1 /*- 2 * Copyright (C) 2001 Eduardo Horvath. 3 * Copyright (c) 2001-2003 Thomas Moestl 4 * Copyright (c) 2007-2009 Marius Strobl <marius@FreeBSD.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * from: NetBSD: gem.c,v 1.21 2002/06/01 23:50:58 lukem Exp 29 * from: FreeBSD: if_gem.c 182060 2008-08-23 15:03:26Z marius 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 /* 36 * driver for Sun Cassini/Cassini+ and National Semiconductor DP83065 37 * Saturn Gigabit Ethernet controllers 38 */ 39 40 #if 0 41 #define CAS_DEBUG 42 #endif 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/bus.h> 47 #include <sys/callout.h> 48 #include <sys/endian.h> 49 #include <sys/mbuf.h> 50 #include <sys/malloc.h> 51 #include <sys/kernel.h> 52 #include <sys/lock.h> 53 #include <sys/module.h> 54 #include <sys/mutex.h> 55 #include <sys/refcount.h> 56 #include <sys/resource.h> 57 #include <sys/rman.h> 58 #include <sys/socket.h> 59 #include <sys/sockio.h> 60 #include <sys/taskqueue.h> 61 62 #include <net/bpf.h> 63 #include <net/ethernet.h> 64 #include <net/if.h> 65 #include <net/if_var.h> 66 #include <net/if_arp.h> 67 #include <net/if_dl.h> 68 #include <net/if_media.h> 69 #include <net/if_types.h> 70 #include <net/if_vlan_var.h> 71 72 #include <netinet/in.h> 73 #include <netinet/in_systm.h> 74 #include <netinet/ip.h> 75 #include <netinet/tcp.h> 76 #include <netinet/udp.h> 77 78 #include <machine/bus.h> 79 #if defined(__powerpc__) || defined(__sparc64__) 80 #include <dev/ofw/ofw_bus.h> 81 #include <dev/ofw/openfirm.h> 82 #include <machine/ofw_machdep.h> 83 #endif 84 #include <machine/resource.h> 85 86 #include <dev/mii/mii.h> 87 #include <dev/mii/miivar.h> 88 89 #include <dev/cas/if_casreg.h> 90 #include <dev/cas/if_casvar.h> 91 92 #include <dev/pci/pcireg.h> 93 #include <dev/pci/pcivar.h> 94 95 #include "miibus_if.h" 96 97 #define RINGASSERT(n , min, max) \ 98 CTASSERT(powerof2(n) && (n) >= (min) && (n) <= (max)) 99 100 RINGASSERT(CAS_NRXCOMP, 128, 32768); 101 RINGASSERT(CAS_NRXDESC, 32, 8192); 102 RINGASSERT(CAS_NRXDESC2, 32, 8192); 103 RINGASSERT(CAS_NTXDESC, 32, 8192); 104 105 #undef RINGASSERT 106 107 #define CCDASSERT(m, a) \ 108 CTASSERT((offsetof(struct cas_control_data, m) & ((a) - 1)) == 0) 109 110 CCDASSERT(ccd_rxcomps, CAS_RX_COMP_ALIGN); 111 CCDASSERT(ccd_rxdescs, CAS_RX_DESC_ALIGN); 112 CCDASSERT(ccd_rxdescs2, CAS_RX_DESC_ALIGN); 113 114 #undef CCDASSERT 115 116 #define CAS_TRIES 10000 117 118 /* 119 * According to documentation, the hardware has support for basic TCP 120 * checksum offloading only, in practice this can be also used for UDP 121 * however (i.e. the problem of previous Sun NICs that a checksum of 0x0 122 * is not converted to 0xffff no longer exists). 123 */ 124 #define CAS_CSUM_FEATURES (CSUM_TCP | CSUM_UDP) 125 126 static inline void cas_add_rxdesc(struct cas_softc *sc, u_int idx); 127 static int cas_attach(struct cas_softc *sc); 128 static int cas_bitwait(struct cas_softc *sc, bus_addr_t r, uint32_t clr, 129 uint32_t set); 130 static void cas_cddma_callback(void *xsc, bus_dma_segment_t *segs, 131 int nsegs, int error); 132 static void cas_detach(struct cas_softc *sc); 133 static int cas_disable_rx(struct cas_softc *sc); 134 static int cas_disable_tx(struct cas_softc *sc); 135 static void cas_eint(struct cas_softc *sc, u_int status); 136 static void cas_free(struct mbuf *m); 137 static void cas_init(void *xsc); 138 static void cas_init_locked(struct cas_softc *sc); 139 static void cas_init_regs(struct cas_softc *sc); 140 static int cas_intr(void *v); 141 static void cas_intr_task(void *arg, int pending __unused); 142 static int cas_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data); 143 static int cas_load_txmbuf(struct cas_softc *sc, struct mbuf **m_head); 144 static int cas_mediachange(struct ifnet *ifp); 145 static void cas_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr); 146 static void cas_meminit(struct cas_softc *sc); 147 static void cas_mifinit(struct cas_softc *sc); 148 static int cas_mii_readreg(device_t dev, int phy, int reg); 149 static void cas_mii_statchg(device_t dev); 150 static int cas_mii_writereg(device_t dev, int phy, int reg, int val); 151 static void cas_reset(struct cas_softc *sc); 152 static int cas_reset_rx(struct cas_softc *sc); 153 static int cas_reset_tx(struct cas_softc *sc); 154 static void cas_resume(struct cas_softc *sc); 155 static u_int cas_descsize(u_int sz); 156 static void cas_rint(struct cas_softc *sc); 157 static void cas_rint_timeout(void *arg); 158 static inline void cas_rxcksum(struct mbuf *m, uint16_t cksum); 159 static inline void cas_rxcompinit(struct cas_rx_comp *rxcomp); 160 static u_int cas_rxcompsize(u_int sz); 161 static void cas_rxdma_callback(void *xsc, bus_dma_segment_t *segs, 162 int nsegs, int error); 163 static void cas_setladrf(struct cas_softc *sc); 164 static void cas_start(struct ifnet *ifp); 165 static void cas_stop(struct ifnet *ifp); 166 static void cas_suspend(struct cas_softc *sc); 167 static void cas_tick(void *arg); 168 static void cas_tint(struct cas_softc *sc); 169 static void cas_tx_task(void *arg, int pending __unused); 170 static inline void cas_txkick(struct cas_softc *sc); 171 static void cas_watchdog(struct cas_softc *sc); 172 173 static devclass_t cas_devclass; 174 175 MODULE_DEPEND(cas, ether, 1, 1, 1); 176 MODULE_DEPEND(cas, miibus, 1, 1, 1); 177 178 #ifdef CAS_DEBUG 179 #include <sys/ktr.h> 180 #define KTR_CAS KTR_SPARE2 181 #endif 182 183 static int 184 cas_attach(struct cas_softc *sc) 185 { 186 struct cas_txsoft *txs; 187 struct ifnet *ifp; 188 int error, i; 189 uint32_t v; 190 191 /* Set up ifnet structure. */ 192 ifp = sc->sc_ifp = if_alloc(IFT_ETHER); 193 if (ifp == NULL) 194 return (ENOSPC); 195 ifp->if_softc = sc; 196 if_initname(ifp, device_get_name(sc->sc_dev), 197 device_get_unit(sc->sc_dev)); 198 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 199 ifp->if_start = cas_start; 200 ifp->if_ioctl = cas_ioctl; 201 ifp->if_init = cas_init; 202 IFQ_SET_MAXLEN(&ifp->if_snd, CAS_TXQUEUELEN); 203 ifp->if_snd.ifq_drv_maxlen = CAS_TXQUEUELEN; 204 IFQ_SET_READY(&ifp->if_snd); 205 206 callout_init_mtx(&sc->sc_tick_ch, &sc->sc_mtx, 0); 207 callout_init_mtx(&sc->sc_rx_ch, &sc->sc_mtx, 0); 208 /* Create local taskq. */ 209 TASK_INIT(&sc->sc_intr_task, 0, cas_intr_task, sc); 210 TASK_INIT(&sc->sc_tx_task, 1, cas_tx_task, ifp); 211 sc->sc_tq = taskqueue_create_fast("cas_taskq", M_WAITOK, 212 taskqueue_thread_enqueue, &sc->sc_tq); 213 if (sc->sc_tq == NULL) { 214 device_printf(sc->sc_dev, "could not create taskqueue\n"); 215 error = ENXIO; 216 goto fail_ifnet; 217 } 218 error = taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq", 219 device_get_nameunit(sc->sc_dev)); 220 if (error != 0) { 221 device_printf(sc->sc_dev, "could not start threads\n"); 222 goto fail_taskq; 223 } 224 225 /* Make sure the chip is stopped. */ 226 cas_reset(sc); 227 228 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 229 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 230 BUS_SPACE_MAXSIZE, 0, BUS_SPACE_MAXSIZE, 0, NULL, NULL, 231 &sc->sc_pdmatag); 232 if (error != 0) 233 goto fail_taskq; 234 235 error = bus_dma_tag_create(sc->sc_pdmatag, 1, 0, 236 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 237 CAS_PAGE_SIZE, 1, CAS_PAGE_SIZE, 0, NULL, NULL, &sc->sc_rdmatag); 238 if (error != 0) 239 goto fail_ptag; 240 241 error = bus_dma_tag_create(sc->sc_pdmatag, 1, 0, 242 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 243 MCLBYTES * CAS_NTXSEGS, CAS_NTXSEGS, MCLBYTES, 244 BUS_DMA_ALLOCNOW, NULL, NULL, &sc->sc_tdmatag); 245 if (error != 0) 246 goto fail_rtag; 247 248 error = bus_dma_tag_create(sc->sc_pdmatag, CAS_TX_DESC_ALIGN, 0, 249 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 250 sizeof(struct cas_control_data), 1, 251 sizeof(struct cas_control_data), 0, 252 NULL, NULL, &sc->sc_cdmatag); 253 if (error != 0) 254 goto fail_ttag; 255 256 /* 257 * Allocate the control data structures, create and load the 258 * DMA map for it. 259 */ 260 if ((error = bus_dmamem_alloc(sc->sc_cdmatag, 261 (void **)&sc->sc_control_data, 262 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, 263 &sc->sc_cddmamap)) != 0) { 264 device_printf(sc->sc_dev, 265 "unable to allocate control data, error = %d\n", error); 266 goto fail_ctag; 267 } 268 269 sc->sc_cddma = 0; 270 if ((error = bus_dmamap_load(sc->sc_cdmatag, sc->sc_cddmamap, 271 sc->sc_control_data, sizeof(struct cas_control_data), 272 cas_cddma_callback, sc, 0)) != 0 || sc->sc_cddma == 0) { 273 device_printf(sc->sc_dev, 274 "unable to load control data DMA map, error = %d\n", 275 error); 276 goto fail_cmem; 277 } 278 279 /* 280 * Initialize the transmit job descriptors. 281 */ 282 STAILQ_INIT(&sc->sc_txfreeq); 283 STAILQ_INIT(&sc->sc_txdirtyq); 284 285 /* 286 * Create the transmit buffer DMA maps. 287 */ 288 error = ENOMEM; 289 for (i = 0; i < CAS_TXQUEUELEN; i++) { 290 txs = &sc->sc_txsoft[i]; 291 txs->txs_mbuf = NULL; 292 txs->txs_ndescs = 0; 293 if ((error = bus_dmamap_create(sc->sc_tdmatag, 0, 294 &txs->txs_dmamap)) != 0) { 295 device_printf(sc->sc_dev, 296 "unable to create TX DMA map %d, error = %d\n", 297 i, error); 298 goto fail_txd; 299 } 300 STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); 301 } 302 303 /* 304 * Allocate the receive buffers, create and load the DMA maps 305 * for them. 306 */ 307 for (i = 0; i < CAS_NRXDESC; i++) { 308 if ((error = bus_dmamem_alloc(sc->sc_rdmatag, 309 &sc->sc_rxdsoft[i].rxds_buf, BUS_DMA_WAITOK, 310 &sc->sc_rxdsoft[i].rxds_dmamap)) != 0) { 311 device_printf(sc->sc_dev, 312 "unable to allocate RX buffer %d, error = %d\n", 313 i, error); 314 goto fail_rxmem; 315 } 316 317 sc->sc_rxdptr = i; 318 sc->sc_rxdsoft[i].rxds_paddr = 0; 319 if ((error = bus_dmamap_load(sc->sc_rdmatag, 320 sc->sc_rxdsoft[i].rxds_dmamap, sc->sc_rxdsoft[i].rxds_buf, 321 CAS_PAGE_SIZE, cas_rxdma_callback, sc, 0)) != 0 || 322 sc->sc_rxdsoft[i].rxds_paddr == 0) { 323 device_printf(sc->sc_dev, 324 "unable to load RX DMA map %d, error = %d\n", 325 i, error); 326 goto fail_rxmap; 327 } 328 } 329 330 if ((sc->sc_flags & CAS_SERDES) == 0) { 331 CAS_WRITE_4(sc, CAS_PCS_DATAPATH, CAS_PCS_DATAPATH_MII); 332 CAS_BARRIER(sc, CAS_PCS_DATAPATH, 4, 333 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 334 cas_mifinit(sc); 335 /* 336 * Look for an external PHY. 337 */ 338 error = ENXIO; 339 v = CAS_READ_4(sc, CAS_MIF_CONF); 340 if ((v & CAS_MIF_CONF_MDI1) != 0) { 341 v |= CAS_MIF_CONF_PHY_SELECT; 342 CAS_WRITE_4(sc, CAS_MIF_CONF, v); 343 CAS_BARRIER(sc, CAS_MIF_CONF, 4, 344 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 345 /* Enable/unfreeze the GMII pins of Saturn. */ 346 if (sc->sc_variant == CAS_SATURN) { 347 CAS_WRITE_4(sc, CAS_SATURN_PCFG, 348 CAS_READ_4(sc, CAS_SATURN_PCFG) & 349 ~CAS_SATURN_PCFG_FSI); 350 CAS_BARRIER(sc, CAS_SATURN_PCFG, 4, 351 BUS_SPACE_BARRIER_READ | 352 BUS_SPACE_BARRIER_WRITE); 353 DELAY(10000); 354 } 355 error = mii_attach(sc->sc_dev, &sc->sc_miibus, ifp, 356 cas_mediachange, cas_mediastatus, BMSR_DEFCAPMASK, 357 MII_PHY_ANY, MII_OFFSET_ANY, MIIF_DOPAUSE); 358 } 359 /* 360 * Fall back on an internal PHY if no external PHY was found. 361 */ 362 if (error != 0 && (v & CAS_MIF_CONF_MDI0) != 0) { 363 v &= ~CAS_MIF_CONF_PHY_SELECT; 364 CAS_WRITE_4(sc, CAS_MIF_CONF, v); 365 CAS_BARRIER(sc, CAS_MIF_CONF, 4, 366 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 367 /* Freeze the GMII pins of Saturn for saving power. */ 368 if (sc->sc_variant == CAS_SATURN) { 369 CAS_WRITE_4(sc, CAS_SATURN_PCFG, 370 CAS_READ_4(sc, CAS_SATURN_PCFG) | 371 CAS_SATURN_PCFG_FSI); 372 CAS_BARRIER(sc, CAS_SATURN_PCFG, 4, 373 BUS_SPACE_BARRIER_READ | 374 BUS_SPACE_BARRIER_WRITE); 375 DELAY(10000); 376 } 377 error = mii_attach(sc->sc_dev, &sc->sc_miibus, ifp, 378 cas_mediachange, cas_mediastatus, BMSR_DEFCAPMASK, 379 MII_PHY_ANY, MII_OFFSET_ANY, MIIF_DOPAUSE); 380 } 381 } else { 382 /* 383 * Use the external PCS SERDES. 384 */ 385 CAS_WRITE_4(sc, CAS_PCS_DATAPATH, CAS_PCS_DATAPATH_SERDES); 386 CAS_BARRIER(sc, CAS_PCS_DATAPATH, 4, BUS_SPACE_BARRIER_WRITE); 387 /* Enable/unfreeze the SERDES pins of Saturn. */ 388 if (sc->sc_variant == CAS_SATURN) { 389 CAS_WRITE_4(sc, CAS_SATURN_PCFG, 0); 390 CAS_BARRIER(sc, CAS_SATURN_PCFG, 4, 391 BUS_SPACE_BARRIER_WRITE); 392 } 393 CAS_WRITE_4(sc, CAS_PCS_SERDES_CTRL, CAS_PCS_SERDES_CTRL_ESD); 394 CAS_BARRIER(sc, CAS_PCS_SERDES_CTRL, 4, 395 BUS_SPACE_BARRIER_WRITE); 396 CAS_WRITE_4(sc, CAS_PCS_CONF, CAS_PCS_CONF_EN); 397 CAS_BARRIER(sc, CAS_PCS_CONF, 4, 398 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 399 error = mii_attach(sc->sc_dev, &sc->sc_miibus, ifp, 400 cas_mediachange, cas_mediastatus, BMSR_DEFCAPMASK, 401 CAS_PHYAD_EXTERNAL, MII_OFFSET_ANY, MIIF_DOPAUSE); 402 } 403 if (error != 0) { 404 device_printf(sc->sc_dev, "attaching PHYs failed\n"); 405 goto fail_rxmap; 406 } 407 sc->sc_mii = device_get_softc(sc->sc_miibus); 408 409 /* 410 * From this point forward, the attachment cannot fail. A failure 411 * before this point releases all resources that may have been 412 * allocated. 413 */ 414 415 /* Announce FIFO sizes. */ 416 v = CAS_READ_4(sc, CAS_TX_FIFO_SIZE); 417 device_printf(sc->sc_dev, "%ukB RX FIFO, %ukB TX FIFO\n", 418 CAS_RX_FIFO_SIZE / 1024, v / 16); 419 420 /* Attach the interface. */ 421 ether_ifattach(ifp, sc->sc_enaddr); 422 423 /* 424 * Tell the upper layer(s) we support long frames/checksum offloads. 425 */ 426 ifp->if_hdrlen = sizeof(struct ether_vlan_header); 427 ifp->if_capabilities = IFCAP_VLAN_MTU; 428 if ((sc->sc_flags & CAS_NO_CSUM) == 0) { 429 ifp->if_capabilities |= IFCAP_HWCSUM; 430 ifp->if_hwassist = CAS_CSUM_FEATURES; 431 } 432 ifp->if_capenable = ifp->if_capabilities; 433 434 return (0); 435 436 /* 437 * Free any resources we've allocated during the failed attach 438 * attempt. Do this in reverse order and fall through. 439 */ 440 fail_rxmap: 441 for (i = 0; i < CAS_NRXDESC; i++) 442 if (sc->sc_rxdsoft[i].rxds_paddr != 0) 443 bus_dmamap_unload(sc->sc_rdmatag, 444 sc->sc_rxdsoft[i].rxds_dmamap); 445 fail_rxmem: 446 for (i = 0; i < CAS_NRXDESC; i++) 447 if (sc->sc_rxdsoft[i].rxds_buf != NULL) 448 bus_dmamem_free(sc->sc_rdmatag, 449 sc->sc_rxdsoft[i].rxds_buf, 450 sc->sc_rxdsoft[i].rxds_dmamap); 451 fail_txd: 452 for (i = 0; i < CAS_TXQUEUELEN; i++) 453 if (sc->sc_txsoft[i].txs_dmamap != NULL) 454 bus_dmamap_destroy(sc->sc_tdmatag, 455 sc->sc_txsoft[i].txs_dmamap); 456 bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cddmamap); 457 fail_cmem: 458 bus_dmamem_free(sc->sc_cdmatag, sc->sc_control_data, 459 sc->sc_cddmamap); 460 fail_ctag: 461 bus_dma_tag_destroy(sc->sc_cdmatag); 462 fail_ttag: 463 bus_dma_tag_destroy(sc->sc_tdmatag); 464 fail_rtag: 465 bus_dma_tag_destroy(sc->sc_rdmatag); 466 fail_ptag: 467 bus_dma_tag_destroy(sc->sc_pdmatag); 468 fail_taskq: 469 taskqueue_free(sc->sc_tq); 470 fail_ifnet: 471 if_free(ifp); 472 return (error); 473 } 474 475 static void 476 cas_detach(struct cas_softc *sc) 477 { 478 struct ifnet *ifp = sc->sc_ifp; 479 int i; 480 481 ether_ifdetach(ifp); 482 CAS_LOCK(sc); 483 cas_stop(ifp); 484 CAS_UNLOCK(sc); 485 callout_drain(&sc->sc_tick_ch); 486 callout_drain(&sc->sc_rx_ch); 487 taskqueue_drain(sc->sc_tq, &sc->sc_intr_task); 488 taskqueue_drain(sc->sc_tq, &sc->sc_tx_task); 489 if_free(ifp); 490 taskqueue_free(sc->sc_tq); 491 device_delete_child(sc->sc_dev, sc->sc_miibus); 492 493 for (i = 0; i < CAS_NRXDESC; i++) 494 if (sc->sc_rxdsoft[i].rxds_dmamap != NULL) 495 bus_dmamap_sync(sc->sc_rdmatag, 496 sc->sc_rxdsoft[i].rxds_dmamap, 497 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 498 for (i = 0; i < CAS_NRXDESC; i++) 499 if (sc->sc_rxdsoft[i].rxds_paddr != 0) 500 bus_dmamap_unload(sc->sc_rdmatag, 501 sc->sc_rxdsoft[i].rxds_dmamap); 502 for (i = 0; i < CAS_NRXDESC; i++) 503 if (sc->sc_rxdsoft[i].rxds_buf != NULL) 504 bus_dmamem_free(sc->sc_rdmatag, 505 sc->sc_rxdsoft[i].rxds_buf, 506 sc->sc_rxdsoft[i].rxds_dmamap); 507 for (i = 0; i < CAS_TXQUEUELEN; i++) 508 if (sc->sc_txsoft[i].txs_dmamap != NULL) 509 bus_dmamap_destroy(sc->sc_tdmatag, 510 sc->sc_txsoft[i].txs_dmamap); 511 CAS_CDSYNC(sc, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 512 bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cddmamap); 513 bus_dmamem_free(sc->sc_cdmatag, sc->sc_control_data, 514 sc->sc_cddmamap); 515 bus_dma_tag_destroy(sc->sc_cdmatag); 516 bus_dma_tag_destroy(sc->sc_tdmatag); 517 bus_dma_tag_destroy(sc->sc_rdmatag); 518 bus_dma_tag_destroy(sc->sc_pdmatag); 519 } 520 521 static void 522 cas_suspend(struct cas_softc *sc) 523 { 524 struct ifnet *ifp = sc->sc_ifp; 525 526 CAS_LOCK(sc); 527 cas_stop(ifp); 528 CAS_UNLOCK(sc); 529 } 530 531 static void 532 cas_resume(struct cas_softc *sc) 533 { 534 struct ifnet *ifp = sc->sc_ifp; 535 536 CAS_LOCK(sc); 537 /* 538 * On resume all registers have to be initialized again like 539 * after power-on. 540 */ 541 sc->sc_flags &= ~CAS_INITED; 542 if (ifp->if_flags & IFF_UP) 543 cas_init_locked(sc); 544 CAS_UNLOCK(sc); 545 } 546 547 static inline void 548 cas_rxcksum(struct mbuf *m, uint16_t cksum) 549 { 550 struct ether_header *eh; 551 struct ip *ip; 552 struct udphdr *uh; 553 uint16_t *opts; 554 int32_t hlen, len, pktlen; 555 uint32_t temp32; 556 557 pktlen = m->m_pkthdr.len; 558 if (pktlen < sizeof(struct ether_header) + sizeof(struct ip)) 559 return; 560 eh = mtod(m, struct ether_header *); 561 if (eh->ether_type != htons(ETHERTYPE_IP)) 562 return; 563 ip = (struct ip *)(eh + 1); 564 if (ip->ip_v != IPVERSION) 565 return; 566 567 hlen = ip->ip_hl << 2; 568 pktlen -= sizeof(struct ether_header); 569 if (hlen < sizeof(struct ip)) 570 return; 571 if (ntohs(ip->ip_len) < hlen) 572 return; 573 if (ntohs(ip->ip_len) != pktlen) 574 return; 575 if (ip->ip_off & htons(IP_MF | IP_OFFMASK)) 576 return; /* Cannot handle fragmented packet. */ 577 578 switch (ip->ip_p) { 579 case IPPROTO_TCP: 580 if (pktlen < (hlen + sizeof(struct tcphdr))) 581 return; 582 break; 583 case IPPROTO_UDP: 584 if (pktlen < (hlen + sizeof(struct udphdr))) 585 return; 586 uh = (struct udphdr *)((uint8_t *)ip + hlen); 587 if (uh->uh_sum == 0) 588 return; /* no checksum */ 589 break; 590 default: 591 return; 592 } 593 594 cksum = ~cksum; 595 /* checksum fixup for IP options */ 596 len = hlen - sizeof(struct ip); 597 if (len > 0) { 598 opts = (uint16_t *)(ip + 1); 599 for (; len > 0; len -= sizeof(uint16_t), opts++) { 600 temp32 = cksum - *opts; 601 temp32 = (temp32 >> 16) + (temp32 & 65535); 602 cksum = temp32 & 65535; 603 } 604 } 605 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID; 606 m->m_pkthdr.csum_data = cksum; 607 } 608 609 static void 610 cas_cddma_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, int error) 611 { 612 struct cas_softc *sc = xsc; 613 614 if (error != 0) 615 return; 616 if (nsegs != 1) 617 panic("%s: bad control buffer segment count", __func__); 618 sc->sc_cddma = segs[0].ds_addr; 619 } 620 621 static void 622 cas_rxdma_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, int error) 623 { 624 struct cas_softc *sc = xsc; 625 626 if (error != 0) 627 return; 628 if (nsegs != 1) 629 panic("%s: bad RX buffer segment count", __func__); 630 sc->sc_rxdsoft[sc->sc_rxdptr].rxds_paddr = segs[0].ds_addr; 631 } 632 633 static void 634 cas_tick(void *arg) 635 { 636 struct cas_softc *sc = arg; 637 struct ifnet *ifp = sc->sc_ifp; 638 uint32_t v; 639 640 CAS_LOCK_ASSERT(sc, MA_OWNED); 641 642 /* 643 * Unload collision and error counters. 644 */ 645 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 646 CAS_READ_4(sc, CAS_MAC_NORM_COLL_CNT) + 647 CAS_READ_4(sc, CAS_MAC_FIRST_COLL_CNT)); 648 v = CAS_READ_4(sc, CAS_MAC_EXCESS_COLL_CNT) + 649 CAS_READ_4(sc, CAS_MAC_LATE_COLL_CNT); 650 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, v); 651 if_inc_counter(ifp, IFCOUNTER_OERRORS, v); 652 if_inc_counter(ifp, IFCOUNTER_IERRORS, 653 CAS_READ_4(sc, CAS_MAC_RX_LEN_ERR_CNT) + 654 CAS_READ_4(sc, CAS_MAC_RX_ALIGN_ERR) + 655 CAS_READ_4(sc, CAS_MAC_RX_CRC_ERR_CNT) + 656 CAS_READ_4(sc, CAS_MAC_RX_CODE_VIOL)); 657 658 /* 659 * Then clear the hardware counters. 660 */ 661 CAS_WRITE_4(sc, CAS_MAC_NORM_COLL_CNT, 0); 662 CAS_WRITE_4(sc, CAS_MAC_FIRST_COLL_CNT, 0); 663 CAS_WRITE_4(sc, CAS_MAC_EXCESS_COLL_CNT, 0); 664 CAS_WRITE_4(sc, CAS_MAC_LATE_COLL_CNT, 0); 665 CAS_WRITE_4(sc, CAS_MAC_RX_LEN_ERR_CNT, 0); 666 CAS_WRITE_4(sc, CAS_MAC_RX_ALIGN_ERR, 0); 667 CAS_WRITE_4(sc, CAS_MAC_RX_CRC_ERR_CNT, 0); 668 CAS_WRITE_4(sc, CAS_MAC_RX_CODE_VIOL, 0); 669 670 mii_tick(sc->sc_mii); 671 672 if (sc->sc_txfree != CAS_MAXTXFREE) 673 cas_tint(sc); 674 675 cas_watchdog(sc); 676 677 callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc); 678 } 679 680 static int 681 cas_bitwait(struct cas_softc *sc, bus_addr_t r, uint32_t clr, uint32_t set) 682 { 683 int i; 684 uint32_t reg; 685 686 for (i = CAS_TRIES; i--; DELAY(100)) { 687 reg = CAS_READ_4(sc, r); 688 if ((reg & clr) == 0 && (reg & set) == set) 689 return (1); 690 } 691 return (0); 692 } 693 694 static void 695 cas_reset(struct cas_softc *sc) 696 { 697 698 #ifdef CAS_DEBUG 699 CTR2(KTR_CAS, "%s: %s", device_get_name(sc->sc_dev), __func__); 700 #endif 701 /* Disable all interrupts in order to avoid spurious ones. */ 702 CAS_WRITE_4(sc, CAS_INTMASK, 0xffffffff); 703 704 cas_reset_rx(sc); 705 cas_reset_tx(sc); 706 707 /* 708 * Do a full reset modulo the result of the last auto-negotiation 709 * when using the SERDES. 710 */ 711 CAS_WRITE_4(sc, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX | 712 ((sc->sc_flags & CAS_SERDES) != 0 ? CAS_RESET_PCS_DIS : 0)); 713 CAS_BARRIER(sc, CAS_RESET, 4, 714 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 715 DELAY(3000); 716 if (!cas_bitwait(sc, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0)) 717 device_printf(sc->sc_dev, "cannot reset device\n"); 718 } 719 720 static void 721 cas_stop(struct ifnet *ifp) 722 { 723 struct cas_softc *sc = ifp->if_softc; 724 struct cas_txsoft *txs; 725 726 #ifdef CAS_DEBUG 727 CTR2(KTR_CAS, "%s: %s", device_get_name(sc->sc_dev), __func__); 728 #endif 729 730 callout_stop(&sc->sc_tick_ch); 731 callout_stop(&sc->sc_rx_ch); 732 733 /* Disable all interrupts in order to avoid spurious ones. */ 734 CAS_WRITE_4(sc, CAS_INTMASK, 0xffffffff); 735 736 cas_reset_tx(sc); 737 cas_reset_rx(sc); 738 739 /* 740 * Release any queued transmit buffers. 741 */ 742 while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) { 743 STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q); 744 if (txs->txs_ndescs != 0) { 745 bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap, 746 BUS_DMASYNC_POSTWRITE); 747 bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap); 748 if (txs->txs_mbuf != NULL) { 749 m_freem(txs->txs_mbuf); 750 txs->txs_mbuf = NULL; 751 } 752 } 753 STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); 754 } 755 756 /* 757 * Mark the interface down and cancel the watchdog timer. 758 */ 759 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 760 sc->sc_flags &= ~CAS_LINK; 761 sc->sc_wdog_timer = 0; 762 } 763 764 static int 765 cas_reset_rx(struct cas_softc *sc) 766 { 767 768 /* 769 * Resetting while DMA is in progress can cause a bus hang, so we 770 * disable DMA first. 771 */ 772 (void)cas_disable_rx(sc); 773 CAS_WRITE_4(sc, CAS_RX_CONF, 0); 774 CAS_BARRIER(sc, CAS_RX_CONF, 4, 775 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 776 if (!cas_bitwait(sc, CAS_RX_CONF, CAS_RX_CONF_RXDMA_EN, 0)) 777 device_printf(sc->sc_dev, "cannot disable RX DMA\n"); 778 779 /* Finally, reset the ERX. */ 780 CAS_WRITE_4(sc, CAS_RESET, CAS_RESET_RX | 781 ((sc->sc_flags & CAS_SERDES) != 0 ? CAS_RESET_PCS_DIS : 0)); 782 CAS_BARRIER(sc, CAS_RESET, 4, 783 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 784 if (!cas_bitwait(sc, CAS_RESET, CAS_RESET_RX, 0)) { 785 device_printf(sc->sc_dev, "cannot reset receiver\n"); 786 return (1); 787 } 788 return (0); 789 } 790 791 static int 792 cas_reset_tx(struct cas_softc *sc) 793 { 794 795 /* 796 * Resetting while DMA is in progress can cause a bus hang, so we 797 * disable DMA first. 798 */ 799 (void)cas_disable_tx(sc); 800 CAS_WRITE_4(sc, CAS_TX_CONF, 0); 801 CAS_BARRIER(sc, CAS_TX_CONF, 4, 802 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 803 if (!cas_bitwait(sc, CAS_TX_CONF, CAS_TX_CONF_TXDMA_EN, 0)) 804 device_printf(sc->sc_dev, "cannot disable TX DMA\n"); 805 806 /* Finally, reset the ETX. */ 807 CAS_WRITE_4(sc, CAS_RESET, CAS_RESET_TX | 808 ((sc->sc_flags & CAS_SERDES) != 0 ? CAS_RESET_PCS_DIS : 0)); 809 CAS_BARRIER(sc, CAS_RESET, 4, 810 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 811 if (!cas_bitwait(sc, CAS_RESET, CAS_RESET_TX, 0)) { 812 device_printf(sc->sc_dev, "cannot reset transmitter\n"); 813 return (1); 814 } 815 return (0); 816 } 817 818 static int 819 cas_disable_rx(struct cas_softc *sc) 820 { 821 822 CAS_WRITE_4(sc, CAS_MAC_RX_CONF, 823 CAS_READ_4(sc, CAS_MAC_RX_CONF) & ~CAS_MAC_RX_CONF_EN); 824 CAS_BARRIER(sc, CAS_MAC_RX_CONF, 4, 825 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 826 if (cas_bitwait(sc, CAS_MAC_RX_CONF, CAS_MAC_RX_CONF_EN, 0)) 827 return (1); 828 if (bootverbose) 829 device_printf(sc->sc_dev, "cannot disable RX MAC\n"); 830 return (0); 831 } 832 833 static int 834 cas_disable_tx(struct cas_softc *sc) 835 { 836 837 CAS_WRITE_4(sc, CAS_MAC_TX_CONF, 838 CAS_READ_4(sc, CAS_MAC_TX_CONF) & ~CAS_MAC_TX_CONF_EN); 839 CAS_BARRIER(sc, CAS_MAC_TX_CONF, 4, 840 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 841 if (cas_bitwait(sc, CAS_MAC_TX_CONF, CAS_MAC_TX_CONF_EN, 0)) 842 return (1); 843 if (bootverbose) 844 device_printf(sc->sc_dev, "cannot disable TX MAC\n"); 845 return (0); 846 } 847 848 static inline void 849 cas_rxcompinit(struct cas_rx_comp *rxcomp) 850 { 851 852 rxcomp->crc_word1 = 0; 853 rxcomp->crc_word2 = 0; 854 rxcomp->crc_word3 = 855 htole64(CAS_SET(ETHER_HDR_LEN + sizeof(struct ip), CAS_RC3_CSO)); 856 rxcomp->crc_word4 = htole64(CAS_RC4_ZERO); 857 } 858 859 static void 860 cas_meminit(struct cas_softc *sc) 861 { 862 int i; 863 864 CAS_LOCK_ASSERT(sc, MA_OWNED); 865 866 /* 867 * Initialize the transmit descriptor ring. 868 */ 869 for (i = 0; i < CAS_NTXDESC; i++) { 870 sc->sc_txdescs[i].cd_flags = 0; 871 sc->sc_txdescs[i].cd_buf_ptr = 0; 872 } 873 sc->sc_txfree = CAS_MAXTXFREE; 874 sc->sc_txnext = 0; 875 sc->sc_txwin = 0; 876 877 /* 878 * Initialize the receive completion ring. 879 */ 880 for (i = 0; i < CAS_NRXCOMP; i++) 881 cas_rxcompinit(&sc->sc_rxcomps[i]); 882 sc->sc_rxcptr = 0; 883 884 /* 885 * Initialize the first receive descriptor ring. We leave 886 * the second one zeroed as we don't actually use it. 887 */ 888 for (i = 0; i < CAS_NRXDESC; i++) 889 CAS_INIT_RXDESC(sc, i, i); 890 sc->sc_rxdptr = 0; 891 892 CAS_CDSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 893 } 894 895 static u_int 896 cas_descsize(u_int sz) 897 { 898 899 switch (sz) { 900 case 32: 901 return (CAS_DESC_32); 902 case 64: 903 return (CAS_DESC_64); 904 case 128: 905 return (CAS_DESC_128); 906 case 256: 907 return (CAS_DESC_256); 908 case 512: 909 return (CAS_DESC_512); 910 case 1024: 911 return (CAS_DESC_1K); 912 case 2048: 913 return (CAS_DESC_2K); 914 case 4096: 915 return (CAS_DESC_4K); 916 case 8192: 917 return (CAS_DESC_8K); 918 default: 919 printf("%s: invalid descriptor ring size %d\n", __func__, sz); 920 return (CAS_DESC_32); 921 } 922 } 923 924 static u_int 925 cas_rxcompsize(u_int sz) 926 { 927 928 switch (sz) { 929 case 128: 930 return (CAS_RX_CONF_COMP_128); 931 case 256: 932 return (CAS_RX_CONF_COMP_256); 933 case 512: 934 return (CAS_RX_CONF_COMP_512); 935 case 1024: 936 return (CAS_RX_CONF_COMP_1K); 937 case 2048: 938 return (CAS_RX_CONF_COMP_2K); 939 case 4096: 940 return (CAS_RX_CONF_COMP_4K); 941 case 8192: 942 return (CAS_RX_CONF_COMP_8K); 943 case 16384: 944 return (CAS_RX_CONF_COMP_16K); 945 case 32768: 946 return (CAS_RX_CONF_COMP_32K); 947 default: 948 printf("%s: invalid dcompletion ring size %d\n", __func__, sz); 949 return (CAS_RX_CONF_COMP_128); 950 } 951 } 952 953 static void 954 cas_init(void *xsc) 955 { 956 struct cas_softc *sc = xsc; 957 958 CAS_LOCK(sc); 959 cas_init_locked(sc); 960 CAS_UNLOCK(sc); 961 } 962 963 /* 964 * Initialization of interface; set up initialization block 965 * and transmit/receive descriptor rings. 966 */ 967 static void 968 cas_init_locked(struct cas_softc *sc) 969 { 970 struct ifnet *ifp = sc->sc_ifp; 971 uint32_t v; 972 973 CAS_LOCK_ASSERT(sc, MA_OWNED); 974 975 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 976 return; 977 978 #ifdef CAS_DEBUG 979 CTR2(KTR_CAS, "%s: %s: calling stop", device_get_name(sc->sc_dev), 980 __func__); 981 #endif 982 /* 983 * Initialization sequence. The numbered steps below correspond 984 * to the sequence outlined in section 6.3.5.1 in the Ethernet 985 * Channel Engine manual (part of the PCIO manual). 986 * See also the STP2002-STQ document from Sun Microsystems. 987 */ 988 989 /* step 1 & 2. Reset the Ethernet Channel. */ 990 cas_stop(ifp); 991 cas_reset(sc); 992 #ifdef CAS_DEBUG 993 CTR2(KTR_CAS, "%s: %s: restarting", device_get_name(sc->sc_dev), 994 __func__); 995 #endif 996 997 if ((sc->sc_flags & CAS_SERDES) == 0) 998 /* Re-initialize the MIF. */ 999 cas_mifinit(sc); 1000 1001 /* step 3. Setup data structures in host memory. */ 1002 cas_meminit(sc); 1003 1004 /* step 4. TX MAC registers & counters */ 1005 cas_init_regs(sc); 1006 1007 /* step 5. RX MAC registers & counters */ 1008 1009 /* step 6 & 7. Program Ring Base Addresses. */ 1010 CAS_WRITE_4(sc, CAS_TX_DESC3_BASE_HI, 1011 (((uint64_t)CAS_CDTXDADDR(sc, 0)) >> 32)); 1012 CAS_WRITE_4(sc, CAS_TX_DESC3_BASE_LO, 1013 CAS_CDTXDADDR(sc, 0) & 0xffffffff); 1014 1015 CAS_WRITE_4(sc, CAS_RX_COMP_BASE_HI, 1016 (((uint64_t)CAS_CDRXCADDR(sc, 0)) >> 32)); 1017 CAS_WRITE_4(sc, CAS_RX_COMP_BASE_LO, 1018 CAS_CDRXCADDR(sc, 0) & 0xffffffff); 1019 1020 CAS_WRITE_4(sc, CAS_RX_DESC_BASE_HI, 1021 (((uint64_t)CAS_CDRXDADDR(sc, 0)) >> 32)); 1022 CAS_WRITE_4(sc, CAS_RX_DESC_BASE_LO, 1023 CAS_CDRXDADDR(sc, 0) & 0xffffffff); 1024 1025 if ((sc->sc_flags & CAS_REG_PLUS) != 0) { 1026 CAS_WRITE_4(sc, CAS_RX_DESC2_BASE_HI, 1027 (((uint64_t)CAS_CDRXD2ADDR(sc, 0)) >> 32)); 1028 CAS_WRITE_4(sc, CAS_RX_DESC2_BASE_LO, 1029 CAS_CDRXD2ADDR(sc, 0) & 0xffffffff); 1030 } 1031 1032 #ifdef CAS_DEBUG 1033 CTR5(KTR_CAS, 1034 "loading TXDR %lx, RXCR %lx, RXDR %lx, RXD2R %lx, cddma %lx", 1035 CAS_CDTXDADDR(sc, 0), CAS_CDRXCADDR(sc, 0), CAS_CDRXDADDR(sc, 0), 1036 CAS_CDRXD2ADDR(sc, 0), sc->sc_cddma); 1037 #endif 1038 1039 /* step 8. Global Configuration & Interrupt Masks */ 1040 1041 /* Disable weighted round robin. */ 1042 CAS_WRITE_4(sc, CAS_CAW, CAS_CAW_RR_DIS); 1043 1044 /* 1045 * Enable infinite bursts for revisions without PCI issues if 1046 * applicable. Doing so greatly improves the TX performance on 1047 * !__sparc64__ (on sparc64, setting CAS_INF_BURST improves TX 1048 * performance only marginally but hurts RX throughput quite a bit). 1049 */ 1050 CAS_WRITE_4(sc, CAS_INF_BURST, 1051 #if !defined(__sparc64__) 1052 (sc->sc_flags & CAS_TABORT) == 0 ? CAS_INF_BURST_EN : 1053 #endif 1054 0); 1055 1056 /* Set up interrupts. */ 1057 CAS_WRITE_4(sc, CAS_INTMASK, 1058 ~(CAS_INTR_TX_INT_ME | CAS_INTR_TX_TAG_ERR | 1059 CAS_INTR_RX_DONE | CAS_INTR_RX_BUF_NA | CAS_INTR_RX_TAG_ERR | 1060 CAS_INTR_RX_COMP_FULL | CAS_INTR_RX_BUF_AEMPTY | 1061 CAS_INTR_RX_COMP_AFULL | CAS_INTR_RX_LEN_MMATCH | 1062 CAS_INTR_PCI_ERROR_INT 1063 #ifdef CAS_DEBUG 1064 | CAS_INTR_PCS_INT | CAS_INTR_MIF 1065 #endif 1066 )); 1067 /* Don't clear top level interrupts when CAS_STATUS_ALIAS is read. */ 1068 CAS_WRITE_4(sc, CAS_CLEAR_ALIAS, 0); 1069 CAS_WRITE_4(sc, CAS_MAC_RX_MASK, ~CAS_MAC_RX_OVERFLOW); 1070 CAS_WRITE_4(sc, CAS_MAC_TX_MASK, 1071 ~(CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_MAX_PKT_ERR)); 1072 #ifdef CAS_DEBUG 1073 CAS_WRITE_4(sc, CAS_MAC_CTRL_MASK, 1074 ~(CAS_MAC_CTRL_PAUSE_RCVD | CAS_MAC_CTRL_PAUSE | 1075 CAS_MAC_CTRL_NON_PAUSE)); 1076 #else 1077 CAS_WRITE_4(sc, CAS_MAC_CTRL_MASK, 1078 CAS_MAC_CTRL_PAUSE_RCVD | CAS_MAC_CTRL_PAUSE | 1079 CAS_MAC_CTRL_NON_PAUSE); 1080 #endif 1081 1082 /* Enable PCI error interrupts. */ 1083 CAS_WRITE_4(sc, CAS_ERROR_MASK, 1084 ~(CAS_ERROR_DTRTO | CAS_ERROR_OTHER | CAS_ERROR_DMAW_ZERO | 1085 CAS_ERROR_DMAR_ZERO | CAS_ERROR_RTRTO)); 1086 1087 /* Enable PCI error interrupts in BIM configuration. */ 1088 CAS_WRITE_4(sc, CAS_BIM_CONF, 1089 CAS_BIM_CONF_DPAR_EN | CAS_BIM_CONF_RMA_EN | CAS_BIM_CONF_RTA_EN); 1090 1091 /* 1092 * step 9. ETX Configuration: encode receive descriptor ring size, 1093 * enable DMA and disable pre-interrupt writeback completion. 1094 */ 1095 v = cas_descsize(CAS_NTXDESC) << CAS_TX_CONF_DESC3_SHFT; 1096 CAS_WRITE_4(sc, CAS_TX_CONF, v | CAS_TX_CONF_TXDMA_EN | 1097 CAS_TX_CONF_RDPP_DIS | CAS_TX_CONF_PICWB_DIS); 1098 1099 /* step 10. ERX Configuration */ 1100 1101 /* 1102 * Encode receive completion and descriptor ring sizes, set the 1103 * swivel offset. 1104 */ 1105 v = cas_rxcompsize(CAS_NRXCOMP) << CAS_RX_CONF_COMP_SHFT; 1106 v |= cas_descsize(CAS_NRXDESC) << CAS_RX_CONF_DESC_SHFT; 1107 if ((sc->sc_flags & CAS_REG_PLUS) != 0) 1108 v |= cas_descsize(CAS_NRXDESC2) << CAS_RX_CONF_DESC2_SHFT; 1109 CAS_WRITE_4(sc, CAS_RX_CONF, 1110 v | (ETHER_ALIGN << CAS_RX_CONF_SOFF_SHFT)); 1111 1112 /* Set the PAUSE thresholds. We use the maximum OFF threshold. */ 1113 CAS_WRITE_4(sc, CAS_RX_PTHRS, 1114 (111 << CAS_RX_PTHRS_XOFF_SHFT) | (15 << CAS_RX_PTHRS_XON_SHFT)); 1115 1116 /* RX blanking */ 1117 CAS_WRITE_4(sc, CAS_RX_BLANK, 1118 (15 << CAS_RX_BLANK_TIME_SHFT) | (5 << CAS_RX_BLANK_PKTS_SHFT)); 1119 1120 /* Set RX_COMP_AFULL threshold to half of the RX completions. */ 1121 CAS_WRITE_4(sc, CAS_RX_AEMPTY_THRS, 1122 (CAS_NRXCOMP / 2) << CAS_RX_AEMPTY_COMP_SHFT); 1123 1124 /* Initialize the RX page size register as appropriate for 8k. */ 1125 CAS_WRITE_4(sc, CAS_RX_PSZ, 1126 (CAS_RX_PSZ_8K << CAS_RX_PSZ_SHFT) | 1127 (4 << CAS_RX_PSZ_MB_CNT_SHFT) | 1128 (CAS_RX_PSZ_MB_STRD_2K << CAS_RX_PSZ_MB_STRD_SHFT) | 1129 (CAS_RX_PSZ_MB_OFF_64 << CAS_RX_PSZ_MB_OFF_SHFT)); 1130 1131 /* Disable RX random early detection. */ 1132 CAS_WRITE_4(sc, CAS_RX_RED, 0); 1133 1134 /* Zero the RX reassembly DMA table. */ 1135 for (v = 0; v <= CAS_RX_REAS_DMA_ADDR_LC; v++) { 1136 CAS_WRITE_4(sc, CAS_RX_REAS_DMA_ADDR, v); 1137 CAS_WRITE_4(sc, CAS_RX_REAS_DMA_DATA_LO, 0); 1138 CAS_WRITE_4(sc, CAS_RX_REAS_DMA_DATA_MD, 0); 1139 CAS_WRITE_4(sc, CAS_RX_REAS_DMA_DATA_HI, 0); 1140 } 1141 1142 /* Ensure the RX control FIFO and RX IPP FIFO addresses are zero. */ 1143 CAS_WRITE_4(sc, CAS_RX_CTRL_FIFO, 0); 1144 CAS_WRITE_4(sc, CAS_RX_IPP_ADDR, 0); 1145 1146 /* Finally, enable RX DMA. */ 1147 CAS_WRITE_4(sc, CAS_RX_CONF, 1148 CAS_READ_4(sc, CAS_RX_CONF) | CAS_RX_CONF_RXDMA_EN); 1149 1150 /* step 11. Configure Media. */ 1151 1152 /* step 12. RX_MAC Configuration Register */ 1153 v = CAS_READ_4(sc, CAS_MAC_RX_CONF); 1154 v &= ~(CAS_MAC_RX_CONF_STRPPAD | CAS_MAC_RX_CONF_EN); 1155 v |= CAS_MAC_RX_CONF_STRPFCS; 1156 sc->sc_mac_rxcfg = v; 1157 /* 1158 * Clear the RX filter and reprogram it. This will also set the 1159 * current RX MAC configuration and enable it. 1160 */ 1161 cas_setladrf(sc); 1162 1163 /* step 13. TX_MAC Configuration Register */ 1164 v = CAS_READ_4(sc, CAS_MAC_TX_CONF); 1165 v |= CAS_MAC_TX_CONF_EN; 1166 (void)cas_disable_tx(sc); 1167 CAS_WRITE_4(sc, CAS_MAC_TX_CONF, v); 1168 1169 /* step 14. Issue Transmit Pending command. */ 1170 1171 /* step 15. Give the receiver a swift kick. */ 1172 CAS_WRITE_4(sc, CAS_RX_KICK, CAS_NRXDESC - 4); 1173 CAS_WRITE_4(sc, CAS_RX_COMP_TAIL, 0); 1174 if ((sc->sc_flags & CAS_REG_PLUS) != 0) 1175 CAS_WRITE_4(sc, CAS_RX_KICK2, CAS_NRXDESC2 - 4); 1176 1177 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1178 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1179 1180 mii_mediachg(sc->sc_mii); 1181 1182 /* Start the one second timer. */ 1183 sc->sc_wdog_timer = 0; 1184 callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc); 1185 } 1186 1187 static int 1188 cas_load_txmbuf(struct cas_softc *sc, struct mbuf **m_head) 1189 { 1190 bus_dma_segment_t txsegs[CAS_NTXSEGS]; 1191 struct cas_txsoft *txs; 1192 struct ip *ip; 1193 struct mbuf *m; 1194 uint64_t cflags; 1195 int error, nexttx, nsegs, offset, seg; 1196 1197 CAS_LOCK_ASSERT(sc, MA_OWNED); 1198 1199 /* Get a work queue entry. */ 1200 if ((txs = STAILQ_FIRST(&sc->sc_txfreeq)) == NULL) { 1201 /* Ran out of descriptors. */ 1202 return (ENOBUFS); 1203 } 1204 1205 cflags = 0; 1206 if (((*m_head)->m_pkthdr.csum_flags & CAS_CSUM_FEATURES) != 0) { 1207 if (M_WRITABLE(*m_head) == 0) { 1208 m = m_dup(*m_head, M_NOWAIT); 1209 m_freem(*m_head); 1210 *m_head = m; 1211 if (m == NULL) 1212 return (ENOBUFS); 1213 } 1214 offset = sizeof(struct ether_header); 1215 m = m_pullup(*m_head, offset + sizeof(struct ip)); 1216 if (m == NULL) { 1217 *m_head = NULL; 1218 return (ENOBUFS); 1219 } 1220 ip = (struct ip *)(mtod(m, caddr_t) + offset); 1221 offset += (ip->ip_hl << 2); 1222 cflags = (offset << CAS_TD_CKSUM_START_SHFT) | 1223 ((offset + m->m_pkthdr.csum_data) << 1224 CAS_TD_CKSUM_STUFF_SHFT) | CAS_TD_CKSUM_EN; 1225 *m_head = m; 1226 } 1227 1228 error = bus_dmamap_load_mbuf_sg(sc->sc_tdmatag, txs->txs_dmamap, 1229 *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT); 1230 if (error == EFBIG) { 1231 m = m_collapse(*m_head, M_NOWAIT, CAS_NTXSEGS); 1232 if (m == NULL) { 1233 m_freem(*m_head); 1234 *m_head = NULL; 1235 return (ENOBUFS); 1236 } 1237 *m_head = m; 1238 error = bus_dmamap_load_mbuf_sg(sc->sc_tdmatag, 1239 txs->txs_dmamap, *m_head, txsegs, &nsegs, 1240 BUS_DMA_NOWAIT); 1241 if (error != 0) { 1242 m_freem(*m_head); 1243 *m_head = NULL; 1244 return (error); 1245 } 1246 } else if (error != 0) 1247 return (error); 1248 /* If nsegs is wrong then the stack is corrupt. */ 1249 KASSERT(nsegs <= CAS_NTXSEGS, 1250 ("%s: too many DMA segments (%d)", __func__, nsegs)); 1251 if (nsegs == 0) { 1252 m_freem(*m_head); 1253 *m_head = NULL; 1254 return (EIO); 1255 } 1256 1257 /* 1258 * Ensure we have enough descriptors free to describe 1259 * the packet. Note, we always reserve one descriptor 1260 * at the end of the ring as a termination point, in 1261 * order to prevent wrap-around. 1262 */ 1263 if (nsegs > sc->sc_txfree - 1) { 1264 txs->txs_ndescs = 0; 1265 bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap); 1266 return (ENOBUFS); 1267 } 1268 1269 txs->txs_ndescs = nsegs; 1270 txs->txs_firstdesc = sc->sc_txnext; 1271 nexttx = txs->txs_firstdesc; 1272 for (seg = 0; seg < nsegs; seg++, nexttx = CAS_NEXTTX(nexttx)) { 1273 #ifdef CAS_DEBUG 1274 CTR6(KTR_CAS, 1275 "%s: mapping seg %d (txd %d), len %lx, addr %#lx (%#lx)", 1276 __func__, seg, nexttx, txsegs[seg].ds_len, 1277 txsegs[seg].ds_addr, htole64(txsegs[seg].ds_addr)); 1278 #endif 1279 sc->sc_txdescs[nexttx].cd_buf_ptr = 1280 htole64(txsegs[seg].ds_addr); 1281 KASSERT(txsegs[seg].ds_len < 1282 CAS_TD_BUF_LEN_MASK >> CAS_TD_BUF_LEN_SHFT, 1283 ("%s: segment size too large!", __func__)); 1284 sc->sc_txdescs[nexttx].cd_flags = 1285 htole64(txsegs[seg].ds_len << CAS_TD_BUF_LEN_SHFT); 1286 txs->txs_lastdesc = nexttx; 1287 } 1288 1289 /* Set EOF on the last descriptor. */ 1290 #ifdef CAS_DEBUG 1291 CTR3(KTR_CAS, "%s: end of frame at segment %d, TX %d", 1292 __func__, seg, nexttx); 1293 #endif 1294 sc->sc_txdescs[txs->txs_lastdesc].cd_flags |= 1295 htole64(CAS_TD_END_OF_FRAME); 1296 1297 /* Lastly set SOF on the first descriptor. */ 1298 #ifdef CAS_DEBUG 1299 CTR3(KTR_CAS, "%s: start of frame at segment %d, TX %d", 1300 __func__, seg, nexttx); 1301 #endif 1302 if (sc->sc_txwin += nsegs > CAS_MAXTXFREE * 2 / 3) { 1303 sc->sc_txwin = 0; 1304 sc->sc_txdescs[txs->txs_firstdesc].cd_flags |= 1305 htole64(cflags | CAS_TD_START_OF_FRAME | CAS_TD_INT_ME); 1306 } else 1307 sc->sc_txdescs[txs->txs_firstdesc].cd_flags |= 1308 htole64(cflags | CAS_TD_START_OF_FRAME); 1309 1310 /* Sync the DMA map. */ 1311 bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap, 1312 BUS_DMASYNC_PREWRITE); 1313 1314 #ifdef CAS_DEBUG 1315 CTR4(KTR_CAS, "%s: setting firstdesc=%d, lastdesc=%d, ndescs=%d", 1316 __func__, txs->txs_firstdesc, txs->txs_lastdesc, 1317 txs->txs_ndescs); 1318 #endif 1319 STAILQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q); 1320 STAILQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q); 1321 txs->txs_mbuf = *m_head; 1322 1323 sc->sc_txnext = CAS_NEXTTX(txs->txs_lastdesc); 1324 sc->sc_txfree -= txs->txs_ndescs; 1325 1326 return (0); 1327 } 1328 1329 static void 1330 cas_init_regs(struct cas_softc *sc) 1331 { 1332 int i; 1333 const u_char *laddr = IF_LLADDR(sc->sc_ifp); 1334 1335 CAS_LOCK_ASSERT(sc, MA_OWNED); 1336 1337 /* These registers are not cleared on reset. */ 1338 if ((sc->sc_flags & CAS_INITED) == 0) { 1339 /* magic values */ 1340 CAS_WRITE_4(sc, CAS_MAC_IPG0, 0); 1341 CAS_WRITE_4(sc, CAS_MAC_IPG1, 8); 1342 CAS_WRITE_4(sc, CAS_MAC_IPG2, 4); 1343 1344 /* min frame length */ 1345 CAS_WRITE_4(sc, CAS_MAC_MIN_FRAME, ETHER_MIN_LEN); 1346 /* max frame length and max burst size */ 1347 CAS_WRITE_4(sc, CAS_MAC_MAX_BF, 1348 ((ETHER_MAX_LEN_JUMBO + ETHER_VLAN_ENCAP_LEN) << 1349 CAS_MAC_MAX_BF_FRM_SHFT) | 1350 (0x2000 << CAS_MAC_MAX_BF_BST_SHFT)); 1351 1352 /* more magic values */ 1353 CAS_WRITE_4(sc, CAS_MAC_PREAMBLE_LEN, 0x7); 1354 CAS_WRITE_4(sc, CAS_MAC_JAM_SIZE, 0x4); 1355 CAS_WRITE_4(sc, CAS_MAC_ATTEMPT_LIMIT, 0x10); 1356 CAS_WRITE_4(sc, CAS_MAC_CTRL_TYPE, 0x8808); 1357 1358 /* random number seed */ 1359 CAS_WRITE_4(sc, CAS_MAC_RANDOM_SEED, 1360 ((laddr[5] << 8) | laddr[4]) & 0x3ff); 1361 1362 /* secondary MAC addresses: 0:0:0:0:0:0 */ 1363 for (i = CAS_MAC_ADDR3; i <= CAS_MAC_ADDR41; 1364 i += CAS_MAC_ADDR4 - CAS_MAC_ADDR3) 1365 CAS_WRITE_4(sc, i, 0); 1366 1367 /* MAC control address: 01:80:c2:00:00:01 */ 1368 CAS_WRITE_4(sc, CAS_MAC_ADDR42, 0x0001); 1369 CAS_WRITE_4(sc, CAS_MAC_ADDR43, 0xc200); 1370 CAS_WRITE_4(sc, CAS_MAC_ADDR44, 0x0180); 1371 1372 /* MAC filter address: 0:0:0:0:0:0 */ 1373 CAS_WRITE_4(sc, CAS_MAC_AFILTER0, 0); 1374 CAS_WRITE_4(sc, CAS_MAC_AFILTER1, 0); 1375 CAS_WRITE_4(sc, CAS_MAC_AFILTER2, 0); 1376 CAS_WRITE_4(sc, CAS_MAC_AFILTER_MASK1_2, 0); 1377 CAS_WRITE_4(sc, CAS_MAC_AFILTER_MASK0, 0); 1378 1379 /* Zero the hash table. */ 1380 for (i = CAS_MAC_HASH0; i <= CAS_MAC_HASH15; 1381 i += CAS_MAC_HASH1 - CAS_MAC_HASH0) 1382 CAS_WRITE_4(sc, i, 0); 1383 1384 sc->sc_flags |= CAS_INITED; 1385 } 1386 1387 /* Counters need to be zeroed. */ 1388 CAS_WRITE_4(sc, CAS_MAC_NORM_COLL_CNT, 0); 1389 CAS_WRITE_4(sc, CAS_MAC_FIRST_COLL_CNT, 0); 1390 CAS_WRITE_4(sc, CAS_MAC_EXCESS_COLL_CNT, 0); 1391 CAS_WRITE_4(sc, CAS_MAC_LATE_COLL_CNT, 0); 1392 CAS_WRITE_4(sc, CAS_MAC_DEFER_TMR_CNT, 0); 1393 CAS_WRITE_4(sc, CAS_MAC_PEAK_ATTEMPTS, 0); 1394 CAS_WRITE_4(sc, CAS_MAC_RX_FRAME_COUNT, 0); 1395 CAS_WRITE_4(sc, CAS_MAC_RX_LEN_ERR_CNT, 0); 1396 CAS_WRITE_4(sc, CAS_MAC_RX_ALIGN_ERR, 0); 1397 CAS_WRITE_4(sc, CAS_MAC_RX_CRC_ERR_CNT, 0); 1398 CAS_WRITE_4(sc, CAS_MAC_RX_CODE_VIOL, 0); 1399 1400 /* Set XOFF PAUSE time. */ 1401 CAS_WRITE_4(sc, CAS_MAC_SPC, 0x1BF0 << CAS_MAC_SPC_TIME_SHFT); 1402 1403 /* Set the station address. */ 1404 CAS_WRITE_4(sc, CAS_MAC_ADDR0, (laddr[4] << 8) | laddr[5]); 1405 CAS_WRITE_4(sc, CAS_MAC_ADDR1, (laddr[2] << 8) | laddr[3]); 1406 CAS_WRITE_4(sc, CAS_MAC_ADDR2, (laddr[0] << 8) | laddr[1]); 1407 1408 /* Enable MII outputs. */ 1409 CAS_WRITE_4(sc, CAS_MAC_XIF_CONF, CAS_MAC_XIF_CONF_TX_OE); 1410 } 1411 1412 static void 1413 cas_tx_task(void *arg, int pending __unused) 1414 { 1415 struct ifnet *ifp; 1416 1417 ifp = (struct ifnet *)arg; 1418 cas_start(ifp); 1419 } 1420 1421 static inline void 1422 cas_txkick(struct cas_softc *sc) 1423 { 1424 1425 /* 1426 * Update the TX kick register. This register has to point to the 1427 * descriptor after the last valid one and for optimum performance 1428 * should be incremented in multiples of 4 (the DMA engine fetches/ 1429 * updates descriptors in batches of 4). 1430 */ 1431 #ifdef CAS_DEBUG 1432 CTR3(KTR_CAS, "%s: %s: kicking TX %d", 1433 device_get_name(sc->sc_dev), __func__, sc->sc_txnext); 1434 #endif 1435 CAS_CDSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1436 CAS_WRITE_4(sc, CAS_TX_KICK3, sc->sc_txnext); 1437 } 1438 1439 static void 1440 cas_start(struct ifnet *ifp) 1441 { 1442 struct cas_softc *sc = ifp->if_softc; 1443 struct mbuf *m; 1444 int kicked, ntx; 1445 1446 CAS_LOCK(sc); 1447 1448 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 1449 IFF_DRV_RUNNING || (sc->sc_flags & CAS_LINK) == 0) { 1450 CAS_UNLOCK(sc); 1451 return; 1452 } 1453 1454 if (sc->sc_txfree < CAS_MAXTXFREE / 4) 1455 cas_tint(sc); 1456 1457 #ifdef CAS_DEBUG 1458 CTR4(KTR_CAS, "%s: %s: txfree %d, txnext %d", 1459 device_get_name(sc->sc_dev), __func__, sc->sc_txfree, 1460 sc->sc_txnext); 1461 #endif 1462 ntx = 0; 1463 kicked = 0; 1464 for (; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) && sc->sc_txfree > 1;) { 1465 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 1466 if (m == NULL) 1467 break; 1468 if (cas_load_txmbuf(sc, &m) != 0) { 1469 if (m == NULL) 1470 break; 1471 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1472 IFQ_DRV_PREPEND(&ifp->if_snd, m); 1473 break; 1474 } 1475 if ((sc->sc_txnext % 4) == 0) { 1476 cas_txkick(sc); 1477 kicked = 1; 1478 } else 1479 kicked = 0; 1480 ntx++; 1481 BPF_MTAP(ifp, m); 1482 } 1483 1484 if (ntx > 0) { 1485 if (kicked == 0) 1486 cas_txkick(sc); 1487 #ifdef CAS_DEBUG 1488 CTR2(KTR_CAS, "%s: packets enqueued, OWN on %d", 1489 device_get_name(sc->sc_dev), sc->sc_txnext); 1490 #endif 1491 1492 /* Set a watchdog timer in case the chip flakes out. */ 1493 sc->sc_wdog_timer = 5; 1494 #ifdef CAS_DEBUG 1495 CTR3(KTR_CAS, "%s: %s: watchdog %d", 1496 device_get_name(sc->sc_dev), __func__, 1497 sc->sc_wdog_timer); 1498 #endif 1499 } 1500 1501 CAS_UNLOCK(sc); 1502 } 1503 1504 static void 1505 cas_tint(struct cas_softc *sc) 1506 { 1507 struct ifnet *ifp = sc->sc_ifp; 1508 struct cas_txsoft *txs; 1509 int progress; 1510 uint32_t txlast; 1511 #ifdef CAS_DEBUG 1512 int i; 1513 1514 CAS_LOCK_ASSERT(sc, MA_OWNED); 1515 1516 CTR2(KTR_CAS, "%s: %s", device_get_name(sc->sc_dev), __func__); 1517 #endif 1518 1519 /* 1520 * Go through our TX list and free mbufs for those 1521 * frames that have been transmitted. 1522 */ 1523 progress = 0; 1524 CAS_CDSYNC(sc, BUS_DMASYNC_POSTREAD); 1525 while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) { 1526 #ifdef CAS_DEBUG 1527 if ((ifp->if_flags & IFF_DEBUG) != 0) { 1528 printf(" txsoft %p transmit chain:\n", txs); 1529 for (i = txs->txs_firstdesc;; i = CAS_NEXTTX(i)) { 1530 printf("descriptor %d: ", i); 1531 printf("cd_flags: 0x%016llx\t", 1532 (long long)le64toh( 1533 sc->sc_txdescs[i].cd_flags)); 1534 printf("cd_buf_ptr: 0x%016llx\n", 1535 (long long)le64toh( 1536 sc->sc_txdescs[i].cd_buf_ptr)); 1537 if (i == txs->txs_lastdesc) 1538 break; 1539 } 1540 } 1541 #endif 1542 1543 /* 1544 * In theory, we could harvest some descriptors before 1545 * the ring is empty, but that's a bit complicated. 1546 * 1547 * CAS_TX_COMPn points to the last descriptor 1548 * processed + 1. 1549 */ 1550 txlast = CAS_READ_4(sc, CAS_TX_COMP3); 1551 #ifdef CAS_DEBUG 1552 CTR4(KTR_CAS, "%s: txs->txs_firstdesc = %d, " 1553 "txs->txs_lastdesc = %d, txlast = %d", 1554 __func__, txs->txs_firstdesc, txs->txs_lastdesc, txlast); 1555 #endif 1556 if (txs->txs_firstdesc <= txs->txs_lastdesc) { 1557 if ((txlast >= txs->txs_firstdesc) && 1558 (txlast <= txs->txs_lastdesc)) 1559 break; 1560 } else { 1561 /* Ick -- this command wraps. */ 1562 if ((txlast >= txs->txs_firstdesc) || 1563 (txlast <= txs->txs_lastdesc)) 1564 break; 1565 } 1566 1567 #ifdef CAS_DEBUG 1568 CTR1(KTR_CAS, "%s: releasing a descriptor", __func__); 1569 #endif 1570 STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q); 1571 1572 sc->sc_txfree += txs->txs_ndescs; 1573 1574 bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap, 1575 BUS_DMASYNC_POSTWRITE); 1576 bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap); 1577 if (txs->txs_mbuf != NULL) { 1578 m_freem(txs->txs_mbuf); 1579 txs->txs_mbuf = NULL; 1580 } 1581 1582 STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); 1583 1584 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 1585 progress = 1; 1586 } 1587 1588 #ifdef CAS_DEBUG 1589 CTR5(KTR_CAS, "%s: CAS_TX_SM1 %x CAS_TX_SM2 %x CAS_TX_DESC_BASE %llx " 1590 "CAS_TX_COMP3 %x", 1591 __func__, CAS_READ_4(sc, CAS_TX_SM1), CAS_READ_4(sc, CAS_TX_SM2), 1592 ((long long)CAS_READ_4(sc, CAS_TX_DESC3_BASE_HI) << 32) | 1593 CAS_READ_4(sc, CAS_TX_DESC3_BASE_LO), 1594 CAS_READ_4(sc, CAS_TX_COMP3)); 1595 #endif 1596 1597 if (progress) { 1598 /* We freed some descriptors, so reset IFF_DRV_OACTIVE. */ 1599 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1600 if (STAILQ_EMPTY(&sc->sc_txdirtyq)) 1601 sc->sc_wdog_timer = 0; 1602 } 1603 1604 #ifdef CAS_DEBUG 1605 CTR3(KTR_CAS, "%s: %s: watchdog %d", 1606 device_get_name(sc->sc_dev), __func__, sc->sc_wdog_timer); 1607 #endif 1608 } 1609 1610 static void 1611 cas_rint_timeout(void *arg) 1612 { 1613 struct cas_softc *sc = arg; 1614 1615 CAS_LOCK_ASSERT(sc, MA_OWNED); 1616 1617 cas_rint(sc); 1618 } 1619 1620 static void 1621 cas_rint(struct cas_softc *sc) 1622 { 1623 struct cas_rxdsoft *rxds, *rxds2; 1624 struct ifnet *ifp = sc->sc_ifp; 1625 struct mbuf *m, *m2; 1626 uint64_t word1, word2, word3, word4; 1627 uint32_t rxhead; 1628 u_int idx, idx2, len, off, skip; 1629 1630 CAS_LOCK_ASSERT(sc, MA_OWNED); 1631 1632 callout_stop(&sc->sc_rx_ch); 1633 1634 #ifdef CAS_DEBUG 1635 CTR2(KTR_CAS, "%s: %s", device_get_name(sc->sc_dev), __func__); 1636 #endif 1637 1638 #define PRINTWORD(n, delimiter) \ 1639 printf("word ## n: 0x%016llx%c", (long long)word ## n, delimiter) 1640 1641 #define SKIPASSERT(n) \ 1642 KASSERT(sc->sc_rxcomps[sc->sc_rxcptr].crc_word ## n == 0, \ 1643 ("%s: word ## n not 0", __func__)) 1644 1645 #define WORDTOH(n) \ 1646 word ## n = le64toh(sc->sc_rxcomps[sc->sc_rxcptr].crc_word ## n) 1647 1648 /* 1649 * Read the completion head register once. This limits 1650 * how long the following loop can execute. 1651 */ 1652 rxhead = CAS_READ_4(sc, CAS_RX_COMP_HEAD); 1653 #ifdef CAS_DEBUG 1654 CTR4(KTR_CAS, "%s: sc->sc_rxcptr %d, sc->sc_rxdptr %d, head %d", 1655 __func__, sc->sc_rxcptr, sc->sc_rxdptr, rxhead); 1656 #endif 1657 skip = 0; 1658 CAS_CDSYNC(sc, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1659 for (; sc->sc_rxcptr != rxhead; 1660 sc->sc_rxcptr = CAS_NEXTRXCOMP(sc->sc_rxcptr)) { 1661 if (skip != 0) { 1662 SKIPASSERT(1); 1663 SKIPASSERT(2); 1664 SKIPASSERT(3); 1665 1666 --skip; 1667 goto skip; 1668 } 1669 1670 WORDTOH(1); 1671 WORDTOH(2); 1672 WORDTOH(3); 1673 WORDTOH(4); 1674 1675 #ifdef CAS_DEBUG 1676 if ((ifp->if_flags & IFF_DEBUG) != 0) { 1677 printf(" completion %d: ", sc->sc_rxcptr); 1678 PRINTWORD(1, '\t'); 1679 PRINTWORD(2, '\t'); 1680 PRINTWORD(3, '\t'); 1681 PRINTWORD(4, '\n'); 1682 } 1683 #endif 1684 1685 if (__predict_false( 1686 (word1 & CAS_RC1_TYPE_MASK) == CAS_RC1_TYPE_HW || 1687 (word4 & CAS_RC4_ZERO) != 0)) { 1688 /* 1689 * The descriptor is still marked as owned, although 1690 * it is supposed to have completed. This has been 1691 * observed on some machines. Just exiting here 1692 * might leave the packet sitting around until another 1693 * one arrives to trigger a new interrupt, which is 1694 * generally undesirable, so set up a timeout. 1695 */ 1696 callout_reset(&sc->sc_rx_ch, CAS_RXOWN_TICKS, 1697 cas_rint_timeout, sc); 1698 break; 1699 } 1700 1701 if (__predict_false( 1702 (word4 & (CAS_RC4_BAD | CAS_RC4_LEN_MMATCH)) != 0)) { 1703 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 1704 device_printf(sc->sc_dev, 1705 "receive error: CRC error\n"); 1706 continue; 1707 } 1708 1709 KASSERT(CAS_GET(word1, CAS_RC1_DATA_SIZE) == 0 || 1710 CAS_GET(word2, CAS_RC2_HDR_SIZE) == 0, 1711 ("%s: data and header present", __func__)); 1712 KASSERT((word1 & CAS_RC1_SPLIT_PKT) == 0 || 1713 CAS_GET(word2, CAS_RC2_HDR_SIZE) == 0, 1714 ("%s: split and header present", __func__)); 1715 KASSERT(CAS_GET(word1, CAS_RC1_DATA_SIZE) == 0 || 1716 (word1 & CAS_RC1_RELEASE_HDR) == 0, 1717 ("%s: data present but header release", __func__)); 1718 KASSERT(CAS_GET(word2, CAS_RC2_HDR_SIZE) == 0 || 1719 (word1 & CAS_RC1_RELEASE_DATA) == 0, 1720 ("%s: header present but data release", __func__)); 1721 1722 if ((len = CAS_GET(word2, CAS_RC2_HDR_SIZE)) != 0) { 1723 idx = CAS_GET(word2, CAS_RC2_HDR_INDEX); 1724 off = CAS_GET(word2, CAS_RC2_HDR_OFF); 1725 #ifdef CAS_DEBUG 1726 CTR4(KTR_CAS, "%s: hdr at idx %d, off %d, len %d", 1727 __func__, idx, off, len); 1728 #endif 1729 rxds = &sc->sc_rxdsoft[idx]; 1730 MGETHDR(m, M_NOWAIT, MT_DATA); 1731 if (m != NULL) { 1732 refcount_acquire(&rxds->rxds_refcount); 1733 bus_dmamap_sync(sc->sc_rdmatag, 1734 rxds->rxds_dmamap, BUS_DMASYNC_POSTREAD); 1735 m_extadd(m, (char *)rxds->rxds_buf + 1736 off * 256 + ETHER_ALIGN, len, cas_free, 1737 sc, (void *)(uintptr_t)idx, 1738 M_RDONLY, EXT_NET_DRV); 1739 if ((m->m_flags & M_EXT) == 0) { 1740 m_freem(m); 1741 m = NULL; 1742 } 1743 } 1744 if (m != NULL) { 1745 m->m_pkthdr.rcvif = ifp; 1746 m->m_pkthdr.len = m->m_len = len; 1747 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 1748 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) 1749 cas_rxcksum(m, CAS_GET(word4, 1750 CAS_RC4_TCP_CSUM)); 1751 /* Pass it on. */ 1752 CAS_UNLOCK(sc); 1753 (*ifp->if_input)(ifp, m); 1754 CAS_LOCK(sc); 1755 } else 1756 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 1757 1758 if ((word1 & CAS_RC1_RELEASE_HDR) != 0 && 1759 refcount_release(&rxds->rxds_refcount) != 0) 1760 cas_add_rxdesc(sc, idx); 1761 } else if ((len = CAS_GET(word1, CAS_RC1_DATA_SIZE)) != 0) { 1762 idx = CAS_GET(word1, CAS_RC1_DATA_INDEX); 1763 off = CAS_GET(word1, CAS_RC1_DATA_OFF); 1764 #ifdef CAS_DEBUG 1765 CTR4(KTR_CAS, "%s: data at idx %d, off %d, len %d", 1766 __func__, idx, off, len); 1767 #endif 1768 rxds = &sc->sc_rxdsoft[idx]; 1769 MGETHDR(m, M_NOWAIT, MT_DATA); 1770 if (m != NULL) { 1771 refcount_acquire(&rxds->rxds_refcount); 1772 off += ETHER_ALIGN; 1773 m->m_len = min(CAS_PAGE_SIZE - off, len); 1774 bus_dmamap_sync(sc->sc_rdmatag, 1775 rxds->rxds_dmamap, BUS_DMASYNC_POSTREAD); 1776 m_extadd(m, (char *)rxds->rxds_buf + off, 1777 m->m_len, cas_free, sc, 1778 (void *)(uintptr_t)idx, M_RDONLY, 1779 EXT_NET_DRV); 1780 if ((m->m_flags & M_EXT) == 0) { 1781 m_freem(m); 1782 m = NULL; 1783 } 1784 } 1785 idx2 = 0; 1786 m2 = NULL; 1787 rxds2 = NULL; 1788 if ((word1 & CAS_RC1_SPLIT_PKT) != 0) { 1789 KASSERT((word1 & CAS_RC1_RELEASE_NEXT) != 0, 1790 ("%s: split but no release next", 1791 __func__)); 1792 1793 idx2 = CAS_GET(word2, CAS_RC2_NEXT_INDEX); 1794 #ifdef CAS_DEBUG 1795 CTR2(KTR_CAS, "%s: split at idx %d", 1796 __func__, idx2); 1797 #endif 1798 rxds2 = &sc->sc_rxdsoft[idx2]; 1799 if (m != NULL) { 1800 MGET(m2, M_NOWAIT, MT_DATA); 1801 if (m2 != NULL) { 1802 refcount_acquire( 1803 &rxds2->rxds_refcount); 1804 m2->m_len = len - m->m_len; 1805 bus_dmamap_sync( 1806 sc->sc_rdmatag, 1807 rxds2->rxds_dmamap, 1808 BUS_DMASYNC_POSTREAD); 1809 m_extadd(m2, 1810 (char *)rxds2->rxds_buf, 1811 m2->m_len, cas_free, sc, 1812 (void *)(uintptr_t)idx2, 1813 M_RDONLY, EXT_NET_DRV); 1814 if ((m2->m_flags & M_EXT) == 1815 0) { 1816 m_freem(m2); 1817 m2 = NULL; 1818 } 1819 } 1820 } 1821 if (m2 != NULL) 1822 m->m_next = m2; 1823 else if (m != NULL) { 1824 m_freem(m); 1825 m = NULL; 1826 } 1827 } 1828 if (m != NULL) { 1829 m->m_pkthdr.rcvif = ifp; 1830 m->m_pkthdr.len = len; 1831 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 1832 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) 1833 cas_rxcksum(m, CAS_GET(word4, 1834 CAS_RC4_TCP_CSUM)); 1835 /* Pass it on. */ 1836 CAS_UNLOCK(sc); 1837 (*ifp->if_input)(ifp, m); 1838 CAS_LOCK(sc); 1839 } else 1840 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 1841 1842 if ((word1 & CAS_RC1_RELEASE_DATA) != 0 && 1843 refcount_release(&rxds->rxds_refcount) != 0) 1844 cas_add_rxdesc(sc, idx); 1845 if ((word1 & CAS_RC1_SPLIT_PKT) != 0 && 1846 refcount_release(&rxds2->rxds_refcount) != 0) 1847 cas_add_rxdesc(sc, idx2); 1848 } 1849 1850 skip = CAS_GET(word1, CAS_RC1_SKIP); 1851 1852 skip: 1853 cas_rxcompinit(&sc->sc_rxcomps[sc->sc_rxcptr]); 1854 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 1855 break; 1856 } 1857 CAS_CDSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1858 CAS_WRITE_4(sc, CAS_RX_COMP_TAIL, sc->sc_rxcptr); 1859 1860 #undef PRINTWORD 1861 #undef SKIPASSERT 1862 #undef WORDTOH 1863 1864 #ifdef CAS_DEBUG 1865 CTR4(KTR_CAS, "%s: done sc->sc_rxcptr %d, sc->sc_rxdptr %d, head %d", 1866 __func__, sc->sc_rxcptr, sc->sc_rxdptr, 1867 CAS_READ_4(sc, CAS_RX_COMP_HEAD)); 1868 #endif 1869 } 1870 1871 static void 1872 cas_free(struct mbuf *m) 1873 { 1874 struct cas_rxdsoft *rxds; 1875 struct cas_softc *sc; 1876 u_int idx, locked; 1877 1878 sc = m->m_ext.ext_arg1; 1879 idx = (uintptr_t)m->m_ext.ext_arg2; 1880 rxds = &sc->sc_rxdsoft[idx]; 1881 if (refcount_release(&rxds->rxds_refcount) == 0) 1882 return; 1883 1884 /* 1885 * NB: this function can be called via m_freem(9) within 1886 * this driver! 1887 */ 1888 if ((locked = CAS_LOCK_OWNED(sc)) == 0) 1889 CAS_LOCK(sc); 1890 cas_add_rxdesc(sc, idx); 1891 if (locked == 0) 1892 CAS_UNLOCK(sc); 1893 } 1894 1895 static inline void 1896 cas_add_rxdesc(struct cas_softc *sc, u_int idx) 1897 { 1898 1899 CAS_LOCK_ASSERT(sc, MA_OWNED); 1900 1901 bus_dmamap_sync(sc->sc_rdmatag, sc->sc_rxdsoft[idx].rxds_dmamap, 1902 BUS_DMASYNC_PREREAD); 1903 CAS_UPDATE_RXDESC(sc, sc->sc_rxdptr, idx); 1904 sc->sc_rxdptr = CAS_NEXTRXDESC(sc->sc_rxdptr); 1905 1906 /* 1907 * Update the RX kick register. This register has to point to the 1908 * descriptor after the last valid one (before the current batch) 1909 * and for optimum performance should be incremented in multiples 1910 * of 4 (the DMA engine fetches/updates descriptors in batches of 4). 1911 */ 1912 if ((sc->sc_rxdptr % 4) == 0) { 1913 CAS_CDSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1914 CAS_WRITE_4(sc, CAS_RX_KICK, 1915 (sc->sc_rxdptr + CAS_NRXDESC - 4) & CAS_NRXDESC_MASK); 1916 } 1917 } 1918 1919 static void 1920 cas_eint(struct cas_softc *sc, u_int status) 1921 { 1922 struct ifnet *ifp = sc->sc_ifp; 1923 1924 CAS_LOCK_ASSERT(sc, MA_OWNED); 1925 1926 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 1927 1928 device_printf(sc->sc_dev, "%s: status 0x%x", __func__, status); 1929 if ((status & CAS_INTR_PCI_ERROR_INT) != 0) { 1930 status = CAS_READ_4(sc, CAS_ERROR_STATUS); 1931 printf(", PCI bus error 0x%x", status); 1932 if ((status & CAS_ERROR_OTHER) != 0) { 1933 status = pci_read_config(sc->sc_dev, PCIR_STATUS, 2); 1934 printf(", PCI status 0x%x", status); 1935 pci_write_config(sc->sc_dev, PCIR_STATUS, status, 2); 1936 } 1937 } 1938 printf("\n"); 1939 1940 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1941 cas_init_locked(sc); 1942 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1943 taskqueue_enqueue(sc->sc_tq, &sc->sc_tx_task); 1944 } 1945 1946 static int 1947 cas_intr(void *v) 1948 { 1949 struct cas_softc *sc = v; 1950 1951 if (__predict_false((CAS_READ_4(sc, CAS_STATUS_ALIAS) & 1952 CAS_INTR_SUMMARY) == 0)) 1953 return (FILTER_STRAY); 1954 1955 /* Disable interrupts. */ 1956 CAS_WRITE_4(sc, CAS_INTMASK, 0xffffffff); 1957 taskqueue_enqueue(sc->sc_tq, &sc->sc_intr_task); 1958 1959 return (FILTER_HANDLED); 1960 } 1961 1962 static void 1963 cas_intr_task(void *arg, int pending __unused) 1964 { 1965 struct cas_softc *sc = arg; 1966 struct ifnet *ifp = sc->sc_ifp; 1967 uint32_t status, status2; 1968 1969 CAS_LOCK_ASSERT(sc, MA_NOTOWNED); 1970 1971 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 1972 return; 1973 1974 status = CAS_READ_4(sc, CAS_STATUS); 1975 if (__predict_false((status & CAS_INTR_SUMMARY) == 0)) 1976 goto done; 1977 1978 CAS_LOCK(sc); 1979 #ifdef CAS_DEBUG 1980 CTR4(KTR_CAS, "%s: %s: cplt %x, status %x", 1981 device_get_name(sc->sc_dev), __func__, 1982 (status >> CAS_STATUS_TX_COMP3_SHFT), (u_int)status); 1983 1984 /* 1985 * PCS interrupts must be cleared, otherwise no traffic is passed! 1986 */ 1987 if ((status & CAS_INTR_PCS_INT) != 0) { 1988 status2 = 1989 CAS_READ_4(sc, CAS_PCS_INTR_STATUS) | 1990 CAS_READ_4(sc, CAS_PCS_INTR_STATUS); 1991 if ((status2 & CAS_PCS_INTR_LINK) != 0) 1992 device_printf(sc->sc_dev, 1993 "%s: PCS link status changed\n", __func__); 1994 } 1995 if ((status & CAS_MAC_CTRL_STATUS) != 0) { 1996 status2 = CAS_READ_4(sc, CAS_MAC_CTRL_STATUS); 1997 if ((status2 & CAS_MAC_CTRL_PAUSE) != 0) 1998 device_printf(sc->sc_dev, 1999 "%s: PAUSE received (PAUSE time %d slots)\n", 2000 __func__, 2001 (status2 & CAS_MAC_CTRL_STATUS_PT_MASK) >> 2002 CAS_MAC_CTRL_STATUS_PT_SHFT); 2003 if ((status2 & CAS_MAC_CTRL_PAUSE) != 0) 2004 device_printf(sc->sc_dev, 2005 "%s: transited to PAUSE state\n", __func__); 2006 if ((status2 & CAS_MAC_CTRL_NON_PAUSE) != 0) 2007 device_printf(sc->sc_dev, 2008 "%s: transited to non-PAUSE state\n", __func__); 2009 } 2010 if ((status & CAS_INTR_MIF) != 0) 2011 device_printf(sc->sc_dev, "%s: MIF interrupt\n", __func__); 2012 #endif 2013 2014 if (__predict_false((status & 2015 (CAS_INTR_TX_TAG_ERR | CAS_INTR_RX_TAG_ERR | 2016 CAS_INTR_RX_LEN_MMATCH | CAS_INTR_PCI_ERROR_INT)) != 0)) { 2017 cas_eint(sc, status); 2018 CAS_UNLOCK(sc); 2019 return; 2020 } 2021 2022 if (__predict_false(status & CAS_INTR_TX_MAC_INT)) { 2023 status2 = CAS_READ_4(sc, CAS_MAC_TX_STATUS); 2024 if ((status2 & 2025 (CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_MAX_PKT_ERR)) != 0) 2026 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 2027 else if ((status2 & ~CAS_MAC_TX_FRAME_XMTD) != 0) 2028 device_printf(sc->sc_dev, 2029 "MAC TX fault, status %x\n", status2); 2030 } 2031 2032 if (__predict_false(status & CAS_INTR_RX_MAC_INT)) { 2033 status2 = CAS_READ_4(sc, CAS_MAC_RX_STATUS); 2034 if ((status2 & CAS_MAC_RX_OVERFLOW) != 0) 2035 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 2036 else if ((status2 & ~CAS_MAC_RX_FRAME_RCVD) != 0) 2037 device_printf(sc->sc_dev, 2038 "MAC RX fault, status %x\n", status2); 2039 } 2040 2041 if ((status & 2042 (CAS_INTR_RX_DONE | CAS_INTR_RX_BUF_NA | CAS_INTR_RX_COMP_FULL | 2043 CAS_INTR_RX_BUF_AEMPTY | CAS_INTR_RX_COMP_AFULL)) != 0) { 2044 cas_rint(sc); 2045 #ifdef CAS_DEBUG 2046 if (__predict_false((status & 2047 (CAS_INTR_RX_BUF_NA | CAS_INTR_RX_COMP_FULL | 2048 CAS_INTR_RX_BUF_AEMPTY | CAS_INTR_RX_COMP_AFULL)) != 0)) 2049 device_printf(sc->sc_dev, 2050 "RX fault, status %x\n", status); 2051 #endif 2052 } 2053 2054 if ((status & 2055 (CAS_INTR_TX_INT_ME | CAS_INTR_TX_ALL | CAS_INTR_TX_DONE)) != 0) 2056 cas_tint(sc); 2057 2058 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 2059 CAS_UNLOCK(sc); 2060 return; 2061 } else if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2062 taskqueue_enqueue(sc->sc_tq, &sc->sc_tx_task); 2063 CAS_UNLOCK(sc); 2064 2065 status = CAS_READ_4(sc, CAS_STATUS_ALIAS); 2066 if (__predict_false((status & CAS_INTR_SUMMARY) != 0)) { 2067 taskqueue_enqueue(sc->sc_tq, &sc->sc_intr_task); 2068 return; 2069 } 2070 2071 done: 2072 /* Re-enable interrupts. */ 2073 CAS_WRITE_4(sc, CAS_INTMASK, 2074 ~(CAS_INTR_TX_INT_ME | CAS_INTR_TX_TAG_ERR | 2075 CAS_INTR_RX_DONE | CAS_INTR_RX_BUF_NA | CAS_INTR_RX_TAG_ERR | 2076 CAS_INTR_RX_COMP_FULL | CAS_INTR_RX_BUF_AEMPTY | 2077 CAS_INTR_RX_COMP_AFULL | CAS_INTR_RX_LEN_MMATCH | 2078 CAS_INTR_PCI_ERROR_INT 2079 #ifdef CAS_DEBUG 2080 | CAS_INTR_PCS_INT | CAS_INTR_MIF 2081 #endif 2082 )); 2083 } 2084 2085 static void 2086 cas_watchdog(struct cas_softc *sc) 2087 { 2088 struct ifnet *ifp = sc->sc_ifp; 2089 2090 CAS_LOCK_ASSERT(sc, MA_OWNED); 2091 2092 #ifdef CAS_DEBUG 2093 CTR4(KTR_CAS, 2094 "%s: CAS_RX_CONF %x CAS_MAC_RX_STATUS %x CAS_MAC_RX_CONF %x", 2095 __func__, CAS_READ_4(sc, CAS_RX_CONF), 2096 CAS_READ_4(sc, CAS_MAC_RX_STATUS), 2097 CAS_READ_4(sc, CAS_MAC_RX_CONF)); 2098 CTR4(KTR_CAS, 2099 "%s: CAS_TX_CONF %x CAS_MAC_TX_STATUS %x CAS_MAC_TX_CONF %x", 2100 __func__, CAS_READ_4(sc, CAS_TX_CONF), 2101 CAS_READ_4(sc, CAS_MAC_TX_STATUS), 2102 CAS_READ_4(sc, CAS_MAC_TX_CONF)); 2103 #endif 2104 2105 if (sc->sc_wdog_timer == 0 || --sc->sc_wdog_timer != 0) 2106 return; 2107 2108 if ((sc->sc_flags & CAS_LINK) != 0) 2109 device_printf(sc->sc_dev, "device timeout\n"); 2110 else if (bootverbose) 2111 device_printf(sc->sc_dev, "device timeout (no link)\n"); 2112 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 2113 2114 /* Try to get more packets going. */ 2115 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2116 cas_init_locked(sc); 2117 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2118 taskqueue_enqueue(sc->sc_tq, &sc->sc_tx_task); 2119 } 2120 2121 static void 2122 cas_mifinit(struct cas_softc *sc) 2123 { 2124 2125 /* Configure the MIF in frame mode. */ 2126 CAS_WRITE_4(sc, CAS_MIF_CONF, 2127 CAS_READ_4(sc, CAS_MIF_CONF) & ~CAS_MIF_CONF_BB_MODE); 2128 CAS_BARRIER(sc, CAS_MIF_CONF, 4, 2129 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 2130 } 2131 2132 /* 2133 * MII interface 2134 * 2135 * The MII interface supports at least three different operating modes: 2136 * 2137 * Bitbang mode is implemented using data, clock and output enable registers. 2138 * 2139 * Frame mode is implemented by loading a complete frame into the frame 2140 * register and polling the valid bit for completion. 2141 * 2142 * Polling mode uses the frame register but completion is indicated by 2143 * an interrupt. 2144 * 2145 */ 2146 static int 2147 cas_mii_readreg(device_t dev, int phy, int reg) 2148 { 2149 struct cas_softc *sc; 2150 int n; 2151 uint32_t v; 2152 2153 #ifdef CAS_DEBUG_PHY 2154 printf("%s: phy %d reg %d\n", __func__, phy, reg); 2155 #endif 2156 2157 sc = device_get_softc(dev); 2158 if ((sc->sc_flags & CAS_SERDES) != 0) { 2159 switch (reg) { 2160 case MII_BMCR: 2161 reg = CAS_PCS_CTRL; 2162 break; 2163 case MII_BMSR: 2164 reg = CAS_PCS_STATUS; 2165 break; 2166 case MII_PHYIDR1: 2167 case MII_PHYIDR2: 2168 return (0); 2169 case MII_ANAR: 2170 reg = CAS_PCS_ANAR; 2171 break; 2172 case MII_ANLPAR: 2173 reg = CAS_PCS_ANLPAR; 2174 break; 2175 case MII_EXTSR: 2176 return (EXTSR_1000XFDX | EXTSR_1000XHDX); 2177 default: 2178 device_printf(sc->sc_dev, 2179 "%s: unhandled register %d\n", __func__, reg); 2180 return (0); 2181 } 2182 return (CAS_READ_4(sc, reg)); 2183 } 2184 2185 /* Construct the frame command. */ 2186 v = CAS_MIF_FRAME_READ | 2187 (phy << CAS_MIF_FRAME_PHY_SHFT) | 2188 (reg << CAS_MIF_FRAME_REG_SHFT); 2189 2190 CAS_WRITE_4(sc, CAS_MIF_FRAME, v); 2191 CAS_BARRIER(sc, CAS_MIF_FRAME, 4, 2192 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 2193 for (n = 0; n < 100; n++) { 2194 DELAY(1); 2195 v = CAS_READ_4(sc, CAS_MIF_FRAME); 2196 if (v & CAS_MIF_FRAME_TA_LSB) 2197 return (v & CAS_MIF_FRAME_DATA); 2198 } 2199 2200 device_printf(sc->sc_dev, "%s: timed out\n", __func__); 2201 return (0); 2202 } 2203 2204 static int 2205 cas_mii_writereg(device_t dev, int phy, int reg, int val) 2206 { 2207 struct cas_softc *sc; 2208 int n; 2209 uint32_t v; 2210 2211 #ifdef CAS_DEBUG_PHY 2212 printf("%s: phy %d reg %d val %x\n", phy, reg, val, __func__); 2213 #endif 2214 2215 sc = device_get_softc(dev); 2216 if ((sc->sc_flags & CAS_SERDES) != 0) { 2217 switch (reg) { 2218 case MII_BMSR: 2219 reg = CAS_PCS_STATUS; 2220 break; 2221 case MII_BMCR: 2222 reg = CAS_PCS_CTRL; 2223 if ((val & CAS_PCS_CTRL_RESET) == 0) 2224 break; 2225 CAS_WRITE_4(sc, CAS_PCS_CTRL, val); 2226 CAS_BARRIER(sc, CAS_PCS_CTRL, 4, 2227 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 2228 if (!cas_bitwait(sc, CAS_PCS_CTRL, 2229 CAS_PCS_CTRL_RESET, 0)) 2230 device_printf(sc->sc_dev, 2231 "cannot reset PCS\n"); 2232 /* FALLTHROUGH */ 2233 case MII_ANAR: 2234 CAS_WRITE_4(sc, CAS_PCS_CONF, 0); 2235 CAS_BARRIER(sc, CAS_PCS_CONF, 4, 2236 BUS_SPACE_BARRIER_WRITE); 2237 CAS_WRITE_4(sc, CAS_PCS_ANAR, val); 2238 CAS_BARRIER(sc, CAS_PCS_ANAR, 4, 2239 BUS_SPACE_BARRIER_WRITE); 2240 CAS_WRITE_4(sc, CAS_PCS_SERDES_CTRL, 2241 CAS_PCS_SERDES_CTRL_ESD); 2242 CAS_BARRIER(sc, CAS_PCS_CONF, 4, 2243 BUS_SPACE_BARRIER_WRITE); 2244 CAS_WRITE_4(sc, CAS_PCS_CONF, 2245 CAS_PCS_CONF_EN); 2246 CAS_BARRIER(sc, CAS_PCS_CONF, 4, 2247 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 2248 return (0); 2249 case MII_ANLPAR: 2250 reg = CAS_PCS_ANLPAR; 2251 break; 2252 default: 2253 device_printf(sc->sc_dev, 2254 "%s: unhandled register %d\n", __func__, reg); 2255 return (0); 2256 } 2257 CAS_WRITE_4(sc, reg, val); 2258 CAS_BARRIER(sc, reg, 4, 2259 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 2260 return (0); 2261 } 2262 2263 /* Construct the frame command. */ 2264 v = CAS_MIF_FRAME_WRITE | 2265 (phy << CAS_MIF_FRAME_PHY_SHFT) | 2266 (reg << CAS_MIF_FRAME_REG_SHFT) | 2267 (val & CAS_MIF_FRAME_DATA); 2268 2269 CAS_WRITE_4(sc, CAS_MIF_FRAME, v); 2270 CAS_BARRIER(sc, CAS_MIF_FRAME, 4, 2271 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 2272 for (n = 0; n < 100; n++) { 2273 DELAY(1); 2274 v = CAS_READ_4(sc, CAS_MIF_FRAME); 2275 if (v & CAS_MIF_FRAME_TA_LSB) 2276 return (1); 2277 } 2278 2279 device_printf(sc->sc_dev, "%s: timed out\n", __func__); 2280 return (0); 2281 } 2282 2283 static void 2284 cas_mii_statchg(device_t dev) 2285 { 2286 struct cas_softc *sc; 2287 struct ifnet *ifp; 2288 int gigabit; 2289 uint32_t rxcfg, txcfg, v; 2290 2291 sc = device_get_softc(dev); 2292 ifp = sc->sc_ifp; 2293 2294 CAS_LOCK_ASSERT(sc, MA_OWNED); 2295 2296 #ifdef CAS_DEBUG 2297 if ((ifp->if_flags & IFF_DEBUG) != 0) 2298 device_printf(sc->sc_dev, "%s: status changen", __func__); 2299 #endif 2300 2301 if ((sc->sc_mii->mii_media_status & IFM_ACTIVE) != 0 && 2302 IFM_SUBTYPE(sc->sc_mii->mii_media_active) != IFM_NONE) 2303 sc->sc_flags |= CAS_LINK; 2304 else 2305 sc->sc_flags &= ~CAS_LINK; 2306 2307 switch (IFM_SUBTYPE(sc->sc_mii->mii_media_active)) { 2308 case IFM_1000_SX: 2309 case IFM_1000_LX: 2310 case IFM_1000_CX: 2311 case IFM_1000_T: 2312 gigabit = 1; 2313 break; 2314 default: 2315 gigabit = 0; 2316 } 2317 2318 /* 2319 * The configuration done here corresponds to the steps F) and 2320 * G) and as far as enabling of RX and TX MAC goes also step H) 2321 * of the initialization sequence outlined in section 11.2.1 of 2322 * the Cassini+ ASIC Specification. 2323 */ 2324 2325 rxcfg = sc->sc_mac_rxcfg; 2326 rxcfg &= ~CAS_MAC_RX_CONF_CARR; 2327 txcfg = CAS_MAC_TX_CONF_EN_IPG0 | CAS_MAC_TX_CONF_NGU | 2328 CAS_MAC_TX_CONF_NGUL; 2329 if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0) 2330 txcfg |= CAS_MAC_TX_CONF_ICARR | CAS_MAC_TX_CONF_ICOLLIS; 2331 else if (gigabit != 0) { 2332 rxcfg |= CAS_MAC_RX_CONF_CARR; 2333 txcfg |= CAS_MAC_TX_CONF_CARR; 2334 } 2335 (void)cas_disable_tx(sc); 2336 CAS_WRITE_4(sc, CAS_MAC_TX_CONF, txcfg); 2337 (void)cas_disable_rx(sc); 2338 CAS_WRITE_4(sc, CAS_MAC_RX_CONF, rxcfg); 2339 2340 v = CAS_READ_4(sc, CAS_MAC_CTRL_CONF) & 2341 ~(CAS_MAC_CTRL_CONF_TXP | CAS_MAC_CTRL_CONF_RXP); 2342 if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & 2343 IFM_ETH_RXPAUSE) != 0) 2344 v |= CAS_MAC_CTRL_CONF_RXP; 2345 if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & 2346 IFM_ETH_TXPAUSE) != 0) 2347 v |= CAS_MAC_CTRL_CONF_TXP; 2348 CAS_WRITE_4(sc, CAS_MAC_CTRL_CONF, v); 2349 2350 /* 2351 * All supported chips have a bug causing incorrect checksum 2352 * to be calculated when letting them strip the FCS in half- 2353 * duplex mode. In theory we could disable FCS stripping and 2354 * manually adjust the checksum accordingly. It seems to make 2355 * more sense to optimze for the common case and just disable 2356 * hardware checksumming in half-duplex mode though. 2357 */ 2358 if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) == 0) { 2359 ifp->if_capenable &= ~IFCAP_HWCSUM; 2360 ifp->if_hwassist = 0; 2361 } else if ((sc->sc_flags & CAS_NO_CSUM) == 0) { 2362 ifp->if_capenable = ifp->if_capabilities; 2363 ifp->if_hwassist = CAS_CSUM_FEATURES; 2364 } 2365 2366 if (sc->sc_variant == CAS_SATURN) { 2367 if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) == 0) 2368 /* silicon bug workaround */ 2369 CAS_WRITE_4(sc, CAS_MAC_PREAMBLE_LEN, 0x41); 2370 else 2371 CAS_WRITE_4(sc, CAS_MAC_PREAMBLE_LEN, 0x7); 2372 } 2373 2374 if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) == 0 && 2375 gigabit != 0) 2376 CAS_WRITE_4(sc, CAS_MAC_SLOT_TIME, 2377 CAS_MAC_SLOT_TIME_CARR); 2378 else 2379 CAS_WRITE_4(sc, CAS_MAC_SLOT_TIME, 2380 CAS_MAC_SLOT_TIME_NORM); 2381 2382 /* XIF Configuration */ 2383 v = CAS_MAC_XIF_CONF_TX_OE | CAS_MAC_XIF_CONF_LNKLED; 2384 if ((sc->sc_flags & CAS_SERDES) == 0) { 2385 if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) == 0) 2386 v |= CAS_MAC_XIF_CONF_NOECHO; 2387 v |= CAS_MAC_XIF_CONF_BUF_OE; 2388 } 2389 if (gigabit != 0) 2390 v |= CAS_MAC_XIF_CONF_GMII; 2391 if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0) 2392 v |= CAS_MAC_XIF_CONF_FDXLED; 2393 CAS_WRITE_4(sc, CAS_MAC_XIF_CONF, v); 2394 2395 sc->sc_mac_rxcfg = rxcfg; 2396 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 && 2397 (sc->sc_flags & CAS_LINK) != 0) { 2398 CAS_WRITE_4(sc, CAS_MAC_TX_CONF, 2399 txcfg | CAS_MAC_TX_CONF_EN); 2400 CAS_WRITE_4(sc, CAS_MAC_RX_CONF, 2401 rxcfg | CAS_MAC_RX_CONF_EN); 2402 } 2403 } 2404 2405 static int 2406 cas_mediachange(struct ifnet *ifp) 2407 { 2408 struct cas_softc *sc = ifp->if_softc; 2409 int error; 2410 2411 /* XXX add support for serial media. */ 2412 2413 CAS_LOCK(sc); 2414 error = mii_mediachg(sc->sc_mii); 2415 CAS_UNLOCK(sc); 2416 return (error); 2417 } 2418 2419 static void 2420 cas_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 2421 { 2422 struct cas_softc *sc = ifp->if_softc; 2423 2424 CAS_LOCK(sc); 2425 if ((ifp->if_flags & IFF_UP) == 0) { 2426 CAS_UNLOCK(sc); 2427 return; 2428 } 2429 2430 mii_pollstat(sc->sc_mii); 2431 ifmr->ifm_active = sc->sc_mii->mii_media_active; 2432 ifmr->ifm_status = sc->sc_mii->mii_media_status; 2433 CAS_UNLOCK(sc); 2434 } 2435 2436 static int 2437 cas_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 2438 { 2439 struct cas_softc *sc = ifp->if_softc; 2440 struct ifreq *ifr = (struct ifreq *)data; 2441 int error; 2442 2443 error = 0; 2444 switch (cmd) { 2445 case SIOCSIFFLAGS: 2446 CAS_LOCK(sc); 2447 if ((ifp->if_flags & IFF_UP) != 0) { 2448 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 && 2449 ((ifp->if_flags ^ sc->sc_ifflags) & 2450 (IFF_ALLMULTI | IFF_PROMISC)) != 0) 2451 cas_setladrf(sc); 2452 else 2453 cas_init_locked(sc); 2454 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2455 cas_stop(ifp); 2456 sc->sc_ifflags = ifp->if_flags; 2457 CAS_UNLOCK(sc); 2458 break; 2459 case SIOCSIFCAP: 2460 CAS_LOCK(sc); 2461 if ((sc->sc_flags & CAS_NO_CSUM) != 0) { 2462 error = EINVAL; 2463 CAS_UNLOCK(sc); 2464 break; 2465 } 2466 ifp->if_capenable = ifr->ifr_reqcap; 2467 if ((ifp->if_capenable & IFCAP_TXCSUM) != 0) 2468 ifp->if_hwassist = CAS_CSUM_FEATURES; 2469 else 2470 ifp->if_hwassist = 0; 2471 CAS_UNLOCK(sc); 2472 break; 2473 case SIOCADDMULTI: 2474 case SIOCDELMULTI: 2475 CAS_LOCK(sc); 2476 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2477 cas_setladrf(sc); 2478 CAS_UNLOCK(sc); 2479 break; 2480 case SIOCSIFMTU: 2481 if ((ifr->ifr_mtu < ETHERMIN) || 2482 (ifr->ifr_mtu > ETHERMTU_JUMBO)) 2483 error = EINVAL; 2484 else 2485 ifp->if_mtu = ifr->ifr_mtu; 2486 break; 2487 case SIOCGIFMEDIA: 2488 case SIOCSIFMEDIA: 2489 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii->mii_media, cmd); 2490 break; 2491 default: 2492 error = ether_ioctl(ifp, cmd, data); 2493 break; 2494 } 2495 2496 return (error); 2497 } 2498 2499 static void 2500 cas_setladrf(struct cas_softc *sc) 2501 { 2502 struct ifnet *ifp = sc->sc_ifp; 2503 struct ifmultiaddr *inm; 2504 int i; 2505 uint32_t hash[16]; 2506 uint32_t crc, v; 2507 2508 CAS_LOCK_ASSERT(sc, MA_OWNED); 2509 2510 /* 2511 * Turn off the RX MAC and the hash filter as required by the Sun 2512 * Cassini programming restrictions. 2513 */ 2514 v = sc->sc_mac_rxcfg & ~(CAS_MAC_RX_CONF_HFILTER | 2515 CAS_MAC_RX_CONF_EN); 2516 CAS_WRITE_4(sc, CAS_MAC_RX_CONF, v); 2517 CAS_BARRIER(sc, CAS_MAC_RX_CONF, 4, 2518 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 2519 if (!cas_bitwait(sc, CAS_MAC_RX_CONF, CAS_MAC_RX_CONF_HFILTER | 2520 CAS_MAC_RX_CONF_EN, 0)) 2521 device_printf(sc->sc_dev, 2522 "cannot disable RX MAC or hash filter\n"); 2523 2524 v &= ~(CAS_MAC_RX_CONF_PROMISC | CAS_MAC_RX_CONF_PGRP); 2525 if ((ifp->if_flags & IFF_PROMISC) != 0) { 2526 v |= CAS_MAC_RX_CONF_PROMISC; 2527 goto chipit; 2528 } 2529 if ((ifp->if_flags & IFF_ALLMULTI) != 0) { 2530 v |= CAS_MAC_RX_CONF_PGRP; 2531 goto chipit; 2532 } 2533 2534 /* 2535 * Set up multicast address filter by passing all multicast 2536 * addresses through a crc generator, and then using the high 2537 * order 8 bits as an index into the 256 bit logical address 2538 * filter. The high order 4 bits selects the word, while the 2539 * other 4 bits select the bit within the word (where bit 0 2540 * is the MSB). 2541 */ 2542 2543 /* Clear the hash table. */ 2544 memset(hash, 0, sizeof(hash)); 2545 2546 if_maddr_rlock(ifp); 2547 TAILQ_FOREACH(inm, &ifp->if_multiaddrs, ifma_link) { 2548 if (inm->ifma_addr->sa_family != AF_LINK) 2549 continue; 2550 crc = ether_crc32_le(LLADDR((struct sockaddr_dl *) 2551 inm->ifma_addr), ETHER_ADDR_LEN); 2552 2553 /* We just want the 8 most significant bits. */ 2554 crc >>= 24; 2555 2556 /* Set the corresponding bit in the filter. */ 2557 hash[crc >> 4] |= 1 << (15 - (crc & 15)); 2558 } 2559 if_maddr_runlock(ifp); 2560 2561 v |= CAS_MAC_RX_CONF_HFILTER; 2562 2563 /* Now load the hash table into the chip (if we are using it). */ 2564 for (i = 0; i < 16; i++) 2565 CAS_WRITE_4(sc, 2566 CAS_MAC_HASH0 + i * (CAS_MAC_HASH1 - CAS_MAC_HASH0), 2567 hash[i]); 2568 2569 chipit: 2570 sc->sc_mac_rxcfg = v; 2571 CAS_WRITE_4(sc, CAS_MAC_RX_CONF, v | CAS_MAC_RX_CONF_EN); 2572 } 2573 2574 static int cas_pci_attach(device_t dev); 2575 static int cas_pci_detach(device_t dev); 2576 static int cas_pci_probe(device_t dev); 2577 static int cas_pci_resume(device_t dev); 2578 static int cas_pci_suspend(device_t dev); 2579 2580 static device_method_t cas_pci_methods[] = { 2581 /* Device interface */ 2582 DEVMETHOD(device_probe, cas_pci_probe), 2583 DEVMETHOD(device_attach, cas_pci_attach), 2584 DEVMETHOD(device_detach, cas_pci_detach), 2585 DEVMETHOD(device_suspend, cas_pci_suspend), 2586 DEVMETHOD(device_resume, cas_pci_resume), 2587 /* Use the suspend handler here, it is all that is required. */ 2588 DEVMETHOD(device_shutdown, cas_pci_suspend), 2589 2590 /* MII interface */ 2591 DEVMETHOD(miibus_readreg, cas_mii_readreg), 2592 DEVMETHOD(miibus_writereg, cas_mii_writereg), 2593 DEVMETHOD(miibus_statchg, cas_mii_statchg), 2594 2595 DEVMETHOD_END 2596 }; 2597 2598 static driver_t cas_pci_driver = { 2599 "cas", 2600 cas_pci_methods, 2601 sizeof(struct cas_softc) 2602 }; 2603 2604 DRIVER_MODULE(cas, pci, cas_pci_driver, cas_devclass, 0, 0); 2605 DRIVER_MODULE(miibus, cas, miibus_driver, miibus_devclass, 0, 0); 2606 MODULE_DEPEND(cas, pci, 1, 1, 1); 2607 2608 static const struct cas_pci_dev { 2609 uint32_t cpd_devid; 2610 uint8_t cpd_revid; 2611 int cpd_variant; 2612 const char *cpd_desc; 2613 } cas_pci_devlist[] = { 2614 { 0x0035100b, 0x0, CAS_SATURN, "NS DP83065 Saturn Gigabit Ethernet" }, 2615 { 0xabba108e, 0x10, CAS_CASPLUS, "Sun Cassini+ Gigabit Ethernet" }, 2616 { 0xabba108e, 0x0, CAS_CAS, "Sun Cassini Gigabit Ethernet" }, 2617 { 0, 0, 0, NULL } 2618 }; 2619 2620 static int 2621 cas_pci_probe(device_t dev) 2622 { 2623 int i; 2624 2625 for (i = 0; cas_pci_devlist[i].cpd_desc != NULL; i++) { 2626 if (pci_get_devid(dev) == cas_pci_devlist[i].cpd_devid && 2627 pci_get_revid(dev) >= cas_pci_devlist[i].cpd_revid) { 2628 device_set_desc(dev, cas_pci_devlist[i].cpd_desc); 2629 return (BUS_PROBE_DEFAULT); 2630 } 2631 } 2632 2633 return (ENXIO); 2634 } 2635 2636 static struct resource_spec cas_pci_res_spec[] = { 2637 { SYS_RES_IRQ, 0, RF_SHAREABLE | RF_ACTIVE }, /* CAS_RES_INTR */ 2638 { SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE }, /* CAS_RES_MEM */ 2639 { -1, 0 } 2640 }; 2641 2642 #define CAS_LOCAL_MAC_ADDRESS "local-mac-address" 2643 #define CAS_PHY_INTERFACE "phy-interface" 2644 #define CAS_PHY_TYPE "phy-type" 2645 #define CAS_PHY_TYPE_PCS "pcs" 2646 2647 static int 2648 cas_pci_attach(device_t dev) 2649 { 2650 char buf[sizeof(CAS_LOCAL_MAC_ADDRESS)]; 2651 struct cas_softc *sc; 2652 int i; 2653 #if !(defined(__powerpc__) || defined(__sparc64__)) 2654 u_char enaddr[4][ETHER_ADDR_LEN]; 2655 u_int j, k, lma, pcs[4], phy; 2656 #endif 2657 2658 sc = device_get_softc(dev); 2659 sc->sc_variant = CAS_UNKNOWN; 2660 for (i = 0; cas_pci_devlist[i].cpd_desc != NULL; i++) { 2661 if (pci_get_devid(dev) == cas_pci_devlist[i].cpd_devid && 2662 pci_get_revid(dev) >= cas_pci_devlist[i].cpd_revid) { 2663 sc->sc_variant = cas_pci_devlist[i].cpd_variant; 2664 break; 2665 } 2666 } 2667 if (sc->sc_variant == CAS_UNKNOWN) { 2668 device_printf(dev, "unknown adaptor\n"); 2669 return (ENXIO); 2670 } 2671 2672 /* PCI configuration */ 2673 pci_write_config(dev, PCIR_COMMAND, 2674 pci_read_config(dev, PCIR_COMMAND, 2) | PCIM_CMD_BUSMASTEREN | 2675 PCIM_CMD_MWRICEN | PCIM_CMD_PERRESPEN | PCIM_CMD_SERRESPEN, 2); 2676 2677 sc->sc_dev = dev; 2678 if (sc->sc_variant == CAS_CAS && pci_get_devid(dev) < 0x02) 2679 /* Hardware checksumming may hang TX. */ 2680 sc->sc_flags |= CAS_NO_CSUM; 2681 if (sc->sc_variant == CAS_CASPLUS || sc->sc_variant == CAS_SATURN) 2682 sc->sc_flags |= CAS_REG_PLUS; 2683 if (sc->sc_variant == CAS_CAS || 2684 (sc->sc_variant == CAS_CASPLUS && pci_get_revid(dev) < 0x11)) 2685 sc->sc_flags |= CAS_TABORT; 2686 if (bootverbose) 2687 device_printf(dev, "flags=0x%x\n", sc->sc_flags); 2688 2689 if (bus_alloc_resources(dev, cas_pci_res_spec, sc->sc_res)) { 2690 device_printf(dev, "failed to allocate resources\n"); 2691 bus_release_resources(dev, cas_pci_res_spec, sc->sc_res); 2692 return (ENXIO); 2693 } 2694 2695 CAS_LOCK_INIT(sc, device_get_nameunit(dev)); 2696 2697 #if defined(__powerpc__) || defined(__sparc64__) 2698 OF_getetheraddr(dev, sc->sc_enaddr); 2699 if (OF_getprop(ofw_bus_get_node(dev), CAS_PHY_INTERFACE, buf, 2700 sizeof(buf)) > 0 || OF_getprop(ofw_bus_get_node(dev), 2701 CAS_PHY_TYPE, buf, sizeof(buf)) > 0) { 2702 buf[sizeof(buf) - 1] = '\0'; 2703 if (strcmp(buf, CAS_PHY_TYPE_PCS) == 0) 2704 sc->sc_flags |= CAS_SERDES; 2705 } 2706 #else 2707 /* 2708 * Dig out VPD (vital product data) and read the MAC address as well 2709 * as the PHY type. The VPD resides in the PCI Expansion ROM (PCI 2710 * FCode) and can't be accessed via the PCI capability pointer. 2711 * SUNW,pci-ce and SUNW,pci-qge use the Enhanced VPD format described 2712 * in the free US Patent 7149820. 2713 */ 2714 2715 #define PCI_ROMHDR_SIZE 0x1c 2716 #define PCI_ROMHDR_SIG 0x00 2717 #define PCI_ROMHDR_SIG_MAGIC 0xaa55 /* little endian */ 2718 #define PCI_ROMHDR_PTR_DATA 0x18 2719 #define PCI_ROM_SIZE 0x18 2720 #define PCI_ROM_SIG 0x00 2721 #define PCI_ROM_SIG_MAGIC 0x52494350 /* "PCIR", endian */ 2722 /* reversed */ 2723 #define PCI_ROM_VENDOR 0x04 2724 #define PCI_ROM_DEVICE 0x06 2725 #define PCI_ROM_PTR_VPD 0x08 2726 #define PCI_VPDRES_BYTE0 0x00 2727 #define PCI_VPDRES_ISLARGE(x) ((x) & 0x80) 2728 #define PCI_VPDRES_LARGE_NAME(x) ((x) & 0x7f) 2729 #define PCI_VPDRES_LARGE_LEN_LSB 0x01 2730 #define PCI_VPDRES_LARGE_LEN_MSB 0x02 2731 #define PCI_VPDRES_LARGE_SIZE 0x03 2732 #define PCI_VPDRES_TYPE_ID_STRING 0x02 /* large */ 2733 #define PCI_VPDRES_TYPE_VPD 0x10 /* large */ 2734 #define PCI_VPD_KEY0 0x00 2735 #define PCI_VPD_KEY1 0x01 2736 #define PCI_VPD_LEN 0x02 2737 #define PCI_VPD_SIZE 0x03 2738 2739 #define CAS_ROM_READ_1(sc, offs) \ 2740 CAS_READ_1((sc), CAS_PCI_ROM_OFFSET + (offs)) 2741 #define CAS_ROM_READ_2(sc, offs) \ 2742 CAS_READ_2((sc), CAS_PCI_ROM_OFFSET + (offs)) 2743 #define CAS_ROM_READ_4(sc, offs) \ 2744 CAS_READ_4((sc), CAS_PCI_ROM_OFFSET + (offs)) 2745 2746 lma = phy = 0; 2747 memset(enaddr, 0, sizeof(enaddr)); 2748 memset(pcs, 0, sizeof(pcs)); 2749 2750 /* Enable PCI Expansion ROM access. */ 2751 CAS_WRITE_4(sc, CAS_BIM_LDEV_OEN, 2752 CAS_BIM_LDEV_OEN_PAD | CAS_BIM_LDEV_OEN_PROM); 2753 2754 /* Read PCI Expansion ROM header. */ 2755 if (CAS_ROM_READ_2(sc, PCI_ROMHDR_SIG) != PCI_ROMHDR_SIG_MAGIC || 2756 (i = CAS_ROM_READ_2(sc, PCI_ROMHDR_PTR_DATA)) < 2757 PCI_ROMHDR_SIZE) { 2758 device_printf(dev, "unexpected PCI Expansion ROM header\n"); 2759 goto fail_prom; 2760 } 2761 2762 /* Read PCI Expansion ROM data. */ 2763 if (CAS_ROM_READ_4(sc, i + PCI_ROM_SIG) != PCI_ROM_SIG_MAGIC || 2764 CAS_ROM_READ_2(sc, i + PCI_ROM_VENDOR) != pci_get_vendor(dev) || 2765 CAS_ROM_READ_2(sc, i + PCI_ROM_DEVICE) != pci_get_device(dev) || 2766 (j = CAS_ROM_READ_2(sc, i + PCI_ROM_PTR_VPD)) < 2767 i + PCI_ROM_SIZE) { 2768 device_printf(dev, "unexpected PCI Expansion ROM data\n"); 2769 goto fail_prom; 2770 } 2771 2772 /* Read PCI VPD. */ 2773 next: 2774 if (PCI_VPDRES_ISLARGE(CAS_ROM_READ_1(sc, 2775 j + PCI_VPDRES_BYTE0)) == 0) { 2776 device_printf(dev, "no large PCI VPD\n"); 2777 goto fail_prom; 2778 } 2779 2780 i = (CAS_ROM_READ_1(sc, j + PCI_VPDRES_LARGE_LEN_MSB) << 8) | 2781 CAS_ROM_READ_1(sc, j + PCI_VPDRES_LARGE_LEN_LSB); 2782 switch (PCI_VPDRES_LARGE_NAME(CAS_ROM_READ_1(sc, 2783 j + PCI_VPDRES_BYTE0))) { 2784 case PCI_VPDRES_TYPE_ID_STRING: 2785 /* Skip identifier string. */ 2786 j += PCI_VPDRES_LARGE_SIZE + i; 2787 goto next; 2788 case PCI_VPDRES_TYPE_VPD: 2789 for (j += PCI_VPDRES_LARGE_SIZE; i > 0; 2790 i -= PCI_VPD_SIZE + CAS_ROM_READ_1(sc, j + PCI_VPD_LEN), 2791 j += PCI_VPD_SIZE + CAS_ROM_READ_1(sc, j + PCI_VPD_LEN)) { 2792 if (CAS_ROM_READ_1(sc, j + PCI_VPD_KEY0) != 'Z') 2793 /* no Enhanced VPD */ 2794 continue; 2795 if (CAS_ROM_READ_1(sc, j + PCI_VPD_SIZE) != 'I') 2796 /* no instance property */ 2797 continue; 2798 if (CAS_ROM_READ_1(sc, j + PCI_VPD_SIZE + 3) == 'B') { 2799 /* byte array */ 2800 if (CAS_ROM_READ_1(sc, 2801 j + PCI_VPD_SIZE + 4) != ETHER_ADDR_LEN) 2802 continue; 2803 bus_read_region_1(sc->sc_res[CAS_RES_MEM], 2804 CAS_PCI_ROM_OFFSET + j + PCI_VPD_SIZE + 5, 2805 buf, sizeof(buf)); 2806 buf[sizeof(buf) - 1] = '\0'; 2807 if (strcmp(buf, CAS_LOCAL_MAC_ADDRESS) != 0) 2808 continue; 2809 bus_read_region_1(sc->sc_res[CAS_RES_MEM], 2810 CAS_PCI_ROM_OFFSET + j + PCI_VPD_SIZE + 2811 5 + sizeof(CAS_LOCAL_MAC_ADDRESS), 2812 enaddr[lma], sizeof(enaddr[lma])); 2813 lma++; 2814 if (lma == 4 && phy == 4) 2815 break; 2816 } else if (CAS_ROM_READ_1(sc, j + PCI_VPD_SIZE + 3) == 2817 'S') { 2818 /* string */ 2819 if (CAS_ROM_READ_1(sc, 2820 j + PCI_VPD_SIZE + 4) != 2821 sizeof(CAS_PHY_TYPE_PCS)) 2822 continue; 2823 bus_read_region_1(sc->sc_res[CAS_RES_MEM], 2824 CAS_PCI_ROM_OFFSET + j + PCI_VPD_SIZE + 5, 2825 buf, sizeof(buf)); 2826 buf[sizeof(buf) - 1] = '\0'; 2827 if (strcmp(buf, CAS_PHY_INTERFACE) == 0) 2828 k = sizeof(CAS_PHY_INTERFACE); 2829 else if (strcmp(buf, CAS_PHY_TYPE) == 0) 2830 k = sizeof(CAS_PHY_TYPE); 2831 else 2832 continue; 2833 bus_read_region_1(sc->sc_res[CAS_RES_MEM], 2834 CAS_PCI_ROM_OFFSET + j + PCI_VPD_SIZE + 2835 5 + k, buf, sizeof(buf)); 2836 buf[sizeof(buf) - 1] = '\0'; 2837 if (strcmp(buf, CAS_PHY_TYPE_PCS) == 0) 2838 pcs[phy] = 1; 2839 phy++; 2840 if (lma == 4 && phy == 4) 2841 break; 2842 } 2843 } 2844 break; 2845 default: 2846 device_printf(dev, "unexpected PCI VPD\n"); 2847 goto fail_prom; 2848 } 2849 2850 fail_prom: 2851 CAS_WRITE_4(sc, CAS_BIM_LDEV_OEN, 0); 2852 2853 if (lma == 0) { 2854 device_printf(dev, "could not determine Ethernet address\n"); 2855 goto fail; 2856 } 2857 i = 0; 2858 if (lma > 1 && pci_get_slot(dev) < nitems(enaddr)) 2859 i = pci_get_slot(dev); 2860 memcpy(sc->sc_enaddr, enaddr[i], ETHER_ADDR_LEN); 2861 2862 if (phy == 0) { 2863 device_printf(dev, "could not determine PHY type\n"); 2864 goto fail; 2865 } 2866 i = 0; 2867 if (phy > 1 && pci_get_slot(dev) < nitems(pcs)) 2868 i = pci_get_slot(dev); 2869 if (pcs[i] != 0) 2870 sc->sc_flags |= CAS_SERDES; 2871 #endif 2872 2873 if (cas_attach(sc) != 0) { 2874 device_printf(dev, "could not be attached\n"); 2875 goto fail; 2876 } 2877 2878 if (bus_setup_intr(dev, sc->sc_res[CAS_RES_INTR], INTR_TYPE_NET | 2879 INTR_MPSAFE, cas_intr, NULL, sc, &sc->sc_ih) != 0) { 2880 device_printf(dev, "failed to set up interrupt\n"); 2881 cas_detach(sc); 2882 goto fail; 2883 } 2884 return (0); 2885 2886 fail: 2887 CAS_LOCK_DESTROY(sc); 2888 bus_release_resources(dev, cas_pci_res_spec, sc->sc_res); 2889 return (ENXIO); 2890 } 2891 2892 static int 2893 cas_pci_detach(device_t dev) 2894 { 2895 struct cas_softc *sc; 2896 2897 sc = device_get_softc(dev); 2898 bus_teardown_intr(dev, sc->sc_res[CAS_RES_INTR], sc->sc_ih); 2899 cas_detach(sc); 2900 CAS_LOCK_DESTROY(sc); 2901 bus_release_resources(dev, cas_pci_res_spec, sc->sc_res); 2902 return (0); 2903 } 2904 2905 static int 2906 cas_pci_suspend(device_t dev) 2907 { 2908 2909 cas_suspend(device_get_softc(dev)); 2910 return (0); 2911 } 2912 2913 static int 2914 cas_pci_resume(device_t dev) 2915 { 2916 2917 cas_resume(device_get_softc(dev)); 2918 return (0); 2919 } 2920