xref: /freebsd/sys/dev/cas/if_cas.c (revision 4717628ed859513a3262ea68259d0605f39de0b3)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (C) 2001 Eduardo Horvath.
5  * Copyright (c) 2001-2003 Thomas Moestl
6  * Copyright (c) 2007-2009 Marius Strobl <marius@FreeBSD.org>
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  *	from: NetBSD: gem.c,v 1.21 2002/06/01 23:50:58 lukem Exp
31  *	from: FreeBSD: if_gem.c 182060 2008-08-23 15:03:26Z marius
32  */
33 
34 #include <sys/cdefs.h>
35 /*
36  * driver for Sun Cassini/Cassini+ and National Semiconductor DP83065
37  * Saturn Gigabit Ethernet controllers
38  */
39 
40 #if 0
41 #define	CAS_DEBUG
42 #endif
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/bus.h>
47 #include <sys/callout.h>
48 #include <sys/endian.h>
49 #include <sys/mbuf.h>
50 #include <sys/malloc.h>
51 #include <sys/kernel.h>
52 #include <sys/lock.h>
53 #include <sys/module.h>
54 #include <sys/mutex.h>
55 #include <sys/refcount.h>
56 #include <sys/resource.h>
57 #include <sys/rman.h>
58 #include <sys/socket.h>
59 #include <sys/sockio.h>
60 #include <sys/taskqueue.h>
61 
62 #include <net/bpf.h>
63 #include <net/ethernet.h>
64 #include <net/if.h>
65 #include <net/if_var.h>
66 #include <net/if_arp.h>
67 #include <net/if_dl.h>
68 #include <net/if_media.h>
69 #include <net/if_types.h>
70 #include <net/if_vlan_var.h>
71 
72 #include <netinet/in.h>
73 #include <netinet/in_systm.h>
74 #include <netinet/ip.h>
75 #include <netinet/tcp.h>
76 #include <netinet/udp.h>
77 
78 #include <machine/bus.h>
79 #if defined(__powerpc__)
80 #include <dev/ofw/ofw_bus.h>
81 #include <dev/ofw/openfirm.h>
82 #include <machine/ofw_machdep.h>
83 #endif
84 #include <machine/resource.h>
85 
86 #include <dev/mii/mii.h>
87 #include <dev/mii/miivar.h>
88 
89 #include <dev/cas/if_casreg.h>
90 #include <dev/cas/if_casvar.h>
91 
92 #include <dev/pci/pcireg.h>
93 #include <dev/pci/pcivar.h>
94 
95 #include "miibus_if.h"
96 
97 #define RINGASSERT(n , min, max)					\
98 	CTASSERT(powerof2(n) && (n) >= (min) && (n) <= (max))
99 
100 RINGASSERT(CAS_NRXCOMP, 128, 32768);
101 RINGASSERT(CAS_NRXDESC, 32, 8192);
102 RINGASSERT(CAS_NRXDESC2, 32, 8192);
103 RINGASSERT(CAS_NTXDESC, 32, 8192);
104 
105 #undef RINGASSERT
106 
107 #define	CCDASSERT(m, a)							\
108 	CTASSERT((offsetof(struct cas_control_data, m) & ((a) - 1)) == 0)
109 
110 CCDASSERT(ccd_rxcomps, CAS_RX_COMP_ALIGN);
111 CCDASSERT(ccd_rxdescs, CAS_RX_DESC_ALIGN);
112 CCDASSERT(ccd_rxdescs2, CAS_RX_DESC_ALIGN);
113 
114 #undef CCDASSERT
115 
116 #define	CAS_TRIES	10000
117 
118 /*
119  * According to documentation, the hardware has support for basic TCP
120  * checksum offloading only, in practice this can be also used for UDP
121  * however (i.e. the problem of previous Sun NICs that a checksum of 0x0
122  * is not converted to 0xffff no longer exists).
123  */
124 #define	CAS_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
125 
126 static inline void cas_add_rxdesc(struct cas_softc *sc, u_int idx);
127 static int	cas_attach(struct cas_softc *sc);
128 static int	cas_bitwait(struct cas_softc *sc, bus_addr_t r, uint32_t clr,
129 		    uint32_t set);
130 static void	cas_cddma_callback(void *xsc, bus_dma_segment_t *segs,
131 		    int nsegs, int error);
132 static void	cas_detach(struct cas_softc *sc);
133 static int	cas_disable_rx(struct cas_softc *sc);
134 static int	cas_disable_tx(struct cas_softc *sc);
135 static void	cas_eint(struct cas_softc *sc, u_int status);
136 static void	cas_free(struct mbuf *m);
137 static void	cas_init(void *xsc);
138 static void	cas_init_locked(struct cas_softc *sc);
139 static void	cas_init_regs(struct cas_softc *sc);
140 static int	cas_intr(void *v);
141 static void	cas_intr_task(void *arg, int pending __unused);
142 static int	cas_ioctl(if_t ifp, u_long cmd, caddr_t data);
143 static int	cas_load_txmbuf(struct cas_softc *sc, struct mbuf **m_head);
144 static int	cas_mediachange(if_t ifp);
145 static void	cas_mediastatus(if_t ifp, struct ifmediareq *ifmr);
146 static void	cas_meminit(struct cas_softc *sc);
147 static void	cas_mifinit(struct cas_softc *sc);
148 static int	cas_mii_readreg(device_t dev, int phy, int reg);
149 static void	cas_mii_statchg(device_t dev);
150 static int	cas_mii_writereg(device_t dev, int phy, int reg, int val);
151 static void	cas_reset(struct cas_softc *sc);
152 static int	cas_reset_rx(struct cas_softc *sc);
153 static int	cas_reset_tx(struct cas_softc *sc);
154 static void	cas_resume(struct cas_softc *sc);
155 static u_int	cas_descsize(u_int sz);
156 static void	cas_rint(struct cas_softc *sc);
157 static void	cas_rint_timeout(void *arg);
158 static inline void cas_rxcksum(struct mbuf *m, uint16_t cksum);
159 static inline void cas_rxcompinit(struct cas_rx_comp *rxcomp);
160 static u_int	cas_rxcompsize(u_int sz);
161 static void	cas_rxdma_callback(void *xsc, bus_dma_segment_t *segs,
162 		    int nsegs, int error);
163 static void	cas_setladrf(struct cas_softc *sc);
164 static void	cas_start(if_t ifp);
165 static void	cas_stop(if_t ifp);
166 static void	cas_suspend(struct cas_softc *sc);
167 static void	cas_tick(void *arg);
168 static void	cas_tint(struct cas_softc *sc);
169 static void	cas_tx_task(void *arg, int pending __unused);
170 static inline void cas_txkick(struct cas_softc *sc);
171 static void	cas_watchdog(struct cas_softc *sc);
172 
173 MODULE_DEPEND(cas, ether, 1, 1, 1);
174 MODULE_DEPEND(cas, miibus, 1, 1, 1);
175 
176 #ifdef CAS_DEBUG
177 #include <sys/ktr.h>
178 #define	KTR_CAS		KTR_SPARE2
179 #endif
180 
181 static int
182 cas_attach(struct cas_softc *sc)
183 {
184 	struct cas_txsoft *txs;
185 	if_t ifp;
186 	int error, i;
187 	uint32_t v;
188 
189 	/* Set up ifnet structure. */
190 	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
191 	if (ifp == NULL)
192 		return (ENOSPC);
193 	if_setsoftc(ifp, sc);
194 	if_initname(ifp, device_get_name(sc->sc_dev),
195 	    device_get_unit(sc->sc_dev));
196 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
197 	if_setstartfn(ifp, cas_start);
198 	if_setioctlfn(ifp, cas_ioctl);
199 	if_setinitfn(ifp, cas_init);
200 	if_setsendqlen(ifp, CAS_TXQUEUELEN);
201 	if_setsendqready(ifp);
202 
203 	callout_init_mtx(&sc->sc_tick_ch, &sc->sc_mtx, 0);
204 	callout_init_mtx(&sc->sc_rx_ch, &sc->sc_mtx, 0);
205 	/* Create local taskq. */
206 	NET_TASK_INIT(&sc->sc_intr_task, 0, cas_intr_task, sc);
207 	TASK_INIT(&sc->sc_tx_task, 1, cas_tx_task, ifp);
208 	sc->sc_tq = taskqueue_create_fast("cas_taskq", M_WAITOK,
209 	    taskqueue_thread_enqueue, &sc->sc_tq);
210 	if (sc->sc_tq == NULL) {
211 		device_printf(sc->sc_dev, "could not create taskqueue\n");
212 		error = ENXIO;
213 		goto fail_ifnet;
214 	}
215 	error = taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
216 	    device_get_nameunit(sc->sc_dev));
217 	if (error != 0) {
218 		device_printf(sc->sc_dev, "could not start threads\n");
219 		goto fail_taskq;
220 	}
221 
222 	/* Make sure the chip is stopped. */
223 	cas_reset(sc);
224 
225 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
226 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
227 	    BUS_SPACE_MAXSIZE, 0, BUS_SPACE_MAXSIZE, 0, NULL, NULL,
228 	    &sc->sc_pdmatag);
229 	if (error != 0)
230 		goto fail_taskq;
231 
232 	error = bus_dma_tag_create(sc->sc_pdmatag, 1, 0,
233 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
234 	    CAS_PAGE_SIZE, 1, CAS_PAGE_SIZE, 0, NULL, NULL, &sc->sc_rdmatag);
235 	if (error != 0)
236 		goto fail_ptag;
237 
238 	error = bus_dma_tag_create(sc->sc_pdmatag, 1, 0,
239 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
240 	    MCLBYTES * CAS_NTXSEGS, CAS_NTXSEGS, MCLBYTES,
241 	    BUS_DMA_ALLOCNOW, NULL, NULL, &sc->sc_tdmatag);
242 	if (error != 0)
243 		goto fail_rtag;
244 
245 	error = bus_dma_tag_create(sc->sc_pdmatag, CAS_TX_DESC_ALIGN, 0,
246 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
247 	    sizeof(struct cas_control_data), 1,
248 	    sizeof(struct cas_control_data), 0,
249 	    NULL, NULL, &sc->sc_cdmatag);
250 	if (error != 0)
251 		goto fail_ttag;
252 
253 	/*
254 	 * Allocate the control data structures, create and load the
255 	 * DMA map for it.
256 	 */
257 	if ((error = bus_dmamem_alloc(sc->sc_cdmatag,
258 	    (void **)&sc->sc_control_data,
259 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
260 	    &sc->sc_cddmamap)) != 0) {
261 		device_printf(sc->sc_dev,
262 		    "unable to allocate control data, error = %d\n", error);
263 		goto fail_ctag;
264 	}
265 
266 	sc->sc_cddma = 0;
267 	if ((error = bus_dmamap_load(sc->sc_cdmatag, sc->sc_cddmamap,
268 	    sc->sc_control_data, sizeof(struct cas_control_data),
269 	    cas_cddma_callback, sc, 0)) != 0 || sc->sc_cddma == 0) {
270 		device_printf(sc->sc_dev,
271 		    "unable to load control data DMA map, error = %d\n",
272 		    error);
273 		goto fail_cmem;
274 	}
275 
276 	/*
277 	 * Initialize the transmit job descriptors.
278 	 */
279 	STAILQ_INIT(&sc->sc_txfreeq);
280 	STAILQ_INIT(&sc->sc_txdirtyq);
281 
282 	/*
283 	 * Create the transmit buffer DMA maps.
284 	 */
285 	error = ENOMEM;
286 	for (i = 0; i < CAS_TXQUEUELEN; i++) {
287 		txs = &sc->sc_txsoft[i];
288 		txs->txs_mbuf = NULL;
289 		txs->txs_ndescs = 0;
290 		if ((error = bus_dmamap_create(sc->sc_tdmatag, 0,
291 		    &txs->txs_dmamap)) != 0) {
292 			device_printf(sc->sc_dev,
293 			    "unable to create TX DMA map %d, error = %d\n",
294 			    i, error);
295 			goto fail_txd;
296 		}
297 		STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
298 	}
299 
300 	/*
301 	 * Allocate the receive buffers, create and load the DMA maps
302 	 * for them.
303 	 */
304 	for (i = 0; i < CAS_NRXDESC; i++) {
305 		if ((error = bus_dmamem_alloc(sc->sc_rdmatag,
306 		    &sc->sc_rxdsoft[i].rxds_buf, BUS_DMA_WAITOK,
307 		    &sc->sc_rxdsoft[i].rxds_dmamap)) != 0) {
308 			device_printf(sc->sc_dev,
309 			    "unable to allocate RX buffer %d, error = %d\n",
310 			    i, error);
311 			goto fail_rxmem;
312 		}
313 
314 		sc->sc_rxdptr = i;
315 		sc->sc_rxdsoft[i].rxds_paddr = 0;
316 		if ((error = bus_dmamap_load(sc->sc_rdmatag,
317 		    sc->sc_rxdsoft[i].rxds_dmamap, sc->sc_rxdsoft[i].rxds_buf,
318 		    CAS_PAGE_SIZE, cas_rxdma_callback, sc, 0)) != 0 ||
319 		    sc->sc_rxdsoft[i].rxds_paddr == 0) {
320 			device_printf(sc->sc_dev,
321 			    "unable to load RX DMA map %d, error = %d\n",
322 			    i, error);
323 			goto fail_rxmap;
324 		}
325 	}
326 
327 	if ((sc->sc_flags & CAS_SERDES) == 0) {
328 		CAS_WRITE_4(sc, CAS_PCS_DATAPATH, CAS_PCS_DATAPATH_MII);
329 		CAS_BARRIER(sc, CAS_PCS_DATAPATH, 4,
330 		    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
331 		cas_mifinit(sc);
332 		/*
333 		 * Look for an external PHY.
334 		 */
335 		error = ENXIO;
336 		v = CAS_READ_4(sc, CAS_MIF_CONF);
337 		if ((v & CAS_MIF_CONF_MDI1) != 0) {
338 			v |= CAS_MIF_CONF_PHY_SELECT;
339 			CAS_WRITE_4(sc, CAS_MIF_CONF, v);
340 			CAS_BARRIER(sc, CAS_MIF_CONF, 4,
341 			    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
342 			/* Enable/unfreeze the GMII pins of Saturn. */
343 			if (sc->sc_variant == CAS_SATURN) {
344 				CAS_WRITE_4(sc, CAS_SATURN_PCFG,
345 				    CAS_READ_4(sc, CAS_SATURN_PCFG) &
346 				    ~CAS_SATURN_PCFG_FSI);
347 				CAS_BARRIER(sc, CAS_SATURN_PCFG, 4,
348 				    BUS_SPACE_BARRIER_READ |
349 				    BUS_SPACE_BARRIER_WRITE);
350 				DELAY(10000);
351 			}
352 			error = mii_attach(sc->sc_dev, &sc->sc_miibus, ifp,
353 			    cas_mediachange, cas_mediastatus, BMSR_DEFCAPMASK,
354 			    MII_PHY_ANY, MII_OFFSET_ANY, MIIF_DOPAUSE);
355 		}
356 		/*
357 		 * Fall back on an internal PHY if no external PHY was found.
358 		 */
359 		if (error != 0 && (v & CAS_MIF_CONF_MDI0) != 0) {
360 			v &= ~CAS_MIF_CONF_PHY_SELECT;
361 			CAS_WRITE_4(sc, CAS_MIF_CONF, v);
362 			CAS_BARRIER(sc, CAS_MIF_CONF, 4,
363 			    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
364 			/* Freeze the GMII pins of Saturn for saving power. */
365 			if (sc->sc_variant == CAS_SATURN) {
366 				CAS_WRITE_4(sc, CAS_SATURN_PCFG,
367 				    CAS_READ_4(sc, CAS_SATURN_PCFG) |
368 				    CAS_SATURN_PCFG_FSI);
369 				CAS_BARRIER(sc, CAS_SATURN_PCFG, 4,
370 				    BUS_SPACE_BARRIER_READ |
371 				    BUS_SPACE_BARRIER_WRITE);
372 				DELAY(10000);
373 			}
374 			error = mii_attach(sc->sc_dev, &sc->sc_miibus, ifp,
375 			    cas_mediachange, cas_mediastatus, BMSR_DEFCAPMASK,
376 			    MII_PHY_ANY, MII_OFFSET_ANY, MIIF_DOPAUSE);
377 		}
378 	} else {
379 		/*
380 		 * Use the external PCS SERDES.
381 		 */
382 		CAS_WRITE_4(sc, CAS_PCS_DATAPATH, CAS_PCS_DATAPATH_SERDES);
383 		CAS_BARRIER(sc, CAS_PCS_DATAPATH, 4, BUS_SPACE_BARRIER_WRITE);
384 		/* Enable/unfreeze the SERDES pins of Saturn. */
385 		if (sc->sc_variant == CAS_SATURN) {
386 			CAS_WRITE_4(sc, CAS_SATURN_PCFG, 0);
387 			CAS_BARRIER(sc, CAS_SATURN_PCFG, 4,
388 			    BUS_SPACE_BARRIER_WRITE);
389 		}
390 		CAS_WRITE_4(sc, CAS_PCS_SERDES_CTRL, CAS_PCS_SERDES_CTRL_ESD);
391 		CAS_BARRIER(sc, CAS_PCS_SERDES_CTRL, 4,
392 		    BUS_SPACE_BARRIER_WRITE);
393 		CAS_WRITE_4(sc, CAS_PCS_CONF, CAS_PCS_CONF_EN);
394 		CAS_BARRIER(sc, CAS_PCS_CONF, 4,
395 		    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
396 		error = mii_attach(sc->sc_dev, &sc->sc_miibus, ifp,
397 		    cas_mediachange, cas_mediastatus, BMSR_DEFCAPMASK,
398 		    CAS_PHYAD_EXTERNAL, MII_OFFSET_ANY, MIIF_DOPAUSE);
399 	}
400 	if (error != 0) {
401 		device_printf(sc->sc_dev, "attaching PHYs failed\n");
402 		goto fail_rxmap;
403 	}
404 	sc->sc_mii = device_get_softc(sc->sc_miibus);
405 
406 	/*
407 	 * From this point forward, the attachment cannot fail.  A failure
408 	 * before this point releases all resources that may have been
409 	 * allocated.
410 	 */
411 
412 	/* Announce FIFO sizes. */
413 	v = CAS_READ_4(sc, CAS_TX_FIFO_SIZE);
414 	device_printf(sc->sc_dev, "%ukB RX FIFO, %ukB TX FIFO\n",
415 	    CAS_RX_FIFO_SIZE / 1024, v / 16);
416 
417 	/* Attach the interface. */
418 	ether_ifattach(ifp, sc->sc_enaddr);
419 
420 	/*
421 	 * Tell the upper layer(s) we support long frames/checksum offloads.
422 	 */
423 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
424 	if_setcapabilities(ifp, IFCAP_VLAN_MTU);
425 	if ((sc->sc_flags & CAS_NO_CSUM) == 0) {
426 		if_setcapabilitiesbit(ifp, IFCAP_HWCSUM, 0);
427 		if_sethwassist(ifp, CAS_CSUM_FEATURES);
428 	}
429 	if_setcapenable(ifp, if_getcapabilities(ifp));
430 
431 	return (0);
432 
433 	/*
434 	 * Free any resources we've allocated during the failed attach
435 	 * attempt.  Do this in reverse order and fall through.
436 	 */
437  fail_rxmap:
438 	for (i = 0; i < CAS_NRXDESC; i++)
439 		if (sc->sc_rxdsoft[i].rxds_paddr != 0)
440 			bus_dmamap_unload(sc->sc_rdmatag,
441 			    sc->sc_rxdsoft[i].rxds_dmamap);
442  fail_rxmem:
443 	for (i = 0; i < CAS_NRXDESC; i++)
444 		if (sc->sc_rxdsoft[i].rxds_buf != NULL)
445 			bus_dmamem_free(sc->sc_rdmatag,
446 			    sc->sc_rxdsoft[i].rxds_buf,
447 			    sc->sc_rxdsoft[i].rxds_dmamap);
448  fail_txd:
449 	for (i = 0; i < CAS_TXQUEUELEN; i++)
450 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
451 			bus_dmamap_destroy(sc->sc_tdmatag,
452 			    sc->sc_txsoft[i].txs_dmamap);
453 	bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cddmamap);
454  fail_cmem:
455 	bus_dmamem_free(sc->sc_cdmatag, sc->sc_control_data,
456 	    sc->sc_cddmamap);
457  fail_ctag:
458 	bus_dma_tag_destroy(sc->sc_cdmatag);
459  fail_ttag:
460 	bus_dma_tag_destroy(sc->sc_tdmatag);
461  fail_rtag:
462 	bus_dma_tag_destroy(sc->sc_rdmatag);
463  fail_ptag:
464 	bus_dma_tag_destroy(sc->sc_pdmatag);
465  fail_taskq:
466 	taskqueue_free(sc->sc_tq);
467  fail_ifnet:
468 	if_free(ifp);
469 	return (error);
470 }
471 
472 static void
473 cas_detach(struct cas_softc *sc)
474 {
475 	if_t ifp = sc->sc_ifp;
476 	int i;
477 
478 	ether_ifdetach(ifp);
479 	CAS_LOCK(sc);
480 	cas_stop(ifp);
481 	CAS_UNLOCK(sc);
482 	callout_drain(&sc->sc_tick_ch);
483 	callout_drain(&sc->sc_rx_ch);
484 	taskqueue_drain(sc->sc_tq, &sc->sc_intr_task);
485 	taskqueue_drain(sc->sc_tq, &sc->sc_tx_task);
486 	if_free(ifp);
487 	taskqueue_free(sc->sc_tq);
488 	device_delete_child(sc->sc_dev, sc->sc_miibus);
489 
490 	for (i = 0; i < CAS_NRXDESC; i++)
491 		if (sc->sc_rxdsoft[i].rxds_dmamap != NULL)
492 			bus_dmamap_sync(sc->sc_rdmatag,
493 			    sc->sc_rxdsoft[i].rxds_dmamap,
494 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
495 	for (i = 0; i < CAS_NRXDESC; i++)
496 		if (sc->sc_rxdsoft[i].rxds_paddr != 0)
497 			bus_dmamap_unload(sc->sc_rdmatag,
498 			    sc->sc_rxdsoft[i].rxds_dmamap);
499 	for (i = 0; i < CAS_NRXDESC; i++)
500 		if (sc->sc_rxdsoft[i].rxds_buf != NULL)
501 			bus_dmamem_free(sc->sc_rdmatag,
502 			    sc->sc_rxdsoft[i].rxds_buf,
503 			    sc->sc_rxdsoft[i].rxds_dmamap);
504 	for (i = 0; i < CAS_TXQUEUELEN; i++)
505 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
506 			bus_dmamap_destroy(sc->sc_tdmatag,
507 			    sc->sc_txsoft[i].txs_dmamap);
508 	CAS_CDSYNC(sc, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
509 	bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cddmamap);
510 	bus_dmamem_free(sc->sc_cdmatag, sc->sc_control_data,
511 	    sc->sc_cddmamap);
512 	bus_dma_tag_destroy(sc->sc_cdmatag);
513 	bus_dma_tag_destroy(sc->sc_tdmatag);
514 	bus_dma_tag_destroy(sc->sc_rdmatag);
515 	bus_dma_tag_destroy(sc->sc_pdmatag);
516 }
517 
518 static void
519 cas_suspend(struct cas_softc *sc)
520 {
521 	if_t ifp = sc->sc_ifp;
522 
523 	CAS_LOCK(sc);
524 	cas_stop(ifp);
525 	CAS_UNLOCK(sc);
526 }
527 
528 static void
529 cas_resume(struct cas_softc *sc)
530 {
531 	if_t ifp = sc->sc_ifp;
532 
533 	CAS_LOCK(sc);
534 	/*
535 	 * On resume all registers have to be initialized again like
536 	 * after power-on.
537 	 */
538 	sc->sc_flags &= ~CAS_INITED;
539 	if (if_getflags(ifp) & IFF_UP)
540 		cas_init_locked(sc);
541 	CAS_UNLOCK(sc);
542 }
543 
544 static inline void
545 cas_rxcksum(struct mbuf *m, uint16_t cksum)
546 {
547 	struct ether_header *eh;
548 	struct ip *ip;
549 	struct udphdr *uh;
550 	uint16_t *opts;
551 	int32_t hlen, len, pktlen;
552 	uint32_t temp32;
553 
554 	pktlen = m->m_pkthdr.len;
555 	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
556 		return;
557 	eh = mtod(m, struct ether_header *);
558 	if (eh->ether_type != htons(ETHERTYPE_IP))
559 		return;
560 	ip = (struct ip *)(eh + 1);
561 	if (ip->ip_v != IPVERSION)
562 		return;
563 
564 	hlen = ip->ip_hl << 2;
565 	pktlen -= sizeof(struct ether_header);
566 	if (hlen < sizeof(struct ip))
567 		return;
568 	if (ntohs(ip->ip_len) < hlen)
569 		return;
570 	if (ntohs(ip->ip_len) != pktlen)
571 		return;
572 	if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
573 		return;	/* Cannot handle fragmented packet. */
574 
575 	switch (ip->ip_p) {
576 	case IPPROTO_TCP:
577 		if (pktlen < (hlen + sizeof(struct tcphdr)))
578 			return;
579 		break;
580 	case IPPROTO_UDP:
581 		if (pktlen < (hlen + sizeof(struct udphdr)))
582 			return;
583 		uh = (struct udphdr *)((uint8_t *)ip + hlen);
584 		if (uh->uh_sum == 0)
585 			return; /* no checksum */
586 		break;
587 	default:
588 		return;
589 	}
590 
591 	cksum = ~cksum;
592 	/* checksum fixup for IP options */
593 	len = hlen - sizeof(struct ip);
594 	if (len > 0) {
595 		opts = (uint16_t *)(ip + 1);
596 		for (; len > 0; len -= sizeof(uint16_t), opts++) {
597 			temp32 = cksum - *opts;
598 			temp32 = (temp32 >> 16) + (temp32 & 65535);
599 			cksum = temp32 & 65535;
600 		}
601 	}
602 	m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
603 	m->m_pkthdr.csum_data = cksum;
604 }
605 
606 static void
607 cas_cddma_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, int error)
608 {
609 	struct cas_softc *sc = xsc;
610 
611 	if (error != 0)
612 		return;
613 	if (nsegs != 1)
614 		panic("%s: bad control buffer segment count", __func__);
615 	sc->sc_cddma = segs[0].ds_addr;
616 }
617 
618 static void
619 cas_rxdma_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, int error)
620 {
621 	struct cas_softc *sc = xsc;
622 
623 	if (error != 0)
624 		return;
625 	if (nsegs != 1)
626 		panic("%s: bad RX buffer segment count", __func__);
627 	sc->sc_rxdsoft[sc->sc_rxdptr].rxds_paddr = segs[0].ds_addr;
628 }
629 
630 static void
631 cas_tick(void *arg)
632 {
633 	struct cas_softc *sc = arg;
634 	if_t ifp = sc->sc_ifp;
635 	uint32_t v;
636 
637 	CAS_LOCK_ASSERT(sc, MA_OWNED);
638 
639 	/*
640 	 * Unload collision and error counters.
641 	 */
642 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
643 	    CAS_READ_4(sc, CAS_MAC_NORM_COLL_CNT) +
644 	    CAS_READ_4(sc, CAS_MAC_FIRST_COLL_CNT));
645 	v = CAS_READ_4(sc, CAS_MAC_EXCESS_COLL_CNT) +
646 	    CAS_READ_4(sc, CAS_MAC_LATE_COLL_CNT);
647 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, v);
648 	if_inc_counter(ifp, IFCOUNTER_OERRORS, v);
649 	if_inc_counter(ifp, IFCOUNTER_IERRORS,
650 	    CAS_READ_4(sc, CAS_MAC_RX_LEN_ERR_CNT) +
651 	    CAS_READ_4(sc, CAS_MAC_RX_ALIGN_ERR) +
652 	    CAS_READ_4(sc, CAS_MAC_RX_CRC_ERR_CNT) +
653 	    CAS_READ_4(sc, CAS_MAC_RX_CODE_VIOL));
654 
655 	/*
656 	 * Then clear the hardware counters.
657 	 */
658 	CAS_WRITE_4(sc, CAS_MAC_NORM_COLL_CNT, 0);
659 	CAS_WRITE_4(sc, CAS_MAC_FIRST_COLL_CNT, 0);
660 	CAS_WRITE_4(sc, CAS_MAC_EXCESS_COLL_CNT, 0);
661 	CAS_WRITE_4(sc, CAS_MAC_LATE_COLL_CNT, 0);
662 	CAS_WRITE_4(sc, CAS_MAC_RX_LEN_ERR_CNT, 0);
663 	CAS_WRITE_4(sc, CAS_MAC_RX_ALIGN_ERR, 0);
664 	CAS_WRITE_4(sc, CAS_MAC_RX_CRC_ERR_CNT, 0);
665 	CAS_WRITE_4(sc, CAS_MAC_RX_CODE_VIOL, 0);
666 
667 	mii_tick(sc->sc_mii);
668 
669 	if (sc->sc_txfree != CAS_MAXTXFREE)
670 		cas_tint(sc);
671 
672 	cas_watchdog(sc);
673 
674 	callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
675 }
676 
677 static int
678 cas_bitwait(struct cas_softc *sc, bus_addr_t r, uint32_t clr, uint32_t set)
679 {
680 	int i;
681 	uint32_t reg;
682 
683 	for (i = CAS_TRIES; i--; DELAY(100)) {
684 		reg = CAS_READ_4(sc, r);
685 		if ((reg & clr) == 0 && (reg & set) == set)
686 			return (1);
687 	}
688 	return (0);
689 }
690 
691 static void
692 cas_reset(struct cas_softc *sc)
693 {
694 
695 #ifdef CAS_DEBUG
696 	CTR2(KTR_CAS, "%s: %s", device_get_name(sc->sc_dev), __func__);
697 #endif
698 	/* Disable all interrupts in order to avoid spurious ones. */
699 	CAS_WRITE_4(sc, CAS_INTMASK, 0xffffffff);
700 
701 	cas_reset_rx(sc);
702 	cas_reset_tx(sc);
703 
704 	/*
705 	 * Do a full reset modulo the result of the last auto-negotiation
706 	 * when using the SERDES.
707 	 */
708 	CAS_WRITE_4(sc, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX |
709 	    ((sc->sc_flags & CAS_SERDES) != 0 ? CAS_RESET_PCS_DIS : 0));
710 	CAS_BARRIER(sc, CAS_RESET, 4,
711 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
712 	DELAY(3000);
713 	if (!cas_bitwait(sc, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0))
714 		device_printf(sc->sc_dev, "cannot reset device\n");
715 }
716 
717 static void
718 cas_stop(if_t ifp)
719 {
720 	struct cas_softc *sc = if_getsoftc(ifp);
721 	struct cas_txsoft *txs;
722 
723 #ifdef CAS_DEBUG
724 	CTR2(KTR_CAS, "%s: %s", device_get_name(sc->sc_dev), __func__);
725 #endif
726 
727 	callout_stop(&sc->sc_tick_ch);
728 	callout_stop(&sc->sc_rx_ch);
729 
730 	/* Disable all interrupts in order to avoid spurious ones. */
731 	CAS_WRITE_4(sc, CAS_INTMASK, 0xffffffff);
732 
733 	cas_reset_tx(sc);
734 	cas_reset_rx(sc);
735 
736 	/*
737 	 * Release any queued transmit buffers.
738 	 */
739 	while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
740 		STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
741 		if (txs->txs_ndescs != 0) {
742 			bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap,
743 			    BUS_DMASYNC_POSTWRITE);
744 			bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap);
745 			if (txs->txs_mbuf != NULL) {
746 				m_freem(txs->txs_mbuf);
747 				txs->txs_mbuf = NULL;
748 			}
749 		}
750 		STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
751 	}
752 
753 	/*
754 	 * Mark the interface down and cancel the watchdog timer.
755 	 */
756 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
757 	sc->sc_flags &= ~CAS_LINK;
758 	sc->sc_wdog_timer = 0;
759 }
760 
761 static int
762 cas_reset_rx(struct cas_softc *sc)
763 {
764 
765 	/*
766 	 * Resetting while DMA is in progress can cause a bus hang, so we
767 	 * disable DMA first.
768 	 */
769 	(void)cas_disable_rx(sc);
770 	CAS_WRITE_4(sc, CAS_RX_CONF, 0);
771 	CAS_BARRIER(sc, CAS_RX_CONF, 4,
772 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
773 	if (!cas_bitwait(sc, CAS_RX_CONF, CAS_RX_CONF_RXDMA_EN, 0))
774 		device_printf(sc->sc_dev, "cannot disable RX DMA\n");
775 
776 	/* Finally, reset the ERX. */
777 	CAS_WRITE_4(sc, CAS_RESET, CAS_RESET_RX |
778 	    ((sc->sc_flags & CAS_SERDES) != 0 ? CAS_RESET_PCS_DIS : 0));
779 	CAS_BARRIER(sc, CAS_RESET, 4,
780 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
781 	if (!cas_bitwait(sc, CAS_RESET, CAS_RESET_RX, 0)) {
782 		device_printf(sc->sc_dev, "cannot reset receiver\n");
783 		return (1);
784 	}
785 	return (0);
786 }
787 
788 static int
789 cas_reset_tx(struct cas_softc *sc)
790 {
791 
792 	/*
793 	 * Resetting while DMA is in progress can cause a bus hang, so we
794 	 * disable DMA first.
795 	 */
796 	(void)cas_disable_tx(sc);
797 	CAS_WRITE_4(sc, CAS_TX_CONF, 0);
798 	CAS_BARRIER(sc, CAS_TX_CONF, 4,
799 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
800 	if (!cas_bitwait(sc, CAS_TX_CONF, CAS_TX_CONF_TXDMA_EN, 0))
801 		device_printf(sc->sc_dev, "cannot disable TX DMA\n");
802 
803 	/* Finally, reset the ETX. */
804 	CAS_WRITE_4(sc, CAS_RESET, CAS_RESET_TX |
805 	    ((sc->sc_flags & CAS_SERDES) != 0 ? CAS_RESET_PCS_DIS : 0));
806 	CAS_BARRIER(sc, CAS_RESET, 4,
807 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
808 	if (!cas_bitwait(sc, CAS_RESET, CAS_RESET_TX, 0)) {
809 		device_printf(sc->sc_dev, "cannot reset transmitter\n");
810 		return (1);
811 	}
812 	return (0);
813 }
814 
815 static int
816 cas_disable_rx(struct cas_softc *sc)
817 {
818 
819 	CAS_WRITE_4(sc, CAS_MAC_RX_CONF,
820 	    CAS_READ_4(sc, CAS_MAC_RX_CONF) & ~CAS_MAC_RX_CONF_EN);
821 	CAS_BARRIER(sc, CAS_MAC_RX_CONF, 4,
822 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
823 	if (cas_bitwait(sc, CAS_MAC_RX_CONF, CAS_MAC_RX_CONF_EN, 0))
824 		return (1);
825 	if (bootverbose)
826 		device_printf(sc->sc_dev, "cannot disable RX MAC\n");
827 	return (0);
828 }
829 
830 static int
831 cas_disable_tx(struct cas_softc *sc)
832 {
833 
834 	CAS_WRITE_4(sc, CAS_MAC_TX_CONF,
835 	    CAS_READ_4(sc, CAS_MAC_TX_CONF) & ~CAS_MAC_TX_CONF_EN);
836 	CAS_BARRIER(sc, CAS_MAC_TX_CONF, 4,
837 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
838 	if (cas_bitwait(sc, CAS_MAC_TX_CONF, CAS_MAC_TX_CONF_EN, 0))
839 		return (1);
840 	if (bootverbose)
841 		device_printf(sc->sc_dev, "cannot disable TX MAC\n");
842 	return (0);
843 }
844 
845 static inline void
846 cas_rxcompinit(struct cas_rx_comp *rxcomp)
847 {
848 
849 	rxcomp->crc_word1 = 0;
850 	rxcomp->crc_word2 = 0;
851 	rxcomp->crc_word3 =
852 	    htole64(CAS_SET(ETHER_HDR_LEN + sizeof(struct ip), CAS_RC3_CSO));
853 	rxcomp->crc_word4 = htole64(CAS_RC4_ZERO);
854 }
855 
856 static void
857 cas_meminit(struct cas_softc *sc)
858 {
859 	int i;
860 
861 	CAS_LOCK_ASSERT(sc, MA_OWNED);
862 
863 	/*
864 	 * Initialize the transmit descriptor ring.
865 	 */
866 	for (i = 0; i < CAS_NTXDESC; i++) {
867 		sc->sc_txdescs[i].cd_flags = 0;
868 		sc->sc_txdescs[i].cd_buf_ptr = 0;
869 	}
870 	sc->sc_txfree = CAS_MAXTXFREE;
871 	sc->sc_txnext = 0;
872 	sc->sc_txwin = 0;
873 
874 	/*
875 	 * Initialize the receive completion ring.
876 	 */
877 	for (i = 0; i < CAS_NRXCOMP; i++)
878 		cas_rxcompinit(&sc->sc_rxcomps[i]);
879 	sc->sc_rxcptr = 0;
880 
881 	/*
882 	 * Initialize the first receive descriptor ring.  We leave
883 	 * the second one zeroed as we don't actually use it.
884 	 */
885 	for (i = 0; i < CAS_NRXDESC; i++)
886 		CAS_INIT_RXDESC(sc, i, i);
887 	sc->sc_rxdptr = 0;
888 
889 	CAS_CDSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
890 }
891 
892 static u_int
893 cas_descsize(u_int sz)
894 {
895 
896 	switch (sz) {
897 	case 32:
898 		return (CAS_DESC_32);
899 	case 64:
900 		return (CAS_DESC_64);
901 	case 128:
902 		return (CAS_DESC_128);
903 	case 256:
904 		return (CAS_DESC_256);
905 	case 512:
906 		return (CAS_DESC_512);
907 	case 1024:
908 		return (CAS_DESC_1K);
909 	case 2048:
910 		return (CAS_DESC_2K);
911 	case 4096:
912 		return (CAS_DESC_4K);
913 	case 8192:
914 		return (CAS_DESC_8K);
915 	default:
916 		printf("%s: invalid descriptor ring size %d\n", __func__, sz);
917 		return (CAS_DESC_32);
918 	}
919 }
920 
921 static u_int
922 cas_rxcompsize(u_int sz)
923 {
924 
925 	switch (sz) {
926 	case 128:
927 		return (CAS_RX_CONF_COMP_128);
928 	case 256:
929 		return (CAS_RX_CONF_COMP_256);
930 	case 512:
931 		return (CAS_RX_CONF_COMP_512);
932 	case 1024:
933 		return (CAS_RX_CONF_COMP_1K);
934 	case 2048:
935 		return (CAS_RX_CONF_COMP_2K);
936 	case 4096:
937 		return (CAS_RX_CONF_COMP_4K);
938 	case 8192:
939 		return (CAS_RX_CONF_COMP_8K);
940 	case 16384:
941 		return (CAS_RX_CONF_COMP_16K);
942 	case 32768:
943 		return (CAS_RX_CONF_COMP_32K);
944 	default:
945 		printf("%s: invalid dcompletion ring size %d\n", __func__, sz);
946 		return (CAS_RX_CONF_COMP_128);
947 	}
948 }
949 
950 static void
951 cas_init(void *xsc)
952 {
953 	struct cas_softc *sc = xsc;
954 
955 	CAS_LOCK(sc);
956 	cas_init_locked(sc);
957 	CAS_UNLOCK(sc);
958 }
959 
960 /*
961  * Initialization of interface; set up initialization block
962  * and transmit/receive descriptor rings.
963  */
964 static void
965 cas_init_locked(struct cas_softc *sc)
966 {
967 	if_t ifp = sc->sc_ifp;
968 	uint32_t v;
969 
970 	CAS_LOCK_ASSERT(sc, MA_OWNED);
971 
972 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
973 		return;
974 
975 #ifdef CAS_DEBUG
976 	CTR2(KTR_CAS, "%s: %s: calling stop", device_get_name(sc->sc_dev),
977 	    __func__);
978 #endif
979 	/*
980 	 * Initialization sequence.  The numbered steps below correspond
981 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
982 	 * Channel Engine manual (part of the PCIO manual).
983 	 * See also the STP2002-STQ document from Sun Microsystems.
984 	 */
985 
986 	/* step 1 & 2.  Reset the Ethernet Channel. */
987 	cas_stop(ifp);
988 	cas_reset(sc);
989 #ifdef CAS_DEBUG
990 	CTR2(KTR_CAS, "%s: %s: restarting", device_get_name(sc->sc_dev),
991 	    __func__);
992 #endif
993 
994 	if ((sc->sc_flags & CAS_SERDES) == 0)
995 		/* Re-initialize the MIF. */
996 		cas_mifinit(sc);
997 
998 	/* step 3.  Setup data structures in host memory. */
999 	cas_meminit(sc);
1000 
1001 	/* step 4.  TX MAC registers & counters */
1002 	cas_init_regs(sc);
1003 
1004 	/* step 5.  RX MAC registers & counters */
1005 
1006 	/* step 6 & 7.  Program Ring Base Addresses. */
1007 	CAS_WRITE_4(sc, CAS_TX_DESC3_BASE_HI,
1008 	    (((uint64_t)CAS_CDTXDADDR(sc, 0)) >> 32));
1009 	CAS_WRITE_4(sc, CAS_TX_DESC3_BASE_LO,
1010 	    CAS_CDTXDADDR(sc, 0) & 0xffffffff);
1011 
1012 	CAS_WRITE_4(sc, CAS_RX_COMP_BASE_HI,
1013 	    (((uint64_t)CAS_CDRXCADDR(sc, 0)) >> 32));
1014 	CAS_WRITE_4(sc, CAS_RX_COMP_BASE_LO,
1015 	    CAS_CDRXCADDR(sc, 0) & 0xffffffff);
1016 
1017 	CAS_WRITE_4(sc, CAS_RX_DESC_BASE_HI,
1018 	    (((uint64_t)CAS_CDRXDADDR(sc, 0)) >> 32));
1019 	CAS_WRITE_4(sc, CAS_RX_DESC_BASE_LO,
1020 	    CAS_CDRXDADDR(sc, 0) & 0xffffffff);
1021 
1022 	if ((sc->sc_flags & CAS_REG_PLUS) != 0) {
1023 		CAS_WRITE_4(sc, CAS_RX_DESC2_BASE_HI,
1024 		    (((uint64_t)CAS_CDRXD2ADDR(sc, 0)) >> 32));
1025 		CAS_WRITE_4(sc, CAS_RX_DESC2_BASE_LO,
1026 		    CAS_CDRXD2ADDR(sc, 0) & 0xffffffff);
1027 	}
1028 
1029 #ifdef CAS_DEBUG
1030 	CTR5(KTR_CAS,
1031 	    "loading TXDR %lx, RXCR %lx, RXDR %lx, RXD2R %lx, cddma %lx",
1032 	    CAS_CDTXDADDR(sc, 0), CAS_CDRXCADDR(sc, 0), CAS_CDRXDADDR(sc, 0),
1033 	    CAS_CDRXD2ADDR(sc, 0), sc->sc_cddma);
1034 #endif
1035 
1036 	/* step 8.  Global Configuration & Interrupt Masks */
1037 
1038 	/* Disable weighted round robin. */
1039 	CAS_WRITE_4(sc, CAS_CAW, CAS_CAW_RR_DIS);
1040 
1041 	/*
1042 	 * Enable infinite bursts for revisions without PCI issues if
1043 	 * applicable.  Doing so greatly improves the TX performance.
1044 	 */
1045 	CAS_WRITE_4(sc, CAS_INF_BURST,
1046 	    (sc->sc_flags & CAS_TABORT) == 0 ? CAS_INF_BURST_EN :
1047 	    0);
1048 
1049 	/* Set up interrupts. */
1050 	CAS_WRITE_4(sc, CAS_INTMASK,
1051 	    ~(CAS_INTR_TX_INT_ME | CAS_INTR_TX_TAG_ERR |
1052 	    CAS_INTR_RX_DONE | CAS_INTR_RX_BUF_NA | CAS_INTR_RX_TAG_ERR |
1053 	    CAS_INTR_RX_COMP_FULL | CAS_INTR_RX_BUF_AEMPTY |
1054 	    CAS_INTR_RX_COMP_AFULL | CAS_INTR_RX_LEN_MMATCH |
1055 	    CAS_INTR_PCI_ERROR_INT
1056 #ifdef CAS_DEBUG
1057 	    | CAS_INTR_PCS_INT | CAS_INTR_MIF
1058 #endif
1059 	    ));
1060 	/* Don't clear top level interrupts when CAS_STATUS_ALIAS is read. */
1061 	CAS_WRITE_4(sc, CAS_CLEAR_ALIAS, 0);
1062 	CAS_WRITE_4(sc, CAS_MAC_RX_MASK, ~CAS_MAC_RX_OVERFLOW);
1063 	CAS_WRITE_4(sc, CAS_MAC_TX_MASK,
1064 	    ~(CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_MAX_PKT_ERR));
1065 #ifdef CAS_DEBUG
1066 	CAS_WRITE_4(sc, CAS_MAC_CTRL_MASK,
1067 	    ~(CAS_MAC_CTRL_PAUSE_RCVD | CAS_MAC_CTRL_PAUSE |
1068 	    CAS_MAC_CTRL_NON_PAUSE));
1069 #else
1070 	CAS_WRITE_4(sc, CAS_MAC_CTRL_MASK,
1071 	    CAS_MAC_CTRL_PAUSE_RCVD | CAS_MAC_CTRL_PAUSE |
1072 	    CAS_MAC_CTRL_NON_PAUSE);
1073 #endif
1074 
1075 	/* Enable PCI error interrupts. */
1076 	CAS_WRITE_4(sc, CAS_ERROR_MASK,
1077 	    ~(CAS_ERROR_DTRTO | CAS_ERROR_OTHER | CAS_ERROR_DMAW_ZERO |
1078 	    CAS_ERROR_DMAR_ZERO | CAS_ERROR_RTRTO));
1079 
1080 	/* Enable PCI error interrupts in BIM configuration. */
1081 	CAS_WRITE_4(sc, CAS_BIM_CONF,
1082 	    CAS_BIM_CONF_DPAR_EN | CAS_BIM_CONF_RMA_EN | CAS_BIM_CONF_RTA_EN);
1083 
1084 	/*
1085 	 * step 9.  ETX Configuration: encode receive descriptor ring size,
1086 	 * enable DMA and disable pre-interrupt writeback completion.
1087 	 */
1088 	v = cas_descsize(CAS_NTXDESC) << CAS_TX_CONF_DESC3_SHFT;
1089 	CAS_WRITE_4(sc, CAS_TX_CONF, v | CAS_TX_CONF_TXDMA_EN |
1090 	    CAS_TX_CONF_RDPP_DIS | CAS_TX_CONF_PICWB_DIS);
1091 
1092 	/* step 10.  ERX Configuration */
1093 
1094 	/*
1095 	 * Encode receive completion and descriptor ring sizes, set the
1096 	 * swivel offset.
1097 	 */
1098 	v = cas_rxcompsize(CAS_NRXCOMP) << CAS_RX_CONF_COMP_SHFT;
1099 	v |= cas_descsize(CAS_NRXDESC) << CAS_RX_CONF_DESC_SHFT;
1100 	if ((sc->sc_flags & CAS_REG_PLUS) != 0)
1101 		v |= cas_descsize(CAS_NRXDESC2) << CAS_RX_CONF_DESC2_SHFT;
1102 	CAS_WRITE_4(sc, CAS_RX_CONF,
1103 	    v | (ETHER_ALIGN << CAS_RX_CONF_SOFF_SHFT));
1104 
1105 	/* Set the PAUSE thresholds.  We use the maximum OFF threshold. */
1106 	CAS_WRITE_4(sc, CAS_RX_PTHRS,
1107 	    (111 << CAS_RX_PTHRS_XOFF_SHFT) | (15 << CAS_RX_PTHRS_XON_SHFT));
1108 
1109 	/* RX blanking */
1110 	CAS_WRITE_4(sc, CAS_RX_BLANK,
1111 	    (15 << CAS_RX_BLANK_TIME_SHFT) | (5 << CAS_RX_BLANK_PKTS_SHFT));
1112 
1113 	/* Set RX_COMP_AFULL threshold to half of the RX completions. */
1114 	CAS_WRITE_4(sc, CAS_RX_AEMPTY_THRS,
1115 	    (CAS_NRXCOMP / 2) << CAS_RX_AEMPTY_COMP_SHFT);
1116 
1117 	/* Initialize the RX page size register as appropriate for 8k. */
1118 	CAS_WRITE_4(sc, CAS_RX_PSZ,
1119 	    (CAS_RX_PSZ_8K << CAS_RX_PSZ_SHFT) |
1120 	    (4 << CAS_RX_PSZ_MB_CNT_SHFT) |
1121 	    (CAS_RX_PSZ_MB_STRD_2K << CAS_RX_PSZ_MB_STRD_SHFT) |
1122 	    (CAS_RX_PSZ_MB_OFF_64 << CAS_RX_PSZ_MB_OFF_SHFT));
1123 
1124 	/* Disable RX random early detection. */
1125 	CAS_WRITE_4(sc,	CAS_RX_RED, 0);
1126 
1127 	/* Zero the RX reassembly DMA table. */
1128 	for (v = 0; v <= CAS_RX_REAS_DMA_ADDR_LC; v++) {
1129 		CAS_WRITE_4(sc,	CAS_RX_REAS_DMA_ADDR, v);
1130 		CAS_WRITE_4(sc,	CAS_RX_REAS_DMA_DATA_LO, 0);
1131 		CAS_WRITE_4(sc,	CAS_RX_REAS_DMA_DATA_MD, 0);
1132 		CAS_WRITE_4(sc,	CAS_RX_REAS_DMA_DATA_HI, 0);
1133 	}
1134 
1135 	/* Ensure the RX control FIFO and RX IPP FIFO addresses are zero. */
1136 	CAS_WRITE_4(sc, CAS_RX_CTRL_FIFO, 0);
1137 	CAS_WRITE_4(sc, CAS_RX_IPP_ADDR, 0);
1138 
1139 	/* Finally, enable RX DMA. */
1140 	CAS_WRITE_4(sc, CAS_RX_CONF,
1141 	    CAS_READ_4(sc, CAS_RX_CONF) | CAS_RX_CONF_RXDMA_EN);
1142 
1143 	/* step 11.  Configure Media. */
1144 
1145 	/* step 12.  RX_MAC Configuration Register */
1146 	v = CAS_READ_4(sc, CAS_MAC_RX_CONF);
1147 	v &= ~(CAS_MAC_RX_CONF_STRPPAD | CAS_MAC_RX_CONF_EN);
1148 	v |= CAS_MAC_RX_CONF_STRPFCS;
1149 	sc->sc_mac_rxcfg = v;
1150 	/*
1151 	 * Clear the RX filter and reprogram it.  This will also set the
1152 	 * current RX MAC configuration and enable it.
1153 	 */
1154 	cas_setladrf(sc);
1155 
1156 	/* step 13.  TX_MAC Configuration Register */
1157 	v = CAS_READ_4(sc, CAS_MAC_TX_CONF);
1158 	v |= CAS_MAC_TX_CONF_EN;
1159 	(void)cas_disable_tx(sc);
1160 	CAS_WRITE_4(sc, CAS_MAC_TX_CONF, v);
1161 
1162 	/* step 14.  Issue Transmit Pending command. */
1163 
1164 	/* step 15.  Give the receiver a swift kick. */
1165 	CAS_WRITE_4(sc, CAS_RX_KICK, CAS_NRXDESC - 4);
1166 	CAS_WRITE_4(sc, CAS_RX_COMP_TAIL, 0);
1167 	if ((sc->sc_flags & CAS_REG_PLUS) != 0)
1168 		CAS_WRITE_4(sc, CAS_RX_KICK2, CAS_NRXDESC2 - 4);
1169 
1170 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
1171 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1172 
1173 	mii_mediachg(sc->sc_mii);
1174 
1175 	/* Start the one second timer. */
1176 	sc->sc_wdog_timer = 0;
1177 	callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
1178 }
1179 
1180 static int
1181 cas_load_txmbuf(struct cas_softc *sc, struct mbuf **m_head)
1182 {
1183 	bus_dma_segment_t txsegs[CAS_NTXSEGS];
1184 	struct cas_txsoft *txs;
1185 	struct ip *ip;
1186 	struct mbuf *m;
1187 	uint64_t cflags;
1188 	int error, nexttx, nsegs, offset, seg;
1189 
1190 	CAS_LOCK_ASSERT(sc, MA_OWNED);
1191 
1192 	/* Get a work queue entry. */
1193 	if ((txs = STAILQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1194 		/* Ran out of descriptors. */
1195 		return (ENOBUFS);
1196 	}
1197 
1198 	cflags = 0;
1199 	if (((*m_head)->m_pkthdr.csum_flags & CAS_CSUM_FEATURES) != 0) {
1200 		if (M_WRITABLE(*m_head) == 0) {
1201 			m = m_dup(*m_head, M_NOWAIT);
1202 			m_freem(*m_head);
1203 			*m_head = m;
1204 			if (m == NULL)
1205 				return (ENOBUFS);
1206 		}
1207 		offset = sizeof(struct ether_header);
1208 		m = m_pullup(*m_head, offset + sizeof(struct ip));
1209 		if (m == NULL) {
1210 			*m_head = NULL;
1211 			return (ENOBUFS);
1212 		}
1213 		ip = (struct ip *)(mtod(m, caddr_t) + offset);
1214 		offset += (ip->ip_hl << 2);
1215 		cflags = (offset << CAS_TD_CKSUM_START_SHFT) |
1216 		    ((offset + m->m_pkthdr.csum_data) <<
1217 		    CAS_TD_CKSUM_STUFF_SHFT) | CAS_TD_CKSUM_EN;
1218 		*m_head = m;
1219 	}
1220 
1221 	error = bus_dmamap_load_mbuf_sg(sc->sc_tdmatag, txs->txs_dmamap,
1222 	    *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1223 	if (error == EFBIG) {
1224 		m = m_collapse(*m_head, M_NOWAIT, CAS_NTXSEGS);
1225 		if (m == NULL) {
1226 			m_freem(*m_head);
1227 			*m_head = NULL;
1228 			return (ENOBUFS);
1229 		}
1230 		*m_head = m;
1231 		error = bus_dmamap_load_mbuf_sg(sc->sc_tdmatag,
1232 		    txs->txs_dmamap, *m_head, txsegs, &nsegs,
1233 		    BUS_DMA_NOWAIT);
1234 		if (error != 0) {
1235 			m_freem(*m_head);
1236 			*m_head = NULL;
1237 			return (error);
1238 		}
1239 	} else if (error != 0)
1240 		return (error);
1241 	/* If nsegs is wrong then the stack is corrupt. */
1242 	KASSERT(nsegs <= CAS_NTXSEGS,
1243 	    ("%s: too many DMA segments (%d)", __func__, nsegs));
1244 	if (nsegs == 0) {
1245 		m_freem(*m_head);
1246 		*m_head = NULL;
1247 		return (EIO);
1248 	}
1249 
1250 	/*
1251 	 * Ensure we have enough descriptors free to describe
1252 	 * the packet.  Note, we always reserve one descriptor
1253 	 * at the end of the ring as a termination point, in
1254 	 * order to prevent wrap-around.
1255 	 */
1256 	if (nsegs > sc->sc_txfree - 1) {
1257 		txs->txs_ndescs = 0;
1258 		bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap);
1259 		return (ENOBUFS);
1260 	}
1261 
1262 	txs->txs_ndescs = nsegs;
1263 	txs->txs_firstdesc = sc->sc_txnext;
1264 	nexttx = txs->txs_firstdesc;
1265 	for (seg = 0; seg < nsegs; seg++, nexttx = CAS_NEXTTX(nexttx)) {
1266 #ifdef CAS_DEBUG
1267 		CTR6(KTR_CAS,
1268 		    "%s: mapping seg %d (txd %d), len %lx, addr %#lx (%#lx)",
1269 		    __func__, seg, nexttx, txsegs[seg].ds_len,
1270 		    txsegs[seg].ds_addr, htole64(txsegs[seg].ds_addr));
1271 #endif
1272 		sc->sc_txdescs[nexttx].cd_buf_ptr =
1273 		    htole64(txsegs[seg].ds_addr);
1274 		KASSERT(txsegs[seg].ds_len <
1275 		    CAS_TD_BUF_LEN_MASK >> CAS_TD_BUF_LEN_SHFT,
1276 		    ("%s: segment size too large!", __func__));
1277 		sc->sc_txdescs[nexttx].cd_flags =
1278 		    htole64(txsegs[seg].ds_len << CAS_TD_BUF_LEN_SHFT);
1279 		txs->txs_lastdesc = nexttx;
1280 	}
1281 
1282 	/* Set EOF on the last descriptor. */
1283 #ifdef CAS_DEBUG
1284 	CTR3(KTR_CAS, "%s: end of frame at segment %d, TX %d",
1285 	    __func__, seg, nexttx);
1286 #endif
1287 	sc->sc_txdescs[txs->txs_lastdesc].cd_flags |=
1288 	    htole64(CAS_TD_END_OF_FRAME);
1289 
1290 	/* Lastly set SOF on the first descriptor. */
1291 #ifdef CAS_DEBUG
1292 	CTR3(KTR_CAS, "%s: start of frame at segment %d, TX %d",
1293 	    __func__, seg, nexttx);
1294 #endif
1295 	if (sc->sc_txwin += nsegs > CAS_MAXTXFREE * 2 / 3) {
1296 		sc->sc_txwin = 0;
1297 		sc->sc_txdescs[txs->txs_firstdesc].cd_flags |=
1298 		    htole64(cflags | CAS_TD_START_OF_FRAME | CAS_TD_INT_ME);
1299 	} else
1300 		sc->sc_txdescs[txs->txs_firstdesc].cd_flags |=
1301 		    htole64(cflags | CAS_TD_START_OF_FRAME);
1302 
1303 	/* Sync the DMA map. */
1304 	bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap,
1305 	    BUS_DMASYNC_PREWRITE);
1306 
1307 #ifdef CAS_DEBUG
1308 	CTR4(KTR_CAS, "%s: setting firstdesc=%d, lastdesc=%d, ndescs=%d",
1309 	    __func__, txs->txs_firstdesc, txs->txs_lastdesc,
1310 	    txs->txs_ndescs);
1311 #endif
1312 	STAILQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1313 	STAILQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1314 	txs->txs_mbuf = *m_head;
1315 
1316 	sc->sc_txnext = CAS_NEXTTX(txs->txs_lastdesc);
1317 	sc->sc_txfree -= txs->txs_ndescs;
1318 
1319 	return (0);
1320 }
1321 
1322 static void
1323 cas_init_regs(struct cas_softc *sc)
1324 {
1325 	int i;
1326 	const u_char *laddr = if_getlladdr(sc->sc_ifp);
1327 
1328 	CAS_LOCK_ASSERT(sc, MA_OWNED);
1329 
1330 	/* These registers are not cleared on reset. */
1331 	if ((sc->sc_flags & CAS_INITED) == 0) {
1332 		/* magic values */
1333 		CAS_WRITE_4(sc, CAS_MAC_IPG0, 0);
1334 		CAS_WRITE_4(sc, CAS_MAC_IPG1, 8);
1335 		CAS_WRITE_4(sc, CAS_MAC_IPG2, 4);
1336 
1337 		/* min frame length */
1338 		CAS_WRITE_4(sc, CAS_MAC_MIN_FRAME, ETHER_MIN_LEN);
1339 		/* max frame length and max burst size */
1340 		CAS_WRITE_4(sc, CAS_MAC_MAX_BF,
1341 		    ((ETHER_MAX_LEN_JUMBO + ETHER_VLAN_ENCAP_LEN) <<
1342 		    CAS_MAC_MAX_BF_FRM_SHFT) |
1343 		    (0x2000 << CAS_MAC_MAX_BF_BST_SHFT));
1344 
1345 		/* more magic values */
1346 		CAS_WRITE_4(sc, CAS_MAC_PREAMBLE_LEN, 0x7);
1347 		CAS_WRITE_4(sc, CAS_MAC_JAM_SIZE, 0x4);
1348 		CAS_WRITE_4(sc, CAS_MAC_ATTEMPT_LIMIT, 0x10);
1349 		CAS_WRITE_4(sc, CAS_MAC_CTRL_TYPE, 0x8808);
1350 
1351 		/* random number seed */
1352 		CAS_WRITE_4(sc, CAS_MAC_RANDOM_SEED,
1353 		    ((laddr[5] << 8) | laddr[4]) & 0x3ff);
1354 
1355 		/* secondary MAC addresses: 0:0:0:0:0:0 */
1356 		for (i = CAS_MAC_ADDR3; i <= CAS_MAC_ADDR41;
1357 		    i += CAS_MAC_ADDR4 - CAS_MAC_ADDR3)
1358 			CAS_WRITE_4(sc, i, 0);
1359 
1360 		/* MAC control address: 01:80:c2:00:00:01 */
1361 		CAS_WRITE_4(sc, CAS_MAC_ADDR42, 0x0001);
1362 		CAS_WRITE_4(sc, CAS_MAC_ADDR43, 0xc200);
1363 		CAS_WRITE_4(sc, CAS_MAC_ADDR44, 0x0180);
1364 
1365 		/* MAC filter address: 0:0:0:0:0:0 */
1366 		CAS_WRITE_4(sc, CAS_MAC_AFILTER0, 0);
1367 		CAS_WRITE_4(sc, CAS_MAC_AFILTER1, 0);
1368 		CAS_WRITE_4(sc, CAS_MAC_AFILTER2, 0);
1369 		CAS_WRITE_4(sc, CAS_MAC_AFILTER_MASK1_2, 0);
1370 		CAS_WRITE_4(sc, CAS_MAC_AFILTER_MASK0, 0);
1371 
1372 		/* Zero the hash table. */
1373 		for (i = CAS_MAC_HASH0; i <= CAS_MAC_HASH15;
1374 		    i += CAS_MAC_HASH1 - CAS_MAC_HASH0)
1375 			CAS_WRITE_4(sc, i, 0);
1376 
1377 		sc->sc_flags |= CAS_INITED;
1378 	}
1379 
1380 	/* Counters need to be zeroed. */
1381 	CAS_WRITE_4(sc, CAS_MAC_NORM_COLL_CNT, 0);
1382 	CAS_WRITE_4(sc, CAS_MAC_FIRST_COLL_CNT, 0);
1383 	CAS_WRITE_4(sc, CAS_MAC_EXCESS_COLL_CNT, 0);
1384 	CAS_WRITE_4(sc, CAS_MAC_LATE_COLL_CNT, 0);
1385 	CAS_WRITE_4(sc, CAS_MAC_DEFER_TMR_CNT, 0);
1386 	CAS_WRITE_4(sc, CAS_MAC_PEAK_ATTEMPTS, 0);
1387 	CAS_WRITE_4(sc, CAS_MAC_RX_FRAME_COUNT, 0);
1388 	CAS_WRITE_4(sc, CAS_MAC_RX_LEN_ERR_CNT, 0);
1389 	CAS_WRITE_4(sc, CAS_MAC_RX_ALIGN_ERR, 0);
1390 	CAS_WRITE_4(sc, CAS_MAC_RX_CRC_ERR_CNT, 0);
1391 	CAS_WRITE_4(sc, CAS_MAC_RX_CODE_VIOL, 0);
1392 
1393 	/* Set XOFF PAUSE time. */
1394 	CAS_WRITE_4(sc, CAS_MAC_SPC, 0x1BF0 << CAS_MAC_SPC_TIME_SHFT);
1395 
1396 	/* Set the station address. */
1397 	CAS_WRITE_4(sc, CAS_MAC_ADDR0, (laddr[4] << 8) | laddr[5]);
1398 	CAS_WRITE_4(sc, CAS_MAC_ADDR1, (laddr[2] << 8) | laddr[3]);
1399 	CAS_WRITE_4(sc, CAS_MAC_ADDR2, (laddr[0] << 8) | laddr[1]);
1400 
1401 	/* Enable MII outputs. */
1402 	CAS_WRITE_4(sc, CAS_MAC_XIF_CONF, CAS_MAC_XIF_CONF_TX_OE);
1403 }
1404 
1405 static void
1406 cas_tx_task(void *arg, int pending __unused)
1407 {
1408 	if_t ifp;
1409 
1410 	ifp = (if_t)arg;
1411 	cas_start(ifp);
1412 }
1413 
1414 static inline void
1415 cas_txkick(struct cas_softc *sc)
1416 {
1417 
1418 	/*
1419 	 * Update the TX kick register.  This register has to point to the
1420 	 * descriptor after the last valid one and for optimum performance
1421 	 * should be incremented in multiples of 4 (the DMA engine fetches/
1422 	 * updates descriptors in batches of 4).
1423 	 */
1424 #ifdef CAS_DEBUG
1425 	CTR3(KTR_CAS, "%s: %s: kicking TX %d",
1426 	    device_get_name(sc->sc_dev), __func__, sc->sc_txnext);
1427 #endif
1428 	CAS_CDSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1429 	CAS_WRITE_4(sc, CAS_TX_KICK3, sc->sc_txnext);
1430 }
1431 
1432 static void
1433 cas_start(if_t ifp)
1434 {
1435 	struct cas_softc *sc = if_getsoftc(ifp);
1436 	struct mbuf *m;
1437 	int kicked, ntx;
1438 
1439 	CAS_LOCK(sc);
1440 
1441 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1442 	    IFF_DRV_RUNNING || (sc->sc_flags & CAS_LINK) == 0) {
1443 		CAS_UNLOCK(sc);
1444 		return;
1445 	}
1446 
1447 	if (sc->sc_txfree < CAS_MAXTXFREE / 4)
1448 		cas_tint(sc);
1449 
1450 #ifdef CAS_DEBUG
1451 	CTR4(KTR_CAS, "%s: %s: txfree %d, txnext %d",
1452 	    device_get_name(sc->sc_dev), __func__, sc->sc_txfree,
1453 	    sc->sc_txnext);
1454 #endif
1455 	ntx = 0;
1456 	kicked = 0;
1457 	for (; !if_sendq_empty(ifp) && sc->sc_txfree > 1;) {
1458 		m = if_dequeue(ifp);
1459 		if (m == NULL)
1460 			break;
1461 		if (cas_load_txmbuf(sc, &m) != 0) {
1462 			if (m == NULL)
1463 				break;
1464 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1465 			if_sendq_prepend(ifp, m);
1466 			break;
1467 		}
1468 		if ((sc->sc_txnext % 4) == 0) {
1469 			cas_txkick(sc);
1470 			kicked = 1;
1471 		} else
1472 			kicked = 0;
1473 		ntx++;
1474 		BPF_MTAP(ifp, m);
1475 	}
1476 
1477 	if (ntx > 0) {
1478 		if (kicked == 0)
1479 			cas_txkick(sc);
1480 #ifdef CAS_DEBUG
1481 		CTR2(KTR_CAS, "%s: packets enqueued, OWN on %d",
1482 		    device_get_name(sc->sc_dev), sc->sc_txnext);
1483 #endif
1484 
1485 		/* Set a watchdog timer in case the chip flakes out. */
1486 		sc->sc_wdog_timer = 5;
1487 #ifdef CAS_DEBUG
1488 		CTR3(KTR_CAS, "%s: %s: watchdog %d",
1489 		    device_get_name(sc->sc_dev), __func__,
1490 		    sc->sc_wdog_timer);
1491 #endif
1492 	}
1493 
1494 	CAS_UNLOCK(sc);
1495 }
1496 
1497 static void
1498 cas_tint(struct cas_softc *sc)
1499 {
1500 	if_t ifp = sc->sc_ifp;
1501 	struct cas_txsoft *txs;
1502 	int progress;
1503 	uint32_t txlast;
1504 #ifdef CAS_DEBUG
1505 	int i;
1506 
1507 	CAS_LOCK_ASSERT(sc, MA_OWNED);
1508 
1509 	CTR2(KTR_CAS, "%s: %s", device_get_name(sc->sc_dev), __func__);
1510 #endif
1511 
1512 	/*
1513 	 * Go through our TX list and free mbufs for those
1514 	 * frames that have been transmitted.
1515 	 */
1516 	progress = 0;
1517 	CAS_CDSYNC(sc, BUS_DMASYNC_POSTREAD);
1518 	while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1519 #ifdef CAS_DEBUG
1520 		if ((if_getflags(ifp) & IFF_DEBUG) != 0) {
1521 			printf("    txsoft %p transmit chain:\n", txs);
1522 			for (i = txs->txs_firstdesc;; i = CAS_NEXTTX(i)) {
1523 				printf("descriptor %d: ", i);
1524 				printf("cd_flags: 0x%016llx\t",
1525 				    (long long)le64toh(
1526 				    sc->sc_txdescs[i].cd_flags));
1527 				printf("cd_buf_ptr: 0x%016llx\n",
1528 				    (long long)le64toh(
1529 				    sc->sc_txdescs[i].cd_buf_ptr));
1530 				if (i == txs->txs_lastdesc)
1531 					break;
1532 			}
1533 		}
1534 #endif
1535 
1536 		/*
1537 		 * In theory, we could harvest some descriptors before
1538 		 * the ring is empty, but that's a bit complicated.
1539 		 *
1540 		 * CAS_TX_COMPn points to the last descriptor
1541 		 * processed + 1.
1542 		 */
1543 		txlast = CAS_READ_4(sc, CAS_TX_COMP3);
1544 #ifdef CAS_DEBUG
1545 		CTR4(KTR_CAS, "%s: txs->txs_firstdesc = %d, "
1546 		    "txs->txs_lastdesc = %d, txlast = %d",
1547 		    __func__, txs->txs_firstdesc, txs->txs_lastdesc, txlast);
1548 #endif
1549 		if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1550 			if ((txlast >= txs->txs_firstdesc) &&
1551 			    (txlast <= txs->txs_lastdesc))
1552 				break;
1553 		} else {
1554 			/* Ick -- this command wraps. */
1555 			if ((txlast >= txs->txs_firstdesc) ||
1556 			    (txlast <= txs->txs_lastdesc))
1557 				break;
1558 		}
1559 
1560 #ifdef CAS_DEBUG
1561 		CTR1(KTR_CAS, "%s: releasing a descriptor", __func__);
1562 #endif
1563 		STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1564 
1565 		sc->sc_txfree += txs->txs_ndescs;
1566 
1567 		bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap,
1568 		    BUS_DMASYNC_POSTWRITE);
1569 		bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap);
1570 		if (txs->txs_mbuf != NULL) {
1571 			m_freem(txs->txs_mbuf);
1572 			txs->txs_mbuf = NULL;
1573 		}
1574 
1575 		STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1576 
1577 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1578 		progress = 1;
1579 	}
1580 
1581 #ifdef CAS_DEBUG
1582 	CTR5(KTR_CAS, "%s: CAS_TX_SM1 %x CAS_TX_SM2 %x CAS_TX_DESC_BASE %llx "
1583 	    "CAS_TX_COMP3 %x",
1584 	    __func__, CAS_READ_4(sc, CAS_TX_SM1), CAS_READ_4(sc, CAS_TX_SM2),
1585 	    ((long long)CAS_READ_4(sc, CAS_TX_DESC3_BASE_HI) << 32) |
1586 	    CAS_READ_4(sc, CAS_TX_DESC3_BASE_LO),
1587 	    CAS_READ_4(sc, CAS_TX_COMP3));
1588 #endif
1589 
1590 	if (progress) {
1591 		/* We freed some descriptors, so reset IFF_DRV_OACTIVE. */
1592 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1593 		if (STAILQ_EMPTY(&sc->sc_txdirtyq))
1594 			sc->sc_wdog_timer = 0;
1595 	}
1596 
1597 #ifdef CAS_DEBUG
1598 	CTR3(KTR_CAS, "%s: %s: watchdog %d",
1599 	    device_get_name(sc->sc_dev), __func__, sc->sc_wdog_timer);
1600 #endif
1601 }
1602 
1603 static void
1604 cas_rint_timeout(void *arg)
1605 {
1606 	struct epoch_tracker et;
1607 	struct cas_softc *sc = arg;
1608 
1609 	CAS_LOCK_ASSERT(sc, MA_OWNED);
1610 
1611 	NET_EPOCH_ENTER(et);
1612 	cas_rint(sc);
1613 	NET_EPOCH_EXIT(et);
1614 }
1615 
1616 static void
1617 cas_rint(struct cas_softc *sc)
1618 {
1619 	struct cas_rxdsoft *rxds, *rxds2;
1620 	if_t ifp = sc->sc_ifp;
1621 	struct mbuf *m, *m2;
1622 	uint64_t word1, word2, word3 __unused, word4;
1623 	uint32_t rxhead;
1624 	u_int idx, idx2, len, off, skip;
1625 
1626 	CAS_LOCK_ASSERT(sc, MA_OWNED);
1627 
1628 	callout_stop(&sc->sc_rx_ch);
1629 
1630 #ifdef CAS_DEBUG
1631 	CTR2(KTR_CAS, "%s: %s", device_get_name(sc->sc_dev), __func__);
1632 #endif
1633 
1634 #define	PRINTWORD(n, delimiter)						\
1635 	printf("word ## n: 0x%016llx%c", (long long)word ## n, delimiter)
1636 
1637 #define	SKIPASSERT(n)							\
1638 	KASSERT(sc->sc_rxcomps[sc->sc_rxcptr].crc_word ## n == 0,	\
1639 	    ("%s: word ## n not 0", __func__))
1640 
1641 #define	WORDTOH(n)							\
1642 	word ## n = le64toh(sc->sc_rxcomps[sc->sc_rxcptr].crc_word ## n)
1643 
1644 	/*
1645 	 * Read the completion head register once.  This limits
1646 	 * how long the following loop can execute.
1647 	 */
1648 	rxhead = CAS_READ_4(sc, CAS_RX_COMP_HEAD);
1649 #ifdef CAS_DEBUG
1650 	CTR4(KTR_CAS, "%s: sc->sc_rxcptr %d, sc->sc_rxdptr %d, head %d",
1651 	    __func__, sc->sc_rxcptr, sc->sc_rxdptr, rxhead);
1652 #endif
1653 	skip = 0;
1654 	CAS_CDSYNC(sc, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1655 	for (; sc->sc_rxcptr != rxhead;
1656 	    sc->sc_rxcptr = CAS_NEXTRXCOMP(sc->sc_rxcptr)) {
1657 		if (skip != 0) {
1658 			SKIPASSERT(1);
1659 			SKIPASSERT(2);
1660 			SKIPASSERT(3);
1661 
1662 			--skip;
1663 			goto skip;
1664 		}
1665 
1666 		WORDTOH(1);
1667 		WORDTOH(2);
1668 		WORDTOH(3);
1669 		WORDTOH(4);
1670 
1671 #ifdef CAS_DEBUG
1672 		if ((if_getflags(ifp) & IFF_DEBUG) != 0) {
1673 			printf("    completion %d: ", sc->sc_rxcptr);
1674 			PRINTWORD(1, '\t');
1675 			PRINTWORD(2, '\t');
1676 			PRINTWORD(3, '\t');
1677 			PRINTWORD(4, '\n');
1678 		}
1679 #endif
1680 
1681 		if (__predict_false(
1682 		    (word1 & CAS_RC1_TYPE_MASK) == CAS_RC1_TYPE_HW ||
1683 		    (word4 & CAS_RC4_ZERO) != 0)) {
1684 			/*
1685 			 * The descriptor is still marked as owned, although
1686 			 * it is supposed to have completed.  This has been
1687 			 * observed on some machines.  Just exiting here
1688 			 * might leave the packet sitting around until another
1689 			 * one arrives to trigger a new interrupt, which is
1690 			 * generally undesirable, so set up a timeout.
1691 			 */
1692 			callout_reset(&sc->sc_rx_ch, CAS_RXOWN_TICKS,
1693 			    cas_rint_timeout, sc);
1694 			break;
1695 		}
1696 
1697 		if (__predict_false(
1698 		    (word4 & (CAS_RC4_BAD | CAS_RC4_LEN_MMATCH)) != 0)) {
1699 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1700 			device_printf(sc->sc_dev,
1701 			    "receive error: CRC error\n");
1702 			continue;
1703 		}
1704 
1705 		KASSERT(CAS_GET(word1, CAS_RC1_DATA_SIZE) == 0 ||
1706 		    CAS_GET(word2, CAS_RC2_HDR_SIZE) == 0,
1707 		    ("%s: data and header present", __func__));
1708 		KASSERT((word1 & CAS_RC1_SPLIT_PKT) == 0 ||
1709 		    CAS_GET(word2, CAS_RC2_HDR_SIZE) == 0,
1710 		    ("%s: split and header present", __func__));
1711 		KASSERT(CAS_GET(word1, CAS_RC1_DATA_SIZE) == 0 ||
1712 		    (word1 & CAS_RC1_RELEASE_HDR) == 0,
1713 		    ("%s: data present but header release", __func__));
1714 		KASSERT(CAS_GET(word2, CAS_RC2_HDR_SIZE) == 0 ||
1715 		    (word1 & CAS_RC1_RELEASE_DATA) == 0,
1716 		    ("%s: header present but data release", __func__));
1717 
1718 		if ((len = CAS_GET(word2, CAS_RC2_HDR_SIZE)) != 0) {
1719 			idx = CAS_GET(word2, CAS_RC2_HDR_INDEX);
1720 			off = CAS_GET(word2, CAS_RC2_HDR_OFF);
1721 #ifdef CAS_DEBUG
1722 			CTR4(KTR_CAS, "%s: hdr at idx %d, off %d, len %d",
1723 			    __func__, idx, off, len);
1724 #endif
1725 			rxds = &sc->sc_rxdsoft[idx];
1726 			MGETHDR(m, M_NOWAIT, MT_DATA);
1727 			if (m != NULL) {
1728 				refcount_acquire(&rxds->rxds_refcount);
1729 				bus_dmamap_sync(sc->sc_rdmatag,
1730 				    rxds->rxds_dmamap, BUS_DMASYNC_POSTREAD);
1731 				m_extadd(m, (char *)rxds->rxds_buf +
1732 				    off * 256 + ETHER_ALIGN, len, cas_free,
1733 				    sc, (void *)(uintptr_t)idx,
1734 				    M_RDONLY, EXT_NET_DRV);
1735 				if ((m->m_flags & M_EXT) == 0) {
1736 					m_freem(m);
1737 					m = NULL;
1738 				}
1739 			}
1740 			if (m != NULL) {
1741 				m->m_pkthdr.rcvif = ifp;
1742 				m->m_pkthdr.len = m->m_len = len;
1743 				if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1744 				if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
1745 					cas_rxcksum(m, CAS_GET(word4,
1746 					    CAS_RC4_TCP_CSUM));
1747 				/* Pass it on. */
1748 				CAS_UNLOCK(sc);
1749 				if_input(ifp, m);
1750 				CAS_LOCK(sc);
1751 			} else
1752 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1753 
1754 			if ((word1 & CAS_RC1_RELEASE_HDR) != 0 &&
1755 			    refcount_release(&rxds->rxds_refcount) != 0)
1756 				cas_add_rxdesc(sc, idx);
1757 		} else if ((len = CAS_GET(word1, CAS_RC1_DATA_SIZE)) != 0) {
1758 			idx = CAS_GET(word1, CAS_RC1_DATA_INDEX);
1759 			off = CAS_GET(word1, CAS_RC1_DATA_OFF);
1760 #ifdef CAS_DEBUG
1761 			CTR4(KTR_CAS, "%s: data at idx %d, off %d, len %d",
1762 			    __func__, idx, off, len);
1763 #endif
1764 			rxds = &sc->sc_rxdsoft[idx];
1765 			MGETHDR(m, M_NOWAIT, MT_DATA);
1766 			if (m != NULL) {
1767 				refcount_acquire(&rxds->rxds_refcount);
1768 				off += ETHER_ALIGN;
1769 				m->m_len = min(CAS_PAGE_SIZE - off, len);
1770 				bus_dmamap_sync(sc->sc_rdmatag,
1771 				    rxds->rxds_dmamap, BUS_DMASYNC_POSTREAD);
1772 				m_extadd(m, (char *)rxds->rxds_buf + off,
1773 				    m->m_len, cas_free, sc,
1774 				    (void *)(uintptr_t)idx, M_RDONLY,
1775 				    EXT_NET_DRV);
1776 				if ((m->m_flags & M_EXT) == 0) {
1777 					m_freem(m);
1778 					m = NULL;
1779 				}
1780 			}
1781 			idx2 = 0;
1782 			m2 = NULL;
1783 			rxds2 = NULL;
1784 			if ((word1 & CAS_RC1_SPLIT_PKT) != 0) {
1785 				KASSERT((word1 & CAS_RC1_RELEASE_NEXT) != 0,
1786 				    ("%s: split but no release next",
1787 				    __func__));
1788 
1789 				idx2 = CAS_GET(word2, CAS_RC2_NEXT_INDEX);
1790 #ifdef CAS_DEBUG
1791 				CTR2(KTR_CAS, "%s: split at idx %d",
1792 				    __func__, idx2);
1793 #endif
1794 				rxds2 = &sc->sc_rxdsoft[idx2];
1795 				if (m != NULL) {
1796 					MGET(m2, M_NOWAIT, MT_DATA);
1797 					if (m2 != NULL) {
1798 						refcount_acquire(
1799 						    &rxds2->rxds_refcount);
1800 						m2->m_len = len - m->m_len;
1801 						bus_dmamap_sync(
1802 						    sc->sc_rdmatag,
1803 						    rxds2->rxds_dmamap,
1804 						    BUS_DMASYNC_POSTREAD);
1805 						m_extadd(m2,
1806 						    (char *)rxds2->rxds_buf,
1807 						    m2->m_len, cas_free, sc,
1808 						    (void *)(uintptr_t)idx2,
1809 						    M_RDONLY, EXT_NET_DRV);
1810 						if ((m2->m_flags & M_EXT) ==
1811 						    0) {
1812 							m_freem(m2);
1813 							m2 = NULL;
1814 						}
1815 					}
1816 				}
1817 				if (m2 != NULL)
1818 					m->m_next = m2;
1819 				else if (m != NULL) {
1820 					m_freem(m);
1821 					m = NULL;
1822 				}
1823 			}
1824 			if (m != NULL) {
1825 				m->m_pkthdr.rcvif = ifp;
1826 				m->m_pkthdr.len = len;
1827 				if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1828 				if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
1829 					cas_rxcksum(m, CAS_GET(word4,
1830 					    CAS_RC4_TCP_CSUM));
1831 				/* Pass it on. */
1832 				CAS_UNLOCK(sc);
1833 				if_input(ifp, m);
1834 				CAS_LOCK(sc);
1835 			} else
1836 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1837 
1838 			if ((word1 & CAS_RC1_RELEASE_DATA) != 0 &&
1839 			    refcount_release(&rxds->rxds_refcount) != 0)
1840 				cas_add_rxdesc(sc, idx);
1841 			if ((word1 & CAS_RC1_SPLIT_PKT) != 0 &&
1842 			    refcount_release(&rxds2->rxds_refcount) != 0)
1843 				cas_add_rxdesc(sc, idx2);
1844 		}
1845 
1846 		skip = CAS_GET(word1, CAS_RC1_SKIP);
1847 
1848  skip:
1849 		cas_rxcompinit(&sc->sc_rxcomps[sc->sc_rxcptr]);
1850 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
1851 			break;
1852 	}
1853 	CAS_CDSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1854 	CAS_WRITE_4(sc, CAS_RX_COMP_TAIL, sc->sc_rxcptr);
1855 
1856 #undef PRINTWORD
1857 #undef SKIPASSERT
1858 #undef WORDTOH
1859 
1860 #ifdef CAS_DEBUG
1861 	CTR4(KTR_CAS, "%s: done sc->sc_rxcptr %d, sc->sc_rxdptr %d, head %d",
1862 	    __func__, sc->sc_rxcptr, sc->sc_rxdptr,
1863 	    CAS_READ_4(sc, CAS_RX_COMP_HEAD));
1864 #endif
1865 }
1866 
1867 static void
1868 cas_free(struct mbuf *m)
1869 {
1870 	struct cas_rxdsoft *rxds;
1871 	struct cas_softc *sc;
1872 	u_int idx, locked;
1873 
1874 	sc = m->m_ext.ext_arg1;
1875 	idx = (uintptr_t)m->m_ext.ext_arg2;
1876 	rxds = &sc->sc_rxdsoft[idx];
1877 	if (refcount_release(&rxds->rxds_refcount) == 0)
1878 		return;
1879 
1880 	/*
1881 	 * NB: this function can be called via m_freem(9) within
1882 	 * this driver!
1883 	 */
1884 	if ((locked = CAS_LOCK_OWNED(sc)) == 0)
1885 		CAS_LOCK(sc);
1886 	cas_add_rxdesc(sc, idx);
1887 	if (locked == 0)
1888 		CAS_UNLOCK(sc);
1889 }
1890 
1891 static inline void
1892 cas_add_rxdesc(struct cas_softc *sc, u_int idx)
1893 {
1894 
1895 	CAS_LOCK_ASSERT(sc, MA_OWNED);
1896 
1897 	bus_dmamap_sync(sc->sc_rdmatag, sc->sc_rxdsoft[idx].rxds_dmamap,
1898 	    BUS_DMASYNC_PREREAD);
1899 	CAS_UPDATE_RXDESC(sc, sc->sc_rxdptr, idx);
1900 	sc->sc_rxdptr = CAS_NEXTRXDESC(sc->sc_rxdptr);
1901 
1902 	/*
1903 	 * Update the RX kick register.  This register has to point to the
1904 	 * descriptor after the last valid one (before the current batch)
1905 	 * and for optimum performance should be incremented in multiples
1906 	 * of 4 (the DMA engine fetches/updates descriptors in batches of 4).
1907 	 */
1908 	if ((sc->sc_rxdptr % 4) == 0) {
1909 		CAS_CDSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1910 		CAS_WRITE_4(sc, CAS_RX_KICK,
1911 		    (sc->sc_rxdptr + CAS_NRXDESC - 4) & CAS_NRXDESC_MASK);
1912 	}
1913 }
1914 
1915 static void
1916 cas_eint(struct cas_softc *sc, u_int status)
1917 {
1918 	if_t ifp = sc->sc_ifp;
1919 
1920 	CAS_LOCK_ASSERT(sc, MA_OWNED);
1921 
1922 	if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1923 
1924 	device_printf(sc->sc_dev, "%s: status 0x%x", __func__, status);
1925 	if ((status & CAS_INTR_PCI_ERROR_INT) != 0) {
1926 		status = CAS_READ_4(sc, CAS_ERROR_STATUS);
1927 		printf(", PCI bus error 0x%x", status);
1928 		if ((status & CAS_ERROR_OTHER) != 0) {
1929 			status = pci_read_config(sc->sc_dev, PCIR_STATUS, 2);
1930 			printf(", PCI status 0x%x", status);
1931 			pci_write_config(sc->sc_dev, PCIR_STATUS, status, 2);
1932 		}
1933 	}
1934 	printf("\n");
1935 
1936 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1937 	cas_init_locked(sc);
1938 	if (!if_sendq_empty(ifp))
1939 		taskqueue_enqueue(sc->sc_tq, &sc->sc_tx_task);
1940 }
1941 
1942 static int
1943 cas_intr(void *v)
1944 {
1945 	struct cas_softc *sc = v;
1946 
1947 	if (__predict_false((CAS_READ_4(sc, CAS_STATUS_ALIAS) &
1948 	    CAS_INTR_SUMMARY) == 0))
1949 		return (FILTER_STRAY);
1950 
1951 	/* Disable interrupts. */
1952 	CAS_WRITE_4(sc, CAS_INTMASK, 0xffffffff);
1953 	taskqueue_enqueue(sc->sc_tq, &sc->sc_intr_task);
1954 
1955 	return (FILTER_HANDLED);
1956 }
1957 
1958 static void
1959 cas_intr_task(void *arg, int pending __unused)
1960 {
1961 	struct cas_softc *sc = arg;
1962 	if_t ifp = sc->sc_ifp;
1963 	uint32_t status, status2;
1964 
1965 	CAS_LOCK_ASSERT(sc, MA_NOTOWNED);
1966 
1967 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
1968 		return;
1969 
1970 	status = CAS_READ_4(sc, CAS_STATUS);
1971 	if (__predict_false((status & CAS_INTR_SUMMARY) == 0))
1972 		goto done;
1973 
1974 	CAS_LOCK(sc);
1975 #ifdef CAS_DEBUG
1976 	CTR4(KTR_CAS, "%s: %s: cplt %x, status %x",
1977 	    device_get_name(sc->sc_dev), __func__,
1978 	    (status >> CAS_STATUS_TX_COMP3_SHFT), (u_int)status);
1979 
1980 	/*
1981 	 * PCS interrupts must be cleared, otherwise no traffic is passed!
1982 	 */
1983 	if ((status & CAS_INTR_PCS_INT) != 0) {
1984 		status2 =
1985 		    CAS_READ_4(sc, CAS_PCS_INTR_STATUS) |
1986 		    CAS_READ_4(sc, CAS_PCS_INTR_STATUS);
1987 		if ((status2 & CAS_PCS_INTR_LINK) != 0)
1988 			device_printf(sc->sc_dev,
1989 			    "%s: PCS link status changed\n", __func__);
1990 	}
1991 	if ((status & CAS_MAC_CTRL_STATUS) != 0) {
1992 		status2 = CAS_READ_4(sc, CAS_MAC_CTRL_STATUS);
1993 		if ((status2 & CAS_MAC_CTRL_PAUSE) != 0)
1994 			device_printf(sc->sc_dev,
1995 			    "%s: PAUSE received (PAUSE time %d slots)\n",
1996 			    __func__,
1997 			    (status2 & CAS_MAC_CTRL_STATUS_PT_MASK) >>
1998 			    CAS_MAC_CTRL_STATUS_PT_SHFT);
1999 		if ((status2 & CAS_MAC_CTRL_PAUSE) != 0)
2000 			device_printf(sc->sc_dev,
2001 			    "%s: transited to PAUSE state\n", __func__);
2002 		if ((status2 & CAS_MAC_CTRL_NON_PAUSE) != 0)
2003 			device_printf(sc->sc_dev,
2004 			    "%s: transited to non-PAUSE state\n", __func__);
2005 	}
2006 	if ((status & CAS_INTR_MIF) != 0)
2007 		device_printf(sc->sc_dev, "%s: MIF interrupt\n", __func__);
2008 #endif
2009 
2010 	if (__predict_false((status &
2011 	    (CAS_INTR_TX_TAG_ERR | CAS_INTR_RX_TAG_ERR |
2012 	    CAS_INTR_RX_LEN_MMATCH | CAS_INTR_PCI_ERROR_INT)) != 0)) {
2013 		cas_eint(sc, status);
2014 		CAS_UNLOCK(sc);
2015 		return;
2016 	}
2017 
2018 	if (__predict_false(status & CAS_INTR_TX_MAC_INT)) {
2019 		status2 = CAS_READ_4(sc, CAS_MAC_TX_STATUS);
2020 		if ((status2 &
2021 		    (CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_MAX_PKT_ERR)) != 0)
2022 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2023 		else if ((status2 & ~CAS_MAC_TX_FRAME_XMTD) != 0)
2024 			device_printf(sc->sc_dev,
2025 			    "MAC TX fault, status %x\n", status2);
2026 	}
2027 
2028 	if (__predict_false(status & CAS_INTR_RX_MAC_INT)) {
2029 		status2 = CAS_READ_4(sc, CAS_MAC_RX_STATUS);
2030 		if ((status2 & CAS_MAC_RX_OVERFLOW) != 0)
2031 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2032 		else if ((status2 & ~CAS_MAC_RX_FRAME_RCVD) != 0)
2033 			device_printf(sc->sc_dev,
2034 			    "MAC RX fault, status %x\n", status2);
2035 	}
2036 
2037 	if ((status &
2038 	    (CAS_INTR_RX_DONE | CAS_INTR_RX_BUF_NA | CAS_INTR_RX_COMP_FULL |
2039 	    CAS_INTR_RX_BUF_AEMPTY | CAS_INTR_RX_COMP_AFULL)) != 0) {
2040 		cas_rint(sc);
2041 #ifdef CAS_DEBUG
2042 		if (__predict_false((status &
2043 		    (CAS_INTR_RX_BUF_NA | CAS_INTR_RX_COMP_FULL |
2044 		    CAS_INTR_RX_BUF_AEMPTY | CAS_INTR_RX_COMP_AFULL)) != 0))
2045 			device_printf(sc->sc_dev,
2046 			    "RX fault, status %x\n", status);
2047 #endif
2048 	}
2049 
2050 	if ((status &
2051 	    (CAS_INTR_TX_INT_ME | CAS_INTR_TX_ALL | CAS_INTR_TX_DONE)) != 0)
2052 		cas_tint(sc);
2053 
2054 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
2055 		CAS_UNLOCK(sc);
2056 		return;
2057 	} else if (!if_sendq_empty(ifp))
2058 		taskqueue_enqueue(sc->sc_tq, &sc->sc_tx_task);
2059 	CAS_UNLOCK(sc);
2060 
2061 	status = CAS_READ_4(sc, CAS_STATUS_ALIAS);
2062 	if (__predict_false((status & CAS_INTR_SUMMARY) != 0)) {
2063 		taskqueue_enqueue(sc->sc_tq, &sc->sc_intr_task);
2064 		return;
2065 	}
2066 
2067  done:
2068 	/* Re-enable interrupts. */
2069 	CAS_WRITE_4(sc, CAS_INTMASK,
2070 	    ~(CAS_INTR_TX_INT_ME | CAS_INTR_TX_TAG_ERR |
2071 	    CAS_INTR_RX_DONE | CAS_INTR_RX_BUF_NA | CAS_INTR_RX_TAG_ERR |
2072 	    CAS_INTR_RX_COMP_FULL | CAS_INTR_RX_BUF_AEMPTY |
2073 	    CAS_INTR_RX_COMP_AFULL | CAS_INTR_RX_LEN_MMATCH |
2074 	    CAS_INTR_PCI_ERROR_INT
2075 #ifdef CAS_DEBUG
2076 	    | CAS_INTR_PCS_INT | CAS_INTR_MIF
2077 #endif
2078 	));
2079 }
2080 
2081 static void
2082 cas_watchdog(struct cas_softc *sc)
2083 {
2084 	if_t ifp = sc->sc_ifp;
2085 
2086 	CAS_LOCK_ASSERT(sc, MA_OWNED);
2087 
2088 #ifdef CAS_DEBUG
2089 	CTR4(KTR_CAS,
2090 	    "%s: CAS_RX_CONF %x CAS_MAC_RX_STATUS %x CAS_MAC_RX_CONF %x",
2091 	    __func__, CAS_READ_4(sc, CAS_RX_CONF),
2092 	    CAS_READ_4(sc, CAS_MAC_RX_STATUS),
2093 	    CAS_READ_4(sc, CAS_MAC_RX_CONF));
2094 	CTR4(KTR_CAS,
2095 	    "%s: CAS_TX_CONF %x CAS_MAC_TX_STATUS %x CAS_MAC_TX_CONF %x",
2096 	    __func__, CAS_READ_4(sc, CAS_TX_CONF),
2097 	    CAS_READ_4(sc, CAS_MAC_TX_STATUS),
2098 	    CAS_READ_4(sc, CAS_MAC_TX_CONF));
2099 #endif
2100 
2101 	if (sc->sc_wdog_timer == 0 || --sc->sc_wdog_timer != 0)
2102 		return;
2103 
2104 	if ((sc->sc_flags & CAS_LINK) != 0)
2105 		device_printf(sc->sc_dev, "device timeout\n");
2106 	else if (bootverbose)
2107 		device_printf(sc->sc_dev, "device timeout (no link)\n");
2108 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2109 
2110 	/* Try to get more packets going. */
2111 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2112 	cas_init_locked(sc);
2113 	if (!if_sendq_empty(ifp))
2114 		taskqueue_enqueue(sc->sc_tq, &sc->sc_tx_task);
2115 }
2116 
2117 static void
2118 cas_mifinit(struct cas_softc *sc)
2119 {
2120 
2121 	/* Configure the MIF in frame mode. */
2122 	CAS_WRITE_4(sc, CAS_MIF_CONF,
2123 	    CAS_READ_4(sc, CAS_MIF_CONF) & ~CAS_MIF_CONF_BB_MODE);
2124 	CAS_BARRIER(sc, CAS_MIF_CONF, 4,
2125 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
2126 }
2127 
2128 /*
2129  * MII interface
2130  *
2131  * The MII interface supports at least three different operating modes:
2132  *
2133  * Bitbang mode is implemented using data, clock and output enable registers.
2134  *
2135  * Frame mode is implemented by loading a complete frame into the frame
2136  * register and polling the valid bit for completion.
2137  *
2138  * Polling mode uses the frame register but completion is indicated by
2139  * an interrupt.
2140  *
2141  */
2142 static int
2143 cas_mii_readreg(device_t dev, int phy, int reg)
2144 {
2145 	struct cas_softc *sc;
2146 	int n;
2147 	uint32_t v;
2148 
2149 #ifdef CAS_DEBUG_PHY
2150 	printf("%s: phy %d reg %d\n", __func__, phy, reg);
2151 #endif
2152 
2153 	sc = device_get_softc(dev);
2154 	if ((sc->sc_flags & CAS_SERDES) != 0) {
2155 		switch (reg) {
2156 		case MII_BMCR:
2157 			reg = CAS_PCS_CTRL;
2158 			break;
2159 		case MII_BMSR:
2160 			reg = CAS_PCS_STATUS;
2161 			break;
2162 		case MII_PHYIDR1:
2163 		case MII_PHYIDR2:
2164 			return (0);
2165 		case MII_ANAR:
2166 			reg = CAS_PCS_ANAR;
2167 			break;
2168 		case MII_ANLPAR:
2169 			reg = CAS_PCS_ANLPAR;
2170 			break;
2171 		case MII_EXTSR:
2172 			return (EXTSR_1000XFDX | EXTSR_1000XHDX);
2173 		default:
2174 			device_printf(sc->sc_dev,
2175 			    "%s: unhandled register %d\n", __func__, reg);
2176 			return (0);
2177 		}
2178 		return (CAS_READ_4(sc, reg));
2179 	}
2180 
2181 	/* Construct the frame command. */
2182 	v = CAS_MIF_FRAME_READ |
2183 	    (phy << CAS_MIF_FRAME_PHY_SHFT) |
2184 	    (reg << CAS_MIF_FRAME_REG_SHFT);
2185 
2186 	CAS_WRITE_4(sc, CAS_MIF_FRAME, v);
2187 	CAS_BARRIER(sc, CAS_MIF_FRAME, 4,
2188 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
2189 	for (n = 0; n < 100; n++) {
2190 		DELAY(1);
2191 		v = CAS_READ_4(sc, CAS_MIF_FRAME);
2192 		if (v & CAS_MIF_FRAME_TA_LSB)
2193 			return (v & CAS_MIF_FRAME_DATA);
2194 	}
2195 
2196 	device_printf(sc->sc_dev, "%s: timed out\n", __func__);
2197 	return (0);
2198 }
2199 
2200 static int
2201 cas_mii_writereg(device_t dev, int phy, int reg, int val)
2202 {
2203 	struct cas_softc *sc;
2204 	int n;
2205 	uint32_t v;
2206 
2207 #ifdef CAS_DEBUG_PHY
2208 	printf("%s: phy %d reg %d val %x\n", phy, reg, val, __func__);
2209 #endif
2210 
2211 	sc = device_get_softc(dev);
2212 	if ((sc->sc_flags & CAS_SERDES) != 0) {
2213 		switch (reg) {
2214 		case MII_BMSR:
2215 			reg = CAS_PCS_STATUS;
2216 			break;
2217 		case MII_BMCR:
2218 			reg = CAS_PCS_CTRL;
2219 			if ((val & CAS_PCS_CTRL_RESET) == 0)
2220 				break;
2221 			CAS_WRITE_4(sc, CAS_PCS_CTRL, val);
2222 			CAS_BARRIER(sc, CAS_PCS_CTRL, 4,
2223 			    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
2224 			if (!cas_bitwait(sc, CAS_PCS_CTRL,
2225 			    CAS_PCS_CTRL_RESET, 0))
2226 				device_printf(sc->sc_dev,
2227 				    "cannot reset PCS\n");
2228 			/* FALLTHROUGH */
2229 		case MII_ANAR:
2230 			CAS_WRITE_4(sc, CAS_PCS_CONF, 0);
2231 			CAS_BARRIER(sc, CAS_PCS_CONF, 4,
2232 			    BUS_SPACE_BARRIER_WRITE);
2233 			CAS_WRITE_4(sc, CAS_PCS_ANAR, val);
2234 			CAS_BARRIER(sc, CAS_PCS_ANAR, 4,
2235 			    BUS_SPACE_BARRIER_WRITE);
2236 			CAS_WRITE_4(sc, CAS_PCS_SERDES_CTRL,
2237 			    CAS_PCS_SERDES_CTRL_ESD);
2238 			CAS_BARRIER(sc, CAS_PCS_CONF, 4,
2239 			    BUS_SPACE_BARRIER_WRITE);
2240 			CAS_WRITE_4(sc, CAS_PCS_CONF,
2241 			    CAS_PCS_CONF_EN);
2242 			CAS_BARRIER(sc, CAS_PCS_CONF, 4,
2243 			    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
2244 			return (0);
2245 		case MII_ANLPAR:
2246 			reg = CAS_PCS_ANLPAR;
2247 			break;
2248 		default:
2249 			device_printf(sc->sc_dev,
2250 			    "%s: unhandled register %d\n", __func__, reg);
2251 			return (0);
2252 		}
2253 		CAS_WRITE_4(sc, reg, val);
2254 		CAS_BARRIER(sc, reg, 4,
2255 		    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
2256 		return (0);
2257 	}
2258 
2259 	/* Construct the frame command. */
2260 	v = CAS_MIF_FRAME_WRITE |
2261 	    (phy << CAS_MIF_FRAME_PHY_SHFT) |
2262 	    (reg << CAS_MIF_FRAME_REG_SHFT) |
2263 	    (val & CAS_MIF_FRAME_DATA);
2264 
2265 	CAS_WRITE_4(sc, CAS_MIF_FRAME, v);
2266 	CAS_BARRIER(sc, CAS_MIF_FRAME, 4,
2267 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
2268 	for (n = 0; n < 100; n++) {
2269 		DELAY(1);
2270 		v = CAS_READ_4(sc, CAS_MIF_FRAME);
2271 		if (v & CAS_MIF_FRAME_TA_LSB)
2272 			return (1);
2273 	}
2274 
2275 	device_printf(sc->sc_dev, "%s: timed out\n", __func__);
2276 	return (0);
2277 }
2278 
2279 static void
2280 cas_mii_statchg(device_t dev)
2281 {
2282 	struct cas_softc *sc;
2283 	if_t ifp;
2284 	int gigabit;
2285 	uint32_t rxcfg, txcfg, v;
2286 
2287 	sc = device_get_softc(dev);
2288 	ifp = sc->sc_ifp;
2289 
2290 	CAS_LOCK_ASSERT(sc, MA_OWNED);
2291 
2292 #ifdef CAS_DEBUG
2293 	if ((if_getflags(ifp) & IFF_DEBUG) != 0)
2294 		device_printf(sc->sc_dev, "%s: status changen", __func__);
2295 #endif
2296 
2297 	if ((sc->sc_mii->mii_media_status & IFM_ACTIVE) != 0 &&
2298 	    IFM_SUBTYPE(sc->sc_mii->mii_media_active) != IFM_NONE)
2299 		sc->sc_flags |= CAS_LINK;
2300 	else
2301 		sc->sc_flags &= ~CAS_LINK;
2302 
2303 	switch (IFM_SUBTYPE(sc->sc_mii->mii_media_active)) {
2304 	case IFM_1000_SX:
2305 	case IFM_1000_LX:
2306 	case IFM_1000_CX:
2307 	case IFM_1000_T:
2308 		gigabit = 1;
2309 		break;
2310 	default:
2311 		gigabit = 0;
2312 	}
2313 
2314 	/*
2315 	 * The configuration done here corresponds to the steps F) and
2316 	 * G) and as far as enabling of RX and TX MAC goes also step H)
2317 	 * of the initialization sequence outlined in section 11.2.1 of
2318 	 * the Cassini+ ASIC Specification.
2319 	 */
2320 
2321 	rxcfg = sc->sc_mac_rxcfg;
2322 	rxcfg &= ~CAS_MAC_RX_CONF_CARR;
2323 	txcfg = CAS_MAC_TX_CONF_EN_IPG0 | CAS_MAC_TX_CONF_NGU |
2324 	    CAS_MAC_TX_CONF_NGUL;
2325 	if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0)
2326 		txcfg |= CAS_MAC_TX_CONF_ICARR | CAS_MAC_TX_CONF_ICOLLIS;
2327 	else if (gigabit != 0) {
2328 		rxcfg |= CAS_MAC_RX_CONF_CARR;
2329 		txcfg |= CAS_MAC_TX_CONF_CARR;
2330 	}
2331 	(void)cas_disable_tx(sc);
2332 	CAS_WRITE_4(sc, CAS_MAC_TX_CONF, txcfg);
2333 	(void)cas_disable_rx(sc);
2334 	CAS_WRITE_4(sc, CAS_MAC_RX_CONF, rxcfg);
2335 
2336 	v = CAS_READ_4(sc, CAS_MAC_CTRL_CONF) &
2337 	    ~(CAS_MAC_CTRL_CONF_TXP | CAS_MAC_CTRL_CONF_RXP);
2338 	if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) &
2339 	    IFM_ETH_RXPAUSE) != 0)
2340 		v |= CAS_MAC_CTRL_CONF_RXP;
2341 	if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) &
2342 	    IFM_ETH_TXPAUSE) != 0)
2343 		v |= CAS_MAC_CTRL_CONF_TXP;
2344 	CAS_WRITE_4(sc, CAS_MAC_CTRL_CONF, v);
2345 
2346 	/*
2347 	 * All supported chips have a bug causing incorrect checksum
2348 	 * to be calculated when letting them strip the FCS in half-
2349 	 * duplex mode.  In theory we could disable FCS stripping and
2350 	 * manually adjust the checksum accordingly.  It seems to make
2351 	 * more sense to optimze for the common case and just disable
2352 	 * hardware checksumming in half-duplex mode though.
2353 	 */
2354 	if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) == 0) {
2355 		if_setcapenablebit(ifp, 0, IFCAP_HWCSUM);
2356 		if_sethwassist(ifp, 0);
2357 	} else if ((sc->sc_flags & CAS_NO_CSUM) == 0) {
2358 		if_setcapenable(ifp, if_getcapabilities(ifp));
2359 		if_sethwassist(ifp, CAS_CSUM_FEATURES);
2360 	}
2361 
2362 	if (sc->sc_variant == CAS_SATURN) {
2363 		if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) == 0)
2364 			/* silicon bug workaround */
2365 			CAS_WRITE_4(sc, CAS_MAC_PREAMBLE_LEN, 0x41);
2366 		else
2367 			CAS_WRITE_4(sc, CAS_MAC_PREAMBLE_LEN, 0x7);
2368 	}
2369 
2370 	if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) == 0 &&
2371 	    gigabit != 0)
2372 		CAS_WRITE_4(sc, CAS_MAC_SLOT_TIME,
2373 		    CAS_MAC_SLOT_TIME_CARR);
2374 	else
2375 		CAS_WRITE_4(sc, CAS_MAC_SLOT_TIME,
2376 		    CAS_MAC_SLOT_TIME_NORM);
2377 
2378 	/* XIF Configuration */
2379 	v = CAS_MAC_XIF_CONF_TX_OE | CAS_MAC_XIF_CONF_LNKLED;
2380 	if ((sc->sc_flags & CAS_SERDES) == 0) {
2381 		if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) == 0)
2382 			v |= CAS_MAC_XIF_CONF_NOECHO;
2383 		v |= CAS_MAC_XIF_CONF_BUF_OE;
2384 	}
2385 	if (gigabit != 0)
2386 		v |= CAS_MAC_XIF_CONF_GMII;
2387 	if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0)
2388 		v |= CAS_MAC_XIF_CONF_FDXLED;
2389 	CAS_WRITE_4(sc, CAS_MAC_XIF_CONF, v);
2390 
2391 	sc->sc_mac_rxcfg = rxcfg;
2392 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0 &&
2393 	    (sc->sc_flags & CAS_LINK) != 0) {
2394 		CAS_WRITE_4(sc, CAS_MAC_TX_CONF,
2395 		    txcfg | CAS_MAC_TX_CONF_EN);
2396 		CAS_WRITE_4(sc, CAS_MAC_RX_CONF,
2397 		    rxcfg | CAS_MAC_RX_CONF_EN);
2398 	}
2399 }
2400 
2401 static int
2402 cas_mediachange(if_t ifp)
2403 {
2404 	struct cas_softc *sc = if_getsoftc(ifp);
2405 	int error;
2406 
2407 	/* XXX add support for serial media. */
2408 
2409 	CAS_LOCK(sc);
2410 	error = mii_mediachg(sc->sc_mii);
2411 	CAS_UNLOCK(sc);
2412 	return (error);
2413 }
2414 
2415 static void
2416 cas_mediastatus(if_t ifp, struct ifmediareq *ifmr)
2417 {
2418 	struct cas_softc *sc = if_getsoftc(ifp);
2419 
2420 	CAS_LOCK(sc);
2421 	if ((if_getflags(ifp) & IFF_UP) == 0) {
2422 		CAS_UNLOCK(sc);
2423 		return;
2424 	}
2425 
2426 	mii_pollstat(sc->sc_mii);
2427 	ifmr->ifm_active = sc->sc_mii->mii_media_active;
2428 	ifmr->ifm_status = sc->sc_mii->mii_media_status;
2429 	CAS_UNLOCK(sc);
2430 }
2431 
2432 static int
2433 cas_ioctl(if_t ifp, u_long cmd, caddr_t data)
2434 {
2435 	struct cas_softc *sc = if_getsoftc(ifp);
2436 	struct ifreq *ifr = (struct ifreq *)data;
2437 	int error;
2438 
2439 	error = 0;
2440 	switch (cmd) {
2441 	case SIOCSIFFLAGS:
2442 		CAS_LOCK(sc);
2443 		if ((if_getflags(ifp) & IFF_UP) != 0) {
2444 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0 &&
2445 			    ((if_getflags(ifp) ^ sc->sc_ifflags) &
2446 			    (IFF_ALLMULTI | IFF_PROMISC)) != 0)
2447 				cas_setladrf(sc);
2448 			else
2449 				cas_init_locked(sc);
2450 		} else if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2451 			cas_stop(ifp);
2452 		sc->sc_ifflags = if_getflags(ifp);
2453 		CAS_UNLOCK(sc);
2454 		break;
2455 	case SIOCSIFCAP:
2456 		CAS_LOCK(sc);
2457 		if ((sc->sc_flags & CAS_NO_CSUM) != 0) {
2458 			error = EINVAL;
2459 			CAS_UNLOCK(sc);
2460 			break;
2461 		}
2462 		if_setcapenable(ifp, ifr->ifr_reqcap);
2463 		if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
2464 			if_sethwassist(ifp, CAS_CSUM_FEATURES);
2465 		else
2466 			if_sethwassist(ifp, 0);
2467 		CAS_UNLOCK(sc);
2468 		break;
2469 	case SIOCADDMULTI:
2470 	case SIOCDELMULTI:
2471 		CAS_LOCK(sc);
2472 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2473 			cas_setladrf(sc);
2474 		CAS_UNLOCK(sc);
2475 		break;
2476 	case SIOCSIFMTU:
2477 		if ((ifr->ifr_mtu < ETHERMIN) ||
2478 		    (ifr->ifr_mtu > ETHERMTU_JUMBO))
2479 			error = EINVAL;
2480 		else
2481 			if_setmtu(ifp, ifr->ifr_mtu);
2482 		break;
2483 	case SIOCGIFMEDIA:
2484 	case SIOCSIFMEDIA:
2485 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii->mii_media, cmd);
2486 		break;
2487 	default:
2488 		error = ether_ioctl(ifp, cmd, data);
2489 		break;
2490 	}
2491 
2492 	return (error);
2493 }
2494 
2495 static u_int
2496 cas_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
2497 {
2498 	uint32_t crc, *hash = arg;
2499 
2500 	crc = ether_crc32_le(LLADDR(sdl), ETHER_ADDR_LEN);
2501 	/* We just want the 8 most significant bits. */
2502 	crc >>= 24;
2503 	/* Set the corresponding bit in the filter. */
2504 	hash[crc >> 4] |= 1 << (15 - (crc & 15));
2505 
2506 	return (1);
2507 }
2508 
2509 static void
2510 cas_setladrf(struct cas_softc *sc)
2511 {
2512 	if_t ifp = sc->sc_ifp;
2513 	int i;
2514 	uint32_t hash[16];
2515 	uint32_t v;
2516 
2517 	CAS_LOCK_ASSERT(sc, MA_OWNED);
2518 
2519 	/*
2520 	 * Turn off the RX MAC and the hash filter as required by the Sun
2521 	 * Cassini programming restrictions.
2522 	 */
2523 	v = sc->sc_mac_rxcfg & ~(CAS_MAC_RX_CONF_HFILTER |
2524 	    CAS_MAC_RX_CONF_EN);
2525 	CAS_WRITE_4(sc, CAS_MAC_RX_CONF, v);
2526 	CAS_BARRIER(sc, CAS_MAC_RX_CONF, 4,
2527 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
2528 	if (!cas_bitwait(sc, CAS_MAC_RX_CONF, CAS_MAC_RX_CONF_HFILTER |
2529 	    CAS_MAC_RX_CONF_EN, 0))
2530 		device_printf(sc->sc_dev,
2531 		    "cannot disable RX MAC or hash filter\n");
2532 
2533 	v &= ~(CAS_MAC_RX_CONF_PROMISC | CAS_MAC_RX_CONF_PGRP);
2534 	if ((if_getflags(ifp) & IFF_PROMISC) != 0) {
2535 		v |= CAS_MAC_RX_CONF_PROMISC;
2536 		goto chipit;
2537 	}
2538 	if ((if_getflags(ifp) & IFF_ALLMULTI) != 0) {
2539 		v |= CAS_MAC_RX_CONF_PGRP;
2540 		goto chipit;
2541 	}
2542 
2543 	/*
2544 	 * Set up multicast address filter by passing all multicast
2545 	 * addresses through a crc generator, and then using the high
2546 	 * order 8 bits as an index into the 256 bit logical address
2547 	 * filter.  The high order 4 bits selects the word, while the
2548 	 * other 4 bits select the bit within the word (where bit 0
2549 	 * is the MSB).
2550 	 */
2551 
2552 	memset(hash, 0, sizeof(hash));
2553 	if_foreach_llmaddr(ifp, cas_hash_maddr, &hash);
2554 
2555 	v |= CAS_MAC_RX_CONF_HFILTER;
2556 
2557 	/* Now load the hash table into the chip (if we are using it). */
2558 	for (i = 0; i < 16; i++)
2559 		CAS_WRITE_4(sc,
2560 		    CAS_MAC_HASH0 + i * (CAS_MAC_HASH1 - CAS_MAC_HASH0),
2561 		    hash[i]);
2562 
2563  chipit:
2564 	sc->sc_mac_rxcfg = v;
2565 	CAS_WRITE_4(sc, CAS_MAC_RX_CONF, v | CAS_MAC_RX_CONF_EN);
2566 }
2567 
2568 static int	cas_pci_attach(device_t dev);
2569 static int	cas_pci_detach(device_t dev);
2570 static int	cas_pci_probe(device_t dev);
2571 static int	cas_pci_resume(device_t dev);
2572 static int	cas_pci_suspend(device_t dev);
2573 
2574 static device_method_t cas_pci_methods[] = {
2575 	/* Device interface */
2576 	DEVMETHOD(device_probe,		cas_pci_probe),
2577 	DEVMETHOD(device_attach,	cas_pci_attach),
2578 	DEVMETHOD(device_detach,	cas_pci_detach),
2579 	DEVMETHOD(device_suspend,	cas_pci_suspend),
2580 	DEVMETHOD(device_resume,	cas_pci_resume),
2581 	/* Use the suspend handler here, it is all that is required. */
2582 	DEVMETHOD(device_shutdown,	cas_pci_suspend),
2583 
2584 	/* MII interface */
2585 	DEVMETHOD(miibus_readreg,	cas_mii_readreg),
2586 	DEVMETHOD(miibus_writereg,	cas_mii_writereg),
2587 	DEVMETHOD(miibus_statchg,	cas_mii_statchg),
2588 
2589 	DEVMETHOD_END
2590 };
2591 
2592 static driver_t cas_pci_driver = {
2593 	"cas",
2594 	cas_pci_methods,
2595 	sizeof(struct cas_softc)
2596 };
2597 
2598 static const struct cas_pci_dev {
2599 	uint32_t	cpd_devid;
2600 	uint8_t		cpd_revid;
2601 	int		cpd_variant;
2602 	const char	*cpd_desc;
2603 } cas_pci_devlist[] = {
2604 	{ 0x0035100b, 0x0, CAS_SATURN, "NS DP83065 Saturn Gigabit Ethernet" },
2605 	{ 0xabba108e, 0x10, CAS_CASPLUS, "Sun Cassini+ Gigabit Ethernet" },
2606 	{ 0xabba108e, 0x0, CAS_CAS, "Sun Cassini Gigabit Ethernet" },
2607 	{ 0, 0, 0, NULL }
2608 };
2609 
2610 DRIVER_MODULE(cas, pci, cas_pci_driver, 0, 0);
2611 MODULE_PNP_INFO("W32:vendor/device", pci, cas, cas_pci_devlist,
2612     nitems(cas_pci_devlist) - 1);
2613 DRIVER_MODULE(miibus, cas, miibus_driver, 0, 0);
2614 MODULE_DEPEND(cas, pci, 1, 1, 1);
2615 
2616 static int
2617 cas_pci_probe(device_t dev)
2618 {
2619 	int i;
2620 
2621 	for (i = 0; cas_pci_devlist[i].cpd_desc != NULL; i++) {
2622 		if (pci_get_devid(dev) == cas_pci_devlist[i].cpd_devid &&
2623 		    pci_get_revid(dev) >= cas_pci_devlist[i].cpd_revid) {
2624 			device_set_desc(dev, cas_pci_devlist[i].cpd_desc);
2625 			return (BUS_PROBE_DEFAULT);
2626 		}
2627 	}
2628 
2629 	return (ENXIO);
2630 }
2631 
2632 static struct resource_spec cas_pci_res_spec[] = {
2633 	{ SYS_RES_IRQ, 0, RF_SHAREABLE | RF_ACTIVE },	/* CAS_RES_INTR */
2634 	{ SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE },	/* CAS_RES_MEM */
2635 	{ -1, 0 }
2636 };
2637 
2638 #define	CAS_LOCAL_MAC_ADDRESS	"local-mac-address"
2639 #define	CAS_PHY_INTERFACE	"phy-interface"
2640 #define	CAS_PHY_TYPE		"phy-type"
2641 #define	CAS_PHY_TYPE_PCS	"pcs"
2642 
2643 static int
2644 cas_pci_attach(device_t dev)
2645 {
2646 	char buf[sizeof(CAS_LOCAL_MAC_ADDRESS)];
2647 	struct cas_softc *sc;
2648 	int i;
2649 #if !defined(__powerpc__)
2650 	u_char enaddr[4][ETHER_ADDR_LEN];
2651 	u_int j, k, lma, pcs[4], phy;
2652 #endif
2653 
2654 	sc = device_get_softc(dev);
2655 	sc->sc_variant = CAS_UNKNOWN;
2656 	for (i = 0; cas_pci_devlist[i].cpd_desc != NULL; i++) {
2657 		if (pci_get_devid(dev) == cas_pci_devlist[i].cpd_devid &&
2658 		    pci_get_revid(dev) >= cas_pci_devlist[i].cpd_revid) {
2659 			sc->sc_variant = cas_pci_devlist[i].cpd_variant;
2660 			break;
2661 		}
2662 	}
2663 	if (sc->sc_variant == CAS_UNKNOWN) {
2664 		device_printf(dev, "unknown adaptor\n");
2665 		return (ENXIO);
2666 	}
2667 
2668 	/* PCI configuration */
2669 	pci_write_config(dev, PCIR_COMMAND,
2670 	    pci_read_config(dev, PCIR_COMMAND, 2) | PCIM_CMD_BUSMASTEREN |
2671 	    PCIM_CMD_MWRICEN | PCIM_CMD_PERRESPEN | PCIM_CMD_SERRESPEN, 2);
2672 
2673 	sc->sc_dev = dev;
2674 	if (sc->sc_variant == CAS_CAS && pci_get_devid(dev) < 0x02)
2675 		/* Hardware checksumming may hang TX. */
2676 		sc->sc_flags |= CAS_NO_CSUM;
2677 	if (sc->sc_variant == CAS_CASPLUS || sc->sc_variant == CAS_SATURN)
2678 		sc->sc_flags |= CAS_REG_PLUS;
2679 	if (sc->sc_variant == CAS_CAS ||
2680 	    (sc->sc_variant == CAS_CASPLUS && pci_get_revid(dev) < 0x11))
2681 		sc->sc_flags |= CAS_TABORT;
2682 	if (bootverbose)
2683 		device_printf(dev, "flags=0x%x\n", sc->sc_flags);
2684 
2685 	if (bus_alloc_resources(dev, cas_pci_res_spec, sc->sc_res)) {
2686 		device_printf(dev, "failed to allocate resources\n");
2687 		bus_release_resources(dev, cas_pci_res_spec, sc->sc_res);
2688 		return (ENXIO);
2689 	}
2690 
2691 	CAS_LOCK_INIT(sc, device_get_nameunit(dev));
2692 
2693 #if defined(__powerpc__)
2694 	OF_getetheraddr(dev, sc->sc_enaddr);
2695 	if (OF_getprop(ofw_bus_get_node(dev), CAS_PHY_INTERFACE, buf,
2696 	    sizeof(buf)) > 0 || OF_getprop(ofw_bus_get_node(dev),
2697 	    CAS_PHY_TYPE, buf, sizeof(buf)) > 0) {
2698 		buf[sizeof(buf) - 1] = '\0';
2699 		if (strcmp(buf, CAS_PHY_TYPE_PCS) == 0)
2700 			sc->sc_flags |= CAS_SERDES;
2701 	}
2702 #else
2703 	/*
2704 	 * Dig out VPD (vital product data) and read the MAC address as well
2705 	 * as the PHY type.  The VPD resides in the PCI Expansion ROM (PCI
2706 	 * FCode) and can't be accessed via the PCI capability pointer.
2707 	 * SUNW,pci-ce and SUNW,pci-qge use the Enhanced VPD format described
2708 	 * in the free US Patent 7149820.
2709 	 */
2710 
2711 #define	PCI_ROMHDR_SIZE			0x1c
2712 #define	PCI_ROMHDR_SIG			0x00
2713 #define	PCI_ROMHDR_SIG_MAGIC		0xaa55		/* little endian */
2714 #define	PCI_ROMHDR_PTR_DATA		0x18
2715 #define	PCI_ROM_SIZE			0x18
2716 #define	PCI_ROM_SIG			0x00
2717 #define	PCI_ROM_SIG_MAGIC		0x52494350	/* "PCIR", endian */
2718 							/* reversed */
2719 #define	PCI_ROM_VENDOR			0x04
2720 #define	PCI_ROM_DEVICE			0x06
2721 #define	PCI_ROM_PTR_VPD			0x08
2722 #define	PCI_VPDRES_BYTE0		0x00
2723 #define	PCI_VPDRES_ISLARGE(x)		((x) & 0x80)
2724 #define	PCI_VPDRES_LARGE_NAME(x)	((x) & 0x7f)
2725 #define	PCI_VPDRES_LARGE_LEN_LSB	0x01
2726 #define	PCI_VPDRES_LARGE_LEN_MSB	0x02
2727 #define	PCI_VPDRES_LARGE_SIZE		0x03
2728 #define	PCI_VPDRES_TYPE_ID_STRING	0x02		/* large */
2729 #define	PCI_VPDRES_TYPE_VPD		0x10		/* large */
2730 #define	PCI_VPD_KEY0			0x00
2731 #define	PCI_VPD_KEY1			0x01
2732 #define	PCI_VPD_LEN			0x02
2733 #define	PCI_VPD_SIZE			0x03
2734 
2735 #define	CAS_ROM_READ_1(sc, offs)					\
2736 	CAS_READ_1((sc), CAS_PCI_ROM_OFFSET + (offs))
2737 #define	CAS_ROM_READ_2(sc, offs)					\
2738 	CAS_READ_2((sc), CAS_PCI_ROM_OFFSET + (offs))
2739 #define	CAS_ROM_READ_4(sc, offs)					\
2740 	CAS_READ_4((sc), CAS_PCI_ROM_OFFSET + (offs))
2741 
2742 	lma = phy = 0;
2743 	memset(enaddr, 0, sizeof(enaddr));
2744 	memset(pcs, 0, sizeof(pcs));
2745 
2746 	/* Enable PCI Expansion ROM access. */
2747 	CAS_WRITE_4(sc, CAS_BIM_LDEV_OEN,
2748 	    CAS_BIM_LDEV_OEN_PAD | CAS_BIM_LDEV_OEN_PROM);
2749 
2750 	/* Read PCI Expansion ROM header. */
2751 	if (CAS_ROM_READ_2(sc, PCI_ROMHDR_SIG) != PCI_ROMHDR_SIG_MAGIC ||
2752 	    (i = CAS_ROM_READ_2(sc, PCI_ROMHDR_PTR_DATA)) <
2753 	    PCI_ROMHDR_SIZE) {
2754 		device_printf(dev, "unexpected PCI Expansion ROM header\n");
2755 		goto fail_prom;
2756 	}
2757 
2758 	/* Read PCI Expansion ROM data. */
2759 	if (CAS_ROM_READ_4(sc, i + PCI_ROM_SIG) != PCI_ROM_SIG_MAGIC ||
2760 	    CAS_ROM_READ_2(sc, i + PCI_ROM_VENDOR) != pci_get_vendor(dev) ||
2761 	    CAS_ROM_READ_2(sc, i + PCI_ROM_DEVICE) != pci_get_device(dev) ||
2762 	    (j = CAS_ROM_READ_2(sc, i + PCI_ROM_PTR_VPD)) <
2763 	    i + PCI_ROM_SIZE) {
2764 		device_printf(dev, "unexpected PCI Expansion ROM data\n");
2765 		goto fail_prom;
2766 	}
2767 
2768 	/* Read PCI VPD. */
2769  next:
2770 	if (PCI_VPDRES_ISLARGE(CAS_ROM_READ_1(sc,
2771 	    j + PCI_VPDRES_BYTE0)) == 0) {
2772 		device_printf(dev, "no large PCI VPD\n");
2773 		goto fail_prom;
2774 	}
2775 
2776 	i = (CAS_ROM_READ_1(sc, j + PCI_VPDRES_LARGE_LEN_MSB) << 8) |
2777 	    CAS_ROM_READ_1(sc, j + PCI_VPDRES_LARGE_LEN_LSB);
2778 	switch (PCI_VPDRES_LARGE_NAME(CAS_ROM_READ_1(sc,
2779 	    j + PCI_VPDRES_BYTE0))) {
2780 	case PCI_VPDRES_TYPE_ID_STRING:
2781 		/* Skip identifier string. */
2782 		j += PCI_VPDRES_LARGE_SIZE + i;
2783 		goto next;
2784 	case PCI_VPDRES_TYPE_VPD:
2785 		for (j += PCI_VPDRES_LARGE_SIZE; i > 0;
2786 		    i -= PCI_VPD_SIZE + CAS_ROM_READ_1(sc, j + PCI_VPD_LEN),
2787 		    j += PCI_VPD_SIZE + CAS_ROM_READ_1(sc, j + PCI_VPD_LEN)) {
2788 			if (CAS_ROM_READ_1(sc, j + PCI_VPD_KEY0) != 'Z')
2789 				/* no Enhanced VPD */
2790 				continue;
2791 			if (CAS_ROM_READ_1(sc, j + PCI_VPD_SIZE) != 'I')
2792 				/* no instance property */
2793 				continue;
2794 			if (CAS_ROM_READ_1(sc, j + PCI_VPD_SIZE + 3) == 'B') {
2795 				/* byte array */
2796 				if (CAS_ROM_READ_1(sc,
2797 				    j + PCI_VPD_SIZE + 4) != ETHER_ADDR_LEN)
2798 					continue;
2799 				bus_read_region_1(sc->sc_res[CAS_RES_MEM],
2800 				    CAS_PCI_ROM_OFFSET + j + PCI_VPD_SIZE + 5,
2801 				    buf, sizeof(buf));
2802 				buf[sizeof(buf) - 1] = '\0';
2803 				if (strcmp(buf, CAS_LOCAL_MAC_ADDRESS) != 0)
2804 					continue;
2805 				bus_read_region_1(sc->sc_res[CAS_RES_MEM],
2806 				    CAS_PCI_ROM_OFFSET + j + PCI_VPD_SIZE +
2807 				    5 + sizeof(CAS_LOCAL_MAC_ADDRESS),
2808 				    enaddr[lma], sizeof(enaddr[lma]));
2809 				lma++;
2810 				if (lma == 4 && phy == 4)
2811 					break;
2812 			} else if (CAS_ROM_READ_1(sc, j + PCI_VPD_SIZE + 3) ==
2813 			   'S') {
2814 				/* string */
2815 				if (CAS_ROM_READ_1(sc,
2816 				    j + PCI_VPD_SIZE + 4) !=
2817 				    sizeof(CAS_PHY_TYPE_PCS))
2818 					continue;
2819 				bus_read_region_1(sc->sc_res[CAS_RES_MEM],
2820 				    CAS_PCI_ROM_OFFSET + j + PCI_VPD_SIZE + 5,
2821 				    buf, sizeof(buf));
2822 				buf[sizeof(buf) - 1] = '\0';
2823 				if (strcmp(buf, CAS_PHY_INTERFACE) == 0)
2824 					k = sizeof(CAS_PHY_INTERFACE);
2825 				else if (strcmp(buf, CAS_PHY_TYPE) == 0)
2826 					k = sizeof(CAS_PHY_TYPE);
2827 				else
2828 					continue;
2829 				bus_read_region_1(sc->sc_res[CAS_RES_MEM],
2830 				    CAS_PCI_ROM_OFFSET + j + PCI_VPD_SIZE +
2831 				    5 + k, buf, sizeof(buf));
2832 				buf[sizeof(buf) - 1] = '\0';
2833 				if (strcmp(buf, CAS_PHY_TYPE_PCS) == 0)
2834 					pcs[phy] = 1;
2835 				phy++;
2836 				if (lma == 4 && phy == 4)
2837 					break;
2838 			}
2839 		}
2840 		break;
2841 	default:
2842 		device_printf(dev, "unexpected PCI VPD\n");
2843 		goto fail_prom;
2844 	}
2845 
2846  fail_prom:
2847 	CAS_WRITE_4(sc, CAS_BIM_LDEV_OEN, 0);
2848 
2849 	if (lma == 0) {
2850 		device_printf(dev, "could not determine Ethernet address\n");
2851 		goto fail;
2852 	}
2853 	i = 0;
2854 	if (lma > 1 && pci_get_slot(dev) < nitems(enaddr))
2855 		i = pci_get_slot(dev);
2856 	memcpy(sc->sc_enaddr, enaddr[i], ETHER_ADDR_LEN);
2857 
2858 	if (phy == 0) {
2859 		device_printf(dev, "could not determine PHY type\n");
2860 		goto fail;
2861 	}
2862 	i = 0;
2863 	if (phy > 1 && pci_get_slot(dev) < nitems(pcs))
2864 		i = pci_get_slot(dev);
2865 	if (pcs[i] != 0)
2866 		sc->sc_flags |= CAS_SERDES;
2867 #endif
2868 
2869 	if (cas_attach(sc) != 0) {
2870 		device_printf(dev, "could not be attached\n");
2871 		goto fail;
2872 	}
2873 
2874 	if (bus_setup_intr(dev, sc->sc_res[CAS_RES_INTR], INTR_TYPE_NET |
2875 	    INTR_MPSAFE, cas_intr, NULL, sc, &sc->sc_ih) != 0) {
2876 		device_printf(dev, "failed to set up interrupt\n");
2877 		cas_detach(sc);
2878 		goto fail;
2879 	}
2880 	return (0);
2881 
2882  fail:
2883 	CAS_LOCK_DESTROY(sc);
2884 	bus_release_resources(dev, cas_pci_res_spec, sc->sc_res);
2885 	return (ENXIO);
2886 }
2887 
2888 static int
2889 cas_pci_detach(device_t dev)
2890 {
2891 	struct cas_softc *sc;
2892 
2893 	sc = device_get_softc(dev);
2894 	bus_teardown_intr(dev, sc->sc_res[CAS_RES_INTR], sc->sc_ih);
2895 	cas_detach(sc);
2896 	CAS_LOCK_DESTROY(sc);
2897 	bus_release_resources(dev, cas_pci_res_spec, sc->sc_res);
2898 	return (0);
2899 }
2900 
2901 static int
2902 cas_pci_suspend(device_t dev)
2903 {
2904 
2905 	cas_suspend(device_get_softc(dev));
2906 	return (0);
2907 }
2908 
2909 static int
2910 cas_pci_resume(device_t dev)
2911 {
2912 
2913 	cas_resume(device_get_softc(dev));
2914 	return (0);
2915 }
2916