xref: /freebsd/sys/dev/cesa/cesa.c (revision 78b9f0095b4af3aca6c931b2c7b009ddb8a05125)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2009-2011 Semihalf.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /*
30  * CESA SRAM Memory Map:
31  *
32  * +------------------------+ <= sc->sc_sram_base_va + CESA_SRAM_SIZE
33  * |                        |
34  * |          DATA          |
35  * |                        |
36  * +------------------------+ <= sc->sc_sram_base_va + CESA_DATA(0)
37  * |  struct cesa_sa_data   |
38  * +------------------------+
39  * |  struct cesa_sa_hdesc  |
40  * +------------------------+ <= sc->sc_sram_base_va
41  */
42 
43 #include <sys/cdefs.h>
44 __FBSDID("$FreeBSD$");
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/bus.h>
49 #include <sys/endian.h>
50 #include <sys/kernel.h>
51 #include <sys/lock.h>
52 #include <sys/mbuf.h>
53 #include <sys/module.h>
54 #include <sys/mutex.h>
55 #include <sys/rman.h>
56 
57 #include <machine/bus.h>
58 #include <machine/intr.h>
59 #include <machine/resource.h>
60 #include <machine/fdt.h>
61 
62 #include <dev/fdt/simplebus.h>
63 #include <dev/fdt/fdt_common.h>
64 #include <dev/ofw/ofw_bus.h>
65 #include <dev/ofw/ofw_bus_subr.h>
66 
67 #include <sys/md5.h>
68 #include <crypto/sha1.h>
69 #include <crypto/sha2/sha256.h>
70 #include <crypto/rijndael/rijndael.h>
71 #include <opencrypto/cryptodev.h>
72 #include "cryptodev_if.h"
73 
74 #include <arm/mv/mvreg.h>
75 #include <arm/mv/mvvar.h>
76 #include "cesa.h"
77 
78 static int	cesa_probe(device_t);
79 static int	cesa_attach(device_t);
80 static int	cesa_attach_late(device_t);
81 static int	cesa_detach(device_t);
82 static void	cesa_intr(void *);
83 static int	cesa_newsession(device_t, crypto_session_t, struct cryptoini *);
84 static int	cesa_process(device_t, struct cryptop *, int);
85 
86 static struct resource_spec cesa_res_spec[] = {
87 	{ SYS_RES_MEMORY, 0, RF_ACTIVE },
88 	{ SYS_RES_MEMORY, 1, RF_ACTIVE },
89 	{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
90 	{ -1, 0 }
91 };
92 
93 static device_method_t cesa_methods[] = {
94 	/* Device interface */
95 	DEVMETHOD(device_probe,		cesa_probe),
96 	DEVMETHOD(device_attach,	cesa_attach),
97 	DEVMETHOD(device_detach,	cesa_detach),
98 
99 	/* Crypto device methods */
100 	DEVMETHOD(cryptodev_newsession,	cesa_newsession),
101 	DEVMETHOD(cryptodev_process,	cesa_process),
102 
103 	DEVMETHOD_END
104 };
105 
106 static driver_t cesa_driver = {
107 	"cesa",
108 	cesa_methods,
109 	sizeof (struct cesa_softc)
110 };
111 static devclass_t cesa_devclass;
112 
113 DRIVER_MODULE(cesa, simplebus, cesa_driver, cesa_devclass, 0, 0);
114 MODULE_DEPEND(cesa, crypto, 1, 1, 1);
115 
116 static void
117 cesa_dump_cshd(struct cesa_softc *sc, struct cesa_sa_hdesc *cshd)
118 {
119 #ifdef DEBUG
120 	device_t dev;
121 
122 	dev = sc->sc_dev;
123 	device_printf(dev, "CESA SA Hardware Descriptor:\n");
124 	device_printf(dev, "\t\tconfig: 0x%08X\n", cshd->cshd_config);
125 	device_printf(dev, "\t\te_src:  0x%08X\n", cshd->cshd_enc_src);
126 	device_printf(dev, "\t\te_dst:  0x%08X\n", cshd->cshd_enc_dst);
127 	device_printf(dev, "\t\te_dlen: 0x%08X\n", cshd->cshd_enc_dlen);
128 	device_printf(dev, "\t\te_key:  0x%08X\n", cshd->cshd_enc_key);
129 	device_printf(dev, "\t\te_iv_1: 0x%08X\n", cshd->cshd_enc_iv);
130 	device_printf(dev, "\t\te_iv_2: 0x%08X\n", cshd->cshd_enc_iv_buf);
131 	device_printf(dev, "\t\tm_src:  0x%08X\n", cshd->cshd_mac_src);
132 	device_printf(dev, "\t\tm_dst:  0x%08X\n", cshd->cshd_mac_dst);
133 	device_printf(dev, "\t\tm_dlen: 0x%08X\n", cshd->cshd_mac_dlen);
134 	device_printf(dev, "\t\tm_tlen: 0x%08X\n", cshd->cshd_mac_total_dlen);
135 	device_printf(dev, "\t\tm_iv_i: 0x%08X\n", cshd->cshd_mac_iv_in);
136 	device_printf(dev, "\t\tm_iv_o: 0x%08X\n", cshd->cshd_mac_iv_out);
137 #endif
138 }
139 
140 static void
141 cesa_alloc_dma_mem_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
142 {
143 	struct cesa_dma_mem *cdm;
144 
145 	if (error)
146 		return;
147 
148 	KASSERT(nseg == 1, ("Got wrong number of DMA segments, should be 1."));
149 	cdm = arg;
150 	cdm->cdm_paddr = segs->ds_addr;
151 }
152 
153 static int
154 cesa_alloc_dma_mem(struct cesa_softc *sc, struct cesa_dma_mem *cdm,
155     bus_size_t size)
156 {
157 	int error;
158 
159 	KASSERT(cdm->cdm_vaddr == NULL,
160 	    ("%s(): DMA memory descriptor in use.", __func__));
161 
162 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
163 	    PAGE_SIZE, 0,			/* alignment, boundary */
164 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
165 	    BUS_SPACE_MAXADDR,			/* highaddr */
166 	    NULL, NULL,				/* filtfunc, filtfuncarg */
167 	    size, 1,				/* maxsize, nsegments */
168 	    size, 0,				/* maxsegsz, flags */
169 	    NULL, NULL,				/* lockfunc, lockfuncarg */
170 	    &cdm->cdm_tag);			/* dmat */
171 	if (error) {
172 		device_printf(sc->sc_dev, "failed to allocate busdma tag, error"
173 		    " %i!\n", error);
174 
175 		goto err1;
176 	}
177 
178 	error = bus_dmamem_alloc(cdm->cdm_tag, &cdm->cdm_vaddr,
179 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &cdm->cdm_map);
180 	if (error) {
181 		device_printf(sc->sc_dev, "failed to allocate DMA safe"
182 		    " memory, error %i!\n", error);
183 
184 		goto err2;
185 	}
186 
187 	error = bus_dmamap_load(cdm->cdm_tag, cdm->cdm_map, cdm->cdm_vaddr,
188 	    size, cesa_alloc_dma_mem_cb, cdm, BUS_DMA_NOWAIT);
189 	if (error) {
190 		device_printf(sc->sc_dev, "cannot get address of the DMA"
191 		    " memory, error %i\n", error);
192 
193 		goto err3;
194 	}
195 
196 	return (0);
197 err3:
198 	bus_dmamem_free(cdm->cdm_tag, cdm->cdm_vaddr, cdm->cdm_map);
199 err2:
200 	bus_dma_tag_destroy(cdm->cdm_tag);
201 err1:
202 	cdm->cdm_vaddr = NULL;
203 	return (error);
204 }
205 
206 static void
207 cesa_free_dma_mem(struct cesa_dma_mem *cdm)
208 {
209 
210 	bus_dmamap_unload(cdm->cdm_tag, cdm->cdm_map);
211 	bus_dmamem_free(cdm->cdm_tag, cdm->cdm_vaddr, cdm->cdm_map);
212 	bus_dma_tag_destroy(cdm->cdm_tag);
213 	cdm->cdm_vaddr = NULL;
214 }
215 
216 static void
217 cesa_sync_dma_mem(struct cesa_dma_mem *cdm, bus_dmasync_op_t op)
218 {
219 
220 	/* Sync only if dma memory is valid */
221         if (cdm->cdm_vaddr != NULL)
222 		bus_dmamap_sync(cdm->cdm_tag, cdm->cdm_map, op);
223 }
224 
225 static void
226 cesa_sync_desc(struct cesa_softc *sc, bus_dmasync_op_t op)
227 {
228 
229 	cesa_sync_dma_mem(&sc->sc_tdesc_cdm, op);
230 	cesa_sync_dma_mem(&sc->sc_sdesc_cdm, op);
231 	cesa_sync_dma_mem(&sc->sc_requests_cdm, op);
232 }
233 
234 static struct cesa_request *
235 cesa_alloc_request(struct cesa_softc *sc)
236 {
237 	struct cesa_request *cr;
238 
239 	CESA_GENERIC_ALLOC_LOCKED(sc, cr, requests);
240 	if (!cr)
241 		return (NULL);
242 
243 	STAILQ_INIT(&cr->cr_tdesc);
244 	STAILQ_INIT(&cr->cr_sdesc);
245 
246 	return (cr);
247 }
248 
249 static void
250 cesa_free_request(struct cesa_softc *sc, struct cesa_request *cr)
251 {
252 
253 	/* Free TDMA descriptors assigned to this request */
254 	CESA_LOCK(sc, tdesc);
255 	STAILQ_CONCAT(&sc->sc_free_tdesc, &cr->cr_tdesc);
256 	CESA_UNLOCK(sc, tdesc);
257 
258 	/* Free SA descriptors assigned to this request */
259 	CESA_LOCK(sc, sdesc);
260 	STAILQ_CONCAT(&sc->sc_free_sdesc, &cr->cr_sdesc);
261 	CESA_UNLOCK(sc, sdesc);
262 
263 	/* Unload DMA memory associated with request */
264 	if (cr->cr_dmap_loaded) {
265 		bus_dmamap_unload(sc->sc_data_dtag, cr->cr_dmap);
266 		cr->cr_dmap_loaded = 0;
267 	}
268 
269 	CESA_GENERIC_FREE_LOCKED(sc, cr, requests);
270 }
271 
272 static void
273 cesa_enqueue_request(struct cesa_softc *sc, struct cesa_request *cr)
274 {
275 
276 	CESA_LOCK(sc, requests);
277 	STAILQ_INSERT_TAIL(&sc->sc_ready_requests, cr, cr_stq);
278 	CESA_UNLOCK(sc, requests);
279 }
280 
281 static struct cesa_tdma_desc *
282 cesa_alloc_tdesc(struct cesa_softc *sc)
283 {
284 	struct cesa_tdma_desc *ctd;
285 
286 	CESA_GENERIC_ALLOC_LOCKED(sc, ctd, tdesc);
287 
288 	if (!ctd)
289 		device_printf(sc->sc_dev, "TDMA descriptors pool exhaused. "
290 		    "Consider increasing CESA_TDMA_DESCRIPTORS.\n");
291 
292 	return (ctd);
293 }
294 
295 static struct cesa_sa_desc *
296 cesa_alloc_sdesc(struct cesa_softc *sc, struct cesa_request *cr)
297 {
298 	struct cesa_sa_desc *csd;
299 
300 	CESA_GENERIC_ALLOC_LOCKED(sc, csd, sdesc);
301 	if (!csd) {
302 		device_printf(sc->sc_dev, "SA descriptors pool exhaused. "
303 		    "Consider increasing CESA_SA_DESCRIPTORS.\n");
304 		return (NULL);
305 	}
306 
307 	STAILQ_INSERT_TAIL(&cr->cr_sdesc, csd, csd_stq);
308 
309 	/* Fill-in SA descriptor with default values */
310 	csd->csd_cshd->cshd_enc_key = CESA_SA_DATA(csd_key);
311 	csd->csd_cshd->cshd_enc_iv = CESA_SA_DATA(csd_iv);
312 	csd->csd_cshd->cshd_enc_iv_buf = CESA_SA_DATA(csd_iv);
313 	csd->csd_cshd->cshd_enc_src = 0;
314 	csd->csd_cshd->cshd_enc_dst = 0;
315 	csd->csd_cshd->cshd_enc_dlen = 0;
316 	csd->csd_cshd->cshd_mac_dst = CESA_SA_DATA(csd_hash);
317 	csd->csd_cshd->cshd_mac_iv_in = CESA_SA_DATA(csd_hiv_in);
318 	csd->csd_cshd->cshd_mac_iv_out = CESA_SA_DATA(csd_hiv_out);
319 	csd->csd_cshd->cshd_mac_src = 0;
320 	csd->csd_cshd->cshd_mac_dlen = 0;
321 
322 	return (csd);
323 }
324 
325 static struct cesa_tdma_desc *
326 cesa_tdma_copy(struct cesa_softc *sc, bus_addr_t dst, bus_addr_t src,
327     bus_size_t size)
328 {
329 	struct cesa_tdma_desc *ctd;
330 
331 	ctd = cesa_alloc_tdesc(sc);
332 	if (!ctd)
333 		return (NULL);
334 
335 	ctd->ctd_cthd->cthd_dst = dst;
336 	ctd->ctd_cthd->cthd_src = src;
337 	ctd->ctd_cthd->cthd_byte_count = size;
338 
339 	/* Handle special control packet */
340 	if (size != 0)
341 		ctd->ctd_cthd->cthd_flags = CESA_CTHD_OWNED;
342 	else
343 		ctd->ctd_cthd->cthd_flags = 0;
344 
345 	return (ctd);
346 }
347 
348 static struct cesa_tdma_desc *
349 cesa_tdma_copyin_sa_data(struct cesa_softc *sc, struct cesa_request *cr)
350 {
351 
352 	return (cesa_tdma_copy(sc, sc->sc_sram_base_pa +
353 	    sizeof(struct cesa_sa_hdesc), cr->cr_csd_paddr,
354 	    sizeof(struct cesa_sa_data)));
355 }
356 
357 static struct cesa_tdma_desc *
358 cesa_tdma_copyout_sa_data(struct cesa_softc *sc, struct cesa_request *cr)
359 {
360 
361 	return (cesa_tdma_copy(sc, cr->cr_csd_paddr, sc->sc_sram_base_pa +
362 	    sizeof(struct cesa_sa_hdesc), sizeof(struct cesa_sa_data)));
363 }
364 
365 static struct cesa_tdma_desc *
366 cesa_tdma_copy_sdesc(struct cesa_softc *sc, struct cesa_sa_desc *csd)
367 {
368 
369 	return (cesa_tdma_copy(sc, sc->sc_sram_base_pa, csd->csd_cshd_paddr,
370 	    sizeof(struct cesa_sa_hdesc)));
371 }
372 
373 static void
374 cesa_append_tdesc(struct cesa_request *cr, struct cesa_tdma_desc *ctd)
375 {
376 	struct cesa_tdma_desc *ctd_prev;
377 
378 	if (!STAILQ_EMPTY(&cr->cr_tdesc)) {
379 		ctd_prev = STAILQ_LAST(&cr->cr_tdesc, cesa_tdma_desc, ctd_stq);
380 		ctd_prev->ctd_cthd->cthd_next = ctd->ctd_cthd_paddr;
381 	}
382 
383 	ctd->ctd_cthd->cthd_next = 0;
384 	STAILQ_INSERT_TAIL(&cr->cr_tdesc, ctd, ctd_stq);
385 }
386 
387 static int
388 cesa_append_packet(struct cesa_softc *sc, struct cesa_request *cr,
389     struct cesa_packet *cp, struct cesa_sa_desc *csd)
390 {
391 	struct cesa_tdma_desc *ctd, *tmp;
392 
393 	/* Copy SA descriptor for this packet */
394 	ctd = cesa_tdma_copy_sdesc(sc, csd);
395 	if (!ctd)
396 		return (ENOMEM);
397 
398 	cesa_append_tdesc(cr, ctd);
399 
400 	/* Copy data to be processed */
401 	STAILQ_FOREACH_SAFE(ctd, &cp->cp_copyin, ctd_stq, tmp)
402 		cesa_append_tdesc(cr, ctd);
403 	STAILQ_INIT(&cp->cp_copyin);
404 
405 	/* Insert control descriptor */
406 	ctd = cesa_tdma_copy(sc, 0, 0, 0);
407 	if (!ctd)
408 		return (ENOMEM);
409 
410 	cesa_append_tdesc(cr, ctd);
411 
412 	/* Copy back results */
413 	STAILQ_FOREACH_SAFE(ctd, &cp->cp_copyout, ctd_stq, tmp)
414 		cesa_append_tdesc(cr, ctd);
415 	STAILQ_INIT(&cp->cp_copyout);
416 
417 	return (0);
418 }
419 
420 static int
421 cesa_set_mkey(struct cesa_session *cs, int alg, const uint8_t *mkey, int mklen)
422 {
423 	uint8_t ipad[CESA_MAX_HMAC_BLOCK_LEN];
424 	uint8_t opad[CESA_MAX_HMAC_BLOCK_LEN];
425 	SHA1_CTX sha1ctx;
426 	SHA256_CTX sha256ctx;
427 	MD5_CTX md5ctx;
428 	uint32_t *hout;
429 	uint32_t *hin;
430 	int i;
431 
432 	memset(ipad, HMAC_IPAD_VAL, CESA_MAX_HMAC_BLOCK_LEN);
433 	memset(opad, HMAC_OPAD_VAL, CESA_MAX_HMAC_BLOCK_LEN);
434 	for (i = 0; i < mklen; i++) {
435 		ipad[i] ^= mkey[i];
436 		opad[i] ^= mkey[i];
437 	}
438 
439 	hin = (uint32_t *)cs->cs_hiv_in;
440 	hout = (uint32_t *)cs->cs_hiv_out;
441 
442 	switch (alg) {
443 	case CRYPTO_MD5_HMAC:
444 		MD5Init(&md5ctx);
445 		MD5Update(&md5ctx, ipad, MD5_BLOCK_LEN);
446 		memcpy(hin, md5ctx.state, sizeof(md5ctx.state));
447 		MD5Init(&md5ctx);
448 		MD5Update(&md5ctx, opad, MD5_BLOCK_LEN);
449 		memcpy(hout, md5ctx.state, sizeof(md5ctx.state));
450 		break;
451 	case CRYPTO_SHA1_HMAC:
452 		SHA1Init(&sha1ctx);
453 		SHA1Update(&sha1ctx, ipad, SHA1_BLOCK_LEN);
454 		memcpy(hin, sha1ctx.h.b32, sizeof(sha1ctx.h.b32));
455 		SHA1Init(&sha1ctx);
456 		SHA1Update(&sha1ctx, opad, SHA1_BLOCK_LEN);
457 		memcpy(hout, sha1ctx.h.b32, sizeof(sha1ctx.h.b32));
458 		break;
459 	case CRYPTO_SHA2_256_HMAC:
460 		SHA256_Init(&sha256ctx);
461 		SHA256_Update(&sha256ctx, ipad, SHA2_256_BLOCK_LEN);
462 		memcpy(hin, sha256ctx.state, sizeof(sha256ctx.state));
463 		SHA256_Init(&sha256ctx);
464 		SHA256_Update(&sha256ctx, opad, SHA2_256_BLOCK_LEN);
465 		memcpy(hout, sha256ctx.state, sizeof(sha256ctx.state));
466 		break;
467 	default:
468 		return (EINVAL);
469 	}
470 
471 	for (i = 0; i < CESA_MAX_HASH_LEN / sizeof(uint32_t); i++) {
472 		hin[i] = htobe32(hin[i]);
473 		hout[i] = htobe32(hout[i]);
474 	}
475 
476 	return (0);
477 }
478 
479 static int
480 cesa_prep_aes_key(struct cesa_session *cs)
481 {
482 	uint32_t ek[4 * (RIJNDAEL_MAXNR + 1)];
483 	uint32_t *dkey;
484 	int i;
485 
486 	rijndaelKeySetupEnc(ek, cs->cs_key, cs->cs_klen * 8);
487 
488 	cs->cs_config &= ~CESA_CSH_AES_KLEN_MASK;
489 	dkey = (uint32_t *)cs->cs_aes_dkey;
490 
491 	switch (cs->cs_klen) {
492 	case 16:
493 		cs->cs_config |= CESA_CSH_AES_KLEN_128;
494 		for (i = 0; i < 4; i++)
495 			*dkey++ = htobe32(ek[4 * 10 + i]);
496 		break;
497 	case 24:
498 		cs->cs_config |= CESA_CSH_AES_KLEN_192;
499 		for (i = 0; i < 4; i++)
500 			*dkey++ = htobe32(ek[4 * 12 + i]);
501 		for (i = 0; i < 2; i++)
502 			*dkey++ = htobe32(ek[4 * 11 + 2 + i]);
503 		break;
504 	case 32:
505 		cs->cs_config |= CESA_CSH_AES_KLEN_256;
506 		for (i = 0; i < 4; i++)
507 			*dkey++ = htobe32(ek[4 * 14 + i]);
508 		for (i = 0; i < 4; i++)
509 			*dkey++ = htobe32(ek[4 * 13 + i]);
510 		break;
511 	default:
512 		return (EINVAL);
513 	}
514 
515 	return (0);
516 }
517 
518 static int
519 cesa_is_hash(int alg)
520 {
521 
522 	switch (alg) {
523 	case CRYPTO_MD5:
524 	case CRYPTO_MD5_HMAC:
525 	case CRYPTO_SHA1:
526 	case CRYPTO_SHA1_HMAC:
527 	case CRYPTO_SHA2_256_HMAC:
528 		return (1);
529 	default:
530 		return (0);
531 	}
532 }
533 
534 static void
535 cesa_start_packet(struct cesa_packet *cp, unsigned int size)
536 {
537 
538 	cp->cp_size = size;
539 	cp->cp_offset = 0;
540 	STAILQ_INIT(&cp->cp_copyin);
541 	STAILQ_INIT(&cp->cp_copyout);
542 }
543 
544 static int
545 cesa_fill_packet(struct cesa_softc *sc, struct cesa_packet *cp,
546     bus_dma_segment_t *seg)
547 {
548 	struct cesa_tdma_desc *ctd;
549 	unsigned int bsize;
550 
551 	/* Calculate size of block copy */
552 	bsize = MIN(seg->ds_len, cp->cp_size - cp->cp_offset);
553 
554 	if (bsize > 0) {
555 		ctd = cesa_tdma_copy(sc, sc->sc_sram_base_pa +
556 		    CESA_DATA(cp->cp_offset), seg->ds_addr, bsize);
557 		if (!ctd)
558 			return (-ENOMEM);
559 
560 		STAILQ_INSERT_TAIL(&cp->cp_copyin, ctd, ctd_stq);
561 
562 		ctd = cesa_tdma_copy(sc, seg->ds_addr, sc->sc_sram_base_pa +
563 		    CESA_DATA(cp->cp_offset), bsize);
564 		if (!ctd)
565 			return (-ENOMEM);
566 
567 		STAILQ_INSERT_TAIL(&cp->cp_copyout, ctd, ctd_stq);
568 
569 		seg->ds_len -= bsize;
570 		seg->ds_addr += bsize;
571 		cp->cp_offset += bsize;
572 	}
573 
574 	return (bsize);
575 }
576 
577 static void
578 cesa_create_chain_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
579 {
580 	unsigned int mpsize, fragmented;
581 	unsigned int mlen, mskip, tmlen;
582 	struct cesa_chain_info *cci;
583 	unsigned int elen, eskip;
584 	unsigned int skip, len;
585 	struct cesa_sa_desc *csd;
586 	struct cesa_request *cr;
587 	struct cesa_softc *sc;
588 	struct cesa_packet cp;
589 	bus_dma_segment_t seg;
590 	uint32_t config;
591 	int size;
592 
593 	cci = arg;
594 	sc = cci->cci_sc;
595 	cr = cci->cci_cr;
596 
597 	if (error) {
598 		cci->cci_error = error;
599 		return;
600 	}
601 
602 	elen = cci->cci_enc ? cci->cci_enc->crd_len : 0;
603 	eskip = cci->cci_enc ? cci->cci_enc->crd_skip : 0;
604 	mlen = cci->cci_mac ? cci->cci_mac->crd_len : 0;
605 	mskip = cci->cci_mac ? cci->cci_mac->crd_skip : 0;
606 
607 	if (elen && mlen &&
608 	    ((eskip > mskip && ((eskip - mskip) & (cr->cr_cs->cs_ivlen - 1))) ||
609 	    (mskip > eskip && ((mskip - eskip) & (cr->cr_cs->cs_mblen - 1))) ||
610 	    (eskip > (mskip + mlen)) || (mskip > (eskip + elen)))) {
611 		/*
612 		 * Data alignment in the request does not meet CESA requiremnts
613 		 * for combined encryption/decryption and hashing. We have to
614 		 * split the request to separate operations and process them
615 		 * one by one.
616 		 */
617 		config = cci->cci_config;
618 		if ((config & CESA_CSHD_OP_MASK) == CESA_CSHD_MAC_AND_ENC) {
619 			config &= ~CESA_CSHD_OP_MASK;
620 
621 			cci->cci_config = config | CESA_CSHD_MAC;
622 			cci->cci_enc = NULL;
623 			cci->cci_mac = cr->cr_mac;
624 			cesa_create_chain_cb(cci, segs, nseg, cci->cci_error);
625 
626 			cci->cci_config = config | CESA_CSHD_ENC;
627 			cci->cci_enc = cr->cr_enc;
628 			cci->cci_mac = NULL;
629 			cesa_create_chain_cb(cci, segs, nseg, cci->cci_error);
630 		} else {
631 			config &= ~CESA_CSHD_OP_MASK;
632 
633 			cci->cci_config = config | CESA_CSHD_ENC;
634 			cci->cci_enc = cr->cr_enc;
635 			cci->cci_mac = NULL;
636 			cesa_create_chain_cb(cci, segs, nseg, cci->cci_error);
637 
638 			cci->cci_config = config | CESA_CSHD_MAC;
639 			cci->cci_enc = NULL;
640 			cci->cci_mac = cr->cr_mac;
641 			cesa_create_chain_cb(cci, segs, nseg, cci->cci_error);
642 		}
643 
644 		return;
645 	}
646 
647 	tmlen = mlen;
648 	fragmented = 0;
649 	mpsize = CESA_MAX_PACKET_SIZE;
650 	mpsize &= ~((cr->cr_cs->cs_ivlen - 1) | (cr->cr_cs->cs_mblen - 1));
651 
652 	if (elen && mlen) {
653 		skip = MIN(eskip, mskip);
654 		len = MAX(elen + eskip, mlen + mskip) - skip;
655 	} else if (elen) {
656 		skip = eskip;
657 		len = elen;
658 	} else {
659 		skip = mskip;
660 		len = mlen;
661 	}
662 
663 	/* Start first packet in chain */
664 	cesa_start_packet(&cp, MIN(mpsize, len));
665 
666 	while (nseg-- && len > 0) {
667 		seg = *(segs++);
668 
669 		/*
670 		 * Skip data in buffer on which neither ENC nor MAC operation
671 		 * is requested.
672 		 */
673 		if (skip > 0) {
674 			size = MIN(skip, seg.ds_len);
675 			skip -= size;
676 
677 			seg.ds_addr += size;
678 			seg.ds_len -= size;
679 
680 			if (eskip > 0)
681 				eskip -= size;
682 
683 			if (mskip > 0)
684 				mskip -= size;
685 
686 			if (seg.ds_len == 0)
687 				continue;
688 		}
689 
690 		while (1) {
691 			/*
692 			 * Fill in current packet with data. Break if there is
693 			 * no more data in current DMA segment or an error
694 			 * occurred.
695 			 */
696 			size = cesa_fill_packet(sc, &cp, &seg);
697 			if (size <= 0) {
698 				error = -size;
699 				break;
700 			}
701 
702 			len -= size;
703 
704 			/* If packet is full, append it to the chain */
705 			if (cp.cp_size == cp.cp_offset) {
706 				csd = cesa_alloc_sdesc(sc, cr);
707 				if (!csd) {
708 					error = ENOMEM;
709 					break;
710 				}
711 
712 				/* Create SA descriptor for this packet */
713 				csd->csd_cshd->cshd_config = cci->cci_config;
714 				csd->csd_cshd->cshd_mac_total_dlen = tmlen;
715 
716 				/*
717 				 * Enable fragmentation if request will not fit
718 				 * into one packet.
719 				 */
720 				if (len > 0) {
721 					if (!fragmented) {
722 						fragmented = 1;
723 						csd->csd_cshd->cshd_config |=
724 						    CESA_CSHD_FRAG_FIRST;
725 					} else
726 						csd->csd_cshd->cshd_config |=
727 						    CESA_CSHD_FRAG_MIDDLE;
728 				} else if (fragmented)
729 					csd->csd_cshd->cshd_config |=
730 					    CESA_CSHD_FRAG_LAST;
731 
732 				if (eskip < cp.cp_size && elen > 0) {
733 					csd->csd_cshd->cshd_enc_src =
734 					    CESA_DATA(eskip);
735 					csd->csd_cshd->cshd_enc_dst =
736 					    CESA_DATA(eskip);
737 					csd->csd_cshd->cshd_enc_dlen =
738 					    MIN(elen, cp.cp_size - eskip);
739 				}
740 
741 				if (mskip < cp.cp_size && mlen > 0) {
742 					csd->csd_cshd->cshd_mac_src =
743 					    CESA_DATA(mskip);
744 					csd->csd_cshd->cshd_mac_dlen =
745 					    MIN(mlen, cp.cp_size - mskip);
746 				}
747 
748 				elen -= csd->csd_cshd->cshd_enc_dlen;
749 				eskip -= MIN(eskip, cp.cp_size);
750 				mlen -= csd->csd_cshd->cshd_mac_dlen;
751 				mskip -= MIN(mskip, cp.cp_size);
752 
753 				cesa_dump_cshd(sc, csd->csd_cshd);
754 
755 				/* Append packet to the request */
756 				error = cesa_append_packet(sc, cr, &cp, csd);
757 				if (error)
758 					break;
759 
760 				/* Start a new packet, as current is full */
761 				cesa_start_packet(&cp, MIN(mpsize, len));
762 			}
763 		}
764 
765 		if (error)
766 			break;
767 	}
768 
769 	if (error) {
770 		/*
771 		 * Move all allocated resources to the request. They will be
772 		 * freed later.
773 		 */
774 		STAILQ_CONCAT(&cr->cr_tdesc, &cp.cp_copyin);
775 		STAILQ_CONCAT(&cr->cr_tdesc, &cp.cp_copyout);
776 		cci->cci_error = error;
777 	}
778 }
779 
780 static void
781 cesa_create_chain_cb2(void *arg, bus_dma_segment_t *segs, int nseg,
782     bus_size_t size, int error)
783 {
784 
785 	cesa_create_chain_cb(arg, segs, nseg, error);
786 }
787 
788 static int
789 cesa_create_chain(struct cesa_softc *sc, struct cesa_request *cr)
790 {
791 	struct cesa_chain_info cci;
792 	struct cesa_tdma_desc *ctd;
793 	uint32_t config;
794 	int error;
795 
796 	error = 0;
797 	CESA_LOCK_ASSERT(sc, sessions);
798 
799 	/* Create request metadata */
800 	if (cr->cr_enc) {
801 		if (cr->cr_enc->crd_alg == CRYPTO_AES_CBC &&
802 		    (cr->cr_enc->crd_flags & CRD_F_ENCRYPT) == 0)
803 			memcpy(cr->cr_csd->csd_key, cr->cr_cs->cs_aes_dkey,
804 			    cr->cr_cs->cs_klen);
805 		else
806 			memcpy(cr->cr_csd->csd_key, cr->cr_cs->cs_key,
807 			    cr->cr_cs->cs_klen);
808 	}
809 
810 	if (cr->cr_mac) {
811 		memcpy(cr->cr_csd->csd_hiv_in, cr->cr_cs->cs_hiv_in,
812 		    CESA_MAX_HASH_LEN);
813 		memcpy(cr->cr_csd->csd_hiv_out, cr->cr_cs->cs_hiv_out,
814 		    CESA_MAX_HASH_LEN);
815 	}
816 
817 	ctd = cesa_tdma_copyin_sa_data(sc, cr);
818 	if (!ctd)
819 		return (ENOMEM);
820 
821 	cesa_append_tdesc(cr, ctd);
822 
823 	/* Prepare SA configuration */
824 	config = cr->cr_cs->cs_config;
825 
826 	if (cr->cr_enc && (cr->cr_enc->crd_flags & CRD_F_ENCRYPT) == 0)
827 		config |= CESA_CSHD_DECRYPT;
828 	if (cr->cr_enc && !cr->cr_mac)
829 		config |= CESA_CSHD_ENC;
830 	if (!cr->cr_enc && cr->cr_mac)
831 		config |= CESA_CSHD_MAC;
832 	if (cr->cr_enc && cr->cr_mac)
833 		config |= (config & CESA_CSHD_DECRYPT) ? CESA_CSHD_MAC_AND_ENC :
834 		    CESA_CSHD_ENC_AND_MAC;
835 
836 	/* Create data packets */
837 	cci.cci_sc = sc;
838 	cci.cci_cr = cr;
839 	cci.cci_enc = cr->cr_enc;
840 	cci.cci_mac = cr->cr_mac;
841 	cci.cci_config = config;
842 	cci.cci_error = 0;
843 
844 	if (cr->cr_crp->crp_flags & CRYPTO_F_IOV)
845 		error = bus_dmamap_load_uio(sc->sc_data_dtag,
846 		    cr->cr_dmap, (struct uio *)cr->cr_crp->crp_buf,
847 		    cesa_create_chain_cb2, &cci, BUS_DMA_NOWAIT);
848 	else if (cr->cr_crp->crp_flags & CRYPTO_F_IMBUF)
849 		error = bus_dmamap_load_mbuf(sc->sc_data_dtag,
850 		    cr->cr_dmap, (struct mbuf *)cr->cr_crp->crp_buf,
851 		    cesa_create_chain_cb2, &cci, BUS_DMA_NOWAIT);
852 	else
853 		error = bus_dmamap_load(sc->sc_data_dtag,
854 		    cr->cr_dmap, cr->cr_crp->crp_buf,
855 		    cr->cr_crp->crp_ilen, cesa_create_chain_cb, &cci,
856 		    BUS_DMA_NOWAIT);
857 
858 	if (!error)
859 		cr->cr_dmap_loaded = 1;
860 
861 	if (cci.cci_error)
862 		error = cci.cci_error;
863 
864 	if (error)
865 		return (error);
866 
867 	/* Read back request metadata */
868 	ctd = cesa_tdma_copyout_sa_data(sc, cr);
869 	if (!ctd)
870 		return (ENOMEM);
871 
872 	cesa_append_tdesc(cr, ctd);
873 
874 	return (0);
875 }
876 
877 static void
878 cesa_execute(struct cesa_softc *sc)
879 {
880 	struct cesa_tdma_desc *prev_ctd, *ctd;
881 	struct cesa_request *prev_cr, *cr;
882 
883 	CESA_LOCK(sc, requests);
884 
885 	/*
886 	 * If ready list is empty, there is nothing to execute. If queued list
887 	 * is not empty, the hardware is busy and we cannot start another
888 	 * execution.
889 	 */
890 	if (STAILQ_EMPTY(&sc->sc_ready_requests) ||
891 	    !STAILQ_EMPTY(&sc->sc_queued_requests)) {
892 		CESA_UNLOCK(sc, requests);
893 		return;
894 	}
895 
896 	/* Move all ready requests to queued list */
897 	STAILQ_CONCAT(&sc->sc_queued_requests, &sc->sc_ready_requests);
898 	STAILQ_INIT(&sc->sc_ready_requests);
899 
900 	/* Create one execution chain from all requests on the list */
901 	if (STAILQ_FIRST(&sc->sc_queued_requests) !=
902 	    STAILQ_LAST(&sc->sc_queued_requests, cesa_request, cr_stq)) {
903 		prev_cr = NULL;
904 		cesa_sync_dma_mem(&sc->sc_tdesc_cdm, BUS_DMASYNC_POSTREAD |
905 		    BUS_DMASYNC_POSTWRITE);
906 
907 		STAILQ_FOREACH(cr, &sc->sc_queued_requests, cr_stq) {
908 			if (prev_cr) {
909 				ctd = STAILQ_FIRST(&cr->cr_tdesc);
910 				prev_ctd = STAILQ_LAST(&prev_cr->cr_tdesc,
911 				    cesa_tdma_desc, ctd_stq);
912 
913 				prev_ctd->ctd_cthd->cthd_next =
914 				    ctd->ctd_cthd_paddr;
915 			}
916 
917 			prev_cr = cr;
918 		}
919 
920 		cesa_sync_dma_mem(&sc->sc_tdesc_cdm, BUS_DMASYNC_PREREAD |
921 		    BUS_DMASYNC_PREWRITE);
922 	}
923 
924 	/* Start chain execution in hardware */
925 	cr = STAILQ_FIRST(&sc->sc_queued_requests);
926 	ctd = STAILQ_FIRST(&cr->cr_tdesc);
927 
928 	CESA_TDMA_WRITE(sc, CESA_TDMA_ND, ctd->ctd_cthd_paddr);
929 
930 	if (sc->sc_soc_id == MV_DEV_88F6828 ||
931 	    sc->sc_soc_id == MV_DEV_88F6820 ||
932 	    sc->sc_soc_id == MV_DEV_88F6810)
933 		CESA_REG_WRITE(sc, CESA_SA_CMD, CESA_SA_CMD_ACTVATE | CESA_SA_CMD_SHA2);
934 	else
935 		CESA_REG_WRITE(sc, CESA_SA_CMD, CESA_SA_CMD_ACTVATE);
936 
937 	CESA_UNLOCK(sc, requests);
938 }
939 
940 static int
941 cesa_setup_sram(struct cesa_softc *sc)
942 {
943 	phandle_t sram_node;
944 	ihandle_t sram_ihandle;
945 	pcell_t sram_handle, sram_reg[2];
946 	void *sram_va;
947 	int rv;
948 
949 	rv = OF_getencprop(ofw_bus_get_node(sc->sc_dev), "sram-handle",
950 	    (void *)&sram_handle, sizeof(sram_handle));
951 	if (rv <= 0)
952 		return (rv);
953 
954 	sram_ihandle = (ihandle_t)sram_handle;
955 	sram_node = OF_instance_to_package(sram_ihandle);
956 
957 	rv = OF_getencprop(sram_node, "reg", (void *)sram_reg, sizeof(sram_reg));
958 	if (rv <= 0)
959 		return (rv);
960 
961 	sc->sc_sram_base_pa = sram_reg[0];
962 	/* Store SRAM size to be able to unmap in detach() */
963 	sc->sc_sram_size = sram_reg[1];
964 
965 	if (sc->sc_soc_id != MV_DEV_88F6828 &&
966 	    sc->sc_soc_id != MV_DEV_88F6820 &&
967 	    sc->sc_soc_id != MV_DEV_88F6810)
968 		return (0);
969 
970 	/* SRAM memory was not mapped in platform_sram_devmap(), map it now */
971 	sram_va = pmap_mapdev(sc->sc_sram_base_pa, sc->sc_sram_size);
972 	if (sram_va == NULL)
973 		return (ENOMEM);
974 	sc->sc_sram_base_va = (vm_offset_t)sram_va;
975 
976 	return (0);
977 }
978 
979 /*
980  * Function: device_from_node
981  * This function returns appropriate device_t to phandle_t
982  * Parameters:
983  * root - device where you want to start search
984  *     if you provide NULL here, function will take
985  *     "root0" device as root.
986  * node - we are checking every device_t to be
987  *     appropriate with this.
988  */
989 static device_t
990 device_from_node(device_t root, phandle_t node)
991 {
992 	device_t *children, retval;
993 	int nkid, i;
994 
995 	/* Nothing matches no node */
996 	if (node == -1)
997 		return (NULL);
998 
999 	if (root == NULL)
1000 		/* Get root of device tree */
1001 		if ((root = device_lookup_by_name("root0")) == NULL)
1002 			return (NULL);
1003 
1004 	if (device_get_children(root, &children, &nkid) != 0)
1005 		return (NULL);
1006 
1007 	retval = NULL;
1008 	for (i = 0; i < nkid; i++) {
1009 		/* Check if device and node matches */
1010 		if (OFW_BUS_GET_NODE(root, children[i]) == node) {
1011 			retval = children[i];
1012 			break;
1013 		}
1014 		/* or go deeper */
1015 		if ((retval = device_from_node(children[i], node)) != NULL)
1016 			break;
1017 	}
1018 	free(children, M_TEMP);
1019 
1020 	return (retval);
1021 }
1022 
1023 static int
1024 cesa_setup_sram_armada(struct cesa_softc *sc)
1025 {
1026 	phandle_t sram_node;
1027 	ihandle_t sram_ihandle;
1028 	pcell_t sram_handle[2];
1029 	void *sram_va;
1030 	int rv, j;
1031 	struct resource_list rl;
1032 	struct resource_list_entry *rle;
1033 	struct simplebus_softc *ssc;
1034 	device_t sdev;
1035 
1036 	/* Get refs to SRAMS from CESA node */
1037 	rv = OF_getencprop(ofw_bus_get_node(sc->sc_dev), "marvell,crypto-srams",
1038 	    (void *)sram_handle, sizeof(sram_handle));
1039 	if (rv <= 0)
1040 		return (rv);
1041 
1042 	if (sc->sc_cesa_engine_id >= 2)
1043 		return (ENXIO);
1044 
1045 	/* Get SRAM node on the basis of sc_cesa_engine_id */
1046 	sram_ihandle = (ihandle_t)sram_handle[sc->sc_cesa_engine_id];
1047 	sram_node = OF_instance_to_package(sram_ihandle);
1048 
1049 	/* Get device_t of simplebus (sram_node parent) */
1050 	sdev = device_from_node(NULL, OF_parent(sram_node));
1051 	if (!sdev)
1052 		return (ENXIO);
1053 
1054 	ssc = device_get_softc(sdev);
1055 
1056 	resource_list_init(&rl);
1057 	/* Parse reg property to resource list */
1058 	ofw_bus_reg_to_rl(sdev, sram_node, ssc->acells,
1059 	    ssc->scells, &rl);
1060 
1061 	/* We expect only one resource */
1062 	rle = resource_list_find(&rl, SYS_RES_MEMORY, 0);
1063 	if (rle == NULL)
1064 		return (ENXIO);
1065 
1066 	/* Remap through ranges property */
1067 	for (j = 0; j < ssc->nranges; j++) {
1068 		if (rle->start >= ssc->ranges[j].bus &&
1069 		    rle->end < ssc->ranges[j].bus + ssc->ranges[j].size) {
1070 			rle->start -= ssc->ranges[j].bus;
1071 			rle->start += ssc->ranges[j].host;
1072 			rle->end -= ssc->ranges[j].bus;
1073 			rle->end += ssc->ranges[j].host;
1074 		}
1075 	}
1076 
1077 	sc->sc_sram_base_pa = rle->start;
1078 	sc->sc_sram_size = rle->count;
1079 
1080 	/* SRAM memory was not mapped in platform_sram_devmap(), map it now */
1081 	sram_va = pmap_mapdev(sc->sc_sram_base_pa, sc->sc_sram_size);
1082 	if (sram_va == NULL)
1083 		return (ENOMEM);
1084 	sc->sc_sram_base_va = (vm_offset_t)sram_va;
1085 
1086 	return (0);
1087 }
1088 
1089 struct ofw_compat_data cesa_devices[] = {
1090 	{ "mrvl,cesa", (uintptr_t)true },
1091 	{ "marvell,armada-38x-crypto", (uintptr_t)true },
1092 	{ NULL, 0 }
1093 };
1094 
1095 static int
1096 cesa_probe(device_t dev)
1097 {
1098 
1099 	if (!ofw_bus_status_okay(dev))
1100 		return (ENXIO);
1101 
1102 	if (!ofw_bus_search_compatible(dev, cesa_devices)->ocd_data)
1103 		return (ENXIO);
1104 
1105 	device_set_desc(dev, "Marvell Cryptographic Engine and Security "
1106 	    "Accelerator");
1107 
1108 	return (BUS_PROBE_DEFAULT);
1109 }
1110 
1111 static int
1112 cesa_attach(device_t dev)
1113 {
1114 	static int engine_idx = 0;
1115 	struct simplebus_devinfo *ndi;
1116 	struct resource_list *rl;
1117 	struct cesa_softc *sc;
1118 
1119 	if (!ofw_bus_is_compatible(dev, "marvell,armada-38x-crypto"))
1120 		return (cesa_attach_late(dev));
1121 
1122 	/*
1123 	 * Get simplebus_devinfo which contains
1124 	 * resource list filled with adresses and
1125 	 * interrupts read form FDT.
1126 	 * Let's correct it by splitting resources
1127 	 * for each engine.
1128 	 */
1129 	if ((ndi = device_get_ivars(dev)) == NULL)
1130 		return (ENXIO);
1131 
1132 	rl = &ndi->rl;
1133 
1134 	switch (engine_idx) {
1135 		case 0:
1136 			/* Update regs values */
1137 			resource_list_add(rl, SYS_RES_MEMORY, 0, CESA0_TDMA_ADDR,
1138 			    CESA0_TDMA_ADDR + CESA_TDMA_SIZE - 1, CESA_TDMA_SIZE);
1139 			resource_list_add(rl, SYS_RES_MEMORY, 1, CESA0_CESA_ADDR,
1140 			    CESA0_CESA_ADDR + CESA_CESA_SIZE - 1, CESA_CESA_SIZE);
1141 
1142 			/* Remove unused interrupt */
1143 			resource_list_delete(rl, SYS_RES_IRQ, 1);
1144 			break;
1145 
1146 		case 1:
1147 			/* Update regs values */
1148 			resource_list_add(rl, SYS_RES_MEMORY, 0, CESA1_TDMA_ADDR,
1149 			    CESA1_TDMA_ADDR + CESA_TDMA_SIZE - 1, CESA_TDMA_SIZE);
1150 			resource_list_add(rl, SYS_RES_MEMORY, 1, CESA1_CESA_ADDR,
1151 			    CESA1_CESA_ADDR + CESA_CESA_SIZE - 1, CESA_CESA_SIZE);
1152 
1153 			/* Remove unused interrupt */
1154 			resource_list_delete(rl, SYS_RES_IRQ, 0);
1155 			resource_list_find(rl, SYS_RES_IRQ, 1)->rid = 0;
1156 			break;
1157 
1158 		default:
1159 			device_printf(dev, "Bad cesa engine_idx\n");
1160 			return (ENXIO);
1161 	}
1162 
1163 	sc = device_get_softc(dev);
1164 	sc->sc_cesa_engine_id = engine_idx;
1165 
1166 	/*
1167 	 * Call simplebus_add_device only once.
1168 	 * It will create second cesa driver instance
1169 	 * with the same FDT node as first instance.
1170 	 * When second driver reach this function,
1171 	 * it will be configured to use second cesa engine
1172 	 */
1173 	if (engine_idx == 0)
1174 		simplebus_add_device(device_get_parent(dev), ofw_bus_get_node(dev),
1175 		    0, "cesa", 1, NULL);
1176 
1177 	engine_idx++;
1178 
1179 	return (cesa_attach_late(dev));
1180 }
1181 
1182 static int
1183 cesa_attach_late(device_t dev)
1184 {
1185 	struct cesa_softc *sc;
1186 	uint32_t d, r, val;
1187 	int error;
1188 	int i;
1189 
1190 	sc = device_get_softc(dev);
1191 	sc->sc_blocked = 0;
1192 	sc->sc_error = 0;
1193 	sc->sc_dev = dev;
1194 
1195 	soc_id(&d, &r);
1196 
1197 	switch (d) {
1198 	case MV_DEV_88F6281:
1199 	case MV_DEV_88F6282:
1200 		/* Check if CESA peripheral device has power turned on */
1201 		if (soc_power_ctrl_get(CPU_PM_CTRL_CRYPTO) ==
1202 		    CPU_PM_CTRL_CRYPTO) {
1203 			device_printf(dev, "not powered on\n");
1204 			return (ENXIO);
1205 		}
1206 		sc->sc_tperr = 0;
1207 		break;
1208 	case MV_DEV_88F6828:
1209 	case MV_DEV_88F6820:
1210 	case MV_DEV_88F6810:
1211 		sc->sc_tperr = 0;
1212 		break;
1213 	case MV_DEV_MV78100:
1214 	case MV_DEV_MV78100_Z0:
1215 		/* Check if CESA peripheral device has power turned on */
1216 		if (soc_power_ctrl_get(CPU_PM_CTRL_CRYPTO) !=
1217 		    CPU_PM_CTRL_CRYPTO) {
1218 			device_printf(dev, "not powered on\n");
1219 			return (ENXIO);
1220 		}
1221 		sc->sc_tperr = CESA_ICR_TPERR;
1222 		break;
1223 	default:
1224 		return (ENXIO);
1225 	}
1226 
1227 	sc->sc_soc_id = d;
1228 
1229 	/* Initialize mutexes */
1230 	mtx_init(&sc->sc_sc_lock, device_get_nameunit(dev),
1231 	    "CESA Shared Data", MTX_DEF);
1232 	mtx_init(&sc->sc_tdesc_lock, device_get_nameunit(dev),
1233 	    "CESA TDMA Descriptors Pool", MTX_DEF);
1234 	mtx_init(&sc->sc_sdesc_lock, device_get_nameunit(dev),
1235 	    "CESA SA Descriptors Pool", MTX_DEF);
1236 	mtx_init(&sc->sc_requests_lock, device_get_nameunit(dev),
1237 	    "CESA Requests Pool", MTX_DEF);
1238 	mtx_init(&sc->sc_sessions_lock, device_get_nameunit(dev),
1239 	    "CESA Sessions Pool", MTX_DEF);
1240 
1241 	/* Allocate I/O and IRQ resources */
1242 	error = bus_alloc_resources(dev, cesa_res_spec, sc->sc_res);
1243 	if (error) {
1244 		device_printf(dev, "could not allocate resources\n");
1245 		goto err0;
1246 	}
1247 
1248 	/* Acquire SRAM base address */
1249 	if (!ofw_bus_is_compatible(dev, "marvell,armada-38x-crypto"))
1250 		error = cesa_setup_sram(sc);
1251 	else
1252 		error = cesa_setup_sram_armada(sc);
1253 
1254 	if (error) {
1255 		device_printf(dev, "could not setup SRAM\n");
1256 		goto err1;
1257 	}
1258 
1259 	/* Setup interrupt handler */
1260 	error = bus_setup_intr(dev, sc->sc_res[RES_CESA_IRQ], INTR_TYPE_NET |
1261 	    INTR_MPSAFE, NULL, cesa_intr, sc, &(sc->sc_icookie));
1262 	if (error) {
1263 		device_printf(dev, "could not setup engine completion irq\n");
1264 		goto err2;
1265 	}
1266 
1267 	/* Create DMA tag for processed data */
1268 	error = bus_dma_tag_create(bus_get_dma_tag(dev),	/* parent */
1269 	    1, 0,				/* alignment, boundary */
1270 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
1271 	    BUS_SPACE_MAXADDR,			/* highaddr */
1272 	    NULL, NULL,				/* filtfunc, filtfuncarg */
1273 	    CESA_MAX_REQUEST_SIZE,		/* maxsize */
1274 	    CESA_MAX_FRAGMENTS,			/* nsegments */
1275 	    CESA_MAX_REQUEST_SIZE, 0,		/* maxsegsz, flags */
1276 	    NULL, NULL,				/* lockfunc, lockfuncarg */
1277 	    &sc->sc_data_dtag);			/* dmat */
1278 	if (error)
1279 		goto err3;
1280 
1281 	/* Initialize data structures: TDMA Descriptors Pool */
1282 	error = cesa_alloc_dma_mem(sc, &sc->sc_tdesc_cdm,
1283 	    CESA_TDMA_DESCRIPTORS * sizeof(struct cesa_tdma_hdesc));
1284 	if (error)
1285 		goto err4;
1286 
1287 	STAILQ_INIT(&sc->sc_free_tdesc);
1288 	for (i = 0; i < CESA_TDMA_DESCRIPTORS; i++) {
1289 		sc->sc_tdesc[i].ctd_cthd =
1290 		    (struct cesa_tdma_hdesc *)(sc->sc_tdesc_cdm.cdm_vaddr) + i;
1291 		sc->sc_tdesc[i].ctd_cthd_paddr = sc->sc_tdesc_cdm.cdm_paddr +
1292 		    (i * sizeof(struct cesa_tdma_hdesc));
1293 		STAILQ_INSERT_TAIL(&sc->sc_free_tdesc, &sc->sc_tdesc[i],
1294 		    ctd_stq);
1295 	}
1296 
1297 	/* Initialize data structures: SA Descriptors Pool */
1298 	error = cesa_alloc_dma_mem(sc, &sc->sc_sdesc_cdm,
1299 	    CESA_SA_DESCRIPTORS * sizeof(struct cesa_sa_hdesc));
1300 	if (error)
1301 		goto err5;
1302 
1303 	STAILQ_INIT(&sc->sc_free_sdesc);
1304 	for (i = 0; i < CESA_SA_DESCRIPTORS; i++) {
1305 		sc->sc_sdesc[i].csd_cshd =
1306 		    (struct cesa_sa_hdesc *)(sc->sc_sdesc_cdm.cdm_vaddr) + i;
1307 		sc->sc_sdesc[i].csd_cshd_paddr = sc->sc_sdesc_cdm.cdm_paddr +
1308 		    (i * sizeof(struct cesa_sa_hdesc));
1309 		STAILQ_INSERT_TAIL(&sc->sc_free_sdesc, &sc->sc_sdesc[i],
1310 		    csd_stq);
1311 	}
1312 
1313 	/* Initialize data structures: Requests Pool */
1314 	error = cesa_alloc_dma_mem(sc, &sc->sc_requests_cdm,
1315 	    CESA_REQUESTS * sizeof(struct cesa_sa_data));
1316 	if (error)
1317 		goto err6;
1318 
1319 	STAILQ_INIT(&sc->sc_free_requests);
1320 	STAILQ_INIT(&sc->sc_ready_requests);
1321 	STAILQ_INIT(&sc->sc_queued_requests);
1322 	for (i = 0; i < CESA_REQUESTS; i++) {
1323 		sc->sc_requests[i].cr_csd =
1324 		    (struct cesa_sa_data *)(sc->sc_requests_cdm.cdm_vaddr) + i;
1325 		sc->sc_requests[i].cr_csd_paddr =
1326 		    sc->sc_requests_cdm.cdm_paddr +
1327 		    (i * sizeof(struct cesa_sa_data));
1328 
1329 		/* Preallocate DMA maps */
1330 		error = bus_dmamap_create(sc->sc_data_dtag, 0,
1331 		    &sc->sc_requests[i].cr_dmap);
1332 		if (error && i > 0) {
1333 			i--;
1334 			do {
1335 				bus_dmamap_destroy(sc->sc_data_dtag,
1336 				    sc->sc_requests[i].cr_dmap);
1337 			} while (i--);
1338 
1339 			goto err7;
1340 		}
1341 
1342 		STAILQ_INSERT_TAIL(&sc->sc_free_requests, &sc->sc_requests[i],
1343 		    cr_stq);
1344 	}
1345 
1346 	/*
1347 	 * Initialize TDMA:
1348 	 * - Burst limit: 128 bytes,
1349 	 * - Outstanding reads enabled,
1350 	 * - No byte-swap.
1351 	 */
1352 	val = CESA_TDMA_CR_DBL128 | CESA_TDMA_CR_SBL128 |
1353 	    CESA_TDMA_CR_ORDEN | CESA_TDMA_CR_NBS | CESA_TDMA_CR_ENABLE;
1354 
1355 	if (sc->sc_soc_id == MV_DEV_88F6828 ||
1356 	    sc->sc_soc_id == MV_DEV_88F6820 ||
1357 	    sc->sc_soc_id == MV_DEV_88F6810)
1358 		val |= CESA_TDMA_NUM_OUTSTAND;
1359 
1360 	CESA_TDMA_WRITE(sc, CESA_TDMA_CR, val);
1361 
1362 	/*
1363 	 * Initialize SA:
1364 	 * - SA descriptor is present at beginning of CESA SRAM,
1365 	 * - Multi-packet chain mode,
1366 	 * - Cooperation with TDMA enabled.
1367 	 */
1368 	CESA_REG_WRITE(sc, CESA_SA_DPR, 0);
1369 	CESA_REG_WRITE(sc, CESA_SA_CR, CESA_SA_CR_ACTIVATE_TDMA |
1370 	    CESA_SA_CR_WAIT_FOR_TDMA | CESA_SA_CR_MULTI_MODE);
1371 
1372 	/* Unmask interrupts */
1373 	CESA_REG_WRITE(sc, CESA_ICR, 0);
1374 	CESA_REG_WRITE(sc, CESA_ICM, CESA_ICM_ACCTDMA | sc->sc_tperr);
1375 	CESA_TDMA_WRITE(sc, CESA_TDMA_ECR, 0);
1376 	CESA_TDMA_WRITE(sc, CESA_TDMA_EMR, CESA_TDMA_EMR_MISS |
1377 	    CESA_TDMA_EMR_DOUBLE_HIT | CESA_TDMA_EMR_BOTH_HIT |
1378 	    CESA_TDMA_EMR_DATA_ERROR);
1379 
1380 	/* Register in OCF */
1381 	sc->sc_cid = crypto_get_driverid(dev, sizeof(struct cesa_session),
1382 	    CRYPTOCAP_F_HARDWARE);
1383 	if (sc->sc_cid < 0) {
1384 		device_printf(dev, "could not get crypto driver id\n");
1385 		goto err8;
1386 	}
1387 
1388 	crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0);
1389 	crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0);
1390 	crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0);
1391 	crypto_register(sc->sc_cid, CRYPTO_MD5, 0, 0);
1392 	crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0);
1393 	crypto_register(sc->sc_cid, CRYPTO_SHA1, 0, 0);
1394 	crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0);
1395 	if (sc->sc_soc_id == MV_DEV_88F6828 ||
1396 	    sc->sc_soc_id == MV_DEV_88F6820 ||
1397 	    sc->sc_soc_id == MV_DEV_88F6810)
1398 		crypto_register(sc->sc_cid, CRYPTO_SHA2_256_HMAC, 0, 0);
1399 
1400 	return (0);
1401 err8:
1402 	for (i = 0; i < CESA_REQUESTS; i++)
1403 		bus_dmamap_destroy(sc->sc_data_dtag,
1404 		    sc->sc_requests[i].cr_dmap);
1405 err7:
1406 	cesa_free_dma_mem(&sc->sc_requests_cdm);
1407 err6:
1408 	cesa_free_dma_mem(&sc->sc_sdesc_cdm);
1409 err5:
1410 	cesa_free_dma_mem(&sc->sc_tdesc_cdm);
1411 err4:
1412 	bus_dma_tag_destroy(sc->sc_data_dtag);
1413 err3:
1414 	bus_teardown_intr(dev, sc->sc_res[RES_CESA_IRQ], sc->sc_icookie);
1415 err2:
1416 	if (sc->sc_soc_id == MV_DEV_88F6828 ||
1417 	    sc->sc_soc_id == MV_DEV_88F6820 ||
1418 	    sc->sc_soc_id == MV_DEV_88F6810)
1419 		pmap_unmapdev(sc->sc_sram_base_va, sc->sc_sram_size);
1420 err1:
1421 	bus_release_resources(dev, cesa_res_spec, sc->sc_res);
1422 err0:
1423 	mtx_destroy(&sc->sc_sessions_lock);
1424 	mtx_destroy(&sc->sc_requests_lock);
1425 	mtx_destroy(&sc->sc_sdesc_lock);
1426 	mtx_destroy(&sc->sc_tdesc_lock);
1427 	mtx_destroy(&sc->sc_sc_lock);
1428 	return (ENXIO);
1429 }
1430 
1431 static int
1432 cesa_detach(device_t dev)
1433 {
1434 	struct cesa_softc *sc;
1435 	int i;
1436 
1437 	sc = device_get_softc(dev);
1438 
1439 	/* TODO: Wait for queued requests completion before shutdown. */
1440 
1441 	/* Mask interrupts */
1442 	CESA_REG_WRITE(sc, CESA_ICM, 0);
1443 	CESA_TDMA_WRITE(sc, CESA_TDMA_EMR, 0);
1444 
1445 	/* Unregister from OCF */
1446 	crypto_unregister_all(sc->sc_cid);
1447 
1448 	/* Free DMA Maps */
1449 	for (i = 0; i < CESA_REQUESTS; i++)
1450 		bus_dmamap_destroy(sc->sc_data_dtag,
1451 		    sc->sc_requests[i].cr_dmap);
1452 
1453 	/* Free DMA Memory */
1454 	cesa_free_dma_mem(&sc->sc_requests_cdm);
1455 	cesa_free_dma_mem(&sc->sc_sdesc_cdm);
1456 	cesa_free_dma_mem(&sc->sc_tdesc_cdm);
1457 
1458 	/* Free DMA Tag */
1459 	bus_dma_tag_destroy(sc->sc_data_dtag);
1460 
1461 	/* Stop interrupt */
1462 	bus_teardown_intr(dev, sc->sc_res[RES_CESA_IRQ], sc->sc_icookie);
1463 
1464 	/* Relase I/O and IRQ resources */
1465 	bus_release_resources(dev, cesa_res_spec, sc->sc_res);
1466 
1467 	/* Unmap SRAM memory */
1468 	if (sc->sc_soc_id == MV_DEV_88F6828 ||
1469 	    sc->sc_soc_id == MV_DEV_88F6820 ||
1470 	    sc->sc_soc_id == MV_DEV_88F6810)
1471 		pmap_unmapdev(sc->sc_sram_base_va, sc->sc_sram_size);
1472 
1473 	/* Destroy mutexes */
1474 	mtx_destroy(&sc->sc_sessions_lock);
1475 	mtx_destroy(&sc->sc_requests_lock);
1476 	mtx_destroy(&sc->sc_sdesc_lock);
1477 	mtx_destroy(&sc->sc_tdesc_lock);
1478 	mtx_destroy(&sc->sc_sc_lock);
1479 
1480 	return (0);
1481 }
1482 
1483 static void
1484 cesa_intr(void *arg)
1485 {
1486 	STAILQ_HEAD(, cesa_request) requests;
1487 	struct cesa_request *cr, *tmp;
1488 	struct cesa_softc *sc;
1489 	uint32_t ecr, icr;
1490 	int blocked;
1491 
1492 	sc = arg;
1493 
1494 	/* Ack interrupt */
1495 	ecr = CESA_TDMA_READ(sc, CESA_TDMA_ECR);
1496 	CESA_TDMA_WRITE(sc, CESA_TDMA_ECR, 0);
1497 	icr = CESA_REG_READ(sc, CESA_ICR);
1498 	CESA_REG_WRITE(sc, CESA_ICR, 0);
1499 
1500 	/* Check for TDMA errors */
1501 	if (ecr & CESA_TDMA_ECR_MISS) {
1502 		device_printf(sc->sc_dev, "TDMA Miss error detected!\n");
1503 		sc->sc_error = EIO;
1504 	}
1505 
1506 	if (ecr & CESA_TDMA_ECR_DOUBLE_HIT) {
1507 		device_printf(sc->sc_dev, "TDMA Double Hit error detected!\n");
1508 		sc->sc_error = EIO;
1509 	}
1510 
1511 	if (ecr & CESA_TDMA_ECR_BOTH_HIT) {
1512 		device_printf(sc->sc_dev, "TDMA Both Hit error detected!\n");
1513 		sc->sc_error = EIO;
1514 	}
1515 
1516 	if (ecr & CESA_TDMA_ECR_DATA_ERROR) {
1517 		device_printf(sc->sc_dev, "TDMA Data error detected!\n");
1518 		sc->sc_error = EIO;
1519 	}
1520 
1521 	/* Check for CESA errors */
1522 	if (icr & sc->sc_tperr) {
1523 		device_printf(sc->sc_dev, "CESA SRAM Parity error detected!\n");
1524 		sc->sc_error = EIO;
1525 	}
1526 
1527 	/* If there is nothing more to do, return */
1528 	if ((icr & CESA_ICR_ACCTDMA) == 0)
1529 		return;
1530 
1531 	/* Get all finished requests */
1532 	CESA_LOCK(sc, requests);
1533 	STAILQ_INIT(&requests);
1534 	STAILQ_CONCAT(&requests, &sc->sc_queued_requests);
1535 	STAILQ_INIT(&sc->sc_queued_requests);
1536 	CESA_UNLOCK(sc, requests);
1537 
1538 	/* Execute all ready requests */
1539 	cesa_execute(sc);
1540 
1541 	/* Process completed requests */
1542 	cesa_sync_dma_mem(&sc->sc_requests_cdm, BUS_DMASYNC_POSTREAD |
1543 	    BUS_DMASYNC_POSTWRITE);
1544 
1545 	STAILQ_FOREACH_SAFE(cr, &requests, cr_stq, tmp) {
1546 		bus_dmamap_sync(sc->sc_data_dtag, cr->cr_dmap,
1547 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1548 
1549 		cr->cr_crp->crp_etype = sc->sc_error;
1550 		if (cr->cr_mac)
1551 			crypto_copyback(cr->cr_crp->crp_flags,
1552 			    cr->cr_crp->crp_buf, cr->cr_mac->crd_inject,
1553 			    cr->cr_cs->cs_hlen, cr->cr_csd->csd_hash);
1554 
1555 		crypto_done(cr->cr_crp);
1556 		cesa_free_request(sc, cr);
1557 	}
1558 
1559 	cesa_sync_dma_mem(&sc->sc_requests_cdm, BUS_DMASYNC_PREREAD |
1560 	    BUS_DMASYNC_PREWRITE);
1561 
1562 	sc->sc_error = 0;
1563 
1564 	/* Unblock driver if it ran out of resources */
1565 	CESA_LOCK(sc, sc);
1566 	blocked = sc->sc_blocked;
1567 	sc->sc_blocked = 0;
1568 	CESA_UNLOCK(sc, sc);
1569 
1570 	if (blocked)
1571 		crypto_unblock(sc->sc_cid, blocked);
1572 }
1573 
1574 static int
1575 cesa_newsession(device_t dev, crypto_session_t cses, struct cryptoini *cri)
1576 {
1577 	struct cesa_session *cs;
1578 	struct cesa_softc *sc;
1579 	struct cryptoini *enc;
1580 	struct cryptoini *mac;
1581 	int error;
1582 
1583 	sc = device_get_softc(dev);
1584 	enc = NULL;
1585 	mac = NULL;
1586 	error = 0;
1587 
1588 	/* Check and parse input */
1589 	if (cesa_is_hash(cri->cri_alg))
1590 		mac = cri;
1591 	else
1592 		enc = cri;
1593 
1594 	cri = cri->cri_next;
1595 
1596 	if (cri) {
1597 		if (!enc && !cesa_is_hash(cri->cri_alg))
1598 			enc = cri;
1599 
1600 		if (!mac && cesa_is_hash(cri->cri_alg))
1601 			mac = cri;
1602 
1603 		if (cri->cri_next || !(enc && mac))
1604 			return (EINVAL);
1605 	}
1606 
1607 	if ((enc && (enc->cri_klen / 8) > CESA_MAX_KEY_LEN) ||
1608 	    (mac && (mac->cri_klen / 8) > CESA_MAX_MKEY_LEN))
1609 		return (E2BIG);
1610 
1611 	/* Allocate session */
1612 	cs = crypto_get_driver_session(cses);
1613 
1614 	/* Prepare CESA configuration */
1615 	cs->cs_config = 0;
1616 	cs->cs_ivlen = 1;
1617 	cs->cs_mblen = 1;
1618 
1619 	if (enc) {
1620 		switch (enc->cri_alg) {
1621 		case CRYPTO_AES_CBC:
1622 			cs->cs_config |= CESA_CSHD_AES | CESA_CSHD_CBC;
1623 			cs->cs_ivlen = AES_BLOCK_LEN;
1624 			break;
1625 		case CRYPTO_DES_CBC:
1626 			cs->cs_config |= CESA_CSHD_DES | CESA_CSHD_CBC;
1627 			cs->cs_ivlen = DES_BLOCK_LEN;
1628 			break;
1629 		case CRYPTO_3DES_CBC:
1630 			cs->cs_config |= CESA_CSHD_3DES | CESA_CSHD_3DES_EDE |
1631 			    CESA_CSHD_CBC;
1632 			cs->cs_ivlen = DES3_BLOCK_LEN;
1633 			break;
1634 		default:
1635 			error = EINVAL;
1636 			break;
1637 		}
1638 	}
1639 
1640 	if (!error && mac) {
1641 		switch (mac->cri_alg) {
1642 		case CRYPTO_MD5:
1643 			cs->cs_mblen = 1;
1644 			cs->cs_hlen = (mac->cri_mlen == 0) ? MD5_HASH_LEN :
1645 			    mac->cri_mlen;
1646 			cs->cs_config |= CESA_CSHD_MD5;
1647 			break;
1648 		case CRYPTO_MD5_HMAC:
1649 			cs->cs_mblen = MD5_BLOCK_LEN;
1650 			cs->cs_hlen = (mac->cri_mlen == 0) ? MD5_HASH_LEN :
1651 			    mac->cri_mlen;
1652 			cs->cs_config |= CESA_CSHD_MD5_HMAC;
1653 			if (cs->cs_hlen == CESA_HMAC_TRUNC_LEN)
1654 				cs->cs_config |= CESA_CSHD_96_BIT_HMAC;
1655 			break;
1656 		case CRYPTO_SHA1:
1657 			cs->cs_mblen = 1;
1658 			cs->cs_hlen = (mac->cri_mlen == 0) ? SHA1_HASH_LEN :
1659 			    mac->cri_mlen;
1660 			cs->cs_config |= CESA_CSHD_SHA1;
1661 			break;
1662 		case CRYPTO_SHA1_HMAC:
1663 			cs->cs_mblen = SHA1_BLOCK_LEN;
1664 			cs->cs_hlen = (mac->cri_mlen == 0) ? SHA1_HASH_LEN :
1665 			    mac->cri_mlen;
1666 			cs->cs_config |= CESA_CSHD_SHA1_HMAC;
1667 			if (cs->cs_hlen == CESA_HMAC_TRUNC_LEN)
1668 				cs->cs_config |= CESA_CSHD_96_BIT_HMAC;
1669 			break;
1670 		case CRYPTO_SHA2_256_HMAC:
1671 			cs->cs_mblen = SHA2_256_BLOCK_LEN;
1672 			cs->cs_hlen = (mac->cri_mlen == 0) ? SHA2_256_HASH_LEN :
1673 			    mac->cri_mlen;
1674 			cs->cs_config |= CESA_CSHD_SHA2_256_HMAC;
1675 			break;
1676 		default:
1677 			error = EINVAL;
1678 			break;
1679 		}
1680 	}
1681 
1682 	/* Save cipher key */
1683 	if (!error && enc && enc->cri_key) {
1684 		cs->cs_klen = enc->cri_klen / 8;
1685 		memcpy(cs->cs_key, enc->cri_key, cs->cs_klen);
1686 		if (enc->cri_alg == CRYPTO_AES_CBC)
1687 			error = cesa_prep_aes_key(cs);
1688 	}
1689 
1690 	/* Save digest key */
1691 	if (!error && mac && mac->cri_key)
1692 		error = cesa_set_mkey(cs, mac->cri_alg, mac->cri_key,
1693 		    mac->cri_klen / 8);
1694 
1695 	if (error)
1696 		return (error);
1697 
1698 	return (0);
1699 }
1700 
1701 static int
1702 cesa_process(device_t dev, struct cryptop *crp, int hint)
1703 {
1704 	struct cesa_request *cr;
1705 	struct cesa_session *cs;
1706 	struct cryptodesc *crd;
1707 	struct cryptodesc *enc;
1708 	struct cryptodesc *mac;
1709 	struct cesa_softc *sc;
1710 	int error;
1711 
1712 	sc = device_get_softc(dev);
1713 	crd = crp->crp_desc;
1714 	enc = NULL;
1715 	mac = NULL;
1716 	error = 0;
1717 
1718 	cs = crypto_get_driver_session(crp->crp_session);
1719 
1720 	/* Check and parse input */
1721 	if (crp->crp_ilen > CESA_MAX_REQUEST_SIZE) {
1722 		crp->crp_etype = E2BIG;
1723 		crypto_done(crp);
1724 		return (0);
1725 	}
1726 
1727 	if (cesa_is_hash(crd->crd_alg))
1728 		mac = crd;
1729 	else
1730 		enc = crd;
1731 
1732 	crd = crd->crd_next;
1733 
1734 	if (crd) {
1735 		if (!enc && !cesa_is_hash(crd->crd_alg))
1736 			enc = crd;
1737 
1738 		if (!mac && cesa_is_hash(crd->crd_alg))
1739 			mac = crd;
1740 
1741 		if (crd->crd_next || !(enc && mac)) {
1742 			crp->crp_etype = EINVAL;
1743 			crypto_done(crp);
1744 			return (0);
1745 		}
1746 	}
1747 
1748 	/*
1749 	 * Get request descriptor. Block driver if there is no free
1750 	 * descriptors in pool.
1751 	 */
1752 	cr = cesa_alloc_request(sc);
1753 	if (!cr) {
1754 		CESA_LOCK(sc, sc);
1755 		sc->sc_blocked = CRYPTO_SYMQ;
1756 		CESA_UNLOCK(sc, sc);
1757 		return (ERESTART);
1758 	}
1759 
1760 	/* Prepare request */
1761 	cr->cr_crp = crp;
1762 	cr->cr_enc = enc;
1763 	cr->cr_mac = mac;
1764 	cr->cr_cs = cs;
1765 
1766 	CESA_LOCK(sc, sessions);
1767 	cesa_sync_desc(sc, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1768 
1769 	if (enc && enc->crd_flags & CRD_F_ENCRYPT) {
1770 		if (enc->crd_flags & CRD_F_IV_EXPLICIT)
1771 			memcpy(cr->cr_csd->csd_iv, enc->crd_iv, cs->cs_ivlen);
1772 		else
1773 			arc4rand(cr->cr_csd->csd_iv, cs->cs_ivlen, 0);
1774 
1775 		if ((enc->crd_flags & CRD_F_IV_PRESENT) == 0)
1776 			crypto_copyback(crp->crp_flags, crp->crp_buf,
1777 			    enc->crd_inject, cs->cs_ivlen, cr->cr_csd->csd_iv);
1778 	} else if (enc) {
1779 		if (enc->crd_flags & CRD_F_IV_EXPLICIT)
1780 			memcpy(cr->cr_csd->csd_iv, enc->crd_iv, cs->cs_ivlen);
1781 		else
1782 			crypto_copydata(crp->crp_flags, crp->crp_buf,
1783 			    enc->crd_inject, cs->cs_ivlen, cr->cr_csd->csd_iv);
1784 	}
1785 
1786 	if (enc && enc->crd_flags & CRD_F_KEY_EXPLICIT) {
1787 		if ((enc->crd_klen / 8) <= CESA_MAX_KEY_LEN) {
1788 			cs->cs_klen = enc->crd_klen / 8;
1789 			memcpy(cs->cs_key, enc->crd_key, cs->cs_klen);
1790 			if (enc->crd_alg == CRYPTO_AES_CBC)
1791 				error = cesa_prep_aes_key(cs);
1792 		} else
1793 			error = E2BIG;
1794 	}
1795 
1796 	if (!error && mac && mac->crd_flags & CRD_F_KEY_EXPLICIT) {
1797 		if ((mac->crd_klen / 8) <= CESA_MAX_MKEY_LEN)
1798 			error = cesa_set_mkey(cs, mac->crd_alg, mac->crd_key,
1799 			    mac->crd_klen / 8);
1800 		else
1801 			error = E2BIG;
1802 	}
1803 
1804 	/* Convert request to chain of TDMA and SA descriptors */
1805 	if (!error)
1806 		error = cesa_create_chain(sc, cr);
1807 
1808 	cesa_sync_desc(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1809 	CESA_UNLOCK(sc, sessions);
1810 
1811 	if (error) {
1812 		cesa_free_request(sc, cr);
1813 		crp->crp_etype = error;
1814 		crypto_done(crp);
1815 		return (0);
1816 	}
1817 
1818 	bus_dmamap_sync(sc->sc_data_dtag, cr->cr_dmap, BUS_DMASYNC_PREREAD |
1819 	    BUS_DMASYNC_PREWRITE);
1820 
1821 	/* Enqueue request to execution */
1822 	cesa_enqueue_request(sc, cr);
1823 
1824 	/* Start execution, if we have no more requests in queue */
1825 	if ((hint & CRYPTO_HINT_MORE) == 0)
1826 		cesa_execute(sc);
1827 
1828 	return (0);
1829 }
1830