xref: /freebsd/sys/dev/cesa/cesa.c (revision 90b5fc95832da64a5f56295e687379732c33718f)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2009-2011 Semihalf.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /*
30  * CESA SRAM Memory Map:
31  *
32  * +------------------------+ <= sc->sc_sram_base_va + CESA_SRAM_SIZE
33  * |                        |
34  * |          DATA          |
35  * |                        |
36  * +------------------------+ <= sc->sc_sram_base_va + CESA_DATA(0)
37  * |  struct cesa_sa_data   |
38  * +------------------------+
39  * |  struct cesa_sa_hdesc  |
40  * +------------------------+ <= sc->sc_sram_base_va
41  */
42 
43 #include <sys/cdefs.h>
44 __FBSDID("$FreeBSD$");
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/bus.h>
49 #include <sys/endian.h>
50 #include <sys/kernel.h>
51 #include <sys/lock.h>
52 #include <sys/mbuf.h>
53 #include <sys/module.h>
54 #include <sys/mutex.h>
55 #include <sys/rman.h>
56 
57 #include <machine/bus.h>
58 #include <machine/intr.h>
59 #include <machine/resource.h>
60 #include <machine/fdt.h>
61 
62 #include <dev/fdt/simplebus.h>
63 #include <dev/fdt/fdt_common.h>
64 #include <dev/ofw/ofw_bus.h>
65 #include <dev/ofw/ofw_bus_subr.h>
66 
67 #include <crypto/sha1.h>
68 #include <crypto/sha2/sha256.h>
69 #include <crypto/rijndael/rijndael.h>
70 #include <opencrypto/cryptodev.h>
71 #include <opencrypto/xform.h>
72 #include "cryptodev_if.h"
73 
74 #include <arm/mv/mvreg.h>
75 #include <arm/mv/mvvar.h>
76 #include "cesa.h"
77 
78 static int	cesa_probe(device_t);
79 static int	cesa_attach(device_t);
80 static int	cesa_attach_late(device_t);
81 static int	cesa_detach(device_t);
82 static void	cesa_intr(void *);
83 static int	cesa_probesession(device_t,
84     const struct crypto_session_params *);
85 static int	cesa_newsession(device_t, crypto_session_t,
86     const struct crypto_session_params *);
87 static int	cesa_process(device_t, struct cryptop *, int);
88 
89 static struct resource_spec cesa_res_spec[] = {
90 	{ SYS_RES_MEMORY, 0, RF_ACTIVE },
91 	{ SYS_RES_MEMORY, 1, RF_ACTIVE },
92 	{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
93 	{ -1, 0 }
94 };
95 
96 static device_method_t cesa_methods[] = {
97 	/* Device interface */
98 	DEVMETHOD(device_probe,		cesa_probe),
99 	DEVMETHOD(device_attach,	cesa_attach),
100 	DEVMETHOD(device_detach,	cesa_detach),
101 
102 	/* Crypto device methods */
103 	DEVMETHOD(cryptodev_probesession, cesa_probesession),
104 	DEVMETHOD(cryptodev_newsession,	cesa_newsession),
105 	DEVMETHOD(cryptodev_process,	cesa_process),
106 
107 	DEVMETHOD_END
108 };
109 
110 static driver_t cesa_driver = {
111 	"cesa",
112 	cesa_methods,
113 	sizeof (struct cesa_softc)
114 };
115 static devclass_t cesa_devclass;
116 
117 DRIVER_MODULE(cesa, simplebus, cesa_driver, cesa_devclass, 0, 0);
118 MODULE_DEPEND(cesa, crypto, 1, 1, 1);
119 
120 static void
121 cesa_dump_cshd(struct cesa_softc *sc, struct cesa_sa_hdesc *cshd)
122 {
123 #ifdef DEBUG
124 	device_t dev;
125 
126 	dev = sc->sc_dev;
127 	device_printf(dev, "CESA SA Hardware Descriptor:\n");
128 	device_printf(dev, "\t\tconfig: 0x%08X\n", cshd->cshd_config);
129 	device_printf(dev, "\t\te_src:  0x%08X\n", cshd->cshd_enc_src);
130 	device_printf(dev, "\t\te_dst:  0x%08X\n", cshd->cshd_enc_dst);
131 	device_printf(dev, "\t\te_dlen: 0x%08X\n", cshd->cshd_enc_dlen);
132 	device_printf(dev, "\t\te_key:  0x%08X\n", cshd->cshd_enc_key);
133 	device_printf(dev, "\t\te_iv_1: 0x%08X\n", cshd->cshd_enc_iv);
134 	device_printf(dev, "\t\te_iv_2: 0x%08X\n", cshd->cshd_enc_iv_buf);
135 	device_printf(dev, "\t\tm_src:  0x%08X\n", cshd->cshd_mac_src);
136 	device_printf(dev, "\t\tm_dst:  0x%08X\n", cshd->cshd_mac_dst);
137 	device_printf(dev, "\t\tm_dlen: 0x%08X\n", cshd->cshd_mac_dlen);
138 	device_printf(dev, "\t\tm_tlen: 0x%08X\n", cshd->cshd_mac_total_dlen);
139 	device_printf(dev, "\t\tm_iv_i: 0x%08X\n", cshd->cshd_mac_iv_in);
140 	device_printf(dev, "\t\tm_iv_o: 0x%08X\n", cshd->cshd_mac_iv_out);
141 #endif
142 }
143 
144 static void
145 cesa_alloc_dma_mem_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
146 {
147 	struct cesa_dma_mem *cdm;
148 
149 	if (error)
150 		return;
151 
152 	KASSERT(nseg == 1, ("Got wrong number of DMA segments, should be 1."));
153 	cdm = arg;
154 	cdm->cdm_paddr = segs->ds_addr;
155 }
156 
157 static int
158 cesa_alloc_dma_mem(struct cesa_softc *sc, struct cesa_dma_mem *cdm,
159     bus_size_t size)
160 {
161 	int error;
162 
163 	KASSERT(cdm->cdm_vaddr == NULL,
164 	    ("%s(): DMA memory descriptor in use.", __func__));
165 
166 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
167 	    PAGE_SIZE, 0,			/* alignment, boundary */
168 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
169 	    BUS_SPACE_MAXADDR,			/* highaddr */
170 	    NULL, NULL,				/* filtfunc, filtfuncarg */
171 	    size, 1,				/* maxsize, nsegments */
172 	    size, 0,				/* maxsegsz, flags */
173 	    NULL, NULL,				/* lockfunc, lockfuncarg */
174 	    &cdm->cdm_tag);			/* dmat */
175 	if (error) {
176 		device_printf(sc->sc_dev, "failed to allocate busdma tag, error"
177 		    " %i!\n", error);
178 
179 		goto err1;
180 	}
181 
182 	error = bus_dmamem_alloc(cdm->cdm_tag, &cdm->cdm_vaddr,
183 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &cdm->cdm_map);
184 	if (error) {
185 		device_printf(sc->sc_dev, "failed to allocate DMA safe"
186 		    " memory, error %i!\n", error);
187 
188 		goto err2;
189 	}
190 
191 	error = bus_dmamap_load(cdm->cdm_tag, cdm->cdm_map, cdm->cdm_vaddr,
192 	    size, cesa_alloc_dma_mem_cb, cdm, BUS_DMA_NOWAIT);
193 	if (error) {
194 		device_printf(sc->sc_dev, "cannot get address of the DMA"
195 		    " memory, error %i\n", error);
196 
197 		goto err3;
198 	}
199 
200 	return (0);
201 err3:
202 	bus_dmamem_free(cdm->cdm_tag, cdm->cdm_vaddr, cdm->cdm_map);
203 err2:
204 	bus_dma_tag_destroy(cdm->cdm_tag);
205 err1:
206 	cdm->cdm_vaddr = NULL;
207 	return (error);
208 }
209 
210 static void
211 cesa_free_dma_mem(struct cesa_dma_mem *cdm)
212 {
213 
214 	bus_dmamap_unload(cdm->cdm_tag, cdm->cdm_map);
215 	bus_dmamem_free(cdm->cdm_tag, cdm->cdm_vaddr, cdm->cdm_map);
216 	bus_dma_tag_destroy(cdm->cdm_tag);
217 	cdm->cdm_vaddr = NULL;
218 }
219 
220 static void
221 cesa_sync_dma_mem(struct cesa_dma_mem *cdm, bus_dmasync_op_t op)
222 {
223 
224 	/* Sync only if dma memory is valid */
225         if (cdm->cdm_vaddr != NULL)
226 		bus_dmamap_sync(cdm->cdm_tag, cdm->cdm_map, op);
227 }
228 
229 static void
230 cesa_sync_desc(struct cesa_softc *sc, bus_dmasync_op_t op)
231 {
232 
233 	cesa_sync_dma_mem(&sc->sc_tdesc_cdm, op);
234 	cesa_sync_dma_mem(&sc->sc_sdesc_cdm, op);
235 	cesa_sync_dma_mem(&sc->sc_requests_cdm, op);
236 }
237 
238 static struct cesa_request *
239 cesa_alloc_request(struct cesa_softc *sc)
240 {
241 	struct cesa_request *cr;
242 
243 	CESA_GENERIC_ALLOC_LOCKED(sc, cr, requests);
244 	if (!cr)
245 		return (NULL);
246 
247 	STAILQ_INIT(&cr->cr_tdesc);
248 	STAILQ_INIT(&cr->cr_sdesc);
249 
250 	return (cr);
251 }
252 
253 static void
254 cesa_free_request(struct cesa_softc *sc, struct cesa_request *cr)
255 {
256 
257 	/* Free TDMA descriptors assigned to this request */
258 	CESA_LOCK(sc, tdesc);
259 	STAILQ_CONCAT(&sc->sc_free_tdesc, &cr->cr_tdesc);
260 	CESA_UNLOCK(sc, tdesc);
261 
262 	/* Free SA descriptors assigned to this request */
263 	CESA_LOCK(sc, sdesc);
264 	STAILQ_CONCAT(&sc->sc_free_sdesc, &cr->cr_sdesc);
265 	CESA_UNLOCK(sc, sdesc);
266 
267 	/* Unload DMA memory associated with request */
268 	if (cr->cr_dmap_loaded) {
269 		bus_dmamap_unload(sc->sc_data_dtag, cr->cr_dmap);
270 		cr->cr_dmap_loaded = 0;
271 	}
272 
273 	CESA_GENERIC_FREE_LOCKED(sc, cr, requests);
274 }
275 
276 static void
277 cesa_enqueue_request(struct cesa_softc *sc, struct cesa_request *cr)
278 {
279 
280 	CESA_LOCK(sc, requests);
281 	STAILQ_INSERT_TAIL(&sc->sc_ready_requests, cr, cr_stq);
282 	CESA_UNLOCK(sc, requests);
283 }
284 
285 static struct cesa_tdma_desc *
286 cesa_alloc_tdesc(struct cesa_softc *sc)
287 {
288 	struct cesa_tdma_desc *ctd;
289 
290 	CESA_GENERIC_ALLOC_LOCKED(sc, ctd, tdesc);
291 
292 	if (!ctd)
293 		device_printf(sc->sc_dev, "TDMA descriptors pool exhaused. "
294 		    "Consider increasing CESA_TDMA_DESCRIPTORS.\n");
295 
296 	return (ctd);
297 }
298 
299 static struct cesa_sa_desc *
300 cesa_alloc_sdesc(struct cesa_softc *sc, struct cesa_request *cr)
301 {
302 	struct cesa_sa_desc *csd;
303 
304 	CESA_GENERIC_ALLOC_LOCKED(sc, csd, sdesc);
305 	if (!csd) {
306 		device_printf(sc->sc_dev, "SA descriptors pool exhaused. "
307 		    "Consider increasing CESA_SA_DESCRIPTORS.\n");
308 		return (NULL);
309 	}
310 
311 	STAILQ_INSERT_TAIL(&cr->cr_sdesc, csd, csd_stq);
312 
313 	/* Fill-in SA descriptor with default values */
314 	csd->csd_cshd->cshd_enc_key = CESA_SA_DATA(csd_key);
315 	csd->csd_cshd->cshd_enc_iv = CESA_SA_DATA(csd_iv);
316 	csd->csd_cshd->cshd_enc_iv_buf = CESA_SA_DATA(csd_iv);
317 	csd->csd_cshd->cshd_enc_src = 0;
318 	csd->csd_cshd->cshd_enc_dst = 0;
319 	csd->csd_cshd->cshd_enc_dlen = 0;
320 	csd->csd_cshd->cshd_mac_dst = CESA_SA_DATA(csd_hash);
321 	csd->csd_cshd->cshd_mac_iv_in = CESA_SA_DATA(csd_hiv_in);
322 	csd->csd_cshd->cshd_mac_iv_out = CESA_SA_DATA(csd_hiv_out);
323 	csd->csd_cshd->cshd_mac_src = 0;
324 	csd->csd_cshd->cshd_mac_dlen = 0;
325 
326 	return (csd);
327 }
328 
329 static struct cesa_tdma_desc *
330 cesa_tdma_copy(struct cesa_softc *sc, bus_addr_t dst, bus_addr_t src,
331     bus_size_t size)
332 {
333 	struct cesa_tdma_desc *ctd;
334 
335 	ctd = cesa_alloc_tdesc(sc);
336 	if (!ctd)
337 		return (NULL);
338 
339 	ctd->ctd_cthd->cthd_dst = dst;
340 	ctd->ctd_cthd->cthd_src = src;
341 	ctd->ctd_cthd->cthd_byte_count = size;
342 
343 	/* Handle special control packet */
344 	if (size != 0)
345 		ctd->ctd_cthd->cthd_flags = CESA_CTHD_OWNED;
346 	else
347 		ctd->ctd_cthd->cthd_flags = 0;
348 
349 	return (ctd);
350 }
351 
352 static struct cesa_tdma_desc *
353 cesa_tdma_copyin_sa_data(struct cesa_softc *sc, struct cesa_request *cr)
354 {
355 
356 	return (cesa_tdma_copy(sc, sc->sc_sram_base_pa +
357 	    sizeof(struct cesa_sa_hdesc), cr->cr_csd_paddr,
358 	    sizeof(struct cesa_sa_data)));
359 }
360 
361 static struct cesa_tdma_desc *
362 cesa_tdma_copyout_sa_data(struct cesa_softc *sc, struct cesa_request *cr)
363 {
364 
365 	return (cesa_tdma_copy(sc, cr->cr_csd_paddr, sc->sc_sram_base_pa +
366 	    sizeof(struct cesa_sa_hdesc), sizeof(struct cesa_sa_data)));
367 }
368 
369 static struct cesa_tdma_desc *
370 cesa_tdma_copy_sdesc(struct cesa_softc *sc, struct cesa_sa_desc *csd)
371 {
372 
373 	return (cesa_tdma_copy(sc, sc->sc_sram_base_pa, csd->csd_cshd_paddr,
374 	    sizeof(struct cesa_sa_hdesc)));
375 }
376 
377 static void
378 cesa_append_tdesc(struct cesa_request *cr, struct cesa_tdma_desc *ctd)
379 {
380 	struct cesa_tdma_desc *ctd_prev;
381 
382 	if (!STAILQ_EMPTY(&cr->cr_tdesc)) {
383 		ctd_prev = STAILQ_LAST(&cr->cr_tdesc, cesa_tdma_desc, ctd_stq);
384 		ctd_prev->ctd_cthd->cthd_next = ctd->ctd_cthd_paddr;
385 	}
386 
387 	ctd->ctd_cthd->cthd_next = 0;
388 	STAILQ_INSERT_TAIL(&cr->cr_tdesc, ctd, ctd_stq);
389 }
390 
391 static int
392 cesa_append_packet(struct cesa_softc *sc, struct cesa_request *cr,
393     struct cesa_packet *cp, struct cesa_sa_desc *csd)
394 {
395 	struct cesa_tdma_desc *ctd, *tmp;
396 
397 	/* Copy SA descriptor for this packet */
398 	ctd = cesa_tdma_copy_sdesc(sc, csd);
399 	if (!ctd)
400 		return (ENOMEM);
401 
402 	cesa_append_tdesc(cr, ctd);
403 
404 	/* Copy data to be processed */
405 	STAILQ_FOREACH_SAFE(ctd, &cp->cp_copyin, ctd_stq, tmp)
406 		cesa_append_tdesc(cr, ctd);
407 	STAILQ_INIT(&cp->cp_copyin);
408 
409 	/* Insert control descriptor */
410 	ctd = cesa_tdma_copy(sc, 0, 0, 0);
411 	if (!ctd)
412 		return (ENOMEM);
413 
414 	cesa_append_tdesc(cr, ctd);
415 
416 	/* Copy back results */
417 	STAILQ_FOREACH_SAFE(ctd, &cp->cp_copyout, ctd_stq, tmp)
418 		cesa_append_tdesc(cr, ctd);
419 	STAILQ_INIT(&cp->cp_copyout);
420 
421 	return (0);
422 }
423 
424 static void
425 cesa_set_mkey(struct cesa_session *cs, int alg, const uint8_t *mkey, int mklen)
426 {
427 	union authctx auth_ctx;
428 	uint32_t *hout;
429 	uint32_t *hin;
430 	int i;
431 
432 	hin = (uint32_t *)cs->cs_hiv_in;
433 	hout = (uint32_t *)cs->cs_hiv_out;
434 
435 	switch (alg) {
436 	case CRYPTO_SHA1_HMAC:
437 		hmac_init_ipad(&auth_hash_hmac_sha1, mkey, mklen, &auth_ctx);
438 		memcpy(hin, auth_ctx.sha1ctx.h.b32,
439 		    sizeof(auth_ctx.sha1ctx.h.b32));
440 		hmac_init_opad(&auth_hash_hmac_sha1, mkey, mklen, &auth_ctx);
441 		memcpy(hout, auth_ctx.sha1ctx.h.b32,
442 		    sizeof(auth_ctx.sha1ctx.h.b32));
443 		break;
444 	case CRYPTO_SHA2_256_HMAC:
445 		hmac_init_ipad(&auth_hash_hmac_sha2_256, mkey, mklen,
446 		    &auth_ctx);
447 		memcpy(hin, auth_ctx.sha256ctx.state,
448 		    sizeof(auth_ctx.sha256ctx.state));
449 		hmac_init_opad(&auth_hash_hmac_sha2_256, mkey, mklen,
450 		    &auth_ctx);
451 		memcpy(hout, auth_ctx.sha256ctx.state,
452 		    sizeof(auth_ctx.sha256ctx.state));
453 		break;
454 	default:
455 		panic("shouldn't get here");
456 	}
457 
458 	for (i = 0; i < CESA_MAX_HASH_LEN / sizeof(uint32_t); i++) {
459 		hin[i] = htobe32(hin[i]);
460 		hout[i] = htobe32(hout[i]);
461 	}
462 	explicit_bzero(&auth_ctx, sizeof(auth_ctx));
463 }
464 
465 static int
466 cesa_prep_aes_key(struct cesa_session *cs,
467     const struct crypto_session_params *csp)
468 {
469 	uint32_t ek[4 * (RIJNDAEL_MAXNR + 1)];
470 	uint32_t *dkey;
471 	int i;
472 
473 	rijndaelKeySetupEnc(ek, cs->cs_key, csp->csp_cipher_klen * 8);
474 
475 	cs->cs_config &= ~CESA_CSH_AES_KLEN_MASK;
476 	dkey = (uint32_t *)cs->cs_aes_dkey;
477 
478 	switch (csp->csp_cipher_klen) {
479 	case 16:
480 		cs->cs_config |= CESA_CSH_AES_KLEN_128;
481 		for (i = 0; i < 4; i++)
482 			*dkey++ = htobe32(ek[4 * 10 + i]);
483 		break;
484 	case 24:
485 		cs->cs_config |= CESA_CSH_AES_KLEN_192;
486 		for (i = 0; i < 4; i++)
487 			*dkey++ = htobe32(ek[4 * 12 + i]);
488 		for (i = 0; i < 2; i++)
489 			*dkey++ = htobe32(ek[4 * 11 + 2 + i]);
490 		break;
491 	case 32:
492 		cs->cs_config |= CESA_CSH_AES_KLEN_256;
493 		for (i = 0; i < 4; i++)
494 			*dkey++ = htobe32(ek[4 * 14 + i]);
495 		for (i = 0; i < 4; i++)
496 			*dkey++ = htobe32(ek[4 * 13 + i]);
497 		break;
498 	default:
499 		return (EINVAL);
500 	}
501 
502 	return (0);
503 }
504 
505 static void
506 cesa_start_packet(struct cesa_packet *cp, unsigned int size)
507 {
508 
509 	cp->cp_size = size;
510 	cp->cp_offset = 0;
511 	STAILQ_INIT(&cp->cp_copyin);
512 	STAILQ_INIT(&cp->cp_copyout);
513 }
514 
515 static int
516 cesa_fill_packet(struct cesa_softc *sc, struct cesa_packet *cp,
517     bus_dma_segment_t *seg)
518 {
519 	struct cesa_tdma_desc *ctd;
520 	unsigned int bsize;
521 
522 	/* Calculate size of block copy */
523 	bsize = MIN(seg->ds_len, cp->cp_size - cp->cp_offset);
524 
525 	if (bsize > 0) {
526 		ctd = cesa_tdma_copy(sc, sc->sc_sram_base_pa +
527 		    CESA_DATA(cp->cp_offset), seg->ds_addr, bsize);
528 		if (!ctd)
529 			return (-ENOMEM);
530 
531 		STAILQ_INSERT_TAIL(&cp->cp_copyin, ctd, ctd_stq);
532 
533 		ctd = cesa_tdma_copy(sc, seg->ds_addr, sc->sc_sram_base_pa +
534 		    CESA_DATA(cp->cp_offset), bsize);
535 		if (!ctd)
536 			return (-ENOMEM);
537 
538 		STAILQ_INSERT_TAIL(&cp->cp_copyout, ctd, ctd_stq);
539 
540 		seg->ds_len -= bsize;
541 		seg->ds_addr += bsize;
542 		cp->cp_offset += bsize;
543 	}
544 
545 	return (bsize);
546 }
547 
548 static void
549 cesa_create_chain_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
550 {
551 	unsigned int mpsize, fragmented;
552 	unsigned int mlen, mskip, tmlen;
553 	struct cesa_chain_info *cci;
554 	unsigned int elen, eskip;
555 	unsigned int skip, len;
556 	struct cesa_sa_desc *csd;
557 	struct cesa_request *cr;
558 	struct cryptop *crp;
559 	struct cesa_softc *sc;
560 	struct cesa_packet cp;
561 	bus_dma_segment_t seg;
562 	uint32_t config;
563 	int size;
564 
565 	cci = arg;
566 	sc = cci->cci_sc;
567 	cr = cci->cci_cr;
568 	crp = cr->cr_crp;
569 
570 	if (error) {
571 		cci->cci_error = error;
572 		return;
573 	}
574 
575 	/*
576 	 * Only do a combined op if the AAD is adjacent to the payload
577 	 * and the AAD length is a multiple of the IV length.  The
578 	 * checks against 'config' are to avoid recursing when the
579 	 * logic below invokes separate operations.
580 	 */
581 	config = cci->cci_config;
582 	if (((config & CESA_CSHD_OP_MASK) == CESA_CSHD_MAC_AND_ENC ||
583 	    (config & CESA_CSHD_OP_MASK) == CESA_CSHD_ENC_AND_MAC) &&
584 	    crp->crp_aad_length != 0 &&
585 	    (crp->crp_aad_length & (cr->cr_cs->cs_ivlen - 1)) != 0) {
586 		/*
587 		 * Data alignment in the request does not meet CESA requiremnts
588 		 * for combined encryption/decryption and hashing. We have to
589 		 * split the request to separate operations and process them
590 		 * one by one.
591 		 */
592 		if ((config & CESA_CSHD_OP_MASK) == CESA_CSHD_MAC_AND_ENC) {
593 			config &= ~CESA_CSHD_OP_MASK;
594 
595 			cci->cci_config = config | CESA_CSHD_MAC;
596 			cesa_create_chain_cb(cci, segs, nseg, 0);
597 
598 			cci->cci_config = config | CESA_CSHD_ENC;
599 			cesa_create_chain_cb(cci, segs, nseg, 0);
600 		} else {
601 			config &= ~CESA_CSHD_OP_MASK;
602 
603 			cci->cci_config = config | CESA_CSHD_ENC;
604 			cesa_create_chain_cb(cci, segs, nseg, 0);
605 
606 			cci->cci_config = config | CESA_CSHD_MAC;
607 			cesa_create_chain_cb(cci, segs, nseg, 0);
608 		}
609 
610 		return;
611 	}
612 
613 	mskip = mlen = eskip = elen = 0;
614 
615 	if (crp->crp_aad_length == 0) {
616 		skip = crp->crp_payload_start;
617 		len = crp->crp_payload_length;
618 		switch (config & CESA_CSHD_OP_MASK) {
619 		case CESA_CSHD_ENC:
620 			eskip = skip;
621 			elen = len;
622 			break;
623 		case CESA_CSHD_MAC:
624 			mskip = skip;
625 			mlen = len;
626 			break;
627 		default:
628 			eskip = skip;
629 			elen = len;
630 			mskip = skip;
631 			mlen = len;
632 			break;
633 		}
634 	} else {
635 		/*
636 		 * For an encryption-only separate request, only
637 		 * process the payload.  For combined requests and
638 		 * hash-only requests, process the entire region.
639 		 */
640 		switch (config & CESA_CSHD_OP_MASK) {
641 		case CESA_CSHD_ENC:
642 			skip = crp->crp_payload_start;
643 			len = crp->crp_payload_length;
644 			eskip = skip;
645 			elen = len;
646 			break;
647 		case CESA_CSHD_MAC:
648 			skip = crp->crp_aad_start;
649 			len = crp->crp_aad_length + crp->crp_payload_length;
650 			mskip = skip;
651 			mlen = len;
652 			break;
653 		default:
654 			skip = crp->crp_aad_start;
655 			len = crp->crp_aad_length + crp->crp_payload_length;
656 			mskip = skip;
657 			mlen = len;
658 			eskip = crp->crp_payload_start;
659 			elen = crp->crp_payload_length;
660 			break;
661 		}
662 	}
663 
664 	tmlen = mlen;
665 	fragmented = 0;
666 	mpsize = CESA_MAX_PACKET_SIZE;
667 	mpsize &= ~((cr->cr_cs->cs_ivlen - 1) | (cr->cr_cs->cs_mblen - 1));
668 
669 	/* Start first packet in chain */
670 	cesa_start_packet(&cp, MIN(mpsize, len));
671 
672 	while (nseg-- && len > 0) {
673 		seg = *(segs++);
674 
675 		/*
676 		 * Skip data in buffer on which neither ENC nor MAC operation
677 		 * is requested.
678 		 */
679 		if (skip > 0) {
680 			size = MIN(skip, seg.ds_len);
681 			skip -= size;
682 
683 			seg.ds_addr += size;
684 			seg.ds_len -= size;
685 
686 			if (eskip > 0)
687 				eskip -= size;
688 
689 			if (mskip > 0)
690 				mskip -= size;
691 
692 			if (seg.ds_len == 0)
693 				continue;
694 		}
695 
696 		while (1) {
697 			/*
698 			 * Fill in current packet with data. Break if there is
699 			 * no more data in current DMA segment or an error
700 			 * occurred.
701 			 */
702 			size = cesa_fill_packet(sc, &cp, &seg);
703 			if (size <= 0) {
704 				error = -size;
705 				break;
706 			}
707 
708 			len -= size;
709 
710 			/* If packet is full, append it to the chain */
711 			if (cp.cp_size == cp.cp_offset) {
712 				csd = cesa_alloc_sdesc(sc, cr);
713 				if (!csd) {
714 					error = ENOMEM;
715 					break;
716 				}
717 
718 				/* Create SA descriptor for this packet */
719 				csd->csd_cshd->cshd_config = cci->cci_config;
720 				csd->csd_cshd->cshd_mac_total_dlen = tmlen;
721 
722 				/*
723 				 * Enable fragmentation if request will not fit
724 				 * into one packet.
725 				 */
726 				if (len > 0) {
727 					if (!fragmented) {
728 						fragmented = 1;
729 						csd->csd_cshd->cshd_config |=
730 						    CESA_CSHD_FRAG_FIRST;
731 					} else
732 						csd->csd_cshd->cshd_config |=
733 						    CESA_CSHD_FRAG_MIDDLE;
734 				} else if (fragmented)
735 					csd->csd_cshd->cshd_config |=
736 					    CESA_CSHD_FRAG_LAST;
737 
738 				if (eskip < cp.cp_size && elen > 0) {
739 					csd->csd_cshd->cshd_enc_src =
740 					    CESA_DATA(eskip);
741 					csd->csd_cshd->cshd_enc_dst =
742 					    CESA_DATA(eskip);
743 					csd->csd_cshd->cshd_enc_dlen =
744 					    MIN(elen, cp.cp_size - eskip);
745 				}
746 
747 				if (mskip < cp.cp_size && mlen > 0) {
748 					csd->csd_cshd->cshd_mac_src =
749 					    CESA_DATA(mskip);
750 					csd->csd_cshd->cshd_mac_dlen =
751 					    MIN(mlen, cp.cp_size - mskip);
752 				}
753 
754 				elen -= csd->csd_cshd->cshd_enc_dlen;
755 				eskip -= MIN(eskip, cp.cp_size);
756 				mlen -= csd->csd_cshd->cshd_mac_dlen;
757 				mskip -= MIN(mskip, cp.cp_size);
758 
759 				cesa_dump_cshd(sc, csd->csd_cshd);
760 
761 				/* Append packet to the request */
762 				error = cesa_append_packet(sc, cr, &cp, csd);
763 				if (error)
764 					break;
765 
766 				/* Start a new packet, as current is full */
767 				cesa_start_packet(&cp, MIN(mpsize, len));
768 			}
769 		}
770 
771 		if (error)
772 			break;
773 	}
774 
775 	if (error) {
776 		/*
777 		 * Move all allocated resources to the request. They will be
778 		 * freed later.
779 		 */
780 		STAILQ_CONCAT(&cr->cr_tdesc, &cp.cp_copyin);
781 		STAILQ_CONCAT(&cr->cr_tdesc, &cp.cp_copyout);
782 		cci->cci_error = error;
783 	}
784 }
785 
786 static int
787 cesa_create_chain(struct cesa_softc *sc,
788     const struct crypto_session_params *csp, struct cesa_request *cr)
789 {
790 	struct cesa_chain_info cci;
791 	struct cesa_tdma_desc *ctd;
792 	uint32_t config;
793 	int error;
794 
795 	error = 0;
796 	CESA_LOCK_ASSERT(sc, sessions);
797 
798 	/* Create request metadata */
799 	if (csp->csp_cipher_klen != 0) {
800 		if (csp->csp_cipher_alg == CRYPTO_AES_CBC &&
801 		    !CRYPTO_OP_IS_ENCRYPT(cr->cr_crp->crp_op))
802 			memcpy(cr->cr_csd->csd_key, cr->cr_cs->cs_aes_dkey,
803 			    csp->csp_cipher_klen);
804 		else
805 			memcpy(cr->cr_csd->csd_key, cr->cr_cs->cs_key,
806 			    csp->csp_cipher_klen);
807 	}
808 
809 	if (csp->csp_auth_klen != 0) {
810 		memcpy(cr->cr_csd->csd_hiv_in, cr->cr_cs->cs_hiv_in,
811 		    CESA_MAX_HASH_LEN);
812 		memcpy(cr->cr_csd->csd_hiv_out, cr->cr_cs->cs_hiv_out,
813 		    CESA_MAX_HASH_LEN);
814 	}
815 
816 	ctd = cesa_tdma_copyin_sa_data(sc, cr);
817 	if (!ctd)
818 		return (ENOMEM);
819 
820 	cesa_append_tdesc(cr, ctd);
821 
822 	/* Prepare SA configuration */
823 	config = cr->cr_cs->cs_config;
824 
825 	if (csp->csp_cipher_alg != 0 &&
826 	    !CRYPTO_OP_IS_ENCRYPT(cr->cr_crp->crp_op))
827 		config |= CESA_CSHD_DECRYPT;
828 	switch (csp->csp_mode) {
829 	case CSP_MODE_CIPHER:
830 		config |= CESA_CSHD_ENC;
831 		break;
832 	case CSP_MODE_DIGEST:
833 		config |= CESA_CSHD_MAC;
834 		break;
835 	case CSP_MODE_ETA:
836 		config |= (config & CESA_CSHD_DECRYPT) ? CESA_CSHD_MAC_AND_ENC :
837 		    CESA_CSHD_ENC_AND_MAC;
838 		break;
839 	}
840 
841 	/* Create data packets */
842 	cci.cci_sc = sc;
843 	cci.cci_cr = cr;
844 	cci.cci_config = config;
845 	cci.cci_error = 0;
846 
847 	error = bus_dmamap_load_crp(sc->sc_data_dtag, cr->cr_dmap, cr->cr_crp,
848 	    cesa_create_chain_cb, &cci, BUS_DMA_NOWAIT);
849 
850 	if (!error)
851 		cr->cr_dmap_loaded = 1;
852 
853 	if (cci.cci_error)
854 		error = cci.cci_error;
855 
856 	if (error)
857 		return (error);
858 
859 	/* Read back request metadata */
860 	ctd = cesa_tdma_copyout_sa_data(sc, cr);
861 	if (!ctd)
862 		return (ENOMEM);
863 
864 	cesa_append_tdesc(cr, ctd);
865 
866 	return (0);
867 }
868 
869 static void
870 cesa_execute(struct cesa_softc *sc)
871 {
872 	struct cesa_tdma_desc *prev_ctd, *ctd;
873 	struct cesa_request *prev_cr, *cr;
874 
875 	CESA_LOCK(sc, requests);
876 
877 	/*
878 	 * If ready list is empty, there is nothing to execute. If queued list
879 	 * is not empty, the hardware is busy and we cannot start another
880 	 * execution.
881 	 */
882 	if (STAILQ_EMPTY(&sc->sc_ready_requests) ||
883 	    !STAILQ_EMPTY(&sc->sc_queued_requests)) {
884 		CESA_UNLOCK(sc, requests);
885 		return;
886 	}
887 
888 	/* Move all ready requests to queued list */
889 	STAILQ_CONCAT(&sc->sc_queued_requests, &sc->sc_ready_requests);
890 	STAILQ_INIT(&sc->sc_ready_requests);
891 
892 	/* Create one execution chain from all requests on the list */
893 	if (STAILQ_FIRST(&sc->sc_queued_requests) !=
894 	    STAILQ_LAST(&sc->sc_queued_requests, cesa_request, cr_stq)) {
895 		prev_cr = NULL;
896 		cesa_sync_dma_mem(&sc->sc_tdesc_cdm, BUS_DMASYNC_POSTREAD |
897 		    BUS_DMASYNC_POSTWRITE);
898 
899 		STAILQ_FOREACH(cr, &sc->sc_queued_requests, cr_stq) {
900 			if (prev_cr) {
901 				ctd = STAILQ_FIRST(&cr->cr_tdesc);
902 				prev_ctd = STAILQ_LAST(&prev_cr->cr_tdesc,
903 				    cesa_tdma_desc, ctd_stq);
904 
905 				prev_ctd->ctd_cthd->cthd_next =
906 				    ctd->ctd_cthd_paddr;
907 			}
908 
909 			prev_cr = cr;
910 		}
911 
912 		cesa_sync_dma_mem(&sc->sc_tdesc_cdm, BUS_DMASYNC_PREREAD |
913 		    BUS_DMASYNC_PREWRITE);
914 	}
915 
916 	/* Start chain execution in hardware */
917 	cr = STAILQ_FIRST(&sc->sc_queued_requests);
918 	ctd = STAILQ_FIRST(&cr->cr_tdesc);
919 
920 	CESA_TDMA_WRITE(sc, CESA_TDMA_ND, ctd->ctd_cthd_paddr);
921 
922 	if (sc->sc_soc_id == MV_DEV_88F6828 ||
923 	    sc->sc_soc_id == MV_DEV_88F6820 ||
924 	    sc->sc_soc_id == MV_DEV_88F6810)
925 		CESA_REG_WRITE(sc, CESA_SA_CMD, CESA_SA_CMD_ACTVATE | CESA_SA_CMD_SHA2);
926 	else
927 		CESA_REG_WRITE(sc, CESA_SA_CMD, CESA_SA_CMD_ACTVATE);
928 
929 	CESA_UNLOCK(sc, requests);
930 }
931 
932 static int
933 cesa_setup_sram(struct cesa_softc *sc)
934 {
935 	phandle_t sram_node;
936 	ihandle_t sram_ihandle;
937 	pcell_t sram_handle, sram_reg[2];
938 	void *sram_va;
939 	int rv;
940 
941 	rv = OF_getencprop(ofw_bus_get_node(sc->sc_dev), "sram-handle",
942 	    (void *)&sram_handle, sizeof(sram_handle));
943 	if (rv <= 0)
944 		return (rv);
945 
946 	sram_ihandle = (ihandle_t)sram_handle;
947 	sram_node = OF_instance_to_package(sram_ihandle);
948 
949 	rv = OF_getencprop(sram_node, "reg", (void *)sram_reg, sizeof(sram_reg));
950 	if (rv <= 0)
951 		return (rv);
952 
953 	sc->sc_sram_base_pa = sram_reg[0];
954 	/* Store SRAM size to be able to unmap in detach() */
955 	sc->sc_sram_size = sram_reg[1];
956 
957 	if (sc->sc_soc_id != MV_DEV_88F6828 &&
958 	    sc->sc_soc_id != MV_DEV_88F6820 &&
959 	    sc->sc_soc_id != MV_DEV_88F6810)
960 		return (0);
961 
962 	/* SRAM memory was not mapped in platform_sram_devmap(), map it now */
963 	sram_va = pmap_mapdev(sc->sc_sram_base_pa, sc->sc_sram_size);
964 	if (sram_va == NULL)
965 		return (ENOMEM);
966 	sc->sc_sram_base_va = (vm_offset_t)sram_va;
967 
968 	return (0);
969 }
970 
971 /*
972  * Function: device_from_node
973  * This function returns appropriate device_t to phandle_t
974  * Parameters:
975  * root - device where you want to start search
976  *     if you provide NULL here, function will take
977  *     "root0" device as root.
978  * node - we are checking every device_t to be
979  *     appropriate with this.
980  */
981 static device_t
982 device_from_node(device_t root, phandle_t node)
983 {
984 	device_t *children, retval;
985 	int nkid, i;
986 
987 	/* Nothing matches no node */
988 	if (node == -1)
989 		return (NULL);
990 
991 	if (root == NULL)
992 		/* Get root of device tree */
993 		if ((root = device_lookup_by_name("root0")) == NULL)
994 			return (NULL);
995 
996 	if (device_get_children(root, &children, &nkid) != 0)
997 		return (NULL);
998 
999 	retval = NULL;
1000 	for (i = 0; i < nkid; i++) {
1001 		/* Check if device and node matches */
1002 		if (OFW_BUS_GET_NODE(root, children[i]) == node) {
1003 			retval = children[i];
1004 			break;
1005 		}
1006 		/* or go deeper */
1007 		if ((retval = device_from_node(children[i], node)) != NULL)
1008 			break;
1009 	}
1010 	free(children, M_TEMP);
1011 
1012 	return (retval);
1013 }
1014 
1015 static int
1016 cesa_setup_sram_armada(struct cesa_softc *sc)
1017 {
1018 	phandle_t sram_node;
1019 	ihandle_t sram_ihandle;
1020 	pcell_t sram_handle[2];
1021 	void *sram_va;
1022 	int rv, j;
1023 	struct resource_list rl;
1024 	struct resource_list_entry *rle;
1025 	struct simplebus_softc *ssc;
1026 	device_t sdev;
1027 
1028 	/* Get refs to SRAMS from CESA node */
1029 	rv = OF_getencprop(ofw_bus_get_node(sc->sc_dev), "marvell,crypto-srams",
1030 	    (void *)sram_handle, sizeof(sram_handle));
1031 	if (rv <= 0)
1032 		return (rv);
1033 
1034 	if (sc->sc_cesa_engine_id >= 2)
1035 		return (ENXIO);
1036 
1037 	/* Get SRAM node on the basis of sc_cesa_engine_id */
1038 	sram_ihandle = (ihandle_t)sram_handle[sc->sc_cesa_engine_id];
1039 	sram_node = OF_instance_to_package(sram_ihandle);
1040 
1041 	/* Get device_t of simplebus (sram_node parent) */
1042 	sdev = device_from_node(NULL, OF_parent(sram_node));
1043 	if (!sdev)
1044 		return (ENXIO);
1045 
1046 	ssc = device_get_softc(sdev);
1047 
1048 	resource_list_init(&rl);
1049 	/* Parse reg property to resource list */
1050 	ofw_bus_reg_to_rl(sdev, sram_node, ssc->acells,
1051 	    ssc->scells, &rl);
1052 
1053 	/* We expect only one resource */
1054 	rle = resource_list_find(&rl, SYS_RES_MEMORY, 0);
1055 	if (rle == NULL)
1056 		return (ENXIO);
1057 
1058 	/* Remap through ranges property */
1059 	for (j = 0; j < ssc->nranges; j++) {
1060 		if (rle->start >= ssc->ranges[j].bus &&
1061 		    rle->end < ssc->ranges[j].bus + ssc->ranges[j].size) {
1062 			rle->start -= ssc->ranges[j].bus;
1063 			rle->start += ssc->ranges[j].host;
1064 			rle->end -= ssc->ranges[j].bus;
1065 			rle->end += ssc->ranges[j].host;
1066 		}
1067 	}
1068 
1069 	sc->sc_sram_base_pa = rle->start;
1070 	sc->sc_sram_size = rle->count;
1071 
1072 	/* SRAM memory was not mapped in platform_sram_devmap(), map it now */
1073 	sram_va = pmap_mapdev(sc->sc_sram_base_pa, sc->sc_sram_size);
1074 	if (sram_va == NULL)
1075 		return (ENOMEM);
1076 	sc->sc_sram_base_va = (vm_offset_t)sram_va;
1077 
1078 	return (0);
1079 }
1080 
1081 struct ofw_compat_data cesa_devices[] = {
1082 	{ "mrvl,cesa", (uintptr_t)true },
1083 	{ "marvell,armada-38x-crypto", (uintptr_t)true },
1084 	{ NULL, 0 }
1085 };
1086 
1087 static int
1088 cesa_probe(device_t dev)
1089 {
1090 
1091 	if (!ofw_bus_status_okay(dev))
1092 		return (ENXIO);
1093 
1094 	if (!ofw_bus_search_compatible(dev, cesa_devices)->ocd_data)
1095 		return (ENXIO);
1096 
1097 	device_set_desc(dev, "Marvell Cryptographic Engine and Security "
1098 	    "Accelerator");
1099 
1100 	return (BUS_PROBE_DEFAULT);
1101 }
1102 
1103 static int
1104 cesa_attach(device_t dev)
1105 {
1106 	static int engine_idx = 0;
1107 	struct simplebus_devinfo *ndi;
1108 	struct resource_list *rl;
1109 	struct cesa_softc *sc;
1110 
1111 	if (!ofw_bus_is_compatible(dev, "marvell,armada-38x-crypto"))
1112 		return (cesa_attach_late(dev));
1113 
1114 	/*
1115 	 * Get simplebus_devinfo which contains
1116 	 * resource list filled with adresses and
1117 	 * interrupts read form FDT.
1118 	 * Let's correct it by splitting resources
1119 	 * for each engine.
1120 	 */
1121 	if ((ndi = device_get_ivars(dev)) == NULL)
1122 		return (ENXIO);
1123 
1124 	rl = &ndi->rl;
1125 
1126 	switch (engine_idx) {
1127 		case 0:
1128 			/* Update regs values */
1129 			resource_list_add(rl, SYS_RES_MEMORY, 0, CESA0_TDMA_ADDR,
1130 			    CESA0_TDMA_ADDR + CESA_TDMA_SIZE - 1, CESA_TDMA_SIZE);
1131 			resource_list_add(rl, SYS_RES_MEMORY, 1, CESA0_CESA_ADDR,
1132 			    CESA0_CESA_ADDR + CESA_CESA_SIZE - 1, CESA_CESA_SIZE);
1133 
1134 			/* Remove unused interrupt */
1135 			resource_list_delete(rl, SYS_RES_IRQ, 1);
1136 			break;
1137 
1138 		case 1:
1139 			/* Update regs values */
1140 			resource_list_add(rl, SYS_RES_MEMORY, 0, CESA1_TDMA_ADDR,
1141 			    CESA1_TDMA_ADDR + CESA_TDMA_SIZE - 1, CESA_TDMA_SIZE);
1142 			resource_list_add(rl, SYS_RES_MEMORY, 1, CESA1_CESA_ADDR,
1143 			    CESA1_CESA_ADDR + CESA_CESA_SIZE - 1, CESA_CESA_SIZE);
1144 
1145 			/* Remove unused interrupt */
1146 			resource_list_delete(rl, SYS_RES_IRQ, 0);
1147 			resource_list_find(rl, SYS_RES_IRQ, 1)->rid = 0;
1148 			break;
1149 
1150 		default:
1151 			device_printf(dev, "Bad cesa engine_idx\n");
1152 			return (ENXIO);
1153 	}
1154 
1155 	sc = device_get_softc(dev);
1156 	sc->sc_cesa_engine_id = engine_idx;
1157 
1158 	/*
1159 	 * Call simplebus_add_device only once.
1160 	 * It will create second cesa driver instance
1161 	 * with the same FDT node as first instance.
1162 	 * When second driver reach this function,
1163 	 * it will be configured to use second cesa engine
1164 	 */
1165 	if (engine_idx == 0)
1166 		simplebus_add_device(device_get_parent(dev), ofw_bus_get_node(dev),
1167 		    0, "cesa", 1, NULL);
1168 
1169 	engine_idx++;
1170 
1171 	return (cesa_attach_late(dev));
1172 }
1173 
1174 static int
1175 cesa_attach_late(device_t dev)
1176 {
1177 	struct cesa_softc *sc;
1178 	uint32_t d, r, val;
1179 	int error;
1180 	int i;
1181 
1182 	sc = device_get_softc(dev);
1183 	sc->sc_blocked = 0;
1184 	sc->sc_error = 0;
1185 	sc->sc_dev = dev;
1186 
1187 	soc_id(&d, &r);
1188 
1189 	switch (d) {
1190 	case MV_DEV_88F6281:
1191 	case MV_DEV_88F6282:
1192 		/* Check if CESA peripheral device has power turned on */
1193 		if (soc_power_ctrl_get(CPU_PM_CTRL_CRYPTO) ==
1194 		    CPU_PM_CTRL_CRYPTO) {
1195 			device_printf(dev, "not powered on\n");
1196 			return (ENXIO);
1197 		}
1198 		sc->sc_tperr = 0;
1199 		break;
1200 	case MV_DEV_88F6828:
1201 	case MV_DEV_88F6820:
1202 	case MV_DEV_88F6810:
1203 		sc->sc_tperr = 0;
1204 		break;
1205 	case MV_DEV_MV78100:
1206 	case MV_DEV_MV78100_Z0:
1207 		/* Check if CESA peripheral device has power turned on */
1208 		if (soc_power_ctrl_get(CPU_PM_CTRL_CRYPTO) !=
1209 		    CPU_PM_CTRL_CRYPTO) {
1210 			device_printf(dev, "not powered on\n");
1211 			return (ENXIO);
1212 		}
1213 		sc->sc_tperr = CESA_ICR_TPERR;
1214 		break;
1215 	default:
1216 		return (ENXIO);
1217 	}
1218 
1219 	sc->sc_soc_id = d;
1220 
1221 	/* Initialize mutexes */
1222 	mtx_init(&sc->sc_sc_lock, device_get_nameunit(dev),
1223 	    "CESA Shared Data", MTX_DEF);
1224 	mtx_init(&sc->sc_tdesc_lock, device_get_nameunit(dev),
1225 	    "CESA TDMA Descriptors Pool", MTX_DEF);
1226 	mtx_init(&sc->sc_sdesc_lock, device_get_nameunit(dev),
1227 	    "CESA SA Descriptors Pool", MTX_DEF);
1228 	mtx_init(&sc->sc_requests_lock, device_get_nameunit(dev),
1229 	    "CESA Requests Pool", MTX_DEF);
1230 	mtx_init(&sc->sc_sessions_lock, device_get_nameunit(dev),
1231 	    "CESA Sessions Pool", MTX_DEF);
1232 
1233 	/* Allocate I/O and IRQ resources */
1234 	error = bus_alloc_resources(dev, cesa_res_spec, sc->sc_res);
1235 	if (error) {
1236 		device_printf(dev, "could not allocate resources\n");
1237 		goto err0;
1238 	}
1239 
1240 	/* Acquire SRAM base address */
1241 	if (!ofw_bus_is_compatible(dev, "marvell,armada-38x-crypto"))
1242 		error = cesa_setup_sram(sc);
1243 	else
1244 		error = cesa_setup_sram_armada(sc);
1245 
1246 	if (error) {
1247 		device_printf(dev, "could not setup SRAM\n");
1248 		goto err1;
1249 	}
1250 
1251 	/* Setup interrupt handler */
1252 	error = bus_setup_intr(dev, sc->sc_res[RES_CESA_IRQ], INTR_TYPE_NET |
1253 	    INTR_MPSAFE, NULL, cesa_intr, sc, &(sc->sc_icookie));
1254 	if (error) {
1255 		device_printf(dev, "could not setup engine completion irq\n");
1256 		goto err2;
1257 	}
1258 
1259 	/* Create DMA tag for processed data */
1260 	error = bus_dma_tag_create(bus_get_dma_tag(dev),	/* parent */
1261 	    1, 0,				/* alignment, boundary */
1262 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
1263 	    BUS_SPACE_MAXADDR,			/* highaddr */
1264 	    NULL, NULL,				/* filtfunc, filtfuncarg */
1265 	    CESA_MAX_REQUEST_SIZE,		/* maxsize */
1266 	    CESA_MAX_FRAGMENTS,			/* nsegments */
1267 	    CESA_MAX_REQUEST_SIZE, 0,		/* maxsegsz, flags */
1268 	    NULL, NULL,				/* lockfunc, lockfuncarg */
1269 	    &sc->sc_data_dtag);			/* dmat */
1270 	if (error)
1271 		goto err3;
1272 
1273 	/* Initialize data structures: TDMA Descriptors Pool */
1274 	error = cesa_alloc_dma_mem(sc, &sc->sc_tdesc_cdm,
1275 	    CESA_TDMA_DESCRIPTORS * sizeof(struct cesa_tdma_hdesc));
1276 	if (error)
1277 		goto err4;
1278 
1279 	STAILQ_INIT(&sc->sc_free_tdesc);
1280 	for (i = 0; i < CESA_TDMA_DESCRIPTORS; i++) {
1281 		sc->sc_tdesc[i].ctd_cthd =
1282 		    (struct cesa_tdma_hdesc *)(sc->sc_tdesc_cdm.cdm_vaddr) + i;
1283 		sc->sc_tdesc[i].ctd_cthd_paddr = sc->sc_tdesc_cdm.cdm_paddr +
1284 		    (i * sizeof(struct cesa_tdma_hdesc));
1285 		STAILQ_INSERT_TAIL(&sc->sc_free_tdesc, &sc->sc_tdesc[i],
1286 		    ctd_stq);
1287 	}
1288 
1289 	/* Initialize data structures: SA Descriptors Pool */
1290 	error = cesa_alloc_dma_mem(sc, &sc->sc_sdesc_cdm,
1291 	    CESA_SA_DESCRIPTORS * sizeof(struct cesa_sa_hdesc));
1292 	if (error)
1293 		goto err5;
1294 
1295 	STAILQ_INIT(&sc->sc_free_sdesc);
1296 	for (i = 0; i < CESA_SA_DESCRIPTORS; i++) {
1297 		sc->sc_sdesc[i].csd_cshd =
1298 		    (struct cesa_sa_hdesc *)(sc->sc_sdesc_cdm.cdm_vaddr) + i;
1299 		sc->sc_sdesc[i].csd_cshd_paddr = sc->sc_sdesc_cdm.cdm_paddr +
1300 		    (i * sizeof(struct cesa_sa_hdesc));
1301 		STAILQ_INSERT_TAIL(&sc->sc_free_sdesc, &sc->sc_sdesc[i],
1302 		    csd_stq);
1303 	}
1304 
1305 	/* Initialize data structures: Requests Pool */
1306 	error = cesa_alloc_dma_mem(sc, &sc->sc_requests_cdm,
1307 	    CESA_REQUESTS * sizeof(struct cesa_sa_data));
1308 	if (error)
1309 		goto err6;
1310 
1311 	STAILQ_INIT(&sc->sc_free_requests);
1312 	STAILQ_INIT(&sc->sc_ready_requests);
1313 	STAILQ_INIT(&sc->sc_queued_requests);
1314 	for (i = 0; i < CESA_REQUESTS; i++) {
1315 		sc->sc_requests[i].cr_csd =
1316 		    (struct cesa_sa_data *)(sc->sc_requests_cdm.cdm_vaddr) + i;
1317 		sc->sc_requests[i].cr_csd_paddr =
1318 		    sc->sc_requests_cdm.cdm_paddr +
1319 		    (i * sizeof(struct cesa_sa_data));
1320 
1321 		/* Preallocate DMA maps */
1322 		error = bus_dmamap_create(sc->sc_data_dtag, 0,
1323 		    &sc->sc_requests[i].cr_dmap);
1324 		if (error && i > 0) {
1325 			i--;
1326 			do {
1327 				bus_dmamap_destroy(sc->sc_data_dtag,
1328 				    sc->sc_requests[i].cr_dmap);
1329 			} while (i--);
1330 
1331 			goto err7;
1332 		}
1333 
1334 		STAILQ_INSERT_TAIL(&sc->sc_free_requests, &sc->sc_requests[i],
1335 		    cr_stq);
1336 	}
1337 
1338 	/*
1339 	 * Initialize TDMA:
1340 	 * - Burst limit: 128 bytes,
1341 	 * - Outstanding reads enabled,
1342 	 * - No byte-swap.
1343 	 */
1344 	val = CESA_TDMA_CR_DBL128 | CESA_TDMA_CR_SBL128 |
1345 	    CESA_TDMA_CR_ORDEN | CESA_TDMA_CR_NBS | CESA_TDMA_CR_ENABLE;
1346 
1347 	if (sc->sc_soc_id == MV_DEV_88F6828 ||
1348 	    sc->sc_soc_id == MV_DEV_88F6820 ||
1349 	    sc->sc_soc_id == MV_DEV_88F6810)
1350 		val |= CESA_TDMA_NUM_OUTSTAND;
1351 
1352 	CESA_TDMA_WRITE(sc, CESA_TDMA_CR, val);
1353 
1354 	/*
1355 	 * Initialize SA:
1356 	 * - SA descriptor is present at beginning of CESA SRAM,
1357 	 * - Multi-packet chain mode,
1358 	 * - Cooperation with TDMA enabled.
1359 	 */
1360 	CESA_REG_WRITE(sc, CESA_SA_DPR, 0);
1361 	CESA_REG_WRITE(sc, CESA_SA_CR, CESA_SA_CR_ACTIVATE_TDMA |
1362 	    CESA_SA_CR_WAIT_FOR_TDMA | CESA_SA_CR_MULTI_MODE);
1363 
1364 	/* Unmask interrupts */
1365 	CESA_REG_WRITE(sc, CESA_ICR, 0);
1366 	CESA_REG_WRITE(sc, CESA_ICM, CESA_ICM_ACCTDMA | sc->sc_tperr);
1367 	CESA_TDMA_WRITE(sc, CESA_TDMA_ECR, 0);
1368 	CESA_TDMA_WRITE(sc, CESA_TDMA_EMR, CESA_TDMA_EMR_MISS |
1369 	    CESA_TDMA_EMR_DOUBLE_HIT | CESA_TDMA_EMR_BOTH_HIT |
1370 	    CESA_TDMA_EMR_DATA_ERROR);
1371 
1372 	/* Register in OCF */
1373 	sc->sc_cid = crypto_get_driverid(dev, sizeof(struct cesa_session),
1374 	    CRYPTOCAP_F_HARDWARE);
1375 	if (sc->sc_cid < 0) {
1376 		device_printf(dev, "could not get crypto driver id\n");
1377 		goto err8;
1378 	}
1379 
1380 	return (0);
1381 err8:
1382 	for (i = 0; i < CESA_REQUESTS; i++)
1383 		bus_dmamap_destroy(sc->sc_data_dtag,
1384 		    sc->sc_requests[i].cr_dmap);
1385 err7:
1386 	cesa_free_dma_mem(&sc->sc_requests_cdm);
1387 err6:
1388 	cesa_free_dma_mem(&sc->sc_sdesc_cdm);
1389 err5:
1390 	cesa_free_dma_mem(&sc->sc_tdesc_cdm);
1391 err4:
1392 	bus_dma_tag_destroy(sc->sc_data_dtag);
1393 err3:
1394 	bus_teardown_intr(dev, sc->sc_res[RES_CESA_IRQ], sc->sc_icookie);
1395 err2:
1396 	if (sc->sc_soc_id == MV_DEV_88F6828 ||
1397 	    sc->sc_soc_id == MV_DEV_88F6820 ||
1398 	    sc->sc_soc_id == MV_DEV_88F6810)
1399 		pmap_unmapdev(sc->sc_sram_base_va, sc->sc_sram_size);
1400 err1:
1401 	bus_release_resources(dev, cesa_res_spec, sc->sc_res);
1402 err0:
1403 	mtx_destroy(&sc->sc_sessions_lock);
1404 	mtx_destroy(&sc->sc_requests_lock);
1405 	mtx_destroy(&sc->sc_sdesc_lock);
1406 	mtx_destroy(&sc->sc_tdesc_lock);
1407 	mtx_destroy(&sc->sc_sc_lock);
1408 	return (ENXIO);
1409 }
1410 
1411 static int
1412 cesa_detach(device_t dev)
1413 {
1414 	struct cesa_softc *sc;
1415 	int i;
1416 
1417 	sc = device_get_softc(dev);
1418 
1419 	/* TODO: Wait for queued requests completion before shutdown. */
1420 
1421 	/* Mask interrupts */
1422 	CESA_REG_WRITE(sc, CESA_ICM, 0);
1423 	CESA_TDMA_WRITE(sc, CESA_TDMA_EMR, 0);
1424 
1425 	/* Unregister from OCF */
1426 	crypto_unregister_all(sc->sc_cid);
1427 
1428 	/* Free DMA Maps */
1429 	for (i = 0; i < CESA_REQUESTS; i++)
1430 		bus_dmamap_destroy(sc->sc_data_dtag,
1431 		    sc->sc_requests[i].cr_dmap);
1432 
1433 	/* Free DMA Memory */
1434 	cesa_free_dma_mem(&sc->sc_requests_cdm);
1435 	cesa_free_dma_mem(&sc->sc_sdesc_cdm);
1436 	cesa_free_dma_mem(&sc->sc_tdesc_cdm);
1437 
1438 	/* Free DMA Tag */
1439 	bus_dma_tag_destroy(sc->sc_data_dtag);
1440 
1441 	/* Stop interrupt */
1442 	bus_teardown_intr(dev, sc->sc_res[RES_CESA_IRQ], sc->sc_icookie);
1443 
1444 	/* Relase I/O and IRQ resources */
1445 	bus_release_resources(dev, cesa_res_spec, sc->sc_res);
1446 
1447 	/* Unmap SRAM memory */
1448 	if (sc->sc_soc_id == MV_DEV_88F6828 ||
1449 	    sc->sc_soc_id == MV_DEV_88F6820 ||
1450 	    sc->sc_soc_id == MV_DEV_88F6810)
1451 		pmap_unmapdev(sc->sc_sram_base_va, sc->sc_sram_size);
1452 
1453 	/* Destroy mutexes */
1454 	mtx_destroy(&sc->sc_sessions_lock);
1455 	mtx_destroy(&sc->sc_requests_lock);
1456 	mtx_destroy(&sc->sc_sdesc_lock);
1457 	mtx_destroy(&sc->sc_tdesc_lock);
1458 	mtx_destroy(&sc->sc_sc_lock);
1459 
1460 	return (0);
1461 }
1462 
1463 static void
1464 cesa_intr(void *arg)
1465 {
1466 	STAILQ_HEAD(, cesa_request) requests;
1467 	struct cesa_request *cr, *tmp;
1468 	struct cesa_softc *sc;
1469 	uint32_t ecr, icr;
1470 	uint8_t hash[HASH_MAX_LEN];
1471 	int blocked;
1472 
1473 	sc = arg;
1474 
1475 	/* Ack interrupt */
1476 	ecr = CESA_TDMA_READ(sc, CESA_TDMA_ECR);
1477 	CESA_TDMA_WRITE(sc, CESA_TDMA_ECR, 0);
1478 	icr = CESA_REG_READ(sc, CESA_ICR);
1479 	CESA_REG_WRITE(sc, CESA_ICR, 0);
1480 
1481 	/* Check for TDMA errors */
1482 	if (ecr & CESA_TDMA_ECR_MISS) {
1483 		device_printf(sc->sc_dev, "TDMA Miss error detected!\n");
1484 		sc->sc_error = EIO;
1485 	}
1486 
1487 	if (ecr & CESA_TDMA_ECR_DOUBLE_HIT) {
1488 		device_printf(sc->sc_dev, "TDMA Double Hit error detected!\n");
1489 		sc->sc_error = EIO;
1490 	}
1491 
1492 	if (ecr & CESA_TDMA_ECR_BOTH_HIT) {
1493 		device_printf(sc->sc_dev, "TDMA Both Hit error detected!\n");
1494 		sc->sc_error = EIO;
1495 	}
1496 
1497 	if (ecr & CESA_TDMA_ECR_DATA_ERROR) {
1498 		device_printf(sc->sc_dev, "TDMA Data error detected!\n");
1499 		sc->sc_error = EIO;
1500 	}
1501 
1502 	/* Check for CESA errors */
1503 	if (icr & sc->sc_tperr) {
1504 		device_printf(sc->sc_dev, "CESA SRAM Parity error detected!\n");
1505 		sc->sc_error = EIO;
1506 	}
1507 
1508 	/* If there is nothing more to do, return */
1509 	if ((icr & CESA_ICR_ACCTDMA) == 0)
1510 		return;
1511 
1512 	/* Get all finished requests */
1513 	CESA_LOCK(sc, requests);
1514 	STAILQ_INIT(&requests);
1515 	STAILQ_CONCAT(&requests, &sc->sc_queued_requests);
1516 	STAILQ_INIT(&sc->sc_queued_requests);
1517 	CESA_UNLOCK(sc, requests);
1518 
1519 	/* Execute all ready requests */
1520 	cesa_execute(sc);
1521 
1522 	/* Process completed requests */
1523 	cesa_sync_dma_mem(&sc->sc_requests_cdm, BUS_DMASYNC_POSTREAD |
1524 	    BUS_DMASYNC_POSTWRITE);
1525 
1526 	STAILQ_FOREACH_SAFE(cr, &requests, cr_stq, tmp) {
1527 		bus_dmamap_sync(sc->sc_data_dtag, cr->cr_dmap,
1528 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1529 
1530 		cr->cr_crp->crp_etype = sc->sc_error;
1531 		if (cr->cr_cs->cs_hlen != 0 && cr->cr_crp->crp_etype == 0) {
1532 			if (cr->cr_crp->crp_op & CRYPTO_OP_VERIFY_DIGEST) {
1533 				crypto_copydata(cr->cr_crp,
1534 				    cr->cr_crp->crp_digest_start,
1535 				    cr->cr_cs->cs_hlen, hash);
1536 				if (timingsafe_bcmp(hash, cr->cr_csd->csd_hash,
1537 				    cr->cr_cs->cs_hlen) != 0)
1538 					cr->cr_crp->crp_etype = EBADMSG;
1539 			} else
1540 				crypto_copyback(cr->cr_crp,
1541 				    cr->cr_crp->crp_digest_start,
1542 				    cr->cr_cs->cs_hlen, cr->cr_csd->csd_hash);
1543 		}
1544 		crypto_done(cr->cr_crp);
1545 		cesa_free_request(sc, cr);
1546 	}
1547 
1548 	cesa_sync_dma_mem(&sc->sc_requests_cdm, BUS_DMASYNC_PREREAD |
1549 	    BUS_DMASYNC_PREWRITE);
1550 
1551 	sc->sc_error = 0;
1552 
1553 	/* Unblock driver if it ran out of resources */
1554 	CESA_LOCK(sc, sc);
1555 	blocked = sc->sc_blocked;
1556 	sc->sc_blocked = 0;
1557 	CESA_UNLOCK(sc, sc);
1558 
1559 	if (blocked)
1560 		crypto_unblock(sc->sc_cid, blocked);
1561 }
1562 
1563 static bool
1564 cesa_cipher_supported(const struct crypto_session_params *csp)
1565 {
1566 
1567 	switch (csp->csp_cipher_alg) {
1568 	case CRYPTO_AES_CBC:
1569 		if (csp->csp_ivlen != AES_BLOCK_LEN)
1570 			return (false);
1571 		break;
1572 	default:
1573 		return (false);
1574 	}
1575 
1576 	if (csp->csp_cipher_klen > CESA_MAX_KEY_LEN)
1577 		return (false);
1578 
1579 	return (true);
1580 }
1581 
1582 static bool
1583 cesa_auth_supported(struct cesa_softc *sc,
1584     const struct crypto_session_params *csp)
1585 {
1586 
1587 	switch (csp->csp_auth_alg) {
1588 	case CRYPTO_SHA2_256_HMAC:
1589 		if (!(sc->sc_soc_id == MV_DEV_88F6828 ||
1590 		    sc->sc_soc_id == MV_DEV_88F6820 ||
1591 		    sc->sc_soc_id == MV_DEV_88F6810))
1592 			return (false);
1593 		/* FALLTHROUGH */
1594 	case CRYPTO_SHA1:
1595 	case CRYPTO_SHA1_HMAC:
1596 		break;
1597 	default:
1598 		return (false);
1599 	}
1600 
1601 	if (csp->csp_auth_klen > CESA_MAX_MKEY_LEN)
1602 		return (false);
1603 
1604 	return (true);
1605 }
1606 
1607 static int
1608 cesa_probesession(device_t dev, const struct crypto_session_params *csp)
1609 {
1610 	struct cesa_softc *sc;
1611 
1612 	sc = device_get_softc(dev);
1613 	if (csp->csp_flags != 0)
1614 		return (EINVAL);
1615 	switch (csp->csp_mode) {
1616 	case CSP_MODE_DIGEST:
1617 		if (!cesa_auth_supported(sc, csp))
1618 			return (EINVAL);
1619 		break;
1620 	case CSP_MODE_CIPHER:
1621 		if (!cesa_cipher_supported(csp))
1622 			return (EINVAL);
1623 		break;
1624 	case CSP_MODE_ETA:
1625 		if (!cesa_auth_supported(sc, csp) ||
1626 		    !cesa_cipher_supported(csp))
1627 			return (EINVAL);
1628 		break;
1629 	default:
1630 		return (EINVAL);
1631 	}
1632 	return (CRYPTODEV_PROBE_HARDWARE);
1633 }
1634 
1635 static int
1636 cesa_newsession(device_t dev, crypto_session_t cses,
1637     const struct crypto_session_params *csp)
1638 {
1639 	struct cesa_session *cs;
1640 	struct cesa_softc *sc;
1641 	int error;
1642 
1643 	sc = device_get_softc(dev);
1644 	error = 0;
1645 
1646 	/* Allocate session */
1647 	cs = crypto_get_driver_session(cses);
1648 
1649 	/* Prepare CESA configuration */
1650 	cs->cs_config = 0;
1651 	cs->cs_ivlen = 1;
1652 	cs->cs_mblen = 1;
1653 
1654 	switch (csp->csp_cipher_alg) {
1655 	case CRYPTO_AES_CBC:
1656 		cs->cs_config |= CESA_CSHD_AES | CESA_CSHD_CBC;
1657 		cs->cs_ivlen = AES_BLOCK_LEN;
1658 		break;
1659 	}
1660 
1661 	switch (csp->csp_auth_alg) {
1662 	case CRYPTO_SHA1:
1663 		cs->cs_mblen = 1;
1664 		cs->cs_hlen = (csp->csp_auth_mlen == 0) ? SHA1_HASH_LEN :
1665 		    csp->csp_auth_mlen;
1666 		cs->cs_config |= CESA_CSHD_SHA1;
1667 		break;
1668 	case CRYPTO_SHA1_HMAC:
1669 		cs->cs_mblen = SHA1_BLOCK_LEN;
1670 		cs->cs_hlen = (csp->csp_auth_mlen == 0) ? SHA1_HASH_LEN :
1671 		    csp->csp_auth_mlen;
1672 		cs->cs_config |= CESA_CSHD_SHA1_HMAC;
1673 		if (cs->cs_hlen == CESA_HMAC_TRUNC_LEN)
1674 			cs->cs_config |= CESA_CSHD_96_BIT_HMAC;
1675 		break;
1676 	case CRYPTO_SHA2_256_HMAC:
1677 		cs->cs_mblen = SHA2_256_BLOCK_LEN;
1678 		cs->cs_hlen = (csp->csp_auth_mlen == 0) ? SHA2_256_HASH_LEN :
1679 		    csp->csp_auth_mlen;
1680 		cs->cs_config |= CESA_CSHD_SHA2_256_HMAC;
1681 		break;
1682 	}
1683 
1684 	/* Save cipher key */
1685 	if (csp->csp_cipher_key != NULL) {
1686 		memcpy(cs->cs_key, csp->csp_cipher_key,
1687 		    csp->csp_cipher_klen);
1688 		if (csp->csp_cipher_alg == CRYPTO_AES_CBC)
1689 			error = cesa_prep_aes_key(cs, csp);
1690 	}
1691 
1692 	/* Save digest key */
1693 	if (csp->csp_auth_key != NULL)
1694 		cesa_set_mkey(cs, csp->csp_auth_alg, csp->csp_auth_key,
1695 		    csp->csp_auth_klen);
1696 
1697 	return (error);
1698 }
1699 
1700 static int
1701 cesa_process(device_t dev, struct cryptop *crp, int hint)
1702 {
1703 	const struct crypto_session_params *csp;
1704 	struct cesa_request *cr;
1705 	struct cesa_session *cs;
1706 	struct cesa_softc *sc;
1707 	int error;
1708 
1709 	sc = device_get_softc(dev);
1710 	error = 0;
1711 
1712 	cs = crypto_get_driver_session(crp->crp_session);
1713 	csp = crypto_get_params(crp->crp_session);
1714 
1715 	/* Check and parse input */
1716 	if (crypto_buffer_len(&crp->crp_buf) > CESA_MAX_REQUEST_SIZE) {
1717 		crp->crp_etype = E2BIG;
1718 		crypto_done(crp);
1719 		return (0);
1720 	}
1721 
1722 	/*
1723 	 * For requests with AAD, only requests where the AAD is
1724 	 * immediately adjacent to the payload are supported.
1725 	 */
1726 	if (crp->crp_aad_length != 0 &&
1727 	    (crp->crp_aad_start + crp->crp_aad_length) !=
1728 	    crp->crp_payload_start) {
1729 		crp->crp_etype = EINVAL;
1730 		crypto_done(crp);
1731 		return (0);
1732 	}
1733 
1734 	/*
1735 	 * Get request descriptor. Block driver if there is no free
1736 	 * descriptors in pool.
1737 	 */
1738 	cr = cesa_alloc_request(sc);
1739 	if (!cr) {
1740 		CESA_LOCK(sc, sc);
1741 		sc->sc_blocked = CRYPTO_SYMQ;
1742 		CESA_UNLOCK(sc, sc);
1743 		return (ERESTART);
1744 	}
1745 
1746 	/* Prepare request */
1747 	cr->cr_crp = crp;
1748 	cr->cr_cs = cs;
1749 
1750 	CESA_LOCK(sc, sessions);
1751 	cesa_sync_desc(sc, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1752 
1753 	if (csp->csp_cipher_alg != 0)
1754 		crypto_read_iv(crp, cr->cr_csd->csd_iv);
1755 
1756 	if (crp->crp_cipher_key != NULL) {
1757 		memcpy(cs->cs_key, crp->crp_cipher_key,
1758 		    csp->csp_cipher_klen);
1759 		if (csp->csp_cipher_alg == CRYPTO_AES_CBC)
1760 			error = cesa_prep_aes_key(cs, csp);
1761 	}
1762 
1763 	if (!error && crp->crp_auth_key != NULL)
1764 		cesa_set_mkey(cs, csp->csp_auth_alg, crp->crp_auth_key,
1765 		    csp->csp_auth_klen);
1766 
1767 	/* Convert request to chain of TDMA and SA descriptors */
1768 	if (!error)
1769 		error = cesa_create_chain(sc, csp, cr);
1770 
1771 	cesa_sync_desc(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1772 	CESA_UNLOCK(sc, sessions);
1773 
1774 	if (error) {
1775 		cesa_free_request(sc, cr);
1776 		crp->crp_etype = error;
1777 		crypto_done(crp);
1778 		return (0);
1779 	}
1780 
1781 	bus_dmamap_sync(sc->sc_data_dtag, cr->cr_dmap, BUS_DMASYNC_PREREAD |
1782 	    BUS_DMASYNC_PREWRITE);
1783 
1784 	/* Enqueue request to execution */
1785 	cesa_enqueue_request(sc, cr);
1786 
1787 	/* Start execution, if we have no more requests in queue */
1788 	if ((hint & CRYPTO_HINT_MORE) == 0)
1789 		cesa_execute(sc);
1790 
1791 	return (0);
1792 }
1793