1 /*- 2 * Copyright (c) 2007-2013 Broadcom Corporation. All rights reserved. 3 * 4 * Eric Davis <edavis@broadcom.com> 5 * David Christensen <davidch@broadcom.com> 6 * Gary Zambrano <zambrano@broadcom.com> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. Neither the name of Broadcom Corporation nor the name of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written consent. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' 22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 31 * THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #ifndef ECORE_INIT_H 38 #define ECORE_INIT_H 39 40 /* Init operation types and structures */ 41 enum { 42 OP_RD = 0x1, /* read a single register */ 43 OP_WR, /* write a single register */ 44 OP_SW, /* copy a string to the device */ 45 OP_ZR, /* clear memory */ 46 OP_ZP, /* unzip then copy with DMAE */ 47 OP_WR_64, /* write 64 bit pattern */ 48 OP_WB, /* copy a string using DMAE */ 49 #ifndef FW_ZIP_SUPPORT 50 OP_FW, /* copy an array from fw data (only used with unzipped FW) */ 51 #endif 52 OP_WB_ZR, /* Clear a string using DMAE or indirect-wr */ 53 OP_IF_MODE_OR, /* Skip the following ops if all init modes don't match */ 54 OP_IF_MODE_AND, /* Skip the following ops if any init modes don't match */ 55 OP_IF_PHASE, 56 OP_RT, 57 OP_DELAY, 58 OP_VERIFY, 59 OP_MAX 60 }; 61 62 enum { 63 STAGE_START, 64 STAGE_END, 65 }; 66 67 /* Returns the index of start or end of a specific block stage in ops array*/ 68 #define BLOCK_OPS_IDX(block, stage, end) \ 69 (2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end)) 70 71 72 /* structs for the various opcodes */ 73 struct raw_op { 74 uint32_t op:8; 75 uint32_t offset:24; 76 uint32_t raw_data; 77 }; 78 79 struct op_read { 80 uint32_t op:8; 81 uint32_t offset:24; 82 uint32_t val; 83 }; 84 85 struct op_write { 86 uint32_t op:8; 87 uint32_t offset:24; 88 uint32_t val; 89 }; 90 91 struct op_arr_write { 92 uint32_t op:8; 93 uint32_t offset:24; 94 #ifdef __BIG_ENDIAN 95 uint16_t data_len; 96 uint16_t data_off; 97 #else /* __LITTLE_ENDIAN */ 98 uint16_t data_off; 99 uint16_t data_len; 100 #endif 101 }; 102 103 struct op_zero { 104 uint32_t op:8; 105 uint32_t offset:24; 106 uint32_t len; 107 }; 108 109 struct op_if_mode { 110 uint32_t op:8; 111 uint32_t cmd_offset:24; 112 uint32_t mode_bit_map; 113 }; 114 115 struct op_if_phase { 116 uint32_t op:8; 117 uint32_t cmd_offset:24; 118 uint32_t phase_bit_map; 119 }; 120 121 struct op_delay { 122 uint32_t op:8; 123 uint32_t reserved:24; 124 uint32_t delay; 125 }; 126 127 union init_op { 128 struct op_read read; 129 struct op_write write; 130 struct op_arr_write arr_wr; 131 struct op_zero zero; 132 struct raw_op raw; 133 struct op_if_mode if_mode; 134 struct op_if_phase if_phase; 135 struct op_delay delay; 136 }; 137 138 139 /* Init Phases */ 140 enum { 141 PHASE_COMMON, 142 PHASE_PORT0, 143 PHASE_PORT1, 144 PHASE_PF0, 145 PHASE_PF1, 146 PHASE_PF2, 147 PHASE_PF3, 148 PHASE_PF4, 149 PHASE_PF5, 150 PHASE_PF6, 151 PHASE_PF7, 152 NUM_OF_INIT_PHASES 153 }; 154 155 /* Init Modes */ 156 enum { 157 MODE_ASIC = 0x00000001, 158 MODE_FPGA = 0x00000002, 159 MODE_EMUL = 0x00000004, 160 MODE_E2 = 0x00000008, 161 MODE_E3 = 0x00000010, 162 MODE_PORT2 = 0x00000020, 163 MODE_PORT4 = 0x00000040, 164 MODE_SF = 0x00000080, 165 MODE_MF = 0x00000100, 166 MODE_MF_SD = 0x00000200, 167 MODE_MF_SI = 0x00000400, 168 MODE_MF_AFEX = 0x00000800, 169 MODE_E3_A0 = 0x00001000, 170 MODE_E3_B0 = 0x00002000, 171 MODE_COS3 = 0x00004000, 172 MODE_COS6 = 0x00008000, 173 MODE_LITTLE_ENDIAN = 0x00010000, 174 MODE_BIG_ENDIAN = 0x00020000, 175 }; 176 177 /* Init Blocks */ 178 enum { 179 BLOCK_ATC, 180 BLOCK_BRB1, 181 BLOCK_CCM, 182 BLOCK_CDU, 183 BLOCK_CFC, 184 BLOCK_CSDM, 185 BLOCK_CSEM, 186 BLOCK_DBG, 187 BLOCK_DMAE, 188 BLOCK_DORQ, 189 BLOCK_HC, 190 BLOCK_IGU, 191 BLOCK_MISC, 192 BLOCK_NIG, 193 BLOCK_PBF, 194 BLOCK_PGLUE_B, 195 BLOCK_PRS, 196 BLOCK_PXP2, 197 BLOCK_PXP, 198 BLOCK_QM, 199 BLOCK_SRC, 200 BLOCK_TCM, 201 BLOCK_TM, 202 BLOCK_TSDM, 203 BLOCK_TSEM, 204 BLOCK_UCM, 205 BLOCK_UPB, 206 BLOCK_USDM, 207 BLOCK_USEM, 208 BLOCK_XCM, 209 BLOCK_XPB, 210 BLOCK_XSDM, 211 BLOCK_XSEM, 212 BLOCK_MISC_AEU, 213 NUM_OF_INIT_BLOCKS 214 }; 215 216 217 218 219 220 221 222 223 /* Vnics per mode */ 224 #define ECORE_PORT2_MODE_NUM_VNICS 4 225 226 227 /* QM queue numbers */ 228 #define ECORE_ETH_Q 0 229 #define ECORE_TOE_Q 3 230 #define ECORE_TOE_ACK_Q 6 231 #define ECORE_ISCSI_Q 9 232 #define ECORE_ISCSI_ACK_Q 11 233 #define ECORE_FCOE_Q 10 234 235 /* Vnics per mode */ 236 #define ECORE_PORT4_MODE_NUM_VNICS 2 237 238 /* COS offset for port1 in E3 B0 4port mode */ 239 #define ECORE_E3B0_PORT1_COS_OFFSET 3 240 241 /* QM Register addresses */ 242 #define ECORE_Q_VOQ_REG_ADDR(pf_q_num)\ 243 (QM_REG_QVOQIDX_0 + 4 * (pf_q_num)) 244 #define ECORE_VOQ_Q_REG_ADDR(cos, pf_q_num)\ 245 (QM_REG_VOQQMASK_0_LSB + 4 * ((cos) * 2 + ((pf_q_num) >> 5))) 246 #define ECORE_Q_CMDQ_REG_ADDR(pf_q_num)\ 247 (QM_REG_BYTECRDCMDQ_0 + 4 * ((pf_q_num) >> 4)) 248 249 /* extracts the QM queue number for the specified port and vnic */ 250 #define ECORE_PF_Q_NUM(q_num, port, vnic)\ 251 ((((port) << 1) | (vnic)) * 16 + (q_num)) 252 253 254 /* Maps the specified queue to the specified COS */ 255 static inline void ecore_map_q_cos(struct bxe_softc *sc, uint32_t q_num, uint32_t new_cos) 256 { 257 /* find current COS mapping */ 258 uint32_t curr_cos = REG_RD(sc, QM_REG_QVOQIDX_0 + q_num * 4); 259 260 /* check if queue->COS mapping has changed */ 261 if (curr_cos != new_cos) { 262 uint32_t num_vnics = ECORE_PORT2_MODE_NUM_VNICS; 263 uint32_t reg_addr, reg_bit_map, vnic; 264 265 /* update parameters for 4port mode */ 266 if (INIT_MODE_FLAGS(sc) & MODE_PORT4) { 267 num_vnics = ECORE_PORT4_MODE_NUM_VNICS; 268 if (PORT_ID(sc)) { 269 curr_cos += ECORE_E3B0_PORT1_COS_OFFSET; 270 new_cos += ECORE_E3B0_PORT1_COS_OFFSET; 271 } 272 } 273 274 /* change queue mapping for each VNIC */ 275 for (vnic = 0; vnic < num_vnics; vnic++) { 276 uint32_t pf_q_num = 277 ECORE_PF_Q_NUM(q_num, PORT_ID(sc), vnic); 278 uint32_t q_bit_map = 1 << (pf_q_num & 0x1f); 279 280 /* overwrite queue->VOQ mapping */ 281 REG_WR(sc, ECORE_Q_VOQ_REG_ADDR(pf_q_num), new_cos); 282 283 /* clear queue bit from current COS bit map */ 284 reg_addr = ECORE_VOQ_Q_REG_ADDR(curr_cos, pf_q_num); 285 reg_bit_map = REG_RD(sc, reg_addr); 286 REG_WR(sc, reg_addr, reg_bit_map & (~q_bit_map)); 287 288 /* set queue bit in new COS bit map */ 289 reg_addr = ECORE_VOQ_Q_REG_ADDR(new_cos, pf_q_num); 290 reg_bit_map = REG_RD(sc, reg_addr); 291 REG_WR(sc, reg_addr, reg_bit_map | q_bit_map); 292 293 /* set/clear queue bit in command-queue bit map 294 (E2/E3A0 only, valid COS values are 0/1) */ 295 if (!(INIT_MODE_FLAGS(sc) & MODE_E3_B0)) { 296 reg_addr = ECORE_Q_CMDQ_REG_ADDR(pf_q_num); 297 reg_bit_map = REG_RD(sc, reg_addr); 298 q_bit_map = 1 << (2 * (pf_q_num & 0xf)); 299 reg_bit_map = new_cos ? 300 (reg_bit_map | q_bit_map) : 301 (reg_bit_map & (~q_bit_map)); 302 REG_WR(sc, reg_addr, reg_bit_map); 303 } 304 } 305 } 306 } 307 308 /* Configures the QM according to the specified per-traffic-type COSes */ 309 static inline void ecore_dcb_config_qm(struct bxe_softc *sc, enum cos_mode mode, 310 struct priority_cos *traffic_cos) 311 { 312 ecore_map_q_cos(sc, ECORE_FCOE_Q, 313 traffic_cos[LLFC_TRAFFIC_TYPE_FCOE].cos); 314 ecore_map_q_cos(sc, ECORE_ISCSI_Q, 315 traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos); 316 ecore_map_q_cos(sc, ECORE_ISCSI_ACK_Q, 317 traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos); 318 if (mode != STATIC_COS) { 319 /* required only in OVERRIDE_COS mode */ 320 ecore_map_q_cos(sc, ECORE_ETH_Q, 321 traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos); 322 ecore_map_q_cos(sc, ECORE_TOE_Q, 323 traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos); 324 ecore_map_q_cos(sc, ECORE_TOE_ACK_Q, 325 traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos); 326 } 327 } 328 329 330 /* 331 * congestion managment port init api description 332 * the api works as follows: 333 * the driver should pass the cmng_init_input struct, the port_init function 334 * will prepare the required internal ram structure which will be passed back 335 * to the driver (cmng_init) that will write it into the internal ram. 336 * 337 * IMPORTANT REMARKS: 338 * 1. the cmng_init struct does not represent the contiguous internal ram 339 * structure. the driver should use the XSTORM_CMNG_PERPORT_VARS_OFFSET 340 * offset in order to write the port sub struct and the 341 * PFID_FROM_PORT_AND_VNIC offset for writing the vnic sub struct (in other 342 * words - don't use memcpy!). 343 * 2. although the cmng_init struct is filled for the maximal vnic number 344 * possible, the driver should only write the valid vnics into the internal 345 * ram according to the appropriate port mode. 346 */ 347 #define BITS_TO_BYTES(x) ((x)/8) 348 349 /* CMNG constants, as derived from system spec calculations */ 350 351 /* default MIN rate in case VNIC min rate is configured to zero- 100Mbps */ 352 #define DEF_MIN_RATE 100 353 354 /* resolution of the rate shaping timer - 400 usec */ 355 #define RS_PERIODIC_TIMEOUT_USEC 400 356 357 /* 358 * number of bytes in single QM arbitration cycle - 359 * coefficient for calculating the fairness timer 360 */ 361 #define QM_ARB_BYTES 160000 362 363 /* resolution of Min algorithm 1:100 */ 364 #define MIN_RES 100 365 366 /* 367 * how many bytes above threshold for 368 * the minimal credit of Min algorithm 369 */ 370 #define MIN_ABOVE_THRESH 32768 371 372 /* 373 * Fairness algorithm integration time coefficient - 374 * for calculating the actual Tfair 375 */ 376 #define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES) 377 378 /* Memory of fairness algorithm - 2 cycles */ 379 #define FAIR_MEM 2 380 #define SAFC_TIMEOUT_USEC 52 381 382 #define SDM_TICKS 4 383 384 385 static inline void ecore_init_max(const struct cmng_init_input *input_data, 386 uint32_t r_param, struct cmng_init *ram_data) 387 { 388 uint32_t vnic; 389 struct cmng_vnic *vdata = &ram_data->vnic; 390 struct cmng_struct_per_port *pdata = &ram_data->port; 391 /* 392 * rate shaping per-port variables 393 * 100 micro seconds in SDM ticks = 25 394 * since each tick is 4 microSeconds 395 */ 396 397 pdata->rs_vars.rs_periodic_timeout = 398 RS_PERIODIC_TIMEOUT_USEC / SDM_TICKS; 399 400 /* this is the threshold below which no timer arming will occur. 401 * 1.25 coefficient is for the threshold to be a little bigger 402 * then the real time to compensate for timer in-accuracy 403 */ 404 pdata->rs_vars.rs_threshold = 405 (5 * RS_PERIODIC_TIMEOUT_USEC * r_param)/4; 406 407 /* rate shaping per-vnic variables */ 408 for (vnic = 0; vnic < ECORE_PORT2_MODE_NUM_VNICS; vnic++) { 409 /* global vnic counter */ 410 vdata->vnic_max_rate[vnic].vn_counter.rate = 411 input_data->vnic_max_rate[vnic]; 412 /* 413 * maximal Mbps for this vnic 414 * the quota in each timer period - number of bytes 415 * transmitted in this period 416 */ 417 vdata->vnic_max_rate[vnic].vn_counter.quota = 418 RS_PERIODIC_TIMEOUT_USEC * 419 (uint32_t)vdata->vnic_max_rate[vnic].vn_counter.rate / 8; 420 } 421 422 } 423 424 static inline void ecore_init_max_per_vn(uint16_t vnic_max_rate, 425 struct rate_shaping_vars_per_vn *ram_data) 426 { 427 /* global vnic counter */ 428 ram_data->vn_counter.rate = vnic_max_rate; 429 430 /* 431 * maximal Mbps for this vnic 432 * the quota in each timer period - number of bytes 433 * transmitted in this period 434 */ 435 ram_data->vn_counter.quota = 436 RS_PERIODIC_TIMEOUT_USEC * (uint32_t)vnic_max_rate / 8; 437 } 438 439 static inline void ecore_init_min(const struct cmng_init_input *input_data, 440 uint32_t r_param, struct cmng_init *ram_data) 441 { 442 uint32_t vnic, fair_periodic_timeout_usec, vnicWeightSum, tFair; 443 struct cmng_vnic *vdata = &ram_data->vnic; 444 struct cmng_struct_per_port *pdata = &ram_data->port; 445 446 /* this is the resolution of the fairness timer */ 447 fair_periodic_timeout_usec = QM_ARB_BYTES / r_param; 448 449 /* 450 * fairness per-port variables 451 * for 10G it is 1000usec. for 1G it is 10000usec. 452 */ 453 tFair = T_FAIR_COEF / input_data->port_rate; 454 455 /* this is the threshold below which we won't arm the timer anymore */ 456 pdata->fair_vars.fair_threshold = QM_ARB_BYTES; 457 458 /* 459 * we multiply by 1e3/8 to get bytes/msec. We don't want the credits 460 * to pass a credit of the T_FAIR*FAIR_MEM (algorithm resolution) 461 */ 462 pdata->fair_vars.upper_bound = r_param * tFair * FAIR_MEM; 463 464 /* since each tick is 4 microSeconds */ 465 pdata->fair_vars.fairness_timeout = 466 fair_periodic_timeout_usec / SDM_TICKS; 467 468 /* calculate sum of weights */ 469 vnicWeightSum = 0; 470 471 for (vnic = 0; vnic < ECORE_PORT2_MODE_NUM_VNICS; vnic++) 472 vnicWeightSum += input_data->vnic_min_rate[vnic]; 473 474 /* global vnic counter */ 475 if (vnicWeightSum > 0) { 476 /* fairness per-vnic variables */ 477 for (vnic = 0; vnic < ECORE_PORT2_MODE_NUM_VNICS; vnic++) { 478 /* 479 * this is the credit for each period of the fairness 480 * algorithm - number of bytes in T_FAIR (this vnic 481 * share of the port rate) 482 */ 483 vdata->vnic_min_rate[vnic].vn_credit_delta = 484 ((uint32_t)(input_data->vnic_min_rate[vnic]) * 100 * 485 (T_FAIR_COEF / (8 * 100 * vnicWeightSum))); 486 if (vdata->vnic_min_rate[vnic].vn_credit_delta < 487 pdata->fair_vars.fair_threshold + 488 MIN_ABOVE_THRESH) { 489 vdata->vnic_min_rate[vnic].vn_credit_delta = 490 pdata->fair_vars.fair_threshold + 491 MIN_ABOVE_THRESH; 492 } 493 } 494 } 495 } 496 497 static inline void ecore_init_fw_wrr(const struct cmng_init_input *input_data, 498 uint32_t r_param, struct cmng_init *ram_data) 499 { 500 uint32_t vnic, cos; 501 uint32_t cosWeightSum = 0; 502 struct cmng_vnic *vdata = &ram_data->vnic; 503 struct cmng_struct_per_port *pdata = &ram_data->port; 504 505 for (cos = 0; cos < MAX_COS_NUMBER; cos++) 506 cosWeightSum += input_data->cos_min_rate[cos]; 507 508 if (cosWeightSum > 0) { 509 510 for (vnic = 0; vnic < ECORE_PORT2_MODE_NUM_VNICS; vnic++) { 511 /* 512 * Since cos and vnic shouldn't work together the rate 513 * to divide between the coses is the port rate. 514 */ 515 uint32_t *ccd = vdata->vnic_min_rate[vnic].cos_credit_delta; 516 for (cos = 0; cos < MAX_COS_NUMBER; cos++) { 517 /* 518 * this is the credit for each period of 519 * the fairness algorithm - number of bytes 520 * in T_FAIR (this cos share of the vnic rate) 521 */ 522 ccd[cos] = 523 ((uint32_t)input_data->cos_min_rate[cos] * 100 * 524 (T_FAIR_COEF / (8 * 100 * cosWeightSum))); 525 if (ccd[cos] < pdata->fair_vars.fair_threshold 526 + MIN_ABOVE_THRESH) { 527 ccd[cos] = 528 pdata->fair_vars.fair_threshold + 529 MIN_ABOVE_THRESH; 530 } 531 } 532 } 533 } 534 } 535 536 static inline void ecore_init_safc(const struct cmng_init_input *input_data, 537 struct cmng_init *ram_data) 538 { 539 /* in microSeconds */ 540 ram_data->port.safc_vars.safc_timeout_usec = SAFC_TIMEOUT_USEC; 541 } 542 543 /* Congestion management port init */ 544 static inline void ecore_init_cmng(const struct cmng_init_input *input_data, 545 struct cmng_init *ram_data) 546 { 547 uint32_t r_param; 548 ECORE_MEMSET(ram_data, 0,sizeof(struct cmng_init)); 549 550 ram_data->port.flags = input_data->flags; 551 552 /* 553 * number of bytes transmitted in a rate of 10Gbps 554 * in one usec = 1.25KB. 555 */ 556 r_param = BITS_TO_BYTES(input_data->port_rate); 557 ecore_init_max(input_data, r_param, ram_data); 558 ecore_init_min(input_data, r_param, ram_data); 559 ecore_init_fw_wrr(input_data, r_param, ram_data); 560 ecore_init_safc(input_data, ram_data); 561 } 562 563 564 565 566 /* Returns the index of start or end of a specific block stage in ops array*/ 567 #define BLOCK_OPS_IDX(block, stage, end) \ 568 (2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end)) 569 570 571 #define INITOP_SET 0 /* set the HW directly */ 572 #define INITOP_CLEAR 1 /* clear the HW directly */ 573 #define INITOP_INIT 2 /* set the init-value array */ 574 575 /**************************************************************************** 576 * ILT management 577 ****************************************************************************/ 578 struct ilt_line { 579 ecore_dma_addr_t page_mapping; 580 void *page; 581 uint32_t size; 582 }; 583 584 struct ilt_client_info { 585 uint32_t page_size; 586 uint16_t start; 587 uint16_t end; 588 uint16_t client_num; 589 uint16_t flags; 590 #define ILT_CLIENT_SKIP_INIT 0x1 591 #define ILT_CLIENT_SKIP_MEM 0x2 592 }; 593 594 struct ecore_ilt { 595 uint32_t start_line; 596 struct ilt_line *lines; 597 struct ilt_client_info clients[4]; 598 #define ILT_CLIENT_CDU 0 599 #define ILT_CLIENT_QM 1 600 #define ILT_CLIENT_SRC 2 601 #define ILT_CLIENT_TM 3 602 }; 603 604 /**************************************************************************** 605 * SRC configuration 606 ****************************************************************************/ 607 struct src_ent { 608 uint8_t opaque[56]; 609 uint64_t next; 610 }; 611 612 /**************************************************************************** 613 * Parity configuration 614 ****************************************************************************/ 615 #define BLOCK_PRTY_INFO(block, en_mask, m1, m1h, m2, m3) \ 616 { \ 617 block##_REG_##block##_PRTY_MASK, \ 618 block##_REG_##block##_PRTY_STS_CLR, \ 619 en_mask, {m1, m1h, m2, m3}, #block \ 620 } 621 622 #define BLOCK_PRTY_INFO_0(block, en_mask, m1, m1h, m2, m3) \ 623 { \ 624 block##_REG_##block##_PRTY_MASK_0, \ 625 block##_REG_##block##_PRTY_STS_CLR_0, \ 626 en_mask, {m1, m1h, m2, m3}, #block"_0" \ 627 } 628 629 #define BLOCK_PRTY_INFO_1(block, en_mask, m1, m1h, m2, m3) \ 630 { \ 631 block##_REG_##block##_PRTY_MASK_1, \ 632 block##_REG_##block##_PRTY_STS_CLR_1, \ 633 en_mask, {m1, m1h, m2, m3}, #block"_1" \ 634 } 635 636 static const struct { 637 uint32_t mask_addr; 638 uint32_t sts_clr_addr; 639 uint32_t en_mask; /* Mask to enable parity attentions */ 640 struct { 641 uint32_t e1; /* 57710 */ 642 uint32_t e1h; /* 57711 */ 643 uint32_t e2; /* 57712 */ 644 uint32_t e3; /* 578xx */ 645 } reg_mask; /* Register mask (all valid bits) */ 646 char name[8]; /* Block's longest name is 7 characters long 647 * (name + suffix) 648 */ 649 } ecore_blocks_parity_data[] = { 650 /* bit 19 masked */ 651 /* REG_WR(bp, PXP_REG_PXP_PRTY_MASK, 0x80000); */ 652 /* bit 5,18,20-31 */ 653 /* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_0, 0xfff40020); */ 654 /* bit 5 */ 655 /* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_1, 0x20); */ 656 /* REG_WR(bp, HC_REG_HC_PRTY_MASK, 0x0); */ 657 /* REG_WR(bp, MISC_REG_MISC_PRTY_MASK, 0x0); */ 658 659 /* Block IGU, MISC, PXP and PXP2 parity errors as long as we don't 660 * want to handle "system kill" flow at the moment. 661 */ 662 BLOCK_PRTY_INFO(PXP, 0x7ffffff, 0x3ffffff, 0x3ffffff, 0x7ffffff, 663 0x7ffffff), 664 BLOCK_PRTY_INFO_0(PXP2, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 665 0xffffffff), 666 BLOCK_PRTY_INFO_1(PXP2, 0x1ffffff, 0x7f, 0x7f, 0x7ff, 0x1ffffff), 667 BLOCK_PRTY_INFO(HC, 0x7, 0x7, 0x7, 0, 0), 668 BLOCK_PRTY_INFO(NIG, 0xffffffff, 0x3fffffff, 0xffffffff, 0, 0), 669 BLOCK_PRTY_INFO_0(NIG, 0xffffffff, 0, 0, 0xffffffff, 0xffffffff), 670 BLOCK_PRTY_INFO_1(NIG, 0xffff, 0, 0, 0xff, 0xffff), 671 BLOCK_PRTY_INFO(IGU, 0x7ff, 0, 0, 0x7ff, 0x7ff), 672 BLOCK_PRTY_INFO(MISC, 0x1, 0x1, 0x1, 0x1, 0x1), 673 BLOCK_PRTY_INFO(QM, 0, 0x1ff, 0xfff, 0xfff, 0xfff), 674 BLOCK_PRTY_INFO(ATC, 0x1f, 0, 0, 0x1f, 0x1f), 675 BLOCK_PRTY_INFO(PGLUE_B, 0x3, 0, 0, 0x3, 0x3), 676 BLOCK_PRTY_INFO(DORQ, 0, 0x3, 0x3, 0x3, 0x3), 677 {GRCBASE_UPB + PB_REG_PB_PRTY_MASK, 678 GRCBASE_UPB + PB_REG_PB_PRTY_STS_CLR, 0xf, 679 {0xf, 0xf, 0xf, 0xf}, "UPB"}, 680 {GRCBASE_XPB + PB_REG_PB_PRTY_MASK, 681 GRCBASE_XPB + PB_REG_PB_PRTY_STS_CLR, 0, 682 {0xf, 0xf, 0xf, 0xf}, "XPB"}, 683 BLOCK_PRTY_INFO(SRC, 0x4, 0x7, 0x7, 0x7, 0x7), 684 BLOCK_PRTY_INFO(CDU, 0, 0x1f, 0x1f, 0x1f, 0x1f), 685 BLOCK_PRTY_INFO(CFC, 0, 0xf, 0xf, 0xf, 0x3f), 686 BLOCK_PRTY_INFO(DBG, 0, 0x1, 0x1, 0x1, 0x1), 687 BLOCK_PRTY_INFO(DMAE, 0, 0xf, 0xf, 0xf, 0xf), 688 BLOCK_PRTY_INFO(BRB1, 0, 0xf, 0xf, 0xf, 0xf), 689 BLOCK_PRTY_INFO(PRS, (1<<6), 0xff, 0xff, 0xff, 0xff), 690 BLOCK_PRTY_INFO(PBF, 0, 0, 0x3ffff, 0xfffff, 0xfffffff), 691 BLOCK_PRTY_INFO(TM, 0, 0, 0x7f, 0x7f, 0x7f), 692 BLOCK_PRTY_INFO(TSDM, 0x18, 0x7ff, 0x7ff, 0x7ff, 0x7ff), 693 BLOCK_PRTY_INFO(CSDM, 0x8, 0x7ff, 0x7ff, 0x7ff, 0x7ff), 694 BLOCK_PRTY_INFO(USDM, 0x38, 0x7ff, 0x7ff, 0x7ff, 0x7ff), 695 BLOCK_PRTY_INFO(XSDM, 0x8, 0x7ff, 0x7ff, 0x7ff, 0x7ff), 696 BLOCK_PRTY_INFO(TCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff), 697 BLOCK_PRTY_INFO(CCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff), 698 BLOCK_PRTY_INFO(UCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff), 699 BLOCK_PRTY_INFO(XCM, 0, 0, 0x3fffffff, 0x3fffffff, 0x3fffffff), 700 BLOCK_PRTY_INFO_0(TSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff, 701 0xffffffff), 702 BLOCK_PRTY_INFO_1(TSEM, 0, 0x3, 0x1f, 0x3f, 0x3f), 703 BLOCK_PRTY_INFO_0(USEM, 0, 0xffffffff, 0xffffffff, 0xffffffff, 704 0xffffffff), 705 BLOCK_PRTY_INFO_1(USEM, 0, 0x3, 0x1f, 0x1f, 0x1f), 706 BLOCK_PRTY_INFO_0(CSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff, 707 0xffffffff), 708 BLOCK_PRTY_INFO_1(CSEM, 0, 0x3, 0x1f, 0x1f, 0x1f), 709 BLOCK_PRTY_INFO_0(XSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff, 710 0xffffffff), 711 BLOCK_PRTY_INFO_1(XSEM, 0, 0x3, 0x1f, 0x3f, 0x3f), 712 }; 713 714 715 /* [28] MCP Latched rom_parity 716 * [29] MCP Latched ump_rx_parity 717 * [30] MCP Latched ump_tx_parity 718 * [31] MCP Latched scpad_parity 719 */ 720 #define MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS \ 721 (AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | \ 722 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | \ 723 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY) 724 725 #define MISC_AEU_ENABLE_MCP_PRTY_BITS \ 726 (MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS | \ 727 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY) 728 729 /* Below registers control the MCP parity attention output. When 730 * MISC_AEU_ENABLE_MCP_PRTY_BITS are set - attentions are 731 * enabled, when cleared - disabled. 732 */ 733 static const struct { 734 uint32_t addr; 735 uint32_t bits; 736 } mcp_attn_ctl_regs[] = { 737 { MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0, 738 MISC_AEU_ENABLE_MCP_PRTY_BITS }, 739 { MISC_REG_AEU_ENABLE4_NIG_0, 740 MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS }, 741 { MISC_REG_AEU_ENABLE4_PXP_0, 742 MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS }, 743 { MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0, 744 MISC_AEU_ENABLE_MCP_PRTY_BITS }, 745 { MISC_REG_AEU_ENABLE4_NIG_1, 746 MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS }, 747 { MISC_REG_AEU_ENABLE4_PXP_1, 748 MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS } 749 }; 750 751 static inline void ecore_set_mcp_parity(struct bxe_softc *sc, uint8_t enable) 752 { 753 int i; 754 uint32_t reg_val; 755 756 for (i = 0; i < ARRSIZE(mcp_attn_ctl_regs); i++) { 757 reg_val = REG_RD(sc, mcp_attn_ctl_regs[i].addr); 758 759 if (enable) 760 reg_val |= MISC_AEU_ENABLE_MCP_PRTY_BITS; /* Linux is using mcp_attn_ctl_regs[i].bits */ 761 else 762 reg_val &= ~MISC_AEU_ENABLE_MCP_PRTY_BITS; /* Linux is using mcp_attn_ctl_regs[i].bits */ 763 764 REG_WR(sc, mcp_attn_ctl_regs[i].addr, reg_val); 765 } 766 } 767 768 static inline uint32_t ecore_parity_reg_mask(struct bxe_softc *sc, int idx) 769 { 770 if (CHIP_IS_E1(sc)) 771 return ecore_blocks_parity_data[idx].reg_mask.e1; 772 else if (CHIP_IS_E1H(sc)) 773 return ecore_blocks_parity_data[idx].reg_mask.e1h; 774 else if (CHIP_IS_E2(sc)) 775 return ecore_blocks_parity_data[idx].reg_mask.e2; 776 else /* CHIP_IS_E3 */ 777 return ecore_blocks_parity_data[idx].reg_mask.e3; 778 } 779 780 static inline void ecore_disable_blocks_parity(struct bxe_softc *sc) 781 { 782 int i; 783 784 for (i = 0; i < ARRSIZE(ecore_blocks_parity_data); i++) { 785 uint32_t dis_mask = ecore_parity_reg_mask(sc, i); 786 787 if (dis_mask) { 788 REG_WR(sc, ecore_blocks_parity_data[i].mask_addr, 789 dis_mask); 790 ECORE_MSG(sc, "Setting parity mask " 791 "for %s to\t\t0x%x\n", 792 ecore_blocks_parity_data[i].name, dis_mask); 793 } 794 } 795 796 /* Disable MCP parity attentions */ 797 ecore_set_mcp_parity(sc, FALSE); 798 } 799 800 /** 801 * Clear the parity error status registers. 802 */ 803 static inline void ecore_clear_blocks_parity(struct bxe_softc *sc) 804 { 805 int i; 806 uint32_t reg_val, mcp_aeu_bits = 807 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | 808 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY | 809 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | 810 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY; 811 812 /* Clear SEM_FAST parities */ 813 REG_WR(sc, XSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1); 814 REG_WR(sc, TSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1); 815 REG_WR(sc, USEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1); 816 REG_WR(sc, CSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1); 817 818 for (i = 0; i < ARRSIZE(ecore_blocks_parity_data); i++) { 819 uint32_t reg_mask = ecore_parity_reg_mask(sc, i); 820 821 if (reg_mask) { 822 reg_val = REG_RD(sc, ecore_blocks_parity_data[i]. 823 sts_clr_addr); 824 if (reg_val & reg_mask) 825 ECORE_MSG(sc, 826 "Parity errors in %s: 0x%x\n", 827 ecore_blocks_parity_data[i].name, 828 reg_val & reg_mask); 829 } 830 } 831 832 /* Check if there were parity attentions in MCP */ 833 reg_val = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_MCP); 834 if (reg_val & mcp_aeu_bits) 835 ECORE_MSG(sc, "Parity error in MCP: 0x%x\n", 836 reg_val & mcp_aeu_bits); 837 838 /* Clear parity attentions in MCP: 839 * [7] clears Latched rom_parity 840 * [8] clears Latched ump_rx_parity 841 * [9] clears Latched ump_tx_parity 842 * [10] clears Latched scpad_parity (both ports) 843 */ 844 REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x780); 845 } 846 847 static inline void ecore_enable_blocks_parity(struct bxe_softc *sc) 848 { 849 int i; 850 851 for (i = 0; i < ARRSIZE(ecore_blocks_parity_data); i++) { 852 uint32_t reg_mask = ecore_parity_reg_mask(sc, i); 853 854 if (reg_mask) 855 REG_WR(sc, ecore_blocks_parity_data[i].mask_addr, 856 ecore_blocks_parity_data[i].en_mask & reg_mask); 857 } 858 859 /* Enable MCP parity attentions */ 860 ecore_set_mcp_parity(sc, TRUE); 861 } 862 863 864 #endif /* ECORE_INIT_H */ 865 866