xref: /freebsd/sys/dev/cxgb/cxgb_main.c (revision 6f63e88c0166ed3e5f2805a9e667c7d24d304cf1)
1 /**************************************************************************
2 SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 
4 Copyright (c) 2007-2009, Chelsio Inc.
5 All rights reserved.
6 
7 Redistribution and use in source and binary forms, with or without
8 modification, are permitted provided that the following conditions are met:
9 
10  1. Redistributions of source code must retain the above copyright notice,
11     this list of conditions and the following disclaimer.
12 
13  2. Neither the name of the Chelsio Corporation nor the names of its
14     contributors may be used to endorse or promote products derived from
15     this software without specific prior written permission.
16 
17 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 POSSIBILITY OF SUCH DAMAGE.
28 
29 ***************************************************************************/
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include "opt_inet.h"
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/kernel.h>
39 #include <sys/bus.h>
40 #include <sys/module.h>
41 #include <sys/pciio.h>
42 #include <sys/conf.h>
43 #include <machine/bus.h>
44 #include <machine/resource.h>
45 #include <sys/ktr.h>
46 #include <sys/rman.h>
47 #include <sys/ioccom.h>
48 #include <sys/mbuf.h>
49 #include <sys/linker.h>
50 #include <sys/firmware.h>
51 #include <sys/socket.h>
52 #include <sys/sockio.h>
53 #include <sys/smp.h>
54 #include <sys/sysctl.h>
55 #include <sys/syslog.h>
56 #include <sys/queue.h>
57 #include <sys/taskqueue.h>
58 #include <sys/proc.h>
59 
60 #include <net/bpf.h>
61 #include <net/debugnet.h>
62 #include <net/ethernet.h>
63 #include <net/if.h>
64 #include <net/if_var.h>
65 #include <net/if_arp.h>
66 #include <net/if_dl.h>
67 #include <net/if_media.h>
68 #include <net/if_types.h>
69 #include <net/if_vlan_var.h>
70 
71 #include <netinet/in_systm.h>
72 #include <netinet/in.h>
73 #include <netinet/if_ether.h>
74 #include <netinet/ip.h>
75 #include <netinet/ip.h>
76 #include <netinet/tcp.h>
77 #include <netinet/udp.h>
78 
79 #include <dev/pci/pcireg.h>
80 #include <dev/pci/pcivar.h>
81 #include <dev/pci/pci_private.h>
82 
83 #include <cxgb_include.h>
84 
85 #ifdef PRIV_SUPPORTED
86 #include <sys/priv.h>
87 #endif
88 
89 static int cxgb_setup_interrupts(adapter_t *);
90 static void cxgb_teardown_interrupts(adapter_t *);
91 static void cxgb_init(void *);
92 static int cxgb_init_locked(struct port_info *);
93 static int cxgb_uninit_locked(struct port_info *);
94 static int cxgb_uninit_synchronized(struct port_info *);
95 static int cxgb_ioctl(struct ifnet *, unsigned long, caddr_t);
96 static int cxgb_media_change(struct ifnet *);
97 static int cxgb_ifm_type(int);
98 static void cxgb_build_medialist(struct port_info *);
99 static void cxgb_media_status(struct ifnet *, struct ifmediareq *);
100 static uint64_t cxgb_get_counter(struct ifnet *, ift_counter);
101 static int setup_sge_qsets(adapter_t *);
102 static void cxgb_async_intr(void *);
103 static void cxgb_tick_handler(void *, int);
104 static void cxgb_tick(void *);
105 static void link_check_callout(void *);
106 static void check_link_status(void *, int);
107 static void setup_rss(adapter_t *sc);
108 static int alloc_filters(struct adapter *);
109 static int setup_hw_filters(struct adapter *);
110 static int set_filter(struct adapter *, int, const struct filter_info *);
111 static inline void mk_set_tcb_field(struct cpl_set_tcb_field *, unsigned int,
112     unsigned int, u64, u64);
113 static inline void set_tcb_field_ulp(struct cpl_set_tcb_field *, unsigned int,
114     unsigned int, u64, u64);
115 #ifdef TCP_OFFLOAD
116 static int cpl_not_handled(struct sge_qset *, struct rsp_desc *, struct mbuf *);
117 #endif
118 
119 /* Attachment glue for the PCI controller end of the device.  Each port of
120  * the device is attached separately, as defined later.
121  */
122 static int cxgb_controller_probe(device_t);
123 static int cxgb_controller_attach(device_t);
124 static int cxgb_controller_detach(device_t);
125 static void cxgb_free(struct adapter *);
126 static __inline void reg_block_dump(struct adapter *ap, uint8_t *buf, unsigned int start,
127     unsigned int end);
128 static void cxgb_get_regs(adapter_t *sc, struct ch_ifconf_regs *regs, uint8_t *buf);
129 static int cxgb_get_regs_len(void);
130 static void touch_bars(device_t dev);
131 static void cxgb_update_mac_settings(struct port_info *p);
132 #ifdef TCP_OFFLOAD
133 static int toe_capability(struct port_info *, int);
134 #endif
135 
136 /* Table for probing the cards.  The desc field isn't actually used */
137 struct cxgb_ident {
138 	uint16_t	vendor;
139 	uint16_t	device;
140 	int		index;
141 	char		*desc;
142 } cxgb_identifiers[] = {
143 	{PCI_VENDOR_ID_CHELSIO, 0x0020, 0, "PE9000"},
144 	{PCI_VENDOR_ID_CHELSIO, 0x0021, 1, "T302E"},
145 	{PCI_VENDOR_ID_CHELSIO, 0x0022, 2, "T310E"},
146 	{PCI_VENDOR_ID_CHELSIO, 0x0023, 3, "T320X"},
147 	{PCI_VENDOR_ID_CHELSIO, 0x0024, 1, "T302X"},
148 	{PCI_VENDOR_ID_CHELSIO, 0x0025, 3, "T320E"},
149 	{PCI_VENDOR_ID_CHELSIO, 0x0026, 2, "T310X"},
150 	{PCI_VENDOR_ID_CHELSIO, 0x0030, 2, "T3B10"},
151 	{PCI_VENDOR_ID_CHELSIO, 0x0031, 3, "T3B20"},
152 	{PCI_VENDOR_ID_CHELSIO, 0x0032, 1, "T3B02"},
153 	{PCI_VENDOR_ID_CHELSIO, 0x0033, 4, "T3B04"},
154 	{PCI_VENDOR_ID_CHELSIO, 0x0035, 6, "T3C10"},
155 	{PCI_VENDOR_ID_CHELSIO, 0x0036, 3, "S320E-CR"},
156 	{PCI_VENDOR_ID_CHELSIO, 0x0037, 7, "N320E-G2"},
157 	{0, 0, 0, NULL}
158 };
159 
160 static device_method_t cxgb_controller_methods[] = {
161 	DEVMETHOD(device_probe,		cxgb_controller_probe),
162 	DEVMETHOD(device_attach,	cxgb_controller_attach),
163 	DEVMETHOD(device_detach,	cxgb_controller_detach),
164 
165 	DEVMETHOD_END
166 };
167 
168 static driver_t cxgb_controller_driver = {
169 	"cxgbc",
170 	cxgb_controller_methods,
171 	sizeof(struct adapter)
172 };
173 
174 static int cxgbc_mod_event(module_t, int, void *);
175 static devclass_t	cxgb_controller_devclass;
176 DRIVER_MODULE(cxgbc, pci, cxgb_controller_driver, cxgb_controller_devclass,
177     cxgbc_mod_event, 0);
178 MODULE_PNP_INFO("U16:vendor;U16:device", pci, cxgbc, cxgb_identifiers,
179     nitems(cxgb_identifiers) - 1);
180 MODULE_VERSION(cxgbc, 1);
181 MODULE_DEPEND(cxgbc, firmware, 1, 1, 1);
182 
183 /*
184  * Attachment glue for the ports.  Attachment is done directly to the
185  * controller device.
186  */
187 static int cxgb_port_probe(device_t);
188 static int cxgb_port_attach(device_t);
189 static int cxgb_port_detach(device_t);
190 
191 static device_method_t cxgb_port_methods[] = {
192 	DEVMETHOD(device_probe,		cxgb_port_probe),
193 	DEVMETHOD(device_attach,	cxgb_port_attach),
194 	DEVMETHOD(device_detach,	cxgb_port_detach),
195 	{ 0, 0 }
196 };
197 
198 static driver_t cxgb_port_driver = {
199 	"cxgb",
200 	cxgb_port_methods,
201 	0
202 };
203 
204 static d_ioctl_t cxgb_extension_ioctl;
205 static d_open_t cxgb_extension_open;
206 static d_close_t cxgb_extension_close;
207 
208 static struct cdevsw cxgb_cdevsw = {
209        .d_version =    D_VERSION,
210        .d_flags =      0,
211        .d_open =       cxgb_extension_open,
212        .d_close =      cxgb_extension_close,
213        .d_ioctl =      cxgb_extension_ioctl,
214        .d_name =       "cxgb",
215 };
216 
217 static devclass_t	cxgb_port_devclass;
218 DRIVER_MODULE(cxgb, cxgbc, cxgb_port_driver, cxgb_port_devclass, 0, 0);
219 MODULE_VERSION(cxgb, 1);
220 
221 DEBUGNET_DEFINE(cxgb);
222 
223 static struct mtx t3_list_lock;
224 static SLIST_HEAD(, adapter) t3_list;
225 #ifdef TCP_OFFLOAD
226 static struct mtx t3_uld_list_lock;
227 static SLIST_HEAD(, uld_info) t3_uld_list;
228 #endif
229 
230 /*
231  * The driver uses the best interrupt scheme available on a platform in the
232  * order MSI-X, MSI, legacy pin interrupts.  This parameter determines which
233  * of these schemes the driver may consider as follows:
234  *
235  * msi = 2: choose from among all three options
236  * msi = 1 : only consider MSI and pin interrupts
237  * msi = 0: force pin interrupts
238  */
239 static int msi_allowed = 2;
240 
241 SYSCTL_NODE(_hw, OID_AUTO, cxgb, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
242     "CXGB driver parameters");
243 SYSCTL_INT(_hw_cxgb, OID_AUTO, msi_allowed, CTLFLAG_RDTUN, &msi_allowed, 0,
244     "MSI-X, MSI, INTx selector");
245 
246 /*
247  * The driver uses an auto-queue algorithm by default.
248  * To disable it and force a single queue-set per port, use multiq = 0
249  */
250 static int multiq = 1;
251 SYSCTL_INT(_hw_cxgb, OID_AUTO, multiq, CTLFLAG_RDTUN, &multiq, 0,
252     "use min(ncpus/ports, 8) queue-sets per port");
253 
254 /*
255  * By default the driver will not update the firmware unless
256  * it was compiled against a newer version
257  *
258  */
259 static int force_fw_update = 0;
260 SYSCTL_INT(_hw_cxgb, OID_AUTO, force_fw_update, CTLFLAG_RDTUN, &force_fw_update, 0,
261     "update firmware even if up to date");
262 
263 int cxgb_use_16k_clusters = -1;
264 SYSCTL_INT(_hw_cxgb, OID_AUTO, use_16k_clusters, CTLFLAG_RDTUN,
265     &cxgb_use_16k_clusters, 0, "use 16kB clusters for the jumbo queue ");
266 
267 static int nfilters = -1;
268 SYSCTL_INT(_hw_cxgb, OID_AUTO, nfilters, CTLFLAG_RDTUN,
269     &nfilters, 0, "max number of entries in the filter table");
270 
271 enum {
272 	MAX_TXQ_ENTRIES      = 16384,
273 	MAX_CTRL_TXQ_ENTRIES = 1024,
274 	MAX_RSPQ_ENTRIES     = 16384,
275 	MAX_RX_BUFFERS       = 16384,
276 	MAX_RX_JUMBO_BUFFERS = 16384,
277 	MIN_TXQ_ENTRIES      = 4,
278 	MIN_CTRL_TXQ_ENTRIES = 4,
279 	MIN_RSPQ_ENTRIES     = 32,
280 	MIN_FL_ENTRIES       = 32,
281 	MIN_FL_JUMBO_ENTRIES = 32
282 };
283 
284 struct filter_info {
285 	u32 sip;
286 	u32 sip_mask;
287 	u32 dip;
288 	u16 sport;
289 	u16 dport;
290 	u32 vlan:12;
291 	u32 vlan_prio:3;
292 	u32 mac_hit:1;
293 	u32 mac_idx:4;
294 	u32 mac_vld:1;
295 	u32 pkt_type:2;
296 	u32 report_filter_id:1;
297 	u32 pass:1;
298 	u32 rss:1;
299 	u32 qset:3;
300 	u32 locked:1;
301 	u32 valid:1;
302 };
303 
304 enum { FILTER_NO_VLAN_PRI = 7 };
305 
306 #define EEPROM_MAGIC 0x38E2F10C
307 
308 #define PORT_MASK ((1 << MAX_NPORTS) - 1)
309 
310 
311 static int set_eeprom(struct port_info *pi, const uint8_t *data, int len, int offset);
312 
313 
314 static __inline char
315 t3rev2char(struct adapter *adapter)
316 {
317 	char rev = 'z';
318 
319 	switch(adapter->params.rev) {
320 	case T3_REV_A:
321 		rev = 'a';
322 		break;
323 	case T3_REV_B:
324 	case T3_REV_B2:
325 		rev = 'b';
326 		break;
327 	case T3_REV_C:
328 		rev = 'c';
329 		break;
330 	}
331 	return rev;
332 }
333 
334 static struct cxgb_ident *
335 cxgb_get_ident(device_t dev)
336 {
337 	struct cxgb_ident *id;
338 
339 	for (id = cxgb_identifiers; id->desc != NULL; id++) {
340 		if ((id->vendor == pci_get_vendor(dev)) &&
341 		    (id->device == pci_get_device(dev))) {
342 			return (id);
343 		}
344 	}
345 	return (NULL);
346 }
347 
348 static const struct adapter_info *
349 cxgb_get_adapter_info(device_t dev)
350 {
351 	struct cxgb_ident *id;
352 	const struct adapter_info *ai;
353 
354 	id = cxgb_get_ident(dev);
355 	if (id == NULL)
356 		return (NULL);
357 
358 	ai = t3_get_adapter_info(id->index);
359 
360 	return (ai);
361 }
362 
363 static int
364 cxgb_controller_probe(device_t dev)
365 {
366 	const struct adapter_info *ai;
367 	char *ports, buf[80];
368 	int nports;
369 
370 	ai = cxgb_get_adapter_info(dev);
371 	if (ai == NULL)
372 		return (ENXIO);
373 
374 	nports = ai->nports0 + ai->nports1;
375 	if (nports == 1)
376 		ports = "port";
377 	else
378 		ports = "ports";
379 
380 	snprintf(buf, sizeof(buf), "%s, %d %s", ai->desc, nports, ports);
381 	device_set_desc_copy(dev, buf);
382 	return (BUS_PROBE_DEFAULT);
383 }
384 
385 #define FW_FNAME "cxgb_t3fw"
386 #define TPEEPROM_NAME "cxgb_t3%c_tp_eeprom"
387 #define TPSRAM_NAME "cxgb_t3%c_protocol_sram"
388 
389 static int
390 upgrade_fw(adapter_t *sc)
391 {
392 	const struct firmware *fw;
393 	int status;
394 	u32 vers;
395 
396 	if ((fw = firmware_get(FW_FNAME)) == NULL)  {
397 		device_printf(sc->dev, "Could not find firmware image %s\n", FW_FNAME);
398 		return (ENOENT);
399 	} else
400 		device_printf(sc->dev, "installing firmware on card\n");
401 	status = t3_load_fw(sc, (const uint8_t *)fw->data, fw->datasize);
402 
403 	if (status != 0) {
404 		device_printf(sc->dev, "failed to install firmware: %d\n",
405 		    status);
406 	} else {
407 		t3_get_fw_version(sc, &vers);
408 		snprintf(&sc->fw_version[0], sizeof(sc->fw_version), "%d.%d.%d",
409 		    G_FW_VERSION_MAJOR(vers), G_FW_VERSION_MINOR(vers),
410 		    G_FW_VERSION_MICRO(vers));
411 	}
412 
413 	firmware_put(fw, FIRMWARE_UNLOAD);
414 
415 	return (status);
416 }
417 
418 /*
419  * The cxgb_controller_attach function is responsible for the initial
420  * bringup of the device.  Its responsibilities include:
421  *
422  *  1. Determine if the device supports MSI or MSI-X.
423  *  2. Allocate bus resources so that we can access the Base Address Register
424  *  3. Create and initialize mutexes for the controller and its control
425  *     logic such as SGE and MDIO.
426  *  4. Call hardware specific setup routine for the adapter as a whole.
427  *  5. Allocate the BAR for doing MSI-X.
428  *  6. Setup the line interrupt iff MSI-X is not supported.
429  *  7. Create the driver's taskq.
430  *  8. Start one task queue service thread.
431  *  9. Check if the firmware and SRAM are up-to-date.  They will be
432  *     auto-updated later (before FULL_INIT_DONE), if required.
433  * 10. Create a child device for each MAC (port)
434  * 11. Initialize T3 private state.
435  * 12. Trigger the LED
436  * 13. Setup offload iff supported.
437  * 14. Reset/restart the tick callout.
438  * 15. Attach sysctls
439  *
440  * NOTE: Any modification or deviation from this list MUST be reflected in
441  * the above comment.  Failure to do so will result in problems on various
442  * error conditions including link flapping.
443  */
444 static int
445 cxgb_controller_attach(device_t dev)
446 {
447 	device_t child;
448 	const struct adapter_info *ai;
449 	struct adapter *sc;
450 	int i, error = 0;
451 	uint32_t vers;
452 	int port_qsets = 1;
453 	int msi_needed, reg;
454 	char buf[80];
455 
456 	sc = device_get_softc(dev);
457 	sc->dev = dev;
458 	sc->msi_count = 0;
459 	ai = cxgb_get_adapter_info(dev);
460 
461 	snprintf(sc->lockbuf, ADAPTER_LOCK_NAME_LEN, "cxgb controller lock %d",
462 	    device_get_unit(dev));
463 	ADAPTER_LOCK_INIT(sc, sc->lockbuf);
464 
465 	snprintf(sc->reglockbuf, ADAPTER_LOCK_NAME_LEN, "SGE reg lock %d",
466 	    device_get_unit(dev));
467 	snprintf(sc->mdiolockbuf, ADAPTER_LOCK_NAME_LEN, "cxgb mdio lock %d",
468 	    device_get_unit(dev));
469 	snprintf(sc->elmerlockbuf, ADAPTER_LOCK_NAME_LEN, "cxgb elmer lock %d",
470 	    device_get_unit(dev));
471 
472 	MTX_INIT(&sc->sge.reg_lock, sc->reglockbuf, NULL, MTX_SPIN);
473 	MTX_INIT(&sc->mdio_lock, sc->mdiolockbuf, NULL, MTX_DEF);
474 	MTX_INIT(&sc->elmer_lock, sc->elmerlockbuf, NULL, MTX_DEF);
475 
476 	mtx_lock(&t3_list_lock);
477 	SLIST_INSERT_HEAD(&t3_list, sc, link);
478 	mtx_unlock(&t3_list_lock);
479 
480 	/* find the PCIe link width and set max read request to 4KB*/
481 	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
482 		uint16_t lnk;
483 
484 		lnk = pci_read_config(dev, reg + PCIER_LINK_STA, 2);
485 		sc->link_width = (lnk & PCIEM_LINK_STA_WIDTH) >> 4;
486 		if (sc->link_width < 8 &&
487 		    (ai->caps & SUPPORTED_10000baseT_Full)) {
488 			device_printf(sc->dev,
489 			    "PCIe x%d Link, expect reduced performance\n",
490 			    sc->link_width);
491 		}
492 
493 		pci_set_max_read_req(dev, 4096);
494 	}
495 
496 	touch_bars(dev);
497 	pci_enable_busmaster(dev);
498 	/*
499 	 * Allocate the registers and make them available to the driver.
500 	 * The registers that we care about for NIC mode are in BAR 0
501 	 */
502 	sc->regs_rid = PCIR_BAR(0);
503 	if ((sc->regs_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
504 	    &sc->regs_rid, RF_ACTIVE)) == NULL) {
505 		device_printf(dev, "Cannot allocate BAR region 0\n");
506 		error = ENXIO;
507 		goto out;
508 	}
509 
510 	sc->bt = rman_get_bustag(sc->regs_res);
511 	sc->bh = rman_get_bushandle(sc->regs_res);
512 	sc->mmio_len = rman_get_size(sc->regs_res);
513 
514 	for (i = 0; i < MAX_NPORTS; i++)
515 		sc->port[i].adapter = sc;
516 
517 	if (t3_prep_adapter(sc, ai, 1) < 0) {
518 		printf("prep adapter failed\n");
519 		error = ENODEV;
520 		goto out;
521 	}
522 
523 	sc->udbs_rid = PCIR_BAR(2);
524 	sc->udbs_res = NULL;
525 	if (is_offload(sc) &&
526 	    ((sc->udbs_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
527 		   &sc->udbs_rid, RF_ACTIVE)) == NULL)) {
528 		device_printf(dev, "Cannot allocate BAR region 1\n");
529 		error = ENXIO;
530 		goto out;
531 	}
532 
533         /* Allocate the BAR for doing MSI-X.  If it succeeds, try to allocate
534 	 * enough messages for the queue sets.  If that fails, try falling
535 	 * back to MSI.  If that fails, then try falling back to the legacy
536 	 * interrupt pin model.
537 	 */
538 	sc->msix_regs_rid = 0x20;
539 	if ((msi_allowed >= 2) &&
540 	    (sc->msix_regs_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
541 	    &sc->msix_regs_rid, RF_ACTIVE)) != NULL) {
542 
543 		if (multiq)
544 			port_qsets = min(SGE_QSETS/sc->params.nports, mp_ncpus);
545 		msi_needed = sc->msi_count = sc->params.nports * port_qsets + 1;
546 
547 		if (pci_msix_count(dev) == 0 ||
548 		    (error = pci_alloc_msix(dev, &sc->msi_count)) != 0 ||
549 		    sc->msi_count != msi_needed) {
550 			device_printf(dev, "alloc msix failed - "
551 				      "msi_count=%d, msi_needed=%d, err=%d; "
552 				      "will try MSI\n", sc->msi_count,
553 				      msi_needed, error);
554 			sc->msi_count = 0;
555 			port_qsets = 1;
556 			pci_release_msi(dev);
557 			bus_release_resource(dev, SYS_RES_MEMORY,
558 			    sc->msix_regs_rid, sc->msix_regs_res);
559 			sc->msix_regs_res = NULL;
560 		} else {
561 			sc->flags |= USING_MSIX;
562 			sc->cxgb_intr = cxgb_async_intr;
563 			device_printf(dev,
564 				      "using MSI-X interrupts (%u vectors)\n",
565 				      sc->msi_count);
566 		}
567 	}
568 
569 	if ((msi_allowed >= 1) && (sc->msi_count == 0)) {
570 		sc->msi_count = 1;
571 		if ((error = pci_alloc_msi(dev, &sc->msi_count)) != 0) {
572 			device_printf(dev, "alloc msi failed - "
573 				      "err=%d; will try INTx\n", error);
574 			sc->msi_count = 0;
575 			port_qsets = 1;
576 			pci_release_msi(dev);
577 		} else {
578 			sc->flags |= USING_MSI;
579 			sc->cxgb_intr = t3_intr_msi;
580 			device_printf(dev, "using MSI interrupts\n");
581 		}
582 	}
583 	if (sc->msi_count == 0) {
584 		device_printf(dev, "using line interrupts\n");
585 		sc->cxgb_intr = t3b_intr;
586 	}
587 
588 	/* Create a private taskqueue thread for handling driver events */
589 	sc->tq = taskqueue_create("cxgb_taskq", M_NOWAIT,
590 	    taskqueue_thread_enqueue, &sc->tq);
591 	if (sc->tq == NULL) {
592 		device_printf(dev, "failed to allocate controller task queue\n");
593 		goto out;
594 	}
595 
596 	taskqueue_start_threads(&sc->tq, 1, PI_NET, "%s taskq",
597 	    device_get_nameunit(dev));
598 	TASK_INIT(&sc->tick_task, 0, cxgb_tick_handler, sc);
599 
600 
601 	/* Create a periodic callout for checking adapter status */
602 	callout_init(&sc->cxgb_tick_ch, 1);
603 
604 	if (t3_check_fw_version(sc) < 0 || force_fw_update) {
605 		/*
606 		 * Warn user that a firmware update will be attempted in init.
607 		 */
608 		device_printf(dev, "firmware needs to be updated to version %d.%d.%d\n",
609 		    FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
610 		sc->flags &= ~FW_UPTODATE;
611 	} else {
612 		sc->flags |= FW_UPTODATE;
613 	}
614 
615 	if (t3_check_tpsram_version(sc) < 0) {
616 		/*
617 		 * Warn user that a firmware update will be attempted in init.
618 		 */
619 		device_printf(dev, "SRAM needs to be updated to version %c-%d.%d.%d\n",
620 		    t3rev2char(sc), TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
621 		sc->flags &= ~TPS_UPTODATE;
622 	} else {
623 		sc->flags |= TPS_UPTODATE;
624 	}
625 
626 	/*
627 	 * Create a child device for each MAC.  The ethernet attachment
628 	 * will be done in these children.
629 	 */
630 	for (i = 0; i < (sc)->params.nports; i++) {
631 		struct port_info *pi;
632 
633 		if ((child = device_add_child(dev, "cxgb", -1)) == NULL) {
634 			device_printf(dev, "failed to add child port\n");
635 			error = EINVAL;
636 			goto out;
637 		}
638 		pi = &sc->port[i];
639 		pi->adapter = sc;
640 		pi->nqsets = port_qsets;
641 		pi->first_qset = i*port_qsets;
642 		pi->port_id = i;
643 		pi->tx_chan = i >= ai->nports0;
644 		pi->txpkt_intf = pi->tx_chan ? 2 * (i - ai->nports0) + 1 : 2 * i;
645 		sc->rxpkt_map[pi->txpkt_intf] = i;
646 		sc->port[i].tx_chan = i >= ai->nports0;
647 		sc->portdev[i] = child;
648 		device_set_softc(child, pi);
649 	}
650 	if ((error = bus_generic_attach(dev)) != 0)
651 		goto out;
652 
653 	/* initialize sge private state */
654 	t3_sge_init_adapter(sc);
655 
656 	t3_led_ready(sc);
657 
658 	error = t3_get_fw_version(sc, &vers);
659 	if (error)
660 		goto out;
661 
662 	snprintf(&sc->fw_version[0], sizeof(sc->fw_version), "%d.%d.%d",
663 	    G_FW_VERSION_MAJOR(vers), G_FW_VERSION_MINOR(vers),
664 	    G_FW_VERSION_MICRO(vers));
665 
666 	snprintf(buf, sizeof(buf), "%s %sNIC\t E/C: %s S/N: %s",
667 		 ai->desc, is_offload(sc) ? "R" : "",
668 		 sc->params.vpd.ec, sc->params.vpd.sn);
669 	device_set_desc_copy(dev, buf);
670 
671 	snprintf(&sc->port_types[0], sizeof(sc->port_types), "%x%x%x%x",
672 		 sc->params.vpd.port_type[0], sc->params.vpd.port_type[1],
673 		 sc->params.vpd.port_type[2], sc->params.vpd.port_type[3]);
674 
675 	device_printf(sc->dev, "Firmware Version %s\n", &sc->fw_version[0]);
676 	callout_reset(&sc->cxgb_tick_ch, hz, cxgb_tick, sc);
677 	t3_add_attach_sysctls(sc);
678 
679 #ifdef TCP_OFFLOAD
680 	for (i = 0; i < NUM_CPL_HANDLERS; i++)
681 		sc->cpl_handler[i] = cpl_not_handled;
682 #endif
683 
684 	t3_intr_clear(sc);
685 	error = cxgb_setup_interrupts(sc);
686 out:
687 	if (error)
688 		cxgb_free(sc);
689 
690 	return (error);
691 }
692 
693 /*
694  * The cxgb_controller_detach routine is called with the device is
695  * unloaded from the system.
696  */
697 
698 static int
699 cxgb_controller_detach(device_t dev)
700 {
701 	struct adapter *sc;
702 
703 	sc = device_get_softc(dev);
704 
705 	cxgb_free(sc);
706 
707 	return (0);
708 }
709 
710 /*
711  * The cxgb_free() is called by the cxgb_controller_detach() routine
712  * to tear down the structures that were built up in
713  * cxgb_controller_attach(), and should be the final piece of work
714  * done when fully unloading the driver.
715  *
716  *
717  *  1. Shutting down the threads started by the cxgb_controller_attach()
718  *     routine.
719  *  2. Stopping the lower level device and all callouts (cxgb_down_locked()).
720  *  3. Detaching all of the port devices created during the
721  *     cxgb_controller_attach() routine.
722  *  4. Removing the device children created via cxgb_controller_attach().
723  *  5. Releasing PCI resources associated with the device.
724  *  6. Turning off the offload support, iff it was turned on.
725  *  7. Destroying the mutexes created in cxgb_controller_attach().
726  *
727  */
728 static void
729 cxgb_free(struct adapter *sc)
730 {
731 	int i, nqsets = 0;
732 
733 	ADAPTER_LOCK(sc);
734 	sc->flags |= CXGB_SHUTDOWN;
735 	ADAPTER_UNLOCK(sc);
736 
737 	/*
738 	 * Make sure all child devices are gone.
739 	 */
740 	bus_generic_detach(sc->dev);
741 	for (i = 0; i < (sc)->params.nports; i++) {
742 		if (sc->portdev[i] &&
743 		    device_delete_child(sc->dev, sc->portdev[i]) != 0)
744 			device_printf(sc->dev, "failed to delete child port\n");
745 		nqsets += sc->port[i].nqsets;
746 	}
747 
748 	/*
749 	 * At this point, it is as if cxgb_port_detach has run on all ports, and
750 	 * cxgb_down has run on the adapter.  All interrupts have been silenced,
751 	 * all open devices have been closed.
752 	 */
753 	KASSERT(sc->open_device_map == 0, ("%s: device(s) still open (%x)",
754 					   __func__, sc->open_device_map));
755 	for (i = 0; i < sc->params.nports; i++) {
756 		KASSERT(sc->port[i].ifp == NULL, ("%s: port %i undead!",
757 						  __func__, i));
758 	}
759 
760 	/*
761 	 * Finish off the adapter's callouts.
762 	 */
763 	callout_drain(&sc->cxgb_tick_ch);
764 	callout_drain(&sc->sge_timer_ch);
765 
766 	/*
767 	 * Release resources grabbed under FULL_INIT_DONE by cxgb_up.  The
768 	 * sysctls are cleaned up by the kernel linker.
769 	 */
770 	if (sc->flags & FULL_INIT_DONE) {
771  		t3_free_sge_resources(sc, nqsets);
772  		sc->flags &= ~FULL_INIT_DONE;
773  	}
774 
775 	/*
776 	 * Release all interrupt resources.
777 	 */
778 	cxgb_teardown_interrupts(sc);
779 	if (sc->flags & (USING_MSI | USING_MSIX)) {
780 		device_printf(sc->dev, "releasing msi message(s)\n");
781 		pci_release_msi(sc->dev);
782 	} else {
783 		device_printf(sc->dev, "no msi message to release\n");
784 	}
785 
786 	if (sc->msix_regs_res != NULL) {
787 		bus_release_resource(sc->dev, SYS_RES_MEMORY, sc->msix_regs_rid,
788 		    sc->msix_regs_res);
789 	}
790 
791 	/*
792 	 * Free the adapter's taskqueue.
793 	 */
794 	if (sc->tq != NULL) {
795 		taskqueue_free(sc->tq);
796 		sc->tq = NULL;
797 	}
798 
799 	free(sc->filters, M_DEVBUF);
800 	t3_sge_free(sc);
801 
802 	if (sc->udbs_res != NULL)
803 		bus_release_resource(sc->dev, SYS_RES_MEMORY, sc->udbs_rid,
804 		    sc->udbs_res);
805 
806 	if (sc->regs_res != NULL)
807 		bus_release_resource(sc->dev, SYS_RES_MEMORY, sc->regs_rid,
808 		    sc->regs_res);
809 
810 	MTX_DESTROY(&sc->mdio_lock);
811 	MTX_DESTROY(&sc->sge.reg_lock);
812 	MTX_DESTROY(&sc->elmer_lock);
813 	mtx_lock(&t3_list_lock);
814 	SLIST_REMOVE(&t3_list, sc, adapter, link);
815 	mtx_unlock(&t3_list_lock);
816 	ADAPTER_LOCK_DEINIT(sc);
817 }
818 
819 /**
820  *	setup_sge_qsets - configure SGE Tx/Rx/response queues
821  *	@sc: the controller softc
822  *
823  *	Determines how many sets of SGE queues to use and initializes them.
824  *	We support multiple queue sets per port if we have MSI-X, otherwise
825  *	just one queue set per port.
826  */
827 static int
828 setup_sge_qsets(adapter_t *sc)
829 {
830 	int i, j, err, irq_idx = 0, qset_idx = 0;
831 	u_int ntxq = SGE_TXQ_PER_SET;
832 
833 	if ((err = t3_sge_alloc(sc)) != 0) {
834 		device_printf(sc->dev, "t3_sge_alloc returned %d\n", err);
835 		return (err);
836 	}
837 
838 	if (sc->params.rev > 0 && !(sc->flags & USING_MSI))
839 		irq_idx = -1;
840 
841 	for (i = 0; i < (sc)->params.nports; i++) {
842 		struct port_info *pi = &sc->port[i];
843 
844 		for (j = 0; j < pi->nqsets; j++, qset_idx++) {
845 			err = t3_sge_alloc_qset(sc, qset_idx, (sc)->params.nports,
846 			    (sc->flags & USING_MSIX) ? qset_idx + 1 : irq_idx,
847 			    &sc->params.sge.qset[qset_idx], ntxq, pi);
848 			if (err) {
849 				t3_free_sge_resources(sc, qset_idx);
850 				device_printf(sc->dev,
851 				    "t3_sge_alloc_qset failed with %d\n", err);
852 				return (err);
853 			}
854 		}
855 	}
856 
857 	sc->nqsets = qset_idx;
858 
859 	return (0);
860 }
861 
862 static void
863 cxgb_teardown_interrupts(adapter_t *sc)
864 {
865 	int i;
866 
867 	for (i = 0; i < SGE_QSETS; i++) {
868 		if (sc->msix_intr_tag[i] == NULL) {
869 
870 			/* Should have been setup fully or not at all */
871 			KASSERT(sc->msix_irq_res[i] == NULL &&
872 				sc->msix_irq_rid[i] == 0,
873 				("%s: half-done interrupt (%d).", __func__, i));
874 
875 			continue;
876 		}
877 
878 		bus_teardown_intr(sc->dev, sc->msix_irq_res[i],
879 				  sc->msix_intr_tag[i]);
880 		bus_release_resource(sc->dev, SYS_RES_IRQ, sc->msix_irq_rid[i],
881 				     sc->msix_irq_res[i]);
882 
883 		sc->msix_irq_res[i] = sc->msix_intr_tag[i] = NULL;
884 		sc->msix_irq_rid[i] = 0;
885 	}
886 
887 	if (sc->intr_tag) {
888 		KASSERT(sc->irq_res != NULL,
889 			("%s: half-done interrupt.", __func__));
890 
891 		bus_teardown_intr(sc->dev, sc->irq_res, sc->intr_tag);
892 		bus_release_resource(sc->dev, SYS_RES_IRQ, sc->irq_rid,
893 				     sc->irq_res);
894 
895 		sc->irq_res = sc->intr_tag = NULL;
896 		sc->irq_rid = 0;
897 	}
898 }
899 
900 static int
901 cxgb_setup_interrupts(adapter_t *sc)
902 {
903 	struct resource *res;
904 	void *tag;
905 	int i, rid, err, intr_flag = sc->flags & (USING_MSI | USING_MSIX);
906 
907 	sc->irq_rid = intr_flag ? 1 : 0;
908 	sc->irq_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &sc->irq_rid,
909 					     RF_SHAREABLE | RF_ACTIVE);
910 	if (sc->irq_res == NULL) {
911 		device_printf(sc->dev, "Cannot allocate interrupt (%x, %u)\n",
912 			      intr_flag, sc->irq_rid);
913 		err = EINVAL;
914 		sc->irq_rid = 0;
915 	} else {
916 		err = bus_setup_intr(sc->dev, sc->irq_res,
917 		    INTR_MPSAFE | INTR_TYPE_NET, NULL,
918 		    sc->cxgb_intr, sc, &sc->intr_tag);
919 
920 		if (err) {
921 			device_printf(sc->dev,
922 				      "Cannot set up interrupt (%x, %u, %d)\n",
923 				      intr_flag, sc->irq_rid, err);
924 			bus_release_resource(sc->dev, SYS_RES_IRQ, sc->irq_rid,
925 					     sc->irq_res);
926 			sc->irq_res = sc->intr_tag = NULL;
927 			sc->irq_rid = 0;
928 		}
929 	}
930 
931 	/* That's all for INTx or MSI */
932 	if (!(intr_flag & USING_MSIX) || err)
933 		return (err);
934 
935 	bus_describe_intr(sc->dev, sc->irq_res, sc->intr_tag, "err");
936 	for (i = 0; i < sc->msi_count - 1; i++) {
937 		rid = i + 2;
938 		res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &rid,
939 					     RF_SHAREABLE | RF_ACTIVE);
940 		if (res == NULL) {
941 			device_printf(sc->dev, "Cannot allocate interrupt "
942 				      "for message %d\n", rid);
943 			err = EINVAL;
944 			break;
945 		}
946 
947 		err = bus_setup_intr(sc->dev, res, INTR_MPSAFE | INTR_TYPE_NET,
948 				     NULL, t3_intr_msix, &sc->sge.qs[i], &tag);
949 		if (err) {
950 			device_printf(sc->dev, "Cannot set up interrupt "
951 				      "for message %d (%d)\n", rid, err);
952 			bus_release_resource(sc->dev, SYS_RES_IRQ, rid, res);
953 			break;
954 		}
955 
956 		sc->msix_irq_rid[i] = rid;
957 		sc->msix_irq_res[i] = res;
958 		sc->msix_intr_tag[i] = tag;
959 		bus_describe_intr(sc->dev, res, tag, "qs%d", i);
960 	}
961 
962 	if (err)
963 		cxgb_teardown_interrupts(sc);
964 
965 	return (err);
966 }
967 
968 
969 static int
970 cxgb_port_probe(device_t dev)
971 {
972 	struct port_info *p;
973 	char buf[80];
974 	const char *desc;
975 
976 	p = device_get_softc(dev);
977 	desc = p->phy.desc;
978 	snprintf(buf, sizeof(buf), "Port %d %s", p->port_id, desc);
979 	device_set_desc_copy(dev, buf);
980 	return (0);
981 }
982 
983 
984 static int
985 cxgb_makedev(struct port_info *pi)
986 {
987 
988 	pi->port_cdev = make_dev(&cxgb_cdevsw, pi->ifp->if_dunit,
989 	    UID_ROOT, GID_WHEEL, 0600, "%s", if_name(pi->ifp));
990 
991 	if (pi->port_cdev == NULL)
992 		return (ENOMEM);
993 
994 	pi->port_cdev->si_drv1 = (void *)pi;
995 
996 	return (0);
997 }
998 
999 #define CXGB_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \
1000     IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \
1001     IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6)
1002 #define CXGB_CAP_ENABLE CXGB_CAP
1003 
1004 static int
1005 cxgb_port_attach(device_t dev)
1006 {
1007 	struct port_info *p;
1008 	struct ifnet *ifp;
1009 	int err;
1010 	struct adapter *sc;
1011 
1012 	p = device_get_softc(dev);
1013 	sc = p->adapter;
1014 	snprintf(p->lockbuf, PORT_NAME_LEN, "cxgb port lock %d:%d",
1015 	    device_get_unit(device_get_parent(dev)), p->port_id);
1016 	PORT_LOCK_INIT(p, p->lockbuf);
1017 
1018 	callout_init(&p->link_check_ch, 1);
1019 	TASK_INIT(&p->link_check_task, 0, check_link_status, p);
1020 
1021 	/* Allocate an ifnet object and set it up */
1022 	ifp = p->ifp = if_alloc(IFT_ETHER);
1023 	if (ifp == NULL) {
1024 		device_printf(dev, "Cannot allocate ifnet\n");
1025 		return (ENOMEM);
1026 	}
1027 
1028 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1029 	ifp->if_init = cxgb_init;
1030 	ifp->if_softc = p;
1031 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1032 	ifp->if_ioctl = cxgb_ioctl;
1033 	ifp->if_transmit = cxgb_transmit;
1034 	ifp->if_qflush = cxgb_qflush;
1035 	ifp->if_get_counter = cxgb_get_counter;
1036 
1037 	ifp->if_capabilities = CXGB_CAP;
1038 #ifdef TCP_OFFLOAD
1039 	if (is_offload(sc))
1040 		ifp->if_capabilities |= IFCAP_TOE4;
1041 #endif
1042 	ifp->if_capenable = CXGB_CAP_ENABLE;
1043 	ifp->if_hwassist = CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO |
1044 	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6;
1045 
1046 	/*
1047 	 * Disable TSO on 4-port - it isn't supported by the firmware.
1048 	 */
1049 	if (sc->params.nports > 2) {
1050 		ifp->if_capabilities &= ~(IFCAP_TSO | IFCAP_VLAN_HWTSO);
1051 		ifp->if_capenable &= ~(IFCAP_TSO | IFCAP_VLAN_HWTSO);
1052 		ifp->if_hwassist &= ~CSUM_TSO;
1053 	}
1054 
1055 	ether_ifattach(ifp, p->hw_addr);
1056 
1057 	/* Attach driver debugnet methods. */
1058 	DEBUGNET_SET(ifp, cxgb);
1059 
1060 #ifdef DEFAULT_JUMBO
1061 	if (sc->params.nports <= 2)
1062 		ifp->if_mtu = ETHERMTU_JUMBO;
1063 #endif
1064 	if ((err = cxgb_makedev(p)) != 0) {
1065 		printf("makedev failed %d\n", err);
1066 		return (err);
1067 	}
1068 
1069 	/* Create a list of media supported by this port */
1070 	ifmedia_init(&p->media, IFM_IMASK, cxgb_media_change,
1071 	    cxgb_media_status);
1072 	cxgb_build_medialist(p);
1073 
1074 	t3_sge_init_port(p);
1075 
1076 	return (err);
1077 }
1078 
1079 /*
1080  * cxgb_port_detach() is called via the device_detach methods when
1081  * cxgb_free() calls the bus_generic_detach.  It is responsible for
1082  * removing the device from the view of the kernel, i.e. from all
1083  * interfaces lists etc.  This routine is only called when the driver is
1084  * being unloaded, not when the link goes down.
1085  */
1086 static int
1087 cxgb_port_detach(device_t dev)
1088 {
1089 	struct port_info *p;
1090 	struct adapter *sc;
1091 	int i;
1092 
1093 	p = device_get_softc(dev);
1094 	sc = p->adapter;
1095 
1096 	/* Tell cxgb_ioctl and if_init that the port is going away */
1097 	ADAPTER_LOCK(sc);
1098 	SET_DOOMED(p);
1099 	wakeup(&sc->flags);
1100 	while (IS_BUSY(sc))
1101 		mtx_sleep(&sc->flags, &sc->lock, 0, "cxgbdtch", 0);
1102 	SET_BUSY(sc);
1103 	ADAPTER_UNLOCK(sc);
1104 
1105 	if (p->port_cdev != NULL)
1106 		destroy_dev(p->port_cdev);
1107 
1108 	cxgb_uninit_synchronized(p);
1109 	ether_ifdetach(p->ifp);
1110 
1111 	for (i = p->first_qset; i < p->first_qset + p->nqsets; i++) {
1112 		struct sge_qset *qs = &sc->sge.qs[i];
1113 		struct sge_txq *txq = &qs->txq[TXQ_ETH];
1114 
1115 		callout_drain(&txq->txq_watchdog);
1116 		callout_drain(&txq->txq_timer);
1117 	}
1118 
1119 	PORT_LOCK_DEINIT(p);
1120 	if_free(p->ifp);
1121 	p->ifp = NULL;
1122 
1123 	ADAPTER_LOCK(sc);
1124 	CLR_BUSY(sc);
1125 	wakeup_one(&sc->flags);
1126 	ADAPTER_UNLOCK(sc);
1127 	return (0);
1128 }
1129 
1130 void
1131 t3_fatal_err(struct adapter *sc)
1132 {
1133 	u_int fw_status[4];
1134 
1135 	if (sc->flags & FULL_INIT_DONE) {
1136 		t3_sge_stop(sc);
1137 		t3_write_reg(sc, A_XGM_TX_CTRL, 0);
1138 		t3_write_reg(sc, A_XGM_RX_CTRL, 0);
1139 		t3_write_reg(sc, XGM_REG(A_XGM_TX_CTRL, 1), 0);
1140 		t3_write_reg(sc, XGM_REG(A_XGM_RX_CTRL, 1), 0);
1141 		t3_intr_disable(sc);
1142 	}
1143 	device_printf(sc->dev,"encountered fatal error, operation suspended\n");
1144 	if (!t3_cim_ctl_blk_read(sc, 0xa0, 4, fw_status))
1145 		device_printf(sc->dev, "FW_ status: 0x%x, 0x%x, 0x%x, 0x%x\n",
1146 		    fw_status[0], fw_status[1], fw_status[2], fw_status[3]);
1147 }
1148 
1149 int
1150 t3_os_find_pci_capability(adapter_t *sc, int cap)
1151 {
1152 	device_t dev;
1153 	struct pci_devinfo *dinfo;
1154 	pcicfgregs *cfg;
1155 	uint32_t status;
1156 	uint8_t ptr;
1157 
1158 	dev = sc->dev;
1159 	dinfo = device_get_ivars(dev);
1160 	cfg = &dinfo->cfg;
1161 
1162 	status = pci_read_config(dev, PCIR_STATUS, 2);
1163 	if (!(status & PCIM_STATUS_CAPPRESENT))
1164 		return (0);
1165 
1166 	switch (cfg->hdrtype & PCIM_HDRTYPE) {
1167 	case 0:
1168 	case 1:
1169 		ptr = PCIR_CAP_PTR;
1170 		break;
1171 	case 2:
1172 		ptr = PCIR_CAP_PTR_2;
1173 		break;
1174 	default:
1175 		return (0);
1176 		break;
1177 	}
1178 	ptr = pci_read_config(dev, ptr, 1);
1179 
1180 	while (ptr != 0) {
1181 		if (pci_read_config(dev, ptr + PCICAP_ID, 1) == cap)
1182 			return (ptr);
1183 		ptr = pci_read_config(dev, ptr + PCICAP_NEXTPTR, 1);
1184 	}
1185 
1186 	return (0);
1187 }
1188 
1189 int
1190 t3_os_pci_save_state(struct adapter *sc)
1191 {
1192 	device_t dev;
1193 	struct pci_devinfo *dinfo;
1194 
1195 	dev = sc->dev;
1196 	dinfo = device_get_ivars(dev);
1197 
1198 	pci_cfg_save(dev, dinfo, 0);
1199 	return (0);
1200 }
1201 
1202 int
1203 t3_os_pci_restore_state(struct adapter *sc)
1204 {
1205 	device_t dev;
1206 	struct pci_devinfo *dinfo;
1207 
1208 	dev = sc->dev;
1209 	dinfo = device_get_ivars(dev);
1210 
1211 	pci_cfg_restore(dev, dinfo);
1212 	return (0);
1213 }
1214 
1215 /**
1216  *	t3_os_link_changed - handle link status changes
1217  *	@sc: the adapter associated with the link change
1218  *	@port_id: the port index whose link status has changed
1219  *	@link_status: the new status of the link
1220  *	@speed: the new speed setting
1221  *	@duplex: the new duplex setting
1222  *	@fc: the new flow-control setting
1223  *
1224  *	This is the OS-dependent handler for link status changes.  The OS
1225  *	neutral handler takes care of most of the processing for these events,
1226  *	then calls this handler for any OS-specific processing.
1227  */
1228 void
1229 t3_os_link_changed(adapter_t *adapter, int port_id, int link_status, int speed,
1230      int duplex, int fc, int mac_was_reset)
1231 {
1232 	struct port_info *pi = &adapter->port[port_id];
1233 	struct ifnet *ifp = pi->ifp;
1234 
1235 	/* no race with detach, so ifp should always be good */
1236 	KASSERT(ifp, ("%s: if detached.", __func__));
1237 
1238 	/* Reapply mac settings if they were lost due to a reset */
1239 	if (mac_was_reset) {
1240 		PORT_LOCK(pi);
1241 		cxgb_update_mac_settings(pi);
1242 		PORT_UNLOCK(pi);
1243 	}
1244 
1245 	if (link_status) {
1246 		ifp->if_baudrate = IF_Mbps(speed);
1247 		if_link_state_change(ifp, LINK_STATE_UP);
1248 	} else
1249 		if_link_state_change(ifp, LINK_STATE_DOWN);
1250 }
1251 
1252 /**
1253  *	t3_os_phymod_changed - handle PHY module changes
1254  *	@phy: the PHY reporting the module change
1255  *	@mod_type: new module type
1256  *
1257  *	This is the OS-dependent handler for PHY module changes.  It is
1258  *	invoked when a PHY module is removed or inserted for any OS-specific
1259  *	processing.
1260  */
1261 void t3_os_phymod_changed(struct adapter *adap, int port_id)
1262 {
1263 	static const char *mod_str[] = {
1264 		NULL, "SR", "LR", "LRM", "TWINAX", "TWINAX-L", "unknown"
1265 	};
1266 	struct port_info *pi = &adap->port[port_id];
1267 	int mod = pi->phy.modtype;
1268 
1269 	if (mod != pi->media.ifm_cur->ifm_data)
1270 		cxgb_build_medialist(pi);
1271 
1272 	if (mod == phy_modtype_none)
1273 		if_printf(pi->ifp, "PHY module unplugged\n");
1274 	else {
1275 		KASSERT(mod < ARRAY_SIZE(mod_str),
1276 			("invalid PHY module type %d", mod));
1277 		if_printf(pi->ifp, "%s PHY module inserted\n", mod_str[mod]);
1278 	}
1279 }
1280 
1281 void
1282 t3_os_set_hw_addr(adapter_t *adapter, int port_idx, u8 hw_addr[])
1283 {
1284 
1285 	/*
1286 	 * The ifnet might not be allocated before this gets called,
1287 	 * as this is called early on in attach by t3_prep_adapter
1288 	 * save the address off in the port structure
1289 	 */
1290 	if (cxgb_debug)
1291 		printf("set_hw_addr on idx %d addr %6D\n", port_idx, hw_addr, ":");
1292 	bcopy(hw_addr, adapter->port[port_idx].hw_addr, ETHER_ADDR_LEN);
1293 }
1294 
1295 /*
1296  * Programs the XGMAC based on the settings in the ifnet.  These settings
1297  * include MTU, MAC address, mcast addresses, etc.
1298  */
1299 static void
1300 cxgb_update_mac_settings(struct port_info *p)
1301 {
1302 	struct ifnet *ifp = p->ifp;
1303 	struct t3_rx_mode rm;
1304 	struct cmac *mac = &p->mac;
1305 	int mtu, hwtagging;
1306 
1307 	PORT_LOCK_ASSERT_OWNED(p);
1308 
1309 	bcopy(IF_LLADDR(ifp), p->hw_addr, ETHER_ADDR_LEN);
1310 
1311 	mtu = ifp->if_mtu;
1312 	if (ifp->if_capenable & IFCAP_VLAN_MTU)
1313 		mtu += ETHER_VLAN_ENCAP_LEN;
1314 
1315 	hwtagging = (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0;
1316 
1317 	t3_mac_set_mtu(mac, mtu);
1318 	t3_set_vlan_accel(p->adapter, 1 << p->tx_chan, hwtagging);
1319 	t3_mac_set_address(mac, 0, p->hw_addr);
1320 	t3_init_rx_mode(&rm, p);
1321 	t3_mac_set_rx_mode(mac, &rm);
1322 }
1323 
1324 
1325 static int
1326 await_mgmt_replies(struct adapter *adap, unsigned long init_cnt,
1327 			      unsigned long n)
1328 {
1329 	int attempts = 5;
1330 
1331 	while (adap->sge.qs[0].rspq.offload_pkts < init_cnt + n) {
1332 		if (!--attempts)
1333 			return (ETIMEDOUT);
1334 		t3_os_sleep(10);
1335 	}
1336 	return 0;
1337 }
1338 
1339 static int
1340 init_tp_parity(struct adapter *adap)
1341 {
1342 	int i;
1343 	struct mbuf *m;
1344 	struct cpl_set_tcb_field *greq;
1345 	unsigned long cnt = adap->sge.qs[0].rspq.offload_pkts;
1346 
1347 	t3_tp_set_offload_mode(adap, 1);
1348 
1349 	for (i = 0; i < 16; i++) {
1350 		struct cpl_smt_write_req *req;
1351 
1352 		m = m_gethdr(M_WAITOK, MT_DATA);
1353 		req = mtod(m, struct cpl_smt_write_req *);
1354 		m->m_len = m->m_pkthdr.len = sizeof(*req);
1355 		memset(req, 0, sizeof(*req));
1356 		req->wr.wrh_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1357 		OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, i));
1358 		req->iff = i;
1359 		t3_mgmt_tx(adap, m);
1360 	}
1361 
1362 	for (i = 0; i < 2048; i++) {
1363 		struct cpl_l2t_write_req *req;
1364 
1365 		m = m_gethdr(M_WAITOK, MT_DATA);
1366 		req = mtod(m, struct cpl_l2t_write_req *);
1367 		m->m_len = m->m_pkthdr.len = sizeof(*req);
1368 		memset(req, 0, sizeof(*req));
1369 		req->wr.wrh_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1370 		OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, i));
1371 		req->params = htonl(V_L2T_W_IDX(i));
1372 		t3_mgmt_tx(adap, m);
1373 	}
1374 
1375 	for (i = 0; i < 2048; i++) {
1376 		struct cpl_rte_write_req *req;
1377 
1378 		m = m_gethdr(M_WAITOK, MT_DATA);
1379 		req = mtod(m, struct cpl_rte_write_req *);
1380 		m->m_len = m->m_pkthdr.len = sizeof(*req);
1381 		memset(req, 0, sizeof(*req));
1382 		req->wr.wrh_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1383 		OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_RTE_WRITE_REQ, i));
1384 		req->l2t_idx = htonl(V_L2T_W_IDX(i));
1385 		t3_mgmt_tx(adap, m);
1386 	}
1387 
1388 	m = m_gethdr(M_WAITOK, MT_DATA);
1389 	greq = mtod(m, struct cpl_set_tcb_field *);
1390 	m->m_len = m->m_pkthdr.len = sizeof(*greq);
1391 	memset(greq, 0, sizeof(*greq));
1392 	greq->wr.wrh_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1393 	OPCODE_TID(greq) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, 0));
1394 	greq->mask = htobe64(1);
1395 	t3_mgmt_tx(adap, m);
1396 
1397 	i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
1398 	t3_tp_set_offload_mode(adap, 0);
1399 	return (i);
1400 }
1401 
1402 /**
1403  *	setup_rss - configure Receive Side Steering (per-queue connection demux)
1404  *	@adap: the adapter
1405  *
1406  *	Sets up RSS to distribute packets to multiple receive queues.  We
1407  *	configure the RSS CPU lookup table to distribute to the number of HW
1408  *	receive queues, and the response queue lookup table to narrow that
1409  *	down to the response queues actually configured for each port.
1410  *	We always configure the RSS mapping for two ports since the mapping
1411  *	table has plenty of entries.
1412  */
1413 static void
1414 setup_rss(adapter_t *adap)
1415 {
1416 	int i;
1417 	u_int nq[2];
1418 	uint8_t cpus[SGE_QSETS + 1];
1419 	uint16_t rspq_map[RSS_TABLE_SIZE];
1420 
1421 	for (i = 0; i < SGE_QSETS; ++i)
1422 		cpus[i] = i;
1423 	cpus[SGE_QSETS] = 0xff;
1424 
1425 	nq[0] = nq[1] = 0;
1426 	for_each_port(adap, i) {
1427 		const struct port_info *pi = adap2pinfo(adap, i);
1428 
1429 		nq[pi->tx_chan] += pi->nqsets;
1430 	}
1431 	for (i = 0; i < RSS_TABLE_SIZE / 2; ++i) {
1432 		rspq_map[i] = nq[0] ? i % nq[0] : 0;
1433 		rspq_map[i + RSS_TABLE_SIZE / 2] = nq[1] ? i % nq[1] + nq[0] : 0;
1434 	}
1435 
1436 	/* Calculate the reverse RSS map table */
1437 	for (i = 0; i < SGE_QSETS; ++i)
1438 		adap->rrss_map[i] = 0xff;
1439 	for (i = 0; i < RSS_TABLE_SIZE; ++i)
1440 		if (adap->rrss_map[rspq_map[i]] == 0xff)
1441 			adap->rrss_map[rspq_map[i]] = i;
1442 
1443 	t3_config_rss(adap, F_RQFEEDBACKENABLE | F_TNLLKPEN | F_TNLMAPEN |
1444 		      F_TNLPRTEN | F_TNL2TUPEN | F_TNL4TUPEN | F_OFDMAPEN |
1445 	              F_RRCPLMAPEN | V_RRCPLCPUSIZE(6) | F_HASHTOEPLITZ,
1446 	              cpus, rspq_map);
1447 
1448 }
1449 static void
1450 send_pktsched_cmd(struct adapter *adap, int sched, int qidx, int lo,
1451 			      int hi, int port)
1452 {
1453 	struct mbuf *m;
1454 	struct mngt_pktsched_wr *req;
1455 
1456 	m = m_gethdr(M_NOWAIT, MT_DATA);
1457 	if (m) {
1458 		req = mtod(m, struct mngt_pktsched_wr *);
1459 		req->wr.wrh_hi = htonl(V_WR_OP(FW_WROPCODE_MNGT));
1460 		req->mngt_opcode = FW_MNGTOPCODE_PKTSCHED_SET;
1461 		req->sched = sched;
1462 		req->idx = qidx;
1463 		req->min = lo;
1464 		req->max = hi;
1465 		req->binding = port;
1466 		m->m_len = m->m_pkthdr.len = sizeof(*req);
1467 		t3_mgmt_tx(adap, m);
1468 	}
1469 }
1470 
1471 static void
1472 bind_qsets(adapter_t *sc)
1473 {
1474 	int i, j;
1475 
1476 	for (i = 0; i < (sc)->params.nports; ++i) {
1477 		const struct port_info *pi = adap2pinfo(sc, i);
1478 
1479 		for (j = 0; j < pi->nqsets; ++j) {
1480 			send_pktsched_cmd(sc, 1, pi->first_qset + j, -1,
1481 					  -1, pi->tx_chan);
1482 
1483 		}
1484 	}
1485 }
1486 
1487 static void
1488 update_tpeeprom(struct adapter *adap)
1489 {
1490 	const struct firmware *tpeeprom;
1491 
1492 	uint32_t version;
1493 	unsigned int major, minor;
1494 	int ret, len;
1495 	char rev, name[32];
1496 
1497 	t3_seeprom_read(adap, TP_SRAM_OFFSET, &version);
1498 
1499 	major = G_TP_VERSION_MAJOR(version);
1500 	minor = G_TP_VERSION_MINOR(version);
1501 	if (major == TP_VERSION_MAJOR  && minor == TP_VERSION_MINOR)
1502 		return;
1503 
1504 	rev = t3rev2char(adap);
1505 	snprintf(name, sizeof(name), TPEEPROM_NAME, rev);
1506 
1507 	tpeeprom = firmware_get(name);
1508 	if (tpeeprom == NULL) {
1509 		device_printf(adap->dev,
1510 			      "could not load TP EEPROM: unable to load %s\n",
1511 			      name);
1512 		return;
1513 	}
1514 
1515 	len = tpeeprom->datasize - 4;
1516 
1517 	ret = t3_check_tpsram(adap, tpeeprom->data, tpeeprom->datasize);
1518 	if (ret)
1519 		goto release_tpeeprom;
1520 
1521 	if (len != TP_SRAM_LEN) {
1522 		device_printf(adap->dev,
1523 			      "%s length is wrong len=%d expected=%d\n", name,
1524 			      len, TP_SRAM_LEN);
1525 		return;
1526 	}
1527 
1528 	ret = set_eeprom(&adap->port[0], tpeeprom->data, tpeeprom->datasize,
1529 	    TP_SRAM_OFFSET);
1530 
1531 	if (!ret) {
1532 		device_printf(adap->dev,
1533 			"Protocol SRAM image updated in EEPROM to %d.%d.%d\n",
1534 			 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1535 	} else
1536 		device_printf(adap->dev,
1537 			      "Protocol SRAM image update in EEPROM failed\n");
1538 
1539 release_tpeeprom:
1540 	firmware_put(tpeeprom, FIRMWARE_UNLOAD);
1541 
1542 	return;
1543 }
1544 
1545 static int
1546 update_tpsram(struct adapter *adap)
1547 {
1548 	const struct firmware *tpsram;
1549 	int ret;
1550 	char rev, name[32];
1551 
1552 	rev = t3rev2char(adap);
1553 	snprintf(name, sizeof(name), TPSRAM_NAME, rev);
1554 
1555 	update_tpeeprom(adap);
1556 
1557 	tpsram = firmware_get(name);
1558 	if (tpsram == NULL){
1559 		device_printf(adap->dev, "could not load TP SRAM\n");
1560 		return (EINVAL);
1561 	} else
1562 		device_printf(adap->dev, "updating TP SRAM\n");
1563 
1564 	ret = t3_check_tpsram(adap, tpsram->data, tpsram->datasize);
1565 	if (ret)
1566 		goto release_tpsram;
1567 
1568 	ret = t3_set_proto_sram(adap, tpsram->data);
1569 	if (ret)
1570 		device_printf(adap->dev, "loading protocol SRAM failed\n");
1571 
1572 release_tpsram:
1573 	firmware_put(tpsram, FIRMWARE_UNLOAD);
1574 
1575 	return ret;
1576 }
1577 
1578 /**
1579  *	cxgb_up - enable the adapter
1580  *	@adap: adapter being enabled
1581  *
1582  *	Called when the first port is enabled, this function performs the
1583  *	actions necessary to make an adapter operational, such as completing
1584  *	the initialization of HW modules, and enabling interrupts.
1585  */
1586 static int
1587 cxgb_up(struct adapter *sc)
1588 {
1589 	int err = 0;
1590 	unsigned int mxf = t3_mc5_size(&sc->mc5) - MC5_MIN_TIDS;
1591 
1592 	KASSERT(sc->open_device_map == 0, ("%s: device(s) already open (%x)",
1593 					   __func__, sc->open_device_map));
1594 
1595 	if ((sc->flags & FULL_INIT_DONE) == 0) {
1596 
1597 		ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
1598 
1599 		if ((sc->flags & FW_UPTODATE) == 0)
1600 			if ((err = upgrade_fw(sc)))
1601 				goto out;
1602 
1603 		if ((sc->flags & TPS_UPTODATE) == 0)
1604 			if ((err = update_tpsram(sc)))
1605 				goto out;
1606 
1607 		if (is_offload(sc) && nfilters != 0) {
1608 			sc->params.mc5.nservers = 0;
1609 
1610 			if (nfilters < 0)
1611 				sc->params.mc5.nfilters = mxf;
1612 			else
1613 				sc->params.mc5.nfilters = min(nfilters, mxf);
1614 		}
1615 
1616 		err = t3_init_hw(sc, 0);
1617 		if (err)
1618 			goto out;
1619 
1620 		t3_set_reg_field(sc, A_TP_PARA_REG5, 0, F_RXDDPOFFINIT);
1621 		t3_write_reg(sc, A_ULPRX_TDDP_PSZ, V_HPZ0(PAGE_SHIFT - 12));
1622 
1623 		err = setup_sge_qsets(sc);
1624 		if (err)
1625 			goto out;
1626 
1627 		alloc_filters(sc);
1628 		setup_rss(sc);
1629 
1630 		t3_add_configured_sysctls(sc);
1631 		sc->flags |= FULL_INIT_DONE;
1632 	}
1633 
1634 	t3_intr_clear(sc);
1635 	t3_sge_start(sc);
1636 	t3_intr_enable(sc);
1637 
1638 	if (sc->params.rev >= T3_REV_C && !(sc->flags & TP_PARITY_INIT) &&
1639 	    is_offload(sc) && init_tp_parity(sc) == 0)
1640 		sc->flags |= TP_PARITY_INIT;
1641 
1642 	if (sc->flags & TP_PARITY_INIT) {
1643 		t3_write_reg(sc, A_TP_INT_CAUSE, F_CMCACHEPERR | F_ARPLUTPERR);
1644 		t3_write_reg(sc, A_TP_INT_ENABLE, 0x7fbfffff);
1645 	}
1646 
1647 	if (!(sc->flags & QUEUES_BOUND)) {
1648 		bind_qsets(sc);
1649 		setup_hw_filters(sc);
1650 		sc->flags |= QUEUES_BOUND;
1651 	}
1652 
1653 	t3_sge_reset_adapter(sc);
1654 out:
1655 	return (err);
1656 }
1657 
1658 /*
1659  * Called when the last open device is closed.  Does NOT undo all of cxgb_up's
1660  * work.  Specifically, the resources grabbed under FULL_INIT_DONE are released
1661  * during controller_detach, not here.
1662  */
1663 static void
1664 cxgb_down(struct adapter *sc)
1665 {
1666 	t3_sge_stop(sc);
1667 	t3_intr_disable(sc);
1668 }
1669 
1670 /*
1671  * if_init for cxgb ports.
1672  */
1673 static void
1674 cxgb_init(void *arg)
1675 {
1676 	struct port_info *p = arg;
1677 	struct adapter *sc = p->adapter;
1678 
1679 	ADAPTER_LOCK(sc);
1680 	cxgb_init_locked(p); /* releases adapter lock */
1681 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
1682 }
1683 
1684 static int
1685 cxgb_init_locked(struct port_info *p)
1686 {
1687 	struct adapter *sc = p->adapter;
1688 	struct ifnet *ifp = p->ifp;
1689 	struct cmac *mac = &p->mac;
1690 	int i, rc = 0, may_sleep = 0, gave_up_lock = 0;
1691 
1692 	ADAPTER_LOCK_ASSERT_OWNED(sc);
1693 
1694 	while (!IS_DOOMED(p) && IS_BUSY(sc)) {
1695 		gave_up_lock = 1;
1696 		if (mtx_sleep(&sc->flags, &sc->lock, PCATCH, "cxgbinit", 0)) {
1697 			rc = EINTR;
1698 			goto done;
1699 		}
1700 	}
1701 	if (IS_DOOMED(p)) {
1702 		rc = ENXIO;
1703 		goto done;
1704 	}
1705 	KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__));
1706 
1707 	/*
1708 	 * The code that runs during one-time adapter initialization can sleep
1709 	 * so it's important not to hold any locks across it.
1710 	 */
1711 	may_sleep = sc->flags & FULL_INIT_DONE ? 0 : 1;
1712 
1713 	if (may_sleep) {
1714 		SET_BUSY(sc);
1715 		gave_up_lock = 1;
1716 		ADAPTER_UNLOCK(sc);
1717 	}
1718 
1719 	if (sc->open_device_map == 0 && ((rc = cxgb_up(sc)) != 0))
1720 			goto done;
1721 
1722 	PORT_LOCK(p);
1723 	if (isset(&sc->open_device_map, p->port_id) &&
1724 	    (ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1725 		PORT_UNLOCK(p);
1726 		goto done;
1727 	}
1728 	t3_port_intr_enable(sc, p->port_id);
1729 	if (!mac->multiport)
1730 		t3_mac_init(mac);
1731 	cxgb_update_mac_settings(p);
1732 	t3_link_start(&p->phy, mac, &p->link_config);
1733 	t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
1734 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1735 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1736 	PORT_UNLOCK(p);
1737 
1738 	for (i = p->first_qset; i < p->first_qset + p->nqsets; i++) {
1739 		struct sge_qset *qs = &sc->sge.qs[i];
1740 		struct sge_txq *txq = &qs->txq[TXQ_ETH];
1741 
1742 		callout_reset_on(&txq->txq_watchdog, hz, cxgb_tx_watchdog, qs,
1743 				 txq->txq_watchdog.c_cpu);
1744 	}
1745 
1746 	/* all ok */
1747 	setbit(&sc->open_device_map, p->port_id);
1748 	callout_reset(&p->link_check_ch,
1749 	    p->phy.caps & SUPPORTED_LINK_IRQ ?  hz * 3 : hz / 4,
1750 	    link_check_callout, p);
1751 
1752 done:
1753 	if (may_sleep) {
1754 		ADAPTER_LOCK(sc);
1755 		KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__));
1756 		CLR_BUSY(sc);
1757 	}
1758 	if (gave_up_lock)
1759 		wakeup_one(&sc->flags);
1760 	ADAPTER_UNLOCK(sc);
1761 	return (rc);
1762 }
1763 
1764 static int
1765 cxgb_uninit_locked(struct port_info *p)
1766 {
1767 	struct adapter *sc = p->adapter;
1768 	int rc;
1769 
1770 	ADAPTER_LOCK_ASSERT_OWNED(sc);
1771 
1772 	while (!IS_DOOMED(p) && IS_BUSY(sc)) {
1773 		if (mtx_sleep(&sc->flags, &sc->lock, PCATCH, "cxgbunin", 0)) {
1774 			rc = EINTR;
1775 			goto done;
1776 		}
1777 	}
1778 	if (IS_DOOMED(p)) {
1779 		rc = ENXIO;
1780 		goto done;
1781 	}
1782 	KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__));
1783 	SET_BUSY(sc);
1784 	ADAPTER_UNLOCK(sc);
1785 
1786 	rc = cxgb_uninit_synchronized(p);
1787 
1788 	ADAPTER_LOCK(sc);
1789 	KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__));
1790 	CLR_BUSY(sc);
1791 	wakeup_one(&sc->flags);
1792 done:
1793 	ADAPTER_UNLOCK(sc);
1794 	return (rc);
1795 }
1796 
1797 /*
1798  * Called on "ifconfig down", and from port_detach
1799  */
1800 static int
1801 cxgb_uninit_synchronized(struct port_info *pi)
1802 {
1803 	struct adapter *sc = pi->adapter;
1804 	struct ifnet *ifp = pi->ifp;
1805 
1806 	/*
1807 	 * taskqueue_drain may cause a deadlock if the adapter lock is held.
1808 	 */
1809 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
1810 
1811 	/*
1812 	 * Clear this port's bit from the open device map, and then drain all
1813 	 * the tasks that can access/manipulate this port's port_info or ifp.
1814 	 * We disable this port's interrupts here and so the slow/ext
1815 	 * interrupt tasks won't be enqueued.  The tick task will continue to
1816 	 * be enqueued every second but the runs after this drain will not see
1817 	 * this port in the open device map.
1818 	 *
1819 	 * A well behaved task must take open_device_map into account and ignore
1820 	 * ports that are not open.
1821 	 */
1822 	clrbit(&sc->open_device_map, pi->port_id);
1823 	t3_port_intr_disable(sc, pi->port_id);
1824 	taskqueue_drain(sc->tq, &sc->slow_intr_task);
1825 	taskqueue_drain(sc->tq, &sc->tick_task);
1826 
1827 	callout_drain(&pi->link_check_ch);
1828 	taskqueue_drain(sc->tq, &pi->link_check_task);
1829 
1830 	PORT_LOCK(pi);
1831 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1832 
1833 	/* disable pause frames */
1834 	t3_set_reg_field(sc, A_XGM_TX_CFG + pi->mac.offset, F_TXPAUSEEN, 0);
1835 
1836 	/* Reset RX FIFO HWM */
1837 	t3_set_reg_field(sc, A_XGM_RXFIFO_CFG +  pi->mac.offset,
1838 			 V_RXFIFOPAUSEHWM(M_RXFIFOPAUSEHWM), 0);
1839 
1840 	DELAY(100 * 1000);
1841 
1842 	/* Wait for TXFIFO empty */
1843 	t3_wait_op_done(sc, A_XGM_TXFIFO_CFG + pi->mac.offset,
1844 			F_TXFIFO_EMPTY, 1, 20, 5);
1845 
1846 	DELAY(100 * 1000);
1847 	t3_mac_disable(&pi->mac, MAC_DIRECTION_RX);
1848 
1849 	pi->phy.ops->power_down(&pi->phy, 1);
1850 
1851 	PORT_UNLOCK(pi);
1852 
1853 	pi->link_config.link_ok = 0;
1854 	t3_os_link_changed(sc, pi->port_id, 0, 0, 0, 0, 0);
1855 
1856 	if (sc->open_device_map == 0)
1857 		cxgb_down(pi->adapter);
1858 
1859 	return (0);
1860 }
1861 
1862 /*
1863  * Mark lro enabled or disabled in all qsets for this port
1864  */
1865 static int
1866 cxgb_set_lro(struct port_info *p, int enabled)
1867 {
1868 	int i;
1869 	struct adapter *adp = p->adapter;
1870 	struct sge_qset *q;
1871 
1872 	for (i = 0; i < p->nqsets; i++) {
1873 		q = &adp->sge.qs[p->first_qset + i];
1874 		q->lro.enabled = (enabled != 0);
1875 	}
1876 	return (0);
1877 }
1878 
1879 static int
1880 cxgb_ioctl(struct ifnet *ifp, unsigned long command, caddr_t data)
1881 {
1882 	struct port_info *p = ifp->if_softc;
1883 	struct adapter *sc = p->adapter;
1884 	struct ifreq *ifr = (struct ifreq *)data;
1885 	int flags, error = 0, mtu;
1886 	uint32_t mask;
1887 
1888 	switch (command) {
1889 	case SIOCSIFMTU:
1890 		ADAPTER_LOCK(sc);
1891 		error = IS_DOOMED(p) ? ENXIO : (IS_BUSY(sc) ? EBUSY : 0);
1892 		if (error) {
1893 fail:
1894 			ADAPTER_UNLOCK(sc);
1895 			return (error);
1896 		}
1897 
1898 		mtu = ifr->ifr_mtu;
1899 		if ((mtu < ETHERMIN) || (mtu > ETHERMTU_JUMBO)) {
1900 			error = EINVAL;
1901 		} else {
1902 			ifp->if_mtu = mtu;
1903 			PORT_LOCK(p);
1904 			cxgb_update_mac_settings(p);
1905 			PORT_UNLOCK(p);
1906 		}
1907 		ADAPTER_UNLOCK(sc);
1908 		break;
1909 	case SIOCSIFFLAGS:
1910 		ADAPTER_LOCK(sc);
1911 		if (IS_DOOMED(p)) {
1912 			error = ENXIO;
1913 			goto fail;
1914 		}
1915 		if (ifp->if_flags & IFF_UP) {
1916 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1917 				flags = p->if_flags;
1918 				if (((ifp->if_flags ^ flags) & IFF_PROMISC) ||
1919 				    ((ifp->if_flags ^ flags) & IFF_ALLMULTI)) {
1920 					if (IS_BUSY(sc)) {
1921 						error = EBUSY;
1922 						goto fail;
1923 					}
1924 					PORT_LOCK(p);
1925 					cxgb_update_mac_settings(p);
1926 					PORT_UNLOCK(p);
1927 				}
1928 				ADAPTER_UNLOCK(sc);
1929 			} else
1930 				error = cxgb_init_locked(p);
1931 			p->if_flags = ifp->if_flags;
1932 		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1933 			error = cxgb_uninit_locked(p);
1934 		else
1935 			ADAPTER_UNLOCK(sc);
1936 
1937 		ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
1938 		break;
1939 	case SIOCADDMULTI:
1940 	case SIOCDELMULTI:
1941 		ADAPTER_LOCK(sc);
1942 		error = IS_DOOMED(p) ? ENXIO : (IS_BUSY(sc) ? EBUSY : 0);
1943 		if (error)
1944 			goto fail;
1945 
1946 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1947 			PORT_LOCK(p);
1948 			cxgb_update_mac_settings(p);
1949 			PORT_UNLOCK(p);
1950 		}
1951 		ADAPTER_UNLOCK(sc);
1952 
1953 		break;
1954 	case SIOCSIFCAP:
1955 		ADAPTER_LOCK(sc);
1956 		error = IS_DOOMED(p) ? ENXIO : (IS_BUSY(sc) ? EBUSY : 0);
1957 		if (error)
1958 			goto fail;
1959 
1960 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1961 		if (mask & IFCAP_TXCSUM) {
1962 			ifp->if_capenable ^= IFCAP_TXCSUM;
1963 			ifp->if_hwassist ^= (CSUM_TCP | CSUM_UDP | CSUM_IP);
1964 
1965 			if (IFCAP_TSO4 & ifp->if_capenable &&
1966 			    !(IFCAP_TXCSUM & ifp->if_capenable)) {
1967 				ifp->if_capenable &= ~IFCAP_TSO4;
1968 				if_printf(ifp,
1969 				    "tso4 disabled due to -txcsum.\n");
1970 			}
1971 		}
1972 		if (mask & IFCAP_TXCSUM_IPV6) {
1973 			ifp->if_capenable ^= IFCAP_TXCSUM_IPV6;
1974 			ifp->if_hwassist ^= (CSUM_UDP_IPV6 | CSUM_TCP_IPV6);
1975 
1976 			if (IFCAP_TSO6 & ifp->if_capenable &&
1977 			    !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) {
1978 				ifp->if_capenable &= ~IFCAP_TSO6;
1979 				if_printf(ifp,
1980 				    "tso6 disabled due to -txcsum6.\n");
1981 			}
1982 		}
1983 		if (mask & IFCAP_RXCSUM)
1984 			ifp->if_capenable ^= IFCAP_RXCSUM;
1985 		if (mask & IFCAP_RXCSUM_IPV6)
1986 			ifp->if_capenable ^= IFCAP_RXCSUM_IPV6;
1987 
1988 		/*
1989 		 * Note that we leave CSUM_TSO alone (it is always set).  The
1990 		 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before
1991 		 * sending a TSO request our way, so it's sufficient to toggle
1992 		 * IFCAP_TSOx only.
1993 		 */
1994 		if (mask & IFCAP_TSO4) {
1995 			if (!(IFCAP_TSO4 & ifp->if_capenable) &&
1996 			    !(IFCAP_TXCSUM & ifp->if_capenable)) {
1997 				if_printf(ifp, "enable txcsum first.\n");
1998 				error = EAGAIN;
1999 				goto fail;
2000 			}
2001 			ifp->if_capenable ^= IFCAP_TSO4;
2002 		}
2003 		if (mask & IFCAP_TSO6) {
2004 			if (!(IFCAP_TSO6 & ifp->if_capenable) &&
2005 			    !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) {
2006 				if_printf(ifp, "enable txcsum6 first.\n");
2007 				error = EAGAIN;
2008 				goto fail;
2009 			}
2010 			ifp->if_capenable ^= IFCAP_TSO6;
2011 		}
2012 		if (mask & IFCAP_LRO) {
2013 			ifp->if_capenable ^= IFCAP_LRO;
2014 
2015 			/* Safe to do this even if cxgb_up not called yet */
2016 			cxgb_set_lro(p, ifp->if_capenable & IFCAP_LRO);
2017 		}
2018 #ifdef TCP_OFFLOAD
2019 		if (mask & IFCAP_TOE4) {
2020 			int enable = (ifp->if_capenable ^ mask) & IFCAP_TOE4;
2021 
2022 			error = toe_capability(p, enable);
2023 			if (error == 0)
2024 				ifp->if_capenable ^= mask;
2025 		}
2026 #endif
2027 		if (mask & IFCAP_VLAN_HWTAGGING) {
2028 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2029 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2030 				PORT_LOCK(p);
2031 				cxgb_update_mac_settings(p);
2032 				PORT_UNLOCK(p);
2033 			}
2034 		}
2035 		if (mask & IFCAP_VLAN_MTU) {
2036 			ifp->if_capenable ^= IFCAP_VLAN_MTU;
2037 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2038 				PORT_LOCK(p);
2039 				cxgb_update_mac_settings(p);
2040 				PORT_UNLOCK(p);
2041 			}
2042 		}
2043 		if (mask & IFCAP_VLAN_HWTSO)
2044 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
2045 		if (mask & IFCAP_VLAN_HWCSUM)
2046 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2047 
2048 #ifdef VLAN_CAPABILITIES
2049 		VLAN_CAPABILITIES(ifp);
2050 #endif
2051 		ADAPTER_UNLOCK(sc);
2052 		break;
2053 	case SIOCSIFMEDIA:
2054 	case SIOCGIFMEDIA:
2055 		error = ifmedia_ioctl(ifp, ifr, &p->media, command);
2056 		break;
2057 	default:
2058 		error = ether_ioctl(ifp, command, data);
2059 	}
2060 
2061 	return (error);
2062 }
2063 
2064 static int
2065 cxgb_media_change(struct ifnet *ifp)
2066 {
2067 	return (EOPNOTSUPP);
2068 }
2069 
2070 /*
2071  * Translates phy->modtype to the correct Ethernet media subtype.
2072  */
2073 static int
2074 cxgb_ifm_type(int mod)
2075 {
2076 	switch (mod) {
2077 	case phy_modtype_sr:
2078 		return (IFM_10G_SR);
2079 	case phy_modtype_lr:
2080 		return (IFM_10G_LR);
2081 	case phy_modtype_lrm:
2082 		return (IFM_10G_LRM);
2083 	case phy_modtype_twinax:
2084 		return (IFM_10G_TWINAX);
2085 	case phy_modtype_twinax_long:
2086 		return (IFM_10G_TWINAX_LONG);
2087 	case phy_modtype_none:
2088 		return (IFM_NONE);
2089 	case phy_modtype_unknown:
2090 		return (IFM_UNKNOWN);
2091 	}
2092 
2093 	KASSERT(0, ("%s: modtype %d unknown", __func__, mod));
2094 	return (IFM_UNKNOWN);
2095 }
2096 
2097 /*
2098  * Rebuilds the ifmedia list for this port, and sets the current media.
2099  */
2100 static void
2101 cxgb_build_medialist(struct port_info *p)
2102 {
2103 	struct cphy *phy = &p->phy;
2104 	struct ifmedia *media = &p->media;
2105 	int mod = phy->modtype;
2106 	int m = IFM_ETHER | IFM_FDX;
2107 
2108 	PORT_LOCK(p);
2109 
2110 	ifmedia_removeall(media);
2111 	if (phy->caps & SUPPORTED_TP && phy->caps & SUPPORTED_Autoneg) {
2112 		/* Copper (RJ45) */
2113 
2114 		if (phy->caps & SUPPORTED_10000baseT_Full)
2115 			ifmedia_add(media, m | IFM_10G_T, mod, NULL);
2116 
2117 		if (phy->caps & SUPPORTED_1000baseT_Full)
2118 			ifmedia_add(media, m | IFM_1000_T, mod, NULL);
2119 
2120 		if (phy->caps & SUPPORTED_100baseT_Full)
2121 			ifmedia_add(media, m | IFM_100_TX, mod, NULL);
2122 
2123 		if (phy->caps & SUPPORTED_10baseT_Full)
2124 			ifmedia_add(media, m | IFM_10_T, mod, NULL);
2125 
2126 		ifmedia_add(media, IFM_ETHER | IFM_AUTO, mod, NULL);
2127 		ifmedia_set(media, IFM_ETHER | IFM_AUTO);
2128 
2129 	} else if (phy->caps & SUPPORTED_TP) {
2130 		/* Copper (CX4) */
2131 
2132 		KASSERT(phy->caps & SUPPORTED_10000baseT_Full,
2133 			("%s: unexpected cap 0x%x", __func__, phy->caps));
2134 
2135 		ifmedia_add(media, m | IFM_10G_CX4, mod, NULL);
2136 		ifmedia_set(media, m | IFM_10G_CX4);
2137 
2138 	} else if (phy->caps & SUPPORTED_FIBRE &&
2139 		   phy->caps & SUPPORTED_10000baseT_Full) {
2140 		/* 10G optical (but includes SFP+ twinax) */
2141 
2142 		m |= cxgb_ifm_type(mod);
2143 		if (IFM_SUBTYPE(m) == IFM_NONE)
2144 			m &= ~IFM_FDX;
2145 
2146 		ifmedia_add(media, m, mod, NULL);
2147 		ifmedia_set(media, m);
2148 
2149 	} else if (phy->caps & SUPPORTED_FIBRE &&
2150 		   phy->caps & SUPPORTED_1000baseT_Full) {
2151 		/* 1G optical */
2152 
2153 		/* XXX: Lie and claim to be SX, could actually be any 1G-X */
2154 		ifmedia_add(media, m | IFM_1000_SX, mod, NULL);
2155 		ifmedia_set(media, m | IFM_1000_SX);
2156 
2157 	} else {
2158 		KASSERT(0, ("%s: don't know how to handle 0x%x.", __func__,
2159 			    phy->caps));
2160 	}
2161 
2162 	PORT_UNLOCK(p);
2163 }
2164 
2165 static void
2166 cxgb_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
2167 {
2168 	struct port_info *p = ifp->if_softc;
2169 	struct ifmedia_entry *cur = p->media.ifm_cur;
2170 	int speed = p->link_config.speed;
2171 
2172 	if (cur->ifm_data != p->phy.modtype) {
2173 		cxgb_build_medialist(p);
2174 		cur = p->media.ifm_cur;
2175 	}
2176 
2177 	ifmr->ifm_status = IFM_AVALID;
2178 	if (!p->link_config.link_ok)
2179 		return;
2180 
2181 	ifmr->ifm_status |= IFM_ACTIVE;
2182 
2183 	/*
2184 	 * active and current will differ iff current media is autoselect.  That
2185 	 * can happen only for copper RJ45.
2186 	 */
2187 	if (IFM_SUBTYPE(cur->ifm_media) != IFM_AUTO)
2188 		return;
2189 	KASSERT(p->phy.caps & SUPPORTED_TP && p->phy.caps & SUPPORTED_Autoneg,
2190 		("%s: unexpected PHY caps 0x%x", __func__, p->phy.caps));
2191 
2192 	ifmr->ifm_active = IFM_ETHER | IFM_FDX;
2193 	if (speed == SPEED_10000)
2194 		ifmr->ifm_active |= IFM_10G_T;
2195 	else if (speed == SPEED_1000)
2196 		ifmr->ifm_active |= IFM_1000_T;
2197 	else if (speed == SPEED_100)
2198 		ifmr->ifm_active |= IFM_100_TX;
2199 	else if (speed == SPEED_10)
2200 		ifmr->ifm_active |= IFM_10_T;
2201 	else
2202 		KASSERT(0, ("%s: link up but speed unknown (%u)", __func__,
2203 			    speed));
2204 }
2205 
2206 static uint64_t
2207 cxgb_get_counter(struct ifnet *ifp, ift_counter c)
2208 {
2209 	struct port_info *pi = ifp->if_softc;
2210 	struct adapter *sc = pi->adapter;
2211 	struct cmac *mac = &pi->mac;
2212 	struct mac_stats *mstats = &mac->stats;
2213 
2214 	cxgb_refresh_stats(pi);
2215 
2216 	switch (c) {
2217 	case IFCOUNTER_IPACKETS:
2218 		return (mstats->rx_frames);
2219 
2220 	case IFCOUNTER_IERRORS:
2221 		return (mstats->rx_jabber + mstats->rx_data_errs +
2222 		    mstats->rx_sequence_errs + mstats->rx_runt +
2223 		    mstats->rx_too_long + mstats->rx_mac_internal_errs +
2224 		    mstats->rx_short + mstats->rx_fcs_errs);
2225 
2226 	case IFCOUNTER_OPACKETS:
2227 		return (mstats->tx_frames);
2228 
2229 	case IFCOUNTER_OERRORS:
2230 		return (mstats->tx_excess_collisions + mstats->tx_underrun +
2231 		    mstats->tx_len_errs + mstats->tx_mac_internal_errs +
2232 		    mstats->tx_excess_deferral + mstats->tx_fcs_errs);
2233 
2234 	case IFCOUNTER_COLLISIONS:
2235 		return (mstats->tx_total_collisions);
2236 
2237 	case IFCOUNTER_IBYTES:
2238 		return (mstats->rx_octets);
2239 
2240 	case IFCOUNTER_OBYTES:
2241 		return (mstats->tx_octets);
2242 
2243 	case IFCOUNTER_IMCASTS:
2244 		return (mstats->rx_mcast_frames);
2245 
2246 	case IFCOUNTER_OMCASTS:
2247 		return (mstats->tx_mcast_frames);
2248 
2249 	case IFCOUNTER_IQDROPS:
2250 		return (mstats->rx_cong_drops);
2251 
2252 	case IFCOUNTER_OQDROPS: {
2253 		int i;
2254 		uint64_t drops;
2255 
2256 		drops = 0;
2257 		if (sc->flags & FULL_INIT_DONE) {
2258 			for (i = pi->first_qset; i < pi->first_qset + pi->nqsets; i++)
2259 				drops += sc->sge.qs[i].txq[TXQ_ETH].txq_mr->br_drops;
2260 		}
2261 
2262 		return (drops);
2263 
2264 	}
2265 
2266 	default:
2267 		return (if_get_counter_default(ifp, c));
2268 	}
2269 }
2270 
2271 static void
2272 cxgb_async_intr(void *data)
2273 {
2274 	adapter_t *sc = data;
2275 
2276 	t3_write_reg(sc, A_PL_INT_ENABLE0, 0);
2277 	(void) t3_read_reg(sc, A_PL_INT_ENABLE0);
2278 	taskqueue_enqueue(sc->tq, &sc->slow_intr_task);
2279 }
2280 
2281 static void
2282 link_check_callout(void *arg)
2283 {
2284 	struct port_info *pi = arg;
2285 	struct adapter *sc = pi->adapter;
2286 
2287 	if (!isset(&sc->open_device_map, pi->port_id))
2288 		return;
2289 
2290 	taskqueue_enqueue(sc->tq, &pi->link_check_task);
2291 }
2292 
2293 static void
2294 check_link_status(void *arg, int pending)
2295 {
2296 	struct port_info *pi = arg;
2297 	struct adapter *sc = pi->adapter;
2298 
2299 	if (!isset(&sc->open_device_map, pi->port_id))
2300 		return;
2301 
2302 	t3_link_changed(sc, pi->port_id);
2303 
2304 	if (pi->link_fault || !(pi->phy.caps & SUPPORTED_LINK_IRQ) ||
2305 	    pi->link_config.link_ok == 0)
2306 		callout_reset(&pi->link_check_ch, hz, link_check_callout, pi);
2307 }
2308 
2309 void
2310 t3_os_link_intr(struct port_info *pi)
2311 {
2312 	/*
2313 	 * Schedule a link check in the near future.  If the link is flapping
2314 	 * rapidly we'll keep resetting the callout and delaying the check until
2315 	 * things stabilize a bit.
2316 	 */
2317 	callout_reset(&pi->link_check_ch, hz / 4, link_check_callout, pi);
2318 }
2319 
2320 static void
2321 check_t3b2_mac(struct adapter *sc)
2322 {
2323 	int i;
2324 
2325 	if (sc->flags & CXGB_SHUTDOWN)
2326 		return;
2327 
2328 	for_each_port(sc, i) {
2329 		struct port_info *p = &sc->port[i];
2330 		int status;
2331 #ifdef INVARIANTS
2332 		struct ifnet *ifp = p->ifp;
2333 #endif
2334 
2335 		if (!isset(&sc->open_device_map, p->port_id) || p->link_fault ||
2336 		    !p->link_config.link_ok)
2337 			continue;
2338 
2339 		KASSERT(ifp->if_drv_flags & IFF_DRV_RUNNING,
2340 			("%s: state mismatch (drv_flags %x, device_map %x)",
2341 			 __func__, ifp->if_drv_flags, sc->open_device_map));
2342 
2343 		PORT_LOCK(p);
2344 		status = t3b2_mac_watchdog_task(&p->mac);
2345 		if (status == 1)
2346 			p->mac.stats.num_toggled++;
2347 		else if (status == 2) {
2348 			struct cmac *mac = &p->mac;
2349 
2350 			cxgb_update_mac_settings(p);
2351 			t3_link_start(&p->phy, mac, &p->link_config);
2352 			t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
2353 			t3_port_intr_enable(sc, p->port_id);
2354 			p->mac.stats.num_resets++;
2355 		}
2356 		PORT_UNLOCK(p);
2357 	}
2358 }
2359 
2360 static void
2361 cxgb_tick(void *arg)
2362 {
2363 	adapter_t *sc = (adapter_t *)arg;
2364 
2365 	if (sc->flags & CXGB_SHUTDOWN)
2366 		return;
2367 
2368 	taskqueue_enqueue(sc->tq, &sc->tick_task);
2369 	callout_reset(&sc->cxgb_tick_ch, hz, cxgb_tick, sc);
2370 }
2371 
2372 void
2373 cxgb_refresh_stats(struct port_info *pi)
2374 {
2375 	struct timeval tv;
2376 	const struct timeval interval = {0, 250000};    /* 250ms */
2377 
2378 	getmicrotime(&tv);
2379 	timevalsub(&tv, &interval);
2380 	if (timevalcmp(&tv, &pi->last_refreshed, <))
2381 		return;
2382 
2383 	PORT_LOCK(pi);
2384 	t3_mac_update_stats(&pi->mac);
2385 	PORT_UNLOCK(pi);
2386 	getmicrotime(&pi->last_refreshed);
2387 }
2388 
2389 static void
2390 cxgb_tick_handler(void *arg, int count)
2391 {
2392 	adapter_t *sc = (adapter_t *)arg;
2393 	const struct adapter_params *p = &sc->params;
2394 	int i;
2395 	uint32_t cause, reset;
2396 
2397 	if (sc->flags & CXGB_SHUTDOWN || !(sc->flags & FULL_INIT_DONE))
2398 		return;
2399 
2400 	if (p->rev == T3_REV_B2 && p->nports < 4 && sc->open_device_map)
2401 		check_t3b2_mac(sc);
2402 
2403 	cause = t3_read_reg(sc, A_SG_INT_CAUSE) & (F_RSPQSTARVE | F_FLEMPTY);
2404 	if (cause) {
2405 		struct sge_qset *qs = &sc->sge.qs[0];
2406 		uint32_t mask, v;
2407 
2408 		v = t3_read_reg(sc, A_SG_RSPQ_FL_STATUS) & ~0xff00;
2409 
2410 		mask = 1;
2411 		for (i = 0; i < SGE_QSETS; i++) {
2412 			if (v & mask)
2413 				qs[i].rspq.starved++;
2414 			mask <<= 1;
2415 		}
2416 
2417 		mask <<= SGE_QSETS; /* skip RSPQXDISABLED */
2418 
2419 		for (i = 0; i < SGE_QSETS * 2; i++) {
2420 			if (v & mask) {
2421 				qs[i / 2].fl[i % 2].empty++;
2422 			}
2423 			mask <<= 1;
2424 		}
2425 
2426 		/* clear */
2427 		t3_write_reg(sc, A_SG_RSPQ_FL_STATUS, v);
2428 		t3_write_reg(sc, A_SG_INT_CAUSE, cause);
2429 	}
2430 
2431 	for (i = 0; i < sc->params.nports; i++) {
2432 		struct port_info *pi = &sc->port[i];
2433 		struct cmac *mac = &pi->mac;
2434 
2435 		if (!isset(&sc->open_device_map, pi->port_id))
2436 			continue;
2437 
2438 		cxgb_refresh_stats(pi);
2439 
2440 		if (mac->multiport)
2441 			continue;
2442 
2443 		/* Count rx fifo overflows, once per second */
2444 		cause = t3_read_reg(sc, A_XGM_INT_CAUSE + mac->offset);
2445 		reset = 0;
2446 		if (cause & F_RXFIFO_OVERFLOW) {
2447 			mac->stats.rx_fifo_ovfl++;
2448 			reset |= F_RXFIFO_OVERFLOW;
2449 		}
2450 		t3_write_reg(sc, A_XGM_INT_CAUSE + mac->offset, reset);
2451 	}
2452 }
2453 
2454 static void
2455 touch_bars(device_t dev)
2456 {
2457 	/*
2458 	 * Don't enable yet
2459 	 */
2460 #if !defined(__LP64__) && 0
2461 	u32 v;
2462 
2463 	pci_read_config_dword(pdev, PCI_BASE_ADDRESS_1, &v);
2464 	pci_write_config_dword(pdev, PCI_BASE_ADDRESS_1, v);
2465 	pci_read_config_dword(pdev, PCI_BASE_ADDRESS_3, &v);
2466 	pci_write_config_dword(pdev, PCI_BASE_ADDRESS_3, v);
2467 	pci_read_config_dword(pdev, PCI_BASE_ADDRESS_5, &v);
2468 	pci_write_config_dword(pdev, PCI_BASE_ADDRESS_5, v);
2469 #endif
2470 }
2471 
2472 static int
2473 set_eeprom(struct port_info *pi, const uint8_t *data, int len, int offset)
2474 {
2475 	uint8_t *buf;
2476 	int err = 0;
2477 	u32 aligned_offset, aligned_len, *p;
2478 	struct adapter *adapter = pi->adapter;
2479 
2480 
2481 	aligned_offset = offset & ~3;
2482 	aligned_len = (len + (offset & 3) + 3) & ~3;
2483 
2484 	if (aligned_offset != offset || aligned_len != len) {
2485 		buf = malloc(aligned_len, M_DEVBUF, M_WAITOK|M_ZERO);
2486 		if (!buf)
2487 			return (ENOMEM);
2488 		err = t3_seeprom_read(adapter, aligned_offset, (u32 *)buf);
2489 		if (!err && aligned_len > 4)
2490 			err = t3_seeprom_read(adapter,
2491 					      aligned_offset + aligned_len - 4,
2492 					      (u32 *)&buf[aligned_len - 4]);
2493 		if (err)
2494 			goto out;
2495 		memcpy(buf + (offset & 3), data, len);
2496 	} else
2497 		buf = (uint8_t *)(uintptr_t)data;
2498 
2499 	err = t3_seeprom_wp(adapter, 0);
2500 	if (err)
2501 		goto out;
2502 
2503 	for (p = (u32 *)buf; !err && aligned_len; aligned_len -= 4, p++) {
2504 		err = t3_seeprom_write(adapter, aligned_offset, *p);
2505 		aligned_offset += 4;
2506 	}
2507 
2508 	if (!err)
2509 		err = t3_seeprom_wp(adapter, 1);
2510 out:
2511 	if (buf != data)
2512 		free(buf, M_DEVBUF);
2513 	return err;
2514 }
2515 
2516 
2517 static int
2518 in_range(int val, int lo, int hi)
2519 {
2520 	return val < 0 || (val <= hi && val >= lo);
2521 }
2522 
2523 static int
2524 cxgb_extension_open(struct cdev *dev, int flags, int fmp, struct thread *td)
2525 {
2526        return (0);
2527 }
2528 
2529 static int
2530 cxgb_extension_close(struct cdev *dev, int flags, int fmt, struct thread *td)
2531 {
2532        return (0);
2533 }
2534 
2535 static int
2536 cxgb_extension_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data,
2537     int fflag, struct thread *td)
2538 {
2539 	int mmd, error = 0;
2540 	struct port_info *pi = dev->si_drv1;
2541 	adapter_t *sc = pi->adapter;
2542 
2543 #ifdef PRIV_SUPPORTED
2544 	if (priv_check(td, PRIV_DRIVER)) {
2545 		if (cxgb_debug)
2546 			printf("user does not have access to privileged ioctls\n");
2547 		return (EPERM);
2548 	}
2549 #else
2550 	if (suser(td)) {
2551 		if (cxgb_debug)
2552 			printf("user does not have access to privileged ioctls\n");
2553 		return (EPERM);
2554 	}
2555 #endif
2556 
2557 	switch (cmd) {
2558 	case CHELSIO_GET_MIIREG: {
2559 		uint32_t val;
2560 		struct cphy *phy = &pi->phy;
2561 		struct ch_mii_data *mid = (struct ch_mii_data *)data;
2562 
2563 		if (!phy->mdio_read)
2564 			return (EOPNOTSUPP);
2565 		if (is_10G(sc)) {
2566 			mmd = mid->phy_id >> 8;
2567 			if (!mmd)
2568 				mmd = MDIO_DEV_PCS;
2569 			else if (mmd > MDIO_DEV_VEND2)
2570 				return (EINVAL);
2571 
2572 			error = phy->mdio_read(sc, mid->phy_id & 0x1f, mmd,
2573 					     mid->reg_num, &val);
2574 		} else
2575 		        error = phy->mdio_read(sc, mid->phy_id & 0x1f, 0,
2576 					     mid->reg_num & 0x1f, &val);
2577 		if (error == 0)
2578 			mid->val_out = val;
2579 		break;
2580 	}
2581 	case CHELSIO_SET_MIIREG: {
2582 		struct cphy *phy = &pi->phy;
2583 		struct ch_mii_data *mid = (struct ch_mii_data *)data;
2584 
2585 		if (!phy->mdio_write)
2586 			return (EOPNOTSUPP);
2587 		if (is_10G(sc)) {
2588 			mmd = mid->phy_id >> 8;
2589 			if (!mmd)
2590 				mmd = MDIO_DEV_PCS;
2591 			else if (mmd > MDIO_DEV_VEND2)
2592 				return (EINVAL);
2593 
2594 			error = phy->mdio_write(sc, mid->phy_id & 0x1f,
2595 					      mmd, mid->reg_num, mid->val_in);
2596 		} else
2597 			error = phy->mdio_write(sc, mid->phy_id & 0x1f, 0,
2598 					      mid->reg_num & 0x1f,
2599 					      mid->val_in);
2600 		break;
2601 	}
2602 	case CHELSIO_SETREG: {
2603 		struct ch_reg *edata = (struct ch_reg *)data;
2604 		if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
2605 			return (EFAULT);
2606 		t3_write_reg(sc, edata->addr, edata->val);
2607 		break;
2608 	}
2609 	case CHELSIO_GETREG: {
2610 		struct ch_reg *edata = (struct ch_reg *)data;
2611 		if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
2612 			return (EFAULT);
2613 		edata->val = t3_read_reg(sc, edata->addr);
2614 		break;
2615 	}
2616 	case CHELSIO_GET_SGE_CONTEXT: {
2617 		struct ch_cntxt *ecntxt = (struct ch_cntxt *)data;
2618 		mtx_lock_spin(&sc->sge.reg_lock);
2619 		switch (ecntxt->cntxt_type) {
2620 		case CNTXT_TYPE_EGRESS:
2621 			error = -t3_sge_read_ecntxt(sc, ecntxt->cntxt_id,
2622 			    ecntxt->data);
2623 			break;
2624 		case CNTXT_TYPE_FL:
2625 			error = -t3_sge_read_fl(sc, ecntxt->cntxt_id,
2626 			    ecntxt->data);
2627 			break;
2628 		case CNTXT_TYPE_RSP:
2629 			error = -t3_sge_read_rspq(sc, ecntxt->cntxt_id,
2630 			    ecntxt->data);
2631 			break;
2632 		case CNTXT_TYPE_CQ:
2633 			error = -t3_sge_read_cq(sc, ecntxt->cntxt_id,
2634 			    ecntxt->data);
2635 			break;
2636 		default:
2637 			error = EINVAL;
2638 			break;
2639 		}
2640 		mtx_unlock_spin(&sc->sge.reg_lock);
2641 		break;
2642 	}
2643 	case CHELSIO_GET_SGE_DESC: {
2644 		struct ch_desc *edesc = (struct ch_desc *)data;
2645 		int ret;
2646 		if (edesc->queue_num >= SGE_QSETS * 6)
2647 			return (EINVAL);
2648 		ret = t3_get_desc(&sc->sge.qs[edesc->queue_num / 6],
2649 		    edesc->queue_num % 6, edesc->idx, edesc->data);
2650 		if (ret < 0)
2651 			return (EINVAL);
2652 		edesc->size = ret;
2653 		break;
2654 	}
2655 	case CHELSIO_GET_QSET_PARAMS: {
2656 		struct qset_params *q;
2657 		struct ch_qset_params *t = (struct ch_qset_params *)data;
2658 		int q1 = pi->first_qset;
2659 		int nqsets = pi->nqsets;
2660 		int i;
2661 
2662 		if (t->qset_idx >= nqsets)
2663 			return EINVAL;
2664 
2665 		i = q1 + t->qset_idx;
2666 		q = &sc->params.sge.qset[i];
2667 		t->rspq_size   = q->rspq_size;
2668 		t->txq_size[0] = q->txq_size[0];
2669 		t->txq_size[1] = q->txq_size[1];
2670 		t->txq_size[2] = q->txq_size[2];
2671 		t->fl_size[0]  = q->fl_size;
2672 		t->fl_size[1]  = q->jumbo_size;
2673 		t->polling     = q->polling;
2674 		t->lro         = q->lro;
2675 		t->intr_lat    = q->coalesce_usecs;
2676 		t->cong_thres  = q->cong_thres;
2677 		t->qnum        = i;
2678 
2679 		if ((sc->flags & FULL_INIT_DONE) == 0)
2680 			t->vector = 0;
2681 		else if (sc->flags & USING_MSIX)
2682 			t->vector = rman_get_start(sc->msix_irq_res[i]);
2683 		else
2684 			t->vector = rman_get_start(sc->irq_res);
2685 
2686 		break;
2687 	}
2688 	case CHELSIO_GET_QSET_NUM: {
2689 		struct ch_reg *edata = (struct ch_reg *)data;
2690 		edata->val = pi->nqsets;
2691 		break;
2692 	}
2693 	case CHELSIO_LOAD_FW: {
2694 		uint8_t *fw_data;
2695 		uint32_t vers;
2696 		struct ch_mem_range *t = (struct ch_mem_range *)data;
2697 
2698 		/*
2699 		 * You're allowed to load a firmware only before FULL_INIT_DONE
2700 		 *
2701 		 * FW_UPTODATE is also set so the rest of the initialization
2702 		 * will not overwrite what was loaded here.  This gives you the
2703 		 * flexibility to load any firmware (and maybe shoot yourself in
2704 		 * the foot).
2705 		 */
2706 
2707 		ADAPTER_LOCK(sc);
2708 		if (sc->open_device_map || sc->flags & FULL_INIT_DONE) {
2709 			ADAPTER_UNLOCK(sc);
2710 			return (EBUSY);
2711 		}
2712 
2713 		fw_data = malloc(t->len, M_DEVBUF, M_NOWAIT);
2714 		if (!fw_data)
2715 			error = ENOMEM;
2716 		else
2717 			error = copyin(t->buf, fw_data, t->len);
2718 
2719 		if (!error)
2720 			error = -t3_load_fw(sc, fw_data, t->len);
2721 
2722 		if (t3_get_fw_version(sc, &vers) == 0) {
2723 			snprintf(&sc->fw_version[0], sizeof(sc->fw_version),
2724 			    "%d.%d.%d", G_FW_VERSION_MAJOR(vers),
2725 			    G_FW_VERSION_MINOR(vers), G_FW_VERSION_MICRO(vers));
2726 		}
2727 
2728 		if (!error)
2729 			sc->flags |= FW_UPTODATE;
2730 
2731 		free(fw_data, M_DEVBUF);
2732 		ADAPTER_UNLOCK(sc);
2733 		break;
2734 	}
2735 	case CHELSIO_LOAD_BOOT: {
2736 		uint8_t *boot_data;
2737 		struct ch_mem_range *t = (struct ch_mem_range *)data;
2738 
2739 		boot_data = malloc(t->len, M_DEVBUF, M_NOWAIT);
2740 		if (!boot_data)
2741 			return ENOMEM;
2742 
2743 		error = copyin(t->buf, boot_data, t->len);
2744 		if (!error)
2745 			error = -t3_load_boot(sc, boot_data, t->len);
2746 
2747 		free(boot_data, M_DEVBUF);
2748 		break;
2749 	}
2750 	case CHELSIO_GET_PM: {
2751 		struct ch_pm *m = (struct ch_pm *)data;
2752 		struct tp_params *p = &sc->params.tp;
2753 
2754 		if (!is_offload(sc))
2755 			return (EOPNOTSUPP);
2756 
2757 		m->tx_pg_sz = p->tx_pg_size;
2758 		m->tx_num_pg = p->tx_num_pgs;
2759 		m->rx_pg_sz  = p->rx_pg_size;
2760 		m->rx_num_pg = p->rx_num_pgs;
2761 		m->pm_total  = p->pmtx_size + p->chan_rx_size * p->nchan;
2762 
2763 		break;
2764 	}
2765 	case CHELSIO_SET_PM: {
2766 		struct ch_pm *m = (struct ch_pm *)data;
2767 		struct tp_params *p = &sc->params.tp;
2768 
2769 		if (!is_offload(sc))
2770 			return (EOPNOTSUPP);
2771 		if (sc->flags & FULL_INIT_DONE)
2772 			return (EBUSY);
2773 
2774 		if (!m->rx_pg_sz || (m->rx_pg_sz & (m->rx_pg_sz - 1)) ||
2775 		    !m->tx_pg_sz || (m->tx_pg_sz & (m->tx_pg_sz - 1)))
2776 			return (EINVAL);	/* not power of 2 */
2777 		if (!(m->rx_pg_sz & 0x14000))
2778 			return (EINVAL);	/* not 16KB or 64KB */
2779 		if (!(m->tx_pg_sz & 0x1554000))
2780 			return (EINVAL);
2781 		if (m->tx_num_pg == -1)
2782 			m->tx_num_pg = p->tx_num_pgs;
2783 		if (m->rx_num_pg == -1)
2784 			m->rx_num_pg = p->rx_num_pgs;
2785 		if (m->tx_num_pg % 24 || m->rx_num_pg % 24)
2786 			return (EINVAL);
2787 		if (m->rx_num_pg * m->rx_pg_sz > p->chan_rx_size ||
2788 		    m->tx_num_pg * m->tx_pg_sz > p->chan_tx_size)
2789 			return (EINVAL);
2790 
2791 		p->rx_pg_size = m->rx_pg_sz;
2792 		p->tx_pg_size = m->tx_pg_sz;
2793 		p->rx_num_pgs = m->rx_num_pg;
2794 		p->tx_num_pgs = m->tx_num_pg;
2795 		break;
2796 	}
2797 	case CHELSIO_SETMTUTAB: {
2798 		struct ch_mtus *m = (struct ch_mtus *)data;
2799 		int i;
2800 
2801 		if (!is_offload(sc))
2802 			return (EOPNOTSUPP);
2803 		if (offload_running(sc))
2804 			return (EBUSY);
2805 		if (m->nmtus != NMTUS)
2806 			return (EINVAL);
2807 		if (m->mtus[0] < 81)         /* accommodate SACK */
2808 			return (EINVAL);
2809 
2810 		/*
2811 		 * MTUs must be in ascending order
2812 		 */
2813 		for (i = 1; i < NMTUS; ++i)
2814 			if (m->mtus[i] < m->mtus[i - 1])
2815 				return (EINVAL);
2816 
2817 		memcpy(sc->params.mtus, m->mtus, sizeof(sc->params.mtus));
2818 		break;
2819 	}
2820 	case CHELSIO_GETMTUTAB: {
2821 		struct ch_mtus *m = (struct ch_mtus *)data;
2822 
2823 		if (!is_offload(sc))
2824 			return (EOPNOTSUPP);
2825 
2826 		memcpy(m->mtus, sc->params.mtus, sizeof(m->mtus));
2827 		m->nmtus = NMTUS;
2828 		break;
2829 	}
2830 	case CHELSIO_GET_MEM: {
2831 		struct ch_mem_range *t = (struct ch_mem_range *)data;
2832 		struct mc7 *mem;
2833 		uint8_t *useraddr;
2834 		u64 buf[32];
2835 
2836 		/*
2837 		 * Use these to avoid modifying len/addr in the return
2838 		 * struct
2839 		 */
2840 		uint32_t len = t->len, addr = t->addr;
2841 
2842 		if (!is_offload(sc))
2843 			return (EOPNOTSUPP);
2844 		if (!(sc->flags & FULL_INIT_DONE))
2845 			return (EIO);         /* need the memory controllers */
2846 		if ((addr & 0x7) || (len & 0x7))
2847 			return (EINVAL);
2848 		if (t->mem_id == MEM_CM)
2849 			mem = &sc->cm;
2850 		else if (t->mem_id == MEM_PMRX)
2851 			mem = &sc->pmrx;
2852 		else if (t->mem_id == MEM_PMTX)
2853 			mem = &sc->pmtx;
2854 		else
2855 			return (EINVAL);
2856 
2857 		/*
2858 		 * Version scheme:
2859 		 * bits 0..9: chip version
2860 		 * bits 10..15: chip revision
2861 		 */
2862 		t->version = 3 | (sc->params.rev << 10);
2863 
2864 		/*
2865 		 * Read 256 bytes at a time as len can be large and we don't
2866 		 * want to use huge intermediate buffers.
2867 		 */
2868 		useraddr = (uint8_t *)t->buf;
2869 		while (len) {
2870 			unsigned int chunk = min(len, sizeof(buf));
2871 
2872 			error = t3_mc7_bd_read(mem, addr / 8, chunk / 8, buf);
2873 			if (error)
2874 				return (-error);
2875 			if (copyout(buf, useraddr, chunk))
2876 				return (EFAULT);
2877 			useraddr += chunk;
2878 			addr += chunk;
2879 			len -= chunk;
2880 		}
2881 		break;
2882 	}
2883 	case CHELSIO_READ_TCAM_WORD: {
2884 		struct ch_tcam_word *t = (struct ch_tcam_word *)data;
2885 
2886 		if (!is_offload(sc))
2887 			return (EOPNOTSUPP);
2888 		if (!(sc->flags & FULL_INIT_DONE))
2889 			return (EIO);         /* need MC5 */
2890 		return -t3_read_mc5_range(&sc->mc5, t->addr, 1, t->buf);
2891 		break;
2892 	}
2893 	case CHELSIO_SET_TRACE_FILTER: {
2894 		struct ch_trace *t = (struct ch_trace *)data;
2895 		const struct trace_params *tp;
2896 
2897 		tp = (const struct trace_params *)&t->sip;
2898 		if (t->config_tx)
2899 			t3_config_trace_filter(sc, tp, 0, t->invert_match,
2900 					       t->trace_tx);
2901 		if (t->config_rx)
2902 			t3_config_trace_filter(sc, tp, 1, t->invert_match,
2903 					       t->trace_rx);
2904 		break;
2905 	}
2906 	case CHELSIO_SET_PKTSCHED: {
2907 		struct ch_pktsched_params *p = (struct ch_pktsched_params *)data;
2908 		if (sc->open_device_map == 0)
2909 			return (EAGAIN);
2910 		send_pktsched_cmd(sc, p->sched, p->idx, p->min, p->max,
2911 		    p->binding);
2912 		break;
2913 	}
2914 	case CHELSIO_IFCONF_GETREGS: {
2915 		struct ch_ifconf_regs *regs = (struct ch_ifconf_regs *)data;
2916 		int reglen = cxgb_get_regs_len();
2917 		uint8_t *buf = malloc(reglen, M_DEVBUF, M_NOWAIT);
2918 		if (buf == NULL) {
2919 			return (ENOMEM);
2920 		}
2921 		if (regs->len > reglen)
2922 			regs->len = reglen;
2923 		else if (regs->len < reglen)
2924 			error = ENOBUFS;
2925 
2926 		if (!error) {
2927 			cxgb_get_regs(sc, regs, buf);
2928 			error = copyout(buf, regs->data, reglen);
2929 		}
2930 		free(buf, M_DEVBUF);
2931 
2932 		break;
2933 	}
2934 	case CHELSIO_SET_HW_SCHED: {
2935 		struct ch_hw_sched *t = (struct ch_hw_sched *)data;
2936 		unsigned int ticks_per_usec = core_ticks_per_usec(sc);
2937 
2938 		if ((sc->flags & FULL_INIT_DONE) == 0)
2939 			return (EAGAIN);       /* need TP to be initialized */
2940 		if (t->sched >= NTX_SCHED || !in_range(t->mode, 0, 1) ||
2941 		    !in_range(t->channel, 0, 1) ||
2942 		    !in_range(t->kbps, 0, 10000000) ||
2943 		    !in_range(t->class_ipg, 0, 10000 * 65535 / ticks_per_usec) ||
2944 		    !in_range(t->flow_ipg, 0,
2945 			      dack_ticks_to_usec(sc, 0x7ff)))
2946 			return (EINVAL);
2947 
2948 		if (t->kbps >= 0) {
2949 			error = t3_config_sched(sc, t->kbps, t->sched);
2950 			if (error < 0)
2951 				return (-error);
2952 		}
2953 		if (t->class_ipg >= 0)
2954 			t3_set_sched_ipg(sc, t->sched, t->class_ipg);
2955 		if (t->flow_ipg >= 0) {
2956 			t->flow_ipg *= 1000;     /* us -> ns */
2957 			t3_set_pace_tbl(sc, &t->flow_ipg, t->sched, 1);
2958 		}
2959 		if (t->mode >= 0) {
2960 			int bit = 1 << (S_TX_MOD_TIMER_MODE + t->sched);
2961 
2962 			t3_set_reg_field(sc, A_TP_TX_MOD_QUEUE_REQ_MAP,
2963 					 bit, t->mode ? bit : 0);
2964 		}
2965 		if (t->channel >= 0)
2966 			t3_set_reg_field(sc, A_TP_TX_MOD_QUEUE_REQ_MAP,
2967 					 1 << t->sched, t->channel << t->sched);
2968 		break;
2969 	}
2970 	case CHELSIO_GET_EEPROM: {
2971 		int i;
2972 		struct ch_eeprom *e = (struct ch_eeprom *)data;
2973 		uint8_t *buf;
2974 
2975 		if (e->offset & 3 || e->offset >= EEPROMSIZE ||
2976 		    e->len > EEPROMSIZE || e->offset + e->len > EEPROMSIZE) {
2977 			return (EINVAL);
2978 		}
2979 
2980 		buf = malloc(EEPROMSIZE, M_DEVBUF, M_NOWAIT);
2981 		if (buf == NULL) {
2982 			return (ENOMEM);
2983 		}
2984 		e->magic = EEPROM_MAGIC;
2985 		for (i = e->offset & ~3; !error && i < e->offset + e->len; i += 4)
2986 			error = -t3_seeprom_read(sc, i, (uint32_t *)&buf[i]);
2987 
2988 		if (!error)
2989 			error = copyout(buf + e->offset, e->data, e->len);
2990 
2991 		free(buf, M_DEVBUF);
2992 		break;
2993 	}
2994 	case CHELSIO_CLEAR_STATS: {
2995 		if (!(sc->flags & FULL_INIT_DONE))
2996 			return EAGAIN;
2997 
2998 		PORT_LOCK(pi);
2999 		t3_mac_update_stats(&pi->mac);
3000 		memset(&pi->mac.stats, 0, sizeof(pi->mac.stats));
3001 		PORT_UNLOCK(pi);
3002 		break;
3003 	}
3004 	case CHELSIO_GET_UP_LA: {
3005 		struct ch_up_la *la = (struct ch_up_la *)data;
3006 		uint8_t *buf = malloc(LA_BUFSIZE, M_DEVBUF, M_NOWAIT);
3007 		if (buf == NULL) {
3008 			return (ENOMEM);
3009 		}
3010 		if (la->bufsize < LA_BUFSIZE)
3011 			error = ENOBUFS;
3012 
3013 		if (!error)
3014 			error = -t3_get_up_la(sc, &la->stopped, &la->idx,
3015 					      &la->bufsize, buf);
3016 		if (!error)
3017 			error = copyout(buf, la->data, la->bufsize);
3018 
3019 		free(buf, M_DEVBUF);
3020 		break;
3021 	}
3022 	case CHELSIO_GET_UP_IOQS: {
3023 		struct ch_up_ioqs *ioqs = (struct ch_up_ioqs *)data;
3024 		uint8_t *buf = malloc(IOQS_BUFSIZE, M_DEVBUF, M_NOWAIT);
3025 		uint32_t *v;
3026 
3027 		if (buf == NULL) {
3028 			return (ENOMEM);
3029 		}
3030 		if (ioqs->bufsize < IOQS_BUFSIZE)
3031 			error = ENOBUFS;
3032 
3033 		if (!error)
3034 			error = -t3_get_up_ioqs(sc, &ioqs->bufsize, buf);
3035 
3036 		if (!error) {
3037 			v = (uint32_t *)buf;
3038 
3039 			ioqs->ioq_rx_enable = *v++;
3040 			ioqs->ioq_tx_enable = *v++;
3041 			ioqs->ioq_rx_status = *v++;
3042 			ioqs->ioq_tx_status = *v++;
3043 
3044 			error = copyout(v, ioqs->data, ioqs->bufsize);
3045 		}
3046 
3047 		free(buf, M_DEVBUF);
3048 		break;
3049 	}
3050 	case CHELSIO_SET_FILTER: {
3051 		struct ch_filter *f = (struct ch_filter *)data;
3052 		struct filter_info *p;
3053 		unsigned int nfilters = sc->params.mc5.nfilters;
3054 
3055 		if (!is_offload(sc))
3056 			return (EOPNOTSUPP);	/* No TCAM */
3057 		if (!(sc->flags & FULL_INIT_DONE))
3058 			return (EAGAIN);	/* mc5 not setup yet */
3059 		if (nfilters == 0)
3060 			return (EBUSY);		/* TOE will use TCAM */
3061 
3062 		/* sanity checks */
3063 		if (f->filter_id >= nfilters ||
3064 		    (f->val.dip && f->mask.dip != 0xffffffff) ||
3065 		    (f->val.sport && f->mask.sport != 0xffff) ||
3066 		    (f->val.dport && f->mask.dport != 0xffff) ||
3067 		    (f->val.vlan && f->mask.vlan != 0xfff) ||
3068 		    (f->val.vlan_prio &&
3069 			f->mask.vlan_prio != FILTER_NO_VLAN_PRI) ||
3070 		    (f->mac_addr_idx != 0xffff && f->mac_addr_idx > 15) ||
3071 		    f->qset >= SGE_QSETS ||
3072 		    sc->rrss_map[f->qset] >= RSS_TABLE_SIZE)
3073 			return (EINVAL);
3074 
3075 		/* Was allocated with M_WAITOK */
3076 		KASSERT(sc->filters, ("filter table NULL\n"));
3077 
3078 		p = &sc->filters[f->filter_id];
3079 		if (p->locked)
3080 			return (EPERM);
3081 
3082 		bzero(p, sizeof(*p));
3083 		p->sip = f->val.sip;
3084 		p->sip_mask = f->mask.sip;
3085 		p->dip = f->val.dip;
3086 		p->sport = f->val.sport;
3087 		p->dport = f->val.dport;
3088 		p->vlan = f->mask.vlan ? f->val.vlan : 0xfff;
3089 		p->vlan_prio = f->mask.vlan_prio ? (f->val.vlan_prio & 6) :
3090 		    FILTER_NO_VLAN_PRI;
3091 		p->mac_hit = f->mac_hit;
3092 		p->mac_vld = f->mac_addr_idx != 0xffff;
3093 		p->mac_idx = f->mac_addr_idx;
3094 		p->pkt_type = f->proto;
3095 		p->report_filter_id = f->want_filter_id;
3096 		p->pass = f->pass;
3097 		p->rss = f->rss;
3098 		p->qset = f->qset;
3099 
3100 		error = set_filter(sc, f->filter_id, p);
3101 		if (error == 0)
3102 			p->valid = 1;
3103 		break;
3104 	}
3105 	case CHELSIO_DEL_FILTER: {
3106 		struct ch_filter *f = (struct ch_filter *)data;
3107 		struct filter_info *p;
3108 		unsigned int nfilters = sc->params.mc5.nfilters;
3109 
3110 		if (!is_offload(sc))
3111 			return (EOPNOTSUPP);
3112 		if (!(sc->flags & FULL_INIT_DONE))
3113 			return (EAGAIN);
3114 		if (nfilters == 0 || sc->filters == NULL)
3115 			return (EINVAL);
3116 		if (f->filter_id >= nfilters)
3117 		       return (EINVAL);
3118 
3119 		p = &sc->filters[f->filter_id];
3120 		if (p->locked)
3121 			return (EPERM);
3122 		if (!p->valid)
3123 			return (EFAULT); /* Read "Bad address" as "Bad index" */
3124 
3125 		bzero(p, sizeof(*p));
3126 		p->sip = p->sip_mask = 0xffffffff;
3127 		p->vlan = 0xfff;
3128 		p->vlan_prio = FILTER_NO_VLAN_PRI;
3129 		p->pkt_type = 1;
3130 		error = set_filter(sc, f->filter_id, p);
3131 		break;
3132 	}
3133 	case CHELSIO_GET_FILTER: {
3134 		struct ch_filter *f = (struct ch_filter *)data;
3135 		struct filter_info *p;
3136 		unsigned int i, nfilters = sc->params.mc5.nfilters;
3137 
3138 		if (!is_offload(sc))
3139 			return (EOPNOTSUPP);
3140 		if (!(sc->flags & FULL_INIT_DONE))
3141 			return (EAGAIN);
3142 		if (nfilters == 0 || sc->filters == NULL)
3143 			return (EINVAL);
3144 
3145 		i = f->filter_id == 0xffffffff ? 0 : f->filter_id + 1;
3146 		for (; i < nfilters; i++) {
3147 			p = &sc->filters[i];
3148 			if (!p->valid)
3149 				continue;
3150 
3151 			bzero(f, sizeof(*f));
3152 
3153 			f->filter_id = i;
3154 			f->val.sip = p->sip;
3155 			f->mask.sip = p->sip_mask;
3156 			f->val.dip = p->dip;
3157 			f->mask.dip = p->dip ? 0xffffffff : 0;
3158 			f->val.sport = p->sport;
3159 			f->mask.sport = p->sport ? 0xffff : 0;
3160 			f->val.dport = p->dport;
3161 			f->mask.dport = p->dport ? 0xffff : 0;
3162 			f->val.vlan = p->vlan == 0xfff ? 0 : p->vlan;
3163 			f->mask.vlan = p->vlan == 0xfff ? 0 : 0xfff;
3164 			f->val.vlan_prio = p->vlan_prio == FILTER_NO_VLAN_PRI ?
3165 			    0 : p->vlan_prio;
3166 			f->mask.vlan_prio = p->vlan_prio == FILTER_NO_VLAN_PRI ?
3167 			    0 : FILTER_NO_VLAN_PRI;
3168 			f->mac_hit = p->mac_hit;
3169 			f->mac_addr_idx = p->mac_vld ? p->mac_idx : 0xffff;
3170 			f->proto = p->pkt_type;
3171 			f->want_filter_id = p->report_filter_id;
3172 			f->pass = p->pass;
3173 			f->rss = p->rss;
3174 			f->qset = p->qset;
3175 
3176 			break;
3177 		}
3178 
3179 		if (i == nfilters)
3180 			f->filter_id = 0xffffffff;
3181 		break;
3182 	}
3183 	default:
3184 		return (EOPNOTSUPP);
3185 		break;
3186 	}
3187 
3188 	return (error);
3189 }
3190 
3191 static __inline void
3192 reg_block_dump(struct adapter *ap, uint8_t *buf, unsigned int start,
3193     unsigned int end)
3194 {
3195 	uint32_t *p = (uint32_t *)(buf + start);
3196 
3197 	for ( ; start <= end; start += sizeof(uint32_t))
3198 		*p++ = t3_read_reg(ap, start);
3199 }
3200 
3201 #define T3_REGMAP_SIZE (3 * 1024)
3202 static int
3203 cxgb_get_regs_len(void)
3204 {
3205 	return T3_REGMAP_SIZE;
3206 }
3207 
3208 static void
3209 cxgb_get_regs(adapter_t *sc, struct ch_ifconf_regs *regs, uint8_t *buf)
3210 {
3211 
3212 	/*
3213 	 * Version scheme:
3214 	 * bits 0..9: chip version
3215 	 * bits 10..15: chip revision
3216 	 * bit 31: set for PCIe cards
3217 	 */
3218 	regs->version = 3 | (sc->params.rev << 10) | (is_pcie(sc) << 31);
3219 
3220 	/*
3221 	 * We skip the MAC statistics registers because they are clear-on-read.
3222 	 * Also reading multi-register stats would need to synchronize with the
3223 	 * periodic mac stats accumulation.  Hard to justify the complexity.
3224 	 */
3225 	memset(buf, 0, cxgb_get_regs_len());
3226 	reg_block_dump(sc, buf, 0, A_SG_RSPQ_CREDIT_RETURN);
3227 	reg_block_dump(sc, buf, A_SG_HI_DRB_HI_THRSH, A_ULPRX_PBL_ULIMIT);
3228 	reg_block_dump(sc, buf, A_ULPTX_CONFIG, A_MPS_INT_CAUSE);
3229 	reg_block_dump(sc, buf, A_CPL_SWITCH_CNTRL, A_CPL_MAP_TBL_DATA);
3230 	reg_block_dump(sc, buf, A_SMB_GLOBAL_TIME_CFG, A_XGM_SERDES_STAT3);
3231 	reg_block_dump(sc, buf, A_XGM_SERDES_STATUS0,
3232 		       XGM_REG(A_XGM_SERDES_STAT3, 1));
3233 	reg_block_dump(sc, buf, XGM_REG(A_XGM_SERDES_STATUS0, 1),
3234 		       XGM_REG(A_XGM_RX_SPI4_SOP_EOP_CNT, 1));
3235 }
3236 
3237 static int
3238 alloc_filters(struct adapter *sc)
3239 {
3240 	struct filter_info *p;
3241 	unsigned int nfilters = sc->params.mc5.nfilters;
3242 
3243 	if (nfilters == 0)
3244 		return (0);
3245 
3246 	p = malloc(sizeof(*p) * nfilters, M_DEVBUF, M_WAITOK | M_ZERO);
3247 	sc->filters = p;
3248 
3249 	p = &sc->filters[nfilters - 1];
3250 	p->vlan = 0xfff;
3251 	p->vlan_prio = FILTER_NO_VLAN_PRI;
3252 	p->pass = p->rss = p->valid = p->locked = 1;
3253 
3254 	return (0);
3255 }
3256 
3257 static int
3258 setup_hw_filters(struct adapter *sc)
3259 {
3260 	int i, rc;
3261 	unsigned int nfilters = sc->params.mc5.nfilters;
3262 
3263 	if (!sc->filters)
3264 		return (0);
3265 
3266 	t3_enable_filters(sc);
3267 
3268 	for (i = rc = 0; i < nfilters && !rc; i++) {
3269 		if (sc->filters[i].locked)
3270 			rc = set_filter(sc, i, &sc->filters[i]);
3271 	}
3272 
3273 	return (rc);
3274 }
3275 
3276 static int
3277 set_filter(struct adapter *sc, int id, const struct filter_info *f)
3278 {
3279 	int len;
3280 	struct mbuf *m;
3281 	struct ulp_txpkt *txpkt;
3282 	struct work_request_hdr *wr;
3283 	struct cpl_pass_open_req *oreq;
3284 	struct cpl_set_tcb_field *sreq;
3285 
3286 	len = sizeof(*wr) + sizeof(*oreq) + 2 * sizeof(*sreq);
3287 	KASSERT(len <= MHLEN, ("filter request too big for an mbuf"));
3288 
3289 	id += t3_mc5_size(&sc->mc5) - sc->params.mc5.nroutes -
3290 	      sc->params.mc5.nfilters;
3291 
3292 	m = m_gethdr(M_WAITOK, MT_DATA);
3293 	m->m_len = m->m_pkthdr.len = len;
3294 	bzero(mtod(m, char *), len);
3295 
3296 	wr = mtod(m, struct work_request_hdr *);
3297 	wr->wrh_hi = htonl(V_WR_OP(FW_WROPCODE_BYPASS) | F_WR_ATOMIC);
3298 
3299 	oreq = (struct cpl_pass_open_req *)(wr + 1);
3300 	txpkt = (struct ulp_txpkt *)oreq;
3301 	txpkt->cmd_dest = htonl(V_ULPTX_CMD(ULP_TXPKT));
3302 	txpkt->len = htonl(V_ULPTX_NFLITS(sizeof(*oreq) / 8));
3303 	OPCODE_TID(oreq) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, id));
3304 	oreq->local_port = htons(f->dport);
3305 	oreq->peer_port = htons(f->sport);
3306 	oreq->local_ip = htonl(f->dip);
3307 	oreq->peer_ip = htonl(f->sip);
3308 	oreq->peer_netmask = htonl(f->sip_mask);
3309 	oreq->opt0h = 0;
3310 	oreq->opt0l = htonl(F_NO_OFFLOAD);
3311 	oreq->opt1 = htonl(V_MAC_MATCH_VALID(f->mac_vld) |
3312 			 V_CONN_POLICY(CPL_CONN_POLICY_FILTER) |
3313 			 V_VLAN_PRI(f->vlan_prio >> 1) |
3314 			 V_VLAN_PRI_VALID(f->vlan_prio != FILTER_NO_VLAN_PRI) |
3315 			 V_PKT_TYPE(f->pkt_type) | V_OPT1_VLAN(f->vlan) |
3316 			 V_MAC_MATCH(f->mac_idx | (f->mac_hit << 4)));
3317 
3318 	sreq = (struct cpl_set_tcb_field *)(oreq + 1);
3319 	set_tcb_field_ulp(sreq, id, 1, 0x1800808000ULL,
3320 			  (f->report_filter_id << 15) | (1 << 23) |
3321 			  ((u64)f->pass << 35) | ((u64)!f->rss << 36));
3322 	set_tcb_field_ulp(sreq + 1, id, 0, 0xffffffff, (2 << 19) | 1);
3323 	t3_mgmt_tx(sc, m);
3324 
3325 	if (f->pass && !f->rss) {
3326 		len = sizeof(*sreq);
3327 		m = m_gethdr(M_WAITOK, MT_DATA);
3328 		m->m_len = m->m_pkthdr.len = len;
3329 		bzero(mtod(m, char *), len);
3330 		sreq = mtod(m, struct cpl_set_tcb_field *);
3331 		sreq->wr.wrh_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
3332 		mk_set_tcb_field(sreq, id, 25, 0x3f80000,
3333 				 (u64)sc->rrss_map[f->qset] << 19);
3334 		t3_mgmt_tx(sc, m);
3335 	}
3336 	return 0;
3337 }
3338 
3339 static inline void
3340 mk_set_tcb_field(struct cpl_set_tcb_field *req, unsigned int tid,
3341     unsigned int word, u64 mask, u64 val)
3342 {
3343 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, tid));
3344 	req->reply = V_NO_REPLY(1);
3345 	req->cpu_idx = 0;
3346 	req->word = htons(word);
3347 	req->mask = htobe64(mask);
3348 	req->val = htobe64(val);
3349 }
3350 
3351 static inline void
3352 set_tcb_field_ulp(struct cpl_set_tcb_field *req, unsigned int tid,
3353     unsigned int word, u64 mask, u64 val)
3354 {
3355 	struct ulp_txpkt *txpkt = (struct ulp_txpkt *)req;
3356 
3357 	txpkt->cmd_dest = htonl(V_ULPTX_CMD(ULP_TXPKT));
3358 	txpkt->len = htonl(V_ULPTX_NFLITS(sizeof(*req) / 8));
3359 	mk_set_tcb_field(req, tid, word, mask, val);
3360 }
3361 
3362 void
3363 t3_iterate(void (*func)(struct adapter *, void *), void *arg)
3364 {
3365 	struct adapter *sc;
3366 
3367 	mtx_lock(&t3_list_lock);
3368 	SLIST_FOREACH(sc, &t3_list, link) {
3369 		/*
3370 		 * func should not make any assumptions about what state sc is
3371 		 * in - the only guarantee is that sc->sc_lock is a valid lock.
3372 		 */
3373 		func(sc, arg);
3374 	}
3375 	mtx_unlock(&t3_list_lock);
3376 }
3377 
3378 #ifdef TCP_OFFLOAD
3379 static int
3380 toe_capability(struct port_info *pi, int enable)
3381 {
3382 	int rc;
3383 	struct adapter *sc = pi->adapter;
3384 
3385 	ADAPTER_LOCK_ASSERT_OWNED(sc);
3386 
3387 	if (!is_offload(sc))
3388 		return (ENODEV);
3389 
3390 	if (enable) {
3391 		if (!(sc->flags & FULL_INIT_DONE)) {
3392 			log(LOG_WARNING,
3393 			    "You must enable a cxgb interface first\n");
3394 			return (EAGAIN);
3395 		}
3396 
3397 		if (isset(&sc->offload_map, pi->port_id))
3398 			return (0);
3399 
3400 		if (!(sc->flags & TOM_INIT_DONE)) {
3401 			rc = t3_activate_uld(sc, ULD_TOM);
3402 			if (rc == EAGAIN) {
3403 				log(LOG_WARNING,
3404 				    "You must kldload t3_tom.ko before trying "
3405 				    "to enable TOE on a cxgb interface.\n");
3406 			}
3407 			if (rc != 0)
3408 				return (rc);
3409 			KASSERT(sc->tom_softc != NULL,
3410 			    ("%s: TOM activated but softc NULL", __func__));
3411 			KASSERT(sc->flags & TOM_INIT_DONE,
3412 			    ("%s: TOM activated but flag not set", __func__));
3413 		}
3414 
3415 		setbit(&sc->offload_map, pi->port_id);
3416 
3417 		/*
3418 		 * XXX: Temporary code to allow iWARP to be enabled when TOE is
3419 		 * enabled on any port.  Need to figure out how to enable,
3420 		 * disable, load, and unload iWARP cleanly.
3421 		 */
3422 		if (!isset(&sc->offload_map, MAX_NPORTS) &&
3423 		    t3_activate_uld(sc, ULD_IWARP) == 0)
3424 			setbit(&sc->offload_map, MAX_NPORTS);
3425 	} else {
3426 		if (!isset(&sc->offload_map, pi->port_id))
3427 			return (0);
3428 
3429 		KASSERT(sc->flags & TOM_INIT_DONE,
3430 		    ("%s: TOM never initialized?", __func__));
3431 		clrbit(&sc->offload_map, pi->port_id);
3432 	}
3433 
3434 	return (0);
3435 }
3436 
3437 /*
3438  * Add an upper layer driver to the global list.
3439  */
3440 int
3441 t3_register_uld(struct uld_info *ui)
3442 {
3443 	int rc = 0;
3444 	struct uld_info *u;
3445 
3446 	mtx_lock(&t3_uld_list_lock);
3447 	SLIST_FOREACH(u, &t3_uld_list, link) {
3448 	    if (u->uld_id == ui->uld_id) {
3449 		    rc = EEXIST;
3450 		    goto done;
3451 	    }
3452 	}
3453 
3454 	SLIST_INSERT_HEAD(&t3_uld_list, ui, link);
3455 	ui->refcount = 0;
3456 done:
3457 	mtx_unlock(&t3_uld_list_lock);
3458 	return (rc);
3459 }
3460 
3461 int
3462 t3_unregister_uld(struct uld_info *ui)
3463 {
3464 	int rc = EINVAL;
3465 	struct uld_info *u;
3466 
3467 	mtx_lock(&t3_uld_list_lock);
3468 
3469 	SLIST_FOREACH(u, &t3_uld_list, link) {
3470 	    if (u == ui) {
3471 		    if (ui->refcount > 0) {
3472 			    rc = EBUSY;
3473 			    goto done;
3474 		    }
3475 
3476 		    SLIST_REMOVE(&t3_uld_list, ui, uld_info, link);
3477 		    rc = 0;
3478 		    goto done;
3479 	    }
3480 	}
3481 done:
3482 	mtx_unlock(&t3_uld_list_lock);
3483 	return (rc);
3484 }
3485 
3486 int
3487 t3_activate_uld(struct adapter *sc, int id)
3488 {
3489 	int rc = EAGAIN;
3490 	struct uld_info *ui;
3491 
3492 	mtx_lock(&t3_uld_list_lock);
3493 
3494 	SLIST_FOREACH(ui, &t3_uld_list, link) {
3495 		if (ui->uld_id == id) {
3496 			rc = ui->activate(sc);
3497 			if (rc == 0)
3498 				ui->refcount++;
3499 			goto done;
3500 		}
3501 	}
3502 done:
3503 	mtx_unlock(&t3_uld_list_lock);
3504 
3505 	return (rc);
3506 }
3507 
3508 int
3509 t3_deactivate_uld(struct adapter *sc, int id)
3510 {
3511 	int rc = EINVAL;
3512 	struct uld_info *ui;
3513 
3514 	mtx_lock(&t3_uld_list_lock);
3515 
3516 	SLIST_FOREACH(ui, &t3_uld_list, link) {
3517 		if (ui->uld_id == id) {
3518 			rc = ui->deactivate(sc);
3519 			if (rc == 0)
3520 				ui->refcount--;
3521 			goto done;
3522 		}
3523 	}
3524 done:
3525 	mtx_unlock(&t3_uld_list_lock);
3526 
3527 	return (rc);
3528 }
3529 
3530 static int
3531 cpl_not_handled(struct sge_qset *qs __unused, struct rsp_desc *r __unused,
3532     struct mbuf *m)
3533 {
3534 	m_freem(m);
3535 	return (EDOOFUS);
3536 }
3537 
3538 int
3539 t3_register_cpl_handler(struct adapter *sc, int opcode, cpl_handler_t h)
3540 {
3541 	uintptr_t *loc, new;
3542 
3543 	if (opcode >= NUM_CPL_HANDLERS)
3544 		return (EINVAL);
3545 
3546 	new = h ? (uintptr_t)h : (uintptr_t)cpl_not_handled;
3547 	loc = (uintptr_t *) &sc->cpl_handler[opcode];
3548 	atomic_store_rel_ptr(loc, new);
3549 
3550 	return (0);
3551 }
3552 #endif
3553 
3554 static int
3555 cxgbc_mod_event(module_t mod, int cmd, void *arg)
3556 {
3557 	int rc = 0;
3558 
3559 	switch (cmd) {
3560 	case MOD_LOAD:
3561 		mtx_init(&t3_list_lock, "T3 adapters", 0, MTX_DEF);
3562 		SLIST_INIT(&t3_list);
3563 #ifdef TCP_OFFLOAD
3564 		mtx_init(&t3_uld_list_lock, "T3 ULDs", 0, MTX_DEF);
3565 		SLIST_INIT(&t3_uld_list);
3566 #endif
3567 		break;
3568 
3569 	case MOD_UNLOAD:
3570 #ifdef TCP_OFFLOAD
3571 		mtx_lock(&t3_uld_list_lock);
3572 		if (!SLIST_EMPTY(&t3_uld_list)) {
3573 			rc = EBUSY;
3574 			mtx_unlock(&t3_uld_list_lock);
3575 			break;
3576 		}
3577 		mtx_unlock(&t3_uld_list_lock);
3578 		mtx_destroy(&t3_uld_list_lock);
3579 #endif
3580 		mtx_lock(&t3_list_lock);
3581 		if (!SLIST_EMPTY(&t3_list)) {
3582 			rc = EBUSY;
3583 			mtx_unlock(&t3_list_lock);
3584 			break;
3585 		}
3586 		mtx_unlock(&t3_list_lock);
3587 		mtx_destroy(&t3_list_lock);
3588 		break;
3589 	}
3590 
3591 	return (rc);
3592 }
3593 
3594 #ifdef DEBUGNET
3595 static void
3596 cxgb_debugnet_init(struct ifnet *ifp, int *nrxr, int *ncl, int *clsize)
3597 {
3598 	struct port_info *pi;
3599 	adapter_t *adap;
3600 
3601 	pi = if_getsoftc(ifp);
3602 	adap = pi->adapter;
3603 	ADAPTER_LOCK(adap);
3604 	*nrxr = adap->nqsets;
3605 	*ncl = adap->sge.qs[0].fl[1].size;
3606 	*clsize = adap->sge.qs[0].fl[1].buf_size;
3607 	ADAPTER_UNLOCK(adap);
3608 }
3609 
3610 static void
3611 cxgb_debugnet_event(struct ifnet *ifp, enum debugnet_ev event)
3612 {
3613 	struct port_info *pi;
3614 	struct sge_qset *qs;
3615 	int i;
3616 
3617 	pi = if_getsoftc(ifp);
3618 	if (event == DEBUGNET_START)
3619 		for (i = 0; i < pi->adapter->nqsets; i++) {
3620 			qs = &pi->adapter->sge.qs[i];
3621 
3622 			/* Need to reinit after debugnet_mbuf_start(). */
3623 			qs->fl[0].zone = zone_pack;
3624 			qs->fl[1].zone = zone_clust;
3625 			qs->lro.enabled = 0;
3626 		}
3627 }
3628 
3629 static int
3630 cxgb_debugnet_transmit(struct ifnet *ifp, struct mbuf *m)
3631 {
3632 	struct port_info *pi;
3633 	struct sge_qset *qs;
3634 
3635 	pi = if_getsoftc(ifp);
3636 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
3637 	    IFF_DRV_RUNNING)
3638 		return (ENOENT);
3639 
3640 	qs = &pi->adapter->sge.qs[pi->first_qset];
3641 	return (cxgb_debugnet_encap(qs, &m));
3642 }
3643 
3644 static int
3645 cxgb_debugnet_poll(struct ifnet *ifp, int count)
3646 {
3647 	struct port_info *pi;
3648 	adapter_t *adap;
3649 	int i;
3650 
3651 	pi = if_getsoftc(ifp);
3652 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
3653 		return (ENOENT);
3654 
3655 	adap = pi->adapter;
3656 	for (i = 0; i < adap->nqsets; i++)
3657 		(void)cxgb_debugnet_poll_rx(adap, &adap->sge.qs[i]);
3658 	(void)cxgb_debugnet_poll_tx(&adap->sge.qs[pi->first_qset]);
3659 	return (0);
3660 }
3661 #endif /* DEBUGNET */
3662