xref: /freebsd/sys/dev/bxe/ecore_sp.c (revision f2b7bf8afcfd630e0fbd8417f1ce974de79feaf0)
1 /*-
2  * Copyright (c) 2007-2017 QLogic Corporation. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
15  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
18  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
19  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
20  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
21  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
22  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
23  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
24  * THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "bxe.h"
31 #include "ecore_init.h"
32 
33 
34 
35 
36 /**** Exe Queue interfaces ****/
37 
38 /**
39  * ecore_exe_queue_init - init the Exe Queue object
40  *
41  * @o:		pointer to the object
42  * @exe_len:	length
43  * @owner:	pointer to the owner
44  * @validate:	validate function pointer
45  * @optimize:	optimize function pointer
46  * @exec:	execute function pointer
47  * @get:	get function pointer
48  */
49 static inline void ecore_exe_queue_init(struct bxe_softc *sc,
50 					struct ecore_exe_queue_obj *o,
51 					int exe_len,
52 					union ecore_qable_obj *owner,
53 					exe_q_validate validate,
54 					exe_q_remove remove,
55 					exe_q_optimize optimize,
56 					exe_q_execute exec,
57 					exe_q_get get)
58 {
59 	ECORE_MEMSET(o, 0, sizeof(*o));
60 
61 	ECORE_LIST_INIT(&o->exe_queue);
62 	ECORE_LIST_INIT(&o->pending_comp);
63 
64 	ECORE_SPIN_LOCK_INIT(&o->lock, sc);
65 
66 	o->exe_chunk_len = exe_len;
67 	o->owner         = owner;
68 
69 	/* Owner specific callbacks */
70 	o->validate      = validate;
71 	o->remove        = remove;
72 	o->optimize      = optimize;
73 	o->execute       = exec;
74 	o->get           = get;
75 
76 	ECORE_MSG(sc, "Setup the execution queue with the chunk length of %d\n",
77 		  exe_len);
78 }
79 
80 static inline void ecore_exe_queue_free_elem(struct bxe_softc *sc,
81 					     struct ecore_exeq_elem *elem)
82 {
83 	ECORE_MSG(sc, "Deleting an exe_queue element\n");
84 	ECORE_FREE(sc, elem, sizeof(*elem));
85 }
86 
87 static inline int ecore_exe_queue_length(struct ecore_exe_queue_obj *o)
88 {
89 	struct ecore_exeq_elem *elem;
90 	int cnt = 0;
91 
92 	ECORE_SPIN_LOCK_BH(&o->lock);
93 
94 	ECORE_LIST_FOR_EACH_ENTRY(elem, &o->exe_queue, link,
95 				  struct ecore_exeq_elem)
96 		cnt++;
97 
98 	ECORE_SPIN_UNLOCK_BH(&o->lock);
99 
100 	return cnt;
101 }
102 
103 /**
104  * ecore_exe_queue_add - add a new element to the execution queue
105  *
106  * @sc:		driver handle
107  * @o:		queue
108  * @cmd:	new command to add
109  * @restore:	true - do not optimize the command
110  *
111  * If the element is optimized or is illegal, frees it.
112  */
113 static inline int ecore_exe_queue_add(struct bxe_softc *sc,
114 				      struct ecore_exe_queue_obj *o,
115 				      struct ecore_exeq_elem *elem,
116 				      bool restore)
117 {
118 	int rc;
119 
120 	ECORE_SPIN_LOCK_BH(&o->lock);
121 
122 	if (!restore) {
123 		/* Try to cancel this element queue */
124 		rc = o->optimize(sc, o->owner, elem);
125 		if (rc)
126 			goto free_and_exit;
127 
128 		/* Check if this request is ok */
129 		rc = o->validate(sc, o->owner, elem);
130 		if (rc) {
131 			ECORE_MSG(sc, "Preamble failed: %d\n", rc);
132 			goto free_and_exit;
133 		}
134 	}
135 
136 	/* If so, add it to the execution queue */
137 	ECORE_LIST_PUSH_TAIL(&elem->link, &o->exe_queue);
138 
139 	ECORE_SPIN_UNLOCK_BH(&o->lock);
140 
141 	return ECORE_SUCCESS;
142 
143 free_and_exit:
144 	ecore_exe_queue_free_elem(sc, elem);
145 
146 	ECORE_SPIN_UNLOCK_BH(&o->lock);
147 
148 	return rc;
149 }
150 
151 static inline void __ecore_exe_queue_reset_pending(
152 	struct bxe_softc *sc,
153 	struct ecore_exe_queue_obj *o)
154 {
155 	struct ecore_exeq_elem *elem;
156 
157 	while (!ECORE_LIST_IS_EMPTY(&o->pending_comp)) {
158 		elem = ECORE_LIST_FIRST_ENTRY(&o->pending_comp,
159 					      struct ecore_exeq_elem,
160 					      link);
161 
162 		ECORE_LIST_REMOVE_ENTRY(&elem->link, &o->pending_comp);
163 		ecore_exe_queue_free_elem(sc, elem);
164 	}
165 }
166 
167 /**
168  * ecore_exe_queue_step - execute one execution chunk atomically
169  *
170  * @sc:			driver handle
171  * @o:			queue
172  * @ramrod_flags:	flags
173  *
174  * (Should be called while holding the exe_queue->lock).
175  */
176 static inline int ecore_exe_queue_step(struct bxe_softc *sc,
177 				       struct ecore_exe_queue_obj *o,
178 				       unsigned long *ramrod_flags)
179 {
180 	struct ecore_exeq_elem *elem, spacer;
181 	int cur_len = 0, rc;
182 
183 	ECORE_MEMSET(&spacer, 0, sizeof(spacer));
184 
185 	/* Next step should not be performed until the current is finished,
186 	 * unless a DRV_CLEAR_ONLY bit is set. In this case we just want to
187 	 * properly clear object internals without sending any command to the FW
188 	 * which also implies there won't be any completion to clear the
189 	 * 'pending' list.
190 	 */
191 	if (!ECORE_LIST_IS_EMPTY(&o->pending_comp)) {
192 		if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, ramrod_flags)) {
193 			ECORE_MSG(sc, "RAMROD_DRV_CLR_ONLY requested: resetting a pending_comp list\n");
194 			__ecore_exe_queue_reset_pending(sc, o);
195 		} else {
196 			return ECORE_PENDING;
197 		}
198 	}
199 
200 	/* Run through the pending commands list and create a next
201 	 * execution chunk.
202 	 */
203 	while (!ECORE_LIST_IS_EMPTY(&o->exe_queue)) {
204 		elem = ECORE_LIST_FIRST_ENTRY(&o->exe_queue,
205 					      struct ecore_exeq_elem,
206 					      link);
207 		ECORE_DBG_BREAK_IF(!elem->cmd_len);
208 
209 		if (cur_len + elem->cmd_len <= o->exe_chunk_len) {
210 			cur_len += elem->cmd_len;
211 			/* Prevent from both lists being empty when moving an
212 			 * element. This will allow the call of
213 			 * ecore_exe_queue_empty() without locking.
214 			 */
215 			ECORE_LIST_PUSH_TAIL(&spacer.link, &o->pending_comp);
216 			mb();
217 			ECORE_LIST_REMOVE_ENTRY(&elem->link, &o->exe_queue);
218 			ECORE_LIST_PUSH_TAIL(&elem->link, &o->pending_comp);
219 			ECORE_LIST_REMOVE_ENTRY(&spacer.link, &o->pending_comp);
220 		} else
221 			break;
222 	}
223 
224 	/* Sanity check */
225 	if (!cur_len)
226 		return ECORE_SUCCESS;
227 
228 	rc = o->execute(sc, o->owner, &o->pending_comp, ramrod_flags);
229 	if (rc < 0)
230 		/* In case of an error return the commands back to the queue
231 		 *  and reset the pending_comp.
232 		 */
233 		ECORE_LIST_SPLICE_INIT(&o->pending_comp, &o->exe_queue);
234 	else if (!rc)
235 		/* If zero is returned, means there are no outstanding pending
236 		 * completions and we may dismiss the pending list.
237 		 */
238 		__ecore_exe_queue_reset_pending(sc, o);
239 
240 	return rc;
241 }
242 
243 static inline bool ecore_exe_queue_empty(struct ecore_exe_queue_obj *o)
244 {
245 	bool empty = ECORE_LIST_IS_EMPTY(&o->exe_queue);
246 
247 	/* Don't reorder!!! */
248 	mb();
249 
250 	return empty && ECORE_LIST_IS_EMPTY(&o->pending_comp);
251 }
252 
253 static inline struct ecore_exeq_elem *ecore_exe_queue_alloc_elem(
254 	struct bxe_softc *sc)
255 {
256 	ECORE_MSG(sc, "Allocating a new exe_queue element\n");
257 	return ECORE_ZALLOC(sizeof(struct ecore_exeq_elem), GFP_ATOMIC,
258 			    sc);
259 }
260 
261 /************************ raw_obj functions ***********************************/
262 static bool ecore_raw_check_pending(struct ecore_raw_obj *o)
263 {
264 	/*
265      * !! converts the value returned by ECORE_TEST_BIT such that it
266      * is guaranteed not to be truncated regardless of bool definition.
267 	 *
268 	 * Note we cannot simply define the function's return value type
269      * to match the type returned by ECORE_TEST_BIT, as it varies by
270      * platform/implementation.
271 	 */
272 
273 	return !!ECORE_TEST_BIT(o->state, o->pstate);
274 }
275 
276 static void ecore_raw_clear_pending(struct ecore_raw_obj *o)
277 {
278 	ECORE_SMP_MB_BEFORE_CLEAR_BIT();
279 	ECORE_CLEAR_BIT(o->state, o->pstate);
280 	ECORE_SMP_MB_AFTER_CLEAR_BIT();
281 }
282 
283 static void ecore_raw_set_pending(struct ecore_raw_obj *o)
284 {
285 	ECORE_SMP_MB_BEFORE_CLEAR_BIT();
286 	ECORE_SET_BIT(o->state, o->pstate);
287 	ECORE_SMP_MB_AFTER_CLEAR_BIT();
288 }
289 
290 /**
291  * ecore_state_wait - wait until the given bit(state) is cleared
292  *
293  * @sc:		device handle
294  * @state:	state which is to be cleared
295  * @state_p:	state buffer
296  *
297  */
298 static inline int ecore_state_wait(struct bxe_softc *sc, int state,
299 				   unsigned long *pstate)
300 {
301 	/* can take a while if any port is running */
302 	int cnt = 5000;
303 
304 
305 	if (CHIP_REV_IS_EMUL(sc))
306 		cnt *= 20;
307 
308 	ECORE_MSG(sc, "waiting for state to become %d\n", state);
309 
310 	ECORE_MIGHT_SLEEP();
311 	while (cnt--) {
312 		if (!ECORE_TEST_BIT(state, pstate)) {
313 #ifdef ECORE_STOP_ON_ERROR
314 			ECORE_MSG(sc, "exit  (cnt %d)\n", 5000 - cnt);
315 #endif
316 			return ECORE_SUCCESS;
317 		}
318 
319 		ECORE_WAIT(sc, delay_us);
320 
321 		if (sc->panic)
322 			return ECORE_IO;
323 	}
324 
325 	/* timeout! */
326 	ECORE_ERR("timeout waiting for state %d\n", state);
327 #ifdef ECORE_STOP_ON_ERROR
328 	ecore_panic();
329 #endif
330 
331 	return ECORE_TIMEOUT;
332 }
333 
334 static int ecore_raw_wait(struct bxe_softc *sc, struct ecore_raw_obj *raw)
335 {
336 	return ecore_state_wait(sc, raw->state, raw->pstate);
337 }
338 
339 /***************** Classification verbs: Set/Del MAC/VLAN/VLAN-MAC ************/
340 /* credit handling callbacks */
341 static bool ecore_get_cam_offset_mac(struct ecore_vlan_mac_obj *o, int *offset)
342 {
343 	struct ecore_credit_pool_obj *mp = o->macs_pool;
344 
345 	ECORE_DBG_BREAK_IF(!mp);
346 
347 	return mp->get_entry(mp, offset);
348 }
349 
350 static bool ecore_get_credit_mac(struct ecore_vlan_mac_obj *o)
351 {
352 	struct ecore_credit_pool_obj *mp = o->macs_pool;
353 
354 	ECORE_DBG_BREAK_IF(!mp);
355 
356 	return mp->get(mp, 1);
357 }
358 
359 static bool ecore_get_cam_offset_vlan(struct ecore_vlan_mac_obj *o, int *offset)
360 {
361 	struct ecore_credit_pool_obj *vp = o->vlans_pool;
362 
363 	ECORE_DBG_BREAK_IF(!vp);
364 
365 	return vp->get_entry(vp, offset);
366 }
367 
368 static bool ecore_get_credit_vlan(struct ecore_vlan_mac_obj *o)
369 {
370 	struct ecore_credit_pool_obj *vp = o->vlans_pool;
371 
372 	ECORE_DBG_BREAK_IF(!vp);
373 
374 	return vp->get(vp, 1);
375 }
376 
377 static bool ecore_get_credit_vlan_mac(struct ecore_vlan_mac_obj *o)
378 {
379 	struct ecore_credit_pool_obj *mp = o->macs_pool;
380 	struct ecore_credit_pool_obj *vp = o->vlans_pool;
381 
382 	if (!mp->get(mp, 1))
383 		return FALSE;
384 
385 	if (!vp->get(vp, 1)) {
386 		mp->put(mp, 1);
387 		return FALSE;
388 	}
389 
390 	return TRUE;
391 }
392 
393 static bool ecore_put_cam_offset_mac(struct ecore_vlan_mac_obj *o, int offset)
394 {
395 	struct ecore_credit_pool_obj *mp = o->macs_pool;
396 
397 	return mp->put_entry(mp, offset);
398 }
399 
400 static bool ecore_put_credit_mac(struct ecore_vlan_mac_obj *o)
401 {
402 	struct ecore_credit_pool_obj *mp = o->macs_pool;
403 
404 	return mp->put(mp, 1);
405 }
406 
407 static bool ecore_put_cam_offset_vlan(struct ecore_vlan_mac_obj *o, int offset)
408 {
409 	struct ecore_credit_pool_obj *vp = o->vlans_pool;
410 
411 	return vp->put_entry(vp, offset);
412 }
413 
414 static bool ecore_put_credit_vlan(struct ecore_vlan_mac_obj *o)
415 {
416 	struct ecore_credit_pool_obj *vp = o->vlans_pool;
417 
418 	return vp->put(vp, 1);
419 }
420 
421 static bool ecore_put_credit_vlan_mac(struct ecore_vlan_mac_obj *o)
422 {
423 	struct ecore_credit_pool_obj *mp = o->macs_pool;
424 	struct ecore_credit_pool_obj *vp = o->vlans_pool;
425 
426 	if (!mp->put(mp, 1))
427 		return FALSE;
428 
429 	if (!vp->put(vp, 1)) {
430 		mp->get(mp, 1);
431 		return FALSE;
432 	}
433 
434 	return TRUE;
435 }
436 
437 /**
438  * __ecore_vlan_mac_h_write_trylock - try getting the writer lock on vlan mac
439  * head list.
440  *
441  * @sc:		device handle
442  * @o:		vlan_mac object
443  *
444  * @details: Non-blocking implementation; should be called under execution
445  *           queue lock.
446  */
447 static int __ecore_vlan_mac_h_write_trylock(struct bxe_softc *sc,
448 					    struct ecore_vlan_mac_obj *o)
449 {
450 	if (o->head_reader) {
451 		ECORE_MSG(sc, "vlan_mac_lock writer - There are readers; Busy\n");
452 		return ECORE_BUSY;
453 	}
454 
455 	ECORE_MSG(sc, "vlan_mac_lock writer - Taken\n");
456 	return ECORE_SUCCESS;
457 }
458 
459 /**
460  * __ecore_vlan_mac_h_exec_pending - execute step instead of a previous step
461  * which wasn't able to run due to a taken lock on vlan mac head list.
462  *
463  * @sc:		device handle
464  * @o:		vlan_mac object
465  *
466  * @details Should be called under execution queue lock; notice it might release
467  *          and reclaim it during its run.
468  */
469 static void __ecore_vlan_mac_h_exec_pending(struct bxe_softc *sc,
470 					    struct ecore_vlan_mac_obj *o)
471 {
472 	int rc;
473 	unsigned long ramrod_flags = o->saved_ramrod_flags;
474 
475 	ECORE_MSG(sc, "vlan_mac_lock execute pending command with ramrod flags %lu\n",
476 		  ramrod_flags);
477 	o->head_exe_request = FALSE;
478 	o->saved_ramrod_flags = 0;
479 	rc = ecore_exe_queue_step(sc, &o->exe_queue, &ramrod_flags);
480 	if ((rc != ECORE_SUCCESS) && (rc != ECORE_PENDING)) {
481 		ECORE_ERR("execution of pending commands failed with rc %d\n",
482 			  rc);
483 #ifdef ECORE_STOP_ON_ERROR
484 		ecore_panic();
485 #endif
486 	}
487 }
488 
489 /**
490  * __ecore_vlan_mac_h_pend - Pend an execution step which couldn't have been
491  * called due to vlan mac head list lock being taken.
492  *
493  * @sc:			device handle
494  * @o:			vlan_mac object
495  * @ramrod_flags:	ramrod flags of missed execution
496  *
497  * @details Should be called under execution queue lock.
498  */
499 static void __ecore_vlan_mac_h_pend(struct bxe_softc *sc,
500 				    struct ecore_vlan_mac_obj *o,
501 				    unsigned long ramrod_flags)
502 {
503 	o->head_exe_request = TRUE;
504 	o->saved_ramrod_flags = ramrod_flags;
505 	ECORE_MSG(sc, "Placing pending execution with ramrod flags %lu\n",
506 		  ramrod_flags);
507 }
508 
509 /**
510  * __ecore_vlan_mac_h_write_unlock - unlock the vlan mac head list writer lock
511  *
512  * @sc:			device handle
513  * @o:			vlan_mac object
514  *
515  * @details Should be called under execution queue lock. Notice if a pending
516  *          execution exists, it would perform it - possibly releasing and
517  *          reclaiming the execution queue lock.
518  */
519 static void __ecore_vlan_mac_h_write_unlock(struct bxe_softc *sc,
520 					    struct ecore_vlan_mac_obj *o)
521 {
522 	/* It's possible a new pending execution was added since this writer
523 	 * executed. If so, execute again. [Ad infinitum]
524 	 */
525 	while(o->head_exe_request) {
526 		ECORE_MSG(sc, "vlan_mac_lock - writer release encountered a pending request\n");
527 		__ecore_vlan_mac_h_exec_pending(sc, o);
528 	}
529 }
530 
531 /**
532  * ecore_vlan_mac_h_write_unlock - unlock the vlan mac head list writer lock
533  *
534  * @sc:			device handle
535  * @o:			vlan_mac object
536  *
537  * @details Notice if a pending execution exists, it would perform it -
538  *          possibly releasing and reclaiming the execution queue lock.
539  */
540 void ecore_vlan_mac_h_write_unlock(struct bxe_softc *sc,
541 				   struct ecore_vlan_mac_obj *o)
542 {
543 	ECORE_SPIN_LOCK_BH(&o->exe_queue.lock);
544 	__ecore_vlan_mac_h_write_unlock(sc, o);
545 	ECORE_SPIN_UNLOCK_BH(&o->exe_queue.lock);
546 }
547 
548 /**
549  * __ecore_vlan_mac_h_read_lock - lock the vlan mac head list reader lock
550  *
551  * @sc:			device handle
552  * @o:			vlan_mac object
553  *
554  * @details Should be called under the execution queue lock. May sleep. May
555  *          release and reclaim execution queue lock during its run.
556  */
557 static int __ecore_vlan_mac_h_read_lock(struct bxe_softc *sc,
558 					struct ecore_vlan_mac_obj *o)
559 {
560 	/* If we got here, we're holding lock --> no WRITER exists */
561 	o->head_reader++;
562 	ECORE_MSG(sc, "vlan_mac_lock - locked reader - number %d\n",
563 		  o->head_reader);
564 
565 	return ECORE_SUCCESS;
566 }
567 
568 /**
569  * ecore_vlan_mac_h_read_lock - lock the vlan mac head list reader lock
570  *
571  * @sc:			device handle
572  * @o:			vlan_mac object
573  *
574  * @details May sleep. Claims and releases execution queue lock during its run.
575  */
576 int ecore_vlan_mac_h_read_lock(struct bxe_softc *sc,
577 			       struct ecore_vlan_mac_obj *o)
578 {
579 	int rc;
580 
581 	ECORE_SPIN_LOCK_BH(&o->exe_queue.lock);
582 	rc = __ecore_vlan_mac_h_read_lock(sc, o);
583 	ECORE_SPIN_UNLOCK_BH(&o->exe_queue.lock);
584 
585 	return rc;
586 }
587 
588 /**
589  * __ecore_vlan_mac_h_read_unlock - unlock the vlan mac head list reader lock
590  *
591  * @sc:			device handle
592  * @o:			vlan_mac object
593  *
594  * @details Should be called under execution queue lock. Notice if a pending
595  *          execution exists, it would be performed if this was the last
596  *          reader. possibly releasing and reclaiming the execution queue lock.
597  */
598 static void __ecore_vlan_mac_h_read_unlock(struct bxe_softc *sc,
599 					  struct ecore_vlan_mac_obj *o)
600 {
601 	if (!o->head_reader) {
602 		ECORE_ERR("Need to release vlan mac reader lock, but lock isn't taken\n");
603 #ifdef ECORE_STOP_ON_ERROR
604 		ecore_panic();
605 #endif
606 	} else {
607 		o->head_reader--;
608 		ECORE_MSG(sc, "vlan_mac_lock - decreased readers to %d\n",
609 			  o->head_reader);
610 	}
611 
612 	/* It's possible a new pending execution was added, and that this reader
613 	 * was last - if so we need to execute the command.
614 	 */
615 	if (!o->head_reader && o->head_exe_request) {
616 		ECORE_MSG(sc, "vlan_mac_lock - reader release encountered a pending request\n");
617 
618 		/* Writer release will do the trick */
619 		__ecore_vlan_mac_h_write_unlock(sc, o);
620 	}
621 }
622 
623 /**
624  * ecore_vlan_mac_h_read_unlock - unlock the vlan mac head list reader lock
625  *
626  * @sc:			device handle
627  * @o:			vlan_mac object
628  *
629  * @details Notice if a pending execution exists, it would be performed if this
630  *          was the last reader. Claims and releases the execution queue lock
631  *          during its run.
632  */
633 void ecore_vlan_mac_h_read_unlock(struct bxe_softc *sc,
634 				  struct ecore_vlan_mac_obj *o)
635 {
636 	ECORE_SPIN_LOCK_BH(&o->exe_queue.lock);
637 	__ecore_vlan_mac_h_read_unlock(sc, o);
638 	ECORE_SPIN_UNLOCK_BH(&o->exe_queue.lock);
639 }
640 
641 /**
642  * ecore_vlan_mac_h_read_unlock - unlock the vlan mac head list reader lock
643  *
644  * @sc:			device handle
645  * @o:			vlan_mac object
646  * @n:			number of elements to get
647  * @base:		base address for element placement
648  * @stride:		stride between elements (in bytes)
649  */
650 static int ecore_get_n_elements(struct bxe_softc *sc, struct ecore_vlan_mac_obj *o,
651 				 int n, uint8_t *base, uint8_t stride, uint8_t size)
652 {
653 	struct ecore_vlan_mac_registry_elem *pos;
654 	uint8_t *next = base;
655 	int counter = 0;
656 	int read_lock;
657 
658 	ECORE_MSG(sc, "get_n_elements - taking vlan_mac_lock (reader)\n");
659 	read_lock = ecore_vlan_mac_h_read_lock(sc, o);
660 	if (read_lock != ECORE_SUCCESS)
661 		ECORE_ERR("get_n_elements failed to get vlan mac reader lock; Access without lock\n");
662 
663 	/* traverse list */
664 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
665 				  struct ecore_vlan_mac_registry_elem) {
666 		if (counter < n) {
667 			ECORE_MEMCPY(next, &pos->u, size);
668 			counter++;
669 			ECORE_MSG(sc, "copied element number %d to address %p element was:\n",
670 				  counter, next);
671 			next += stride + size;
672 		}
673 	}
674 
675 	if (read_lock == ECORE_SUCCESS) {
676 		ECORE_MSG(sc, "get_n_elements - releasing vlan_mac_lock (reader)\n");
677 		ecore_vlan_mac_h_read_unlock(sc, o);
678 	}
679 
680 	return counter * ETH_ALEN;
681 }
682 
683 /* check_add() callbacks */
684 static int ecore_check_mac_add(struct bxe_softc *sc,
685 			       struct ecore_vlan_mac_obj *o,
686 			       union ecore_classification_ramrod_data *data)
687 {
688 	struct ecore_vlan_mac_registry_elem *pos;
689 
690 	ECORE_MSG(sc, "Checking MAC %02x:%02x:%02x:%02x:%02x:%02x for ADD command\n", data->mac.mac[0], data->mac.mac[1], data->mac.mac[2], data->mac.mac[3], data->mac.mac[4], data->mac.mac[5]);
691 
692 	if (!ECORE_IS_VALID_ETHER_ADDR(data->mac.mac))
693 		return ECORE_INVAL;
694 
695 	/* Check if a requested MAC already exists */
696 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
697 				  struct ecore_vlan_mac_registry_elem)
698 		if (!ECORE_MEMCMP(data->mac.mac, pos->u.mac.mac, ETH_ALEN) &&
699 		    (data->mac.is_inner_mac == pos->u.mac.is_inner_mac))
700 			return ECORE_EXISTS;
701 
702 	return ECORE_SUCCESS;
703 }
704 
705 static int ecore_check_vlan_add(struct bxe_softc *sc,
706 				struct ecore_vlan_mac_obj *o,
707 				union ecore_classification_ramrod_data *data)
708 {
709 	struct ecore_vlan_mac_registry_elem *pos;
710 
711 	ECORE_MSG(sc, "Checking VLAN %d for ADD command\n", data->vlan.vlan);
712 
713 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
714 				  struct ecore_vlan_mac_registry_elem)
715 		if (data->vlan.vlan == pos->u.vlan.vlan)
716 			return ECORE_EXISTS;
717 
718 	return ECORE_SUCCESS;
719 }
720 
721 static int ecore_check_vlan_mac_add(struct bxe_softc *sc,
722 				    struct ecore_vlan_mac_obj *o,
723 				   union ecore_classification_ramrod_data *data)
724 {
725 	struct ecore_vlan_mac_registry_elem *pos;
726 
727 	ECORE_MSG(sc, "Checking VLAN_MAC (%02x:%02x:%02x:%02x:%02x:%02x, %d) for ADD command\n",
728 		  data->vlan_mac.mac[0], data->vlan_mac.mac[1], data->vlan_mac.mac[2], data->vlan_mac.mac[3], data->vlan_mac.mac[4], data->vlan_mac.mac[5], data->vlan_mac.vlan);
729 
730 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
731 				  struct ecore_vlan_mac_registry_elem)
732 		if ((data->vlan_mac.vlan == pos->u.vlan_mac.vlan) &&
733 		    (!ECORE_MEMCMP(data->vlan_mac.mac, pos->u.vlan_mac.mac,
734 				  ETH_ALEN)) &&
735 		    (data->vlan_mac.is_inner_mac ==
736 		     pos->u.vlan_mac.is_inner_mac))
737 			return ECORE_EXISTS;
738 
739 	return ECORE_SUCCESS;
740 }
741 
742 static int ecore_check_vxlan_fltr_add(struct bxe_softc *sc,
743 				struct ecore_vlan_mac_obj *o,
744 				union ecore_classification_ramrod_data *data)
745 {
746 	struct ecore_vlan_mac_registry_elem *pos;
747 
748 	ECORE_MSG(sc, "Checking VXLAN_FLTR (Inner:%pM, %d) for ADD command\n",
749 		  data->vxlan_fltr.innermac, data->vxlan_fltr.vni);
750 
751 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
752 				  struct ecore_vlan_mac_registry_elem)
753 		if ((!ECORE_MEMCMP(data->vxlan_fltr.innermac,
754 			       pos->u.vxlan_fltr.innermac,
755 			       ETH_ALEN)) &&
756 			     (data->vxlan_fltr.vni == pos->u.vxlan_fltr.vni))
757 			return ECORE_EXISTS;
758 
759 	return ECORE_SUCCESS;
760 }
761 
762 /* check_del() callbacks */
763 static struct ecore_vlan_mac_registry_elem *
764 	ecore_check_mac_del(struct bxe_softc *sc,
765 			    struct ecore_vlan_mac_obj *o,
766 			    union ecore_classification_ramrod_data *data)
767 {
768 	struct ecore_vlan_mac_registry_elem *pos;
769 
770 	ECORE_MSG(sc, "Checking MAC %02x:%02x:%02x:%02x:%02x:%02x for DEL command\n", data->mac.mac[0], data->mac.mac[1], data->mac.mac[2], data->mac.mac[3], data->mac.mac[4], data->mac.mac[5]);
771 
772 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
773 				  struct ecore_vlan_mac_registry_elem)
774 		if ((!ECORE_MEMCMP(data->mac.mac, pos->u.mac.mac, ETH_ALEN)) &&
775 		    (data->mac.is_inner_mac == pos->u.mac.is_inner_mac))
776 			return pos;
777 
778 	return NULL;
779 }
780 
781 static struct ecore_vlan_mac_registry_elem *
782 	ecore_check_vlan_del(struct bxe_softc *sc,
783 			     struct ecore_vlan_mac_obj *o,
784 			     union ecore_classification_ramrod_data *data)
785 {
786 	struct ecore_vlan_mac_registry_elem *pos;
787 
788 	ECORE_MSG(sc, "Checking VLAN %d for DEL command\n", data->vlan.vlan);
789 
790 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
791 				  struct ecore_vlan_mac_registry_elem)
792 		if (data->vlan.vlan == pos->u.vlan.vlan)
793 			return pos;
794 
795 	return NULL;
796 }
797 
798 static struct ecore_vlan_mac_registry_elem *
799 	ecore_check_vlan_mac_del(struct bxe_softc *sc,
800 				 struct ecore_vlan_mac_obj *o,
801 				 union ecore_classification_ramrod_data *data)
802 {
803 	struct ecore_vlan_mac_registry_elem *pos;
804 
805 	ECORE_MSG(sc, "Checking VLAN_MAC (%02x:%02x:%02x:%02x:%02x:%02x, %d) for DEL command\n",
806 		  data->vlan_mac.mac[0], data->vlan_mac.mac[1], data->vlan_mac.mac[2], data->vlan_mac.mac[3], data->vlan_mac.mac[4], data->vlan_mac.mac[5], data->vlan_mac.vlan);
807 
808 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
809 				  struct ecore_vlan_mac_registry_elem)
810 		if ((data->vlan_mac.vlan == pos->u.vlan_mac.vlan) &&
811 		    (!ECORE_MEMCMP(data->vlan_mac.mac, pos->u.vlan_mac.mac,
812 			     ETH_ALEN)) &&
813 		    (data->vlan_mac.is_inner_mac ==
814 		     pos->u.vlan_mac.is_inner_mac))
815 			return pos;
816 
817 	return NULL;
818 }
819 
820 static struct ecore_vlan_mac_registry_elem *
821 	ecore_check_vxlan_fltr_del
822 			(struct bxe_softc *sc,
823 			struct ecore_vlan_mac_obj *o,
824 			union ecore_classification_ramrod_data *data)
825 {
826 	struct ecore_vlan_mac_registry_elem *pos;
827 
828 	ECORE_MSG(sc, "Checking VXLAN_FLTR (Inner:%pM, %d) for DEL command\n",
829 		  data->vxlan_fltr.innermac, data->vxlan_fltr.vni);
830 
831 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
832 				  struct ecore_vlan_mac_registry_elem)
833 		if ((!ECORE_MEMCMP(data->vxlan_fltr.innermac,
834 			       pos->u.vxlan_fltr.innermac,
835 			       ETH_ALEN)) &&
836 			       (data->vxlan_fltr.vni == pos->u.vxlan_fltr.vni))
837 			return pos;
838 
839 	return NULL;
840 }
841 
842 /* check_move() callback */
843 static bool ecore_check_move(struct bxe_softc *sc,
844 			     struct ecore_vlan_mac_obj *src_o,
845 			     struct ecore_vlan_mac_obj *dst_o,
846 			     union ecore_classification_ramrod_data *data)
847 {
848 	struct ecore_vlan_mac_registry_elem *pos;
849 	int rc;
850 
851 	/* Check if we can delete the requested configuration from the first
852 	 * object.
853 	 */
854 	pos = src_o->check_del(sc, src_o, data);
855 
856 	/*  check if configuration can be added */
857 	rc = dst_o->check_add(sc, dst_o, data);
858 
859 	/* If this classification can not be added (is already set)
860 	 * or can't be deleted - return an error.
861 	 */
862 	if (rc || !pos)
863 		return FALSE;
864 
865 	return TRUE;
866 }
867 
868 static bool ecore_check_move_always_err(
869 	struct bxe_softc *sc,
870 	struct ecore_vlan_mac_obj *src_o,
871 	struct ecore_vlan_mac_obj *dst_o,
872 	union ecore_classification_ramrod_data *data)
873 {
874 	return FALSE;
875 }
876 
877 static inline uint8_t ecore_vlan_mac_get_rx_tx_flag(struct ecore_vlan_mac_obj *o)
878 {
879 	struct ecore_raw_obj *raw = &o->raw;
880 	uint8_t rx_tx_flag = 0;
881 
882 	if ((raw->obj_type == ECORE_OBJ_TYPE_TX) ||
883 	    (raw->obj_type == ECORE_OBJ_TYPE_RX_TX))
884 		rx_tx_flag |= ETH_CLASSIFY_CMD_HEADER_TX_CMD;
885 
886 	if ((raw->obj_type == ECORE_OBJ_TYPE_RX) ||
887 	    (raw->obj_type == ECORE_OBJ_TYPE_RX_TX))
888 		rx_tx_flag |= ETH_CLASSIFY_CMD_HEADER_RX_CMD;
889 
890 	return rx_tx_flag;
891 }
892 
893 void ecore_set_mac_in_nig(struct bxe_softc *sc,
894 			  bool add, unsigned char *dev_addr, int index)
895 {
896 	uint32_t wb_data[2];
897 	uint32_t reg_offset = ECORE_PORT_ID(sc) ? NIG_REG_LLH1_FUNC_MEM :
898 			 NIG_REG_LLH0_FUNC_MEM;
899 
900 	if (!ECORE_IS_MF_SI_MODE(sc) && !IS_MF_AFEX(sc))
901 		return;
902 
903 	if (index > ECORE_LLH_CAM_MAX_PF_LINE)
904 		return;
905 
906 	ECORE_MSG(sc, "Going to %s LLH configuration at entry %d\n",
907 		  (add ? "ADD" : "DELETE"), index);
908 
909 	if (add) {
910 		/* LLH_FUNC_MEM is a uint64_t WB register */
911 		reg_offset += 8*index;
912 
913 		wb_data[0] = ((dev_addr[2] << 24) | (dev_addr[3] << 16) |
914 			      (dev_addr[4] <<  8) |  dev_addr[5]);
915 		wb_data[1] = ((dev_addr[0] <<  8) |  dev_addr[1]);
916 
917 		ECORE_REG_WR_DMAE_LEN(sc, reg_offset, wb_data, 2);
918 	}
919 
920 	REG_WR(sc, (ECORE_PORT_ID(sc) ? NIG_REG_LLH1_FUNC_MEM_ENABLE :
921 				  NIG_REG_LLH0_FUNC_MEM_ENABLE) + 4*index, add);
922 }
923 
924 /**
925  * ecore_vlan_mac_set_cmd_hdr_e2 - set a header in a single classify ramrod
926  *
927  * @sc:		device handle
928  * @o:		queue for which we want to configure this rule
929  * @add:	if TRUE the command is an ADD command, DEL otherwise
930  * @opcode:	CLASSIFY_RULE_OPCODE_XXX
931  * @hdr:	pointer to a header to setup
932  *
933  */
934 static inline void ecore_vlan_mac_set_cmd_hdr_e2(struct bxe_softc *sc,
935 	struct ecore_vlan_mac_obj *o, bool add, int opcode,
936 	struct eth_classify_cmd_header *hdr)
937 {
938 	struct ecore_raw_obj *raw = &o->raw;
939 
940 	hdr->client_id = raw->cl_id;
941 	hdr->func_id = raw->func_id;
942 
943 	/* Rx or/and Tx (internal switching) configuration ? */
944 	hdr->cmd_general_data |=
945 		ecore_vlan_mac_get_rx_tx_flag(o);
946 
947 	if (add)
948 		hdr->cmd_general_data |= ETH_CLASSIFY_CMD_HEADER_IS_ADD;
949 
950 	hdr->cmd_general_data |=
951 		(opcode << ETH_CLASSIFY_CMD_HEADER_OPCODE_SHIFT);
952 }
953 
954 /**
955  * ecore_vlan_mac_set_rdata_hdr_e2 - set the classify ramrod data header
956  *
957  * @cid:	connection id
958  * @type:	ECORE_FILTER_XXX_PENDING
959  * @hdr:	pointer to header to setup
960  * @rule_cnt:
961  *
962  * currently we always configure one rule and echo field to contain a CID and an
963  * opcode type.
964  */
965 static inline void ecore_vlan_mac_set_rdata_hdr_e2(uint32_t cid, int type,
966 				struct eth_classify_header *hdr, int rule_cnt)
967 {
968 	hdr->echo = ECORE_CPU_TO_LE32((cid & ECORE_SWCID_MASK) |
969 				(type << ECORE_SWCID_SHIFT));
970 	hdr->rule_cnt = (uint8_t)rule_cnt;
971 }
972 
973 /* hw_config() callbacks */
974 static void ecore_set_one_mac_e2(struct bxe_softc *sc,
975 				 struct ecore_vlan_mac_obj *o,
976 				 struct ecore_exeq_elem *elem, int rule_idx,
977 				 int cam_offset)
978 {
979 	struct ecore_raw_obj *raw = &o->raw;
980 	struct eth_classify_rules_ramrod_data *data =
981 		(struct eth_classify_rules_ramrod_data *)(raw->rdata);
982 	int rule_cnt = rule_idx + 1, cmd = elem->cmd_data.vlan_mac.cmd;
983 	union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
984 	bool add = (cmd == ECORE_VLAN_MAC_ADD) ? TRUE : FALSE;
985 	unsigned long *vlan_mac_flags = &elem->cmd_data.vlan_mac.vlan_mac_flags;
986 	uint8_t *mac = elem->cmd_data.vlan_mac.u.mac.mac;
987 
988 	/* Set LLH CAM entry: currently only iSCSI and ETH macs are
989 	 * relevant. In addition, current implementation is tuned for a
990 	 * single ETH MAC.
991 	 *
992 	 * When multiple unicast ETH MACs PF configuration in switch
993 	 * independent mode is required (NetQ, multiple netdev MACs,
994 	 * etc.), consider better utilisation of 8 per function MAC
995 	 * entries in the LLH register. There is also
996 	 * NIG_REG_P[01]_LLH_FUNC_MEM2 registers that complete the
997 	 * total number of CAM entries to 16.
998 	 *
999 	 * Currently we won't configure NIG for MACs other than a primary ETH
1000 	 * MAC and iSCSI L2 MAC.
1001 	 *
1002 	 * If this MAC is moving from one Queue to another, no need to change
1003 	 * NIG configuration.
1004 	 */
1005 	if (cmd != ECORE_VLAN_MAC_MOVE) {
1006 		if (ECORE_TEST_BIT(ECORE_ISCSI_ETH_MAC, vlan_mac_flags))
1007 			ecore_set_mac_in_nig(sc, add, mac,
1008 					     ECORE_LLH_CAM_ISCSI_ETH_LINE);
1009 		else if (ECORE_TEST_BIT(ECORE_ETH_MAC, vlan_mac_flags))
1010 			ecore_set_mac_in_nig(sc, add, mac,
1011 					     ECORE_LLH_CAM_ETH_LINE);
1012 	}
1013 
1014 	/* Reset the ramrod data buffer for the first rule */
1015 	if (rule_idx == 0)
1016 		ECORE_MEMSET(data, 0, sizeof(*data));
1017 
1018 	/* Setup a command header */
1019 	ecore_vlan_mac_set_cmd_hdr_e2(sc, o, add, CLASSIFY_RULE_OPCODE_MAC,
1020 				      &rule_entry->mac.header);
1021 
1022 	ECORE_MSG(sc, "About to %s MAC %02x:%02x:%02x:%02x:%02x:%02x for Queue %d\n",
1023 		  (add ? "add" : "delete"), mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], raw->cl_id);
1024 
1025 	/* Set a MAC itself */
1026 	ecore_set_fw_mac_addr(&rule_entry->mac.mac_msb,
1027 			      &rule_entry->mac.mac_mid,
1028 			      &rule_entry->mac.mac_lsb, mac);
1029 	rule_entry->mac.inner_mac =
1030 		ECORE_CPU_TO_LE16(elem->cmd_data.vlan_mac.u.mac.is_inner_mac);
1031 
1032 	/* MOVE: Add a rule that will add this MAC to the target Queue */
1033 	if (cmd == ECORE_VLAN_MAC_MOVE) {
1034 		rule_entry++;
1035 		rule_cnt++;
1036 
1037 		/* Setup ramrod data */
1038 		ecore_vlan_mac_set_cmd_hdr_e2(sc,
1039 					elem->cmd_data.vlan_mac.target_obj,
1040 					      TRUE, CLASSIFY_RULE_OPCODE_MAC,
1041 					      &rule_entry->mac.header);
1042 
1043 		/* Set a MAC itself */
1044 		ecore_set_fw_mac_addr(&rule_entry->mac.mac_msb,
1045 				      &rule_entry->mac.mac_mid,
1046 				      &rule_entry->mac.mac_lsb, mac);
1047 		rule_entry->mac.inner_mac =
1048 			ECORE_CPU_TO_LE16(elem->cmd_data.vlan_mac.
1049 				       u.mac.is_inner_mac);
1050 	}
1051 
1052 	/* Set the ramrod data header */
1053 	/* TODO: take this to the higher level in order to prevent multiple
1054 		 writing */
1055 	ecore_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
1056 					rule_cnt);
1057 }
1058 
1059 /**
1060  * ecore_vlan_mac_set_rdata_hdr_e1x - set a header in a single classify ramrod
1061  *
1062  * @sc:		device handle
1063  * @o:		queue
1064  * @type:
1065  * @cam_offset:	offset in cam memory
1066  * @hdr:	pointer to a header to setup
1067  *
1068  * E1/E1H
1069  */
1070 static inline void ecore_vlan_mac_set_rdata_hdr_e1x(struct bxe_softc *sc,
1071 	struct ecore_vlan_mac_obj *o, int type, int cam_offset,
1072 	struct mac_configuration_hdr *hdr)
1073 {
1074 	struct ecore_raw_obj *r = &o->raw;
1075 
1076 	hdr->length = 1;
1077 	hdr->offset = (uint8_t)cam_offset;
1078 	hdr->client_id = ECORE_CPU_TO_LE16(0xff);
1079 	hdr->echo = ECORE_CPU_TO_LE32((r->cid & ECORE_SWCID_MASK) |
1080 				(type << ECORE_SWCID_SHIFT));
1081 }
1082 
1083 static inline void ecore_vlan_mac_set_cfg_entry_e1x(struct bxe_softc *sc,
1084 	struct ecore_vlan_mac_obj *o, bool add, int opcode, uint8_t *mac,
1085 	uint16_t vlan_id, struct mac_configuration_entry *cfg_entry)
1086 {
1087 	struct ecore_raw_obj *r = &o->raw;
1088 	uint32_t cl_bit_vec = (1 << r->cl_id);
1089 
1090 	cfg_entry->clients_bit_vector = ECORE_CPU_TO_LE32(cl_bit_vec);
1091 	cfg_entry->pf_id = r->func_id;
1092 	cfg_entry->vlan_id = ECORE_CPU_TO_LE16(vlan_id);
1093 
1094 	if (add) {
1095 		ECORE_SET_FLAG(cfg_entry->flags,
1096 			       MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
1097 			       T_ETH_MAC_COMMAND_SET);
1098 		ECORE_SET_FLAG(cfg_entry->flags,
1099 			       MAC_CONFIGURATION_ENTRY_VLAN_FILTERING_MODE,
1100 			       opcode);
1101 
1102 		/* Set a MAC in a ramrod data */
1103 		ecore_set_fw_mac_addr(&cfg_entry->msb_mac_addr,
1104 				      &cfg_entry->middle_mac_addr,
1105 				      &cfg_entry->lsb_mac_addr, mac);
1106 	} else
1107 		ECORE_SET_FLAG(cfg_entry->flags,
1108 			       MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
1109 			       T_ETH_MAC_COMMAND_INVALIDATE);
1110 }
1111 
1112 static inline void ecore_vlan_mac_set_rdata_e1x(struct bxe_softc *sc,
1113 	struct ecore_vlan_mac_obj *o, int type, int cam_offset, bool add,
1114 	uint8_t *mac, uint16_t vlan_id, int opcode, struct mac_configuration_cmd *config)
1115 {
1116 	struct mac_configuration_entry *cfg_entry = &config->config_table[0];
1117 	struct ecore_raw_obj *raw = &o->raw;
1118 
1119 	ecore_vlan_mac_set_rdata_hdr_e1x(sc, o, type, cam_offset,
1120 					 &config->hdr);
1121 	ecore_vlan_mac_set_cfg_entry_e1x(sc, o, add, opcode, mac, vlan_id,
1122 					 cfg_entry);
1123 
1124 	ECORE_MSG(sc, "%s MAC %02x:%02x:%02x:%02x:%02x:%02x CLID %d CAM offset %d\n",
1125 		  (add ? "setting" : "clearing"),
1126 		  mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], raw->cl_id, cam_offset);
1127 }
1128 
1129 /**
1130  * ecore_set_one_mac_e1x - fill a single MAC rule ramrod data
1131  *
1132  * @sc:		device handle
1133  * @o:		ecore_vlan_mac_obj
1134  * @elem:	ecore_exeq_elem
1135  * @rule_idx:	rule_idx
1136  * @cam_offset: cam_offset
1137  */
1138 static void ecore_set_one_mac_e1x(struct bxe_softc *sc,
1139 				  struct ecore_vlan_mac_obj *o,
1140 				  struct ecore_exeq_elem *elem, int rule_idx,
1141 				  int cam_offset)
1142 {
1143 	struct ecore_raw_obj *raw = &o->raw;
1144 	struct mac_configuration_cmd *config =
1145 		(struct mac_configuration_cmd *)(raw->rdata);
1146 	/* 57710 and 57711 do not support MOVE command,
1147 	 * so it's either ADD or DEL
1148 	 */
1149 	bool add = (elem->cmd_data.vlan_mac.cmd == ECORE_VLAN_MAC_ADD) ?
1150 		TRUE : FALSE;
1151 
1152 	/* Reset the ramrod data buffer */
1153 	ECORE_MEMSET(config, 0, sizeof(*config));
1154 
1155 	ecore_vlan_mac_set_rdata_e1x(sc, o, raw->state,
1156 				     cam_offset, add,
1157 				     elem->cmd_data.vlan_mac.u.mac.mac, 0,
1158 				     ETH_VLAN_FILTER_ANY_VLAN, config);
1159 }
1160 
1161 static void ecore_set_one_vlan_e2(struct bxe_softc *sc,
1162 				  struct ecore_vlan_mac_obj *o,
1163 				  struct ecore_exeq_elem *elem, int rule_idx,
1164 				  int cam_offset)
1165 {
1166 	struct ecore_raw_obj *raw = &o->raw;
1167 	struct eth_classify_rules_ramrod_data *data =
1168 		(struct eth_classify_rules_ramrod_data *)(raw->rdata);
1169 	int rule_cnt = rule_idx + 1;
1170 	union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
1171 	enum ecore_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd;
1172 	bool add = (cmd == ECORE_VLAN_MAC_ADD) ? TRUE : FALSE;
1173 	uint16_t vlan = elem->cmd_data.vlan_mac.u.vlan.vlan;
1174 
1175 	/* Reset the ramrod data buffer for the first rule */
1176 	if (rule_idx == 0)
1177 		ECORE_MEMSET(data, 0, sizeof(*data));
1178 
1179 	/* Set a rule header */
1180 	ecore_vlan_mac_set_cmd_hdr_e2(sc, o, add, CLASSIFY_RULE_OPCODE_VLAN,
1181 				      &rule_entry->vlan.header);
1182 
1183 	ECORE_MSG(sc, "About to %s VLAN %d\n", (add ? "add" : "delete"),
1184 		  vlan);
1185 
1186 	/* Set a VLAN itself */
1187 	rule_entry->vlan.vlan = ECORE_CPU_TO_LE16(vlan);
1188 
1189 	/* MOVE: Add a rule that will add this MAC to the target Queue */
1190 	if (cmd == ECORE_VLAN_MAC_MOVE) {
1191 		rule_entry++;
1192 		rule_cnt++;
1193 
1194 		/* Setup ramrod data */
1195 		ecore_vlan_mac_set_cmd_hdr_e2(sc,
1196 					elem->cmd_data.vlan_mac.target_obj,
1197 					      TRUE, CLASSIFY_RULE_OPCODE_VLAN,
1198 					      &rule_entry->vlan.header);
1199 
1200 		/* Set a VLAN itself */
1201 		rule_entry->vlan.vlan = ECORE_CPU_TO_LE16(vlan);
1202 	}
1203 
1204 	/* Set the ramrod data header */
1205 	/* TODO: take this to the higher level in order to prevent multiple
1206 		 writing */
1207 	ecore_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
1208 					rule_cnt);
1209 }
1210 
1211 static void ecore_set_one_vlan_mac_e2(struct bxe_softc *sc,
1212 				      struct ecore_vlan_mac_obj *o,
1213 				      struct ecore_exeq_elem *elem,
1214 				      int rule_idx, int cam_offset)
1215 {
1216 	struct ecore_raw_obj *raw = &o->raw;
1217 	struct eth_classify_rules_ramrod_data *data =
1218 		(struct eth_classify_rules_ramrod_data *)(raw->rdata);
1219 	int rule_cnt = rule_idx + 1;
1220 	union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
1221 	enum ecore_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd;
1222 	bool add = (cmd == ECORE_VLAN_MAC_ADD) ? TRUE : FALSE;
1223 	uint16_t vlan = elem->cmd_data.vlan_mac.u.vlan_mac.vlan;
1224 	uint8_t *mac = elem->cmd_data.vlan_mac.u.vlan_mac.mac;
1225 
1226 	/* Reset the ramrod data buffer for the first rule */
1227 	if (rule_idx == 0)
1228 		ECORE_MEMSET(data, 0, sizeof(*data));
1229 
1230 	/* Set a rule header */
1231 	ecore_vlan_mac_set_cmd_hdr_e2(sc, o, add, CLASSIFY_RULE_OPCODE_PAIR,
1232 				      &rule_entry->pair.header);
1233 
1234 	/* Set VLAN and MAC themselves */
1235 	rule_entry->pair.vlan = ECORE_CPU_TO_LE16(vlan);
1236 	ecore_set_fw_mac_addr(&rule_entry->pair.mac_msb,
1237 			      &rule_entry->pair.mac_mid,
1238 			      &rule_entry->pair.mac_lsb, mac);
1239 	rule_entry->pair.inner_mac =
1240 			elem->cmd_data.vlan_mac.u.vlan_mac.is_inner_mac;
1241 	/* MOVE: Add a rule that will add this MAC to the target Queue */
1242 	if (cmd == ECORE_VLAN_MAC_MOVE) {
1243 		rule_entry++;
1244 		rule_cnt++;
1245 
1246 		/* Setup ramrod data */
1247 		ecore_vlan_mac_set_cmd_hdr_e2(sc,
1248 					elem->cmd_data.vlan_mac.target_obj,
1249 					      TRUE, CLASSIFY_RULE_OPCODE_PAIR,
1250 					      &rule_entry->pair.header);
1251 
1252 		/* Set a VLAN itself */
1253 		rule_entry->pair.vlan = ECORE_CPU_TO_LE16(vlan);
1254 		ecore_set_fw_mac_addr(&rule_entry->pair.mac_msb,
1255 				      &rule_entry->pair.mac_mid,
1256 				      &rule_entry->pair.mac_lsb, mac);
1257 		rule_entry->pair.inner_mac =
1258 			elem->cmd_data.vlan_mac.u.vlan_mac.is_inner_mac;
1259 	}
1260 
1261 	/* Set the ramrod data header */
1262 	/* TODO: take this to the higher level in order to prevent multiple
1263 		 writing */
1264 	ecore_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
1265 					rule_cnt);
1266 }
1267 
1268 static void ecore_set_one_vxlan_fltr_e2(struct bxe_softc *sc,
1269 						struct ecore_vlan_mac_obj *o,
1270 						struct ecore_exeq_elem *elem,
1271 						int rule_idx, int cam_offset)
1272 {
1273 	struct ecore_raw_obj *raw = &o->raw;
1274 	struct eth_classify_rules_ramrod_data *data =
1275 		(struct eth_classify_rules_ramrod_data *)(raw->rdata);
1276 	int rule_cnt = rule_idx + 1;
1277 	union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
1278 	enum ecore_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd;
1279 	bool add = (cmd == ECORE_VLAN_MAC_ADD) ? TRUE : FALSE;
1280 	uint32_t vni = elem->cmd_data.vlan_mac.u.vxlan_fltr.vni;
1281 	uint8_t *mac = elem->cmd_data.vlan_mac.u.vxlan_fltr.innermac;
1282 
1283 	/* Reset the ramrod data buffer for the first rule */
1284 	if (rule_idx == 0)
1285 		ECORE_MEMSET(data, 0, sizeof(*data));
1286 
1287 	/* Set a rule header */
1288 	ecore_vlan_mac_set_cmd_hdr_e2(sc, o, add,
1289 				      CLASSIFY_RULE_OPCODE_IMAC_VNI,
1290 				      &rule_entry->imac_vni.header);
1291 
1292 	/* Set VLAN and MAC themselves */
1293 	rule_entry->imac_vni.vni = vni;
1294 	ecore_set_fw_mac_addr(&rule_entry->imac_vni.imac_msb,
1295 			      &rule_entry->imac_vni.imac_mid,
1296 			      &rule_entry->imac_vni.imac_lsb, mac);
1297 
1298 	/* MOVE: Add a rule that will add this MAC to the target Queue */
1299 	if (cmd == ECORE_VLAN_MAC_MOVE) {
1300 		rule_entry++;
1301 		rule_cnt++;
1302 
1303 		/* Setup ramrod data */
1304 		ecore_vlan_mac_set_cmd_hdr_e2(sc,
1305 					      elem->cmd_data.vlan_mac.target_obj,
1306 					      TRUE, CLASSIFY_RULE_OPCODE_IMAC_VNI,
1307 					      &rule_entry->imac_vni.header);
1308 
1309 		/* Set a VLAN itself */
1310 		rule_entry->imac_vni.vni = vni;
1311 		ecore_set_fw_mac_addr(&rule_entry->imac_vni.imac_msb,
1312 				      &rule_entry->imac_vni.imac_mid,
1313 				      &rule_entry->imac_vni.imac_lsb, mac);
1314 	}
1315 
1316 	/* Set the ramrod data header */
1317 	/* TODO: take this to the higher level in order to prevent multiple
1318 	   * writing
1319 	*/
1320 	ecore_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state,
1321 					&data->header, rule_cnt);
1322 }
1323 
1324 /**
1325  * ecore_set_one_vlan_mac_e1h -
1326  *
1327  * @sc:		device handle
1328  * @o:		ecore_vlan_mac_obj
1329  * @elem:	ecore_exeq_elem
1330  * @rule_idx:	rule_idx
1331  * @cam_offset:	cam_offset
1332  */
1333 static void ecore_set_one_vlan_mac_e1h(struct bxe_softc *sc,
1334 				       struct ecore_vlan_mac_obj *o,
1335 				       struct ecore_exeq_elem *elem,
1336 				       int rule_idx, int cam_offset)
1337 {
1338 	struct ecore_raw_obj *raw = &o->raw;
1339 	struct mac_configuration_cmd *config =
1340 		(struct mac_configuration_cmd *)(raw->rdata);
1341 	/* 57710 and 57711 do not support MOVE command,
1342 	 * so it's either ADD or DEL
1343 	 */
1344 	bool add = (elem->cmd_data.vlan_mac.cmd == ECORE_VLAN_MAC_ADD) ?
1345 		TRUE : FALSE;
1346 
1347 	/* Reset the ramrod data buffer */
1348 	ECORE_MEMSET(config, 0, sizeof(*config));
1349 
1350 	ecore_vlan_mac_set_rdata_e1x(sc, o, ECORE_FILTER_VLAN_MAC_PENDING,
1351 				     cam_offset, add,
1352 				     elem->cmd_data.vlan_mac.u.vlan_mac.mac,
1353 				     elem->cmd_data.vlan_mac.u.vlan_mac.vlan,
1354 				     ETH_VLAN_FILTER_CLASSIFY, config);
1355 }
1356 
1357 #define list_next_entry(pos, member) \
1358 	list_entry((pos)->member.next, typeof(*(pos)), member)
1359 
1360 /**
1361  * ecore_vlan_mac_restore - reconfigure next MAC/VLAN/VLAN-MAC element
1362  *
1363  * @sc:		device handle
1364  * @p:		command parameters
1365  * @ppos:	pointer to the cookie
1366  *
1367  * reconfigure next MAC/VLAN/VLAN-MAC element from the
1368  * previously configured elements list.
1369  *
1370  * from command parameters only RAMROD_COMP_WAIT bit in ramrod_flags is	taken
1371  * into an account
1372  *
1373  * pointer to the cookie  - that should be given back in the next call to make
1374  * function handle the next element. If *ppos is set to NULL it will restart the
1375  * iterator. If returned *ppos == NULL this means that the last element has been
1376  * handled.
1377  *
1378  */
1379 static int ecore_vlan_mac_restore(struct bxe_softc *sc,
1380 			   struct ecore_vlan_mac_ramrod_params *p,
1381 			   struct ecore_vlan_mac_registry_elem **ppos)
1382 {
1383 	struct ecore_vlan_mac_registry_elem *pos;
1384 	struct ecore_vlan_mac_obj *o = p->vlan_mac_obj;
1385 
1386 	/* If list is empty - there is nothing to do here */
1387 	if (ECORE_LIST_IS_EMPTY(&o->head)) {
1388 		*ppos = NULL;
1389 		return 0;
1390 	}
1391 
1392 	/* make a step... */
1393 	if (*ppos == NULL)
1394 		*ppos = ECORE_LIST_FIRST_ENTRY(&o->head,
1395 					    struct ecore_vlan_mac_registry_elem,
1396 					       link);
1397 	else
1398 		*ppos = ECORE_LIST_NEXT(*ppos, link,
1399 					struct ecore_vlan_mac_registry_elem);
1400 
1401 	pos = *ppos;
1402 
1403 	/* If it's the last step - return NULL */
1404 	if (ECORE_LIST_IS_LAST(&pos->link, &o->head))
1405 		*ppos = NULL;
1406 
1407 	/* Prepare a 'user_req' */
1408 	ECORE_MEMCPY(&p->user_req.u, &pos->u, sizeof(pos->u));
1409 
1410 	/* Set the command */
1411 	p->user_req.cmd = ECORE_VLAN_MAC_ADD;
1412 
1413 	/* Set vlan_mac_flags */
1414 	p->user_req.vlan_mac_flags = pos->vlan_mac_flags;
1415 
1416 	/* Set a restore bit */
1417 	ECORE_SET_BIT_NA(RAMROD_RESTORE, &p->ramrod_flags);
1418 
1419 	return ecore_config_vlan_mac(sc, p);
1420 }
1421 
1422 /* ecore_exeq_get_mac/ecore_exeq_get_vlan/ecore_exeq_get_vlan_mac return a
1423  * pointer to an element with a specific criteria and NULL if such an element
1424  * hasn't been found.
1425  */
1426 static struct ecore_exeq_elem *ecore_exeq_get_mac(
1427 	struct ecore_exe_queue_obj *o,
1428 	struct ecore_exeq_elem *elem)
1429 {
1430 	struct ecore_exeq_elem *pos;
1431 	struct ecore_mac_ramrod_data *data = &elem->cmd_data.vlan_mac.u.mac;
1432 
1433 	/* Check pending for execution commands */
1434 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->exe_queue, link,
1435 				  struct ecore_exeq_elem)
1436 		if (!ECORE_MEMCMP(&pos->cmd_data.vlan_mac.u.mac, data,
1437 			      sizeof(*data)) &&
1438 		    (pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd))
1439 			return pos;
1440 
1441 	return NULL;
1442 }
1443 
1444 static struct ecore_exeq_elem *ecore_exeq_get_vlan(
1445 	struct ecore_exe_queue_obj *o,
1446 	struct ecore_exeq_elem *elem)
1447 {
1448 	struct ecore_exeq_elem *pos;
1449 	struct ecore_vlan_ramrod_data *data = &elem->cmd_data.vlan_mac.u.vlan;
1450 
1451 	/* Check pending for execution commands */
1452 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->exe_queue, link,
1453 				  struct ecore_exeq_elem)
1454 		if (!ECORE_MEMCMP(&pos->cmd_data.vlan_mac.u.vlan, data,
1455 			      sizeof(*data)) &&
1456 		    (pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd))
1457 			return pos;
1458 
1459 	return NULL;
1460 }
1461 
1462 static struct ecore_exeq_elem *ecore_exeq_get_vlan_mac(
1463 	struct ecore_exe_queue_obj *o,
1464 	struct ecore_exeq_elem *elem)
1465 {
1466 	struct ecore_exeq_elem *pos;
1467 	struct ecore_vlan_mac_ramrod_data *data =
1468 		&elem->cmd_data.vlan_mac.u.vlan_mac;
1469 
1470 	/* Check pending for execution commands */
1471 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->exe_queue, link,
1472 				  struct ecore_exeq_elem)
1473 		if (!ECORE_MEMCMP(&pos->cmd_data.vlan_mac.u.vlan_mac, data,
1474 			      sizeof(*data)) &&
1475 		    (pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd))
1476 			return pos;
1477 
1478 	return NULL;
1479 }
1480 
1481 static struct ecore_exeq_elem *ecore_exeq_get_vxlan_fltr
1482 			(struct ecore_exe_queue_obj *o,
1483 			struct ecore_exeq_elem *elem)
1484 {
1485 	struct ecore_exeq_elem *pos;
1486 	struct ecore_vxlan_fltr_ramrod_data *data =
1487 		&elem->cmd_data.vlan_mac.u.vxlan_fltr;
1488 
1489 	/* Check pending for execution commands */
1490 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->exe_queue, link,
1491 				  struct ecore_exeq_elem)
1492 		if (!ECORE_MEMCMP(&pos->cmd_data.vlan_mac.u.vxlan_fltr, data,
1493 			      sizeof(*data)) &&
1494 			      (pos->cmd_data.vlan_mac.cmd ==
1495 			      elem->cmd_data.vlan_mac.cmd))
1496 			return pos;
1497 
1498 	return NULL;
1499 }
1500 
1501 /**
1502  * ecore_validate_vlan_mac_add - check if an ADD command can be executed
1503  *
1504  * @sc:		device handle
1505  * @qo:		ecore_qable_obj
1506  * @elem:	ecore_exeq_elem
1507  *
1508  * Checks that the requested configuration can be added. If yes and if
1509  * requested, consume CAM credit.
1510  *
1511  * The 'validate' is run after the 'optimize'.
1512  *
1513  */
1514 static inline int ecore_validate_vlan_mac_add(struct bxe_softc *sc,
1515 					      union ecore_qable_obj *qo,
1516 					      struct ecore_exeq_elem *elem)
1517 {
1518 	struct ecore_vlan_mac_obj *o = &qo->vlan_mac;
1519 	struct ecore_exe_queue_obj *exeq = &o->exe_queue;
1520 	int rc;
1521 
1522 	/* Check the registry */
1523 	rc = o->check_add(sc, o, &elem->cmd_data.vlan_mac.u);
1524 	if (rc) {
1525 		ECORE_MSG(sc, "ADD command is not allowed considering current registry state.\n");
1526 		return rc;
1527 	}
1528 
1529 	/* Check if there is a pending ADD command for this
1530 	 * MAC/VLAN/VLAN-MAC. Return an error if there is.
1531 	 */
1532 	if (exeq->get(exeq, elem)) {
1533 		ECORE_MSG(sc, "There is a pending ADD command already\n");
1534 		return ECORE_EXISTS;
1535 	}
1536 
1537 	/* TODO: Check the pending MOVE from other objects where this
1538 	 * object is a destination object.
1539 	 */
1540 
1541 	/* Consume the credit if not requested not to */
1542 	if (!(ECORE_TEST_BIT(ECORE_DONT_CONSUME_CAM_CREDIT,
1543 			     &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1544 	    o->get_credit(o)))
1545 		return ECORE_INVAL;
1546 
1547 	return ECORE_SUCCESS;
1548 }
1549 
1550 /**
1551  * ecore_validate_vlan_mac_del - check if the DEL command can be executed
1552  *
1553  * @sc:		device handle
1554  * @qo:		quable object to check
1555  * @elem:	element that needs to be deleted
1556  *
1557  * Checks that the requested configuration can be deleted. If yes and if
1558  * requested, returns a CAM credit.
1559  *
1560  * The 'validate' is run after the 'optimize'.
1561  */
1562 static inline int ecore_validate_vlan_mac_del(struct bxe_softc *sc,
1563 					      union ecore_qable_obj *qo,
1564 					      struct ecore_exeq_elem *elem)
1565 {
1566 	struct ecore_vlan_mac_obj *o = &qo->vlan_mac;
1567 	struct ecore_vlan_mac_registry_elem *pos;
1568 	struct ecore_exe_queue_obj *exeq = &o->exe_queue;
1569 	struct ecore_exeq_elem query_elem;
1570 
1571 	/* If this classification can not be deleted (doesn't exist)
1572 	 * - return a ECORE_EXIST.
1573 	 */
1574 	pos = o->check_del(sc, o, &elem->cmd_data.vlan_mac.u);
1575 	if (!pos) {
1576 		ECORE_MSG(sc, "DEL command is not allowed considering current registry state\n");
1577 		return ECORE_EXISTS;
1578 	}
1579 
1580 	/* Check if there are pending DEL or MOVE commands for this
1581 	 * MAC/VLAN/VLAN-MAC. Return an error if so.
1582 	 */
1583 	ECORE_MEMCPY(&query_elem, elem, sizeof(query_elem));
1584 
1585 	/* Check for MOVE commands */
1586 	query_elem.cmd_data.vlan_mac.cmd = ECORE_VLAN_MAC_MOVE;
1587 	if (exeq->get(exeq, &query_elem)) {
1588 		ECORE_ERR("There is a pending MOVE command already\n");
1589 		return ECORE_INVAL;
1590 	}
1591 
1592 	/* Check for DEL commands */
1593 	if (exeq->get(exeq, elem)) {
1594 		ECORE_MSG(sc, "There is a pending DEL command already\n");
1595 		return ECORE_EXISTS;
1596 	}
1597 
1598 	/* Return the credit to the credit pool if not requested not to */
1599 	if (!(ECORE_TEST_BIT(ECORE_DONT_CONSUME_CAM_CREDIT,
1600 			     &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1601 	    o->put_credit(o))) {
1602 		ECORE_ERR("Failed to return a credit\n");
1603 		return ECORE_INVAL;
1604 	}
1605 
1606 	return ECORE_SUCCESS;
1607 }
1608 
1609 /**
1610  * ecore_validate_vlan_mac_move - check if the MOVE command can be executed
1611  *
1612  * @sc:		device handle
1613  * @qo:		quable object to check (source)
1614  * @elem:	element that needs to be moved
1615  *
1616  * Checks that the requested configuration can be moved. If yes and if
1617  * requested, returns a CAM credit.
1618  *
1619  * The 'validate' is run after the 'optimize'.
1620  */
1621 static inline int ecore_validate_vlan_mac_move(struct bxe_softc *sc,
1622 					       union ecore_qable_obj *qo,
1623 					       struct ecore_exeq_elem *elem)
1624 {
1625 	struct ecore_vlan_mac_obj *src_o = &qo->vlan_mac;
1626 	struct ecore_vlan_mac_obj *dest_o = elem->cmd_data.vlan_mac.target_obj;
1627 	struct ecore_exeq_elem query_elem;
1628 	struct ecore_exe_queue_obj *src_exeq = &src_o->exe_queue;
1629 	struct ecore_exe_queue_obj *dest_exeq = &dest_o->exe_queue;
1630 
1631 	/* Check if we can perform this operation based on the current registry
1632 	 * state.
1633 	 */
1634 	if (!src_o->check_move(sc, src_o, dest_o,
1635 			       &elem->cmd_data.vlan_mac.u)) {
1636 		ECORE_MSG(sc, "MOVE command is not allowed considering current registry state\n");
1637 		return ECORE_INVAL;
1638 	}
1639 
1640 	/* Check if there is an already pending DEL or MOVE command for the
1641 	 * source object or ADD command for a destination object. Return an
1642 	 * error if so.
1643 	 */
1644 	ECORE_MEMCPY(&query_elem, elem, sizeof(query_elem));
1645 
1646 	/* Check DEL on source */
1647 	query_elem.cmd_data.vlan_mac.cmd = ECORE_VLAN_MAC_DEL;
1648 	if (src_exeq->get(src_exeq, &query_elem)) {
1649 		ECORE_ERR("There is a pending DEL command on the source queue already\n");
1650 		return ECORE_INVAL;
1651 	}
1652 
1653 	/* Check MOVE on source */
1654 	if (src_exeq->get(src_exeq, elem)) {
1655 		ECORE_MSG(sc, "There is a pending MOVE command already\n");
1656 		return ECORE_EXISTS;
1657 	}
1658 
1659 	/* Check ADD on destination */
1660 	query_elem.cmd_data.vlan_mac.cmd = ECORE_VLAN_MAC_ADD;
1661 	if (dest_exeq->get(dest_exeq, &query_elem)) {
1662 		ECORE_ERR("There is a pending ADD command on the destination queue already\n");
1663 		return ECORE_INVAL;
1664 	}
1665 
1666 	/* Consume the credit if not requested not to */
1667 	if (!(ECORE_TEST_BIT(ECORE_DONT_CONSUME_CAM_CREDIT_DEST,
1668 			     &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1669 	    dest_o->get_credit(dest_o)))
1670 		return ECORE_INVAL;
1671 
1672 	if (!(ECORE_TEST_BIT(ECORE_DONT_CONSUME_CAM_CREDIT,
1673 			     &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1674 	    src_o->put_credit(src_o))) {
1675 		/* return the credit taken from dest... */
1676 		dest_o->put_credit(dest_o);
1677 		return ECORE_INVAL;
1678 	}
1679 
1680 	return ECORE_SUCCESS;
1681 }
1682 
1683 static int ecore_validate_vlan_mac(struct bxe_softc *sc,
1684 				   union ecore_qable_obj *qo,
1685 				   struct ecore_exeq_elem *elem)
1686 {
1687 	switch (elem->cmd_data.vlan_mac.cmd) {
1688 	case ECORE_VLAN_MAC_ADD:
1689 		return ecore_validate_vlan_mac_add(sc, qo, elem);
1690 	case ECORE_VLAN_MAC_DEL:
1691 		return ecore_validate_vlan_mac_del(sc, qo, elem);
1692 	case ECORE_VLAN_MAC_MOVE:
1693 		return ecore_validate_vlan_mac_move(sc, qo, elem);
1694 	default:
1695 		return ECORE_INVAL;
1696 	}
1697 }
1698 
1699 static int ecore_remove_vlan_mac(struct bxe_softc *sc,
1700 				  union ecore_qable_obj *qo,
1701 				  struct ecore_exeq_elem *elem)
1702 {
1703 	int rc = 0;
1704 
1705 	/* If consumption wasn't required, nothing to do */
1706 	if (ECORE_TEST_BIT(ECORE_DONT_CONSUME_CAM_CREDIT,
1707 			   &elem->cmd_data.vlan_mac.vlan_mac_flags))
1708 		return ECORE_SUCCESS;
1709 
1710 	switch (elem->cmd_data.vlan_mac.cmd) {
1711 	case ECORE_VLAN_MAC_ADD:
1712 	case ECORE_VLAN_MAC_MOVE:
1713 		rc = qo->vlan_mac.put_credit(&qo->vlan_mac);
1714 		break;
1715 	case ECORE_VLAN_MAC_DEL:
1716 		rc = qo->vlan_mac.get_credit(&qo->vlan_mac);
1717 		break;
1718 	default:
1719 		return ECORE_INVAL;
1720 	}
1721 
1722 	if (rc != TRUE)
1723 		return ECORE_INVAL;
1724 
1725 	return ECORE_SUCCESS;
1726 }
1727 
1728 /**
1729  * ecore_wait_vlan_mac - passively wait for 5 seconds until all work completes.
1730  *
1731  * @sc:		device handle
1732  * @o:		ecore_vlan_mac_obj
1733  *
1734  */
1735 static int ecore_wait_vlan_mac(struct bxe_softc *sc,
1736 			       struct ecore_vlan_mac_obj *o)
1737 {
1738 	int cnt = 5000, rc;
1739 	struct ecore_exe_queue_obj *exeq = &o->exe_queue;
1740 	struct ecore_raw_obj *raw = &o->raw;
1741 
1742 	while (cnt--) {
1743 		/* Wait for the current command to complete */
1744 		rc = raw->wait_comp(sc, raw);
1745 		if (rc)
1746 			return rc;
1747 
1748 		/* Wait until there are no pending commands */
1749 		if (!ecore_exe_queue_empty(exeq))
1750 			ECORE_WAIT(sc, 1000);
1751 		else
1752 			return ECORE_SUCCESS;
1753 	}
1754 
1755 	return ECORE_TIMEOUT;
1756 }
1757 
1758 static int __ecore_vlan_mac_execute_step(struct bxe_softc *sc,
1759 					 struct ecore_vlan_mac_obj *o,
1760 					 unsigned long *ramrod_flags)
1761 {
1762 	int rc = ECORE_SUCCESS;
1763 
1764 	ECORE_SPIN_LOCK_BH(&o->exe_queue.lock);
1765 
1766 	ECORE_MSG(sc, "vlan_mac_execute_step - trying to take writer lock\n");
1767 	rc = __ecore_vlan_mac_h_write_trylock(sc, o);
1768 
1769 	if (rc != ECORE_SUCCESS) {
1770 		__ecore_vlan_mac_h_pend(sc, o, *ramrod_flags);
1771 
1772 		/** Calling function should not diffrentiate between this case
1773 		 *  and the case in which there is already a pending ramrod
1774 		 */
1775 		rc = ECORE_PENDING;
1776 	} else {
1777 		rc = ecore_exe_queue_step(sc, &o->exe_queue, ramrod_flags);
1778 	}
1779 	ECORE_SPIN_UNLOCK_BH(&o->exe_queue.lock);
1780 
1781 	return rc;
1782 }
1783 
1784 /**
1785  * ecore_complete_vlan_mac - complete one VLAN-MAC ramrod
1786  *
1787  * @sc:		device handle
1788  * @o:		ecore_vlan_mac_obj
1789  * @cqe:
1790  * @cont:	if TRUE schedule next execution chunk
1791  *
1792  */
1793 static int ecore_complete_vlan_mac(struct bxe_softc *sc,
1794 				   struct ecore_vlan_mac_obj *o,
1795 				   union event_ring_elem *cqe,
1796 				   unsigned long *ramrod_flags)
1797 {
1798 	struct ecore_raw_obj *r = &o->raw;
1799 	int rc;
1800 
1801 	/* Clearing the pending list & raw state should be made
1802 	 * atomically (as execution flow assumes they represent the same)
1803 	 */
1804 	ECORE_SPIN_LOCK_BH(&o->exe_queue.lock);
1805 
1806 	/* Reset pending list */
1807 	__ecore_exe_queue_reset_pending(sc, &o->exe_queue);
1808 
1809 	/* Clear pending */
1810 	r->clear_pending(r);
1811 
1812 	ECORE_SPIN_UNLOCK_BH(&o->exe_queue.lock);
1813 
1814 	/* If ramrod failed this is most likely a SW bug */
1815 	if (cqe->message.error)
1816 		return ECORE_INVAL;
1817 
1818 	/* Run the next bulk of pending commands if requested */
1819 	if (ECORE_TEST_BIT(RAMROD_CONT, ramrod_flags)) {
1820 		rc = __ecore_vlan_mac_execute_step(sc, o, ramrod_flags);
1821 		if (rc < 0)
1822 			return rc;
1823 	}
1824 
1825 	/* If there is more work to do return PENDING */
1826 	if (!ecore_exe_queue_empty(&o->exe_queue))
1827 		return ECORE_PENDING;
1828 
1829 	return ECORE_SUCCESS;
1830 }
1831 
1832 /**
1833  * ecore_optimize_vlan_mac - optimize ADD and DEL commands.
1834  *
1835  * @sc:		device handle
1836  * @o:		ecore_qable_obj
1837  * @elem:	ecore_exeq_elem
1838  */
1839 static int ecore_optimize_vlan_mac(struct bxe_softc *sc,
1840 				   union ecore_qable_obj *qo,
1841 				   struct ecore_exeq_elem *elem)
1842 {
1843 	struct ecore_exeq_elem query, *pos;
1844 	struct ecore_vlan_mac_obj *o = &qo->vlan_mac;
1845 	struct ecore_exe_queue_obj *exeq = &o->exe_queue;
1846 
1847 	ECORE_MEMCPY(&query, elem, sizeof(query));
1848 
1849 	switch (elem->cmd_data.vlan_mac.cmd) {
1850 	case ECORE_VLAN_MAC_ADD:
1851 		query.cmd_data.vlan_mac.cmd = ECORE_VLAN_MAC_DEL;
1852 		break;
1853 	case ECORE_VLAN_MAC_DEL:
1854 		query.cmd_data.vlan_mac.cmd = ECORE_VLAN_MAC_ADD;
1855 		break;
1856 	default:
1857 		/* Don't handle anything other than ADD or DEL */
1858 		return 0;
1859 	}
1860 
1861 	/* If we found the appropriate element - delete it */
1862 	pos = exeq->get(exeq, &query);
1863 	if (pos) {
1864 
1865 		/* Return the credit of the optimized command */
1866 		if (!ECORE_TEST_BIT(ECORE_DONT_CONSUME_CAM_CREDIT,
1867 				     &pos->cmd_data.vlan_mac.vlan_mac_flags)) {
1868 			if ((query.cmd_data.vlan_mac.cmd ==
1869 			     ECORE_VLAN_MAC_ADD) && !o->put_credit(o)) {
1870 				ECORE_ERR("Failed to return the credit for the optimized ADD command\n");
1871 				return ECORE_INVAL;
1872 			} else if (!o->get_credit(o)) { /* VLAN_MAC_DEL */
1873 				ECORE_ERR("Failed to recover the credit from the optimized DEL command\n");
1874 				return ECORE_INVAL;
1875 			}
1876 		}
1877 
1878 		ECORE_MSG(sc, "Optimizing %s command\n",
1879 			  (elem->cmd_data.vlan_mac.cmd == ECORE_VLAN_MAC_ADD) ?
1880 			  "ADD" : "DEL");
1881 
1882 		ECORE_LIST_REMOVE_ENTRY(&pos->link, &exeq->exe_queue);
1883 		ecore_exe_queue_free_elem(sc, pos);
1884 		return 1;
1885 	}
1886 
1887 	return 0;
1888 }
1889 
1890 /**
1891  * ecore_vlan_mac_get_registry_elem - prepare a registry element
1892  *
1893  * @sc:	  device handle
1894  * @o:
1895  * @elem:
1896  * @restore:
1897  * @re:
1898  *
1899  * prepare a registry element according to the current command request.
1900  */
1901 static inline int ecore_vlan_mac_get_registry_elem(
1902 	struct bxe_softc *sc,
1903 	struct ecore_vlan_mac_obj *o,
1904 	struct ecore_exeq_elem *elem,
1905 	bool restore,
1906 	struct ecore_vlan_mac_registry_elem **re)
1907 {
1908 	enum ecore_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd;
1909 	struct ecore_vlan_mac_registry_elem *reg_elem;
1910 
1911 	/* Allocate a new registry element if needed. */
1912 	if (!restore &&
1913 	    ((cmd == ECORE_VLAN_MAC_ADD) || (cmd == ECORE_VLAN_MAC_MOVE))) {
1914 		reg_elem = ECORE_ZALLOC(sizeof(*reg_elem), GFP_ATOMIC, sc);
1915 		if (!reg_elem)
1916 			return ECORE_NOMEM;
1917 
1918 		/* Get a new CAM offset */
1919 		if (!o->get_cam_offset(o, &reg_elem->cam_offset)) {
1920 			/* This shall never happen, because we have checked the
1921 			 * CAM availability in the 'validate'.
1922 			 */
1923 			ECORE_DBG_BREAK_IF(1);
1924 			ECORE_FREE(sc, reg_elem, sizeof(*reg_elem));
1925 			return ECORE_INVAL;
1926 		}
1927 
1928 		ECORE_MSG(sc, "Got cam offset %d\n", reg_elem->cam_offset);
1929 
1930 		/* Set a VLAN-MAC data */
1931 		ECORE_MEMCPY(&reg_elem->u, &elem->cmd_data.vlan_mac.u,
1932 			  sizeof(reg_elem->u));
1933 
1934 		/* Copy the flags (needed for DEL and RESTORE flows) */
1935 		reg_elem->vlan_mac_flags =
1936 			elem->cmd_data.vlan_mac.vlan_mac_flags;
1937 	} else /* DEL, RESTORE */
1938 		reg_elem = o->check_del(sc, o, &elem->cmd_data.vlan_mac.u);
1939 
1940 	*re = reg_elem;
1941 	return ECORE_SUCCESS;
1942 }
1943 
1944 /**
1945  * ecore_execute_vlan_mac - execute vlan mac command
1946  *
1947  * @sc:			device handle
1948  * @qo:
1949  * @exe_chunk:
1950  * @ramrod_flags:
1951  *
1952  * go and send a ramrod!
1953  */
1954 static int ecore_execute_vlan_mac(struct bxe_softc *sc,
1955 				  union ecore_qable_obj *qo,
1956 				  ecore_list_t *exe_chunk,
1957 				  unsigned long *ramrod_flags)
1958 {
1959 	struct ecore_exeq_elem *elem;
1960 	struct ecore_vlan_mac_obj *o = &qo->vlan_mac, *cam_obj;
1961 	struct ecore_raw_obj *r = &o->raw;
1962 	int rc, idx = 0;
1963 	bool restore = ECORE_TEST_BIT(RAMROD_RESTORE, ramrod_flags);
1964 	bool drv_only = ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, ramrod_flags);
1965 	struct ecore_vlan_mac_registry_elem *reg_elem;
1966 	enum ecore_vlan_mac_cmd cmd;
1967 
1968 	/* If DRIVER_ONLY execution is requested, cleanup a registry
1969 	 * and exit. Otherwise send a ramrod to FW.
1970 	 */
1971 	if (!drv_only) {
1972 		ECORE_DBG_BREAK_IF(r->check_pending(r));
1973 
1974 		/* Set pending */
1975 		r->set_pending(r);
1976 
1977 		/* Fill the ramrod data */
1978 		ECORE_LIST_FOR_EACH_ENTRY(elem, exe_chunk, link,
1979 					  struct ecore_exeq_elem) {
1980 			cmd = elem->cmd_data.vlan_mac.cmd;
1981 			/* We will add to the target object in MOVE command, so
1982 			 * change the object for a CAM search.
1983 			 */
1984 			if (cmd == ECORE_VLAN_MAC_MOVE)
1985 				cam_obj = elem->cmd_data.vlan_mac.target_obj;
1986 			else
1987 				cam_obj = o;
1988 
1989 			rc = ecore_vlan_mac_get_registry_elem(sc, cam_obj,
1990 							      elem, restore,
1991 							      &reg_elem);
1992 			if (rc)
1993 				goto error_exit;
1994 
1995 			ECORE_DBG_BREAK_IF(!reg_elem);
1996 
1997 			/* Push a new entry into the registry */
1998 			if (!restore &&
1999 			    ((cmd == ECORE_VLAN_MAC_ADD) ||
2000 			    (cmd == ECORE_VLAN_MAC_MOVE)))
2001 				ECORE_LIST_PUSH_HEAD(&reg_elem->link,
2002 						     &cam_obj->head);
2003 
2004 			/* Configure a single command in a ramrod data buffer */
2005 			o->set_one_rule(sc, o, elem, idx,
2006 					reg_elem->cam_offset);
2007 
2008 			/* MOVE command consumes 2 entries in the ramrod data */
2009 			if (cmd == ECORE_VLAN_MAC_MOVE)
2010 				idx += 2;
2011 			else
2012 				idx++;
2013 		}
2014 
2015 		/* No need for an explicit memory barrier here as long as we
2016 		 * ensure the ordering of writing to the SPQ element
2017 		 *  and updating of the SPQ producer which involves a memory
2018 		 * read. If the memory read is removed we will have to put a
2019 		 * full memory barrier there (inside ecore_sp_post()).
2020 		 */
2021 		rc = ecore_sp_post(sc, o->ramrod_cmd, r->cid,
2022 				   r->rdata_mapping,
2023 				   ETH_CONNECTION_TYPE);
2024 		if (rc)
2025 			goto error_exit;
2026 	}
2027 
2028 	/* Now, when we are done with the ramrod - clean up the registry */
2029 	ECORE_LIST_FOR_EACH_ENTRY(elem, exe_chunk, link,
2030 				  struct ecore_exeq_elem) {
2031 		cmd = elem->cmd_data.vlan_mac.cmd;
2032 		if ((cmd == ECORE_VLAN_MAC_DEL) ||
2033 		    (cmd == ECORE_VLAN_MAC_MOVE)) {
2034 			reg_elem = o->check_del(sc, o,
2035 						&elem->cmd_data.vlan_mac.u);
2036 
2037 			ECORE_DBG_BREAK_IF(!reg_elem);
2038 
2039 			o->put_cam_offset(o, reg_elem->cam_offset);
2040 			ECORE_LIST_REMOVE_ENTRY(&reg_elem->link, &o->head);
2041 			ECORE_FREE(sc, reg_elem, sizeof(*reg_elem));
2042 		}
2043 	}
2044 
2045 	if (!drv_only)
2046 		return ECORE_PENDING;
2047 	else
2048 		return ECORE_SUCCESS;
2049 
2050 error_exit:
2051 	r->clear_pending(r);
2052 
2053 	/* Cleanup a registry in case of a failure */
2054 	ECORE_LIST_FOR_EACH_ENTRY(elem, exe_chunk, link,
2055 				  struct ecore_exeq_elem) {
2056 		cmd = elem->cmd_data.vlan_mac.cmd;
2057 
2058 		if (cmd == ECORE_VLAN_MAC_MOVE)
2059 			cam_obj = elem->cmd_data.vlan_mac.target_obj;
2060 		else
2061 			cam_obj = o;
2062 
2063 		/* Delete all newly added above entries */
2064 		if (!restore &&
2065 		    ((cmd == ECORE_VLAN_MAC_ADD) ||
2066 		    (cmd == ECORE_VLAN_MAC_MOVE))) {
2067 			reg_elem = o->check_del(sc, cam_obj,
2068 						&elem->cmd_data.vlan_mac.u);
2069 			if (reg_elem) {
2070 				ECORE_LIST_REMOVE_ENTRY(&reg_elem->link,
2071 							&cam_obj->head);
2072 				ECORE_FREE(sc, reg_elem, sizeof(*reg_elem));
2073 			}
2074 		}
2075 	}
2076 
2077 	return rc;
2078 }
2079 
2080 static inline int ecore_vlan_mac_push_new_cmd(
2081 	struct bxe_softc *sc,
2082 	struct ecore_vlan_mac_ramrod_params *p)
2083 {
2084 	struct ecore_exeq_elem *elem;
2085 	struct ecore_vlan_mac_obj *o = p->vlan_mac_obj;
2086 	bool restore = ECORE_TEST_BIT(RAMROD_RESTORE, &p->ramrod_flags);
2087 
2088 	/* Allocate the execution queue element */
2089 	elem = ecore_exe_queue_alloc_elem(sc);
2090 	if (!elem)
2091 		return ECORE_NOMEM;
2092 
2093 	/* Set the command 'length' */
2094 	switch (p->user_req.cmd) {
2095 	case ECORE_VLAN_MAC_MOVE:
2096 		elem->cmd_len = 2;
2097 		break;
2098 	default:
2099 		elem->cmd_len = 1;
2100 	}
2101 
2102 	/* Fill the object specific info */
2103 	ECORE_MEMCPY(&elem->cmd_data.vlan_mac, &p->user_req, sizeof(p->user_req));
2104 
2105 	/* Try to add a new command to the pending list */
2106 	return ecore_exe_queue_add(sc, &o->exe_queue, elem, restore);
2107 }
2108 
2109 /**
2110  * ecore_config_vlan_mac - configure VLAN/MAC/VLAN_MAC filtering rules.
2111  *
2112  * @sc:	  device handle
2113  * @p:
2114  *
2115  */
2116 int ecore_config_vlan_mac(struct bxe_softc *sc,
2117 			   struct ecore_vlan_mac_ramrod_params *p)
2118 {
2119 	int rc = ECORE_SUCCESS;
2120 	struct ecore_vlan_mac_obj *o = p->vlan_mac_obj;
2121 	unsigned long *ramrod_flags = &p->ramrod_flags;
2122 	bool cont = ECORE_TEST_BIT(RAMROD_CONT, ramrod_flags);
2123 	struct ecore_raw_obj *raw = &o->raw;
2124 
2125 	/*
2126 	 * Add new elements to the execution list for commands that require it.
2127 	 */
2128 	if (!cont) {
2129 		rc = ecore_vlan_mac_push_new_cmd(sc, p);
2130 		if (rc)
2131 			return rc;
2132 	}
2133 
2134 	/* If nothing will be executed further in this iteration we want to
2135 	 * return PENDING if there are pending commands
2136 	 */
2137 	if (!ecore_exe_queue_empty(&o->exe_queue))
2138 		rc = ECORE_PENDING;
2139 
2140 	if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, ramrod_flags))  {
2141 		ECORE_MSG(sc, "RAMROD_DRV_CLR_ONLY requested: clearing a pending bit.\n");
2142 		raw->clear_pending(raw);
2143 	}
2144 
2145 	/* Execute commands if required */
2146 	if (cont || ECORE_TEST_BIT(RAMROD_EXEC, ramrod_flags) ||
2147 	    ECORE_TEST_BIT(RAMROD_COMP_WAIT, ramrod_flags)) {
2148 		rc = __ecore_vlan_mac_execute_step(sc, p->vlan_mac_obj,
2149 						   &p->ramrod_flags);
2150 		if (rc < 0)
2151 			return rc;
2152 	}
2153 
2154 	/* RAMROD_COMP_WAIT is a superset of RAMROD_EXEC. If it was set
2155 	 * then user want to wait until the last command is done.
2156 	 */
2157 	if (ECORE_TEST_BIT(RAMROD_COMP_WAIT, &p->ramrod_flags)) {
2158 		/* Wait maximum for the current exe_queue length iterations plus
2159 		 * one (for the current pending command).
2160 		 */
2161 		int max_iterations = ecore_exe_queue_length(&o->exe_queue) + 1;
2162 
2163 		while (!ecore_exe_queue_empty(&o->exe_queue) &&
2164 		       max_iterations--) {
2165 
2166 			/* Wait for the current command to complete */
2167 			rc = raw->wait_comp(sc, raw);
2168 			if (rc)
2169 				return rc;
2170 
2171 			/* Make a next step */
2172 			rc = __ecore_vlan_mac_execute_step(sc,
2173 							   p->vlan_mac_obj,
2174 							   &p->ramrod_flags);
2175 			if (rc < 0)
2176 				return rc;
2177 		}
2178 
2179 		return ECORE_SUCCESS;
2180 	}
2181 
2182 	return rc;
2183 }
2184 
2185 /**
2186  * ecore_vlan_mac_del_all - delete elements with given vlan_mac_flags spec
2187  *
2188  * @sc:			device handle
2189  * @o:
2190  * @vlan_mac_flags:
2191  * @ramrod_flags:	execution flags to be used for this deletion
2192  *
2193  * if the last operation has completed successfully and there are no
2194  * more elements left, positive value if the last operation has completed
2195  * successfully and there are more previously configured elements, negative
2196  * value is current operation has failed.
2197  */
2198 static int ecore_vlan_mac_del_all(struct bxe_softc *sc,
2199 				  struct ecore_vlan_mac_obj *o,
2200 				  unsigned long *vlan_mac_flags,
2201 				  unsigned long *ramrod_flags)
2202 {
2203 	struct ecore_vlan_mac_registry_elem *pos = NULL;
2204 	struct ecore_vlan_mac_ramrod_params p;
2205 	struct ecore_exe_queue_obj *exeq = &o->exe_queue;
2206 	struct ecore_exeq_elem *exeq_pos, *exeq_pos_n;
2207 	unsigned long flags;
2208 	int read_lock;
2209 	int rc = 0;
2210 
2211 	/* Clear pending commands first */
2212 
2213 	ECORE_SPIN_LOCK_BH(&exeq->lock);
2214 
2215 	ECORE_LIST_FOR_EACH_ENTRY_SAFE(exeq_pos, exeq_pos_n,
2216 				       &exeq->exe_queue, link,
2217 				       struct ecore_exeq_elem) {
2218 		flags = exeq_pos->cmd_data.vlan_mac.vlan_mac_flags;
2219 		if (ECORE_VLAN_MAC_CMP_FLAGS(flags) ==
2220 		    ECORE_VLAN_MAC_CMP_FLAGS(*vlan_mac_flags)) {
2221 			rc = exeq->remove(sc, exeq->owner, exeq_pos);
2222 			if (rc) {
2223 				ECORE_ERR("Failed to remove command\n");
2224 				ECORE_SPIN_UNLOCK_BH(&exeq->lock);
2225 				return rc;
2226 			}
2227 			ECORE_LIST_REMOVE_ENTRY(&exeq_pos->link,
2228 						&exeq->exe_queue);
2229 			ecore_exe_queue_free_elem(sc, exeq_pos);
2230 		}
2231 	}
2232 
2233 	ECORE_SPIN_UNLOCK_BH(&exeq->lock);
2234 
2235 	/* Prepare a command request */
2236 	ECORE_MEMSET(&p, 0, sizeof(p));
2237 	p.vlan_mac_obj = o;
2238 	p.ramrod_flags = *ramrod_flags;
2239 	p.user_req.cmd = ECORE_VLAN_MAC_DEL;
2240 
2241 	/* Add all but the last VLAN-MAC to the execution queue without actually
2242 	 * execution anything.
2243 	 */
2244 	ECORE_CLEAR_BIT_NA(RAMROD_COMP_WAIT, &p.ramrod_flags);
2245 	ECORE_CLEAR_BIT_NA(RAMROD_EXEC, &p.ramrod_flags);
2246 	ECORE_CLEAR_BIT_NA(RAMROD_CONT, &p.ramrod_flags);
2247 
2248 	ECORE_MSG(sc, "vlan_mac_del_all -- taking vlan_mac_lock (reader)\n");
2249 	read_lock = ecore_vlan_mac_h_read_lock(sc, o);
2250 	if (read_lock != ECORE_SUCCESS)
2251 		return read_lock;
2252 
2253 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
2254 				  struct ecore_vlan_mac_registry_elem) {
2255 		flags = pos->vlan_mac_flags;
2256 		if (ECORE_VLAN_MAC_CMP_FLAGS(flags) ==
2257 		    ECORE_VLAN_MAC_CMP_FLAGS(*vlan_mac_flags)) {
2258 			p.user_req.vlan_mac_flags = pos->vlan_mac_flags;
2259 			ECORE_MEMCPY(&p.user_req.u, &pos->u, sizeof(pos->u));
2260 			rc = ecore_config_vlan_mac(sc, &p);
2261 			if (rc < 0) {
2262 				ECORE_ERR("Failed to add a new DEL command\n");
2263 				ecore_vlan_mac_h_read_unlock(sc, o);
2264 				return rc;
2265 			}
2266 		}
2267 	}
2268 
2269 	ECORE_MSG(sc, "vlan_mac_del_all -- releasing vlan_mac_lock (reader)\n");
2270 	ecore_vlan_mac_h_read_unlock(sc, o);
2271 
2272 	p.ramrod_flags = *ramrod_flags;
2273 	ECORE_SET_BIT_NA(RAMROD_CONT, &p.ramrod_flags);
2274 
2275 	return ecore_config_vlan_mac(sc, &p);
2276 }
2277 
2278 static inline void ecore_init_raw_obj(struct ecore_raw_obj *raw, uint8_t cl_id,
2279 	uint32_t cid, uint8_t func_id, void *rdata, ecore_dma_addr_t rdata_mapping, int state,
2280 	unsigned long *pstate, ecore_obj_type type)
2281 {
2282 	raw->func_id = func_id;
2283 	raw->cid = cid;
2284 	raw->cl_id = cl_id;
2285 	raw->rdata = rdata;
2286 	raw->rdata_mapping = rdata_mapping;
2287 	raw->state = state;
2288 	raw->pstate = pstate;
2289 	raw->obj_type = type;
2290 	raw->check_pending = ecore_raw_check_pending;
2291 	raw->clear_pending = ecore_raw_clear_pending;
2292 	raw->set_pending = ecore_raw_set_pending;
2293 	raw->wait_comp = ecore_raw_wait;
2294 }
2295 
2296 static inline void ecore_init_vlan_mac_common(struct ecore_vlan_mac_obj *o,
2297 	uint8_t cl_id, uint32_t cid, uint8_t func_id, void *rdata, ecore_dma_addr_t rdata_mapping,
2298 	int state, unsigned long *pstate, ecore_obj_type type,
2299 	struct ecore_credit_pool_obj *macs_pool,
2300 	struct ecore_credit_pool_obj *vlans_pool)
2301 {
2302 	ECORE_LIST_INIT(&o->head);
2303 	o->head_reader = 0;
2304 	o->head_exe_request = FALSE;
2305 	o->saved_ramrod_flags = 0;
2306 
2307 	o->macs_pool = macs_pool;
2308 	o->vlans_pool = vlans_pool;
2309 
2310 	o->delete_all = ecore_vlan_mac_del_all;
2311 	o->restore = ecore_vlan_mac_restore;
2312 	o->complete = ecore_complete_vlan_mac;
2313 	o->wait = ecore_wait_vlan_mac;
2314 
2315 	ecore_init_raw_obj(&o->raw, cl_id, cid, func_id, rdata, rdata_mapping,
2316 			   state, pstate, type);
2317 }
2318 
2319 void ecore_init_mac_obj(struct bxe_softc *sc,
2320 			struct ecore_vlan_mac_obj *mac_obj,
2321 			uint8_t cl_id, uint32_t cid, uint8_t func_id, void *rdata,
2322 			ecore_dma_addr_t rdata_mapping, int state,
2323 			unsigned long *pstate, ecore_obj_type type,
2324 			struct ecore_credit_pool_obj *macs_pool)
2325 {
2326 	union ecore_qable_obj *qable_obj = (union ecore_qable_obj *)mac_obj;
2327 
2328 	ecore_init_vlan_mac_common(mac_obj, cl_id, cid, func_id, rdata,
2329 				   rdata_mapping, state, pstate, type,
2330 				   macs_pool, NULL);
2331 
2332 	/* CAM credit pool handling */
2333 	mac_obj->get_credit = ecore_get_credit_mac;
2334 	mac_obj->put_credit = ecore_put_credit_mac;
2335 	mac_obj->get_cam_offset = ecore_get_cam_offset_mac;
2336 	mac_obj->put_cam_offset = ecore_put_cam_offset_mac;
2337 
2338 	if (CHIP_IS_E1x(sc)) {
2339 		mac_obj->set_one_rule      = ecore_set_one_mac_e1x;
2340 		mac_obj->check_del         = ecore_check_mac_del;
2341 		mac_obj->check_add         = ecore_check_mac_add;
2342 		mac_obj->check_move        = ecore_check_move_always_err;
2343 		mac_obj->ramrod_cmd        = RAMROD_CMD_ID_ETH_SET_MAC;
2344 
2345 		/* Exe Queue */
2346 		ecore_exe_queue_init(sc,
2347 				     &mac_obj->exe_queue, 1, qable_obj,
2348 				     ecore_validate_vlan_mac,
2349 				     ecore_remove_vlan_mac,
2350 				     ecore_optimize_vlan_mac,
2351 				     ecore_execute_vlan_mac,
2352 				     ecore_exeq_get_mac);
2353 	} else {
2354 		mac_obj->set_one_rule      = ecore_set_one_mac_e2;
2355 		mac_obj->check_del         = ecore_check_mac_del;
2356 		mac_obj->check_add         = ecore_check_mac_add;
2357 		mac_obj->check_move        = ecore_check_move;
2358 		mac_obj->ramrod_cmd        =
2359 			RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
2360 		mac_obj->get_n_elements    = ecore_get_n_elements;
2361 
2362 		/* Exe Queue */
2363 		ecore_exe_queue_init(sc,
2364 				     &mac_obj->exe_queue, CLASSIFY_RULES_COUNT,
2365 				     qable_obj, ecore_validate_vlan_mac,
2366 				     ecore_remove_vlan_mac,
2367 				     ecore_optimize_vlan_mac,
2368 				     ecore_execute_vlan_mac,
2369 				     ecore_exeq_get_mac);
2370 	}
2371 }
2372 
2373 void ecore_init_vlan_obj(struct bxe_softc *sc,
2374 			 struct ecore_vlan_mac_obj *vlan_obj,
2375 			 uint8_t cl_id, uint32_t cid, uint8_t func_id, void *rdata,
2376 			 ecore_dma_addr_t rdata_mapping, int state,
2377 			 unsigned long *pstate, ecore_obj_type type,
2378 			 struct ecore_credit_pool_obj *vlans_pool)
2379 {
2380 	union ecore_qable_obj *qable_obj = (union ecore_qable_obj *)vlan_obj;
2381 
2382 	ecore_init_vlan_mac_common(vlan_obj, cl_id, cid, func_id, rdata,
2383 				   rdata_mapping, state, pstate, type, NULL,
2384 				   vlans_pool);
2385 
2386 	vlan_obj->get_credit = ecore_get_credit_vlan;
2387 	vlan_obj->put_credit = ecore_put_credit_vlan;
2388 	vlan_obj->get_cam_offset = ecore_get_cam_offset_vlan;
2389 	vlan_obj->put_cam_offset = ecore_put_cam_offset_vlan;
2390 
2391 	if (CHIP_IS_E1x(sc)) {
2392 		ECORE_ERR("Do not support chips others than E2 and newer\n");
2393 		ECORE_BUG();
2394 	} else {
2395 		vlan_obj->set_one_rule      = ecore_set_one_vlan_e2;
2396 		vlan_obj->check_del         = ecore_check_vlan_del;
2397 		vlan_obj->check_add         = ecore_check_vlan_add;
2398 		vlan_obj->check_move        = ecore_check_move;
2399 		vlan_obj->ramrod_cmd        =
2400 			RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
2401 		vlan_obj->get_n_elements    = ecore_get_n_elements;
2402 
2403 		/* Exe Queue */
2404 		ecore_exe_queue_init(sc,
2405 				     &vlan_obj->exe_queue, CLASSIFY_RULES_COUNT,
2406 				     qable_obj, ecore_validate_vlan_mac,
2407 				     ecore_remove_vlan_mac,
2408 				     ecore_optimize_vlan_mac,
2409 				     ecore_execute_vlan_mac,
2410 				     ecore_exeq_get_vlan);
2411 	}
2412 }
2413 
2414 void ecore_init_vlan_mac_obj(struct bxe_softc *sc,
2415 			     struct ecore_vlan_mac_obj *vlan_mac_obj,
2416 			     uint8_t cl_id, uint32_t cid, uint8_t func_id, void *rdata,
2417 			     ecore_dma_addr_t rdata_mapping, int state,
2418 			     unsigned long *pstate, ecore_obj_type type,
2419 			     struct ecore_credit_pool_obj *macs_pool,
2420 			     struct ecore_credit_pool_obj *vlans_pool)
2421 {
2422 	union ecore_qable_obj *qable_obj =
2423 		(union ecore_qable_obj *)vlan_mac_obj;
2424 
2425 	ecore_init_vlan_mac_common(vlan_mac_obj, cl_id, cid, func_id, rdata,
2426 				   rdata_mapping, state, pstate, type,
2427 				   macs_pool, vlans_pool);
2428 
2429 	/* CAM pool handling */
2430 	vlan_mac_obj->get_credit = ecore_get_credit_vlan_mac;
2431 	vlan_mac_obj->put_credit = ecore_put_credit_vlan_mac;
2432 	/* CAM offset is relevant for 57710 and 57711 chips only which have a
2433 	 * single CAM for both MACs and VLAN-MAC pairs. So the offset
2434 	 * will be taken from MACs' pool object only.
2435 	 */
2436 	vlan_mac_obj->get_cam_offset = ecore_get_cam_offset_mac;
2437 	vlan_mac_obj->put_cam_offset = ecore_put_cam_offset_mac;
2438 
2439 	if (CHIP_IS_E1(sc)) {
2440 		ECORE_ERR("Do not support chips others than E2\n");
2441 		ECORE_BUG();
2442 	} else if (CHIP_IS_E1H(sc)) {
2443 		vlan_mac_obj->set_one_rule      = ecore_set_one_vlan_mac_e1h;
2444 		vlan_mac_obj->check_del         = ecore_check_vlan_mac_del;
2445 		vlan_mac_obj->check_add         = ecore_check_vlan_mac_add;
2446 		vlan_mac_obj->check_move        = ecore_check_move_always_err;
2447 		vlan_mac_obj->ramrod_cmd        = RAMROD_CMD_ID_ETH_SET_MAC;
2448 
2449 		/* Exe Queue */
2450 		ecore_exe_queue_init(sc,
2451 				     &vlan_mac_obj->exe_queue, 1, qable_obj,
2452 				     ecore_validate_vlan_mac,
2453 				     ecore_remove_vlan_mac,
2454 				     ecore_optimize_vlan_mac,
2455 				     ecore_execute_vlan_mac,
2456 				     ecore_exeq_get_vlan_mac);
2457 	} else {
2458 		vlan_mac_obj->set_one_rule      = ecore_set_one_vlan_mac_e2;
2459 		vlan_mac_obj->check_del         = ecore_check_vlan_mac_del;
2460 		vlan_mac_obj->check_add         = ecore_check_vlan_mac_add;
2461 		vlan_mac_obj->check_move        = ecore_check_move;
2462 		vlan_mac_obj->ramrod_cmd        =
2463 			RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
2464 
2465 		/* Exe Queue */
2466 		ecore_exe_queue_init(sc,
2467 				     &vlan_mac_obj->exe_queue,
2468 				     CLASSIFY_RULES_COUNT,
2469 				     qable_obj, ecore_validate_vlan_mac,
2470 				     ecore_remove_vlan_mac,
2471 				     ecore_optimize_vlan_mac,
2472 				     ecore_execute_vlan_mac,
2473 				     ecore_exeq_get_vlan_mac);
2474 	}
2475 }
2476 
2477 void ecore_init_vxlan_fltr_obj(struct bxe_softc *sc,
2478 				struct ecore_vlan_mac_obj *vlan_mac_obj,
2479 				uint8_t cl_id, uint32_t cid, uint8_t func_id, void *rdata,
2480 				ecore_dma_addr_t rdata_mapping, int state,
2481 				unsigned long *pstate, ecore_obj_type type,
2482 				struct ecore_credit_pool_obj *macs_pool,
2483 				struct ecore_credit_pool_obj *vlans_pool)
2484 {
2485 	union ecore_qable_obj *qable_obj =
2486 		(union ecore_qable_obj *)vlan_mac_obj;
2487 
2488 	ecore_init_vlan_mac_common(vlan_mac_obj, cl_id, cid, func_id,
2489 				   rdata, rdata_mapping, state, pstate,
2490 				   type, macs_pool, vlans_pool);
2491 
2492 	/* CAM pool handling */
2493 	vlan_mac_obj->get_credit = ecore_get_credit_vlan_mac;
2494 	vlan_mac_obj->put_credit = ecore_put_credit_vlan_mac;
2495 	/* CAM offset is relevant for 57710 and 57711 chips only which have a
2496 	 * single CAM for both MACs and VLAN-MAC pairs. So the offset
2497 	 * will be taken from MACs' pool object only.
2498 	 */
2499 	vlan_mac_obj->get_cam_offset = ecore_get_cam_offset_mac;
2500 	vlan_mac_obj->put_cam_offset = ecore_put_cam_offset_mac;
2501 
2502 	if (CHIP_IS_E1x(sc)) {
2503 		ECORE_ERR("Do not support chips others than E2/E3\n");
2504 		ECORE_BUG();
2505 	} else {
2506 		vlan_mac_obj->set_one_rule      = ecore_set_one_vxlan_fltr_e2;
2507 		vlan_mac_obj->check_del         = ecore_check_vxlan_fltr_del;
2508 		vlan_mac_obj->check_add         = ecore_check_vxlan_fltr_add;
2509 		vlan_mac_obj->check_move        = ecore_check_move;
2510 		vlan_mac_obj->ramrod_cmd        =
2511 			RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
2512 
2513 		/* Exe Queue */
2514 		ecore_exe_queue_init(sc,
2515 				     &vlan_mac_obj->exe_queue,
2516 				     CLASSIFY_RULES_COUNT,
2517 				     qable_obj, ecore_validate_vlan_mac,
2518 				     ecore_remove_vlan_mac,
2519 				     ecore_optimize_vlan_mac,
2520 				     ecore_execute_vlan_mac,
2521 				     ecore_exeq_get_vxlan_fltr);
2522 	}
2523 }
2524 
2525 /* RX_MODE verbs: DROP_ALL/ACCEPT_ALL/ACCEPT_ALL_MULTI/ACCEPT_ALL_VLAN/NORMAL */
2526 static inline void __storm_memset_mac_filters(struct bxe_softc *sc,
2527 			struct tstorm_eth_mac_filter_config *mac_filters,
2528 			uint16_t pf_id)
2529 {
2530 	size_t size = sizeof(struct tstorm_eth_mac_filter_config);
2531 
2532 	uint32_t addr = BAR_TSTRORM_INTMEM +
2533 			TSTORM_MAC_FILTER_CONFIG_OFFSET(pf_id);
2534 
2535 	ecore_storm_memset_struct(sc, addr, size, (uint32_t *)mac_filters);
2536 }
2537 
2538 static int ecore_set_rx_mode_e1x(struct bxe_softc *sc,
2539 				 struct ecore_rx_mode_ramrod_params *p)
2540 {
2541 	/* update the sc MAC filter structure */
2542 	uint32_t mask = (1 << p->cl_id);
2543 
2544 	struct tstorm_eth_mac_filter_config *mac_filters =
2545 		(struct tstorm_eth_mac_filter_config *)p->rdata;
2546 
2547 	/* initial setting is drop-all */
2548 	uint8_t drop_all_ucast = 1, drop_all_mcast = 1;
2549 	uint8_t accp_all_ucast = 0, accp_all_bcast = 0, accp_all_mcast = 0;
2550 	uint8_t unmatched_unicast = 0;
2551 
2552     /* In e1x there we only take into account rx accept flag since tx switching
2553      * isn't enabled. */
2554 	if (ECORE_TEST_BIT(ECORE_ACCEPT_UNICAST, &p->rx_accept_flags))
2555 		/* accept matched ucast */
2556 		drop_all_ucast = 0;
2557 
2558 	if (ECORE_TEST_BIT(ECORE_ACCEPT_MULTICAST, &p->rx_accept_flags))
2559 		/* accept matched mcast */
2560 		drop_all_mcast = 0;
2561 
2562 	if (ECORE_TEST_BIT(ECORE_ACCEPT_ALL_UNICAST, &p->rx_accept_flags)) {
2563 		/* accept all mcast */
2564 		drop_all_ucast = 0;
2565 		accp_all_ucast = 1;
2566 	}
2567 	if (ECORE_TEST_BIT(ECORE_ACCEPT_ALL_MULTICAST, &p->rx_accept_flags)) {
2568 		/* accept all mcast */
2569 		drop_all_mcast = 0;
2570 		accp_all_mcast = 1;
2571 	}
2572 	if (ECORE_TEST_BIT(ECORE_ACCEPT_BROADCAST, &p->rx_accept_flags))
2573 		/* accept (all) bcast */
2574 		accp_all_bcast = 1;
2575 	if (ECORE_TEST_BIT(ECORE_ACCEPT_UNMATCHED, &p->rx_accept_flags))
2576 		/* accept unmatched unicasts */
2577 		unmatched_unicast = 1;
2578 
2579 	mac_filters->ucast_drop_all = drop_all_ucast ?
2580 		mac_filters->ucast_drop_all | mask :
2581 		mac_filters->ucast_drop_all & ~mask;
2582 
2583 	mac_filters->mcast_drop_all = drop_all_mcast ?
2584 		mac_filters->mcast_drop_all | mask :
2585 		mac_filters->mcast_drop_all & ~mask;
2586 
2587 	mac_filters->ucast_accept_all = accp_all_ucast ?
2588 		mac_filters->ucast_accept_all | mask :
2589 		mac_filters->ucast_accept_all & ~mask;
2590 
2591 	mac_filters->mcast_accept_all = accp_all_mcast ?
2592 		mac_filters->mcast_accept_all | mask :
2593 		mac_filters->mcast_accept_all & ~mask;
2594 
2595 	mac_filters->bcast_accept_all = accp_all_bcast ?
2596 		mac_filters->bcast_accept_all | mask :
2597 		mac_filters->bcast_accept_all & ~mask;
2598 
2599 	mac_filters->unmatched_unicast = unmatched_unicast ?
2600 		mac_filters->unmatched_unicast | mask :
2601 		mac_filters->unmatched_unicast & ~mask;
2602 
2603 	ECORE_MSG(sc, "drop_ucast 0x%x\ndrop_mcast 0x%x\n accp_ucast 0x%x\n"
2604 			 "accp_mcast 0x%x\naccp_bcast 0x%x\n",
2605 	   mac_filters->ucast_drop_all, mac_filters->mcast_drop_all,
2606 	   mac_filters->ucast_accept_all, mac_filters->mcast_accept_all,
2607 	   mac_filters->bcast_accept_all);
2608 
2609 	/* write the MAC filter structure*/
2610 	__storm_memset_mac_filters(sc, mac_filters, p->func_id);
2611 
2612 	/* The operation is completed */
2613 	ECORE_CLEAR_BIT(p->state, p->pstate);
2614 	ECORE_SMP_MB_AFTER_CLEAR_BIT();
2615 
2616 	return ECORE_SUCCESS;
2617 }
2618 
2619 /* Setup ramrod data */
2620 static inline void ecore_rx_mode_set_rdata_hdr_e2(uint32_t cid,
2621 				struct eth_classify_header *hdr,
2622 				uint8_t rule_cnt)
2623 {
2624 	hdr->echo = ECORE_CPU_TO_LE32(cid);
2625 	hdr->rule_cnt = rule_cnt;
2626 }
2627 
2628 static inline void ecore_rx_mode_set_cmd_state_e2(struct bxe_softc *sc,
2629 				unsigned long *accept_flags,
2630 				struct eth_filter_rules_cmd *cmd,
2631 				bool clear_accept_all)
2632 {
2633 	uint16_t state;
2634 
2635 	/* start with 'drop-all' */
2636 	state = ETH_FILTER_RULES_CMD_UCAST_DROP_ALL |
2637 		ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2638 
2639 	if (ECORE_TEST_BIT(ECORE_ACCEPT_UNICAST, accept_flags))
2640 		state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2641 
2642 	if (ECORE_TEST_BIT(ECORE_ACCEPT_MULTICAST, accept_flags))
2643 		state &= ~ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2644 
2645 	if (ECORE_TEST_BIT(ECORE_ACCEPT_ALL_UNICAST, accept_flags)) {
2646 		state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2647 		state |= ETH_FILTER_RULES_CMD_UCAST_ACCEPT_ALL;
2648 	}
2649 
2650 	if (ECORE_TEST_BIT(ECORE_ACCEPT_ALL_MULTICAST, accept_flags)) {
2651 		state |= ETH_FILTER_RULES_CMD_MCAST_ACCEPT_ALL;
2652 		state &= ~ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2653 	}
2654 	if (ECORE_TEST_BIT(ECORE_ACCEPT_BROADCAST, accept_flags))
2655 		state |= ETH_FILTER_RULES_CMD_BCAST_ACCEPT_ALL;
2656 
2657 	if (ECORE_TEST_BIT(ECORE_ACCEPT_UNMATCHED, accept_flags)) {
2658 		state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2659 		state |= ETH_FILTER_RULES_CMD_UCAST_ACCEPT_UNMATCHED;
2660 	}
2661 	if (ECORE_TEST_BIT(ECORE_ACCEPT_ANY_VLAN, accept_flags))
2662 		state |= ETH_FILTER_RULES_CMD_ACCEPT_ANY_VLAN;
2663 
2664 	/* Clear ACCEPT_ALL_XXX flags for FCoE L2 Queue */
2665 	if (clear_accept_all) {
2666 		state &= ~ETH_FILTER_RULES_CMD_MCAST_ACCEPT_ALL;
2667 		state &= ~ETH_FILTER_RULES_CMD_BCAST_ACCEPT_ALL;
2668 		state &= ~ETH_FILTER_RULES_CMD_UCAST_ACCEPT_ALL;
2669 		state &= ~ETH_FILTER_RULES_CMD_UCAST_ACCEPT_UNMATCHED;
2670 	}
2671 
2672 	cmd->state = ECORE_CPU_TO_LE16(state);
2673 }
2674 
2675 static int ecore_set_rx_mode_e2(struct bxe_softc *sc,
2676 				struct ecore_rx_mode_ramrod_params *p)
2677 {
2678 	struct eth_filter_rules_ramrod_data *data = p->rdata;
2679 	int rc;
2680 	uint8_t rule_idx = 0;
2681 
2682 	/* Reset the ramrod data buffer */
2683 	ECORE_MEMSET(data, 0, sizeof(*data));
2684 
2685 	/* Setup ramrod data */
2686 
2687 	/* Tx (internal switching) */
2688 	if (ECORE_TEST_BIT(RAMROD_TX, &p->ramrod_flags)) {
2689 		data->rules[rule_idx].client_id = p->cl_id;
2690 		data->rules[rule_idx].func_id = p->func_id;
2691 
2692 		data->rules[rule_idx].cmd_general_data =
2693 			ETH_FILTER_RULES_CMD_TX_CMD;
2694 
2695 		ecore_rx_mode_set_cmd_state_e2(sc, &p->tx_accept_flags,
2696 					       &(data->rules[rule_idx++]),
2697 					       FALSE);
2698 	}
2699 
2700 	/* Rx */
2701 	if (ECORE_TEST_BIT(RAMROD_RX, &p->ramrod_flags)) {
2702 		data->rules[rule_idx].client_id = p->cl_id;
2703 		data->rules[rule_idx].func_id = p->func_id;
2704 
2705 		data->rules[rule_idx].cmd_general_data =
2706 			ETH_FILTER_RULES_CMD_RX_CMD;
2707 
2708 		ecore_rx_mode_set_cmd_state_e2(sc, &p->rx_accept_flags,
2709 					       &(data->rules[rule_idx++]),
2710 					       FALSE);
2711 	}
2712 
2713 	/* If FCoE Queue configuration has been requested configure the Rx and
2714 	 * internal switching modes for this queue in separate rules.
2715 	 *
2716 	 * FCoE queue shell never be set to ACCEPT_ALL packets of any sort:
2717 	 * MCAST_ALL, UCAST_ALL, BCAST_ALL and UNMATCHED.
2718 	 */
2719 	if (ECORE_TEST_BIT(ECORE_RX_MODE_FCOE_ETH, &p->rx_mode_flags)) {
2720 		/*  Tx (internal switching) */
2721 		if (ECORE_TEST_BIT(RAMROD_TX, &p->ramrod_flags)) {
2722 			data->rules[rule_idx].client_id = ECORE_FCOE_CID(sc);
2723 			data->rules[rule_idx].func_id = p->func_id;
2724 
2725 			data->rules[rule_idx].cmd_general_data =
2726 						ETH_FILTER_RULES_CMD_TX_CMD;
2727 
2728 			ecore_rx_mode_set_cmd_state_e2(sc, &p->tx_accept_flags,
2729 						       &(data->rules[rule_idx]),
2730 						       TRUE);
2731 			rule_idx++;
2732 		}
2733 
2734 		/* Rx */
2735 		if (ECORE_TEST_BIT(RAMROD_RX, &p->ramrod_flags)) {
2736 			data->rules[rule_idx].client_id = ECORE_FCOE_CID(sc);
2737 			data->rules[rule_idx].func_id = p->func_id;
2738 
2739 			data->rules[rule_idx].cmd_general_data =
2740 						ETH_FILTER_RULES_CMD_RX_CMD;
2741 
2742 			ecore_rx_mode_set_cmd_state_e2(sc, &p->rx_accept_flags,
2743 						       &(data->rules[rule_idx]),
2744 						       TRUE);
2745 			rule_idx++;
2746 		}
2747 	}
2748 
2749 	/* Set the ramrod header (most importantly - number of rules to
2750 	 * configure).
2751 	 */
2752 	ecore_rx_mode_set_rdata_hdr_e2(p->cid, &data->header, rule_idx);
2753 
2754 	ECORE_MSG(sc, "About to configure %d rules, rx_accept_flags 0x%lx, tx_accept_flags 0x%lx\n",
2755 		  data->header.rule_cnt, p->rx_accept_flags,
2756 		  p->tx_accept_flags);
2757 
2758 	/* No need for an explicit memory barrier here as long as we
2759 	 * ensure the ordering of writing to the SPQ element
2760 	 * and updating of the SPQ producer which involves a memory
2761 	 * read. If the memory read is removed we will have to put a
2762 	 * full memory barrier there (inside ecore_sp_post()).
2763 	 */
2764 
2765 	/* Send a ramrod */
2766 	rc = ecore_sp_post(sc,
2767 			   RAMROD_CMD_ID_ETH_FILTER_RULES,
2768 			   p->cid,
2769 			   p->rdata_mapping,
2770 			   ETH_CONNECTION_TYPE);
2771 	if (rc)
2772 		return rc;
2773 
2774 	/* Ramrod completion is pending */
2775 	return ECORE_PENDING;
2776 }
2777 
2778 static int ecore_wait_rx_mode_comp_e2(struct bxe_softc *sc,
2779 				      struct ecore_rx_mode_ramrod_params *p)
2780 {
2781 	return ecore_state_wait(sc, p->state, p->pstate);
2782 }
2783 
2784 static int ecore_empty_rx_mode_wait(struct bxe_softc *sc,
2785 				    struct ecore_rx_mode_ramrod_params *p)
2786 {
2787 	/* Do nothing */
2788 	return ECORE_SUCCESS;
2789 }
2790 
2791 int ecore_config_rx_mode(struct bxe_softc *sc,
2792 			 struct ecore_rx_mode_ramrod_params *p)
2793 {
2794 	int rc;
2795 
2796 	/* Configure the new classification in the chip */
2797 	rc = p->rx_mode_obj->config_rx_mode(sc, p);
2798 	if (rc < 0)
2799 		return rc;
2800 
2801 	/* Wait for a ramrod completion if was requested */
2802 	if (ECORE_TEST_BIT(RAMROD_COMP_WAIT, &p->ramrod_flags)) {
2803 		rc = p->rx_mode_obj->wait_comp(sc, p);
2804 		if (rc)
2805 			return rc;
2806 	}
2807 
2808 	return rc;
2809 }
2810 
2811 void ecore_init_rx_mode_obj(struct bxe_softc *sc,
2812 			    struct ecore_rx_mode_obj *o)
2813 {
2814 	if (CHIP_IS_E1x(sc)) {
2815 		o->wait_comp      = ecore_empty_rx_mode_wait;
2816 		o->config_rx_mode = ecore_set_rx_mode_e1x;
2817 	} else {
2818 		o->wait_comp      = ecore_wait_rx_mode_comp_e2;
2819 		o->config_rx_mode = ecore_set_rx_mode_e2;
2820 	}
2821 }
2822 
2823 /********************* Multicast verbs: SET, CLEAR ****************************/
2824 static inline uint8_t ecore_mcast_bin_from_mac(uint8_t *mac)
2825 {
2826 	return (ECORE_CRC32_LE(0, mac, ETH_ALEN) >> 24) & 0xff;
2827 }
2828 
2829 struct ecore_mcast_mac_elem {
2830 	ecore_list_entry_t link;
2831 	uint8_t mac[ETH_ALEN];
2832 	uint8_t pad[2]; /* For a natural alignment of the following buffer */
2833 };
2834 
2835 struct ecore_pending_mcast_cmd {
2836 	ecore_list_entry_t link;
2837 	int type; /* ECORE_MCAST_CMD_X */
2838 	union {
2839 		ecore_list_t macs_head;
2840 		uint32_t macs_num; /* Needed for DEL command */
2841 		int next_bin; /* Needed for RESTORE flow with aprox match */
2842 	} data;
2843 
2844 	bool done; /* set to TRUE, when the command has been handled,
2845 		    * practically used in 57712 handling only, where one pending
2846 		    * command may be handled in a few operations. As long as for
2847 		    * other chips every operation handling is completed in a
2848 		    * single ramrod, there is no need to utilize this field.
2849 		    */
2850 };
2851 
2852 static int ecore_mcast_wait(struct bxe_softc *sc,
2853 			    struct ecore_mcast_obj *o)
2854 {
2855 	if (ecore_state_wait(sc, o->sched_state, o->raw.pstate) ||
2856 			o->raw.wait_comp(sc, &o->raw))
2857 		return ECORE_TIMEOUT;
2858 
2859 	return ECORE_SUCCESS;
2860 }
2861 
2862 static int ecore_mcast_enqueue_cmd(struct bxe_softc *sc,
2863 				   struct ecore_mcast_obj *o,
2864 				   struct ecore_mcast_ramrod_params *p,
2865 				   enum ecore_mcast_cmd cmd)
2866 {
2867 	int total_sz;
2868 	struct ecore_pending_mcast_cmd *new_cmd;
2869 	struct ecore_mcast_mac_elem *cur_mac = NULL;
2870 	struct ecore_mcast_list_elem *pos;
2871 	int macs_list_len = ((cmd == ECORE_MCAST_CMD_ADD) ?
2872 			     p->mcast_list_len : 0);
2873 
2874 	/* If the command is empty ("handle pending commands only"), break */
2875 	if (!p->mcast_list_len)
2876 		return ECORE_SUCCESS;
2877 
2878 	total_sz = sizeof(*new_cmd) +
2879 		macs_list_len * sizeof(struct ecore_mcast_mac_elem);
2880 
2881 	/* Add mcast is called under spin_lock, thus calling with GFP_ATOMIC */
2882 	new_cmd = ECORE_ZALLOC(total_sz, GFP_ATOMIC, sc);
2883 
2884 	if (!new_cmd)
2885 		return ECORE_NOMEM;
2886 
2887 	ECORE_MSG(sc, "About to enqueue a new %d command. macs_list_len=%d\n",
2888 		  cmd, macs_list_len);
2889 
2890 	ECORE_LIST_INIT(&new_cmd->data.macs_head);
2891 
2892 	new_cmd->type = cmd;
2893 	new_cmd->done = FALSE;
2894 
2895 	switch (cmd) {
2896 	case ECORE_MCAST_CMD_ADD:
2897 		cur_mac = (struct ecore_mcast_mac_elem *)
2898 			  ((uint8_t *)new_cmd + sizeof(*new_cmd));
2899 
2900 		/* Push the MACs of the current command into the pending command
2901 		 * MACs list: FIFO
2902 		 */
2903 		ECORE_LIST_FOR_EACH_ENTRY(pos, &p->mcast_list, link,
2904 					  struct ecore_mcast_list_elem) {
2905 			ECORE_MEMCPY(cur_mac->mac, pos->mac, ETH_ALEN);
2906 			ECORE_LIST_PUSH_TAIL(&cur_mac->link,
2907 					     &new_cmd->data.macs_head);
2908 			cur_mac++;
2909 		}
2910 
2911 		break;
2912 
2913 	case ECORE_MCAST_CMD_DEL:
2914 		new_cmd->data.macs_num = p->mcast_list_len;
2915 		break;
2916 
2917 	case ECORE_MCAST_CMD_RESTORE:
2918 		new_cmd->data.next_bin = 0;
2919 		break;
2920 
2921 	default:
2922 		ECORE_FREE(sc, new_cmd, total_sz);
2923 		ECORE_ERR("Unknown command: %d\n", cmd);
2924 		return ECORE_INVAL;
2925 	}
2926 
2927 	/* Push the new pending command to the tail of the pending list: FIFO */
2928 	ECORE_LIST_PUSH_TAIL(&new_cmd->link, &o->pending_cmds_head);
2929 
2930 	o->set_sched(o);
2931 
2932 	return ECORE_PENDING;
2933 }
2934 
2935 /**
2936  * ecore_mcast_get_next_bin - get the next set bin (index)
2937  *
2938  * @o:
2939  * @last:	index to start looking from (including)
2940  *
2941  * returns the next found (set) bin or a negative value if none is found.
2942  */
2943 static inline int ecore_mcast_get_next_bin(struct ecore_mcast_obj *o, int last)
2944 {
2945 	int i, j, inner_start = last % BIT_VEC64_ELEM_SZ;
2946 
2947 	for (i = last / BIT_VEC64_ELEM_SZ; i < ECORE_MCAST_VEC_SZ; i++) {
2948 		if (o->registry.aprox_match.vec[i])
2949 			for (j = inner_start; j < BIT_VEC64_ELEM_SZ; j++) {
2950 				int cur_bit = j + BIT_VEC64_ELEM_SZ * i;
2951 				if (BIT_VEC64_TEST_BIT(o->registry.aprox_match.
2952 						       vec, cur_bit)) {
2953 					return cur_bit;
2954 				}
2955 			}
2956 		inner_start = 0;
2957 	}
2958 
2959 	/* None found */
2960 	return -1;
2961 }
2962 
2963 /**
2964  * ecore_mcast_clear_first_bin - find the first set bin and clear it
2965  *
2966  * @o:
2967  *
2968  * returns the index of the found bin or -1 if none is found
2969  */
2970 static inline int ecore_mcast_clear_first_bin(struct ecore_mcast_obj *o)
2971 {
2972 	int cur_bit = ecore_mcast_get_next_bin(o, 0);
2973 
2974 	if (cur_bit >= 0)
2975 		BIT_VEC64_CLEAR_BIT(o->registry.aprox_match.vec, cur_bit);
2976 
2977 	return cur_bit;
2978 }
2979 
2980 static inline uint8_t ecore_mcast_get_rx_tx_flag(struct ecore_mcast_obj *o)
2981 {
2982 	struct ecore_raw_obj *raw = &o->raw;
2983 	uint8_t rx_tx_flag = 0;
2984 
2985 	if ((raw->obj_type == ECORE_OBJ_TYPE_TX) ||
2986 	    (raw->obj_type == ECORE_OBJ_TYPE_RX_TX))
2987 		rx_tx_flag |= ETH_MULTICAST_RULES_CMD_TX_CMD;
2988 
2989 	if ((raw->obj_type == ECORE_OBJ_TYPE_RX) ||
2990 	    (raw->obj_type == ECORE_OBJ_TYPE_RX_TX))
2991 		rx_tx_flag |= ETH_MULTICAST_RULES_CMD_RX_CMD;
2992 
2993 	return rx_tx_flag;
2994 }
2995 
2996 static void ecore_mcast_set_one_rule_e2(struct bxe_softc *sc,
2997 					struct ecore_mcast_obj *o, int idx,
2998 					union ecore_mcast_config_data *cfg_data,
2999 					enum ecore_mcast_cmd cmd)
3000 {
3001 	struct ecore_raw_obj *r = &o->raw;
3002 	struct eth_multicast_rules_ramrod_data *data =
3003 		(struct eth_multicast_rules_ramrod_data *)(r->rdata);
3004 	uint8_t func_id = r->func_id;
3005 	uint8_t rx_tx_add_flag = ecore_mcast_get_rx_tx_flag(o);
3006 	int bin;
3007 
3008 	if ((cmd == ECORE_MCAST_CMD_ADD) || (cmd == ECORE_MCAST_CMD_RESTORE))
3009 		rx_tx_add_flag |= ETH_MULTICAST_RULES_CMD_IS_ADD;
3010 
3011 	data->rules[idx].cmd_general_data |= rx_tx_add_flag;
3012 
3013 	/* Get a bin and update a bins' vector */
3014 	switch (cmd) {
3015 	case ECORE_MCAST_CMD_ADD:
3016 		bin = ecore_mcast_bin_from_mac(cfg_data->mac);
3017 		BIT_VEC64_SET_BIT(o->registry.aprox_match.vec, bin);
3018 		break;
3019 
3020 	case ECORE_MCAST_CMD_DEL:
3021 		/* If there were no more bins to clear
3022 		 * (ecore_mcast_clear_first_bin() returns -1) then we would
3023 		 * clear any (0xff) bin.
3024 		 * See ecore_mcast_validate_e2() for explanation when it may
3025 		 * happen.
3026 		 */
3027 		bin = ecore_mcast_clear_first_bin(o);
3028 		break;
3029 
3030 	case ECORE_MCAST_CMD_RESTORE:
3031 		bin = cfg_data->bin;
3032 		break;
3033 
3034 	default:
3035 		ECORE_ERR("Unknown command: %d\n", cmd);
3036 		return;
3037 	}
3038 
3039 	ECORE_MSG(sc, "%s bin %d\n",
3040 		  ((rx_tx_add_flag & ETH_MULTICAST_RULES_CMD_IS_ADD) ?
3041 		   "Setting"  : "Clearing"), bin);
3042 
3043 	data->rules[idx].bin_id    = (uint8_t)bin;
3044 	data->rules[idx].func_id   = func_id;
3045 	data->rules[idx].engine_id = o->engine_id;
3046 }
3047 
3048 /**
3049  * ecore_mcast_handle_restore_cmd_e2 - restore configuration from the registry
3050  *
3051  * @sc:		device handle
3052  * @o:
3053  * @start_bin:	index in the registry to start from (including)
3054  * @rdata_idx:	index in the ramrod data to start from
3055  *
3056  * returns last handled bin index or -1 if all bins have been handled
3057  */
3058 static inline int ecore_mcast_handle_restore_cmd_e2(
3059 	struct bxe_softc *sc, struct ecore_mcast_obj *o , int start_bin,
3060 	int *rdata_idx)
3061 {
3062 	int cur_bin, cnt = *rdata_idx;
3063 	union ecore_mcast_config_data cfg_data = {NULL};
3064 
3065 	/* go through the registry and configure the bins from it */
3066 	for (cur_bin = ecore_mcast_get_next_bin(o, start_bin); cur_bin >= 0;
3067 	    cur_bin = ecore_mcast_get_next_bin(o, cur_bin + 1)) {
3068 
3069 		cfg_data.bin = (uint8_t)cur_bin;
3070 		o->set_one_rule(sc, o, cnt, &cfg_data,
3071 				ECORE_MCAST_CMD_RESTORE);
3072 
3073 		cnt++;
3074 
3075 		ECORE_MSG(sc, "About to configure a bin %d\n", cur_bin);
3076 
3077 		/* Break if we reached the maximum number
3078 		 * of rules.
3079 		 */
3080 		if (cnt >= o->max_cmd_len)
3081 			break;
3082 	}
3083 
3084 	*rdata_idx = cnt;
3085 
3086 	return cur_bin;
3087 }
3088 
3089 static inline void ecore_mcast_hdl_pending_add_e2(struct bxe_softc *sc,
3090 	struct ecore_mcast_obj *o, struct ecore_pending_mcast_cmd *cmd_pos,
3091 	int *line_idx)
3092 {
3093 	struct ecore_mcast_mac_elem *pmac_pos, *pmac_pos_n;
3094 	int cnt = *line_idx;
3095 	union ecore_mcast_config_data cfg_data = {NULL};
3096 
3097 	ECORE_LIST_FOR_EACH_ENTRY_SAFE(pmac_pos, pmac_pos_n,
3098 		&cmd_pos->data.macs_head, link, struct ecore_mcast_mac_elem) {
3099 
3100 		cfg_data.mac = &pmac_pos->mac[0];
3101 		o->set_one_rule(sc, o, cnt, &cfg_data, cmd_pos->type);
3102 
3103 		cnt++;
3104 
3105 		ECORE_MSG(sc, "About to configure %02x:%02x:%02x:%02x:%02x:%02x mcast MAC\n",
3106 			  pmac_pos->mac[0], pmac_pos->mac[1], pmac_pos->mac[2], pmac_pos->mac[3], pmac_pos->mac[4], pmac_pos->mac[5]);
3107 
3108 		ECORE_LIST_REMOVE_ENTRY(&pmac_pos->link,
3109 					&cmd_pos->data.macs_head);
3110 
3111 		/* Break if we reached the maximum number
3112 		 * of rules.
3113 		 */
3114 		if (cnt >= o->max_cmd_len)
3115 			break;
3116 	}
3117 
3118 	*line_idx = cnt;
3119 
3120 	/* if no more MACs to configure - we are done */
3121 	if (ECORE_LIST_IS_EMPTY(&cmd_pos->data.macs_head))
3122 		cmd_pos->done = TRUE;
3123 }
3124 
3125 static inline void ecore_mcast_hdl_pending_del_e2(struct bxe_softc *sc,
3126 	struct ecore_mcast_obj *o, struct ecore_pending_mcast_cmd *cmd_pos,
3127 	int *line_idx)
3128 {
3129 	int cnt = *line_idx;
3130 
3131 	while (cmd_pos->data.macs_num) {
3132 		o->set_one_rule(sc, o, cnt, NULL, cmd_pos->type);
3133 
3134 		cnt++;
3135 
3136 		cmd_pos->data.macs_num--;
3137 
3138 		  ECORE_MSG(sc, "Deleting MAC. %d left,cnt is %d\n",
3139 				  cmd_pos->data.macs_num, cnt);
3140 
3141 		/* Break if we reached the maximum
3142 		 * number of rules.
3143 		 */
3144 		if (cnt >= o->max_cmd_len)
3145 			break;
3146 	}
3147 
3148 	*line_idx = cnt;
3149 
3150 	/* If we cleared all bins - we are done */
3151 	if (!cmd_pos->data.macs_num)
3152 		cmd_pos->done = TRUE;
3153 }
3154 
3155 static inline void ecore_mcast_hdl_pending_restore_e2(struct bxe_softc *sc,
3156 	struct ecore_mcast_obj *o, struct ecore_pending_mcast_cmd *cmd_pos,
3157 	int *line_idx)
3158 {
3159 	cmd_pos->data.next_bin = o->hdl_restore(sc, o, cmd_pos->data.next_bin,
3160 						line_idx);
3161 
3162 	if (cmd_pos->data.next_bin < 0)
3163 		/* If o->set_restore returned -1 we are done */
3164 		cmd_pos->done = TRUE;
3165 	else
3166 		/* Start from the next bin next time */
3167 		cmd_pos->data.next_bin++;
3168 }
3169 
3170 static inline int ecore_mcast_handle_pending_cmds_e2(struct bxe_softc *sc,
3171 				struct ecore_mcast_ramrod_params *p)
3172 {
3173 	struct ecore_pending_mcast_cmd *cmd_pos, *cmd_pos_n;
3174 	int cnt = 0;
3175 	struct ecore_mcast_obj *o = p->mcast_obj;
3176 
3177 	ECORE_LIST_FOR_EACH_ENTRY_SAFE(cmd_pos, cmd_pos_n,
3178 		&o->pending_cmds_head, link, struct ecore_pending_mcast_cmd) {
3179 		switch (cmd_pos->type) {
3180 		case ECORE_MCAST_CMD_ADD:
3181 			ecore_mcast_hdl_pending_add_e2(sc, o, cmd_pos, &cnt);
3182 			break;
3183 
3184 		case ECORE_MCAST_CMD_DEL:
3185 			ecore_mcast_hdl_pending_del_e2(sc, o, cmd_pos, &cnt);
3186 			break;
3187 
3188 		case ECORE_MCAST_CMD_RESTORE:
3189 			ecore_mcast_hdl_pending_restore_e2(sc, o, cmd_pos,
3190 							   &cnt);
3191 			break;
3192 
3193 		default:
3194 			ECORE_ERR("Unknown command: %d\n", cmd_pos->type);
3195 			return ECORE_INVAL;
3196 		}
3197 
3198 		/* If the command has been completed - remove it from the list
3199 		 * and free the memory
3200 		 */
3201 		if (cmd_pos->done) {
3202 			ECORE_LIST_REMOVE_ENTRY(&cmd_pos->link,
3203 						&o->pending_cmds_head);
3204 			ECORE_FREE(sc, cmd_pos, cmd_pos->alloc_len);
3205 		}
3206 
3207 		/* Break if we reached the maximum number of rules */
3208 		if (cnt >= o->max_cmd_len)
3209 			break;
3210 	}
3211 
3212 	return cnt;
3213 }
3214 
3215 static inline void ecore_mcast_hdl_add(struct bxe_softc *sc,
3216 	struct ecore_mcast_obj *o, struct ecore_mcast_ramrod_params *p,
3217 	int *line_idx)
3218 {
3219 	struct ecore_mcast_list_elem *mlist_pos;
3220 	union ecore_mcast_config_data cfg_data = {NULL};
3221 	int cnt = *line_idx;
3222 
3223 	ECORE_LIST_FOR_EACH_ENTRY(mlist_pos, &p->mcast_list, link,
3224 				  struct ecore_mcast_list_elem) {
3225 		cfg_data.mac = mlist_pos->mac;
3226 		o->set_one_rule(sc, o, cnt, &cfg_data, ECORE_MCAST_CMD_ADD);
3227 
3228 		cnt++;
3229 
3230 		ECORE_MSG(sc, "About to configure %02x:%02x:%02x:%02x:%02x:%02x mcast MAC\n",
3231 			  mlist_pos->mac[0], mlist_pos->mac[1], mlist_pos->mac[2], mlist_pos->mac[3], mlist_pos->mac[4], mlist_pos->mac[5]);
3232 	}
3233 
3234 	*line_idx = cnt;
3235 }
3236 
3237 static inline void ecore_mcast_hdl_del(struct bxe_softc *sc,
3238 	struct ecore_mcast_obj *o, struct ecore_mcast_ramrod_params *p,
3239 	int *line_idx)
3240 {
3241 	int cnt = *line_idx, i;
3242 
3243 	for (i = 0; i < p->mcast_list_len; i++) {
3244 		o->set_one_rule(sc, o, cnt, NULL, ECORE_MCAST_CMD_DEL);
3245 
3246 		cnt++;
3247 
3248 		ECORE_MSG(sc, "Deleting MAC. %d left\n",
3249 			  p->mcast_list_len - i - 1);
3250 	}
3251 
3252 	*line_idx = cnt;
3253 }
3254 
3255 /**
3256  * ecore_mcast_handle_current_cmd -
3257  *
3258  * @sc:		device handle
3259  * @p:
3260  * @cmd:
3261  * @start_cnt:	first line in the ramrod data that may be used
3262  *
3263  * This function is called iff there is enough place for the current command in
3264  * the ramrod data.
3265  * Returns number of lines filled in the ramrod data in total.
3266  */
3267 static inline int ecore_mcast_handle_current_cmd(struct bxe_softc *sc,
3268 			struct ecore_mcast_ramrod_params *p,
3269 			enum ecore_mcast_cmd cmd,
3270 			int start_cnt)
3271 {
3272 	struct ecore_mcast_obj *o = p->mcast_obj;
3273 	int cnt = start_cnt;
3274 
3275 	ECORE_MSG(sc, "p->mcast_list_len=%d\n", p->mcast_list_len);
3276 
3277 	switch (cmd) {
3278 	case ECORE_MCAST_CMD_ADD:
3279 		ecore_mcast_hdl_add(sc, o, p, &cnt);
3280 		break;
3281 
3282 	case ECORE_MCAST_CMD_DEL:
3283 		ecore_mcast_hdl_del(sc, o, p, &cnt);
3284 		break;
3285 
3286 	case ECORE_MCAST_CMD_RESTORE:
3287 		o->hdl_restore(sc, o, 0, &cnt);
3288 		break;
3289 
3290 	default:
3291 		ECORE_ERR("Unknown command: %d\n", cmd);
3292 		return ECORE_INVAL;
3293 	}
3294 
3295 	/* The current command has been handled */
3296 	p->mcast_list_len = 0;
3297 
3298 	return cnt;
3299 }
3300 
3301 static int ecore_mcast_validate_e2(struct bxe_softc *sc,
3302 				   struct ecore_mcast_ramrod_params *p,
3303 				   enum ecore_mcast_cmd cmd)
3304 {
3305 	struct ecore_mcast_obj *o = p->mcast_obj;
3306 	int reg_sz = o->get_registry_size(o);
3307 
3308 	switch (cmd) {
3309 	/* DEL command deletes all currently configured MACs */
3310 	case ECORE_MCAST_CMD_DEL:
3311 		o->set_registry_size(o, 0);
3312 		/* Don't break */
3313 
3314 	/* RESTORE command will restore the entire multicast configuration */
3315 	case ECORE_MCAST_CMD_RESTORE:
3316 		/* Here we set the approximate amount of work to do, which in
3317 		 * fact may be only less as some MACs in postponed ADD
3318 		 * command(s) scheduled before this command may fall into
3319 		 * the same bin and the actual number of bins set in the
3320 		 * registry would be less than we estimated here. See
3321 		 * ecore_mcast_set_one_rule_e2() for further details.
3322 		 */
3323 		p->mcast_list_len = reg_sz;
3324 		break;
3325 
3326 	case ECORE_MCAST_CMD_ADD:
3327 	case ECORE_MCAST_CMD_CONT:
3328 		/* Here we assume that all new MACs will fall into new bins.
3329 		 * However we will correct the real registry size after we
3330 		 * handle all pending commands.
3331 		 */
3332 		o->set_registry_size(o, reg_sz + p->mcast_list_len);
3333 		break;
3334 
3335 	default:
3336 		ECORE_ERR("Unknown command: %d\n", cmd);
3337 		return ECORE_INVAL;
3338 	}
3339 
3340 	/* Increase the total number of MACs pending to be configured */
3341 	o->total_pending_num += p->mcast_list_len;
3342 
3343 	return ECORE_SUCCESS;
3344 }
3345 
3346 static void ecore_mcast_revert_e2(struct bxe_softc *sc,
3347 				      struct ecore_mcast_ramrod_params *p,
3348 				      int old_num_bins)
3349 {
3350 	struct ecore_mcast_obj *o = p->mcast_obj;
3351 
3352 	o->set_registry_size(o, old_num_bins);
3353 	o->total_pending_num -= p->mcast_list_len;
3354 }
3355 
3356 /**
3357  * ecore_mcast_set_rdata_hdr_e2 - sets a header values
3358  *
3359  * @sc:		device handle
3360  * @p:
3361  * @len:	number of rules to handle
3362  */
3363 static inline void ecore_mcast_set_rdata_hdr_e2(struct bxe_softc *sc,
3364 					struct ecore_mcast_ramrod_params *p,
3365 					uint8_t len)
3366 {
3367 	struct ecore_raw_obj *r = &p->mcast_obj->raw;
3368 	struct eth_multicast_rules_ramrod_data *data =
3369 		(struct eth_multicast_rules_ramrod_data *)(r->rdata);
3370 
3371 	data->header.echo = ECORE_CPU_TO_LE32((r->cid & ECORE_SWCID_MASK) |
3372 					(ECORE_FILTER_MCAST_PENDING <<
3373 					 ECORE_SWCID_SHIFT));
3374 	data->header.rule_cnt = len;
3375 }
3376 
3377 /**
3378  * ecore_mcast_refresh_registry_e2 - recalculate the actual number of set bins
3379  *
3380  * @sc:		device handle
3381  * @o:
3382  *
3383  * Recalculate the actual number of set bins in the registry using Brian
3384  * Kernighan's algorithm: it's execution complexity is as a number of set bins.
3385  *
3386  * returns 0 for the compliance with ecore_mcast_refresh_registry_e1().
3387  */
3388 static inline int ecore_mcast_refresh_registry_e2(struct bxe_softc *sc,
3389 						  struct ecore_mcast_obj *o)
3390 {
3391 	int i, cnt = 0;
3392 	uint64_t elem;
3393 
3394 	for (i = 0; i < ECORE_MCAST_VEC_SZ; i++) {
3395 		elem = o->registry.aprox_match.vec[i];
3396 		for (; elem; cnt++)
3397 			elem &= elem - 1;
3398 	}
3399 
3400 	o->set_registry_size(o, cnt);
3401 
3402 	return ECORE_SUCCESS;
3403 }
3404 
3405 static int ecore_mcast_setup_e2(struct bxe_softc *sc,
3406 				struct ecore_mcast_ramrod_params *p,
3407 				enum ecore_mcast_cmd cmd)
3408 {
3409 	struct ecore_raw_obj *raw = &p->mcast_obj->raw;
3410 	struct ecore_mcast_obj *o = p->mcast_obj;
3411 	struct eth_multicast_rules_ramrod_data *data =
3412 		(struct eth_multicast_rules_ramrod_data *)(raw->rdata);
3413 	int cnt = 0, rc;
3414 
3415 	/* Reset the ramrod data buffer */
3416 	ECORE_MEMSET(data, 0, sizeof(*data));
3417 
3418 	cnt = ecore_mcast_handle_pending_cmds_e2(sc, p);
3419 
3420 	/* If there are no more pending commands - clear SCHEDULED state */
3421 	if (ECORE_LIST_IS_EMPTY(&o->pending_cmds_head))
3422 		o->clear_sched(o);
3423 
3424 	/* The below may be TRUE iff there was enough room in ramrod
3425 	 * data for all pending commands and for the current
3426 	 * command. Otherwise the current command would have been added
3427 	 * to the pending commands and p->mcast_list_len would have been
3428 	 * zeroed.
3429 	 */
3430 	if (p->mcast_list_len > 0)
3431 		cnt = ecore_mcast_handle_current_cmd(sc, p, cmd, cnt);
3432 
3433 	/* We've pulled out some MACs - update the total number of
3434 	 * outstanding.
3435 	 */
3436 	o->total_pending_num -= cnt;
3437 
3438 	/* send a ramrod */
3439 	ECORE_DBG_BREAK_IF(o->total_pending_num < 0);
3440 	ECORE_DBG_BREAK_IF(cnt > o->max_cmd_len);
3441 
3442 	ecore_mcast_set_rdata_hdr_e2(sc, p, (uint8_t)cnt);
3443 
3444 	/* Update a registry size if there are no more pending operations.
3445 	 *
3446 	 * We don't want to change the value of the registry size if there are
3447 	 * pending operations because we want it to always be equal to the
3448 	 * exact or the approximate number (see ecore_mcast_validate_e2()) of
3449 	 * set bins after the last requested operation in order to properly
3450 	 * evaluate the size of the next DEL/RESTORE operation.
3451 	 *
3452 	 * Note that we update the registry itself during command(s) handling
3453 	 * - see ecore_mcast_set_one_rule_e2(). That's because for 57712 we
3454 	 * aggregate multiple commands (ADD/DEL/RESTORE) into one ramrod but
3455 	 * with a limited amount of update commands (per MAC/bin) and we don't
3456 	 * know in this scope what the actual state of bins configuration is
3457 	 * going to be after this ramrod.
3458 	 */
3459 	if (!o->total_pending_num)
3460 		ecore_mcast_refresh_registry_e2(sc, o);
3461 
3462 	/* If CLEAR_ONLY was requested - don't send a ramrod and clear
3463 	 * RAMROD_PENDING status immediately.
3464 	 */
3465 	if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
3466 		raw->clear_pending(raw);
3467 		return ECORE_SUCCESS;
3468 	} else {
3469 		/* No need for an explicit memory barrier here as long as we
3470 		 * ensure the ordering of writing to the SPQ element
3471 		 * and updating of the SPQ producer which involves a memory
3472 		 * read. If the memory read is removed we will have to put a
3473 		 * full memory barrier there (inside ecore_sp_post()).
3474 		 */
3475 
3476 		/* Send a ramrod */
3477 		rc = ecore_sp_post( sc,
3478 				    RAMROD_CMD_ID_ETH_MULTICAST_RULES,
3479 				    raw->cid,
3480 				    raw->rdata_mapping,
3481 				    ETH_CONNECTION_TYPE);
3482 		if (rc)
3483 			return rc;
3484 
3485 		/* Ramrod completion is pending */
3486 		return ECORE_PENDING;
3487 	}
3488 }
3489 
3490 static int ecore_mcast_validate_e1h(struct bxe_softc *sc,
3491 				    struct ecore_mcast_ramrod_params *p,
3492 				    enum ecore_mcast_cmd cmd)
3493 {
3494 	/* Mark, that there is a work to do */
3495 	if ((cmd == ECORE_MCAST_CMD_DEL) || (cmd == ECORE_MCAST_CMD_RESTORE))
3496 		p->mcast_list_len = 1;
3497 
3498 	return ECORE_SUCCESS;
3499 }
3500 
3501 static void ecore_mcast_revert_e1h(struct bxe_softc *sc,
3502 				       struct ecore_mcast_ramrod_params *p,
3503 				       int old_num_bins)
3504 {
3505 	/* Do nothing */
3506 }
3507 
3508 #define ECORE_57711_SET_MC_FILTER(filter, bit) \
3509 do { \
3510 	(filter)[(bit) >> 5] |= (1 << ((bit) & 0x1f)); \
3511 } while (0)
3512 
3513 static inline void ecore_mcast_hdl_add_e1h(struct bxe_softc *sc,
3514 					   struct ecore_mcast_obj *o,
3515 					   struct ecore_mcast_ramrod_params *p,
3516 					   uint32_t *mc_filter)
3517 {
3518 	struct ecore_mcast_list_elem *mlist_pos;
3519 	int bit;
3520 
3521 	ECORE_LIST_FOR_EACH_ENTRY(mlist_pos, &p->mcast_list, link,
3522 				  struct ecore_mcast_list_elem) {
3523 		bit = ecore_mcast_bin_from_mac(mlist_pos->mac);
3524 		ECORE_57711_SET_MC_FILTER(mc_filter, bit);
3525 
3526 		ECORE_MSG(sc, "About to configure %02x:%02x:%02x:%02x:%02x:%02x mcast MAC, bin %d\n",
3527 			  mlist_pos->mac[0], mlist_pos->mac[1], mlist_pos->mac[2], mlist_pos->mac[3], mlist_pos->mac[4], mlist_pos->mac[5], bit);
3528 
3529 		/* bookkeeping... */
3530 		BIT_VEC64_SET_BIT(o->registry.aprox_match.vec,
3531 				  bit);
3532 	}
3533 }
3534 
3535 static inline void ecore_mcast_hdl_restore_e1h(struct bxe_softc *sc,
3536 	struct ecore_mcast_obj *o, struct ecore_mcast_ramrod_params *p,
3537 	uint32_t *mc_filter)
3538 {
3539 	int bit;
3540 
3541 	for (bit = ecore_mcast_get_next_bin(o, 0);
3542 	     bit >= 0;
3543 	     bit = ecore_mcast_get_next_bin(o, bit + 1)) {
3544 		ECORE_57711_SET_MC_FILTER(mc_filter, bit);
3545 		ECORE_MSG(sc, "About to set bin %d\n", bit);
3546 	}
3547 }
3548 
3549 /* On 57711 we write the multicast MACs' approximate match
3550  * table by directly into the TSTORM's internal RAM. So we don't
3551  * really need to handle any tricks to make it work.
3552  */
3553 static int ecore_mcast_setup_e1h(struct bxe_softc *sc,
3554 				 struct ecore_mcast_ramrod_params *p,
3555 				 enum ecore_mcast_cmd cmd)
3556 {
3557 	int i;
3558 	struct ecore_mcast_obj *o = p->mcast_obj;
3559 	struct ecore_raw_obj *r = &o->raw;
3560 
3561 	/* If CLEAR_ONLY has been requested - clear the registry
3562 	 * and clear a pending bit.
3563 	 */
3564 	if (!ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
3565 		uint32_t mc_filter[ECORE_MC_HASH_SIZE] = {0};
3566 
3567 		/* Set the multicast filter bits before writing it into
3568 		 * the internal memory.
3569 		 */
3570 		switch (cmd) {
3571 		case ECORE_MCAST_CMD_ADD:
3572 			ecore_mcast_hdl_add_e1h(sc, o, p, mc_filter);
3573 			break;
3574 
3575 		case ECORE_MCAST_CMD_DEL:
3576 			ECORE_MSG(sc,
3577 				  "Invalidating multicast MACs configuration\n");
3578 
3579 			/* clear the registry */
3580 			ECORE_MEMSET(o->registry.aprox_match.vec, 0,
3581 			       sizeof(o->registry.aprox_match.vec));
3582 			break;
3583 
3584 		case ECORE_MCAST_CMD_RESTORE:
3585 			ecore_mcast_hdl_restore_e1h(sc, o, p, mc_filter);
3586 			break;
3587 
3588 		default:
3589 			ECORE_ERR("Unknown command: %d\n", cmd);
3590 			return ECORE_INVAL;
3591 		}
3592 
3593 		/* Set the mcast filter in the internal memory */
3594 		for (i = 0; i < ECORE_MC_HASH_SIZE; i++)
3595 			REG_WR(sc, ECORE_MC_HASH_OFFSET(sc, i), mc_filter[i]);
3596 	} else
3597 		/* clear the registry */
3598 		ECORE_MEMSET(o->registry.aprox_match.vec, 0,
3599 		       sizeof(o->registry.aprox_match.vec));
3600 
3601 	/* We are done */
3602 	r->clear_pending(r);
3603 
3604 	return ECORE_SUCCESS;
3605 }
3606 
3607 static int ecore_mcast_validate_e1(struct bxe_softc *sc,
3608 				   struct ecore_mcast_ramrod_params *p,
3609 				   enum ecore_mcast_cmd cmd)
3610 {
3611 	struct ecore_mcast_obj *o = p->mcast_obj;
3612 	int reg_sz = o->get_registry_size(o);
3613 
3614 	switch (cmd) {
3615 	/* DEL command deletes all currently configured MACs */
3616 	case ECORE_MCAST_CMD_DEL:
3617 		o->set_registry_size(o, 0);
3618 		/* Don't break */
3619 
3620 	/* RESTORE command will restore the entire multicast configuration */
3621 	case ECORE_MCAST_CMD_RESTORE:
3622 		p->mcast_list_len = reg_sz;
3623 		  ECORE_MSG(sc, "Command %d, p->mcast_list_len=%d\n",
3624 				  cmd, p->mcast_list_len);
3625 		break;
3626 
3627 	case ECORE_MCAST_CMD_ADD:
3628 	case ECORE_MCAST_CMD_CONT:
3629 		/* Multicast MACs on 57710 are configured as unicast MACs and
3630 		 * there is only a limited number of CAM entries for that
3631 		 * matter.
3632 		 */
3633 		if (p->mcast_list_len > o->max_cmd_len) {
3634 			ECORE_ERR("Can't configure more than %d multicast MACs on 57710\n",
3635 				  o->max_cmd_len);
3636 			return ECORE_INVAL;
3637 		}
3638 		/* Every configured MAC should be cleared if DEL command is
3639 		 * called. Only the last ADD command is relevant as long as
3640 		 * every ADD commands overrides the previous configuration.
3641 		 */
3642 		ECORE_MSG(sc, "p->mcast_list_len=%d\n", p->mcast_list_len);
3643 		if (p->mcast_list_len > 0)
3644 			o->set_registry_size(o, p->mcast_list_len);
3645 
3646 		break;
3647 
3648 	default:
3649 		ECORE_ERR("Unknown command: %d\n", cmd);
3650 		return ECORE_INVAL;
3651 	}
3652 
3653 	/* We want to ensure that commands are executed one by one for 57710.
3654 	 * Therefore each none-empty command will consume o->max_cmd_len.
3655 	 */
3656 	if (p->mcast_list_len)
3657 		o->total_pending_num += o->max_cmd_len;
3658 
3659 	return ECORE_SUCCESS;
3660 }
3661 
3662 static void ecore_mcast_revert_e1(struct bxe_softc *sc,
3663 				      struct ecore_mcast_ramrod_params *p,
3664 				      int old_num_macs)
3665 {
3666 	struct ecore_mcast_obj *o = p->mcast_obj;
3667 
3668 	o->set_registry_size(o, old_num_macs);
3669 
3670 	/* If current command hasn't been handled yet and we are
3671 	 * here means that it's meant to be dropped and we have to
3672 	 * update the number of outstanding MACs accordingly.
3673 	 */
3674 	if (p->mcast_list_len)
3675 		o->total_pending_num -= o->max_cmd_len;
3676 }
3677 
3678 static void ecore_mcast_set_one_rule_e1(struct bxe_softc *sc,
3679 					struct ecore_mcast_obj *o, int idx,
3680 					union ecore_mcast_config_data *cfg_data,
3681 					enum ecore_mcast_cmd cmd)
3682 {
3683 	struct ecore_raw_obj *r = &o->raw;
3684 	struct mac_configuration_cmd *data =
3685 		(struct mac_configuration_cmd *)(r->rdata);
3686 
3687 	/* copy mac */
3688 	if ((cmd == ECORE_MCAST_CMD_ADD) || (cmd == ECORE_MCAST_CMD_RESTORE)) {
3689 		ecore_set_fw_mac_addr(&data->config_table[idx].msb_mac_addr,
3690 				      &data->config_table[idx].middle_mac_addr,
3691 				      &data->config_table[idx].lsb_mac_addr,
3692 				      cfg_data->mac);
3693 
3694 		data->config_table[idx].vlan_id = 0;
3695 		data->config_table[idx].pf_id = r->func_id;
3696 		data->config_table[idx].clients_bit_vector =
3697 			ECORE_CPU_TO_LE32(1 << r->cl_id);
3698 
3699 		ECORE_SET_FLAG(data->config_table[idx].flags,
3700 			       MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
3701 			       T_ETH_MAC_COMMAND_SET);
3702 	}
3703 }
3704 
3705 /**
3706  * ecore_mcast_set_rdata_hdr_e1  - set header values in mac_configuration_cmd
3707  *
3708  * @sc:		device handle
3709  * @p:
3710  * @len:	number of rules to handle
3711  */
3712 static inline void ecore_mcast_set_rdata_hdr_e1(struct bxe_softc *sc,
3713 					struct ecore_mcast_ramrod_params *p,
3714 					uint8_t len)
3715 {
3716 	struct ecore_raw_obj *r = &p->mcast_obj->raw;
3717 	struct mac_configuration_cmd *data =
3718 		(struct mac_configuration_cmd *)(r->rdata);
3719 
3720 	uint8_t offset = (CHIP_REV_IS_SLOW(sc) ?
3721 		     ECORE_MAX_EMUL_MULTI*(1 + r->func_id) :
3722 		     ECORE_MAX_MULTICAST*(1 + r->func_id));
3723 
3724 	data->hdr.offset = offset;
3725 	data->hdr.client_id = ECORE_CPU_TO_LE16(0xff);
3726 	data->hdr.echo = ECORE_CPU_TO_LE32((r->cid & ECORE_SWCID_MASK) |
3727 				     (ECORE_FILTER_MCAST_PENDING <<
3728 				      ECORE_SWCID_SHIFT));
3729 	data->hdr.length = len;
3730 }
3731 
3732 /**
3733  * ecore_mcast_handle_restore_cmd_e1 - restore command for 57710
3734  *
3735  * @sc:		device handle
3736  * @o:
3737  * @start_idx:	index in the registry to start from
3738  * @rdata_idx:	index in the ramrod data to start from
3739  *
3740  * restore command for 57710 is like all other commands - always a stand alone
3741  * command - start_idx and rdata_idx will always be 0. This function will always
3742  * succeed.
3743  * returns -1 to comply with 57712 variant.
3744  */
3745 static inline int ecore_mcast_handle_restore_cmd_e1(
3746 	struct bxe_softc *sc, struct ecore_mcast_obj *o , int start_idx,
3747 	int *rdata_idx)
3748 {
3749 	struct ecore_mcast_mac_elem *elem;
3750 	int i = 0;
3751 	union ecore_mcast_config_data cfg_data = {NULL};
3752 
3753 	/* go through the registry and configure the MACs from it. */
3754 	ECORE_LIST_FOR_EACH_ENTRY(elem, &o->registry.exact_match.macs, link,
3755 				  struct ecore_mcast_mac_elem) {
3756 		cfg_data.mac = &elem->mac[0];
3757 		o->set_one_rule(sc, o, i, &cfg_data, ECORE_MCAST_CMD_RESTORE);
3758 
3759 		i++;
3760 
3761 		ECORE_MSG(sc, "About to configure %02x:%02x:%02x:%02x:%02x:%02x mcast MAC\n",
3762 			  cfg_data.mac[0], cfg_data.mac[1], cfg_data.mac[2], cfg_data.mac[3], cfg_data.mac[4], cfg_data.mac[5]);
3763 	}
3764 
3765 	*rdata_idx = i;
3766 
3767 	return -1;
3768 }
3769 
3770 static inline int ecore_mcast_handle_pending_cmds_e1(
3771 	struct bxe_softc *sc, struct ecore_mcast_ramrod_params *p)
3772 {
3773 	struct ecore_pending_mcast_cmd *cmd_pos;
3774 	struct ecore_mcast_mac_elem *pmac_pos;
3775 	struct ecore_mcast_obj *o = p->mcast_obj;
3776 	union ecore_mcast_config_data cfg_data = {NULL};
3777 	int cnt = 0;
3778 
3779 	/* If nothing to be done - return */
3780 	if (ECORE_LIST_IS_EMPTY(&o->pending_cmds_head))
3781 		return 0;
3782 
3783 	/* Handle the first command */
3784 	cmd_pos = ECORE_LIST_FIRST_ENTRY(&o->pending_cmds_head,
3785 					 struct ecore_pending_mcast_cmd, link);
3786 
3787 	switch (cmd_pos->type) {
3788 	case ECORE_MCAST_CMD_ADD:
3789 		ECORE_LIST_FOR_EACH_ENTRY(pmac_pos, &cmd_pos->data.macs_head,
3790 					  link, struct ecore_mcast_mac_elem) {
3791 			cfg_data.mac = &pmac_pos->mac[0];
3792 			o->set_one_rule(sc, o, cnt, &cfg_data, cmd_pos->type);
3793 
3794 			cnt++;
3795 
3796 			ECORE_MSG(sc, "About to configure %02x:%02x:%02x:%02x:%02x:%02x mcast MAC\n",
3797 				  pmac_pos->mac[0], pmac_pos->mac[1], pmac_pos->mac[2], pmac_pos->mac[3], pmac_pos->mac[4], pmac_pos->mac[5]);
3798 		}
3799 		break;
3800 
3801 	case ECORE_MCAST_CMD_DEL:
3802 		cnt = cmd_pos->data.macs_num;
3803 		ECORE_MSG(sc, "About to delete %d multicast MACs\n", cnt);
3804 		break;
3805 
3806 	case ECORE_MCAST_CMD_RESTORE:
3807 		o->hdl_restore(sc, o, 0, &cnt);
3808 		break;
3809 
3810 	default:
3811 		ECORE_ERR("Unknown command: %d\n", cmd_pos->type);
3812 		return ECORE_INVAL;
3813 	}
3814 
3815 	ECORE_LIST_REMOVE_ENTRY(&cmd_pos->link, &o->pending_cmds_head);
3816 	ECORE_FREE(sc, cmd_pos, cmd_pos->alloc_len);
3817 
3818 	return cnt;
3819 }
3820 
3821 /**
3822  * ecore_get_fw_mac_addr - revert the ecore_set_fw_mac_addr().
3823  *
3824  * @fw_hi:
3825  * @fw_mid:
3826  * @fw_lo:
3827  * @mac:
3828  */
3829 static inline void ecore_get_fw_mac_addr(uint16_t *fw_hi, uint16_t *fw_mid,
3830 					 uint16_t *fw_lo, uint8_t *mac)
3831 {
3832 	mac[1] = ((uint8_t *)fw_hi)[0];
3833 	mac[0] = ((uint8_t *)fw_hi)[1];
3834 	mac[3] = ((uint8_t *)fw_mid)[0];
3835 	mac[2] = ((uint8_t *)fw_mid)[1];
3836 	mac[5] = ((uint8_t *)fw_lo)[0];
3837 	mac[4] = ((uint8_t *)fw_lo)[1];
3838 }
3839 
3840 /**
3841  * ecore_mcast_refresh_registry_e1 -
3842  *
3843  * @sc:		device handle
3844  * @cnt:
3845  *
3846  * Check the ramrod data first entry flag to see if it's a DELETE or ADD command
3847  * and update the registry correspondingly: if ADD - allocate a memory and add
3848  * the entries to the registry (list), if DELETE - clear the registry and free
3849  * the memory.
3850  */
3851 static inline int ecore_mcast_refresh_registry_e1(struct bxe_softc *sc,
3852 						  struct ecore_mcast_obj *o)
3853 {
3854 	struct ecore_raw_obj *raw = &o->raw;
3855 	struct ecore_mcast_mac_elem *elem;
3856 	struct mac_configuration_cmd *data =
3857 			(struct mac_configuration_cmd *)(raw->rdata);
3858 
3859 	/* If first entry contains a SET bit - the command was ADD,
3860 	 * otherwise - DEL_ALL
3861 	 */
3862 	if (ECORE_GET_FLAG(data->config_table[0].flags,
3863 			MAC_CONFIGURATION_ENTRY_ACTION_TYPE)) {
3864 		int i, len = data->hdr.length;
3865 
3866 		/* Break if it was a RESTORE command */
3867 		if (!ECORE_LIST_IS_EMPTY(&o->registry.exact_match.macs))
3868 			return ECORE_SUCCESS;
3869 
3870 		elem = ECORE_CALLOC(len, sizeof(*elem), GFP_ATOMIC, sc);
3871 		if (!elem) {
3872 			ECORE_ERR("Failed to allocate registry memory\n");
3873 			return ECORE_NOMEM;
3874 		}
3875 
3876 		for (i = 0; i < len; i++, elem++) {
3877 			ecore_get_fw_mac_addr(
3878 				&data->config_table[i].msb_mac_addr,
3879 				&data->config_table[i].middle_mac_addr,
3880 				&data->config_table[i].lsb_mac_addr,
3881 				elem->mac);
3882 			ECORE_MSG(sc, "Adding registry entry for [%02x:%02x:%02x:%02x:%02x:%02x]\n",
3883 				  elem->mac[0], elem->mac[1], elem->mac[2], elem->mac[3], elem->mac[4], elem->mac[5]);
3884 			ECORE_LIST_PUSH_TAIL(&elem->link,
3885 					     &o->registry.exact_match.macs);
3886 		}
3887 	} else {
3888 		elem = ECORE_LIST_FIRST_ENTRY(&o->registry.exact_match.macs,
3889 					      struct ecore_mcast_mac_elem,
3890 					      link);
3891 		ECORE_MSG(sc, "Deleting a registry\n");
3892 		ECORE_FREE(sc, elem, sizeof(*elem));
3893 		ECORE_LIST_INIT(&o->registry.exact_match.macs);
3894 	}
3895 
3896 	return ECORE_SUCCESS;
3897 }
3898 
3899 static int ecore_mcast_setup_e1(struct bxe_softc *sc,
3900 				struct ecore_mcast_ramrod_params *p,
3901 				enum ecore_mcast_cmd cmd)
3902 {
3903 	struct ecore_mcast_obj *o = p->mcast_obj;
3904 	struct ecore_raw_obj *raw = &o->raw;
3905 	struct mac_configuration_cmd *data =
3906 		(struct mac_configuration_cmd *)(raw->rdata);
3907 	int cnt = 0, i, rc;
3908 
3909 	/* Reset the ramrod data buffer */
3910 	ECORE_MEMSET(data, 0, sizeof(*data));
3911 
3912 	/* First set all entries as invalid */
3913 	for (i = 0; i < o->max_cmd_len ; i++)
3914 		ECORE_SET_FLAG(data->config_table[i].flags,
3915 			MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
3916 			T_ETH_MAC_COMMAND_INVALIDATE);
3917 
3918 	/* Handle pending commands first */
3919 	cnt = ecore_mcast_handle_pending_cmds_e1(sc, p);
3920 
3921 	/* If there are no more pending commands - clear SCHEDULED state */
3922 	if (ECORE_LIST_IS_EMPTY(&o->pending_cmds_head))
3923 		o->clear_sched(o);
3924 
3925 	/* The below may be TRUE iff there were no pending commands */
3926 	if (!cnt)
3927 		cnt = ecore_mcast_handle_current_cmd(sc, p, cmd, 0);
3928 
3929 	/* For 57710 every command has o->max_cmd_len length to ensure that
3930 	 * commands are done one at a time.
3931 	 */
3932 	o->total_pending_num -= o->max_cmd_len;
3933 
3934 	/* send a ramrod */
3935 
3936 	ECORE_DBG_BREAK_IF(cnt > o->max_cmd_len);
3937 
3938 	/* Set ramrod header (in particular, a number of entries to update) */
3939 	ecore_mcast_set_rdata_hdr_e1(sc, p, (uint8_t)cnt);
3940 
3941 	/* update a registry: we need the registry contents to be always up
3942 	 * to date in order to be able to execute a RESTORE opcode. Here
3943 	 * we use the fact that for 57710 we sent one command at a time
3944 	 * hence we may take the registry update out of the command handling
3945 	 * and do it in a simpler way here.
3946 	 */
3947 	rc = ecore_mcast_refresh_registry_e1(sc, o);
3948 	if (rc)
3949 		return rc;
3950 
3951 	/* If CLEAR_ONLY was requested - don't send a ramrod and clear
3952 	 * RAMROD_PENDING status immediately.
3953 	 */
3954 	if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
3955 		raw->clear_pending(raw);
3956 		return ECORE_SUCCESS;
3957 	} else {
3958 		/* No need for an explicit memory barrier here as long as we
3959 		 * ensure the ordering of writing to the SPQ element
3960 		 * and updating of the SPQ producer which involves a memory
3961 		 * read. If the memory read is removed we will have to put a
3962 		 * full memory barrier there (inside ecore_sp_post()).
3963 		 */
3964 
3965 		/* Send a ramrod */
3966 		rc = ecore_sp_post( sc,
3967 				    RAMROD_CMD_ID_ETH_SET_MAC,
3968 				    raw->cid,
3969 				    raw->rdata_mapping,
3970 				    ETH_CONNECTION_TYPE);
3971 		if (rc)
3972 			return rc;
3973 
3974 		/* Ramrod completion is pending */
3975 		return ECORE_PENDING;
3976 	}
3977 }
3978 
3979 static int ecore_mcast_get_registry_size_exact(struct ecore_mcast_obj *o)
3980 {
3981 	return o->registry.exact_match.num_macs_set;
3982 }
3983 
3984 static int ecore_mcast_get_registry_size_aprox(struct ecore_mcast_obj *o)
3985 {
3986 	return o->registry.aprox_match.num_bins_set;
3987 }
3988 
3989 static void ecore_mcast_set_registry_size_exact(struct ecore_mcast_obj *o,
3990 						int n)
3991 {
3992 	o->registry.exact_match.num_macs_set = n;
3993 }
3994 
3995 static void ecore_mcast_set_registry_size_aprox(struct ecore_mcast_obj *o,
3996 						int n)
3997 {
3998 	o->registry.aprox_match.num_bins_set = n;
3999 }
4000 
4001 int ecore_config_mcast(struct bxe_softc *sc,
4002 		       struct ecore_mcast_ramrod_params *p,
4003 		       enum ecore_mcast_cmd cmd)
4004 {
4005 	struct ecore_mcast_obj *o = p->mcast_obj;
4006 	struct ecore_raw_obj *r = &o->raw;
4007 	int rc = 0, old_reg_size;
4008 
4009 	/* This is needed to recover number of currently configured mcast macs
4010 	 * in case of failure.
4011 	 */
4012 	old_reg_size = o->get_registry_size(o);
4013 
4014 	/* Do some calculations and checks */
4015 	rc = o->validate(sc, p, cmd);
4016 	if (rc)
4017 		return rc;
4018 
4019 	/* Return if there is no work to do */
4020 	if ((!p->mcast_list_len) && (!o->check_sched(o)))
4021 		return ECORE_SUCCESS;
4022 
4023 	ECORE_MSG(sc, "o->total_pending_num=%d p->mcast_list_len=%d o->max_cmd_len=%d\n",
4024 		  o->total_pending_num, p->mcast_list_len, o->max_cmd_len);
4025 
4026 	/* Enqueue the current command to the pending list if we can't complete
4027 	 * it in the current iteration
4028 	 */
4029 	if (r->check_pending(r) ||
4030 	    ((o->max_cmd_len > 0) && (o->total_pending_num > o->max_cmd_len))) {
4031 		rc = o->enqueue_cmd(sc, p->mcast_obj, p, cmd);
4032 		if (rc < 0)
4033 			goto error_exit1;
4034 
4035 		/* As long as the current command is in a command list we
4036 		 * don't need to handle it separately.
4037 		 */
4038 		p->mcast_list_len = 0;
4039 	}
4040 
4041 	if (!r->check_pending(r)) {
4042 
4043 		/* Set 'pending' state */
4044 		r->set_pending(r);
4045 
4046 		/* Configure the new classification in the chip */
4047 		rc = o->config_mcast(sc, p, cmd);
4048 		if (rc < 0)
4049 			goto error_exit2;
4050 
4051 		/* Wait for a ramrod completion if was requested */
4052 		if (ECORE_TEST_BIT(RAMROD_COMP_WAIT, &p->ramrod_flags))
4053 			rc = o->wait_comp(sc, o);
4054 	}
4055 
4056 	return rc;
4057 
4058 error_exit2:
4059 	r->clear_pending(r);
4060 
4061 error_exit1:
4062 	o->revert(sc, p, old_reg_size);
4063 
4064 	return rc;
4065 }
4066 
4067 static void ecore_mcast_clear_sched(struct ecore_mcast_obj *o)
4068 {
4069 	ECORE_SMP_MB_BEFORE_CLEAR_BIT();
4070 	ECORE_CLEAR_BIT(o->sched_state, o->raw.pstate);
4071 	ECORE_SMP_MB_AFTER_CLEAR_BIT();
4072 }
4073 
4074 static void ecore_mcast_set_sched(struct ecore_mcast_obj *o)
4075 {
4076 	ECORE_SMP_MB_BEFORE_CLEAR_BIT();
4077 	ECORE_SET_BIT(o->sched_state, o->raw.pstate);
4078 	ECORE_SMP_MB_AFTER_CLEAR_BIT();
4079 }
4080 
4081 static bool ecore_mcast_check_sched(struct ecore_mcast_obj *o)
4082 {
4083 	return !!ECORE_TEST_BIT(o->sched_state, o->raw.pstate);
4084 }
4085 
4086 static bool ecore_mcast_check_pending(struct ecore_mcast_obj *o)
4087 {
4088 	return o->raw.check_pending(&o->raw) || o->check_sched(o);
4089 }
4090 
4091 void ecore_init_mcast_obj(struct bxe_softc *sc,
4092 			  struct ecore_mcast_obj *mcast_obj,
4093 			  uint8_t mcast_cl_id, uint32_t mcast_cid, uint8_t func_id,
4094 			  uint8_t engine_id, void *rdata, ecore_dma_addr_t rdata_mapping,
4095 			  int state, unsigned long *pstate, ecore_obj_type type)
4096 {
4097 	ECORE_MEMSET(mcast_obj, 0, sizeof(*mcast_obj));
4098 
4099 	ecore_init_raw_obj(&mcast_obj->raw, mcast_cl_id, mcast_cid, func_id,
4100 			   rdata, rdata_mapping, state, pstate, type);
4101 
4102 	mcast_obj->engine_id = engine_id;
4103 
4104 	ECORE_LIST_INIT(&mcast_obj->pending_cmds_head);
4105 
4106 	mcast_obj->sched_state = ECORE_FILTER_MCAST_SCHED;
4107 	mcast_obj->check_sched = ecore_mcast_check_sched;
4108 	mcast_obj->set_sched = ecore_mcast_set_sched;
4109 	mcast_obj->clear_sched = ecore_mcast_clear_sched;
4110 
4111 	if (CHIP_IS_E1(sc)) {
4112 		mcast_obj->config_mcast      = ecore_mcast_setup_e1;
4113 		mcast_obj->enqueue_cmd       = ecore_mcast_enqueue_cmd;
4114 		mcast_obj->hdl_restore       =
4115 			ecore_mcast_handle_restore_cmd_e1;
4116 		mcast_obj->check_pending     = ecore_mcast_check_pending;
4117 
4118 		if (CHIP_REV_IS_SLOW(sc))
4119 			mcast_obj->max_cmd_len = ECORE_MAX_EMUL_MULTI;
4120 		else
4121 			mcast_obj->max_cmd_len = ECORE_MAX_MULTICAST;
4122 
4123 		mcast_obj->wait_comp         = ecore_mcast_wait;
4124 		mcast_obj->set_one_rule      = ecore_mcast_set_one_rule_e1;
4125 		mcast_obj->validate          = ecore_mcast_validate_e1;
4126 		mcast_obj->revert            = ecore_mcast_revert_e1;
4127 		mcast_obj->get_registry_size =
4128 			ecore_mcast_get_registry_size_exact;
4129 		mcast_obj->set_registry_size =
4130 			ecore_mcast_set_registry_size_exact;
4131 
4132 		/* 57710 is the only chip that uses the exact match for mcast
4133 		 * at the moment.
4134 		 */
4135 		ECORE_LIST_INIT(&mcast_obj->registry.exact_match.macs);
4136 
4137 	} else if (CHIP_IS_E1H(sc)) {
4138 		mcast_obj->config_mcast  = ecore_mcast_setup_e1h;
4139 		mcast_obj->enqueue_cmd   = NULL;
4140 		mcast_obj->hdl_restore   = NULL;
4141 		mcast_obj->check_pending = ecore_mcast_check_pending;
4142 
4143 		/* 57711 doesn't send a ramrod, so it has unlimited credit
4144 		 * for one command.
4145 		 */
4146 		mcast_obj->max_cmd_len       = -1;
4147 		mcast_obj->wait_comp         = ecore_mcast_wait;
4148 		mcast_obj->set_one_rule      = NULL;
4149 		mcast_obj->validate          = ecore_mcast_validate_e1h;
4150 		mcast_obj->revert            = ecore_mcast_revert_e1h;
4151 		mcast_obj->get_registry_size =
4152 			ecore_mcast_get_registry_size_aprox;
4153 		mcast_obj->set_registry_size =
4154 			ecore_mcast_set_registry_size_aprox;
4155 	} else {
4156 		mcast_obj->config_mcast      = ecore_mcast_setup_e2;
4157 		mcast_obj->enqueue_cmd       = ecore_mcast_enqueue_cmd;
4158 		mcast_obj->hdl_restore       =
4159 			ecore_mcast_handle_restore_cmd_e2;
4160 		mcast_obj->check_pending     = ecore_mcast_check_pending;
4161 		/* TODO: There should be a proper HSI define for this number!!!
4162 		 */
4163 		mcast_obj->max_cmd_len       = 16;
4164 		mcast_obj->wait_comp         = ecore_mcast_wait;
4165 		mcast_obj->set_one_rule      = ecore_mcast_set_one_rule_e2;
4166 		mcast_obj->validate          = ecore_mcast_validate_e2;
4167 		mcast_obj->revert            = ecore_mcast_revert_e2;
4168 		mcast_obj->get_registry_size =
4169 			ecore_mcast_get_registry_size_aprox;
4170 		mcast_obj->set_registry_size =
4171 			ecore_mcast_set_registry_size_aprox;
4172 	}
4173 }
4174 
4175 /*************************** Credit handling **********************************/
4176 
4177 /**
4178  * atomic_add_ifless - add if the result is less than a given value.
4179  *
4180  * @v:	pointer of type ecore_atomic_t
4181  * @a:	the amount to add to v...
4182  * @u:	...if (v + a) is less than u.
4183  *
4184  * returns TRUE if (v + a) was less than u, and FALSE otherwise.
4185  *
4186  */
4187 static inline bool __atomic_add_ifless(ecore_atomic_t *v, int a, int u)
4188 {
4189 	int c, old;
4190 
4191 	c = ECORE_ATOMIC_READ(v);
4192 	for (;;) {
4193 		if (ECORE_UNLIKELY(c + a >= u))
4194 			return FALSE;
4195 
4196 		old = ECORE_ATOMIC_CMPXCHG((v), c, c + a);
4197 		if (ECORE_LIKELY(old == c))
4198 			break;
4199 		c = old;
4200 	}
4201 
4202 	return TRUE;
4203 }
4204 
4205 /**
4206  * atomic_dec_ifmoe - dec if the result is more or equal than a given value.
4207  *
4208  * @v:	pointer of type ecore_atomic_t
4209  * @a:	the amount to dec from v...
4210  * @u:	...if (v - a) is more or equal than u.
4211  *
4212  * returns TRUE if (v - a) was more or equal than u, and FALSE
4213  * otherwise.
4214  */
4215 static inline bool __atomic_dec_ifmoe(ecore_atomic_t *v, int a, int u)
4216 {
4217 	int c, old;
4218 
4219 	c = ECORE_ATOMIC_READ(v);
4220 	for (;;) {
4221 		if (ECORE_UNLIKELY(c - a < u))
4222 			return FALSE;
4223 
4224 		old = ECORE_ATOMIC_CMPXCHG((v), c, c - a);
4225 		if (ECORE_LIKELY(old == c))
4226 			break;
4227 		c = old;
4228 	}
4229 
4230 	return TRUE;
4231 }
4232 
4233 static bool ecore_credit_pool_get(struct ecore_credit_pool_obj *o, int cnt)
4234 {
4235 	bool rc;
4236 
4237 	ECORE_SMP_MB();
4238 	rc = __atomic_dec_ifmoe(&o->credit, cnt, 0);
4239 	ECORE_SMP_MB();
4240 
4241 	return rc;
4242 }
4243 
4244 static bool ecore_credit_pool_put(struct ecore_credit_pool_obj *o, int cnt)
4245 {
4246 	bool rc;
4247 
4248 	ECORE_SMP_MB();
4249 
4250 	/* Don't let to refill if credit + cnt > pool_sz */
4251 	rc = __atomic_add_ifless(&o->credit, cnt, o->pool_sz + 1);
4252 
4253 	ECORE_SMP_MB();
4254 
4255 	return rc;
4256 }
4257 
4258 static int ecore_credit_pool_check(struct ecore_credit_pool_obj *o)
4259 {
4260 	int cur_credit;
4261 
4262 	ECORE_SMP_MB();
4263 	cur_credit = ECORE_ATOMIC_READ(&o->credit);
4264 
4265 	return cur_credit;
4266 }
4267 
4268 static bool ecore_credit_pool_always_TRUE(struct ecore_credit_pool_obj *o,
4269 					  int cnt)
4270 {
4271 	return TRUE;
4272 }
4273 
4274 static bool ecore_credit_pool_get_entry(
4275 	struct ecore_credit_pool_obj *o,
4276 	int *offset)
4277 {
4278 	int idx, vec, i;
4279 
4280 	*offset = -1;
4281 
4282 	/* Find "internal cam-offset" then add to base for this object... */
4283 	for (vec = 0; vec < ECORE_POOL_VEC_SIZE; vec++) {
4284 
4285 		/* Skip the current vector if there are no free entries in it */
4286 		if (!o->pool_mirror[vec])
4287 			continue;
4288 
4289 		/* If we've got here we are going to find a free entry */
4290 		for (idx = vec * BIT_VEC64_ELEM_SZ, i = 0;
4291 		      i < BIT_VEC64_ELEM_SZ; idx++, i++)
4292 
4293 			if (BIT_VEC64_TEST_BIT(o->pool_mirror, idx)) {
4294 				/* Got one!! */
4295 				BIT_VEC64_CLEAR_BIT(o->pool_mirror, idx);
4296 				*offset = o->base_pool_offset + idx;
4297 				return TRUE;
4298 			}
4299 	}
4300 
4301 	return FALSE;
4302 }
4303 
4304 static bool ecore_credit_pool_put_entry(
4305 	struct ecore_credit_pool_obj *o,
4306 	int offset)
4307 {
4308 	if (offset < o->base_pool_offset)
4309 		return FALSE;
4310 
4311 	offset -= o->base_pool_offset;
4312 
4313 	if (offset >= o->pool_sz)
4314 		return FALSE;
4315 
4316 	/* Return the entry to the pool */
4317 	BIT_VEC64_SET_BIT(o->pool_mirror, offset);
4318 
4319 	return TRUE;
4320 }
4321 
4322 static bool ecore_credit_pool_put_entry_always_TRUE(
4323 	struct ecore_credit_pool_obj *o,
4324 	int offset)
4325 {
4326 	return TRUE;
4327 }
4328 
4329 static bool ecore_credit_pool_get_entry_always_TRUE(
4330 	struct ecore_credit_pool_obj *o,
4331 	int *offset)
4332 {
4333 	*offset = -1;
4334 	return TRUE;
4335 }
4336 /**
4337  * ecore_init_credit_pool - initialize credit pool internals.
4338  *
4339  * @p:
4340  * @base:	Base entry in the CAM to use.
4341  * @credit:	pool size.
4342  *
4343  * If base is negative no CAM entries handling will be performed.
4344  * If credit is negative pool operations will always succeed (unlimited pool).
4345  *
4346  */
4347 void ecore_init_credit_pool(struct ecore_credit_pool_obj *p,
4348 					  int base, int credit)
4349 {
4350 	/* Zero the object first */
4351 	ECORE_MEMSET(p, 0, sizeof(*p));
4352 
4353 	/* Set the table to all 1s */
4354 	ECORE_MEMSET(&p->pool_mirror, 0xff, sizeof(p->pool_mirror));
4355 
4356 	/* Init a pool as full */
4357 	ECORE_ATOMIC_SET(&p->credit, credit);
4358 
4359 	/* The total poll size */
4360 	p->pool_sz = credit;
4361 
4362 	p->base_pool_offset = base;
4363 
4364 	/* Commit the change */
4365 	ECORE_SMP_MB();
4366 
4367 	p->check = ecore_credit_pool_check;
4368 
4369 	/* if pool credit is negative - disable the checks */
4370 	if (credit >= 0) {
4371 		p->put      = ecore_credit_pool_put;
4372 		p->get      = ecore_credit_pool_get;
4373 		p->put_entry = ecore_credit_pool_put_entry;
4374 		p->get_entry = ecore_credit_pool_get_entry;
4375 	} else {
4376 		p->put      = ecore_credit_pool_always_TRUE;
4377 		p->get      = ecore_credit_pool_always_TRUE;
4378 		p->put_entry = ecore_credit_pool_put_entry_always_TRUE;
4379 		p->get_entry = ecore_credit_pool_get_entry_always_TRUE;
4380 	}
4381 
4382 	/* If base is negative - disable entries handling */
4383 	if (base < 0) {
4384 		p->put_entry = ecore_credit_pool_put_entry_always_TRUE;
4385 		p->get_entry = ecore_credit_pool_get_entry_always_TRUE;
4386 	}
4387 }
4388 
4389 void ecore_init_mac_credit_pool(struct bxe_softc *sc,
4390 				struct ecore_credit_pool_obj *p, uint8_t func_id,
4391 				uint8_t func_num)
4392 {
4393 /* TODO: this will be defined in consts as well... */
4394 #define ECORE_CAM_SIZE_EMUL 5
4395 
4396 	int cam_sz;
4397 
4398 	if (CHIP_IS_E1(sc)) {
4399 		/* In E1, Multicast is saved in cam... */
4400 		if (!CHIP_REV_IS_SLOW(sc))
4401 			cam_sz = (MAX_MAC_CREDIT_E1 / 2) - ECORE_MAX_MULTICAST;
4402 		else
4403 			cam_sz = ECORE_CAM_SIZE_EMUL - ECORE_MAX_EMUL_MULTI;
4404 
4405 		ecore_init_credit_pool(p, func_id * cam_sz, cam_sz);
4406 
4407 	} else if (CHIP_IS_E1H(sc)) {
4408 		/* CAM credit is equally divided between all active functions
4409 		 * on the PORT!.
4410 		 */
4411 		if ((func_num > 0)) {
4412 			if (!CHIP_REV_IS_SLOW(sc))
4413 				cam_sz = (MAX_MAC_CREDIT_E1H / (2*func_num));
4414 			else
4415 				cam_sz = ECORE_CAM_SIZE_EMUL;
4416 			ecore_init_credit_pool(p, func_id * cam_sz, cam_sz);
4417 		} else {
4418 			/* this should never happen! Block MAC operations. */
4419 			ecore_init_credit_pool(p, 0, 0);
4420 		}
4421 	} else {
4422 		/*
4423 		 * CAM credit is equaly divided between all active functions
4424 		 * on the PATH.
4425 		 */
4426 		if (func_num > 0) {
4427 			if (!CHIP_REV_IS_SLOW(sc))
4428 				cam_sz = PF_MAC_CREDIT_E2(sc, func_num);
4429 			else
4430 				cam_sz = ECORE_CAM_SIZE_EMUL;
4431 
4432 			/* No need for CAM entries handling for 57712 and
4433 			 * newer.
4434 			 */
4435 			ecore_init_credit_pool(p, -1, cam_sz);
4436 		} else {
4437 			/* this should never happen! Block MAC operations. */
4438 			ecore_init_credit_pool(p, 0, 0);
4439 		}
4440 	}
4441 }
4442 
4443 void ecore_init_vlan_credit_pool(struct bxe_softc *sc,
4444 				 struct ecore_credit_pool_obj *p,
4445 				 uint8_t func_id,
4446 				 uint8_t func_num)
4447 {
4448 	if (CHIP_IS_E1x(sc)) {
4449 		/* There is no VLAN credit in HW on 57710 and 57711 only
4450 		 * MAC / MAC-VLAN can be set
4451 		 */
4452 		ecore_init_credit_pool(p, 0, -1);
4453 	} else {
4454 		/* CAM credit is equally divided between all active functions
4455 		 * on the PATH.
4456 		 */
4457 		if (func_num > 0) {
4458 			int credit = PF_VLAN_CREDIT_E2(sc, func_num);
4459 
4460 			ecore_init_credit_pool(p, -1/*unused for E2*/, credit);
4461 		} else
4462 			/* this should never happen! Block VLAN operations. */
4463 			ecore_init_credit_pool(p, 0, 0);
4464 	}
4465 }
4466 
4467 /****************** RSS Configuration ******************/
4468 
4469 /**
4470  * ecore_setup_rss - configure RSS
4471  *
4472  * @sc:		device handle
4473  * @p:		rss configuration
4474  *
4475  * sends on UPDATE ramrod for that matter.
4476  */
4477 static int ecore_setup_rss(struct bxe_softc *sc,
4478 			   struct ecore_config_rss_params *p)
4479 {
4480 	struct ecore_rss_config_obj *o = p->rss_obj;
4481 	struct ecore_raw_obj *r = &o->raw;
4482 	struct eth_rss_update_ramrod_data *data =
4483 		(struct eth_rss_update_ramrod_data *)(r->rdata);
4484 	uint16_t caps = 0;
4485 	uint8_t rss_mode = 0;
4486 	int rc;
4487 
4488 	ECORE_MEMSET(data, 0, sizeof(*data));
4489 
4490 	ECORE_MSG(sc, "Configuring RSS\n");
4491 
4492 	/* Set an echo field */
4493 	data->echo = ECORE_CPU_TO_LE32((r->cid & ECORE_SWCID_MASK) |
4494 				 (r->state << ECORE_SWCID_SHIFT));
4495 
4496 	/* RSS mode */
4497 	if (ECORE_TEST_BIT(ECORE_RSS_MODE_DISABLED, &p->rss_flags))
4498 		rss_mode = ETH_RSS_MODE_DISABLED;
4499 	else if (ECORE_TEST_BIT(ECORE_RSS_MODE_REGULAR, &p->rss_flags))
4500 		rss_mode = ETH_RSS_MODE_REGULAR;
4501 
4502 	data->rss_mode = rss_mode;
4503 
4504 	ECORE_MSG(sc, "rss_mode=%d\n", rss_mode);
4505 
4506 	/* RSS capabilities */
4507 	if (ECORE_TEST_BIT(ECORE_RSS_IPV4, &p->rss_flags))
4508 		caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_CAPABILITY;
4509 
4510 	if (ECORE_TEST_BIT(ECORE_RSS_IPV4_TCP, &p->rss_flags))
4511 		caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_TCP_CAPABILITY;
4512 
4513 	if (ECORE_TEST_BIT(ECORE_RSS_IPV4_UDP, &p->rss_flags))
4514 		caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_UDP_CAPABILITY;
4515 
4516 	if (ECORE_TEST_BIT(ECORE_RSS_IPV6, &p->rss_flags))
4517 		caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_CAPABILITY;
4518 
4519 	if (ECORE_TEST_BIT(ECORE_RSS_IPV6_TCP, &p->rss_flags))
4520 		caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_TCP_CAPABILITY;
4521 
4522 	if (ECORE_TEST_BIT(ECORE_RSS_IPV6_UDP, &p->rss_flags))
4523 		caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_UDP_CAPABILITY;
4524 
4525 	if (ECORE_TEST_BIT(ECORE_RSS_IPV4_VXLAN, &p->rss_flags))
4526 		caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_VXLAN_CAPABILITY;
4527 
4528 	if (ECORE_TEST_BIT(ECORE_RSS_IPV6_VXLAN, &p->rss_flags))
4529 		caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_VXLAN_CAPABILITY;
4530 
4531 	if (ECORE_TEST_BIT(ECORE_RSS_TUNN_INNER_HDRS, &p->rss_flags))
4532 		caps |= ETH_RSS_UPDATE_RAMROD_DATA_TUNN_INNER_HDRS_CAPABILITY;
4533 
4534 	/* RSS keys */
4535 	if (ECORE_TEST_BIT(ECORE_RSS_SET_SRCH, &p->rss_flags)) {
4536 		ECORE_MEMCPY(&data->rss_key[0], &p->rss_key[0],
4537 		       sizeof(data->rss_key));
4538 		caps |= ETH_RSS_UPDATE_RAMROD_DATA_UPDATE_RSS_KEY;
4539 	}
4540 
4541 	data->capabilities = ECORE_CPU_TO_LE16(caps);
4542 
4543 	/* Hashing mask */
4544 	data->rss_result_mask = p->rss_result_mask;
4545 
4546 	/* RSS engine ID */
4547 	data->rss_engine_id = o->engine_id;
4548 
4549 	ECORE_MSG(sc, "rss_engine_id=%d\n", data->rss_engine_id);
4550 
4551 	/* Indirection table */
4552 	ECORE_MEMCPY(data->indirection_table, p->ind_table,
4553 		  T_ETH_INDIRECTION_TABLE_SIZE);
4554 
4555 	/* Remember the last configuration */
4556 	ECORE_MEMCPY(o->ind_table, p->ind_table, T_ETH_INDIRECTION_TABLE_SIZE);
4557 
4558 
4559 	/* No need for an explicit memory barrier here as long as we
4560 	 * ensure the ordering of writing to the SPQ element
4561 	 * and updating of the SPQ producer which involves a memory
4562 	 * read. If the memory read is removed we will have to put a
4563 	 * full memory barrier there (inside ecore_sp_post()).
4564 	 */
4565 
4566 	/* Send a ramrod */
4567 	rc = ecore_sp_post(sc,
4568 			     RAMROD_CMD_ID_ETH_RSS_UPDATE,
4569 			     r->cid,
4570 			     r->rdata_mapping,
4571 			     ETH_CONNECTION_TYPE);
4572 
4573 	if (rc < 0)
4574 		return rc;
4575 
4576 	return ECORE_PENDING;
4577 }
4578 
4579 void ecore_get_rss_ind_table(struct ecore_rss_config_obj *rss_obj,
4580 			     uint8_t *ind_table)
4581 {
4582 	ECORE_MEMCPY(ind_table, rss_obj->ind_table, sizeof(rss_obj->ind_table));
4583 }
4584 
4585 int ecore_config_rss(struct bxe_softc *sc,
4586 		     struct ecore_config_rss_params *p)
4587 {
4588 	int rc;
4589 	struct ecore_rss_config_obj *o = p->rss_obj;
4590 	struct ecore_raw_obj *r = &o->raw;
4591 
4592 	/* Do nothing if only driver cleanup was requested */
4593 	if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
4594 		ECORE_MSG(sc, "Not configuring RSS ramrod_flags=%lx\n",
4595 			  p->ramrod_flags);
4596 		return ECORE_SUCCESS;
4597 	}
4598 
4599 	r->set_pending(r);
4600 
4601 	rc = o->config_rss(sc, p);
4602 	if (rc < 0) {
4603 		r->clear_pending(r);
4604 		return rc;
4605 	}
4606 
4607 	if (ECORE_TEST_BIT(RAMROD_COMP_WAIT, &p->ramrod_flags))
4608 		rc = r->wait_comp(sc, r);
4609 
4610 	return rc;
4611 }
4612 
4613 void ecore_init_rss_config_obj(struct bxe_softc *sc,
4614 			       struct ecore_rss_config_obj *rss_obj,
4615 			       uint8_t cl_id, uint32_t cid, uint8_t func_id, uint8_t engine_id,
4616 			       void *rdata, ecore_dma_addr_t rdata_mapping,
4617 			       int state, unsigned long *pstate,
4618 			       ecore_obj_type type)
4619 {
4620 	ecore_init_raw_obj(&rss_obj->raw, cl_id, cid, func_id, rdata,
4621 			   rdata_mapping, state, pstate, type);
4622 
4623 	rss_obj->engine_id  = engine_id;
4624 	rss_obj->config_rss = ecore_setup_rss;
4625 }
4626 
4627 
4628 /********************** Queue state object ***********************************/
4629 
4630 /**
4631  * ecore_queue_state_change - perform Queue state change transition
4632  *
4633  * @sc:		device handle
4634  * @params:	parameters to perform the transition
4635  *
4636  * returns 0 in case of successfully completed transition, negative error
4637  * code in case of failure, positive (EBUSY) value if there is a completion
4638  * to that is still pending (possible only if RAMROD_COMP_WAIT is
4639  * not set in params->ramrod_flags for asynchronous commands).
4640  *
4641  */
4642 int ecore_queue_state_change(struct bxe_softc *sc,
4643 			     struct ecore_queue_state_params *params)
4644 {
4645 	struct ecore_queue_sp_obj *o = params->q_obj;
4646 	int rc, pending_bit;
4647 	unsigned long *pending = &o->pending;
4648 
4649 	/* Check that the requested transition is legal */
4650 	rc = o->check_transition(sc, o, params);
4651 	if (rc) {
4652 		ECORE_ERR("check transition returned an error. rc %d\n", rc);
4653 		return ECORE_INVAL;
4654 	}
4655 
4656 	/* Set "pending" bit */
4657 	ECORE_MSG(sc, "pending bit was=%lx\n", o->pending);
4658 	pending_bit = o->set_pending(o, params);
4659 	ECORE_MSG(sc, "pending bit now=%lx\n", o->pending);
4660 
4661 	/* Don't send a command if only driver cleanup was requested */
4662 	if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags))
4663 		o->complete_cmd(sc, o, pending_bit);
4664 	else {
4665 		/* Send a ramrod */
4666 		rc = o->send_cmd(sc, params);
4667 		if (rc) {
4668 			o->next_state = ECORE_Q_STATE_MAX;
4669 			ECORE_CLEAR_BIT(pending_bit, pending);
4670 			ECORE_SMP_MB_AFTER_CLEAR_BIT();
4671 			return rc;
4672 		}
4673 
4674 		if (ECORE_TEST_BIT(RAMROD_COMP_WAIT, &params->ramrod_flags)) {
4675 			rc = o->wait_comp(sc, o, pending_bit);
4676 			if (rc)
4677 				return rc;
4678 
4679 			return ECORE_SUCCESS;
4680 		}
4681 	}
4682 
4683 	return ECORE_RET_PENDING(pending_bit, pending);
4684 }
4685 
4686 static int ecore_queue_set_pending(struct ecore_queue_sp_obj *obj,
4687 				   struct ecore_queue_state_params *params)
4688 {
4689 	enum ecore_queue_cmd cmd = params->cmd, bit;
4690 
4691 	/* ACTIVATE and DEACTIVATE commands are implemented on top of
4692 	 * UPDATE command.
4693 	 */
4694 	if ((cmd == ECORE_Q_CMD_ACTIVATE) ||
4695 	    (cmd == ECORE_Q_CMD_DEACTIVATE))
4696 		bit = ECORE_Q_CMD_UPDATE;
4697 	else
4698 		bit = cmd;
4699 
4700 	ECORE_SET_BIT(bit, &obj->pending);
4701 	return bit;
4702 }
4703 
4704 static int ecore_queue_wait_comp(struct bxe_softc *sc,
4705 				 struct ecore_queue_sp_obj *o,
4706 				 enum ecore_queue_cmd cmd)
4707 {
4708 	return ecore_state_wait(sc, cmd, &o->pending);
4709 }
4710 
4711 /**
4712  * ecore_queue_comp_cmd - complete the state change command.
4713  *
4714  * @sc:		device handle
4715  * @o:
4716  * @cmd:
4717  *
4718  * Checks that the arrived completion is expected.
4719  */
4720 static int ecore_queue_comp_cmd(struct bxe_softc *sc,
4721 				struct ecore_queue_sp_obj *o,
4722 				enum ecore_queue_cmd cmd)
4723 {
4724 	unsigned long cur_pending = o->pending;
4725 
4726 	if (!ECORE_TEST_AND_CLEAR_BIT(cmd, &cur_pending)) {
4727 		ECORE_ERR("Bad MC reply %d for queue %d in state %d pending 0x%lx, next_state %d\n",
4728 			  cmd, o->cids[ECORE_PRIMARY_CID_INDEX],
4729 			  o->state, cur_pending, o->next_state);
4730 		return ECORE_INVAL;
4731 	}
4732 
4733 	if (o->next_tx_only >= o->max_cos)
4734 		/* >= because tx only must always be smaller than cos since the
4735 		 * primary connection supports COS 0
4736 		 */
4737 		ECORE_ERR("illegal value for next tx_only: %d. max cos was %d",
4738 			  o->next_tx_only, o->max_cos);
4739 
4740 	ECORE_MSG(sc,
4741 		  "Completing command %d for queue %d, setting state to %d\n",
4742 		  cmd, o->cids[ECORE_PRIMARY_CID_INDEX], o->next_state);
4743 
4744 	if (o->next_tx_only)  /* print num tx-only if any exist */
4745 		ECORE_MSG(sc, "primary cid %d: num tx-only cons %d\n",
4746 			  o->cids[ECORE_PRIMARY_CID_INDEX], o->next_tx_only);
4747 
4748 	o->state = o->next_state;
4749 	o->num_tx_only = o->next_tx_only;
4750 	o->next_state = ECORE_Q_STATE_MAX;
4751 
4752 	/* It's important that o->state and o->next_state are
4753 	 * updated before o->pending.
4754 	 */
4755 	wmb();
4756 
4757 	ECORE_CLEAR_BIT(cmd, &o->pending);
4758 	ECORE_SMP_MB_AFTER_CLEAR_BIT();
4759 
4760 	return ECORE_SUCCESS;
4761 }
4762 
4763 static void ecore_q_fill_setup_data_e2(struct bxe_softc *sc,
4764 				struct ecore_queue_state_params *cmd_params,
4765 				struct client_init_ramrod_data *data)
4766 {
4767 	struct ecore_queue_setup_params *params = &cmd_params->params.setup;
4768 
4769 	/* Rx data */
4770 
4771 	/* IPv6 TPA supported for E2 and above only */
4772 	data->rx.tpa_en |= ECORE_TEST_BIT(ECORE_Q_FLG_TPA_IPV6,
4773 					  &params->flags) *
4774 				CLIENT_INIT_RX_DATA_TPA_EN_IPV6;
4775 }
4776 
4777 static void ecore_q_fill_init_general_data(struct bxe_softc *sc,
4778 				struct ecore_queue_sp_obj *o,
4779 				struct ecore_general_setup_params *params,
4780 				struct client_init_general_data *gen_data,
4781 				unsigned long *flags)
4782 {
4783 	gen_data->client_id = o->cl_id;
4784 
4785 	if (ECORE_TEST_BIT(ECORE_Q_FLG_STATS, flags)) {
4786 		gen_data->statistics_counter_id =
4787 					params->stat_id;
4788 		gen_data->statistics_en_flg = 1;
4789 		gen_data->statistics_zero_flg =
4790 			ECORE_TEST_BIT(ECORE_Q_FLG_ZERO_STATS, flags);
4791 	} else
4792 		gen_data->statistics_counter_id =
4793 					DISABLE_STATISTIC_COUNTER_ID_VALUE;
4794 
4795 	gen_data->is_fcoe_flg = ECORE_TEST_BIT(ECORE_Q_FLG_FCOE,
4796 						   flags);
4797 	gen_data->activate_flg = ECORE_TEST_BIT(ECORE_Q_FLG_ACTIVE,
4798 						    flags);
4799 	gen_data->sp_client_id = params->spcl_id;
4800 	gen_data->mtu = ECORE_CPU_TO_LE16(params->mtu);
4801 	gen_data->func_id = o->func_id;
4802 
4803 	gen_data->cos = params->cos;
4804 
4805 	gen_data->traffic_type =
4806 		ECORE_TEST_BIT(ECORE_Q_FLG_FCOE, flags) ?
4807 		LLFC_TRAFFIC_TYPE_FCOE : LLFC_TRAFFIC_TYPE_NW;
4808 
4809 	gen_data->fp_hsi_ver = params->fp_hsi;
4810 
4811 	ECORE_MSG(sc, "flags: active %d, cos %d, stats en %d\n",
4812 		  gen_data->activate_flg, gen_data->cos, gen_data->statistics_en_flg);
4813 }
4814 
4815 static void ecore_q_fill_init_tx_data(struct ecore_queue_sp_obj *o,
4816 				struct ecore_txq_setup_params *params,
4817 				struct client_init_tx_data *tx_data,
4818 				unsigned long *flags)
4819 {
4820 	tx_data->enforce_security_flg =
4821 		ECORE_TEST_BIT(ECORE_Q_FLG_TX_SEC, flags);
4822 	tx_data->default_vlan =
4823 		ECORE_CPU_TO_LE16(params->default_vlan);
4824 	tx_data->default_vlan_flg =
4825 		ECORE_TEST_BIT(ECORE_Q_FLG_DEF_VLAN, flags);
4826 	tx_data->tx_switching_flg =
4827 		ECORE_TEST_BIT(ECORE_Q_FLG_TX_SWITCH, flags);
4828 	tx_data->anti_spoofing_flg =
4829 		ECORE_TEST_BIT(ECORE_Q_FLG_ANTI_SPOOF, flags);
4830 	tx_data->force_default_pri_flg =
4831 		ECORE_TEST_BIT(ECORE_Q_FLG_FORCE_DEFAULT_PRI, flags);
4832 	tx_data->refuse_outband_vlan_flg =
4833 		ECORE_TEST_BIT(ECORE_Q_FLG_REFUSE_OUTBAND_VLAN, flags);
4834 	tx_data->tunnel_lso_inc_ip_id =
4835 		ECORE_TEST_BIT(ECORE_Q_FLG_TUN_INC_INNER_IP_ID, flags);
4836 	tx_data->tunnel_non_lso_pcsum_location =
4837 		ECORE_TEST_BIT(ECORE_Q_FLG_PCSUM_ON_PKT, flags) ? CSUM_ON_PKT :
4838 							    CSUM_ON_BD;
4839 
4840 	tx_data->tx_status_block_id = params->fw_sb_id;
4841 	tx_data->tx_sb_index_number = params->sb_cq_index;
4842 	tx_data->tss_leading_client_id = params->tss_leading_cl_id;
4843 
4844 	tx_data->tx_bd_page_base.lo =
4845 		ECORE_CPU_TO_LE32(U64_LO(params->dscr_map));
4846 	tx_data->tx_bd_page_base.hi =
4847 		ECORE_CPU_TO_LE32(U64_HI(params->dscr_map));
4848 
4849 	/* Don't configure any Tx switching mode during queue SETUP */
4850 	tx_data->state = 0;
4851 }
4852 
4853 static void ecore_q_fill_init_pause_data(struct ecore_queue_sp_obj *o,
4854 				struct rxq_pause_params *params,
4855 				struct client_init_rx_data *rx_data)
4856 {
4857 	/* flow control data */
4858 	rx_data->cqe_pause_thr_low = ECORE_CPU_TO_LE16(params->rcq_th_lo);
4859 	rx_data->cqe_pause_thr_high = ECORE_CPU_TO_LE16(params->rcq_th_hi);
4860 	rx_data->bd_pause_thr_low = ECORE_CPU_TO_LE16(params->bd_th_lo);
4861 	rx_data->bd_pause_thr_high = ECORE_CPU_TO_LE16(params->bd_th_hi);
4862 	rx_data->sge_pause_thr_low = ECORE_CPU_TO_LE16(params->sge_th_lo);
4863 	rx_data->sge_pause_thr_high = ECORE_CPU_TO_LE16(params->sge_th_hi);
4864 	rx_data->rx_cos_mask = ECORE_CPU_TO_LE16(params->pri_map);
4865 }
4866 
4867 static void ecore_q_fill_init_rx_data(struct ecore_queue_sp_obj *o,
4868 				struct ecore_rxq_setup_params *params,
4869 				struct client_init_rx_data *rx_data,
4870 				unsigned long *flags)
4871 {
4872 	rx_data->tpa_en = ECORE_TEST_BIT(ECORE_Q_FLG_TPA, flags) *
4873 				CLIENT_INIT_RX_DATA_TPA_EN_IPV4;
4874 	rx_data->tpa_en |= ECORE_TEST_BIT(ECORE_Q_FLG_TPA_GRO, flags) *
4875 				CLIENT_INIT_RX_DATA_TPA_MODE;
4876 	rx_data->vmqueue_mode_en_flg = 0;
4877 
4878 	rx_data->extra_data_over_sgl_en_flg =
4879 		ECORE_TEST_BIT(ECORE_Q_FLG_OOO, flags);
4880 	rx_data->cache_line_alignment_log_size =
4881 		params->cache_line_log;
4882 	rx_data->enable_dynamic_hc =
4883 		ECORE_TEST_BIT(ECORE_Q_FLG_DHC, flags);
4884 	rx_data->max_sges_for_packet = params->max_sges_pkt;
4885 	rx_data->client_qzone_id = params->cl_qzone_id;
4886 	rx_data->max_agg_size = ECORE_CPU_TO_LE16(params->tpa_agg_sz);
4887 
4888 	/* Always start in DROP_ALL mode */
4889 	rx_data->state = ECORE_CPU_TO_LE16(CLIENT_INIT_RX_DATA_UCAST_DROP_ALL |
4890 				     CLIENT_INIT_RX_DATA_MCAST_DROP_ALL);
4891 
4892 	/* We don't set drop flags */
4893 	rx_data->drop_ip_cs_err_flg = 0;
4894 	rx_data->drop_tcp_cs_err_flg = 0;
4895 	rx_data->drop_ttl0_flg = 0;
4896 	rx_data->drop_udp_cs_err_flg = 0;
4897 	rx_data->inner_vlan_removal_enable_flg =
4898 		ECORE_TEST_BIT(ECORE_Q_FLG_VLAN, flags);
4899 	rx_data->outer_vlan_removal_enable_flg =
4900 		ECORE_TEST_BIT(ECORE_Q_FLG_OV, flags);
4901 	rx_data->status_block_id = params->fw_sb_id;
4902 	rx_data->rx_sb_index_number = params->sb_cq_index;
4903 	rx_data->max_tpa_queues = params->max_tpa_queues;
4904 	rx_data->max_bytes_on_bd = ECORE_CPU_TO_LE16(params->buf_sz);
4905 	rx_data->sge_buff_size = ECORE_CPU_TO_LE16(params->sge_buf_sz);
4906 	rx_data->bd_page_base.lo =
4907 		ECORE_CPU_TO_LE32(U64_LO(params->dscr_map));
4908 	rx_data->bd_page_base.hi =
4909 		ECORE_CPU_TO_LE32(U64_HI(params->dscr_map));
4910 	rx_data->sge_page_base.lo =
4911 		ECORE_CPU_TO_LE32(U64_LO(params->sge_map));
4912 	rx_data->sge_page_base.hi =
4913 		ECORE_CPU_TO_LE32(U64_HI(params->sge_map));
4914 	rx_data->cqe_page_base.lo =
4915 		ECORE_CPU_TO_LE32(U64_LO(params->rcq_map));
4916 	rx_data->cqe_page_base.hi =
4917 		ECORE_CPU_TO_LE32(U64_HI(params->rcq_map));
4918 	rx_data->is_leading_rss = ECORE_TEST_BIT(ECORE_Q_FLG_LEADING_RSS,
4919 						 flags);
4920 
4921 	if (ECORE_TEST_BIT(ECORE_Q_FLG_MCAST, flags)) {
4922 		rx_data->approx_mcast_engine_id = params->mcast_engine_id;
4923 		rx_data->is_approx_mcast = 1;
4924 	}
4925 
4926 	rx_data->rss_engine_id = params->rss_engine_id;
4927 
4928 	/* silent vlan removal */
4929 	rx_data->silent_vlan_removal_flg =
4930 		ECORE_TEST_BIT(ECORE_Q_FLG_SILENT_VLAN_REM, flags);
4931 	rx_data->silent_vlan_value =
4932 		ECORE_CPU_TO_LE16(params->silent_removal_value);
4933 	rx_data->silent_vlan_mask =
4934 		ECORE_CPU_TO_LE16(params->silent_removal_mask);
4935 }
4936 
4937 /* initialize the general, tx and rx parts of a queue object */
4938 static void ecore_q_fill_setup_data_cmn(struct bxe_softc *sc,
4939 				struct ecore_queue_state_params *cmd_params,
4940 				struct client_init_ramrod_data *data)
4941 {
4942 	ecore_q_fill_init_general_data(sc, cmd_params->q_obj,
4943 				       &cmd_params->params.setup.gen_params,
4944 				       &data->general,
4945 				       &cmd_params->params.setup.flags);
4946 
4947 	ecore_q_fill_init_tx_data(cmd_params->q_obj,
4948 				  &cmd_params->params.setup.txq_params,
4949 				  &data->tx,
4950 				  &cmd_params->params.setup.flags);
4951 
4952 	ecore_q_fill_init_rx_data(cmd_params->q_obj,
4953 				  &cmd_params->params.setup.rxq_params,
4954 				  &data->rx,
4955 				  &cmd_params->params.setup.flags);
4956 
4957 	ecore_q_fill_init_pause_data(cmd_params->q_obj,
4958 				     &cmd_params->params.setup.pause_params,
4959 				     &data->rx);
4960 }
4961 
4962 /* initialize the general and tx parts of a tx-only queue object */
4963 static void ecore_q_fill_setup_tx_only(struct bxe_softc *sc,
4964 				struct ecore_queue_state_params *cmd_params,
4965 				struct tx_queue_init_ramrod_data *data)
4966 {
4967 	ecore_q_fill_init_general_data(sc, cmd_params->q_obj,
4968 				       &cmd_params->params.tx_only.gen_params,
4969 				       &data->general,
4970 				       &cmd_params->params.tx_only.flags);
4971 
4972 	ecore_q_fill_init_tx_data(cmd_params->q_obj,
4973 				  &cmd_params->params.tx_only.txq_params,
4974 				  &data->tx,
4975 				  &cmd_params->params.tx_only.flags);
4976 
4977 	ECORE_MSG(sc, "cid %d, tx bd page lo %x hi %x",
4978 		  cmd_params->q_obj->cids[0],
4979 		  data->tx.tx_bd_page_base.lo,
4980 		  data->tx.tx_bd_page_base.hi);
4981 }
4982 
4983 /**
4984  * ecore_q_init - init HW/FW queue
4985  *
4986  * @sc:		device handle
4987  * @params:
4988  *
4989  * HW/FW initial Queue configuration:
4990  *      - HC: Rx and Tx
4991  *      - CDU context validation
4992  *
4993  */
4994 static inline int ecore_q_init(struct bxe_softc *sc,
4995 			       struct ecore_queue_state_params *params)
4996 {
4997 	struct ecore_queue_sp_obj *o = params->q_obj;
4998 	struct ecore_queue_init_params *init = &params->params.init;
4999 	uint16_t hc_usec;
5000 	uint8_t cos;
5001 
5002 	/* Tx HC configuration */
5003 	if (ECORE_TEST_BIT(ECORE_Q_TYPE_HAS_TX, &o->type) &&
5004 	    ECORE_TEST_BIT(ECORE_Q_FLG_HC, &init->tx.flags)) {
5005 		hc_usec = init->tx.hc_rate ? 1000000 / init->tx.hc_rate : 0;
5006 
5007 		ECORE_UPDATE_COALESCE_SB_INDEX(sc, init->tx.fw_sb_id,
5008 			init->tx.sb_cq_index,
5009 			!ECORE_TEST_BIT(ECORE_Q_FLG_HC_EN, &init->tx.flags),
5010 			hc_usec);
5011 	}
5012 
5013 	/* Rx HC configuration */
5014 	if (ECORE_TEST_BIT(ECORE_Q_TYPE_HAS_RX, &o->type) &&
5015 	    ECORE_TEST_BIT(ECORE_Q_FLG_HC, &init->rx.flags)) {
5016 		hc_usec = init->rx.hc_rate ? 1000000 / init->rx.hc_rate : 0;
5017 
5018 		ECORE_UPDATE_COALESCE_SB_INDEX(sc, init->rx.fw_sb_id,
5019 			init->rx.sb_cq_index,
5020 			!ECORE_TEST_BIT(ECORE_Q_FLG_HC_EN, &init->rx.flags),
5021 			hc_usec);
5022 	}
5023 
5024 	/* Set CDU context validation values */
5025 	for (cos = 0; cos < o->max_cos; cos++) {
5026 		ECORE_MSG(sc, "setting context validation. cid %d, cos %d\n",
5027 			  o->cids[cos], cos);
5028 		ECORE_MSG(sc, "context pointer %p\n", init->cxts[cos]);
5029 		ECORE_SET_CTX_VALIDATION(sc, init->cxts[cos], o->cids[cos]);
5030 	}
5031 
5032 	/* As no ramrod is sent, complete the command immediately  */
5033 	o->complete_cmd(sc, o, ECORE_Q_CMD_INIT);
5034 
5035 	ECORE_MMIOWB();
5036 	ECORE_SMP_MB();
5037 
5038 	return ECORE_SUCCESS;
5039 }
5040 
5041 static inline int ecore_q_send_setup_e1x(struct bxe_softc *sc,
5042 					struct ecore_queue_state_params *params)
5043 {
5044 	struct ecore_queue_sp_obj *o = params->q_obj;
5045 	struct client_init_ramrod_data *rdata =
5046 		(struct client_init_ramrod_data *)o->rdata;
5047 	ecore_dma_addr_t data_mapping = o->rdata_mapping;
5048 	int ramrod = RAMROD_CMD_ID_ETH_CLIENT_SETUP;
5049 
5050 	/* Clear the ramrod data */
5051 	ECORE_MEMSET(rdata, 0, sizeof(*rdata));
5052 
5053 	/* Fill the ramrod data */
5054 	ecore_q_fill_setup_data_cmn(sc, params, rdata);
5055 
5056 	/* No need for an explicit memory barrier here as long as we
5057 	 * ensure the ordering of writing to the SPQ element
5058 	 * and updating of the SPQ producer which involves a memory
5059 	 * read. If the memory read is removed we will have to put a
5060 	 * full memory barrier there (inside ecore_sp_post()).
5061 	 */
5062 	return ecore_sp_post(sc,
5063 			     ramrod,
5064 			     o->cids[ECORE_PRIMARY_CID_INDEX],
5065 			     data_mapping,
5066 			     ETH_CONNECTION_TYPE);
5067 }
5068 
5069 static inline int ecore_q_send_setup_e2(struct bxe_softc *sc,
5070 					struct ecore_queue_state_params *params)
5071 {
5072 	struct ecore_queue_sp_obj *o = params->q_obj;
5073 	struct client_init_ramrod_data *rdata =
5074 		(struct client_init_ramrod_data *)o->rdata;
5075 	ecore_dma_addr_t data_mapping = o->rdata_mapping;
5076 	int ramrod = RAMROD_CMD_ID_ETH_CLIENT_SETUP;
5077 
5078 	/* Clear the ramrod data */
5079 	ECORE_MEMSET(rdata, 0, sizeof(*rdata));
5080 
5081 	/* Fill the ramrod data */
5082 	ecore_q_fill_setup_data_cmn(sc, params, rdata);
5083 	ecore_q_fill_setup_data_e2(sc, params, rdata);
5084 
5085 	/* No need for an explicit memory barrier here as long as we
5086 	 * ensure the ordering of writing to the SPQ element
5087 	 * and updating of the SPQ producer which involves a memory
5088 	 * read. If the memory read is removed we will have to put a
5089 	 * full memory barrier there (inside ecore_sp_post()).
5090 	 */
5091 	return ecore_sp_post(sc,
5092 			     ramrod,
5093 			     o->cids[ECORE_PRIMARY_CID_INDEX],
5094 			     data_mapping,
5095 			     ETH_CONNECTION_TYPE);
5096 }
5097 
5098 static inline int ecore_q_send_setup_tx_only(struct bxe_softc *sc,
5099 				  struct ecore_queue_state_params *params)
5100 {
5101 	struct ecore_queue_sp_obj *o = params->q_obj;
5102 	struct tx_queue_init_ramrod_data *rdata =
5103 		(struct tx_queue_init_ramrod_data *)o->rdata;
5104 	ecore_dma_addr_t data_mapping = o->rdata_mapping;
5105 	int ramrod = RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP;
5106 	struct ecore_queue_setup_tx_only_params *tx_only_params =
5107 		&params->params.tx_only;
5108 	uint8_t cid_index = tx_only_params->cid_index;
5109 
5110 	if (ECORE_TEST_BIT(ECORE_Q_TYPE_FWD, &o->type))
5111 		ramrod = RAMROD_CMD_ID_ETH_FORWARD_SETUP;
5112 	ECORE_MSG(sc, "sending forward tx-only ramrod");
5113 
5114 	if (cid_index >= o->max_cos) {
5115 		ECORE_ERR("queue[%d]: cid_index (%d) is out of range\n",
5116 			  o->cl_id, cid_index);
5117 		return ECORE_INVAL;
5118 	}
5119 
5120 	ECORE_MSG(sc, "parameters received: cos: %d sp-id: %d\n",
5121 		  tx_only_params->gen_params.cos,
5122 		  tx_only_params->gen_params.spcl_id);
5123 
5124 	/* Clear the ramrod data */
5125 	ECORE_MEMSET(rdata, 0, sizeof(*rdata));
5126 
5127 	/* Fill the ramrod data */
5128 	ecore_q_fill_setup_tx_only(sc, params, rdata);
5129 
5130 	ECORE_MSG(sc, "sending tx-only ramrod: cid %d, client-id %d, sp-client id %d, cos %d\n",
5131 		  o->cids[cid_index], rdata->general.client_id,
5132 		  rdata->general.sp_client_id, rdata->general.cos);
5133 
5134 	/* No need for an explicit memory barrier here as long as we
5135 	 * ensure the ordering of writing to the SPQ element
5136 	 * and updating of the SPQ producer which involves a memory
5137 	 * read. If the memory read is removed we will have to put a
5138 	 * full memory barrier there (inside ecore_sp_post()).
5139 	 */
5140 	return ecore_sp_post(sc, ramrod, o->cids[cid_index],
5141 			     data_mapping, ETH_CONNECTION_TYPE);
5142 }
5143 
5144 static void ecore_q_fill_update_data(struct bxe_softc *sc,
5145 				     struct ecore_queue_sp_obj *obj,
5146 				     struct ecore_queue_update_params *params,
5147 				     struct client_update_ramrod_data *data)
5148 {
5149 	/* Client ID of the client to update */
5150 	data->client_id = obj->cl_id;
5151 
5152 	/* Function ID of the client to update */
5153 	data->func_id = obj->func_id;
5154 
5155 	/* Default VLAN value */
5156 	data->default_vlan = ECORE_CPU_TO_LE16(params->def_vlan);
5157 
5158 	/* Inner VLAN stripping */
5159 	data->inner_vlan_removal_enable_flg =
5160 		ECORE_TEST_BIT(ECORE_Q_UPDATE_IN_VLAN_REM,
5161 			       &params->update_flags);
5162 	data->inner_vlan_removal_change_flg =
5163 		ECORE_TEST_BIT(ECORE_Q_UPDATE_IN_VLAN_REM_CHNG,
5164 		       &params->update_flags);
5165 
5166 	/* Outer VLAN stripping */
5167 	data->outer_vlan_removal_enable_flg =
5168 		ECORE_TEST_BIT(ECORE_Q_UPDATE_OUT_VLAN_REM,
5169 			       &params->update_flags);
5170 	data->outer_vlan_removal_change_flg =
5171 		ECORE_TEST_BIT(ECORE_Q_UPDATE_OUT_VLAN_REM_CHNG,
5172 		       &params->update_flags);
5173 
5174 	/* Drop packets that have source MAC that doesn't belong to this
5175 	 * Queue.
5176 	 */
5177 	data->anti_spoofing_enable_flg =
5178 		ECORE_TEST_BIT(ECORE_Q_UPDATE_ANTI_SPOOF,
5179 			       &params->update_flags);
5180 	data->anti_spoofing_change_flg =
5181 		ECORE_TEST_BIT(ECORE_Q_UPDATE_ANTI_SPOOF_CHNG,
5182 		       &params->update_flags);
5183 
5184 	/* Activate/Deactivate */
5185 	data->activate_flg =
5186 		ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE, &params->update_flags);
5187 	data->activate_change_flg =
5188 		ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE_CHNG,
5189 			       &params->update_flags);
5190 
5191 	/* Enable default VLAN */
5192 	data->default_vlan_enable_flg =
5193 		ECORE_TEST_BIT(ECORE_Q_UPDATE_DEF_VLAN_EN,
5194 			       &params->update_flags);
5195 	data->default_vlan_change_flg =
5196 		ECORE_TEST_BIT(ECORE_Q_UPDATE_DEF_VLAN_EN_CHNG,
5197 		       &params->update_flags);
5198 
5199 	/* silent vlan removal */
5200 	data->silent_vlan_change_flg =
5201 		ECORE_TEST_BIT(ECORE_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5202 			       &params->update_flags);
5203 	data->silent_vlan_removal_flg =
5204 		ECORE_TEST_BIT(ECORE_Q_UPDATE_SILENT_VLAN_REM,
5205 			       &params->update_flags);
5206 	data->silent_vlan_value = ECORE_CPU_TO_LE16(params->silent_removal_value);
5207 	data->silent_vlan_mask = ECORE_CPU_TO_LE16(params->silent_removal_mask);
5208 
5209 	/* tx switching */
5210 	data->tx_switching_flg =
5211 		ECORE_TEST_BIT(ECORE_Q_UPDATE_TX_SWITCHING,
5212 			       &params->update_flags);
5213 	data->tx_switching_change_flg =
5214 		ECORE_TEST_BIT(ECORE_Q_UPDATE_TX_SWITCHING_CHNG,
5215 			       &params->update_flags);
5216 
5217 	/* PTP */
5218 	data->handle_ptp_pkts_flg =
5219 		ECORE_TEST_BIT(ECORE_Q_UPDATE_PTP_PKTS,
5220 			       &params->update_flags);
5221 	data->handle_ptp_pkts_change_flg =
5222 		ECORE_TEST_BIT(ECORE_Q_UPDATE_PTP_PKTS_CHNG,
5223 			       &params->update_flags);
5224 }
5225 
5226 static inline int ecore_q_send_update(struct bxe_softc *sc,
5227 				      struct ecore_queue_state_params *params)
5228 {
5229 	struct ecore_queue_sp_obj *o = params->q_obj;
5230 	struct client_update_ramrod_data *rdata =
5231 		(struct client_update_ramrod_data *)o->rdata;
5232 	ecore_dma_addr_t data_mapping = o->rdata_mapping;
5233 	struct ecore_queue_update_params *update_params =
5234 		&params->params.update;
5235 	uint8_t cid_index = update_params->cid_index;
5236 
5237 	if (cid_index >= o->max_cos) {
5238 		ECORE_ERR("queue[%d]: cid_index (%d) is out of range\n",
5239 			  o->cl_id, cid_index);
5240 		return ECORE_INVAL;
5241 	}
5242 
5243 	/* Clear the ramrod data */
5244 	ECORE_MEMSET(rdata, 0, sizeof(*rdata));
5245 
5246 	/* Fill the ramrod data */
5247 	ecore_q_fill_update_data(sc, o, update_params, rdata);
5248 
5249 	/* No need for an explicit memory barrier here as long as we
5250 	 * ensure the ordering of writing to the SPQ element
5251 	 * and updating of the SPQ producer which involves a memory
5252 	 * read. If the memory read is removed we will have to put a
5253 	 * full memory barrier there (inside ecore_sp_post()).
5254 	 */
5255 	return ecore_sp_post(sc, RAMROD_CMD_ID_ETH_CLIENT_UPDATE,
5256 			     o->cids[cid_index], data_mapping,
5257 			     ETH_CONNECTION_TYPE);
5258 }
5259 
5260 /**
5261  * ecore_q_send_deactivate - send DEACTIVATE command
5262  *
5263  * @sc:		device handle
5264  * @params:
5265  *
5266  * implemented using the UPDATE command.
5267  */
5268 static inline int ecore_q_send_deactivate(struct bxe_softc *sc,
5269 					struct ecore_queue_state_params *params)
5270 {
5271 	struct ecore_queue_update_params *update = &params->params.update;
5272 
5273 	ECORE_MEMSET(update, 0, sizeof(*update));
5274 
5275 	ECORE_SET_BIT_NA(ECORE_Q_UPDATE_ACTIVATE_CHNG, &update->update_flags);
5276 
5277 	return ecore_q_send_update(sc, params);
5278 }
5279 
5280 /**
5281  * ecore_q_send_activate - send ACTIVATE command
5282  *
5283  * @sc:		device handle
5284  * @params:
5285  *
5286  * implemented using the UPDATE command.
5287  */
5288 static inline int ecore_q_send_activate(struct bxe_softc *sc,
5289 					struct ecore_queue_state_params *params)
5290 {
5291 	struct ecore_queue_update_params *update = &params->params.update;
5292 
5293 	ECORE_MEMSET(update, 0, sizeof(*update));
5294 
5295 	ECORE_SET_BIT_NA(ECORE_Q_UPDATE_ACTIVATE, &update->update_flags);
5296 	ECORE_SET_BIT_NA(ECORE_Q_UPDATE_ACTIVATE_CHNG, &update->update_flags);
5297 
5298 	return ecore_q_send_update(sc, params);
5299 }
5300 
5301 static void ecore_q_fill_update_tpa_data(struct bxe_softc *sc,
5302 				struct ecore_queue_sp_obj *obj,
5303 				struct ecore_queue_update_tpa_params *params,
5304 				struct tpa_update_ramrod_data *data)
5305 {
5306 	data->client_id = obj->cl_id;
5307 	data->complete_on_both_clients = params->complete_on_both_clients;
5308 	data->dont_verify_rings_pause_thr_flg =
5309 		params->dont_verify_thr;
5310 	data->max_agg_size = ECORE_CPU_TO_LE16(params->max_agg_sz);
5311 	data->max_sges_for_packet = params->max_sges_pkt;
5312 	data->max_tpa_queues = params->max_tpa_queues;
5313 	data->sge_buff_size = ECORE_CPU_TO_LE16(params->sge_buff_sz);
5314 	data->sge_page_base_hi = ECORE_CPU_TO_LE32(U64_HI(params->sge_map));
5315 	data->sge_page_base_lo = ECORE_CPU_TO_LE32(U64_LO(params->sge_map));
5316 	data->sge_pause_thr_high = ECORE_CPU_TO_LE16(params->sge_pause_thr_high);
5317 	data->sge_pause_thr_low = ECORE_CPU_TO_LE16(params->sge_pause_thr_low);
5318 	data->tpa_mode = params->tpa_mode;
5319 	data->update_ipv4 = params->update_ipv4;
5320 	data->update_ipv6 = params->update_ipv6;
5321 }
5322 
5323 static inline int ecore_q_send_update_tpa(struct bxe_softc *sc,
5324 					struct ecore_queue_state_params *params)
5325 {
5326 	struct ecore_queue_sp_obj *o = params->q_obj;
5327 	struct tpa_update_ramrod_data *rdata =
5328 		(struct tpa_update_ramrod_data *)o->rdata;
5329 	ecore_dma_addr_t data_mapping = o->rdata_mapping;
5330 	struct ecore_queue_update_tpa_params *update_tpa_params =
5331 		&params->params.update_tpa;
5332 	uint16_t type;
5333 
5334 	/* Clear the ramrod data */
5335 	ECORE_MEMSET(rdata, 0, sizeof(*rdata));
5336 
5337 	/* Fill the ramrod data */
5338 	ecore_q_fill_update_tpa_data(sc, o, update_tpa_params, rdata);
5339 
5340 	/* Add the function id inside the type, so that sp post function
5341 	 * doesn't automatically add the PF func-id, this is required
5342 	 * for operations done by PFs on behalf of their VFs
5343 	 */
5344 	type = ETH_CONNECTION_TYPE |
5345 		((o->func_id) << SPE_HDR_T_FUNCTION_ID_SHIFT);
5346 
5347 	/* No need for an explicit memory barrier here as long as we
5348 	 * ensure the ordering of writing to the SPQ element
5349 	 * and updating of the SPQ producer which involves a memory
5350 	 * read. If the memory read is removed we will have to put a
5351 	 * full memory barrier there (inside ecore_sp_post()).
5352 	 */
5353 	return ecore_sp_post(sc, RAMROD_CMD_ID_ETH_TPA_UPDATE,
5354 			     o->cids[ECORE_PRIMARY_CID_INDEX],
5355 			     data_mapping, type);
5356 }
5357 
5358 static inline int ecore_q_send_halt(struct bxe_softc *sc,
5359 				    struct ecore_queue_state_params *params)
5360 {
5361 	struct ecore_queue_sp_obj *o = params->q_obj;
5362 
5363 	/* build eth_halt_ramrod_data.client_id in a big-endian friendly way */
5364 	ecore_dma_addr_t data_mapping = 0;
5365 	data_mapping = (ecore_dma_addr_t)o->cl_id;
5366 
5367 	/* No need for an explicit memory barrier here as long as we
5368 	 * ensure the ordering of writing to the SPQ element
5369 	 * and updating of the SPQ producer which involves a memory
5370 	 * read. If the memory read is removed we will have to put a
5371 	 * full memory barrier there (inside ecore_sp_post()).
5372 	 */
5373 	return ecore_sp_post(sc,
5374 			     RAMROD_CMD_ID_ETH_HALT,
5375 			     o->cids[ECORE_PRIMARY_CID_INDEX],
5376 			     data_mapping,
5377 			     ETH_CONNECTION_TYPE);
5378 }
5379 
5380 static inline int ecore_q_send_cfc_del(struct bxe_softc *sc,
5381 				       struct ecore_queue_state_params *params)
5382 {
5383 	struct ecore_queue_sp_obj *o = params->q_obj;
5384 	uint8_t cid_idx = params->params.cfc_del.cid_index;
5385 
5386 	if (cid_idx >= o->max_cos) {
5387 		ECORE_ERR("queue[%d]: cid_index (%d) is out of range\n",
5388 			  o->cl_id, cid_idx);
5389 		return ECORE_INVAL;
5390 	}
5391 
5392 	return ecore_sp_post(sc, RAMROD_CMD_ID_COMMON_CFC_DEL,
5393 			     o->cids[cid_idx], 0,
5394 			     NONE_CONNECTION_TYPE);
5395 }
5396 
5397 static inline int ecore_q_send_terminate(struct bxe_softc *sc,
5398 					struct ecore_queue_state_params *params)
5399 {
5400 	struct ecore_queue_sp_obj *o = params->q_obj;
5401 	uint8_t cid_index = params->params.terminate.cid_index;
5402 
5403 	if (cid_index >= o->max_cos) {
5404 		ECORE_ERR("queue[%d]: cid_index (%d) is out of range\n",
5405 			  o->cl_id, cid_index);
5406 		return ECORE_INVAL;
5407 	}
5408 
5409 	return ecore_sp_post(sc, RAMROD_CMD_ID_ETH_TERMINATE,
5410 			     o->cids[cid_index], 0,
5411 			     ETH_CONNECTION_TYPE);
5412 }
5413 
5414 static inline int ecore_q_send_empty(struct bxe_softc *sc,
5415 				     struct ecore_queue_state_params *params)
5416 {
5417 	struct ecore_queue_sp_obj *o = params->q_obj;
5418 
5419 	return ecore_sp_post(sc, RAMROD_CMD_ID_ETH_EMPTY,
5420 			     o->cids[ECORE_PRIMARY_CID_INDEX], 0,
5421 			     ETH_CONNECTION_TYPE);
5422 }
5423 
5424 static inline int ecore_queue_send_cmd_cmn(struct bxe_softc *sc,
5425 					struct ecore_queue_state_params *params)
5426 {
5427 	switch (params->cmd) {
5428 	case ECORE_Q_CMD_INIT:
5429 		return ecore_q_init(sc, params);
5430 	case ECORE_Q_CMD_SETUP_TX_ONLY:
5431 		return ecore_q_send_setup_tx_only(sc, params);
5432 	case ECORE_Q_CMD_DEACTIVATE:
5433 		return ecore_q_send_deactivate(sc, params);
5434 	case ECORE_Q_CMD_ACTIVATE:
5435 		return ecore_q_send_activate(sc, params);
5436 	case ECORE_Q_CMD_UPDATE:
5437 		return ecore_q_send_update(sc, params);
5438 	case ECORE_Q_CMD_UPDATE_TPA:
5439 		return ecore_q_send_update_tpa(sc, params);
5440 	case ECORE_Q_CMD_HALT:
5441 		return ecore_q_send_halt(sc, params);
5442 	case ECORE_Q_CMD_CFC_DEL:
5443 		return ecore_q_send_cfc_del(sc, params);
5444 	case ECORE_Q_CMD_TERMINATE:
5445 		return ecore_q_send_terminate(sc, params);
5446 	case ECORE_Q_CMD_EMPTY:
5447 		return ecore_q_send_empty(sc, params);
5448 	default:
5449 		ECORE_ERR("Unknown command: %d\n", params->cmd);
5450 		return ECORE_INVAL;
5451 	}
5452 }
5453 
5454 static int ecore_queue_send_cmd_e1x(struct bxe_softc *sc,
5455 				    struct ecore_queue_state_params *params)
5456 {
5457 	switch (params->cmd) {
5458 	case ECORE_Q_CMD_SETUP:
5459 		return ecore_q_send_setup_e1x(sc, params);
5460 	case ECORE_Q_CMD_INIT:
5461 	case ECORE_Q_CMD_SETUP_TX_ONLY:
5462 	case ECORE_Q_CMD_DEACTIVATE:
5463 	case ECORE_Q_CMD_ACTIVATE:
5464 	case ECORE_Q_CMD_UPDATE:
5465 	case ECORE_Q_CMD_UPDATE_TPA:
5466 	case ECORE_Q_CMD_HALT:
5467 	case ECORE_Q_CMD_CFC_DEL:
5468 	case ECORE_Q_CMD_TERMINATE:
5469 	case ECORE_Q_CMD_EMPTY:
5470 		return ecore_queue_send_cmd_cmn(sc, params);
5471 	default:
5472 		ECORE_ERR("Unknown command: %d\n", params->cmd);
5473 		return ECORE_INVAL;
5474 	}
5475 }
5476 
5477 static int ecore_queue_send_cmd_e2(struct bxe_softc *sc,
5478 				   struct ecore_queue_state_params *params)
5479 {
5480 	switch (params->cmd) {
5481 	case ECORE_Q_CMD_SETUP:
5482 		return ecore_q_send_setup_e2(sc, params);
5483 	case ECORE_Q_CMD_INIT:
5484 	case ECORE_Q_CMD_SETUP_TX_ONLY:
5485 	case ECORE_Q_CMD_DEACTIVATE:
5486 	case ECORE_Q_CMD_ACTIVATE:
5487 	case ECORE_Q_CMD_UPDATE:
5488 	case ECORE_Q_CMD_UPDATE_TPA:
5489 	case ECORE_Q_CMD_HALT:
5490 	case ECORE_Q_CMD_CFC_DEL:
5491 	case ECORE_Q_CMD_TERMINATE:
5492 	case ECORE_Q_CMD_EMPTY:
5493 		return ecore_queue_send_cmd_cmn(sc, params);
5494 	default:
5495 		ECORE_ERR("Unknown command: %d\n", params->cmd);
5496 		return ECORE_INVAL;
5497 	}
5498 }
5499 
5500 /**
5501  * ecore_queue_chk_transition - check state machine of a regular Queue
5502  *
5503  * @sc:		device handle
5504  * @o:
5505  * @params:
5506  *
5507  * (not Forwarding)
5508  * It both checks if the requested command is legal in a current
5509  * state and, if it's legal, sets a `next_state' in the object
5510  * that will be used in the completion flow to set the `state'
5511  * of the object.
5512  *
5513  * returns 0 if a requested command is a legal transition,
5514  *         ECORE_INVAL otherwise.
5515  */
5516 static int ecore_queue_chk_transition(struct bxe_softc *sc,
5517 				      struct ecore_queue_sp_obj *o,
5518 				      struct ecore_queue_state_params *params)
5519 {
5520 	enum ecore_q_state state = o->state, next_state = ECORE_Q_STATE_MAX;
5521 	enum ecore_queue_cmd cmd = params->cmd;
5522 	struct ecore_queue_update_params *update_params =
5523 		 &params->params.update;
5524 	uint8_t next_tx_only = o->num_tx_only;
5525 
5526 	/* Forget all pending for completion commands if a driver only state
5527 	 * transition has been requested.
5528 	 */
5529 	if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags)) {
5530 		o->pending = 0;
5531 		o->next_state = ECORE_Q_STATE_MAX;
5532 	}
5533 
5534 	/* Don't allow a next state transition if we are in the middle of
5535 	 * the previous one.
5536 	 */
5537 	if (o->pending) {
5538 		ECORE_ERR("Blocking transition since pending was %lx\n",
5539 			  o->pending);
5540 		return ECORE_BUSY;
5541 	}
5542 
5543 	switch (state) {
5544 	case ECORE_Q_STATE_RESET:
5545 		if (cmd == ECORE_Q_CMD_INIT)
5546 			next_state = ECORE_Q_STATE_INITIALIZED;
5547 
5548 		break;
5549 	case ECORE_Q_STATE_INITIALIZED:
5550 		if (cmd == ECORE_Q_CMD_SETUP) {
5551 			if (ECORE_TEST_BIT(ECORE_Q_FLG_ACTIVE,
5552 					   &params->params.setup.flags))
5553 				next_state = ECORE_Q_STATE_ACTIVE;
5554 			else
5555 				next_state = ECORE_Q_STATE_INACTIVE;
5556 		}
5557 
5558 		break;
5559 	case ECORE_Q_STATE_ACTIVE:
5560 		if (cmd == ECORE_Q_CMD_DEACTIVATE)
5561 			next_state = ECORE_Q_STATE_INACTIVE;
5562 
5563 		else if ((cmd == ECORE_Q_CMD_EMPTY) ||
5564 			 (cmd == ECORE_Q_CMD_UPDATE_TPA))
5565 			next_state = ECORE_Q_STATE_ACTIVE;
5566 
5567 		else if (cmd == ECORE_Q_CMD_SETUP_TX_ONLY) {
5568 			next_state = ECORE_Q_STATE_MULTI_COS;
5569 			next_tx_only = 1;
5570 		}
5571 
5572 		else if (cmd == ECORE_Q_CMD_HALT)
5573 			next_state = ECORE_Q_STATE_STOPPED;
5574 
5575 		else if (cmd == ECORE_Q_CMD_UPDATE) {
5576 			/* If "active" state change is requested, update the
5577 			 *  state accordingly.
5578 			 */
5579 			if (ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE_CHNG,
5580 					   &update_params->update_flags) &&
5581 			    !ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE,
5582 					    &update_params->update_flags))
5583 				next_state = ECORE_Q_STATE_INACTIVE;
5584 			else
5585 				next_state = ECORE_Q_STATE_ACTIVE;
5586 		}
5587 
5588 		break;
5589 	case ECORE_Q_STATE_MULTI_COS:
5590 		if (cmd == ECORE_Q_CMD_TERMINATE)
5591 			next_state = ECORE_Q_STATE_MCOS_TERMINATED;
5592 
5593 		else if (cmd == ECORE_Q_CMD_SETUP_TX_ONLY) {
5594 			next_state = ECORE_Q_STATE_MULTI_COS;
5595 			next_tx_only = o->num_tx_only + 1;
5596 		}
5597 
5598 		else if ((cmd == ECORE_Q_CMD_EMPTY) ||
5599 			 (cmd == ECORE_Q_CMD_UPDATE_TPA))
5600 			next_state = ECORE_Q_STATE_MULTI_COS;
5601 
5602 		else if (cmd == ECORE_Q_CMD_UPDATE) {
5603 			/* If "active" state change is requested, update the
5604 			 *  state accordingly.
5605 			 */
5606 			if (ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE_CHNG,
5607 					   &update_params->update_flags) &&
5608 			    !ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE,
5609 					    &update_params->update_flags))
5610 				next_state = ECORE_Q_STATE_INACTIVE;
5611 			else
5612 				next_state = ECORE_Q_STATE_MULTI_COS;
5613 		}
5614 
5615 		break;
5616 	case ECORE_Q_STATE_MCOS_TERMINATED:
5617 		if (cmd == ECORE_Q_CMD_CFC_DEL) {
5618 			next_tx_only = o->num_tx_only - 1;
5619 			if (next_tx_only == 0)
5620 				next_state = ECORE_Q_STATE_ACTIVE;
5621 			else
5622 				next_state = ECORE_Q_STATE_MULTI_COS;
5623 		}
5624 
5625 		break;
5626 	case ECORE_Q_STATE_INACTIVE:
5627 		if (cmd == ECORE_Q_CMD_ACTIVATE)
5628 			next_state = ECORE_Q_STATE_ACTIVE;
5629 
5630 		else if ((cmd == ECORE_Q_CMD_EMPTY) ||
5631 			 (cmd == ECORE_Q_CMD_UPDATE_TPA))
5632 			next_state = ECORE_Q_STATE_INACTIVE;
5633 
5634 		else if (cmd == ECORE_Q_CMD_HALT)
5635 			next_state = ECORE_Q_STATE_STOPPED;
5636 
5637 		else if (cmd == ECORE_Q_CMD_UPDATE) {
5638 			/* If "active" state change is requested, update the
5639 			 * state accordingly.
5640 			 */
5641 			if (ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE_CHNG,
5642 					   &update_params->update_flags) &&
5643 			    ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE,
5644 					   &update_params->update_flags)){
5645 				if (o->num_tx_only == 0)
5646 					next_state = ECORE_Q_STATE_ACTIVE;
5647 				else /* tx only queues exist for this queue */
5648 					next_state = ECORE_Q_STATE_MULTI_COS;
5649 			} else
5650 				next_state = ECORE_Q_STATE_INACTIVE;
5651 		}
5652 
5653 		break;
5654 	case ECORE_Q_STATE_STOPPED:
5655 		if (cmd == ECORE_Q_CMD_TERMINATE)
5656 			next_state = ECORE_Q_STATE_TERMINATED;
5657 
5658 		break;
5659 	case ECORE_Q_STATE_TERMINATED:
5660 		if (cmd == ECORE_Q_CMD_CFC_DEL)
5661 			next_state = ECORE_Q_STATE_RESET;
5662 
5663 		break;
5664 	default:
5665 		ECORE_ERR("Illegal state: %d\n", state);
5666 	}
5667 
5668 	/* Transition is assured */
5669 	if (next_state != ECORE_Q_STATE_MAX) {
5670 		ECORE_MSG(sc, "Good state transition: %d(%d)->%d\n",
5671 			  state, cmd, next_state);
5672 		o->next_state = next_state;
5673 		o->next_tx_only = next_tx_only;
5674 		return ECORE_SUCCESS;
5675 	}
5676 
5677 	ECORE_MSG(sc, "Bad state transition request: %d %d\n", state, cmd);
5678 
5679 	return ECORE_INVAL;
5680 }
5681 
5682 /**
5683  * ecore_queue_chk_fwd_transition - check state machine of a Forwarding Queue.
5684  *
5685  * @sc:		device handle
5686  * @o:
5687  * @params:
5688  *
5689  * It both checks if the requested command is legal in a current
5690  * state and, if it's legal, sets a `next_state' in the object
5691  * that will be used in the completion flow to set the `state'
5692  * of the object.
5693  *
5694  * returns 0 if a requested command is a legal transition,
5695  *         ECORE_INVAL otherwise.
5696  */
5697 static int ecore_queue_chk_fwd_transition(struct bxe_softc *sc,
5698 					  struct ecore_queue_sp_obj *o,
5699 					struct ecore_queue_state_params *params)
5700 {
5701 	enum ecore_q_state state = o->state, next_state = ECORE_Q_STATE_MAX;
5702 	enum ecore_queue_cmd cmd = params->cmd;
5703 
5704 	switch (state) {
5705 	case ECORE_Q_STATE_RESET:
5706 		if (cmd == ECORE_Q_CMD_INIT)
5707 			next_state = ECORE_Q_STATE_INITIALIZED;
5708 
5709 		break;
5710 	case ECORE_Q_STATE_INITIALIZED:
5711 		if (cmd == ECORE_Q_CMD_SETUP_TX_ONLY) {
5712 			if (ECORE_TEST_BIT(ECORE_Q_FLG_ACTIVE,
5713 					   &params->params.tx_only.flags))
5714 				next_state = ECORE_Q_STATE_ACTIVE;
5715 			else
5716 				next_state = ECORE_Q_STATE_INACTIVE;
5717 		}
5718 
5719 		break;
5720 	case ECORE_Q_STATE_ACTIVE:
5721 	case ECORE_Q_STATE_INACTIVE:
5722 		if (cmd == ECORE_Q_CMD_CFC_DEL)
5723 			next_state = ECORE_Q_STATE_RESET;
5724 
5725 		break;
5726 	default:
5727 		ECORE_ERR("Illegal state: %d\n", state);
5728 	}
5729 
5730 	/* Transition is assured */
5731 	if (next_state != ECORE_Q_STATE_MAX) {
5732 		ECORE_MSG(sc, "Good state transition: %d(%d)->%d\n",
5733 			  state, cmd, next_state);
5734 		o->next_state = next_state;
5735 		return ECORE_SUCCESS;
5736 	}
5737 
5738 	ECORE_MSG(sc, "Bad state transition request: %d %d\n", state, cmd);
5739 	return ECORE_INVAL;
5740 }
5741 
5742 void ecore_init_queue_obj(struct bxe_softc *sc,
5743 			  struct ecore_queue_sp_obj *obj,
5744 			  uint8_t cl_id, uint32_t *cids, uint8_t cid_cnt, uint8_t func_id,
5745 			  void *rdata,
5746 			  ecore_dma_addr_t rdata_mapping, unsigned long type)
5747 {
5748 	ECORE_MEMSET(obj, 0, sizeof(*obj));
5749 
5750 	/* We support only ECORE_MULTI_TX_COS Tx CoS at the moment */
5751 	ECORE_BUG_ON(ECORE_MULTI_TX_COS < cid_cnt);
5752 
5753 	memcpy(obj->cids, cids, sizeof(obj->cids[0]) * cid_cnt);
5754 	obj->max_cos = cid_cnt;
5755 	obj->cl_id = cl_id;
5756 	obj->func_id = func_id;
5757 	obj->rdata = rdata;
5758 	obj->rdata_mapping = rdata_mapping;
5759 	obj->type = type;
5760 	obj->next_state = ECORE_Q_STATE_MAX;
5761 
5762 	if (CHIP_IS_E1x(sc))
5763 		obj->send_cmd = ecore_queue_send_cmd_e1x;
5764 	else
5765 		obj->send_cmd = ecore_queue_send_cmd_e2;
5766 
5767 	if (ECORE_TEST_BIT(ECORE_Q_TYPE_FWD, &type))
5768 		obj->check_transition = ecore_queue_chk_fwd_transition;
5769 	else
5770 	obj->check_transition = ecore_queue_chk_transition;
5771 
5772 	obj->complete_cmd = ecore_queue_comp_cmd;
5773 	obj->wait_comp = ecore_queue_wait_comp;
5774 	obj->set_pending = ecore_queue_set_pending;
5775 }
5776 
5777 /* return a queue object's logical state*/
5778 int ecore_get_q_logical_state(struct bxe_softc *sc,
5779 			       struct ecore_queue_sp_obj *obj)
5780 {
5781 	switch (obj->state) {
5782 	case ECORE_Q_STATE_ACTIVE:
5783 	case ECORE_Q_STATE_MULTI_COS:
5784 		return ECORE_Q_LOGICAL_STATE_ACTIVE;
5785 	case ECORE_Q_STATE_RESET:
5786 	case ECORE_Q_STATE_INITIALIZED:
5787 	case ECORE_Q_STATE_MCOS_TERMINATED:
5788 	case ECORE_Q_STATE_INACTIVE:
5789 	case ECORE_Q_STATE_STOPPED:
5790 	case ECORE_Q_STATE_TERMINATED:
5791 	case ECORE_Q_STATE_FLRED:
5792 		return ECORE_Q_LOGICAL_STATE_STOPPED;
5793 	default:
5794 		return ECORE_INVAL;
5795 	}
5796 }
5797 
5798 /********************** Function state object *********************************/
5799 enum ecore_func_state ecore_func_get_state(struct bxe_softc *sc,
5800 					   struct ecore_func_sp_obj *o)
5801 {
5802 	/* in the middle of transaction - return INVALID state */
5803 	if (o->pending)
5804 		return ECORE_F_STATE_MAX;
5805 
5806 	/* unsure the order of reading of o->pending and o->state
5807 	 * o->pending should be read first
5808 	 */
5809 	rmb();
5810 
5811 	return o->state;
5812 }
5813 
5814 static int ecore_func_wait_comp(struct bxe_softc *sc,
5815 				struct ecore_func_sp_obj *o,
5816 				enum ecore_func_cmd cmd)
5817 {
5818 	return ecore_state_wait(sc, cmd, &o->pending);
5819 }
5820 
5821 /**
5822  * ecore_func_state_change_comp - complete the state machine transition
5823  *
5824  * @sc:		device handle
5825  * @o:
5826  * @cmd:
5827  *
5828  * Called on state change transition. Completes the state
5829  * machine transition only - no HW interaction.
5830  */
5831 static inline int ecore_func_state_change_comp(struct bxe_softc *sc,
5832 					       struct ecore_func_sp_obj *o,
5833 					       enum ecore_func_cmd cmd)
5834 {
5835 	unsigned long cur_pending = o->pending;
5836 
5837 	if (!ECORE_TEST_AND_CLEAR_BIT(cmd, &cur_pending)) {
5838 		ECORE_ERR("Bad MC reply %d for func %d in state %d pending 0x%lx, next_state %d\n",
5839 			  cmd, ECORE_FUNC_ID(sc), o->state,
5840 			  cur_pending, o->next_state);
5841 		return ECORE_INVAL;
5842 	}
5843 
5844 	ECORE_MSG(sc,
5845 		  "Completing command %d for func %d, setting state to %d\n",
5846 		  cmd, ECORE_FUNC_ID(sc), o->next_state);
5847 
5848 	o->state = o->next_state;
5849 	o->next_state = ECORE_F_STATE_MAX;
5850 
5851 	/* It's important that o->state and o->next_state are
5852 	 * updated before o->pending.
5853 	 */
5854 	wmb();
5855 
5856 	ECORE_CLEAR_BIT(cmd, &o->pending);
5857 	ECORE_SMP_MB_AFTER_CLEAR_BIT();
5858 
5859 	return ECORE_SUCCESS;
5860 }
5861 
5862 /**
5863  * ecore_func_comp_cmd - complete the state change command
5864  *
5865  * @sc:		device handle
5866  * @o:
5867  * @cmd:
5868  *
5869  * Checks that the arrived completion is expected.
5870  */
5871 static int ecore_func_comp_cmd(struct bxe_softc *sc,
5872 			       struct ecore_func_sp_obj *o,
5873 			       enum ecore_func_cmd cmd)
5874 {
5875 	/* Complete the state machine part first, check if it's a
5876 	 * legal completion.
5877 	 */
5878 	int rc = ecore_func_state_change_comp(sc, o, cmd);
5879 	return rc;
5880 }
5881 
5882 /**
5883  * ecore_func_chk_transition - perform function state machine transition
5884  *
5885  * @sc:		device handle
5886  * @o:
5887  * @params:
5888  *
5889  * It both checks if the requested command is legal in a current
5890  * state and, if it's legal, sets a `next_state' in the object
5891  * that will be used in the completion flow to set the `state'
5892  * of the object.
5893  *
5894  * returns 0 if a requested command is a legal transition,
5895  *         ECORE_INVAL otherwise.
5896  */
5897 static int ecore_func_chk_transition(struct bxe_softc *sc,
5898 				     struct ecore_func_sp_obj *o,
5899 				     struct ecore_func_state_params *params)
5900 {
5901 	enum ecore_func_state state = o->state, next_state = ECORE_F_STATE_MAX;
5902 	enum ecore_func_cmd cmd = params->cmd;
5903 
5904 	/* Forget all pending for completion commands if a driver only state
5905 	 * transition has been requested.
5906 	 */
5907 	if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags)) {
5908 		o->pending = 0;
5909 		o->next_state = ECORE_F_STATE_MAX;
5910 	}
5911 
5912 	/* Don't allow a next state transition if we are in the middle of
5913 	 * the previous one.
5914 	 */
5915 	if (o->pending)
5916 		return ECORE_BUSY;
5917 
5918 	switch (state) {
5919 	case ECORE_F_STATE_RESET:
5920 		if (cmd == ECORE_F_CMD_HW_INIT)
5921 			next_state = ECORE_F_STATE_INITIALIZED;
5922 
5923 		break;
5924 	case ECORE_F_STATE_INITIALIZED:
5925 		if (cmd == ECORE_F_CMD_START)
5926 			next_state = ECORE_F_STATE_STARTED;
5927 
5928 		else if (cmd == ECORE_F_CMD_HW_RESET)
5929 			next_state = ECORE_F_STATE_RESET;
5930 
5931 		break;
5932 	case ECORE_F_STATE_STARTED:
5933 		if (cmd == ECORE_F_CMD_STOP)
5934 			next_state = ECORE_F_STATE_INITIALIZED;
5935 		/* afex ramrods can be sent only in started mode, and only
5936 		 * if not pending for function_stop ramrod completion
5937 		 * for these events - next state remained STARTED.
5938 		 */
5939 		else if ((cmd == ECORE_F_CMD_AFEX_UPDATE) &&
5940 			 (!ECORE_TEST_BIT(ECORE_F_CMD_STOP, &o->pending)))
5941 			next_state = ECORE_F_STATE_STARTED;
5942 
5943 		else if ((cmd == ECORE_F_CMD_AFEX_VIFLISTS) &&
5944 			 (!ECORE_TEST_BIT(ECORE_F_CMD_STOP, &o->pending)))
5945 			next_state = ECORE_F_STATE_STARTED;
5946 
5947 		/* Switch_update ramrod can be sent in either started or
5948 		 * tx_stopped state, and it doesn't change the state.
5949 		 */
5950 		else if ((cmd == ECORE_F_CMD_SWITCH_UPDATE) &&
5951 			 (!ECORE_TEST_BIT(ECORE_F_CMD_STOP, &o->pending)))
5952 			next_state = ECORE_F_STATE_STARTED;
5953 
5954 		else if ((cmd == ECORE_F_CMD_SET_TIMESYNC) &&
5955 			 (!ECORE_TEST_BIT(ECORE_F_CMD_STOP, &o->pending)))
5956 			next_state = ECORE_F_STATE_STARTED;
5957 
5958 		else if (cmd == ECORE_F_CMD_TX_STOP)
5959 			next_state = ECORE_F_STATE_TX_STOPPED;
5960 
5961 		break;
5962 	case ECORE_F_STATE_TX_STOPPED:
5963 		if ((cmd == ECORE_F_CMD_SWITCH_UPDATE) &&
5964 		    (!ECORE_TEST_BIT(ECORE_F_CMD_STOP, &o->pending)))
5965 			next_state = ECORE_F_STATE_TX_STOPPED;
5966 
5967 		else if ((cmd == ECORE_F_CMD_SET_TIMESYNC) &&
5968 		    (!ECORE_TEST_BIT(ECORE_F_CMD_STOP, &o->pending)))
5969 			next_state = ECORE_F_STATE_TX_STOPPED;
5970 
5971 		else if (cmd == ECORE_F_CMD_TX_START)
5972 			next_state = ECORE_F_STATE_STARTED;
5973 
5974 		break;
5975 	default:
5976 		ECORE_ERR("Unknown state: %d\n", state);
5977 	}
5978 
5979 	/* Transition is assured */
5980 	if (next_state != ECORE_F_STATE_MAX) {
5981 		ECORE_MSG(sc, "Good function state transition: %d(%d)->%d\n",
5982 			  state, cmd, next_state);
5983 		o->next_state = next_state;
5984 		return ECORE_SUCCESS;
5985 	}
5986 
5987 	ECORE_MSG(sc, "Bad function state transition request: %d %d\n",
5988 		  state, cmd);
5989 
5990 	return ECORE_INVAL;
5991 }
5992 
5993 /**
5994  * ecore_func_init_func - performs HW init at function stage
5995  *
5996  * @sc:		device handle
5997  * @drv:
5998  *
5999  * Init HW when the current phase is
6000  * FW_MSG_CODE_DRV_LOAD_FUNCTION: initialize only FUNCTION-only
6001  * HW blocks.
6002  */
6003 static inline int ecore_func_init_func(struct bxe_softc *sc,
6004 				       const struct ecore_func_sp_drv_ops *drv)
6005 {
6006 	return drv->init_hw_func(sc);
6007 }
6008 
6009 /**
6010  * ecore_func_init_port - performs HW init at port stage
6011  *
6012  * @sc:		device handle
6013  * @drv:
6014  *
6015  * Init HW when the current phase is
6016  * FW_MSG_CODE_DRV_LOAD_PORT: initialize PORT-only and
6017  * FUNCTION-only HW blocks.
6018  *
6019  */
6020 static inline int ecore_func_init_port(struct bxe_softc *sc,
6021 				       const struct ecore_func_sp_drv_ops *drv)
6022 {
6023 	int rc = drv->init_hw_port(sc);
6024 	if (rc)
6025 		return rc;
6026 
6027 	return ecore_func_init_func(sc, drv);
6028 }
6029 
6030 /**
6031  * ecore_func_init_cmn_chip - performs HW init at chip-common stage
6032  *
6033  * @sc:		device handle
6034  * @drv:
6035  *
6036  * Init HW when the current phase is
6037  * FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: initialize COMMON_CHIP,
6038  * PORT-only and FUNCTION-only HW blocks.
6039  */
6040 static inline int ecore_func_init_cmn_chip(struct bxe_softc *sc,
6041 					const struct ecore_func_sp_drv_ops *drv)
6042 {
6043 	int rc = drv->init_hw_cmn_chip(sc);
6044 	if (rc)
6045 		return rc;
6046 
6047 	return ecore_func_init_port(sc, drv);
6048 }
6049 
6050 /**
6051  * ecore_func_init_cmn - performs HW init at common stage
6052  *
6053  * @sc:		device handle
6054  * @drv:
6055  *
6056  * Init HW when the current phase is
6057  * FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: initialize COMMON,
6058  * PORT-only and FUNCTION-only HW blocks.
6059  */
6060 static inline int ecore_func_init_cmn(struct bxe_softc *sc,
6061 				      const struct ecore_func_sp_drv_ops *drv)
6062 {
6063 	int rc = drv->init_hw_cmn(sc);
6064 	if (rc)
6065 		return rc;
6066 
6067 	return ecore_func_init_port(sc, drv);
6068 }
6069 
6070 static int ecore_func_hw_init(struct bxe_softc *sc,
6071 			      struct ecore_func_state_params *params)
6072 {
6073 	uint32_t load_code = params->params.hw_init.load_phase;
6074 	struct ecore_func_sp_obj *o = params->f_obj;
6075 	const struct ecore_func_sp_drv_ops *drv = o->drv;
6076 	int rc = 0;
6077 
6078 	ECORE_MSG(sc, "function %d  load_code %x\n",
6079 		  ECORE_ABS_FUNC_ID(sc), load_code);
6080 
6081 	/* Prepare buffers for unzipping the FW */
6082 	rc = drv->gunzip_init(sc);
6083 	if (rc)
6084 		return rc;
6085 
6086 	/* Prepare FW */
6087 	rc = drv->init_fw(sc);
6088 	if (rc) {
6089 		ECORE_ERR("Error loading firmware\n");
6090 		goto init_err;
6091 	}
6092 
6093 	/* Handle the beginning of COMMON_XXX pases separately... */
6094 	switch (load_code) {
6095 	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6096 		rc = ecore_func_init_cmn_chip(sc, drv);
6097 		if (rc)
6098 			goto init_err;
6099 
6100 		break;
6101 	case FW_MSG_CODE_DRV_LOAD_COMMON:
6102 		rc = ecore_func_init_cmn(sc, drv);
6103 		if (rc)
6104 			goto init_err;
6105 
6106 		break;
6107 	case FW_MSG_CODE_DRV_LOAD_PORT:
6108 		rc = ecore_func_init_port(sc, drv);
6109 		if (rc)
6110 			goto init_err;
6111 
6112 		break;
6113 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6114 		rc = ecore_func_init_func(sc, drv);
6115 		if (rc)
6116 			goto init_err;
6117 
6118 		break;
6119 	default:
6120 		ECORE_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6121 		rc = ECORE_INVAL;
6122 	}
6123 
6124 init_err:
6125 	drv->gunzip_end(sc);
6126 
6127 	/* In case of success, complete the command immediately: no ramrods
6128 	 * have been sent.
6129 	 */
6130 	if (!rc)
6131 		o->complete_cmd(sc, o, ECORE_F_CMD_HW_INIT);
6132 
6133 	return rc;
6134 }
6135 
6136 /**
6137  * ecore_func_reset_func - reset HW at function stage
6138  *
6139  * @sc:		device handle
6140  * @drv:
6141  *
6142  * Reset HW at FW_MSG_CODE_DRV_UNLOAD_FUNCTION stage: reset only
6143  * FUNCTION-only HW blocks.
6144  */
6145 static inline void ecore_func_reset_func(struct bxe_softc *sc,
6146 					const struct ecore_func_sp_drv_ops *drv)
6147 {
6148 	drv->reset_hw_func(sc);
6149 }
6150 
6151 /**
6152  * ecore_func_reset_port - reser HW at port stage
6153  *
6154  * @sc:		device handle
6155  * @drv:
6156  *
6157  * Reset HW at FW_MSG_CODE_DRV_UNLOAD_PORT stage: reset
6158  * FUNCTION-only and PORT-only HW blocks.
6159  *
6160  *                 !!!IMPORTANT!!!
6161  *
6162  * It's important to call reset_port before reset_func() as the last thing
6163  * reset_func does is pf_disable() thus disabling PGLUE_B, which
6164  * makes impossible any DMAE transactions.
6165  */
6166 static inline void ecore_func_reset_port(struct bxe_softc *sc,
6167 					const struct ecore_func_sp_drv_ops *drv)
6168 {
6169 	drv->reset_hw_port(sc);
6170 	ecore_func_reset_func(sc, drv);
6171 }
6172 
6173 /**
6174  * ecore_func_reset_cmn - reser HW at common stage
6175  *
6176  * @sc:		device handle
6177  * @drv:
6178  *
6179  * Reset HW at FW_MSG_CODE_DRV_UNLOAD_COMMON and
6180  * FW_MSG_CODE_DRV_UNLOAD_COMMON_CHIP stages: reset COMMON,
6181  * COMMON_CHIP, FUNCTION-only and PORT-only HW blocks.
6182  */
6183 static inline void ecore_func_reset_cmn(struct bxe_softc *sc,
6184 					const struct ecore_func_sp_drv_ops *drv)
6185 {
6186 	ecore_func_reset_port(sc, drv);
6187 	drv->reset_hw_cmn(sc);
6188 }
6189 
6190 static inline int ecore_func_hw_reset(struct bxe_softc *sc,
6191 				      struct ecore_func_state_params *params)
6192 {
6193 	uint32_t reset_phase = params->params.hw_reset.reset_phase;
6194 	struct ecore_func_sp_obj *o = params->f_obj;
6195 	const struct ecore_func_sp_drv_ops *drv = o->drv;
6196 
6197 	ECORE_MSG(sc, "function %d  reset_phase %x\n", ECORE_ABS_FUNC_ID(sc),
6198 		  reset_phase);
6199 
6200 	switch (reset_phase) {
6201 	case FW_MSG_CODE_DRV_UNLOAD_COMMON:
6202 		ecore_func_reset_cmn(sc, drv);
6203 		break;
6204 	case FW_MSG_CODE_DRV_UNLOAD_PORT:
6205 		ecore_func_reset_port(sc, drv);
6206 		break;
6207 	case FW_MSG_CODE_DRV_UNLOAD_FUNCTION:
6208 		ecore_func_reset_func(sc, drv);
6209 		break;
6210 	default:
6211 		ECORE_ERR("Unknown reset_phase (0x%x) from MCP\n",
6212 			  reset_phase);
6213 		break;
6214 	}
6215 
6216 	/* Complete the command immediately: no ramrods have been sent. */
6217 	o->complete_cmd(sc, o, ECORE_F_CMD_HW_RESET);
6218 
6219 	return ECORE_SUCCESS;
6220 }
6221 
6222 static inline int ecore_func_send_start(struct bxe_softc *sc,
6223 					struct ecore_func_state_params *params)
6224 {
6225 	struct ecore_func_sp_obj *o = params->f_obj;
6226 	struct function_start_data *rdata =
6227 		(struct function_start_data *)o->rdata;
6228 	ecore_dma_addr_t data_mapping = o->rdata_mapping;
6229 	struct ecore_func_start_params *start_params = &params->params.start;
6230 
6231 	ECORE_MEMSET(rdata, 0, sizeof(*rdata));
6232 
6233 	/* Fill the ramrod data with provided parameters */
6234 	rdata->function_mode	= (uint8_t)start_params->mf_mode;
6235 	rdata->sd_vlan_tag	= ECORE_CPU_TO_LE16(start_params->sd_vlan_tag);
6236 	rdata->path_id		= ECORE_PATH_ID(sc);
6237 	rdata->network_cos_mode	= start_params->network_cos_mode;
6238 
6239 	rdata->vxlan_dst_port	= start_params->vxlan_dst_port;
6240 	rdata->geneve_dst_port	= start_params->geneve_dst_port;
6241 	rdata->inner_clss_l2gre	= start_params->inner_clss_l2gre;
6242 	rdata->inner_clss_l2geneve = start_params->inner_clss_l2geneve;
6243 	rdata->inner_clss_vxlan	= start_params->inner_clss_vxlan;
6244 	rdata->inner_rss	= start_params->inner_rss;
6245 
6246 	rdata->sd_accept_mf_clss_fail = start_params->class_fail;
6247 	if (start_params->class_fail_ethtype) {
6248 		rdata->sd_accept_mf_clss_fail_match_ethtype = 1;
6249 		rdata->sd_accept_mf_clss_fail_ethtype =
6250 			ECORE_CPU_TO_LE16(start_params->class_fail_ethtype);
6251 	}
6252 	rdata->sd_vlan_force_pri_flg = start_params->sd_vlan_force_pri;
6253 	rdata->sd_vlan_force_pri_val = start_params->sd_vlan_force_pri_val;
6254 
6255 	/** @@@TMP - until FW 7.10.7 (which will introduce an HSI change)
6256 	 * `sd_vlan_eth_type' will replace ethertype in SD mode even if
6257 	 * it's set to 0; This will probably break SD, so we're setting it
6258 	 * to ethertype 0x8100 for now.
6259 	 */
6260 	if (start_params->sd_vlan_eth_type)
6261 		rdata->sd_vlan_eth_type =
6262 			ECORE_CPU_TO_LE16(start_params->sd_vlan_eth_type);
6263 	else
6264 		rdata->sd_vlan_eth_type =
6265 			ECORE_CPU_TO_LE16((uint16_t) 0x8100);
6266 
6267 	rdata->no_added_tags = start_params->no_added_tags;
6268 
6269 	rdata->c2s_pri_tt_valid = start_params->c2s_pri_valid;
6270 	if (rdata->c2s_pri_tt_valid) {
6271 		memcpy(rdata->c2s_pri_trans_table.val,
6272 		       start_params->c2s_pri,
6273 		       MAX_VLAN_PRIORITIES);
6274 		rdata->c2s_pri_default = start_params->c2s_pri_default;
6275 	}
6276 
6277 	/* No need for an explicit memory barrier here as long as we
6278 	 * ensure the ordering of writing to the SPQ element
6279 	 *  and updating of the SPQ producer which involves a memory
6280 	 * read. If the memory read is removed we will have to put a
6281 	 * full memory barrier there (inside ecore_sp_post()).
6282 	 */
6283 	return ecore_sp_post(sc, RAMROD_CMD_ID_COMMON_FUNCTION_START, 0,
6284 			     data_mapping, NONE_CONNECTION_TYPE);
6285 }
6286 
6287 static inline int ecore_func_send_switch_update(struct bxe_softc *sc,
6288 					struct ecore_func_state_params *params)
6289 {
6290 	struct ecore_func_sp_obj *o = params->f_obj;
6291 	struct function_update_data *rdata =
6292 		(struct function_update_data *)o->rdata;
6293 	ecore_dma_addr_t data_mapping = o->rdata_mapping;
6294 	struct ecore_func_switch_update_params *switch_update_params =
6295 		&params->params.switch_update;
6296 
6297 	ECORE_MEMSET(rdata, 0, sizeof(*rdata));
6298 
6299 	/* Fill the ramrod data with provided parameters */
6300 	if (ECORE_TEST_BIT(ECORE_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
6301 			   &switch_update_params->changes)) {
6302 	rdata->tx_switch_suspend_change_flg = 1;
6303 		rdata->tx_switch_suspend =
6304 			ECORE_TEST_BIT(ECORE_F_UPDATE_TX_SWITCH_SUSPEND,
6305 				       &switch_update_params->changes);
6306 	}
6307 
6308 	if (ECORE_TEST_BIT(ECORE_F_UPDATE_SD_VLAN_TAG_CHNG,
6309 			   &switch_update_params->changes)) {
6310 		rdata->sd_vlan_tag_change_flg = 1;
6311 		rdata->sd_vlan_tag =
6312 			ECORE_CPU_TO_LE16(switch_update_params->vlan);
6313 	}
6314 
6315 	if (ECORE_TEST_BIT(ECORE_F_UPDATE_SD_VLAN_ETH_TYPE_CHNG,
6316 			   &switch_update_params->changes)) {
6317 		rdata->sd_vlan_eth_type_change_flg = 1;
6318 		rdata->sd_vlan_eth_type =
6319 			ECORE_CPU_TO_LE16(switch_update_params->vlan_eth_type);
6320 	}
6321 
6322 	if (ECORE_TEST_BIT(ECORE_F_UPDATE_VLAN_FORCE_PRIO_CHNG,
6323 			   &switch_update_params->changes)) {
6324 		rdata->sd_vlan_force_pri_change_flg = 1;
6325 		if (ECORE_TEST_BIT(ECORE_F_UPDATE_VLAN_FORCE_PRIO_FLAG,
6326 				   &switch_update_params->changes))
6327 			rdata->sd_vlan_force_pri_flg = 1;
6328 		rdata->sd_vlan_force_pri_flg =
6329 			switch_update_params->vlan_force_prio;
6330 	}
6331 
6332 	if (ECORE_TEST_BIT(ECORE_F_UPDATE_TUNNEL_CFG_CHNG,
6333 			   &switch_update_params->changes)) {
6334 		rdata->update_tunn_cfg_flg = 1;
6335 		if (ECORE_TEST_BIT(ECORE_F_UPDATE_TUNNEL_INNER_CLSS_L2GRE,
6336 				   &switch_update_params->changes))
6337 			rdata->inner_clss_l2gre = 1;
6338 		if (ECORE_TEST_BIT(ECORE_F_UPDATE_TUNNEL_INNER_CLSS_VXLAN,
6339 				   &switch_update_params->changes))
6340 			rdata->inner_clss_vxlan = 1;
6341 		if (ECORE_TEST_BIT(ECORE_F_UPDATE_TUNNEL_INNER_CLSS_L2GENEVE,
6342 				   &switch_update_params->changes))
6343 			rdata->inner_clss_l2geneve = 1;
6344 		if (ECORE_TEST_BIT(ECORE_F_UPDATE_TUNNEL_INNER_RSS,
6345 				   &switch_update_params->changes))
6346 			rdata->inner_rss = 1;
6347 
6348 		rdata->vxlan_dst_port =
6349 			ECORE_CPU_TO_LE16(switch_update_params->vxlan_dst_port);
6350 		rdata->geneve_dst_port =
6351 			ECORE_CPU_TO_LE16(switch_update_params->geneve_dst_port);
6352 	}
6353 
6354 	rdata->echo = SWITCH_UPDATE;
6355 
6356 	/* No need for an explicit memory barrier here as long as we
6357 	 * ensure the ordering of writing to the SPQ element
6358 	 * and updating of the SPQ producer which involves a memory
6359 	 * read. If the memory read is removed we will have to put a
6360 	 * full memory barrier there (inside ecore_sp_post()).
6361 	 */
6362 	return ecore_sp_post(sc, RAMROD_CMD_ID_COMMON_FUNCTION_UPDATE, 0,
6363 			     data_mapping, NONE_CONNECTION_TYPE);
6364 }
6365 
6366 static inline int ecore_func_send_afex_update(struct bxe_softc *sc,
6367 					 struct ecore_func_state_params *params)
6368 {
6369 	struct ecore_func_sp_obj *o = params->f_obj;
6370 	struct function_update_data *rdata =
6371 		(struct function_update_data *)o->afex_rdata;
6372 	ecore_dma_addr_t data_mapping = o->afex_rdata_mapping;
6373 	struct ecore_func_afex_update_params *afex_update_params =
6374 		&params->params.afex_update;
6375 
6376 	ECORE_MEMSET(rdata, 0, sizeof(*rdata));
6377 
6378 	/* Fill the ramrod data with provided parameters */
6379 	rdata->vif_id_change_flg = 1;
6380 	rdata->vif_id = ECORE_CPU_TO_LE16(afex_update_params->vif_id);
6381 	rdata->afex_default_vlan_change_flg = 1;
6382 	rdata->afex_default_vlan =
6383 		ECORE_CPU_TO_LE16(afex_update_params->afex_default_vlan);
6384 	rdata->allowed_priorities_change_flg = 1;
6385 	rdata->allowed_priorities = afex_update_params->allowed_priorities;
6386 	rdata->echo = AFEX_UPDATE;
6387 
6388 	/* No need for an explicit memory barrier here as long as we
6389 	 * ensure the ordering of writing to the SPQ element
6390 	 *  and updating of the SPQ producer which involves a memory
6391 	 * read. If the memory read is removed we will have to put a
6392 	 * full memory barrier there (inside ecore_sp_post()).
6393 	 */
6394 	ECORE_MSG(sc,
6395 		  "afex: sending func_update vif_id 0x%x dvlan 0x%x prio 0x%x\n",
6396 		  rdata->vif_id,
6397 		  rdata->afex_default_vlan, rdata->allowed_priorities);
6398 
6399 	return ecore_sp_post(sc, RAMROD_CMD_ID_COMMON_FUNCTION_UPDATE, 0,
6400 			     data_mapping, NONE_CONNECTION_TYPE);
6401 }
6402 
6403 static
6404 inline int ecore_func_send_afex_viflists(struct bxe_softc *sc,
6405 					 struct ecore_func_state_params *params)
6406 {
6407 	struct ecore_func_sp_obj *o = params->f_obj;
6408 	struct afex_vif_list_ramrod_data *rdata =
6409 		(struct afex_vif_list_ramrod_data *)o->afex_rdata;
6410 	struct ecore_func_afex_viflists_params *afex_vif_params =
6411 		&params->params.afex_viflists;
6412 	uint64_t *p_rdata = (uint64_t *)rdata;
6413 
6414 	ECORE_MEMSET(rdata, 0, sizeof(*rdata));
6415 
6416 	/* Fill the ramrod data with provided parameters */
6417 	rdata->vif_list_index = ECORE_CPU_TO_LE16(afex_vif_params->vif_list_index);
6418 	rdata->func_bit_map          = afex_vif_params->func_bit_map;
6419 	rdata->afex_vif_list_command = afex_vif_params->afex_vif_list_command;
6420 	rdata->func_to_clear         = afex_vif_params->func_to_clear;
6421 
6422 	/* send in echo type of sub command */
6423 	rdata->echo = afex_vif_params->afex_vif_list_command;
6424 
6425 	ECORE_MSG(sc, "afex: ramrod lists, cmd 0x%x index 0x%x func_bit_map 0x%x func_to_clr 0x%x\n",
6426 		  rdata->afex_vif_list_command, rdata->vif_list_index,
6427 		  rdata->func_bit_map, rdata->func_to_clear);
6428 
6429 	/* No need for an explicit memory barrier here as long as we
6430 	 * ensure the ordering of writing to the SPQ element
6431 	 * and updating of the SPQ producer which involves a memory
6432 	 * read. If the memory read is removed we will have to put a
6433 	 * full memory barrier there (inside ecore_sp_post()).
6434 	 */
6435 
6436 	/* this ramrod sends data directly and not through DMA mapping */
6437 	return ecore_sp_post(sc, RAMROD_CMD_ID_COMMON_AFEX_VIF_LISTS, 0,
6438 			     *p_rdata, NONE_CONNECTION_TYPE);
6439 }
6440 
6441 static inline int ecore_func_send_stop(struct bxe_softc *sc,
6442 				       struct ecore_func_state_params *params)
6443 {
6444 	return ecore_sp_post(sc, RAMROD_CMD_ID_COMMON_FUNCTION_STOP, 0, 0,
6445 			     NONE_CONNECTION_TYPE);
6446 }
6447 
6448 static inline int ecore_func_send_tx_stop(struct bxe_softc *sc,
6449 				       struct ecore_func_state_params *params)
6450 {
6451 	return ecore_sp_post(sc, RAMROD_CMD_ID_COMMON_STOP_TRAFFIC, 0, 0,
6452 			     NONE_CONNECTION_TYPE);
6453 }
6454 static inline int ecore_func_send_tx_start(struct bxe_softc *sc,
6455 				       struct ecore_func_state_params *params)
6456 {
6457 	struct ecore_func_sp_obj *o = params->f_obj;
6458 	struct flow_control_configuration *rdata =
6459 		(struct flow_control_configuration *)o->rdata;
6460 	ecore_dma_addr_t data_mapping = o->rdata_mapping;
6461 	struct ecore_func_tx_start_params *tx_start_params =
6462 		&params->params.tx_start;
6463 	int i;
6464 
6465 	ECORE_MEMSET(rdata, 0, sizeof(*rdata));
6466 
6467 	rdata->dcb_enabled = tx_start_params->dcb_enabled;
6468 	rdata->dcb_version = tx_start_params->dcb_version;
6469 	rdata->dont_add_pri_0 = tx_start_params->dont_add_pri_0;
6470 
6471 	for (i = 0; i < ARRAY_SIZE(rdata->traffic_type_to_priority_cos); i++)
6472 		rdata->traffic_type_to_priority_cos[i] =
6473 			tx_start_params->traffic_type_to_priority_cos[i];
6474 
6475 	for (i = 0; i < MAX_TRAFFIC_TYPES; i++)
6476 		rdata->dcb_outer_pri[i] = tx_start_params->dcb_outer_pri[i];
6477 
6478 	/* No need for an explicit memory barrier here as long as we
6479 	 * ensure the ordering of writing to the SPQ element
6480 	 * and updating of the SPQ producer which involves a memory
6481 	 * read. If the memory read is removed we will have to put a
6482 	 * full memory barrier there (inside ecore_sp_post()).
6483 	 */
6484 	return ecore_sp_post(sc, RAMROD_CMD_ID_COMMON_START_TRAFFIC, 0,
6485 			     data_mapping, NONE_CONNECTION_TYPE);
6486 }
6487 
6488 static inline int ecore_func_send_set_timesync(struct bxe_softc *sc,
6489 					struct ecore_func_state_params *params)
6490 {
6491 	struct ecore_func_sp_obj *o = params->f_obj;
6492 	struct set_timesync_ramrod_data *rdata =
6493 		(struct set_timesync_ramrod_data *)o->rdata;
6494 	ecore_dma_addr_t data_mapping = o->rdata_mapping;
6495 	struct ecore_func_set_timesync_params *set_timesync_params =
6496 		&params->params.set_timesync;
6497 
6498 	ECORE_MEMSET(rdata, 0, sizeof(*rdata));
6499 
6500 	/* Fill the ramrod data with provided parameters */
6501 	rdata->drift_adjust_cmd = set_timesync_params->drift_adjust_cmd;
6502 	rdata->offset_cmd = set_timesync_params->offset_cmd;
6503 	rdata->add_sub_drift_adjust_value =
6504 		set_timesync_params->add_sub_drift_adjust_value;
6505 	rdata->drift_adjust_value = set_timesync_params->drift_adjust_value;
6506 	rdata->drift_adjust_period = set_timesync_params->drift_adjust_period;
6507 	rdata->offset_delta.lo =
6508 		ECORE_CPU_TO_LE32(U64_LO(set_timesync_params->offset_delta));
6509 	rdata->offset_delta.hi =
6510 		ECORE_CPU_TO_LE32(U64_HI(set_timesync_params->offset_delta));
6511 
6512 	ECORE_MSG(sc, "Set timesync command params: drift_cmd = %d, offset_cmd = %d, add_sub_drift = %d, drift_val = %d, drift_period = %d, offset_lo = %d, offset_hi = %d\n",
6513 	   rdata->drift_adjust_cmd, rdata->offset_cmd,
6514 	   rdata->add_sub_drift_adjust_value, rdata->drift_adjust_value,
6515 	   rdata->drift_adjust_period, rdata->offset_delta.lo,
6516 	   rdata->offset_delta.hi);
6517 
6518 	return ecore_sp_post(sc, RAMROD_CMD_ID_COMMON_SET_TIMESYNC, 0,
6519 			     data_mapping, NONE_CONNECTION_TYPE);
6520 }
6521 
6522 static int ecore_func_send_cmd(struct bxe_softc *sc,
6523 			       struct ecore_func_state_params *params)
6524 {
6525 	switch (params->cmd) {
6526 	case ECORE_F_CMD_HW_INIT:
6527 		return ecore_func_hw_init(sc, params);
6528 	case ECORE_F_CMD_START:
6529 		return ecore_func_send_start(sc, params);
6530 	case ECORE_F_CMD_STOP:
6531 		return ecore_func_send_stop(sc, params);
6532 	case ECORE_F_CMD_HW_RESET:
6533 		return ecore_func_hw_reset(sc, params);
6534 	case ECORE_F_CMD_AFEX_UPDATE:
6535 		return ecore_func_send_afex_update(sc, params);
6536 	case ECORE_F_CMD_AFEX_VIFLISTS:
6537 		return ecore_func_send_afex_viflists(sc, params);
6538 	case ECORE_F_CMD_TX_STOP:
6539 		return ecore_func_send_tx_stop(sc, params);
6540 	case ECORE_F_CMD_TX_START:
6541 		return ecore_func_send_tx_start(sc, params);
6542 	case ECORE_F_CMD_SWITCH_UPDATE:
6543 		return ecore_func_send_switch_update(sc, params);
6544 	case ECORE_F_CMD_SET_TIMESYNC:
6545 		return ecore_func_send_set_timesync(sc, params);
6546 	default:
6547 		ECORE_ERR("Unknown command: %d\n", params->cmd);
6548 		return ECORE_INVAL;
6549 	}
6550 }
6551 
6552 void ecore_init_func_obj(struct bxe_softc *sc,
6553 			 struct ecore_func_sp_obj *obj,
6554 			 void *rdata, ecore_dma_addr_t rdata_mapping,
6555 			 void *afex_rdata, ecore_dma_addr_t afex_rdata_mapping,
6556 			 struct ecore_func_sp_drv_ops *drv_iface)
6557 {
6558 	ECORE_MEMSET(obj, 0, sizeof(*obj));
6559 
6560 	ECORE_MUTEX_INIT(&obj->one_pending_mutex);
6561 
6562 	obj->rdata = rdata;
6563 	obj->rdata_mapping = rdata_mapping;
6564 	obj->afex_rdata = afex_rdata;
6565 	obj->afex_rdata_mapping = afex_rdata_mapping;
6566 	obj->send_cmd = ecore_func_send_cmd;
6567 	obj->check_transition = ecore_func_chk_transition;
6568 	obj->complete_cmd = ecore_func_comp_cmd;
6569 	obj->wait_comp = ecore_func_wait_comp;
6570 	obj->drv = drv_iface;
6571 }
6572 
6573 /**
6574  * ecore_func_state_change - perform Function state change transition
6575  *
6576  * @sc:		device handle
6577  * @params:	parameters to perform the transaction
6578  *
6579  * returns 0 in case of successfully completed transition,
6580  *         negative error code in case of failure, positive
6581  *         (EBUSY) value if there is a completion to that is
6582  *         still pending (possible only if RAMROD_COMP_WAIT is
6583  *         not set in params->ramrod_flags for asynchronous
6584  *         commands).
6585  */
6586 int ecore_func_state_change(struct bxe_softc *sc,
6587 			    struct ecore_func_state_params *params)
6588 {
6589 	struct ecore_func_sp_obj *o = params->f_obj;
6590 	int rc, cnt = 300;
6591 	enum ecore_func_cmd cmd = params->cmd;
6592 	unsigned long *pending = &o->pending;
6593 
6594 	ECORE_MUTEX_LOCK(&o->one_pending_mutex);
6595 
6596 	/* Check that the requested transition is legal */
6597 	rc = o->check_transition(sc, o, params);
6598 	if ((rc == ECORE_BUSY) &&
6599 	    (ECORE_TEST_BIT(RAMROD_RETRY, &params->ramrod_flags))) {
6600 		while ((rc == ECORE_BUSY) && (--cnt > 0)) {
6601 			ECORE_MUTEX_UNLOCK(&o->one_pending_mutex);
6602 			ECORE_MSLEEP(10);
6603 			ECORE_MUTEX_LOCK(&o->one_pending_mutex);
6604 			rc = o->check_transition(sc, o, params);
6605 		}
6606 		if (rc == ECORE_BUSY) {
6607 			ECORE_MUTEX_UNLOCK(&o->one_pending_mutex);
6608 			ECORE_ERR("timeout waiting for previous ramrod completion\n");
6609 			return rc;
6610 		}
6611 	} else if (rc) {
6612 		ECORE_MUTEX_UNLOCK(&o->one_pending_mutex);
6613 		return rc;
6614 	}
6615 
6616 	/* Set "pending" bit */
6617 	ECORE_SET_BIT(cmd, pending);
6618 
6619 	/* Don't send a command if only driver cleanup was requested */
6620 	if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags)) {
6621 		ecore_func_state_change_comp(sc, o, cmd);
6622 		ECORE_MUTEX_UNLOCK(&o->one_pending_mutex);
6623 	} else {
6624 		/* Send a ramrod */
6625 		rc = o->send_cmd(sc, params);
6626 
6627 		ECORE_MUTEX_UNLOCK(&o->one_pending_mutex);
6628 
6629 		if (rc) {
6630 			o->next_state = ECORE_F_STATE_MAX;
6631 			ECORE_CLEAR_BIT(cmd, pending);
6632 			ECORE_SMP_MB_AFTER_CLEAR_BIT();
6633 			return rc;
6634 		}
6635 
6636 		if (ECORE_TEST_BIT(RAMROD_COMP_WAIT, &params->ramrod_flags)) {
6637 			rc = o->wait_comp(sc, o, cmd);
6638 			if (rc)
6639 				return rc;
6640 
6641 			return ECORE_SUCCESS;
6642 		}
6643 	}
6644 
6645 	return ECORE_RET_PENDING(cmd, pending);
6646 }
6647