xref: /freebsd/sys/dev/cadence/if_cgem.c (revision e92ffd9b626833ebdbf2742c8ffddc6cd94b963e)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2012-2014 Thomas Skibo <thomasskibo@yahoo.com>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /*
30  * A network interface driver for Cadence GEM Gigabit Ethernet
31  * interface such as the one used in Xilinx Zynq-7000 SoC.
32  *
33  * Reference: Zynq-7000 All Programmable SoC Technical Reference Manual.
34  * (v1.4) November 16, 2012.  Xilinx doc UG585.  GEM is covered in Ch. 16
35  * and register definitions are in appendix B.18.
36  */
37 
38 #include <sys/cdefs.h>
39 __FBSDID("$FreeBSD$");
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/bus.h>
44 #include <sys/kernel.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/module.h>
48 #include <sys/rman.h>
49 #include <sys/socket.h>
50 #include <sys/sockio.h>
51 #include <sys/sysctl.h>
52 
53 #include <machine/bus.h>
54 
55 #include <net/ethernet.h>
56 #include <net/if.h>
57 #include <net/if_arp.h>
58 #include <net/if_dl.h>
59 #include <net/if_media.h>
60 #include <net/if_mib.h>
61 #include <net/if_types.h>
62 
63 #ifdef INET
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip.h>
68 #endif
69 
70 #include <net/bpf.h>
71 #include <net/bpfdesc.h>
72 
73 #include <dev/fdt/fdt_common.h>
74 #include <dev/ofw/ofw_bus.h>
75 #include <dev/ofw/ofw_bus_subr.h>
76 
77 #include <dev/mii/mii.h>
78 #include <dev/mii/miivar.h>
79 
80 #ifdef EXT_RESOURCES
81 #include <dev/extres/clk/clk.h>
82 #endif
83 
84 #if BUS_SPACE_MAXADDR > BUS_SPACE_MAXADDR_32BIT
85 #define CGEM64
86 #endif
87 
88 #include <dev/cadence/if_cgem_hw.h>
89 
90 #include "miibus_if.h"
91 
92 #define IF_CGEM_NAME "cgem"
93 
94 #define CGEM_NUM_RX_DESCS	512	/* size of receive descriptor ring */
95 #define CGEM_NUM_TX_DESCS	512	/* size of transmit descriptor ring */
96 
97 /* Default for sysctl rxbufs.  Must be < CGEM_NUM_RX_DESCS of course. */
98 #define DEFAULT_NUM_RX_BUFS	256	/* number of receive bufs to queue. */
99 
100 #define TX_MAX_DMA_SEGS		8	/* maximum segs in a tx mbuf dma */
101 
102 #define CGEM_CKSUM_ASSIST	(CSUM_IP | CSUM_TCP | CSUM_UDP | \
103 				 CSUM_TCP_IPV6 | CSUM_UDP_IPV6)
104 
105 #define HWTYPE_GENERIC_GEM	1
106 #define HWTYPE_ZYNQ		2
107 #define HWTYPE_ZYNQMP		3
108 #define HWTYPE_SIFIVE		4
109 
110 static struct ofw_compat_data compat_data[] = {
111 	{ "cdns,zynq-gem",		HWTYPE_ZYNQ },
112 	{ "cdns,zynqmp-gem",		HWTYPE_ZYNQMP },
113 	{ "sifive,fu540-c000-gem",	HWTYPE_SIFIVE },
114 	{ "sifive,fu740-c000-gem",	HWTYPE_SIFIVE },
115 	{ "cdns,gem",			HWTYPE_GENERIC_GEM },
116 	{ "cadence,gem",		HWTYPE_GENERIC_GEM },
117 	{ NULL,				0 }
118 };
119 
120 struct cgem_softc {
121 	if_t			ifp;
122 	struct mtx		sc_mtx;
123 	device_t		dev;
124 	device_t		miibus;
125 	u_int			mii_media_active;	/* last active media */
126 	int			if_old_flags;
127 	struct resource		*mem_res;
128 	struct resource		*irq_res;
129 	void			*intrhand;
130 	struct callout		tick_ch;
131 	uint32_t		net_ctl_shadow;
132 	uint32_t		net_cfg_shadow;
133 #ifdef EXT_RESOURCES
134 	clk_t			ref_clk;
135 #else
136 	int			ref_clk_num;
137 #endif
138 	int			neednullqs;
139 
140 	bus_dma_tag_t		desc_dma_tag;
141 	bus_dma_tag_t		mbuf_dma_tag;
142 
143 	/* receive descriptor ring */
144 	struct cgem_rx_desc	*rxring;
145 	bus_addr_t		rxring_physaddr;
146 	struct mbuf		*rxring_m[CGEM_NUM_RX_DESCS];
147 	bus_dmamap_t		rxring_m_dmamap[CGEM_NUM_RX_DESCS];
148 	int			rxring_hd_ptr;	/* where to put rcv bufs */
149 	int			rxring_tl_ptr;	/* where to get receives */
150 	int			rxring_queued;	/* how many rcv bufs queued */
151 	bus_dmamap_t		rxring_dma_map;
152 	int			rxbufs;		/* tunable number rcv bufs */
153 	int			rxhangwar;	/* rx hang work-around */
154 	u_int			rxoverruns;	/* rx overruns */
155 	u_int			rxnobufs;	/* rx buf ring empty events */
156 	u_int			rxdmamapfails;	/* rx dmamap failures */
157 	uint32_t		rx_frames_prev;
158 
159 	/* transmit descriptor ring */
160 	struct cgem_tx_desc	*txring;
161 	bus_addr_t		txring_physaddr;
162 	struct mbuf		*txring_m[CGEM_NUM_TX_DESCS];
163 	bus_dmamap_t		txring_m_dmamap[CGEM_NUM_TX_DESCS];
164 	int			txring_hd_ptr;	/* where to put next xmits */
165 	int			txring_tl_ptr;	/* next xmit mbuf to free */
166 	int			txring_queued;	/* num xmits segs queued */
167 	u_int			txfull;		/* tx ring full events */
168 	u_int			txdefrags;	/* tx calls to m_defrag() */
169 	u_int			txdefragfails;	/* tx m_defrag() failures */
170 	u_int			txdmamapfails;	/* tx dmamap failures */
171 
172 	/* null descriptor rings */
173 	void			*null_qs;
174 	bus_addr_t		null_qs_physaddr;
175 
176 	/* hardware provided statistics */
177 	struct cgem_hw_stats {
178 		uint64_t		tx_bytes;
179 		uint32_t		tx_frames;
180 		uint32_t		tx_frames_bcast;
181 		uint32_t		tx_frames_multi;
182 		uint32_t		tx_frames_pause;
183 		uint32_t		tx_frames_64b;
184 		uint32_t		tx_frames_65to127b;
185 		uint32_t		tx_frames_128to255b;
186 		uint32_t		tx_frames_256to511b;
187 		uint32_t		tx_frames_512to1023b;
188 		uint32_t		tx_frames_1024to1536b;
189 		uint32_t		tx_under_runs;
190 		uint32_t		tx_single_collisn;
191 		uint32_t		tx_multi_collisn;
192 		uint32_t		tx_excsv_collisn;
193 		uint32_t		tx_late_collisn;
194 		uint32_t		tx_deferred_frames;
195 		uint32_t		tx_carrier_sense_errs;
196 
197 		uint64_t		rx_bytes;
198 		uint32_t		rx_frames;
199 		uint32_t		rx_frames_bcast;
200 		uint32_t		rx_frames_multi;
201 		uint32_t		rx_frames_pause;
202 		uint32_t		rx_frames_64b;
203 		uint32_t		rx_frames_65to127b;
204 		uint32_t		rx_frames_128to255b;
205 		uint32_t		rx_frames_256to511b;
206 		uint32_t		rx_frames_512to1023b;
207 		uint32_t		rx_frames_1024to1536b;
208 		uint32_t		rx_frames_undersize;
209 		uint32_t		rx_frames_oversize;
210 		uint32_t		rx_frames_jabber;
211 		uint32_t		rx_frames_fcs_errs;
212 		uint32_t		rx_frames_length_errs;
213 		uint32_t		rx_symbol_errs;
214 		uint32_t		rx_align_errs;
215 		uint32_t		rx_resource_errs;
216 		uint32_t		rx_overrun_errs;
217 		uint32_t		rx_ip_hdr_csum_errs;
218 		uint32_t		rx_tcp_csum_errs;
219 		uint32_t		rx_udp_csum_errs;
220 	} stats;
221 };
222 
223 #define RD4(sc, off)		(bus_read_4((sc)->mem_res, (off)))
224 #define WR4(sc, off, val)	(bus_write_4((sc)->mem_res, (off), (val)))
225 #define BARRIER(sc, off, len, flags) \
226 	(bus_barrier((sc)->mem_res, (off), (len), (flags))
227 
228 #define CGEM_LOCK(sc)		mtx_lock(&(sc)->sc_mtx)
229 #define CGEM_UNLOCK(sc)		mtx_unlock(&(sc)->sc_mtx)
230 #define CGEM_LOCK_INIT(sc)	mtx_init(&(sc)->sc_mtx, \
231 	    device_get_nameunit((sc)->dev), MTX_NETWORK_LOCK, MTX_DEF)
232 #define CGEM_LOCK_DESTROY(sc)	mtx_destroy(&(sc)->sc_mtx)
233 #define CGEM_ASSERT_LOCKED(sc)	mtx_assert(&(sc)->sc_mtx, MA_OWNED)
234 
235 /* Allow platforms to optionally provide a way to set the reference clock. */
236 int cgem_set_ref_clk(int unit, int frequency);
237 
238 static devclass_t cgem_devclass;
239 
240 static int cgem_probe(device_t dev);
241 static int cgem_attach(device_t dev);
242 static int cgem_detach(device_t dev);
243 static void cgem_tick(void *);
244 static void cgem_intr(void *);
245 
246 static void cgem_mediachange(struct cgem_softc *, struct mii_data *);
247 
248 static void
249 cgem_get_mac(struct cgem_softc *sc, u_char eaddr[])
250 {
251 	int i;
252 	uint32_t rnd;
253 
254 	/* See if boot loader gave us a MAC address already. */
255 	for (i = 0; i < 4; i++) {
256 		uint32_t low = RD4(sc, CGEM_SPEC_ADDR_LOW(i));
257 		uint32_t high = RD4(sc, CGEM_SPEC_ADDR_HI(i)) & 0xffff;
258 		if (low != 0 || high != 0) {
259 			eaddr[0] = low & 0xff;
260 			eaddr[1] = (low >> 8) & 0xff;
261 			eaddr[2] = (low >> 16) & 0xff;
262 			eaddr[3] = (low >> 24) & 0xff;
263 			eaddr[4] = high & 0xff;
264 			eaddr[5] = (high >> 8) & 0xff;
265 			break;
266 		}
267 	}
268 
269 	/* No MAC from boot loader?  Assign a random one. */
270 	if (i == 4) {
271 		rnd = arc4random();
272 
273 		eaddr[0] = 'b';
274 		eaddr[1] = 's';
275 		eaddr[2] = 'd';
276 		eaddr[3] = (rnd >> 16) & 0xff;
277 		eaddr[4] = (rnd >> 8) & 0xff;
278 		eaddr[5] = rnd & 0xff;
279 
280 		device_printf(sc->dev, "no mac address found, assigning "
281 		    "random: %02x:%02x:%02x:%02x:%02x:%02x\n", eaddr[0],
282 		    eaddr[1], eaddr[2], eaddr[3], eaddr[4], eaddr[5]);
283 	}
284 
285 	/* Move address to first slot and zero out the rest. */
286 	WR4(sc, CGEM_SPEC_ADDR_LOW(0), (eaddr[3] << 24) |
287 	    (eaddr[2] << 16) | (eaddr[1] << 8) | eaddr[0]);
288 	WR4(sc, CGEM_SPEC_ADDR_HI(0), (eaddr[5] << 8) | eaddr[4]);
289 
290 	for (i = 1; i < 4; i++) {
291 		WR4(sc, CGEM_SPEC_ADDR_LOW(i), 0);
292 		WR4(sc, CGEM_SPEC_ADDR_HI(i), 0);
293 	}
294 }
295 
296 /*
297  * cgem_mac_hash():  map 48-bit address to a 6-bit hash. The 6-bit hash
298  * corresponds to a bit in a 64-bit hash register.  Setting that bit in the
299  * hash register enables reception of all frames with a destination address
300  * that hashes to that 6-bit value.
301  *
302  * The hash function is described in sec. 16.2.3 in the Zynq-7000 Tech
303  * Reference Manual.  Bits 0-5 in the hash are the exclusive-or of
304  * every sixth bit in the destination address.
305  */
306 static int
307 cgem_mac_hash(u_char eaddr[])
308 {
309 	int hash;
310 	int i, j;
311 
312 	hash = 0;
313 	for (i = 0; i < 6; i++)
314 		for (j = i; j < 48; j += 6)
315 			if ((eaddr[j >> 3] & (1 << (j & 7))) != 0)
316 				hash ^= (1 << i);
317 
318 	return hash;
319 }
320 
321 static u_int
322 cgem_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
323 {
324 	uint32_t *hashes = arg;
325 	int index;
326 
327 	index = cgem_mac_hash(LLADDR(sdl));
328 	if (index > 31)
329 		hashes[0] |= (1U << (index - 32));
330 	else
331 		hashes[1] |= (1U << index);
332 
333 	return (1);
334 }
335 
336 /*
337  * After any change in rx flags or multi-cast addresses, set up hash registers
338  * and net config register bits.
339  */
340 static void
341 cgem_rx_filter(struct cgem_softc *sc)
342 {
343 	if_t ifp = sc->ifp;
344 	uint32_t hashes[2] = { 0, 0 };
345 
346 	sc->net_cfg_shadow &= ~(CGEM_NET_CFG_MULTI_HASH_EN |
347 	    CGEM_NET_CFG_NO_BCAST | CGEM_NET_CFG_COPY_ALL);
348 
349 	if ((if_getflags(ifp) & IFF_PROMISC) != 0)
350 		sc->net_cfg_shadow |= CGEM_NET_CFG_COPY_ALL;
351 	else {
352 		if ((if_getflags(ifp) & IFF_BROADCAST) == 0)
353 			sc->net_cfg_shadow |= CGEM_NET_CFG_NO_BCAST;
354 		if ((if_getflags(ifp) & IFF_ALLMULTI) != 0) {
355 			hashes[0] = 0xffffffff;
356 			hashes[1] = 0xffffffff;
357 		} else
358 			if_foreach_llmaddr(ifp, cgem_hash_maddr, hashes);
359 
360 		if (hashes[0] != 0 || hashes[1] != 0)
361 			sc->net_cfg_shadow |= CGEM_NET_CFG_MULTI_HASH_EN;
362 	}
363 
364 	WR4(sc, CGEM_HASH_TOP, hashes[0]);
365 	WR4(sc, CGEM_HASH_BOT, hashes[1]);
366 	WR4(sc, CGEM_NET_CFG, sc->net_cfg_shadow);
367 }
368 
369 /* For bus_dmamap_load() callback. */
370 static void
371 cgem_getaddr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
372 {
373 
374 	if (nsegs != 1 || error != 0)
375 		return;
376 	*(bus_addr_t *)arg = segs[0].ds_addr;
377 }
378 
379 /* Set up null queues for priority queues we actually can't disable. */
380 static void
381 cgem_null_qs(struct cgem_softc *sc)
382 {
383 	struct cgem_rx_desc *rx_desc;
384 	struct cgem_tx_desc *tx_desc;
385 	uint32_t queue_mask;
386 	int n;
387 
388 	/* Read design config register 6 to determine number of queues. */
389 	queue_mask = (RD4(sc, CGEM_DESIGN_CFG6) &
390 	    CGEM_DESIGN_CFG6_DMA_PRIO_Q_MASK) >> 1;
391 	if (queue_mask == 0)
392 		return;
393 
394 	/* Create empty RX queue and empty TX buf queues. */
395 	memset(sc->null_qs, 0, sizeof(struct cgem_rx_desc) +
396 	    sizeof(struct cgem_tx_desc));
397 	rx_desc = sc->null_qs;
398 	rx_desc->addr = CGEM_RXDESC_OWN | CGEM_RXDESC_WRAP;
399 	tx_desc = (struct cgem_tx_desc *)(rx_desc + 1);
400 	tx_desc->ctl = CGEM_TXDESC_USED | CGEM_TXDESC_WRAP;
401 
402 	/* Point all valid ring base pointers to the null queues. */
403 	for (n = 1; (queue_mask & 1) != 0; n++, queue_mask >>= 1) {
404 		WR4(sc, CGEM_RX_QN_BAR(n), sc->null_qs_physaddr);
405 		WR4(sc, CGEM_TX_QN_BAR(n), sc->null_qs_physaddr +
406 		    sizeof(struct cgem_rx_desc));
407 	}
408 }
409 
410 /* Create DMA'able descriptor rings. */
411 static int
412 cgem_setup_descs(struct cgem_softc *sc)
413 {
414 	int i, err;
415 	int desc_rings_size = CGEM_NUM_RX_DESCS * sizeof(struct cgem_rx_desc) +
416 	    CGEM_NUM_TX_DESCS * sizeof(struct cgem_tx_desc);
417 
418 	if (sc->neednullqs)
419 		desc_rings_size += sizeof(struct cgem_rx_desc) +
420 		    sizeof(struct cgem_tx_desc);
421 
422 	sc->txring = NULL;
423 	sc->rxring = NULL;
424 
425 	/* Allocate non-cached DMA space for RX and TX descriptors. */
426 	err = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1,
427 #ifdef CGEM64
428 	    1ULL << 32,	/* Do not cross a 4G boundary. */
429 #else
430 	    0,
431 #endif
432 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
433 	    desc_rings_size, 1, desc_rings_size, 0,
434 	    busdma_lock_mutex, &sc->sc_mtx, &sc->desc_dma_tag);
435 	if (err)
436 		return (err);
437 
438 	/* Set up a bus_dma_tag for mbufs. */
439 	err = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
440 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
441 	    TX_MAX_DMA_SEGS, MCLBYTES, 0, busdma_lock_mutex, &sc->sc_mtx,
442 	    &sc->mbuf_dma_tag);
443 	if (err)
444 		return (err);
445 
446 	/*
447 	 * Allocate DMA memory. We allocate transmit, receive and null
448 	 * descriptor queues all at once because the hardware only provides
449 	 * one register for the upper 32 bits of rx and tx descriptor queues
450 	 * hardware addresses.
451 	 */
452 	err = bus_dmamem_alloc(sc->desc_dma_tag, (void **)&sc->rxring,
453 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO,
454 	    &sc->rxring_dma_map);
455 	if (err)
456 		return (err);
457 
458 	/* Load descriptor DMA memory. */
459 	err = bus_dmamap_load(sc->desc_dma_tag, sc->rxring_dma_map,
460 	    (void *)sc->rxring, desc_rings_size,
461 	    cgem_getaddr, &sc->rxring_physaddr, BUS_DMA_NOWAIT);
462 	if (err)
463 		return (err);
464 
465 	/* Initialize RX descriptors. */
466 	for (i = 0; i < CGEM_NUM_RX_DESCS; i++) {
467 		sc->rxring[i].addr = CGEM_RXDESC_OWN;
468 		sc->rxring[i].ctl = 0;
469 		sc->rxring_m[i] = NULL;
470 		sc->rxring_m_dmamap[i] = NULL;
471 	}
472 	sc->rxring[CGEM_NUM_RX_DESCS - 1].addr |= CGEM_RXDESC_WRAP;
473 
474 	sc->rxring_hd_ptr = 0;
475 	sc->rxring_tl_ptr = 0;
476 	sc->rxring_queued = 0;
477 
478 	sc->txring = (struct cgem_tx_desc *)(sc->rxring + CGEM_NUM_RX_DESCS);
479 	sc->txring_physaddr = sc->rxring_physaddr + CGEM_NUM_RX_DESCS *
480 	    sizeof(struct cgem_rx_desc);
481 
482 	/* Initialize TX descriptor ring. */
483 	for (i = 0; i < CGEM_NUM_TX_DESCS; i++) {
484 		sc->txring[i].addr = 0;
485 		sc->txring[i].ctl = CGEM_TXDESC_USED;
486 		sc->txring_m[i] = NULL;
487 		sc->txring_m_dmamap[i] = NULL;
488 	}
489 	sc->txring[CGEM_NUM_TX_DESCS - 1].ctl |= CGEM_TXDESC_WRAP;
490 
491 	sc->txring_hd_ptr = 0;
492 	sc->txring_tl_ptr = 0;
493 	sc->txring_queued = 0;
494 
495 	if (sc->neednullqs) {
496 		sc->null_qs = (void *)(sc->txring + CGEM_NUM_TX_DESCS);
497 		sc->null_qs_physaddr = sc->txring_physaddr +
498 		    CGEM_NUM_TX_DESCS * sizeof(struct cgem_tx_desc);
499 
500 		cgem_null_qs(sc);
501 	}
502 
503 	return (0);
504 }
505 
506 /* Fill receive descriptor ring with mbufs. */
507 static void
508 cgem_fill_rqueue(struct cgem_softc *sc)
509 {
510 	struct mbuf *m = NULL;
511 	bus_dma_segment_t segs[TX_MAX_DMA_SEGS];
512 	int nsegs;
513 
514 	CGEM_ASSERT_LOCKED(sc);
515 
516 	while (sc->rxring_queued < sc->rxbufs) {
517 		/* Get a cluster mbuf. */
518 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
519 		if (m == NULL)
520 			break;
521 
522 		m->m_len = MCLBYTES;
523 		m->m_pkthdr.len = MCLBYTES;
524 		m->m_pkthdr.rcvif = sc->ifp;
525 
526 		/* Load map and plug in physical address. */
527 		if (bus_dmamap_create(sc->mbuf_dma_tag, 0,
528 		    &sc->rxring_m_dmamap[sc->rxring_hd_ptr])) {
529 			sc->rxdmamapfails++;
530 			m_free(m);
531 			break;
532 		}
533 		if (bus_dmamap_load_mbuf_sg(sc->mbuf_dma_tag,
534 		    sc->rxring_m_dmamap[sc->rxring_hd_ptr], m,
535 		    segs, &nsegs, BUS_DMA_NOWAIT)) {
536 			sc->rxdmamapfails++;
537 			bus_dmamap_destroy(sc->mbuf_dma_tag,
538 				   sc->rxring_m_dmamap[sc->rxring_hd_ptr]);
539 			sc->rxring_m_dmamap[sc->rxring_hd_ptr] = NULL;
540 			m_free(m);
541 			break;
542 		}
543 		sc->rxring_m[sc->rxring_hd_ptr] = m;
544 
545 		/* Sync cache with receive buffer. */
546 		bus_dmamap_sync(sc->mbuf_dma_tag,
547 		    sc->rxring_m_dmamap[sc->rxring_hd_ptr],
548 		    BUS_DMASYNC_PREREAD);
549 
550 		/* Write rx descriptor and increment head pointer. */
551 		sc->rxring[sc->rxring_hd_ptr].ctl = 0;
552 #ifdef CGEM64
553 		sc->rxring[sc->rxring_hd_ptr].addrhi = segs[0].ds_addr >> 32;
554 #endif
555 		if (sc->rxring_hd_ptr == CGEM_NUM_RX_DESCS - 1) {
556 			sc->rxring[sc->rxring_hd_ptr].addr = segs[0].ds_addr |
557 			    CGEM_RXDESC_WRAP;
558 			sc->rxring_hd_ptr = 0;
559 		} else
560 			sc->rxring[sc->rxring_hd_ptr++].addr = segs[0].ds_addr;
561 
562 		sc->rxring_queued++;
563 	}
564 }
565 
566 /* Pull received packets off of receive descriptor ring. */
567 static void
568 cgem_recv(struct cgem_softc *sc)
569 {
570 	if_t ifp = sc->ifp;
571 	struct mbuf *m, *m_hd, **m_tl;
572 	uint32_t ctl;
573 
574 	CGEM_ASSERT_LOCKED(sc);
575 
576 	/* Pick up all packets in which the OWN bit is set. */
577 	m_hd = NULL;
578 	m_tl = &m_hd;
579 	while (sc->rxring_queued > 0 &&
580 	    (sc->rxring[sc->rxring_tl_ptr].addr & CGEM_RXDESC_OWN) != 0) {
581 		ctl = sc->rxring[sc->rxring_tl_ptr].ctl;
582 
583 		/* Grab filled mbuf. */
584 		m = sc->rxring_m[sc->rxring_tl_ptr];
585 		sc->rxring_m[sc->rxring_tl_ptr] = NULL;
586 
587 		/* Sync cache with receive buffer. */
588 		bus_dmamap_sync(sc->mbuf_dma_tag,
589 		    sc->rxring_m_dmamap[sc->rxring_tl_ptr],
590 		    BUS_DMASYNC_POSTREAD);
591 
592 		/* Unload and destroy dmamap. */
593 		bus_dmamap_unload(sc->mbuf_dma_tag,
594 		    sc->rxring_m_dmamap[sc->rxring_tl_ptr]);
595 		bus_dmamap_destroy(sc->mbuf_dma_tag,
596 		    sc->rxring_m_dmamap[sc->rxring_tl_ptr]);
597 		sc->rxring_m_dmamap[sc->rxring_tl_ptr] = NULL;
598 
599 		/* Increment tail pointer. */
600 		if (++sc->rxring_tl_ptr == CGEM_NUM_RX_DESCS)
601 			sc->rxring_tl_ptr = 0;
602 		sc->rxring_queued--;
603 
604 		/*
605 		 * Check FCS and make sure entire packet landed in one mbuf
606 		 * cluster (which is much bigger than the largest ethernet
607 		 * packet).
608 		 */
609 		if ((ctl & CGEM_RXDESC_BAD_FCS) != 0 ||
610 		    (ctl & (CGEM_RXDESC_SOF | CGEM_RXDESC_EOF)) !=
611 		    (CGEM_RXDESC_SOF | CGEM_RXDESC_EOF)) {
612 			/* discard. */
613 			m_free(m);
614 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
615 			continue;
616 		}
617 
618 		/* Ready it to hand off to upper layers. */
619 		m->m_data += ETHER_ALIGN;
620 		m->m_len = (ctl & CGEM_RXDESC_LENGTH_MASK);
621 		m->m_pkthdr.rcvif = ifp;
622 		m->m_pkthdr.len = m->m_len;
623 
624 		/*
625 		 * Are we using hardware checksumming?  Check the status in the
626 		 * receive descriptor.
627 		 */
628 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) {
629 			/* TCP or UDP checks out, IP checks out too. */
630 			if ((ctl & CGEM_RXDESC_CKSUM_STAT_MASK) ==
631 			    CGEM_RXDESC_CKSUM_STAT_TCP_GOOD ||
632 			    (ctl & CGEM_RXDESC_CKSUM_STAT_MASK) ==
633 			    CGEM_RXDESC_CKSUM_STAT_UDP_GOOD) {
634 				m->m_pkthdr.csum_flags |=
635 				    CSUM_IP_CHECKED | CSUM_IP_VALID |
636 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
637 				m->m_pkthdr.csum_data = 0xffff;
638 			} else if ((ctl & CGEM_RXDESC_CKSUM_STAT_MASK) ==
639 			    CGEM_RXDESC_CKSUM_STAT_IP_GOOD) {
640 				/* Only IP checks out. */
641 				m->m_pkthdr.csum_flags |=
642 				    CSUM_IP_CHECKED | CSUM_IP_VALID;
643 				m->m_pkthdr.csum_data = 0xffff;
644 			}
645 		}
646 
647 		/* Queue it up for delivery below. */
648 		*m_tl = m;
649 		m_tl = &m->m_next;
650 	}
651 
652 	/* Replenish receive buffers. */
653 	cgem_fill_rqueue(sc);
654 
655 	/* Unlock and send up packets. */
656 	CGEM_UNLOCK(sc);
657 	while (m_hd != NULL) {
658 		m = m_hd;
659 		m_hd = m_hd->m_next;
660 		m->m_next = NULL;
661 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
662 		if_input(ifp, m);
663 	}
664 	CGEM_LOCK(sc);
665 }
666 
667 /* Find completed transmits and free their mbufs. */
668 static void
669 cgem_clean_tx(struct cgem_softc *sc)
670 {
671 	struct mbuf *m;
672 	uint32_t ctl;
673 
674 	CGEM_ASSERT_LOCKED(sc);
675 
676 	/* free up finished transmits. */
677 	while (sc->txring_queued > 0 &&
678 	    ((ctl = sc->txring[sc->txring_tl_ptr].ctl) &
679 	    CGEM_TXDESC_USED) != 0) {
680 		/* Sync cache. */
681 		bus_dmamap_sync(sc->mbuf_dma_tag,
682 		    sc->txring_m_dmamap[sc->txring_tl_ptr],
683 		    BUS_DMASYNC_POSTWRITE);
684 
685 		/* Unload and destroy DMA map. */
686 		bus_dmamap_unload(sc->mbuf_dma_tag,
687 		    sc->txring_m_dmamap[sc->txring_tl_ptr]);
688 		bus_dmamap_destroy(sc->mbuf_dma_tag,
689 		    sc->txring_m_dmamap[sc->txring_tl_ptr]);
690 		sc->txring_m_dmamap[sc->txring_tl_ptr] = NULL;
691 
692 		/* Free up the mbuf. */
693 		m = sc->txring_m[sc->txring_tl_ptr];
694 		sc->txring_m[sc->txring_tl_ptr] = NULL;
695 		m_freem(m);
696 
697 		/* Check the status. */
698 		if ((ctl & CGEM_TXDESC_AHB_ERR) != 0) {
699 			/* Serious bus error. log to console. */
700 #ifdef CGEM64
701 			device_printf(sc->dev,
702 			    "cgem_clean_tx: AHB error, addr=0x%x%08x\n",
703 			    sc->txring[sc->txring_tl_ptr].addrhi,
704 			    sc->txring[sc->txring_tl_ptr].addr);
705 #else
706 			device_printf(sc->dev,
707 			    "cgem_clean_tx: AHB error, addr=0x%x\n",
708 			    sc->txring[sc->txring_tl_ptr].addr);
709 #endif
710 		} else if ((ctl & (CGEM_TXDESC_RETRY_ERR |
711 		    CGEM_TXDESC_LATE_COLL)) != 0) {
712 			if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, 1);
713 		} else
714 			if_inc_counter(sc->ifp, IFCOUNTER_OPACKETS, 1);
715 
716 		/*
717 		 * If the packet spanned more than one tx descriptor, skip
718 		 * descriptors until we find the end so that only
719 		 * start-of-frame descriptors are processed.
720 		 */
721 		while ((ctl & CGEM_TXDESC_LAST_BUF) == 0) {
722 			if ((ctl & CGEM_TXDESC_WRAP) != 0)
723 				sc->txring_tl_ptr = 0;
724 			else
725 				sc->txring_tl_ptr++;
726 			sc->txring_queued--;
727 
728 			ctl = sc->txring[sc->txring_tl_ptr].ctl;
729 
730 			sc->txring[sc->txring_tl_ptr].ctl =
731 			    ctl | CGEM_TXDESC_USED;
732 		}
733 
734 		/* Next descriptor. */
735 		if ((ctl & CGEM_TXDESC_WRAP) != 0)
736 			sc->txring_tl_ptr = 0;
737 		else
738 			sc->txring_tl_ptr++;
739 		sc->txring_queued--;
740 
741 		if_setdrvflagbits(sc->ifp, 0, IFF_DRV_OACTIVE);
742 	}
743 }
744 
745 /* Start transmits. */
746 static void
747 cgem_start_locked(if_t ifp)
748 {
749 	struct cgem_softc *sc = (struct cgem_softc *) if_getsoftc(ifp);
750 	struct mbuf *m;
751 	bus_dma_segment_t segs[TX_MAX_DMA_SEGS];
752 	uint32_t ctl;
753 	int i, nsegs, wrap, err;
754 
755 	CGEM_ASSERT_LOCKED(sc);
756 
757 	if ((if_getdrvflags(ifp) & IFF_DRV_OACTIVE) != 0)
758 		return;
759 
760 	for (;;) {
761 		/* Check that there is room in the descriptor ring. */
762 		if (sc->txring_queued >=
763 		    CGEM_NUM_TX_DESCS - TX_MAX_DMA_SEGS * 2) {
764 			/* Try to make room. */
765 			cgem_clean_tx(sc);
766 
767 			/* Still no room? */
768 			if (sc->txring_queued >=
769 			    CGEM_NUM_TX_DESCS - TX_MAX_DMA_SEGS * 2) {
770 				if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
771 				sc->txfull++;
772 				break;
773 			}
774 		}
775 
776 		/* Grab next transmit packet. */
777 		m = if_dequeue(ifp);
778 		if (m == NULL)
779 			break;
780 
781 		/* Create and load DMA map. */
782 		if (bus_dmamap_create(sc->mbuf_dma_tag, 0,
783 			&sc->txring_m_dmamap[sc->txring_hd_ptr])) {
784 			m_freem(m);
785 			sc->txdmamapfails++;
786 			continue;
787 		}
788 		err = bus_dmamap_load_mbuf_sg(sc->mbuf_dma_tag,
789 		    sc->txring_m_dmamap[sc->txring_hd_ptr], m, segs, &nsegs,
790 		    BUS_DMA_NOWAIT);
791 		if (err == EFBIG) {
792 			/* Too many segments!  defrag and try again. */
793 			struct mbuf *m2 = m_defrag(m, M_NOWAIT);
794 
795 			if (m2 == NULL) {
796 				sc->txdefragfails++;
797 				m_freem(m);
798 				bus_dmamap_destroy(sc->mbuf_dma_tag,
799 				    sc->txring_m_dmamap[sc->txring_hd_ptr]);
800 				sc->txring_m_dmamap[sc->txring_hd_ptr] = NULL;
801 				continue;
802 			}
803 			m = m2;
804 			err = bus_dmamap_load_mbuf_sg(sc->mbuf_dma_tag,
805 			    sc->txring_m_dmamap[sc->txring_hd_ptr], m, segs,
806 			    &nsegs, BUS_DMA_NOWAIT);
807 			sc->txdefrags++;
808 		}
809 		if (err) {
810 			/* Give up. */
811 			m_freem(m);
812 			bus_dmamap_destroy(sc->mbuf_dma_tag,
813 			    sc->txring_m_dmamap[sc->txring_hd_ptr]);
814 			sc->txring_m_dmamap[sc->txring_hd_ptr] = NULL;
815 			sc->txdmamapfails++;
816 			continue;
817 		}
818 		sc->txring_m[sc->txring_hd_ptr] = m;
819 
820 		/* Sync tx buffer with cache. */
821 		bus_dmamap_sync(sc->mbuf_dma_tag,
822 		    sc->txring_m_dmamap[sc->txring_hd_ptr],
823 		    BUS_DMASYNC_PREWRITE);
824 
825 		/* Set wrap flag if next packet might run off end of ring. */
826 		wrap = sc->txring_hd_ptr + nsegs + TX_MAX_DMA_SEGS >=
827 		    CGEM_NUM_TX_DESCS;
828 
829 		/*
830 		 * Fill in the TX descriptors back to front so that USED bit in
831 		 * first descriptor is cleared last.
832 		 */
833 		for (i = nsegs - 1; i >= 0; i--) {
834 			/* Descriptor address. */
835 			sc->txring[sc->txring_hd_ptr + i].addr =
836 			    segs[i].ds_addr;
837 #ifdef CGEM64
838 			sc->txring[sc->txring_hd_ptr + i].addrhi =
839 			    segs[i].ds_addr >> 32;
840 #endif
841 			/* Descriptor control word. */
842 			ctl = segs[i].ds_len;
843 			if (i == nsegs - 1) {
844 				ctl |= CGEM_TXDESC_LAST_BUF;
845 				if (wrap)
846 					ctl |= CGEM_TXDESC_WRAP;
847 			}
848 			sc->txring[sc->txring_hd_ptr + i].ctl = ctl;
849 
850 			if (i != 0)
851 				sc->txring_m[sc->txring_hd_ptr + i] = NULL;
852 		}
853 
854 		if (wrap)
855 			sc->txring_hd_ptr = 0;
856 		else
857 			sc->txring_hd_ptr += nsegs;
858 		sc->txring_queued += nsegs;
859 
860 		/* Kick the transmitter. */
861 		WR4(sc, CGEM_NET_CTRL, sc->net_ctl_shadow |
862 		    CGEM_NET_CTRL_START_TX);
863 
864 		/* If there is a BPF listener, bounce a copy to him. */
865 		ETHER_BPF_MTAP(ifp, m);
866 	}
867 }
868 
869 static void
870 cgem_start(if_t ifp)
871 {
872 	struct cgem_softc *sc = (struct cgem_softc *) if_getsoftc(ifp);
873 
874 	CGEM_LOCK(sc);
875 	cgem_start_locked(ifp);
876 	CGEM_UNLOCK(sc);
877 }
878 
879 static void
880 cgem_poll_hw_stats(struct cgem_softc *sc)
881 {
882 	uint32_t n;
883 
884 	CGEM_ASSERT_LOCKED(sc);
885 
886 	sc->stats.tx_bytes += RD4(sc, CGEM_OCTETS_TX_BOT);
887 	sc->stats.tx_bytes += (uint64_t)RD4(sc, CGEM_OCTETS_TX_TOP) << 32;
888 
889 	sc->stats.tx_frames += RD4(sc, CGEM_FRAMES_TX);
890 	sc->stats.tx_frames_bcast += RD4(sc, CGEM_BCAST_FRAMES_TX);
891 	sc->stats.tx_frames_multi += RD4(sc, CGEM_MULTI_FRAMES_TX);
892 	sc->stats.tx_frames_pause += RD4(sc, CGEM_PAUSE_FRAMES_TX);
893 	sc->stats.tx_frames_64b += RD4(sc, CGEM_FRAMES_64B_TX);
894 	sc->stats.tx_frames_65to127b += RD4(sc, CGEM_FRAMES_65_127B_TX);
895 	sc->stats.tx_frames_128to255b += RD4(sc, CGEM_FRAMES_128_255B_TX);
896 	sc->stats.tx_frames_256to511b += RD4(sc, CGEM_FRAMES_256_511B_TX);
897 	sc->stats.tx_frames_512to1023b += RD4(sc, CGEM_FRAMES_512_1023B_TX);
898 	sc->stats.tx_frames_1024to1536b += RD4(sc, CGEM_FRAMES_1024_1518B_TX);
899 	sc->stats.tx_under_runs += RD4(sc, CGEM_TX_UNDERRUNS);
900 
901 	n = RD4(sc, CGEM_SINGLE_COLL_FRAMES);
902 	sc->stats.tx_single_collisn += n;
903 	if_inc_counter(sc->ifp, IFCOUNTER_COLLISIONS, n);
904 	n = RD4(sc, CGEM_MULTI_COLL_FRAMES);
905 	sc->stats.tx_multi_collisn += n;
906 	if_inc_counter(sc->ifp, IFCOUNTER_COLLISIONS, n);
907 	n = RD4(sc, CGEM_EXCESSIVE_COLL_FRAMES);
908 	sc->stats.tx_excsv_collisn += n;
909 	if_inc_counter(sc->ifp, IFCOUNTER_COLLISIONS, n);
910 	n = RD4(sc, CGEM_LATE_COLL);
911 	sc->stats.tx_late_collisn += n;
912 	if_inc_counter(sc->ifp, IFCOUNTER_COLLISIONS, n);
913 
914 	sc->stats.tx_deferred_frames += RD4(sc, CGEM_DEFERRED_TX_FRAMES);
915 	sc->stats.tx_carrier_sense_errs += RD4(sc, CGEM_CARRIER_SENSE_ERRS);
916 
917 	sc->stats.rx_bytes += RD4(sc, CGEM_OCTETS_RX_BOT);
918 	sc->stats.rx_bytes += (uint64_t)RD4(sc, CGEM_OCTETS_RX_TOP) << 32;
919 
920 	sc->stats.rx_frames += RD4(sc, CGEM_FRAMES_RX);
921 	sc->stats.rx_frames_bcast += RD4(sc, CGEM_BCAST_FRAMES_RX);
922 	sc->stats.rx_frames_multi += RD4(sc, CGEM_MULTI_FRAMES_RX);
923 	sc->stats.rx_frames_pause += RD4(sc, CGEM_PAUSE_FRAMES_RX);
924 	sc->stats.rx_frames_64b += RD4(sc, CGEM_FRAMES_64B_RX);
925 	sc->stats.rx_frames_65to127b += RD4(sc, CGEM_FRAMES_65_127B_RX);
926 	sc->stats.rx_frames_128to255b += RD4(sc, CGEM_FRAMES_128_255B_RX);
927 	sc->stats.rx_frames_256to511b += RD4(sc, CGEM_FRAMES_256_511B_RX);
928 	sc->stats.rx_frames_512to1023b += RD4(sc, CGEM_FRAMES_512_1023B_RX);
929 	sc->stats.rx_frames_1024to1536b += RD4(sc, CGEM_FRAMES_1024_1518B_RX);
930 	sc->stats.rx_frames_undersize += RD4(sc, CGEM_UNDERSZ_RX);
931 	sc->stats.rx_frames_oversize += RD4(sc, CGEM_OVERSZ_RX);
932 	sc->stats.rx_frames_jabber += RD4(sc, CGEM_JABBERS_RX);
933 	sc->stats.rx_frames_fcs_errs += RD4(sc, CGEM_FCS_ERRS);
934 	sc->stats.rx_frames_length_errs += RD4(sc, CGEM_LENGTH_FIELD_ERRS);
935 	sc->stats.rx_symbol_errs += RD4(sc, CGEM_RX_SYMBOL_ERRS);
936 	sc->stats.rx_align_errs += RD4(sc, CGEM_ALIGN_ERRS);
937 	sc->stats.rx_resource_errs += RD4(sc, CGEM_RX_RESOURCE_ERRS);
938 	sc->stats.rx_overrun_errs += RD4(sc, CGEM_RX_OVERRUN_ERRS);
939 	sc->stats.rx_ip_hdr_csum_errs += RD4(sc, CGEM_IP_HDR_CKSUM_ERRS);
940 	sc->stats.rx_tcp_csum_errs += RD4(sc, CGEM_TCP_CKSUM_ERRS);
941 	sc->stats.rx_udp_csum_errs += RD4(sc, CGEM_UDP_CKSUM_ERRS);
942 }
943 
944 static void
945 cgem_tick(void *arg)
946 {
947 	struct cgem_softc *sc = (struct cgem_softc *)arg;
948 	struct mii_data *mii;
949 
950 	CGEM_ASSERT_LOCKED(sc);
951 
952 	/* Poll the phy. */
953 	if (sc->miibus != NULL) {
954 		mii = device_get_softc(sc->miibus);
955 		mii_tick(mii);
956 	}
957 
958 	/* Poll statistics registers. */
959 	cgem_poll_hw_stats(sc);
960 
961 	/* Check for receiver hang. */
962 	if (sc->rxhangwar && sc->rx_frames_prev == sc->stats.rx_frames) {
963 		/*
964 		 * Reset receiver logic by toggling RX_EN bit.  1usec
965 		 * delay is necessary especially when operating at 100mbps
966 		 * and 10mbps speeds.
967 		 */
968 		WR4(sc, CGEM_NET_CTRL, sc->net_ctl_shadow &
969 		    ~CGEM_NET_CTRL_RX_EN);
970 		DELAY(1);
971 		WR4(sc, CGEM_NET_CTRL, sc->net_ctl_shadow);
972 	}
973 	sc->rx_frames_prev = sc->stats.rx_frames;
974 
975 	/* Next callout in one second. */
976 	callout_reset(&sc->tick_ch, hz, cgem_tick, sc);
977 }
978 
979 /* Interrupt handler. */
980 static void
981 cgem_intr(void *arg)
982 {
983 	struct cgem_softc *sc = (struct cgem_softc *)arg;
984 	if_t ifp = sc->ifp;
985 	uint32_t istatus;
986 
987 	CGEM_LOCK(sc);
988 
989 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
990 		CGEM_UNLOCK(sc);
991 		return;
992 	}
993 
994 	/* Read interrupt status and immediately clear the bits. */
995 	istatus = RD4(sc, CGEM_INTR_STAT);
996 	WR4(sc, CGEM_INTR_STAT, istatus);
997 
998 	/* Packets received. */
999 	if ((istatus & CGEM_INTR_RX_COMPLETE) != 0)
1000 		cgem_recv(sc);
1001 
1002 	/* Free up any completed transmit buffers. */
1003 	cgem_clean_tx(sc);
1004 
1005 	/* Hresp not ok.  Something is very bad with DMA.  Try to clear. */
1006 	if ((istatus & CGEM_INTR_HRESP_NOT_OK) != 0) {
1007 		device_printf(sc->dev,
1008 		    "cgem_intr: hresp not okay! rx_status=0x%x\n",
1009 		    RD4(sc, CGEM_RX_STAT));
1010 		WR4(sc, CGEM_RX_STAT, CGEM_RX_STAT_HRESP_NOT_OK);
1011 	}
1012 
1013 	/* Receiver overrun. */
1014 	if ((istatus & CGEM_INTR_RX_OVERRUN) != 0) {
1015 		/* Clear status bit. */
1016 		WR4(sc, CGEM_RX_STAT, CGEM_RX_STAT_OVERRUN);
1017 		sc->rxoverruns++;
1018 	}
1019 
1020 	/* Receiver ran out of bufs. */
1021 	if ((istatus & CGEM_INTR_RX_USED_READ) != 0) {
1022 		WR4(sc, CGEM_NET_CTRL, sc->net_ctl_shadow |
1023 		    CGEM_NET_CTRL_FLUSH_DPRAM_PKT);
1024 		cgem_fill_rqueue(sc);
1025 		sc->rxnobufs++;
1026 	}
1027 
1028 	/* Restart transmitter if needed. */
1029 	if (!if_sendq_empty(ifp))
1030 		cgem_start_locked(ifp);
1031 
1032 	CGEM_UNLOCK(sc);
1033 }
1034 
1035 /* Reset hardware. */
1036 static void
1037 cgem_reset(struct cgem_softc *sc)
1038 {
1039 
1040 	CGEM_ASSERT_LOCKED(sc);
1041 
1042 	/* Determine data bus width from design configuration register. */
1043 	switch (RD4(sc, CGEM_DESIGN_CFG1) &
1044 	    CGEM_DESIGN_CFG1_DMA_BUS_WIDTH_MASK) {
1045 	case CGEM_DESIGN_CFG1_DMA_BUS_WIDTH_64:
1046 		sc->net_cfg_shadow = CGEM_NET_CFG_DBUS_WIDTH_64;
1047 		break;
1048 	case CGEM_DESIGN_CFG1_DMA_BUS_WIDTH_128:
1049 		sc->net_cfg_shadow = CGEM_NET_CFG_DBUS_WIDTH_128;
1050 		break;
1051 	default:
1052 		sc->net_cfg_shadow = CGEM_NET_CFG_DBUS_WIDTH_32;
1053 	}
1054 
1055 	WR4(sc, CGEM_NET_CTRL, 0);
1056 	WR4(sc, CGEM_NET_CFG, sc->net_cfg_shadow);
1057 	WR4(sc, CGEM_NET_CTRL, CGEM_NET_CTRL_CLR_STAT_REGS);
1058 	WR4(sc, CGEM_TX_STAT, CGEM_TX_STAT_ALL);
1059 	WR4(sc, CGEM_RX_STAT, CGEM_RX_STAT_ALL);
1060 	WR4(sc, CGEM_INTR_DIS, CGEM_INTR_ALL);
1061 	WR4(sc, CGEM_HASH_BOT, 0);
1062 	WR4(sc, CGEM_HASH_TOP, 0);
1063 	WR4(sc, CGEM_TX_QBAR, 0);	/* manual says do this. */
1064 	WR4(sc, CGEM_RX_QBAR, 0);
1065 
1066 	/* Get management port running even if interface is down. */
1067 	sc->net_cfg_shadow |= CGEM_NET_CFG_MDC_CLK_DIV_48;
1068 	WR4(sc, CGEM_NET_CFG, sc->net_cfg_shadow);
1069 
1070 	sc->net_ctl_shadow = CGEM_NET_CTRL_MGMT_PORT_EN;
1071 	WR4(sc, CGEM_NET_CTRL, sc->net_ctl_shadow);
1072 }
1073 
1074 /* Bring up the hardware. */
1075 static void
1076 cgem_config(struct cgem_softc *sc)
1077 {
1078 	if_t ifp = sc->ifp;
1079 	uint32_t dma_cfg;
1080 	u_char *eaddr = if_getlladdr(ifp);
1081 
1082 	CGEM_ASSERT_LOCKED(sc);
1083 
1084 	/* Program Net Config Register. */
1085 	sc->net_cfg_shadow &= (CGEM_NET_CFG_MDC_CLK_DIV_MASK |
1086 	    CGEM_NET_CFG_DBUS_WIDTH_MASK);
1087 	sc->net_cfg_shadow |= (CGEM_NET_CFG_FCS_REMOVE |
1088 	    CGEM_NET_CFG_RX_BUF_OFFSET(ETHER_ALIGN) |
1089 	    CGEM_NET_CFG_GIGE_EN | CGEM_NET_CFG_1536RXEN |
1090 	    CGEM_NET_CFG_FULL_DUPLEX | CGEM_NET_CFG_SPEED100);
1091 
1092 	/* Enable receive checksum offloading? */
1093 	if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
1094 		sc->net_cfg_shadow |=  CGEM_NET_CFG_RX_CHKSUM_OFFLD_EN;
1095 
1096 	WR4(sc, CGEM_NET_CFG, sc->net_cfg_shadow);
1097 
1098 	/* Program DMA Config Register. */
1099 	dma_cfg = CGEM_DMA_CFG_RX_BUF_SIZE(MCLBYTES) |
1100 	    CGEM_DMA_CFG_RX_PKTBUF_MEMSZ_SEL_8K |
1101 	    CGEM_DMA_CFG_TX_PKTBUF_MEMSZ_SEL |
1102 	    CGEM_DMA_CFG_AHB_FIXED_BURST_LEN_16 |
1103 #ifdef CGEM64
1104 	    CGEM_DMA_CFG_ADDR_BUS_64 |
1105 #endif
1106 	    CGEM_DMA_CFG_DISC_WHEN_NO_AHB;
1107 
1108 	/* Enable transmit checksum offloading? */
1109 	if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
1110 		dma_cfg |= CGEM_DMA_CFG_CHKSUM_GEN_OFFLOAD_EN;
1111 
1112 	WR4(sc, CGEM_DMA_CFG, dma_cfg);
1113 
1114 	/* Write the rx and tx descriptor ring addresses to the QBAR regs. */
1115 	WR4(sc, CGEM_RX_QBAR, (uint32_t)sc->rxring_physaddr);
1116 	WR4(sc, CGEM_TX_QBAR, (uint32_t)sc->txring_physaddr);
1117 #ifdef CGEM64
1118 	WR4(sc, CGEM_RX_QBAR_HI, (uint32_t)(sc->rxring_physaddr >> 32));
1119 	WR4(sc, CGEM_TX_QBAR_HI, (uint32_t)(sc->txring_physaddr >> 32));
1120 #endif
1121 
1122 	/* Enable rx and tx. */
1123 	sc->net_ctl_shadow |= (CGEM_NET_CTRL_TX_EN | CGEM_NET_CTRL_RX_EN);
1124 	WR4(sc, CGEM_NET_CTRL, sc->net_ctl_shadow);
1125 
1126 	/* Set receive address in case it changed. */
1127 	WR4(sc, CGEM_SPEC_ADDR_LOW(0), (eaddr[3] << 24) |
1128 	    (eaddr[2] << 16) | (eaddr[1] << 8) | eaddr[0]);
1129 	WR4(sc, CGEM_SPEC_ADDR_HI(0), (eaddr[5] << 8) | eaddr[4]);
1130 
1131 	/* Set up interrupts. */
1132 	WR4(sc, CGEM_INTR_EN, CGEM_INTR_RX_COMPLETE | CGEM_INTR_RX_OVERRUN |
1133 	    CGEM_INTR_TX_USED_READ | CGEM_INTR_RX_USED_READ |
1134 	    CGEM_INTR_HRESP_NOT_OK);
1135 }
1136 
1137 /* Turn on interface and load up receive ring with buffers. */
1138 static void
1139 cgem_init_locked(struct cgem_softc *sc)
1140 {
1141 	struct mii_data *mii;
1142 
1143 	CGEM_ASSERT_LOCKED(sc);
1144 
1145 	if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) != 0)
1146 		return;
1147 
1148 	cgem_config(sc);
1149 	cgem_fill_rqueue(sc);
1150 
1151 	if_setdrvflagbits(sc->ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
1152 
1153 	if (sc->miibus != NULL) {
1154 		mii = device_get_softc(sc->miibus);
1155 		mii_mediachg(mii);
1156 	}
1157 
1158 	callout_reset(&sc->tick_ch, hz, cgem_tick, sc);
1159 }
1160 
1161 static void
1162 cgem_init(void *arg)
1163 {
1164 	struct cgem_softc *sc = (struct cgem_softc *)arg;
1165 
1166 	CGEM_LOCK(sc);
1167 	cgem_init_locked(sc);
1168 	CGEM_UNLOCK(sc);
1169 }
1170 
1171 /* Turn off interface.  Free up any buffers in transmit or receive queues. */
1172 static void
1173 cgem_stop(struct cgem_softc *sc)
1174 {
1175 	int i;
1176 
1177 	CGEM_ASSERT_LOCKED(sc);
1178 
1179 	callout_stop(&sc->tick_ch);
1180 
1181 	/* Shut down hardware. */
1182 	cgem_reset(sc);
1183 
1184 	/* Clear out transmit queue. */
1185 	memset(sc->txring, 0, CGEM_NUM_TX_DESCS * sizeof(struct cgem_tx_desc));
1186 	for (i = 0; i < CGEM_NUM_TX_DESCS; i++) {
1187 		sc->txring[i].ctl = CGEM_TXDESC_USED;
1188 		if (sc->txring_m[i]) {
1189 			/* Unload and destroy dmamap. */
1190 			bus_dmamap_unload(sc->mbuf_dma_tag,
1191 			    sc->txring_m_dmamap[i]);
1192 			bus_dmamap_destroy(sc->mbuf_dma_tag,
1193 			    sc->txring_m_dmamap[i]);
1194 			sc->txring_m_dmamap[i] = NULL;
1195 			m_freem(sc->txring_m[i]);
1196 			sc->txring_m[i] = NULL;
1197 		}
1198 	}
1199 	sc->txring[CGEM_NUM_TX_DESCS - 1].ctl |= CGEM_TXDESC_WRAP;
1200 
1201 	sc->txring_hd_ptr = 0;
1202 	sc->txring_tl_ptr = 0;
1203 	sc->txring_queued = 0;
1204 
1205 	/* Clear out receive queue. */
1206 	memset(sc->rxring, 0, CGEM_NUM_RX_DESCS * sizeof(struct cgem_rx_desc));
1207 	for (i = 0; i < CGEM_NUM_RX_DESCS; i++) {
1208 		sc->rxring[i].addr = CGEM_RXDESC_OWN;
1209 		if (sc->rxring_m[i]) {
1210 			/* Unload and destroy dmamap. */
1211 			bus_dmamap_unload(sc->mbuf_dma_tag,
1212 			    sc->rxring_m_dmamap[i]);
1213 			bus_dmamap_destroy(sc->mbuf_dma_tag,
1214 			    sc->rxring_m_dmamap[i]);
1215 			sc->rxring_m_dmamap[i] = NULL;
1216 
1217 			m_freem(sc->rxring_m[i]);
1218 			sc->rxring_m[i] = NULL;
1219 		}
1220 	}
1221 	sc->rxring[CGEM_NUM_RX_DESCS - 1].addr |= CGEM_RXDESC_WRAP;
1222 
1223 	sc->rxring_hd_ptr = 0;
1224 	sc->rxring_tl_ptr = 0;
1225 	sc->rxring_queued = 0;
1226 
1227 	/* Force next statchg or linkchg to program net config register. */
1228 	sc->mii_media_active = 0;
1229 }
1230 
1231 static int
1232 cgem_ioctl(if_t ifp, u_long cmd, caddr_t data)
1233 {
1234 	struct cgem_softc *sc = if_getsoftc(ifp);
1235 	struct ifreq *ifr = (struct ifreq *)data;
1236 	struct mii_data *mii;
1237 	int error = 0, mask;
1238 
1239 	switch (cmd) {
1240 	case SIOCSIFFLAGS:
1241 		CGEM_LOCK(sc);
1242 		if ((if_getflags(ifp) & IFF_UP) != 0) {
1243 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1244 				if (((if_getflags(ifp) ^ sc->if_old_flags) &
1245 				    (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
1246 					cgem_rx_filter(sc);
1247 				}
1248 			} else {
1249 				cgem_init_locked(sc);
1250 			}
1251 		} else if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1252 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1253 			cgem_stop(sc);
1254 		}
1255 		sc->if_old_flags = if_getflags(ifp);
1256 		CGEM_UNLOCK(sc);
1257 		break;
1258 
1259 	case SIOCADDMULTI:
1260 	case SIOCDELMULTI:
1261 		/* Set up multi-cast filters. */
1262 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1263 			CGEM_LOCK(sc);
1264 			cgem_rx_filter(sc);
1265 			CGEM_UNLOCK(sc);
1266 		}
1267 		break;
1268 
1269 	case SIOCSIFMEDIA:
1270 	case SIOCGIFMEDIA:
1271 		if (sc->miibus == NULL)
1272 			return (ENXIO);
1273 		mii = device_get_softc(sc->miibus);
1274 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1275 		break;
1276 
1277 	case SIOCSIFCAP:
1278 		CGEM_LOCK(sc);
1279 		mask = if_getcapenable(ifp) ^ ifr->ifr_reqcap;
1280 
1281 		if ((mask & IFCAP_TXCSUM) != 0) {
1282 			if ((ifr->ifr_reqcap & IFCAP_TXCSUM) != 0) {
1283 				/* Turn on TX checksumming. */
1284 				if_setcapenablebit(ifp, IFCAP_TXCSUM |
1285 				    IFCAP_TXCSUM_IPV6, 0);
1286 				if_sethwassistbits(ifp, CGEM_CKSUM_ASSIST, 0);
1287 
1288 				WR4(sc, CGEM_DMA_CFG,
1289 				    RD4(sc, CGEM_DMA_CFG) |
1290 				    CGEM_DMA_CFG_CHKSUM_GEN_OFFLOAD_EN);
1291 			} else {
1292 				/* Turn off TX checksumming. */
1293 				if_setcapenablebit(ifp, 0, IFCAP_TXCSUM |
1294 				    IFCAP_TXCSUM_IPV6);
1295 				if_sethwassistbits(ifp, 0, CGEM_CKSUM_ASSIST);
1296 
1297 				WR4(sc, CGEM_DMA_CFG,
1298 				    RD4(sc, CGEM_DMA_CFG) &
1299 				    ~CGEM_DMA_CFG_CHKSUM_GEN_OFFLOAD_EN);
1300 			}
1301 		}
1302 		if ((mask & IFCAP_RXCSUM) != 0) {
1303 			if ((ifr->ifr_reqcap & IFCAP_RXCSUM) != 0) {
1304 				/* Turn on RX checksumming. */
1305 				if_setcapenablebit(ifp, IFCAP_RXCSUM |
1306 				    IFCAP_RXCSUM_IPV6, 0);
1307 				sc->net_cfg_shadow |=
1308 				    CGEM_NET_CFG_RX_CHKSUM_OFFLD_EN;
1309 				WR4(sc, CGEM_NET_CFG, sc->net_cfg_shadow);
1310 			} else {
1311 				/* Turn off RX checksumming. */
1312 				if_setcapenablebit(ifp, 0, IFCAP_RXCSUM |
1313 				    IFCAP_RXCSUM_IPV6);
1314 				sc->net_cfg_shadow &=
1315 				    ~CGEM_NET_CFG_RX_CHKSUM_OFFLD_EN;
1316 				WR4(sc, CGEM_NET_CFG, sc->net_cfg_shadow);
1317 			}
1318 		}
1319 		if ((if_getcapenable(ifp) & (IFCAP_RXCSUM | IFCAP_TXCSUM)) ==
1320 		    (IFCAP_RXCSUM | IFCAP_TXCSUM))
1321 			if_setcapenablebit(ifp, IFCAP_VLAN_HWCSUM, 0);
1322 		else
1323 			if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWCSUM);
1324 
1325 		CGEM_UNLOCK(sc);
1326 		break;
1327 	default:
1328 		error = ether_ioctl(ifp, cmd, data);
1329 		break;
1330 	}
1331 
1332 	return (error);
1333 }
1334 
1335 /* MII bus support routines.
1336  */
1337 static int
1338 cgem_ifmedia_upd(if_t ifp)
1339 {
1340 	struct cgem_softc *sc = (struct cgem_softc *) if_getsoftc(ifp);
1341 	struct mii_data *mii;
1342 	struct mii_softc *miisc;
1343 	int error = 0;
1344 
1345 	mii = device_get_softc(sc->miibus);
1346 	CGEM_LOCK(sc);
1347 	if ((if_getflags(ifp) & IFF_UP) != 0) {
1348 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1349 			PHY_RESET(miisc);
1350 		error = mii_mediachg(mii);
1351 	}
1352 	CGEM_UNLOCK(sc);
1353 
1354 	return (error);
1355 }
1356 
1357 static void
1358 cgem_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
1359 {
1360 	struct cgem_softc *sc = (struct cgem_softc *) if_getsoftc(ifp);
1361 	struct mii_data *mii;
1362 
1363 	mii = device_get_softc(sc->miibus);
1364 	CGEM_LOCK(sc);
1365 	mii_pollstat(mii);
1366 	ifmr->ifm_active = mii->mii_media_active;
1367 	ifmr->ifm_status = mii->mii_media_status;
1368 	CGEM_UNLOCK(sc);
1369 }
1370 
1371 static int
1372 cgem_miibus_readreg(device_t dev, int phy, int reg)
1373 {
1374 	struct cgem_softc *sc = device_get_softc(dev);
1375 	int tries, val;
1376 
1377 	WR4(sc, CGEM_PHY_MAINT, CGEM_PHY_MAINT_CLAUSE_22 |
1378 	    CGEM_PHY_MAINT_MUST_10 | CGEM_PHY_MAINT_OP_READ |
1379 	    (phy << CGEM_PHY_MAINT_PHY_ADDR_SHIFT) |
1380 	    (reg << CGEM_PHY_MAINT_REG_ADDR_SHIFT));
1381 
1382 	/* Wait for completion. */
1383 	tries=0;
1384 	while ((RD4(sc, CGEM_NET_STAT) & CGEM_NET_STAT_PHY_MGMT_IDLE) == 0) {
1385 		DELAY(5);
1386 		if (++tries > 200) {
1387 			device_printf(dev, "phy read timeout: %d\n", reg);
1388 			return (-1);
1389 		}
1390 	}
1391 
1392 	val = RD4(sc, CGEM_PHY_MAINT) & CGEM_PHY_MAINT_DATA_MASK;
1393 
1394 	if (reg == MII_EXTSR)
1395 		/*
1396 		 * MAC does not support half-duplex at gig speeds.
1397 		 * Let mii(4) exclude the capability.
1398 		 */
1399 		val &= ~(EXTSR_1000XHDX | EXTSR_1000THDX);
1400 
1401 	return (val);
1402 }
1403 
1404 static int
1405 cgem_miibus_writereg(device_t dev, int phy, int reg, int data)
1406 {
1407 	struct cgem_softc *sc = device_get_softc(dev);
1408 	int tries;
1409 
1410 	WR4(sc, CGEM_PHY_MAINT, CGEM_PHY_MAINT_CLAUSE_22 |
1411 	    CGEM_PHY_MAINT_MUST_10 | CGEM_PHY_MAINT_OP_WRITE |
1412 	    (phy << CGEM_PHY_MAINT_PHY_ADDR_SHIFT) |
1413 	    (reg << CGEM_PHY_MAINT_REG_ADDR_SHIFT) |
1414 	    (data & CGEM_PHY_MAINT_DATA_MASK));
1415 
1416 	/* Wait for completion. */
1417 	tries = 0;
1418 	while ((RD4(sc, CGEM_NET_STAT) & CGEM_NET_STAT_PHY_MGMT_IDLE) == 0) {
1419 		DELAY(5);
1420 		if (++tries > 200) {
1421 			device_printf(dev, "phy write timeout: %d\n", reg);
1422 			return (-1);
1423 		}
1424 	}
1425 
1426 	return (0);
1427 }
1428 
1429 static void
1430 cgem_miibus_statchg(device_t dev)
1431 {
1432 	struct cgem_softc *sc  = device_get_softc(dev);
1433 	struct mii_data *mii = device_get_softc(sc->miibus);
1434 
1435 	CGEM_ASSERT_LOCKED(sc);
1436 
1437 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1438 	    (IFM_ACTIVE | IFM_AVALID) &&
1439 	    sc->mii_media_active != mii->mii_media_active)
1440 		cgem_mediachange(sc, mii);
1441 }
1442 
1443 static void
1444 cgem_miibus_linkchg(device_t dev)
1445 {
1446 	struct cgem_softc *sc  = device_get_softc(dev);
1447 	struct mii_data *mii = device_get_softc(sc->miibus);
1448 
1449 	CGEM_ASSERT_LOCKED(sc);
1450 
1451 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1452 	    (IFM_ACTIVE | IFM_AVALID) &&
1453 	    sc->mii_media_active != mii->mii_media_active)
1454 		cgem_mediachange(sc, mii);
1455 }
1456 
1457 /*
1458  * Overridable weak symbol cgem_set_ref_clk().  This allows platforms to
1459  * provide a function to set the cgem's reference clock.
1460  */
1461 static int __used
1462 cgem_default_set_ref_clk(int unit, int frequency)
1463 {
1464 
1465 	return 0;
1466 }
1467 __weak_reference(cgem_default_set_ref_clk, cgem_set_ref_clk);
1468 
1469 /* Call to set reference clock and network config bits according to media. */
1470 static void
1471 cgem_mediachange(struct cgem_softc *sc,	struct mii_data *mii)
1472 {
1473 	int ref_clk_freq;
1474 
1475 	CGEM_ASSERT_LOCKED(sc);
1476 
1477 	/* Update hardware to reflect media. */
1478 	sc->net_cfg_shadow &= ~(CGEM_NET_CFG_SPEED100 | CGEM_NET_CFG_GIGE_EN |
1479 	    CGEM_NET_CFG_FULL_DUPLEX);
1480 
1481 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1482 	case IFM_1000_T:
1483 		sc->net_cfg_shadow |= (CGEM_NET_CFG_SPEED100 |
1484 		    CGEM_NET_CFG_GIGE_EN);
1485 		ref_clk_freq = 125000000;
1486 		break;
1487 	case IFM_100_TX:
1488 		sc->net_cfg_shadow |= CGEM_NET_CFG_SPEED100;
1489 		ref_clk_freq = 25000000;
1490 		break;
1491 	default:
1492 		ref_clk_freq = 2500000;
1493 	}
1494 
1495 	if ((mii->mii_media_active & IFM_FDX) != 0)
1496 		sc->net_cfg_shadow |= CGEM_NET_CFG_FULL_DUPLEX;
1497 
1498 	WR4(sc, CGEM_NET_CFG, sc->net_cfg_shadow);
1499 
1500 #ifdef EXT_RESOURCES
1501 	if (sc->ref_clk != NULL) {
1502 		CGEM_UNLOCK(sc);
1503 		if (clk_set_freq(sc->ref_clk, ref_clk_freq, 0))
1504 			device_printf(sc->dev, "could not set ref clk to %d\n",
1505 			    ref_clk_freq);
1506 		CGEM_LOCK(sc);
1507 	}
1508 #else
1509 	/* Set the reference clock if necessary. */
1510 	if (cgem_set_ref_clk(sc->ref_clk_num, ref_clk_freq))
1511 		device_printf(sc->dev,
1512 		    "cgem_mediachange: could not set ref clk%d to %d.\n",
1513 		    sc->ref_clk_num, ref_clk_freq);
1514 #endif
1515 
1516 	sc->mii_media_active = mii->mii_media_active;
1517 }
1518 
1519 static void
1520 cgem_add_sysctls(device_t dev)
1521 {
1522 	struct cgem_softc *sc = device_get_softc(dev);
1523 	struct sysctl_ctx_list *ctx;
1524 	struct sysctl_oid_list *child;
1525 	struct sysctl_oid *tree;
1526 
1527 	ctx = device_get_sysctl_ctx(dev);
1528 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(dev));
1529 
1530 	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rxbufs", CTLFLAG_RW,
1531 	    &sc->rxbufs, 0, "Number receive buffers to provide");
1532 
1533 	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rxhangwar", CTLFLAG_RW,
1534 	    &sc->rxhangwar, 0, "Enable receive hang work-around");
1535 
1536 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "_rxoverruns", CTLFLAG_RD,
1537 	    &sc->rxoverruns, 0, "Receive overrun events");
1538 
1539 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "_rxnobufs", CTLFLAG_RD,
1540 	    &sc->rxnobufs, 0, "Receive buf queue empty events");
1541 
1542 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "_rxdmamapfails", CTLFLAG_RD,
1543 	    &sc->rxdmamapfails, 0, "Receive DMA map failures");
1544 
1545 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "_txfull", CTLFLAG_RD,
1546 	    &sc->txfull, 0, "Transmit ring full events");
1547 
1548 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "_txdmamapfails", CTLFLAG_RD,
1549 	    &sc->txdmamapfails, 0, "Transmit DMA map failures");
1550 
1551 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "_txdefrags", CTLFLAG_RD,
1552 	    &sc->txdefrags, 0, "Transmit m_defrag() calls");
1553 
1554 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "_txdefragfails", CTLFLAG_RD,
1555 	    &sc->txdefragfails, 0, "Transmit m_defrag() failures");
1556 
1557 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
1558 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "GEM statistics");
1559 	child = SYSCTL_CHILDREN(tree);
1560 
1561 	SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_bytes", CTLFLAG_RD,
1562 	    &sc->stats.tx_bytes, "Total bytes transmitted");
1563 
1564 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames", CTLFLAG_RD,
1565 	    &sc->stats.tx_frames, 0, "Total frames transmitted");
1566 
1567 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_bcast", CTLFLAG_RD,
1568 	    &sc->stats.tx_frames_bcast, 0,
1569 	    "Number broadcast frames transmitted");
1570 
1571 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_multi", CTLFLAG_RD,
1572 	    &sc->stats.tx_frames_multi, 0,
1573 	    "Number multicast frames transmitted");
1574 
1575 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_pause",
1576 	    CTLFLAG_RD, &sc->stats.tx_frames_pause, 0,
1577 	    "Number pause frames transmitted");
1578 
1579 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_64b", CTLFLAG_RD,
1580 	    &sc->stats.tx_frames_64b, 0,
1581 	    "Number frames transmitted of size 64 bytes or less");
1582 
1583 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_65to127b", CTLFLAG_RD,
1584 	    &sc->stats.tx_frames_65to127b, 0,
1585 	    "Number frames transmitted of size 65-127 bytes");
1586 
1587 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_128to255b",
1588 	    CTLFLAG_RD, &sc->stats.tx_frames_128to255b, 0,
1589 	    "Number frames transmitted of size 128-255 bytes");
1590 
1591 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_256to511b",
1592 	    CTLFLAG_RD, &sc->stats.tx_frames_256to511b, 0,
1593 	    "Number frames transmitted of size 256-511 bytes");
1594 
1595 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_512to1023b",
1596 	    CTLFLAG_RD, &sc->stats.tx_frames_512to1023b, 0,
1597 	    "Number frames transmitted of size 512-1023 bytes");
1598 
1599 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_1024to1536b",
1600 	    CTLFLAG_RD, &sc->stats.tx_frames_1024to1536b, 0,
1601 	    "Number frames transmitted of size 1024-1536 bytes");
1602 
1603 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_under_runs",
1604 	    CTLFLAG_RD, &sc->stats.tx_under_runs, 0,
1605 	    "Number transmit under-run events");
1606 
1607 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_single_collisn",
1608 	    CTLFLAG_RD, &sc->stats.tx_single_collisn, 0,
1609 	    "Number single-collision transmit frames");
1610 
1611 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_multi_collisn",
1612 	    CTLFLAG_RD, &sc->stats.tx_multi_collisn, 0,
1613 	    "Number multi-collision transmit frames");
1614 
1615 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_excsv_collisn",
1616 	    CTLFLAG_RD, &sc->stats.tx_excsv_collisn, 0,
1617 	    "Number excessive collision transmit frames");
1618 
1619 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_late_collisn",
1620 	    CTLFLAG_RD, &sc->stats.tx_late_collisn, 0,
1621 	    "Number late-collision transmit frames");
1622 
1623 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_deferred_frames",
1624 	    CTLFLAG_RD, &sc->stats.tx_deferred_frames, 0,
1625 	    "Number deferred transmit frames");
1626 
1627 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_carrier_sense_errs",
1628 	    CTLFLAG_RD, &sc->stats.tx_carrier_sense_errs, 0,
1629 	    "Number carrier sense errors on transmit");
1630 
1631 	SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_bytes", CTLFLAG_RD,
1632 	    &sc->stats.rx_bytes, "Total bytes received");
1633 
1634 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames", CTLFLAG_RD,
1635 	    &sc->stats.rx_frames, 0, "Total frames received");
1636 
1637 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_bcast",
1638 	    CTLFLAG_RD, &sc->stats.rx_frames_bcast, 0,
1639 	    "Number broadcast frames received");
1640 
1641 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_multi",
1642 	    CTLFLAG_RD, &sc->stats.rx_frames_multi, 0,
1643 	    "Number multicast frames received");
1644 
1645 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_pause",
1646 	    CTLFLAG_RD, &sc->stats.rx_frames_pause, 0,
1647 	    "Number pause frames received");
1648 
1649 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_64b",
1650 	    CTLFLAG_RD, &sc->stats.rx_frames_64b, 0,
1651 	    "Number frames received of size 64 bytes or less");
1652 
1653 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_65to127b",
1654 	    CTLFLAG_RD, &sc->stats.rx_frames_65to127b, 0,
1655 	    "Number frames received of size 65-127 bytes");
1656 
1657 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_128to255b",
1658 	    CTLFLAG_RD, &sc->stats.rx_frames_128to255b, 0,
1659 	    "Number frames received of size 128-255 bytes");
1660 
1661 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_256to511b",
1662 	    CTLFLAG_RD, &sc->stats.rx_frames_256to511b, 0,
1663 	    "Number frames received of size 256-511 bytes");
1664 
1665 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_512to1023b",
1666 	    CTLFLAG_RD, &sc->stats.rx_frames_512to1023b, 0,
1667 	    "Number frames received of size 512-1023 bytes");
1668 
1669 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_1024to1536b",
1670 	    CTLFLAG_RD, &sc->stats.rx_frames_1024to1536b, 0,
1671 	    "Number frames received of size 1024-1536 bytes");
1672 
1673 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_undersize",
1674 	    CTLFLAG_RD, &sc->stats.rx_frames_undersize, 0,
1675 	    "Number undersize frames received");
1676 
1677 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_oversize",
1678 	    CTLFLAG_RD, &sc->stats.rx_frames_oversize, 0,
1679 	    "Number oversize frames received");
1680 
1681 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_jabber",
1682 	    CTLFLAG_RD, &sc->stats.rx_frames_jabber, 0,
1683 	    "Number jabber frames received");
1684 
1685 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_fcs_errs",
1686 	    CTLFLAG_RD, &sc->stats.rx_frames_fcs_errs, 0,
1687 	    "Number frames received with FCS errors");
1688 
1689 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_length_errs",
1690 	    CTLFLAG_RD, &sc->stats.rx_frames_length_errs, 0,
1691 	    "Number frames received with length errors");
1692 
1693 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_symbol_errs",
1694 	    CTLFLAG_RD, &sc->stats.rx_symbol_errs, 0,
1695 	    "Number receive symbol errors");
1696 
1697 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_align_errs",
1698 	    CTLFLAG_RD, &sc->stats.rx_align_errs, 0,
1699 	    "Number receive alignment errors");
1700 
1701 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_resource_errs",
1702 	    CTLFLAG_RD, &sc->stats.rx_resource_errs, 0,
1703 	    "Number frames received when no rx buffer available");
1704 
1705 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_overrun_errs",
1706 	    CTLFLAG_RD, &sc->stats.rx_overrun_errs, 0,
1707 	    "Number frames received but not copied due to receive overrun");
1708 
1709 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_ip_hdr_csum_errs",
1710 	    CTLFLAG_RD, &sc->stats.rx_ip_hdr_csum_errs, 0,
1711 	    "Number frames received with IP header checksum errors");
1712 
1713 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_tcp_csum_errs",
1714 	    CTLFLAG_RD, &sc->stats.rx_tcp_csum_errs, 0,
1715 	    "Number frames received with TCP checksum errors");
1716 
1717 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_udp_csum_errs",
1718 	    CTLFLAG_RD, &sc->stats.rx_udp_csum_errs, 0,
1719 	    "Number frames received with UDP checksum errors");
1720 }
1721 
1722 static int
1723 cgem_probe(device_t dev)
1724 {
1725 
1726 	if (!ofw_bus_status_okay(dev))
1727 		return (ENXIO);
1728 
1729 	if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == 0)
1730 		return (ENXIO);
1731 
1732 	device_set_desc(dev, "Cadence CGEM Gigabit Ethernet Interface");
1733 	return (0);
1734 }
1735 
1736 static int
1737 cgem_attach(device_t dev)
1738 {
1739 	struct cgem_softc *sc = device_get_softc(dev);
1740 	if_t ifp = NULL;
1741 	int rid, err;
1742 	u_char eaddr[ETHER_ADDR_LEN];
1743 	int hwtype;
1744 #ifndef EXT_RESOURCES
1745 	phandle_t node;
1746 	pcell_t cell;
1747 #endif
1748 
1749 	sc->dev = dev;
1750 	CGEM_LOCK_INIT(sc);
1751 
1752 	/* Key off of compatible string and set hardware-specific options. */
1753 	hwtype = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
1754 	if (hwtype == HWTYPE_ZYNQMP)
1755 		sc->neednullqs = 1;
1756 	if (hwtype == HWTYPE_ZYNQ)
1757 		sc->rxhangwar = 1;
1758 
1759 #ifdef EXT_RESOURCES
1760 	if (hwtype == HWTYPE_ZYNQ || hwtype == HWTYPE_ZYNQMP) {
1761 		if (clk_get_by_ofw_name(dev, 0, "tx_clk", &sc->ref_clk) != 0)
1762 			device_printf(dev,
1763 			    "could not retrieve reference clock.\n");
1764 		else if (clk_enable(sc->ref_clk) != 0)
1765 			device_printf(dev, "could not enable clock.\n");
1766 	} else if (hwtype == HWTYPE_SIFIVE) {
1767 		if (clk_get_by_ofw_name(dev, 0, "pclk", &sc->ref_clk) != 0)
1768 			device_printf(dev,
1769 			    "could not retrieve reference clock.\n");
1770 		else if (clk_enable(sc->ref_clk) != 0)
1771 			device_printf(dev, "could not enable clock.\n");
1772 	}
1773 #else
1774 	/* Get reference clock number and base divider from fdt. */
1775 	node = ofw_bus_get_node(dev);
1776 	sc->ref_clk_num = 0;
1777 	if (OF_getprop(node, "ref-clock-num", &cell, sizeof(cell)) > 0)
1778 		sc->ref_clk_num = fdt32_to_cpu(cell);
1779 #endif
1780 
1781 	/* Get memory resource. */
1782 	rid = 0;
1783 	sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1784 	    RF_ACTIVE);
1785 	if (sc->mem_res == NULL) {
1786 		device_printf(dev, "could not allocate memory resources.\n");
1787 		return (ENOMEM);
1788 	}
1789 
1790 	/* Get IRQ resource. */
1791 	rid = 0;
1792 	sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1793 	    RF_ACTIVE);
1794 	if (sc->irq_res == NULL) {
1795 		device_printf(dev, "could not allocate interrupt resource.\n");
1796 		cgem_detach(dev);
1797 		return (ENOMEM);
1798 	}
1799 
1800 	/* Set up ifnet structure. */
1801 	ifp = sc->ifp = if_alloc(IFT_ETHER);
1802 	if (ifp == NULL) {
1803 		device_printf(dev, "could not allocate ifnet structure\n");
1804 		cgem_detach(dev);
1805 		return (ENOMEM);
1806 	}
1807 	if_setsoftc(ifp, sc);
1808 	if_initname(ifp, IF_CGEM_NAME, device_get_unit(dev));
1809 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
1810 	if_setinitfn(ifp, cgem_init);
1811 	if_setioctlfn(ifp, cgem_ioctl);
1812 	if_setstartfn(ifp, cgem_start);
1813 	if_setcapabilitiesbit(ifp, IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6 |
1814 	    IFCAP_VLAN_MTU | IFCAP_VLAN_HWCSUM, 0);
1815 	if_setsendqlen(ifp, CGEM_NUM_TX_DESCS);
1816 	if_setsendqready(ifp);
1817 
1818 	/* Disable hardware checksumming by default. */
1819 	if_sethwassist(ifp, 0);
1820 	if_setcapenable(ifp, if_getcapabilities(ifp) &
1821 	    ~(IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6 | IFCAP_VLAN_HWCSUM));
1822 
1823 	sc->if_old_flags = if_getflags(ifp);
1824 	sc->rxbufs = DEFAULT_NUM_RX_BUFS;
1825 
1826 	/* Reset hardware. */
1827 	CGEM_LOCK(sc);
1828 	cgem_reset(sc);
1829 	CGEM_UNLOCK(sc);
1830 
1831 	/* Attach phy to mii bus. */
1832 	err = mii_attach(dev, &sc->miibus, ifp,
1833 	    cgem_ifmedia_upd, cgem_ifmedia_sts, BMSR_DEFCAPMASK,
1834 	    MII_PHY_ANY, MII_OFFSET_ANY, 0);
1835 	if (err)
1836 		device_printf(dev, "warning: attaching PHYs failed\n");
1837 
1838 	/* Set up TX and RX descriptor area. */
1839 	err = cgem_setup_descs(sc);
1840 	if (err) {
1841 		device_printf(dev, "could not set up dma mem for descs.\n");
1842 		cgem_detach(dev);
1843 		return (ENOMEM);
1844 	}
1845 
1846 	/* Get a MAC address. */
1847 	cgem_get_mac(sc, eaddr);
1848 
1849 	/* Start ticks. */
1850 	callout_init_mtx(&sc->tick_ch, &sc->sc_mtx, 0);
1851 
1852 	ether_ifattach(ifp, eaddr);
1853 
1854 	err = bus_setup_intr(dev, sc->irq_res, INTR_TYPE_NET | INTR_MPSAFE |
1855 	    INTR_EXCL, NULL, cgem_intr, sc, &sc->intrhand);
1856 	if (err) {
1857 		device_printf(dev, "could not set interrupt handler.\n");
1858 		ether_ifdetach(ifp);
1859 		cgem_detach(dev);
1860 		return (err);
1861 	}
1862 
1863 	cgem_add_sysctls(dev);
1864 
1865 	return (0);
1866 }
1867 
1868 static int
1869 cgem_detach(device_t dev)
1870 {
1871 	struct cgem_softc *sc = device_get_softc(dev);
1872 	int i;
1873 
1874 	if (sc == NULL)
1875 		return (ENODEV);
1876 
1877 	if (device_is_attached(dev)) {
1878 		CGEM_LOCK(sc);
1879 		cgem_stop(sc);
1880 		CGEM_UNLOCK(sc);
1881 		callout_drain(&sc->tick_ch);
1882 		if_setflagbits(sc->ifp, 0, IFF_UP);
1883 		ether_ifdetach(sc->ifp);
1884 	}
1885 
1886 	if (sc->miibus != NULL) {
1887 		device_delete_child(dev, sc->miibus);
1888 		sc->miibus = NULL;
1889 	}
1890 
1891 	/* Release resources. */
1892 	if (sc->mem_res != NULL) {
1893 		bus_release_resource(dev, SYS_RES_MEMORY,
1894 		    rman_get_rid(sc->mem_res), sc->mem_res);
1895 		sc->mem_res = NULL;
1896 	}
1897 	if (sc->irq_res != NULL) {
1898 		if (sc->intrhand)
1899 			bus_teardown_intr(dev, sc->irq_res, sc->intrhand);
1900 		bus_release_resource(dev, SYS_RES_IRQ,
1901 		    rman_get_rid(sc->irq_res), sc->irq_res);
1902 		sc->irq_res = NULL;
1903 	}
1904 
1905 	/* Release DMA resources. */
1906 	if (sc->rxring != NULL) {
1907 		if (sc->rxring_physaddr != 0) {
1908 			bus_dmamap_unload(sc->desc_dma_tag,
1909 			    sc->rxring_dma_map);
1910 			sc->rxring_physaddr = 0;
1911 			sc->txring_physaddr = 0;
1912 			sc->null_qs_physaddr = 0;
1913 		}
1914 		bus_dmamem_free(sc->desc_dma_tag, sc->rxring,
1915 				sc->rxring_dma_map);
1916 		sc->rxring = NULL;
1917 		sc->txring = NULL;
1918 		sc->null_qs = NULL;
1919 
1920 		for (i = 0; i < CGEM_NUM_RX_DESCS; i++)
1921 			if (sc->rxring_m_dmamap[i] != NULL) {
1922 				bus_dmamap_destroy(sc->mbuf_dma_tag,
1923 				    sc->rxring_m_dmamap[i]);
1924 				sc->rxring_m_dmamap[i] = NULL;
1925 			}
1926 		for (i = 0; i < CGEM_NUM_TX_DESCS; i++)
1927 			if (sc->txring_m_dmamap[i] != NULL) {
1928 				bus_dmamap_destroy(sc->mbuf_dma_tag,
1929 				    sc->txring_m_dmamap[i]);
1930 				sc->txring_m_dmamap[i] = NULL;
1931 			}
1932 	}
1933 	if (sc->desc_dma_tag != NULL) {
1934 		bus_dma_tag_destroy(sc->desc_dma_tag);
1935 		sc->desc_dma_tag = NULL;
1936 	}
1937 	if (sc->mbuf_dma_tag != NULL) {
1938 		bus_dma_tag_destroy(sc->mbuf_dma_tag);
1939 		sc->mbuf_dma_tag = NULL;
1940 	}
1941 
1942 #ifdef EXT_RESOURCES
1943 	if (sc->ref_clk != NULL) {
1944 		clk_release(sc->ref_clk);
1945 		sc->ref_clk = NULL;
1946 	}
1947 #endif
1948 
1949 	bus_generic_detach(dev);
1950 
1951 	CGEM_LOCK_DESTROY(sc);
1952 
1953 	return (0);
1954 }
1955 
1956 static device_method_t cgem_methods[] = {
1957 	/* Device interface */
1958 	DEVMETHOD(device_probe,		cgem_probe),
1959 	DEVMETHOD(device_attach,	cgem_attach),
1960 	DEVMETHOD(device_detach,	cgem_detach),
1961 
1962 	/* MII interface */
1963 	DEVMETHOD(miibus_readreg,	cgem_miibus_readreg),
1964 	DEVMETHOD(miibus_writereg,	cgem_miibus_writereg),
1965 	DEVMETHOD(miibus_statchg,	cgem_miibus_statchg),
1966 	DEVMETHOD(miibus_linkchg,	cgem_miibus_linkchg),
1967 
1968 	DEVMETHOD_END
1969 };
1970 
1971 static driver_t cgem_driver = {
1972 	"cgem",
1973 	cgem_methods,
1974 	sizeof(struct cgem_softc),
1975 };
1976 
1977 DRIVER_MODULE(cgem, simplebus, cgem_driver, cgem_devclass, NULL, NULL);
1978 DRIVER_MODULE(miibus, cgem, miibus_driver, miibus_devclass, NULL, NULL);
1979 MODULE_DEPEND(cgem, miibus, 1, 1, 1);
1980 MODULE_DEPEND(cgem, ether, 1, 1, 1);
1981 SIMPLEBUS_PNP_INFO(compat_data);
1982