xref: /freebsd/sys/dev/bxe/ecore_sp.c (revision 6ef6ba9950260f42b47499d17874d00ca9290955)
1 /*-
2  * Copyright (c) 2007-2013 Broadcom Corporation. All rights reserved.
3  *
4  * Eric Davis        <edavis@broadcom.com>
5  * David Christensen <davidch@broadcom.com>
6  * Gary Zambrano     <zambrano@broadcom.com>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written consent.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "bxe.h"
38 #include "ecore_init.h"
39 
40 /**** Exe Queue interfaces ****/
41 
42 /**
43  * ecore_exe_queue_init - init the Exe Queue object
44  *
45  * @o:		pointer to the object
46  * @exe_len:	length
47  * @owner:	pointer to the owner
48  * @validate:	validate function pointer
49  * @optimize:	optimize function pointer
50  * @exec:	execute function pointer
51  * @get:	get function pointer
52  */
53 static inline void ecore_exe_queue_init(struct bxe_softc *sc,
54 					struct ecore_exe_queue_obj *o,
55 					int exe_len,
56 					union ecore_qable_obj *owner,
57 					exe_q_validate validate,
58 					exe_q_remove remove,
59 					exe_q_optimize optimize,
60 					exe_q_execute exec,
61 					exe_q_get get)
62 {
63 	ECORE_MEMSET(o, 0, sizeof(*o));
64 
65 	ECORE_LIST_INIT(&o->exe_queue);
66 	ECORE_LIST_INIT(&o->pending_comp);
67 
68 	ECORE_SPIN_LOCK_INIT(&o->lock, sc);
69 
70 	o->exe_chunk_len = exe_len;
71 	o->owner         = owner;
72 
73 	/* Owner specific callbacks */
74 	o->validate      = validate;
75 	o->remove        = remove;
76 	o->optimize      = optimize;
77 	o->execute       = exec;
78 	o->get           = get;
79 
80 	ECORE_MSG(sc, "Setup the execution queue with the chunk length of %d\n",
81 		  exe_len);
82 }
83 
84 static inline void ecore_exe_queue_free_elem(struct bxe_softc *sc,
85 					     struct ecore_exeq_elem *elem)
86 {
87 	ECORE_MSG(sc, "Deleting an exe_queue element\n");
88 	ECORE_FREE(sc, elem, sizeof(*elem));
89 }
90 
91 static inline int ecore_exe_queue_length(struct ecore_exe_queue_obj *o)
92 {
93 	struct ecore_exeq_elem *elem;
94 	int cnt = 0;
95 
96 	ECORE_SPIN_LOCK_BH(&o->lock);
97 
98 	ECORE_LIST_FOR_EACH_ENTRY(elem, &o->exe_queue, link,
99 				  struct ecore_exeq_elem)
100 		cnt++;
101 
102 	ECORE_SPIN_UNLOCK_BH(&o->lock);
103 
104 	return cnt;
105 }
106 
107 /**
108  * ecore_exe_queue_add - add a new element to the execution queue
109  *
110  * @sc:		driver handle
111  * @o:		queue
112  * @cmd:	new command to add
113  * @restore:	true - do not optimize the command
114  *
115  * If the element is optimized or is illegal, frees it.
116  */
117 static inline int ecore_exe_queue_add(struct bxe_softc *sc,
118 				      struct ecore_exe_queue_obj *o,
119 				      struct ecore_exeq_elem *elem,
120 				      bool restore)
121 {
122 	int rc;
123 
124 	ECORE_SPIN_LOCK_BH(&o->lock);
125 
126 	if (!restore) {
127 		/* Try to cancel this element queue */
128 		rc = o->optimize(sc, o->owner, elem);
129 		if (rc)
130 			goto free_and_exit;
131 
132 		/* Check if this request is ok */
133 		rc = o->validate(sc, o->owner, elem);
134 		if (rc) {
135 			ECORE_MSG(sc, "Preamble failed: %d\n", rc);
136 			goto free_and_exit;
137 		}
138 	}
139 
140 	/* If so, add it to the execution queue */
141 	ECORE_LIST_PUSH_TAIL(&elem->link, &o->exe_queue);
142 
143 	ECORE_SPIN_UNLOCK_BH(&o->lock);
144 
145 	return ECORE_SUCCESS;
146 
147 free_and_exit:
148 	ecore_exe_queue_free_elem(sc, elem);
149 
150 	ECORE_SPIN_UNLOCK_BH(&o->lock);
151 
152 	return rc;
153 }
154 
155 static inline void __ecore_exe_queue_reset_pending(
156 	struct bxe_softc *sc,
157 	struct ecore_exe_queue_obj *o)
158 {
159 	struct ecore_exeq_elem *elem;
160 
161 	while (!ECORE_LIST_IS_EMPTY(&o->pending_comp)) {
162 		elem = ECORE_LIST_FIRST_ENTRY(&o->pending_comp,
163 					      struct ecore_exeq_elem,
164 					      link);
165 
166 		ECORE_LIST_REMOVE_ENTRY(&elem->link, &o->pending_comp);
167 		ecore_exe_queue_free_elem(sc, elem);
168 	}
169 }
170 
171 /**
172  * ecore_exe_queue_step - execute one execution chunk atomically
173  *
174  * @sc:			driver handle
175  * @o:			queue
176  * @ramrod_flags:	flags
177  *
178  * (Should be called while holding the exe_queue->lock).
179  */
180 static inline int ecore_exe_queue_step(struct bxe_softc *sc,
181 				       struct ecore_exe_queue_obj *o,
182 				       unsigned long *ramrod_flags)
183 {
184 	struct ecore_exeq_elem *elem, spacer;
185 	int cur_len = 0, rc;
186 
187 	ECORE_MEMSET(&spacer, 0, sizeof(spacer));
188 
189 	/* Next step should not be performed until the current is finished,
190 	 * unless a DRV_CLEAR_ONLY bit is set. In this case we just want to
191 	 * properly clear object internals without sending any command to the FW
192 	 * which also implies there won't be any completion to clear the
193 	 * 'pending' list.
194 	 */
195 	if (!ECORE_LIST_IS_EMPTY(&o->pending_comp)) {
196 		if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, ramrod_flags)) {
197 			ECORE_MSG(sc, "RAMROD_DRV_CLR_ONLY requested: resetting a pending_comp list\n");
198 			__ecore_exe_queue_reset_pending(sc, o);
199 		} else {
200 			return ECORE_PENDING;
201 		}
202 	}
203 
204 	/* Run through the pending commands list and create a next
205 	 * execution chunk.
206 	 */
207 	while (!ECORE_LIST_IS_EMPTY(&o->exe_queue)) {
208 		elem = ECORE_LIST_FIRST_ENTRY(&o->exe_queue,
209 					      struct ecore_exeq_elem,
210 					      link);
211 		ECORE_DBG_BREAK_IF(!elem->cmd_len);
212 
213 		if (cur_len + elem->cmd_len <= o->exe_chunk_len) {
214 			cur_len += elem->cmd_len;
215 			/* Prevent from both lists being empty when moving an
216 			 * element. This will allow the call of
217 			 * ecore_exe_queue_empty() without locking.
218 			 */
219 			ECORE_LIST_PUSH_TAIL(&spacer.link, &o->pending_comp);
220 			mb();
221 			ECORE_LIST_REMOVE_ENTRY(&elem->link, &o->exe_queue);
222 			ECORE_LIST_PUSH_TAIL(&elem->link, &o->pending_comp);
223 			ECORE_LIST_REMOVE_ENTRY(&spacer.link, &o->pending_comp);
224 		} else
225 			break;
226 	}
227 
228 	/* Sanity check */
229 	if (!cur_len)
230 		return ECORE_SUCCESS;
231 
232 	rc = o->execute(sc, o->owner, &o->pending_comp, ramrod_flags);
233 	if (rc < 0)
234 		/* In case of an error return the commands back to the queue
235 		 *  and reset the pending_comp.
236 		 */
237 		ECORE_LIST_SPLICE_INIT(&o->pending_comp, &o->exe_queue);
238 	else if (!rc)
239 		/* If zero is returned, means there are no outstanding pending
240 		 * completions and we may dismiss the pending list.
241 		 */
242 		__ecore_exe_queue_reset_pending(sc, o);
243 
244 	return rc;
245 }
246 
247 static inline bool ecore_exe_queue_empty(struct ecore_exe_queue_obj *o)
248 {
249 	bool empty = ECORE_LIST_IS_EMPTY(&o->exe_queue);
250 
251 	/* Don't reorder!!! */
252 	mb();
253 
254 	return empty && ECORE_LIST_IS_EMPTY(&o->pending_comp);
255 }
256 
257 static inline struct ecore_exeq_elem *ecore_exe_queue_alloc_elem(
258 	struct bxe_softc *sc)
259 {
260 	ECORE_MSG(sc, "Allocating a new exe_queue element\n");
261 	return ECORE_ZALLOC(sizeof(struct ecore_exeq_elem), GFP_ATOMIC,
262 			    sc);
263 }
264 
265 /************************ raw_obj functions ***********************************/
266 static bool ecore_raw_check_pending(struct ecore_raw_obj *o)
267 {
268 	/*
269      * !! converts the value returned by ECORE_TEST_BIT such that it
270      * is guaranteed not to be truncated regardless of bool definition.
271 	 *
272 	 * Note we cannot simply define the function's return value type
273      * to match the type returned by ECORE_TEST_BIT, as it varies by
274      * platform/implementation.
275 	 */
276 
277 	return !!ECORE_TEST_BIT(o->state, o->pstate);
278 }
279 
280 static void ecore_raw_clear_pending(struct ecore_raw_obj *o)
281 {
282 	ECORE_SMP_MB_BEFORE_CLEAR_BIT();
283 	ECORE_CLEAR_BIT(o->state, o->pstate);
284 	ECORE_SMP_MB_AFTER_CLEAR_BIT();
285 }
286 
287 static void ecore_raw_set_pending(struct ecore_raw_obj *o)
288 {
289 	ECORE_SMP_MB_BEFORE_CLEAR_BIT();
290 	ECORE_SET_BIT(o->state, o->pstate);
291 	ECORE_SMP_MB_AFTER_CLEAR_BIT();
292 }
293 
294 /**
295  * ecore_state_wait - wait until the given bit(state) is cleared
296  *
297  * @sc:		device handle
298  * @state:	state which is to be cleared
299  * @state_p:	state buffer
300  *
301  */
302 static inline int ecore_state_wait(struct bxe_softc *sc, int state,
303 				   unsigned long *pstate)
304 {
305 	/* can take a while if any port is running */
306 	int cnt = 5000;
307 
308 
309 	if (CHIP_REV_IS_EMUL(sc))
310 		cnt *= 20;
311 
312 	ECORE_MSG(sc, "waiting for state to become %d\n", state);
313 
314 	ECORE_MIGHT_SLEEP();
315 	while (cnt--) {
316 		if (!ECORE_TEST_BIT(state, pstate)) {
317 #ifdef ECORE_STOP_ON_ERROR
318 			ECORE_MSG(sc, "exit  (cnt %d)\n", 5000 - cnt);
319 #endif
320 			return ECORE_SUCCESS;
321 		}
322 
323 		ECORE_WAIT(sc, delay_us);
324 
325 		if (sc->panic)
326 			return ECORE_IO;
327 	}
328 
329 	/* timeout! */
330 	ECORE_ERR("timeout waiting for state %d\n", state);
331 #ifdef ECORE_STOP_ON_ERROR
332 	ecore_panic();
333 #endif
334 
335 	return ECORE_TIMEOUT;
336 }
337 
338 static int ecore_raw_wait(struct bxe_softc *sc, struct ecore_raw_obj *raw)
339 {
340 	return ecore_state_wait(sc, raw->state, raw->pstate);
341 }
342 
343 /***************** Classification verbs: Set/Del MAC/VLAN/VLAN-MAC ************/
344 /* credit handling callbacks */
345 static bool ecore_get_cam_offset_mac(struct ecore_vlan_mac_obj *o, int *offset)
346 {
347 	struct ecore_credit_pool_obj *mp = o->macs_pool;
348 
349 	ECORE_DBG_BREAK_IF(!mp);
350 
351 	return mp->get_entry(mp, offset);
352 }
353 
354 static bool ecore_get_credit_mac(struct ecore_vlan_mac_obj *o)
355 {
356 	struct ecore_credit_pool_obj *mp = o->macs_pool;
357 
358 	ECORE_DBG_BREAK_IF(!mp);
359 
360 	return mp->get(mp, 1);
361 }
362 
363 static bool ecore_get_cam_offset_vlan(struct ecore_vlan_mac_obj *o, int *offset)
364 {
365 	struct ecore_credit_pool_obj *vp = o->vlans_pool;
366 
367 	ECORE_DBG_BREAK_IF(!vp);
368 
369 	return vp->get_entry(vp, offset);
370 }
371 
372 static bool ecore_get_credit_vlan(struct ecore_vlan_mac_obj *o)
373 {
374 	struct ecore_credit_pool_obj *vp = o->vlans_pool;
375 
376 	ECORE_DBG_BREAK_IF(!vp);
377 
378 	return vp->get(vp, 1);
379 }
380 
381 static bool ecore_get_credit_vlan_mac(struct ecore_vlan_mac_obj *o)
382 {
383 	struct ecore_credit_pool_obj *mp = o->macs_pool;
384 	struct ecore_credit_pool_obj *vp = o->vlans_pool;
385 
386 	if (!mp->get(mp, 1))
387 		return FALSE;
388 
389 	if (!vp->get(vp, 1)) {
390 		mp->put(mp, 1);
391 		return FALSE;
392 	}
393 
394 	return TRUE;
395 }
396 
397 static bool ecore_put_cam_offset_mac(struct ecore_vlan_mac_obj *o, int offset)
398 {
399 	struct ecore_credit_pool_obj *mp = o->macs_pool;
400 
401 	return mp->put_entry(mp, offset);
402 }
403 
404 static bool ecore_put_credit_mac(struct ecore_vlan_mac_obj *o)
405 {
406 	struct ecore_credit_pool_obj *mp = o->macs_pool;
407 
408 	return mp->put(mp, 1);
409 }
410 
411 static bool ecore_put_cam_offset_vlan(struct ecore_vlan_mac_obj *o, int offset)
412 {
413 	struct ecore_credit_pool_obj *vp = o->vlans_pool;
414 
415 	return vp->put_entry(vp, offset);
416 }
417 
418 static bool ecore_put_credit_vlan(struct ecore_vlan_mac_obj *o)
419 {
420 	struct ecore_credit_pool_obj *vp = o->vlans_pool;
421 
422 	return vp->put(vp, 1);
423 }
424 
425 static bool ecore_put_credit_vlan_mac(struct ecore_vlan_mac_obj *o)
426 {
427 	struct ecore_credit_pool_obj *mp = o->macs_pool;
428 	struct ecore_credit_pool_obj *vp = o->vlans_pool;
429 
430 	if (!mp->put(mp, 1))
431 		return FALSE;
432 
433 	if (!vp->put(vp, 1)) {
434 		mp->get(mp, 1);
435 		return FALSE;
436 	}
437 
438 	return TRUE;
439 }
440 
441 /**
442  * __ecore_vlan_mac_h_write_trylock - try getting the writer lock on vlan mac
443  * head list.
444  *
445  * @sc:		device handle
446  * @o:		vlan_mac object
447  *
448  * @details: Non-blocking implementation; should be called under execution
449  *           queue lock.
450  */
451 static int __ecore_vlan_mac_h_write_trylock(struct bxe_softc *sc,
452 					    struct ecore_vlan_mac_obj *o)
453 {
454 	if (o->head_reader) {
455 		ECORE_MSG(sc, "vlan_mac_lock writer - There are readers; Busy\n");
456 		return ECORE_BUSY;
457 	}
458 
459 	ECORE_MSG(sc, "vlan_mac_lock writer - Taken\n");
460 	return ECORE_SUCCESS;
461 }
462 
463 /**
464  * __ecore_vlan_mac_h_exec_pending - execute step instead of a previous step
465  * which wasn't able to run due to a taken lock on vlan mac head list.
466  *
467  * @sc:		device handle
468  * @o:		vlan_mac object
469  *
470  * @details Should be called under execution queue lock; notice it might release
471  *          and reclaim it during its run.
472  */
473 static void __ecore_vlan_mac_h_exec_pending(struct bxe_softc *sc,
474 					    struct ecore_vlan_mac_obj *o)
475 {
476 	int rc;
477 	unsigned long ramrod_flags = o->saved_ramrod_flags;
478 
479 	ECORE_MSG(sc, "vlan_mac_lock execute pending command with ramrod flags %lu\n",
480 		  ramrod_flags);
481 	o->head_exe_request = FALSE;
482 	o->saved_ramrod_flags = 0;
483 	rc = ecore_exe_queue_step(sc, &o->exe_queue, &ramrod_flags);
484 	if (rc != ECORE_SUCCESS) {
485 		ECORE_ERR("execution of pending commands failed with rc %d\n",
486 			  rc);
487 #ifdef ECORE_STOP_ON_ERROR
488 		ecore_panic();
489 #endif
490 	}
491 }
492 
493 /**
494  * __ecore_vlan_mac_h_pend - Pend an execution step which couldn't have been
495  * called due to vlan mac head list lock being taken.
496  *
497  * @sc:			device handle
498  * @o:			vlan_mac object
499  * @ramrod_flags:	ramrod flags of missed execution
500  *
501  * @details Should be called under execution queue lock.
502  */
503 static void __ecore_vlan_mac_h_pend(struct bxe_softc *sc,
504 				    struct ecore_vlan_mac_obj *o,
505 				    unsigned long ramrod_flags)
506 {
507 	o->head_exe_request = TRUE;
508 	o->saved_ramrod_flags = ramrod_flags;
509 	ECORE_MSG(sc, "Placing pending execution with ramrod flags %lu\n",
510 		  ramrod_flags);
511 }
512 
513 /**
514  * __ecore_vlan_mac_h_write_unlock - unlock the vlan mac head list writer lock
515  *
516  * @sc:			device handle
517  * @o:			vlan_mac object
518  *
519  * @details Should be called under execution queue lock. Notice if a pending
520  *          execution exists, it would perform it - possibly releasing and
521  *          reclaiming the execution queue lock.
522  */
523 static void __ecore_vlan_mac_h_write_unlock(struct bxe_softc *sc,
524 					    struct ecore_vlan_mac_obj *o)
525 {
526 	/* It's possible a new pending execution was added since this writer
527 	 * executed. If so, execute again. [Ad infinitum]
528 	 */
529 	while(o->head_exe_request) {
530 		ECORE_MSG(sc, "vlan_mac_lock - writer release encountered a pending request\n");
531 		__ecore_vlan_mac_h_exec_pending(sc, o);
532 	}
533 }
534 
535 /**
536  * ecore_vlan_mac_h_write_unlock - unlock the vlan mac head list writer lock
537  *
538  * @sc:			device handle
539  * @o:			vlan_mac object
540  *
541  * @details Notice if a pending execution exists, it would perform it -
542  *          possibly releasing and reclaiming the execution queue lock.
543  */
544 void ecore_vlan_mac_h_write_unlock(struct bxe_softc *sc,
545 				   struct ecore_vlan_mac_obj *o)
546 {
547 	ECORE_SPIN_LOCK_BH(&o->exe_queue.lock);
548 	__ecore_vlan_mac_h_write_unlock(sc, o);
549 	ECORE_SPIN_UNLOCK_BH(&o->exe_queue.lock);
550 }
551 
552 /**
553  * __ecore_vlan_mac_h_read_lock - lock the vlan mac head list reader lock
554  *
555  * @sc:			device handle
556  * @o:			vlan_mac object
557  *
558  * @details Should be called under the execution queue lock. May sleep. May
559  *          release and reclaim execution queue lock during its run.
560  */
561 static int __ecore_vlan_mac_h_read_lock(struct bxe_softc *sc,
562 					struct ecore_vlan_mac_obj *o)
563 {
564 	/* If we got here, we're holding lock --> no WRITER exists */
565 	o->head_reader++;
566 	ECORE_MSG(sc, "vlan_mac_lock - locked reader - number %d\n",
567 		  o->head_reader);
568 
569 	return ECORE_SUCCESS;
570 }
571 
572 /**
573  * ecore_vlan_mac_h_read_lock - lock the vlan mac head list reader lock
574  *
575  * @sc:			device handle
576  * @o:			vlan_mac object
577  *
578  * @details May sleep. Claims and releases execution queue lock during its run.
579  */
580 int ecore_vlan_mac_h_read_lock(struct bxe_softc *sc,
581 			       struct ecore_vlan_mac_obj *o)
582 {
583 	int rc;
584 
585 	ECORE_SPIN_LOCK_BH(&o->exe_queue.lock);
586 	rc = __ecore_vlan_mac_h_read_lock(sc, o);
587 	ECORE_SPIN_UNLOCK_BH(&o->exe_queue.lock);
588 
589 	return rc;
590 }
591 
592 /**
593  * __ecore_vlan_mac_h_read_unlock - unlock the vlan mac head list reader lock
594  *
595  * @sc:			device handle
596  * @o:			vlan_mac object
597  *
598  * @details Should be called under execution queue lock. Notice if a pending
599  *          execution exists, it would be performed if this was the last
600  *          reader. possibly releasing and reclaiming the execution queue lock.
601  */
602 static void __ecore_vlan_mac_h_read_unlock(struct bxe_softc *sc,
603 					  struct ecore_vlan_mac_obj *o)
604 {
605 	if (!o->head_reader) {
606 		ECORE_ERR("Need to release vlan mac reader lock, but lock isn't taken\n");
607 #ifdef ECORE_STOP_ON_ERROR
608 		ecore_panic();
609 #endif
610 	} else {
611 		o->head_reader--;
612 		ECORE_MSG(sc, "vlan_mac_lock - decreased readers to %d\n",
613 			  o->head_reader);
614 	}
615 
616 	/* It's possible a new pending execution was added, and that this reader
617 	 * was last - if so we need to execute the command.
618 	 */
619 	if (!o->head_reader && o->head_exe_request) {
620 		ECORE_MSG(sc, "vlan_mac_lock - reader release encountered a pending request\n");
621 
622 		/* Writer release will do the trick */
623 		__ecore_vlan_mac_h_write_unlock(sc, o);
624 	}
625 }
626 
627 /**
628  * ecore_vlan_mac_h_read_unlock - unlock the vlan mac head list reader lock
629  *
630  * @sc:			device handle
631  * @o:			vlan_mac object
632  *
633  * @details Notice if a pending execution exists, it would be performed if this
634  *          was the last reader. Claims and releases the execution queue lock
635  *          during its run.
636  */
637 void ecore_vlan_mac_h_read_unlock(struct bxe_softc *sc,
638 				  struct ecore_vlan_mac_obj *o)
639 {
640 	ECORE_SPIN_LOCK_BH(&o->exe_queue.lock);
641 	__ecore_vlan_mac_h_read_unlock(sc, o);
642 	ECORE_SPIN_UNLOCK_BH(&o->exe_queue.lock);
643 }
644 
645 /**
646  * ecore_vlan_mac_h_read_unlock - unlock the vlan mac head list reader lock
647  *
648  * @sc:			device handle
649  * @o:			vlan_mac object
650  * @n:			number of elements to get
651  * @base:		base address for element placement
652  * @stride:		stride between elements (in bytes)
653  */
654 static int ecore_get_n_elements(struct bxe_softc *sc, struct ecore_vlan_mac_obj *o,
655 				 int n, uint8_t *base, uint8_t stride, uint8_t size)
656 {
657 	struct ecore_vlan_mac_registry_elem *pos;
658 	uint8_t *next = base;
659 	int counter = 0;
660 	int read_lock;
661 
662 	ECORE_MSG(sc, "get_n_elements - taking vlan_mac_lock (reader)\n");
663 	read_lock = ecore_vlan_mac_h_read_lock(sc, o);
664 	if (read_lock != ECORE_SUCCESS)
665 		ECORE_ERR("get_n_elements failed to get vlan mac reader lock; Access without lock\n");
666 
667 	/* traverse list */
668 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
669 				  struct ecore_vlan_mac_registry_elem) {
670 		if (counter < n) {
671 			ECORE_MEMCPY(next, &pos->u, size);
672 			counter++;
673 			ECORE_MSG(sc, "copied element number %d to address %p element was:\n",
674 				  counter, next);
675 			next += stride + size;
676 		}
677 	}
678 
679 	if (read_lock == ECORE_SUCCESS) {
680 		ECORE_MSG(sc, "get_n_elements - releasing vlan_mac_lock (reader)\n");
681 		ecore_vlan_mac_h_read_unlock(sc, o);
682 	}
683 
684 	return counter * ETH_ALEN;
685 }
686 
687 /* check_add() callbacks */
688 static int ecore_check_mac_add(struct bxe_softc *sc,
689 			       struct ecore_vlan_mac_obj *o,
690 			       union ecore_classification_ramrod_data *data)
691 {
692 	struct ecore_vlan_mac_registry_elem *pos;
693 
694 	ECORE_MSG(sc, "Checking MAC %02x:%02x:%02x:%02x:%02x:%02x for ADD command\n", data->mac.mac[0], data->mac.mac[1], data->mac.mac[2], data->mac.mac[3], data->mac.mac[4], data->mac.mac[5]);
695 
696 	if (!ECORE_IS_VALID_ETHER_ADDR(data->mac.mac))
697 		return ECORE_INVAL;
698 
699 	/* Check if a requested MAC already exists */
700 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
701 				  struct ecore_vlan_mac_registry_elem)
702 		if (!ECORE_MEMCMP(data->mac.mac, pos->u.mac.mac, ETH_ALEN) &&
703 		    (data->mac.is_inner_mac == pos->u.mac.is_inner_mac))
704 			return ECORE_EXISTS;
705 
706 	return ECORE_SUCCESS;
707 }
708 
709 static int ecore_check_vlan_add(struct bxe_softc *sc,
710 				struct ecore_vlan_mac_obj *o,
711 				union ecore_classification_ramrod_data *data)
712 {
713 	struct ecore_vlan_mac_registry_elem *pos;
714 
715 	ECORE_MSG(sc, "Checking VLAN %d for ADD command\n", data->vlan.vlan);
716 
717 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
718 				  struct ecore_vlan_mac_registry_elem)
719 		if (data->vlan.vlan == pos->u.vlan.vlan)
720 			return ECORE_EXISTS;
721 
722 	return ECORE_SUCCESS;
723 }
724 
725 static int ecore_check_vlan_mac_add(struct bxe_softc *sc,
726 				    struct ecore_vlan_mac_obj *o,
727 				   union ecore_classification_ramrod_data *data)
728 {
729 	struct ecore_vlan_mac_registry_elem *pos;
730 
731 	ECORE_MSG(sc, "Checking VLAN_MAC (%02x:%02x:%02x:%02x:%02x:%02x, %d) for ADD command\n",
732 		  data->vlan_mac.mac[0], data->vlan_mac.mac[1], data->vlan_mac.mac[2], data->vlan_mac.mac[3], data->vlan_mac.mac[4], data->vlan_mac.mac[5], data->vlan_mac.vlan);
733 
734 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
735 				  struct ecore_vlan_mac_registry_elem)
736 		if ((data->vlan_mac.vlan == pos->u.vlan_mac.vlan) &&
737 		    (!ECORE_MEMCMP(data->vlan_mac.mac, pos->u.vlan_mac.mac,
738 				  ETH_ALEN)) &&
739 		    (data->vlan_mac.is_inner_mac ==
740 		     pos->u.vlan_mac.is_inner_mac))
741 			return ECORE_EXISTS;
742 
743 	return ECORE_SUCCESS;
744 }
745 
746 /* check_del() callbacks */
747 static struct ecore_vlan_mac_registry_elem *
748 	ecore_check_mac_del(struct bxe_softc *sc,
749 			    struct ecore_vlan_mac_obj *o,
750 			    union ecore_classification_ramrod_data *data)
751 {
752 	struct ecore_vlan_mac_registry_elem *pos;
753 
754 	ECORE_MSG(sc, "Checking MAC %02x:%02x:%02x:%02x:%02x:%02x for DEL command\n", data->mac.mac[0], data->mac.mac[1], data->mac.mac[2], data->mac.mac[3], data->mac.mac[4], data->mac.mac[5]);
755 
756 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
757 				  struct ecore_vlan_mac_registry_elem)
758 		if ((!ECORE_MEMCMP(data->mac.mac, pos->u.mac.mac, ETH_ALEN)) &&
759 		    (data->mac.is_inner_mac == pos->u.mac.is_inner_mac))
760 			return pos;
761 
762 	return NULL;
763 }
764 
765 static struct ecore_vlan_mac_registry_elem *
766 	ecore_check_vlan_del(struct bxe_softc *sc,
767 			     struct ecore_vlan_mac_obj *o,
768 			     union ecore_classification_ramrod_data *data)
769 {
770 	struct ecore_vlan_mac_registry_elem *pos;
771 
772 	ECORE_MSG(sc, "Checking VLAN %d for DEL command\n", data->vlan.vlan);
773 
774 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
775 				  struct ecore_vlan_mac_registry_elem)
776 		if (data->vlan.vlan == pos->u.vlan.vlan)
777 			return pos;
778 
779 	return NULL;
780 }
781 
782 static struct ecore_vlan_mac_registry_elem *
783 	ecore_check_vlan_mac_del(struct bxe_softc *sc,
784 				 struct ecore_vlan_mac_obj *o,
785 				 union ecore_classification_ramrod_data *data)
786 {
787 	struct ecore_vlan_mac_registry_elem *pos;
788 
789 	ECORE_MSG(sc, "Checking VLAN_MAC (%02x:%02x:%02x:%02x:%02x:%02x, %d) for DEL command\n",
790 		  data->vlan_mac.mac[0], data->vlan_mac.mac[1], data->vlan_mac.mac[2], data->vlan_mac.mac[3], data->vlan_mac.mac[4], data->vlan_mac.mac[5], data->vlan_mac.vlan);
791 
792 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
793 				  struct ecore_vlan_mac_registry_elem)
794 		if ((data->vlan_mac.vlan == pos->u.vlan_mac.vlan) &&
795 		    (!ECORE_MEMCMP(data->vlan_mac.mac, pos->u.vlan_mac.mac,
796 			     ETH_ALEN)) &&
797 		    (data->vlan_mac.is_inner_mac ==
798 		     pos->u.vlan_mac.is_inner_mac))
799 			return pos;
800 
801 	return NULL;
802 }
803 
804 /* check_move() callback */
805 static bool ecore_check_move(struct bxe_softc *sc,
806 			     struct ecore_vlan_mac_obj *src_o,
807 			     struct ecore_vlan_mac_obj *dst_o,
808 			     union ecore_classification_ramrod_data *data)
809 {
810 	struct ecore_vlan_mac_registry_elem *pos;
811 	int rc;
812 
813 	/* Check if we can delete the requested configuration from the first
814 	 * object.
815 	 */
816 	pos = src_o->check_del(sc, src_o, data);
817 
818 	/*  check if configuration can be added */
819 	rc = dst_o->check_add(sc, dst_o, data);
820 
821 	/* If this classification can not be added (is already set)
822 	 * or can't be deleted - return an error.
823 	 */
824 	if (rc || !pos)
825 		return FALSE;
826 
827 	return TRUE;
828 }
829 
830 static bool ecore_check_move_always_err(
831 	struct bxe_softc *sc,
832 	struct ecore_vlan_mac_obj *src_o,
833 	struct ecore_vlan_mac_obj *dst_o,
834 	union ecore_classification_ramrod_data *data)
835 {
836 	return FALSE;
837 }
838 
839 static inline uint8_t ecore_vlan_mac_get_rx_tx_flag(struct ecore_vlan_mac_obj *o)
840 {
841 	struct ecore_raw_obj *raw = &o->raw;
842 	uint8_t rx_tx_flag = 0;
843 
844 	if ((raw->obj_type == ECORE_OBJ_TYPE_TX) ||
845 	    (raw->obj_type == ECORE_OBJ_TYPE_RX_TX))
846 		rx_tx_flag |= ETH_CLASSIFY_CMD_HEADER_TX_CMD;
847 
848 	if ((raw->obj_type == ECORE_OBJ_TYPE_RX) ||
849 	    (raw->obj_type == ECORE_OBJ_TYPE_RX_TX))
850 		rx_tx_flag |= ETH_CLASSIFY_CMD_HEADER_RX_CMD;
851 
852 	return rx_tx_flag;
853 }
854 
855 void ecore_set_mac_in_nig(struct bxe_softc *sc,
856 			  bool add, unsigned char *dev_addr, int index)
857 {
858 	uint32_t wb_data[2];
859 	uint32_t reg_offset = ECORE_PORT_ID(sc) ? NIG_REG_LLH1_FUNC_MEM :
860 			 NIG_REG_LLH0_FUNC_MEM;
861 
862 	if (!ECORE_IS_MF_SI_MODE(sc) && !IS_MF_AFEX(sc))
863 		return;
864 
865 	if (index > ECORE_LLH_CAM_MAX_PF_LINE)
866 		return;
867 
868 	ECORE_MSG(sc, "Going to %s LLH configuration at entry %d\n",
869 		  (add ? "ADD" : "DELETE"), index);
870 
871 	if (add) {
872 		/* LLH_FUNC_MEM is a uint64_t WB register */
873 		reg_offset += 8*index;
874 
875 		wb_data[0] = ((dev_addr[2] << 24) | (dev_addr[3] << 16) |
876 			      (dev_addr[4] <<  8) |  dev_addr[5]);
877 		wb_data[1] = ((dev_addr[0] <<  8) |  dev_addr[1]);
878 
879 		ECORE_REG_WR_DMAE_LEN(sc, reg_offset, wb_data, 2);
880 	}
881 
882 	REG_WR(sc, (ECORE_PORT_ID(sc) ? NIG_REG_LLH1_FUNC_MEM_ENABLE :
883 				  NIG_REG_LLH0_FUNC_MEM_ENABLE) + 4*index, add);
884 }
885 
886 /**
887  * ecore_vlan_mac_set_cmd_hdr_e2 - set a header in a single classify ramrod
888  *
889  * @sc:		device handle
890  * @o:		queue for which we want to configure this rule
891  * @add:	if TRUE the command is an ADD command, DEL otherwise
892  * @opcode:	CLASSIFY_RULE_OPCODE_XXX
893  * @hdr:	pointer to a header to setup
894  *
895  */
896 static inline void ecore_vlan_mac_set_cmd_hdr_e2(struct bxe_softc *sc,
897 	struct ecore_vlan_mac_obj *o, bool add, int opcode,
898 	struct eth_classify_cmd_header *hdr)
899 {
900 	struct ecore_raw_obj *raw = &o->raw;
901 
902 	hdr->client_id = raw->cl_id;
903 	hdr->func_id = raw->func_id;
904 
905 	/* Rx or/and Tx (internal switching) configuration ? */
906 	hdr->cmd_general_data |=
907 		ecore_vlan_mac_get_rx_tx_flag(o);
908 
909 	if (add)
910 		hdr->cmd_general_data |= ETH_CLASSIFY_CMD_HEADER_IS_ADD;
911 
912 	hdr->cmd_general_data |=
913 		(opcode << ETH_CLASSIFY_CMD_HEADER_OPCODE_SHIFT);
914 }
915 
916 /**
917  * ecore_vlan_mac_set_rdata_hdr_e2 - set the classify ramrod data header
918  *
919  * @cid:	connection id
920  * @type:	ECORE_FILTER_XXX_PENDING
921  * @hdr:	pointer to header to setup
922  * @rule_cnt:
923  *
924  * currently we always configure one rule and echo field to contain a CID and an
925  * opcode type.
926  */
927 static inline void ecore_vlan_mac_set_rdata_hdr_e2(uint32_t cid, int type,
928 				struct eth_classify_header *hdr, int rule_cnt)
929 {
930 	hdr->echo = ECORE_CPU_TO_LE32((cid & ECORE_SWCID_MASK) |
931 				(type << ECORE_SWCID_SHIFT));
932 	hdr->rule_cnt = (uint8_t)rule_cnt;
933 }
934 
935 /* hw_config() callbacks */
936 static void ecore_set_one_mac_e2(struct bxe_softc *sc,
937 				 struct ecore_vlan_mac_obj *o,
938 				 struct ecore_exeq_elem *elem, int rule_idx,
939 				 int cam_offset)
940 {
941 	struct ecore_raw_obj *raw = &o->raw;
942 	struct eth_classify_rules_ramrod_data *data =
943 		(struct eth_classify_rules_ramrod_data *)(raw->rdata);
944 	int rule_cnt = rule_idx + 1, cmd = elem->cmd_data.vlan_mac.cmd;
945 	union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
946 	bool add = (cmd == ECORE_VLAN_MAC_ADD) ? TRUE : FALSE;
947 	unsigned long *vlan_mac_flags = &elem->cmd_data.vlan_mac.vlan_mac_flags;
948 	uint8_t *mac = elem->cmd_data.vlan_mac.u.mac.mac;
949 
950 	/* Set LLH CAM entry: currently only iSCSI and ETH macs are
951 	 * relevant. In addition, current implementation is tuned for a
952 	 * single ETH MAC.
953 	 *
954 	 * When multiple unicast ETH MACs PF configuration in switch
955 	 * independent mode is required (NetQ, multiple netdev MACs,
956 	 * etc.), consider better utilisation of 8 per function MAC
957 	 * entries in the LLH register. There is also
958 	 * NIG_REG_P[01]_LLH_FUNC_MEM2 registers that complete the
959 	 * total number of CAM entries to 16.
960 	 *
961 	 * Currently we won't configure NIG for MACs other than a primary ETH
962 	 * MAC and iSCSI L2 MAC.
963 	 *
964 	 * If this MAC is moving from one Queue to another, no need to change
965 	 * NIG configuration.
966 	 */
967 	if (cmd != ECORE_VLAN_MAC_MOVE) {
968 		if (ECORE_TEST_BIT(ECORE_ISCSI_ETH_MAC, vlan_mac_flags))
969 			ecore_set_mac_in_nig(sc, add, mac,
970 					     ECORE_LLH_CAM_ISCSI_ETH_LINE);
971 		else if (ECORE_TEST_BIT(ECORE_ETH_MAC, vlan_mac_flags))
972 			ecore_set_mac_in_nig(sc, add, mac,
973 					     ECORE_LLH_CAM_ETH_LINE);
974 	}
975 
976 	/* Reset the ramrod data buffer for the first rule */
977 	if (rule_idx == 0)
978 		ECORE_MEMSET(data, 0, sizeof(*data));
979 
980 	/* Setup a command header */
981 	ecore_vlan_mac_set_cmd_hdr_e2(sc, o, add, CLASSIFY_RULE_OPCODE_MAC,
982 				      &rule_entry->mac.header);
983 
984 	ECORE_MSG(sc, "About to %s MAC %02x:%02x:%02x:%02x:%02x:%02x for Queue %d\n",
985 		  (add ? "add" : "delete"), mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], raw->cl_id);
986 
987 	/* Set a MAC itself */
988 	ecore_set_fw_mac_addr(&rule_entry->mac.mac_msb,
989 			      &rule_entry->mac.mac_mid,
990 			      &rule_entry->mac.mac_lsb, mac);
991 	rule_entry->mac.inner_mac =
992 		elem->cmd_data.vlan_mac.u.mac.is_inner_mac;
993 
994 	/* MOVE: Add a rule that will add this MAC to the target Queue */
995 	if (cmd == ECORE_VLAN_MAC_MOVE) {
996 		rule_entry++;
997 		rule_cnt++;
998 
999 		/* Setup ramrod data */
1000 		ecore_vlan_mac_set_cmd_hdr_e2(sc,
1001 					elem->cmd_data.vlan_mac.target_obj,
1002 					      TRUE, CLASSIFY_RULE_OPCODE_MAC,
1003 					      &rule_entry->mac.header);
1004 
1005 		/* Set a MAC itself */
1006 		ecore_set_fw_mac_addr(&rule_entry->mac.mac_msb,
1007 				      &rule_entry->mac.mac_mid,
1008 				      &rule_entry->mac.mac_lsb, mac);
1009 		rule_entry->mac.inner_mac =
1010 			elem->cmd_data.vlan_mac.u.mac.is_inner_mac;
1011 	}
1012 
1013 	/* Set the ramrod data header */
1014 	/* TODO: take this to the higher level in order to prevent multiple
1015 		 writing */
1016 	ecore_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
1017 					rule_cnt);
1018 }
1019 
1020 /**
1021  * ecore_vlan_mac_set_rdata_hdr_e1x - set a header in a single classify ramrod
1022  *
1023  * @sc:		device handle
1024  * @o:		queue
1025  * @type:
1026  * @cam_offset:	offset in cam memory
1027  * @hdr:	pointer to a header to setup
1028  *
1029  * E1/E1H
1030  */
1031 static inline void ecore_vlan_mac_set_rdata_hdr_e1x(struct bxe_softc *sc,
1032 	struct ecore_vlan_mac_obj *o, int type, int cam_offset,
1033 	struct mac_configuration_hdr *hdr)
1034 {
1035 	struct ecore_raw_obj *r = &o->raw;
1036 
1037 	hdr->length = 1;
1038 	hdr->offset = (uint8_t)cam_offset;
1039 	hdr->client_id = ECORE_CPU_TO_LE16(0xff);
1040 	hdr->echo = ECORE_CPU_TO_LE32((r->cid & ECORE_SWCID_MASK) |
1041 				(type << ECORE_SWCID_SHIFT));
1042 }
1043 
1044 static inline void ecore_vlan_mac_set_cfg_entry_e1x(struct bxe_softc *sc,
1045 	struct ecore_vlan_mac_obj *o, bool add, int opcode, uint8_t *mac,
1046 	uint16_t vlan_id, struct mac_configuration_entry *cfg_entry)
1047 {
1048 	struct ecore_raw_obj *r = &o->raw;
1049 	uint32_t cl_bit_vec = (1 << r->cl_id);
1050 
1051 	cfg_entry->clients_bit_vector = ECORE_CPU_TO_LE32(cl_bit_vec);
1052 	cfg_entry->pf_id = r->func_id;
1053 	cfg_entry->vlan_id = ECORE_CPU_TO_LE16(vlan_id);
1054 
1055 	if (add) {
1056 		ECORE_SET_FLAG(cfg_entry->flags,
1057 			       MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
1058 			       T_ETH_MAC_COMMAND_SET);
1059 		ECORE_SET_FLAG(cfg_entry->flags,
1060 			       MAC_CONFIGURATION_ENTRY_VLAN_FILTERING_MODE,
1061 			       opcode);
1062 
1063 		/* Set a MAC in a ramrod data */
1064 		ecore_set_fw_mac_addr(&cfg_entry->msb_mac_addr,
1065 				      &cfg_entry->middle_mac_addr,
1066 				      &cfg_entry->lsb_mac_addr, mac);
1067 	} else
1068 		ECORE_SET_FLAG(cfg_entry->flags,
1069 			       MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
1070 			       T_ETH_MAC_COMMAND_INVALIDATE);
1071 }
1072 
1073 static inline void ecore_vlan_mac_set_rdata_e1x(struct bxe_softc *sc,
1074 	struct ecore_vlan_mac_obj *o, int type, int cam_offset, bool add,
1075 	uint8_t *mac, uint16_t vlan_id, int opcode, struct mac_configuration_cmd *config)
1076 {
1077 	struct mac_configuration_entry *cfg_entry = &config->config_table[0];
1078 	struct ecore_raw_obj *raw = &o->raw;
1079 
1080 	ecore_vlan_mac_set_rdata_hdr_e1x(sc, o, type, cam_offset,
1081 					 &config->hdr);
1082 	ecore_vlan_mac_set_cfg_entry_e1x(sc, o, add, opcode, mac, vlan_id,
1083 					 cfg_entry);
1084 
1085 	ECORE_MSG(sc, "%s MAC %02x:%02x:%02x:%02x:%02x:%02x CLID %d CAM offset %d\n",
1086 		  (add ? "setting" : "clearing"),
1087 		  mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], raw->cl_id, cam_offset);
1088 }
1089 
1090 /**
1091  * ecore_set_one_mac_e1x - fill a single MAC rule ramrod data
1092  *
1093  * @sc:		device handle
1094  * @o:		ecore_vlan_mac_obj
1095  * @elem:	ecore_exeq_elem
1096  * @rule_idx:	rule_idx
1097  * @cam_offset: cam_offset
1098  */
1099 static void ecore_set_one_mac_e1x(struct bxe_softc *sc,
1100 				  struct ecore_vlan_mac_obj *o,
1101 				  struct ecore_exeq_elem *elem, int rule_idx,
1102 				  int cam_offset)
1103 {
1104 	struct ecore_raw_obj *raw = &o->raw;
1105 	struct mac_configuration_cmd *config =
1106 		(struct mac_configuration_cmd *)(raw->rdata);
1107 	/* 57710 and 57711 do not support MOVE command,
1108 	 * so it's either ADD or DEL
1109 	 */
1110 	bool add = (elem->cmd_data.vlan_mac.cmd == ECORE_VLAN_MAC_ADD) ?
1111 		TRUE : FALSE;
1112 
1113 	/* Reset the ramrod data buffer */
1114 	ECORE_MEMSET(config, 0, sizeof(*config));
1115 
1116 	ecore_vlan_mac_set_rdata_e1x(sc, o, raw->state,
1117 				     cam_offset, add,
1118 				     elem->cmd_data.vlan_mac.u.mac.mac, 0,
1119 				     ETH_VLAN_FILTER_ANY_VLAN, config);
1120 }
1121 
1122 static void ecore_set_one_vlan_e2(struct bxe_softc *sc,
1123 				  struct ecore_vlan_mac_obj *o,
1124 				  struct ecore_exeq_elem *elem, int rule_idx,
1125 				  int cam_offset)
1126 {
1127 	struct ecore_raw_obj *raw = &o->raw;
1128 	struct eth_classify_rules_ramrod_data *data =
1129 		(struct eth_classify_rules_ramrod_data *)(raw->rdata);
1130 	int rule_cnt = rule_idx + 1;
1131 	union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
1132 	enum ecore_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd;
1133 	bool add = (cmd == ECORE_VLAN_MAC_ADD) ? TRUE : FALSE;
1134 	uint16_t vlan = elem->cmd_data.vlan_mac.u.vlan.vlan;
1135 
1136 	/* Reset the ramrod data buffer for the first rule */
1137 	if (rule_idx == 0)
1138 		ECORE_MEMSET(data, 0, sizeof(*data));
1139 
1140 	/* Set a rule header */
1141 	ecore_vlan_mac_set_cmd_hdr_e2(sc, o, add, CLASSIFY_RULE_OPCODE_VLAN,
1142 				      &rule_entry->vlan.header);
1143 
1144 	ECORE_MSG(sc, "About to %s VLAN %d\n", (add ? "add" : "delete"),
1145 		  vlan);
1146 
1147 	/* Set a VLAN itself */
1148 	rule_entry->vlan.vlan = ECORE_CPU_TO_LE16(vlan);
1149 
1150 	/* MOVE: Add a rule that will add this MAC to the target Queue */
1151 	if (cmd == ECORE_VLAN_MAC_MOVE) {
1152 		rule_entry++;
1153 		rule_cnt++;
1154 
1155 		/* Setup ramrod data */
1156 		ecore_vlan_mac_set_cmd_hdr_e2(sc,
1157 					elem->cmd_data.vlan_mac.target_obj,
1158 					      TRUE, CLASSIFY_RULE_OPCODE_VLAN,
1159 					      &rule_entry->vlan.header);
1160 
1161 		/* Set a VLAN itself */
1162 		rule_entry->vlan.vlan = ECORE_CPU_TO_LE16(vlan);
1163 	}
1164 
1165 	/* Set the ramrod data header */
1166 	/* TODO: take this to the higher level in order to prevent multiple
1167 		 writing */
1168 	ecore_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
1169 					rule_cnt);
1170 }
1171 
1172 static void ecore_set_one_vlan_mac_e2(struct bxe_softc *sc,
1173 				      struct ecore_vlan_mac_obj *o,
1174 				      struct ecore_exeq_elem *elem,
1175 				      int rule_idx, int cam_offset)
1176 {
1177 	struct ecore_raw_obj *raw = &o->raw;
1178 	struct eth_classify_rules_ramrod_data *data =
1179 		(struct eth_classify_rules_ramrod_data *)(raw->rdata);
1180 	int rule_cnt = rule_idx + 1;
1181 	union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
1182 	enum ecore_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd;
1183 	bool add = (cmd == ECORE_VLAN_MAC_ADD) ? TRUE : FALSE;
1184 	uint16_t vlan = elem->cmd_data.vlan_mac.u.vlan_mac.vlan;
1185 	uint8_t *mac = elem->cmd_data.vlan_mac.u.vlan_mac.mac;
1186 
1187 	/* Reset the ramrod data buffer for the first rule */
1188 	if (rule_idx == 0)
1189 		ECORE_MEMSET(data, 0, sizeof(*data));
1190 
1191 	/* Set a rule header */
1192 	ecore_vlan_mac_set_cmd_hdr_e2(sc, o, add, CLASSIFY_RULE_OPCODE_PAIR,
1193 				      &rule_entry->pair.header);
1194 
1195 	/* Set VLAN and MAC themselves */
1196 	rule_entry->pair.vlan = ECORE_CPU_TO_LE16(vlan);
1197 	ecore_set_fw_mac_addr(&rule_entry->pair.mac_msb,
1198 			      &rule_entry->pair.mac_mid,
1199 			      &rule_entry->pair.mac_lsb, mac);
1200 	rule_entry->pair.inner_mac =
1201 			elem->cmd_data.vlan_mac.u.vlan_mac.is_inner_mac;
1202 	/* MOVE: Add a rule that will add this MAC to the target Queue */
1203 	if (cmd == ECORE_VLAN_MAC_MOVE) {
1204 		rule_entry++;
1205 		rule_cnt++;
1206 
1207 		/* Setup ramrod data */
1208 		ecore_vlan_mac_set_cmd_hdr_e2(sc,
1209 					elem->cmd_data.vlan_mac.target_obj,
1210 					      TRUE, CLASSIFY_RULE_OPCODE_PAIR,
1211 					      &rule_entry->pair.header);
1212 
1213 		/* Set a VLAN itself */
1214 		rule_entry->pair.vlan = ECORE_CPU_TO_LE16(vlan);
1215 		ecore_set_fw_mac_addr(&rule_entry->pair.mac_msb,
1216 				      &rule_entry->pair.mac_mid,
1217 				      &rule_entry->pair.mac_lsb, mac);
1218 		rule_entry->pair.inner_mac =
1219 			elem->cmd_data.vlan_mac.u.vlan_mac.is_inner_mac;
1220 	}
1221 
1222 	/* Set the ramrod data header */
1223 	/* TODO: take this to the higher level in order to prevent multiple
1224 		 writing */
1225 	ecore_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
1226 					rule_cnt);
1227 }
1228 
1229 /**
1230  * ecore_set_one_vlan_mac_e1h -
1231  *
1232  * @sc:		device handle
1233  * @o:		ecore_vlan_mac_obj
1234  * @elem:	ecore_exeq_elem
1235  * @rule_idx:	rule_idx
1236  * @cam_offset:	cam_offset
1237  */
1238 static void ecore_set_one_vlan_mac_e1h(struct bxe_softc *sc,
1239 				       struct ecore_vlan_mac_obj *o,
1240 				       struct ecore_exeq_elem *elem,
1241 				       int rule_idx, int cam_offset)
1242 {
1243 	struct ecore_raw_obj *raw = &o->raw;
1244 	struct mac_configuration_cmd *config =
1245 		(struct mac_configuration_cmd *)(raw->rdata);
1246 	/* 57710 and 57711 do not support MOVE command,
1247 	 * so it's either ADD or DEL
1248 	 */
1249 	bool add = (elem->cmd_data.vlan_mac.cmd == ECORE_VLAN_MAC_ADD) ?
1250 		TRUE : FALSE;
1251 
1252 	/* Reset the ramrod data buffer */
1253 	ECORE_MEMSET(config, 0, sizeof(*config));
1254 
1255 	ecore_vlan_mac_set_rdata_e1x(sc, o, ECORE_FILTER_VLAN_MAC_PENDING,
1256 				     cam_offset, add,
1257 				     elem->cmd_data.vlan_mac.u.vlan_mac.mac,
1258 				     elem->cmd_data.vlan_mac.u.vlan_mac.vlan,
1259 				     ETH_VLAN_FILTER_CLASSIFY, config);
1260 }
1261 
1262 #define list_next_entry(pos, member) \
1263 	list_entry((pos)->member.next, typeof(*(pos)), member)
1264 
1265 /**
1266  * ecore_vlan_mac_restore - reconfigure next MAC/VLAN/VLAN-MAC element
1267  *
1268  * @sc:		device handle
1269  * @p:		command parameters
1270  * @ppos:	pointer to the cookie
1271  *
1272  * reconfigure next MAC/VLAN/VLAN-MAC element from the
1273  * previously configured elements list.
1274  *
1275  * from command parameters only RAMROD_COMP_WAIT bit in ramrod_flags is	taken
1276  * into an account
1277  *
1278  * pointer to the cookie  - that should be given back in the next call to make
1279  * function handle the next element. If *ppos is set to NULL it will restart the
1280  * iterator. If returned *ppos == NULL this means that the last element has been
1281  * handled.
1282  *
1283  */
1284 static int ecore_vlan_mac_restore(struct bxe_softc *sc,
1285 			   struct ecore_vlan_mac_ramrod_params *p,
1286 			   struct ecore_vlan_mac_registry_elem **ppos)
1287 {
1288 	struct ecore_vlan_mac_registry_elem *pos;
1289 	struct ecore_vlan_mac_obj *o = p->vlan_mac_obj;
1290 
1291 	/* If list is empty - there is nothing to do here */
1292 	if (ECORE_LIST_IS_EMPTY(&o->head)) {
1293 		*ppos = NULL;
1294 		return 0;
1295 	}
1296 
1297 	/* make a step... */
1298 	if (*ppos == NULL)
1299 		*ppos = ECORE_LIST_FIRST_ENTRY(&o->head,
1300 					    struct ecore_vlan_mac_registry_elem,
1301 					       link);
1302 	else
1303 		*ppos = ECORE_LIST_NEXT(*ppos, link,
1304 					struct ecore_vlan_mac_registry_elem);
1305 
1306 	pos = *ppos;
1307 
1308 	/* If it's the last step - return NULL */
1309 	if (ECORE_LIST_IS_LAST(&pos->link, &o->head))
1310 		*ppos = NULL;
1311 
1312 	/* Prepare a 'user_req' */
1313 	ECORE_MEMCPY(&p->user_req.u, &pos->u, sizeof(pos->u));
1314 
1315 	/* Set the command */
1316 	p->user_req.cmd = ECORE_VLAN_MAC_ADD;
1317 
1318 	/* Set vlan_mac_flags */
1319 	p->user_req.vlan_mac_flags = pos->vlan_mac_flags;
1320 
1321 	/* Set a restore bit */
1322 	ECORE_SET_BIT_NA(RAMROD_RESTORE, &p->ramrod_flags);
1323 
1324 	return ecore_config_vlan_mac(sc, p);
1325 }
1326 
1327 /* ecore_exeq_get_mac/ecore_exeq_get_vlan/ecore_exeq_get_vlan_mac return a
1328  * pointer to an element with a specific criteria and NULL if such an element
1329  * hasn't been found.
1330  */
1331 static struct ecore_exeq_elem *ecore_exeq_get_mac(
1332 	struct ecore_exe_queue_obj *o,
1333 	struct ecore_exeq_elem *elem)
1334 {
1335 	struct ecore_exeq_elem *pos;
1336 	struct ecore_mac_ramrod_data *data = &elem->cmd_data.vlan_mac.u.mac;
1337 
1338 	/* Check pending for execution commands */
1339 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->exe_queue, link,
1340 				  struct ecore_exeq_elem)
1341 		if (!ECORE_MEMCMP(&pos->cmd_data.vlan_mac.u.mac, data,
1342 			      sizeof(*data)) &&
1343 		    (pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd))
1344 			return pos;
1345 
1346 	return NULL;
1347 }
1348 
1349 static struct ecore_exeq_elem *ecore_exeq_get_vlan(
1350 	struct ecore_exe_queue_obj *o,
1351 	struct ecore_exeq_elem *elem)
1352 {
1353 	struct ecore_exeq_elem *pos;
1354 	struct ecore_vlan_ramrod_data *data = &elem->cmd_data.vlan_mac.u.vlan;
1355 
1356 	/* Check pending for execution commands */
1357 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->exe_queue, link,
1358 				  struct ecore_exeq_elem)
1359 		if (!ECORE_MEMCMP(&pos->cmd_data.vlan_mac.u.vlan, data,
1360 			      sizeof(*data)) &&
1361 		    (pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd))
1362 			return pos;
1363 
1364 	return NULL;
1365 }
1366 
1367 static struct ecore_exeq_elem *ecore_exeq_get_vlan_mac(
1368 	struct ecore_exe_queue_obj *o,
1369 	struct ecore_exeq_elem *elem)
1370 {
1371 	struct ecore_exeq_elem *pos;
1372 	struct ecore_vlan_mac_ramrod_data *data =
1373 		&elem->cmd_data.vlan_mac.u.vlan_mac;
1374 
1375 	/* Check pending for execution commands */
1376 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->exe_queue, link,
1377 				  struct ecore_exeq_elem)
1378 		if (!ECORE_MEMCMP(&pos->cmd_data.vlan_mac.u.vlan_mac, data,
1379 			      sizeof(*data)) &&
1380 		    (pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd))
1381 			return pos;
1382 
1383 	return NULL;
1384 }
1385 
1386 /**
1387  * ecore_validate_vlan_mac_add - check if an ADD command can be executed
1388  *
1389  * @sc:		device handle
1390  * @qo:		ecore_qable_obj
1391  * @elem:	ecore_exeq_elem
1392  *
1393  * Checks that the requested configuration can be added. If yes and if
1394  * requested, consume CAM credit.
1395  *
1396  * The 'validate' is run after the 'optimize'.
1397  *
1398  */
1399 static inline int ecore_validate_vlan_mac_add(struct bxe_softc *sc,
1400 					      union ecore_qable_obj *qo,
1401 					      struct ecore_exeq_elem *elem)
1402 {
1403 	struct ecore_vlan_mac_obj *o = &qo->vlan_mac;
1404 	struct ecore_exe_queue_obj *exeq = &o->exe_queue;
1405 	int rc;
1406 
1407 	/* Check the registry */
1408 	rc = o->check_add(sc, o, &elem->cmd_data.vlan_mac.u);
1409 	if (rc) {
1410 		ECORE_MSG(sc, "ADD command is not allowed considering current registry state.\n");
1411 		return rc;
1412 	}
1413 
1414 	/* Check if there is a pending ADD command for this
1415 	 * MAC/VLAN/VLAN-MAC. Return an error if there is.
1416 	 */
1417 	if (exeq->get(exeq, elem)) {
1418 		ECORE_MSG(sc, "There is a pending ADD command already\n");
1419 		return ECORE_EXISTS;
1420 	}
1421 
1422 	/* TODO: Check the pending MOVE from other objects where this
1423 	 * object is a destination object.
1424 	 */
1425 
1426 	/* Consume the credit if not requested not to */
1427 	if (!(ECORE_TEST_BIT(ECORE_DONT_CONSUME_CAM_CREDIT,
1428 			     &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1429 	    o->get_credit(o)))
1430 		return ECORE_INVAL;
1431 
1432 	return ECORE_SUCCESS;
1433 }
1434 
1435 /**
1436  * ecore_validate_vlan_mac_del - check if the DEL command can be executed
1437  *
1438  * @sc:		device handle
1439  * @qo:		quable object to check
1440  * @elem:	element that needs to be deleted
1441  *
1442  * Checks that the requested configuration can be deleted. If yes and if
1443  * requested, returns a CAM credit.
1444  *
1445  * The 'validate' is run after the 'optimize'.
1446  */
1447 static inline int ecore_validate_vlan_mac_del(struct bxe_softc *sc,
1448 					      union ecore_qable_obj *qo,
1449 					      struct ecore_exeq_elem *elem)
1450 {
1451 	struct ecore_vlan_mac_obj *o = &qo->vlan_mac;
1452 	struct ecore_vlan_mac_registry_elem *pos;
1453 	struct ecore_exe_queue_obj *exeq = &o->exe_queue;
1454 	struct ecore_exeq_elem query_elem;
1455 
1456 	/* If this classification can not be deleted (doesn't exist)
1457 	 * - return a ECORE_EXIST.
1458 	 */
1459 	pos = o->check_del(sc, o, &elem->cmd_data.vlan_mac.u);
1460 	if (!pos) {
1461 		ECORE_MSG(sc, "DEL command is not allowed considering current registry state\n");
1462 		return ECORE_EXISTS;
1463 	}
1464 
1465 	/* Check if there are pending DEL or MOVE commands for this
1466 	 * MAC/VLAN/VLAN-MAC. Return an error if so.
1467 	 */
1468 	ECORE_MEMCPY(&query_elem, elem, sizeof(query_elem));
1469 
1470 	/* Check for MOVE commands */
1471 	query_elem.cmd_data.vlan_mac.cmd = ECORE_VLAN_MAC_MOVE;
1472 	if (exeq->get(exeq, &query_elem)) {
1473 		ECORE_ERR("There is a pending MOVE command already\n");
1474 		return ECORE_INVAL;
1475 	}
1476 
1477 	/* Check for DEL commands */
1478 	if (exeq->get(exeq, elem)) {
1479 		ECORE_MSG(sc, "There is a pending DEL command already\n");
1480 		return ECORE_EXISTS;
1481 	}
1482 
1483 	/* Return the credit to the credit pool if not requested not to */
1484 	if (!(ECORE_TEST_BIT(ECORE_DONT_CONSUME_CAM_CREDIT,
1485 			     &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1486 	    o->put_credit(o))) {
1487 		ECORE_ERR("Failed to return a credit\n");
1488 		return ECORE_INVAL;
1489 	}
1490 
1491 	return ECORE_SUCCESS;
1492 }
1493 
1494 /**
1495  * ecore_validate_vlan_mac_move - check if the MOVE command can be executed
1496  *
1497  * @sc:		device handle
1498  * @qo:		quable object to check (source)
1499  * @elem:	element that needs to be moved
1500  *
1501  * Checks that the requested configuration can be moved. If yes and if
1502  * requested, returns a CAM credit.
1503  *
1504  * The 'validate' is run after the 'optimize'.
1505  */
1506 static inline int ecore_validate_vlan_mac_move(struct bxe_softc *sc,
1507 					       union ecore_qable_obj *qo,
1508 					       struct ecore_exeq_elem *elem)
1509 {
1510 	struct ecore_vlan_mac_obj *src_o = &qo->vlan_mac;
1511 	struct ecore_vlan_mac_obj *dest_o = elem->cmd_data.vlan_mac.target_obj;
1512 	struct ecore_exeq_elem query_elem;
1513 	struct ecore_exe_queue_obj *src_exeq = &src_o->exe_queue;
1514 	struct ecore_exe_queue_obj *dest_exeq = &dest_o->exe_queue;
1515 
1516 	/* Check if we can perform this operation based on the current registry
1517 	 * state.
1518 	 */
1519 	if (!src_o->check_move(sc, src_o, dest_o,
1520 			       &elem->cmd_data.vlan_mac.u)) {
1521 		ECORE_MSG(sc, "MOVE command is not allowed considering current registry state\n");
1522 		return ECORE_INVAL;
1523 	}
1524 
1525 	/* Check if there is an already pending DEL or MOVE command for the
1526 	 * source object or ADD command for a destination object. Return an
1527 	 * error if so.
1528 	 */
1529 	ECORE_MEMCPY(&query_elem, elem, sizeof(query_elem));
1530 
1531 	/* Check DEL on source */
1532 	query_elem.cmd_data.vlan_mac.cmd = ECORE_VLAN_MAC_DEL;
1533 	if (src_exeq->get(src_exeq, &query_elem)) {
1534 		ECORE_ERR("There is a pending DEL command on the source queue already\n");
1535 		return ECORE_INVAL;
1536 	}
1537 
1538 	/* Check MOVE on source */
1539 	if (src_exeq->get(src_exeq, elem)) {
1540 		ECORE_MSG(sc, "There is a pending MOVE command already\n");
1541 		return ECORE_EXISTS;
1542 	}
1543 
1544 	/* Check ADD on destination */
1545 	query_elem.cmd_data.vlan_mac.cmd = ECORE_VLAN_MAC_ADD;
1546 	if (dest_exeq->get(dest_exeq, &query_elem)) {
1547 		ECORE_ERR("There is a pending ADD command on the destination queue already\n");
1548 		return ECORE_INVAL;
1549 	}
1550 
1551 	/* Consume the credit if not requested not to */
1552 	if (!(ECORE_TEST_BIT(ECORE_DONT_CONSUME_CAM_CREDIT_DEST,
1553 			     &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1554 	    dest_o->get_credit(dest_o)))
1555 		return ECORE_INVAL;
1556 
1557 	if (!(ECORE_TEST_BIT(ECORE_DONT_CONSUME_CAM_CREDIT,
1558 			     &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1559 	    src_o->put_credit(src_o))) {
1560 		/* return the credit taken from dest... */
1561 		dest_o->put_credit(dest_o);
1562 		return ECORE_INVAL;
1563 	}
1564 
1565 	return ECORE_SUCCESS;
1566 }
1567 
1568 static int ecore_validate_vlan_mac(struct bxe_softc *sc,
1569 				   union ecore_qable_obj *qo,
1570 				   struct ecore_exeq_elem *elem)
1571 {
1572 	switch (elem->cmd_data.vlan_mac.cmd) {
1573 	case ECORE_VLAN_MAC_ADD:
1574 		return ecore_validate_vlan_mac_add(sc, qo, elem);
1575 	case ECORE_VLAN_MAC_DEL:
1576 		return ecore_validate_vlan_mac_del(sc, qo, elem);
1577 	case ECORE_VLAN_MAC_MOVE:
1578 		return ecore_validate_vlan_mac_move(sc, qo, elem);
1579 	default:
1580 		return ECORE_INVAL;
1581 	}
1582 }
1583 
1584 static int ecore_remove_vlan_mac(struct bxe_softc *sc,
1585 				  union ecore_qable_obj *qo,
1586 				  struct ecore_exeq_elem *elem)
1587 {
1588 	int rc = 0;
1589 
1590 	/* If consumption wasn't required, nothing to do */
1591 	if (ECORE_TEST_BIT(ECORE_DONT_CONSUME_CAM_CREDIT,
1592 			   &elem->cmd_data.vlan_mac.vlan_mac_flags))
1593 		return ECORE_SUCCESS;
1594 
1595 	switch (elem->cmd_data.vlan_mac.cmd) {
1596 	case ECORE_VLAN_MAC_ADD:
1597 	case ECORE_VLAN_MAC_MOVE:
1598 		rc = qo->vlan_mac.put_credit(&qo->vlan_mac);
1599 		break;
1600 	case ECORE_VLAN_MAC_DEL:
1601 		rc = qo->vlan_mac.get_credit(&qo->vlan_mac);
1602 		break;
1603 	default:
1604 		return ECORE_INVAL;
1605 	}
1606 
1607 	if (rc != TRUE)
1608 		return ECORE_INVAL;
1609 
1610 	return ECORE_SUCCESS;
1611 }
1612 
1613 /**
1614  * ecore_wait_vlan_mac - passively wait for 5 seconds until all work completes.
1615  *
1616  * @sc:		device handle
1617  * @o:		ecore_vlan_mac_obj
1618  *
1619  */
1620 static int ecore_wait_vlan_mac(struct bxe_softc *sc,
1621 			       struct ecore_vlan_mac_obj *o)
1622 {
1623 	int cnt = 5000, rc;
1624 	struct ecore_exe_queue_obj *exeq = &o->exe_queue;
1625 	struct ecore_raw_obj *raw = &o->raw;
1626 
1627 	while (cnt--) {
1628 		/* Wait for the current command to complete */
1629 		rc = raw->wait_comp(sc, raw);
1630 		if (rc)
1631 			return rc;
1632 
1633 		/* Wait until there are no pending commands */
1634 		if (!ecore_exe_queue_empty(exeq))
1635 			ECORE_WAIT(sc, 1000);
1636 		else
1637 			return ECORE_SUCCESS;
1638 	}
1639 
1640 	return ECORE_TIMEOUT;
1641 }
1642 
1643 static int __ecore_vlan_mac_execute_step(struct bxe_softc *sc,
1644 					 struct ecore_vlan_mac_obj *o,
1645 					 unsigned long *ramrod_flags)
1646 {
1647 	int rc = ECORE_SUCCESS;
1648 
1649 	ECORE_SPIN_LOCK_BH(&o->exe_queue.lock);
1650 
1651 	ECORE_MSG(sc, "vlan_mac_execute_step - trying to take writer lock\n");
1652 	rc = __ecore_vlan_mac_h_write_trylock(sc, o);
1653 
1654 	if (rc != ECORE_SUCCESS) {
1655 		__ecore_vlan_mac_h_pend(sc, o, *ramrod_flags);
1656 
1657 		/** Calling function should not diffrentiate between this case
1658 		 *  and the case in which there is already a pending ramrod
1659 		 */
1660 		rc = ECORE_PENDING;
1661 	} else {
1662 		rc = ecore_exe_queue_step(sc, &o->exe_queue, ramrod_flags);
1663 	}
1664 	ECORE_SPIN_UNLOCK_BH(&o->exe_queue.lock);
1665 
1666 	return rc;
1667 }
1668 
1669 /**
1670  * ecore_complete_vlan_mac - complete one VLAN-MAC ramrod
1671  *
1672  * @sc:		device handle
1673  * @o:		ecore_vlan_mac_obj
1674  * @cqe:
1675  * @cont:	if TRUE schedule next execution chunk
1676  *
1677  */
1678 static int ecore_complete_vlan_mac(struct bxe_softc *sc,
1679 				   struct ecore_vlan_mac_obj *o,
1680 				   union event_ring_elem *cqe,
1681 				   unsigned long *ramrod_flags)
1682 {
1683 	struct ecore_raw_obj *r = &o->raw;
1684 	int rc;
1685 
1686 	/* Clearing the pending list & raw state should be made
1687 	 * atomically (as execution flow assumes they represent the same)
1688 	 */
1689 	ECORE_SPIN_LOCK_BH(&o->exe_queue.lock);
1690 
1691 	/* Reset pending list */
1692 	__ecore_exe_queue_reset_pending(sc, &o->exe_queue);
1693 
1694 	/* Clear pending */
1695 	r->clear_pending(r);
1696 
1697 	ECORE_SPIN_UNLOCK_BH(&o->exe_queue.lock);
1698 
1699 	/* If ramrod failed this is most likely a SW bug */
1700 	if (cqe->message.error)
1701 		return ECORE_INVAL;
1702 
1703 	/* Run the next bulk of pending commands if requested */
1704 	if (ECORE_TEST_BIT(RAMROD_CONT, ramrod_flags)) {
1705 		rc = __ecore_vlan_mac_execute_step(sc, o, ramrod_flags);
1706 		if (rc < 0)
1707 			return rc;
1708 	}
1709 
1710 	/* If there is more work to do return PENDING */
1711 	if (!ecore_exe_queue_empty(&o->exe_queue))
1712 		return ECORE_PENDING;
1713 
1714 	return ECORE_SUCCESS;
1715 }
1716 
1717 /**
1718  * ecore_optimize_vlan_mac - optimize ADD and DEL commands.
1719  *
1720  * @sc:		device handle
1721  * @o:		ecore_qable_obj
1722  * @elem:	ecore_exeq_elem
1723  */
1724 static int ecore_optimize_vlan_mac(struct bxe_softc *sc,
1725 				   union ecore_qable_obj *qo,
1726 				   struct ecore_exeq_elem *elem)
1727 {
1728 	struct ecore_exeq_elem query, *pos;
1729 	struct ecore_vlan_mac_obj *o = &qo->vlan_mac;
1730 	struct ecore_exe_queue_obj *exeq = &o->exe_queue;
1731 
1732 	ECORE_MEMCPY(&query, elem, sizeof(query));
1733 
1734 	switch (elem->cmd_data.vlan_mac.cmd) {
1735 	case ECORE_VLAN_MAC_ADD:
1736 		query.cmd_data.vlan_mac.cmd = ECORE_VLAN_MAC_DEL;
1737 		break;
1738 	case ECORE_VLAN_MAC_DEL:
1739 		query.cmd_data.vlan_mac.cmd = ECORE_VLAN_MAC_ADD;
1740 		break;
1741 	default:
1742 		/* Don't handle anything other than ADD or DEL */
1743 		return 0;
1744 	}
1745 
1746 	/* If we found the appropriate element - delete it */
1747 	pos = exeq->get(exeq, &query);
1748 	if (pos) {
1749 
1750 		/* Return the credit of the optimized command */
1751 		if (!ECORE_TEST_BIT(ECORE_DONT_CONSUME_CAM_CREDIT,
1752 				     &pos->cmd_data.vlan_mac.vlan_mac_flags)) {
1753 			if ((query.cmd_data.vlan_mac.cmd ==
1754 			     ECORE_VLAN_MAC_ADD) && !o->put_credit(o)) {
1755 				ECORE_ERR("Failed to return the credit for the optimized ADD command\n");
1756 				return ECORE_INVAL;
1757 			} else if (!o->get_credit(o)) { /* VLAN_MAC_DEL */
1758 				ECORE_ERR("Failed to recover the credit from the optimized DEL command\n");
1759 				return ECORE_INVAL;
1760 			}
1761 		}
1762 
1763 		ECORE_MSG(sc, "Optimizing %s command\n",
1764 			  (elem->cmd_data.vlan_mac.cmd == ECORE_VLAN_MAC_ADD) ?
1765 			  "ADD" : "DEL");
1766 
1767 		ECORE_LIST_REMOVE_ENTRY(&pos->link, &exeq->exe_queue);
1768 		ecore_exe_queue_free_elem(sc, pos);
1769 		return 1;
1770 	}
1771 
1772 	return 0;
1773 }
1774 
1775 /**
1776  * ecore_vlan_mac_get_registry_elem - prepare a registry element
1777  *
1778  * @sc:	  device handle
1779  * @o:
1780  * @elem:
1781  * @restore:
1782  * @re:
1783  *
1784  * prepare a registry element according to the current command request.
1785  */
1786 static inline int ecore_vlan_mac_get_registry_elem(
1787 	struct bxe_softc *sc,
1788 	struct ecore_vlan_mac_obj *o,
1789 	struct ecore_exeq_elem *elem,
1790 	bool restore,
1791 	struct ecore_vlan_mac_registry_elem **re)
1792 {
1793 	enum ecore_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd;
1794 	struct ecore_vlan_mac_registry_elem *reg_elem;
1795 
1796 	/* Allocate a new registry element if needed. */
1797 	if (!restore &&
1798 	    ((cmd == ECORE_VLAN_MAC_ADD) || (cmd == ECORE_VLAN_MAC_MOVE))) {
1799 		reg_elem = ECORE_ZALLOC(sizeof(*reg_elem), GFP_ATOMIC, sc);
1800 		if (!reg_elem)
1801 			return ECORE_NOMEM;
1802 
1803 		/* Get a new CAM offset */
1804 		if (!o->get_cam_offset(o, &reg_elem->cam_offset)) {
1805 			/* This shall never happen, because we have checked the
1806 			 * CAM availability in the 'validate'.
1807 			 */
1808 			ECORE_DBG_BREAK_IF(1);
1809 			ECORE_FREE(sc, reg_elem, sizeof(*reg_elem));
1810 			return ECORE_INVAL;
1811 		}
1812 
1813 		ECORE_MSG(sc, "Got cam offset %d\n", reg_elem->cam_offset);
1814 
1815 		/* Set a VLAN-MAC data */
1816 		ECORE_MEMCPY(&reg_elem->u, &elem->cmd_data.vlan_mac.u,
1817 			  sizeof(reg_elem->u));
1818 
1819 		/* Copy the flags (needed for DEL and RESTORE flows) */
1820 		reg_elem->vlan_mac_flags =
1821 			elem->cmd_data.vlan_mac.vlan_mac_flags;
1822 	} else /* DEL, RESTORE */
1823 		reg_elem = o->check_del(sc, o, &elem->cmd_data.vlan_mac.u);
1824 
1825 	*re = reg_elem;
1826 	return ECORE_SUCCESS;
1827 }
1828 
1829 /**
1830  * ecore_execute_vlan_mac - execute vlan mac command
1831  *
1832  * @sc:			device handle
1833  * @qo:
1834  * @exe_chunk:
1835  * @ramrod_flags:
1836  *
1837  * go and send a ramrod!
1838  */
1839 static int ecore_execute_vlan_mac(struct bxe_softc *sc,
1840 				  union ecore_qable_obj *qo,
1841 				  ecore_list_t *exe_chunk,
1842 				  unsigned long *ramrod_flags)
1843 {
1844 	struct ecore_exeq_elem *elem;
1845 	struct ecore_vlan_mac_obj *o = &qo->vlan_mac, *cam_obj;
1846 	struct ecore_raw_obj *r = &o->raw;
1847 	int rc, idx = 0;
1848 	bool restore = ECORE_TEST_BIT(RAMROD_RESTORE, ramrod_flags);
1849 	bool drv_only = ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, ramrod_flags);
1850 	struct ecore_vlan_mac_registry_elem *reg_elem;
1851 	enum ecore_vlan_mac_cmd cmd;
1852 
1853 	/* If DRIVER_ONLY execution is requested, cleanup a registry
1854 	 * and exit. Otherwise send a ramrod to FW.
1855 	 */
1856 	if (!drv_only) {
1857 		ECORE_DBG_BREAK_IF(r->check_pending(r));
1858 
1859 		/* Set pending */
1860 		r->set_pending(r);
1861 
1862 		/* Fill the ramrod data */
1863 		ECORE_LIST_FOR_EACH_ENTRY(elem, exe_chunk, link,
1864 					  struct ecore_exeq_elem) {
1865 			cmd = elem->cmd_data.vlan_mac.cmd;
1866 			/* We will add to the target object in MOVE command, so
1867 			 * change the object for a CAM search.
1868 			 */
1869 			if (cmd == ECORE_VLAN_MAC_MOVE)
1870 				cam_obj = elem->cmd_data.vlan_mac.target_obj;
1871 			else
1872 				cam_obj = o;
1873 
1874 			rc = ecore_vlan_mac_get_registry_elem(sc, cam_obj,
1875 							      elem, restore,
1876 							      &reg_elem);
1877 			if (rc)
1878 				goto error_exit;
1879 
1880 			ECORE_DBG_BREAK_IF(!reg_elem);
1881 
1882 			/* Push a new entry into the registry */
1883 			if (!restore &&
1884 			    ((cmd == ECORE_VLAN_MAC_ADD) ||
1885 			    (cmd == ECORE_VLAN_MAC_MOVE)))
1886 				ECORE_LIST_PUSH_HEAD(&reg_elem->link,
1887 						     &cam_obj->head);
1888 
1889 			/* Configure a single command in a ramrod data buffer */
1890 			o->set_one_rule(sc, o, elem, idx,
1891 					reg_elem->cam_offset);
1892 
1893 			/* MOVE command consumes 2 entries in the ramrod data */
1894 			if (cmd == ECORE_VLAN_MAC_MOVE)
1895 				idx += 2;
1896 			else
1897 				idx++;
1898 		}
1899 
1900 		/*
1901 		 *  No need for an explicit memory barrier here as long we would
1902 		 *  need to ensure the ordering of writing to the SPQ element
1903 		 *  and updating of the SPQ producer which involves a memory
1904 		 *  read and we will have to put a full memory barrier there
1905 		 *  (inside ecore_sp_post()).
1906 		 */
1907 
1908 		rc = ecore_sp_post(sc, o->ramrod_cmd, r->cid,
1909 				   r->rdata_mapping,
1910 				   ETH_CONNECTION_TYPE);
1911 		if (rc)
1912 			goto error_exit;
1913 	}
1914 
1915 	/* Now, when we are done with the ramrod - clean up the registry */
1916 	ECORE_LIST_FOR_EACH_ENTRY(elem, exe_chunk, link,
1917 				  struct ecore_exeq_elem) {
1918 		cmd = elem->cmd_data.vlan_mac.cmd;
1919 		if ((cmd == ECORE_VLAN_MAC_DEL) ||
1920 		    (cmd == ECORE_VLAN_MAC_MOVE)) {
1921 			reg_elem = o->check_del(sc, o,
1922 						&elem->cmd_data.vlan_mac.u);
1923 
1924 			ECORE_DBG_BREAK_IF(!reg_elem);
1925 
1926 			o->put_cam_offset(o, reg_elem->cam_offset);
1927 			ECORE_LIST_REMOVE_ENTRY(&reg_elem->link, &o->head);
1928 			ECORE_FREE(sc, reg_elem, sizeof(*reg_elem));
1929 		}
1930 	}
1931 
1932 	if (!drv_only)
1933 		return ECORE_PENDING;
1934 	else
1935 		return ECORE_SUCCESS;
1936 
1937 error_exit:
1938 	r->clear_pending(r);
1939 
1940 	/* Cleanup a registry in case of a failure */
1941 	ECORE_LIST_FOR_EACH_ENTRY(elem, exe_chunk, link,
1942 				  struct ecore_exeq_elem) {
1943 		cmd = elem->cmd_data.vlan_mac.cmd;
1944 
1945 		if (cmd == ECORE_VLAN_MAC_MOVE)
1946 			cam_obj = elem->cmd_data.vlan_mac.target_obj;
1947 		else
1948 			cam_obj = o;
1949 
1950 		/* Delete all newly added above entries */
1951 		if (!restore &&
1952 		    ((cmd == ECORE_VLAN_MAC_ADD) ||
1953 		    (cmd == ECORE_VLAN_MAC_MOVE))) {
1954 			reg_elem = o->check_del(sc, cam_obj,
1955 						&elem->cmd_data.vlan_mac.u);
1956 			if (reg_elem) {
1957 				ECORE_LIST_REMOVE_ENTRY(&reg_elem->link,
1958 							&cam_obj->head);
1959 				ECORE_FREE(sc, reg_elem, sizeof(*reg_elem));
1960 			}
1961 		}
1962 	}
1963 
1964 	return rc;
1965 }
1966 
1967 static inline int ecore_vlan_mac_push_new_cmd(
1968 	struct bxe_softc *sc,
1969 	struct ecore_vlan_mac_ramrod_params *p)
1970 {
1971 	struct ecore_exeq_elem *elem;
1972 	struct ecore_vlan_mac_obj *o = p->vlan_mac_obj;
1973 	bool restore = ECORE_TEST_BIT(RAMROD_RESTORE, &p->ramrod_flags);
1974 
1975 	/* Allocate the execution queue element */
1976 	elem = ecore_exe_queue_alloc_elem(sc);
1977 	if (!elem)
1978 		return ECORE_NOMEM;
1979 
1980 	/* Set the command 'length' */
1981 	switch (p->user_req.cmd) {
1982 	case ECORE_VLAN_MAC_MOVE:
1983 		elem->cmd_len = 2;
1984 		break;
1985 	default:
1986 		elem->cmd_len = 1;
1987 	}
1988 
1989 	/* Fill the object specific info */
1990 	ECORE_MEMCPY(&elem->cmd_data.vlan_mac, &p->user_req, sizeof(p->user_req));
1991 
1992 	/* Try to add a new command to the pending list */
1993 	return ecore_exe_queue_add(sc, &o->exe_queue, elem, restore);
1994 }
1995 
1996 /**
1997  * ecore_config_vlan_mac - configure VLAN/MAC/VLAN_MAC filtering rules.
1998  *
1999  * @sc:	  device handle
2000  * @p:
2001  *
2002  */
2003 int ecore_config_vlan_mac(struct bxe_softc *sc,
2004 			   struct ecore_vlan_mac_ramrod_params *p)
2005 {
2006 	int rc = ECORE_SUCCESS;
2007 	struct ecore_vlan_mac_obj *o = p->vlan_mac_obj;
2008 	unsigned long *ramrod_flags = &p->ramrod_flags;
2009 	bool cont = ECORE_TEST_BIT(RAMROD_CONT, ramrod_flags);
2010 	struct ecore_raw_obj *raw = &o->raw;
2011 
2012 	/*
2013 	 * Add new elements to the execution list for commands that require it.
2014 	 */
2015 	if (!cont) {
2016 		rc = ecore_vlan_mac_push_new_cmd(sc, p);
2017 		if (rc)
2018 			return rc;
2019 	}
2020 
2021 	/* If nothing will be executed further in this iteration we want to
2022 	 * return PENDING if there are pending commands
2023 	 */
2024 	if (!ecore_exe_queue_empty(&o->exe_queue))
2025 		rc = ECORE_PENDING;
2026 
2027 	if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, ramrod_flags))  {
2028 		ECORE_MSG(sc, "RAMROD_DRV_CLR_ONLY requested: clearing a pending bit.\n");
2029 		raw->clear_pending(raw);
2030 	}
2031 
2032 	/* Execute commands if required */
2033 	if (cont || ECORE_TEST_BIT(RAMROD_EXEC, ramrod_flags) ||
2034 	    ECORE_TEST_BIT(RAMROD_COMP_WAIT, ramrod_flags)) {
2035 		rc = __ecore_vlan_mac_execute_step(sc, p->vlan_mac_obj,
2036 						   &p->ramrod_flags);
2037 		if (rc < 0)
2038 			return rc;
2039 	}
2040 
2041 	/* RAMROD_COMP_WAIT is a superset of RAMROD_EXEC. If it was set
2042 	 * then user want to wait until the last command is done.
2043 	 */
2044 	if (ECORE_TEST_BIT(RAMROD_COMP_WAIT, &p->ramrod_flags)) {
2045 		/* Wait maximum for the current exe_queue length iterations plus
2046 		 * one (for the current pending command).
2047 		 */
2048 		int max_iterations = ecore_exe_queue_length(&o->exe_queue) + 1;
2049 
2050 		while (!ecore_exe_queue_empty(&o->exe_queue) &&
2051 		       max_iterations--) {
2052 
2053 			/* Wait for the current command to complete */
2054 			rc = raw->wait_comp(sc, raw);
2055 			if (rc)
2056 				return rc;
2057 
2058 			/* Make a next step */
2059 			rc = __ecore_vlan_mac_execute_step(sc,
2060 							   p->vlan_mac_obj,
2061 							   &p->ramrod_flags);
2062 			if (rc < 0)
2063 				return rc;
2064 		}
2065 
2066 		return ECORE_SUCCESS;
2067 	}
2068 
2069 	return rc;
2070 }
2071 
2072 /**
2073  * ecore_vlan_mac_del_all - delete elements with given vlan_mac_flags spec
2074  *
2075  * @sc:			device handle
2076  * @o:
2077  * @vlan_mac_flags:
2078  * @ramrod_flags:	execution flags to be used for this deletion
2079  *
2080  * if the last operation has completed successfully and there are no
2081  * more elements left, positive value if the last operation has completed
2082  * successfully and there are more previously configured elements, negative
2083  * value is current operation has failed.
2084  */
2085 static int ecore_vlan_mac_del_all(struct bxe_softc *sc,
2086 				  struct ecore_vlan_mac_obj *o,
2087 				  unsigned long *vlan_mac_flags,
2088 				  unsigned long *ramrod_flags)
2089 {
2090 	struct ecore_vlan_mac_registry_elem *pos = NULL;
2091 	struct ecore_vlan_mac_ramrod_params p;
2092 	struct ecore_exe_queue_obj *exeq = &o->exe_queue;
2093 	struct ecore_exeq_elem *exeq_pos, *exeq_pos_n;
2094 	int read_lock;
2095 	int rc = 0;
2096 
2097 	/* Clear pending commands first */
2098 
2099 	ECORE_SPIN_LOCK_BH(&exeq->lock);
2100 
2101 	ECORE_LIST_FOR_EACH_ENTRY_SAFE(exeq_pos, exeq_pos_n,
2102 				       &exeq->exe_queue, link,
2103 				       struct ecore_exeq_elem) {
2104 		if (exeq_pos->cmd_data.vlan_mac.vlan_mac_flags ==
2105 		    *vlan_mac_flags) {
2106 			rc = exeq->remove(sc, exeq->owner, exeq_pos);
2107 			if (rc) {
2108 				ECORE_ERR("Failed to remove command\n");
2109 				ECORE_SPIN_UNLOCK_BH(&exeq->lock);
2110 				return rc;
2111 			}
2112 			ECORE_LIST_REMOVE_ENTRY(&exeq_pos->link,
2113 						&exeq->exe_queue);
2114 			ecore_exe_queue_free_elem(sc, exeq_pos);
2115 		}
2116 	}
2117 
2118 	ECORE_SPIN_UNLOCK_BH(&exeq->lock);
2119 
2120 	/* Prepare a command request */
2121 	ECORE_MEMSET(&p, 0, sizeof(p));
2122 	p.vlan_mac_obj = o;
2123 	p.ramrod_flags = *ramrod_flags;
2124 	p.user_req.cmd = ECORE_VLAN_MAC_DEL;
2125 
2126 	/* Add all but the last VLAN-MAC to the execution queue without actually
2127 	 * execution anything.
2128 	 */
2129 	ECORE_CLEAR_BIT_NA(RAMROD_COMP_WAIT, &p.ramrod_flags);
2130 	ECORE_CLEAR_BIT_NA(RAMROD_EXEC, &p.ramrod_flags);
2131 	ECORE_CLEAR_BIT_NA(RAMROD_CONT, &p.ramrod_flags);
2132 
2133 	ECORE_MSG(sc, "vlan_mac_del_all -- taking vlan_mac_lock (reader)\n");
2134 	read_lock = ecore_vlan_mac_h_read_lock(sc, o);
2135 	if (read_lock != ECORE_SUCCESS)
2136 		return read_lock;
2137 
2138 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
2139 				  struct ecore_vlan_mac_registry_elem) {
2140 		if (pos->vlan_mac_flags == *vlan_mac_flags) {
2141 			p.user_req.vlan_mac_flags = pos->vlan_mac_flags;
2142 			ECORE_MEMCPY(&p.user_req.u, &pos->u, sizeof(pos->u));
2143 			rc = ecore_config_vlan_mac(sc, &p);
2144 			if (rc < 0) {
2145 				ECORE_ERR("Failed to add a new DEL command\n");
2146 				ecore_vlan_mac_h_read_unlock(sc, o);
2147 				return rc;
2148 			}
2149 		}
2150 	}
2151 
2152 	ECORE_MSG(sc, "vlan_mac_del_all -- releasing vlan_mac_lock (reader)\n");
2153 	ecore_vlan_mac_h_read_unlock(sc, o);
2154 
2155 	p.ramrod_flags = *ramrod_flags;
2156 	ECORE_SET_BIT_NA(RAMROD_CONT, &p.ramrod_flags);
2157 
2158 	return ecore_config_vlan_mac(sc, &p);
2159 }
2160 
2161 static inline void ecore_init_raw_obj(struct ecore_raw_obj *raw, uint8_t cl_id,
2162 	uint32_t cid, uint8_t func_id, void *rdata, ecore_dma_addr_t rdata_mapping, int state,
2163 	unsigned long *pstate, ecore_obj_type type)
2164 {
2165 	raw->func_id = func_id;
2166 	raw->cid = cid;
2167 	raw->cl_id = cl_id;
2168 	raw->rdata = rdata;
2169 	raw->rdata_mapping = rdata_mapping;
2170 	raw->state = state;
2171 	raw->pstate = pstate;
2172 	raw->obj_type = type;
2173 	raw->check_pending = ecore_raw_check_pending;
2174 	raw->clear_pending = ecore_raw_clear_pending;
2175 	raw->set_pending = ecore_raw_set_pending;
2176 	raw->wait_comp = ecore_raw_wait;
2177 }
2178 
2179 static inline void ecore_init_vlan_mac_common(struct ecore_vlan_mac_obj *o,
2180 	uint8_t cl_id, uint32_t cid, uint8_t func_id, void *rdata, ecore_dma_addr_t rdata_mapping,
2181 	int state, unsigned long *pstate, ecore_obj_type type,
2182 	struct ecore_credit_pool_obj *macs_pool,
2183 	struct ecore_credit_pool_obj *vlans_pool)
2184 {
2185 	ECORE_LIST_INIT(&o->head);
2186 	o->head_reader = 0;
2187 	o->head_exe_request = FALSE;
2188 	o->saved_ramrod_flags = 0;
2189 
2190 	o->macs_pool = macs_pool;
2191 	o->vlans_pool = vlans_pool;
2192 
2193 	o->delete_all = ecore_vlan_mac_del_all;
2194 	o->restore = ecore_vlan_mac_restore;
2195 	o->complete = ecore_complete_vlan_mac;
2196 	o->wait = ecore_wait_vlan_mac;
2197 
2198 	ecore_init_raw_obj(&o->raw, cl_id, cid, func_id, rdata, rdata_mapping,
2199 			   state, pstate, type);
2200 }
2201 
2202 void ecore_init_mac_obj(struct bxe_softc *sc,
2203 			struct ecore_vlan_mac_obj *mac_obj,
2204 			uint8_t cl_id, uint32_t cid, uint8_t func_id, void *rdata,
2205 			ecore_dma_addr_t rdata_mapping, int state,
2206 			unsigned long *pstate, ecore_obj_type type,
2207 			struct ecore_credit_pool_obj *macs_pool)
2208 {
2209 	union ecore_qable_obj *qable_obj = (union ecore_qable_obj *)mac_obj;
2210 
2211 	ecore_init_vlan_mac_common(mac_obj, cl_id, cid, func_id, rdata,
2212 				   rdata_mapping, state, pstate, type,
2213 				   macs_pool, NULL);
2214 
2215 	/* CAM credit pool handling */
2216 	mac_obj->get_credit = ecore_get_credit_mac;
2217 	mac_obj->put_credit = ecore_put_credit_mac;
2218 	mac_obj->get_cam_offset = ecore_get_cam_offset_mac;
2219 	mac_obj->put_cam_offset = ecore_put_cam_offset_mac;
2220 
2221 	if (CHIP_IS_E1x(sc)) {
2222 		mac_obj->set_one_rule      = ecore_set_one_mac_e1x;
2223 		mac_obj->check_del         = ecore_check_mac_del;
2224 		mac_obj->check_add         = ecore_check_mac_add;
2225 		mac_obj->check_move        = ecore_check_move_always_err;
2226 		mac_obj->ramrod_cmd        = RAMROD_CMD_ID_ETH_SET_MAC;
2227 
2228 		/* Exe Queue */
2229 		ecore_exe_queue_init(sc,
2230 				     &mac_obj->exe_queue, 1, qable_obj,
2231 				     ecore_validate_vlan_mac,
2232 				     ecore_remove_vlan_mac,
2233 				     ecore_optimize_vlan_mac,
2234 				     ecore_execute_vlan_mac,
2235 				     ecore_exeq_get_mac);
2236 	} else {
2237 		mac_obj->set_one_rule      = ecore_set_one_mac_e2;
2238 		mac_obj->check_del         = ecore_check_mac_del;
2239 		mac_obj->check_add         = ecore_check_mac_add;
2240 		mac_obj->check_move        = ecore_check_move;
2241 		mac_obj->ramrod_cmd        =
2242 			RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
2243 		mac_obj->get_n_elements    = ecore_get_n_elements;
2244 
2245 		/* Exe Queue */
2246 		ecore_exe_queue_init(sc,
2247 				     &mac_obj->exe_queue, CLASSIFY_RULES_COUNT,
2248 				     qable_obj, ecore_validate_vlan_mac,
2249 				     ecore_remove_vlan_mac,
2250 				     ecore_optimize_vlan_mac,
2251 				     ecore_execute_vlan_mac,
2252 				     ecore_exeq_get_mac);
2253 	}
2254 }
2255 
2256 void ecore_init_vlan_obj(struct bxe_softc *sc,
2257 			 struct ecore_vlan_mac_obj *vlan_obj,
2258 			 uint8_t cl_id, uint32_t cid, uint8_t func_id, void *rdata,
2259 			 ecore_dma_addr_t rdata_mapping, int state,
2260 			 unsigned long *pstate, ecore_obj_type type,
2261 			 struct ecore_credit_pool_obj *vlans_pool)
2262 {
2263 	union ecore_qable_obj *qable_obj = (union ecore_qable_obj *)vlan_obj;
2264 
2265 	ecore_init_vlan_mac_common(vlan_obj, cl_id, cid, func_id, rdata,
2266 				   rdata_mapping, state, pstate, type, NULL,
2267 				   vlans_pool);
2268 
2269 	vlan_obj->get_credit = ecore_get_credit_vlan;
2270 	vlan_obj->put_credit = ecore_put_credit_vlan;
2271 	vlan_obj->get_cam_offset = ecore_get_cam_offset_vlan;
2272 	vlan_obj->put_cam_offset = ecore_put_cam_offset_vlan;
2273 
2274 	if (CHIP_IS_E1x(sc)) {
2275 		ECORE_ERR("Do not support chips others than E2 and newer\n");
2276 		ECORE_BUG();
2277 	} else {
2278 		vlan_obj->set_one_rule      = ecore_set_one_vlan_e2;
2279 		vlan_obj->check_del         = ecore_check_vlan_del;
2280 		vlan_obj->check_add         = ecore_check_vlan_add;
2281 		vlan_obj->check_move        = ecore_check_move;
2282 		vlan_obj->ramrod_cmd        =
2283 			RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
2284 		vlan_obj->get_n_elements    = ecore_get_n_elements;
2285 
2286 		/* Exe Queue */
2287 		ecore_exe_queue_init(sc,
2288 				     &vlan_obj->exe_queue, CLASSIFY_RULES_COUNT,
2289 				     qable_obj, ecore_validate_vlan_mac,
2290 				     ecore_remove_vlan_mac,
2291 				     ecore_optimize_vlan_mac,
2292 				     ecore_execute_vlan_mac,
2293 				     ecore_exeq_get_vlan);
2294 	}
2295 }
2296 
2297 void ecore_init_vlan_mac_obj(struct bxe_softc *sc,
2298 			     struct ecore_vlan_mac_obj *vlan_mac_obj,
2299 			     uint8_t cl_id, uint32_t cid, uint8_t func_id, void *rdata,
2300 			     ecore_dma_addr_t rdata_mapping, int state,
2301 			     unsigned long *pstate, ecore_obj_type type,
2302 			     struct ecore_credit_pool_obj *macs_pool,
2303 			     struct ecore_credit_pool_obj *vlans_pool)
2304 {
2305 	union ecore_qable_obj *qable_obj =
2306 		(union ecore_qable_obj *)vlan_mac_obj;
2307 
2308 	ecore_init_vlan_mac_common(vlan_mac_obj, cl_id, cid, func_id, rdata,
2309 				   rdata_mapping, state, pstate, type,
2310 				   macs_pool, vlans_pool);
2311 
2312 	/* CAM pool handling */
2313 	vlan_mac_obj->get_credit = ecore_get_credit_vlan_mac;
2314 	vlan_mac_obj->put_credit = ecore_put_credit_vlan_mac;
2315 	/* CAM offset is relevant for 57710 and 57711 chips only which have a
2316 	 * single CAM for both MACs and VLAN-MAC pairs. So the offset
2317 	 * will be taken from MACs' pool object only.
2318 	 */
2319 	vlan_mac_obj->get_cam_offset = ecore_get_cam_offset_mac;
2320 	vlan_mac_obj->put_cam_offset = ecore_put_cam_offset_mac;
2321 
2322 	if (CHIP_IS_E1(sc)) {
2323 		ECORE_ERR("Do not support chips others than E2\n");
2324 		ECORE_BUG();
2325 	} else if (CHIP_IS_E1H(sc)) {
2326 		vlan_mac_obj->set_one_rule      = ecore_set_one_vlan_mac_e1h;
2327 		vlan_mac_obj->check_del         = ecore_check_vlan_mac_del;
2328 		vlan_mac_obj->check_add         = ecore_check_vlan_mac_add;
2329 		vlan_mac_obj->check_move        = ecore_check_move_always_err;
2330 		vlan_mac_obj->ramrod_cmd        = RAMROD_CMD_ID_ETH_SET_MAC;
2331 
2332 		/* Exe Queue */
2333 		ecore_exe_queue_init(sc,
2334 				     &vlan_mac_obj->exe_queue, 1, qable_obj,
2335 				     ecore_validate_vlan_mac,
2336 				     ecore_remove_vlan_mac,
2337 				     ecore_optimize_vlan_mac,
2338 				     ecore_execute_vlan_mac,
2339 				     ecore_exeq_get_vlan_mac);
2340 	} else {
2341 		vlan_mac_obj->set_one_rule      = ecore_set_one_vlan_mac_e2;
2342 		vlan_mac_obj->check_del         = ecore_check_vlan_mac_del;
2343 		vlan_mac_obj->check_add         = ecore_check_vlan_mac_add;
2344 		vlan_mac_obj->check_move        = ecore_check_move;
2345 		vlan_mac_obj->ramrod_cmd        =
2346 			RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
2347 
2348 		/* Exe Queue */
2349 		ecore_exe_queue_init(sc,
2350 				     &vlan_mac_obj->exe_queue,
2351 				     CLASSIFY_RULES_COUNT,
2352 				     qable_obj, ecore_validate_vlan_mac,
2353 				     ecore_remove_vlan_mac,
2354 				     ecore_optimize_vlan_mac,
2355 				     ecore_execute_vlan_mac,
2356 				     ecore_exeq_get_vlan_mac);
2357 	}
2358 }
2359 
2360 /* RX_MODE verbs: DROP_ALL/ACCEPT_ALL/ACCEPT_ALL_MULTI/ACCEPT_ALL_VLAN/NORMAL */
2361 static inline void __storm_memset_mac_filters(struct bxe_softc *sc,
2362 			struct tstorm_eth_mac_filter_config *mac_filters,
2363 			uint16_t pf_id)
2364 {
2365 	size_t size = sizeof(struct tstorm_eth_mac_filter_config);
2366 
2367 	uint32_t addr = BAR_TSTRORM_INTMEM +
2368 			TSTORM_MAC_FILTER_CONFIG_OFFSET(pf_id);
2369 
2370 	ecore_storm_memset_struct(sc, addr, size, (uint32_t *)mac_filters);
2371 }
2372 
2373 static int ecore_set_rx_mode_e1x(struct bxe_softc *sc,
2374 				 struct ecore_rx_mode_ramrod_params *p)
2375 {
2376 	/* update the sc MAC filter structure */
2377 	uint32_t mask = (1 << p->cl_id);
2378 
2379 	struct tstorm_eth_mac_filter_config *mac_filters =
2380 		(struct tstorm_eth_mac_filter_config *)p->rdata;
2381 
2382 	/* initial setting is drop-all */
2383 	uint8_t drop_all_ucast = 1, drop_all_mcast = 1;
2384 	uint8_t accp_all_ucast = 0, accp_all_bcast = 0, accp_all_mcast = 0;
2385 	uint8_t unmatched_unicast = 0;
2386 
2387     /* In e1x there we only take into account rx accept flag since tx switching
2388      * isn't enabled. */
2389 	if (ECORE_TEST_BIT(ECORE_ACCEPT_UNICAST, &p->rx_accept_flags))
2390 		/* accept matched ucast */
2391 		drop_all_ucast = 0;
2392 
2393 	if (ECORE_TEST_BIT(ECORE_ACCEPT_MULTICAST, &p->rx_accept_flags))
2394 		/* accept matched mcast */
2395 		drop_all_mcast = 0;
2396 
2397 	if (ECORE_TEST_BIT(ECORE_ACCEPT_ALL_UNICAST, &p->rx_accept_flags)) {
2398 		/* accept all mcast */
2399 		drop_all_ucast = 0;
2400 		accp_all_ucast = 1;
2401 	}
2402 	if (ECORE_TEST_BIT(ECORE_ACCEPT_ALL_MULTICAST, &p->rx_accept_flags)) {
2403 		/* accept all mcast */
2404 		drop_all_mcast = 0;
2405 		accp_all_mcast = 1;
2406 	}
2407 	if (ECORE_TEST_BIT(ECORE_ACCEPT_BROADCAST, &p->rx_accept_flags))
2408 		/* accept (all) bcast */
2409 		accp_all_bcast = 1;
2410 	if (ECORE_TEST_BIT(ECORE_ACCEPT_UNMATCHED, &p->rx_accept_flags))
2411 		/* accept unmatched unicasts */
2412 		unmatched_unicast = 1;
2413 
2414 	mac_filters->ucast_drop_all = drop_all_ucast ?
2415 		mac_filters->ucast_drop_all | mask :
2416 		mac_filters->ucast_drop_all & ~mask;
2417 
2418 	mac_filters->mcast_drop_all = drop_all_mcast ?
2419 		mac_filters->mcast_drop_all | mask :
2420 		mac_filters->mcast_drop_all & ~mask;
2421 
2422 	mac_filters->ucast_accept_all = accp_all_ucast ?
2423 		mac_filters->ucast_accept_all | mask :
2424 		mac_filters->ucast_accept_all & ~mask;
2425 
2426 	mac_filters->mcast_accept_all = accp_all_mcast ?
2427 		mac_filters->mcast_accept_all | mask :
2428 		mac_filters->mcast_accept_all & ~mask;
2429 
2430 	mac_filters->bcast_accept_all = accp_all_bcast ?
2431 		mac_filters->bcast_accept_all | mask :
2432 		mac_filters->bcast_accept_all & ~mask;
2433 
2434 	mac_filters->unmatched_unicast = unmatched_unicast ?
2435 		mac_filters->unmatched_unicast | mask :
2436 		mac_filters->unmatched_unicast & ~mask;
2437 
2438 	ECORE_MSG(sc, "drop_ucast 0x%x\ndrop_mcast 0x%x\n accp_ucast 0x%x\n"
2439 			 "accp_mcast 0x%x\naccp_bcast 0x%x\n",
2440 	   mac_filters->ucast_drop_all, mac_filters->mcast_drop_all,
2441 	   mac_filters->ucast_accept_all, mac_filters->mcast_accept_all,
2442 	   mac_filters->bcast_accept_all);
2443 
2444 	/* write the MAC filter structure*/
2445 	__storm_memset_mac_filters(sc, mac_filters, p->func_id);
2446 
2447 	/* The operation is completed */
2448 	ECORE_CLEAR_BIT(p->state, p->pstate);
2449 	ECORE_SMP_MB_AFTER_CLEAR_BIT();
2450 
2451 	return ECORE_SUCCESS;
2452 }
2453 
2454 /* Setup ramrod data */
2455 static inline void ecore_rx_mode_set_rdata_hdr_e2(uint32_t cid,
2456 				struct eth_classify_header *hdr,
2457 				uint8_t rule_cnt)
2458 {
2459 	hdr->echo = ECORE_CPU_TO_LE32(cid);
2460 	hdr->rule_cnt = rule_cnt;
2461 }
2462 
2463 static inline void ecore_rx_mode_set_cmd_state_e2(struct bxe_softc *sc,
2464 				unsigned long *accept_flags,
2465 				struct eth_filter_rules_cmd *cmd,
2466 				bool clear_accept_all)
2467 {
2468 	uint16_t state;
2469 
2470 	/* start with 'drop-all' */
2471 	state = ETH_FILTER_RULES_CMD_UCAST_DROP_ALL |
2472 		ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2473 
2474 	if (ECORE_TEST_BIT(ECORE_ACCEPT_UNICAST, accept_flags))
2475 		state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2476 
2477 	if (ECORE_TEST_BIT(ECORE_ACCEPT_MULTICAST, accept_flags))
2478 		state &= ~ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2479 
2480 	if (ECORE_TEST_BIT(ECORE_ACCEPT_ALL_UNICAST, accept_flags)) {
2481 		state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2482 		state |= ETH_FILTER_RULES_CMD_UCAST_ACCEPT_ALL;
2483 	}
2484 
2485 	if (ECORE_TEST_BIT(ECORE_ACCEPT_ALL_MULTICAST, accept_flags)) {
2486 		state |= ETH_FILTER_RULES_CMD_MCAST_ACCEPT_ALL;
2487 		state &= ~ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2488 	}
2489 	if (ECORE_TEST_BIT(ECORE_ACCEPT_BROADCAST, accept_flags))
2490 		state |= ETH_FILTER_RULES_CMD_BCAST_ACCEPT_ALL;
2491 
2492 	if (ECORE_TEST_BIT(ECORE_ACCEPT_UNMATCHED, accept_flags)) {
2493 		state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2494 		state |= ETH_FILTER_RULES_CMD_UCAST_ACCEPT_UNMATCHED;
2495 	}
2496 	if (ECORE_TEST_BIT(ECORE_ACCEPT_ANY_VLAN, accept_flags))
2497 		state |= ETH_FILTER_RULES_CMD_ACCEPT_ANY_VLAN;
2498 
2499 	/* Clear ACCEPT_ALL_XXX flags for FCoE L2 Queue */
2500 	if (clear_accept_all) {
2501 		state &= ~ETH_FILTER_RULES_CMD_MCAST_ACCEPT_ALL;
2502 		state &= ~ETH_FILTER_RULES_CMD_BCAST_ACCEPT_ALL;
2503 		state &= ~ETH_FILTER_RULES_CMD_UCAST_ACCEPT_ALL;
2504 		state &= ~ETH_FILTER_RULES_CMD_UCAST_ACCEPT_UNMATCHED;
2505 	}
2506 
2507 	cmd->state = ECORE_CPU_TO_LE16(state);
2508 }
2509 
2510 static int ecore_set_rx_mode_e2(struct bxe_softc *sc,
2511 				struct ecore_rx_mode_ramrod_params *p)
2512 {
2513 	struct eth_filter_rules_ramrod_data *data = p->rdata;
2514 	int rc;
2515 	uint8_t rule_idx = 0;
2516 
2517 	/* Reset the ramrod data buffer */
2518 	ECORE_MEMSET(data, 0, sizeof(*data));
2519 
2520 	/* Setup ramrod data */
2521 
2522 	/* Tx (internal switching) */
2523 	if (ECORE_TEST_BIT(RAMROD_TX, &p->ramrod_flags)) {
2524 		data->rules[rule_idx].client_id = p->cl_id;
2525 		data->rules[rule_idx].func_id = p->func_id;
2526 
2527 		data->rules[rule_idx].cmd_general_data =
2528 			ETH_FILTER_RULES_CMD_TX_CMD;
2529 
2530 		ecore_rx_mode_set_cmd_state_e2(sc, &p->tx_accept_flags,
2531 					       &(data->rules[rule_idx++]),
2532 					       FALSE);
2533 	}
2534 
2535 	/* Rx */
2536 	if (ECORE_TEST_BIT(RAMROD_RX, &p->ramrod_flags)) {
2537 		data->rules[rule_idx].client_id = p->cl_id;
2538 		data->rules[rule_idx].func_id = p->func_id;
2539 
2540 		data->rules[rule_idx].cmd_general_data =
2541 			ETH_FILTER_RULES_CMD_RX_CMD;
2542 
2543 		ecore_rx_mode_set_cmd_state_e2(sc, &p->rx_accept_flags,
2544 					       &(data->rules[rule_idx++]),
2545 					       FALSE);
2546 	}
2547 
2548 	/* If FCoE Queue configuration has been requested configure the Rx and
2549 	 * internal switching modes for this queue in separate rules.
2550 	 *
2551 	 * FCoE queue shell never be set to ACCEPT_ALL packets of any sort:
2552 	 * MCAST_ALL, UCAST_ALL, BCAST_ALL and UNMATCHED.
2553 	 */
2554 	if (ECORE_TEST_BIT(ECORE_RX_MODE_FCOE_ETH, &p->rx_mode_flags)) {
2555 		/*  Tx (internal switching) */
2556 		if (ECORE_TEST_BIT(RAMROD_TX, &p->ramrod_flags)) {
2557 			data->rules[rule_idx].client_id = ECORE_FCOE_CID(sc);
2558 			data->rules[rule_idx].func_id = p->func_id;
2559 
2560 			data->rules[rule_idx].cmd_general_data =
2561 						ETH_FILTER_RULES_CMD_TX_CMD;
2562 
2563 			ecore_rx_mode_set_cmd_state_e2(sc, &p->tx_accept_flags,
2564 						       &(data->rules[rule_idx]),
2565 						       TRUE);
2566 			rule_idx++;
2567 		}
2568 
2569 		/* Rx */
2570 		if (ECORE_TEST_BIT(RAMROD_RX, &p->ramrod_flags)) {
2571 			data->rules[rule_idx].client_id = ECORE_FCOE_CID(sc);
2572 			data->rules[rule_idx].func_id = p->func_id;
2573 
2574 			data->rules[rule_idx].cmd_general_data =
2575 						ETH_FILTER_RULES_CMD_RX_CMD;
2576 
2577 			ecore_rx_mode_set_cmd_state_e2(sc, &p->rx_accept_flags,
2578 						       &(data->rules[rule_idx]),
2579 						       TRUE);
2580 			rule_idx++;
2581 		}
2582 	}
2583 
2584 	/* Set the ramrod header (most importantly - number of rules to
2585 	 * configure).
2586 	 */
2587 	ecore_rx_mode_set_rdata_hdr_e2(p->cid, &data->header, rule_idx);
2588 
2589 	ECORE_MSG(sc, "About to configure %d rules, rx_accept_flags 0x%lx, tx_accept_flags 0x%lx\n",
2590 		  data->header.rule_cnt, p->rx_accept_flags,
2591 		  p->tx_accept_flags);
2592 
2593 	/* No need for an explicit memory barrier here as long we would
2594 	 * need to ensure the ordering of writing to the SPQ element
2595 	 * and updating of the SPQ producer which involves a memory
2596 	 * read and we will have to put a full memory barrier there
2597 	 * (inside ecore_sp_post()).
2598 	 */
2599 
2600 	/* Send a ramrod */
2601 	rc = ecore_sp_post(sc,
2602 			   RAMROD_CMD_ID_ETH_FILTER_RULES,
2603 			   p->cid,
2604 			   p->rdata_mapping,
2605 			   ETH_CONNECTION_TYPE);
2606 	if (rc)
2607 		return rc;
2608 
2609 	/* Ramrod completion is pending */
2610 	return ECORE_PENDING;
2611 }
2612 
2613 static int ecore_wait_rx_mode_comp_e2(struct bxe_softc *sc,
2614 				      struct ecore_rx_mode_ramrod_params *p)
2615 {
2616 	return ecore_state_wait(sc, p->state, p->pstate);
2617 }
2618 
2619 static int ecore_empty_rx_mode_wait(struct bxe_softc *sc,
2620 				    struct ecore_rx_mode_ramrod_params *p)
2621 {
2622 	/* Do nothing */
2623 	return ECORE_SUCCESS;
2624 }
2625 
2626 int ecore_config_rx_mode(struct bxe_softc *sc,
2627 			 struct ecore_rx_mode_ramrod_params *p)
2628 {
2629 	int rc;
2630 
2631 	/* Configure the new classification in the chip */
2632 	rc = p->rx_mode_obj->config_rx_mode(sc, p);
2633 	if (rc < 0)
2634 		return rc;
2635 
2636 	/* Wait for a ramrod completion if was requested */
2637 	if (ECORE_TEST_BIT(RAMROD_COMP_WAIT, &p->ramrod_flags)) {
2638 		rc = p->rx_mode_obj->wait_comp(sc, p);
2639 		if (rc)
2640 			return rc;
2641 	}
2642 
2643 	return rc;
2644 }
2645 
2646 void ecore_init_rx_mode_obj(struct bxe_softc *sc,
2647 			    struct ecore_rx_mode_obj *o)
2648 {
2649 	if (CHIP_IS_E1x(sc)) {
2650 		o->wait_comp      = ecore_empty_rx_mode_wait;
2651 		o->config_rx_mode = ecore_set_rx_mode_e1x;
2652 	} else {
2653 		o->wait_comp      = ecore_wait_rx_mode_comp_e2;
2654 		o->config_rx_mode = ecore_set_rx_mode_e2;
2655 	}
2656 }
2657 
2658 /********************* Multicast verbs: SET, CLEAR ****************************/
2659 static inline uint8_t ecore_mcast_bin_from_mac(uint8_t *mac)
2660 {
2661 	return (ECORE_CRC32_LE(0, mac, ETH_ALEN) >> 24) & 0xff;
2662 }
2663 
2664 struct ecore_mcast_mac_elem {
2665 	ecore_list_entry_t link;
2666 	uint8_t mac[ETH_ALEN];
2667 	uint8_t pad[2]; /* For a natural alignment of the following buffer */
2668 };
2669 
2670 struct ecore_pending_mcast_cmd {
2671 	ecore_list_entry_t link;
2672 	int type; /* ECORE_MCAST_CMD_X */
2673 	union {
2674 		ecore_list_t macs_head;
2675 		uint32_t macs_num; /* Needed for DEL command */
2676 		int next_bin; /* Needed for RESTORE flow with aprox match */
2677 	} data;
2678 
2679 	bool done; /* set to TRUE, when the command has been handled,
2680 		    * practically used in 57712 handling only, where one pending
2681 		    * command may be handled in a few operations. As long as for
2682 		    * other chips every operation handling is completed in a
2683 		    * single ramrod, there is no need to utilize this field.
2684 		    */
2685 };
2686 
2687 static int ecore_mcast_wait(struct bxe_softc *sc,
2688 			    struct ecore_mcast_obj *o)
2689 {
2690 	if (ecore_state_wait(sc, o->sched_state, o->raw.pstate) ||
2691 			o->raw.wait_comp(sc, &o->raw))
2692 		return ECORE_TIMEOUT;
2693 
2694 	return ECORE_SUCCESS;
2695 }
2696 
2697 static int ecore_mcast_enqueue_cmd(struct bxe_softc *sc,
2698 				   struct ecore_mcast_obj *o,
2699 				   struct ecore_mcast_ramrod_params *p,
2700 				   enum ecore_mcast_cmd cmd)
2701 {
2702 	int total_sz;
2703 	struct ecore_pending_mcast_cmd *new_cmd;
2704 	struct ecore_mcast_mac_elem *cur_mac = NULL;
2705 	struct ecore_mcast_list_elem *pos;
2706 	int macs_list_len = ((cmd == ECORE_MCAST_CMD_ADD) ?
2707 			     p->mcast_list_len : 0);
2708 
2709 	/* If the command is empty ("handle pending commands only"), break */
2710 	if (!p->mcast_list_len)
2711 		return ECORE_SUCCESS;
2712 
2713 	total_sz = sizeof(*new_cmd) +
2714 		macs_list_len * sizeof(struct ecore_mcast_mac_elem);
2715 
2716 	/* Add mcast is called under spin_lock, thus calling with GFP_ATOMIC */
2717 	new_cmd = ECORE_ZALLOC(total_sz, GFP_ATOMIC, sc);
2718 
2719 	if (!new_cmd)
2720 		return ECORE_NOMEM;
2721 
2722 	ECORE_MSG(sc, "About to enqueue a new %d command. macs_list_len=%d\n",
2723 		  cmd, macs_list_len);
2724 
2725 	ECORE_LIST_INIT(&new_cmd->data.macs_head);
2726 
2727 	new_cmd->type = cmd;
2728 	new_cmd->done = FALSE;
2729 
2730 	switch (cmd) {
2731 	case ECORE_MCAST_CMD_ADD:
2732 		cur_mac = (struct ecore_mcast_mac_elem *)
2733 			  ((uint8_t *)new_cmd + sizeof(*new_cmd));
2734 
2735 		/* Push the MACs of the current command into the pending command
2736 		 * MACs list: FIFO
2737 		 */
2738 		ECORE_LIST_FOR_EACH_ENTRY(pos, &p->mcast_list, link,
2739 					  struct ecore_mcast_list_elem) {
2740 			ECORE_MEMCPY(cur_mac->mac, pos->mac, ETH_ALEN);
2741 			ECORE_LIST_PUSH_TAIL(&cur_mac->link,
2742 					     &new_cmd->data.macs_head);
2743 			cur_mac++;
2744 		}
2745 
2746 		break;
2747 
2748 	case ECORE_MCAST_CMD_DEL:
2749 		new_cmd->data.macs_num = p->mcast_list_len;
2750 		break;
2751 
2752 	case ECORE_MCAST_CMD_RESTORE:
2753 		new_cmd->data.next_bin = 0;
2754 		break;
2755 
2756 	default:
2757 		ECORE_FREE(sc, new_cmd, total_sz);
2758 		ECORE_ERR("Unknown command: %d\n", cmd);
2759 		return ECORE_INVAL;
2760 	}
2761 
2762 	/* Push the new pending command to the tail of the pending list: FIFO */
2763 	ECORE_LIST_PUSH_TAIL(&new_cmd->link, &o->pending_cmds_head);
2764 
2765 	o->set_sched(o);
2766 
2767 	return ECORE_PENDING;
2768 }
2769 
2770 /**
2771  * ecore_mcast_get_next_bin - get the next set bin (index)
2772  *
2773  * @o:
2774  * @last:	index to start looking from (including)
2775  *
2776  * returns the next found (set) bin or a negative value if none is found.
2777  */
2778 static inline int ecore_mcast_get_next_bin(struct ecore_mcast_obj *o, int last)
2779 {
2780 	int i, j, inner_start = last % BIT_VEC64_ELEM_SZ;
2781 
2782 	for (i = last / BIT_VEC64_ELEM_SZ; i < ECORE_MCAST_VEC_SZ; i++) {
2783 		if (o->registry.aprox_match.vec[i])
2784 			for (j = inner_start; j < BIT_VEC64_ELEM_SZ; j++) {
2785 				int cur_bit = j + BIT_VEC64_ELEM_SZ * i;
2786 				if (BIT_VEC64_TEST_BIT(o->registry.aprox_match.
2787 						       vec, cur_bit)) {
2788 					return cur_bit;
2789 				}
2790 			}
2791 		inner_start = 0;
2792 	}
2793 
2794 	/* None found */
2795 	return -1;
2796 }
2797 
2798 /**
2799  * ecore_mcast_clear_first_bin - find the first set bin and clear it
2800  *
2801  * @o:
2802  *
2803  * returns the index of the found bin or -1 if none is found
2804  */
2805 static inline int ecore_mcast_clear_first_bin(struct ecore_mcast_obj *o)
2806 {
2807 	int cur_bit = ecore_mcast_get_next_bin(o, 0);
2808 
2809 	if (cur_bit >= 0)
2810 		BIT_VEC64_CLEAR_BIT(o->registry.aprox_match.vec, cur_bit);
2811 
2812 	return cur_bit;
2813 }
2814 
2815 static inline uint8_t ecore_mcast_get_rx_tx_flag(struct ecore_mcast_obj *o)
2816 {
2817 	struct ecore_raw_obj *raw = &o->raw;
2818 	uint8_t rx_tx_flag = 0;
2819 
2820 	if ((raw->obj_type == ECORE_OBJ_TYPE_TX) ||
2821 	    (raw->obj_type == ECORE_OBJ_TYPE_RX_TX))
2822 		rx_tx_flag |= ETH_MULTICAST_RULES_CMD_TX_CMD;
2823 
2824 	if ((raw->obj_type == ECORE_OBJ_TYPE_RX) ||
2825 	    (raw->obj_type == ECORE_OBJ_TYPE_RX_TX))
2826 		rx_tx_flag |= ETH_MULTICAST_RULES_CMD_RX_CMD;
2827 
2828 	return rx_tx_flag;
2829 }
2830 
2831 static void ecore_mcast_set_one_rule_e2(struct bxe_softc *sc,
2832 					struct ecore_mcast_obj *o, int idx,
2833 					union ecore_mcast_config_data *cfg_data,
2834 					enum ecore_mcast_cmd cmd)
2835 {
2836 	struct ecore_raw_obj *r = &o->raw;
2837 	struct eth_multicast_rules_ramrod_data *data =
2838 		(struct eth_multicast_rules_ramrod_data *)(r->rdata);
2839 	uint8_t func_id = r->func_id;
2840 	uint8_t rx_tx_add_flag = ecore_mcast_get_rx_tx_flag(o);
2841 	int bin;
2842 
2843 	if ((cmd == ECORE_MCAST_CMD_ADD) || (cmd == ECORE_MCAST_CMD_RESTORE))
2844 		rx_tx_add_flag |= ETH_MULTICAST_RULES_CMD_IS_ADD;
2845 
2846 	data->rules[idx].cmd_general_data |= rx_tx_add_flag;
2847 
2848 	/* Get a bin and update a bins' vector */
2849 	switch (cmd) {
2850 	case ECORE_MCAST_CMD_ADD:
2851 		bin = ecore_mcast_bin_from_mac(cfg_data->mac);
2852 		BIT_VEC64_SET_BIT(o->registry.aprox_match.vec, bin);
2853 		break;
2854 
2855 	case ECORE_MCAST_CMD_DEL:
2856 		/* If there were no more bins to clear
2857 		 * (ecore_mcast_clear_first_bin() returns -1) then we would
2858 		 * clear any (0xff) bin.
2859 		 * See ecore_mcast_validate_e2() for explanation when it may
2860 		 * happen.
2861 		 */
2862 		bin = ecore_mcast_clear_first_bin(o);
2863 		break;
2864 
2865 	case ECORE_MCAST_CMD_RESTORE:
2866 		bin = cfg_data->bin;
2867 		break;
2868 
2869 	default:
2870 		ECORE_ERR("Unknown command: %d\n", cmd);
2871 		return;
2872 	}
2873 
2874 	ECORE_MSG(sc, "%s bin %d\n",
2875 		  ((rx_tx_add_flag & ETH_MULTICAST_RULES_CMD_IS_ADD) ?
2876 		   "Setting"  : "Clearing"), bin);
2877 
2878 	data->rules[idx].bin_id    = (uint8_t)bin;
2879 	data->rules[idx].func_id   = func_id;
2880 	data->rules[idx].engine_id = o->engine_id;
2881 }
2882 
2883 /**
2884  * ecore_mcast_handle_restore_cmd_e2 - restore configuration from the registry
2885  *
2886  * @sc:		device handle
2887  * @o:
2888  * @start_bin:	index in the registry to start from (including)
2889  * @rdata_idx:	index in the ramrod data to start from
2890  *
2891  * returns last handled bin index or -1 if all bins have been handled
2892  */
2893 static inline int ecore_mcast_handle_restore_cmd_e2(
2894 	struct bxe_softc *sc, struct ecore_mcast_obj *o , int start_bin,
2895 	int *rdata_idx)
2896 {
2897 	int cur_bin, cnt = *rdata_idx;
2898 	union ecore_mcast_config_data cfg_data = {NULL};
2899 
2900 	/* go through the registry and configure the bins from it */
2901 	for (cur_bin = ecore_mcast_get_next_bin(o, start_bin); cur_bin >= 0;
2902 	    cur_bin = ecore_mcast_get_next_bin(o, cur_bin + 1)) {
2903 
2904 		cfg_data.bin = (uint8_t)cur_bin;
2905 		o->set_one_rule(sc, o, cnt, &cfg_data,
2906 				ECORE_MCAST_CMD_RESTORE);
2907 
2908 		cnt++;
2909 
2910 		ECORE_MSG(sc, "About to configure a bin %d\n", cur_bin);
2911 
2912 		/* Break if we reached the maximum number
2913 		 * of rules.
2914 		 */
2915 		if (cnt >= o->max_cmd_len)
2916 			break;
2917 	}
2918 
2919 	*rdata_idx = cnt;
2920 
2921 	return cur_bin;
2922 }
2923 
2924 static inline void ecore_mcast_hdl_pending_add_e2(struct bxe_softc *sc,
2925 	struct ecore_mcast_obj *o, struct ecore_pending_mcast_cmd *cmd_pos,
2926 	int *line_idx)
2927 {
2928 	struct ecore_mcast_mac_elem *pmac_pos, *pmac_pos_n;
2929 	int cnt = *line_idx;
2930 	union ecore_mcast_config_data cfg_data = {NULL};
2931 
2932 	ECORE_LIST_FOR_EACH_ENTRY_SAFE(pmac_pos, pmac_pos_n,
2933 		&cmd_pos->data.macs_head, link, struct ecore_mcast_mac_elem) {
2934 
2935 		cfg_data.mac = &pmac_pos->mac[0];
2936 		o->set_one_rule(sc, o, cnt, &cfg_data, cmd_pos->type);
2937 
2938 		cnt++;
2939 
2940 		ECORE_MSG(sc, "About to configure %02x:%02x:%02x:%02x:%02x:%02x mcast MAC\n",
2941 			  pmac_pos->mac[0], pmac_pos->mac[1], pmac_pos->mac[2], pmac_pos->mac[3], pmac_pos->mac[4], pmac_pos->mac[5]);
2942 
2943 		ECORE_LIST_REMOVE_ENTRY(&pmac_pos->link,
2944 					&cmd_pos->data.macs_head);
2945 
2946 		/* Break if we reached the maximum number
2947 		 * of rules.
2948 		 */
2949 		if (cnt >= o->max_cmd_len)
2950 			break;
2951 	}
2952 
2953 	*line_idx = cnt;
2954 
2955 	/* if no more MACs to configure - we are done */
2956 	if (ECORE_LIST_IS_EMPTY(&cmd_pos->data.macs_head))
2957 		cmd_pos->done = TRUE;
2958 }
2959 
2960 static inline void ecore_mcast_hdl_pending_del_e2(struct bxe_softc *sc,
2961 	struct ecore_mcast_obj *o, struct ecore_pending_mcast_cmd *cmd_pos,
2962 	int *line_idx)
2963 {
2964 	int cnt = *line_idx;
2965 
2966 	while (cmd_pos->data.macs_num) {
2967 		o->set_one_rule(sc, o, cnt, NULL, cmd_pos->type);
2968 
2969 		cnt++;
2970 
2971 		cmd_pos->data.macs_num--;
2972 
2973 		  ECORE_MSG(sc, "Deleting MAC. %d left,cnt is %d\n",
2974 				  cmd_pos->data.macs_num, cnt);
2975 
2976 		/* Break if we reached the maximum
2977 		 * number of rules.
2978 		 */
2979 		if (cnt >= o->max_cmd_len)
2980 			break;
2981 	}
2982 
2983 	*line_idx = cnt;
2984 
2985 	/* If we cleared all bins - we are done */
2986 	if (!cmd_pos->data.macs_num)
2987 		cmd_pos->done = TRUE;
2988 }
2989 
2990 static inline void ecore_mcast_hdl_pending_restore_e2(struct bxe_softc *sc,
2991 	struct ecore_mcast_obj *o, struct ecore_pending_mcast_cmd *cmd_pos,
2992 	int *line_idx)
2993 {
2994 	cmd_pos->data.next_bin = o->hdl_restore(sc, o, cmd_pos->data.next_bin,
2995 						line_idx);
2996 
2997 	if (cmd_pos->data.next_bin < 0)
2998 		/* If o->set_restore returned -1 we are done */
2999 		cmd_pos->done = TRUE;
3000 	else
3001 		/* Start from the next bin next time */
3002 		cmd_pos->data.next_bin++;
3003 }
3004 
3005 static inline int ecore_mcast_handle_pending_cmds_e2(struct bxe_softc *sc,
3006 				struct ecore_mcast_ramrod_params *p)
3007 {
3008 	struct ecore_pending_mcast_cmd *cmd_pos, *cmd_pos_n;
3009 	int cnt = 0;
3010 	struct ecore_mcast_obj *o = p->mcast_obj;
3011 
3012 	ECORE_LIST_FOR_EACH_ENTRY_SAFE(cmd_pos, cmd_pos_n,
3013 		&o->pending_cmds_head, link, struct ecore_pending_mcast_cmd) {
3014 		switch (cmd_pos->type) {
3015 		case ECORE_MCAST_CMD_ADD:
3016 			ecore_mcast_hdl_pending_add_e2(sc, o, cmd_pos, &cnt);
3017 			break;
3018 
3019 		case ECORE_MCAST_CMD_DEL:
3020 			ecore_mcast_hdl_pending_del_e2(sc, o, cmd_pos, &cnt);
3021 			break;
3022 
3023 		case ECORE_MCAST_CMD_RESTORE:
3024 			ecore_mcast_hdl_pending_restore_e2(sc, o, cmd_pos,
3025 							   &cnt);
3026 			break;
3027 
3028 		default:
3029 			ECORE_ERR("Unknown command: %d\n", cmd_pos->type);
3030 			return ECORE_INVAL;
3031 		}
3032 
3033 		/* If the command has been completed - remove it from the list
3034 		 * and free the memory
3035 		 */
3036 		if (cmd_pos->done) {
3037 			ECORE_LIST_REMOVE_ENTRY(&cmd_pos->link,
3038 						&o->pending_cmds_head);
3039 			ECORE_FREE(sc, cmd_pos, cmd_pos->alloc_len);
3040 		}
3041 
3042 		/* Break if we reached the maximum number of rules */
3043 		if (cnt >= o->max_cmd_len)
3044 			break;
3045 	}
3046 
3047 	return cnt;
3048 }
3049 
3050 static inline void ecore_mcast_hdl_add(struct bxe_softc *sc,
3051 	struct ecore_mcast_obj *o, struct ecore_mcast_ramrod_params *p,
3052 	int *line_idx)
3053 {
3054 	struct ecore_mcast_list_elem *mlist_pos;
3055 	union ecore_mcast_config_data cfg_data = {NULL};
3056 	int cnt = *line_idx;
3057 
3058 	ECORE_LIST_FOR_EACH_ENTRY(mlist_pos, &p->mcast_list, link,
3059 				  struct ecore_mcast_list_elem) {
3060 		cfg_data.mac = mlist_pos->mac;
3061 		o->set_one_rule(sc, o, cnt, &cfg_data, ECORE_MCAST_CMD_ADD);
3062 
3063 		cnt++;
3064 
3065 		ECORE_MSG(sc, "About to configure %02x:%02x:%02x:%02x:%02x:%02x mcast MAC\n",
3066 			  mlist_pos->mac[0], mlist_pos->mac[1], mlist_pos->mac[2], mlist_pos->mac[3], mlist_pos->mac[4], mlist_pos->mac[5]);
3067 	}
3068 
3069 	*line_idx = cnt;
3070 }
3071 
3072 static inline void ecore_mcast_hdl_del(struct bxe_softc *sc,
3073 	struct ecore_mcast_obj *o, struct ecore_mcast_ramrod_params *p,
3074 	int *line_idx)
3075 {
3076 	int cnt = *line_idx, i;
3077 
3078 	for (i = 0; i < p->mcast_list_len; i++) {
3079 		o->set_one_rule(sc, o, cnt, NULL, ECORE_MCAST_CMD_DEL);
3080 
3081 		cnt++;
3082 
3083 		ECORE_MSG(sc, "Deleting MAC. %d left\n",
3084 			  p->mcast_list_len - i - 1);
3085 	}
3086 
3087 	*line_idx = cnt;
3088 }
3089 
3090 /**
3091  * ecore_mcast_handle_current_cmd -
3092  *
3093  * @sc:		device handle
3094  * @p:
3095  * @cmd:
3096  * @start_cnt:	first line in the ramrod data that may be used
3097  *
3098  * This function is called iff there is enough place for the current command in
3099  * the ramrod data.
3100  * Returns number of lines filled in the ramrod data in total.
3101  */
3102 static inline int ecore_mcast_handle_current_cmd(struct bxe_softc *sc,
3103 			struct ecore_mcast_ramrod_params *p,
3104 			enum ecore_mcast_cmd cmd,
3105 			int start_cnt)
3106 {
3107 	struct ecore_mcast_obj *o = p->mcast_obj;
3108 	int cnt = start_cnt;
3109 
3110 	ECORE_MSG(sc, "p->mcast_list_len=%d\n", p->mcast_list_len);
3111 
3112 	switch (cmd) {
3113 	case ECORE_MCAST_CMD_ADD:
3114 		ecore_mcast_hdl_add(sc, o, p, &cnt);
3115 		break;
3116 
3117 	case ECORE_MCAST_CMD_DEL:
3118 		ecore_mcast_hdl_del(sc, o, p, &cnt);
3119 		break;
3120 
3121 	case ECORE_MCAST_CMD_RESTORE:
3122 		o->hdl_restore(sc, o, 0, &cnt);
3123 		break;
3124 
3125 	default:
3126 		ECORE_ERR("Unknown command: %d\n", cmd);
3127 		return ECORE_INVAL;
3128 	}
3129 
3130 	/* The current command has been handled */
3131 	p->mcast_list_len = 0;
3132 
3133 	return cnt;
3134 }
3135 
3136 static int ecore_mcast_validate_e2(struct bxe_softc *sc,
3137 				   struct ecore_mcast_ramrod_params *p,
3138 				   enum ecore_mcast_cmd cmd)
3139 {
3140 	struct ecore_mcast_obj *o = p->mcast_obj;
3141 	int reg_sz = o->get_registry_size(o);
3142 
3143 	switch (cmd) {
3144 	/* DEL command deletes all currently configured MACs */
3145 	case ECORE_MCAST_CMD_DEL:
3146 		o->set_registry_size(o, 0);
3147 		/* Don't break */
3148 
3149 	/* RESTORE command will restore the entire multicast configuration */
3150 	case ECORE_MCAST_CMD_RESTORE:
3151 		/* Here we set the approximate amount of work to do, which in
3152 		 * fact may be only less as some MACs in postponed ADD
3153 		 * command(s) scheduled before this command may fall into
3154 		 * the same bin and the actual number of bins set in the
3155 		 * registry would be less than we estimated here. See
3156 		 * ecore_mcast_set_one_rule_e2() for further details.
3157 		 */
3158 		p->mcast_list_len = reg_sz;
3159 		break;
3160 
3161 	case ECORE_MCAST_CMD_ADD:
3162 	case ECORE_MCAST_CMD_CONT:
3163 		/* Here we assume that all new MACs will fall into new bins.
3164 		 * However we will correct the real registry size after we
3165 		 * handle all pending commands.
3166 		 */
3167 		o->set_registry_size(o, reg_sz + p->mcast_list_len);
3168 		break;
3169 
3170 	default:
3171 		ECORE_ERR("Unknown command: %d\n", cmd);
3172 		return ECORE_INVAL;
3173 	}
3174 
3175 	/* Increase the total number of MACs pending to be configured */
3176 	o->total_pending_num += p->mcast_list_len;
3177 
3178 	return ECORE_SUCCESS;
3179 }
3180 
3181 static void ecore_mcast_revert_e2(struct bxe_softc *sc,
3182 				      struct ecore_mcast_ramrod_params *p,
3183 				      int old_num_bins)
3184 {
3185 	struct ecore_mcast_obj *o = p->mcast_obj;
3186 
3187 	o->set_registry_size(o, old_num_bins);
3188 	o->total_pending_num -= p->mcast_list_len;
3189 }
3190 
3191 /**
3192  * ecore_mcast_set_rdata_hdr_e2 - sets a header values
3193  *
3194  * @sc:		device handle
3195  * @p:
3196  * @len:	number of rules to handle
3197  */
3198 static inline void ecore_mcast_set_rdata_hdr_e2(struct bxe_softc *sc,
3199 					struct ecore_mcast_ramrod_params *p,
3200 					uint8_t len)
3201 {
3202 	struct ecore_raw_obj *r = &p->mcast_obj->raw;
3203 	struct eth_multicast_rules_ramrod_data *data =
3204 		(struct eth_multicast_rules_ramrod_data *)(r->rdata);
3205 
3206 	data->header.echo = ECORE_CPU_TO_LE32((r->cid & ECORE_SWCID_MASK) |
3207 					(ECORE_FILTER_MCAST_PENDING <<
3208 					 ECORE_SWCID_SHIFT));
3209 	data->header.rule_cnt = len;
3210 }
3211 
3212 /**
3213  * ecore_mcast_refresh_registry_e2 - recalculate the actual number of set bins
3214  *
3215  * @sc:		device handle
3216  * @o:
3217  *
3218  * Recalculate the actual number of set bins in the registry using Brian
3219  * Kernighan's algorithm: it's execution complexity is as a number of set bins.
3220  *
3221  * returns 0 for the compliance with ecore_mcast_refresh_registry_e1().
3222  */
3223 static inline int ecore_mcast_refresh_registry_e2(struct bxe_softc *sc,
3224 						  struct ecore_mcast_obj *o)
3225 {
3226 	int i, cnt = 0;
3227 	uint64_t elem;
3228 
3229 	for (i = 0; i < ECORE_MCAST_VEC_SZ; i++) {
3230 		elem = o->registry.aprox_match.vec[i];
3231 		for (; elem; cnt++)
3232 			elem &= elem - 1;
3233 	}
3234 
3235 	o->set_registry_size(o, cnt);
3236 
3237 	return ECORE_SUCCESS;
3238 }
3239 
3240 static int ecore_mcast_setup_e2(struct bxe_softc *sc,
3241 				struct ecore_mcast_ramrod_params *p,
3242 				enum ecore_mcast_cmd cmd)
3243 {
3244 	struct ecore_raw_obj *raw = &p->mcast_obj->raw;
3245 	struct ecore_mcast_obj *o = p->mcast_obj;
3246 	struct eth_multicast_rules_ramrod_data *data =
3247 		(struct eth_multicast_rules_ramrod_data *)(raw->rdata);
3248 	int cnt = 0, rc;
3249 
3250 	/* Reset the ramrod data buffer */
3251 	ECORE_MEMSET(data, 0, sizeof(*data));
3252 
3253 	cnt = ecore_mcast_handle_pending_cmds_e2(sc, p);
3254 
3255 	/* If there are no more pending commands - clear SCHEDULED state */
3256 	if (ECORE_LIST_IS_EMPTY(&o->pending_cmds_head))
3257 		o->clear_sched(o);
3258 
3259 	/* The below may be TRUE iff there was enough room in ramrod
3260 	 * data for all pending commands and for the current
3261 	 * command. Otherwise the current command would have been added
3262 	 * to the pending commands and p->mcast_list_len would have been
3263 	 * zeroed.
3264 	 */
3265 	if (p->mcast_list_len > 0)
3266 		cnt = ecore_mcast_handle_current_cmd(sc, p, cmd, cnt);
3267 
3268 	/* We've pulled out some MACs - update the total number of
3269 	 * outstanding.
3270 	 */
3271 	o->total_pending_num -= cnt;
3272 
3273 	/* send a ramrod */
3274 	ECORE_DBG_BREAK_IF(o->total_pending_num < 0);
3275 	ECORE_DBG_BREAK_IF(cnt > o->max_cmd_len);
3276 
3277 	ecore_mcast_set_rdata_hdr_e2(sc, p, (uint8_t)cnt);
3278 
3279 	/* Update a registry size if there are no more pending operations.
3280 	 *
3281 	 * We don't want to change the value of the registry size if there are
3282 	 * pending operations because we want it to always be equal to the
3283 	 * exact or the approximate number (see ecore_mcast_validate_e2()) of
3284 	 * set bins after the last requested operation in order to properly
3285 	 * evaluate the size of the next DEL/RESTORE operation.
3286 	 *
3287 	 * Note that we update the registry itself during command(s) handling
3288 	 * - see ecore_mcast_set_one_rule_e2(). That's because for 57712 we
3289 	 * aggregate multiple commands (ADD/DEL/RESTORE) into one ramrod but
3290 	 * with a limited amount of update commands (per MAC/bin) and we don't
3291 	 * know in this scope what the actual state of bins configuration is
3292 	 * going to be after this ramrod.
3293 	 */
3294 	if (!o->total_pending_num)
3295 		ecore_mcast_refresh_registry_e2(sc, o);
3296 
3297 	/* If CLEAR_ONLY was requested - don't send a ramrod and clear
3298 	 * RAMROD_PENDING status immediately.
3299 	 */
3300 	if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
3301 		raw->clear_pending(raw);
3302 		return ECORE_SUCCESS;
3303 	} else {
3304 		/* No need for an explicit memory barrier here as long we would
3305 		 * need to ensure the ordering of writing to the SPQ element
3306 		 * and updating of the SPQ producer which involves a memory
3307 		 * read and we will have to put a full memory barrier there
3308 		 * (inside ecore_sp_post()).
3309 		 */
3310 
3311 		/* Send a ramrod */
3312 		rc = ecore_sp_post( sc,
3313 				    RAMROD_CMD_ID_ETH_MULTICAST_RULES,
3314 				    raw->cid,
3315 				    raw->rdata_mapping,
3316 				    ETH_CONNECTION_TYPE);
3317 		if (rc)
3318 			return rc;
3319 
3320 		/* Ramrod completion is pending */
3321 		return ECORE_PENDING;
3322 	}
3323 }
3324 
3325 static int ecore_mcast_validate_e1h(struct bxe_softc *sc,
3326 				    struct ecore_mcast_ramrod_params *p,
3327 				    enum ecore_mcast_cmd cmd)
3328 {
3329 	/* Mark, that there is a work to do */
3330 	if ((cmd == ECORE_MCAST_CMD_DEL) || (cmd == ECORE_MCAST_CMD_RESTORE))
3331 		p->mcast_list_len = 1;
3332 
3333 	return ECORE_SUCCESS;
3334 }
3335 
3336 static void ecore_mcast_revert_e1h(struct bxe_softc *sc,
3337 				       struct ecore_mcast_ramrod_params *p,
3338 				       int old_num_bins)
3339 {
3340 	/* Do nothing */
3341 }
3342 
3343 #define ECORE_57711_SET_MC_FILTER(filter, bit) \
3344 do { \
3345 	(filter)[(bit) >> 5] |= (1 << ((bit) & 0x1f)); \
3346 } while (0)
3347 
3348 static inline void ecore_mcast_hdl_add_e1h(struct bxe_softc *sc,
3349 					   struct ecore_mcast_obj *o,
3350 					   struct ecore_mcast_ramrod_params *p,
3351 					   uint32_t *mc_filter)
3352 {
3353 	struct ecore_mcast_list_elem *mlist_pos;
3354 	int bit;
3355 
3356 	ECORE_LIST_FOR_EACH_ENTRY(mlist_pos, &p->mcast_list, link,
3357 				  struct ecore_mcast_list_elem) {
3358 		bit = ecore_mcast_bin_from_mac(mlist_pos->mac);
3359 		ECORE_57711_SET_MC_FILTER(mc_filter, bit);
3360 
3361 		ECORE_MSG(sc, "About to configure %02x:%02x:%02x:%02x:%02x:%02x mcast MAC, bin %d\n",
3362 			  mlist_pos->mac[0], mlist_pos->mac[1], mlist_pos->mac[2], mlist_pos->mac[3], mlist_pos->mac[4], mlist_pos->mac[5], bit);
3363 
3364 		/* bookkeeping... */
3365 		BIT_VEC64_SET_BIT(o->registry.aprox_match.vec,
3366 				  bit);
3367 	}
3368 }
3369 
3370 static inline void ecore_mcast_hdl_restore_e1h(struct bxe_softc *sc,
3371 	struct ecore_mcast_obj *o, struct ecore_mcast_ramrod_params *p,
3372 	uint32_t *mc_filter)
3373 {
3374 	int bit;
3375 
3376 	for (bit = ecore_mcast_get_next_bin(o, 0);
3377 	     bit >= 0;
3378 	     bit = ecore_mcast_get_next_bin(o, bit + 1)) {
3379 		ECORE_57711_SET_MC_FILTER(mc_filter, bit);
3380 		ECORE_MSG(sc, "About to set bin %d\n", bit);
3381 	}
3382 }
3383 
3384 /* On 57711 we write the multicast MACs' approximate match
3385  * table by directly into the TSTORM's internal RAM. So we don't
3386  * really need to handle any tricks to make it work.
3387  */
3388 static int ecore_mcast_setup_e1h(struct bxe_softc *sc,
3389 				 struct ecore_mcast_ramrod_params *p,
3390 				 enum ecore_mcast_cmd cmd)
3391 {
3392 	int i;
3393 	struct ecore_mcast_obj *o = p->mcast_obj;
3394 	struct ecore_raw_obj *r = &o->raw;
3395 
3396 	/* If CLEAR_ONLY has been requested - clear the registry
3397 	 * and clear a pending bit.
3398 	 */
3399 	if (!ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
3400 		uint32_t mc_filter[ECORE_MC_HASH_SIZE] = {0};
3401 
3402 		/* Set the multicast filter bits before writing it into
3403 		 * the internal memory.
3404 		 */
3405 		switch (cmd) {
3406 		case ECORE_MCAST_CMD_ADD:
3407 			ecore_mcast_hdl_add_e1h(sc, o, p, mc_filter);
3408 			break;
3409 
3410 		case ECORE_MCAST_CMD_DEL:
3411 			ECORE_MSG(sc,
3412 				  "Invalidating multicast MACs configuration\n");
3413 
3414 			/* clear the registry */
3415 			ECORE_MEMSET(o->registry.aprox_match.vec, 0,
3416 			       sizeof(o->registry.aprox_match.vec));
3417 			break;
3418 
3419 		case ECORE_MCAST_CMD_RESTORE:
3420 			ecore_mcast_hdl_restore_e1h(sc, o, p, mc_filter);
3421 			break;
3422 
3423 		default:
3424 			ECORE_ERR("Unknown command: %d\n", cmd);
3425 			return ECORE_INVAL;
3426 		}
3427 
3428 		/* Set the mcast filter in the internal memory */
3429 		for (i = 0; i < ECORE_MC_HASH_SIZE; i++)
3430 			REG_WR(sc, ECORE_MC_HASH_OFFSET(sc, i), mc_filter[i]);
3431 	} else
3432 		/* clear the registry */
3433 		ECORE_MEMSET(o->registry.aprox_match.vec, 0,
3434 		       sizeof(o->registry.aprox_match.vec));
3435 
3436 	/* We are done */
3437 	r->clear_pending(r);
3438 
3439 	return ECORE_SUCCESS;
3440 }
3441 
3442 static int ecore_mcast_validate_e1(struct bxe_softc *sc,
3443 				   struct ecore_mcast_ramrod_params *p,
3444 				   enum ecore_mcast_cmd cmd)
3445 {
3446 	struct ecore_mcast_obj *o = p->mcast_obj;
3447 	int reg_sz = o->get_registry_size(o);
3448 
3449 	switch (cmd) {
3450 	/* DEL command deletes all currently configured MACs */
3451 	case ECORE_MCAST_CMD_DEL:
3452 		o->set_registry_size(o, 0);
3453 		/* Don't break */
3454 
3455 	/* RESTORE command will restore the entire multicast configuration */
3456 	case ECORE_MCAST_CMD_RESTORE:
3457 		p->mcast_list_len = reg_sz;
3458 		  ECORE_MSG(sc, "Command %d, p->mcast_list_len=%d\n",
3459 				  cmd, p->mcast_list_len);
3460 		break;
3461 
3462 	case ECORE_MCAST_CMD_ADD:
3463 	case ECORE_MCAST_CMD_CONT:
3464 		/* Multicast MACs on 57710 are configured as unicast MACs and
3465 		 * there is only a limited number of CAM entries for that
3466 		 * matter.
3467 		 */
3468 		if (p->mcast_list_len > o->max_cmd_len) {
3469 			ECORE_ERR("Can't configure more than %d multicast MACs on 57710\n",
3470 				  o->max_cmd_len);
3471 			return ECORE_INVAL;
3472 		}
3473 		/* Every configured MAC should be cleared if DEL command is
3474 		 * called. Only the last ADD command is relevant as long as
3475 		 * every ADD commands overrides the previous configuration.
3476 		 */
3477 		ECORE_MSG(sc, "p->mcast_list_len=%d\n", p->mcast_list_len);
3478 		if (p->mcast_list_len > 0)
3479 			o->set_registry_size(o, p->mcast_list_len);
3480 
3481 		break;
3482 
3483 	default:
3484 		ECORE_ERR("Unknown command: %d\n", cmd);
3485 		return ECORE_INVAL;
3486 	}
3487 
3488 	/* We want to ensure that commands are executed one by one for 57710.
3489 	 * Therefore each none-empty command will consume o->max_cmd_len.
3490 	 */
3491 	if (p->mcast_list_len)
3492 		o->total_pending_num += o->max_cmd_len;
3493 
3494 	return ECORE_SUCCESS;
3495 }
3496 
3497 static void ecore_mcast_revert_e1(struct bxe_softc *sc,
3498 				      struct ecore_mcast_ramrod_params *p,
3499 				      int old_num_macs)
3500 {
3501 	struct ecore_mcast_obj *o = p->mcast_obj;
3502 
3503 	o->set_registry_size(o, old_num_macs);
3504 
3505 	/* If current command hasn't been handled yet and we are
3506 	 * here means that it's meant to be dropped and we have to
3507 	 * update the number of outstanding MACs accordingly.
3508 	 */
3509 	if (p->mcast_list_len)
3510 		o->total_pending_num -= o->max_cmd_len;
3511 }
3512 
3513 static void ecore_mcast_set_one_rule_e1(struct bxe_softc *sc,
3514 					struct ecore_mcast_obj *o, int idx,
3515 					union ecore_mcast_config_data *cfg_data,
3516 					enum ecore_mcast_cmd cmd)
3517 {
3518 	struct ecore_raw_obj *r = &o->raw;
3519 	struct mac_configuration_cmd *data =
3520 		(struct mac_configuration_cmd *)(r->rdata);
3521 
3522 	/* copy mac */
3523 	if ((cmd == ECORE_MCAST_CMD_ADD) || (cmd == ECORE_MCAST_CMD_RESTORE)) {
3524 		ecore_set_fw_mac_addr(&data->config_table[idx].msb_mac_addr,
3525 				      &data->config_table[idx].middle_mac_addr,
3526 				      &data->config_table[idx].lsb_mac_addr,
3527 				      cfg_data->mac);
3528 
3529 		data->config_table[idx].vlan_id = 0;
3530 		data->config_table[idx].pf_id = r->func_id;
3531 		data->config_table[idx].clients_bit_vector =
3532 			ECORE_CPU_TO_LE32(1 << r->cl_id);
3533 
3534 		ECORE_SET_FLAG(data->config_table[idx].flags,
3535 			       MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
3536 			       T_ETH_MAC_COMMAND_SET);
3537 	}
3538 }
3539 
3540 /**
3541  * ecore_mcast_set_rdata_hdr_e1  - set header values in mac_configuration_cmd
3542  *
3543  * @sc:		device handle
3544  * @p:
3545  * @len:	number of rules to handle
3546  */
3547 static inline void ecore_mcast_set_rdata_hdr_e1(struct bxe_softc *sc,
3548 					struct ecore_mcast_ramrod_params *p,
3549 					uint8_t len)
3550 {
3551 	struct ecore_raw_obj *r = &p->mcast_obj->raw;
3552 	struct mac_configuration_cmd *data =
3553 		(struct mac_configuration_cmd *)(r->rdata);
3554 
3555 	uint8_t offset = (CHIP_REV_IS_SLOW(sc) ?
3556 		     ECORE_MAX_EMUL_MULTI*(1 + r->func_id) :
3557 		     ECORE_MAX_MULTICAST*(1 + r->func_id));
3558 
3559 	data->hdr.offset = offset;
3560 	data->hdr.client_id = ECORE_CPU_TO_LE16(0xff);
3561 	data->hdr.echo = ECORE_CPU_TO_LE32((r->cid & ECORE_SWCID_MASK) |
3562 				     (ECORE_FILTER_MCAST_PENDING <<
3563 				      ECORE_SWCID_SHIFT));
3564 	data->hdr.length = len;
3565 }
3566 
3567 /**
3568  * ecore_mcast_handle_restore_cmd_e1 - restore command for 57710
3569  *
3570  * @sc:		device handle
3571  * @o:
3572  * @start_idx:	index in the registry to start from
3573  * @rdata_idx:	index in the ramrod data to start from
3574  *
3575  * restore command for 57710 is like all other commands - always a stand alone
3576  * command - start_idx and rdata_idx will always be 0. This function will always
3577  * succeed.
3578  * returns -1 to comply with 57712 variant.
3579  */
3580 static inline int ecore_mcast_handle_restore_cmd_e1(
3581 	struct bxe_softc *sc, struct ecore_mcast_obj *o , int start_idx,
3582 	int *rdata_idx)
3583 {
3584 	struct ecore_mcast_mac_elem *elem;
3585 	int i = 0;
3586 	union ecore_mcast_config_data cfg_data = {NULL};
3587 
3588 	/* go through the registry and configure the MACs from it. */
3589 	ECORE_LIST_FOR_EACH_ENTRY(elem, &o->registry.exact_match.macs, link,
3590 				  struct ecore_mcast_mac_elem) {
3591 		cfg_data.mac = &elem->mac[0];
3592 		o->set_one_rule(sc, o, i, &cfg_data, ECORE_MCAST_CMD_RESTORE);
3593 
3594 		i++;
3595 
3596 		ECORE_MSG(sc, "About to configure %02x:%02x:%02x:%02x:%02x:%02x mcast MAC\n",
3597 			  cfg_data.mac[0], cfg_data.mac[1], cfg_data.mac[2], cfg_data.mac[3], cfg_data.mac[4], cfg_data.mac[5]);
3598 	}
3599 
3600 	*rdata_idx = i;
3601 
3602 	return -1;
3603 }
3604 
3605 static inline int ecore_mcast_handle_pending_cmds_e1(
3606 	struct bxe_softc *sc, struct ecore_mcast_ramrod_params *p)
3607 {
3608 	struct ecore_pending_mcast_cmd *cmd_pos;
3609 	struct ecore_mcast_mac_elem *pmac_pos;
3610 	struct ecore_mcast_obj *o = p->mcast_obj;
3611 	union ecore_mcast_config_data cfg_data = {NULL};
3612 	int cnt = 0;
3613 
3614 	/* If nothing to be done - return */
3615 	if (ECORE_LIST_IS_EMPTY(&o->pending_cmds_head))
3616 		return 0;
3617 
3618 	/* Handle the first command */
3619 	cmd_pos = ECORE_LIST_FIRST_ENTRY(&o->pending_cmds_head,
3620 					 struct ecore_pending_mcast_cmd, link);
3621 
3622 	switch (cmd_pos->type) {
3623 	case ECORE_MCAST_CMD_ADD:
3624 		ECORE_LIST_FOR_EACH_ENTRY(pmac_pos, &cmd_pos->data.macs_head,
3625 					  link, struct ecore_mcast_mac_elem) {
3626 			cfg_data.mac = &pmac_pos->mac[0];
3627 			o->set_one_rule(sc, o, cnt, &cfg_data, cmd_pos->type);
3628 
3629 			cnt++;
3630 
3631 			ECORE_MSG(sc, "About to configure %02x:%02x:%02x:%02x:%02x:%02x mcast MAC\n",
3632 				  pmac_pos->mac[0], pmac_pos->mac[1], pmac_pos->mac[2], pmac_pos->mac[3], pmac_pos->mac[4], pmac_pos->mac[5]);
3633 		}
3634 		break;
3635 
3636 	case ECORE_MCAST_CMD_DEL:
3637 		cnt = cmd_pos->data.macs_num;
3638 		ECORE_MSG(sc, "About to delete %d multicast MACs\n", cnt);
3639 		break;
3640 
3641 	case ECORE_MCAST_CMD_RESTORE:
3642 		o->hdl_restore(sc, o, 0, &cnt);
3643 		break;
3644 
3645 	default:
3646 		ECORE_ERR("Unknown command: %d\n", cmd_pos->type);
3647 		return ECORE_INVAL;
3648 	}
3649 
3650 	ECORE_LIST_REMOVE_ENTRY(&cmd_pos->link, &o->pending_cmds_head);
3651 	ECORE_FREE(sc, cmd_pos, cmd_pos->alloc_len);
3652 
3653 	return cnt;
3654 }
3655 
3656 /**
3657  * ecore_get_fw_mac_addr - revert the ecore_set_fw_mac_addr().
3658  *
3659  * @fw_hi:
3660  * @fw_mid:
3661  * @fw_lo:
3662  * @mac:
3663  */
3664 static inline void ecore_get_fw_mac_addr(uint16_t *fw_hi, uint16_t *fw_mid,
3665 					 uint16_t *fw_lo, uint8_t *mac)
3666 {
3667 	mac[1] = ((uint8_t *)fw_hi)[0];
3668 	mac[0] = ((uint8_t *)fw_hi)[1];
3669 	mac[3] = ((uint8_t *)fw_mid)[0];
3670 	mac[2] = ((uint8_t *)fw_mid)[1];
3671 	mac[5] = ((uint8_t *)fw_lo)[0];
3672 	mac[4] = ((uint8_t *)fw_lo)[1];
3673 }
3674 
3675 /**
3676  * ecore_mcast_refresh_registry_e1 -
3677  *
3678  * @sc:		device handle
3679  * @cnt:
3680  *
3681  * Check the ramrod data first entry flag to see if it's a DELETE or ADD command
3682  * and update the registry correspondingly: if ADD - allocate a memory and add
3683  * the entries to the registry (list), if DELETE - clear the registry and free
3684  * the memory.
3685  */
3686 static inline int ecore_mcast_refresh_registry_e1(struct bxe_softc *sc,
3687 						  struct ecore_mcast_obj *o)
3688 {
3689 	struct ecore_raw_obj *raw = &o->raw;
3690 	struct ecore_mcast_mac_elem *elem;
3691 	struct mac_configuration_cmd *data =
3692 			(struct mac_configuration_cmd *)(raw->rdata);
3693 
3694 	/* If first entry contains a SET bit - the command was ADD,
3695 	 * otherwise - DEL_ALL
3696 	 */
3697 	if (ECORE_GET_FLAG(data->config_table[0].flags,
3698 			MAC_CONFIGURATION_ENTRY_ACTION_TYPE)) {
3699 		int i, len = data->hdr.length;
3700 
3701 		/* Break if it was a RESTORE command */
3702 		if (!ECORE_LIST_IS_EMPTY(&o->registry.exact_match.macs))
3703 			return ECORE_SUCCESS;
3704 
3705 		elem = ECORE_CALLOC(len, sizeof(*elem), GFP_ATOMIC, sc);
3706 		if (!elem) {
3707 			ECORE_ERR("Failed to allocate registry memory\n");
3708 			return ECORE_NOMEM;
3709 		}
3710 
3711 		for (i = 0; i < len; i++, elem++) {
3712 			ecore_get_fw_mac_addr(
3713 				&data->config_table[i].msb_mac_addr,
3714 				&data->config_table[i].middle_mac_addr,
3715 				&data->config_table[i].lsb_mac_addr,
3716 				elem->mac);
3717 			ECORE_MSG(sc, "Adding registry entry for [%02x:%02x:%02x:%02x:%02x:%02x]\n",
3718 				  elem->mac[0], elem->mac[1], elem->mac[2], elem->mac[3], elem->mac[4], elem->mac[5]);
3719 			ECORE_LIST_PUSH_TAIL(&elem->link,
3720 					     &o->registry.exact_match.macs);
3721 		}
3722 	} else {
3723 		elem = ECORE_LIST_FIRST_ENTRY(&o->registry.exact_match.macs,
3724 					      struct ecore_mcast_mac_elem,
3725 					      link);
3726 		ECORE_MSG(sc, "Deleting a registry\n");
3727 		ECORE_FREE(sc, elem, sizeof(*elem));
3728 		ECORE_LIST_INIT(&o->registry.exact_match.macs);
3729 	}
3730 
3731 	return ECORE_SUCCESS;
3732 }
3733 
3734 static int ecore_mcast_setup_e1(struct bxe_softc *sc,
3735 				struct ecore_mcast_ramrod_params *p,
3736 				enum ecore_mcast_cmd cmd)
3737 {
3738 	struct ecore_mcast_obj *o = p->mcast_obj;
3739 	struct ecore_raw_obj *raw = &o->raw;
3740 	struct mac_configuration_cmd *data =
3741 		(struct mac_configuration_cmd *)(raw->rdata);
3742 	int cnt = 0, i, rc;
3743 
3744 	/* Reset the ramrod data buffer */
3745 	ECORE_MEMSET(data, 0, sizeof(*data));
3746 
3747 	/* First set all entries as invalid */
3748 	for (i = 0; i < o->max_cmd_len ; i++)
3749 		ECORE_SET_FLAG(data->config_table[i].flags,
3750 			MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
3751 			T_ETH_MAC_COMMAND_INVALIDATE);
3752 
3753 	/* Handle pending commands first */
3754 	cnt = ecore_mcast_handle_pending_cmds_e1(sc, p);
3755 
3756 	/* If there are no more pending commands - clear SCHEDULED state */
3757 	if (ECORE_LIST_IS_EMPTY(&o->pending_cmds_head))
3758 		o->clear_sched(o);
3759 
3760 	/* The below may be TRUE iff there were no pending commands */
3761 	if (!cnt)
3762 		cnt = ecore_mcast_handle_current_cmd(sc, p, cmd, 0);
3763 
3764 	/* For 57710 every command has o->max_cmd_len length to ensure that
3765 	 * commands are done one at a time.
3766 	 */
3767 	o->total_pending_num -= o->max_cmd_len;
3768 
3769 	/* send a ramrod */
3770 
3771 	ECORE_DBG_BREAK_IF(cnt > o->max_cmd_len);
3772 
3773 	/* Set ramrod header (in particular, a number of entries to update) */
3774 	ecore_mcast_set_rdata_hdr_e1(sc, p, (uint8_t)cnt);
3775 
3776 	/* update a registry: we need the registry contents to be always up
3777 	 * to date in order to be able to execute a RESTORE opcode. Here
3778 	 * we use the fact that for 57710 we sent one command at a time
3779 	 * hence we may take the registry update out of the command handling
3780 	 * and do it in a simpler way here.
3781 	 */
3782 	rc = ecore_mcast_refresh_registry_e1(sc, o);
3783 	if (rc)
3784 		return rc;
3785 
3786 	/* If CLEAR_ONLY was requested - don't send a ramrod and clear
3787 	 * RAMROD_PENDING status immediately.
3788 	 */
3789 	if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
3790 		raw->clear_pending(raw);
3791 		return ECORE_SUCCESS;
3792 	} else {
3793 		/* No need for an explicit memory barrier here as long we would
3794 		 * need to ensure the ordering of writing to the SPQ element
3795 		 * and updating of the SPQ producer which involves a memory
3796 		 * read and we will have to put a full memory barrier there
3797 		 * (inside ecore_sp_post()).
3798 		 */
3799 
3800 		/* Send a ramrod */
3801 		rc = ecore_sp_post( sc,
3802 				    RAMROD_CMD_ID_ETH_SET_MAC,
3803 				    raw->cid,
3804 				    raw->rdata_mapping,
3805 				    ETH_CONNECTION_TYPE);
3806 		if (rc)
3807 			return rc;
3808 
3809 		/* Ramrod completion is pending */
3810 		return ECORE_PENDING;
3811 	}
3812 }
3813 
3814 static int ecore_mcast_get_registry_size_exact(struct ecore_mcast_obj *o)
3815 {
3816 	return o->registry.exact_match.num_macs_set;
3817 }
3818 
3819 static int ecore_mcast_get_registry_size_aprox(struct ecore_mcast_obj *o)
3820 {
3821 	return o->registry.aprox_match.num_bins_set;
3822 }
3823 
3824 static void ecore_mcast_set_registry_size_exact(struct ecore_mcast_obj *o,
3825 						int n)
3826 {
3827 	o->registry.exact_match.num_macs_set = n;
3828 }
3829 
3830 static void ecore_mcast_set_registry_size_aprox(struct ecore_mcast_obj *o,
3831 						int n)
3832 {
3833 	o->registry.aprox_match.num_bins_set = n;
3834 }
3835 
3836 int ecore_config_mcast(struct bxe_softc *sc,
3837 		       struct ecore_mcast_ramrod_params *p,
3838 		       enum ecore_mcast_cmd cmd)
3839 {
3840 	struct ecore_mcast_obj *o = p->mcast_obj;
3841 	struct ecore_raw_obj *r = &o->raw;
3842 	int rc = 0, old_reg_size;
3843 
3844 	/* This is needed to recover number of currently configured mcast macs
3845 	 * in case of failure.
3846 	 */
3847 	old_reg_size = o->get_registry_size(o);
3848 
3849 	/* Do some calculations and checks */
3850 	rc = o->validate(sc, p, cmd);
3851 	if (rc)
3852 		return rc;
3853 
3854 	/* Return if there is no work to do */
3855 	if ((!p->mcast_list_len) && (!o->check_sched(o)))
3856 		return ECORE_SUCCESS;
3857 
3858 	ECORE_MSG(sc, "o->total_pending_num=%d p->mcast_list_len=%d o->max_cmd_len=%d\n",
3859 		  o->total_pending_num, p->mcast_list_len, o->max_cmd_len);
3860 
3861 	/* Enqueue the current command to the pending list if we can't complete
3862 	 * it in the current iteration
3863 	 */
3864 	if (r->check_pending(r) ||
3865 	    ((o->max_cmd_len > 0) && (o->total_pending_num > o->max_cmd_len))) {
3866 		rc = o->enqueue_cmd(sc, p->mcast_obj, p, cmd);
3867 		if (rc < 0)
3868 			goto error_exit1;
3869 
3870 		/* As long as the current command is in a command list we
3871 		 * don't need to handle it separately.
3872 		 */
3873 		p->mcast_list_len = 0;
3874 	}
3875 
3876 	if (!r->check_pending(r)) {
3877 
3878 		/* Set 'pending' state */
3879 		r->set_pending(r);
3880 
3881 		/* Configure the new classification in the chip */
3882 		rc = o->config_mcast(sc, p, cmd);
3883 		if (rc < 0)
3884 			goto error_exit2;
3885 
3886 		/* Wait for a ramrod completion if was requested */
3887 		if (ECORE_TEST_BIT(RAMROD_COMP_WAIT, &p->ramrod_flags))
3888 			rc = o->wait_comp(sc, o);
3889 	}
3890 
3891 	return rc;
3892 
3893 error_exit2:
3894 	r->clear_pending(r);
3895 
3896 error_exit1:
3897 	o->revert(sc, p, old_reg_size);
3898 
3899 	return rc;
3900 }
3901 
3902 static void ecore_mcast_clear_sched(struct ecore_mcast_obj *o)
3903 {
3904 	ECORE_SMP_MB_BEFORE_CLEAR_BIT();
3905 	ECORE_CLEAR_BIT(o->sched_state, o->raw.pstate);
3906 	ECORE_SMP_MB_AFTER_CLEAR_BIT();
3907 }
3908 
3909 static void ecore_mcast_set_sched(struct ecore_mcast_obj *o)
3910 {
3911 	ECORE_SMP_MB_BEFORE_CLEAR_BIT();
3912 	ECORE_SET_BIT(o->sched_state, o->raw.pstate);
3913 	ECORE_SMP_MB_AFTER_CLEAR_BIT();
3914 }
3915 
3916 static bool ecore_mcast_check_sched(struct ecore_mcast_obj *o)
3917 {
3918 	return !!ECORE_TEST_BIT(o->sched_state, o->raw.pstate);
3919 }
3920 
3921 static bool ecore_mcast_check_pending(struct ecore_mcast_obj *o)
3922 {
3923 	return o->raw.check_pending(&o->raw) || o->check_sched(o);
3924 }
3925 
3926 void ecore_init_mcast_obj(struct bxe_softc *sc,
3927 			  struct ecore_mcast_obj *mcast_obj,
3928 			  uint8_t mcast_cl_id, uint32_t mcast_cid, uint8_t func_id,
3929 			  uint8_t engine_id, void *rdata, ecore_dma_addr_t rdata_mapping,
3930 			  int state, unsigned long *pstate, ecore_obj_type type)
3931 {
3932 	ECORE_MEMSET(mcast_obj, 0, sizeof(*mcast_obj));
3933 
3934 	ecore_init_raw_obj(&mcast_obj->raw, mcast_cl_id, mcast_cid, func_id,
3935 			   rdata, rdata_mapping, state, pstate, type);
3936 
3937 	mcast_obj->engine_id = engine_id;
3938 
3939 	ECORE_LIST_INIT(&mcast_obj->pending_cmds_head);
3940 
3941 	mcast_obj->sched_state = ECORE_FILTER_MCAST_SCHED;
3942 	mcast_obj->check_sched = ecore_mcast_check_sched;
3943 	mcast_obj->set_sched = ecore_mcast_set_sched;
3944 	mcast_obj->clear_sched = ecore_mcast_clear_sched;
3945 
3946 	if (CHIP_IS_E1(sc)) {
3947 		mcast_obj->config_mcast      = ecore_mcast_setup_e1;
3948 		mcast_obj->enqueue_cmd       = ecore_mcast_enqueue_cmd;
3949 		mcast_obj->hdl_restore       =
3950 			ecore_mcast_handle_restore_cmd_e1;
3951 		mcast_obj->check_pending     = ecore_mcast_check_pending;
3952 
3953 		if (CHIP_REV_IS_SLOW(sc))
3954 			mcast_obj->max_cmd_len = ECORE_MAX_EMUL_MULTI;
3955 		else
3956 			mcast_obj->max_cmd_len = ECORE_MAX_MULTICAST;
3957 
3958 		mcast_obj->wait_comp         = ecore_mcast_wait;
3959 		mcast_obj->set_one_rule      = ecore_mcast_set_one_rule_e1;
3960 		mcast_obj->validate          = ecore_mcast_validate_e1;
3961 		mcast_obj->revert            = ecore_mcast_revert_e1;
3962 		mcast_obj->get_registry_size =
3963 			ecore_mcast_get_registry_size_exact;
3964 		mcast_obj->set_registry_size =
3965 			ecore_mcast_set_registry_size_exact;
3966 
3967 		/* 57710 is the only chip that uses the exact match for mcast
3968 		 * at the moment.
3969 		 */
3970 		ECORE_LIST_INIT(&mcast_obj->registry.exact_match.macs);
3971 
3972 	} else if (CHIP_IS_E1H(sc)) {
3973 		mcast_obj->config_mcast  = ecore_mcast_setup_e1h;
3974 		mcast_obj->enqueue_cmd   = NULL;
3975 		mcast_obj->hdl_restore   = NULL;
3976 		mcast_obj->check_pending = ecore_mcast_check_pending;
3977 
3978 		/* 57711 doesn't send a ramrod, so it has unlimited credit
3979 		 * for one command.
3980 		 */
3981 		mcast_obj->max_cmd_len       = -1;
3982 		mcast_obj->wait_comp         = ecore_mcast_wait;
3983 		mcast_obj->set_one_rule      = NULL;
3984 		mcast_obj->validate          = ecore_mcast_validate_e1h;
3985 		mcast_obj->revert            = ecore_mcast_revert_e1h;
3986 		mcast_obj->get_registry_size =
3987 			ecore_mcast_get_registry_size_aprox;
3988 		mcast_obj->set_registry_size =
3989 			ecore_mcast_set_registry_size_aprox;
3990 	} else {
3991 		mcast_obj->config_mcast      = ecore_mcast_setup_e2;
3992 		mcast_obj->enqueue_cmd       = ecore_mcast_enqueue_cmd;
3993 		mcast_obj->hdl_restore       =
3994 			ecore_mcast_handle_restore_cmd_e2;
3995 		mcast_obj->check_pending     = ecore_mcast_check_pending;
3996 		/* TODO: There should be a proper HSI define for this number!!!
3997 		 */
3998 		mcast_obj->max_cmd_len       = 16;
3999 		mcast_obj->wait_comp         = ecore_mcast_wait;
4000 		mcast_obj->set_one_rule      = ecore_mcast_set_one_rule_e2;
4001 		mcast_obj->validate          = ecore_mcast_validate_e2;
4002 		mcast_obj->revert            = ecore_mcast_revert_e2;
4003 		mcast_obj->get_registry_size =
4004 			ecore_mcast_get_registry_size_aprox;
4005 		mcast_obj->set_registry_size =
4006 			ecore_mcast_set_registry_size_aprox;
4007 	}
4008 }
4009 
4010 /*************************** Credit handling **********************************/
4011 
4012 /**
4013  * atomic_add_ifless - add if the result is less than a given value.
4014  *
4015  * @v:	pointer of type ecore_atomic_t
4016  * @a:	the amount to add to v...
4017  * @u:	...if (v + a) is less than u.
4018  *
4019  * returns TRUE if (v + a) was less than u, and FALSE otherwise.
4020  *
4021  */
4022 static inline bool __atomic_add_ifless(ecore_atomic_t *v, int a, int u)
4023 {
4024 	int c, old;
4025 
4026 	c = ECORE_ATOMIC_READ(v);
4027 	for (;;) {
4028 		if (ECORE_UNLIKELY(c + a >= u))
4029 			return FALSE;
4030 
4031 		old = ECORE_ATOMIC_CMPXCHG((v), c, c + a);
4032 		if (ECORE_LIKELY(old == c))
4033 			break;
4034 		c = old;
4035 	}
4036 
4037 	return TRUE;
4038 }
4039 
4040 /**
4041  * atomic_dec_ifmoe - dec if the result is more or equal than a given value.
4042  *
4043  * @v:	pointer of type ecore_atomic_t
4044  * @a:	the amount to dec from v...
4045  * @u:	...if (v - a) is more or equal than u.
4046  *
4047  * returns TRUE if (v - a) was more or equal than u, and FALSE
4048  * otherwise.
4049  */
4050 static inline bool __atomic_dec_ifmoe(ecore_atomic_t *v, int a, int u)
4051 {
4052 	int c, old;
4053 
4054 	c = ECORE_ATOMIC_READ(v);
4055 	for (;;) {
4056 		if (ECORE_UNLIKELY(c - a < u))
4057 			return FALSE;
4058 
4059 		old = ECORE_ATOMIC_CMPXCHG((v), c, c - a);
4060 		if (ECORE_LIKELY(old == c))
4061 			break;
4062 		c = old;
4063 	}
4064 
4065 	return TRUE;
4066 }
4067 
4068 static bool ecore_credit_pool_get(struct ecore_credit_pool_obj *o, int cnt)
4069 {
4070 	bool rc;
4071 
4072 	ECORE_SMP_MB();
4073 	rc = __atomic_dec_ifmoe(&o->credit, cnt, 0);
4074 	ECORE_SMP_MB();
4075 
4076 	return rc;
4077 }
4078 
4079 static bool ecore_credit_pool_put(struct ecore_credit_pool_obj *o, int cnt)
4080 {
4081 	bool rc;
4082 
4083 	ECORE_SMP_MB();
4084 
4085 	/* Don't let to refill if credit + cnt > pool_sz */
4086 	rc = __atomic_add_ifless(&o->credit, cnt, o->pool_sz + 1);
4087 
4088 	ECORE_SMP_MB();
4089 
4090 	return rc;
4091 }
4092 
4093 static int ecore_credit_pool_check(struct ecore_credit_pool_obj *o)
4094 {
4095 	int cur_credit;
4096 
4097 	ECORE_SMP_MB();
4098 	cur_credit = ECORE_ATOMIC_READ(&o->credit);
4099 
4100 	return cur_credit;
4101 }
4102 
4103 static bool ecore_credit_pool_always_TRUE(struct ecore_credit_pool_obj *o,
4104 					  int cnt)
4105 {
4106 	return TRUE;
4107 }
4108 
4109 static bool ecore_credit_pool_get_entry(
4110 	struct ecore_credit_pool_obj *o,
4111 	int *offset)
4112 {
4113 	int idx, vec, i;
4114 
4115 	*offset = -1;
4116 
4117 	/* Find "internal cam-offset" then add to base for this object... */
4118 	for (vec = 0; vec < ECORE_POOL_VEC_SIZE; vec++) {
4119 
4120 		/* Skip the current vector if there are no free entries in it */
4121 		if (!o->pool_mirror[vec])
4122 			continue;
4123 
4124 		/* If we've got here we are going to find a free entry */
4125 		for (idx = vec * BIT_VEC64_ELEM_SZ, i = 0;
4126 		      i < BIT_VEC64_ELEM_SZ; idx++, i++)
4127 
4128 			if (BIT_VEC64_TEST_BIT(o->pool_mirror, idx)) {
4129 				/* Got one!! */
4130 				BIT_VEC64_CLEAR_BIT(o->pool_mirror, idx);
4131 				*offset = o->base_pool_offset + idx;
4132 				return TRUE;
4133 			}
4134 	}
4135 
4136 	return FALSE;
4137 }
4138 
4139 static bool ecore_credit_pool_put_entry(
4140 	struct ecore_credit_pool_obj *o,
4141 	int offset)
4142 {
4143 	if (offset < o->base_pool_offset)
4144 		return FALSE;
4145 
4146 	offset -= o->base_pool_offset;
4147 
4148 	if (offset >= o->pool_sz)
4149 		return FALSE;
4150 
4151 	/* Return the entry to the pool */
4152 	BIT_VEC64_SET_BIT(o->pool_mirror, offset);
4153 
4154 	return TRUE;
4155 }
4156 
4157 static bool ecore_credit_pool_put_entry_always_TRUE(
4158 	struct ecore_credit_pool_obj *o,
4159 	int offset)
4160 {
4161 	return TRUE;
4162 }
4163 
4164 static bool ecore_credit_pool_get_entry_always_TRUE(
4165 	struct ecore_credit_pool_obj *o,
4166 	int *offset)
4167 {
4168 	*offset = -1;
4169 	return TRUE;
4170 }
4171 /**
4172  * ecore_init_credit_pool - initialize credit pool internals.
4173  *
4174  * @p:
4175  * @base:	Base entry in the CAM to use.
4176  * @credit:	pool size.
4177  *
4178  * If base is negative no CAM entries handling will be performed.
4179  * If credit is negative pool operations will always succeed (unlimited pool).
4180  *
4181  */
4182 static inline void ecore_init_credit_pool(struct ecore_credit_pool_obj *p,
4183 					  int base, int credit)
4184 {
4185 	/* Zero the object first */
4186 	ECORE_MEMSET(p, 0, sizeof(*p));
4187 
4188 	/* Set the table to all 1s */
4189 	ECORE_MEMSET(&p->pool_mirror, 0xff, sizeof(p->pool_mirror));
4190 
4191 	/* Init a pool as full */
4192 	ECORE_ATOMIC_SET(&p->credit, credit);
4193 
4194 	/* The total poll size */
4195 	p->pool_sz = credit;
4196 
4197 	p->base_pool_offset = base;
4198 
4199 	/* Commit the change */
4200 	ECORE_SMP_MB();
4201 
4202 	p->check = ecore_credit_pool_check;
4203 
4204 	/* if pool credit is negative - disable the checks */
4205 	if (credit >= 0) {
4206 		p->put      = ecore_credit_pool_put;
4207 		p->get      = ecore_credit_pool_get;
4208 		p->put_entry = ecore_credit_pool_put_entry;
4209 		p->get_entry = ecore_credit_pool_get_entry;
4210 	} else {
4211 		p->put      = ecore_credit_pool_always_TRUE;
4212 		p->get      = ecore_credit_pool_always_TRUE;
4213 		p->put_entry = ecore_credit_pool_put_entry_always_TRUE;
4214 		p->get_entry = ecore_credit_pool_get_entry_always_TRUE;
4215 	}
4216 
4217 	/* If base is negative - disable entries handling */
4218 	if (base < 0) {
4219 		p->put_entry = ecore_credit_pool_put_entry_always_TRUE;
4220 		p->get_entry = ecore_credit_pool_get_entry_always_TRUE;
4221 	}
4222 }
4223 
4224 void ecore_init_mac_credit_pool(struct bxe_softc *sc,
4225 				struct ecore_credit_pool_obj *p, uint8_t func_id,
4226 				uint8_t func_num)
4227 {
4228 /* TODO: this will be defined in consts as well... */
4229 #define ECORE_CAM_SIZE_EMUL 5
4230 
4231 	int cam_sz;
4232 
4233 	if (CHIP_IS_E1(sc)) {
4234 		/* In E1, Multicast is saved in cam... */
4235 		if (!CHIP_REV_IS_SLOW(sc))
4236 			cam_sz = (MAX_MAC_CREDIT_E1 / 2) - ECORE_MAX_MULTICAST;
4237 		else
4238 			cam_sz = ECORE_CAM_SIZE_EMUL - ECORE_MAX_EMUL_MULTI;
4239 
4240 		ecore_init_credit_pool(p, func_id * cam_sz, cam_sz);
4241 
4242 	} else if (CHIP_IS_E1H(sc)) {
4243 		/* CAM credit is equally divided between all active functions
4244 		 * on the PORT!.
4245 		 */
4246 		if ((func_num > 0)) {
4247 			if (!CHIP_REV_IS_SLOW(sc))
4248 				cam_sz = (MAX_MAC_CREDIT_E1H / (2*func_num));
4249 			else
4250 				cam_sz = ECORE_CAM_SIZE_EMUL;
4251 			ecore_init_credit_pool(p, func_id * cam_sz, cam_sz);
4252 		} else {
4253 			/* this should never happen! Block MAC operations. */
4254 			ecore_init_credit_pool(p, 0, 0);
4255 		}
4256 
4257 	} else {
4258 
4259 		/*
4260 		 * CAM credit is equaly divided between all active functions
4261 		 * on the PATH.
4262 		 */
4263 		if ((func_num > 1)) {
4264 			if (!CHIP_REV_IS_SLOW(sc))
4265 				cam_sz = (MAX_MAC_CREDIT_E2
4266 				- GET_NUM_VFS_PER_PATH(sc))
4267 				/ func_num
4268 				+ GET_NUM_VFS_PER_PF(sc);
4269 			else
4270 				cam_sz = ECORE_CAM_SIZE_EMUL;
4271 
4272 			/* No need for CAM entries handling for 57712 and
4273 			 * newer.
4274 			 */
4275 			ecore_init_credit_pool(p, -1, cam_sz);
4276 		} else if (func_num == 1) {
4277 			if (!CHIP_REV_IS_SLOW(sc))
4278 				cam_sz = MAX_MAC_CREDIT_E2;
4279 			else
4280 				cam_sz = ECORE_CAM_SIZE_EMUL;
4281 
4282 			/* No need for CAM entries handling for 57712 and
4283 			 * newer.
4284 			 */
4285 			ecore_init_credit_pool(p, -1, cam_sz);
4286 		} else {
4287 			/* this should never happen! Block MAC operations. */
4288 			ecore_init_credit_pool(p, 0, 0);
4289 		}
4290 	}
4291 }
4292 
4293 void ecore_init_vlan_credit_pool(struct bxe_softc *sc,
4294 				 struct ecore_credit_pool_obj *p,
4295 				 uint8_t func_id,
4296 				 uint8_t func_num)
4297 {
4298 	if (CHIP_IS_E1x(sc)) {
4299 		/* There is no VLAN credit in HW on 57710 and 57711 only
4300 		 * MAC / MAC-VLAN can be set
4301 		 */
4302 		ecore_init_credit_pool(p, 0, -1);
4303 	} else {
4304 		/* CAM credit is equally divided between all active functions
4305 		 * on the PATH.
4306 		 */
4307 		if (func_num > 0) {
4308 			int credit = MAX_VLAN_CREDIT_E2 / func_num;
4309 			ecore_init_credit_pool(p, func_id * credit, credit);
4310 		} else
4311 			/* this should never happen! Block VLAN operations. */
4312 			ecore_init_credit_pool(p, 0, 0);
4313 	}
4314 }
4315 
4316 /****************** RSS Configuration ******************/
4317 
4318 /**
4319  * ecore_setup_rss - configure RSS
4320  *
4321  * @sc:		device handle
4322  * @p:		rss configuration
4323  *
4324  * sends on UPDATE ramrod for that matter.
4325  */
4326 static int ecore_setup_rss(struct bxe_softc *sc,
4327 			   struct ecore_config_rss_params *p)
4328 {
4329 	struct ecore_rss_config_obj *o = p->rss_obj;
4330 	struct ecore_raw_obj *r = &o->raw;
4331 	struct eth_rss_update_ramrod_data *data =
4332 		(struct eth_rss_update_ramrod_data *)(r->rdata);
4333 	uint8_t rss_mode = 0;
4334 	int rc;
4335 
4336 	ECORE_MEMSET(data, 0, sizeof(*data));
4337 
4338 	ECORE_MSG(sc, "Configuring RSS\n");
4339 
4340 	/* Set an echo field */
4341 	data->echo = ECORE_CPU_TO_LE32((r->cid & ECORE_SWCID_MASK) |
4342 				 (r->state << ECORE_SWCID_SHIFT));
4343 
4344 	/* RSS mode */
4345 	if (ECORE_TEST_BIT(ECORE_RSS_MODE_DISABLED, &p->rss_flags))
4346 		rss_mode = ETH_RSS_MODE_DISABLED;
4347 	else if (ECORE_TEST_BIT(ECORE_RSS_MODE_REGULAR, &p->rss_flags))
4348 		rss_mode = ETH_RSS_MODE_REGULAR;
4349 #if defined(__VMKLNX__) && (VMWARE_ESX_DDK_VERSION < 55000) /* ! BNX2X_UPSTREAM */
4350 	else if (ECORE_TEST_BIT(ECORE_RSS_MODE_ESX51, &p->rss_flags))
4351 		rss_mode = ETH_RSS_MODE_ESX51;
4352 #endif
4353 
4354 	data->rss_mode = rss_mode;
4355 
4356 	ECORE_MSG(sc, "rss_mode=%d\n", rss_mode);
4357 
4358 	/* RSS capabilities */
4359 	if (ECORE_TEST_BIT(ECORE_RSS_IPV4, &p->rss_flags))
4360 		data->capabilities |=
4361 			ETH_RSS_UPDATE_RAMROD_DATA_IPV4_CAPABILITY;
4362 
4363 	if (ECORE_TEST_BIT(ECORE_RSS_IPV4_TCP, &p->rss_flags))
4364 		data->capabilities |=
4365 			ETH_RSS_UPDATE_RAMROD_DATA_IPV4_TCP_CAPABILITY;
4366 
4367 	if (ECORE_TEST_BIT(ECORE_RSS_IPV4_UDP, &p->rss_flags))
4368 		data->capabilities |=
4369 			ETH_RSS_UPDATE_RAMROD_DATA_IPV4_UDP_CAPABILITY;
4370 
4371 	if (ECORE_TEST_BIT(ECORE_RSS_IPV6, &p->rss_flags))
4372 		data->capabilities |=
4373 			ETH_RSS_UPDATE_RAMROD_DATA_IPV6_CAPABILITY;
4374 
4375 	if (ECORE_TEST_BIT(ECORE_RSS_IPV6_TCP, &p->rss_flags))
4376 		data->capabilities |=
4377 			ETH_RSS_UPDATE_RAMROD_DATA_IPV6_TCP_CAPABILITY;
4378 
4379 	if (ECORE_TEST_BIT(ECORE_RSS_IPV6_UDP, &p->rss_flags))
4380 		data->capabilities |=
4381 			ETH_RSS_UPDATE_RAMROD_DATA_IPV6_UDP_CAPABILITY;
4382 
4383 	if (ECORE_TEST_BIT(ECORE_RSS_TUNNELING, &p->rss_flags)) {
4384 		data->udp_4tuple_dst_port_mask = ECORE_CPU_TO_LE16(p->tunnel_mask);
4385 		data->udp_4tuple_dst_port_value =
4386 			ECORE_CPU_TO_LE16(p->tunnel_value);
4387 	}
4388 
4389 	/* Hashing mask */
4390 	data->rss_result_mask = p->rss_result_mask;
4391 
4392 	/* RSS engine ID */
4393 	data->rss_engine_id = o->engine_id;
4394 
4395 	ECORE_MSG(sc, "rss_engine_id=%d\n", data->rss_engine_id);
4396 
4397 	/* Indirection table */
4398 	ECORE_MEMCPY(data->indirection_table, p->ind_table,
4399 		  T_ETH_INDIRECTION_TABLE_SIZE);
4400 
4401 	/* Remember the last configuration */
4402 	ECORE_MEMCPY(o->ind_table, p->ind_table, T_ETH_INDIRECTION_TABLE_SIZE);
4403 
4404 
4405 	/* RSS keys */
4406 	if (ECORE_TEST_BIT(ECORE_RSS_SET_SRCH, &p->rss_flags)) {
4407 		ECORE_MEMCPY(&data->rss_key[0], &p->rss_key[0],
4408 		       sizeof(data->rss_key));
4409 		data->capabilities |= ETH_RSS_UPDATE_RAMROD_DATA_UPDATE_RSS_KEY;
4410 	}
4411 
4412 	/* No need for an explicit memory barrier here as long we would
4413 	 * need to ensure the ordering of writing to the SPQ element
4414 	 * and updating of the SPQ producer which involves a memory
4415 	 * read and we will have to put a full memory barrier there
4416 	 * (inside ecore_sp_post()).
4417 	 */
4418 
4419 	/* Send a ramrod */
4420 	rc = ecore_sp_post(sc,
4421 			     RAMROD_CMD_ID_ETH_RSS_UPDATE,
4422 			     r->cid,
4423 			     r->rdata_mapping,
4424 			     ETH_CONNECTION_TYPE);
4425 
4426 	if (rc < 0)
4427 		return rc;
4428 
4429 	return ECORE_PENDING;
4430 }
4431 
4432 void ecore_get_rss_ind_table(struct ecore_rss_config_obj *rss_obj,
4433 			     uint8_t *ind_table)
4434 {
4435 	ECORE_MEMCPY(ind_table, rss_obj->ind_table, sizeof(rss_obj->ind_table));
4436 }
4437 
4438 int ecore_config_rss(struct bxe_softc *sc,
4439 		     struct ecore_config_rss_params *p)
4440 {
4441 	int rc;
4442 	struct ecore_rss_config_obj *o = p->rss_obj;
4443 	struct ecore_raw_obj *r = &o->raw;
4444 
4445 	/* Do nothing if only driver cleanup was requested */
4446 	if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags))
4447 		return ECORE_SUCCESS;
4448 
4449 	r->set_pending(r);
4450 
4451 	rc = o->config_rss(sc, p);
4452 	if (rc < 0) {
4453 		r->clear_pending(r);
4454 		return rc;
4455 	}
4456 
4457 	if (ECORE_TEST_BIT(RAMROD_COMP_WAIT, &p->ramrod_flags))
4458 		rc = r->wait_comp(sc, r);
4459 
4460 	return rc;
4461 }
4462 
4463 void ecore_init_rss_config_obj(struct bxe_softc *sc,
4464 			       struct ecore_rss_config_obj *rss_obj,
4465 			       uint8_t cl_id, uint32_t cid, uint8_t func_id, uint8_t engine_id,
4466 			       void *rdata, ecore_dma_addr_t rdata_mapping,
4467 			       int state, unsigned long *pstate,
4468 			       ecore_obj_type type)
4469 {
4470 	ecore_init_raw_obj(&rss_obj->raw, cl_id, cid, func_id, rdata,
4471 			   rdata_mapping, state, pstate, type);
4472 
4473 	rss_obj->engine_id  = engine_id;
4474 	rss_obj->config_rss = ecore_setup_rss;
4475 }
4476 
4477 int validate_vlan_mac(struct bxe_softc *sc,
4478 		      struct ecore_vlan_mac_obj *vlan_mac)
4479 {
4480 	if (!vlan_mac->get_n_elements) {
4481 		ECORE_ERR("vlan mac object was not intialized\n");
4482 		return ECORE_INVAL;
4483 	}
4484 	return 0;
4485 }
4486 
4487 /********************** Queue state object ***********************************/
4488 
4489 /**
4490  * ecore_queue_state_change - perform Queue state change transition
4491  *
4492  * @sc:		device handle
4493  * @params:	parameters to perform the transition
4494  *
4495  * returns 0 in case of successfully completed transition, negative error
4496  * code in case of failure, positive (EBUSY) value if there is a completion
4497  * to that is still pending (possible only if RAMROD_COMP_WAIT is
4498  * not set in params->ramrod_flags for asynchronous commands).
4499  *
4500  */
4501 int ecore_queue_state_change(struct bxe_softc *sc,
4502 			     struct ecore_queue_state_params *params)
4503 {
4504 	struct ecore_queue_sp_obj *o = params->q_obj;
4505 	int rc, pending_bit;
4506 	unsigned long *pending = &o->pending;
4507 
4508 	/* Check that the requested transition is legal */
4509 	rc = o->check_transition(sc, o, params);
4510 	if (rc) {
4511 		ECORE_ERR("check transition returned an error. rc %d\n", rc);
4512 		return ECORE_INVAL;
4513 	}
4514 
4515 	/* Set "pending" bit */
4516 	ECORE_MSG(sc, "pending bit was=%lx\n", o->pending);
4517 	pending_bit = o->set_pending(o, params);
4518 	ECORE_MSG(sc, "pending bit now=%lx\n", o->pending);
4519 
4520 	/* Don't send a command if only driver cleanup was requested */
4521 	if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags))
4522 		o->complete_cmd(sc, o, pending_bit);
4523 	else {
4524 		/* Send a ramrod */
4525 		rc = o->send_cmd(sc, params);
4526 		if (rc) {
4527 			o->next_state = ECORE_Q_STATE_MAX;
4528 			ECORE_CLEAR_BIT(pending_bit, pending);
4529 			ECORE_SMP_MB_AFTER_CLEAR_BIT();
4530 			return rc;
4531 		}
4532 
4533 		if (ECORE_TEST_BIT(RAMROD_COMP_WAIT, &params->ramrod_flags)) {
4534 			rc = o->wait_comp(sc, o, pending_bit);
4535 			if (rc)
4536 				return rc;
4537 
4538 			return ECORE_SUCCESS;
4539 		}
4540 	}
4541 
4542 	return ECORE_RET_PENDING(pending_bit, pending);
4543 }
4544 
4545 static int ecore_queue_set_pending(struct ecore_queue_sp_obj *obj,
4546 				   struct ecore_queue_state_params *params)
4547 {
4548 	enum ecore_queue_cmd cmd = params->cmd, bit;
4549 
4550 	/* ACTIVATE and DEACTIVATE commands are implemented on top of
4551 	 * UPDATE command.
4552 	 */
4553 	if ((cmd == ECORE_Q_CMD_ACTIVATE) ||
4554 	    (cmd == ECORE_Q_CMD_DEACTIVATE))
4555 		bit = ECORE_Q_CMD_UPDATE;
4556 	else
4557 		bit = cmd;
4558 
4559 	ECORE_SET_BIT(bit, &obj->pending);
4560 	return bit;
4561 }
4562 
4563 static int ecore_queue_wait_comp(struct bxe_softc *sc,
4564 				 struct ecore_queue_sp_obj *o,
4565 				 enum ecore_queue_cmd cmd)
4566 {
4567 	return ecore_state_wait(sc, cmd, &o->pending);
4568 }
4569 
4570 /**
4571  * ecore_queue_comp_cmd - complete the state change command.
4572  *
4573  * @sc:		device handle
4574  * @o:
4575  * @cmd:
4576  *
4577  * Checks that the arrived completion is expected.
4578  */
4579 static int ecore_queue_comp_cmd(struct bxe_softc *sc,
4580 				struct ecore_queue_sp_obj *o,
4581 				enum ecore_queue_cmd cmd)
4582 {
4583 	unsigned long cur_pending = o->pending;
4584 
4585 	if (!ECORE_TEST_AND_CLEAR_BIT(cmd, &cur_pending)) {
4586 		ECORE_ERR("Bad MC reply %d for queue %d in state %d pending 0x%lx, next_state %d\n",
4587 			  cmd, o->cids[ECORE_PRIMARY_CID_INDEX],
4588 			  o->state, cur_pending, o->next_state);
4589 		return ECORE_INVAL;
4590 	}
4591 
4592 	if (o->next_tx_only >= o->max_cos)
4593 		/* >= because tx only must always be smaller than cos since the
4594 		 * primary connection supports COS 0
4595 		 */
4596 		ECORE_ERR("illegal value for next tx_only: %d. max cos was %d",
4597 			  o->next_tx_only, o->max_cos);
4598 
4599 	ECORE_MSG(sc,
4600 		  "Completing command %d for queue %d, setting state to %d\n",
4601 		  cmd, o->cids[ECORE_PRIMARY_CID_INDEX], o->next_state);
4602 
4603 	if (o->next_tx_only)  /* print num tx-only if any exist */
4604 		ECORE_MSG(sc, "primary cid %d: num tx-only cons %d\n",
4605 			  o->cids[ECORE_PRIMARY_CID_INDEX], o->next_tx_only);
4606 
4607 	o->state = o->next_state;
4608 	o->num_tx_only = o->next_tx_only;
4609 	o->next_state = ECORE_Q_STATE_MAX;
4610 
4611 	/* It's important that o->state and o->next_state are
4612 	 * updated before o->pending.
4613 	 */
4614 	wmb();
4615 
4616 	ECORE_CLEAR_BIT(cmd, &o->pending);
4617 	ECORE_SMP_MB_AFTER_CLEAR_BIT();
4618 
4619 	return ECORE_SUCCESS;
4620 }
4621 
4622 static void ecore_q_fill_setup_data_e2(struct bxe_softc *sc,
4623 				struct ecore_queue_state_params *cmd_params,
4624 				struct client_init_ramrod_data *data)
4625 {
4626 	struct ecore_queue_setup_params *params = &cmd_params->params.setup;
4627 
4628 	/* Rx data */
4629 
4630 	/* IPv6 TPA supported for E2 and above only */
4631 	data->rx.tpa_en |= ECORE_TEST_BIT(ECORE_Q_FLG_TPA_IPV6,
4632 					  &params->flags) *
4633 				CLIENT_INIT_RX_DATA_TPA_EN_IPV6;
4634 }
4635 
4636 static void ecore_q_fill_init_general_data(struct bxe_softc *sc,
4637 				struct ecore_queue_sp_obj *o,
4638 				struct ecore_general_setup_params *params,
4639 				struct client_init_general_data *gen_data,
4640 				unsigned long *flags)
4641 {
4642 	gen_data->client_id = o->cl_id;
4643 
4644 	if (ECORE_TEST_BIT(ECORE_Q_FLG_STATS, flags)) {
4645 		gen_data->statistics_counter_id =
4646 					params->stat_id;
4647 		gen_data->statistics_en_flg = 1;
4648 		gen_data->statistics_zero_flg =
4649 			ECORE_TEST_BIT(ECORE_Q_FLG_ZERO_STATS, flags);
4650 	} else
4651 		gen_data->statistics_counter_id =
4652 					DISABLE_STATISTIC_COUNTER_ID_VALUE;
4653 
4654 	gen_data->is_fcoe_flg = ECORE_TEST_BIT(ECORE_Q_FLG_FCOE,
4655 						   flags);
4656 	gen_data->activate_flg = ECORE_TEST_BIT(ECORE_Q_FLG_ACTIVE,
4657 						    flags);
4658 	gen_data->sp_client_id = params->spcl_id;
4659 	gen_data->mtu = ECORE_CPU_TO_LE16(params->mtu);
4660 	gen_data->func_id = o->func_id;
4661 
4662 	gen_data->cos = params->cos;
4663 
4664 	gen_data->traffic_type =
4665 		ECORE_TEST_BIT(ECORE_Q_FLG_FCOE, flags) ?
4666 		LLFC_TRAFFIC_TYPE_FCOE : LLFC_TRAFFIC_TYPE_NW;
4667 
4668 	ECORE_MSG(sc, "flags: active %d, cos %d, stats en %d\n",
4669 		  gen_data->activate_flg, gen_data->cos, gen_data->statistics_en_flg);
4670 }
4671 
4672 static void ecore_q_fill_init_tx_data(struct ecore_queue_sp_obj *o,
4673 				struct ecore_txq_setup_params *params,
4674 				struct client_init_tx_data *tx_data,
4675 				unsigned long *flags)
4676 {
4677 	tx_data->enforce_security_flg =
4678 		ECORE_TEST_BIT(ECORE_Q_FLG_TX_SEC, flags);
4679 	tx_data->default_vlan =
4680 		ECORE_CPU_TO_LE16(params->default_vlan);
4681 	tx_data->default_vlan_flg =
4682 		ECORE_TEST_BIT(ECORE_Q_FLG_DEF_VLAN, flags);
4683 	tx_data->tx_switching_flg =
4684 		ECORE_TEST_BIT(ECORE_Q_FLG_TX_SWITCH, flags);
4685 	tx_data->anti_spoofing_flg =
4686 		ECORE_TEST_BIT(ECORE_Q_FLG_ANTI_SPOOF, flags);
4687 	tx_data->force_default_pri_flg =
4688 		ECORE_TEST_BIT(ECORE_Q_FLG_FORCE_DEFAULT_PRI, flags);
4689 	tx_data->refuse_outband_vlan_flg =
4690 		ECORE_TEST_BIT(ECORE_Q_FLG_REFUSE_OUTBAND_VLAN, flags);
4691 	tx_data->tunnel_lso_inc_ip_id =
4692 		ECORE_TEST_BIT(ECORE_Q_FLG_TUN_INC_INNER_IP_ID, flags);
4693 	tx_data->tunnel_non_lso_pcsum_location =
4694 		ECORE_TEST_BIT(ECORE_Q_FLG_PCSUM_ON_PKT, flags) ? CSUM_ON_PKT :
4695 							    CSUM_ON_BD;
4696 
4697 	tx_data->tx_status_block_id = params->fw_sb_id;
4698 	tx_data->tx_sb_index_number = params->sb_cq_index;
4699 	tx_data->tss_leading_client_id = params->tss_leading_cl_id;
4700 
4701 	tx_data->tx_bd_page_base.lo =
4702 		ECORE_CPU_TO_LE32(U64_LO(params->dscr_map));
4703 	tx_data->tx_bd_page_base.hi =
4704 		ECORE_CPU_TO_LE32(U64_HI(params->dscr_map));
4705 
4706 	/* Don't configure any Tx switching mode during queue SETUP */
4707 	tx_data->state = 0;
4708 }
4709 
4710 static void ecore_q_fill_init_pause_data(struct ecore_queue_sp_obj *o,
4711 				struct rxq_pause_params *params,
4712 				struct client_init_rx_data *rx_data)
4713 {
4714 	/* flow control data */
4715 	rx_data->cqe_pause_thr_low = ECORE_CPU_TO_LE16(params->rcq_th_lo);
4716 	rx_data->cqe_pause_thr_high = ECORE_CPU_TO_LE16(params->rcq_th_hi);
4717 	rx_data->bd_pause_thr_low = ECORE_CPU_TO_LE16(params->bd_th_lo);
4718 	rx_data->bd_pause_thr_high = ECORE_CPU_TO_LE16(params->bd_th_hi);
4719 	rx_data->sge_pause_thr_low = ECORE_CPU_TO_LE16(params->sge_th_lo);
4720 	rx_data->sge_pause_thr_high = ECORE_CPU_TO_LE16(params->sge_th_hi);
4721 	rx_data->rx_cos_mask = ECORE_CPU_TO_LE16(params->pri_map);
4722 }
4723 
4724 static void ecore_q_fill_init_rx_data(struct ecore_queue_sp_obj *o,
4725 				struct ecore_rxq_setup_params *params,
4726 				struct client_init_rx_data *rx_data,
4727 				unsigned long *flags)
4728 {
4729 	rx_data->tpa_en = ECORE_TEST_BIT(ECORE_Q_FLG_TPA, flags) *
4730 				CLIENT_INIT_RX_DATA_TPA_EN_IPV4;
4731 	rx_data->tpa_en |= ECORE_TEST_BIT(ECORE_Q_FLG_TPA_GRO, flags) *
4732 				CLIENT_INIT_RX_DATA_TPA_MODE;
4733 	rx_data->vmqueue_mode_en_flg = 0;
4734 
4735 	rx_data->extra_data_over_sgl_en_flg =
4736 		ECORE_TEST_BIT(ECORE_Q_FLG_OOO, flags);
4737 	rx_data->cache_line_alignment_log_size =
4738 		params->cache_line_log;
4739 	rx_data->enable_dynamic_hc =
4740 		ECORE_TEST_BIT(ECORE_Q_FLG_DHC, flags);
4741 	rx_data->max_sges_for_packet = params->max_sges_pkt;
4742 	rx_data->client_qzone_id = params->cl_qzone_id;
4743 	rx_data->max_agg_size = ECORE_CPU_TO_LE16(params->tpa_agg_sz);
4744 
4745 	/* Always start in DROP_ALL mode */
4746 	rx_data->state = ECORE_CPU_TO_LE16(CLIENT_INIT_RX_DATA_UCAST_DROP_ALL |
4747 				     CLIENT_INIT_RX_DATA_MCAST_DROP_ALL);
4748 
4749 	/* We don't set drop flags */
4750 	rx_data->drop_ip_cs_err_flg = 0;
4751 	rx_data->drop_tcp_cs_err_flg = 0;
4752 	rx_data->drop_ttl0_flg = 0;
4753 	rx_data->drop_udp_cs_err_flg = 0;
4754 	rx_data->inner_vlan_removal_enable_flg =
4755 		ECORE_TEST_BIT(ECORE_Q_FLG_VLAN, flags);
4756 	rx_data->outer_vlan_removal_enable_flg =
4757 		ECORE_TEST_BIT(ECORE_Q_FLG_OV, flags);
4758 	rx_data->status_block_id = params->fw_sb_id;
4759 	rx_data->rx_sb_index_number = params->sb_cq_index;
4760 	rx_data->max_tpa_queues = params->max_tpa_queues;
4761 	rx_data->max_bytes_on_bd = ECORE_CPU_TO_LE16(params->buf_sz);
4762 	rx_data->sge_buff_size = ECORE_CPU_TO_LE16(params->sge_buf_sz);
4763 	rx_data->bd_page_base.lo =
4764 		ECORE_CPU_TO_LE32(U64_LO(params->dscr_map));
4765 	rx_data->bd_page_base.hi =
4766 		ECORE_CPU_TO_LE32(U64_HI(params->dscr_map));
4767 	rx_data->sge_page_base.lo =
4768 		ECORE_CPU_TO_LE32(U64_LO(params->sge_map));
4769 	rx_data->sge_page_base.hi =
4770 		ECORE_CPU_TO_LE32(U64_HI(params->sge_map));
4771 	rx_data->cqe_page_base.lo =
4772 		ECORE_CPU_TO_LE32(U64_LO(params->rcq_map));
4773 	rx_data->cqe_page_base.hi =
4774 		ECORE_CPU_TO_LE32(U64_HI(params->rcq_map));
4775 	rx_data->is_leading_rss = ECORE_TEST_BIT(ECORE_Q_FLG_LEADING_RSS,
4776 						 flags);
4777 
4778 	if (ECORE_TEST_BIT(ECORE_Q_FLG_MCAST, flags)) {
4779 		rx_data->approx_mcast_engine_id = params->mcast_engine_id;
4780 		rx_data->is_approx_mcast = 1;
4781 	}
4782 
4783 	rx_data->rss_engine_id = params->rss_engine_id;
4784 
4785 	/* silent vlan removal */
4786 	rx_data->silent_vlan_removal_flg =
4787 		ECORE_TEST_BIT(ECORE_Q_FLG_SILENT_VLAN_REM, flags);
4788 	rx_data->silent_vlan_value =
4789 		ECORE_CPU_TO_LE16(params->silent_removal_value);
4790 	rx_data->silent_vlan_mask =
4791 		ECORE_CPU_TO_LE16(params->silent_removal_mask);
4792 }
4793 
4794 /* initialize the general, tx and rx parts of a queue object */
4795 static void ecore_q_fill_setup_data_cmn(struct bxe_softc *sc,
4796 				struct ecore_queue_state_params *cmd_params,
4797 				struct client_init_ramrod_data *data)
4798 {
4799 	ecore_q_fill_init_general_data(sc, cmd_params->q_obj,
4800 				       &cmd_params->params.setup.gen_params,
4801 				       &data->general,
4802 				       &cmd_params->params.setup.flags);
4803 
4804 	ecore_q_fill_init_tx_data(cmd_params->q_obj,
4805 				  &cmd_params->params.setup.txq_params,
4806 				  &data->tx,
4807 				  &cmd_params->params.setup.flags);
4808 
4809 	ecore_q_fill_init_rx_data(cmd_params->q_obj,
4810 				  &cmd_params->params.setup.rxq_params,
4811 				  &data->rx,
4812 				  &cmd_params->params.setup.flags);
4813 
4814 	ecore_q_fill_init_pause_data(cmd_params->q_obj,
4815 				     &cmd_params->params.setup.pause_params,
4816 				     &data->rx);
4817 }
4818 
4819 /* initialize the general and tx parts of a tx-only queue object */
4820 static void ecore_q_fill_setup_tx_only(struct bxe_softc *sc,
4821 				struct ecore_queue_state_params *cmd_params,
4822 				struct tx_queue_init_ramrod_data *data)
4823 {
4824 	ecore_q_fill_init_general_data(sc, cmd_params->q_obj,
4825 				       &cmd_params->params.tx_only.gen_params,
4826 				       &data->general,
4827 				       &cmd_params->params.tx_only.flags);
4828 
4829 	ecore_q_fill_init_tx_data(cmd_params->q_obj,
4830 				  &cmd_params->params.tx_only.txq_params,
4831 				  &data->tx,
4832 				  &cmd_params->params.tx_only.flags);
4833 
4834 	ECORE_MSG(sc, "cid %d, tx bd page lo %x hi %x",
4835 		  cmd_params->q_obj->cids[0],
4836 		  data->tx.tx_bd_page_base.lo,
4837 		  data->tx.tx_bd_page_base.hi);
4838 }
4839 
4840 /**
4841  * ecore_q_init - init HW/FW queue
4842  *
4843  * @sc:		device handle
4844  * @params:
4845  *
4846  * HW/FW initial Queue configuration:
4847  *      - HC: Rx and Tx
4848  *      - CDU context validation
4849  *
4850  */
4851 static inline int ecore_q_init(struct bxe_softc *sc,
4852 			       struct ecore_queue_state_params *params)
4853 {
4854 	struct ecore_queue_sp_obj *o = params->q_obj;
4855 	struct ecore_queue_init_params *init = &params->params.init;
4856 	uint16_t hc_usec;
4857 	uint8_t cos;
4858 
4859 	/* Tx HC configuration */
4860 	if (ECORE_TEST_BIT(ECORE_Q_TYPE_HAS_TX, &o->type) &&
4861 	    ECORE_TEST_BIT(ECORE_Q_FLG_HC, &init->tx.flags)) {
4862 		hc_usec = init->tx.hc_rate ? 1000000 / init->tx.hc_rate : 0;
4863 
4864 		ECORE_UPDATE_COALESCE_SB_INDEX(sc, init->tx.fw_sb_id,
4865 			init->tx.sb_cq_index,
4866 			!ECORE_TEST_BIT(ECORE_Q_FLG_HC_EN, &init->tx.flags),
4867 			hc_usec);
4868 	}
4869 
4870 	/* Rx HC configuration */
4871 	if (ECORE_TEST_BIT(ECORE_Q_TYPE_HAS_RX, &o->type) &&
4872 	    ECORE_TEST_BIT(ECORE_Q_FLG_HC, &init->rx.flags)) {
4873 		hc_usec = init->rx.hc_rate ? 1000000 / init->rx.hc_rate : 0;
4874 
4875 		ECORE_UPDATE_COALESCE_SB_INDEX(sc, init->rx.fw_sb_id,
4876 			init->rx.sb_cq_index,
4877 			!ECORE_TEST_BIT(ECORE_Q_FLG_HC_EN, &init->rx.flags),
4878 			hc_usec);
4879 	}
4880 
4881 	/* Set CDU context validation values */
4882 	for (cos = 0; cos < o->max_cos; cos++) {
4883 		ECORE_MSG(sc, "setting context validation. cid %d, cos %d\n",
4884 			  o->cids[cos], cos);
4885 		ECORE_MSG(sc, "context pointer %p\n", init->cxts[cos]);
4886 		ECORE_SET_CTX_VALIDATION(sc, init->cxts[cos], o->cids[cos]);
4887 	}
4888 
4889 	/* As no ramrod is sent, complete the command immediately  */
4890 	o->complete_cmd(sc, o, ECORE_Q_CMD_INIT);
4891 
4892 	ECORE_MMIOWB();
4893 	ECORE_SMP_MB();
4894 
4895 	return ECORE_SUCCESS;
4896 }
4897 
4898 static inline int ecore_q_send_setup_e1x(struct bxe_softc *sc,
4899 					struct ecore_queue_state_params *params)
4900 {
4901 	struct ecore_queue_sp_obj *o = params->q_obj;
4902 	struct client_init_ramrod_data *rdata =
4903 		(struct client_init_ramrod_data *)o->rdata;
4904 	ecore_dma_addr_t data_mapping = o->rdata_mapping;
4905 	int ramrod = RAMROD_CMD_ID_ETH_CLIENT_SETUP;
4906 
4907 	/* Clear the ramrod data */
4908 	ECORE_MEMSET(rdata, 0, sizeof(*rdata));
4909 
4910 	/* Fill the ramrod data */
4911 	ecore_q_fill_setup_data_cmn(sc, params, rdata);
4912 
4913 	/* No need for an explicit memory barrier here as long we would
4914 	 * need to ensure the ordering of writing to the SPQ element
4915 	 * and updating of the SPQ producer which involves a memory
4916 	 * read and we will have to put a full memory barrier there
4917 	 * (inside ecore_sp_post()).
4918 	 */
4919 
4920 	return ecore_sp_post(sc,
4921 			     ramrod,
4922 			     o->cids[ECORE_PRIMARY_CID_INDEX],
4923 			     data_mapping,
4924 			     ETH_CONNECTION_TYPE);
4925 }
4926 
4927 static inline int ecore_q_send_setup_e2(struct bxe_softc *sc,
4928 					struct ecore_queue_state_params *params)
4929 {
4930 	struct ecore_queue_sp_obj *o = params->q_obj;
4931 	struct client_init_ramrod_data *rdata =
4932 		(struct client_init_ramrod_data *)o->rdata;
4933 	ecore_dma_addr_t data_mapping = o->rdata_mapping;
4934 	int ramrod = RAMROD_CMD_ID_ETH_CLIENT_SETUP;
4935 
4936 	/* Clear the ramrod data */
4937 	ECORE_MEMSET(rdata, 0, sizeof(*rdata));
4938 
4939 	/* Fill the ramrod data */
4940 	ecore_q_fill_setup_data_cmn(sc, params, rdata);
4941 	ecore_q_fill_setup_data_e2(sc, params, rdata);
4942 
4943 	/* No need for an explicit memory barrier here as long we would
4944 	 * need to ensure the ordering of writing to the SPQ element
4945 	 * and updating of the SPQ producer which involves a memory
4946 	 * read and we will have to put a full memory barrier there
4947 	 * (inside ecore_sp_post()).
4948 	 */
4949 
4950 	return ecore_sp_post(sc,
4951 			     ramrod,
4952 			     o->cids[ECORE_PRIMARY_CID_INDEX],
4953 			     data_mapping,
4954 			     ETH_CONNECTION_TYPE);
4955 }
4956 
4957 static inline int ecore_q_send_setup_tx_only(struct bxe_softc *sc,
4958 				  struct ecore_queue_state_params *params)
4959 {
4960 	struct ecore_queue_sp_obj *o = params->q_obj;
4961 	struct tx_queue_init_ramrod_data *rdata =
4962 		(struct tx_queue_init_ramrod_data *)o->rdata;
4963 	ecore_dma_addr_t data_mapping = o->rdata_mapping;
4964 	int ramrod = RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP;
4965 	struct ecore_queue_setup_tx_only_params *tx_only_params =
4966 		&params->params.tx_only;
4967 	uint8_t cid_index = tx_only_params->cid_index;
4968 
4969 	if (ECORE_TEST_BIT(ECORE_Q_TYPE_FWD, &o->type))
4970 		ramrod = RAMROD_CMD_ID_ETH_FORWARD_SETUP;
4971 	ECORE_MSG(sc, "sending forward tx-only ramrod");
4972 
4973 	if (cid_index >= o->max_cos) {
4974 		ECORE_ERR("queue[%d]: cid_index (%d) is out of range\n",
4975 			  o->cl_id, cid_index);
4976 		return ECORE_INVAL;
4977 	}
4978 
4979 	ECORE_MSG(sc, "parameters received: cos: %d sp-id: %d\n",
4980 		  tx_only_params->gen_params.cos,
4981 		  tx_only_params->gen_params.spcl_id);
4982 
4983 	/* Clear the ramrod data */
4984 	ECORE_MEMSET(rdata, 0, sizeof(*rdata));
4985 
4986 	/* Fill the ramrod data */
4987 	ecore_q_fill_setup_tx_only(sc, params, rdata);
4988 
4989 	ECORE_MSG(sc, "sending tx-only ramrod: cid %d, client-id %d, sp-client id %d, cos %d\n",
4990 		  o->cids[cid_index], rdata->general.client_id,
4991 		  rdata->general.sp_client_id, rdata->general.cos);
4992 
4993 	/* No need for an explicit memory barrier here as long we would
4994 	 * need to ensure the ordering of writing to the SPQ element
4995 	 * and updating of the SPQ producer which involves a memory
4996 	 * read and we will have to put a full memory barrier there
4997 	 * (inside ecore_sp_post()).
4998 	 */
4999 
5000 	return ecore_sp_post(sc, ramrod, o->cids[cid_index],
5001 			     data_mapping, ETH_CONNECTION_TYPE);
5002 }
5003 
5004 static void ecore_q_fill_update_data(struct bxe_softc *sc,
5005 				     struct ecore_queue_sp_obj *obj,
5006 				     struct ecore_queue_update_params *params,
5007 				     struct client_update_ramrod_data *data)
5008 {
5009 	/* Client ID of the client to update */
5010 	data->client_id = obj->cl_id;
5011 
5012 	/* Function ID of the client to update */
5013 	data->func_id = obj->func_id;
5014 
5015 	/* Default VLAN value */
5016 	data->default_vlan = ECORE_CPU_TO_LE16(params->def_vlan);
5017 
5018 	/* Inner VLAN stripping */
5019 	data->inner_vlan_removal_enable_flg =
5020 		ECORE_TEST_BIT(ECORE_Q_UPDATE_IN_VLAN_REM,
5021 			       &params->update_flags);
5022 	data->inner_vlan_removal_change_flg =
5023 		ECORE_TEST_BIT(ECORE_Q_UPDATE_IN_VLAN_REM_CHNG,
5024 		       &params->update_flags);
5025 
5026 	/* Outer VLAN stripping */
5027 	data->outer_vlan_removal_enable_flg =
5028 		ECORE_TEST_BIT(ECORE_Q_UPDATE_OUT_VLAN_REM,
5029 			       &params->update_flags);
5030 	data->outer_vlan_removal_change_flg =
5031 		ECORE_TEST_BIT(ECORE_Q_UPDATE_OUT_VLAN_REM_CHNG,
5032 		       &params->update_flags);
5033 
5034 	/* Drop packets that have source MAC that doesn't belong to this
5035 	 * Queue.
5036 	 */
5037 	data->anti_spoofing_enable_flg =
5038 		ECORE_TEST_BIT(ECORE_Q_UPDATE_ANTI_SPOOF,
5039 			       &params->update_flags);
5040 	data->anti_spoofing_change_flg =
5041 		ECORE_TEST_BIT(ECORE_Q_UPDATE_ANTI_SPOOF_CHNG,
5042 		       &params->update_flags);
5043 
5044 	/* Activate/Deactivate */
5045 	data->activate_flg =
5046 		ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE, &params->update_flags);
5047 	data->activate_change_flg =
5048 		ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE_CHNG,
5049 			       &params->update_flags);
5050 
5051 	/* Enable default VLAN */
5052 	data->default_vlan_enable_flg =
5053 		ECORE_TEST_BIT(ECORE_Q_UPDATE_DEF_VLAN_EN,
5054 			       &params->update_flags);
5055 	data->default_vlan_change_flg =
5056 		ECORE_TEST_BIT(ECORE_Q_UPDATE_DEF_VLAN_EN_CHNG,
5057 		       &params->update_flags);
5058 
5059 	/* silent vlan removal */
5060 	data->silent_vlan_change_flg =
5061 		ECORE_TEST_BIT(ECORE_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5062 			       &params->update_flags);
5063 	data->silent_vlan_removal_flg =
5064 		ECORE_TEST_BIT(ECORE_Q_UPDATE_SILENT_VLAN_REM,
5065 			       &params->update_flags);
5066 	data->silent_vlan_value = ECORE_CPU_TO_LE16(params->silent_removal_value);
5067 	data->silent_vlan_mask = ECORE_CPU_TO_LE16(params->silent_removal_mask);
5068 
5069 	/* tx switching */
5070 	data->tx_switching_flg =
5071 		ECORE_TEST_BIT(ECORE_Q_UPDATE_TX_SWITCHING,
5072 			       &params->update_flags);
5073 	data->tx_switching_change_flg =
5074 		ECORE_TEST_BIT(ECORE_Q_UPDATE_TX_SWITCHING_CHNG,
5075 			       &params->update_flags);
5076 }
5077 
5078 static inline int ecore_q_send_update(struct bxe_softc *sc,
5079 				      struct ecore_queue_state_params *params)
5080 {
5081 	struct ecore_queue_sp_obj *o = params->q_obj;
5082 	struct client_update_ramrod_data *rdata =
5083 		(struct client_update_ramrod_data *)o->rdata;
5084 	ecore_dma_addr_t data_mapping = o->rdata_mapping;
5085 	struct ecore_queue_update_params *update_params =
5086 		&params->params.update;
5087 	uint8_t cid_index = update_params->cid_index;
5088 
5089 	if (cid_index >= o->max_cos) {
5090 		ECORE_ERR("queue[%d]: cid_index (%d) is out of range\n",
5091 			  o->cl_id, cid_index);
5092 		return ECORE_INVAL;
5093 	}
5094 
5095 	/* Clear the ramrod data */
5096 	ECORE_MEMSET(rdata, 0, sizeof(*rdata));
5097 
5098 	/* Fill the ramrod data */
5099 	ecore_q_fill_update_data(sc, o, update_params, rdata);
5100 
5101 	/* No need for an explicit memory barrier here as long we would
5102 	 * need to ensure the ordering of writing to the SPQ element
5103 	 * and updating of the SPQ producer which involves a memory
5104 	 * read and we will have to put a full memory barrier there
5105 	 * (inside ecore_sp_post()).
5106 	 */
5107 
5108 	return ecore_sp_post(sc, RAMROD_CMD_ID_ETH_CLIENT_UPDATE,
5109 			     o->cids[cid_index], data_mapping,
5110 			     ETH_CONNECTION_TYPE);
5111 }
5112 
5113 /**
5114  * ecore_q_send_deactivate - send DEACTIVATE command
5115  *
5116  * @sc:		device handle
5117  * @params:
5118  *
5119  * implemented using the UPDATE command.
5120  */
5121 static inline int ecore_q_send_deactivate(struct bxe_softc *sc,
5122 					struct ecore_queue_state_params *params)
5123 {
5124 	struct ecore_queue_update_params *update = &params->params.update;
5125 
5126 	ECORE_MEMSET(update, 0, sizeof(*update));
5127 
5128 	ECORE_SET_BIT_NA(ECORE_Q_UPDATE_ACTIVATE_CHNG, &update->update_flags);
5129 
5130 	return ecore_q_send_update(sc, params);
5131 }
5132 
5133 /**
5134  * ecore_q_send_activate - send ACTIVATE command
5135  *
5136  * @sc:		device handle
5137  * @params:
5138  *
5139  * implemented using the UPDATE command.
5140  */
5141 static inline int ecore_q_send_activate(struct bxe_softc *sc,
5142 					struct ecore_queue_state_params *params)
5143 {
5144 	struct ecore_queue_update_params *update = &params->params.update;
5145 
5146 	ECORE_MEMSET(update, 0, sizeof(*update));
5147 
5148 	ECORE_SET_BIT_NA(ECORE_Q_UPDATE_ACTIVATE, &update->update_flags);
5149 	ECORE_SET_BIT_NA(ECORE_Q_UPDATE_ACTIVATE_CHNG, &update->update_flags);
5150 
5151 	return ecore_q_send_update(sc, params);
5152 }
5153 
5154 static inline int ecore_q_send_update_tpa(struct bxe_softc *sc,
5155 					struct ecore_queue_state_params *params)
5156 {
5157 	/* TODO: Not implemented yet. */
5158 	return -1;
5159 }
5160 
5161 static inline int ecore_q_send_halt(struct bxe_softc *sc,
5162 				    struct ecore_queue_state_params *params)
5163 {
5164 	struct ecore_queue_sp_obj *o = params->q_obj;
5165 
5166 	/* build eth_halt_ramrod_data.client_id in a big-endian friendly way */
5167 	ecore_dma_addr_t data_mapping = 0;
5168 	data_mapping = (ecore_dma_addr_t)o->cl_id;
5169 
5170 	return ecore_sp_post(sc,
5171 			     RAMROD_CMD_ID_ETH_HALT,
5172 			     o->cids[ECORE_PRIMARY_CID_INDEX],
5173 			     data_mapping,
5174 			     ETH_CONNECTION_TYPE);
5175 }
5176 
5177 static inline int ecore_q_send_cfc_del(struct bxe_softc *sc,
5178 				       struct ecore_queue_state_params *params)
5179 {
5180 	struct ecore_queue_sp_obj *o = params->q_obj;
5181 	uint8_t cid_idx = params->params.cfc_del.cid_index;
5182 
5183 	if (cid_idx >= o->max_cos) {
5184 		ECORE_ERR("queue[%d]: cid_index (%d) is out of range\n",
5185 			  o->cl_id, cid_idx);
5186 		return ECORE_INVAL;
5187 	}
5188 
5189 	return ecore_sp_post(sc, RAMROD_CMD_ID_COMMON_CFC_DEL,
5190 			     o->cids[cid_idx], 0,
5191 			     NONE_CONNECTION_TYPE);
5192 }
5193 
5194 static inline int ecore_q_send_terminate(struct bxe_softc *sc,
5195 					struct ecore_queue_state_params *params)
5196 {
5197 	struct ecore_queue_sp_obj *o = params->q_obj;
5198 	uint8_t cid_index = params->params.terminate.cid_index;
5199 
5200 	if (cid_index >= o->max_cos) {
5201 		ECORE_ERR("queue[%d]: cid_index (%d) is out of range\n",
5202 			  o->cl_id, cid_index);
5203 		return ECORE_INVAL;
5204 	}
5205 
5206 	return ecore_sp_post(sc, RAMROD_CMD_ID_ETH_TERMINATE,
5207 			     o->cids[cid_index], 0,
5208 			     ETH_CONNECTION_TYPE);
5209 }
5210 
5211 static inline int ecore_q_send_empty(struct bxe_softc *sc,
5212 				     struct ecore_queue_state_params *params)
5213 {
5214 	struct ecore_queue_sp_obj *o = params->q_obj;
5215 
5216 	return ecore_sp_post(sc, RAMROD_CMD_ID_ETH_EMPTY,
5217 			     o->cids[ECORE_PRIMARY_CID_INDEX], 0,
5218 			     ETH_CONNECTION_TYPE);
5219 }
5220 
5221 static inline int ecore_queue_send_cmd_cmn(struct bxe_softc *sc,
5222 					struct ecore_queue_state_params *params)
5223 {
5224 	switch (params->cmd) {
5225 	case ECORE_Q_CMD_INIT:
5226 		return ecore_q_init(sc, params);
5227 	case ECORE_Q_CMD_SETUP_TX_ONLY:
5228 		return ecore_q_send_setup_tx_only(sc, params);
5229 	case ECORE_Q_CMD_DEACTIVATE:
5230 		return ecore_q_send_deactivate(sc, params);
5231 	case ECORE_Q_CMD_ACTIVATE:
5232 		return ecore_q_send_activate(sc, params);
5233 	case ECORE_Q_CMD_UPDATE:
5234 		return ecore_q_send_update(sc, params);
5235 	case ECORE_Q_CMD_UPDATE_TPA:
5236 		return ecore_q_send_update_tpa(sc, params);
5237 	case ECORE_Q_CMD_HALT:
5238 		return ecore_q_send_halt(sc, params);
5239 	case ECORE_Q_CMD_CFC_DEL:
5240 		return ecore_q_send_cfc_del(sc, params);
5241 	case ECORE_Q_CMD_TERMINATE:
5242 		return ecore_q_send_terminate(sc, params);
5243 	case ECORE_Q_CMD_EMPTY:
5244 		return ecore_q_send_empty(sc, params);
5245 	default:
5246 		ECORE_ERR("Unknown command: %d\n", params->cmd);
5247 		return ECORE_INVAL;
5248 	}
5249 }
5250 
5251 static int ecore_queue_send_cmd_e1x(struct bxe_softc *sc,
5252 				    struct ecore_queue_state_params *params)
5253 {
5254 	switch (params->cmd) {
5255 	case ECORE_Q_CMD_SETUP:
5256 		return ecore_q_send_setup_e1x(sc, params);
5257 	case ECORE_Q_CMD_INIT:
5258 	case ECORE_Q_CMD_SETUP_TX_ONLY:
5259 	case ECORE_Q_CMD_DEACTIVATE:
5260 	case ECORE_Q_CMD_ACTIVATE:
5261 	case ECORE_Q_CMD_UPDATE:
5262 	case ECORE_Q_CMD_UPDATE_TPA:
5263 	case ECORE_Q_CMD_HALT:
5264 	case ECORE_Q_CMD_CFC_DEL:
5265 	case ECORE_Q_CMD_TERMINATE:
5266 	case ECORE_Q_CMD_EMPTY:
5267 		return ecore_queue_send_cmd_cmn(sc, params);
5268 	default:
5269 		ECORE_ERR("Unknown command: %d\n", params->cmd);
5270 		return ECORE_INVAL;
5271 	}
5272 }
5273 
5274 static int ecore_queue_send_cmd_e2(struct bxe_softc *sc,
5275 				   struct ecore_queue_state_params *params)
5276 {
5277 	switch (params->cmd) {
5278 	case ECORE_Q_CMD_SETUP:
5279 		return ecore_q_send_setup_e2(sc, params);
5280 	case ECORE_Q_CMD_INIT:
5281 	case ECORE_Q_CMD_SETUP_TX_ONLY:
5282 	case ECORE_Q_CMD_DEACTIVATE:
5283 	case ECORE_Q_CMD_ACTIVATE:
5284 	case ECORE_Q_CMD_UPDATE:
5285 	case ECORE_Q_CMD_UPDATE_TPA:
5286 	case ECORE_Q_CMD_HALT:
5287 	case ECORE_Q_CMD_CFC_DEL:
5288 	case ECORE_Q_CMD_TERMINATE:
5289 	case ECORE_Q_CMD_EMPTY:
5290 		return ecore_queue_send_cmd_cmn(sc, params);
5291 	default:
5292 		ECORE_ERR("Unknown command: %d\n", params->cmd);
5293 		return ECORE_INVAL;
5294 	}
5295 }
5296 
5297 /**
5298  * ecore_queue_chk_transition - check state machine of a regular Queue
5299  *
5300  * @sc:		device handle
5301  * @o:
5302  * @params:
5303  *
5304  * (not Forwarding)
5305  * It both checks if the requested command is legal in a current
5306  * state and, if it's legal, sets a `next_state' in the object
5307  * that will be used in the completion flow to set the `state'
5308  * of the object.
5309  *
5310  * returns 0 if a requested command is a legal transition,
5311  *         ECORE_INVAL otherwise.
5312  */
5313 static int ecore_queue_chk_transition(struct bxe_softc *sc,
5314 				      struct ecore_queue_sp_obj *o,
5315 				      struct ecore_queue_state_params *params)
5316 {
5317 	enum ecore_q_state state = o->state, next_state = ECORE_Q_STATE_MAX;
5318 	enum ecore_queue_cmd cmd = params->cmd;
5319 	struct ecore_queue_update_params *update_params =
5320 		 &params->params.update;
5321 	uint8_t next_tx_only = o->num_tx_only;
5322 
5323 	/* Forget all pending for completion commands if a driver only state
5324 	 * transition has been requested.
5325 	 */
5326 	if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags)) {
5327 		o->pending = 0;
5328 		o->next_state = ECORE_Q_STATE_MAX;
5329 	}
5330 
5331 	/* Don't allow a next state transition if we are in the middle of
5332 	 * the previous one.
5333 	 */
5334 	if (o->pending) {
5335 		ECORE_ERR("Blocking transition since pending was %lx\n",
5336 			  o->pending);
5337 		return ECORE_BUSY;
5338 	}
5339 
5340 	switch (state) {
5341 	case ECORE_Q_STATE_RESET:
5342 		if (cmd == ECORE_Q_CMD_INIT)
5343 			next_state = ECORE_Q_STATE_INITIALIZED;
5344 
5345 		break;
5346 	case ECORE_Q_STATE_INITIALIZED:
5347 		if (cmd == ECORE_Q_CMD_SETUP) {
5348 			if (ECORE_TEST_BIT(ECORE_Q_FLG_ACTIVE,
5349 					   &params->params.setup.flags))
5350 				next_state = ECORE_Q_STATE_ACTIVE;
5351 			else
5352 				next_state = ECORE_Q_STATE_INACTIVE;
5353 		}
5354 
5355 		break;
5356 	case ECORE_Q_STATE_ACTIVE:
5357 		if (cmd == ECORE_Q_CMD_DEACTIVATE)
5358 			next_state = ECORE_Q_STATE_INACTIVE;
5359 
5360 		else if ((cmd == ECORE_Q_CMD_EMPTY) ||
5361 			 (cmd == ECORE_Q_CMD_UPDATE_TPA))
5362 			next_state = ECORE_Q_STATE_ACTIVE;
5363 
5364 		else if (cmd == ECORE_Q_CMD_SETUP_TX_ONLY) {
5365 			next_state = ECORE_Q_STATE_MULTI_COS;
5366 			next_tx_only = 1;
5367 		}
5368 
5369 		else if (cmd == ECORE_Q_CMD_HALT)
5370 			next_state = ECORE_Q_STATE_STOPPED;
5371 
5372 		else if (cmd == ECORE_Q_CMD_UPDATE) {
5373 			/* If "active" state change is requested, update the
5374 			 *  state accordingly.
5375 			 */
5376 			if (ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE_CHNG,
5377 					   &update_params->update_flags) &&
5378 			    !ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE,
5379 					    &update_params->update_flags))
5380 				next_state = ECORE_Q_STATE_INACTIVE;
5381 			else
5382 				next_state = ECORE_Q_STATE_ACTIVE;
5383 		}
5384 
5385 		break;
5386 	case ECORE_Q_STATE_MULTI_COS:
5387 		if (cmd == ECORE_Q_CMD_TERMINATE)
5388 			next_state = ECORE_Q_STATE_MCOS_TERMINATED;
5389 
5390 		else if (cmd == ECORE_Q_CMD_SETUP_TX_ONLY) {
5391 			next_state = ECORE_Q_STATE_MULTI_COS;
5392 			next_tx_only = o->num_tx_only + 1;
5393 		}
5394 
5395 		else if ((cmd == ECORE_Q_CMD_EMPTY) ||
5396 			 (cmd == ECORE_Q_CMD_UPDATE_TPA))
5397 			next_state = ECORE_Q_STATE_MULTI_COS;
5398 
5399 		else if (cmd == ECORE_Q_CMD_UPDATE) {
5400 			/* If "active" state change is requested, update the
5401 			 *  state accordingly.
5402 			 */
5403 			if (ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE_CHNG,
5404 					   &update_params->update_flags) &&
5405 			    !ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE,
5406 					    &update_params->update_flags))
5407 				next_state = ECORE_Q_STATE_INACTIVE;
5408 			else
5409 				next_state = ECORE_Q_STATE_MULTI_COS;
5410 		}
5411 
5412 		break;
5413 	case ECORE_Q_STATE_MCOS_TERMINATED:
5414 		if (cmd == ECORE_Q_CMD_CFC_DEL) {
5415 			next_tx_only = o->num_tx_only - 1;
5416 			if (next_tx_only == 0)
5417 				next_state = ECORE_Q_STATE_ACTIVE;
5418 			else
5419 				next_state = ECORE_Q_STATE_MULTI_COS;
5420 		}
5421 
5422 		break;
5423 	case ECORE_Q_STATE_INACTIVE:
5424 		if (cmd == ECORE_Q_CMD_ACTIVATE)
5425 			next_state = ECORE_Q_STATE_ACTIVE;
5426 
5427 		else if ((cmd == ECORE_Q_CMD_EMPTY) ||
5428 			 (cmd == ECORE_Q_CMD_UPDATE_TPA))
5429 			next_state = ECORE_Q_STATE_INACTIVE;
5430 
5431 		else if (cmd == ECORE_Q_CMD_HALT)
5432 			next_state = ECORE_Q_STATE_STOPPED;
5433 
5434 		else if (cmd == ECORE_Q_CMD_UPDATE) {
5435 			/* If "active" state change is requested, update the
5436 			 * state accordingly.
5437 			 */
5438 			if (ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE_CHNG,
5439 					   &update_params->update_flags) &&
5440 			    ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE,
5441 					   &update_params->update_flags)){
5442 				if (o->num_tx_only == 0)
5443 					next_state = ECORE_Q_STATE_ACTIVE;
5444 				else /* tx only queues exist for this queue */
5445 					next_state = ECORE_Q_STATE_MULTI_COS;
5446 			} else
5447 				next_state = ECORE_Q_STATE_INACTIVE;
5448 		}
5449 
5450 		break;
5451 	case ECORE_Q_STATE_STOPPED:
5452 		if (cmd == ECORE_Q_CMD_TERMINATE)
5453 			next_state = ECORE_Q_STATE_TERMINATED;
5454 
5455 		break;
5456 	case ECORE_Q_STATE_TERMINATED:
5457 		if (cmd == ECORE_Q_CMD_CFC_DEL)
5458 			next_state = ECORE_Q_STATE_RESET;
5459 
5460 		break;
5461 	default:
5462 		ECORE_ERR("Illegal state: %d\n", state);
5463 	}
5464 
5465 	/* Transition is assured */
5466 	if (next_state != ECORE_Q_STATE_MAX) {
5467 		ECORE_MSG(sc, "Good state transition: %d(%d)->%d\n",
5468 			  state, cmd, next_state);
5469 		o->next_state = next_state;
5470 		o->next_tx_only = next_tx_only;
5471 		return ECORE_SUCCESS;
5472 	}
5473 
5474 	ECORE_MSG(sc, "Bad state transition request: %d %d\n", state, cmd);
5475 
5476 	return ECORE_INVAL;
5477 }
5478 
5479 /**
5480  * ecore_queue_chk_fwd_transition - check state machine of a Forwarding Queue.
5481  *
5482  * @sc:		device handle
5483  * @o:
5484  * @params:
5485  *
5486  * It both checks if the requested command is legal in a current
5487  * state and, if it's legal, sets a `next_state' in the object
5488  * that will be used in the completion flow to set the `state'
5489  * of the object.
5490  *
5491  * returns 0 if a requested command is a legal transition,
5492  *         ECORE_INVAL otherwise.
5493  */
5494 static int ecore_queue_chk_fwd_transition(struct bxe_softc *sc,
5495 					  struct ecore_queue_sp_obj *o,
5496 					struct ecore_queue_state_params *params)
5497 {
5498 	enum ecore_q_state state = o->state, next_state = ECORE_Q_STATE_MAX;
5499 	enum ecore_queue_cmd cmd = params->cmd;
5500 
5501 	switch (state) {
5502 	case ECORE_Q_STATE_RESET:
5503 		if (cmd == ECORE_Q_CMD_INIT)
5504 			next_state = ECORE_Q_STATE_INITIALIZED;
5505 
5506 		break;
5507 	case ECORE_Q_STATE_INITIALIZED:
5508 		if (cmd == ECORE_Q_CMD_SETUP_TX_ONLY) {
5509 			if (ECORE_TEST_BIT(ECORE_Q_FLG_ACTIVE,
5510 					   &params->params.tx_only.flags))
5511 				next_state = ECORE_Q_STATE_ACTIVE;
5512 			else
5513 				next_state = ECORE_Q_STATE_INACTIVE;
5514 		}
5515 
5516 		break;
5517 	case ECORE_Q_STATE_ACTIVE:
5518 	case ECORE_Q_STATE_INACTIVE:
5519 		if (cmd == ECORE_Q_CMD_CFC_DEL)
5520 			next_state = ECORE_Q_STATE_RESET;
5521 
5522 		break;
5523 	default:
5524 		ECORE_ERR("Illegal state: %d\n", state);
5525 	}
5526 
5527 	/* Transition is assured */
5528 	if (next_state != ECORE_Q_STATE_MAX) {
5529 		ECORE_MSG(sc, "Good state transition: %d(%d)->%d\n",
5530 			  state, cmd, next_state);
5531 		o->next_state = next_state;
5532 		return ECORE_SUCCESS;
5533 	}
5534 
5535 	ECORE_MSG(sc, "Bad state transition request: %d %d\n", state, cmd);
5536 	return ECORE_INVAL;
5537 }
5538 
5539 void ecore_init_queue_obj(struct bxe_softc *sc,
5540 			  struct ecore_queue_sp_obj *obj,
5541 			  uint8_t cl_id, uint32_t *cids, uint8_t cid_cnt, uint8_t func_id,
5542 			  void *rdata,
5543 			  ecore_dma_addr_t rdata_mapping, unsigned long type)
5544 {
5545 	ECORE_MEMSET(obj, 0, sizeof(*obj));
5546 
5547 	/* We support only ECORE_MULTI_TX_COS Tx CoS at the moment */
5548 	ECORE_BUG_ON(ECORE_MULTI_TX_COS < cid_cnt);
5549 
5550 	memcpy(obj->cids, cids, sizeof(obj->cids[0]) * cid_cnt);
5551 	obj->max_cos = cid_cnt;
5552 	obj->cl_id = cl_id;
5553 	obj->func_id = func_id;
5554 	obj->rdata = rdata;
5555 	obj->rdata_mapping = rdata_mapping;
5556 	obj->type = type;
5557 	obj->next_state = ECORE_Q_STATE_MAX;
5558 
5559 	if (CHIP_IS_E1x(sc))
5560 		obj->send_cmd = ecore_queue_send_cmd_e1x;
5561 	else
5562 		obj->send_cmd = ecore_queue_send_cmd_e2;
5563 
5564 	if (ECORE_TEST_BIT(ECORE_Q_TYPE_FWD, &type))
5565 		obj->check_transition = ecore_queue_chk_fwd_transition;
5566 	else
5567 	obj->check_transition = ecore_queue_chk_transition;
5568 
5569 	obj->complete_cmd = ecore_queue_comp_cmd;
5570 	obj->wait_comp = ecore_queue_wait_comp;
5571 	obj->set_pending = ecore_queue_set_pending;
5572 }
5573 
5574 /* return a queue object's logical state*/
5575 int ecore_get_q_logical_state(struct bxe_softc *sc,
5576 			       struct ecore_queue_sp_obj *obj)
5577 {
5578 	switch (obj->state) {
5579 	case ECORE_Q_STATE_ACTIVE:
5580 	case ECORE_Q_STATE_MULTI_COS:
5581 		return ECORE_Q_LOGICAL_STATE_ACTIVE;
5582 	case ECORE_Q_STATE_RESET:
5583 	case ECORE_Q_STATE_INITIALIZED:
5584 	case ECORE_Q_STATE_MCOS_TERMINATED:
5585 	case ECORE_Q_STATE_INACTIVE:
5586 	case ECORE_Q_STATE_STOPPED:
5587 	case ECORE_Q_STATE_TERMINATED:
5588 	case ECORE_Q_STATE_FLRED:
5589 		return ECORE_Q_LOGICAL_STATE_STOPPED;
5590 	default:
5591 		return ECORE_INVAL;
5592 	}
5593 }
5594 
5595 /********************** Function state object *********************************/
5596 enum ecore_func_state ecore_func_get_state(struct bxe_softc *sc,
5597 					   struct ecore_func_sp_obj *o)
5598 {
5599 	/* in the middle of transaction - return INVALID state */
5600 	if (o->pending)
5601 		return ECORE_F_STATE_MAX;
5602 
5603 	/* unsure the order of reading of o->pending and o->state
5604 	 * o->pending should be read first
5605 	 */
5606 	rmb();
5607 
5608 	return o->state;
5609 }
5610 
5611 static int ecore_func_wait_comp(struct bxe_softc *sc,
5612 				struct ecore_func_sp_obj *o,
5613 				enum ecore_func_cmd cmd)
5614 {
5615 	return ecore_state_wait(sc, cmd, &o->pending);
5616 }
5617 
5618 /**
5619  * ecore_func_state_change_comp - complete the state machine transition
5620  *
5621  * @sc:		device handle
5622  * @o:
5623  * @cmd:
5624  *
5625  * Called on state change transition. Completes the state
5626  * machine transition only - no HW interaction.
5627  */
5628 static inline int ecore_func_state_change_comp(struct bxe_softc *sc,
5629 					       struct ecore_func_sp_obj *o,
5630 					       enum ecore_func_cmd cmd)
5631 {
5632 	unsigned long cur_pending = o->pending;
5633 
5634 	if (!ECORE_TEST_AND_CLEAR_BIT(cmd, &cur_pending)) {
5635 		ECORE_ERR("Bad MC reply %d for func %d in state %d pending 0x%lx, next_state %d\n",
5636 			  cmd, ECORE_FUNC_ID(sc), o->state,
5637 			  cur_pending, o->next_state);
5638 		return ECORE_INVAL;
5639 	}
5640 
5641 	ECORE_MSG(sc,
5642 		  "Completing command %d for func %d, setting state to %d\n",
5643 		  cmd, ECORE_FUNC_ID(sc), o->next_state);
5644 
5645 	o->state = o->next_state;
5646 	o->next_state = ECORE_F_STATE_MAX;
5647 
5648 	/* It's important that o->state and o->next_state are
5649 	 * updated before o->pending.
5650 	 */
5651 	wmb();
5652 
5653 	ECORE_CLEAR_BIT(cmd, &o->pending);
5654 	ECORE_SMP_MB_AFTER_CLEAR_BIT();
5655 
5656 	return ECORE_SUCCESS;
5657 }
5658 
5659 /**
5660  * ecore_func_comp_cmd - complete the state change command
5661  *
5662  * @sc:		device handle
5663  * @o:
5664  * @cmd:
5665  *
5666  * Checks that the arrived completion is expected.
5667  */
5668 static int ecore_func_comp_cmd(struct bxe_softc *sc,
5669 			       struct ecore_func_sp_obj *o,
5670 			       enum ecore_func_cmd cmd)
5671 {
5672 	/* Complete the state machine part first, check if it's a
5673 	 * legal completion.
5674 	 */
5675 	int rc = ecore_func_state_change_comp(sc, o, cmd);
5676 	return rc;
5677 }
5678 
5679 /**
5680  * ecore_func_chk_transition - perform function state machine transition
5681  *
5682  * @sc:		device handle
5683  * @o:
5684  * @params:
5685  *
5686  * It both checks if the requested command is legal in a current
5687  * state and, if it's legal, sets a `next_state' in the object
5688  * that will be used in the completion flow to set the `state'
5689  * of the object.
5690  *
5691  * returns 0 if a requested command is a legal transition,
5692  *         ECORE_INVAL otherwise.
5693  */
5694 static int ecore_func_chk_transition(struct bxe_softc *sc,
5695 				     struct ecore_func_sp_obj *o,
5696 				     struct ecore_func_state_params *params)
5697 {
5698 	enum ecore_func_state state = o->state, next_state = ECORE_F_STATE_MAX;
5699 	enum ecore_func_cmd cmd = params->cmd;
5700 
5701 	/* Forget all pending for completion commands if a driver only state
5702 	 * transition has been requested.
5703 	 */
5704 	if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags)) {
5705 		o->pending = 0;
5706 		o->next_state = ECORE_F_STATE_MAX;
5707 	}
5708 
5709 	/* Don't allow a next state transition if we are in the middle of
5710 	 * the previous one.
5711 	 */
5712 	if (o->pending)
5713 		return ECORE_BUSY;
5714 
5715 	switch (state) {
5716 	case ECORE_F_STATE_RESET:
5717 		if (cmd == ECORE_F_CMD_HW_INIT)
5718 			next_state = ECORE_F_STATE_INITIALIZED;
5719 
5720 		break;
5721 	case ECORE_F_STATE_INITIALIZED:
5722 		if (cmd == ECORE_F_CMD_START)
5723 			next_state = ECORE_F_STATE_STARTED;
5724 
5725 		else if (cmd == ECORE_F_CMD_HW_RESET)
5726 			next_state = ECORE_F_STATE_RESET;
5727 
5728 		break;
5729 	case ECORE_F_STATE_STARTED:
5730 		if (cmd == ECORE_F_CMD_STOP)
5731 			next_state = ECORE_F_STATE_INITIALIZED;
5732 		/* afex ramrods can be sent only in started mode, and only
5733 		 * if not pending for function_stop ramrod completion
5734 		 * for these events - next state remained STARTED.
5735 		 */
5736 		else if ((cmd == ECORE_F_CMD_AFEX_UPDATE) &&
5737 			 (!ECORE_TEST_BIT(ECORE_F_CMD_STOP, &o->pending)))
5738 			next_state = ECORE_F_STATE_STARTED;
5739 
5740 		else if ((cmd == ECORE_F_CMD_AFEX_VIFLISTS) &&
5741 			 (!ECORE_TEST_BIT(ECORE_F_CMD_STOP, &o->pending)))
5742 			next_state = ECORE_F_STATE_STARTED;
5743 
5744 		/* Switch_update ramrod can be sent in either started or
5745 		 * tx_stopped state, and it doesn't change the state.
5746 		 */
5747 		else if ((cmd == ECORE_F_CMD_SWITCH_UPDATE) &&
5748 			 (!ECORE_TEST_BIT(ECORE_F_CMD_STOP, &o->pending)))
5749 			next_state = ECORE_F_STATE_STARTED;
5750 
5751 		else if (cmd == ECORE_F_CMD_TX_STOP)
5752 			next_state = ECORE_F_STATE_TX_STOPPED;
5753 
5754 		break;
5755 	case ECORE_F_STATE_TX_STOPPED:
5756 		if ((cmd == ECORE_F_CMD_SWITCH_UPDATE) &&
5757 		    (!ECORE_TEST_BIT(ECORE_F_CMD_STOP, &o->pending)))
5758 			next_state = ECORE_F_STATE_TX_STOPPED;
5759 
5760 		else if (cmd == ECORE_F_CMD_TX_START)
5761 			next_state = ECORE_F_STATE_STARTED;
5762 
5763 		break;
5764 	default:
5765 		ECORE_ERR("Unknown state: %d\n", state);
5766 	}
5767 
5768 	/* Transition is assured */
5769 	if (next_state != ECORE_F_STATE_MAX) {
5770 		ECORE_MSG(sc, "Good function state transition: %d(%d)->%d\n",
5771 			  state, cmd, next_state);
5772 		o->next_state = next_state;
5773 		return ECORE_SUCCESS;
5774 	}
5775 
5776 	ECORE_MSG(sc, "Bad function state transition request: %d %d\n",
5777 		  state, cmd);
5778 
5779 	return ECORE_INVAL;
5780 }
5781 
5782 /**
5783  * ecore_func_init_func - performs HW init at function stage
5784  *
5785  * @sc:		device handle
5786  * @drv:
5787  *
5788  * Init HW when the current phase is
5789  * FW_MSG_CODE_DRV_LOAD_FUNCTION: initialize only FUNCTION-only
5790  * HW blocks.
5791  */
5792 static inline int ecore_func_init_func(struct bxe_softc *sc,
5793 				       const struct ecore_func_sp_drv_ops *drv)
5794 {
5795 	return drv->init_hw_func(sc);
5796 }
5797 
5798 /**
5799  * ecore_func_init_port - performs HW init at port stage
5800  *
5801  * @sc:		device handle
5802  * @drv:
5803  *
5804  * Init HW when the current phase is
5805  * FW_MSG_CODE_DRV_LOAD_PORT: initialize PORT-only and
5806  * FUNCTION-only HW blocks.
5807  *
5808  */
5809 static inline int ecore_func_init_port(struct bxe_softc *sc,
5810 				       const struct ecore_func_sp_drv_ops *drv)
5811 {
5812 	int rc = drv->init_hw_port(sc);
5813 	if (rc)
5814 		return rc;
5815 
5816 	return ecore_func_init_func(sc, drv);
5817 }
5818 
5819 /**
5820  * ecore_func_init_cmn_chip - performs HW init at chip-common stage
5821  *
5822  * @sc:		device handle
5823  * @drv:
5824  *
5825  * Init HW when the current phase is
5826  * FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: initialize COMMON_CHIP,
5827  * PORT-only and FUNCTION-only HW blocks.
5828  */
5829 static inline int ecore_func_init_cmn_chip(struct bxe_softc *sc,
5830 					const struct ecore_func_sp_drv_ops *drv)
5831 {
5832 	int rc = drv->init_hw_cmn_chip(sc);
5833 	if (rc)
5834 		return rc;
5835 
5836 	return ecore_func_init_port(sc, drv);
5837 }
5838 
5839 /**
5840  * ecore_func_init_cmn - performs HW init at common stage
5841  *
5842  * @sc:		device handle
5843  * @drv:
5844  *
5845  * Init HW when the current phase is
5846  * FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: initialize COMMON,
5847  * PORT-only and FUNCTION-only HW blocks.
5848  */
5849 static inline int ecore_func_init_cmn(struct bxe_softc *sc,
5850 				      const struct ecore_func_sp_drv_ops *drv)
5851 {
5852 	int rc = drv->init_hw_cmn(sc);
5853 	if (rc)
5854 		return rc;
5855 
5856 	return ecore_func_init_port(sc, drv);
5857 }
5858 
5859 static int ecore_func_hw_init(struct bxe_softc *sc,
5860 			      struct ecore_func_state_params *params)
5861 {
5862 	uint32_t load_code = params->params.hw_init.load_phase;
5863 	struct ecore_func_sp_obj *o = params->f_obj;
5864 	const struct ecore_func_sp_drv_ops *drv = o->drv;
5865 	int rc = 0;
5866 
5867 	ECORE_MSG(sc, "function %d  load_code %x\n",
5868 		  ECORE_ABS_FUNC_ID(sc), load_code);
5869 
5870 	/* Prepare buffers for unzipping the FW */
5871 	rc = drv->gunzip_init(sc);
5872 	if (rc)
5873 		return rc;
5874 
5875 	/* Prepare FW */
5876 	rc = drv->init_fw(sc);
5877 	if (rc) {
5878 		ECORE_ERR("Error loading firmware\n");
5879 		goto init_err;
5880 	}
5881 
5882 	/* Handle the beginning of COMMON_XXX pases separately... */
5883 	switch (load_code) {
5884 	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5885 		rc = ecore_func_init_cmn_chip(sc, drv);
5886 		if (rc)
5887 			goto init_err;
5888 
5889 		break;
5890 	case FW_MSG_CODE_DRV_LOAD_COMMON:
5891 		rc = ecore_func_init_cmn(sc, drv);
5892 		if (rc)
5893 			goto init_err;
5894 
5895 		break;
5896 	case FW_MSG_CODE_DRV_LOAD_PORT:
5897 		rc = ecore_func_init_port(sc, drv);
5898 		if (rc)
5899 			goto init_err;
5900 
5901 		break;
5902 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5903 		rc = ecore_func_init_func(sc, drv);
5904 		if (rc)
5905 			goto init_err;
5906 
5907 		break;
5908 	default:
5909 		ECORE_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
5910 		rc = ECORE_INVAL;
5911 	}
5912 
5913 init_err:
5914 	drv->gunzip_end(sc);
5915 
5916 	/* In case of success, complete the command immediately: no ramrods
5917 	 * have been sent.
5918 	 */
5919 	if (!rc)
5920 		o->complete_cmd(sc, o, ECORE_F_CMD_HW_INIT);
5921 
5922 	return rc;
5923 }
5924 
5925 /**
5926  * ecore_func_reset_func - reset HW at function stage
5927  *
5928  * @sc:		device handle
5929  * @drv:
5930  *
5931  * Reset HW at FW_MSG_CODE_DRV_UNLOAD_FUNCTION stage: reset only
5932  * FUNCTION-only HW blocks.
5933  */
5934 static inline void ecore_func_reset_func(struct bxe_softc *sc,
5935 					const struct ecore_func_sp_drv_ops *drv)
5936 {
5937 	drv->reset_hw_func(sc);
5938 }
5939 
5940 /**
5941  * ecore_func_reset_port - reser HW at port stage
5942  *
5943  * @sc:		device handle
5944  * @drv:
5945  *
5946  * Reset HW at FW_MSG_CODE_DRV_UNLOAD_PORT stage: reset
5947  * FUNCTION-only and PORT-only HW blocks.
5948  *
5949  *                 !!!IMPORTANT!!!
5950  *
5951  * It's important to call reset_port before reset_func() as the last thing
5952  * reset_func does is pf_disable() thus disabling PGLUE_B, which
5953  * makes impossible any DMAE transactions.
5954  */
5955 static inline void ecore_func_reset_port(struct bxe_softc *sc,
5956 					const struct ecore_func_sp_drv_ops *drv)
5957 {
5958 	drv->reset_hw_port(sc);
5959 	ecore_func_reset_func(sc, drv);
5960 }
5961 
5962 /**
5963  * ecore_func_reset_cmn - reser HW at common stage
5964  *
5965  * @sc:		device handle
5966  * @drv:
5967  *
5968  * Reset HW at FW_MSG_CODE_DRV_UNLOAD_COMMON and
5969  * FW_MSG_CODE_DRV_UNLOAD_COMMON_CHIP stages: reset COMMON,
5970  * COMMON_CHIP, FUNCTION-only and PORT-only HW blocks.
5971  */
5972 static inline void ecore_func_reset_cmn(struct bxe_softc *sc,
5973 					const struct ecore_func_sp_drv_ops *drv)
5974 {
5975 	ecore_func_reset_port(sc, drv);
5976 	drv->reset_hw_cmn(sc);
5977 }
5978 
5979 static inline int ecore_func_hw_reset(struct bxe_softc *sc,
5980 				      struct ecore_func_state_params *params)
5981 {
5982 	uint32_t reset_phase = params->params.hw_reset.reset_phase;
5983 	struct ecore_func_sp_obj *o = params->f_obj;
5984 	const struct ecore_func_sp_drv_ops *drv = o->drv;
5985 
5986 	ECORE_MSG(sc, "function %d  reset_phase %x\n", ECORE_ABS_FUNC_ID(sc),
5987 		  reset_phase);
5988 
5989 	switch (reset_phase) {
5990 	case FW_MSG_CODE_DRV_UNLOAD_COMMON:
5991 		ecore_func_reset_cmn(sc, drv);
5992 		break;
5993 	case FW_MSG_CODE_DRV_UNLOAD_PORT:
5994 		ecore_func_reset_port(sc, drv);
5995 		break;
5996 	case FW_MSG_CODE_DRV_UNLOAD_FUNCTION:
5997 		ecore_func_reset_func(sc, drv);
5998 		break;
5999 	default:
6000 		ECORE_ERR("Unknown reset_phase (0x%x) from MCP\n",
6001 			  reset_phase);
6002 		break;
6003 	}
6004 
6005 	/* Complete the command immediately: no ramrods have been sent. */
6006 	o->complete_cmd(sc, o, ECORE_F_CMD_HW_RESET);
6007 
6008 	return ECORE_SUCCESS;
6009 }
6010 
6011 static inline int ecore_func_send_start(struct bxe_softc *sc,
6012 					struct ecore_func_state_params *params)
6013 {
6014 	struct ecore_func_sp_obj *o = params->f_obj;
6015 	struct function_start_data *rdata =
6016 		(struct function_start_data *)o->rdata;
6017 	ecore_dma_addr_t data_mapping = o->rdata_mapping;
6018 	struct ecore_func_start_params *start_params = &params->params.start;
6019 
6020 	ECORE_MEMSET(rdata, 0, sizeof(*rdata));
6021 
6022 	/* Fill the ramrod data with provided parameters */
6023 	rdata->function_mode	= (uint8_t)start_params->mf_mode;
6024 	rdata->sd_vlan_tag	= ECORE_CPU_TO_LE16(start_params->sd_vlan_tag);
6025 	rdata->path_id		= ECORE_PATH_ID(sc);
6026 	rdata->network_cos_mode	= start_params->network_cos_mode;
6027 	rdata->gre_tunnel_mode	= start_params->gre_tunnel_mode;
6028 	rdata->gre_tunnel_rss	= start_params->gre_tunnel_rss;
6029 
6030 	/*
6031 	 *  No need for an explicit memory barrier here as long we would
6032 	 *  need to ensure the ordering of writing to the SPQ element
6033 	 *  and updating of the SPQ producer which involves a memory
6034 	 *  read and we will have to put a full memory barrier there
6035 	 *  (inside ecore_sp_post()).
6036 	 */
6037 
6038 	return ecore_sp_post(sc, RAMROD_CMD_ID_COMMON_FUNCTION_START, 0,
6039 			     data_mapping, NONE_CONNECTION_TYPE);
6040 }
6041 
6042 static inline int ecore_func_send_switch_update(struct bxe_softc *sc,
6043 					struct ecore_func_state_params *params)
6044 {
6045 	struct ecore_func_sp_obj *o = params->f_obj;
6046 	struct function_update_data *rdata =
6047 		(struct function_update_data *)o->rdata;
6048 	ecore_dma_addr_t data_mapping = o->rdata_mapping;
6049 	struct ecore_func_switch_update_params *switch_update_params =
6050 		&params->params.switch_update;
6051 
6052 	ECORE_MEMSET(rdata, 0, sizeof(*rdata));
6053 
6054 	/* Fill the ramrod data with provided parameters */
6055 	rdata->tx_switch_suspend_change_flg = 1;
6056 	rdata->tx_switch_suspend = switch_update_params->suspend;
6057 	rdata->echo = SWITCH_UPDATE;
6058 
6059 	return ecore_sp_post(sc, RAMROD_CMD_ID_COMMON_FUNCTION_UPDATE, 0,
6060 			     data_mapping, NONE_CONNECTION_TYPE);
6061 }
6062 
6063 static inline int ecore_func_send_afex_update(struct bxe_softc *sc,
6064 					 struct ecore_func_state_params *params)
6065 {
6066 	struct ecore_func_sp_obj *o = params->f_obj;
6067 	struct function_update_data *rdata =
6068 		(struct function_update_data *)o->afex_rdata;
6069 	ecore_dma_addr_t data_mapping = o->afex_rdata_mapping;
6070 	struct ecore_func_afex_update_params *afex_update_params =
6071 		&params->params.afex_update;
6072 
6073 	ECORE_MEMSET(rdata, 0, sizeof(*rdata));
6074 
6075 	/* Fill the ramrod data with provided parameters */
6076 	rdata->vif_id_change_flg = 1;
6077 	rdata->vif_id = ECORE_CPU_TO_LE16(afex_update_params->vif_id);
6078 	rdata->afex_default_vlan_change_flg = 1;
6079 	rdata->afex_default_vlan =
6080 		ECORE_CPU_TO_LE16(afex_update_params->afex_default_vlan);
6081 	rdata->allowed_priorities_change_flg = 1;
6082 	rdata->allowed_priorities = afex_update_params->allowed_priorities;
6083 	rdata->echo = AFEX_UPDATE;
6084 
6085 	/*  No need for an explicit memory barrier here as long we would
6086 	 *  need to ensure the ordering of writing to the SPQ element
6087 	 *  and updating of the SPQ producer which involves a memory
6088 	 *  read and we will have to put a full memory barrier there
6089 	 *  (inside ecore_sp_post()).
6090 	 */
6091 	ECORE_MSG(sc,
6092 		  "afex: sending func_update vif_id 0x%x dvlan 0x%x prio 0x%x\n",
6093 		  rdata->vif_id,
6094 		  rdata->afex_default_vlan, rdata->allowed_priorities);
6095 
6096 	return ecore_sp_post(sc, RAMROD_CMD_ID_COMMON_FUNCTION_UPDATE, 0,
6097 			     data_mapping, NONE_CONNECTION_TYPE);
6098 }
6099 
6100 static
6101 inline int ecore_func_send_afex_viflists(struct bxe_softc *sc,
6102 					 struct ecore_func_state_params *params)
6103 {
6104 	struct ecore_func_sp_obj *o = params->f_obj;
6105 	struct afex_vif_list_ramrod_data *rdata =
6106 		(struct afex_vif_list_ramrod_data *)o->afex_rdata;
6107 	struct ecore_func_afex_viflists_params *afex_vif_params =
6108 		&params->params.afex_viflists;
6109 	uint64_t *p_rdata = (uint64_t *)rdata;
6110 
6111 	ECORE_MEMSET(rdata, 0, sizeof(*rdata));
6112 
6113 	/* Fill the ramrod data with provided parameters */
6114 	rdata->vif_list_index = ECORE_CPU_TO_LE16(afex_vif_params->vif_list_index);
6115 	rdata->func_bit_map          = afex_vif_params->func_bit_map;
6116 	rdata->afex_vif_list_command = afex_vif_params->afex_vif_list_command;
6117 	rdata->func_to_clear         = afex_vif_params->func_to_clear;
6118 
6119 	/* send in echo type of sub command */
6120 	rdata->echo = afex_vif_params->afex_vif_list_command;
6121 
6122 	/*  No need for an explicit memory barrier here as long we would
6123 	 *  need to ensure the ordering of writing to the SPQ element
6124 	 *  and updating of the SPQ producer which involves a memory
6125 	 *  read and we will have to put a full memory barrier there
6126 	 *  (inside ecore_sp_post()).
6127 	 */
6128 
6129 	ECORE_MSG(sc, "afex: ramrod lists, cmd 0x%x index 0x%x func_bit_map 0x%x func_to_clr 0x%x\n",
6130 		  rdata->afex_vif_list_command, rdata->vif_list_index,
6131 		  rdata->func_bit_map, rdata->func_to_clear);
6132 
6133 	/* this ramrod sends data directly and not through DMA mapping */
6134 	return ecore_sp_post(sc, RAMROD_CMD_ID_COMMON_AFEX_VIF_LISTS, 0,
6135 			     *p_rdata, NONE_CONNECTION_TYPE);
6136 }
6137 
6138 static inline int ecore_func_send_stop(struct bxe_softc *sc,
6139 				       struct ecore_func_state_params *params)
6140 {
6141 	return ecore_sp_post(sc, RAMROD_CMD_ID_COMMON_FUNCTION_STOP, 0, 0,
6142 			     NONE_CONNECTION_TYPE);
6143 }
6144 
6145 static inline int ecore_func_send_tx_stop(struct bxe_softc *sc,
6146 				       struct ecore_func_state_params *params)
6147 {
6148 	return ecore_sp_post(sc, RAMROD_CMD_ID_COMMON_STOP_TRAFFIC, 0, 0,
6149 			     NONE_CONNECTION_TYPE);
6150 }
6151 static inline int ecore_func_send_tx_start(struct bxe_softc *sc,
6152 				       struct ecore_func_state_params *params)
6153 {
6154 	struct ecore_func_sp_obj *o = params->f_obj;
6155 	struct flow_control_configuration *rdata =
6156 		(struct flow_control_configuration *)o->rdata;
6157 	ecore_dma_addr_t data_mapping = o->rdata_mapping;
6158 	struct ecore_func_tx_start_params *tx_start_params =
6159 		&params->params.tx_start;
6160 	int i;
6161 
6162 	ECORE_MEMSET(rdata, 0, sizeof(*rdata));
6163 
6164 	rdata->dcb_enabled = tx_start_params->dcb_enabled;
6165 	rdata->dcb_version = tx_start_params->dcb_version;
6166 	rdata->dont_add_pri_0 = tx_start_params->dont_add_pri_0;
6167 
6168 	for (i = 0; i < ARRAY_SIZE(rdata->traffic_type_to_priority_cos); i++)
6169 		rdata->traffic_type_to_priority_cos[i] =
6170 			tx_start_params->traffic_type_to_priority_cos[i];
6171 
6172 	return ecore_sp_post(sc, RAMROD_CMD_ID_COMMON_START_TRAFFIC, 0,
6173 			     data_mapping, NONE_CONNECTION_TYPE);
6174 }
6175 
6176 static int ecore_func_send_cmd(struct bxe_softc *sc,
6177 			       struct ecore_func_state_params *params)
6178 {
6179 	switch (params->cmd) {
6180 	case ECORE_F_CMD_HW_INIT:
6181 		return ecore_func_hw_init(sc, params);
6182 	case ECORE_F_CMD_START:
6183 		return ecore_func_send_start(sc, params);
6184 	case ECORE_F_CMD_STOP:
6185 		return ecore_func_send_stop(sc, params);
6186 	case ECORE_F_CMD_HW_RESET:
6187 		return ecore_func_hw_reset(sc, params);
6188 	case ECORE_F_CMD_AFEX_UPDATE:
6189 		return ecore_func_send_afex_update(sc, params);
6190 	case ECORE_F_CMD_AFEX_VIFLISTS:
6191 		return ecore_func_send_afex_viflists(sc, params);
6192 	case ECORE_F_CMD_TX_STOP:
6193 		return ecore_func_send_tx_stop(sc, params);
6194 	case ECORE_F_CMD_TX_START:
6195 		return ecore_func_send_tx_start(sc, params);
6196 	case ECORE_F_CMD_SWITCH_UPDATE:
6197 		return ecore_func_send_switch_update(sc, params);
6198 	default:
6199 		ECORE_ERR("Unknown command: %d\n", params->cmd);
6200 		return ECORE_INVAL;
6201 	}
6202 }
6203 
6204 void ecore_init_func_obj(struct bxe_softc *sc,
6205 			 struct ecore_func_sp_obj *obj,
6206 			 void *rdata, ecore_dma_addr_t rdata_mapping,
6207 			 void *afex_rdata, ecore_dma_addr_t afex_rdata_mapping,
6208 			 struct ecore_func_sp_drv_ops *drv_iface)
6209 {
6210 	ECORE_MEMSET(obj, 0, sizeof(*obj));
6211 
6212 	ECORE_MUTEX_INIT(&obj->one_pending_mutex);
6213 
6214 	obj->rdata = rdata;
6215 	obj->rdata_mapping = rdata_mapping;
6216 	obj->afex_rdata = afex_rdata;
6217 	obj->afex_rdata_mapping = afex_rdata_mapping;
6218 	obj->send_cmd = ecore_func_send_cmd;
6219 	obj->check_transition = ecore_func_chk_transition;
6220 	obj->complete_cmd = ecore_func_comp_cmd;
6221 	obj->wait_comp = ecore_func_wait_comp;
6222 	obj->drv = drv_iface;
6223 }
6224 
6225 /**
6226  * ecore_func_state_change - perform Function state change transition
6227  *
6228  * @sc:		device handle
6229  * @params:	parameters to perform the transaction
6230  *
6231  * returns 0 in case of successfully completed transition,
6232  *         negative error code in case of failure, positive
6233  *         (EBUSY) value if there is a completion to that is
6234  *         still pending (possible only if RAMROD_COMP_WAIT is
6235  *         not set in params->ramrod_flags for asynchronous
6236  *         commands).
6237  */
6238 int ecore_func_state_change(struct bxe_softc *sc,
6239 			    struct ecore_func_state_params *params)
6240 {
6241 	struct ecore_func_sp_obj *o = params->f_obj;
6242 	int rc, cnt = 300;
6243 	enum ecore_func_cmd cmd = params->cmd;
6244 	unsigned long *pending = &o->pending;
6245 
6246 	ECORE_MUTEX_LOCK(&o->one_pending_mutex);
6247 
6248 	/* Check that the requested transition is legal */
6249 	rc = o->check_transition(sc, o, params);
6250 	if ((rc == ECORE_BUSY) &&
6251 	    (ECORE_TEST_BIT(RAMROD_RETRY, &params->ramrod_flags))) {
6252 		while ((rc == ECORE_BUSY) && (--cnt > 0)) {
6253 			ECORE_MUTEX_UNLOCK(&o->one_pending_mutex);
6254 			ECORE_MSLEEP(10);
6255 			ECORE_MUTEX_LOCK(&o->one_pending_mutex);
6256 			rc = o->check_transition(sc, o, params);
6257 		}
6258 		if (rc == ECORE_BUSY) {
6259 			ECORE_MUTEX_UNLOCK(&o->one_pending_mutex);
6260 			ECORE_ERR("timeout waiting for previous ramrod completion\n");
6261 			return rc;
6262 		}
6263 	} else if (rc) {
6264 		ECORE_MUTEX_UNLOCK(&o->one_pending_mutex);
6265 		return rc;
6266 	}
6267 
6268 	/* Set "pending" bit */
6269 	ECORE_SET_BIT(cmd, pending);
6270 
6271 	/* Don't send a command if only driver cleanup was requested */
6272 	if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags)) {
6273 		ecore_func_state_change_comp(sc, o, cmd);
6274 		ECORE_MUTEX_UNLOCK(&o->one_pending_mutex);
6275 	} else {
6276 		/* Send a ramrod */
6277 		rc = o->send_cmd(sc, params);
6278 
6279 		ECORE_MUTEX_UNLOCK(&o->one_pending_mutex);
6280 
6281 		if (rc) {
6282 			o->next_state = ECORE_F_STATE_MAX;
6283 			ECORE_CLEAR_BIT(cmd, pending);
6284 			ECORE_SMP_MB_AFTER_CLEAR_BIT();
6285 			return rc;
6286 		}
6287 
6288 		if (ECORE_TEST_BIT(RAMROD_COMP_WAIT, &params->ramrod_flags)) {
6289 			rc = o->wait_comp(sc, o, cmd);
6290 			if (rc)
6291 				return rc;
6292 
6293 			return ECORE_SUCCESS;
6294 		}
6295 	}
6296 
6297 	return ECORE_RET_PENDING(cmd, pending);
6298 }
6299