xref: /freebsd/sys/dev/cas/if_cas.c (revision 48c5129f93c5eb5419c87b08e4677d51513f1dc0)
1 /*-
2  * Copyright (C) 2001 Eduardo Horvath.
3  * Copyright (c) 2001-2003 Thomas Moestl
4  * Copyright (c) 2007-2009 Marius Strobl <marius@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  *	from: NetBSD: gem.c,v 1.21 2002/06/01 23:50:58 lukem Exp
29  *	from: FreeBSD: if_gem.c 182060 2008-08-23 15:03:26Z marius
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 /*
36  * driver for Sun Cassini/Cassini+ and National Semiconductor DP83065
37  * Saturn Gigabit Ethernet controllers
38  */
39 
40 #if 0
41 #define	CAS_DEBUG
42 #endif
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/bus.h>
47 #include <sys/callout.h>
48 #include <sys/endian.h>
49 #include <sys/mbuf.h>
50 #include <sys/malloc.h>
51 #include <sys/kernel.h>
52 #include <sys/lock.h>
53 #include <sys/module.h>
54 #include <sys/mutex.h>
55 #include <sys/refcount.h>
56 #include <sys/resource.h>
57 #include <sys/rman.h>
58 #include <sys/socket.h>
59 #include <sys/sockio.h>
60 #include <sys/taskqueue.h>
61 
62 #include <net/bpf.h>
63 #include <net/ethernet.h>
64 #include <net/if.h>
65 #include <net/if_arp.h>
66 #include <net/if_dl.h>
67 #include <net/if_media.h>
68 #include <net/if_types.h>
69 #include <net/if_vlan_var.h>
70 
71 #include <netinet/in.h>
72 #include <netinet/in_systm.h>
73 #include <netinet/ip.h>
74 #include <netinet/tcp.h>
75 #include <netinet/udp.h>
76 
77 #include <machine/bus.h>
78 #if defined(__powerpc__) || defined(__sparc64__)
79 #include <dev/ofw/ofw_bus.h>
80 #include <dev/ofw/openfirm.h>
81 #include <machine/ofw_machdep.h>
82 #endif
83 #include <machine/resource.h>
84 
85 #include <dev/mii/mii.h>
86 #include <dev/mii/miivar.h>
87 
88 #include <dev/cas/if_casreg.h>
89 #include <dev/cas/if_casvar.h>
90 
91 #include <dev/pci/pcireg.h>
92 #include <dev/pci/pcivar.h>
93 
94 #include "miibus_if.h"
95 
96 #define RINGASSERT(n , min, max)					\
97 	CTASSERT(powerof2(n) && (n) >= (min) && (n) <= (max))
98 
99 RINGASSERT(CAS_NRXCOMP, 128, 32768);
100 RINGASSERT(CAS_NRXDESC, 32, 8192);
101 RINGASSERT(CAS_NRXDESC2, 32, 8192);
102 RINGASSERT(CAS_NTXDESC, 32, 8192);
103 
104 #undef RINGASSERT
105 
106 #define	CCDASSERT(m, a)							\
107 	CTASSERT((offsetof(struct cas_control_data, m) & ((a) - 1)) == 0)
108 
109 CCDASSERT(ccd_rxcomps, CAS_RX_COMP_ALIGN);
110 CCDASSERT(ccd_rxdescs, CAS_RX_DESC_ALIGN);
111 CCDASSERT(ccd_rxdescs2, CAS_RX_DESC_ALIGN);
112 
113 #undef CCDASSERT
114 
115 #define	CAS_TRIES	10000
116 
117 /*
118  * According to documentation, the hardware has support for basic TCP
119  * checksum offloading only, in practice this can be also used for UDP
120  * however (i.e. the problem of previous Sun NICs that a checksum of 0x0
121  * is not converted to 0xffff no longer exists).
122  */
123 #define	CAS_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
124 
125 static inline void cas_add_rxdesc(struct cas_softc *sc, u_int idx);
126 static int	cas_attach(struct cas_softc *sc);
127 static int	cas_bitwait(struct cas_softc *sc, bus_addr_t r, uint32_t clr,
128 		    uint32_t set);
129 static void	cas_cddma_callback(void *xsc, bus_dma_segment_t *segs,
130 		    int nsegs, int error);
131 static void	cas_detach(struct cas_softc *sc);
132 static int	cas_disable_rx(struct cas_softc *sc);
133 static int	cas_disable_tx(struct cas_softc *sc);
134 static void	cas_eint(struct cas_softc *sc, u_int status);
135 static void	cas_free(void *arg1, void* arg2);
136 static void	cas_init(void *xsc);
137 static void	cas_init_locked(struct cas_softc *sc);
138 static void	cas_init_regs(struct cas_softc *sc);
139 static int	cas_intr(void *v);
140 static void	cas_intr_task(void *arg, int pending __unused);
141 static int	cas_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data);
142 static int	cas_load_txmbuf(struct cas_softc *sc, struct mbuf **m_head);
143 static int	cas_mediachange(struct ifnet *ifp);
144 static void	cas_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr);
145 static void	cas_meminit(struct cas_softc *sc);
146 static void	cas_mifinit(struct cas_softc *sc);
147 static int	cas_mii_readreg(device_t dev, int phy, int reg);
148 static void	cas_mii_statchg(device_t dev);
149 static int	cas_mii_writereg(device_t dev, int phy, int reg, int val);
150 static void	cas_reset(struct cas_softc *sc);
151 static int	cas_reset_rx(struct cas_softc *sc);
152 static int	cas_reset_tx(struct cas_softc *sc);
153 static void	cas_resume(struct cas_softc *sc);
154 static u_int	cas_descsize(u_int sz);
155 static void	cas_rint(struct cas_softc *sc);
156 static void	cas_rint_timeout(void *arg);
157 static inline void cas_rxcksum(struct mbuf *m, uint16_t cksum);
158 static inline void cas_rxcompinit(struct cas_rx_comp *rxcomp);
159 static u_int	cas_rxcompsize(u_int sz);
160 static void	cas_rxdma_callback(void *xsc, bus_dma_segment_t *segs,
161 		    int nsegs, int error);
162 static void	cas_setladrf(struct cas_softc *sc);
163 static void	cas_start(struct ifnet *ifp);
164 static void	cas_stop(struct ifnet *ifp);
165 static void	cas_suspend(struct cas_softc *sc);
166 static void	cas_tick(void *arg);
167 static void	cas_tint(struct cas_softc *sc);
168 static void	cas_tx_task(void *arg, int pending __unused);
169 static inline void cas_txkick(struct cas_softc *sc);
170 static void	cas_watchdog(struct cas_softc *sc);
171 
172 static devclass_t cas_devclass;
173 
174 MODULE_DEPEND(cas, ether, 1, 1, 1);
175 MODULE_DEPEND(cas, miibus, 1, 1, 1);
176 
177 #ifdef CAS_DEBUG
178 #include <sys/ktr.h>
179 #define	KTR_CAS		KTR_SPARE2
180 #endif
181 
182 static int
183 cas_attach(struct cas_softc *sc)
184 {
185 	struct cas_txsoft *txs;
186 	struct ifnet *ifp;
187 	int error, i;
188 	uint32_t v;
189 
190 	/* Set up ifnet structure. */
191 	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
192 	if (ifp == NULL)
193 		return (ENOSPC);
194 	ifp->if_softc = sc;
195 	if_initname(ifp, device_get_name(sc->sc_dev),
196 	    device_get_unit(sc->sc_dev));
197 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
198 	ifp->if_start = cas_start;
199 	ifp->if_ioctl = cas_ioctl;
200 	ifp->if_init = cas_init;
201 	IFQ_SET_MAXLEN(&ifp->if_snd, CAS_TXQUEUELEN);
202 	ifp->if_snd.ifq_drv_maxlen = CAS_TXQUEUELEN;
203 	IFQ_SET_READY(&ifp->if_snd);
204 
205 	callout_init_mtx(&sc->sc_tick_ch, &sc->sc_mtx, 0);
206 	callout_init_mtx(&sc->sc_rx_ch, &sc->sc_mtx, 0);
207 	/* Create local taskq. */
208 	TASK_INIT(&sc->sc_intr_task, 0, cas_intr_task, sc);
209 	TASK_INIT(&sc->sc_tx_task, 1, cas_tx_task, ifp);
210 	sc->sc_tq = taskqueue_create_fast("cas_taskq", M_WAITOK,
211 	    taskqueue_thread_enqueue, &sc->sc_tq);
212 	if (sc->sc_tq == NULL) {
213 		device_printf(sc->sc_dev, "could not create taskqueue\n");
214 		error = ENXIO;
215 		goto fail_ifnet;
216 	}
217 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
218 	    device_get_nameunit(sc->sc_dev));
219 
220 	/* Make sure the chip is stopped. */
221 	cas_reset(sc);
222 
223 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
224 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
225 	    BUS_SPACE_MAXSIZE, 0, BUS_SPACE_MAXSIZE, 0, NULL, NULL,
226 	    &sc->sc_pdmatag);
227 	if (error != 0)
228 		goto fail_taskq;
229 
230 	error = bus_dma_tag_create(sc->sc_pdmatag, 1, 0,
231 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
232 	    CAS_PAGE_SIZE, 1, CAS_PAGE_SIZE, 0, NULL, NULL, &sc->sc_rdmatag);
233 	if (error != 0)
234 		goto fail_ptag;
235 
236 	error = bus_dma_tag_create(sc->sc_pdmatag, 1, 0,
237 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
238 	    MCLBYTES * CAS_NTXSEGS, CAS_NTXSEGS, MCLBYTES,
239 	    BUS_DMA_ALLOCNOW, NULL, NULL, &sc->sc_tdmatag);
240 	if (error != 0)
241 		goto fail_rtag;
242 
243 	error = bus_dma_tag_create(sc->sc_pdmatag, CAS_TX_DESC_ALIGN, 0,
244 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
245 	    sizeof(struct cas_control_data), 1,
246 	    sizeof(struct cas_control_data), 0,
247 	    NULL, NULL, &sc->sc_cdmatag);
248 	if (error != 0)
249 		goto fail_ttag;
250 
251 	/*
252 	 * Allocate the control data structures, create and load the
253 	 * DMA map for it.
254 	 */
255 	if ((error = bus_dmamem_alloc(sc->sc_cdmatag,
256 	    (void **)&sc->sc_control_data,
257 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
258 	    &sc->sc_cddmamap)) != 0) {
259 		device_printf(sc->sc_dev,
260 		    "unable to allocate control data, error = %d\n", error);
261 		goto fail_ctag;
262 	}
263 
264 	sc->sc_cddma = 0;
265 	if ((error = bus_dmamap_load(sc->sc_cdmatag, sc->sc_cddmamap,
266 	    sc->sc_control_data, sizeof(struct cas_control_data),
267 	    cas_cddma_callback, sc, 0)) != 0 || sc->sc_cddma == 0) {
268 		device_printf(sc->sc_dev,
269 		    "unable to load control data DMA map, error = %d\n",
270 		    error);
271 		goto fail_cmem;
272 	}
273 
274 	/*
275 	 * Initialize the transmit job descriptors.
276 	 */
277 	STAILQ_INIT(&sc->sc_txfreeq);
278 	STAILQ_INIT(&sc->sc_txdirtyq);
279 
280 	/*
281 	 * Create the transmit buffer DMA maps.
282 	 */
283 	error = ENOMEM;
284 	for (i = 0; i < CAS_TXQUEUELEN; i++) {
285 		txs = &sc->sc_txsoft[i];
286 		txs->txs_mbuf = NULL;
287 		txs->txs_ndescs = 0;
288 		if ((error = bus_dmamap_create(sc->sc_tdmatag, 0,
289 		    &txs->txs_dmamap)) != 0) {
290 			device_printf(sc->sc_dev,
291 			    "unable to create TX DMA map %d, error = %d\n",
292 			    i, error);
293 			goto fail_txd;
294 		}
295 		STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
296 	}
297 
298 	/*
299 	 * Allocate the receive buffers, create and load the DMA maps
300 	 * for them.
301 	 */
302 	for (i = 0; i < CAS_NRXDESC; i++) {
303 		if ((error = bus_dmamem_alloc(sc->sc_rdmatag,
304 		    &sc->sc_rxdsoft[i].rxds_buf, BUS_DMA_WAITOK,
305 		    &sc->sc_rxdsoft[i].rxds_dmamap)) != 0) {
306 			device_printf(sc->sc_dev,
307 			    "unable to allocate RX buffer %d, error = %d\n",
308 			    i, error);
309 			goto fail_rxmem;
310 		}
311 
312 		sc->sc_rxdptr = i;
313 		sc->sc_rxdsoft[i].rxds_paddr = 0;
314 		if ((error = bus_dmamap_load(sc->sc_rdmatag,
315 		    sc->sc_rxdsoft[i].rxds_dmamap, sc->sc_rxdsoft[i].rxds_buf,
316 		    CAS_PAGE_SIZE, cas_rxdma_callback, sc, 0)) != 0 ||
317 		    sc->sc_rxdsoft[i].rxds_paddr == 0) {
318 			device_printf(sc->sc_dev,
319 			    "unable to load RX DMA map %d, error = %d\n",
320 			    i, error);
321 			goto fail_rxmap;
322 		}
323 	}
324 
325 	if ((sc->sc_flags & CAS_SERDES) == 0) {
326 		CAS_WRITE_4(sc, CAS_PCS_DATAPATH, CAS_PCS_DATAPATH_MII);
327 		CAS_BARRIER(sc, CAS_PCS_DATAPATH, 4,
328 		    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
329 		cas_mifinit(sc);
330 		/*
331 		 * Look for an external PHY.
332 		 */
333 		error = ENXIO;
334 		v = CAS_READ_4(sc, CAS_MIF_CONF);
335 		if ((v & CAS_MIF_CONF_MDI1) != 0) {
336 			v |= CAS_MIF_CONF_PHY_SELECT;
337 			CAS_WRITE_4(sc, CAS_MIF_CONF, v);
338 			CAS_BARRIER(sc, CAS_MIF_CONF, 4,
339 			    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
340 			/* Enable/unfreeze the GMII pins of Saturn. */
341 			if (sc->sc_variant == CAS_SATURN) {
342 				CAS_WRITE_4(sc, CAS_SATURN_PCFG, 0);
343 				CAS_BARRIER(sc, CAS_SATURN_PCFG, 4,
344 				    BUS_SPACE_BARRIER_READ |
345 				    BUS_SPACE_BARRIER_WRITE);
346 			}
347 			error = mii_attach(sc->sc_dev, &sc->sc_miibus, ifp,
348 			    cas_mediachange, cas_mediastatus, BMSR_DEFCAPMASK,
349 			    MII_PHY_ANY, MII_OFFSET_ANY, MIIF_DOPAUSE);
350 		}
351 		/*
352 		 * Fall back on an internal PHY if no external PHY was found.
353 		 */
354 		if (error != 0 && (v & CAS_MIF_CONF_MDI0) != 0) {
355 			v &= ~CAS_MIF_CONF_PHY_SELECT;
356 			CAS_WRITE_4(sc, CAS_MIF_CONF, v);
357 			CAS_BARRIER(sc, CAS_MIF_CONF, 4,
358 			    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
359 			/* Freeze the GMII pins of Saturn for saving power. */
360 			if (sc->sc_variant == CAS_SATURN) {
361 				CAS_WRITE_4(sc, CAS_SATURN_PCFG,
362 				    CAS_SATURN_PCFG_FSI);
363 				CAS_BARRIER(sc, CAS_SATURN_PCFG, 4,
364 				    BUS_SPACE_BARRIER_READ |
365 				    BUS_SPACE_BARRIER_WRITE);
366 			}
367 			error = mii_attach(sc->sc_dev, &sc->sc_miibus, ifp,
368 			    cas_mediachange, cas_mediastatus, BMSR_DEFCAPMASK,
369 			    MII_PHY_ANY, MII_OFFSET_ANY, MIIF_DOPAUSE);
370 		}
371 	} else {
372 		/*
373 		 * Use the external PCS SERDES.
374 		 */
375 		CAS_WRITE_4(sc, CAS_PCS_DATAPATH, CAS_PCS_DATAPATH_SERDES);
376 		CAS_BARRIER(sc, CAS_PCS_DATAPATH, 4, BUS_SPACE_BARRIER_WRITE);
377 		/* Enable/unfreeze the SERDES pins of Saturn. */
378 		if (sc->sc_variant == CAS_SATURN) {
379 			CAS_WRITE_4(sc, CAS_SATURN_PCFG, 0);
380 			CAS_BARRIER(sc, CAS_SATURN_PCFG, 4,
381 			    BUS_SPACE_BARRIER_WRITE);
382 		}
383 		CAS_WRITE_4(sc, CAS_PCS_SERDES_CTRL, CAS_PCS_SERDES_CTRL_ESD);
384 		CAS_BARRIER(sc, CAS_PCS_SERDES_CTRL, 4,
385 		    BUS_SPACE_BARRIER_WRITE);
386 		CAS_WRITE_4(sc, CAS_PCS_CONF, CAS_PCS_CONF_EN);
387 		CAS_BARRIER(sc, CAS_PCS_CONF, 4,
388 		    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
389 		error = mii_attach(sc->sc_dev, &sc->sc_miibus, ifp,
390 		    cas_mediachange, cas_mediastatus, BMSR_DEFCAPMASK,
391 		    CAS_PHYAD_EXTERNAL, MII_OFFSET_ANY, MIIF_DOPAUSE);
392 	}
393 	if (error != 0) {
394 		device_printf(sc->sc_dev, "attaching PHYs failed\n");
395 		goto fail_rxmap;
396 	}
397 	sc->sc_mii = device_get_softc(sc->sc_miibus);
398 
399 	/*
400 	 * From this point forward, the attachment cannot fail.  A failure
401 	 * before this point releases all resources that may have been
402 	 * allocated.
403 	 */
404 
405 	/* Announce FIFO sizes. */
406 	v = CAS_READ_4(sc, CAS_TX_FIFO_SIZE);
407 	device_printf(sc->sc_dev, "%ukB RX FIFO, %ukB TX FIFO\n",
408 	    CAS_RX_FIFO_SIZE / 1024, v / 16);
409 
410 	/* Attach the interface. */
411 	ether_ifattach(ifp, sc->sc_enaddr);
412 
413 	/*
414 	 * Tell the upper layer(s) we support long frames/checksum offloads.
415 	 */
416 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
417 	ifp->if_capabilities = IFCAP_VLAN_MTU;
418 	if ((sc->sc_flags & CAS_NO_CSUM) == 0) {
419 		ifp->if_capabilities |= IFCAP_HWCSUM;
420 		ifp->if_hwassist = CAS_CSUM_FEATURES;
421 	}
422 	ifp->if_capenable = ifp->if_capabilities;
423 
424 	return (0);
425 
426 	/*
427 	 * Free any resources we've allocated during the failed attach
428 	 * attempt.  Do this in reverse order and fall through.
429 	 */
430  fail_rxmap:
431 	for (i = 0; i < CAS_NRXDESC; i++)
432 		if (sc->sc_rxdsoft[i].rxds_paddr != 0)
433 			bus_dmamap_unload(sc->sc_rdmatag,
434 			    sc->sc_rxdsoft[i].rxds_dmamap);
435  fail_rxmem:
436 	for (i = 0; i < CAS_NRXDESC; i++)
437 		if (sc->sc_rxdsoft[i].rxds_buf != NULL)
438 			bus_dmamem_free(sc->sc_rdmatag,
439 			    sc->sc_rxdsoft[i].rxds_buf,
440 			    sc->sc_rxdsoft[i].rxds_dmamap);
441  fail_txd:
442 	for (i = 0; i < CAS_TXQUEUELEN; i++)
443 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
444 			bus_dmamap_destroy(sc->sc_tdmatag,
445 			    sc->sc_txsoft[i].txs_dmamap);
446 	bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cddmamap);
447  fail_cmem:
448 	bus_dmamem_free(sc->sc_cdmatag, sc->sc_control_data,
449 	    sc->sc_cddmamap);
450  fail_ctag:
451 	bus_dma_tag_destroy(sc->sc_cdmatag);
452  fail_ttag:
453 	bus_dma_tag_destroy(sc->sc_tdmatag);
454  fail_rtag:
455 	bus_dma_tag_destroy(sc->sc_rdmatag);
456  fail_ptag:
457 	bus_dma_tag_destroy(sc->sc_pdmatag);
458  fail_taskq:
459 	taskqueue_free(sc->sc_tq);
460  fail_ifnet:
461 	if_free(ifp);
462 	return (error);
463 }
464 
465 static void
466 cas_detach(struct cas_softc *sc)
467 {
468 	struct ifnet *ifp = sc->sc_ifp;
469 	int i;
470 
471 	ether_ifdetach(ifp);
472 	CAS_LOCK(sc);
473 	cas_stop(ifp);
474 	CAS_UNLOCK(sc);
475 	callout_drain(&sc->sc_tick_ch);
476 	callout_drain(&sc->sc_rx_ch);
477 	taskqueue_drain(sc->sc_tq, &sc->sc_intr_task);
478 	taskqueue_drain(sc->sc_tq, &sc->sc_tx_task);
479 	if_free(ifp);
480 	taskqueue_free(sc->sc_tq);
481 	device_delete_child(sc->sc_dev, sc->sc_miibus);
482 
483 	for (i = 0; i < CAS_NRXDESC; i++)
484 		if (sc->sc_rxdsoft[i].rxds_dmamap != NULL)
485 			bus_dmamap_sync(sc->sc_rdmatag,
486 			    sc->sc_rxdsoft[i].rxds_dmamap,
487 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
488 	for (i = 0; i < CAS_NRXDESC; i++)
489 		if (sc->sc_rxdsoft[i].rxds_paddr != 0)
490 			bus_dmamap_unload(sc->sc_rdmatag,
491 			    sc->sc_rxdsoft[i].rxds_dmamap);
492 	for (i = 0; i < CAS_NRXDESC; i++)
493 		if (sc->sc_rxdsoft[i].rxds_buf != NULL)
494 			bus_dmamem_free(sc->sc_rdmatag,
495 			    sc->sc_rxdsoft[i].rxds_buf,
496 			    sc->sc_rxdsoft[i].rxds_dmamap);
497 	for (i = 0; i < CAS_TXQUEUELEN; i++)
498 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
499 			bus_dmamap_destroy(sc->sc_tdmatag,
500 			    sc->sc_txsoft[i].txs_dmamap);
501 	CAS_CDSYNC(sc, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
502 	bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cddmamap);
503 	bus_dmamem_free(sc->sc_cdmatag, sc->sc_control_data,
504 	    sc->sc_cddmamap);
505 	bus_dma_tag_destroy(sc->sc_cdmatag);
506 	bus_dma_tag_destroy(sc->sc_tdmatag);
507 	bus_dma_tag_destroy(sc->sc_rdmatag);
508 	bus_dma_tag_destroy(sc->sc_pdmatag);
509 }
510 
511 static void
512 cas_suspend(struct cas_softc *sc)
513 {
514 	struct ifnet *ifp = sc->sc_ifp;
515 
516 	CAS_LOCK(sc);
517 	cas_stop(ifp);
518 	CAS_UNLOCK(sc);
519 }
520 
521 static void
522 cas_resume(struct cas_softc *sc)
523 {
524 	struct ifnet *ifp = sc->sc_ifp;
525 
526 	CAS_LOCK(sc);
527 	/*
528 	 * On resume all registers have to be initialized again like
529 	 * after power-on.
530 	 */
531 	sc->sc_flags &= ~CAS_INITED;
532 	if (ifp->if_flags & IFF_UP)
533 		cas_init_locked(sc);
534 	CAS_UNLOCK(sc);
535 }
536 
537 static inline void
538 cas_rxcksum(struct mbuf *m, uint16_t cksum)
539 {
540 	struct ether_header *eh;
541 	struct ip *ip;
542 	struct udphdr *uh;
543 	uint16_t *opts;
544 	int32_t hlen, len, pktlen;
545 	uint32_t temp32;
546 
547 	pktlen = m->m_pkthdr.len;
548 	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
549 		return;
550 	eh = mtod(m, struct ether_header *);
551 	if (eh->ether_type != htons(ETHERTYPE_IP))
552 		return;
553 	ip = (struct ip *)(eh + 1);
554 	if (ip->ip_v != IPVERSION)
555 		return;
556 
557 	hlen = ip->ip_hl << 2;
558 	pktlen -= sizeof(struct ether_header);
559 	if (hlen < sizeof(struct ip))
560 		return;
561 	if (ntohs(ip->ip_len) < hlen)
562 		return;
563 	if (ntohs(ip->ip_len) != pktlen)
564 		return;
565 	if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
566 		return;	/* Cannot handle fragmented packet. */
567 
568 	switch (ip->ip_p) {
569 	case IPPROTO_TCP:
570 		if (pktlen < (hlen + sizeof(struct tcphdr)))
571 			return;
572 		break;
573 	case IPPROTO_UDP:
574 		if (pktlen < (hlen + sizeof(struct udphdr)))
575 			return;
576 		uh = (struct udphdr *)((uint8_t *)ip + hlen);
577 		if (uh->uh_sum == 0)
578 			return; /* no checksum */
579 		break;
580 	default:
581 		return;
582 	}
583 
584 	cksum = ~cksum;
585 	/* checksum fixup for IP options */
586 	len = hlen - sizeof(struct ip);
587 	if (len > 0) {
588 		opts = (uint16_t *)(ip + 1);
589 		for (; len > 0; len -= sizeof(uint16_t), opts++) {
590 			temp32 = cksum - *opts;
591 			temp32 = (temp32 >> 16) + (temp32 & 65535);
592 			cksum = temp32 & 65535;
593 		}
594 	}
595 	m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
596 	m->m_pkthdr.csum_data = cksum;
597 }
598 
599 static void
600 cas_cddma_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, int error)
601 {
602 	struct cas_softc *sc = xsc;
603 
604 	if (error != 0)
605 		return;
606 	if (nsegs != 1)
607 		panic("%s: bad control buffer segment count", __func__);
608 	sc->sc_cddma = segs[0].ds_addr;
609 }
610 
611 static void
612 cas_rxdma_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, int error)
613 {
614 	struct cas_softc *sc = xsc;
615 
616 	if (error != 0)
617 		return;
618 	if (nsegs != 1)
619 		panic("%s: bad RX buffer segment count", __func__);
620 	sc->sc_rxdsoft[sc->sc_rxdptr].rxds_paddr = segs[0].ds_addr;
621 }
622 
623 static void
624 cas_tick(void *arg)
625 {
626 	struct cas_softc *sc = arg;
627 	struct ifnet *ifp = sc->sc_ifp;
628 	uint32_t v;
629 
630 	CAS_LOCK_ASSERT(sc, MA_OWNED);
631 
632 	/*
633 	 * Unload collision and error counters.
634 	 */
635 	ifp->if_collisions +=
636 	    CAS_READ_4(sc, CAS_MAC_NORM_COLL_CNT) +
637 	    CAS_READ_4(sc, CAS_MAC_FIRST_COLL_CNT);
638 	v = CAS_READ_4(sc, CAS_MAC_EXCESS_COLL_CNT) +
639 	    CAS_READ_4(sc, CAS_MAC_LATE_COLL_CNT);
640 	ifp->if_collisions += v;
641 	ifp->if_oerrors += v;
642 	ifp->if_ierrors +=
643 	    CAS_READ_4(sc, CAS_MAC_RX_LEN_ERR_CNT) +
644 	    CAS_READ_4(sc, CAS_MAC_RX_ALIGN_ERR) +
645 	    CAS_READ_4(sc, CAS_MAC_RX_CRC_ERR_CNT) +
646 	    CAS_READ_4(sc, CAS_MAC_RX_CODE_VIOL);
647 
648 	/*
649 	 * Then clear the hardware counters.
650 	 */
651 	CAS_WRITE_4(sc, CAS_MAC_NORM_COLL_CNT, 0);
652 	CAS_WRITE_4(sc, CAS_MAC_FIRST_COLL_CNT, 0);
653 	CAS_WRITE_4(sc, CAS_MAC_EXCESS_COLL_CNT, 0);
654 	CAS_WRITE_4(sc, CAS_MAC_LATE_COLL_CNT, 0);
655 	CAS_WRITE_4(sc, CAS_MAC_RX_LEN_ERR_CNT, 0);
656 	CAS_WRITE_4(sc, CAS_MAC_RX_ALIGN_ERR, 0);
657 	CAS_WRITE_4(sc, CAS_MAC_RX_CRC_ERR_CNT, 0);
658 	CAS_WRITE_4(sc, CAS_MAC_RX_CODE_VIOL, 0);
659 
660 	mii_tick(sc->sc_mii);
661 
662 	if (sc->sc_txfree != CAS_MAXTXFREE)
663 		cas_tint(sc);
664 
665 	cas_watchdog(sc);
666 
667 	callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
668 }
669 
670 static int
671 cas_bitwait(struct cas_softc *sc, bus_addr_t r, uint32_t clr, uint32_t set)
672 {
673 	int i;
674 	uint32_t reg;
675 
676 	for (i = CAS_TRIES; i--; DELAY(100)) {
677 		reg = CAS_READ_4(sc, r);
678 		if ((reg & clr) == 0 && (reg & set) == set)
679 			return (1);
680 	}
681 	return (0);
682 }
683 
684 static void
685 cas_reset(struct cas_softc *sc)
686 {
687 
688 #ifdef CAS_DEBUG
689 	CTR2(KTR_CAS, "%s: %s", device_get_name(sc->sc_dev), __func__);
690 #endif
691 	/* Disable all interrupts in order to avoid spurious ones. */
692 	CAS_WRITE_4(sc, CAS_INTMASK, 0xffffffff);
693 
694 	cas_reset_rx(sc);
695 	cas_reset_tx(sc);
696 
697 	/*
698 	 * Do a full reset modulo the result of the last auto-negotiation
699 	 * when using the SERDES.
700 	 */
701 	CAS_WRITE_4(sc, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX |
702 	    ((sc->sc_flags & CAS_SERDES) != 0 ? CAS_RESET_PCS_DIS : 0));
703 	CAS_BARRIER(sc, CAS_RESET, 4,
704 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
705 	DELAY(3000);
706 	if (!cas_bitwait(sc, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0))
707 		device_printf(sc->sc_dev, "cannot reset device\n");
708 }
709 
710 static void
711 cas_stop(struct ifnet *ifp)
712 {
713 	struct cas_softc *sc = ifp->if_softc;
714 	struct cas_txsoft *txs;
715 
716 #ifdef CAS_DEBUG
717 	CTR2(KTR_CAS, "%s: %s", device_get_name(sc->sc_dev), __func__);
718 #endif
719 
720 	callout_stop(&sc->sc_tick_ch);
721 	callout_stop(&sc->sc_rx_ch);
722 
723 	/* Disable all interrupts in order to avoid spurious ones. */
724 	CAS_WRITE_4(sc, CAS_INTMASK, 0xffffffff);
725 
726 	cas_reset_tx(sc);
727 	cas_reset_rx(sc);
728 
729 	/*
730 	 * Release any queued transmit buffers.
731 	 */
732 	while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
733 		STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
734 		if (txs->txs_ndescs != 0) {
735 			bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap,
736 			    BUS_DMASYNC_POSTWRITE);
737 			bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap);
738 			if (txs->txs_mbuf != NULL) {
739 				m_freem(txs->txs_mbuf);
740 				txs->txs_mbuf = NULL;
741 			}
742 		}
743 		STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
744 	}
745 
746 	/*
747 	 * Mark the interface down and cancel the watchdog timer.
748 	 */
749 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
750 	sc->sc_flags &= ~CAS_LINK;
751 	sc->sc_wdog_timer = 0;
752 }
753 
754 static int
755 cas_reset_rx(struct cas_softc *sc)
756 {
757 
758 	/*
759 	 * Resetting while DMA is in progress can cause a bus hang, so we
760 	 * disable DMA first.
761 	 */
762 	(void)cas_disable_rx(sc);
763 	CAS_WRITE_4(sc, CAS_RX_CONF, 0);
764 	CAS_BARRIER(sc, CAS_RX_CONF, 4,
765 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
766 	if (!cas_bitwait(sc, CAS_RX_CONF, CAS_RX_CONF_RXDMA_EN, 0))
767 		device_printf(sc->sc_dev, "cannot disable RX DMA\n");
768 
769 	/* Finally, reset the ERX. */
770 	CAS_WRITE_4(sc, CAS_RESET, CAS_RESET_RX |
771 	    ((sc->sc_flags & CAS_SERDES) != 0 ? CAS_RESET_PCS_DIS : 0));
772 	CAS_BARRIER(sc, CAS_RESET, 4,
773 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
774 	if (!cas_bitwait(sc, CAS_RESET, CAS_RESET_RX, 0)) {
775 		device_printf(sc->sc_dev, "cannot reset receiver\n");
776 		return (1);
777 	}
778 	return (0);
779 }
780 
781 static int
782 cas_reset_tx(struct cas_softc *sc)
783 {
784 
785 	/*
786 	 * Resetting while DMA is in progress can cause a bus hang, so we
787 	 * disable DMA first.
788 	 */
789 	(void)cas_disable_tx(sc);
790 	CAS_WRITE_4(sc, CAS_TX_CONF, 0);
791 	CAS_BARRIER(sc, CAS_TX_CONF, 4,
792 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
793 	if (!cas_bitwait(sc, CAS_TX_CONF, CAS_TX_CONF_TXDMA_EN, 0))
794 		device_printf(sc->sc_dev, "cannot disable TX DMA\n");
795 
796 	/* Finally, reset the ETX. */
797 	CAS_WRITE_4(sc, CAS_RESET, CAS_RESET_TX |
798 	    ((sc->sc_flags & CAS_SERDES) != 0 ? CAS_RESET_PCS_DIS : 0));
799 	CAS_BARRIER(sc, CAS_RESET, 4,
800 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
801 	if (!cas_bitwait(sc, CAS_RESET, CAS_RESET_TX, 0)) {
802 		device_printf(sc->sc_dev, "cannot reset transmitter\n");
803 		return (1);
804 	}
805 	return (0);
806 }
807 
808 static int
809 cas_disable_rx(struct cas_softc *sc)
810 {
811 
812 	CAS_WRITE_4(sc, CAS_MAC_RX_CONF,
813 	    CAS_READ_4(sc, CAS_MAC_RX_CONF) & ~CAS_MAC_RX_CONF_EN);
814 	CAS_BARRIER(sc, CAS_MAC_RX_CONF, 4,
815 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
816 	if (cas_bitwait(sc, CAS_MAC_RX_CONF, CAS_MAC_RX_CONF_EN, 0))
817 		return (1);
818 	device_printf(sc->sc_dev, "cannot disable RX MAC\n");
819 	return (0);
820 }
821 
822 static int
823 cas_disable_tx(struct cas_softc *sc)
824 {
825 
826 	CAS_WRITE_4(sc, CAS_MAC_TX_CONF,
827 	    CAS_READ_4(sc, CAS_MAC_TX_CONF) & ~CAS_MAC_TX_CONF_EN);
828 	CAS_BARRIER(sc, CAS_MAC_TX_CONF, 4,
829 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
830 	if (cas_bitwait(sc, CAS_MAC_TX_CONF, CAS_MAC_TX_CONF_EN, 0))
831 		return (1);
832 	device_printf(sc->sc_dev, "cannot disable TX MAC\n");
833 	return (0);
834 }
835 
836 static inline void
837 cas_rxcompinit(struct cas_rx_comp *rxcomp)
838 {
839 
840 	rxcomp->crc_word1 = 0;
841 	rxcomp->crc_word2 = 0;
842 	rxcomp->crc_word3 =
843 	    htole64(CAS_SET(ETHER_HDR_LEN + sizeof(struct ip), CAS_RC3_CSO));
844 	rxcomp->crc_word4 = htole64(CAS_RC4_ZERO);
845 }
846 
847 static void
848 cas_meminit(struct cas_softc *sc)
849 {
850 	int i;
851 
852 	CAS_LOCK_ASSERT(sc, MA_OWNED);
853 
854 	/*
855 	 * Initialize the transmit descriptor ring.
856 	 */
857 	for (i = 0; i < CAS_NTXDESC; i++) {
858 		sc->sc_txdescs[i].cd_flags = 0;
859 		sc->sc_txdescs[i].cd_buf_ptr = 0;
860 	}
861 	sc->sc_txfree = CAS_MAXTXFREE;
862 	sc->sc_txnext = 0;
863 	sc->sc_txwin = 0;
864 
865 	/*
866 	 * Initialize the receive completion ring.
867 	 */
868 	for (i = 0; i < CAS_NRXCOMP; i++)
869 		cas_rxcompinit(&sc->sc_rxcomps[i]);
870 	sc->sc_rxcptr = 0;
871 
872 	/*
873 	 * Initialize the first receive descriptor ring.  We leave
874 	 * the second one zeroed as we don't actually use it.
875 	 */
876 	for (i = 0; i < CAS_NRXDESC; i++)
877 		CAS_INIT_RXDESC(sc, i, i);
878 	sc->sc_rxdptr = 0;
879 
880 	CAS_CDSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
881 }
882 
883 static u_int
884 cas_descsize(u_int sz)
885 {
886 
887 	switch (sz) {
888 	case 32:
889 		return (CAS_DESC_32);
890 	case 64:
891 		return (CAS_DESC_64);
892 	case 128:
893 		return (CAS_DESC_128);
894 	case 256:
895 		return (CAS_DESC_256);
896 	case 512:
897 		return (CAS_DESC_512);
898 	case 1024:
899 		return (CAS_DESC_1K);
900 	case 2048:
901 		return (CAS_DESC_2K);
902 	case 4096:
903 		return (CAS_DESC_4K);
904 	case 8192:
905 		return (CAS_DESC_8K);
906 	default:
907 		printf("%s: invalid descriptor ring size %d\n", __func__, sz);
908 		return (CAS_DESC_32);
909 	}
910 }
911 
912 static u_int
913 cas_rxcompsize(u_int sz)
914 {
915 
916 	switch (sz) {
917 	case 128:
918 		return (CAS_RX_CONF_COMP_128);
919 	case 256:
920 		return (CAS_RX_CONF_COMP_256);
921 	case 512:
922 		return (CAS_RX_CONF_COMP_512);
923 	case 1024:
924 		return (CAS_RX_CONF_COMP_1K);
925 	case 2048:
926 		return (CAS_RX_CONF_COMP_2K);
927 	case 4096:
928 		return (CAS_RX_CONF_COMP_4K);
929 	case 8192:
930 		return (CAS_RX_CONF_COMP_8K);
931 	case 16384:
932 		return (CAS_RX_CONF_COMP_16K);
933 	case 32768:
934 		return (CAS_RX_CONF_COMP_32K);
935 	default:
936 		printf("%s: invalid dcompletion ring size %d\n", __func__, sz);
937 		return (CAS_RX_CONF_COMP_128);
938 	}
939 }
940 
941 static void
942 cas_init(void *xsc)
943 {
944 	struct cas_softc *sc = xsc;
945 
946 	CAS_LOCK(sc);
947 	cas_init_locked(sc);
948 	CAS_UNLOCK(sc);
949 }
950 
951 /*
952  * Initialization of interface; set up initialization block
953  * and transmit/receive descriptor rings.
954  */
955 static void
956 cas_init_locked(struct cas_softc *sc)
957 {
958 	struct ifnet *ifp = sc->sc_ifp;
959 	uint32_t v;
960 
961 	CAS_LOCK_ASSERT(sc, MA_OWNED);
962 
963 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
964 		return;
965 
966 #ifdef CAS_DEBUG
967 	CTR2(KTR_CAS, "%s: %s: calling stop", device_get_name(sc->sc_dev),
968 	    __func__);
969 #endif
970 	/*
971 	 * Initialization sequence.  The numbered steps below correspond
972 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
973 	 * Channel Engine manual (part of the PCIO manual).
974 	 * See also the STP2002-STQ document from Sun Microsystems.
975 	 */
976 
977 	/* step 1 & 2.  Reset the Ethernet Channel. */
978 	cas_stop(ifp);
979 	cas_reset(sc);
980 #ifdef CAS_DEBUG
981 	CTR2(KTR_CAS, "%s: %s: restarting", device_get_name(sc->sc_dev),
982 	    __func__);
983 #endif
984 
985 	if ((sc->sc_flags & CAS_SERDES) == 0)
986 		/* Re-initialize the MIF. */
987 		cas_mifinit(sc);
988 
989 	/* step 3.  Setup data structures in host memory. */
990 	cas_meminit(sc);
991 
992 	/* step 4.  TX MAC registers & counters */
993 	cas_init_regs(sc);
994 
995 	/* step 5.  RX MAC registers & counters */
996 
997 	/* step 6 & 7.  Program Ring Base Addresses. */
998 	CAS_WRITE_4(sc, CAS_TX_DESC3_BASE_HI,
999 	    (((uint64_t)CAS_CDTXDADDR(sc, 0)) >> 32));
1000 	CAS_WRITE_4(sc, CAS_TX_DESC3_BASE_LO,
1001 	    CAS_CDTXDADDR(sc, 0) & 0xffffffff);
1002 
1003 	CAS_WRITE_4(sc, CAS_RX_COMP_BASE_HI,
1004 	    (((uint64_t)CAS_CDRXCADDR(sc, 0)) >> 32));
1005 	CAS_WRITE_4(sc, CAS_RX_COMP_BASE_LO,
1006 	    CAS_CDRXCADDR(sc, 0) & 0xffffffff);
1007 
1008 	CAS_WRITE_4(sc, CAS_RX_DESC_BASE_HI,
1009 	    (((uint64_t)CAS_CDRXDADDR(sc, 0)) >> 32));
1010 	CAS_WRITE_4(sc, CAS_RX_DESC_BASE_LO,
1011 	    CAS_CDRXDADDR(sc, 0) & 0xffffffff);
1012 
1013 	if ((sc->sc_flags & CAS_REG_PLUS) != 0) {
1014 		CAS_WRITE_4(sc, CAS_RX_DESC2_BASE_HI,
1015 		    (((uint64_t)CAS_CDRXD2ADDR(sc, 0)) >> 32));
1016 		CAS_WRITE_4(sc, CAS_RX_DESC2_BASE_LO,
1017 		    CAS_CDRXD2ADDR(sc, 0) & 0xffffffff);
1018 	}
1019 
1020 #ifdef CAS_DEBUG
1021 	CTR5(KTR_CAS,
1022 	    "loading TXDR %lx, RXCR %lx, RXDR %lx, RXD2R %lx, cddma %lx",
1023 	    CAS_CDTXDADDR(sc, 0), CAS_CDRXCADDR(sc, 0), CAS_CDRXDADDR(sc, 0),
1024 	    CAS_CDRXD2ADDR(sc, 0), sc->sc_cddma);
1025 #endif
1026 
1027 	/* step 8.  Global Configuration & Interrupt Masks */
1028 
1029 	/* Disable weighted round robin. */
1030 	CAS_WRITE_4(sc, CAS_CAW, CAS_CAW_RR_DIS);
1031 
1032 	/*
1033 	 * Enable infinite bursts for revisions without PCI issues if
1034 	 * applicable.  Doing so greatly improves the TX performance on
1035 	 * !__sparc64__.
1036 	 */
1037 	CAS_WRITE_4(sc, CAS_INF_BURST,
1038 #if !defined(__sparc64__)
1039 	    (sc->sc_flags & CAS_TABORT) == 0 ? CAS_INF_BURST_EN :
1040 #endif
1041 	    0);
1042 
1043 	/* Set up interrupts. */
1044 	CAS_WRITE_4(sc, CAS_INTMASK,
1045 	    ~(CAS_INTR_TX_INT_ME | CAS_INTR_TX_TAG_ERR |
1046 	    CAS_INTR_RX_DONE | CAS_INTR_RX_BUF_NA | CAS_INTR_RX_TAG_ERR |
1047 	    CAS_INTR_RX_COMP_FULL | CAS_INTR_RX_BUF_AEMPTY |
1048 	    CAS_INTR_RX_COMP_AFULL | CAS_INTR_RX_LEN_MMATCH |
1049 	    CAS_INTR_PCI_ERROR_INT
1050 #ifdef CAS_DEBUG
1051 	    | CAS_INTR_PCS_INT | CAS_INTR_MIF
1052 #endif
1053 	    ));
1054 	/* Don't clear top level interrupts when CAS_STATUS_ALIAS is read. */
1055 	CAS_WRITE_4(sc, CAS_CLEAR_ALIAS, 0);
1056 	CAS_WRITE_4(sc, CAS_MAC_RX_MASK, ~CAS_MAC_RX_OVERFLOW);
1057 	CAS_WRITE_4(sc, CAS_MAC_TX_MASK,
1058 	    ~(CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_MAX_PKT_ERR));
1059 #ifdef CAS_DEBUG
1060 	CAS_WRITE_4(sc, CAS_MAC_CTRL_MASK,
1061 	    ~(CAS_MAC_CTRL_PAUSE_RCVD | CAS_MAC_CTRL_PAUSE |
1062 	    CAS_MAC_CTRL_NON_PAUSE));
1063 #else
1064 	CAS_WRITE_4(sc, CAS_MAC_CTRL_MASK,
1065 	    CAS_MAC_CTRL_PAUSE_RCVD | CAS_MAC_CTRL_PAUSE |
1066 	    CAS_MAC_CTRL_NON_PAUSE);
1067 #endif
1068 
1069 	/* Enable PCI error interrupts. */
1070 	CAS_WRITE_4(sc, CAS_ERROR_MASK,
1071 	    ~(CAS_ERROR_DTRTO | CAS_ERROR_OTHER | CAS_ERROR_DMAW_ZERO |
1072 	    CAS_ERROR_DMAR_ZERO | CAS_ERROR_RTRTO));
1073 
1074 	/* Enable PCI error interrupts in BIM configuration. */
1075 	CAS_WRITE_4(sc, CAS_BIM_CONF,
1076 	    CAS_BIM_CONF_DPAR_EN | CAS_BIM_CONF_RMA_EN | CAS_BIM_CONF_RTA_EN);
1077 
1078 	/*
1079 	 * step 9.  ETX Configuration: encode receive descriptor ring size,
1080 	 * enable DMA and disable pre-interrupt writeback completion.
1081 	 */
1082 	v = cas_descsize(CAS_NTXDESC) << CAS_TX_CONF_DESC3_SHFT;
1083 	CAS_WRITE_4(sc, CAS_TX_CONF, v | CAS_TX_CONF_TXDMA_EN |
1084 	    CAS_TX_CONF_RDPP_DIS | CAS_TX_CONF_PICWB_DIS);
1085 
1086 	/* step 10.  ERX Configuration */
1087 
1088 	/*
1089 	 * Encode receive completion and descriptor ring sizes, set the
1090 	 * swivel offset.
1091 	 */
1092 	v = cas_rxcompsize(CAS_NRXCOMP) << CAS_RX_CONF_COMP_SHFT;
1093 	v |= cas_descsize(CAS_NRXDESC) << CAS_RX_CONF_DESC_SHFT;
1094 	if ((sc->sc_flags & CAS_REG_PLUS) != 0)
1095 		v |= cas_descsize(CAS_NRXDESC2) << CAS_RX_CONF_DESC2_SHFT;
1096 	CAS_WRITE_4(sc, CAS_RX_CONF,
1097 	    v | (ETHER_ALIGN << CAS_RX_CONF_SOFF_SHFT));
1098 
1099 	/* Set the PAUSE thresholds.  We use the maximum OFF threshold. */
1100 	CAS_WRITE_4(sc, CAS_RX_PTHRS,
1101 	    (111 << CAS_RX_PTHRS_XOFF_SHFT) | (15 << CAS_RX_PTHRS_XON_SHFT));
1102 
1103 	/* RX blanking */
1104 	CAS_WRITE_4(sc, CAS_RX_BLANK,
1105 	    (15 << CAS_RX_BLANK_TIME_SHFT) | (5 << CAS_RX_BLANK_PKTS_SHFT));
1106 
1107 	/* Set RX_COMP_AFULL threshold to half of the RX completions. */
1108 	CAS_WRITE_4(sc, CAS_RX_AEMPTY_THRS,
1109 	    (CAS_NRXCOMP / 2) << CAS_RX_AEMPTY_COMP_SHFT);
1110 
1111 	/* Initialize the RX page size register as appropriate for 8k. */
1112 	CAS_WRITE_4(sc, CAS_RX_PSZ,
1113 	    (CAS_RX_PSZ_8K << CAS_RX_PSZ_SHFT) |
1114 	    (4 << CAS_RX_PSZ_MB_CNT_SHFT) |
1115 	    (CAS_RX_PSZ_MB_STRD_2K << CAS_RX_PSZ_MB_STRD_SHFT) |
1116 	    (CAS_RX_PSZ_MB_OFF_64 << CAS_RX_PSZ_MB_OFF_SHFT));
1117 
1118 	/* Disable RX random early detection. */
1119 	CAS_WRITE_4(sc,	CAS_RX_RED, 0);
1120 
1121 	/* Zero the RX reassembly DMA table. */
1122 	for (v = 0; v <= CAS_RX_REAS_DMA_ADDR_LC; v++) {
1123 		CAS_WRITE_4(sc,	CAS_RX_REAS_DMA_ADDR, v);
1124 		CAS_WRITE_4(sc,	CAS_RX_REAS_DMA_DATA_LO, 0);
1125 		CAS_WRITE_4(sc,	CAS_RX_REAS_DMA_DATA_MD, 0);
1126 		CAS_WRITE_4(sc,	CAS_RX_REAS_DMA_DATA_HI, 0);
1127 	}
1128 
1129 	/* Ensure the RX control FIFO and RX IPP FIFO addresses are zero. */
1130 	CAS_WRITE_4(sc, CAS_RX_CTRL_FIFO, 0);
1131 	CAS_WRITE_4(sc, CAS_RX_IPP_ADDR, 0);
1132 
1133 	/* Finally, enable RX DMA. */
1134 	CAS_WRITE_4(sc, CAS_RX_CONF,
1135 	    CAS_READ_4(sc, CAS_RX_CONF) | CAS_RX_CONF_RXDMA_EN);
1136 
1137 	/* step 11.  Configure Media. */
1138 
1139 	/* step 12.  RX_MAC Configuration Register */
1140 	v = CAS_READ_4(sc, CAS_MAC_RX_CONF);
1141 	v &= ~(CAS_MAC_RX_CONF_STRPPAD | CAS_MAC_RX_CONF_EN);
1142 	v |= CAS_MAC_RX_CONF_STRPFCS;
1143 	sc->sc_mac_rxcfg = v;
1144 	/*
1145 	 * Clear the RX filter and reprogram it.  This will also set the
1146 	 * current RX MAC configuration and enable it.
1147 	 */
1148 	cas_setladrf(sc);
1149 
1150 	/* step 13.  TX_MAC Configuration Register */
1151 	v = CAS_READ_4(sc, CAS_MAC_TX_CONF);
1152 	v |= CAS_MAC_TX_CONF_EN;
1153 	(void)cas_disable_tx(sc);
1154 	CAS_WRITE_4(sc, CAS_MAC_TX_CONF, v);
1155 
1156 	/* step 14.  Issue Transmit Pending command. */
1157 
1158 	/* step 15.  Give the receiver a swift kick. */
1159 	CAS_WRITE_4(sc, CAS_RX_KICK, CAS_NRXDESC - 4);
1160 	CAS_WRITE_4(sc, CAS_RX_COMP_TAIL, 0);
1161 	if ((sc->sc_flags & CAS_REG_PLUS) != 0)
1162 		CAS_WRITE_4(sc, CAS_RX_KICK2, CAS_NRXDESC2 - 4);
1163 
1164 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1165 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1166 
1167 	mii_mediachg(sc->sc_mii);
1168 
1169 	/* Start the one second timer. */
1170 	sc->sc_wdog_timer = 0;
1171 	callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
1172 }
1173 
1174 static int
1175 cas_load_txmbuf(struct cas_softc *sc, struct mbuf **m_head)
1176 {
1177 	bus_dma_segment_t txsegs[CAS_NTXSEGS];
1178 	struct cas_txsoft *txs;
1179 	struct ip *ip;
1180 	struct mbuf *m;
1181 	uint64_t cflags;
1182 	int error, nexttx, nsegs, offset, seg;
1183 
1184 	CAS_LOCK_ASSERT(sc, MA_OWNED);
1185 
1186 	/* Get a work queue entry. */
1187 	if ((txs = STAILQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1188 		/* Ran out of descriptors. */
1189 		return (ENOBUFS);
1190 	}
1191 
1192 	cflags = 0;
1193 	if (((*m_head)->m_pkthdr.csum_flags & CAS_CSUM_FEATURES) != 0) {
1194 		if (M_WRITABLE(*m_head) == 0) {
1195 			m = m_dup(*m_head, M_DONTWAIT);
1196 			m_freem(*m_head);
1197 			*m_head = m;
1198 			if (m == NULL)
1199 				return (ENOBUFS);
1200 		}
1201 		offset = sizeof(struct ether_header);
1202 		m = m_pullup(*m_head, offset + sizeof(struct ip));
1203 		if (m == NULL) {
1204 			*m_head = NULL;
1205 			return (ENOBUFS);
1206 		}
1207 		ip = (struct ip *)(mtod(m, caddr_t) + offset);
1208 		offset += (ip->ip_hl << 2);
1209 		cflags = (offset << CAS_TD_CKSUM_START_SHFT) |
1210 		    ((offset + m->m_pkthdr.csum_data) <<
1211 		    CAS_TD_CKSUM_STUFF_SHFT) | CAS_TD_CKSUM_EN;
1212 		*m_head = m;
1213 	}
1214 
1215 	error = bus_dmamap_load_mbuf_sg(sc->sc_tdmatag, txs->txs_dmamap,
1216 	    *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1217 	if (error == EFBIG) {
1218 		m = m_collapse(*m_head, M_DONTWAIT, CAS_NTXSEGS);
1219 		if (m == NULL) {
1220 			m_freem(*m_head);
1221 			*m_head = NULL;
1222 			return (ENOBUFS);
1223 		}
1224 		*m_head = m;
1225 		error = bus_dmamap_load_mbuf_sg(sc->sc_tdmatag,
1226 		    txs->txs_dmamap, *m_head, txsegs, &nsegs,
1227 		    BUS_DMA_NOWAIT);
1228 		if (error != 0) {
1229 			m_freem(*m_head);
1230 			*m_head = NULL;
1231 			return (error);
1232 		}
1233 	} else if (error != 0)
1234 		return (error);
1235 	/* If nsegs is wrong then the stack is corrupt. */
1236 	KASSERT(nsegs <= CAS_NTXSEGS,
1237 	    ("%s: too many DMA segments (%d)", __func__, nsegs));
1238 	if (nsegs == 0) {
1239 		m_freem(*m_head);
1240 		*m_head = NULL;
1241 		return (EIO);
1242 	}
1243 
1244 	/*
1245 	 * Ensure we have enough descriptors free to describe
1246 	 * the packet.  Note, we always reserve one descriptor
1247 	 * at the end of the ring as a termination point, in
1248 	 * order to prevent wrap-around.
1249 	 */
1250 	if (nsegs > sc->sc_txfree - 1) {
1251 		txs->txs_ndescs = 0;
1252 		bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap);
1253 		return (ENOBUFS);
1254 	}
1255 
1256 	txs->txs_ndescs = nsegs;
1257 	txs->txs_firstdesc = sc->sc_txnext;
1258 	nexttx = txs->txs_firstdesc;
1259 	for (seg = 0; seg < nsegs; seg++, nexttx = CAS_NEXTTX(nexttx)) {
1260 #ifdef CAS_DEBUG
1261 		CTR6(KTR_CAS,
1262 		    "%s: mapping seg %d (txd %d), len %lx, addr %#lx (%#lx)",
1263 		    __func__, seg, nexttx, txsegs[seg].ds_len,
1264 		    txsegs[seg].ds_addr, htole64(txsegs[seg].ds_addr));
1265 #endif
1266 		sc->sc_txdescs[nexttx].cd_buf_ptr =
1267 		    htole64(txsegs[seg].ds_addr);
1268 		KASSERT(txsegs[seg].ds_len <
1269 		    CAS_TD_BUF_LEN_MASK >> CAS_TD_BUF_LEN_SHFT,
1270 		    ("%s: segment size too large!", __func__));
1271 		sc->sc_txdescs[nexttx].cd_flags =
1272 		    htole64(txsegs[seg].ds_len << CAS_TD_BUF_LEN_SHFT);
1273 		txs->txs_lastdesc = nexttx;
1274 	}
1275 
1276 	/* Set EOF on the last descriptor. */
1277 #ifdef CAS_DEBUG
1278 	CTR3(KTR_CAS, "%s: end of frame at segment %d, TX %d",
1279 	    __func__, seg, nexttx);
1280 #endif
1281 	sc->sc_txdescs[txs->txs_lastdesc].cd_flags |=
1282 	    htole64(CAS_TD_END_OF_FRAME);
1283 
1284 	/* Lastly set SOF on the first descriptor. */
1285 #ifdef CAS_DEBUG
1286 	CTR3(KTR_CAS, "%s: start of frame at segment %d, TX %d",
1287 	    __func__, seg, nexttx);
1288 #endif
1289 	if (sc->sc_txwin += nsegs > CAS_MAXTXFREE * 2 / 3) {
1290 		sc->sc_txwin = 0;
1291 		sc->sc_txdescs[txs->txs_firstdesc].cd_flags |=
1292 		    htole64(cflags | CAS_TD_START_OF_FRAME | CAS_TD_INT_ME);
1293 	} else
1294 		sc->sc_txdescs[txs->txs_firstdesc].cd_flags |=
1295 		    htole64(cflags | CAS_TD_START_OF_FRAME);
1296 
1297 	/* Sync the DMA map. */
1298 	bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap,
1299 	    BUS_DMASYNC_PREWRITE);
1300 
1301 #ifdef CAS_DEBUG
1302 	CTR4(KTR_CAS, "%s: setting firstdesc=%d, lastdesc=%d, ndescs=%d",
1303 	    __func__, txs->txs_firstdesc, txs->txs_lastdesc,
1304 	    txs->txs_ndescs);
1305 #endif
1306 	STAILQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1307 	STAILQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1308 	txs->txs_mbuf = *m_head;
1309 
1310 	sc->sc_txnext = CAS_NEXTTX(txs->txs_lastdesc);
1311 	sc->sc_txfree -= txs->txs_ndescs;
1312 
1313 	return (0);
1314 }
1315 
1316 static void
1317 cas_init_regs(struct cas_softc *sc)
1318 {
1319 	int i;
1320 	const u_char *laddr = IF_LLADDR(sc->sc_ifp);
1321 
1322 	CAS_LOCK_ASSERT(sc, MA_OWNED);
1323 
1324 	/* These registers are not cleared on reset. */
1325 	if ((sc->sc_flags & CAS_INITED) == 0) {
1326 		/* magic values */
1327 		CAS_WRITE_4(sc, CAS_MAC_IPG0, 0);
1328 		CAS_WRITE_4(sc, CAS_MAC_IPG1, 8);
1329 		CAS_WRITE_4(sc, CAS_MAC_IPG2, 4);
1330 
1331 		/* min frame length */
1332 		CAS_WRITE_4(sc, CAS_MAC_MIN_FRAME, ETHER_MIN_LEN);
1333 		/* max frame length and max burst size */
1334 		CAS_WRITE_4(sc, CAS_MAC_MAX_BF,
1335 		    ((ETHER_MAX_LEN_JUMBO + ETHER_VLAN_ENCAP_LEN) <<
1336 		    CAS_MAC_MAX_BF_FRM_SHFT) |
1337 		    (0x2000 << CAS_MAC_MAX_BF_BST_SHFT));
1338 
1339 		/* more magic values */
1340 		CAS_WRITE_4(sc, CAS_MAC_PREAMBLE_LEN, 0x7);
1341 		CAS_WRITE_4(sc, CAS_MAC_JAM_SIZE, 0x4);
1342 		CAS_WRITE_4(sc, CAS_MAC_ATTEMPT_LIMIT, 0x10);
1343 		CAS_WRITE_4(sc, CAS_MAC_CTRL_TYPE, 0x8808);
1344 
1345 		/* random number seed */
1346 		CAS_WRITE_4(sc, CAS_MAC_RANDOM_SEED,
1347 		    ((laddr[5] << 8) | laddr[4]) & 0x3ff);
1348 
1349 		/* secondary MAC addresses: 0:0:0:0:0:0 */
1350 		for (i = CAS_MAC_ADDR3; i <= CAS_MAC_ADDR41;
1351 		    i += CAS_MAC_ADDR4 - CAS_MAC_ADDR3)
1352 			CAS_WRITE_4(sc, i, 0);
1353 
1354 		/* MAC control address: 01:80:c2:00:00:01 */
1355 		CAS_WRITE_4(sc, CAS_MAC_ADDR42, 0x0001);
1356 		CAS_WRITE_4(sc, CAS_MAC_ADDR43, 0xc200);
1357 		CAS_WRITE_4(sc, CAS_MAC_ADDR44, 0x0180);
1358 
1359 		/* MAC filter address: 0:0:0:0:0:0 */
1360 		CAS_WRITE_4(sc, CAS_MAC_AFILTER0, 0);
1361 		CAS_WRITE_4(sc, CAS_MAC_AFILTER1, 0);
1362 		CAS_WRITE_4(sc, CAS_MAC_AFILTER2, 0);
1363 		CAS_WRITE_4(sc, CAS_MAC_AFILTER_MASK1_2, 0);
1364 		CAS_WRITE_4(sc, CAS_MAC_AFILTER_MASK0, 0);
1365 
1366 		/* Zero the hash table. */
1367 		for (i = CAS_MAC_HASH0; i <= CAS_MAC_HASH15;
1368 		    i += CAS_MAC_HASH1 - CAS_MAC_HASH0)
1369 			CAS_WRITE_4(sc, i, 0);
1370 
1371 		sc->sc_flags |= CAS_INITED;
1372 	}
1373 
1374 	/* Counters need to be zeroed. */
1375 	CAS_WRITE_4(sc, CAS_MAC_NORM_COLL_CNT, 0);
1376 	CAS_WRITE_4(sc, CAS_MAC_FIRST_COLL_CNT, 0);
1377 	CAS_WRITE_4(sc, CAS_MAC_EXCESS_COLL_CNT, 0);
1378 	CAS_WRITE_4(sc, CAS_MAC_LATE_COLL_CNT, 0);
1379 	CAS_WRITE_4(sc, CAS_MAC_DEFER_TMR_CNT, 0);
1380 	CAS_WRITE_4(sc, CAS_MAC_PEAK_ATTEMPTS, 0);
1381 	CAS_WRITE_4(sc, CAS_MAC_RX_FRAME_COUNT, 0);
1382 	CAS_WRITE_4(sc, CAS_MAC_RX_LEN_ERR_CNT, 0);
1383 	CAS_WRITE_4(sc, CAS_MAC_RX_ALIGN_ERR, 0);
1384 	CAS_WRITE_4(sc, CAS_MAC_RX_CRC_ERR_CNT, 0);
1385 	CAS_WRITE_4(sc, CAS_MAC_RX_CODE_VIOL, 0);
1386 
1387 	/* Set XOFF PAUSE time. */
1388 	CAS_WRITE_4(sc, CAS_MAC_SPC, 0x1BF0 << CAS_MAC_SPC_TIME_SHFT);
1389 
1390 	/* Set the station address. */
1391 	CAS_WRITE_4(sc, CAS_MAC_ADDR0, (laddr[4] << 8) | laddr[5]);
1392 	CAS_WRITE_4(sc, CAS_MAC_ADDR1, (laddr[2] << 8) | laddr[3]);
1393 	CAS_WRITE_4(sc, CAS_MAC_ADDR2, (laddr[0] << 8) | laddr[1]);
1394 
1395 	/* Enable MII outputs. */
1396 	CAS_WRITE_4(sc, CAS_MAC_XIF_CONF, CAS_MAC_XIF_CONF_TX_OE);
1397 }
1398 
1399 static void
1400 cas_tx_task(void *arg, int pending __unused)
1401 {
1402 	struct ifnet *ifp;
1403 
1404 	ifp = (struct ifnet *)arg;
1405 	cas_start(ifp);
1406 }
1407 
1408 static inline void
1409 cas_txkick(struct cas_softc *sc)
1410 {
1411 
1412 	/*
1413 	 * Update the TX kick register.  This register has to point to the
1414 	 * descriptor after the last valid one and for optimum performance
1415 	 * should be incremented in multiples of 4 (the DMA engine fetches/
1416 	 * updates descriptors in batches of 4).
1417 	 */
1418 #ifdef CAS_DEBUG
1419 	CTR3(KTR_CAS, "%s: %s: kicking TX %d",
1420 	    device_get_name(sc->sc_dev), __func__, sc->sc_txnext);
1421 #endif
1422 	CAS_CDSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1423 	CAS_WRITE_4(sc, CAS_TX_KICK3, sc->sc_txnext);
1424 }
1425 
1426 static void
1427 cas_start(struct ifnet *ifp)
1428 {
1429 	struct cas_softc *sc = ifp->if_softc;
1430 	struct mbuf *m;
1431 	int kicked, ntx;
1432 
1433 	CAS_LOCK(sc);
1434 
1435 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1436 	    IFF_DRV_RUNNING || (sc->sc_flags & CAS_LINK) == 0) {
1437 		CAS_UNLOCK(sc);
1438 		return;
1439 	}
1440 
1441 	if (sc->sc_txfree < CAS_MAXTXFREE / 4)
1442 		cas_tint(sc);
1443 
1444 #ifdef CAS_DEBUG
1445 	CTR4(KTR_CAS, "%s: %s: txfree %d, txnext %d",
1446 	    device_get_name(sc->sc_dev), __func__, sc->sc_txfree,
1447 	    sc->sc_txnext);
1448 #endif
1449 	ntx = 0;
1450 	kicked = 0;
1451 	for (; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) && sc->sc_txfree > 1;) {
1452 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
1453 		if (m == NULL)
1454 			break;
1455 		if (cas_load_txmbuf(sc, &m) != 0) {
1456 			if (m == NULL)
1457 				break;
1458 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1459 			IFQ_DRV_PREPEND(&ifp->if_snd, m);
1460 			break;
1461 		}
1462 		if ((sc->sc_txnext % 4) == 0) {
1463 			cas_txkick(sc);
1464 			kicked = 1;
1465 		} else
1466 			kicked = 0;
1467 		ntx++;
1468 		BPF_MTAP(ifp, m);
1469 	}
1470 
1471 	if (ntx > 0) {
1472 		if (kicked == 0)
1473 			cas_txkick(sc);
1474 #ifdef CAS_DEBUG
1475 		CTR2(KTR_CAS, "%s: packets enqueued, OWN on %d",
1476 		    device_get_name(sc->sc_dev), sc->sc_txnext);
1477 #endif
1478 
1479 		/* Set a watchdog timer in case the chip flakes out. */
1480 		sc->sc_wdog_timer = 5;
1481 #ifdef CAS_DEBUG
1482 		CTR3(KTR_CAS, "%s: %s: watchdog %d",
1483 		    device_get_name(sc->sc_dev), __func__,
1484 		    sc->sc_wdog_timer);
1485 #endif
1486 	}
1487 
1488 	CAS_UNLOCK(sc);
1489 }
1490 
1491 static void
1492 cas_tint(struct cas_softc *sc)
1493 {
1494 	struct ifnet *ifp = sc->sc_ifp;
1495 	struct cas_txsoft *txs;
1496 	int progress;
1497 	uint32_t txlast;
1498 #ifdef CAS_DEBUG
1499 	int i;
1500 
1501 	CAS_LOCK_ASSERT(sc, MA_OWNED);
1502 
1503 	CTR2(KTR_CAS, "%s: %s", device_get_name(sc->sc_dev), __func__);
1504 #endif
1505 
1506 	/*
1507 	 * Go through our TX list and free mbufs for those
1508 	 * frames that have been transmitted.
1509 	 */
1510 	progress = 0;
1511 	CAS_CDSYNC(sc, BUS_DMASYNC_POSTREAD);
1512 	while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1513 #ifdef CAS_DEBUG
1514 		if ((ifp->if_flags & IFF_DEBUG) != 0) {
1515 			printf("    txsoft %p transmit chain:\n", txs);
1516 			for (i = txs->txs_firstdesc;; i = CAS_NEXTTX(i)) {
1517 				printf("descriptor %d: ", i);
1518 				printf("cd_flags: 0x%016llx\t",
1519 				    (long long)le64toh(
1520 				    sc->sc_txdescs[i].cd_flags));
1521 				printf("cd_buf_ptr: 0x%016llx\n",
1522 				    (long long)le64toh(
1523 				    sc->sc_txdescs[i].cd_buf_ptr));
1524 				if (i == txs->txs_lastdesc)
1525 					break;
1526 			}
1527 		}
1528 #endif
1529 
1530 		/*
1531 		 * In theory, we could harvest some descriptors before
1532 		 * the ring is empty, but that's a bit complicated.
1533 		 *
1534 		 * CAS_TX_COMPn points to the last descriptor
1535 		 * processed + 1.
1536 		 */
1537 		txlast = CAS_READ_4(sc, CAS_TX_COMP3);
1538 #ifdef CAS_DEBUG
1539 		CTR4(KTR_CAS, "%s: txs->txs_firstdesc = %d, "
1540 		    "txs->txs_lastdesc = %d, txlast = %d",
1541 		    __func__, txs->txs_firstdesc, txs->txs_lastdesc, txlast);
1542 #endif
1543 		if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1544 			if ((txlast >= txs->txs_firstdesc) &&
1545 			    (txlast <= txs->txs_lastdesc))
1546 				break;
1547 		} else {
1548 			/* Ick -- this command wraps. */
1549 			if ((txlast >= txs->txs_firstdesc) ||
1550 			    (txlast <= txs->txs_lastdesc))
1551 				break;
1552 		}
1553 
1554 #ifdef CAS_DEBUG
1555 		CTR1(KTR_CAS, "%s: releasing a descriptor", __func__);
1556 #endif
1557 		STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1558 
1559 		sc->sc_txfree += txs->txs_ndescs;
1560 
1561 		bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap,
1562 		    BUS_DMASYNC_POSTWRITE);
1563 		bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap);
1564 		if (txs->txs_mbuf != NULL) {
1565 			m_freem(txs->txs_mbuf);
1566 			txs->txs_mbuf = NULL;
1567 		}
1568 
1569 		STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1570 
1571 		ifp->if_opackets++;
1572 		progress = 1;
1573 	}
1574 
1575 #ifdef CAS_DEBUG
1576 	CTR5(KTR_CAS, "%s: CAS_TX_SM1 %x CAS_TX_SM2 %x CAS_TX_DESC_BASE %llx "
1577 	    "CAS_TX_COMP3 %x",
1578 	    __func__, CAS_READ_4(sc, CAS_TX_SM1), CAS_READ_4(sc, CAS_TX_SM2),
1579 	    ((long long)CAS_READ_4(sc, CAS_TX_DESC3_BASE_HI) << 32) |
1580 	    CAS_READ_4(sc, CAS_TX_DESC3_BASE_LO),
1581 	    CAS_READ_4(sc, CAS_TX_COMP3));
1582 #endif
1583 
1584 	if (progress) {
1585 		/* We freed some descriptors, so reset IFF_DRV_OACTIVE. */
1586 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1587 		if (STAILQ_EMPTY(&sc->sc_txdirtyq))
1588 			sc->sc_wdog_timer = 0;
1589 	}
1590 
1591 #ifdef CAS_DEBUG
1592 	CTR3(KTR_CAS, "%s: %s: watchdog %d",
1593 	    device_get_name(sc->sc_dev), __func__, sc->sc_wdog_timer);
1594 #endif
1595 }
1596 
1597 static void
1598 cas_rint_timeout(void *arg)
1599 {
1600 	struct cas_softc *sc = arg;
1601 
1602 	CAS_LOCK_ASSERT(sc, MA_OWNED);
1603 
1604 	cas_rint(sc);
1605 }
1606 
1607 static void
1608 cas_rint(struct cas_softc *sc)
1609 {
1610 	struct cas_rxdsoft *rxds, *rxds2;
1611 	struct ifnet *ifp = sc->sc_ifp;
1612 	struct mbuf *m, *m2;
1613 	uint64_t word1, word2, word3, word4;
1614 	uint32_t rxhead;
1615 	u_int idx, idx2, len, off, skip;
1616 
1617 	CAS_LOCK_ASSERT(sc, MA_OWNED);
1618 
1619 	callout_stop(&sc->sc_rx_ch);
1620 
1621 #ifdef CAS_DEBUG
1622 	CTR2(KTR_CAS, "%s: %s", device_get_name(sc->sc_dev), __func__);
1623 #endif
1624 
1625 #define	PRINTWORD(n, delimiter)						\
1626 	printf("word ## n: 0x%016llx%c", (long long)word ## n, delimiter)
1627 
1628 #define	SKIPASSERT(n)							\
1629 	KASSERT(sc->sc_rxcomps[sc->sc_rxcptr].crc_word ## n == 0,	\
1630 	    ("%s: word ## n not 0", __func__))
1631 
1632 #define	WORDTOH(n)							\
1633 	word ## n = le64toh(sc->sc_rxcomps[sc->sc_rxcptr].crc_word ## n)
1634 
1635 	/*
1636 	 * Read the completion head register once.  This limits
1637 	 * how long the following loop can execute.
1638 	 */
1639 	rxhead = CAS_READ_4(sc, CAS_RX_COMP_HEAD);
1640 #ifdef CAS_DEBUG
1641 	CTR4(KTR_CAS, "%s: sc->sc_rxcptr %d, sc->sc_rxdptr %d, head %d",
1642 	    __func__, sc->sc_rxcptr, sc->sc_rxdptr, rxhead);
1643 #endif
1644 	skip = 0;
1645 	CAS_CDSYNC(sc, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1646 	for (; sc->sc_rxcptr != rxhead;
1647 	    sc->sc_rxcptr = CAS_NEXTRXCOMP(sc->sc_rxcptr)) {
1648 		if (skip != 0) {
1649 			SKIPASSERT(1);
1650 			SKIPASSERT(2);
1651 			SKIPASSERT(3);
1652 
1653 			--skip;
1654 			goto skip;
1655 		}
1656 
1657 		WORDTOH(1);
1658 		WORDTOH(2);
1659 		WORDTOH(3);
1660 		WORDTOH(4);
1661 
1662 #ifdef CAS_DEBUG
1663 		if ((ifp->if_flags & IFF_DEBUG) != 0) {
1664 			printf("    completion %d: ", sc->sc_rxcptr);
1665 			PRINTWORD(1, '\t');
1666 			PRINTWORD(2, '\t');
1667 			PRINTWORD(3, '\t');
1668 			PRINTWORD(4, '\n');
1669 		}
1670 #endif
1671 
1672 		if (__predict_false(
1673 		    (word1 & CAS_RC1_TYPE_MASK) == CAS_RC1_TYPE_HW ||
1674 		    (word4 & CAS_RC4_ZERO) != 0)) {
1675 			/*
1676 			 * The descriptor is still marked as owned, although
1677 			 * it is supposed to have completed.  This has been
1678 			 * observed on some machines.  Just exiting here
1679 			 * might leave the packet sitting around until another
1680 			 * one arrives to trigger a new interrupt, which is
1681 			 * generally undesirable, so set up a timeout.
1682 			 */
1683 			callout_reset(&sc->sc_rx_ch, CAS_RXOWN_TICKS,
1684 			    cas_rint_timeout, sc);
1685 			break;
1686 		}
1687 
1688 		if (__predict_false(
1689 		    (word4 & (CAS_RC4_BAD | CAS_RC4_LEN_MMATCH)) != 0)) {
1690 			ifp->if_ierrors++;
1691 			device_printf(sc->sc_dev,
1692 			    "receive error: CRC error\n");
1693 			continue;
1694 		}
1695 
1696 		KASSERT(CAS_GET(word1, CAS_RC1_DATA_SIZE) == 0 ||
1697 		    CAS_GET(word2, CAS_RC2_HDR_SIZE) == 0,
1698 		    ("%s: data and header present", __func__));
1699 		KASSERT((word1 & CAS_RC1_SPLIT_PKT) == 0 ||
1700 		    CAS_GET(word2, CAS_RC2_HDR_SIZE) == 0,
1701 		    ("%s: split and header present", __func__));
1702 		KASSERT(CAS_GET(word1, CAS_RC1_DATA_SIZE) == 0 ||
1703 		    (word1 & CAS_RC1_RELEASE_HDR) == 0,
1704 		    ("%s: data present but header release", __func__));
1705 		KASSERT(CAS_GET(word2, CAS_RC2_HDR_SIZE) == 0 ||
1706 		    (word1 & CAS_RC1_RELEASE_DATA) == 0,
1707 		    ("%s: header present but data release", __func__));
1708 
1709 		if ((len = CAS_GET(word2, CAS_RC2_HDR_SIZE)) != 0) {
1710 			idx = CAS_GET(word2, CAS_RC2_HDR_INDEX);
1711 			off = CAS_GET(word2, CAS_RC2_HDR_OFF);
1712 #ifdef CAS_DEBUG
1713 			CTR4(KTR_CAS, "%s: hdr at idx %d, off %d, len %d",
1714 			    __func__, idx, off, len);
1715 #endif
1716 			rxds = &sc->sc_rxdsoft[idx];
1717 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1718 			if (m != NULL) {
1719 				refcount_acquire(&rxds->rxds_refcount);
1720 				bus_dmamap_sync(sc->sc_rdmatag,
1721 				    rxds->rxds_dmamap, BUS_DMASYNC_POSTREAD);
1722 #if __FreeBSD_version < 800016
1723 				MEXTADD(m, (caddr_t)rxds->rxds_buf +
1724 				    off * 256 + ETHER_ALIGN, len, cas_free,
1725 				    rxds, M_RDONLY, EXT_NET_DRV);
1726 #else
1727 				MEXTADD(m, (caddr_t)rxds->rxds_buf +
1728 				    off * 256 + ETHER_ALIGN, len, cas_free,
1729 				    sc, (void *)(uintptr_t)idx,
1730 				    M_RDONLY, EXT_NET_DRV);
1731 #endif
1732 				if ((m->m_flags & M_EXT) == 0) {
1733 					m_freem(m);
1734 					m = NULL;
1735 				}
1736 			}
1737 			if (m != NULL) {
1738 				m->m_pkthdr.rcvif = ifp;
1739 				m->m_pkthdr.len = m->m_len = len;
1740 				ifp->if_ipackets++;
1741 				if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1742 					cas_rxcksum(m, CAS_GET(word4,
1743 					    CAS_RC4_TCP_CSUM));
1744 				/* Pass it on. */
1745 				CAS_UNLOCK(sc);
1746 				(*ifp->if_input)(ifp, m);
1747 				CAS_LOCK(sc);
1748 			} else
1749 				ifp->if_iqdrops++;
1750 
1751 			if ((word1 & CAS_RC1_RELEASE_HDR) != 0 &&
1752 			    refcount_release(&rxds->rxds_refcount) != 0)
1753 				cas_add_rxdesc(sc, idx);
1754 		} else if ((len = CAS_GET(word1, CAS_RC1_DATA_SIZE)) != 0) {
1755 			idx = CAS_GET(word1, CAS_RC1_DATA_INDEX);
1756 			off = CAS_GET(word1, CAS_RC1_DATA_OFF);
1757 #ifdef CAS_DEBUG
1758 			CTR4(KTR_CAS, "%s: data at idx %d, off %d, len %d",
1759 			    __func__, idx, off, len);
1760 #endif
1761 			rxds = &sc->sc_rxdsoft[idx];
1762 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1763 			if (m != NULL) {
1764 				refcount_acquire(&rxds->rxds_refcount);
1765 				off += ETHER_ALIGN;
1766 				m->m_len = min(CAS_PAGE_SIZE - off, len);
1767 				bus_dmamap_sync(sc->sc_rdmatag,
1768 				    rxds->rxds_dmamap, BUS_DMASYNC_POSTREAD);
1769 #if __FreeBSD_version < 800016
1770 				MEXTADD(m, (caddr_t)rxds->rxds_buf + off,
1771 				    m->m_len, cas_free, rxds, M_RDONLY,
1772 				    EXT_NET_DRV);
1773 #else
1774 				MEXTADD(m, (caddr_t)rxds->rxds_buf + off,
1775 				    m->m_len, cas_free, sc,
1776 				    (void *)(uintptr_t)idx, M_RDONLY,
1777 				    EXT_NET_DRV);
1778 #endif
1779 				if ((m->m_flags & M_EXT) == 0) {
1780 					m_freem(m);
1781 					m = NULL;
1782 				}
1783 			}
1784 			idx2 = 0;
1785 			m2 = NULL;
1786 			rxds2 = NULL;
1787 			if ((word1 & CAS_RC1_SPLIT_PKT) != 0) {
1788 				KASSERT((word1 & CAS_RC1_RELEASE_NEXT) != 0,
1789 				    ("%s: split but no release next",
1790 				    __func__));
1791 
1792 				idx2 = CAS_GET(word2, CAS_RC2_NEXT_INDEX);
1793 #ifdef CAS_DEBUG
1794 				CTR2(KTR_CAS, "%s: split at idx %d",
1795 				    __func__, idx2);
1796 #endif
1797 				rxds2 = &sc->sc_rxdsoft[idx2];
1798 				if (m != NULL) {
1799 					MGET(m2, M_DONTWAIT, MT_DATA);
1800 					if (m2 != NULL) {
1801 						refcount_acquire(
1802 						    &rxds2->rxds_refcount);
1803 						m2->m_len = len - m->m_len;
1804 						bus_dmamap_sync(
1805 						    sc->sc_rdmatag,
1806 						    rxds2->rxds_dmamap,
1807 						    BUS_DMASYNC_POSTREAD);
1808 #if __FreeBSD_version < 800016
1809 						MEXTADD(m2,
1810 						    (caddr_t)rxds2->rxds_buf,
1811 						    m2->m_len, cas_free,
1812 						    rxds2, M_RDONLY,
1813 						    EXT_NET_DRV);
1814 #else
1815 						MEXTADD(m2,
1816 						    (caddr_t)rxds2->rxds_buf,
1817 						    m2->m_len, cas_free, sc,
1818 						    (void *)(uintptr_t)idx2,
1819 						    M_RDONLY, EXT_NET_DRV);
1820 #endif
1821 						if ((m2->m_flags & M_EXT) ==
1822 						    0) {
1823 							m_freem(m2);
1824 							m2 = NULL;
1825 						}
1826 					}
1827 				}
1828 				if (m2 != NULL)
1829 					m->m_next = m2;
1830 				else if (m != NULL) {
1831 					m_freem(m);
1832 					m = NULL;
1833 				}
1834 			}
1835 			if (m != NULL) {
1836 				m->m_pkthdr.rcvif = ifp;
1837 				m->m_pkthdr.len = len;
1838 				ifp->if_ipackets++;
1839 				if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1840 					cas_rxcksum(m, CAS_GET(word4,
1841 					    CAS_RC4_TCP_CSUM));
1842 				/* Pass it on. */
1843 				CAS_UNLOCK(sc);
1844 				(*ifp->if_input)(ifp, m);
1845 				CAS_LOCK(sc);
1846 			} else
1847 				ifp->if_iqdrops++;
1848 
1849 			if ((word1 & CAS_RC1_RELEASE_DATA) != 0 &&
1850 			    refcount_release(&rxds->rxds_refcount) != 0)
1851 				cas_add_rxdesc(sc, idx);
1852 			if ((word1 & CAS_RC1_SPLIT_PKT) != 0 &&
1853 			    refcount_release(&rxds2->rxds_refcount) != 0)
1854 				cas_add_rxdesc(sc, idx2);
1855 		}
1856 
1857 		skip = CAS_GET(word1, CAS_RC1_SKIP);
1858 
1859  skip:
1860 		cas_rxcompinit(&sc->sc_rxcomps[sc->sc_rxcptr]);
1861 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1862 			break;
1863 	}
1864 	CAS_CDSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1865 	CAS_WRITE_4(sc, CAS_RX_COMP_TAIL, sc->sc_rxcptr);
1866 
1867 #undef PRINTWORD
1868 #undef SKIPASSERT
1869 #undef WORDTOH
1870 
1871 #ifdef CAS_DEBUG
1872 	CTR4(KTR_CAS, "%s: done sc->sc_rxcptr %d, sc->sc_rxdptr %d, head %d",
1873 	    __func__, sc->sc_rxcptr, sc->sc_rxdptr,
1874 	    CAS_READ_4(sc, CAS_RX_COMP_HEAD));
1875 #endif
1876 }
1877 
1878 static void
1879 cas_free(void *arg1, void *arg2)
1880 {
1881 	struct cas_rxdsoft *rxds;
1882 	struct cas_softc *sc;
1883 	u_int idx, locked;
1884 
1885 #if __FreeBSD_version < 800016
1886 	rxds = arg2;
1887 	sc = rxds->rxds_sc;
1888 	idx = rxds->rxds_idx;
1889 #else
1890 	sc = arg1;
1891 	idx = (uintptr_t)arg2;
1892 	rxds = &sc->sc_rxdsoft[idx];
1893 #endif
1894 	if (refcount_release(&rxds->rxds_refcount) == 0)
1895 		return;
1896 
1897 	/*
1898 	 * NB: this function can be called via m_freem(9) within
1899 	 * this driver!
1900 	 */
1901 	if ((locked = CAS_LOCK_OWNED(sc)) == 0)
1902 		CAS_LOCK(sc);
1903 	cas_add_rxdesc(sc, idx);
1904 	if (locked == 0)
1905 		CAS_UNLOCK(sc);
1906 }
1907 
1908 static inline void
1909 cas_add_rxdesc(struct cas_softc *sc, u_int idx)
1910 {
1911 
1912 	CAS_LOCK_ASSERT(sc, MA_OWNED);
1913 
1914 	bus_dmamap_sync(sc->sc_rdmatag, sc->sc_rxdsoft[idx].rxds_dmamap,
1915 	    BUS_DMASYNC_PREREAD);
1916 	CAS_UPDATE_RXDESC(sc, sc->sc_rxdptr, idx);
1917 	sc->sc_rxdptr = CAS_NEXTRXDESC(sc->sc_rxdptr);
1918 
1919 	/*
1920 	 * Update the RX kick register.  This register has to point to the
1921 	 * descriptor after the last valid one (before the current batch)
1922 	 * and for optimum performance should be incremented in multiples
1923 	 * of 4 (the DMA engine fetches/updates descriptors in batches of 4).
1924 	 */
1925 	if ((sc->sc_rxdptr % 4) == 0) {
1926 		CAS_CDSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1927 		CAS_WRITE_4(sc, CAS_RX_KICK,
1928 		    (sc->sc_rxdptr + CAS_NRXDESC - 4) & CAS_NRXDESC_MASK);
1929 	}
1930 }
1931 
1932 static void
1933 cas_eint(struct cas_softc *sc, u_int status)
1934 {
1935 	struct ifnet *ifp = sc->sc_ifp;
1936 
1937 	CAS_LOCK_ASSERT(sc, MA_OWNED);
1938 
1939 	ifp->if_ierrors++;
1940 
1941 	device_printf(sc->sc_dev, "%s: status 0x%x", __func__, status);
1942 	if ((status & CAS_INTR_PCI_ERROR_INT) != 0) {
1943 		status = CAS_READ_4(sc, CAS_ERROR_STATUS);
1944 		printf(", PCI bus error 0x%x", status);
1945 		if ((status & CAS_ERROR_OTHER) != 0) {
1946 			status = pci_read_config(sc->sc_dev, PCIR_STATUS, 2);
1947 			printf(", PCI status 0x%x", status);
1948 			pci_write_config(sc->sc_dev, PCIR_STATUS, status, 2);
1949 		}
1950 	}
1951 	printf("\n");
1952 
1953 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1954 	cas_init_locked(sc);
1955 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1956 		taskqueue_enqueue(sc->sc_tq, &sc->sc_tx_task);
1957 }
1958 
1959 static int
1960 cas_intr(void *v)
1961 {
1962 	struct cas_softc *sc = v;
1963 
1964 	if (__predict_false((CAS_READ_4(sc, CAS_STATUS_ALIAS) &
1965 	    CAS_INTR_SUMMARY) == 0))
1966 		return (FILTER_STRAY);
1967 
1968 	/* Disable interrupts. */
1969 	CAS_WRITE_4(sc, CAS_INTMASK, 0xffffffff);
1970 	taskqueue_enqueue(sc->sc_tq, &sc->sc_intr_task);
1971 
1972 	return (FILTER_HANDLED);
1973 }
1974 
1975 static void
1976 cas_intr_task(void *arg, int pending __unused)
1977 {
1978 	struct cas_softc *sc = arg;
1979 	struct ifnet *ifp = sc->sc_ifp;
1980 	uint32_t status, status2;
1981 
1982 	CAS_LOCK_ASSERT(sc, MA_NOTOWNED);
1983 
1984 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1985 		return;
1986 
1987 	status = CAS_READ_4(sc, CAS_STATUS);
1988 	if (__predict_false((status & CAS_INTR_SUMMARY) == 0))
1989 		goto done;
1990 
1991 	CAS_LOCK(sc);
1992 #ifdef CAS_DEBUG
1993 	CTR4(KTR_CAS, "%s: %s: cplt %x, status %x",
1994 	    device_get_name(sc->sc_dev), __func__,
1995 	    (status >> CAS_STATUS_TX_COMP3_SHFT), (u_int)status);
1996 
1997 	/*
1998 	 * PCS interrupts must be cleared, otherwise no traffic is passed!
1999 	 */
2000 	if ((status & CAS_INTR_PCS_INT) != 0) {
2001 		status2 =
2002 		    CAS_READ_4(sc, CAS_PCS_INTR_STATUS) |
2003 		    CAS_READ_4(sc, CAS_PCS_INTR_STATUS);
2004 		if ((status2 & CAS_PCS_INTR_LINK) != 0)
2005 			device_printf(sc->sc_dev,
2006 			    "%s: PCS link status changed\n", __func__);
2007 	}
2008 	if ((status & CAS_MAC_CTRL_STATUS) != 0) {
2009 		status2 = CAS_READ_4(sc, CAS_MAC_CTRL_STATUS);
2010 		if ((status2 & CAS_MAC_CTRL_PAUSE) != 0)
2011 			device_printf(sc->sc_dev,
2012 			    "%s: PAUSE received (PAUSE time %d slots)\n",
2013 			    __func__,
2014 			    (status2 & CAS_MAC_CTRL_STATUS_PT_MASK) >>
2015 			    CAS_MAC_CTRL_STATUS_PT_SHFT);
2016 		if ((status2 & CAS_MAC_CTRL_PAUSE) != 0)
2017 			device_printf(sc->sc_dev,
2018 			    "%s: transited to PAUSE state\n", __func__);
2019 		if ((status2 & CAS_MAC_CTRL_NON_PAUSE) != 0)
2020 			device_printf(sc->sc_dev,
2021 			    "%s: transited to non-PAUSE state\n", __func__);
2022 	}
2023 	if ((status & CAS_INTR_MIF) != 0)
2024 		device_printf(sc->sc_dev, "%s: MIF interrupt\n", __func__);
2025 #endif
2026 
2027 	if (__predict_false((status &
2028 	    (CAS_INTR_TX_TAG_ERR | CAS_INTR_RX_TAG_ERR |
2029 	    CAS_INTR_RX_LEN_MMATCH | CAS_INTR_PCI_ERROR_INT)) != 0)) {
2030 		cas_eint(sc, status);
2031 		CAS_UNLOCK(sc);
2032 		return;
2033 	}
2034 
2035 	if (__predict_false(status & CAS_INTR_TX_MAC_INT)) {
2036 		status2 = CAS_READ_4(sc, CAS_MAC_TX_STATUS);
2037 		if ((status2 &
2038 		    (CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_MAX_PKT_ERR)) != 0)
2039 			ifp->if_oerrors++;
2040 		else if ((status2 & ~CAS_MAC_TX_FRAME_XMTD) != 0)
2041 			device_printf(sc->sc_dev,
2042 			    "MAC TX fault, status %x\n", status2);
2043 	}
2044 
2045 	if (__predict_false(status & CAS_INTR_RX_MAC_INT)) {
2046 		status2 = CAS_READ_4(sc, CAS_MAC_RX_STATUS);
2047 		if ((status2 & CAS_MAC_RX_OVERFLOW) != 0)
2048 			ifp->if_ierrors++;
2049 		else if ((status2 & ~CAS_MAC_RX_FRAME_RCVD) != 0)
2050 			device_printf(sc->sc_dev,
2051 			    "MAC RX fault, status %x\n", status2);
2052 	}
2053 
2054 	if ((status &
2055 	    (CAS_INTR_RX_DONE | CAS_INTR_RX_BUF_NA | CAS_INTR_RX_COMP_FULL |
2056 	    CAS_INTR_RX_BUF_AEMPTY | CAS_INTR_RX_COMP_AFULL)) != 0) {
2057 		cas_rint(sc);
2058 #ifdef CAS_DEBUG
2059 		if (__predict_false((status &
2060 		    (CAS_INTR_RX_BUF_NA | CAS_INTR_RX_COMP_FULL |
2061 		    CAS_INTR_RX_BUF_AEMPTY | CAS_INTR_RX_COMP_AFULL)) != 0))
2062 			device_printf(sc->sc_dev,
2063 			    "RX fault, status %x\n", status);
2064 #endif
2065 	}
2066 
2067 	if ((status &
2068 	    (CAS_INTR_TX_INT_ME | CAS_INTR_TX_ALL | CAS_INTR_TX_DONE)) != 0)
2069 		cas_tint(sc);
2070 
2071 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2072 		CAS_UNLOCK(sc);
2073 		return;
2074 	} else if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2075 		taskqueue_enqueue(sc->sc_tq, &sc->sc_tx_task);
2076 	CAS_UNLOCK(sc);
2077 
2078 	status = CAS_READ_4(sc, CAS_STATUS_ALIAS);
2079 	if (__predict_false((status & CAS_INTR_SUMMARY) != 0)) {
2080 		taskqueue_enqueue(sc->sc_tq, &sc->sc_intr_task);
2081 		return;
2082 	}
2083 
2084  done:
2085 	/* Re-enable interrupts. */
2086 	CAS_WRITE_4(sc, CAS_INTMASK,
2087 	    ~(CAS_INTR_TX_INT_ME | CAS_INTR_TX_TAG_ERR |
2088 	    CAS_INTR_RX_DONE | CAS_INTR_RX_BUF_NA | CAS_INTR_RX_TAG_ERR |
2089 	    CAS_INTR_RX_COMP_FULL | CAS_INTR_RX_BUF_AEMPTY |
2090 	    CAS_INTR_RX_COMP_AFULL | CAS_INTR_RX_LEN_MMATCH |
2091 	    CAS_INTR_PCI_ERROR_INT
2092 #ifdef CAS_DEBUG
2093 	    | CAS_INTR_PCS_INT | CAS_INTR_MIF
2094 #endif
2095 	));
2096 }
2097 
2098 static void
2099 cas_watchdog(struct cas_softc *sc)
2100 {
2101 	struct ifnet *ifp = sc->sc_ifp;
2102 
2103 	CAS_LOCK_ASSERT(sc, MA_OWNED);
2104 
2105 #ifdef CAS_DEBUG
2106 	CTR4(KTR_CAS,
2107 	    "%s: CAS_RX_CONF %x CAS_MAC_RX_STATUS %x CAS_MAC_RX_CONF %x",
2108 	    __func__, CAS_READ_4(sc, CAS_RX_CONF),
2109 	    CAS_READ_4(sc, CAS_MAC_RX_STATUS),
2110 	    CAS_READ_4(sc, CAS_MAC_RX_CONF));
2111 	CTR4(KTR_CAS,
2112 	    "%s: CAS_TX_CONF %x CAS_MAC_TX_STATUS %x CAS_MAC_TX_CONF %x",
2113 	    __func__, CAS_READ_4(sc, CAS_TX_CONF),
2114 	    CAS_READ_4(sc, CAS_MAC_TX_STATUS),
2115 	    CAS_READ_4(sc, CAS_MAC_TX_CONF));
2116 #endif
2117 
2118 	if (sc->sc_wdog_timer == 0 || --sc->sc_wdog_timer != 0)
2119 		return;
2120 
2121 	if ((sc->sc_flags & CAS_LINK) != 0)
2122 		device_printf(sc->sc_dev, "device timeout\n");
2123 	else if (bootverbose)
2124 		device_printf(sc->sc_dev, "device timeout (no link)\n");
2125 	++ifp->if_oerrors;
2126 
2127 	/* Try to get more packets going. */
2128 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2129 	cas_init_locked(sc);
2130 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2131 		taskqueue_enqueue(sc->sc_tq, &sc->sc_tx_task);
2132 }
2133 
2134 static void
2135 cas_mifinit(struct cas_softc *sc)
2136 {
2137 
2138 	/* Configure the MIF in frame mode. */
2139 	CAS_WRITE_4(sc, CAS_MIF_CONF,
2140 	    CAS_READ_4(sc, CAS_MIF_CONF) & ~CAS_MIF_CONF_BB_MODE);
2141 	CAS_BARRIER(sc, CAS_MIF_CONF, 4,
2142 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
2143 }
2144 
2145 /*
2146  * MII interface
2147  *
2148  * The MII interface supports at least three different operating modes:
2149  *
2150  * Bitbang mode is implemented using data, clock and output enable registers.
2151  *
2152  * Frame mode is implemented by loading a complete frame into the frame
2153  * register and polling the valid bit for completion.
2154  *
2155  * Polling mode uses the frame register but completion is indicated by
2156  * an interrupt.
2157  *
2158  */
2159 static int
2160 cas_mii_readreg(device_t dev, int phy, int reg)
2161 {
2162 	struct cas_softc *sc;
2163 	int n;
2164 	uint32_t v;
2165 
2166 #ifdef CAS_DEBUG_PHY
2167 	printf("%s: phy %d reg %d\n", __func__, phy, reg);
2168 #endif
2169 
2170 	sc = device_get_softc(dev);
2171 	if ((sc->sc_flags & CAS_SERDES) != 0) {
2172 		switch (reg) {
2173 		case MII_BMCR:
2174 			reg = CAS_PCS_CTRL;
2175 			break;
2176 		case MII_BMSR:
2177 			reg = CAS_PCS_STATUS;
2178 			break;
2179 		case MII_PHYIDR1:
2180 		case MII_PHYIDR2:
2181 			return (0);
2182 		case MII_ANAR:
2183 			reg = CAS_PCS_ANAR;
2184 			break;
2185 		case MII_ANLPAR:
2186 			reg = CAS_PCS_ANLPAR;
2187 			break;
2188 		case MII_EXTSR:
2189 			return (EXTSR_1000XFDX | EXTSR_1000XHDX);
2190 		default:
2191 			device_printf(sc->sc_dev,
2192 			    "%s: unhandled register %d\n", __func__, reg);
2193 			return (0);
2194 		}
2195 		return (CAS_READ_4(sc, reg));
2196 	}
2197 
2198 	/* Construct the frame command. */
2199 	v = CAS_MIF_FRAME_READ |
2200 	    (phy << CAS_MIF_FRAME_PHY_SHFT) |
2201 	    (reg << CAS_MIF_FRAME_REG_SHFT);
2202 
2203 	CAS_WRITE_4(sc, CAS_MIF_FRAME, v);
2204 	CAS_BARRIER(sc, CAS_MIF_FRAME, 4,
2205 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
2206 	for (n = 0; n < 100; n++) {
2207 		DELAY(1);
2208 		v = CAS_READ_4(sc, CAS_MIF_FRAME);
2209 		if (v & CAS_MIF_FRAME_TA_LSB)
2210 			return (v & CAS_MIF_FRAME_DATA);
2211 	}
2212 
2213 	device_printf(sc->sc_dev, "%s: timed out\n", __func__);
2214 	return (0);
2215 }
2216 
2217 static int
2218 cas_mii_writereg(device_t dev, int phy, int reg, int val)
2219 {
2220 	struct cas_softc *sc;
2221 	int n;
2222 	uint32_t v;
2223 
2224 #ifdef CAS_DEBUG_PHY
2225 	printf("%s: phy %d reg %d val %x\n", phy, reg, val, __func__);
2226 #endif
2227 
2228 	sc = device_get_softc(dev);
2229 	if ((sc->sc_flags & CAS_SERDES) != 0) {
2230 		switch (reg) {
2231 		case MII_BMSR:
2232 			reg = CAS_PCS_STATUS;
2233 			break;
2234 		case MII_BMCR:
2235 			reg = CAS_PCS_CTRL;
2236 			if ((val & CAS_PCS_CTRL_RESET) == 0)
2237 				break;
2238 			CAS_WRITE_4(sc, CAS_PCS_CTRL, val);
2239 			CAS_BARRIER(sc, CAS_PCS_CTRL, 4,
2240 			    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
2241 			if (!cas_bitwait(sc, CAS_PCS_CTRL,
2242 			    CAS_PCS_CTRL_RESET, 0))
2243 				device_printf(sc->sc_dev,
2244 				    "cannot reset PCS\n");
2245 			/* FALLTHROUGH */
2246 		case MII_ANAR:
2247 			CAS_WRITE_4(sc, CAS_PCS_CONF, 0);
2248 			CAS_BARRIER(sc, CAS_PCS_CONF, 4,
2249 			    BUS_SPACE_BARRIER_WRITE);
2250 			CAS_WRITE_4(sc, CAS_PCS_ANAR, val);
2251 			CAS_BARRIER(sc, CAS_PCS_ANAR, 4,
2252 			    BUS_SPACE_BARRIER_WRITE);
2253 			CAS_WRITE_4(sc, CAS_PCS_SERDES_CTRL,
2254 			    CAS_PCS_SERDES_CTRL_ESD);
2255 			CAS_BARRIER(sc, CAS_PCS_CONF, 4,
2256 			    BUS_SPACE_BARRIER_WRITE);
2257 			CAS_WRITE_4(sc, CAS_PCS_CONF,
2258 			    CAS_PCS_CONF_EN);
2259 			CAS_BARRIER(sc, CAS_PCS_CONF, 4,
2260 			    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
2261 			return (0);
2262 		case MII_ANLPAR:
2263 			reg = CAS_PCS_ANLPAR;
2264 			break;
2265 		default:
2266 			device_printf(sc->sc_dev,
2267 			    "%s: unhandled register %d\n", __func__, reg);
2268 			return (0);
2269 		}
2270 		CAS_WRITE_4(sc, reg, val);
2271 		CAS_BARRIER(sc, reg, 4,
2272 		    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
2273 		return (0);
2274 	}
2275 
2276 	/* Construct the frame command. */
2277 	v = CAS_MIF_FRAME_WRITE |
2278 	    (phy << CAS_MIF_FRAME_PHY_SHFT) |
2279 	    (reg << CAS_MIF_FRAME_REG_SHFT) |
2280 	    (val & CAS_MIF_FRAME_DATA);
2281 
2282 	CAS_WRITE_4(sc, CAS_MIF_FRAME, v);
2283 	CAS_BARRIER(sc, CAS_MIF_FRAME, 4,
2284 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
2285 	for (n = 0; n < 100; n++) {
2286 		DELAY(1);
2287 		v = CAS_READ_4(sc, CAS_MIF_FRAME);
2288 		if (v & CAS_MIF_FRAME_TA_LSB)
2289 			return (1);
2290 	}
2291 
2292 	device_printf(sc->sc_dev, "%s: timed out\n", __func__);
2293 	return (0);
2294 }
2295 
2296 static void
2297 cas_mii_statchg(device_t dev)
2298 {
2299 	struct cas_softc *sc;
2300 	struct ifnet *ifp;
2301 	int gigabit;
2302 	uint32_t rxcfg, txcfg, v;
2303 
2304 	sc = device_get_softc(dev);
2305 	ifp = sc->sc_ifp;
2306 
2307 	CAS_LOCK_ASSERT(sc, MA_OWNED);
2308 
2309 #ifdef CAS_DEBUG
2310 	if ((ifp->if_flags & IFF_DEBUG) != 0)
2311 		device_printf(sc->sc_dev, "%s: status changen", __func__);
2312 #endif
2313 
2314 	if ((sc->sc_mii->mii_media_status & IFM_ACTIVE) != 0 &&
2315 	    IFM_SUBTYPE(sc->sc_mii->mii_media_active) != IFM_NONE)
2316 		sc->sc_flags |= CAS_LINK;
2317 	else
2318 		sc->sc_flags &= ~CAS_LINK;
2319 
2320 	switch (IFM_SUBTYPE(sc->sc_mii->mii_media_active)) {
2321 	case IFM_1000_SX:
2322 	case IFM_1000_LX:
2323 	case IFM_1000_CX:
2324 	case IFM_1000_T:
2325 		gigabit = 1;
2326 		break;
2327 	default:
2328 		gigabit = 0;
2329 	}
2330 
2331 	/*
2332 	 * The configuration done here corresponds to the steps F) and
2333 	 * G) and as far as enabling of RX and TX MAC goes also step H)
2334 	 * of the initialization sequence outlined in section 11.2.1 of
2335 	 * the Cassini+ ASIC Specification.
2336 	 */
2337 
2338 	rxcfg = sc->sc_mac_rxcfg;
2339 	rxcfg &= ~CAS_MAC_RX_CONF_CARR;
2340 	txcfg = CAS_MAC_TX_CONF_EN_IPG0 | CAS_MAC_TX_CONF_NGU |
2341 	    CAS_MAC_TX_CONF_NGUL;
2342 	if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0)
2343 		txcfg |= CAS_MAC_TX_CONF_ICARR | CAS_MAC_TX_CONF_ICOLLIS;
2344 	else if (gigabit != 0) {
2345 		rxcfg |= CAS_MAC_RX_CONF_CARR;
2346 		txcfg |= CAS_MAC_TX_CONF_CARR;
2347 	}
2348 	(void)cas_disable_tx(sc);
2349 	CAS_WRITE_4(sc, CAS_MAC_TX_CONF, txcfg);
2350 	(void)cas_disable_rx(sc);
2351 	CAS_WRITE_4(sc, CAS_MAC_RX_CONF, rxcfg);
2352 
2353 	v = CAS_READ_4(sc, CAS_MAC_CTRL_CONF) &
2354 	    ~(CAS_MAC_CTRL_CONF_TXP | CAS_MAC_CTRL_CONF_RXP);
2355 	if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) &
2356 	    IFM_ETH_RXPAUSE) != 0)
2357 		v |= CAS_MAC_CTRL_CONF_RXP;
2358 	if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) &
2359 	    IFM_ETH_TXPAUSE) != 0)
2360 		v |= CAS_MAC_CTRL_CONF_TXP;
2361 	CAS_WRITE_4(sc, CAS_MAC_CTRL_CONF, v);
2362 
2363 	/*
2364 	 * All supported chips have a bug causing incorrect checksum
2365 	 * to be calculated when letting them strip the FCS in half-
2366 	 * duplex mode.  In theory we could disable FCS stripping and
2367 	 * manually adjust the checksum accordingly.  It seems to make
2368 	 * more sense to optimze for the common case and just disable
2369 	 * hardware checksumming in half-duplex mode though.
2370 	 */
2371 	if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) == 0) {
2372 		ifp->if_capenable &= ~IFCAP_HWCSUM;
2373 		ifp->if_hwassist = 0;
2374 	} else if ((sc->sc_flags & CAS_NO_CSUM) == 0) {
2375 		ifp->if_capenable = ifp->if_capabilities;
2376 		ifp->if_hwassist = CAS_CSUM_FEATURES;
2377 	}
2378 
2379 	if (sc->sc_variant == CAS_SATURN) {
2380 		if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) == 0)
2381 			/* silicon bug workaround */
2382 			CAS_WRITE_4(sc, CAS_MAC_PREAMBLE_LEN, 0x41);
2383 		else
2384 			CAS_WRITE_4(sc, CAS_MAC_PREAMBLE_LEN, 0x7);
2385 	}
2386 
2387 	if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) == 0 &&
2388 	    gigabit != 0)
2389 		CAS_WRITE_4(sc, CAS_MAC_SLOT_TIME,
2390 		    CAS_MAC_SLOT_TIME_CARR);
2391 	else
2392 		CAS_WRITE_4(sc, CAS_MAC_SLOT_TIME,
2393 		    CAS_MAC_SLOT_TIME_NORM);
2394 
2395 	/* XIF Configuration */
2396 	v = CAS_MAC_XIF_CONF_TX_OE | CAS_MAC_XIF_CONF_LNKLED;
2397 	if ((sc->sc_flags & CAS_SERDES) == 0) {
2398 		if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) == 0)
2399 			v |= CAS_MAC_XIF_CONF_NOECHO;
2400 		v |= CAS_MAC_XIF_CONF_BUF_OE;
2401 	}
2402 	if (gigabit != 0)
2403 		v |= CAS_MAC_XIF_CONF_GMII;
2404 	if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0)
2405 		v |= CAS_MAC_XIF_CONF_FDXLED;
2406 	CAS_WRITE_4(sc, CAS_MAC_XIF_CONF, v);
2407 
2408 	sc->sc_mac_rxcfg = rxcfg;
2409 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
2410 	    (sc->sc_flags & CAS_LINK) != 0) {
2411 		CAS_WRITE_4(sc, CAS_MAC_TX_CONF,
2412 		    txcfg | CAS_MAC_TX_CONF_EN);
2413 		CAS_WRITE_4(sc, CAS_MAC_RX_CONF,
2414 		    rxcfg | CAS_MAC_RX_CONF_EN);
2415 	}
2416 }
2417 
2418 static int
2419 cas_mediachange(struct ifnet *ifp)
2420 {
2421 	struct cas_softc *sc = ifp->if_softc;
2422 	int error;
2423 
2424 	/* XXX add support for serial media. */
2425 
2426 	CAS_LOCK(sc);
2427 	error = mii_mediachg(sc->sc_mii);
2428 	CAS_UNLOCK(sc);
2429 	return (error);
2430 }
2431 
2432 static void
2433 cas_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2434 {
2435 	struct cas_softc *sc = ifp->if_softc;
2436 
2437 	CAS_LOCK(sc);
2438 	if ((ifp->if_flags & IFF_UP) == 0) {
2439 		CAS_UNLOCK(sc);
2440 		return;
2441 	}
2442 
2443 	mii_pollstat(sc->sc_mii);
2444 	ifmr->ifm_active = sc->sc_mii->mii_media_active;
2445 	ifmr->ifm_status = sc->sc_mii->mii_media_status;
2446 	CAS_UNLOCK(sc);
2447 }
2448 
2449 static int
2450 cas_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2451 {
2452 	struct cas_softc *sc = ifp->if_softc;
2453 	struct ifreq *ifr = (struct ifreq *)data;
2454 	int error;
2455 
2456 	error = 0;
2457 	switch (cmd) {
2458 	case SIOCSIFFLAGS:
2459 		CAS_LOCK(sc);
2460 		if ((ifp->if_flags & IFF_UP) != 0) {
2461 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
2462 			    ((ifp->if_flags ^ sc->sc_ifflags) &
2463 			    (IFF_ALLMULTI | IFF_PROMISC)) != 0)
2464 				cas_setladrf(sc);
2465 			else
2466 				cas_init_locked(sc);
2467 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2468 			cas_stop(ifp);
2469 		sc->sc_ifflags = ifp->if_flags;
2470 		CAS_UNLOCK(sc);
2471 		break;
2472 	case SIOCSIFCAP:
2473 		CAS_LOCK(sc);
2474 		if ((sc->sc_flags & CAS_NO_CSUM) != 0) {
2475 			error = EINVAL;
2476 			CAS_UNLOCK(sc);
2477 			break;
2478 		}
2479 		ifp->if_capenable = ifr->ifr_reqcap;
2480 		if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2481 			ifp->if_hwassist = CAS_CSUM_FEATURES;
2482 		else
2483 			ifp->if_hwassist = 0;
2484 		CAS_UNLOCK(sc);
2485 		break;
2486 	case SIOCADDMULTI:
2487 	case SIOCDELMULTI:
2488 		CAS_LOCK(sc);
2489 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2490 			cas_setladrf(sc);
2491 		CAS_UNLOCK(sc);
2492 		break;
2493 	case SIOCSIFMTU:
2494 		if ((ifr->ifr_mtu < ETHERMIN) ||
2495 		    (ifr->ifr_mtu > ETHERMTU_JUMBO))
2496 			error = EINVAL;
2497 		else
2498 			ifp->if_mtu = ifr->ifr_mtu;
2499 		break;
2500 	case SIOCGIFMEDIA:
2501 	case SIOCSIFMEDIA:
2502 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii->mii_media, cmd);
2503 		break;
2504 	default:
2505 		error = ether_ioctl(ifp, cmd, data);
2506 		break;
2507 	}
2508 
2509 	return (error);
2510 }
2511 
2512 static void
2513 cas_setladrf(struct cas_softc *sc)
2514 {
2515 	struct ifnet *ifp = sc->sc_ifp;
2516 	struct ifmultiaddr *inm;
2517 	int i;
2518 	uint32_t hash[16];
2519 	uint32_t crc, v;
2520 
2521 	CAS_LOCK_ASSERT(sc, MA_OWNED);
2522 
2523 	/*
2524 	 * Turn off the RX MAC and the hash filter as required by the Sun
2525 	 * Cassini programming restrictions.
2526 	 */
2527 	v = sc->sc_mac_rxcfg & ~(CAS_MAC_RX_CONF_HFILTER |
2528 	    CAS_MAC_RX_CONF_EN);
2529 	CAS_WRITE_4(sc, CAS_MAC_RX_CONF, v);
2530 	CAS_BARRIER(sc, CAS_MAC_RX_CONF, 4,
2531 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
2532 	if (!cas_bitwait(sc, CAS_MAC_RX_CONF, CAS_MAC_RX_CONF_HFILTER |
2533 	    CAS_MAC_RX_CONF_EN, 0))
2534 		device_printf(sc->sc_dev,
2535 		    "cannot disable RX MAC or hash filter\n");
2536 
2537 	v &= ~(CAS_MAC_RX_CONF_PROMISC | CAS_MAC_RX_CONF_PGRP);
2538 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
2539 		v |= CAS_MAC_RX_CONF_PROMISC;
2540 		goto chipit;
2541 	}
2542 	if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
2543 		v |= CAS_MAC_RX_CONF_PGRP;
2544 		goto chipit;
2545 	}
2546 
2547 	/*
2548 	 * Set up multicast address filter by passing all multicast
2549 	 * addresses through a crc generator, and then using the high
2550 	 * order 8 bits as an index into the 256 bit logical address
2551 	 * filter.  The high order 4 bits selects the word, while the
2552 	 * other 4 bits select the bit within the word (where bit 0
2553 	 * is the MSB).
2554 	 */
2555 
2556 	/* Clear the hash table. */
2557 	memset(hash, 0, sizeof(hash));
2558 
2559 	if_maddr_rlock(ifp);
2560 	TAILQ_FOREACH(inm, &ifp->if_multiaddrs, ifma_link) {
2561 		if (inm->ifma_addr->sa_family != AF_LINK)
2562 			continue;
2563 		crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
2564 		    inm->ifma_addr), ETHER_ADDR_LEN);
2565 
2566 		/* We just want the 8 most significant bits. */
2567 		crc >>= 24;
2568 
2569 		/* Set the corresponding bit in the filter. */
2570 		hash[crc >> 4] |= 1 << (15 - (crc & 15));
2571 	}
2572 	if_maddr_runlock(ifp);
2573 
2574 	v |= CAS_MAC_RX_CONF_HFILTER;
2575 
2576 	/* Now load the hash table into the chip (if we are using it). */
2577 	for (i = 0; i < 16; i++)
2578 		CAS_WRITE_4(sc,
2579 		    CAS_MAC_HASH0 + i * (CAS_MAC_HASH1 - CAS_MAC_HASH0),
2580 		    hash[i]);
2581 
2582  chipit:
2583 	sc->sc_mac_rxcfg = v;
2584 	CAS_WRITE_4(sc, CAS_MAC_RX_CONF, v | CAS_MAC_RX_CONF_EN);
2585 }
2586 
2587 static int	cas_pci_attach(device_t dev);
2588 static int	cas_pci_detach(device_t dev);
2589 static int	cas_pci_probe(device_t dev);
2590 static int	cas_pci_resume(device_t dev);
2591 static int	cas_pci_suspend(device_t dev);
2592 
2593 static device_method_t cas_pci_methods[] = {
2594 	/* Device interface */
2595 	DEVMETHOD(device_probe,		cas_pci_probe),
2596 	DEVMETHOD(device_attach,	cas_pci_attach),
2597 	DEVMETHOD(device_detach,	cas_pci_detach),
2598 	DEVMETHOD(device_suspend,	cas_pci_suspend),
2599 	DEVMETHOD(device_resume,	cas_pci_resume),
2600 	/* Use the suspend handler here, it is all that is required. */
2601 	DEVMETHOD(device_shutdown,	cas_pci_suspend),
2602 
2603 	/* MII interface */
2604 	DEVMETHOD(miibus_readreg,	cas_mii_readreg),
2605 	DEVMETHOD(miibus_writereg,	cas_mii_writereg),
2606 	DEVMETHOD(miibus_statchg,	cas_mii_statchg),
2607 
2608 	DEVMETHOD_END
2609 };
2610 
2611 static driver_t cas_pci_driver = {
2612 	"cas",
2613 	cas_pci_methods,
2614 	sizeof(struct cas_softc)
2615 };
2616 
2617 DRIVER_MODULE(cas, pci, cas_pci_driver, cas_devclass, 0, 0);
2618 DRIVER_MODULE(miibus, cas, miibus_driver, miibus_devclass, 0, 0);
2619 MODULE_DEPEND(cas, pci, 1, 1, 1);
2620 
2621 static const struct cas_pci_dev {
2622 	uint32_t	cpd_devid;
2623 	uint8_t		cpd_revid;
2624 	int		cpd_variant;
2625 	const char	*cpd_desc;
2626 } cas_pci_devlist[] = {
2627 	{ 0x0035100b, 0x0, CAS_SATURN, "NS DP83065 Saturn Gigabit Ethernet" },
2628 	{ 0xabba108e, 0x10, CAS_CASPLUS, "Sun Cassini+ Gigabit Ethernet" },
2629 	{ 0xabba108e, 0x0, CAS_CAS, "Sun Cassini Gigabit Ethernet" },
2630 	{ 0, 0, 0, NULL }
2631 };
2632 
2633 static int
2634 cas_pci_probe(device_t dev)
2635 {
2636 	int i;
2637 
2638 	for (i = 0; cas_pci_devlist[i].cpd_desc != NULL; i++) {
2639 		if (pci_get_devid(dev) == cas_pci_devlist[i].cpd_devid &&
2640 		    pci_get_revid(dev) >= cas_pci_devlist[i].cpd_revid) {
2641 			device_set_desc(dev, cas_pci_devlist[i].cpd_desc);
2642 			return (BUS_PROBE_DEFAULT);
2643 		}
2644 	}
2645 
2646 	return (ENXIO);
2647 }
2648 
2649 static struct resource_spec cas_pci_res_spec[] = {
2650 	{ SYS_RES_IRQ, 0, RF_SHAREABLE | RF_ACTIVE },	/* CAS_RES_INTR */
2651 	{ SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE },	/* CAS_RES_MEM */
2652 	{ -1, 0 }
2653 };
2654 
2655 #define	CAS_LOCAL_MAC_ADDRESS	"local-mac-address"
2656 #define	CAS_PHY_INTERFACE	"phy-interface"
2657 #define	CAS_PHY_TYPE		"phy-type"
2658 #define	CAS_PHY_TYPE_PCS	"pcs"
2659 
2660 static int
2661 cas_pci_attach(device_t dev)
2662 {
2663 	char buf[sizeof(CAS_LOCAL_MAC_ADDRESS)];
2664 	struct cas_softc *sc;
2665 	int i;
2666 #if !(defined(__powerpc__) || defined(__sparc64__))
2667 	u_char enaddr[4][ETHER_ADDR_LEN];
2668 	u_int j, k, lma, pcs[4], phy;
2669 #endif
2670 
2671 	sc = device_get_softc(dev);
2672 	sc->sc_variant = CAS_UNKNOWN;
2673 	for (i = 0; cas_pci_devlist[i].cpd_desc != NULL; i++) {
2674 		if (pci_get_devid(dev) == cas_pci_devlist[i].cpd_devid &&
2675 		    pci_get_revid(dev) >= cas_pci_devlist[i].cpd_revid) {
2676 			sc->sc_variant = cas_pci_devlist[i].cpd_variant;
2677 			break;
2678 		}
2679 	}
2680 	if (sc->sc_variant == CAS_UNKNOWN) {
2681 		device_printf(dev, "unknown adaptor\n");
2682 		return (ENXIO);
2683 	}
2684 
2685 	pci_enable_busmaster(dev);
2686 
2687 	sc->sc_dev = dev;
2688 	if (sc->sc_variant == CAS_CAS && pci_get_devid(dev) < 0x02)
2689 		/* Hardware checksumming may hang TX. */
2690 		sc->sc_flags |= CAS_NO_CSUM;
2691 	if (sc->sc_variant == CAS_CASPLUS || sc->sc_variant == CAS_SATURN)
2692 		sc->sc_flags |= CAS_REG_PLUS;
2693 	if (sc->sc_variant == CAS_CAS ||
2694 	    (sc->sc_variant == CAS_CASPLUS && pci_get_revid(dev) < 0x11))
2695 		sc->sc_flags |= CAS_TABORT;
2696 	if (bootverbose)
2697 		device_printf(dev, "flags=0x%x\n", sc->sc_flags);
2698 
2699 	if (bus_alloc_resources(dev, cas_pci_res_spec, sc->sc_res)) {
2700 		device_printf(dev, "failed to allocate resources\n");
2701 		bus_release_resources(dev, cas_pci_res_spec, sc->sc_res);
2702 		return (ENXIO);
2703 	}
2704 
2705 	CAS_LOCK_INIT(sc, device_get_nameunit(dev));
2706 
2707 #if defined(__powerpc__) || defined(__sparc64__)
2708 	OF_getetheraddr(dev, sc->sc_enaddr);
2709 	if (OF_getprop(ofw_bus_get_node(dev), CAS_PHY_INTERFACE, buf,
2710 	    sizeof(buf)) > 0 || OF_getprop(ofw_bus_get_node(dev),
2711 	    CAS_PHY_TYPE, buf, sizeof(buf)) > 0) {
2712 		buf[sizeof(buf) - 1] = '\0';
2713 		if (strcmp(buf, CAS_PHY_TYPE_PCS) == 0)
2714 			sc->sc_flags |= CAS_SERDES;
2715 	}
2716 #else
2717 	/*
2718 	 * Dig out VPD (vital product data) and read the MAC address as well
2719 	 * as the PHY type.  The VPD resides in the PCI Expansion ROM (PCI
2720 	 * FCode) and can't be accessed via the PCI capability pointer.
2721 	 * SUNW,pci-ce and SUNW,pci-qge use the Enhanced VPD format described
2722 	 * in the free US Patent 7149820.
2723 	 */
2724 
2725 #define	PCI_ROMHDR_SIZE			0x1c
2726 #define	PCI_ROMHDR_SIG			0x00
2727 #define	PCI_ROMHDR_SIG_MAGIC		0xaa55		/* little endian */
2728 #define	PCI_ROMHDR_PTR_DATA		0x18
2729 #define	PCI_ROM_SIZE			0x18
2730 #define	PCI_ROM_SIG			0x00
2731 #define	PCI_ROM_SIG_MAGIC		0x52494350	/* "PCIR", endian */
2732 							/* reversed */
2733 #define	PCI_ROM_VENDOR			0x04
2734 #define	PCI_ROM_DEVICE			0x06
2735 #define	PCI_ROM_PTR_VPD			0x08
2736 #define	PCI_VPDRES_BYTE0		0x00
2737 #define	PCI_VPDRES_ISLARGE(x)		((x) & 0x80)
2738 #define	PCI_VPDRES_LARGE_NAME(x)	((x) & 0x7f)
2739 #define	PCI_VPDRES_LARGE_LEN_LSB	0x01
2740 #define	PCI_VPDRES_LARGE_LEN_MSB	0x02
2741 #define	PCI_VPDRES_LARGE_SIZE		0x03
2742 #define	PCI_VPDRES_TYPE_ID_STRING	0x02		/* large */
2743 #define	PCI_VPDRES_TYPE_VPD		0x10		/* large */
2744 #define	PCI_VPD_KEY0			0x00
2745 #define	PCI_VPD_KEY1			0x01
2746 #define	PCI_VPD_LEN			0x02
2747 #define	PCI_VPD_SIZE			0x03
2748 
2749 #define	CAS_ROM_READ_1(sc, offs)					\
2750 	CAS_READ_1((sc), CAS_PCI_ROM_OFFSET + (offs))
2751 #define	CAS_ROM_READ_2(sc, offs)					\
2752 	CAS_READ_2((sc), CAS_PCI_ROM_OFFSET + (offs))
2753 #define	CAS_ROM_READ_4(sc, offs)					\
2754 	CAS_READ_4((sc), CAS_PCI_ROM_OFFSET + (offs))
2755 
2756 	lma = phy = 0;
2757 	memset(enaddr, 0, sizeof(enaddr));
2758 	memset(pcs, 0, sizeof(pcs));
2759 
2760 	/* Enable PCI Expansion ROM access. */
2761 	CAS_WRITE_4(sc, CAS_BIM_LDEV_OEN,
2762 	    CAS_BIM_LDEV_OEN_PAD | CAS_BIM_LDEV_OEN_PROM);
2763 
2764 	/* Read PCI Expansion ROM header. */
2765 	if (CAS_ROM_READ_2(sc, PCI_ROMHDR_SIG) != PCI_ROMHDR_SIG_MAGIC ||
2766 	    (i = CAS_ROM_READ_2(sc, PCI_ROMHDR_PTR_DATA)) <
2767 	    PCI_ROMHDR_SIZE) {
2768 		device_printf(dev, "unexpected PCI Expansion ROM header\n");
2769 		goto fail_prom;
2770 	}
2771 
2772 	/* Read PCI Expansion ROM data. */
2773 	if (CAS_ROM_READ_4(sc, i + PCI_ROM_SIG) != PCI_ROM_SIG_MAGIC ||
2774 	    CAS_ROM_READ_2(sc, i + PCI_ROM_VENDOR) != pci_get_vendor(dev) ||
2775 	    CAS_ROM_READ_2(sc, i + PCI_ROM_DEVICE) != pci_get_device(dev) ||
2776 	    (j = CAS_ROM_READ_2(sc, i + PCI_ROM_PTR_VPD)) <
2777 	    i + PCI_ROM_SIZE) {
2778 		device_printf(dev, "unexpected PCI Expansion ROM data\n");
2779 		goto fail_prom;
2780 	}
2781 
2782 	/* Read PCI VPD. */
2783  next:
2784 	if (PCI_VPDRES_ISLARGE(CAS_ROM_READ_1(sc,
2785 	    j + PCI_VPDRES_BYTE0)) == 0) {
2786 		device_printf(dev, "no large PCI VPD\n");
2787 		goto fail_prom;
2788 	}
2789 
2790 	i = (CAS_ROM_READ_1(sc, j + PCI_VPDRES_LARGE_LEN_MSB) << 8) |
2791 	    CAS_ROM_READ_1(sc, j + PCI_VPDRES_LARGE_LEN_LSB);
2792 	switch (PCI_VPDRES_LARGE_NAME(CAS_ROM_READ_1(sc,
2793 	    j + PCI_VPDRES_BYTE0))) {
2794 	case PCI_VPDRES_TYPE_ID_STRING:
2795 		/* Skip identifier string. */
2796 		j += PCI_VPDRES_LARGE_SIZE + i;
2797 		goto next;
2798 	case PCI_VPDRES_TYPE_VPD:
2799 		for (j += PCI_VPDRES_LARGE_SIZE; i > 0;
2800 		    i -= PCI_VPD_SIZE + CAS_ROM_READ_1(sc, j + PCI_VPD_LEN),
2801 		    j += PCI_VPD_SIZE + CAS_ROM_READ_1(sc, j + PCI_VPD_LEN)) {
2802 			if (CAS_ROM_READ_1(sc, j + PCI_VPD_KEY0) != 'Z')
2803 				/* no Enhanced VPD */
2804 				continue;
2805 			if (CAS_ROM_READ_1(sc, j + PCI_VPD_SIZE) != 'I')
2806 				/* no instance property */
2807 				continue;
2808 			if (CAS_ROM_READ_1(sc, j + PCI_VPD_SIZE + 3) == 'B') {
2809 				/* byte array */
2810 				if (CAS_ROM_READ_1(sc,
2811 				    j + PCI_VPD_SIZE + 4) != ETHER_ADDR_LEN)
2812 					continue;
2813 				bus_read_region_1(sc->sc_res[CAS_RES_MEM],
2814 				    CAS_PCI_ROM_OFFSET + j + PCI_VPD_SIZE + 5,
2815 				    buf, sizeof(buf));
2816 				buf[sizeof(buf) - 1] = '\0';
2817 				if (strcmp(buf, CAS_LOCAL_MAC_ADDRESS) != 0)
2818 					continue;
2819 				bus_read_region_1(sc->sc_res[CAS_RES_MEM],
2820 				    CAS_PCI_ROM_OFFSET + j + PCI_VPD_SIZE +
2821 				    5 + sizeof(CAS_LOCAL_MAC_ADDRESS),
2822 				    enaddr[lma], sizeof(enaddr[lma]));
2823 				lma++;
2824 				if (lma == 4 && phy == 4)
2825 					break;
2826 			} else if (CAS_ROM_READ_1(sc, j + PCI_VPD_SIZE + 3) ==
2827 			   'S') {
2828 				/* string */
2829 				if (CAS_ROM_READ_1(sc,
2830 				    j + PCI_VPD_SIZE + 4) !=
2831 				    sizeof(CAS_PHY_TYPE_PCS))
2832 					continue;
2833 				bus_read_region_1(sc->sc_res[CAS_RES_MEM],
2834 				    CAS_PCI_ROM_OFFSET + j + PCI_VPD_SIZE + 5,
2835 				    buf, sizeof(buf));
2836 				buf[sizeof(buf) - 1] = '\0';
2837 				if (strcmp(buf, CAS_PHY_INTERFACE) == 0)
2838 					k = sizeof(CAS_PHY_INTERFACE);
2839 				else if (strcmp(buf, CAS_PHY_TYPE) == 0)
2840 					k = sizeof(CAS_PHY_TYPE);
2841 				else
2842 					continue;
2843 				bus_read_region_1(sc->sc_res[CAS_RES_MEM],
2844 				    CAS_PCI_ROM_OFFSET + j + PCI_VPD_SIZE +
2845 				    5 + k, buf, sizeof(buf));
2846 				buf[sizeof(buf) - 1] = '\0';
2847 				if (strcmp(buf, CAS_PHY_TYPE_PCS) == 0)
2848 					pcs[phy] = 1;
2849 				phy++;
2850 				if (lma == 4 && phy == 4)
2851 					break;
2852 			}
2853 		}
2854 		break;
2855 	default:
2856 		device_printf(dev, "unexpected PCI VPD\n");
2857 		goto fail_prom;
2858 	}
2859 
2860  fail_prom:
2861 	CAS_WRITE_4(sc, CAS_BIM_LDEV_OEN, 0);
2862 
2863 	if (lma == 0) {
2864 		device_printf(dev, "could not determine Ethernet address\n");
2865 		goto fail;
2866 	}
2867 	i = 0;
2868 	if (lma > 1 && pci_get_slot(dev) < sizeof(enaddr) / sizeof(*enaddr))
2869 		i = pci_get_slot(dev);
2870 	memcpy(sc->sc_enaddr, enaddr[i], ETHER_ADDR_LEN);
2871 
2872 	if (phy == 0) {
2873 		device_printf(dev, "could not determine PHY type\n");
2874 		goto fail;
2875 	}
2876 	i = 0;
2877 	if (phy > 1 && pci_get_slot(dev) < sizeof(pcs) / sizeof(*pcs))
2878 		i = pci_get_slot(dev);
2879 	if (pcs[i] != 0)
2880 		sc->sc_flags |= CAS_SERDES;
2881 #endif
2882 
2883 	if (cas_attach(sc) != 0) {
2884 		device_printf(dev, "could not be attached\n");
2885 		goto fail;
2886 	}
2887 
2888 	if (bus_setup_intr(dev, sc->sc_res[CAS_RES_INTR], INTR_TYPE_NET |
2889 	    INTR_MPSAFE, cas_intr, NULL, sc, &sc->sc_ih) != 0) {
2890 		device_printf(dev, "failed to set up interrupt\n");
2891 		cas_detach(sc);
2892 		goto fail;
2893 	}
2894 	return (0);
2895 
2896  fail:
2897 	CAS_LOCK_DESTROY(sc);
2898 	bus_release_resources(dev, cas_pci_res_spec, sc->sc_res);
2899 	return (ENXIO);
2900 }
2901 
2902 static int
2903 cas_pci_detach(device_t dev)
2904 {
2905 	struct cas_softc *sc;
2906 
2907 	sc = device_get_softc(dev);
2908 	bus_teardown_intr(dev, sc->sc_res[CAS_RES_INTR], sc->sc_ih);
2909 	cas_detach(sc);
2910 	CAS_LOCK_DESTROY(sc);
2911 	bus_release_resources(dev, cas_pci_res_spec, sc->sc_res);
2912 	return (0);
2913 }
2914 
2915 static int
2916 cas_pci_suspend(device_t dev)
2917 {
2918 
2919 	cas_suspend(device_get_softc(dev));
2920 	return (0);
2921 }
2922 
2923 static int
2924 cas_pci_resume(device_t dev)
2925 {
2926 
2927 	cas_resume(device_get_softc(dev));
2928 	return (0);
2929 }
2930