xref: /freebsd/sys/dev/bxe/bxe.h (revision dc318a4ffabcbfa23bb56a33403aad36e6de30af)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  *
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
26  * THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #ifndef __BXE_H__
30 #define __BXE_H__
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/param.h>
36 #include <sys/kernel.h>
37 #include <sys/systm.h>
38 #include <sys/lock.h>
39 #include <sys/mutex.h>
40 #include <sys/sx.h>
41 #include <sys/module.h>
42 #include <sys/endian.h>
43 #include <sys/types.h>
44 #include <sys/malloc.h>
45 #include <sys/kobj.h>
46 #include <sys/bus.h>
47 #include <sys/rman.h>
48 #include <sys/socket.h>
49 #include <sys/sockio.h>
50 #include <sys/sysctl.h>
51 #include <sys/smp.h>
52 #include <sys/bitstring.h>
53 #include <sys/limits.h>
54 #include <sys/queue.h>
55 #include <sys/taskqueue.h>
56 #include <contrib/zlib/zlib.h>
57 
58 #include <net/debugnet.h>
59 #include <net/if.h>
60 #include <net/if_types.h>
61 #include <net/if_arp.h>
62 #include <net/ethernet.h>
63 #include <net/if_dl.h>
64 #include <net/if_var.h>
65 #include <net/if_media.h>
66 #include <net/if_vlan_var.h>
67 #include <net/bpf.h>
68 
69 #include <netinet/in.h>
70 #include <netinet/ip.h>
71 #include <netinet/ip6.h>
72 #include <netinet/tcp.h>
73 #include <netinet/udp.h>
74 
75 #include <dev/pci/pcireg.h>
76 #include <dev/pci/pcivar.h>
77 
78 #include <machine/atomic.h>
79 #include <machine/resource.h>
80 #include <machine/endian.h>
81 #include <machine/bus.h>
82 #include <machine/in_cksum.h>
83 
84 #include "device_if.h"
85 #include "bus_if.h"
86 #include "pci_if.h"
87 
88 #if _BYTE_ORDER == _LITTLE_ENDIAN
89 #ifndef LITTLE_ENDIAN
90 #define LITTLE_ENDIAN
91 #endif
92 #ifndef __LITTLE_ENDIAN
93 #define __LITTLE_ENDIAN
94 #endif
95 #undef BIG_ENDIAN
96 #undef __BIG_ENDIAN
97 #else /* _BIG_ENDIAN */
98 #ifndef BIG_ENDIAN
99 #define BIG_ENDIAN
100 #endif
101 #ifndef __BIG_ENDIAN
102 #define __BIG_ENDIAN
103 #endif
104 #undef LITTLE_ENDIAN
105 #undef __LITTLE_ENDIAN
106 #endif
107 
108 #include "ecore_mfw_req.h"
109 #include "ecore_fw_defs.h"
110 #include "ecore_hsi.h"
111 #include "ecore_reg.h"
112 #include "bxe_dcb.h"
113 #include "bxe_stats.h"
114 
115 #include "bxe_elink.h"
116 
117 #define VF_MAC_CREDIT_CNT 0
118 #define VF_VLAN_CREDIT_CNT (0)
119 
120 #ifndef ARRAY_SIZE
121 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
122 #endif
123 #ifndef ARRSIZE
124 #define ARRSIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
125 #endif
126 #ifndef DIV_ROUND_UP
127 #define DIV_ROUND_UP(n, d) (((n) + (d) - 1) / (d))
128 #endif
129 #ifndef roundup
130 #define roundup(x, y) ((((x) + ((y) - 1)) / (y)) * (y))
131 #endif
132 #ifndef ilog2
133 static inline
134 int bxe_ilog2(int x)
135 {
136     int log = 0;
137     while (x >>= 1) log++;
138     return (log);
139 }
140 #define ilog2(x) bxe_ilog2(x)
141 #endif
142 
143 #include "ecore_sp.h"
144 
145 #define BRCM_VENDORID 0x14e4
146 #define	QLOGIC_VENDORID	0x1077
147 #define PCI_ANY_ID    (uint16_t)(~0U)
148 
149 struct bxe_device_type
150 {
151     uint16_t bxe_vid;
152     uint16_t bxe_did;
153     uint16_t bxe_svid;
154     uint16_t bxe_sdid;
155     char     *bxe_name;
156 };
157 
158 #define BCM_PAGE_SHIFT       12
159 #define BCM_PAGE_SIZE        (1 << BCM_PAGE_SHIFT)
160 #define BCM_PAGE_MASK        (~(BCM_PAGE_SIZE - 1))
161 #define BCM_PAGE_ALIGN(addr) ((addr + BCM_PAGE_SIZE - 1) & BCM_PAGE_MASK)
162 
163 #if BCM_PAGE_SIZE != 4096
164 #error Page sizes other than 4KB are unsupported!
165 #endif
166 
167 #if (BUS_SPACE_MAXADDR > 0xFFFFFFFF)
168 #define U64_LO(addr) ((uint32_t)(((uint64_t)(addr)) & 0xFFFFFFFF))
169 #define U64_HI(addr) ((uint32_t)(((uint64_t)(addr)) >> 32))
170 #else
171 #define U64_LO(addr) ((uint32_t)(addr))
172 #define U64_HI(addr) (0)
173 #endif
174 #define HILO_U64(hi, lo) ((((uint64_t)(hi)) << 32) + (lo))
175 
176 #define SET_FLAG(value, mask, flag)            \
177     do {                                       \
178         (value) &= ~(mask);                    \
179         (value) |= ((flag) << (mask##_SHIFT)); \
180     } while (0)
181 
182 #define GET_FLAG(value, mask)              \
183     (((value) & (mask)) >> (mask##_SHIFT))
184 
185 #define GET_FIELD(value, fname)                     \
186     (((value) & (fname##_MASK)) >> (fname##_SHIFT))
187 
188 #define BXE_MAX_SEGMENTS     12 /* 13-1 for parsing buffer */
189 #define BXE_TSO_MAX_SEGMENTS 32
190 #define BXE_TSO_MAX_SIZE     (65535 + sizeof(struct ether_vlan_header))
191 #define BXE_TSO_MAX_SEG_SIZE 4096
192 
193 /* dropless fc FW/HW related params */
194 #define BRB_SIZE(sc)         (CHIP_IS_E3(sc) ? 1024 : 512)
195 #define MAX_AGG_QS(sc)       (CHIP_IS_E1(sc) ?                       \
196                                   ETH_MAX_AGGREGATION_QUEUES_E1 :    \
197                                   ETH_MAX_AGGREGATION_QUEUES_E1H_E2)
198 #define FW_DROP_LEVEL(sc)    (3 + MAX_SPQ_PENDING + MAX_AGG_QS(sc))
199 #define FW_PREFETCH_CNT      16
200 #define DROPLESS_FC_HEADROOM 100
201 
202 /******************/
203 /* RX SGE defines */
204 /******************/
205 
206 #define RX_SGE_NUM_PAGES       2 /* must be a power of 2 */
207 #define RX_SGE_TOTAL_PER_PAGE  (BCM_PAGE_SIZE / sizeof(struct eth_rx_sge))
208 #define RX_SGE_NEXT_PAGE_DESC_CNT 2
209 #define RX_SGE_USABLE_PER_PAGE (RX_SGE_TOTAL_PER_PAGE - RX_SGE_NEXT_PAGE_DESC_CNT)
210 #define RX_SGE_PER_PAGE_MASK   (RX_SGE_TOTAL_PER_PAGE - 1)
211 #define RX_SGE_TOTAL           (RX_SGE_TOTAL_PER_PAGE * RX_SGE_NUM_PAGES)
212 #define RX_SGE_USABLE          (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)
213 #define RX_SGE_MAX             (RX_SGE_TOTAL - 1)
214 #define RX_SGE(x)              ((x) & RX_SGE_MAX)
215 
216 #define RX_SGE_NEXT(x)                                              \
217     ((((x) & RX_SGE_PER_PAGE_MASK) == (RX_SGE_USABLE_PER_PAGE - 1)) \
218      ? (x) + 1 + RX_SGE_NEXT_PAGE_DESC_CNT : (x) + 1)
219 
220 #define RX_SGE_MASK_ELEM_SZ    64
221 #define RX_SGE_MASK_ELEM_SHIFT 6
222 #define RX_SGE_MASK_ELEM_MASK  ((uint64_t)RX_SGE_MASK_ELEM_SZ - 1)
223 
224 /*
225  * Creates a bitmask of all ones in less significant bits.
226  * idx - index of the most significant bit in the created mask.
227  */
228 #define RX_SGE_ONES_MASK(idx)                                      \
229     (((uint64_t)0x1 << (((idx) & RX_SGE_MASK_ELEM_MASK) + 1)) - 1)
230 #define RX_SGE_MASK_ELEM_ONE_MASK ((uint64_t)(~0))
231 
232 /* Number of uint64_t elements in SGE mask array. */
233 #define RX_SGE_MASK_LEN                                                \
234     ((RX_SGE_NUM_PAGES * RX_SGE_TOTAL_PER_PAGE) / RX_SGE_MASK_ELEM_SZ)
235 #define RX_SGE_MASK_LEN_MASK      (RX_SGE_MASK_LEN - 1)
236 #define RX_SGE_NEXT_MASK_ELEM(el) (((el) + 1) & RX_SGE_MASK_LEN_MASK)
237 
238 /*
239  * dropless fc calculations for SGEs
240  * Number of required SGEs is the sum of two:
241  * 1. Number of possible opened aggregations (next packet for
242  *    these aggregations will probably consume SGE immidiatelly)
243  * 2. Rest of BRB blocks divided by 2 (block will consume new SGE only
244  *    after placement on BD for new TPA aggregation)
245  * Takes into account RX_SGE_NEXT_PAGE_DESC_CNT "next" elements on each page
246  */
247 #define NUM_SGE_REQ(sc)                                    \
248     (MAX_AGG_QS(sc) + (BRB_SIZE(sc) - MAX_AGG_QS(sc)) / 2)
249 #define NUM_SGE_PG_REQ(sc)                                                    \
250     ((NUM_SGE_REQ(sc) + RX_SGE_USABLE_PER_PAGE - 1) / RX_SGE_USABLE_PER_PAGE)
251 #define SGE_TH_LO(sc)                                                  \
252     (NUM_SGE_REQ(sc) + NUM_SGE_PG_REQ(sc) * RX_SGE_NEXT_PAGE_DESC_CNT)
253 #define SGE_TH_HI(sc)                      \
254     (SGE_TH_LO(sc) + DROPLESS_FC_HEADROOM)
255 
256 #define PAGES_PER_SGE_SHIFT  0
257 #define PAGES_PER_SGE        (1 << PAGES_PER_SGE_SHIFT)
258 #define SGE_PAGE_SIZE        BCM_PAGE_SIZE
259 #define SGE_PAGE_SHIFT       BCM_PAGE_SHIFT
260 #define SGE_PAGE_ALIGN(addr) BCM_PAGE_ALIGN(addr)
261 #define SGE_PAGES            (SGE_PAGE_SIZE * PAGES_PER_SGE)
262 #define TPA_AGG_SIZE         min((8 * SGE_PAGES), 0xffff)
263 
264 /*****************/
265 /* TX BD defines */
266 /*****************/
267 
268 #define TX_BD_NUM_PAGES       16 /* must be a power of 2 */
269 #define TX_BD_TOTAL_PER_PAGE  (BCM_PAGE_SIZE / sizeof(union eth_tx_bd_types))
270 #define TX_BD_USABLE_PER_PAGE (TX_BD_TOTAL_PER_PAGE - 1)
271 #define TX_BD_TOTAL           (TX_BD_TOTAL_PER_PAGE * TX_BD_NUM_PAGES)
272 #define TX_BD_USABLE          (TX_BD_USABLE_PER_PAGE * TX_BD_NUM_PAGES)
273 #define TX_BD_MAX             (TX_BD_TOTAL - 1)
274 
275 #define TX_BD_NEXT(x)                                                 \
276     ((((x) & TX_BD_USABLE_PER_PAGE) == (TX_BD_USABLE_PER_PAGE - 1)) ? \
277      ((x) + 2) : ((x) + 1))
278 #define TX_BD(x)      ((x) & TX_BD_MAX)
279 #define TX_BD_PAGE(x) (((x) & ~TX_BD_USABLE_PER_PAGE) >> 8)
280 #define TX_BD_IDX(x)  ((x) & TX_BD_USABLE_PER_PAGE)
281 
282 /*
283  * Trigger pending transmits when the number of available BDs is greater
284  * than 1/8 of the total number of usable BDs.
285  */
286 #define BXE_TX_CLEANUP_THRESHOLD (TX_BD_USABLE / 8)
287 #define BXE_TX_TIMEOUT 5
288 
289 /*****************/
290 /* RX BD defines */
291 /*****************/
292 
293 #define RX_BD_NUM_PAGES       8 /* power of 2 */
294 #define RX_BD_TOTAL_PER_PAGE  (BCM_PAGE_SIZE / sizeof(struct eth_rx_bd))
295 #define RX_BD_NEXT_PAGE_DESC_CNT 2
296 #define RX_BD_USABLE_PER_PAGE (RX_BD_TOTAL_PER_PAGE - RX_BD_NEXT_PAGE_DESC_CNT)
297 #define RX_BD_PER_PAGE_MASK   (RX_BD_TOTAL_PER_PAGE - 1)
298 #define RX_BD_TOTAL           (RX_BD_TOTAL_PER_PAGE * RX_BD_NUM_PAGES)
299 #define RX_BD_USABLE          (RX_BD_USABLE_PER_PAGE * RX_BD_NUM_PAGES)
300 #define RX_BD_MAX             (RX_BD_TOTAL - 1)
301 
302 #define RX_BD_NEXT(x)                                               \
303     ((((x) & RX_BD_PER_PAGE_MASK) == (RX_BD_USABLE_PER_PAGE - 1)) ? \
304      ((x) + 3) : ((x) + 1))
305 #define RX_BD(x)      ((x) & RX_BD_MAX)
306 #define RX_BD_PAGE(x) (((x) & ~RX_BD_PER_PAGE_MASK) >> 9)
307 #define RX_BD_IDX(x)  ((x) & RX_BD_PER_PAGE_MASK)
308 
309 /*
310  * dropless fc calculations for BDs
311  * Number of BDs should be as number of buffers in BRB:
312  * Low threshold takes into account RX_BD_NEXT_PAGE_DESC_CNT
313  * "next" elements on each page
314  */
315 #define NUM_BD_REQ(sc) \
316     BRB_SIZE(sc)
317 #define NUM_BD_PG_REQ(sc)                                                  \
318     ((NUM_BD_REQ(sc) + RX_BD_USABLE_PER_PAGE - 1) / RX_BD_USABLE_PER_PAGE)
319 #define BD_TH_LO(sc)                                \
320     (NUM_BD_REQ(sc) +                               \
321      NUM_BD_PG_REQ(sc) * RX_BD_NEXT_PAGE_DESC_CNT + \
322      FW_DROP_LEVEL(sc))
323 #define BD_TH_HI(sc)                      \
324     (BD_TH_LO(sc) + DROPLESS_FC_HEADROOM)
325 #define MIN_RX_AVAIL(sc)                           \
326     ((sc)->dropless_fc ? BD_TH_HI(sc) + 128 : 128)
327 #define MIN_RX_SIZE_TPA_HW(sc)                         \
328     (CHIP_IS_E1(sc) ? ETH_MIN_RX_CQES_WITH_TPA_E1 :    \
329                       ETH_MIN_RX_CQES_WITH_TPA_E1H_E2)
330 #define MIN_RX_SIZE_NONTPA_HW ETH_MIN_RX_CQES_WITHOUT_TPA
331 #define MIN_RX_SIZE_TPA(sc)                         \
332     (max(MIN_RX_SIZE_TPA_HW(sc), MIN_RX_AVAIL(sc)))
333 #define MIN_RX_SIZE_NONTPA(sc)                     \
334     (max(MIN_RX_SIZE_NONTPA_HW, MIN_RX_AVAIL(sc)))
335 
336 /***************/
337 /* RCQ defines */
338 /***************/
339 
340 /*
341  * As long as CQE is X times bigger than BD entry we have to allocate X times
342  * more pages for CQ ring in order to keep it balanced with BD ring
343  */
344 #define CQE_BD_REL          (sizeof(union eth_rx_cqe) / \
345                              sizeof(struct eth_rx_bd))
346 #define RCQ_NUM_PAGES       (RX_BD_NUM_PAGES * CQE_BD_REL) /* power of 2 */
347 #define RCQ_TOTAL_PER_PAGE  (BCM_PAGE_SIZE / sizeof(union eth_rx_cqe))
348 #define RCQ_NEXT_PAGE_DESC_CNT 1
349 #define RCQ_USABLE_PER_PAGE (RCQ_TOTAL_PER_PAGE - RCQ_NEXT_PAGE_DESC_CNT)
350 #define RCQ_TOTAL           (RCQ_TOTAL_PER_PAGE * RCQ_NUM_PAGES)
351 #define RCQ_USABLE          (RCQ_USABLE_PER_PAGE * RCQ_NUM_PAGES)
352 #define RCQ_MAX             (RCQ_TOTAL - 1)
353 
354 #define RCQ_NEXT(x)                                               \
355     ((((x) & RCQ_USABLE_PER_PAGE) == (RCQ_USABLE_PER_PAGE - 1)) ? \
356      ((x) + 1 + RCQ_NEXT_PAGE_DESC_CNT) : ((x) + 1))
357 #define RCQ(x)      ((x) & RCQ_MAX)
358 #define RCQ_PAGE(x) (((x) & ~RCQ_USABLE_PER_PAGE) >> 7)
359 #define RCQ_IDX(x)  ((x) & RCQ_USABLE_PER_PAGE)
360 
361 /*
362  * dropless fc calculations for RCQs
363  * Number of RCQs should be as number of buffers in BRB:
364  * Low threshold takes into account RCQ_NEXT_PAGE_DESC_CNT
365  * "next" elements on each page
366  */
367 #define NUM_RCQ_REQ(sc) \
368     BRB_SIZE(sc)
369 #define NUM_RCQ_PG_REQ(sc)                                              \
370     ((NUM_RCQ_REQ(sc) + RCQ_USABLE_PER_PAGE - 1) / RCQ_USABLE_PER_PAGE)
371 #define RCQ_TH_LO(sc)                              \
372     (NUM_RCQ_REQ(sc) +                             \
373      NUM_RCQ_PG_REQ(sc) * RCQ_NEXT_PAGE_DESC_CNT + \
374      FW_DROP_LEVEL(sc))
375 #define RCQ_TH_HI(sc)                      \
376     (RCQ_TH_LO(sc) + DROPLESS_FC_HEADROOM)
377 
378 /* This is needed for determening of last_max */
379 #define SUB_S16(a, b) (int16_t)((int16_t)(a) - (int16_t)(b))
380 
381 #define __SGE_MASK_SET_BIT(el, bit)               \
382     do {                                          \
383         (el) = ((el) | ((uint64_t)0x1 << (bit))); \
384     } while (0)
385 
386 #define __SGE_MASK_CLEAR_BIT(el, bit)                \
387     do {                                             \
388         (el) = ((el) & (~((uint64_t)0x1 << (bit)))); \
389     } while (0)
390 
391 #define SGE_MASK_SET_BIT(fp, idx)                                       \
392     __SGE_MASK_SET_BIT((fp)->sge_mask[(idx) >> RX_SGE_MASK_ELEM_SHIFT], \
393                        ((idx) & RX_SGE_MASK_ELEM_MASK))
394 
395 #define SGE_MASK_CLEAR_BIT(fp, idx)                                       \
396     __SGE_MASK_CLEAR_BIT((fp)->sge_mask[(idx) >> RX_SGE_MASK_ELEM_SHIFT], \
397                          ((idx) & RX_SGE_MASK_ELEM_MASK))
398 
399 /* Load / Unload modes */
400 #define LOAD_NORMAL       0
401 #define LOAD_OPEN         1
402 #define LOAD_DIAG         2
403 #define LOAD_LOOPBACK_EXT 3
404 #define UNLOAD_NORMAL     0
405 #define UNLOAD_CLOSE      1
406 #define UNLOAD_RECOVERY   2
407 
408 /* Some constants... */
409 //#define MAX_PATH_NUM       2
410 //#define E2_MAX_NUM_OF_VFS  64
411 //#define E1H_FUNC_MAX       8
412 //#define E2_FUNC_MAX        4   /* per path */
413 #define MAX_VNIC_NUM       4
414 #define MAX_FUNC_NUM       8   /* common to all chips */
415 //#define MAX_NDSB           HC_SB_MAX_SB_E2 /* max non-default status block */
416 #define MAX_RSS_CHAINS     16 /* a constant for HW limit */
417 #define MAX_MSI_VECTOR     8  /* a constant for HW limit */
418 
419 #define ILT_NUM_PAGE_ENTRIES 3072
420 /*
421  * 57710/11 we use whole table since we have 8 functions.
422  * 57712 we have only 4 functions, but use same size per func, so only half
423  * of the table is used.
424  */
425 #define ILT_PER_FUNC        (ILT_NUM_PAGE_ENTRIES / 8)
426 #define FUNC_ILT_BASE(func) (func * ILT_PER_FUNC)
427 /*
428  * the phys address is shifted right 12 bits and has an added
429  * 1=valid bit added to the 53rd bit
430  * then since this is a wide register(TM)
431  * we split it into two 32 bit writes
432  */
433 #define ONCHIP_ADDR1(x) ((uint32_t)(((uint64_t)x >> 12) & 0xFFFFFFFF))
434 #define ONCHIP_ADDR2(x) ((uint32_t)((1 << 20) | ((uint64_t)x >> 44)))
435 
436 /* L2 header size + 2*VLANs (8 bytes) + LLC SNAP (8 bytes) */
437 #define ETH_HLEN                  14
438 #define ETH_OVERHEAD              (ETH_HLEN + 8 + 8)
439 #define ETH_MIN_PACKET_SIZE       60
440 #define ETH_MAX_PACKET_SIZE       ETHERMTU /* 1500 */
441 #define ETH_MAX_JUMBO_PACKET_SIZE 9600
442 /* TCP with Timestamp Option (32) + IPv6 (40) */
443 #define ETH_MAX_TPA_HEADER_SIZE   72
444 
445 /* max supported alignment is 256 (8 shift) */
446 //#define BXE_RX_ALIGN_SHIFT ((CACHE_LINE_SHIFT < 8) ? CACHE_LINE_SHIFT : 8)
447 #define BXE_RX_ALIGN_SHIFT 8
448 /* FW uses 2 cache lines alignment for start packet and size  */
449 #define BXE_FW_RX_ALIGN_START (1 << BXE_RX_ALIGN_SHIFT)
450 #define BXE_FW_RX_ALIGN_END   (1 << BXE_RX_ALIGN_SHIFT)
451 
452 #define BXE_PXP_DRAM_ALIGN (BXE_RX_ALIGN_SHIFT - 5) /* XXX ??? */
453 #define BXE_SET_ERROR_BIT(sc, error) \
454 { \
455                 (sc)->error_status |= (error); \
456 }
457 
458 struct bxe_bar {
459     struct resource    *resource;
460     int                rid;
461     bus_space_tag_t    tag;
462     bus_space_handle_t handle;
463     vm_offset_t        kva;
464 };
465 
466 struct bxe_intr {
467     struct resource *resource;
468     int             rid;
469     void            *tag;
470 };
471 
472 /* Used to manage DMA allocations. */
473 struct bxe_dma {
474     struct bxe_softc  *sc;
475     bus_addr_t        paddr;
476     void              *vaddr;
477     bus_dma_tag_t     tag;
478     bus_dmamap_t      map;
479     bus_dma_segment_t seg;
480     bus_size_t        size;
481     int               nseg;
482     char              msg[32];
483 };
484 
485 /* attn group wiring */
486 #define MAX_DYNAMIC_ATTN_GRPS 8
487 
488 struct attn_route {
489     uint32_t sig[5];
490 };
491 
492 struct iro {
493     uint32_t base;
494     uint16_t m1;
495     uint16_t m2;
496     uint16_t m3;
497     uint16_t size;
498 };
499 
500 union bxe_host_hc_status_block {
501     /* pointer to fp status block e2 */
502     struct host_hc_status_block_e2  *e2_sb;
503     /* pointer to fp status block e1x */
504     struct host_hc_status_block_e1x *e1x_sb;
505 };
506 
507 union bxe_db_prod {
508     struct doorbell_set_prod data;
509     uint32_t                 raw;
510 };
511 
512 struct bxe_sw_tx_bd {
513     struct mbuf  *m;
514     bus_dmamap_t m_map;
515     uint16_t     first_bd;
516     uint8_t      flags;
517 /* set on the first BD descriptor when there is a split BD */
518 #define BXE_TSO_SPLIT_BD (1 << 0)
519 };
520 
521 struct bxe_sw_rx_bd {
522     struct mbuf  *m;
523     bus_dmamap_t m_map;
524 };
525 
526 struct bxe_sw_tpa_info {
527     struct bxe_sw_rx_bd bd;
528     bus_dma_segment_t   seg;
529     uint8_t             state;
530 #define BXE_TPA_STATE_START 1
531 #define BXE_TPA_STATE_STOP  2
532     uint8_t             placement_offset;
533     uint16_t            parsing_flags;
534     uint16_t            vlan_tag;
535     uint16_t            len_on_bd;
536 };
537 
538 /*
539  * This is the HSI fastpath data structure. There can be up to MAX_RSS_CHAIN
540  * instances of the fastpath structure when using multiple queues.
541  */
542 struct bxe_fastpath {
543     /* pointer back to parent structure */
544     struct bxe_softc *sc;
545 
546     struct mtx tx_mtx;
547     char       tx_mtx_name[32];
548     struct mtx rx_mtx;
549     char       rx_mtx_name[32];
550 
551 #define BXE_FP_TX_LOCK(fp)        mtx_lock(&fp->tx_mtx)
552 #define BXE_FP_TX_UNLOCK(fp)      mtx_unlock(&fp->tx_mtx)
553 #define BXE_FP_TX_LOCK_ASSERT(fp) mtx_assert(&fp->tx_mtx, MA_OWNED)
554 #define BXE_FP_TX_TRYLOCK(fp)     mtx_trylock(&fp->tx_mtx)
555 
556 #define BXE_FP_RX_LOCK(fp)        mtx_lock(&fp->rx_mtx)
557 #define BXE_FP_RX_UNLOCK(fp)      mtx_unlock(&fp->rx_mtx)
558 #define BXE_FP_RX_LOCK_ASSERT(fp) mtx_assert(&fp->rx_mtx, MA_OWNED)
559 
560     /* status block */
561     struct bxe_dma                 sb_dma;
562     union bxe_host_hc_status_block status_block;
563 
564     /* transmit chain (tx bds) */
565     struct bxe_dma        tx_dma;
566     union eth_tx_bd_types *tx_chain;
567 
568     /* receive chain (rx bds) */
569     struct bxe_dma   rx_dma;
570     struct eth_rx_bd *rx_chain;
571 
572     /* receive completion queue chain (rcq bds) */
573     struct bxe_dma   rcq_dma;
574     union eth_rx_cqe *rcq_chain;
575 
576     /* receive scatter/gather entry chain (for TPA) */
577     struct bxe_dma    rx_sge_dma;
578     struct eth_rx_sge *rx_sge_chain;
579 
580     /* tx mbufs */
581     bus_dma_tag_t       tx_mbuf_tag;
582     struct bxe_sw_tx_bd tx_mbuf_chain[TX_BD_TOTAL];
583 
584     /* rx mbufs */
585     bus_dma_tag_t       rx_mbuf_tag;
586     struct bxe_sw_rx_bd rx_mbuf_chain[RX_BD_TOTAL];
587     bus_dmamap_t        rx_mbuf_spare_map;
588 
589     /* rx sge mbufs */
590     bus_dma_tag_t       rx_sge_mbuf_tag;
591     struct bxe_sw_rx_bd rx_sge_mbuf_chain[RX_SGE_TOTAL];
592     bus_dmamap_t        rx_sge_mbuf_spare_map;
593 
594     /* rx tpa mbufs (use the larger size for TPA queue length) */
595     int                    tpa_enable; /* disabled per fastpath upon error */
596     struct bxe_sw_tpa_info rx_tpa_info[ETH_MAX_AGGREGATION_QUEUES_E1H_E2];
597     bus_dmamap_t           rx_tpa_info_mbuf_spare_map;
598     uint64_t               rx_tpa_queue_used;
599 
600     uint16_t *sb_index_values;
601     uint16_t *sb_running_index;
602     uint32_t ustorm_rx_prods_offset;
603 
604     uint8_t igu_sb_id; /* status block number in HW */
605     uint8_t fw_sb_id;  /* status block number in FW */
606 
607     uint32_t rx_buf_size;
608     int mbuf_alloc_size;
609 
610     int state;
611 #define BXE_FP_STATE_CLOSED  0x01
612 #define BXE_FP_STATE_IRQ     0x02
613 #define BXE_FP_STATE_OPENING 0x04
614 #define BXE_FP_STATE_OPEN    0x08
615 #define BXE_FP_STATE_HALTING 0x10
616 #define BXE_FP_STATE_HALTED  0x20
617 
618     /* reference back to this fastpath queue number */
619     uint8_t index; /* this is also the 'cid' */
620 #define FP_IDX(fp) (fp->index)
621 
622     /* interrupt taskqueue (fast) */
623     struct task      tq_task;
624     struct taskqueue *tq;
625     char             tq_name[32];
626 
627     struct task tx_task;
628     struct timeout_task tx_timeout_task;
629 
630     /* ethernet client ID (each fastpath set of RX/TX/CQE is a client) */
631     uint8_t cl_id;
632 #define FP_CL_ID(fp) (fp->cl_id)
633     uint8_t cl_qzone_id;
634 
635     uint16_t fp_hc_idx;
636 
637     /* driver copy of the receive buffer descriptor prod/cons indices */
638     uint16_t rx_bd_prod;
639     uint16_t rx_bd_cons;
640 
641     /* driver copy of the receive completion queue prod/cons indices */
642     uint16_t rx_cq_prod;
643     uint16_t rx_cq_cons;
644 
645     union bxe_db_prod tx_db;
646 
647     /* Transmit packet producer index (used in eth_tx_bd). */
648     uint16_t tx_pkt_prod;
649     uint16_t tx_pkt_cons;
650 
651     /* Transmit buffer descriptor producer index. */
652     uint16_t tx_bd_prod;
653     uint16_t tx_bd_cons;
654 
655     uint64_t sge_mask[RX_SGE_MASK_LEN];
656     uint16_t rx_sge_prod;
657 
658     struct tstorm_per_queue_stats old_tclient;
659     struct ustorm_per_queue_stats old_uclient;
660     struct xstorm_per_queue_stats old_xclient;
661     struct bxe_eth_q_stats        eth_q_stats;
662     struct bxe_eth_q_stats_old    eth_q_stats_old;
663 
664     /* Pointer to the receive consumer in the status block */
665     uint16_t *rx_cq_cons_sb;
666 
667     /* Pointer to the transmit consumer in the status block */
668     uint16_t *tx_cons_sb;
669 
670     /* transmit timeout until chip reset */
671     int watchdog_timer;
672 
673     /* Free/used buffer descriptor counters. */
674     //uint16_t used_tx_bd;
675 
676     /* Last maximal completed SGE */
677     uint16_t last_max_sge;
678 
679     //uint16_t rx_sge_free_idx;
680 
681     //uint8_t segs;
682 
683 #define BXE_BR_SIZE 4096
684     struct buf_ring *tx_br;
685 }; /* struct bxe_fastpath */
686 
687 /* sriov XXX */
688 #define BXE_MAX_NUM_OF_VFS 64
689 #define BXE_VF_CID_WND     0
690 #define BXE_CIDS_PER_VF    (1 << BXE_VF_CID_WND)
691 #define BXE_CLIENTS_PER_VF 1
692 #define BXE_FIRST_VF_CID   256
693 #define BXE_VF_CIDS        (BXE_MAX_NUM_OF_VFS * BXE_CIDS_PER_VF)
694 #define BXE_VF_ID_INVALID  0xFF
695 #define IS_SRIOV(sc) 0
696 
697 #define GET_NUM_VFS_PER_PATH(sc) 0
698 #define GET_NUM_VFS_PER_PF(sc)   0
699 
700 /* maximum number of fast-path interrupt contexts */
701 #define FP_SB_MAX_E1x 16
702 #define FP_SB_MAX_E2  HC_SB_MAX_SB_E2
703 
704 union cdu_context {
705     struct eth_context eth;
706     char pad[1024];
707 };
708 
709 /* CDU host DB constants */
710 #define CDU_ILT_PAGE_SZ_HW 2
711 #define CDU_ILT_PAGE_SZ    (8192 << CDU_ILT_PAGE_SZ_HW) /* 32K */
712 #define ILT_PAGE_CIDS      (CDU_ILT_PAGE_SZ / sizeof(union cdu_context))
713 
714 #define CNIC_ISCSI_CID_MAX 256
715 #define CNIC_FCOE_CID_MAX  2048
716 #define CNIC_CID_MAX       (CNIC_ISCSI_CID_MAX + CNIC_FCOE_CID_MAX)
717 #define CNIC_ILT_LINES     DIV_ROUND_UP(CNIC_CID_MAX, ILT_PAGE_CIDS)
718 
719 #define QM_ILT_PAGE_SZ_HW  0
720 #define QM_ILT_PAGE_SZ     (4096 << QM_ILT_PAGE_SZ_HW) /* 4K */
721 #define QM_CID_ROUND       1024
722 
723 /* TM (timers) host DB constants */
724 #define TM_ILT_PAGE_SZ_HW  0
725 #define TM_ILT_PAGE_SZ     (4096 << TM_ILT_PAGE_SZ_HW) /* 4K */
726 /*#define TM_CONN_NUM        (CNIC_STARTING_CID+CNIC_ISCSI_CXT_MAX) */
727 #define TM_CONN_NUM        1024
728 #define TM_ILT_SZ          (8 * TM_CONN_NUM)
729 #define TM_ILT_LINES       DIV_ROUND_UP(TM_ILT_SZ, TM_ILT_PAGE_SZ)
730 
731 /* SRC (Searcher) host DB constants */
732 #define SRC_ILT_PAGE_SZ_HW 0
733 #define SRC_ILT_PAGE_SZ    (4096 << SRC_ILT_PAGE_SZ_HW) /* 4K */
734 #define SRC_HASH_BITS      10
735 #define SRC_CONN_NUM       (1 << SRC_HASH_BITS) /* 1024 */
736 #define SRC_ILT_SZ         (sizeof(struct src_ent) * SRC_CONN_NUM)
737 #define SRC_T2_SZ          SRC_ILT_SZ
738 #define SRC_ILT_LINES      DIV_ROUND_UP(SRC_ILT_SZ, SRC_ILT_PAGE_SZ)
739 
740 struct hw_context {
741     struct bxe_dma    vcxt_dma;
742     union cdu_context *vcxt;
743     //bus_addr_t        cxt_mapping;
744     size_t            size;
745 };
746 
747 #define SM_RX_ID 0
748 #define SM_TX_ID 1
749 
750 /* defines for multiple tx priority indices */
751 #define FIRST_TX_ONLY_COS_INDEX 1
752 #define FIRST_TX_COS_INDEX      0
753 
754 #define CID_TO_FP(cid, sc) ((cid) % BXE_NUM_NON_CNIC_QUEUES(sc))
755 
756 #define HC_INDEX_ETH_RX_CQ_CONS       1
757 #define HC_INDEX_OOO_TX_CQ_CONS       4
758 #define HC_INDEX_ETH_TX_CQ_CONS_COS0  5
759 #define HC_INDEX_ETH_TX_CQ_CONS_COS1  6
760 #define HC_INDEX_ETH_TX_CQ_CONS_COS2  7
761 #define HC_INDEX_ETH_FIRST_TX_CQ_CONS HC_INDEX_ETH_TX_CQ_CONS_COS0
762 
763 /* congestion management fairness mode */
764 #define CMNG_FNS_NONE   0
765 #define CMNG_FNS_MINMAX 1
766 
767 /* CMNG constants, as derived from system spec calculations */
768 /* default MIN rate in case VNIC min rate is configured to zero - 100Mbps */
769 #define DEF_MIN_RATE 100
770 /* resolution of the rate shaping timer - 400 usec */
771 #define RS_PERIODIC_TIMEOUT_USEC 400
772 /* number of bytes in single QM arbitration cycle -
773  * coefficient for calculating the fairness timer */
774 #define QM_ARB_BYTES 160000
775 /* resolution of Min algorithm 1:100 */
776 #define MIN_RES 100
777 /* how many bytes above threshold for the minimal credit of Min algorithm*/
778 #define MIN_ABOVE_THRESH 32768
779 /* fairness algorithm integration time coefficient -
780  * for calculating the actual Tfair */
781 #define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES)
782 /* memory of fairness algorithm - 2 cycles */
783 #define FAIR_MEM 2
784 
785 #define HC_SEG_ACCESS_DEF   0 /* Driver decision 0-3 */
786 #define HC_SEG_ACCESS_ATTN  4
787 #define HC_SEG_ACCESS_NORM  0 /* Driver decision 0-1 */
788 
789 /*
790  * The total number of L2 queues, MSIX vectors and HW contexts (CIDs) is
791  * control by the number of fast-path status blocks supported by the
792  * device (HW/FW). Each fast-path status block (FP-SB) aka non-default
793  * status block represents an independent interrupts context that can
794  * serve a regular L2 networking queue. However special L2 queues such
795  * as the FCoE queue do not require a FP-SB and other components like
796  * the CNIC may consume FP-SB reducing the number of possible L2 queues
797  *
798  * If the maximum number of FP-SB available is X then:
799  * a. If CNIC is supported it consumes 1 FP-SB thus the max number of
800  *    regular L2 queues is Y=X-1
801  * b. in MF mode the actual number of L2 queues is Y= (X-1/MF_factor)
802  * c. If the FCoE L2 queue is supported the actual number of L2 queues
803  *    is Y+1
804  * d. The number of irqs (MSIX vectors) is either Y+1 (one extra for
805  *    slow-path interrupts) or Y+2 if CNIC is supported (one additional
806  *    FP interrupt context for the CNIC).
807  * e. The number of HW context (CID count) is always X or X+1 if FCoE
808  *    L2 queue is supported. the cid for the FCoE L2 queue is always X.
809  *
810  * So this is quite simple for now as no ULPs are supported yet. :-)
811  */
812 #define BXE_NUM_QUEUES(sc)          ((sc)->num_queues)
813 #define BXE_NUM_ETH_QUEUES(sc)      BXE_NUM_QUEUES(sc)
814 #define BXE_NUM_NON_CNIC_QUEUES(sc) BXE_NUM_QUEUES(sc)
815 #define BXE_NUM_RX_QUEUES(sc)       BXE_NUM_QUEUES(sc)
816 
817 #define FOR_EACH_QUEUE(sc, var)                          \
818     for ((var) = 0; (var) < BXE_NUM_QUEUES(sc); (var)++)
819 
820 #define FOR_EACH_NONDEFAULT_QUEUE(sc, var)               \
821     for ((var) = 1; (var) < BXE_NUM_QUEUES(sc); (var)++)
822 
823 #define FOR_EACH_ETH_QUEUE(sc, var)                          \
824     for ((var) = 0; (var) < BXE_NUM_ETH_QUEUES(sc); (var)++)
825 
826 #define FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, var)               \
827     for ((var) = 1; (var) < BXE_NUM_ETH_QUEUES(sc); (var)++)
828 
829 #define FOR_EACH_COS_IN_TX_QUEUE(sc, var)           \
830     for ((var) = 0; (var) < (sc)->max_cos; (var)++)
831 
832 #define FOR_EACH_CNIC_QUEUE(sc, var)     \
833     for ((var) = BXE_NUM_ETH_QUEUES(sc); \
834          (var) < BXE_NUM_QUEUES(sc);     \
835          (var)++)
836 
837 enum {
838     OOO_IDX_OFFSET,
839     FCOE_IDX_OFFSET,
840     FWD_IDX_OFFSET,
841 };
842 
843 #define FCOE_IDX(sc)              (BXE_NUM_NON_CNIC_QUEUES(sc) + FCOE_IDX_OFFSET)
844 #define bxe_fcoe_fp(sc)           (&sc->fp[FCOE_IDX(sc)])
845 #define bxe_fcoe(sc, var)         (bxe_fcoe_fp(sc)->var)
846 #define bxe_fcoe_inner_sp_obj(sc) (&sc->sp_objs[FCOE_IDX(sc)])
847 #define bxe_fcoe_sp_obj(sc, var)  (bxe_fcoe_inner_sp_obj(sc)->var)
848 #define bxe_fcoe_tx(sc, var)      (bxe_fcoe_fp(sc)->txdata_ptr[FIRST_TX_COS_INDEX]->var)
849 
850 #define OOO_IDX(sc)               (BXE_NUM_NON_CNIC_QUEUES(sc) + OOO_IDX_OFFSET)
851 #define bxe_ooo_fp(sc)            (&sc->fp[OOO_IDX(sc)])
852 #define bxe_ooo(sc, var)          (bxe_ooo_fp(sc)->var)
853 #define bxe_ooo_inner_sp_obj(sc)  (&sc->sp_objs[OOO_IDX(sc)])
854 #define bxe_ooo_sp_obj(sc, var)   (bxe_ooo_inner_sp_obj(sc)->var)
855 
856 #define FWD_IDX(sc)               (BXE_NUM_NON_CNIC_QUEUES(sc) + FWD_IDX_OFFSET)
857 #define bxe_fwd_fp(sc)            (&sc->fp[FWD_IDX(sc)])
858 #define bxe_fwd(sc, var)          (bxe_fwd_fp(sc)->var)
859 #define bxe_fwd_inner_sp_obj(sc)  (&sc->sp_objs[FWD_IDX(sc)])
860 #define bxe_fwd_sp_obj(sc, var)   (bxe_fwd_inner_sp_obj(sc)->var)
861 #define bxe_fwd_txdata(fp)        (fp->txdata_ptr[FIRST_TX_COS_INDEX])
862 
863 #define IS_ETH_FP(fp)    ((fp)->index < BXE_NUM_ETH_QUEUES((fp)->sc))
864 #define IS_FCOE_FP(fp)   ((fp)->index == FCOE_IDX((fp)->sc))
865 #define IS_FCOE_IDX(idx) ((idx) == FCOE_IDX(sc))
866 #define IS_FWD_FP(fp)    ((fp)->index == FWD_IDX((fp)->sc))
867 #define IS_FWD_IDX(idx)  ((idx) == FWD_IDX(sc))
868 #define IS_OOO_FP(fp)    ((fp)->index == OOO_IDX((fp)->sc))
869 #define IS_OOO_IDX(idx)  ((idx) == OOO_IDX(sc))
870 
871 enum {
872     BXE_PORT_QUERY_IDX,
873     BXE_PF_QUERY_IDX,
874     BXE_FCOE_QUERY_IDX,
875     BXE_FIRST_QUEUE_QUERY_IDX,
876 };
877 
878 struct bxe_fw_stats_req {
879     struct stats_query_header hdr;
880     struct stats_query_entry  query[FP_SB_MAX_E1x +
881                                     BXE_FIRST_QUEUE_QUERY_IDX];
882 };
883 
884 struct bxe_fw_stats_data {
885     struct stats_counter          storm_counters;
886     struct per_port_stats         port;
887     struct per_pf_stats           pf;
888     //struct fcoe_statistics_params fcoe;
889     struct per_queue_stats        queue_stats[1];
890 };
891 
892 /* IGU MSIX STATISTICS on 57712: 64 for VFs; 4 for PFs; 4 for Attentions */
893 #define BXE_IGU_STAS_MSG_VF_CNT 64
894 #define BXE_IGU_STAS_MSG_PF_CNT 4
895 
896 #define MAX_DMAE_C 8
897 
898 /*
899  * For the main interface up/down code paths, a not-so-fine-grained CORE
900  * mutex lock is used. Inside this code are various calls to kernel routines
901  * that can cause a sleep to occur. Namely memory allocations and taskqueue
902  * handling. If using an MTX lock we are *not* allowed to sleep but we can
903  * with an SX lock. This define forces the CORE lock to use and SX lock.
904  * Undefine this and an MTX lock will be used instead. Note that the IOCTL
905  * path can cause problems since it's called by a non-sleepable thread. To
906  * alleviate a potential sleep, any IOCTL processing that results in the
907  * chip/interface being started/stopped/reinitialized, the actual work is
908  * offloaded to a taskqueue.
909  */
910 #define BXE_CORE_LOCK_SX
911 
912 /*
913  * This is the slowpath data structure. It is mapped into non-paged memory
914  * so that the hardware can access it's contents directly and must be page
915  * aligned.
916  */
917 struct bxe_slowpath {
918 
919     /* used by the DMAE command executer */
920     struct dmae_cmd dmae[MAX_DMAE_C];
921 
922     /* statistics completion */
923     uint32_t stats_comp;
924 
925     /* firmware defined statistics blocks */
926     union mac_stats        mac_stats;
927     struct nig_stats       nig_stats;
928     struct host_port_stats port_stats;
929     struct host_func_stats func_stats;
930     //struct host_func_stats func_stats_base;
931 
932     /* DMAE completion value and data source/sink */
933     uint32_t wb_comp;
934     uint32_t wb_data[4];
935 
936     union {
937         struct mac_configuration_cmd          e1x;
938         struct eth_classify_rules_ramrod_data e2;
939     } mac_rdata;
940 
941     union {
942         struct tstorm_eth_mac_filter_config e1x;
943         struct eth_filter_rules_ramrod_data e2;
944     } rx_mode_rdata;
945 
946     struct eth_rss_update_ramrod_data rss_rdata;
947 
948     union {
949         struct mac_configuration_cmd           e1;
950         struct eth_multicast_rules_ramrod_data e2;
951     } mcast_rdata;
952 
953     union {
954         struct function_start_data        func_start;
955         struct flow_control_configuration pfc_config; /* for DCBX ramrod */
956     } func_rdata;
957 
958     /* Queue State related ramrods */
959     union {
960         struct client_init_ramrod_data   init_data;
961         struct client_update_ramrod_data update_data;
962     } q_rdata;
963 
964     /*
965      * AFEX ramrod can not be a part of func_rdata union because these
966      * events might arrive in parallel to other events from func_rdata.
967      * If they were defined in the same union the data can get corrupted.
968      */
969     struct afex_vif_list_ramrod_data func_afex_rdata;
970 
971     union drv_info_to_mcp drv_info_to_mcp;
972 }; /* struct bxe_slowpath */
973 
974 /*
975  * Port specifc data structure.
976  */
977 struct bxe_port {
978     /*
979      * Port Management Function (for 57711E only).
980      * When this field is set the driver instance is
981      * responsible for managing port specifc
982      * configurations such as handling link attentions.
983      */
984     uint32_t pmf;
985 
986     /* Ethernet maximum transmission unit. */
987     uint16_t ether_mtu;
988 
989     uint32_t link_config[ELINK_LINK_CONFIG_SIZE];
990 
991     uint32_t ext_phy_config;
992 
993     /* Port feature config.*/
994     uint32_t config;
995 
996     /* Defines the features supported by the PHY. */
997     uint32_t supported[ELINK_LINK_CONFIG_SIZE];
998 
999     /* Defines the features advertised by the PHY. */
1000     uint32_t advertising[ELINK_LINK_CONFIG_SIZE];
1001 #define ADVERTISED_10baseT_Half    (1 << 1)
1002 #define ADVERTISED_10baseT_Full    (1 << 2)
1003 #define ADVERTISED_100baseT_Half   (1 << 3)
1004 #define ADVERTISED_100baseT_Full   (1 << 4)
1005 #define ADVERTISED_1000baseT_Half  (1 << 5)
1006 #define ADVERTISED_1000baseT_Full  (1 << 6)
1007 #define ADVERTISED_TP              (1 << 7)
1008 #define ADVERTISED_FIBRE           (1 << 8)
1009 #define ADVERTISED_Autoneg         (1 << 9)
1010 #define ADVERTISED_Asym_Pause      (1 << 10)
1011 #define ADVERTISED_Pause           (1 << 11)
1012 #define ADVERTISED_2500baseX_Full  (1 << 15)
1013 #define ADVERTISED_10000baseT_Full (1 << 16)
1014 
1015     uint32_t    phy_addr;
1016 
1017     /* Used to synchronize phy accesses. */
1018     struct mtx  phy_mtx;
1019     char        phy_mtx_name[32];
1020 
1021 #define BXE_PHY_LOCK(sc)          mtx_lock(&sc->port.phy_mtx)
1022 #define BXE_PHY_UNLOCK(sc)        mtx_unlock(&sc->port.phy_mtx)
1023 #define BXE_PHY_LOCK_ASSERT(sc)   mtx_assert(&sc->port.phy_mtx, MA_OWNED)
1024 
1025     /*
1026      * MCP scratchpad address for port specific statistics.
1027      * The device is responsible for writing statistcss
1028      * back to the MCP for use with management firmware such
1029      * as UMP/NC-SI.
1030      */
1031     uint32_t port_stx;
1032 
1033     struct nig_stats old_nig_stats;
1034 }; /* struct bxe_port */
1035 
1036 struct bxe_mf_info {
1037     uint32_t mf_config[E1HVN_MAX];
1038 
1039     uint32_t vnics_per_port;   /* 1, 2 or 4 */
1040     uint32_t multi_vnics_mode; /* can be set even if vnics_per_port = 1 */
1041     uint32_t path_has_ovlan;   /* MF mode in the path (can be different than the MF mode of the function */
1042 
1043 #define IS_MULTI_VNIC(sc)  ((sc)->devinfo.mf_info.multi_vnics_mode)
1044 #define VNICS_PER_PORT(sc) ((sc)->devinfo.mf_info.vnics_per_port)
1045 #define VNICS_PER_PATH(sc)                                  \
1046     ((sc)->devinfo.mf_info.vnics_per_port *                 \
1047      ((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 1 ))
1048 
1049     uint8_t min_bw[MAX_VNIC_NUM];
1050     uint8_t max_bw[MAX_VNIC_NUM];
1051 
1052     uint16_t ext_id; /* vnic outer vlan or VIF ID */
1053 #define VALID_OVLAN(ovlan) ((ovlan) <= 4096)
1054 #define INVALID_VIF_ID 0xFFFF
1055 #define OVLAN(sc) ((sc)->devinfo.mf_info.ext_id)
1056 #define VIF_ID(sc) ((sc)->devinfo.mf_info.ext_id)
1057 
1058     uint16_t default_vlan;
1059 #define NIV_DEFAULT_VLAN(sc) ((sc)->devinfo.mf_info.default_vlan)
1060 
1061     uint8_t niv_allowed_priorities;
1062 #define NIV_ALLOWED_PRIORITIES(sc) ((sc)->devinfo.mf_info.niv_allowed_priorities)
1063 
1064     uint8_t niv_default_cos;
1065 #define NIV_DEFAULT_COS(sc) ((sc)->devinfo.mf_info.niv_default_cos)
1066 
1067     uint8_t niv_mba_enabled;
1068 
1069     enum mf_cfg_afex_vlan_mode afex_vlan_mode;
1070 #define AFEX_VLAN_MODE(sc) ((sc)->devinfo.mf_info.afex_vlan_mode)
1071     int                        afex_def_vlan_tag;
1072     uint32_t                   pending_max;
1073 
1074     uint16_t flags;
1075 #define MF_INFO_VALID_MAC       0x0001
1076 
1077     uint8_t mf_mode; /* Switch-Dependent or Switch-Independent */
1078 #define IS_MF(sc)                        \
1079     (IS_MULTI_VNIC(sc) &&                \
1080      ((sc)->devinfo.mf_info.mf_mode != 0))
1081 #define IS_MF_SD(sc)                                     \
1082     (IS_MULTI_VNIC(sc) &&                                \
1083      ((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD))
1084 #define IS_MF_SI(sc)                                     \
1085     (IS_MULTI_VNIC(sc) &&                                \
1086      ((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI))
1087 #define IS_MF_AFEX(sc)                              \
1088     (IS_MULTI_VNIC(sc) &&                           \
1089      ((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX))
1090 #define IS_MF_SD_MODE(sc)   IS_MF_SD(sc)
1091 #define IS_MF_SI_MODE(sc)   IS_MF_SI(sc)
1092 #define IS_MF_AFEX_MODE(sc) IS_MF_AFEX(sc)
1093 
1094     uint32_t mf_protos_supported;
1095     #define MF_PROTO_SUPPORT_ETHERNET 0x1
1096     #define MF_PROTO_SUPPORT_ISCSI    0x2
1097     #define MF_PROTO_SUPPORT_FCOE     0x4
1098 }; /* struct bxe_mf_info */
1099 
1100 /* Device information data structure. */
1101 struct bxe_devinfo {
1102     /* PCIe info */
1103     uint16_t vendor_id;
1104     uint16_t device_id;
1105     uint16_t subvendor_id;
1106     uint16_t subdevice_id;
1107 
1108     /*
1109      * chip_id = 0b'CCCCCCCCCCCCCCCCRRRRMMMMMMMMBBBB'
1110      *   C = Chip Number   (bits 16-31)
1111      *   R = Chip Revision (bits 12-15)
1112      *   M = Chip Metal    (bits 4-11)
1113      *   B = Chip Bond ID  (bits 0-3)
1114      */
1115     uint32_t chip_id;
1116 #define CHIP_ID(sc)           ((sc)->devinfo.chip_id & 0xffff0000)
1117 #define CHIP_NUM(sc)          ((sc)->devinfo.chip_id >> 16)
1118 /* device ids */
1119 #define CHIP_NUM_57710        0x164e
1120 #define CHIP_NUM_57711        0x164f
1121 #define CHIP_NUM_57711E       0x1650
1122 #define CHIP_NUM_57712        0x1662
1123 #define CHIP_NUM_57712_MF     0x1663
1124 #define CHIP_NUM_57712_VF     0x166f
1125 #define CHIP_NUM_57800        0x168a
1126 #define CHIP_NUM_57800_MF     0x16a5
1127 #define CHIP_NUM_57800_VF     0x16a9
1128 #define CHIP_NUM_57810        0x168e
1129 #define CHIP_NUM_57810_MF     0x16ae
1130 #define CHIP_NUM_57810_VF     0x16af
1131 #define CHIP_NUM_57811        0x163d
1132 #define CHIP_NUM_57811_MF     0x163e
1133 #define CHIP_NUM_57811_VF     0x163f
1134 #define CHIP_NUM_57840_OBS    0x168d
1135 #define CHIP_NUM_57840_OBS_MF 0x16ab
1136 #define CHIP_NUM_57840_4_10   0x16a1
1137 #define CHIP_NUM_57840_2_20   0x16a2
1138 #define CHIP_NUM_57840_MF     0x16a4
1139 #define CHIP_NUM_57840_VF     0x16ad
1140 
1141 #define CHIP_REV_SHIFT      12
1142 #define CHIP_REV_MASK       (0xF << CHIP_REV_SHIFT)
1143 #define CHIP_REV(sc)        ((sc)->devinfo.chip_id & CHIP_REV_MASK)
1144 
1145 #define CHIP_REV_Ax         (0x0 << CHIP_REV_SHIFT)
1146 #define CHIP_REV_Bx         (0x1 << CHIP_REV_SHIFT)
1147 #define CHIP_REV_Cx         (0x2 << CHIP_REV_SHIFT)
1148 
1149 #define CHIP_REV_IS_SLOW(sc)    \
1150     (CHIP_REV(sc) > 0x00005000)
1151 #define CHIP_REV_IS_FPGA(sc)                              \
1152     (CHIP_REV_IS_SLOW(sc) && (CHIP_REV(sc) & 0x00001000))
1153 #define CHIP_REV_IS_EMUL(sc)                               \
1154     (CHIP_REV_IS_SLOW(sc) && !(CHIP_REV(sc) & 0x00001000))
1155 #define CHIP_REV_IS_ASIC(sc) \
1156     (!CHIP_REV_IS_SLOW(sc))
1157 
1158 #define CHIP_METAL(sc)      ((sc->devinfo.chip_id) & 0x00000ff0)
1159 #define CHIP_BOND_ID(sc)    ((sc->devinfo.chip_id) & 0x0000000f)
1160 
1161 #define CHIP_IS_E1(sc)      (CHIP_NUM(sc) == CHIP_NUM_57710)
1162 #define CHIP_IS_57710(sc)   (CHIP_NUM(sc) == CHIP_NUM_57710)
1163 #define CHIP_IS_57711(sc)   (CHIP_NUM(sc) == CHIP_NUM_57711)
1164 #define CHIP_IS_57711E(sc)  (CHIP_NUM(sc) == CHIP_NUM_57711E)
1165 #define CHIP_IS_E1H(sc)     ((CHIP_IS_57711(sc)) || \
1166                              (CHIP_IS_57711E(sc)))
1167 #define CHIP_IS_E1x(sc)     (CHIP_IS_E1((sc)) || \
1168                              CHIP_IS_E1H((sc)))
1169 
1170 #define CHIP_IS_57712(sc)    (CHIP_NUM(sc) == CHIP_NUM_57712)
1171 #define CHIP_IS_57712_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57712_MF)
1172 #define CHIP_IS_57712_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57712_VF)
1173 #define CHIP_IS_E2(sc)       (CHIP_IS_57712(sc) ||  \
1174                               CHIP_IS_57712_MF(sc))
1175 
1176 #define CHIP_IS_57800(sc)    (CHIP_NUM(sc) == CHIP_NUM_57800)
1177 #define CHIP_IS_57800_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57800_MF)
1178 #define CHIP_IS_57800_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57800_VF)
1179 #define CHIP_IS_57810(sc)    (CHIP_NUM(sc) == CHIP_NUM_57810)
1180 #define CHIP_IS_57810_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57810_MF)
1181 #define CHIP_IS_57810_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57810_VF)
1182 #define CHIP_IS_57811(sc)    (CHIP_NUM(sc) == CHIP_NUM_57811)
1183 #define CHIP_IS_57811_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57811_MF)
1184 #define CHIP_IS_57811_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57811_VF)
1185 #define CHIP_IS_57840(sc)    ((CHIP_NUM(sc) == CHIP_NUM_57840_OBS)  || \
1186                               (CHIP_NUM(sc) == CHIP_NUM_57840_4_10) || \
1187                               (CHIP_NUM(sc) == CHIP_NUM_57840_2_20))
1188 #define CHIP_IS_57840_MF(sc) ((CHIP_NUM(sc) == CHIP_NUM_57840_OBS_MF) || \
1189                               (CHIP_NUM(sc) == CHIP_NUM_57840_MF))
1190 #define CHIP_IS_57840_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57840_VF)
1191 
1192 #define CHIP_IS_E3(sc)      (CHIP_IS_57800(sc)    || \
1193                              CHIP_IS_57800_MF(sc) || \
1194                              CHIP_IS_57800_VF(sc) || \
1195                              CHIP_IS_57810(sc)    || \
1196                              CHIP_IS_57810_MF(sc) || \
1197                              CHIP_IS_57810_VF(sc) || \
1198                              CHIP_IS_57811(sc)    || \
1199                              CHIP_IS_57811_MF(sc) || \
1200                              CHIP_IS_57811_VF(sc) || \
1201                              CHIP_IS_57840(sc)    || \
1202                              CHIP_IS_57840_MF(sc) || \
1203                              CHIP_IS_57840_VF(sc))
1204 #define CHIP_IS_E3A0(sc)    (CHIP_IS_E3(sc) &&              \
1205                              (CHIP_REV(sc) == CHIP_REV_Ax))
1206 #define CHIP_IS_E3B0(sc)    (CHIP_IS_E3(sc) &&              \
1207                              (CHIP_REV(sc) == CHIP_REV_Bx))
1208 
1209 #define USES_WARPCORE(sc)   (CHIP_IS_E3(sc))
1210 #define CHIP_IS_E2E3(sc)    (CHIP_IS_E2(sc) || \
1211                              CHIP_IS_E3(sc))
1212 
1213 #define CHIP_IS_MF_CAP(sc)  (CHIP_IS_57711E(sc)  ||  \
1214                              CHIP_IS_57712_MF(sc) || \
1215                              CHIP_IS_E3(sc))
1216 
1217 #define IS_VF(sc)           (CHIP_IS_57712_VF(sc) || \
1218                              CHIP_IS_57800_VF(sc) || \
1219                              CHIP_IS_57810_VF(sc) || \
1220                              CHIP_IS_57840_VF(sc))
1221 #define IS_PF(sc)           (!IS_VF(sc))
1222 
1223 /*
1224  * This define is used in two main places:
1225  * 1. In the early stages of nic_load, to know if to configure Parser/Searcher
1226  * to nic-only mode or to offload mode. Offload mode is configured if either
1227  * the chip is E1x (where NIC_MODE register is not applicable), or if cnic
1228  * already registered for this port (which means that the user wants storage
1229  * services).
1230  * 2. During cnic-related load, to know if offload mode is already configured
1231  * in the HW or needs to be configrued. Since the transition from nic-mode to
1232  * offload-mode in HW causes traffic coruption, nic-mode is configured only
1233  * in ports on which storage services where never requested.
1234  */
1235 #define CONFIGURE_NIC_MODE(sc) (!CHIP_IS_E1x(sc) && !CNIC_ENABLED(sc))
1236 
1237     uint8_t  chip_port_mode;
1238 #define CHIP_4_PORT_MODE        0x0
1239 #define CHIP_2_PORT_MODE        0x1
1240 #define CHIP_PORT_MODE_NONE     0x2
1241 #define CHIP_PORT_MODE(sc)      ((sc)->devinfo.chip_port_mode)
1242 #define CHIP_IS_MODE_4_PORT(sc) (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE)
1243 
1244     uint8_t int_block;
1245 #define INT_BLOCK_HC            0
1246 #define INT_BLOCK_IGU           1
1247 #define INT_BLOCK_MODE_NORMAL   0
1248 #define INT_BLOCK_MODE_BW_COMP  2
1249 #define CHIP_INT_MODE_IS_NBC(sc)                          \
1250     (!CHIP_IS_E1x(sc) &&                                  \
1251      !((sc)->devinfo.int_block & INT_BLOCK_MODE_BW_COMP))
1252 #define CHIP_INT_MODE_IS_BC(sc) (!CHIP_INT_MODE_IS_NBC(sc))
1253 
1254     uint32_t shmem_base;
1255     uint32_t shmem2_base;
1256     uint32_t bc_ver;
1257     char bc_ver_str[32];
1258     uint32_t mf_cfg_base; /* bootcode shmem address in BAR memory */
1259     struct bxe_mf_info mf_info;
1260 
1261     int flash_size;
1262 #define NVRAM_1MB_SIZE      0x20000
1263 #define NVRAM_TIMEOUT_COUNT 30000
1264 #define NVRAM_PAGE_SIZE     256
1265 
1266     /* PCIe capability information */
1267     uint32_t pcie_cap_flags;
1268 #define BXE_PM_CAPABLE_FLAG     0x00000001
1269 #define BXE_PCIE_CAPABLE_FLAG   0x00000002
1270 #define BXE_MSI_CAPABLE_FLAG    0x00000004
1271 #define BXE_MSIX_CAPABLE_FLAG   0x00000008
1272     uint16_t pcie_pm_cap_reg;
1273     uint16_t pcie_pcie_cap_reg;
1274     //uint16_t pcie_devctl;
1275     uint16_t pcie_link_width;
1276     uint16_t pcie_link_speed;
1277     uint16_t pcie_msi_cap_reg;
1278     uint16_t pcie_msix_cap_reg;
1279 
1280     /* device configuration read from bootcode shared memory */
1281     uint32_t hw_config;
1282     uint32_t hw_config2;
1283 }; /* struct bxe_devinfo */
1284 
1285 struct bxe_sp_objs {
1286     struct ecore_vlan_mac_obj mac_obj; /* MACs object */
1287     struct ecore_queue_sp_obj q_obj; /* Queue State object */
1288 }; /* struct bxe_sp_objs */
1289 
1290 /*
1291  * Data that will be used to create a link report message. We will keep the
1292  * data used for the last link report in order to prevent reporting the same
1293  * link parameters twice.
1294  */
1295 struct bxe_link_report_data {
1296     uint16_t      line_speed;        /* Effective line speed */
1297     unsigned long link_report_flags; /* BXE_LINK_REPORT_XXX flags */
1298 };
1299 enum {
1300     BXE_LINK_REPORT_FULL_DUPLEX,
1301     BXE_LINK_REPORT_LINK_DOWN,
1302     BXE_LINK_REPORT_RX_FC_ON,
1303     BXE_LINK_REPORT_TX_FC_ON
1304 };
1305 
1306 /* Top level device private data structure. */
1307 struct bxe_softc {
1308     /*
1309      * First entry must be a pointer to the BSD ifnet struct which
1310      * has a first element of 'void *if_softc' (which is us). XXX
1311      */
1312     if_t 	    ifp;
1313     struct ifmedia  ifmedia; /* network interface media structure */
1314     int             media;
1315 
1316     volatile int    state; /* device state */
1317 #define BXE_STATE_CLOSED                 0x0000
1318 #define BXE_STATE_OPENING_WAITING_LOAD   0x1000
1319 #define BXE_STATE_OPENING_WAITING_PORT   0x2000
1320 #define BXE_STATE_OPEN                   0x3000
1321 #define BXE_STATE_CLOSING_WAITING_HALT   0x4000
1322 #define BXE_STATE_CLOSING_WAITING_DELETE 0x5000
1323 #define BXE_STATE_CLOSING_WAITING_UNLOAD 0x6000
1324 #define BXE_STATE_DISABLED               0xD000
1325 #define BXE_STATE_DIAG                   0xE000
1326 #define BXE_STATE_ERROR                  0xF000
1327 
1328     int flags;
1329 #define BXE_ONE_PORT_FLAG    0x00000001
1330 #define BXE_NO_ISCSI         0x00000002
1331 #define BXE_NO_FCOE          0x00000004
1332 #define BXE_ONE_PORT(sc)     (sc->flags & BXE_ONE_PORT_FLAG)
1333 //#define BXE_NO_WOL_FLAG      0x00000008
1334 //#define BXE_USING_DAC_FLAG   0x00000010
1335 //#define BXE_USING_MSIX_FLAG  0x00000020
1336 //#define BXE_USING_MSI_FLAG   0x00000040
1337 //#define BXE_DISABLE_MSI_FLAG 0x00000080
1338 #define BXE_NO_MCP_FLAG      0x00000200
1339 #define BXE_NOMCP(sc)        (sc->flags & BXE_NO_MCP_FLAG)
1340 //#define BXE_SAFC_TX_FLAG     0x00000400
1341 #define BXE_MF_FUNC_DIS      0x00000800
1342 #define BXE_TX_SWITCHING     0x00001000
1343 #define BXE_NO_PULSE	     0x00002000
1344 
1345     unsigned long debug; /* per-instance debug logging config */
1346 
1347 #define MAX_BARS 5
1348     struct bxe_bar bar[MAX_BARS]; /* map BARs 0, 2, 4 */
1349 
1350     uint16_t doorbell_size;
1351 
1352     /* periodic timer callout */
1353 #define PERIODIC_STOP 0
1354 #define PERIODIC_GO   1
1355     volatile unsigned long periodic_flags;
1356     struct callout         periodic_callout;
1357 
1358     /* chip start/stop/reset taskqueue */
1359 #define CHIP_TQ_NONE   0
1360 #define CHIP_TQ_START  1
1361 #define CHIP_TQ_STOP   2
1362 #define CHIP_TQ_REINIT 3
1363     volatile unsigned long chip_tq_flags;
1364     struct task            chip_tq_task;
1365     struct taskqueue       *chip_tq;
1366     char                   chip_tq_name[32];
1367 
1368     struct timeout_task        sp_err_timeout_task;
1369 
1370     /* slowpath interrupt taskqueue */
1371     struct task      sp_tq_task;
1372     struct taskqueue *sp_tq;
1373     char             sp_tq_name[32];
1374 
1375     struct bxe_fastpath fp[MAX_RSS_CHAINS];
1376     struct bxe_sp_objs  sp_objs[MAX_RSS_CHAINS];
1377 
1378     device_t dev;  /* parent device handle */
1379     uint8_t  unit; /* driver instance number */
1380 
1381     int pcie_bus;    /* PCIe bus number */
1382     int pcie_device; /* PCIe device/slot number */
1383     int pcie_func;   /* PCIe function number */
1384 
1385     uint8_t pfunc_rel; /* function relative */
1386     uint8_t pfunc_abs; /* function absolute */
1387     uint8_t path_id;   /* function absolute */
1388 #define SC_PATH(sc)     (sc->path_id)
1389 #define SC_PORT(sc)     (sc->pfunc_rel & 1)
1390 #define SC_FUNC(sc)     (sc->pfunc_rel)
1391 #define SC_ABS_FUNC(sc) (sc->pfunc_abs)
1392 #define SC_VN(sc)       (sc->pfunc_rel >> 1)
1393 #define SC_L_ID(sc)     (SC_VN(sc) << 2)
1394 #define PORT_ID(sc)     SC_PORT(sc)
1395 #define PATH_ID(sc)     SC_PATH(sc)
1396 #define VNIC_ID(sc)     SC_VN(sc)
1397 #define FUNC_ID(sc)     SC_FUNC(sc)
1398 #define ABS_FUNC_ID(sc) SC_ABS_FUNC(sc)
1399 #define SC_FW_MB_IDX_VN(sc, vn)                                \
1400     (SC_PORT(sc) + (vn) *                                      \
1401      ((CHIP_IS_E1x(sc) || (CHIP_IS_MODE_4_PORT(sc))) ? 2 : 1))
1402 #define SC_FW_MB_IDX(sc) SC_FW_MB_IDX_VN(sc, SC_VN(sc))
1403 
1404     int if_capen; /* enabled interface capabilities */
1405 
1406     struct bxe_devinfo devinfo;
1407     char fw_ver_str[32];
1408     char mf_mode_str[32];
1409     char pci_link_str[32];
1410 
1411     const struct iro *iro_array;
1412 
1413 #ifdef BXE_CORE_LOCK_SX
1414     struct sx      core_sx;
1415     char           core_sx_name[32];
1416 #else
1417     struct mtx     core_mtx;
1418     char           core_mtx_name[32];
1419 #endif
1420     struct mtx     sp_mtx;
1421     char           sp_mtx_name[32];
1422     struct mtx     dmae_mtx;
1423     char           dmae_mtx_name[32];
1424     struct mtx     fwmb_mtx;
1425     char           fwmb_mtx_name[32];
1426     struct mtx     print_mtx;
1427     char           print_mtx_name[32];
1428     struct mtx     stats_mtx;
1429     char           stats_mtx_name[32];
1430     struct mtx     mcast_mtx;
1431     char           mcast_mtx_name[32];
1432 
1433 #ifdef BXE_CORE_LOCK_SX
1434 #define BXE_CORE_TRYLOCK(sc)      sx_try_xlock(&sc->core_sx)
1435 #define BXE_CORE_LOCK(sc)         sx_xlock(&sc->core_sx)
1436 #define BXE_CORE_UNLOCK(sc)       sx_xunlock(&sc->core_sx)
1437 #define BXE_CORE_LOCK_ASSERT(sc)  sx_assert(&sc->core_sx, SA_XLOCKED)
1438 #else
1439 #define BXE_CORE_TRYLOCK(sc)      mtx_trylock(&sc->core_mtx)
1440 #define BXE_CORE_LOCK(sc)         mtx_lock(&sc->core_mtx)
1441 #define BXE_CORE_UNLOCK(sc)       mtx_unlock(&sc->core_mtx)
1442 #define BXE_CORE_LOCK_ASSERT(sc)  mtx_assert(&sc->core_mtx, MA_OWNED)
1443 #endif
1444 
1445 #define BXE_SP_LOCK(sc)           mtx_lock(&sc->sp_mtx)
1446 #define BXE_SP_UNLOCK(sc)         mtx_unlock(&sc->sp_mtx)
1447 #define BXE_SP_LOCK_ASSERT(sc)    mtx_assert(&sc->sp_mtx, MA_OWNED)
1448 
1449 #define BXE_DMAE_LOCK(sc)         mtx_lock(&sc->dmae_mtx)
1450 #define BXE_DMAE_UNLOCK(sc)       mtx_unlock(&sc->dmae_mtx)
1451 #define BXE_DMAE_LOCK_ASSERT(sc)  mtx_assert(&sc->dmae_mtx, MA_OWNED)
1452 
1453 #define BXE_FWMB_LOCK(sc)         mtx_lock(&sc->fwmb_mtx)
1454 #define BXE_FWMB_UNLOCK(sc)       mtx_unlock(&sc->fwmb_mtx)
1455 #define BXE_FWMB_LOCK_ASSERT(sc)  mtx_assert(&sc->fwmb_mtx, MA_OWNED)
1456 
1457 #define BXE_PRINT_LOCK(sc)        mtx_lock(&sc->print_mtx)
1458 #define BXE_PRINT_UNLOCK(sc)      mtx_unlock(&sc->print_mtx)
1459 #define BXE_PRINT_LOCK_ASSERT(sc) mtx_assert(&sc->print_mtx, MA_OWNED)
1460 
1461 #define BXE_STATS_LOCK(sc)        mtx_lock(&sc->stats_mtx)
1462 #define BXE_STATS_UNLOCK(sc)      mtx_unlock(&sc->stats_mtx)
1463 #define BXE_STATS_LOCK_ASSERT(sc) mtx_assert(&sc->stats_mtx, MA_OWNED)
1464 
1465 #define BXE_MCAST_LOCK(sc)	mtx_lock(&sc->mcast_mtx);
1466 #define BXE_MCAST_UNLOCK(sc)	mtx_unlock(&sc->mcast_mtx);
1467 #define BXE_MCAST_LOCK_ASSERT(sc) mtx_assert(&sc->mcast_mtx, MA_OWNED)
1468 
1469     int dmae_ready;
1470 #define DMAE_READY(sc) (sc->dmae_ready)
1471 
1472     struct ecore_credit_pool_obj vlans_pool;
1473     struct ecore_credit_pool_obj macs_pool;
1474     struct ecore_rx_mode_obj     rx_mode_obj;
1475     struct ecore_mcast_obj       mcast_obj;
1476     struct ecore_rss_config_obj  rss_conf_obj;
1477     struct ecore_func_sp_obj     func_obj;
1478 
1479     uint16_t fw_seq;
1480     uint16_t fw_drv_pulse_wr_seq;
1481     uint32_t func_stx;
1482 
1483     struct elink_params         link_params;
1484     struct elink_vars           link_vars;
1485     uint32_t                    link_cnt;
1486     struct bxe_link_report_data last_reported_link;
1487     char mac_addr_str[32];
1488 
1489     int last_reported_link_state;
1490 
1491     int tx_ring_size;
1492     int rx_ring_size;
1493     int wol;
1494 
1495     int is_leader;
1496     int recovery_state;
1497 #define BXE_RECOVERY_DONE        1
1498 #define BXE_RECOVERY_INIT        2
1499 #define BXE_RECOVERY_WAIT        3
1500 #define BXE_RECOVERY_FAILED      4
1501 #define BXE_RECOVERY_NIC_LOADING 5
1502 
1503 #define BXE_ERR_TXQ_STUCK       0x1  /* Tx queue stuck detected by driver. */
1504 #define BXE_ERR_MISC            0x2  /* MISC ERR */
1505 #define BXE_ERR_PARITY          0x4  /* Parity error detected. */
1506 #define BXE_ERR_STATS_TO        0x8  /* Statistics timeout detected. */
1507 #define BXE_ERR_MC_ASSERT       0x10 /* MC assert attention received. */
1508 #define BXE_ERR_PANIC           0x20 /* Driver asserted. */
1509 #define BXE_ERR_MCP_ASSERT      0x40 /* MCP assert attention received. No Recovery*/
1510 #define BXE_ERR_GLOBAL          0x80 /* PCIe/PXP/IGU/MISC/NIG device blocks error- needs PCIe/Fundamental reset */
1511         uint32_t error_status;
1512 
1513     uint32_t rx_mode;
1514 #define BXE_RX_MODE_NONE     0
1515 #define BXE_RX_MODE_NORMAL   1
1516 #define BXE_RX_MODE_ALLMULTI 2
1517 #define BXE_RX_MODE_PROMISC  3
1518 #define BXE_MAX_MULTICAST    64
1519 
1520     struct bxe_port port;
1521 
1522     struct cmng_init cmng;
1523 
1524     /* user configs */
1525     int      num_queues;
1526     int      max_rx_bufs;
1527     int      hc_rx_ticks;
1528     int      hc_tx_ticks;
1529     int      rx_budget;
1530     int      max_aggregation_size;
1531     int      mrrs;
1532     int      autogreeen;
1533 #define AUTO_GREEN_HW_DEFAULT 0
1534 #define AUTO_GREEN_FORCE_ON   1
1535 #define AUTO_GREEN_FORCE_OFF  2
1536     int      interrupt_mode;
1537 #define INTR_MODE_INTX 0
1538 #define INTR_MODE_MSI  1
1539 #define INTR_MODE_MSIX 2
1540     int      udp_rss;
1541 
1542     /* interrupt allocations */
1543     struct bxe_intr intr[MAX_RSS_CHAINS+1];
1544     int             intr_count;
1545     uint8_t         igu_dsb_id;
1546     uint8_t         igu_base_sb;
1547     uint8_t         igu_sb_cnt;
1548     //uint8_t         min_msix_vec_cnt;
1549     uint32_t        igu_base_addr;
1550     //bus_addr_t      def_status_blk_mapping;
1551     uint8_t         base_fw_ndsb;
1552 #define DEF_SB_IGU_ID 16
1553 #define DEF_SB_ID     HC_SP_SB_ID
1554 
1555     /* parent bus DMA tag  */
1556     bus_dma_tag_t parent_dma_tag;
1557 
1558     /* default status block */
1559     struct bxe_dma              def_sb_dma;
1560     struct host_sp_status_block *def_sb;
1561     uint16_t                    def_idx;
1562     uint16_t                    def_att_idx;
1563     uint32_t                    attn_state;
1564     struct attn_route           attn_group[MAX_DYNAMIC_ATTN_GRPS];
1565 
1566 /* general SP events - stats query, cfc delete, etc */
1567 #define HC_SP_INDEX_ETH_DEF_CONS         3
1568 /* EQ completions */
1569 #define HC_SP_INDEX_EQ_CONS              7
1570 /* FCoE L2 connection completions */
1571 #define HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS  6
1572 #define HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS  4
1573 /* iSCSI L2 */
1574 #define HC_SP_INDEX_ETH_ISCSI_CQ_CONS    5
1575 #define HC_SP_INDEX_ETH_ISCSI_RX_CQ_CONS 1
1576 
1577     /* event queue */
1578     struct bxe_dma        eq_dma;
1579     union event_ring_elem *eq;
1580     uint16_t              eq_prod;
1581     uint16_t              eq_cons;
1582     uint16_t              *eq_cons_sb;
1583 #define NUM_EQ_PAGES     1 /* must be a power of 2 */
1584 #define EQ_DESC_CNT_PAGE (BCM_PAGE_SIZE / sizeof(union event_ring_elem))
1585 #define EQ_DESC_MAX_PAGE (EQ_DESC_CNT_PAGE - 1)
1586 #define NUM_EQ_DESC      (EQ_DESC_CNT_PAGE * NUM_EQ_PAGES)
1587 #define EQ_DESC_MASK     (NUM_EQ_DESC - 1)
1588 #define MAX_EQ_AVAIL     (EQ_DESC_MAX_PAGE * NUM_EQ_PAGES - 2)
1589 /* depends on EQ_DESC_CNT_PAGE being a power of 2 */
1590 #define NEXT_EQ_IDX(x)                                      \
1591     ((((x) & EQ_DESC_MAX_PAGE) == (EQ_DESC_MAX_PAGE - 1)) ? \
1592          ((x) + 2) : ((x) + 1))
1593 /* depends on the above and on NUM_EQ_PAGES being a power of 2 */
1594 #define EQ_DESC(x) ((x) & EQ_DESC_MASK)
1595 
1596     /* slow path */
1597     struct bxe_dma      sp_dma;
1598     struct bxe_slowpath *sp;
1599     unsigned long       sp_state;
1600 
1601     /* slow path queue */
1602     struct bxe_dma spq_dma;
1603     struct eth_spe *spq;
1604 #define SP_DESC_CNT     (BCM_PAGE_SIZE / sizeof(struct eth_spe))
1605 #define MAX_SP_DESC_CNT (SP_DESC_CNT - 1)
1606 #define MAX_SPQ_PENDING 8
1607 
1608     uint16_t       spq_prod_idx;
1609     struct eth_spe *spq_prod_bd;
1610     struct eth_spe *spq_last_bd;
1611     uint16_t       *dsb_sp_prod;
1612     //uint16_t       *spq_hw_con;
1613     //uint16_t       spq_left;
1614 
1615     volatile unsigned long eq_spq_left; /* COMMON_xxx ramrod credit */
1616     volatile unsigned long cq_spq_left; /* ETH_xxx ramrod credit */
1617 
1618     /* fw decompression buffer */
1619     struct bxe_dma gz_buf_dma;
1620     void           *gz_buf;
1621     z_streamp      gz_strm;
1622     uint32_t       gz_outlen;
1623 #define GUNZIP_BUF(sc)    (sc->gz_buf)
1624 #define GUNZIP_OUTLEN(sc) (sc->gz_outlen)
1625 #define GUNZIP_PHYS(sc)   (sc->gz_buf_dma.paddr)
1626 #define FW_BUF_SIZE       0x40000
1627 
1628     const struct raw_op *init_ops;
1629     const uint16_t *init_ops_offsets; /* init block offsets inside init_ops */
1630     const uint32_t *init_data;        /* data blob, 32 bit granularity */
1631     uint32_t       init_mode_flags;
1632 #define INIT_MODE_FLAGS(sc) (sc->init_mode_flags)
1633     /* PRAM blobs - raw data */
1634     const uint8_t *tsem_int_table_data;
1635     const uint8_t *tsem_pram_data;
1636     const uint8_t *usem_int_table_data;
1637     const uint8_t *usem_pram_data;
1638     const uint8_t *xsem_int_table_data;
1639     const uint8_t *xsem_pram_data;
1640     const uint8_t *csem_int_table_data;
1641     const uint8_t *csem_pram_data;
1642 #define INIT_OPS(sc)                 (sc->init_ops)
1643 #define INIT_OPS_OFFSETS(sc)         (sc->init_ops_offsets)
1644 #define INIT_DATA(sc)                (sc->init_data)
1645 #define INIT_TSEM_INT_TABLE_DATA(sc) (sc->tsem_int_table_data)
1646 #define INIT_TSEM_PRAM_DATA(sc)      (sc->tsem_pram_data)
1647 #define INIT_USEM_INT_TABLE_DATA(sc) (sc->usem_int_table_data)
1648 #define INIT_USEM_PRAM_DATA(sc)      (sc->usem_pram_data)
1649 #define INIT_XSEM_INT_TABLE_DATA(sc) (sc->xsem_int_table_data)
1650 #define INIT_XSEM_PRAM_DATA(sc)      (sc->xsem_pram_data)
1651 #define INIT_CSEM_INT_TABLE_DATA(sc) (sc->csem_int_table_data)
1652 #define INIT_CSEM_PRAM_DATA(sc)      (sc->csem_pram_data)
1653 
1654     /* ILT
1655      * For max 196 cids (64*3 + non-eth), 32KB ILT page size and 1KB
1656      * context size we need 8 ILT entries.
1657      */
1658 #define ILT_MAX_L2_LINES 8
1659     struct hw_context context[ILT_MAX_L2_LINES];
1660     struct ecore_ilt *ilt;
1661 #define ILT_MAX_LINES 256
1662 
1663 /* max supported number of RSS queues: IGU SBs minus one for CNIC */
1664 #define BXE_MAX_RSS_COUNT(sc) ((sc)->igu_sb_cnt - CNIC_SUPPORT(sc))
1665 /* max CID count: Max RSS * Max_Tx_Multi_Cos + FCoE + iSCSI */
1666 #if 1
1667 #define BXE_L2_MAX_CID(sc)                                              \
1668     (BXE_MAX_RSS_COUNT(sc) * ECORE_MULTI_TX_COS + 2 * CNIC_SUPPORT(sc))
1669 #else
1670 #define BXE_L2_MAX_CID(sc) /* OOO + FWD */                              \
1671     (BXE_MAX_RSS_COUNT(sc) * ECORE_MULTI_TX_COS + 4 * CNIC_SUPPORT(sc))
1672 #endif
1673 #if 1
1674 #define BXE_L2_CID_COUNT(sc)                                             \
1675     (BXE_NUM_ETH_QUEUES(sc) * ECORE_MULTI_TX_COS + 2 * CNIC_SUPPORT(sc))
1676 #else
1677 #define BXE_L2_CID_COUNT(sc) /* OOO + FWD */                             \
1678     (BXE_NUM_ETH_QUEUES(sc) * ECORE_MULTI_TX_COS + 4 * CNIC_SUPPORT(sc))
1679 #endif
1680 #define L2_ILT_LINES(sc)                                \
1681     (DIV_ROUND_UP(BXE_L2_CID_COUNT(sc), ILT_PAGE_CIDS))
1682 
1683     int qm_cid_count;
1684 
1685     uint8_t dropless_fc;
1686 
1687     /* total number of FW statistics requests */
1688     uint8_t fw_stats_num;
1689     /*
1690      * This is a memory buffer that will contain both statistics ramrod
1691      * request and data.
1692      */
1693     struct bxe_dma fw_stats_dma;
1694     /*
1695      * FW statistics request shortcut (points at the beginning of fw_stats
1696      * buffer).
1697      */
1698     int                     fw_stats_req_size;
1699     struct bxe_fw_stats_req *fw_stats_req;
1700     bus_addr_t              fw_stats_req_mapping;
1701     /*
1702      * FW statistics data shortcut (points at the beginning of fw_stats
1703      * buffer + fw_stats_req_size).
1704      */
1705     int                      fw_stats_data_size;
1706     struct bxe_fw_stats_data *fw_stats_data;
1707     bus_addr_t               fw_stats_data_mapping;
1708 
1709     /* tracking a pending STAT_QUERY ramrod */
1710     uint16_t stats_pending;
1711     /* number of completed statistics ramrods */
1712     uint16_t stats_comp;
1713     uint16_t stats_counter;
1714     uint8_t  stats_init;
1715     int      stats_state;
1716 
1717     struct bxe_eth_stats         eth_stats;
1718     struct host_func_stats       func_stats;
1719     struct bxe_eth_stats_old     eth_stats_old;
1720     struct bxe_net_stats_old     net_stats_old;
1721     struct bxe_fw_port_stats_old fw_stats_old;
1722 
1723     struct dmae_cmd stats_dmae; /* used by dmae command loader */
1724     int                 executer_idx;
1725 
1726     int mtu;
1727 
1728     /* LLDP params */
1729     struct bxe_config_lldp_params lldp_config_params;
1730     /* DCB support on/off */
1731     int dcb_state;
1732 #define BXE_DCB_STATE_OFF 0
1733 #define BXE_DCB_STATE_ON  1
1734     /* DCBX engine mode */
1735     int dcbx_enabled;
1736 #define BXE_DCBX_ENABLED_OFF        0
1737 #define BXE_DCBX_ENABLED_ON_NEG_OFF 1
1738 #define BXE_DCBX_ENABLED_ON_NEG_ON  2
1739 #define BXE_DCBX_ENABLED_INVALID    -1
1740     uint8_t dcbx_mode_uset;
1741     struct bxe_config_dcbx_params dcbx_config_params;
1742     struct bxe_dcbx_port_params   dcbx_port_params;
1743     int dcb_version;
1744 
1745     uint8_t cnic_support;
1746     uint8_t cnic_enabled;
1747     uint8_t cnic_loaded;
1748 #define CNIC_SUPPORT(sc) 0 /* ((sc)->cnic_support) */
1749 #define CNIC_ENABLED(sc) 0 /* ((sc)->cnic_enabled) */
1750 #define CNIC_LOADED(sc)  0 /* ((sc)->cnic_loaded) */
1751 
1752     /* multiple tx classes of service */
1753     uint8_t max_cos;
1754 #define BXE_MAX_PRIORITY 8
1755     /* priority to cos mapping */
1756     uint8_t prio_to_cos[BXE_MAX_PRIORITY];
1757 
1758     int panic;
1759 
1760     struct cdev *ioctl_dev;
1761 
1762     void *grc_dump;
1763     unsigned int trigger_grcdump;
1764     unsigned int  grcdump_done;
1765     unsigned int grcdump_started;
1766     int bxe_pause_param;
1767     void *eeprom;
1768 }; /* struct bxe_softc */
1769 
1770 /* IOCTL sub-commands for edebug and firmware upgrade */
1771 #define BXE_IOC_RD_NVRAM        1
1772 #define BXE_IOC_WR_NVRAM        2
1773 #define BXE_IOC_STATS_SHOW_NUM  3
1774 #define BXE_IOC_STATS_SHOW_STR  4
1775 #define BXE_IOC_STATS_SHOW_CNT  5
1776 
1777 struct bxe_nvram_data {
1778     uint32_t op; /* ioctl sub-command */
1779     uint32_t offset;
1780     uint32_t len;
1781     uint32_t value[1]; /* variable */
1782 };
1783 
1784 union bxe_stats_show_data {
1785     uint32_t op; /* ioctl sub-command */
1786 
1787     struct {
1788         uint32_t num; /* return number of stats */
1789         uint32_t len; /* length of each string item */
1790     } desc;
1791 
1792     /* variable length... */
1793     char str[1]; /* holds names of desc.num stats, each desc.len in length */
1794 
1795     /* variable length... */
1796     uint64_t stats[1]; /* holds all stats */
1797 };
1798 
1799 /* function init flags */
1800 #define FUNC_FLG_RSS     0x0001
1801 #define FUNC_FLG_STATS   0x0002
1802 /* FUNC_FLG_UNMATCHED       0x0004 */
1803 #define FUNC_FLG_TPA     0x0008
1804 #define FUNC_FLG_SPQ     0x0010
1805 #define FUNC_FLG_LEADING 0x0020 /* PF only */
1806 
1807 struct bxe_func_init_params {
1808     bus_addr_t fw_stat_map; /* (dma) valid if FUNC_FLG_STATS */
1809     bus_addr_t spq_map;     /* (dma) valid if FUNC_FLG_SPQ */
1810     uint16_t   func_flgs;
1811     uint16_t   func_id;     /* abs function id */
1812     uint16_t   pf_id;
1813     uint16_t   spq_prod;    /* valid if FUNC_FLG_SPQ */
1814 };
1815 
1816 /* memory resources reside at BARs 0, 2, 4 */
1817 /* Run `pciconf -lb` to see mappings */
1818 #define BAR0 0
1819 #define BAR1 2
1820 #define BAR2 4
1821 
1822 #ifdef BXE_REG_NO_INLINE
1823 
1824 uint8_t bxe_reg_read8(struct bxe_softc *sc, bus_size_t offset);
1825 uint16_t bxe_reg_read16(struct bxe_softc *sc, bus_size_t offset);
1826 uint32_t bxe_reg_read32(struct bxe_softc *sc, bus_size_t offset);
1827 
1828 void bxe_reg_write8(struct bxe_softc *sc, bus_size_t offset, uint8_t val);
1829 void bxe_reg_write16(struct bxe_softc *sc, bus_size_t offset, uint16_t val);
1830 void bxe_reg_write32(struct bxe_softc *sc, bus_size_t offset, uint32_t val);
1831 
1832 #define REG_RD8(sc, offset)  bxe_reg_read8(sc, offset)
1833 #define REG_RD16(sc, offset) bxe_reg_read16(sc, offset)
1834 #define REG_RD32(sc, offset) bxe_reg_read32(sc, offset)
1835 
1836 #define REG_WR8(sc, offset, val)  bxe_reg_write8(sc, offset, val)
1837 #define REG_WR16(sc, offset, val) bxe_reg_write16(sc, offset, val)
1838 #define REG_WR32(sc, offset, val) bxe_reg_write32(sc, offset, val)
1839 
1840 #else /* not BXE_REG_NO_INLINE */
1841 
1842 #define REG_WR8(sc, offset, val)            \
1843     bus_space_write_1(sc->bar[BAR0].tag,    \
1844                       sc->bar[BAR0].handle, \
1845                       offset, val)
1846 
1847 #define REG_WR16(sc, offset, val)           \
1848     bus_space_write_2(sc->bar[BAR0].tag,    \
1849                       sc->bar[BAR0].handle, \
1850                       offset, val)
1851 
1852 #define REG_WR32(sc, offset, val)           \
1853     bus_space_write_4(sc->bar[BAR0].tag,    \
1854                       sc->bar[BAR0].handle, \
1855                       offset, val)
1856 
1857 #define REG_RD8(sc, offset)                \
1858     bus_space_read_1(sc->bar[BAR0].tag,    \
1859                      sc->bar[BAR0].handle, \
1860                      offset)
1861 
1862 #define REG_RD16(sc, offset)               \
1863     bus_space_read_2(sc->bar[BAR0].tag,    \
1864                      sc->bar[BAR0].handle, \
1865                      offset)
1866 
1867 #define REG_RD32(sc, offset)               \
1868     bus_space_read_4(sc->bar[BAR0].tag,    \
1869                      sc->bar[BAR0].handle, \
1870                      offset)
1871 
1872 #endif /* BXE_REG_NO_INLINE */
1873 
1874 #define REG_RD(sc, offset)      REG_RD32(sc, offset)
1875 #define REG_WR(sc, offset, val) REG_WR32(sc, offset, val)
1876 
1877 #define REG_RD_IND(sc, offset)      bxe_reg_rd_ind(sc, offset)
1878 #define REG_WR_IND(sc, offset, val) bxe_reg_wr_ind(sc, offset, val)
1879 
1880 #define BXE_SP(sc, var) (&(sc)->sp->var)
1881 #define BXE_SP_MAPPING(sc, var) \
1882     (sc->sp_dma.paddr + offsetof(struct bxe_slowpath, var))
1883 
1884 #define BXE_FP(sc, nr, var) ((sc)->fp[(nr)].var)
1885 #define BXE_SP_OBJ(sc, fp) ((sc)->sp_objs[(fp)->index])
1886 
1887 #define REG_RD_DMAE(sc, offset, valp, len32)               \
1888     do {                                                   \
1889         bxe_read_dmae(sc, offset, len32);                  \
1890         memcpy(valp, BXE_SP(sc, wb_data[0]), (len32) * 4); \
1891     } while (0)
1892 
1893 #define REG_WR_DMAE(sc, offset, valp, len32)                            \
1894     do {                                                                \
1895         memcpy(BXE_SP(sc, wb_data[0]), valp, (len32) * 4);              \
1896         bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data), offset, len32); \
1897     } while (0)
1898 
1899 #define REG_WR_DMAE_LEN(sc, offset, valp, len32) \
1900     REG_WR_DMAE(sc, offset, valp, len32)
1901 
1902 #define REG_RD_DMAE_LEN(sc, offset, valp, len32) \
1903     REG_RD_DMAE(sc, offset, valp, len32)
1904 
1905 #define VIRT_WR_DMAE_LEN(sc, data, addr, len32, le32_swap)         \
1906     do {                                                           \
1907         /* if (le32_swap) {                                     */ \
1908         /*    BLOGW(sc, "VIRT_WR_DMAE_LEN with le32_swap=1\n"); */ \
1909         /* }                                                    */ \
1910         memcpy(GUNZIP_BUF(sc), data, len32 * 4);                   \
1911         ecore_write_big_buf_wb(sc, addr, len32);                   \
1912     } while (0)
1913 
1914 #define BXE_DB_MIN_SHIFT 3   /* 8 bytes */
1915 #define BXE_DB_SHIFT     7   /* 128 bytes */
1916 #if (BXE_DB_SHIFT < BXE_DB_MIN_SHIFT)
1917 #error "Minimum DB doorbell stride is 8"
1918 #endif
1919 #define DPM_TRIGGER_TYPE 0x40
1920 #define DOORBELL(sc, cid, val)                                              \
1921     do {                                                                    \
1922         bus_space_write_4(sc->bar[BAR1].tag, sc->bar[BAR1].handle,          \
1923                           ((sc->doorbell_size * (cid)) + DPM_TRIGGER_TYPE), \
1924                           (uint32_t)val);                                   \
1925     } while(0)
1926 
1927 #define SHMEM_ADDR(sc, field)                                       \
1928     (sc->devinfo.shmem_base + offsetof(struct shmem_region, field))
1929 #define SHMEM_RD(sc, field)      REG_RD(sc, SHMEM_ADDR(sc, field))
1930 #define SHMEM_RD16(sc, field)    REG_RD16(sc, SHMEM_ADDR(sc, field))
1931 #define SHMEM_WR(sc, field, val) REG_WR(sc, SHMEM_ADDR(sc, field), val)
1932 
1933 #define SHMEM2_ADDR(sc, field)                                        \
1934     (sc->devinfo.shmem2_base + offsetof(struct shmem2_region, field))
1935 #define SHMEM2_HAS(sc, field)                                            \
1936     (sc->devinfo.shmem2_base && (REG_RD(sc, SHMEM2_ADDR(sc, size)) >     \
1937                                  offsetof(struct shmem2_region, field)))
1938 #define SHMEM2_RD(sc, field)      REG_RD(sc, SHMEM2_ADDR(sc, field))
1939 #define SHMEM2_WR(sc, field, val) REG_WR(sc, SHMEM2_ADDR(sc, field), val)
1940 
1941 #define MFCFG_ADDR(sc, field)                                  \
1942     (sc->devinfo.mf_cfg_base + offsetof(struct mf_cfg, field))
1943 #define MFCFG_RD(sc, field)      REG_RD(sc, MFCFG_ADDR(sc, field))
1944 #define MFCFG_RD16(sc, field)    REG_RD16(sc, MFCFG_ADDR(sc, field))
1945 #define MFCFG_WR(sc, field, val) REG_WR(sc, MFCFG_ADDR(sc, field), val)
1946 
1947 /* DMAE command defines */
1948 
1949 #define DMAE_TIMEOUT      -1
1950 #define DMAE_PCI_ERROR    -2 /* E2 and onward */
1951 #define DMAE_NOT_RDY      -3
1952 #define DMAE_PCI_ERR_FLAG 0x80000000
1953 
1954 #define DMAE_SRC_PCI      0
1955 #define DMAE_SRC_GRC      1
1956 
1957 #define DMAE_DST_NONE     0
1958 #define DMAE_DST_PCI      1
1959 #define DMAE_DST_GRC      2
1960 
1961 #define DMAE_COMP_PCI     0
1962 #define DMAE_COMP_GRC     1
1963 
1964 #define DMAE_COMP_REGULAR 0
1965 #define DMAE_COM_SET_ERR  1
1966 
1967 #define DMAE_CMD_SRC_PCI (DMAE_SRC_PCI << DMAE_CMD_SRC_SHIFT)
1968 #define DMAE_CMD_SRC_GRC (DMAE_SRC_GRC << DMAE_CMD_SRC_SHIFT)
1969 #define DMAE_CMD_DST_PCI (DMAE_DST_PCI << DMAE_CMD_DST_SHIFT)
1970 #define DMAE_CMD_DST_GRC (DMAE_DST_GRC << DMAE_CMD_DST_SHIFT)
1971 
1972 #define DMAE_CMD_C_DST_PCI (DMAE_COMP_PCI << DMAE_CMD_C_DST_SHIFT)
1973 #define DMAE_CMD_C_DST_GRC (DMAE_COMP_GRC << DMAE_CMD_C_DST_SHIFT)
1974 
1975 #define DMAE_CMD_ENDIANITY_NO_SWAP   (0 << DMAE_CMD_ENDIANITY_SHIFT)
1976 #define DMAE_CMD_ENDIANITY_B_SWAP    (1 << DMAE_CMD_ENDIANITY_SHIFT)
1977 #define DMAE_CMD_ENDIANITY_DW_SWAP   (2 << DMAE_CMD_ENDIANITY_SHIFT)
1978 #define DMAE_CMD_ENDIANITY_B_DW_SWAP (3 << DMAE_CMD_ENDIANITY_SHIFT)
1979 
1980 #define DMAE_CMD_PORT_0 0
1981 #define DMAE_CMD_PORT_1 DMAE_CMD_PORT
1982 
1983 #define DMAE_SRC_PF 0
1984 #define DMAE_SRC_VF 1
1985 
1986 #define DMAE_DST_PF 0
1987 #define DMAE_DST_VF 1
1988 
1989 #define DMAE_C_SRC 0
1990 #define DMAE_C_DST 1
1991 
1992 #define DMAE_LEN32_RD_MAX     0x80
1993 #define DMAE_LEN32_WR_MAX(sc) (CHIP_IS_E1(sc) ? 0x400 : 0x2000)
1994 
1995 #define DMAE_COMP_VAL 0x60d0d0ae /* E2 and beyond, upper bit indicates error */
1996 
1997 #define MAX_DMAE_C_PER_PORT 8
1998 #define INIT_DMAE_C(sc)     ((SC_PORT(sc) * MAX_DMAE_C_PER_PORT) + SC_VN(sc))
1999 #define PMF_DMAE_C(sc)      ((SC_PORT(sc) * MAX_DMAE_C_PER_PORT) + E1HVN_MAX)
2000 
2001 static const uint32_t dmae_reg_go_c[] = {
2002     DMAE_REG_GO_C0,  DMAE_REG_GO_C1,  DMAE_REG_GO_C2,  DMAE_REG_GO_C3,
2003     DMAE_REG_GO_C4,  DMAE_REG_GO_C5,  DMAE_REG_GO_C6,  DMAE_REG_GO_C7,
2004     DMAE_REG_GO_C8,  DMAE_REG_GO_C9,  DMAE_REG_GO_C10, DMAE_REG_GO_C11,
2005     DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15
2006 };
2007 
2008 #define ATTN_NIG_FOR_FUNC     (1L << 8)
2009 #define ATTN_SW_TIMER_4_FUNC  (1L << 9)
2010 #define GPIO_2_FUNC           (1L << 10)
2011 #define GPIO_3_FUNC           (1L << 11)
2012 #define GPIO_4_FUNC           (1L << 12)
2013 #define ATTN_GENERAL_ATTN_1   (1L << 13)
2014 #define ATTN_GENERAL_ATTN_2   (1L << 14)
2015 #define ATTN_GENERAL_ATTN_3   (1L << 15)
2016 #define ATTN_GENERAL_ATTN_4   (1L << 13)
2017 #define ATTN_GENERAL_ATTN_5   (1L << 14)
2018 #define ATTN_GENERAL_ATTN_6   (1L << 15)
2019 #define ATTN_HARD_WIRED_MASK  0xff00
2020 #define ATTENTION_ID          4
2021 
2022 #define AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR \
2023     AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR
2024 
2025 #define MAX_IGU_ATTN_ACK_TO 100
2026 
2027 #define STORM_ASSERT_ARRAY_SIZE 50
2028 
2029 #define BXE_PMF_LINK_ASSERT(sc) \
2030     GENERAL_ATTEN_OFFSET(LINK_SYNC_ATTENTION_BIT_FUNC_0 + SC_FUNC(sc))
2031 
2032 #define BXE_MC_ASSERT_BITS \
2033     (GENERAL_ATTEN_OFFSET(TSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2034      GENERAL_ATTEN_OFFSET(USTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2035      GENERAL_ATTEN_OFFSET(CSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2036      GENERAL_ATTEN_OFFSET(XSTORM_FATAL_ASSERT_ATTENTION_BIT))
2037 
2038 #define BXE_MCP_ASSERT \
2039     GENERAL_ATTEN_OFFSET(MCP_FATAL_ASSERT_ATTENTION_BIT)
2040 
2041 #define BXE_GRC_TIMEOUT GENERAL_ATTEN_OFFSET(LATCHED_ATTN_TIMEOUT_GRC)
2042 #define BXE_GRC_RSV     (GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCR) | \
2043                          GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCT) | \
2044                          GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCN) | \
2045                          GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCU) | \
2046                          GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCP) | \
2047                          GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RSVD_GRC))
2048 
2049 #define MULTI_MASK 0x7f
2050 
2051 #define PFS_PER_PORT(sc)                               \
2052     ((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4)
2053 #define SC_MAX_VN_NUM(sc) PFS_PER_PORT(sc)
2054 
2055 #define FIRST_ABS_FUNC_IN_PORT(sc)                    \
2056     ((CHIP_PORT_MODE(sc) == CHIP_PORT_MODE_NONE) ?    \
2057      PORT_ID(sc) : (PATH_ID(sc) + (2 * PORT_ID(sc))))
2058 
2059 #define FOREACH_ABS_FUNC_IN_PORT(sc, i)            \
2060     for ((i) = FIRST_ABS_FUNC_IN_PORT(sc);         \
2061          (i) < MAX_FUNC_NUM;                       \
2062          (i) += (MAX_FUNC_NUM / PFS_PER_PORT(sc)))
2063 
2064 #define BXE_SWCID_SHIFT 17
2065 #define BXE_SWCID_MASK  ((0x1 << BXE_SWCID_SHIFT) - 1)
2066 
2067 #define SW_CID(x)  (le32toh(x) & BXE_SWCID_MASK)
2068 #define CQE_CMD(x) (le32toh(x) >> COMMON_RAMROD_ETH_RX_CQE_CMD_ID_SHIFT)
2069 
2070 #define CQE_TYPE(cqe_fp_flags)   ((cqe_fp_flags) & ETH_FAST_PATH_RX_CQE_TYPE)
2071 #define CQE_TYPE_START(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_START_AGG)
2072 #define CQE_TYPE_STOP(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_STOP_AGG)
2073 #define CQE_TYPE_SLOW(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_RAMROD)
2074 #define CQE_TYPE_FAST(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_FASTPATH)
2075 
2076 /* must be used on a CID before placing it on a HW ring */
2077 #define HW_CID(sc, x) \
2078     ((SC_PORT(sc) << 23) | (SC_VN(sc) << BXE_SWCID_SHIFT) | (x))
2079 
2080 #define SPEED_10    10
2081 #define SPEED_100   100
2082 #define SPEED_1000  1000
2083 #define SPEED_2500  2500
2084 #define SPEED_10000 10000
2085 
2086 #define PCI_PM_D0    1
2087 #define PCI_PM_D3hot 2
2088 
2089 #ifndef DUPLEX_UNKNOWN
2090 #define DUPLEX_UNKNOWN (0xff)
2091 #endif
2092 
2093 #ifndef SPEED_UNKNOWN
2094 #define SPEED_UNKNOWN (-1)
2095 #endif
2096 
2097 /* Enable or disable autonegotiation. */
2098 #define AUTONEG_DISABLE         0x00
2099 #define AUTONEG_ENABLE          0x01
2100 
2101 /* Which connector port. */
2102 #define PORT_TP                 0x00
2103 #define PORT_AUI                0x01
2104 #define PORT_MII                0x02
2105 #define PORT_FIBRE              0x03
2106 #define PORT_BNC                0x04
2107 #define PORT_DA                 0x05
2108 #define PORT_NONE               0xef
2109 #define PORT_OTHER              0xff
2110 
2111 int  bxe_test_bit(int nr, volatile unsigned long * addr);
2112 void bxe_set_bit(unsigned int nr, volatile unsigned long * addr);
2113 void bxe_clear_bit(int nr, volatile unsigned long * addr);
2114 int  bxe_test_and_set_bit(int nr, volatile unsigned long * addr);
2115 int  bxe_test_and_clear_bit(int nr, volatile unsigned long * addr);
2116 int  bxe_cmpxchg(volatile int *addr, int old, int new);
2117 
2118 void bxe_reg_wr_ind(struct bxe_softc *sc, uint32_t addr,
2119                     uint32_t val);
2120 uint32_t bxe_reg_rd_ind(struct bxe_softc *sc, uint32_t addr);
2121 
2122 
2123 int bxe_dma_alloc(struct bxe_softc *sc, bus_size_t size,
2124                   struct bxe_dma *dma, const char *msg);
2125 void bxe_dma_free(struct bxe_softc *sc, struct bxe_dma *dma);
2126 
2127 uint32_t bxe_dmae_opcode_add_comp(uint32_t opcode, uint8_t comp_type);
2128 uint32_t bxe_dmae_opcode_clr_src_reset(uint32_t opcode);
2129 uint32_t bxe_dmae_opcode(struct bxe_softc *sc, uint8_t src_type,
2130                          uint8_t dst_type, uint8_t with_comp,
2131                          uint8_t comp_type);
2132 void bxe_post_dmae(struct bxe_softc *sc, struct dmae_cmd *dmae, int idx);
2133 void bxe_read_dmae(struct bxe_softc *sc, uint32_t src_addr, uint32_t len32);
2134 void bxe_write_dmae(struct bxe_softc *sc, bus_addr_t dma_addr,
2135                     uint32_t dst_addr, uint32_t len32);
2136 void bxe_write_dmae_phys_len(struct bxe_softc *sc, bus_addr_t phys_addr,
2137                              uint32_t addr, uint32_t len);
2138 
2139 void bxe_set_ctx_validation(struct bxe_softc *sc, struct eth_context *cxt,
2140                             uint32_t cid);
2141 void bxe_update_coalesce_sb_index(struct bxe_softc *sc, uint8_t fw_sb_id,
2142                                   uint8_t sb_index, uint8_t disable,
2143                                   uint16_t usec);
2144 
2145 int bxe_sp_post(struct bxe_softc *sc, int command, int cid,
2146                 uint32_t data_hi, uint32_t data_lo, int cmd_type);
2147 
2148 void bxe_igu_ack_sb(struct bxe_softc *sc, uint8_t igu_sb_id,
2149                     uint8_t segment, uint16_t index, uint8_t op,
2150                     uint8_t update);
2151 
2152 void ecore_init_e1_firmware(struct bxe_softc *sc);
2153 void ecore_init_e1h_firmware(struct bxe_softc *sc);
2154 void ecore_init_e2_firmware(struct bxe_softc *sc);
2155 
2156 void ecore_storm_memset_struct(struct bxe_softc *sc, uint32_t addr,
2157                                size_t size, uint32_t *data);
2158 
2159 /*********************/
2160 /* LOGGING AND DEBUG */
2161 /*********************/
2162 
2163 /* debug logging codepaths */
2164 #define DBG_LOAD   0x00000001 /* load and unload    */
2165 #define DBG_INTR   0x00000002 /* interrupt handling */
2166 #define DBG_SP     0x00000004 /* slowpath handling  */
2167 #define DBG_STATS  0x00000008 /* stats updates      */
2168 #define DBG_TX     0x00000010 /* packet transmit    */
2169 #define DBG_RX     0x00000020 /* packet receive     */
2170 #define DBG_PHY    0x00000040 /* phy/link handling  */
2171 #define DBG_IOCTL  0x00000080 /* ioctl handling     */
2172 #define DBG_MBUF   0x00000100 /* dumping mbuf info  */
2173 #define DBG_REGS   0x00000200 /* register access    */
2174 #define DBG_LRO    0x00000400 /* lro processing     */
2175 #define DBG_ASSERT 0x80000000 /* debug assert       */
2176 #define DBG_ALL    0xFFFFFFFF /* flying monkeys     */
2177 
2178 #define DBASSERT(sc, exp, msg)                         \
2179     do {                                               \
2180         if (__predict_false(sc->debug & DBG_ASSERT)) { \
2181             if (__predict_false(!(exp))) {             \
2182                 panic msg;                             \
2183             }                                          \
2184         }                                              \
2185     } while (0)
2186 
2187 /* log a debug message */
2188 #define BLOGD(sc, codepath, format, args...)           \
2189     do {                                               \
2190         if (__predict_false(sc->debug & (codepath))) { \
2191             device_printf((sc)->dev,                   \
2192                           "%s(%s:%d) " format,         \
2193                           __FUNCTION__,                \
2194                           __FILE__,                    \
2195                           __LINE__,                    \
2196                           ## args);                    \
2197         }                                              \
2198     } while(0)
2199 
2200 /* log a info message */
2201 #define BLOGI(sc, format, args...)             \
2202     do {                                       \
2203         if (__predict_false(sc->debug)) {      \
2204             device_printf((sc)->dev,           \
2205                           "%s(%s:%d) " format, \
2206                           __FUNCTION__,        \
2207                           __FILE__,            \
2208                           __LINE__,            \
2209                           ## args);            \
2210         } else {                               \
2211             device_printf((sc)->dev,           \
2212                           format,              \
2213                           ## args);            \
2214         }                                      \
2215     } while(0)
2216 
2217 /* log a warning message */
2218 #define BLOGW(sc, format, args...)                      \
2219     do {                                                \
2220         if (__predict_false(sc->debug)) {               \
2221             device_printf((sc)->dev,                    \
2222                           "%s(%s:%d) WARNING: " format, \
2223                           __FUNCTION__,                 \
2224                           __FILE__,                     \
2225                           __LINE__,                     \
2226                           ## args);                     \
2227         } else {                                        \
2228             device_printf((sc)->dev,                    \
2229                           "WARNING: " format,           \
2230                           ## args);                     \
2231         }                                               \
2232     } while(0)
2233 
2234 /* log a error message */
2235 #define BLOGE(sc, format, args...)                    \
2236     do {                                              \
2237         if (__predict_false(sc->debug)) {             \
2238             device_printf((sc)->dev,                  \
2239                           "%s(%s:%d) ERROR: " format, \
2240                           __FUNCTION__,               \
2241                           __FILE__,                   \
2242                           __LINE__,                   \
2243                           ## args);                   \
2244         } else {                                      \
2245             device_printf((sc)->dev,                  \
2246                           "ERROR: " format,           \
2247                           ## args);                   \
2248         }                                             \
2249     } while(0)
2250 
2251 #ifdef ECORE_STOP_ON_ERROR
2252 
2253 #define bxe_panic(sc, msg) \
2254     do {                   \
2255         panic msg;         \
2256     } while (0)
2257 
2258 #else
2259 
2260 #define bxe_panic(sc, msg) \
2261     device_printf((sc)->dev, "%s (%s,%d)\n", __FUNCTION__, __FILE__, __LINE__);
2262 
2263 #endif
2264 
2265 #define CATC_TRIGGER(sc, data) REG_WR((sc), 0x2000, (data));
2266 #define CATC_TRIGGER_START(sc) CATC_TRIGGER((sc), 0xcafecafe)
2267 
2268 void bxe_dump_mem(struct bxe_softc *sc, char *tag,
2269                   uint8_t *mem, uint32_t len);
2270 void bxe_dump_mbuf_data(struct bxe_softc *sc, char *pTag,
2271                         struct mbuf *m, uint8_t contents);
2272 
2273 #define BXE_SET_FLOWID(m) M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE)
2274 #define BXE_VALID_FLOWID(m) (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
2275 
2276 /***********/
2277 /* INLINES */
2278 /***********/
2279 
2280 static inline uint32_t
2281 reg_poll(struct bxe_softc *sc,
2282          uint32_t         reg,
2283          uint32_t         expected,
2284          int              ms,
2285          int              wait)
2286 {
2287     uint32_t val;
2288 
2289     do {
2290         val = REG_RD(sc, reg);
2291         if (val == expected) {
2292             break;
2293         }
2294         ms -= wait;
2295         DELAY(wait * 1000);
2296     } while (ms > 0);
2297 
2298     return (val);
2299 }
2300 
2301 static inline void
2302 bxe_update_fp_sb_idx(struct bxe_fastpath *fp)
2303 {
2304     mb(); /* status block is written to by the chip */
2305     fp->fp_hc_idx = fp->sb_running_index[SM_RX_ID];
2306 }
2307 
2308 static inline void
2309 bxe_igu_ack_sb_gen(struct bxe_softc *sc,
2310                    uint8_t          igu_sb_id,
2311                    uint8_t          segment,
2312                    uint16_t         index,
2313                    uint8_t          op,
2314                    uint8_t          update,
2315                    uint32_t         igu_addr)
2316 {
2317     struct igu_regular cmd_data = {0};
2318 
2319     cmd_data.sb_id_and_flags =
2320         ((index << IGU_REGULAR_SB_INDEX_SHIFT) |
2321          (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
2322          (update << IGU_REGULAR_BUPDATE_SHIFT) |
2323          (op << IGU_REGULAR_ENABLE_INT_SHIFT));
2324 
2325     BLOGD(sc, DBG_INTR, "write 0x%08x to IGU addr 0x%x\n",
2326             cmd_data.sb_id_and_flags, igu_addr);
2327     REG_WR(sc, igu_addr, cmd_data.sb_id_and_flags);
2328 
2329     /* Make sure that ACK is written */
2330     bus_space_barrier(sc->bar[0].tag, sc->bar[0].handle, 0, 0,
2331                       BUS_SPACE_BARRIER_WRITE);
2332     mb();
2333 }
2334 
2335 static inline void
2336 bxe_hc_ack_sb(struct bxe_softc *sc,
2337               uint8_t          sb_id,
2338               uint8_t          storm,
2339               uint16_t         index,
2340               uint8_t          op,
2341               uint8_t          update)
2342 {
2343     uint32_t hc_addr = (HC_REG_COMMAND_REG + SC_PORT(sc)*32 +
2344                         COMMAND_REG_INT_ACK);
2345     struct igu_ack_register igu_ack;
2346 
2347     igu_ack.status_block_index = index;
2348     igu_ack.sb_id_and_flags =
2349         ((sb_id << IGU_ACK_REGISTER_STATUS_BLOCK_ID_SHIFT) |
2350          (storm << IGU_ACK_REGISTER_STORM_ID_SHIFT) |
2351          (update << IGU_ACK_REGISTER_UPDATE_INDEX_SHIFT) |
2352          (op << IGU_ACK_REGISTER_INTERRUPT_MODE_SHIFT));
2353 
2354     REG_WR(sc, hc_addr, (*(uint32_t *)&igu_ack));
2355 
2356     /* Make sure that ACK is written */
2357     bus_space_barrier(sc->bar[0].tag, sc->bar[0].handle, 0, 0,
2358                       BUS_SPACE_BARRIER_WRITE);
2359     mb();
2360 }
2361 
2362 static inline void
2363 bxe_ack_sb(struct bxe_softc *sc,
2364            uint8_t          igu_sb_id,
2365            uint8_t          storm,
2366            uint16_t         index,
2367            uint8_t          op,
2368            uint8_t          update)
2369 {
2370     if (sc->devinfo.int_block == INT_BLOCK_HC)
2371         bxe_hc_ack_sb(sc, igu_sb_id, storm, index, op, update);
2372     else {
2373         uint8_t segment;
2374         if (CHIP_INT_MODE_IS_BC(sc)) {
2375             segment = storm;
2376         } else if (igu_sb_id != sc->igu_dsb_id) {
2377             segment = IGU_SEG_ACCESS_DEF;
2378         } else if (storm == ATTENTION_ID) {
2379             segment = IGU_SEG_ACCESS_ATTN;
2380         } else {
2381             segment = IGU_SEG_ACCESS_DEF;
2382         }
2383         bxe_igu_ack_sb(sc, igu_sb_id, segment, index, op, update);
2384     }
2385 }
2386 
2387 static inline uint16_t
2388 bxe_hc_ack_int(struct bxe_softc *sc)
2389 {
2390     uint32_t hc_addr = (HC_REG_COMMAND_REG + SC_PORT(sc)*32 +
2391                         COMMAND_REG_SIMD_MASK);
2392     uint32_t result = REG_RD(sc, hc_addr);
2393 
2394     mb();
2395     return (result);
2396 }
2397 
2398 static inline uint16_t
2399 bxe_igu_ack_int(struct bxe_softc *sc)
2400 {
2401     uint32_t igu_addr = (BAR_IGU_INTMEM + IGU_REG_SISR_MDPC_WMASK_LSB_UPPER*8);
2402     uint32_t result = REG_RD(sc, igu_addr);
2403 
2404     BLOGD(sc, DBG_INTR, "read 0x%08x from IGU addr 0x%x\n",
2405           result, igu_addr);
2406 
2407     mb();
2408     return (result);
2409 }
2410 
2411 static inline uint16_t
2412 bxe_ack_int(struct bxe_softc *sc)
2413 {
2414     mb();
2415     if (sc->devinfo.int_block == INT_BLOCK_HC) {
2416         return (bxe_hc_ack_int(sc));
2417     } else {
2418         return (bxe_igu_ack_int(sc));
2419     }
2420 }
2421 
2422 static inline int
2423 func_by_vn(struct bxe_softc *sc,
2424            int              vn)
2425 {
2426     return (2 * vn + SC_PORT(sc));
2427 }
2428 
2429 /*
2430  * Statistics ID are global per chip/path, while Client IDs for E1x
2431  * are per port.
2432  */
2433 static inline uint8_t
2434 bxe_stats_id(struct bxe_fastpath *fp)
2435 {
2436     struct bxe_softc *sc = fp->sc;
2437 
2438     if (!CHIP_IS_E1x(sc)) {
2439         return (fp->cl_id);
2440     }
2441 
2442     return (fp->cl_id + SC_PORT(sc) * FP_SB_MAX_E1x);
2443 }
2444 
2445 #endif /* __BXE_H__ */
2446 
2447