1 /*- 2 * Copyright (C) 2001 Eduardo Horvath. 3 * Copyright (c) 2001-2003 Thomas Moestl 4 * Copyright (c) 2007-2009 Marius Strobl <marius@FreeBSD.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * from: NetBSD: gem.c,v 1.21 2002/06/01 23:50:58 lukem Exp 29 * from: FreeBSD: if_gem.c 182060 2008-08-23 15:03:26Z marius 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 /* 36 * driver for Sun Cassini/Cassini+ and National Semiconductor DP83065 37 * Saturn Gigabit Ethernet controllers 38 */ 39 40 #if 0 41 #define CAS_DEBUG 42 #endif 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/bus.h> 47 #include <sys/callout.h> 48 #include <sys/endian.h> 49 #include <sys/mbuf.h> 50 #include <sys/malloc.h> 51 #include <sys/kernel.h> 52 #include <sys/lock.h> 53 #include <sys/module.h> 54 #include <sys/mutex.h> 55 #include <sys/refcount.h> 56 #include <sys/resource.h> 57 #include <sys/rman.h> 58 #include <sys/socket.h> 59 #include <sys/sockio.h> 60 #include <sys/taskqueue.h> 61 62 #include <net/bpf.h> 63 #include <net/ethernet.h> 64 #include <net/if.h> 65 #include <net/if_arp.h> 66 #include <net/if_dl.h> 67 #include <net/if_media.h> 68 #include <net/if_types.h> 69 #include <net/if_vlan_var.h> 70 71 #include <netinet/in.h> 72 #include <netinet/in_systm.h> 73 #include <netinet/ip.h> 74 #include <netinet/tcp.h> 75 #include <netinet/udp.h> 76 77 #include <machine/bus.h> 78 #if defined(__powerpc__) || defined(__sparc64__) 79 #include <dev/ofw/ofw_bus.h> 80 #include <dev/ofw/openfirm.h> 81 #include <machine/ofw_machdep.h> 82 #endif 83 #include <machine/resource.h> 84 85 #include <dev/mii/mii.h> 86 #include <dev/mii/miivar.h> 87 88 #include <dev/cas/if_casreg.h> 89 #include <dev/cas/if_casvar.h> 90 91 #include <dev/pci/pcireg.h> 92 #include <dev/pci/pcivar.h> 93 94 #include "miibus_if.h" 95 96 #define RINGASSERT(n , min, max) \ 97 CTASSERT(powerof2(n) && (n) >= (min) && (n) <= (max)) 98 99 RINGASSERT(CAS_NRXCOMP, 128, 32768); 100 RINGASSERT(CAS_NRXDESC, 32, 8192); 101 RINGASSERT(CAS_NRXDESC2, 32, 8192); 102 RINGASSERT(CAS_NTXDESC, 32, 8192); 103 104 #undef RINGASSERT 105 106 #define CCDASSERT(m, a) \ 107 CTASSERT((offsetof(struct cas_control_data, m) & ((a) - 1)) == 0) 108 109 CCDASSERT(ccd_rxcomps, CAS_RX_COMP_ALIGN); 110 CCDASSERT(ccd_rxdescs, CAS_RX_DESC_ALIGN); 111 CCDASSERT(ccd_rxdescs2, CAS_RX_DESC_ALIGN); 112 113 #undef CCDASSERT 114 115 #define CAS_TRIES 10000 116 117 /* 118 * According to documentation, the hardware has support for basic TCP 119 * checksum offloading only, in practice this can be also used for UDP 120 * however (i.e. the problem of previous Sun NICs that a checksum of 0x0 121 * is not converted to 0xffff no longer exists). 122 */ 123 #define CAS_CSUM_FEATURES (CSUM_TCP | CSUM_UDP) 124 125 static inline void cas_add_rxdesc(struct cas_softc *sc, u_int idx); 126 static int cas_attach(struct cas_softc *sc); 127 static int cas_bitwait(struct cas_softc *sc, bus_addr_t r, uint32_t clr, 128 uint32_t set); 129 static void cas_cddma_callback(void *xsc, bus_dma_segment_t *segs, 130 int nsegs, int error); 131 static void cas_detach(struct cas_softc *sc); 132 static int cas_disable_rx(struct cas_softc *sc); 133 static int cas_disable_tx(struct cas_softc *sc); 134 static void cas_eint(struct cas_softc *sc, u_int status); 135 static void cas_free(void *arg1, void* arg2); 136 static void cas_init(void *xsc); 137 static void cas_init_locked(struct cas_softc *sc); 138 static void cas_init_regs(struct cas_softc *sc); 139 static int cas_intr(void *v); 140 static void cas_intr_task(void *arg, int pending __unused); 141 static int cas_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data); 142 static int cas_load_txmbuf(struct cas_softc *sc, struct mbuf **m_head); 143 static int cas_mediachange(struct ifnet *ifp); 144 static void cas_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr); 145 static void cas_meminit(struct cas_softc *sc); 146 static void cas_mifinit(struct cas_softc *sc); 147 static int cas_mii_readreg(device_t dev, int phy, int reg); 148 static void cas_mii_statchg(device_t dev); 149 static int cas_mii_writereg(device_t dev, int phy, int reg, int val); 150 static void cas_reset(struct cas_softc *sc); 151 static int cas_reset_rx(struct cas_softc *sc); 152 static int cas_reset_tx(struct cas_softc *sc); 153 static void cas_resume(struct cas_softc *sc); 154 static u_int cas_descsize(u_int sz); 155 static void cas_rint(struct cas_softc *sc); 156 static void cas_rint_timeout(void *arg); 157 static inline void cas_rxcksum(struct mbuf *m, uint16_t cksum); 158 static inline void cas_rxcompinit(struct cas_rx_comp *rxcomp); 159 static u_int cas_rxcompsize(u_int sz); 160 static void cas_rxdma_callback(void *xsc, bus_dma_segment_t *segs, 161 int nsegs, int error); 162 static void cas_setladrf(struct cas_softc *sc); 163 static void cas_start(struct ifnet *ifp); 164 static void cas_stop(struct ifnet *ifp); 165 static void cas_suspend(struct cas_softc *sc); 166 static void cas_tick(void *arg); 167 static void cas_tint(struct cas_softc *sc); 168 static void cas_tx_task(void *arg, int pending __unused); 169 static inline void cas_txkick(struct cas_softc *sc); 170 static void cas_watchdog(struct cas_softc *sc); 171 172 static devclass_t cas_devclass; 173 174 MODULE_DEPEND(cas, ether, 1, 1, 1); 175 MODULE_DEPEND(cas, miibus, 1, 1, 1); 176 177 #ifdef CAS_DEBUG 178 #include <sys/ktr.h> 179 #define KTR_CAS KTR_SPARE2 180 #endif 181 182 static int 183 cas_attach(struct cas_softc *sc) 184 { 185 struct cas_txsoft *txs; 186 struct ifnet *ifp; 187 int error, i; 188 uint32_t v; 189 190 /* Set up ifnet structure. */ 191 ifp = sc->sc_ifp = if_alloc(IFT_ETHER); 192 if (ifp == NULL) 193 return (ENOSPC); 194 ifp->if_softc = sc; 195 if_initname(ifp, device_get_name(sc->sc_dev), 196 device_get_unit(sc->sc_dev)); 197 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 198 ifp->if_start = cas_start; 199 ifp->if_ioctl = cas_ioctl; 200 ifp->if_init = cas_init; 201 IFQ_SET_MAXLEN(&ifp->if_snd, CAS_TXQUEUELEN); 202 ifp->if_snd.ifq_drv_maxlen = CAS_TXQUEUELEN; 203 IFQ_SET_READY(&ifp->if_snd); 204 205 callout_init_mtx(&sc->sc_tick_ch, &sc->sc_mtx, 0); 206 callout_init_mtx(&sc->sc_rx_ch, &sc->sc_mtx, 0); 207 /* Create local taskq. */ 208 TASK_INIT(&sc->sc_intr_task, 0, cas_intr_task, sc); 209 TASK_INIT(&sc->sc_tx_task, 1, cas_tx_task, ifp); 210 sc->sc_tq = taskqueue_create_fast("cas_taskq", M_WAITOK, 211 taskqueue_thread_enqueue, &sc->sc_tq); 212 if (sc->sc_tq == NULL) { 213 device_printf(sc->sc_dev, "could not create taskqueue\n"); 214 error = ENXIO; 215 goto fail_ifnet; 216 } 217 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq", 218 device_get_nameunit(sc->sc_dev)); 219 220 /* Make sure the chip is stopped. */ 221 cas_reset(sc); 222 223 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 224 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 225 BUS_SPACE_MAXSIZE, 0, BUS_SPACE_MAXSIZE, 0, NULL, NULL, 226 &sc->sc_pdmatag); 227 if (error != 0) 228 goto fail_taskq; 229 230 error = bus_dma_tag_create(sc->sc_pdmatag, 1, 0, 231 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 232 CAS_PAGE_SIZE, 1, CAS_PAGE_SIZE, 0, NULL, NULL, &sc->sc_rdmatag); 233 if (error != 0) 234 goto fail_ptag; 235 236 error = bus_dma_tag_create(sc->sc_pdmatag, 1, 0, 237 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 238 MCLBYTES * CAS_NTXSEGS, CAS_NTXSEGS, MCLBYTES, 239 BUS_DMA_ALLOCNOW, NULL, NULL, &sc->sc_tdmatag); 240 if (error != 0) 241 goto fail_rtag; 242 243 error = bus_dma_tag_create(sc->sc_pdmatag, CAS_TX_DESC_ALIGN, 0, 244 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 245 sizeof(struct cas_control_data), 1, 246 sizeof(struct cas_control_data), 0, 247 NULL, NULL, &sc->sc_cdmatag); 248 if (error != 0) 249 goto fail_ttag; 250 251 /* 252 * Allocate the control data structures, create and load the 253 * DMA map for it. 254 */ 255 if ((error = bus_dmamem_alloc(sc->sc_cdmatag, 256 (void **)&sc->sc_control_data, 257 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, 258 &sc->sc_cddmamap)) != 0) { 259 device_printf(sc->sc_dev, 260 "unable to allocate control data, error = %d\n", error); 261 goto fail_ctag; 262 } 263 264 sc->sc_cddma = 0; 265 if ((error = bus_dmamap_load(sc->sc_cdmatag, sc->sc_cddmamap, 266 sc->sc_control_data, sizeof(struct cas_control_data), 267 cas_cddma_callback, sc, 0)) != 0 || sc->sc_cddma == 0) { 268 device_printf(sc->sc_dev, 269 "unable to load control data DMA map, error = %d\n", 270 error); 271 goto fail_cmem; 272 } 273 274 /* 275 * Initialize the transmit job descriptors. 276 */ 277 STAILQ_INIT(&sc->sc_txfreeq); 278 STAILQ_INIT(&sc->sc_txdirtyq); 279 280 /* 281 * Create the transmit buffer DMA maps. 282 */ 283 error = ENOMEM; 284 for (i = 0; i < CAS_TXQUEUELEN; i++) { 285 txs = &sc->sc_txsoft[i]; 286 txs->txs_mbuf = NULL; 287 txs->txs_ndescs = 0; 288 if ((error = bus_dmamap_create(sc->sc_tdmatag, 0, 289 &txs->txs_dmamap)) != 0) { 290 device_printf(sc->sc_dev, 291 "unable to create TX DMA map %d, error = %d\n", 292 i, error); 293 goto fail_txd; 294 } 295 STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); 296 } 297 298 /* 299 * Allocate the receive buffers, create and load the DMA maps 300 * for them. 301 */ 302 for (i = 0; i < CAS_NRXDESC; i++) { 303 if ((error = bus_dmamem_alloc(sc->sc_rdmatag, 304 &sc->sc_rxdsoft[i].rxds_buf, BUS_DMA_WAITOK, 305 &sc->sc_rxdsoft[i].rxds_dmamap)) != 0) { 306 device_printf(sc->sc_dev, 307 "unable to allocate RX buffer %d, error = %d\n", 308 i, error); 309 goto fail_rxmem; 310 } 311 312 sc->sc_rxdptr = i; 313 sc->sc_rxdsoft[i].rxds_paddr = 0; 314 if ((error = bus_dmamap_load(sc->sc_rdmatag, 315 sc->sc_rxdsoft[i].rxds_dmamap, sc->sc_rxdsoft[i].rxds_buf, 316 CAS_PAGE_SIZE, cas_rxdma_callback, sc, 0)) != 0 || 317 sc->sc_rxdsoft[i].rxds_paddr == 0) { 318 device_printf(sc->sc_dev, 319 "unable to load RX DMA map %d, error = %d\n", 320 i, error); 321 goto fail_rxmap; 322 } 323 } 324 325 if ((sc->sc_flags & CAS_SERDES) == 0) { 326 CAS_WRITE_4(sc, CAS_PCS_DATAPATH, CAS_PCS_DATAPATH_MII); 327 CAS_BARRIER(sc, CAS_PCS_DATAPATH, 4, 328 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 329 cas_mifinit(sc); 330 /* 331 * Look for an external PHY. 332 */ 333 error = ENXIO; 334 v = CAS_READ_4(sc, CAS_MIF_CONF); 335 if ((v & CAS_MIF_CONF_MDI1) != 0) { 336 v |= CAS_MIF_CONF_PHY_SELECT; 337 CAS_WRITE_4(sc, CAS_MIF_CONF, v); 338 CAS_BARRIER(sc, CAS_MIF_CONF, 4, 339 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 340 /* Enable/unfreeze the GMII pins of Saturn. */ 341 if (sc->sc_variant == CAS_SATURN) { 342 CAS_WRITE_4(sc, CAS_SATURN_PCFG, 0); 343 CAS_BARRIER(sc, CAS_SATURN_PCFG, 4, 344 BUS_SPACE_BARRIER_READ | 345 BUS_SPACE_BARRIER_WRITE); 346 } 347 error = mii_attach(sc->sc_dev, &sc->sc_miibus, ifp, 348 cas_mediachange, cas_mediastatus, BMSR_DEFCAPMASK, 349 MII_PHY_ANY, MII_OFFSET_ANY, MIIF_DOPAUSE); 350 } 351 /* 352 * Fall back on an internal PHY if no external PHY was found. 353 */ 354 if (error != 0 && (v & CAS_MIF_CONF_MDI0) != 0) { 355 v &= ~CAS_MIF_CONF_PHY_SELECT; 356 CAS_WRITE_4(sc, CAS_MIF_CONF, v); 357 CAS_BARRIER(sc, CAS_MIF_CONF, 4, 358 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 359 /* Freeze the GMII pins of Saturn for saving power. */ 360 if (sc->sc_variant == CAS_SATURN) { 361 CAS_WRITE_4(sc, CAS_SATURN_PCFG, 362 CAS_SATURN_PCFG_FSI); 363 CAS_BARRIER(sc, CAS_SATURN_PCFG, 4, 364 BUS_SPACE_BARRIER_READ | 365 BUS_SPACE_BARRIER_WRITE); 366 } 367 error = mii_attach(sc->sc_dev, &sc->sc_miibus, ifp, 368 cas_mediachange, cas_mediastatus, BMSR_DEFCAPMASK, 369 MII_PHY_ANY, MII_OFFSET_ANY, MIIF_DOPAUSE); 370 } 371 } else { 372 /* 373 * Use the external PCS SERDES. 374 */ 375 CAS_WRITE_4(sc, CAS_PCS_DATAPATH, CAS_PCS_DATAPATH_SERDES); 376 CAS_BARRIER(sc, CAS_PCS_DATAPATH, 4, BUS_SPACE_BARRIER_WRITE); 377 /* Enable/unfreeze the SERDES pins of Saturn. */ 378 if (sc->sc_variant == CAS_SATURN) { 379 CAS_WRITE_4(sc, CAS_SATURN_PCFG, 0); 380 CAS_BARRIER(sc, CAS_SATURN_PCFG, 4, 381 BUS_SPACE_BARRIER_WRITE); 382 } 383 CAS_WRITE_4(sc, CAS_PCS_SERDES_CTRL, CAS_PCS_SERDES_CTRL_ESD); 384 CAS_BARRIER(sc, CAS_PCS_SERDES_CTRL, 4, 385 BUS_SPACE_BARRIER_WRITE); 386 CAS_WRITE_4(sc, CAS_PCS_CONF, CAS_PCS_CONF_EN); 387 CAS_BARRIER(sc, CAS_PCS_CONF, 4, 388 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 389 error = mii_attach(sc->sc_dev, &sc->sc_miibus, ifp, 390 cas_mediachange, cas_mediastatus, BMSR_DEFCAPMASK, 391 CAS_PHYAD_EXTERNAL, MII_OFFSET_ANY, MIIF_DOPAUSE); 392 } 393 if (error != 0) { 394 device_printf(sc->sc_dev, "attaching PHYs failed\n"); 395 goto fail_rxmap; 396 } 397 sc->sc_mii = device_get_softc(sc->sc_miibus); 398 399 /* 400 * From this point forward, the attachment cannot fail. A failure 401 * before this point releases all resources that may have been 402 * allocated. 403 */ 404 405 /* Announce FIFO sizes. */ 406 v = CAS_READ_4(sc, CAS_TX_FIFO_SIZE); 407 device_printf(sc->sc_dev, "%ukB RX FIFO, %ukB TX FIFO\n", 408 CAS_RX_FIFO_SIZE / 1024, v / 16); 409 410 /* Attach the interface. */ 411 ether_ifattach(ifp, sc->sc_enaddr); 412 413 /* 414 * Tell the upper layer(s) we support long frames/checksum offloads. 415 */ 416 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); 417 ifp->if_capabilities = IFCAP_VLAN_MTU; 418 if ((sc->sc_flags & CAS_NO_CSUM) == 0) { 419 ifp->if_capabilities |= IFCAP_HWCSUM; 420 ifp->if_hwassist = CAS_CSUM_FEATURES; 421 } 422 ifp->if_capenable = ifp->if_capabilities; 423 424 return (0); 425 426 /* 427 * Free any resources we've allocated during the failed attach 428 * attempt. Do this in reverse order and fall through. 429 */ 430 fail_rxmap: 431 for (i = 0; i < CAS_NRXDESC; i++) 432 if (sc->sc_rxdsoft[i].rxds_paddr != 0) 433 bus_dmamap_unload(sc->sc_rdmatag, 434 sc->sc_rxdsoft[i].rxds_dmamap); 435 fail_rxmem: 436 for (i = 0; i < CAS_NRXDESC; i++) 437 if (sc->sc_rxdsoft[i].rxds_buf != NULL) 438 bus_dmamem_free(sc->sc_rdmatag, 439 sc->sc_rxdsoft[i].rxds_buf, 440 sc->sc_rxdsoft[i].rxds_dmamap); 441 fail_txd: 442 for (i = 0; i < CAS_TXQUEUELEN; i++) 443 if (sc->sc_txsoft[i].txs_dmamap != NULL) 444 bus_dmamap_destroy(sc->sc_tdmatag, 445 sc->sc_txsoft[i].txs_dmamap); 446 bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cddmamap); 447 fail_cmem: 448 bus_dmamem_free(sc->sc_cdmatag, sc->sc_control_data, 449 sc->sc_cddmamap); 450 fail_ctag: 451 bus_dma_tag_destroy(sc->sc_cdmatag); 452 fail_ttag: 453 bus_dma_tag_destroy(sc->sc_tdmatag); 454 fail_rtag: 455 bus_dma_tag_destroy(sc->sc_rdmatag); 456 fail_ptag: 457 bus_dma_tag_destroy(sc->sc_pdmatag); 458 fail_taskq: 459 taskqueue_free(sc->sc_tq); 460 fail_ifnet: 461 if_free(ifp); 462 return (error); 463 } 464 465 static void 466 cas_detach(struct cas_softc *sc) 467 { 468 struct ifnet *ifp = sc->sc_ifp; 469 int i; 470 471 ether_ifdetach(ifp); 472 CAS_LOCK(sc); 473 cas_stop(ifp); 474 CAS_UNLOCK(sc); 475 callout_drain(&sc->sc_tick_ch); 476 callout_drain(&sc->sc_rx_ch); 477 taskqueue_drain(sc->sc_tq, &sc->sc_intr_task); 478 taskqueue_drain(sc->sc_tq, &sc->sc_tx_task); 479 if_free(ifp); 480 taskqueue_free(sc->sc_tq); 481 device_delete_child(sc->sc_dev, sc->sc_miibus); 482 483 for (i = 0; i < CAS_NRXDESC; i++) 484 if (sc->sc_rxdsoft[i].rxds_dmamap != NULL) 485 bus_dmamap_sync(sc->sc_rdmatag, 486 sc->sc_rxdsoft[i].rxds_dmamap, 487 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 488 for (i = 0; i < CAS_NRXDESC; i++) 489 if (sc->sc_rxdsoft[i].rxds_paddr != 0) 490 bus_dmamap_unload(sc->sc_rdmatag, 491 sc->sc_rxdsoft[i].rxds_dmamap); 492 for (i = 0; i < CAS_NRXDESC; i++) 493 if (sc->sc_rxdsoft[i].rxds_buf != NULL) 494 bus_dmamem_free(sc->sc_rdmatag, 495 sc->sc_rxdsoft[i].rxds_buf, 496 sc->sc_rxdsoft[i].rxds_dmamap); 497 for (i = 0; i < CAS_TXQUEUELEN; i++) 498 if (sc->sc_txsoft[i].txs_dmamap != NULL) 499 bus_dmamap_destroy(sc->sc_tdmatag, 500 sc->sc_txsoft[i].txs_dmamap); 501 CAS_CDSYNC(sc, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 502 bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cddmamap); 503 bus_dmamem_free(sc->sc_cdmatag, sc->sc_control_data, 504 sc->sc_cddmamap); 505 bus_dma_tag_destroy(sc->sc_cdmatag); 506 bus_dma_tag_destroy(sc->sc_tdmatag); 507 bus_dma_tag_destroy(sc->sc_rdmatag); 508 bus_dma_tag_destroy(sc->sc_pdmatag); 509 } 510 511 static void 512 cas_suspend(struct cas_softc *sc) 513 { 514 struct ifnet *ifp = sc->sc_ifp; 515 516 CAS_LOCK(sc); 517 cas_stop(ifp); 518 CAS_UNLOCK(sc); 519 } 520 521 static void 522 cas_resume(struct cas_softc *sc) 523 { 524 struct ifnet *ifp = sc->sc_ifp; 525 526 CAS_LOCK(sc); 527 /* 528 * On resume all registers have to be initialized again like 529 * after power-on. 530 */ 531 sc->sc_flags &= ~CAS_INITED; 532 if (ifp->if_flags & IFF_UP) 533 cas_init_locked(sc); 534 CAS_UNLOCK(sc); 535 } 536 537 static inline void 538 cas_rxcksum(struct mbuf *m, uint16_t cksum) 539 { 540 struct ether_header *eh; 541 struct ip *ip; 542 struct udphdr *uh; 543 uint16_t *opts; 544 int32_t hlen, len, pktlen; 545 uint32_t temp32; 546 547 pktlen = m->m_pkthdr.len; 548 if (pktlen < sizeof(struct ether_header) + sizeof(struct ip)) 549 return; 550 eh = mtod(m, struct ether_header *); 551 if (eh->ether_type != htons(ETHERTYPE_IP)) 552 return; 553 ip = (struct ip *)(eh + 1); 554 if (ip->ip_v != IPVERSION) 555 return; 556 557 hlen = ip->ip_hl << 2; 558 pktlen -= sizeof(struct ether_header); 559 if (hlen < sizeof(struct ip)) 560 return; 561 if (ntohs(ip->ip_len) < hlen) 562 return; 563 if (ntohs(ip->ip_len) != pktlen) 564 return; 565 if (ip->ip_off & htons(IP_MF | IP_OFFMASK)) 566 return; /* Cannot handle fragmented packet. */ 567 568 switch (ip->ip_p) { 569 case IPPROTO_TCP: 570 if (pktlen < (hlen + sizeof(struct tcphdr))) 571 return; 572 break; 573 case IPPROTO_UDP: 574 if (pktlen < (hlen + sizeof(struct udphdr))) 575 return; 576 uh = (struct udphdr *)((uint8_t *)ip + hlen); 577 if (uh->uh_sum == 0) 578 return; /* no checksum */ 579 break; 580 default: 581 return; 582 } 583 584 cksum = ~cksum; 585 /* checksum fixup for IP options */ 586 len = hlen - sizeof(struct ip); 587 if (len > 0) { 588 opts = (uint16_t *)(ip + 1); 589 for (; len > 0; len -= sizeof(uint16_t), opts++) { 590 temp32 = cksum - *opts; 591 temp32 = (temp32 >> 16) + (temp32 & 65535); 592 cksum = temp32 & 65535; 593 } 594 } 595 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID; 596 m->m_pkthdr.csum_data = cksum; 597 } 598 599 static void 600 cas_cddma_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, int error) 601 { 602 struct cas_softc *sc = xsc; 603 604 if (error != 0) 605 return; 606 if (nsegs != 1) 607 panic("%s: bad control buffer segment count", __func__); 608 sc->sc_cddma = segs[0].ds_addr; 609 } 610 611 static void 612 cas_rxdma_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, int error) 613 { 614 struct cas_softc *sc = xsc; 615 616 if (error != 0) 617 return; 618 if (nsegs != 1) 619 panic("%s: bad RX buffer segment count", __func__); 620 sc->sc_rxdsoft[sc->sc_rxdptr].rxds_paddr = segs[0].ds_addr; 621 } 622 623 static void 624 cas_tick(void *arg) 625 { 626 struct cas_softc *sc = arg; 627 struct ifnet *ifp = sc->sc_ifp; 628 uint32_t v; 629 630 CAS_LOCK_ASSERT(sc, MA_OWNED); 631 632 /* 633 * Unload collision and error counters. 634 */ 635 ifp->if_collisions += 636 CAS_READ_4(sc, CAS_MAC_NORM_COLL_CNT) + 637 CAS_READ_4(sc, CAS_MAC_FIRST_COLL_CNT); 638 v = CAS_READ_4(sc, CAS_MAC_EXCESS_COLL_CNT) + 639 CAS_READ_4(sc, CAS_MAC_LATE_COLL_CNT); 640 ifp->if_collisions += v; 641 ifp->if_oerrors += v; 642 ifp->if_ierrors += 643 CAS_READ_4(sc, CAS_MAC_RX_LEN_ERR_CNT) + 644 CAS_READ_4(sc, CAS_MAC_RX_ALIGN_ERR) + 645 CAS_READ_4(sc, CAS_MAC_RX_CRC_ERR_CNT) + 646 CAS_READ_4(sc, CAS_MAC_RX_CODE_VIOL); 647 648 /* 649 * Then clear the hardware counters. 650 */ 651 CAS_WRITE_4(sc, CAS_MAC_NORM_COLL_CNT, 0); 652 CAS_WRITE_4(sc, CAS_MAC_FIRST_COLL_CNT, 0); 653 CAS_WRITE_4(sc, CAS_MAC_EXCESS_COLL_CNT, 0); 654 CAS_WRITE_4(sc, CAS_MAC_LATE_COLL_CNT, 0); 655 CAS_WRITE_4(sc, CAS_MAC_RX_LEN_ERR_CNT, 0); 656 CAS_WRITE_4(sc, CAS_MAC_RX_ALIGN_ERR, 0); 657 CAS_WRITE_4(sc, CAS_MAC_RX_CRC_ERR_CNT, 0); 658 CAS_WRITE_4(sc, CAS_MAC_RX_CODE_VIOL, 0); 659 660 mii_tick(sc->sc_mii); 661 662 if (sc->sc_txfree != CAS_MAXTXFREE) 663 cas_tint(sc); 664 665 cas_watchdog(sc); 666 667 callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc); 668 } 669 670 static int 671 cas_bitwait(struct cas_softc *sc, bus_addr_t r, uint32_t clr, uint32_t set) 672 { 673 int i; 674 uint32_t reg; 675 676 for (i = CAS_TRIES; i--; DELAY(100)) { 677 reg = CAS_READ_4(sc, r); 678 if ((reg & clr) == 0 && (reg & set) == set) 679 return (1); 680 } 681 return (0); 682 } 683 684 static void 685 cas_reset(struct cas_softc *sc) 686 { 687 688 #ifdef CAS_DEBUG 689 CTR2(KTR_CAS, "%s: %s", device_get_name(sc->sc_dev), __func__); 690 #endif 691 /* Disable all interrupts in order to avoid spurious ones. */ 692 CAS_WRITE_4(sc, CAS_INTMASK, 0xffffffff); 693 694 cas_reset_rx(sc); 695 cas_reset_tx(sc); 696 697 /* 698 * Do a full reset modulo the result of the last auto-negotiation 699 * when using the SERDES. 700 */ 701 CAS_WRITE_4(sc, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX | 702 ((sc->sc_flags & CAS_SERDES) != 0 ? CAS_RESET_PCS_DIS : 0)); 703 CAS_BARRIER(sc, CAS_RESET, 4, 704 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 705 DELAY(3000); 706 if (!cas_bitwait(sc, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0)) 707 device_printf(sc->sc_dev, "cannot reset device\n"); 708 } 709 710 static void 711 cas_stop(struct ifnet *ifp) 712 { 713 struct cas_softc *sc = ifp->if_softc; 714 struct cas_txsoft *txs; 715 716 #ifdef CAS_DEBUG 717 CTR2(KTR_CAS, "%s: %s", device_get_name(sc->sc_dev), __func__); 718 #endif 719 720 callout_stop(&sc->sc_tick_ch); 721 callout_stop(&sc->sc_rx_ch); 722 723 /* Disable all interrupts in order to avoid spurious ones. */ 724 CAS_WRITE_4(sc, CAS_INTMASK, 0xffffffff); 725 726 cas_reset_tx(sc); 727 cas_reset_rx(sc); 728 729 /* 730 * Release any queued transmit buffers. 731 */ 732 while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) { 733 STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q); 734 if (txs->txs_ndescs != 0) { 735 bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap, 736 BUS_DMASYNC_POSTWRITE); 737 bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap); 738 if (txs->txs_mbuf != NULL) { 739 m_freem(txs->txs_mbuf); 740 txs->txs_mbuf = NULL; 741 } 742 } 743 STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); 744 } 745 746 /* 747 * Mark the interface down and cancel the watchdog timer. 748 */ 749 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 750 sc->sc_flags &= ~CAS_LINK; 751 sc->sc_wdog_timer = 0; 752 } 753 754 static int 755 cas_reset_rx(struct cas_softc *sc) 756 { 757 758 /* 759 * Resetting while DMA is in progress can cause a bus hang, so we 760 * disable DMA first. 761 */ 762 (void)cas_disable_rx(sc); 763 CAS_WRITE_4(sc, CAS_RX_CONF, 0); 764 CAS_BARRIER(sc, CAS_RX_CONF, 4, 765 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 766 if (!cas_bitwait(sc, CAS_RX_CONF, CAS_RX_CONF_RXDMA_EN, 0)) 767 device_printf(sc->sc_dev, "cannot disable RX DMA\n"); 768 769 /* Finally, reset the ERX. */ 770 CAS_WRITE_4(sc, CAS_RESET, CAS_RESET_RX | 771 ((sc->sc_flags & CAS_SERDES) != 0 ? CAS_RESET_PCS_DIS : 0)); 772 CAS_BARRIER(sc, CAS_RESET, 4, 773 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 774 if (!cas_bitwait(sc, CAS_RESET, CAS_RESET_RX, 0)) { 775 device_printf(sc->sc_dev, "cannot reset receiver\n"); 776 return (1); 777 } 778 return (0); 779 } 780 781 static int 782 cas_reset_tx(struct cas_softc *sc) 783 { 784 785 /* 786 * Resetting while DMA is in progress can cause a bus hang, so we 787 * disable DMA first. 788 */ 789 (void)cas_disable_tx(sc); 790 CAS_WRITE_4(sc, CAS_TX_CONF, 0); 791 CAS_BARRIER(sc, CAS_TX_CONF, 4, 792 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 793 if (!cas_bitwait(sc, CAS_TX_CONF, CAS_TX_CONF_TXDMA_EN, 0)) 794 device_printf(sc->sc_dev, "cannot disable TX DMA\n"); 795 796 /* Finally, reset the ETX. */ 797 CAS_WRITE_4(sc, CAS_RESET, CAS_RESET_TX | 798 ((sc->sc_flags & CAS_SERDES) != 0 ? CAS_RESET_PCS_DIS : 0)); 799 CAS_BARRIER(sc, CAS_RESET, 4, 800 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 801 if (!cas_bitwait(sc, CAS_RESET, CAS_RESET_TX, 0)) { 802 device_printf(sc->sc_dev, "cannot reset transmitter\n"); 803 return (1); 804 } 805 return (0); 806 } 807 808 static int 809 cas_disable_rx(struct cas_softc *sc) 810 { 811 812 CAS_WRITE_4(sc, CAS_MAC_RX_CONF, 813 CAS_READ_4(sc, CAS_MAC_RX_CONF) & ~CAS_MAC_RX_CONF_EN); 814 CAS_BARRIER(sc, CAS_MAC_RX_CONF, 4, 815 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 816 if (cas_bitwait(sc, CAS_MAC_RX_CONF, CAS_MAC_RX_CONF_EN, 0)) 817 return (1); 818 device_printf(sc->sc_dev, "cannot disable RX MAC\n"); 819 return (0); 820 } 821 822 static int 823 cas_disable_tx(struct cas_softc *sc) 824 { 825 826 CAS_WRITE_4(sc, CAS_MAC_TX_CONF, 827 CAS_READ_4(sc, CAS_MAC_TX_CONF) & ~CAS_MAC_TX_CONF_EN); 828 CAS_BARRIER(sc, CAS_MAC_TX_CONF, 4, 829 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 830 if (cas_bitwait(sc, CAS_MAC_TX_CONF, CAS_MAC_TX_CONF_EN, 0)) 831 return (1); 832 device_printf(sc->sc_dev, "cannot disable TX MAC\n"); 833 return (0); 834 } 835 836 static inline void 837 cas_rxcompinit(struct cas_rx_comp *rxcomp) 838 { 839 840 rxcomp->crc_word1 = 0; 841 rxcomp->crc_word2 = 0; 842 rxcomp->crc_word3 = 843 htole64(CAS_SET(ETHER_HDR_LEN + sizeof(struct ip), CAS_RC3_CSO)); 844 rxcomp->crc_word4 = htole64(CAS_RC4_ZERO); 845 } 846 847 static void 848 cas_meminit(struct cas_softc *sc) 849 { 850 int i; 851 852 CAS_LOCK_ASSERT(sc, MA_OWNED); 853 854 /* 855 * Initialize the transmit descriptor ring. 856 */ 857 for (i = 0; i < CAS_NTXDESC; i++) { 858 sc->sc_txdescs[i].cd_flags = 0; 859 sc->sc_txdescs[i].cd_buf_ptr = 0; 860 } 861 sc->sc_txfree = CAS_MAXTXFREE; 862 sc->sc_txnext = 0; 863 sc->sc_txwin = 0; 864 865 /* 866 * Initialize the receive completion ring. 867 */ 868 for (i = 0; i < CAS_NRXCOMP; i++) 869 cas_rxcompinit(&sc->sc_rxcomps[i]); 870 sc->sc_rxcptr = 0; 871 872 /* 873 * Initialize the first receive descriptor ring. We leave 874 * the second one zeroed as we don't actually use it. 875 */ 876 for (i = 0; i < CAS_NRXDESC; i++) 877 CAS_INIT_RXDESC(sc, i, i); 878 sc->sc_rxdptr = 0; 879 880 CAS_CDSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 881 } 882 883 static u_int 884 cas_descsize(u_int sz) 885 { 886 887 switch (sz) { 888 case 32: 889 return (CAS_DESC_32); 890 case 64: 891 return (CAS_DESC_64); 892 case 128: 893 return (CAS_DESC_128); 894 case 256: 895 return (CAS_DESC_256); 896 case 512: 897 return (CAS_DESC_512); 898 case 1024: 899 return (CAS_DESC_1K); 900 case 2048: 901 return (CAS_DESC_2K); 902 case 4096: 903 return (CAS_DESC_4K); 904 case 8192: 905 return (CAS_DESC_8K); 906 default: 907 printf("%s: invalid descriptor ring size %d\n", __func__, sz); 908 return (CAS_DESC_32); 909 } 910 } 911 912 static u_int 913 cas_rxcompsize(u_int sz) 914 { 915 916 switch (sz) { 917 case 128: 918 return (CAS_RX_CONF_COMP_128); 919 case 256: 920 return (CAS_RX_CONF_COMP_256); 921 case 512: 922 return (CAS_RX_CONF_COMP_512); 923 case 1024: 924 return (CAS_RX_CONF_COMP_1K); 925 case 2048: 926 return (CAS_RX_CONF_COMP_2K); 927 case 4096: 928 return (CAS_RX_CONF_COMP_4K); 929 case 8192: 930 return (CAS_RX_CONF_COMP_8K); 931 case 16384: 932 return (CAS_RX_CONF_COMP_16K); 933 case 32768: 934 return (CAS_RX_CONF_COMP_32K); 935 default: 936 printf("%s: invalid dcompletion ring size %d\n", __func__, sz); 937 return (CAS_RX_CONF_COMP_128); 938 } 939 } 940 941 static void 942 cas_init(void *xsc) 943 { 944 struct cas_softc *sc = xsc; 945 946 CAS_LOCK(sc); 947 cas_init_locked(sc); 948 CAS_UNLOCK(sc); 949 } 950 951 /* 952 * Initialization of interface; set up initialization block 953 * and transmit/receive descriptor rings. 954 */ 955 static void 956 cas_init_locked(struct cas_softc *sc) 957 { 958 struct ifnet *ifp = sc->sc_ifp; 959 uint32_t v; 960 961 CAS_LOCK_ASSERT(sc, MA_OWNED); 962 963 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 964 return; 965 966 #ifdef CAS_DEBUG 967 CTR2(KTR_CAS, "%s: %s: calling stop", device_get_name(sc->sc_dev), 968 __func__); 969 #endif 970 /* 971 * Initialization sequence. The numbered steps below correspond 972 * to the sequence outlined in section 6.3.5.1 in the Ethernet 973 * Channel Engine manual (part of the PCIO manual). 974 * See also the STP2002-STQ document from Sun Microsystems. 975 */ 976 977 /* step 1 & 2. Reset the Ethernet Channel. */ 978 cas_stop(ifp); 979 cas_reset(sc); 980 #ifdef CAS_DEBUG 981 CTR2(KTR_CAS, "%s: %s: restarting", device_get_name(sc->sc_dev), 982 __func__); 983 #endif 984 985 if ((sc->sc_flags & CAS_SERDES) == 0) 986 /* Re-initialize the MIF. */ 987 cas_mifinit(sc); 988 989 /* step 3. Setup data structures in host memory. */ 990 cas_meminit(sc); 991 992 /* step 4. TX MAC registers & counters */ 993 cas_init_regs(sc); 994 995 /* step 5. RX MAC registers & counters */ 996 997 /* step 6 & 7. Program Ring Base Addresses. */ 998 CAS_WRITE_4(sc, CAS_TX_DESC3_BASE_HI, 999 (((uint64_t)CAS_CDTXDADDR(sc, 0)) >> 32)); 1000 CAS_WRITE_4(sc, CAS_TX_DESC3_BASE_LO, 1001 CAS_CDTXDADDR(sc, 0) & 0xffffffff); 1002 1003 CAS_WRITE_4(sc, CAS_RX_COMP_BASE_HI, 1004 (((uint64_t)CAS_CDRXCADDR(sc, 0)) >> 32)); 1005 CAS_WRITE_4(sc, CAS_RX_COMP_BASE_LO, 1006 CAS_CDRXCADDR(sc, 0) & 0xffffffff); 1007 1008 CAS_WRITE_4(sc, CAS_RX_DESC_BASE_HI, 1009 (((uint64_t)CAS_CDRXDADDR(sc, 0)) >> 32)); 1010 CAS_WRITE_4(sc, CAS_RX_DESC_BASE_LO, 1011 CAS_CDRXDADDR(sc, 0) & 0xffffffff); 1012 1013 if ((sc->sc_flags & CAS_REG_PLUS) != 0) { 1014 CAS_WRITE_4(sc, CAS_RX_DESC2_BASE_HI, 1015 (((uint64_t)CAS_CDRXD2ADDR(sc, 0)) >> 32)); 1016 CAS_WRITE_4(sc, CAS_RX_DESC2_BASE_LO, 1017 CAS_CDRXD2ADDR(sc, 0) & 0xffffffff); 1018 } 1019 1020 #ifdef CAS_DEBUG 1021 CTR5(KTR_CAS, 1022 "loading TXDR %lx, RXCR %lx, RXDR %lx, RXD2R %lx, cddma %lx", 1023 CAS_CDTXDADDR(sc, 0), CAS_CDRXCADDR(sc, 0), CAS_CDRXDADDR(sc, 0), 1024 CAS_CDRXD2ADDR(sc, 0), sc->sc_cddma); 1025 #endif 1026 1027 /* step 8. Global Configuration & Interrupt Masks */ 1028 1029 /* Disable weighted round robin. */ 1030 CAS_WRITE_4(sc, CAS_CAW, CAS_CAW_RR_DIS); 1031 1032 /* 1033 * Enable infinite bursts for revisions without PCI issues if 1034 * applicable. Doing so greatly improves the TX performance on 1035 * !__sparc64__. 1036 */ 1037 CAS_WRITE_4(sc, CAS_INF_BURST, 1038 #if !defined(__sparc64__) 1039 (sc->sc_flags & CAS_TABORT) == 0 ? CAS_INF_BURST_EN : 1040 #endif 1041 0); 1042 1043 /* Set up interrupts. */ 1044 CAS_WRITE_4(sc, CAS_INTMASK, 1045 ~(CAS_INTR_TX_INT_ME | CAS_INTR_TX_TAG_ERR | 1046 CAS_INTR_RX_DONE | CAS_INTR_RX_BUF_NA | CAS_INTR_RX_TAG_ERR | 1047 CAS_INTR_RX_COMP_FULL | CAS_INTR_RX_BUF_AEMPTY | 1048 CAS_INTR_RX_COMP_AFULL | CAS_INTR_RX_LEN_MMATCH | 1049 CAS_INTR_PCI_ERROR_INT 1050 #ifdef CAS_DEBUG 1051 | CAS_INTR_PCS_INT | CAS_INTR_MIF 1052 #endif 1053 )); 1054 /* Don't clear top level interrupts when CAS_STATUS_ALIAS is read. */ 1055 CAS_WRITE_4(sc, CAS_CLEAR_ALIAS, 0); 1056 CAS_WRITE_4(sc, CAS_MAC_RX_MASK, ~CAS_MAC_RX_OVERFLOW); 1057 CAS_WRITE_4(sc, CAS_MAC_TX_MASK, 1058 ~(CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_MAX_PKT_ERR)); 1059 #ifdef CAS_DEBUG 1060 CAS_WRITE_4(sc, CAS_MAC_CTRL_MASK, 1061 ~(CAS_MAC_CTRL_PAUSE_RCVD | CAS_MAC_CTRL_PAUSE | 1062 CAS_MAC_CTRL_NON_PAUSE)); 1063 #else 1064 CAS_WRITE_4(sc, CAS_MAC_CTRL_MASK, 1065 CAS_MAC_CTRL_PAUSE_RCVD | CAS_MAC_CTRL_PAUSE | 1066 CAS_MAC_CTRL_NON_PAUSE); 1067 #endif 1068 1069 /* Enable PCI error interrupts. */ 1070 CAS_WRITE_4(sc, CAS_ERROR_MASK, 1071 ~(CAS_ERROR_DTRTO | CAS_ERROR_OTHER | CAS_ERROR_DMAW_ZERO | 1072 CAS_ERROR_DMAR_ZERO | CAS_ERROR_RTRTO)); 1073 1074 /* Enable PCI error interrupts in BIM configuration. */ 1075 CAS_WRITE_4(sc, CAS_BIM_CONF, 1076 CAS_BIM_CONF_DPAR_EN | CAS_BIM_CONF_RMA_EN | CAS_BIM_CONF_RTA_EN); 1077 1078 /* 1079 * step 9. ETX Configuration: encode receive descriptor ring size, 1080 * enable DMA and disable pre-interrupt writeback completion. 1081 */ 1082 v = cas_descsize(CAS_NTXDESC) << CAS_TX_CONF_DESC3_SHFT; 1083 CAS_WRITE_4(sc, CAS_TX_CONF, v | CAS_TX_CONF_TXDMA_EN | 1084 CAS_TX_CONF_RDPP_DIS | CAS_TX_CONF_PICWB_DIS); 1085 1086 /* step 10. ERX Configuration */ 1087 1088 /* 1089 * Encode receive completion and descriptor ring sizes, set the 1090 * swivel offset. 1091 */ 1092 v = cas_rxcompsize(CAS_NRXCOMP) << CAS_RX_CONF_COMP_SHFT; 1093 v |= cas_descsize(CAS_NRXDESC) << CAS_RX_CONF_DESC_SHFT; 1094 if ((sc->sc_flags & CAS_REG_PLUS) != 0) 1095 v |= cas_descsize(CAS_NRXDESC2) << CAS_RX_CONF_DESC2_SHFT; 1096 CAS_WRITE_4(sc, CAS_RX_CONF, 1097 v | (ETHER_ALIGN << CAS_RX_CONF_SOFF_SHFT)); 1098 1099 /* Set the PAUSE thresholds. We use the maximum OFF threshold. */ 1100 CAS_WRITE_4(sc, CAS_RX_PTHRS, 1101 (111 << CAS_RX_PTHRS_XOFF_SHFT) | (15 << CAS_RX_PTHRS_XON_SHFT)); 1102 1103 /* RX blanking */ 1104 CAS_WRITE_4(sc, CAS_RX_BLANK, 1105 (15 << CAS_RX_BLANK_TIME_SHFT) | (5 << CAS_RX_BLANK_PKTS_SHFT)); 1106 1107 /* Set RX_COMP_AFULL threshold to half of the RX completions. */ 1108 CAS_WRITE_4(sc, CAS_RX_AEMPTY_THRS, 1109 (CAS_NRXCOMP / 2) << CAS_RX_AEMPTY_COMP_SHFT); 1110 1111 /* Initialize the RX page size register as appropriate for 8k. */ 1112 CAS_WRITE_4(sc, CAS_RX_PSZ, 1113 (CAS_RX_PSZ_8K << CAS_RX_PSZ_SHFT) | 1114 (4 << CAS_RX_PSZ_MB_CNT_SHFT) | 1115 (CAS_RX_PSZ_MB_STRD_2K << CAS_RX_PSZ_MB_STRD_SHFT) | 1116 (CAS_RX_PSZ_MB_OFF_64 << CAS_RX_PSZ_MB_OFF_SHFT)); 1117 1118 /* Disable RX random early detection. */ 1119 CAS_WRITE_4(sc, CAS_RX_RED, 0); 1120 1121 /* Zero the RX reassembly DMA table. */ 1122 for (v = 0; v <= CAS_RX_REAS_DMA_ADDR_LC; v++) { 1123 CAS_WRITE_4(sc, CAS_RX_REAS_DMA_ADDR, v); 1124 CAS_WRITE_4(sc, CAS_RX_REAS_DMA_DATA_LO, 0); 1125 CAS_WRITE_4(sc, CAS_RX_REAS_DMA_DATA_MD, 0); 1126 CAS_WRITE_4(sc, CAS_RX_REAS_DMA_DATA_HI, 0); 1127 } 1128 1129 /* Ensure the RX control FIFO and RX IPP FIFO addresses are zero. */ 1130 CAS_WRITE_4(sc, CAS_RX_CTRL_FIFO, 0); 1131 CAS_WRITE_4(sc, CAS_RX_IPP_ADDR, 0); 1132 1133 /* Finally, enable RX DMA. */ 1134 CAS_WRITE_4(sc, CAS_RX_CONF, 1135 CAS_READ_4(sc, CAS_RX_CONF) | CAS_RX_CONF_RXDMA_EN); 1136 1137 /* step 11. Configure Media. */ 1138 1139 /* step 12. RX_MAC Configuration Register */ 1140 v = CAS_READ_4(sc, CAS_MAC_RX_CONF); 1141 v &= ~(CAS_MAC_RX_CONF_STRPPAD | CAS_MAC_RX_CONF_EN); 1142 v |= CAS_MAC_RX_CONF_STRPFCS; 1143 sc->sc_mac_rxcfg = v; 1144 /* 1145 * Clear the RX filter and reprogram it. This will also set the 1146 * current RX MAC configuration and enable it. 1147 */ 1148 cas_setladrf(sc); 1149 1150 /* step 13. TX_MAC Configuration Register */ 1151 v = CAS_READ_4(sc, CAS_MAC_TX_CONF); 1152 v |= CAS_MAC_TX_CONF_EN; 1153 (void)cas_disable_tx(sc); 1154 CAS_WRITE_4(sc, CAS_MAC_TX_CONF, v); 1155 1156 /* step 14. Issue Transmit Pending command. */ 1157 1158 /* step 15. Give the receiver a swift kick. */ 1159 CAS_WRITE_4(sc, CAS_RX_KICK, CAS_NRXDESC - 4); 1160 CAS_WRITE_4(sc, CAS_RX_COMP_TAIL, 0); 1161 if ((sc->sc_flags & CAS_REG_PLUS) != 0) 1162 CAS_WRITE_4(sc, CAS_RX_KICK2, CAS_NRXDESC2 - 4); 1163 1164 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1165 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1166 1167 mii_mediachg(sc->sc_mii); 1168 1169 /* Start the one second timer. */ 1170 sc->sc_wdog_timer = 0; 1171 callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc); 1172 } 1173 1174 static int 1175 cas_load_txmbuf(struct cas_softc *sc, struct mbuf **m_head) 1176 { 1177 bus_dma_segment_t txsegs[CAS_NTXSEGS]; 1178 struct cas_txsoft *txs; 1179 struct ip *ip; 1180 struct mbuf *m; 1181 uint64_t cflags; 1182 int error, nexttx, nsegs, offset, seg; 1183 1184 CAS_LOCK_ASSERT(sc, MA_OWNED); 1185 1186 /* Get a work queue entry. */ 1187 if ((txs = STAILQ_FIRST(&sc->sc_txfreeq)) == NULL) { 1188 /* Ran out of descriptors. */ 1189 return (ENOBUFS); 1190 } 1191 1192 cflags = 0; 1193 if (((*m_head)->m_pkthdr.csum_flags & CAS_CSUM_FEATURES) != 0) { 1194 if (M_WRITABLE(*m_head) == 0) { 1195 m = m_dup(*m_head, M_DONTWAIT); 1196 m_freem(*m_head); 1197 *m_head = m; 1198 if (m == NULL) 1199 return (ENOBUFS); 1200 } 1201 offset = sizeof(struct ether_header); 1202 m = m_pullup(*m_head, offset + sizeof(struct ip)); 1203 if (m == NULL) { 1204 *m_head = NULL; 1205 return (ENOBUFS); 1206 } 1207 ip = (struct ip *)(mtod(m, caddr_t) + offset); 1208 offset += (ip->ip_hl << 2); 1209 cflags = (offset << CAS_TD_CKSUM_START_SHFT) | 1210 ((offset + m->m_pkthdr.csum_data) << 1211 CAS_TD_CKSUM_STUFF_SHFT) | CAS_TD_CKSUM_EN; 1212 *m_head = m; 1213 } 1214 1215 error = bus_dmamap_load_mbuf_sg(sc->sc_tdmatag, txs->txs_dmamap, 1216 *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT); 1217 if (error == EFBIG) { 1218 m = m_collapse(*m_head, M_DONTWAIT, CAS_NTXSEGS); 1219 if (m == NULL) { 1220 m_freem(*m_head); 1221 *m_head = NULL; 1222 return (ENOBUFS); 1223 } 1224 *m_head = m; 1225 error = bus_dmamap_load_mbuf_sg(sc->sc_tdmatag, 1226 txs->txs_dmamap, *m_head, txsegs, &nsegs, 1227 BUS_DMA_NOWAIT); 1228 if (error != 0) { 1229 m_freem(*m_head); 1230 *m_head = NULL; 1231 return (error); 1232 } 1233 } else if (error != 0) 1234 return (error); 1235 /* If nsegs is wrong then the stack is corrupt. */ 1236 KASSERT(nsegs <= CAS_NTXSEGS, 1237 ("%s: too many DMA segments (%d)", __func__, nsegs)); 1238 if (nsegs == 0) { 1239 m_freem(*m_head); 1240 *m_head = NULL; 1241 return (EIO); 1242 } 1243 1244 /* 1245 * Ensure we have enough descriptors free to describe 1246 * the packet. Note, we always reserve one descriptor 1247 * at the end of the ring as a termination point, in 1248 * order to prevent wrap-around. 1249 */ 1250 if (nsegs > sc->sc_txfree - 1) { 1251 txs->txs_ndescs = 0; 1252 bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap); 1253 return (ENOBUFS); 1254 } 1255 1256 txs->txs_ndescs = nsegs; 1257 txs->txs_firstdesc = sc->sc_txnext; 1258 nexttx = txs->txs_firstdesc; 1259 for (seg = 0; seg < nsegs; seg++, nexttx = CAS_NEXTTX(nexttx)) { 1260 #ifdef CAS_DEBUG 1261 CTR6(KTR_CAS, 1262 "%s: mapping seg %d (txd %d), len %lx, addr %#lx (%#lx)", 1263 __func__, seg, nexttx, txsegs[seg].ds_len, 1264 txsegs[seg].ds_addr, htole64(txsegs[seg].ds_addr)); 1265 #endif 1266 sc->sc_txdescs[nexttx].cd_buf_ptr = 1267 htole64(txsegs[seg].ds_addr); 1268 KASSERT(txsegs[seg].ds_len < 1269 CAS_TD_BUF_LEN_MASK >> CAS_TD_BUF_LEN_SHFT, 1270 ("%s: segment size too large!", __func__)); 1271 sc->sc_txdescs[nexttx].cd_flags = 1272 htole64(txsegs[seg].ds_len << CAS_TD_BUF_LEN_SHFT); 1273 txs->txs_lastdesc = nexttx; 1274 } 1275 1276 /* Set EOF on the last descriptor. */ 1277 #ifdef CAS_DEBUG 1278 CTR3(KTR_CAS, "%s: end of frame at segment %d, TX %d", 1279 __func__, seg, nexttx); 1280 #endif 1281 sc->sc_txdescs[txs->txs_lastdesc].cd_flags |= 1282 htole64(CAS_TD_END_OF_FRAME); 1283 1284 /* Lastly set SOF on the first descriptor. */ 1285 #ifdef CAS_DEBUG 1286 CTR3(KTR_CAS, "%s: start of frame at segment %d, TX %d", 1287 __func__, seg, nexttx); 1288 #endif 1289 if (sc->sc_txwin += nsegs > CAS_MAXTXFREE * 2 / 3) { 1290 sc->sc_txwin = 0; 1291 sc->sc_txdescs[txs->txs_firstdesc].cd_flags |= 1292 htole64(cflags | CAS_TD_START_OF_FRAME | CAS_TD_INT_ME); 1293 } else 1294 sc->sc_txdescs[txs->txs_firstdesc].cd_flags |= 1295 htole64(cflags | CAS_TD_START_OF_FRAME); 1296 1297 /* Sync the DMA map. */ 1298 bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap, 1299 BUS_DMASYNC_PREWRITE); 1300 1301 #ifdef CAS_DEBUG 1302 CTR4(KTR_CAS, "%s: setting firstdesc=%d, lastdesc=%d, ndescs=%d", 1303 __func__, txs->txs_firstdesc, txs->txs_lastdesc, 1304 txs->txs_ndescs); 1305 #endif 1306 STAILQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q); 1307 STAILQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q); 1308 txs->txs_mbuf = *m_head; 1309 1310 sc->sc_txnext = CAS_NEXTTX(txs->txs_lastdesc); 1311 sc->sc_txfree -= txs->txs_ndescs; 1312 1313 return (0); 1314 } 1315 1316 static void 1317 cas_init_regs(struct cas_softc *sc) 1318 { 1319 int i; 1320 const u_char *laddr = IF_LLADDR(sc->sc_ifp); 1321 1322 CAS_LOCK_ASSERT(sc, MA_OWNED); 1323 1324 /* These registers are not cleared on reset. */ 1325 if ((sc->sc_flags & CAS_INITED) == 0) { 1326 /* magic values */ 1327 CAS_WRITE_4(sc, CAS_MAC_IPG0, 0); 1328 CAS_WRITE_4(sc, CAS_MAC_IPG1, 8); 1329 CAS_WRITE_4(sc, CAS_MAC_IPG2, 4); 1330 1331 /* min frame length */ 1332 CAS_WRITE_4(sc, CAS_MAC_MIN_FRAME, ETHER_MIN_LEN); 1333 /* max frame length and max burst size */ 1334 CAS_WRITE_4(sc, CAS_MAC_MAX_BF, 1335 ((ETHER_MAX_LEN_JUMBO + ETHER_VLAN_ENCAP_LEN) << 1336 CAS_MAC_MAX_BF_FRM_SHFT) | 1337 (0x2000 << CAS_MAC_MAX_BF_BST_SHFT)); 1338 1339 /* more magic values */ 1340 CAS_WRITE_4(sc, CAS_MAC_PREAMBLE_LEN, 0x7); 1341 CAS_WRITE_4(sc, CAS_MAC_JAM_SIZE, 0x4); 1342 CAS_WRITE_4(sc, CAS_MAC_ATTEMPT_LIMIT, 0x10); 1343 CAS_WRITE_4(sc, CAS_MAC_CTRL_TYPE, 0x8808); 1344 1345 /* random number seed */ 1346 CAS_WRITE_4(sc, CAS_MAC_RANDOM_SEED, 1347 ((laddr[5] << 8) | laddr[4]) & 0x3ff); 1348 1349 /* secondary MAC addresses: 0:0:0:0:0:0 */ 1350 for (i = CAS_MAC_ADDR3; i <= CAS_MAC_ADDR41; 1351 i += CAS_MAC_ADDR4 - CAS_MAC_ADDR3) 1352 CAS_WRITE_4(sc, i, 0); 1353 1354 /* MAC control address: 01:80:c2:00:00:01 */ 1355 CAS_WRITE_4(sc, CAS_MAC_ADDR42, 0x0001); 1356 CAS_WRITE_4(sc, CAS_MAC_ADDR43, 0xc200); 1357 CAS_WRITE_4(sc, CAS_MAC_ADDR44, 0x0180); 1358 1359 /* MAC filter address: 0:0:0:0:0:0 */ 1360 CAS_WRITE_4(sc, CAS_MAC_AFILTER0, 0); 1361 CAS_WRITE_4(sc, CAS_MAC_AFILTER1, 0); 1362 CAS_WRITE_4(sc, CAS_MAC_AFILTER2, 0); 1363 CAS_WRITE_4(sc, CAS_MAC_AFILTER_MASK1_2, 0); 1364 CAS_WRITE_4(sc, CAS_MAC_AFILTER_MASK0, 0); 1365 1366 /* Zero the hash table. */ 1367 for (i = CAS_MAC_HASH0; i <= CAS_MAC_HASH15; 1368 i += CAS_MAC_HASH1 - CAS_MAC_HASH0) 1369 CAS_WRITE_4(sc, i, 0); 1370 1371 sc->sc_flags |= CAS_INITED; 1372 } 1373 1374 /* Counters need to be zeroed. */ 1375 CAS_WRITE_4(sc, CAS_MAC_NORM_COLL_CNT, 0); 1376 CAS_WRITE_4(sc, CAS_MAC_FIRST_COLL_CNT, 0); 1377 CAS_WRITE_4(sc, CAS_MAC_EXCESS_COLL_CNT, 0); 1378 CAS_WRITE_4(sc, CAS_MAC_LATE_COLL_CNT, 0); 1379 CAS_WRITE_4(sc, CAS_MAC_DEFER_TMR_CNT, 0); 1380 CAS_WRITE_4(sc, CAS_MAC_PEAK_ATTEMPTS, 0); 1381 CAS_WRITE_4(sc, CAS_MAC_RX_FRAME_COUNT, 0); 1382 CAS_WRITE_4(sc, CAS_MAC_RX_LEN_ERR_CNT, 0); 1383 CAS_WRITE_4(sc, CAS_MAC_RX_ALIGN_ERR, 0); 1384 CAS_WRITE_4(sc, CAS_MAC_RX_CRC_ERR_CNT, 0); 1385 CAS_WRITE_4(sc, CAS_MAC_RX_CODE_VIOL, 0); 1386 1387 /* Set XOFF PAUSE time. */ 1388 CAS_WRITE_4(sc, CAS_MAC_SPC, 0x1BF0 << CAS_MAC_SPC_TIME_SHFT); 1389 1390 /* Set the station address. */ 1391 CAS_WRITE_4(sc, CAS_MAC_ADDR0, (laddr[4] << 8) | laddr[5]); 1392 CAS_WRITE_4(sc, CAS_MAC_ADDR1, (laddr[2] << 8) | laddr[3]); 1393 CAS_WRITE_4(sc, CAS_MAC_ADDR2, (laddr[0] << 8) | laddr[1]); 1394 1395 /* Enable MII outputs. */ 1396 CAS_WRITE_4(sc, CAS_MAC_XIF_CONF, CAS_MAC_XIF_CONF_TX_OE); 1397 } 1398 1399 static void 1400 cas_tx_task(void *arg, int pending __unused) 1401 { 1402 struct ifnet *ifp; 1403 1404 ifp = (struct ifnet *)arg; 1405 cas_start(ifp); 1406 } 1407 1408 static inline void 1409 cas_txkick(struct cas_softc *sc) 1410 { 1411 1412 /* 1413 * Update the TX kick register. This register has to point to the 1414 * descriptor after the last valid one and for optimum performance 1415 * should be incremented in multiples of 4 (the DMA engine fetches/ 1416 * updates descriptors in batches of 4). 1417 */ 1418 #ifdef CAS_DEBUG 1419 CTR3(KTR_CAS, "%s: %s: kicking TX %d", 1420 device_get_name(sc->sc_dev), __func__, sc->sc_txnext); 1421 #endif 1422 CAS_CDSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1423 CAS_WRITE_4(sc, CAS_TX_KICK3, sc->sc_txnext); 1424 } 1425 1426 static void 1427 cas_start(struct ifnet *ifp) 1428 { 1429 struct cas_softc *sc = ifp->if_softc; 1430 struct mbuf *m; 1431 int kicked, ntx; 1432 1433 CAS_LOCK(sc); 1434 1435 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 1436 IFF_DRV_RUNNING || (sc->sc_flags & CAS_LINK) == 0) { 1437 CAS_UNLOCK(sc); 1438 return; 1439 } 1440 1441 if (sc->sc_txfree < CAS_MAXTXFREE / 4) 1442 cas_tint(sc); 1443 1444 #ifdef CAS_DEBUG 1445 CTR4(KTR_CAS, "%s: %s: txfree %d, txnext %d", 1446 device_get_name(sc->sc_dev), __func__, sc->sc_txfree, 1447 sc->sc_txnext); 1448 #endif 1449 ntx = 0; 1450 kicked = 0; 1451 for (; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) && sc->sc_txfree > 1;) { 1452 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 1453 if (m == NULL) 1454 break; 1455 if (cas_load_txmbuf(sc, &m) != 0) { 1456 if (m == NULL) 1457 break; 1458 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1459 IFQ_DRV_PREPEND(&ifp->if_snd, m); 1460 break; 1461 } 1462 if ((sc->sc_txnext % 4) == 0) { 1463 cas_txkick(sc); 1464 kicked = 1; 1465 } else 1466 kicked = 0; 1467 ntx++; 1468 BPF_MTAP(ifp, m); 1469 } 1470 1471 if (ntx > 0) { 1472 if (kicked == 0) 1473 cas_txkick(sc); 1474 #ifdef CAS_DEBUG 1475 CTR2(KTR_CAS, "%s: packets enqueued, OWN on %d", 1476 device_get_name(sc->sc_dev), sc->sc_txnext); 1477 #endif 1478 1479 /* Set a watchdog timer in case the chip flakes out. */ 1480 sc->sc_wdog_timer = 5; 1481 #ifdef CAS_DEBUG 1482 CTR3(KTR_CAS, "%s: %s: watchdog %d", 1483 device_get_name(sc->sc_dev), __func__, 1484 sc->sc_wdog_timer); 1485 #endif 1486 } 1487 1488 CAS_UNLOCK(sc); 1489 } 1490 1491 static void 1492 cas_tint(struct cas_softc *sc) 1493 { 1494 struct ifnet *ifp = sc->sc_ifp; 1495 struct cas_txsoft *txs; 1496 int progress; 1497 uint32_t txlast; 1498 #ifdef CAS_DEBUG 1499 int i; 1500 1501 CAS_LOCK_ASSERT(sc, MA_OWNED); 1502 1503 CTR2(KTR_CAS, "%s: %s", device_get_name(sc->sc_dev), __func__); 1504 #endif 1505 1506 /* 1507 * Go through our TX list and free mbufs for those 1508 * frames that have been transmitted. 1509 */ 1510 progress = 0; 1511 CAS_CDSYNC(sc, BUS_DMASYNC_POSTREAD); 1512 while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) { 1513 #ifdef CAS_DEBUG 1514 if ((ifp->if_flags & IFF_DEBUG) != 0) { 1515 printf(" txsoft %p transmit chain:\n", txs); 1516 for (i = txs->txs_firstdesc;; i = CAS_NEXTTX(i)) { 1517 printf("descriptor %d: ", i); 1518 printf("cd_flags: 0x%016llx\t", 1519 (long long)le64toh( 1520 sc->sc_txdescs[i].cd_flags)); 1521 printf("cd_buf_ptr: 0x%016llx\n", 1522 (long long)le64toh( 1523 sc->sc_txdescs[i].cd_buf_ptr)); 1524 if (i == txs->txs_lastdesc) 1525 break; 1526 } 1527 } 1528 #endif 1529 1530 /* 1531 * In theory, we could harvest some descriptors before 1532 * the ring is empty, but that's a bit complicated. 1533 * 1534 * CAS_TX_COMPn points to the last descriptor 1535 * processed + 1. 1536 */ 1537 txlast = CAS_READ_4(sc, CAS_TX_COMP3); 1538 #ifdef CAS_DEBUG 1539 CTR4(KTR_CAS, "%s: txs->txs_firstdesc = %d, " 1540 "txs->txs_lastdesc = %d, txlast = %d", 1541 __func__, txs->txs_firstdesc, txs->txs_lastdesc, txlast); 1542 #endif 1543 if (txs->txs_firstdesc <= txs->txs_lastdesc) { 1544 if ((txlast >= txs->txs_firstdesc) && 1545 (txlast <= txs->txs_lastdesc)) 1546 break; 1547 } else { 1548 /* Ick -- this command wraps. */ 1549 if ((txlast >= txs->txs_firstdesc) || 1550 (txlast <= txs->txs_lastdesc)) 1551 break; 1552 } 1553 1554 #ifdef CAS_DEBUG 1555 CTR1(KTR_CAS, "%s: releasing a descriptor", __func__); 1556 #endif 1557 STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q); 1558 1559 sc->sc_txfree += txs->txs_ndescs; 1560 1561 bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap, 1562 BUS_DMASYNC_POSTWRITE); 1563 bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap); 1564 if (txs->txs_mbuf != NULL) { 1565 m_freem(txs->txs_mbuf); 1566 txs->txs_mbuf = NULL; 1567 } 1568 1569 STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); 1570 1571 ifp->if_opackets++; 1572 progress = 1; 1573 } 1574 1575 #ifdef CAS_DEBUG 1576 CTR5(KTR_CAS, "%s: CAS_TX_SM1 %x CAS_TX_SM2 %x CAS_TX_DESC_BASE %llx " 1577 "CAS_TX_COMP3 %x", 1578 __func__, CAS_READ_4(sc, CAS_TX_SM1), CAS_READ_4(sc, CAS_TX_SM2), 1579 ((long long)CAS_READ_4(sc, CAS_TX_DESC3_BASE_HI) << 32) | 1580 CAS_READ_4(sc, CAS_TX_DESC3_BASE_LO), 1581 CAS_READ_4(sc, CAS_TX_COMP3)); 1582 #endif 1583 1584 if (progress) { 1585 /* We freed some descriptors, so reset IFF_DRV_OACTIVE. */ 1586 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1587 if (STAILQ_EMPTY(&sc->sc_txdirtyq)) 1588 sc->sc_wdog_timer = 0; 1589 } 1590 1591 #ifdef CAS_DEBUG 1592 CTR3(KTR_CAS, "%s: %s: watchdog %d", 1593 device_get_name(sc->sc_dev), __func__, sc->sc_wdog_timer); 1594 #endif 1595 } 1596 1597 static void 1598 cas_rint_timeout(void *arg) 1599 { 1600 struct cas_softc *sc = arg; 1601 1602 CAS_LOCK_ASSERT(sc, MA_OWNED); 1603 1604 cas_rint(sc); 1605 } 1606 1607 static void 1608 cas_rint(struct cas_softc *sc) 1609 { 1610 struct cas_rxdsoft *rxds, *rxds2; 1611 struct ifnet *ifp = sc->sc_ifp; 1612 struct mbuf *m, *m2; 1613 uint64_t word1, word2, word3, word4; 1614 uint32_t rxhead; 1615 u_int idx, idx2, len, off, skip; 1616 1617 CAS_LOCK_ASSERT(sc, MA_OWNED); 1618 1619 callout_stop(&sc->sc_rx_ch); 1620 1621 #ifdef CAS_DEBUG 1622 CTR2(KTR_CAS, "%s: %s", device_get_name(sc->sc_dev), __func__); 1623 #endif 1624 1625 #define PRINTWORD(n, delimiter) \ 1626 printf("word ## n: 0x%016llx%c", (long long)word ## n, delimiter) 1627 1628 #define SKIPASSERT(n) \ 1629 KASSERT(sc->sc_rxcomps[sc->sc_rxcptr].crc_word ## n == 0, \ 1630 ("%s: word ## n not 0", __func__)) 1631 1632 #define WORDTOH(n) \ 1633 word ## n = le64toh(sc->sc_rxcomps[sc->sc_rxcptr].crc_word ## n) 1634 1635 /* 1636 * Read the completion head register once. This limits 1637 * how long the following loop can execute. 1638 */ 1639 rxhead = CAS_READ_4(sc, CAS_RX_COMP_HEAD); 1640 #ifdef CAS_DEBUG 1641 CTR4(KTR_CAS, "%s: sc->sc_rxcptr %d, sc->sc_rxdptr %d, head %d", 1642 __func__, sc->sc_rxcptr, sc->sc_rxdptr, rxhead); 1643 #endif 1644 skip = 0; 1645 CAS_CDSYNC(sc, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1646 for (; sc->sc_rxcptr != rxhead; 1647 sc->sc_rxcptr = CAS_NEXTRXCOMP(sc->sc_rxcptr)) { 1648 if (skip != 0) { 1649 SKIPASSERT(1); 1650 SKIPASSERT(2); 1651 SKIPASSERT(3); 1652 1653 --skip; 1654 goto skip; 1655 } 1656 1657 WORDTOH(1); 1658 WORDTOH(2); 1659 WORDTOH(3); 1660 WORDTOH(4); 1661 1662 #ifdef CAS_DEBUG 1663 if ((ifp->if_flags & IFF_DEBUG) != 0) { 1664 printf(" completion %d: ", sc->sc_rxcptr); 1665 PRINTWORD(1, '\t'); 1666 PRINTWORD(2, '\t'); 1667 PRINTWORD(3, '\t'); 1668 PRINTWORD(4, '\n'); 1669 } 1670 #endif 1671 1672 if (__predict_false( 1673 (word1 & CAS_RC1_TYPE_MASK) == CAS_RC1_TYPE_HW || 1674 (word4 & CAS_RC4_ZERO) != 0)) { 1675 /* 1676 * The descriptor is still marked as owned, although 1677 * it is supposed to have completed. This has been 1678 * observed on some machines. Just exiting here 1679 * might leave the packet sitting around until another 1680 * one arrives to trigger a new interrupt, which is 1681 * generally undesirable, so set up a timeout. 1682 */ 1683 callout_reset(&sc->sc_rx_ch, CAS_RXOWN_TICKS, 1684 cas_rint_timeout, sc); 1685 break; 1686 } 1687 1688 if (__predict_false( 1689 (word4 & (CAS_RC4_BAD | CAS_RC4_LEN_MMATCH)) != 0)) { 1690 ifp->if_ierrors++; 1691 device_printf(sc->sc_dev, 1692 "receive error: CRC error\n"); 1693 continue; 1694 } 1695 1696 KASSERT(CAS_GET(word1, CAS_RC1_DATA_SIZE) == 0 || 1697 CAS_GET(word2, CAS_RC2_HDR_SIZE) == 0, 1698 ("%s: data and header present", __func__)); 1699 KASSERT((word1 & CAS_RC1_SPLIT_PKT) == 0 || 1700 CAS_GET(word2, CAS_RC2_HDR_SIZE) == 0, 1701 ("%s: split and header present", __func__)); 1702 KASSERT(CAS_GET(word1, CAS_RC1_DATA_SIZE) == 0 || 1703 (word1 & CAS_RC1_RELEASE_HDR) == 0, 1704 ("%s: data present but header release", __func__)); 1705 KASSERT(CAS_GET(word2, CAS_RC2_HDR_SIZE) == 0 || 1706 (word1 & CAS_RC1_RELEASE_DATA) == 0, 1707 ("%s: header present but data release", __func__)); 1708 1709 if ((len = CAS_GET(word2, CAS_RC2_HDR_SIZE)) != 0) { 1710 idx = CAS_GET(word2, CAS_RC2_HDR_INDEX); 1711 off = CAS_GET(word2, CAS_RC2_HDR_OFF); 1712 #ifdef CAS_DEBUG 1713 CTR4(KTR_CAS, "%s: hdr at idx %d, off %d, len %d", 1714 __func__, idx, off, len); 1715 #endif 1716 rxds = &sc->sc_rxdsoft[idx]; 1717 MGETHDR(m, M_DONTWAIT, MT_DATA); 1718 if (m != NULL) { 1719 refcount_acquire(&rxds->rxds_refcount); 1720 bus_dmamap_sync(sc->sc_rdmatag, 1721 rxds->rxds_dmamap, BUS_DMASYNC_POSTREAD); 1722 #if __FreeBSD_version < 800016 1723 MEXTADD(m, (caddr_t)rxds->rxds_buf + 1724 off * 256 + ETHER_ALIGN, len, cas_free, 1725 rxds, M_RDONLY, EXT_NET_DRV); 1726 #else 1727 MEXTADD(m, (caddr_t)rxds->rxds_buf + 1728 off * 256 + ETHER_ALIGN, len, cas_free, 1729 sc, (void *)(uintptr_t)idx, 1730 M_RDONLY, EXT_NET_DRV); 1731 #endif 1732 if ((m->m_flags & M_EXT) == 0) { 1733 m_freem(m); 1734 m = NULL; 1735 } 1736 } 1737 if (m != NULL) { 1738 m->m_pkthdr.rcvif = ifp; 1739 m->m_pkthdr.len = m->m_len = len; 1740 ifp->if_ipackets++; 1741 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) 1742 cas_rxcksum(m, CAS_GET(word4, 1743 CAS_RC4_TCP_CSUM)); 1744 /* Pass it on. */ 1745 CAS_UNLOCK(sc); 1746 (*ifp->if_input)(ifp, m); 1747 CAS_LOCK(sc); 1748 } else 1749 ifp->if_iqdrops++; 1750 1751 if ((word1 & CAS_RC1_RELEASE_HDR) != 0 && 1752 refcount_release(&rxds->rxds_refcount) != 0) 1753 cas_add_rxdesc(sc, idx); 1754 } else if ((len = CAS_GET(word1, CAS_RC1_DATA_SIZE)) != 0) { 1755 idx = CAS_GET(word1, CAS_RC1_DATA_INDEX); 1756 off = CAS_GET(word1, CAS_RC1_DATA_OFF); 1757 #ifdef CAS_DEBUG 1758 CTR4(KTR_CAS, "%s: data at idx %d, off %d, len %d", 1759 __func__, idx, off, len); 1760 #endif 1761 rxds = &sc->sc_rxdsoft[idx]; 1762 MGETHDR(m, M_DONTWAIT, MT_DATA); 1763 if (m != NULL) { 1764 refcount_acquire(&rxds->rxds_refcount); 1765 off += ETHER_ALIGN; 1766 m->m_len = min(CAS_PAGE_SIZE - off, len); 1767 bus_dmamap_sync(sc->sc_rdmatag, 1768 rxds->rxds_dmamap, BUS_DMASYNC_POSTREAD); 1769 #if __FreeBSD_version < 800016 1770 MEXTADD(m, (caddr_t)rxds->rxds_buf + off, 1771 m->m_len, cas_free, rxds, M_RDONLY, 1772 EXT_NET_DRV); 1773 #else 1774 MEXTADD(m, (caddr_t)rxds->rxds_buf + off, 1775 m->m_len, cas_free, sc, 1776 (void *)(uintptr_t)idx, M_RDONLY, 1777 EXT_NET_DRV); 1778 #endif 1779 if ((m->m_flags & M_EXT) == 0) { 1780 m_freem(m); 1781 m = NULL; 1782 } 1783 } 1784 idx2 = 0; 1785 m2 = NULL; 1786 rxds2 = NULL; 1787 if ((word1 & CAS_RC1_SPLIT_PKT) != 0) { 1788 KASSERT((word1 & CAS_RC1_RELEASE_NEXT) != 0, 1789 ("%s: split but no release next", 1790 __func__)); 1791 1792 idx2 = CAS_GET(word2, CAS_RC2_NEXT_INDEX); 1793 #ifdef CAS_DEBUG 1794 CTR2(KTR_CAS, "%s: split at idx %d", 1795 __func__, idx2); 1796 #endif 1797 rxds2 = &sc->sc_rxdsoft[idx2]; 1798 if (m != NULL) { 1799 MGET(m2, M_DONTWAIT, MT_DATA); 1800 if (m2 != NULL) { 1801 refcount_acquire( 1802 &rxds2->rxds_refcount); 1803 m2->m_len = len - m->m_len; 1804 bus_dmamap_sync( 1805 sc->sc_rdmatag, 1806 rxds2->rxds_dmamap, 1807 BUS_DMASYNC_POSTREAD); 1808 #if __FreeBSD_version < 800016 1809 MEXTADD(m2, 1810 (caddr_t)rxds2->rxds_buf, 1811 m2->m_len, cas_free, 1812 rxds2, M_RDONLY, 1813 EXT_NET_DRV); 1814 #else 1815 MEXTADD(m2, 1816 (caddr_t)rxds2->rxds_buf, 1817 m2->m_len, cas_free, sc, 1818 (void *)(uintptr_t)idx2, 1819 M_RDONLY, EXT_NET_DRV); 1820 #endif 1821 if ((m2->m_flags & M_EXT) == 1822 0) { 1823 m_freem(m2); 1824 m2 = NULL; 1825 } 1826 } 1827 } 1828 if (m2 != NULL) 1829 m->m_next = m2; 1830 else if (m != NULL) { 1831 m_freem(m); 1832 m = NULL; 1833 } 1834 } 1835 if (m != NULL) { 1836 m->m_pkthdr.rcvif = ifp; 1837 m->m_pkthdr.len = len; 1838 ifp->if_ipackets++; 1839 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) 1840 cas_rxcksum(m, CAS_GET(word4, 1841 CAS_RC4_TCP_CSUM)); 1842 /* Pass it on. */ 1843 CAS_UNLOCK(sc); 1844 (*ifp->if_input)(ifp, m); 1845 CAS_LOCK(sc); 1846 } else 1847 ifp->if_iqdrops++; 1848 1849 if ((word1 & CAS_RC1_RELEASE_DATA) != 0 && 1850 refcount_release(&rxds->rxds_refcount) != 0) 1851 cas_add_rxdesc(sc, idx); 1852 if ((word1 & CAS_RC1_SPLIT_PKT) != 0 && 1853 refcount_release(&rxds2->rxds_refcount) != 0) 1854 cas_add_rxdesc(sc, idx2); 1855 } 1856 1857 skip = CAS_GET(word1, CAS_RC1_SKIP); 1858 1859 skip: 1860 cas_rxcompinit(&sc->sc_rxcomps[sc->sc_rxcptr]); 1861 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 1862 break; 1863 } 1864 CAS_CDSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1865 CAS_WRITE_4(sc, CAS_RX_COMP_TAIL, sc->sc_rxcptr); 1866 1867 #undef PRINTWORD 1868 #undef SKIPASSERT 1869 #undef WORDTOH 1870 1871 #ifdef CAS_DEBUG 1872 CTR4(KTR_CAS, "%s: done sc->sc_rxcptr %d, sc->sc_rxdptr %d, head %d", 1873 __func__, sc->sc_rxcptr, sc->sc_rxdptr, 1874 CAS_READ_4(sc, CAS_RX_COMP_HEAD)); 1875 #endif 1876 } 1877 1878 static void 1879 cas_free(void *arg1, void *arg2) 1880 { 1881 struct cas_rxdsoft *rxds; 1882 struct cas_softc *sc; 1883 u_int idx, locked; 1884 1885 #if __FreeBSD_version < 800016 1886 rxds = arg2; 1887 sc = rxds->rxds_sc; 1888 idx = rxds->rxds_idx; 1889 #else 1890 sc = arg1; 1891 idx = (uintptr_t)arg2; 1892 rxds = &sc->sc_rxdsoft[idx]; 1893 #endif 1894 if (refcount_release(&rxds->rxds_refcount) == 0) 1895 return; 1896 1897 /* 1898 * NB: this function can be called via m_freem(9) within 1899 * this driver! 1900 */ 1901 if ((locked = CAS_LOCK_OWNED(sc)) == 0) 1902 CAS_LOCK(sc); 1903 cas_add_rxdesc(sc, idx); 1904 if (locked == 0) 1905 CAS_UNLOCK(sc); 1906 } 1907 1908 static inline void 1909 cas_add_rxdesc(struct cas_softc *sc, u_int idx) 1910 { 1911 1912 CAS_LOCK_ASSERT(sc, MA_OWNED); 1913 1914 bus_dmamap_sync(sc->sc_rdmatag, sc->sc_rxdsoft[idx].rxds_dmamap, 1915 BUS_DMASYNC_PREREAD); 1916 CAS_UPDATE_RXDESC(sc, sc->sc_rxdptr, idx); 1917 sc->sc_rxdptr = CAS_NEXTRXDESC(sc->sc_rxdptr); 1918 1919 /* 1920 * Update the RX kick register. This register has to point to the 1921 * descriptor after the last valid one (before the current batch) 1922 * and for optimum performance should be incremented in multiples 1923 * of 4 (the DMA engine fetches/updates descriptors in batches of 4). 1924 */ 1925 if ((sc->sc_rxdptr % 4) == 0) { 1926 CAS_CDSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1927 CAS_WRITE_4(sc, CAS_RX_KICK, 1928 (sc->sc_rxdptr + CAS_NRXDESC - 4) & CAS_NRXDESC_MASK); 1929 } 1930 } 1931 1932 static void 1933 cas_eint(struct cas_softc *sc, u_int status) 1934 { 1935 struct ifnet *ifp = sc->sc_ifp; 1936 1937 CAS_LOCK_ASSERT(sc, MA_OWNED); 1938 1939 ifp->if_ierrors++; 1940 1941 device_printf(sc->sc_dev, "%s: status 0x%x", __func__, status); 1942 if ((status & CAS_INTR_PCI_ERROR_INT) != 0) { 1943 status = CAS_READ_4(sc, CAS_ERROR_STATUS); 1944 printf(", PCI bus error 0x%x", status); 1945 if ((status & CAS_ERROR_OTHER) != 0) { 1946 status = pci_read_config(sc->sc_dev, PCIR_STATUS, 2); 1947 printf(", PCI status 0x%x", status); 1948 pci_write_config(sc->sc_dev, PCIR_STATUS, status, 2); 1949 } 1950 } 1951 printf("\n"); 1952 1953 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1954 cas_init_locked(sc); 1955 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1956 taskqueue_enqueue(sc->sc_tq, &sc->sc_tx_task); 1957 } 1958 1959 static int 1960 cas_intr(void *v) 1961 { 1962 struct cas_softc *sc = v; 1963 1964 if (__predict_false((CAS_READ_4(sc, CAS_STATUS_ALIAS) & 1965 CAS_INTR_SUMMARY) == 0)) 1966 return (FILTER_STRAY); 1967 1968 /* Disable interrupts. */ 1969 CAS_WRITE_4(sc, CAS_INTMASK, 0xffffffff); 1970 taskqueue_enqueue(sc->sc_tq, &sc->sc_intr_task); 1971 1972 return (FILTER_HANDLED); 1973 } 1974 1975 static void 1976 cas_intr_task(void *arg, int pending __unused) 1977 { 1978 struct cas_softc *sc = arg; 1979 struct ifnet *ifp = sc->sc_ifp; 1980 uint32_t status, status2; 1981 1982 CAS_LOCK_ASSERT(sc, MA_NOTOWNED); 1983 1984 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 1985 return; 1986 1987 status = CAS_READ_4(sc, CAS_STATUS); 1988 if (__predict_false((status & CAS_INTR_SUMMARY) == 0)) 1989 goto done; 1990 1991 CAS_LOCK(sc); 1992 #ifdef CAS_DEBUG 1993 CTR4(KTR_CAS, "%s: %s: cplt %x, status %x", 1994 device_get_name(sc->sc_dev), __func__, 1995 (status >> CAS_STATUS_TX_COMP3_SHFT), (u_int)status); 1996 1997 /* 1998 * PCS interrupts must be cleared, otherwise no traffic is passed! 1999 */ 2000 if ((status & CAS_INTR_PCS_INT) != 0) { 2001 status2 = 2002 CAS_READ_4(sc, CAS_PCS_INTR_STATUS) | 2003 CAS_READ_4(sc, CAS_PCS_INTR_STATUS); 2004 if ((status2 & CAS_PCS_INTR_LINK) != 0) 2005 device_printf(sc->sc_dev, 2006 "%s: PCS link status changed\n", __func__); 2007 } 2008 if ((status & CAS_MAC_CTRL_STATUS) != 0) { 2009 status2 = CAS_READ_4(sc, CAS_MAC_CTRL_STATUS); 2010 if ((status2 & CAS_MAC_CTRL_PAUSE) != 0) 2011 device_printf(sc->sc_dev, 2012 "%s: PAUSE received (PAUSE time %d slots)\n", 2013 __func__, 2014 (status2 & CAS_MAC_CTRL_STATUS_PT_MASK) >> 2015 CAS_MAC_CTRL_STATUS_PT_SHFT); 2016 if ((status2 & CAS_MAC_CTRL_PAUSE) != 0) 2017 device_printf(sc->sc_dev, 2018 "%s: transited to PAUSE state\n", __func__); 2019 if ((status2 & CAS_MAC_CTRL_NON_PAUSE) != 0) 2020 device_printf(sc->sc_dev, 2021 "%s: transited to non-PAUSE state\n", __func__); 2022 } 2023 if ((status & CAS_INTR_MIF) != 0) 2024 device_printf(sc->sc_dev, "%s: MIF interrupt\n", __func__); 2025 #endif 2026 2027 if (__predict_false((status & 2028 (CAS_INTR_TX_TAG_ERR | CAS_INTR_RX_TAG_ERR | 2029 CAS_INTR_RX_LEN_MMATCH | CAS_INTR_PCI_ERROR_INT)) != 0)) { 2030 cas_eint(sc, status); 2031 CAS_UNLOCK(sc); 2032 return; 2033 } 2034 2035 if (__predict_false(status & CAS_INTR_TX_MAC_INT)) { 2036 status2 = CAS_READ_4(sc, CAS_MAC_TX_STATUS); 2037 if ((status2 & 2038 (CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_MAX_PKT_ERR)) != 0) 2039 ifp->if_oerrors++; 2040 else if ((status2 & ~CAS_MAC_TX_FRAME_XMTD) != 0) 2041 device_printf(sc->sc_dev, 2042 "MAC TX fault, status %x\n", status2); 2043 } 2044 2045 if (__predict_false(status & CAS_INTR_RX_MAC_INT)) { 2046 status2 = CAS_READ_4(sc, CAS_MAC_RX_STATUS); 2047 if ((status2 & CAS_MAC_RX_OVERFLOW) != 0) 2048 ifp->if_ierrors++; 2049 else if ((status2 & ~CAS_MAC_RX_FRAME_RCVD) != 0) 2050 device_printf(sc->sc_dev, 2051 "MAC RX fault, status %x\n", status2); 2052 } 2053 2054 if ((status & 2055 (CAS_INTR_RX_DONE | CAS_INTR_RX_BUF_NA | CAS_INTR_RX_COMP_FULL | 2056 CAS_INTR_RX_BUF_AEMPTY | CAS_INTR_RX_COMP_AFULL)) != 0) { 2057 cas_rint(sc); 2058 #ifdef CAS_DEBUG 2059 if (__predict_false((status & 2060 (CAS_INTR_RX_BUF_NA | CAS_INTR_RX_COMP_FULL | 2061 CAS_INTR_RX_BUF_AEMPTY | CAS_INTR_RX_COMP_AFULL)) != 0)) 2062 device_printf(sc->sc_dev, 2063 "RX fault, status %x\n", status); 2064 #endif 2065 } 2066 2067 if ((status & 2068 (CAS_INTR_TX_INT_ME | CAS_INTR_TX_ALL | CAS_INTR_TX_DONE)) != 0) 2069 cas_tint(sc); 2070 2071 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 2072 CAS_UNLOCK(sc); 2073 return; 2074 } else if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2075 taskqueue_enqueue(sc->sc_tq, &sc->sc_tx_task); 2076 CAS_UNLOCK(sc); 2077 2078 status = CAS_READ_4(sc, CAS_STATUS_ALIAS); 2079 if (__predict_false((status & CAS_INTR_SUMMARY) != 0)) { 2080 taskqueue_enqueue(sc->sc_tq, &sc->sc_intr_task); 2081 return; 2082 } 2083 2084 done: 2085 /* Re-enable interrupts. */ 2086 CAS_WRITE_4(sc, CAS_INTMASK, 2087 ~(CAS_INTR_TX_INT_ME | CAS_INTR_TX_TAG_ERR | 2088 CAS_INTR_RX_DONE | CAS_INTR_RX_BUF_NA | CAS_INTR_RX_TAG_ERR | 2089 CAS_INTR_RX_COMP_FULL | CAS_INTR_RX_BUF_AEMPTY | 2090 CAS_INTR_RX_COMP_AFULL | CAS_INTR_RX_LEN_MMATCH | 2091 CAS_INTR_PCI_ERROR_INT 2092 #ifdef CAS_DEBUG 2093 | CAS_INTR_PCS_INT | CAS_INTR_MIF 2094 #endif 2095 )); 2096 } 2097 2098 static void 2099 cas_watchdog(struct cas_softc *sc) 2100 { 2101 struct ifnet *ifp = sc->sc_ifp; 2102 2103 CAS_LOCK_ASSERT(sc, MA_OWNED); 2104 2105 #ifdef CAS_DEBUG 2106 CTR4(KTR_CAS, 2107 "%s: CAS_RX_CONF %x CAS_MAC_RX_STATUS %x CAS_MAC_RX_CONF %x", 2108 __func__, CAS_READ_4(sc, CAS_RX_CONF), 2109 CAS_READ_4(sc, CAS_MAC_RX_STATUS), 2110 CAS_READ_4(sc, CAS_MAC_RX_CONF)); 2111 CTR4(KTR_CAS, 2112 "%s: CAS_TX_CONF %x CAS_MAC_TX_STATUS %x CAS_MAC_TX_CONF %x", 2113 __func__, CAS_READ_4(sc, CAS_TX_CONF), 2114 CAS_READ_4(sc, CAS_MAC_TX_STATUS), 2115 CAS_READ_4(sc, CAS_MAC_TX_CONF)); 2116 #endif 2117 2118 if (sc->sc_wdog_timer == 0 || --sc->sc_wdog_timer != 0) 2119 return; 2120 2121 if ((sc->sc_flags & CAS_LINK) != 0) 2122 device_printf(sc->sc_dev, "device timeout\n"); 2123 else if (bootverbose) 2124 device_printf(sc->sc_dev, "device timeout (no link)\n"); 2125 ++ifp->if_oerrors; 2126 2127 /* Try to get more packets going. */ 2128 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2129 cas_init_locked(sc); 2130 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2131 taskqueue_enqueue(sc->sc_tq, &sc->sc_tx_task); 2132 } 2133 2134 static void 2135 cas_mifinit(struct cas_softc *sc) 2136 { 2137 2138 /* Configure the MIF in frame mode. */ 2139 CAS_WRITE_4(sc, CAS_MIF_CONF, 2140 CAS_READ_4(sc, CAS_MIF_CONF) & ~CAS_MIF_CONF_BB_MODE); 2141 CAS_BARRIER(sc, CAS_MIF_CONF, 4, 2142 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 2143 } 2144 2145 /* 2146 * MII interface 2147 * 2148 * The MII interface supports at least three different operating modes: 2149 * 2150 * Bitbang mode is implemented using data, clock and output enable registers. 2151 * 2152 * Frame mode is implemented by loading a complete frame into the frame 2153 * register and polling the valid bit for completion. 2154 * 2155 * Polling mode uses the frame register but completion is indicated by 2156 * an interrupt. 2157 * 2158 */ 2159 static int 2160 cas_mii_readreg(device_t dev, int phy, int reg) 2161 { 2162 struct cas_softc *sc; 2163 int n; 2164 uint32_t v; 2165 2166 #ifdef CAS_DEBUG_PHY 2167 printf("%s: phy %d reg %d\n", __func__, phy, reg); 2168 #endif 2169 2170 sc = device_get_softc(dev); 2171 if ((sc->sc_flags & CAS_SERDES) != 0) { 2172 switch (reg) { 2173 case MII_BMCR: 2174 reg = CAS_PCS_CTRL; 2175 break; 2176 case MII_BMSR: 2177 reg = CAS_PCS_STATUS; 2178 break; 2179 case MII_PHYIDR1: 2180 case MII_PHYIDR2: 2181 return (0); 2182 case MII_ANAR: 2183 reg = CAS_PCS_ANAR; 2184 break; 2185 case MII_ANLPAR: 2186 reg = CAS_PCS_ANLPAR; 2187 break; 2188 case MII_EXTSR: 2189 return (EXTSR_1000XFDX | EXTSR_1000XHDX); 2190 default: 2191 device_printf(sc->sc_dev, 2192 "%s: unhandled register %d\n", __func__, reg); 2193 return (0); 2194 } 2195 return (CAS_READ_4(sc, reg)); 2196 } 2197 2198 /* Construct the frame command. */ 2199 v = CAS_MIF_FRAME_READ | 2200 (phy << CAS_MIF_FRAME_PHY_SHFT) | 2201 (reg << CAS_MIF_FRAME_REG_SHFT); 2202 2203 CAS_WRITE_4(sc, CAS_MIF_FRAME, v); 2204 CAS_BARRIER(sc, CAS_MIF_FRAME, 4, 2205 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 2206 for (n = 0; n < 100; n++) { 2207 DELAY(1); 2208 v = CAS_READ_4(sc, CAS_MIF_FRAME); 2209 if (v & CAS_MIF_FRAME_TA_LSB) 2210 return (v & CAS_MIF_FRAME_DATA); 2211 } 2212 2213 device_printf(sc->sc_dev, "%s: timed out\n", __func__); 2214 return (0); 2215 } 2216 2217 static int 2218 cas_mii_writereg(device_t dev, int phy, int reg, int val) 2219 { 2220 struct cas_softc *sc; 2221 int n; 2222 uint32_t v; 2223 2224 #ifdef CAS_DEBUG_PHY 2225 printf("%s: phy %d reg %d val %x\n", phy, reg, val, __func__); 2226 #endif 2227 2228 sc = device_get_softc(dev); 2229 if ((sc->sc_flags & CAS_SERDES) != 0) { 2230 switch (reg) { 2231 case MII_BMSR: 2232 reg = CAS_PCS_STATUS; 2233 break; 2234 case MII_BMCR: 2235 reg = CAS_PCS_CTRL; 2236 if ((val & CAS_PCS_CTRL_RESET) == 0) 2237 break; 2238 CAS_WRITE_4(sc, CAS_PCS_CTRL, val); 2239 CAS_BARRIER(sc, CAS_PCS_CTRL, 4, 2240 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 2241 if (!cas_bitwait(sc, CAS_PCS_CTRL, 2242 CAS_PCS_CTRL_RESET, 0)) 2243 device_printf(sc->sc_dev, 2244 "cannot reset PCS\n"); 2245 /* FALLTHROUGH */ 2246 case MII_ANAR: 2247 CAS_WRITE_4(sc, CAS_PCS_CONF, 0); 2248 CAS_BARRIER(sc, CAS_PCS_CONF, 4, 2249 BUS_SPACE_BARRIER_WRITE); 2250 CAS_WRITE_4(sc, CAS_PCS_ANAR, val); 2251 CAS_BARRIER(sc, CAS_PCS_ANAR, 4, 2252 BUS_SPACE_BARRIER_WRITE); 2253 CAS_WRITE_4(sc, CAS_PCS_SERDES_CTRL, 2254 CAS_PCS_SERDES_CTRL_ESD); 2255 CAS_BARRIER(sc, CAS_PCS_CONF, 4, 2256 BUS_SPACE_BARRIER_WRITE); 2257 CAS_WRITE_4(sc, CAS_PCS_CONF, 2258 CAS_PCS_CONF_EN); 2259 CAS_BARRIER(sc, CAS_PCS_CONF, 4, 2260 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 2261 return (0); 2262 case MII_ANLPAR: 2263 reg = CAS_PCS_ANLPAR; 2264 break; 2265 default: 2266 device_printf(sc->sc_dev, 2267 "%s: unhandled register %d\n", __func__, reg); 2268 return (0); 2269 } 2270 CAS_WRITE_4(sc, reg, val); 2271 CAS_BARRIER(sc, reg, 4, 2272 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 2273 return (0); 2274 } 2275 2276 /* Construct the frame command. */ 2277 v = CAS_MIF_FRAME_WRITE | 2278 (phy << CAS_MIF_FRAME_PHY_SHFT) | 2279 (reg << CAS_MIF_FRAME_REG_SHFT) | 2280 (val & CAS_MIF_FRAME_DATA); 2281 2282 CAS_WRITE_4(sc, CAS_MIF_FRAME, v); 2283 CAS_BARRIER(sc, CAS_MIF_FRAME, 4, 2284 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 2285 for (n = 0; n < 100; n++) { 2286 DELAY(1); 2287 v = CAS_READ_4(sc, CAS_MIF_FRAME); 2288 if (v & CAS_MIF_FRAME_TA_LSB) 2289 return (1); 2290 } 2291 2292 device_printf(sc->sc_dev, "%s: timed out\n", __func__); 2293 return (0); 2294 } 2295 2296 static void 2297 cas_mii_statchg(device_t dev) 2298 { 2299 struct cas_softc *sc; 2300 struct ifnet *ifp; 2301 int gigabit; 2302 uint32_t rxcfg, txcfg, v; 2303 2304 sc = device_get_softc(dev); 2305 ifp = sc->sc_ifp; 2306 2307 CAS_LOCK_ASSERT(sc, MA_OWNED); 2308 2309 #ifdef CAS_DEBUG 2310 if ((ifp->if_flags & IFF_DEBUG) != 0) 2311 device_printf(sc->sc_dev, "%s: status changen", __func__); 2312 #endif 2313 2314 if ((sc->sc_mii->mii_media_status & IFM_ACTIVE) != 0 && 2315 IFM_SUBTYPE(sc->sc_mii->mii_media_active) != IFM_NONE) 2316 sc->sc_flags |= CAS_LINK; 2317 else 2318 sc->sc_flags &= ~CAS_LINK; 2319 2320 switch (IFM_SUBTYPE(sc->sc_mii->mii_media_active)) { 2321 case IFM_1000_SX: 2322 case IFM_1000_LX: 2323 case IFM_1000_CX: 2324 case IFM_1000_T: 2325 gigabit = 1; 2326 break; 2327 default: 2328 gigabit = 0; 2329 } 2330 2331 /* 2332 * The configuration done here corresponds to the steps F) and 2333 * G) and as far as enabling of RX and TX MAC goes also step H) 2334 * of the initialization sequence outlined in section 11.2.1 of 2335 * the Cassini+ ASIC Specification. 2336 */ 2337 2338 rxcfg = sc->sc_mac_rxcfg; 2339 rxcfg &= ~CAS_MAC_RX_CONF_CARR; 2340 txcfg = CAS_MAC_TX_CONF_EN_IPG0 | CAS_MAC_TX_CONF_NGU | 2341 CAS_MAC_TX_CONF_NGUL; 2342 if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0) 2343 txcfg |= CAS_MAC_TX_CONF_ICARR | CAS_MAC_TX_CONF_ICOLLIS; 2344 else if (gigabit != 0) { 2345 rxcfg |= CAS_MAC_RX_CONF_CARR; 2346 txcfg |= CAS_MAC_TX_CONF_CARR; 2347 } 2348 (void)cas_disable_tx(sc); 2349 CAS_WRITE_4(sc, CAS_MAC_TX_CONF, txcfg); 2350 (void)cas_disable_rx(sc); 2351 CAS_WRITE_4(sc, CAS_MAC_RX_CONF, rxcfg); 2352 2353 v = CAS_READ_4(sc, CAS_MAC_CTRL_CONF) & 2354 ~(CAS_MAC_CTRL_CONF_TXP | CAS_MAC_CTRL_CONF_RXP); 2355 if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & 2356 IFM_ETH_RXPAUSE) != 0) 2357 v |= CAS_MAC_CTRL_CONF_RXP; 2358 if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & 2359 IFM_ETH_TXPAUSE) != 0) 2360 v |= CAS_MAC_CTRL_CONF_TXP; 2361 CAS_WRITE_4(sc, CAS_MAC_CTRL_CONF, v); 2362 2363 /* 2364 * All supported chips have a bug causing incorrect checksum 2365 * to be calculated when letting them strip the FCS in half- 2366 * duplex mode. In theory we could disable FCS stripping and 2367 * manually adjust the checksum accordingly. It seems to make 2368 * more sense to optimze for the common case and just disable 2369 * hardware checksumming in half-duplex mode though. 2370 */ 2371 if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) == 0) { 2372 ifp->if_capenable &= ~IFCAP_HWCSUM; 2373 ifp->if_hwassist = 0; 2374 } else if ((sc->sc_flags & CAS_NO_CSUM) == 0) { 2375 ifp->if_capenable = ifp->if_capabilities; 2376 ifp->if_hwassist = CAS_CSUM_FEATURES; 2377 } 2378 2379 if (sc->sc_variant == CAS_SATURN) { 2380 if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) == 0) 2381 /* silicon bug workaround */ 2382 CAS_WRITE_4(sc, CAS_MAC_PREAMBLE_LEN, 0x41); 2383 else 2384 CAS_WRITE_4(sc, CAS_MAC_PREAMBLE_LEN, 0x7); 2385 } 2386 2387 if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) == 0 && 2388 gigabit != 0) 2389 CAS_WRITE_4(sc, CAS_MAC_SLOT_TIME, 2390 CAS_MAC_SLOT_TIME_CARR); 2391 else 2392 CAS_WRITE_4(sc, CAS_MAC_SLOT_TIME, 2393 CAS_MAC_SLOT_TIME_NORM); 2394 2395 /* XIF Configuration */ 2396 v = CAS_MAC_XIF_CONF_TX_OE | CAS_MAC_XIF_CONF_LNKLED; 2397 if ((sc->sc_flags & CAS_SERDES) == 0) { 2398 if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) == 0) 2399 v |= CAS_MAC_XIF_CONF_NOECHO; 2400 v |= CAS_MAC_XIF_CONF_BUF_OE; 2401 } 2402 if (gigabit != 0) 2403 v |= CAS_MAC_XIF_CONF_GMII; 2404 if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0) 2405 v |= CAS_MAC_XIF_CONF_FDXLED; 2406 CAS_WRITE_4(sc, CAS_MAC_XIF_CONF, v); 2407 2408 sc->sc_mac_rxcfg = rxcfg; 2409 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 && 2410 (sc->sc_flags & CAS_LINK) != 0) { 2411 CAS_WRITE_4(sc, CAS_MAC_TX_CONF, 2412 txcfg | CAS_MAC_TX_CONF_EN); 2413 CAS_WRITE_4(sc, CAS_MAC_RX_CONF, 2414 rxcfg | CAS_MAC_RX_CONF_EN); 2415 } 2416 } 2417 2418 static int 2419 cas_mediachange(struct ifnet *ifp) 2420 { 2421 struct cas_softc *sc = ifp->if_softc; 2422 int error; 2423 2424 /* XXX add support for serial media. */ 2425 2426 CAS_LOCK(sc); 2427 error = mii_mediachg(sc->sc_mii); 2428 CAS_UNLOCK(sc); 2429 return (error); 2430 } 2431 2432 static void 2433 cas_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 2434 { 2435 struct cas_softc *sc = ifp->if_softc; 2436 2437 CAS_LOCK(sc); 2438 if ((ifp->if_flags & IFF_UP) == 0) { 2439 CAS_UNLOCK(sc); 2440 return; 2441 } 2442 2443 mii_pollstat(sc->sc_mii); 2444 ifmr->ifm_active = sc->sc_mii->mii_media_active; 2445 ifmr->ifm_status = sc->sc_mii->mii_media_status; 2446 CAS_UNLOCK(sc); 2447 } 2448 2449 static int 2450 cas_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 2451 { 2452 struct cas_softc *sc = ifp->if_softc; 2453 struct ifreq *ifr = (struct ifreq *)data; 2454 int error; 2455 2456 error = 0; 2457 switch (cmd) { 2458 case SIOCSIFFLAGS: 2459 CAS_LOCK(sc); 2460 if ((ifp->if_flags & IFF_UP) != 0) { 2461 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 && 2462 ((ifp->if_flags ^ sc->sc_ifflags) & 2463 (IFF_ALLMULTI | IFF_PROMISC)) != 0) 2464 cas_setladrf(sc); 2465 else 2466 cas_init_locked(sc); 2467 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2468 cas_stop(ifp); 2469 sc->sc_ifflags = ifp->if_flags; 2470 CAS_UNLOCK(sc); 2471 break; 2472 case SIOCSIFCAP: 2473 CAS_LOCK(sc); 2474 if ((sc->sc_flags & CAS_NO_CSUM) != 0) { 2475 error = EINVAL; 2476 CAS_UNLOCK(sc); 2477 break; 2478 } 2479 ifp->if_capenable = ifr->ifr_reqcap; 2480 if ((ifp->if_capenable & IFCAP_TXCSUM) != 0) 2481 ifp->if_hwassist = CAS_CSUM_FEATURES; 2482 else 2483 ifp->if_hwassist = 0; 2484 CAS_UNLOCK(sc); 2485 break; 2486 case SIOCADDMULTI: 2487 case SIOCDELMULTI: 2488 CAS_LOCK(sc); 2489 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2490 cas_setladrf(sc); 2491 CAS_UNLOCK(sc); 2492 break; 2493 case SIOCSIFMTU: 2494 if ((ifr->ifr_mtu < ETHERMIN) || 2495 (ifr->ifr_mtu > ETHERMTU_JUMBO)) 2496 error = EINVAL; 2497 else 2498 ifp->if_mtu = ifr->ifr_mtu; 2499 break; 2500 case SIOCGIFMEDIA: 2501 case SIOCSIFMEDIA: 2502 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii->mii_media, cmd); 2503 break; 2504 default: 2505 error = ether_ioctl(ifp, cmd, data); 2506 break; 2507 } 2508 2509 return (error); 2510 } 2511 2512 static void 2513 cas_setladrf(struct cas_softc *sc) 2514 { 2515 struct ifnet *ifp = sc->sc_ifp; 2516 struct ifmultiaddr *inm; 2517 int i; 2518 uint32_t hash[16]; 2519 uint32_t crc, v; 2520 2521 CAS_LOCK_ASSERT(sc, MA_OWNED); 2522 2523 /* 2524 * Turn off the RX MAC and the hash filter as required by the Sun 2525 * Cassini programming restrictions. 2526 */ 2527 v = sc->sc_mac_rxcfg & ~(CAS_MAC_RX_CONF_HFILTER | 2528 CAS_MAC_RX_CONF_EN); 2529 CAS_WRITE_4(sc, CAS_MAC_RX_CONF, v); 2530 CAS_BARRIER(sc, CAS_MAC_RX_CONF, 4, 2531 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 2532 if (!cas_bitwait(sc, CAS_MAC_RX_CONF, CAS_MAC_RX_CONF_HFILTER | 2533 CAS_MAC_RX_CONF_EN, 0)) 2534 device_printf(sc->sc_dev, 2535 "cannot disable RX MAC or hash filter\n"); 2536 2537 v &= ~(CAS_MAC_RX_CONF_PROMISC | CAS_MAC_RX_CONF_PGRP); 2538 if ((ifp->if_flags & IFF_PROMISC) != 0) { 2539 v |= CAS_MAC_RX_CONF_PROMISC; 2540 goto chipit; 2541 } 2542 if ((ifp->if_flags & IFF_ALLMULTI) != 0) { 2543 v |= CAS_MAC_RX_CONF_PGRP; 2544 goto chipit; 2545 } 2546 2547 /* 2548 * Set up multicast address filter by passing all multicast 2549 * addresses through a crc generator, and then using the high 2550 * order 8 bits as an index into the 256 bit logical address 2551 * filter. The high order 4 bits selects the word, while the 2552 * other 4 bits select the bit within the word (where bit 0 2553 * is the MSB). 2554 */ 2555 2556 /* Clear the hash table. */ 2557 memset(hash, 0, sizeof(hash)); 2558 2559 if_maddr_rlock(ifp); 2560 TAILQ_FOREACH(inm, &ifp->if_multiaddrs, ifma_link) { 2561 if (inm->ifma_addr->sa_family != AF_LINK) 2562 continue; 2563 crc = ether_crc32_le(LLADDR((struct sockaddr_dl *) 2564 inm->ifma_addr), ETHER_ADDR_LEN); 2565 2566 /* We just want the 8 most significant bits. */ 2567 crc >>= 24; 2568 2569 /* Set the corresponding bit in the filter. */ 2570 hash[crc >> 4] |= 1 << (15 - (crc & 15)); 2571 } 2572 if_maddr_runlock(ifp); 2573 2574 v |= CAS_MAC_RX_CONF_HFILTER; 2575 2576 /* Now load the hash table into the chip (if we are using it). */ 2577 for (i = 0; i < 16; i++) 2578 CAS_WRITE_4(sc, 2579 CAS_MAC_HASH0 + i * (CAS_MAC_HASH1 - CAS_MAC_HASH0), 2580 hash[i]); 2581 2582 chipit: 2583 sc->sc_mac_rxcfg = v; 2584 CAS_WRITE_4(sc, CAS_MAC_RX_CONF, v | CAS_MAC_RX_CONF_EN); 2585 } 2586 2587 static int cas_pci_attach(device_t dev); 2588 static int cas_pci_detach(device_t dev); 2589 static int cas_pci_probe(device_t dev); 2590 static int cas_pci_resume(device_t dev); 2591 static int cas_pci_suspend(device_t dev); 2592 2593 static device_method_t cas_pci_methods[] = { 2594 /* Device interface */ 2595 DEVMETHOD(device_probe, cas_pci_probe), 2596 DEVMETHOD(device_attach, cas_pci_attach), 2597 DEVMETHOD(device_detach, cas_pci_detach), 2598 DEVMETHOD(device_suspend, cas_pci_suspend), 2599 DEVMETHOD(device_resume, cas_pci_resume), 2600 /* Use the suspend handler here, it is all that is required. */ 2601 DEVMETHOD(device_shutdown, cas_pci_suspend), 2602 2603 /* MII interface */ 2604 DEVMETHOD(miibus_readreg, cas_mii_readreg), 2605 DEVMETHOD(miibus_writereg, cas_mii_writereg), 2606 DEVMETHOD(miibus_statchg, cas_mii_statchg), 2607 2608 DEVMETHOD_END 2609 }; 2610 2611 static driver_t cas_pci_driver = { 2612 "cas", 2613 cas_pci_methods, 2614 sizeof(struct cas_softc) 2615 }; 2616 2617 DRIVER_MODULE(cas, pci, cas_pci_driver, cas_devclass, 0, 0); 2618 DRIVER_MODULE(miibus, cas, miibus_driver, miibus_devclass, 0, 0); 2619 MODULE_DEPEND(cas, pci, 1, 1, 1); 2620 2621 static const struct cas_pci_dev { 2622 uint32_t cpd_devid; 2623 uint8_t cpd_revid; 2624 int cpd_variant; 2625 const char *cpd_desc; 2626 } const cas_pci_devlist[] = { 2627 { 0x0035100b, 0x0, CAS_SATURN, "NS DP83065 Saturn Gigabit Ethernet" }, 2628 { 0xabba108e, 0x10, CAS_CASPLUS, "Sun Cassini+ Gigabit Ethernet" }, 2629 { 0xabba108e, 0x0, CAS_CAS, "Sun Cassini Gigabit Ethernet" }, 2630 { 0, 0, 0, NULL } 2631 }; 2632 2633 static int 2634 cas_pci_probe(device_t dev) 2635 { 2636 int i; 2637 2638 for (i = 0; cas_pci_devlist[i].cpd_desc != NULL; i++) { 2639 if (pci_get_devid(dev) == cas_pci_devlist[i].cpd_devid && 2640 pci_get_revid(dev) >= cas_pci_devlist[i].cpd_revid) { 2641 device_set_desc(dev, cas_pci_devlist[i].cpd_desc); 2642 return (BUS_PROBE_DEFAULT); 2643 } 2644 } 2645 2646 return (ENXIO); 2647 } 2648 2649 static struct resource_spec cas_pci_res_spec[] = { 2650 { SYS_RES_IRQ, 0, RF_SHAREABLE | RF_ACTIVE }, /* CAS_RES_INTR */ 2651 { SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE }, /* CAS_RES_MEM */ 2652 { -1, 0 } 2653 }; 2654 2655 #define CAS_LOCAL_MAC_ADDRESS "local-mac-address" 2656 #define CAS_PHY_INTERFACE "phy-interface" 2657 #define CAS_PHY_TYPE "phy-type" 2658 #define CAS_PHY_TYPE_PCS "pcs" 2659 2660 static int 2661 cas_pci_attach(device_t dev) 2662 { 2663 char buf[sizeof(CAS_LOCAL_MAC_ADDRESS)]; 2664 struct cas_softc *sc; 2665 int i; 2666 #if !(defined(__powerpc__) || defined(__sparc64__)) 2667 u_char enaddr[4][ETHER_ADDR_LEN]; 2668 u_int j, k, lma, pcs[4], phy; 2669 #endif 2670 2671 sc = device_get_softc(dev); 2672 sc->sc_variant = CAS_UNKNOWN; 2673 for (i = 0; cas_pci_devlist[i].cpd_desc != NULL; i++) { 2674 if (pci_get_devid(dev) == cas_pci_devlist[i].cpd_devid && 2675 pci_get_revid(dev) >= cas_pci_devlist[i].cpd_revid) { 2676 sc->sc_variant = cas_pci_devlist[i].cpd_variant; 2677 break; 2678 } 2679 } 2680 if (sc->sc_variant == CAS_UNKNOWN) { 2681 device_printf(dev, "unknown adaptor\n"); 2682 return (ENXIO); 2683 } 2684 2685 pci_enable_busmaster(dev); 2686 2687 sc->sc_dev = dev; 2688 if (sc->sc_variant == CAS_CAS && pci_get_devid(dev) < 0x02) 2689 /* Hardware checksumming may hang TX. */ 2690 sc->sc_flags |= CAS_NO_CSUM; 2691 if (sc->sc_variant == CAS_CASPLUS || sc->sc_variant == CAS_SATURN) 2692 sc->sc_flags |= CAS_REG_PLUS; 2693 if (sc->sc_variant == CAS_CAS || 2694 (sc->sc_variant == CAS_CASPLUS && pci_get_revid(dev) < 0x11)) 2695 sc->sc_flags |= CAS_TABORT; 2696 if (bootverbose) 2697 device_printf(dev, "flags=0x%x\n", sc->sc_flags); 2698 2699 if (bus_alloc_resources(dev, cas_pci_res_spec, sc->sc_res)) { 2700 device_printf(dev, "failed to allocate resources\n"); 2701 bus_release_resources(dev, cas_pci_res_spec, sc->sc_res); 2702 return (ENXIO); 2703 } 2704 2705 CAS_LOCK_INIT(sc, device_get_nameunit(dev)); 2706 2707 #if defined(__powerpc__) || defined(__sparc64__) 2708 OF_getetheraddr(dev, sc->sc_enaddr); 2709 if (OF_getprop(ofw_bus_get_node(dev), CAS_PHY_INTERFACE, buf, 2710 sizeof(buf)) > 0 || OF_getprop(ofw_bus_get_node(dev), 2711 CAS_PHY_TYPE, buf, sizeof(buf)) > 0) { 2712 buf[sizeof(buf) - 1] = '\0'; 2713 if (strcmp(buf, CAS_PHY_TYPE_PCS) == 0) 2714 sc->sc_flags |= CAS_SERDES; 2715 } 2716 #else 2717 /* 2718 * Dig out VPD (vital product data) and read the MAC address as well 2719 * as the PHY type. The VPD resides in the PCI Expansion ROM (PCI 2720 * FCode) and can't be accessed via the PCI capability pointer. 2721 * SUNW,pci-ce and SUNW,pci-qge use the Enhanced VPD format described 2722 * in the free US Patent 7149820. 2723 */ 2724 2725 #define PCI_ROMHDR_SIZE 0x1c 2726 #define PCI_ROMHDR_SIG 0x00 2727 #define PCI_ROMHDR_SIG_MAGIC 0xaa55 /* little endian */ 2728 #define PCI_ROMHDR_PTR_DATA 0x18 2729 #define PCI_ROM_SIZE 0x18 2730 #define PCI_ROM_SIG 0x00 2731 #define PCI_ROM_SIG_MAGIC 0x52494350 /* "PCIR", endian */ 2732 /* reversed */ 2733 #define PCI_ROM_VENDOR 0x04 2734 #define PCI_ROM_DEVICE 0x06 2735 #define PCI_ROM_PTR_VPD 0x08 2736 #define PCI_VPDRES_BYTE0 0x00 2737 #define PCI_VPDRES_ISLARGE(x) ((x) & 0x80) 2738 #define PCI_VPDRES_LARGE_NAME(x) ((x) & 0x7f) 2739 #define PCI_VPDRES_LARGE_LEN_LSB 0x01 2740 #define PCI_VPDRES_LARGE_LEN_MSB 0x02 2741 #define PCI_VPDRES_LARGE_SIZE 0x03 2742 #define PCI_VPDRES_TYPE_ID_STRING 0x02 /* large */ 2743 #define PCI_VPDRES_TYPE_VPD 0x10 /* large */ 2744 #define PCI_VPD_KEY0 0x00 2745 #define PCI_VPD_KEY1 0x01 2746 #define PCI_VPD_LEN 0x02 2747 #define PCI_VPD_SIZE 0x03 2748 2749 #define CAS_ROM_READ_1(sc, offs) \ 2750 CAS_READ_1((sc), CAS_PCI_ROM_OFFSET + (offs)) 2751 #define CAS_ROM_READ_2(sc, offs) \ 2752 CAS_READ_2((sc), CAS_PCI_ROM_OFFSET + (offs)) 2753 #define CAS_ROM_READ_4(sc, offs) \ 2754 CAS_READ_4((sc), CAS_PCI_ROM_OFFSET + (offs)) 2755 2756 lma = phy = 0; 2757 memset(enaddr, 0, sizeof(enaddr)); 2758 memset(pcs, 0, sizeof(pcs)); 2759 2760 /* Enable PCI Expansion ROM access. */ 2761 CAS_WRITE_4(sc, CAS_BIM_LDEV_OEN, 2762 CAS_BIM_LDEV_OEN_PAD | CAS_BIM_LDEV_OEN_PROM); 2763 2764 /* Read PCI Expansion ROM header. */ 2765 if (CAS_ROM_READ_2(sc, PCI_ROMHDR_SIG) != PCI_ROMHDR_SIG_MAGIC || 2766 (i = CAS_ROM_READ_2(sc, PCI_ROMHDR_PTR_DATA)) < 2767 PCI_ROMHDR_SIZE) { 2768 device_printf(dev, "unexpected PCI Expansion ROM header\n"); 2769 goto fail_prom; 2770 } 2771 2772 /* Read PCI Expansion ROM data. */ 2773 if (CAS_ROM_READ_4(sc, i + PCI_ROM_SIG) != PCI_ROM_SIG_MAGIC || 2774 CAS_ROM_READ_2(sc, i + PCI_ROM_VENDOR) != pci_get_vendor(dev) || 2775 CAS_ROM_READ_2(sc, i + PCI_ROM_DEVICE) != pci_get_device(dev) || 2776 (j = CAS_ROM_READ_2(sc, i + PCI_ROM_PTR_VPD)) < 2777 i + PCI_ROM_SIZE) { 2778 device_printf(dev, "unexpected PCI Expansion ROM data\n"); 2779 goto fail_prom; 2780 } 2781 2782 /* Read PCI VPD. */ 2783 next: 2784 if (PCI_VPDRES_ISLARGE(CAS_ROM_READ_1(sc, 2785 j + PCI_VPDRES_BYTE0)) == 0) { 2786 device_printf(dev, "no large PCI VPD\n"); 2787 goto fail_prom; 2788 } 2789 2790 i = (CAS_ROM_READ_1(sc, j + PCI_VPDRES_LARGE_LEN_MSB) << 8) | 2791 CAS_ROM_READ_1(sc, j + PCI_VPDRES_LARGE_LEN_LSB); 2792 switch (PCI_VPDRES_LARGE_NAME(CAS_ROM_READ_1(sc, 2793 j + PCI_VPDRES_BYTE0))) { 2794 case PCI_VPDRES_TYPE_ID_STRING: 2795 /* Skip identifier string. */ 2796 j += PCI_VPDRES_LARGE_SIZE + i; 2797 goto next; 2798 case PCI_VPDRES_TYPE_VPD: 2799 for (j += PCI_VPDRES_LARGE_SIZE; i > 0; 2800 i -= PCI_VPD_SIZE + CAS_ROM_READ_1(sc, j + PCI_VPD_LEN), 2801 j += PCI_VPD_SIZE + CAS_ROM_READ_1(sc, j + PCI_VPD_LEN)) { 2802 if (CAS_ROM_READ_1(sc, j + PCI_VPD_KEY0) != 'Z') 2803 /* no Enhanced VPD */ 2804 continue; 2805 if (CAS_ROM_READ_1(sc, j + PCI_VPD_SIZE) != 'I') 2806 /* no instance property */ 2807 continue; 2808 if (CAS_ROM_READ_1(sc, j + PCI_VPD_SIZE + 3) == 'B') { 2809 /* byte array */ 2810 if (CAS_ROM_READ_1(sc, 2811 j + PCI_VPD_SIZE + 4) != ETHER_ADDR_LEN) 2812 continue; 2813 bus_read_region_1(sc->sc_res[CAS_RES_MEM], 2814 CAS_PCI_ROM_OFFSET + j + PCI_VPD_SIZE + 5, 2815 buf, sizeof(buf)); 2816 buf[sizeof(buf) - 1] = '\0'; 2817 if (strcmp(buf, CAS_LOCAL_MAC_ADDRESS) != 0) 2818 continue; 2819 bus_read_region_1(sc->sc_res[CAS_RES_MEM], 2820 CAS_PCI_ROM_OFFSET + j + PCI_VPD_SIZE + 2821 5 + sizeof(CAS_LOCAL_MAC_ADDRESS), 2822 enaddr[lma], sizeof(enaddr[lma])); 2823 lma++; 2824 if (lma == 4 && phy == 4) 2825 break; 2826 } else if (CAS_ROM_READ_1(sc, j + PCI_VPD_SIZE + 3) == 2827 'S') { 2828 /* string */ 2829 if (CAS_ROM_READ_1(sc, 2830 j + PCI_VPD_SIZE + 4) != 2831 sizeof(CAS_PHY_TYPE_PCS)) 2832 continue; 2833 bus_read_region_1(sc->sc_res[CAS_RES_MEM], 2834 CAS_PCI_ROM_OFFSET + j + PCI_VPD_SIZE + 5, 2835 buf, sizeof(buf)); 2836 buf[sizeof(buf) - 1] = '\0'; 2837 if (strcmp(buf, CAS_PHY_INTERFACE) == 0) 2838 k = sizeof(CAS_PHY_INTERFACE); 2839 else if (strcmp(buf, CAS_PHY_TYPE) == 0) 2840 k = sizeof(CAS_PHY_TYPE); 2841 else 2842 continue; 2843 bus_read_region_1(sc->sc_res[CAS_RES_MEM], 2844 CAS_PCI_ROM_OFFSET + j + PCI_VPD_SIZE + 2845 5 + k, buf, sizeof(buf)); 2846 buf[sizeof(buf) - 1] = '\0'; 2847 if (strcmp(buf, CAS_PHY_TYPE_PCS) == 0) 2848 pcs[phy] = 1; 2849 phy++; 2850 if (lma == 4 && phy == 4) 2851 break; 2852 } 2853 } 2854 break; 2855 default: 2856 device_printf(dev, "unexpected PCI VPD\n"); 2857 goto fail_prom; 2858 } 2859 2860 fail_prom: 2861 CAS_WRITE_4(sc, CAS_BIM_LDEV_OEN, 0); 2862 2863 if (lma == 0) { 2864 device_printf(dev, "could not determine Ethernet address\n"); 2865 goto fail; 2866 } 2867 i = 0; 2868 if (lma > 1 && pci_get_slot(dev) < sizeof(enaddr) / sizeof(*enaddr)) 2869 i = pci_get_slot(dev); 2870 memcpy(sc->sc_enaddr, enaddr[i], ETHER_ADDR_LEN); 2871 2872 if (phy == 0) { 2873 device_printf(dev, "could not determine PHY type\n"); 2874 goto fail; 2875 } 2876 i = 0; 2877 if (phy > 1 && pci_get_slot(dev) < sizeof(pcs) / sizeof(*pcs)) 2878 i = pci_get_slot(dev); 2879 if (pcs[i] != 0) 2880 sc->sc_flags |= CAS_SERDES; 2881 #endif 2882 2883 if (cas_attach(sc) != 0) { 2884 device_printf(dev, "could not be attached\n"); 2885 goto fail; 2886 } 2887 2888 if (bus_setup_intr(dev, sc->sc_res[CAS_RES_INTR], INTR_TYPE_NET | 2889 INTR_MPSAFE, cas_intr, NULL, sc, &sc->sc_ih) != 0) { 2890 device_printf(dev, "failed to set up interrupt\n"); 2891 cas_detach(sc); 2892 goto fail; 2893 } 2894 return (0); 2895 2896 fail: 2897 CAS_LOCK_DESTROY(sc); 2898 bus_release_resources(dev, cas_pci_res_spec, sc->sc_res); 2899 return (ENXIO); 2900 } 2901 2902 static int 2903 cas_pci_detach(device_t dev) 2904 { 2905 struct cas_softc *sc; 2906 2907 sc = device_get_softc(dev); 2908 bus_teardown_intr(dev, sc->sc_res[CAS_RES_INTR], sc->sc_ih); 2909 cas_detach(sc); 2910 CAS_LOCK_DESTROY(sc); 2911 bus_release_resources(dev, cas_pci_res_spec, sc->sc_res); 2912 return (0); 2913 } 2914 2915 static int 2916 cas_pci_suspend(device_t dev) 2917 { 2918 2919 cas_suspend(device_get_softc(dev)); 2920 return (0); 2921 } 2922 2923 static int 2924 cas_pci_resume(device_t dev) 2925 { 2926 2927 cas_resume(device_get_softc(dev)); 2928 return (0); 2929 } 2930