xref: /freebsd/sys/dev/bxe/ecore_init.h (revision b9f654b163bce26de79705e77b872427c9f2afa1)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2007-2017 QLogic Corporation. All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  *
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
26  * THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #ifndef ECORE_INIT_H
33 #define ECORE_INIT_H
34 
35 /* Init operation types and structures */
36 enum {
37 	OP_RD = 0x1,	/* read a single register */
38 	OP_WR,		/* write a single register */
39 	OP_SW,		/* copy a string to the device */
40 	OP_ZR,		/* clear memory */
41 	OP_ZP,		/* unzip then copy with DMAE */
42 	OP_WR_64,	/* write 64 bit pattern */
43 	OP_WB,		/* copy a string using DMAE */
44 #ifndef FW_ZIP_SUPPORT
45 	OP_FW,		/* copy an array from fw data (only used with unzipped FW) */
46 #endif
47 	OP_WB_ZR,	/* Clear a string using DMAE or indirect-wr */
48 	OP_IF_MODE_OR,  /* Skip the following ops if all init modes don't match */
49 	OP_IF_MODE_AND, /* Skip the following ops if any init modes don't match */
50 	OP_IF_PHASE,
51 	OP_RT,
52 	OP_DELAY,
53 	OP_VERIFY,
54 	OP_MAX
55 };
56 
57 enum {
58 	STAGE_START,
59 	STAGE_END,
60 };
61 
62 /* Returns the index of start or end of a specific block stage in ops array*/
63 #define BLOCK_OPS_IDX(block, stage, end) \
64 	(2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end))
65 
66 
67 /* structs for the various opcodes */
68 struct raw_op {
69 	uint32_t op:8;
70 	uint32_t offset:24;
71 	uint32_t raw_data;
72 };
73 
74 struct op_read {
75 	uint32_t op:8;
76 	uint32_t offset:24;
77 	uint32_t val;
78 };
79 
80 struct op_write {
81 	uint32_t op:8;
82 	uint32_t offset:24;
83 	uint32_t val;
84 };
85 
86 struct op_arr_write {
87 	uint32_t op:8;
88 	uint32_t offset:24;
89 #ifdef __BIG_ENDIAN
90 	uint16_t data_len;
91 	uint16_t data_off;
92 #else /* __LITTLE_ENDIAN */
93 	uint16_t data_off;
94 	uint16_t data_len;
95 #endif
96 };
97 
98 struct op_zero {
99 	uint32_t op:8;
100 	uint32_t offset:24;
101 	uint32_t len;
102 };
103 
104 struct op_if_mode {
105 	uint32_t op:8;
106 	uint32_t cmd_offset:24;
107 	uint32_t mode_bit_map;
108 };
109 
110 struct op_if_phase {
111 	uint32_t op:8;
112 	uint32_t cmd_offset:24;
113 	uint32_t phase_bit_map;
114 };
115 
116 struct op_delay {
117 	uint32_t op:8;
118 	uint32_t reserved:24;
119 	uint32_t delay;
120 };
121 
122 union init_op {
123 	struct op_read		read;
124 	struct op_write		write;
125 	struct op_arr_write	arr_wr;
126 	struct op_zero		zero;
127 	struct raw_op		raw;
128 	struct op_if_mode	if_mode;
129 	struct op_if_phase	if_phase;
130 	struct op_delay		delay;
131 };
132 
133 
134 /* Init Phases */
135 enum {
136 	PHASE_COMMON,
137 	PHASE_PORT0,
138 	PHASE_PORT1,
139 	PHASE_PF0,
140 	PHASE_PF1,
141 	PHASE_PF2,
142 	PHASE_PF3,
143 	PHASE_PF4,
144 	PHASE_PF5,
145 	PHASE_PF6,
146 	PHASE_PF7,
147 	NUM_OF_INIT_PHASES
148 };
149 
150 /* Init Modes */
151 enum {
152 	MODE_ASIC                      = 0x00000001,
153 	MODE_FPGA                      = 0x00000002,
154 	MODE_EMUL                      = 0x00000004,
155 	MODE_E2                        = 0x00000008,
156 	MODE_E3                        = 0x00000010,
157 	MODE_PORT2                     = 0x00000020,
158 	MODE_PORT4                     = 0x00000040,
159 	MODE_SF                        = 0x00000080,
160 	MODE_MF                        = 0x00000100,
161 	MODE_MF_SD                     = 0x00000200,
162 	MODE_MF_SI                     = 0x00000400,
163 	MODE_MF_AFEX                   = 0x00000800,
164 	MODE_E3_A0                     = 0x00001000,
165 	MODE_E3_B0                     = 0x00002000,
166 	MODE_COS3                      = 0x00004000,
167 	MODE_COS6                      = 0x00008000,
168 	MODE_LITTLE_ENDIAN             = 0x00010000,
169 	MODE_BIG_ENDIAN                = 0x00020000,
170 };
171 
172 /* Init Blocks */
173 enum {
174 	BLOCK_ATC,
175 	BLOCK_BRB1,
176 	BLOCK_CCM,
177 	BLOCK_CDU,
178 	BLOCK_CFC,
179 	BLOCK_CSDM,
180 	BLOCK_CSEM,
181 	BLOCK_DBG,
182 	BLOCK_DMAE,
183 	BLOCK_DORQ,
184 	BLOCK_HC,
185 	BLOCK_IGU,
186 	BLOCK_MISC,
187 	BLOCK_NIG,
188 	BLOCK_PBF,
189 	BLOCK_PGLUE_B,
190 	BLOCK_PRS,
191 	BLOCK_PXP2,
192 	BLOCK_PXP,
193 	BLOCK_QM,
194 	BLOCK_SRC,
195 	BLOCK_TCM,
196 	BLOCK_TM,
197 	BLOCK_TSDM,
198 	BLOCK_TSEM,
199 	BLOCK_UCM,
200 	BLOCK_UPB,
201 	BLOCK_USDM,
202 	BLOCK_USEM,
203 	BLOCK_XCM,
204 	BLOCK_XPB,
205 	BLOCK_XSDM,
206 	BLOCK_XSEM,
207 	BLOCK_MISC_AEU,
208 	NUM_OF_INIT_BLOCKS
209 };
210 
211 
212 
213 
214 
215 
216 
217 
218 /* Vnics per mode */
219 #define ECORE_PORT2_MODE_NUM_VNICS 4
220 
221 
222 /* QM queue numbers */
223 #define ECORE_ETH_Q		0
224 #define ECORE_TOE_Q		3
225 #define ECORE_TOE_ACK_Q		6
226 #define ECORE_ISCSI_Q		9
227 #define ECORE_ISCSI_ACK_Q	11
228 #define ECORE_FCOE_Q		10
229 
230 /* Vnics per mode */
231 #define ECORE_PORT4_MODE_NUM_VNICS 2
232 
233 /* COS offset for port1 in E3 B0 4port mode */
234 #define ECORE_E3B0_PORT1_COS_OFFSET 3
235 
236 /* QM Register addresses */
237 #define ECORE_Q_VOQ_REG_ADDR(pf_q_num)\
238 	(QM_REG_QVOQIDX_0 + 4 * (pf_q_num))
239 #define ECORE_VOQ_Q_REG_ADDR(cos, pf_q_num)\
240 	(QM_REG_VOQQMASK_0_LSB + 4 * ((cos) * 2 + ((pf_q_num) >> 5)))
241 #define ECORE_Q_CMDQ_REG_ADDR(pf_q_num)\
242 	(QM_REG_BYTECRDCMDQ_0 + 4 * ((pf_q_num) >> 4))
243 
244 /* extracts the QM queue number for the specified port and vnic */
245 #define ECORE_PF_Q_NUM(q_num, port, vnic)\
246 	((((port) << 1) | (vnic)) * 16 + (q_num))
247 
248 
249 /* Maps the specified queue to the specified COS */
250 static inline void ecore_map_q_cos(struct bxe_softc *sc, uint32_t q_num, uint32_t new_cos)
251 {
252 	/* find current COS mapping */
253 	uint32_t curr_cos = REG_RD(sc, QM_REG_QVOQIDX_0 + q_num * 4);
254 
255 	/* check if queue->COS mapping has changed */
256 	if (curr_cos != new_cos) {
257 		uint32_t num_vnics = ECORE_PORT2_MODE_NUM_VNICS;
258 		uint32_t reg_addr, reg_bit_map, vnic;
259 
260 		/* update parameters for 4port mode */
261 		if (INIT_MODE_FLAGS(sc) & MODE_PORT4) {
262 			num_vnics = ECORE_PORT4_MODE_NUM_VNICS;
263 			if (PORT_ID(sc)) {
264 				curr_cos += ECORE_E3B0_PORT1_COS_OFFSET;
265 				new_cos += ECORE_E3B0_PORT1_COS_OFFSET;
266 			}
267 		}
268 
269 		/* change queue mapping for each VNIC */
270 		for (vnic = 0; vnic < num_vnics; vnic++) {
271 			uint32_t pf_q_num =
272 				ECORE_PF_Q_NUM(q_num, PORT_ID(sc), vnic);
273 			uint32_t q_bit_map = 1 << (pf_q_num & 0x1f);
274 
275 			/* overwrite queue->VOQ mapping */
276 			REG_WR(sc, ECORE_Q_VOQ_REG_ADDR(pf_q_num), new_cos);
277 
278 			/* clear queue bit from current COS bit map */
279 			reg_addr = ECORE_VOQ_Q_REG_ADDR(curr_cos, pf_q_num);
280 			reg_bit_map = REG_RD(sc, reg_addr);
281 			REG_WR(sc, reg_addr, reg_bit_map & (~q_bit_map));
282 
283 			/* set queue bit in new COS bit map */
284 			reg_addr = ECORE_VOQ_Q_REG_ADDR(new_cos, pf_q_num);
285 			reg_bit_map = REG_RD(sc, reg_addr);
286 			REG_WR(sc, reg_addr, reg_bit_map | q_bit_map);
287 
288 			/* set/clear queue bit in command-queue bit map
289 			(E2/E3A0 only, valid COS values are 0/1) */
290 			if (!(INIT_MODE_FLAGS(sc) & MODE_E3_B0)) {
291 				reg_addr = ECORE_Q_CMDQ_REG_ADDR(pf_q_num);
292 				reg_bit_map = REG_RD(sc, reg_addr);
293 				q_bit_map = 1 << (2 * (pf_q_num & 0xf));
294 				reg_bit_map = new_cos ?
295 					      (reg_bit_map | q_bit_map) :
296 					      (reg_bit_map & (~q_bit_map));
297 				REG_WR(sc, reg_addr, reg_bit_map);
298 			}
299 		}
300 	}
301 }
302 
303 /* Configures the QM according to the specified per-traffic-type COSes */
304 static inline void ecore_dcb_config_qm(struct bxe_softc *sc, enum cos_mode mode,
305 				       struct priority_cos *traffic_cos)
306 {
307 	ecore_map_q_cos(sc, ECORE_FCOE_Q,
308 			traffic_cos[LLFC_TRAFFIC_TYPE_FCOE].cos);
309 	ecore_map_q_cos(sc, ECORE_ISCSI_Q,
310 			traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos);
311 	ecore_map_q_cos(sc, ECORE_ISCSI_ACK_Q,
312 		traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos);
313 	if (mode != STATIC_COS) {
314 		/* required only in OVERRIDE_COS mode */
315 		ecore_map_q_cos(sc, ECORE_ETH_Q,
316 				traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
317 		ecore_map_q_cos(sc, ECORE_TOE_Q,
318 				traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
319 		ecore_map_q_cos(sc, ECORE_TOE_ACK_Q,
320 				traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
321 	}
322 }
323 
324 
325 /*
326  * congestion management port init api description
327  * the api works as follows:
328  * the driver should pass the cmng_init_input struct, the port_init function
329  * will prepare the required internal ram structure which will be passed back
330  * to the driver (cmng_init) that will write it into the internal ram.
331  *
332  * IMPORTANT REMARKS:
333  * 1. the cmng_init struct does not represent the contiguous internal ram
334  *    structure. the driver should use the XSTORM_CMNG_PERPORT_VARS_OFFSET
335  *    offset in order to write the port sub struct and the
336  *    PFID_FROM_PORT_AND_VNIC offset for writing the vnic sub struct (in other
337  *    words - don't use memcpy!).
338  * 2. although the cmng_init struct is filled for the maximal vnic number
339  *    possible, the driver should only write the valid vnics into the internal
340  *    ram according to the appropriate port mode.
341  */
342 #define BITS_TO_BYTES(x) ((x)/8)
343 
344 /* CMNG constants, as derived from system spec calculations */
345 
346 /* default MIN rate in case VNIC min rate is configured to zero- 100Mbps */
347 #define DEF_MIN_RATE 100
348 
349 /* resolution of the rate shaping timer - 400 usec */
350 #define RS_PERIODIC_TIMEOUT_USEC 400
351 
352 /*
353  *  number of bytes in single QM arbitration cycle -
354  *  coefficient for calculating the fairness timer
355  */
356 #define QM_ARB_BYTES 160000
357 
358 /* resolution of Min algorithm 1:100 */
359 #define MIN_RES 100
360 
361 /*
362  *  how many bytes above threshold for
363  *  the minimal credit of Min algorithm
364  */
365 #define MIN_ABOVE_THRESH 32768
366 
367 /*
368  *  Fairness algorithm integration time coefficient -
369  *  for calculating the actual Tfair
370  */
371 #define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES)
372 
373 /* Memory of fairness algorithm - 2 cycles */
374 #define FAIR_MEM 2
375 #define SAFC_TIMEOUT_USEC 52
376 
377 #define SDM_TICKS 4
378 
379 
380 static inline void ecore_init_max(const struct cmng_init_input *input_data,
381 				  uint32_t r_param, struct cmng_init *ram_data)
382 {
383 	uint32_t vnic;
384 	struct cmng_vnic *vdata = &ram_data->vnic;
385 	struct cmng_struct_per_port *pdata = &ram_data->port;
386 	/*
387 	 * rate shaping per-port variables
388 	 *  100 micro seconds in SDM ticks = 25
389 	 *  since each tick is 4 microSeconds
390 	 */
391 
392 	pdata->rs_vars.rs_periodic_timeout =
393 	RS_PERIODIC_TIMEOUT_USEC / SDM_TICKS;
394 
395 	/* this is the threshold below which no timer arming will occur.
396 	 *  1.25 coefficient is for the threshold to be a little bigger
397 	 *  then the real time to compensate for timer in-accuracy
398 	 */
399 	pdata->rs_vars.rs_threshold =
400 	(5 * RS_PERIODIC_TIMEOUT_USEC * r_param)/4;
401 
402 	/* rate shaping per-vnic variables */
403 	for (vnic = 0; vnic < ECORE_PORT2_MODE_NUM_VNICS; vnic++) {
404 		/* global vnic counter */
405 		vdata->vnic_max_rate[vnic].vn_counter.rate =
406 		input_data->vnic_max_rate[vnic];
407 		/*
408 		 * maximal Mbps for this vnic
409 		 * the quota in each timer period - number of bytes
410 		 * transmitted in this period
411 		 */
412 		vdata->vnic_max_rate[vnic].vn_counter.quota =
413 			RS_PERIODIC_TIMEOUT_USEC *
414 			(uint32_t)vdata->vnic_max_rate[vnic].vn_counter.rate / 8;
415 	}
416 
417 }
418 
419 static inline void ecore_init_max_per_vn(uint16_t vnic_max_rate,
420 				  struct rate_shaping_vars_per_vn *ram_data)
421 {
422 	/* global vnic counter */
423 	ram_data->vn_counter.rate = vnic_max_rate;
424 
425 	/*
426 	* maximal Mbps for this vnic
427 	* the quota in each timer period - number of bytes
428 	* transmitted in this period
429 	*/
430 	ram_data->vn_counter.quota =
431 		RS_PERIODIC_TIMEOUT_USEC * (uint32_t)vnic_max_rate / 8;
432 }
433 
434 static inline void ecore_init_min(const struct cmng_init_input *input_data,
435 				  uint32_t r_param, struct cmng_init *ram_data)
436 {
437 	uint32_t vnic, fair_periodic_timeout_usec, vnicWeightSum, tFair;
438 	struct cmng_vnic *vdata = &ram_data->vnic;
439 	struct cmng_struct_per_port *pdata = &ram_data->port;
440 
441 	/* this is the resolution of the fairness timer */
442 	fair_periodic_timeout_usec = QM_ARB_BYTES / r_param;
443 
444 	/*
445 	 * fairness per-port variables
446 	 * for 10G it is 1000usec. for 1G it is 10000usec.
447 	 */
448 	tFair = T_FAIR_COEF / input_data->port_rate;
449 
450 	/* this is the threshold below which we won't arm the timer anymore */
451 	pdata->fair_vars.fair_threshold = QM_ARB_BYTES;
452 
453 	/*
454 	 *  we multiply by 1e3/8 to get bytes/msec. We don't want the credits
455 	 *  to pass a credit of the T_FAIR*FAIR_MEM (algorithm resolution)
456 	 */
457 	pdata->fair_vars.upper_bound = r_param * tFair * FAIR_MEM;
458 
459 	/* since each tick is 4 microSeconds */
460 	pdata->fair_vars.fairness_timeout =
461 				fair_periodic_timeout_usec / SDM_TICKS;
462 
463 	/* calculate sum of weights */
464 	vnicWeightSum = 0;
465 
466 	for (vnic = 0; vnic < ECORE_PORT2_MODE_NUM_VNICS; vnic++)
467 		vnicWeightSum += input_data->vnic_min_rate[vnic];
468 
469 	/* global vnic counter */
470 	if (vnicWeightSum > 0) {
471 		/* fairness per-vnic variables */
472 		for (vnic = 0; vnic < ECORE_PORT2_MODE_NUM_VNICS; vnic++) {
473 			/*
474 			 *  this is the credit for each period of the fairness
475 			 *  algorithm - number of bytes in T_FAIR (this vnic
476 			 *  share of the port rate)
477 			 */
478 			vdata->vnic_min_rate[vnic].vn_credit_delta =
479 				((uint32_t)(input_data->vnic_min_rate[vnic]) * 100 *
480 				(T_FAIR_COEF / (8 * 100 * vnicWeightSum)));
481 			if (vdata->vnic_min_rate[vnic].vn_credit_delta <
482 			    pdata->fair_vars.fair_threshold +
483 			    MIN_ABOVE_THRESH) {
484 				vdata->vnic_min_rate[vnic].vn_credit_delta =
485 					pdata->fair_vars.fair_threshold +
486 					MIN_ABOVE_THRESH;
487 			}
488 		}
489 	}
490 }
491 
492 static inline void ecore_init_fw_wrr(const struct cmng_init_input *input_data,
493 				     uint32_t r_param, struct cmng_init *ram_data)
494 {
495 	uint32_t vnic, cos;
496 	uint32_t cosWeightSum = 0;
497 	struct cmng_vnic *vdata = &ram_data->vnic;
498 	struct cmng_struct_per_port *pdata = &ram_data->port;
499 
500 	for (cos = 0; cos < MAX_COS_NUMBER; cos++)
501 		cosWeightSum += input_data->cos_min_rate[cos];
502 
503 	if (cosWeightSum > 0) {
504 
505 		for (vnic = 0; vnic < ECORE_PORT2_MODE_NUM_VNICS; vnic++) {
506 			/*
507 			 *  Since cos and vnic shouldn't work together the rate
508 			 *  to divide between the coses is the port rate.
509 			 */
510 			uint32_t *ccd = vdata->vnic_min_rate[vnic].cos_credit_delta;
511 			for (cos = 0; cos < MAX_COS_NUMBER; cos++) {
512 				/*
513 				 * this is the credit for each period of
514 				 * the fairness algorithm - number of bytes
515 				 * in T_FAIR (this cos share of the vnic rate)
516 				 */
517 				ccd[cos] =
518 				    ((uint32_t)input_data->cos_min_rate[cos] * 100 *
519 				    (T_FAIR_COEF / (8 * 100 * cosWeightSum)));
520 				 if (ccd[cos] < pdata->fair_vars.fair_threshold
521 						+ MIN_ABOVE_THRESH) {
522 					ccd[cos] =
523 					    pdata->fair_vars.fair_threshold +
524 					    MIN_ABOVE_THRESH;
525 				}
526 			}
527 		}
528 	}
529 }
530 
531 static inline void ecore_init_safc(const struct cmng_init_input *input_data,
532 				   struct cmng_init *ram_data)
533 {
534 	/* in microSeconds */
535 	ram_data->port.safc_vars.safc_timeout_usec = SAFC_TIMEOUT_USEC;
536 }
537 
538 /* Congestion management port init */
539 static inline void ecore_init_cmng(const struct cmng_init_input *input_data,
540 				   struct cmng_init *ram_data)
541 {
542 	uint32_t r_param;
543 	ECORE_MEMSET(ram_data, 0,sizeof(struct cmng_init));
544 
545 	ram_data->port.flags = input_data->flags;
546 
547 	/*
548 	 *  number of bytes transmitted in a rate of 10Gbps
549 	 *  in one usec = 1.25KB.
550 	 */
551 	r_param = BITS_TO_BYTES(input_data->port_rate);
552 	ecore_init_max(input_data, r_param, ram_data);
553 	ecore_init_min(input_data, r_param, ram_data);
554 	ecore_init_fw_wrr(input_data, r_param, ram_data);
555 	ecore_init_safc(input_data, ram_data);
556 }
557 
558 
559 
560 
561 /* Returns the index of start or end of a specific block stage in ops array*/
562 #define BLOCK_OPS_IDX(block, stage, end) \
563 			(2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end))
564 
565 
566 #define INITOP_SET		0	/* set the HW directly */
567 #define INITOP_CLEAR		1	/* clear the HW directly */
568 #define INITOP_INIT		2	/* set the init-value array */
569 
570 /****************************************************************************
571 * ILT management
572 ****************************************************************************/
573 struct ilt_line {
574 	ecore_dma_addr_t page_mapping;
575 	void *page;
576 	uint32_t size;
577 };
578 
579 struct ilt_client_info {
580 	uint32_t page_size;
581 	uint16_t start;
582 	uint16_t end;
583 	uint16_t client_num;
584 	uint16_t flags;
585 #define ILT_CLIENT_SKIP_INIT	0x1
586 #define ILT_CLIENT_SKIP_MEM	0x2
587 };
588 
589 struct ecore_ilt {
590 	uint32_t start_line;
591 	struct ilt_line		*lines;
592 	struct ilt_client_info	clients[4];
593 #define ILT_CLIENT_CDU	0
594 #define ILT_CLIENT_QM	1
595 #define ILT_CLIENT_SRC	2
596 #define ILT_CLIENT_TM	3
597 };
598 
599 /****************************************************************************
600 * SRC configuration
601 ****************************************************************************/
602 struct src_ent {
603 	uint8_t opaque[56];
604 	uint64_t next;
605 };
606 
607 /****************************************************************************
608 * Parity configuration
609 ****************************************************************************/
610 #define BLOCK_PRTY_INFO(block, en_mask, m1, m1h, m2, m3) \
611 { \
612 	block##_REG_##block##_PRTY_MASK, \
613 	block##_REG_##block##_PRTY_STS_CLR, \
614 	en_mask, {m1, m1h, m2, m3}, #block \
615 }
616 
617 #define BLOCK_PRTY_INFO_0(block, en_mask, m1, m1h, m2, m3) \
618 { \
619 	block##_REG_##block##_PRTY_MASK_0, \
620 	block##_REG_##block##_PRTY_STS_CLR_0, \
621 	en_mask, {m1, m1h, m2, m3}, #block"_0" \
622 }
623 
624 #define BLOCK_PRTY_INFO_1(block, en_mask, m1, m1h, m2, m3) \
625 { \
626 	block##_REG_##block##_PRTY_MASK_1, \
627 	block##_REG_##block##_PRTY_STS_CLR_1, \
628 	en_mask, {m1, m1h, m2, m3}, #block"_1" \
629 }
630 
631 static const struct {
632 	uint32_t mask_addr;
633 	uint32_t sts_clr_addr;
634 	uint32_t en_mask;		/* Mask to enable parity attentions */
635 	struct {
636 		uint32_t e1;		/* 57710 */
637 		uint32_t e1h;	/* 57711 */
638 		uint32_t e2;		/* 57712 */
639 		uint32_t e3;		/* 578xx */
640 	} reg_mask;		/* Register mask (all valid bits) */
641 	char name[8];		/* Block's longest name is 7 characters long
642 				 * (name + suffix)
643 				 */
644 } ecore_blocks_parity_data[] = {
645 	/* bit 19 masked */
646 	/* REG_WR(bp, PXP_REG_PXP_PRTY_MASK, 0x80000); */
647 	/* bit 5,18,20-31 */
648 	/* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_0, 0xfff40020); */
649 	/* bit 5 */
650 	/* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_1, 0x20);	*/
651 	/* REG_WR(bp, HC_REG_HC_PRTY_MASK, 0x0); */
652 	/* REG_WR(bp, MISC_REG_MISC_PRTY_MASK, 0x0); */
653 
654 	/* Block IGU, MISC, PXP and PXP2 parity errors as long as we don't
655 	 * want to handle "system kill" flow at the moment.
656 	 */
657 	BLOCK_PRTY_INFO(PXP, 0x7ffffff, 0x3ffffff, 0x3ffffff, 0x7ffffff,
658 			0x7ffffff),
659 	BLOCK_PRTY_INFO_0(PXP2,	0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff,
660 			  0xffffffff),
661 	BLOCK_PRTY_INFO_1(PXP2,	0x1ffffff, 0x7f, 0x7f, 0x7ff, 0x1ffffff),
662 	BLOCK_PRTY_INFO(HC, 0x7, 0x7, 0x7, 0, 0),
663 	BLOCK_PRTY_INFO(NIG, 0xffffffff, 0x3fffffff, 0xffffffff, 0, 0),
664 	BLOCK_PRTY_INFO_0(NIG,	0xffffffff, 0, 0, 0xffffffff, 0xffffffff),
665 	BLOCK_PRTY_INFO_1(NIG,	0xffff, 0, 0, 0xff, 0xffff),
666 	BLOCK_PRTY_INFO(IGU, 0x7ff, 0, 0, 0x7ff, 0x7ff),
667 	BLOCK_PRTY_INFO(MISC, 0x1, 0x1, 0x1, 0x1, 0x1),
668 	BLOCK_PRTY_INFO(QM, 0, 0x1ff, 0xfff, 0xfff, 0xfff),
669 	BLOCK_PRTY_INFO(ATC, 0x1f, 0, 0, 0x1f, 0x1f),
670 	BLOCK_PRTY_INFO(PGLUE_B, 0x3, 0, 0, 0x3, 0x3),
671 	BLOCK_PRTY_INFO(DORQ, 0, 0x3, 0x3, 0x3, 0x3),
672 	{GRCBASE_UPB + PB_REG_PB_PRTY_MASK,
673 		GRCBASE_UPB + PB_REG_PB_PRTY_STS_CLR, 0xf,
674 		{0xf, 0xf, 0xf, 0xf}, "UPB"},
675 	{GRCBASE_XPB + PB_REG_PB_PRTY_MASK,
676 		GRCBASE_XPB + PB_REG_PB_PRTY_STS_CLR, 0,
677 		{0xf, 0xf, 0xf, 0xf}, "XPB"},
678 	BLOCK_PRTY_INFO(SRC, 0x4, 0x7, 0x7, 0x7, 0x7),
679 	BLOCK_PRTY_INFO(CDU, 0, 0x1f, 0x1f, 0x1f, 0x1f),
680 	BLOCK_PRTY_INFO(CFC, 0, 0xf, 0xf, 0xf, 0x3f),
681 	BLOCK_PRTY_INFO(DBG, 0, 0x1, 0x1, 0x1, 0x1),
682 	BLOCK_PRTY_INFO(DMAE, 0, 0xf, 0xf, 0xf, 0xf),
683 	BLOCK_PRTY_INFO(BRB1, 0, 0xf, 0xf, 0xf, 0xf),
684 	BLOCK_PRTY_INFO(PRS, (1<<6), 0xff, 0xff, 0xff, 0xff),
685 	BLOCK_PRTY_INFO(PBF, 0, 0, 0x3ffff, 0xfffff, 0xfffffff),
686 	BLOCK_PRTY_INFO(TM, 0, 0, 0x7f, 0x7f, 0x7f),
687 	BLOCK_PRTY_INFO(TSDM, 0x18, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
688 	BLOCK_PRTY_INFO(CSDM, 0x8, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
689 	BLOCK_PRTY_INFO(USDM, 0x38, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
690 	BLOCK_PRTY_INFO(XSDM, 0x8, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
691 	BLOCK_PRTY_INFO(TCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
692 	BLOCK_PRTY_INFO(CCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
693 	BLOCK_PRTY_INFO(UCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
694 	BLOCK_PRTY_INFO(XCM, 0, 0, 0x3fffffff, 0x3fffffff, 0x3fffffff),
695 	BLOCK_PRTY_INFO_0(TSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
696 			  0xffffffff),
697 	BLOCK_PRTY_INFO_1(TSEM, 0, 0x3, 0x1f, 0x3f, 0x3f),
698 	BLOCK_PRTY_INFO_0(USEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
699 			  0xffffffff),
700 	BLOCK_PRTY_INFO_1(USEM, 0, 0x3, 0x1f, 0x1f, 0x1f),
701 	BLOCK_PRTY_INFO_0(CSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
702 			  0xffffffff),
703 	BLOCK_PRTY_INFO_1(CSEM, 0, 0x3, 0x1f, 0x1f, 0x1f),
704 	BLOCK_PRTY_INFO_0(XSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
705 			  0xffffffff),
706 	BLOCK_PRTY_INFO_1(XSEM, 0, 0x3, 0x1f, 0x3f, 0x3f),
707 };
708 
709 
710 /* [28] MCP Latched rom_parity
711  * [29] MCP Latched ump_rx_parity
712  * [30] MCP Latched ump_tx_parity
713  * [31] MCP Latched scpad_parity
714  */
715 #define MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS	\
716 	(AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | \
717 	 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | \
718 	 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY)
719 
720 #define MISC_AEU_ENABLE_MCP_PRTY_BITS	\
721 	(MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS | \
722 	 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY)
723 
724 /* Below registers control the MCP parity attention output. When
725  * MISC_AEU_ENABLE_MCP_PRTY_BITS are set - attentions are
726  * enabled, when cleared - disabled.
727  */
728 static const struct {
729 	uint32_t addr;
730 	uint32_t bits;
731 } mcp_attn_ctl_regs[] = {
732 	{ MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0,
733 		MISC_AEU_ENABLE_MCP_PRTY_BITS },
734 	{ MISC_REG_AEU_ENABLE4_NIG_0,
735 		MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
736 	{ MISC_REG_AEU_ENABLE4_PXP_0,
737 		MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
738 	{ MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0,
739 		MISC_AEU_ENABLE_MCP_PRTY_BITS },
740 	{ MISC_REG_AEU_ENABLE4_NIG_1,
741 		MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
742 	{ MISC_REG_AEU_ENABLE4_PXP_1,
743 		MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS }
744 };
745 
746 static inline void ecore_set_mcp_parity(struct bxe_softc *sc, uint8_t enable)
747 {
748 	int i;
749 	uint32_t reg_val;
750 
751 	for (i = 0; i < ARRSIZE(mcp_attn_ctl_regs); i++) {
752 		reg_val = REG_RD(sc, mcp_attn_ctl_regs[i].addr);
753 
754 		if (enable)
755 			reg_val |= MISC_AEU_ENABLE_MCP_PRTY_BITS; /* Linux is using mcp_attn_ctl_regs[i].bits */
756 		else
757 			reg_val &= ~MISC_AEU_ENABLE_MCP_PRTY_BITS; /* Linux is using mcp_attn_ctl_regs[i].bits */
758 
759 		REG_WR(sc, mcp_attn_ctl_regs[i].addr, reg_val);
760 	}
761 }
762 
763 static inline uint32_t ecore_parity_reg_mask(struct bxe_softc *sc, int idx)
764 {
765 	if (CHIP_IS_E1(sc))
766 		return ecore_blocks_parity_data[idx].reg_mask.e1;
767 	else if (CHIP_IS_E1H(sc))
768 		return ecore_blocks_parity_data[idx].reg_mask.e1h;
769 	else if (CHIP_IS_E2(sc))
770 		return ecore_blocks_parity_data[idx].reg_mask.e2;
771 	else /* CHIP_IS_E3 */
772 		return ecore_blocks_parity_data[idx].reg_mask.e3;
773 }
774 
775 static inline void ecore_disable_blocks_parity(struct bxe_softc *sc)
776 {
777 	int i;
778 
779 	for (i = 0; i < ARRSIZE(ecore_blocks_parity_data); i++) {
780 		uint32_t dis_mask = ecore_parity_reg_mask(sc, i);
781 
782 		if (dis_mask) {
783 			REG_WR(sc, ecore_blocks_parity_data[i].mask_addr,
784 			       dis_mask);
785 			ECORE_MSG(sc, "Setting parity mask "
786 						 "for %s to\t\t0x%x\n",
787 				    ecore_blocks_parity_data[i].name, dis_mask);
788 		}
789 	}
790 
791 	/* Disable MCP parity attentions */
792 	ecore_set_mcp_parity(sc, FALSE);
793 }
794 
795 /**
796  * Clear the parity error status registers.
797  */
798 static inline void ecore_clear_blocks_parity(struct bxe_softc *sc)
799 {
800 	int i;
801 	uint32_t reg_val, mcp_aeu_bits =
802 		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY |
803 		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY |
804 		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY |
805 		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY;
806 
807 	/* Clear SEM_FAST parities */
808 	REG_WR(sc, XSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
809 	REG_WR(sc, TSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
810 	REG_WR(sc, USEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
811 	REG_WR(sc, CSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
812 
813 	for (i = 0; i < ARRSIZE(ecore_blocks_parity_data); i++) {
814 		uint32_t reg_mask = ecore_parity_reg_mask(sc, i);
815 
816 		if (reg_mask) {
817 			reg_val = REG_RD(sc, ecore_blocks_parity_data[i].
818 					 sts_clr_addr);
819 			if (reg_val & reg_mask)
820 				ECORE_MSG(sc,
821 					   "Parity errors in %s: 0x%x\n",
822 					   ecore_blocks_parity_data[i].name,
823 					   reg_val & reg_mask);
824 		}
825 	}
826 
827 	/* Check if there were parity attentions in MCP */
828 	reg_val = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_MCP);
829 	if (reg_val & mcp_aeu_bits)
830 		ECORE_MSG(sc, "Parity error in MCP: 0x%x\n",
831 			   reg_val & mcp_aeu_bits);
832 
833 	/* Clear parity attentions in MCP:
834 	 * [7]  clears Latched rom_parity
835 	 * [8]  clears Latched ump_rx_parity
836 	 * [9]  clears Latched ump_tx_parity
837 	 * [10] clears Latched scpad_parity (both ports)
838 	 */
839 	REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x780);
840 }
841 
842 static inline void ecore_enable_blocks_parity(struct bxe_softc *sc)
843 {
844 	int i;
845 
846 	for (i = 0; i < ARRSIZE(ecore_blocks_parity_data); i++) {
847 		uint32_t reg_mask = ecore_parity_reg_mask(sc, i);
848 
849 		if (reg_mask)
850 			REG_WR(sc, ecore_blocks_parity_data[i].mask_addr,
851 				ecore_blocks_parity_data[i].en_mask & reg_mask);
852 	}
853 
854 	/* Enable MCP parity attentions */
855 	ecore_set_mcp_parity(sc, TRUE);
856 }
857 
858 
859 #endif /* ECORE_INIT_H */
860 
861