0x335d8, 0x335e0,
2423 		0x335ec, 0x33690,
2424 		0x33698, 0x336c4,
2425 		0x336e4, 0x33790,
2426 		0x33798, 0x337c4,
2427 		0x337e4, 0x337fc,
2428 		0x33814, 0x33814,
2429 		0x33854, 0x33868,
2430 		0x33880, 0x3388c,
2431 		0x338c0, 0x338d0,
2432 		0x338e8, 0x338ec,
2433 		0x33900, 0x3392c,
2434 		0x33934, 0x33950,
2435 		0x33958, 0x33958,
2436 		0x33960, 0x3398c,
2437 		0x3399c, 0x339ac,
2438 		0x339c0, 0x339c0,
2439 		0x339c8, 0x339d0,
2440 		0x339d8, 0x339e0,
2441 		0x339ec, 0x33a90,
2442 		0x33a98, 0x33ac4,
2443 		0x33ae4, 0x33b10,
2444 		0x33b24, 0x33b28,
2445 		0x33b38, 0x33b50,
2446 		0x33bf0, 0x33c10,
2447 		0x33c24, 0x33c28,
2448 		0x33c38, 0x33c50,
2449 		0x33cf0, 0x33cfc,
2450 		0x34000, 0x34030,
2451 		0x34100, 0x34168,
2452 		0x34190, 0x341a0,
2453 		0x341a8, 0x341b8,
2454 		0x341c4, 0x341c8,
2455 		0x341d0, 0x341d0,
2456 		0x34200, 0x34320,
2457 		0x34400, 0x344b4,
2458 		0x344c0, 0x3452c,
2459 		0x34540, 0x3461c,
2460 		0x34800, 0x348a0,
2461 		0x348c0, 0x34908,
2462 		0x34910, 0x349b8,
2463 		0x34a00, 0x34a04,
2464 		0x34a0c, 0x34a14,
2465 		0x34a1c, 0x34a2c,
2466 		0x34a44, 0x34a50,
2467 		0x34a74, 0x34a74,
2468 		0x34a7c, 0x34afc,
2469 		0x34b08, 0x34c24,
2470 		0x34d00, 0x34d14,
2471 		0x34d1c, 0x34d3c,
2472 		0x34d44, 0x34d4c,
2473 		0x34d54, 0x34d74,
2474 		0x34d7c, 0x34d7c,
2475 		0x34de0, 0x34de0,
2476 		0x34e00, 0x34ed4,
2477 		0x34f00, 0x34fa4,
2478 		0x34fc0, 0x34fc4,
2479 		0x35000, 0x35004,
2480 		0x35080, 0x350fc,
2481 		0x35208, 0x35220,
2482 		0x3523c, 0x35254,
2483 		0x35300, 0x35300,
2484 		0x35308, 0x3531c,
2485 		0x35338, 0x3533c,
2486 		0x35380, 0x35380,
2487 		0x35388, 0x353a8,
2488 		0x353b4, 0x353b4,
2489 		0x35400, 0x35420,
2490 		0x35438, 0x3543c,
2491 		0x35480, 0x35480,
2492 		0x354a8, 0x354a8,
2493 		0x354b0, 0x354b4,
2494 		0x354c8, 0x354d4,
2495 		0x35a40, 0x35a4c,
2496 		0x35af0, 0x35b20,
2497 		0x35b38, 0x35b3c,
2498 		0x35b80, 0x35b80,
2499 		0x35ba8, 0x35ba8,
2500 		0x35bb0, 0x35bb4,
2501 		0x35bc8, 0x35bd4,
2502 		0x36140, 0x3618c,
2503 		0x361f0, 0x361f4,
2504 		0x36200, 0x36200,
2505 		0x36218, 0x36218,
2506 		0x36400, 0x36400,
2507 		0x36408, 0x3641c,
2508 		0x36618, 0x36620,
2509 		0x36664, 0x36664,
2510 		0x366a8, 0x366a8,
2511 		0x366ec, 0x366ec,
2512 		0x36a00, 0x36abc,
2513 		0x36b00, 0x36b18,
2514 		0x36b20, 0x36b38,
2515 		0x36b40, 0x36b58,
2516 		0x36b60, 0x36b78,
2517 		0x36c00, 0x36c00,
2518 		0x36c08, 0x36c3c,
2519 		0x37000, 0x3702c,
2520 		0x37034, 0x37050,
2521 		0x37058, 0x37058,
2522 		0x37060, 0x3708c,
2523 		0x3709c, 0x370ac,
2524 		0x370c0, 0x370c0,
2525 		0x370c8, 0x370d0,
2526 		0x370d8, 0x370e0,
2527 		0x370ec, 0x3712c,
2528 		0x37134, 0x37150,
2529 		0x37158, 0x37158,
2530 		0x37160, 0x3718c,
2531 		0x3719c, 0x371ac,
2532 		0x371c0, 0x371c0,
2533 		0x371c8, 0x371d0,
2534 		0x371d8, 0x371e0,
2535 		0x371ec, 0x37290,
2536 		0x37298, 0x372c4,
2537 		0x372e4, 0x37390,
2538 		0x37398, 0x373c4,
2539 		0x373e4, 0x3742c,
2540 		0x37434, 0x37450,
2541 		0x37458, 0x37458,
2542 		0x37460, 0x3748c,
2543 		0x3749c, 0x374ac,
2544 		0x374c0, 0x374c0,
2545 		0x374c8, 0x374d0,
2546 		0x374d8, 0x374e0,
2547 		0x374ec, 0x3752c,
2548 		0x37534, 0x37550,
2549 		0x37558, 0x37558,
2550 		0x37560, 0x3758c,
2551 		0x3759c, 0x375ac,
2552 		0x375c0, 0x375c0,
2553 		0x375c8, 0x375d0,
2554 		0x375d8, 0x375e0,
2555 		0x375ec, 0x37690,
2556 		0x37698, 0x376c4,
2557 		0x376e4, 0x37790,
2558 		0x37798, 0x377c4,
2559 		0x377e4, 0x377fc,
2560 		0x37814, 0x37814,
2561 		0x37854, 0x37868,
2562 		0x37880, 0x3788c,
2563 		0x378c0, 0x378d0,
2564 		0x378e8, 0x378ec,
2565 		0x37900, 0x3792c,
2566 		0x37934, 0x37950,
2567 		0x37958, 0x37958,
2568 		0x37960, 0x3798c,
2569 		0x3799c, 0x379ac,
2570 		0x379c0, 0x379c0,
2571 		0x379c8, 0x379d0,
2572 		0x379d8, 0x379e0,
2573 		0x379ec, 0x37a90,
2574 		0x37a98, 0x37ac4,
2575 		0x37ae4, 0x37b10,
2576 		0x37b24, 0x37b28,
2577 		0x37b38, 0x37b50,
2578 		0x37bf0, 0x37c10,
2579 		0x37c24, 0x37c28,
2580 		0x37c38, 0x37c50,
2581 		0x37cf0, 0x37cfc,
2582 		0x40040, 0x40040,
2583 		0x40080, 0x40084,
2584 		0x40100, 0x40100,
2585 		0x40140, 0x401bc,
2586 		0x40200, 0x40214,
2587 		0x40228, 0x40228,
2588 		0x40240, 0x40258,
2589 		0x40280, 0x40280,
2590 		0x40304, 0x40304,
2591 		0x40330, 0x4033c,
2592 		0x41304, 0x413c8,
2593 		0x413d0, 0x413dc,
2594 		0x413f0, 0x413f0,
2595 		0x41400, 0x4140c,
2596 		0x41414, 0x4141c,
2597 		0x41480, 0x414d0,
2598 		0x44000, 0x4407c,
2599 		0x440c0, 0x441ac,
2600 		0x441b4, 0x4427c,
2601 		0x442c0, 0x443ac,
2602 		0x443b4, 0x4447c,
2603 		0x444c0, 0x445ac,
2604 		0x445b4, 0x4467c,
2605 		0x446c0, 0x447ac,
2606 		0x447b4, 0x4487c,
2607 		0x448c0, 0x449ac,
2608 		0x449b4, 0x44a7c,
2609 		0x44ac0, 0x44bac,
2610 		0x44bb4, 0x44c7c,
2611 		0x44cc0, 0x44dac,
2612 		0x44db4, 0x44e7c,
2613 		0x44ec0, 0x44fac,
2614 		0x44fb4, 0x4507c,
2615 		0x450c0, 0x451ac,
2616 		0x451b4, 0x451fc,
2617 		0x45800, 0x45804,
2618 		0x45810, 0x45830,
2619 		0x45840, 0x45860,
2620 		0x45868, 0x45868,
2621 		0x45880, 0x45884,
2622 		0x458a0, 0x458b0,
2623 		0x45a00, 0x45a04,
2624 		0x45a10, 0x45a30,
2625 		0x45a40, 0x45a60,
2626 		0x45a68, 0x45a68,
2627 		0x45a80, 0x45a84,
2628 		0x45aa0, 0x45ab0,
2629 		0x460c0, 0x460e4,
2630 		0x47000, 0x4703c,
2631 		0x47044, 0x4708c,
2632 		0x47200, 0x47250,
2633 		0x47400, 0x47408,
2634 		0x47414, 0x47420,
2635 		0x47600, 0x47618,
2636 		0x47800, 0x47814,
2637 		0x47820, 0x4782c,
2638 		0x50000, 0x50084,
2639 		0x50090, 0x500cc,
2640 		0x50300, 0x50384,
2641 		0x50400, 0x50400,
2642 		0x50800, 0x50884,
2643 		0x50890, 0x508cc,
2644 		0x50b00, 0x50b84,
2645 		0x50c00, 0x50c00,
2646 		0x51000, 0x51020,
2647 		0x51028, 0x510b0,
2648 		0x51300, 0x51324,
2649 	};
2650 
2651 	static const unsigned int t6vf_reg_ranges[] = {
2652 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2653 		VF_MPS_REG(A_MPS_VF_CTL),
2654 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2655 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2656 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2657 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2658 		FW_T6VF_MBDATA_BASE_ADDR,
2659 		FW_T6VF_MBDATA_BASE_ADDR +
2660 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2661 	};
2662 
2663 	u32 *buf_end = (u32 *)(buf + buf_size);
2664 	const unsigned int *reg_ranges;
2665 	int reg_ranges_size, range;
2666 	unsigned int chip_version = chip_id(adap);
2667 
2668 	/*
2669 	 * Select the right set of register ranges to dump depending on the
2670 	 * adapter chip type.
2671 	 */
2672 	switch (chip_version) {
2673 	case CHELSIO_T4:
2674 		if (adap->flags & IS_VF) {
2675 			reg_ranges = t4vf_reg_ranges;
2676 			reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges);
2677 		} else {
2678 			reg_ranges = t4_reg_ranges;
2679 			reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2680 		}
2681 		break;
2682 
2683 	case CHELSIO_T5:
2684 		if (adap->flags & IS_VF) {
2685 			reg_ranges = t5vf_reg_ranges;
2686 			reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges);
2687 		} else {
2688 			reg_ranges = t5_reg_ranges;
2689 			reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2690 		}
2691 		break;
2692 
2693 	case CHELSIO_T6:
2694 		if (adap->flags & IS_VF) {
2695 			reg_ranges = t6vf_reg_ranges;
2696 			reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges);
2697 		} else {
2698 			reg_ranges = t6_reg_ranges;
2699 			reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2700 		}
2701 		break;
2702 
2703 	default:
2704 		CH_ERR(adap,
2705 			"Unsupported chip version %d\n", chip_version);
2706 		return;
2707 	}
2708 
2709 	/*
2710 	 * Clear the register buffer and insert the appropriate register
2711 	 * values selected by the above register ranges.
2712 	 */
2713 	memset(buf, 0, buf_size);
2714 	for (range = 0; range < reg_ranges_size; range += 2) {
2715 		unsigned int reg = reg_ranges[range];
2716 		unsigned int last_reg = reg_ranges[range + 1];
2717 		u32 *bufp = (u32 *)(buf + reg);
2718 
2719 		/*
2720 		 * Iterate across the register range filling in the register
2721 		 * buffer but don't write past the end of the register buffer.
2722 		 */
2723 		while (reg <= last_reg && bufp < buf_end) {
2724 			*bufp++ = t4_read_reg(adap, reg);
2725 			reg += sizeof(u32);
2726 		}
2727 	}
2728 }
2729 
2730 /*
2731  * Partial EEPROM Vital Product Data structure.  The VPD starts with one ID
2732  * header followed by one or more VPD-R sections, each with its own header.
2733  */
2734 struct t4_vpd_hdr {
2735 	u8  id_tag;
2736 	u8  id_len[2];
2737 	u8  id_data[ID_LEN];
2738 };
2739 
2740 struct t4_vpdr_hdr {
2741 	u8  vpdr_tag;
2742 	u8  vpdr_len[2];
2743 };
2744 
2745 /*
2746  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
2747  */
2748 #define EEPROM_DELAY		10		/* 10us per poll spin */
2749 #define EEPROM_MAX_POLL		5000		/* x 5000 == 50ms */
2750 
2751 #define EEPROM_STAT_ADDR	0x7bfc
2752 #define VPD_SIZE		0x800
2753 #define VPD_BASE		0x400
2754 #define VPD_BASE_OLD		0
2755 #define VPD_LEN			1024
2756 #define VPD_INFO_FLD_HDR_SIZE	3
2757 #define CHELSIO_VPD_UNIQUE_ID	0x82
2758 
2759 /*
2760  * Small utility function to wait till any outstanding VPD Access is complete.
2761  * We have a per-adapter state variable "VPD Busy" to indicate when we have a
2762  * VPD Access in flight.  This allows us to handle the problem of having a
2763  * previous VPD Access time out and prevent an attempt to inject a new VPD
2764  * Request before any in-flight VPD reguest has completed.
2765  */
2766 static int t4_seeprom_wait(struct adapter *adapter)
2767 {
2768 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2769 	int max_poll;
2770 
2771 	/*
2772 	 * If no VPD Access is in flight, we can just return success right
2773 	 * away.
2774 	 */
2775 	if (!adapter->vpd_busy)
2776 		return 0;
2777 
2778 	/*
2779 	 * Poll the VPD Capability Address/Flag register waiting for it
2780 	 * to indicate that the operation is complete.
2781 	 */
2782 	max_poll = EEPROM_MAX_POLL;
2783 	do {
2784 		u16 val;
2785 
2786 		udelay(EEPROM_DELAY);
2787 		t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
2788 
2789 		/*
2790 		 * If the operation is complete, mark the VPD as no longer
2791 		 * busy and return success.
2792 		 */
2793 		if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
2794 			adapter->vpd_busy = 0;
2795 			return 0;
2796 		}
2797 	} while (--max_poll);
2798 
2799 	/*
2800 	 * Failure!  Note that we leave the VPD Busy status set in order to
2801 	 * avoid pushing a new VPD Access request into the VPD Capability till
2802 	 * the current operation eventually succeeds.  It's a bug to issue a
2803 	 * new request when an existing request is in flight and will result
2804 	 * in corrupt hardware state.
2805 	 */
2806 	return -ETIMEDOUT;
2807 }
2808 
2809 /**
2810  *	t4_seeprom_read - read a serial EEPROM location
2811  *	@adapter: adapter to read
2812  *	@addr: EEPROM virtual address
2813  *	@data: where to store the read data
2814  *
2815  *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
2816  *	VPD capability.  Note that this function must be called with a virtual
2817  *	address.
2818  */
2819 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2820 {
2821 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2822 	int ret;
2823 
2824 	/*
2825 	 * VPD Accesses must alway be 4-byte aligned!
2826 	 */
2827 	if (addr >= EEPROMVSIZE || (addr & 3))
2828 		return -EINVAL;
2829 
2830 	/*
2831 	 * Wait for any previous operation which may still be in flight to
2832 	 * complete.
2833 	 */
2834 	ret = t4_seeprom_wait(adapter);
2835 	if (ret) {
2836 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2837 		return ret;
2838 	}
2839 
2840 	/*
2841 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2842 	 * for our request to complete.  If it doesn't complete, note the
2843 	 * error and return it to our caller.  Note that we do not reset the
2844 	 * VPD Busy status!
2845 	 */
2846 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2847 	adapter->vpd_busy = 1;
2848 	adapter->vpd_flag = PCI_VPD_ADDR_F;
2849 	ret = t4_seeprom_wait(adapter);
2850 	if (ret) {
2851 		CH_ERR(adapter, "VPD read of address %#x failed\n", addr);
2852 		return ret;
2853 	}
2854 
2855 	/*
2856 	 * Grab the returned data, swizzle it into our endianness and
2857 	 * return success.
2858 	 */
2859 	t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2860 	*data = le32_to_cpu(*data);
2861 	return 0;
2862 }
2863 
2864 /**
2865  *	t4_seeprom_write - write a serial EEPROM location
2866  *	@adapter: adapter to write
2867  *	@addr: virtual EEPROM address
2868  *	@data: value to write
2869  *
2870  *	Write a 32-bit word to a location in serial EEPROM using the card's PCI
2871  *	VPD capability.  Note that this function must be called with a virtual
2872  *	address.
2873  */
2874 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2875 {
2876 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2877 	int ret;
2878 	u32 stats_reg;
2879 	int max_poll;
2880 
2881 	/*
2882 	 * VPD Accesses must alway be 4-byte aligned!
2883 	 */
2884 	if (addr >= EEPROMVSIZE || (addr & 3))
2885 		return -EINVAL;
2886 
2887 	/*
2888 	 * Wait for any previous operation which may still be in flight to
2889 	 * complete.
2890 	 */
2891 	ret = t4_seeprom_wait(adapter);
2892 	if (ret) {
2893 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2894 		return ret;
2895 	}
2896 
2897 	/*
2898 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2899 	 * for our request to complete.  If it doesn't complete, note the
2900 	 * error and return it to our caller.  Note that we do not reset the
2901 	 * VPD Busy status!
2902 	 */
2903 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2904 				 cpu_to_le32(data));
2905 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2906 				 (u16)addr | PCI_VPD_ADDR_F);
2907 	adapter->vpd_busy = 1;
2908 	adapter->vpd_flag = 0;
2909 	ret = t4_seeprom_wait(adapter);
2910 	if (ret) {
2911 		CH_ERR(adapter, "VPD write of address %#x failed\n", addr);
2912 		return ret;
2913 	}
2914 
2915 	/*
2916 	 * Reset PCI_VPD_DATA register after a transaction and wait for our
2917 	 * request to complete. If it doesn't complete, return error.
2918 	 */
2919 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2920 	max_poll = EEPROM_MAX_POLL;
2921 	do {
2922 		udelay(EEPROM_DELAY);
2923 		t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2924 	} while ((stats_reg & 0x1) && --max_poll);
2925 	if (!max_poll)
2926 		return -ETIMEDOUT;
2927 
2928 	/* Return success! */
2929 	return 0;
2930 }
2931 
2932 /**
2933  *	t4_eeprom_ptov - translate a physical EEPROM address to virtual
2934  *	@phys_addr: the physical EEPROM address
2935  *	@fn: the PCI function number
2936  *	@sz: size of function-specific area
2937  *
2938  *	Translate a physical EEPROM address to virtual.  The first 1K is
2939  *	accessed through virtual addresses starting at 31K, the rest is
2940  *	accessed through virtual addresses starting at 0.
2941  *
2942  *	The mapping is as follows:
2943  *	[0..1K) -> [31K..32K)
2944  *	[1K..1K+A) -> [ES-A..ES)
2945  *	[1K+A..ES) -> [0..ES-A-1K)
2946  *
2947  *	where A = @fn * @sz, and ES = EEPROM size.
2948  */
2949 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2950 {
2951 	fn *= sz;
2952 	if (phys_addr < 1024)
2953 		return phys_addr + (31 << 10);
2954 	if (phys_addr < 1024 + fn)
2955 		return EEPROMSIZE - fn + phys_addr - 1024;
2956 	if (phys_addr < EEPROMSIZE)
2957 		return phys_addr - 1024 - fn;
2958 	return -EINVAL;
2959 }
2960 
2961 /**
2962  *	t4_seeprom_wp - enable/disable EEPROM write protection
2963  *	@adapter: the adapter
2964  *	@enable: whether to enable or disable write protection
2965  *
2966  *	Enables or disables write protection on the serial EEPROM.
2967  */
2968 int t4_seeprom_wp(struct adapter *adapter, int enable)
2969 {
2970 	return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2971 }
2972 
2973 /**
2974  *	get_vpd_keyword_val - Locates an information field keyword in the VPD
2975  *	@vpd: Pointer to buffered vpd data structure
2976  *	@kw: The keyword to search for
2977  *	@region: VPD region to search (starting from 0)
2978  *
2979  *	Returns the value of the information field keyword or
2980  *	-ENOENT otherwise.
2981  */
2982 static int get_vpd_keyword_val(const u8 *vpd, const char *kw, int region)
2983 {
2984 	int i, tag;
2985 	unsigned int offset, len;
2986 	const struct t4_vpdr_hdr *vpdr;
2987 
2988 	offset = sizeof(struct t4_vpd_hdr);
2989 	vpdr = (const void *)(vpd + offset);
2990 	tag = vpdr->vpdr_tag;
2991 	len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2992 	while (region--) {
2993 		offset += sizeof(struct t4_vpdr_hdr) + len;
2994 		vpdr = (const void *)(vpd + offset);
2995 		if (++tag != vpdr->vpdr_tag)
2996 			return -ENOENT;
2997 		len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2998 	}
2999 	offset += sizeof(struct t4_vpdr_hdr);
3000 
3001 	if (offset + len > VPD_LEN) {
3002 		return -ENOENT;
3003 	}
3004 
3005 	for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
3006 		if (memcmp(vpd + i , kw , 2) == 0){
3007 			i += VPD_INFO_FLD_HDR_SIZE;
3008 			return i;
3009 		}
3010 
3011 		i += VPD_INFO_FLD_HDR_SIZE + vpd[i+2];
3012 	}
3013 
3014 	return -ENOENT;
3015 }
3016 
3017 
3018 /**
3019  *	get_vpd_params - read VPD parameters from VPD EEPROM
3020  *	@adapter: adapter to read
3021  *	@p: where to store the parameters
3022  *	@vpd: caller provided temporary space to read the VPD into
3023  *
3024  *	Reads card parameters stored in VPD EEPROM.
3025  */
3026 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p,
3027     uint16_t device_id, u32 *buf)
3028 {
3029 	int i, ret, addr;
3030 	int ec, sn, pn, na, md;
3031 	u8 csum;
3032 	const u8 *vpd = (const u8 *)buf;
3033 
3034 	/*
3035 	 * Card information normally starts at VPD_BASE but early cards had
3036 	 * it at 0.
3037 	 */
3038 	ret = t4_seeprom_read(adapter, VPD_BASE, buf);
3039 	if (ret)
3040 		return (ret);
3041 
3042 	/*
3043 	 * The VPD shall have a unique identifier specified by the PCI SIG.
3044 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
3045 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
3046 	 * is expected to automatically put this entry at the
3047 	 * beginning of the VPD.
3048 	 */
3049 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
3050 
3051 	for (i = 0; i < VPD_LEN; i += 4) {
3052 		ret = t4_seeprom_read(adapter, addr + i, buf++);
3053 		if (ret)
3054 			return ret;
3055 	}
3056 
3057 #define FIND_VPD_KW(var,name) do { \
3058 	var = get_vpd_keyword_val(vpd, name, 0); \
3059 	if (var < 0) { \
3060 		CH_ERR(adapter, "missing VPD keyword " name "\n"); \
3061 		return -EINVAL; \
3062 	} \
3063 } while (0)
3064 
3065 	FIND_VPD_KW(i, "RV");
3066 	for (csum = 0; i >= 0; i--)
3067 		csum += vpd[i];
3068 
3069 	if (csum) {
3070 		CH_ERR(adapter,
3071 			"corrupted VPD EEPROM, actual csum %u\n", csum);
3072 		return -EINVAL;
3073 	}
3074 
3075 	FIND_VPD_KW(ec, "EC");
3076 	FIND_VPD_KW(sn, "SN");
3077 	FIND_VPD_KW(pn, "PN");
3078 	FIND_VPD_KW(na, "NA");
3079 #undef FIND_VPD_KW
3080 
3081 	memcpy(p->id, vpd + offsetof(struct t4_vpd_hdr, id_data), ID_LEN);
3082 	strstrip(p->id);
3083 	memcpy(p->ec, vpd + ec, EC_LEN);
3084 	strstrip(p->ec);
3085 	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
3086 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
3087 	strstrip(p->sn);
3088 	i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
3089 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
3090 	strstrip((char *)p->pn);
3091 	i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
3092 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
3093 	strstrip((char *)p->na);
3094 
3095 	if (device_id & 0x80)
3096 		return 0;	/* Custom card */
3097 
3098 	md = get_vpd_keyword_val(vpd, "VF", 1);
3099 	if (md < 0) {
3100 		snprintf(p->md, sizeof(p->md), "unknown");
3101 	} else {
3102 		i = vpd[md - VPD_INFO_FLD_HDR_SIZE + 2];
3103 		memcpy(p->md, vpd + md, min(i, MD_LEN));
3104 		strstrip((char *)p->md);
3105 	}
3106 
3107 	return 0;
3108 }
3109 
3110 /* serial flash and firmware constants and flash config file constants */
3111 enum {
3112 	SF_ATTEMPTS = 10,	/* max retries for SF operations */
3113 
3114 	/* flash command opcodes */
3115 	SF_PROG_PAGE    = 2,	/* program 256B page */
3116 	SF_WR_DISABLE   = 4,	/* disable writes */
3117 	SF_RD_STATUS    = 5,	/* read status register */
3118 	SF_WR_ENABLE    = 6,	/* enable writes */
3119 	SF_RD_DATA_FAST = 0xb,	/* read flash */
3120 	SF_RD_ID	= 0x9f,	/* read ID */
3121 	SF_ERASE_SECTOR = 0xd8,	/* erase 64KB sector */
3122 };
3123 
3124 /**
3125  *	sf1_read - read data from the serial flash
3126  *	@adapter: the adapter
3127  *	@byte_cnt: number of bytes to read
3128  *	@cont: whether another operation will be chained
3129  *	@lock: whether to lock SF for PL access only
3130  *	@valp: where to store the read data
3131  *
3132  *	Reads up to 4 bytes of data from the serial flash.  The location of
3133  *	the read needs to be specified prior to calling this by issuing the
3134  *	appropriate commands to the serial flash.
3135  */
3136 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
3137 		    int lock, u32 *valp)
3138 {
3139 	int ret;
3140 
3141 	if (!byte_cnt || byte_cnt > 4)
3142 		return -EINVAL;
3143 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3144 		return -EBUSY;
3145 	t4_write_reg(adapter, A_SF_OP,
3146 		     V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
3147 	ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3148 	if (!ret)
3149 		*valp = t4_read_reg(adapter, A_SF_DATA);
3150 	return ret;
3151 }
3152 
3153 /**
3154  *	sf1_write - write data to the serial flash
3155  *	@adapter: the adapter
3156  *	@byte_cnt: number of bytes to write
3157  *	@cont: whether another operation will be chained
3158  *	@lock: whether to lock SF for PL access only
3159  *	@val: value to write
3160  *
3161  *	Writes up to 4 bytes of data to the serial flash.  The location of
3162  *	the write needs to be specified prior to calling this by issuing the
3163  *	appropriate commands to the serial flash.
3164  */
3165 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
3166 		     int lock, u32 val)
3167 {
3168 	if (!byte_cnt || byte_cnt > 4)
3169 		return -EINVAL;
3170 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3171 		return -EBUSY;
3172 	t4_write_reg(adapter, A_SF_DATA, val);
3173 	t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
3174 		     V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
3175 	return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3176 }
3177 
3178 /**
3179  *	flash_wait_op - wait for a flash operation to complete
3180  *	@adapter: the adapter
3181  *	@attempts: max number of polls of the status register
3182  *	@delay: delay between polls in ms
3183  *
3184  *	Wait for a flash operation to complete by polling the status register.
3185  */
3186 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3187 {
3188 	int ret;
3189 	u32 status;
3190 
3191 	while (1) {
3192 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3193 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3194 			return ret;
3195 		if (!(status & 1))
3196 			return 0;
3197 		if (--attempts == 0)
3198 			return -EAGAIN;
3199 		if (delay)
3200 			msleep(delay);
3201 	}
3202 }
3203 
3204 /**
3205  *	t4_read_flash - read words from serial flash
3206  *	@adapter: the adapter
3207  *	@addr: the start address for the read
3208  *	@nwords: how many 32-bit words to read
3209  *	@data: where to store the read data
3210  *	@byte_oriented: whether to store data as bytes or as words
3211  *
3212  *	Read the specified number of 32-bit words from the serial flash.
3213  *	If @byte_oriented is set the read data is stored as a byte array
3214  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3215  *	natural endianness.
3216  */
3217 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3218 		  unsigned int nwords, u32 *data, int byte_oriented)
3219 {
3220 	int ret;
3221 
3222 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3223 		return -EINVAL;
3224 
3225 	addr = swab32(addr) | SF_RD_DATA_FAST;
3226 
3227 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3228 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3229 		return ret;
3230 
3231 	for ( ; nwords; nwords--, data++) {
3232 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3233 		if (nwords == 1)
3234 			t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3235 		if (ret)
3236 			return ret;
3237 		if (byte_oriented)
3238 			*data = (__force __u32)(cpu_to_be32(*data));
3239 	}
3240 	return 0;
3241 }
3242 
3243 /**
3244  *	t4_write_flash - write up to a page of data to the serial flash
3245  *	@adapter: the adapter
3246  *	@addr: the start address to write
3247  *	@n: length of data to write in bytes
3248  *	@data: the data to write
3249  *	@byte_oriented: whether to store data as bytes or as words
3250  *
3251  *	Writes up to a page of data (256 bytes) to the serial flash starting
3252  *	at the given address.  All the data must be written to the same page.
3253  *	If @byte_oriented is set the write data is stored as byte stream
3254  *	(i.e. matches what on disk), otherwise in big-endian.
3255  */
3256 int t4_write_flash(struct adapter *adapter, unsigned int addr,
3257 			  unsigned int n, const u8 *data, int byte_oriented)
3258 {
3259 	int ret;
3260 	u32 buf[SF_PAGE_SIZE / 4];
3261 	unsigned int i, c, left, val, offset = addr & 0xff;
3262 
3263 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3264 		return -EINVAL;
3265 
3266 	val = swab32(addr) | SF_PROG_PAGE;
3267 
3268 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3269 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3270 		goto unlock;
3271 
3272 	for (left = n; left; left -= c) {
3273 		c = min(left, 4U);
3274 		for (val = 0, i = 0; i < c; ++i)
3275 			val = (val << 8) + *data++;
3276 
3277 		if (!byte_oriented)
3278 			val = cpu_to_be32(val);
3279 
3280 		ret = sf1_write(adapter, c, c != left, 1, val);
3281 		if (ret)
3282 			goto unlock;
3283 	}
3284 	ret = flash_wait_op(adapter, 8, 1);
3285 	if (ret)
3286 		goto unlock;
3287 
3288 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3289 
3290 	/* Read the page to verify the write succeeded */
3291 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3292 			    byte_oriented);
3293 	if (ret)
3294 		return ret;
3295 
3296 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3297 		CH_ERR(adapter,
3298 			"failed to correctly write the flash page at %#x\n",
3299 			addr);
3300 		return -EIO;
3301 	}
3302 	return 0;
3303 
3304 unlock:
3305 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3306 	return ret;
3307 }
3308 
3309 /**
3310  *	t4_get_fw_version - read the firmware version
3311  *	@adapter: the adapter
3312  *	@vers: where to place the version
3313  *
3314  *	Reads the FW version from flash.
3315  */
3316 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3317 {
3318 	return t4_read_flash(adapter, FLASH_FW_START +
3319 			     offsetof(struct fw_hdr, fw_ver), 1,
3320 			     vers, 0);
3321 }
3322 
3323 /**
3324  *	t4_get_fw_hdr - read the firmware header
3325  *	@adapter: the adapter
3326  *	@hdr: where to place the version
3327  *
3328  *	Reads the FW header from flash into caller provided buffer.
3329  */
3330 int t4_get_fw_hdr(struct adapter *adapter, struct fw_hdr *hdr)
3331 {
3332 	return t4_read_flash(adapter, FLASH_FW_START,
3333 	    sizeof (*hdr) / sizeof (uint32_t), (uint32_t *)hdr, 1);
3334 }
3335 
3336 /**
3337  *	t4_get_bs_version - read the firmware bootstrap version
3338  *	@adapter: the adapter
3339  *	@vers: where to place the version
3340  *
3341  *	Reads the FW Bootstrap version from flash.
3342  */
3343 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3344 {
3345 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3346 			     offsetof(struct fw_hdr, fw_ver), 1,
3347 			     vers, 0);
3348 }
3349 
3350 /**
3351  *	t4_get_tp_version - read the TP microcode version
3352  *	@adapter: the adapter
3353  *	@vers: where to place the version
3354  *
3355  *	Reads the TP microcode version from flash.
3356  */
3357 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3358 {
3359 	return t4_read_flash(adapter, FLASH_FW_START +
3360 			     offsetof(struct fw_hdr, tp_microcode_ver),
3361 			     1, vers, 0);
3362 }
3363 
3364 /**
3365  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3366  *	@adapter: the adapter
3367  *	@vers: where to place the version
3368  *
3369  *	Reads the Expansion ROM header from FLASH and returns the version
3370  *	number (if present) through the @vers return value pointer.  We return
3371  *	this in the Firmware Version Format since it's convenient.  Return
3372  *	0 on success, -ENOENT if no Expansion ROM is present.
3373  */
3374 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3375 {
3376 	struct exprom_header {
3377 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3378 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3379 	} *hdr;
3380 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3381 					   sizeof(u32))];
3382 	int ret;
3383 
3384 	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3385 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3386 			    0);
3387 	if (ret)
3388 		return ret;
3389 
3390 	hdr = (struct exprom_header *)exprom_header_buf;
3391 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3392 		return -ENOENT;
3393 
3394 	*vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
3395 		 V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
3396 		 V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
3397 		 V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
3398 	return 0;
3399 }
3400 
3401 /**
3402  *	t4_get_scfg_version - return the Serial Configuration version
3403  *	@adapter: the adapter
3404  *	@vers: where to place the version
3405  *
3406  *	Reads the Serial Configuration Version via the Firmware interface
3407  *	(thus this can only be called once we're ready to issue Firmware
3408  *	commands).  The format of the Serial Configuration version is
3409  *	adapter specific.  Returns 0 on success, an error on failure.
3410  *
3411  *	Note that early versions of the Firmware didn't include the ability
3412  *	to retrieve the Serial Configuration version, so we zero-out the
3413  *	return-value parameter in that case to avoid leaving it with
3414  *	garbage in it.
3415  *
3416  *	Also note that the Firmware will return its cached copy of the Serial
3417  *	Initialization Revision ID, not the actual Revision ID as written in
3418  *	the Serial EEPROM.  This is only an issue if a new VPD has been written
3419  *	and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3420  *	it's best to defer calling this routine till after a FW_RESET_CMD has
3421  *	been issued if the Host Driver will be performing a full adapter
3422  *	initialization.
3423  */
3424 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3425 {
3426 	u32 scfgrev_param;
3427 	int ret;
3428 
3429 	scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3430 			 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV));
3431 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3432 			      1, &scfgrev_param, vers);
3433 	if (ret)
3434 		*vers = 0;
3435 	return ret;
3436 }
3437 
3438 /**
3439  *	t4_get_vpd_version - return the VPD version
3440  *	@adapter: the adapter
3441  *	@vers: where to place the version
3442  *
3443  *	Reads the VPD via the Firmware interface (thus this can only be called
3444  *	once we're ready to issue Firmware commands).  The format of the
3445  *	VPD version is adapter specific.  Returns 0 on success, an error on
3446  *	failure.
3447  *
3448  *	Note that early versions of the Firmware didn't include the ability
3449  *	to retrieve the VPD version, so we zero-out the return-value parameter
3450  *	in that case to avoid leaving it with garbage in it.
3451  *
3452  *	Also note that the Firmware will return its cached copy of the VPD
3453  *	Revision ID, not the actual Revision ID as written in the Serial
3454  *	EEPROM.  This is only an issue if a new VPD has been written and the
3455  *	Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3456  *	to defer calling this routine till after a FW_RESET_CMD has been issued
3457  *	if the Host Driver will be performing a full adapter initialization.
3458  */
3459 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3460 {
3461 	u32 vpdrev_param;
3462 	int ret;
3463 
3464 	vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3465 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV));
3466 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3467 			      1, &vpdrev_param, vers);
3468 	if (ret)
3469 		*vers = 0;
3470 	return ret;
3471 }
3472 
3473 /**
3474  *	t4_get_version_info - extract various chip/firmware version information
3475  *	@adapter: the adapter
3476  *
3477  *	Reads various chip/firmware version numbers and stores them into the
3478  *	adapter Adapter Parameters structure.  If any of the efforts fails
3479  *	the first failure will be returned, but all of the version numbers
3480  *	will be read.
3481  */
3482 int t4_get_version_info(struct adapter *adapter)
3483 {
3484 	int ret = 0;
3485 
3486 	#define FIRST_RET(__getvinfo) \
3487 	do { \
3488 		int __ret = __getvinfo; \
3489 		if (__ret && !ret) \
3490 			ret = __ret; \
3491 	} while (0)
3492 
3493 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3494 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3495 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3496 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3497 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3498 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3499 
3500 	#undef FIRST_RET
3501 
3502 	return ret;
3503 }
3504 
3505 /**
3506  *	t4_flash_erase_sectors - erase a range of flash sectors
3507  *	@adapter: the adapter
3508  *	@start: the first sector to erase
3509  *	@end: the last sector to erase
3510  *
3511  *	Erases the sectors in the given inclusive range.
3512  */
3513 int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3514 {
3515 	int ret = 0;
3516 
3517 	if (end >= adapter->params.sf_nsec)
3518 		return -EINVAL;
3519 
3520 	while (start <= end) {
3521 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3522 		    (ret = sf1_write(adapter, 4, 0, 1,
3523 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3524 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3525 			CH_ERR(adapter,
3526 				"erase of flash sector %d failed, error %d\n",
3527 				start, ret);
3528 			break;
3529 		}
3530 		start++;
3531 	}
3532 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3533 	return ret;
3534 }
3535 
3536 /**
3537  *	t4_flash_cfg_addr - return the address of the flash configuration file
3538  *	@adapter: the adapter
3539  *
3540  *	Return the address within the flash where the Firmware Configuration
3541  *	File is stored, or an error if the device FLASH is too small to contain
3542  *	a Firmware Configuration File.
3543  */
3544 int t4_flash_cfg_addr(struct adapter *adapter)
3545 {
3546 	/*
3547 	 * If the device FLASH isn't large enough to hold a Firmware
3548 	 * Configuration File, return an error.
3549 	 */
3550 	if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
3551 		return -ENOSPC;
3552 
3553 	return FLASH_CFG_START;
3554 }
3555 
3556 /*
3557  * Return TRUE if the specified firmware matches the adapter.  I.e. T4
3558  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3559  * and emit an error message for mismatched firmware to save our caller the
3560  * effort ...
3561  */
3562 static int t4_fw_matches_chip(struct adapter *adap,
3563 			      const struct fw_hdr *hdr)
3564 {
3565 	/*
3566 	 * The expression below will return FALSE for any unsupported adapter
3567 	 * which will keep us "honest" in the future ...
3568 	 */
3569 	if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) ||
3570 	    (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) ||
3571 	    (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6))
3572 		return 1;
3573 
3574 	CH_ERR(adap,
3575 		"FW image (%d) is not suitable for this adapter (%d)\n",
3576 		hdr->chip, chip_id(adap));
3577 	return 0;
3578 }
3579 
3580 /**
3581  *	t4_load_fw - download firmware
3582  *	@adap: the adapter
3583  *	@fw_data: the firmware image to write
3584  *	@size: image size
3585  *
3586  *	Write the supplied firmware image to the card's serial flash.
3587  */
3588 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3589 {
3590 	u32 csum;
3591 	int ret, addr;
3592 	unsigned int i;
3593 	u8 first_page[SF_PAGE_SIZE];
3594 	const u32 *p = (const u32 *)fw_data;
3595 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3596 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3597 	unsigned int fw_start_sec;
3598 	unsigned int fw_start;
3599 	unsigned int fw_size;
3600 
3601 	if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) {
3602 		fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC;
3603 		fw_start = FLASH_FWBOOTSTRAP_START;
3604 		fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE;
3605 	} else {
3606 		fw_start_sec = FLASH_FW_START_SEC;
3607  		fw_start = FLASH_FW_START;
3608 		fw_size = FLASH_FW_MAX_SIZE;
3609 	}
3610 
3611 	if (!size) {
3612 		CH_ERR(adap, "FW image has no data\n");
3613 		return -EINVAL;
3614 	}
3615 	if (size & 511) {
3616 		CH_ERR(adap,
3617 			"FW image size not multiple of 512 bytes\n");
3618 		return -EINVAL;
3619 	}
3620 	if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) {
3621 		CH_ERR(adap,
3622 			"FW image size differs from size in FW header\n");
3623 		return -EINVAL;
3624 	}
3625 	if (size > fw_size) {
3626 		CH_ERR(adap, "FW image too large, max is %u bytes\n",
3627 			fw_size);
3628 		return -EFBIG;
3629 	}
3630 	if (!t4_fw_matches_chip(adap, hdr))
3631 		return -EINVAL;
3632 
3633 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3634 		csum += be32_to_cpu(p[i]);
3635 
3636 	if (csum != 0xffffffff) {
3637 		CH_ERR(adap,
3638 			"corrupted firmware image, checksum %#x\n", csum);
3639 		return -EINVAL;
3640 	}
3641 
3642 	i = DIV_ROUND_UP(size, sf_sec_size);	/* # of sectors spanned */
3643 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3644 	if (ret)
3645 		goto out;
3646 
3647 	/*
3648 	 * We write the correct version at the end so the driver can see a bad
3649 	 * version if the FW write fails.  Start by writing a copy of the
3650 	 * first page with a bad version.
3651 	 */
3652 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3653 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3654 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
3655 	if (ret)
3656 		goto out;
3657 
3658 	addr = fw_start;
3659 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3660 		addr += SF_PAGE_SIZE;
3661 		fw_data += SF_PAGE_SIZE;
3662 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
3663 		if (ret)
3664 			goto out;
3665 	}
3666 
3667 	ret = t4_write_flash(adap,
3668 			     fw_start + offsetof(struct fw_hdr, fw_ver),
3669 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
3670 out:
3671 	if (ret)
3672 		CH_ERR(adap, "firmware download failed, error %d\n",
3673 			ret);
3674 	return ret;
3675 }
3676 
3677 /**
3678  *	t4_fwcache - firmware cache operation
3679  *	@adap: the adapter
3680  *	@op  : the operation (flush or flush and invalidate)
3681  */
3682 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3683 {
3684 	struct fw_params_cmd c;
3685 
3686 	memset(&c, 0, sizeof(c));
3687 	c.op_to_vfn =
3688 	    cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3689 			    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3690 				V_FW_PARAMS_CMD_PFN(adap->pf) |
3691 				V_FW_PARAMS_CMD_VFN(0));
3692 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3693 	c.param[0].mnem =
3694 	    cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3695 			    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE));
3696 	c.param[0].val = (__force __be32)op;
3697 
3698 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3699 }
3700 
3701 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3702 			unsigned int *pif_req_wrptr,
3703 			unsigned int *pif_rsp_wrptr)
3704 {
3705 	int i, j;
3706 	u32 cfg, val, req, rsp;
3707 
3708 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3709 	if (cfg & F_LADBGEN)
3710 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3711 
3712 	val = t4_read_reg(adap, A_CIM_DEBUGSTS);
3713 	req = G_POLADBGWRPTR(val);
3714 	rsp = G_PILADBGWRPTR(val);
3715 	if (pif_req_wrptr)
3716 		*pif_req_wrptr = req;
3717 	if (pif_rsp_wrptr)
3718 		*pif_rsp_wrptr = rsp;
3719 
3720 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3721 		for (j = 0; j < 6; j++) {
3722 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
3723 				     V_PILADBGRDPTR(rsp));
3724 			*pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
3725 			*pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
3726 			req++;
3727 			rsp++;
3728 		}
3729 		req = (req + 2) & M_POLADBGRDPTR;
3730 		rsp = (rsp + 2) & M_PILADBGRDPTR;
3731 	}
3732 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3733 }
3734 
3735 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3736 {
3737 	u32 cfg;
3738 	int i, j, idx;
3739 
3740 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3741 	if (cfg & F_LADBGEN)
3742 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3743 
3744 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3745 		for (j = 0; j < 5; j++) {
3746 			idx = 8 * i + j;
3747 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
3748 				     V_PILADBGRDPTR(idx));
3749 			*ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
3750 			*ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
3751 		}
3752 	}
3753 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3754 }
3755 
3756 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3757 {
3758 	unsigned int i, j;
3759 
3760 	for (i = 0; i < 8; i++) {
3761 		u32 *p = la_buf + i;
3762 
3763 		t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
3764 		j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
3765 		t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
3766 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3767 			*p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
3768 	}
3769 }
3770 
3771 /**
3772  *	fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3773  *	@caps16: a 16-bit Port Capabilities value
3774  *
3775  *	Returns the equivalent 32-bit Port Capabilities value.
3776  */
3777 static uint32_t fwcaps16_to_caps32(uint16_t caps16)
3778 {
3779 	uint32_t caps32 = 0;
3780 
3781 	#define CAP16_TO_CAP32(__cap) \
3782 		do { \
3783 			if (caps16 & FW_PORT_CAP_##__cap) \
3784 				caps32 |= FW_PORT_CAP32_##__cap; \
3785 		} while (0)
3786 
3787 	CAP16_TO_CAP32(SPEED_100M);
3788 	CAP16_TO_CAP32(SPEED_1G);
3789 	CAP16_TO_CAP32(SPEED_25G);
3790 	CAP16_TO_CAP32(SPEED_10G);
3791 	CAP16_TO_CAP32(SPEED_40G);
3792 	CAP16_TO_CAP32(SPEED_100G);
3793 	CAP16_TO_CAP32(FC_RX);
3794 	CAP16_TO_CAP32(FC_TX);
3795 	CAP16_TO_CAP32(ANEG);
3796 	CAP16_TO_CAP32(FORCE_PAUSE);
3797 	CAP16_TO_CAP32(MDIAUTO);
3798 	CAP16_TO_CAP32(MDISTRAIGHT);
3799 	CAP16_TO_CAP32(FEC_RS);
3800 	CAP16_TO_CAP32(FEC_BASER_RS);
3801 	CAP16_TO_CAP32(802_3_PAUSE);
3802 	CAP16_TO_CAP32(802_3_ASM_DIR);
3803 
3804 	#undef CAP16_TO_CAP32
3805 
3806 	return caps32;
3807 }
3808 
3809 /**
3810  *	fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
3811  *	@caps32: a 32-bit Port Capabilities value
3812  *
3813  *	Returns the equivalent 16-bit Port Capabilities value.  Note that
3814  *	not all 32-bit Port Capabilities can be represented in the 16-bit
3815  *	Port Capabilities and some fields/values may not make it.
3816  */
3817 static uint16_t fwcaps32_to_caps16(uint32_t caps32)
3818 {
3819 	uint16_t caps16 = 0;
3820 
3821 	#define CAP32_TO_CAP16(__cap) \
3822 		do { \
3823 			if (caps32 & FW_PORT_CAP32_##__cap) \
3824 				caps16 |= FW_PORT_CAP_##__cap; \
3825 		} while (0)
3826 
3827 	CAP32_TO_CAP16(SPEED_100M);
3828 	CAP32_TO_CAP16(SPEED_1G);
3829 	CAP32_TO_CAP16(SPEED_10G);
3830 	CAP32_TO_CAP16(SPEED_25G);
3831 	CAP32_TO_CAP16(SPEED_40G);
3832 	CAP32_TO_CAP16(SPEED_100G);
3833 	CAP32_TO_CAP16(FC_RX);
3834 	CAP32_TO_CAP16(FC_TX);
3835 	CAP32_TO_CAP16(802_3_PAUSE);
3836 	CAP32_TO_CAP16(802_3_ASM_DIR);
3837 	CAP32_TO_CAP16(ANEG);
3838 	CAP32_TO_CAP16(FORCE_PAUSE);
3839 	CAP32_TO_CAP16(MDIAUTO);
3840 	CAP32_TO_CAP16(MDISTRAIGHT);
3841 	CAP32_TO_CAP16(FEC_RS);
3842 	CAP32_TO_CAP16(FEC_BASER_RS);
3843 
3844 	#undef CAP32_TO_CAP16
3845 
3846 	return caps16;
3847 }
3848 
3849 static bool
3850 is_bt(struct port_info *pi)
3851 {
3852 
3853 	return (pi->port_type == FW_PORT_TYPE_BT_SGMII ||
3854 	    pi->port_type == FW_PORT_TYPE_BT_XFI ||
3855 	    pi->port_type == FW_PORT_TYPE_BT_XAUI);
3856 }
3857 
3858 /**
3859  *	t4_link_l1cfg - apply link configuration to MAC/PHY
3860  *	@phy: the PHY to setup
3861  *	@mac: the MAC to setup
3862  *	@lc: the requested link configuration
3863  *
3864  *	Set up a port's MAC and PHY according to a desired link configuration.
3865  *	- If the PHY can auto-negotiate first decide what to advertise, then
3866  *	  enable/disable auto-negotiation as desired, and reset.
3867  *	- If the PHY does not auto-negotiate just reset it.
3868  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3869  *	  otherwise do it later based on the outcome of auto-negotiation.
3870  */
3871 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3872 		  struct link_config *lc)
3873 {
3874 	struct fw_port_cmd c;
3875 	unsigned int mdi = V_FW_PORT_CAP32_MDI(FW_PORT_CAP32_MDI_AUTO);
3876 	unsigned int aneg, fc, fec, speed, rcap;
3877 
3878 	fc = 0;
3879 	if (lc->requested_fc & PAUSE_RX)
3880 		fc |= FW_PORT_CAP32_FC_RX;
3881 	if (lc->requested_fc & PAUSE_TX)
3882 		fc |= FW_PORT_CAP32_FC_TX;
3883 	if (!(lc->requested_fc & PAUSE_AUTONEG))
3884 		fc |= FW_PORT_CAP32_FORCE_PAUSE;
3885 
3886 	fec = 0;
3887 	if (lc->requested_fec == FEC_AUTO)
3888 		fec = lc->fec_hint;
3889 	else {
3890 		if (lc->requested_fec & FEC_RS)
3891 			fec |= FW_PORT_CAP32_FEC_RS;
3892 		if (lc->requested_fec & FEC_BASER_RS)
3893 			fec |= FW_PORT_CAP32_FEC_BASER_RS;
3894 	}
3895 
3896 	if (lc->requested_aneg == AUTONEG_DISABLE)
3897 		aneg = 0;
3898 	else if (lc->requested_aneg == AUTONEG_ENABLE)
3899 		aneg = FW_PORT_CAP32_ANEG;
3900 	else
3901 		aneg = lc->supported & FW_PORT_CAP32_ANEG;
3902 
3903 	if (aneg) {
3904 		speed = lc->supported & V_FW_PORT_CAP32_SPEED(M_FW_PORT_CAP32_SPEED);
3905 	} else if (lc->requested_speed != 0)
3906 		speed = speed_to_fwcap(lc->requested_speed);
3907 	else
3908 		speed = fwcap_top_speed(lc->supported);
3909 
3910 	/* Force AN on for BT cards. */
3911 	if (is_bt(adap->port[port]))
3912 		aneg = lc->supported & FW_PORT_CAP32_ANEG;
3913 
3914 	rcap = aneg | speed | fc | fec;
3915 	if ((rcap | lc->supported) != lc->supported) {
3916 #ifdef INVARIANTS
3917 		CH_WARN(adap, "rcap 0x%08x, pcap 0x%08x\n", rcap,
3918 		    lc->supported);
3919 #endif
3920 		rcap &= lc->supported;
3921 	}
3922 	rcap |= mdi;
3923 
3924 	memset(&c, 0, sizeof(c));
3925 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3926 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3927 				     V_FW_PORT_CMD_PORTID(port));
3928 	if (adap->params.port_caps32) {
3929 		c.action_to_len16 =
3930 		    cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG32) |
3931 			FW_LEN16(c));
3932 		c.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
3933 	} else {
3934 		c.action_to_len16 =
3935 		    cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3936 			    FW_LEN16(c));
3937 		c.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
3938 	}
3939 
3940 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
3941 }
3942 
3943 /**
3944  *	t4_restart_aneg - restart autonegotiation
3945  *	@adap: the adapter
3946  *	@mbox: mbox to use for the FW command
3947  *	@port: the port id
3948  *
3949  *	Restarts autonegotiation for the selected port.
3950  */
3951 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3952 {
3953 	struct fw_port_cmd c;
3954 
3955 	memset(&c, 0, sizeof(c));
3956 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3957 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3958 				     V_FW_PORT_CMD_PORTID(port));
3959 	c.action_to_len16 =
3960 		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3961 			    FW_LEN16(c));
3962 	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3963 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3964 }
3965 
3966 typedef void (*int_handler_t)(struct adapter *adap);
3967 
3968 struct intr_info {
3969 	unsigned int mask;	/* bits to check in interrupt status */
3970 	const char *msg;	/* message to print or NULL */
3971 	short stat_idx;		/* stat counter to increment or -1 */
3972 	unsigned short fatal;	/* whether the condition reported is fatal */
3973 	int_handler_t int_handler;	/* platform-specific int handler */
3974 };
3975 
3976 /**
3977  *	t4_handle_intr_status - table driven interrupt handler
3978  *	@adapter: the adapter that generated the interrupt
3979  *	@reg: the interrupt status register to process
3980  *	@acts: table of interrupt actions
3981  *
3982  *	A table driven interrupt handler that applies a set of masks to an
3983  *	interrupt status word and performs the corresponding actions if the
3984  *	interrupts described by the mask have occurred.  The actions include
3985  *	optionally emitting a warning or alert message.  The table is terminated
3986  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
3987  *	conditions.
3988  */
3989 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
3990 				 const struct intr_info *acts)
3991 {
3992 	int fatal = 0;
3993 	unsigned int mask = 0;
3994 	unsigned int status = t4_read_reg(adapter, reg);
3995 
3996 	for ( ; acts->mask; ++acts) {
3997 		if (!(status & acts->mask))
3998 			continue;
3999 		if (acts->fatal) {
4000 			fatal++;
4001 			CH_ALERT(adapter, "%s (0x%x)\n", acts->msg,
4002 				  status & acts->mask);
4003 		} else if (acts->msg)
4004 			CH_WARN_RATELIMIT(adapter, "%s (0x%x)\n", acts->msg,
4005 				 status & acts->mask);
4006 		if (acts->int_handler)
4007 			acts->int_handler(adapter);
4008 		mask |= acts->mask;
4009 	}
4010 	status &= mask;
4011 	if (status)	/* clear processed interrupts */
4012 		t4_write_reg(adapter, reg, status);
4013 	return fatal;
4014 }
4015 
4016 /*
4017  * Interrupt handler for the PCIE module.
4018  */
4019 static void pcie_intr_handler(struct adapter *adapter)
4020 {
4021 	static const struct intr_info sysbus_intr_info[] = {
4022 		{ F_RNPP, "RXNP array parity error", -1, 1 },
4023 		{ F_RPCP, "RXPC array parity error", -1, 1 },
4024 		{ F_RCIP, "RXCIF array parity error", -1, 1 },
4025 		{ F_RCCP, "Rx completions control array parity error", -1, 1 },
4026 		{ F_RFTP, "RXFT array parity error", -1, 1 },
4027 		{ 0 }
4028 	};
4029 	static const struct intr_info pcie_port_intr_info[] = {
4030 		{ F_TPCP, "TXPC array parity error", -1, 1 },
4031 		{ F_TNPP, "TXNP array parity error", -1, 1 },
4032 		{ F_TFTP, "TXFT array parity error", -1, 1 },
4033 		{ F_TCAP, "TXCA array parity error", -1, 1 },
4034 		{ F_TCIP, "TXCIF array parity error", -1, 1 },
4035 		{ F_RCAP, "RXCA array parity error", -1, 1 },
4036 		{ F_OTDD, "outbound request TLP discarded", -1, 1 },
4037 		{ F_RDPE, "Rx data parity error", -1, 1 },
4038 		{ F_TDUE, "Tx uncorrectable data error", -1, 1 },
4039 		{ 0 }
4040 	};
4041 	static const struct intr_info pcie_intr_info[] = {
4042 		{ F_MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
4043 		{ F_MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
4044 		{ F_MSIDATAPERR, "MSI data parity error", -1, 1 },
4045 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
4046 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
4047 		{ F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
4048 		{ F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
4049 		{ F_PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
4050 		{ F_PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
4051 		{ F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
4052 		{ F_CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
4053 		{ F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
4054 		{ F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
4055 		{ F_DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
4056 		{ F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
4057 		{ F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
4058 		{ F_HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
4059 		{ F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
4060 		{ F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
4061 		{ F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
4062 		{ F_FIDPERR, "PCI FID parity error", -1, 1 },
4063 		{ F_INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
4064 		{ F_MATAGPERR, "PCI MA tag parity error", -1, 1 },
4065 		{ F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
4066 		{ F_RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
4067 		{ F_RXWRPERR, "PCI Rx write parity error", -1, 1 },
4068 		{ F_RPLPERR, "PCI replay buffer parity error", -1, 1 },
4069 		{ F_PCIESINT, "PCI core secondary fault", -1, 1 },
4070 		{ F_PCIEPINT, "PCI core primary fault", -1, 1 },
4071 		{ F_UNXSPLCPLERR, "PCI unexpected split completion error", -1,
4072 		  0 },
4073 		{ 0 }
4074 	};
4075 
4076 	static const struct intr_info t5_pcie_intr_info[] = {
4077 		{ F_MSTGRPPERR, "Master Response Read Queue parity error",
4078 		  -1, 1 },
4079 		{ F_MSTTIMEOUTPERR, "Master Timeout FIFO parity error", -1, 1 },
4080 		{ F_MSIXSTIPERR, "MSI-X STI SRAM parity error", -1, 1 },
4081 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
4082 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
4083 		{ F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
4084 		{ F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
4085 		{ F_PIOCPLGRPPERR, "PCI PIO completion Group FIFO parity error",
4086 		  -1, 1 },
4087 		{ F_PIOREQGRPPERR, "PCI PIO request Group FIFO parity error",
4088 		  -1, 1 },
4089 		{ F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
4090 		{ F_MSTTAGQPERR, "PCI master tag queue parity error", -1, 1 },
4091 		{ F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
4092 		{ F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
4093 		{ F_DREQWRPERR, "PCI DMA channel write request parity error",
4094 		  -1, 1 },
4095 		{ F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
4096 		{ F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
4097 		{ F_HREQWRPERR, "PCI HMA channel count parity error", -1, 1 },
4098 		{ F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
4099 		{ F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
4100 		{ F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
4101 		{ F_FIDPERR, "PCI FID parity error", -1, 1 },
4102 		{ F_VFIDPERR, "PCI INTx clear parity error", -1, 1 },
4103 		{ F_MAGRPPERR, "PCI MA group FIFO parity error", -1, 1 },
4104 		{ F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
4105 		{ F_IPRXHDRGRPPERR, "PCI IP Rx header group parity error",
4106 		  -1, 1 },
4107 		{ F_IPRXDATAGRPPERR, "PCI IP Rx data group parity error",
4108 		  -1, 1 },
4109 		{ F_RPLPERR, "PCI IP replay buffer parity error", -1, 1 },
4110 		{ F_IPSOTPERR, "PCI IP SOT buffer parity error", -1, 1 },
4111 		{ F_TRGT1GRPPERR, "PCI TRGT1 group FIFOs parity error", -1, 1 },
4112 		{ F_READRSPERR, "Outbound read error", -1,
4113 		  0 },
4114 		{ 0 }
4115 	};
4116 
4117 	int fat;
4118 
4119 	if (is_t4(adapter))
4120 		fat = t4_handle_intr_status(adapter,
4121 				A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
4122 				sysbus_intr_info) +
4123 			t4_handle_intr_status(adapter,
4124 					A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
4125 					pcie_port_intr_info) +
4126 			t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
4127 					      pcie_intr_info);
4128 	else
4129 		fat = t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
4130 					    t5_pcie_intr_info);
4131 	if (fat)
4132 		t4_fatal_err(adapter);
4133 }
4134 
4135 /*
4136  * TP interrupt handler.
4137  */
4138 static void tp_intr_handler(struct adapter *adapter)
4139 {
4140 	static const struct intr_info tp_intr_info[] = {
4141 		{ 0x3fffffff, "TP parity error", -1, 1 },
4142 		{ F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
4143 		{ 0 }
4144 	};
4145 
4146 	if (t4_handle_intr_status(adapter, A_TP_INT_CAUSE, tp_intr_info))
4147 		t4_fatal_err(adapter);
4148 }
4149 
4150 /*
4151  * SGE interrupt handler.
4152  */
4153 static void sge_intr_handler(struct adapter *adapter)
4154 {
4155 	u64 v;
4156 	u32 err;
4157 
4158 	static const struct intr_info sge_intr_info[] = {
4159 		{ F_ERR_CPL_EXCEED_IQE_SIZE,
4160 		  "SGE received CPL exceeding IQE size", -1, 1 },
4161 		{ F_ERR_INVALID_CIDX_INC,
4162 		  "SGE GTS CIDX increment too large", -1, 0 },
4163 		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
4164 		{ F_DBFIFO_LP_INT, NULL, -1, 0, t4_db_full },
4165 		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
4166 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
4167 		{ F_ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
4168 		  0 },
4169 		{ F_ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
4170 		  0 },
4171 		{ F_ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
4172 		  0 },
4173 		{ F_ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
4174 		  0 },
4175 		{ F_ERR_ING_CTXT_PRIO,
4176 		  "SGE too many priority ingress contexts", -1, 0 },
4177 		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
4178 		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
4179 		{ F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 |
4180 		  F_ERR_PCIE_ERROR2 | F_ERR_PCIE_ERROR3,
4181 		  "SGE PCIe error for a DBP thread", -1, 0 },
4182 		{ 0 }
4183 	};
4184 
4185 	static const struct intr_info t4t5_sge_intr_info[] = {
4186 		{ F_ERR_DROPPED_DB, NULL, -1, 0, t4_db_dropped },
4187 		{ F_DBFIFO_HP_INT, NULL, -1, 0, t4_db_full },
4188 		{ F_ERR_EGR_CTXT_PRIO,
4189 		  "SGE too many priority egress contexts", -1, 0 },
4190 		{ 0 }
4191 	};
4192 
4193 	/*
4194  	* For now, treat below interrupts as fatal so that we disable SGE and
4195  	* get better debug */
4196 	static const struct intr_info t6_sge_intr_info[] = {
4197 		{ F_FATAL_WRE_LEN,
4198 		  "SGE Actual WRE packet is less than advertized length",
4199 		  -1, 1 },
4200 		{ 0 }
4201 	};
4202 
4203 	v = (u64)t4_read_reg(adapter, A_SGE_INT_CAUSE1) |
4204 		((u64)t4_read_reg(adapter, A_SGE_INT_CAUSE2) << 32);
4205 	if (v) {
4206 		CH_ALERT(adapter, "SGE parity error (%#llx)\n",
4207 				(unsigned long long)v);
4208 		t4_write_reg(adapter, A_SGE_INT_CAUSE1, v);
4209 		t4_write_reg(adapter, A_SGE_INT_CAUSE2, v >> 32);
4210 	}
4211 
4212 	v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3, sge_intr_info);
4213 	if (chip_id(adapter) <= CHELSIO_T5)
4214 		v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3,
4215 					   t4t5_sge_intr_info);
4216 	else
4217 		v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3,
4218 					   t6_sge_intr_info);
4219 
4220 	err = t4_read_reg(adapter, A_SGE_ERROR_STATS);
4221 	if (err & F_ERROR_QID_VALID) {
4222 		CH_ERR(adapter, "SGE error for queue %u\n", G_ERROR_QID(err));
4223 		if (err & F_UNCAPTURED_ERROR)
4224 			CH_ERR(adapter, "SGE UNCAPTURED_ERROR set (clearing)\n");
4225 		t4_write_reg(adapter, A_SGE_ERROR_STATS, F_ERROR_QID_VALID |
4226 			     F_UNCAPTURED_ERROR);
4227 	}
4228 
4229 	if (v != 0)
4230 		t4_fatal_err(adapter);
4231 }
4232 
4233 #define CIM_OBQ_INTR (F_OBQULP0PARERR | F_OBQULP1PARERR | F_OBQULP2PARERR |\
4234 		      F_OBQULP3PARERR | F_OBQSGEPARERR | F_OBQNCSIPARERR)
4235 #define CIM_IBQ_INTR (F_IBQTP0PARERR | F_IBQTP1PARERR | F_IBQULPPARERR |\
4236 		      F_IBQSGEHIPARERR | F_IBQSGELOPARERR | F_IBQNCSIPARERR)
4237 
4238 /*
4239  * CIM interrupt handler.
4240  */
4241 static void cim_intr_handler(struct adapter *adapter)
4242 {
4243 	static const struct intr_info cim_intr_info[] = {
4244 		{ F_PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
4245 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4246 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4247 		{ F_MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
4248 		{ F_MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
4249 		{ F_TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
4250 		{ F_TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
4251 		{ F_TIMER0INT, "CIM TIMER0 interrupt", -1, 1 },
4252 		{ 0 }
4253 	};
4254 	static const struct intr_info cim_upintr_info[] = {
4255 		{ F_RSVDSPACEINT, "CIM reserved space access", -1, 1 },
4256 		{ F_ILLTRANSINT, "CIM illegal transaction", -1, 1 },
4257 		{ F_ILLWRINT, "CIM illegal write", -1, 1 },
4258 		{ F_ILLRDINT, "CIM illegal read", -1, 1 },
4259 		{ F_ILLRDBEINT, "CIM illegal read BE", -1, 1 },
4260 		{ F_ILLWRBEINT, "CIM illegal write BE", -1, 1 },
4261 		{ F_SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
4262 		{ F_SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
4263 		{ F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
4264 		{ F_SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
4265 		{ F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
4266 		{ F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
4267 		{ F_SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
4268 		{ F_SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
4269 		{ F_BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
4270 		{ F_BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
4271 		{ F_SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
4272 		{ F_SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
4273 		{ F_BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
4274 		{ F_BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
4275 		{ F_SGLRDPLINT , "CIM single read from PL space", -1, 1 },
4276 		{ F_SGLWRPLINT , "CIM single write to PL space", -1, 1 },
4277 		{ F_BLKRDPLINT , "CIM block read from PL space", -1, 1 },
4278 		{ F_BLKWRPLINT , "CIM block write to PL space", -1, 1 },
4279 		{ F_REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
4280 		{ F_RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
4281 		{ F_TIMEOUTINT , "CIM PIF timeout", -1, 1 },
4282 		{ F_TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
4283 		{ 0 }
4284 	};
4285 	u32 val, fw_err;
4286 	int fat;
4287 
4288 	fw_err = t4_read_reg(adapter, A_PCIE_FW);
4289 	if (fw_err & F_PCIE_FW_ERR)
4290 		t4_report_fw_error(adapter);
4291 
4292 	/* When the Firmware detects an internal error which normally wouldn't
4293 	 * raise a Host Interrupt, it forces a CIM Timer0 interrupt in order
4294 	 * to make sure the Host sees the Firmware Crash.  So if we have a
4295 	 * Timer0 interrupt and don't see a Firmware Crash, ignore the Timer0
4296 	 * interrupt.
4297 	 */
4298 	val = t4_read_reg(adapter, A_CIM_HOST_INT_CAUSE);
4299 	if (val & F_TIMER0INT)
4300 		if (!(fw_err & F_PCIE_FW_ERR) ||
4301 		    (G_PCIE_FW_EVAL(fw_err) != PCIE_FW_EVAL_CRASH))
4302 			t4_write_reg(adapter, A_CIM_HOST_INT_CAUSE,
4303 				     F_TIMER0INT);
4304 
4305 	fat = t4_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE,
4306 				    cim_intr_info) +
4307 	      t4_handle_intr_status(adapter, A_CIM_HOST_UPACC_INT_CAUSE,
4308 				    cim_upintr_info);
4309 	if (fat)
4310 		t4_fatal_err(adapter);
4311 }
4312 
4313 /*
4314  * ULP RX interrupt handler.
4315  */
4316 static void ulprx_intr_handler(struct adapter *adapter)
4317 {
4318 	static const struct intr_info ulprx_intr_info[] = {
4319 		{ F_CAUSE_CTX_1, "ULPRX channel 1 context error", -1, 1 },
4320 		{ F_CAUSE_CTX_0, "ULPRX channel 0 context error", -1, 1 },
4321 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
4322 		{ 0 }
4323 	};
4324 
4325 	if (t4_handle_intr_status(adapter, A_ULP_RX_INT_CAUSE, ulprx_intr_info))
4326 		t4_fatal_err(adapter);
4327 }
4328 
4329 /*
4330  * ULP TX interrupt handler.
4331  */
4332 static void ulptx_intr_handler(struct adapter *adapter)
4333 {
4334 	static const struct intr_info ulptx_intr_info[] = {
4335 		{ F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
4336 		  0 },
4337 		{ F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
4338 		  0 },
4339 		{ F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
4340 		  0 },
4341 		{ F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
4342 		  0 },
4343 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
4344 		{ 0 }
4345 	};
4346 
4347 	if (t4_handle_intr_status(adapter, A_ULP_TX_INT_CAUSE, ulptx_intr_info))
4348 		t4_fatal_err(adapter);
4349 }
4350 
4351 /*
4352  * PM TX interrupt handler.
4353  */
4354 static void pmtx_intr_handler(struct adapter *adapter)
4355 {
4356 	static const struct intr_info pmtx_intr_info[] = {
4357 		{ F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
4358 		{ F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
4359 		{ F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
4360 		{ F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
4361 		{ 0xffffff0, "PMTX framing error", -1, 1 },
4362 		{ F_OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
4363 		{ F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1,
4364 		  1 },
4365 		{ F_ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
4366 		{ F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
4367 		{ 0 }
4368 	};
4369 
4370 	if (t4_handle_intr_status(adapter, A_PM_TX_INT_CAUSE, pmtx_intr_info))
4371 		t4_fatal_err(adapter);
4372 }
4373 
4374 /*
4375  * PM RX interrupt handler.
4376  */
4377 static void pmrx_intr_handler(struct adapter *adapter)
4378 {
4379 	static const struct intr_info pmrx_intr_info[] = {
4380 		{ F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
4381 		{ 0x3ffff0, "PMRX framing error", -1, 1 },
4382 		{ F_OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
4383 		{ F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1,
4384 		  1 },
4385 		{ F_IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
4386 		{ F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
4387 		{ 0 }
4388 	};
4389 
4390 	if (t4_handle_intr_status(adapter, A_PM_RX_INT_CAUSE, pmrx_intr_info))
4391 		t4_fatal_err(adapter);
4392 }
4393 
4394 /*
4395  * CPL switch interrupt handler.
4396  */
4397 static void cplsw_intr_handler(struct adapter *adapter)
4398 {
4399 	static const struct intr_info cplsw_intr_info[] = {
4400 		{ F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
4401 		{ F_CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
4402 		{ F_TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
4403 		{ F_SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
4404 		{ F_CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
4405 		{ F_ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
4406 		{ 0 }
4407 	};
4408 
4409 	if (t4_handle_intr_status(adapter, A_CPL_INTR_CAUSE, cplsw_intr_info))
4410 		t4_fatal_err(adapter);
4411 }
4412 
4413 /*
4414  * LE interrupt handler.
4415  */
4416 static void le_intr_handler(struct adapter *adap)
4417 {
4418 	unsigned int chip_ver = chip_id(adap);
4419 	static const struct intr_info le_intr_info[] = {
4420 		{ F_LIPMISS, "LE LIP miss", -1, 0 },
4421 		{ F_LIP0, "LE 0 LIP error", -1, 0 },
4422 		{ F_PARITYERR, "LE parity error", -1, 1 },
4423 		{ F_UNKNOWNCMD, "LE unknown command", -1, 1 },
4424 		{ F_REQQPARERR, "LE request queue parity error", -1, 1 },
4425 		{ 0 }
4426 	};
4427 
4428 	static const struct intr_info t6_le_intr_info[] = {
4429 		{ F_T6_LIPMISS, "LE LIP miss", -1, 0 },
4430 		{ F_T6_LIP0, "LE 0 LIP error", -1, 0 },
4431 		{ F_TCAMINTPERR, "LE parity error", -1, 1 },
4432 		{ F_T6_UNKNOWNCMD, "LE unknown command", -1, 1 },
4433 		{ F_SSRAMINTPERR, "LE request queue parity error", -1, 1 },
4434 		{ 0 }
4435 	};
4436 
4437 	if (t4_handle_intr_status(adap, A_LE_DB_INT_CAUSE,
4438 				  (chip_ver <= CHELSIO_T5) ?
4439 				  le_intr_info : t6_le_intr_info))
4440 		t4_fatal_err(adap);
4441 }
4442 
4443 /*
4444  * MPS interrupt handler.
4445  */
4446 static void mps_intr_handler(struct adapter *adapter)
4447 {
4448 	static const struct intr_info mps_rx_intr_info[] = {
4449 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4450 		{ 0 }
4451 	};
4452 	static const struct intr_info mps_tx_intr_info[] = {
4453 		{ V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error", -1, 1 },
4454 		{ F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4455 		{ V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error",
4456 		  -1, 1 },
4457 		{ V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error",
4458 		  -1, 1 },
4459 		{ F_BUBBLE, "MPS Tx underflow", -1, 1 },
4460 		{ F_SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
4461 		{ F_FRMERR, "MPS Tx framing error", -1, 1 },
4462 		{ 0 }
4463 	};
4464 	static const struct intr_info mps_trc_intr_info[] = {
4465 		{ V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error", -1, 1 },
4466 		{ V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error", -1,
4467 		  1 },
4468 		{ F_MISCPERR, "MPS TRC misc parity error", -1, 1 },
4469 		{ 0 }
4470 	};
4471 	static const struct intr_info mps_stat_sram_intr_info[] = {
4472 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4473 		{ 0 }
4474 	};
4475 	static const struct intr_info mps_stat_tx_intr_info[] = {
4476 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4477 		{ 0 }
4478 	};
4479 	static const struct intr_info mps_stat_rx_intr_info[] = {
4480 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4481 		{ 0 }
4482 	};
4483 	static const struct intr_info mps_cls_intr_info[] = {
4484 		{ F_MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
4485 		{ F_MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
4486 		{ F_HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
4487 		{ 0 }
4488 	};
4489 
4490 	int fat;
4491 
4492 	fat = t4_handle_intr_status(adapter, A_MPS_RX_PERR_INT_CAUSE,
4493 				    mps_rx_intr_info) +
4494 	      t4_handle_intr_status(adapter, A_MPS_TX_INT_CAUSE,
4495 				    mps_tx_intr_info) +
4496 	      t4_handle_intr_status(adapter, A_MPS_TRC_INT_CAUSE,
4497 				    mps_trc_intr_info) +
4498 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_SRAM,
4499 				    mps_stat_sram_intr_info) +
4500 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
4501 				    mps_stat_tx_intr_info) +
4502 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
4503 				    mps_stat_rx_intr_info) +
4504 	      t4_handle_intr_status(adapter, A_MPS_CLS_INT_CAUSE,
4505 				    mps_cls_intr_info);
4506 
4507 	t4_write_reg(adapter, A_MPS_INT_CAUSE, 0);
4508 	t4_read_reg(adapter, A_MPS_INT_CAUSE);	/* flush */
4509 	if (fat)
4510 		t4_fatal_err(adapter);
4511 }
4512 
4513 #define MEM_INT_MASK (F_PERR_INT_CAUSE | F_ECC_CE_INT_CAUSE | \
4514 		      F_ECC_UE_INT_CAUSE)
4515 
4516 /*
4517  * EDC/MC interrupt handler.
4518  */
4519 static void mem_intr_handler(struct adapter *adapter, int idx)
4520 {
4521 	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4522 
4523 	unsigned int addr, cnt_addr, v;
4524 
4525 	if (idx <= MEM_EDC1) {
4526 		addr = EDC_REG(A_EDC_INT_CAUSE, idx);
4527 		cnt_addr = EDC_REG(A_EDC_ECC_STATUS, idx);
4528 	} else if (idx == MEM_MC) {
4529 		if (is_t4(adapter)) {
4530 			addr = A_MC_INT_CAUSE;
4531 			cnt_addr = A_MC_ECC_STATUS;
4532 		} else {
4533 			addr = A_MC_P_INT_CAUSE;
4534 			cnt_addr = A_MC_P_ECC_STATUS;
4535 		}
4536 	} else {
4537 		addr = MC_REG(A_MC_P_INT_CAUSE, 1);
4538 		cnt_addr = MC_REG(A_MC_P_ECC_STATUS, 1);
4539 	}
4540 
4541 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4542 	if (v & F_PERR_INT_CAUSE)
4543 		CH_ALERT(adapter, "%s FIFO parity error\n",
4544 			  name[idx]);
4545 	if (v & F_ECC_CE_INT_CAUSE) {
4546 		u32 cnt = G_ECC_CECNT(t4_read_reg(adapter, cnt_addr));
4547 
4548 		if (idx <= MEM_EDC1)
4549 			t4_edc_err_read(adapter, idx);
4550 
4551 		t4_write_reg(adapter, cnt_addr, V_ECC_CECNT(M_ECC_CECNT));
4552 		CH_WARN_RATELIMIT(adapter,
4553 				  "%u %s correctable ECC data error%s\n",
4554 				  cnt, name[idx], cnt > 1 ? "s" : "");
4555 	}
4556 	if (v & F_ECC_UE_INT_CAUSE)
4557 		CH_ALERT(adapter,
4558 			 "%s uncorrectable ECC data error\n", name[idx]);
4559 
4560 	t4_write_reg(adapter, addr, v);
4561 	if (v & (F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE))
4562 		t4_fatal_err(adapter);
4563 }
4564 
4565 /*
4566  * MA interrupt handler.
4567  */
4568 static void ma_intr_handler(struct adapter *adapter)
4569 {
4570 	u32 v, status = t4_read_reg(adapter, A_MA_INT_CAUSE);
4571 
4572 	if (status & F_MEM_PERR_INT_CAUSE) {
4573 		CH_ALERT(adapter,
4574 			  "MA parity error, parity status %#x\n",
4575 			  t4_read_reg(adapter, A_MA_PARITY_ERROR_STATUS1));
4576 		if (is_t5(adapter))
4577 			CH_ALERT(adapter,
4578 				  "MA parity error, parity status %#x\n",
4579 				  t4_read_reg(adapter,
4580 					      A_MA_PARITY_ERROR_STATUS2));
4581 	}
4582 	if (status & F_MEM_WRAP_INT_CAUSE) {
4583 		v = t4_read_reg(adapter, A_MA_INT_WRAP_STATUS);
4584 		CH_ALERT(adapter, "MA address wrap-around error by "
4585 			  "client %u to address %#x\n",
4586 			  G_MEM_WRAP_CLIENT_NUM(v),
4587 			  G_MEM_WRAP_ADDRESS(v) << 4);
4588 	}
4589 	t4_write_reg(adapter, A_MA_INT_CAUSE, status);
4590 	t4_fatal_err(adapter);
4591 }
4592 
4593 /*
4594  * SMB interrupt handler.
4595  */
4596 static void smb_intr_handler(struct adapter *adap)
4597 {
4598 	static const struct intr_info smb_intr_info[] = {
4599 		{ F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
4600 		{ F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
4601 		{ F_SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
4602 		{ 0 }
4603 	};
4604 
4605 	if (t4_handle_intr_status(adap, A_SMB_INT_CAUSE, smb_intr_info))
4606 		t4_fatal_err(adap);
4607 }
4608 
4609 /*
4610  * NC-SI interrupt handler.
4611  */
4612 static void ncsi_intr_handler(struct adapter *adap)
4613 {
4614 	static const struct intr_info ncsi_intr_info[] = {
4615 		{ F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
4616 		{ F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
4617 		{ F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
4618 		{ F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
4619 		{ 0 }
4620 	};
4621 
4622 	if (t4_handle_intr_status(adap, A_NCSI_INT_CAUSE, ncsi_intr_info))
4623 		t4_fatal_err(adap);
4624 }
4625 
4626 /*
4627  * XGMAC interrupt handler.
4628  */
4629 static void xgmac_intr_handler(struct adapter *adap, int port)
4630 {
4631 	u32 v, int_cause_reg;
4632 
4633 	if (is_t4(adap))
4634 		int_cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
4635 	else
4636 		int_cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
4637 
4638 	v = t4_read_reg(adap, int_cause_reg);
4639 
4640 	v &= (F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR);
4641 	if (!v)
4642 		return;
4643 
4644 	if (v & F_TXFIFO_PRTY_ERR)
4645 		CH_ALERT(adap, "XGMAC %d Tx FIFO parity error\n",
4646 			  port);
4647 	if (v & F_RXFIFO_PRTY_ERR)
4648 		CH_ALERT(adap, "XGMAC %d Rx FIFO parity error\n",
4649 			  port);
4650 	t4_write_reg(adap, int_cause_reg, v);
4651 	t4_fatal_err(adap);
4652 }
4653 
4654 /*
4655  * PL interrupt handler.
4656  */
4657 static void pl_intr_handler(struct adapter *adap)
4658 {
4659 	static const struct intr_info pl_intr_info[] = {
4660 		{ F_FATALPERR, "Fatal parity error", -1, 1 },
4661 		{ F_PERRVFID, "PL VFID_MAP parity error", -1, 1 },
4662 		{ 0 }
4663 	};
4664 
4665 	static const struct intr_info t5_pl_intr_info[] = {
4666 		{ F_FATALPERR, "Fatal parity error", -1, 1 },
4667 		{ 0 }
4668 	};
4669 
4670 	if (t4_handle_intr_status(adap, A_PL_PL_INT_CAUSE,
4671 				  is_t4(adap) ?
4672 				  pl_intr_info : t5_pl_intr_info))
4673 		t4_fatal_err(adap);
4674 }
4675 
4676 #define PF_INTR_MASK (F_PFSW | F_PFCIM)
4677 
4678 /**
4679  *	t4_slow_intr_handler - control path interrupt handler
4680  *	@adapter: the adapter
4681  *
4682  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
4683  *	The designation 'slow' is because it involves register reads, while
4684  *	data interrupts typically don't involve any MMIOs.
4685  */
4686 int t4_slow_intr_handler(struct adapter *adapter)
4687 {
4688 	u32 cause = t4_read_reg(adapter, A_PL_INT_CAUSE);
4689 
4690 	if (!(cause & GLBL_INTR_MASK))
4691 		return 0;
4692 	if (cause & F_CIM)
4693 		cim_intr_handler(adapter);
4694 	if (cause & F_MPS)
4695 		mps_intr_handler(adapter);
4696 	if (cause & F_NCSI)
4697 		ncsi_intr_handler(adapter);
4698 	if (cause & F_PL)
4699 		pl_intr_handler(adapter);
4700 	if (cause & F_SMB)
4701 		smb_intr_handler(adapter);
4702 	if (cause & F_MAC0)
4703 		xgmac_intr_handler(adapter, 0);
4704 	if (cause & F_MAC1)
4705 		xgmac_intr_handler(adapter, 1);
4706 	if (cause & F_MAC2)
4707 		xgmac_intr_handler(adapter, 2);
4708 	if (cause & F_MAC3)
4709 		xgmac_intr_handler(adapter, 3);
4710 	if (cause & F_PCIE)
4711 		pcie_intr_handler(adapter);
4712 	if (cause & F_MC0)
4713 		mem_intr_handler(adapter, MEM_MC);
4714 	if (is_t5(adapter) && (cause & F_MC1))
4715 		mem_intr_handler(adapter, MEM_MC1);
4716 	if (cause & F_EDC0)
4717 		mem_intr_handler(adapter, MEM_EDC0);
4718 	if (cause & F_EDC1)
4719 		mem_intr_handler(adapter, MEM_EDC1);
4720 	if (cause & F_LE)
4721 		le_intr_handler(adapter);
4722 	if (cause & F_TP)
4723 		tp_intr_handler(adapter);
4724 	if (cause & F_MA)
4725 		ma_intr_handler(adapter);
4726 	if (cause & F_PM_TX)
4727 		pmtx_intr_handler(adapter);
4728 	if (cause & F_PM_RX)
4729 		pmrx_intr_handler(adapter);
4730 	if (cause & F_ULP_RX)
4731 		ulprx_intr_handler(adapter);
4732 	if (cause & F_CPL_SWITCH)
4733 		cplsw_intr_handler(adapter);
4734 	if (cause & F_SGE)
4735 		sge_intr_handler(adapter);
4736 	if (cause & F_ULP_TX)
4737 		ulptx_intr_handler(adapter);
4738 
4739 	/* Clear the interrupts just processed for which we are the master. */
4740 	t4_write_reg(adapter, A_PL_INT_CAUSE, cause & GLBL_INTR_MASK);
4741 	(void)t4_read_reg(adapter, A_PL_INT_CAUSE); /* flush */
4742 	return 1;
4743 }
4744 
4745 /**
4746  *	t4_intr_enable - enable interrupts
4747  *	@adapter: the adapter whose interrupts should be enabled
4748  *
4749  *	Enable PF-specific interrupts for the calling function and the top-level
4750  *	interrupt concentrator for global interrupts.  Interrupts are already
4751  *	enabled at each module,	here we just enable the roots of the interrupt
4752  *	hierarchies.
4753  *
4754  *	Note: this function should be called only when the driver manages
4755  *	non PF-specific interrupts from the various HW modules.  Only one PCI
4756  *	function at a time should be doing this.
4757  */
4758 void t4_intr_enable(struct adapter *adapter)
4759 {
4760 	u32 val = 0;
4761 	u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4762 	u32 pf = (chip_id(adapter) <= CHELSIO_T5
4763 		  ? G_SOURCEPF(whoami)
4764 		  : G_T6_SOURCEPF(whoami));
4765 
4766 	if (chip_id(adapter) <= CHELSIO_T5)
4767 		val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
4768 	else
4769 		val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN;
4770 	t4_write_reg(adapter, A_SGE_INT_ENABLE3, F_ERR_CPL_EXCEED_IQE_SIZE |
4771 		     F_ERR_INVALID_CIDX_INC | F_ERR_CPL_OPCODE_0 |
4772 		     F_ERR_DATA_CPL_ON_HIGH_QID1 | F_INGRESS_SIZE_ERR |
4773 		     F_ERR_DATA_CPL_ON_HIGH_QID0 | F_ERR_BAD_DB_PIDX3 |
4774 		     F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4775 		     F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO |
4776 		     F_DBFIFO_LP_INT | F_EGRESS_SIZE_ERR | val);
4777 	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
4778 	t4_set_reg_field(adapter, A_PL_INT_MAP0, 0, 1 << pf);
4779 }
4780 
4781 /**
4782  *	t4_intr_disable - disable interrupts
4783  *	@adapter: the adapter whose interrupts should be disabled
4784  *
4785  *	Disable interrupts.  We only disable the top-level interrupt
4786  *	concentrators.  The caller must be a PCI function managing global
4787  *	interrupts.
4788  */
4789 void t4_intr_disable(struct adapter *adapter)
4790 {
4791 	u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4792 	u32 pf = (chip_id(adapter) <= CHELSIO_T5
4793 		  ? G_SOURCEPF(whoami)
4794 		  : G_T6_SOURCEPF(whoami));
4795 
4796 	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
4797 	t4_set_reg_field(adapter, A_PL_INT_MAP0, 1 << pf, 0);
4798 }
4799 
4800 /**
4801  *	t4_intr_clear - clear all interrupts
4802  *	@adapter: the adapter whose interrupts should be cleared
4803  *
4804  *	Clears all interrupts.  The caller must be a PCI function managing
4805  *	global interrupts.
4806  */
4807 void t4_intr_clear(struct adapter *adapter)
4808 {
4809 	static const unsigned int cause_reg[] = {
4810 		A_SGE_INT_CAUSE1, A_SGE_INT_CAUSE2, A_SGE_INT_CAUSE3,
4811 		A_PCIE_NONFAT_ERR, A_PCIE_INT_CAUSE,
4812 		A_MA_INT_WRAP_STATUS, A_MA_PARITY_ERROR_STATUS1, A_MA_INT_CAUSE,
4813 		A_EDC_INT_CAUSE, EDC_REG(A_EDC_INT_CAUSE, 1),
4814 		A_CIM_HOST_INT_CAUSE, A_CIM_HOST_UPACC_INT_CAUSE,
4815 		MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
4816 		A_TP_INT_CAUSE,
4817 		A_ULP_RX_INT_CAUSE, A_ULP_TX_INT_CAUSE,
4818 		A_PM_RX_INT_CAUSE, A_PM_TX_INT_CAUSE,
4819 		A_MPS_RX_PERR_INT_CAUSE,
4820 		A_CPL_INTR_CAUSE,
4821 		MYPF_REG(A_PL_PF_INT_CAUSE),
4822 		A_PL_PL_INT_CAUSE,
4823 		A_LE_DB_INT_CAUSE,
4824 	};
4825 
4826 	unsigned int i;
4827 
4828 	for (i = 0; i < ARRAY_SIZE(cause_reg); ++i)
4829 		t4_write_reg(adapter, cause_reg[i], 0xffffffff);
4830 
4831 	t4_write_reg(adapter, is_t4(adapter) ? A_MC_INT_CAUSE :
4832 				A_MC_P_INT_CAUSE, 0xffffffff);
4833 
4834 	if (is_t4(adapter)) {
4835 		t4_write_reg(adapter, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
4836 				0xffffffff);
4837 		t4_write_reg(adapter, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
4838 				0xffffffff);
4839 	} else
4840 		t4_write_reg(adapter, A_MA_PARITY_ERROR_STATUS2, 0xffffffff);
4841 
4842 	t4_write_reg(adapter, A_PL_INT_CAUSE, GLBL_INTR_MASK);
4843 	(void) t4_read_reg(adapter, A_PL_INT_CAUSE);          /* flush */
4844 }
4845 
4846 /**
4847  *	hash_mac_addr - return the hash value of a MAC address
4848  *	@addr: the 48-bit Ethernet MAC address
4849  *
4850  *	Hashes a MAC address according to the hash function used by HW inexact
4851  *	(hash) address matching.
4852  */
4853 static int hash_mac_addr(const u8 *addr)
4854 {
4855 	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
4856 	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
4857 	a ^= b;
4858 	a ^= (a >> 12);
4859 	a ^= (a >> 6);
4860 	return a & 0x3f;
4861 }
4862 
4863 /**
4864  *	t4_config_rss_range - configure a portion of the RSS mapping table
4865  *	@adapter: the adapter
4866  *	@mbox: mbox to use for the FW command
4867  *	@viid: virtual interface whose RSS subtable is to be written
4868  *	@start: start entry in the table to write
4869  *	@n: how many table entries to write
4870  *	@rspq: values for the "response queue" (Ingress Queue) lookup table
4871  *	@nrspq: number of values in @rspq
4872  *
4873  *	Programs the selected part of the VI's RSS mapping table with the
4874  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
4875  *	until the full table range is populated.
4876  *
4877  *	The caller must ensure the values in @rspq are in the range allowed for
4878  *	@viid.
4879  */
4880 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4881 			int start, int n, const u16 *rspq, unsigned int nrspq)
4882 {
4883 	int ret;
4884 	const u16 *rsp = rspq;
4885 	const u16 *rsp_end = rspq + nrspq;
4886 	struct fw_rss_ind_tbl_cmd cmd;
4887 
4888 	memset(&cmd, 0, sizeof(cmd));
4889 	cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
4890 				     F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4891 				     V_FW_RSS_IND_TBL_CMD_VIID(viid));
4892 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
4893 
4894 	/*
4895 	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
4896 	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
4897 	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
4898 	 * reserved.
4899 	 */
4900 	while (n > 0) {
4901 		int nq = min(n, 32);
4902 		int nq_packed = 0;
4903 		__be32 *qp = &cmd.iq0_to_iq2;
4904 
4905 		/*
4906 		 * Set up the firmware RSS command header to send the next
4907 		 * "nq" Ingress Queue IDs to the firmware.
4908 		 */
4909 		cmd.niqid = cpu_to_be16(nq);
4910 		cmd.startidx = cpu_to_be16(start);
4911 
4912 		/*
4913 		 * "nq" more done for the start of the next loop.
4914 		 */
4915 		start += nq;
4916 		n -= nq;
4917 
4918 		/*
4919 		 * While there are still Ingress Queue IDs to stuff into the
4920 		 * current firmware RSS command, retrieve them from the
4921 		 * Ingress Queue ID array and insert them into the command.
4922 		 */
4923 		while (nq > 0) {
4924 			/*
4925 			 * Grab up to the next 3 Ingress Queue IDs (wrapping
4926 			 * around the Ingress Queue ID array if necessary) and
4927 			 * insert them into the firmware RSS command at the
4928 			 * current 3-tuple position within the commad.
4929 			 */
4930 			u16 qbuf[3];
4931 			u16 *qbp = qbuf;
4932 			int nqbuf = min(3, nq);
4933 
4934 			nq -= nqbuf;
4935 			qbuf[0] = qbuf[1] = qbuf[2] = 0;
4936 			while (nqbuf && nq_packed < 32) {
4937 				nqbuf--;
4938 				nq_packed++;
4939 				*qbp++ = *rsp++;
4940 				if (rsp >= rsp_end)
4941 					rsp = rspq;
4942 			}
4943 			*qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
4944 					    V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
4945 					    V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
4946 		}
4947 
4948 		/*
4949 		 * Send this portion of the RRS table update to the firmware;
4950 		 * bail out on any errors.
4951 		 */
4952 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4953 		if (ret)
4954 			return ret;
4955 	}
4956 	return 0;
4957 }
4958 
4959 /**
4960  *	t4_config_glbl_rss - configure the global RSS mode
4961  *	@adapter: the adapter
4962  *	@mbox: mbox to use for the FW command
4963  *	@mode: global RSS mode
4964  *	@flags: mode-specific flags
4965  *
4966  *	Sets the global RSS mode.
4967  */
4968 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
4969 		       unsigned int flags)
4970 {
4971 	struct fw_rss_glb_config_cmd c;
4972 
4973 	memset(&c, 0, sizeof(c));
4974 	c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
4975 				    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
4976 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4977 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
4978 		c.u.manual.mode_pkd =
4979 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
4980 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
4981 		c.u.basicvirtual.mode_keymode =
4982 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
4983 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
4984 	} else
4985 		return -EINVAL;
4986 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4987 }
4988 
4989 /**
4990  *	t4_config_vi_rss - configure per VI RSS settings
4991  *	@adapter: the adapter
4992  *	@mbox: mbox to use for the FW command
4993  *	@viid: the VI id
4994  *	@flags: RSS flags
4995  *	@defq: id of the default RSS queue for the VI.
4996  *	@skeyidx: RSS secret key table index for non-global mode
4997  *	@skey: RSS vf_scramble key for VI.
4998  *
4999  *	Configures VI-specific RSS properties.
5000  */
5001 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5002 		     unsigned int flags, unsigned int defq, unsigned int skeyidx,
5003 		     unsigned int skey)
5004 {
5005 	struct fw_rss_vi_config_cmd c;
5006 
5007 	memset(&c, 0, sizeof(c));
5008 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
5009 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
5010 				   V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
5011 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5012 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5013 					V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
5014 	c.u.basicvirtual.secretkeyidx_pkd = cpu_to_be32(
5015 					V_FW_RSS_VI_CONFIG_CMD_SECRETKEYIDX(skeyidx));
5016 	c.u.basicvirtual.secretkeyxor = cpu_to_be32(skey);
5017 
5018 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5019 }
5020 
5021 /* Read an RSS table row */
5022 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5023 {
5024 	t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
5025 	return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
5026 				   5, 0, val);
5027 }
5028 
5029 /**
5030  *	t4_read_rss - read the contents of the RSS mapping table
5031  *	@adapter: the adapter
5032  *	@map: holds the contents of the RSS mapping table
5033  *
5034  *	Reads the contents of the RSS hash->queue mapping table.
5035  */
5036 int t4_read_rss(struct adapter *adapter, u16 *map)
5037 {
5038 	u32 val;
5039 	int i, ret;
5040 
5041 	for (i = 0; i < RSS_NENTRIES / 2; ++i) {
5042 		ret = rd_rss_row(adapter, i, &val);
5043 		if (ret)
5044 			return ret;
5045 		*map++ = G_LKPTBLQUEUE0(val);
5046 		*map++ = G_LKPTBLQUEUE1(val);
5047 	}
5048 	return 0;
5049 }
5050 
5051 /**
5052  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5053  * @adap: the adapter
5054  * @cmd: TP fw ldst address space type
5055  * @vals: where the indirect register values are stored/written
5056  * @nregs: how many indirect registers to read/write
5057  * @start_idx: index of first indirect register to read/write
5058  * @rw: Read (1) or Write (0)
5059  * @sleep_ok: if true we may sleep while awaiting command completion
5060  *
5061  * Access TP indirect registers through LDST
5062  **/
5063 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5064 			    unsigned int nregs, unsigned int start_index,
5065 			    unsigned int rw, bool sleep_ok)
5066 {
5067 	int ret = 0;
5068 	unsigned int i;
5069 	struct fw_ldst_cmd c;
5070 
5071 	for (i = 0; i < nregs; i++) {
5072 		memset(&c, 0, sizeof(c));
5073 		c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
5074 						F_FW_CMD_REQUEST |
5075 						(rw ? F_FW_CMD_READ :
5076 						      F_FW_CMD_WRITE) |
5077 						V_FW_LDST_CMD_ADDRSPACE(cmd));
5078 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5079 
5080 		c.u.addrval.addr = cpu_to_be32(start_index + i);
5081 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5082 		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5083 				      sleep_ok);
5084 		if (ret)
5085 			return ret;
5086 
5087 		if (rw)
5088 			vals[i] = be32_to_cpu(c.u.addrval.val);
5089 	}
5090 	return 0;
5091 }
5092 
5093 /**
5094  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5095  * @adap: the adapter
5096  * @reg_addr: Address Register
5097  * @reg_data: Data register
5098  * @buff: where the indirect register values are stored/written
5099  * @nregs: how many indirect registers to read/write
5100  * @start_index: index of first indirect register to read/write
5101  * @rw: READ(1) or WRITE(0)
5102  * @sleep_ok: if true we may sleep while awaiting command completion
5103  *
5104  * Read/Write TP indirect registers through LDST if possible.
5105  * Else, use backdoor access
5106  **/
5107 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5108 			      u32 *buff, u32 nregs, u32 start_index, int rw,
5109 			      bool sleep_ok)
5110 {
5111 	int rc = -EINVAL;
5112 	int cmd;
5113 
5114 	switch (reg_addr) {
5115 	case A_TP_PIO_ADDR:
5116 		cmd = FW_LDST_ADDRSPC_TP_PIO;
5117 		break;
5118 	case A_TP_TM_PIO_ADDR:
5119 		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5120 		break;
5121 	case A_TP_MIB_INDEX:
5122 		cmd = FW_LDST_ADDRSPC_TP_MIB;
5123 		break;
5124 	default:
5125 		goto indirect_access;
5126 	}
5127 
5128 	if (t4_use_ldst(adap))
5129 		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5130 				      sleep_ok);
5131 
5132 indirect_access:
5133 
5134 	if (rc) {
5135 		if (rw)
5136 			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5137 					 start_index);
5138 		else
5139 			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5140 					  start_index);
5141 	}
5142 }
5143 
5144 /**
5145  * t4_tp_pio_read - Read TP PIO registers
5146  * @adap: the adapter
5147  * @buff: where the indirect register values are written
5148  * @nregs: how many indirect registers to read
5149  * @start_index: index of first indirect register to read
5150  * @sleep_ok: if true we may sleep while awaiting command completion
5151  *
5152  * Read TP PIO Registers
5153  **/
5154 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5155 		    u32 start_index, bool sleep_ok)
5156 {
5157 	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, buff, nregs,
5158 			  start_index, 1, sleep_ok);
5159 }
5160 
5161 /**
5162  * t4_tp_pio_write - Write TP PIO registers
5163  * @adap: the adapter
5164  * @buff: where the indirect register values are stored
5165  * @nregs: how many indirect registers to write
5166  * @start_index: index of first indirect register to write
5167  * @sleep_ok: if true we may sleep while awaiting command completion
5168  *
5169  * Write TP PIO Registers
5170  **/
5171 void t4_tp_pio_write(struct adapter *adap, const u32 *buff, u32 nregs,
5172 		     u32 start_index, bool sleep_ok)
5173 {
5174 	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5175 	    __DECONST(u32 *, buff), nregs, start_index, 0, sleep_ok);
5176 }
5177 
5178 /**
5179  * t4_tp_tm_pio_read - Read TP TM PIO registers
5180  * @adap: the adapter
5181  * @buff: where the indirect register values are written
5182  * @nregs: how many indirect registers to read
5183  * @start_index: index of first indirect register to read
5184  * @sleep_ok: if true we may sleep while awaiting command completion
5185  *
5186  * Read TP TM PIO Registers
5187  **/
5188 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5189 		       u32 start_index, bool sleep_ok)
5190 {
5191 	t4_tp_indirect_rw(adap, A_TP_TM_PIO_ADDR, A_TP_TM_PIO_DATA, buff,
5192 			  nregs, start_index, 1, sleep_ok);
5193 }
5194 
5195 /**
5196  * t4_tp_mib_read - Read TP MIB registers
5197  * @adap: the adapter
5198  * @buff: where the indirect register values are written
5199  * @nregs: how many indirect registers to read
5200  * @start_index: index of first indirect register to read
5201  * @sleep_ok: if true we may sleep while awaiting command completion
5202  *
5203  * Read TP MIB Registers
5204  **/
5205 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5206 		    bool sleep_ok)
5207 {
5208 	t4_tp_indirect_rw(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, buff, nregs,
5209 			  start_index, 1, sleep_ok);
5210 }
5211 
5212 /**
5213  *	t4_read_rss_key - read the global RSS key
5214  *	@adap: the adapter
5215  *	@key: 10-entry array holding the 320-bit RSS key
5216  * 	@sleep_ok: if true we may sleep while awaiting command completion
5217  *
5218  *	Reads the global 320-bit RSS key.
5219  */
5220 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5221 {
5222 	t4_tp_pio_read(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5223 }
5224 
5225 /**
5226  *	t4_write_rss_key - program one of the RSS keys
5227  *	@adap: the adapter
5228  *	@key: 10-entry array holding the 320-bit RSS key
5229  *	@idx: which RSS key to write
5230  * 	@sleep_ok: if true we may sleep while awaiting command completion
5231  *
5232  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5233  *	0..15 the corresponding entry in the RSS key table is written,
5234  *	otherwise the global RSS key is written.
5235  */
5236 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5237 		      bool sleep_ok)
5238 {
5239 	u8 rss_key_addr_cnt = 16;
5240 	u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
5241 
5242 	/*
5243 	 * T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5244 	 * allows access to key addresses 16-63 by using KeyWrAddrX
5245 	 * as index[5:4](upper 2) into key table
5246 	 */
5247 	if ((chip_id(adap) > CHELSIO_T5) &&
5248 	    (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
5249 		rss_key_addr_cnt = 32;
5250 
5251 	t4_tp_pio_write(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5252 
5253 	if (idx >= 0 && idx < rss_key_addr_cnt) {
5254 		if (rss_key_addr_cnt > 16)
5255 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5256 				     vrt | V_KEYWRADDRX(idx >> 4) |
5257 				     V_T6_VFWRADDR(idx) | F_KEYWREN);
5258 		else
5259 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5260 				     vrt| V_KEYWRADDR(idx) | F_KEYWREN);
5261 	}
5262 }
5263 
5264 /**
5265  *	t4_read_rss_pf_config - read PF RSS Configuration Table
5266  *	@adapter: the adapter
5267  *	@index: the entry in the PF RSS table to read
5268  *	@valp: where to store the returned value
5269  * 	@sleep_ok: if true we may sleep while awaiting command completion
5270  *
5271  *	Reads the PF RSS Configuration Table at the specified index and returns
5272  *	the value found there.
5273  */
5274 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5275 			   u32 *valp, bool sleep_ok)
5276 {
5277 	t4_tp_pio_read(adapter, valp, 1, A_TP_RSS_PF0_CONFIG + index, sleep_ok);
5278 }
5279 
5280 /**
5281  *	t4_write_rss_pf_config - write PF RSS Configuration Table
5282  *	@adapter: the adapter
5283  *	@index: the entry in the VF RSS table to read
5284  *	@val: the value to store
5285  * 	@sleep_ok: if true we may sleep while awaiting command completion
5286  *
5287  *	Writes the PF RSS Configuration Table at the specified index with the
5288  *	specified value.
5289  */
5290 void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index,
5291 			    u32 val, bool sleep_ok)
5292 {
5293 	t4_tp_pio_write(adapter, &val, 1, A_TP_RSS_PF0_CONFIG + index,
5294 			sleep_ok);
5295 }
5296 
5297 /**
5298  *	t4_read_rss_vf_config - read VF RSS Configuration Table
5299  *	@adapter: the adapter
5300  *	@index: the entry in the VF RSS table to read
5301  *	@vfl: where to store the returned VFL
5302  *	@vfh: where to store the returned VFH
5303  * 	@sleep_ok: if true we may sleep while awaiting command completion
5304  *
5305  *	Reads the VF RSS Configuration Table at the specified index and returns
5306  *	the (VFL, VFH) values found there.
5307  */
5308 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5309 			   u32 *vfl, u32 *vfh, bool sleep_ok)
5310 {
5311 	u32 vrt, mask, data;
5312 
5313 	if (chip_id(adapter) <= CHELSIO_T5) {
5314 		mask = V_VFWRADDR(M_VFWRADDR);
5315 		data = V_VFWRADDR(index);
5316 	} else {
5317 		 mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5318 		 data = V_T6_VFWRADDR(index);
5319 	}
5320 	/*
5321 	 * Request that the index'th VF Table values be read into VFL/VFH.
5322 	 */
5323 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5324 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5325 	vrt |= data | F_VFRDEN;
5326 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5327 
5328 	/*
5329 	 * Grab the VFL/VFH values ...
5330 	 */
5331 	t4_tp_pio_read(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
5332 	t4_tp_pio_read(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
5333 }
5334 
5335 /**
5336  *	t4_write_rss_vf_config - write VF RSS Configuration Table
5337  *
5338  *	@adapter: the adapter
5339  *	@index: the entry in the VF RSS table to write
5340  *	@vfl: the VFL to store
5341  *	@vfh: the VFH to store
5342  *
5343  *	Writes the VF RSS Configuration Table at the specified index with the
5344  *	specified (VFL, VFH) values.
5345  */
5346 void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
5347 			    u32 vfl, u32 vfh, bool sleep_ok)
5348 {
5349 	u32 vrt, mask, data;
5350 
5351 	if (chip_id(adapter) <= CHELSIO_T5) {
5352 		mask = V_VFWRADDR(M_VFWRADDR);
5353 		data = V_VFWRADDR(index);
5354 	} else {
5355 		mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5356 		data = V_T6_VFWRADDR(index);
5357 	}
5358 
5359 	/*
5360 	 * Load up VFL/VFH with the values to be written ...
5361 	 */
5362 	t4_tp_pio_write(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
5363 	t4_tp_pio_write(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
5364 
5365 	/*
5366 	 * Write the VFL/VFH into the VF Table at index'th location.
5367 	 */
5368 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5369 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5370 	vrt |= data | F_VFRDEN;
5371 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5372 }
5373 
5374 /**
5375  *	t4_read_rss_pf_map - read PF RSS Map
5376  *	@adapter: the adapter
5377  * 	@sleep_ok: if true we may sleep while awaiting command completion
5378  *
5379  *	Reads the PF RSS Map register and returns its value.
5380  */
5381 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5382 {
5383 	u32 pfmap;
5384 
5385 	t4_tp_pio_read(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
5386 
5387 	return pfmap;
5388 }
5389 
5390 /**
5391  *	t4_write_rss_pf_map - write PF RSS Map
5392  *	@adapter: the adapter
5393  *	@pfmap: PF RSS Map value
5394  *
5395  *	Writes the specified value to the PF RSS Map register.
5396  */
5397 void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap, bool sleep_ok)
5398 {
5399 	t4_tp_pio_write(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
5400 }
5401 
5402 /**
5403  *	t4_read_rss_pf_mask - read PF RSS Mask
5404  *	@adapter: the adapter
5405  * 	@sleep_ok: if true we may sleep while awaiting command completion
5406  *
5407  *	Reads the PF RSS Mask register and returns its value.
5408  */
5409 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5410 {
5411 	u32 pfmask;
5412 
5413 	t4_tp_pio_read(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
5414 
5415 	return pfmask;
5416 }
5417 
5418 /**
5419  *	t4_write_rss_pf_mask - write PF RSS Mask
5420  *	@adapter: the adapter
5421  *	@pfmask: PF RSS Mask value
5422  *
5423  *	Writes the specified value to the PF RSS Mask register.
5424  */
5425 void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask, bool sleep_ok)
5426 {
5427 	t4_tp_pio_write(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
5428 }
5429 
5430 /**
5431  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
5432  *	@adap: the adapter
5433  *	@v4: holds the TCP/IP counter values
5434  *	@v6: holds the TCP/IPv6 counter values
5435  * 	@sleep_ok: if true we may sleep while awaiting command completion
5436  *
5437  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5438  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5439  */
5440 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5441 			 struct tp_tcp_stats *v6, bool sleep_ok)
5442 {
5443 	u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
5444 
5445 #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
5446 #define STAT(x)     val[STAT_IDX(x)]
5447 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5448 
5449 	if (v4) {
5450 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5451 			       A_TP_MIB_TCP_OUT_RST, sleep_ok);
5452 		v4->tcp_out_rsts = STAT(OUT_RST);
5453 		v4->tcp_in_segs  = STAT64(IN_SEG);
5454 		v4->tcp_out_segs = STAT64(OUT_SEG);
5455 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
5456 	}
5457 	if (v6) {
5458 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5459 			       A_TP_MIB_TCP_V6OUT_RST, sleep_ok);
5460 		v6->tcp_out_rsts = STAT(OUT_RST);
5461 		v6->tcp_in_segs  = STAT64(IN_SEG);
5462 		v6->tcp_out_segs = STAT64(OUT_SEG);
5463 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
5464 	}
5465 #undef STAT64
5466 #undef STAT
5467 #undef STAT_IDX
5468 }
5469 
5470 /**
5471  *	t4_tp_get_err_stats - read TP's error MIB counters
5472  *	@adap: the adapter
5473  *	@st: holds the counter values
5474  * 	@sleep_ok: if true we may sleep while awaiting command completion
5475  *
5476  *	Returns the values of TP's error counters.
5477  */
5478 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
5479 			 bool sleep_ok)
5480 {
5481 	int nchan = adap->chip_params->nchan;
5482 
5483 	t4_tp_mib_read(adap, st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0,
5484 		       sleep_ok);
5485 
5486 	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0,
5487 		       sleep_ok);
5488 
5489 	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0,
5490 		       sleep_ok);
5491 
5492 	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
5493 		       A_TP_MIB_TNL_CNG_DROP_0, sleep_ok);
5494 
5495 	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
5496 		       A_TP_MIB_OFD_CHN_DROP_0, sleep_ok);
5497 
5498 	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0,
5499 		       sleep_ok);
5500 
5501 	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
5502 		       A_TP_MIB_OFD_VLN_DROP_0, sleep_ok);
5503 
5504 	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
5505 		       A_TP_MIB_TCP_V6IN_ERR_0, sleep_ok);
5506 
5507 	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP,
5508 		       sleep_ok);
5509 }
5510 
5511 /**
5512  *	t4_tp_get_proxy_stats - read TP's proxy MIB counters
5513  *	@adap: the adapter
5514  *	@st: holds the counter values
5515  *
5516  *	Returns the values of TP's proxy counters.
5517  */
5518 void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st,
5519     bool sleep_ok)
5520 {
5521 	int nchan = adap->chip_params->nchan;
5522 
5523 	t4_tp_mib_read(adap, st->proxy, nchan, A_TP_MIB_TNL_LPBK_0, sleep_ok);
5524 }
5525 
5526 /**
5527  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
5528  *	@adap: the adapter
5529  *	@st: holds the counter values
5530  * 	@sleep_ok: if true we may sleep while awaiting command completion
5531  *
5532  *	Returns the values of TP's CPL counters.
5533  */
5534 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
5535 			 bool sleep_ok)
5536 {
5537 	int nchan = adap->chip_params->nchan;
5538 
5539 	t4_tp_mib_read(adap, st->req, nchan, A_TP_MIB_CPL_IN_REQ_0, sleep_ok);
5540 
5541 	t4_tp_mib_read(adap, st->rsp, nchan, A_TP_MIB_CPL_OUT_RSP_0, sleep_ok);
5542 }
5543 
5544 /**
5545  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5546  *	@adap: the adapter
5547  *	@st: holds the counter values
5548  *
5549  *	Returns the values of TP's RDMA counters.
5550  */
5551 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
5552 			  bool sleep_ok)
5553 {
5554 	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, A_TP_MIB_RQE_DFR_PKT,
5555 		       sleep_ok);
5556 }
5557 
5558 /**
5559  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5560  *	@adap: the adapter
5561  *	@idx: the port index
5562  *	@st: holds the counter values
5563  * 	@sleep_ok: if true we may sleep while awaiting command completion
5564  *
5565  *	Returns the values of TP's FCoE counters for the selected port.
5566  */
5567 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5568 		       struct tp_fcoe_stats *st, bool sleep_ok)
5569 {
5570 	u32 val[2];
5571 
5572 	t4_tp_mib_read(adap, &st->frames_ddp, 1, A_TP_MIB_FCOE_DDP_0 + idx,
5573 		       sleep_ok);
5574 
5575 	t4_tp_mib_read(adap, &st->frames_drop, 1,
5576 		       A_TP_MIB_FCOE_DROP_0 + idx, sleep_ok);
5577 
5578 	t4_tp_mib_read(adap, val, 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx,
5579 		       sleep_ok);
5580 
5581 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
5582 }
5583 
5584 /**
5585  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5586  *	@adap: the adapter
5587  *	@st: holds the counter values
5588  * 	@sleep_ok: if true we may sleep while awaiting command completion
5589  *
5590  *	Returns the values of TP's counters for non-TCP directly-placed packets.
5591  */
5592 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
5593 		      bool sleep_ok)
5594 {
5595 	u32 val[4];
5596 
5597 	t4_tp_mib_read(adap, val, 4, A_TP_MIB_USM_PKTS, sleep_ok);
5598 
5599 	st->frames = val[0];
5600 	st->drops = val[1];
5601 	st->octets = ((u64)val[2] << 32) | val[3];
5602 }
5603 
5604 /**
5605  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
5606  *	@adap: the adapter
5607  *	@mtus: where to store the MTU values
5608  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
5609  *
5610  *	Reads the HW path MTU table.
5611  */
5612 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5613 {
5614 	u32 v;
5615 	int i;
5616 
5617 	for (i = 0; i < NMTUS; ++i) {
5618 		t4_write_reg(adap, A_TP_MTU_TABLE,
5619 			     V_MTUINDEX(0xff) | V_MTUVALUE(i));
5620 		v = t4_read_reg(adap, A_TP_MTU_TABLE);
5621 		mtus[i] = G_MTUVALUE(v);
5622 		if (mtu_log)
5623 			mtu_log[i] = G_MTUWIDTH(v);
5624 	}
5625 }
5626 
5627 /**
5628  *	t4_read_cong_tbl - reads the congestion control table
5629  *	@adap: the adapter
5630  *	@incr: where to store the alpha values
5631  *
5632  *	Reads the additive increments programmed into the HW congestion
5633  *	control table.
5634  */
5635 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5636 {
5637 	unsigned int mtu, w;
5638 
5639 	for (mtu = 0; mtu < NMTUS; ++mtu)
5640 		for (w = 0; w < NCCTRL_WIN; ++w) {
5641 			t4_write_reg(adap, A_TP_CCTRL_TABLE,
5642 				     V_ROWINDEX(0xffff) | (mtu << 5) | w);
5643 			incr[mtu][w] = (u16)t4_read_reg(adap,
5644 						A_TP_CCTRL_TABLE) & 0x1fff;
5645 		}
5646 }
5647 
5648 /**
5649  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5650  *	@adap: the adapter
5651  *	@addr: the indirect TP register address
5652  *	@mask: specifies the field within the register to modify
5653  *	@val: new value for the field
5654  *
5655  *	Sets a field of an indirect TP register to the given value.
5656  */
5657 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5658 			    unsigned int mask, unsigned int val)
5659 {
5660 	t4_write_reg(adap, A_TP_PIO_ADDR, addr);
5661 	val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
5662 	t4_write_reg(adap, A_TP_PIO_DATA, val);
5663 }
5664 
5665 /**
5666  *	init_cong_ctrl - initialize congestion control parameters
5667  *	@a: the alpha values for congestion control
5668  *	@b: the beta values for congestion control
5669  *
5670  *	Initialize the congestion control parameters.
5671  */
5672 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5673 {
5674 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5675 	a[9] = 2;
5676 	a[10] = 3;
5677 	a[11] = 4;
5678 	a[12] = 5;
5679 	a[13] = 6;
5680 	a[14] = 7;
5681 	a[15] = 8;
5682 	a[16] = 9;
5683 	a[17] = 10;
5684 	a[18] = 14;
5685 	a[19] = 17;
5686 	a[20] = 21;
5687 	a[21] = 25;
5688 	a[22] = 30;
5689 	a[23] = 35;
5690 	a[24] = 45;
5691 	a[25] = 60;
5692 	a[26] = 80;
5693 	a[27] = 100;
5694 	a[28] = 200;
5695 	a[29] = 300;
5696 	a[30] = 400;
5697 	a[31] = 500;
5698 
5699 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5700 	b[9] = b[10] = 1;
5701 	b[11] = b[12] = 2;
5702 	b[13] = b[14] = b[15] = b[16] = 3;
5703 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5704 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5705 	b[28] = b[29] = 6;
5706 	b[30] = b[31] = 7;
5707 }
5708 
5709 /* The minimum additive increment value for the congestion control table */
5710 #define CC_MIN_INCR 2U
5711 
5712 /**
5713  *	t4_load_mtus - write the MTU and congestion control HW tables
5714  *	@adap: the adapter
5715  *	@mtus: the values for the MTU table
5716  *	@alpha: the values for the congestion control alpha parameter
5717  *	@beta: the values for the congestion control beta parameter
5718  *
5719  *	Write the HW MTU table with the supplied MTUs and the high-speed
5720  *	congestion control table with the supplied alpha, beta, and MTUs.
5721  *	We write the two tables together because the additive increments
5722  *	depend on the MTUs.
5723  */
5724 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5725 		  const unsigned short *alpha, const unsigned short *beta)
5726 {
5727 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5728 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5729 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5730 		28672, 40960, 57344, 81920, 114688, 163840, 229376
5731 	};
5732 
5733 	unsigned int i, w;
5734 
5735 	for (i = 0; i < NMTUS; ++i) {
5736 		unsigned int mtu = mtus[i];
5737 		unsigned int log2 = fls(mtu);
5738 
5739 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5740 			log2--;
5741 		t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
5742 			     V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
5743 
5744 		for (w = 0; w < NCCTRL_WIN; ++w) {
5745 			unsigned int inc;
5746 
5747 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5748 				  CC_MIN_INCR);
5749 
5750 			t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
5751 				     (w << 16) | (beta[w] << 13) | inc);
5752 		}
5753 	}
5754 }
5755 
5756 /**
5757  *	t4_set_pace_tbl - set the pace table
5758  *	@adap: the adapter
5759  *	@pace_vals: the pace values in microseconds
5760  *	@start: index of the first entry in the HW pace table to set
5761  *	@n: how many entries to set
5762  *
5763  *	Sets (a subset of the) HW pace table.
5764  */
5765 int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
5766 		     unsigned int start, unsigned int n)
5767 {
5768 	unsigned int vals[NTX_SCHED], i;
5769 	unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
5770 
5771 	if (n > NTX_SCHED)
5772 	    return -ERANGE;
5773 
5774 	/* convert values from us to dack ticks, rounding to closest value */
5775 	for (i = 0; i < n; i++, pace_vals++) {
5776 		vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
5777 		if (vals[i] > 0x7ff)
5778 			return -ERANGE;
5779 		if (*pace_vals && vals[i] == 0)
5780 			return -ERANGE;
5781 	}
5782 	for (i = 0; i < n; i++, start++)
5783 		t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
5784 	return 0;
5785 }
5786 
5787 /**
5788  *	t4_set_sched_bps - set the bit rate for a HW traffic scheduler
5789  *	@adap: the adapter
5790  *	@kbps: target rate in Kbps
5791  *	@sched: the scheduler index
5792  *
5793  *	Configure a Tx HW scheduler for the target rate.
5794  */
5795 int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
5796 {
5797 	unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
5798 	unsigned int clk = adap->params.vpd.cclk * 1000;
5799 	unsigned int selected_cpt = 0, selected_bpt = 0;
5800 
5801 	if (kbps > 0) {
5802 		kbps *= 125;     /* -> bytes */
5803 		for (cpt = 1; cpt <= 255; cpt++) {
5804 			tps = clk / cpt;
5805 			bpt = (kbps + tps / 2) / tps;
5806 			if (bpt > 0 && bpt <= 255) {
5807 				v = bpt * tps;
5808 				delta = v >= kbps ? v - kbps : kbps - v;
5809 				if (delta < mindelta) {
5810 					mindelta = delta;
5811 					selected_cpt = cpt;
5812 					selected_bpt = bpt;
5813 				}
5814 			} else if (selected_cpt)
5815 				break;
5816 		}
5817 		if (!selected_cpt)
5818 			return -EINVAL;
5819 	}
5820 	t4_write_reg(adap, A_TP_TM_PIO_ADDR,
5821 		     A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
5822 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
5823 	if (sched & 1)
5824 		v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
5825 	else
5826 		v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
5827 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
5828 	return 0;
5829 }
5830 
5831 /**
5832  *	t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
5833  *	@adap: the adapter
5834  *	@sched: the scheduler index
5835  *	@ipg: the interpacket delay in tenths of nanoseconds
5836  *
5837  *	Set the interpacket delay for a HW packet rate scheduler.
5838  */
5839 int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
5840 {
5841 	unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
5842 
5843 	/* convert ipg to nearest number of core clocks */
5844 	ipg *= core_ticks_per_usec(adap);
5845 	ipg = (ipg + 5000) / 10000;
5846 	if (ipg > M_TXTIMERSEPQ0)
5847 		return -EINVAL;
5848 
5849 	t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
5850 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
5851 	if (sched & 1)
5852 		v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
5853 	else
5854 		v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
5855 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
5856 	t4_read_reg(adap, A_TP_TM_PIO_DATA);
5857 	return 0;
5858 }
5859 
5860 /*
5861  * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5862  * clocks.  The formula is
5863  *
5864  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5865  *
5866  * which is equivalent to
5867  *
5868  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5869  */
5870 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5871 {
5872 	u64 v = (u64)bytes256 * adap->params.vpd.cclk;
5873 
5874 	return v * 62 + v / 2;
5875 }
5876 
5877 /**
5878  *	t4_get_chan_txrate - get the current per channel Tx rates
5879  *	@adap: the adapter
5880  *	@nic_rate: rates for NIC traffic
5881  *	@ofld_rate: rates for offloaded traffic
5882  *
5883  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5884  *	for each channel.
5885  */
5886 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5887 {
5888 	u32 v;
5889 
5890 	v = t4_read_reg(adap, A_TP_TX_TRATE);
5891 	nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
5892 	nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
5893 	if (adap->chip_params->nchan > 2) {
5894 		nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
5895 		nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
5896 	}
5897 
5898 	v = t4_read_reg(adap, A_TP_TX_ORATE);
5899 	ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
5900 	ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
5901 	if (adap->chip_params->nchan > 2) {
5902 		ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
5903 		ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
5904 	}
5905 }
5906 
5907 /**
5908  *	t4_set_trace_filter - configure one of the tracing filters
5909  *	@adap: the adapter
5910  *	@tp: the desired trace filter parameters
5911  *	@idx: which filter to configure
5912  *	@enable: whether to enable or disable the filter
5913  *
5914  *	Configures one of the tracing filters available in HW.  If @tp is %NULL
5915  *	it indicates that the filter is already written in the register and it
5916  *	just needs to be enabled or disabled.
5917  */
5918 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5919     int idx, int enable)
5920 {
5921 	int i, ofst = idx * 4;
5922 	u32 data_reg, mask_reg, cfg;
5923 	u32 multitrc = F_TRCMULTIFILTER;
5924 	u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
5925 
5926 	if (idx < 0 || idx >= NTRACE)
5927 		return -EINVAL;
5928 
5929 	if (tp == NULL || !enable) {
5930 		t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en,
5931 		    enable ? en : 0);
5932 		return 0;
5933 	}
5934 
5935 	/*
5936 	 * TODO - After T4 data book is updated, specify the exact
5937 	 * section below.
5938 	 *
5939 	 * See T4 data book - MPS section for a complete description
5940 	 * of the below if..else handling of A_MPS_TRC_CFG register
5941 	 * value.
5942 	 */
5943 	cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
5944 	if (cfg & F_TRCMULTIFILTER) {
5945 		/*
5946 		 * If multiple tracers are enabled, then maximum
5947 		 * capture size is 2.5KB (FIFO size of a single channel)
5948 		 * minus 2 flits for CPL_TRACE_PKT header.
5949 		 */
5950 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5951 			return -EINVAL;
5952 	} else {
5953 		/*
5954 		 * If multiple tracers are disabled, to avoid deadlocks
5955 		 * maximum packet capture size of 9600 bytes is recommended.
5956 		 * Also in this mode, only trace0 can be enabled and running.
5957 		 */
5958 		multitrc = 0;
5959 		if (tp->snap_len > 9600 || idx)
5960 			return -EINVAL;
5961 	}
5962 
5963 	if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
5964 	    tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
5965 	    tp->min_len > M_TFMINPKTSIZE)
5966 		return -EINVAL;
5967 
5968 	/* stop the tracer we'll be changing */
5969 	t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0);
5970 
5971 	idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
5972 	data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
5973 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
5974 
5975 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5976 		t4_write_reg(adap, data_reg, tp->data[i]);
5977 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5978 	}
5979 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
5980 		     V_TFCAPTUREMAX(tp->snap_len) |
5981 		     V_TFMINPKTSIZE(tp->min_len));
5982 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
5983 		     V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en |
5984 		     (is_t4(adap) ?
5985 		     V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
5986 		     V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
5987 
5988 	return 0;
5989 }
5990 
5991 /**
5992  *	t4_get_trace_filter - query one of the tracing filters
5993  *	@adap: the adapter
5994  *	@tp: the current trace filter parameters
5995  *	@idx: which trace filter to query
5996  *	@enabled: non-zero if the filter is enabled
5997  *
5998  *	Returns the current settings of one of the HW tracing filters.
5999  */
6000 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
6001 			 int *enabled)
6002 {
6003 	u32 ctla, ctlb;
6004 	int i, ofst = idx * 4;
6005 	u32 data_reg, mask_reg;
6006 
6007 	ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
6008 	ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
6009 
6010 	if (is_t4(adap)) {
6011 		*enabled = !!(ctla & F_TFEN);
6012 		tp->port =  G_TFPORT(ctla);
6013 		tp->invert = !!(ctla & F_TFINVERTMATCH);
6014 	} else {
6015 		*enabled = !!(ctla & F_T5_TFEN);
6016 		tp->port = G_T5_TFPORT(ctla);
6017 		tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
6018 	}
6019 	tp->snap_len = G_TFCAPTUREMAX(ctlb);
6020 	tp->min_len = G_TFMINPKTSIZE(ctlb);
6021 	tp->skip_ofst = G_TFOFFSET(ctla);
6022 	tp->skip_len = G_TFLENGTH(ctla);
6023 
6024 	ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
6025 	data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
6026 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
6027 
6028 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6029 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
6030 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
6031 	}
6032 }
6033 
6034 /**
6035  *	t4_pmtx_get_stats - returns the HW stats from PMTX
6036  *	@adap: the adapter
6037  *	@cnt: where to store the count statistics
6038  *	@cycles: where to store the cycle statistics
6039  *
6040  *	Returns performance statistics from PMTX.
6041  */
6042 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6043 {
6044 	int i;
6045 	u32 data[2];
6046 
6047 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
6048 		t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
6049 		cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
6050 		if (is_t4(adap))
6051 			cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
6052 		else {
6053 			t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
6054 					 A_PM_TX_DBG_DATA, data, 2,
6055 					 A_PM_TX_DBG_STAT_MSB);
6056 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6057 		}
6058 	}
6059 }
6060 
6061 /**
6062  *	t4_pmrx_get_stats - returns the HW stats from PMRX
6063  *	@adap: the adapter
6064  *	@cnt: where to store the count statistics
6065  *	@cycles: where to store the cycle statistics
6066  *
6067  *	Returns performance statistics from PMRX.
6068  */
6069 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6070 {
6071 	int i;
6072 	u32 data[2];
6073 
6074 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
6075 		t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
6076 		cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
6077 		if (is_t4(adap)) {
6078 			cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
6079 		} else {
6080 			t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
6081 					 A_PM_RX_DBG_DATA, data, 2,
6082 					 A_PM_RX_DBG_STAT_MSB);
6083 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6084 		}
6085 	}
6086 }
6087 
6088 /**
6089  *	t4_get_mps_bg_map - return the buffer groups associated with a port
6090  *	@adap: the adapter
6091  *	@idx: the port index
6092  *
6093  *	Returns a bitmap indicating which MPS buffer groups are associated
6094  *	with the given port.  Bit i is set if buffer group i is used by the
6095  *	port.
6096  */
6097 static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
6098 {
6099 	u32 n;
6100 
6101 	if (adap->params.mps_bg_map)
6102 		return ((adap->params.mps_bg_map >> (idx << 3)) & 0xff);
6103 
6104 	n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
6105 	if (n == 0)
6106 		return idx == 0 ? 0xf : 0;
6107 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
6108 		return idx < 2 ? (3 << (2 * idx)) : 0;
6109 	return 1 << idx;
6110 }
6111 
6112 /*
6113  * TP RX e-channels associated with the port.
6114  */
6115 static unsigned int t4_get_rx_e_chan_map(struct adapter *adap, int idx)
6116 {
6117 	u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
6118 
6119 	if (n == 0)
6120 		return idx == 0 ? 0xf : 0;
6121 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
6122 		return idx < 2 ? (3 << (2 * idx)) : 0;
6123 	return 1 << idx;
6124 }
6125 
6126 /**
6127  *      t4_get_port_type_description - return Port Type string description
6128  *      @port_type: firmware Port Type enumeration
6129  */
6130 const char *t4_get_port_type_description(enum fw_port_type port_type)
6131 {
6132 	static const char *const port_type_description[] = {
6133 		"Fiber_XFI",
6134 		"Fiber_XAUI",
6135 		"BT_SGMII",
6136 		"BT_XFI",
6137 		"BT_XAUI",
6138 		"KX4",
6139 		"CX4",
6140 		"KX",
6141 		"KR",
6142 		"SFP",
6143 		"BP_AP",
6144 		"BP4_AP",
6145 		"QSFP_10G",
6146 		"QSA",
6147 		"QSFP",
6148 		"BP40_BA",
6149 		"KR4_100G",
6150 		"CR4_QSFP",
6151 		"CR_QSFP",
6152 		"CR2_QSFP",
6153 		"SFP28",
6154 		"KR_SFP28",
6155 	};
6156 
6157 	if (port_type < ARRAY_SIZE(port_type_description))
6158 		return port_type_description[port_type];
6159 	return "UNKNOWN";
6160 }
6161 
6162 /**
6163  *      t4_get_port_stats_offset - collect port stats relative to a previous
6164  *				   snapshot
6165  *      @adap: The adapter
6166  *      @idx: The port
6167  *      @stats: Current stats to fill
6168  *      @offset: Previous stats snapshot
6169  */
6170 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6171 		struct port_stats *stats,
6172 		struct port_stats *offset)
6173 {
6174 	u64 *s, *o;
6175 	int i;
6176 
6177 	t4_get_port_stats(adap, idx, stats);
6178 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
6179 			i < (sizeof(struct port_stats)/sizeof(u64)) ;
6180 			i++, s++, o++)
6181 		*s -= *o;
6182 }
6183 
6184 /**
6185  *	t4_get_port_stats - collect port statistics
6186  *	@adap: the adapter
6187  *	@idx: the port index
6188  *	@p: the stats structure to fill
6189  *
6190  *	Collect statistics related to the given port from HW.
6191  */
6192 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6193 {
6194 	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
6195 	u32 stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
6196 
6197 #define GET_STAT(name) \
6198 	t4_read_reg64(adap, \
6199 	(is_t4(adap) ? PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) : \
6200 	T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
6201 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6202 
6203 	p->tx_pause		= GET_STAT(TX_PORT_PAUSE);
6204 	p->tx_octets		= GET_STAT(TX_PORT_BYTES);
6205 	p->tx_frames		= GET_STAT(TX_PORT_FRAMES);
6206 	p->tx_bcast_frames	= GET_STAT(TX_PORT_BCAST);
6207 	p->tx_mcast_frames	= GET_STAT(TX_PORT_MCAST);
6208 	p->tx_ucast_frames	= GET_STAT(TX_PORT_UCAST);
6209 	p->tx_error_frames	= GET_STAT(TX_PORT_ERROR);
6210 	p->tx_frames_64		= GET_STAT(TX_PORT_64B);
6211 	p->tx_frames_65_127	= GET_STAT(TX_PORT_65B_127B);
6212 	p->tx_frames_128_255	= GET_STAT(TX_PORT_128B_255B);
6213 	p->tx_frames_256_511	= GET_STAT(TX_PORT_256B_511B);
6214 	p->tx_frames_512_1023	= GET_STAT(TX_PORT_512B_1023B);
6215 	p->tx_frames_1024_1518	= GET_STAT(TX_PORT_1024B_1518B);
6216 	p->tx_frames_1519_max	= GET_STAT(TX_PORT_1519B_MAX);
6217 	p->tx_drop		= GET_STAT(TX_PORT_DROP);
6218 	p->tx_ppp0		= GET_STAT(TX_PORT_PPP0);
6219 	p->tx_ppp1		= GET_STAT(TX_PORT_PPP1);
6220 	p->tx_ppp2		= GET_STAT(TX_PORT_PPP2);
6221 	p->tx_ppp3		= GET_STAT(TX_PORT_PPP3);
6222 	p->tx_ppp4		= GET_STAT(TX_PORT_PPP4);
6223 	p->tx_ppp5		= GET_STAT(TX_PORT_PPP5);
6224 	p->tx_ppp6		= GET_STAT(TX_PORT_PPP6);
6225 	p->tx_ppp7		= GET_STAT(TX_PORT_PPP7);
6226 
6227 	if (chip_id(adap) >= CHELSIO_T5) {
6228 		if (stat_ctl & F_COUNTPAUSESTATTX) {
6229 			p->tx_frames -= p->tx_pause;
6230 			p->tx_octets -= p->tx_pause * 64;
6231 		}
6232 		if (stat_ctl & F_COUNTPAUSEMCTX)
6233 			p->tx_mcast_frames -= p->tx_pause;
6234 	}
6235 
6236 	p->rx_pause		= GET_STAT(RX_PORT_PAUSE);
6237 	p->rx_octets		= GET_STAT(RX_PORT_BYTES);
6238 	p->rx_frames		= GET_STAT(RX_PORT_FRAMES);
6239 	p->rx_bcast_frames	= GET_STAT(RX_PORT_BCAST);
6240 	p->rx_mcast_frames	= GET_STAT(RX_PORT_MCAST);
6241 	p->rx_ucast_frames	= GET_STAT(RX_PORT_UCAST);
6242 	p->rx_too_long		= GET_STAT(RX_PORT_MTU_ERROR);
6243 	p->rx_jabber		= GET_STAT(RX_PORT_MTU_CRC_ERROR);
6244 	p->rx_fcs_err		= GET_STAT(RX_PORT_CRC_ERROR);
6245 	p->rx_len_err		= GET_STAT(RX_PORT_LEN_ERROR);
6246 	p->rx_symbol_err	= GET_STAT(RX_PORT_SYM_ERROR);
6247 	p->rx_runt		= GET_STAT(RX_PORT_LESS_64B);
6248 	p->rx_frames_64		= GET_STAT(RX_PORT_64B);
6249 	p->rx_frames_65_127	= GET_STAT(RX_PORT_65B_127B);
6250 	p->rx_frames_128_255	= GET_STAT(RX_PORT_128B_255B);
6251 	p->rx_frames_256_511	= GET_STAT(RX_PORT_256B_511B);
6252 	p->rx_frames_512_1023	= GET_STAT(RX_PORT_512B_1023B);
6253 	p->rx_frames_1024_1518	= GET_STAT(RX_PORT_1024B_1518B);
6254 	p->rx_frames_1519_max	= GET_STAT(RX_PORT_1519B_MAX);
6255 	p->rx_ppp0		= GET_STAT(RX_PORT_PPP0);
6256 	p->rx_ppp1		= GET_STAT(RX_PORT_PPP1);
6257 	p->rx_ppp2		= GET_STAT(RX_PORT_PPP2);
6258 	p->rx_ppp3		= GET_STAT(RX_PORT_PPP3);
6259 	p->rx_ppp4		= GET_STAT(RX_PORT_PPP4);
6260 	p->rx_ppp5		= GET_STAT(RX_PORT_PPP5);
6261 	p->rx_ppp6		= GET_STAT(RX_PORT_PPP6);
6262 	p->rx_ppp7		= GET_STAT(RX_PORT_PPP7);
6263 
6264 	if (chip_id(adap) >= CHELSIO_T5) {
6265 		if (stat_ctl & F_COUNTPAUSESTATRX) {
6266 			p->rx_frames -= p->rx_pause;
6267 			p->rx_octets -= p->rx_pause * 64;
6268 		}
6269 		if (stat_ctl & F_COUNTPAUSEMCRX)
6270 			p->rx_mcast_frames -= p->rx_pause;
6271 	}
6272 
6273 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6274 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6275 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6276 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6277 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6278 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6279 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6280 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6281 
6282 #undef GET_STAT
6283 #undef GET_STAT_COM
6284 }
6285 
6286 /**
6287  *	t4_get_lb_stats - collect loopback port statistics
6288  *	@adap: the adapter
6289  *	@idx: the loopback port index
6290  *	@p: the stats structure to fill
6291  *
6292  *	Return HW statistics for the given loopback port.
6293  */
6294 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6295 {
6296 	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
6297 
6298 #define GET_STAT(name) \
6299 	t4_read_reg64(adap, \
6300 	(is_t4(adap) ? \
6301 	PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \
6302 	T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L)))
6303 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6304 
6305 	p->octets	= GET_STAT(BYTES);
6306 	p->frames	= GET_STAT(FRAMES);
6307 	p->bcast_frames	= GET_STAT(BCAST);
6308 	p->mcast_frames	= GET_STAT(MCAST);
6309 	p->ucast_frames	= GET_STAT(UCAST);
6310 	p->error_frames	= GET_STAT(ERROR);
6311 
6312 	p->frames_64		= GET_STAT(64B);
6313 	p->frames_65_127	= GET_STAT(65B_127B);
6314 	p->frames_128_255	= GET_STAT(128B_255B);
6315 	p->frames_256_511	= GET_STAT(256B_511B);
6316 	p->frames_512_1023	= GET_STAT(512B_1023B);
6317 	p->frames_1024_1518	= GET_STAT(1024B_1518B);
6318 	p->frames_1519_max	= GET_STAT(1519B_MAX);
6319 	p->drop			= GET_STAT(DROP_FRAMES);
6320 
6321 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6322 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6323 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6324 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6325 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6326 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6327 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6328 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6329 
6330 #undef GET_STAT
6331 #undef GET_STAT_COM
6332 }
6333 
6334 /**
6335  *	t4_wol_magic_enable - enable/disable magic packet WoL
6336  *	@adap: the adapter
6337  *	@port: the physical port index
6338  *	@addr: MAC address expected in magic packets, %NULL to disable
6339  *
6340  *	Enables/disables magic packet wake-on-LAN for the selected port.
6341  */
6342 void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
6343 			 const u8 *addr)
6344 {
6345 	u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
6346 
6347 	if (is_t4(adap)) {
6348 		mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
6349 		mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
6350 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
6351 	} else {
6352 		mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
6353 		mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
6354 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
6355 	}
6356 
6357 	if (addr) {
6358 		t4_write_reg(adap, mag_id_reg_l,
6359 			     (addr[2] << 24) | (addr[3] << 16) |
6360 			     (addr[4] << 8) | addr[5]);
6361 		t4_write_reg(adap, mag_id_reg_h,
6362 			     (addr[0] << 8) | addr[1]);
6363 	}
6364 	t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
6365 			 V_MAGICEN(addr != NULL));
6366 }
6367 
6368 /**
6369  *	t4_wol_pat_enable - enable/disable pattern-based WoL
6370  *	@adap: the adapter
6371  *	@port: the physical port index
6372  *	@map: bitmap of which HW pattern filters to set
6373  *	@mask0: byte mask for bytes 0-63 of a packet
6374  *	@mask1: byte mask for bytes 64-127 of a packet
6375  *	@crc: Ethernet CRC for selected bytes
6376  *	@enable: enable/disable switch
6377  *
6378  *	Sets the pattern filters indicated in @map to mask out the bytes
6379  *	specified in @mask0/@mask1 in received packets and compare the CRC of
6380  *	the resulting packet against @crc.  If @enable is %true pattern-based
6381  *	WoL is enabled, otherwise disabled.
6382  */
6383 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
6384 		      u64 mask0, u64 mask1, unsigned int crc, bool enable)
6385 {
6386 	int i;
6387 	u32 port_cfg_reg;
6388 
6389 	if (is_t4(adap))
6390 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
6391 	else
6392 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
6393 
6394 	if (!enable) {
6395 		t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
6396 		return 0;
6397 	}
6398 	if (map > 0xff)
6399 		return -EINVAL;
6400 
6401 #define EPIO_REG(name) \
6402 	(is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
6403 	T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
6404 
6405 	t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
6406 	t4_write_reg(adap, EPIO_REG(DATA2), mask1);
6407 	t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
6408 
6409 	for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
6410 		if (!(map & 1))
6411 			continue;
6412 
6413 		/* write byte masks */
6414 		t4_write_reg(adap, EPIO_REG(DATA0), mask0);
6415 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
6416 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
6417 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
6418 			return -ETIMEDOUT;
6419 
6420 		/* write CRC */
6421 		t4_write_reg(adap, EPIO_REG(DATA0), crc);
6422 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
6423 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
6424 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
6425 			return -ETIMEDOUT;
6426 	}
6427 #undef EPIO_REG
6428 
6429 	t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
6430 	return 0;
6431 }
6432 
6433 /*     t4_mk_filtdelwr - create a delete filter WR
6434  *     @ftid: the filter ID
6435  *     @wr: the filter work request to populate
6436  *     @qid: ingress queue to receive the delete notification
6437  *
6438  *     Creates a filter work request to delete the supplied filter.  If @qid is
6439  *     negative the delete notification is suppressed.
6440  */
6441 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6442 {
6443 	memset(wr, 0, sizeof(*wr));
6444 	wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR));
6445 	wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16));
6446 	wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) |
6447 				    V_FW_FILTER_WR_NOREPLY(qid < 0));
6448 	wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER);
6449 	if (qid >= 0)
6450 		wr->rx_chan_rx_rpl_iq =
6451 				cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid));
6452 }
6453 
6454 #define INIT_CMD(var, cmd, rd_wr) do { \
6455 	(var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
6456 					F_FW_CMD_REQUEST | \
6457 					F_FW_CMD_##rd_wr); \
6458 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6459 } while (0)
6460 
6461 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6462 			  u32 addr, u32 val)
6463 {
6464 	u32 ldst_addrspace;
6465 	struct fw_ldst_cmd c;
6466 
6467 	memset(&c, 0, sizeof(c));
6468 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE);
6469 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6470 					F_FW_CMD_REQUEST |
6471 					F_FW_CMD_WRITE |
6472 					ldst_addrspace);
6473 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6474 	c.u.addrval.addr = cpu_to_be32(addr);
6475 	c.u.addrval.val = cpu_to_be32(val);
6476 
6477 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6478 }
6479 
6480 /**
6481  *	t4_mdio_rd - read a PHY register through MDIO
6482  *	@adap: the adapter
6483  *	@mbox: mailbox to use for the FW command
6484  *	@phy_addr: the PHY address
6485  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6486  *	@reg: the register to read
6487  *	@valp: where to store the value
6488  *
6489  *	Issues a FW command through the given mailbox to read a PHY register.
6490  */
6491 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6492 	       unsigned int mmd, unsigned int reg, unsigned int *valp)
6493 {
6494 	int ret;
6495 	u32 ldst_addrspace;
6496 	struct fw_ldst_cmd c;
6497 
6498 	memset(&c, 0, sizeof(c));
6499 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
6500 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6501 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
6502 					ldst_addrspace);
6503 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6504 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
6505 					 V_FW_LDST_CMD_MMD(mmd));
6506 	c.u.mdio.raddr = cpu_to_be16(reg);
6507 
6508 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6509 	if (ret == 0)
6510 		*valp = be16_to_cpu(c.u.mdio.rval);
6511 	return ret;
6512 }
6513 
6514 /**
6515  *	t4_mdio_wr - write a PHY register through MDIO
6516  *	@adap: the adapter
6517  *	@mbox: mailbox to use for the FW command
6518  *	@phy_addr: the PHY address
6519  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6520  *	@reg: the register to write
6521  *	@valp: value to write
6522  *
6523  *	Issues a FW command through the given mailbox to write a PHY register.
6524  */
6525 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6526 	       unsigned int mmd, unsigned int reg, unsigned int val)
6527 {
6528 	u32 ldst_addrspace;
6529 	struct fw_ldst_cmd c;
6530 
6531 	memset(&c, 0, sizeof(c));
6532 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
6533 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6534 					F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
6535 					ldst_addrspace);
6536 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6537 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
6538 					 V_FW_LDST_CMD_MMD(mmd));
6539 	c.u.mdio.raddr = cpu_to_be16(reg);
6540 	c.u.mdio.rval = cpu_to_be16(val);
6541 
6542 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6543 }
6544 
6545 /**
6546  *
6547  *	t4_sge_decode_idma_state - decode the idma state
6548  *	@adap: the adapter
6549  *	@state: the state idma is stuck in
6550  */
6551 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6552 {
6553 	static const char * const t4_decode[] = {
6554 		"IDMA_IDLE",
6555 		"IDMA_PUSH_MORE_CPL_FIFO",
6556 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6557 		"Not used",
6558 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6559 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6560 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6561 		"IDMA_SEND_FIFO_TO_IMSG",
6562 		"IDMA_FL_REQ_DATA_FL_PREP",
6563 		"IDMA_FL_REQ_DATA_FL",
6564 		"IDMA_FL_DROP",
6565 		"IDMA_FL_H_REQ_HEADER_FL",
6566 		"IDMA_FL_H_SEND_PCIEHDR",
6567 		"IDMA_FL_H_PUSH_CPL_FIFO",
6568 		"IDMA_FL_H_SEND_CPL",
6569 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6570 		"IDMA_FL_H_SEND_IP_HDR",
6571 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6572 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6573 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6574 		"IDMA_FL_D_SEND_PCIEHDR",
6575 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6576 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6577 		"IDMA_FL_SEND_PCIEHDR",
6578 		"IDMA_FL_PUSH_CPL_FIFO",
6579 		"IDMA_FL_SEND_CPL",
6580 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6581 		"IDMA_FL_SEND_PAYLOAD",
6582 		"IDMA_FL_REQ_NEXT_DATA_FL",
6583 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6584 		"IDMA_FL_SEND_PADDING",
6585 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6586 		"IDMA_FL_SEND_FIFO_TO_IMSG",
6587 		"IDMA_FL_REQ_DATAFL_DONE",
6588 		"IDMA_FL_REQ_HEADERFL_DONE",
6589 	};
6590 	static const char * const t5_decode[] = {
6591 		"IDMA_IDLE",
6592 		"IDMA_ALMOST_IDLE",
6593 		"IDMA_PUSH_MORE_CPL_FIFO",
6594 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6595 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6596 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6597 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6598 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6599 		"IDMA_SEND_FIFO_TO_IMSG",
6600 		"IDMA_FL_REQ_DATA_FL",
6601 		"IDMA_FL_DROP",
6602 		"IDMA_FL_DROP_SEND_INC",
6603 		"IDMA_FL_H_REQ_HEADER_FL",
6604 		"IDMA_FL_H_SEND_PCIEHDR",
6605 		"IDMA_FL_H_PUSH_CPL_FIFO",
6606 		"IDMA_FL_H_SEND_CPL",
6607 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6608 		"IDMA_FL_H_SEND_IP_HDR",
6609 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6610 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6611 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6612 		"IDMA_FL_D_SEND_PCIEHDR",
6613 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6614 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6615 		"IDMA_FL_SEND_PCIEHDR",
6616 		"IDMA_FL_PUSH_CPL_FIFO",
6617 		"IDMA_FL_SEND_CPL",
6618 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6619 		"IDMA_FL_SEND_PAYLOAD",
6620 		"IDMA_FL_REQ_NEXT_DATA_FL",
6621 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6622 		"IDMA_FL_SEND_PADDING",
6623 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6624 	};
6625 	static const char * const t6_decode[] = {
6626 		"IDMA_IDLE",
6627 		"IDMA_PUSH_MORE_CPL_FIFO",
6628 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6629 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6630 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6631 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6632 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6633 		"IDMA_FL_REQ_DATA_FL",
6634 		"IDMA_FL_DROP",
6635 		"IDMA_FL_DROP_SEND_INC",
6636 		"IDMA_FL_H_REQ_HEADER_FL",
6637 		"IDMA_FL_H_SEND_PCIEHDR",
6638 		"IDMA_FL_H_PUSH_CPL_FIFO",
6639 		"IDMA_FL_H_SEND_CPL",
6640 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6641 		"IDMA_FL_H_SEND_IP_HDR",
6642 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6643 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6644 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6645 		"IDMA_FL_D_SEND_PCIEHDR",
6646 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6647 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6648 		"IDMA_FL_SEND_PCIEHDR",
6649 		"IDMA_FL_PUSH_CPL_FIFO",
6650 		"IDMA_FL_SEND_CPL",
6651 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6652 		"IDMA_FL_SEND_PAYLOAD",
6653 		"IDMA_FL_REQ_NEXT_DATA_FL",
6654 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6655 		"IDMA_FL_SEND_PADDING",
6656 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6657 	};
6658 	static const u32 sge_regs[] = {
6659 		A_SGE_DEBUG_DATA_LOW_INDEX_2,
6660 		A_SGE_DEBUG_DATA_LOW_INDEX_3,
6661 		A_SGE_DEBUG_DATA_HIGH_INDEX_10,
6662 	};
6663 	const char * const *sge_idma_decode;
6664 	int sge_idma_decode_nstates;
6665 	int i;
6666 	unsigned int chip_version = chip_id(adapter);
6667 
6668 	/* Select the right set of decode strings to dump depending on the
6669 	 * adapter chip type.
6670 	 */
6671 	switch (chip_version) {
6672 	case CHELSIO_T4:
6673 		sge_idma_decode = (const char * const *)t4_decode;
6674 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6675 		break;
6676 
6677 	case CHELSIO_T5:
6678 		sge_idma_decode = (const char * const *)t5_decode;
6679 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6680 		break;
6681 
6682 	case CHELSIO_T6:
6683 		sge_idma_decode = (const char * const *)t6_decode;
6684 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6685 		break;
6686 
6687 	default:
6688 		CH_ERR(adapter,	"Unsupported chip version %d\n", chip_version);
6689 		return;
6690 	}
6691 
6692 	if (state < sge_idma_decode_nstates)
6693 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6694 	else
6695 		CH_WARN(adapter, "idma state %d unknown\n", state);
6696 
6697 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6698 		CH_WARN(adapter, "SGE register %#x value %#x\n",
6699 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6700 }
6701 
6702 /**
6703  *      t4_sge_ctxt_flush - flush the SGE context cache
6704  *      @adap: the adapter
6705  *      @mbox: mailbox to use for the FW command
6706  *
6707  *      Issues a FW command through the given mailbox to flush the
6708  *      SGE context cache.
6709  */
6710 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
6711 {
6712 	int ret;
6713 	u32 ldst_addrspace;
6714 	struct fw_ldst_cmd c;
6715 
6716 	memset(&c, 0, sizeof(c));
6717 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_SGE_EGRC);
6718 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6719 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
6720 					ldst_addrspace);
6721 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6722 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH);
6723 
6724 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6725 	return ret;
6726 }
6727 
6728 /**
6729  *      t4_fw_hello - establish communication with FW
6730  *      @adap: the adapter
6731  *      @mbox: mailbox to use for the FW command
6732  *      @evt_mbox: mailbox to receive async FW events
6733  *      @master: specifies the caller's willingness to be the device master
6734  *	@state: returns the current device state (if non-NULL)
6735  *
6736  *	Issues a command to establish communication with FW.  Returns either
6737  *	an error (negative integer) or the mailbox of the Master PF.
6738  */
6739 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6740 		enum dev_master master, enum dev_state *state)
6741 {
6742 	int ret;
6743 	struct fw_hello_cmd c;
6744 	u32 v;
6745 	unsigned int master_mbox;
6746 	int retries = FW_CMD_HELLO_RETRIES;
6747 
6748 retry:
6749 	memset(&c, 0, sizeof(c));
6750 	INIT_CMD(c, HELLO, WRITE);
6751 	c.err_to_clearinit = cpu_to_be32(
6752 		V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
6753 		V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
6754 		V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ?
6755 					mbox : M_FW_HELLO_CMD_MBMASTER) |
6756 		V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
6757 		V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
6758 		F_FW_HELLO_CMD_CLEARINIT);
6759 
6760 	/*
6761 	 * Issue the HELLO command to the firmware.  If it's not successful
6762 	 * but indicates that we got a "busy" or "timeout" condition, retry
6763 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
6764 	 * retry limit, check to see if the firmware left us any error
6765 	 * information and report that if so ...
6766 	 */
6767 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6768 	if (ret != FW_SUCCESS) {
6769 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6770 			goto retry;
6771 		if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
6772 			t4_report_fw_error(adap);
6773 		return ret;
6774 	}
6775 
6776 	v = be32_to_cpu(c.err_to_clearinit);
6777 	master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
6778 	if (state) {
6779 		if (v & F_FW_HELLO_CMD_ERR)
6780 			*state = DEV_STATE_ERR;
6781 		else if (v & F_FW_HELLO_CMD_INIT)
6782 			*state = DEV_STATE_INIT;
6783 		else
6784 			*state = DEV_STATE_UNINIT;
6785 	}
6786 
6787 	/*
6788 	 * If we're not the Master PF then we need to wait around for the
6789 	 * Master PF Driver to finish setting up the adapter.
6790 	 *
6791 	 * Note that we also do this wait if we're a non-Master-capable PF and
6792 	 * there is no current Master PF; a Master PF may show up momentarily
6793 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
6794 	 * OS loads lots of different drivers rapidly at the same time).  In
6795 	 * this case, the Master PF returned by the firmware will be
6796 	 * M_PCIE_FW_MASTER so the test below will work ...
6797 	 */
6798 	if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
6799 	    master_mbox != mbox) {
6800 		int waiting = FW_CMD_HELLO_TIMEOUT;
6801 
6802 		/*
6803 		 * Wait for the firmware to either indicate an error or
6804 		 * initialized state.  If we see either of these we bail out
6805 		 * and report the issue to the caller.  If we exhaust the
6806 		 * "hello timeout" and we haven't exhausted our retries, try
6807 		 * again.  Otherwise bail with a timeout error.
6808 		 */
6809 		for (;;) {
6810 			u32 pcie_fw;
6811 
6812 			msleep(50);
6813 			waiting -= 50;
6814 
6815 			/*
6816 			 * If neither Error nor Initialialized are indicated
6817 			 * by the firmware keep waiting till we exhaust our
6818 			 * timeout ... and then retry if we haven't exhausted
6819 			 * our retries ...
6820 			 */
6821 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
6822 			if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
6823 				if (waiting <= 0) {
6824 					if (retries-- > 0)
6825 						goto retry;
6826 
6827 					return -ETIMEDOUT;
6828 				}
6829 				continue;
6830 			}
6831 
6832 			/*
6833 			 * We either have an Error or Initialized condition
6834 			 * report errors preferentially.
6835 			 */
6836 			if (state) {
6837 				if (pcie_fw & F_PCIE_FW_ERR)
6838 					*state = DEV_STATE_ERR;
6839 				else if (pcie_fw & F_PCIE_FW_INIT)
6840 					*state = DEV_STATE_INIT;
6841 			}
6842 
6843 			/*
6844 			 * If we arrived before a Master PF was selected and
6845 			 * there's not a valid Master PF, grab its identity
6846 			 * for our caller.
6847 			 */
6848 			if (master_mbox == M_PCIE_FW_MASTER &&
6849 			    (pcie_fw & F_PCIE_FW_MASTER_VLD))
6850 				master_mbox = G_PCIE_FW_MASTER(pcie_fw);
6851 			break;
6852 		}
6853 	}
6854 
6855 	return master_mbox;
6856 }
6857 
6858 /**
6859  *	t4_fw_bye - end communication with FW
6860  *	@adap: the adapter
6861  *	@mbox: mailbox to use for the FW command
6862  *
6863  *	Issues a command to terminate communication with FW.
6864  */
6865 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6866 {
6867 	struct fw_bye_cmd c;
6868 
6869 	memset(&c, 0, sizeof(c));
6870 	INIT_CMD(c, BYE, WRITE);
6871 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6872 }
6873 
6874 /**
6875  *	t4_fw_reset - issue a reset to FW
6876  *	@adap: the adapter
6877  *	@mbox: mailbox to use for the FW command
6878  *	@reset: specifies the type of reset to perform
6879  *
6880  *	Issues a reset command of the specified type to FW.
6881  */
6882 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6883 {
6884 	struct fw_reset_cmd c;
6885 
6886 	memset(&c, 0, sizeof(c));
6887 	INIT_CMD(c, RESET, WRITE);
6888 	c.val = cpu_to_be32(reset);
6889 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6890 }
6891 
6892 /**
6893  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6894  *	@adap: the adapter
6895  *	@mbox: mailbox to use for the FW RESET command (if desired)
6896  *	@force: force uP into RESET even if FW RESET command fails
6897  *
6898  *	Issues a RESET command to firmware (if desired) with a HALT indication
6899  *	and then puts the microprocessor into RESET state.  The RESET command
6900  *	will only be issued if a legitimate mailbox is provided (mbox <=
6901  *	M_PCIE_FW_MASTER).
6902  *
6903  *	This is generally used in order for the host to safely manipulate the
6904  *	adapter without fear of conflicting with whatever the firmware might
6905  *	be doing.  The only way out of this state is to RESTART the firmware
6906  *	...
6907  */
6908 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
6909 {
6910 	int ret = 0;
6911 
6912 	/*
6913 	 * If a legitimate mailbox is provided, issue a RESET command
6914 	 * with a HALT indication.
6915 	 */
6916 	if (adap->flags & FW_OK && mbox <= M_PCIE_FW_MASTER) {
6917 		struct fw_reset_cmd c;
6918 
6919 		memset(&c, 0, sizeof(c));
6920 		INIT_CMD(c, RESET, WRITE);
6921 		c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
6922 		c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
6923 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6924 	}
6925 
6926 	/*
6927 	 * Normally we won't complete the operation if the firmware RESET
6928 	 * command fails but if our caller insists we'll go ahead and put the
6929 	 * uP into RESET.  This can be useful if the firmware is hung or even
6930 	 * missing ...  We'll have to take the risk of putting the uP into
6931 	 * RESET without the cooperation of firmware in that case.
6932 	 *
6933 	 * We also force the firmware's HALT flag to be on in case we bypassed
6934 	 * the firmware RESET command above or we're dealing with old firmware
6935 	 * which doesn't have the HALT capability.  This will serve as a flag
6936 	 * for the incoming firmware to know that it's coming out of a HALT
6937 	 * rather than a RESET ... if it's new enough to understand that ...
6938 	 */
6939 	if (ret == 0 || force) {
6940 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
6941 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
6942 				 F_PCIE_FW_HALT);
6943 	}
6944 
6945 	/*
6946 	 * And we always return the result of the firmware RESET command
6947 	 * even when we force the uP into RESET ...
6948 	 */
6949 	return ret;
6950 }
6951 
6952 /**
6953  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
6954  *	@adap: the adapter
6955  *
6956  *	Restart firmware previously halted by t4_fw_halt().  On successful
6957  *	return the previous PF Master remains as the new PF Master and there
6958  *	is no need to issue a new HELLO command, etc.
6959  */
6960 int t4_fw_restart(struct adapter *adap, unsigned int mbox)
6961 {
6962 	int ms;
6963 
6964 	t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
6965 	for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6966 		if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
6967 			return FW_SUCCESS;
6968 		msleep(100);
6969 		ms += 100;
6970 	}
6971 
6972 	return -ETIMEDOUT;
6973 }
6974 
6975 /**
6976  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6977  *	@adap: the adapter
6978  *	@mbox: mailbox to use for the FW RESET command (if desired)
6979  *	@fw_data: the firmware image to write
6980  *	@size: image size
6981  *	@force: force upgrade even if firmware doesn't cooperate
6982  *
6983  *	Perform all of the steps necessary for upgrading an adapter's
6984  *	firmware image.  Normally this requires the cooperation of the
6985  *	existing firmware in order to halt all existing activities
6986  *	but if an invalid mailbox token is passed in we skip that step
6987  *	(though we'll still put the adapter microprocessor into RESET in
6988  *	that case).
6989  *
6990  *	On successful return the new firmware will have been loaded and
6991  *	the adapter will have been fully RESET losing all previous setup
6992  *	state.  On unsuccessful return the adapter may be completely hosed ...
6993  *	positive errno indicates that the adapter is ~probably~ intact, a
6994  *	negative errno indicates that things are looking bad ...
6995  */
6996 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6997 		  const u8 *fw_data, unsigned int size, int force)
6998 {
6999 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7000 	unsigned int bootstrap =
7001 	    be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
7002 	int ret;
7003 
7004 	if (!t4_fw_matches_chip(adap, fw_hdr))
7005 		return -EINVAL;
7006 
7007 	if (!bootstrap) {
7008 		ret = t4_fw_halt(adap, mbox, force);
7009 		if (ret < 0 && !force)
7010 			return ret;
7011 	}
7012 
7013 	ret = t4_load_fw(adap, fw_data, size);
7014 	if (ret < 0 || bootstrap)
7015 		return ret;
7016 
7017 	return t4_fw_restart(adap, mbox);
7018 }
7019 
7020 /**
7021  *	t4_fw_initialize - ask FW to initialize the device
7022  *	@adap: the adapter
7023  *	@mbox: mailbox to use for the FW command
7024  *
7025  *	Issues a command to FW to partially initialize the device.  This
7026  *	performs initialization that generally doesn't depend on user input.
7027  */
7028 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7029 {
7030 	struct fw_initialize_cmd c;
7031 
7032 	memset(&c, 0, sizeof(c));
7033 	INIT_CMD(c, INITIALIZE, WRITE);
7034 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7035 }
7036 
7037 /**
7038  *	t4_query_params_rw - query FW or device parameters
7039  *	@adap: the adapter
7040  *	@mbox: mailbox to use for the FW command
7041  *	@pf: the PF
7042  *	@vf: the VF
7043  *	@nparams: the number of parameters
7044  *	@params: the parameter names
7045  *	@val: the parameter values
7046  *	@rw: Write and read flag
7047  *
7048  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
7049  *	queried at once.
7050  */
7051 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7052 		       unsigned int vf, unsigned int nparams, const u32 *params,
7053 		       u32 *val, int rw)
7054 {
7055 	int i, ret;
7056 	struct fw_params_cmd c;
7057 	__be32 *p = &c.param[0].mnem;
7058 
7059 	if (nparams > 7)
7060 		return -EINVAL;
7061 
7062 	memset(&c, 0, sizeof(c));
7063 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7064 				  F_FW_CMD_REQUEST | F_FW_CMD_READ |
7065 				  V_FW_PARAMS_CMD_PFN(pf) |
7066 				  V_FW_PARAMS_CMD_VFN(vf));
7067 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7068 
7069 	for (i = 0; i < nparams; i++) {
7070 		*p++ = cpu_to_be32(*params++);
7071 		if (rw)
7072 			*p = cpu_to_be32(*(val + i));
7073 		p++;
7074 	}
7075 
7076 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7077 	if (ret == 0)
7078 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7079 			*val++ = be32_to_cpu(*p);
7080 	return ret;
7081 }
7082 
7083 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7084 		    unsigned int vf, unsigned int nparams, const u32 *params,
7085 		    u32 *val)
7086 {
7087 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
7088 }
7089 
7090 /**
7091  *      t4_set_params_timeout - sets FW or device parameters
7092  *      @adap: the adapter
7093  *      @mbox: mailbox to use for the FW command
7094  *      @pf: the PF
7095  *      @vf: the VF
7096  *      @nparams: the number of parameters
7097  *      @params: the parameter names
7098  *      @val: the parameter values
7099  *      @timeout: the timeout time
7100  *
7101  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7102  *      specified at once.
7103  */
7104 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7105 			  unsigned int pf, unsigned int vf,
7106 			  unsigned int nparams, const u32 *params,
7107 			  const u32 *val, int timeout)
7108 {
7109 	struct fw_params_cmd c;
7110 	__be32 *p = &c.param[0].mnem;
7111 
7112 	if (nparams > 7)
7113 		return -EINVAL;
7114 
7115 	memset(&c, 0, sizeof(c));
7116 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7117 				  F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7118 				  V_FW_PARAMS_CMD_PFN(pf) |
7119 				  V_FW_PARAMS_CMD_VFN(vf));
7120 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7121 
7122 	while (nparams--) {
7123 		*p++ = cpu_to_be32(*params++);
7124 		*p++ = cpu_to_be32(*val++);
7125 	}
7126 
7127 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7128 }
7129 
7130 /**
7131  *	t4_set_params - sets FW or device parameters
7132  *	@adap: the adapter
7133  *	@mbox: mailbox to use for the FW command
7134  *	@pf: the PF
7135  *	@vf: the VF
7136  *	@nparams: the number of parameters
7137  *	@params: the parameter names
7138  *	@val: the parameter values
7139  *
7140  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7141  *	specified at once.
7142  */
7143 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7144 		  unsigned int vf, unsigned int nparams, const u32 *params,
7145 		  const u32 *val)
7146 {
7147 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7148 				     FW_CMD_MAX_TIMEOUT);
7149 }
7150 
7151 /**
7152  *	t4_cfg_pfvf - configure PF/VF resource limits
7153  *	@adap: the adapter
7154  *	@mbox: mailbox to use for the FW command
7155  *	@pf: the PF being configured
7156  *	@vf: the VF being configured
7157  *	@txq: the max number of egress queues
7158  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7159  *	@rxqi: the max number of interrupt-capable ingress queues
7160  *	@rxq: the max number of interruptless ingress queues
7161  *	@tc: the PCI traffic class
7162  *	@vi: the max number of virtual interfaces
7163  *	@cmask: the channel access rights mask for the PF/VF
7164  *	@pmask: the port access rights mask for the PF/VF
7165  *	@nexact: the maximum number of exact MPS filters
7166  *	@rcaps: read capabilities
7167  *	@wxcaps: write/execute capabilities
7168  *
7169  *	Configures resource limits and capabilities for a physical or virtual
7170  *	function.
7171  */
7172 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7173 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7174 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7175 		unsigned int vi, unsigned int cmask, unsigned int pmask,
7176 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7177 {
7178 	struct fw_pfvf_cmd c;
7179 
7180 	memset(&c, 0, sizeof(c));
7181 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
7182 				  F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
7183 				  V_FW_PFVF_CMD_VFN(vf));
7184 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7185 	c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
7186 				     V_FW_PFVF_CMD_NIQ(rxq));
7187 	c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) |
7188 				    V_FW_PFVF_CMD_PMASK(pmask) |
7189 				    V_FW_PFVF_CMD_NEQ(txq));
7190 	c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) |
7191 				      V_FW_PFVF_CMD_NVI(vi) |
7192 				      V_FW_PFVF_CMD_NEXACTF(nexact));
7193 	c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) |
7194 				     V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
7195 				     V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
7196 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7197 }
7198 
7199 /**
7200  *	t4_alloc_vi_func - allocate a virtual interface
7201  *	@adap: the adapter
7202  *	@mbox: mailbox to use for the FW command
7203  *	@port: physical port associated with the VI
7204  *	@pf: the PF owning the VI
7205  *	@vf: the VF owning the VI
7206  *	@nmac: number of MAC addresses needed (1 to 5)
7207  *	@mac: the MAC addresses of the VI
7208  *	@rss_size: size of RSS table slice associated with this VI
7209  *	@portfunc: which Port Application Function MAC Address is desired
7210  *	@idstype: Intrusion Detection Type
7211  *
7212  *	Allocates a virtual interface for the given physical port.  If @mac is
7213  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7214  *	If @rss_size is %NULL the VI is not assigned any RSS slice by FW.
7215  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7216  *	stored consecutively so the space needed is @nmac * 6 bytes.
7217  *	Returns a negative error number or the non-negative VI id.
7218  */
7219 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
7220 		     unsigned int port, unsigned int pf, unsigned int vf,
7221 		     unsigned int nmac, u8 *mac, u16 *rss_size,
7222 		     unsigned int portfunc, unsigned int idstype)
7223 {
7224 	int ret;
7225 	struct fw_vi_cmd c;
7226 
7227 	memset(&c, 0, sizeof(c));
7228 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
7229 				  F_FW_CMD_WRITE | F_FW_CMD_EXEC |
7230 				  V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
7231 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
7232 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
7233 				     V_FW_VI_CMD_FUNC(portfunc));
7234 	c.portid_pkd = V_FW_VI_CMD_PORTID(port);
7235 	c.nmac = nmac - 1;
7236 	if(!rss_size)
7237 		c.norss_rsssize = F_FW_VI_CMD_NORSS;
7238 
7239 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7240 	if (ret)
7241 		return ret;
7242 
7243 	if (mac) {
7244 		memcpy(mac, c.mac, sizeof(c.mac));
7245 		switch (nmac) {
7246 		case 5:
7247 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7248 		case 4:
7249 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7250 		case 3:
7251 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7252 		case 2:
7253 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7254 		}
7255 	}
7256 	if (rss_size)
7257 		*rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
7258 	return G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid));
7259 }
7260 
7261 /**
7262  *      t4_alloc_vi - allocate an [Ethernet Function] virtual interface
7263  *      @adap: the adapter
7264  *      @mbox: mailbox to use for the FW command
7265  *      @port: physical port associated with the VI
7266  *      @pf: the PF owning the VI
7267  *      @vf: the VF owning the VI
7268  *      @nmac: number of MAC addresses needed (1 to 5)
7269  *      @mac: the MAC addresses of the VI
7270  *      @rss_size: size of RSS table slice associated with this VI
7271  *
7272  *	backwards compatible and convieniance routine to allocate a Virtual
7273  *	Interface with a Ethernet Port Application Function and Intrustion
7274  *	Detection System disabled.
7275  */
7276 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7277 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7278 		u16 *rss_size)
7279 {
7280 	return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
7281 				FW_VI_FUNC_ETH, 0);
7282 }
7283 
7284 /**
7285  * 	t4_free_vi - free a virtual interface
7286  * 	@adap: the adapter
7287  * 	@mbox: mailbox to use for the FW command
7288  * 	@pf: the PF owning the VI
7289  * 	@vf: the VF owning the VI
7290  * 	@viid: virtual interface identifiler
7291  *
7292  * 	Free a previously allocated virtual interface.
7293  */
7294 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7295 	       unsigned int vf, unsigned int viid)
7296 {
7297 	struct fw_vi_cmd c;
7298 
7299 	memset(&c, 0, sizeof(c));
7300 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
7301 				  F_FW_CMD_REQUEST |
7302 				  F_FW_CMD_EXEC |
7303 				  V_FW_VI_CMD_PFN(pf) |
7304 				  V_FW_VI_CMD_VFN(vf));
7305 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
7306 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
7307 
7308 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7309 }
7310 
7311 /**
7312  *	t4_set_rxmode - set Rx properties of a virtual interface
7313  *	@adap: the adapter
7314  *	@mbox: mailbox to use for the FW command
7315  *	@viid: the VI id
7316  *	@mtu: the new MTU or -1
7317  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7318  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7319  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7320  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7321  *	@sleep_ok: if true we may sleep while awaiting command completion
7322  *
7323  *	Sets Rx properties of a virtual interface.
7324  */
7325 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7326 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
7327 		  bool sleep_ok)
7328 {
7329 	struct fw_vi_rxmode_cmd c;
7330 
7331 	/* convert to FW values */
7332 	if (mtu < 0)
7333 		mtu = M_FW_VI_RXMODE_CMD_MTU;
7334 	if (promisc < 0)
7335 		promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
7336 	if (all_multi < 0)
7337 		all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
7338 	if (bcast < 0)
7339 		bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
7340 	if (vlanex < 0)
7341 		vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
7342 
7343 	memset(&c, 0, sizeof(c));
7344 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
7345 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7346 				   V_FW_VI_RXMODE_CMD_VIID(viid));
7347 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7348 	c.mtu_to_vlanexen =
7349 		cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
7350 			    V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
7351 			    V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
7352 			    V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
7353 			    V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
7354 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7355 }
7356 
7357 /**
7358  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7359  *	@adap: the adapter
7360  *	@mbox: mailbox to use for the FW command
7361  *	@viid: the VI id
7362  *	@free: if true any existing filters for this VI id are first removed
7363  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7364  *	@addr: the MAC address(es)
7365  *	@idx: where to store the index of each allocated filter
7366  *	@hash: pointer to hash address filter bitmap
7367  *	@sleep_ok: call is allowed to sleep
7368  *
7369  *	Allocates an exact-match filter for each of the supplied addresses and
7370  *	sets it to the corresponding address.  If @idx is not %NULL it should
7371  *	have at least @naddr entries, each of which will be set to the index of
7372  *	the filter allocated for the corresponding MAC address.  If a filter
7373  *	could not be allocated for an address its index is set to 0xffff.
7374  *	If @hash is not %NULL addresses that fail to allocate an exact filter
7375  *	are hashed and update the hash filter bitmap pointed at by @hash.
7376  *
7377  *	Returns a negative error number or the number of filters allocated.
7378  */
7379 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7380 		      unsigned int viid, bool free, unsigned int naddr,
7381 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7382 {
7383 	int offset, ret = 0;
7384 	struct fw_vi_mac_cmd c;
7385 	unsigned int nfilters = 0;
7386 	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
7387 	unsigned int rem = naddr;
7388 
7389 	if (naddr > max_naddr)
7390 		return -EINVAL;
7391 
7392 	for (offset = 0; offset < naddr ; /**/) {
7393 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
7394 					 ? rem
7395 					 : ARRAY_SIZE(c.u.exact));
7396 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7397 						     u.exact[fw_naddr]), 16);
7398 		struct fw_vi_mac_exact *p;
7399 		int i;
7400 
7401 		memset(&c, 0, sizeof(c));
7402 		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7403 					   F_FW_CMD_REQUEST |
7404 					   F_FW_CMD_WRITE |
7405 					   V_FW_CMD_EXEC(free) |
7406 					   V_FW_VI_MAC_CMD_VIID(viid));
7407 		c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) |
7408 						  V_FW_CMD_LEN16(len16));
7409 
7410 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7411 			p->valid_to_idx =
7412 				cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
7413 					    V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
7414 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
7415 		}
7416 
7417 		/*
7418 		 * It's okay if we run out of space in our MAC address arena.
7419 		 * Some of the addresses we submit may get stored so we need
7420 		 * to run through the reply to see what the results were ...
7421 		 */
7422 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7423 		if (ret && ret != -FW_ENOMEM)
7424 			break;
7425 
7426 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7427 			u16 index = G_FW_VI_MAC_CMD_IDX(
7428 						be16_to_cpu(p->valid_to_idx));
7429 
7430 			if (idx)
7431 				idx[offset+i] = (index >=  max_naddr
7432 						 ? 0xffff
7433 						 : index);
7434 			if (index < max_naddr)
7435 				nfilters++;
7436 			else if (hash)
7437 				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
7438 		}
7439 
7440 		free = false;
7441 		offset += fw_naddr;
7442 		rem -= fw_naddr;
7443 	}
7444 
7445 	if (ret == 0 || ret == -FW_ENOMEM)
7446 		ret = nfilters;
7447 	return ret;
7448 }
7449 
7450 /**
7451  *	t4_change_mac - modifies the exact-match filter for a MAC address
7452  *	@adap: the adapter
7453  *	@mbox: mailbox to use for the FW command
7454  *	@viid: the VI id
7455  *	@idx: index of existing filter for old value of MAC address, or -1
7456  *	@addr: the new MAC address value
7457  *	@persist: whether a new MAC allocation should be persistent
7458  *	@add_smt: if true also add the address to the HW SMT
7459  *
7460  *	Modifies an exact-match filter and sets it to the new MAC address if
7461  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
7462  *	latter case the address is added persistently if @persist is %true.
7463  *
7464  *	Note that in general it is not possible to modify the value of a given
7465  *	filter so the generic way to modify an address filter is to free the one
7466  *	being used by the old address value and allocate a new filter for the
7467  *	new address value.
7468  *
7469  *	Returns a negative error number or the index of the filter with the new
7470  *	MAC value.  Note that this index may differ from @idx.
7471  */
7472 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
7473 		  int idx, const u8 *addr, bool persist, bool add_smt)
7474 {
7475 	int ret, mode;
7476 	struct fw_vi_mac_cmd c;
7477 	struct fw_vi_mac_exact *p = c.u.exact;
7478 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
7479 
7480 	if (idx < 0)		/* new allocation */
7481 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
7482 	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
7483 
7484 	memset(&c, 0, sizeof(c));
7485 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7486 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7487 				   V_FW_VI_MAC_CMD_VIID(viid));
7488 	c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
7489 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
7490 				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
7491 				      V_FW_VI_MAC_CMD_IDX(idx));
7492 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7493 
7494 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7495 	if (ret == 0) {
7496 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
7497 		if (ret >= max_mac_addr)
7498 			ret = -ENOMEM;
7499 	}
7500 	return ret;
7501 }
7502 
7503 /**
7504  *	t4_set_addr_hash - program the MAC inexact-match hash filter
7505  *	@adap: the adapter
7506  *	@mbox: mailbox to use for the FW command
7507  *	@viid: the VI id
7508  *	@ucast: whether the hash filter should also match unicast addresses
7509  *	@vec: the value to be written to the hash filter
7510  *	@sleep_ok: call is allowed to sleep
7511  *
7512  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
7513  */
7514 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
7515 		     bool ucast, u64 vec, bool sleep_ok)
7516 {
7517 	struct fw_vi_mac_cmd c;
7518 	u32 val;
7519 
7520 	memset(&c, 0, sizeof(c));
7521 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7522 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7523 				   V_FW_VI_ENABLE_CMD_VIID(viid));
7524 	val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) |
7525 	      V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1);
7526 	c.freemacs_to_len16 = cpu_to_be32(val);
7527 	c.u.hash.hashvec = cpu_to_be64(vec);
7528 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7529 }
7530 
7531 /**
7532  *      t4_enable_vi_params - enable/disable a virtual interface
7533  *      @adap: the adapter
7534  *      @mbox: mailbox to use for the FW command
7535  *      @viid: the VI id
7536  *      @rx_en: 1=enable Rx, 0=disable Rx
7537  *      @tx_en: 1=enable Tx, 0=disable Tx
7538  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
7539  *
7540  *      Enables/disables a virtual interface.  Note that setting DCB Enable
7541  *      only makes sense when enabling a Virtual Interface ...
7542  */
7543 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
7544 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
7545 {
7546 	struct fw_vi_enable_cmd c;
7547 
7548 	memset(&c, 0, sizeof(c));
7549 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
7550 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7551 				   V_FW_VI_ENABLE_CMD_VIID(viid));
7552 	c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
7553 				     V_FW_VI_ENABLE_CMD_EEN(tx_en) |
7554 				     V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
7555 				     FW_LEN16(c));
7556 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
7557 }
7558 
7559 /**
7560  *	t4_enable_vi - enable/disable a virtual interface
7561  *	@adap: the adapter
7562  *	@mbox: mailbox to use for the FW command
7563  *	@viid: the VI id
7564  *	@rx_en: 1=enable Rx, 0=disable Rx
7565  *	@tx_en: 1=enable Tx, 0=disable Tx
7566  *
7567  *	Enables/disables a virtual interface.  Note that setting DCB Enable
7568  *	only makes sense when enabling a Virtual Interface ...
7569  */
7570 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
7571 		 bool rx_en, bool tx_en)
7572 {
7573 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
7574 }
7575 
7576 /**
7577  *	t4_identify_port - identify a VI's port by blinking its LED
7578  *	@adap: the adapter
7579  *	@mbox: mailbox to use for the FW command
7580  *	@viid: the VI id
7581  *	@nblinks: how many times to blink LED at 2.5 Hz
7582  *
7583  *	Identifies a VI's port by blinking its LED.
7584  */
7585 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
7586 		     unsigned int nblinks)
7587 {
7588 	struct fw_vi_enable_cmd c;
7589 
7590 	memset(&c, 0, sizeof(c));
7591 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
7592 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7593 				   V_FW_VI_ENABLE_CMD_VIID(viid));
7594 	c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
7595 	c.blinkdur = cpu_to_be16(nblinks);
7596 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7597 }
7598 
7599 /**
7600  *	t4_iq_stop - stop an ingress queue and its FLs
7601  *	@adap: the adapter
7602  *	@mbox: mailbox to use for the FW command
7603  *	@pf: the PF owning the queues
7604  *	@vf: the VF owning the queues
7605  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7606  *	@iqid: ingress queue id
7607  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7608  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7609  *
7610  *	Stops an ingress queue and its associated FLs, if any.  This causes
7611  *	any current or future data/messages destined for these queues to be
7612  *	tossed.
7613  */
7614 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
7615 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7616 	       unsigned int fl0id, unsigned int fl1id)
7617 {
7618 	struct fw_iq_cmd c;
7619 
7620 	memset(&c, 0, sizeof(c));
7621 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
7622 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
7623 				  V_FW_IQ_CMD_VFN(vf));
7624 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c));
7625 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
7626 	c.iqid = cpu_to_be16(iqid);
7627 	c.fl0id = cpu_to_be16(fl0id);
7628 	c.fl1id = cpu_to_be16(fl1id);
7629 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7630 }
7631 
7632 /**
7633  *	t4_iq_free - free an ingress queue and its FLs
7634  *	@adap: the adapter
7635  *	@mbox: mailbox to use for the FW command
7636  *	@pf: the PF owning the queues
7637  *	@vf: the VF owning the queues
7638  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7639  *	@iqid: ingress queue id
7640  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7641  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7642  *
7643  *	Frees an ingress queue and its associated FLs, if any.
7644  */
7645 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7646 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7647 	       unsigned int fl0id, unsigned int fl1id)
7648 {
7649 	struct fw_iq_cmd c;
7650 
7651 	memset(&c, 0, sizeof(c));
7652 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
7653 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
7654 				  V_FW_IQ_CMD_VFN(vf));
7655 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
7656 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
7657 	c.iqid = cpu_to_be16(iqid);
7658 	c.fl0id = cpu_to_be16(fl0id);
7659 	c.fl1id = cpu_to_be16(fl1id);
7660 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7661 }
7662 
7663 /**
7664  *	t4_eth_eq_free - free an Ethernet egress queue
7665  *	@adap: the adapter
7666  *	@mbox: mailbox to use for the FW command
7667  *	@pf: the PF owning the queue
7668  *	@vf: the VF owning the queue
7669  *	@eqid: egress queue id
7670  *
7671  *	Frees an Ethernet egress queue.
7672  */
7673 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7674 		   unsigned int vf, unsigned int eqid)
7675 {
7676 	struct fw_eq_eth_cmd c;
7677 
7678 	memset(&c, 0, sizeof(c));
7679 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
7680 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7681 				  V_FW_EQ_ETH_CMD_PFN(pf) |
7682 				  V_FW_EQ_ETH_CMD_VFN(vf));
7683 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
7684 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
7685 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7686 }
7687 
7688 /**
7689  *	t4_ctrl_eq_free - free a control egress queue
7690  *	@adap: the adapter
7691  *	@mbox: mailbox to use for the FW command
7692  *	@pf: the PF owning the queue
7693  *	@vf: the VF owning the queue
7694  *	@eqid: egress queue id
7695  *
7696  *	Frees a control egress queue.
7697  */
7698 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7699 		    unsigned int vf, unsigned int eqid)
7700 {
7701 	struct fw_eq_ctrl_cmd c;
7702 
7703 	memset(&c, 0, sizeof(c));
7704 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
7705 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7706 				  V_FW_EQ_CTRL_CMD_PFN(pf) |
7707 				  V_FW_EQ_CTRL_CMD_VFN(vf));
7708 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
7709 	c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
7710 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7711 }
7712 
7713 /**
7714  *	t4_ofld_eq_free - free an offload egress queue
7715  *	@adap: the adapter
7716  *	@mbox: mailbox to use for the FW command
7717  *	@pf: the PF owning the queue
7718  *	@vf: the VF owning the queue
7719  *	@eqid: egress queue id
7720  *
7721  *	Frees a control egress queue.
7722  */
7723 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7724 		    unsigned int vf, unsigned int eqid)
7725 {
7726 	struct fw_eq_ofld_cmd c;
7727 
7728 	memset(&c, 0, sizeof(c));
7729 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) |
7730 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7731 				  V_FW_EQ_OFLD_CMD_PFN(pf) |
7732 				  V_FW_EQ_OFLD_CMD_VFN(vf));
7733 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
7734 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid));
7735 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7736 }
7737 
7738 /**
7739  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
7740  *	@link_down_rc: Link Down Reason Code
7741  *
7742  *	Returns a string representation of the Link Down Reason Code.
7743  */
7744 const char *t4_link_down_rc_str(unsigned char link_down_rc)
7745 {
7746 	static const char *reason[] = {
7747 		"Link Down",
7748 		"Remote Fault",
7749 		"Auto-negotiation Failure",
7750 		"Reserved3",
7751 		"Insufficient Airflow",
7752 		"Unable To Determine Reason",
7753 		"No RX Signal Detected",
7754 		"Reserved7",
7755 	};
7756 
7757 	if (link_down_rc >= ARRAY_SIZE(reason))
7758 		return "Bad Reason Code";
7759 
7760 	return reason[link_down_rc];
7761 }
7762 
7763 /*
7764  * Return the highest speed set in the port capabilities, in Mb/s.
7765  */
7766 unsigned int fwcap_to_speed(uint32_t caps)
7767 {
7768 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
7769 		do { \
7770 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
7771 				return __speed; \
7772 		} while (0)
7773 
7774 	TEST_SPEED_RETURN(400G, 400000);
7775 	TEST_SPEED_RETURN(200G, 200000);
7776 	TEST_SPEED_RETURN(100G, 100000);
7777 	TEST_SPEED_RETURN(50G,   50000);
7778 	TEST_SPEED_RETURN(40G,   40000);
7779 	TEST_SPEED_RETURN(25G,   25000);
7780 	TEST_SPEED_RETURN(10G,   10000);
7781 	TEST_SPEED_RETURN(1G,     1000);
7782 	TEST_SPEED_RETURN(100M,    100);
7783 
7784 	#undef TEST_SPEED_RETURN
7785 
7786 	return 0;
7787 }
7788 
7789 /*
7790  * Return the port capabilities bit for the given speed, which is in Mb/s.
7791  */
7792 uint32_t speed_to_fwcap(unsigned int speed)
7793 {
7794 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
7795 		do { \
7796 			if (speed == __speed) \
7797 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
7798 		} while (0)
7799 
7800 	TEST_SPEED_RETURN(400G, 400000);
7801 	TEST_SPEED_RETURN(200G, 200000);
7802 	TEST_SPEED_RETURN(100G, 100000);
7803 	TEST_SPEED_RETURN(50G,   50000);
7804 	TEST_SPEED_RETURN(40G,   40000);
7805 	TEST_SPEED_RETURN(25G,   25000);
7806 	TEST_SPEED_RETURN(10G,   10000);
7807 	TEST_SPEED_RETURN(1G,     1000);
7808 	TEST_SPEED_RETURN(100M,    100);
7809 
7810 	#undef TEST_SPEED_RETURN
7811 
7812 	return 0;
7813 }
7814 
7815 /*
7816  * Return the port capabilities bit for the highest speed in the capabilities.
7817  */
7818 uint32_t fwcap_top_speed(uint32_t caps)
7819 {
7820 	#define TEST_SPEED_RETURN(__caps_speed) \
7821 		do { \
7822 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
7823 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
7824 		} while (0)
7825 
7826 	TEST_SPEED_RETURN(400G);
7827 	TEST_SPEED_RETURN(200G);
7828 	TEST_SPEED_RETURN(100G);
7829 	TEST_SPEED_RETURN(50G);
7830 	TEST_SPEED_RETURN(40G);
7831 	TEST_SPEED_RETURN(25G);
7832 	TEST_SPEED_RETURN(10G);
7833 	TEST_SPEED_RETURN(1G);
7834 	TEST_SPEED_RETURN(100M);
7835 
7836 	#undef TEST_SPEED_RETURN
7837 
7838 	return 0;
7839 }
7840 
7841 
7842 /**
7843  *	lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
7844  *	@lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
7845  *
7846  *	Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
7847  *	32-bit Port Capabilities value.
7848  */
7849 static uint32_t lstatus_to_fwcap(u32 lstatus)
7850 {
7851 	uint32_t linkattr = 0;
7852 
7853 	/*
7854 	 * Unfortunately the format of the Link Status in the old
7855 	 * 16-bit Port Information message isn't the same as the
7856 	 * 16-bit Port Capabilities bitfield used everywhere else ...
7857 	 */
7858 	if (lstatus & F_FW_PORT_CMD_RXPAUSE)
7859 		linkattr |= FW_PORT_CAP32_FC_RX;
7860 	if (lstatus & F_FW_PORT_CMD_TXPAUSE)
7861 		linkattr |= FW_PORT_CAP32_FC_TX;
7862 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
7863 		linkattr |= FW_PORT_CAP32_SPEED_100M;
7864 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
7865 		linkattr |= FW_PORT_CAP32_SPEED_1G;
7866 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
7867 		linkattr |= FW_PORT_CAP32_SPEED_10G;
7868 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G))
7869 		linkattr |= FW_PORT_CAP32_SPEED_25G;
7870 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
7871 		linkattr |= FW_PORT_CAP32_SPEED_40G;
7872 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G))
7873 		linkattr |= FW_PORT_CAP32_SPEED_100G;
7874 
7875 	return linkattr;
7876 }
7877 
7878 /*
7879  * Updates all fields owned by the common code in port_info and link_config
7880  * based on information provided by the firmware.  Does not touch any
7881  * requested_* field.
7882  */
7883 static void handle_port_info(struct port_info *pi, const struct fw_port_cmd *p,
7884     enum fw_port_action action, bool *mod_changed, bool *link_changed)
7885 {
7886 	struct link_config old_lc, *lc = &pi->link_cfg;
7887 	unsigned char fc, fec;
7888 	u32 stat, linkattr;
7889 	int old_ptype, old_mtype;
7890 
7891 	old_ptype = pi->port_type;
7892 	old_mtype = pi->mod_type;
7893 	old_lc = *lc;
7894 	if (action == FW_PORT_ACTION_GET_PORT_INFO) {
7895 		stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
7896 
7897 		pi->port_type = G_FW_PORT_CMD_PTYPE(stat);
7898 		pi->mod_type = G_FW_PORT_CMD_MODTYPE(stat);
7899 		pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP ?
7900 		    G_FW_PORT_CMD_MDIOADDR(stat) : -1;
7901 
7902 		lc->supported = fwcaps16_to_caps32(be16_to_cpu(p->u.info.pcap));
7903 		lc->advertising = fwcaps16_to_caps32(be16_to_cpu(p->u.info.acap));
7904 		lc->lp_advertising = fwcaps16_to_caps32(be16_to_cpu(p->u.info.lpacap));
7905 		lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
7906 		lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC(stat);
7907 
7908 		linkattr = lstatus_to_fwcap(stat);
7909 	} else if (action == FW_PORT_ACTION_GET_PORT_INFO32) {
7910 		stat = be32_to_cpu(p->u.info32.lstatus32_to_cbllen32);
7911 
7912 		pi->port_type = G_FW_PORT_CMD_PORTTYPE32(stat);
7913 		pi->mod_type = G_FW_PORT_CMD_MODTYPE32(stat);
7914 		pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP32 ?
7915 		    G_FW_PORT_CMD_MDIOADDR32(stat) : -1;
7916 
7917 		lc->supported = be32_to_cpu(p->u.info32.pcaps32);
7918 		lc->advertising = be32_to_cpu(p->u.info32.acaps32);
7919 		lc->lp_advertising = be16_to_cpu(p->u.info32.lpacaps32);
7920 		lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS32) != 0;
7921 		lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC32(stat);
7922 
7923 		linkattr = be32_to_cpu(p->u.info32.linkattr32);
7924 	} else {
7925 		CH_ERR(pi->adapter, "bad port_info action 0x%x\n", action);
7926 		return;
7927 	}
7928 
7929 	lc->speed = fwcap_to_speed(linkattr);
7930 
7931 	fc = 0;
7932 	if (linkattr & FW_PORT_CAP32_FC_RX)
7933 		fc |= PAUSE_RX;
7934 	if (linkattr & FW_PORT_CAP32_FC_TX)
7935 		fc |= PAUSE_TX;
7936 	lc->fc = fc;
7937 
7938 	fec = FEC_NONE;
7939 	if (linkattr & FW_PORT_CAP32_FEC_RS)
7940 		fec |= FEC_RS;
7941 	if (linkattr & FW_PORT_CAP32_FEC_BASER_RS)
7942 		fec |= FEC_BASER_RS;
7943 	lc->fec = fec;
7944 
7945 	if (mod_changed != NULL)
7946 		*mod_changed = false;
7947 	if (link_changed != NULL)
7948 		*link_changed = false;
7949 	if (old_ptype != pi->port_type || old_mtype != pi->mod_type ||
7950 	    old_lc.supported != lc->supported) {
7951 		if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) {
7952 			lc->fec_hint = lc->advertising &
7953 			    V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC);
7954 		}
7955 		if (mod_changed != NULL)
7956 			*mod_changed = true;
7957 	}
7958 	if (old_lc.link_ok != lc->link_ok || old_lc.speed != lc->speed ||
7959 	    old_lc.fec != lc->fec || old_lc.fc != lc->fc) {
7960 		if (link_changed != NULL)
7961 			*link_changed = true;
7962 	}
7963 }
7964 
7965 /**
7966  *	t4_update_port_info - retrieve and update port information if changed
7967  *	@pi: the port_info
7968  *
7969  *	We issue a Get Port Information Command to the Firmware and, if
7970  *	successful, we check to see if anything is different from what we
7971  *	last recorded and update things accordingly.
7972  */
7973  int t4_update_port_info(struct port_info *pi)
7974  {
7975 	struct adapter *sc = pi->adapter;
7976 	struct fw_port_cmd cmd;
7977 	enum fw_port_action action;
7978 	int ret;
7979 
7980 	memset(&cmd, 0, sizeof(cmd));
7981 	cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
7982 	    F_FW_CMD_REQUEST | F_FW_CMD_READ |
7983 	    V_FW_PORT_CMD_PORTID(pi->tx_chan));
7984 	action = sc->params.port_caps32 ? FW_PORT_ACTION_GET_PORT_INFO32 :
7985 	    FW_PORT_ACTION_GET_PORT_INFO;
7986 	cmd.action_to_len16 = cpu_to_be32(V_FW_PORT_CMD_ACTION(action) |
7987 	    FW_LEN16(cmd));
7988 	ret = t4_wr_mbox_ns(sc, sc->mbox, &cmd, sizeof(cmd), &cmd);
7989 	if (ret)
7990 		return ret;
7991 
7992 	handle_port_info(pi, &cmd, action, NULL, NULL);
7993 	return 0;
7994 }
7995 
7996 /**
7997  *	t4_handle_fw_rpl - process a FW reply message
7998  *	@adap: the adapter
7999  *	@rpl: start of the FW message
8000  *
8001  *	Processes a FW message, such as link state change messages.
8002  */
8003 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8004 {
8005 	u8 opcode = *(const u8 *)rpl;
8006 	const struct fw_port_cmd *p = (const void *)rpl;
8007 	enum fw_port_action action =
8008 	    G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
8009 	bool mod_changed, link_changed;
8010 
8011 	if (opcode == FW_PORT_CMD &&
8012 	    (action == FW_PORT_ACTION_GET_PORT_INFO ||
8013 	    action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8014 		/* link/module state change message */
8015 		int i;
8016 		int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
8017 		struct port_info *pi = NULL;
8018 		struct link_config *lc;
8019 
8020 		for_each_port(adap, i) {
8021 			pi = adap2pinfo(adap, i);
8022 			if (pi->tx_chan == chan)
8023 				break;
8024 		}
8025 
8026 		lc = &pi->link_cfg;
8027 		PORT_LOCK(pi);
8028 		handle_port_info(pi, p, action, &mod_changed, &link_changed);
8029 		PORT_UNLOCK(pi);
8030 		if (mod_changed)
8031 			t4_os_portmod_changed(pi);
8032 		if (link_changed) {
8033 			PORT_LOCK(pi);
8034 			t4_os_link_changed(pi);
8035 			PORT_UNLOCK(pi);
8036 		}
8037 	} else {
8038 		CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode);
8039 		return -EINVAL;
8040 	}
8041 	return 0;
8042 }
8043 
8044 /**
8045  *	get_pci_mode - determine a card's PCI mode
8046  *	@adapter: the adapter
8047  *	@p: where to store the PCI settings
8048  *
8049  *	Determines a card's PCI mode and associated parameters, such as speed
8050  *	and width.
8051  */
8052 static void get_pci_mode(struct adapter *adapter,
8053 				   struct pci_params *p)
8054 {
8055 	u16 val;
8056 	u32 pcie_cap;
8057 
8058 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
8059 	if (pcie_cap) {
8060 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
8061 		p->speed = val & PCI_EXP_LNKSTA_CLS;
8062 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
8063 	}
8064 }
8065 
8066 struct flash_desc {
8067 	u32 vendor_and_model_id;
8068 	u32 size_mb;
8069 };
8070 
8071 int t4_get_flash_params(struct adapter *adapter)
8072 {
8073 	/*
8074 	 * Table for non-standard supported Flash parts.  Note, all Flash
8075 	 * parts must have 64KB sectors.
8076 	 */
8077 	static struct flash_desc supported_flash[] = {
8078 		{ 0x00150201, 4 << 20 },	/* Spansion 4MB S25FL032P */
8079 	};
8080 
8081 	int ret;
8082 	u32 flashid = 0;
8083 	unsigned int part, manufacturer;
8084 	unsigned int density, size = 0;
8085 
8086 
8087 	/*
8088 	 * Issue a Read ID Command to the Flash part.  We decode supported
8089 	 * Flash parts and their sizes from this.  There's a newer Query
8090 	 * Command which can retrieve detailed geometry information but many
8091 	 * Flash parts don't support it.
8092 	 */
8093 	ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
8094 	if (!ret)
8095 		ret = sf1_read(adapter, 3, 0, 1, &flashid);
8096 	t4_write_reg(adapter, A_SF_OP, 0);	/* unlock SF */
8097 	if (ret < 0)
8098 		return ret;
8099 
8100 	/*
8101 	 * Check to see if it's one of our non-standard supported Flash parts.
8102 	 */
8103 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
8104 		if (supported_flash[part].vendor_and_model_id == flashid) {
8105 			adapter->params.sf_size =
8106 				supported_flash[part].size_mb;
8107 			adapter->params.sf_nsec =
8108 				adapter->params.sf_size / SF_SEC_SIZE;
8109 			goto found;
8110 		}
8111 
8112 	/*
8113 	 * Decode Flash part size.  The code below looks repetative with
8114 	 * common encodings, but that's not guaranteed in the JEDEC
8115 	 * specification for the Read JADEC ID command.  The only thing that
8116 	 * we're guaranteed by the JADEC specification is where the
8117 	 * Manufacturer ID is in the returned result.  After that each
8118 	 * Manufacturer ~could~ encode things completely differently.
8119 	 * Note, all Flash parts must have 64KB sectors.
8120 	 */
8121 	manufacturer = flashid & 0xff;
8122 	switch (manufacturer) {
8123 	case 0x20: /* Micron/Numonix */
8124 		/*
8125 		 * This Density -> Size decoding table is taken from Micron
8126 		 * Data Sheets.
8127 		 */
8128 		density = (flashid >> 16) & 0xff;
8129 		switch (density) {
8130 		case 0x14: size = 1 << 20; break; /*   1MB */
8131 		case 0x15: size = 1 << 21; break; /*   2MB */
8132 		case 0x16: size = 1 << 22; break; /*   4MB */
8133 		case 0x17: size = 1 << 23; break; /*   8MB */
8134 		case 0x18: size = 1 << 24; break; /*  16MB */
8135 		case 0x19: size = 1 << 25; break; /*  32MB */
8136 		case 0x20: size = 1 << 26; break; /*  64MB */
8137 		case 0x21: size = 1 << 27; break; /* 128MB */
8138 		case 0x22: size = 1 << 28; break; /* 256MB */
8139 		}
8140 		break;
8141 
8142 	case 0x9d: /* ISSI -- Integrated Silicon Solution, Inc. */
8143 		/*
8144 		 * This Density -> Size decoding table is taken from ISSI
8145 		 * Data Sheets.
8146 		 */
8147 		density = (flashid >> 16) & 0xff;
8148 		switch (density) {
8149 		case 0x16: size = 1 << 25; break; /*  32MB */
8150 		case 0x17: size = 1 << 26; break; /*  64MB */
8151 		}
8152 		break;
8153 
8154 	case 0xc2: /* Macronix */
8155 		/*
8156 		 * This Density -> Size decoding table is taken from Macronix
8157 		 * Data Sheets.
8158 		 */
8159 		density = (flashid >> 16) & 0xff;
8160 		switch (density) {
8161 		case 0x17: size = 1 << 23; break; /*   8MB */
8162 		case 0x18: size = 1 << 24; break; /*  16MB */
8163 		}
8164 		break;
8165 
8166 	case 0xef: /* Winbond */
8167 		/*
8168 		 * This Density -> Size decoding table is taken from Winbond
8169 		 * Data Sheets.
8170 		 */
8171 		density = (flashid >> 16) & 0xff;
8172 		switch (density) {
8173 		case 0x17: size = 1 << 23; break; /*   8MB */
8174 		case 0x18: size = 1 << 24; break; /*  16MB */
8175 		}
8176 		break;
8177 	}
8178 
8179 	/* If we didn't recognize the FLASH part, that's no real issue: the
8180 	 * Hardware/Software contract says that Hardware will _*ALWAYS*_
8181 	 * use a FLASH part which is at least 4MB in size and has 64KB
8182 	 * sectors.  The unrecognized FLASH part is likely to be much larger
8183 	 * than 4MB, but that's all we really need.
8184 	 */
8185 	if (size == 0) {
8186 		CH_WARN(adapter, "Unknown Flash Part, ID = %#x, assuming 4MB\n", flashid);
8187 		size = 1 << 22;
8188 	}
8189 
8190 	/*
8191 	 * Store decoded Flash size and fall through into vetting code.
8192 	 */
8193 	adapter->params.sf_size = size;
8194 	adapter->params.sf_nsec = size / SF_SEC_SIZE;
8195 
8196  found:
8197 	/*
8198 	 * We should ~probably~ reject adapters with FLASHes which are too
8199 	 * small but we have some legacy FPGAs with small FLASHes that we'd
8200 	 * still like to use.  So instead we emit a scary message ...
8201 	 */
8202 	if (adapter->params.sf_size < FLASH_MIN_SIZE)
8203 		CH_WARN(adapter, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
8204 			flashid, adapter->params.sf_size, FLASH_MIN_SIZE);
8205 
8206 	return 0;
8207 }
8208 
8209 static void set_pcie_completion_timeout(struct adapter *adapter,
8210 						  u8 range)
8211 {
8212 	u16 val;
8213 	u32 pcie_cap;
8214 
8215 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
8216 	if (pcie_cap) {
8217 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
8218 		val &= 0xfff0;
8219 		val |= range ;
8220 		t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
8221 	}
8222 }
8223 
8224 const struct chip_params *t4_get_chip_params(int chipid)
8225 {
8226 	static const struct chip_params chip_params[] = {
8227 		{
8228 			/* T4 */
8229 			.nchan = NCHAN,
8230 			.pm_stats_cnt = PM_NSTATS,
8231 			.cng_ch_bits_log = 2,
8232 			.nsched_cls = 15,
8233 			.cim_num_obq = CIM_NUM_OBQ,
8234 			.mps_rplc_size = 128,
8235 			.vfcount = 128,
8236 			.sge_fl_db = F_DBPRIO,
8237 			.mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES,
8238 		},
8239 		{
8240 			/* T5 */
8241 			.nchan = NCHAN,
8242 			.pm_stats_cnt = PM_NSTATS,
8243 			.cng_ch_bits_log = 2,
8244 			.nsched_cls = 16,
8245 			.cim_num_obq = CIM_NUM_OBQ_T5,
8246 			.mps_rplc_size = 128,
8247 			.vfcount = 128,
8248 			.sge_fl_db = F_DBPRIO | F_DBTYPE,
8249 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
8250 		},
8251 		{
8252 			/* T6 */
8253 			.nchan = T6_NCHAN,
8254 			.pm_stats_cnt = T6_PM_NSTATS,
8255 			.cng_ch_bits_log = 3,
8256 			.nsched_cls = 16,
8257 			.cim_num_obq = CIM_NUM_OBQ_T5,
8258 			.mps_rplc_size = 256,
8259 			.vfcount = 256,
8260 			.sge_fl_db = 0,
8261 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
8262 		},
8263 	};
8264 
8265 	chipid -= CHELSIO_T4;
8266 	if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params))
8267 		return NULL;
8268 
8269 	return &chip_params[chipid];
8270 }
8271 
8272 /**
8273  *	t4_prep_adapter - prepare SW and HW for operation
8274  *	@adapter: the adapter
8275  *	@buf: temporary space of at least VPD_LEN size provided by the caller.
8276  *
8277  *	Initialize adapter SW state for the various HW modules, set initial
8278  *	values for some adapter tunables, take PHYs out of reset, and
8279  *	initialize the MDIO interface.
8280  */
8281 int t4_prep_adapter(struct adapter *adapter, u32 *buf)
8282 {
8283 	int ret;
8284 	uint16_t device_id;
8285 	uint32_t pl_rev;
8286 
8287 	get_pci_mode(adapter, &adapter->params.pci);
8288 
8289 	pl_rev = t4_read_reg(adapter, A_PL_REV);
8290 	adapter->params.chipid = G_CHIPID(pl_rev);
8291 	adapter->params.rev = G_REV(pl_rev);
8292 	if (adapter->params.chipid == 0) {
8293 		/* T4 did not have chipid in PL_REV (T5 onwards do) */
8294 		adapter->params.chipid = CHELSIO_T4;
8295 
8296 		/* T4A1 chip is not supported */
8297 		if (adapter->params.rev == 1) {
8298 			CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
8299 			return -EINVAL;
8300 		}
8301 	}
8302 
8303 	adapter->chip_params = t4_get_chip_params(chip_id(adapter));
8304 	if (adapter->chip_params == NULL)
8305 		return -EINVAL;
8306 
8307 	adapter->params.pci.vpd_cap_addr =
8308 	    t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
8309 
8310 	ret = t4_get_flash_params(adapter);
8311 	if (ret < 0)
8312 		return ret;
8313 
8314 	/* Cards with real ASICs have the chipid in the PCIe device id */
8315 	t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
8316 	if (device_id >> 12 == chip_id(adapter))
8317 		adapter->params.cim_la_size = CIMLA_SIZE;
8318 	else {
8319 		/* FPGA */
8320 		adapter->params.fpga = 1;
8321 		adapter->params.cim_la_size = 2 * CIMLA_SIZE;
8322 	}
8323 
8324 	ret = get_vpd_params(adapter, &adapter->params.vpd, device_id, buf);
8325 	if (ret < 0)
8326 		return ret;
8327 
8328 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
8329 
8330 	/*
8331 	 * Default port and clock for debugging in case we can't reach FW.
8332 	 */
8333 	adapter->params.nports = 1;
8334 	adapter->params.portvec = 1;
8335 	adapter->params.vpd.cclk = 50000;
8336 
8337 	/* Set pci completion timeout value to 4 seconds. */
8338 	set_pcie_completion_timeout(adapter, 0xd);
8339 	return 0;
8340 }
8341 
8342 /**
8343  *	t4_shutdown_adapter - shut down adapter, host & wire
8344  *	@adapter: the adapter
8345  *
8346  *	Perform an emergency shutdown of the adapter and stop it from
8347  *	continuing any further communication on the ports or DMA to the
8348  *	host.  This is typically used when the adapter and/or firmware
8349  *	have crashed and we want to prevent any further accidental
8350  *	communication with the rest of the world.  This will also force
8351  *	the port Link Status to go down -- if register writes work --
8352  *	which should help our peers figure out that we're down.
8353  */
8354 int t4_shutdown_adapter(struct adapter *adapter)
8355 {
8356 	int port;
8357 
8358 	t4_intr_disable(adapter);
8359 	t4_write_reg(adapter, A_DBG_GPIO_EN, 0);
8360 	for_each_port(adapter, port) {
8361 		u32 a_port_cfg = is_t4(adapter) ?
8362 				 PORT_REG(port, A_XGMAC_PORT_CFG) :
8363 				 T5_PORT_REG(port, A_MAC_PORT_CFG);
8364 
8365 		t4_write_reg(adapter, a_port_cfg,
8366 			     t4_read_reg(adapter, a_port_cfg)
8367 			     & ~V_SIGNAL_DET(1));
8368 	}
8369 	t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0);
8370 
8371 	return 0;
8372 }
8373 
8374 /**
8375  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
8376  *	@adapter: the adapter
8377  *	@qid: the Queue ID
8378  *	@qtype: the Ingress or Egress type for @qid
8379  *	@user: true if this request is for a user mode queue
8380  *	@pbar2_qoffset: BAR2 Queue Offset
8381  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
8382  *
8383  *	Returns the BAR2 SGE Queue Registers information associated with the
8384  *	indicated Absolute Queue ID.  These are passed back in return value
8385  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
8386  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
8387  *
8388  *	This may return an error which indicates that BAR2 SGE Queue
8389  *	registers aren't available.  If an error is not returned, then the
8390  *	following values are returned:
8391  *
8392  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
8393  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
8394  *
8395  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
8396  *	require the "Inferred Queue ID" ability may be used.  E.g. the
8397  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
8398  *	then these "Inferred Queue ID" register may not be used.
8399  */
8400 int t4_bar2_sge_qregs(struct adapter *adapter,
8401 		      unsigned int qid,
8402 		      enum t4_bar2_qtype qtype,
8403 		      int user,
8404 		      u64 *pbar2_qoffset,
8405 		      unsigned int *pbar2_qid)
8406 {
8407 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
8408 	u64 bar2_page_offset, bar2_qoffset;
8409 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
8410 
8411 	/* T4 doesn't support BAR2 SGE Queue registers for kernel
8412 	 * mode queues.
8413 	 */
8414 	if (!user && is_t4(adapter))
8415 		return -EINVAL;
8416 
8417 	/* Get our SGE Page Size parameters.
8418 	 */
8419 	page_shift = adapter->params.sge.page_shift;
8420 	page_size = 1 << page_shift;
8421 
8422 	/* Get the right Queues per Page parameters for our Queue.
8423 	 */
8424 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
8425 		     ? adapter->params.sge.eq_s_qpp
8426 		     : adapter->params.sge.iq_s_qpp);
8427 	qpp_mask = (1 << qpp_shift) - 1;
8428 
8429 	/* Calculate the basics of the BAR2 SGE Queue register area:
8430 	 *  o The BAR2 page the Queue registers will be in.
8431 	 *  o The BAR2 Queue ID.
8432 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
8433 	 */
8434 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
8435 	bar2_qid = qid & qpp_mask;
8436 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
8437 
8438 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
8439 	 * hardware will infer the Absolute Queue ID simply from the writes to
8440 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
8441 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
8442 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
8443 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
8444 	 * from the BAR2 Page and BAR2 Queue ID.
8445 	 *
8446 	 * One important censequence of this is that some BAR2 SGE registers
8447 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
8448 	 * there.  But other registers synthesize the SGE Queue ID purely
8449 	 * from the writes to the registers -- the Write Combined Doorbell
8450 	 * Buffer is a good example.  These BAR2 SGE Registers are only
8451 	 * available for those BAR2 SGE Register areas where the SGE Absolute
8452 	 * Queue ID can be inferred from simple writes.
8453 	 */
8454 	bar2_qoffset = bar2_page_offset;
8455 	bar2_qinferred = (bar2_qid_offset < page_size);
8456 	if (bar2_qinferred) {
8457 		bar2_qoffset += bar2_qid_offset;
8458 		bar2_qid = 0;
8459 	}
8460 
8461 	*pbar2_qoffset = bar2_qoffset;
8462 	*pbar2_qid = bar2_qid;
8463 	return 0;
8464 }
8465 
8466 /**
8467  *	t4_init_devlog_params - initialize adapter->params.devlog
8468  *	@adap: the adapter
8469  *	@fw_attach: whether we can talk to the firmware
8470  *
8471  *	Initialize various fields of the adapter's Firmware Device Log
8472  *	Parameters structure.
8473  */
8474 int t4_init_devlog_params(struct adapter *adap, int fw_attach)
8475 {
8476 	struct devlog_params *dparams = &adap->params.devlog;
8477 	u32 pf_dparams;
8478 	unsigned int devlog_meminfo;
8479 	struct fw_devlog_cmd devlog_cmd;
8480 	int ret;
8481 
8482 	/* If we're dealing with newer firmware, the Device Log Paramerters
8483 	 * are stored in a designated register which allows us to access the
8484 	 * Device Log even if we can't talk to the firmware.
8485 	 */
8486 	pf_dparams =
8487 		t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG));
8488 	if (pf_dparams) {
8489 		unsigned int nentries, nentries128;
8490 
8491 		dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams);
8492 		dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4;
8493 
8494 		nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams);
8495 		nentries = (nentries128 + 1) * 128;
8496 		dparams->size = nentries * sizeof(struct fw_devlog_e);
8497 
8498 		return 0;
8499 	}
8500 
8501 	/*
8502 	 * For any failing returns ...
8503 	 */
8504 	memset(dparams, 0, sizeof *dparams);
8505 
8506 	/*
8507 	 * If we can't talk to the firmware, there's really nothing we can do
8508 	 * at this point.
8509 	 */
8510 	if (!fw_attach)
8511 		return -ENXIO;
8512 
8513 	/* Otherwise, ask the firmware for it's Device Log Parameters.
8514 	 */
8515 	memset(&devlog_cmd, 0, sizeof devlog_cmd);
8516 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
8517 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
8518 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
8519 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
8520 			 &devlog_cmd);
8521 	if (ret)
8522 		return ret;
8523 
8524 	devlog_meminfo =
8525 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
8526 	dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo);
8527 	dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4;
8528 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
8529 
8530 	return 0;
8531 }
8532 
8533 /**
8534  *	t4_init_sge_params - initialize adap->params.sge
8535  *	@adapter: the adapter
8536  *
8537  *	Initialize various fields of the adapter's SGE Parameters structure.
8538  */
8539 int t4_init_sge_params(struct adapter *adapter)
8540 {
8541 	u32 r;
8542 	struct sge_params *sp = &adapter->params.sge;
8543 	unsigned i, tscale = 1;
8544 
8545 	r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD);
8546 	sp->counter_val[0] = G_THRESHOLD_0(r);
8547 	sp->counter_val[1] = G_THRESHOLD_1(r);
8548 	sp->counter_val[2] = G_THRESHOLD_2(r);
8549 	sp->counter_val[3] = G_THRESHOLD_3(r);
8550 
8551 	if (chip_id(adapter) >= CHELSIO_T6) {
8552 		r = t4_read_reg(adapter, A_SGE_ITP_CONTROL);
8553 		tscale = G_TSCALE(r);
8554 		if (tscale == 0)
8555 			tscale = 1;
8556 		else
8557 			tscale += 2;
8558 	}
8559 
8560 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1);
8561 	sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r)) * tscale;
8562 	sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r)) * tscale;
8563 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3);
8564 	sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r)) * tscale;
8565 	sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r)) * tscale;
8566 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5);
8567 	sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r)) * tscale;
8568 	sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r)) * tscale;
8569 
8570 	r = t4_read_reg(adapter, A_SGE_CONM_CTRL);
8571 	sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
8572 	if (is_t4(adapter))
8573 		sp->fl_starve_threshold2 = sp->fl_starve_threshold;
8574 	else if (is_t5(adapter))
8575 		sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
8576 	else
8577 		sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(r) * 2 + 1;
8578 
8579 	/* egress queues: log2 of # of doorbells per BAR2 page */
8580 	r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
8581 	r >>= S_QUEUESPERPAGEPF0 +
8582 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
8583 	sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
8584 
8585 	/* ingress queues: log2 of # of doorbells per BAR2 page */
8586 	r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
8587 	r >>= S_QUEUESPERPAGEPF0 +
8588 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
8589 	sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
8590 
8591 	r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
8592 	r >>= S_HOSTPAGESIZEPF0 +
8593 	    (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf;
8594 	sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10;
8595 
8596 	r = t4_read_reg(adapter, A_SGE_CONTROL);
8597 	sp->sge_control = r;
8598 	sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64;
8599 	sp->fl_pktshift = G_PKTSHIFT(r);
8600 	if (chip_id(adapter) <= CHELSIO_T5) {
8601 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
8602 		    X_INGPADBOUNDARY_SHIFT);
8603 	} else {
8604 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
8605 		    X_T6_INGPADBOUNDARY_SHIFT);
8606 	}
8607 	if (is_t4(adapter))
8608 		sp->pack_boundary = sp->pad_boundary;
8609 	else {
8610 		r = t4_read_reg(adapter, A_SGE_CONTROL2);
8611 		if (G_INGPACKBOUNDARY(r) == 0)
8612 			sp->pack_boundary = 16;
8613 		else
8614 			sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5);
8615 	}
8616 	for (i = 0; i < SGE_FLBUF_SIZES; i++)
8617 		sp->sge_fl_buffer_size[i] = t4_read_reg(adapter,
8618 		    A_SGE_FL_BUFFER_SIZE0 + (4 * i));
8619 
8620 	return 0;
8621 }
8622 
8623 /*
8624  * Read and cache the adapter's compressed filter mode and ingress config.
8625  */
8626 static void read_filter_mode_and_ingress_config(struct adapter *adap,
8627     bool sleep_ok)
8628 {
8629 	uint32_t v;
8630 	struct tp_params *tpp = &adap->params.tp;
8631 
8632 	t4_tp_pio_read(adap, &tpp->vlan_pri_map, 1, A_TP_VLAN_PRI_MAP,
8633 	    sleep_ok);
8634 	t4_tp_pio_read(adap, &tpp->ingress_config, 1, A_TP_INGRESS_CONFIG,
8635 	    sleep_ok);
8636 
8637 	/*
8638 	 * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
8639 	 * shift positions of several elements of the Compressed Filter Tuple
8640 	 * for this adapter which we need frequently ...
8641 	 */
8642 	tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE);
8643 	tpp->port_shift = t4_filter_field_shift(adap, F_PORT);
8644 	tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
8645 	tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN);
8646 	tpp->tos_shift = t4_filter_field_shift(adap, F_TOS);
8647 	tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
8648 	tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE);
8649 	tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH);
8650 	tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE);
8651 	tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION);
8652 
8653 	if (chip_id(adap) > CHELSIO_T4) {
8654 		v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(3));
8655 		adap->params.tp.hash_filter_mask = v;
8656 		v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(4));
8657 		adap->params.tp.hash_filter_mask |= (u64)v << 32;
8658 	}
8659 }
8660 
8661 /**
8662  *      t4_init_tp_params - initialize adap->params.tp
8663  *      @adap: the adapter
8664  *
8665  *      Initialize various fields of the adapter's TP Parameters structure.
8666  */
8667 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
8668 {
8669 	int chan;
8670 	u32 v;
8671 	struct tp_params *tpp = &adap->params.tp;
8672 
8673 	v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
8674 	tpp->tre = G_TIMERRESOLUTION(v);
8675 	tpp->dack_re = G_DELAYEDACKRESOLUTION(v);
8676 
8677 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
8678 	for (chan = 0; chan < MAX_NCHAN; chan++)
8679 		tpp->tx_modq[chan] = chan;
8680 
8681 	read_filter_mode_and_ingress_config(adap, sleep_ok);
8682 
8683 	/*
8684 	 * Cache a mask of the bits that represent the error vector portion of
8685 	 * rx_pkt.err_vec.  T6+ can use a compressed error vector to make room
8686 	 * for information about outer encapsulation (GENEVE/VXLAN/NVGRE).
8687 	 */
8688 	tpp->err_vec_mask = htobe16(0xffff);
8689 	if (chip_id(adap) > CHELSIO_T5) {
8690 		v = t4_read_reg(adap, A_TP_OUT_CONFIG);
8691 		if (v & F_CRXPKTENC) {
8692 			tpp->err_vec_mask =
8693 			    htobe16(V_T6_COMPR_RXERR_VEC(M_T6_COMPR_RXERR_VEC));
8694 		}
8695 	}
8696 
8697 	return 0;
8698 }
8699 
8700 /**
8701  *      t4_filter_field_shift - calculate filter field shift
8702  *      @adap: the adapter
8703  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
8704  *
8705  *      Return the shift position of a filter field within the Compressed
8706  *      Filter Tuple.  The filter field is specified via its selection bit
8707  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
8708  */
8709 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
8710 {
8711 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
8712 	unsigned int sel;
8713 	int field_shift;
8714 
8715 	if ((filter_mode & filter_sel) == 0)
8716 		return -1;
8717 
8718 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
8719 		switch (filter_mode & sel) {
8720 		case F_FCOE:
8721 			field_shift += W_FT_FCOE;
8722 			break;
8723 		case F_PORT:
8724 			field_shift += W_FT_PORT;
8725 			break;
8726 		case F_VNIC_ID:
8727 			field_shift += W_FT_VNIC_ID;
8728 			break;
8729 		case F_VLAN:
8730 			field_shift += W_FT_VLAN;
8731 			break;
8732 		case F_TOS:
8733 			field_shift += W_FT_TOS;
8734 			break;
8735 		case F_PROTOCOL:
8736 			field_shift += W_FT_PROTOCOL;
8737 			break;
8738 		case F_ETHERTYPE:
8739 			field_shift += W_FT_ETHERTYPE;
8740 			break;
8741 		case F_MACMATCH:
8742 			field_shift += W_FT_MACMATCH;
8743 			break;
8744 		case F_MPSHITTYPE:
8745 			field_shift += W_FT_MPSHITTYPE;
8746 			break;
8747 		case F_FRAGMENTATION:
8748 			field_shift += W_FT_FRAGMENTATION;
8749 			break;
8750 		}
8751 	}
8752 	return field_shift;
8753 }
8754 
8755 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id)
8756 {
8757 	u8 addr[6];
8758 	int ret, i, j;
8759 	u16 rss_size;
8760 	struct port_info *p = adap2pinfo(adap, port_id);
8761 	u32 param, val;
8762 
8763 	for (i = 0, j = -1; i <= p->port_id; i++) {
8764 		do {
8765 			j++;
8766 		} while ((adap->params.portvec & (1 << j)) == 0);
8767 	}
8768 
8769 	p->tx_chan = j;
8770 	p->mps_bg_map = t4_get_mps_bg_map(adap, j);
8771 	p->rx_e_chan_map = t4_get_rx_e_chan_map(adap, j);
8772 	p->lport = j;
8773 
8774 	if (!(adap->flags & IS_VF) ||
8775 	    adap->params.vfres.r_caps & FW_CMD_CAP_PORT) {
8776  		t4_update_port_info(p);
8777 	}
8778 
8779 	ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
8780 	if (ret < 0)
8781 		return ret;
8782 
8783 	p->vi[0].viid = ret;
8784 	if (chip_id(adap) <= CHELSIO_T5)
8785 		p->vi[0].smt_idx = (ret & 0x7f) << 1;
8786 	else
8787 		p->vi[0].smt_idx = (ret & 0x7f);
8788 	p->vi[0].rss_size = rss_size;
8789 	t4_os_set_hw_addr(p, addr);
8790 
8791 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8792 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
8793 	    V_FW_PARAMS_PARAM_YZ(p->vi[0].viid);
8794 	ret = t4_query_params(adap, mbox, pf, vf, 1, &param, &val);
8795 	if (ret)
8796 		p->vi[0].rss_base = 0xffff;
8797 	else {
8798 		/* MPASS((val >> 16) == rss_size); */
8799 		p->vi[0].rss_base = val & 0xffff;
8800 	}
8801 
8802 	return 0;
8803 }
8804 
8805 /**
8806  *	t4_read_cimq_cfg - read CIM queue configuration
8807  *	@adap: the adapter
8808  *	@base: holds the queue base addresses in bytes
8809  *	@size: holds the queue sizes in bytes
8810  *	@thres: holds the queue full thresholds in bytes
8811  *
8812  *	Returns the current configuration of the CIM queues, starting with
8813  *	the IBQs, then the OBQs.
8814  */
8815 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
8816 {
8817 	unsigned int i, v;
8818 	int cim_num_obq = adap->chip_params->cim_num_obq;
8819 
8820 	for (i = 0; i < CIM_NUM_IBQ; i++) {
8821 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
8822 			     V_QUENUMSELECT(i));
8823 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8824 		/* value is in 256-byte units */
8825 		*base++ = G_CIMQBASE(v) * 256;
8826 		*size++ = G_CIMQSIZE(v) * 256;
8827 		*thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */
8828 	}
8829 	for (i = 0; i < cim_num_obq; i++) {
8830 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
8831 			     V_QUENUMSELECT(i));
8832 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8833 		/* value is in 256-byte units */
8834 		*base++ = G_CIMQBASE(v) * 256;
8835 		*size++ = G_CIMQSIZE(v) * 256;
8836 	}
8837 }
8838 
8839 /**
8840  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
8841  *	@adap: the adapter
8842  *	@qid: the queue index
8843  *	@data: where to store the queue contents
8844  *	@n: capacity of @data in 32-bit words
8845  *
8846  *	Reads the contents of the selected CIM queue starting at address 0 up
8847  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8848  *	error and the number of 32-bit words actually read on success.
8849  */
8850 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8851 {
8852 	int i, err, attempts;
8853 	unsigned int addr;
8854 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
8855 
8856 	if (qid > 5 || (n & 3))
8857 		return -EINVAL;
8858 
8859 	addr = qid * nwords;
8860 	if (n > nwords)
8861 		n = nwords;
8862 
8863 	/* It might take 3-10ms before the IBQ debug read access is allowed.
8864 	 * Wait for 1 Sec with a delay of 1 usec.
8865 	 */
8866 	attempts = 1000000;
8867 
8868 	for (i = 0; i < n; i++, addr++) {
8869 		t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
8870 			     F_IBQDBGEN);
8871 		err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
8872 				      attempts, 1);
8873 		if (err)
8874 			return err;
8875 		*data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
8876 	}
8877 	t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
8878 	return i;
8879 }
8880 
8881 /**
8882  *	t4_read_cim_obq - read the contents of a CIM outbound queue
8883  *	@adap: the adapter
8884  *	@qid: the queue index
8885  *	@data: where to store the queue contents
8886  *	@n: capacity of @data in 32-bit words
8887  *
8888  *	Reads the contents of the selected CIM queue starting at address 0 up
8889  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8890  *	error and the number of 32-bit words actually read on success.
8891  */
8892 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8893 {
8894 	int i, err;
8895 	unsigned int addr, v, nwords;
8896 	int cim_num_obq = adap->chip_params->cim_num_obq;
8897 
8898 	if ((qid > (cim_num_obq - 1)) || (n & 3))
8899 		return -EINVAL;
8900 
8901 	t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
8902 		     V_QUENUMSELECT(qid));
8903 	v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8904 
8905 	addr = G_CIMQBASE(v) * 64;    /* muliple of 256 -> muliple of 4 */
8906 	nwords = G_CIMQSIZE(v) * 64;  /* same */
8907 	if (n > nwords)
8908 		n = nwords;
8909 
8910 	for (i = 0; i < n; i++, addr++) {
8911 		t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
8912 			     F_OBQDBGEN);
8913 		err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
8914 				      2, 1);
8915 		if (err)
8916 			return err;
8917 		*data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
8918 	}
8919 	t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
8920 	return i;
8921 }
8922 
8923 enum {
8924 	CIM_QCTL_BASE     = 0,
8925 	CIM_CTL_BASE      = 0x2000,
8926 	CIM_PBT_ADDR_BASE = 0x2800,
8927 	CIM_PBT_LRF_BASE  = 0x3000,
8928 	CIM_PBT_DATA_BASE = 0x3800
8929 };
8930 
8931 /**
8932  *	t4_cim_read - read a block from CIM internal address space
8933  *	@adap: the adapter
8934  *	@addr: the start address within the CIM address space
8935  *	@n: number of words to read
8936  *	@valp: where to store the result
8937  *
8938  *	Reads a block of 4-byte words from the CIM intenal address space.
8939  */
8940 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
8941 		unsigned int *valp)
8942 {
8943 	int ret = 0;
8944 
8945 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
8946 		return -EBUSY;
8947 
8948 	for ( ; !ret && n--; addr += 4) {
8949 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
8950 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
8951 				      0, 5, 2);
8952 		if (!ret)
8953 			*valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
8954 	}
8955 	return ret;
8956 }
8957 
8958 /**
8959  *	t4_cim_write - write a block into CIM internal address space
8960  *	@adap: the adapter
8961  *	@addr: the start address within the CIM address space
8962  *	@n: number of words to write
8963  *	@valp: set of values to write
8964  *
8965  *	Writes a block of 4-byte words into the CIM intenal address space.
8966  */
8967 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
8968 		 const unsigned int *valp)
8969 {
8970 	int ret = 0;
8971 
8972 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
8973 		return -EBUSY;
8974 
8975 	for ( ; !ret && n--; addr += 4) {
8976 		t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
8977 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
8978 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
8979 				      0, 5, 2);
8980 	}
8981 	return ret;
8982 }
8983 
8984 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
8985 			 unsigned int val)
8986 {
8987 	return t4_cim_write(adap, addr, 1, &val);
8988 }
8989 
8990 /**
8991  *	t4_cim_ctl_read - read a block from CIM control region
8992  *	@adap: the adapter
8993  *	@addr: the start address within the CIM control region
8994  *	@n: number of words to read
8995  *	@valp: where to store the result
8996  *
8997  *	Reads a block of 4-byte words from the CIM control region.
8998  */
8999 int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
9000 		    unsigned int *valp)
9001 {
9002 	return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
9003 }
9004 
9005 /**
9006  *	t4_cim_read_la - read CIM LA capture buffer
9007  *	@adap: the adapter
9008  *	@la_buf: where to store the LA data
9009  *	@wrptr: the HW write pointer within the capture buffer
9010  *
9011  *	Reads the contents of the CIM LA buffer with the most recent entry at
9012  *	the end	of the returned data and with the entry at @wrptr first.
9013  *	We try to leave the LA in the running state we find it in.
9014  */
9015 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9016 {
9017 	int i, ret;
9018 	unsigned int cfg, val, idx;
9019 
9020 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
9021 	if (ret)
9022 		return ret;
9023 
9024 	if (cfg & F_UPDBGLAEN) {	/* LA is running, freeze it */
9025 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
9026 		if (ret)
9027 			return ret;
9028 	}
9029 
9030 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
9031 	if (ret)
9032 		goto restart;
9033 
9034 	idx = G_UPDBGLAWRPTR(val);
9035 	if (wrptr)
9036 		*wrptr = idx;
9037 
9038 	for (i = 0; i < adap->params.cim_la_size; i++) {
9039 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
9040 				    V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
9041 		if (ret)
9042 			break;
9043 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
9044 		if (ret)
9045 			break;
9046 		if (val & F_UPDBGLARDEN) {
9047 			ret = -ETIMEDOUT;
9048 			break;
9049 		}
9050 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
9051 		if (ret)
9052 			break;
9053 
9054 		/* address can't exceed 0xfff (UpDbgLaRdPtr is of 12-bits) */
9055 		idx = (idx + 1) & M_UPDBGLARDPTR;
9056 		/*
9057 		 * Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
9058 		 * identify the 32-bit portion of the full 312-bit data
9059 		 */
9060 		if (is_t6(adap))
9061 			while ((idx & 0xf) > 9)
9062 				idx = (idx + 1) % M_UPDBGLARDPTR;
9063 	}
9064 restart:
9065 	if (cfg & F_UPDBGLAEN) {
9066 		int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
9067 				      cfg & ~F_UPDBGLARDEN);
9068 		if (!ret)
9069 			ret = r;
9070 	}
9071 	return ret;
9072 }
9073 
9074 /**
9075  *	t4_tp_read_la - read TP LA capture buffer
9076  *	@adap: the adapter
9077  *	@la_buf: where to store the LA data
9078  *	@wrptr: the HW write pointer within the capture buffer
9079  *
9080  *	Reads the contents of the TP LA buffer with the most recent entry at
9081  *	the end	of the returned data and with the entry at @wrptr first.
9082  *	We leave the LA in the running state we find it in.
9083  */
9084 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
9085 {
9086 	bool last_incomplete;
9087 	unsigned int i, cfg, val, idx;
9088 
9089 	cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
9090 	if (cfg & F_DBGLAENABLE)			/* freeze LA */
9091 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
9092 			     adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
9093 
9094 	val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
9095 	idx = G_DBGLAWPTR(val);
9096 	last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
9097 	if (last_incomplete)
9098 		idx = (idx + 1) & M_DBGLARPTR;
9099 	if (wrptr)
9100 		*wrptr = idx;
9101 
9102 	val &= 0xffff;
9103 	val &= ~V_DBGLARPTR(M_DBGLARPTR);
9104 	val |= adap->params.tp.la_mask;
9105 
9106 	for (i = 0; i < TPLA_SIZE; i++) {
9107 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
9108 		la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
9109 		idx = (idx + 1) & M_DBGLARPTR;
9110 	}
9111 
9112 	/* Wipe out last entry if it isn't valid */
9113 	if (last_incomplete)
9114 		la_buf[TPLA_SIZE - 1] = ~0ULL;
9115 
9116 	if (cfg & F_DBGLAENABLE)		/* restore running state */
9117 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
9118 			     cfg | adap->params.tp.la_mask);
9119 }
9120 
9121 /*
9122  * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
9123  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
9124  * state for more than the Warning Threshold then we'll issue a warning about
9125  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
9126  * appears to be hung every Warning Repeat second till the situation clears.
9127  * If the situation clears, we'll note that as well.
9128  */
9129 #define SGE_IDMA_WARN_THRESH 1
9130 #define SGE_IDMA_WARN_REPEAT 300
9131 
9132 /**
9133  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
9134  *	@adapter: the adapter
9135  *	@idma: the adapter IDMA Monitor state
9136  *
9137  *	Initialize the state of an SGE Ingress DMA Monitor.
9138  */
9139 void t4_idma_monitor_init(struct adapter *adapter,
9140 			  struct sge_idma_monitor_state *idma)
9141 {
9142 	/* Initialize the state variables for detecting an SGE Ingress DMA
9143 	 * hang.  The SGE has internal counters which count up on each clock
9144 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
9145 	 * same state they were on the previous clock tick.  The clock used is
9146 	 * the Core Clock so we have a limit on the maximum "time" they can
9147 	 * record; typically a very small number of seconds.  For instance,
9148 	 * with a 600MHz Core Clock, we can only count up to a bit more than
9149 	 * 7s.  So we'll synthesize a larger counter in order to not run the
9150 	 * risk of having the "timers" overflow and give us the flexibility to
9151 	 * maintain a Hung SGE State Machine of our own which operates across
9152 	 * a longer time frame.
9153 	 */
9154 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
9155 	idma->idma_stalled[0] = idma->idma_stalled[1] = 0;
9156 }
9157 
9158 /**
9159  *	t4_idma_monitor - monitor SGE Ingress DMA state
9160  *	@adapter: the adapter
9161  *	@idma: the adapter IDMA Monitor state
9162  *	@hz: number of ticks/second
9163  *	@ticks: number of ticks since the last IDMA Monitor call
9164  */
9165 void t4_idma_monitor(struct adapter *adapter,
9166 		     struct sge_idma_monitor_state *idma,
9167 		     int hz, int ticks)
9168 {
9169 	int i, idma_same_state_cnt[2];
9170 
9171 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
9172 	  * are counters inside the SGE which count up on each clock when the
9173 	  * SGE finds its Ingress DMA State Engines in the same states they
9174 	  * were in the previous clock.  The counters will peg out at
9175 	  * 0xffffffff without wrapping around so once they pass the 1s
9176 	  * threshold they'll stay above that till the IDMA state changes.
9177 	  */
9178 	t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13);
9179 	idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH);
9180 	idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
9181 
9182 	for (i = 0; i < 2; i++) {
9183 		u32 debug0, debug11;
9184 
9185 		/* If the Ingress DMA Same State Counter ("timer") is less
9186 		 * than 1s, then we can reset our synthesized Stall Timer and
9187 		 * continue.  If we have previously emitted warnings about a
9188 		 * potential stalled Ingress Queue, issue a note indicating
9189 		 * that the Ingress Queue has resumed forward progress.
9190 		 */
9191 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
9192 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz)
9193 				CH_WARN(adapter, "SGE idma%d, queue %u, "
9194 					"resumed after %d seconds\n",
9195 					i, idma->idma_qid[i],
9196 					idma->idma_stalled[i]/hz);
9197 			idma->idma_stalled[i] = 0;
9198 			continue;
9199 		}
9200 
9201 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
9202 		 * domain.  The first time we get here it'll be because we
9203 		 * passed the 1s Threshold; each additional time it'll be
9204 		 * because the RX Timer Callback is being fired on its regular
9205 		 * schedule.
9206 		 *
9207 		 * If the stall is below our Potential Hung Ingress Queue
9208 		 * Warning Threshold, continue.
9209 		 */
9210 		if (idma->idma_stalled[i] == 0) {
9211 			idma->idma_stalled[i] = hz;
9212 			idma->idma_warn[i] = 0;
9213 		} else {
9214 			idma->idma_stalled[i] += ticks;
9215 			idma->idma_warn[i] -= ticks;
9216 		}
9217 
9218 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz)
9219 			continue;
9220 
9221 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
9222 		 */
9223 		if (idma->idma_warn[i] > 0)
9224 			continue;
9225 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz;
9226 
9227 		/* Read and save the SGE IDMA State and Queue ID information.
9228 		 * We do this every time in case it changes across time ...
9229 		 * can't be too careful ...
9230 		 */
9231 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0);
9232 		debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
9233 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
9234 
9235 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11);
9236 		debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
9237 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
9238 
9239 		CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in "
9240 			" state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
9241 			i, idma->idma_qid[i], idma->idma_state[i],
9242 			idma->idma_stalled[i]/hz,
9243 			debug0, debug11);
9244 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
9245 	}
9246 }
9247 
9248 /**
9249  *	t4_read_pace_tbl - read the pace table
9250  *	@adap: the adapter
9251  *	@pace_vals: holds the returned values
9252  *
9253  *	Returns the values of TP's pace table in microseconds.
9254  */
9255 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
9256 {
9257 	unsigned int i, v;
9258 
9259 	for (i = 0; i < NTX_SCHED; i++) {
9260 		t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
9261 		v = t4_read_reg(adap, A_TP_PACE_TABLE);
9262 		pace_vals[i] = dack_ticks_to_usec(adap, v);
9263 	}
9264 }
9265 
9266 /**
9267  *	t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
9268  *	@adap: the adapter
9269  *	@sched: the scheduler index
9270  *	@kbps: the byte rate in Kbps
9271  *	@ipg: the interpacket delay in tenths of nanoseconds
9272  *
9273  *	Return the current configuration of a HW Tx scheduler.
9274  */
9275 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
9276 		     unsigned int *ipg, bool sleep_ok)
9277 {
9278 	unsigned int v, addr, bpt, cpt;
9279 
9280 	if (kbps) {
9281 		addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
9282 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9283 		if (sched & 1)
9284 			v >>= 16;
9285 		bpt = (v >> 8) & 0xff;
9286 		cpt = v & 0xff;
9287 		if (!cpt)
9288 			*kbps = 0;	/* scheduler disabled */
9289 		else {
9290 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
9291 			*kbps = (v * bpt) / 125;
9292 		}
9293 	}
9294 	if (ipg) {
9295 		addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
9296 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9297 		if (sched & 1)
9298 			v >>= 16;
9299 		v &= 0xffff;
9300 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
9301 	}
9302 }
9303 
9304 /**
9305  *	t4_load_cfg - download config file
9306  *	@adap: the adapter
9307  *	@cfg_data: the cfg text file to write
9308  *	@size: text file size
9309  *
9310  *	Write the supplied config text file to the card's serial flash.
9311  */
9312 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
9313 {
9314 	int ret, i, n, cfg_addr;
9315 	unsigned int addr;
9316 	unsigned int flash_cfg_start_sec;
9317 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9318 
9319 	cfg_addr = t4_flash_cfg_addr(adap);
9320 	if (cfg_addr < 0)
9321 		return cfg_addr;
9322 
9323 	addr = cfg_addr;
9324 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
9325 
9326 	if (size > FLASH_CFG_MAX_SIZE) {
9327 		CH_ERR(adap, "cfg file too large, max is %u bytes\n",
9328 		       FLASH_CFG_MAX_SIZE);
9329 		return -EFBIG;
9330 	}
9331 
9332 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
9333 			 sf_sec_size);
9334 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9335 				     flash_cfg_start_sec + i - 1);
9336 	/*
9337 	 * If size == 0 then we're simply erasing the FLASH sectors associated
9338 	 * with the on-adapter Firmware Configuration File.
9339 	 */
9340 	if (ret || size == 0)
9341 		goto out;
9342 
9343 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
9344 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
9345 		if ( (size - i) <  SF_PAGE_SIZE)
9346 			n = size - i;
9347 		else
9348 			n = SF_PAGE_SIZE;
9349 		ret = t4_write_flash(adap, addr, n, cfg_data, 1);
9350 		if (ret)
9351 			goto out;
9352 
9353 		addr += SF_PAGE_SIZE;
9354 		cfg_data += SF_PAGE_SIZE;
9355 	}
9356 
9357 out:
9358 	if (ret)
9359 		CH_ERR(adap, "config file %s failed %d\n",
9360 		       (size == 0 ? "clear" : "download"), ret);
9361 	return ret;
9362 }
9363 
9364 /**
9365  *	t5_fw_init_extern_mem - initialize the external memory
9366  *	@adap: the adapter
9367  *
9368  *	Initializes the external memory on T5.
9369  */
9370 int t5_fw_init_extern_mem(struct adapter *adap)
9371 {
9372 	u32 params[1], val[1];
9373 	int ret;
9374 
9375 	if (!is_t5(adap))
9376 		return 0;
9377 
9378 	val[0] = 0xff; /* Initialize all MCs */
9379 	params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9380 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT));
9381 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val,
9382 			FW_CMD_MAX_TIMEOUT);
9383 
9384 	return ret;
9385 }
9386 
9387 /* BIOS boot headers */
9388 typedef struct pci_expansion_rom_header {
9389 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
9390 	u8	reserved[22]; /* Reserved per processor Architecture data */
9391 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
9392 } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
9393 
9394 /* Legacy PCI Expansion ROM Header */
9395 typedef struct legacy_pci_expansion_rom_header {
9396 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
9397 	u8	size512; /* Current Image Size in units of 512 bytes */
9398 	u8	initentry_point[4];
9399 	u8	cksum; /* Checksum computed on the entire Image */
9400 	u8	reserved[16]; /* Reserved */
9401 	u8	pcir_offset[2]; /* Offset to PCI Data Struture */
9402 } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
9403 
9404 /* EFI PCI Expansion ROM Header */
9405 typedef struct efi_pci_expansion_rom_header {
9406 	u8	signature[2]; // ROM signature. The value 0xaa55
9407 	u8	initialization_size[2]; /* Units 512. Includes this header */
9408 	u8	efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
9409 	u8	efi_subsystem[2]; /* Subsystem value for EFI image header */
9410 	u8	efi_machine_type[2]; /* Machine type from EFI image header */
9411 	u8	compression_type[2]; /* Compression type. */
9412 		/*
9413 		 * Compression type definition
9414 		 * 0x0: uncompressed
9415 		 * 0x1: Compressed
9416 		 * 0x2-0xFFFF: Reserved
9417 		 */
9418 	u8	reserved[8]; /* Reserved */
9419 	u8	efi_image_header_offset[2]; /* Offset to EFI Image */
9420 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
9421 } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
9422 
9423 /* PCI Data Structure Format */
9424 typedef struct pcir_data_structure { /* PCI Data Structure */
9425 	u8	signature[4]; /* Signature. The string "PCIR" */
9426 	u8	vendor_id[2]; /* Vendor Identification */
9427 	u8	device_id[2]; /* Device Identification */
9428 	u8	vital_product[2]; /* Pointer to Vital Product Data */
9429 	u8	length[2]; /* PCIR Data Structure Length */
9430 	u8	revision; /* PCIR Data Structure Revision */
9431 	u8	class_code[3]; /* Class Code */
9432 	u8	image_length[2]; /* Image Length. Multiple of 512B */
9433 	u8	code_revision[2]; /* Revision Level of Code/Data */
9434 	u8	code_type; /* Code Type. */
9435 		/*
9436 		 * PCI Expansion ROM Code Types
9437 		 * 0x00: Intel IA-32, PC-AT compatible. Legacy
9438 		 * 0x01: Open Firmware standard for PCI. FCODE
9439 		 * 0x02: Hewlett-Packard PA RISC. HP reserved
9440 		 * 0x03: EFI Image. EFI
9441 		 * 0x04-0xFF: Reserved.
9442 		 */
9443 	u8	indicator; /* Indicator. Identifies the last image in the ROM */
9444 	u8	reserved[2]; /* Reserved */
9445 } pcir_data_t; /* PCI__DATA_STRUCTURE */
9446 
9447 /* BOOT constants */
9448 enum {
9449 	BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
9450 	BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
9451 	BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
9452 	BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
9453 	BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
9454 	VENDOR_ID = 0x1425, /* Vendor ID */
9455 	PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
9456 };
9457 
9458 /*
9459  *	modify_device_id - Modifies the device ID of the Boot BIOS image
9460  *	@adatper: the device ID to write.
9461  *	@boot_data: the boot image to modify.
9462  *
9463  *	Write the supplied device ID to the boot BIOS image.
9464  */
9465 static void modify_device_id(int device_id, u8 *boot_data)
9466 {
9467 	legacy_pci_exp_rom_header_t *header;
9468 	pcir_data_t *pcir_header;
9469 	u32 cur_header = 0;
9470 
9471 	/*
9472 	 * Loop through all chained images and change the device ID's
9473 	 */
9474 	while (1) {
9475 		header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
9476 		pcir_header = (pcir_data_t *) &boot_data[cur_header +
9477 			      le16_to_cpu(*(u16*)header->pcir_offset)];
9478 
9479 		/*
9480 		 * Only modify the Device ID if code type is Legacy or HP.
9481 		 * 0x00: Okay to modify
9482 		 * 0x01: FCODE. Do not be modify
9483 		 * 0x03: Okay to modify
9484 		 * 0x04-0xFF: Do not modify
9485 		 */
9486 		if (pcir_header->code_type == 0x00) {
9487 			u8 csum = 0;
9488 			int i;
9489 
9490 			/*
9491 			 * Modify Device ID to match current adatper
9492 			 */
9493 			*(u16*) pcir_header->device_id = device_id;
9494 
9495 			/*
9496 			 * Set checksum temporarily to 0.
9497 			 * We will recalculate it later.
9498 			 */
9499 			header->cksum = 0x0;
9500 
9501 			/*
9502 			 * Calculate and update checksum
9503 			 */
9504 			for (i = 0; i < (header->size512 * 512); i++)
9505 				csum += (u8)boot_data[cur_header + i];
9506 
9507 			/*
9508 			 * Invert summed value to create the checksum
9509 			 * Writing new checksum value directly to the boot data
9510 			 */
9511 			boot_data[cur_header + 7] = -csum;
9512 
9513 		} else if (pcir_header->code_type == 0x03) {
9514 
9515 			/*
9516 			 * Modify Device ID to match current adatper
9517 			 */
9518 			*(u16*) pcir_header->device_id = device_id;
9519 
9520 		}
9521 
9522 
9523 		/*
9524 		 * Check indicator element to identify if this is the last
9525 		 * image in the ROM.
9526 		 */
9527 		if (pcir_header->indicator & 0x80)
9528 			break;
9529 
9530 		/*
9531 		 * Move header pointer up to the next image in the ROM.
9532 		 */
9533 		cur_header += header->size512 * 512;
9534 	}
9535 }
9536 
9537 /*
9538  *	t4_load_boot - download boot flash
9539  *	@adapter: the adapter
9540  *	@boot_data: the boot image to write
9541  *	@boot_addr: offset in flash to write boot_data
9542  *	@size: image size
9543  *
9544  *	Write the supplied boot image to the card's serial flash.
9545  *	The boot image has the following sections: a 28-byte header and the
9546  *	boot image.
9547  */
9548 int t4_load_boot(struct adapter *adap, u8 *boot_data,
9549 		 unsigned int boot_addr, unsigned int size)
9550 {
9551 	pci_exp_rom_header_t *header;
9552 	int pcir_offset ;
9553 	pcir_data_t *pcir_header;
9554 	int ret, addr;
9555 	uint16_t device_id;
9556 	unsigned int i;
9557 	unsigned int boot_sector = (boot_addr * 1024 );
9558 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9559 
9560 	/*
9561 	 * Make sure the boot image does not encroach on the firmware region
9562 	 */
9563 	if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
9564 		CH_ERR(adap, "boot image encroaching on firmware region\n");
9565 		return -EFBIG;
9566 	}
9567 
9568 	/*
9569 	 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
9570 	 * and Boot configuration data sections. These 3 boot sections span
9571 	 * sectors 0 to 7 in flash and live right before the FW image location.
9572 	 */
9573 	i = DIV_ROUND_UP(size ? size : FLASH_FW_START,
9574 			sf_sec_size);
9575 	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
9576 				     (boot_sector >> 16) + i - 1);
9577 
9578 	/*
9579 	 * If size == 0 then we're simply erasing the FLASH sectors associated
9580 	 * with the on-adapter option ROM file
9581 	 */
9582 	if (ret || (size == 0))
9583 		goto out;
9584 
9585 	/* Get boot header */
9586 	header = (pci_exp_rom_header_t *)boot_data;
9587 	pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
9588 	/* PCIR Data Structure */
9589 	pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
9590 
9591 	/*
9592 	 * Perform some primitive sanity testing to avoid accidentally
9593 	 * writing garbage over the boot sectors.  We ought to check for
9594 	 * more but it's not worth it for now ...
9595 	 */
9596 	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
9597 		CH_ERR(adap, "boot image too small/large\n");
9598 		return -EFBIG;
9599 	}
9600 
9601 #ifndef CHELSIO_T4_DIAGS
9602 	/*
9603 	 * Check BOOT ROM header signature
9604 	 */
9605 	if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
9606 		CH_ERR(adap, "Boot image missing signature\n");
9607 		return -EINVAL;
9608 	}
9609 
9610 	/*
9611 	 * Check PCI header signature
9612 	 */
9613 	if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
9614 		CH_ERR(adap, "PCI header missing signature\n");
9615 		return -EINVAL;
9616 	}
9617 
9618 	/*
9619 	 * Check Vendor ID matches Chelsio ID
9620 	 */
9621 	if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
9622 		CH_ERR(adap, "Vendor ID missing signature\n");
9623 		return -EINVAL;
9624 	}
9625 #endif
9626 
9627 	/*
9628 	 * Retrieve adapter's device ID
9629 	 */
9630 	t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
9631 	/* Want to deal with PF 0 so I strip off PF 4 indicator */
9632 	device_id = device_id & 0xf0ff;
9633 
9634 	/*
9635 	 * Check PCIE Device ID
9636 	 */
9637 	if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
9638 		/*
9639 		 * Change the device ID in the Boot BIOS image to match
9640 		 * the Device ID of the current adapter.
9641 		 */
9642 		modify_device_id(device_id, boot_data);
9643 	}
9644 
9645 	/*
9646 	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
9647 	 * we finish copying the rest of the boot image. This will ensure
9648 	 * that the BIOS boot header will only be written if the boot image
9649 	 * was written in full.
9650 	 */
9651 	addr = boot_sector;
9652 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
9653 		addr += SF_PAGE_SIZE;
9654 		boot_data += SF_PAGE_SIZE;
9655 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
9656 		if (ret)
9657 			goto out;
9658 	}
9659 
9660 	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
9661 			     (const u8 *)header, 0);
9662 
9663 out:
9664 	if (ret)
9665 		CH_ERR(adap, "boot image download failed, error %d\n", ret);
9666 	return ret;
9667 }
9668 
9669 /*
9670  *	t4_flash_bootcfg_addr - return the address of the flash optionrom configuration
9671  *	@adapter: the adapter
9672  *
9673  *	Return the address within the flash where the OptionROM Configuration
9674  *	is stored, or an error if the device FLASH is too small to contain
9675  *	a OptionROM Configuration.
9676  */
9677 static int t4_flash_bootcfg_addr(struct adapter *adapter)
9678 {
9679 	/*
9680 	 * If the device FLASH isn't large enough to hold a Firmware
9681 	 * Configuration File, return an error.
9682 	 */
9683 	if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
9684 		return -ENOSPC;
9685 
9686 	return FLASH_BOOTCFG_START;
9687 }
9688 
9689 int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size)
9690 {
9691 	int ret, i, n, cfg_addr;
9692 	unsigned int addr;
9693 	unsigned int flash_cfg_start_sec;
9694 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9695 
9696 	cfg_addr = t4_flash_bootcfg_addr(adap);
9697 	if (cfg_addr < 0)
9698 		return cfg_addr;
9699 
9700 	addr = cfg_addr;
9701 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
9702 
9703 	if (size > FLASH_BOOTCFG_MAX_SIZE) {
9704 		CH_ERR(adap, "bootcfg file too large, max is %u bytes\n",
9705 			FLASH_BOOTCFG_MAX_SIZE);
9706 		return -EFBIG;
9707 	}
9708 
9709 	i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */
9710 			 sf_sec_size);
9711 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9712 					flash_cfg_start_sec + i - 1);
9713 
9714 	/*
9715 	 * If size == 0 then we're simply erasing the FLASH sectors associated
9716 	 * with the on-adapter OptionROM Configuration File.
9717 	 */
9718 	if (ret || size == 0)
9719 		goto out;
9720 
9721 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
9722 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
9723 		if ( (size - i) <  SF_PAGE_SIZE)
9724 			n = size - i;
9725 		else
9726 			n = SF_PAGE_SIZE;
9727 		ret = t4_write_flash(adap, addr, n, cfg_data, 0);
9728 		if (ret)
9729 			goto out;
9730 
9731 		addr += SF_PAGE_SIZE;
9732 		cfg_data += SF_PAGE_SIZE;
9733 	}
9734 
9735 out:
9736 	if (ret)
9737 		CH_ERR(adap, "boot config data %s failed %d\n",
9738 				(size == 0 ? "clear" : "download"), ret);
9739 	return ret;
9740 }
9741 
9742 /**
9743  *	t4_set_filter_mode - configure the optional components of filter tuples
9744  *	@adap: the adapter
9745  *	@mode_map: a bitmap selcting which optional filter components to enable
9746  * 	@sleep_ok: if true we may sleep while awaiting command completion
9747  *
9748  *	Sets the filter mode by selecting the optional components to enable
9749  *	in filter tuples.  Returns 0 on success and a negative error if the
9750  *	requested mode needs more bits than are available for optional
9751  *	components.
9752  */
9753 int t4_set_filter_mode(struct adapter *adap, unsigned int mode_map,
9754 		       bool sleep_ok)
9755 {
9756 	static u8 width[] = { 1, 3, 17, 17, 8, 8, 16, 9, 3, 1 };
9757 
9758 	int i, nbits = 0;
9759 
9760 	for (i = S_FCOE; i <= S_FRAGMENTATION; i++)
9761 		if (mode_map & (1 << i))
9762 			nbits += width[i];
9763 	if (nbits > FILTER_OPT_LEN)
9764 		return -EINVAL;
9765 	t4_tp_pio_write(adap, &mode_map, 1, A_TP_VLAN_PRI_MAP, sleep_ok);
9766 	read_filter_mode_and_ingress_config(adap, sleep_ok);
9767 
9768 	return 0;
9769 }
9770 
9771 /**
9772  *	t4_clr_port_stats - clear port statistics
9773  *	@adap: the adapter
9774  *	@idx: the port index
9775  *
9776  *	Clear HW statistics for the given port.
9777  */
9778 void t4_clr_port_stats(struct adapter *adap, int idx)
9779 {
9780 	unsigned int i;
9781 	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
9782 	u32 port_base_addr;
9783 
9784 	if (is_t4(adap))
9785 		port_base_addr = PORT_BASE(idx);
9786 	else
9787 		port_base_addr = T5_PORT_BASE(idx);
9788 
9789 	for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
9790 			i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
9791 		t4_write_reg(adap, port_base_addr + i, 0);
9792 	for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
9793 			i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
9794 		t4_write_reg(adap, port_base_addr + i, 0);
9795 	for (i = 0; i < 4; i++)
9796 		if (bgmap & (1 << i)) {
9797 			t4_write_reg(adap,
9798 			A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
9799 			t4_write_reg(adap,
9800 			A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
9801 		}
9802 }
9803 
9804 /**
9805  *	t4_i2c_rd - read I2C data from adapter
9806  *	@adap: the adapter
9807  *	@port: Port number if per-port device; <0 if not
9808  *	@devid: per-port device ID or absolute device ID
9809  *	@offset: byte offset into device I2C space
9810  *	@len: byte length of I2C space data
9811  *	@buf: buffer in which to return I2C data
9812  *
9813  *	Reads the I2C data from the indicated device and location.
9814  */
9815 int t4_i2c_rd(struct adapter *adap, unsigned int mbox,
9816 	      int port, unsigned int devid,
9817 	      unsigned int offset, unsigned int len,
9818 	      u8 *buf)
9819 {
9820 	u32 ldst_addrspace;
9821 	struct fw_ldst_cmd ldst;
9822 	int ret;
9823 
9824 	if (port >= 4 ||
9825 	    devid >= 256 ||
9826 	    offset >= 256 ||
9827 	    len > sizeof ldst.u.i2c.data)
9828 		return -EINVAL;
9829 
9830 	memset(&ldst, 0, sizeof ldst);
9831 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
9832 	ldst.op_to_addrspace =
9833 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9834 			    F_FW_CMD_REQUEST |
9835 			    F_FW_CMD_READ |
9836 			    ldst_addrspace);
9837 	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
9838 	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
9839 	ldst.u.i2c.did = devid;
9840 	ldst.u.i2c.boffset = offset;
9841 	ldst.u.i2c.blen = len;
9842 	ret = t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
9843 	if (!ret)
9844 		memcpy(buf, ldst.u.i2c.data, len);
9845 	return ret;
9846 }
9847 
9848 /**
9849  *	t4_i2c_wr - write I2C data to adapter
9850  *	@adap: the adapter
9851  *	@port: Port number if per-port device; <0 if not
9852  *	@devid: per-port device ID or absolute device ID
9853  *	@offset: byte offset into device I2C space
9854  *	@len: byte length of I2C space data
9855  *	@buf: buffer containing new I2C data
9856  *
9857  *	Write the I2C data to the indicated device and location.
9858  */
9859 int t4_i2c_wr(struct adapter *adap, unsigned int mbox,
9860 	      int port, unsigned int devid,
9861 	      unsigned int offset, unsigned int len,
9862 	      u8 *buf)
9863 {
9864 	u32 ldst_addrspace;
9865 	struct fw_ldst_cmd ldst;
9866 
9867 	if (port >= 4 ||
9868 	    devid >= 256 ||
9869 	    offset >= 256 ||
9870 	    len > sizeof ldst.u.i2c.data)
9871 		return -EINVAL;
9872 
9873 	memset(&ldst, 0, sizeof ldst);
9874 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
9875 	ldst.op_to_addrspace =
9876 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9877 			    F_FW_CMD_REQUEST |
9878 			    F_FW_CMD_WRITE |
9879 			    ldst_addrspace);
9880 	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
9881 	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
9882 	ldst.u.i2c.did = devid;
9883 	ldst.u.i2c.boffset = offset;
9884 	ldst.u.i2c.blen = len;
9885 	memcpy(ldst.u.i2c.data, buf, len);
9886 	return t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
9887 }
9888 
9889 /**
9890  * 	t4_sge_ctxt_rd - read an SGE context through FW
9891  * 	@adap: the adapter
9892  * 	@mbox: mailbox to use for the FW command
9893  * 	@cid: the context id
9894  * 	@ctype: the context type
9895  * 	@data: where to store the context data
9896  *
9897  * 	Issues a FW command through the given mailbox to read an SGE context.
9898  */
9899 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
9900 		   enum ctxt_type ctype, u32 *data)
9901 {
9902 	int ret;
9903 	struct fw_ldst_cmd c;
9904 
9905 	if (ctype == CTXT_EGRESS)
9906 		ret = FW_LDST_ADDRSPC_SGE_EGRC;
9907 	else if (ctype == CTXT_INGRESS)
9908 		ret = FW_LDST_ADDRSPC_SGE_INGC;
9909 	else if (ctype == CTXT_FLM)
9910 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
9911 	else
9912 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
9913 
9914 	memset(&c, 0, sizeof(c));
9915 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9916 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
9917 					V_FW_LDST_CMD_ADDRSPACE(ret));
9918 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
9919 	c.u.idctxt.physid = cpu_to_be32(cid);
9920 
9921 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
9922 	if (ret == 0) {
9923 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
9924 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
9925 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
9926 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
9927 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
9928 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
9929 	}
9930 	return ret;
9931 }
9932 
9933 /**
9934  * 	t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
9935  * 	@adap: the adapter
9936  * 	@cid: the context id
9937  * 	@ctype: the context type
9938  * 	@data: where to store the context data
9939  *
9940  * 	Reads an SGE context directly, bypassing FW.  This is only for
9941  * 	debugging when FW is unavailable.
9942  */
9943 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
9944 		      u32 *data)
9945 {
9946 	int i, ret;
9947 
9948 	t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
9949 	ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
9950 	if (!ret)
9951 		for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
9952 			*data++ = t4_read_reg(adap, i);
9953 	return ret;
9954 }
9955 
9956 int t4_sched_config(struct adapter *adapter, int type, int minmaxen,
9957     int sleep_ok)
9958 {
9959 	struct fw_sched_cmd cmd;
9960 
9961 	memset(&cmd, 0, sizeof(cmd));
9962 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9963 				      F_FW_CMD_REQUEST |
9964 				      F_FW_CMD_WRITE);
9965 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9966 
9967 	cmd.u.config.sc = FW_SCHED_SC_CONFIG;
9968 	cmd.u.config.type = type;
9969 	cmd.u.config.minmaxen = minmaxen;
9970 
9971 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9972 			       NULL, sleep_ok);
9973 }
9974 
9975 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
9976 		    int rateunit, int ratemode, int channel, int cl,
9977 		    int minrate, int maxrate, int weight, int pktsize,
9978 		    int burstsize, int sleep_ok)
9979 {
9980 	struct fw_sched_cmd cmd;
9981 
9982 	memset(&cmd, 0, sizeof(cmd));
9983 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9984 				      F_FW_CMD_REQUEST |
9985 				      F_FW_CMD_WRITE);
9986 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9987 
9988 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9989 	cmd.u.params.type = type;
9990 	cmd.u.params.level = level;
9991 	cmd.u.params.mode = mode;
9992 	cmd.u.params.ch = channel;
9993 	cmd.u.params.cl = cl;
9994 	cmd.u.params.unit = rateunit;
9995 	cmd.u.params.rate = ratemode;
9996 	cmd.u.params.min = cpu_to_be32(minrate);
9997 	cmd.u.params.max = cpu_to_be32(maxrate);
9998 	cmd.u.params.weight = cpu_to_be16(weight);
9999 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
10000 	cmd.u.params.burstsize = cpu_to_be16(burstsize);
10001 
10002 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10003 			       NULL, sleep_ok);
10004 }
10005 
10006 int t4_sched_params_ch_rl(struct adapter *adapter, int channel, int ratemode,
10007     unsigned int maxrate, int sleep_ok)
10008 {
10009 	struct fw_sched_cmd cmd;
10010 
10011 	memset(&cmd, 0, sizeof(cmd));
10012 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10013 				      F_FW_CMD_REQUEST |
10014 				      F_FW_CMD_WRITE);
10015 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10016 
10017 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10018 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
10019 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CH_RL;
10020 	cmd.u.params.ch = channel;
10021 	cmd.u.params.rate = ratemode;		/* REL or ABS */
10022 	cmd.u.params.max = cpu_to_be32(maxrate);/*  %  or kbps */
10023 
10024 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10025 			       NULL, sleep_ok);
10026 }
10027 
10028 int t4_sched_params_cl_wrr(struct adapter *adapter, int channel, int cl,
10029     int weight, int sleep_ok)
10030 {
10031 	struct fw_sched_cmd cmd;
10032 
10033 	if (weight < 0 || weight > 100)
10034 		return -EINVAL;
10035 
10036 	memset(&cmd, 0, sizeof(cmd));
10037 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10038 				      F_FW_CMD_REQUEST |
10039 				      F_FW_CMD_WRITE);
10040 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10041 
10042 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10043 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
10044 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_WRR;
10045 	cmd.u.params.ch = channel;
10046 	cmd.u.params.cl = cl;
10047 	cmd.u.params.weight = cpu_to_be16(weight);
10048 
10049 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10050 			       NULL, sleep_ok);
10051 }
10052 
10053 int t4_sched_params_cl_rl_kbps(struct adapter *adapter, int channel, int cl,
10054     int mode, unsigned int maxrate, int pktsize, int sleep_ok)
10055 {
10056 	struct fw_sched_cmd cmd;
10057 
10058 	memset(&cmd, 0, sizeof(cmd));
10059 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10060 				      F_FW_CMD_REQUEST |
10061 				      F_FW_CMD_WRITE);
10062 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10063 
10064 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10065 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
10066 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_RL;
10067 	cmd.u.params.mode = mode;
10068 	cmd.u.params.ch = channel;
10069 	cmd.u.params.cl = cl;
10070 	cmd.u.params.unit = FW_SCHED_PARAMS_UNIT_BITRATE;
10071 	cmd.u.params.rate = FW_SCHED_PARAMS_RATE_ABS;
10072 	cmd.u.params.max = cpu_to_be32(maxrate);
10073 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
10074 
10075 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10076 			       NULL, sleep_ok);
10077 }
10078 
10079 /*
10080  *	t4_config_watchdog - configure (enable/disable) a watchdog timer
10081  *	@adapter: the adapter
10082  * 	@mbox: mailbox to use for the FW command
10083  * 	@pf: the PF owning the queue
10084  * 	@vf: the VF owning the queue
10085  *	@timeout: watchdog timeout in ms
10086  *	@action: watchdog timer / action
10087  *
10088  *	There are separate watchdog timers for each possible watchdog
10089  *	action.  Configure one of the watchdog timers by setting a non-zero
10090  *	timeout.  Disable a watchdog timer by using a timeout of zero.
10091  */
10092 int t4_config_watchdog(struct adapter *adapter, unsigned int mbox,
10093 		       unsigned int pf, unsigned int vf,
10094 		       unsigned int timeout, unsigned int action)
10095 {
10096 	struct fw_watchdog_cmd wdog;
10097 	unsigned int ticks;
10098 
10099 	/*
10100 	 * The watchdog command expects a timeout in units of 10ms so we need
10101 	 * to convert it here (via rounding) and force a minimum of one 10ms
10102 	 * "tick" if the timeout is non-zero but the conversion results in 0
10103 	 * ticks.
10104 	 */
10105 	ticks = (timeout + 5)/10;
10106 	if (timeout && !ticks)
10107 		ticks = 1;
10108 
10109 	memset(&wdog, 0, sizeof wdog);
10110 	wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) |
10111 				     F_FW_CMD_REQUEST |
10112 				     F_FW_CMD_WRITE |
10113 				     V_FW_PARAMS_CMD_PFN(pf) |
10114 				     V_FW_PARAMS_CMD_VFN(vf));
10115 	wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog));
10116 	wdog.timeout = cpu_to_be32(ticks);
10117 	wdog.action = cpu_to_be32(action);
10118 
10119 	return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL);
10120 }
10121 
10122 int t4_get_devlog_level(struct adapter *adapter, unsigned int *level)
10123 {
10124 	struct fw_devlog_cmd devlog_cmd;
10125 	int ret;
10126 
10127 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
10128 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
10129 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
10130 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
10131 	ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
10132 			 sizeof(devlog_cmd), &devlog_cmd);
10133 	if (ret)
10134 		return ret;
10135 
10136 	*level = devlog_cmd.level;
10137 	return 0;
10138 }
10139 
10140 int t4_set_devlog_level(struct adapter *adapter, unsigned int level)
10141 {
10142 	struct fw_devlog_cmd devlog_cmd;
10143 
10144 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
10145 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
10146 					     F_FW_CMD_REQUEST |
10147 					     F_FW_CMD_WRITE);
10148 	devlog_cmd.level = level;
10149 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
10150 	return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
10151 			  sizeof(devlog_cmd), &devlog_cmd);
10152 }
10153