xref: /freebsd/sys/dev/bxe/ecore_sp.c (revision 0caf9bf62de0dda2ae80086492a38c6ee3eeff9d)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2007-2017 QLogic Corporation. All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  *
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
26  * THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "bxe.h"
33 #include "ecore_init.h"
34 
35 
36 
37 
38 /**** Exe Queue interfaces ****/
39 
40 /**
41  * ecore_exe_queue_init - init the Exe Queue object
42  *
43  * @o:		pointer to the object
44  * @exe_len:	length
45  * @owner:	pointer to the owner
46  * @validate:	validate function pointer
47  * @optimize:	optimize function pointer
48  * @exec:	execute function pointer
49  * @get:	get function pointer
50  */
51 static inline void ecore_exe_queue_init(struct bxe_softc *sc,
52 					struct ecore_exe_queue_obj *o,
53 					int exe_len,
54 					union ecore_qable_obj *owner,
55 					exe_q_validate validate,
56 					exe_q_remove remove,
57 					exe_q_optimize optimize,
58 					exe_q_execute exec,
59 					exe_q_get get)
60 {
61 	ECORE_MEMSET(o, 0, sizeof(*o));
62 
63 	ECORE_LIST_INIT(&o->exe_queue);
64 	ECORE_LIST_INIT(&o->pending_comp);
65 
66 	ECORE_SPIN_LOCK_INIT(&o->lock, sc);
67 
68 	o->exe_chunk_len = exe_len;
69 	o->owner         = owner;
70 
71 	/* Owner specific callbacks */
72 	o->validate      = validate;
73 	o->remove        = remove;
74 	o->optimize      = optimize;
75 	o->execute       = exec;
76 	o->get           = get;
77 
78 	ECORE_MSG(sc, "Setup the execution queue with the chunk length of %d\n",
79 		  exe_len);
80 }
81 
82 static inline void ecore_exe_queue_free_elem(struct bxe_softc *sc,
83 					     struct ecore_exeq_elem *elem)
84 {
85 	ECORE_MSG(sc, "Deleting an exe_queue element\n");
86 	ECORE_FREE(sc, elem, sizeof(*elem));
87 }
88 
89 static inline int ecore_exe_queue_length(struct ecore_exe_queue_obj *o)
90 {
91 	struct ecore_exeq_elem *elem;
92 	int cnt = 0;
93 
94 	ECORE_SPIN_LOCK_BH(&o->lock);
95 
96 	ECORE_LIST_FOR_EACH_ENTRY(elem, &o->exe_queue, link,
97 				  struct ecore_exeq_elem)
98 		cnt++;
99 
100 	ECORE_SPIN_UNLOCK_BH(&o->lock);
101 
102 	return cnt;
103 }
104 
105 /**
106  * ecore_exe_queue_add - add a new element to the execution queue
107  *
108  * @sc:		driver handle
109  * @o:		queue
110  * @cmd:	new command to add
111  * @restore:	true - do not optimize the command
112  *
113  * If the element is optimized or is illegal, frees it.
114  */
115 static inline int ecore_exe_queue_add(struct bxe_softc *sc,
116 				      struct ecore_exe_queue_obj *o,
117 				      struct ecore_exeq_elem *elem,
118 				      bool restore)
119 {
120 	int rc;
121 
122 	ECORE_SPIN_LOCK_BH(&o->lock);
123 
124 	if (!restore) {
125 		/* Try to cancel this element queue */
126 		rc = o->optimize(sc, o->owner, elem);
127 		if (rc)
128 			goto free_and_exit;
129 
130 		/* Check if this request is ok */
131 		rc = o->validate(sc, o->owner, elem);
132 		if (rc) {
133 			ECORE_MSG(sc, "Preamble failed: %d\n", rc);
134 			goto free_and_exit;
135 		}
136 	}
137 
138 	/* If so, add it to the execution queue */
139 	ECORE_LIST_PUSH_TAIL(&elem->link, &o->exe_queue);
140 
141 	ECORE_SPIN_UNLOCK_BH(&o->lock);
142 
143 	return ECORE_SUCCESS;
144 
145 free_and_exit:
146 	ecore_exe_queue_free_elem(sc, elem);
147 
148 	ECORE_SPIN_UNLOCK_BH(&o->lock);
149 
150 	return rc;
151 }
152 
153 static inline void __ecore_exe_queue_reset_pending(
154 	struct bxe_softc *sc,
155 	struct ecore_exe_queue_obj *o)
156 {
157 	struct ecore_exeq_elem *elem;
158 
159 	while (!ECORE_LIST_IS_EMPTY(&o->pending_comp)) {
160 		elem = ECORE_LIST_FIRST_ENTRY(&o->pending_comp,
161 					      struct ecore_exeq_elem,
162 					      link);
163 
164 		ECORE_LIST_REMOVE_ENTRY(&elem->link, &o->pending_comp);
165 		ecore_exe_queue_free_elem(sc, elem);
166 	}
167 }
168 
169 /**
170  * ecore_exe_queue_step - execute one execution chunk atomically
171  *
172  * @sc:			driver handle
173  * @o:			queue
174  * @ramrod_flags:	flags
175  *
176  * (Should be called while holding the exe_queue->lock).
177  */
178 static inline int ecore_exe_queue_step(struct bxe_softc *sc,
179 				       struct ecore_exe_queue_obj *o,
180 				       unsigned long *ramrod_flags)
181 {
182 	struct ecore_exeq_elem *elem, spacer;
183 	int cur_len = 0, rc;
184 
185 	ECORE_MEMSET(&spacer, 0, sizeof(spacer));
186 
187 	/* Next step should not be performed until the current is finished,
188 	 * unless a DRV_CLEAR_ONLY bit is set. In this case we just want to
189 	 * properly clear object internals without sending any command to the FW
190 	 * which also implies there won't be any completion to clear the
191 	 * 'pending' list.
192 	 */
193 	if (!ECORE_LIST_IS_EMPTY(&o->pending_comp)) {
194 		if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, ramrod_flags)) {
195 			ECORE_MSG(sc, "RAMROD_DRV_CLR_ONLY requested: resetting a pending_comp list\n");
196 			__ecore_exe_queue_reset_pending(sc, o);
197 		} else {
198 			return ECORE_PENDING;
199 		}
200 	}
201 
202 	/* Run through the pending commands list and create a next
203 	 * execution chunk.
204 	 */
205 	while (!ECORE_LIST_IS_EMPTY(&o->exe_queue)) {
206 		elem = ECORE_LIST_FIRST_ENTRY(&o->exe_queue,
207 					      struct ecore_exeq_elem,
208 					      link);
209 		ECORE_DBG_BREAK_IF(!elem->cmd_len);
210 
211 		if (cur_len + elem->cmd_len <= o->exe_chunk_len) {
212 			cur_len += elem->cmd_len;
213 			/* Prevent from both lists being empty when moving an
214 			 * element. This will allow the call of
215 			 * ecore_exe_queue_empty() without locking.
216 			 */
217 			ECORE_LIST_PUSH_TAIL(&spacer.link, &o->pending_comp);
218 			mb();
219 			ECORE_LIST_REMOVE_ENTRY(&elem->link, &o->exe_queue);
220 			ECORE_LIST_PUSH_TAIL(&elem->link, &o->pending_comp);
221 			ECORE_LIST_REMOVE_ENTRY(&spacer.link, &o->pending_comp);
222 		} else
223 			break;
224 	}
225 
226 	/* Sanity check */
227 	if (!cur_len)
228 		return ECORE_SUCCESS;
229 
230 	rc = o->execute(sc, o->owner, &o->pending_comp, ramrod_flags);
231 	if (rc < 0)
232 		/* In case of an error return the commands back to the queue
233 		 *  and reset the pending_comp.
234 		 */
235 		ECORE_LIST_SPLICE_INIT(&o->pending_comp, &o->exe_queue);
236 	else if (!rc)
237 		/* If zero is returned, means there are no outstanding pending
238 		 * completions and we may dismiss the pending list.
239 		 */
240 		__ecore_exe_queue_reset_pending(sc, o);
241 
242 	return rc;
243 }
244 
245 static inline bool ecore_exe_queue_empty(struct ecore_exe_queue_obj *o)
246 {
247 	bool empty = ECORE_LIST_IS_EMPTY(&o->exe_queue);
248 
249 	/* Don't reorder!!! */
250 	mb();
251 
252 	return empty && ECORE_LIST_IS_EMPTY(&o->pending_comp);
253 }
254 
255 static inline struct ecore_exeq_elem *ecore_exe_queue_alloc_elem(
256 	struct bxe_softc *sc)
257 {
258 	ECORE_MSG(sc, "Allocating a new exe_queue element\n");
259 	return ECORE_ZALLOC(sizeof(struct ecore_exeq_elem), GFP_ATOMIC,
260 			    sc);
261 }
262 
263 /************************ raw_obj functions ***********************************/
264 static bool ecore_raw_check_pending(struct ecore_raw_obj *o)
265 {
266 	/*
267      * !! converts the value returned by ECORE_TEST_BIT such that it
268      * is guaranteed not to be truncated regardless of bool definition.
269 	 *
270 	 * Note we cannot simply define the function's return value type
271      * to match the type returned by ECORE_TEST_BIT, as it varies by
272      * platform/implementation.
273 	 */
274 
275 	return !!ECORE_TEST_BIT(o->state, o->pstate);
276 }
277 
278 static void ecore_raw_clear_pending(struct ecore_raw_obj *o)
279 {
280 	ECORE_SMP_MB_BEFORE_CLEAR_BIT();
281 	ECORE_CLEAR_BIT(o->state, o->pstate);
282 	ECORE_SMP_MB_AFTER_CLEAR_BIT();
283 }
284 
285 static void ecore_raw_set_pending(struct ecore_raw_obj *o)
286 {
287 	ECORE_SMP_MB_BEFORE_CLEAR_BIT();
288 	ECORE_SET_BIT(o->state, o->pstate);
289 	ECORE_SMP_MB_AFTER_CLEAR_BIT();
290 }
291 
292 /**
293  * ecore_state_wait - wait until the given bit(state) is cleared
294  *
295  * @sc:		device handle
296  * @state:	state which is to be cleared
297  * @state_p:	state buffer
298  *
299  */
300 static inline int ecore_state_wait(struct bxe_softc *sc, int state,
301 				   unsigned long *pstate)
302 {
303 	/* can take a while if any port is running */
304 	int cnt = 5000;
305 
306 
307 	if (CHIP_REV_IS_EMUL(sc))
308 		cnt *= 20;
309 
310 	ECORE_MSG(sc, "waiting for state to become %d\n", state);
311 
312 	ECORE_MIGHT_SLEEP();
313 	while (cnt--) {
314 		if (!ECORE_TEST_BIT(state, pstate)) {
315 #ifdef ECORE_STOP_ON_ERROR
316 			ECORE_MSG(sc, "exit  (cnt %d)\n", 5000 - cnt);
317 #endif
318 			return ECORE_SUCCESS;
319 		}
320 
321 		ECORE_WAIT(sc, delay_us);
322 
323 		if (sc->panic)
324 			return ECORE_IO;
325 	}
326 
327 	/* timeout! */
328 	ECORE_ERR("timeout waiting for state %d\n", state);
329 #ifdef ECORE_STOP_ON_ERROR
330 	ecore_panic();
331 #endif
332 
333 	return ECORE_TIMEOUT;
334 }
335 
336 static int ecore_raw_wait(struct bxe_softc *sc, struct ecore_raw_obj *raw)
337 {
338 	return ecore_state_wait(sc, raw->state, raw->pstate);
339 }
340 
341 /***************** Classification verbs: Set/Del MAC/VLAN/VLAN-MAC ************/
342 /* credit handling callbacks */
343 static bool ecore_get_cam_offset_mac(struct ecore_vlan_mac_obj *o, int *offset)
344 {
345 	struct ecore_credit_pool_obj *mp = o->macs_pool;
346 
347 	ECORE_DBG_BREAK_IF(!mp);
348 
349 	return mp->get_entry(mp, offset);
350 }
351 
352 static bool ecore_get_credit_mac(struct ecore_vlan_mac_obj *o)
353 {
354 	struct ecore_credit_pool_obj *mp = o->macs_pool;
355 
356 	ECORE_DBG_BREAK_IF(!mp);
357 
358 	return mp->get(mp, 1);
359 }
360 
361 static bool ecore_get_cam_offset_vlan(struct ecore_vlan_mac_obj *o, int *offset)
362 {
363 	struct ecore_credit_pool_obj *vp = o->vlans_pool;
364 
365 	ECORE_DBG_BREAK_IF(!vp);
366 
367 	return vp->get_entry(vp, offset);
368 }
369 
370 static bool ecore_get_credit_vlan(struct ecore_vlan_mac_obj *o)
371 {
372 	struct ecore_credit_pool_obj *vp = o->vlans_pool;
373 
374 	ECORE_DBG_BREAK_IF(!vp);
375 
376 	return vp->get(vp, 1);
377 }
378 
379 static bool ecore_get_credit_vlan_mac(struct ecore_vlan_mac_obj *o)
380 {
381 	struct ecore_credit_pool_obj *mp = o->macs_pool;
382 	struct ecore_credit_pool_obj *vp = o->vlans_pool;
383 
384 	if (!mp->get(mp, 1))
385 		return FALSE;
386 
387 	if (!vp->get(vp, 1)) {
388 		mp->put(mp, 1);
389 		return FALSE;
390 	}
391 
392 	return TRUE;
393 }
394 
395 static bool ecore_put_cam_offset_mac(struct ecore_vlan_mac_obj *o, int offset)
396 {
397 	struct ecore_credit_pool_obj *mp = o->macs_pool;
398 
399 	return mp->put_entry(mp, offset);
400 }
401 
402 static bool ecore_put_credit_mac(struct ecore_vlan_mac_obj *o)
403 {
404 	struct ecore_credit_pool_obj *mp = o->macs_pool;
405 
406 	return mp->put(mp, 1);
407 }
408 
409 static bool ecore_put_cam_offset_vlan(struct ecore_vlan_mac_obj *o, int offset)
410 {
411 	struct ecore_credit_pool_obj *vp = o->vlans_pool;
412 
413 	return vp->put_entry(vp, offset);
414 }
415 
416 static bool ecore_put_credit_vlan(struct ecore_vlan_mac_obj *o)
417 {
418 	struct ecore_credit_pool_obj *vp = o->vlans_pool;
419 
420 	return vp->put(vp, 1);
421 }
422 
423 static bool ecore_put_credit_vlan_mac(struct ecore_vlan_mac_obj *o)
424 {
425 	struct ecore_credit_pool_obj *mp = o->macs_pool;
426 	struct ecore_credit_pool_obj *vp = o->vlans_pool;
427 
428 	if (!mp->put(mp, 1))
429 		return FALSE;
430 
431 	if (!vp->put(vp, 1)) {
432 		mp->get(mp, 1);
433 		return FALSE;
434 	}
435 
436 	return TRUE;
437 }
438 
439 /**
440  * __ecore_vlan_mac_h_write_trylock - try getting the writer lock on vlan mac
441  * head list.
442  *
443  * @sc:		device handle
444  * @o:		vlan_mac object
445  *
446  * @details: Non-blocking implementation; should be called under execution
447  *           queue lock.
448  */
449 static int __ecore_vlan_mac_h_write_trylock(struct bxe_softc *sc,
450 					    struct ecore_vlan_mac_obj *o)
451 {
452 	if (o->head_reader) {
453 		ECORE_MSG(sc, "vlan_mac_lock writer - There are readers; Busy\n");
454 		return ECORE_BUSY;
455 	}
456 
457 	ECORE_MSG(sc, "vlan_mac_lock writer - Taken\n");
458 	return ECORE_SUCCESS;
459 }
460 
461 /**
462  * __ecore_vlan_mac_h_exec_pending - execute step instead of a previous step
463  * which wasn't able to run due to a taken lock on vlan mac head list.
464  *
465  * @sc:		device handle
466  * @o:		vlan_mac object
467  *
468  * @details Should be called under execution queue lock; notice it might release
469  *          and reclaim it during its run.
470  */
471 static void __ecore_vlan_mac_h_exec_pending(struct bxe_softc *sc,
472 					    struct ecore_vlan_mac_obj *o)
473 {
474 	int rc;
475 	unsigned long ramrod_flags = o->saved_ramrod_flags;
476 
477 	ECORE_MSG(sc, "vlan_mac_lock execute pending command with ramrod flags %lu\n",
478 		  ramrod_flags);
479 	o->head_exe_request = FALSE;
480 	o->saved_ramrod_flags = 0;
481 	rc = ecore_exe_queue_step(sc, &o->exe_queue, &ramrod_flags);
482 	if ((rc != ECORE_SUCCESS) && (rc != ECORE_PENDING)) {
483 		ECORE_ERR("execution of pending commands failed with rc %d\n",
484 			  rc);
485 #ifdef ECORE_STOP_ON_ERROR
486 		ecore_panic();
487 #endif
488 	}
489 }
490 
491 /**
492  * __ecore_vlan_mac_h_pend - Pend an execution step which couldn't have been
493  * called due to vlan mac head list lock being taken.
494  *
495  * @sc:			device handle
496  * @o:			vlan_mac object
497  * @ramrod_flags:	ramrod flags of missed execution
498  *
499  * @details Should be called under execution queue lock.
500  */
501 static void __ecore_vlan_mac_h_pend(struct bxe_softc *sc,
502 				    struct ecore_vlan_mac_obj *o,
503 				    unsigned long ramrod_flags)
504 {
505 	o->head_exe_request = TRUE;
506 	o->saved_ramrod_flags = ramrod_flags;
507 	ECORE_MSG(sc, "Placing pending execution with ramrod flags %lu\n",
508 		  ramrod_flags);
509 }
510 
511 /**
512  * __ecore_vlan_mac_h_write_unlock - unlock the vlan mac head list writer lock
513  *
514  * @sc:			device handle
515  * @o:			vlan_mac object
516  *
517  * @details Should be called under execution queue lock. Notice if a pending
518  *          execution exists, it would perform it - possibly releasing and
519  *          reclaiming the execution queue lock.
520  */
521 static void __ecore_vlan_mac_h_write_unlock(struct bxe_softc *sc,
522 					    struct ecore_vlan_mac_obj *o)
523 {
524 	/* It's possible a new pending execution was added since this writer
525 	 * executed. If so, execute again. [Ad infinitum]
526 	 */
527 	while(o->head_exe_request) {
528 		ECORE_MSG(sc, "vlan_mac_lock - writer release encountered a pending request\n");
529 		__ecore_vlan_mac_h_exec_pending(sc, o);
530 	}
531 }
532 
533 /**
534  * ecore_vlan_mac_h_write_unlock - unlock the vlan mac head list writer lock
535  *
536  * @sc:			device handle
537  * @o:			vlan_mac object
538  *
539  * @details Notice if a pending execution exists, it would perform it -
540  *          possibly releasing and reclaiming the execution queue lock.
541  */
542 void ecore_vlan_mac_h_write_unlock(struct bxe_softc *sc,
543 				   struct ecore_vlan_mac_obj *o)
544 {
545 	ECORE_SPIN_LOCK_BH(&o->exe_queue.lock);
546 	__ecore_vlan_mac_h_write_unlock(sc, o);
547 	ECORE_SPIN_UNLOCK_BH(&o->exe_queue.lock);
548 }
549 
550 /**
551  * __ecore_vlan_mac_h_read_lock - lock the vlan mac head list reader lock
552  *
553  * @sc:			device handle
554  * @o:			vlan_mac object
555  *
556  * @details Should be called under the execution queue lock. May sleep. May
557  *          release and reclaim execution queue lock during its run.
558  */
559 static int __ecore_vlan_mac_h_read_lock(struct bxe_softc *sc,
560 					struct ecore_vlan_mac_obj *o)
561 {
562 	/* If we got here, we're holding lock --> no WRITER exists */
563 	o->head_reader++;
564 	ECORE_MSG(sc, "vlan_mac_lock - locked reader - number %d\n",
565 		  o->head_reader);
566 
567 	return ECORE_SUCCESS;
568 }
569 
570 /**
571  * ecore_vlan_mac_h_read_lock - lock the vlan mac head list reader lock
572  *
573  * @sc:			device handle
574  * @o:			vlan_mac object
575  *
576  * @details May sleep. Claims and releases execution queue lock during its run.
577  */
578 int ecore_vlan_mac_h_read_lock(struct bxe_softc *sc,
579 			       struct ecore_vlan_mac_obj *o)
580 {
581 	int rc;
582 
583 	ECORE_SPIN_LOCK_BH(&o->exe_queue.lock);
584 	rc = __ecore_vlan_mac_h_read_lock(sc, o);
585 	ECORE_SPIN_UNLOCK_BH(&o->exe_queue.lock);
586 
587 	return rc;
588 }
589 
590 /**
591  * __ecore_vlan_mac_h_read_unlock - unlock the vlan mac head list reader lock
592  *
593  * @sc:			device handle
594  * @o:			vlan_mac object
595  *
596  * @details Should be called under execution queue lock. Notice if a pending
597  *          execution exists, it would be performed if this was the last
598  *          reader. possibly releasing and reclaiming the execution queue lock.
599  */
600 static void __ecore_vlan_mac_h_read_unlock(struct bxe_softc *sc,
601 					  struct ecore_vlan_mac_obj *o)
602 {
603 	if (!o->head_reader) {
604 		ECORE_ERR("Need to release vlan mac reader lock, but lock isn't taken\n");
605 #ifdef ECORE_STOP_ON_ERROR
606 		ecore_panic();
607 #endif
608 	} else {
609 		o->head_reader--;
610 		ECORE_MSG(sc, "vlan_mac_lock - decreased readers to %d\n",
611 			  o->head_reader);
612 	}
613 
614 	/* It's possible a new pending execution was added, and that this reader
615 	 * was last - if so we need to execute the command.
616 	 */
617 	if (!o->head_reader && o->head_exe_request) {
618 		ECORE_MSG(sc, "vlan_mac_lock - reader release encountered a pending request\n");
619 
620 		/* Writer release will do the trick */
621 		__ecore_vlan_mac_h_write_unlock(sc, o);
622 	}
623 }
624 
625 /**
626  * ecore_vlan_mac_h_read_unlock - unlock the vlan mac head list reader lock
627  *
628  * @sc:			device handle
629  * @o:			vlan_mac object
630  *
631  * @details Notice if a pending execution exists, it would be performed if this
632  *          was the last reader. Claims and releases the execution queue lock
633  *          during its run.
634  */
635 void ecore_vlan_mac_h_read_unlock(struct bxe_softc *sc,
636 				  struct ecore_vlan_mac_obj *o)
637 {
638 	ECORE_SPIN_LOCK_BH(&o->exe_queue.lock);
639 	__ecore_vlan_mac_h_read_unlock(sc, o);
640 	ECORE_SPIN_UNLOCK_BH(&o->exe_queue.lock);
641 }
642 
643 /**
644  * ecore_vlan_mac_h_read_unlock - unlock the vlan mac head list reader lock
645  *
646  * @sc:			device handle
647  * @o:			vlan_mac object
648  * @n:			number of elements to get
649  * @base:		base address for element placement
650  * @stride:		stride between elements (in bytes)
651  */
652 static int ecore_get_n_elements(struct bxe_softc *sc, struct ecore_vlan_mac_obj *o,
653 				 int n, uint8_t *base, uint8_t stride, uint8_t size)
654 {
655 	struct ecore_vlan_mac_registry_elem *pos;
656 	uint8_t *next = base;
657 	int counter = 0;
658 	int read_lock;
659 
660 	ECORE_MSG(sc, "get_n_elements - taking vlan_mac_lock (reader)\n");
661 	read_lock = ecore_vlan_mac_h_read_lock(sc, o);
662 	if (read_lock != ECORE_SUCCESS)
663 		ECORE_ERR("get_n_elements failed to get vlan mac reader lock; Access without lock\n");
664 
665 	/* traverse list */
666 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
667 				  struct ecore_vlan_mac_registry_elem) {
668 		if (counter < n) {
669 			ECORE_MEMCPY(next, &pos->u, size);
670 			counter++;
671 			ECORE_MSG(sc, "copied element number %d to address %p element was:\n",
672 				  counter, next);
673 			next += stride + size;
674 		}
675 	}
676 
677 	if (read_lock == ECORE_SUCCESS) {
678 		ECORE_MSG(sc, "get_n_elements - releasing vlan_mac_lock (reader)\n");
679 		ecore_vlan_mac_h_read_unlock(sc, o);
680 	}
681 
682 	return counter * ETH_ALEN;
683 }
684 
685 /* check_add() callbacks */
686 static int ecore_check_mac_add(struct bxe_softc *sc,
687 			       struct ecore_vlan_mac_obj *o,
688 			       union ecore_classification_ramrod_data *data)
689 {
690 	struct ecore_vlan_mac_registry_elem *pos;
691 
692 	ECORE_MSG(sc, "Checking MAC %02x:%02x:%02x:%02x:%02x:%02x for ADD command\n", data->mac.mac[0], data->mac.mac[1], data->mac.mac[2], data->mac.mac[3], data->mac.mac[4], data->mac.mac[5]);
693 
694 	if (!ECORE_IS_VALID_ETHER_ADDR(data->mac.mac))
695 		return ECORE_INVAL;
696 
697 	/* Check if a requested MAC already exists */
698 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
699 				  struct ecore_vlan_mac_registry_elem)
700 		if (!ECORE_MEMCMP(data->mac.mac, pos->u.mac.mac, ETH_ALEN) &&
701 		    (data->mac.is_inner_mac == pos->u.mac.is_inner_mac))
702 			return ECORE_EXISTS;
703 
704 	return ECORE_SUCCESS;
705 }
706 
707 static int ecore_check_vlan_add(struct bxe_softc *sc,
708 				struct ecore_vlan_mac_obj *o,
709 				union ecore_classification_ramrod_data *data)
710 {
711 	struct ecore_vlan_mac_registry_elem *pos;
712 
713 	ECORE_MSG(sc, "Checking VLAN %d for ADD command\n", data->vlan.vlan);
714 
715 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
716 				  struct ecore_vlan_mac_registry_elem)
717 		if (data->vlan.vlan == pos->u.vlan.vlan)
718 			return ECORE_EXISTS;
719 
720 	return ECORE_SUCCESS;
721 }
722 
723 static int ecore_check_vlan_mac_add(struct bxe_softc *sc,
724 				    struct ecore_vlan_mac_obj *o,
725 				   union ecore_classification_ramrod_data *data)
726 {
727 	struct ecore_vlan_mac_registry_elem *pos;
728 
729 	ECORE_MSG(sc, "Checking VLAN_MAC (%02x:%02x:%02x:%02x:%02x:%02x, %d) for ADD command\n",
730 		  data->vlan_mac.mac[0], data->vlan_mac.mac[1], data->vlan_mac.mac[2], data->vlan_mac.mac[3], data->vlan_mac.mac[4], data->vlan_mac.mac[5], data->vlan_mac.vlan);
731 
732 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
733 				  struct ecore_vlan_mac_registry_elem)
734 		if ((data->vlan_mac.vlan == pos->u.vlan_mac.vlan) &&
735 		    (!ECORE_MEMCMP(data->vlan_mac.mac, pos->u.vlan_mac.mac,
736 				  ETH_ALEN)) &&
737 		    (data->vlan_mac.is_inner_mac ==
738 		     pos->u.vlan_mac.is_inner_mac))
739 			return ECORE_EXISTS;
740 
741 	return ECORE_SUCCESS;
742 }
743 
744 static int ecore_check_vxlan_fltr_add(struct bxe_softc *sc,
745 				struct ecore_vlan_mac_obj *o,
746 				union ecore_classification_ramrod_data *data)
747 {
748 	struct ecore_vlan_mac_registry_elem *pos;
749 
750 	ECORE_MSG(sc, "Checking VXLAN_FLTR (Inner:%pM, %d) for ADD command\n",
751 		  data->vxlan_fltr.innermac, data->vxlan_fltr.vni);
752 
753 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
754 				  struct ecore_vlan_mac_registry_elem)
755 		if ((!ECORE_MEMCMP(data->vxlan_fltr.innermac,
756 			       pos->u.vxlan_fltr.innermac,
757 			       ETH_ALEN)) &&
758 			     (data->vxlan_fltr.vni == pos->u.vxlan_fltr.vni))
759 			return ECORE_EXISTS;
760 
761 	return ECORE_SUCCESS;
762 }
763 
764 /* check_del() callbacks */
765 static struct ecore_vlan_mac_registry_elem *
766 	ecore_check_mac_del(struct bxe_softc *sc,
767 			    struct ecore_vlan_mac_obj *o,
768 			    union ecore_classification_ramrod_data *data)
769 {
770 	struct ecore_vlan_mac_registry_elem *pos;
771 
772 	ECORE_MSG(sc, "Checking MAC %02x:%02x:%02x:%02x:%02x:%02x for DEL command\n", data->mac.mac[0], data->mac.mac[1], data->mac.mac[2], data->mac.mac[3], data->mac.mac[4], data->mac.mac[5]);
773 
774 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
775 				  struct ecore_vlan_mac_registry_elem)
776 		if ((!ECORE_MEMCMP(data->mac.mac, pos->u.mac.mac, ETH_ALEN)) &&
777 		    (data->mac.is_inner_mac == pos->u.mac.is_inner_mac))
778 			return pos;
779 
780 	return NULL;
781 }
782 
783 static struct ecore_vlan_mac_registry_elem *
784 	ecore_check_vlan_del(struct bxe_softc *sc,
785 			     struct ecore_vlan_mac_obj *o,
786 			     union ecore_classification_ramrod_data *data)
787 {
788 	struct ecore_vlan_mac_registry_elem *pos;
789 
790 	ECORE_MSG(sc, "Checking VLAN %d for DEL command\n", data->vlan.vlan);
791 
792 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
793 				  struct ecore_vlan_mac_registry_elem)
794 		if (data->vlan.vlan == pos->u.vlan.vlan)
795 			return pos;
796 
797 	return NULL;
798 }
799 
800 static struct ecore_vlan_mac_registry_elem *
801 	ecore_check_vlan_mac_del(struct bxe_softc *sc,
802 				 struct ecore_vlan_mac_obj *o,
803 				 union ecore_classification_ramrod_data *data)
804 {
805 	struct ecore_vlan_mac_registry_elem *pos;
806 
807 	ECORE_MSG(sc, "Checking VLAN_MAC (%02x:%02x:%02x:%02x:%02x:%02x, %d) for DEL command\n",
808 		  data->vlan_mac.mac[0], data->vlan_mac.mac[1], data->vlan_mac.mac[2], data->vlan_mac.mac[3], data->vlan_mac.mac[4], data->vlan_mac.mac[5], data->vlan_mac.vlan);
809 
810 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
811 				  struct ecore_vlan_mac_registry_elem)
812 		if ((data->vlan_mac.vlan == pos->u.vlan_mac.vlan) &&
813 		    (!ECORE_MEMCMP(data->vlan_mac.mac, pos->u.vlan_mac.mac,
814 			     ETH_ALEN)) &&
815 		    (data->vlan_mac.is_inner_mac ==
816 		     pos->u.vlan_mac.is_inner_mac))
817 			return pos;
818 
819 	return NULL;
820 }
821 
822 static struct ecore_vlan_mac_registry_elem *
823 	ecore_check_vxlan_fltr_del
824 			(struct bxe_softc *sc,
825 			struct ecore_vlan_mac_obj *o,
826 			union ecore_classification_ramrod_data *data)
827 {
828 	struct ecore_vlan_mac_registry_elem *pos;
829 
830 	ECORE_MSG(sc, "Checking VXLAN_FLTR (Inner:%pM, %d) for DEL command\n",
831 		  data->vxlan_fltr.innermac, data->vxlan_fltr.vni);
832 
833 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
834 				  struct ecore_vlan_mac_registry_elem)
835 		if ((!ECORE_MEMCMP(data->vxlan_fltr.innermac,
836 			       pos->u.vxlan_fltr.innermac,
837 			       ETH_ALEN)) &&
838 			       (data->vxlan_fltr.vni == pos->u.vxlan_fltr.vni))
839 			return pos;
840 
841 	return NULL;
842 }
843 
844 /* check_move() callback */
845 static bool ecore_check_move(struct bxe_softc *sc,
846 			     struct ecore_vlan_mac_obj *src_o,
847 			     struct ecore_vlan_mac_obj *dst_o,
848 			     union ecore_classification_ramrod_data *data)
849 {
850 	struct ecore_vlan_mac_registry_elem *pos;
851 	int rc;
852 
853 	/* Check if we can delete the requested configuration from the first
854 	 * object.
855 	 */
856 	pos = src_o->check_del(sc, src_o, data);
857 
858 	/*  check if configuration can be added */
859 	rc = dst_o->check_add(sc, dst_o, data);
860 
861 	/* If this classification can not be added (is already set)
862 	 * or can't be deleted - return an error.
863 	 */
864 	if (rc || !pos)
865 		return FALSE;
866 
867 	return TRUE;
868 }
869 
870 static bool ecore_check_move_always_err(
871 	struct bxe_softc *sc,
872 	struct ecore_vlan_mac_obj *src_o,
873 	struct ecore_vlan_mac_obj *dst_o,
874 	union ecore_classification_ramrod_data *data)
875 {
876 	return FALSE;
877 }
878 
879 static inline uint8_t ecore_vlan_mac_get_rx_tx_flag(struct ecore_vlan_mac_obj *o)
880 {
881 	struct ecore_raw_obj *raw = &o->raw;
882 	uint8_t rx_tx_flag = 0;
883 
884 	if ((raw->obj_type == ECORE_OBJ_TYPE_TX) ||
885 	    (raw->obj_type == ECORE_OBJ_TYPE_RX_TX))
886 		rx_tx_flag |= ETH_CLASSIFY_CMD_HEADER_TX_CMD;
887 
888 	if ((raw->obj_type == ECORE_OBJ_TYPE_RX) ||
889 	    (raw->obj_type == ECORE_OBJ_TYPE_RX_TX))
890 		rx_tx_flag |= ETH_CLASSIFY_CMD_HEADER_RX_CMD;
891 
892 	return rx_tx_flag;
893 }
894 
895 void ecore_set_mac_in_nig(struct bxe_softc *sc,
896 			  bool add, unsigned char *dev_addr, int index)
897 {
898 	uint32_t wb_data[2];
899 	uint32_t reg_offset = ECORE_PORT_ID(sc) ? NIG_REG_LLH1_FUNC_MEM :
900 			 NIG_REG_LLH0_FUNC_MEM;
901 
902 	if (!ECORE_IS_MF_SI_MODE(sc) && !IS_MF_AFEX(sc))
903 		return;
904 
905 	if (index > ECORE_LLH_CAM_MAX_PF_LINE)
906 		return;
907 
908 	ECORE_MSG(sc, "Going to %s LLH configuration at entry %d\n",
909 		  (add ? "ADD" : "DELETE"), index);
910 
911 	if (add) {
912 		/* LLH_FUNC_MEM is a uint64_t WB register */
913 		reg_offset += 8*index;
914 
915 		wb_data[0] = ((dev_addr[2] << 24) | (dev_addr[3] << 16) |
916 			      (dev_addr[4] <<  8) |  dev_addr[5]);
917 		wb_data[1] = ((dev_addr[0] <<  8) |  dev_addr[1]);
918 
919 		ECORE_REG_WR_DMAE_LEN(sc, reg_offset, wb_data, 2);
920 	}
921 
922 	REG_WR(sc, (ECORE_PORT_ID(sc) ? NIG_REG_LLH1_FUNC_MEM_ENABLE :
923 				  NIG_REG_LLH0_FUNC_MEM_ENABLE) + 4*index, add);
924 }
925 
926 /**
927  * ecore_vlan_mac_set_cmd_hdr_e2 - set a header in a single classify ramrod
928  *
929  * @sc:		device handle
930  * @o:		queue for which we want to configure this rule
931  * @add:	if TRUE the command is an ADD command, DEL otherwise
932  * @opcode:	CLASSIFY_RULE_OPCODE_XXX
933  * @hdr:	pointer to a header to setup
934  *
935  */
936 static inline void ecore_vlan_mac_set_cmd_hdr_e2(struct bxe_softc *sc,
937 	struct ecore_vlan_mac_obj *o, bool add, int opcode,
938 	struct eth_classify_cmd_header *hdr)
939 {
940 	struct ecore_raw_obj *raw = &o->raw;
941 
942 	hdr->client_id = raw->cl_id;
943 	hdr->func_id = raw->func_id;
944 
945 	/* Rx or/and Tx (internal switching) configuration ? */
946 	hdr->cmd_general_data |=
947 		ecore_vlan_mac_get_rx_tx_flag(o);
948 
949 	if (add)
950 		hdr->cmd_general_data |= ETH_CLASSIFY_CMD_HEADER_IS_ADD;
951 
952 	hdr->cmd_general_data |=
953 		(opcode << ETH_CLASSIFY_CMD_HEADER_OPCODE_SHIFT);
954 }
955 
956 /**
957  * ecore_vlan_mac_set_rdata_hdr_e2 - set the classify ramrod data header
958  *
959  * @cid:	connection id
960  * @type:	ECORE_FILTER_XXX_PENDING
961  * @hdr:	pointer to header to setup
962  * @rule_cnt:
963  *
964  * currently we always configure one rule and echo field to contain a CID and an
965  * opcode type.
966  */
967 static inline void ecore_vlan_mac_set_rdata_hdr_e2(uint32_t cid, int type,
968 				struct eth_classify_header *hdr, int rule_cnt)
969 {
970 	hdr->echo = ECORE_CPU_TO_LE32((cid & ECORE_SWCID_MASK) |
971 				(type << ECORE_SWCID_SHIFT));
972 	hdr->rule_cnt = (uint8_t)rule_cnt;
973 }
974 
975 /* hw_config() callbacks */
976 static void ecore_set_one_mac_e2(struct bxe_softc *sc,
977 				 struct ecore_vlan_mac_obj *o,
978 				 struct ecore_exeq_elem *elem, int rule_idx,
979 				 int cam_offset)
980 {
981 	struct ecore_raw_obj *raw = &o->raw;
982 	struct eth_classify_rules_ramrod_data *data =
983 		(struct eth_classify_rules_ramrod_data *)(raw->rdata);
984 	int rule_cnt = rule_idx + 1, cmd = elem->cmd_data.vlan_mac.cmd;
985 	union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
986 	bool add = (cmd == ECORE_VLAN_MAC_ADD) ? TRUE : FALSE;
987 	unsigned long *vlan_mac_flags = &elem->cmd_data.vlan_mac.vlan_mac_flags;
988 	uint8_t *mac = elem->cmd_data.vlan_mac.u.mac.mac;
989 
990 	/* Set LLH CAM entry: currently only iSCSI and ETH macs are
991 	 * relevant. In addition, current implementation is tuned for a
992 	 * single ETH MAC.
993 	 *
994 	 * When multiple unicast ETH MACs PF configuration in switch
995 	 * independent mode is required (NetQ, multiple netdev MACs,
996 	 * etc.), consider better utilisation of 8 per function MAC
997 	 * entries in the LLH register. There is also
998 	 * NIG_REG_P[01]_LLH_FUNC_MEM2 registers that complete the
999 	 * total number of CAM entries to 16.
1000 	 *
1001 	 * Currently we won't configure NIG for MACs other than a primary ETH
1002 	 * MAC and iSCSI L2 MAC.
1003 	 *
1004 	 * If this MAC is moving from one Queue to another, no need to change
1005 	 * NIG configuration.
1006 	 */
1007 	if (cmd != ECORE_VLAN_MAC_MOVE) {
1008 		if (ECORE_TEST_BIT(ECORE_ISCSI_ETH_MAC, vlan_mac_flags))
1009 			ecore_set_mac_in_nig(sc, add, mac,
1010 					     ECORE_LLH_CAM_ISCSI_ETH_LINE);
1011 		else if (ECORE_TEST_BIT(ECORE_ETH_MAC, vlan_mac_flags))
1012 			ecore_set_mac_in_nig(sc, add, mac,
1013 					     ECORE_LLH_CAM_ETH_LINE);
1014 	}
1015 
1016 	/* Reset the ramrod data buffer for the first rule */
1017 	if (rule_idx == 0)
1018 		ECORE_MEMSET(data, 0, sizeof(*data));
1019 
1020 	/* Setup a command header */
1021 	ecore_vlan_mac_set_cmd_hdr_e2(sc, o, add, CLASSIFY_RULE_OPCODE_MAC,
1022 				      &rule_entry->mac.header);
1023 
1024 	ECORE_MSG(sc, "About to %s MAC %02x:%02x:%02x:%02x:%02x:%02x for Queue %d\n",
1025 		  (add ? "add" : "delete"), mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], raw->cl_id);
1026 
1027 	/* Set a MAC itself */
1028 	ecore_set_fw_mac_addr(&rule_entry->mac.mac_msb,
1029 			      &rule_entry->mac.mac_mid,
1030 			      &rule_entry->mac.mac_lsb, mac);
1031 	rule_entry->mac.inner_mac =
1032 		ECORE_CPU_TO_LE16(elem->cmd_data.vlan_mac.u.mac.is_inner_mac);
1033 
1034 	/* MOVE: Add a rule that will add this MAC to the target Queue */
1035 	if (cmd == ECORE_VLAN_MAC_MOVE) {
1036 		rule_entry++;
1037 		rule_cnt++;
1038 
1039 		/* Setup ramrod data */
1040 		ecore_vlan_mac_set_cmd_hdr_e2(sc,
1041 					elem->cmd_data.vlan_mac.target_obj,
1042 					      TRUE, CLASSIFY_RULE_OPCODE_MAC,
1043 					      &rule_entry->mac.header);
1044 
1045 		/* Set a MAC itself */
1046 		ecore_set_fw_mac_addr(&rule_entry->mac.mac_msb,
1047 				      &rule_entry->mac.mac_mid,
1048 				      &rule_entry->mac.mac_lsb, mac);
1049 		rule_entry->mac.inner_mac =
1050 			ECORE_CPU_TO_LE16(elem->cmd_data.vlan_mac.
1051 				       u.mac.is_inner_mac);
1052 	}
1053 
1054 	/* Set the ramrod data header */
1055 	/* TODO: take this to the higher level in order to prevent multiple
1056 		 writing */
1057 	ecore_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
1058 					rule_cnt);
1059 }
1060 
1061 /**
1062  * ecore_vlan_mac_set_rdata_hdr_e1x - set a header in a single classify ramrod
1063  *
1064  * @sc:		device handle
1065  * @o:		queue
1066  * @type:
1067  * @cam_offset:	offset in cam memory
1068  * @hdr:	pointer to a header to setup
1069  *
1070  * E1/E1H
1071  */
1072 static inline void ecore_vlan_mac_set_rdata_hdr_e1x(struct bxe_softc *sc,
1073 	struct ecore_vlan_mac_obj *o, int type, int cam_offset,
1074 	struct mac_configuration_hdr *hdr)
1075 {
1076 	struct ecore_raw_obj *r = &o->raw;
1077 
1078 	hdr->length = 1;
1079 	hdr->offset = (uint8_t)cam_offset;
1080 	hdr->client_id = ECORE_CPU_TO_LE16(0xff);
1081 	hdr->echo = ECORE_CPU_TO_LE32((r->cid & ECORE_SWCID_MASK) |
1082 				(type << ECORE_SWCID_SHIFT));
1083 }
1084 
1085 static inline void ecore_vlan_mac_set_cfg_entry_e1x(struct bxe_softc *sc,
1086 	struct ecore_vlan_mac_obj *o, bool add, int opcode, uint8_t *mac,
1087 	uint16_t vlan_id, struct mac_configuration_entry *cfg_entry)
1088 {
1089 	struct ecore_raw_obj *r = &o->raw;
1090 	uint32_t cl_bit_vec = (1 << r->cl_id);
1091 
1092 	cfg_entry->clients_bit_vector = ECORE_CPU_TO_LE32(cl_bit_vec);
1093 	cfg_entry->pf_id = r->func_id;
1094 	cfg_entry->vlan_id = ECORE_CPU_TO_LE16(vlan_id);
1095 
1096 	if (add) {
1097 		ECORE_SET_FLAG(cfg_entry->flags,
1098 			       MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
1099 			       T_ETH_MAC_COMMAND_SET);
1100 		ECORE_SET_FLAG(cfg_entry->flags,
1101 			       MAC_CONFIGURATION_ENTRY_VLAN_FILTERING_MODE,
1102 			       opcode);
1103 
1104 		/* Set a MAC in a ramrod data */
1105 		ecore_set_fw_mac_addr(&cfg_entry->msb_mac_addr,
1106 				      &cfg_entry->middle_mac_addr,
1107 				      &cfg_entry->lsb_mac_addr, mac);
1108 	} else
1109 		ECORE_SET_FLAG(cfg_entry->flags,
1110 			       MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
1111 			       T_ETH_MAC_COMMAND_INVALIDATE);
1112 }
1113 
1114 static inline void ecore_vlan_mac_set_rdata_e1x(struct bxe_softc *sc,
1115 	struct ecore_vlan_mac_obj *o, int type, int cam_offset, bool add,
1116 	uint8_t *mac, uint16_t vlan_id, int opcode, struct mac_configuration_cmd *config)
1117 {
1118 	struct mac_configuration_entry *cfg_entry = &config->config_table[0];
1119 	struct ecore_raw_obj *raw = &o->raw;
1120 
1121 	ecore_vlan_mac_set_rdata_hdr_e1x(sc, o, type, cam_offset,
1122 					 &config->hdr);
1123 	ecore_vlan_mac_set_cfg_entry_e1x(sc, o, add, opcode, mac, vlan_id,
1124 					 cfg_entry);
1125 
1126 	ECORE_MSG(sc, "%s MAC %02x:%02x:%02x:%02x:%02x:%02x CLID %d CAM offset %d\n",
1127 		  (add ? "setting" : "clearing"),
1128 		  mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], raw->cl_id, cam_offset);
1129 }
1130 
1131 /**
1132  * ecore_set_one_mac_e1x - fill a single MAC rule ramrod data
1133  *
1134  * @sc:		device handle
1135  * @o:		ecore_vlan_mac_obj
1136  * @elem:	ecore_exeq_elem
1137  * @rule_idx:	rule_idx
1138  * @cam_offset: cam_offset
1139  */
1140 static void ecore_set_one_mac_e1x(struct bxe_softc *sc,
1141 				  struct ecore_vlan_mac_obj *o,
1142 				  struct ecore_exeq_elem *elem, int rule_idx,
1143 				  int cam_offset)
1144 {
1145 	struct ecore_raw_obj *raw = &o->raw;
1146 	struct mac_configuration_cmd *config =
1147 		(struct mac_configuration_cmd *)(raw->rdata);
1148 	/* 57710 and 57711 do not support MOVE command,
1149 	 * so it's either ADD or DEL
1150 	 */
1151 	bool add = (elem->cmd_data.vlan_mac.cmd == ECORE_VLAN_MAC_ADD) ?
1152 		TRUE : FALSE;
1153 
1154 	/* Reset the ramrod data buffer */
1155 	ECORE_MEMSET(config, 0, sizeof(*config));
1156 
1157 	ecore_vlan_mac_set_rdata_e1x(sc, o, raw->state,
1158 				     cam_offset, add,
1159 				     elem->cmd_data.vlan_mac.u.mac.mac, 0,
1160 				     ETH_VLAN_FILTER_ANY_VLAN, config);
1161 }
1162 
1163 static void ecore_set_one_vlan_e2(struct bxe_softc *sc,
1164 				  struct ecore_vlan_mac_obj *o,
1165 				  struct ecore_exeq_elem *elem, int rule_idx,
1166 				  int cam_offset)
1167 {
1168 	struct ecore_raw_obj *raw = &o->raw;
1169 	struct eth_classify_rules_ramrod_data *data =
1170 		(struct eth_classify_rules_ramrod_data *)(raw->rdata);
1171 	int rule_cnt = rule_idx + 1;
1172 	union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
1173 	enum ecore_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd;
1174 	bool add = (cmd == ECORE_VLAN_MAC_ADD) ? TRUE : FALSE;
1175 	uint16_t vlan = elem->cmd_data.vlan_mac.u.vlan.vlan;
1176 
1177 	/* Reset the ramrod data buffer for the first rule */
1178 	if (rule_idx == 0)
1179 		ECORE_MEMSET(data, 0, sizeof(*data));
1180 
1181 	/* Set a rule header */
1182 	ecore_vlan_mac_set_cmd_hdr_e2(sc, o, add, CLASSIFY_RULE_OPCODE_VLAN,
1183 				      &rule_entry->vlan.header);
1184 
1185 	ECORE_MSG(sc, "About to %s VLAN %d\n", (add ? "add" : "delete"),
1186 		  vlan);
1187 
1188 	/* Set a VLAN itself */
1189 	rule_entry->vlan.vlan = ECORE_CPU_TO_LE16(vlan);
1190 
1191 	/* MOVE: Add a rule that will add this MAC to the target Queue */
1192 	if (cmd == ECORE_VLAN_MAC_MOVE) {
1193 		rule_entry++;
1194 		rule_cnt++;
1195 
1196 		/* Setup ramrod data */
1197 		ecore_vlan_mac_set_cmd_hdr_e2(sc,
1198 					elem->cmd_data.vlan_mac.target_obj,
1199 					      TRUE, CLASSIFY_RULE_OPCODE_VLAN,
1200 					      &rule_entry->vlan.header);
1201 
1202 		/* Set a VLAN itself */
1203 		rule_entry->vlan.vlan = ECORE_CPU_TO_LE16(vlan);
1204 	}
1205 
1206 	/* Set the ramrod data header */
1207 	/* TODO: take this to the higher level in order to prevent multiple
1208 		 writing */
1209 	ecore_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
1210 					rule_cnt);
1211 }
1212 
1213 static void ecore_set_one_vlan_mac_e2(struct bxe_softc *sc,
1214 				      struct ecore_vlan_mac_obj *o,
1215 				      struct ecore_exeq_elem *elem,
1216 				      int rule_idx, int cam_offset)
1217 {
1218 	struct ecore_raw_obj *raw = &o->raw;
1219 	struct eth_classify_rules_ramrod_data *data =
1220 		(struct eth_classify_rules_ramrod_data *)(raw->rdata);
1221 	int rule_cnt = rule_idx + 1;
1222 	union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
1223 	enum ecore_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd;
1224 	bool add = (cmd == ECORE_VLAN_MAC_ADD) ? TRUE : FALSE;
1225 	uint16_t vlan = elem->cmd_data.vlan_mac.u.vlan_mac.vlan;
1226 	uint8_t *mac = elem->cmd_data.vlan_mac.u.vlan_mac.mac;
1227 
1228 	/* Reset the ramrod data buffer for the first rule */
1229 	if (rule_idx == 0)
1230 		ECORE_MEMSET(data, 0, sizeof(*data));
1231 
1232 	/* Set a rule header */
1233 	ecore_vlan_mac_set_cmd_hdr_e2(sc, o, add, CLASSIFY_RULE_OPCODE_PAIR,
1234 				      &rule_entry->pair.header);
1235 
1236 	/* Set VLAN and MAC themselves */
1237 	rule_entry->pair.vlan = ECORE_CPU_TO_LE16(vlan);
1238 	ecore_set_fw_mac_addr(&rule_entry->pair.mac_msb,
1239 			      &rule_entry->pair.mac_mid,
1240 			      &rule_entry->pair.mac_lsb, mac);
1241 	rule_entry->pair.inner_mac =
1242 			elem->cmd_data.vlan_mac.u.vlan_mac.is_inner_mac;
1243 	/* MOVE: Add a rule that will add this MAC to the target Queue */
1244 	if (cmd == ECORE_VLAN_MAC_MOVE) {
1245 		rule_entry++;
1246 		rule_cnt++;
1247 
1248 		/* Setup ramrod data */
1249 		ecore_vlan_mac_set_cmd_hdr_e2(sc,
1250 					elem->cmd_data.vlan_mac.target_obj,
1251 					      TRUE, CLASSIFY_RULE_OPCODE_PAIR,
1252 					      &rule_entry->pair.header);
1253 
1254 		/* Set a VLAN itself */
1255 		rule_entry->pair.vlan = ECORE_CPU_TO_LE16(vlan);
1256 		ecore_set_fw_mac_addr(&rule_entry->pair.mac_msb,
1257 				      &rule_entry->pair.mac_mid,
1258 				      &rule_entry->pair.mac_lsb, mac);
1259 		rule_entry->pair.inner_mac =
1260 			elem->cmd_data.vlan_mac.u.vlan_mac.is_inner_mac;
1261 	}
1262 
1263 	/* Set the ramrod data header */
1264 	/* TODO: take this to the higher level in order to prevent multiple
1265 		 writing */
1266 	ecore_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
1267 					rule_cnt);
1268 }
1269 
1270 static void ecore_set_one_vxlan_fltr_e2(struct bxe_softc *sc,
1271 						struct ecore_vlan_mac_obj *o,
1272 						struct ecore_exeq_elem *elem,
1273 						int rule_idx, int cam_offset)
1274 {
1275 	struct ecore_raw_obj *raw = &o->raw;
1276 	struct eth_classify_rules_ramrod_data *data =
1277 		(struct eth_classify_rules_ramrod_data *)(raw->rdata);
1278 	int rule_cnt = rule_idx + 1;
1279 	union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
1280 	enum ecore_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd;
1281 	bool add = (cmd == ECORE_VLAN_MAC_ADD) ? TRUE : FALSE;
1282 	uint32_t vni = elem->cmd_data.vlan_mac.u.vxlan_fltr.vni;
1283 	uint8_t *mac = elem->cmd_data.vlan_mac.u.vxlan_fltr.innermac;
1284 
1285 	/* Reset the ramrod data buffer for the first rule */
1286 	if (rule_idx == 0)
1287 		ECORE_MEMSET(data, 0, sizeof(*data));
1288 
1289 	/* Set a rule header */
1290 	ecore_vlan_mac_set_cmd_hdr_e2(sc, o, add,
1291 				      CLASSIFY_RULE_OPCODE_IMAC_VNI,
1292 				      &rule_entry->imac_vni.header);
1293 
1294 	/* Set VLAN and MAC themselves */
1295 	rule_entry->imac_vni.vni = vni;
1296 	ecore_set_fw_mac_addr(&rule_entry->imac_vni.imac_msb,
1297 			      &rule_entry->imac_vni.imac_mid,
1298 			      &rule_entry->imac_vni.imac_lsb, mac);
1299 
1300 	/* MOVE: Add a rule that will add this MAC to the target Queue */
1301 	if (cmd == ECORE_VLAN_MAC_MOVE) {
1302 		rule_entry++;
1303 		rule_cnt++;
1304 
1305 		/* Setup ramrod data */
1306 		ecore_vlan_mac_set_cmd_hdr_e2(sc,
1307 					      elem->cmd_data.vlan_mac.target_obj,
1308 					      TRUE, CLASSIFY_RULE_OPCODE_IMAC_VNI,
1309 					      &rule_entry->imac_vni.header);
1310 
1311 		/* Set a VLAN itself */
1312 		rule_entry->imac_vni.vni = vni;
1313 		ecore_set_fw_mac_addr(&rule_entry->imac_vni.imac_msb,
1314 				      &rule_entry->imac_vni.imac_mid,
1315 				      &rule_entry->imac_vni.imac_lsb, mac);
1316 	}
1317 
1318 	/* Set the ramrod data header */
1319 	/* TODO: take this to the higher level in order to prevent multiple
1320 	   * writing
1321 	*/
1322 	ecore_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state,
1323 					&data->header, rule_cnt);
1324 }
1325 
1326 /**
1327  * ecore_set_one_vlan_mac_e1h -
1328  *
1329  * @sc:		device handle
1330  * @o:		ecore_vlan_mac_obj
1331  * @elem:	ecore_exeq_elem
1332  * @rule_idx:	rule_idx
1333  * @cam_offset:	cam_offset
1334  */
1335 static void ecore_set_one_vlan_mac_e1h(struct bxe_softc *sc,
1336 				       struct ecore_vlan_mac_obj *o,
1337 				       struct ecore_exeq_elem *elem,
1338 				       int rule_idx, int cam_offset)
1339 {
1340 	struct ecore_raw_obj *raw = &o->raw;
1341 	struct mac_configuration_cmd *config =
1342 		(struct mac_configuration_cmd *)(raw->rdata);
1343 	/* 57710 and 57711 do not support MOVE command,
1344 	 * so it's either ADD or DEL
1345 	 */
1346 	bool add = (elem->cmd_data.vlan_mac.cmd == ECORE_VLAN_MAC_ADD) ?
1347 		TRUE : FALSE;
1348 
1349 	/* Reset the ramrod data buffer */
1350 	ECORE_MEMSET(config, 0, sizeof(*config));
1351 
1352 	ecore_vlan_mac_set_rdata_e1x(sc, o, ECORE_FILTER_VLAN_MAC_PENDING,
1353 				     cam_offset, add,
1354 				     elem->cmd_data.vlan_mac.u.vlan_mac.mac,
1355 				     elem->cmd_data.vlan_mac.u.vlan_mac.vlan,
1356 				     ETH_VLAN_FILTER_CLASSIFY, config);
1357 }
1358 
1359 #define list_next_entry(pos, member) \
1360 	list_entry((pos)->member.next, typeof(*(pos)), member)
1361 
1362 /**
1363  * ecore_vlan_mac_restore - reconfigure next MAC/VLAN/VLAN-MAC element
1364  *
1365  * @sc:		device handle
1366  * @p:		command parameters
1367  * @ppos:	pointer to the cookie
1368  *
1369  * reconfigure next MAC/VLAN/VLAN-MAC element from the
1370  * previously configured elements list.
1371  *
1372  * from command parameters only RAMROD_COMP_WAIT bit in ramrod_flags is	taken
1373  * into an account
1374  *
1375  * pointer to the cookie  - that should be given back in the next call to make
1376  * function handle the next element. If *ppos is set to NULL it will restart the
1377  * iterator. If returned *ppos == NULL this means that the last element has been
1378  * handled.
1379  *
1380  */
1381 static int ecore_vlan_mac_restore(struct bxe_softc *sc,
1382 			   struct ecore_vlan_mac_ramrod_params *p,
1383 			   struct ecore_vlan_mac_registry_elem **ppos)
1384 {
1385 	struct ecore_vlan_mac_registry_elem *pos;
1386 	struct ecore_vlan_mac_obj *o = p->vlan_mac_obj;
1387 
1388 	/* If list is empty - there is nothing to do here */
1389 	if (ECORE_LIST_IS_EMPTY(&o->head)) {
1390 		*ppos = NULL;
1391 		return 0;
1392 	}
1393 
1394 	/* make a step... */
1395 	if (*ppos == NULL)
1396 		*ppos = ECORE_LIST_FIRST_ENTRY(&o->head,
1397 					    struct ecore_vlan_mac_registry_elem,
1398 					       link);
1399 	else
1400 		*ppos = ECORE_LIST_NEXT(*ppos, link,
1401 					struct ecore_vlan_mac_registry_elem);
1402 
1403 	pos = *ppos;
1404 
1405 	/* If it's the last step - return NULL */
1406 	if (ECORE_LIST_IS_LAST(&pos->link, &o->head))
1407 		*ppos = NULL;
1408 
1409 	/* Prepare a 'user_req' */
1410 	ECORE_MEMCPY(&p->user_req.u, &pos->u, sizeof(pos->u));
1411 
1412 	/* Set the command */
1413 	p->user_req.cmd = ECORE_VLAN_MAC_ADD;
1414 
1415 	/* Set vlan_mac_flags */
1416 	p->user_req.vlan_mac_flags = pos->vlan_mac_flags;
1417 
1418 	/* Set a restore bit */
1419 	ECORE_SET_BIT_NA(RAMROD_RESTORE, &p->ramrod_flags);
1420 
1421 	return ecore_config_vlan_mac(sc, p);
1422 }
1423 
1424 /* ecore_exeq_get_mac/ecore_exeq_get_vlan/ecore_exeq_get_vlan_mac return a
1425  * pointer to an element with a specific criteria and NULL if such an element
1426  * hasn't been found.
1427  */
1428 static struct ecore_exeq_elem *ecore_exeq_get_mac(
1429 	struct ecore_exe_queue_obj *o,
1430 	struct ecore_exeq_elem *elem)
1431 {
1432 	struct ecore_exeq_elem *pos;
1433 	struct ecore_mac_ramrod_data *data = &elem->cmd_data.vlan_mac.u.mac;
1434 
1435 	/* Check pending for execution commands */
1436 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->exe_queue, link,
1437 				  struct ecore_exeq_elem)
1438 		if (!ECORE_MEMCMP(&pos->cmd_data.vlan_mac.u.mac, data,
1439 			      sizeof(*data)) &&
1440 		    (pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd))
1441 			return pos;
1442 
1443 	return NULL;
1444 }
1445 
1446 static struct ecore_exeq_elem *ecore_exeq_get_vlan(
1447 	struct ecore_exe_queue_obj *o,
1448 	struct ecore_exeq_elem *elem)
1449 {
1450 	struct ecore_exeq_elem *pos;
1451 	struct ecore_vlan_ramrod_data *data = &elem->cmd_data.vlan_mac.u.vlan;
1452 
1453 	/* Check pending for execution commands */
1454 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->exe_queue, link,
1455 				  struct ecore_exeq_elem)
1456 		if (!ECORE_MEMCMP(&pos->cmd_data.vlan_mac.u.vlan, data,
1457 			      sizeof(*data)) &&
1458 		    (pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd))
1459 			return pos;
1460 
1461 	return NULL;
1462 }
1463 
1464 static struct ecore_exeq_elem *ecore_exeq_get_vlan_mac(
1465 	struct ecore_exe_queue_obj *o,
1466 	struct ecore_exeq_elem *elem)
1467 {
1468 	struct ecore_exeq_elem *pos;
1469 	struct ecore_vlan_mac_ramrod_data *data =
1470 		&elem->cmd_data.vlan_mac.u.vlan_mac;
1471 
1472 	/* Check pending for execution commands */
1473 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->exe_queue, link,
1474 				  struct ecore_exeq_elem)
1475 		if (!ECORE_MEMCMP(&pos->cmd_data.vlan_mac.u.vlan_mac, data,
1476 			      sizeof(*data)) &&
1477 		    (pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd))
1478 			return pos;
1479 
1480 	return NULL;
1481 }
1482 
1483 static struct ecore_exeq_elem *ecore_exeq_get_vxlan_fltr
1484 			(struct ecore_exe_queue_obj *o,
1485 			struct ecore_exeq_elem *elem)
1486 {
1487 	struct ecore_exeq_elem *pos;
1488 	struct ecore_vxlan_fltr_ramrod_data *data =
1489 		&elem->cmd_data.vlan_mac.u.vxlan_fltr;
1490 
1491 	/* Check pending for execution commands */
1492 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->exe_queue, link,
1493 				  struct ecore_exeq_elem)
1494 		if (!ECORE_MEMCMP(&pos->cmd_data.vlan_mac.u.vxlan_fltr, data,
1495 			      sizeof(*data)) &&
1496 			      (pos->cmd_data.vlan_mac.cmd ==
1497 			      elem->cmd_data.vlan_mac.cmd))
1498 			return pos;
1499 
1500 	return NULL;
1501 }
1502 
1503 /**
1504  * ecore_validate_vlan_mac_add - check if an ADD command can be executed
1505  *
1506  * @sc:		device handle
1507  * @qo:		ecore_qable_obj
1508  * @elem:	ecore_exeq_elem
1509  *
1510  * Checks that the requested configuration can be added. If yes and if
1511  * requested, consume CAM credit.
1512  *
1513  * The 'validate' is run after the 'optimize'.
1514  *
1515  */
1516 static inline int ecore_validate_vlan_mac_add(struct bxe_softc *sc,
1517 					      union ecore_qable_obj *qo,
1518 					      struct ecore_exeq_elem *elem)
1519 {
1520 	struct ecore_vlan_mac_obj *o = &qo->vlan_mac;
1521 	struct ecore_exe_queue_obj *exeq = &o->exe_queue;
1522 	int rc;
1523 
1524 	/* Check the registry */
1525 	rc = o->check_add(sc, o, &elem->cmd_data.vlan_mac.u);
1526 	if (rc) {
1527 		ECORE_MSG(sc, "ADD command is not allowed considering current registry state.\n");
1528 		return rc;
1529 	}
1530 
1531 	/* Check if there is a pending ADD command for this
1532 	 * MAC/VLAN/VLAN-MAC. Return an error if there is.
1533 	 */
1534 	if (exeq->get(exeq, elem)) {
1535 		ECORE_MSG(sc, "There is a pending ADD command already\n");
1536 		return ECORE_EXISTS;
1537 	}
1538 
1539 	/* TODO: Check the pending MOVE from other objects where this
1540 	 * object is a destination object.
1541 	 */
1542 
1543 	/* Consume the credit if not requested not to */
1544 	if (!(ECORE_TEST_BIT(ECORE_DONT_CONSUME_CAM_CREDIT,
1545 			     &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1546 	    o->get_credit(o)))
1547 		return ECORE_INVAL;
1548 
1549 	return ECORE_SUCCESS;
1550 }
1551 
1552 /**
1553  * ecore_validate_vlan_mac_del - check if the DEL command can be executed
1554  *
1555  * @sc:		device handle
1556  * @qo:		quable object to check
1557  * @elem:	element that needs to be deleted
1558  *
1559  * Checks that the requested configuration can be deleted. If yes and if
1560  * requested, returns a CAM credit.
1561  *
1562  * The 'validate' is run after the 'optimize'.
1563  */
1564 static inline int ecore_validate_vlan_mac_del(struct bxe_softc *sc,
1565 					      union ecore_qable_obj *qo,
1566 					      struct ecore_exeq_elem *elem)
1567 {
1568 	struct ecore_vlan_mac_obj *o = &qo->vlan_mac;
1569 	struct ecore_vlan_mac_registry_elem *pos;
1570 	struct ecore_exe_queue_obj *exeq = &o->exe_queue;
1571 	struct ecore_exeq_elem query_elem;
1572 
1573 	/* If this classification can not be deleted (doesn't exist)
1574 	 * - return a ECORE_EXIST.
1575 	 */
1576 	pos = o->check_del(sc, o, &elem->cmd_data.vlan_mac.u);
1577 	if (!pos) {
1578 		ECORE_MSG(sc, "DEL command is not allowed considering current registry state\n");
1579 		return ECORE_EXISTS;
1580 	}
1581 
1582 	/* Check if there are pending DEL or MOVE commands for this
1583 	 * MAC/VLAN/VLAN-MAC. Return an error if so.
1584 	 */
1585 	ECORE_MEMCPY(&query_elem, elem, sizeof(query_elem));
1586 
1587 	/* Check for MOVE commands */
1588 	query_elem.cmd_data.vlan_mac.cmd = ECORE_VLAN_MAC_MOVE;
1589 	if (exeq->get(exeq, &query_elem)) {
1590 		ECORE_ERR("There is a pending MOVE command already\n");
1591 		return ECORE_INVAL;
1592 	}
1593 
1594 	/* Check for DEL commands */
1595 	if (exeq->get(exeq, elem)) {
1596 		ECORE_MSG(sc, "There is a pending DEL command already\n");
1597 		return ECORE_EXISTS;
1598 	}
1599 
1600 	/* Return the credit to the credit pool if not requested not to */
1601 	if (!(ECORE_TEST_BIT(ECORE_DONT_CONSUME_CAM_CREDIT,
1602 			     &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1603 	    o->put_credit(o))) {
1604 		ECORE_ERR("Failed to return a credit\n");
1605 		return ECORE_INVAL;
1606 	}
1607 
1608 	return ECORE_SUCCESS;
1609 }
1610 
1611 /**
1612  * ecore_validate_vlan_mac_move - check if the MOVE command can be executed
1613  *
1614  * @sc:		device handle
1615  * @qo:		quable object to check (source)
1616  * @elem:	element that needs to be moved
1617  *
1618  * Checks that the requested configuration can be moved. If yes and if
1619  * requested, returns a CAM credit.
1620  *
1621  * The 'validate' is run after the 'optimize'.
1622  */
1623 static inline int ecore_validate_vlan_mac_move(struct bxe_softc *sc,
1624 					       union ecore_qable_obj *qo,
1625 					       struct ecore_exeq_elem *elem)
1626 {
1627 	struct ecore_vlan_mac_obj *src_o = &qo->vlan_mac;
1628 	struct ecore_vlan_mac_obj *dest_o = elem->cmd_data.vlan_mac.target_obj;
1629 	struct ecore_exeq_elem query_elem;
1630 	struct ecore_exe_queue_obj *src_exeq = &src_o->exe_queue;
1631 	struct ecore_exe_queue_obj *dest_exeq = &dest_o->exe_queue;
1632 
1633 	/* Check if we can perform this operation based on the current registry
1634 	 * state.
1635 	 */
1636 	if (!src_o->check_move(sc, src_o, dest_o,
1637 			       &elem->cmd_data.vlan_mac.u)) {
1638 		ECORE_MSG(sc, "MOVE command is not allowed considering current registry state\n");
1639 		return ECORE_INVAL;
1640 	}
1641 
1642 	/* Check if there is an already pending DEL or MOVE command for the
1643 	 * source object or ADD command for a destination object. Return an
1644 	 * error if so.
1645 	 */
1646 	ECORE_MEMCPY(&query_elem, elem, sizeof(query_elem));
1647 
1648 	/* Check DEL on source */
1649 	query_elem.cmd_data.vlan_mac.cmd = ECORE_VLAN_MAC_DEL;
1650 	if (src_exeq->get(src_exeq, &query_elem)) {
1651 		ECORE_ERR("There is a pending DEL command on the source queue already\n");
1652 		return ECORE_INVAL;
1653 	}
1654 
1655 	/* Check MOVE on source */
1656 	if (src_exeq->get(src_exeq, elem)) {
1657 		ECORE_MSG(sc, "There is a pending MOVE command already\n");
1658 		return ECORE_EXISTS;
1659 	}
1660 
1661 	/* Check ADD on destination */
1662 	query_elem.cmd_data.vlan_mac.cmd = ECORE_VLAN_MAC_ADD;
1663 	if (dest_exeq->get(dest_exeq, &query_elem)) {
1664 		ECORE_ERR("There is a pending ADD command on the destination queue already\n");
1665 		return ECORE_INVAL;
1666 	}
1667 
1668 	/* Consume the credit if not requested not to */
1669 	if (!(ECORE_TEST_BIT(ECORE_DONT_CONSUME_CAM_CREDIT_DEST,
1670 			     &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1671 	    dest_o->get_credit(dest_o)))
1672 		return ECORE_INVAL;
1673 
1674 	if (!(ECORE_TEST_BIT(ECORE_DONT_CONSUME_CAM_CREDIT,
1675 			     &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1676 	    src_o->put_credit(src_o))) {
1677 		/* return the credit taken from dest... */
1678 		dest_o->put_credit(dest_o);
1679 		return ECORE_INVAL;
1680 	}
1681 
1682 	return ECORE_SUCCESS;
1683 }
1684 
1685 static int ecore_validate_vlan_mac(struct bxe_softc *sc,
1686 				   union ecore_qable_obj *qo,
1687 				   struct ecore_exeq_elem *elem)
1688 {
1689 	switch (elem->cmd_data.vlan_mac.cmd) {
1690 	case ECORE_VLAN_MAC_ADD:
1691 		return ecore_validate_vlan_mac_add(sc, qo, elem);
1692 	case ECORE_VLAN_MAC_DEL:
1693 		return ecore_validate_vlan_mac_del(sc, qo, elem);
1694 	case ECORE_VLAN_MAC_MOVE:
1695 		return ecore_validate_vlan_mac_move(sc, qo, elem);
1696 	default:
1697 		return ECORE_INVAL;
1698 	}
1699 }
1700 
1701 static int ecore_remove_vlan_mac(struct bxe_softc *sc,
1702 				  union ecore_qable_obj *qo,
1703 				  struct ecore_exeq_elem *elem)
1704 {
1705 	int rc = 0;
1706 
1707 	/* If consumption wasn't required, nothing to do */
1708 	if (ECORE_TEST_BIT(ECORE_DONT_CONSUME_CAM_CREDIT,
1709 			   &elem->cmd_data.vlan_mac.vlan_mac_flags))
1710 		return ECORE_SUCCESS;
1711 
1712 	switch (elem->cmd_data.vlan_mac.cmd) {
1713 	case ECORE_VLAN_MAC_ADD:
1714 	case ECORE_VLAN_MAC_MOVE:
1715 		rc = qo->vlan_mac.put_credit(&qo->vlan_mac);
1716 		break;
1717 	case ECORE_VLAN_MAC_DEL:
1718 		rc = qo->vlan_mac.get_credit(&qo->vlan_mac);
1719 		break;
1720 	default:
1721 		return ECORE_INVAL;
1722 	}
1723 
1724 	if (rc != TRUE)
1725 		return ECORE_INVAL;
1726 
1727 	return ECORE_SUCCESS;
1728 }
1729 
1730 /**
1731  * ecore_wait_vlan_mac - passively wait for 5 seconds until all work completes.
1732  *
1733  * @sc:		device handle
1734  * @o:		ecore_vlan_mac_obj
1735  *
1736  */
1737 static int ecore_wait_vlan_mac(struct bxe_softc *sc,
1738 			       struct ecore_vlan_mac_obj *o)
1739 {
1740 	int cnt = 5000, rc;
1741 	struct ecore_exe_queue_obj *exeq = &o->exe_queue;
1742 	struct ecore_raw_obj *raw = &o->raw;
1743 
1744 	while (cnt--) {
1745 		/* Wait for the current command to complete */
1746 		rc = raw->wait_comp(sc, raw);
1747 		if (rc)
1748 			return rc;
1749 
1750 		/* Wait until there are no pending commands */
1751 		if (!ecore_exe_queue_empty(exeq))
1752 			ECORE_WAIT(sc, 1000);
1753 		else
1754 			return ECORE_SUCCESS;
1755 	}
1756 
1757 	return ECORE_TIMEOUT;
1758 }
1759 
1760 static int __ecore_vlan_mac_execute_step(struct bxe_softc *sc,
1761 					 struct ecore_vlan_mac_obj *o,
1762 					 unsigned long *ramrod_flags)
1763 {
1764 	int rc = ECORE_SUCCESS;
1765 
1766 	ECORE_SPIN_LOCK_BH(&o->exe_queue.lock);
1767 
1768 	ECORE_MSG(sc, "vlan_mac_execute_step - trying to take writer lock\n");
1769 	rc = __ecore_vlan_mac_h_write_trylock(sc, o);
1770 
1771 	if (rc != ECORE_SUCCESS) {
1772 		__ecore_vlan_mac_h_pend(sc, o, *ramrod_flags);
1773 
1774 		/** Calling function should not diffrentiate between this case
1775 		 *  and the case in which there is already a pending ramrod
1776 		 */
1777 		rc = ECORE_PENDING;
1778 	} else {
1779 		rc = ecore_exe_queue_step(sc, &o->exe_queue, ramrod_flags);
1780 	}
1781 	ECORE_SPIN_UNLOCK_BH(&o->exe_queue.lock);
1782 
1783 	return rc;
1784 }
1785 
1786 /**
1787  * ecore_complete_vlan_mac - complete one VLAN-MAC ramrod
1788  *
1789  * @sc:		device handle
1790  * @o:		ecore_vlan_mac_obj
1791  * @cqe:
1792  * @cont:	if TRUE schedule next execution chunk
1793  *
1794  */
1795 static int ecore_complete_vlan_mac(struct bxe_softc *sc,
1796 				   struct ecore_vlan_mac_obj *o,
1797 				   union event_ring_elem *cqe,
1798 				   unsigned long *ramrod_flags)
1799 {
1800 	struct ecore_raw_obj *r = &o->raw;
1801 	int rc;
1802 
1803 	/* Clearing the pending list & raw state should be made
1804 	 * atomically (as execution flow assumes they represent the same)
1805 	 */
1806 	ECORE_SPIN_LOCK_BH(&o->exe_queue.lock);
1807 
1808 	/* Reset pending list */
1809 	__ecore_exe_queue_reset_pending(sc, &o->exe_queue);
1810 
1811 	/* Clear pending */
1812 	r->clear_pending(r);
1813 
1814 	ECORE_SPIN_UNLOCK_BH(&o->exe_queue.lock);
1815 
1816 	/* If ramrod failed this is most likely a SW bug */
1817 	if (cqe->message.error)
1818 		return ECORE_INVAL;
1819 
1820 	/* Run the next bulk of pending commands if requested */
1821 	if (ECORE_TEST_BIT(RAMROD_CONT, ramrod_flags)) {
1822 		rc = __ecore_vlan_mac_execute_step(sc, o, ramrod_flags);
1823 		if (rc < 0)
1824 			return rc;
1825 	}
1826 
1827 	/* If there is more work to do return PENDING */
1828 	if (!ecore_exe_queue_empty(&o->exe_queue))
1829 		return ECORE_PENDING;
1830 
1831 	return ECORE_SUCCESS;
1832 }
1833 
1834 /**
1835  * ecore_optimize_vlan_mac - optimize ADD and DEL commands.
1836  *
1837  * @sc:		device handle
1838  * @o:		ecore_qable_obj
1839  * @elem:	ecore_exeq_elem
1840  */
1841 static int ecore_optimize_vlan_mac(struct bxe_softc *sc,
1842 				   union ecore_qable_obj *qo,
1843 				   struct ecore_exeq_elem *elem)
1844 {
1845 	struct ecore_exeq_elem query, *pos;
1846 	struct ecore_vlan_mac_obj *o = &qo->vlan_mac;
1847 	struct ecore_exe_queue_obj *exeq = &o->exe_queue;
1848 
1849 	ECORE_MEMCPY(&query, elem, sizeof(query));
1850 
1851 	switch (elem->cmd_data.vlan_mac.cmd) {
1852 	case ECORE_VLAN_MAC_ADD:
1853 		query.cmd_data.vlan_mac.cmd = ECORE_VLAN_MAC_DEL;
1854 		break;
1855 	case ECORE_VLAN_MAC_DEL:
1856 		query.cmd_data.vlan_mac.cmd = ECORE_VLAN_MAC_ADD;
1857 		break;
1858 	default:
1859 		/* Don't handle anything other than ADD or DEL */
1860 		return 0;
1861 	}
1862 
1863 	/* If we found the appropriate element - delete it */
1864 	pos = exeq->get(exeq, &query);
1865 	if (pos) {
1866 
1867 		/* Return the credit of the optimized command */
1868 		if (!ECORE_TEST_BIT(ECORE_DONT_CONSUME_CAM_CREDIT,
1869 				     &pos->cmd_data.vlan_mac.vlan_mac_flags)) {
1870 			if ((query.cmd_data.vlan_mac.cmd ==
1871 			     ECORE_VLAN_MAC_ADD) && !o->put_credit(o)) {
1872 				ECORE_ERR("Failed to return the credit for the optimized ADD command\n");
1873 				return ECORE_INVAL;
1874 			} else if (!o->get_credit(o)) { /* VLAN_MAC_DEL */
1875 				ECORE_ERR("Failed to recover the credit from the optimized DEL command\n");
1876 				return ECORE_INVAL;
1877 			}
1878 		}
1879 
1880 		ECORE_MSG(sc, "Optimizing %s command\n",
1881 			  (elem->cmd_data.vlan_mac.cmd == ECORE_VLAN_MAC_ADD) ?
1882 			  "ADD" : "DEL");
1883 
1884 		ECORE_LIST_REMOVE_ENTRY(&pos->link, &exeq->exe_queue);
1885 		ecore_exe_queue_free_elem(sc, pos);
1886 		return 1;
1887 	}
1888 
1889 	return 0;
1890 }
1891 
1892 /**
1893  * ecore_vlan_mac_get_registry_elem - prepare a registry element
1894  *
1895  * @sc:	  device handle
1896  * @o:
1897  * @elem:
1898  * @restore:
1899  * @re:
1900  *
1901  * prepare a registry element according to the current command request.
1902  */
1903 static inline int ecore_vlan_mac_get_registry_elem(
1904 	struct bxe_softc *sc,
1905 	struct ecore_vlan_mac_obj *o,
1906 	struct ecore_exeq_elem *elem,
1907 	bool restore,
1908 	struct ecore_vlan_mac_registry_elem **re)
1909 {
1910 	enum ecore_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd;
1911 	struct ecore_vlan_mac_registry_elem *reg_elem;
1912 
1913 	/* Allocate a new registry element if needed. */
1914 	if (!restore &&
1915 	    ((cmd == ECORE_VLAN_MAC_ADD) || (cmd == ECORE_VLAN_MAC_MOVE))) {
1916 		reg_elem = ECORE_ZALLOC(sizeof(*reg_elem), GFP_ATOMIC, sc);
1917 		if (!reg_elem)
1918 			return ECORE_NOMEM;
1919 
1920 		/* Get a new CAM offset */
1921 		if (!o->get_cam_offset(o, &reg_elem->cam_offset)) {
1922 			/* This shall never happen, because we have checked the
1923 			 * CAM availability in the 'validate'.
1924 			 */
1925 			ECORE_DBG_BREAK_IF(1);
1926 			ECORE_FREE(sc, reg_elem, sizeof(*reg_elem));
1927 			return ECORE_INVAL;
1928 		}
1929 
1930 		ECORE_MSG(sc, "Got cam offset %d\n", reg_elem->cam_offset);
1931 
1932 		/* Set a VLAN-MAC data */
1933 		ECORE_MEMCPY(&reg_elem->u, &elem->cmd_data.vlan_mac.u,
1934 			  sizeof(reg_elem->u));
1935 
1936 		/* Copy the flags (needed for DEL and RESTORE flows) */
1937 		reg_elem->vlan_mac_flags =
1938 			elem->cmd_data.vlan_mac.vlan_mac_flags;
1939 	} else /* DEL, RESTORE */
1940 		reg_elem = o->check_del(sc, o, &elem->cmd_data.vlan_mac.u);
1941 
1942 	*re = reg_elem;
1943 	return ECORE_SUCCESS;
1944 }
1945 
1946 /**
1947  * ecore_execute_vlan_mac - execute vlan mac command
1948  *
1949  * @sc:			device handle
1950  * @qo:
1951  * @exe_chunk:
1952  * @ramrod_flags:
1953  *
1954  * go and send a ramrod!
1955  */
1956 static int ecore_execute_vlan_mac(struct bxe_softc *sc,
1957 				  union ecore_qable_obj *qo,
1958 				  ecore_list_t *exe_chunk,
1959 				  unsigned long *ramrod_flags)
1960 {
1961 	struct ecore_exeq_elem *elem;
1962 	struct ecore_vlan_mac_obj *o = &qo->vlan_mac, *cam_obj;
1963 	struct ecore_raw_obj *r = &o->raw;
1964 	int rc, idx = 0;
1965 	bool restore = ECORE_TEST_BIT(RAMROD_RESTORE, ramrod_flags);
1966 	bool drv_only = ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, ramrod_flags);
1967 	struct ecore_vlan_mac_registry_elem *reg_elem;
1968 	enum ecore_vlan_mac_cmd cmd;
1969 
1970 	/* If DRIVER_ONLY execution is requested, cleanup a registry
1971 	 * and exit. Otherwise send a ramrod to FW.
1972 	 */
1973 	if (!drv_only) {
1974 		ECORE_DBG_BREAK_IF(r->check_pending(r));
1975 
1976 		/* Set pending */
1977 		r->set_pending(r);
1978 
1979 		/* Fill the ramrod data */
1980 		ECORE_LIST_FOR_EACH_ENTRY(elem, exe_chunk, link,
1981 					  struct ecore_exeq_elem) {
1982 			cmd = elem->cmd_data.vlan_mac.cmd;
1983 			/* We will add to the target object in MOVE command, so
1984 			 * change the object for a CAM search.
1985 			 */
1986 			if (cmd == ECORE_VLAN_MAC_MOVE)
1987 				cam_obj = elem->cmd_data.vlan_mac.target_obj;
1988 			else
1989 				cam_obj = o;
1990 
1991 			rc = ecore_vlan_mac_get_registry_elem(sc, cam_obj,
1992 							      elem, restore,
1993 							      &reg_elem);
1994 			if (rc)
1995 				goto error_exit;
1996 
1997 			ECORE_DBG_BREAK_IF(!reg_elem);
1998 
1999 			/* Push a new entry into the registry */
2000 			if (!restore &&
2001 			    ((cmd == ECORE_VLAN_MAC_ADD) ||
2002 			    (cmd == ECORE_VLAN_MAC_MOVE)))
2003 				ECORE_LIST_PUSH_HEAD(&reg_elem->link,
2004 						     &cam_obj->head);
2005 
2006 			/* Configure a single command in a ramrod data buffer */
2007 			o->set_one_rule(sc, o, elem, idx,
2008 					reg_elem->cam_offset);
2009 
2010 			/* MOVE command consumes 2 entries in the ramrod data */
2011 			if (cmd == ECORE_VLAN_MAC_MOVE)
2012 				idx += 2;
2013 			else
2014 				idx++;
2015 		}
2016 
2017 		/* No need for an explicit memory barrier here as long as we
2018 		 * ensure the ordering of writing to the SPQ element
2019 		 *  and updating of the SPQ producer which involves a memory
2020 		 * read. If the memory read is removed we will have to put a
2021 		 * full memory barrier there (inside ecore_sp_post()).
2022 		 */
2023 		rc = ecore_sp_post(sc, o->ramrod_cmd, r->cid,
2024 				   r->rdata_mapping,
2025 				   ETH_CONNECTION_TYPE);
2026 		if (rc)
2027 			goto error_exit;
2028 	}
2029 
2030 	/* Now, when we are done with the ramrod - clean up the registry */
2031 	ECORE_LIST_FOR_EACH_ENTRY(elem, exe_chunk, link,
2032 				  struct ecore_exeq_elem) {
2033 		cmd = elem->cmd_data.vlan_mac.cmd;
2034 		if ((cmd == ECORE_VLAN_MAC_DEL) ||
2035 		    (cmd == ECORE_VLAN_MAC_MOVE)) {
2036 			reg_elem = o->check_del(sc, o,
2037 						&elem->cmd_data.vlan_mac.u);
2038 
2039 			ECORE_DBG_BREAK_IF(!reg_elem);
2040 
2041 			o->put_cam_offset(o, reg_elem->cam_offset);
2042 			ECORE_LIST_REMOVE_ENTRY(&reg_elem->link, &o->head);
2043 			ECORE_FREE(sc, reg_elem, sizeof(*reg_elem));
2044 		}
2045 	}
2046 
2047 	if (!drv_only)
2048 		return ECORE_PENDING;
2049 	else
2050 		return ECORE_SUCCESS;
2051 
2052 error_exit:
2053 	r->clear_pending(r);
2054 
2055 	/* Cleanup a registry in case of a failure */
2056 	ECORE_LIST_FOR_EACH_ENTRY(elem, exe_chunk, link,
2057 				  struct ecore_exeq_elem) {
2058 		cmd = elem->cmd_data.vlan_mac.cmd;
2059 
2060 		if (cmd == ECORE_VLAN_MAC_MOVE)
2061 			cam_obj = elem->cmd_data.vlan_mac.target_obj;
2062 		else
2063 			cam_obj = o;
2064 
2065 		/* Delete all newly added above entries */
2066 		if (!restore &&
2067 		    ((cmd == ECORE_VLAN_MAC_ADD) ||
2068 		    (cmd == ECORE_VLAN_MAC_MOVE))) {
2069 			reg_elem = o->check_del(sc, cam_obj,
2070 						&elem->cmd_data.vlan_mac.u);
2071 			if (reg_elem) {
2072 				ECORE_LIST_REMOVE_ENTRY(&reg_elem->link,
2073 							&cam_obj->head);
2074 				ECORE_FREE(sc, reg_elem, sizeof(*reg_elem));
2075 			}
2076 		}
2077 	}
2078 
2079 	return rc;
2080 }
2081 
2082 static inline int ecore_vlan_mac_push_new_cmd(
2083 	struct bxe_softc *sc,
2084 	struct ecore_vlan_mac_ramrod_params *p)
2085 {
2086 	struct ecore_exeq_elem *elem;
2087 	struct ecore_vlan_mac_obj *o = p->vlan_mac_obj;
2088 	bool restore = ECORE_TEST_BIT(RAMROD_RESTORE, &p->ramrod_flags);
2089 
2090 	/* Allocate the execution queue element */
2091 	elem = ecore_exe_queue_alloc_elem(sc);
2092 	if (!elem)
2093 		return ECORE_NOMEM;
2094 
2095 	/* Set the command 'length' */
2096 	switch (p->user_req.cmd) {
2097 	case ECORE_VLAN_MAC_MOVE:
2098 		elem->cmd_len = 2;
2099 		break;
2100 	default:
2101 		elem->cmd_len = 1;
2102 	}
2103 
2104 	/* Fill the object specific info */
2105 	ECORE_MEMCPY(&elem->cmd_data.vlan_mac, &p->user_req, sizeof(p->user_req));
2106 
2107 	/* Try to add a new command to the pending list */
2108 	return ecore_exe_queue_add(sc, &o->exe_queue, elem, restore);
2109 }
2110 
2111 /**
2112  * ecore_config_vlan_mac - configure VLAN/MAC/VLAN_MAC filtering rules.
2113  *
2114  * @sc:	  device handle
2115  * @p:
2116  *
2117  */
2118 int ecore_config_vlan_mac(struct bxe_softc *sc,
2119 			   struct ecore_vlan_mac_ramrod_params *p)
2120 {
2121 	int rc = ECORE_SUCCESS;
2122 	struct ecore_vlan_mac_obj *o = p->vlan_mac_obj;
2123 	unsigned long *ramrod_flags = &p->ramrod_flags;
2124 	bool cont = ECORE_TEST_BIT(RAMROD_CONT, ramrod_flags);
2125 	struct ecore_raw_obj *raw = &o->raw;
2126 
2127 	/*
2128 	 * Add new elements to the execution list for commands that require it.
2129 	 */
2130 	if (!cont) {
2131 		rc = ecore_vlan_mac_push_new_cmd(sc, p);
2132 		if (rc)
2133 			return rc;
2134 	}
2135 
2136 	/* If nothing will be executed further in this iteration we want to
2137 	 * return PENDING if there are pending commands
2138 	 */
2139 	if (!ecore_exe_queue_empty(&o->exe_queue))
2140 		rc = ECORE_PENDING;
2141 
2142 	if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, ramrod_flags))  {
2143 		ECORE_MSG(sc, "RAMROD_DRV_CLR_ONLY requested: clearing a pending bit.\n");
2144 		raw->clear_pending(raw);
2145 	}
2146 
2147 	/* Execute commands if required */
2148 	if (cont || ECORE_TEST_BIT(RAMROD_EXEC, ramrod_flags) ||
2149 	    ECORE_TEST_BIT(RAMROD_COMP_WAIT, ramrod_flags)) {
2150 		rc = __ecore_vlan_mac_execute_step(sc, p->vlan_mac_obj,
2151 						   &p->ramrod_flags);
2152 		if (rc < 0)
2153 			return rc;
2154 	}
2155 
2156 	/* RAMROD_COMP_WAIT is a superset of RAMROD_EXEC. If it was set
2157 	 * then user want to wait until the last command is done.
2158 	 */
2159 	if (ECORE_TEST_BIT(RAMROD_COMP_WAIT, &p->ramrod_flags)) {
2160 		/* Wait maximum for the current exe_queue length iterations plus
2161 		 * one (for the current pending command).
2162 		 */
2163 		int max_iterations = ecore_exe_queue_length(&o->exe_queue) + 1;
2164 
2165 		while (!ecore_exe_queue_empty(&o->exe_queue) &&
2166 		       max_iterations--) {
2167 
2168 			/* Wait for the current command to complete */
2169 			rc = raw->wait_comp(sc, raw);
2170 			if (rc)
2171 				return rc;
2172 
2173 			/* Make a next step */
2174 			rc = __ecore_vlan_mac_execute_step(sc,
2175 							   p->vlan_mac_obj,
2176 							   &p->ramrod_flags);
2177 			if (rc < 0)
2178 				return rc;
2179 		}
2180 
2181 		return ECORE_SUCCESS;
2182 	}
2183 
2184 	return rc;
2185 }
2186 
2187 /**
2188  * ecore_vlan_mac_del_all - delete elements with given vlan_mac_flags spec
2189  *
2190  * @sc:			device handle
2191  * @o:
2192  * @vlan_mac_flags:
2193  * @ramrod_flags:	execution flags to be used for this deletion
2194  *
2195  * if the last operation has completed successfully and there are no
2196  * more elements left, positive value if the last operation has completed
2197  * successfully and there are more previously configured elements, negative
2198  * value is current operation has failed.
2199  */
2200 static int ecore_vlan_mac_del_all(struct bxe_softc *sc,
2201 				  struct ecore_vlan_mac_obj *o,
2202 				  unsigned long *vlan_mac_flags,
2203 				  unsigned long *ramrod_flags)
2204 {
2205 	struct ecore_vlan_mac_registry_elem *pos = NULL;
2206 	struct ecore_vlan_mac_ramrod_params p;
2207 	struct ecore_exe_queue_obj *exeq = &o->exe_queue;
2208 	struct ecore_exeq_elem *exeq_pos, *exeq_pos_n;
2209 	unsigned long flags;
2210 	int read_lock;
2211 	int rc = 0;
2212 
2213 	/* Clear pending commands first */
2214 
2215 	ECORE_SPIN_LOCK_BH(&exeq->lock);
2216 
2217 	ECORE_LIST_FOR_EACH_ENTRY_SAFE(exeq_pos, exeq_pos_n,
2218 				       &exeq->exe_queue, link,
2219 				       struct ecore_exeq_elem) {
2220 		flags = exeq_pos->cmd_data.vlan_mac.vlan_mac_flags;
2221 		if (ECORE_VLAN_MAC_CMP_FLAGS(flags) ==
2222 		    ECORE_VLAN_MAC_CMP_FLAGS(*vlan_mac_flags)) {
2223 			rc = exeq->remove(sc, exeq->owner, exeq_pos);
2224 			if (rc) {
2225 				ECORE_ERR("Failed to remove command\n");
2226 				ECORE_SPIN_UNLOCK_BH(&exeq->lock);
2227 				return rc;
2228 			}
2229 			ECORE_LIST_REMOVE_ENTRY(&exeq_pos->link,
2230 						&exeq->exe_queue);
2231 			ecore_exe_queue_free_elem(sc, exeq_pos);
2232 		}
2233 	}
2234 
2235 	ECORE_SPIN_UNLOCK_BH(&exeq->lock);
2236 
2237 	/* Prepare a command request */
2238 	ECORE_MEMSET(&p, 0, sizeof(p));
2239 	p.vlan_mac_obj = o;
2240 	p.ramrod_flags = *ramrod_flags;
2241 	p.user_req.cmd = ECORE_VLAN_MAC_DEL;
2242 
2243 	/* Add all but the last VLAN-MAC to the execution queue without actually
2244 	 * execution anything.
2245 	 */
2246 	ECORE_CLEAR_BIT_NA(RAMROD_COMP_WAIT, &p.ramrod_flags);
2247 	ECORE_CLEAR_BIT_NA(RAMROD_EXEC, &p.ramrod_flags);
2248 	ECORE_CLEAR_BIT_NA(RAMROD_CONT, &p.ramrod_flags);
2249 
2250 	ECORE_MSG(sc, "vlan_mac_del_all -- taking vlan_mac_lock (reader)\n");
2251 	read_lock = ecore_vlan_mac_h_read_lock(sc, o);
2252 	if (read_lock != ECORE_SUCCESS)
2253 		return read_lock;
2254 
2255 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
2256 				  struct ecore_vlan_mac_registry_elem) {
2257 		flags = pos->vlan_mac_flags;
2258 		if (ECORE_VLAN_MAC_CMP_FLAGS(flags) ==
2259 		    ECORE_VLAN_MAC_CMP_FLAGS(*vlan_mac_flags)) {
2260 			p.user_req.vlan_mac_flags = pos->vlan_mac_flags;
2261 			ECORE_MEMCPY(&p.user_req.u, &pos->u, sizeof(pos->u));
2262 			rc = ecore_config_vlan_mac(sc, &p);
2263 			if (rc < 0) {
2264 				ECORE_ERR("Failed to add a new DEL command\n");
2265 				ecore_vlan_mac_h_read_unlock(sc, o);
2266 				return rc;
2267 			}
2268 		}
2269 	}
2270 
2271 	ECORE_MSG(sc, "vlan_mac_del_all -- releasing vlan_mac_lock (reader)\n");
2272 	ecore_vlan_mac_h_read_unlock(sc, o);
2273 
2274 	p.ramrod_flags = *ramrod_flags;
2275 	ECORE_SET_BIT_NA(RAMROD_CONT, &p.ramrod_flags);
2276 
2277 	return ecore_config_vlan_mac(sc, &p);
2278 }
2279 
2280 static inline void ecore_init_raw_obj(struct ecore_raw_obj *raw, uint8_t cl_id,
2281 	uint32_t cid, uint8_t func_id, void *rdata, ecore_dma_addr_t rdata_mapping, int state,
2282 	unsigned long *pstate, ecore_obj_type type)
2283 {
2284 	raw->func_id = func_id;
2285 	raw->cid = cid;
2286 	raw->cl_id = cl_id;
2287 	raw->rdata = rdata;
2288 	raw->rdata_mapping = rdata_mapping;
2289 	raw->state = state;
2290 	raw->pstate = pstate;
2291 	raw->obj_type = type;
2292 	raw->check_pending = ecore_raw_check_pending;
2293 	raw->clear_pending = ecore_raw_clear_pending;
2294 	raw->set_pending = ecore_raw_set_pending;
2295 	raw->wait_comp = ecore_raw_wait;
2296 }
2297 
2298 static inline void ecore_init_vlan_mac_common(struct ecore_vlan_mac_obj *o,
2299 	uint8_t cl_id, uint32_t cid, uint8_t func_id, void *rdata, ecore_dma_addr_t rdata_mapping,
2300 	int state, unsigned long *pstate, ecore_obj_type type,
2301 	struct ecore_credit_pool_obj *macs_pool,
2302 	struct ecore_credit_pool_obj *vlans_pool)
2303 {
2304 	ECORE_LIST_INIT(&o->head);
2305 	o->head_reader = 0;
2306 	o->head_exe_request = FALSE;
2307 	o->saved_ramrod_flags = 0;
2308 
2309 	o->macs_pool = macs_pool;
2310 	o->vlans_pool = vlans_pool;
2311 
2312 	o->delete_all = ecore_vlan_mac_del_all;
2313 	o->restore = ecore_vlan_mac_restore;
2314 	o->complete = ecore_complete_vlan_mac;
2315 	o->wait = ecore_wait_vlan_mac;
2316 
2317 	ecore_init_raw_obj(&o->raw, cl_id, cid, func_id, rdata, rdata_mapping,
2318 			   state, pstate, type);
2319 }
2320 
2321 void ecore_init_mac_obj(struct bxe_softc *sc,
2322 			struct ecore_vlan_mac_obj *mac_obj,
2323 			uint8_t cl_id, uint32_t cid, uint8_t func_id, void *rdata,
2324 			ecore_dma_addr_t rdata_mapping, int state,
2325 			unsigned long *pstate, ecore_obj_type type,
2326 			struct ecore_credit_pool_obj *macs_pool)
2327 {
2328 	union ecore_qable_obj *qable_obj = (union ecore_qable_obj *)mac_obj;
2329 
2330 	ecore_init_vlan_mac_common(mac_obj, cl_id, cid, func_id, rdata,
2331 				   rdata_mapping, state, pstate, type,
2332 				   macs_pool, NULL);
2333 
2334 	/* CAM credit pool handling */
2335 	mac_obj->get_credit = ecore_get_credit_mac;
2336 	mac_obj->put_credit = ecore_put_credit_mac;
2337 	mac_obj->get_cam_offset = ecore_get_cam_offset_mac;
2338 	mac_obj->put_cam_offset = ecore_put_cam_offset_mac;
2339 
2340 	if (CHIP_IS_E1x(sc)) {
2341 		mac_obj->set_one_rule      = ecore_set_one_mac_e1x;
2342 		mac_obj->check_del         = ecore_check_mac_del;
2343 		mac_obj->check_add         = ecore_check_mac_add;
2344 		mac_obj->check_move        = ecore_check_move_always_err;
2345 		mac_obj->ramrod_cmd        = RAMROD_CMD_ID_ETH_SET_MAC;
2346 
2347 		/* Exe Queue */
2348 		ecore_exe_queue_init(sc,
2349 				     &mac_obj->exe_queue, 1, qable_obj,
2350 				     ecore_validate_vlan_mac,
2351 				     ecore_remove_vlan_mac,
2352 				     ecore_optimize_vlan_mac,
2353 				     ecore_execute_vlan_mac,
2354 				     ecore_exeq_get_mac);
2355 	} else {
2356 		mac_obj->set_one_rule      = ecore_set_one_mac_e2;
2357 		mac_obj->check_del         = ecore_check_mac_del;
2358 		mac_obj->check_add         = ecore_check_mac_add;
2359 		mac_obj->check_move        = ecore_check_move;
2360 		mac_obj->ramrod_cmd        =
2361 			RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
2362 		mac_obj->get_n_elements    = ecore_get_n_elements;
2363 
2364 		/* Exe Queue */
2365 		ecore_exe_queue_init(sc,
2366 				     &mac_obj->exe_queue, CLASSIFY_RULES_COUNT,
2367 				     qable_obj, ecore_validate_vlan_mac,
2368 				     ecore_remove_vlan_mac,
2369 				     ecore_optimize_vlan_mac,
2370 				     ecore_execute_vlan_mac,
2371 				     ecore_exeq_get_mac);
2372 	}
2373 }
2374 
2375 void ecore_init_vlan_obj(struct bxe_softc *sc,
2376 			 struct ecore_vlan_mac_obj *vlan_obj,
2377 			 uint8_t cl_id, uint32_t cid, uint8_t func_id, void *rdata,
2378 			 ecore_dma_addr_t rdata_mapping, int state,
2379 			 unsigned long *pstate, ecore_obj_type type,
2380 			 struct ecore_credit_pool_obj *vlans_pool)
2381 {
2382 	union ecore_qable_obj *qable_obj = (union ecore_qable_obj *)vlan_obj;
2383 
2384 	ecore_init_vlan_mac_common(vlan_obj, cl_id, cid, func_id, rdata,
2385 				   rdata_mapping, state, pstate, type, NULL,
2386 				   vlans_pool);
2387 
2388 	vlan_obj->get_credit = ecore_get_credit_vlan;
2389 	vlan_obj->put_credit = ecore_put_credit_vlan;
2390 	vlan_obj->get_cam_offset = ecore_get_cam_offset_vlan;
2391 	vlan_obj->put_cam_offset = ecore_put_cam_offset_vlan;
2392 
2393 	if (CHIP_IS_E1x(sc)) {
2394 		ECORE_ERR("Do not support chips others than E2 and newer\n");
2395 		ECORE_BUG();
2396 	} else {
2397 		vlan_obj->set_one_rule      = ecore_set_one_vlan_e2;
2398 		vlan_obj->check_del         = ecore_check_vlan_del;
2399 		vlan_obj->check_add         = ecore_check_vlan_add;
2400 		vlan_obj->check_move        = ecore_check_move;
2401 		vlan_obj->ramrod_cmd        =
2402 			RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
2403 		vlan_obj->get_n_elements    = ecore_get_n_elements;
2404 
2405 		/* Exe Queue */
2406 		ecore_exe_queue_init(sc,
2407 				     &vlan_obj->exe_queue, CLASSIFY_RULES_COUNT,
2408 				     qable_obj, ecore_validate_vlan_mac,
2409 				     ecore_remove_vlan_mac,
2410 				     ecore_optimize_vlan_mac,
2411 				     ecore_execute_vlan_mac,
2412 				     ecore_exeq_get_vlan);
2413 	}
2414 }
2415 
2416 void ecore_init_vlan_mac_obj(struct bxe_softc *sc,
2417 			     struct ecore_vlan_mac_obj *vlan_mac_obj,
2418 			     uint8_t cl_id, uint32_t cid, uint8_t func_id, void *rdata,
2419 			     ecore_dma_addr_t rdata_mapping, int state,
2420 			     unsigned long *pstate, ecore_obj_type type,
2421 			     struct ecore_credit_pool_obj *macs_pool,
2422 			     struct ecore_credit_pool_obj *vlans_pool)
2423 {
2424 	union ecore_qable_obj *qable_obj =
2425 		(union ecore_qable_obj *)vlan_mac_obj;
2426 
2427 	ecore_init_vlan_mac_common(vlan_mac_obj, cl_id, cid, func_id, rdata,
2428 				   rdata_mapping, state, pstate, type,
2429 				   macs_pool, vlans_pool);
2430 
2431 	/* CAM pool handling */
2432 	vlan_mac_obj->get_credit = ecore_get_credit_vlan_mac;
2433 	vlan_mac_obj->put_credit = ecore_put_credit_vlan_mac;
2434 	/* CAM offset is relevant for 57710 and 57711 chips only which have a
2435 	 * single CAM for both MACs and VLAN-MAC pairs. So the offset
2436 	 * will be taken from MACs' pool object only.
2437 	 */
2438 	vlan_mac_obj->get_cam_offset = ecore_get_cam_offset_mac;
2439 	vlan_mac_obj->put_cam_offset = ecore_put_cam_offset_mac;
2440 
2441 	if (CHIP_IS_E1(sc)) {
2442 		ECORE_ERR("Do not support chips others than E2\n");
2443 		ECORE_BUG();
2444 	} else if (CHIP_IS_E1H(sc)) {
2445 		vlan_mac_obj->set_one_rule      = ecore_set_one_vlan_mac_e1h;
2446 		vlan_mac_obj->check_del         = ecore_check_vlan_mac_del;
2447 		vlan_mac_obj->check_add         = ecore_check_vlan_mac_add;
2448 		vlan_mac_obj->check_move        = ecore_check_move_always_err;
2449 		vlan_mac_obj->ramrod_cmd        = RAMROD_CMD_ID_ETH_SET_MAC;
2450 
2451 		/* Exe Queue */
2452 		ecore_exe_queue_init(sc,
2453 				     &vlan_mac_obj->exe_queue, 1, qable_obj,
2454 				     ecore_validate_vlan_mac,
2455 				     ecore_remove_vlan_mac,
2456 				     ecore_optimize_vlan_mac,
2457 				     ecore_execute_vlan_mac,
2458 				     ecore_exeq_get_vlan_mac);
2459 	} else {
2460 		vlan_mac_obj->set_one_rule      = ecore_set_one_vlan_mac_e2;
2461 		vlan_mac_obj->check_del         = ecore_check_vlan_mac_del;
2462 		vlan_mac_obj->check_add         = ecore_check_vlan_mac_add;
2463 		vlan_mac_obj->check_move        = ecore_check_move;
2464 		vlan_mac_obj->ramrod_cmd        =
2465 			RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
2466 
2467 		/* Exe Queue */
2468 		ecore_exe_queue_init(sc,
2469 				     &vlan_mac_obj->exe_queue,
2470 				     CLASSIFY_RULES_COUNT,
2471 				     qable_obj, ecore_validate_vlan_mac,
2472 				     ecore_remove_vlan_mac,
2473 				     ecore_optimize_vlan_mac,
2474 				     ecore_execute_vlan_mac,
2475 				     ecore_exeq_get_vlan_mac);
2476 	}
2477 }
2478 
2479 void ecore_init_vxlan_fltr_obj(struct bxe_softc *sc,
2480 				struct ecore_vlan_mac_obj *vlan_mac_obj,
2481 				uint8_t cl_id, uint32_t cid, uint8_t func_id, void *rdata,
2482 				ecore_dma_addr_t rdata_mapping, int state,
2483 				unsigned long *pstate, ecore_obj_type type,
2484 				struct ecore_credit_pool_obj *macs_pool,
2485 				struct ecore_credit_pool_obj *vlans_pool)
2486 {
2487 	union ecore_qable_obj *qable_obj =
2488 		(union ecore_qable_obj *)vlan_mac_obj;
2489 
2490 	ecore_init_vlan_mac_common(vlan_mac_obj, cl_id, cid, func_id,
2491 				   rdata, rdata_mapping, state, pstate,
2492 				   type, macs_pool, vlans_pool);
2493 
2494 	/* CAM pool handling */
2495 	vlan_mac_obj->get_credit = ecore_get_credit_vlan_mac;
2496 	vlan_mac_obj->put_credit = ecore_put_credit_vlan_mac;
2497 	/* CAM offset is relevant for 57710 and 57711 chips only which have a
2498 	 * single CAM for both MACs and VLAN-MAC pairs. So the offset
2499 	 * will be taken from MACs' pool object only.
2500 	 */
2501 	vlan_mac_obj->get_cam_offset = ecore_get_cam_offset_mac;
2502 	vlan_mac_obj->put_cam_offset = ecore_put_cam_offset_mac;
2503 
2504 	if (CHIP_IS_E1x(sc)) {
2505 		ECORE_ERR("Do not support chips others than E2/E3\n");
2506 		ECORE_BUG();
2507 	} else {
2508 		vlan_mac_obj->set_one_rule      = ecore_set_one_vxlan_fltr_e2;
2509 		vlan_mac_obj->check_del         = ecore_check_vxlan_fltr_del;
2510 		vlan_mac_obj->check_add         = ecore_check_vxlan_fltr_add;
2511 		vlan_mac_obj->check_move        = ecore_check_move;
2512 		vlan_mac_obj->ramrod_cmd        =
2513 			RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
2514 
2515 		/* Exe Queue */
2516 		ecore_exe_queue_init(sc,
2517 				     &vlan_mac_obj->exe_queue,
2518 				     CLASSIFY_RULES_COUNT,
2519 				     qable_obj, ecore_validate_vlan_mac,
2520 				     ecore_remove_vlan_mac,
2521 				     ecore_optimize_vlan_mac,
2522 				     ecore_execute_vlan_mac,
2523 				     ecore_exeq_get_vxlan_fltr);
2524 	}
2525 }
2526 
2527 /* RX_MODE verbs: DROP_ALL/ACCEPT_ALL/ACCEPT_ALL_MULTI/ACCEPT_ALL_VLAN/NORMAL */
2528 static inline void __storm_memset_mac_filters(struct bxe_softc *sc,
2529 			struct tstorm_eth_mac_filter_config *mac_filters,
2530 			uint16_t pf_id)
2531 {
2532 	size_t size = sizeof(struct tstorm_eth_mac_filter_config);
2533 
2534 	uint32_t addr = BAR_TSTRORM_INTMEM +
2535 			TSTORM_MAC_FILTER_CONFIG_OFFSET(pf_id);
2536 
2537 	ecore_storm_memset_struct(sc, addr, size, (uint32_t *)mac_filters);
2538 }
2539 
2540 static int ecore_set_rx_mode_e1x(struct bxe_softc *sc,
2541 				 struct ecore_rx_mode_ramrod_params *p)
2542 {
2543 	/* update the sc MAC filter structure */
2544 	uint32_t mask = (1 << p->cl_id);
2545 
2546 	struct tstorm_eth_mac_filter_config *mac_filters =
2547 		(struct tstorm_eth_mac_filter_config *)p->rdata;
2548 
2549 	/* initial setting is drop-all */
2550 	uint8_t drop_all_ucast = 1, drop_all_mcast = 1;
2551 	uint8_t accp_all_ucast = 0, accp_all_bcast = 0, accp_all_mcast = 0;
2552 	uint8_t unmatched_unicast = 0;
2553 
2554     /* In e1x there we only take into account rx accept flag since tx switching
2555      * isn't enabled. */
2556 	if (ECORE_TEST_BIT(ECORE_ACCEPT_UNICAST, &p->rx_accept_flags))
2557 		/* accept matched ucast */
2558 		drop_all_ucast = 0;
2559 
2560 	if (ECORE_TEST_BIT(ECORE_ACCEPT_MULTICAST, &p->rx_accept_flags))
2561 		/* accept matched mcast */
2562 		drop_all_mcast = 0;
2563 
2564 	if (ECORE_TEST_BIT(ECORE_ACCEPT_ALL_UNICAST, &p->rx_accept_flags)) {
2565 		/* accept all mcast */
2566 		drop_all_ucast = 0;
2567 		accp_all_ucast = 1;
2568 	}
2569 	if (ECORE_TEST_BIT(ECORE_ACCEPT_ALL_MULTICAST, &p->rx_accept_flags)) {
2570 		/* accept all mcast */
2571 		drop_all_mcast = 0;
2572 		accp_all_mcast = 1;
2573 	}
2574 	if (ECORE_TEST_BIT(ECORE_ACCEPT_BROADCAST, &p->rx_accept_flags))
2575 		/* accept (all) bcast */
2576 		accp_all_bcast = 1;
2577 	if (ECORE_TEST_BIT(ECORE_ACCEPT_UNMATCHED, &p->rx_accept_flags))
2578 		/* accept unmatched unicasts */
2579 		unmatched_unicast = 1;
2580 
2581 	mac_filters->ucast_drop_all = drop_all_ucast ?
2582 		mac_filters->ucast_drop_all | mask :
2583 		mac_filters->ucast_drop_all & ~mask;
2584 
2585 	mac_filters->mcast_drop_all = drop_all_mcast ?
2586 		mac_filters->mcast_drop_all | mask :
2587 		mac_filters->mcast_drop_all & ~mask;
2588 
2589 	mac_filters->ucast_accept_all = accp_all_ucast ?
2590 		mac_filters->ucast_accept_all | mask :
2591 		mac_filters->ucast_accept_all & ~mask;
2592 
2593 	mac_filters->mcast_accept_all = accp_all_mcast ?
2594 		mac_filters->mcast_accept_all | mask :
2595 		mac_filters->mcast_accept_all & ~mask;
2596 
2597 	mac_filters->bcast_accept_all = accp_all_bcast ?
2598 		mac_filters->bcast_accept_all | mask :
2599 		mac_filters->bcast_accept_all & ~mask;
2600 
2601 	mac_filters->unmatched_unicast = unmatched_unicast ?
2602 		mac_filters->unmatched_unicast | mask :
2603 		mac_filters->unmatched_unicast & ~mask;
2604 
2605 	ECORE_MSG(sc, "drop_ucast 0x%x\ndrop_mcast 0x%x\n accp_ucast 0x%x\n"
2606 			 "accp_mcast 0x%x\naccp_bcast 0x%x\n",
2607 	   mac_filters->ucast_drop_all, mac_filters->mcast_drop_all,
2608 	   mac_filters->ucast_accept_all, mac_filters->mcast_accept_all,
2609 	   mac_filters->bcast_accept_all);
2610 
2611 	/* write the MAC filter structure*/
2612 	__storm_memset_mac_filters(sc, mac_filters, p->func_id);
2613 
2614 	/* The operation is completed */
2615 	ECORE_CLEAR_BIT(p->state, p->pstate);
2616 	ECORE_SMP_MB_AFTER_CLEAR_BIT();
2617 
2618 	return ECORE_SUCCESS;
2619 }
2620 
2621 /* Setup ramrod data */
2622 static inline void ecore_rx_mode_set_rdata_hdr_e2(uint32_t cid,
2623 				struct eth_classify_header *hdr,
2624 				uint8_t rule_cnt)
2625 {
2626 	hdr->echo = ECORE_CPU_TO_LE32(cid);
2627 	hdr->rule_cnt = rule_cnt;
2628 }
2629 
2630 static inline void ecore_rx_mode_set_cmd_state_e2(struct bxe_softc *sc,
2631 				unsigned long *accept_flags,
2632 				struct eth_filter_rules_cmd *cmd,
2633 				bool clear_accept_all)
2634 {
2635 	uint16_t state;
2636 
2637 	/* start with 'drop-all' */
2638 	state = ETH_FILTER_RULES_CMD_UCAST_DROP_ALL |
2639 		ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2640 
2641 	if (ECORE_TEST_BIT(ECORE_ACCEPT_UNICAST, accept_flags))
2642 		state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2643 
2644 	if (ECORE_TEST_BIT(ECORE_ACCEPT_MULTICAST, accept_flags))
2645 		state &= ~ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2646 
2647 	if (ECORE_TEST_BIT(ECORE_ACCEPT_ALL_UNICAST, accept_flags)) {
2648 		state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2649 		state |= ETH_FILTER_RULES_CMD_UCAST_ACCEPT_ALL;
2650 	}
2651 
2652 	if (ECORE_TEST_BIT(ECORE_ACCEPT_ALL_MULTICAST, accept_flags)) {
2653 		state |= ETH_FILTER_RULES_CMD_MCAST_ACCEPT_ALL;
2654 		state &= ~ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2655 	}
2656 	if (ECORE_TEST_BIT(ECORE_ACCEPT_BROADCAST, accept_flags))
2657 		state |= ETH_FILTER_RULES_CMD_BCAST_ACCEPT_ALL;
2658 
2659 	if (ECORE_TEST_BIT(ECORE_ACCEPT_UNMATCHED, accept_flags)) {
2660 		state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2661 		state |= ETH_FILTER_RULES_CMD_UCAST_ACCEPT_UNMATCHED;
2662 	}
2663 	if (ECORE_TEST_BIT(ECORE_ACCEPT_ANY_VLAN, accept_flags))
2664 		state |= ETH_FILTER_RULES_CMD_ACCEPT_ANY_VLAN;
2665 
2666 	/* Clear ACCEPT_ALL_XXX flags for FCoE L2 Queue */
2667 	if (clear_accept_all) {
2668 		state &= ~ETH_FILTER_RULES_CMD_MCAST_ACCEPT_ALL;
2669 		state &= ~ETH_FILTER_RULES_CMD_BCAST_ACCEPT_ALL;
2670 		state &= ~ETH_FILTER_RULES_CMD_UCAST_ACCEPT_ALL;
2671 		state &= ~ETH_FILTER_RULES_CMD_UCAST_ACCEPT_UNMATCHED;
2672 	}
2673 
2674 	cmd->state = ECORE_CPU_TO_LE16(state);
2675 }
2676 
2677 static int ecore_set_rx_mode_e2(struct bxe_softc *sc,
2678 				struct ecore_rx_mode_ramrod_params *p)
2679 {
2680 	struct eth_filter_rules_ramrod_data *data = p->rdata;
2681 	int rc;
2682 	uint8_t rule_idx = 0;
2683 
2684 	/* Reset the ramrod data buffer */
2685 	ECORE_MEMSET(data, 0, sizeof(*data));
2686 
2687 	/* Setup ramrod data */
2688 
2689 	/* Tx (internal switching) */
2690 	if (ECORE_TEST_BIT(RAMROD_TX, &p->ramrod_flags)) {
2691 		data->rules[rule_idx].client_id = p->cl_id;
2692 		data->rules[rule_idx].func_id = p->func_id;
2693 
2694 		data->rules[rule_idx].cmd_general_data =
2695 			ETH_FILTER_RULES_CMD_TX_CMD;
2696 
2697 		ecore_rx_mode_set_cmd_state_e2(sc, &p->tx_accept_flags,
2698 					       &(data->rules[rule_idx++]),
2699 					       FALSE);
2700 	}
2701 
2702 	/* Rx */
2703 	if (ECORE_TEST_BIT(RAMROD_RX, &p->ramrod_flags)) {
2704 		data->rules[rule_idx].client_id = p->cl_id;
2705 		data->rules[rule_idx].func_id = p->func_id;
2706 
2707 		data->rules[rule_idx].cmd_general_data =
2708 			ETH_FILTER_RULES_CMD_RX_CMD;
2709 
2710 		ecore_rx_mode_set_cmd_state_e2(sc, &p->rx_accept_flags,
2711 					       &(data->rules[rule_idx++]),
2712 					       FALSE);
2713 	}
2714 
2715 	/* If FCoE Queue configuration has been requested configure the Rx and
2716 	 * internal switching modes for this queue in separate rules.
2717 	 *
2718 	 * FCoE queue shell never be set to ACCEPT_ALL packets of any sort:
2719 	 * MCAST_ALL, UCAST_ALL, BCAST_ALL and UNMATCHED.
2720 	 */
2721 	if (ECORE_TEST_BIT(ECORE_RX_MODE_FCOE_ETH, &p->rx_mode_flags)) {
2722 		/*  Tx (internal switching) */
2723 		if (ECORE_TEST_BIT(RAMROD_TX, &p->ramrod_flags)) {
2724 			data->rules[rule_idx].client_id = ECORE_FCOE_CID(sc);
2725 			data->rules[rule_idx].func_id = p->func_id;
2726 
2727 			data->rules[rule_idx].cmd_general_data =
2728 						ETH_FILTER_RULES_CMD_TX_CMD;
2729 
2730 			ecore_rx_mode_set_cmd_state_e2(sc, &p->tx_accept_flags,
2731 						       &(data->rules[rule_idx]),
2732 						       TRUE);
2733 			rule_idx++;
2734 		}
2735 
2736 		/* Rx */
2737 		if (ECORE_TEST_BIT(RAMROD_RX, &p->ramrod_flags)) {
2738 			data->rules[rule_idx].client_id = ECORE_FCOE_CID(sc);
2739 			data->rules[rule_idx].func_id = p->func_id;
2740 
2741 			data->rules[rule_idx].cmd_general_data =
2742 						ETH_FILTER_RULES_CMD_RX_CMD;
2743 
2744 			ecore_rx_mode_set_cmd_state_e2(sc, &p->rx_accept_flags,
2745 						       &(data->rules[rule_idx]),
2746 						       TRUE);
2747 			rule_idx++;
2748 		}
2749 	}
2750 
2751 	/* Set the ramrod header (most importantly - number of rules to
2752 	 * configure).
2753 	 */
2754 	ecore_rx_mode_set_rdata_hdr_e2(p->cid, &data->header, rule_idx);
2755 
2756 	ECORE_MSG(sc, "About to configure %d rules, rx_accept_flags 0x%lx, tx_accept_flags 0x%lx\n",
2757 		  data->header.rule_cnt, p->rx_accept_flags,
2758 		  p->tx_accept_flags);
2759 
2760 	/* No need for an explicit memory barrier here as long as we
2761 	 * ensure the ordering of writing to the SPQ element
2762 	 * and updating of the SPQ producer which involves a memory
2763 	 * read. If the memory read is removed we will have to put a
2764 	 * full memory barrier there (inside ecore_sp_post()).
2765 	 */
2766 
2767 	/* Send a ramrod */
2768 	rc = ecore_sp_post(sc,
2769 			   RAMROD_CMD_ID_ETH_FILTER_RULES,
2770 			   p->cid,
2771 			   p->rdata_mapping,
2772 			   ETH_CONNECTION_TYPE);
2773 	if (rc)
2774 		return rc;
2775 
2776 	/* Ramrod completion is pending */
2777 	return ECORE_PENDING;
2778 }
2779 
2780 static int ecore_wait_rx_mode_comp_e2(struct bxe_softc *sc,
2781 				      struct ecore_rx_mode_ramrod_params *p)
2782 {
2783 	return ecore_state_wait(sc, p->state, p->pstate);
2784 }
2785 
2786 static int ecore_empty_rx_mode_wait(struct bxe_softc *sc,
2787 				    struct ecore_rx_mode_ramrod_params *p)
2788 {
2789 	/* Do nothing */
2790 	return ECORE_SUCCESS;
2791 }
2792 
2793 int ecore_config_rx_mode(struct bxe_softc *sc,
2794 			 struct ecore_rx_mode_ramrod_params *p)
2795 {
2796 	int rc;
2797 
2798 	/* Configure the new classification in the chip */
2799 	rc = p->rx_mode_obj->config_rx_mode(sc, p);
2800 	if (rc < 0)
2801 		return rc;
2802 
2803 	/* Wait for a ramrod completion if was requested */
2804 	if (ECORE_TEST_BIT(RAMROD_COMP_WAIT, &p->ramrod_flags)) {
2805 		rc = p->rx_mode_obj->wait_comp(sc, p);
2806 		if (rc)
2807 			return rc;
2808 	}
2809 
2810 	return rc;
2811 }
2812 
2813 void ecore_init_rx_mode_obj(struct bxe_softc *sc,
2814 			    struct ecore_rx_mode_obj *o)
2815 {
2816 	if (CHIP_IS_E1x(sc)) {
2817 		o->wait_comp      = ecore_empty_rx_mode_wait;
2818 		o->config_rx_mode = ecore_set_rx_mode_e1x;
2819 	} else {
2820 		o->wait_comp      = ecore_wait_rx_mode_comp_e2;
2821 		o->config_rx_mode = ecore_set_rx_mode_e2;
2822 	}
2823 }
2824 
2825 /********************* Multicast verbs: SET, CLEAR ****************************/
2826 static inline uint8_t ecore_mcast_bin_from_mac(uint8_t *mac)
2827 {
2828 	return (ECORE_CRC32_LE(0, mac, ETH_ALEN) >> 24) & 0xff;
2829 }
2830 
2831 struct ecore_mcast_mac_elem {
2832 	ecore_list_entry_t link;
2833 	uint8_t mac[ETH_ALEN];
2834 	uint8_t pad[2]; /* For a natural alignment of the following buffer */
2835 };
2836 
2837 struct ecore_pending_mcast_cmd {
2838 	ecore_list_entry_t link;
2839 	int type; /* ECORE_MCAST_CMD_X */
2840 	union {
2841 		ecore_list_t macs_head;
2842 		uint32_t macs_num; /* Needed for DEL command */
2843 		int next_bin; /* Needed for RESTORE flow with aprox match */
2844 	} data;
2845 
2846 	bool done; /* set to TRUE, when the command has been handled,
2847 		    * practically used in 57712 handling only, where one pending
2848 		    * command may be handled in a few operations. As long as for
2849 		    * other chips every operation handling is completed in a
2850 		    * single ramrod, there is no need to utilize this field.
2851 		    */
2852 };
2853 
2854 static int ecore_mcast_wait(struct bxe_softc *sc,
2855 			    struct ecore_mcast_obj *o)
2856 {
2857 	if (ecore_state_wait(sc, o->sched_state, o->raw.pstate) ||
2858 			o->raw.wait_comp(sc, &o->raw))
2859 		return ECORE_TIMEOUT;
2860 
2861 	return ECORE_SUCCESS;
2862 }
2863 
2864 static int ecore_mcast_enqueue_cmd(struct bxe_softc *sc,
2865 				   struct ecore_mcast_obj *o,
2866 				   struct ecore_mcast_ramrod_params *p,
2867 				   enum ecore_mcast_cmd cmd)
2868 {
2869 	int total_sz;
2870 	struct ecore_pending_mcast_cmd *new_cmd;
2871 	struct ecore_mcast_mac_elem *cur_mac = NULL;
2872 	struct ecore_mcast_list_elem *pos;
2873 	int macs_list_len = ((cmd == ECORE_MCAST_CMD_ADD) ?
2874 			     p->mcast_list_len : 0);
2875 
2876 	/* If the command is empty ("handle pending commands only"), break */
2877 	if (!p->mcast_list_len)
2878 		return ECORE_SUCCESS;
2879 
2880 	total_sz = sizeof(*new_cmd) +
2881 		macs_list_len * sizeof(struct ecore_mcast_mac_elem);
2882 
2883 	/* Add mcast is called under spin_lock, thus calling with GFP_ATOMIC */
2884 	new_cmd = ECORE_ZALLOC(total_sz, GFP_ATOMIC, sc);
2885 
2886 	if (!new_cmd)
2887 		return ECORE_NOMEM;
2888 
2889 	ECORE_MSG(sc, "About to enqueue a new %d command. macs_list_len=%d\n",
2890 		  cmd, macs_list_len);
2891 
2892 	ECORE_LIST_INIT(&new_cmd->data.macs_head);
2893 
2894 	new_cmd->type = cmd;
2895 	new_cmd->done = FALSE;
2896 
2897 	switch (cmd) {
2898 	case ECORE_MCAST_CMD_ADD:
2899 		cur_mac = (struct ecore_mcast_mac_elem *)
2900 			  ((uint8_t *)new_cmd + sizeof(*new_cmd));
2901 
2902 		/* Push the MACs of the current command into the pending command
2903 		 * MACs list: FIFO
2904 		 */
2905 		ECORE_LIST_FOR_EACH_ENTRY(pos, &p->mcast_list, link,
2906 					  struct ecore_mcast_list_elem) {
2907 			ECORE_MEMCPY(cur_mac->mac, pos->mac, ETH_ALEN);
2908 			ECORE_LIST_PUSH_TAIL(&cur_mac->link,
2909 					     &new_cmd->data.macs_head);
2910 			cur_mac++;
2911 		}
2912 
2913 		break;
2914 
2915 	case ECORE_MCAST_CMD_DEL:
2916 		new_cmd->data.macs_num = p->mcast_list_len;
2917 		break;
2918 
2919 	case ECORE_MCAST_CMD_RESTORE:
2920 		new_cmd->data.next_bin = 0;
2921 		break;
2922 
2923 	default:
2924 		ECORE_FREE(sc, new_cmd, total_sz);
2925 		ECORE_ERR("Unknown command: %d\n", cmd);
2926 		return ECORE_INVAL;
2927 	}
2928 
2929 	/* Push the new pending command to the tail of the pending list: FIFO */
2930 	ECORE_LIST_PUSH_TAIL(&new_cmd->link, &o->pending_cmds_head);
2931 
2932 	o->set_sched(o);
2933 
2934 	return ECORE_PENDING;
2935 }
2936 
2937 /**
2938  * ecore_mcast_get_next_bin - get the next set bin (index)
2939  *
2940  * @o:
2941  * @last:	index to start looking from (including)
2942  *
2943  * returns the next found (set) bin or a negative value if none is found.
2944  */
2945 static inline int ecore_mcast_get_next_bin(struct ecore_mcast_obj *o, int last)
2946 {
2947 	int i, j, inner_start = last % BIT_VEC64_ELEM_SZ;
2948 
2949 	for (i = last / BIT_VEC64_ELEM_SZ; i < ECORE_MCAST_VEC_SZ; i++) {
2950 		if (o->registry.aprox_match.vec[i])
2951 			for (j = inner_start; j < BIT_VEC64_ELEM_SZ; j++) {
2952 				int cur_bit = j + BIT_VEC64_ELEM_SZ * i;
2953 				if (BIT_VEC64_TEST_BIT(o->registry.aprox_match.
2954 						       vec, cur_bit)) {
2955 					return cur_bit;
2956 				}
2957 			}
2958 		inner_start = 0;
2959 	}
2960 
2961 	/* None found */
2962 	return -1;
2963 }
2964 
2965 /**
2966  * ecore_mcast_clear_first_bin - find the first set bin and clear it
2967  *
2968  * @o:
2969  *
2970  * returns the index of the found bin or -1 if none is found
2971  */
2972 static inline int ecore_mcast_clear_first_bin(struct ecore_mcast_obj *o)
2973 {
2974 	int cur_bit = ecore_mcast_get_next_bin(o, 0);
2975 
2976 	if (cur_bit >= 0)
2977 		BIT_VEC64_CLEAR_BIT(o->registry.aprox_match.vec, cur_bit);
2978 
2979 	return cur_bit;
2980 }
2981 
2982 static inline uint8_t ecore_mcast_get_rx_tx_flag(struct ecore_mcast_obj *o)
2983 {
2984 	struct ecore_raw_obj *raw = &o->raw;
2985 	uint8_t rx_tx_flag = 0;
2986 
2987 	if ((raw->obj_type == ECORE_OBJ_TYPE_TX) ||
2988 	    (raw->obj_type == ECORE_OBJ_TYPE_RX_TX))
2989 		rx_tx_flag |= ETH_MULTICAST_RULES_CMD_TX_CMD;
2990 
2991 	if ((raw->obj_type == ECORE_OBJ_TYPE_RX) ||
2992 	    (raw->obj_type == ECORE_OBJ_TYPE_RX_TX))
2993 		rx_tx_flag |= ETH_MULTICAST_RULES_CMD_RX_CMD;
2994 
2995 	return rx_tx_flag;
2996 }
2997 
2998 static void ecore_mcast_set_one_rule_e2(struct bxe_softc *sc,
2999 					struct ecore_mcast_obj *o, int idx,
3000 					union ecore_mcast_config_data *cfg_data,
3001 					enum ecore_mcast_cmd cmd)
3002 {
3003 	struct ecore_raw_obj *r = &o->raw;
3004 	struct eth_multicast_rules_ramrod_data *data =
3005 		(struct eth_multicast_rules_ramrod_data *)(r->rdata);
3006 	uint8_t func_id = r->func_id;
3007 	uint8_t rx_tx_add_flag = ecore_mcast_get_rx_tx_flag(o);
3008 	int bin;
3009 
3010 	if ((cmd == ECORE_MCAST_CMD_ADD) || (cmd == ECORE_MCAST_CMD_RESTORE))
3011 		rx_tx_add_flag |= ETH_MULTICAST_RULES_CMD_IS_ADD;
3012 
3013 	data->rules[idx].cmd_general_data |= rx_tx_add_flag;
3014 
3015 	/* Get a bin and update a bins' vector */
3016 	switch (cmd) {
3017 	case ECORE_MCAST_CMD_ADD:
3018 		bin = ecore_mcast_bin_from_mac(cfg_data->mac);
3019 		BIT_VEC64_SET_BIT(o->registry.aprox_match.vec, bin);
3020 		break;
3021 
3022 	case ECORE_MCAST_CMD_DEL:
3023 		/* If there were no more bins to clear
3024 		 * (ecore_mcast_clear_first_bin() returns -1) then we would
3025 		 * clear any (0xff) bin.
3026 		 * See ecore_mcast_validate_e2() for explanation when it may
3027 		 * happen.
3028 		 */
3029 		bin = ecore_mcast_clear_first_bin(o);
3030 		break;
3031 
3032 	case ECORE_MCAST_CMD_RESTORE:
3033 		bin = cfg_data->bin;
3034 		break;
3035 
3036 	default:
3037 		ECORE_ERR("Unknown command: %d\n", cmd);
3038 		return;
3039 	}
3040 
3041 	ECORE_MSG(sc, "%s bin %d\n",
3042 		  ((rx_tx_add_flag & ETH_MULTICAST_RULES_CMD_IS_ADD) ?
3043 		   "Setting"  : "Clearing"), bin);
3044 
3045 	data->rules[idx].bin_id    = (uint8_t)bin;
3046 	data->rules[idx].func_id   = func_id;
3047 	data->rules[idx].engine_id = o->engine_id;
3048 }
3049 
3050 /**
3051  * ecore_mcast_handle_restore_cmd_e2 - restore configuration from the registry
3052  *
3053  * @sc:		device handle
3054  * @o:
3055  * @start_bin:	index in the registry to start from (including)
3056  * @rdata_idx:	index in the ramrod data to start from
3057  *
3058  * returns last handled bin index or -1 if all bins have been handled
3059  */
3060 static inline int ecore_mcast_handle_restore_cmd_e2(
3061 	struct bxe_softc *sc, struct ecore_mcast_obj *o , int start_bin,
3062 	int *rdata_idx)
3063 {
3064 	int cur_bin, cnt = *rdata_idx;
3065 	union ecore_mcast_config_data cfg_data = {NULL};
3066 
3067 	/* go through the registry and configure the bins from it */
3068 	for (cur_bin = ecore_mcast_get_next_bin(o, start_bin); cur_bin >= 0;
3069 	    cur_bin = ecore_mcast_get_next_bin(o, cur_bin + 1)) {
3070 
3071 		cfg_data.bin = (uint8_t)cur_bin;
3072 		o->set_one_rule(sc, o, cnt, &cfg_data,
3073 				ECORE_MCAST_CMD_RESTORE);
3074 
3075 		cnt++;
3076 
3077 		ECORE_MSG(sc, "About to configure a bin %d\n", cur_bin);
3078 
3079 		/* Break if we reached the maximum number
3080 		 * of rules.
3081 		 */
3082 		if (cnt >= o->max_cmd_len)
3083 			break;
3084 	}
3085 
3086 	*rdata_idx = cnt;
3087 
3088 	return cur_bin;
3089 }
3090 
3091 static inline void ecore_mcast_hdl_pending_add_e2(struct bxe_softc *sc,
3092 	struct ecore_mcast_obj *o, struct ecore_pending_mcast_cmd *cmd_pos,
3093 	int *line_idx)
3094 {
3095 	struct ecore_mcast_mac_elem *pmac_pos, *pmac_pos_n;
3096 	int cnt = *line_idx;
3097 	union ecore_mcast_config_data cfg_data = {NULL};
3098 
3099 	ECORE_LIST_FOR_EACH_ENTRY_SAFE(pmac_pos, pmac_pos_n,
3100 		&cmd_pos->data.macs_head, link, struct ecore_mcast_mac_elem) {
3101 
3102 		cfg_data.mac = &pmac_pos->mac[0];
3103 		o->set_one_rule(sc, o, cnt, &cfg_data, cmd_pos->type);
3104 
3105 		cnt++;
3106 
3107 		ECORE_MSG(sc, "About to configure %02x:%02x:%02x:%02x:%02x:%02x mcast MAC\n",
3108 			  pmac_pos->mac[0], pmac_pos->mac[1], pmac_pos->mac[2], pmac_pos->mac[3], pmac_pos->mac[4], pmac_pos->mac[5]);
3109 
3110 		ECORE_LIST_REMOVE_ENTRY(&pmac_pos->link,
3111 					&cmd_pos->data.macs_head);
3112 
3113 		/* Break if we reached the maximum number
3114 		 * of rules.
3115 		 */
3116 		if (cnt >= o->max_cmd_len)
3117 			break;
3118 	}
3119 
3120 	*line_idx = cnt;
3121 
3122 	/* if no more MACs to configure - we are done */
3123 	if (ECORE_LIST_IS_EMPTY(&cmd_pos->data.macs_head))
3124 		cmd_pos->done = TRUE;
3125 }
3126 
3127 static inline void ecore_mcast_hdl_pending_del_e2(struct bxe_softc *sc,
3128 	struct ecore_mcast_obj *o, struct ecore_pending_mcast_cmd *cmd_pos,
3129 	int *line_idx)
3130 {
3131 	int cnt = *line_idx;
3132 
3133 	while (cmd_pos->data.macs_num) {
3134 		o->set_one_rule(sc, o, cnt, NULL, cmd_pos->type);
3135 
3136 		cnt++;
3137 
3138 		cmd_pos->data.macs_num--;
3139 
3140 		  ECORE_MSG(sc, "Deleting MAC. %d left,cnt is %d\n",
3141 				  cmd_pos->data.macs_num, cnt);
3142 
3143 		/* Break if we reached the maximum
3144 		 * number of rules.
3145 		 */
3146 		if (cnt >= o->max_cmd_len)
3147 			break;
3148 	}
3149 
3150 	*line_idx = cnt;
3151 
3152 	/* If we cleared all bins - we are done */
3153 	if (!cmd_pos->data.macs_num)
3154 		cmd_pos->done = TRUE;
3155 }
3156 
3157 static inline void ecore_mcast_hdl_pending_restore_e2(struct bxe_softc *sc,
3158 	struct ecore_mcast_obj *o, struct ecore_pending_mcast_cmd *cmd_pos,
3159 	int *line_idx)
3160 {
3161 	cmd_pos->data.next_bin = o->hdl_restore(sc, o, cmd_pos->data.next_bin,
3162 						line_idx);
3163 
3164 	if (cmd_pos->data.next_bin < 0)
3165 		/* If o->set_restore returned -1 we are done */
3166 		cmd_pos->done = TRUE;
3167 	else
3168 		/* Start from the next bin next time */
3169 		cmd_pos->data.next_bin++;
3170 }
3171 
3172 static inline int ecore_mcast_handle_pending_cmds_e2(struct bxe_softc *sc,
3173 				struct ecore_mcast_ramrod_params *p)
3174 {
3175 	struct ecore_pending_mcast_cmd *cmd_pos, *cmd_pos_n;
3176 	int cnt = 0;
3177 	struct ecore_mcast_obj *o = p->mcast_obj;
3178 
3179 	ECORE_LIST_FOR_EACH_ENTRY_SAFE(cmd_pos, cmd_pos_n,
3180 		&o->pending_cmds_head, link, struct ecore_pending_mcast_cmd) {
3181 		switch (cmd_pos->type) {
3182 		case ECORE_MCAST_CMD_ADD:
3183 			ecore_mcast_hdl_pending_add_e2(sc, o, cmd_pos, &cnt);
3184 			break;
3185 
3186 		case ECORE_MCAST_CMD_DEL:
3187 			ecore_mcast_hdl_pending_del_e2(sc, o, cmd_pos, &cnt);
3188 			break;
3189 
3190 		case ECORE_MCAST_CMD_RESTORE:
3191 			ecore_mcast_hdl_pending_restore_e2(sc, o, cmd_pos,
3192 							   &cnt);
3193 			break;
3194 
3195 		default:
3196 			ECORE_ERR("Unknown command: %d\n", cmd_pos->type);
3197 			return ECORE_INVAL;
3198 		}
3199 
3200 		/* If the command has been completed - remove it from the list
3201 		 * and free the memory
3202 		 */
3203 		if (cmd_pos->done) {
3204 			ECORE_LIST_REMOVE_ENTRY(&cmd_pos->link,
3205 						&o->pending_cmds_head);
3206 			ECORE_FREE(sc, cmd_pos, cmd_pos->alloc_len);
3207 		}
3208 
3209 		/* Break if we reached the maximum number of rules */
3210 		if (cnt >= o->max_cmd_len)
3211 			break;
3212 	}
3213 
3214 	return cnt;
3215 }
3216 
3217 static inline void ecore_mcast_hdl_add(struct bxe_softc *sc,
3218 	struct ecore_mcast_obj *o, struct ecore_mcast_ramrod_params *p,
3219 	int *line_idx)
3220 {
3221 	struct ecore_mcast_list_elem *mlist_pos;
3222 	union ecore_mcast_config_data cfg_data = {NULL};
3223 	int cnt = *line_idx;
3224 
3225 	ECORE_LIST_FOR_EACH_ENTRY(mlist_pos, &p->mcast_list, link,
3226 				  struct ecore_mcast_list_elem) {
3227 		cfg_data.mac = mlist_pos->mac;
3228 		o->set_one_rule(sc, o, cnt, &cfg_data, ECORE_MCAST_CMD_ADD);
3229 
3230 		cnt++;
3231 
3232 		ECORE_MSG(sc, "About to configure %02x:%02x:%02x:%02x:%02x:%02x mcast MAC\n",
3233 			  mlist_pos->mac[0], mlist_pos->mac[1], mlist_pos->mac[2], mlist_pos->mac[3], mlist_pos->mac[4], mlist_pos->mac[5]);
3234 	}
3235 
3236 	*line_idx = cnt;
3237 }
3238 
3239 static inline void ecore_mcast_hdl_del(struct bxe_softc *sc,
3240 	struct ecore_mcast_obj *o, struct ecore_mcast_ramrod_params *p,
3241 	int *line_idx)
3242 {
3243 	int cnt = *line_idx, i;
3244 
3245 	for (i = 0; i < p->mcast_list_len; i++) {
3246 		o->set_one_rule(sc, o, cnt, NULL, ECORE_MCAST_CMD_DEL);
3247 
3248 		cnt++;
3249 
3250 		ECORE_MSG(sc, "Deleting MAC. %d left\n",
3251 			  p->mcast_list_len - i - 1);
3252 	}
3253 
3254 	*line_idx = cnt;
3255 }
3256 
3257 /**
3258  * ecore_mcast_handle_current_cmd -
3259  *
3260  * @sc:		device handle
3261  * @p:
3262  * @cmd:
3263  * @start_cnt:	first line in the ramrod data that may be used
3264  *
3265  * This function is called iff there is enough place for the current command in
3266  * the ramrod data.
3267  * Returns number of lines filled in the ramrod data in total.
3268  */
3269 static inline int ecore_mcast_handle_current_cmd(struct bxe_softc *sc,
3270 			struct ecore_mcast_ramrod_params *p,
3271 			enum ecore_mcast_cmd cmd,
3272 			int start_cnt)
3273 {
3274 	struct ecore_mcast_obj *o = p->mcast_obj;
3275 	int cnt = start_cnt;
3276 
3277 	ECORE_MSG(sc, "p->mcast_list_len=%d\n", p->mcast_list_len);
3278 
3279 	switch (cmd) {
3280 	case ECORE_MCAST_CMD_ADD:
3281 		ecore_mcast_hdl_add(sc, o, p, &cnt);
3282 		break;
3283 
3284 	case ECORE_MCAST_CMD_DEL:
3285 		ecore_mcast_hdl_del(sc, o, p, &cnt);
3286 		break;
3287 
3288 	case ECORE_MCAST_CMD_RESTORE:
3289 		o->hdl_restore(sc, o, 0, &cnt);
3290 		break;
3291 
3292 	default:
3293 		ECORE_ERR("Unknown command: %d\n", cmd);
3294 		return ECORE_INVAL;
3295 	}
3296 
3297 	/* The current command has been handled */
3298 	p->mcast_list_len = 0;
3299 
3300 	return cnt;
3301 }
3302 
3303 static int ecore_mcast_validate_e2(struct bxe_softc *sc,
3304 				   struct ecore_mcast_ramrod_params *p,
3305 				   enum ecore_mcast_cmd cmd)
3306 {
3307 	struct ecore_mcast_obj *o = p->mcast_obj;
3308 	int reg_sz = o->get_registry_size(o);
3309 
3310 	switch (cmd) {
3311 	/* DEL command deletes all currently configured MACs */
3312 	case ECORE_MCAST_CMD_DEL:
3313 		o->set_registry_size(o, 0);
3314 		/* Don't break */
3315 
3316 	/* RESTORE command will restore the entire multicast configuration */
3317 	case ECORE_MCAST_CMD_RESTORE:
3318 		/* Here we set the approximate amount of work to do, which in
3319 		 * fact may be only less as some MACs in postponed ADD
3320 		 * command(s) scheduled before this command may fall into
3321 		 * the same bin and the actual number of bins set in the
3322 		 * registry would be less than we estimated here. See
3323 		 * ecore_mcast_set_one_rule_e2() for further details.
3324 		 */
3325 		p->mcast_list_len = reg_sz;
3326 		break;
3327 
3328 	case ECORE_MCAST_CMD_ADD:
3329 	case ECORE_MCAST_CMD_CONT:
3330 		/* Here we assume that all new MACs will fall into new bins.
3331 		 * However we will correct the real registry size after we
3332 		 * handle all pending commands.
3333 		 */
3334 		o->set_registry_size(o, reg_sz + p->mcast_list_len);
3335 		break;
3336 
3337 	default:
3338 		ECORE_ERR("Unknown command: %d\n", cmd);
3339 		return ECORE_INVAL;
3340 	}
3341 
3342 	/* Increase the total number of MACs pending to be configured */
3343 	o->total_pending_num += p->mcast_list_len;
3344 
3345 	return ECORE_SUCCESS;
3346 }
3347 
3348 static void ecore_mcast_revert_e2(struct bxe_softc *sc,
3349 				      struct ecore_mcast_ramrod_params *p,
3350 				      int old_num_bins)
3351 {
3352 	struct ecore_mcast_obj *o = p->mcast_obj;
3353 
3354 	o->set_registry_size(o, old_num_bins);
3355 	o->total_pending_num -= p->mcast_list_len;
3356 }
3357 
3358 /**
3359  * ecore_mcast_set_rdata_hdr_e2 - sets a header values
3360  *
3361  * @sc:		device handle
3362  * @p:
3363  * @len:	number of rules to handle
3364  */
3365 static inline void ecore_mcast_set_rdata_hdr_e2(struct bxe_softc *sc,
3366 					struct ecore_mcast_ramrod_params *p,
3367 					uint8_t len)
3368 {
3369 	struct ecore_raw_obj *r = &p->mcast_obj->raw;
3370 	struct eth_multicast_rules_ramrod_data *data =
3371 		(struct eth_multicast_rules_ramrod_data *)(r->rdata);
3372 
3373 	data->header.echo = ECORE_CPU_TO_LE32((r->cid & ECORE_SWCID_MASK) |
3374 					(ECORE_FILTER_MCAST_PENDING <<
3375 					 ECORE_SWCID_SHIFT));
3376 	data->header.rule_cnt = len;
3377 }
3378 
3379 /**
3380  * ecore_mcast_refresh_registry_e2 - recalculate the actual number of set bins
3381  *
3382  * @sc:		device handle
3383  * @o:
3384  *
3385  * Recalculate the actual number of set bins in the registry using Brian
3386  * Kernighan's algorithm: it's execution complexity is as a number of set bins.
3387  *
3388  * returns 0 for the compliance with ecore_mcast_refresh_registry_e1().
3389  */
3390 static inline int ecore_mcast_refresh_registry_e2(struct bxe_softc *sc,
3391 						  struct ecore_mcast_obj *o)
3392 {
3393 	int i, cnt = 0;
3394 	uint64_t elem;
3395 
3396 	for (i = 0; i < ECORE_MCAST_VEC_SZ; i++) {
3397 		elem = o->registry.aprox_match.vec[i];
3398 		for (; elem; cnt++)
3399 			elem &= elem - 1;
3400 	}
3401 
3402 	o->set_registry_size(o, cnt);
3403 
3404 	return ECORE_SUCCESS;
3405 }
3406 
3407 static int ecore_mcast_setup_e2(struct bxe_softc *sc,
3408 				struct ecore_mcast_ramrod_params *p,
3409 				enum ecore_mcast_cmd cmd)
3410 {
3411 	struct ecore_raw_obj *raw = &p->mcast_obj->raw;
3412 	struct ecore_mcast_obj *o = p->mcast_obj;
3413 	struct eth_multicast_rules_ramrod_data *data =
3414 		(struct eth_multicast_rules_ramrod_data *)(raw->rdata);
3415 	int cnt = 0, rc;
3416 
3417 	/* Reset the ramrod data buffer */
3418 	ECORE_MEMSET(data, 0, sizeof(*data));
3419 
3420 	cnt = ecore_mcast_handle_pending_cmds_e2(sc, p);
3421 
3422 	/* If there are no more pending commands - clear SCHEDULED state */
3423 	if (ECORE_LIST_IS_EMPTY(&o->pending_cmds_head))
3424 		o->clear_sched(o);
3425 
3426 	/* The below may be TRUE iff there was enough room in ramrod
3427 	 * data for all pending commands and for the current
3428 	 * command. Otherwise the current command would have been added
3429 	 * to the pending commands and p->mcast_list_len would have been
3430 	 * zeroed.
3431 	 */
3432 	if (p->mcast_list_len > 0)
3433 		cnt = ecore_mcast_handle_current_cmd(sc, p, cmd, cnt);
3434 
3435 	/* We've pulled out some MACs - update the total number of
3436 	 * outstanding.
3437 	 */
3438 	o->total_pending_num -= cnt;
3439 
3440 	/* send a ramrod */
3441 	ECORE_DBG_BREAK_IF(o->total_pending_num < 0);
3442 	ECORE_DBG_BREAK_IF(cnt > o->max_cmd_len);
3443 
3444 	ecore_mcast_set_rdata_hdr_e2(sc, p, (uint8_t)cnt);
3445 
3446 	/* Update a registry size if there are no more pending operations.
3447 	 *
3448 	 * We don't want to change the value of the registry size if there are
3449 	 * pending operations because we want it to always be equal to the
3450 	 * exact or the approximate number (see ecore_mcast_validate_e2()) of
3451 	 * set bins after the last requested operation in order to properly
3452 	 * evaluate the size of the next DEL/RESTORE operation.
3453 	 *
3454 	 * Note that we update the registry itself during command(s) handling
3455 	 * - see ecore_mcast_set_one_rule_e2(). That's because for 57712 we
3456 	 * aggregate multiple commands (ADD/DEL/RESTORE) into one ramrod but
3457 	 * with a limited amount of update commands (per MAC/bin) and we don't
3458 	 * know in this scope what the actual state of bins configuration is
3459 	 * going to be after this ramrod.
3460 	 */
3461 	if (!o->total_pending_num)
3462 		ecore_mcast_refresh_registry_e2(sc, o);
3463 
3464 	/* If CLEAR_ONLY was requested - don't send a ramrod and clear
3465 	 * RAMROD_PENDING status immediately.
3466 	 */
3467 	if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
3468 		raw->clear_pending(raw);
3469 		return ECORE_SUCCESS;
3470 	} else {
3471 		/* No need for an explicit memory barrier here as long as we
3472 		 * ensure the ordering of writing to the SPQ element
3473 		 * and updating of the SPQ producer which involves a memory
3474 		 * read. If the memory read is removed we will have to put a
3475 		 * full memory barrier there (inside ecore_sp_post()).
3476 		 */
3477 
3478 		/* Send a ramrod */
3479 		rc = ecore_sp_post( sc,
3480 				    RAMROD_CMD_ID_ETH_MULTICAST_RULES,
3481 				    raw->cid,
3482 				    raw->rdata_mapping,
3483 				    ETH_CONNECTION_TYPE);
3484 		if (rc)
3485 			return rc;
3486 
3487 		/* Ramrod completion is pending */
3488 		return ECORE_PENDING;
3489 	}
3490 }
3491 
3492 static int ecore_mcast_validate_e1h(struct bxe_softc *sc,
3493 				    struct ecore_mcast_ramrod_params *p,
3494 				    enum ecore_mcast_cmd cmd)
3495 {
3496 	/* Mark, that there is a work to do */
3497 	if ((cmd == ECORE_MCAST_CMD_DEL) || (cmd == ECORE_MCAST_CMD_RESTORE))
3498 		p->mcast_list_len = 1;
3499 
3500 	return ECORE_SUCCESS;
3501 }
3502 
3503 static void ecore_mcast_revert_e1h(struct bxe_softc *sc,
3504 				       struct ecore_mcast_ramrod_params *p,
3505 				       int old_num_bins)
3506 {
3507 	/* Do nothing */
3508 }
3509 
3510 #define ECORE_57711_SET_MC_FILTER(filter, bit) \
3511 do { \
3512 	(filter)[(bit) >> 5] |= (1 << ((bit) & 0x1f)); \
3513 } while (0)
3514 
3515 static inline void ecore_mcast_hdl_add_e1h(struct bxe_softc *sc,
3516 					   struct ecore_mcast_obj *o,
3517 					   struct ecore_mcast_ramrod_params *p,
3518 					   uint32_t *mc_filter)
3519 {
3520 	struct ecore_mcast_list_elem *mlist_pos;
3521 	int bit;
3522 
3523 	ECORE_LIST_FOR_EACH_ENTRY(mlist_pos, &p->mcast_list, link,
3524 				  struct ecore_mcast_list_elem) {
3525 		bit = ecore_mcast_bin_from_mac(mlist_pos->mac);
3526 		ECORE_57711_SET_MC_FILTER(mc_filter, bit);
3527 
3528 		ECORE_MSG(sc, "About to configure %02x:%02x:%02x:%02x:%02x:%02x mcast MAC, bin %d\n",
3529 			  mlist_pos->mac[0], mlist_pos->mac[1], mlist_pos->mac[2], mlist_pos->mac[3], mlist_pos->mac[4], mlist_pos->mac[5], bit);
3530 
3531 		/* bookkeeping... */
3532 		BIT_VEC64_SET_BIT(o->registry.aprox_match.vec,
3533 				  bit);
3534 	}
3535 }
3536 
3537 static inline void ecore_mcast_hdl_restore_e1h(struct bxe_softc *sc,
3538 	struct ecore_mcast_obj *o, struct ecore_mcast_ramrod_params *p,
3539 	uint32_t *mc_filter)
3540 {
3541 	int bit;
3542 
3543 	for (bit = ecore_mcast_get_next_bin(o, 0);
3544 	     bit >= 0;
3545 	     bit = ecore_mcast_get_next_bin(o, bit + 1)) {
3546 		ECORE_57711_SET_MC_FILTER(mc_filter, bit);
3547 		ECORE_MSG(sc, "About to set bin %d\n", bit);
3548 	}
3549 }
3550 
3551 /* On 57711 we write the multicast MACs' approximate match
3552  * table by directly into the TSTORM's internal RAM. So we don't
3553  * really need to handle any tricks to make it work.
3554  */
3555 static int ecore_mcast_setup_e1h(struct bxe_softc *sc,
3556 				 struct ecore_mcast_ramrod_params *p,
3557 				 enum ecore_mcast_cmd cmd)
3558 {
3559 	int i;
3560 	struct ecore_mcast_obj *o = p->mcast_obj;
3561 	struct ecore_raw_obj *r = &o->raw;
3562 
3563 	/* If CLEAR_ONLY has been requested - clear the registry
3564 	 * and clear a pending bit.
3565 	 */
3566 	if (!ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
3567 		uint32_t mc_filter[ECORE_MC_HASH_SIZE] = {0};
3568 
3569 		/* Set the multicast filter bits before writing it into
3570 		 * the internal memory.
3571 		 */
3572 		switch (cmd) {
3573 		case ECORE_MCAST_CMD_ADD:
3574 			ecore_mcast_hdl_add_e1h(sc, o, p, mc_filter);
3575 			break;
3576 
3577 		case ECORE_MCAST_CMD_DEL:
3578 			ECORE_MSG(sc,
3579 				  "Invalidating multicast MACs configuration\n");
3580 
3581 			/* clear the registry */
3582 			ECORE_MEMSET(o->registry.aprox_match.vec, 0,
3583 			       sizeof(o->registry.aprox_match.vec));
3584 			break;
3585 
3586 		case ECORE_MCAST_CMD_RESTORE:
3587 			ecore_mcast_hdl_restore_e1h(sc, o, p, mc_filter);
3588 			break;
3589 
3590 		default:
3591 			ECORE_ERR("Unknown command: %d\n", cmd);
3592 			return ECORE_INVAL;
3593 		}
3594 
3595 		/* Set the mcast filter in the internal memory */
3596 		for (i = 0; i < ECORE_MC_HASH_SIZE; i++)
3597 			REG_WR(sc, ECORE_MC_HASH_OFFSET(sc, i), mc_filter[i]);
3598 	} else
3599 		/* clear the registry */
3600 		ECORE_MEMSET(o->registry.aprox_match.vec, 0,
3601 		       sizeof(o->registry.aprox_match.vec));
3602 
3603 	/* We are done */
3604 	r->clear_pending(r);
3605 
3606 	return ECORE_SUCCESS;
3607 }
3608 
3609 static int ecore_mcast_validate_e1(struct bxe_softc *sc,
3610 				   struct ecore_mcast_ramrod_params *p,
3611 				   enum ecore_mcast_cmd cmd)
3612 {
3613 	struct ecore_mcast_obj *o = p->mcast_obj;
3614 	int reg_sz = o->get_registry_size(o);
3615 
3616 	switch (cmd) {
3617 	/* DEL command deletes all currently configured MACs */
3618 	case ECORE_MCAST_CMD_DEL:
3619 		o->set_registry_size(o, 0);
3620 		/* Don't break */
3621 
3622 	/* RESTORE command will restore the entire multicast configuration */
3623 	case ECORE_MCAST_CMD_RESTORE:
3624 		p->mcast_list_len = reg_sz;
3625 		  ECORE_MSG(sc, "Command %d, p->mcast_list_len=%d\n",
3626 				  cmd, p->mcast_list_len);
3627 		break;
3628 
3629 	case ECORE_MCAST_CMD_ADD:
3630 	case ECORE_MCAST_CMD_CONT:
3631 		/* Multicast MACs on 57710 are configured as unicast MACs and
3632 		 * there is only a limited number of CAM entries for that
3633 		 * matter.
3634 		 */
3635 		if (p->mcast_list_len > o->max_cmd_len) {
3636 			ECORE_ERR("Can't configure more than %d multicast MACs on 57710\n",
3637 				  o->max_cmd_len);
3638 			return ECORE_INVAL;
3639 		}
3640 		/* Every configured MAC should be cleared if DEL command is
3641 		 * called. Only the last ADD command is relevant as long as
3642 		 * every ADD commands overrides the previous configuration.
3643 		 */
3644 		ECORE_MSG(sc, "p->mcast_list_len=%d\n", p->mcast_list_len);
3645 		if (p->mcast_list_len > 0)
3646 			o->set_registry_size(o, p->mcast_list_len);
3647 
3648 		break;
3649 
3650 	default:
3651 		ECORE_ERR("Unknown command: %d\n", cmd);
3652 		return ECORE_INVAL;
3653 	}
3654 
3655 	/* We want to ensure that commands are executed one by one for 57710.
3656 	 * Therefore each none-empty command will consume o->max_cmd_len.
3657 	 */
3658 	if (p->mcast_list_len)
3659 		o->total_pending_num += o->max_cmd_len;
3660 
3661 	return ECORE_SUCCESS;
3662 }
3663 
3664 static void ecore_mcast_revert_e1(struct bxe_softc *sc,
3665 				      struct ecore_mcast_ramrod_params *p,
3666 				      int old_num_macs)
3667 {
3668 	struct ecore_mcast_obj *o = p->mcast_obj;
3669 
3670 	o->set_registry_size(o, old_num_macs);
3671 
3672 	/* If current command hasn't been handled yet and we are
3673 	 * here means that it's meant to be dropped and we have to
3674 	 * update the number of outstanding MACs accordingly.
3675 	 */
3676 	if (p->mcast_list_len)
3677 		o->total_pending_num -= o->max_cmd_len;
3678 }
3679 
3680 static void ecore_mcast_set_one_rule_e1(struct bxe_softc *sc,
3681 					struct ecore_mcast_obj *o, int idx,
3682 					union ecore_mcast_config_data *cfg_data,
3683 					enum ecore_mcast_cmd cmd)
3684 {
3685 	struct ecore_raw_obj *r = &o->raw;
3686 	struct mac_configuration_cmd *data =
3687 		(struct mac_configuration_cmd *)(r->rdata);
3688 
3689 	/* copy mac */
3690 	if ((cmd == ECORE_MCAST_CMD_ADD) || (cmd == ECORE_MCAST_CMD_RESTORE)) {
3691 		ecore_set_fw_mac_addr(&data->config_table[idx].msb_mac_addr,
3692 				      &data->config_table[idx].middle_mac_addr,
3693 				      &data->config_table[idx].lsb_mac_addr,
3694 				      cfg_data->mac);
3695 
3696 		data->config_table[idx].vlan_id = 0;
3697 		data->config_table[idx].pf_id = r->func_id;
3698 		data->config_table[idx].clients_bit_vector =
3699 			ECORE_CPU_TO_LE32(1 << r->cl_id);
3700 
3701 		ECORE_SET_FLAG(data->config_table[idx].flags,
3702 			       MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
3703 			       T_ETH_MAC_COMMAND_SET);
3704 	}
3705 }
3706 
3707 /**
3708  * ecore_mcast_set_rdata_hdr_e1  - set header values in mac_configuration_cmd
3709  *
3710  * @sc:		device handle
3711  * @p:
3712  * @len:	number of rules to handle
3713  */
3714 static inline void ecore_mcast_set_rdata_hdr_e1(struct bxe_softc *sc,
3715 					struct ecore_mcast_ramrod_params *p,
3716 					uint8_t len)
3717 {
3718 	struct ecore_raw_obj *r = &p->mcast_obj->raw;
3719 	struct mac_configuration_cmd *data =
3720 		(struct mac_configuration_cmd *)(r->rdata);
3721 
3722 	uint8_t offset = (CHIP_REV_IS_SLOW(sc) ?
3723 		     ECORE_MAX_EMUL_MULTI*(1 + r->func_id) :
3724 		     ECORE_MAX_MULTICAST*(1 + r->func_id));
3725 
3726 	data->hdr.offset = offset;
3727 	data->hdr.client_id = ECORE_CPU_TO_LE16(0xff);
3728 	data->hdr.echo = ECORE_CPU_TO_LE32((r->cid & ECORE_SWCID_MASK) |
3729 				     (ECORE_FILTER_MCAST_PENDING <<
3730 				      ECORE_SWCID_SHIFT));
3731 	data->hdr.length = len;
3732 }
3733 
3734 /**
3735  * ecore_mcast_handle_restore_cmd_e1 - restore command for 57710
3736  *
3737  * @sc:		device handle
3738  * @o:
3739  * @start_idx:	index in the registry to start from
3740  * @rdata_idx:	index in the ramrod data to start from
3741  *
3742  * restore command for 57710 is like all other commands - always a stand alone
3743  * command - start_idx and rdata_idx will always be 0. This function will always
3744  * succeed.
3745  * returns -1 to comply with 57712 variant.
3746  */
3747 static inline int ecore_mcast_handle_restore_cmd_e1(
3748 	struct bxe_softc *sc, struct ecore_mcast_obj *o , int start_idx,
3749 	int *rdata_idx)
3750 {
3751 	struct ecore_mcast_mac_elem *elem;
3752 	int i = 0;
3753 	union ecore_mcast_config_data cfg_data = {NULL};
3754 
3755 	/* go through the registry and configure the MACs from it. */
3756 	ECORE_LIST_FOR_EACH_ENTRY(elem, &o->registry.exact_match.macs, link,
3757 				  struct ecore_mcast_mac_elem) {
3758 		cfg_data.mac = &elem->mac[0];
3759 		o->set_one_rule(sc, o, i, &cfg_data, ECORE_MCAST_CMD_RESTORE);
3760 
3761 		i++;
3762 
3763 		ECORE_MSG(sc, "About to configure %02x:%02x:%02x:%02x:%02x:%02x mcast MAC\n",
3764 			  cfg_data.mac[0], cfg_data.mac[1], cfg_data.mac[2], cfg_data.mac[3], cfg_data.mac[4], cfg_data.mac[5]);
3765 	}
3766 
3767 	*rdata_idx = i;
3768 
3769 	return -1;
3770 }
3771 
3772 static inline int ecore_mcast_handle_pending_cmds_e1(
3773 	struct bxe_softc *sc, struct ecore_mcast_ramrod_params *p)
3774 {
3775 	struct ecore_pending_mcast_cmd *cmd_pos;
3776 	struct ecore_mcast_mac_elem *pmac_pos;
3777 	struct ecore_mcast_obj *o = p->mcast_obj;
3778 	union ecore_mcast_config_data cfg_data = {NULL};
3779 	int cnt = 0;
3780 
3781 	/* If nothing to be done - return */
3782 	if (ECORE_LIST_IS_EMPTY(&o->pending_cmds_head))
3783 		return 0;
3784 
3785 	/* Handle the first command */
3786 	cmd_pos = ECORE_LIST_FIRST_ENTRY(&o->pending_cmds_head,
3787 					 struct ecore_pending_mcast_cmd, link);
3788 
3789 	switch (cmd_pos->type) {
3790 	case ECORE_MCAST_CMD_ADD:
3791 		ECORE_LIST_FOR_EACH_ENTRY(pmac_pos, &cmd_pos->data.macs_head,
3792 					  link, struct ecore_mcast_mac_elem) {
3793 			cfg_data.mac = &pmac_pos->mac[0];
3794 			o->set_one_rule(sc, o, cnt, &cfg_data, cmd_pos->type);
3795 
3796 			cnt++;
3797 
3798 			ECORE_MSG(sc, "About to configure %02x:%02x:%02x:%02x:%02x:%02x mcast MAC\n",
3799 				  pmac_pos->mac[0], pmac_pos->mac[1], pmac_pos->mac[2], pmac_pos->mac[3], pmac_pos->mac[4], pmac_pos->mac[5]);
3800 		}
3801 		break;
3802 
3803 	case ECORE_MCAST_CMD_DEL:
3804 		cnt = cmd_pos->data.macs_num;
3805 		ECORE_MSG(sc, "About to delete %d multicast MACs\n", cnt);
3806 		break;
3807 
3808 	case ECORE_MCAST_CMD_RESTORE:
3809 		o->hdl_restore(sc, o, 0, &cnt);
3810 		break;
3811 
3812 	default:
3813 		ECORE_ERR("Unknown command: %d\n", cmd_pos->type);
3814 		return ECORE_INVAL;
3815 	}
3816 
3817 	ECORE_LIST_REMOVE_ENTRY(&cmd_pos->link, &o->pending_cmds_head);
3818 	ECORE_FREE(sc, cmd_pos, cmd_pos->alloc_len);
3819 
3820 	return cnt;
3821 }
3822 
3823 /**
3824  * ecore_get_fw_mac_addr - revert the ecore_set_fw_mac_addr().
3825  *
3826  * @fw_hi:
3827  * @fw_mid:
3828  * @fw_lo:
3829  * @mac:
3830  */
3831 static inline void ecore_get_fw_mac_addr(uint16_t *fw_hi, uint16_t *fw_mid,
3832 					 uint16_t *fw_lo, uint8_t *mac)
3833 {
3834 	mac[1] = ((uint8_t *)fw_hi)[0];
3835 	mac[0] = ((uint8_t *)fw_hi)[1];
3836 	mac[3] = ((uint8_t *)fw_mid)[0];
3837 	mac[2] = ((uint8_t *)fw_mid)[1];
3838 	mac[5] = ((uint8_t *)fw_lo)[0];
3839 	mac[4] = ((uint8_t *)fw_lo)[1];
3840 }
3841 
3842 /**
3843  * ecore_mcast_refresh_registry_e1 -
3844  *
3845  * @sc:		device handle
3846  * @cnt:
3847  *
3848  * Check the ramrod data first entry flag to see if it's a DELETE or ADD command
3849  * and update the registry correspondingly: if ADD - allocate a memory and add
3850  * the entries to the registry (list), if DELETE - clear the registry and free
3851  * the memory.
3852  */
3853 static inline int ecore_mcast_refresh_registry_e1(struct bxe_softc *sc,
3854 						  struct ecore_mcast_obj *o)
3855 {
3856 	struct ecore_raw_obj *raw = &o->raw;
3857 	struct ecore_mcast_mac_elem *elem;
3858 	struct mac_configuration_cmd *data =
3859 			(struct mac_configuration_cmd *)(raw->rdata);
3860 
3861 	/* If first entry contains a SET bit - the command was ADD,
3862 	 * otherwise - DEL_ALL
3863 	 */
3864 	if (ECORE_GET_FLAG(data->config_table[0].flags,
3865 			MAC_CONFIGURATION_ENTRY_ACTION_TYPE)) {
3866 		int i, len = data->hdr.length;
3867 
3868 		/* Break if it was a RESTORE command */
3869 		if (!ECORE_LIST_IS_EMPTY(&o->registry.exact_match.macs))
3870 			return ECORE_SUCCESS;
3871 
3872 		elem = ECORE_CALLOC(len, sizeof(*elem), GFP_ATOMIC, sc);
3873 		if (!elem) {
3874 			ECORE_ERR("Failed to allocate registry memory\n");
3875 			return ECORE_NOMEM;
3876 		}
3877 
3878 		for (i = 0; i < len; i++, elem++) {
3879 			ecore_get_fw_mac_addr(
3880 				&data->config_table[i].msb_mac_addr,
3881 				&data->config_table[i].middle_mac_addr,
3882 				&data->config_table[i].lsb_mac_addr,
3883 				elem->mac);
3884 			ECORE_MSG(sc, "Adding registry entry for [%02x:%02x:%02x:%02x:%02x:%02x]\n",
3885 				  elem->mac[0], elem->mac[1], elem->mac[2], elem->mac[3], elem->mac[4], elem->mac[5]);
3886 			ECORE_LIST_PUSH_TAIL(&elem->link,
3887 					     &o->registry.exact_match.macs);
3888 		}
3889 	} else {
3890 		elem = ECORE_LIST_FIRST_ENTRY(&o->registry.exact_match.macs,
3891 					      struct ecore_mcast_mac_elem,
3892 					      link);
3893 		ECORE_MSG(sc, "Deleting a registry\n");
3894 		ECORE_FREE(sc, elem, sizeof(*elem));
3895 		ECORE_LIST_INIT(&o->registry.exact_match.macs);
3896 	}
3897 
3898 	return ECORE_SUCCESS;
3899 }
3900 
3901 static int ecore_mcast_setup_e1(struct bxe_softc *sc,
3902 				struct ecore_mcast_ramrod_params *p,
3903 				enum ecore_mcast_cmd cmd)
3904 {
3905 	struct ecore_mcast_obj *o = p->mcast_obj;
3906 	struct ecore_raw_obj *raw = &o->raw;
3907 	struct mac_configuration_cmd *data =
3908 		(struct mac_configuration_cmd *)(raw->rdata);
3909 	int cnt = 0, i, rc;
3910 
3911 	/* Reset the ramrod data buffer */
3912 	ECORE_MEMSET(data, 0, sizeof(*data));
3913 
3914 	/* First set all entries as invalid */
3915 	for (i = 0; i < o->max_cmd_len ; i++)
3916 		ECORE_SET_FLAG(data->config_table[i].flags,
3917 			MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
3918 			T_ETH_MAC_COMMAND_INVALIDATE);
3919 
3920 	/* Handle pending commands first */
3921 	cnt = ecore_mcast_handle_pending_cmds_e1(sc, p);
3922 
3923 	/* If there are no more pending commands - clear SCHEDULED state */
3924 	if (ECORE_LIST_IS_EMPTY(&o->pending_cmds_head))
3925 		o->clear_sched(o);
3926 
3927 	/* The below may be TRUE iff there were no pending commands */
3928 	if (!cnt)
3929 		cnt = ecore_mcast_handle_current_cmd(sc, p, cmd, 0);
3930 
3931 	/* For 57710 every command has o->max_cmd_len length to ensure that
3932 	 * commands are done one at a time.
3933 	 */
3934 	o->total_pending_num -= o->max_cmd_len;
3935 
3936 	/* send a ramrod */
3937 
3938 	ECORE_DBG_BREAK_IF(cnt > o->max_cmd_len);
3939 
3940 	/* Set ramrod header (in particular, a number of entries to update) */
3941 	ecore_mcast_set_rdata_hdr_e1(sc, p, (uint8_t)cnt);
3942 
3943 	/* update a registry: we need the registry contents to be always up
3944 	 * to date in order to be able to execute a RESTORE opcode. Here
3945 	 * we use the fact that for 57710 we sent one command at a time
3946 	 * hence we may take the registry update out of the command handling
3947 	 * and do it in a simpler way here.
3948 	 */
3949 	rc = ecore_mcast_refresh_registry_e1(sc, o);
3950 	if (rc)
3951 		return rc;
3952 
3953 	/* If CLEAR_ONLY was requested - don't send a ramrod and clear
3954 	 * RAMROD_PENDING status immediately.
3955 	 */
3956 	if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
3957 		raw->clear_pending(raw);
3958 		return ECORE_SUCCESS;
3959 	} else {
3960 		/* No need for an explicit memory barrier here as long as we
3961 		 * ensure the ordering of writing to the SPQ element
3962 		 * and updating of the SPQ producer which involves a memory
3963 		 * read. If the memory read is removed we will have to put a
3964 		 * full memory barrier there (inside ecore_sp_post()).
3965 		 */
3966 
3967 		/* Send a ramrod */
3968 		rc = ecore_sp_post( sc,
3969 				    RAMROD_CMD_ID_ETH_SET_MAC,
3970 				    raw->cid,
3971 				    raw->rdata_mapping,
3972 				    ETH_CONNECTION_TYPE);
3973 		if (rc)
3974 			return rc;
3975 
3976 		/* Ramrod completion is pending */
3977 		return ECORE_PENDING;
3978 	}
3979 }
3980 
3981 static int ecore_mcast_get_registry_size_exact(struct ecore_mcast_obj *o)
3982 {
3983 	return o->registry.exact_match.num_macs_set;
3984 }
3985 
3986 static int ecore_mcast_get_registry_size_aprox(struct ecore_mcast_obj *o)
3987 {
3988 	return o->registry.aprox_match.num_bins_set;
3989 }
3990 
3991 static void ecore_mcast_set_registry_size_exact(struct ecore_mcast_obj *o,
3992 						int n)
3993 {
3994 	o->registry.exact_match.num_macs_set = n;
3995 }
3996 
3997 static void ecore_mcast_set_registry_size_aprox(struct ecore_mcast_obj *o,
3998 						int n)
3999 {
4000 	o->registry.aprox_match.num_bins_set = n;
4001 }
4002 
4003 int ecore_config_mcast(struct bxe_softc *sc,
4004 		       struct ecore_mcast_ramrod_params *p,
4005 		       enum ecore_mcast_cmd cmd)
4006 {
4007 	struct ecore_mcast_obj *o = p->mcast_obj;
4008 	struct ecore_raw_obj *r = &o->raw;
4009 	int rc = 0, old_reg_size;
4010 
4011 	/* This is needed to recover number of currently configured mcast macs
4012 	 * in case of failure.
4013 	 */
4014 	old_reg_size = o->get_registry_size(o);
4015 
4016 	/* Do some calculations and checks */
4017 	rc = o->validate(sc, p, cmd);
4018 	if (rc)
4019 		return rc;
4020 
4021 	/* Return if there is no work to do */
4022 	if ((!p->mcast_list_len) && (!o->check_sched(o)))
4023 		return ECORE_SUCCESS;
4024 
4025 	ECORE_MSG(sc, "o->total_pending_num=%d p->mcast_list_len=%d o->max_cmd_len=%d\n",
4026 		  o->total_pending_num, p->mcast_list_len, o->max_cmd_len);
4027 
4028 	/* Enqueue the current command to the pending list if we can't complete
4029 	 * it in the current iteration
4030 	 */
4031 	if (r->check_pending(r) ||
4032 	    ((o->max_cmd_len > 0) && (o->total_pending_num > o->max_cmd_len))) {
4033 		rc = o->enqueue_cmd(sc, p->mcast_obj, p, cmd);
4034 		if (rc < 0)
4035 			goto error_exit1;
4036 
4037 		/* As long as the current command is in a command list we
4038 		 * don't need to handle it separately.
4039 		 */
4040 		p->mcast_list_len = 0;
4041 	}
4042 
4043 	if (!r->check_pending(r)) {
4044 
4045 		/* Set 'pending' state */
4046 		r->set_pending(r);
4047 
4048 		/* Configure the new classification in the chip */
4049 		rc = o->config_mcast(sc, p, cmd);
4050 		if (rc < 0)
4051 			goto error_exit2;
4052 
4053 		/* Wait for a ramrod completion if was requested */
4054 		if (ECORE_TEST_BIT(RAMROD_COMP_WAIT, &p->ramrod_flags))
4055 			rc = o->wait_comp(sc, o);
4056 	}
4057 
4058 	return rc;
4059 
4060 error_exit2:
4061 	r->clear_pending(r);
4062 
4063 error_exit1:
4064 	o->revert(sc, p, old_reg_size);
4065 
4066 	return rc;
4067 }
4068 
4069 static void ecore_mcast_clear_sched(struct ecore_mcast_obj *o)
4070 {
4071 	ECORE_SMP_MB_BEFORE_CLEAR_BIT();
4072 	ECORE_CLEAR_BIT(o->sched_state, o->raw.pstate);
4073 	ECORE_SMP_MB_AFTER_CLEAR_BIT();
4074 }
4075 
4076 static void ecore_mcast_set_sched(struct ecore_mcast_obj *o)
4077 {
4078 	ECORE_SMP_MB_BEFORE_CLEAR_BIT();
4079 	ECORE_SET_BIT(o->sched_state, o->raw.pstate);
4080 	ECORE_SMP_MB_AFTER_CLEAR_BIT();
4081 }
4082 
4083 static bool ecore_mcast_check_sched(struct ecore_mcast_obj *o)
4084 {
4085 	return !!ECORE_TEST_BIT(o->sched_state, o->raw.pstate);
4086 }
4087 
4088 static bool ecore_mcast_check_pending(struct ecore_mcast_obj *o)
4089 {
4090 	return o->raw.check_pending(&o->raw) || o->check_sched(o);
4091 }
4092 
4093 void ecore_init_mcast_obj(struct bxe_softc *sc,
4094 			  struct ecore_mcast_obj *mcast_obj,
4095 			  uint8_t mcast_cl_id, uint32_t mcast_cid, uint8_t func_id,
4096 			  uint8_t engine_id, void *rdata, ecore_dma_addr_t rdata_mapping,
4097 			  int state, unsigned long *pstate, ecore_obj_type type)
4098 {
4099 	ECORE_MEMSET(mcast_obj, 0, sizeof(*mcast_obj));
4100 
4101 	ecore_init_raw_obj(&mcast_obj->raw, mcast_cl_id, mcast_cid, func_id,
4102 			   rdata, rdata_mapping, state, pstate, type);
4103 
4104 	mcast_obj->engine_id = engine_id;
4105 
4106 	ECORE_LIST_INIT(&mcast_obj->pending_cmds_head);
4107 
4108 	mcast_obj->sched_state = ECORE_FILTER_MCAST_SCHED;
4109 	mcast_obj->check_sched = ecore_mcast_check_sched;
4110 	mcast_obj->set_sched = ecore_mcast_set_sched;
4111 	mcast_obj->clear_sched = ecore_mcast_clear_sched;
4112 
4113 	if (CHIP_IS_E1(sc)) {
4114 		mcast_obj->config_mcast      = ecore_mcast_setup_e1;
4115 		mcast_obj->enqueue_cmd       = ecore_mcast_enqueue_cmd;
4116 		mcast_obj->hdl_restore       =
4117 			ecore_mcast_handle_restore_cmd_e1;
4118 		mcast_obj->check_pending     = ecore_mcast_check_pending;
4119 
4120 		if (CHIP_REV_IS_SLOW(sc))
4121 			mcast_obj->max_cmd_len = ECORE_MAX_EMUL_MULTI;
4122 		else
4123 			mcast_obj->max_cmd_len = ECORE_MAX_MULTICAST;
4124 
4125 		mcast_obj->wait_comp         = ecore_mcast_wait;
4126 		mcast_obj->set_one_rule      = ecore_mcast_set_one_rule_e1;
4127 		mcast_obj->validate          = ecore_mcast_validate_e1;
4128 		mcast_obj->revert            = ecore_mcast_revert_e1;
4129 		mcast_obj->get_registry_size =
4130 			ecore_mcast_get_registry_size_exact;
4131 		mcast_obj->set_registry_size =
4132 			ecore_mcast_set_registry_size_exact;
4133 
4134 		/* 57710 is the only chip that uses the exact match for mcast
4135 		 * at the moment.
4136 		 */
4137 		ECORE_LIST_INIT(&mcast_obj->registry.exact_match.macs);
4138 
4139 	} else if (CHIP_IS_E1H(sc)) {
4140 		mcast_obj->config_mcast  = ecore_mcast_setup_e1h;
4141 		mcast_obj->enqueue_cmd   = NULL;
4142 		mcast_obj->hdl_restore   = NULL;
4143 		mcast_obj->check_pending = ecore_mcast_check_pending;
4144 
4145 		/* 57711 doesn't send a ramrod, so it has unlimited credit
4146 		 * for one command.
4147 		 */
4148 		mcast_obj->max_cmd_len       = -1;
4149 		mcast_obj->wait_comp         = ecore_mcast_wait;
4150 		mcast_obj->set_one_rule      = NULL;
4151 		mcast_obj->validate          = ecore_mcast_validate_e1h;
4152 		mcast_obj->revert            = ecore_mcast_revert_e1h;
4153 		mcast_obj->get_registry_size =
4154 			ecore_mcast_get_registry_size_aprox;
4155 		mcast_obj->set_registry_size =
4156 			ecore_mcast_set_registry_size_aprox;
4157 	} else {
4158 		mcast_obj->config_mcast      = ecore_mcast_setup_e2;
4159 		mcast_obj->enqueue_cmd       = ecore_mcast_enqueue_cmd;
4160 		mcast_obj->hdl_restore       =
4161 			ecore_mcast_handle_restore_cmd_e2;
4162 		mcast_obj->check_pending     = ecore_mcast_check_pending;
4163 		/* TODO: There should be a proper HSI define for this number!!!
4164 		 */
4165 		mcast_obj->max_cmd_len       = 16;
4166 		mcast_obj->wait_comp         = ecore_mcast_wait;
4167 		mcast_obj->set_one_rule      = ecore_mcast_set_one_rule_e2;
4168 		mcast_obj->validate          = ecore_mcast_validate_e2;
4169 		mcast_obj->revert            = ecore_mcast_revert_e2;
4170 		mcast_obj->get_registry_size =
4171 			ecore_mcast_get_registry_size_aprox;
4172 		mcast_obj->set_registry_size =
4173 			ecore_mcast_set_registry_size_aprox;
4174 	}
4175 }
4176 
4177 /*************************** Credit handling **********************************/
4178 
4179 /**
4180  * atomic_add_ifless - add if the result is less than a given value.
4181  *
4182  * @v:	pointer of type ecore_atomic_t
4183  * @a:	the amount to add to v...
4184  * @u:	...if (v + a) is less than u.
4185  *
4186  * returns TRUE if (v + a) was less than u, and FALSE otherwise.
4187  *
4188  */
4189 static inline bool __atomic_add_ifless(ecore_atomic_t *v, int a, int u)
4190 {
4191 	int c, old;
4192 
4193 	c = ECORE_ATOMIC_READ(v);
4194 	for (;;) {
4195 		if (ECORE_UNLIKELY(c + a >= u))
4196 			return FALSE;
4197 
4198 		old = ECORE_ATOMIC_CMPXCHG((v), c, c + a);
4199 		if (ECORE_LIKELY(old == c))
4200 			break;
4201 		c = old;
4202 	}
4203 
4204 	return TRUE;
4205 }
4206 
4207 /**
4208  * atomic_dec_ifmoe - dec if the result is more or equal than a given value.
4209  *
4210  * @v:	pointer of type ecore_atomic_t
4211  * @a:	the amount to dec from v...
4212  * @u:	...if (v - a) is more or equal than u.
4213  *
4214  * returns TRUE if (v - a) was more or equal than u, and FALSE
4215  * otherwise.
4216  */
4217 static inline bool __atomic_dec_ifmoe(ecore_atomic_t *v, int a, int u)
4218 {
4219 	int c, old;
4220 
4221 	c = ECORE_ATOMIC_READ(v);
4222 	for (;;) {
4223 		if (ECORE_UNLIKELY(c - a < u))
4224 			return FALSE;
4225 
4226 		old = ECORE_ATOMIC_CMPXCHG((v), c, c - a);
4227 		if (ECORE_LIKELY(old == c))
4228 			break;
4229 		c = old;
4230 	}
4231 
4232 	return TRUE;
4233 }
4234 
4235 static bool ecore_credit_pool_get(struct ecore_credit_pool_obj *o, int cnt)
4236 {
4237 	bool rc;
4238 
4239 	ECORE_SMP_MB();
4240 	rc = __atomic_dec_ifmoe(&o->credit, cnt, 0);
4241 	ECORE_SMP_MB();
4242 
4243 	return rc;
4244 }
4245 
4246 static bool ecore_credit_pool_put(struct ecore_credit_pool_obj *o, int cnt)
4247 {
4248 	bool rc;
4249 
4250 	ECORE_SMP_MB();
4251 
4252 	/* Don't let to refill if credit + cnt > pool_sz */
4253 	rc = __atomic_add_ifless(&o->credit, cnt, o->pool_sz + 1);
4254 
4255 	ECORE_SMP_MB();
4256 
4257 	return rc;
4258 }
4259 
4260 static int ecore_credit_pool_check(struct ecore_credit_pool_obj *o)
4261 {
4262 	int cur_credit;
4263 
4264 	ECORE_SMP_MB();
4265 	cur_credit = ECORE_ATOMIC_READ(&o->credit);
4266 
4267 	return cur_credit;
4268 }
4269 
4270 static bool ecore_credit_pool_always_TRUE(struct ecore_credit_pool_obj *o,
4271 					  int cnt)
4272 {
4273 	return TRUE;
4274 }
4275 
4276 static bool ecore_credit_pool_get_entry(
4277 	struct ecore_credit_pool_obj *o,
4278 	int *offset)
4279 {
4280 	int idx, vec, i;
4281 
4282 	*offset = -1;
4283 
4284 	/* Find "internal cam-offset" then add to base for this object... */
4285 	for (vec = 0; vec < ECORE_POOL_VEC_SIZE; vec++) {
4286 
4287 		/* Skip the current vector if there are no free entries in it */
4288 		if (!o->pool_mirror[vec])
4289 			continue;
4290 
4291 		/* If we've got here we are going to find a free entry */
4292 		for (idx = vec * BIT_VEC64_ELEM_SZ, i = 0;
4293 		      i < BIT_VEC64_ELEM_SZ; idx++, i++)
4294 
4295 			if (BIT_VEC64_TEST_BIT(o->pool_mirror, idx)) {
4296 				/* Got one!! */
4297 				BIT_VEC64_CLEAR_BIT(o->pool_mirror, idx);
4298 				*offset = o->base_pool_offset + idx;
4299 				return TRUE;
4300 			}
4301 	}
4302 
4303 	return FALSE;
4304 }
4305 
4306 static bool ecore_credit_pool_put_entry(
4307 	struct ecore_credit_pool_obj *o,
4308 	int offset)
4309 {
4310 	if (offset < o->base_pool_offset)
4311 		return FALSE;
4312 
4313 	offset -= o->base_pool_offset;
4314 
4315 	if (offset >= o->pool_sz)
4316 		return FALSE;
4317 
4318 	/* Return the entry to the pool */
4319 	BIT_VEC64_SET_BIT(o->pool_mirror, offset);
4320 
4321 	return TRUE;
4322 }
4323 
4324 static bool ecore_credit_pool_put_entry_always_TRUE(
4325 	struct ecore_credit_pool_obj *o,
4326 	int offset)
4327 {
4328 	return TRUE;
4329 }
4330 
4331 static bool ecore_credit_pool_get_entry_always_TRUE(
4332 	struct ecore_credit_pool_obj *o,
4333 	int *offset)
4334 {
4335 	*offset = -1;
4336 	return TRUE;
4337 }
4338 /**
4339  * ecore_init_credit_pool - initialize credit pool internals.
4340  *
4341  * @p:
4342  * @base:	Base entry in the CAM to use.
4343  * @credit:	pool size.
4344  *
4345  * If base is negative no CAM entries handling will be performed.
4346  * If credit is negative pool operations will always succeed (unlimited pool).
4347  *
4348  */
4349 void ecore_init_credit_pool(struct ecore_credit_pool_obj *p,
4350 					  int base, int credit)
4351 {
4352 	/* Zero the object first */
4353 	ECORE_MEMSET(p, 0, sizeof(*p));
4354 
4355 	/* Set the table to all 1s */
4356 	ECORE_MEMSET(&p->pool_mirror, 0xff, sizeof(p->pool_mirror));
4357 
4358 	/* Init a pool as full */
4359 	ECORE_ATOMIC_SET(&p->credit, credit);
4360 
4361 	/* The total poll size */
4362 	p->pool_sz = credit;
4363 
4364 	p->base_pool_offset = base;
4365 
4366 	/* Commit the change */
4367 	ECORE_SMP_MB();
4368 
4369 	p->check = ecore_credit_pool_check;
4370 
4371 	/* if pool credit is negative - disable the checks */
4372 	if (credit >= 0) {
4373 		p->put      = ecore_credit_pool_put;
4374 		p->get      = ecore_credit_pool_get;
4375 		p->put_entry = ecore_credit_pool_put_entry;
4376 		p->get_entry = ecore_credit_pool_get_entry;
4377 	} else {
4378 		p->put      = ecore_credit_pool_always_TRUE;
4379 		p->get      = ecore_credit_pool_always_TRUE;
4380 		p->put_entry = ecore_credit_pool_put_entry_always_TRUE;
4381 		p->get_entry = ecore_credit_pool_get_entry_always_TRUE;
4382 	}
4383 
4384 	/* If base is negative - disable entries handling */
4385 	if (base < 0) {
4386 		p->put_entry = ecore_credit_pool_put_entry_always_TRUE;
4387 		p->get_entry = ecore_credit_pool_get_entry_always_TRUE;
4388 	}
4389 }
4390 
4391 void ecore_init_mac_credit_pool(struct bxe_softc *sc,
4392 				struct ecore_credit_pool_obj *p, uint8_t func_id,
4393 				uint8_t func_num)
4394 {
4395 /* TODO: this will be defined in consts as well... */
4396 #define ECORE_CAM_SIZE_EMUL 5
4397 
4398 	int cam_sz;
4399 
4400 	if (CHIP_IS_E1(sc)) {
4401 		/* In E1, Multicast is saved in cam... */
4402 		if (!CHIP_REV_IS_SLOW(sc))
4403 			cam_sz = (MAX_MAC_CREDIT_E1 / 2) - ECORE_MAX_MULTICAST;
4404 		else
4405 			cam_sz = ECORE_CAM_SIZE_EMUL - ECORE_MAX_EMUL_MULTI;
4406 
4407 		ecore_init_credit_pool(p, func_id * cam_sz, cam_sz);
4408 
4409 	} else if (CHIP_IS_E1H(sc)) {
4410 		/* CAM credit is equally divided between all active functions
4411 		 * on the PORT!.
4412 		 */
4413 		if ((func_num > 0)) {
4414 			if (!CHIP_REV_IS_SLOW(sc))
4415 				cam_sz = (MAX_MAC_CREDIT_E1H / (2*func_num));
4416 			else
4417 				cam_sz = ECORE_CAM_SIZE_EMUL;
4418 			ecore_init_credit_pool(p, func_id * cam_sz, cam_sz);
4419 		} else {
4420 			/* this should never happen! Block MAC operations. */
4421 			ecore_init_credit_pool(p, 0, 0);
4422 		}
4423 	} else {
4424 		/*
4425 		 * CAM credit is equaly divided between all active functions
4426 		 * on the PATH.
4427 		 */
4428 		if (func_num > 0) {
4429 			if (!CHIP_REV_IS_SLOW(sc))
4430 				cam_sz = PF_MAC_CREDIT_E2(sc, func_num);
4431 			else
4432 				cam_sz = ECORE_CAM_SIZE_EMUL;
4433 
4434 			/* No need for CAM entries handling for 57712 and
4435 			 * newer.
4436 			 */
4437 			ecore_init_credit_pool(p, -1, cam_sz);
4438 		} else {
4439 			/* this should never happen! Block MAC operations. */
4440 			ecore_init_credit_pool(p, 0, 0);
4441 		}
4442 	}
4443 }
4444 
4445 void ecore_init_vlan_credit_pool(struct bxe_softc *sc,
4446 				 struct ecore_credit_pool_obj *p,
4447 				 uint8_t func_id,
4448 				 uint8_t func_num)
4449 {
4450 	if (CHIP_IS_E1x(sc)) {
4451 		/* There is no VLAN credit in HW on 57710 and 57711 only
4452 		 * MAC / MAC-VLAN can be set
4453 		 */
4454 		ecore_init_credit_pool(p, 0, -1);
4455 	} else {
4456 		/* CAM credit is equally divided between all active functions
4457 		 * on the PATH.
4458 		 */
4459 		if (func_num > 0) {
4460 			int credit = PF_VLAN_CREDIT_E2(sc, func_num);
4461 
4462 			ecore_init_credit_pool(p, -1/*unused for E2*/, credit);
4463 		} else
4464 			/* this should never happen! Block VLAN operations. */
4465 			ecore_init_credit_pool(p, 0, 0);
4466 	}
4467 }
4468 
4469 /****************** RSS Configuration ******************/
4470 
4471 /**
4472  * ecore_setup_rss - configure RSS
4473  *
4474  * @sc:		device handle
4475  * @p:		rss configuration
4476  *
4477  * sends on UPDATE ramrod for that matter.
4478  */
4479 static int ecore_setup_rss(struct bxe_softc *sc,
4480 			   struct ecore_config_rss_params *p)
4481 {
4482 	struct ecore_rss_config_obj *o = p->rss_obj;
4483 	struct ecore_raw_obj *r = &o->raw;
4484 	struct eth_rss_update_ramrod_data *data =
4485 		(struct eth_rss_update_ramrod_data *)(r->rdata);
4486 	uint16_t caps = 0;
4487 	uint8_t rss_mode = 0;
4488 	int rc;
4489 
4490 	ECORE_MEMSET(data, 0, sizeof(*data));
4491 
4492 	ECORE_MSG(sc, "Configuring RSS\n");
4493 
4494 	/* Set an echo field */
4495 	data->echo = ECORE_CPU_TO_LE32((r->cid & ECORE_SWCID_MASK) |
4496 				 (r->state << ECORE_SWCID_SHIFT));
4497 
4498 	/* RSS mode */
4499 	if (ECORE_TEST_BIT(ECORE_RSS_MODE_DISABLED, &p->rss_flags))
4500 		rss_mode = ETH_RSS_MODE_DISABLED;
4501 	else if (ECORE_TEST_BIT(ECORE_RSS_MODE_REGULAR, &p->rss_flags))
4502 		rss_mode = ETH_RSS_MODE_REGULAR;
4503 
4504 	data->rss_mode = rss_mode;
4505 
4506 	ECORE_MSG(sc, "rss_mode=%d\n", rss_mode);
4507 
4508 	/* RSS capabilities */
4509 	if (ECORE_TEST_BIT(ECORE_RSS_IPV4, &p->rss_flags))
4510 		caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_CAPABILITY;
4511 
4512 	if (ECORE_TEST_BIT(ECORE_RSS_IPV4_TCP, &p->rss_flags))
4513 		caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_TCP_CAPABILITY;
4514 
4515 	if (ECORE_TEST_BIT(ECORE_RSS_IPV4_UDP, &p->rss_flags))
4516 		caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_UDP_CAPABILITY;
4517 
4518 	if (ECORE_TEST_BIT(ECORE_RSS_IPV6, &p->rss_flags))
4519 		caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_CAPABILITY;
4520 
4521 	if (ECORE_TEST_BIT(ECORE_RSS_IPV6_TCP, &p->rss_flags))
4522 		caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_TCP_CAPABILITY;
4523 
4524 	if (ECORE_TEST_BIT(ECORE_RSS_IPV6_UDP, &p->rss_flags))
4525 		caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_UDP_CAPABILITY;
4526 
4527 	if (ECORE_TEST_BIT(ECORE_RSS_IPV4_VXLAN, &p->rss_flags))
4528 		caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_VXLAN_CAPABILITY;
4529 
4530 	if (ECORE_TEST_BIT(ECORE_RSS_IPV6_VXLAN, &p->rss_flags))
4531 		caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_VXLAN_CAPABILITY;
4532 
4533 	if (ECORE_TEST_BIT(ECORE_RSS_TUNN_INNER_HDRS, &p->rss_flags))
4534 		caps |= ETH_RSS_UPDATE_RAMROD_DATA_TUNN_INNER_HDRS_CAPABILITY;
4535 
4536 	/* RSS keys */
4537 	if (ECORE_TEST_BIT(ECORE_RSS_SET_SRCH, &p->rss_flags)) {
4538 		ECORE_MEMCPY(&data->rss_key[0], &p->rss_key[0],
4539 		       sizeof(data->rss_key));
4540 		caps |= ETH_RSS_UPDATE_RAMROD_DATA_UPDATE_RSS_KEY;
4541 	}
4542 
4543 	data->capabilities = ECORE_CPU_TO_LE16(caps);
4544 
4545 	/* Hashing mask */
4546 	data->rss_result_mask = p->rss_result_mask;
4547 
4548 	/* RSS engine ID */
4549 	data->rss_engine_id = o->engine_id;
4550 
4551 	ECORE_MSG(sc, "rss_engine_id=%d\n", data->rss_engine_id);
4552 
4553 	/* Indirection table */
4554 	ECORE_MEMCPY(data->indirection_table, p->ind_table,
4555 		  T_ETH_INDIRECTION_TABLE_SIZE);
4556 
4557 	/* Remember the last configuration */
4558 	ECORE_MEMCPY(o->ind_table, p->ind_table, T_ETH_INDIRECTION_TABLE_SIZE);
4559 
4560 
4561 	/* No need for an explicit memory barrier here as long as we
4562 	 * ensure the ordering of writing to the SPQ element
4563 	 * and updating of the SPQ producer which involves a memory
4564 	 * read. If the memory read is removed we will have to put a
4565 	 * full memory barrier there (inside ecore_sp_post()).
4566 	 */
4567 
4568 	/* Send a ramrod */
4569 	rc = ecore_sp_post(sc,
4570 			     RAMROD_CMD_ID_ETH_RSS_UPDATE,
4571 			     r->cid,
4572 			     r->rdata_mapping,
4573 			     ETH_CONNECTION_TYPE);
4574 
4575 	if (rc < 0)
4576 		return rc;
4577 
4578 	return ECORE_PENDING;
4579 }
4580 
4581 void ecore_get_rss_ind_table(struct ecore_rss_config_obj *rss_obj,
4582 			     uint8_t *ind_table)
4583 {
4584 	ECORE_MEMCPY(ind_table, rss_obj->ind_table, sizeof(rss_obj->ind_table));
4585 }
4586 
4587 int ecore_config_rss(struct bxe_softc *sc,
4588 		     struct ecore_config_rss_params *p)
4589 {
4590 	int rc;
4591 	struct ecore_rss_config_obj *o = p->rss_obj;
4592 	struct ecore_raw_obj *r = &o->raw;
4593 
4594 	/* Do nothing if only driver cleanup was requested */
4595 	if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
4596 		ECORE_MSG(sc, "Not configuring RSS ramrod_flags=%lx\n",
4597 			  p->ramrod_flags);
4598 		return ECORE_SUCCESS;
4599 	}
4600 
4601 	r->set_pending(r);
4602 
4603 	rc = o->config_rss(sc, p);
4604 	if (rc < 0) {
4605 		r->clear_pending(r);
4606 		return rc;
4607 	}
4608 
4609 	if (ECORE_TEST_BIT(RAMROD_COMP_WAIT, &p->ramrod_flags))
4610 		rc = r->wait_comp(sc, r);
4611 
4612 	return rc;
4613 }
4614 
4615 void ecore_init_rss_config_obj(struct bxe_softc *sc,
4616 			       struct ecore_rss_config_obj *rss_obj,
4617 			       uint8_t cl_id, uint32_t cid, uint8_t func_id, uint8_t engine_id,
4618 			       void *rdata, ecore_dma_addr_t rdata_mapping,
4619 			       int state, unsigned long *pstate,
4620 			       ecore_obj_type type)
4621 {
4622 	ecore_init_raw_obj(&rss_obj->raw, cl_id, cid, func_id, rdata,
4623 			   rdata_mapping, state, pstate, type);
4624 
4625 	rss_obj->engine_id  = engine_id;
4626 	rss_obj->config_rss = ecore_setup_rss;
4627 }
4628 
4629 
4630 /********************** Queue state object ***********************************/
4631 
4632 /**
4633  * ecore_queue_state_change - perform Queue state change transition
4634  *
4635  * @sc:		device handle
4636  * @params:	parameters to perform the transition
4637  *
4638  * returns 0 in case of successfully completed transition, negative error
4639  * code in case of failure, positive (EBUSY) value if there is a completion
4640  * to that is still pending (possible only if RAMROD_COMP_WAIT is
4641  * not set in params->ramrod_flags for asynchronous commands).
4642  *
4643  */
4644 int ecore_queue_state_change(struct bxe_softc *sc,
4645 			     struct ecore_queue_state_params *params)
4646 {
4647 	struct ecore_queue_sp_obj *o = params->q_obj;
4648 	int rc, pending_bit;
4649 	unsigned long *pending = &o->pending;
4650 
4651 	/* Check that the requested transition is legal */
4652 	rc = o->check_transition(sc, o, params);
4653 	if (rc) {
4654 		ECORE_ERR("check transition returned an error. rc %d\n", rc);
4655 		return ECORE_INVAL;
4656 	}
4657 
4658 	/* Set "pending" bit */
4659 	ECORE_MSG(sc, "pending bit was=%lx\n", o->pending);
4660 	pending_bit = o->set_pending(o, params);
4661 	ECORE_MSG(sc, "pending bit now=%lx\n", o->pending);
4662 
4663 	/* Don't send a command if only driver cleanup was requested */
4664 	if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags))
4665 		o->complete_cmd(sc, o, pending_bit);
4666 	else {
4667 		/* Send a ramrod */
4668 		rc = o->send_cmd(sc, params);
4669 		if (rc) {
4670 			o->next_state = ECORE_Q_STATE_MAX;
4671 			ECORE_CLEAR_BIT(pending_bit, pending);
4672 			ECORE_SMP_MB_AFTER_CLEAR_BIT();
4673 			return rc;
4674 		}
4675 
4676 		if (ECORE_TEST_BIT(RAMROD_COMP_WAIT, &params->ramrod_flags)) {
4677 			rc = o->wait_comp(sc, o, pending_bit);
4678 			if (rc)
4679 				return rc;
4680 
4681 			return ECORE_SUCCESS;
4682 		}
4683 	}
4684 
4685 	return ECORE_RET_PENDING(pending_bit, pending);
4686 }
4687 
4688 static int ecore_queue_set_pending(struct ecore_queue_sp_obj *obj,
4689 				   struct ecore_queue_state_params *params)
4690 {
4691 	enum ecore_queue_cmd cmd = params->cmd, bit;
4692 
4693 	/* ACTIVATE and DEACTIVATE commands are implemented on top of
4694 	 * UPDATE command.
4695 	 */
4696 	if ((cmd == ECORE_Q_CMD_ACTIVATE) ||
4697 	    (cmd == ECORE_Q_CMD_DEACTIVATE))
4698 		bit = ECORE_Q_CMD_UPDATE;
4699 	else
4700 		bit = cmd;
4701 
4702 	ECORE_SET_BIT(bit, &obj->pending);
4703 	return bit;
4704 }
4705 
4706 static int ecore_queue_wait_comp(struct bxe_softc *sc,
4707 				 struct ecore_queue_sp_obj *o,
4708 				 enum ecore_queue_cmd cmd)
4709 {
4710 	return ecore_state_wait(sc, cmd, &o->pending);
4711 }
4712 
4713 /**
4714  * ecore_queue_comp_cmd - complete the state change command.
4715  *
4716  * @sc:		device handle
4717  * @o:
4718  * @cmd:
4719  *
4720  * Checks that the arrived completion is expected.
4721  */
4722 static int ecore_queue_comp_cmd(struct bxe_softc *sc,
4723 				struct ecore_queue_sp_obj *o,
4724 				enum ecore_queue_cmd cmd)
4725 {
4726 	unsigned long cur_pending = o->pending;
4727 
4728 	if (!ECORE_TEST_AND_CLEAR_BIT(cmd, &cur_pending)) {
4729 		ECORE_ERR("Bad MC reply %d for queue %d in state %d pending 0x%lx, next_state %d\n",
4730 			  cmd, o->cids[ECORE_PRIMARY_CID_INDEX],
4731 			  o->state, cur_pending, o->next_state);
4732 		return ECORE_INVAL;
4733 	}
4734 
4735 	if (o->next_tx_only >= o->max_cos)
4736 		/* >= because tx only must always be smaller than cos since the
4737 		 * primary connection supports COS 0
4738 		 */
4739 		ECORE_ERR("illegal value for next tx_only: %d. max cos was %d",
4740 			  o->next_tx_only, o->max_cos);
4741 
4742 	ECORE_MSG(sc,
4743 		  "Completing command %d for queue %d, setting state to %d\n",
4744 		  cmd, o->cids[ECORE_PRIMARY_CID_INDEX], o->next_state);
4745 
4746 	if (o->next_tx_only)  /* print num tx-only if any exist */
4747 		ECORE_MSG(sc, "primary cid %d: num tx-only cons %d\n",
4748 			  o->cids[ECORE_PRIMARY_CID_INDEX], o->next_tx_only);
4749 
4750 	o->state = o->next_state;
4751 	o->num_tx_only = o->next_tx_only;
4752 	o->next_state = ECORE_Q_STATE_MAX;
4753 
4754 	/* It's important that o->state and o->next_state are
4755 	 * updated before o->pending.
4756 	 */
4757 	wmb();
4758 
4759 	ECORE_CLEAR_BIT(cmd, &o->pending);
4760 	ECORE_SMP_MB_AFTER_CLEAR_BIT();
4761 
4762 	return ECORE_SUCCESS;
4763 }
4764 
4765 static void ecore_q_fill_setup_data_e2(struct bxe_softc *sc,
4766 				struct ecore_queue_state_params *cmd_params,
4767 				struct client_init_ramrod_data *data)
4768 {
4769 	struct ecore_queue_setup_params *params = &cmd_params->params.setup;
4770 
4771 	/* Rx data */
4772 
4773 	/* IPv6 TPA supported for E2 and above only */
4774 	data->rx.tpa_en |= ECORE_TEST_BIT(ECORE_Q_FLG_TPA_IPV6,
4775 					  &params->flags) *
4776 				CLIENT_INIT_RX_DATA_TPA_EN_IPV6;
4777 }
4778 
4779 static void ecore_q_fill_init_general_data(struct bxe_softc *sc,
4780 				struct ecore_queue_sp_obj *o,
4781 				struct ecore_general_setup_params *params,
4782 				struct client_init_general_data *gen_data,
4783 				unsigned long *flags)
4784 {
4785 	gen_data->client_id = o->cl_id;
4786 
4787 	if (ECORE_TEST_BIT(ECORE_Q_FLG_STATS, flags)) {
4788 		gen_data->statistics_counter_id =
4789 					params->stat_id;
4790 		gen_data->statistics_en_flg = 1;
4791 		gen_data->statistics_zero_flg =
4792 			ECORE_TEST_BIT(ECORE_Q_FLG_ZERO_STATS, flags);
4793 	} else
4794 		gen_data->statistics_counter_id =
4795 					DISABLE_STATISTIC_COUNTER_ID_VALUE;
4796 
4797 	gen_data->is_fcoe_flg = ECORE_TEST_BIT(ECORE_Q_FLG_FCOE,
4798 						   flags);
4799 	gen_data->activate_flg = ECORE_TEST_BIT(ECORE_Q_FLG_ACTIVE,
4800 						    flags);
4801 	gen_data->sp_client_id = params->spcl_id;
4802 	gen_data->mtu = ECORE_CPU_TO_LE16(params->mtu);
4803 	gen_data->func_id = o->func_id;
4804 
4805 	gen_data->cos = params->cos;
4806 
4807 	gen_data->traffic_type =
4808 		ECORE_TEST_BIT(ECORE_Q_FLG_FCOE, flags) ?
4809 		LLFC_TRAFFIC_TYPE_FCOE : LLFC_TRAFFIC_TYPE_NW;
4810 
4811 	gen_data->fp_hsi_ver = params->fp_hsi;
4812 
4813 	ECORE_MSG(sc, "flags: active %d, cos %d, stats en %d\n",
4814 		  gen_data->activate_flg, gen_data->cos, gen_data->statistics_en_flg);
4815 }
4816 
4817 static void ecore_q_fill_init_tx_data(struct ecore_queue_sp_obj *o,
4818 				struct ecore_txq_setup_params *params,
4819 				struct client_init_tx_data *tx_data,
4820 				unsigned long *flags)
4821 {
4822 	tx_data->enforce_security_flg =
4823 		ECORE_TEST_BIT(ECORE_Q_FLG_TX_SEC, flags);
4824 	tx_data->default_vlan =
4825 		ECORE_CPU_TO_LE16(params->default_vlan);
4826 	tx_data->default_vlan_flg =
4827 		ECORE_TEST_BIT(ECORE_Q_FLG_DEF_VLAN, flags);
4828 	tx_data->tx_switching_flg =
4829 		ECORE_TEST_BIT(ECORE_Q_FLG_TX_SWITCH, flags);
4830 	tx_data->anti_spoofing_flg =
4831 		ECORE_TEST_BIT(ECORE_Q_FLG_ANTI_SPOOF, flags);
4832 	tx_data->force_default_pri_flg =
4833 		ECORE_TEST_BIT(ECORE_Q_FLG_FORCE_DEFAULT_PRI, flags);
4834 	tx_data->refuse_outband_vlan_flg =
4835 		ECORE_TEST_BIT(ECORE_Q_FLG_REFUSE_OUTBAND_VLAN, flags);
4836 	tx_data->tunnel_lso_inc_ip_id =
4837 		ECORE_TEST_BIT(ECORE_Q_FLG_TUN_INC_INNER_IP_ID, flags);
4838 	tx_data->tunnel_non_lso_pcsum_location =
4839 		ECORE_TEST_BIT(ECORE_Q_FLG_PCSUM_ON_PKT, flags) ? CSUM_ON_PKT :
4840 							    CSUM_ON_BD;
4841 
4842 	tx_data->tx_status_block_id = params->fw_sb_id;
4843 	tx_data->tx_sb_index_number = params->sb_cq_index;
4844 	tx_data->tss_leading_client_id = params->tss_leading_cl_id;
4845 
4846 	tx_data->tx_bd_page_base.lo =
4847 		ECORE_CPU_TO_LE32(U64_LO(params->dscr_map));
4848 	tx_data->tx_bd_page_base.hi =
4849 		ECORE_CPU_TO_LE32(U64_HI(params->dscr_map));
4850 
4851 	/* Don't configure any Tx switching mode during queue SETUP */
4852 	tx_data->state = 0;
4853 }
4854 
4855 static void ecore_q_fill_init_pause_data(struct ecore_queue_sp_obj *o,
4856 				struct rxq_pause_params *params,
4857 				struct client_init_rx_data *rx_data)
4858 {
4859 	/* flow control data */
4860 	rx_data->cqe_pause_thr_low = ECORE_CPU_TO_LE16(params->rcq_th_lo);
4861 	rx_data->cqe_pause_thr_high = ECORE_CPU_TO_LE16(params->rcq_th_hi);
4862 	rx_data->bd_pause_thr_low = ECORE_CPU_TO_LE16(params->bd_th_lo);
4863 	rx_data->bd_pause_thr_high = ECORE_CPU_TO_LE16(params->bd_th_hi);
4864 	rx_data->sge_pause_thr_low = ECORE_CPU_TO_LE16(params->sge_th_lo);
4865 	rx_data->sge_pause_thr_high = ECORE_CPU_TO_LE16(params->sge_th_hi);
4866 	rx_data->rx_cos_mask = ECORE_CPU_TO_LE16(params->pri_map);
4867 }
4868 
4869 static void ecore_q_fill_init_rx_data(struct ecore_queue_sp_obj *o,
4870 				struct ecore_rxq_setup_params *params,
4871 				struct client_init_rx_data *rx_data,
4872 				unsigned long *flags)
4873 {
4874 	rx_data->tpa_en = ECORE_TEST_BIT(ECORE_Q_FLG_TPA, flags) *
4875 				CLIENT_INIT_RX_DATA_TPA_EN_IPV4;
4876 	rx_data->tpa_en |= ECORE_TEST_BIT(ECORE_Q_FLG_TPA_GRO, flags) *
4877 				CLIENT_INIT_RX_DATA_TPA_MODE;
4878 	rx_data->vmqueue_mode_en_flg = 0;
4879 
4880 	rx_data->extra_data_over_sgl_en_flg =
4881 		ECORE_TEST_BIT(ECORE_Q_FLG_OOO, flags);
4882 	rx_data->cache_line_alignment_log_size =
4883 		params->cache_line_log;
4884 	rx_data->enable_dynamic_hc =
4885 		ECORE_TEST_BIT(ECORE_Q_FLG_DHC, flags);
4886 	rx_data->max_sges_for_packet = params->max_sges_pkt;
4887 	rx_data->client_qzone_id = params->cl_qzone_id;
4888 	rx_data->max_agg_size = ECORE_CPU_TO_LE16(params->tpa_agg_sz);
4889 
4890 	/* Always start in DROP_ALL mode */
4891 	rx_data->state = ECORE_CPU_TO_LE16(CLIENT_INIT_RX_DATA_UCAST_DROP_ALL |
4892 				     CLIENT_INIT_RX_DATA_MCAST_DROP_ALL);
4893 
4894 	/* We don't set drop flags */
4895 	rx_data->drop_ip_cs_err_flg = 0;
4896 	rx_data->drop_tcp_cs_err_flg = 0;
4897 	rx_data->drop_ttl0_flg = 0;
4898 	rx_data->drop_udp_cs_err_flg = 0;
4899 	rx_data->inner_vlan_removal_enable_flg =
4900 		ECORE_TEST_BIT(ECORE_Q_FLG_VLAN, flags);
4901 	rx_data->outer_vlan_removal_enable_flg =
4902 		ECORE_TEST_BIT(ECORE_Q_FLG_OV, flags);
4903 	rx_data->status_block_id = params->fw_sb_id;
4904 	rx_data->rx_sb_index_number = params->sb_cq_index;
4905 	rx_data->max_tpa_queues = params->max_tpa_queues;
4906 	rx_data->max_bytes_on_bd = ECORE_CPU_TO_LE16(params->buf_sz);
4907 	rx_data->sge_buff_size = ECORE_CPU_TO_LE16(params->sge_buf_sz);
4908 	rx_data->bd_page_base.lo =
4909 		ECORE_CPU_TO_LE32(U64_LO(params->dscr_map));
4910 	rx_data->bd_page_base.hi =
4911 		ECORE_CPU_TO_LE32(U64_HI(params->dscr_map));
4912 	rx_data->sge_page_base.lo =
4913 		ECORE_CPU_TO_LE32(U64_LO(params->sge_map));
4914 	rx_data->sge_page_base.hi =
4915 		ECORE_CPU_TO_LE32(U64_HI(params->sge_map));
4916 	rx_data->cqe_page_base.lo =
4917 		ECORE_CPU_TO_LE32(U64_LO(params->rcq_map));
4918 	rx_data->cqe_page_base.hi =
4919 		ECORE_CPU_TO_LE32(U64_HI(params->rcq_map));
4920 	rx_data->is_leading_rss = ECORE_TEST_BIT(ECORE_Q_FLG_LEADING_RSS,
4921 						 flags);
4922 
4923 	if (ECORE_TEST_BIT(ECORE_Q_FLG_MCAST, flags)) {
4924 		rx_data->approx_mcast_engine_id = params->mcast_engine_id;
4925 		rx_data->is_approx_mcast = 1;
4926 	}
4927 
4928 	rx_data->rss_engine_id = params->rss_engine_id;
4929 
4930 	/* silent vlan removal */
4931 	rx_data->silent_vlan_removal_flg =
4932 		ECORE_TEST_BIT(ECORE_Q_FLG_SILENT_VLAN_REM, flags);
4933 	rx_data->silent_vlan_value =
4934 		ECORE_CPU_TO_LE16(params->silent_removal_value);
4935 	rx_data->silent_vlan_mask =
4936 		ECORE_CPU_TO_LE16(params->silent_removal_mask);
4937 }
4938 
4939 /* initialize the general, tx and rx parts of a queue object */
4940 static void ecore_q_fill_setup_data_cmn(struct bxe_softc *sc,
4941 				struct ecore_queue_state_params *cmd_params,
4942 				struct client_init_ramrod_data *data)
4943 {
4944 	ecore_q_fill_init_general_data(sc, cmd_params->q_obj,
4945 				       &cmd_params->params.setup.gen_params,
4946 				       &data->general,
4947 				       &cmd_params->params.setup.flags);
4948 
4949 	ecore_q_fill_init_tx_data(cmd_params->q_obj,
4950 				  &cmd_params->params.setup.txq_params,
4951 				  &data->tx,
4952 				  &cmd_params->params.setup.flags);
4953 
4954 	ecore_q_fill_init_rx_data(cmd_params->q_obj,
4955 				  &cmd_params->params.setup.rxq_params,
4956 				  &data->rx,
4957 				  &cmd_params->params.setup.flags);
4958 
4959 	ecore_q_fill_init_pause_data(cmd_params->q_obj,
4960 				     &cmd_params->params.setup.pause_params,
4961 				     &data->rx);
4962 }
4963 
4964 /* initialize the general and tx parts of a tx-only queue object */
4965 static void ecore_q_fill_setup_tx_only(struct bxe_softc *sc,
4966 				struct ecore_queue_state_params *cmd_params,
4967 				struct tx_queue_init_ramrod_data *data)
4968 {
4969 	ecore_q_fill_init_general_data(sc, cmd_params->q_obj,
4970 				       &cmd_params->params.tx_only.gen_params,
4971 				       &data->general,
4972 				       &cmd_params->params.tx_only.flags);
4973 
4974 	ecore_q_fill_init_tx_data(cmd_params->q_obj,
4975 				  &cmd_params->params.tx_only.txq_params,
4976 				  &data->tx,
4977 				  &cmd_params->params.tx_only.flags);
4978 
4979 	ECORE_MSG(sc, "cid %d, tx bd page lo %x hi %x",
4980 		  cmd_params->q_obj->cids[0],
4981 		  data->tx.tx_bd_page_base.lo,
4982 		  data->tx.tx_bd_page_base.hi);
4983 }
4984 
4985 /**
4986  * ecore_q_init - init HW/FW queue
4987  *
4988  * @sc:		device handle
4989  * @params:
4990  *
4991  * HW/FW initial Queue configuration:
4992  *      - HC: Rx and Tx
4993  *      - CDU context validation
4994  *
4995  */
4996 static inline int ecore_q_init(struct bxe_softc *sc,
4997 			       struct ecore_queue_state_params *params)
4998 {
4999 	struct ecore_queue_sp_obj *o = params->q_obj;
5000 	struct ecore_queue_init_params *init = &params->params.init;
5001 	uint16_t hc_usec;
5002 	uint8_t cos;
5003 
5004 	/* Tx HC configuration */
5005 	if (ECORE_TEST_BIT(ECORE_Q_TYPE_HAS_TX, &o->type) &&
5006 	    ECORE_TEST_BIT(ECORE_Q_FLG_HC, &init->tx.flags)) {
5007 		hc_usec = init->tx.hc_rate ? 1000000 / init->tx.hc_rate : 0;
5008 
5009 		ECORE_UPDATE_COALESCE_SB_INDEX(sc, init->tx.fw_sb_id,
5010 			init->tx.sb_cq_index,
5011 			!ECORE_TEST_BIT(ECORE_Q_FLG_HC_EN, &init->tx.flags),
5012 			hc_usec);
5013 	}
5014 
5015 	/* Rx HC configuration */
5016 	if (ECORE_TEST_BIT(ECORE_Q_TYPE_HAS_RX, &o->type) &&
5017 	    ECORE_TEST_BIT(ECORE_Q_FLG_HC, &init->rx.flags)) {
5018 		hc_usec = init->rx.hc_rate ? 1000000 / init->rx.hc_rate : 0;
5019 
5020 		ECORE_UPDATE_COALESCE_SB_INDEX(sc, init->rx.fw_sb_id,
5021 			init->rx.sb_cq_index,
5022 			!ECORE_TEST_BIT(ECORE_Q_FLG_HC_EN, &init->rx.flags),
5023 			hc_usec);
5024 	}
5025 
5026 	/* Set CDU context validation values */
5027 	for (cos = 0; cos < o->max_cos; cos++) {
5028 		ECORE_MSG(sc, "setting context validation. cid %d, cos %d\n",
5029 			  o->cids[cos], cos);
5030 		ECORE_MSG(sc, "context pointer %p\n", init->cxts[cos]);
5031 		ECORE_SET_CTX_VALIDATION(sc, init->cxts[cos], o->cids[cos]);
5032 	}
5033 
5034 	/* As no ramrod is sent, complete the command immediately  */
5035 	o->complete_cmd(sc, o, ECORE_Q_CMD_INIT);
5036 
5037 	ECORE_MMIOWB();
5038 	ECORE_SMP_MB();
5039 
5040 	return ECORE_SUCCESS;
5041 }
5042 
5043 static inline int ecore_q_send_setup_e1x(struct bxe_softc *sc,
5044 					struct ecore_queue_state_params *params)
5045 {
5046 	struct ecore_queue_sp_obj *o = params->q_obj;
5047 	struct client_init_ramrod_data *rdata =
5048 		(struct client_init_ramrod_data *)o->rdata;
5049 	ecore_dma_addr_t data_mapping = o->rdata_mapping;
5050 	int ramrod = RAMROD_CMD_ID_ETH_CLIENT_SETUP;
5051 
5052 	/* Clear the ramrod data */
5053 	ECORE_MEMSET(rdata, 0, sizeof(*rdata));
5054 
5055 	/* Fill the ramrod data */
5056 	ecore_q_fill_setup_data_cmn(sc, params, rdata);
5057 
5058 	/* No need for an explicit memory barrier here as long as we
5059 	 * ensure the ordering of writing to the SPQ element
5060 	 * and updating of the SPQ producer which involves a memory
5061 	 * read. If the memory read is removed we will have to put a
5062 	 * full memory barrier there (inside ecore_sp_post()).
5063 	 */
5064 	return ecore_sp_post(sc,
5065 			     ramrod,
5066 			     o->cids[ECORE_PRIMARY_CID_INDEX],
5067 			     data_mapping,
5068 			     ETH_CONNECTION_TYPE);
5069 }
5070 
5071 static inline int ecore_q_send_setup_e2(struct bxe_softc *sc,
5072 					struct ecore_queue_state_params *params)
5073 {
5074 	struct ecore_queue_sp_obj *o = params->q_obj;
5075 	struct client_init_ramrod_data *rdata =
5076 		(struct client_init_ramrod_data *)o->rdata;
5077 	ecore_dma_addr_t data_mapping = o->rdata_mapping;
5078 	int ramrod = RAMROD_CMD_ID_ETH_CLIENT_SETUP;
5079 
5080 	/* Clear the ramrod data */
5081 	ECORE_MEMSET(rdata, 0, sizeof(*rdata));
5082 
5083 	/* Fill the ramrod data */
5084 	ecore_q_fill_setup_data_cmn(sc, params, rdata);
5085 	ecore_q_fill_setup_data_e2(sc, params, rdata);
5086 
5087 	/* No need for an explicit memory barrier here as long as we
5088 	 * ensure the ordering of writing to the SPQ element
5089 	 * and updating of the SPQ producer which involves a memory
5090 	 * read. If the memory read is removed we will have to put a
5091 	 * full memory barrier there (inside ecore_sp_post()).
5092 	 */
5093 	return ecore_sp_post(sc,
5094 			     ramrod,
5095 			     o->cids[ECORE_PRIMARY_CID_INDEX],
5096 			     data_mapping,
5097 			     ETH_CONNECTION_TYPE);
5098 }
5099 
5100 static inline int ecore_q_send_setup_tx_only(struct bxe_softc *sc,
5101 				  struct ecore_queue_state_params *params)
5102 {
5103 	struct ecore_queue_sp_obj *o = params->q_obj;
5104 	struct tx_queue_init_ramrod_data *rdata =
5105 		(struct tx_queue_init_ramrod_data *)o->rdata;
5106 	ecore_dma_addr_t data_mapping = o->rdata_mapping;
5107 	int ramrod = RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP;
5108 	struct ecore_queue_setup_tx_only_params *tx_only_params =
5109 		&params->params.tx_only;
5110 	uint8_t cid_index = tx_only_params->cid_index;
5111 
5112 	if (ECORE_TEST_BIT(ECORE_Q_TYPE_FWD, &o->type))
5113 		ramrod = RAMROD_CMD_ID_ETH_FORWARD_SETUP;
5114 	ECORE_MSG(sc, "sending forward tx-only ramrod");
5115 
5116 	if (cid_index >= o->max_cos) {
5117 		ECORE_ERR("queue[%d]: cid_index (%d) is out of range\n",
5118 			  o->cl_id, cid_index);
5119 		return ECORE_INVAL;
5120 	}
5121 
5122 	ECORE_MSG(sc, "parameters received: cos: %d sp-id: %d\n",
5123 		  tx_only_params->gen_params.cos,
5124 		  tx_only_params->gen_params.spcl_id);
5125 
5126 	/* Clear the ramrod data */
5127 	ECORE_MEMSET(rdata, 0, sizeof(*rdata));
5128 
5129 	/* Fill the ramrod data */
5130 	ecore_q_fill_setup_tx_only(sc, params, rdata);
5131 
5132 	ECORE_MSG(sc, "sending tx-only ramrod: cid %d, client-id %d, sp-client id %d, cos %d\n",
5133 		  o->cids[cid_index], rdata->general.client_id,
5134 		  rdata->general.sp_client_id, rdata->general.cos);
5135 
5136 	/* No need for an explicit memory barrier here as long as we
5137 	 * ensure the ordering of writing to the SPQ element
5138 	 * and updating of the SPQ producer which involves a memory
5139 	 * read. If the memory read is removed we will have to put a
5140 	 * full memory barrier there (inside ecore_sp_post()).
5141 	 */
5142 	return ecore_sp_post(sc, ramrod, o->cids[cid_index],
5143 			     data_mapping, ETH_CONNECTION_TYPE);
5144 }
5145 
5146 static void ecore_q_fill_update_data(struct bxe_softc *sc,
5147 				     struct ecore_queue_sp_obj *obj,
5148 				     struct ecore_queue_update_params *params,
5149 				     struct client_update_ramrod_data *data)
5150 {
5151 	/* Client ID of the client to update */
5152 	data->client_id = obj->cl_id;
5153 
5154 	/* Function ID of the client to update */
5155 	data->func_id = obj->func_id;
5156 
5157 	/* Default VLAN value */
5158 	data->default_vlan = ECORE_CPU_TO_LE16(params->def_vlan);
5159 
5160 	/* Inner VLAN stripping */
5161 	data->inner_vlan_removal_enable_flg =
5162 		ECORE_TEST_BIT(ECORE_Q_UPDATE_IN_VLAN_REM,
5163 			       &params->update_flags);
5164 	data->inner_vlan_removal_change_flg =
5165 		ECORE_TEST_BIT(ECORE_Q_UPDATE_IN_VLAN_REM_CHNG,
5166 		       &params->update_flags);
5167 
5168 	/* Outer VLAN stripping */
5169 	data->outer_vlan_removal_enable_flg =
5170 		ECORE_TEST_BIT(ECORE_Q_UPDATE_OUT_VLAN_REM,
5171 			       &params->update_flags);
5172 	data->outer_vlan_removal_change_flg =
5173 		ECORE_TEST_BIT(ECORE_Q_UPDATE_OUT_VLAN_REM_CHNG,
5174 		       &params->update_flags);
5175 
5176 	/* Drop packets that have source MAC that doesn't belong to this
5177 	 * Queue.
5178 	 */
5179 	data->anti_spoofing_enable_flg =
5180 		ECORE_TEST_BIT(ECORE_Q_UPDATE_ANTI_SPOOF,
5181 			       &params->update_flags);
5182 	data->anti_spoofing_change_flg =
5183 		ECORE_TEST_BIT(ECORE_Q_UPDATE_ANTI_SPOOF_CHNG,
5184 		       &params->update_flags);
5185 
5186 	/* Activate/Deactivate */
5187 	data->activate_flg =
5188 		ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE, &params->update_flags);
5189 	data->activate_change_flg =
5190 		ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE_CHNG,
5191 			       &params->update_flags);
5192 
5193 	/* Enable default VLAN */
5194 	data->default_vlan_enable_flg =
5195 		ECORE_TEST_BIT(ECORE_Q_UPDATE_DEF_VLAN_EN,
5196 			       &params->update_flags);
5197 	data->default_vlan_change_flg =
5198 		ECORE_TEST_BIT(ECORE_Q_UPDATE_DEF_VLAN_EN_CHNG,
5199 		       &params->update_flags);
5200 
5201 	/* silent vlan removal */
5202 	data->silent_vlan_change_flg =
5203 		ECORE_TEST_BIT(ECORE_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5204 			       &params->update_flags);
5205 	data->silent_vlan_removal_flg =
5206 		ECORE_TEST_BIT(ECORE_Q_UPDATE_SILENT_VLAN_REM,
5207 			       &params->update_flags);
5208 	data->silent_vlan_value = ECORE_CPU_TO_LE16(params->silent_removal_value);
5209 	data->silent_vlan_mask = ECORE_CPU_TO_LE16(params->silent_removal_mask);
5210 
5211 	/* tx switching */
5212 	data->tx_switching_flg =
5213 		ECORE_TEST_BIT(ECORE_Q_UPDATE_TX_SWITCHING,
5214 			       &params->update_flags);
5215 	data->tx_switching_change_flg =
5216 		ECORE_TEST_BIT(ECORE_Q_UPDATE_TX_SWITCHING_CHNG,
5217 			       &params->update_flags);
5218 
5219 	/* PTP */
5220 	data->handle_ptp_pkts_flg =
5221 		ECORE_TEST_BIT(ECORE_Q_UPDATE_PTP_PKTS,
5222 			       &params->update_flags);
5223 	data->handle_ptp_pkts_change_flg =
5224 		ECORE_TEST_BIT(ECORE_Q_UPDATE_PTP_PKTS_CHNG,
5225 			       &params->update_flags);
5226 }
5227 
5228 static inline int ecore_q_send_update(struct bxe_softc *sc,
5229 				      struct ecore_queue_state_params *params)
5230 {
5231 	struct ecore_queue_sp_obj *o = params->q_obj;
5232 	struct client_update_ramrod_data *rdata =
5233 		(struct client_update_ramrod_data *)o->rdata;
5234 	ecore_dma_addr_t data_mapping = o->rdata_mapping;
5235 	struct ecore_queue_update_params *update_params =
5236 		&params->params.update;
5237 	uint8_t cid_index = update_params->cid_index;
5238 
5239 	if (cid_index >= o->max_cos) {
5240 		ECORE_ERR("queue[%d]: cid_index (%d) is out of range\n",
5241 			  o->cl_id, cid_index);
5242 		return ECORE_INVAL;
5243 	}
5244 
5245 	/* Clear the ramrod data */
5246 	ECORE_MEMSET(rdata, 0, sizeof(*rdata));
5247 
5248 	/* Fill the ramrod data */
5249 	ecore_q_fill_update_data(sc, o, update_params, rdata);
5250 
5251 	/* No need for an explicit memory barrier here as long as we
5252 	 * ensure the ordering of writing to the SPQ element
5253 	 * and updating of the SPQ producer which involves a memory
5254 	 * read. If the memory read is removed we will have to put a
5255 	 * full memory barrier there (inside ecore_sp_post()).
5256 	 */
5257 	return ecore_sp_post(sc, RAMROD_CMD_ID_ETH_CLIENT_UPDATE,
5258 			     o->cids[cid_index], data_mapping,
5259 			     ETH_CONNECTION_TYPE);
5260 }
5261 
5262 /**
5263  * ecore_q_send_deactivate - send DEACTIVATE command
5264  *
5265  * @sc:		device handle
5266  * @params:
5267  *
5268  * implemented using the UPDATE command.
5269  */
5270 static inline int ecore_q_send_deactivate(struct bxe_softc *sc,
5271 					struct ecore_queue_state_params *params)
5272 {
5273 	struct ecore_queue_update_params *update = &params->params.update;
5274 
5275 	ECORE_MEMSET(update, 0, sizeof(*update));
5276 
5277 	ECORE_SET_BIT_NA(ECORE_Q_UPDATE_ACTIVATE_CHNG, &update->update_flags);
5278 
5279 	return ecore_q_send_update(sc, params);
5280 }
5281 
5282 /**
5283  * ecore_q_send_activate - send ACTIVATE command
5284  *
5285  * @sc:		device handle
5286  * @params:
5287  *
5288  * implemented using the UPDATE command.
5289  */
5290 static inline int ecore_q_send_activate(struct bxe_softc *sc,
5291 					struct ecore_queue_state_params *params)
5292 {
5293 	struct ecore_queue_update_params *update = &params->params.update;
5294 
5295 	ECORE_MEMSET(update, 0, sizeof(*update));
5296 
5297 	ECORE_SET_BIT_NA(ECORE_Q_UPDATE_ACTIVATE, &update->update_flags);
5298 	ECORE_SET_BIT_NA(ECORE_Q_UPDATE_ACTIVATE_CHNG, &update->update_flags);
5299 
5300 	return ecore_q_send_update(sc, params);
5301 }
5302 
5303 static void ecore_q_fill_update_tpa_data(struct bxe_softc *sc,
5304 				struct ecore_queue_sp_obj *obj,
5305 				struct ecore_queue_update_tpa_params *params,
5306 				struct tpa_update_ramrod_data *data)
5307 {
5308 	data->client_id = obj->cl_id;
5309 	data->complete_on_both_clients = params->complete_on_both_clients;
5310 	data->dont_verify_rings_pause_thr_flg =
5311 		params->dont_verify_thr;
5312 	data->max_agg_size = ECORE_CPU_TO_LE16(params->max_agg_sz);
5313 	data->max_sges_for_packet = params->max_sges_pkt;
5314 	data->max_tpa_queues = params->max_tpa_queues;
5315 	data->sge_buff_size = ECORE_CPU_TO_LE16(params->sge_buff_sz);
5316 	data->sge_page_base_hi = ECORE_CPU_TO_LE32(U64_HI(params->sge_map));
5317 	data->sge_page_base_lo = ECORE_CPU_TO_LE32(U64_LO(params->sge_map));
5318 	data->sge_pause_thr_high = ECORE_CPU_TO_LE16(params->sge_pause_thr_high);
5319 	data->sge_pause_thr_low = ECORE_CPU_TO_LE16(params->sge_pause_thr_low);
5320 	data->tpa_mode = params->tpa_mode;
5321 	data->update_ipv4 = params->update_ipv4;
5322 	data->update_ipv6 = params->update_ipv6;
5323 }
5324 
5325 static inline int ecore_q_send_update_tpa(struct bxe_softc *sc,
5326 					struct ecore_queue_state_params *params)
5327 {
5328 	struct ecore_queue_sp_obj *o = params->q_obj;
5329 	struct tpa_update_ramrod_data *rdata =
5330 		(struct tpa_update_ramrod_data *)o->rdata;
5331 	ecore_dma_addr_t data_mapping = o->rdata_mapping;
5332 	struct ecore_queue_update_tpa_params *update_tpa_params =
5333 		&params->params.update_tpa;
5334 	uint16_t type;
5335 
5336 	/* Clear the ramrod data */
5337 	ECORE_MEMSET(rdata, 0, sizeof(*rdata));
5338 
5339 	/* Fill the ramrod data */
5340 	ecore_q_fill_update_tpa_data(sc, o, update_tpa_params, rdata);
5341 
5342 	/* Add the function id inside the type, so that sp post function
5343 	 * doesn't automatically add the PF func-id, this is required
5344 	 * for operations done by PFs on behalf of their VFs
5345 	 */
5346 	type = ETH_CONNECTION_TYPE |
5347 		((o->func_id) << SPE_HDR_T_FUNCTION_ID_SHIFT);
5348 
5349 	/* No need for an explicit memory barrier here as long as we
5350 	 * ensure the ordering of writing to the SPQ element
5351 	 * and updating of the SPQ producer which involves a memory
5352 	 * read. If the memory read is removed we will have to put a
5353 	 * full memory barrier there (inside ecore_sp_post()).
5354 	 */
5355 	return ecore_sp_post(sc, RAMROD_CMD_ID_ETH_TPA_UPDATE,
5356 			     o->cids[ECORE_PRIMARY_CID_INDEX],
5357 			     data_mapping, type);
5358 }
5359 
5360 static inline int ecore_q_send_halt(struct bxe_softc *sc,
5361 				    struct ecore_queue_state_params *params)
5362 {
5363 	struct ecore_queue_sp_obj *o = params->q_obj;
5364 
5365 	/* build eth_halt_ramrod_data.client_id in a big-endian friendly way */
5366 	ecore_dma_addr_t data_mapping = 0;
5367 	data_mapping = (ecore_dma_addr_t)o->cl_id;
5368 
5369 	/* No need for an explicit memory barrier here as long as we
5370 	 * ensure the ordering of writing to the SPQ element
5371 	 * and updating of the SPQ producer which involves a memory
5372 	 * read. If the memory read is removed we will have to put a
5373 	 * full memory barrier there (inside ecore_sp_post()).
5374 	 */
5375 	return ecore_sp_post(sc,
5376 			     RAMROD_CMD_ID_ETH_HALT,
5377 			     o->cids[ECORE_PRIMARY_CID_INDEX],
5378 			     data_mapping,
5379 			     ETH_CONNECTION_TYPE);
5380 }
5381 
5382 static inline int ecore_q_send_cfc_del(struct bxe_softc *sc,
5383 				       struct ecore_queue_state_params *params)
5384 {
5385 	struct ecore_queue_sp_obj *o = params->q_obj;
5386 	uint8_t cid_idx = params->params.cfc_del.cid_index;
5387 
5388 	if (cid_idx >= o->max_cos) {
5389 		ECORE_ERR("queue[%d]: cid_index (%d) is out of range\n",
5390 			  o->cl_id, cid_idx);
5391 		return ECORE_INVAL;
5392 	}
5393 
5394 	return ecore_sp_post(sc, RAMROD_CMD_ID_COMMON_CFC_DEL,
5395 			     o->cids[cid_idx], 0,
5396 			     NONE_CONNECTION_TYPE);
5397 }
5398 
5399 static inline int ecore_q_send_terminate(struct bxe_softc *sc,
5400 					struct ecore_queue_state_params *params)
5401 {
5402 	struct ecore_queue_sp_obj *o = params->q_obj;
5403 	uint8_t cid_index = params->params.terminate.cid_index;
5404 
5405 	if (cid_index >= o->max_cos) {
5406 		ECORE_ERR("queue[%d]: cid_index (%d) is out of range\n",
5407 			  o->cl_id, cid_index);
5408 		return ECORE_INVAL;
5409 	}
5410 
5411 	return ecore_sp_post(sc, RAMROD_CMD_ID_ETH_TERMINATE,
5412 			     o->cids[cid_index], 0,
5413 			     ETH_CONNECTION_TYPE);
5414 }
5415 
5416 static inline int ecore_q_send_empty(struct bxe_softc *sc,
5417 				     struct ecore_queue_state_params *params)
5418 {
5419 	struct ecore_queue_sp_obj *o = params->q_obj;
5420 
5421 	return ecore_sp_post(sc, RAMROD_CMD_ID_ETH_EMPTY,
5422 			     o->cids[ECORE_PRIMARY_CID_INDEX], 0,
5423 			     ETH_CONNECTION_TYPE);
5424 }
5425 
5426 static inline int ecore_queue_send_cmd_cmn(struct bxe_softc *sc,
5427 					struct ecore_queue_state_params *params)
5428 {
5429 	switch (params->cmd) {
5430 	case ECORE_Q_CMD_INIT:
5431 		return ecore_q_init(sc, params);
5432 	case ECORE_Q_CMD_SETUP_TX_ONLY:
5433 		return ecore_q_send_setup_tx_only(sc, params);
5434 	case ECORE_Q_CMD_DEACTIVATE:
5435 		return ecore_q_send_deactivate(sc, params);
5436 	case ECORE_Q_CMD_ACTIVATE:
5437 		return ecore_q_send_activate(sc, params);
5438 	case ECORE_Q_CMD_UPDATE:
5439 		return ecore_q_send_update(sc, params);
5440 	case ECORE_Q_CMD_UPDATE_TPA:
5441 		return ecore_q_send_update_tpa(sc, params);
5442 	case ECORE_Q_CMD_HALT:
5443 		return ecore_q_send_halt(sc, params);
5444 	case ECORE_Q_CMD_CFC_DEL:
5445 		return ecore_q_send_cfc_del(sc, params);
5446 	case ECORE_Q_CMD_TERMINATE:
5447 		return ecore_q_send_terminate(sc, params);
5448 	case ECORE_Q_CMD_EMPTY:
5449 		return ecore_q_send_empty(sc, params);
5450 	default:
5451 		ECORE_ERR("Unknown command: %d\n", params->cmd);
5452 		return ECORE_INVAL;
5453 	}
5454 }
5455 
5456 static int ecore_queue_send_cmd_e1x(struct bxe_softc *sc,
5457 				    struct ecore_queue_state_params *params)
5458 {
5459 	switch (params->cmd) {
5460 	case ECORE_Q_CMD_SETUP:
5461 		return ecore_q_send_setup_e1x(sc, params);
5462 	case ECORE_Q_CMD_INIT:
5463 	case ECORE_Q_CMD_SETUP_TX_ONLY:
5464 	case ECORE_Q_CMD_DEACTIVATE:
5465 	case ECORE_Q_CMD_ACTIVATE:
5466 	case ECORE_Q_CMD_UPDATE:
5467 	case ECORE_Q_CMD_UPDATE_TPA:
5468 	case ECORE_Q_CMD_HALT:
5469 	case ECORE_Q_CMD_CFC_DEL:
5470 	case ECORE_Q_CMD_TERMINATE:
5471 	case ECORE_Q_CMD_EMPTY:
5472 		return ecore_queue_send_cmd_cmn(sc, params);
5473 	default:
5474 		ECORE_ERR("Unknown command: %d\n", params->cmd);
5475 		return ECORE_INVAL;
5476 	}
5477 }
5478 
5479 static int ecore_queue_send_cmd_e2(struct bxe_softc *sc,
5480 				   struct ecore_queue_state_params *params)
5481 {
5482 	switch (params->cmd) {
5483 	case ECORE_Q_CMD_SETUP:
5484 		return ecore_q_send_setup_e2(sc, params);
5485 	case ECORE_Q_CMD_INIT:
5486 	case ECORE_Q_CMD_SETUP_TX_ONLY:
5487 	case ECORE_Q_CMD_DEACTIVATE:
5488 	case ECORE_Q_CMD_ACTIVATE:
5489 	case ECORE_Q_CMD_UPDATE:
5490 	case ECORE_Q_CMD_UPDATE_TPA:
5491 	case ECORE_Q_CMD_HALT:
5492 	case ECORE_Q_CMD_CFC_DEL:
5493 	case ECORE_Q_CMD_TERMINATE:
5494 	case ECORE_Q_CMD_EMPTY:
5495 		return ecore_queue_send_cmd_cmn(sc, params);
5496 	default:
5497 		ECORE_ERR("Unknown command: %d\n", params->cmd);
5498 		return ECORE_INVAL;
5499 	}
5500 }
5501 
5502 /**
5503  * ecore_queue_chk_transition - check state machine of a regular Queue
5504  *
5505  * @sc:		device handle
5506  * @o:
5507  * @params:
5508  *
5509  * (not Forwarding)
5510  * It both checks if the requested command is legal in a current
5511  * state and, if it's legal, sets a `next_state' in the object
5512  * that will be used in the completion flow to set the `state'
5513  * of the object.
5514  *
5515  * returns 0 if a requested command is a legal transition,
5516  *         ECORE_INVAL otherwise.
5517  */
5518 static int ecore_queue_chk_transition(struct bxe_softc *sc,
5519 				      struct ecore_queue_sp_obj *o,
5520 				      struct ecore_queue_state_params *params)
5521 {
5522 	enum ecore_q_state state = o->state, next_state = ECORE_Q_STATE_MAX;
5523 	enum ecore_queue_cmd cmd = params->cmd;
5524 	struct ecore_queue_update_params *update_params =
5525 		 &params->params.update;
5526 	uint8_t next_tx_only = o->num_tx_only;
5527 
5528 	/* Forget all pending for completion commands if a driver only state
5529 	 * transition has been requested.
5530 	 */
5531 	if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags)) {
5532 		o->pending = 0;
5533 		o->next_state = ECORE_Q_STATE_MAX;
5534 	}
5535 
5536 	/* Don't allow a next state transition if we are in the middle of
5537 	 * the previous one.
5538 	 */
5539 	if (o->pending) {
5540 		ECORE_ERR("Blocking transition since pending was %lx\n",
5541 			  o->pending);
5542 		return ECORE_BUSY;
5543 	}
5544 
5545 	switch (state) {
5546 	case ECORE_Q_STATE_RESET:
5547 		if (cmd == ECORE_Q_CMD_INIT)
5548 			next_state = ECORE_Q_STATE_INITIALIZED;
5549 
5550 		break;
5551 	case ECORE_Q_STATE_INITIALIZED:
5552 		if (cmd == ECORE_Q_CMD_SETUP) {
5553 			if (ECORE_TEST_BIT(ECORE_Q_FLG_ACTIVE,
5554 					   &params->params.setup.flags))
5555 				next_state = ECORE_Q_STATE_ACTIVE;
5556 			else
5557 				next_state = ECORE_Q_STATE_INACTIVE;
5558 		}
5559 
5560 		break;
5561 	case ECORE_Q_STATE_ACTIVE:
5562 		if (cmd == ECORE_Q_CMD_DEACTIVATE)
5563 			next_state = ECORE_Q_STATE_INACTIVE;
5564 
5565 		else if ((cmd == ECORE_Q_CMD_EMPTY) ||
5566 			 (cmd == ECORE_Q_CMD_UPDATE_TPA))
5567 			next_state = ECORE_Q_STATE_ACTIVE;
5568 
5569 		else if (cmd == ECORE_Q_CMD_SETUP_TX_ONLY) {
5570 			next_state = ECORE_Q_STATE_MULTI_COS;
5571 			next_tx_only = 1;
5572 		}
5573 
5574 		else if (cmd == ECORE_Q_CMD_HALT)
5575 			next_state = ECORE_Q_STATE_STOPPED;
5576 
5577 		else if (cmd == ECORE_Q_CMD_UPDATE) {
5578 			/* If "active" state change is requested, update the
5579 			 *  state accordingly.
5580 			 */
5581 			if (ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE_CHNG,
5582 					   &update_params->update_flags) &&
5583 			    !ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE,
5584 					    &update_params->update_flags))
5585 				next_state = ECORE_Q_STATE_INACTIVE;
5586 			else
5587 				next_state = ECORE_Q_STATE_ACTIVE;
5588 		}
5589 
5590 		break;
5591 	case ECORE_Q_STATE_MULTI_COS:
5592 		if (cmd == ECORE_Q_CMD_TERMINATE)
5593 			next_state = ECORE_Q_STATE_MCOS_TERMINATED;
5594 
5595 		else if (cmd == ECORE_Q_CMD_SETUP_TX_ONLY) {
5596 			next_state = ECORE_Q_STATE_MULTI_COS;
5597 			next_tx_only = o->num_tx_only + 1;
5598 		}
5599 
5600 		else if ((cmd == ECORE_Q_CMD_EMPTY) ||
5601 			 (cmd == ECORE_Q_CMD_UPDATE_TPA))
5602 			next_state = ECORE_Q_STATE_MULTI_COS;
5603 
5604 		else if (cmd == ECORE_Q_CMD_UPDATE) {
5605 			/* If "active" state change is requested, update the
5606 			 *  state accordingly.
5607 			 */
5608 			if (ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE_CHNG,
5609 					   &update_params->update_flags) &&
5610 			    !ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE,
5611 					    &update_params->update_flags))
5612 				next_state = ECORE_Q_STATE_INACTIVE;
5613 			else
5614 				next_state = ECORE_Q_STATE_MULTI_COS;
5615 		}
5616 
5617 		break;
5618 	case ECORE_Q_STATE_MCOS_TERMINATED:
5619 		if (cmd == ECORE_Q_CMD_CFC_DEL) {
5620 			next_tx_only = o->num_tx_only - 1;
5621 			if (next_tx_only == 0)
5622 				next_state = ECORE_Q_STATE_ACTIVE;
5623 			else
5624 				next_state = ECORE_Q_STATE_MULTI_COS;
5625 		}
5626 
5627 		break;
5628 	case ECORE_Q_STATE_INACTIVE:
5629 		if (cmd == ECORE_Q_CMD_ACTIVATE)
5630 			next_state = ECORE_Q_STATE_ACTIVE;
5631 
5632 		else if ((cmd == ECORE_Q_CMD_EMPTY) ||
5633 			 (cmd == ECORE_Q_CMD_UPDATE_TPA))
5634 			next_state = ECORE_Q_STATE_INACTIVE;
5635 
5636 		else if (cmd == ECORE_Q_CMD_HALT)
5637 			next_state = ECORE_Q_STATE_STOPPED;
5638 
5639 		else if (cmd == ECORE_Q_CMD_UPDATE) {
5640 			/* If "active" state change is requested, update the
5641 			 * state accordingly.
5642 			 */
5643 			if (ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE_CHNG,
5644 					   &update_params->update_flags) &&
5645 			    ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE,
5646 					   &update_params->update_flags)){
5647 				if (o->num_tx_only == 0)
5648 					next_state = ECORE_Q_STATE_ACTIVE;
5649 				else /* tx only queues exist for this queue */
5650 					next_state = ECORE_Q_STATE_MULTI_COS;
5651 			} else
5652 				next_state = ECORE_Q_STATE_INACTIVE;
5653 		}
5654 
5655 		break;
5656 	case ECORE_Q_STATE_STOPPED:
5657 		if (cmd == ECORE_Q_CMD_TERMINATE)
5658 			next_state = ECORE_Q_STATE_TERMINATED;
5659 
5660 		break;
5661 	case ECORE_Q_STATE_TERMINATED:
5662 		if (cmd == ECORE_Q_CMD_CFC_DEL)
5663 			next_state = ECORE_Q_STATE_RESET;
5664 
5665 		break;
5666 	default:
5667 		ECORE_ERR("Illegal state: %d\n", state);
5668 	}
5669 
5670 	/* Transition is assured */
5671 	if (next_state != ECORE_Q_STATE_MAX) {
5672 		ECORE_MSG(sc, "Good state transition: %d(%d)->%d\n",
5673 			  state, cmd, next_state);
5674 		o->next_state = next_state;
5675 		o->next_tx_only = next_tx_only;
5676 		return ECORE_SUCCESS;
5677 	}
5678 
5679 	ECORE_MSG(sc, "Bad state transition request: %d %d\n", state, cmd);
5680 
5681 	return ECORE_INVAL;
5682 }
5683 
5684 /**
5685  * ecore_queue_chk_fwd_transition - check state machine of a Forwarding Queue.
5686  *
5687  * @sc:		device handle
5688  * @o:
5689  * @params:
5690  *
5691  * It both checks if the requested command is legal in a current
5692  * state and, if it's legal, sets a `next_state' in the object
5693  * that will be used in the completion flow to set the `state'
5694  * of the object.
5695  *
5696  * returns 0 if a requested command is a legal transition,
5697  *         ECORE_INVAL otherwise.
5698  */
5699 static int ecore_queue_chk_fwd_transition(struct bxe_softc *sc,
5700 					  struct ecore_queue_sp_obj *o,
5701 					struct ecore_queue_state_params *params)
5702 {
5703 	enum ecore_q_state state = o->state, next_state = ECORE_Q_STATE_MAX;
5704 	enum ecore_queue_cmd cmd = params->cmd;
5705 
5706 	switch (state) {
5707 	case ECORE_Q_STATE_RESET:
5708 		if (cmd == ECORE_Q_CMD_INIT)
5709 			next_state = ECORE_Q_STATE_INITIALIZED;
5710 
5711 		break;
5712 	case ECORE_Q_STATE_INITIALIZED:
5713 		if (cmd == ECORE_Q_CMD_SETUP_TX_ONLY) {
5714 			if (ECORE_TEST_BIT(ECORE_Q_FLG_ACTIVE,
5715 					   &params->params.tx_only.flags))
5716 				next_state = ECORE_Q_STATE_ACTIVE;
5717 			else
5718 				next_state = ECORE_Q_STATE_INACTIVE;
5719 		}
5720 
5721 		break;
5722 	case ECORE_Q_STATE_ACTIVE:
5723 	case ECORE_Q_STATE_INACTIVE:
5724 		if (cmd == ECORE_Q_CMD_CFC_DEL)
5725 			next_state = ECORE_Q_STATE_RESET;
5726 
5727 		break;
5728 	default:
5729 		ECORE_ERR("Illegal state: %d\n", state);
5730 	}
5731 
5732 	/* Transition is assured */
5733 	if (next_state != ECORE_Q_STATE_MAX) {
5734 		ECORE_MSG(sc, "Good state transition: %d(%d)->%d\n",
5735 			  state, cmd, next_state);
5736 		o->next_state = next_state;
5737 		return ECORE_SUCCESS;
5738 	}
5739 
5740 	ECORE_MSG(sc, "Bad state transition request: %d %d\n", state, cmd);
5741 	return ECORE_INVAL;
5742 }
5743 
5744 void ecore_init_queue_obj(struct bxe_softc *sc,
5745 			  struct ecore_queue_sp_obj *obj,
5746 			  uint8_t cl_id, uint32_t *cids, uint8_t cid_cnt, uint8_t func_id,
5747 			  void *rdata,
5748 			  ecore_dma_addr_t rdata_mapping, unsigned long type)
5749 {
5750 	ECORE_MEMSET(obj, 0, sizeof(*obj));
5751 
5752 	/* We support only ECORE_MULTI_TX_COS Tx CoS at the moment */
5753 	ECORE_BUG_ON(ECORE_MULTI_TX_COS < cid_cnt);
5754 
5755 	memcpy(obj->cids, cids, sizeof(obj->cids[0]) * cid_cnt);
5756 	obj->max_cos = cid_cnt;
5757 	obj->cl_id = cl_id;
5758 	obj->func_id = func_id;
5759 	obj->rdata = rdata;
5760 	obj->rdata_mapping = rdata_mapping;
5761 	obj->type = type;
5762 	obj->next_state = ECORE_Q_STATE_MAX;
5763 
5764 	if (CHIP_IS_E1x(sc))
5765 		obj->send_cmd = ecore_queue_send_cmd_e1x;
5766 	else
5767 		obj->send_cmd = ecore_queue_send_cmd_e2;
5768 
5769 	if (ECORE_TEST_BIT(ECORE_Q_TYPE_FWD, &type))
5770 		obj->check_transition = ecore_queue_chk_fwd_transition;
5771 	else
5772 	obj->check_transition = ecore_queue_chk_transition;
5773 
5774 	obj->complete_cmd = ecore_queue_comp_cmd;
5775 	obj->wait_comp = ecore_queue_wait_comp;
5776 	obj->set_pending = ecore_queue_set_pending;
5777 }
5778 
5779 /* return a queue object's logical state*/
5780 int ecore_get_q_logical_state(struct bxe_softc *sc,
5781 			       struct ecore_queue_sp_obj *obj)
5782 {
5783 	switch (obj->state) {
5784 	case ECORE_Q_STATE_ACTIVE:
5785 	case ECORE_Q_STATE_MULTI_COS:
5786 		return ECORE_Q_LOGICAL_STATE_ACTIVE;
5787 	case ECORE_Q_STATE_RESET:
5788 	case ECORE_Q_STATE_INITIALIZED:
5789 	case ECORE_Q_STATE_MCOS_TERMINATED:
5790 	case ECORE_Q_STATE_INACTIVE:
5791 	case ECORE_Q_STATE_STOPPED:
5792 	case ECORE_Q_STATE_TERMINATED:
5793 	case ECORE_Q_STATE_FLRED:
5794 		return ECORE_Q_LOGICAL_STATE_STOPPED;
5795 	default:
5796 		return ECORE_INVAL;
5797 	}
5798 }
5799 
5800 /********************** Function state object *********************************/
5801 enum ecore_func_state ecore_func_get_state(struct bxe_softc *sc,
5802 					   struct ecore_func_sp_obj *o)
5803 {
5804 	/* in the middle of transaction - return INVALID state */
5805 	if (o->pending)
5806 		return ECORE_F_STATE_MAX;
5807 
5808 	/* unsure the order of reading of o->pending and o->state
5809 	 * o->pending should be read first
5810 	 */
5811 	rmb();
5812 
5813 	return o->state;
5814 }
5815 
5816 static int ecore_func_wait_comp(struct bxe_softc *sc,
5817 				struct ecore_func_sp_obj *o,
5818 				enum ecore_func_cmd cmd)
5819 {
5820 	return ecore_state_wait(sc, cmd, &o->pending);
5821 }
5822 
5823 /**
5824  * ecore_func_state_change_comp - complete the state machine transition
5825  *
5826  * @sc:		device handle
5827  * @o:
5828  * @cmd:
5829  *
5830  * Called on state change transition. Completes the state
5831  * machine transition only - no HW interaction.
5832  */
5833 static inline int ecore_func_state_change_comp(struct bxe_softc *sc,
5834 					       struct ecore_func_sp_obj *o,
5835 					       enum ecore_func_cmd cmd)
5836 {
5837 	unsigned long cur_pending = o->pending;
5838 
5839 	if (!ECORE_TEST_AND_CLEAR_BIT(cmd, &cur_pending)) {
5840 		ECORE_ERR("Bad MC reply %d for func %d in state %d pending 0x%lx, next_state %d\n",
5841 			  cmd, ECORE_FUNC_ID(sc), o->state,
5842 			  cur_pending, o->next_state);
5843 		return ECORE_INVAL;
5844 	}
5845 
5846 	ECORE_MSG(sc,
5847 		  "Completing command %d for func %d, setting state to %d\n",
5848 		  cmd, ECORE_FUNC_ID(sc), o->next_state);
5849 
5850 	o->state = o->next_state;
5851 	o->next_state = ECORE_F_STATE_MAX;
5852 
5853 	/* It's important that o->state and o->next_state are
5854 	 * updated before o->pending.
5855 	 */
5856 	wmb();
5857 
5858 	ECORE_CLEAR_BIT(cmd, &o->pending);
5859 	ECORE_SMP_MB_AFTER_CLEAR_BIT();
5860 
5861 	return ECORE_SUCCESS;
5862 }
5863 
5864 /**
5865  * ecore_func_comp_cmd - complete the state change command
5866  *
5867  * @sc:		device handle
5868  * @o:
5869  * @cmd:
5870  *
5871  * Checks that the arrived completion is expected.
5872  */
5873 static int ecore_func_comp_cmd(struct bxe_softc *sc,
5874 			       struct ecore_func_sp_obj *o,
5875 			       enum ecore_func_cmd cmd)
5876 {
5877 	/* Complete the state machine part first, check if it's a
5878 	 * legal completion.
5879 	 */
5880 	int rc = ecore_func_state_change_comp(sc, o, cmd);
5881 	return rc;
5882 }
5883 
5884 /**
5885  * ecore_func_chk_transition - perform function state machine transition
5886  *
5887  * @sc:		device handle
5888  * @o:
5889  * @params:
5890  *
5891  * It both checks if the requested command is legal in a current
5892  * state and, if it's legal, sets a `next_state' in the object
5893  * that will be used in the completion flow to set the `state'
5894  * of the object.
5895  *
5896  * returns 0 if a requested command is a legal transition,
5897  *         ECORE_INVAL otherwise.
5898  */
5899 static int ecore_func_chk_transition(struct bxe_softc *sc,
5900 				     struct ecore_func_sp_obj *o,
5901 				     struct ecore_func_state_params *params)
5902 {
5903 	enum ecore_func_state state = o->state, next_state = ECORE_F_STATE_MAX;
5904 	enum ecore_func_cmd cmd = params->cmd;
5905 
5906 	/* Forget all pending for completion commands if a driver only state
5907 	 * transition has been requested.
5908 	 */
5909 	if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags)) {
5910 		o->pending = 0;
5911 		o->next_state = ECORE_F_STATE_MAX;
5912 	}
5913 
5914 	/* Don't allow a next state transition if we are in the middle of
5915 	 * the previous one.
5916 	 */
5917 	if (o->pending)
5918 		return ECORE_BUSY;
5919 
5920 	switch (state) {
5921 	case ECORE_F_STATE_RESET:
5922 		if (cmd == ECORE_F_CMD_HW_INIT)
5923 			next_state = ECORE_F_STATE_INITIALIZED;
5924 
5925 		break;
5926 	case ECORE_F_STATE_INITIALIZED:
5927 		if (cmd == ECORE_F_CMD_START)
5928 			next_state = ECORE_F_STATE_STARTED;
5929 
5930 		else if (cmd == ECORE_F_CMD_HW_RESET)
5931 			next_state = ECORE_F_STATE_RESET;
5932 
5933 		break;
5934 	case ECORE_F_STATE_STARTED:
5935 		if (cmd == ECORE_F_CMD_STOP)
5936 			next_state = ECORE_F_STATE_INITIALIZED;
5937 		/* afex ramrods can be sent only in started mode, and only
5938 		 * if not pending for function_stop ramrod completion
5939 		 * for these events - next state remained STARTED.
5940 		 */
5941 		else if ((cmd == ECORE_F_CMD_AFEX_UPDATE) &&
5942 			 (!ECORE_TEST_BIT(ECORE_F_CMD_STOP, &o->pending)))
5943 			next_state = ECORE_F_STATE_STARTED;
5944 
5945 		else if ((cmd == ECORE_F_CMD_AFEX_VIFLISTS) &&
5946 			 (!ECORE_TEST_BIT(ECORE_F_CMD_STOP, &o->pending)))
5947 			next_state = ECORE_F_STATE_STARTED;
5948 
5949 		/* Switch_update ramrod can be sent in either started or
5950 		 * tx_stopped state, and it doesn't change the state.
5951 		 */
5952 		else if ((cmd == ECORE_F_CMD_SWITCH_UPDATE) &&
5953 			 (!ECORE_TEST_BIT(ECORE_F_CMD_STOP, &o->pending)))
5954 			next_state = ECORE_F_STATE_STARTED;
5955 
5956 		else if ((cmd == ECORE_F_CMD_SET_TIMESYNC) &&
5957 			 (!ECORE_TEST_BIT(ECORE_F_CMD_STOP, &o->pending)))
5958 			next_state = ECORE_F_STATE_STARTED;
5959 
5960 		else if (cmd == ECORE_F_CMD_TX_STOP)
5961 			next_state = ECORE_F_STATE_TX_STOPPED;
5962 
5963 		break;
5964 	case ECORE_F_STATE_TX_STOPPED:
5965 		if ((cmd == ECORE_F_CMD_SWITCH_UPDATE) &&
5966 		    (!ECORE_TEST_BIT(ECORE_F_CMD_STOP, &o->pending)))
5967 			next_state = ECORE_F_STATE_TX_STOPPED;
5968 
5969 		else if ((cmd == ECORE_F_CMD_SET_TIMESYNC) &&
5970 		    (!ECORE_TEST_BIT(ECORE_F_CMD_STOP, &o->pending)))
5971 			next_state = ECORE_F_STATE_TX_STOPPED;
5972 
5973 		else if (cmd == ECORE_F_CMD_TX_START)
5974 			next_state = ECORE_F_STATE_STARTED;
5975 
5976 		break;
5977 	default:
5978 		ECORE_ERR("Unknown state: %d\n", state);
5979 	}
5980 
5981 	/* Transition is assured */
5982 	if (next_state != ECORE_F_STATE_MAX) {
5983 		ECORE_MSG(sc, "Good function state transition: %d(%d)->%d\n",
5984 			  state, cmd, next_state);
5985 		o->next_state = next_state;
5986 		return ECORE_SUCCESS;
5987 	}
5988 
5989 	ECORE_MSG(sc, "Bad function state transition request: %d %d\n",
5990 		  state, cmd);
5991 
5992 	return ECORE_INVAL;
5993 }
5994 
5995 /**
5996  * ecore_func_init_func - performs HW init at function stage
5997  *
5998  * @sc:		device handle
5999  * @drv:
6000  *
6001  * Init HW when the current phase is
6002  * FW_MSG_CODE_DRV_LOAD_FUNCTION: initialize only FUNCTION-only
6003  * HW blocks.
6004  */
6005 static inline int ecore_func_init_func(struct bxe_softc *sc,
6006 				       const struct ecore_func_sp_drv_ops *drv)
6007 {
6008 	return drv->init_hw_func(sc);
6009 }
6010 
6011 /**
6012  * ecore_func_init_port - performs HW init at port stage
6013  *
6014  * @sc:		device handle
6015  * @drv:
6016  *
6017  * Init HW when the current phase is
6018  * FW_MSG_CODE_DRV_LOAD_PORT: initialize PORT-only and
6019  * FUNCTION-only HW blocks.
6020  *
6021  */
6022 static inline int ecore_func_init_port(struct bxe_softc *sc,
6023 				       const struct ecore_func_sp_drv_ops *drv)
6024 {
6025 	int rc = drv->init_hw_port(sc);
6026 	if (rc)
6027 		return rc;
6028 
6029 	return ecore_func_init_func(sc, drv);
6030 }
6031 
6032 /**
6033  * ecore_func_init_cmn_chip - performs HW init at chip-common stage
6034  *
6035  * @sc:		device handle
6036  * @drv:
6037  *
6038  * Init HW when the current phase is
6039  * FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: initialize COMMON_CHIP,
6040  * PORT-only and FUNCTION-only HW blocks.
6041  */
6042 static inline int ecore_func_init_cmn_chip(struct bxe_softc *sc,
6043 					const struct ecore_func_sp_drv_ops *drv)
6044 {
6045 	int rc = drv->init_hw_cmn_chip(sc);
6046 	if (rc)
6047 		return rc;
6048 
6049 	return ecore_func_init_port(sc, drv);
6050 }
6051 
6052 /**
6053  * ecore_func_init_cmn - performs HW init at common stage
6054  *
6055  * @sc:		device handle
6056  * @drv:
6057  *
6058  * Init HW when the current phase is
6059  * FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: initialize COMMON,
6060  * PORT-only and FUNCTION-only HW blocks.
6061  */
6062 static inline int ecore_func_init_cmn(struct bxe_softc *sc,
6063 				      const struct ecore_func_sp_drv_ops *drv)
6064 {
6065 	int rc = drv->init_hw_cmn(sc);
6066 	if (rc)
6067 		return rc;
6068 
6069 	return ecore_func_init_port(sc, drv);
6070 }
6071 
6072 static int ecore_func_hw_init(struct bxe_softc *sc,
6073 			      struct ecore_func_state_params *params)
6074 {
6075 	uint32_t load_code = params->params.hw_init.load_phase;
6076 	struct ecore_func_sp_obj *o = params->f_obj;
6077 	const struct ecore_func_sp_drv_ops *drv = o->drv;
6078 	int rc = 0;
6079 
6080 	ECORE_MSG(sc, "function %d  load_code %x\n",
6081 		  ECORE_ABS_FUNC_ID(sc), load_code);
6082 
6083 	/* Prepare buffers for unzipping the FW */
6084 	rc = drv->gunzip_init(sc);
6085 	if (rc)
6086 		return rc;
6087 
6088 	/* Prepare FW */
6089 	rc = drv->init_fw(sc);
6090 	if (rc) {
6091 		ECORE_ERR("Error loading firmware\n");
6092 		goto init_err;
6093 	}
6094 
6095 	/* Handle the beginning of COMMON_XXX pases separately... */
6096 	switch (load_code) {
6097 	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6098 		rc = ecore_func_init_cmn_chip(sc, drv);
6099 		if (rc)
6100 			goto init_err;
6101 
6102 		break;
6103 	case FW_MSG_CODE_DRV_LOAD_COMMON:
6104 		rc = ecore_func_init_cmn(sc, drv);
6105 		if (rc)
6106 			goto init_err;
6107 
6108 		break;
6109 	case FW_MSG_CODE_DRV_LOAD_PORT:
6110 		rc = ecore_func_init_port(sc, drv);
6111 		if (rc)
6112 			goto init_err;
6113 
6114 		break;
6115 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6116 		rc = ecore_func_init_func(sc, drv);
6117 		if (rc)
6118 			goto init_err;
6119 
6120 		break;
6121 	default:
6122 		ECORE_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6123 		rc = ECORE_INVAL;
6124 	}
6125 
6126 init_err:
6127 	drv->gunzip_end(sc);
6128 
6129 	/* In case of success, complete the command immediately: no ramrods
6130 	 * have been sent.
6131 	 */
6132 	if (!rc)
6133 		o->complete_cmd(sc, o, ECORE_F_CMD_HW_INIT);
6134 
6135 	return rc;
6136 }
6137 
6138 /**
6139  * ecore_func_reset_func - reset HW at function stage
6140  *
6141  * @sc:		device handle
6142  * @drv:
6143  *
6144  * Reset HW at FW_MSG_CODE_DRV_UNLOAD_FUNCTION stage: reset only
6145  * FUNCTION-only HW blocks.
6146  */
6147 static inline void ecore_func_reset_func(struct bxe_softc *sc,
6148 					const struct ecore_func_sp_drv_ops *drv)
6149 {
6150 	drv->reset_hw_func(sc);
6151 }
6152 
6153 /**
6154  * ecore_func_reset_port - reser HW at port stage
6155  *
6156  * @sc:		device handle
6157  * @drv:
6158  *
6159  * Reset HW at FW_MSG_CODE_DRV_UNLOAD_PORT stage: reset
6160  * FUNCTION-only and PORT-only HW blocks.
6161  *
6162  *                 !!!IMPORTANT!!!
6163  *
6164  * It's important to call reset_port before reset_func() as the last thing
6165  * reset_func does is pf_disable() thus disabling PGLUE_B, which
6166  * makes impossible any DMAE transactions.
6167  */
6168 static inline void ecore_func_reset_port(struct bxe_softc *sc,
6169 					const struct ecore_func_sp_drv_ops *drv)
6170 {
6171 	drv->reset_hw_port(sc);
6172 	ecore_func_reset_func(sc, drv);
6173 }
6174 
6175 /**
6176  * ecore_func_reset_cmn - reser HW at common stage
6177  *
6178  * @sc:		device handle
6179  * @drv:
6180  *
6181  * Reset HW at FW_MSG_CODE_DRV_UNLOAD_COMMON and
6182  * FW_MSG_CODE_DRV_UNLOAD_COMMON_CHIP stages: reset COMMON,
6183  * COMMON_CHIP, FUNCTION-only and PORT-only HW blocks.
6184  */
6185 static inline void ecore_func_reset_cmn(struct bxe_softc *sc,
6186 					const struct ecore_func_sp_drv_ops *drv)
6187 {
6188 	ecore_func_reset_port(sc, drv);
6189 	drv->reset_hw_cmn(sc);
6190 }
6191 
6192 static inline int ecore_func_hw_reset(struct bxe_softc *sc,
6193 				      struct ecore_func_state_params *params)
6194 {
6195 	uint32_t reset_phase = params->params.hw_reset.reset_phase;
6196 	struct ecore_func_sp_obj *o = params->f_obj;
6197 	const struct ecore_func_sp_drv_ops *drv = o->drv;
6198 
6199 	ECORE_MSG(sc, "function %d  reset_phase %x\n", ECORE_ABS_FUNC_ID(sc),
6200 		  reset_phase);
6201 
6202 	switch (reset_phase) {
6203 	case FW_MSG_CODE_DRV_UNLOAD_COMMON:
6204 		ecore_func_reset_cmn(sc, drv);
6205 		break;
6206 	case FW_MSG_CODE_DRV_UNLOAD_PORT:
6207 		ecore_func_reset_port(sc, drv);
6208 		break;
6209 	case FW_MSG_CODE_DRV_UNLOAD_FUNCTION:
6210 		ecore_func_reset_func(sc, drv);
6211 		break;
6212 	default:
6213 		ECORE_ERR("Unknown reset_phase (0x%x) from MCP\n",
6214 			  reset_phase);
6215 		break;
6216 	}
6217 
6218 	/* Complete the command immediately: no ramrods have been sent. */
6219 	o->complete_cmd(sc, o, ECORE_F_CMD_HW_RESET);
6220 
6221 	return ECORE_SUCCESS;
6222 }
6223 
6224 static inline int ecore_func_send_start(struct bxe_softc *sc,
6225 					struct ecore_func_state_params *params)
6226 {
6227 	struct ecore_func_sp_obj *o = params->f_obj;
6228 	struct function_start_data *rdata =
6229 		(struct function_start_data *)o->rdata;
6230 	ecore_dma_addr_t data_mapping = o->rdata_mapping;
6231 	struct ecore_func_start_params *start_params = &params->params.start;
6232 
6233 	ECORE_MEMSET(rdata, 0, sizeof(*rdata));
6234 
6235 	/* Fill the ramrod data with provided parameters */
6236 	rdata->function_mode	= (uint8_t)start_params->mf_mode;
6237 	rdata->sd_vlan_tag	= ECORE_CPU_TO_LE16(start_params->sd_vlan_tag);
6238 	rdata->path_id		= ECORE_PATH_ID(sc);
6239 	rdata->network_cos_mode	= start_params->network_cos_mode;
6240 
6241 	rdata->vxlan_dst_port	= start_params->vxlan_dst_port;
6242 	rdata->geneve_dst_port	= start_params->geneve_dst_port;
6243 	rdata->inner_clss_l2gre	= start_params->inner_clss_l2gre;
6244 	rdata->inner_clss_l2geneve = start_params->inner_clss_l2geneve;
6245 	rdata->inner_clss_vxlan	= start_params->inner_clss_vxlan;
6246 	rdata->inner_rss	= start_params->inner_rss;
6247 
6248 	rdata->sd_accept_mf_clss_fail = start_params->class_fail;
6249 	if (start_params->class_fail_ethtype) {
6250 		rdata->sd_accept_mf_clss_fail_match_ethtype = 1;
6251 		rdata->sd_accept_mf_clss_fail_ethtype =
6252 			ECORE_CPU_TO_LE16(start_params->class_fail_ethtype);
6253 	}
6254 	rdata->sd_vlan_force_pri_flg = start_params->sd_vlan_force_pri;
6255 	rdata->sd_vlan_force_pri_val = start_params->sd_vlan_force_pri_val;
6256 
6257 	/** @@@TMP - until FW 7.10.7 (which will introduce an HSI change)
6258 	 * `sd_vlan_eth_type' will replace ethertype in SD mode even if
6259 	 * it's set to 0; This will probably break SD, so we're setting it
6260 	 * to ethertype 0x8100 for now.
6261 	 */
6262 	if (start_params->sd_vlan_eth_type)
6263 		rdata->sd_vlan_eth_type =
6264 			ECORE_CPU_TO_LE16(start_params->sd_vlan_eth_type);
6265 	else
6266 		rdata->sd_vlan_eth_type =
6267 			ECORE_CPU_TO_LE16((uint16_t) 0x8100);
6268 
6269 	rdata->no_added_tags = start_params->no_added_tags;
6270 
6271 	rdata->c2s_pri_tt_valid = start_params->c2s_pri_valid;
6272 	if (rdata->c2s_pri_tt_valid) {
6273 		memcpy(rdata->c2s_pri_trans_table.val,
6274 		       start_params->c2s_pri,
6275 		       MAX_VLAN_PRIORITIES);
6276 		rdata->c2s_pri_default = start_params->c2s_pri_default;
6277 	}
6278 
6279 	/* No need for an explicit memory barrier here as long as we
6280 	 * ensure the ordering of writing to the SPQ element
6281 	 *  and updating of the SPQ producer which involves a memory
6282 	 * read. If the memory read is removed we will have to put a
6283 	 * full memory barrier there (inside ecore_sp_post()).
6284 	 */
6285 	return ecore_sp_post(sc, RAMROD_CMD_ID_COMMON_FUNCTION_START, 0,
6286 			     data_mapping, NONE_CONNECTION_TYPE);
6287 }
6288 
6289 static inline int ecore_func_send_switch_update(struct bxe_softc *sc,
6290 					struct ecore_func_state_params *params)
6291 {
6292 	struct ecore_func_sp_obj *o = params->f_obj;
6293 	struct function_update_data *rdata =
6294 		(struct function_update_data *)o->rdata;
6295 	ecore_dma_addr_t data_mapping = o->rdata_mapping;
6296 	struct ecore_func_switch_update_params *switch_update_params =
6297 		&params->params.switch_update;
6298 
6299 	ECORE_MEMSET(rdata, 0, sizeof(*rdata));
6300 
6301 	/* Fill the ramrod data with provided parameters */
6302 	if (ECORE_TEST_BIT(ECORE_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
6303 			   &switch_update_params->changes)) {
6304 	rdata->tx_switch_suspend_change_flg = 1;
6305 		rdata->tx_switch_suspend =
6306 			ECORE_TEST_BIT(ECORE_F_UPDATE_TX_SWITCH_SUSPEND,
6307 				       &switch_update_params->changes);
6308 	}
6309 
6310 	if (ECORE_TEST_BIT(ECORE_F_UPDATE_SD_VLAN_TAG_CHNG,
6311 			   &switch_update_params->changes)) {
6312 		rdata->sd_vlan_tag_change_flg = 1;
6313 		rdata->sd_vlan_tag =
6314 			ECORE_CPU_TO_LE16(switch_update_params->vlan);
6315 	}
6316 
6317 	if (ECORE_TEST_BIT(ECORE_F_UPDATE_SD_VLAN_ETH_TYPE_CHNG,
6318 			   &switch_update_params->changes)) {
6319 		rdata->sd_vlan_eth_type_change_flg = 1;
6320 		rdata->sd_vlan_eth_type =
6321 			ECORE_CPU_TO_LE16(switch_update_params->vlan_eth_type);
6322 	}
6323 
6324 	if (ECORE_TEST_BIT(ECORE_F_UPDATE_VLAN_FORCE_PRIO_CHNG,
6325 			   &switch_update_params->changes)) {
6326 		rdata->sd_vlan_force_pri_change_flg = 1;
6327 		if (ECORE_TEST_BIT(ECORE_F_UPDATE_VLAN_FORCE_PRIO_FLAG,
6328 				   &switch_update_params->changes))
6329 			rdata->sd_vlan_force_pri_flg = 1;
6330 		rdata->sd_vlan_force_pri_flg =
6331 			switch_update_params->vlan_force_prio;
6332 	}
6333 
6334 	if (ECORE_TEST_BIT(ECORE_F_UPDATE_TUNNEL_CFG_CHNG,
6335 			   &switch_update_params->changes)) {
6336 		rdata->update_tunn_cfg_flg = 1;
6337 		if (ECORE_TEST_BIT(ECORE_F_UPDATE_TUNNEL_INNER_CLSS_L2GRE,
6338 				   &switch_update_params->changes))
6339 			rdata->inner_clss_l2gre = 1;
6340 		if (ECORE_TEST_BIT(ECORE_F_UPDATE_TUNNEL_INNER_CLSS_VXLAN,
6341 				   &switch_update_params->changes))
6342 			rdata->inner_clss_vxlan = 1;
6343 		if (ECORE_TEST_BIT(ECORE_F_UPDATE_TUNNEL_INNER_CLSS_L2GENEVE,
6344 				   &switch_update_params->changes))
6345 			rdata->inner_clss_l2geneve = 1;
6346 		if (ECORE_TEST_BIT(ECORE_F_UPDATE_TUNNEL_INNER_RSS,
6347 				   &switch_update_params->changes))
6348 			rdata->inner_rss = 1;
6349 
6350 		rdata->vxlan_dst_port =
6351 			ECORE_CPU_TO_LE16(switch_update_params->vxlan_dst_port);
6352 		rdata->geneve_dst_port =
6353 			ECORE_CPU_TO_LE16(switch_update_params->geneve_dst_port);
6354 	}
6355 
6356 	rdata->echo = SWITCH_UPDATE;
6357 
6358 	/* No need for an explicit memory barrier here as long as we
6359 	 * ensure the ordering of writing to the SPQ element
6360 	 * and updating of the SPQ producer which involves a memory
6361 	 * read. If the memory read is removed we will have to put a
6362 	 * full memory barrier there (inside ecore_sp_post()).
6363 	 */
6364 	return ecore_sp_post(sc, RAMROD_CMD_ID_COMMON_FUNCTION_UPDATE, 0,
6365 			     data_mapping, NONE_CONNECTION_TYPE);
6366 }
6367 
6368 static inline int ecore_func_send_afex_update(struct bxe_softc *sc,
6369 					 struct ecore_func_state_params *params)
6370 {
6371 	struct ecore_func_sp_obj *o = params->f_obj;
6372 	struct function_update_data *rdata =
6373 		(struct function_update_data *)o->afex_rdata;
6374 	ecore_dma_addr_t data_mapping = o->afex_rdata_mapping;
6375 	struct ecore_func_afex_update_params *afex_update_params =
6376 		&params->params.afex_update;
6377 
6378 	ECORE_MEMSET(rdata, 0, sizeof(*rdata));
6379 
6380 	/* Fill the ramrod data with provided parameters */
6381 	rdata->vif_id_change_flg = 1;
6382 	rdata->vif_id = ECORE_CPU_TO_LE16(afex_update_params->vif_id);
6383 	rdata->afex_default_vlan_change_flg = 1;
6384 	rdata->afex_default_vlan =
6385 		ECORE_CPU_TO_LE16(afex_update_params->afex_default_vlan);
6386 	rdata->allowed_priorities_change_flg = 1;
6387 	rdata->allowed_priorities = afex_update_params->allowed_priorities;
6388 	rdata->echo = AFEX_UPDATE;
6389 
6390 	/* No need for an explicit memory barrier here as long as we
6391 	 * ensure the ordering of writing to the SPQ element
6392 	 *  and updating of the SPQ producer which involves a memory
6393 	 * read. If the memory read is removed we will have to put a
6394 	 * full memory barrier there (inside ecore_sp_post()).
6395 	 */
6396 	ECORE_MSG(sc,
6397 		  "afex: sending func_update vif_id 0x%x dvlan 0x%x prio 0x%x\n",
6398 		  rdata->vif_id,
6399 		  rdata->afex_default_vlan, rdata->allowed_priorities);
6400 
6401 	return ecore_sp_post(sc, RAMROD_CMD_ID_COMMON_FUNCTION_UPDATE, 0,
6402 			     data_mapping, NONE_CONNECTION_TYPE);
6403 }
6404 
6405 static
6406 inline int ecore_func_send_afex_viflists(struct bxe_softc *sc,
6407 					 struct ecore_func_state_params *params)
6408 {
6409 	struct ecore_func_sp_obj *o = params->f_obj;
6410 	struct afex_vif_list_ramrod_data *rdata =
6411 		(struct afex_vif_list_ramrod_data *)o->afex_rdata;
6412 	struct ecore_func_afex_viflists_params *afex_vif_params =
6413 		&params->params.afex_viflists;
6414 	uint64_t *p_rdata = (uint64_t *)rdata;
6415 
6416 	ECORE_MEMSET(rdata, 0, sizeof(*rdata));
6417 
6418 	/* Fill the ramrod data with provided parameters */
6419 	rdata->vif_list_index = ECORE_CPU_TO_LE16(afex_vif_params->vif_list_index);
6420 	rdata->func_bit_map          = afex_vif_params->func_bit_map;
6421 	rdata->afex_vif_list_command = afex_vif_params->afex_vif_list_command;
6422 	rdata->func_to_clear         = afex_vif_params->func_to_clear;
6423 
6424 	/* send in echo type of sub command */
6425 	rdata->echo = afex_vif_params->afex_vif_list_command;
6426 
6427 	ECORE_MSG(sc, "afex: ramrod lists, cmd 0x%x index 0x%x func_bit_map 0x%x func_to_clr 0x%x\n",
6428 		  rdata->afex_vif_list_command, rdata->vif_list_index,
6429 		  rdata->func_bit_map, rdata->func_to_clear);
6430 
6431 	/* No need for an explicit memory barrier here as long as we
6432 	 * ensure the ordering of writing to the SPQ element
6433 	 * and updating of the SPQ producer which involves a memory
6434 	 * read. If the memory read is removed we will have to put a
6435 	 * full memory barrier there (inside ecore_sp_post()).
6436 	 */
6437 
6438 	/* this ramrod sends data directly and not through DMA mapping */
6439 	return ecore_sp_post(sc, RAMROD_CMD_ID_COMMON_AFEX_VIF_LISTS, 0,
6440 			     *p_rdata, NONE_CONNECTION_TYPE);
6441 }
6442 
6443 static inline int ecore_func_send_stop(struct bxe_softc *sc,
6444 				       struct ecore_func_state_params *params)
6445 {
6446 	return ecore_sp_post(sc, RAMROD_CMD_ID_COMMON_FUNCTION_STOP, 0, 0,
6447 			     NONE_CONNECTION_TYPE);
6448 }
6449 
6450 static inline int ecore_func_send_tx_stop(struct bxe_softc *sc,
6451 				       struct ecore_func_state_params *params)
6452 {
6453 	return ecore_sp_post(sc, RAMROD_CMD_ID_COMMON_STOP_TRAFFIC, 0, 0,
6454 			     NONE_CONNECTION_TYPE);
6455 }
6456 static inline int ecore_func_send_tx_start(struct bxe_softc *sc,
6457 				       struct ecore_func_state_params *params)
6458 {
6459 	struct ecore_func_sp_obj *o = params->f_obj;
6460 	struct flow_control_configuration *rdata =
6461 		(struct flow_control_configuration *)o->rdata;
6462 	ecore_dma_addr_t data_mapping = o->rdata_mapping;
6463 	struct ecore_func_tx_start_params *tx_start_params =
6464 		&params->params.tx_start;
6465 	int i;
6466 
6467 	ECORE_MEMSET(rdata, 0, sizeof(*rdata));
6468 
6469 	rdata->dcb_enabled = tx_start_params->dcb_enabled;
6470 	rdata->dcb_version = tx_start_params->dcb_version;
6471 	rdata->dont_add_pri_0 = tx_start_params->dont_add_pri_0;
6472 
6473 	for (i = 0; i < ARRAY_SIZE(rdata->traffic_type_to_priority_cos); i++)
6474 		rdata->traffic_type_to_priority_cos[i] =
6475 			tx_start_params->traffic_type_to_priority_cos[i];
6476 
6477 	for (i = 0; i < MAX_TRAFFIC_TYPES; i++)
6478 		rdata->dcb_outer_pri[i] = tx_start_params->dcb_outer_pri[i];
6479 
6480 	/* No need for an explicit memory barrier here as long as we
6481 	 * ensure the ordering of writing to the SPQ element
6482 	 * and updating of the SPQ producer which involves a memory
6483 	 * read. If the memory read is removed we will have to put a
6484 	 * full memory barrier there (inside ecore_sp_post()).
6485 	 */
6486 	return ecore_sp_post(sc, RAMROD_CMD_ID_COMMON_START_TRAFFIC, 0,
6487 			     data_mapping, NONE_CONNECTION_TYPE);
6488 }
6489 
6490 static inline int ecore_func_send_set_timesync(struct bxe_softc *sc,
6491 					struct ecore_func_state_params *params)
6492 {
6493 	struct ecore_func_sp_obj *o = params->f_obj;
6494 	struct set_timesync_ramrod_data *rdata =
6495 		(struct set_timesync_ramrod_data *)o->rdata;
6496 	ecore_dma_addr_t data_mapping = o->rdata_mapping;
6497 	struct ecore_func_set_timesync_params *set_timesync_params =
6498 		&params->params.set_timesync;
6499 
6500 	ECORE_MEMSET(rdata, 0, sizeof(*rdata));
6501 
6502 	/* Fill the ramrod data with provided parameters */
6503 	rdata->drift_adjust_cmd = set_timesync_params->drift_adjust_cmd;
6504 	rdata->offset_cmd = set_timesync_params->offset_cmd;
6505 	rdata->add_sub_drift_adjust_value =
6506 		set_timesync_params->add_sub_drift_adjust_value;
6507 	rdata->drift_adjust_value = set_timesync_params->drift_adjust_value;
6508 	rdata->drift_adjust_period = set_timesync_params->drift_adjust_period;
6509 	rdata->offset_delta.lo =
6510 		ECORE_CPU_TO_LE32(U64_LO(set_timesync_params->offset_delta));
6511 	rdata->offset_delta.hi =
6512 		ECORE_CPU_TO_LE32(U64_HI(set_timesync_params->offset_delta));
6513 
6514 	ECORE_MSG(sc, "Set timesync command params: drift_cmd = %d, offset_cmd = %d, add_sub_drift = %d, drift_val = %d, drift_period = %d, offset_lo = %d, offset_hi = %d\n",
6515 	   rdata->drift_adjust_cmd, rdata->offset_cmd,
6516 	   rdata->add_sub_drift_adjust_value, rdata->drift_adjust_value,
6517 	   rdata->drift_adjust_period, rdata->offset_delta.lo,
6518 	   rdata->offset_delta.hi);
6519 
6520 	return ecore_sp_post(sc, RAMROD_CMD_ID_COMMON_SET_TIMESYNC, 0,
6521 			     data_mapping, NONE_CONNECTION_TYPE);
6522 }
6523 
6524 static int ecore_func_send_cmd(struct bxe_softc *sc,
6525 			       struct ecore_func_state_params *params)
6526 {
6527 	switch (params->cmd) {
6528 	case ECORE_F_CMD_HW_INIT:
6529 		return ecore_func_hw_init(sc, params);
6530 	case ECORE_F_CMD_START:
6531 		return ecore_func_send_start(sc, params);
6532 	case ECORE_F_CMD_STOP:
6533 		return ecore_func_send_stop(sc, params);
6534 	case ECORE_F_CMD_HW_RESET:
6535 		return ecore_func_hw_reset(sc, params);
6536 	case ECORE_F_CMD_AFEX_UPDATE:
6537 		return ecore_func_send_afex_update(sc, params);
6538 	case ECORE_F_CMD_AFEX_VIFLISTS:
6539 		return ecore_func_send_afex_viflists(sc, params);
6540 	case ECORE_F_CMD_TX_STOP:
6541 		return ecore_func_send_tx_stop(sc, params);
6542 	case ECORE_F_CMD_TX_START:
6543 		return ecore_func_send_tx_start(sc, params);
6544 	case ECORE_F_CMD_SWITCH_UPDATE:
6545 		return ecore_func_send_switch_update(sc, params);
6546 	case ECORE_F_CMD_SET_TIMESYNC:
6547 		return ecore_func_send_set_timesync(sc, params);
6548 	default:
6549 		ECORE_ERR("Unknown command: %d\n", params->cmd);
6550 		return ECORE_INVAL;
6551 	}
6552 }
6553 
6554 void ecore_init_func_obj(struct bxe_softc *sc,
6555 			 struct ecore_func_sp_obj *obj,
6556 			 void *rdata, ecore_dma_addr_t rdata_mapping,
6557 			 void *afex_rdata, ecore_dma_addr_t afex_rdata_mapping,
6558 			 struct ecore_func_sp_drv_ops *drv_iface)
6559 {
6560 	ECORE_MEMSET(obj, 0, sizeof(*obj));
6561 
6562 	ECORE_MUTEX_INIT(&obj->one_pending_mutex);
6563 
6564 	obj->rdata = rdata;
6565 	obj->rdata_mapping = rdata_mapping;
6566 	obj->afex_rdata = afex_rdata;
6567 	obj->afex_rdata_mapping = afex_rdata_mapping;
6568 	obj->send_cmd = ecore_func_send_cmd;
6569 	obj->check_transition = ecore_func_chk_transition;
6570 	obj->complete_cmd = ecore_func_comp_cmd;
6571 	obj->wait_comp = ecore_func_wait_comp;
6572 	obj->drv = drv_iface;
6573 }
6574 
6575 /**
6576  * ecore_func_state_change - perform Function state change transition
6577  *
6578  * @sc:		device handle
6579  * @params:	parameters to perform the transaction
6580  *
6581  * returns 0 in case of successfully completed transition,
6582  *         negative error code in case of failure, positive
6583  *         (EBUSY) value if there is a completion to that is
6584  *         still pending (possible only if RAMROD_COMP_WAIT is
6585  *         not set in params->ramrod_flags for asynchronous
6586  *         commands).
6587  */
6588 int ecore_func_state_change(struct bxe_softc *sc,
6589 			    struct ecore_func_state_params *params)
6590 {
6591 	struct ecore_func_sp_obj *o = params->f_obj;
6592 	int rc, cnt = 300;
6593 	enum ecore_func_cmd cmd = params->cmd;
6594 	unsigned long *pending = &o->pending;
6595 
6596 	ECORE_MUTEX_LOCK(&o->one_pending_mutex);
6597 
6598 	/* Check that the requested transition is legal */
6599 	rc = o->check_transition(sc, o, params);
6600 	if ((rc == ECORE_BUSY) &&
6601 	    (ECORE_TEST_BIT(RAMROD_RETRY, &params->ramrod_flags))) {
6602 		while ((rc == ECORE_BUSY) && (--cnt > 0)) {
6603 			ECORE_MUTEX_UNLOCK(&o->one_pending_mutex);
6604 			ECORE_MSLEEP(10);
6605 			ECORE_MUTEX_LOCK(&o->one_pending_mutex);
6606 			rc = o->check_transition(sc, o, params);
6607 		}
6608 		if (rc == ECORE_BUSY) {
6609 			ECORE_MUTEX_UNLOCK(&o->one_pending_mutex);
6610 			ECORE_ERR("timeout waiting for previous ramrod completion\n");
6611 			return rc;
6612 		}
6613 	} else if (rc) {
6614 		ECORE_MUTEX_UNLOCK(&o->one_pending_mutex);
6615 		return rc;
6616 	}
6617 
6618 	/* Set "pending" bit */
6619 	ECORE_SET_BIT(cmd, pending);
6620 
6621 	/* Don't send a command if only driver cleanup was requested */
6622 	if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags)) {
6623 		ecore_func_state_change_comp(sc, o, cmd);
6624 		ECORE_MUTEX_UNLOCK(&o->one_pending_mutex);
6625 	} else {
6626 		/* Send a ramrod */
6627 		rc = o->send_cmd(sc, params);
6628 
6629 		ECORE_MUTEX_UNLOCK(&o->one_pending_mutex);
6630 
6631 		if (rc) {
6632 			o->next_state = ECORE_F_STATE_MAX;
6633 			ECORE_CLEAR_BIT(cmd, pending);
6634 			ECORE_SMP_MB_AFTER_CLEAR_BIT();
6635 			return rc;
6636 		}
6637 
6638 		if (ECORE_TEST_BIT(RAMROD_COMP_WAIT, &params->ramrod_flags)) {
6639 			rc = o->wait_comp(sc, o, cmd);
6640 			if (rc)
6641 				return rc;
6642 
6643 			return ECORE_SUCCESS;
6644 		}
6645 	}
6646 
6647 	return ECORE_RET_PENDING(cmd, pending);
6648 }
6649