xref: /freebsd/sys/dev/bxe/ecore_init.h (revision fcb560670601b2a4d87bb31d7531c8dcc37ee71b)
1 /*-
2  * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
15  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
18  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
19  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
20  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
21  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
22  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
23  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
24  * THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #ifndef ECORE_INIT_H
31 #define ECORE_INIT_H
32 
33 /* Init operation types and structures */
34 enum {
35 	OP_RD = 0x1,	/* read a single register */
36 	OP_WR,		/* write a single register */
37 	OP_SW,		/* copy a string to the device */
38 	OP_ZR,		/* clear memory */
39 	OP_ZP,		/* unzip then copy with DMAE */
40 	OP_WR_64,	/* write 64 bit pattern */
41 	OP_WB,		/* copy a string using DMAE */
42 #ifndef FW_ZIP_SUPPORT
43 	OP_FW,		/* copy an array from fw data (only used with unzipped FW) */
44 #endif
45 	OP_WB_ZR,	/* Clear a string using DMAE or indirect-wr */
46 	OP_IF_MODE_OR,  /* Skip the following ops if all init modes don't match */
47 	OP_IF_MODE_AND, /* Skip the following ops if any init modes don't match */
48 	OP_IF_PHASE,
49 	OP_RT,
50 	OP_DELAY,
51 	OP_VERIFY,
52 	OP_MAX
53 };
54 
55 enum {
56 	STAGE_START,
57 	STAGE_END,
58 };
59 
60 /* Returns the index of start or end of a specific block stage in ops array*/
61 #define BLOCK_OPS_IDX(block, stage, end) \
62 	(2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end))
63 
64 
65 /* structs for the various opcodes */
66 struct raw_op {
67 	uint32_t op:8;
68 	uint32_t offset:24;
69 	uint32_t raw_data;
70 };
71 
72 struct op_read {
73 	uint32_t op:8;
74 	uint32_t offset:24;
75 	uint32_t val;
76 };
77 
78 struct op_write {
79 	uint32_t op:8;
80 	uint32_t offset:24;
81 	uint32_t val;
82 };
83 
84 struct op_arr_write {
85 	uint32_t op:8;
86 	uint32_t offset:24;
87 #ifdef __BIG_ENDIAN
88 	uint16_t data_len;
89 	uint16_t data_off;
90 #else /* __LITTLE_ENDIAN */
91 	uint16_t data_off;
92 	uint16_t data_len;
93 #endif
94 };
95 
96 struct op_zero {
97 	uint32_t op:8;
98 	uint32_t offset:24;
99 	uint32_t len;
100 };
101 
102 struct op_if_mode {
103 	uint32_t op:8;
104 	uint32_t cmd_offset:24;
105 	uint32_t mode_bit_map;
106 };
107 
108 struct op_if_phase {
109 	uint32_t op:8;
110 	uint32_t cmd_offset:24;
111 	uint32_t phase_bit_map;
112 };
113 
114 struct op_delay {
115 	uint32_t op:8;
116 	uint32_t reserved:24;
117 	uint32_t delay;
118 };
119 
120 union init_op {
121 	struct op_read		read;
122 	struct op_write		write;
123 	struct op_arr_write	arr_wr;
124 	struct op_zero		zero;
125 	struct raw_op		raw;
126 	struct op_if_mode	if_mode;
127 	struct op_if_phase	if_phase;
128 	struct op_delay		delay;
129 };
130 
131 
132 /* Init Phases */
133 enum {
134 	PHASE_COMMON,
135 	PHASE_PORT0,
136 	PHASE_PORT1,
137 	PHASE_PF0,
138 	PHASE_PF1,
139 	PHASE_PF2,
140 	PHASE_PF3,
141 	PHASE_PF4,
142 	PHASE_PF5,
143 	PHASE_PF6,
144 	PHASE_PF7,
145 	NUM_OF_INIT_PHASES
146 };
147 
148 /* Init Modes */
149 enum {
150 	MODE_ASIC                      = 0x00000001,
151 	MODE_FPGA                      = 0x00000002,
152 	MODE_EMUL                      = 0x00000004,
153 	MODE_E2                        = 0x00000008,
154 	MODE_E3                        = 0x00000010,
155 	MODE_PORT2                     = 0x00000020,
156 	MODE_PORT4                     = 0x00000040,
157 	MODE_SF                        = 0x00000080,
158 	MODE_MF                        = 0x00000100,
159 	MODE_MF_SD                     = 0x00000200,
160 	MODE_MF_SI                     = 0x00000400,
161 	MODE_MF_AFEX                   = 0x00000800,
162 	MODE_E3_A0                     = 0x00001000,
163 	MODE_E3_B0                     = 0x00002000,
164 	MODE_COS3                      = 0x00004000,
165 	MODE_COS6                      = 0x00008000,
166 	MODE_LITTLE_ENDIAN             = 0x00010000,
167 	MODE_BIG_ENDIAN                = 0x00020000,
168 };
169 
170 /* Init Blocks */
171 enum {
172 	BLOCK_ATC,
173 	BLOCK_BRB1,
174 	BLOCK_CCM,
175 	BLOCK_CDU,
176 	BLOCK_CFC,
177 	BLOCK_CSDM,
178 	BLOCK_CSEM,
179 	BLOCK_DBG,
180 	BLOCK_DMAE,
181 	BLOCK_DORQ,
182 	BLOCK_HC,
183 	BLOCK_IGU,
184 	BLOCK_MISC,
185 	BLOCK_NIG,
186 	BLOCK_PBF,
187 	BLOCK_PGLUE_B,
188 	BLOCK_PRS,
189 	BLOCK_PXP2,
190 	BLOCK_PXP,
191 	BLOCK_QM,
192 	BLOCK_SRC,
193 	BLOCK_TCM,
194 	BLOCK_TM,
195 	BLOCK_TSDM,
196 	BLOCK_TSEM,
197 	BLOCK_UCM,
198 	BLOCK_UPB,
199 	BLOCK_USDM,
200 	BLOCK_USEM,
201 	BLOCK_XCM,
202 	BLOCK_XPB,
203 	BLOCK_XSDM,
204 	BLOCK_XSEM,
205 	BLOCK_MISC_AEU,
206 	NUM_OF_INIT_BLOCKS
207 };
208 
209 
210 
211 
212 
213 
214 
215 
216 /* Vnics per mode */
217 #define ECORE_PORT2_MODE_NUM_VNICS 4
218 
219 
220 /* QM queue numbers */
221 #define ECORE_ETH_Q		0
222 #define ECORE_TOE_Q		3
223 #define ECORE_TOE_ACK_Q		6
224 #define ECORE_ISCSI_Q		9
225 #define ECORE_ISCSI_ACK_Q	11
226 #define ECORE_FCOE_Q		10
227 
228 /* Vnics per mode */
229 #define ECORE_PORT4_MODE_NUM_VNICS 2
230 
231 /* COS offset for port1 in E3 B0 4port mode */
232 #define ECORE_E3B0_PORT1_COS_OFFSET 3
233 
234 /* QM Register addresses */
235 #define ECORE_Q_VOQ_REG_ADDR(pf_q_num)\
236 	(QM_REG_QVOQIDX_0 + 4 * (pf_q_num))
237 #define ECORE_VOQ_Q_REG_ADDR(cos, pf_q_num)\
238 	(QM_REG_VOQQMASK_0_LSB + 4 * ((cos) * 2 + ((pf_q_num) >> 5)))
239 #define ECORE_Q_CMDQ_REG_ADDR(pf_q_num)\
240 	(QM_REG_BYTECRDCMDQ_0 + 4 * ((pf_q_num) >> 4))
241 
242 /* extracts the QM queue number for the specified port and vnic */
243 #define ECORE_PF_Q_NUM(q_num, port, vnic)\
244 	((((port) << 1) | (vnic)) * 16 + (q_num))
245 
246 
247 /* Maps the specified queue to the specified COS */
248 static inline void ecore_map_q_cos(struct bxe_softc *sc, uint32_t q_num, uint32_t new_cos)
249 {
250 	/* find current COS mapping */
251 	uint32_t curr_cos = REG_RD(sc, QM_REG_QVOQIDX_0 + q_num * 4);
252 
253 	/* check if queue->COS mapping has changed */
254 	if (curr_cos != new_cos) {
255 		uint32_t num_vnics = ECORE_PORT2_MODE_NUM_VNICS;
256 		uint32_t reg_addr, reg_bit_map, vnic;
257 
258 		/* update parameters for 4port mode */
259 		if (INIT_MODE_FLAGS(sc) & MODE_PORT4) {
260 			num_vnics = ECORE_PORT4_MODE_NUM_VNICS;
261 			if (PORT_ID(sc)) {
262 				curr_cos += ECORE_E3B0_PORT1_COS_OFFSET;
263 				new_cos += ECORE_E3B0_PORT1_COS_OFFSET;
264 			}
265 		}
266 
267 		/* change queue mapping for each VNIC */
268 		for (vnic = 0; vnic < num_vnics; vnic++) {
269 			uint32_t pf_q_num =
270 				ECORE_PF_Q_NUM(q_num, PORT_ID(sc), vnic);
271 			uint32_t q_bit_map = 1 << (pf_q_num & 0x1f);
272 
273 			/* overwrite queue->VOQ mapping */
274 			REG_WR(sc, ECORE_Q_VOQ_REG_ADDR(pf_q_num), new_cos);
275 
276 			/* clear queue bit from current COS bit map */
277 			reg_addr = ECORE_VOQ_Q_REG_ADDR(curr_cos, pf_q_num);
278 			reg_bit_map = REG_RD(sc, reg_addr);
279 			REG_WR(sc, reg_addr, reg_bit_map & (~q_bit_map));
280 
281 			/* set queue bit in new COS bit map */
282 			reg_addr = ECORE_VOQ_Q_REG_ADDR(new_cos, pf_q_num);
283 			reg_bit_map = REG_RD(sc, reg_addr);
284 			REG_WR(sc, reg_addr, reg_bit_map | q_bit_map);
285 
286 			/* set/clear queue bit in command-queue bit map
287 			(E2/E3A0 only, valid COS values are 0/1) */
288 			if (!(INIT_MODE_FLAGS(sc) & MODE_E3_B0)) {
289 				reg_addr = ECORE_Q_CMDQ_REG_ADDR(pf_q_num);
290 				reg_bit_map = REG_RD(sc, reg_addr);
291 				q_bit_map = 1 << (2 * (pf_q_num & 0xf));
292 				reg_bit_map = new_cos ?
293 					      (reg_bit_map | q_bit_map) :
294 					      (reg_bit_map & (~q_bit_map));
295 				REG_WR(sc, reg_addr, reg_bit_map);
296 			}
297 		}
298 	}
299 }
300 
301 /* Configures the QM according to the specified per-traffic-type COSes */
302 static inline void ecore_dcb_config_qm(struct bxe_softc *sc, enum cos_mode mode,
303 				       struct priority_cos *traffic_cos)
304 {
305 	ecore_map_q_cos(sc, ECORE_FCOE_Q,
306 			traffic_cos[LLFC_TRAFFIC_TYPE_FCOE].cos);
307 	ecore_map_q_cos(sc, ECORE_ISCSI_Q,
308 			traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos);
309 	ecore_map_q_cos(sc, ECORE_ISCSI_ACK_Q,
310 		traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos);
311 	if (mode != STATIC_COS) {
312 		/* required only in OVERRIDE_COS mode */
313 		ecore_map_q_cos(sc, ECORE_ETH_Q,
314 				traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
315 		ecore_map_q_cos(sc, ECORE_TOE_Q,
316 				traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
317 		ecore_map_q_cos(sc, ECORE_TOE_ACK_Q,
318 				traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
319 	}
320 }
321 
322 
323 /*
324  * congestion managment port init api description
325  * the api works as follows:
326  * the driver should pass the cmng_init_input struct, the port_init function
327  * will prepare the required internal ram structure which will be passed back
328  * to the driver (cmng_init) that will write it into the internal ram.
329  *
330  * IMPORTANT REMARKS:
331  * 1. the cmng_init struct does not represent the contiguous internal ram
332  *    structure. the driver should use the XSTORM_CMNG_PERPORT_VARS_OFFSET
333  *    offset in order to write the port sub struct and the
334  *    PFID_FROM_PORT_AND_VNIC offset for writing the vnic sub struct (in other
335  *    words - don't use memcpy!).
336  * 2. although the cmng_init struct is filled for the maximal vnic number
337  *    possible, the driver should only write the valid vnics into the internal
338  *    ram according to the appropriate port mode.
339  */
340 #define BITS_TO_BYTES(x) ((x)/8)
341 
342 /* CMNG constants, as derived from system spec calculations */
343 
344 /* default MIN rate in case VNIC min rate is configured to zero- 100Mbps */
345 #define DEF_MIN_RATE 100
346 
347 /* resolution of the rate shaping timer - 400 usec */
348 #define RS_PERIODIC_TIMEOUT_USEC 400
349 
350 /*
351  *  number of bytes in single QM arbitration cycle -
352  *  coefficient for calculating the fairness timer
353  */
354 #define QM_ARB_BYTES 160000
355 
356 /* resolution of Min algorithm 1:100 */
357 #define MIN_RES 100
358 
359 /*
360  *  how many bytes above threshold for
361  *  the minimal credit of Min algorithm
362  */
363 #define MIN_ABOVE_THRESH 32768
364 
365 /*
366  *  Fairness algorithm integration time coefficient -
367  *  for calculating the actual Tfair
368  */
369 #define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES)
370 
371 /* Memory of fairness algorithm - 2 cycles */
372 #define FAIR_MEM 2
373 #define SAFC_TIMEOUT_USEC 52
374 
375 #define SDM_TICKS 4
376 
377 
378 static inline void ecore_init_max(const struct cmng_init_input *input_data,
379 				  uint32_t r_param, struct cmng_init *ram_data)
380 {
381 	uint32_t vnic;
382 	struct cmng_vnic *vdata = &ram_data->vnic;
383 	struct cmng_struct_per_port *pdata = &ram_data->port;
384 	/*
385 	 * rate shaping per-port variables
386 	 *  100 micro seconds in SDM ticks = 25
387 	 *  since each tick is 4 microSeconds
388 	 */
389 
390 	pdata->rs_vars.rs_periodic_timeout =
391 	RS_PERIODIC_TIMEOUT_USEC / SDM_TICKS;
392 
393 	/* this is the threshold below which no timer arming will occur.
394 	 *  1.25 coefficient is for the threshold to be a little bigger
395 	 *  then the real time to compensate for timer in-accuracy
396 	 */
397 	pdata->rs_vars.rs_threshold =
398 	(5 * RS_PERIODIC_TIMEOUT_USEC * r_param)/4;
399 
400 	/* rate shaping per-vnic variables */
401 	for (vnic = 0; vnic < ECORE_PORT2_MODE_NUM_VNICS; vnic++) {
402 		/* global vnic counter */
403 		vdata->vnic_max_rate[vnic].vn_counter.rate =
404 		input_data->vnic_max_rate[vnic];
405 		/*
406 		 * maximal Mbps for this vnic
407 		 * the quota in each timer period - number of bytes
408 		 * transmitted in this period
409 		 */
410 		vdata->vnic_max_rate[vnic].vn_counter.quota =
411 			RS_PERIODIC_TIMEOUT_USEC *
412 			(uint32_t)vdata->vnic_max_rate[vnic].vn_counter.rate / 8;
413 	}
414 
415 }
416 
417 static inline void ecore_init_max_per_vn(uint16_t vnic_max_rate,
418 				  struct rate_shaping_vars_per_vn *ram_data)
419 {
420 	/* global vnic counter */
421 	ram_data->vn_counter.rate = vnic_max_rate;
422 
423 	/*
424 	* maximal Mbps for this vnic
425 	* the quota in each timer period - number of bytes
426 	* transmitted in this period
427 	*/
428 	ram_data->vn_counter.quota =
429 		RS_PERIODIC_TIMEOUT_USEC * (uint32_t)vnic_max_rate / 8;
430 }
431 
432 static inline void ecore_init_min(const struct cmng_init_input *input_data,
433 				  uint32_t r_param, struct cmng_init *ram_data)
434 {
435 	uint32_t vnic, fair_periodic_timeout_usec, vnicWeightSum, tFair;
436 	struct cmng_vnic *vdata = &ram_data->vnic;
437 	struct cmng_struct_per_port *pdata = &ram_data->port;
438 
439 	/* this is the resolution of the fairness timer */
440 	fair_periodic_timeout_usec = QM_ARB_BYTES / r_param;
441 
442 	/*
443 	 * fairness per-port variables
444 	 * for 10G it is 1000usec. for 1G it is 10000usec.
445 	 */
446 	tFair = T_FAIR_COEF / input_data->port_rate;
447 
448 	/* this is the threshold below which we won't arm the timer anymore */
449 	pdata->fair_vars.fair_threshold = QM_ARB_BYTES;
450 
451 	/*
452 	 *  we multiply by 1e3/8 to get bytes/msec. We don't want the credits
453 	 *  to pass a credit of the T_FAIR*FAIR_MEM (algorithm resolution)
454 	 */
455 	pdata->fair_vars.upper_bound = r_param * tFair * FAIR_MEM;
456 
457 	/* since each tick is 4 microSeconds */
458 	pdata->fair_vars.fairness_timeout =
459 				fair_periodic_timeout_usec / SDM_TICKS;
460 
461 	/* calculate sum of weights */
462 	vnicWeightSum = 0;
463 
464 	for (vnic = 0; vnic < ECORE_PORT2_MODE_NUM_VNICS; vnic++)
465 		vnicWeightSum += input_data->vnic_min_rate[vnic];
466 
467 	/* global vnic counter */
468 	if (vnicWeightSum > 0) {
469 		/* fairness per-vnic variables */
470 		for (vnic = 0; vnic < ECORE_PORT2_MODE_NUM_VNICS; vnic++) {
471 			/*
472 			 *  this is the credit for each period of the fairness
473 			 *  algorithm - number of bytes in T_FAIR (this vnic
474 			 *  share of the port rate)
475 			 */
476 			vdata->vnic_min_rate[vnic].vn_credit_delta =
477 				((uint32_t)(input_data->vnic_min_rate[vnic]) * 100 *
478 				(T_FAIR_COEF / (8 * 100 * vnicWeightSum)));
479 			if (vdata->vnic_min_rate[vnic].vn_credit_delta <
480 			    pdata->fair_vars.fair_threshold +
481 			    MIN_ABOVE_THRESH) {
482 				vdata->vnic_min_rate[vnic].vn_credit_delta =
483 					pdata->fair_vars.fair_threshold +
484 					MIN_ABOVE_THRESH;
485 			}
486 		}
487 	}
488 }
489 
490 static inline void ecore_init_fw_wrr(const struct cmng_init_input *input_data,
491 				     uint32_t r_param, struct cmng_init *ram_data)
492 {
493 	uint32_t vnic, cos;
494 	uint32_t cosWeightSum = 0;
495 	struct cmng_vnic *vdata = &ram_data->vnic;
496 	struct cmng_struct_per_port *pdata = &ram_data->port;
497 
498 	for (cos = 0; cos < MAX_COS_NUMBER; cos++)
499 		cosWeightSum += input_data->cos_min_rate[cos];
500 
501 	if (cosWeightSum > 0) {
502 
503 		for (vnic = 0; vnic < ECORE_PORT2_MODE_NUM_VNICS; vnic++) {
504 			/*
505 			 *  Since cos and vnic shouldn't work together the rate
506 			 *  to divide between the coses is the port rate.
507 			 */
508 			uint32_t *ccd = vdata->vnic_min_rate[vnic].cos_credit_delta;
509 			for (cos = 0; cos < MAX_COS_NUMBER; cos++) {
510 				/*
511 				 * this is the credit for each period of
512 				 * the fairness algorithm - number of bytes
513 				 * in T_FAIR (this cos share of the vnic rate)
514 				 */
515 				ccd[cos] =
516 				    ((uint32_t)input_data->cos_min_rate[cos] * 100 *
517 				    (T_FAIR_COEF / (8 * 100 * cosWeightSum)));
518 				 if (ccd[cos] < pdata->fair_vars.fair_threshold
519 						+ MIN_ABOVE_THRESH) {
520 					ccd[cos] =
521 					    pdata->fair_vars.fair_threshold +
522 					    MIN_ABOVE_THRESH;
523 				}
524 			}
525 		}
526 	}
527 }
528 
529 static inline void ecore_init_safc(const struct cmng_init_input *input_data,
530 				   struct cmng_init *ram_data)
531 {
532 	/* in microSeconds */
533 	ram_data->port.safc_vars.safc_timeout_usec = SAFC_TIMEOUT_USEC;
534 }
535 
536 /* Congestion management port init */
537 static inline void ecore_init_cmng(const struct cmng_init_input *input_data,
538 				   struct cmng_init *ram_data)
539 {
540 	uint32_t r_param;
541 	ECORE_MEMSET(ram_data, 0,sizeof(struct cmng_init));
542 
543 	ram_data->port.flags = input_data->flags;
544 
545 	/*
546 	 *  number of bytes transmitted in a rate of 10Gbps
547 	 *  in one usec = 1.25KB.
548 	 */
549 	r_param = BITS_TO_BYTES(input_data->port_rate);
550 	ecore_init_max(input_data, r_param, ram_data);
551 	ecore_init_min(input_data, r_param, ram_data);
552 	ecore_init_fw_wrr(input_data, r_param, ram_data);
553 	ecore_init_safc(input_data, ram_data);
554 }
555 
556 
557 
558 
559 /* Returns the index of start or end of a specific block stage in ops array*/
560 #define BLOCK_OPS_IDX(block, stage, end) \
561 			(2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end))
562 
563 
564 #define INITOP_SET		0	/* set the HW directly */
565 #define INITOP_CLEAR		1	/* clear the HW directly */
566 #define INITOP_INIT		2	/* set the init-value array */
567 
568 /****************************************************************************
569 * ILT management
570 ****************************************************************************/
571 struct ilt_line {
572 	ecore_dma_addr_t page_mapping;
573 	void *page;
574 	uint32_t size;
575 };
576 
577 struct ilt_client_info {
578 	uint32_t page_size;
579 	uint16_t start;
580 	uint16_t end;
581 	uint16_t client_num;
582 	uint16_t flags;
583 #define ILT_CLIENT_SKIP_INIT	0x1
584 #define ILT_CLIENT_SKIP_MEM	0x2
585 };
586 
587 struct ecore_ilt {
588 	uint32_t start_line;
589 	struct ilt_line		*lines;
590 	struct ilt_client_info	clients[4];
591 #define ILT_CLIENT_CDU	0
592 #define ILT_CLIENT_QM	1
593 #define ILT_CLIENT_SRC	2
594 #define ILT_CLIENT_TM	3
595 };
596 
597 /****************************************************************************
598 * SRC configuration
599 ****************************************************************************/
600 struct src_ent {
601 	uint8_t opaque[56];
602 	uint64_t next;
603 };
604 
605 /****************************************************************************
606 * Parity configuration
607 ****************************************************************************/
608 #define BLOCK_PRTY_INFO(block, en_mask, m1, m1h, m2, m3) \
609 { \
610 	block##_REG_##block##_PRTY_MASK, \
611 	block##_REG_##block##_PRTY_STS_CLR, \
612 	en_mask, {m1, m1h, m2, m3}, #block \
613 }
614 
615 #define BLOCK_PRTY_INFO_0(block, en_mask, m1, m1h, m2, m3) \
616 { \
617 	block##_REG_##block##_PRTY_MASK_0, \
618 	block##_REG_##block##_PRTY_STS_CLR_0, \
619 	en_mask, {m1, m1h, m2, m3}, #block"_0" \
620 }
621 
622 #define BLOCK_PRTY_INFO_1(block, en_mask, m1, m1h, m2, m3) \
623 { \
624 	block##_REG_##block##_PRTY_MASK_1, \
625 	block##_REG_##block##_PRTY_STS_CLR_1, \
626 	en_mask, {m1, m1h, m2, m3}, #block"_1" \
627 }
628 
629 static const struct {
630 	uint32_t mask_addr;
631 	uint32_t sts_clr_addr;
632 	uint32_t en_mask;		/* Mask to enable parity attentions */
633 	struct {
634 		uint32_t e1;		/* 57710 */
635 		uint32_t e1h;	/* 57711 */
636 		uint32_t e2;		/* 57712 */
637 		uint32_t e3;		/* 578xx */
638 	} reg_mask;		/* Register mask (all valid bits) */
639 	char name[8];		/* Block's longest name is 7 characters long
640 				 * (name + suffix)
641 				 */
642 } ecore_blocks_parity_data[] = {
643 	/* bit 19 masked */
644 	/* REG_WR(bp, PXP_REG_PXP_PRTY_MASK, 0x80000); */
645 	/* bit 5,18,20-31 */
646 	/* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_0, 0xfff40020); */
647 	/* bit 5 */
648 	/* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_1, 0x20);	*/
649 	/* REG_WR(bp, HC_REG_HC_PRTY_MASK, 0x0); */
650 	/* REG_WR(bp, MISC_REG_MISC_PRTY_MASK, 0x0); */
651 
652 	/* Block IGU, MISC, PXP and PXP2 parity errors as long as we don't
653 	 * want to handle "system kill" flow at the moment.
654 	 */
655 	BLOCK_PRTY_INFO(PXP, 0x7ffffff, 0x3ffffff, 0x3ffffff, 0x7ffffff,
656 			0x7ffffff),
657 	BLOCK_PRTY_INFO_0(PXP2,	0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff,
658 			  0xffffffff),
659 	BLOCK_PRTY_INFO_1(PXP2,	0x1ffffff, 0x7f, 0x7f, 0x7ff, 0x1ffffff),
660 	BLOCK_PRTY_INFO(HC, 0x7, 0x7, 0x7, 0, 0),
661 	BLOCK_PRTY_INFO(NIG, 0xffffffff, 0x3fffffff, 0xffffffff, 0, 0),
662 	BLOCK_PRTY_INFO_0(NIG,	0xffffffff, 0, 0, 0xffffffff, 0xffffffff),
663 	BLOCK_PRTY_INFO_1(NIG,	0xffff, 0, 0, 0xff, 0xffff),
664 	BLOCK_PRTY_INFO(IGU, 0x7ff, 0, 0, 0x7ff, 0x7ff),
665 	BLOCK_PRTY_INFO(MISC, 0x1, 0x1, 0x1, 0x1, 0x1),
666 	BLOCK_PRTY_INFO(QM, 0, 0x1ff, 0xfff, 0xfff, 0xfff),
667 	BLOCK_PRTY_INFO(ATC, 0x1f, 0, 0, 0x1f, 0x1f),
668 	BLOCK_PRTY_INFO(PGLUE_B, 0x3, 0, 0, 0x3, 0x3),
669 	BLOCK_PRTY_INFO(DORQ, 0, 0x3, 0x3, 0x3, 0x3),
670 	{GRCBASE_UPB + PB_REG_PB_PRTY_MASK,
671 		GRCBASE_UPB + PB_REG_PB_PRTY_STS_CLR, 0xf,
672 		{0xf, 0xf, 0xf, 0xf}, "UPB"},
673 	{GRCBASE_XPB + PB_REG_PB_PRTY_MASK,
674 		GRCBASE_XPB + PB_REG_PB_PRTY_STS_CLR, 0,
675 		{0xf, 0xf, 0xf, 0xf}, "XPB"},
676 	BLOCK_PRTY_INFO(SRC, 0x4, 0x7, 0x7, 0x7, 0x7),
677 	BLOCK_PRTY_INFO(CDU, 0, 0x1f, 0x1f, 0x1f, 0x1f),
678 	BLOCK_PRTY_INFO(CFC, 0, 0xf, 0xf, 0xf, 0x3f),
679 	BLOCK_PRTY_INFO(DBG, 0, 0x1, 0x1, 0x1, 0x1),
680 	BLOCK_PRTY_INFO(DMAE, 0, 0xf, 0xf, 0xf, 0xf),
681 	BLOCK_PRTY_INFO(BRB1, 0, 0xf, 0xf, 0xf, 0xf),
682 	BLOCK_PRTY_INFO(PRS, (1<<6), 0xff, 0xff, 0xff, 0xff),
683 	BLOCK_PRTY_INFO(PBF, 0, 0, 0x3ffff, 0xfffff, 0xfffffff),
684 	BLOCK_PRTY_INFO(TM, 0, 0, 0x7f, 0x7f, 0x7f),
685 	BLOCK_PRTY_INFO(TSDM, 0x18, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
686 	BLOCK_PRTY_INFO(CSDM, 0x8, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
687 	BLOCK_PRTY_INFO(USDM, 0x38, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
688 	BLOCK_PRTY_INFO(XSDM, 0x8, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
689 	BLOCK_PRTY_INFO(TCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
690 	BLOCK_PRTY_INFO(CCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
691 	BLOCK_PRTY_INFO(UCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
692 	BLOCK_PRTY_INFO(XCM, 0, 0, 0x3fffffff, 0x3fffffff, 0x3fffffff),
693 	BLOCK_PRTY_INFO_0(TSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
694 			  0xffffffff),
695 	BLOCK_PRTY_INFO_1(TSEM, 0, 0x3, 0x1f, 0x3f, 0x3f),
696 	BLOCK_PRTY_INFO_0(USEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
697 			  0xffffffff),
698 	BLOCK_PRTY_INFO_1(USEM, 0, 0x3, 0x1f, 0x1f, 0x1f),
699 	BLOCK_PRTY_INFO_0(CSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
700 			  0xffffffff),
701 	BLOCK_PRTY_INFO_1(CSEM, 0, 0x3, 0x1f, 0x1f, 0x1f),
702 	BLOCK_PRTY_INFO_0(XSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
703 			  0xffffffff),
704 	BLOCK_PRTY_INFO_1(XSEM, 0, 0x3, 0x1f, 0x3f, 0x3f),
705 };
706 
707 
708 /* [28] MCP Latched rom_parity
709  * [29] MCP Latched ump_rx_parity
710  * [30] MCP Latched ump_tx_parity
711  * [31] MCP Latched scpad_parity
712  */
713 #define MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS	\
714 	(AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | \
715 	 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | \
716 	 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY)
717 
718 #define MISC_AEU_ENABLE_MCP_PRTY_BITS	\
719 	(MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS | \
720 	 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY)
721 
722 /* Below registers control the MCP parity attention output. When
723  * MISC_AEU_ENABLE_MCP_PRTY_BITS are set - attentions are
724  * enabled, when cleared - disabled.
725  */
726 static const struct {
727 	uint32_t addr;
728 	uint32_t bits;
729 } mcp_attn_ctl_regs[] = {
730 	{ MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0,
731 		MISC_AEU_ENABLE_MCP_PRTY_BITS },
732 	{ MISC_REG_AEU_ENABLE4_NIG_0,
733 		MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
734 	{ MISC_REG_AEU_ENABLE4_PXP_0,
735 		MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
736 	{ MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0,
737 		MISC_AEU_ENABLE_MCP_PRTY_BITS },
738 	{ MISC_REG_AEU_ENABLE4_NIG_1,
739 		MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
740 	{ MISC_REG_AEU_ENABLE4_PXP_1,
741 		MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS }
742 };
743 
744 static inline void ecore_set_mcp_parity(struct bxe_softc *sc, uint8_t enable)
745 {
746 	int i;
747 	uint32_t reg_val;
748 
749 	for (i = 0; i < ARRSIZE(mcp_attn_ctl_regs); i++) {
750 		reg_val = REG_RD(sc, mcp_attn_ctl_regs[i].addr);
751 
752 		if (enable)
753 			reg_val |= MISC_AEU_ENABLE_MCP_PRTY_BITS; /* Linux is using mcp_attn_ctl_regs[i].bits */
754 		else
755 			reg_val &= ~MISC_AEU_ENABLE_MCP_PRTY_BITS; /* Linux is using mcp_attn_ctl_regs[i].bits */
756 
757 		REG_WR(sc, mcp_attn_ctl_regs[i].addr, reg_val);
758 	}
759 }
760 
761 static inline uint32_t ecore_parity_reg_mask(struct bxe_softc *sc, int idx)
762 {
763 	if (CHIP_IS_E1(sc))
764 		return ecore_blocks_parity_data[idx].reg_mask.e1;
765 	else if (CHIP_IS_E1H(sc))
766 		return ecore_blocks_parity_data[idx].reg_mask.e1h;
767 	else if (CHIP_IS_E2(sc))
768 		return ecore_blocks_parity_data[idx].reg_mask.e2;
769 	else /* CHIP_IS_E3 */
770 		return ecore_blocks_parity_data[idx].reg_mask.e3;
771 }
772 
773 static inline void ecore_disable_blocks_parity(struct bxe_softc *sc)
774 {
775 	int i;
776 
777 	for (i = 0; i < ARRSIZE(ecore_blocks_parity_data); i++) {
778 		uint32_t dis_mask = ecore_parity_reg_mask(sc, i);
779 
780 		if (dis_mask) {
781 			REG_WR(sc, ecore_blocks_parity_data[i].mask_addr,
782 			       dis_mask);
783 			ECORE_MSG(sc, "Setting parity mask "
784 						 "for %s to\t\t0x%x\n",
785 				    ecore_blocks_parity_data[i].name, dis_mask);
786 		}
787 	}
788 
789 	/* Disable MCP parity attentions */
790 	ecore_set_mcp_parity(sc, FALSE);
791 }
792 
793 /**
794  * Clear the parity error status registers.
795  */
796 static inline void ecore_clear_blocks_parity(struct bxe_softc *sc)
797 {
798 	int i;
799 	uint32_t reg_val, mcp_aeu_bits =
800 		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY |
801 		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY |
802 		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY |
803 		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY;
804 
805 	/* Clear SEM_FAST parities */
806 	REG_WR(sc, XSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
807 	REG_WR(sc, TSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
808 	REG_WR(sc, USEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
809 	REG_WR(sc, CSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
810 
811 	for (i = 0; i < ARRSIZE(ecore_blocks_parity_data); i++) {
812 		uint32_t reg_mask = ecore_parity_reg_mask(sc, i);
813 
814 		if (reg_mask) {
815 			reg_val = REG_RD(sc, ecore_blocks_parity_data[i].
816 					 sts_clr_addr);
817 			if (reg_val & reg_mask)
818 				ECORE_MSG(sc,
819 					   "Parity errors in %s: 0x%x\n",
820 					   ecore_blocks_parity_data[i].name,
821 					   reg_val & reg_mask);
822 		}
823 	}
824 
825 	/* Check if there were parity attentions in MCP */
826 	reg_val = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_MCP);
827 	if (reg_val & mcp_aeu_bits)
828 		ECORE_MSG(sc, "Parity error in MCP: 0x%x\n",
829 			   reg_val & mcp_aeu_bits);
830 
831 	/* Clear parity attentions in MCP:
832 	 * [7]  clears Latched rom_parity
833 	 * [8]  clears Latched ump_rx_parity
834 	 * [9]  clears Latched ump_tx_parity
835 	 * [10] clears Latched scpad_parity (both ports)
836 	 */
837 	REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x780);
838 }
839 
840 static inline void ecore_enable_blocks_parity(struct bxe_softc *sc)
841 {
842 	int i;
843 
844 	for (i = 0; i < ARRSIZE(ecore_blocks_parity_data); i++) {
845 		uint32_t reg_mask = ecore_parity_reg_mask(sc, i);
846 
847 		if (reg_mask)
848 			REG_WR(sc, ecore_blocks_parity_data[i].mask_addr,
849 				ecore_blocks_parity_data[i].en_mask & reg_mask);
850 	}
851 
852 	/* Enable MCP parity attentions */
853 	ecore_set_mcp_parity(sc, TRUE);
854 }
855 
856 
857 #endif /* ECORE_INIT_H */
858 
859