xref: /freebsd/sys/dev/bxe/ecore_init_ops.h (revision 63f537551380d2dab29fa402ad1269feae17e594)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2007-2017 QLogic Corporation. All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  *
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
26  * THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 #ifndef ECORE_INIT_OPS_H
31 #define ECORE_INIT_OPS_H
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 static int ecore_gunzip(struct bxe_softc *sc, const uint8_t *zbuf, int len);
43 static void ecore_reg_wr_ind(struct bxe_softc *sc, uint32_t addr, uint32_t val);
44 static void ecore_write_dmae_phys_len(struct bxe_softc *sc,
45 				      ecore_dma_addr_t phys_addr, uint32_t addr,
46 				      uint32_t len);
47 
48 static void ecore_init_str_wr(struct bxe_softc *sc, uint32_t addr,
49 			      const uint32_t *data, uint32_t len)
50 {
51 	uint32_t i;
52 
53 	for (i = 0; i < len; i++)
54 		REG_WR(sc, addr + i*4, data[i]);
55 }
56 
57 static void ecore_init_ind_wr(struct bxe_softc *sc, uint32_t addr,
58 			      const uint32_t *data, uint32_t len)
59 {
60 	uint32_t i;
61 
62 	for (i = 0; i < len; i++)
63 		ecore_reg_wr_ind(sc, addr + i*4, data[i]);
64 }
65 
66 static void ecore_write_big_buf(struct bxe_softc *sc, uint32_t addr, uint32_t len,
67 				uint8_t wb)
68 {
69 	if (DMAE_READY(sc))
70 		ecore_write_dmae_phys_len(sc, GUNZIP_PHYS(sc), addr, len);
71 
72 	/* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
73 	else if (wb && CHIP_IS_E1(sc))
74 		ecore_init_ind_wr(sc, addr, GUNZIP_BUF(sc), len);
75 
76 	/* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
77 	else
78 		ecore_init_str_wr(sc, addr, GUNZIP_BUF(sc), len);
79 }
80 
81 static void ecore_init_fill(struct bxe_softc *sc, uint32_t addr, int fill,
82 			    uint32_t len, uint8_t wb)
83 {
84 	uint32_t buf_len = (((len*4) > FW_BUF_SIZE) ? FW_BUF_SIZE : (len*4));
85 	uint32_t buf_len32 = buf_len/4;
86 	uint32_t i;
87 
88 	ECORE_MEMSET(GUNZIP_BUF(sc), (uint8_t)fill, buf_len);
89 
90 	for (i = 0; i < len; i += buf_len32) {
91 		uint32_t cur_len = min(buf_len32, len - i);
92 
93 		ecore_write_big_buf(sc, addr + i*4, cur_len, wb);
94 	}
95 }
96 
97 static void ecore_write_big_buf_wb(struct bxe_softc *sc, uint32_t addr, uint32_t len)
98 {
99 	if (DMAE_READY(sc))
100 		ecore_write_dmae_phys_len(sc, GUNZIP_PHYS(sc), addr, len);
101 
102 	/* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
103 	else if (CHIP_IS_E1(sc))
104 		ecore_init_ind_wr(sc, addr, GUNZIP_BUF(sc), len);
105 
106 	/* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
107 	else
108 		ecore_init_str_wr(sc, addr, GUNZIP_BUF(sc), len);
109 }
110 
111 static void ecore_init_wr_64(struct bxe_softc *sc, uint32_t addr,
112 			     const uint32_t *data, uint32_t len64)
113 {
114 	uint32_t buf_len32 = FW_BUF_SIZE/4;
115 	uint32_t len = len64*2;
116 	uint64_t data64 = 0;
117 	uint32_t i;
118 
119 	/* 64 bit value is in a blob: first low DWORD, then high DWORD */
120 	data64 = HILO_U64((*(data + 1)), (*data));
121 
122 	len64 = min((uint32_t)(FW_BUF_SIZE/8), len64);
123 	for (i = 0; i < len64; i++) {
124 		uint64_t *pdata = ((uint64_t *)(GUNZIP_BUF(sc))) + i;
125 
126 		*pdata = data64;
127 	}
128 
129 	for (i = 0; i < len; i += buf_len32) {
130 		uint32_t cur_len = min(buf_len32, len - i);
131 
132 		ecore_write_big_buf_wb(sc, addr + i*4, cur_len);
133 	}
134 }
135 
136 /*********************************************************
137    There are different blobs for each PRAM section.
138    In addition, each blob write operation is divided into a few operations
139    in order to decrease the amount of phys. contiguous buffer needed.
140    Thus, when we select a blob the address may be with some offset
141    from the beginning of PRAM section.
142    The same holds for the INT_TABLE sections.
143 **********************************************************/
144 #define IF_IS_INT_TABLE_ADDR(base, addr) \
145 			if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
146 
147 #define IF_IS_PRAM_ADDR(base, addr) \
148 			if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
149 
150 static const uint8_t *ecore_sel_blob(struct bxe_softc *sc, uint32_t addr,
151 				const uint8_t *data)
152 {
153 	IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr)
154 		data = INIT_TSEM_INT_TABLE_DATA(sc);
155 	else
156 		IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr)
157 			data = INIT_CSEM_INT_TABLE_DATA(sc);
158 	else
159 		IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr)
160 			data = INIT_USEM_INT_TABLE_DATA(sc);
161 	else
162 		IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr)
163 			data = INIT_XSEM_INT_TABLE_DATA(sc);
164 	else
165 		IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr)
166 			data = INIT_TSEM_PRAM_DATA(sc);
167 	else
168 		IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr)
169 			data = INIT_CSEM_PRAM_DATA(sc);
170 	else
171 		IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr)
172 			data = INIT_USEM_PRAM_DATA(sc);
173 	else
174 		IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr)
175 			data = INIT_XSEM_PRAM_DATA(sc);
176 
177 	return data;
178 }
179 
180 static void ecore_init_wr_wb(struct bxe_softc *sc, uint32_t addr,
181 			     const uint32_t *data, uint32_t len)
182 {
183 	if (DMAE_READY(sc))
184 		VIRT_WR_DMAE_LEN(sc, data, addr, len, 0);
185 
186 	/* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
187 	else if (CHIP_IS_E1(sc))
188 		ecore_init_ind_wr(sc, addr, data, len);
189 
190 	/* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
191 	else
192 		ecore_init_str_wr(sc, addr, data, len);
193 }
194 
195 #ifndef FW_ZIP_SUPPORT
196 static void ecore_init_fw(struct bxe_softc *sc, uint32_t addr, uint32_t len)
197 {
198 	const uint8_t *data = NULL;
199 
200 	data = ecore_sel_blob(sc, addr, (const uint8_t *)data);
201 
202 	if (DMAE_READY(sc))
203 		VIRT_WR_DMAE_LEN(sc, data, addr, len, 1);
204 
205 	/* in E1 BIOS initiated ZLR may interrupt widebus writes */
206 	else if (CHIP_IS_E1(sc))
207 		ecore_init_ind_wr(sc, addr, (const uint32_t *)data, len);
208 
209 	/* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
210 	else
211 		ecore_init_str_wr(sc, addr, (const uint32_t *)data, len);
212 }
213 
214 #endif
215 
216 static void ecore_wr_64(struct bxe_softc *sc, uint32_t reg, uint32_t val_lo,
217 			uint32_t val_hi)
218 {
219 	uint32_t wb_write[2];
220 
221 	wb_write[0] = val_lo;
222 	wb_write[1] = val_hi;
223 	REG_WR_DMAE_LEN(sc, reg, wb_write, 2);
224 }
225 
226 static void ecore_init_wr_zp(struct bxe_softc *sc, uint32_t addr, uint32_t len,
227 			     uint32_t blob_off)
228 {
229 	const uint8_t *data = NULL;
230 	int rc;
231 	uint32_t i;
232 
233 	data = ecore_sel_blob(sc, addr, data) + blob_off*4;
234 
235 	rc = ecore_gunzip(sc, data, len);
236 	if (rc)
237 		return;
238 
239 	/* gunzip_outlen is in dwords */
240 	len = GUNZIP_OUTLEN(sc);
241 	for (i = 0; i < len; i++)
242 		((uint32_t *)GUNZIP_BUF(sc))[i] = (uint32_t)
243 				ECORE_CPU_TO_LE32(((uint32_t *)GUNZIP_BUF(sc))[i]);
244 
245 	ecore_write_big_buf_wb(sc, addr, len);
246 }
247 
248 static void ecore_init_block(struct bxe_softc *sc, uint32_t block, uint32_t stage)
249 {
250 	uint16_t op_start =
251 		INIT_OPS_OFFSETS(sc)[BLOCK_OPS_IDX(block, stage,
252 						     STAGE_START)];
253 	uint16_t op_end =
254 		INIT_OPS_OFFSETS(sc)[BLOCK_OPS_IDX(block, stage,
255 						     STAGE_END)];
256 	const union init_op *op;
257 	uint32_t op_idx, op_type, addr, len;
258 	const uint32_t *data, *data_base;
259 
260 	/* If empty block */
261 	if (op_start == op_end)
262 		return;
263 
264 	data_base = INIT_DATA(sc);
265 
266 	for (op_idx = op_start; op_idx < op_end; op_idx++) {
267 
268 		op = (const union init_op *)&(INIT_OPS(sc)[op_idx]);
269 		/* Get generic data */
270 		op_type = op->raw.op;
271 		addr = op->raw.offset;
272 		/* Get data that's used for OP_SW, OP_WB, OP_FW, OP_ZP and
273 		 * OP_WR64 (we assume that op_arr_write and op_write have the
274 		 * same structure).
275 		 */
276 		len = op->arr_wr.data_len;
277 		data = data_base + op->arr_wr.data_off;
278 
279 		switch (op_type) {
280 		case OP_RD:
281 			REG_RD(sc, addr);
282 			break;
283 		case OP_WR:
284 			REG_WR(sc, addr, op->write.val);
285 			break;
286 		case OP_SW:
287 			ecore_init_str_wr(sc, addr, data, len);
288 			break;
289 		case OP_WB:
290 			ecore_init_wr_wb(sc, addr, data, len);
291 			break;
292 #ifndef FW_ZIP_SUPPORT
293 		case OP_FW:
294 			ecore_init_fw(sc, addr, len);
295 			break;
296 #endif
297 		case OP_ZR:
298 			ecore_init_fill(sc, addr, 0, op->zero.len, 0);
299 			break;
300 		case OP_WB_ZR:
301 			ecore_init_fill(sc, addr, 0, op->zero.len, 1);
302 			break;
303 		case OP_ZP:
304 			ecore_init_wr_zp(sc, addr, len,
305 					 op->arr_wr.data_off);
306 			break;
307 		case OP_WR_64:
308 			ecore_init_wr_64(sc, addr, data, len);
309 			break;
310 		case OP_IF_MODE_AND:
311 			/* if any of the flags doesn't match, skip the
312 			 * conditional block.
313 			 */
314 			if ((INIT_MODE_FLAGS(sc) &
315 				op->if_mode.mode_bit_map) !=
316 				op->if_mode.mode_bit_map)
317 				op_idx += op->if_mode.cmd_offset;
318 			break;
319 		case OP_IF_MODE_OR:
320 			/* if all the flags don't match, skip the conditional
321 			 * block.
322 			 */
323 			if ((INIT_MODE_FLAGS(sc) &
324 				op->if_mode.mode_bit_map) == 0)
325 				op_idx += op->if_mode.cmd_offset;
326 			break;
327 		    /* the following opcodes are unused at the moment. */
328 		case OP_IF_PHASE:
329 		case OP_RT:
330 		case OP_DELAY:
331 		case OP_VERIFY:
332 		default:
333 			/* Should never get here! */
334 
335 			break;
336 		}
337 	}
338 }
339 
340 
341 /****************************************************************************
342 * PXP Arbiter
343 ****************************************************************************/
344 /*
345  * This code configures the PCI read/write arbiter
346  * which implements a weighted round robin
347  * between the virtual queues in the chip.
348  *
349  * The values were derived for each PCI max payload and max request size.
350  * since max payload and max request size are only known at run time,
351  * this is done as a separate init stage.
352  */
353 
354 #define NUM_WR_Q			13
355 #define NUM_RD_Q			29
356 #define MAX_RD_ORD			3
357 #define MAX_WR_ORD			2
358 
359 /* configuration for one arbiter queue */
360 struct arb_line {
361 	int l;
362 	int add;
363 	int ubound;
364 };
365 
366 /* derived configuration for each read queue for each max request size */
367 static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = {
368 /* 1 */	{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
369 	{ {4, 8,  4},  {4,  8,  4},  {4,  8,  4},  {4,  8,  4}  },
370 	{ {4, 3,  3},  {4,  3,  3},  {4,  3,  3},  {4,  3,  3}  },
371 	{ {8, 3,  6},  {16, 3,  11}, {16, 3,  11}, {16, 3,  11} },
372 	{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
373 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
374 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
375 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
376 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
377 /* 10 */{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
378 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
379 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
380 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
381 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
382 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
383 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
384 	{ {8, 64, 6},  {16, 64, 11}, {32, 64, 21}, {32, 64, 21} },
385 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
386 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
387 /* 20 */{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
388 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
389 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
390 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
391 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
392 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
393 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
394 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
395 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
396 	{ {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} }
397 };
398 
399 /* derived configuration for each write queue for each max request size */
400 static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = {
401 /* 1 */	{ {4, 6,  3},  {4,  6,  3},  {4,  6,  3} },
402 	{ {4, 2,  3},  {4,  2,  3},  {4,  2,  3} },
403 	{ {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
404 	{ {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
405 	{ {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
406 	{ {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
407 	{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25} },
408 	{ {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
409 	{ {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
410 /* 10 */{ {8, 9,  6},  {16, 9,  11}, {32, 9,  21} },
411 	{ {8, 47, 19}, {16, 47, 19}, {32, 47, 21} },
412 	{ {8, 9,  6},  {16, 9,  11}, {16, 9,  11} },
413 	{ {8, 64, 25}, {16, 64, 41}, {32, 64, 81} }
414 };
415 
416 /* register addresses for read queues */
417 static const struct arb_line read_arb_addr[NUM_RD_Q-1] = {
418 /* 1 */	{PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0,
419 		PXP2_REG_RQ_BW_RD_UBOUND0},
420 	{PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
421 		PXP2_REG_PSWRQ_BW_UB1},
422 	{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
423 		PXP2_REG_PSWRQ_BW_UB2},
424 	{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
425 		PXP2_REG_PSWRQ_BW_UB3},
426 	{PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4,
427 		PXP2_REG_RQ_BW_RD_UBOUND4},
428 	{PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5,
429 		PXP2_REG_RQ_BW_RD_UBOUND5},
430 	{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
431 		PXP2_REG_PSWRQ_BW_UB6},
432 	{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
433 		PXP2_REG_PSWRQ_BW_UB7},
434 	{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
435 		PXP2_REG_PSWRQ_BW_UB8},
436 /* 10 */{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
437 		PXP2_REG_PSWRQ_BW_UB9},
438 	{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
439 		PXP2_REG_PSWRQ_BW_UB10},
440 	{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
441 		PXP2_REG_PSWRQ_BW_UB11},
442 	{PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12,
443 		PXP2_REG_RQ_BW_RD_UBOUND12},
444 	{PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13,
445 		PXP2_REG_RQ_BW_RD_UBOUND13},
446 	{PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14,
447 		PXP2_REG_RQ_BW_RD_UBOUND14},
448 	{PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15,
449 		PXP2_REG_RQ_BW_RD_UBOUND15},
450 	{PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16,
451 		PXP2_REG_RQ_BW_RD_UBOUND16},
452 	{PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17,
453 		PXP2_REG_RQ_BW_RD_UBOUND17},
454 	{PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18,
455 		PXP2_REG_RQ_BW_RD_UBOUND18},
456 /* 20 */{PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19,
457 		PXP2_REG_RQ_BW_RD_UBOUND19},
458 	{PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20,
459 		PXP2_REG_RQ_BW_RD_UBOUND20},
460 	{PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22,
461 		PXP2_REG_RQ_BW_RD_UBOUND22},
462 	{PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23,
463 		PXP2_REG_RQ_BW_RD_UBOUND23},
464 	{PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24,
465 		PXP2_REG_RQ_BW_RD_UBOUND24},
466 	{PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25,
467 		PXP2_REG_RQ_BW_RD_UBOUND25},
468 	{PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26,
469 		PXP2_REG_RQ_BW_RD_UBOUND26},
470 	{PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27,
471 		PXP2_REG_RQ_BW_RD_UBOUND27},
472 	{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
473 		PXP2_REG_PSWRQ_BW_UB28}
474 };
475 
476 /* register addresses for write queues */
477 static const struct arb_line write_arb_addr[NUM_WR_Q-1] = {
478 /* 1 */	{PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
479 		PXP2_REG_PSWRQ_BW_UB1},
480 	{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
481 		PXP2_REG_PSWRQ_BW_UB2},
482 	{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
483 		PXP2_REG_PSWRQ_BW_UB3},
484 	{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
485 		PXP2_REG_PSWRQ_BW_UB6},
486 	{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
487 		PXP2_REG_PSWRQ_BW_UB7},
488 	{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
489 		PXP2_REG_PSWRQ_BW_UB8},
490 	{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
491 		PXP2_REG_PSWRQ_BW_UB9},
492 	{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
493 		PXP2_REG_PSWRQ_BW_UB10},
494 	{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
495 		PXP2_REG_PSWRQ_BW_UB11},
496 /* 10 */{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
497 		PXP2_REG_PSWRQ_BW_UB28},
498 	{PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29,
499 		PXP2_REG_RQ_BW_WR_UBOUND29},
500 	{PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30,
501 		PXP2_REG_RQ_BW_WR_UBOUND30}
502 };
503 
504 static void ecore_init_pxp_arb(struct bxe_softc *sc, int r_order,
505 			       int w_order)
506 {
507 	uint32_t val, i;
508 
509 	if (r_order > MAX_RD_ORD) {
510 		ECORE_MSG(sc, "read order of %d  order adjusted to %d\n",
511 			   r_order, MAX_RD_ORD);
512 		r_order = MAX_RD_ORD;
513 	}
514 	if (w_order > MAX_WR_ORD) {
515 		ECORE_MSG(sc, "write order of %d  order adjusted to %d\n",
516 			   w_order, MAX_WR_ORD);
517 		w_order = MAX_WR_ORD;
518 	}
519 	if (CHIP_REV_IS_FPGA(sc)) {
520 		ECORE_MSG(sc, "write order adjusted to 1 for FPGA\n");
521 		w_order = 0;
522 	}
523 	ECORE_MSG(sc, "read order %d  write order %d\n", r_order, w_order);
524 
525 	for (i = 0; i < NUM_RD_Q-1; i++) {
526 		REG_WR(sc, read_arb_addr[i].l, read_arb_data[i][r_order].l);
527 		REG_WR(sc, read_arb_addr[i].add,
528 		       read_arb_data[i][r_order].add);
529 		REG_WR(sc, read_arb_addr[i].ubound,
530 		       read_arb_data[i][r_order].ubound);
531 	}
532 
533 	for (i = 0; i < NUM_WR_Q-1; i++) {
534 		if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) ||
535 		    (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) {
536 
537 			REG_WR(sc, write_arb_addr[i].l,
538 			       write_arb_data[i][w_order].l);
539 
540 			REG_WR(sc, write_arb_addr[i].add,
541 			       write_arb_data[i][w_order].add);
542 
543 			REG_WR(sc, write_arb_addr[i].ubound,
544 			       write_arb_data[i][w_order].ubound);
545 		} else {
546 
547 			val = REG_RD(sc, write_arb_addr[i].l);
548 			REG_WR(sc, write_arb_addr[i].l,
549 			       val | (write_arb_data[i][w_order].l << 10));
550 
551 			val = REG_RD(sc, write_arb_addr[i].add);
552 			REG_WR(sc, write_arb_addr[i].add,
553 			       val | (write_arb_data[i][w_order].add << 10));
554 
555 			val = REG_RD(sc, write_arb_addr[i].ubound);
556 			REG_WR(sc, write_arb_addr[i].ubound,
557 			       val | (write_arb_data[i][w_order].ubound << 7));
558 		}
559 	}
560 
561 	val =  write_arb_data[NUM_WR_Q-1][w_order].add;
562 	val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10;
563 	val += write_arb_data[NUM_WR_Q-1][w_order].l << 17;
564 	REG_WR(sc, PXP2_REG_PSWRQ_BW_RD, val);
565 
566 	val =  read_arb_data[NUM_RD_Q-1][r_order].add;
567 	val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10;
568 	val += read_arb_data[NUM_RD_Q-1][r_order].l << 17;
569 	REG_WR(sc, PXP2_REG_PSWRQ_BW_WR, val);
570 
571 	REG_WR(sc, PXP2_REG_RQ_WR_MBS0, w_order);
572 	REG_WR(sc, PXP2_REG_RQ_WR_MBS1, w_order);
573 	REG_WR(sc, PXP2_REG_RQ_RD_MBS0, r_order);
574 	REG_WR(sc, PXP2_REG_RQ_RD_MBS1, r_order);
575 
576 	if ((CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) && (r_order == MAX_RD_ORD))
577 		REG_WR(sc, PXP2_REG_RQ_PDR_LIMIT, 0xe00);
578 
579 	if (CHIP_IS_E3(sc))
580 		REG_WR(sc, PXP2_REG_WR_USDMDP_TH, (0x4 << w_order));
581 	else if (CHIP_IS_E2(sc))
582 		REG_WR(sc, PXP2_REG_WR_USDMDP_TH, (0x8 << w_order));
583 	else
584 		REG_WR(sc, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order));
585 
586 	if (!CHIP_IS_E1(sc)) {
587 		/*    MPS      w_order     optimal TH      presently TH
588 		 *    128         0             0               2
589 		 *    256         1             1               3
590 		 *    >=512       2             2               3
591 		 */
592 		/* DMAE is special */
593 		if (!CHIP_IS_E1H(sc)) {
594 			/* E2 can use optimal TH */
595 			val = w_order;
596 			REG_WR(sc, PXP2_REG_WR_DMAE_MPS, val);
597 		} else {
598 			val = ((w_order == 0) ? 2 : 3);
599 			REG_WR(sc, PXP2_REG_WR_DMAE_MPS, 2);
600 		}
601 
602 		REG_WR(sc, PXP2_REG_WR_HC_MPS, val);
603 		REG_WR(sc, PXP2_REG_WR_USDM_MPS, val);
604 		REG_WR(sc, PXP2_REG_WR_CSDM_MPS, val);
605 		REG_WR(sc, PXP2_REG_WR_TSDM_MPS, val);
606 		REG_WR(sc, PXP2_REG_WR_XSDM_MPS, val);
607 		REG_WR(sc, PXP2_REG_WR_QM_MPS, val);
608 		REG_WR(sc, PXP2_REG_WR_TM_MPS, val);
609 		REG_WR(sc, PXP2_REG_WR_SRC_MPS, val);
610 		REG_WR(sc, PXP2_REG_WR_DBG_MPS, val);
611 		REG_WR(sc, PXP2_REG_WR_CDU_MPS, val);
612 	}
613 
614 	/* Validate number of tags suppoted by device */
615 #define PCIE_REG_PCIER_TL_HDR_FC_ST		0x2980
616 	val = REG_RD(sc, PCIE_REG_PCIER_TL_HDR_FC_ST);
617 	val &= 0xFF;
618 	if (val <= 0x20)
619 		REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x20);
620 }
621 
622 /****************************************************************************
623 * ILT management
624 ****************************************************************************/
625 /*
626  * This codes hides the low level HW interaction for ILT management and
627  * configuration. The API consists of a shadow ILT table which is set by the
628  * driver and a set of routines to use it to configure the HW.
629  *
630  */
631 
632 /* ILT HW init operations */
633 
634 /* ILT memory management operations */
635 #define ILT_MEMOP_ALLOC		0
636 #define ILT_MEMOP_FREE		1
637 
638 /* the phys address is shifted right 12 bits and has an added
639  * 1=valid bit added to the 53rd bit
640  * then since this is a wide register(TM)
641  * we split it into two 32 bit writes
642  */
643 #define ILT_ADDR1(x)		((uint32_t)(((uint64_t)x >> 12) & 0xFFFFFFFF))
644 #define ILT_ADDR2(x)		((uint32_t)((1 << 20) | ((uint64_t)x >> 44)))
645 #define ILT_RANGE(f, l)		(((l) << 10) | f)
646 
647 static int ecore_ilt_line_mem_op(struct bxe_softc *sc,
648 				 struct ilt_line *line, uint32_t size, uint8_t memop)
649 {
650 	if (memop == ILT_MEMOP_FREE) {
651 		ECORE_ILT_FREE(line->page, line->page_mapping, line->size);
652 		return 0;
653 	}
654 	ECORE_ILT_ZALLOC(line->page, &line->page_mapping, size);
655 	if (!line->page)
656 		return -1;
657 	line->size = size;
658 	return 0;
659 }
660 
661 
662 static int ecore_ilt_client_mem_op(struct bxe_softc *sc, int cli_num,
663 				   uint8_t memop)
664 {
665 	int i, rc;
666 	struct ecore_ilt *ilt = SC_ILT(sc);
667 	struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
668 
669 	if (!ilt || !ilt->lines)
670 		return -1;
671 
672 	if (ilt_cli->flags & (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM))
673 		return 0;
674 
675 	for (rc = 0, i = ilt_cli->start; i <= ilt_cli->end && !rc; i++) {
676 		rc = ecore_ilt_line_mem_op(sc, &ilt->lines[i],
677 					   ilt_cli->page_size, memop);
678 	}
679 	return rc;
680 }
681 
682 static inline int ecore_ilt_mem_op_cnic(struct bxe_softc *sc, uint8_t memop)
683 {
684 	int rc = 0;
685 
686 	if (CONFIGURE_NIC_MODE(sc))
687 		rc = ecore_ilt_client_mem_op(sc, ILT_CLIENT_SRC, memop);
688 	if (!rc)
689 		rc = ecore_ilt_client_mem_op(sc, ILT_CLIENT_TM, memop);
690 
691 	return rc;
692 }
693 
694 static int ecore_ilt_mem_op(struct bxe_softc *sc, uint8_t memop)
695 {
696 	int rc = ecore_ilt_client_mem_op(sc, ILT_CLIENT_CDU, memop);
697 	if (!rc)
698 		rc = ecore_ilt_client_mem_op(sc, ILT_CLIENT_QM, memop);
699 	if (!rc && CNIC_SUPPORT(sc) && !CONFIGURE_NIC_MODE(sc))
700 		rc = ecore_ilt_client_mem_op(sc, ILT_CLIENT_SRC, memop);
701 
702 	return rc;
703 }
704 
705 static void ecore_ilt_line_wr(struct bxe_softc *sc, int abs_idx,
706 			      ecore_dma_addr_t page_mapping)
707 {
708 	uint32_t reg;
709 
710 	if (CHIP_IS_E1(sc))
711 		reg = PXP2_REG_RQ_ONCHIP_AT + abs_idx*8;
712 	else
713 		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + abs_idx*8;
714 
715 	ecore_wr_64(sc, reg, ILT_ADDR1(page_mapping), ILT_ADDR2(page_mapping));
716 }
717 
718 static void ecore_ilt_line_init_op(struct bxe_softc *sc,
719 				   struct ecore_ilt *ilt, int idx, uint8_t initop)
720 {
721 	ecore_dma_addr_t	null_mapping;
722 	int abs_idx = ilt->start_line + idx;
723 
724 
725 	switch (initop) {
726 	case INITOP_INIT:
727 		/* set in the init-value array */
728 	case INITOP_SET:
729 		ecore_ilt_line_wr(sc, abs_idx, ilt->lines[idx].page_mapping);
730 		break;
731 	case INITOP_CLEAR:
732 		null_mapping = 0;
733 		ecore_ilt_line_wr(sc, abs_idx, null_mapping);
734 		break;
735 	}
736 }
737 
738 static void ecore_ilt_boundry_init_op(struct bxe_softc *sc,
739 				      struct ilt_client_info *ilt_cli,
740 				      uint32_t ilt_start, uint8_t initop)
741 {
742 	uint32_t start_reg = 0;
743 	uint32_t end_reg = 0;
744 
745 	/* The boundary is either SET or INIT,
746 	   CLEAR => SET and for now SET ~~ INIT */
747 
748 	/* find the appropriate regs */
749 	if (CHIP_IS_E1(sc)) {
750 		switch (ilt_cli->client_num) {
751 		case ILT_CLIENT_CDU:
752 			start_reg = PXP2_REG_PSWRQ_CDU0_L2P;
753 			break;
754 		case ILT_CLIENT_QM:
755 			start_reg = PXP2_REG_PSWRQ_QM0_L2P;
756 			break;
757 		case ILT_CLIENT_SRC:
758 			start_reg = PXP2_REG_PSWRQ_SRC0_L2P;
759 			break;
760 		case ILT_CLIENT_TM:
761 			start_reg = PXP2_REG_PSWRQ_TM0_L2P;
762 			break;
763 		}
764 		REG_WR(sc, start_reg + SC_FUNC(sc)*4,
765 		       ILT_RANGE((ilt_start + ilt_cli->start),
766 				 (ilt_start + ilt_cli->end)));
767 	} else {
768 		switch (ilt_cli->client_num) {
769 		case ILT_CLIENT_CDU:
770 			start_reg = PXP2_REG_RQ_CDU_FIRST_ILT;
771 			end_reg = PXP2_REG_RQ_CDU_LAST_ILT;
772 			break;
773 		case ILT_CLIENT_QM:
774 			start_reg = PXP2_REG_RQ_QM_FIRST_ILT;
775 			end_reg = PXP2_REG_RQ_QM_LAST_ILT;
776 			break;
777 		case ILT_CLIENT_SRC:
778 			start_reg = PXP2_REG_RQ_SRC_FIRST_ILT;
779 			end_reg = PXP2_REG_RQ_SRC_LAST_ILT;
780 			break;
781 		case ILT_CLIENT_TM:
782 			start_reg = PXP2_REG_RQ_TM_FIRST_ILT;
783 			end_reg = PXP2_REG_RQ_TM_LAST_ILT;
784 			break;
785 		}
786 		REG_WR(sc, start_reg, (ilt_start + ilt_cli->start));
787 		REG_WR(sc, end_reg, (ilt_start + ilt_cli->end));
788 	}
789 }
790 
791 static void ecore_ilt_client_init_op_ilt(struct bxe_softc *sc,
792 					 struct ecore_ilt *ilt,
793 					 struct ilt_client_info *ilt_cli,
794 					 uint8_t initop)
795 {
796 	int i;
797 
798 	if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
799 		return;
800 
801 	for (i = ilt_cli->start; i <= ilt_cli->end; i++)
802 		ecore_ilt_line_init_op(sc, ilt, i, initop);
803 
804 	/* init/clear the ILT boundries */
805 	ecore_ilt_boundry_init_op(sc, ilt_cli, ilt->start_line, initop);
806 }
807 
808 static void ecore_ilt_client_init_op(struct bxe_softc *sc,
809 				     struct ilt_client_info *ilt_cli, uint8_t initop)
810 {
811 	struct ecore_ilt *ilt = SC_ILT(sc);
812 
813 	ecore_ilt_client_init_op_ilt(sc, ilt, ilt_cli, initop);
814 }
815 
816 static void ecore_ilt_client_id_init_op(struct bxe_softc *sc,
817 					int cli_num, uint8_t initop)
818 {
819 	struct ecore_ilt *ilt = SC_ILT(sc);
820 	struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
821 
822 	ecore_ilt_client_init_op(sc, ilt_cli, initop);
823 }
824 
825 static inline void ecore_ilt_init_op_cnic(struct bxe_softc *sc, uint8_t initop)
826 {
827 	if (CONFIGURE_NIC_MODE(sc))
828 		ecore_ilt_client_id_init_op(sc, ILT_CLIENT_SRC, initop);
829 	ecore_ilt_client_id_init_op(sc, ILT_CLIENT_TM, initop);
830 }
831 
832 static void ecore_ilt_init_op(struct bxe_softc *sc, uint8_t initop)
833 {
834 	ecore_ilt_client_id_init_op(sc, ILT_CLIENT_CDU, initop);
835 	ecore_ilt_client_id_init_op(sc, ILT_CLIENT_QM, initop);
836 	if (CNIC_SUPPORT(sc) && !CONFIGURE_NIC_MODE(sc))
837 		ecore_ilt_client_id_init_op(sc, ILT_CLIENT_SRC, initop);
838 }
839 
840 static void ecore_ilt_init_client_psz(struct bxe_softc *sc, int cli_num,
841 				      uint32_t psz_reg, uint8_t initop)
842 {
843 	struct ecore_ilt *ilt = SC_ILT(sc);
844 	struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
845 
846 	if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
847 		return;
848 
849 	switch (initop) {
850 	case INITOP_INIT:
851 		/* set in the init-value array */
852 	case INITOP_SET:
853 		REG_WR(sc, psz_reg, ILOG2(ilt_cli->page_size >> 12));
854 		break;
855 	case INITOP_CLEAR:
856 		break;
857 	}
858 }
859 
860 /*
861  * called during init common stage, ilt clients should be initialized
862  * prioir to calling this function
863  */
864 static void ecore_ilt_init_page_size(struct bxe_softc *sc, uint8_t initop)
865 {
866 	ecore_ilt_init_client_psz(sc, ILT_CLIENT_CDU,
867 				  PXP2_REG_RQ_CDU_P_SIZE, initop);
868 	ecore_ilt_init_client_psz(sc, ILT_CLIENT_QM,
869 				  PXP2_REG_RQ_QM_P_SIZE, initop);
870 	ecore_ilt_init_client_psz(sc, ILT_CLIENT_SRC,
871 				  PXP2_REG_RQ_SRC_P_SIZE, initop);
872 	ecore_ilt_init_client_psz(sc, ILT_CLIENT_TM,
873 				  PXP2_REG_RQ_TM_P_SIZE, initop);
874 }
875 
876 /****************************************************************************
877 * QM initializations
878 ****************************************************************************/
879 #define QM_QUEUES_PER_FUNC	16 /* E1 has 32, but only 16 are used */
880 #define QM_INIT_MIN_CID_COUNT	31
881 #define QM_INIT(cid_cnt)	(cid_cnt > QM_INIT_MIN_CID_COUNT)
882 
883 /* called during init port stage */
884 static void ecore_qm_init_cid_count(struct bxe_softc *sc, int qm_cid_count,
885 				    uint8_t initop)
886 {
887 	int port = SC_PORT(sc);
888 
889 	if (QM_INIT(qm_cid_count)) {
890 		switch (initop) {
891 		case INITOP_INIT:
892 			/* set in the init-value array */
893 		case INITOP_SET:
894 			REG_WR(sc, QM_REG_CONNNUM_0 + port*4,
895 			       qm_cid_count/16 - 1);
896 			break;
897 		case INITOP_CLEAR:
898 			break;
899 		}
900 	}
901 }
902 
903 static void ecore_qm_set_ptr_table(struct bxe_softc *sc, int qm_cid_count,
904 				   uint32_t base_reg, uint32_t reg)
905 {
906 	int i;
907 	uint32_t wb_data[2] = {0, 0};
908 	for (i = 0; i < 4 * QM_QUEUES_PER_FUNC; i++) {
909 		REG_WR(sc, base_reg + i*4,
910 		       qm_cid_count * 4 * (i % QM_QUEUES_PER_FUNC));
911 		ecore_init_wr_wb(sc, reg + i*8,
912 				 wb_data, 2);
913 	}
914 }
915 
916 /* called during init common stage */
917 static void ecore_qm_init_ptr_table(struct bxe_softc *sc, int qm_cid_count,
918 				    uint8_t initop)
919 {
920 	if (!QM_INIT(qm_cid_count))
921 		return;
922 
923 	switch (initop) {
924 	case INITOP_INIT:
925 		/* set in the init-value array */
926 	case INITOP_SET:
927 		ecore_qm_set_ptr_table(sc, qm_cid_count,
928 				       QM_REG_BASEADDR, QM_REG_PTRTBL);
929 		if (CHIP_IS_E1H(sc))
930 			ecore_qm_set_ptr_table(sc, qm_cid_count,
931 					       QM_REG_BASEADDR_EXT_A,
932 					       QM_REG_PTRTBL_EXT_A);
933 		break;
934 	case INITOP_CLEAR:
935 		break;
936 	}
937 }
938 
939 /****************************************************************************
940 * SRC initializations
941 ****************************************************************************/
942 #ifdef ECORE_L5
943 /* called during init func stage */
944 static void ecore_src_init_t2(struct bxe_softc *sc, struct src_ent *t2,
945 			      ecore_dma_addr_t t2_mapping, int src_cid_count)
946 {
947 	int i;
948 	int port = SC_PORT(sc);
949 
950 	/* Initialize T2 */
951 	for (i = 0; i < src_cid_count-1; i++)
952 		t2[i].next = (uint64_t)(t2_mapping +
953 			     (i+1)*sizeof(struct src_ent));
954 
955 	/* tell the searcher where the T2 table is */
956 	REG_WR(sc, SRC_REG_COUNTFREE0 + port*4, src_cid_count);
957 
958 	ecore_wr_64(sc, SRC_REG_FIRSTFREE0 + port*16,
959 		    U64_LO(t2_mapping), U64_HI(t2_mapping));
960 
961 	ecore_wr_64(sc, SRC_REG_LASTFREE0 + port*16,
962 		    U64_LO((uint64_t)t2_mapping +
963 			   (src_cid_count-1) * sizeof(struct src_ent)),
964 		    U64_HI((uint64_t)t2_mapping +
965 			   (src_cid_count-1) * sizeof(struct src_ent)));
966 }
967 #endif
968 #endif /* ECORE_INIT_OPS_H */
969