1 /************************************************************************** 2 3 Copyright (c) 2007-2009, Chelsio Inc. 4 All rights reserved. 5 6 Redistribution and use in source and binary forms, with or without 7 modification, are permitted provided that the following conditions are met: 8 9 1. Redistributions of source code must retain the above copyright notice, 10 this list of conditions and the following disclaimer. 11 12 2. Neither the name of the Chelsio Corporation nor the names of its 13 contributors may be used to endorse or promote products derived from 14 this software without specific prior written permission. 15 16 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 17 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 20 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 21 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 22 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 23 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 24 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 25 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 26 POSSIBILITY OF SUCH DAMAGE. 27 28 ***************************************************************************/ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 34 #include <cxgb_include.h> 35 36 #undef msleep 37 #define msleep t3_os_sleep 38 39 /** 40 * t3_wait_op_done_val - wait until an operation is completed 41 * @adapter: the adapter performing the operation 42 * @reg: the register to check for completion 43 * @mask: a single-bit field within @reg that indicates completion 44 * @polarity: the value of the field when the operation is completed 45 * @attempts: number of check iterations 46 * @delay: delay in usecs between iterations 47 * @valp: where to store the value of the register at completion time 48 * 49 * Wait until an operation is completed by checking a bit in a register 50 * up to @attempts times. If @valp is not NULL the value of the register 51 * at the time it indicated completion is stored there. Returns 0 if the 52 * operation completes and -EAGAIN otherwise. 53 */ 54 int t3_wait_op_done_val(adapter_t *adapter, int reg, u32 mask, int polarity, 55 int attempts, int delay, u32 *valp) 56 { 57 while (1) { 58 u32 val = t3_read_reg(adapter, reg); 59 60 if (!!(val & mask) == polarity) { 61 if (valp) 62 *valp = val; 63 return 0; 64 } 65 if (--attempts == 0) 66 return -EAGAIN; 67 if (delay) 68 udelay(delay); 69 } 70 } 71 72 /** 73 * t3_write_regs - write a bunch of registers 74 * @adapter: the adapter to program 75 * @p: an array of register address/register value pairs 76 * @n: the number of address/value pairs 77 * @offset: register address offset 78 * 79 * Takes an array of register address/register value pairs and writes each 80 * value to the corresponding register. Register addresses are adjusted 81 * by the supplied offset. 82 */ 83 void t3_write_regs(adapter_t *adapter, const struct addr_val_pair *p, int n, 84 unsigned int offset) 85 { 86 while (n--) { 87 t3_write_reg(adapter, p->reg_addr + offset, p->val); 88 p++; 89 } 90 } 91 92 /** 93 * t3_set_reg_field - set a register field to a value 94 * @adapter: the adapter to program 95 * @addr: the register address 96 * @mask: specifies the portion of the register to modify 97 * @val: the new value for the register field 98 * 99 * Sets a register field specified by the supplied mask to the 100 * given value. 101 */ 102 void t3_set_reg_field(adapter_t *adapter, unsigned int addr, u32 mask, u32 val) 103 { 104 u32 v = t3_read_reg(adapter, addr) & ~mask; 105 106 t3_write_reg(adapter, addr, v | val); 107 (void) t3_read_reg(adapter, addr); /* flush */ 108 } 109 110 /** 111 * t3_read_indirect - read indirectly addressed registers 112 * @adap: the adapter 113 * @addr_reg: register holding the indirect address 114 * @data_reg: register holding the value of the indirect register 115 * @vals: where the read register values are stored 116 * @start_idx: index of first indirect register to read 117 * @nregs: how many indirect registers to read 118 * 119 * Reads registers that are accessed indirectly through an address/data 120 * register pair. 121 */ 122 static void t3_read_indirect(adapter_t *adap, unsigned int addr_reg, 123 unsigned int data_reg, u32 *vals, unsigned int nregs, 124 unsigned int start_idx) 125 { 126 while (nregs--) { 127 t3_write_reg(adap, addr_reg, start_idx); 128 *vals++ = t3_read_reg(adap, data_reg); 129 start_idx++; 130 } 131 } 132 133 /** 134 * t3_mc7_bd_read - read from MC7 through backdoor accesses 135 * @mc7: identifies MC7 to read from 136 * @start: index of first 64-bit word to read 137 * @n: number of 64-bit words to read 138 * @buf: where to store the read result 139 * 140 * Read n 64-bit words from MC7 starting at word start, using backdoor 141 * accesses. 142 */ 143 int t3_mc7_bd_read(struct mc7 *mc7, unsigned int start, unsigned int n, 144 u64 *buf) 145 { 146 static int shift[] = { 0, 0, 16, 24 }; 147 static int step[] = { 0, 32, 16, 8 }; 148 149 unsigned int size64 = mc7->size / 8; /* # of 64-bit words */ 150 adapter_t *adap = mc7->adapter; 151 152 if (start >= size64 || start + n > size64) 153 return -EINVAL; 154 155 start *= (8 << mc7->width); 156 while (n--) { 157 int i; 158 u64 val64 = 0; 159 160 for (i = (1 << mc7->width) - 1; i >= 0; --i) { 161 int attempts = 10; 162 u32 val; 163 164 t3_write_reg(adap, mc7->offset + A_MC7_BD_ADDR, 165 start); 166 t3_write_reg(adap, mc7->offset + A_MC7_BD_OP, 0); 167 val = t3_read_reg(adap, mc7->offset + A_MC7_BD_OP); 168 while ((val & F_BUSY) && attempts--) 169 val = t3_read_reg(adap, 170 mc7->offset + A_MC7_BD_OP); 171 if (val & F_BUSY) 172 return -EIO; 173 174 val = t3_read_reg(adap, mc7->offset + A_MC7_BD_DATA1); 175 if (mc7->width == 0) { 176 val64 = t3_read_reg(adap, 177 mc7->offset + A_MC7_BD_DATA0); 178 val64 |= (u64)val << 32; 179 } else { 180 if (mc7->width > 1) 181 val >>= shift[mc7->width]; 182 val64 |= (u64)val << (step[mc7->width] * i); 183 } 184 start += 8; 185 } 186 *buf++ = val64; 187 } 188 return 0; 189 } 190 191 /* 192 * Low-level I2C read and write routines. These simply read and write a 193 * single byte with the option of indicating a "continue" if another operation 194 * is to be chained. Generally most code will use higher-level routines to 195 * read and write to I2C Slave Devices. 196 */ 197 #define I2C_ATTEMPTS 100 198 199 /* 200 * Read an 8-bit value from the I2C bus. If the "chained" parameter is 201 * non-zero then a STOP bit will not be written after the read command. On 202 * error (the read timed out, etc.), a negative errno will be returned (e.g. 203 * -EAGAIN, etc.). On success, the 8-bit value read from the I2C bus is 204 * stored into the buffer *valp and the value of the I2C ACK bit is returned 205 * as a 0/1 value. 206 */ 207 int t3_i2c_read8(adapter_t *adapter, int chained, u8 *valp) 208 { 209 int ret; 210 u32 opval; 211 MDIO_LOCK(adapter); 212 t3_write_reg(adapter, A_I2C_OP, 213 F_I2C_READ | (chained ? F_I2C_CONT : 0)); 214 ret = t3_wait_op_done_val(adapter, A_I2C_OP, F_I2C_BUSY, 0, 215 I2C_ATTEMPTS, 10, &opval); 216 if (ret >= 0) { 217 ret = ((opval & F_I2C_ACK) == F_I2C_ACK); 218 *valp = G_I2C_DATA(t3_read_reg(adapter, A_I2C_DATA)); 219 } 220 MDIO_UNLOCK(adapter); 221 return ret; 222 } 223 224 /* 225 * Write an 8-bit value to the I2C bus. If the "chained" parameter is 226 * non-zero, then a STOP bit will not be written after the write command. On 227 * error (the write timed out, etc.), a negative errno will be returned (e.g. 228 * -EAGAIN, etc.). On success, the value of the I2C ACK bit is returned as a 229 * 0/1 value. 230 */ 231 int t3_i2c_write8(adapter_t *adapter, int chained, u8 val) 232 { 233 int ret; 234 u32 opval; 235 MDIO_LOCK(adapter); 236 t3_write_reg(adapter, A_I2C_DATA, V_I2C_DATA(val)); 237 t3_write_reg(adapter, A_I2C_OP, 238 F_I2C_WRITE | (chained ? F_I2C_CONT : 0)); 239 ret = t3_wait_op_done_val(adapter, A_I2C_OP, F_I2C_BUSY, 0, 240 I2C_ATTEMPTS, 10, &opval); 241 if (ret >= 0) 242 ret = ((opval & F_I2C_ACK) == F_I2C_ACK); 243 MDIO_UNLOCK(adapter); 244 return ret; 245 } 246 247 /* 248 * Initialize MI1. 249 */ 250 static void mi1_init(adapter_t *adap, const struct adapter_info *ai) 251 { 252 u32 clkdiv = adap->params.vpd.cclk / (2 * adap->params.vpd.mdc) - 1; 253 u32 val = F_PREEN | V_CLKDIV(clkdiv); 254 255 t3_write_reg(adap, A_MI1_CFG, val); 256 } 257 258 #define MDIO_ATTEMPTS 20 259 260 /* 261 * MI1 read/write operations for clause 22 PHYs. 262 */ 263 int t3_mi1_read(adapter_t *adapter, int phy_addr, int mmd_addr, 264 int reg_addr, unsigned int *valp) 265 { 266 int ret; 267 u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr); 268 269 if (mmd_addr) 270 return -EINVAL; 271 272 MDIO_LOCK(adapter); 273 t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), V_ST(1)); 274 t3_write_reg(adapter, A_MI1_ADDR, addr); 275 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(2)); 276 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 10); 277 if (!ret) 278 *valp = t3_read_reg(adapter, A_MI1_DATA); 279 MDIO_UNLOCK(adapter); 280 return ret; 281 } 282 283 int t3_mi1_write(adapter_t *adapter, int phy_addr, int mmd_addr, 284 int reg_addr, unsigned int val) 285 { 286 int ret; 287 u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr); 288 289 if (mmd_addr) 290 return -EINVAL; 291 292 MDIO_LOCK(adapter); 293 t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), V_ST(1)); 294 t3_write_reg(adapter, A_MI1_ADDR, addr); 295 t3_write_reg(adapter, A_MI1_DATA, val); 296 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1)); 297 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 10); 298 MDIO_UNLOCK(adapter); 299 return ret; 300 } 301 302 static struct mdio_ops mi1_mdio_ops = { 303 t3_mi1_read, 304 t3_mi1_write 305 }; 306 307 /* 308 * MI1 read/write operations for clause 45 PHYs. 309 */ 310 static int mi1_ext_read(adapter_t *adapter, int phy_addr, int mmd_addr, 311 int reg_addr, unsigned int *valp) 312 { 313 int ret; 314 u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr); 315 316 MDIO_LOCK(adapter); 317 t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), 0); 318 t3_write_reg(adapter, A_MI1_ADDR, addr); 319 t3_write_reg(adapter, A_MI1_DATA, reg_addr); 320 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0)); 321 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 10); 322 if (!ret) { 323 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(3)); 324 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, 325 MDIO_ATTEMPTS, 10); 326 if (!ret) 327 *valp = t3_read_reg(adapter, A_MI1_DATA); 328 } 329 MDIO_UNLOCK(adapter); 330 return ret; 331 } 332 333 static int mi1_ext_write(adapter_t *adapter, int phy_addr, int mmd_addr, 334 int reg_addr, unsigned int val) 335 { 336 int ret; 337 u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr); 338 339 MDIO_LOCK(adapter); 340 t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), 0); 341 t3_write_reg(adapter, A_MI1_ADDR, addr); 342 t3_write_reg(adapter, A_MI1_DATA, reg_addr); 343 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0)); 344 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 10); 345 if (!ret) { 346 t3_write_reg(adapter, A_MI1_DATA, val); 347 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1)); 348 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, 349 MDIO_ATTEMPTS, 10); 350 } 351 MDIO_UNLOCK(adapter); 352 return ret; 353 } 354 355 static struct mdio_ops mi1_mdio_ext_ops = { 356 mi1_ext_read, 357 mi1_ext_write 358 }; 359 360 /** 361 * t3_mdio_change_bits - modify the value of a PHY register 362 * @phy: the PHY to operate on 363 * @mmd: the device address 364 * @reg: the register address 365 * @clear: what part of the register value to mask off 366 * @set: what part of the register value to set 367 * 368 * Changes the value of a PHY register by applying a mask to its current 369 * value and ORing the result with a new value. 370 */ 371 int t3_mdio_change_bits(struct cphy *phy, int mmd, int reg, unsigned int clear, 372 unsigned int set) 373 { 374 int ret; 375 unsigned int val; 376 377 ret = mdio_read(phy, mmd, reg, &val); 378 if (!ret) { 379 val &= ~clear; 380 ret = mdio_write(phy, mmd, reg, val | set); 381 } 382 return ret; 383 } 384 385 /** 386 * t3_phy_reset - reset a PHY block 387 * @phy: the PHY to operate on 388 * @mmd: the device address of the PHY block to reset 389 * @wait: how long to wait for the reset to complete in 1ms increments 390 * 391 * Resets a PHY block and optionally waits for the reset to complete. 392 * @mmd should be 0 for 10/100/1000 PHYs and the device address to reset 393 * for 10G PHYs. 394 */ 395 int t3_phy_reset(struct cphy *phy, int mmd, int wait) 396 { 397 int err; 398 unsigned int ctl; 399 400 err = t3_mdio_change_bits(phy, mmd, MII_BMCR, BMCR_PDOWN, BMCR_RESET); 401 if (err || !wait) 402 return err; 403 404 do { 405 err = mdio_read(phy, mmd, MII_BMCR, &ctl); 406 if (err) 407 return err; 408 ctl &= BMCR_RESET; 409 if (ctl) 410 msleep(1); 411 } while (ctl && --wait); 412 413 return ctl ? -1 : 0; 414 } 415 416 /** 417 * t3_phy_advertise - set the PHY advertisement registers for autoneg 418 * @phy: the PHY to operate on 419 * @advert: bitmap of capabilities the PHY should advertise 420 * 421 * Sets a 10/100/1000 PHY's advertisement registers to advertise the 422 * requested capabilities. 423 */ 424 int t3_phy_advertise(struct cphy *phy, unsigned int advert) 425 { 426 int err; 427 unsigned int val = 0; 428 429 err = mdio_read(phy, 0, MII_CTRL1000, &val); 430 if (err) 431 return err; 432 433 val &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL); 434 if (advert & ADVERTISED_1000baseT_Half) 435 val |= ADVERTISE_1000HALF; 436 if (advert & ADVERTISED_1000baseT_Full) 437 val |= ADVERTISE_1000FULL; 438 439 err = mdio_write(phy, 0, MII_CTRL1000, val); 440 if (err) 441 return err; 442 443 val = 1; 444 if (advert & ADVERTISED_10baseT_Half) 445 val |= ADVERTISE_10HALF; 446 if (advert & ADVERTISED_10baseT_Full) 447 val |= ADVERTISE_10FULL; 448 if (advert & ADVERTISED_100baseT_Half) 449 val |= ADVERTISE_100HALF; 450 if (advert & ADVERTISED_100baseT_Full) 451 val |= ADVERTISE_100FULL; 452 if (advert & ADVERTISED_Pause) 453 val |= ADVERTISE_PAUSE_CAP; 454 if (advert & ADVERTISED_Asym_Pause) 455 val |= ADVERTISE_PAUSE_ASYM; 456 return mdio_write(phy, 0, MII_ADVERTISE, val); 457 } 458 459 /** 460 * t3_phy_advertise_fiber - set fiber PHY advertisement register 461 * @phy: the PHY to operate on 462 * @advert: bitmap of capabilities the PHY should advertise 463 * 464 * Sets a fiber PHY's advertisement register to advertise the 465 * requested capabilities. 466 */ 467 int t3_phy_advertise_fiber(struct cphy *phy, unsigned int advert) 468 { 469 unsigned int val = 0; 470 471 if (advert & ADVERTISED_1000baseT_Half) 472 val |= ADVERTISE_1000XHALF; 473 if (advert & ADVERTISED_1000baseT_Full) 474 val |= ADVERTISE_1000XFULL; 475 if (advert & ADVERTISED_Pause) 476 val |= ADVERTISE_1000XPAUSE; 477 if (advert & ADVERTISED_Asym_Pause) 478 val |= ADVERTISE_1000XPSE_ASYM; 479 return mdio_write(phy, 0, MII_ADVERTISE, val); 480 } 481 482 /** 483 * t3_set_phy_speed_duplex - force PHY speed and duplex 484 * @phy: the PHY to operate on 485 * @speed: requested PHY speed 486 * @duplex: requested PHY duplex 487 * 488 * Force a 10/100/1000 PHY's speed and duplex. This also disables 489 * auto-negotiation except for GigE, where auto-negotiation is mandatory. 490 */ 491 int t3_set_phy_speed_duplex(struct cphy *phy, int speed, int duplex) 492 { 493 int err; 494 unsigned int ctl; 495 496 err = mdio_read(phy, 0, MII_BMCR, &ctl); 497 if (err) 498 return err; 499 500 if (speed >= 0) { 501 ctl &= ~(BMCR_SPEED100 | BMCR_SPEED1000 | BMCR_ANENABLE); 502 if (speed == SPEED_100) 503 ctl |= BMCR_SPEED100; 504 else if (speed == SPEED_1000) 505 ctl |= BMCR_SPEED1000; 506 } 507 if (duplex >= 0) { 508 ctl &= ~(BMCR_FULLDPLX | BMCR_ANENABLE); 509 if (duplex == DUPLEX_FULL) 510 ctl |= BMCR_FULLDPLX; 511 } 512 if (ctl & BMCR_SPEED1000) /* auto-negotiation required for GigE */ 513 ctl |= BMCR_ANENABLE; 514 return mdio_write(phy, 0, MII_BMCR, ctl); 515 } 516 517 int t3_phy_lasi_intr_enable(struct cphy *phy) 518 { 519 return mdio_write(phy, MDIO_DEV_PMA_PMD, LASI_CTRL, 1); 520 } 521 522 int t3_phy_lasi_intr_disable(struct cphy *phy) 523 { 524 return mdio_write(phy, MDIO_DEV_PMA_PMD, LASI_CTRL, 0); 525 } 526 527 int t3_phy_lasi_intr_clear(struct cphy *phy) 528 { 529 u32 val; 530 531 return mdio_read(phy, MDIO_DEV_PMA_PMD, LASI_STAT, &val); 532 } 533 534 int t3_phy_lasi_intr_handler(struct cphy *phy) 535 { 536 unsigned int status; 537 int err = mdio_read(phy, MDIO_DEV_PMA_PMD, LASI_STAT, &status); 538 539 if (err) 540 return err; 541 return (status & 1) ? cphy_cause_link_change : 0; 542 } 543 544 static struct adapter_info t3_adap_info[] = { 545 { 1, 1, 0, 546 F_GPIO2_OEN | F_GPIO4_OEN | 547 F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, { S_GPIO3, S_GPIO5 }, 0, 548 &mi1_mdio_ops, "Chelsio PE9000" }, 549 { 1, 1, 0, 550 F_GPIO2_OEN | F_GPIO4_OEN | 551 F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, { S_GPIO3, S_GPIO5 }, 0, 552 &mi1_mdio_ops, "Chelsio T302" }, 553 { 1, 0, 0, 554 F_GPIO1_OEN | F_GPIO6_OEN | F_GPIO7_OEN | F_GPIO10_OEN | 555 F_GPIO11_OEN | F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL, 556 { 0 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI, 557 &mi1_mdio_ext_ops, "Chelsio T310" }, 558 { 1, 1, 0, 559 F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO5_OEN | F_GPIO6_OEN | 560 F_GPIO7_OEN | F_GPIO10_OEN | F_GPIO11_OEN | F_GPIO1_OUT_VAL | 561 F_GPIO5_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL, 562 { S_GPIO9, S_GPIO3 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI, 563 &mi1_mdio_ext_ops, "Chelsio T320" }, 564 { 4, 0, 0, 565 F_GPIO5_OEN | F_GPIO6_OEN | F_GPIO7_OEN | F_GPIO5_OUT_VAL | 566 F_GPIO6_OUT_VAL | F_GPIO7_OUT_VAL, 567 { S_GPIO1, S_GPIO2, S_GPIO3, S_GPIO4 }, SUPPORTED_AUI, 568 &mi1_mdio_ops, "Chelsio T304" }, 569 { 0 }, 570 { 1, 0, 0, 571 F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO6_OEN | F_GPIO7_OEN | 572 F_GPIO10_OEN | F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL, 573 { S_GPIO9 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI, 574 &mi1_mdio_ext_ops, "Chelsio T310" }, 575 { 1, 0, 0, 576 F_GPIO1_OEN | F_GPIO6_OEN | F_GPIO7_OEN | 577 F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL, 578 { S_GPIO9 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI, 579 &mi1_mdio_ext_ops, "Chelsio N320E-G2" }, 580 }; 581 582 /* 583 * Return the adapter_info structure with a given index. Out-of-range indices 584 * return NULL. 585 */ 586 const struct adapter_info *t3_get_adapter_info(unsigned int id) 587 { 588 return id < ARRAY_SIZE(t3_adap_info) ? &t3_adap_info[id] : NULL; 589 } 590 591 struct port_type_info { 592 int (*phy_prep)(pinfo_t *pinfo, int phy_addr, 593 const struct mdio_ops *ops); 594 }; 595 596 static struct port_type_info port_types[] = { 597 { NULL }, 598 { t3_ael1002_phy_prep }, 599 { t3_vsc8211_phy_prep }, 600 { t3_mv88e1xxx_phy_prep }, 601 { t3_xaui_direct_phy_prep }, 602 { t3_ael2005_phy_prep }, 603 { t3_qt2045_phy_prep }, 604 { t3_ael1006_phy_prep }, 605 { t3_tn1010_phy_prep }, 606 { t3_aq100x_phy_prep }, 607 { t3_ael2020_phy_prep }, 608 }; 609 610 #define VPD_ENTRY(name, len) \ 611 u8 name##_kword[2]; u8 name##_len; u8 name##_data[len] 612 613 /* 614 * Partial EEPROM Vital Product Data structure. Includes only the ID and 615 * VPD-R sections. 616 */ 617 struct t3_vpd { 618 u8 id_tag; 619 u8 id_len[2]; 620 u8 id_data[16]; 621 u8 vpdr_tag; 622 u8 vpdr_len[2]; 623 VPD_ENTRY(pn, 16); /* part number */ 624 VPD_ENTRY(ec, ECNUM_LEN); /* EC level */ 625 VPD_ENTRY(sn, SERNUM_LEN); /* serial number */ 626 VPD_ENTRY(na, 12); /* MAC address base */ 627 VPD_ENTRY(cclk, 6); /* core clock */ 628 VPD_ENTRY(mclk, 6); /* mem clock */ 629 VPD_ENTRY(uclk, 6); /* uP clk */ 630 VPD_ENTRY(mdc, 6); /* MDIO clk */ 631 VPD_ENTRY(mt, 2); /* mem timing */ 632 VPD_ENTRY(xaui0cfg, 6); /* XAUI0 config */ 633 VPD_ENTRY(xaui1cfg, 6); /* XAUI1 config */ 634 VPD_ENTRY(port0, 2); /* PHY0 complex */ 635 VPD_ENTRY(port1, 2); /* PHY1 complex */ 636 VPD_ENTRY(port2, 2); /* PHY2 complex */ 637 VPD_ENTRY(port3, 2); /* PHY3 complex */ 638 VPD_ENTRY(rv, 1); /* csum */ 639 u32 pad; /* for multiple-of-4 sizing and alignment */ 640 }; 641 642 #define EEPROM_MAX_POLL 40 643 #define EEPROM_STAT_ADDR 0x4000 644 #define VPD_BASE 0xc00 645 646 /** 647 * t3_seeprom_read - read a VPD EEPROM location 648 * @adapter: adapter to read 649 * @addr: EEPROM address 650 * @data: where to store the read data 651 * 652 * Read a 32-bit word from a location in VPD EEPROM using the card's PCI 653 * VPD ROM capability. A zero is written to the flag bit when the 654 * addres is written to the control register. The hardware device will 655 * set the flag to 1 when 4 bytes have been read into the data register. 656 */ 657 int t3_seeprom_read(adapter_t *adapter, u32 addr, u32 *data) 658 { 659 u16 val; 660 int attempts = EEPROM_MAX_POLL; 661 unsigned int base = adapter->params.pci.vpd_cap_addr; 662 663 if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3)) 664 return -EINVAL; 665 666 t3_os_pci_write_config_2(adapter, base + PCI_VPD_ADDR, (u16)addr); 667 do { 668 udelay(10); 669 t3_os_pci_read_config_2(adapter, base + PCI_VPD_ADDR, &val); 670 } while (!(val & PCI_VPD_ADDR_F) && --attempts); 671 672 if (!(val & PCI_VPD_ADDR_F)) { 673 CH_ERR(adapter, "reading EEPROM address 0x%x failed\n", addr); 674 return -EIO; 675 } 676 t3_os_pci_read_config_4(adapter, base + PCI_VPD_DATA, data); 677 *data = le32_to_cpu(*data); 678 return 0; 679 } 680 681 /** 682 * t3_seeprom_write - write a VPD EEPROM location 683 * @adapter: adapter to write 684 * @addr: EEPROM address 685 * @data: value to write 686 * 687 * Write a 32-bit word to a location in VPD EEPROM using the card's PCI 688 * VPD ROM capability. 689 */ 690 int t3_seeprom_write(adapter_t *adapter, u32 addr, u32 data) 691 { 692 u16 val; 693 int attempts = EEPROM_MAX_POLL; 694 unsigned int base = adapter->params.pci.vpd_cap_addr; 695 696 if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3)) 697 return -EINVAL; 698 699 t3_os_pci_write_config_4(adapter, base + PCI_VPD_DATA, 700 cpu_to_le32(data)); 701 t3_os_pci_write_config_2(adapter, base + PCI_VPD_ADDR, 702 (u16)addr | PCI_VPD_ADDR_F); 703 do { 704 msleep(1); 705 t3_os_pci_read_config_2(adapter, base + PCI_VPD_ADDR, &val); 706 } while ((val & PCI_VPD_ADDR_F) && --attempts); 707 708 if (val & PCI_VPD_ADDR_F) { 709 CH_ERR(adapter, "write to EEPROM address 0x%x failed\n", addr); 710 return -EIO; 711 } 712 return 0; 713 } 714 715 /** 716 * t3_seeprom_wp - enable/disable EEPROM write protection 717 * @adapter: the adapter 718 * @enable: 1 to enable write protection, 0 to disable it 719 * 720 * Enables or disables write protection on the serial EEPROM. 721 */ 722 int t3_seeprom_wp(adapter_t *adapter, int enable) 723 { 724 return t3_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0); 725 } 726 727 /* 728 * Convert a character holding a hex digit to a number. 729 */ 730 static unsigned int hex2int(unsigned char c) 731 { 732 return isdigit(c) ? c - '0' : toupper(c) - 'A' + 10; 733 } 734 735 /** 736 * get_desc_len - get the length of a vpd descriptor. 737 * @adapter: the adapter 738 * @offset: first byte offset of the vpd descriptor 739 * 740 * Retrieves the length of the small/large resource 741 * data type starting at offset. 742 */ 743 static int get_desc_len(adapter_t *adapter, u32 offset) 744 { 745 u32 read_offset, tmp, shift, len = 0; 746 u8 tag, buf[8]; 747 int ret; 748 749 read_offset = offset & 0xfffffffc; 750 shift = offset & 0x03; 751 752 ret = t3_seeprom_read(adapter, read_offset, &tmp); 753 if (ret < 0) 754 return ret; 755 756 *((u32 *)buf) = cpu_to_le32(tmp); 757 758 tag = buf[shift]; 759 if (tag & 0x80) { 760 ret = t3_seeprom_read(adapter, read_offset + 4, &tmp); 761 if (ret < 0) 762 return ret; 763 764 *((u32 *)(&buf[4])) = cpu_to_le32(tmp); 765 len = (buf[shift + 1] & 0xff) + 766 ((buf[shift+2] << 8) & 0xff00) + 3; 767 } else 768 len = (tag & 0x07) + 1; 769 770 return len; 771 } 772 773 /** 774 * is_end_tag - Check if a vpd tag is the end tag. 775 * @adapter: the adapter 776 * @offset: first byte offset of the tag 777 * 778 * Checks if the tag located at offset is the end tag. 779 */ 780 static int is_end_tag(adapter_t * adapter, u32 offset) 781 { 782 u32 read_offset, shift, ret, tmp; 783 u8 buf[4]; 784 785 read_offset = offset & 0xfffffffc; 786 shift = offset & 0x03; 787 788 ret = t3_seeprom_read(adapter, read_offset, &tmp); 789 if (ret) 790 return ret; 791 *((u32 *)buf) = cpu_to_le32(tmp); 792 793 if (buf[shift] == 0x78) 794 return 1; 795 else 796 return 0; 797 } 798 799 /** 800 * t3_get_vpd_len - computes the length of a vpd structure 801 * @adapter: the adapter 802 * @vpd: contains the offset of first byte of vpd 803 * 804 * Computes the lentgh of the vpd structure starting at vpd->offset. 805 */ 806 807 int t3_get_vpd_len(adapter_t * adapter, struct generic_vpd *vpd) 808 { 809 u32 len=0, offset; 810 int inc, ret; 811 812 offset = vpd->offset; 813 814 while (offset < (vpd->offset + MAX_VPD_BYTES)) { 815 ret = is_end_tag(adapter, offset); 816 if (ret < 0) 817 return ret; 818 else if (ret == 1) 819 break; 820 821 inc = get_desc_len(adapter, offset); 822 if (inc < 0) 823 return inc; 824 len += inc; 825 offset += inc; 826 } 827 return (len + 1); 828 } 829 830 /** 831 * t3_read_vpd - reads the stream of bytes containing a vpd structure 832 * @adapter: the adapter 833 * @vpd: contains a buffer that would hold the stream of bytes 834 * 835 * Reads the vpd structure starting at vpd->offset into vpd->data, 836 * the length of the byte stream to read is vpd->len. 837 */ 838 839 int t3_read_vpd(adapter_t *adapter, struct generic_vpd *vpd) 840 { 841 u32 i, ret; 842 843 for (i = 0; i < vpd->len; i += 4) { 844 ret = t3_seeprom_read(adapter, vpd->offset + i, 845 (u32 *) &(vpd->data[i])); 846 if (ret) 847 return ret; 848 } 849 850 return 0; 851 } 852 853 854 /** 855 * get_vpd_params - read VPD parameters from VPD EEPROM 856 * @adapter: adapter to read 857 * @p: where to store the parameters 858 * 859 * Reads card parameters stored in VPD EEPROM. 860 */ 861 static int get_vpd_params(adapter_t *adapter, struct vpd_params *p) 862 { 863 int i, addr, ret; 864 struct t3_vpd vpd; 865 866 /* 867 * Card information is normally at VPD_BASE but some early cards had 868 * it at 0. 869 */ 870 ret = t3_seeprom_read(adapter, VPD_BASE, (u32 *)&vpd); 871 if (ret) 872 return ret; 873 addr = vpd.id_tag == 0x82 ? VPD_BASE : 0; 874 875 for (i = 0; i < sizeof(vpd); i += 4) { 876 ret = t3_seeprom_read(adapter, addr + i, 877 (u32 *)((u8 *)&vpd + i)); 878 if (ret) 879 return ret; 880 } 881 882 p->cclk = simple_strtoul(vpd.cclk_data, NULL, 10); 883 p->mclk = simple_strtoul(vpd.mclk_data, NULL, 10); 884 p->uclk = simple_strtoul(vpd.uclk_data, NULL, 10); 885 p->mdc = simple_strtoul(vpd.mdc_data, NULL, 10); 886 p->mem_timing = simple_strtoul(vpd.mt_data, NULL, 10); 887 memcpy(p->sn, vpd.sn_data, SERNUM_LEN); 888 memcpy(p->ec, vpd.ec_data, ECNUM_LEN); 889 890 /* Old eeproms didn't have port information */ 891 if (adapter->params.rev == 0 && !vpd.port0_data[0]) { 892 p->port_type[0] = uses_xaui(adapter) ? 1 : 2; 893 p->port_type[1] = uses_xaui(adapter) ? 6 : 2; 894 } else { 895 p->port_type[0] = (u8)hex2int(vpd.port0_data[0]); 896 p->port_type[1] = (u8)hex2int(vpd.port1_data[0]); 897 p->port_type[2] = (u8)hex2int(vpd.port2_data[0]); 898 p->port_type[3] = (u8)hex2int(vpd.port3_data[0]); 899 p->xauicfg[0] = simple_strtoul(vpd.xaui0cfg_data, NULL, 16); 900 p->xauicfg[1] = simple_strtoul(vpd.xaui1cfg_data, NULL, 16); 901 } 902 903 for (i = 0; i < 6; i++) 904 p->eth_base[i] = hex2int(vpd.na_data[2 * i]) * 16 + 905 hex2int(vpd.na_data[2 * i + 1]); 906 return 0; 907 } 908 909 /* BIOS boot header */ 910 typedef struct boot_header_s { 911 u8 signature[2]; /* signature */ 912 u8 length; /* image length (include header) */ 913 u8 offset[4]; /* initialization vector */ 914 u8 reserved[19]; /* reserved */ 915 u8 exheader[2]; /* offset to expansion header */ 916 } boot_header_t; 917 918 /* serial flash and firmware constants */ 919 enum { 920 SF_ATTEMPTS = 5, /* max retries for SF1 operations */ 921 SF_SEC_SIZE = 64 * 1024, /* serial flash sector size */ 922 SF_SIZE = SF_SEC_SIZE * 8, /* serial flash size */ 923 924 /* flash command opcodes */ 925 SF_PROG_PAGE = 2, /* program page */ 926 SF_WR_DISABLE = 4, /* disable writes */ 927 SF_RD_STATUS = 5, /* read status register */ 928 SF_WR_ENABLE = 6, /* enable writes */ 929 SF_RD_DATA_FAST = 0xb, /* read flash */ 930 SF_ERASE_SECTOR = 0xd8, /* erase sector */ 931 932 FW_FLASH_BOOT_ADDR = 0x70000, /* start address of FW in flash */ 933 FW_VERS_ADDR = 0x7fffc, /* flash address holding FW version */ 934 FW_VERS_ADDR_PRE8 = 0x77ffc,/* flash address holding FW version pre8 */ 935 FW_MIN_SIZE = 8, /* at least version and csum */ 936 FW_MAX_SIZE = FW_VERS_ADDR - FW_FLASH_BOOT_ADDR, 937 FW_MAX_SIZE_PRE8 = FW_VERS_ADDR_PRE8 - FW_FLASH_BOOT_ADDR, 938 939 BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */ 940 BOOT_SIGNATURE = 0xaa55, /* signature of BIOS boot ROM */ 941 BOOT_SIZE_INC = 512, /* image size measured in 512B chunks */ 942 BOOT_MIN_SIZE = sizeof(boot_header_t), /* at least basic header */ 943 BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC /* 1 byte * length increment */ 944 }; 945 946 /** 947 * sf1_read - read data from the serial flash 948 * @adapter: the adapter 949 * @byte_cnt: number of bytes to read 950 * @cont: whether another operation will be chained 951 * @valp: where to store the read data 952 * 953 * Reads up to 4 bytes of data from the serial flash. The location of 954 * the read needs to be specified prior to calling this by issuing the 955 * appropriate commands to the serial flash. 956 */ 957 static int sf1_read(adapter_t *adapter, unsigned int byte_cnt, int cont, 958 u32 *valp) 959 { 960 int ret; 961 962 if (!byte_cnt || byte_cnt > 4) 963 return -EINVAL; 964 if (t3_read_reg(adapter, A_SF_OP) & F_BUSY) 965 return -EBUSY; 966 t3_write_reg(adapter, A_SF_OP, V_CONT(cont) | V_BYTECNT(byte_cnt - 1)); 967 ret = t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10); 968 if (!ret) 969 *valp = t3_read_reg(adapter, A_SF_DATA); 970 return ret; 971 } 972 973 /** 974 * sf1_write - write data to the serial flash 975 * @adapter: the adapter 976 * @byte_cnt: number of bytes to write 977 * @cont: whether another operation will be chained 978 * @val: value to write 979 * 980 * Writes up to 4 bytes of data to the serial flash. The location of 981 * the write needs to be specified prior to calling this by issuing the 982 * appropriate commands to the serial flash. 983 */ 984 static int sf1_write(adapter_t *adapter, unsigned int byte_cnt, int cont, 985 u32 val) 986 { 987 if (!byte_cnt || byte_cnt > 4) 988 return -EINVAL; 989 if (t3_read_reg(adapter, A_SF_OP) & F_BUSY) 990 return -EBUSY; 991 t3_write_reg(adapter, A_SF_DATA, val); 992 t3_write_reg(adapter, A_SF_OP, 993 V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1)); 994 return t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10); 995 } 996 997 /** 998 * flash_wait_op - wait for a flash operation to complete 999 * @adapter: the adapter 1000 * @attempts: max number of polls of the status register 1001 * @delay: delay between polls in ms 1002 * 1003 * Wait for a flash operation to complete by polling the status register. 1004 */ 1005 static int flash_wait_op(adapter_t *adapter, int attempts, int delay) 1006 { 1007 int ret; 1008 u32 status; 1009 1010 while (1) { 1011 if ((ret = sf1_write(adapter, 1, 1, SF_RD_STATUS)) != 0 || 1012 (ret = sf1_read(adapter, 1, 0, &status)) != 0) 1013 return ret; 1014 if (!(status & 1)) 1015 return 0; 1016 if (--attempts == 0) 1017 return -EAGAIN; 1018 if (delay) 1019 msleep(delay); 1020 } 1021 } 1022 1023 /** 1024 * t3_read_flash - read words from serial flash 1025 * @adapter: the adapter 1026 * @addr: the start address for the read 1027 * @nwords: how many 32-bit words to read 1028 * @data: where to store the read data 1029 * @byte_oriented: whether to store data as bytes or as words 1030 * 1031 * Read the specified number of 32-bit words from the serial flash. 1032 * If @byte_oriented is set the read data is stored as a byte array 1033 * (i.e., big-endian), otherwise as 32-bit words in the platform's 1034 * natural endianess. 1035 */ 1036 int t3_read_flash(adapter_t *adapter, unsigned int addr, unsigned int nwords, 1037 u32 *data, int byte_oriented) 1038 { 1039 int ret; 1040 1041 if (addr + nwords * sizeof(u32) > SF_SIZE || (addr & 3)) 1042 return -EINVAL; 1043 1044 addr = swab32(addr) | SF_RD_DATA_FAST; 1045 1046 if ((ret = sf1_write(adapter, 4, 1, addr)) != 0 || 1047 (ret = sf1_read(adapter, 1, 1, data)) != 0) 1048 return ret; 1049 1050 for ( ; nwords; nwords--, data++) { 1051 ret = sf1_read(adapter, 4, nwords > 1, data); 1052 if (ret) 1053 return ret; 1054 if (byte_oriented) 1055 *data = htonl(*data); 1056 } 1057 return 0; 1058 } 1059 1060 /** 1061 * t3_write_flash - write up to a page of data to the serial flash 1062 * @adapter: the adapter 1063 * @addr: the start address to write 1064 * @n: length of data to write 1065 * @data: the data to write 1066 * @byte_oriented: whether to store data as bytes or as words 1067 * 1068 * Writes up to a page of data (256 bytes) to the serial flash starting 1069 * at the given address. 1070 * If @byte_oriented is set the write data is stored as a 32-bit 1071 * big-endian array, otherwise in the processor's native endianess. 1072 * 1073 */ 1074 static int t3_write_flash(adapter_t *adapter, unsigned int addr, 1075 unsigned int n, const u8 *data, 1076 int byte_oriented) 1077 { 1078 int ret; 1079 u32 buf[64]; 1080 unsigned int c, left, val, offset = addr & 0xff; 1081 1082 if (addr + n > SF_SIZE || offset + n > 256) 1083 return -EINVAL; 1084 1085 val = swab32(addr) | SF_PROG_PAGE; 1086 1087 if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 || 1088 (ret = sf1_write(adapter, 4, 1, val)) != 0) 1089 return ret; 1090 1091 for (left = n; left; left -= c) { 1092 c = min(left, 4U); 1093 val = *(const u32*)data; 1094 data += c; 1095 if (byte_oriented) 1096 val = htonl(val); 1097 1098 ret = sf1_write(adapter, c, c != left, val); 1099 if (ret) 1100 return ret; 1101 } 1102 if ((ret = flash_wait_op(adapter, 5, 1)) != 0) 1103 return ret; 1104 1105 /* Read the page to verify the write succeeded */ 1106 ret = t3_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1107 byte_oriented); 1108 if (ret) 1109 return ret; 1110 1111 if (memcmp(data - n, (u8 *)buf + offset, n)) 1112 return -EIO; 1113 return 0; 1114 } 1115 1116 /** 1117 * t3_get_tp_version - read the tp sram version 1118 * @adapter: the adapter 1119 * @vers: where to place the version 1120 * 1121 * Reads the protocol sram version from sram. 1122 */ 1123 int t3_get_tp_version(adapter_t *adapter, u32 *vers) 1124 { 1125 int ret; 1126 1127 /* Get version loaded in SRAM */ 1128 t3_write_reg(adapter, A_TP_EMBED_OP_FIELD0, 0); 1129 ret = t3_wait_op_done(adapter, A_TP_EMBED_OP_FIELD0, 1130 1, 1, 5, 1); 1131 if (ret) 1132 return ret; 1133 1134 *vers = t3_read_reg(adapter, A_TP_EMBED_OP_FIELD1); 1135 1136 return 0; 1137 } 1138 1139 /** 1140 * t3_check_tpsram_version - read the tp sram version 1141 * @adapter: the adapter 1142 * 1143 */ 1144 int t3_check_tpsram_version(adapter_t *adapter) 1145 { 1146 int ret; 1147 u32 vers; 1148 unsigned int major, minor; 1149 1150 if (adapter->params.rev == T3_REV_A) 1151 return 0; 1152 1153 1154 ret = t3_get_tp_version(adapter, &vers); 1155 if (ret) 1156 return ret; 1157 1158 vers = t3_read_reg(adapter, A_TP_EMBED_OP_FIELD1); 1159 1160 major = G_TP_VERSION_MAJOR(vers); 1161 minor = G_TP_VERSION_MINOR(vers); 1162 1163 if (major == TP_VERSION_MAJOR && minor == TP_VERSION_MINOR) 1164 return 0; 1165 else { 1166 CH_ERR(adapter, "found wrong TP version (%u.%u), " 1167 "driver compiled for version %d.%d\n", major, minor, 1168 TP_VERSION_MAJOR, TP_VERSION_MINOR); 1169 } 1170 return -EINVAL; 1171 } 1172 1173 /** 1174 * t3_check_tpsram - check if provided protocol SRAM 1175 * is compatible with this driver 1176 * @adapter: the adapter 1177 * @tp_sram: the firmware image to write 1178 * @size: image size 1179 * 1180 * Checks if an adapter's tp sram is compatible with the driver. 1181 * Returns 0 if the versions are compatible, a negative error otherwise. 1182 */ 1183 int t3_check_tpsram(adapter_t *adapter, const u8 *tp_sram, unsigned int size) 1184 { 1185 u32 csum; 1186 unsigned int i; 1187 const u32 *p = (const u32 *)tp_sram; 1188 1189 /* Verify checksum */ 1190 for (csum = 0, i = 0; i < size / sizeof(csum); i++) 1191 csum += ntohl(p[i]); 1192 if (csum != 0xffffffff) { 1193 CH_ERR(adapter, "corrupted protocol SRAM image, checksum %u\n", 1194 csum); 1195 return -EINVAL; 1196 } 1197 1198 return 0; 1199 } 1200 1201 enum fw_version_type { 1202 FW_VERSION_N3, 1203 FW_VERSION_T3 1204 }; 1205 1206 /** 1207 * t3_get_fw_version - read the firmware version 1208 * @adapter: the adapter 1209 * @vers: where to place the version 1210 * 1211 * Reads the FW version from flash. Note that we had to move the version 1212 * due to FW size. If we don't find a valid FW version in the new location 1213 * we fall back and read the old location. 1214 */ 1215 int t3_get_fw_version(adapter_t *adapter, u32 *vers) 1216 { 1217 int ret = t3_read_flash(adapter, FW_VERS_ADDR, 1, vers, 0); 1218 if (!ret && *vers != 0xffffffff) 1219 return 0; 1220 else 1221 return t3_read_flash(adapter, FW_VERS_ADDR_PRE8, 1, vers, 0); 1222 } 1223 1224 /** 1225 * t3_check_fw_version - check if the FW is compatible with this driver 1226 * @adapter: the adapter 1227 * 1228 * Checks if an adapter's FW is compatible with the driver. Returns 0 1229 * if the versions are compatible, a negative error otherwise. 1230 */ 1231 int t3_check_fw_version(adapter_t *adapter) 1232 { 1233 int ret; 1234 u32 vers; 1235 unsigned int type, major, minor; 1236 1237 ret = t3_get_fw_version(adapter, &vers); 1238 if (ret) 1239 return ret; 1240 1241 type = G_FW_VERSION_TYPE(vers); 1242 major = G_FW_VERSION_MAJOR(vers); 1243 minor = G_FW_VERSION_MINOR(vers); 1244 1245 if (type == FW_VERSION_T3 && major == FW_VERSION_MAJOR && 1246 minor == FW_VERSION_MINOR) 1247 return 0; 1248 1249 else if (major != FW_VERSION_MAJOR || minor < FW_VERSION_MINOR) 1250 CH_WARN(adapter, "found old FW minor version(%u.%u), " 1251 "driver compiled for version %u.%u\n", major, minor, 1252 FW_VERSION_MAJOR, FW_VERSION_MINOR); 1253 else { 1254 CH_WARN(adapter, "found newer FW version(%u.%u), " 1255 "driver compiled for version %u.%u\n", major, minor, 1256 FW_VERSION_MAJOR, FW_VERSION_MINOR); 1257 return 0; 1258 } 1259 return -EINVAL; 1260 } 1261 1262 /** 1263 * t3_flash_erase_sectors - erase a range of flash sectors 1264 * @adapter: the adapter 1265 * @start: the first sector to erase 1266 * @end: the last sector to erase 1267 * 1268 * Erases the sectors in the given range. 1269 */ 1270 static int t3_flash_erase_sectors(adapter_t *adapter, int start, int end) 1271 { 1272 while (start <= end) { 1273 int ret; 1274 1275 if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 || 1276 (ret = sf1_write(adapter, 4, 0, 1277 SF_ERASE_SECTOR | (start << 8))) != 0 || 1278 (ret = flash_wait_op(adapter, 5, 500)) != 0) 1279 return ret; 1280 start++; 1281 } 1282 return 0; 1283 } 1284 1285 /* 1286 * t3_load_fw - download firmware 1287 * @adapter: the adapter 1288 * @fw_data: the firmware image to write 1289 * @size: image size 1290 * 1291 * Write the supplied firmware image to the card's serial flash. 1292 * The FW image has the following sections: @size - 8 bytes of code and 1293 * data, followed by 4 bytes of FW version, followed by the 32-bit 1294 * 1's complement checksum of the whole image. 1295 */ 1296 int t3_load_fw(adapter_t *adapter, const u8 *fw_data, unsigned int size) 1297 { 1298 u32 version, csum, fw_version_addr; 1299 unsigned int i; 1300 const u32 *p = (const u32 *)fw_data; 1301 int ret, addr, fw_sector = FW_FLASH_BOOT_ADDR >> 16; 1302 1303 if ((size & 3) || size < FW_MIN_SIZE) 1304 return -EINVAL; 1305 if (size - 8 > FW_MAX_SIZE) 1306 return -EFBIG; 1307 1308 version = ntohl(*(const u32 *)(fw_data + size - 8)); 1309 if (G_FW_VERSION_MAJOR(version) < 8) { 1310 1311 fw_version_addr = FW_VERS_ADDR_PRE8; 1312 1313 if (size - 8 > FW_MAX_SIZE_PRE8) 1314 return -EFBIG; 1315 } else 1316 fw_version_addr = FW_VERS_ADDR; 1317 1318 for (csum = 0, i = 0; i < size / sizeof(csum); i++) 1319 csum += ntohl(p[i]); 1320 if (csum != 0xffffffff) { 1321 CH_ERR(adapter, "corrupted firmware image, checksum %u\n", 1322 csum); 1323 return -EINVAL; 1324 } 1325 1326 ret = t3_flash_erase_sectors(adapter, fw_sector, fw_sector); 1327 if (ret) 1328 goto out; 1329 1330 size -= 8; /* trim off version and checksum */ 1331 for (addr = FW_FLASH_BOOT_ADDR; size; ) { 1332 unsigned int chunk_size = min(size, 256U); 1333 1334 ret = t3_write_flash(adapter, addr, chunk_size, fw_data, 1); 1335 if (ret) 1336 goto out; 1337 1338 addr += chunk_size; 1339 fw_data += chunk_size; 1340 size -= chunk_size; 1341 } 1342 1343 ret = t3_write_flash(adapter, fw_version_addr, 4, fw_data, 1); 1344 out: 1345 if (ret) 1346 CH_ERR(adapter, "firmware download failed, error %d\n", ret); 1347 return ret; 1348 } 1349 1350 /* 1351 * t3_load_boot - download boot flash 1352 * @adapter: the adapter 1353 * @boot_data: the boot image to write 1354 * @size: image size 1355 * 1356 * Write the supplied boot image to the card's serial flash. 1357 * The boot image has the following sections: a 28-byte header and the 1358 * boot image. 1359 */ 1360 int t3_load_boot(adapter_t *adapter, u8 *boot_data, unsigned int size) 1361 { 1362 boot_header_t *header = (boot_header_t *)boot_data; 1363 int ret; 1364 unsigned int addr; 1365 unsigned int boot_sector = BOOT_FLASH_BOOT_ADDR >> 16; 1366 unsigned int boot_end = (BOOT_FLASH_BOOT_ADDR + size - 1) >> 16; 1367 1368 /* 1369 * Perform some primitive sanity testing to avoid accidentally 1370 * writing garbage over the boot sectors. We ought to check for 1371 * more but it's not worth it for now ... 1372 */ 1373 if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) { 1374 CH_ERR(adapter, "boot image too small/large\n"); 1375 return -EFBIG; 1376 } 1377 if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE) { 1378 CH_ERR(adapter, "boot image missing signature\n"); 1379 return -EINVAL; 1380 } 1381 if (header->length * BOOT_SIZE_INC != size) { 1382 CH_ERR(adapter, "boot image header length != image length\n"); 1383 return -EINVAL; 1384 } 1385 1386 ret = t3_flash_erase_sectors(adapter, boot_sector, boot_end); 1387 if (ret) 1388 goto out; 1389 1390 for (addr = BOOT_FLASH_BOOT_ADDR; size; ) { 1391 unsigned int chunk_size = min(size, 256U); 1392 1393 ret = t3_write_flash(adapter, addr, chunk_size, boot_data, 0); 1394 if (ret) 1395 goto out; 1396 1397 addr += chunk_size; 1398 boot_data += chunk_size; 1399 size -= chunk_size; 1400 } 1401 1402 out: 1403 if (ret) 1404 CH_ERR(adapter, "boot image download failed, error %d\n", ret); 1405 return ret; 1406 } 1407 1408 #define CIM_CTL_BASE 0x2000 1409 1410 /** 1411 * t3_cim_ctl_blk_read - read a block from CIM control region 1412 * @adap: the adapter 1413 * @addr: the start address within the CIM control region 1414 * @n: number of words to read 1415 * @valp: where to store the result 1416 * 1417 * Reads a block of 4-byte words from the CIM control region. 1418 */ 1419 int t3_cim_ctl_blk_read(adapter_t *adap, unsigned int addr, unsigned int n, 1420 unsigned int *valp) 1421 { 1422 int ret = 0; 1423 1424 if (t3_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY) 1425 return -EBUSY; 1426 1427 for ( ; !ret && n--; addr += 4) { 1428 t3_write_reg(adap, A_CIM_HOST_ACC_CTRL, CIM_CTL_BASE + addr); 1429 ret = t3_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY, 1430 0, 5, 2); 1431 if (!ret) 1432 *valp++ = t3_read_reg(adap, A_CIM_HOST_ACC_DATA); 1433 } 1434 return ret; 1435 } 1436 1437 static void t3_gate_rx_traffic(struct cmac *mac, u32 *rx_cfg, 1438 u32 *rx_hash_high, u32 *rx_hash_low) 1439 { 1440 /* stop Rx unicast traffic */ 1441 t3_mac_disable_exact_filters(mac); 1442 1443 /* stop broadcast, multicast, promiscuous mode traffic */ 1444 *rx_cfg = t3_read_reg(mac->adapter, A_XGM_RX_CFG + mac->offset); 1445 t3_set_reg_field(mac->adapter, A_XGM_RX_CFG + mac->offset, 1446 F_ENHASHMCAST | F_DISBCAST | F_COPYALLFRAMES, 1447 F_DISBCAST); 1448 1449 *rx_hash_high = t3_read_reg(mac->adapter, A_XGM_RX_HASH_HIGH + 1450 mac->offset); 1451 t3_write_reg(mac->adapter, A_XGM_RX_HASH_HIGH + mac->offset, 0); 1452 1453 *rx_hash_low = t3_read_reg(mac->adapter, A_XGM_RX_HASH_LOW + 1454 mac->offset); 1455 t3_write_reg(mac->adapter, A_XGM_RX_HASH_LOW + mac->offset, 0); 1456 1457 /* Leave time to drain max RX fifo */ 1458 msleep(1); 1459 } 1460 1461 static void t3_open_rx_traffic(struct cmac *mac, u32 rx_cfg, 1462 u32 rx_hash_high, u32 rx_hash_low) 1463 { 1464 t3_mac_enable_exact_filters(mac); 1465 t3_set_reg_field(mac->adapter, A_XGM_RX_CFG + mac->offset, 1466 F_ENHASHMCAST | F_DISBCAST | F_COPYALLFRAMES, 1467 rx_cfg); 1468 t3_write_reg(mac->adapter, A_XGM_RX_HASH_HIGH + mac->offset, 1469 rx_hash_high); 1470 t3_write_reg(mac->adapter, A_XGM_RX_HASH_LOW + mac->offset, 1471 rx_hash_low); 1472 } 1473 1474 static int t3_detect_link_fault(adapter_t *adapter, int port_id) 1475 { 1476 struct port_info *pi = adap2pinfo(adapter, port_id); 1477 struct cmac *mac = &pi->mac; 1478 uint32_t rx_cfg, rx_hash_high, rx_hash_low; 1479 int link_fault; 1480 1481 /* stop rx */ 1482 t3_gate_rx_traffic(mac, &rx_cfg, &rx_hash_high, &rx_hash_low); 1483 t3_write_reg(adapter, A_XGM_RX_CTRL + mac->offset, 0); 1484 1485 /* clear status and make sure intr is enabled */ 1486 (void) t3_read_reg(adapter, A_XGM_INT_STATUS + mac->offset); 1487 t3_xgm_intr_enable(adapter, port_id); 1488 1489 /* restart rx */ 1490 t3_write_reg(adapter, A_XGM_RX_CTRL + mac->offset, F_RXEN); 1491 t3_open_rx_traffic(mac, rx_cfg, rx_hash_high, rx_hash_low); 1492 1493 link_fault = t3_read_reg(adapter, A_XGM_INT_STATUS + mac->offset); 1494 return (link_fault & F_LINKFAULTCHANGE ? 1 : 0); 1495 } 1496 1497 static void t3_clear_faults(adapter_t *adapter, int port_id) 1498 { 1499 struct port_info *pi = adap2pinfo(adapter, port_id); 1500 struct cmac *mac = &pi->mac; 1501 1502 if (adapter->params.nports <= 2) { 1503 t3_xgm_intr_disable(adapter, pi->port_id); 1504 t3_read_reg(adapter, A_XGM_INT_STATUS + mac->offset); 1505 t3_write_reg(adapter, A_XGM_INT_CAUSE + mac->offset, F_XGM_INT); 1506 t3_set_reg_field(adapter, A_XGM_INT_ENABLE + mac->offset, 1507 F_XGM_INT, F_XGM_INT); 1508 t3_xgm_intr_enable(adapter, pi->port_id); 1509 } 1510 } 1511 1512 /** 1513 * t3_link_changed - handle interface link changes 1514 * @adapter: the adapter 1515 * @port_id: the port index that changed link state 1516 * 1517 * Called when a port's link settings change to propagate the new values 1518 * to the associated PHY and MAC. After performing the common tasks it 1519 * invokes an OS-specific handler. 1520 */ 1521 void t3_link_changed(adapter_t *adapter, int port_id) 1522 { 1523 int link_ok, speed, duplex, fc, link_fault; 1524 struct port_info *pi = adap2pinfo(adapter, port_id); 1525 struct cphy *phy = &pi->phy; 1526 struct cmac *mac = &pi->mac; 1527 struct link_config *lc = &pi->link_config; 1528 1529 link_ok = lc->link_ok; 1530 speed = lc->speed; 1531 duplex = lc->duplex; 1532 fc = lc->fc; 1533 link_fault = 0; 1534 1535 phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc); 1536 1537 if (link_ok == 0) 1538 pi->link_fault = LF_NO; 1539 1540 if (lc->requested_fc & PAUSE_AUTONEG) 1541 fc &= lc->requested_fc; 1542 else 1543 fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); 1544 1545 /* Update mac speed before checking for link fault. */ 1546 if (link_ok && speed >= 0 && lc->autoneg == AUTONEG_ENABLE && 1547 (speed != lc->speed || duplex != lc->duplex || fc != lc->fc)) 1548 t3_mac_set_speed_duplex_fc(mac, speed, duplex, fc); 1549 1550 /* 1551 * Check for link faults if any of these is true: 1552 * a) A link fault is suspected, and PHY says link ok 1553 * b) PHY link transitioned from down -> up 1554 */ 1555 if (adapter->params.nports <= 2 && 1556 ((pi->link_fault && link_ok) || (!lc->link_ok && link_ok))) { 1557 1558 link_fault = t3_detect_link_fault(adapter, port_id); 1559 if (link_fault) { 1560 if (pi->link_fault != LF_YES) { 1561 mac->stats.link_faults++; 1562 pi->link_fault = LF_YES; 1563 } 1564 1565 if (uses_xaui(adapter)) { 1566 if (adapter->params.rev >= T3_REV_C) 1567 t3c_pcs_force_los(mac); 1568 else 1569 t3b_pcs_reset(mac); 1570 } 1571 1572 /* Don't report link up */ 1573 link_ok = 0; 1574 } else { 1575 /* clear faults here if this was a false alarm. */ 1576 if (pi->link_fault == LF_MAYBE && 1577 link_ok && lc->link_ok) 1578 t3_clear_faults(adapter, port_id); 1579 1580 pi->link_fault = LF_NO; 1581 } 1582 } 1583 1584 if (link_ok == lc->link_ok && speed == lc->speed && 1585 duplex == lc->duplex && fc == lc->fc) 1586 return; /* nothing changed */ 1587 1588 lc->link_ok = (unsigned char)link_ok; 1589 lc->speed = speed < 0 ? SPEED_INVALID : speed; 1590 lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex; 1591 lc->fc = fc; 1592 1593 if (link_ok) { 1594 1595 /* down -> up, or up -> up with changed settings */ 1596 1597 if (adapter->params.rev > 0 && uses_xaui(adapter)) { 1598 1599 if (adapter->params.rev >= T3_REV_C) 1600 t3c_pcs_force_los(mac); 1601 else 1602 t3b_pcs_reset(mac); 1603 1604 t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset, 1605 F_TXACTENABLE | F_RXEN); 1606 } 1607 1608 /* disable TX FIFO drain */ 1609 t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + mac->offset, 1610 F_ENDROPPKT, 0); 1611 1612 t3_mac_enable(mac, MAC_DIRECTION_TX | MAC_DIRECTION_RX); 1613 t3_set_reg_field(adapter, A_XGM_STAT_CTRL + mac->offset, 1614 F_CLRSTATS, 1); 1615 t3_clear_faults(adapter, port_id); 1616 1617 } else { 1618 1619 /* up -> down */ 1620 1621 if (adapter->params.rev > 0 && uses_xaui(adapter)) { 1622 t3_write_reg(adapter, 1623 A_XGM_XAUI_ACT_CTRL + mac->offset, 0); 1624 } 1625 1626 t3_xgm_intr_disable(adapter, pi->port_id); 1627 if (adapter->params.nports <= 2) { 1628 t3_set_reg_field(adapter, 1629 A_XGM_INT_ENABLE + mac->offset, 1630 F_XGM_INT, 0); 1631 1632 t3_mac_disable(mac, MAC_DIRECTION_RX); 1633 1634 /* 1635 * Make sure Tx FIFO continues to drain, even as rxen is 1636 * left high to help detect and indicate remote faults. 1637 */ 1638 t3_set_reg_field(adapter, 1639 A_XGM_TXFIFO_CFG + mac->offset, 0, F_ENDROPPKT); 1640 t3_write_reg(adapter, A_XGM_RX_CTRL + mac->offset, 0); 1641 t3_write_reg(adapter, 1642 A_XGM_TX_CTRL + mac->offset, F_TXEN); 1643 t3_write_reg(adapter, 1644 A_XGM_RX_CTRL + mac->offset, F_RXEN); 1645 } 1646 } 1647 1648 t3_os_link_changed(adapter, port_id, link_ok, speed, duplex, fc, 1649 mac->was_reset); 1650 mac->was_reset = 0; 1651 } 1652 1653 /** 1654 * t3_link_start - apply link configuration to MAC/PHY 1655 * @phy: the PHY to setup 1656 * @mac: the MAC to setup 1657 * @lc: the requested link configuration 1658 * 1659 * Set up a port's MAC and PHY according to a desired link configuration. 1660 * - If the PHY can auto-negotiate first decide what to advertise, then 1661 * enable/disable auto-negotiation as desired, and reset. 1662 * - If the PHY does not auto-negotiate just reset it. 1663 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC, 1664 * otherwise do it later based on the outcome of auto-negotiation. 1665 */ 1666 int t3_link_start(struct cphy *phy, struct cmac *mac, struct link_config *lc) 1667 { 1668 unsigned int fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); 1669 1670 lc->link_ok = 0; 1671 if (lc->supported & SUPPORTED_Autoneg) { 1672 lc->advertising &= ~(ADVERTISED_Asym_Pause | ADVERTISED_Pause); 1673 if (fc) { 1674 lc->advertising |= ADVERTISED_Asym_Pause; 1675 if (fc & PAUSE_RX) 1676 lc->advertising |= ADVERTISED_Pause; 1677 } 1678 1679 phy->ops->advertise(phy, lc->advertising); 1680 1681 if (lc->autoneg == AUTONEG_DISABLE) { 1682 lc->speed = lc->requested_speed; 1683 lc->duplex = lc->requested_duplex; 1684 lc->fc = (unsigned char)fc; 1685 t3_mac_set_speed_duplex_fc(mac, lc->speed, lc->duplex, 1686 fc); 1687 /* Also disables autoneg */ 1688 phy->ops->set_speed_duplex(phy, lc->speed, lc->duplex); 1689 /* PR 5666. Power phy up when doing an ifup */ 1690 if (!is_10G(phy->adapter)) 1691 phy->ops->power_down(phy, 0); 1692 } else 1693 phy->ops->autoneg_enable(phy); 1694 } else { 1695 t3_mac_set_speed_duplex_fc(mac, -1, -1, fc); 1696 lc->fc = (unsigned char)fc; 1697 phy->ops->reset(phy, 0); 1698 } 1699 return 0; 1700 } 1701 1702 /** 1703 * t3_set_vlan_accel - control HW VLAN extraction 1704 * @adapter: the adapter 1705 * @ports: bitmap of adapter ports to operate on 1706 * @on: enable (1) or disable (0) HW VLAN extraction 1707 * 1708 * Enables or disables HW extraction of VLAN tags for the given port. 1709 */ 1710 void t3_set_vlan_accel(adapter_t *adapter, unsigned int ports, int on) 1711 { 1712 t3_set_reg_field(adapter, A_TP_OUT_CONFIG, 1713 ports << S_VLANEXTRACTIONENABLE, 1714 on ? (ports << S_VLANEXTRACTIONENABLE) : 0); 1715 } 1716 1717 struct intr_info { 1718 unsigned int mask; /* bits to check in interrupt status */ 1719 const char *msg; /* message to print or NULL */ 1720 short stat_idx; /* stat counter to increment or -1 */ 1721 unsigned short fatal; /* whether the condition reported is fatal */ 1722 }; 1723 1724 /** 1725 * t3_handle_intr_status - table driven interrupt handler 1726 * @adapter: the adapter that generated the interrupt 1727 * @reg: the interrupt status register to process 1728 * @mask: a mask to apply to the interrupt status 1729 * @acts: table of interrupt actions 1730 * @stats: statistics counters tracking interrupt occurences 1731 * 1732 * A table driven interrupt handler that applies a set of masks to an 1733 * interrupt status word and performs the corresponding actions if the 1734 * interrupts described by the mask have occured. The actions include 1735 * optionally printing a warning or alert message, and optionally 1736 * incrementing a stat counter. The table is terminated by an entry 1737 * specifying mask 0. Returns the number of fatal interrupt conditions. 1738 */ 1739 static int t3_handle_intr_status(adapter_t *adapter, unsigned int reg, 1740 unsigned int mask, 1741 const struct intr_info *acts, 1742 unsigned long *stats) 1743 { 1744 int fatal = 0; 1745 unsigned int status = t3_read_reg(adapter, reg) & mask; 1746 1747 for ( ; acts->mask; ++acts) { 1748 if (!(status & acts->mask)) continue; 1749 if (acts->fatal) { 1750 fatal++; 1751 CH_ALERT(adapter, "%s (0x%x)\n", 1752 acts->msg, status & acts->mask); 1753 } else if (acts->msg) 1754 CH_WARN(adapter, "%s (0x%x)\n", 1755 acts->msg, status & acts->mask); 1756 if (acts->stat_idx >= 0) 1757 stats[acts->stat_idx]++; 1758 } 1759 if (status) /* clear processed interrupts */ 1760 t3_write_reg(adapter, reg, status); 1761 return fatal; 1762 } 1763 1764 #define SGE_INTR_MASK (F_RSPQDISABLED | \ 1765 F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR | \ 1766 F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \ 1767 F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \ 1768 V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \ 1769 F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \ 1770 F_HIRCQPARITYERROR) 1771 #define MC5_INTR_MASK (F_PARITYERR | F_ACTRGNFULL | F_UNKNOWNCMD | \ 1772 F_REQQPARERR | F_DISPQPARERR | F_DELACTEMPTY | \ 1773 F_NFASRCHFAIL) 1774 #define MC7_INTR_MASK (F_AE | F_UE | F_CE | V_PE(M_PE)) 1775 #define XGM_INTR_MASK (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \ 1776 V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR) | \ 1777 F_TXFIFO_UNDERRUN) 1778 #define PCIX_INTR_MASK (F_MSTDETPARERR | F_SIGTARABT | F_RCVTARABT | \ 1779 F_RCVMSTABT | F_SIGSYSERR | F_DETPARERR | \ 1780 F_SPLCMPDIS | F_UNXSPLCMP | F_RCVSPLCMPERR | \ 1781 F_DETCORECCERR | F_DETUNCECCERR | F_PIOPARERR | \ 1782 V_WFPARERR(M_WFPARERR) | V_RFPARERR(M_RFPARERR) | \ 1783 V_CFPARERR(M_CFPARERR) /* | V_MSIXPARERR(M_MSIXPARERR) */) 1784 #define PCIE_INTR_MASK (F_UNXSPLCPLERRR | F_UNXSPLCPLERRC | F_PCIE_PIOPARERR |\ 1785 F_PCIE_WFPARERR | F_PCIE_RFPARERR | F_PCIE_CFPARERR | \ 1786 /* V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR) | */ \ 1787 F_RETRYBUFPARERR | F_RETRYLUTPARERR | F_RXPARERR | \ 1788 F_TXPARERR | V_BISTERR(M_BISTERR)) 1789 #define ULPRX_INTR_MASK (F_PARERRDATA | F_PARERRPCMD | F_ARBPF1PERR | \ 1790 F_ARBPF0PERR | F_ARBFPERR | F_PCMDMUXPERR | \ 1791 F_DATASELFRAMEERR1 | F_DATASELFRAMEERR0) 1792 #define ULPTX_INTR_MASK 0xfc 1793 #define CPLSW_INTR_MASK (F_CIM_OP_MAP_PERR | F_TP_FRAMING_ERROR | \ 1794 F_SGE_FRAMING_ERROR | F_CIM_FRAMING_ERROR | \ 1795 F_ZERO_SWITCH_ERROR) 1796 #define CIM_INTR_MASK (F_BLKWRPLINT | F_BLKRDPLINT | F_BLKWRCTLINT | \ 1797 F_BLKRDCTLINT | F_BLKWRFLASHINT | F_BLKRDFLASHINT | \ 1798 F_SGLWRFLASHINT | F_WRBLKFLASHINT | F_BLKWRBOOTINT | \ 1799 F_FLASHRANGEINT | F_SDRAMRANGEINT | F_RSVDSPACEINT | \ 1800 F_DRAMPARERR | F_ICACHEPARERR | F_DCACHEPARERR | \ 1801 F_OBQSGEPARERR | F_OBQULPHIPARERR | F_OBQULPLOPARERR | \ 1802 F_IBQSGELOPARERR | F_IBQSGEHIPARERR | F_IBQULPPARERR | \ 1803 F_IBQTPPARERR | F_ITAGPARERR | F_DTAGPARERR) 1804 #define PMTX_INTR_MASK (F_ZERO_C_CMD_ERROR | ICSPI_FRM_ERR | OESPI_FRM_ERR | \ 1805 V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR) | \ 1806 V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR)) 1807 #define PMRX_INTR_MASK (F_ZERO_E_CMD_ERROR | IESPI_FRM_ERR | OCSPI_FRM_ERR | \ 1808 V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR) | \ 1809 V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR)) 1810 #define MPS_INTR_MASK (V_TX0TPPARERRENB(M_TX0TPPARERRENB) | \ 1811 V_TX1TPPARERRENB(M_TX1TPPARERRENB) | \ 1812 V_RXTPPARERRENB(M_RXTPPARERRENB) | \ 1813 V_MCAPARERRENB(M_MCAPARERRENB)) 1814 #define XGM_EXTRA_INTR_MASK (F_LINKFAULTCHANGE) 1815 #define PL_INTR_MASK (F_T3DBG | F_XGMAC0_0 | F_XGMAC0_1 | F_MC5A | F_PM1_TX | \ 1816 F_PM1_RX | F_ULP2_TX | F_ULP2_RX | F_TP1 | F_CIM | \ 1817 F_MC7_CM | F_MC7_PMTX | F_MC7_PMRX | F_SGE3 | F_PCIM0 | \ 1818 F_MPS0 | F_CPL_SWITCH) 1819 /* 1820 * Interrupt handler for the PCIX1 module. 1821 */ 1822 static void pci_intr_handler(adapter_t *adapter) 1823 { 1824 static struct intr_info pcix1_intr_info[] = { 1825 { F_MSTDETPARERR, "PCI master detected parity error", -1, 1 }, 1826 { F_SIGTARABT, "PCI signaled target abort", -1, 1 }, 1827 { F_RCVTARABT, "PCI received target abort", -1, 1 }, 1828 { F_RCVMSTABT, "PCI received master abort", -1, 1 }, 1829 { F_SIGSYSERR, "PCI signaled system error", -1, 1 }, 1830 { F_DETPARERR, "PCI detected parity error", -1, 1 }, 1831 { F_SPLCMPDIS, "PCI split completion discarded", -1, 1 }, 1832 { F_UNXSPLCMP, "PCI unexpected split completion error", -1, 1 }, 1833 { F_RCVSPLCMPERR, "PCI received split completion error", -1, 1834 1 }, 1835 { F_DETCORECCERR, "PCI correctable ECC error", 1836 STAT_PCI_CORR_ECC, 0 }, 1837 { F_DETUNCECCERR, "PCI uncorrectable ECC error", -1, 1 }, 1838 { F_PIOPARERR, "PCI PIO FIFO parity error", -1, 1 }, 1839 { V_WFPARERR(M_WFPARERR), "PCI write FIFO parity error", -1, 1840 1 }, 1841 { V_RFPARERR(M_RFPARERR), "PCI read FIFO parity error", -1, 1842 1 }, 1843 { V_CFPARERR(M_CFPARERR), "PCI command FIFO parity error", -1, 1844 1 }, 1845 { V_MSIXPARERR(M_MSIXPARERR), "PCI MSI-X table/PBA parity " 1846 "error", -1, 1 }, 1847 { 0 } 1848 }; 1849 1850 if (t3_handle_intr_status(adapter, A_PCIX_INT_CAUSE, PCIX_INTR_MASK, 1851 pcix1_intr_info, adapter->irq_stats)) 1852 t3_fatal_err(adapter); 1853 } 1854 1855 /* 1856 * Interrupt handler for the PCIE module. 1857 */ 1858 static void pcie_intr_handler(adapter_t *adapter) 1859 { 1860 static struct intr_info pcie_intr_info[] = { 1861 { F_PEXERR, "PCI PEX error", -1, 1 }, 1862 { F_UNXSPLCPLERRR, 1863 "PCI unexpected split completion DMA read error", -1, 1 }, 1864 { F_UNXSPLCPLERRC, 1865 "PCI unexpected split completion DMA command error", -1, 1 }, 1866 { F_PCIE_PIOPARERR, "PCI PIO FIFO parity error", -1, 1 }, 1867 { F_PCIE_WFPARERR, "PCI write FIFO parity error", -1, 1 }, 1868 { F_PCIE_RFPARERR, "PCI read FIFO parity error", -1, 1 }, 1869 { F_PCIE_CFPARERR, "PCI command FIFO parity error", -1, 1 }, 1870 { V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR), 1871 "PCI MSI-X table/PBA parity error", -1, 1 }, 1872 { F_RETRYBUFPARERR, "PCI retry buffer parity error", -1, 1 }, 1873 { F_RETRYLUTPARERR, "PCI retry LUT parity error", -1, 1 }, 1874 { F_RXPARERR, "PCI Rx parity error", -1, 1 }, 1875 { F_TXPARERR, "PCI Tx parity error", -1, 1 }, 1876 { V_BISTERR(M_BISTERR), "PCI BIST error", -1, 1 }, 1877 { 0 } 1878 }; 1879 1880 if (t3_read_reg(adapter, A_PCIE_INT_CAUSE) & F_PEXERR) 1881 CH_ALERT(adapter, "PEX error code 0x%x\n", 1882 t3_read_reg(adapter, A_PCIE_PEX_ERR)); 1883 1884 if (t3_handle_intr_status(adapter, A_PCIE_INT_CAUSE, PCIE_INTR_MASK, 1885 pcie_intr_info, adapter->irq_stats)) 1886 t3_fatal_err(adapter); 1887 } 1888 1889 /* 1890 * TP interrupt handler. 1891 */ 1892 static void tp_intr_handler(adapter_t *adapter) 1893 { 1894 static struct intr_info tp_intr_info[] = { 1895 { 0xffffff, "TP parity error", -1, 1 }, 1896 { 0x1000000, "TP out of Rx pages", -1, 1 }, 1897 { 0x2000000, "TP out of Tx pages", -1, 1 }, 1898 { 0 } 1899 }; 1900 static struct intr_info tp_intr_info_t3c[] = { 1901 { 0x1fffffff, "TP parity error", -1, 1 }, 1902 { F_FLMRXFLSTEMPTY, "TP out of Rx pages", -1, 1 }, 1903 { F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 }, 1904 { 0 } 1905 }; 1906 1907 if (t3_handle_intr_status(adapter, A_TP_INT_CAUSE, 0xffffffff, 1908 adapter->params.rev < T3_REV_C ? 1909 tp_intr_info : tp_intr_info_t3c, NULL)) 1910 t3_fatal_err(adapter); 1911 } 1912 1913 /* 1914 * CIM interrupt handler. 1915 */ 1916 static void cim_intr_handler(adapter_t *adapter) 1917 { 1918 static struct intr_info cim_intr_info[] = { 1919 { F_RSVDSPACEINT, "CIM reserved space write", -1, 1 }, 1920 { F_SDRAMRANGEINT, "CIM SDRAM address out of range", -1, 1 }, 1921 { F_FLASHRANGEINT, "CIM flash address out of range", -1, 1 }, 1922 { F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1 }, 1923 { F_WRBLKFLASHINT, "CIM write to cached flash space", -1, 1 }, 1924 { F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1 }, 1925 { F_BLKRDFLASHINT, "CIM block read from flash space", -1, 1 }, 1926 { F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1 }, 1927 { F_BLKRDCTLINT, "CIM block read from CTL space", -1, 1 }, 1928 { F_BLKWRCTLINT, "CIM block write to CTL space", -1, 1 }, 1929 { F_BLKRDPLINT, "CIM block read from PL space", -1, 1 }, 1930 { F_BLKWRPLINT, "CIM block write to PL space", -1, 1 }, 1931 { F_DRAMPARERR, "CIM DRAM parity error", -1, 1 }, 1932 { F_ICACHEPARERR, "CIM icache parity error", -1, 1 }, 1933 { F_DCACHEPARERR, "CIM dcache parity error", -1, 1 }, 1934 { F_OBQSGEPARERR, "CIM OBQ SGE parity error", -1, 1 }, 1935 { F_OBQULPHIPARERR, "CIM OBQ ULPHI parity error", -1, 1 }, 1936 { F_OBQULPLOPARERR, "CIM OBQ ULPLO parity error", -1, 1 }, 1937 { F_IBQSGELOPARERR, "CIM IBQ SGELO parity error", -1, 1 }, 1938 { F_IBQSGEHIPARERR, "CIM IBQ SGEHI parity error", -1, 1 }, 1939 { F_IBQULPPARERR, "CIM IBQ ULP parity error", -1, 1 }, 1940 { F_IBQTPPARERR, "CIM IBQ TP parity error", -1, 1 }, 1941 { F_ITAGPARERR, "CIM itag parity error", -1, 1 }, 1942 { F_DTAGPARERR, "CIM dtag parity error", -1, 1 }, 1943 { 0 } 1944 }; 1945 1946 if (t3_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE, CIM_INTR_MASK, 1947 cim_intr_info, NULL)) 1948 t3_fatal_err(adapter); 1949 } 1950 1951 /* 1952 * ULP RX interrupt handler. 1953 */ 1954 static void ulprx_intr_handler(adapter_t *adapter) 1955 { 1956 static struct intr_info ulprx_intr_info[] = { 1957 { F_PARERRDATA, "ULP RX data parity error", -1, 1 }, 1958 { F_PARERRPCMD, "ULP RX command parity error", -1, 1 }, 1959 { F_ARBPF1PERR, "ULP RX ArbPF1 parity error", -1, 1 }, 1960 { F_ARBPF0PERR, "ULP RX ArbPF0 parity error", -1, 1 }, 1961 { F_ARBFPERR, "ULP RX ArbF parity error", -1, 1 }, 1962 { F_PCMDMUXPERR, "ULP RX PCMDMUX parity error", -1, 1 }, 1963 { F_DATASELFRAMEERR1, "ULP RX frame error", -1, 1 }, 1964 { F_DATASELFRAMEERR0, "ULP RX frame error", -1, 1 }, 1965 { 0 } 1966 }; 1967 1968 if (t3_handle_intr_status(adapter, A_ULPRX_INT_CAUSE, 0xffffffff, 1969 ulprx_intr_info, NULL)) 1970 t3_fatal_err(adapter); 1971 } 1972 1973 /* 1974 * ULP TX interrupt handler. 1975 */ 1976 static void ulptx_intr_handler(adapter_t *adapter) 1977 { 1978 static struct intr_info ulptx_intr_info[] = { 1979 { F_PBL_BOUND_ERR_CH0, "ULP TX channel 0 PBL out of bounds", 1980 STAT_ULP_CH0_PBL_OOB, 0 }, 1981 { F_PBL_BOUND_ERR_CH1, "ULP TX channel 1 PBL out of bounds", 1982 STAT_ULP_CH1_PBL_OOB, 0 }, 1983 { 0xfc, "ULP TX parity error", -1, 1 }, 1984 { 0 } 1985 }; 1986 1987 if (t3_handle_intr_status(adapter, A_ULPTX_INT_CAUSE, 0xffffffff, 1988 ulptx_intr_info, adapter->irq_stats)) 1989 t3_fatal_err(adapter); 1990 } 1991 1992 #define ICSPI_FRM_ERR (F_ICSPI0_FIFO2X_RX_FRAMING_ERROR | \ 1993 F_ICSPI1_FIFO2X_RX_FRAMING_ERROR | F_ICSPI0_RX_FRAMING_ERROR | \ 1994 F_ICSPI1_RX_FRAMING_ERROR | F_ICSPI0_TX_FRAMING_ERROR | \ 1995 F_ICSPI1_TX_FRAMING_ERROR) 1996 #define OESPI_FRM_ERR (F_OESPI0_RX_FRAMING_ERROR | \ 1997 F_OESPI1_RX_FRAMING_ERROR | F_OESPI0_TX_FRAMING_ERROR | \ 1998 F_OESPI1_TX_FRAMING_ERROR | F_OESPI0_OFIFO2X_TX_FRAMING_ERROR | \ 1999 F_OESPI1_OFIFO2X_TX_FRAMING_ERROR) 2000 2001 /* 2002 * PM TX interrupt handler. 2003 */ 2004 static void pmtx_intr_handler(adapter_t *adapter) 2005 { 2006 static struct intr_info pmtx_intr_info[] = { 2007 { F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 }, 2008 { ICSPI_FRM_ERR, "PMTX ispi framing error", -1, 1 }, 2009 { OESPI_FRM_ERR, "PMTX ospi framing error", -1, 1 }, 2010 { V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR), 2011 "PMTX ispi parity error", -1, 1 }, 2012 { V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR), 2013 "PMTX ospi parity error", -1, 1 }, 2014 { 0 } 2015 }; 2016 2017 if (t3_handle_intr_status(adapter, A_PM1_TX_INT_CAUSE, 0xffffffff, 2018 pmtx_intr_info, NULL)) 2019 t3_fatal_err(adapter); 2020 } 2021 2022 #define IESPI_FRM_ERR (F_IESPI0_FIFO2X_RX_FRAMING_ERROR | \ 2023 F_IESPI1_FIFO2X_RX_FRAMING_ERROR | F_IESPI0_RX_FRAMING_ERROR | \ 2024 F_IESPI1_RX_FRAMING_ERROR | F_IESPI0_TX_FRAMING_ERROR | \ 2025 F_IESPI1_TX_FRAMING_ERROR) 2026 #define OCSPI_FRM_ERR (F_OCSPI0_RX_FRAMING_ERROR | \ 2027 F_OCSPI1_RX_FRAMING_ERROR | F_OCSPI0_TX_FRAMING_ERROR | \ 2028 F_OCSPI1_TX_FRAMING_ERROR | F_OCSPI0_OFIFO2X_TX_FRAMING_ERROR | \ 2029 F_OCSPI1_OFIFO2X_TX_FRAMING_ERROR) 2030 2031 /* 2032 * PM RX interrupt handler. 2033 */ 2034 static void pmrx_intr_handler(adapter_t *adapter) 2035 { 2036 static struct intr_info pmrx_intr_info[] = { 2037 { F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 }, 2038 { IESPI_FRM_ERR, "PMRX ispi framing error", -1, 1 }, 2039 { OCSPI_FRM_ERR, "PMRX ospi framing error", -1, 1 }, 2040 { V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR), 2041 "PMRX ispi parity error", -1, 1 }, 2042 { V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR), 2043 "PMRX ospi parity error", -1, 1 }, 2044 { 0 } 2045 }; 2046 2047 if (t3_handle_intr_status(adapter, A_PM1_RX_INT_CAUSE, 0xffffffff, 2048 pmrx_intr_info, NULL)) 2049 t3_fatal_err(adapter); 2050 } 2051 2052 /* 2053 * CPL switch interrupt handler. 2054 */ 2055 static void cplsw_intr_handler(adapter_t *adapter) 2056 { 2057 static struct intr_info cplsw_intr_info[] = { 2058 { F_CIM_OP_MAP_PERR, "CPL switch CIM parity error", -1, 1 }, 2059 { F_CIM_OVFL_ERROR, "CPL switch CIM overflow", -1, 1 }, 2060 { F_TP_FRAMING_ERROR, "CPL switch TP framing error", -1, 1 }, 2061 { F_SGE_FRAMING_ERROR, "CPL switch SGE framing error", -1, 1 }, 2062 { F_CIM_FRAMING_ERROR, "CPL switch CIM framing error", -1, 1 }, 2063 { F_ZERO_SWITCH_ERROR, "CPL switch no-switch error", -1, 1 }, 2064 { 0 } 2065 }; 2066 2067 if (t3_handle_intr_status(adapter, A_CPL_INTR_CAUSE, 0xffffffff, 2068 cplsw_intr_info, NULL)) 2069 t3_fatal_err(adapter); 2070 } 2071 2072 /* 2073 * MPS interrupt handler. 2074 */ 2075 static void mps_intr_handler(adapter_t *adapter) 2076 { 2077 static struct intr_info mps_intr_info[] = { 2078 { 0x1ff, "MPS parity error", -1, 1 }, 2079 { 0 } 2080 }; 2081 2082 if (t3_handle_intr_status(adapter, A_MPS_INT_CAUSE, 0xffffffff, 2083 mps_intr_info, NULL)) 2084 t3_fatal_err(adapter); 2085 } 2086 2087 #define MC7_INTR_FATAL (F_UE | V_PE(M_PE) | F_AE) 2088 2089 /* 2090 * MC7 interrupt handler. 2091 */ 2092 static void mc7_intr_handler(struct mc7 *mc7) 2093 { 2094 adapter_t *adapter = mc7->adapter; 2095 u32 cause = t3_read_reg(adapter, mc7->offset + A_MC7_INT_CAUSE); 2096 2097 if (cause & F_CE) { 2098 mc7->stats.corr_err++; 2099 CH_WARN(adapter, "%s MC7 correctable error at addr 0x%x, " 2100 "data 0x%x 0x%x 0x%x\n", mc7->name, 2101 t3_read_reg(adapter, mc7->offset + A_MC7_CE_ADDR), 2102 t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA0), 2103 t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA1), 2104 t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA2)); 2105 } 2106 2107 if (cause & F_UE) { 2108 mc7->stats.uncorr_err++; 2109 CH_ALERT(adapter, "%s MC7 uncorrectable error at addr 0x%x, " 2110 "data 0x%x 0x%x 0x%x\n", mc7->name, 2111 t3_read_reg(adapter, mc7->offset + A_MC7_UE_ADDR), 2112 t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA0), 2113 t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA1), 2114 t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA2)); 2115 } 2116 2117 if (G_PE(cause)) { 2118 mc7->stats.parity_err++; 2119 CH_ALERT(adapter, "%s MC7 parity error 0x%x\n", 2120 mc7->name, G_PE(cause)); 2121 } 2122 2123 if (cause & F_AE) { 2124 u32 addr = 0; 2125 2126 if (adapter->params.rev > 0) 2127 addr = t3_read_reg(adapter, 2128 mc7->offset + A_MC7_ERR_ADDR); 2129 mc7->stats.addr_err++; 2130 CH_ALERT(adapter, "%s MC7 address error: 0x%x\n", 2131 mc7->name, addr); 2132 } 2133 2134 if (cause & MC7_INTR_FATAL) 2135 t3_fatal_err(adapter); 2136 2137 t3_write_reg(adapter, mc7->offset + A_MC7_INT_CAUSE, cause); 2138 } 2139 2140 #define XGM_INTR_FATAL (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \ 2141 V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR)) 2142 /* 2143 * XGMAC interrupt handler. 2144 */ 2145 static int mac_intr_handler(adapter_t *adap, unsigned int idx) 2146 { 2147 u32 cause; 2148 struct port_info *pi; 2149 struct cmac *mac; 2150 2151 idx = idx == 0 ? 0 : adapter_info(adap)->nports0; /* MAC idx -> port */ 2152 pi = adap2pinfo(adap, idx); 2153 mac = &pi->mac; 2154 2155 /* 2156 * We mask out interrupt causes for which we're not taking interrupts. 2157 * This allows us to use polling logic to monitor some of the other 2158 * conditions when taking interrupts would impose too much load on the 2159 * system. 2160 */ 2161 cause = (t3_read_reg(adap, A_XGM_INT_CAUSE + mac->offset) 2162 & ~(F_RXFIFO_OVERFLOW)); 2163 2164 if (cause & V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR)) { 2165 mac->stats.tx_fifo_parity_err++; 2166 CH_ALERT(adap, "port%d: MAC TX FIFO parity error\n", idx); 2167 } 2168 if (cause & V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR)) { 2169 mac->stats.rx_fifo_parity_err++; 2170 CH_ALERT(adap, "port%d: MAC RX FIFO parity error\n", idx); 2171 } 2172 if (cause & F_TXFIFO_UNDERRUN) 2173 mac->stats.tx_fifo_urun++; 2174 if (cause & F_RXFIFO_OVERFLOW) 2175 mac->stats.rx_fifo_ovfl++; 2176 if (cause & V_SERDES_LOS(M_SERDES_LOS)) 2177 mac->stats.serdes_signal_loss++; 2178 if (cause & F_XAUIPCSCTCERR) 2179 mac->stats.xaui_pcs_ctc_err++; 2180 if (cause & F_XAUIPCSALIGNCHANGE) 2181 mac->stats.xaui_pcs_align_change++; 2182 if (cause & F_XGM_INT & 2183 t3_read_reg(adap, A_XGM_INT_ENABLE + mac->offset)) { 2184 t3_set_reg_field(adap, A_XGM_INT_ENABLE + mac->offset, 2185 F_XGM_INT, 0); 2186 2187 /* link fault suspected */ 2188 pi->link_fault = LF_MAYBE; 2189 t3_os_link_intr(pi); 2190 } 2191 2192 t3_write_reg(adap, A_XGM_INT_CAUSE + mac->offset, cause); 2193 2194 if (cause & XGM_INTR_FATAL) 2195 t3_fatal_err(adap); 2196 2197 return cause != 0; 2198 } 2199 2200 /* 2201 * Interrupt handler for PHY events. 2202 */ 2203 static int phy_intr_handler(adapter_t *adapter) 2204 { 2205 u32 i, cause = t3_read_reg(adapter, A_T3DBG_INT_CAUSE); 2206 2207 for_each_port(adapter, i) { 2208 struct port_info *p = adap2pinfo(adapter, i); 2209 2210 if (!(p->phy.caps & SUPPORTED_IRQ)) 2211 continue; 2212 2213 if (cause & (1 << adapter_info(adapter)->gpio_intr[i])) { 2214 int phy_cause = p->phy.ops->intr_handler(&p->phy); 2215 2216 if (phy_cause & cphy_cause_link_change) 2217 t3_os_link_intr(p); 2218 if (phy_cause & cphy_cause_fifo_error) 2219 p->phy.fifo_errors++; 2220 if (phy_cause & cphy_cause_module_change) 2221 t3_os_phymod_changed(adapter, i); 2222 if (phy_cause & cphy_cause_alarm) 2223 CH_WARN(adapter, "Operation affected due to " 2224 "adverse environment. Check the spec " 2225 "sheet for corrective action."); 2226 } 2227 } 2228 2229 t3_write_reg(adapter, A_T3DBG_INT_CAUSE, cause); 2230 return 0; 2231 } 2232 2233 /** 2234 * t3_slow_intr_handler - control path interrupt handler 2235 * @adapter: the adapter 2236 * 2237 * T3 interrupt handler for non-data interrupt events, e.g., errors. 2238 * The designation 'slow' is because it involves register reads, while 2239 * data interrupts typically don't involve any MMIOs. 2240 */ 2241 int t3_slow_intr_handler(adapter_t *adapter) 2242 { 2243 u32 cause = t3_read_reg(adapter, A_PL_INT_CAUSE0); 2244 2245 cause &= adapter->slow_intr_mask; 2246 if (!cause) 2247 return 0; 2248 if (cause & F_PCIM0) { 2249 if (is_pcie(adapter)) 2250 pcie_intr_handler(adapter); 2251 else 2252 pci_intr_handler(adapter); 2253 } 2254 if (cause & F_SGE3) 2255 t3_sge_err_intr_handler(adapter); 2256 if (cause & F_MC7_PMRX) 2257 mc7_intr_handler(&adapter->pmrx); 2258 if (cause & F_MC7_PMTX) 2259 mc7_intr_handler(&adapter->pmtx); 2260 if (cause & F_MC7_CM) 2261 mc7_intr_handler(&adapter->cm); 2262 if (cause & F_CIM) 2263 cim_intr_handler(adapter); 2264 if (cause & F_TP1) 2265 tp_intr_handler(adapter); 2266 if (cause & F_ULP2_RX) 2267 ulprx_intr_handler(adapter); 2268 if (cause & F_ULP2_TX) 2269 ulptx_intr_handler(adapter); 2270 if (cause & F_PM1_RX) 2271 pmrx_intr_handler(adapter); 2272 if (cause & F_PM1_TX) 2273 pmtx_intr_handler(adapter); 2274 if (cause & F_CPL_SWITCH) 2275 cplsw_intr_handler(adapter); 2276 if (cause & F_MPS0) 2277 mps_intr_handler(adapter); 2278 if (cause & F_MC5A) 2279 t3_mc5_intr_handler(&adapter->mc5); 2280 if (cause & F_XGMAC0_0) 2281 mac_intr_handler(adapter, 0); 2282 if (cause & F_XGMAC0_1) 2283 mac_intr_handler(adapter, 1); 2284 if (cause & F_T3DBG) 2285 phy_intr_handler(adapter); 2286 2287 /* Clear the interrupts just processed. */ 2288 t3_write_reg(adapter, A_PL_INT_CAUSE0, cause); 2289 (void) t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */ 2290 return 1; 2291 } 2292 2293 static unsigned int calc_gpio_intr(adapter_t *adap) 2294 { 2295 unsigned int i, gpi_intr = 0; 2296 2297 for_each_port(adap, i) 2298 if ((adap2pinfo(adap, i)->phy.caps & SUPPORTED_IRQ) && 2299 adapter_info(adap)->gpio_intr[i]) 2300 gpi_intr |= 1 << adapter_info(adap)->gpio_intr[i]; 2301 return gpi_intr; 2302 } 2303 2304 /** 2305 * t3_intr_enable - enable interrupts 2306 * @adapter: the adapter whose interrupts should be enabled 2307 * 2308 * Enable interrupts by setting the interrupt enable registers of the 2309 * various HW modules and then enabling the top-level interrupt 2310 * concentrator. 2311 */ 2312 void t3_intr_enable(adapter_t *adapter) 2313 { 2314 static struct addr_val_pair intr_en_avp[] = { 2315 { A_MC7_INT_ENABLE, MC7_INTR_MASK }, 2316 { A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR, 2317 MC7_INTR_MASK }, 2318 { A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR, 2319 MC7_INTR_MASK }, 2320 { A_MC5_DB_INT_ENABLE, MC5_INTR_MASK }, 2321 { A_ULPRX_INT_ENABLE, ULPRX_INTR_MASK }, 2322 { A_PM1_TX_INT_ENABLE, PMTX_INTR_MASK }, 2323 { A_PM1_RX_INT_ENABLE, PMRX_INTR_MASK }, 2324 { A_CIM_HOST_INT_ENABLE, CIM_INTR_MASK }, 2325 { A_MPS_INT_ENABLE, MPS_INTR_MASK }, 2326 }; 2327 2328 adapter->slow_intr_mask = PL_INTR_MASK; 2329 2330 t3_write_regs(adapter, intr_en_avp, ARRAY_SIZE(intr_en_avp), 0); 2331 t3_write_reg(adapter, A_TP_INT_ENABLE, 2332 adapter->params.rev >= T3_REV_C ? 0x2bfffff : 0x3bfffff); 2333 t3_write_reg(adapter, A_SG_INT_ENABLE, SGE_INTR_MASK); 2334 2335 if (adapter->params.rev > 0) { 2336 t3_write_reg(adapter, A_CPL_INTR_ENABLE, 2337 CPLSW_INTR_MASK | F_CIM_OVFL_ERROR); 2338 t3_write_reg(adapter, A_ULPTX_INT_ENABLE, 2339 ULPTX_INTR_MASK | F_PBL_BOUND_ERR_CH0 | 2340 F_PBL_BOUND_ERR_CH1); 2341 } else { 2342 t3_write_reg(adapter, A_CPL_INTR_ENABLE, CPLSW_INTR_MASK); 2343 t3_write_reg(adapter, A_ULPTX_INT_ENABLE, ULPTX_INTR_MASK); 2344 } 2345 2346 t3_write_reg(adapter, A_T3DBG_INT_ENABLE, calc_gpio_intr(adapter)); 2347 2348 if (is_pcie(adapter)) 2349 t3_write_reg(adapter, A_PCIE_INT_ENABLE, PCIE_INTR_MASK); 2350 else 2351 t3_write_reg(adapter, A_PCIX_INT_ENABLE, PCIX_INTR_MASK); 2352 t3_write_reg(adapter, A_PL_INT_ENABLE0, adapter->slow_intr_mask); 2353 (void) t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */ 2354 } 2355 2356 /** 2357 * t3_intr_disable - disable a card's interrupts 2358 * @adapter: the adapter whose interrupts should be disabled 2359 * 2360 * Disable interrupts. We only disable the top-level interrupt 2361 * concentrator and the SGE data interrupts. 2362 */ 2363 void t3_intr_disable(adapter_t *adapter) 2364 { 2365 t3_write_reg(adapter, A_PL_INT_ENABLE0, 0); 2366 (void) t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */ 2367 adapter->slow_intr_mask = 0; 2368 } 2369 2370 /** 2371 * t3_intr_clear - clear all interrupts 2372 * @adapter: the adapter whose interrupts should be cleared 2373 * 2374 * Clears all interrupts. 2375 */ 2376 void t3_intr_clear(adapter_t *adapter) 2377 { 2378 static const unsigned int cause_reg_addr[] = { 2379 A_SG_INT_CAUSE, 2380 A_SG_RSPQ_FL_STATUS, 2381 A_PCIX_INT_CAUSE, 2382 A_MC7_INT_CAUSE, 2383 A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR, 2384 A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR, 2385 A_CIM_HOST_INT_CAUSE, 2386 A_TP_INT_CAUSE, 2387 A_MC5_DB_INT_CAUSE, 2388 A_ULPRX_INT_CAUSE, 2389 A_ULPTX_INT_CAUSE, 2390 A_CPL_INTR_CAUSE, 2391 A_PM1_TX_INT_CAUSE, 2392 A_PM1_RX_INT_CAUSE, 2393 A_MPS_INT_CAUSE, 2394 A_T3DBG_INT_CAUSE, 2395 }; 2396 unsigned int i; 2397 2398 /* Clear PHY and MAC interrupts for each port. */ 2399 for_each_port(adapter, i) 2400 t3_port_intr_clear(adapter, i); 2401 2402 for (i = 0; i < ARRAY_SIZE(cause_reg_addr); ++i) 2403 t3_write_reg(adapter, cause_reg_addr[i], 0xffffffff); 2404 2405 if (is_pcie(adapter)) 2406 t3_write_reg(adapter, A_PCIE_PEX_ERR, 0xffffffff); 2407 t3_write_reg(adapter, A_PL_INT_CAUSE0, 0xffffffff); 2408 (void) t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */ 2409 } 2410 2411 void t3_xgm_intr_enable(adapter_t *adapter, int idx) 2412 { 2413 struct port_info *pi = adap2pinfo(adapter, idx); 2414 2415 t3_write_reg(adapter, A_XGM_XGM_INT_ENABLE + pi->mac.offset, 2416 XGM_EXTRA_INTR_MASK); 2417 } 2418 2419 void t3_xgm_intr_disable(adapter_t *adapter, int idx) 2420 { 2421 struct port_info *pi = adap2pinfo(adapter, idx); 2422 2423 t3_write_reg(adapter, A_XGM_XGM_INT_DISABLE + pi->mac.offset, 2424 0x7ff); 2425 } 2426 2427 /** 2428 * t3_port_intr_enable - enable port-specific interrupts 2429 * @adapter: associated adapter 2430 * @idx: index of port whose interrupts should be enabled 2431 * 2432 * Enable port-specific (i.e., MAC and PHY) interrupts for the given 2433 * adapter port. 2434 */ 2435 void t3_port_intr_enable(adapter_t *adapter, int idx) 2436 { 2437 struct port_info *pi = adap2pinfo(adapter, idx); 2438 2439 t3_write_reg(adapter, A_XGM_INT_ENABLE + pi->mac.offset, XGM_INTR_MASK); 2440 pi->phy.ops->intr_enable(&pi->phy); 2441 } 2442 2443 /** 2444 * t3_port_intr_disable - disable port-specific interrupts 2445 * @adapter: associated adapter 2446 * @idx: index of port whose interrupts should be disabled 2447 * 2448 * Disable port-specific (i.e., MAC and PHY) interrupts for the given 2449 * adapter port. 2450 */ 2451 void t3_port_intr_disable(adapter_t *adapter, int idx) 2452 { 2453 struct port_info *pi = adap2pinfo(adapter, idx); 2454 2455 t3_write_reg(adapter, A_XGM_INT_ENABLE + pi->mac.offset, 0); 2456 pi->phy.ops->intr_disable(&pi->phy); 2457 } 2458 2459 /** 2460 * t3_port_intr_clear - clear port-specific interrupts 2461 * @adapter: associated adapter 2462 * @idx: index of port whose interrupts to clear 2463 * 2464 * Clear port-specific (i.e., MAC and PHY) interrupts for the given 2465 * adapter port. 2466 */ 2467 void t3_port_intr_clear(adapter_t *adapter, int idx) 2468 { 2469 struct port_info *pi = adap2pinfo(adapter, idx); 2470 2471 t3_write_reg(adapter, A_XGM_INT_CAUSE + pi->mac.offset, 0xffffffff); 2472 pi->phy.ops->intr_clear(&pi->phy); 2473 } 2474 2475 #define SG_CONTEXT_CMD_ATTEMPTS 100 2476 2477 /** 2478 * t3_sge_write_context - write an SGE context 2479 * @adapter: the adapter 2480 * @id: the context id 2481 * @type: the context type 2482 * 2483 * Program an SGE context with the values already loaded in the 2484 * CONTEXT_DATA? registers. 2485 */ 2486 static int t3_sge_write_context(adapter_t *adapter, unsigned int id, 2487 unsigned int type) 2488 { 2489 if (type == F_RESPONSEQ) { 2490 /* 2491 * Can't write the Response Queue Context bits for 2492 * Interrupt Armed or the Reserve bits after the chip 2493 * has been initialized out of reset. Writing to these 2494 * bits can confuse the hardware. 2495 */ 2496 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff); 2497 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff); 2498 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0x17ffffff); 2499 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff); 2500 } else { 2501 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff); 2502 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff); 2503 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0xffffffff); 2504 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff); 2505 } 2506 t3_write_reg(adapter, A_SG_CONTEXT_CMD, 2507 V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id)); 2508 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 2509 0, SG_CONTEXT_CMD_ATTEMPTS, 1); 2510 } 2511 2512 /** 2513 * clear_sge_ctxt - completely clear an SGE context 2514 * @adapter: the adapter 2515 * @id: the context id 2516 * @type: the context type 2517 * 2518 * Completely clear an SGE context. Used predominantly at post-reset 2519 * initialization. Note in particular that we don't skip writing to any 2520 * "sensitive bits" in the contexts the way that t3_sge_write_context() 2521 * does ... 2522 */ 2523 static int clear_sge_ctxt(adapter_t *adap, unsigned int id, unsigned int type) 2524 { 2525 t3_write_reg(adap, A_SG_CONTEXT_DATA0, 0); 2526 t3_write_reg(adap, A_SG_CONTEXT_DATA1, 0); 2527 t3_write_reg(adap, A_SG_CONTEXT_DATA2, 0); 2528 t3_write_reg(adap, A_SG_CONTEXT_DATA3, 0); 2529 t3_write_reg(adap, A_SG_CONTEXT_MASK0, 0xffffffff); 2530 t3_write_reg(adap, A_SG_CONTEXT_MASK1, 0xffffffff); 2531 t3_write_reg(adap, A_SG_CONTEXT_MASK2, 0xffffffff); 2532 t3_write_reg(adap, A_SG_CONTEXT_MASK3, 0xffffffff); 2533 t3_write_reg(adap, A_SG_CONTEXT_CMD, 2534 V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id)); 2535 return t3_wait_op_done(adap, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 2536 0, SG_CONTEXT_CMD_ATTEMPTS, 1); 2537 } 2538 2539 /** 2540 * t3_sge_init_ecntxt - initialize an SGE egress context 2541 * @adapter: the adapter to configure 2542 * @id: the context id 2543 * @gts_enable: whether to enable GTS for the context 2544 * @type: the egress context type 2545 * @respq: associated response queue 2546 * @base_addr: base address of queue 2547 * @size: number of queue entries 2548 * @token: uP token 2549 * @gen: initial generation value for the context 2550 * @cidx: consumer pointer 2551 * 2552 * Initialize an SGE egress context and make it ready for use. If the 2553 * platform allows concurrent context operations, the caller is 2554 * responsible for appropriate locking. 2555 */ 2556 int t3_sge_init_ecntxt(adapter_t *adapter, unsigned int id, int gts_enable, 2557 enum sge_context_type type, int respq, u64 base_addr, 2558 unsigned int size, unsigned int token, int gen, 2559 unsigned int cidx) 2560 { 2561 unsigned int credits = type == SGE_CNTXT_OFLD ? 0 : FW_WR_NUM; 2562 2563 if (base_addr & 0xfff) /* must be 4K aligned */ 2564 return -EINVAL; 2565 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) 2566 return -EBUSY; 2567 2568 base_addr >>= 12; 2569 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_EC_INDEX(cidx) | 2570 V_EC_CREDITS(credits) | V_EC_GTS(gts_enable)); 2571 t3_write_reg(adapter, A_SG_CONTEXT_DATA1, V_EC_SIZE(size) | 2572 V_EC_BASE_LO((u32)base_addr & 0xffff)); 2573 base_addr >>= 16; 2574 t3_write_reg(adapter, A_SG_CONTEXT_DATA2, (u32)base_addr); 2575 base_addr >>= 32; 2576 t3_write_reg(adapter, A_SG_CONTEXT_DATA3, 2577 V_EC_BASE_HI((u32)base_addr & 0xf) | V_EC_RESPQ(respq) | 2578 V_EC_TYPE(type) | V_EC_GEN(gen) | V_EC_UP_TOKEN(token) | 2579 F_EC_VALID); 2580 return t3_sge_write_context(adapter, id, F_EGRESS); 2581 } 2582 2583 /** 2584 * t3_sge_init_flcntxt - initialize an SGE free-buffer list context 2585 * @adapter: the adapter to configure 2586 * @id: the context id 2587 * @gts_enable: whether to enable GTS for the context 2588 * @base_addr: base address of queue 2589 * @size: number of queue entries 2590 * @bsize: size of each buffer for this queue 2591 * @cong_thres: threshold to signal congestion to upstream producers 2592 * @gen: initial generation value for the context 2593 * @cidx: consumer pointer 2594 * 2595 * Initialize an SGE free list context and make it ready for use. The 2596 * caller is responsible for ensuring only one context operation occurs 2597 * at a time. 2598 */ 2599 int t3_sge_init_flcntxt(adapter_t *adapter, unsigned int id, int gts_enable, 2600 u64 base_addr, unsigned int size, unsigned int bsize, 2601 unsigned int cong_thres, int gen, unsigned int cidx) 2602 { 2603 if (base_addr & 0xfff) /* must be 4K aligned */ 2604 return -EINVAL; 2605 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) 2606 return -EBUSY; 2607 2608 base_addr >>= 12; 2609 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, (u32)base_addr); 2610 base_addr >>= 32; 2611 t3_write_reg(adapter, A_SG_CONTEXT_DATA1, 2612 V_FL_BASE_HI((u32)base_addr) | 2613 V_FL_INDEX_LO(cidx & M_FL_INDEX_LO)); 2614 t3_write_reg(adapter, A_SG_CONTEXT_DATA2, V_FL_SIZE(size) | 2615 V_FL_GEN(gen) | V_FL_INDEX_HI(cidx >> 12) | 2616 V_FL_ENTRY_SIZE_LO(bsize & M_FL_ENTRY_SIZE_LO)); 2617 t3_write_reg(adapter, A_SG_CONTEXT_DATA3, 2618 V_FL_ENTRY_SIZE_HI(bsize >> (32 - S_FL_ENTRY_SIZE_LO)) | 2619 V_FL_CONG_THRES(cong_thres) | V_FL_GTS(gts_enable)); 2620 return t3_sge_write_context(adapter, id, F_FREELIST); 2621 } 2622 2623 /** 2624 * t3_sge_init_rspcntxt - initialize an SGE response queue context 2625 * @adapter: the adapter to configure 2626 * @id: the context id 2627 * @irq_vec_idx: MSI-X interrupt vector index, 0 if no MSI-X, -1 if no IRQ 2628 * @base_addr: base address of queue 2629 * @size: number of queue entries 2630 * @fl_thres: threshold for selecting the normal or jumbo free list 2631 * @gen: initial generation value for the context 2632 * @cidx: consumer pointer 2633 * 2634 * Initialize an SGE response queue context and make it ready for use. 2635 * The caller is responsible for ensuring only one context operation 2636 * occurs at a time. 2637 */ 2638 int t3_sge_init_rspcntxt(adapter_t *adapter, unsigned int id, int irq_vec_idx, 2639 u64 base_addr, unsigned int size, 2640 unsigned int fl_thres, int gen, unsigned int cidx) 2641 { 2642 unsigned int ctrl, intr = 0; 2643 2644 if (base_addr & 0xfff) /* must be 4K aligned */ 2645 return -EINVAL; 2646 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) 2647 return -EBUSY; 2648 2649 base_addr >>= 12; 2650 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size) | 2651 V_CQ_INDEX(cidx)); 2652 t3_write_reg(adapter, A_SG_CONTEXT_DATA1, (u32)base_addr); 2653 base_addr >>= 32; 2654 ctrl = t3_read_reg(adapter, A_SG_CONTROL); 2655 if ((irq_vec_idx > 0) || 2656 ((irq_vec_idx == 0) && !(ctrl & F_ONEINTMULTQ))) 2657 intr = F_RQ_INTR_EN; 2658 if (irq_vec_idx >= 0) 2659 intr |= V_RQ_MSI_VEC(irq_vec_idx); 2660 t3_write_reg(adapter, A_SG_CONTEXT_DATA2, 2661 V_CQ_BASE_HI((u32)base_addr) | intr | V_RQ_GEN(gen)); 2662 t3_write_reg(adapter, A_SG_CONTEXT_DATA3, fl_thres); 2663 return t3_sge_write_context(adapter, id, F_RESPONSEQ); 2664 } 2665 2666 /** 2667 * t3_sge_init_cqcntxt - initialize an SGE completion queue context 2668 * @adapter: the adapter to configure 2669 * @id: the context id 2670 * @base_addr: base address of queue 2671 * @size: number of queue entries 2672 * @rspq: response queue for async notifications 2673 * @ovfl_mode: CQ overflow mode 2674 * @credits: completion queue credits 2675 * @credit_thres: the credit threshold 2676 * 2677 * Initialize an SGE completion queue context and make it ready for use. 2678 * The caller is responsible for ensuring only one context operation 2679 * occurs at a time. 2680 */ 2681 int t3_sge_init_cqcntxt(adapter_t *adapter, unsigned int id, u64 base_addr, 2682 unsigned int size, int rspq, int ovfl_mode, 2683 unsigned int credits, unsigned int credit_thres) 2684 { 2685 if (base_addr & 0xfff) /* must be 4K aligned */ 2686 return -EINVAL; 2687 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) 2688 return -EBUSY; 2689 2690 base_addr >>= 12; 2691 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size)); 2692 t3_write_reg(adapter, A_SG_CONTEXT_DATA1, (u32)base_addr); 2693 base_addr >>= 32; 2694 t3_write_reg(adapter, A_SG_CONTEXT_DATA2, 2695 V_CQ_BASE_HI((u32)base_addr) | V_CQ_RSPQ(rspq) | 2696 V_CQ_GEN(1) | V_CQ_OVERFLOW_MODE(ovfl_mode) | 2697 V_CQ_ERR(ovfl_mode)); 2698 t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_CQ_CREDITS(credits) | 2699 V_CQ_CREDIT_THRES(credit_thres)); 2700 return t3_sge_write_context(adapter, id, F_CQ); 2701 } 2702 2703 /** 2704 * t3_sge_enable_ecntxt - enable/disable an SGE egress context 2705 * @adapter: the adapter 2706 * @id: the egress context id 2707 * @enable: enable (1) or disable (0) the context 2708 * 2709 * Enable or disable an SGE egress context. The caller is responsible for 2710 * ensuring only one context operation occurs at a time. 2711 */ 2712 int t3_sge_enable_ecntxt(adapter_t *adapter, unsigned int id, int enable) 2713 { 2714 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) 2715 return -EBUSY; 2716 2717 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0); 2718 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0); 2719 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0); 2720 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, F_EC_VALID); 2721 t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_EC_VALID(enable)); 2722 t3_write_reg(adapter, A_SG_CONTEXT_CMD, 2723 V_CONTEXT_CMD_OPCODE(1) | F_EGRESS | V_CONTEXT(id)); 2724 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 2725 0, SG_CONTEXT_CMD_ATTEMPTS, 1); 2726 } 2727 2728 /** 2729 * t3_sge_disable_fl - disable an SGE free-buffer list 2730 * @adapter: the adapter 2731 * @id: the free list context id 2732 * 2733 * Disable an SGE free-buffer list. The caller is responsible for 2734 * ensuring only one context operation occurs at a time. 2735 */ 2736 int t3_sge_disable_fl(adapter_t *adapter, unsigned int id) 2737 { 2738 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) 2739 return -EBUSY; 2740 2741 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0); 2742 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0); 2743 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, V_FL_SIZE(M_FL_SIZE)); 2744 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0); 2745 t3_write_reg(adapter, A_SG_CONTEXT_DATA2, 0); 2746 t3_write_reg(adapter, A_SG_CONTEXT_CMD, 2747 V_CONTEXT_CMD_OPCODE(1) | F_FREELIST | V_CONTEXT(id)); 2748 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 2749 0, SG_CONTEXT_CMD_ATTEMPTS, 1); 2750 } 2751 2752 /** 2753 * t3_sge_disable_rspcntxt - disable an SGE response queue 2754 * @adapter: the adapter 2755 * @id: the response queue context id 2756 * 2757 * Disable an SGE response queue. The caller is responsible for 2758 * ensuring only one context operation occurs at a time. 2759 */ 2760 int t3_sge_disable_rspcntxt(adapter_t *adapter, unsigned int id) 2761 { 2762 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) 2763 return -EBUSY; 2764 2765 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE)); 2766 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0); 2767 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0); 2768 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0); 2769 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0); 2770 t3_write_reg(adapter, A_SG_CONTEXT_CMD, 2771 V_CONTEXT_CMD_OPCODE(1) | F_RESPONSEQ | V_CONTEXT(id)); 2772 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 2773 0, SG_CONTEXT_CMD_ATTEMPTS, 1); 2774 } 2775 2776 /** 2777 * t3_sge_disable_cqcntxt - disable an SGE completion queue 2778 * @adapter: the adapter 2779 * @id: the completion queue context id 2780 * 2781 * Disable an SGE completion queue. The caller is responsible for 2782 * ensuring only one context operation occurs at a time. 2783 */ 2784 int t3_sge_disable_cqcntxt(adapter_t *adapter, unsigned int id) 2785 { 2786 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) 2787 return -EBUSY; 2788 2789 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE)); 2790 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0); 2791 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0); 2792 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0); 2793 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0); 2794 t3_write_reg(adapter, A_SG_CONTEXT_CMD, 2795 V_CONTEXT_CMD_OPCODE(1) | F_CQ | V_CONTEXT(id)); 2796 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 2797 0, SG_CONTEXT_CMD_ATTEMPTS, 1); 2798 } 2799 2800 /** 2801 * t3_sge_cqcntxt_op - perform an operation on a completion queue context 2802 * @adapter: the adapter 2803 * @id: the context id 2804 * @op: the operation to perform 2805 * @credits: credits to return to the CQ 2806 * 2807 * Perform the selected operation on an SGE completion queue context. 2808 * The caller is responsible for ensuring only one context operation 2809 * occurs at a time. 2810 * 2811 * For most operations the function returns the current HW position in 2812 * the completion queue. 2813 */ 2814 int t3_sge_cqcntxt_op(adapter_t *adapter, unsigned int id, unsigned int op, 2815 unsigned int credits) 2816 { 2817 u32 val; 2818 2819 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) 2820 return -EBUSY; 2821 2822 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, credits << 16); 2823 t3_write_reg(adapter, A_SG_CONTEXT_CMD, V_CONTEXT_CMD_OPCODE(op) | 2824 V_CONTEXT(id) | F_CQ); 2825 if (t3_wait_op_done_val(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 2826 0, SG_CONTEXT_CMD_ATTEMPTS, 1, &val)) 2827 return -EIO; 2828 2829 if (op >= 2 && op < 7) { 2830 if (adapter->params.rev > 0) 2831 return G_CQ_INDEX(val); 2832 2833 t3_write_reg(adapter, A_SG_CONTEXT_CMD, 2834 V_CONTEXT_CMD_OPCODE(0) | F_CQ | V_CONTEXT(id)); 2835 if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, 2836 F_CONTEXT_CMD_BUSY, 0, 2837 SG_CONTEXT_CMD_ATTEMPTS, 1)) 2838 return -EIO; 2839 return G_CQ_INDEX(t3_read_reg(adapter, A_SG_CONTEXT_DATA0)); 2840 } 2841 return 0; 2842 } 2843 2844 /** 2845 * t3_sge_read_context - read an SGE context 2846 * @type: the context type 2847 * @adapter: the adapter 2848 * @id: the context id 2849 * @data: holds the retrieved context 2850 * 2851 * Read an SGE egress context. The caller is responsible for ensuring 2852 * only one context operation occurs at a time. 2853 */ 2854 static int t3_sge_read_context(unsigned int type, adapter_t *adapter, 2855 unsigned int id, u32 data[4]) 2856 { 2857 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) 2858 return -EBUSY; 2859 2860 t3_write_reg(adapter, A_SG_CONTEXT_CMD, 2861 V_CONTEXT_CMD_OPCODE(0) | type | V_CONTEXT(id)); 2862 if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 0, 2863 SG_CONTEXT_CMD_ATTEMPTS, 1)) 2864 return -EIO; 2865 data[0] = t3_read_reg(adapter, A_SG_CONTEXT_DATA0); 2866 data[1] = t3_read_reg(adapter, A_SG_CONTEXT_DATA1); 2867 data[2] = t3_read_reg(adapter, A_SG_CONTEXT_DATA2); 2868 data[3] = t3_read_reg(adapter, A_SG_CONTEXT_DATA3); 2869 return 0; 2870 } 2871 2872 /** 2873 * t3_sge_read_ecntxt - read an SGE egress context 2874 * @adapter: the adapter 2875 * @id: the context id 2876 * @data: holds the retrieved context 2877 * 2878 * Read an SGE egress context. The caller is responsible for ensuring 2879 * only one context operation occurs at a time. 2880 */ 2881 int t3_sge_read_ecntxt(adapter_t *adapter, unsigned int id, u32 data[4]) 2882 { 2883 if (id >= 65536) 2884 return -EINVAL; 2885 return t3_sge_read_context(F_EGRESS, adapter, id, data); 2886 } 2887 2888 /** 2889 * t3_sge_read_cq - read an SGE CQ context 2890 * @adapter: the adapter 2891 * @id: the context id 2892 * @data: holds the retrieved context 2893 * 2894 * Read an SGE CQ context. The caller is responsible for ensuring 2895 * only one context operation occurs at a time. 2896 */ 2897 int t3_sge_read_cq(adapter_t *adapter, unsigned int id, u32 data[4]) 2898 { 2899 if (id >= 65536) 2900 return -EINVAL; 2901 return t3_sge_read_context(F_CQ, adapter, id, data); 2902 } 2903 2904 /** 2905 * t3_sge_read_fl - read an SGE free-list context 2906 * @adapter: the adapter 2907 * @id: the context id 2908 * @data: holds the retrieved context 2909 * 2910 * Read an SGE free-list context. The caller is responsible for ensuring 2911 * only one context operation occurs at a time. 2912 */ 2913 int t3_sge_read_fl(adapter_t *adapter, unsigned int id, u32 data[4]) 2914 { 2915 if (id >= SGE_QSETS * 2) 2916 return -EINVAL; 2917 return t3_sge_read_context(F_FREELIST, adapter, id, data); 2918 } 2919 2920 /** 2921 * t3_sge_read_rspq - read an SGE response queue context 2922 * @adapter: the adapter 2923 * @id: the context id 2924 * @data: holds the retrieved context 2925 * 2926 * Read an SGE response queue context. The caller is responsible for 2927 * ensuring only one context operation occurs at a time. 2928 */ 2929 int t3_sge_read_rspq(adapter_t *adapter, unsigned int id, u32 data[4]) 2930 { 2931 if (id >= SGE_QSETS) 2932 return -EINVAL; 2933 return t3_sge_read_context(F_RESPONSEQ, adapter, id, data); 2934 } 2935 2936 /** 2937 * t3_config_rss - configure Rx packet steering 2938 * @adapter: the adapter 2939 * @rss_config: RSS settings (written to TP_RSS_CONFIG) 2940 * @cpus: values for the CPU lookup table (0xff terminated) 2941 * @rspq: values for the response queue lookup table (0xffff terminated) 2942 * 2943 * Programs the receive packet steering logic. @cpus and @rspq provide 2944 * the values for the CPU and response queue lookup tables. If they 2945 * provide fewer values than the size of the tables the supplied values 2946 * are used repeatedly until the tables are fully populated. 2947 */ 2948 void t3_config_rss(adapter_t *adapter, unsigned int rss_config, const u8 *cpus, 2949 const u16 *rspq) 2950 { 2951 int i, j, cpu_idx = 0, q_idx = 0; 2952 2953 if (cpus) 2954 for (i = 0; i < RSS_TABLE_SIZE; ++i) { 2955 u32 val = i << 16; 2956 2957 for (j = 0; j < 2; ++j) { 2958 val |= (cpus[cpu_idx++] & 0x3f) << (8 * j); 2959 if (cpus[cpu_idx] == 0xff) 2960 cpu_idx = 0; 2961 } 2962 t3_write_reg(adapter, A_TP_RSS_LKP_TABLE, val); 2963 } 2964 2965 if (rspq) 2966 for (i = 0; i < RSS_TABLE_SIZE; ++i) { 2967 t3_write_reg(adapter, A_TP_RSS_MAP_TABLE, 2968 (i << 16) | rspq[q_idx++]); 2969 if (rspq[q_idx] == 0xffff) 2970 q_idx = 0; 2971 } 2972 2973 t3_write_reg(adapter, A_TP_RSS_CONFIG, rss_config); 2974 } 2975 2976 /** 2977 * t3_read_rss - read the contents of the RSS tables 2978 * @adapter: the adapter 2979 * @lkup: holds the contents of the RSS lookup table 2980 * @map: holds the contents of the RSS map table 2981 * 2982 * Reads the contents of the receive packet steering tables. 2983 */ 2984 int t3_read_rss(adapter_t *adapter, u8 *lkup, u16 *map) 2985 { 2986 int i; 2987 u32 val; 2988 2989 if (lkup) 2990 for (i = 0; i < RSS_TABLE_SIZE; ++i) { 2991 t3_write_reg(adapter, A_TP_RSS_LKP_TABLE, 2992 0xffff0000 | i); 2993 val = t3_read_reg(adapter, A_TP_RSS_LKP_TABLE); 2994 if (!(val & 0x80000000)) 2995 return -EAGAIN; 2996 *lkup++ = (u8)val; 2997 *lkup++ = (u8)(val >> 8); 2998 } 2999 3000 if (map) 3001 for (i = 0; i < RSS_TABLE_SIZE; ++i) { 3002 t3_write_reg(adapter, A_TP_RSS_MAP_TABLE, 3003 0xffff0000 | i); 3004 val = t3_read_reg(adapter, A_TP_RSS_MAP_TABLE); 3005 if (!(val & 0x80000000)) 3006 return -EAGAIN; 3007 *map++ = (u16)val; 3008 } 3009 return 0; 3010 } 3011 3012 /** 3013 * t3_tp_set_offload_mode - put TP in NIC/offload mode 3014 * @adap: the adapter 3015 * @enable: 1 to select offload mode, 0 for regular NIC 3016 * 3017 * Switches TP to NIC/offload mode. 3018 */ 3019 void t3_tp_set_offload_mode(adapter_t *adap, int enable) 3020 { 3021 if (is_offload(adap) || !enable) 3022 t3_set_reg_field(adap, A_TP_IN_CONFIG, F_NICMODE, 3023 V_NICMODE(!enable)); 3024 } 3025 3026 /** 3027 * tp_wr_bits_indirect - set/clear bits in an indirect TP register 3028 * @adap: the adapter 3029 * @addr: the indirect TP register address 3030 * @mask: specifies the field within the register to modify 3031 * @val: new value for the field 3032 * 3033 * Sets a field of an indirect TP register to the given value. 3034 */ 3035 static void tp_wr_bits_indirect(adapter_t *adap, unsigned int addr, 3036 unsigned int mask, unsigned int val) 3037 { 3038 t3_write_reg(adap, A_TP_PIO_ADDR, addr); 3039 val |= t3_read_reg(adap, A_TP_PIO_DATA) & ~mask; 3040 t3_write_reg(adap, A_TP_PIO_DATA, val); 3041 } 3042 3043 /** 3044 * t3_enable_filters - enable the HW filters 3045 * @adap: the adapter 3046 * 3047 * Enables the HW filters for NIC traffic. 3048 */ 3049 void t3_enable_filters(adapter_t *adap) 3050 { 3051 t3_set_reg_field(adap, A_TP_IN_CONFIG, F_NICMODE, 0); 3052 t3_set_reg_field(adap, A_MC5_DB_CONFIG, 0, F_FILTEREN); 3053 t3_set_reg_field(adap, A_TP_GLOBAL_CONFIG, 0, V_FIVETUPLELOOKUP(3)); 3054 tp_wr_bits_indirect(adap, A_TP_INGRESS_CONFIG, 0, F_LOOKUPEVERYPKT); 3055 } 3056 3057 /** 3058 * t3_disable_filters - disable the HW filters 3059 * @adap: the adapter 3060 * 3061 * Disables the HW filters for NIC traffic. 3062 */ 3063 void t3_disable_filters(adapter_t *adap) 3064 { 3065 /* note that we don't want to revert to NIC-only mode */ 3066 t3_set_reg_field(adap, A_MC5_DB_CONFIG, F_FILTEREN, 0); 3067 t3_set_reg_field(adap, A_TP_GLOBAL_CONFIG, 3068 V_FIVETUPLELOOKUP(M_FIVETUPLELOOKUP), 0); 3069 tp_wr_bits_indirect(adap, A_TP_INGRESS_CONFIG, F_LOOKUPEVERYPKT, 0); 3070 } 3071 3072 /** 3073 * pm_num_pages - calculate the number of pages of the payload memory 3074 * @mem_size: the size of the payload memory 3075 * @pg_size: the size of each payload memory page 3076 * 3077 * Calculate the number of pages, each of the given size, that fit in a 3078 * memory of the specified size, respecting the HW requirement that the 3079 * number of pages must be a multiple of 24. 3080 */ 3081 static inline unsigned int pm_num_pages(unsigned int mem_size, 3082 unsigned int pg_size) 3083 { 3084 unsigned int n = mem_size / pg_size; 3085 3086 return n - n % 24; 3087 } 3088 3089 #define mem_region(adap, start, size, reg) \ 3090 t3_write_reg((adap), A_ ## reg, (start)); \ 3091 start += size 3092 3093 /** 3094 * partition_mem - partition memory and configure TP memory settings 3095 * @adap: the adapter 3096 * @p: the TP parameters 3097 * 3098 * Partitions context and payload memory and configures TP's memory 3099 * registers. 3100 */ 3101 static void partition_mem(adapter_t *adap, const struct tp_params *p) 3102 { 3103 unsigned int m, pstructs, tids = t3_mc5_size(&adap->mc5); 3104 unsigned int timers = 0, timers_shift = 22; 3105 3106 if (adap->params.rev > 0) { 3107 if (tids <= 16 * 1024) { 3108 timers = 1; 3109 timers_shift = 16; 3110 } else if (tids <= 64 * 1024) { 3111 timers = 2; 3112 timers_shift = 18; 3113 } else if (tids <= 256 * 1024) { 3114 timers = 3; 3115 timers_shift = 20; 3116 } 3117 } 3118 3119 t3_write_reg(adap, A_TP_PMM_SIZE, 3120 p->chan_rx_size | (p->chan_tx_size >> 16)); 3121 3122 t3_write_reg(adap, A_TP_PMM_TX_BASE, 0); 3123 t3_write_reg(adap, A_TP_PMM_TX_PAGE_SIZE, p->tx_pg_size); 3124 t3_write_reg(adap, A_TP_PMM_TX_MAX_PAGE, p->tx_num_pgs); 3125 t3_set_reg_field(adap, A_TP_PARA_REG3, V_TXDATAACKIDX(M_TXDATAACKIDX), 3126 V_TXDATAACKIDX(fls(p->tx_pg_size) - 12)); 3127 3128 t3_write_reg(adap, A_TP_PMM_RX_BASE, 0); 3129 t3_write_reg(adap, A_TP_PMM_RX_PAGE_SIZE, p->rx_pg_size); 3130 t3_write_reg(adap, A_TP_PMM_RX_MAX_PAGE, p->rx_num_pgs); 3131 3132 pstructs = p->rx_num_pgs + p->tx_num_pgs; 3133 /* Add a bit of headroom and make multiple of 24 */ 3134 pstructs += 48; 3135 pstructs -= pstructs % 24; 3136 t3_write_reg(adap, A_TP_CMM_MM_MAX_PSTRUCT, pstructs); 3137 3138 m = tids * TCB_SIZE; 3139 mem_region(adap, m, (64 << 10) * 64, SG_EGR_CNTX_BADDR); 3140 mem_region(adap, m, (64 << 10) * 64, SG_CQ_CONTEXT_BADDR); 3141 t3_write_reg(adap, A_TP_CMM_TIMER_BASE, V_CMTIMERMAXNUM(timers) | m); 3142 m += ((p->ntimer_qs - 1) << timers_shift) + (1 << 22); 3143 mem_region(adap, m, pstructs * 64, TP_CMM_MM_BASE); 3144 mem_region(adap, m, 64 * (pstructs / 24), TP_CMM_MM_PS_FLST_BASE); 3145 mem_region(adap, m, 64 * (p->rx_num_pgs / 24), TP_CMM_MM_RX_FLST_BASE); 3146 mem_region(adap, m, 64 * (p->tx_num_pgs / 24), TP_CMM_MM_TX_FLST_BASE); 3147 3148 m = (m + 4095) & ~0xfff; 3149 t3_write_reg(adap, A_CIM_SDRAM_BASE_ADDR, m); 3150 t3_write_reg(adap, A_CIM_SDRAM_ADDR_SIZE, p->cm_size - m); 3151 3152 tids = (p->cm_size - m - (3 << 20)) / 3072 - 32; 3153 m = t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers - 3154 adap->params.mc5.nfilters - adap->params.mc5.nroutes; 3155 if (tids < m) 3156 adap->params.mc5.nservers += m - tids; 3157 } 3158 3159 static inline void tp_wr_indirect(adapter_t *adap, unsigned int addr, u32 val) 3160 { 3161 t3_write_reg(adap, A_TP_PIO_ADDR, addr); 3162 t3_write_reg(adap, A_TP_PIO_DATA, val); 3163 } 3164 3165 static inline u32 tp_rd_indirect(adapter_t *adap, unsigned int addr) 3166 { 3167 t3_write_reg(adap, A_TP_PIO_ADDR, addr); 3168 return t3_read_reg(adap, A_TP_PIO_DATA); 3169 } 3170 3171 static void tp_config(adapter_t *adap, const struct tp_params *p) 3172 { 3173 t3_write_reg(adap, A_TP_GLOBAL_CONFIG, F_TXPACINGENABLE | F_PATHMTU | 3174 F_IPCHECKSUMOFFLOAD | F_UDPCHECKSUMOFFLOAD | 3175 F_TCPCHECKSUMOFFLOAD | V_IPTTL(64)); 3176 t3_write_reg(adap, A_TP_TCP_OPTIONS, V_MTUDEFAULT(576) | 3177 F_MTUENABLE | V_WINDOWSCALEMODE(1) | 3178 V_TIMESTAMPSMODE(1) | V_SACKMODE(1) | V_SACKRX(1)); 3179 t3_write_reg(adap, A_TP_DACK_CONFIG, V_AUTOSTATE3(1) | 3180 V_AUTOSTATE2(1) | V_AUTOSTATE1(0) | 3181 V_BYTETHRESHOLD(26880) | V_MSSTHRESHOLD(2) | 3182 F_AUTOCAREFUL | F_AUTOENABLE | V_DACK_MODE(1)); 3183 t3_set_reg_field(adap, A_TP_IN_CONFIG, F_RXFBARBPRIO | F_TXFBARBPRIO, 3184 F_IPV6ENABLE | F_NICMODE); 3185 t3_write_reg(adap, A_TP_TX_RESOURCE_LIMIT, 0x18141814); 3186 t3_write_reg(adap, A_TP_PARA_REG4, 0x5050105); 3187 t3_set_reg_field(adap, A_TP_PARA_REG6, 0, 3188 adap->params.rev > 0 ? F_ENABLEESND : 3189 F_T3A_ENABLEESND); 3190 t3_set_reg_field(adap, A_TP_PC_CONFIG, 3191 F_ENABLEEPCMDAFULL, 3192 F_ENABLEOCSPIFULL |F_TXDEFERENABLE | F_HEARBEATDACK | 3193 F_TXCONGESTIONMODE | F_RXCONGESTIONMODE); 3194 t3_set_reg_field(adap, A_TP_PC_CONFIG2, F_CHDRAFULL, 3195 F_ENABLEIPV6RSS | F_ENABLENONOFDTNLSYN | 3196 F_ENABLEARPMISS | F_DISBLEDAPARBIT0); 3197 t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1080); 3198 t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1000); 3199 3200 if (adap->params.rev > 0) { 3201 tp_wr_indirect(adap, A_TP_EGRESS_CONFIG, F_REWRITEFORCETOSIZE); 3202 t3_set_reg_field(adap, A_TP_PARA_REG3, 0, 3203 F_TXPACEAUTO | F_TXPACEAUTOSTRICT); 3204 t3_set_reg_field(adap, A_TP_PC_CONFIG, F_LOCKTID, F_LOCKTID); 3205 tp_wr_indirect(adap, A_TP_VLAN_PRI_MAP, 0xfa50); 3206 tp_wr_indirect(adap, A_TP_MAC_MATCH_MAP0, 0xfac688); 3207 tp_wr_indirect(adap, A_TP_MAC_MATCH_MAP1, 0xfac688); 3208 } else 3209 t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEFIXED); 3210 3211 if (adap->params.rev == T3_REV_C) 3212 t3_set_reg_field(adap, A_TP_PC_CONFIG, 3213 V_TABLELATENCYDELTA(M_TABLELATENCYDELTA), 3214 V_TABLELATENCYDELTA(4)); 3215 3216 t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT1, 0); 3217 t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0, 0); 3218 t3_write_reg(adap, A_TP_MOD_CHANNEL_WEIGHT, 0); 3219 t3_write_reg(adap, A_TP_MOD_RATE_LIMIT, 0xf2200000); 3220 3221 if (adap->params.nports > 2) { 3222 t3_set_reg_field(adap, A_TP_PC_CONFIG2, 0, 3223 F_ENABLETXPORTFROMDA2 | F_ENABLETXPORTFROMDA | 3224 F_ENABLERXPORTFROMADDR); 3225 tp_wr_bits_indirect(adap, A_TP_QOS_RX_MAP_MODE, 3226 V_RXMAPMODE(M_RXMAPMODE), 0); 3227 tp_wr_indirect(adap, A_TP_INGRESS_CONFIG, V_BITPOS0(48) | 3228 V_BITPOS1(49) | V_BITPOS2(50) | V_BITPOS3(51) | 3229 F_ENABLEEXTRACT | F_ENABLEEXTRACTIONSFD | 3230 F_ENABLEINSERTION | F_ENABLEINSERTIONSFD); 3231 tp_wr_indirect(adap, A_TP_PREAMBLE_MSB, 0xfb000000); 3232 tp_wr_indirect(adap, A_TP_PREAMBLE_LSB, 0xd5); 3233 tp_wr_indirect(adap, A_TP_INTF_FROM_TX_PKT, F_INTFFROMTXPKT); 3234 } 3235 } 3236 3237 /* TCP timer values in ms */ 3238 #define TP_DACK_TIMER 50 3239 #define TP_RTO_MIN 250 3240 3241 /** 3242 * tp_set_timers - set TP timing parameters 3243 * @adap: the adapter to set 3244 * @core_clk: the core clock frequency in Hz 3245 * 3246 * Set TP's timing parameters, such as the various timer resolutions and 3247 * the TCP timer values. 3248 */ 3249 static void tp_set_timers(adapter_t *adap, unsigned int core_clk) 3250 { 3251 unsigned int tre = adap->params.tp.tre; 3252 unsigned int dack_re = adap->params.tp.dack_re; 3253 unsigned int tstamp_re = fls(core_clk / 1000); /* 1ms, at least */ 3254 unsigned int tps = core_clk >> tre; 3255 3256 t3_write_reg(adap, A_TP_TIMER_RESOLUTION, V_TIMERRESOLUTION(tre) | 3257 V_DELAYEDACKRESOLUTION(dack_re) | 3258 V_TIMESTAMPRESOLUTION(tstamp_re)); 3259 t3_write_reg(adap, A_TP_DACK_TIMER, 3260 (core_clk >> dack_re) / (1000 / TP_DACK_TIMER)); 3261 t3_write_reg(adap, A_TP_TCP_BACKOFF_REG0, 0x3020100); 3262 t3_write_reg(adap, A_TP_TCP_BACKOFF_REG1, 0x7060504); 3263 t3_write_reg(adap, A_TP_TCP_BACKOFF_REG2, 0xb0a0908); 3264 t3_write_reg(adap, A_TP_TCP_BACKOFF_REG3, 0xf0e0d0c); 3265 t3_write_reg(adap, A_TP_SHIFT_CNT, V_SYNSHIFTMAX(6) | 3266 V_RXTSHIFTMAXR1(4) | V_RXTSHIFTMAXR2(15) | 3267 V_PERSHIFTBACKOFFMAX(8) | V_PERSHIFTMAX(8) | 3268 V_KEEPALIVEMAX(9)); 3269 3270 #define SECONDS * tps 3271 3272 t3_write_reg(adap, A_TP_MSL, 3273 adap->params.rev > 0 ? 0 : 2 SECONDS); 3274 t3_write_reg(adap, A_TP_RXT_MIN, tps / (1000 / TP_RTO_MIN)); 3275 t3_write_reg(adap, A_TP_RXT_MAX, 64 SECONDS); 3276 t3_write_reg(adap, A_TP_PERS_MIN, 5 SECONDS); 3277 t3_write_reg(adap, A_TP_PERS_MAX, 64 SECONDS); 3278 t3_write_reg(adap, A_TP_KEEP_IDLE, 7200 SECONDS); 3279 t3_write_reg(adap, A_TP_KEEP_INTVL, 75 SECONDS); 3280 t3_write_reg(adap, A_TP_INIT_SRTT, 3 SECONDS); 3281 t3_write_reg(adap, A_TP_FINWAIT2_TIMER, 600 SECONDS); 3282 3283 #undef SECONDS 3284 } 3285 3286 /** 3287 * t3_tp_set_coalescing_size - set receive coalescing size 3288 * @adap: the adapter 3289 * @size: the receive coalescing size 3290 * @psh: whether a set PSH bit should deliver coalesced data 3291 * 3292 * Set the receive coalescing size and PSH bit handling. 3293 */ 3294 int t3_tp_set_coalescing_size(adapter_t *adap, unsigned int size, int psh) 3295 { 3296 u32 val; 3297 3298 if (size > MAX_RX_COALESCING_LEN) 3299 return -EINVAL; 3300 3301 val = t3_read_reg(adap, A_TP_PARA_REG3); 3302 val &= ~(F_RXCOALESCEENABLE | F_RXCOALESCEPSHEN); 3303 3304 if (size) { 3305 val |= F_RXCOALESCEENABLE; 3306 if (psh) 3307 val |= F_RXCOALESCEPSHEN; 3308 size = min(MAX_RX_COALESCING_LEN, size); 3309 t3_write_reg(adap, A_TP_PARA_REG2, V_RXCOALESCESIZE(size) | 3310 V_MAXRXDATA(MAX_RX_COALESCING_LEN)); 3311 } 3312 t3_write_reg(adap, A_TP_PARA_REG3, val); 3313 return 0; 3314 } 3315 3316 /** 3317 * t3_tp_set_max_rxsize - set the max receive size 3318 * @adap: the adapter 3319 * @size: the max receive size 3320 * 3321 * Set TP's max receive size. This is the limit that applies when 3322 * receive coalescing is disabled. 3323 */ 3324 void t3_tp_set_max_rxsize(adapter_t *adap, unsigned int size) 3325 { 3326 t3_write_reg(adap, A_TP_PARA_REG7, 3327 V_PMMAXXFERLEN0(size) | V_PMMAXXFERLEN1(size)); 3328 } 3329 3330 static void __devinit init_mtus(unsigned short mtus[]) 3331 { 3332 /* 3333 * See draft-mathis-plpmtud-00.txt for the values. The min is 88 so 3334 * it can accomodate max size TCP/IP headers when SACK and timestamps 3335 * are enabled and still have at least 8 bytes of payload. 3336 */ 3337 mtus[0] = 88; 3338 mtus[1] = 88; 3339 mtus[2] = 256; 3340 mtus[3] = 512; 3341 mtus[4] = 576; 3342 mtus[5] = 1024; 3343 mtus[6] = 1280; 3344 mtus[7] = 1492; 3345 mtus[8] = 1500; 3346 mtus[9] = 2002; 3347 mtus[10] = 2048; 3348 mtus[11] = 4096; 3349 mtus[12] = 4352; 3350 mtus[13] = 8192; 3351 mtus[14] = 9000; 3352 mtus[15] = 9600; 3353 } 3354 3355 /** 3356 * init_cong_ctrl - initialize congestion control parameters 3357 * @a: the alpha values for congestion control 3358 * @b: the beta values for congestion control 3359 * 3360 * Initialize the congestion control parameters. 3361 */ 3362 static void __devinit init_cong_ctrl(unsigned short *a, unsigned short *b) 3363 { 3364 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1; 3365 a[9] = 2; 3366 a[10] = 3; 3367 a[11] = 4; 3368 a[12] = 5; 3369 a[13] = 6; 3370 a[14] = 7; 3371 a[15] = 8; 3372 a[16] = 9; 3373 a[17] = 10; 3374 a[18] = 14; 3375 a[19] = 17; 3376 a[20] = 21; 3377 a[21] = 25; 3378 a[22] = 30; 3379 a[23] = 35; 3380 a[24] = 45; 3381 a[25] = 60; 3382 a[26] = 80; 3383 a[27] = 100; 3384 a[28] = 200; 3385 a[29] = 300; 3386 a[30] = 400; 3387 a[31] = 500; 3388 3389 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0; 3390 b[9] = b[10] = 1; 3391 b[11] = b[12] = 2; 3392 b[13] = b[14] = b[15] = b[16] = 3; 3393 b[17] = b[18] = b[19] = b[20] = b[21] = 4; 3394 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5; 3395 b[28] = b[29] = 6; 3396 b[30] = b[31] = 7; 3397 } 3398 3399 /* The minimum additive increment value for the congestion control table */ 3400 #define CC_MIN_INCR 2U 3401 3402 /** 3403 * t3_load_mtus - write the MTU and congestion control HW tables 3404 * @adap: the adapter 3405 * @mtus: the unrestricted values for the MTU table 3406 * @alpha: the values for the congestion control alpha parameter 3407 * @beta: the values for the congestion control beta parameter 3408 * @mtu_cap: the maximum permitted effective MTU 3409 * 3410 * Write the MTU table with the supplied MTUs capping each at &mtu_cap. 3411 * Update the high-speed congestion control table with the supplied alpha, 3412 * beta, and MTUs. 3413 */ 3414 void t3_load_mtus(adapter_t *adap, unsigned short mtus[NMTUS], 3415 unsigned short alpha[NCCTRL_WIN], 3416 unsigned short beta[NCCTRL_WIN], unsigned short mtu_cap) 3417 { 3418 static const unsigned int avg_pkts[NCCTRL_WIN] = { 3419 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640, 3420 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480, 3421 28672, 40960, 57344, 81920, 114688, 163840, 229376 }; 3422 3423 unsigned int i, w; 3424 3425 for (i = 0; i < NMTUS; ++i) { 3426 unsigned int mtu = min(mtus[i], mtu_cap); 3427 unsigned int log2 = fls(mtu); 3428 3429 if (!(mtu & ((1 << log2) >> 2))) /* round */ 3430 log2--; 3431 t3_write_reg(adap, A_TP_MTU_TABLE, 3432 (i << 24) | (log2 << 16) | mtu); 3433 3434 for (w = 0; w < NCCTRL_WIN; ++w) { 3435 unsigned int inc; 3436 3437 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w], 3438 CC_MIN_INCR); 3439 3440 t3_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) | 3441 (w << 16) | (beta[w] << 13) | inc); 3442 } 3443 } 3444 } 3445 3446 /** 3447 * t3_read_hw_mtus - returns the values in the HW MTU table 3448 * @adap: the adapter 3449 * @mtus: where to store the HW MTU values 3450 * 3451 * Reads the HW MTU table. 3452 */ 3453 void t3_read_hw_mtus(adapter_t *adap, unsigned short mtus[NMTUS]) 3454 { 3455 int i; 3456 3457 for (i = 0; i < NMTUS; ++i) { 3458 unsigned int val; 3459 3460 t3_write_reg(adap, A_TP_MTU_TABLE, 0xff000000 | i); 3461 val = t3_read_reg(adap, A_TP_MTU_TABLE); 3462 mtus[i] = val & 0x3fff; 3463 } 3464 } 3465 3466 /** 3467 * t3_get_cong_cntl_tab - reads the congestion control table 3468 * @adap: the adapter 3469 * @incr: where to store the alpha values 3470 * 3471 * Reads the additive increments programmed into the HW congestion 3472 * control table. 3473 */ 3474 void t3_get_cong_cntl_tab(adapter_t *adap, 3475 unsigned short incr[NMTUS][NCCTRL_WIN]) 3476 { 3477 unsigned int mtu, w; 3478 3479 for (mtu = 0; mtu < NMTUS; ++mtu) 3480 for (w = 0; w < NCCTRL_WIN; ++w) { 3481 t3_write_reg(adap, A_TP_CCTRL_TABLE, 3482 0xffff0000 | (mtu << 5) | w); 3483 incr[mtu][w] = (unsigned short)t3_read_reg(adap, 3484 A_TP_CCTRL_TABLE) & 0x1fff; 3485 } 3486 } 3487 3488 /** 3489 * t3_tp_get_mib_stats - read TP's MIB counters 3490 * @adap: the adapter 3491 * @tps: holds the returned counter values 3492 * 3493 * Returns the values of TP's MIB counters. 3494 */ 3495 void t3_tp_get_mib_stats(adapter_t *adap, struct tp_mib_stats *tps) 3496 { 3497 t3_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_RDATA, (u32 *)tps, 3498 sizeof(*tps) / sizeof(u32), 0); 3499 } 3500 3501 /** 3502 * t3_read_pace_tbl - read the pace table 3503 * @adap: the adapter 3504 * @pace_vals: holds the returned values 3505 * 3506 * Returns the values of TP's pace table in nanoseconds. 3507 */ 3508 void t3_read_pace_tbl(adapter_t *adap, unsigned int pace_vals[NTX_SCHED]) 3509 { 3510 unsigned int i, tick_ns = dack_ticks_to_usec(adap, 1000); 3511 3512 for (i = 0; i < NTX_SCHED; i++) { 3513 t3_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i); 3514 pace_vals[i] = t3_read_reg(adap, A_TP_PACE_TABLE) * tick_ns; 3515 } 3516 } 3517 3518 /** 3519 * t3_set_pace_tbl - set the pace table 3520 * @adap: the adapter 3521 * @pace_vals: the pace values in nanoseconds 3522 * @start: index of the first entry in the HW pace table to set 3523 * @n: how many entries to set 3524 * 3525 * Sets (a subset of the) HW pace table. 3526 */ 3527 void t3_set_pace_tbl(adapter_t *adap, unsigned int *pace_vals, 3528 unsigned int start, unsigned int n) 3529 { 3530 unsigned int tick_ns = dack_ticks_to_usec(adap, 1000); 3531 3532 for ( ; n; n--, start++, pace_vals++) 3533 t3_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | 3534 ((*pace_vals + tick_ns / 2) / tick_ns)); 3535 } 3536 3537 #define ulp_region(adap, name, start, len) \ 3538 t3_write_reg((adap), A_ULPRX_ ## name ## _LLIMIT, (start)); \ 3539 t3_write_reg((adap), A_ULPRX_ ## name ## _ULIMIT, \ 3540 (start) + (len) - 1); \ 3541 start += len 3542 3543 #define ulptx_region(adap, name, start, len) \ 3544 t3_write_reg((adap), A_ULPTX_ ## name ## _LLIMIT, (start)); \ 3545 t3_write_reg((adap), A_ULPTX_ ## name ## _ULIMIT, \ 3546 (start) + (len) - 1) 3547 3548 static void ulp_config(adapter_t *adap, const struct tp_params *p) 3549 { 3550 unsigned int m = p->chan_rx_size; 3551 3552 ulp_region(adap, ISCSI, m, p->chan_rx_size / 8); 3553 ulp_region(adap, TDDP, m, p->chan_rx_size / 8); 3554 ulptx_region(adap, TPT, m, p->chan_rx_size / 4); 3555 ulp_region(adap, STAG, m, p->chan_rx_size / 4); 3556 ulp_region(adap, RQ, m, p->chan_rx_size / 4); 3557 ulptx_region(adap, PBL, m, p->chan_rx_size / 4); 3558 ulp_region(adap, PBL, m, p->chan_rx_size / 4); 3559 t3_write_reg(adap, A_ULPRX_TDDP_TAGMASK, 0xffffffff); 3560 } 3561 3562 3563 /** 3564 * t3_set_proto_sram - set the contents of the protocol sram 3565 * @adapter: the adapter 3566 * @data: the protocol image 3567 * 3568 * Write the contents of the protocol SRAM. 3569 */ 3570 int t3_set_proto_sram(adapter_t *adap, const u8 *data) 3571 { 3572 int i; 3573 const u32 *buf = (const u32 *)data; 3574 3575 for (i = 0; i < PROTO_SRAM_LINES; i++) { 3576 t3_write_reg(adap, A_TP_EMBED_OP_FIELD5, cpu_to_be32(*buf++)); 3577 t3_write_reg(adap, A_TP_EMBED_OP_FIELD4, cpu_to_be32(*buf++)); 3578 t3_write_reg(adap, A_TP_EMBED_OP_FIELD3, cpu_to_be32(*buf++)); 3579 t3_write_reg(adap, A_TP_EMBED_OP_FIELD2, cpu_to_be32(*buf++)); 3580 t3_write_reg(adap, A_TP_EMBED_OP_FIELD1, cpu_to_be32(*buf++)); 3581 3582 t3_write_reg(adap, A_TP_EMBED_OP_FIELD0, i << 1 | 1 << 31); 3583 if (t3_wait_op_done(adap, A_TP_EMBED_OP_FIELD0, 1, 1, 5, 1)) 3584 return -EIO; 3585 } 3586 return 0; 3587 } 3588 3589 /** 3590 * t3_config_trace_filter - configure one of the tracing filters 3591 * @adapter: the adapter 3592 * @tp: the desired trace filter parameters 3593 * @filter_index: which filter to configure 3594 * @invert: if set non-matching packets are traced instead of matching ones 3595 * @enable: whether to enable or disable the filter 3596 * 3597 * Configures one of the tracing filters available in HW. 3598 */ 3599 void t3_config_trace_filter(adapter_t *adapter, const struct trace_params *tp, 3600 int filter_index, int invert, int enable) 3601 { 3602 u32 addr, key[4], mask[4]; 3603 3604 key[0] = tp->sport | (tp->sip << 16); 3605 key[1] = (tp->sip >> 16) | (tp->dport << 16); 3606 key[2] = tp->dip; 3607 key[3] = tp->proto | (tp->vlan << 8) | (tp->intf << 20); 3608 3609 mask[0] = tp->sport_mask | (tp->sip_mask << 16); 3610 mask[1] = (tp->sip_mask >> 16) | (tp->dport_mask << 16); 3611 mask[2] = tp->dip_mask; 3612 mask[3] = tp->proto_mask | (tp->vlan_mask << 8) | (tp->intf_mask << 20); 3613 3614 if (invert) 3615 key[3] |= (1 << 29); 3616 if (enable) 3617 key[3] |= (1 << 28); 3618 3619 addr = filter_index ? A_TP_RX_TRC_KEY0 : A_TP_TX_TRC_KEY0; 3620 tp_wr_indirect(adapter, addr++, key[0]); 3621 tp_wr_indirect(adapter, addr++, mask[0]); 3622 tp_wr_indirect(adapter, addr++, key[1]); 3623 tp_wr_indirect(adapter, addr++, mask[1]); 3624 tp_wr_indirect(adapter, addr++, key[2]); 3625 tp_wr_indirect(adapter, addr++, mask[2]); 3626 tp_wr_indirect(adapter, addr++, key[3]); 3627 tp_wr_indirect(adapter, addr, mask[3]); 3628 (void) t3_read_reg(adapter, A_TP_PIO_DATA); 3629 } 3630 3631 /** 3632 * t3_query_trace_filter - query a tracing filter 3633 * @adapter: the adapter 3634 * @tp: the current trace filter parameters 3635 * @filter_index: which filter to query 3636 * @inverted: non-zero if the filter is inverted 3637 * @enabled: non-zero if the filter is enabled 3638 * 3639 * Returns the current settings of the specified HW tracing filter. 3640 */ 3641 void t3_query_trace_filter(adapter_t *adapter, struct trace_params *tp, 3642 int filter_index, int *inverted, int *enabled) 3643 { 3644 u32 addr, key[4], mask[4]; 3645 3646 addr = filter_index ? A_TP_RX_TRC_KEY0 : A_TP_TX_TRC_KEY0; 3647 key[0] = tp_rd_indirect(adapter, addr++); 3648 mask[0] = tp_rd_indirect(adapter, addr++); 3649 key[1] = tp_rd_indirect(adapter, addr++); 3650 mask[1] = tp_rd_indirect(adapter, addr++); 3651 key[2] = tp_rd_indirect(adapter, addr++); 3652 mask[2] = tp_rd_indirect(adapter, addr++); 3653 key[3] = tp_rd_indirect(adapter, addr++); 3654 mask[3] = tp_rd_indirect(adapter, addr); 3655 3656 tp->sport = key[0] & 0xffff; 3657 tp->sip = (key[0] >> 16) | ((key[1] & 0xffff) << 16); 3658 tp->dport = key[1] >> 16; 3659 tp->dip = key[2]; 3660 tp->proto = key[3] & 0xff; 3661 tp->vlan = key[3] >> 8; 3662 tp->intf = key[3] >> 20; 3663 3664 tp->sport_mask = mask[0] & 0xffff; 3665 tp->sip_mask = (mask[0] >> 16) | ((mask[1] & 0xffff) << 16); 3666 tp->dport_mask = mask[1] >> 16; 3667 tp->dip_mask = mask[2]; 3668 tp->proto_mask = mask[3] & 0xff; 3669 tp->vlan_mask = mask[3] >> 8; 3670 tp->intf_mask = mask[3] >> 20; 3671 3672 *inverted = key[3] & (1 << 29); 3673 *enabled = key[3] & (1 << 28); 3674 } 3675 3676 /** 3677 * t3_config_sched - configure a HW traffic scheduler 3678 * @adap: the adapter 3679 * @kbps: target rate in Kbps 3680 * @sched: the scheduler index 3681 * 3682 * Configure a Tx HW scheduler for the target rate. 3683 */ 3684 int t3_config_sched(adapter_t *adap, unsigned int kbps, int sched) 3685 { 3686 unsigned int v, tps, cpt, bpt, delta, mindelta = ~0; 3687 unsigned int clk = adap->params.vpd.cclk * 1000; 3688 unsigned int selected_cpt = 0, selected_bpt = 0; 3689 3690 if (kbps > 0) { 3691 kbps *= 125; /* -> bytes */ 3692 for (cpt = 1; cpt <= 255; cpt++) { 3693 tps = clk / cpt; 3694 bpt = (kbps + tps / 2) / tps; 3695 if (bpt > 0 && bpt <= 255) { 3696 v = bpt * tps; 3697 delta = v >= kbps ? v - kbps : kbps - v; 3698 if (delta < mindelta) { 3699 mindelta = delta; 3700 selected_cpt = cpt; 3701 selected_bpt = bpt; 3702 } 3703 } else if (selected_cpt) 3704 break; 3705 } 3706 if (!selected_cpt) 3707 return -EINVAL; 3708 } 3709 t3_write_reg(adap, A_TP_TM_PIO_ADDR, 3710 A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2); 3711 v = t3_read_reg(adap, A_TP_TM_PIO_DATA); 3712 if (sched & 1) 3713 v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24); 3714 else 3715 v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8); 3716 t3_write_reg(adap, A_TP_TM_PIO_DATA, v); 3717 return 0; 3718 } 3719 3720 /** 3721 * t3_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler 3722 * @adap: the adapter 3723 * @sched: the scheduler index 3724 * @ipg: the interpacket delay in tenths of nanoseconds 3725 * 3726 * Set the interpacket delay for a HW packet rate scheduler. 3727 */ 3728 int t3_set_sched_ipg(adapter_t *adap, int sched, unsigned int ipg) 3729 { 3730 unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2; 3731 3732 /* convert ipg to nearest number of core clocks */ 3733 ipg *= core_ticks_per_usec(adap); 3734 ipg = (ipg + 5000) / 10000; 3735 if (ipg > 0xffff) 3736 return -EINVAL; 3737 3738 t3_write_reg(adap, A_TP_TM_PIO_ADDR, addr); 3739 v = t3_read_reg(adap, A_TP_TM_PIO_DATA); 3740 if (sched & 1) 3741 v = (v & 0xffff) | (ipg << 16); 3742 else 3743 v = (v & 0xffff0000) | ipg; 3744 t3_write_reg(adap, A_TP_TM_PIO_DATA, v); 3745 t3_read_reg(adap, A_TP_TM_PIO_DATA); 3746 return 0; 3747 } 3748 3749 /** 3750 * t3_get_tx_sched - get the configuration of a Tx HW traffic scheduler 3751 * @adap: the adapter 3752 * @sched: the scheduler index 3753 * @kbps: the byte rate in Kbps 3754 * @ipg: the interpacket delay in tenths of nanoseconds 3755 * 3756 * Return the current configuration of a HW Tx scheduler. 3757 */ 3758 void t3_get_tx_sched(adapter_t *adap, unsigned int sched, unsigned int *kbps, 3759 unsigned int *ipg) 3760 { 3761 unsigned int v, addr, bpt, cpt; 3762 3763 if (kbps) { 3764 addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2; 3765 t3_write_reg(adap, A_TP_TM_PIO_ADDR, addr); 3766 v = t3_read_reg(adap, A_TP_TM_PIO_DATA); 3767 if (sched & 1) 3768 v >>= 16; 3769 bpt = (v >> 8) & 0xff; 3770 cpt = v & 0xff; 3771 if (!cpt) 3772 *kbps = 0; /* scheduler disabled */ 3773 else { 3774 v = (adap->params.vpd.cclk * 1000) / cpt; 3775 *kbps = (v * bpt) / 125; 3776 } 3777 } 3778 if (ipg) { 3779 addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2; 3780 t3_write_reg(adap, A_TP_TM_PIO_ADDR, addr); 3781 v = t3_read_reg(adap, A_TP_TM_PIO_DATA); 3782 if (sched & 1) 3783 v >>= 16; 3784 v &= 0xffff; 3785 *ipg = (10000 * v) / core_ticks_per_usec(adap); 3786 } 3787 } 3788 3789 /** 3790 * tp_init - configure TP 3791 * @adap: the adapter 3792 * @p: TP configuration parameters 3793 * 3794 * Initializes the TP HW module. 3795 */ 3796 static int tp_init(adapter_t *adap, const struct tp_params *p) 3797 { 3798 int busy = 0; 3799 3800 tp_config(adap, p); 3801 t3_set_vlan_accel(adap, 3, 0); 3802 3803 if (is_offload(adap)) { 3804 tp_set_timers(adap, adap->params.vpd.cclk * 1000); 3805 t3_write_reg(adap, A_TP_RESET, F_FLSTINITENABLE); 3806 busy = t3_wait_op_done(adap, A_TP_RESET, F_FLSTINITENABLE, 3807 0, 1000, 5); 3808 if (busy) 3809 CH_ERR(adap, "TP initialization timed out\n"); 3810 } 3811 3812 if (!busy) 3813 t3_write_reg(adap, A_TP_RESET, F_TPRESET); 3814 return busy; 3815 } 3816 3817 /** 3818 * t3_mps_set_active_ports - configure port failover 3819 * @adap: the adapter 3820 * @port_mask: bitmap of active ports 3821 * 3822 * Sets the active ports according to the supplied bitmap. 3823 */ 3824 int t3_mps_set_active_ports(adapter_t *adap, unsigned int port_mask) 3825 { 3826 if (port_mask & ~((1 << adap->params.nports) - 1)) 3827 return -EINVAL; 3828 t3_set_reg_field(adap, A_MPS_CFG, F_PORT1ACTIVE | F_PORT0ACTIVE, 3829 port_mask << S_PORT0ACTIVE); 3830 return 0; 3831 } 3832 3833 /** 3834 * chan_init_hw - channel-dependent HW initialization 3835 * @adap: the adapter 3836 * @chan_map: bitmap of Tx channels being used 3837 * 3838 * Perform the bits of HW initialization that are dependent on the Tx 3839 * channels being used. 3840 */ 3841 static void chan_init_hw(adapter_t *adap, unsigned int chan_map) 3842 { 3843 int i; 3844 3845 if (chan_map != 3) { /* one channel */ 3846 t3_set_reg_field(adap, A_ULPRX_CTL, F_ROUND_ROBIN, 0); 3847 t3_set_reg_field(adap, A_ULPTX_CONFIG, F_CFG_RR_ARB, 0); 3848 t3_write_reg(adap, A_MPS_CFG, F_TPRXPORTEN | F_ENFORCEPKT | 3849 (chan_map == 1 ? F_TPTXPORT0EN | F_PORT0ACTIVE : 3850 F_TPTXPORT1EN | F_PORT1ACTIVE)); 3851 t3_write_reg(adap, A_PM1_TX_CFG, 3852 chan_map == 1 ? 0xffffffff : 0); 3853 if (chan_map == 2) 3854 t3_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP, 3855 V_TX_MOD_QUEUE_REQ_MAP(0xff)); 3856 t3_write_reg(adap, A_TP_TX_MOD_QUE_TABLE, (12 << 16) | 0xd9c8); 3857 t3_write_reg(adap, A_TP_TX_MOD_QUE_TABLE, (13 << 16) | 0xfbea); 3858 } else { /* two channels */ 3859 t3_set_reg_field(adap, A_ULPRX_CTL, 0, F_ROUND_ROBIN); 3860 t3_set_reg_field(adap, A_ULPTX_CONFIG, 0, F_CFG_RR_ARB); 3861 t3_write_reg(adap, A_ULPTX_DMA_WEIGHT, 3862 V_D1_WEIGHT(16) | V_D0_WEIGHT(16)); 3863 t3_write_reg(adap, A_MPS_CFG, F_TPTXPORT0EN | F_TPTXPORT1EN | 3864 F_TPRXPORTEN | F_PORT0ACTIVE | F_PORT1ACTIVE | 3865 F_ENFORCEPKT); 3866 t3_write_reg(adap, A_PM1_TX_CFG, 0x80008000); 3867 t3_set_reg_field(adap, A_TP_PC_CONFIG, 0, F_TXTOSQUEUEMAPMODE); 3868 t3_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP, 3869 V_TX_MOD_QUEUE_REQ_MAP(0xaa)); 3870 for (i = 0; i < 16; i++) 3871 t3_write_reg(adap, A_TP_TX_MOD_QUE_TABLE, 3872 (i << 16) | 0x1010); 3873 t3_write_reg(adap, A_TP_TX_MOD_QUE_TABLE, (12 << 16) | 0xba98); 3874 t3_write_reg(adap, A_TP_TX_MOD_QUE_TABLE, (13 << 16) | 0xfedc); 3875 } 3876 } 3877 3878 static int calibrate_xgm(adapter_t *adapter) 3879 { 3880 if (uses_xaui(adapter)) { 3881 unsigned int v, i; 3882 3883 for (i = 0; i < 5; ++i) { 3884 t3_write_reg(adapter, A_XGM_XAUI_IMP, 0); 3885 (void) t3_read_reg(adapter, A_XGM_XAUI_IMP); 3886 msleep(1); 3887 v = t3_read_reg(adapter, A_XGM_XAUI_IMP); 3888 if (!(v & (F_XGM_CALFAULT | F_CALBUSY))) { 3889 t3_write_reg(adapter, A_XGM_XAUI_IMP, 3890 V_XAUIIMP(G_CALIMP(v) >> 2)); 3891 return 0; 3892 } 3893 } 3894 CH_ERR(adapter, "MAC calibration failed\n"); 3895 return -1; 3896 } else { 3897 t3_write_reg(adapter, A_XGM_RGMII_IMP, 3898 V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3)); 3899 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE, 3900 F_XGM_IMPSETUPDATE); 3901 } 3902 return 0; 3903 } 3904 3905 static void calibrate_xgm_t3b(adapter_t *adapter) 3906 { 3907 if (!uses_xaui(adapter)) { 3908 t3_write_reg(adapter, A_XGM_RGMII_IMP, F_CALRESET | 3909 F_CALUPDATE | V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3)); 3910 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALRESET, 0); 3911 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0, 3912 F_XGM_IMPSETUPDATE); 3913 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE, 3914 0); 3915 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALUPDATE, 0); 3916 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0, F_CALUPDATE); 3917 } 3918 } 3919 3920 struct mc7_timing_params { 3921 unsigned char ActToPreDly; 3922 unsigned char ActToRdWrDly; 3923 unsigned char PreCyc; 3924 unsigned char RefCyc[5]; 3925 unsigned char BkCyc; 3926 unsigned char WrToRdDly; 3927 unsigned char RdToWrDly; 3928 }; 3929 3930 /* 3931 * Write a value to a register and check that the write completed. These 3932 * writes normally complete in a cycle or two, so one read should suffice. 3933 * The very first read exists to flush the posted write to the device. 3934 */ 3935 static int wrreg_wait(adapter_t *adapter, unsigned int addr, u32 val) 3936 { 3937 t3_write_reg(adapter, addr, val); 3938 (void) t3_read_reg(adapter, addr); /* flush */ 3939 if (!(t3_read_reg(adapter, addr) & F_BUSY)) 3940 return 0; 3941 CH_ERR(adapter, "write to MC7 register 0x%x timed out\n", addr); 3942 return -EIO; 3943 } 3944 3945 static int mc7_init(struct mc7 *mc7, unsigned int mc7_clock, int mem_type) 3946 { 3947 static const unsigned int mc7_mode[] = { 3948 0x632, 0x642, 0x652, 0x432, 0x442 3949 }; 3950 static const struct mc7_timing_params mc7_timings[] = { 3951 { 12, 3, 4, { 20, 28, 34, 52, 0 }, 15, 6, 4 }, 3952 { 12, 4, 5, { 20, 28, 34, 52, 0 }, 16, 7, 4 }, 3953 { 12, 5, 6, { 20, 28, 34, 52, 0 }, 17, 8, 4 }, 3954 { 9, 3, 4, { 15, 21, 26, 39, 0 }, 12, 6, 4 }, 3955 { 9, 4, 5, { 15, 21, 26, 39, 0 }, 13, 7, 4 } 3956 }; 3957 3958 u32 val; 3959 unsigned int width, density, slow, attempts; 3960 adapter_t *adapter = mc7->adapter; 3961 const struct mc7_timing_params *p = &mc7_timings[mem_type]; 3962 3963 if (!mc7->size) 3964 return 0; 3965 3966 val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG); 3967 slow = val & F_SLOW; 3968 width = G_WIDTH(val); 3969 density = G_DEN(val); 3970 3971 t3_write_reg(adapter, mc7->offset + A_MC7_CFG, val | F_IFEN); 3972 val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */ 3973 msleep(1); 3974 3975 if (!slow) { 3976 t3_write_reg(adapter, mc7->offset + A_MC7_CAL, F_SGL_CAL_EN); 3977 (void) t3_read_reg(adapter, mc7->offset + A_MC7_CAL); 3978 msleep(1); 3979 if (t3_read_reg(adapter, mc7->offset + A_MC7_CAL) & 3980 (F_BUSY | F_SGL_CAL_EN | F_CAL_FAULT)) { 3981 CH_ERR(adapter, "%s MC7 calibration timed out\n", 3982 mc7->name); 3983 goto out_fail; 3984 } 3985 } 3986 3987 t3_write_reg(adapter, mc7->offset + A_MC7_PARM, 3988 V_ACTTOPREDLY(p->ActToPreDly) | 3989 V_ACTTORDWRDLY(p->ActToRdWrDly) | V_PRECYC(p->PreCyc) | 3990 V_REFCYC(p->RefCyc[density]) | V_BKCYC(p->BkCyc) | 3991 V_WRTORDDLY(p->WrToRdDly) | V_RDTOWRDLY(p->RdToWrDly)); 3992 3993 t3_write_reg(adapter, mc7->offset + A_MC7_CFG, 3994 val | F_CLKEN | F_TERM150); 3995 (void) t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */ 3996 3997 if (!slow) 3998 t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLENB, 3999 F_DLLENB); 4000 udelay(1); 4001 4002 val = slow ? 3 : 6; 4003 if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) || 4004 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE2, 0) || 4005 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE3, 0) || 4006 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val)) 4007 goto out_fail; 4008 4009 if (!slow) { 4010 t3_write_reg(adapter, mc7->offset + A_MC7_MODE, 0x100); 4011 t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, 4012 F_DLLRST, 0); 4013 udelay(5); 4014 } 4015 4016 if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) || 4017 wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) || 4018 wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) || 4019 wrreg_wait(adapter, mc7->offset + A_MC7_MODE, 4020 mc7_mode[mem_type]) || 4021 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val | 0x380) || 4022 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val)) 4023 goto out_fail; 4024 4025 /* clock value is in KHz */ 4026 mc7_clock = mc7_clock * 7812 + mc7_clock / 2; /* ns */ 4027 mc7_clock /= 1000000; /* KHz->MHz, ns->us */ 4028 4029 t3_write_reg(adapter, mc7->offset + A_MC7_REF, 4030 F_PERREFEN | V_PREREFDIV(mc7_clock)); 4031 (void) t3_read_reg(adapter, mc7->offset + A_MC7_REF); /* flush */ 4032 4033 t3_write_reg(adapter, mc7->offset + A_MC7_ECC, 4034 F_ECCGENEN | F_ECCCHKEN); 4035 t3_write_reg(adapter, mc7->offset + A_MC7_BIST_DATA, 0); 4036 t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_BEG, 0); 4037 t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_END, 4038 (mc7->size << width) - 1); 4039 t3_write_reg(adapter, mc7->offset + A_MC7_BIST_OP, V_OP(1)); 4040 (void) t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP); /* flush */ 4041 4042 attempts = 50; 4043 do { 4044 msleep(250); 4045 val = t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP); 4046 } while ((val & F_BUSY) && --attempts); 4047 if (val & F_BUSY) { 4048 CH_ERR(adapter, "%s MC7 BIST timed out\n", mc7->name); 4049 goto out_fail; 4050 } 4051 4052 /* Enable normal memory accesses. */ 4053 t3_set_reg_field(adapter, mc7->offset + A_MC7_CFG, 0, F_RDY); 4054 return 0; 4055 4056 out_fail: 4057 return -1; 4058 } 4059 4060 static void config_pcie(adapter_t *adap) 4061 { 4062 static const u16 ack_lat[4][6] = { 4063 { 237, 416, 559, 1071, 2095, 4143 }, 4064 { 128, 217, 289, 545, 1057, 2081 }, 4065 { 73, 118, 154, 282, 538, 1050 }, 4066 { 67, 107, 86, 150, 278, 534 } 4067 }; 4068 static const u16 rpl_tmr[4][6] = { 4069 { 711, 1248, 1677, 3213, 6285, 12429 }, 4070 { 384, 651, 867, 1635, 3171, 6243 }, 4071 { 219, 354, 462, 846, 1614, 3150 }, 4072 { 201, 321, 258, 450, 834, 1602 } 4073 }; 4074 4075 u16 val, devid; 4076 unsigned int log2_width, pldsize; 4077 unsigned int fst_trn_rx, fst_trn_tx, acklat, rpllmt; 4078 4079 t3_os_pci_read_config_2(adap, 4080 adap->params.pci.pcie_cap_addr + PCI_EXP_DEVCTL, 4081 &val); 4082 pldsize = (val & PCI_EXP_DEVCTL_PAYLOAD) >> 5; 4083 4084 /* 4085 * Gen2 adapter pcie bridge compatibility requires minimum 4086 * Max_Read_Request_size 4087 */ 4088 t3_os_pci_read_config_2(adap, 0x2, &devid); 4089 if (devid == 0x37) { 4090 t3_os_pci_write_config_2(adap, 4091 adap->params.pci.pcie_cap_addr + PCI_EXP_DEVCTL, 4092 val & ~PCI_EXP_DEVCTL_READRQ & ~PCI_EXP_DEVCTL_PAYLOAD); 4093 pldsize = 0; 4094 } 4095 4096 t3_os_pci_read_config_2(adap, 4097 adap->params.pci.pcie_cap_addr + PCI_EXP_LNKCTL, 4098 &val); 4099 4100 fst_trn_tx = G_NUMFSTTRNSEQ(t3_read_reg(adap, A_PCIE_PEX_CTRL0)); 4101 fst_trn_rx = adap->params.rev == 0 ? fst_trn_tx : 4102 G_NUMFSTTRNSEQRX(t3_read_reg(adap, A_PCIE_MODE)); 4103 log2_width = fls(adap->params.pci.width) - 1; 4104 acklat = ack_lat[log2_width][pldsize]; 4105 if (val & 1) /* check LOsEnable */ 4106 acklat += fst_trn_tx * 4; 4107 rpllmt = rpl_tmr[log2_width][pldsize] + fst_trn_rx * 4; 4108 4109 if (adap->params.rev == 0) 4110 t3_set_reg_field(adap, A_PCIE_PEX_CTRL1, 4111 V_T3A_ACKLAT(M_T3A_ACKLAT), 4112 V_T3A_ACKLAT(acklat)); 4113 else 4114 t3_set_reg_field(adap, A_PCIE_PEX_CTRL1, V_ACKLAT(M_ACKLAT), 4115 V_ACKLAT(acklat)); 4116 4117 t3_set_reg_field(adap, A_PCIE_PEX_CTRL0, V_REPLAYLMT(M_REPLAYLMT), 4118 V_REPLAYLMT(rpllmt)); 4119 4120 t3_write_reg(adap, A_PCIE_PEX_ERR, 0xffffffff); 4121 t3_set_reg_field(adap, A_PCIE_CFG, 0, 4122 F_ENABLELINKDWNDRST | F_ENABLELINKDOWNRST | 4123 F_PCIE_DMASTOPEN | F_PCIE_CLIDECEN); 4124 } 4125 4126 /** 4127 * t3_init_hw - initialize and configure T3 HW modules 4128 * @adapter: the adapter 4129 * @fw_params: initial parameters to pass to firmware (optional) 4130 * 4131 * Initialize and configure T3 HW modules. This performs the 4132 * initialization steps that need to be done once after a card is reset. 4133 * MAC and PHY initialization is handled separarely whenever a port is 4134 * enabled. 4135 * 4136 * @fw_params are passed to FW and their value is platform dependent. 4137 * Only the top 8 bits are available for use, the rest must be 0. 4138 */ 4139 int t3_init_hw(adapter_t *adapter, u32 fw_params) 4140 { 4141 int err = -EIO, attempts, i; 4142 const struct vpd_params *vpd = &adapter->params.vpd; 4143 4144 if (adapter->params.rev > 0) 4145 calibrate_xgm_t3b(adapter); 4146 else if (calibrate_xgm(adapter)) 4147 goto out_err; 4148 4149 if (adapter->params.nports > 2) 4150 t3_mac_init(&adap2pinfo(adapter, 0)->mac); 4151 4152 if (vpd->mclk) { 4153 partition_mem(adapter, &adapter->params.tp); 4154 4155 if (mc7_init(&adapter->pmrx, vpd->mclk, vpd->mem_timing) || 4156 mc7_init(&adapter->pmtx, vpd->mclk, vpd->mem_timing) || 4157 mc7_init(&adapter->cm, vpd->mclk, vpd->mem_timing) || 4158 t3_mc5_init(&adapter->mc5, adapter->params.mc5.nservers, 4159 adapter->params.mc5.nfilters, 4160 adapter->params.mc5.nroutes)) 4161 goto out_err; 4162 4163 for (i = 0; i < 32; i++) 4164 if (clear_sge_ctxt(adapter, i, F_CQ)) 4165 goto out_err; 4166 } 4167 4168 if (tp_init(adapter, &adapter->params.tp)) 4169 goto out_err; 4170 4171 t3_tp_set_coalescing_size(adapter, 4172 min(adapter->params.sge.max_pkt_size, 4173 MAX_RX_COALESCING_LEN), 1); 4174 t3_tp_set_max_rxsize(adapter, 4175 min(adapter->params.sge.max_pkt_size, 16384U)); 4176 ulp_config(adapter, &adapter->params.tp); 4177 if (is_pcie(adapter)) 4178 config_pcie(adapter); 4179 else 4180 t3_set_reg_field(adapter, A_PCIX_CFG, 0, 4181 F_DMASTOPEN | F_CLIDECEN); 4182 4183 if (adapter->params.rev == T3_REV_C) 4184 t3_set_reg_field(adapter, A_ULPTX_CONFIG, 0, 4185 F_CFG_CQE_SOP_MASK); 4186 4187 t3_write_reg(adapter, A_PM1_RX_CFG, 0xffffffff); 4188 t3_write_reg(adapter, A_PM1_RX_MODE, 0); 4189 t3_write_reg(adapter, A_PM1_TX_MODE, 0); 4190 chan_init_hw(adapter, adapter->params.chan_map); 4191 t3_sge_init(adapter, &adapter->params.sge); 4192 4193 t3_write_reg(adapter, A_T3DBG_GPIO_ACT_LOW, calc_gpio_intr(adapter)); 4194 4195 t3_write_reg(adapter, A_CIM_HOST_ACC_DATA, vpd->uclk | fw_params); 4196 t3_write_reg(adapter, A_CIM_BOOT_CFG, 4197 V_BOOTADDR(FW_FLASH_BOOT_ADDR >> 2)); 4198 (void) t3_read_reg(adapter, A_CIM_BOOT_CFG); /* flush */ 4199 4200 attempts = 100; 4201 do { /* wait for uP to initialize */ 4202 msleep(20); 4203 } while (t3_read_reg(adapter, A_CIM_HOST_ACC_DATA) && --attempts); 4204 if (!attempts) { 4205 CH_ERR(adapter, "uP initialization timed out\n"); 4206 goto out_err; 4207 } 4208 4209 err = 0; 4210 out_err: 4211 return err; 4212 } 4213 4214 /** 4215 * get_pci_mode - determine a card's PCI mode 4216 * @adapter: the adapter 4217 * @p: where to store the PCI settings 4218 * 4219 * Determines a card's PCI mode and associated parameters, such as speed 4220 * and width. 4221 */ 4222 static void __devinit get_pci_mode(adapter_t *adapter, struct pci_params *p) 4223 { 4224 static unsigned short speed_map[] = { 33, 66, 100, 133 }; 4225 u32 pci_mode, pcie_cap; 4226 4227 pcie_cap = t3_os_find_pci_capability(adapter, PCI_CAP_ID_EXP); 4228 if (pcie_cap) { 4229 u16 val; 4230 4231 p->variant = PCI_VARIANT_PCIE; 4232 p->pcie_cap_addr = pcie_cap; 4233 t3_os_pci_read_config_2(adapter, pcie_cap + PCI_EXP_LNKSTA, 4234 &val); 4235 p->width = (val >> 4) & 0x3f; 4236 return; 4237 } 4238 4239 pci_mode = t3_read_reg(adapter, A_PCIX_MODE); 4240 p->speed = speed_map[G_PCLKRANGE(pci_mode)]; 4241 p->width = (pci_mode & F_64BIT) ? 64 : 32; 4242 pci_mode = G_PCIXINITPAT(pci_mode); 4243 if (pci_mode == 0) 4244 p->variant = PCI_VARIANT_PCI; 4245 else if (pci_mode < 4) 4246 p->variant = PCI_VARIANT_PCIX_MODE1_PARITY; 4247 else if (pci_mode < 8) 4248 p->variant = PCI_VARIANT_PCIX_MODE1_ECC; 4249 else 4250 p->variant = PCI_VARIANT_PCIX_266_MODE2; 4251 } 4252 4253 /** 4254 * init_link_config - initialize a link's SW state 4255 * @lc: structure holding the link state 4256 * @caps: link capabilities 4257 * 4258 * Initializes the SW state maintained for each link, including the link's 4259 * capabilities and default speed/duplex/flow-control/autonegotiation 4260 * settings. 4261 */ 4262 static void __devinit init_link_config(struct link_config *lc, 4263 unsigned int caps) 4264 { 4265 lc->supported = caps; 4266 lc->requested_speed = lc->speed = SPEED_INVALID; 4267 lc->requested_duplex = lc->duplex = DUPLEX_INVALID; 4268 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; 4269 if (lc->supported & SUPPORTED_Autoneg) { 4270 lc->advertising = lc->supported; 4271 lc->autoneg = AUTONEG_ENABLE; 4272 lc->requested_fc |= PAUSE_AUTONEG; 4273 } else { 4274 lc->advertising = 0; 4275 lc->autoneg = AUTONEG_DISABLE; 4276 } 4277 } 4278 4279 /** 4280 * mc7_calc_size - calculate MC7 memory size 4281 * @cfg: the MC7 configuration 4282 * 4283 * Calculates the size of an MC7 memory in bytes from the value of its 4284 * configuration register. 4285 */ 4286 static unsigned int __devinit mc7_calc_size(u32 cfg) 4287 { 4288 unsigned int width = G_WIDTH(cfg); 4289 unsigned int banks = !!(cfg & F_BKS) + 1; 4290 unsigned int org = !!(cfg & F_ORG) + 1; 4291 unsigned int density = G_DEN(cfg); 4292 unsigned int MBs = ((256 << density) * banks) / (org << width); 4293 4294 return MBs << 20; 4295 } 4296 4297 static void __devinit mc7_prep(adapter_t *adapter, struct mc7 *mc7, 4298 unsigned int base_addr, const char *name) 4299 { 4300 u32 cfg; 4301 4302 mc7->adapter = adapter; 4303 mc7->name = name; 4304 mc7->offset = base_addr - MC7_PMRX_BASE_ADDR; 4305 cfg = t3_read_reg(adapter, mc7->offset + A_MC7_CFG); 4306 mc7->size = G_DEN(cfg) == M_DEN ? 0 : mc7_calc_size(cfg); 4307 mc7->width = G_WIDTH(cfg); 4308 } 4309 4310 void mac_prep(struct cmac *mac, adapter_t *adapter, int index) 4311 { 4312 u16 devid; 4313 4314 mac->adapter = adapter; 4315 mac->multiport = adapter->params.nports > 2; 4316 if (mac->multiport) { 4317 mac->ext_port = (unsigned char)index; 4318 mac->nucast = 8; 4319 } else 4320 mac->nucast = 1; 4321 4322 /* Gen2 adapter uses VPD xauicfg[] to notify driver which MAC 4323 is connected to each port, its suppose to be using xgmac0 for both ports 4324 */ 4325 t3_os_pci_read_config_2(adapter, 0x2, &devid); 4326 4327 if (mac->multiport || 4328 (!adapter->params.vpd.xauicfg[1] && (devid==0x37))) 4329 index = 0; 4330 4331 mac->offset = (XGMAC0_1_BASE_ADDR - XGMAC0_0_BASE_ADDR) * index; 4332 4333 if (adapter->params.rev == 0 && uses_xaui(adapter)) { 4334 t3_write_reg(adapter, A_XGM_SERDES_CTRL + mac->offset, 4335 is_10G(adapter) ? 0x2901c04 : 0x2301c04); 4336 t3_set_reg_field(adapter, A_XGM_PORT_CFG + mac->offset, 4337 F_ENRGMII, 0); 4338 } 4339 } 4340 4341 /** 4342 * early_hw_init - HW initialization done at card detection time 4343 * @adapter: the adapter 4344 * @ai: contains information about the adapter type and properties 4345 * 4346 * Perfoms the part of HW initialization that is done early on when the 4347 * driver first detecs the card. Most of the HW state is initialized 4348 * lazily later on when a port or an offload function are first used. 4349 */ 4350 void early_hw_init(adapter_t *adapter, const struct adapter_info *ai) 4351 { 4352 u32 val = V_PORTSPEED(is_10G(adapter) || adapter->params.nports > 2 ? 4353 3 : 2); 4354 u32 gpio_out = ai->gpio_out; 4355 4356 mi1_init(adapter, ai); 4357 t3_write_reg(adapter, A_I2C_CFG, /* set for 80KHz */ 4358 V_I2C_CLKDIV(adapter->params.vpd.cclk / 80 - 1)); 4359 t3_write_reg(adapter, A_T3DBG_GPIO_EN, 4360 gpio_out | F_GPIO0_OEN | F_GPIO0_OUT_VAL); 4361 t3_write_reg(adapter, A_MC5_DB_SERVER_INDEX, 0); 4362 t3_write_reg(adapter, A_SG_OCO_BASE, V_BASE1(0xfff)); 4363 4364 if (adapter->params.rev == 0 || !uses_xaui(adapter)) 4365 val |= F_ENRGMII; 4366 4367 /* Enable MAC clocks so we can access the registers */ 4368 t3_write_reg(adapter, A_XGM_PORT_CFG, val); 4369 (void) t3_read_reg(adapter, A_XGM_PORT_CFG); 4370 4371 val |= F_CLKDIVRESET_; 4372 t3_write_reg(adapter, A_XGM_PORT_CFG, val); 4373 (void) t3_read_reg(adapter, A_XGM_PORT_CFG); 4374 t3_write_reg(adapter, XGM_REG(A_XGM_PORT_CFG, 1), val); 4375 (void) t3_read_reg(adapter, A_XGM_PORT_CFG); 4376 } 4377 4378 /** 4379 * t3_reset_adapter - reset the adapter 4380 * @adapter: the adapter 4381 * 4382 * Reset the adapter. 4383 */ 4384 int t3_reset_adapter(adapter_t *adapter) 4385 { 4386 int i, save_and_restore_pcie = 4387 adapter->params.rev < T3_REV_B2 && is_pcie(adapter); 4388 uint16_t devid = 0; 4389 4390 if (save_and_restore_pcie) 4391 t3_os_pci_save_state(adapter); 4392 t3_write_reg(adapter, A_PL_RST, F_CRSTWRM | F_CRSTWRMMODE); 4393 4394 /* 4395 * Delay. Give Some time to device to reset fully. 4396 * XXX The delay time should be modified. 4397 */ 4398 for (i = 0; i < 10; i++) { 4399 msleep(50); 4400 t3_os_pci_read_config_2(adapter, 0x00, &devid); 4401 if (devid == 0x1425) 4402 break; 4403 } 4404 4405 if (devid != 0x1425) 4406 return -1; 4407 4408 if (save_and_restore_pcie) 4409 t3_os_pci_restore_state(adapter); 4410 return 0; 4411 } 4412 4413 static int init_parity(adapter_t *adap) 4414 { 4415 int i, err, addr; 4416 4417 if (t3_read_reg(adap, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) 4418 return -EBUSY; 4419 4420 for (err = i = 0; !err && i < 16; i++) 4421 err = clear_sge_ctxt(adap, i, F_EGRESS); 4422 for (i = 0xfff0; !err && i <= 0xffff; i++) 4423 err = clear_sge_ctxt(adap, i, F_EGRESS); 4424 for (i = 0; !err && i < SGE_QSETS; i++) 4425 err = clear_sge_ctxt(adap, i, F_RESPONSEQ); 4426 if (err) 4427 return err; 4428 4429 t3_write_reg(adap, A_CIM_IBQ_DBG_DATA, 0); 4430 for (i = 0; i < 4; i++) 4431 for (addr = 0; addr <= M_IBQDBGADDR; addr++) { 4432 t3_write_reg(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGEN | 4433 F_IBQDBGWR | V_IBQDBGQID(i) | 4434 V_IBQDBGADDR(addr)); 4435 err = t3_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, 4436 F_IBQDBGBUSY, 0, 2, 1); 4437 if (err) 4438 return err; 4439 } 4440 return 0; 4441 } 4442 4443 /** 4444 * t3_prep_adapter - prepare SW and HW for operation 4445 * @adapter: the adapter 4446 * @ai: contains information about the adapter type and properties 4447 * 4448 * Initialize adapter SW state for the various HW modules, set initial 4449 * values for some adapter tunables, take PHYs out of reset, and 4450 * initialize the MDIO interface. 4451 */ 4452 int __devinit t3_prep_adapter(adapter_t *adapter, 4453 const struct adapter_info *ai, int reset) 4454 { 4455 int ret; 4456 unsigned int i, j = 0; 4457 4458 get_pci_mode(adapter, &adapter->params.pci); 4459 4460 adapter->params.info = ai; 4461 adapter->params.nports = ai->nports0 + ai->nports1; 4462 adapter->params.chan_map = (!!ai->nports0) | (!!ai->nports1 << 1); 4463 adapter->params.rev = t3_read_reg(adapter, A_PL_REV); 4464 4465 /* 4466 * We used to only run the "adapter check task" once a second if 4467 * we had PHYs which didn't support interrupts (we would check 4468 * their link status once a second). Now we check other conditions 4469 * in that routine which would [potentially] impose a very high 4470 * interrupt load on the system. As such, we now always scan the 4471 * adapter state once a second ... 4472 */ 4473 adapter->params.linkpoll_period = 10; 4474 4475 if (adapter->params.nports > 2) 4476 adapter->params.stats_update_period = VSC_STATS_ACCUM_SECS; 4477 else 4478 adapter->params.stats_update_period = is_10G(adapter) ? 4479 MAC_STATS_ACCUM_SECS : (MAC_STATS_ACCUM_SECS * 10); 4480 adapter->params.pci.vpd_cap_addr = 4481 t3_os_find_pci_capability(adapter, PCI_CAP_ID_VPD); 4482 4483 ret = get_vpd_params(adapter, &adapter->params.vpd); 4484 if (ret < 0) 4485 return ret; 4486 4487 if (reset && t3_reset_adapter(adapter)) 4488 return -1; 4489 4490 if (adapter->params.vpd.mclk) { 4491 struct tp_params *p = &adapter->params.tp; 4492 4493 mc7_prep(adapter, &adapter->pmrx, MC7_PMRX_BASE_ADDR, "PMRX"); 4494 mc7_prep(adapter, &adapter->pmtx, MC7_PMTX_BASE_ADDR, "PMTX"); 4495 mc7_prep(adapter, &adapter->cm, MC7_CM_BASE_ADDR, "CM"); 4496 4497 p->nchan = adapter->params.chan_map == 3 ? 2 : 1; 4498 p->pmrx_size = t3_mc7_size(&adapter->pmrx); 4499 p->pmtx_size = t3_mc7_size(&adapter->pmtx); 4500 p->cm_size = t3_mc7_size(&adapter->cm); 4501 p->chan_rx_size = p->pmrx_size / 2; /* only 1 Rx channel */ 4502 p->chan_tx_size = p->pmtx_size / p->nchan; 4503 p->rx_pg_size = 64 * 1024; 4504 p->tx_pg_size = is_10G(adapter) ? 64 * 1024 : 16 * 1024; 4505 p->rx_num_pgs = pm_num_pages(p->chan_rx_size, p->rx_pg_size); 4506 p->tx_num_pgs = pm_num_pages(p->chan_tx_size, p->tx_pg_size); 4507 p->ntimer_qs = p->cm_size >= (128 << 20) || 4508 adapter->params.rev > 0 ? 12 : 6; 4509 p->tre = fls(adapter->params.vpd.cclk / (1000 / TP_TMR_RES)) - 4510 1; 4511 p->dack_re = fls(adapter->params.vpd.cclk / 10) - 1; /* 100us */ 4512 } 4513 4514 adapter->params.offload = t3_mc7_size(&adapter->pmrx) && 4515 t3_mc7_size(&adapter->pmtx) && 4516 t3_mc7_size(&adapter->cm); 4517 4518 t3_sge_prep(adapter, &adapter->params.sge); 4519 4520 if (is_offload(adapter)) { 4521 adapter->params.mc5.nservers = DEFAULT_NSERVERS; 4522 /* PR 6487. TOE and filtering are mutually exclusive */ 4523 adapter->params.mc5.nfilters = 0; 4524 adapter->params.mc5.nroutes = 0; 4525 t3_mc5_prep(adapter, &adapter->mc5, MC5_MODE_144_BIT); 4526 4527 init_mtus(adapter->params.mtus); 4528 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd); 4529 } 4530 4531 early_hw_init(adapter, ai); 4532 ret = init_parity(adapter); 4533 if (ret) 4534 return ret; 4535 4536 if (adapter->params.nports > 2 && 4537 (ret = t3_vsc7323_init(adapter, adapter->params.nports))) 4538 return ret; 4539 4540 for_each_port(adapter, i) { 4541 u8 hw_addr[6]; 4542 const struct port_type_info *pti; 4543 struct port_info *p = adap2pinfo(adapter, i); 4544 4545 for (;;) { 4546 unsigned port_type = adapter->params.vpd.port_type[j]; 4547 if (port_type) { 4548 if (port_type < ARRAY_SIZE(port_types)) { 4549 pti = &port_types[port_type]; 4550 break; 4551 } else 4552 return -EINVAL; 4553 } 4554 j++; 4555 if (j >= ARRAY_SIZE(adapter->params.vpd.port_type)) 4556 return -EINVAL; 4557 } 4558 ret = pti->phy_prep(p, ai->phy_base_addr + j, 4559 ai->mdio_ops); 4560 if (ret) 4561 return ret; 4562 mac_prep(&p->mac, adapter, j); 4563 ++j; 4564 4565 /* 4566 * The VPD EEPROM stores the base Ethernet address for the 4567 * card. A port's address is derived from the base by adding 4568 * the port's index to the base's low octet. 4569 */ 4570 memcpy(hw_addr, adapter->params.vpd.eth_base, 5); 4571 hw_addr[5] = adapter->params.vpd.eth_base[5] + i; 4572 4573 t3_os_set_hw_addr(adapter, i, hw_addr); 4574 init_link_config(&p->link_config, p->phy.caps); 4575 p->phy.ops->power_down(&p->phy, 1); 4576 4577 /* 4578 * If the PHY doesn't support interrupts for link status 4579 * changes, schedule a scan of the adapter links at least 4580 * once a second. 4581 */ 4582 if (!(p->phy.caps & SUPPORTED_IRQ) && 4583 adapter->params.linkpoll_period > 10) 4584 adapter->params.linkpoll_period = 10; 4585 } 4586 4587 return 0; 4588 } 4589 4590 /** 4591 * t3_reinit_adapter - prepare HW for operation again 4592 * @adapter: the adapter 4593 * 4594 * Put HW in the same state as @t3_prep_adapter without any changes to 4595 * SW state. This is a cut down version of @t3_prep_adapter intended 4596 * to be used after events that wipe out HW state but preserve SW state, 4597 * e.g., EEH. The device must be reset before calling this. 4598 */ 4599 int t3_reinit_adapter(adapter_t *adap) 4600 { 4601 unsigned int i; 4602 int ret, j = 0; 4603 4604 early_hw_init(adap, adap->params.info); 4605 ret = init_parity(adap); 4606 if (ret) 4607 return ret; 4608 4609 if (adap->params.nports > 2 && 4610 (ret = t3_vsc7323_init(adap, adap->params.nports))) 4611 return ret; 4612 4613 for_each_port(adap, i) { 4614 const struct port_type_info *pti; 4615 struct port_info *p = adap2pinfo(adap, i); 4616 4617 for (;;) { 4618 unsigned port_type = adap->params.vpd.port_type[j]; 4619 if (port_type) { 4620 if (port_type < ARRAY_SIZE(port_types)) { 4621 pti = &port_types[port_type]; 4622 break; 4623 } else 4624 return -EINVAL; 4625 } 4626 j++; 4627 if (j >= ARRAY_SIZE(adap->params.vpd.port_type)) 4628 return -EINVAL; 4629 } 4630 ret = pti->phy_prep(p, p->phy.addr, NULL); 4631 if (ret) 4632 return ret; 4633 p->phy.ops->power_down(&p->phy, 1); 4634 } 4635 return 0; 4636 } 4637 4638 void t3_led_ready(adapter_t *adapter) 4639 { 4640 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL, 4641 F_GPIO0_OUT_VAL); 4642 } 4643 4644 void t3_port_failover(adapter_t *adapter, int port) 4645 { 4646 u32 val; 4647 4648 val = port ? F_PORT1ACTIVE : F_PORT0ACTIVE; 4649 t3_set_reg_field(adapter, A_MPS_CFG, F_PORT0ACTIVE | F_PORT1ACTIVE, 4650 val); 4651 } 4652 4653 void t3_failover_done(adapter_t *adapter, int port) 4654 { 4655 t3_set_reg_field(adapter, A_MPS_CFG, F_PORT0ACTIVE | F_PORT1ACTIVE, 4656 F_PORT0ACTIVE | F_PORT1ACTIVE); 4657 } 4658 4659 void t3_failover_clear(adapter_t *adapter) 4660 { 4661 t3_set_reg_field(adapter, A_MPS_CFG, F_PORT0ACTIVE | F_PORT1ACTIVE, 4662 F_PORT0ACTIVE | F_PORT1ACTIVE); 4663 } 4664 4665 static int t3_cim_hac_read(adapter_t *adapter, u32 addr, u32 *val) 4666 { 4667 u32 v; 4668 4669 t3_write_reg(adapter, A_CIM_HOST_ACC_CTRL, addr); 4670 if (t3_wait_op_done_val(adapter, A_CIM_HOST_ACC_CTRL, 4671 F_HOSTBUSY, 0, 10, 10, &v)) 4672 return -EIO; 4673 4674 *val = t3_read_reg(adapter, A_CIM_HOST_ACC_DATA); 4675 4676 return 0; 4677 } 4678 4679 static int t3_cim_hac_write(adapter_t *adapter, u32 addr, u32 val) 4680 { 4681 u32 v; 4682 4683 t3_write_reg(adapter, A_CIM_HOST_ACC_DATA, val); 4684 4685 addr |= F_HOSTWRITE; 4686 t3_write_reg(adapter, A_CIM_HOST_ACC_CTRL, addr); 4687 4688 if (t3_wait_op_done_val(adapter, A_CIM_HOST_ACC_CTRL, 4689 F_HOSTBUSY, 0, 10, 5, &v)) 4690 return -EIO; 4691 return 0; 4692 } 4693 4694 int t3_get_up_la(adapter_t *adapter, u32 *stopped, u32 *index, 4695 u32 *size, void *data) 4696 { 4697 u32 v, *buf = data; 4698 int i, cnt, ret; 4699 4700 if (*size < LA_ENTRIES * 4) 4701 return -EINVAL; 4702 4703 ret = t3_cim_hac_read(adapter, LA_CTRL, &v); 4704 if (ret) 4705 goto out; 4706 4707 *stopped = !(v & 1); 4708 4709 /* Freeze LA */ 4710 if (!*stopped) { 4711 ret = t3_cim_hac_write(adapter, LA_CTRL, 0); 4712 if (ret) 4713 goto out; 4714 } 4715 4716 for (i = 0; i < LA_ENTRIES; i++) { 4717 v = (i << 2) | (1 << 1); 4718 ret = t3_cim_hac_write(adapter, LA_CTRL, v); 4719 if (ret) 4720 goto out; 4721 4722 ret = t3_cim_hac_read(adapter, LA_CTRL, &v); 4723 if (ret) 4724 goto out; 4725 4726 cnt = 20; 4727 while ((v & (1 << 1)) && cnt) { 4728 udelay(5); 4729 --cnt; 4730 ret = t3_cim_hac_read(adapter, LA_CTRL, &v); 4731 if (ret) 4732 goto out; 4733 } 4734 4735 if (v & (1 << 1)) 4736 return -EIO; 4737 4738 ret = t3_cim_hac_read(adapter, LA_DATA, &v); 4739 if (ret) 4740 goto out; 4741 4742 *buf++ = v; 4743 } 4744 4745 ret = t3_cim_hac_read(adapter, LA_CTRL, &v); 4746 if (ret) 4747 goto out; 4748 4749 *index = (v >> 16) + 4; 4750 *size = LA_ENTRIES * 4; 4751 out: 4752 /* Unfreeze LA */ 4753 t3_cim_hac_write(adapter, LA_CTRL, 1); 4754 return ret; 4755 } 4756 4757 int t3_get_up_ioqs(adapter_t *adapter, u32 *size, void *data) 4758 { 4759 u32 v, *buf = data; 4760 int i, j, ret; 4761 4762 if (*size < IOQ_ENTRIES * sizeof(struct t3_ioq_entry)) 4763 return -EINVAL; 4764 4765 for (i = 0; i < 4; i++) { 4766 ret = t3_cim_hac_read(adapter, (4 * i), &v); 4767 if (ret) 4768 goto out; 4769 4770 *buf++ = v; 4771 } 4772 4773 for (i = 0; i < IOQ_ENTRIES; i++) { 4774 u32 base_addr = 0x10 * (i + 1); 4775 4776 for (j = 0; j < 4; j++) { 4777 ret = t3_cim_hac_read(adapter, base_addr + 4 * j, &v); 4778 if (ret) 4779 goto out; 4780 4781 *buf++ = v; 4782 } 4783 } 4784 4785 *size = IOQ_ENTRIES * sizeof(struct t3_ioq_entry); 4786 4787 out: 4788 return ret; 4789 } 4790 4791