xref: /freebsd/sys/dev/bxe/ecore_init_ops.h (revision 8d20be1e22095c27faf8fe8b2f0d089739cc742e)
1 /*-
2  * Copyright (c) 2007-2013 Broadcom Corporation. All rights reserved.
3  *
4  * Eric Davis        <edavis@broadcom.com>
5  * David Christensen <davidch@broadcom.com>
6  * Gary Zambrano     <zambrano@broadcom.com>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written consent.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #ifndef ECORE_INIT_OPS_H
38 #define ECORE_INIT_OPS_H
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 static int ecore_gunzip(struct bxe_softc *sc, const uint8_t *zbuf, int len);
50 static void ecore_reg_wr_ind(struct bxe_softc *sc, uint32_t addr, uint32_t val);
51 static void ecore_write_dmae_phys_len(struct bxe_softc *sc,
52 				      ecore_dma_addr_t phys_addr, uint32_t addr,
53 				      uint32_t len);
54 
55 static void ecore_init_str_wr(struct bxe_softc *sc, uint32_t addr,
56 			      const uint32_t *data, uint32_t len)
57 {
58 	uint32_t i;
59 
60 	for (i = 0; i < len; i++)
61 		REG_WR(sc, addr + i*4, data[i]);
62 }
63 
64 static void ecore_init_ind_wr(struct bxe_softc *sc, uint32_t addr,
65 			      const uint32_t *data, uint32_t len)
66 {
67 	uint32_t i;
68 
69 	for (i = 0; i < len; i++)
70 		ecore_reg_wr_ind(sc, addr + i*4, data[i]);
71 }
72 
73 static void ecore_write_big_buf(struct bxe_softc *sc, uint32_t addr, uint32_t len,
74 				uint8_t wb)
75 {
76 	if (DMAE_READY(sc))
77 		ecore_write_dmae_phys_len(sc, GUNZIP_PHYS(sc), addr, len);
78 
79 	/* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
80 	else if (wb && CHIP_IS_E1(sc))
81 		ecore_init_ind_wr(sc, addr, GUNZIP_BUF(sc), len);
82 
83 	/* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
84 	else
85 		ecore_init_str_wr(sc, addr, GUNZIP_BUF(sc), len);
86 }
87 
88 static void ecore_init_fill(struct bxe_softc *sc, uint32_t addr, int fill,
89 			    uint32_t len, uint8_t wb)
90 {
91 	uint32_t buf_len = (((len*4) > FW_BUF_SIZE) ? FW_BUF_SIZE : (len*4));
92 	uint32_t buf_len32 = buf_len/4;
93 	uint32_t i;
94 
95 	ECORE_MEMSET(GUNZIP_BUF(sc), (uint8_t)fill, buf_len);
96 
97 	for (i = 0; i < len; i += buf_len32) {
98 		uint32_t cur_len = min(buf_len32, len - i);
99 
100 		ecore_write_big_buf(sc, addr + i*4, cur_len, wb);
101 	}
102 }
103 
104 static void ecore_write_big_buf_wb(struct bxe_softc *sc, uint32_t addr, uint32_t len)
105 {
106 	if (DMAE_READY(sc))
107 		ecore_write_dmae_phys_len(sc, GUNZIP_PHYS(sc), addr, len);
108 
109 	/* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
110 	else if (CHIP_IS_E1(sc))
111 		ecore_init_ind_wr(sc, addr, GUNZIP_BUF(sc), len);
112 
113 	/* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
114 	else
115 		ecore_init_str_wr(sc, addr, GUNZIP_BUF(sc), len);
116 }
117 
118 static void ecore_init_wr_64(struct bxe_softc *sc, uint32_t addr,
119 			     const uint32_t *data, uint32_t len64)
120 {
121 	uint32_t buf_len32 = FW_BUF_SIZE/4;
122 	uint32_t len = len64*2;
123 	uint64_t data64 = 0;
124 	uint32_t i;
125 
126 	/* 64 bit value is in a blob: first low DWORD, then high DWORD */
127 	data64 = HILO_U64((*(data + 1)), (*data));
128 
129 	len64 = min((uint32_t)(FW_BUF_SIZE/8), len64);
130 	for (i = 0; i < len64; i++) {
131 		uint64_t *pdata = ((uint64_t *)(GUNZIP_BUF(sc))) + i;
132 
133 		*pdata = data64;
134 	}
135 
136 	for (i = 0; i < len; i += buf_len32) {
137 		uint32_t cur_len = min(buf_len32, len - i);
138 
139 		ecore_write_big_buf_wb(sc, addr + i*4, cur_len);
140 	}
141 }
142 
143 /*********************************************************
144    There are different blobs for each PRAM section.
145    In addition, each blob write operation is divided into a few operations
146    in order to decrease the amount of phys. contiguous buffer needed.
147    Thus, when we select a blob the address may be with some offset
148    from the beginning of PRAM section.
149    The same holds for the INT_TABLE sections.
150 **********************************************************/
151 #define IF_IS_INT_TABLE_ADDR(base, addr) \
152 			if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
153 
154 #define IF_IS_PRAM_ADDR(base, addr) \
155 			if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
156 
157 static const uint8_t *ecore_sel_blob(struct bxe_softc *sc, uint32_t addr,
158 				const uint8_t *data)
159 {
160 	IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr)
161 		data = INIT_TSEM_INT_TABLE_DATA(sc);
162 	else
163 		IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr)
164 			data = INIT_CSEM_INT_TABLE_DATA(sc);
165 	else
166 		IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr)
167 			data = INIT_USEM_INT_TABLE_DATA(sc);
168 	else
169 		IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr)
170 			data = INIT_XSEM_INT_TABLE_DATA(sc);
171 	else
172 		IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr)
173 			data = INIT_TSEM_PRAM_DATA(sc);
174 	else
175 		IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr)
176 			data = INIT_CSEM_PRAM_DATA(sc);
177 	else
178 		IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr)
179 			data = INIT_USEM_PRAM_DATA(sc);
180 	else
181 		IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr)
182 			data = INIT_XSEM_PRAM_DATA(sc);
183 
184 	return data;
185 }
186 
187 static void ecore_init_wr_wb(struct bxe_softc *sc, uint32_t addr,
188 			     const uint32_t *data, uint32_t len)
189 {
190 	if (DMAE_READY(sc))
191 		VIRT_WR_DMAE_LEN(sc, data, addr, len, 0);
192 
193 	/* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
194 	else if (CHIP_IS_E1(sc))
195 		ecore_init_ind_wr(sc, addr, data, len);
196 
197 	/* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
198 	else
199 		ecore_init_str_wr(sc, addr, data, len);
200 }
201 
202 #ifndef FW_ZIP_SUPPORT
203 static void ecore_init_fw(struct bxe_softc *sc, uint32_t addr, uint32_t len)
204 {
205 	const uint8_t *data = NULL;
206 
207 	data = ecore_sel_blob(sc, addr, (const uint8_t *)data);
208 
209 	if (DMAE_READY(sc))
210 		VIRT_WR_DMAE_LEN(sc, data, addr, len, 1);
211 
212 	/* in E1 BIOS initiated ZLR may interrupt widebus writes */
213 	else if (CHIP_IS_E1(sc))
214 		ecore_init_ind_wr(sc, addr, (const uint32_t *)data, len);
215 
216 	/* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
217 	else
218 		ecore_init_str_wr(sc, addr, (const uint32_t *)data, len);
219 }
220 
221 #endif
222 
223 static void ecore_wr_64(struct bxe_softc *sc, uint32_t reg, uint32_t val_lo,
224 			uint32_t val_hi)
225 {
226 	uint32_t wb_write[2];
227 
228 	wb_write[0] = val_lo;
229 	wb_write[1] = val_hi;
230 	REG_WR_DMAE_LEN(sc, reg, wb_write, 2);
231 }
232 
233 static void ecore_init_wr_zp(struct bxe_softc *sc, uint32_t addr, uint32_t len,
234 			     uint32_t blob_off)
235 {
236 	const uint8_t *data = NULL;
237 	int rc;
238 	uint32_t i;
239 
240 	data = ecore_sel_blob(sc, addr, data) + blob_off*4;
241 
242 	rc = ecore_gunzip(sc, data, len);
243 	if (rc)
244 		return;
245 
246 	/* gunzip_outlen is in dwords */
247 	len = GUNZIP_OUTLEN(sc);
248 	for (i = 0; i < len; i++)
249 		((uint32_t *)GUNZIP_BUF(sc))[i] = (uint32_t)
250 				ECORE_CPU_TO_LE32(((uint32_t *)GUNZIP_BUF(sc))[i]);
251 
252 	ecore_write_big_buf_wb(sc, addr, len);
253 }
254 
255 static void ecore_init_block(struct bxe_softc *sc, uint32_t block, uint32_t stage)
256 {
257 	uint16_t op_start =
258 		INIT_OPS_OFFSETS(sc)[BLOCK_OPS_IDX(block, stage,
259 						     STAGE_START)];
260 	uint16_t op_end =
261 		INIT_OPS_OFFSETS(sc)[BLOCK_OPS_IDX(block, stage,
262 						     STAGE_END)];
263 	const union init_op *op;
264 	uint32_t op_idx, op_type, addr, len;
265 	const uint32_t *data, *data_base;
266 
267 	/* If empty block */
268 	if (op_start == op_end)
269 		return;
270 
271 	data_base = INIT_DATA(sc);
272 
273 	for (op_idx = op_start; op_idx < op_end; op_idx++) {
274 
275 		op = (const union init_op *)&(INIT_OPS(sc)[op_idx]);
276 		/* Get generic data */
277 		op_type = op->raw.op;
278 		addr = op->raw.offset;
279 		/* Get data that's used for OP_SW, OP_WB, OP_FW, OP_ZP and
280 		 * OP_WR64 (we assume that op_arr_write and op_write have the
281 		 * same structure).
282 		 */
283 		len = op->arr_wr.data_len;
284 		data = data_base + op->arr_wr.data_off;
285 
286 		switch (op_type) {
287 		case OP_RD:
288 			REG_RD(sc, addr);
289 			break;
290 		case OP_WR:
291 			REG_WR(sc, addr, op->write.val);
292 			break;
293 		case OP_SW:
294 			ecore_init_str_wr(sc, addr, data, len);
295 			break;
296 		case OP_WB:
297 			ecore_init_wr_wb(sc, addr, data, len);
298 			break;
299 #ifndef FW_ZIP_SUPPORT
300 		case OP_FW:
301 			ecore_init_fw(sc, addr, len);
302 			break;
303 #endif
304 		case OP_ZR:
305 			ecore_init_fill(sc, addr, 0, op->zero.len, 0);
306 			break;
307 		case OP_WB_ZR:
308 			ecore_init_fill(sc, addr, 0, op->zero.len, 1);
309 			break;
310 		case OP_ZP:
311 			ecore_init_wr_zp(sc, addr, len,
312 					 op->arr_wr.data_off);
313 			break;
314 		case OP_WR_64:
315 			ecore_init_wr_64(sc, addr, data, len);
316 			break;
317 		case OP_IF_MODE_AND:
318 			/* if any of the flags doesn't match, skip the
319 			 * conditional block.
320 			 */
321 			if ((INIT_MODE_FLAGS(sc) &
322 				op->if_mode.mode_bit_map) !=
323 				op->if_mode.mode_bit_map)
324 				op_idx += op->if_mode.cmd_offset;
325 			break;
326 		case OP_IF_MODE_OR:
327 			/* if all the flags don't match, skip the conditional
328 			 * block.
329 			 */
330 			if ((INIT_MODE_FLAGS(sc) &
331 				op->if_mode.mode_bit_map) == 0)
332 				op_idx += op->if_mode.cmd_offset;
333 			break;
334 		    /* the following opcodes are unused at the moment. */
335 		case OP_IF_PHASE:
336 		case OP_RT:
337 		case OP_DELAY:
338 		case OP_VERIFY:
339 		default:
340 			/* Should never get here! */
341 
342 			break;
343 		}
344 	}
345 }
346 
347 
348 /****************************************************************************
349 * PXP Arbiter
350 ****************************************************************************/
351 /*
352  * This code configures the PCI read/write arbiter
353  * which implements a weighted round robin
354  * between the virtual queues in the chip.
355  *
356  * The values were derived for each PCI max payload and max request size.
357  * since max payload and max request size are only known at run time,
358  * this is done as a separate init stage.
359  */
360 
361 #define NUM_WR_Q			13
362 #define NUM_RD_Q			29
363 #define MAX_RD_ORD			3
364 #define MAX_WR_ORD			2
365 
366 /* configuration for one arbiter queue */
367 struct arb_line {
368 	int l;
369 	int add;
370 	int ubound;
371 };
372 
373 /* derived configuration for each read queue for each max request size */
374 static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = {
375 /* 1 */	{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
376 	{ {4, 8,  4},  {4,  8,  4},  {4,  8,  4},  {4,  8,  4}  },
377 	{ {4, 3,  3},  {4,  3,  3},  {4,  3,  3},  {4,  3,  3}  },
378 	{ {8, 3,  6},  {16, 3,  11}, {16, 3,  11}, {16, 3,  11} },
379 	{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
380 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
381 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
382 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
383 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
384 /* 10 */{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
385 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
386 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
387 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
388 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
389 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
390 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
391 	{ {8, 64, 6},  {16, 64, 11}, {32, 64, 21}, {32, 64, 21} },
392 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
393 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
394 /* 20 */{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
395 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
396 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
397 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
398 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
399 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
400 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
401 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
402 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
403 	{ {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} }
404 };
405 
406 /* derived configuration for each write queue for each max request size */
407 static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = {
408 /* 1 */	{ {4, 6,  3},  {4,  6,  3},  {4,  6,  3} },
409 	{ {4, 2,  3},  {4,  2,  3},  {4,  2,  3} },
410 	{ {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
411 	{ {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
412 	{ {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
413 	{ {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
414 	{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25} },
415 	{ {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
416 	{ {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
417 /* 10 */{ {8, 9,  6},  {16, 9,  11}, {32, 9,  21} },
418 	{ {8, 47, 19}, {16, 47, 19}, {32, 47, 21} },
419 	{ {8, 9,  6},  {16, 9,  11}, {16, 9,  11} },
420 	{ {8, 64, 25}, {16, 64, 41}, {32, 64, 81} }
421 };
422 
423 /* register addresses for read queues */
424 static const struct arb_line read_arb_addr[NUM_RD_Q-1] = {
425 /* 1 */	{PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0,
426 		PXP2_REG_RQ_BW_RD_UBOUND0},
427 	{PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
428 		PXP2_REG_PSWRQ_BW_UB1},
429 	{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
430 		PXP2_REG_PSWRQ_BW_UB2},
431 	{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
432 		PXP2_REG_PSWRQ_BW_UB3},
433 	{PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4,
434 		PXP2_REG_RQ_BW_RD_UBOUND4},
435 	{PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5,
436 		PXP2_REG_RQ_BW_RD_UBOUND5},
437 	{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
438 		PXP2_REG_PSWRQ_BW_UB6},
439 	{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
440 		PXP2_REG_PSWRQ_BW_UB7},
441 	{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
442 		PXP2_REG_PSWRQ_BW_UB8},
443 /* 10 */{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
444 		PXP2_REG_PSWRQ_BW_UB9},
445 	{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
446 		PXP2_REG_PSWRQ_BW_UB10},
447 	{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
448 		PXP2_REG_PSWRQ_BW_UB11},
449 	{PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12,
450 		PXP2_REG_RQ_BW_RD_UBOUND12},
451 	{PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13,
452 		PXP2_REG_RQ_BW_RD_UBOUND13},
453 	{PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14,
454 		PXP2_REG_RQ_BW_RD_UBOUND14},
455 	{PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15,
456 		PXP2_REG_RQ_BW_RD_UBOUND15},
457 	{PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16,
458 		PXP2_REG_RQ_BW_RD_UBOUND16},
459 	{PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17,
460 		PXP2_REG_RQ_BW_RD_UBOUND17},
461 	{PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18,
462 		PXP2_REG_RQ_BW_RD_UBOUND18},
463 /* 20 */{PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19,
464 		PXP2_REG_RQ_BW_RD_UBOUND19},
465 	{PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20,
466 		PXP2_REG_RQ_BW_RD_UBOUND20},
467 	{PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22,
468 		PXP2_REG_RQ_BW_RD_UBOUND22},
469 	{PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23,
470 		PXP2_REG_RQ_BW_RD_UBOUND23},
471 	{PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24,
472 		PXP2_REG_RQ_BW_RD_UBOUND24},
473 	{PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25,
474 		PXP2_REG_RQ_BW_RD_UBOUND25},
475 	{PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26,
476 		PXP2_REG_RQ_BW_RD_UBOUND26},
477 	{PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27,
478 		PXP2_REG_RQ_BW_RD_UBOUND27},
479 	{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
480 		PXP2_REG_PSWRQ_BW_UB28}
481 };
482 
483 /* register addresses for write queues */
484 static const struct arb_line write_arb_addr[NUM_WR_Q-1] = {
485 /* 1 */	{PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
486 		PXP2_REG_PSWRQ_BW_UB1},
487 	{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
488 		PXP2_REG_PSWRQ_BW_UB2},
489 	{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
490 		PXP2_REG_PSWRQ_BW_UB3},
491 	{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
492 		PXP2_REG_PSWRQ_BW_UB6},
493 	{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
494 		PXP2_REG_PSWRQ_BW_UB7},
495 	{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
496 		PXP2_REG_PSWRQ_BW_UB8},
497 	{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
498 		PXP2_REG_PSWRQ_BW_UB9},
499 	{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
500 		PXP2_REG_PSWRQ_BW_UB10},
501 	{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
502 		PXP2_REG_PSWRQ_BW_UB11},
503 /* 10 */{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
504 		PXP2_REG_PSWRQ_BW_UB28},
505 	{PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29,
506 		PXP2_REG_RQ_BW_WR_UBOUND29},
507 	{PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30,
508 		PXP2_REG_RQ_BW_WR_UBOUND30}
509 };
510 
511 static void ecore_init_pxp_arb(struct bxe_softc *sc, int r_order,
512 			       int w_order)
513 {
514 	uint32_t val, i;
515 
516 	if (r_order > MAX_RD_ORD) {
517 		ECORE_MSG(sc, "read order of %d  order adjusted to %d\n",
518 			   r_order, MAX_RD_ORD);
519 		r_order = MAX_RD_ORD;
520 	}
521 	if (w_order > MAX_WR_ORD) {
522 		ECORE_MSG(sc, "write order of %d  order adjusted to %d\n",
523 			   w_order, MAX_WR_ORD);
524 		w_order = MAX_WR_ORD;
525 	}
526 	if (CHIP_REV_IS_FPGA(sc)) {
527 		ECORE_MSG(sc, "write order adjusted to 1 for FPGA\n");
528 		w_order = 0;
529 	}
530 	ECORE_MSG(sc, "read order %d  write order %d\n", r_order, w_order);
531 
532 	for (i = 0; i < NUM_RD_Q-1; i++) {
533 		REG_WR(sc, read_arb_addr[i].l, read_arb_data[i][r_order].l);
534 		REG_WR(sc, read_arb_addr[i].add,
535 		       read_arb_data[i][r_order].add);
536 		REG_WR(sc, read_arb_addr[i].ubound,
537 		       read_arb_data[i][r_order].ubound);
538 	}
539 
540 	for (i = 0; i < NUM_WR_Q-1; i++) {
541 		if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) ||
542 		    (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) {
543 
544 			REG_WR(sc, write_arb_addr[i].l,
545 			       write_arb_data[i][w_order].l);
546 
547 			REG_WR(sc, write_arb_addr[i].add,
548 			       write_arb_data[i][w_order].add);
549 
550 			REG_WR(sc, write_arb_addr[i].ubound,
551 			       write_arb_data[i][w_order].ubound);
552 		} else {
553 
554 			val = REG_RD(sc, write_arb_addr[i].l);
555 			REG_WR(sc, write_arb_addr[i].l,
556 			       val | (write_arb_data[i][w_order].l << 10));
557 
558 			val = REG_RD(sc, write_arb_addr[i].add);
559 			REG_WR(sc, write_arb_addr[i].add,
560 			       val | (write_arb_data[i][w_order].add << 10));
561 
562 			val = REG_RD(sc, write_arb_addr[i].ubound);
563 			REG_WR(sc, write_arb_addr[i].ubound,
564 			       val | (write_arb_data[i][w_order].ubound << 7));
565 		}
566 	}
567 
568 	val =  write_arb_data[NUM_WR_Q-1][w_order].add;
569 	val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10;
570 	val += write_arb_data[NUM_WR_Q-1][w_order].l << 17;
571 	REG_WR(sc, PXP2_REG_PSWRQ_BW_RD, val);
572 
573 	val =  read_arb_data[NUM_RD_Q-1][r_order].add;
574 	val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10;
575 	val += read_arb_data[NUM_RD_Q-1][r_order].l << 17;
576 	REG_WR(sc, PXP2_REG_PSWRQ_BW_WR, val);
577 
578 	REG_WR(sc, PXP2_REG_RQ_WR_MBS0, w_order);
579 	REG_WR(sc, PXP2_REG_RQ_WR_MBS1, w_order);
580 	REG_WR(sc, PXP2_REG_RQ_RD_MBS0, r_order);
581 	REG_WR(sc, PXP2_REG_RQ_RD_MBS1, r_order);
582 
583 	if ((CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) && (r_order == MAX_RD_ORD))
584 		REG_WR(sc, PXP2_REG_RQ_PDR_LIMIT, 0xe00);
585 
586 	if (CHIP_IS_E3(sc))
587 		REG_WR(sc, PXP2_REG_WR_USDMDP_TH, (0x4 << w_order));
588 	else if (CHIP_IS_E2(sc))
589 		REG_WR(sc, PXP2_REG_WR_USDMDP_TH, (0x8 << w_order));
590 	else
591 		REG_WR(sc, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order));
592 
593 	if (!CHIP_IS_E1(sc)) {
594 		/*    MPS      w_order     optimal TH      presently TH
595 		 *    128         0             0               2
596 		 *    256         1             1               3
597 		 *    >=512       2             2               3
598 		 */
599 		/* DMAE is special */
600 		if (!CHIP_IS_E1H(sc)) {
601 			/* E2 can use optimal TH */
602 			val = w_order;
603 			REG_WR(sc, PXP2_REG_WR_DMAE_MPS, val);
604 		} else {
605 			val = ((w_order == 0) ? 2 : 3);
606 			REG_WR(sc, PXP2_REG_WR_DMAE_MPS, 2);
607 		}
608 
609 		REG_WR(sc, PXP2_REG_WR_HC_MPS, val);
610 		REG_WR(sc, PXP2_REG_WR_USDM_MPS, val);
611 		REG_WR(sc, PXP2_REG_WR_CSDM_MPS, val);
612 		REG_WR(sc, PXP2_REG_WR_TSDM_MPS, val);
613 		REG_WR(sc, PXP2_REG_WR_XSDM_MPS, val);
614 		REG_WR(sc, PXP2_REG_WR_QM_MPS, val);
615 		REG_WR(sc, PXP2_REG_WR_TM_MPS, val);
616 		REG_WR(sc, PXP2_REG_WR_SRC_MPS, val);
617 		REG_WR(sc, PXP2_REG_WR_DBG_MPS, val);
618 		REG_WR(sc, PXP2_REG_WR_CDU_MPS, val);
619 	}
620 
621 	/* Validate number of tags suppoted by device */
622 #define PCIE_REG_PCIER_TL_HDR_FC_ST		0x2980
623 	val = REG_RD(sc, PCIE_REG_PCIER_TL_HDR_FC_ST);
624 	val &= 0xFF;
625 	if (val <= 0x20)
626 		REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x20);
627 }
628 
629 /****************************************************************************
630 * ILT management
631 ****************************************************************************/
632 /*
633  * This codes hides the low level HW interaction for ILT management and
634  * configuration. The API consists of a shadow ILT table which is set by the
635  * driver and a set of routines to use it to configure the HW.
636  *
637  */
638 
639 /* ILT HW init operations */
640 
641 /* ILT memory management operations */
642 #define ILT_MEMOP_ALLOC		0
643 #define ILT_MEMOP_FREE		1
644 
645 /* the phys address is shifted right 12 bits and has an added
646  * 1=valid bit added to the 53rd bit
647  * then since this is a wide register(TM)
648  * we split it into two 32 bit writes
649  */
650 #define ILT_ADDR1(x)		((uint32_t)(((uint64_t)x >> 12) & 0xFFFFFFFF))
651 #define ILT_ADDR2(x)		((uint32_t)((1 << 20) | ((uint64_t)x >> 44)))
652 #define ILT_RANGE(f, l)		(((l) << 10) | f)
653 
654 static int ecore_ilt_line_mem_op(struct bxe_softc *sc,
655 				 struct ilt_line *line, uint32_t size, uint8_t memop)
656 {
657 	if (memop == ILT_MEMOP_FREE) {
658 		ECORE_ILT_FREE(line->page, line->page_mapping, line->size);
659 		return 0;
660 	}
661 	ECORE_ILT_ZALLOC(line->page, &line->page_mapping, size);
662 	if (!line->page)
663 		return -1;
664 	line->size = size;
665 	return 0;
666 }
667 
668 
669 static int ecore_ilt_client_mem_op(struct bxe_softc *sc, int cli_num,
670 				   uint8_t memop)
671 {
672 	int i, rc;
673 	struct ecore_ilt *ilt = SC_ILT(sc);
674 	struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
675 
676 	if (!ilt || !ilt->lines)
677 		return -1;
678 
679 	if (ilt_cli->flags & (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM))
680 		return 0;
681 
682 	for (rc = 0, i = ilt_cli->start; i <= ilt_cli->end && !rc; i++) {
683 		rc = ecore_ilt_line_mem_op(sc, &ilt->lines[i],
684 					   ilt_cli->page_size, memop);
685 	}
686 	return rc;
687 }
688 
689 static inline int ecore_ilt_mem_op_cnic(struct bxe_softc *sc, uint8_t memop)
690 {
691 	int rc = 0;
692 
693 	if (CONFIGURE_NIC_MODE(sc))
694 		rc = ecore_ilt_client_mem_op(sc, ILT_CLIENT_SRC, memop);
695 	if (!rc)
696 		rc = ecore_ilt_client_mem_op(sc, ILT_CLIENT_TM, memop);
697 
698 	return rc;
699 }
700 
701 static int ecore_ilt_mem_op(struct bxe_softc *sc, uint8_t memop)
702 {
703 	int rc = ecore_ilt_client_mem_op(sc, ILT_CLIENT_CDU, memop);
704 	if (!rc)
705 		rc = ecore_ilt_client_mem_op(sc, ILT_CLIENT_QM, memop);
706 	if (!rc && CNIC_SUPPORT(sc) && !CONFIGURE_NIC_MODE(sc))
707 		rc = ecore_ilt_client_mem_op(sc, ILT_CLIENT_SRC, memop);
708 
709 	return rc;
710 }
711 
712 static void ecore_ilt_line_wr(struct bxe_softc *sc, int abs_idx,
713 			      ecore_dma_addr_t page_mapping)
714 {
715 	uint32_t reg;
716 
717 	if (CHIP_IS_E1(sc))
718 		reg = PXP2_REG_RQ_ONCHIP_AT + abs_idx*8;
719 	else
720 		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + abs_idx*8;
721 
722 	ecore_wr_64(sc, reg, ILT_ADDR1(page_mapping), ILT_ADDR2(page_mapping));
723 }
724 
725 static void ecore_ilt_line_init_op(struct bxe_softc *sc,
726 				   struct ecore_ilt *ilt, int idx, uint8_t initop)
727 {
728 	ecore_dma_addr_t	null_mapping;
729 	int abs_idx = ilt->start_line + idx;
730 
731 
732 	switch (initop) {
733 	case INITOP_INIT:
734 		/* set in the init-value array */
735 	case INITOP_SET:
736 		ecore_ilt_line_wr(sc, abs_idx, ilt->lines[idx].page_mapping);
737 		break;
738 	case INITOP_CLEAR:
739 		null_mapping = 0;
740 		ecore_ilt_line_wr(sc, abs_idx, null_mapping);
741 		break;
742 	}
743 }
744 
745 static void ecore_ilt_boundry_init_op(struct bxe_softc *sc,
746 				      struct ilt_client_info *ilt_cli,
747 				      uint32_t ilt_start, uint8_t initop)
748 {
749 	uint32_t start_reg = 0;
750 	uint32_t end_reg = 0;
751 
752 	/* The boundary is either SET or INIT,
753 	   CLEAR => SET and for now SET ~~ INIT */
754 
755 	/* find the appropriate regs */
756 	if (CHIP_IS_E1(sc)) {
757 		switch (ilt_cli->client_num) {
758 		case ILT_CLIENT_CDU:
759 			start_reg = PXP2_REG_PSWRQ_CDU0_L2P;
760 			break;
761 		case ILT_CLIENT_QM:
762 			start_reg = PXP2_REG_PSWRQ_QM0_L2P;
763 			break;
764 		case ILT_CLIENT_SRC:
765 			start_reg = PXP2_REG_PSWRQ_SRC0_L2P;
766 			break;
767 		case ILT_CLIENT_TM:
768 			start_reg = PXP2_REG_PSWRQ_TM0_L2P;
769 			break;
770 		}
771 		REG_WR(sc, start_reg + SC_FUNC(sc)*4,
772 		       ILT_RANGE((ilt_start + ilt_cli->start),
773 				 (ilt_start + ilt_cli->end)));
774 	} else {
775 		switch (ilt_cli->client_num) {
776 		case ILT_CLIENT_CDU:
777 			start_reg = PXP2_REG_RQ_CDU_FIRST_ILT;
778 			end_reg = PXP2_REG_RQ_CDU_LAST_ILT;
779 			break;
780 		case ILT_CLIENT_QM:
781 			start_reg = PXP2_REG_RQ_QM_FIRST_ILT;
782 			end_reg = PXP2_REG_RQ_QM_LAST_ILT;
783 			break;
784 		case ILT_CLIENT_SRC:
785 			start_reg = PXP2_REG_RQ_SRC_FIRST_ILT;
786 			end_reg = PXP2_REG_RQ_SRC_LAST_ILT;
787 			break;
788 		case ILT_CLIENT_TM:
789 			start_reg = PXP2_REG_RQ_TM_FIRST_ILT;
790 			end_reg = PXP2_REG_RQ_TM_LAST_ILT;
791 			break;
792 		}
793 		REG_WR(sc, start_reg, (ilt_start + ilt_cli->start));
794 		REG_WR(sc, end_reg, (ilt_start + ilt_cli->end));
795 	}
796 }
797 
798 static void ecore_ilt_client_init_op_ilt(struct bxe_softc *sc,
799 					 struct ecore_ilt *ilt,
800 					 struct ilt_client_info *ilt_cli,
801 					 uint8_t initop)
802 {
803 	int i;
804 
805 	if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
806 		return;
807 
808 	for (i = ilt_cli->start; i <= ilt_cli->end; i++)
809 		ecore_ilt_line_init_op(sc, ilt, i, initop);
810 
811 	/* init/clear the ILT boundries */
812 	ecore_ilt_boundry_init_op(sc, ilt_cli, ilt->start_line, initop);
813 }
814 
815 static void ecore_ilt_client_init_op(struct bxe_softc *sc,
816 				     struct ilt_client_info *ilt_cli, uint8_t initop)
817 {
818 	struct ecore_ilt *ilt = SC_ILT(sc);
819 
820 	ecore_ilt_client_init_op_ilt(sc, ilt, ilt_cli, initop);
821 }
822 
823 static void ecore_ilt_client_id_init_op(struct bxe_softc *sc,
824 					int cli_num, uint8_t initop)
825 {
826 	struct ecore_ilt *ilt = SC_ILT(sc);
827 	struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
828 
829 	ecore_ilt_client_init_op(sc, ilt_cli, initop);
830 }
831 
832 static inline void ecore_ilt_init_op_cnic(struct bxe_softc *sc, uint8_t initop)
833 {
834 	if (CONFIGURE_NIC_MODE(sc))
835 		ecore_ilt_client_id_init_op(sc, ILT_CLIENT_SRC, initop);
836 	ecore_ilt_client_id_init_op(sc, ILT_CLIENT_TM, initop);
837 }
838 
839 static void ecore_ilt_init_op(struct bxe_softc *sc, uint8_t initop)
840 {
841 	ecore_ilt_client_id_init_op(sc, ILT_CLIENT_CDU, initop);
842 	ecore_ilt_client_id_init_op(sc, ILT_CLIENT_QM, initop);
843 	if (CNIC_SUPPORT(sc) && !CONFIGURE_NIC_MODE(sc))
844 		ecore_ilt_client_id_init_op(sc, ILT_CLIENT_SRC, initop);
845 }
846 
847 static void ecore_ilt_init_client_psz(struct bxe_softc *sc, int cli_num,
848 				      uint32_t psz_reg, uint8_t initop)
849 {
850 	struct ecore_ilt *ilt = SC_ILT(sc);
851 	struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
852 
853 	if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
854 		return;
855 
856 	switch (initop) {
857 	case INITOP_INIT:
858 		/* set in the init-value array */
859 	case INITOP_SET:
860 		REG_WR(sc, psz_reg, ILOG2(ilt_cli->page_size >> 12));
861 		break;
862 	case INITOP_CLEAR:
863 		break;
864 	}
865 }
866 
867 /*
868  * called during init common stage, ilt clients should be initialized
869  * prioir to calling this function
870  */
871 static void ecore_ilt_init_page_size(struct bxe_softc *sc, uint8_t initop)
872 {
873 	ecore_ilt_init_client_psz(sc, ILT_CLIENT_CDU,
874 				  PXP2_REG_RQ_CDU_P_SIZE, initop);
875 	ecore_ilt_init_client_psz(sc, ILT_CLIENT_QM,
876 				  PXP2_REG_RQ_QM_P_SIZE, initop);
877 	ecore_ilt_init_client_psz(sc, ILT_CLIENT_SRC,
878 				  PXP2_REG_RQ_SRC_P_SIZE, initop);
879 	ecore_ilt_init_client_psz(sc, ILT_CLIENT_TM,
880 				  PXP2_REG_RQ_TM_P_SIZE, initop);
881 }
882 
883 /****************************************************************************
884 * QM initializations
885 ****************************************************************************/
886 #define QM_QUEUES_PER_FUNC	16 /* E1 has 32, but only 16 are used */
887 #define QM_INIT_MIN_CID_COUNT	31
888 #define QM_INIT(cid_cnt)	(cid_cnt > QM_INIT_MIN_CID_COUNT)
889 
890 /* called during init port stage */
891 static void ecore_qm_init_cid_count(struct bxe_softc *sc, int qm_cid_count,
892 				    uint8_t initop)
893 {
894 	int port = SC_PORT(sc);
895 
896 	if (QM_INIT(qm_cid_count)) {
897 		switch (initop) {
898 		case INITOP_INIT:
899 			/* set in the init-value array */
900 		case INITOP_SET:
901 			REG_WR(sc, QM_REG_CONNNUM_0 + port*4,
902 			       qm_cid_count/16 - 1);
903 			break;
904 		case INITOP_CLEAR:
905 			break;
906 		}
907 	}
908 }
909 
910 static void ecore_qm_set_ptr_table(struct bxe_softc *sc, int qm_cid_count,
911 				   uint32_t base_reg, uint32_t reg)
912 {
913 	int i;
914 	uint32_t wb_data[2] = {0, 0};
915 	for (i = 0; i < 4 * QM_QUEUES_PER_FUNC; i++) {
916 		REG_WR(sc, base_reg + i*4,
917 		       qm_cid_count * 4 * (i % QM_QUEUES_PER_FUNC));
918 		ecore_init_wr_wb(sc, reg + i*8,
919 				 wb_data, 2);
920 	}
921 }
922 
923 /* called during init common stage */
924 static void ecore_qm_init_ptr_table(struct bxe_softc *sc, int qm_cid_count,
925 				    uint8_t initop)
926 {
927 	if (!QM_INIT(qm_cid_count))
928 		return;
929 
930 	switch (initop) {
931 	case INITOP_INIT:
932 		/* set in the init-value array */
933 	case INITOP_SET:
934 		ecore_qm_set_ptr_table(sc, qm_cid_count,
935 				       QM_REG_BASEADDR, QM_REG_PTRTBL);
936 		if (CHIP_IS_E1H(sc))
937 			ecore_qm_set_ptr_table(sc, qm_cid_count,
938 					       QM_REG_BASEADDR_EXT_A,
939 					       QM_REG_PTRTBL_EXT_A);
940 		break;
941 	case INITOP_CLEAR:
942 		break;
943 	}
944 }
945 
946 /****************************************************************************
947 * SRC initializations
948 ****************************************************************************/
949 #ifdef ECORE_L5
950 /* called during init func stage */
951 static void ecore_src_init_t2(struct bxe_softc *sc, struct src_ent *t2,
952 			      ecore_dma_addr_t t2_mapping, int src_cid_count)
953 {
954 	int i;
955 	int port = SC_PORT(sc);
956 
957 	/* Initialize T2 */
958 	for (i = 0; i < src_cid_count-1; i++)
959 		t2[i].next = (uint64_t)(t2_mapping +
960 			     (i+1)*sizeof(struct src_ent));
961 
962 	/* tell the searcher where the T2 table is */
963 	REG_WR(sc, SRC_REG_COUNTFREE0 + port*4, src_cid_count);
964 
965 	ecore_wr_64(sc, SRC_REG_FIRSTFREE0 + port*16,
966 		    U64_LO(t2_mapping), U64_HI(t2_mapping));
967 
968 	ecore_wr_64(sc, SRC_REG_LASTFREE0 + port*16,
969 		    U64_LO((uint64_t)t2_mapping +
970 			   (src_cid_count-1) * sizeof(struct src_ent)),
971 		    U64_HI((uint64_t)t2_mapping +
972 			   (src_cid_count-1) * sizeof(struct src_ent)));
973 }
974 #endif
975 #endif /* ECORE_INIT_OPS_H */
976