xref: /freebsd/sys/dev/cesa/cesa.c (revision d0b2dbfa0ecf2bbc9709efc5e20baf8e4b44bbbf)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (C) 2009-2011 Semihalf.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /*
30  * CESA SRAM Memory Map:
31  *
32  * +------------------------+ <= sc->sc_sram_base_va + CESA_SRAM_SIZE
33  * |                        |
34  * |          DATA          |
35  * |                        |
36  * +------------------------+ <= sc->sc_sram_base_va + CESA_DATA(0)
37  * |  struct cesa_sa_data   |
38  * +------------------------+
39  * |  struct cesa_sa_hdesc  |
40  * +------------------------+ <= sc->sc_sram_base_va
41  */
42 
43 #include <sys/cdefs.h>
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/bus.h>
47 #include <sys/endian.h>
48 #include <sys/kernel.h>
49 #include <sys/lock.h>
50 #include <sys/mbuf.h>
51 #include <sys/module.h>
52 #include <sys/mutex.h>
53 #include <sys/rman.h>
54 
55 #include <machine/bus.h>
56 #include <machine/intr.h>
57 #include <machine/resource.h>
58 #include <machine/fdt.h>
59 
60 #include <dev/fdt/simplebus.h>
61 #include <dev/fdt/fdt_common.h>
62 #include <dev/ofw/ofw_bus.h>
63 #include <dev/ofw/ofw_bus_subr.h>
64 
65 #include <crypto/sha1.h>
66 #include <crypto/sha2/sha256.h>
67 #include <crypto/rijndael/rijndael.h>
68 #include <opencrypto/cryptodev.h>
69 #include <opencrypto/xform.h>
70 #include "cryptodev_if.h"
71 
72 #include <arm/mv/mvreg.h>
73 #include <arm/mv/mvvar.h>
74 #include "cesa.h"
75 
76 static int	cesa_probe(device_t);
77 static int	cesa_attach(device_t);
78 static int	cesa_attach_late(device_t);
79 static int	cesa_detach(device_t);
80 static void	cesa_intr(void *);
81 static int	cesa_probesession(device_t,
82     const struct crypto_session_params *);
83 static int	cesa_newsession(device_t, crypto_session_t,
84     const struct crypto_session_params *);
85 static int	cesa_process(device_t, struct cryptop *, int);
86 
87 static struct resource_spec cesa_res_spec[] = {
88 	{ SYS_RES_MEMORY, 0, RF_ACTIVE },
89 	{ SYS_RES_MEMORY, 1, RF_ACTIVE },
90 	{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
91 	{ -1, 0 }
92 };
93 
94 static device_method_t cesa_methods[] = {
95 	/* Device interface */
96 	DEVMETHOD(device_probe,		cesa_probe),
97 	DEVMETHOD(device_attach,	cesa_attach),
98 	DEVMETHOD(device_detach,	cesa_detach),
99 
100 	/* Crypto device methods */
101 	DEVMETHOD(cryptodev_probesession, cesa_probesession),
102 	DEVMETHOD(cryptodev_newsession,	cesa_newsession),
103 	DEVMETHOD(cryptodev_process,	cesa_process),
104 
105 	DEVMETHOD_END
106 };
107 
108 static driver_t cesa_driver = {
109 	"cesa",
110 	cesa_methods,
111 	sizeof (struct cesa_softc)
112 };
113 
114 DRIVER_MODULE(cesa, simplebus, cesa_driver, 0, 0);
115 MODULE_DEPEND(cesa, crypto, 1, 1, 1);
116 
117 static void
118 cesa_dump_cshd(struct cesa_softc *sc, struct cesa_sa_hdesc *cshd)
119 {
120 #ifdef DEBUG
121 	device_t dev;
122 
123 	dev = sc->sc_dev;
124 	device_printf(dev, "CESA SA Hardware Descriptor:\n");
125 	device_printf(dev, "\t\tconfig: 0x%08X\n", cshd->cshd_config);
126 	device_printf(dev, "\t\te_src:  0x%08X\n", cshd->cshd_enc_src);
127 	device_printf(dev, "\t\te_dst:  0x%08X\n", cshd->cshd_enc_dst);
128 	device_printf(dev, "\t\te_dlen: 0x%08X\n", cshd->cshd_enc_dlen);
129 	device_printf(dev, "\t\te_key:  0x%08X\n", cshd->cshd_enc_key);
130 	device_printf(dev, "\t\te_iv_1: 0x%08X\n", cshd->cshd_enc_iv);
131 	device_printf(dev, "\t\te_iv_2: 0x%08X\n", cshd->cshd_enc_iv_buf);
132 	device_printf(dev, "\t\tm_src:  0x%08X\n", cshd->cshd_mac_src);
133 	device_printf(dev, "\t\tm_dst:  0x%08X\n", cshd->cshd_mac_dst);
134 	device_printf(dev, "\t\tm_dlen: 0x%08X\n", cshd->cshd_mac_dlen);
135 	device_printf(dev, "\t\tm_tlen: 0x%08X\n", cshd->cshd_mac_total_dlen);
136 	device_printf(dev, "\t\tm_iv_i: 0x%08X\n", cshd->cshd_mac_iv_in);
137 	device_printf(dev, "\t\tm_iv_o: 0x%08X\n", cshd->cshd_mac_iv_out);
138 #endif
139 }
140 
141 static void
142 cesa_alloc_dma_mem_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
143 {
144 	struct cesa_dma_mem *cdm;
145 
146 	if (error)
147 		return;
148 
149 	KASSERT(nseg == 1, ("Got wrong number of DMA segments, should be 1."));
150 	cdm = arg;
151 	cdm->cdm_paddr = segs->ds_addr;
152 }
153 
154 static int
155 cesa_alloc_dma_mem(struct cesa_softc *sc, struct cesa_dma_mem *cdm,
156     bus_size_t size)
157 {
158 	int error;
159 
160 	KASSERT(cdm->cdm_vaddr == NULL,
161 	    ("%s(): DMA memory descriptor in use.", __func__));
162 
163 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
164 	    PAGE_SIZE, 0,			/* alignment, boundary */
165 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
166 	    BUS_SPACE_MAXADDR,			/* highaddr */
167 	    NULL, NULL,				/* filtfunc, filtfuncarg */
168 	    size, 1,				/* maxsize, nsegments */
169 	    size, 0,				/* maxsegsz, flags */
170 	    NULL, NULL,				/* lockfunc, lockfuncarg */
171 	    &cdm->cdm_tag);			/* dmat */
172 	if (error) {
173 		device_printf(sc->sc_dev, "failed to allocate busdma tag, error"
174 		    " %i!\n", error);
175 
176 		goto err1;
177 	}
178 
179 	error = bus_dmamem_alloc(cdm->cdm_tag, &cdm->cdm_vaddr,
180 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &cdm->cdm_map);
181 	if (error) {
182 		device_printf(sc->sc_dev, "failed to allocate DMA safe"
183 		    " memory, error %i!\n", error);
184 
185 		goto err2;
186 	}
187 
188 	error = bus_dmamap_load(cdm->cdm_tag, cdm->cdm_map, cdm->cdm_vaddr,
189 	    size, cesa_alloc_dma_mem_cb, cdm, BUS_DMA_NOWAIT);
190 	if (error) {
191 		device_printf(sc->sc_dev, "cannot get address of the DMA"
192 		    " memory, error %i\n", error);
193 
194 		goto err3;
195 	}
196 
197 	return (0);
198 err3:
199 	bus_dmamem_free(cdm->cdm_tag, cdm->cdm_vaddr, cdm->cdm_map);
200 err2:
201 	bus_dma_tag_destroy(cdm->cdm_tag);
202 err1:
203 	cdm->cdm_vaddr = NULL;
204 	return (error);
205 }
206 
207 static void
208 cesa_free_dma_mem(struct cesa_dma_mem *cdm)
209 {
210 
211 	bus_dmamap_unload(cdm->cdm_tag, cdm->cdm_map);
212 	bus_dmamem_free(cdm->cdm_tag, cdm->cdm_vaddr, cdm->cdm_map);
213 	bus_dma_tag_destroy(cdm->cdm_tag);
214 	cdm->cdm_vaddr = NULL;
215 }
216 
217 static void
218 cesa_sync_dma_mem(struct cesa_dma_mem *cdm, bus_dmasync_op_t op)
219 {
220 
221 	/* Sync only if dma memory is valid */
222         if (cdm->cdm_vaddr != NULL)
223 		bus_dmamap_sync(cdm->cdm_tag, cdm->cdm_map, op);
224 }
225 
226 static void
227 cesa_sync_desc(struct cesa_softc *sc, bus_dmasync_op_t op)
228 {
229 
230 	cesa_sync_dma_mem(&sc->sc_tdesc_cdm, op);
231 	cesa_sync_dma_mem(&sc->sc_sdesc_cdm, op);
232 	cesa_sync_dma_mem(&sc->sc_requests_cdm, op);
233 }
234 
235 static struct cesa_request *
236 cesa_alloc_request(struct cesa_softc *sc)
237 {
238 	struct cesa_request *cr;
239 
240 	CESA_GENERIC_ALLOC_LOCKED(sc, cr, requests);
241 	if (!cr)
242 		return (NULL);
243 
244 	STAILQ_INIT(&cr->cr_tdesc);
245 	STAILQ_INIT(&cr->cr_sdesc);
246 
247 	return (cr);
248 }
249 
250 static void
251 cesa_free_request(struct cesa_softc *sc, struct cesa_request *cr)
252 {
253 
254 	/* Free TDMA descriptors assigned to this request */
255 	CESA_LOCK(sc, tdesc);
256 	STAILQ_CONCAT(&sc->sc_free_tdesc, &cr->cr_tdesc);
257 	CESA_UNLOCK(sc, tdesc);
258 
259 	/* Free SA descriptors assigned to this request */
260 	CESA_LOCK(sc, sdesc);
261 	STAILQ_CONCAT(&sc->sc_free_sdesc, &cr->cr_sdesc);
262 	CESA_UNLOCK(sc, sdesc);
263 
264 	/* Unload DMA memory associated with request */
265 	if (cr->cr_dmap_loaded) {
266 		bus_dmamap_unload(sc->sc_data_dtag, cr->cr_dmap);
267 		cr->cr_dmap_loaded = 0;
268 	}
269 
270 	CESA_GENERIC_FREE_LOCKED(sc, cr, requests);
271 }
272 
273 static void
274 cesa_enqueue_request(struct cesa_softc *sc, struct cesa_request *cr)
275 {
276 
277 	CESA_LOCK(sc, requests);
278 	STAILQ_INSERT_TAIL(&sc->sc_ready_requests, cr, cr_stq);
279 	CESA_UNLOCK(sc, requests);
280 }
281 
282 static struct cesa_tdma_desc *
283 cesa_alloc_tdesc(struct cesa_softc *sc)
284 {
285 	struct cesa_tdma_desc *ctd;
286 
287 	CESA_GENERIC_ALLOC_LOCKED(sc, ctd, tdesc);
288 
289 	if (!ctd)
290 		device_printf(sc->sc_dev, "TDMA descriptors pool exhaused. "
291 		    "Consider increasing CESA_TDMA_DESCRIPTORS.\n");
292 
293 	return (ctd);
294 }
295 
296 static struct cesa_sa_desc *
297 cesa_alloc_sdesc(struct cesa_softc *sc, struct cesa_request *cr)
298 {
299 	struct cesa_sa_desc *csd;
300 
301 	CESA_GENERIC_ALLOC_LOCKED(sc, csd, sdesc);
302 	if (!csd) {
303 		device_printf(sc->sc_dev, "SA descriptors pool exhaused. "
304 		    "Consider increasing CESA_SA_DESCRIPTORS.\n");
305 		return (NULL);
306 	}
307 
308 	STAILQ_INSERT_TAIL(&cr->cr_sdesc, csd, csd_stq);
309 
310 	/* Fill-in SA descriptor with default values */
311 	csd->csd_cshd->cshd_enc_key = CESA_SA_DATA(csd_key);
312 	csd->csd_cshd->cshd_enc_iv = CESA_SA_DATA(csd_iv);
313 	csd->csd_cshd->cshd_enc_iv_buf = CESA_SA_DATA(csd_iv);
314 	csd->csd_cshd->cshd_enc_src = 0;
315 	csd->csd_cshd->cshd_enc_dst = 0;
316 	csd->csd_cshd->cshd_enc_dlen = 0;
317 	csd->csd_cshd->cshd_mac_dst = CESA_SA_DATA(csd_hash);
318 	csd->csd_cshd->cshd_mac_iv_in = CESA_SA_DATA(csd_hiv_in);
319 	csd->csd_cshd->cshd_mac_iv_out = CESA_SA_DATA(csd_hiv_out);
320 	csd->csd_cshd->cshd_mac_src = 0;
321 	csd->csd_cshd->cshd_mac_dlen = 0;
322 
323 	return (csd);
324 }
325 
326 static struct cesa_tdma_desc *
327 cesa_tdma_copy(struct cesa_softc *sc, bus_addr_t dst, bus_addr_t src,
328     bus_size_t size)
329 {
330 	struct cesa_tdma_desc *ctd;
331 
332 	ctd = cesa_alloc_tdesc(sc);
333 	if (!ctd)
334 		return (NULL);
335 
336 	ctd->ctd_cthd->cthd_dst = dst;
337 	ctd->ctd_cthd->cthd_src = src;
338 	ctd->ctd_cthd->cthd_byte_count = size;
339 
340 	/* Handle special control packet */
341 	if (size != 0)
342 		ctd->ctd_cthd->cthd_flags = CESA_CTHD_OWNED;
343 	else
344 		ctd->ctd_cthd->cthd_flags = 0;
345 
346 	return (ctd);
347 }
348 
349 static struct cesa_tdma_desc *
350 cesa_tdma_copyin_sa_data(struct cesa_softc *sc, struct cesa_request *cr)
351 {
352 
353 	return (cesa_tdma_copy(sc, sc->sc_sram_base_pa +
354 	    sizeof(struct cesa_sa_hdesc), cr->cr_csd_paddr,
355 	    sizeof(struct cesa_sa_data)));
356 }
357 
358 static struct cesa_tdma_desc *
359 cesa_tdma_copyout_sa_data(struct cesa_softc *sc, struct cesa_request *cr)
360 {
361 
362 	return (cesa_tdma_copy(sc, cr->cr_csd_paddr, sc->sc_sram_base_pa +
363 	    sizeof(struct cesa_sa_hdesc), sizeof(struct cesa_sa_data)));
364 }
365 
366 static struct cesa_tdma_desc *
367 cesa_tdma_copy_sdesc(struct cesa_softc *sc, struct cesa_sa_desc *csd)
368 {
369 
370 	return (cesa_tdma_copy(sc, sc->sc_sram_base_pa, csd->csd_cshd_paddr,
371 	    sizeof(struct cesa_sa_hdesc)));
372 }
373 
374 static void
375 cesa_append_tdesc(struct cesa_request *cr, struct cesa_tdma_desc *ctd)
376 {
377 	struct cesa_tdma_desc *ctd_prev;
378 
379 	if (!STAILQ_EMPTY(&cr->cr_tdesc)) {
380 		ctd_prev = STAILQ_LAST(&cr->cr_tdesc, cesa_tdma_desc, ctd_stq);
381 		ctd_prev->ctd_cthd->cthd_next = ctd->ctd_cthd_paddr;
382 	}
383 
384 	ctd->ctd_cthd->cthd_next = 0;
385 	STAILQ_INSERT_TAIL(&cr->cr_tdesc, ctd, ctd_stq);
386 }
387 
388 static int
389 cesa_append_packet(struct cesa_softc *sc, struct cesa_request *cr,
390     struct cesa_packet *cp, struct cesa_sa_desc *csd)
391 {
392 	struct cesa_tdma_desc *ctd, *tmp;
393 
394 	/* Copy SA descriptor for this packet */
395 	ctd = cesa_tdma_copy_sdesc(sc, csd);
396 	if (!ctd)
397 		return (ENOMEM);
398 
399 	cesa_append_tdesc(cr, ctd);
400 
401 	/* Copy data to be processed */
402 	STAILQ_FOREACH_SAFE(ctd, &cp->cp_copyin, ctd_stq, tmp)
403 		cesa_append_tdesc(cr, ctd);
404 	STAILQ_INIT(&cp->cp_copyin);
405 
406 	/* Insert control descriptor */
407 	ctd = cesa_tdma_copy(sc, 0, 0, 0);
408 	if (!ctd)
409 		return (ENOMEM);
410 
411 	cesa_append_tdesc(cr, ctd);
412 
413 	/* Copy back results */
414 	STAILQ_FOREACH_SAFE(ctd, &cp->cp_copyout, ctd_stq, tmp)
415 		cesa_append_tdesc(cr, ctd);
416 	STAILQ_INIT(&cp->cp_copyout);
417 
418 	return (0);
419 }
420 
421 static void
422 cesa_set_mkey(struct cesa_session *cs, int alg, const uint8_t *mkey, int mklen)
423 {
424 	union authctx auth_ctx;
425 	uint32_t *hout;
426 	uint32_t *hin;
427 	int i;
428 
429 	hin = (uint32_t *)cs->cs_hiv_in;
430 	hout = (uint32_t *)cs->cs_hiv_out;
431 
432 	switch (alg) {
433 	case CRYPTO_SHA1_HMAC:
434 		hmac_init_ipad(&auth_hash_hmac_sha1, mkey, mklen, &auth_ctx);
435 		memcpy(hin, auth_ctx.sha1ctx.h.b32,
436 		    sizeof(auth_ctx.sha1ctx.h.b32));
437 		hmac_init_opad(&auth_hash_hmac_sha1, mkey, mklen, &auth_ctx);
438 		memcpy(hout, auth_ctx.sha1ctx.h.b32,
439 		    sizeof(auth_ctx.sha1ctx.h.b32));
440 		break;
441 	case CRYPTO_SHA2_256_HMAC:
442 		hmac_init_ipad(&auth_hash_hmac_sha2_256, mkey, mklen,
443 		    &auth_ctx);
444 		memcpy(hin, auth_ctx.sha256ctx.state,
445 		    sizeof(auth_ctx.sha256ctx.state));
446 		hmac_init_opad(&auth_hash_hmac_sha2_256, mkey, mklen,
447 		    &auth_ctx);
448 		memcpy(hout, auth_ctx.sha256ctx.state,
449 		    sizeof(auth_ctx.sha256ctx.state));
450 		break;
451 	default:
452 		panic("shouldn't get here");
453 	}
454 
455 	for (i = 0; i < CESA_MAX_HASH_LEN / sizeof(uint32_t); i++) {
456 		hin[i] = htobe32(hin[i]);
457 		hout[i] = htobe32(hout[i]);
458 	}
459 	explicit_bzero(&auth_ctx, sizeof(auth_ctx));
460 }
461 
462 static int
463 cesa_prep_aes_key(struct cesa_session *cs,
464     const struct crypto_session_params *csp)
465 {
466 	uint32_t ek[4 * (RIJNDAEL_MAXNR + 1)];
467 	uint32_t *dkey;
468 	int i;
469 
470 	rijndaelKeySetupEnc(ek, cs->cs_key, csp->csp_cipher_klen * 8);
471 
472 	cs->cs_config &= ~CESA_CSH_AES_KLEN_MASK;
473 	dkey = (uint32_t *)cs->cs_aes_dkey;
474 
475 	switch (csp->csp_cipher_klen) {
476 	case 16:
477 		cs->cs_config |= CESA_CSH_AES_KLEN_128;
478 		for (i = 0; i < 4; i++)
479 			*dkey++ = htobe32(ek[4 * 10 + i]);
480 		break;
481 	case 24:
482 		cs->cs_config |= CESA_CSH_AES_KLEN_192;
483 		for (i = 0; i < 4; i++)
484 			*dkey++ = htobe32(ek[4 * 12 + i]);
485 		for (i = 0; i < 2; i++)
486 			*dkey++ = htobe32(ek[4 * 11 + 2 + i]);
487 		break;
488 	case 32:
489 		cs->cs_config |= CESA_CSH_AES_KLEN_256;
490 		for (i = 0; i < 4; i++)
491 			*dkey++ = htobe32(ek[4 * 14 + i]);
492 		for (i = 0; i < 4; i++)
493 			*dkey++ = htobe32(ek[4 * 13 + i]);
494 		break;
495 	default:
496 		return (EINVAL);
497 	}
498 
499 	return (0);
500 }
501 
502 static void
503 cesa_start_packet(struct cesa_packet *cp, unsigned int size)
504 {
505 
506 	cp->cp_size = size;
507 	cp->cp_offset = 0;
508 	STAILQ_INIT(&cp->cp_copyin);
509 	STAILQ_INIT(&cp->cp_copyout);
510 }
511 
512 static int
513 cesa_fill_packet(struct cesa_softc *sc, struct cesa_packet *cp,
514     bus_dma_segment_t *seg)
515 {
516 	struct cesa_tdma_desc *ctd;
517 	unsigned int bsize;
518 
519 	/* Calculate size of block copy */
520 	bsize = MIN(seg->ds_len, cp->cp_size - cp->cp_offset);
521 
522 	if (bsize > 0) {
523 		ctd = cesa_tdma_copy(sc, sc->sc_sram_base_pa +
524 		    CESA_DATA(cp->cp_offset), seg->ds_addr, bsize);
525 		if (!ctd)
526 			return (-ENOMEM);
527 
528 		STAILQ_INSERT_TAIL(&cp->cp_copyin, ctd, ctd_stq);
529 
530 		ctd = cesa_tdma_copy(sc, seg->ds_addr, sc->sc_sram_base_pa +
531 		    CESA_DATA(cp->cp_offset), bsize);
532 		if (!ctd)
533 			return (-ENOMEM);
534 
535 		STAILQ_INSERT_TAIL(&cp->cp_copyout, ctd, ctd_stq);
536 
537 		seg->ds_len -= bsize;
538 		seg->ds_addr += bsize;
539 		cp->cp_offset += bsize;
540 	}
541 
542 	return (bsize);
543 }
544 
545 static void
546 cesa_create_chain_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
547 {
548 	unsigned int mpsize, fragmented;
549 	unsigned int mlen, mskip, tmlen;
550 	struct cesa_chain_info *cci;
551 	unsigned int elen, eskip;
552 	unsigned int skip, len;
553 	struct cesa_sa_desc *csd;
554 	struct cesa_request *cr;
555 	struct cryptop *crp;
556 	struct cesa_softc *sc;
557 	struct cesa_packet cp;
558 	bus_dma_segment_t seg;
559 	uint32_t config;
560 	int size;
561 
562 	cci = arg;
563 	sc = cci->cci_sc;
564 	cr = cci->cci_cr;
565 	crp = cr->cr_crp;
566 
567 	if (error) {
568 		cci->cci_error = error;
569 		return;
570 	}
571 
572 	/*
573 	 * Only do a combined op if the AAD is adjacent to the payload
574 	 * and the AAD length is a multiple of the IV length.  The
575 	 * checks against 'config' are to avoid recursing when the
576 	 * logic below invokes separate operations.
577 	 */
578 	config = cci->cci_config;
579 	if (((config & CESA_CSHD_OP_MASK) == CESA_CSHD_MAC_AND_ENC ||
580 	    (config & CESA_CSHD_OP_MASK) == CESA_CSHD_ENC_AND_MAC) &&
581 	    crp->crp_aad_length != 0 &&
582 	    (crp->crp_aad_length & (cr->cr_cs->cs_ivlen - 1)) != 0) {
583 		/*
584 		 * Data alignment in the request does not meet CESA requiremnts
585 		 * for combined encryption/decryption and hashing. We have to
586 		 * split the request to separate operations and process them
587 		 * one by one.
588 		 */
589 		if ((config & CESA_CSHD_OP_MASK) == CESA_CSHD_MAC_AND_ENC) {
590 			config &= ~CESA_CSHD_OP_MASK;
591 
592 			cci->cci_config = config | CESA_CSHD_MAC;
593 			cesa_create_chain_cb(cci, segs, nseg, 0);
594 
595 			cci->cci_config = config | CESA_CSHD_ENC;
596 			cesa_create_chain_cb(cci, segs, nseg, 0);
597 		} else {
598 			config &= ~CESA_CSHD_OP_MASK;
599 
600 			cci->cci_config = config | CESA_CSHD_ENC;
601 			cesa_create_chain_cb(cci, segs, nseg, 0);
602 
603 			cci->cci_config = config | CESA_CSHD_MAC;
604 			cesa_create_chain_cb(cci, segs, nseg, 0);
605 		}
606 
607 		return;
608 	}
609 
610 	mskip = mlen = eskip = elen = 0;
611 
612 	if (crp->crp_aad_length == 0) {
613 		skip = crp->crp_payload_start;
614 		len = crp->crp_payload_length;
615 		switch (config & CESA_CSHD_OP_MASK) {
616 		case CESA_CSHD_ENC:
617 			eskip = skip;
618 			elen = len;
619 			break;
620 		case CESA_CSHD_MAC:
621 			mskip = skip;
622 			mlen = len;
623 			break;
624 		default:
625 			eskip = skip;
626 			elen = len;
627 			mskip = skip;
628 			mlen = len;
629 			break;
630 		}
631 	} else {
632 		/*
633 		 * For an encryption-only separate request, only
634 		 * process the payload.  For combined requests and
635 		 * hash-only requests, process the entire region.
636 		 */
637 		switch (config & CESA_CSHD_OP_MASK) {
638 		case CESA_CSHD_ENC:
639 			skip = crp->crp_payload_start;
640 			len = crp->crp_payload_length;
641 			eskip = skip;
642 			elen = len;
643 			break;
644 		case CESA_CSHD_MAC:
645 			skip = crp->crp_aad_start;
646 			len = crp->crp_aad_length + crp->crp_payload_length;
647 			mskip = skip;
648 			mlen = len;
649 			break;
650 		default:
651 			skip = crp->crp_aad_start;
652 			len = crp->crp_aad_length + crp->crp_payload_length;
653 			mskip = skip;
654 			mlen = len;
655 			eskip = crp->crp_payload_start;
656 			elen = crp->crp_payload_length;
657 			break;
658 		}
659 	}
660 
661 	tmlen = mlen;
662 	fragmented = 0;
663 	mpsize = CESA_MAX_PACKET_SIZE;
664 	mpsize &= ~((cr->cr_cs->cs_ivlen - 1) | (cr->cr_cs->cs_mblen - 1));
665 
666 	/* Start first packet in chain */
667 	cesa_start_packet(&cp, MIN(mpsize, len));
668 
669 	while (nseg-- && len > 0) {
670 		seg = *(segs++);
671 
672 		/*
673 		 * Skip data in buffer on which neither ENC nor MAC operation
674 		 * is requested.
675 		 */
676 		if (skip > 0) {
677 			size = MIN(skip, seg.ds_len);
678 			skip -= size;
679 
680 			seg.ds_addr += size;
681 			seg.ds_len -= size;
682 
683 			if (eskip > 0)
684 				eskip -= size;
685 
686 			if (mskip > 0)
687 				mskip -= size;
688 
689 			if (seg.ds_len == 0)
690 				continue;
691 		}
692 
693 		while (1) {
694 			/*
695 			 * Fill in current packet with data. Break if there is
696 			 * no more data in current DMA segment or an error
697 			 * occurred.
698 			 */
699 			size = cesa_fill_packet(sc, &cp, &seg);
700 			if (size <= 0) {
701 				error = -size;
702 				break;
703 			}
704 
705 			len -= size;
706 
707 			/* If packet is full, append it to the chain */
708 			if (cp.cp_size == cp.cp_offset) {
709 				csd = cesa_alloc_sdesc(sc, cr);
710 				if (!csd) {
711 					error = ENOMEM;
712 					break;
713 				}
714 
715 				/* Create SA descriptor for this packet */
716 				csd->csd_cshd->cshd_config = cci->cci_config;
717 				csd->csd_cshd->cshd_mac_total_dlen = tmlen;
718 
719 				/*
720 				 * Enable fragmentation if request will not fit
721 				 * into one packet.
722 				 */
723 				if (len > 0) {
724 					if (!fragmented) {
725 						fragmented = 1;
726 						csd->csd_cshd->cshd_config |=
727 						    CESA_CSHD_FRAG_FIRST;
728 					} else
729 						csd->csd_cshd->cshd_config |=
730 						    CESA_CSHD_FRAG_MIDDLE;
731 				} else if (fragmented)
732 					csd->csd_cshd->cshd_config |=
733 					    CESA_CSHD_FRAG_LAST;
734 
735 				if (eskip < cp.cp_size && elen > 0) {
736 					csd->csd_cshd->cshd_enc_src =
737 					    CESA_DATA(eskip);
738 					csd->csd_cshd->cshd_enc_dst =
739 					    CESA_DATA(eskip);
740 					csd->csd_cshd->cshd_enc_dlen =
741 					    MIN(elen, cp.cp_size - eskip);
742 				}
743 
744 				if (mskip < cp.cp_size && mlen > 0) {
745 					csd->csd_cshd->cshd_mac_src =
746 					    CESA_DATA(mskip);
747 					csd->csd_cshd->cshd_mac_dlen =
748 					    MIN(mlen, cp.cp_size - mskip);
749 				}
750 
751 				elen -= csd->csd_cshd->cshd_enc_dlen;
752 				eskip -= MIN(eskip, cp.cp_size);
753 				mlen -= csd->csd_cshd->cshd_mac_dlen;
754 				mskip -= MIN(mskip, cp.cp_size);
755 
756 				cesa_dump_cshd(sc, csd->csd_cshd);
757 
758 				/* Append packet to the request */
759 				error = cesa_append_packet(sc, cr, &cp, csd);
760 				if (error)
761 					break;
762 
763 				/* Start a new packet, as current is full */
764 				cesa_start_packet(&cp, MIN(mpsize, len));
765 			}
766 		}
767 
768 		if (error)
769 			break;
770 	}
771 
772 	if (error) {
773 		/*
774 		 * Move all allocated resources to the request. They will be
775 		 * freed later.
776 		 */
777 		STAILQ_CONCAT(&cr->cr_tdesc, &cp.cp_copyin);
778 		STAILQ_CONCAT(&cr->cr_tdesc, &cp.cp_copyout);
779 		cci->cci_error = error;
780 	}
781 }
782 
783 static int
784 cesa_create_chain(struct cesa_softc *sc,
785     const struct crypto_session_params *csp, struct cesa_request *cr)
786 {
787 	struct cesa_chain_info cci;
788 	struct cesa_tdma_desc *ctd;
789 	uint32_t config;
790 	int error;
791 
792 	error = 0;
793 	CESA_LOCK_ASSERT(sc, sessions);
794 
795 	/* Create request metadata */
796 	if (csp->csp_cipher_klen != 0) {
797 		if (csp->csp_cipher_alg == CRYPTO_AES_CBC &&
798 		    !CRYPTO_OP_IS_ENCRYPT(cr->cr_crp->crp_op))
799 			memcpy(cr->cr_csd->csd_key, cr->cr_cs->cs_aes_dkey,
800 			    csp->csp_cipher_klen);
801 		else
802 			memcpy(cr->cr_csd->csd_key, cr->cr_cs->cs_key,
803 			    csp->csp_cipher_klen);
804 	}
805 
806 	if (csp->csp_auth_klen != 0) {
807 		memcpy(cr->cr_csd->csd_hiv_in, cr->cr_cs->cs_hiv_in,
808 		    CESA_MAX_HASH_LEN);
809 		memcpy(cr->cr_csd->csd_hiv_out, cr->cr_cs->cs_hiv_out,
810 		    CESA_MAX_HASH_LEN);
811 	}
812 
813 	ctd = cesa_tdma_copyin_sa_data(sc, cr);
814 	if (!ctd)
815 		return (ENOMEM);
816 
817 	cesa_append_tdesc(cr, ctd);
818 
819 	/* Prepare SA configuration */
820 	config = cr->cr_cs->cs_config;
821 
822 	if (csp->csp_cipher_alg != 0 &&
823 	    !CRYPTO_OP_IS_ENCRYPT(cr->cr_crp->crp_op))
824 		config |= CESA_CSHD_DECRYPT;
825 	switch (csp->csp_mode) {
826 	case CSP_MODE_CIPHER:
827 		config |= CESA_CSHD_ENC;
828 		break;
829 	case CSP_MODE_DIGEST:
830 		config |= CESA_CSHD_MAC;
831 		break;
832 	case CSP_MODE_ETA:
833 		config |= (config & CESA_CSHD_DECRYPT) ? CESA_CSHD_MAC_AND_ENC :
834 		    CESA_CSHD_ENC_AND_MAC;
835 		break;
836 	}
837 
838 	/* Create data packets */
839 	cci.cci_sc = sc;
840 	cci.cci_cr = cr;
841 	cci.cci_config = config;
842 	cci.cci_error = 0;
843 
844 	error = bus_dmamap_load_crp(sc->sc_data_dtag, cr->cr_dmap, cr->cr_crp,
845 	    cesa_create_chain_cb, &cci, BUS_DMA_NOWAIT);
846 
847 	if (!error)
848 		cr->cr_dmap_loaded = 1;
849 
850 	if (cci.cci_error)
851 		error = cci.cci_error;
852 
853 	if (error)
854 		return (error);
855 
856 	/* Read back request metadata */
857 	ctd = cesa_tdma_copyout_sa_data(sc, cr);
858 	if (!ctd)
859 		return (ENOMEM);
860 
861 	cesa_append_tdesc(cr, ctd);
862 
863 	return (0);
864 }
865 
866 static void
867 cesa_execute(struct cesa_softc *sc)
868 {
869 	struct cesa_tdma_desc *prev_ctd, *ctd;
870 	struct cesa_request *prev_cr, *cr;
871 
872 	CESA_LOCK(sc, requests);
873 
874 	/*
875 	 * If ready list is empty, there is nothing to execute. If queued list
876 	 * is not empty, the hardware is busy and we cannot start another
877 	 * execution.
878 	 */
879 	if (STAILQ_EMPTY(&sc->sc_ready_requests) ||
880 	    !STAILQ_EMPTY(&sc->sc_queued_requests)) {
881 		CESA_UNLOCK(sc, requests);
882 		return;
883 	}
884 
885 	/* Move all ready requests to queued list */
886 	STAILQ_CONCAT(&sc->sc_queued_requests, &sc->sc_ready_requests);
887 	STAILQ_INIT(&sc->sc_ready_requests);
888 
889 	/* Create one execution chain from all requests on the list */
890 	if (STAILQ_FIRST(&sc->sc_queued_requests) !=
891 	    STAILQ_LAST(&sc->sc_queued_requests, cesa_request, cr_stq)) {
892 		prev_cr = NULL;
893 		cesa_sync_dma_mem(&sc->sc_tdesc_cdm, BUS_DMASYNC_POSTREAD |
894 		    BUS_DMASYNC_POSTWRITE);
895 
896 		STAILQ_FOREACH(cr, &sc->sc_queued_requests, cr_stq) {
897 			if (prev_cr) {
898 				ctd = STAILQ_FIRST(&cr->cr_tdesc);
899 				prev_ctd = STAILQ_LAST(&prev_cr->cr_tdesc,
900 				    cesa_tdma_desc, ctd_stq);
901 
902 				prev_ctd->ctd_cthd->cthd_next =
903 				    ctd->ctd_cthd_paddr;
904 			}
905 
906 			prev_cr = cr;
907 		}
908 
909 		cesa_sync_dma_mem(&sc->sc_tdesc_cdm, BUS_DMASYNC_PREREAD |
910 		    BUS_DMASYNC_PREWRITE);
911 	}
912 
913 	/* Start chain execution in hardware */
914 	cr = STAILQ_FIRST(&sc->sc_queued_requests);
915 	ctd = STAILQ_FIRST(&cr->cr_tdesc);
916 
917 	CESA_TDMA_WRITE(sc, CESA_TDMA_ND, ctd->ctd_cthd_paddr);
918 
919 	if (sc->sc_soc_id == MV_DEV_88F6828 ||
920 	    sc->sc_soc_id == MV_DEV_88F6820 ||
921 	    sc->sc_soc_id == MV_DEV_88F6810)
922 		CESA_REG_WRITE(sc, CESA_SA_CMD, CESA_SA_CMD_ACTVATE | CESA_SA_CMD_SHA2);
923 	else
924 		CESA_REG_WRITE(sc, CESA_SA_CMD, CESA_SA_CMD_ACTVATE);
925 
926 	CESA_UNLOCK(sc, requests);
927 }
928 
929 static int
930 cesa_setup_sram(struct cesa_softc *sc)
931 {
932 	phandle_t sram_node;
933 	ihandle_t sram_ihandle;
934 	pcell_t sram_handle, sram_reg[2];
935 	void *sram_va;
936 	int rv;
937 
938 	rv = OF_getencprop(ofw_bus_get_node(sc->sc_dev), "sram-handle",
939 	    (void *)&sram_handle, sizeof(sram_handle));
940 	if (rv <= 0)
941 		return (rv);
942 
943 	sram_ihandle = (ihandle_t)sram_handle;
944 	sram_node = OF_instance_to_package(sram_ihandle);
945 
946 	rv = OF_getencprop(sram_node, "reg", (void *)sram_reg, sizeof(sram_reg));
947 	if (rv <= 0)
948 		return (rv);
949 
950 	sc->sc_sram_base_pa = sram_reg[0];
951 	/* Store SRAM size to be able to unmap in detach() */
952 	sc->sc_sram_size = sram_reg[1];
953 
954 	if (sc->sc_soc_id != MV_DEV_88F6828 &&
955 	    sc->sc_soc_id != MV_DEV_88F6820 &&
956 	    sc->sc_soc_id != MV_DEV_88F6810)
957 		return (0);
958 
959 	/* SRAM memory was not mapped in platform_sram_devmap(), map it now */
960 	sram_va = pmap_mapdev(sc->sc_sram_base_pa, sc->sc_sram_size);
961 	if (sram_va == NULL)
962 		return (ENOMEM);
963 	sc->sc_sram_base_va = sram_va;
964 
965 	return (0);
966 }
967 
968 /*
969  * Function: device_from_node
970  * This function returns appropriate device_t to phandle_t
971  * Parameters:
972  * root - device where you want to start search
973  *     if you provide NULL here, function will take
974  *     "root0" device as root.
975  * node - we are checking every device_t to be
976  *     appropriate with this.
977  */
978 static device_t
979 device_from_node(device_t root, phandle_t node)
980 {
981 	device_t *children, retval;
982 	int nkid, i;
983 
984 	/* Nothing matches no node */
985 	if (node == -1)
986 		return (NULL);
987 
988 	if (root == NULL)
989 		/* Get root of device tree */
990 		if ((root = device_lookup_by_name("root0")) == NULL)
991 			return (NULL);
992 
993 	if (device_get_children(root, &children, &nkid) != 0)
994 		return (NULL);
995 
996 	retval = NULL;
997 	for (i = 0; i < nkid; i++) {
998 		/* Check if device and node matches */
999 		if (OFW_BUS_GET_NODE(root, children[i]) == node) {
1000 			retval = children[i];
1001 			break;
1002 		}
1003 		/* or go deeper */
1004 		if ((retval = device_from_node(children[i], node)) != NULL)
1005 			break;
1006 	}
1007 	free(children, M_TEMP);
1008 
1009 	return (retval);
1010 }
1011 
1012 static int
1013 cesa_setup_sram_armada(struct cesa_softc *sc)
1014 {
1015 	phandle_t sram_node;
1016 	ihandle_t sram_ihandle;
1017 	pcell_t sram_handle[2];
1018 	void *sram_va;
1019 	int rv, j;
1020 	struct resource_list rl;
1021 	struct resource_list_entry *rle;
1022 	struct simplebus_softc *ssc;
1023 	device_t sdev;
1024 
1025 	/* Get refs to SRAMS from CESA node */
1026 	rv = OF_getencprop(ofw_bus_get_node(sc->sc_dev), "marvell,crypto-srams",
1027 	    (void *)sram_handle, sizeof(sram_handle));
1028 	if (rv <= 0)
1029 		return (rv);
1030 
1031 	if (sc->sc_cesa_engine_id >= 2)
1032 		return (ENXIO);
1033 
1034 	/* Get SRAM node on the basis of sc_cesa_engine_id */
1035 	sram_ihandle = (ihandle_t)sram_handle[sc->sc_cesa_engine_id];
1036 	sram_node = OF_instance_to_package(sram_ihandle);
1037 
1038 	/* Get device_t of simplebus (sram_node parent) */
1039 	sdev = device_from_node(NULL, OF_parent(sram_node));
1040 	if (!sdev)
1041 		return (ENXIO);
1042 
1043 	ssc = device_get_softc(sdev);
1044 
1045 	resource_list_init(&rl);
1046 	/* Parse reg property to resource list */
1047 	ofw_bus_reg_to_rl(sdev, sram_node, ssc->acells,
1048 	    ssc->scells, &rl);
1049 
1050 	/* We expect only one resource */
1051 	rle = resource_list_find(&rl, SYS_RES_MEMORY, 0);
1052 	if (rle == NULL)
1053 		return (ENXIO);
1054 
1055 	/* Remap through ranges property */
1056 	for (j = 0; j < ssc->nranges; j++) {
1057 		if (rle->start >= ssc->ranges[j].bus &&
1058 		    rle->end < ssc->ranges[j].bus + ssc->ranges[j].size) {
1059 			rle->start -= ssc->ranges[j].bus;
1060 			rle->start += ssc->ranges[j].host;
1061 			rle->end -= ssc->ranges[j].bus;
1062 			rle->end += ssc->ranges[j].host;
1063 		}
1064 	}
1065 
1066 	sc->sc_sram_base_pa = rle->start;
1067 	sc->sc_sram_size = rle->count;
1068 
1069 	/* SRAM memory was not mapped in platform_sram_devmap(), map it now */
1070 	sram_va = pmap_mapdev(sc->sc_sram_base_pa, sc->sc_sram_size);
1071 	if (sram_va == NULL)
1072 		return (ENOMEM);
1073 	sc->sc_sram_base_va = sram_va;
1074 
1075 	return (0);
1076 }
1077 
1078 struct ofw_compat_data cesa_devices[] = {
1079 	{ "mrvl,cesa", (uintptr_t)true },
1080 	{ "marvell,armada-38x-crypto", (uintptr_t)true },
1081 	{ NULL, 0 }
1082 };
1083 
1084 static int
1085 cesa_probe(device_t dev)
1086 {
1087 
1088 	if (!ofw_bus_status_okay(dev))
1089 		return (ENXIO);
1090 
1091 	if (!ofw_bus_search_compatible(dev, cesa_devices)->ocd_data)
1092 		return (ENXIO);
1093 
1094 	device_set_desc(dev, "Marvell Cryptographic Engine and Security "
1095 	    "Accelerator");
1096 
1097 	return (BUS_PROBE_DEFAULT);
1098 }
1099 
1100 static int
1101 cesa_attach(device_t dev)
1102 {
1103 	static int engine_idx = 0;
1104 	struct simplebus_devinfo *ndi;
1105 	struct resource_list *rl;
1106 	struct cesa_softc *sc;
1107 
1108 	if (!ofw_bus_is_compatible(dev, "marvell,armada-38x-crypto"))
1109 		return (cesa_attach_late(dev));
1110 
1111 	/*
1112 	 * Get simplebus_devinfo which contains
1113 	 * resource list filled with adresses and
1114 	 * interrupts read form FDT.
1115 	 * Let's correct it by splitting resources
1116 	 * for each engine.
1117 	 */
1118 	if ((ndi = device_get_ivars(dev)) == NULL)
1119 		return (ENXIO);
1120 
1121 	rl = &ndi->rl;
1122 
1123 	switch (engine_idx) {
1124 		case 0:
1125 			/* Update regs values */
1126 			resource_list_add(rl, SYS_RES_MEMORY, 0, CESA0_TDMA_ADDR,
1127 			    CESA0_TDMA_ADDR + CESA_TDMA_SIZE - 1, CESA_TDMA_SIZE);
1128 			resource_list_add(rl, SYS_RES_MEMORY, 1, CESA0_CESA_ADDR,
1129 			    CESA0_CESA_ADDR + CESA_CESA_SIZE - 1, CESA_CESA_SIZE);
1130 
1131 			/* Remove unused interrupt */
1132 			resource_list_delete(rl, SYS_RES_IRQ, 1);
1133 			break;
1134 
1135 		case 1:
1136 			/* Update regs values */
1137 			resource_list_add(rl, SYS_RES_MEMORY, 0, CESA1_TDMA_ADDR,
1138 			    CESA1_TDMA_ADDR + CESA_TDMA_SIZE - 1, CESA_TDMA_SIZE);
1139 			resource_list_add(rl, SYS_RES_MEMORY, 1, CESA1_CESA_ADDR,
1140 			    CESA1_CESA_ADDR + CESA_CESA_SIZE - 1, CESA_CESA_SIZE);
1141 
1142 			/* Remove unused interrupt */
1143 			resource_list_delete(rl, SYS_RES_IRQ, 0);
1144 			resource_list_find(rl, SYS_RES_IRQ, 1)->rid = 0;
1145 			break;
1146 
1147 		default:
1148 			device_printf(dev, "Bad cesa engine_idx\n");
1149 			return (ENXIO);
1150 	}
1151 
1152 	sc = device_get_softc(dev);
1153 	sc->sc_cesa_engine_id = engine_idx;
1154 
1155 	/*
1156 	 * Call simplebus_add_device only once.
1157 	 * It will create second cesa driver instance
1158 	 * with the same FDT node as first instance.
1159 	 * When second driver reach this function,
1160 	 * it will be configured to use second cesa engine
1161 	 */
1162 	if (engine_idx == 0)
1163 		simplebus_add_device(device_get_parent(dev), ofw_bus_get_node(dev),
1164 		    0, "cesa", 1, NULL);
1165 
1166 	engine_idx++;
1167 
1168 	return (cesa_attach_late(dev));
1169 }
1170 
1171 static int
1172 cesa_attach_late(device_t dev)
1173 {
1174 	struct cesa_softc *sc;
1175 	uint32_t d, r, val;
1176 	int error;
1177 	int i;
1178 
1179 	sc = device_get_softc(dev);
1180 	sc->sc_blocked = 0;
1181 	sc->sc_error = 0;
1182 	sc->sc_dev = dev;
1183 
1184 	soc_id(&d, &r);
1185 
1186 	switch (d) {
1187 	case MV_DEV_88F6281:
1188 	case MV_DEV_88F6282:
1189 		/* Check if CESA peripheral device has power turned on */
1190 		if (soc_power_ctrl_get(CPU_PM_CTRL_CRYPTO) ==
1191 		    CPU_PM_CTRL_CRYPTO) {
1192 			device_printf(dev, "not powered on\n");
1193 			return (ENXIO);
1194 		}
1195 		sc->sc_tperr = 0;
1196 		break;
1197 	case MV_DEV_88F6828:
1198 	case MV_DEV_88F6820:
1199 	case MV_DEV_88F6810:
1200 		sc->sc_tperr = 0;
1201 		break;
1202 	case MV_DEV_MV78100:
1203 	case MV_DEV_MV78100_Z0:
1204 		/* Check if CESA peripheral device has power turned on */
1205 		if (soc_power_ctrl_get(CPU_PM_CTRL_CRYPTO) !=
1206 		    CPU_PM_CTRL_CRYPTO) {
1207 			device_printf(dev, "not powered on\n");
1208 			return (ENXIO);
1209 		}
1210 		sc->sc_tperr = CESA_ICR_TPERR;
1211 		break;
1212 	default:
1213 		return (ENXIO);
1214 	}
1215 
1216 	sc->sc_soc_id = d;
1217 
1218 	/* Initialize mutexes */
1219 	mtx_init(&sc->sc_sc_lock, device_get_nameunit(dev),
1220 	    "CESA Shared Data", MTX_DEF);
1221 	mtx_init(&sc->sc_tdesc_lock, device_get_nameunit(dev),
1222 	    "CESA TDMA Descriptors Pool", MTX_DEF);
1223 	mtx_init(&sc->sc_sdesc_lock, device_get_nameunit(dev),
1224 	    "CESA SA Descriptors Pool", MTX_DEF);
1225 	mtx_init(&sc->sc_requests_lock, device_get_nameunit(dev),
1226 	    "CESA Requests Pool", MTX_DEF);
1227 	mtx_init(&sc->sc_sessions_lock, device_get_nameunit(dev),
1228 	    "CESA Sessions Pool", MTX_DEF);
1229 
1230 	/* Allocate I/O and IRQ resources */
1231 	error = bus_alloc_resources(dev, cesa_res_spec, sc->sc_res);
1232 	if (error) {
1233 		device_printf(dev, "could not allocate resources\n");
1234 		goto err0;
1235 	}
1236 
1237 	/* Acquire SRAM base address */
1238 	if (!ofw_bus_is_compatible(dev, "marvell,armada-38x-crypto"))
1239 		error = cesa_setup_sram(sc);
1240 	else
1241 		error = cesa_setup_sram_armada(sc);
1242 
1243 	if (error) {
1244 		device_printf(dev, "could not setup SRAM\n");
1245 		goto err1;
1246 	}
1247 
1248 	/* Setup interrupt handler */
1249 	error = bus_setup_intr(dev, sc->sc_res[RES_CESA_IRQ], INTR_TYPE_NET |
1250 	    INTR_MPSAFE, NULL, cesa_intr, sc, &(sc->sc_icookie));
1251 	if (error) {
1252 		device_printf(dev, "could not setup engine completion irq\n");
1253 		goto err2;
1254 	}
1255 
1256 	/* Create DMA tag for processed data */
1257 	error = bus_dma_tag_create(bus_get_dma_tag(dev),	/* parent */
1258 	    1, 0,				/* alignment, boundary */
1259 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
1260 	    BUS_SPACE_MAXADDR,			/* highaddr */
1261 	    NULL, NULL,				/* filtfunc, filtfuncarg */
1262 	    CESA_MAX_REQUEST_SIZE,		/* maxsize */
1263 	    CESA_MAX_FRAGMENTS,			/* nsegments */
1264 	    CESA_MAX_REQUEST_SIZE, 0,		/* maxsegsz, flags */
1265 	    NULL, NULL,				/* lockfunc, lockfuncarg */
1266 	    &sc->sc_data_dtag);			/* dmat */
1267 	if (error)
1268 		goto err3;
1269 
1270 	/* Initialize data structures: TDMA Descriptors Pool */
1271 	error = cesa_alloc_dma_mem(sc, &sc->sc_tdesc_cdm,
1272 	    CESA_TDMA_DESCRIPTORS * sizeof(struct cesa_tdma_hdesc));
1273 	if (error)
1274 		goto err4;
1275 
1276 	STAILQ_INIT(&sc->sc_free_tdesc);
1277 	for (i = 0; i < CESA_TDMA_DESCRIPTORS; i++) {
1278 		sc->sc_tdesc[i].ctd_cthd =
1279 		    (struct cesa_tdma_hdesc *)(sc->sc_tdesc_cdm.cdm_vaddr) + i;
1280 		sc->sc_tdesc[i].ctd_cthd_paddr = sc->sc_tdesc_cdm.cdm_paddr +
1281 		    (i * sizeof(struct cesa_tdma_hdesc));
1282 		STAILQ_INSERT_TAIL(&sc->sc_free_tdesc, &sc->sc_tdesc[i],
1283 		    ctd_stq);
1284 	}
1285 
1286 	/* Initialize data structures: SA Descriptors Pool */
1287 	error = cesa_alloc_dma_mem(sc, &sc->sc_sdesc_cdm,
1288 	    CESA_SA_DESCRIPTORS * sizeof(struct cesa_sa_hdesc));
1289 	if (error)
1290 		goto err5;
1291 
1292 	STAILQ_INIT(&sc->sc_free_sdesc);
1293 	for (i = 0; i < CESA_SA_DESCRIPTORS; i++) {
1294 		sc->sc_sdesc[i].csd_cshd =
1295 		    (struct cesa_sa_hdesc *)(sc->sc_sdesc_cdm.cdm_vaddr) + i;
1296 		sc->sc_sdesc[i].csd_cshd_paddr = sc->sc_sdesc_cdm.cdm_paddr +
1297 		    (i * sizeof(struct cesa_sa_hdesc));
1298 		STAILQ_INSERT_TAIL(&sc->sc_free_sdesc, &sc->sc_sdesc[i],
1299 		    csd_stq);
1300 	}
1301 
1302 	/* Initialize data structures: Requests Pool */
1303 	error = cesa_alloc_dma_mem(sc, &sc->sc_requests_cdm,
1304 	    CESA_REQUESTS * sizeof(struct cesa_sa_data));
1305 	if (error)
1306 		goto err6;
1307 
1308 	STAILQ_INIT(&sc->sc_free_requests);
1309 	STAILQ_INIT(&sc->sc_ready_requests);
1310 	STAILQ_INIT(&sc->sc_queued_requests);
1311 	for (i = 0; i < CESA_REQUESTS; i++) {
1312 		sc->sc_requests[i].cr_csd =
1313 		    (struct cesa_sa_data *)(sc->sc_requests_cdm.cdm_vaddr) + i;
1314 		sc->sc_requests[i].cr_csd_paddr =
1315 		    sc->sc_requests_cdm.cdm_paddr +
1316 		    (i * sizeof(struct cesa_sa_data));
1317 
1318 		/* Preallocate DMA maps */
1319 		error = bus_dmamap_create(sc->sc_data_dtag, 0,
1320 		    &sc->sc_requests[i].cr_dmap);
1321 		if (error && i > 0) {
1322 			i--;
1323 			do {
1324 				bus_dmamap_destroy(sc->sc_data_dtag,
1325 				    sc->sc_requests[i].cr_dmap);
1326 			} while (i--);
1327 
1328 			goto err7;
1329 		}
1330 
1331 		STAILQ_INSERT_TAIL(&sc->sc_free_requests, &sc->sc_requests[i],
1332 		    cr_stq);
1333 	}
1334 
1335 	/*
1336 	 * Initialize TDMA:
1337 	 * - Burst limit: 128 bytes,
1338 	 * - Outstanding reads enabled,
1339 	 * - No byte-swap.
1340 	 */
1341 	val = CESA_TDMA_CR_DBL128 | CESA_TDMA_CR_SBL128 |
1342 	    CESA_TDMA_CR_ORDEN | CESA_TDMA_CR_NBS | CESA_TDMA_CR_ENABLE;
1343 
1344 	if (sc->sc_soc_id == MV_DEV_88F6828 ||
1345 	    sc->sc_soc_id == MV_DEV_88F6820 ||
1346 	    sc->sc_soc_id == MV_DEV_88F6810)
1347 		val |= CESA_TDMA_NUM_OUTSTAND;
1348 
1349 	CESA_TDMA_WRITE(sc, CESA_TDMA_CR, val);
1350 
1351 	/*
1352 	 * Initialize SA:
1353 	 * - SA descriptor is present at beginning of CESA SRAM,
1354 	 * - Multi-packet chain mode,
1355 	 * - Cooperation with TDMA enabled.
1356 	 */
1357 	CESA_REG_WRITE(sc, CESA_SA_DPR, 0);
1358 	CESA_REG_WRITE(sc, CESA_SA_CR, CESA_SA_CR_ACTIVATE_TDMA |
1359 	    CESA_SA_CR_WAIT_FOR_TDMA | CESA_SA_CR_MULTI_MODE);
1360 
1361 	/* Unmask interrupts */
1362 	CESA_REG_WRITE(sc, CESA_ICR, 0);
1363 	CESA_REG_WRITE(sc, CESA_ICM, CESA_ICM_ACCTDMA | sc->sc_tperr);
1364 	CESA_TDMA_WRITE(sc, CESA_TDMA_ECR, 0);
1365 	CESA_TDMA_WRITE(sc, CESA_TDMA_EMR, CESA_TDMA_EMR_MISS |
1366 	    CESA_TDMA_EMR_DOUBLE_HIT | CESA_TDMA_EMR_BOTH_HIT |
1367 	    CESA_TDMA_EMR_DATA_ERROR);
1368 
1369 	/* Register in OCF */
1370 	sc->sc_cid = crypto_get_driverid(dev, sizeof(struct cesa_session),
1371 	    CRYPTOCAP_F_HARDWARE);
1372 	if (sc->sc_cid < 0) {
1373 		device_printf(dev, "could not get crypto driver id\n");
1374 		goto err8;
1375 	}
1376 
1377 	return (0);
1378 err8:
1379 	for (i = 0; i < CESA_REQUESTS; i++)
1380 		bus_dmamap_destroy(sc->sc_data_dtag,
1381 		    sc->sc_requests[i].cr_dmap);
1382 err7:
1383 	cesa_free_dma_mem(&sc->sc_requests_cdm);
1384 err6:
1385 	cesa_free_dma_mem(&sc->sc_sdesc_cdm);
1386 err5:
1387 	cesa_free_dma_mem(&sc->sc_tdesc_cdm);
1388 err4:
1389 	bus_dma_tag_destroy(sc->sc_data_dtag);
1390 err3:
1391 	bus_teardown_intr(dev, sc->sc_res[RES_CESA_IRQ], sc->sc_icookie);
1392 err2:
1393 	if (sc->sc_soc_id == MV_DEV_88F6828 ||
1394 	    sc->sc_soc_id == MV_DEV_88F6820 ||
1395 	    sc->sc_soc_id == MV_DEV_88F6810)
1396 		pmap_unmapdev(sc->sc_sram_base_va, sc->sc_sram_size);
1397 err1:
1398 	bus_release_resources(dev, cesa_res_spec, sc->sc_res);
1399 err0:
1400 	mtx_destroy(&sc->sc_sessions_lock);
1401 	mtx_destroy(&sc->sc_requests_lock);
1402 	mtx_destroy(&sc->sc_sdesc_lock);
1403 	mtx_destroy(&sc->sc_tdesc_lock);
1404 	mtx_destroy(&sc->sc_sc_lock);
1405 	return (ENXIO);
1406 }
1407 
1408 static int
1409 cesa_detach(device_t dev)
1410 {
1411 	struct cesa_softc *sc;
1412 	int i;
1413 
1414 	sc = device_get_softc(dev);
1415 
1416 	/* TODO: Wait for queued requests completion before shutdown. */
1417 
1418 	/* Mask interrupts */
1419 	CESA_REG_WRITE(sc, CESA_ICM, 0);
1420 	CESA_TDMA_WRITE(sc, CESA_TDMA_EMR, 0);
1421 
1422 	/* Unregister from OCF */
1423 	crypto_unregister_all(sc->sc_cid);
1424 
1425 	/* Free DMA Maps */
1426 	for (i = 0; i < CESA_REQUESTS; i++)
1427 		bus_dmamap_destroy(sc->sc_data_dtag,
1428 		    sc->sc_requests[i].cr_dmap);
1429 
1430 	/* Free DMA Memory */
1431 	cesa_free_dma_mem(&sc->sc_requests_cdm);
1432 	cesa_free_dma_mem(&sc->sc_sdesc_cdm);
1433 	cesa_free_dma_mem(&sc->sc_tdesc_cdm);
1434 
1435 	/* Free DMA Tag */
1436 	bus_dma_tag_destroy(sc->sc_data_dtag);
1437 
1438 	/* Stop interrupt */
1439 	bus_teardown_intr(dev, sc->sc_res[RES_CESA_IRQ], sc->sc_icookie);
1440 
1441 	/* Relase I/O and IRQ resources */
1442 	bus_release_resources(dev, cesa_res_spec, sc->sc_res);
1443 
1444 	/* Unmap SRAM memory */
1445 	if (sc->sc_soc_id == MV_DEV_88F6828 ||
1446 	    sc->sc_soc_id == MV_DEV_88F6820 ||
1447 	    sc->sc_soc_id == MV_DEV_88F6810)
1448 		pmap_unmapdev(sc->sc_sram_base_va, sc->sc_sram_size);
1449 
1450 	/* Destroy mutexes */
1451 	mtx_destroy(&sc->sc_sessions_lock);
1452 	mtx_destroy(&sc->sc_requests_lock);
1453 	mtx_destroy(&sc->sc_sdesc_lock);
1454 	mtx_destroy(&sc->sc_tdesc_lock);
1455 	mtx_destroy(&sc->sc_sc_lock);
1456 
1457 	return (0);
1458 }
1459 
1460 static void
1461 cesa_intr(void *arg)
1462 {
1463 	STAILQ_HEAD(, cesa_request) requests;
1464 	struct cesa_request *cr, *tmp;
1465 	struct cesa_softc *sc;
1466 	uint32_t ecr, icr;
1467 	uint8_t hash[HASH_MAX_LEN];
1468 	int blocked;
1469 
1470 	sc = arg;
1471 
1472 	/* Ack interrupt */
1473 	ecr = CESA_TDMA_READ(sc, CESA_TDMA_ECR);
1474 	CESA_TDMA_WRITE(sc, CESA_TDMA_ECR, 0);
1475 	icr = CESA_REG_READ(sc, CESA_ICR);
1476 	CESA_REG_WRITE(sc, CESA_ICR, 0);
1477 
1478 	/* Check for TDMA errors */
1479 	if (ecr & CESA_TDMA_ECR_MISS) {
1480 		device_printf(sc->sc_dev, "TDMA Miss error detected!\n");
1481 		sc->sc_error = EIO;
1482 	}
1483 
1484 	if (ecr & CESA_TDMA_ECR_DOUBLE_HIT) {
1485 		device_printf(sc->sc_dev, "TDMA Double Hit error detected!\n");
1486 		sc->sc_error = EIO;
1487 	}
1488 
1489 	if (ecr & CESA_TDMA_ECR_BOTH_HIT) {
1490 		device_printf(sc->sc_dev, "TDMA Both Hit error detected!\n");
1491 		sc->sc_error = EIO;
1492 	}
1493 
1494 	if (ecr & CESA_TDMA_ECR_DATA_ERROR) {
1495 		device_printf(sc->sc_dev, "TDMA Data error detected!\n");
1496 		sc->sc_error = EIO;
1497 	}
1498 
1499 	/* Check for CESA errors */
1500 	if (icr & sc->sc_tperr) {
1501 		device_printf(sc->sc_dev, "CESA SRAM Parity error detected!\n");
1502 		sc->sc_error = EIO;
1503 	}
1504 
1505 	/* If there is nothing more to do, return */
1506 	if ((icr & CESA_ICR_ACCTDMA) == 0)
1507 		return;
1508 
1509 	/* Get all finished requests */
1510 	CESA_LOCK(sc, requests);
1511 	STAILQ_INIT(&requests);
1512 	STAILQ_CONCAT(&requests, &sc->sc_queued_requests);
1513 	STAILQ_INIT(&sc->sc_queued_requests);
1514 	CESA_UNLOCK(sc, requests);
1515 
1516 	/* Execute all ready requests */
1517 	cesa_execute(sc);
1518 
1519 	/* Process completed requests */
1520 	cesa_sync_dma_mem(&sc->sc_requests_cdm, BUS_DMASYNC_POSTREAD |
1521 	    BUS_DMASYNC_POSTWRITE);
1522 
1523 	STAILQ_FOREACH_SAFE(cr, &requests, cr_stq, tmp) {
1524 		bus_dmamap_sync(sc->sc_data_dtag, cr->cr_dmap,
1525 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1526 
1527 		cr->cr_crp->crp_etype = sc->sc_error;
1528 		if (cr->cr_cs->cs_hlen != 0 && cr->cr_crp->crp_etype == 0) {
1529 			if (cr->cr_crp->crp_op & CRYPTO_OP_VERIFY_DIGEST) {
1530 				crypto_copydata(cr->cr_crp,
1531 				    cr->cr_crp->crp_digest_start,
1532 				    cr->cr_cs->cs_hlen, hash);
1533 				if (timingsafe_bcmp(hash, cr->cr_csd->csd_hash,
1534 				    cr->cr_cs->cs_hlen) != 0)
1535 					cr->cr_crp->crp_etype = EBADMSG;
1536 			} else
1537 				crypto_copyback(cr->cr_crp,
1538 				    cr->cr_crp->crp_digest_start,
1539 				    cr->cr_cs->cs_hlen, cr->cr_csd->csd_hash);
1540 		}
1541 		crypto_done(cr->cr_crp);
1542 		cesa_free_request(sc, cr);
1543 	}
1544 
1545 	cesa_sync_dma_mem(&sc->sc_requests_cdm, BUS_DMASYNC_PREREAD |
1546 	    BUS_DMASYNC_PREWRITE);
1547 
1548 	sc->sc_error = 0;
1549 
1550 	/* Unblock driver if it ran out of resources */
1551 	CESA_LOCK(sc, sc);
1552 	blocked = sc->sc_blocked;
1553 	sc->sc_blocked = 0;
1554 	CESA_UNLOCK(sc, sc);
1555 
1556 	if (blocked)
1557 		crypto_unblock(sc->sc_cid, blocked);
1558 }
1559 
1560 static bool
1561 cesa_cipher_supported(const struct crypto_session_params *csp)
1562 {
1563 
1564 	switch (csp->csp_cipher_alg) {
1565 	case CRYPTO_AES_CBC:
1566 		if (csp->csp_ivlen != AES_BLOCK_LEN)
1567 			return (false);
1568 		break;
1569 	default:
1570 		return (false);
1571 	}
1572 
1573 	if (csp->csp_cipher_klen > CESA_MAX_KEY_LEN)
1574 		return (false);
1575 
1576 	return (true);
1577 }
1578 
1579 static bool
1580 cesa_auth_supported(struct cesa_softc *sc,
1581     const struct crypto_session_params *csp)
1582 {
1583 
1584 	switch (csp->csp_auth_alg) {
1585 	case CRYPTO_SHA2_256_HMAC:
1586 		if (!(sc->sc_soc_id == MV_DEV_88F6828 ||
1587 		    sc->sc_soc_id == MV_DEV_88F6820 ||
1588 		    sc->sc_soc_id == MV_DEV_88F6810))
1589 			return (false);
1590 		/* FALLTHROUGH */
1591 	case CRYPTO_SHA1:
1592 	case CRYPTO_SHA1_HMAC:
1593 		break;
1594 	default:
1595 		return (false);
1596 	}
1597 
1598 	if (csp->csp_auth_klen > CESA_MAX_MKEY_LEN)
1599 		return (false);
1600 
1601 	return (true);
1602 }
1603 
1604 static int
1605 cesa_probesession(device_t dev, const struct crypto_session_params *csp)
1606 {
1607 	struct cesa_softc *sc;
1608 
1609 	sc = device_get_softc(dev);
1610 	if (csp->csp_flags != 0)
1611 		return (EINVAL);
1612 	switch (csp->csp_mode) {
1613 	case CSP_MODE_DIGEST:
1614 		if (!cesa_auth_supported(sc, csp))
1615 			return (EINVAL);
1616 		break;
1617 	case CSP_MODE_CIPHER:
1618 		if (!cesa_cipher_supported(csp))
1619 			return (EINVAL);
1620 		break;
1621 	case CSP_MODE_ETA:
1622 		if (!cesa_auth_supported(sc, csp) ||
1623 		    !cesa_cipher_supported(csp))
1624 			return (EINVAL);
1625 		break;
1626 	default:
1627 		return (EINVAL);
1628 	}
1629 	return (CRYPTODEV_PROBE_HARDWARE);
1630 }
1631 
1632 static int
1633 cesa_newsession(device_t dev, crypto_session_t cses,
1634     const struct crypto_session_params *csp)
1635 {
1636 	struct cesa_session *cs;
1637 	int error;
1638 
1639 	error = 0;
1640 
1641 	/* Allocate session */
1642 	cs = crypto_get_driver_session(cses);
1643 
1644 	/* Prepare CESA configuration */
1645 	cs->cs_config = 0;
1646 	cs->cs_ivlen = 1;
1647 	cs->cs_mblen = 1;
1648 
1649 	switch (csp->csp_cipher_alg) {
1650 	case CRYPTO_AES_CBC:
1651 		cs->cs_config |= CESA_CSHD_AES | CESA_CSHD_CBC;
1652 		cs->cs_ivlen = AES_BLOCK_LEN;
1653 		break;
1654 	}
1655 
1656 	switch (csp->csp_auth_alg) {
1657 	case CRYPTO_SHA1:
1658 		cs->cs_mblen = 1;
1659 		cs->cs_hlen = (csp->csp_auth_mlen == 0) ? SHA1_HASH_LEN :
1660 		    csp->csp_auth_mlen;
1661 		cs->cs_config |= CESA_CSHD_SHA1;
1662 		break;
1663 	case CRYPTO_SHA1_HMAC:
1664 		cs->cs_mblen = SHA1_BLOCK_LEN;
1665 		cs->cs_hlen = (csp->csp_auth_mlen == 0) ? SHA1_HASH_LEN :
1666 		    csp->csp_auth_mlen;
1667 		cs->cs_config |= CESA_CSHD_SHA1_HMAC;
1668 		if (cs->cs_hlen == CESA_HMAC_TRUNC_LEN)
1669 			cs->cs_config |= CESA_CSHD_96_BIT_HMAC;
1670 		break;
1671 	case CRYPTO_SHA2_256_HMAC:
1672 		cs->cs_mblen = SHA2_256_BLOCK_LEN;
1673 		cs->cs_hlen = (csp->csp_auth_mlen == 0) ? SHA2_256_HASH_LEN :
1674 		    csp->csp_auth_mlen;
1675 		cs->cs_config |= CESA_CSHD_SHA2_256_HMAC;
1676 		break;
1677 	}
1678 
1679 	/* Save cipher key */
1680 	if (csp->csp_cipher_key != NULL) {
1681 		memcpy(cs->cs_key, csp->csp_cipher_key,
1682 		    csp->csp_cipher_klen);
1683 		if (csp->csp_cipher_alg == CRYPTO_AES_CBC)
1684 			error = cesa_prep_aes_key(cs, csp);
1685 	}
1686 
1687 	/* Save digest key */
1688 	if (csp->csp_auth_key != NULL)
1689 		cesa_set_mkey(cs, csp->csp_auth_alg, csp->csp_auth_key,
1690 		    csp->csp_auth_klen);
1691 
1692 	return (error);
1693 }
1694 
1695 static int
1696 cesa_process(device_t dev, struct cryptop *crp, int hint)
1697 {
1698 	const struct crypto_session_params *csp;
1699 	struct cesa_request *cr;
1700 	struct cesa_session *cs;
1701 	struct cesa_softc *sc;
1702 	int error;
1703 
1704 	sc = device_get_softc(dev);
1705 	error = 0;
1706 
1707 	cs = crypto_get_driver_session(crp->crp_session);
1708 	csp = crypto_get_params(crp->crp_session);
1709 
1710 	/* Check and parse input */
1711 	if (crypto_buffer_len(&crp->crp_buf) > CESA_MAX_REQUEST_SIZE) {
1712 		crp->crp_etype = E2BIG;
1713 		crypto_done(crp);
1714 		return (0);
1715 	}
1716 
1717 	/*
1718 	 * For requests with AAD, only requests where the AAD is
1719 	 * immediately adjacent to the payload are supported.
1720 	 */
1721 	if (crp->crp_aad_length != 0 &&
1722 	    (crp->crp_aad_start + crp->crp_aad_length) !=
1723 	    crp->crp_payload_start) {
1724 		crp->crp_etype = EINVAL;
1725 		crypto_done(crp);
1726 		return (0);
1727 	}
1728 
1729 	/*
1730 	 * Get request descriptor. Block driver if there is no free
1731 	 * descriptors in pool.
1732 	 */
1733 	cr = cesa_alloc_request(sc);
1734 	if (!cr) {
1735 		CESA_LOCK(sc, sc);
1736 		sc->sc_blocked = CRYPTO_SYMQ;
1737 		CESA_UNLOCK(sc, sc);
1738 		return (ERESTART);
1739 	}
1740 
1741 	/* Prepare request */
1742 	cr->cr_crp = crp;
1743 	cr->cr_cs = cs;
1744 
1745 	CESA_LOCK(sc, sessions);
1746 	cesa_sync_desc(sc, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1747 
1748 	if (csp->csp_cipher_alg != 0)
1749 		crypto_read_iv(crp, cr->cr_csd->csd_iv);
1750 
1751 	if (crp->crp_cipher_key != NULL) {
1752 		memcpy(cs->cs_key, crp->crp_cipher_key,
1753 		    csp->csp_cipher_klen);
1754 		if (csp->csp_cipher_alg == CRYPTO_AES_CBC)
1755 			error = cesa_prep_aes_key(cs, csp);
1756 	}
1757 
1758 	if (!error && crp->crp_auth_key != NULL)
1759 		cesa_set_mkey(cs, csp->csp_auth_alg, crp->crp_auth_key,
1760 		    csp->csp_auth_klen);
1761 
1762 	/* Convert request to chain of TDMA and SA descriptors */
1763 	if (!error)
1764 		error = cesa_create_chain(sc, csp, cr);
1765 
1766 	cesa_sync_desc(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1767 	CESA_UNLOCK(sc, sessions);
1768 
1769 	if (error) {
1770 		cesa_free_request(sc, cr);
1771 		crp->crp_etype = error;
1772 		crypto_done(crp);
1773 		return (0);
1774 	}
1775 
1776 	bus_dmamap_sync(sc->sc_data_dtag, cr->cr_dmap, BUS_DMASYNC_PREREAD |
1777 	    BUS_DMASYNC_PREWRITE);
1778 
1779 	/* Enqueue request to execution */
1780 	cesa_enqueue_request(sc, cr);
1781 
1782 	/* Start execution, if we have no more requests in queue */
1783 	if ((hint & CRYPTO_HINT_MORE) == 0)
1784 		cesa_execute(sc);
1785 
1786 	return (0);
1787 }
1788