1 /*- 2 * Copyright (C) 2001 Eduardo Horvath. 3 * Copyright (c) 2001-2003 Thomas Moestl 4 * Copyright (c) 2007-2009 Marius Strobl <marius@FreeBSD.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * from: NetBSD: gem.c,v 1.21 2002/06/01 23:50:58 lukem Exp 29 * from: FreeBSD: if_gem.c 182060 2008-08-23 15:03:26Z marius 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 /* 36 * driver for Sun Cassini/Cassini+ and National Semiconductor DP83065 37 * Saturn Gigabit Ethernet controllers 38 */ 39 40 #if 0 41 #define CAS_DEBUG 42 #endif 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/bus.h> 47 #include <sys/callout.h> 48 #include <sys/endian.h> 49 #include <sys/mbuf.h> 50 #include <sys/malloc.h> 51 #include <sys/kernel.h> 52 #include <sys/lock.h> 53 #include <sys/module.h> 54 #include <sys/mutex.h> 55 #include <sys/refcount.h> 56 #include <sys/resource.h> 57 #include <sys/rman.h> 58 #include <sys/socket.h> 59 #include <sys/sockio.h> 60 #include <sys/taskqueue.h> 61 62 #include <net/bpf.h> 63 #include <net/ethernet.h> 64 #include <net/if.h> 65 #include <net/if_arp.h> 66 #include <net/if_dl.h> 67 #include <net/if_media.h> 68 #include <net/if_types.h> 69 #include <net/if_vlan_var.h> 70 71 #include <netinet/in.h> 72 #include <netinet/in_systm.h> 73 #include <netinet/ip.h> 74 #include <netinet/tcp.h> 75 #include <netinet/udp.h> 76 77 #include <machine/bus.h> 78 #if defined(__powerpc__) || defined(__sparc64__) 79 #include <dev/ofw/ofw_bus.h> 80 #include <dev/ofw/openfirm.h> 81 #include <machine/ofw_machdep.h> 82 #endif 83 #include <machine/resource.h> 84 85 #include <dev/mii/mii.h> 86 #include <dev/mii/miivar.h> 87 88 #include <dev/cas/if_casreg.h> 89 #include <dev/cas/if_casvar.h> 90 91 #include <dev/pci/pcireg.h> 92 #include <dev/pci/pcivar.h> 93 94 #include "miibus_if.h" 95 96 #define RINGASSERT(n , min, max) \ 97 CTASSERT(powerof2(n) && (n) >= (min) && (n) <= (max)) 98 99 RINGASSERT(CAS_NRXCOMP, 128, 32768); 100 RINGASSERT(CAS_NRXDESC, 32, 8192); 101 RINGASSERT(CAS_NRXDESC2, 32, 8192); 102 RINGASSERT(CAS_NTXDESC, 32, 8192); 103 104 #undef RINGASSERT 105 106 #define CCDASSERT(m, a) \ 107 CTASSERT((offsetof(struct cas_control_data, m) & ((a) - 1)) == 0) 108 109 CCDASSERT(ccd_rxcomps, CAS_RX_COMP_ALIGN); 110 CCDASSERT(ccd_rxdescs, CAS_RX_DESC_ALIGN); 111 CCDASSERT(ccd_rxdescs2, CAS_RX_DESC_ALIGN); 112 113 #undef CCDASSERT 114 115 #define CAS_TRIES 10000 116 117 /* 118 * According to documentation, the hardware has support for basic TCP 119 * checksum offloading only, in practice this can be also used for UDP 120 * however (i.e. the problem of previous Sun NICs that a checksum of 0x0 121 * is not converted to 0xffff no longer exists). 122 */ 123 #define CAS_CSUM_FEATURES (CSUM_TCP | CSUM_UDP) 124 125 static inline void cas_add_rxdesc(struct cas_softc *sc, u_int idx); 126 static int cas_attach(struct cas_softc *sc); 127 static int cas_bitwait(struct cas_softc *sc, bus_addr_t r, uint32_t clr, 128 uint32_t set); 129 static void cas_cddma_callback(void *xsc, bus_dma_segment_t *segs, 130 int nsegs, int error); 131 static void cas_detach(struct cas_softc *sc); 132 static int cas_disable_rx(struct cas_softc *sc); 133 static int cas_disable_tx(struct cas_softc *sc); 134 static void cas_eint(struct cas_softc *sc, u_int status); 135 static int cas_free(struct mbuf *m, void *arg1, void* arg2); 136 static void cas_init(void *xsc); 137 static void cas_init_locked(struct cas_softc *sc); 138 static void cas_init_regs(struct cas_softc *sc); 139 static int cas_intr(void *v); 140 static void cas_intr_task(void *arg, int pending __unused); 141 static int cas_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data); 142 static int cas_load_txmbuf(struct cas_softc *sc, struct mbuf **m_head); 143 static int cas_mediachange(struct ifnet *ifp); 144 static void cas_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr); 145 static void cas_meminit(struct cas_softc *sc); 146 static void cas_mifinit(struct cas_softc *sc); 147 static int cas_mii_readreg(device_t dev, int phy, int reg); 148 static void cas_mii_statchg(device_t dev); 149 static int cas_mii_writereg(device_t dev, int phy, int reg, int val); 150 static void cas_reset(struct cas_softc *sc); 151 static int cas_reset_rx(struct cas_softc *sc); 152 static int cas_reset_tx(struct cas_softc *sc); 153 static void cas_resume(struct cas_softc *sc); 154 static u_int cas_descsize(u_int sz); 155 static void cas_rint(struct cas_softc *sc); 156 static void cas_rint_timeout(void *arg); 157 static inline void cas_rxcksum(struct mbuf *m, uint16_t cksum); 158 static inline void cas_rxcompinit(struct cas_rx_comp *rxcomp); 159 static u_int cas_rxcompsize(u_int sz); 160 static void cas_rxdma_callback(void *xsc, bus_dma_segment_t *segs, 161 int nsegs, int error); 162 static void cas_setladrf(struct cas_softc *sc); 163 static void cas_start(struct ifnet *ifp); 164 static void cas_stop(struct ifnet *ifp); 165 static void cas_suspend(struct cas_softc *sc); 166 static void cas_tick(void *arg); 167 static void cas_tint(struct cas_softc *sc); 168 static void cas_tx_task(void *arg, int pending __unused); 169 static inline void cas_txkick(struct cas_softc *sc); 170 static void cas_watchdog(struct cas_softc *sc); 171 172 static devclass_t cas_devclass; 173 174 MODULE_DEPEND(cas, ether, 1, 1, 1); 175 MODULE_DEPEND(cas, miibus, 1, 1, 1); 176 177 #ifdef CAS_DEBUG 178 #include <sys/ktr.h> 179 #define KTR_CAS KTR_SPARE2 180 #endif 181 182 static int 183 cas_attach(struct cas_softc *sc) 184 { 185 struct cas_txsoft *txs; 186 struct ifnet *ifp; 187 int error, i; 188 uint32_t v; 189 190 /* Set up ifnet structure. */ 191 ifp = sc->sc_ifp = if_alloc(IFT_ETHER); 192 if (ifp == NULL) 193 return (ENOSPC); 194 ifp->if_softc = sc; 195 if_initname(ifp, device_get_name(sc->sc_dev), 196 device_get_unit(sc->sc_dev)); 197 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 198 ifp->if_start = cas_start; 199 ifp->if_ioctl = cas_ioctl; 200 ifp->if_init = cas_init; 201 IFQ_SET_MAXLEN(&ifp->if_snd, CAS_TXQUEUELEN); 202 ifp->if_snd.ifq_drv_maxlen = CAS_TXQUEUELEN; 203 IFQ_SET_READY(&ifp->if_snd); 204 205 callout_init_mtx(&sc->sc_tick_ch, &sc->sc_mtx, 0); 206 callout_init_mtx(&sc->sc_rx_ch, &sc->sc_mtx, 0); 207 /* Create local taskq. */ 208 TASK_INIT(&sc->sc_intr_task, 0, cas_intr_task, sc); 209 TASK_INIT(&sc->sc_tx_task, 1, cas_tx_task, ifp); 210 sc->sc_tq = taskqueue_create_fast("cas_taskq", M_WAITOK, 211 taskqueue_thread_enqueue, &sc->sc_tq); 212 if (sc->sc_tq == NULL) { 213 device_printf(sc->sc_dev, "could not create taskqueue\n"); 214 error = ENXIO; 215 goto fail_ifnet; 216 } 217 error = taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq", 218 device_get_nameunit(sc->sc_dev)); 219 if (error != 0) { 220 device_printf(sc->sc_dev, "could not start threads\n"); 221 goto fail_taskq; 222 } 223 224 /* Make sure the chip is stopped. */ 225 cas_reset(sc); 226 227 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 228 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 229 BUS_SPACE_MAXSIZE, 0, BUS_SPACE_MAXSIZE, 0, NULL, NULL, 230 &sc->sc_pdmatag); 231 if (error != 0) 232 goto fail_taskq; 233 234 error = bus_dma_tag_create(sc->sc_pdmatag, 1, 0, 235 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 236 CAS_PAGE_SIZE, 1, CAS_PAGE_SIZE, 0, NULL, NULL, &sc->sc_rdmatag); 237 if (error != 0) 238 goto fail_ptag; 239 240 error = bus_dma_tag_create(sc->sc_pdmatag, 1, 0, 241 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 242 MCLBYTES * CAS_NTXSEGS, CAS_NTXSEGS, MCLBYTES, 243 BUS_DMA_ALLOCNOW, NULL, NULL, &sc->sc_tdmatag); 244 if (error != 0) 245 goto fail_rtag; 246 247 error = bus_dma_tag_create(sc->sc_pdmatag, CAS_TX_DESC_ALIGN, 0, 248 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 249 sizeof(struct cas_control_data), 1, 250 sizeof(struct cas_control_data), 0, 251 NULL, NULL, &sc->sc_cdmatag); 252 if (error != 0) 253 goto fail_ttag; 254 255 /* 256 * Allocate the control data structures, create and load the 257 * DMA map for it. 258 */ 259 if ((error = bus_dmamem_alloc(sc->sc_cdmatag, 260 (void **)&sc->sc_control_data, 261 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, 262 &sc->sc_cddmamap)) != 0) { 263 device_printf(sc->sc_dev, 264 "unable to allocate control data, error = %d\n", error); 265 goto fail_ctag; 266 } 267 268 sc->sc_cddma = 0; 269 if ((error = bus_dmamap_load(sc->sc_cdmatag, sc->sc_cddmamap, 270 sc->sc_control_data, sizeof(struct cas_control_data), 271 cas_cddma_callback, sc, 0)) != 0 || sc->sc_cddma == 0) { 272 device_printf(sc->sc_dev, 273 "unable to load control data DMA map, error = %d\n", 274 error); 275 goto fail_cmem; 276 } 277 278 /* 279 * Initialize the transmit job descriptors. 280 */ 281 STAILQ_INIT(&sc->sc_txfreeq); 282 STAILQ_INIT(&sc->sc_txdirtyq); 283 284 /* 285 * Create the transmit buffer DMA maps. 286 */ 287 error = ENOMEM; 288 for (i = 0; i < CAS_TXQUEUELEN; i++) { 289 txs = &sc->sc_txsoft[i]; 290 txs->txs_mbuf = NULL; 291 txs->txs_ndescs = 0; 292 if ((error = bus_dmamap_create(sc->sc_tdmatag, 0, 293 &txs->txs_dmamap)) != 0) { 294 device_printf(sc->sc_dev, 295 "unable to create TX DMA map %d, error = %d\n", 296 i, error); 297 goto fail_txd; 298 } 299 STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); 300 } 301 302 /* 303 * Allocate the receive buffers, create and load the DMA maps 304 * for them. 305 */ 306 for (i = 0; i < CAS_NRXDESC; i++) { 307 if ((error = bus_dmamem_alloc(sc->sc_rdmatag, 308 &sc->sc_rxdsoft[i].rxds_buf, BUS_DMA_WAITOK, 309 &sc->sc_rxdsoft[i].rxds_dmamap)) != 0) { 310 device_printf(sc->sc_dev, 311 "unable to allocate RX buffer %d, error = %d\n", 312 i, error); 313 goto fail_rxmem; 314 } 315 316 sc->sc_rxdptr = i; 317 sc->sc_rxdsoft[i].rxds_paddr = 0; 318 if ((error = bus_dmamap_load(sc->sc_rdmatag, 319 sc->sc_rxdsoft[i].rxds_dmamap, sc->sc_rxdsoft[i].rxds_buf, 320 CAS_PAGE_SIZE, cas_rxdma_callback, sc, 0)) != 0 || 321 sc->sc_rxdsoft[i].rxds_paddr == 0) { 322 device_printf(sc->sc_dev, 323 "unable to load RX DMA map %d, error = %d\n", 324 i, error); 325 goto fail_rxmap; 326 } 327 } 328 329 if ((sc->sc_flags & CAS_SERDES) == 0) { 330 CAS_WRITE_4(sc, CAS_PCS_DATAPATH, CAS_PCS_DATAPATH_MII); 331 CAS_BARRIER(sc, CAS_PCS_DATAPATH, 4, 332 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 333 cas_mifinit(sc); 334 /* 335 * Look for an external PHY. 336 */ 337 error = ENXIO; 338 v = CAS_READ_4(sc, CAS_MIF_CONF); 339 if ((v & CAS_MIF_CONF_MDI1) != 0) { 340 v |= CAS_MIF_CONF_PHY_SELECT; 341 CAS_WRITE_4(sc, CAS_MIF_CONF, v); 342 CAS_BARRIER(sc, CAS_MIF_CONF, 4, 343 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 344 /* Enable/unfreeze the GMII pins of Saturn. */ 345 if (sc->sc_variant == CAS_SATURN) { 346 CAS_WRITE_4(sc, CAS_SATURN_PCFG, 347 CAS_READ_4(sc, CAS_SATURN_PCFG) & 348 ~CAS_SATURN_PCFG_FSI); 349 CAS_BARRIER(sc, CAS_SATURN_PCFG, 4, 350 BUS_SPACE_BARRIER_READ | 351 BUS_SPACE_BARRIER_WRITE); 352 DELAY(10000); 353 } 354 error = mii_attach(sc->sc_dev, &sc->sc_miibus, ifp, 355 cas_mediachange, cas_mediastatus, BMSR_DEFCAPMASK, 356 MII_PHY_ANY, MII_OFFSET_ANY, MIIF_DOPAUSE); 357 } 358 /* 359 * Fall back on an internal PHY if no external PHY was found. 360 */ 361 if (error != 0 && (v & CAS_MIF_CONF_MDI0) != 0) { 362 v &= ~CAS_MIF_CONF_PHY_SELECT; 363 CAS_WRITE_4(sc, CAS_MIF_CONF, v); 364 CAS_BARRIER(sc, CAS_MIF_CONF, 4, 365 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 366 /* Freeze the GMII pins of Saturn for saving power. */ 367 if (sc->sc_variant == CAS_SATURN) { 368 CAS_WRITE_4(sc, CAS_SATURN_PCFG, 369 CAS_READ_4(sc, CAS_SATURN_PCFG) | 370 CAS_SATURN_PCFG_FSI); 371 CAS_BARRIER(sc, CAS_SATURN_PCFG, 4, 372 BUS_SPACE_BARRIER_READ | 373 BUS_SPACE_BARRIER_WRITE); 374 DELAY(10000); 375 } 376 error = mii_attach(sc->sc_dev, &sc->sc_miibus, ifp, 377 cas_mediachange, cas_mediastatus, BMSR_DEFCAPMASK, 378 MII_PHY_ANY, MII_OFFSET_ANY, MIIF_DOPAUSE); 379 } 380 } else { 381 /* 382 * Use the external PCS SERDES. 383 */ 384 CAS_WRITE_4(sc, CAS_PCS_DATAPATH, CAS_PCS_DATAPATH_SERDES); 385 CAS_BARRIER(sc, CAS_PCS_DATAPATH, 4, BUS_SPACE_BARRIER_WRITE); 386 /* Enable/unfreeze the SERDES pins of Saturn. */ 387 if (sc->sc_variant == CAS_SATURN) { 388 CAS_WRITE_4(sc, CAS_SATURN_PCFG, 0); 389 CAS_BARRIER(sc, CAS_SATURN_PCFG, 4, 390 BUS_SPACE_BARRIER_WRITE); 391 } 392 CAS_WRITE_4(sc, CAS_PCS_SERDES_CTRL, CAS_PCS_SERDES_CTRL_ESD); 393 CAS_BARRIER(sc, CAS_PCS_SERDES_CTRL, 4, 394 BUS_SPACE_BARRIER_WRITE); 395 CAS_WRITE_4(sc, CAS_PCS_CONF, CAS_PCS_CONF_EN); 396 CAS_BARRIER(sc, CAS_PCS_CONF, 4, 397 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 398 error = mii_attach(sc->sc_dev, &sc->sc_miibus, ifp, 399 cas_mediachange, cas_mediastatus, BMSR_DEFCAPMASK, 400 CAS_PHYAD_EXTERNAL, MII_OFFSET_ANY, MIIF_DOPAUSE); 401 } 402 if (error != 0) { 403 device_printf(sc->sc_dev, "attaching PHYs failed\n"); 404 goto fail_rxmap; 405 } 406 sc->sc_mii = device_get_softc(sc->sc_miibus); 407 408 /* 409 * From this point forward, the attachment cannot fail. A failure 410 * before this point releases all resources that may have been 411 * allocated. 412 */ 413 414 /* Announce FIFO sizes. */ 415 v = CAS_READ_4(sc, CAS_TX_FIFO_SIZE); 416 device_printf(sc->sc_dev, "%ukB RX FIFO, %ukB TX FIFO\n", 417 CAS_RX_FIFO_SIZE / 1024, v / 16); 418 419 /* Attach the interface. */ 420 ether_ifattach(ifp, sc->sc_enaddr); 421 422 /* 423 * Tell the upper layer(s) we support long frames/checksum offloads. 424 */ 425 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); 426 ifp->if_capabilities = IFCAP_VLAN_MTU; 427 if ((sc->sc_flags & CAS_NO_CSUM) == 0) { 428 ifp->if_capabilities |= IFCAP_HWCSUM; 429 ifp->if_hwassist = CAS_CSUM_FEATURES; 430 } 431 ifp->if_capenable = ifp->if_capabilities; 432 433 return (0); 434 435 /* 436 * Free any resources we've allocated during the failed attach 437 * attempt. Do this in reverse order and fall through. 438 */ 439 fail_rxmap: 440 for (i = 0; i < CAS_NRXDESC; i++) 441 if (sc->sc_rxdsoft[i].rxds_paddr != 0) 442 bus_dmamap_unload(sc->sc_rdmatag, 443 sc->sc_rxdsoft[i].rxds_dmamap); 444 fail_rxmem: 445 for (i = 0; i < CAS_NRXDESC; i++) 446 if (sc->sc_rxdsoft[i].rxds_buf != NULL) 447 bus_dmamem_free(sc->sc_rdmatag, 448 sc->sc_rxdsoft[i].rxds_buf, 449 sc->sc_rxdsoft[i].rxds_dmamap); 450 fail_txd: 451 for (i = 0; i < CAS_TXQUEUELEN; i++) 452 if (sc->sc_txsoft[i].txs_dmamap != NULL) 453 bus_dmamap_destroy(sc->sc_tdmatag, 454 sc->sc_txsoft[i].txs_dmamap); 455 bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cddmamap); 456 fail_cmem: 457 bus_dmamem_free(sc->sc_cdmatag, sc->sc_control_data, 458 sc->sc_cddmamap); 459 fail_ctag: 460 bus_dma_tag_destroy(sc->sc_cdmatag); 461 fail_ttag: 462 bus_dma_tag_destroy(sc->sc_tdmatag); 463 fail_rtag: 464 bus_dma_tag_destroy(sc->sc_rdmatag); 465 fail_ptag: 466 bus_dma_tag_destroy(sc->sc_pdmatag); 467 fail_taskq: 468 taskqueue_free(sc->sc_tq); 469 fail_ifnet: 470 if_free(ifp); 471 return (error); 472 } 473 474 static void 475 cas_detach(struct cas_softc *sc) 476 { 477 struct ifnet *ifp = sc->sc_ifp; 478 int i; 479 480 ether_ifdetach(ifp); 481 CAS_LOCK(sc); 482 cas_stop(ifp); 483 CAS_UNLOCK(sc); 484 callout_drain(&sc->sc_tick_ch); 485 callout_drain(&sc->sc_rx_ch); 486 taskqueue_drain(sc->sc_tq, &sc->sc_intr_task); 487 taskqueue_drain(sc->sc_tq, &sc->sc_tx_task); 488 if_free(ifp); 489 taskqueue_free(sc->sc_tq); 490 device_delete_child(sc->sc_dev, sc->sc_miibus); 491 492 for (i = 0; i < CAS_NRXDESC; i++) 493 if (sc->sc_rxdsoft[i].rxds_dmamap != NULL) 494 bus_dmamap_sync(sc->sc_rdmatag, 495 sc->sc_rxdsoft[i].rxds_dmamap, 496 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 497 for (i = 0; i < CAS_NRXDESC; i++) 498 if (sc->sc_rxdsoft[i].rxds_paddr != 0) 499 bus_dmamap_unload(sc->sc_rdmatag, 500 sc->sc_rxdsoft[i].rxds_dmamap); 501 for (i = 0; i < CAS_NRXDESC; i++) 502 if (sc->sc_rxdsoft[i].rxds_buf != NULL) 503 bus_dmamem_free(sc->sc_rdmatag, 504 sc->sc_rxdsoft[i].rxds_buf, 505 sc->sc_rxdsoft[i].rxds_dmamap); 506 for (i = 0; i < CAS_TXQUEUELEN; i++) 507 if (sc->sc_txsoft[i].txs_dmamap != NULL) 508 bus_dmamap_destroy(sc->sc_tdmatag, 509 sc->sc_txsoft[i].txs_dmamap); 510 CAS_CDSYNC(sc, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 511 bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cddmamap); 512 bus_dmamem_free(sc->sc_cdmatag, sc->sc_control_data, 513 sc->sc_cddmamap); 514 bus_dma_tag_destroy(sc->sc_cdmatag); 515 bus_dma_tag_destroy(sc->sc_tdmatag); 516 bus_dma_tag_destroy(sc->sc_rdmatag); 517 bus_dma_tag_destroy(sc->sc_pdmatag); 518 } 519 520 static void 521 cas_suspend(struct cas_softc *sc) 522 { 523 struct ifnet *ifp = sc->sc_ifp; 524 525 CAS_LOCK(sc); 526 cas_stop(ifp); 527 CAS_UNLOCK(sc); 528 } 529 530 static void 531 cas_resume(struct cas_softc *sc) 532 { 533 struct ifnet *ifp = sc->sc_ifp; 534 535 CAS_LOCK(sc); 536 /* 537 * On resume all registers have to be initialized again like 538 * after power-on. 539 */ 540 sc->sc_flags &= ~CAS_INITED; 541 if (ifp->if_flags & IFF_UP) 542 cas_init_locked(sc); 543 CAS_UNLOCK(sc); 544 } 545 546 static inline void 547 cas_rxcksum(struct mbuf *m, uint16_t cksum) 548 { 549 struct ether_header *eh; 550 struct ip *ip; 551 struct udphdr *uh; 552 uint16_t *opts; 553 int32_t hlen, len, pktlen; 554 uint32_t temp32; 555 556 pktlen = m->m_pkthdr.len; 557 if (pktlen < sizeof(struct ether_header) + sizeof(struct ip)) 558 return; 559 eh = mtod(m, struct ether_header *); 560 if (eh->ether_type != htons(ETHERTYPE_IP)) 561 return; 562 ip = (struct ip *)(eh + 1); 563 if (ip->ip_v != IPVERSION) 564 return; 565 566 hlen = ip->ip_hl << 2; 567 pktlen -= sizeof(struct ether_header); 568 if (hlen < sizeof(struct ip)) 569 return; 570 if (ntohs(ip->ip_len) < hlen) 571 return; 572 if (ntohs(ip->ip_len) != pktlen) 573 return; 574 if (ip->ip_off & htons(IP_MF | IP_OFFMASK)) 575 return; /* Cannot handle fragmented packet. */ 576 577 switch (ip->ip_p) { 578 case IPPROTO_TCP: 579 if (pktlen < (hlen + sizeof(struct tcphdr))) 580 return; 581 break; 582 case IPPROTO_UDP: 583 if (pktlen < (hlen + sizeof(struct udphdr))) 584 return; 585 uh = (struct udphdr *)((uint8_t *)ip + hlen); 586 if (uh->uh_sum == 0) 587 return; /* no checksum */ 588 break; 589 default: 590 return; 591 } 592 593 cksum = ~cksum; 594 /* checksum fixup for IP options */ 595 len = hlen - sizeof(struct ip); 596 if (len > 0) { 597 opts = (uint16_t *)(ip + 1); 598 for (; len > 0; len -= sizeof(uint16_t), opts++) { 599 temp32 = cksum - *opts; 600 temp32 = (temp32 >> 16) + (temp32 & 65535); 601 cksum = temp32 & 65535; 602 } 603 } 604 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID; 605 m->m_pkthdr.csum_data = cksum; 606 } 607 608 static void 609 cas_cddma_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, int error) 610 { 611 struct cas_softc *sc = xsc; 612 613 if (error != 0) 614 return; 615 if (nsegs != 1) 616 panic("%s: bad control buffer segment count", __func__); 617 sc->sc_cddma = segs[0].ds_addr; 618 } 619 620 static void 621 cas_rxdma_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, int error) 622 { 623 struct cas_softc *sc = xsc; 624 625 if (error != 0) 626 return; 627 if (nsegs != 1) 628 panic("%s: bad RX buffer segment count", __func__); 629 sc->sc_rxdsoft[sc->sc_rxdptr].rxds_paddr = segs[0].ds_addr; 630 } 631 632 static void 633 cas_tick(void *arg) 634 { 635 struct cas_softc *sc = arg; 636 struct ifnet *ifp = sc->sc_ifp; 637 uint32_t v; 638 639 CAS_LOCK_ASSERT(sc, MA_OWNED); 640 641 /* 642 * Unload collision and error counters. 643 */ 644 ifp->if_collisions += 645 CAS_READ_4(sc, CAS_MAC_NORM_COLL_CNT) + 646 CAS_READ_4(sc, CAS_MAC_FIRST_COLL_CNT); 647 v = CAS_READ_4(sc, CAS_MAC_EXCESS_COLL_CNT) + 648 CAS_READ_4(sc, CAS_MAC_LATE_COLL_CNT); 649 ifp->if_collisions += v; 650 ifp->if_oerrors += v; 651 ifp->if_ierrors += 652 CAS_READ_4(sc, CAS_MAC_RX_LEN_ERR_CNT) + 653 CAS_READ_4(sc, CAS_MAC_RX_ALIGN_ERR) + 654 CAS_READ_4(sc, CAS_MAC_RX_CRC_ERR_CNT) + 655 CAS_READ_4(sc, CAS_MAC_RX_CODE_VIOL); 656 657 /* 658 * Then clear the hardware counters. 659 */ 660 CAS_WRITE_4(sc, CAS_MAC_NORM_COLL_CNT, 0); 661 CAS_WRITE_4(sc, CAS_MAC_FIRST_COLL_CNT, 0); 662 CAS_WRITE_4(sc, CAS_MAC_EXCESS_COLL_CNT, 0); 663 CAS_WRITE_4(sc, CAS_MAC_LATE_COLL_CNT, 0); 664 CAS_WRITE_4(sc, CAS_MAC_RX_LEN_ERR_CNT, 0); 665 CAS_WRITE_4(sc, CAS_MAC_RX_ALIGN_ERR, 0); 666 CAS_WRITE_4(sc, CAS_MAC_RX_CRC_ERR_CNT, 0); 667 CAS_WRITE_4(sc, CAS_MAC_RX_CODE_VIOL, 0); 668 669 mii_tick(sc->sc_mii); 670 671 if (sc->sc_txfree != CAS_MAXTXFREE) 672 cas_tint(sc); 673 674 cas_watchdog(sc); 675 676 callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc); 677 } 678 679 static int 680 cas_bitwait(struct cas_softc *sc, bus_addr_t r, uint32_t clr, uint32_t set) 681 { 682 int i; 683 uint32_t reg; 684 685 for (i = CAS_TRIES; i--; DELAY(100)) { 686 reg = CAS_READ_4(sc, r); 687 if ((reg & clr) == 0 && (reg & set) == set) 688 return (1); 689 } 690 return (0); 691 } 692 693 static void 694 cas_reset(struct cas_softc *sc) 695 { 696 697 #ifdef CAS_DEBUG 698 CTR2(KTR_CAS, "%s: %s", device_get_name(sc->sc_dev), __func__); 699 #endif 700 /* Disable all interrupts in order to avoid spurious ones. */ 701 CAS_WRITE_4(sc, CAS_INTMASK, 0xffffffff); 702 703 cas_reset_rx(sc); 704 cas_reset_tx(sc); 705 706 /* 707 * Do a full reset modulo the result of the last auto-negotiation 708 * when using the SERDES. 709 */ 710 CAS_WRITE_4(sc, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX | 711 ((sc->sc_flags & CAS_SERDES) != 0 ? CAS_RESET_PCS_DIS : 0)); 712 CAS_BARRIER(sc, CAS_RESET, 4, 713 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 714 DELAY(3000); 715 if (!cas_bitwait(sc, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0)) 716 device_printf(sc->sc_dev, "cannot reset device\n"); 717 } 718 719 static void 720 cas_stop(struct ifnet *ifp) 721 { 722 struct cas_softc *sc = ifp->if_softc; 723 struct cas_txsoft *txs; 724 725 #ifdef CAS_DEBUG 726 CTR2(KTR_CAS, "%s: %s", device_get_name(sc->sc_dev), __func__); 727 #endif 728 729 callout_stop(&sc->sc_tick_ch); 730 callout_stop(&sc->sc_rx_ch); 731 732 /* Disable all interrupts in order to avoid spurious ones. */ 733 CAS_WRITE_4(sc, CAS_INTMASK, 0xffffffff); 734 735 cas_reset_tx(sc); 736 cas_reset_rx(sc); 737 738 /* 739 * Release any queued transmit buffers. 740 */ 741 while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) { 742 STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q); 743 if (txs->txs_ndescs != 0) { 744 bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap, 745 BUS_DMASYNC_POSTWRITE); 746 bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap); 747 if (txs->txs_mbuf != NULL) { 748 m_freem(txs->txs_mbuf); 749 txs->txs_mbuf = NULL; 750 } 751 } 752 STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); 753 } 754 755 /* 756 * Mark the interface down and cancel the watchdog timer. 757 */ 758 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 759 sc->sc_flags &= ~CAS_LINK; 760 sc->sc_wdog_timer = 0; 761 } 762 763 static int 764 cas_reset_rx(struct cas_softc *sc) 765 { 766 767 /* 768 * Resetting while DMA is in progress can cause a bus hang, so we 769 * disable DMA first. 770 */ 771 (void)cas_disable_rx(sc); 772 CAS_WRITE_4(sc, CAS_RX_CONF, 0); 773 CAS_BARRIER(sc, CAS_RX_CONF, 4, 774 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 775 if (!cas_bitwait(sc, CAS_RX_CONF, CAS_RX_CONF_RXDMA_EN, 0)) 776 device_printf(sc->sc_dev, "cannot disable RX DMA\n"); 777 778 /* Finally, reset the ERX. */ 779 CAS_WRITE_4(sc, CAS_RESET, CAS_RESET_RX | 780 ((sc->sc_flags & CAS_SERDES) != 0 ? CAS_RESET_PCS_DIS : 0)); 781 CAS_BARRIER(sc, CAS_RESET, 4, 782 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 783 if (!cas_bitwait(sc, CAS_RESET, CAS_RESET_RX, 0)) { 784 device_printf(sc->sc_dev, "cannot reset receiver\n"); 785 return (1); 786 } 787 return (0); 788 } 789 790 static int 791 cas_reset_tx(struct cas_softc *sc) 792 { 793 794 /* 795 * Resetting while DMA is in progress can cause a bus hang, so we 796 * disable DMA first. 797 */ 798 (void)cas_disable_tx(sc); 799 CAS_WRITE_4(sc, CAS_TX_CONF, 0); 800 CAS_BARRIER(sc, CAS_TX_CONF, 4, 801 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 802 if (!cas_bitwait(sc, CAS_TX_CONF, CAS_TX_CONF_TXDMA_EN, 0)) 803 device_printf(sc->sc_dev, "cannot disable TX DMA\n"); 804 805 /* Finally, reset the ETX. */ 806 CAS_WRITE_4(sc, CAS_RESET, CAS_RESET_TX | 807 ((sc->sc_flags & CAS_SERDES) != 0 ? CAS_RESET_PCS_DIS : 0)); 808 CAS_BARRIER(sc, CAS_RESET, 4, 809 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 810 if (!cas_bitwait(sc, CAS_RESET, CAS_RESET_TX, 0)) { 811 device_printf(sc->sc_dev, "cannot reset transmitter\n"); 812 return (1); 813 } 814 return (0); 815 } 816 817 static int 818 cas_disable_rx(struct cas_softc *sc) 819 { 820 821 CAS_WRITE_4(sc, CAS_MAC_RX_CONF, 822 CAS_READ_4(sc, CAS_MAC_RX_CONF) & ~CAS_MAC_RX_CONF_EN); 823 CAS_BARRIER(sc, CAS_MAC_RX_CONF, 4, 824 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 825 if (cas_bitwait(sc, CAS_MAC_RX_CONF, CAS_MAC_RX_CONF_EN, 0)) 826 return (1); 827 if (bootverbose) 828 device_printf(sc->sc_dev, "cannot disable RX MAC\n"); 829 return (0); 830 } 831 832 static int 833 cas_disable_tx(struct cas_softc *sc) 834 { 835 836 CAS_WRITE_4(sc, CAS_MAC_TX_CONF, 837 CAS_READ_4(sc, CAS_MAC_TX_CONF) & ~CAS_MAC_TX_CONF_EN); 838 CAS_BARRIER(sc, CAS_MAC_TX_CONF, 4, 839 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 840 if (cas_bitwait(sc, CAS_MAC_TX_CONF, CAS_MAC_TX_CONF_EN, 0)) 841 return (1); 842 if (bootverbose) 843 device_printf(sc->sc_dev, "cannot disable TX MAC\n"); 844 return (0); 845 } 846 847 static inline void 848 cas_rxcompinit(struct cas_rx_comp *rxcomp) 849 { 850 851 rxcomp->crc_word1 = 0; 852 rxcomp->crc_word2 = 0; 853 rxcomp->crc_word3 = 854 htole64(CAS_SET(ETHER_HDR_LEN + sizeof(struct ip), CAS_RC3_CSO)); 855 rxcomp->crc_word4 = htole64(CAS_RC4_ZERO); 856 } 857 858 static void 859 cas_meminit(struct cas_softc *sc) 860 { 861 int i; 862 863 CAS_LOCK_ASSERT(sc, MA_OWNED); 864 865 /* 866 * Initialize the transmit descriptor ring. 867 */ 868 for (i = 0; i < CAS_NTXDESC; i++) { 869 sc->sc_txdescs[i].cd_flags = 0; 870 sc->sc_txdescs[i].cd_buf_ptr = 0; 871 } 872 sc->sc_txfree = CAS_MAXTXFREE; 873 sc->sc_txnext = 0; 874 sc->sc_txwin = 0; 875 876 /* 877 * Initialize the receive completion ring. 878 */ 879 for (i = 0; i < CAS_NRXCOMP; i++) 880 cas_rxcompinit(&sc->sc_rxcomps[i]); 881 sc->sc_rxcptr = 0; 882 883 /* 884 * Initialize the first receive descriptor ring. We leave 885 * the second one zeroed as we don't actually use it. 886 */ 887 for (i = 0; i < CAS_NRXDESC; i++) 888 CAS_INIT_RXDESC(sc, i, i); 889 sc->sc_rxdptr = 0; 890 891 CAS_CDSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 892 } 893 894 static u_int 895 cas_descsize(u_int sz) 896 { 897 898 switch (sz) { 899 case 32: 900 return (CAS_DESC_32); 901 case 64: 902 return (CAS_DESC_64); 903 case 128: 904 return (CAS_DESC_128); 905 case 256: 906 return (CAS_DESC_256); 907 case 512: 908 return (CAS_DESC_512); 909 case 1024: 910 return (CAS_DESC_1K); 911 case 2048: 912 return (CAS_DESC_2K); 913 case 4096: 914 return (CAS_DESC_4K); 915 case 8192: 916 return (CAS_DESC_8K); 917 default: 918 printf("%s: invalid descriptor ring size %d\n", __func__, sz); 919 return (CAS_DESC_32); 920 } 921 } 922 923 static u_int 924 cas_rxcompsize(u_int sz) 925 { 926 927 switch (sz) { 928 case 128: 929 return (CAS_RX_CONF_COMP_128); 930 case 256: 931 return (CAS_RX_CONF_COMP_256); 932 case 512: 933 return (CAS_RX_CONF_COMP_512); 934 case 1024: 935 return (CAS_RX_CONF_COMP_1K); 936 case 2048: 937 return (CAS_RX_CONF_COMP_2K); 938 case 4096: 939 return (CAS_RX_CONF_COMP_4K); 940 case 8192: 941 return (CAS_RX_CONF_COMP_8K); 942 case 16384: 943 return (CAS_RX_CONF_COMP_16K); 944 case 32768: 945 return (CAS_RX_CONF_COMP_32K); 946 default: 947 printf("%s: invalid dcompletion ring size %d\n", __func__, sz); 948 return (CAS_RX_CONF_COMP_128); 949 } 950 } 951 952 static void 953 cas_init(void *xsc) 954 { 955 struct cas_softc *sc = xsc; 956 957 CAS_LOCK(sc); 958 cas_init_locked(sc); 959 CAS_UNLOCK(sc); 960 } 961 962 /* 963 * Initialization of interface; set up initialization block 964 * and transmit/receive descriptor rings. 965 */ 966 static void 967 cas_init_locked(struct cas_softc *sc) 968 { 969 struct ifnet *ifp = sc->sc_ifp; 970 uint32_t v; 971 972 CAS_LOCK_ASSERT(sc, MA_OWNED); 973 974 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 975 return; 976 977 #ifdef CAS_DEBUG 978 CTR2(KTR_CAS, "%s: %s: calling stop", device_get_name(sc->sc_dev), 979 __func__); 980 #endif 981 /* 982 * Initialization sequence. The numbered steps below correspond 983 * to the sequence outlined in section 6.3.5.1 in the Ethernet 984 * Channel Engine manual (part of the PCIO manual). 985 * See also the STP2002-STQ document from Sun Microsystems. 986 */ 987 988 /* step 1 & 2. Reset the Ethernet Channel. */ 989 cas_stop(ifp); 990 cas_reset(sc); 991 #ifdef CAS_DEBUG 992 CTR2(KTR_CAS, "%s: %s: restarting", device_get_name(sc->sc_dev), 993 __func__); 994 #endif 995 996 if ((sc->sc_flags & CAS_SERDES) == 0) 997 /* Re-initialize the MIF. */ 998 cas_mifinit(sc); 999 1000 /* step 3. Setup data structures in host memory. */ 1001 cas_meminit(sc); 1002 1003 /* step 4. TX MAC registers & counters */ 1004 cas_init_regs(sc); 1005 1006 /* step 5. RX MAC registers & counters */ 1007 1008 /* step 6 & 7. Program Ring Base Addresses. */ 1009 CAS_WRITE_4(sc, CAS_TX_DESC3_BASE_HI, 1010 (((uint64_t)CAS_CDTXDADDR(sc, 0)) >> 32)); 1011 CAS_WRITE_4(sc, CAS_TX_DESC3_BASE_LO, 1012 CAS_CDTXDADDR(sc, 0) & 0xffffffff); 1013 1014 CAS_WRITE_4(sc, CAS_RX_COMP_BASE_HI, 1015 (((uint64_t)CAS_CDRXCADDR(sc, 0)) >> 32)); 1016 CAS_WRITE_4(sc, CAS_RX_COMP_BASE_LO, 1017 CAS_CDRXCADDR(sc, 0) & 0xffffffff); 1018 1019 CAS_WRITE_4(sc, CAS_RX_DESC_BASE_HI, 1020 (((uint64_t)CAS_CDRXDADDR(sc, 0)) >> 32)); 1021 CAS_WRITE_4(sc, CAS_RX_DESC_BASE_LO, 1022 CAS_CDRXDADDR(sc, 0) & 0xffffffff); 1023 1024 if ((sc->sc_flags & CAS_REG_PLUS) != 0) { 1025 CAS_WRITE_4(sc, CAS_RX_DESC2_BASE_HI, 1026 (((uint64_t)CAS_CDRXD2ADDR(sc, 0)) >> 32)); 1027 CAS_WRITE_4(sc, CAS_RX_DESC2_BASE_LO, 1028 CAS_CDRXD2ADDR(sc, 0) & 0xffffffff); 1029 } 1030 1031 #ifdef CAS_DEBUG 1032 CTR5(KTR_CAS, 1033 "loading TXDR %lx, RXCR %lx, RXDR %lx, RXD2R %lx, cddma %lx", 1034 CAS_CDTXDADDR(sc, 0), CAS_CDRXCADDR(sc, 0), CAS_CDRXDADDR(sc, 0), 1035 CAS_CDRXD2ADDR(sc, 0), sc->sc_cddma); 1036 #endif 1037 1038 /* step 8. Global Configuration & Interrupt Masks */ 1039 1040 /* Disable weighted round robin. */ 1041 CAS_WRITE_4(sc, CAS_CAW, CAS_CAW_RR_DIS); 1042 1043 /* 1044 * Enable infinite bursts for revisions without PCI issues if 1045 * applicable. Doing so greatly improves the TX performance on 1046 * !__sparc64__ (on sparc64, setting CAS_INF_BURST improves TX 1047 * performance only marginally but hurts RX throughput quite a bit). 1048 */ 1049 CAS_WRITE_4(sc, CAS_INF_BURST, 1050 #if !defined(__sparc64__) 1051 (sc->sc_flags & CAS_TABORT) == 0 ? CAS_INF_BURST_EN : 1052 #endif 1053 0); 1054 1055 /* Set up interrupts. */ 1056 CAS_WRITE_4(sc, CAS_INTMASK, 1057 ~(CAS_INTR_TX_INT_ME | CAS_INTR_TX_TAG_ERR | 1058 CAS_INTR_RX_DONE | CAS_INTR_RX_BUF_NA | CAS_INTR_RX_TAG_ERR | 1059 CAS_INTR_RX_COMP_FULL | CAS_INTR_RX_BUF_AEMPTY | 1060 CAS_INTR_RX_COMP_AFULL | CAS_INTR_RX_LEN_MMATCH | 1061 CAS_INTR_PCI_ERROR_INT 1062 #ifdef CAS_DEBUG 1063 | CAS_INTR_PCS_INT | CAS_INTR_MIF 1064 #endif 1065 )); 1066 /* Don't clear top level interrupts when CAS_STATUS_ALIAS is read. */ 1067 CAS_WRITE_4(sc, CAS_CLEAR_ALIAS, 0); 1068 CAS_WRITE_4(sc, CAS_MAC_RX_MASK, ~CAS_MAC_RX_OVERFLOW); 1069 CAS_WRITE_4(sc, CAS_MAC_TX_MASK, 1070 ~(CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_MAX_PKT_ERR)); 1071 #ifdef CAS_DEBUG 1072 CAS_WRITE_4(sc, CAS_MAC_CTRL_MASK, 1073 ~(CAS_MAC_CTRL_PAUSE_RCVD | CAS_MAC_CTRL_PAUSE | 1074 CAS_MAC_CTRL_NON_PAUSE)); 1075 #else 1076 CAS_WRITE_4(sc, CAS_MAC_CTRL_MASK, 1077 CAS_MAC_CTRL_PAUSE_RCVD | CAS_MAC_CTRL_PAUSE | 1078 CAS_MAC_CTRL_NON_PAUSE); 1079 #endif 1080 1081 /* Enable PCI error interrupts. */ 1082 CAS_WRITE_4(sc, CAS_ERROR_MASK, 1083 ~(CAS_ERROR_DTRTO | CAS_ERROR_OTHER | CAS_ERROR_DMAW_ZERO | 1084 CAS_ERROR_DMAR_ZERO | CAS_ERROR_RTRTO)); 1085 1086 /* Enable PCI error interrupts in BIM configuration. */ 1087 CAS_WRITE_4(sc, CAS_BIM_CONF, 1088 CAS_BIM_CONF_DPAR_EN | CAS_BIM_CONF_RMA_EN | CAS_BIM_CONF_RTA_EN); 1089 1090 /* 1091 * step 9. ETX Configuration: encode receive descriptor ring size, 1092 * enable DMA and disable pre-interrupt writeback completion. 1093 */ 1094 v = cas_descsize(CAS_NTXDESC) << CAS_TX_CONF_DESC3_SHFT; 1095 CAS_WRITE_4(sc, CAS_TX_CONF, v | CAS_TX_CONF_TXDMA_EN | 1096 CAS_TX_CONF_RDPP_DIS | CAS_TX_CONF_PICWB_DIS); 1097 1098 /* step 10. ERX Configuration */ 1099 1100 /* 1101 * Encode receive completion and descriptor ring sizes, set the 1102 * swivel offset. 1103 */ 1104 v = cas_rxcompsize(CAS_NRXCOMP) << CAS_RX_CONF_COMP_SHFT; 1105 v |= cas_descsize(CAS_NRXDESC) << CAS_RX_CONF_DESC_SHFT; 1106 if ((sc->sc_flags & CAS_REG_PLUS) != 0) 1107 v |= cas_descsize(CAS_NRXDESC2) << CAS_RX_CONF_DESC2_SHFT; 1108 CAS_WRITE_4(sc, CAS_RX_CONF, 1109 v | (ETHER_ALIGN << CAS_RX_CONF_SOFF_SHFT)); 1110 1111 /* Set the PAUSE thresholds. We use the maximum OFF threshold. */ 1112 CAS_WRITE_4(sc, CAS_RX_PTHRS, 1113 (111 << CAS_RX_PTHRS_XOFF_SHFT) | (15 << CAS_RX_PTHRS_XON_SHFT)); 1114 1115 /* RX blanking */ 1116 CAS_WRITE_4(sc, CAS_RX_BLANK, 1117 (15 << CAS_RX_BLANK_TIME_SHFT) | (5 << CAS_RX_BLANK_PKTS_SHFT)); 1118 1119 /* Set RX_COMP_AFULL threshold to half of the RX completions. */ 1120 CAS_WRITE_4(sc, CAS_RX_AEMPTY_THRS, 1121 (CAS_NRXCOMP / 2) << CAS_RX_AEMPTY_COMP_SHFT); 1122 1123 /* Initialize the RX page size register as appropriate for 8k. */ 1124 CAS_WRITE_4(sc, CAS_RX_PSZ, 1125 (CAS_RX_PSZ_8K << CAS_RX_PSZ_SHFT) | 1126 (4 << CAS_RX_PSZ_MB_CNT_SHFT) | 1127 (CAS_RX_PSZ_MB_STRD_2K << CAS_RX_PSZ_MB_STRD_SHFT) | 1128 (CAS_RX_PSZ_MB_OFF_64 << CAS_RX_PSZ_MB_OFF_SHFT)); 1129 1130 /* Disable RX random early detection. */ 1131 CAS_WRITE_4(sc, CAS_RX_RED, 0); 1132 1133 /* Zero the RX reassembly DMA table. */ 1134 for (v = 0; v <= CAS_RX_REAS_DMA_ADDR_LC; v++) { 1135 CAS_WRITE_4(sc, CAS_RX_REAS_DMA_ADDR, v); 1136 CAS_WRITE_4(sc, CAS_RX_REAS_DMA_DATA_LO, 0); 1137 CAS_WRITE_4(sc, CAS_RX_REAS_DMA_DATA_MD, 0); 1138 CAS_WRITE_4(sc, CAS_RX_REAS_DMA_DATA_HI, 0); 1139 } 1140 1141 /* Ensure the RX control FIFO and RX IPP FIFO addresses are zero. */ 1142 CAS_WRITE_4(sc, CAS_RX_CTRL_FIFO, 0); 1143 CAS_WRITE_4(sc, CAS_RX_IPP_ADDR, 0); 1144 1145 /* Finally, enable RX DMA. */ 1146 CAS_WRITE_4(sc, CAS_RX_CONF, 1147 CAS_READ_4(sc, CAS_RX_CONF) | CAS_RX_CONF_RXDMA_EN); 1148 1149 /* step 11. Configure Media. */ 1150 1151 /* step 12. RX_MAC Configuration Register */ 1152 v = CAS_READ_4(sc, CAS_MAC_RX_CONF); 1153 v &= ~(CAS_MAC_RX_CONF_STRPPAD | CAS_MAC_RX_CONF_EN); 1154 v |= CAS_MAC_RX_CONF_STRPFCS; 1155 sc->sc_mac_rxcfg = v; 1156 /* 1157 * Clear the RX filter and reprogram it. This will also set the 1158 * current RX MAC configuration and enable it. 1159 */ 1160 cas_setladrf(sc); 1161 1162 /* step 13. TX_MAC Configuration Register */ 1163 v = CAS_READ_4(sc, CAS_MAC_TX_CONF); 1164 v |= CAS_MAC_TX_CONF_EN; 1165 (void)cas_disable_tx(sc); 1166 CAS_WRITE_4(sc, CAS_MAC_TX_CONF, v); 1167 1168 /* step 14. Issue Transmit Pending command. */ 1169 1170 /* step 15. Give the receiver a swift kick. */ 1171 CAS_WRITE_4(sc, CAS_RX_KICK, CAS_NRXDESC - 4); 1172 CAS_WRITE_4(sc, CAS_RX_COMP_TAIL, 0); 1173 if ((sc->sc_flags & CAS_REG_PLUS) != 0) 1174 CAS_WRITE_4(sc, CAS_RX_KICK2, CAS_NRXDESC2 - 4); 1175 1176 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1177 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1178 1179 mii_mediachg(sc->sc_mii); 1180 1181 /* Start the one second timer. */ 1182 sc->sc_wdog_timer = 0; 1183 callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc); 1184 } 1185 1186 static int 1187 cas_load_txmbuf(struct cas_softc *sc, struct mbuf **m_head) 1188 { 1189 bus_dma_segment_t txsegs[CAS_NTXSEGS]; 1190 struct cas_txsoft *txs; 1191 struct ip *ip; 1192 struct mbuf *m; 1193 uint64_t cflags; 1194 int error, nexttx, nsegs, offset, seg; 1195 1196 CAS_LOCK_ASSERT(sc, MA_OWNED); 1197 1198 /* Get a work queue entry. */ 1199 if ((txs = STAILQ_FIRST(&sc->sc_txfreeq)) == NULL) { 1200 /* Ran out of descriptors. */ 1201 return (ENOBUFS); 1202 } 1203 1204 cflags = 0; 1205 if (((*m_head)->m_pkthdr.csum_flags & CAS_CSUM_FEATURES) != 0) { 1206 if (M_WRITABLE(*m_head) == 0) { 1207 m = m_dup(*m_head, M_NOWAIT); 1208 m_freem(*m_head); 1209 *m_head = m; 1210 if (m == NULL) 1211 return (ENOBUFS); 1212 } 1213 offset = sizeof(struct ether_header); 1214 m = m_pullup(*m_head, offset + sizeof(struct ip)); 1215 if (m == NULL) { 1216 *m_head = NULL; 1217 return (ENOBUFS); 1218 } 1219 ip = (struct ip *)(mtod(m, caddr_t) + offset); 1220 offset += (ip->ip_hl << 2); 1221 cflags = (offset << CAS_TD_CKSUM_START_SHFT) | 1222 ((offset + m->m_pkthdr.csum_data) << 1223 CAS_TD_CKSUM_STUFF_SHFT) | CAS_TD_CKSUM_EN; 1224 *m_head = m; 1225 } 1226 1227 error = bus_dmamap_load_mbuf_sg(sc->sc_tdmatag, txs->txs_dmamap, 1228 *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT); 1229 if (error == EFBIG) { 1230 m = m_collapse(*m_head, M_NOWAIT, CAS_NTXSEGS); 1231 if (m == NULL) { 1232 m_freem(*m_head); 1233 *m_head = NULL; 1234 return (ENOBUFS); 1235 } 1236 *m_head = m; 1237 error = bus_dmamap_load_mbuf_sg(sc->sc_tdmatag, 1238 txs->txs_dmamap, *m_head, txsegs, &nsegs, 1239 BUS_DMA_NOWAIT); 1240 if (error != 0) { 1241 m_freem(*m_head); 1242 *m_head = NULL; 1243 return (error); 1244 } 1245 } else if (error != 0) 1246 return (error); 1247 /* If nsegs is wrong then the stack is corrupt. */ 1248 KASSERT(nsegs <= CAS_NTXSEGS, 1249 ("%s: too many DMA segments (%d)", __func__, nsegs)); 1250 if (nsegs == 0) { 1251 m_freem(*m_head); 1252 *m_head = NULL; 1253 return (EIO); 1254 } 1255 1256 /* 1257 * Ensure we have enough descriptors free to describe 1258 * the packet. Note, we always reserve one descriptor 1259 * at the end of the ring as a termination point, in 1260 * order to prevent wrap-around. 1261 */ 1262 if (nsegs > sc->sc_txfree - 1) { 1263 txs->txs_ndescs = 0; 1264 bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap); 1265 return (ENOBUFS); 1266 } 1267 1268 txs->txs_ndescs = nsegs; 1269 txs->txs_firstdesc = sc->sc_txnext; 1270 nexttx = txs->txs_firstdesc; 1271 for (seg = 0; seg < nsegs; seg++, nexttx = CAS_NEXTTX(nexttx)) { 1272 #ifdef CAS_DEBUG 1273 CTR6(KTR_CAS, 1274 "%s: mapping seg %d (txd %d), len %lx, addr %#lx (%#lx)", 1275 __func__, seg, nexttx, txsegs[seg].ds_len, 1276 txsegs[seg].ds_addr, htole64(txsegs[seg].ds_addr)); 1277 #endif 1278 sc->sc_txdescs[nexttx].cd_buf_ptr = 1279 htole64(txsegs[seg].ds_addr); 1280 KASSERT(txsegs[seg].ds_len < 1281 CAS_TD_BUF_LEN_MASK >> CAS_TD_BUF_LEN_SHFT, 1282 ("%s: segment size too large!", __func__)); 1283 sc->sc_txdescs[nexttx].cd_flags = 1284 htole64(txsegs[seg].ds_len << CAS_TD_BUF_LEN_SHFT); 1285 txs->txs_lastdesc = nexttx; 1286 } 1287 1288 /* Set EOF on the last descriptor. */ 1289 #ifdef CAS_DEBUG 1290 CTR3(KTR_CAS, "%s: end of frame at segment %d, TX %d", 1291 __func__, seg, nexttx); 1292 #endif 1293 sc->sc_txdescs[txs->txs_lastdesc].cd_flags |= 1294 htole64(CAS_TD_END_OF_FRAME); 1295 1296 /* Lastly set SOF on the first descriptor. */ 1297 #ifdef CAS_DEBUG 1298 CTR3(KTR_CAS, "%s: start of frame at segment %d, TX %d", 1299 __func__, seg, nexttx); 1300 #endif 1301 if (sc->sc_txwin += nsegs > CAS_MAXTXFREE * 2 / 3) { 1302 sc->sc_txwin = 0; 1303 sc->sc_txdescs[txs->txs_firstdesc].cd_flags |= 1304 htole64(cflags | CAS_TD_START_OF_FRAME | CAS_TD_INT_ME); 1305 } else 1306 sc->sc_txdescs[txs->txs_firstdesc].cd_flags |= 1307 htole64(cflags | CAS_TD_START_OF_FRAME); 1308 1309 /* Sync the DMA map. */ 1310 bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap, 1311 BUS_DMASYNC_PREWRITE); 1312 1313 #ifdef CAS_DEBUG 1314 CTR4(KTR_CAS, "%s: setting firstdesc=%d, lastdesc=%d, ndescs=%d", 1315 __func__, txs->txs_firstdesc, txs->txs_lastdesc, 1316 txs->txs_ndescs); 1317 #endif 1318 STAILQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q); 1319 STAILQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q); 1320 txs->txs_mbuf = *m_head; 1321 1322 sc->sc_txnext = CAS_NEXTTX(txs->txs_lastdesc); 1323 sc->sc_txfree -= txs->txs_ndescs; 1324 1325 return (0); 1326 } 1327 1328 static void 1329 cas_init_regs(struct cas_softc *sc) 1330 { 1331 int i; 1332 const u_char *laddr = IF_LLADDR(sc->sc_ifp); 1333 1334 CAS_LOCK_ASSERT(sc, MA_OWNED); 1335 1336 /* These registers are not cleared on reset. */ 1337 if ((sc->sc_flags & CAS_INITED) == 0) { 1338 /* magic values */ 1339 CAS_WRITE_4(sc, CAS_MAC_IPG0, 0); 1340 CAS_WRITE_4(sc, CAS_MAC_IPG1, 8); 1341 CAS_WRITE_4(sc, CAS_MAC_IPG2, 4); 1342 1343 /* min frame length */ 1344 CAS_WRITE_4(sc, CAS_MAC_MIN_FRAME, ETHER_MIN_LEN); 1345 /* max frame length and max burst size */ 1346 CAS_WRITE_4(sc, CAS_MAC_MAX_BF, 1347 ((ETHER_MAX_LEN_JUMBO + ETHER_VLAN_ENCAP_LEN) << 1348 CAS_MAC_MAX_BF_FRM_SHFT) | 1349 (0x2000 << CAS_MAC_MAX_BF_BST_SHFT)); 1350 1351 /* more magic values */ 1352 CAS_WRITE_4(sc, CAS_MAC_PREAMBLE_LEN, 0x7); 1353 CAS_WRITE_4(sc, CAS_MAC_JAM_SIZE, 0x4); 1354 CAS_WRITE_4(sc, CAS_MAC_ATTEMPT_LIMIT, 0x10); 1355 CAS_WRITE_4(sc, CAS_MAC_CTRL_TYPE, 0x8808); 1356 1357 /* random number seed */ 1358 CAS_WRITE_4(sc, CAS_MAC_RANDOM_SEED, 1359 ((laddr[5] << 8) | laddr[4]) & 0x3ff); 1360 1361 /* secondary MAC addresses: 0:0:0:0:0:0 */ 1362 for (i = CAS_MAC_ADDR3; i <= CAS_MAC_ADDR41; 1363 i += CAS_MAC_ADDR4 - CAS_MAC_ADDR3) 1364 CAS_WRITE_4(sc, i, 0); 1365 1366 /* MAC control address: 01:80:c2:00:00:01 */ 1367 CAS_WRITE_4(sc, CAS_MAC_ADDR42, 0x0001); 1368 CAS_WRITE_4(sc, CAS_MAC_ADDR43, 0xc200); 1369 CAS_WRITE_4(sc, CAS_MAC_ADDR44, 0x0180); 1370 1371 /* MAC filter address: 0:0:0:0:0:0 */ 1372 CAS_WRITE_4(sc, CAS_MAC_AFILTER0, 0); 1373 CAS_WRITE_4(sc, CAS_MAC_AFILTER1, 0); 1374 CAS_WRITE_4(sc, CAS_MAC_AFILTER2, 0); 1375 CAS_WRITE_4(sc, CAS_MAC_AFILTER_MASK1_2, 0); 1376 CAS_WRITE_4(sc, CAS_MAC_AFILTER_MASK0, 0); 1377 1378 /* Zero the hash table. */ 1379 for (i = CAS_MAC_HASH0; i <= CAS_MAC_HASH15; 1380 i += CAS_MAC_HASH1 - CAS_MAC_HASH0) 1381 CAS_WRITE_4(sc, i, 0); 1382 1383 sc->sc_flags |= CAS_INITED; 1384 } 1385 1386 /* Counters need to be zeroed. */ 1387 CAS_WRITE_4(sc, CAS_MAC_NORM_COLL_CNT, 0); 1388 CAS_WRITE_4(sc, CAS_MAC_FIRST_COLL_CNT, 0); 1389 CAS_WRITE_4(sc, CAS_MAC_EXCESS_COLL_CNT, 0); 1390 CAS_WRITE_4(sc, CAS_MAC_LATE_COLL_CNT, 0); 1391 CAS_WRITE_4(sc, CAS_MAC_DEFER_TMR_CNT, 0); 1392 CAS_WRITE_4(sc, CAS_MAC_PEAK_ATTEMPTS, 0); 1393 CAS_WRITE_4(sc, CAS_MAC_RX_FRAME_COUNT, 0); 1394 CAS_WRITE_4(sc, CAS_MAC_RX_LEN_ERR_CNT, 0); 1395 CAS_WRITE_4(sc, CAS_MAC_RX_ALIGN_ERR, 0); 1396 CAS_WRITE_4(sc, CAS_MAC_RX_CRC_ERR_CNT, 0); 1397 CAS_WRITE_4(sc, CAS_MAC_RX_CODE_VIOL, 0); 1398 1399 /* Set XOFF PAUSE time. */ 1400 CAS_WRITE_4(sc, CAS_MAC_SPC, 0x1BF0 << CAS_MAC_SPC_TIME_SHFT); 1401 1402 /* Set the station address. */ 1403 CAS_WRITE_4(sc, CAS_MAC_ADDR0, (laddr[4] << 8) | laddr[5]); 1404 CAS_WRITE_4(sc, CAS_MAC_ADDR1, (laddr[2] << 8) | laddr[3]); 1405 CAS_WRITE_4(sc, CAS_MAC_ADDR2, (laddr[0] << 8) | laddr[1]); 1406 1407 /* Enable MII outputs. */ 1408 CAS_WRITE_4(sc, CAS_MAC_XIF_CONF, CAS_MAC_XIF_CONF_TX_OE); 1409 } 1410 1411 static void 1412 cas_tx_task(void *arg, int pending __unused) 1413 { 1414 struct ifnet *ifp; 1415 1416 ifp = (struct ifnet *)arg; 1417 cas_start(ifp); 1418 } 1419 1420 static inline void 1421 cas_txkick(struct cas_softc *sc) 1422 { 1423 1424 /* 1425 * Update the TX kick register. This register has to point to the 1426 * descriptor after the last valid one and for optimum performance 1427 * should be incremented in multiples of 4 (the DMA engine fetches/ 1428 * updates descriptors in batches of 4). 1429 */ 1430 #ifdef CAS_DEBUG 1431 CTR3(KTR_CAS, "%s: %s: kicking TX %d", 1432 device_get_name(sc->sc_dev), __func__, sc->sc_txnext); 1433 #endif 1434 CAS_CDSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1435 CAS_WRITE_4(sc, CAS_TX_KICK3, sc->sc_txnext); 1436 } 1437 1438 static void 1439 cas_start(struct ifnet *ifp) 1440 { 1441 struct cas_softc *sc = ifp->if_softc; 1442 struct mbuf *m; 1443 int kicked, ntx; 1444 1445 CAS_LOCK(sc); 1446 1447 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 1448 IFF_DRV_RUNNING || (sc->sc_flags & CAS_LINK) == 0) { 1449 CAS_UNLOCK(sc); 1450 return; 1451 } 1452 1453 if (sc->sc_txfree < CAS_MAXTXFREE / 4) 1454 cas_tint(sc); 1455 1456 #ifdef CAS_DEBUG 1457 CTR4(KTR_CAS, "%s: %s: txfree %d, txnext %d", 1458 device_get_name(sc->sc_dev), __func__, sc->sc_txfree, 1459 sc->sc_txnext); 1460 #endif 1461 ntx = 0; 1462 kicked = 0; 1463 for (; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) && sc->sc_txfree > 1;) { 1464 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 1465 if (m == NULL) 1466 break; 1467 if (cas_load_txmbuf(sc, &m) != 0) { 1468 if (m == NULL) 1469 break; 1470 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1471 IFQ_DRV_PREPEND(&ifp->if_snd, m); 1472 break; 1473 } 1474 if ((sc->sc_txnext % 4) == 0) { 1475 cas_txkick(sc); 1476 kicked = 1; 1477 } else 1478 kicked = 0; 1479 ntx++; 1480 BPF_MTAP(ifp, m); 1481 } 1482 1483 if (ntx > 0) { 1484 if (kicked == 0) 1485 cas_txkick(sc); 1486 #ifdef CAS_DEBUG 1487 CTR2(KTR_CAS, "%s: packets enqueued, OWN on %d", 1488 device_get_name(sc->sc_dev), sc->sc_txnext); 1489 #endif 1490 1491 /* Set a watchdog timer in case the chip flakes out. */ 1492 sc->sc_wdog_timer = 5; 1493 #ifdef CAS_DEBUG 1494 CTR3(KTR_CAS, "%s: %s: watchdog %d", 1495 device_get_name(sc->sc_dev), __func__, 1496 sc->sc_wdog_timer); 1497 #endif 1498 } 1499 1500 CAS_UNLOCK(sc); 1501 } 1502 1503 static void 1504 cas_tint(struct cas_softc *sc) 1505 { 1506 struct ifnet *ifp = sc->sc_ifp; 1507 struct cas_txsoft *txs; 1508 int progress; 1509 uint32_t txlast; 1510 #ifdef CAS_DEBUG 1511 int i; 1512 1513 CAS_LOCK_ASSERT(sc, MA_OWNED); 1514 1515 CTR2(KTR_CAS, "%s: %s", device_get_name(sc->sc_dev), __func__); 1516 #endif 1517 1518 /* 1519 * Go through our TX list and free mbufs for those 1520 * frames that have been transmitted. 1521 */ 1522 progress = 0; 1523 CAS_CDSYNC(sc, BUS_DMASYNC_POSTREAD); 1524 while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) { 1525 #ifdef CAS_DEBUG 1526 if ((ifp->if_flags & IFF_DEBUG) != 0) { 1527 printf(" txsoft %p transmit chain:\n", txs); 1528 for (i = txs->txs_firstdesc;; i = CAS_NEXTTX(i)) { 1529 printf("descriptor %d: ", i); 1530 printf("cd_flags: 0x%016llx\t", 1531 (long long)le64toh( 1532 sc->sc_txdescs[i].cd_flags)); 1533 printf("cd_buf_ptr: 0x%016llx\n", 1534 (long long)le64toh( 1535 sc->sc_txdescs[i].cd_buf_ptr)); 1536 if (i == txs->txs_lastdesc) 1537 break; 1538 } 1539 } 1540 #endif 1541 1542 /* 1543 * In theory, we could harvest some descriptors before 1544 * the ring is empty, but that's a bit complicated. 1545 * 1546 * CAS_TX_COMPn points to the last descriptor 1547 * processed + 1. 1548 */ 1549 txlast = CAS_READ_4(sc, CAS_TX_COMP3); 1550 #ifdef CAS_DEBUG 1551 CTR4(KTR_CAS, "%s: txs->txs_firstdesc = %d, " 1552 "txs->txs_lastdesc = %d, txlast = %d", 1553 __func__, txs->txs_firstdesc, txs->txs_lastdesc, txlast); 1554 #endif 1555 if (txs->txs_firstdesc <= txs->txs_lastdesc) { 1556 if ((txlast >= txs->txs_firstdesc) && 1557 (txlast <= txs->txs_lastdesc)) 1558 break; 1559 } else { 1560 /* Ick -- this command wraps. */ 1561 if ((txlast >= txs->txs_firstdesc) || 1562 (txlast <= txs->txs_lastdesc)) 1563 break; 1564 } 1565 1566 #ifdef CAS_DEBUG 1567 CTR1(KTR_CAS, "%s: releasing a descriptor", __func__); 1568 #endif 1569 STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q); 1570 1571 sc->sc_txfree += txs->txs_ndescs; 1572 1573 bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap, 1574 BUS_DMASYNC_POSTWRITE); 1575 bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap); 1576 if (txs->txs_mbuf != NULL) { 1577 m_freem(txs->txs_mbuf); 1578 txs->txs_mbuf = NULL; 1579 } 1580 1581 STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); 1582 1583 ifp->if_opackets++; 1584 progress = 1; 1585 } 1586 1587 #ifdef CAS_DEBUG 1588 CTR5(KTR_CAS, "%s: CAS_TX_SM1 %x CAS_TX_SM2 %x CAS_TX_DESC_BASE %llx " 1589 "CAS_TX_COMP3 %x", 1590 __func__, CAS_READ_4(sc, CAS_TX_SM1), CAS_READ_4(sc, CAS_TX_SM2), 1591 ((long long)CAS_READ_4(sc, CAS_TX_DESC3_BASE_HI) << 32) | 1592 CAS_READ_4(sc, CAS_TX_DESC3_BASE_LO), 1593 CAS_READ_4(sc, CAS_TX_COMP3)); 1594 #endif 1595 1596 if (progress) { 1597 /* We freed some descriptors, so reset IFF_DRV_OACTIVE. */ 1598 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1599 if (STAILQ_EMPTY(&sc->sc_txdirtyq)) 1600 sc->sc_wdog_timer = 0; 1601 } 1602 1603 #ifdef CAS_DEBUG 1604 CTR3(KTR_CAS, "%s: %s: watchdog %d", 1605 device_get_name(sc->sc_dev), __func__, sc->sc_wdog_timer); 1606 #endif 1607 } 1608 1609 static void 1610 cas_rint_timeout(void *arg) 1611 { 1612 struct cas_softc *sc = arg; 1613 1614 CAS_LOCK_ASSERT(sc, MA_OWNED); 1615 1616 cas_rint(sc); 1617 } 1618 1619 static void 1620 cas_rint(struct cas_softc *sc) 1621 { 1622 struct cas_rxdsoft *rxds, *rxds2; 1623 struct ifnet *ifp = sc->sc_ifp; 1624 struct mbuf *m, *m2; 1625 uint64_t word1, word2, word3, word4; 1626 uint32_t rxhead; 1627 u_int idx, idx2, len, off, skip; 1628 1629 CAS_LOCK_ASSERT(sc, MA_OWNED); 1630 1631 callout_stop(&sc->sc_rx_ch); 1632 1633 #ifdef CAS_DEBUG 1634 CTR2(KTR_CAS, "%s: %s", device_get_name(sc->sc_dev), __func__); 1635 #endif 1636 1637 #define PRINTWORD(n, delimiter) \ 1638 printf("word ## n: 0x%016llx%c", (long long)word ## n, delimiter) 1639 1640 #define SKIPASSERT(n) \ 1641 KASSERT(sc->sc_rxcomps[sc->sc_rxcptr].crc_word ## n == 0, \ 1642 ("%s: word ## n not 0", __func__)) 1643 1644 #define WORDTOH(n) \ 1645 word ## n = le64toh(sc->sc_rxcomps[sc->sc_rxcptr].crc_word ## n) 1646 1647 /* 1648 * Read the completion head register once. This limits 1649 * how long the following loop can execute. 1650 */ 1651 rxhead = CAS_READ_4(sc, CAS_RX_COMP_HEAD); 1652 #ifdef CAS_DEBUG 1653 CTR4(KTR_CAS, "%s: sc->sc_rxcptr %d, sc->sc_rxdptr %d, head %d", 1654 __func__, sc->sc_rxcptr, sc->sc_rxdptr, rxhead); 1655 #endif 1656 skip = 0; 1657 CAS_CDSYNC(sc, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1658 for (; sc->sc_rxcptr != rxhead; 1659 sc->sc_rxcptr = CAS_NEXTRXCOMP(sc->sc_rxcptr)) { 1660 if (skip != 0) { 1661 SKIPASSERT(1); 1662 SKIPASSERT(2); 1663 SKIPASSERT(3); 1664 1665 --skip; 1666 goto skip; 1667 } 1668 1669 WORDTOH(1); 1670 WORDTOH(2); 1671 WORDTOH(3); 1672 WORDTOH(4); 1673 1674 #ifdef CAS_DEBUG 1675 if ((ifp->if_flags & IFF_DEBUG) != 0) { 1676 printf(" completion %d: ", sc->sc_rxcptr); 1677 PRINTWORD(1, '\t'); 1678 PRINTWORD(2, '\t'); 1679 PRINTWORD(3, '\t'); 1680 PRINTWORD(4, '\n'); 1681 } 1682 #endif 1683 1684 if (__predict_false( 1685 (word1 & CAS_RC1_TYPE_MASK) == CAS_RC1_TYPE_HW || 1686 (word4 & CAS_RC4_ZERO) != 0)) { 1687 /* 1688 * The descriptor is still marked as owned, although 1689 * it is supposed to have completed. This has been 1690 * observed on some machines. Just exiting here 1691 * might leave the packet sitting around until another 1692 * one arrives to trigger a new interrupt, which is 1693 * generally undesirable, so set up a timeout. 1694 */ 1695 callout_reset(&sc->sc_rx_ch, CAS_RXOWN_TICKS, 1696 cas_rint_timeout, sc); 1697 break; 1698 } 1699 1700 if (__predict_false( 1701 (word4 & (CAS_RC4_BAD | CAS_RC4_LEN_MMATCH)) != 0)) { 1702 ifp->if_ierrors++; 1703 device_printf(sc->sc_dev, 1704 "receive error: CRC error\n"); 1705 continue; 1706 } 1707 1708 KASSERT(CAS_GET(word1, CAS_RC1_DATA_SIZE) == 0 || 1709 CAS_GET(word2, CAS_RC2_HDR_SIZE) == 0, 1710 ("%s: data and header present", __func__)); 1711 KASSERT((word1 & CAS_RC1_SPLIT_PKT) == 0 || 1712 CAS_GET(word2, CAS_RC2_HDR_SIZE) == 0, 1713 ("%s: split and header present", __func__)); 1714 KASSERT(CAS_GET(word1, CAS_RC1_DATA_SIZE) == 0 || 1715 (word1 & CAS_RC1_RELEASE_HDR) == 0, 1716 ("%s: data present but header release", __func__)); 1717 KASSERT(CAS_GET(word2, CAS_RC2_HDR_SIZE) == 0 || 1718 (word1 & CAS_RC1_RELEASE_DATA) == 0, 1719 ("%s: header present but data release", __func__)); 1720 1721 if ((len = CAS_GET(word2, CAS_RC2_HDR_SIZE)) != 0) { 1722 idx = CAS_GET(word2, CAS_RC2_HDR_INDEX); 1723 off = CAS_GET(word2, CAS_RC2_HDR_OFF); 1724 #ifdef CAS_DEBUG 1725 CTR4(KTR_CAS, "%s: hdr at idx %d, off %d, len %d", 1726 __func__, idx, off, len); 1727 #endif 1728 rxds = &sc->sc_rxdsoft[idx]; 1729 MGETHDR(m, M_NOWAIT, MT_DATA); 1730 if (m != NULL) { 1731 refcount_acquire(&rxds->rxds_refcount); 1732 bus_dmamap_sync(sc->sc_rdmatag, 1733 rxds->rxds_dmamap, BUS_DMASYNC_POSTREAD); 1734 #if __FreeBSD_version < 800016 1735 MEXTADD(m, (caddr_t)rxds->rxds_buf + 1736 off * 256 + ETHER_ALIGN, len, cas_free, 1737 rxds, M_RDONLY, EXT_NET_DRV); 1738 #else 1739 MEXTADD(m, (caddr_t)rxds->rxds_buf + 1740 off * 256 + ETHER_ALIGN, len, cas_free, 1741 sc, (void *)(uintptr_t)idx, 1742 M_RDONLY, EXT_NET_DRV); 1743 #endif 1744 if ((m->m_flags & M_EXT) == 0) { 1745 m_freem(m); 1746 m = NULL; 1747 } 1748 } 1749 if (m != NULL) { 1750 m->m_pkthdr.rcvif = ifp; 1751 m->m_pkthdr.len = m->m_len = len; 1752 ifp->if_ipackets++; 1753 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) 1754 cas_rxcksum(m, CAS_GET(word4, 1755 CAS_RC4_TCP_CSUM)); 1756 /* Pass it on. */ 1757 CAS_UNLOCK(sc); 1758 (*ifp->if_input)(ifp, m); 1759 CAS_LOCK(sc); 1760 } else 1761 ifp->if_iqdrops++; 1762 1763 if ((word1 & CAS_RC1_RELEASE_HDR) != 0 && 1764 refcount_release(&rxds->rxds_refcount) != 0) 1765 cas_add_rxdesc(sc, idx); 1766 } else if ((len = CAS_GET(word1, CAS_RC1_DATA_SIZE)) != 0) { 1767 idx = CAS_GET(word1, CAS_RC1_DATA_INDEX); 1768 off = CAS_GET(word1, CAS_RC1_DATA_OFF); 1769 #ifdef CAS_DEBUG 1770 CTR4(KTR_CAS, "%s: data at idx %d, off %d, len %d", 1771 __func__, idx, off, len); 1772 #endif 1773 rxds = &sc->sc_rxdsoft[idx]; 1774 MGETHDR(m, M_NOWAIT, MT_DATA); 1775 if (m != NULL) { 1776 refcount_acquire(&rxds->rxds_refcount); 1777 off += ETHER_ALIGN; 1778 m->m_len = min(CAS_PAGE_SIZE - off, len); 1779 bus_dmamap_sync(sc->sc_rdmatag, 1780 rxds->rxds_dmamap, BUS_DMASYNC_POSTREAD); 1781 #if __FreeBSD_version < 800016 1782 MEXTADD(m, (caddr_t)rxds->rxds_buf + off, 1783 m->m_len, cas_free, rxds, M_RDONLY, 1784 EXT_NET_DRV); 1785 #else 1786 MEXTADD(m, (caddr_t)rxds->rxds_buf + off, 1787 m->m_len, cas_free, sc, 1788 (void *)(uintptr_t)idx, M_RDONLY, 1789 EXT_NET_DRV); 1790 #endif 1791 if ((m->m_flags & M_EXT) == 0) { 1792 m_freem(m); 1793 m = NULL; 1794 } 1795 } 1796 idx2 = 0; 1797 m2 = NULL; 1798 rxds2 = NULL; 1799 if ((word1 & CAS_RC1_SPLIT_PKT) != 0) { 1800 KASSERT((word1 & CAS_RC1_RELEASE_NEXT) != 0, 1801 ("%s: split but no release next", 1802 __func__)); 1803 1804 idx2 = CAS_GET(word2, CAS_RC2_NEXT_INDEX); 1805 #ifdef CAS_DEBUG 1806 CTR2(KTR_CAS, "%s: split at idx %d", 1807 __func__, idx2); 1808 #endif 1809 rxds2 = &sc->sc_rxdsoft[idx2]; 1810 if (m != NULL) { 1811 MGET(m2, M_NOWAIT, MT_DATA); 1812 if (m2 != NULL) { 1813 refcount_acquire( 1814 &rxds2->rxds_refcount); 1815 m2->m_len = len - m->m_len; 1816 bus_dmamap_sync( 1817 sc->sc_rdmatag, 1818 rxds2->rxds_dmamap, 1819 BUS_DMASYNC_POSTREAD); 1820 #if __FreeBSD_version < 800016 1821 MEXTADD(m2, 1822 (caddr_t)rxds2->rxds_buf, 1823 m2->m_len, cas_free, 1824 rxds2, M_RDONLY, 1825 EXT_NET_DRV); 1826 #else 1827 MEXTADD(m2, 1828 (caddr_t)rxds2->rxds_buf, 1829 m2->m_len, cas_free, sc, 1830 (void *)(uintptr_t)idx2, 1831 M_RDONLY, EXT_NET_DRV); 1832 #endif 1833 if ((m2->m_flags & M_EXT) == 1834 0) { 1835 m_freem(m2); 1836 m2 = NULL; 1837 } 1838 } 1839 } 1840 if (m2 != NULL) 1841 m->m_next = m2; 1842 else if (m != NULL) { 1843 m_freem(m); 1844 m = NULL; 1845 } 1846 } 1847 if (m != NULL) { 1848 m->m_pkthdr.rcvif = ifp; 1849 m->m_pkthdr.len = len; 1850 ifp->if_ipackets++; 1851 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) 1852 cas_rxcksum(m, CAS_GET(word4, 1853 CAS_RC4_TCP_CSUM)); 1854 /* Pass it on. */ 1855 CAS_UNLOCK(sc); 1856 (*ifp->if_input)(ifp, m); 1857 CAS_LOCK(sc); 1858 } else 1859 ifp->if_iqdrops++; 1860 1861 if ((word1 & CAS_RC1_RELEASE_DATA) != 0 && 1862 refcount_release(&rxds->rxds_refcount) != 0) 1863 cas_add_rxdesc(sc, idx); 1864 if ((word1 & CAS_RC1_SPLIT_PKT) != 0 && 1865 refcount_release(&rxds2->rxds_refcount) != 0) 1866 cas_add_rxdesc(sc, idx2); 1867 } 1868 1869 skip = CAS_GET(word1, CAS_RC1_SKIP); 1870 1871 skip: 1872 cas_rxcompinit(&sc->sc_rxcomps[sc->sc_rxcptr]); 1873 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 1874 break; 1875 } 1876 CAS_CDSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1877 CAS_WRITE_4(sc, CAS_RX_COMP_TAIL, sc->sc_rxcptr); 1878 1879 #undef PRINTWORD 1880 #undef SKIPASSERT 1881 #undef WORDTOH 1882 1883 #ifdef CAS_DEBUG 1884 CTR4(KTR_CAS, "%s: done sc->sc_rxcptr %d, sc->sc_rxdptr %d, head %d", 1885 __func__, sc->sc_rxcptr, sc->sc_rxdptr, 1886 CAS_READ_4(sc, CAS_RX_COMP_HEAD)); 1887 #endif 1888 } 1889 1890 static int 1891 cas_free(struct mbuf *m, void *arg1, void *arg2) 1892 { 1893 struct cas_rxdsoft *rxds; 1894 struct cas_softc *sc; 1895 u_int idx, locked; 1896 1897 #if __FreeBSD_version < 800016 1898 rxds = arg2; 1899 sc = rxds->rxds_sc; 1900 idx = rxds->rxds_idx; 1901 #else 1902 sc = arg1; 1903 idx = (uintptr_t)arg2; 1904 rxds = &sc->sc_rxdsoft[idx]; 1905 #endif 1906 if (refcount_release(&rxds->rxds_refcount) == 0) 1907 return (EXT_FREE_OK); 1908 1909 /* 1910 * NB: this function can be called via m_freem(9) within 1911 * this driver! 1912 */ 1913 if ((locked = CAS_LOCK_OWNED(sc)) == 0) 1914 CAS_LOCK(sc); 1915 cas_add_rxdesc(sc, idx); 1916 if (locked == 0) 1917 CAS_UNLOCK(sc); 1918 return (EXT_FREE_OK); 1919 } 1920 1921 static inline void 1922 cas_add_rxdesc(struct cas_softc *sc, u_int idx) 1923 { 1924 1925 CAS_LOCK_ASSERT(sc, MA_OWNED); 1926 1927 bus_dmamap_sync(sc->sc_rdmatag, sc->sc_rxdsoft[idx].rxds_dmamap, 1928 BUS_DMASYNC_PREREAD); 1929 CAS_UPDATE_RXDESC(sc, sc->sc_rxdptr, idx); 1930 sc->sc_rxdptr = CAS_NEXTRXDESC(sc->sc_rxdptr); 1931 1932 /* 1933 * Update the RX kick register. This register has to point to the 1934 * descriptor after the last valid one (before the current batch) 1935 * and for optimum performance should be incremented in multiples 1936 * of 4 (the DMA engine fetches/updates descriptors in batches of 4). 1937 */ 1938 if ((sc->sc_rxdptr % 4) == 0) { 1939 CAS_CDSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1940 CAS_WRITE_4(sc, CAS_RX_KICK, 1941 (sc->sc_rxdptr + CAS_NRXDESC - 4) & CAS_NRXDESC_MASK); 1942 } 1943 } 1944 1945 static void 1946 cas_eint(struct cas_softc *sc, u_int status) 1947 { 1948 struct ifnet *ifp = sc->sc_ifp; 1949 1950 CAS_LOCK_ASSERT(sc, MA_OWNED); 1951 1952 ifp->if_ierrors++; 1953 1954 device_printf(sc->sc_dev, "%s: status 0x%x", __func__, status); 1955 if ((status & CAS_INTR_PCI_ERROR_INT) != 0) { 1956 status = CAS_READ_4(sc, CAS_ERROR_STATUS); 1957 printf(", PCI bus error 0x%x", status); 1958 if ((status & CAS_ERROR_OTHER) != 0) { 1959 status = pci_read_config(sc->sc_dev, PCIR_STATUS, 2); 1960 printf(", PCI status 0x%x", status); 1961 pci_write_config(sc->sc_dev, PCIR_STATUS, status, 2); 1962 } 1963 } 1964 printf("\n"); 1965 1966 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1967 cas_init_locked(sc); 1968 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1969 taskqueue_enqueue(sc->sc_tq, &sc->sc_tx_task); 1970 } 1971 1972 static int 1973 cas_intr(void *v) 1974 { 1975 struct cas_softc *sc = v; 1976 1977 if (__predict_false((CAS_READ_4(sc, CAS_STATUS_ALIAS) & 1978 CAS_INTR_SUMMARY) == 0)) 1979 return (FILTER_STRAY); 1980 1981 /* Disable interrupts. */ 1982 CAS_WRITE_4(sc, CAS_INTMASK, 0xffffffff); 1983 taskqueue_enqueue(sc->sc_tq, &sc->sc_intr_task); 1984 1985 return (FILTER_HANDLED); 1986 } 1987 1988 static void 1989 cas_intr_task(void *arg, int pending __unused) 1990 { 1991 struct cas_softc *sc = arg; 1992 struct ifnet *ifp = sc->sc_ifp; 1993 uint32_t status, status2; 1994 1995 CAS_LOCK_ASSERT(sc, MA_NOTOWNED); 1996 1997 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 1998 return; 1999 2000 status = CAS_READ_4(sc, CAS_STATUS); 2001 if (__predict_false((status & CAS_INTR_SUMMARY) == 0)) 2002 goto done; 2003 2004 CAS_LOCK(sc); 2005 #ifdef CAS_DEBUG 2006 CTR4(KTR_CAS, "%s: %s: cplt %x, status %x", 2007 device_get_name(sc->sc_dev), __func__, 2008 (status >> CAS_STATUS_TX_COMP3_SHFT), (u_int)status); 2009 2010 /* 2011 * PCS interrupts must be cleared, otherwise no traffic is passed! 2012 */ 2013 if ((status & CAS_INTR_PCS_INT) != 0) { 2014 status2 = 2015 CAS_READ_4(sc, CAS_PCS_INTR_STATUS) | 2016 CAS_READ_4(sc, CAS_PCS_INTR_STATUS); 2017 if ((status2 & CAS_PCS_INTR_LINK) != 0) 2018 device_printf(sc->sc_dev, 2019 "%s: PCS link status changed\n", __func__); 2020 } 2021 if ((status & CAS_MAC_CTRL_STATUS) != 0) { 2022 status2 = CAS_READ_4(sc, CAS_MAC_CTRL_STATUS); 2023 if ((status2 & CAS_MAC_CTRL_PAUSE) != 0) 2024 device_printf(sc->sc_dev, 2025 "%s: PAUSE received (PAUSE time %d slots)\n", 2026 __func__, 2027 (status2 & CAS_MAC_CTRL_STATUS_PT_MASK) >> 2028 CAS_MAC_CTRL_STATUS_PT_SHFT); 2029 if ((status2 & CAS_MAC_CTRL_PAUSE) != 0) 2030 device_printf(sc->sc_dev, 2031 "%s: transited to PAUSE state\n", __func__); 2032 if ((status2 & CAS_MAC_CTRL_NON_PAUSE) != 0) 2033 device_printf(sc->sc_dev, 2034 "%s: transited to non-PAUSE state\n", __func__); 2035 } 2036 if ((status & CAS_INTR_MIF) != 0) 2037 device_printf(sc->sc_dev, "%s: MIF interrupt\n", __func__); 2038 #endif 2039 2040 if (__predict_false((status & 2041 (CAS_INTR_TX_TAG_ERR | CAS_INTR_RX_TAG_ERR | 2042 CAS_INTR_RX_LEN_MMATCH | CAS_INTR_PCI_ERROR_INT)) != 0)) { 2043 cas_eint(sc, status); 2044 CAS_UNLOCK(sc); 2045 return; 2046 } 2047 2048 if (__predict_false(status & CAS_INTR_TX_MAC_INT)) { 2049 status2 = CAS_READ_4(sc, CAS_MAC_TX_STATUS); 2050 if ((status2 & 2051 (CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_MAX_PKT_ERR)) != 0) 2052 ifp->if_oerrors++; 2053 else if ((status2 & ~CAS_MAC_TX_FRAME_XMTD) != 0) 2054 device_printf(sc->sc_dev, 2055 "MAC TX fault, status %x\n", status2); 2056 } 2057 2058 if (__predict_false(status & CAS_INTR_RX_MAC_INT)) { 2059 status2 = CAS_READ_4(sc, CAS_MAC_RX_STATUS); 2060 if ((status2 & CAS_MAC_RX_OVERFLOW) != 0) 2061 ifp->if_ierrors++; 2062 else if ((status2 & ~CAS_MAC_RX_FRAME_RCVD) != 0) 2063 device_printf(sc->sc_dev, 2064 "MAC RX fault, status %x\n", status2); 2065 } 2066 2067 if ((status & 2068 (CAS_INTR_RX_DONE | CAS_INTR_RX_BUF_NA | CAS_INTR_RX_COMP_FULL | 2069 CAS_INTR_RX_BUF_AEMPTY | CAS_INTR_RX_COMP_AFULL)) != 0) { 2070 cas_rint(sc); 2071 #ifdef CAS_DEBUG 2072 if (__predict_false((status & 2073 (CAS_INTR_RX_BUF_NA | CAS_INTR_RX_COMP_FULL | 2074 CAS_INTR_RX_BUF_AEMPTY | CAS_INTR_RX_COMP_AFULL)) != 0)) 2075 device_printf(sc->sc_dev, 2076 "RX fault, status %x\n", status); 2077 #endif 2078 } 2079 2080 if ((status & 2081 (CAS_INTR_TX_INT_ME | CAS_INTR_TX_ALL | CAS_INTR_TX_DONE)) != 0) 2082 cas_tint(sc); 2083 2084 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 2085 CAS_UNLOCK(sc); 2086 return; 2087 } else if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2088 taskqueue_enqueue(sc->sc_tq, &sc->sc_tx_task); 2089 CAS_UNLOCK(sc); 2090 2091 status = CAS_READ_4(sc, CAS_STATUS_ALIAS); 2092 if (__predict_false((status & CAS_INTR_SUMMARY) != 0)) { 2093 taskqueue_enqueue(sc->sc_tq, &sc->sc_intr_task); 2094 return; 2095 } 2096 2097 done: 2098 /* Re-enable interrupts. */ 2099 CAS_WRITE_4(sc, CAS_INTMASK, 2100 ~(CAS_INTR_TX_INT_ME | CAS_INTR_TX_TAG_ERR | 2101 CAS_INTR_RX_DONE | CAS_INTR_RX_BUF_NA | CAS_INTR_RX_TAG_ERR | 2102 CAS_INTR_RX_COMP_FULL | CAS_INTR_RX_BUF_AEMPTY | 2103 CAS_INTR_RX_COMP_AFULL | CAS_INTR_RX_LEN_MMATCH | 2104 CAS_INTR_PCI_ERROR_INT 2105 #ifdef CAS_DEBUG 2106 | CAS_INTR_PCS_INT | CAS_INTR_MIF 2107 #endif 2108 )); 2109 } 2110 2111 static void 2112 cas_watchdog(struct cas_softc *sc) 2113 { 2114 struct ifnet *ifp = sc->sc_ifp; 2115 2116 CAS_LOCK_ASSERT(sc, MA_OWNED); 2117 2118 #ifdef CAS_DEBUG 2119 CTR4(KTR_CAS, 2120 "%s: CAS_RX_CONF %x CAS_MAC_RX_STATUS %x CAS_MAC_RX_CONF %x", 2121 __func__, CAS_READ_4(sc, CAS_RX_CONF), 2122 CAS_READ_4(sc, CAS_MAC_RX_STATUS), 2123 CAS_READ_4(sc, CAS_MAC_RX_CONF)); 2124 CTR4(KTR_CAS, 2125 "%s: CAS_TX_CONF %x CAS_MAC_TX_STATUS %x CAS_MAC_TX_CONF %x", 2126 __func__, CAS_READ_4(sc, CAS_TX_CONF), 2127 CAS_READ_4(sc, CAS_MAC_TX_STATUS), 2128 CAS_READ_4(sc, CAS_MAC_TX_CONF)); 2129 #endif 2130 2131 if (sc->sc_wdog_timer == 0 || --sc->sc_wdog_timer != 0) 2132 return; 2133 2134 if ((sc->sc_flags & CAS_LINK) != 0) 2135 device_printf(sc->sc_dev, "device timeout\n"); 2136 else if (bootverbose) 2137 device_printf(sc->sc_dev, "device timeout (no link)\n"); 2138 ++ifp->if_oerrors; 2139 2140 /* Try to get more packets going. */ 2141 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2142 cas_init_locked(sc); 2143 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2144 taskqueue_enqueue(sc->sc_tq, &sc->sc_tx_task); 2145 } 2146 2147 static void 2148 cas_mifinit(struct cas_softc *sc) 2149 { 2150 2151 /* Configure the MIF in frame mode. */ 2152 CAS_WRITE_4(sc, CAS_MIF_CONF, 2153 CAS_READ_4(sc, CAS_MIF_CONF) & ~CAS_MIF_CONF_BB_MODE); 2154 CAS_BARRIER(sc, CAS_MIF_CONF, 4, 2155 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 2156 } 2157 2158 /* 2159 * MII interface 2160 * 2161 * The MII interface supports at least three different operating modes: 2162 * 2163 * Bitbang mode is implemented using data, clock and output enable registers. 2164 * 2165 * Frame mode is implemented by loading a complete frame into the frame 2166 * register and polling the valid bit for completion. 2167 * 2168 * Polling mode uses the frame register but completion is indicated by 2169 * an interrupt. 2170 * 2171 */ 2172 static int 2173 cas_mii_readreg(device_t dev, int phy, int reg) 2174 { 2175 struct cas_softc *sc; 2176 int n; 2177 uint32_t v; 2178 2179 #ifdef CAS_DEBUG_PHY 2180 printf("%s: phy %d reg %d\n", __func__, phy, reg); 2181 #endif 2182 2183 sc = device_get_softc(dev); 2184 if ((sc->sc_flags & CAS_SERDES) != 0) { 2185 switch (reg) { 2186 case MII_BMCR: 2187 reg = CAS_PCS_CTRL; 2188 break; 2189 case MII_BMSR: 2190 reg = CAS_PCS_STATUS; 2191 break; 2192 case MII_PHYIDR1: 2193 case MII_PHYIDR2: 2194 return (0); 2195 case MII_ANAR: 2196 reg = CAS_PCS_ANAR; 2197 break; 2198 case MII_ANLPAR: 2199 reg = CAS_PCS_ANLPAR; 2200 break; 2201 case MII_EXTSR: 2202 return (EXTSR_1000XFDX | EXTSR_1000XHDX); 2203 default: 2204 device_printf(sc->sc_dev, 2205 "%s: unhandled register %d\n", __func__, reg); 2206 return (0); 2207 } 2208 return (CAS_READ_4(sc, reg)); 2209 } 2210 2211 /* Construct the frame command. */ 2212 v = CAS_MIF_FRAME_READ | 2213 (phy << CAS_MIF_FRAME_PHY_SHFT) | 2214 (reg << CAS_MIF_FRAME_REG_SHFT); 2215 2216 CAS_WRITE_4(sc, CAS_MIF_FRAME, v); 2217 CAS_BARRIER(sc, CAS_MIF_FRAME, 4, 2218 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 2219 for (n = 0; n < 100; n++) { 2220 DELAY(1); 2221 v = CAS_READ_4(sc, CAS_MIF_FRAME); 2222 if (v & CAS_MIF_FRAME_TA_LSB) 2223 return (v & CAS_MIF_FRAME_DATA); 2224 } 2225 2226 device_printf(sc->sc_dev, "%s: timed out\n", __func__); 2227 return (0); 2228 } 2229 2230 static int 2231 cas_mii_writereg(device_t dev, int phy, int reg, int val) 2232 { 2233 struct cas_softc *sc; 2234 int n; 2235 uint32_t v; 2236 2237 #ifdef CAS_DEBUG_PHY 2238 printf("%s: phy %d reg %d val %x\n", phy, reg, val, __func__); 2239 #endif 2240 2241 sc = device_get_softc(dev); 2242 if ((sc->sc_flags & CAS_SERDES) != 0) { 2243 switch (reg) { 2244 case MII_BMSR: 2245 reg = CAS_PCS_STATUS; 2246 break; 2247 case MII_BMCR: 2248 reg = CAS_PCS_CTRL; 2249 if ((val & CAS_PCS_CTRL_RESET) == 0) 2250 break; 2251 CAS_WRITE_4(sc, CAS_PCS_CTRL, val); 2252 CAS_BARRIER(sc, CAS_PCS_CTRL, 4, 2253 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 2254 if (!cas_bitwait(sc, CAS_PCS_CTRL, 2255 CAS_PCS_CTRL_RESET, 0)) 2256 device_printf(sc->sc_dev, 2257 "cannot reset PCS\n"); 2258 /* FALLTHROUGH */ 2259 case MII_ANAR: 2260 CAS_WRITE_4(sc, CAS_PCS_CONF, 0); 2261 CAS_BARRIER(sc, CAS_PCS_CONF, 4, 2262 BUS_SPACE_BARRIER_WRITE); 2263 CAS_WRITE_4(sc, CAS_PCS_ANAR, val); 2264 CAS_BARRIER(sc, CAS_PCS_ANAR, 4, 2265 BUS_SPACE_BARRIER_WRITE); 2266 CAS_WRITE_4(sc, CAS_PCS_SERDES_CTRL, 2267 CAS_PCS_SERDES_CTRL_ESD); 2268 CAS_BARRIER(sc, CAS_PCS_CONF, 4, 2269 BUS_SPACE_BARRIER_WRITE); 2270 CAS_WRITE_4(sc, CAS_PCS_CONF, 2271 CAS_PCS_CONF_EN); 2272 CAS_BARRIER(sc, CAS_PCS_CONF, 4, 2273 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 2274 return (0); 2275 case MII_ANLPAR: 2276 reg = CAS_PCS_ANLPAR; 2277 break; 2278 default: 2279 device_printf(sc->sc_dev, 2280 "%s: unhandled register %d\n", __func__, reg); 2281 return (0); 2282 } 2283 CAS_WRITE_4(sc, reg, val); 2284 CAS_BARRIER(sc, reg, 4, 2285 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 2286 return (0); 2287 } 2288 2289 /* Construct the frame command. */ 2290 v = CAS_MIF_FRAME_WRITE | 2291 (phy << CAS_MIF_FRAME_PHY_SHFT) | 2292 (reg << CAS_MIF_FRAME_REG_SHFT) | 2293 (val & CAS_MIF_FRAME_DATA); 2294 2295 CAS_WRITE_4(sc, CAS_MIF_FRAME, v); 2296 CAS_BARRIER(sc, CAS_MIF_FRAME, 4, 2297 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 2298 for (n = 0; n < 100; n++) { 2299 DELAY(1); 2300 v = CAS_READ_4(sc, CAS_MIF_FRAME); 2301 if (v & CAS_MIF_FRAME_TA_LSB) 2302 return (1); 2303 } 2304 2305 device_printf(sc->sc_dev, "%s: timed out\n", __func__); 2306 return (0); 2307 } 2308 2309 static void 2310 cas_mii_statchg(device_t dev) 2311 { 2312 struct cas_softc *sc; 2313 struct ifnet *ifp; 2314 int gigabit; 2315 uint32_t rxcfg, txcfg, v; 2316 2317 sc = device_get_softc(dev); 2318 ifp = sc->sc_ifp; 2319 2320 CAS_LOCK_ASSERT(sc, MA_OWNED); 2321 2322 #ifdef CAS_DEBUG 2323 if ((ifp->if_flags & IFF_DEBUG) != 0) 2324 device_printf(sc->sc_dev, "%s: status changen", __func__); 2325 #endif 2326 2327 if ((sc->sc_mii->mii_media_status & IFM_ACTIVE) != 0 && 2328 IFM_SUBTYPE(sc->sc_mii->mii_media_active) != IFM_NONE) 2329 sc->sc_flags |= CAS_LINK; 2330 else 2331 sc->sc_flags &= ~CAS_LINK; 2332 2333 switch (IFM_SUBTYPE(sc->sc_mii->mii_media_active)) { 2334 case IFM_1000_SX: 2335 case IFM_1000_LX: 2336 case IFM_1000_CX: 2337 case IFM_1000_T: 2338 gigabit = 1; 2339 break; 2340 default: 2341 gigabit = 0; 2342 } 2343 2344 /* 2345 * The configuration done here corresponds to the steps F) and 2346 * G) and as far as enabling of RX and TX MAC goes also step H) 2347 * of the initialization sequence outlined in section 11.2.1 of 2348 * the Cassini+ ASIC Specification. 2349 */ 2350 2351 rxcfg = sc->sc_mac_rxcfg; 2352 rxcfg &= ~CAS_MAC_RX_CONF_CARR; 2353 txcfg = CAS_MAC_TX_CONF_EN_IPG0 | CAS_MAC_TX_CONF_NGU | 2354 CAS_MAC_TX_CONF_NGUL; 2355 if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0) 2356 txcfg |= CAS_MAC_TX_CONF_ICARR | CAS_MAC_TX_CONF_ICOLLIS; 2357 else if (gigabit != 0) { 2358 rxcfg |= CAS_MAC_RX_CONF_CARR; 2359 txcfg |= CAS_MAC_TX_CONF_CARR; 2360 } 2361 (void)cas_disable_tx(sc); 2362 CAS_WRITE_4(sc, CAS_MAC_TX_CONF, txcfg); 2363 (void)cas_disable_rx(sc); 2364 CAS_WRITE_4(sc, CAS_MAC_RX_CONF, rxcfg); 2365 2366 v = CAS_READ_4(sc, CAS_MAC_CTRL_CONF) & 2367 ~(CAS_MAC_CTRL_CONF_TXP | CAS_MAC_CTRL_CONF_RXP); 2368 if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & 2369 IFM_ETH_RXPAUSE) != 0) 2370 v |= CAS_MAC_CTRL_CONF_RXP; 2371 if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & 2372 IFM_ETH_TXPAUSE) != 0) 2373 v |= CAS_MAC_CTRL_CONF_TXP; 2374 CAS_WRITE_4(sc, CAS_MAC_CTRL_CONF, v); 2375 2376 /* 2377 * All supported chips have a bug causing incorrect checksum 2378 * to be calculated when letting them strip the FCS in half- 2379 * duplex mode. In theory we could disable FCS stripping and 2380 * manually adjust the checksum accordingly. It seems to make 2381 * more sense to optimze for the common case and just disable 2382 * hardware checksumming in half-duplex mode though. 2383 */ 2384 if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) == 0) { 2385 ifp->if_capenable &= ~IFCAP_HWCSUM; 2386 ifp->if_hwassist = 0; 2387 } else if ((sc->sc_flags & CAS_NO_CSUM) == 0) { 2388 ifp->if_capenable = ifp->if_capabilities; 2389 ifp->if_hwassist = CAS_CSUM_FEATURES; 2390 } 2391 2392 if (sc->sc_variant == CAS_SATURN) { 2393 if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) == 0) 2394 /* silicon bug workaround */ 2395 CAS_WRITE_4(sc, CAS_MAC_PREAMBLE_LEN, 0x41); 2396 else 2397 CAS_WRITE_4(sc, CAS_MAC_PREAMBLE_LEN, 0x7); 2398 } 2399 2400 if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) == 0 && 2401 gigabit != 0) 2402 CAS_WRITE_4(sc, CAS_MAC_SLOT_TIME, 2403 CAS_MAC_SLOT_TIME_CARR); 2404 else 2405 CAS_WRITE_4(sc, CAS_MAC_SLOT_TIME, 2406 CAS_MAC_SLOT_TIME_NORM); 2407 2408 /* XIF Configuration */ 2409 v = CAS_MAC_XIF_CONF_TX_OE | CAS_MAC_XIF_CONF_LNKLED; 2410 if ((sc->sc_flags & CAS_SERDES) == 0) { 2411 if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) == 0) 2412 v |= CAS_MAC_XIF_CONF_NOECHO; 2413 v |= CAS_MAC_XIF_CONF_BUF_OE; 2414 } 2415 if (gigabit != 0) 2416 v |= CAS_MAC_XIF_CONF_GMII; 2417 if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0) 2418 v |= CAS_MAC_XIF_CONF_FDXLED; 2419 CAS_WRITE_4(sc, CAS_MAC_XIF_CONF, v); 2420 2421 sc->sc_mac_rxcfg = rxcfg; 2422 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 && 2423 (sc->sc_flags & CAS_LINK) != 0) { 2424 CAS_WRITE_4(sc, CAS_MAC_TX_CONF, 2425 txcfg | CAS_MAC_TX_CONF_EN); 2426 CAS_WRITE_4(sc, CAS_MAC_RX_CONF, 2427 rxcfg | CAS_MAC_RX_CONF_EN); 2428 } 2429 } 2430 2431 static int 2432 cas_mediachange(struct ifnet *ifp) 2433 { 2434 struct cas_softc *sc = ifp->if_softc; 2435 int error; 2436 2437 /* XXX add support for serial media. */ 2438 2439 CAS_LOCK(sc); 2440 error = mii_mediachg(sc->sc_mii); 2441 CAS_UNLOCK(sc); 2442 return (error); 2443 } 2444 2445 static void 2446 cas_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 2447 { 2448 struct cas_softc *sc = ifp->if_softc; 2449 2450 CAS_LOCK(sc); 2451 if ((ifp->if_flags & IFF_UP) == 0) { 2452 CAS_UNLOCK(sc); 2453 return; 2454 } 2455 2456 mii_pollstat(sc->sc_mii); 2457 ifmr->ifm_active = sc->sc_mii->mii_media_active; 2458 ifmr->ifm_status = sc->sc_mii->mii_media_status; 2459 CAS_UNLOCK(sc); 2460 } 2461 2462 static int 2463 cas_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 2464 { 2465 struct cas_softc *sc = ifp->if_softc; 2466 struct ifreq *ifr = (struct ifreq *)data; 2467 int error; 2468 2469 error = 0; 2470 switch (cmd) { 2471 case SIOCSIFFLAGS: 2472 CAS_LOCK(sc); 2473 if ((ifp->if_flags & IFF_UP) != 0) { 2474 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 && 2475 ((ifp->if_flags ^ sc->sc_ifflags) & 2476 (IFF_ALLMULTI | IFF_PROMISC)) != 0) 2477 cas_setladrf(sc); 2478 else 2479 cas_init_locked(sc); 2480 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2481 cas_stop(ifp); 2482 sc->sc_ifflags = ifp->if_flags; 2483 CAS_UNLOCK(sc); 2484 break; 2485 case SIOCSIFCAP: 2486 CAS_LOCK(sc); 2487 if ((sc->sc_flags & CAS_NO_CSUM) != 0) { 2488 error = EINVAL; 2489 CAS_UNLOCK(sc); 2490 break; 2491 } 2492 ifp->if_capenable = ifr->ifr_reqcap; 2493 if ((ifp->if_capenable & IFCAP_TXCSUM) != 0) 2494 ifp->if_hwassist = CAS_CSUM_FEATURES; 2495 else 2496 ifp->if_hwassist = 0; 2497 CAS_UNLOCK(sc); 2498 break; 2499 case SIOCADDMULTI: 2500 case SIOCDELMULTI: 2501 CAS_LOCK(sc); 2502 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2503 cas_setladrf(sc); 2504 CAS_UNLOCK(sc); 2505 break; 2506 case SIOCSIFMTU: 2507 if ((ifr->ifr_mtu < ETHERMIN) || 2508 (ifr->ifr_mtu > ETHERMTU_JUMBO)) 2509 error = EINVAL; 2510 else 2511 ifp->if_mtu = ifr->ifr_mtu; 2512 break; 2513 case SIOCGIFMEDIA: 2514 case SIOCSIFMEDIA: 2515 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii->mii_media, cmd); 2516 break; 2517 default: 2518 error = ether_ioctl(ifp, cmd, data); 2519 break; 2520 } 2521 2522 return (error); 2523 } 2524 2525 static void 2526 cas_setladrf(struct cas_softc *sc) 2527 { 2528 struct ifnet *ifp = sc->sc_ifp; 2529 struct ifmultiaddr *inm; 2530 int i; 2531 uint32_t hash[16]; 2532 uint32_t crc, v; 2533 2534 CAS_LOCK_ASSERT(sc, MA_OWNED); 2535 2536 /* 2537 * Turn off the RX MAC and the hash filter as required by the Sun 2538 * Cassini programming restrictions. 2539 */ 2540 v = sc->sc_mac_rxcfg & ~(CAS_MAC_RX_CONF_HFILTER | 2541 CAS_MAC_RX_CONF_EN); 2542 CAS_WRITE_4(sc, CAS_MAC_RX_CONF, v); 2543 CAS_BARRIER(sc, CAS_MAC_RX_CONF, 4, 2544 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 2545 if (!cas_bitwait(sc, CAS_MAC_RX_CONF, CAS_MAC_RX_CONF_HFILTER | 2546 CAS_MAC_RX_CONF_EN, 0)) 2547 device_printf(sc->sc_dev, 2548 "cannot disable RX MAC or hash filter\n"); 2549 2550 v &= ~(CAS_MAC_RX_CONF_PROMISC | CAS_MAC_RX_CONF_PGRP); 2551 if ((ifp->if_flags & IFF_PROMISC) != 0) { 2552 v |= CAS_MAC_RX_CONF_PROMISC; 2553 goto chipit; 2554 } 2555 if ((ifp->if_flags & IFF_ALLMULTI) != 0) { 2556 v |= CAS_MAC_RX_CONF_PGRP; 2557 goto chipit; 2558 } 2559 2560 /* 2561 * Set up multicast address filter by passing all multicast 2562 * addresses through a crc generator, and then using the high 2563 * order 8 bits as an index into the 256 bit logical address 2564 * filter. The high order 4 bits selects the word, while the 2565 * other 4 bits select the bit within the word (where bit 0 2566 * is the MSB). 2567 */ 2568 2569 /* Clear the hash table. */ 2570 memset(hash, 0, sizeof(hash)); 2571 2572 if_maddr_rlock(ifp); 2573 TAILQ_FOREACH(inm, &ifp->if_multiaddrs, ifma_link) { 2574 if (inm->ifma_addr->sa_family != AF_LINK) 2575 continue; 2576 crc = ether_crc32_le(LLADDR((struct sockaddr_dl *) 2577 inm->ifma_addr), ETHER_ADDR_LEN); 2578 2579 /* We just want the 8 most significant bits. */ 2580 crc >>= 24; 2581 2582 /* Set the corresponding bit in the filter. */ 2583 hash[crc >> 4] |= 1 << (15 - (crc & 15)); 2584 } 2585 if_maddr_runlock(ifp); 2586 2587 v |= CAS_MAC_RX_CONF_HFILTER; 2588 2589 /* Now load the hash table into the chip (if we are using it). */ 2590 for (i = 0; i < 16; i++) 2591 CAS_WRITE_4(sc, 2592 CAS_MAC_HASH0 + i * (CAS_MAC_HASH1 - CAS_MAC_HASH0), 2593 hash[i]); 2594 2595 chipit: 2596 sc->sc_mac_rxcfg = v; 2597 CAS_WRITE_4(sc, CAS_MAC_RX_CONF, v | CAS_MAC_RX_CONF_EN); 2598 } 2599 2600 static int cas_pci_attach(device_t dev); 2601 static int cas_pci_detach(device_t dev); 2602 static int cas_pci_probe(device_t dev); 2603 static int cas_pci_resume(device_t dev); 2604 static int cas_pci_suspend(device_t dev); 2605 2606 static device_method_t cas_pci_methods[] = { 2607 /* Device interface */ 2608 DEVMETHOD(device_probe, cas_pci_probe), 2609 DEVMETHOD(device_attach, cas_pci_attach), 2610 DEVMETHOD(device_detach, cas_pci_detach), 2611 DEVMETHOD(device_suspend, cas_pci_suspend), 2612 DEVMETHOD(device_resume, cas_pci_resume), 2613 /* Use the suspend handler here, it is all that is required. */ 2614 DEVMETHOD(device_shutdown, cas_pci_suspend), 2615 2616 /* MII interface */ 2617 DEVMETHOD(miibus_readreg, cas_mii_readreg), 2618 DEVMETHOD(miibus_writereg, cas_mii_writereg), 2619 DEVMETHOD(miibus_statchg, cas_mii_statchg), 2620 2621 DEVMETHOD_END 2622 }; 2623 2624 static driver_t cas_pci_driver = { 2625 "cas", 2626 cas_pci_methods, 2627 sizeof(struct cas_softc) 2628 }; 2629 2630 DRIVER_MODULE(cas, pci, cas_pci_driver, cas_devclass, 0, 0); 2631 DRIVER_MODULE(miibus, cas, miibus_driver, miibus_devclass, 0, 0); 2632 MODULE_DEPEND(cas, pci, 1, 1, 1); 2633 2634 static const struct cas_pci_dev { 2635 uint32_t cpd_devid; 2636 uint8_t cpd_revid; 2637 int cpd_variant; 2638 const char *cpd_desc; 2639 } cas_pci_devlist[] = { 2640 { 0x0035100b, 0x0, CAS_SATURN, "NS DP83065 Saturn Gigabit Ethernet" }, 2641 { 0xabba108e, 0x10, CAS_CASPLUS, "Sun Cassini+ Gigabit Ethernet" }, 2642 { 0xabba108e, 0x0, CAS_CAS, "Sun Cassini Gigabit Ethernet" }, 2643 { 0, 0, 0, NULL } 2644 }; 2645 2646 static int 2647 cas_pci_probe(device_t dev) 2648 { 2649 int i; 2650 2651 for (i = 0; cas_pci_devlist[i].cpd_desc != NULL; i++) { 2652 if (pci_get_devid(dev) == cas_pci_devlist[i].cpd_devid && 2653 pci_get_revid(dev) >= cas_pci_devlist[i].cpd_revid) { 2654 device_set_desc(dev, cas_pci_devlist[i].cpd_desc); 2655 return (BUS_PROBE_DEFAULT); 2656 } 2657 } 2658 2659 return (ENXIO); 2660 } 2661 2662 static struct resource_spec cas_pci_res_spec[] = { 2663 { SYS_RES_IRQ, 0, RF_SHAREABLE | RF_ACTIVE }, /* CAS_RES_INTR */ 2664 { SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE }, /* CAS_RES_MEM */ 2665 { -1, 0 } 2666 }; 2667 2668 #define CAS_LOCAL_MAC_ADDRESS "local-mac-address" 2669 #define CAS_PHY_INTERFACE "phy-interface" 2670 #define CAS_PHY_TYPE "phy-type" 2671 #define CAS_PHY_TYPE_PCS "pcs" 2672 2673 static int 2674 cas_pci_attach(device_t dev) 2675 { 2676 char buf[sizeof(CAS_LOCAL_MAC_ADDRESS)]; 2677 struct cas_softc *sc; 2678 int i; 2679 #if !(defined(__powerpc__) || defined(__sparc64__)) 2680 u_char enaddr[4][ETHER_ADDR_LEN]; 2681 u_int j, k, lma, pcs[4], phy; 2682 #endif 2683 2684 sc = device_get_softc(dev); 2685 sc->sc_variant = CAS_UNKNOWN; 2686 for (i = 0; cas_pci_devlist[i].cpd_desc != NULL; i++) { 2687 if (pci_get_devid(dev) == cas_pci_devlist[i].cpd_devid && 2688 pci_get_revid(dev) >= cas_pci_devlist[i].cpd_revid) { 2689 sc->sc_variant = cas_pci_devlist[i].cpd_variant; 2690 break; 2691 } 2692 } 2693 if (sc->sc_variant == CAS_UNKNOWN) { 2694 device_printf(dev, "unknown adaptor\n"); 2695 return (ENXIO); 2696 } 2697 2698 /* PCI configuration */ 2699 pci_write_config(dev, PCIR_COMMAND, 2700 pci_read_config(dev, PCIR_COMMAND, 2) | PCIM_CMD_BUSMASTEREN | 2701 PCIM_CMD_MWRICEN | PCIM_CMD_PERRESPEN | PCIM_CMD_SERRESPEN, 2); 2702 2703 sc->sc_dev = dev; 2704 if (sc->sc_variant == CAS_CAS && pci_get_devid(dev) < 0x02) 2705 /* Hardware checksumming may hang TX. */ 2706 sc->sc_flags |= CAS_NO_CSUM; 2707 if (sc->sc_variant == CAS_CASPLUS || sc->sc_variant == CAS_SATURN) 2708 sc->sc_flags |= CAS_REG_PLUS; 2709 if (sc->sc_variant == CAS_CAS || 2710 (sc->sc_variant == CAS_CASPLUS && pci_get_revid(dev) < 0x11)) 2711 sc->sc_flags |= CAS_TABORT; 2712 if (bootverbose) 2713 device_printf(dev, "flags=0x%x\n", sc->sc_flags); 2714 2715 if (bus_alloc_resources(dev, cas_pci_res_spec, sc->sc_res)) { 2716 device_printf(dev, "failed to allocate resources\n"); 2717 bus_release_resources(dev, cas_pci_res_spec, sc->sc_res); 2718 return (ENXIO); 2719 } 2720 2721 CAS_LOCK_INIT(sc, device_get_nameunit(dev)); 2722 2723 #if defined(__powerpc__) || defined(__sparc64__) 2724 OF_getetheraddr(dev, sc->sc_enaddr); 2725 if (OF_getprop(ofw_bus_get_node(dev), CAS_PHY_INTERFACE, buf, 2726 sizeof(buf)) > 0 || OF_getprop(ofw_bus_get_node(dev), 2727 CAS_PHY_TYPE, buf, sizeof(buf)) > 0) { 2728 buf[sizeof(buf) - 1] = '\0'; 2729 if (strcmp(buf, CAS_PHY_TYPE_PCS) == 0) 2730 sc->sc_flags |= CAS_SERDES; 2731 } 2732 #else 2733 /* 2734 * Dig out VPD (vital product data) and read the MAC address as well 2735 * as the PHY type. The VPD resides in the PCI Expansion ROM (PCI 2736 * FCode) and can't be accessed via the PCI capability pointer. 2737 * SUNW,pci-ce and SUNW,pci-qge use the Enhanced VPD format described 2738 * in the free US Patent 7149820. 2739 */ 2740 2741 #define PCI_ROMHDR_SIZE 0x1c 2742 #define PCI_ROMHDR_SIG 0x00 2743 #define PCI_ROMHDR_SIG_MAGIC 0xaa55 /* little endian */ 2744 #define PCI_ROMHDR_PTR_DATA 0x18 2745 #define PCI_ROM_SIZE 0x18 2746 #define PCI_ROM_SIG 0x00 2747 #define PCI_ROM_SIG_MAGIC 0x52494350 /* "PCIR", endian */ 2748 /* reversed */ 2749 #define PCI_ROM_VENDOR 0x04 2750 #define PCI_ROM_DEVICE 0x06 2751 #define PCI_ROM_PTR_VPD 0x08 2752 #define PCI_VPDRES_BYTE0 0x00 2753 #define PCI_VPDRES_ISLARGE(x) ((x) & 0x80) 2754 #define PCI_VPDRES_LARGE_NAME(x) ((x) & 0x7f) 2755 #define PCI_VPDRES_LARGE_LEN_LSB 0x01 2756 #define PCI_VPDRES_LARGE_LEN_MSB 0x02 2757 #define PCI_VPDRES_LARGE_SIZE 0x03 2758 #define PCI_VPDRES_TYPE_ID_STRING 0x02 /* large */ 2759 #define PCI_VPDRES_TYPE_VPD 0x10 /* large */ 2760 #define PCI_VPD_KEY0 0x00 2761 #define PCI_VPD_KEY1 0x01 2762 #define PCI_VPD_LEN 0x02 2763 #define PCI_VPD_SIZE 0x03 2764 2765 #define CAS_ROM_READ_1(sc, offs) \ 2766 CAS_READ_1((sc), CAS_PCI_ROM_OFFSET + (offs)) 2767 #define CAS_ROM_READ_2(sc, offs) \ 2768 CAS_READ_2((sc), CAS_PCI_ROM_OFFSET + (offs)) 2769 #define CAS_ROM_READ_4(sc, offs) \ 2770 CAS_READ_4((sc), CAS_PCI_ROM_OFFSET + (offs)) 2771 2772 lma = phy = 0; 2773 memset(enaddr, 0, sizeof(enaddr)); 2774 memset(pcs, 0, sizeof(pcs)); 2775 2776 /* Enable PCI Expansion ROM access. */ 2777 CAS_WRITE_4(sc, CAS_BIM_LDEV_OEN, 2778 CAS_BIM_LDEV_OEN_PAD | CAS_BIM_LDEV_OEN_PROM); 2779 2780 /* Read PCI Expansion ROM header. */ 2781 if (CAS_ROM_READ_2(sc, PCI_ROMHDR_SIG) != PCI_ROMHDR_SIG_MAGIC || 2782 (i = CAS_ROM_READ_2(sc, PCI_ROMHDR_PTR_DATA)) < 2783 PCI_ROMHDR_SIZE) { 2784 device_printf(dev, "unexpected PCI Expansion ROM header\n"); 2785 goto fail_prom; 2786 } 2787 2788 /* Read PCI Expansion ROM data. */ 2789 if (CAS_ROM_READ_4(sc, i + PCI_ROM_SIG) != PCI_ROM_SIG_MAGIC || 2790 CAS_ROM_READ_2(sc, i + PCI_ROM_VENDOR) != pci_get_vendor(dev) || 2791 CAS_ROM_READ_2(sc, i + PCI_ROM_DEVICE) != pci_get_device(dev) || 2792 (j = CAS_ROM_READ_2(sc, i + PCI_ROM_PTR_VPD)) < 2793 i + PCI_ROM_SIZE) { 2794 device_printf(dev, "unexpected PCI Expansion ROM data\n"); 2795 goto fail_prom; 2796 } 2797 2798 /* Read PCI VPD. */ 2799 next: 2800 if (PCI_VPDRES_ISLARGE(CAS_ROM_READ_1(sc, 2801 j + PCI_VPDRES_BYTE0)) == 0) { 2802 device_printf(dev, "no large PCI VPD\n"); 2803 goto fail_prom; 2804 } 2805 2806 i = (CAS_ROM_READ_1(sc, j + PCI_VPDRES_LARGE_LEN_MSB) << 8) | 2807 CAS_ROM_READ_1(sc, j + PCI_VPDRES_LARGE_LEN_LSB); 2808 switch (PCI_VPDRES_LARGE_NAME(CAS_ROM_READ_1(sc, 2809 j + PCI_VPDRES_BYTE0))) { 2810 case PCI_VPDRES_TYPE_ID_STRING: 2811 /* Skip identifier string. */ 2812 j += PCI_VPDRES_LARGE_SIZE + i; 2813 goto next; 2814 case PCI_VPDRES_TYPE_VPD: 2815 for (j += PCI_VPDRES_LARGE_SIZE; i > 0; 2816 i -= PCI_VPD_SIZE + CAS_ROM_READ_1(sc, j + PCI_VPD_LEN), 2817 j += PCI_VPD_SIZE + CAS_ROM_READ_1(sc, j + PCI_VPD_LEN)) { 2818 if (CAS_ROM_READ_1(sc, j + PCI_VPD_KEY0) != 'Z') 2819 /* no Enhanced VPD */ 2820 continue; 2821 if (CAS_ROM_READ_1(sc, j + PCI_VPD_SIZE) != 'I') 2822 /* no instance property */ 2823 continue; 2824 if (CAS_ROM_READ_1(sc, j + PCI_VPD_SIZE + 3) == 'B') { 2825 /* byte array */ 2826 if (CAS_ROM_READ_1(sc, 2827 j + PCI_VPD_SIZE + 4) != ETHER_ADDR_LEN) 2828 continue; 2829 bus_read_region_1(sc->sc_res[CAS_RES_MEM], 2830 CAS_PCI_ROM_OFFSET + j + PCI_VPD_SIZE + 5, 2831 buf, sizeof(buf)); 2832 buf[sizeof(buf) - 1] = '\0'; 2833 if (strcmp(buf, CAS_LOCAL_MAC_ADDRESS) != 0) 2834 continue; 2835 bus_read_region_1(sc->sc_res[CAS_RES_MEM], 2836 CAS_PCI_ROM_OFFSET + j + PCI_VPD_SIZE + 2837 5 + sizeof(CAS_LOCAL_MAC_ADDRESS), 2838 enaddr[lma], sizeof(enaddr[lma])); 2839 lma++; 2840 if (lma == 4 && phy == 4) 2841 break; 2842 } else if (CAS_ROM_READ_1(sc, j + PCI_VPD_SIZE + 3) == 2843 'S') { 2844 /* string */ 2845 if (CAS_ROM_READ_1(sc, 2846 j + PCI_VPD_SIZE + 4) != 2847 sizeof(CAS_PHY_TYPE_PCS)) 2848 continue; 2849 bus_read_region_1(sc->sc_res[CAS_RES_MEM], 2850 CAS_PCI_ROM_OFFSET + j + PCI_VPD_SIZE + 5, 2851 buf, sizeof(buf)); 2852 buf[sizeof(buf) - 1] = '\0'; 2853 if (strcmp(buf, CAS_PHY_INTERFACE) == 0) 2854 k = sizeof(CAS_PHY_INTERFACE); 2855 else if (strcmp(buf, CAS_PHY_TYPE) == 0) 2856 k = sizeof(CAS_PHY_TYPE); 2857 else 2858 continue; 2859 bus_read_region_1(sc->sc_res[CAS_RES_MEM], 2860 CAS_PCI_ROM_OFFSET + j + PCI_VPD_SIZE + 2861 5 + k, buf, sizeof(buf)); 2862 buf[sizeof(buf) - 1] = '\0'; 2863 if (strcmp(buf, CAS_PHY_TYPE_PCS) == 0) 2864 pcs[phy] = 1; 2865 phy++; 2866 if (lma == 4 && phy == 4) 2867 break; 2868 } 2869 } 2870 break; 2871 default: 2872 device_printf(dev, "unexpected PCI VPD\n"); 2873 goto fail_prom; 2874 } 2875 2876 fail_prom: 2877 CAS_WRITE_4(sc, CAS_BIM_LDEV_OEN, 0); 2878 2879 if (lma == 0) { 2880 device_printf(dev, "could not determine Ethernet address\n"); 2881 goto fail; 2882 } 2883 i = 0; 2884 if (lma > 1 && pci_get_slot(dev) < nitems(enaddr)) 2885 i = pci_get_slot(dev); 2886 memcpy(sc->sc_enaddr, enaddr[i], ETHER_ADDR_LEN); 2887 2888 if (phy == 0) { 2889 device_printf(dev, "could not determine PHY type\n"); 2890 goto fail; 2891 } 2892 i = 0; 2893 if (phy > 1 && pci_get_slot(dev) < nitems(pcs)) 2894 i = pci_get_slot(dev); 2895 if (pcs[i] != 0) 2896 sc->sc_flags |= CAS_SERDES; 2897 #endif 2898 2899 if (cas_attach(sc) != 0) { 2900 device_printf(dev, "could not be attached\n"); 2901 goto fail; 2902 } 2903 2904 if (bus_setup_intr(dev, sc->sc_res[CAS_RES_INTR], INTR_TYPE_NET | 2905 INTR_MPSAFE, cas_intr, NULL, sc, &sc->sc_ih) != 0) { 2906 device_printf(dev, "failed to set up interrupt\n"); 2907 cas_detach(sc); 2908 goto fail; 2909 } 2910 return (0); 2911 2912 fail: 2913 CAS_LOCK_DESTROY(sc); 2914 bus_release_resources(dev, cas_pci_res_spec, sc->sc_res); 2915 return (ENXIO); 2916 } 2917 2918 static int 2919 cas_pci_detach(device_t dev) 2920 { 2921 struct cas_softc *sc; 2922 2923 sc = device_get_softc(dev); 2924 bus_teardown_intr(dev, sc->sc_res[CAS_RES_INTR], sc->sc_ih); 2925 cas_detach(sc); 2926 CAS_LOCK_DESTROY(sc); 2927 bus_release_resources(dev, cas_pci_res_spec, sc->sc_res); 2928 return (0); 2929 } 2930 2931 static int 2932 cas_pci_suspend(device_t dev) 2933 { 2934 2935 cas_suspend(device_get_softc(dev)); 2936 return (0); 2937 } 2938 2939 static int 2940 cas_pci_resume(device_t dev) 2941 { 2942 2943 cas_resume(device_get_softc(dev)); 2944 return (0); 2945 } 2946