xref: /freebsd/sys/dev/bxe/bxe.h (revision d93a896ef95946b0bf1219866fcb324b78543444)
1 /*-
2  * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
15  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
18  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
19  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
20  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
21  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
22  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
23  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
24  * THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #ifndef __BXE_H__
28 #define __BXE_H__
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/kernel.h>
35 #include <sys/systm.h>
36 #include <sys/lock.h>
37 #include <sys/mutex.h>
38 #include <sys/sx.h>
39 #include <sys/module.h>
40 #include <sys/endian.h>
41 #include <sys/types.h>
42 #include <sys/malloc.h>
43 #include <sys/kobj.h>
44 #include <sys/bus.h>
45 #include <sys/rman.h>
46 #include <sys/socket.h>
47 #include <sys/sockio.h>
48 #include <sys/sysctl.h>
49 #include <sys/smp.h>
50 #include <sys/bitstring.h>
51 #include <sys/limits.h>
52 #include <sys/queue.h>
53 #include <sys/taskqueue.h>
54 #include <sys/zlib.h>
55 
56 #include <net/if.h>
57 #include <net/if_types.h>
58 #include <net/if_arp.h>
59 #include <net/ethernet.h>
60 #include <net/if_dl.h>
61 #include <net/if_var.h>
62 #include <net/if_media.h>
63 #include <net/if_vlan_var.h>
64 #include <net/bpf.h>
65 
66 #include <netinet/in.h>
67 #include <netinet/ip.h>
68 #include <netinet/ip6.h>
69 #include <netinet/tcp.h>
70 #include <netinet/udp.h>
71 
72 #include <dev/pci/pcireg.h>
73 #include <dev/pci/pcivar.h>
74 
75 #include <machine/atomic.h>
76 #include <machine/resource.h>
77 #include <machine/endian.h>
78 #include <machine/bus.h>
79 #include <machine/in_cksum.h>
80 
81 #include "device_if.h"
82 #include "bus_if.h"
83 #include "pci_if.h"
84 
85 #if _BYTE_ORDER == _LITTLE_ENDIAN
86 #ifndef LITTLE_ENDIAN
87 #define LITTLE_ENDIAN
88 #endif
89 #ifndef __LITTLE_ENDIAN
90 #define __LITTLE_ENDIAN
91 #endif
92 #undef BIG_ENDIAN
93 #undef __BIG_ENDIAN
94 #else /* _BIG_ENDIAN */
95 #ifndef BIG_ENDIAN
96 #define BIG_ENDIAN
97 #endif
98 #ifndef __BIG_ENDIAN
99 #define __BIG_ENDIAN
100 #endif
101 #undef LITTLE_ENDIAN
102 #undef __LITTLE_ENDIAN
103 #endif
104 
105 #include "ecore_mfw_req.h"
106 #include "ecore_fw_defs.h"
107 #include "ecore_hsi.h"
108 #include "ecore_reg.h"
109 #include "bxe_dcb.h"
110 #include "bxe_stats.h"
111 
112 #include "bxe_elink.h"
113 
114 #define VF_MAC_CREDIT_CNT 0
115 #define VF_VLAN_CREDIT_CNT (0)
116 
117 #if __FreeBSD_version < 800054
118 #if defined(__i386__) || defined(__amd64__)
119 #define mb()  __asm volatile("mfence;" : : : "memory")
120 #define wmb() __asm volatile("sfence;" : : : "memory")
121 #define rmb() __asm volatile("lfence;" : : : "memory")
122 static __inline void prefetch(void *x)
123 {
124     __asm volatile("prefetcht0 %0" :: "m" (*(unsigned long *)x));
125 }
126 #else
127 #define mb()
128 #define rmb()
129 #define wmb()
130 #define prefetch(x)
131 #endif
132 #endif
133 
134 #if __FreeBSD_version >= 1000000
135 #define PCIR_EXPRESS_DEVICE_STA        PCIER_DEVICE_STA
136 #define PCIM_EXP_STA_TRANSACTION_PND   PCIEM_STA_TRANSACTION_PND
137 #define PCIR_EXPRESS_LINK_STA          PCIER_LINK_STA
138 #define PCIM_LINK_STA_WIDTH            PCIEM_LINK_STA_WIDTH
139 #define PCIM_LINK_STA_SPEED            PCIEM_LINK_STA_SPEED
140 #define PCIR_EXPRESS_DEVICE_CTL        PCIER_DEVICE_CTL
141 #define PCIM_EXP_CTL_MAX_PAYLOAD       PCIEM_CTL_MAX_PAYLOAD
142 #define PCIM_EXP_CTL_MAX_READ_REQUEST  PCIEM_CTL_MAX_READ_REQUEST
143 #endif
144 
145 #ifndef ARRAY_SIZE
146 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
147 #endif
148 #ifndef ARRSIZE
149 #define ARRSIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
150 #endif
151 #ifndef DIV_ROUND_UP
152 #define DIV_ROUND_UP(n, d) (((n) + (d) - 1) / (d))
153 #endif
154 #ifndef roundup
155 #define roundup(x, y) ((((x) + ((y) - 1)) / (y)) * (y))
156 #endif
157 #ifndef ilog2
158 static inline
159 int bxe_ilog2(int x)
160 {
161     int log = 0;
162     while (x >>= 1) log++;
163     return (log);
164 }
165 #define ilog2(x) bxe_ilog2(x)
166 #endif
167 
168 #include "ecore_sp.h"
169 
170 #define BRCM_VENDORID 0x14e4
171 #define	QLOGIC_VENDORID	0x1077
172 #define PCI_ANY_ID    (uint16_t)(~0U)
173 
174 struct bxe_device_type
175 {
176     uint16_t bxe_vid;
177     uint16_t bxe_did;
178     uint16_t bxe_svid;
179     uint16_t bxe_sdid;
180     char     *bxe_name;
181 };
182 
183 #define BCM_PAGE_SHIFT       12
184 #define BCM_PAGE_SIZE        (1 << BCM_PAGE_SHIFT)
185 #define BCM_PAGE_MASK        (~(BCM_PAGE_SIZE - 1))
186 #define BCM_PAGE_ALIGN(addr) ((addr + BCM_PAGE_SIZE - 1) & BCM_PAGE_MASK)
187 
188 #if BCM_PAGE_SIZE != 4096
189 #error Page sizes other than 4KB are unsupported!
190 #endif
191 
192 #if (BUS_SPACE_MAXADDR > 0xFFFFFFFF)
193 #define U64_LO(addr) ((uint32_t)(((uint64_t)(addr)) & 0xFFFFFFFF))
194 #define U64_HI(addr) ((uint32_t)(((uint64_t)(addr)) >> 32))
195 #else
196 #define U64_LO(addr) ((uint32_t)(addr))
197 #define U64_HI(addr) (0)
198 #endif
199 #define HILO_U64(hi, lo) ((((uint64_t)(hi)) << 32) + (lo))
200 
201 #define SET_FLAG(value, mask, flag)            \
202     do {                                       \
203         (value) &= ~(mask);                    \
204         (value) |= ((flag) << (mask##_SHIFT)); \
205     } while (0)
206 
207 #define GET_FLAG(value, mask)              \
208     (((value) & (mask)) >> (mask##_SHIFT))
209 
210 #define GET_FIELD(value, fname)                     \
211     (((value) & (fname##_MASK)) >> (fname##_SHIFT))
212 
213 #define BXE_MAX_SEGMENTS     12 /* 13-1 for parsing buffer */
214 #define BXE_TSO_MAX_SEGMENTS 32
215 #define BXE_TSO_MAX_SIZE     (65535 + sizeof(struct ether_vlan_header))
216 #define BXE_TSO_MAX_SEG_SIZE 4096
217 
218 /* dropless fc FW/HW related params */
219 #define BRB_SIZE(sc)         (CHIP_IS_E3(sc) ? 1024 : 512)
220 #define MAX_AGG_QS(sc)       (CHIP_IS_E1(sc) ?                       \
221                                   ETH_MAX_AGGREGATION_QUEUES_E1 :    \
222                                   ETH_MAX_AGGREGATION_QUEUES_E1H_E2)
223 #define FW_DROP_LEVEL(sc)    (3 + MAX_SPQ_PENDING + MAX_AGG_QS(sc))
224 #define FW_PREFETCH_CNT      16
225 #define DROPLESS_FC_HEADROOM 100
226 
227 /******************/
228 /* RX SGE defines */
229 /******************/
230 
231 #define RX_SGE_NUM_PAGES       2 /* must be a power of 2 */
232 #define RX_SGE_TOTAL_PER_PAGE  (BCM_PAGE_SIZE / sizeof(struct eth_rx_sge))
233 #define RX_SGE_NEXT_PAGE_DESC_CNT 2
234 #define RX_SGE_USABLE_PER_PAGE (RX_SGE_TOTAL_PER_PAGE - RX_SGE_NEXT_PAGE_DESC_CNT)
235 #define RX_SGE_PER_PAGE_MASK   (RX_SGE_TOTAL_PER_PAGE - 1)
236 #define RX_SGE_TOTAL           (RX_SGE_TOTAL_PER_PAGE * RX_SGE_NUM_PAGES)
237 #define RX_SGE_USABLE          (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)
238 #define RX_SGE_MAX             (RX_SGE_TOTAL - 1)
239 #define RX_SGE(x)              ((x) & RX_SGE_MAX)
240 
241 #define RX_SGE_NEXT(x)                                              \
242     ((((x) & RX_SGE_PER_PAGE_MASK) == (RX_SGE_USABLE_PER_PAGE - 1)) \
243      ? (x) + 1 + RX_SGE_NEXT_PAGE_DESC_CNT : (x) + 1)
244 
245 #define RX_SGE_MASK_ELEM_SZ    64
246 #define RX_SGE_MASK_ELEM_SHIFT 6
247 #define RX_SGE_MASK_ELEM_MASK  ((uint64_t)RX_SGE_MASK_ELEM_SZ - 1)
248 
249 /*
250  * Creates a bitmask of all ones in less significant bits.
251  * idx - index of the most significant bit in the created mask.
252  */
253 #define RX_SGE_ONES_MASK(idx)                                      \
254     (((uint64_t)0x1 << (((idx) & RX_SGE_MASK_ELEM_MASK) + 1)) - 1)
255 #define RX_SGE_MASK_ELEM_ONE_MASK ((uint64_t)(~0))
256 
257 /* Number of uint64_t elements in SGE mask array. */
258 #define RX_SGE_MASK_LEN                                                \
259     ((RX_SGE_NUM_PAGES * RX_SGE_TOTAL_PER_PAGE) / RX_SGE_MASK_ELEM_SZ)
260 #define RX_SGE_MASK_LEN_MASK      (RX_SGE_MASK_LEN - 1)
261 #define RX_SGE_NEXT_MASK_ELEM(el) (((el) + 1) & RX_SGE_MASK_LEN_MASK)
262 
263 /*
264  * dropless fc calculations for SGEs
265  * Number of required SGEs is the sum of two:
266  * 1. Number of possible opened aggregations (next packet for
267  *    these aggregations will probably consume SGE immidiatelly)
268  * 2. Rest of BRB blocks divided by 2 (block will consume new SGE only
269  *    after placement on BD for new TPA aggregation)
270  * Takes into account RX_SGE_NEXT_PAGE_DESC_CNT "next" elements on each page
271  */
272 #define NUM_SGE_REQ(sc)                                    \
273     (MAX_AGG_QS(sc) + (BRB_SIZE(sc) - MAX_AGG_QS(sc)) / 2)
274 #define NUM_SGE_PG_REQ(sc)                                                    \
275     ((NUM_SGE_REQ(sc) + RX_SGE_USABLE_PER_PAGE - 1) / RX_SGE_USABLE_PER_PAGE)
276 #define SGE_TH_LO(sc)                                                  \
277     (NUM_SGE_REQ(sc) + NUM_SGE_PG_REQ(sc) * RX_SGE_NEXT_PAGE_DESC_CNT)
278 #define SGE_TH_HI(sc)                      \
279     (SGE_TH_LO(sc) + DROPLESS_FC_HEADROOM)
280 
281 #define PAGES_PER_SGE_SHIFT  0
282 #define PAGES_PER_SGE        (1 << PAGES_PER_SGE_SHIFT)
283 #define SGE_PAGE_SIZE        BCM_PAGE_SIZE
284 #define SGE_PAGE_SHIFT       BCM_PAGE_SHIFT
285 #define SGE_PAGE_ALIGN(addr) BCM_PAGE_ALIGN(addr)
286 #define SGE_PAGES            (SGE_PAGE_SIZE * PAGES_PER_SGE)
287 #define TPA_AGG_SIZE         min((8 * SGE_PAGES), 0xffff)
288 
289 /*****************/
290 /* TX BD defines */
291 /*****************/
292 
293 #define TX_BD_NUM_PAGES       16 /* must be a power of 2 */
294 #define TX_BD_TOTAL_PER_PAGE  (BCM_PAGE_SIZE / sizeof(union eth_tx_bd_types))
295 #define TX_BD_USABLE_PER_PAGE (TX_BD_TOTAL_PER_PAGE - 1)
296 #define TX_BD_TOTAL           (TX_BD_TOTAL_PER_PAGE * TX_BD_NUM_PAGES)
297 #define TX_BD_USABLE          (TX_BD_USABLE_PER_PAGE * TX_BD_NUM_PAGES)
298 #define TX_BD_MAX             (TX_BD_TOTAL - 1)
299 
300 #define TX_BD_NEXT(x)                                                 \
301     ((((x) & TX_BD_USABLE_PER_PAGE) == (TX_BD_USABLE_PER_PAGE - 1)) ? \
302      ((x) + 2) : ((x) + 1))
303 #define TX_BD(x)      ((x) & TX_BD_MAX)
304 #define TX_BD_PAGE(x) (((x) & ~TX_BD_USABLE_PER_PAGE) >> 8)
305 #define TX_BD_IDX(x)  ((x) & TX_BD_USABLE_PER_PAGE)
306 
307 /*
308  * Trigger pending transmits when the number of available BDs is greater
309  * than 1/8 of the total number of usable BDs.
310  */
311 #define BXE_TX_CLEANUP_THRESHOLD (TX_BD_USABLE / 8)
312 #define BXE_TX_TIMEOUT 5
313 
314 /*****************/
315 /* RX BD defines */
316 /*****************/
317 
318 #define RX_BD_NUM_PAGES       8 /* power of 2 */
319 #define RX_BD_TOTAL_PER_PAGE  (BCM_PAGE_SIZE / sizeof(struct eth_rx_bd))
320 #define RX_BD_NEXT_PAGE_DESC_CNT 2
321 #define RX_BD_USABLE_PER_PAGE (RX_BD_TOTAL_PER_PAGE - RX_BD_NEXT_PAGE_DESC_CNT)
322 #define RX_BD_PER_PAGE_MASK   (RX_BD_TOTAL_PER_PAGE - 1)
323 #define RX_BD_TOTAL           (RX_BD_TOTAL_PER_PAGE * RX_BD_NUM_PAGES)
324 #define RX_BD_USABLE          (RX_BD_USABLE_PER_PAGE * RX_BD_NUM_PAGES)
325 #define RX_BD_MAX             (RX_BD_TOTAL - 1)
326 
327 #define RX_BD_NEXT(x)                                               \
328     ((((x) & RX_BD_PER_PAGE_MASK) == (RX_BD_USABLE_PER_PAGE - 1)) ? \
329      ((x) + 3) : ((x) + 1))
330 #define RX_BD(x)      ((x) & RX_BD_MAX)
331 #define RX_BD_PAGE(x) (((x) & ~RX_BD_PER_PAGE_MASK) >> 9)
332 #define RX_BD_IDX(x)  ((x) & RX_BD_PER_PAGE_MASK)
333 
334 /*
335  * dropless fc calculations for BDs
336  * Number of BDs should be as number of buffers in BRB:
337  * Low threshold takes into account RX_BD_NEXT_PAGE_DESC_CNT
338  * "next" elements on each page
339  */
340 #define NUM_BD_REQ(sc) \
341     BRB_SIZE(sc)
342 #define NUM_BD_PG_REQ(sc)                                                  \
343     ((NUM_BD_REQ(sc) + RX_BD_USABLE_PER_PAGE - 1) / RX_BD_USABLE_PER_PAGE)
344 #define BD_TH_LO(sc)                                \
345     (NUM_BD_REQ(sc) +                               \
346      NUM_BD_PG_REQ(sc) * RX_BD_NEXT_PAGE_DESC_CNT + \
347      FW_DROP_LEVEL(sc))
348 #define BD_TH_HI(sc)                      \
349     (BD_TH_LO(sc) + DROPLESS_FC_HEADROOM)
350 #define MIN_RX_AVAIL(sc)                           \
351     ((sc)->dropless_fc ? BD_TH_HI(sc) + 128 : 128)
352 #define MIN_RX_SIZE_TPA_HW(sc)                         \
353     (CHIP_IS_E1(sc) ? ETH_MIN_RX_CQES_WITH_TPA_E1 :    \
354                       ETH_MIN_RX_CQES_WITH_TPA_E1H_E2)
355 #define MIN_RX_SIZE_NONTPA_HW ETH_MIN_RX_CQES_WITHOUT_TPA
356 #define MIN_RX_SIZE_TPA(sc)                         \
357     (max(MIN_RX_SIZE_TPA_HW(sc), MIN_RX_AVAIL(sc)))
358 #define MIN_RX_SIZE_NONTPA(sc)                     \
359     (max(MIN_RX_SIZE_NONTPA_HW, MIN_RX_AVAIL(sc)))
360 
361 /***************/
362 /* RCQ defines */
363 /***************/
364 
365 /*
366  * As long as CQE is X times bigger than BD entry we have to allocate X times
367  * more pages for CQ ring in order to keep it balanced with BD ring
368  */
369 #define CQE_BD_REL          (sizeof(union eth_rx_cqe) / \
370                              sizeof(struct eth_rx_bd))
371 #define RCQ_NUM_PAGES       (RX_BD_NUM_PAGES * CQE_BD_REL) /* power of 2 */
372 #define RCQ_TOTAL_PER_PAGE  (BCM_PAGE_SIZE / sizeof(union eth_rx_cqe))
373 #define RCQ_NEXT_PAGE_DESC_CNT 1
374 #define RCQ_USABLE_PER_PAGE (RCQ_TOTAL_PER_PAGE - RCQ_NEXT_PAGE_DESC_CNT)
375 #define RCQ_TOTAL           (RCQ_TOTAL_PER_PAGE * RCQ_NUM_PAGES)
376 #define RCQ_USABLE          (RCQ_USABLE_PER_PAGE * RCQ_NUM_PAGES)
377 #define RCQ_MAX             (RCQ_TOTAL - 1)
378 
379 #define RCQ_NEXT(x)                                               \
380     ((((x) & RCQ_USABLE_PER_PAGE) == (RCQ_USABLE_PER_PAGE - 1)) ? \
381      ((x) + 1 + RCQ_NEXT_PAGE_DESC_CNT) : ((x) + 1))
382 #define RCQ(x)      ((x) & RCQ_MAX)
383 #define RCQ_PAGE(x) (((x) & ~RCQ_USABLE_PER_PAGE) >> 7)
384 #define RCQ_IDX(x)  ((x) & RCQ_USABLE_PER_PAGE)
385 
386 /*
387  * dropless fc calculations for RCQs
388  * Number of RCQs should be as number of buffers in BRB:
389  * Low threshold takes into account RCQ_NEXT_PAGE_DESC_CNT
390  * "next" elements on each page
391  */
392 #define NUM_RCQ_REQ(sc) \
393     BRB_SIZE(sc)
394 #define NUM_RCQ_PG_REQ(sc)                                              \
395     ((NUM_RCQ_REQ(sc) + RCQ_USABLE_PER_PAGE - 1) / RCQ_USABLE_PER_PAGE)
396 #define RCQ_TH_LO(sc)                              \
397     (NUM_RCQ_REQ(sc) +                             \
398      NUM_RCQ_PG_REQ(sc) * RCQ_NEXT_PAGE_DESC_CNT + \
399      FW_DROP_LEVEL(sc))
400 #define RCQ_TH_HI(sc)                      \
401     (RCQ_TH_LO(sc) + DROPLESS_FC_HEADROOM)
402 
403 /* This is needed for determening of last_max */
404 #define SUB_S16(a, b) (int16_t)((int16_t)(a) - (int16_t)(b))
405 
406 #define __SGE_MASK_SET_BIT(el, bit)               \
407     do {                                          \
408         (el) = ((el) | ((uint64_t)0x1 << (bit))); \
409     } while (0)
410 
411 #define __SGE_MASK_CLEAR_BIT(el, bit)                \
412     do {                                             \
413         (el) = ((el) & (~((uint64_t)0x1 << (bit)))); \
414     } while (0)
415 
416 #define SGE_MASK_SET_BIT(fp, idx)                                       \
417     __SGE_MASK_SET_BIT((fp)->sge_mask[(idx) >> RX_SGE_MASK_ELEM_SHIFT], \
418                        ((idx) & RX_SGE_MASK_ELEM_MASK))
419 
420 #define SGE_MASK_CLEAR_BIT(fp, idx)                                       \
421     __SGE_MASK_CLEAR_BIT((fp)->sge_mask[(idx) >> RX_SGE_MASK_ELEM_SHIFT], \
422                          ((idx) & RX_SGE_MASK_ELEM_MASK))
423 
424 /* Load / Unload modes */
425 #define LOAD_NORMAL       0
426 #define LOAD_OPEN         1
427 #define LOAD_DIAG         2
428 #define LOAD_LOOPBACK_EXT 3
429 #define UNLOAD_NORMAL     0
430 #define UNLOAD_CLOSE      1
431 #define UNLOAD_RECOVERY   2
432 
433 /* Some constants... */
434 //#define MAX_PATH_NUM       2
435 //#define E2_MAX_NUM_OF_VFS  64
436 //#define E1H_FUNC_MAX       8
437 //#define E2_FUNC_MAX        4   /* per path */
438 #define MAX_VNIC_NUM       4
439 #define MAX_FUNC_NUM       8   /* common to all chips */
440 //#define MAX_NDSB           HC_SB_MAX_SB_E2 /* max non-default status block */
441 #define MAX_RSS_CHAINS     16 /* a constant for HW limit */
442 #define MAX_MSI_VECTOR     8  /* a constant for HW limit */
443 
444 #define ILT_NUM_PAGE_ENTRIES 3072
445 /*
446  * 57710/11 we use whole table since we have 8 functions.
447  * 57712 we have only 4 functions, but use same size per func, so only half
448  * of the table is used.
449  */
450 #define ILT_PER_FUNC        (ILT_NUM_PAGE_ENTRIES / 8)
451 #define FUNC_ILT_BASE(func) (func * ILT_PER_FUNC)
452 /*
453  * the phys address is shifted right 12 bits and has an added
454  * 1=valid bit added to the 53rd bit
455  * then since this is a wide register(TM)
456  * we split it into two 32 bit writes
457  */
458 #define ONCHIP_ADDR1(x) ((uint32_t)(((uint64_t)x >> 12) & 0xFFFFFFFF))
459 #define ONCHIP_ADDR2(x) ((uint32_t)((1 << 20) | ((uint64_t)x >> 44)))
460 
461 /* L2 header size + 2*VLANs (8 bytes) + LLC SNAP (8 bytes) */
462 #define ETH_HLEN                  14
463 #define ETH_OVERHEAD              (ETH_HLEN + 8 + 8)
464 #define ETH_MIN_PACKET_SIZE       60
465 #define ETH_MAX_PACKET_SIZE       ETHERMTU /* 1500 */
466 #define ETH_MAX_JUMBO_PACKET_SIZE 9600
467 /* TCP with Timestamp Option (32) + IPv6 (40) */
468 #define ETH_MAX_TPA_HEADER_SIZE   72
469 
470 /* max supported alignment is 256 (8 shift) */
471 //#define BXE_RX_ALIGN_SHIFT ((CACHE_LINE_SHIFT < 8) ? CACHE_LINE_SHIFT : 8)
472 #define BXE_RX_ALIGN_SHIFT 8
473 /* FW uses 2 cache lines alignment for start packet and size  */
474 #define BXE_FW_RX_ALIGN_START (1 << BXE_RX_ALIGN_SHIFT)
475 #define BXE_FW_RX_ALIGN_END   (1 << BXE_RX_ALIGN_SHIFT)
476 
477 #define BXE_PXP_DRAM_ALIGN (BXE_RX_ALIGN_SHIFT - 5) /* XXX ??? */
478 
479 struct bxe_bar {
480     struct resource    *resource;
481     int                rid;
482     bus_space_tag_t    tag;
483     bus_space_handle_t handle;
484     vm_offset_t        kva;
485 };
486 
487 struct bxe_intr {
488     struct resource *resource;
489     int             rid;
490     void            *tag;
491 };
492 
493 /* Used to manage DMA allocations. */
494 struct bxe_dma {
495     struct bxe_softc  *sc;
496     bus_addr_t        paddr;
497     void              *vaddr;
498     bus_dma_tag_t     tag;
499     bus_dmamap_t      map;
500     bus_dma_segment_t seg;
501     bus_size_t        size;
502     int               nseg;
503     char              msg[32];
504 };
505 
506 /* attn group wiring */
507 #define MAX_DYNAMIC_ATTN_GRPS 8
508 
509 struct attn_route {
510     uint32_t sig[5];
511 };
512 
513 struct iro {
514     uint32_t base;
515     uint16_t m1;
516     uint16_t m2;
517     uint16_t m3;
518     uint16_t size;
519 };
520 
521 union bxe_host_hc_status_block {
522     /* pointer to fp status block e2 */
523     struct host_hc_status_block_e2  *e2_sb;
524     /* pointer to fp status block e1x */
525     struct host_hc_status_block_e1x *e1x_sb;
526 };
527 
528 union bxe_db_prod {
529     struct doorbell_set_prod data;
530     uint32_t                 raw;
531 };
532 
533 struct bxe_sw_tx_bd {
534     struct mbuf  *m;
535     bus_dmamap_t m_map;
536     uint16_t     first_bd;
537     uint8_t      flags;
538 /* set on the first BD descriptor when there is a split BD */
539 #define BXE_TSO_SPLIT_BD (1 << 0)
540 };
541 
542 struct bxe_sw_rx_bd {
543     struct mbuf  *m;
544     bus_dmamap_t m_map;
545 };
546 
547 struct bxe_sw_tpa_info {
548     struct bxe_sw_rx_bd bd;
549     bus_dma_segment_t   seg;
550     uint8_t             state;
551 #define BXE_TPA_STATE_START 1
552 #define BXE_TPA_STATE_STOP  2
553     uint8_t             placement_offset;
554     uint16_t            parsing_flags;
555     uint16_t            vlan_tag;
556     uint16_t            len_on_bd;
557 };
558 
559 /*
560  * This is the HSI fastpath data structure. There can be up to MAX_RSS_CHAIN
561  * instances of the fastpath structure when using multiple queues.
562  */
563 struct bxe_fastpath {
564     /* pointer back to parent structure */
565     struct bxe_softc *sc;
566 
567     struct mtx tx_mtx;
568     char       tx_mtx_name[32];
569     struct mtx rx_mtx;
570     char       rx_mtx_name[32];
571 
572 #define BXE_FP_TX_LOCK(fp)        mtx_lock(&fp->tx_mtx)
573 #define BXE_FP_TX_UNLOCK(fp)      mtx_unlock(&fp->tx_mtx)
574 #define BXE_FP_TX_LOCK_ASSERT(fp) mtx_assert(&fp->tx_mtx, MA_OWNED)
575 #define BXE_FP_TX_TRYLOCK(fp)     mtx_trylock(&fp->tx_mtx)
576 
577 #define BXE_FP_RX_LOCK(fp)        mtx_lock(&fp->rx_mtx)
578 #define BXE_FP_RX_UNLOCK(fp)      mtx_unlock(&fp->rx_mtx)
579 #define BXE_FP_RX_LOCK_ASSERT(fp) mtx_assert(&fp->rx_mtx, MA_OWNED)
580 
581     /* status block */
582     struct bxe_dma                 sb_dma;
583     union bxe_host_hc_status_block status_block;
584 
585     /* transmit chain (tx bds) */
586     struct bxe_dma        tx_dma;
587     union eth_tx_bd_types *tx_chain;
588 
589     /* receive chain (rx bds) */
590     struct bxe_dma   rx_dma;
591     struct eth_rx_bd *rx_chain;
592 
593     /* receive completion queue chain (rcq bds) */
594     struct bxe_dma   rcq_dma;
595     union eth_rx_cqe *rcq_chain;
596 
597     /* receive scatter/gather entry chain (for TPA) */
598     struct bxe_dma    rx_sge_dma;
599     struct eth_rx_sge *rx_sge_chain;
600 
601     /* tx mbufs */
602     bus_dma_tag_t       tx_mbuf_tag;
603     struct bxe_sw_tx_bd tx_mbuf_chain[TX_BD_TOTAL];
604 
605     /* rx mbufs */
606     bus_dma_tag_t       rx_mbuf_tag;
607     struct bxe_sw_rx_bd rx_mbuf_chain[RX_BD_TOTAL];
608     bus_dmamap_t        rx_mbuf_spare_map;
609 
610     /* rx sge mbufs */
611     bus_dma_tag_t       rx_sge_mbuf_tag;
612     struct bxe_sw_rx_bd rx_sge_mbuf_chain[RX_SGE_TOTAL];
613     bus_dmamap_t        rx_sge_mbuf_spare_map;
614 
615     /* rx tpa mbufs (use the larger size for TPA queue length) */
616     int                    tpa_enable; /* disabled per fastpath upon error */
617     struct bxe_sw_tpa_info rx_tpa_info[ETH_MAX_AGGREGATION_QUEUES_E1H_E2];
618     bus_dmamap_t           rx_tpa_info_mbuf_spare_map;
619     uint64_t               rx_tpa_queue_used;
620 
621     uint16_t *sb_index_values;
622     uint16_t *sb_running_index;
623     uint32_t ustorm_rx_prods_offset;
624 
625     uint8_t igu_sb_id; /* status block number in HW */
626     uint8_t fw_sb_id;  /* status block number in FW */
627 
628     uint32_t rx_buf_size;
629     int mbuf_alloc_size;
630 
631     int state;
632 #define BXE_FP_STATE_CLOSED  0x01
633 #define BXE_FP_STATE_IRQ     0x02
634 #define BXE_FP_STATE_OPENING 0x04
635 #define BXE_FP_STATE_OPEN    0x08
636 #define BXE_FP_STATE_HALTING 0x10
637 #define BXE_FP_STATE_HALTED  0x20
638 
639     /* reference back to this fastpath queue number */
640     uint8_t index; /* this is also the 'cid' */
641 #define FP_IDX(fp) (fp->index)
642 
643     /* interrupt taskqueue (fast) */
644     struct task      tq_task;
645     struct taskqueue *tq;
646     char             tq_name[32];
647 
648     struct task tx_task;
649     struct timeout_task tx_timeout_task;
650 
651     /* ethernet client ID (each fastpath set of RX/TX/CQE is a client) */
652     uint8_t cl_id;
653 #define FP_CL_ID(fp) (fp->cl_id)
654     uint8_t cl_qzone_id;
655 
656     uint16_t fp_hc_idx;
657 
658     /* driver copy of the receive buffer descriptor prod/cons indices */
659     uint16_t rx_bd_prod;
660     uint16_t rx_bd_cons;
661 
662     /* driver copy of the receive completion queue prod/cons indices */
663     uint16_t rx_cq_prod;
664     uint16_t rx_cq_cons;
665 
666     union bxe_db_prod tx_db;
667 
668     /* Transmit packet producer index (used in eth_tx_bd). */
669     uint16_t tx_pkt_prod;
670     uint16_t tx_pkt_cons;
671 
672     /* Transmit buffer descriptor producer index. */
673     uint16_t tx_bd_prod;
674     uint16_t tx_bd_cons;
675 
676     uint64_t sge_mask[RX_SGE_MASK_LEN];
677     uint16_t rx_sge_prod;
678 
679     struct tstorm_per_queue_stats old_tclient;
680     struct ustorm_per_queue_stats old_uclient;
681     struct xstorm_per_queue_stats old_xclient;
682     struct bxe_eth_q_stats        eth_q_stats;
683     struct bxe_eth_q_stats_old    eth_q_stats_old;
684 
685     /* Pointer to the receive consumer in the status block */
686     uint16_t *rx_cq_cons_sb;
687 
688     /* Pointer to the transmit consumer in the status block */
689     uint16_t *tx_cons_sb;
690 
691     /* transmit timeout until chip reset */
692     int watchdog_timer;
693 
694     /* Free/used buffer descriptor counters. */
695     //uint16_t used_tx_bd;
696 
697     /* Last maximal completed SGE */
698     uint16_t last_max_sge;
699 
700     //uint16_t rx_sge_free_idx;
701 
702     //uint8_t segs;
703 
704 #if __FreeBSD_version >= 800000
705 #define BXE_BR_SIZE 4096
706     struct buf_ring *tx_br;
707 #endif
708 }; /* struct bxe_fastpath */
709 
710 /* sriov XXX */
711 #define BXE_MAX_NUM_OF_VFS 64
712 #define BXE_VF_CID_WND     0
713 #define BXE_CIDS_PER_VF    (1 << BXE_VF_CID_WND)
714 #define BXE_CLIENTS_PER_VF 1
715 #define BXE_FIRST_VF_CID   256
716 #define BXE_VF_CIDS        (BXE_MAX_NUM_OF_VFS * BXE_CIDS_PER_VF)
717 #define BXE_VF_ID_INVALID  0xFF
718 #define IS_SRIOV(sc) 0
719 
720 #define GET_NUM_VFS_PER_PATH(sc) 0
721 #define GET_NUM_VFS_PER_PF(sc)   0
722 
723 /* maximum number of fast-path interrupt contexts */
724 #define FP_SB_MAX_E1x 16
725 #define FP_SB_MAX_E2  HC_SB_MAX_SB_E2
726 
727 union cdu_context {
728     struct eth_context eth;
729     char pad[1024];
730 };
731 
732 /* CDU host DB constants */
733 #define CDU_ILT_PAGE_SZ_HW 2
734 #define CDU_ILT_PAGE_SZ    (8192 << CDU_ILT_PAGE_SZ_HW) /* 32K */
735 #define ILT_PAGE_CIDS      (CDU_ILT_PAGE_SZ / sizeof(union cdu_context))
736 
737 #define CNIC_ISCSI_CID_MAX 256
738 #define CNIC_FCOE_CID_MAX  2048
739 #define CNIC_CID_MAX       (CNIC_ISCSI_CID_MAX + CNIC_FCOE_CID_MAX)
740 #define CNIC_ILT_LINES     DIV_ROUND_UP(CNIC_CID_MAX, ILT_PAGE_CIDS)
741 
742 #define QM_ILT_PAGE_SZ_HW  0
743 #define QM_ILT_PAGE_SZ     (4096 << QM_ILT_PAGE_SZ_HW) /* 4K */
744 #define QM_CID_ROUND       1024
745 
746 /* TM (timers) host DB constants */
747 #define TM_ILT_PAGE_SZ_HW  0
748 #define TM_ILT_PAGE_SZ     (4096 << TM_ILT_PAGE_SZ_HW) /* 4K */
749 /*#define TM_CONN_NUM        (CNIC_STARTING_CID+CNIC_ISCSI_CXT_MAX) */
750 #define TM_CONN_NUM        1024
751 #define TM_ILT_SZ          (8 * TM_CONN_NUM)
752 #define TM_ILT_LINES       DIV_ROUND_UP(TM_ILT_SZ, TM_ILT_PAGE_SZ)
753 
754 /* SRC (Searcher) host DB constants */
755 #define SRC_ILT_PAGE_SZ_HW 0
756 #define SRC_ILT_PAGE_SZ    (4096 << SRC_ILT_PAGE_SZ_HW) /* 4K */
757 #define SRC_HASH_BITS      10
758 #define SRC_CONN_NUM       (1 << SRC_HASH_BITS) /* 1024 */
759 #define SRC_ILT_SZ         (sizeof(struct src_ent) * SRC_CONN_NUM)
760 #define SRC_T2_SZ          SRC_ILT_SZ
761 #define SRC_ILT_LINES      DIV_ROUND_UP(SRC_ILT_SZ, SRC_ILT_PAGE_SZ)
762 
763 struct hw_context {
764     struct bxe_dma    vcxt_dma;
765     union cdu_context *vcxt;
766     //bus_addr_t        cxt_mapping;
767     size_t            size;
768 };
769 
770 #define SM_RX_ID 0
771 #define SM_TX_ID 1
772 
773 /* defines for multiple tx priority indices */
774 #define FIRST_TX_ONLY_COS_INDEX 1
775 #define FIRST_TX_COS_INDEX      0
776 
777 #define CID_TO_FP(cid, sc) ((cid) % BXE_NUM_NON_CNIC_QUEUES(sc))
778 
779 #define HC_INDEX_ETH_RX_CQ_CONS       1
780 #define HC_INDEX_OOO_TX_CQ_CONS       4
781 #define HC_INDEX_ETH_TX_CQ_CONS_COS0  5
782 #define HC_INDEX_ETH_TX_CQ_CONS_COS1  6
783 #define HC_INDEX_ETH_TX_CQ_CONS_COS2  7
784 #define HC_INDEX_ETH_FIRST_TX_CQ_CONS HC_INDEX_ETH_TX_CQ_CONS_COS0
785 
786 /* congestion management fairness mode */
787 #define CMNG_FNS_NONE   0
788 #define CMNG_FNS_MINMAX 1
789 
790 /* CMNG constants, as derived from system spec calculations */
791 /* default MIN rate in case VNIC min rate is configured to zero - 100Mbps */
792 #define DEF_MIN_RATE 100
793 /* resolution of the rate shaping timer - 400 usec */
794 #define RS_PERIODIC_TIMEOUT_USEC 400
795 /* number of bytes in single QM arbitration cycle -
796  * coefficient for calculating the fairness timer */
797 #define QM_ARB_BYTES 160000
798 /* resolution of Min algorithm 1:100 */
799 #define MIN_RES 100
800 /* how many bytes above threshold for the minimal credit of Min algorithm*/
801 #define MIN_ABOVE_THRESH 32768
802 /* fairness algorithm integration time coefficient -
803  * for calculating the actual Tfair */
804 #define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES)
805 /* memory of fairness algorithm - 2 cycles */
806 #define FAIR_MEM 2
807 
808 #define HC_SEG_ACCESS_DEF   0 /* Driver decision 0-3 */
809 #define HC_SEG_ACCESS_ATTN  4
810 #define HC_SEG_ACCESS_NORM  0 /* Driver decision 0-1 */
811 
812 /*
813  * The total number of L2 queues, MSIX vectors and HW contexts (CIDs) is
814  * control by the number of fast-path status blocks supported by the
815  * device (HW/FW). Each fast-path status block (FP-SB) aka non-default
816  * status block represents an independent interrupts context that can
817  * serve a regular L2 networking queue. However special L2 queues such
818  * as the FCoE queue do not require a FP-SB and other components like
819  * the CNIC may consume FP-SB reducing the number of possible L2 queues
820  *
821  * If the maximum number of FP-SB available is X then:
822  * a. If CNIC is supported it consumes 1 FP-SB thus the max number of
823  *    regular L2 queues is Y=X-1
824  * b. in MF mode the actual number of L2 queues is Y= (X-1/MF_factor)
825  * c. If the FCoE L2 queue is supported the actual number of L2 queues
826  *    is Y+1
827  * d. The number of irqs (MSIX vectors) is either Y+1 (one extra for
828  *    slow-path interrupts) or Y+2 if CNIC is supported (one additional
829  *    FP interrupt context for the CNIC).
830  * e. The number of HW context (CID count) is always X or X+1 if FCoE
831  *    L2 queue is supported. the cid for the FCoE L2 queue is always X.
832  *
833  * So this is quite simple for now as no ULPs are supported yet. :-)
834  */
835 #define BXE_NUM_QUEUES(sc)          ((sc)->num_queues)
836 #define BXE_NUM_ETH_QUEUES(sc)      BXE_NUM_QUEUES(sc)
837 #define BXE_NUM_NON_CNIC_QUEUES(sc) BXE_NUM_QUEUES(sc)
838 #define BXE_NUM_RX_QUEUES(sc)       BXE_NUM_QUEUES(sc)
839 
840 #define FOR_EACH_QUEUE(sc, var)                          \
841     for ((var) = 0; (var) < BXE_NUM_QUEUES(sc); (var)++)
842 
843 #define FOR_EACH_NONDEFAULT_QUEUE(sc, var)               \
844     for ((var) = 1; (var) < BXE_NUM_QUEUES(sc); (var)++)
845 
846 #define FOR_EACH_ETH_QUEUE(sc, var)                          \
847     for ((var) = 0; (var) < BXE_NUM_ETH_QUEUES(sc); (var)++)
848 
849 #define FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, var)               \
850     for ((var) = 1; (var) < BXE_NUM_ETH_QUEUES(sc); (var)++)
851 
852 #define FOR_EACH_COS_IN_TX_QUEUE(sc, var)           \
853     for ((var) = 0; (var) < (sc)->max_cos; (var)++)
854 
855 #define FOR_EACH_CNIC_QUEUE(sc, var)     \
856     for ((var) = BXE_NUM_ETH_QUEUES(sc); \
857          (var) < BXE_NUM_QUEUES(sc);     \
858          (var)++)
859 
860 enum {
861     OOO_IDX_OFFSET,
862     FCOE_IDX_OFFSET,
863     FWD_IDX_OFFSET,
864 };
865 
866 #define FCOE_IDX(sc)              (BXE_NUM_NON_CNIC_QUEUES(sc) + FCOE_IDX_OFFSET)
867 #define bxe_fcoe_fp(sc)           (&sc->fp[FCOE_IDX(sc)])
868 #define bxe_fcoe(sc, var)         (bxe_fcoe_fp(sc)->var)
869 #define bxe_fcoe_inner_sp_obj(sc) (&sc->sp_objs[FCOE_IDX(sc)])
870 #define bxe_fcoe_sp_obj(sc, var)  (bxe_fcoe_inner_sp_obj(sc)->var)
871 #define bxe_fcoe_tx(sc, var)      (bxe_fcoe_fp(sc)->txdata_ptr[FIRST_TX_COS_INDEX]->var)
872 
873 #define OOO_IDX(sc)               (BXE_NUM_NON_CNIC_QUEUES(sc) + OOO_IDX_OFFSET)
874 #define bxe_ooo_fp(sc)            (&sc->fp[OOO_IDX(sc)])
875 #define bxe_ooo(sc, var)          (bxe_ooo_fp(sc)->var)
876 #define bxe_ooo_inner_sp_obj(sc)  (&sc->sp_objs[OOO_IDX(sc)])
877 #define bxe_ooo_sp_obj(sc, var)   (bxe_ooo_inner_sp_obj(sc)->var)
878 
879 #define FWD_IDX(sc)               (BXE_NUM_NON_CNIC_QUEUES(sc) + FWD_IDX_OFFSET)
880 #define bxe_fwd_fp(sc)            (&sc->fp[FWD_IDX(sc)])
881 #define bxe_fwd(sc, var)          (bxe_fwd_fp(sc)->var)
882 #define bxe_fwd_inner_sp_obj(sc)  (&sc->sp_objs[FWD_IDX(sc)])
883 #define bxe_fwd_sp_obj(sc, var)   (bxe_fwd_inner_sp_obj(sc)->var)
884 #define bxe_fwd_txdata(fp)        (fp->txdata_ptr[FIRST_TX_COS_INDEX])
885 
886 #define IS_ETH_FP(fp)    ((fp)->index < BXE_NUM_ETH_QUEUES((fp)->sc))
887 #define IS_FCOE_FP(fp)   ((fp)->index == FCOE_IDX((fp)->sc))
888 #define IS_FCOE_IDX(idx) ((idx) == FCOE_IDX(sc))
889 #define IS_FWD_FP(fp)    ((fp)->index == FWD_IDX((fp)->sc))
890 #define IS_FWD_IDX(idx)  ((idx) == FWD_IDX(sc))
891 #define IS_OOO_FP(fp)    ((fp)->index == OOO_IDX((fp)->sc))
892 #define IS_OOO_IDX(idx)  ((idx) == OOO_IDX(sc))
893 
894 enum {
895     BXE_PORT_QUERY_IDX,
896     BXE_PF_QUERY_IDX,
897     BXE_FCOE_QUERY_IDX,
898     BXE_FIRST_QUEUE_QUERY_IDX,
899 };
900 
901 struct bxe_fw_stats_req {
902     struct stats_query_header hdr;
903     struct stats_query_entry  query[FP_SB_MAX_E1x +
904                                     BXE_FIRST_QUEUE_QUERY_IDX];
905 };
906 
907 struct bxe_fw_stats_data {
908     struct stats_counter          storm_counters;
909     struct per_port_stats         port;
910     struct per_pf_stats           pf;
911     //struct fcoe_statistics_params fcoe;
912     struct per_queue_stats        queue_stats[1];
913 };
914 
915 /* IGU MSIX STATISTICS on 57712: 64 for VFs; 4 for PFs; 4 for Attentions */
916 #define BXE_IGU_STAS_MSG_VF_CNT 64
917 #define BXE_IGU_STAS_MSG_PF_CNT 4
918 
919 #define MAX_DMAE_C 8
920 
921 /*
922  * For the main interface up/down code paths, a not-so-fine-grained CORE
923  * mutex lock is used. Inside this code are various calls to kernel routines
924  * that can cause a sleep to occur. Namely memory allocations and taskqueue
925  * handling. If using an MTX lock we are *not* allowed to sleep but we can
926  * with an SX lock. This define forces the CORE lock to use and SX lock.
927  * Undefine this and an MTX lock will be used instead. Note that the IOCTL
928  * path can cause problems since it's called by a non-sleepable thread. To
929  * alleviate a potential sleep, any IOCTL processing that results in the
930  * chip/interface being started/stopped/reinitialized, the actual work is
931  * offloaded to a taskqueue.
932  */
933 #define BXE_CORE_LOCK_SX
934 
935 /*
936  * This is the slowpath data structure. It is mapped into non-paged memory
937  * so that the hardware can access it's contents directly and must be page
938  * aligned.
939  */
940 struct bxe_slowpath {
941 
942     /* used by the DMAE command executer */
943     struct dmae_cmd dmae[MAX_DMAE_C];
944 
945     /* statistics completion */
946     uint32_t stats_comp;
947 
948     /* firmware defined statistics blocks */
949     union mac_stats        mac_stats;
950     struct nig_stats       nig_stats;
951     struct host_port_stats port_stats;
952     struct host_func_stats func_stats;
953     //struct host_func_stats func_stats_base;
954 
955     /* DMAE completion value and data source/sink */
956     uint32_t wb_comp;
957     uint32_t wb_data[4];
958 
959     union {
960         struct mac_configuration_cmd          e1x;
961         struct eth_classify_rules_ramrod_data e2;
962     } mac_rdata;
963 
964     union {
965         struct tstorm_eth_mac_filter_config e1x;
966         struct eth_filter_rules_ramrod_data e2;
967     } rx_mode_rdata;
968 
969     struct eth_rss_update_ramrod_data rss_rdata;
970 
971     union {
972         struct mac_configuration_cmd           e1;
973         struct eth_multicast_rules_ramrod_data e2;
974     } mcast_rdata;
975 
976     union {
977         struct function_start_data        func_start;
978         struct flow_control_configuration pfc_config; /* for DCBX ramrod */
979     } func_rdata;
980 
981     /* Queue State related ramrods */
982     union {
983         struct client_init_ramrod_data   init_data;
984         struct client_update_ramrod_data update_data;
985     } q_rdata;
986 
987     /*
988      * AFEX ramrod can not be a part of func_rdata union because these
989      * events might arrive in parallel to other events from func_rdata.
990      * If they were defined in the same union the data can get corrupted.
991      */
992     struct afex_vif_list_ramrod_data func_afex_rdata;
993 
994     union drv_info_to_mcp drv_info_to_mcp;
995 }; /* struct bxe_slowpath */
996 
997 /*
998  * Port specifc data structure.
999  */
1000 struct bxe_port {
1001     /*
1002      * Port Management Function (for 57711E only).
1003      * When this field is set the driver instance is
1004      * responsible for managing port specifc
1005      * configurations such as handling link attentions.
1006      */
1007     uint32_t pmf;
1008 
1009     /* Ethernet maximum transmission unit. */
1010     uint16_t ether_mtu;
1011 
1012     uint32_t link_config[ELINK_LINK_CONFIG_SIZE];
1013 
1014     uint32_t ext_phy_config;
1015 
1016     /* Port feature config.*/
1017     uint32_t config;
1018 
1019     /* Defines the features supported by the PHY. */
1020     uint32_t supported[ELINK_LINK_CONFIG_SIZE];
1021 
1022     /* Defines the features advertised by the PHY. */
1023     uint32_t advertising[ELINK_LINK_CONFIG_SIZE];
1024 #define ADVERTISED_10baseT_Half    (1 << 1)
1025 #define ADVERTISED_10baseT_Full    (1 << 2)
1026 #define ADVERTISED_100baseT_Half   (1 << 3)
1027 #define ADVERTISED_100baseT_Full   (1 << 4)
1028 #define ADVERTISED_1000baseT_Half  (1 << 5)
1029 #define ADVERTISED_1000baseT_Full  (1 << 6)
1030 #define ADVERTISED_TP              (1 << 7)
1031 #define ADVERTISED_FIBRE           (1 << 8)
1032 #define ADVERTISED_Autoneg         (1 << 9)
1033 #define ADVERTISED_Asym_Pause      (1 << 10)
1034 #define ADVERTISED_Pause           (1 << 11)
1035 #define ADVERTISED_2500baseX_Full  (1 << 15)
1036 #define ADVERTISED_10000baseT_Full (1 << 16)
1037 
1038     uint32_t    phy_addr;
1039 
1040     /* Used to synchronize phy accesses. */
1041     struct mtx  phy_mtx;
1042     char        phy_mtx_name[32];
1043 
1044 #define BXE_PHY_LOCK(sc)          mtx_lock(&sc->port.phy_mtx)
1045 #define BXE_PHY_UNLOCK(sc)        mtx_unlock(&sc->port.phy_mtx)
1046 #define BXE_PHY_LOCK_ASSERT(sc)   mtx_assert(&sc->port.phy_mtx, MA_OWNED)
1047 
1048     /*
1049      * MCP scratchpad address for port specific statistics.
1050      * The device is responsible for writing statistcss
1051      * back to the MCP for use with management firmware such
1052      * as UMP/NC-SI.
1053      */
1054     uint32_t port_stx;
1055 
1056     struct nig_stats old_nig_stats;
1057 }; /* struct bxe_port */
1058 
1059 struct bxe_mf_info {
1060     uint32_t mf_config[E1HVN_MAX];
1061 
1062     uint32_t vnics_per_port;   /* 1, 2 or 4 */
1063     uint32_t multi_vnics_mode; /* can be set even if vnics_per_port = 1 */
1064     uint32_t path_has_ovlan;   /* MF mode in the path (can be different than the MF mode of the function */
1065 
1066 #define IS_MULTI_VNIC(sc)  ((sc)->devinfo.mf_info.multi_vnics_mode)
1067 #define VNICS_PER_PORT(sc) ((sc)->devinfo.mf_info.vnics_per_port)
1068 #define VNICS_PER_PATH(sc)                                  \
1069     ((sc)->devinfo.mf_info.vnics_per_port *                 \
1070      ((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 1 ))
1071 
1072     uint8_t min_bw[MAX_VNIC_NUM];
1073     uint8_t max_bw[MAX_VNIC_NUM];
1074 
1075     uint16_t ext_id; /* vnic outer vlan or VIF ID */
1076 #define VALID_OVLAN(ovlan) ((ovlan) <= 4096)
1077 #define INVALID_VIF_ID 0xFFFF
1078 #define OVLAN(sc) ((sc)->devinfo.mf_info.ext_id)
1079 #define VIF_ID(sc) ((sc)->devinfo.mf_info.ext_id)
1080 
1081     uint16_t default_vlan;
1082 #define NIV_DEFAULT_VLAN(sc) ((sc)->devinfo.mf_info.default_vlan)
1083 
1084     uint8_t niv_allowed_priorities;
1085 #define NIV_ALLOWED_PRIORITIES(sc) ((sc)->devinfo.mf_info.niv_allowed_priorities)
1086 
1087     uint8_t niv_default_cos;
1088 #define NIV_DEFAULT_COS(sc) ((sc)->devinfo.mf_info.niv_default_cos)
1089 
1090     uint8_t niv_mba_enabled;
1091 
1092     enum mf_cfg_afex_vlan_mode afex_vlan_mode;
1093 #define AFEX_VLAN_MODE(sc) ((sc)->devinfo.mf_info.afex_vlan_mode)
1094     int                        afex_def_vlan_tag;
1095     uint32_t                   pending_max;
1096 
1097     uint16_t flags;
1098 #define MF_INFO_VALID_MAC       0x0001
1099 
1100     uint8_t mf_mode; /* Switch-Dependent or Switch-Independent */
1101 #define IS_MF(sc)                        \
1102     (IS_MULTI_VNIC(sc) &&                \
1103      ((sc)->devinfo.mf_info.mf_mode != 0))
1104 #define IS_MF_SD(sc)                                     \
1105     (IS_MULTI_VNIC(sc) &&                                \
1106      ((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD))
1107 #define IS_MF_SI(sc)                                     \
1108     (IS_MULTI_VNIC(sc) &&                                \
1109      ((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI))
1110 #define IS_MF_AFEX(sc)                              \
1111     (IS_MULTI_VNIC(sc) &&                           \
1112      ((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX))
1113 #define IS_MF_SD_MODE(sc)   IS_MF_SD(sc)
1114 #define IS_MF_SI_MODE(sc)   IS_MF_SI(sc)
1115 #define IS_MF_AFEX_MODE(sc) IS_MF_AFEX(sc)
1116 
1117     uint32_t mf_protos_supported;
1118     #define MF_PROTO_SUPPORT_ETHERNET 0x1
1119     #define MF_PROTO_SUPPORT_ISCSI    0x2
1120     #define MF_PROTO_SUPPORT_FCOE     0x4
1121 }; /* struct bxe_mf_info */
1122 
1123 /* Device information data structure. */
1124 struct bxe_devinfo {
1125     /* PCIe info */
1126     uint16_t vendor_id;
1127     uint16_t device_id;
1128     uint16_t subvendor_id;
1129     uint16_t subdevice_id;
1130 
1131     /*
1132      * chip_id = 0b'CCCCCCCCCCCCCCCCRRRRMMMMMMMMBBBB'
1133      *   C = Chip Number   (bits 16-31)
1134      *   R = Chip Revision (bits 12-15)
1135      *   M = Chip Metal    (bits 4-11)
1136      *   B = Chip Bond ID  (bits 0-3)
1137      */
1138     uint32_t chip_id;
1139 #define CHIP_ID(sc)           ((sc)->devinfo.chip_id & 0xffff0000)
1140 #define CHIP_NUM(sc)          ((sc)->devinfo.chip_id >> 16)
1141 /* device ids */
1142 #define CHIP_NUM_57710        0x164e
1143 #define CHIP_NUM_57711        0x164f
1144 #define CHIP_NUM_57711E       0x1650
1145 #define CHIP_NUM_57712        0x1662
1146 #define CHIP_NUM_57712_MF     0x1663
1147 #define CHIP_NUM_57712_VF     0x166f
1148 #define CHIP_NUM_57800        0x168a
1149 #define CHIP_NUM_57800_MF     0x16a5
1150 #define CHIP_NUM_57800_VF     0x16a9
1151 #define CHIP_NUM_57810        0x168e
1152 #define CHIP_NUM_57810_MF     0x16ae
1153 #define CHIP_NUM_57810_VF     0x16af
1154 #define CHIP_NUM_57811        0x163d
1155 #define CHIP_NUM_57811_MF     0x163e
1156 #define CHIP_NUM_57811_VF     0x163f
1157 #define CHIP_NUM_57840_OBS    0x168d
1158 #define CHIP_NUM_57840_OBS_MF 0x16ab
1159 #define CHIP_NUM_57840_4_10   0x16a1
1160 #define CHIP_NUM_57840_2_20   0x16a2
1161 #define CHIP_NUM_57840_MF     0x16a4
1162 #define CHIP_NUM_57840_VF     0x16ad
1163 
1164 #define CHIP_REV_SHIFT      12
1165 #define CHIP_REV_MASK       (0xF << CHIP_REV_SHIFT)
1166 #define CHIP_REV(sc)        ((sc)->devinfo.chip_id & CHIP_REV_MASK)
1167 
1168 #define CHIP_REV_Ax         (0x0 << CHIP_REV_SHIFT)
1169 #define CHIP_REV_Bx         (0x1 << CHIP_REV_SHIFT)
1170 #define CHIP_REV_Cx         (0x2 << CHIP_REV_SHIFT)
1171 
1172 #define CHIP_REV_IS_SLOW(sc)    \
1173     (CHIP_REV(sc) > 0x00005000)
1174 #define CHIP_REV_IS_FPGA(sc)                              \
1175     (CHIP_REV_IS_SLOW(sc) && (CHIP_REV(sc) & 0x00001000))
1176 #define CHIP_REV_IS_EMUL(sc)                               \
1177     (CHIP_REV_IS_SLOW(sc) && !(CHIP_REV(sc) & 0x00001000))
1178 #define CHIP_REV_IS_ASIC(sc) \
1179     (!CHIP_REV_IS_SLOW(sc))
1180 
1181 #define CHIP_METAL(sc)      ((sc->devinfo.chip_id) & 0x00000ff0)
1182 #define CHIP_BOND_ID(sc)    ((sc->devinfo.chip_id) & 0x0000000f)
1183 
1184 #define CHIP_IS_E1(sc)      (CHIP_NUM(sc) == CHIP_NUM_57710)
1185 #define CHIP_IS_57710(sc)   (CHIP_NUM(sc) == CHIP_NUM_57710)
1186 #define CHIP_IS_57711(sc)   (CHIP_NUM(sc) == CHIP_NUM_57711)
1187 #define CHIP_IS_57711E(sc)  (CHIP_NUM(sc) == CHIP_NUM_57711E)
1188 #define CHIP_IS_E1H(sc)     ((CHIP_IS_57711(sc)) || \
1189                              (CHIP_IS_57711E(sc)))
1190 #define CHIP_IS_E1x(sc)     (CHIP_IS_E1((sc)) || \
1191                              CHIP_IS_E1H((sc)))
1192 
1193 #define CHIP_IS_57712(sc)    (CHIP_NUM(sc) == CHIP_NUM_57712)
1194 #define CHIP_IS_57712_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57712_MF)
1195 #define CHIP_IS_57712_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57712_VF)
1196 #define CHIP_IS_E2(sc)       (CHIP_IS_57712(sc) ||  \
1197                               CHIP_IS_57712_MF(sc))
1198 
1199 #define CHIP_IS_57800(sc)    (CHIP_NUM(sc) == CHIP_NUM_57800)
1200 #define CHIP_IS_57800_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57800_MF)
1201 #define CHIP_IS_57800_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57800_VF)
1202 #define CHIP_IS_57810(sc)    (CHIP_NUM(sc) == CHIP_NUM_57810)
1203 #define CHIP_IS_57810_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57810_MF)
1204 #define CHIP_IS_57810_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57810_VF)
1205 #define CHIP_IS_57811(sc)    (CHIP_NUM(sc) == CHIP_NUM_57811)
1206 #define CHIP_IS_57811_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57811_MF)
1207 #define CHIP_IS_57811_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57811_VF)
1208 #define CHIP_IS_57840(sc)    ((CHIP_NUM(sc) == CHIP_NUM_57840_OBS)  || \
1209                               (CHIP_NUM(sc) == CHIP_NUM_57840_4_10) || \
1210                               (CHIP_NUM(sc) == CHIP_NUM_57840_2_20))
1211 #define CHIP_IS_57840_MF(sc) ((CHIP_NUM(sc) == CHIP_NUM_57840_OBS_MF) || \
1212                               (CHIP_NUM(sc) == CHIP_NUM_57840_MF))
1213 #define CHIP_IS_57840_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57840_VF)
1214 
1215 #define CHIP_IS_E3(sc)      (CHIP_IS_57800(sc)    || \
1216                              CHIP_IS_57800_MF(sc) || \
1217                              CHIP_IS_57800_VF(sc) || \
1218                              CHIP_IS_57810(sc)    || \
1219                              CHIP_IS_57810_MF(sc) || \
1220                              CHIP_IS_57810_VF(sc) || \
1221                              CHIP_IS_57811(sc)    || \
1222                              CHIP_IS_57811_MF(sc) || \
1223                              CHIP_IS_57811_VF(sc) || \
1224                              CHIP_IS_57840(sc)    || \
1225                              CHIP_IS_57840_MF(sc) || \
1226                              CHIP_IS_57840_VF(sc))
1227 #define CHIP_IS_E3A0(sc)    (CHIP_IS_E3(sc) &&              \
1228                              (CHIP_REV(sc) == CHIP_REV_Ax))
1229 #define CHIP_IS_E3B0(sc)    (CHIP_IS_E3(sc) &&              \
1230                              (CHIP_REV(sc) == CHIP_REV_Bx))
1231 
1232 #define USES_WARPCORE(sc)   (CHIP_IS_E3(sc))
1233 #define CHIP_IS_E2E3(sc)    (CHIP_IS_E2(sc) || \
1234                              CHIP_IS_E3(sc))
1235 
1236 #define CHIP_IS_MF_CAP(sc)  (CHIP_IS_57711E(sc)  ||  \
1237                              CHIP_IS_57712_MF(sc) || \
1238                              CHIP_IS_E3(sc))
1239 
1240 #define IS_VF(sc)           (CHIP_IS_57712_VF(sc) || \
1241                              CHIP_IS_57800_VF(sc) || \
1242                              CHIP_IS_57810_VF(sc) || \
1243                              CHIP_IS_57840_VF(sc))
1244 #define IS_PF(sc)           (!IS_VF(sc))
1245 
1246 /*
1247  * This define is used in two main places:
1248  * 1. In the early stages of nic_load, to know if to configure Parser/Searcher
1249  * to nic-only mode or to offload mode. Offload mode is configured if either
1250  * the chip is E1x (where NIC_MODE register is not applicable), or if cnic
1251  * already registered for this port (which means that the user wants storage
1252  * services).
1253  * 2. During cnic-related load, to know if offload mode is already configured
1254  * in the HW or needs to be configrued. Since the transition from nic-mode to
1255  * offload-mode in HW causes traffic coruption, nic-mode is configured only
1256  * in ports on which storage services where never requested.
1257  */
1258 #define CONFIGURE_NIC_MODE(sc) (!CHIP_IS_E1x(sc) && !CNIC_ENABLED(sc))
1259 
1260     uint8_t  chip_port_mode;
1261 #define CHIP_4_PORT_MODE        0x0
1262 #define CHIP_2_PORT_MODE        0x1
1263 #define CHIP_PORT_MODE_NONE     0x2
1264 #define CHIP_PORT_MODE(sc)      ((sc)->devinfo.chip_port_mode)
1265 #define CHIP_IS_MODE_4_PORT(sc) (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE)
1266 
1267     uint8_t int_block;
1268 #define INT_BLOCK_HC            0
1269 #define INT_BLOCK_IGU           1
1270 #define INT_BLOCK_MODE_NORMAL   0
1271 #define INT_BLOCK_MODE_BW_COMP  2
1272 #define CHIP_INT_MODE_IS_NBC(sc)                          \
1273     (!CHIP_IS_E1x(sc) &&                                  \
1274      !((sc)->devinfo.int_block & INT_BLOCK_MODE_BW_COMP))
1275 #define CHIP_INT_MODE_IS_BC(sc) (!CHIP_INT_MODE_IS_NBC(sc))
1276 
1277     uint32_t shmem_base;
1278     uint32_t shmem2_base;
1279     uint32_t bc_ver;
1280     char bc_ver_str[32];
1281     uint32_t mf_cfg_base; /* bootcode shmem address in BAR memory */
1282     struct bxe_mf_info mf_info;
1283 
1284     int flash_size;
1285 #define NVRAM_1MB_SIZE      0x20000
1286 #define NVRAM_TIMEOUT_COUNT 30000
1287 #define NVRAM_PAGE_SIZE     256
1288 
1289     /* PCIe capability information */
1290     uint32_t pcie_cap_flags;
1291 #define BXE_PM_CAPABLE_FLAG     0x00000001
1292 #define BXE_PCIE_CAPABLE_FLAG   0x00000002
1293 #define BXE_MSI_CAPABLE_FLAG    0x00000004
1294 #define BXE_MSIX_CAPABLE_FLAG   0x00000008
1295     uint16_t pcie_pm_cap_reg;
1296     uint16_t pcie_pcie_cap_reg;
1297     //uint16_t pcie_devctl;
1298     uint16_t pcie_link_width;
1299     uint16_t pcie_link_speed;
1300     uint16_t pcie_msi_cap_reg;
1301     uint16_t pcie_msix_cap_reg;
1302 
1303     /* device configuration read from bootcode shared memory */
1304     uint32_t hw_config;
1305     uint32_t hw_config2;
1306 }; /* struct bxe_devinfo */
1307 
1308 struct bxe_sp_objs {
1309     struct ecore_vlan_mac_obj mac_obj; /* MACs object */
1310     struct ecore_queue_sp_obj q_obj; /* Queue State object */
1311 }; /* struct bxe_sp_objs */
1312 
1313 /*
1314  * Data that will be used to create a link report message. We will keep the
1315  * data used for the last link report in order to prevent reporting the same
1316  * link parameters twice.
1317  */
1318 struct bxe_link_report_data {
1319     uint16_t      line_speed;        /* Effective line speed */
1320     unsigned long link_report_flags; /* BXE_LINK_REPORT_XXX flags */
1321 };
1322 enum {
1323     BXE_LINK_REPORT_FULL_DUPLEX,
1324     BXE_LINK_REPORT_LINK_DOWN,
1325     BXE_LINK_REPORT_RX_FC_ON,
1326     BXE_LINK_REPORT_TX_FC_ON
1327 };
1328 
1329 /* Top level device private data structure. */
1330 struct bxe_softc {
1331     /*
1332      * First entry must be a pointer to the BSD ifnet struct which
1333      * has a first element of 'void *if_softc' (which is us). XXX
1334      */
1335     if_t 	    ifp;
1336     struct ifmedia  ifmedia; /* network interface media structure */
1337     int             media;
1338 
1339     volatile int    state; /* device state */
1340 #define BXE_STATE_CLOSED                 0x0000
1341 #define BXE_STATE_OPENING_WAITING_LOAD   0x1000
1342 #define BXE_STATE_OPENING_WAITING_PORT   0x2000
1343 #define BXE_STATE_OPEN                   0x3000
1344 #define BXE_STATE_CLOSING_WAITING_HALT   0x4000
1345 #define BXE_STATE_CLOSING_WAITING_DELETE 0x5000
1346 #define BXE_STATE_CLOSING_WAITING_UNLOAD 0x6000
1347 #define BXE_STATE_DISABLED               0xD000
1348 #define BXE_STATE_DIAG                   0xE000
1349 #define BXE_STATE_ERROR                  0xF000
1350 
1351     int flags;
1352 #define BXE_ONE_PORT_FLAG    0x00000001
1353 #define BXE_NO_ISCSI         0x00000002
1354 #define BXE_NO_FCOE          0x00000004
1355 #define BXE_ONE_PORT(sc)     (sc->flags & BXE_ONE_PORT_FLAG)
1356 //#define BXE_NO_WOL_FLAG      0x00000008
1357 //#define BXE_USING_DAC_FLAG   0x00000010
1358 //#define BXE_USING_MSIX_FLAG  0x00000020
1359 //#define BXE_USING_MSI_FLAG   0x00000040
1360 //#define BXE_DISABLE_MSI_FLAG 0x00000080
1361 #define BXE_NO_MCP_FLAG      0x00000200
1362 #define BXE_NOMCP(sc)        (sc->flags & BXE_NO_MCP_FLAG)
1363 //#define BXE_SAFC_TX_FLAG     0x00000400
1364 #define BXE_MF_FUNC_DIS      0x00000800
1365 #define BXE_TX_SWITCHING     0x00001000
1366 #define BXE_NO_PULSE	     0x00002000
1367 
1368     unsigned long debug; /* per-instance debug logging config */
1369 
1370 #define MAX_BARS 5
1371     struct bxe_bar bar[MAX_BARS]; /* map BARs 0, 2, 4 */
1372 
1373     uint16_t doorbell_size;
1374 
1375     /* periodic timer callout */
1376 #define PERIODIC_STOP 0
1377 #define PERIODIC_GO   1
1378     volatile unsigned long periodic_flags;
1379     struct callout         periodic_callout;
1380 
1381     /* chip start/stop/reset taskqueue */
1382 #define CHIP_TQ_NONE   0
1383 #define CHIP_TQ_START  1
1384 #define CHIP_TQ_STOP   2
1385 #define CHIP_TQ_REINIT 3
1386     volatile unsigned long chip_tq_flags;
1387     struct task            chip_tq_task;
1388     struct taskqueue       *chip_tq;
1389     char                   chip_tq_name[32];
1390 
1391     /* slowpath interrupt taskqueue */
1392     struct task      sp_tq_task;
1393     struct taskqueue *sp_tq;
1394     char             sp_tq_name[32];
1395 
1396     struct bxe_fastpath fp[MAX_RSS_CHAINS];
1397     struct bxe_sp_objs  sp_objs[MAX_RSS_CHAINS];
1398 
1399     device_t dev;  /* parent device handle */
1400     uint8_t  unit; /* driver instance number */
1401 
1402     int pcie_bus;    /* PCIe bus number */
1403     int pcie_device; /* PCIe device/slot number */
1404     int pcie_func;   /* PCIe function number */
1405 
1406     uint8_t pfunc_rel; /* function relative */
1407     uint8_t pfunc_abs; /* function absolute */
1408     uint8_t path_id;   /* function absolute */
1409 #define SC_PATH(sc)     (sc->path_id)
1410 #define SC_PORT(sc)     (sc->pfunc_rel & 1)
1411 #define SC_FUNC(sc)     (sc->pfunc_rel)
1412 #define SC_ABS_FUNC(sc) (sc->pfunc_abs)
1413 #define SC_VN(sc)       (sc->pfunc_rel >> 1)
1414 #define SC_L_ID(sc)     (SC_VN(sc) << 2)
1415 #define PORT_ID(sc)     SC_PORT(sc)
1416 #define PATH_ID(sc)     SC_PATH(sc)
1417 #define VNIC_ID(sc)     SC_VN(sc)
1418 #define FUNC_ID(sc)     SC_FUNC(sc)
1419 #define ABS_FUNC_ID(sc) SC_ABS_FUNC(sc)
1420 #define SC_FW_MB_IDX_VN(sc, vn)                                \
1421     (SC_PORT(sc) + (vn) *                                      \
1422      ((CHIP_IS_E1x(sc) || (CHIP_IS_MODE_4_PORT(sc))) ? 2 : 1))
1423 #define SC_FW_MB_IDX(sc) SC_FW_MB_IDX_VN(sc, SC_VN(sc))
1424 
1425     int if_capen; /* enabled interface capabilities */
1426 
1427     struct bxe_devinfo devinfo;
1428     char fw_ver_str[32];
1429     char mf_mode_str[32];
1430     char pci_link_str[32];
1431 
1432     const struct iro *iro_array;
1433 
1434 #ifdef BXE_CORE_LOCK_SX
1435     struct sx      core_sx;
1436     char           core_sx_name[32];
1437 #else
1438     struct mtx     core_mtx;
1439     char           core_mtx_name[32];
1440 #endif
1441     struct mtx     sp_mtx;
1442     char           sp_mtx_name[32];
1443     struct mtx     dmae_mtx;
1444     char           dmae_mtx_name[32];
1445     struct mtx     fwmb_mtx;
1446     char           fwmb_mtx_name[32];
1447     struct mtx     print_mtx;
1448     char           print_mtx_name[32];
1449     struct mtx     stats_mtx;
1450     char           stats_mtx_name[32];
1451     struct mtx     mcast_mtx;
1452     char           mcast_mtx_name[32];
1453 
1454 #ifdef BXE_CORE_LOCK_SX
1455 #define BXE_CORE_TRYLOCK(sc)      sx_try_xlock(&sc->core_sx)
1456 #define BXE_CORE_LOCK(sc)         sx_xlock(&sc->core_sx)
1457 #define BXE_CORE_UNLOCK(sc)       sx_xunlock(&sc->core_sx)
1458 #define BXE_CORE_LOCK_ASSERT(sc)  sx_assert(&sc->core_sx, SA_XLOCKED)
1459 #else
1460 #define BXE_CORE_TRYLOCK(sc)      mtx_trylock(&sc->core_mtx)
1461 #define BXE_CORE_LOCK(sc)         mtx_lock(&sc->core_mtx)
1462 #define BXE_CORE_UNLOCK(sc)       mtx_unlock(&sc->core_mtx)
1463 #define BXE_CORE_LOCK_ASSERT(sc)  mtx_assert(&sc->core_mtx, MA_OWNED)
1464 #endif
1465 
1466 #define BXE_SP_LOCK(sc)           mtx_lock(&sc->sp_mtx)
1467 #define BXE_SP_UNLOCK(sc)         mtx_unlock(&sc->sp_mtx)
1468 #define BXE_SP_LOCK_ASSERT(sc)    mtx_assert(&sc->sp_mtx, MA_OWNED)
1469 
1470 #define BXE_DMAE_LOCK(sc)         mtx_lock(&sc->dmae_mtx)
1471 #define BXE_DMAE_UNLOCK(sc)       mtx_unlock(&sc->dmae_mtx)
1472 #define BXE_DMAE_LOCK_ASSERT(sc)  mtx_assert(&sc->dmae_mtx, MA_OWNED)
1473 
1474 #define BXE_FWMB_LOCK(sc)         mtx_lock(&sc->fwmb_mtx)
1475 #define BXE_FWMB_UNLOCK(sc)       mtx_unlock(&sc->fwmb_mtx)
1476 #define BXE_FWMB_LOCK_ASSERT(sc)  mtx_assert(&sc->fwmb_mtx, MA_OWNED)
1477 
1478 #define BXE_PRINT_LOCK(sc)        mtx_lock(&sc->print_mtx)
1479 #define BXE_PRINT_UNLOCK(sc)      mtx_unlock(&sc->print_mtx)
1480 #define BXE_PRINT_LOCK_ASSERT(sc) mtx_assert(&sc->print_mtx, MA_OWNED)
1481 
1482 #define BXE_STATS_LOCK(sc)        mtx_lock(&sc->stats_mtx)
1483 #define BXE_STATS_UNLOCK(sc)      mtx_unlock(&sc->stats_mtx)
1484 #define BXE_STATS_LOCK_ASSERT(sc) mtx_assert(&sc->stats_mtx, MA_OWNED)
1485 
1486 #if __FreeBSD_version < 800000
1487 #define BXE_MCAST_LOCK(sc)        \
1488     do {                          \
1489         mtx_lock(&sc->mcast_mtx); \
1490         IF_ADDR_LOCK(sc->ifp);  \
1491     } while (0)
1492 #define BXE_MCAST_UNLOCK(sc)        \
1493     do {                            \
1494         IF_ADDR_UNLOCK(sc->ifp);  \
1495         mtx_unlock(&sc->mcast_mtx); \
1496     } while (0)
1497 #else
1498 #define BXE_MCAST_LOCK(sc)         \
1499     do {                           \
1500         mtx_lock(&sc->mcast_mtx);  \
1501         if_maddr_rlock(sc->ifp); \
1502     } while (0)
1503 #define BXE_MCAST_UNLOCK(sc)         \
1504     do {                             \
1505         if_maddr_runlock(sc->ifp); \
1506         mtx_unlock(&sc->mcast_mtx);  \
1507     } while (0)
1508 #endif
1509 #define BXE_MCAST_LOCK_ASSERT(sc) mtx_assert(&sc->mcast_mtx, MA_OWNED)
1510 
1511     int dmae_ready;
1512 #define DMAE_READY(sc) (sc->dmae_ready)
1513 
1514     struct ecore_credit_pool_obj vlans_pool;
1515     struct ecore_credit_pool_obj macs_pool;
1516     struct ecore_rx_mode_obj     rx_mode_obj;
1517     struct ecore_mcast_obj       mcast_obj;
1518     struct ecore_rss_config_obj  rss_conf_obj;
1519     struct ecore_func_sp_obj     func_obj;
1520 
1521     uint16_t fw_seq;
1522     uint16_t fw_drv_pulse_wr_seq;
1523     uint32_t func_stx;
1524 
1525     struct elink_params         link_params;
1526     struct elink_vars           link_vars;
1527     uint32_t                    link_cnt;
1528     struct bxe_link_report_data last_reported_link;
1529     char mac_addr_str[32];
1530 
1531     int last_reported_link_state;
1532 
1533     int tx_ring_size;
1534     int rx_ring_size;
1535     int wol;
1536 
1537     int is_leader;
1538     int recovery_state;
1539 #define BXE_RECOVERY_DONE        1
1540 #define BXE_RECOVERY_INIT        2
1541 #define BXE_RECOVERY_WAIT        3
1542 #define BXE_RECOVERY_FAILED      4
1543 #define BXE_RECOVERY_NIC_LOADING 5
1544 
1545     uint32_t rx_mode;
1546 #define BXE_RX_MODE_NONE     0
1547 #define BXE_RX_MODE_NORMAL   1
1548 #define BXE_RX_MODE_ALLMULTI 2
1549 #define BXE_RX_MODE_PROMISC  3
1550 #define BXE_MAX_MULTICAST    64
1551 
1552     struct bxe_port port;
1553 
1554     struct cmng_init cmng;
1555 
1556     /* user configs */
1557     int      num_queues;
1558     int      max_rx_bufs;
1559     int      hc_rx_ticks;
1560     int      hc_tx_ticks;
1561     int      rx_budget;
1562     int      max_aggregation_size;
1563     int      mrrs;
1564     int      autogreeen;
1565 #define AUTO_GREEN_HW_DEFAULT 0
1566 #define AUTO_GREEN_FORCE_ON   1
1567 #define AUTO_GREEN_FORCE_OFF  2
1568     int      interrupt_mode;
1569 #define INTR_MODE_INTX 0
1570 #define INTR_MODE_MSI  1
1571 #define INTR_MODE_MSIX 2
1572     int      udp_rss;
1573 
1574     /* interrupt allocations */
1575     struct bxe_intr intr[MAX_RSS_CHAINS+1];
1576     int             intr_count;
1577     uint8_t         igu_dsb_id;
1578     uint8_t         igu_base_sb;
1579     uint8_t         igu_sb_cnt;
1580     //uint8_t         min_msix_vec_cnt;
1581     uint32_t        igu_base_addr;
1582     //bus_addr_t      def_status_blk_mapping;
1583     uint8_t         base_fw_ndsb;
1584 #define DEF_SB_IGU_ID 16
1585 #define DEF_SB_ID     HC_SP_SB_ID
1586 
1587     /* parent bus DMA tag  */
1588     bus_dma_tag_t parent_dma_tag;
1589 
1590     /* default status block */
1591     struct bxe_dma              def_sb_dma;
1592     struct host_sp_status_block *def_sb;
1593     uint16_t                    def_idx;
1594     uint16_t                    def_att_idx;
1595     uint32_t                    attn_state;
1596     struct attn_route           attn_group[MAX_DYNAMIC_ATTN_GRPS];
1597 
1598 /* general SP events - stats query, cfc delete, etc */
1599 #define HC_SP_INDEX_ETH_DEF_CONS         3
1600 /* EQ completions */
1601 #define HC_SP_INDEX_EQ_CONS              7
1602 /* FCoE L2 connection completions */
1603 #define HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS  6
1604 #define HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS  4
1605 /* iSCSI L2 */
1606 #define HC_SP_INDEX_ETH_ISCSI_CQ_CONS    5
1607 #define HC_SP_INDEX_ETH_ISCSI_RX_CQ_CONS 1
1608 
1609     /* event queue */
1610     struct bxe_dma        eq_dma;
1611     union event_ring_elem *eq;
1612     uint16_t              eq_prod;
1613     uint16_t              eq_cons;
1614     uint16_t              *eq_cons_sb;
1615 #define NUM_EQ_PAGES     1 /* must be a power of 2 */
1616 #define EQ_DESC_CNT_PAGE (BCM_PAGE_SIZE / sizeof(union event_ring_elem))
1617 #define EQ_DESC_MAX_PAGE (EQ_DESC_CNT_PAGE - 1)
1618 #define NUM_EQ_DESC      (EQ_DESC_CNT_PAGE * NUM_EQ_PAGES)
1619 #define EQ_DESC_MASK     (NUM_EQ_DESC - 1)
1620 #define MAX_EQ_AVAIL     (EQ_DESC_MAX_PAGE * NUM_EQ_PAGES - 2)
1621 /* depends on EQ_DESC_CNT_PAGE being a power of 2 */
1622 #define NEXT_EQ_IDX(x)                                      \
1623     ((((x) & EQ_DESC_MAX_PAGE) == (EQ_DESC_MAX_PAGE - 1)) ? \
1624          ((x) + 2) : ((x) + 1))
1625 /* depends on the above and on NUM_EQ_PAGES being a power of 2 */
1626 #define EQ_DESC(x) ((x) & EQ_DESC_MASK)
1627 
1628     /* slow path */
1629     struct bxe_dma      sp_dma;
1630     struct bxe_slowpath *sp;
1631     unsigned long       sp_state;
1632 
1633     /* slow path queue */
1634     struct bxe_dma spq_dma;
1635     struct eth_spe *spq;
1636 #define SP_DESC_CNT     (BCM_PAGE_SIZE / sizeof(struct eth_spe))
1637 #define MAX_SP_DESC_CNT (SP_DESC_CNT - 1)
1638 #define MAX_SPQ_PENDING 8
1639 
1640     uint16_t       spq_prod_idx;
1641     struct eth_spe *spq_prod_bd;
1642     struct eth_spe *spq_last_bd;
1643     uint16_t       *dsb_sp_prod;
1644     //uint16_t       *spq_hw_con;
1645     //uint16_t       spq_left;
1646 
1647     volatile unsigned long eq_spq_left; /* COMMON_xxx ramrod credit */
1648     volatile unsigned long cq_spq_left; /* ETH_xxx ramrod credit */
1649 
1650     /* fw decompression buffer */
1651     struct bxe_dma gz_buf_dma;
1652     void           *gz_buf;
1653     z_streamp      gz_strm;
1654     uint32_t       gz_outlen;
1655 #define GUNZIP_BUF(sc)    (sc->gz_buf)
1656 #define GUNZIP_OUTLEN(sc) (sc->gz_outlen)
1657 #define GUNZIP_PHYS(sc)   (sc->gz_buf_dma.paddr)
1658 #define FW_BUF_SIZE       0x40000
1659 
1660     const struct raw_op *init_ops;
1661     const uint16_t *init_ops_offsets; /* init block offsets inside init_ops */
1662     const uint32_t *init_data;        /* data blob, 32 bit granularity */
1663     uint32_t       init_mode_flags;
1664 #define INIT_MODE_FLAGS(sc) (sc->init_mode_flags)
1665     /* PRAM blobs - raw data */
1666     const uint8_t *tsem_int_table_data;
1667     const uint8_t *tsem_pram_data;
1668     const uint8_t *usem_int_table_data;
1669     const uint8_t *usem_pram_data;
1670     const uint8_t *xsem_int_table_data;
1671     const uint8_t *xsem_pram_data;
1672     const uint8_t *csem_int_table_data;
1673     const uint8_t *csem_pram_data;
1674 #define INIT_OPS(sc)                 (sc->init_ops)
1675 #define INIT_OPS_OFFSETS(sc)         (sc->init_ops_offsets)
1676 #define INIT_DATA(sc)                (sc->init_data)
1677 #define INIT_TSEM_INT_TABLE_DATA(sc) (sc->tsem_int_table_data)
1678 #define INIT_TSEM_PRAM_DATA(sc)      (sc->tsem_pram_data)
1679 #define INIT_USEM_INT_TABLE_DATA(sc) (sc->usem_int_table_data)
1680 #define INIT_USEM_PRAM_DATA(sc)      (sc->usem_pram_data)
1681 #define INIT_XSEM_INT_TABLE_DATA(sc) (sc->xsem_int_table_data)
1682 #define INIT_XSEM_PRAM_DATA(sc)      (sc->xsem_pram_data)
1683 #define INIT_CSEM_INT_TABLE_DATA(sc) (sc->csem_int_table_data)
1684 #define INIT_CSEM_PRAM_DATA(sc)      (sc->csem_pram_data)
1685 
1686     /* ILT
1687      * For max 196 cids (64*3 + non-eth), 32KB ILT page size and 1KB
1688      * context size we need 8 ILT entries.
1689      */
1690 #define ILT_MAX_L2_LINES 8
1691     struct hw_context context[ILT_MAX_L2_LINES];
1692     struct ecore_ilt *ilt;
1693 #define ILT_MAX_LINES 256
1694 
1695 /* max supported number of RSS queues: IGU SBs minus one for CNIC */
1696 #define BXE_MAX_RSS_COUNT(sc) ((sc)->igu_sb_cnt - CNIC_SUPPORT(sc))
1697 /* max CID count: Max RSS * Max_Tx_Multi_Cos + FCoE + iSCSI */
1698 #if 1
1699 #define BXE_L2_MAX_CID(sc)                                              \
1700     (BXE_MAX_RSS_COUNT(sc) * ECORE_MULTI_TX_COS + 2 * CNIC_SUPPORT(sc))
1701 #else
1702 #define BXE_L2_MAX_CID(sc) /* OOO + FWD */                              \
1703     (BXE_MAX_RSS_COUNT(sc) * ECORE_MULTI_TX_COS + 4 * CNIC_SUPPORT(sc))
1704 #endif
1705 #if 1
1706 #define BXE_L2_CID_COUNT(sc)                                             \
1707     (BXE_NUM_ETH_QUEUES(sc) * ECORE_MULTI_TX_COS + 2 * CNIC_SUPPORT(sc))
1708 #else
1709 #define BXE_L2_CID_COUNT(sc) /* OOO + FWD */                             \
1710     (BXE_NUM_ETH_QUEUES(sc) * ECORE_MULTI_TX_COS + 4 * CNIC_SUPPORT(sc))
1711 #endif
1712 #define L2_ILT_LINES(sc)                                \
1713     (DIV_ROUND_UP(BXE_L2_CID_COUNT(sc), ILT_PAGE_CIDS))
1714 
1715     int qm_cid_count;
1716 
1717     uint8_t dropless_fc;
1718 
1719     /* total number of FW statistics requests */
1720     uint8_t fw_stats_num;
1721     /*
1722      * This is a memory buffer that will contain both statistics ramrod
1723      * request and data.
1724      */
1725     struct bxe_dma fw_stats_dma;
1726     /*
1727      * FW statistics request shortcut (points at the beginning of fw_stats
1728      * buffer).
1729      */
1730     int                     fw_stats_req_size;
1731     struct bxe_fw_stats_req *fw_stats_req;
1732     bus_addr_t              fw_stats_req_mapping;
1733     /*
1734      * FW statistics data shortcut (points at the beginning of fw_stats
1735      * buffer + fw_stats_req_size).
1736      */
1737     int                      fw_stats_data_size;
1738     struct bxe_fw_stats_data *fw_stats_data;
1739     bus_addr_t               fw_stats_data_mapping;
1740 
1741     /* tracking a pending STAT_QUERY ramrod */
1742     uint16_t stats_pending;
1743     /* number of completed statistics ramrods */
1744     uint16_t stats_comp;
1745     uint16_t stats_counter;
1746     uint8_t  stats_init;
1747     int      stats_state;
1748 
1749     struct bxe_eth_stats         eth_stats;
1750     struct host_func_stats       func_stats;
1751     struct bxe_eth_stats_old     eth_stats_old;
1752     struct bxe_net_stats_old     net_stats_old;
1753     struct bxe_fw_port_stats_old fw_stats_old;
1754 
1755     struct dmae_cmd stats_dmae; /* used by dmae command loader */
1756     int                 executer_idx;
1757 
1758     int mtu;
1759 
1760     /* LLDP params */
1761     struct bxe_config_lldp_params lldp_config_params;
1762     /* DCB support on/off */
1763     int dcb_state;
1764 #define BXE_DCB_STATE_OFF 0
1765 #define BXE_DCB_STATE_ON  1
1766     /* DCBX engine mode */
1767     int dcbx_enabled;
1768 #define BXE_DCBX_ENABLED_OFF        0
1769 #define BXE_DCBX_ENABLED_ON_NEG_OFF 1
1770 #define BXE_DCBX_ENABLED_ON_NEG_ON  2
1771 #define BXE_DCBX_ENABLED_INVALID    -1
1772     uint8_t dcbx_mode_uset;
1773     struct bxe_config_dcbx_params dcbx_config_params;
1774     struct bxe_dcbx_port_params   dcbx_port_params;
1775     int dcb_version;
1776 
1777     uint8_t cnic_support;
1778     uint8_t cnic_enabled;
1779     uint8_t cnic_loaded;
1780 #define CNIC_SUPPORT(sc) 0 /* ((sc)->cnic_support) */
1781 #define CNIC_ENABLED(sc) 0 /* ((sc)->cnic_enabled) */
1782 #define CNIC_LOADED(sc)  0 /* ((sc)->cnic_loaded) */
1783 
1784     /* multiple tx classes of service */
1785     uint8_t max_cos;
1786 #define BXE_MAX_PRIORITY 8
1787     /* priority to cos mapping */
1788     uint8_t prio_to_cos[BXE_MAX_PRIORITY];
1789 
1790     int panic;
1791 
1792     struct cdev *ioctl_dev;
1793 
1794     void *grc_dump;
1795     unsigned int trigger_grcdump;
1796     unsigned int  grcdump_done;
1797     unsigned int grcdump_started;
1798     int bxe_pause_param;
1799     void *eeprom;
1800 }; /* struct bxe_softc */
1801 
1802 /* IOCTL sub-commands for edebug and firmware upgrade */
1803 #define BXE_IOC_RD_NVRAM        1
1804 #define BXE_IOC_WR_NVRAM        2
1805 #define BXE_IOC_STATS_SHOW_NUM  3
1806 #define BXE_IOC_STATS_SHOW_STR  4
1807 #define BXE_IOC_STATS_SHOW_CNT  5
1808 
1809 struct bxe_nvram_data {
1810     uint32_t op; /* ioctl sub-command */
1811     uint32_t offset;
1812     uint32_t len;
1813     uint32_t value[1]; /* variable */
1814 };
1815 
1816 union bxe_stats_show_data {
1817     uint32_t op; /* ioctl sub-command */
1818 
1819     struct {
1820         uint32_t num; /* return number of stats */
1821         uint32_t len; /* length of each string item */
1822     } desc;
1823 
1824     /* variable length... */
1825     char str[1]; /* holds names of desc.num stats, each desc.len in length */
1826 
1827     /* variable length... */
1828     uint64_t stats[1]; /* holds all stats */
1829 };
1830 
1831 /* function init flags */
1832 #define FUNC_FLG_RSS     0x0001
1833 #define FUNC_FLG_STATS   0x0002
1834 /* FUNC_FLG_UNMATCHED       0x0004 */
1835 #define FUNC_FLG_TPA     0x0008
1836 #define FUNC_FLG_SPQ     0x0010
1837 #define FUNC_FLG_LEADING 0x0020 /* PF only */
1838 
1839 struct bxe_func_init_params {
1840     bus_addr_t fw_stat_map; /* (dma) valid if FUNC_FLG_STATS */
1841     bus_addr_t spq_map;     /* (dma) valid if FUNC_FLG_SPQ */
1842     uint16_t   func_flgs;
1843     uint16_t   func_id;     /* abs function id */
1844     uint16_t   pf_id;
1845     uint16_t   spq_prod;    /* valid if FUNC_FLG_SPQ */
1846 };
1847 
1848 /* memory resources reside at BARs 0, 2, 4 */
1849 /* Run `pciconf -lb` to see mappings */
1850 #define BAR0 0
1851 #define BAR1 2
1852 #define BAR2 4
1853 
1854 #ifdef BXE_REG_NO_INLINE
1855 
1856 uint8_t bxe_reg_read8(struct bxe_softc *sc, bus_size_t offset);
1857 uint16_t bxe_reg_read16(struct bxe_softc *sc, bus_size_t offset);
1858 uint32_t bxe_reg_read32(struct bxe_softc *sc, bus_size_t offset);
1859 
1860 void bxe_reg_write8(struct bxe_softc *sc, bus_size_t offset, uint8_t val);
1861 void bxe_reg_write16(struct bxe_softc *sc, bus_size_t offset, uint16_t val);
1862 void bxe_reg_write32(struct bxe_softc *sc, bus_size_t offset, uint32_t val);
1863 
1864 #define REG_RD8(sc, offset)  bxe_reg_read8(sc, offset)
1865 #define REG_RD16(sc, offset) bxe_reg_read16(sc, offset)
1866 #define REG_RD32(sc, offset) bxe_reg_read32(sc, offset)
1867 
1868 #define REG_WR8(sc, offset, val)  bxe_reg_write8(sc, offset, val)
1869 #define REG_WR16(sc, offset, val) bxe_reg_write16(sc, offset, val)
1870 #define REG_WR32(sc, offset, val) bxe_reg_write32(sc, offset, val)
1871 
1872 #else /* not BXE_REG_NO_INLINE */
1873 
1874 #define REG_WR8(sc, offset, val)            \
1875     bus_space_write_1(sc->bar[BAR0].tag,    \
1876                       sc->bar[BAR0].handle, \
1877                       offset, val)
1878 
1879 #define REG_WR16(sc, offset, val)           \
1880     bus_space_write_2(sc->bar[BAR0].tag,    \
1881                       sc->bar[BAR0].handle, \
1882                       offset, val)
1883 
1884 #define REG_WR32(sc, offset, val)           \
1885     bus_space_write_4(sc->bar[BAR0].tag,    \
1886                       sc->bar[BAR0].handle, \
1887                       offset, val)
1888 
1889 #define REG_RD8(sc, offset)                \
1890     bus_space_read_1(sc->bar[BAR0].tag,    \
1891                      sc->bar[BAR0].handle, \
1892                      offset)
1893 
1894 #define REG_RD16(sc, offset)               \
1895     bus_space_read_2(sc->bar[BAR0].tag,    \
1896                      sc->bar[BAR0].handle, \
1897                      offset)
1898 
1899 #define REG_RD32(sc, offset)               \
1900     bus_space_read_4(sc->bar[BAR0].tag,    \
1901                      sc->bar[BAR0].handle, \
1902                      offset)
1903 
1904 #endif /* BXE_REG_NO_INLINE */
1905 
1906 #define REG_RD(sc, offset)      REG_RD32(sc, offset)
1907 #define REG_WR(sc, offset, val) REG_WR32(sc, offset, val)
1908 
1909 #define REG_RD_IND(sc, offset)      bxe_reg_rd_ind(sc, offset)
1910 #define REG_WR_IND(sc, offset, val) bxe_reg_wr_ind(sc, offset, val)
1911 
1912 #define BXE_SP(sc, var) (&(sc)->sp->var)
1913 #define BXE_SP_MAPPING(sc, var) \
1914     (sc->sp_dma.paddr + offsetof(struct bxe_slowpath, var))
1915 
1916 #define BXE_FP(sc, nr, var) ((sc)->fp[(nr)].var)
1917 #define BXE_SP_OBJ(sc, fp) ((sc)->sp_objs[(fp)->index])
1918 
1919 #define REG_RD_DMAE(sc, offset, valp, len32)               \
1920     do {                                                   \
1921         bxe_read_dmae(sc, offset, len32);                  \
1922         memcpy(valp, BXE_SP(sc, wb_data[0]), (len32) * 4); \
1923     } while (0)
1924 
1925 #define REG_WR_DMAE(sc, offset, valp, len32)                            \
1926     do {                                                                \
1927         memcpy(BXE_SP(sc, wb_data[0]), valp, (len32) * 4);              \
1928         bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data), offset, len32); \
1929     } while (0)
1930 
1931 #define REG_WR_DMAE_LEN(sc, offset, valp, len32) \
1932     REG_WR_DMAE(sc, offset, valp, len32)
1933 
1934 #define REG_RD_DMAE_LEN(sc, offset, valp, len32) \
1935     REG_RD_DMAE(sc, offset, valp, len32)
1936 
1937 #define VIRT_WR_DMAE_LEN(sc, data, addr, len32, le32_swap)         \
1938     do {                                                           \
1939         /* if (le32_swap) {                                     */ \
1940         /*    BLOGW(sc, "VIRT_WR_DMAE_LEN with le32_swap=1\n"); */ \
1941         /* }                                                    */ \
1942         memcpy(GUNZIP_BUF(sc), data, len32 * 4);                   \
1943         ecore_write_big_buf_wb(sc, addr, len32);                   \
1944     } while (0)
1945 
1946 #define BXE_DB_MIN_SHIFT 3   /* 8 bytes */
1947 #define BXE_DB_SHIFT     7   /* 128 bytes */
1948 #if (BXE_DB_SHIFT < BXE_DB_MIN_SHIFT)
1949 #error "Minimum DB doorbell stride is 8"
1950 #endif
1951 #define DPM_TRIGGER_TYPE 0x40
1952 #define DOORBELL(sc, cid, val)                                              \
1953     do {                                                                    \
1954         bus_space_write_4(sc->bar[BAR1].tag, sc->bar[BAR1].handle,          \
1955                           ((sc->doorbell_size * (cid)) + DPM_TRIGGER_TYPE), \
1956                           (uint32_t)val);                                   \
1957     } while(0)
1958 
1959 #define SHMEM_ADDR(sc, field)                                       \
1960     (sc->devinfo.shmem_base + offsetof(struct shmem_region, field))
1961 #define SHMEM_RD(sc, field)      REG_RD(sc, SHMEM_ADDR(sc, field))
1962 #define SHMEM_RD16(sc, field)    REG_RD16(sc, SHMEM_ADDR(sc, field))
1963 #define SHMEM_WR(sc, field, val) REG_WR(sc, SHMEM_ADDR(sc, field), val)
1964 
1965 #define SHMEM2_ADDR(sc, field)                                        \
1966     (sc->devinfo.shmem2_base + offsetof(struct shmem2_region, field))
1967 #define SHMEM2_HAS(sc, field)                                            \
1968     (sc->devinfo.shmem2_base && (REG_RD(sc, SHMEM2_ADDR(sc, size)) >     \
1969                                  offsetof(struct shmem2_region, field)))
1970 #define SHMEM2_RD(sc, field)      REG_RD(sc, SHMEM2_ADDR(sc, field))
1971 #define SHMEM2_WR(sc, field, val) REG_WR(sc, SHMEM2_ADDR(sc, field), val)
1972 
1973 #define MFCFG_ADDR(sc, field)                                  \
1974     (sc->devinfo.mf_cfg_base + offsetof(struct mf_cfg, field))
1975 #define MFCFG_RD(sc, field)      REG_RD(sc, MFCFG_ADDR(sc, field))
1976 #define MFCFG_RD16(sc, field)    REG_RD16(sc, MFCFG_ADDR(sc, field))
1977 #define MFCFG_WR(sc, field, val) REG_WR(sc, MFCFG_ADDR(sc, field), val)
1978 
1979 /* DMAE command defines */
1980 
1981 #define DMAE_TIMEOUT      -1
1982 #define DMAE_PCI_ERROR    -2 /* E2 and onward */
1983 #define DMAE_NOT_RDY      -3
1984 #define DMAE_PCI_ERR_FLAG 0x80000000
1985 
1986 #define DMAE_SRC_PCI      0
1987 #define DMAE_SRC_GRC      1
1988 
1989 #define DMAE_DST_NONE     0
1990 #define DMAE_DST_PCI      1
1991 #define DMAE_DST_GRC      2
1992 
1993 #define DMAE_COMP_PCI     0
1994 #define DMAE_COMP_GRC     1
1995 
1996 #define DMAE_COMP_REGULAR 0
1997 #define DMAE_COM_SET_ERR  1
1998 
1999 #define DMAE_CMD_SRC_PCI (DMAE_SRC_PCI << DMAE_CMD_SRC_SHIFT)
2000 #define DMAE_CMD_SRC_GRC (DMAE_SRC_GRC << DMAE_CMD_SRC_SHIFT)
2001 #define DMAE_CMD_DST_PCI (DMAE_DST_PCI << DMAE_CMD_DST_SHIFT)
2002 #define DMAE_CMD_DST_GRC (DMAE_DST_GRC << DMAE_CMD_DST_SHIFT)
2003 
2004 #define DMAE_CMD_C_DST_PCI (DMAE_COMP_PCI << DMAE_CMD_C_DST_SHIFT)
2005 #define DMAE_CMD_C_DST_GRC (DMAE_COMP_GRC << DMAE_CMD_C_DST_SHIFT)
2006 
2007 #define DMAE_CMD_ENDIANITY_NO_SWAP   (0 << DMAE_CMD_ENDIANITY_SHIFT)
2008 #define DMAE_CMD_ENDIANITY_B_SWAP    (1 << DMAE_CMD_ENDIANITY_SHIFT)
2009 #define DMAE_CMD_ENDIANITY_DW_SWAP   (2 << DMAE_CMD_ENDIANITY_SHIFT)
2010 #define DMAE_CMD_ENDIANITY_B_DW_SWAP (3 << DMAE_CMD_ENDIANITY_SHIFT)
2011 
2012 #define DMAE_CMD_PORT_0 0
2013 #define DMAE_CMD_PORT_1 DMAE_CMD_PORT
2014 
2015 #define DMAE_SRC_PF 0
2016 #define DMAE_SRC_VF 1
2017 
2018 #define DMAE_DST_PF 0
2019 #define DMAE_DST_VF 1
2020 
2021 #define DMAE_C_SRC 0
2022 #define DMAE_C_DST 1
2023 
2024 #define DMAE_LEN32_RD_MAX     0x80
2025 #define DMAE_LEN32_WR_MAX(sc) (CHIP_IS_E1(sc) ? 0x400 : 0x2000)
2026 
2027 #define DMAE_COMP_VAL 0x60d0d0ae /* E2 and beyond, upper bit indicates error */
2028 
2029 #define MAX_DMAE_C_PER_PORT 8
2030 #define INIT_DMAE_C(sc)     ((SC_PORT(sc) * MAX_DMAE_C_PER_PORT) + SC_VN(sc))
2031 #define PMF_DMAE_C(sc)      ((SC_PORT(sc) * MAX_DMAE_C_PER_PORT) + E1HVN_MAX)
2032 
2033 static const uint32_t dmae_reg_go_c[] = {
2034     DMAE_REG_GO_C0,  DMAE_REG_GO_C1,  DMAE_REG_GO_C2,  DMAE_REG_GO_C3,
2035     DMAE_REG_GO_C4,  DMAE_REG_GO_C5,  DMAE_REG_GO_C6,  DMAE_REG_GO_C7,
2036     DMAE_REG_GO_C8,  DMAE_REG_GO_C9,  DMAE_REG_GO_C10, DMAE_REG_GO_C11,
2037     DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15
2038 };
2039 
2040 #define ATTN_NIG_FOR_FUNC     (1L << 8)
2041 #define ATTN_SW_TIMER_4_FUNC  (1L << 9)
2042 #define GPIO_2_FUNC           (1L << 10)
2043 #define GPIO_3_FUNC           (1L << 11)
2044 #define GPIO_4_FUNC           (1L << 12)
2045 #define ATTN_GENERAL_ATTN_1   (1L << 13)
2046 #define ATTN_GENERAL_ATTN_2   (1L << 14)
2047 #define ATTN_GENERAL_ATTN_3   (1L << 15)
2048 #define ATTN_GENERAL_ATTN_4   (1L << 13)
2049 #define ATTN_GENERAL_ATTN_5   (1L << 14)
2050 #define ATTN_GENERAL_ATTN_6   (1L << 15)
2051 #define ATTN_HARD_WIRED_MASK  0xff00
2052 #define ATTENTION_ID          4
2053 
2054 #define AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR \
2055     AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR
2056 
2057 #define MAX_IGU_ATTN_ACK_TO 100
2058 
2059 #define STORM_ASSERT_ARRAY_SIZE 50
2060 
2061 #define BXE_PMF_LINK_ASSERT(sc) \
2062     GENERAL_ATTEN_OFFSET(LINK_SYNC_ATTENTION_BIT_FUNC_0 + SC_FUNC(sc))
2063 
2064 #define BXE_MC_ASSERT_BITS \
2065     (GENERAL_ATTEN_OFFSET(TSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2066      GENERAL_ATTEN_OFFSET(USTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2067      GENERAL_ATTEN_OFFSET(CSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2068      GENERAL_ATTEN_OFFSET(XSTORM_FATAL_ASSERT_ATTENTION_BIT))
2069 
2070 #define BXE_MCP_ASSERT \
2071     GENERAL_ATTEN_OFFSET(MCP_FATAL_ASSERT_ATTENTION_BIT)
2072 
2073 #define BXE_GRC_TIMEOUT GENERAL_ATTEN_OFFSET(LATCHED_ATTN_TIMEOUT_GRC)
2074 #define BXE_GRC_RSV     (GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCR) | \
2075                          GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCT) | \
2076                          GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCN) | \
2077                          GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCU) | \
2078                          GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCP) | \
2079                          GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RSVD_GRC))
2080 
2081 #define MULTI_MASK 0x7f
2082 
2083 #define PFS_PER_PORT(sc)                               \
2084     ((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4)
2085 #define SC_MAX_VN_NUM(sc) PFS_PER_PORT(sc)
2086 
2087 #define FIRST_ABS_FUNC_IN_PORT(sc)                    \
2088     ((CHIP_PORT_MODE(sc) == CHIP_PORT_MODE_NONE) ?    \
2089      PORT_ID(sc) : (PATH_ID(sc) + (2 * PORT_ID(sc))))
2090 
2091 #define FOREACH_ABS_FUNC_IN_PORT(sc, i)            \
2092     for ((i) = FIRST_ABS_FUNC_IN_PORT(sc);         \
2093          (i) < MAX_FUNC_NUM;                       \
2094          (i) += (MAX_FUNC_NUM / PFS_PER_PORT(sc)))
2095 
2096 #define BXE_SWCID_SHIFT 17
2097 #define BXE_SWCID_MASK  ((0x1 << BXE_SWCID_SHIFT) - 1)
2098 
2099 #define SW_CID(x)  (le32toh(x) & BXE_SWCID_MASK)
2100 #define CQE_CMD(x) (le32toh(x) >> COMMON_RAMROD_ETH_RX_CQE_CMD_ID_SHIFT)
2101 
2102 #define CQE_TYPE(cqe_fp_flags)   ((cqe_fp_flags) & ETH_FAST_PATH_RX_CQE_TYPE)
2103 #define CQE_TYPE_START(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_START_AGG)
2104 #define CQE_TYPE_STOP(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_STOP_AGG)
2105 #define CQE_TYPE_SLOW(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_RAMROD)
2106 #define CQE_TYPE_FAST(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_FASTPATH)
2107 
2108 /* must be used on a CID before placing it on a HW ring */
2109 #define HW_CID(sc, x) \
2110     ((SC_PORT(sc) << 23) | (SC_VN(sc) << BXE_SWCID_SHIFT) | (x))
2111 
2112 #define SPEED_10    10
2113 #define SPEED_100   100
2114 #define SPEED_1000  1000
2115 #define SPEED_2500  2500
2116 #define SPEED_10000 10000
2117 
2118 #define PCI_PM_D0    1
2119 #define PCI_PM_D3hot 2
2120 
2121 #ifndef DUPLEX_UNKNOWN
2122 #define DUPLEX_UNKNOWN (0xff)
2123 #endif
2124 
2125 #ifndef SPEED_UNKNOWN
2126 #define SPEED_UNKNOWN (-1)
2127 #endif
2128 
2129 /* Enable or disable autonegotiation. */
2130 #define AUTONEG_DISABLE         0x00
2131 #define AUTONEG_ENABLE          0x01
2132 
2133 /* Which connector port. */
2134 #define PORT_TP                 0x00
2135 #define PORT_AUI                0x01
2136 #define PORT_MII                0x02
2137 #define PORT_FIBRE              0x03
2138 #define PORT_BNC                0x04
2139 #define PORT_DA                 0x05
2140 #define PORT_NONE               0xef
2141 #define PORT_OTHER              0xff
2142 
2143 int  bxe_test_bit(int nr, volatile unsigned long * addr);
2144 void bxe_set_bit(unsigned int nr, volatile unsigned long * addr);
2145 void bxe_clear_bit(int nr, volatile unsigned long * addr);
2146 int  bxe_test_and_set_bit(int nr, volatile unsigned long * addr);
2147 int  bxe_test_and_clear_bit(int nr, volatile unsigned long * addr);
2148 int  bxe_cmpxchg(volatile int *addr, int old, int new);
2149 
2150 void bxe_reg_wr_ind(struct bxe_softc *sc, uint32_t addr,
2151                     uint32_t val);
2152 uint32_t bxe_reg_rd_ind(struct bxe_softc *sc, uint32_t addr);
2153 
2154 
2155 int bxe_dma_alloc(struct bxe_softc *sc, bus_size_t size,
2156                   struct bxe_dma *dma, const char *msg);
2157 void bxe_dma_free(struct bxe_softc *sc, struct bxe_dma *dma);
2158 
2159 uint32_t bxe_dmae_opcode_add_comp(uint32_t opcode, uint8_t comp_type);
2160 uint32_t bxe_dmae_opcode_clr_src_reset(uint32_t opcode);
2161 uint32_t bxe_dmae_opcode(struct bxe_softc *sc, uint8_t src_type,
2162                          uint8_t dst_type, uint8_t with_comp,
2163                          uint8_t comp_type);
2164 void bxe_post_dmae(struct bxe_softc *sc, struct dmae_cmd *dmae, int idx);
2165 void bxe_read_dmae(struct bxe_softc *sc, uint32_t src_addr, uint32_t len32);
2166 void bxe_write_dmae(struct bxe_softc *sc, bus_addr_t dma_addr,
2167                     uint32_t dst_addr, uint32_t len32);
2168 void bxe_write_dmae_phys_len(struct bxe_softc *sc, bus_addr_t phys_addr,
2169                              uint32_t addr, uint32_t len);
2170 
2171 void bxe_set_ctx_validation(struct bxe_softc *sc, struct eth_context *cxt,
2172                             uint32_t cid);
2173 void bxe_update_coalesce_sb_index(struct bxe_softc *sc, uint8_t fw_sb_id,
2174                                   uint8_t sb_index, uint8_t disable,
2175                                   uint16_t usec);
2176 
2177 int bxe_sp_post(struct bxe_softc *sc, int command, int cid,
2178                 uint32_t data_hi, uint32_t data_lo, int cmd_type);
2179 
2180 void bxe_igu_ack_sb(struct bxe_softc *sc, uint8_t igu_sb_id,
2181                     uint8_t segment, uint16_t index, uint8_t op,
2182                     uint8_t update);
2183 
2184 void ecore_init_e1_firmware(struct bxe_softc *sc);
2185 void ecore_init_e1h_firmware(struct bxe_softc *sc);
2186 void ecore_init_e2_firmware(struct bxe_softc *sc);
2187 
2188 void ecore_storm_memset_struct(struct bxe_softc *sc, uint32_t addr,
2189                                size_t size, uint32_t *data);
2190 
2191 /*********************/
2192 /* LOGGING AND DEBUG */
2193 /*********************/
2194 
2195 /* debug logging codepaths */
2196 #define DBG_LOAD   0x00000001 /* load and unload    */
2197 #define DBG_INTR   0x00000002 /* interrupt handling */
2198 #define DBG_SP     0x00000004 /* slowpath handling  */
2199 #define DBG_STATS  0x00000008 /* stats updates      */
2200 #define DBG_TX     0x00000010 /* packet transmit    */
2201 #define DBG_RX     0x00000020 /* packet receive     */
2202 #define DBG_PHY    0x00000040 /* phy/link handling  */
2203 #define DBG_IOCTL  0x00000080 /* ioctl handling     */
2204 #define DBG_MBUF   0x00000100 /* dumping mbuf info  */
2205 #define DBG_REGS   0x00000200 /* register access    */
2206 #define DBG_LRO    0x00000400 /* lro processing     */
2207 #define DBG_ASSERT 0x80000000 /* debug assert       */
2208 #define DBG_ALL    0xFFFFFFFF /* flying monkeys     */
2209 
2210 #define DBASSERT(sc, exp, msg)                         \
2211     do {                                               \
2212         if (__predict_false(sc->debug & DBG_ASSERT)) { \
2213             if (__predict_false(!(exp))) {             \
2214                 panic msg;                             \
2215             }                                          \
2216         }                                              \
2217     } while (0)
2218 
2219 /* log a debug message */
2220 #define BLOGD(sc, codepath, format, args...)           \
2221     do {                                               \
2222         if (__predict_false(sc->debug & (codepath))) { \
2223             device_printf((sc)->dev,                   \
2224                           "%s(%s:%d) " format,         \
2225                           __FUNCTION__,                \
2226                           __FILE__,                    \
2227                           __LINE__,                    \
2228                           ## args);                    \
2229         }                                              \
2230     } while(0)
2231 
2232 /* log a info message */
2233 #define BLOGI(sc, format, args...)             \
2234     do {                                       \
2235         if (__predict_false(sc->debug)) {      \
2236             device_printf((sc)->dev,           \
2237                           "%s(%s:%d) " format, \
2238                           __FUNCTION__,        \
2239                           __FILE__,            \
2240                           __LINE__,            \
2241                           ## args);            \
2242         } else {                               \
2243             device_printf((sc)->dev,           \
2244                           format,              \
2245                           ## args);            \
2246         }                                      \
2247     } while(0)
2248 
2249 /* log a warning message */
2250 #define BLOGW(sc, format, args...)                      \
2251     do {                                                \
2252         if (__predict_false(sc->debug)) {               \
2253             device_printf((sc)->dev,                    \
2254                           "%s(%s:%d) WARNING: " format, \
2255                           __FUNCTION__,                 \
2256                           __FILE__,                     \
2257                           __LINE__,                     \
2258                           ## args);                     \
2259         } else {                                        \
2260             device_printf((sc)->dev,                    \
2261                           "WARNING: " format,           \
2262                           ## args);                     \
2263         }                                               \
2264     } while(0)
2265 
2266 /* log a error message */
2267 #define BLOGE(sc, format, args...)                    \
2268     do {                                              \
2269         if (__predict_false(sc->debug)) {             \
2270             device_printf((sc)->dev,                  \
2271                           "%s(%s:%d) ERROR: " format, \
2272                           __FUNCTION__,               \
2273                           __FILE__,                   \
2274                           __LINE__,                   \
2275                           ## args);                   \
2276         } else {                                      \
2277             device_printf((sc)->dev,                  \
2278                           "ERROR: " format,           \
2279                           ## args);                   \
2280         }                                             \
2281     } while(0)
2282 
2283 #ifdef ECORE_STOP_ON_ERROR
2284 
2285 #define bxe_panic(sc, msg) \
2286     do {                   \
2287         panic msg;         \
2288     } while (0)
2289 
2290 #else
2291 
2292 #define bxe_panic(sc, msg) \
2293     device_printf((sc)->dev, "%s (%s,%d)\n", __FUNCTION__, __FILE__, __LINE__);
2294 
2295 #endif
2296 
2297 #define CATC_TRIGGER(sc, data) REG_WR((sc), 0x2000, (data));
2298 #define CATC_TRIGGER_START(sc) CATC_TRIGGER((sc), 0xcafecafe)
2299 
2300 void bxe_dump_mem(struct bxe_softc *sc, char *tag,
2301                   uint8_t *mem, uint32_t len);
2302 void bxe_dump_mbuf_data(struct bxe_softc *sc, char *pTag,
2303                         struct mbuf *m, uint8_t contents);
2304 
2305 #if __FreeBSD_version >= 800000
2306 #if (__FreeBSD_version >= 1001513 && __FreeBSD_version < 1100000) ||\
2307     __FreeBSD_version >= 1100048
2308 #define BXE_SET_FLOWID(m) M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE)
2309 #define BXE_VALID_FLOWID(m) (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
2310 #else
2311 #define BXE_VALID_FLOWID(m) ((m->m_flags & M_FLOWID) != 0)
2312 #define BXE_SET_FLOWID(m) m->m_flags |= M_FLOWID
2313 #endif
2314 #endif /* #if __FreeBSD_version >= 800000 */
2315 
2316 /***********/
2317 /* INLINES */
2318 /***********/
2319 
2320 static inline uint32_t
2321 reg_poll(struct bxe_softc *sc,
2322          uint32_t         reg,
2323          uint32_t         expected,
2324          int              ms,
2325          int              wait)
2326 {
2327     uint32_t val;
2328 
2329     do {
2330         val = REG_RD(sc, reg);
2331         if (val == expected) {
2332             break;
2333         }
2334         ms -= wait;
2335         DELAY(wait * 1000);
2336     } while (ms > 0);
2337 
2338     return (val);
2339 }
2340 
2341 static inline void
2342 bxe_update_fp_sb_idx(struct bxe_fastpath *fp)
2343 {
2344     mb(); /* status block is written to by the chip */
2345     fp->fp_hc_idx = fp->sb_running_index[SM_RX_ID];
2346 }
2347 
2348 static inline void
2349 bxe_igu_ack_sb_gen(struct bxe_softc *sc,
2350                    uint8_t          igu_sb_id,
2351                    uint8_t          segment,
2352                    uint16_t         index,
2353                    uint8_t          op,
2354                    uint8_t          update,
2355                    uint32_t         igu_addr)
2356 {
2357     struct igu_regular cmd_data = {0};
2358 
2359     cmd_data.sb_id_and_flags =
2360         ((index << IGU_REGULAR_SB_INDEX_SHIFT) |
2361          (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
2362          (update << IGU_REGULAR_BUPDATE_SHIFT) |
2363          (op << IGU_REGULAR_ENABLE_INT_SHIFT));
2364 
2365     BLOGD(sc, DBG_INTR, "write 0x%08x to IGU addr 0x%x\n",
2366             cmd_data.sb_id_and_flags, igu_addr);
2367     REG_WR(sc, igu_addr, cmd_data.sb_id_and_flags);
2368 
2369     /* Make sure that ACK is written */
2370     bus_space_barrier(sc->bar[0].tag, sc->bar[0].handle, 0, 0,
2371                       BUS_SPACE_BARRIER_WRITE);
2372     mb();
2373 }
2374 
2375 static inline void
2376 bxe_hc_ack_sb(struct bxe_softc *sc,
2377               uint8_t          sb_id,
2378               uint8_t          storm,
2379               uint16_t         index,
2380               uint8_t          op,
2381               uint8_t          update)
2382 {
2383     uint32_t hc_addr = (HC_REG_COMMAND_REG + SC_PORT(sc)*32 +
2384                         COMMAND_REG_INT_ACK);
2385     struct igu_ack_register igu_ack;
2386 
2387     igu_ack.status_block_index = index;
2388     igu_ack.sb_id_and_flags =
2389         ((sb_id << IGU_ACK_REGISTER_STATUS_BLOCK_ID_SHIFT) |
2390          (storm << IGU_ACK_REGISTER_STORM_ID_SHIFT) |
2391          (update << IGU_ACK_REGISTER_UPDATE_INDEX_SHIFT) |
2392          (op << IGU_ACK_REGISTER_INTERRUPT_MODE_SHIFT));
2393 
2394     REG_WR(sc, hc_addr, (*(uint32_t *)&igu_ack));
2395 
2396     /* Make sure that ACK is written */
2397     bus_space_barrier(sc->bar[0].tag, sc->bar[0].handle, 0, 0,
2398                       BUS_SPACE_BARRIER_WRITE);
2399     mb();
2400 }
2401 
2402 static inline void
2403 bxe_ack_sb(struct bxe_softc *sc,
2404            uint8_t          igu_sb_id,
2405            uint8_t          storm,
2406            uint16_t         index,
2407            uint8_t          op,
2408            uint8_t          update)
2409 {
2410     if (sc->devinfo.int_block == INT_BLOCK_HC)
2411         bxe_hc_ack_sb(sc, igu_sb_id, storm, index, op, update);
2412     else {
2413         uint8_t segment;
2414         if (CHIP_INT_MODE_IS_BC(sc)) {
2415             segment = storm;
2416         } else if (igu_sb_id != sc->igu_dsb_id) {
2417             segment = IGU_SEG_ACCESS_DEF;
2418         } else if (storm == ATTENTION_ID) {
2419             segment = IGU_SEG_ACCESS_ATTN;
2420         } else {
2421             segment = IGU_SEG_ACCESS_DEF;
2422         }
2423         bxe_igu_ack_sb(sc, igu_sb_id, segment, index, op, update);
2424     }
2425 }
2426 
2427 static inline uint16_t
2428 bxe_hc_ack_int(struct bxe_softc *sc)
2429 {
2430     uint32_t hc_addr = (HC_REG_COMMAND_REG + SC_PORT(sc)*32 +
2431                         COMMAND_REG_SIMD_MASK);
2432     uint32_t result = REG_RD(sc, hc_addr);
2433 
2434     mb();
2435     return (result);
2436 }
2437 
2438 static inline uint16_t
2439 bxe_igu_ack_int(struct bxe_softc *sc)
2440 {
2441     uint32_t igu_addr = (BAR_IGU_INTMEM + IGU_REG_SISR_MDPC_WMASK_LSB_UPPER*8);
2442     uint32_t result = REG_RD(sc, igu_addr);
2443 
2444     BLOGD(sc, DBG_INTR, "read 0x%08x from IGU addr 0x%x\n",
2445           result, igu_addr);
2446 
2447     mb();
2448     return (result);
2449 }
2450 
2451 static inline uint16_t
2452 bxe_ack_int(struct bxe_softc *sc)
2453 {
2454     mb();
2455     if (sc->devinfo.int_block == INT_BLOCK_HC) {
2456         return (bxe_hc_ack_int(sc));
2457     } else {
2458         return (bxe_igu_ack_int(sc));
2459     }
2460 }
2461 
2462 static inline int
2463 func_by_vn(struct bxe_softc *sc,
2464            int              vn)
2465 {
2466     return (2 * vn + SC_PORT(sc));
2467 }
2468 
2469 /*
2470  * Statistics ID are global per chip/path, while Client IDs for E1x
2471  * are per port.
2472  */
2473 static inline uint8_t
2474 bxe_stats_id(struct bxe_fastpath *fp)
2475 {
2476     struct bxe_softc *sc = fp->sc;
2477 
2478     if (!CHIP_IS_E1x(sc)) {
2479         return (fp->cl_id);
2480     }
2481 
2482     return (fp->cl_id + SC_PORT(sc) * FP_SB_MAX_E1x);
2483 }
2484 
2485 #endif /* __BXE_H__ */
2486 
2487