xref: /freebsd/sys/dev/bxe/bxe.h (revision 7a1297c8217fc863a4b995d3d377b7917045901c)
1 /*-
2  * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
15  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
18  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
19  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
20  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
21  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
22  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
23  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
24  * THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #ifndef __BXE_H__
28 #define __BXE_H__
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/kernel.h>
35 #include <sys/systm.h>
36 #include <sys/lock.h>
37 #include <sys/mutex.h>
38 #include <sys/sx.h>
39 #include <sys/module.h>
40 #include <sys/endian.h>
41 #include <sys/types.h>
42 #include <sys/malloc.h>
43 #include <sys/kobj.h>
44 #include <sys/bus.h>
45 #include <sys/rman.h>
46 #include <sys/socket.h>
47 #include <sys/sockio.h>
48 #include <sys/sysctl.h>
49 #include <sys/smp.h>
50 #include <sys/bitstring.h>
51 #include <sys/limits.h>
52 #include <sys/queue.h>
53 #include <sys/taskqueue.h>
54 #include <sys/zlib.h>
55 
56 #include <net/if.h>
57 #include <net/if_types.h>
58 #include <net/if_arp.h>
59 #include <net/ethernet.h>
60 #include <net/if_dl.h>
61 #include <net/if_var.h>
62 #include <net/if_media.h>
63 #include <net/if_vlan_var.h>
64 #include <net/bpf.h>
65 
66 #include <netinet/in.h>
67 #include <netinet/ip.h>
68 #include <netinet/ip6.h>
69 #include <netinet/tcp.h>
70 #include <netinet/udp.h>
71 
72 #include <dev/pci/pcireg.h>
73 #include <dev/pci/pcivar.h>
74 
75 #include <machine/atomic.h>
76 #include <machine/resource.h>
77 #include <machine/endian.h>
78 #include <machine/bus.h>
79 #include <machine/in_cksum.h>
80 
81 #include "device_if.h"
82 #include "bus_if.h"
83 #include "pci_if.h"
84 
85 #if _BYTE_ORDER == _LITTLE_ENDIAN
86 #ifndef LITTLE_ENDIAN
87 #define LITTLE_ENDIAN
88 #endif
89 #ifndef __LITTLE_ENDIAN
90 #define __LITTLE_ENDIAN
91 #endif
92 #undef BIG_ENDIAN
93 #undef __BIG_ENDIAN
94 #else /* _BIG_ENDIAN */
95 #ifndef BIG_ENDIAN
96 #define BIG_ENDIAN
97 #endif
98 #ifndef __BIG_ENDIAN
99 #define __BIG_ENDIAN
100 #endif
101 #undef LITTLE_ENDIAN
102 #undef __LITTLE_ENDIAN
103 #endif
104 
105 #include "ecore_mfw_req.h"
106 #include "ecore_fw_defs.h"
107 #include "ecore_hsi.h"
108 #include "ecore_reg.h"
109 #include "bxe_dcb.h"
110 #include "bxe_stats.h"
111 
112 #include "bxe_elink.h"
113 
114 #define VF_MAC_CREDIT_CNT 0
115 #define VF_VLAN_CREDIT_CNT (0)
116 
117 #if __FreeBSD_version < 800054
118 #if defined(__i386__) || defined(__amd64__)
119 #define mb()  __asm volatile("mfence;" : : : "memory")
120 #define wmb() __asm volatile("sfence;" : : : "memory")
121 #define rmb() __asm volatile("lfence;" : : : "memory")
122 static __inline void prefetch(void *x)
123 {
124     __asm volatile("prefetcht0 %0" :: "m" (*(unsigned long *)x));
125 }
126 #else
127 #define mb()
128 #define rmb()
129 #define wmb()
130 #define prefetch(x)
131 #endif
132 #endif
133 
134 #if __FreeBSD_version >= 1000000
135 #define PCIR_EXPRESS_DEVICE_STA        PCIER_DEVICE_STA
136 #define PCIM_EXP_STA_TRANSACTION_PND   PCIEM_STA_TRANSACTION_PND
137 #define PCIR_EXPRESS_LINK_STA          PCIER_LINK_STA
138 #define PCIM_LINK_STA_WIDTH            PCIEM_LINK_STA_WIDTH
139 #define PCIM_LINK_STA_SPEED            PCIEM_LINK_STA_SPEED
140 #define PCIR_EXPRESS_DEVICE_CTL        PCIER_DEVICE_CTL
141 #define PCIM_EXP_CTL_MAX_PAYLOAD       PCIEM_CTL_MAX_PAYLOAD
142 #define PCIM_EXP_CTL_MAX_READ_REQUEST  PCIEM_CTL_MAX_READ_REQUEST
143 #endif
144 
145 #ifndef ARRAY_SIZE
146 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
147 #endif
148 #ifndef ARRSIZE
149 #define ARRSIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
150 #endif
151 #ifndef DIV_ROUND_UP
152 #define DIV_ROUND_UP(n, d) (((n) + (d) - 1) / (d))
153 #endif
154 #ifndef roundup
155 #define roundup(x, y) ((((x) + ((y) - 1)) / (y)) * (y))
156 #endif
157 #ifndef ilog2
158 static inline
159 int bxe_ilog2(int x)
160 {
161     int log = 0;
162     while (x >>= 1) log++;
163     return (log);
164 }
165 #define ilog2(x) bxe_ilog2(x)
166 #endif
167 
168 #include "ecore_sp.h"
169 
170 #define BRCM_VENDORID 0x14e4
171 #define PCI_ANY_ID    (uint16_t)(~0U)
172 
173 struct bxe_device_type
174 {
175     uint16_t bxe_vid;
176     uint16_t bxe_did;
177     uint16_t bxe_svid;
178     uint16_t bxe_sdid;
179     char     *bxe_name;
180 };
181 
182 #define BCM_PAGE_SHIFT       12
183 #define BCM_PAGE_SIZE        (1 << BCM_PAGE_SHIFT)
184 #define BCM_PAGE_MASK        (~(BCM_PAGE_SIZE - 1))
185 #define BCM_PAGE_ALIGN(addr) ((addr + BCM_PAGE_SIZE - 1) & BCM_PAGE_MASK)
186 
187 #if BCM_PAGE_SIZE != 4096
188 #error Page sizes other than 4KB are unsupported!
189 #endif
190 
191 #if (BUS_SPACE_MAXADDR > 0xFFFFFFFF)
192 #define U64_LO(addr) ((uint32_t)(((uint64_t)(addr)) & 0xFFFFFFFF))
193 #define U64_HI(addr) ((uint32_t)(((uint64_t)(addr)) >> 32))
194 #else
195 #define U64_LO(addr) ((uint32_t)(addr))
196 #define U64_HI(addr) (0)
197 #endif
198 #define HILO_U64(hi, lo) ((((uint64_t)(hi)) << 32) + (lo))
199 
200 #define SET_FLAG(value, mask, flag)            \
201     do {                                       \
202         (value) &= ~(mask);                    \
203         (value) |= ((flag) << (mask##_SHIFT)); \
204     } while (0)
205 
206 #define GET_FLAG(value, mask)              \
207     (((value) & (mask)) >> (mask##_SHIFT))
208 
209 #define GET_FIELD(value, fname)                     \
210     (((value) & (fname##_MASK)) >> (fname##_SHIFT))
211 
212 #define BXE_MAX_SEGMENTS     12 /* 13-1 for parsing buffer */
213 #define BXE_TSO_MAX_SEGMENTS 32
214 #define BXE_TSO_MAX_SIZE     (65535 + sizeof(struct ether_vlan_header))
215 #define BXE_TSO_MAX_SEG_SIZE 4096
216 
217 /* dropless fc FW/HW related params */
218 #define BRB_SIZE(sc)         (CHIP_IS_E3(sc) ? 1024 : 512)
219 #define MAX_AGG_QS(sc)       (CHIP_IS_E1(sc) ?                       \
220                                   ETH_MAX_AGGREGATION_QUEUES_E1 :    \
221                                   ETH_MAX_AGGREGATION_QUEUES_E1H_E2)
222 #define FW_DROP_LEVEL(sc)    (3 + MAX_SPQ_PENDING + MAX_AGG_QS(sc))
223 #define FW_PREFETCH_CNT      16
224 #define DROPLESS_FC_HEADROOM 100
225 
226 /******************/
227 /* RX SGE defines */
228 /******************/
229 
230 #define RX_SGE_NUM_PAGES       2 /* must be a power of 2 */
231 #define RX_SGE_TOTAL_PER_PAGE  (BCM_PAGE_SIZE / sizeof(struct eth_rx_sge))
232 #define RX_SGE_NEXT_PAGE_DESC_CNT 2
233 #define RX_SGE_USABLE_PER_PAGE (RX_SGE_TOTAL_PER_PAGE - RX_SGE_NEXT_PAGE_DESC_CNT)
234 #define RX_SGE_PER_PAGE_MASK   (RX_SGE_TOTAL_PER_PAGE - 1)
235 #define RX_SGE_TOTAL           (RX_SGE_TOTAL_PER_PAGE * RX_SGE_NUM_PAGES)
236 #define RX_SGE_USABLE          (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)
237 #define RX_SGE_MAX             (RX_SGE_TOTAL - 1)
238 #define RX_SGE(x)              ((x) & RX_SGE_MAX)
239 
240 #define RX_SGE_NEXT(x)                                              \
241     ((((x) & RX_SGE_PER_PAGE_MASK) == (RX_SGE_USABLE_PER_PAGE - 1)) \
242      ? (x) + 1 + RX_SGE_NEXT_PAGE_DESC_CNT : (x) + 1)
243 
244 #define RX_SGE_MASK_ELEM_SZ    64
245 #define RX_SGE_MASK_ELEM_SHIFT 6
246 #define RX_SGE_MASK_ELEM_MASK  ((uint64_t)RX_SGE_MASK_ELEM_SZ - 1)
247 
248 /*
249  * Creates a bitmask of all ones in less significant bits.
250  * idx - index of the most significant bit in the created mask.
251  */
252 #define RX_SGE_ONES_MASK(idx)                                      \
253     (((uint64_t)0x1 << (((idx) & RX_SGE_MASK_ELEM_MASK) + 1)) - 1)
254 #define RX_SGE_MASK_ELEM_ONE_MASK ((uint64_t)(~0))
255 
256 /* Number of uint64_t elements in SGE mask array. */
257 #define RX_SGE_MASK_LEN                                                \
258     ((RX_SGE_NUM_PAGES * RX_SGE_TOTAL_PER_PAGE) / RX_SGE_MASK_ELEM_SZ)
259 #define RX_SGE_MASK_LEN_MASK      (RX_SGE_MASK_LEN - 1)
260 #define RX_SGE_NEXT_MASK_ELEM(el) (((el) + 1) & RX_SGE_MASK_LEN_MASK)
261 
262 /*
263  * dropless fc calculations for SGEs
264  * Number of required SGEs is the sum of two:
265  * 1. Number of possible opened aggregations (next packet for
266  *    these aggregations will probably consume SGE immidiatelly)
267  * 2. Rest of BRB blocks divided by 2 (block will consume new SGE only
268  *    after placement on BD for new TPA aggregation)
269  * Takes into account RX_SGE_NEXT_PAGE_DESC_CNT "next" elements on each page
270  */
271 #define NUM_SGE_REQ(sc)                                    \
272     (MAX_AGG_QS(sc) + (BRB_SIZE(sc) - MAX_AGG_QS(sc)) / 2)
273 #define NUM_SGE_PG_REQ(sc)                                                    \
274     ((NUM_SGE_REQ(sc) + RX_SGE_USABLE_PER_PAGE - 1) / RX_SGE_USABLE_PER_PAGE)
275 #define SGE_TH_LO(sc)                                                  \
276     (NUM_SGE_REQ(sc) + NUM_SGE_PG_REQ(sc) * RX_SGE_NEXT_PAGE_DESC_CNT)
277 #define SGE_TH_HI(sc)                      \
278     (SGE_TH_LO(sc) + DROPLESS_FC_HEADROOM)
279 
280 #define PAGES_PER_SGE_SHIFT  0
281 #define PAGES_PER_SGE        (1 << PAGES_PER_SGE_SHIFT)
282 #define SGE_PAGE_SIZE        BCM_PAGE_SIZE
283 #define SGE_PAGE_SHIFT       BCM_PAGE_SHIFT
284 #define SGE_PAGE_ALIGN(addr) BCM_PAGE_ALIGN(addr)
285 #define SGE_PAGES            (SGE_PAGE_SIZE * PAGES_PER_SGE)
286 #define TPA_AGG_SIZE         min((8 * SGE_PAGES), 0xffff)
287 
288 /*****************/
289 /* TX BD defines */
290 /*****************/
291 
292 #define TX_BD_NUM_PAGES       16 /* must be a power of 2 */
293 #define TX_BD_TOTAL_PER_PAGE  (BCM_PAGE_SIZE / sizeof(union eth_tx_bd_types))
294 #define TX_BD_USABLE_PER_PAGE (TX_BD_TOTAL_PER_PAGE - 1)
295 #define TX_BD_TOTAL           (TX_BD_TOTAL_PER_PAGE * TX_BD_NUM_PAGES)
296 #define TX_BD_USABLE          (TX_BD_USABLE_PER_PAGE * TX_BD_NUM_PAGES)
297 #define TX_BD_MAX             (TX_BD_TOTAL - 1)
298 
299 #define TX_BD_NEXT(x)                                                 \
300     ((((x) & TX_BD_USABLE_PER_PAGE) == (TX_BD_USABLE_PER_PAGE - 1)) ? \
301      ((x) + 2) : ((x) + 1))
302 #define TX_BD(x)      ((x) & TX_BD_MAX)
303 #define TX_BD_PAGE(x) (((x) & ~TX_BD_USABLE_PER_PAGE) >> 8)
304 #define TX_BD_IDX(x)  ((x) & TX_BD_USABLE_PER_PAGE)
305 
306 /*
307  * Trigger pending transmits when the number of available BDs is greater
308  * than 1/8 of the total number of usable BDs.
309  */
310 #define BXE_TX_CLEANUP_THRESHOLD (TX_BD_USABLE / 8)
311 #define BXE_TX_TIMEOUT 5
312 
313 /*****************/
314 /* RX BD defines */
315 /*****************/
316 
317 #define RX_BD_NUM_PAGES       8 /* power of 2 */
318 #define RX_BD_TOTAL_PER_PAGE  (BCM_PAGE_SIZE / sizeof(struct eth_rx_bd))
319 #define RX_BD_NEXT_PAGE_DESC_CNT 2
320 #define RX_BD_USABLE_PER_PAGE (RX_BD_TOTAL_PER_PAGE - RX_BD_NEXT_PAGE_DESC_CNT)
321 #define RX_BD_PER_PAGE_MASK   (RX_BD_TOTAL_PER_PAGE - 1)
322 #define RX_BD_TOTAL           (RX_BD_TOTAL_PER_PAGE * RX_BD_NUM_PAGES)
323 #define RX_BD_USABLE          (RX_BD_USABLE_PER_PAGE * RX_BD_NUM_PAGES)
324 #define RX_BD_MAX             (RX_BD_TOTAL - 1)
325 
326 #define RX_BD_NEXT(x)                                               \
327     ((((x) & RX_BD_PER_PAGE_MASK) == (RX_BD_USABLE_PER_PAGE - 1)) ? \
328      ((x) + 3) : ((x) + 1))
329 #define RX_BD(x)      ((x) & RX_BD_MAX)
330 #define RX_BD_PAGE(x) (((x) & ~RX_BD_PER_PAGE_MASK) >> 9)
331 #define RX_BD_IDX(x)  ((x) & RX_BD_PER_PAGE_MASK)
332 
333 /*
334  * dropless fc calculations for BDs
335  * Number of BDs should be as number of buffers in BRB:
336  * Low threshold takes into account RX_BD_NEXT_PAGE_DESC_CNT
337  * "next" elements on each page
338  */
339 #define NUM_BD_REQ(sc) \
340     BRB_SIZE(sc)
341 #define NUM_BD_PG_REQ(sc)                                                  \
342     ((NUM_BD_REQ(sc) + RX_BD_USABLE_PER_PAGE - 1) / RX_BD_USABLE_PER_PAGE)
343 #define BD_TH_LO(sc)                                \
344     (NUM_BD_REQ(sc) +                               \
345      NUM_BD_PG_REQ(sc) * RX_BD_NEXT_PAGE_DESC_CNT + \
346      FW_DROP_LEVEL(sc))
347 #define BD_TH_HI(sc)                      \
348     (BD_TH_LO(sc) + DROPLESS_FC_HEADROOM)
349 #define MIN_RX_AVAIL(sc)                           \
350     ((sc)->dropless_fc ? BD_TH_HI(sc) + 128 : 128)
351 #define MIN_RX_SIZE_TPA_HW(sc)                         \
352     (CHIP_IS_E1(sc) ? ETH_MIN_RX_CQES_WITH_TPA_E1 :    \
353                       ETH_MIN_RX_CQES_WITH_TPA_E1H_E2)
354 #define MIN_RX_SIZE_NONTPA_HW ETH_MIN_RX_CQES_WITHOUT_TPA
355 #define MIN_RX_SIZE_TPA(sc)                         \
356     (max(MIN_RX_SIZE_TPA_HW(sc), MIN_RX_AVAIL(sc)))
357 #define MIN_RX_SIZE_NONTPA(sc)                     \
358     (max(MIN_RX_SIZE_NONTPA_HW, MIN_RX_AVAIL(sc)))
359 
360 /***************/
361 /* RCQ defines */
362 /***************/
363 
364 /*
365  * As long as CQE is X times bigger than BD entry we have to allocate X times
366  * more pages for CQ ring in order to keep it balanced with BD ring
367  */
368 #define CQE_BD_REL          (sizeof(union eth_rx_cqe) / \
369                              sizeof(struct eth_rx_bd))
370 #define RCQ_NUM_PAGES       (RX_BD_NUM_PAGES * CQE_BD_REL) /* power of 2 */
371 #define RCQ_TOTAL_PER_PAGE  (BCM_PAGE_SIZE / sizeof(union eth_rx_cqe))
372 #define RCQ_NEXT_PAGE_DESC_CNT 1
373 #define RCQ_USABLE_PER_PAGE (RCQ_TOTAL_PER_PAGE - RCQ_NEXT_PAGE_DESC_CNT)
374 #define RCQ_TOTAL           (RCQ_TOTAL_PER_PAGE * RCQ_NUM_PAGES)
375 #define RCQ_USABLE          (RCQ_USABLE_PER_PAGE * RCQ_NUM_PAGES)
376 #define RCQ_MAX             (RCQ_TOTAL - 1)
377 
378 #define RCQ_NEXT(x)                                               \
379     ((((x) & RCQ_USABLE_PER_PAGE) == (RCQ_USABLE_PER_PAGE - 1)) ? \
380      ((x) + 1 + RCQ_NEXT_PAGE_DESC_CNT) : ((x) + 1))
381 #define RCQ(x)      ((x) & RCQ_MAX)
382 #define RCQ_PAGE(x) (((x) & ~RCQ_USABLE_PER_PAGE) >> 7)
383 #define RCQ_IDX(x)  ((x) & RCQ_USABLE_PER_PAGE)
384 
385 /*
386  * dropless fc calculations for RCQs
387  * Number of RCQs should be as number of buffers in BRB:
388  * Low threshold takes into account RCQ_NEXT_PAGE_DESC_CNT
389  * "next" elements on each page
390  */
391 #define NUM_RCQ_REQ(sc) \
392     BRB_SIZE(sc)
393 #define NUM_RCQ_PG_REQ(sc)                                              \
394     ((NUM_RCQ_REQ(sc) + RCQ_USABLE_PER_PAGE - 1) / RCQ_USABLE_PER_PAGE)
395 #define RCQ_TH_LO(sc)                              \
396     (NUM_RCQ_REQ(sc) +                             \
397      NUM_RCQ_PG_REQ(sc) * RCQ_NEXT_PAGE_DESC_CNT + \
398      FW_DROP_LEVEL(sc))
399 #define RCQ_TH_HI(sc)                      \
400     (RCQ_TH_LO(sc) + DROPLESS_FC_HEADROOM)
401 
402 /* This is needed for determening of last_max */
403 #define SUB_S16(a, b) (int16_t)((int16_t)(a) - (int16_t)(b))
404 
405 #define __SGE_MASK_SET_BIT(el, bit)               \
406     do {                                          \
407         (el) = ((el) | ((uint64_t)0x1 << (bit))); \
408     } while (0)
409 
410 #define __SGE_MASK_CLEAR_BIT(el, bit)                \
411     do {                                             \
412         (el) = ((el) & (~((uint64_t)0x1 << (bit)))); \
413     } while (0)
414 
415 #define SGE_MASK_SET_BIT(fp, idx)                                       \
416     __SGE_MASK_SET_BIT((fp)->sge_mask[(idx) >> RX_SGE_MASK_ELEM_SHIFT], \
417                        ((idx) & RX_SGE_MASK_ELEM_MASK))
418 
419 #define SGE_MASK_CLEAR_BIT(fp, idx)                                       \
420     __SGE_MASK_CLEAR_BIT((fp)->sge_mask[(idx) >> RX_SGE_MASK_ELEM_SHIFT], \
421                          ((idx) & RX_SGE_MASK_ELEM_MASK))
422 
423 /* Load / Unload modes */
424 #define LOAD_NORMAL       0
425 #define LOAD_OPEN         1
426 #define LOAD_DIAG         2
427 #define LOAD_LOOPBACK_EXT 3
428 #define UNLOAD_NORMAL     0
429 #define UNLOAD_CLOSE      1
430 #define UNLOAD_RECOVERY   2
431 
432 /* Some constants... */
433 //#define MAX_PATH_NUM       2
434 //#define E2_MAX_NUM_OF_VFS  64
435 //#define E1H_FUNC_MAX       8
436 //#define E2_FUNC_MAX        4   /* per path */
437 #define MAX_VNIC_NUM       4
438 #define MAX_FUNC_NUM       8   /* common to all chips */
439 //#define MAX_NDSB           HC_SB_MAX_SB_E2 /* max non-default status block */
440 #define MAX_RSS_CHAINS     16 /* a constant for HW limit */
441 #define MAX_MSI_VECTOR     8  /* a constant for HW limit */
442 
443 #define ILT_NUM_PAGE_ENTRIES 3072
444 /*
445  * 57710/11 we use whole table since we have 8 functions.
446  * 57712 we have only 4 functions, but use same size per func, so only half
447  * of the table is used.
448  */
449 #define ILT_PER_FUNC        (ILT_NUM_PAGE_ENTRIES / 8)
450 #define FUNC_ILT_BASE(func) (func * ILT_PER_FUNC)
451 /*
452  * the phys address is shifted right 12 bits and has an added
453  * 1=valid bit added to the 53rd bit
454  * then since this is a wide register(TM)
455  * we split it into two 32 bit writes
456  */
457 #define ONCHIP_ADDR1(x) ((uint32_t)(((uint64_t)x >> 12) & 0xFFFFFFFF))
458 #define ONCHIP_ADDR2(x) ((uint32_t)((1 << 20) | ((uint64_t)x >> 44)))
459 
460 /* L2 header size + 2*VLANs (8 bytes) + LLC SNAP (8 bytes) */
461 #define ETH_HLEN                  14
462 #define ETH_OVERHEAD              (ETH_HLEN + 8 + 8)
463 #define ETH_MIN_PACKET_SIZE       60
464 #define ETH_MAX_PACKET_SIZE       ETHERMTU /* 1500 */
465 #define ETH_MAX_JUMBO_PACKET_SIZE 9600
466 /* TCP with Timestamp Option (32) + IPv6 (40) */
467 #define ETH_MAX_TPA_HEADER_SIZE   72
468 
469 /* max supported alignment is 256 (8 shift) */
470 //#define BXE_RX_ALIGN_SHIFT ((CACHE_LINE_SHIFT < 8) ? CACHE_LINE_SHIFT : 8)
471 #define BXE_RX_ALIGN_SHIFT 8
472 /* FW uses 2 cache lines alignment for start packet and size  */
473 #define BXE_FW_RX_ALIGN_START (1 << BXE_RX_ALIGN_SHIFT)
474 #define BXE_FW_RX_ALIGN_END   (1 << BXE_RX_ALIGN_SHIFT)
475 
476 #define BXE_PXP_DRAM_ALIGN (BXE_RX_ALIGN_SHIFT - 5) /* XXX ??? */
477 
478 struct bxe_bar {
479     struct resource    *resource;
480     int                rid;
481     bus_space_tag_t    tag;
482     bus_space_handle_t handle;
483     vm_offset_t        kva;
484 };
485 
486 struct bxe_intr {
487     struct resource *resource;
488     int             rid;
489     void            *tag;
490 };
491 
492 /* Used to manage DMA allocations. */
493 struct bxe_dma {
494     struct bxe_softc  *sc;
495     bus_addr_t        paddr;
496     void              *vaddr;
497     bus_dma_tag_t     tag;
498     bus_dmamap_t      map;
499     bus_dma_segment_t seg;
500     bus_size_t        size;
501     int               nseg;
502     char              msg[32];
503 };
504 
505 /* attn group wiring */
506 #define MAX_DYNAMIC_ATTN_GRPS 8
507 
508 struct attn_route {
509     uint32_t sig[5];
510 };
511 
512 struct iro {
513     uint32_t base;
514     uint16_t m1;
515     uint16_t m2;
516     uint16_t m3;
517     uint16_t size;
518 };
519 
520 union bxe_host_hc_status_block {
521     /* pointer to fp status block e2 */
522     struct host_hc_status_block_e2  *e2_sb;
523     /* pointer to fp status block e1x */
524     struct host_hc_status_block_e1x *e1x_sb;
525 };
526 
527 union bxe_db_prod {
528     struct doorbell_set_prod data;
529     uint32_t                 raw;
530 };
531 
532 struct bxe_sw_tx_bd {
533     struct mbuf  *m;
534     bus_dmamap_t m_map;
535     uint16_t     first_bd;
536     uint8_t      flags;
537 /* set on the first BD descriptor when there is a split BD */
538 #define BXE_TSO_SPLIT_BD (1 << 0)
539 };
540 
541 struct bxe_sw_rx_bd {
542     struct mbuf  *m;
543     bus_dmamap_t m_map;
544 };
545 
546 struct bxe_sw_tpa_info {
547     struct bxe_sw_rx_bd bd;
548     bus_dma_segment_t   seg;
549     uint8_t             state;
550 #define BXE_TPA_STATE_START 1
551 #define BXE_TPA_STATE_STOP  2
552     uint8_t             placement_offset;
553     uint16_t            parsing_flags;
554     uint16_t            vlan_tag;
555     uint16_t            len_on_bd;
556 };
557 
558 /*
559  * This is the HSI fastpath data structure. There can be up to MAX_RSS_CHAIN
560  * instances of the fastpath structure when using multiple queues.
561  */
562 struct bxe_fastpath {
563     /* pointer back to parent structure */
564     struct bxe_softc *sc;
565 
566     struct mtx tx_mtx;
567     char       tx_mtx_name[32];
568     struct mtx rx_mtx;
569     char       rx_mtx_name[32];
570 
571 #define BXE_FP_TX_LOCK(fp)        mtx_lock(&fp->tx_mtx)
572 #define BXE_FP_TX_UNLOCK(fp)      mtx_unlock(&fp->tx_mtx)
573 #define BXE_FP_TX_LOCK_ASSERT(fp) mtx_assert(&fp->tx_mtx, MA_OWNED)
574 #define BXE_FP_TX_TRYLOCK(fp)     mtx_trylock(&fp->tx_mtx)
575 
576 #define BXE_FP_RX_LOCK(fp)        mtx_lock(&fp->rx_mtx)
577 #define BXE_FP_RX_UNLOCK(fp)      mtx_unlock(&fp->rx_mtx)
578 #define BXE_FP_RX_LOCK_ASSERT(fp) mtx_assert(&fp->rx_mtx, MA_OWNED)
579 
580     /* status block */
581     struct bxe_dma                 sb_dma;
582     union bxe_host_hc_status_block status_block;
583 
584     /* transmit chain (tx bds) */
585     struct bxe_dma        tx_dma;
586     union eth_tx_bd_types *tx_chain;
587 
588     /* receive chain (rx bds) */
589     struct bxe_dma   rx_dma;
590     struct eth_rx_bd *rx_chain;
591 
592     /* receive completion queue chain (rcq bds) */
593     struct bxe_dma   rcq_dma;
594     union eth_rx_cqe *rcq_chain;
595 
596     /* receive scatter/gather entry chain (for TPA) */
597     struct bxe_dma    rx_sge_dma;
598     struct eth_rx_sge *rx_sge_chain;
599 
600     /* tx mbufs */
601     bus_dma_tag_t       tx_mbuf_tag;
602     struct bxe_sw_tx_bd tx_mbuf_chain[TX_BD_TOTAL];
603 
604     /* rx mbufs */
605     bus_dma_tag_t       rx_mbuf_tag;
606     struct bxe_sw_rx_bd rx_mbuf_chain[RX_BD_TOTAL];
607     bus_dmamap_t        rx_mbuf_spare_map;
608 
609     /* rx sge mbufs */
610     bus_dma_tag_t       rx_sge_mbuf_tag;
611     struct bxe_sw_rx_bd rx_sge_mbuf_chain[RX_SGE_TOTAL];
612     bus_dmamap_t        rx_sge_mbuf_spare_map;
613 
614     /* rx tpa mbufs (use the larger size for TPA queue length) */
615     int                    tpa_enable; /* disabled per fastpath upon error */
616     struct bxe_sw_tpa_info rx_tpa_info[ETH_MAX_AGGREGATION_QUEUES_E1H_E2];
617     bus_dmamap_t           rx_tpa_info_mbuf_spare_map;
618     uint64_t               rx_tpa_queue_used;
619 
620     uint16_t *sb_index_values;
621     uint16_t *sb_running_index;
622     uint32_t ustorm_rx_prods_offset;
623 
624     uint8_t igu_sb_id; /* status block number in HW */
625     uint8_t fw_sb_id;  /* status block number in FW */
626 
627     uint32_t rx_buf_size;
628     int mbuf_alloc_size;
629 
630     int state;
631 #define BXE_FP_STATE_CLOSED  0x01
632 #define BXE_FP_STATE_IRQ     0x02
633 #define BXE_FP_STATE_OPENING 0x04
634 #define BXE_FP_STATE_OPEN    0x08
635 #define BXE_FP_STATE_HALTING 0x10
636 #define BXE_FP_STATE_HALTED  0x20
637 
638     /* reference back to this fastpath queue number */
639     uint8_t index; /* this is also the 'cid' */
640 #define FP_IDX(fp) (fp->index)
641 
642     /* interrupt taskqueue (fast) */
643     struct task      tq_task;
644     struct taskqueue *tq;
645     char             tq_name[32];
646 
647     struct task tx_task;
648     struct timeout_task tx_timeout_task;
649 
650     /* ethernet client ID (each fastpath set of RX/TX/CQE is a client) */
651     uint8_t cl_id;
652 #define FP_CL_ID(fp) (fp->cl_id)
653     uint8_t cl_qzone_id;
654 
655     uint16_t fp_hc_idx;
656 
657     /* driver copy of the receive buffer descriptor prod/cons indices */
658     uint16_t rx_bd_prod;
659     uint16_t rx_bd_cons;
660 
661     /* driver copy of the receive completion queue prod/cons indices */
662     uint16_t rx_cq_prod;
663     uint16_t rx_cq_cons;
664 
665     union bxe_db_prod tx_db;
666 
667     /* Transmit packet producer index (used in eth_tx_bd). */
668     uint16_t tx_pkt_prod;
669     uint16_t tx_pkt_cons;
670 
671     /* Transmit buffer descriptor producer index. */
672     uint16_t tx_bd_prod;
673     uint16_t tx_bd_cons;
674 
675     uint64_t sge_mask[RX_SGE_MASK_LEN];
676     uint16_t rx_sge_prod;
677 
678     struct tstorm_per_queue_stats old_tclient;
679     struct ustorm_per_queue_stats old_uclient;
680     struct xstorm_per_queue_stats old_xclient;
681     struct bxe_eth_q_stats        eth_q_stats;
682     struct bxe_eth_q_stats_old    eth_q_stats_old;
683 
684     /* Pointer to the receive consumer in the status block */
685     uint16_t *rx_cq_cons_sb;
686 
687     /* Pointer to the transmit consumer in the status block */
688     uint16_t *tx_cons_sb;
689 
690     /* transmit timeout until chip reset */
691     int watchdog_timer;
692 
693     /* Free/used buffer descriptor counters. */
694     //uint16_t used_tx_bd;
695 
696     /* Last maximal completed SGE */
697     uint16_t last_max_sge;
698 
699     //uint16_t rx_sge_free_idx;
700 
701     //uint8_t segs;
702 
703 #if __FreeBSD_version >= 800000
704 #define BXE_BR_SIZE 4096
705     struct buf_ring *tx_br;
706 #endif
707 }; /* struct bxe_fastpath */
708 
709 /* sriov XXX */
710 #define BXE_MAX_NUM_OF_VFS 64
711 #define BXE_VF_CID_WND     0
712 #define BXE_CIDS_PER_VF    (1 << BXE_VF_CID_WND)
713 #define BXE_CLIENTS_PER_VF 1
714 #define BXE_FIRST_VF_CID   256
715 #define BXE_VF_CIDS        (BXE_MAX_NUM_OF_VFS * BXE_CIDS_PER_VF)
716 #define BXE_VF_ID_INVALID  0xFF
717 #define IS_SRIOV(sc) 0
718 
719 #define GET_NUM_VFS_PER_PATH(sc) 0
720 #define GET_NUM_VFS_PER_PF(sc)   0
721 
722 /* maximum number of fast-path interrupt contexts */
723 #define FP_SB_MAX_E1x 16
724 #define FP_SB_MAX_E2  HC_SB_MAX_SB_E2
725 
726 union cdu_context {
727     struct eth_context eth;
728     char pad[1024];
729 };
730 
731 /* CDU host DB constants */
732 #define CDU_ILT_PAGE_SZ_HW 2
733 #define CDU_ILT_PAGE_SZ    (8192 << CDU_ILT_PAGE_SZ_HW) /* 32K */
734 #define ILT_PAGE_CIDS      (CDU_ILT_PAGE_SZ / sizeof(union cdu_context))
735 
736 #define CNIC_ISCSI_CID_MAX 256
737 #define CNIC_FCOE_CID_MAX  2048
738 #define CNIC_CID_MAX       (CNIC_ISCSI_CID_MAX + CNIC_FCOE_CID_MAX)
739 #define CNIC_ILT_LINES     DIV_ROUND_UP(CNIC_CID_MAX, ILT_PAGE_CIDS)
740 
741 #define QM_ILT_PAGE_SZ_HW  0
742 #define QM_ILT_PAGE_SZ     (4096 << QM_ILT_PAGE_SZ_HW) /* 4K */
743 #define QM_CID_ROUND       1024
744 
745 /* TM (timers) host DB constants */
746 #define TM_ILT_PAGE_SZ_HW  0
747 #define TM_ILT_PAGE_SZ     (4096 << TM_ILT_PAGE_SZ_HW) /* 4K */
748 /*#define TM_CONN_NUM        (CNIC_STARTING_CID+CNIC_ISCSI_CXT_MAX) */
749 #define TM_CONN_NUM        1024
750 #define TM_ILT_SZ          (8 * TM_CONN_NUM)
751 #define TM_ILT_LINES       DIV_ROUND_UP(TM_ILT_SZ, TM_ILT_PAGE_SZ)
752 
753 /* SRC (Searcher) host DB constants */
754 #define SRC_ILT_PAGE_SZ_HW 0
755 #define SRC_ILT_PAGE_SZ    (4096 << SRC_ILT_PAGE_SZ_HW) /* 4K */
756 #define SRC_HASH_BITS      10
757 #define SRC_CONN_NUM       (1 << SRC_HASH_BITS) /* 1024 */
758 #define SRC_ILT_SZ         (sizeof(struct src_ent) * SRC_CONN_NUM)
759 #define SRC_T2_SZ          SRC_ILT_SZ
760 #define SRC_ILT_LINES      DIV_ROUND_UP(SRC_ILT_SZ, SRC_ILT_PAGE_SZ)
761 
762 struct hw_context {
763     struct bxe_dma    vcxt_dma;
764     union cdu_context *vcxt;
765     //bus_addr_t        cxt_mapping;
766     size_t            size;
767 };
768 
769 #define SM_RX_ID 0
770 #define SM_TX_ID 1
771 
772 /* defines for multiple tx priority indices */
773 #define FIRST_TX_ONLY_COS_INDEX 1
774 #define FIRST_TX_COS_INDEX      0
775 
776 #define CID_TO_FP(cid, sc) ((cid) % BXE_NUM_NON_CNIC_QUEUES(sc))
777 
778 #define HC_INDEX_ETH_RX_CQ_CONS       1
779 #define HC_INDEX_OOO_TX_CQ_CONS       4
780 #define HC_INDEX_ETH_TX_CQ_CONS_COS0  5
781 #define HC_INDEX_ETH_TX_CQ_CONS_COS1  6
782 #define HC_INDEX_ETH_TX_CQ_CONS_COS2  7
783 #define HC_INDEX_ETH_FIRST_TX_CQ_CONS HC_INDEX_ETH_TX_CQ_CONS_COS0
784 
785 /* congestion management fairness mode */
786 #define CMNG_FNS_NONE   0
787 #define CMNG_FNS_MINMAX 1
788 
789 /* CMNG constants, as derived from system spec calculations */
790 /* default MIN rate in case VNIC min rate is configured to zero - 100Mbps */
791 #define DEF_MIN_RATE 100
792 /* resolution of the rate shaping timer - 400 usec */
793 #define RS_PERIODIC_TIMEOUT_USEC 400
794 /* number of bytes in single QM arbitration cycle -
795  * coefficient for calculating the fairness timer */
796 #define QM_ARB_BYTES 160000
797 /* resolution of Min algorithm 1:100 */
798 #define MIN_RES 100
799 /* how many bytes above threshold for the minimal credit of Min algorithm*/
800 #define MIN_ABOVE_THRESH 32768
801 /* fairness algorithm integration time coefficient -
802  * for calculating the actual Tfair */
803 #define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES)
804 /* memory of fairness algorithm - 2 cycles */
805 #define FAIR_MEM 2
806 
807 #define HC_SEG_ACCESS_DEF   0 /* Driver decision 0-3 */
808 #define HC_SEG_ACCESS_ATTN  4
809 #define HC_SEG_ACCESS_NORM  0 /* Driver decision 0-1 */
810 
811 /*
812  * The total number of L2 queues, MSIX vectors and HW contexts (CIDs) is
813  * control by the number of fast-path status blocks supported by the
814  * device (HW/FW). Each fast-path status block (FP-SB) aka non-default
815  * status block represents an independent interrupts context that can
816  * serve a regular L2 networking queue. However special L2 queues such
817  * as the FCoE queue do not require a FP-SB and other components like
818  * the CNIC may consume FP-SB reducing the number of possible L2 queues
819  *
820  * If the maximum number of FP-SB available is X then:
821  * a. If CNIC is supported it consumes 1 FP-SB thus the max number of
822  *    regular L2 queues is Y=X-1
823  * b. in MF mode the actual number of L2 queues is Y= (X-1/MF_factor)
824  * c. If the FCoE L2 queue is supported the actual number of L2 queues
825  *    is Y+1
826  * d. The number of irqs (MSIX vectors) is either Y+1 (one extra for
827  *    slow-path interrupts) or Y+2 if CNIC is supported (one additional
828  *    FP interrupt context for the CNIC).
829  * e. The number of HW context (CID count) is always X or X+1 if FCoE
830  *    L2 queue is supported. the cid for the FCoE L2 queue is always X.
831  *
832  * So this is quite simple for now as no ULPs are supported yet. :-)
833  */
834 #define BXE_NUM_QUEUES(sc)          ((sc)->num_queues)
835 #define BXE_NUM_ETH_QUEUES(sc)      BXE_NUM_QUEUES(sc)
836 #define BXE_NUM_NON_CNIC_QUEUES(sc) BXE_NUM_QUEUES(sc)
837 #define BXE_NUM_RX_QUEUES(sc)       BXE_NUM_QUEUES(sc)
838 
839 #define FOR_EACH_QUEUE(sc, var)                          \
840     for ((var) = 0; (var) < BXE_NUM_QUEUES(sc); (var)++)
841 
842 #define FOR_EACH_NONDEFAULT_QUEUE(sc, var)               \
843     for ((var) = 1; (var) < BXE_NUM_QUEUES(sc); (var)++)
844 
845 #define FOR_EACH_ETH_QUEUE(sc, var)                          \
846     for ((var) = 0; (var) < BXE_NUM_ETH_QUEUES(sc); (var)++)
847 
848 #define FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, var)               \
849     for ((var) = 1; (var) < BXE_NUM_ETH_QUEUES(sc); (var)++)
850 
851 #define FOR_EACH_COS_IN_TX_QUEUE(sc, var)           \
852     for ((var) = 0; (var) < (sc)->max_cos; (var)++)
853 
854 #define FOR_EACH_CNIC_QUEUE(sc, var)     \
855     for ((var) = BXE_NUM_ETH_QUEUES(sc); \
856          (var) < BXE_NUM_QUEUES(sc);     \
857          (var)++)
858 
859 enum {
860     OOO_IDX_OFFSET,
861     FCOE_IDX_OFFSET,
862     FWD_IDX_OFFSET,
863 };
864 
865 #define FCOE_IDX(sc)              (BXE_NUM_NON_CNIC_QUEUES(sc) + FCOE_IDX_OFFSET)
866 #define bxe_fcoe_fp(sc)           (&sc->fp[FCOE_IDX(sc)])
867 #define bxe_fcoe(sc, var)         (bxe_fcoe_fp(sc)->var)
868 #define bxe_fcoe_inner_sp_obj(sc) (&sc->sp_objs[FCOE_IDX(sc)])
869 #define bxe_fcoe_sp_obj(sc, var)  (bxe_fcoe_inner_sp_obj(sc)->var)
870 #define bxe_fcoe_tx(sc, var)      (bxe_fcoe_fp(sc)->txdata_ptr[FIRST_TX_COS_INDEX]->var)
871 
872 #define OOO_IDX(sc)               (BXE_NUM_NON_CNIC_QUEUES(sc) + OOO_IDX_OFFSET)
873 #define bxe_ooo_fp(sc)            (&sc->fp[OOO_IDX(sc)])
874 #define bxe_ooo(sc, var)          (bxe_ooo_fp(sc)->var)
875 #define bxe_ooo_inner_sp_obj(sc)  (&sc->sp_objs[OOO_IDX(sc)])
876 #define bxe_ooo_sp_obj(sc, var)   (bxe_ooo_inner_sp_obj(sc)->var)
877 
878 #define FWD_IDX(sc)               (BXE_NUM_NON_CNIC_QUEUES(sc) + FWD_IDX_OFFSET)
879 #define bxe_fwd_fp(sc)            (&sc->fp[FWD_IDX(sc)])
880 #define bxe_fwd(sc, var)          (bxe_fwd_fp(sc)->var)
881 #define bxe_fwd_inner_sp_obj(sc)  (&sc->sp_objs[FWD_IDX(sc)])
882 #define bxe_fwd_sp_obj(sc, var)   (bxe_fwd_inner_sp_obj(sc)->var)
883 #define bxe_fwd_txdata(fp)        (fp->txdata_ptr[FIRST_TX_COS_INDEX])
884 
885 #define IS_ETH_FP(fp)    ((fp)->index < BXE_NUM_ETH_QUEUES((fp)->sc))
886 #define IS_FCOE_FP(fp)   ((fp)->index == FCOE_IDX((fp)->sc))
887 #define IS_FCOE_IDX(idx) ((idx) == FCOE_IDX(sc))
888 #define IS_FWD_FP(fp)    ((fp)->index == FWD_IDX((fp)->sc))
889 #define IS_FWD_IDX(idx)  ((idx) == FWD_IDX(sc))
890 #define IS_OOO_FP(fp)    ((fp)->index == OOO_IDX((fp)->sc))
891 #define IS_OOO_IDX(idx)  ((idx) == OOO_IDX(sc))
892 
893 enum {
894     BXE_PORT_QUERY_IDX,
895     BXE_PF_QUERY_IDX,
896     BXE_FCOE_QUERY_IDX,
897     BXE_FIRST_QUEUE_QUERY_IDX,
898 };
899 
900 struct bxe_fw_stats_req {
901     struct stats_query_header hdr;
902     struct stats_query_entry  query[FP_SB_MAX_E1x +
903                                     BXE_FIRST_QUEUE_QUERY_IDX];
904 };
905 
906 struct bxe_fw_stats_data {
907     struct stats_counter          storm_counters;
908     struct per_port_stats         port;
909     struct per_pf_stats           pf;
910     //struct fcoe_statistics_params fcoe;
911     struct per_queue_stats        queue_stats[1];
912 };
913 
914 /* IGU MSIX STATISTICS on 57712: 64 for VFs; 4 for PFs; 4 for Attentions */
915 #define BXE_IGU_STAS_MSG_VF_CNT 64
916 #define BXE_IGU_STAS_MSG_PF_CNT 4
917 
918 #define MAX_DMAE_C 8
919 
920 /*
921  * For the main interface up/down code paths, a not-so-fine-grained CORE
922  * mutex lock is used. Inside this code are various calls to kernel routines
923  * that can cause a sleep to occur. Namely memory allocations and taskqueue
924  * handling. If using an MTX lock we are *not* allowed to sleep but we can
925  * with an SX lock. This define forces the CORE lock to use and SX lock.
926  * Undefine this and an MTX lock will be used instead. Note that the IOCTL
927  * path can cause problems since it's called by a non-sleepable thread. To
928  * alleviate a potential sleep, any IOCTL processing that results in the
929  * chip/interface being started/stopped/reinitialized, the actual work is
930  * offloaded to a taskqueue.
931  */
932 #define BXE_CORE_LOCK_SX
933 
934 /*
935  * This is the slowpath data structure. It is mapped into non-paged memory
936  * so that the hardware can access it's contents directly and must be page
937  * aligned.
938  */
939 struct bxe_slowpath {
940 
941     /* used by the DMAE command executer */
942     struct dmae_cmd dmae[MAX_DMAE_C];
943 
944     /* statistics completion */
945     uint32_t stats_comp;
946 
947     /* firmware defined statistics blocks */
948     union mac_stats        mac_stats;
949     struct nig_stats       nig_stats;
950     struct host_port_stats port_stats;
951     struct host_func_stats func_stats;
952     //struct host_func_stats func_stats_base;
953 
954     /* DMAE completion value and data source/sink */
955     uint32_t wb_comp;
956     uint32_t wb_data[4];
957 
958     union {
959         struct mac_configuration_cmd          e1x;
960         struct eth_classify_rules_ramrod_data e2;
961     } mac_rdata;
962 
963     union {
964         struct tstorm_eth_mac_filter_config e1x;
965         struct eth_filter_rules_ramrod_data e2;
966     } rx_mode_rdata;
967 
968     struct eth_rss_update_ramrod_data rss_rdata;
969 
970     union {
971         struct mac_configuration_cmd           e1;
972         struct eth_multicast_rules_ramrod_data e2;
973     } mcast_rdata;
974 
975     union {
976         struct function_start_data        func_start;
977         struct flow_control_configuration pfc_config; /* for DCBX ramrod */
978     } func_rdata;
979 
980     /* Queue State related ramrods */
981     union {
982         struct client_init_ramrod_data   init_data;
983         struct client_update_ramrod_data update_data;
984     } q_rdata;
985 
986     /*
987      * AFEX ramrod can not be a part of func_rdata union because these
988      * events might arrive in parallel to other events from func_rdata.
989      * If they were defined in the same union the data can get corrupted.
990      */
991     struct afex_vif_list_ramrod_data func_afex_rdata;
992 
993     union drv_info_to_mcp drv_info_to_mcp;
994 }; /* struct bxe_slowpath */
995 
996 /*
997  * Port specifc data structure.
998  */
999 struct bxe_port {
1000     /*
1001      * Port Management Function (for 57711E only).
1002      * When this field is set the driver instance is
1003      * responsible for managing port specifc
1004      * configurations such as handling link attentions.
1005      */
1006     uint32_t pmf;
1007 
1008     /* Ethernet maximum transmission unit. */
1009     uint16_t ether_mtu;
1010 
1011     uint32_t link_config[ELINK_LINK_CONFIG_SIZE];
1012 
1013     uint32_t ext_phy_config;
1014 
1015     /* Port feature config.*/
1016     uint32_t config;
1017 
1018     /* Defines the features supported by the PHY. */
1019     uint32_t supported[ELINK_LINK_CONFIG_SIZE];
1020 
1021     /* Defines the features advertised by the PHY. */
1022     uint32_t advertising[ELINK_LINK_CONFIG_SIZE];
1023 #define ADVERTISED_10baseT_Half    (1 << 1)
1024 #define ADVERTISED_10baseT_Full    (1 << 2)
1025 #define ADVERTISED_100baseT_Half   (1 << 3)
1026 #define ADVERTISED_100baseT_Full   (1 << 4)
1027 #define ADVERTISED_1000baseT_Half  (1 << 5)
1028 #define ADVERTISED_1000baseT_Full  (1 << 6)
1029 #define ADVERTISED_TP              (1 << 7)
1030 #define ADVERTISED_FIBRE           (1 << 8)
1031 #define ADVERTISED_Autoneg         (1 << 9)
1032 #define ADVERTISED_Asym_Pause      (1 << 10)
1033 #define ADVERTISED_Pause           (1 << 11)
1034 #define ADVERTISED_2500baseX_Full  (1 << 15)
1035 #define ADVERTISED_10000baseT_Full (1 << 16)
1036 
1037     uint32_t    phy_addr;
1038 
1039     /* Used to synchronize phy accesses. */
1040     struct mtx  phy_mtx;
1041     char        phy_mtx_name[32];
1042 
1043 #define BXE_PHY_LOCK(sc)          mtx_lock(&sc->port.phy_mtx)
1044 #define BXE_PHY_UNLOCK(sc)        mtx_unlock(&sc->port.phy_mtx)
1045 #define BXE_PHY_LOCK_ASSERT(sc)   mtx_assert(&sc->port.phy_mtx, MA_OWNED)
1046 
1047     /*
1048      * MCP scratchpad address for port specific statistics.
1049      * The device is responsible for writing statistcss
1050      * back to the MCP for use with management firmware such
1051      * as UMP/NC-SI.
1052      */
1053     uint32_t port_stx;
1054 
1055     struct nig_stats old_nig_stats;
1056 }; /* struct bxe_port */
1057 
1058 struct bxe_mf_info {
1059     uint32_t mf_config[E1HVN_MAX];
1060 
1061     uint32_t vnics_per_port;   /* 1, 2 or 4 */
1062     uint32_t multi_vnics_mode; /* can be set even if vnics_per_port = 1 */
1063     uint32_t path_has_ovlan;   /* MF mode in the path (can be different than the MF mode of the function */
1064 
1065 #define IS_MULTI_VNIC(sc)  ((sc)->devinfo.mf_info.multi_vnics_mode)
1066 #define VNICS_PER_PORT(sc) ((sc)->devinfo.mf_info.vnics_per_port)
1067 #define VNICS_PER_PATH(sc)                                  \
1068     ((sc)->devinfo.mf_info.vnics_per_port *                 \
1069      ((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 1 ))
1070 
1071     uint8_t min_bw[MAX_VNIC_NUM];
1072     uint8_t max_bw[MAX_VNIC_NUM];
1073 
1074     uint16_t ext_id; /* vnic outer vlan or VIF ID */
1075 #define VALID_OVLAN(ovlan) ((ovlan) <= 4096)
1076 #define INVALID_VIF_ID 0xFFFF
1077 #define OVLAN(sc) ((sc)->devinfo.mf_info.ext_id)
1078 #define VIF_ID(sc) ((sc)->devinfo.mf_info.ext_id)
1079 
1080     uint16_t default_vlan;
1081 #define NIV_DEFAULT_VLAN(sc) ((sc)->devinfo.mf_info.default_vlan)
1082 
1083     uint8_t niv_allowed_priorities;
1084 #define NIV_ALLOWED_PRIORITIES(sc) ((sc)->devinfo.mf_info.niv_allowed_priorities)
1085 
1086     uint8_t niv_default_cos;
1087 #define NIV_DEFAULT_COS(sc) ((sc)->devinfo.mf_info.niv_default_cos)
1088 
1089     uint8_t niv_mba_enabled;
1090 
1091     enum mf_cfg_afex_vlan_mode afex_vlan_mode;
1092 #define AFEX_VLAN_MODE(sc) ((sc)->devinfo.mf_info.afex_vlan_mode)
1093     int                        afex_def_vlan_tag;
1094     uint32_t                   pending_max;
1095 
1096     uint16_t flags;
1097 #define MF_INFO_VALID_MAC       0x0001
1098 
1099     uint8_t mf_mode; /* Switch-Dependent or Switch-Independent */
1100 #define IS_MF(sc)                        \
1101     (IS_MULTI_VNIC(sc) &&                \
1102      ((sc)->devinfo.mf_info.mf_mode != 0))
1103 #define IS_MF_SD(sc)                                     \
1104     (IS_MULTI_VNIC(sc) &&                                \
1105      ((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD))
1106 #define IS_MF_SI(sc)                                     \
1107     (IS_MULTI_VNIC(sc) &&                                \
1108      ((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI))
1109 #define IS_MF_AFEX(sc)                              \
1110     (IS_MULTI_VNIC(sc) &&                           \
1111      ((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX))
1112 #define IS_MF_SD_MODE(sc)   IS_MF_SD(sc)
1113 #define IS_MF_SI_MODE(sc)   IS_MF_SI(sc)
1114 #define IS_MF_AFEX_MODE(sc) IS_MF_AFEX(sc)
1115 
1116     uint32_t mf_protos_supported;
1117     #define MF_PROTO_SUPPORT_ETHERNET 0x1
1118     #define MF_PROTO_SUPPORT_ISCSI    0x2
1119     #define MF_PROTO_SUPPORT_FCOE     0x4
1120 }; /* struct bxe_mf_info */
1121 
1122 /* Device information data structure. */
1123 struct bxe_devinfo {
1124     /* PCIe info */
1125     uint16_t vendor_id;
1126     uint16_t device_id;
1127     uint16_t subvendor_id;
1128     uint16_t subdevice_id;
1129 
1130     /*
1131      * chip_id = 0b'CCCCCCCCCCCCCCCCRRRRMMMMMMMMBBBB'
1132      *   C = Chip Number   (bits 16-31)
1133      *   R = Chip Revision (bits 12-15)
1134      *   M = Chip Metal    (bits 4-11)
1135      *   B = Chip Bond ID  (bits 0-3)
1136      */
1137     uint32_t chip_id;
1138 #define CHIP_ID(sc)           ((sc)->devinfo.chip_id & 0xffff0000)
1139 #define CHIP_NUM(sc)          ((sc)->devinfo.chip_id >> 16)
1140 /* device ids */
1141 #define CHIP_NUM_57710        0x164e
1142 #define CHIP_NUM_57711        0x164f
1143 #define CHIP_NUM_57711E       0x1650
1144 #define CHIP_NUM_57712        0x1662
1145 #define CHIP_NUM_57712_MF     0x1663
1146 #define CHIP_NUM_57712_VF     0x166f
1147 #define CHIP_NUM_57800        0x168a
1148 #define CHIP_NUM_57800_MF     0x16a5
1149 #define CHIP_NUM_57800_VF     0x16a9
1150 #define CHIP_NUM_57810        0x168e
1151 #define CHIP_NUM_57810_MF     0x16ae
1152 #define CHIP_NUM_57810_VF     0x16af
1153 #define CHIP_NUM_57811        0x163d
1154 #define CHIP_NUM_57811_MF     0x163e
1155 #define CHIP_NUM_57811_VF     0x163f
1156 #define CHIP_NUM_57840_OBS    0x168d
1157 #define CHIP_NUM_57840_OBS_MF 0x16ab
1158 #define CHIP_NUM_57840_4_10   0x16a1
1159 #define CHIP_NUM_57840_2_20   0x16a2
1160 #define CHIP_NUM_57840_MF     0x16a4
1161 #define CHIP_NUM_57840_VF     0x16ad
1162 
1163 #define CHIP_REV_SHIFT      12
1164 #define CHIP_REV_MASK       (0xF << CHIP_REV_SHIFT)
1165 #define CHIP_REV(sc)        ((sc)->devinfo.chip_id & CHIP_REV_MASK)
1166 
1167 #define CHIP_REV_Ax         (0x0 << CHIP_REV_SHIFT)
1168 #define CHIP_REV_Bx         (0x1 << CHIP_REV_SHIFT)
1169 #define CHIP_REV_Cx         (0x2 << CHIP_REV_SHIFT)
1170 
1171 #define CHIP_REV_IS_SLOW(sc)    \
1172     (CHIP_REV(sc) > 0x00005000)
1173 #define CHIP_REV_IS_FPGA(sc)                              \
1174     (CHIP_REV_IS_SLOW(sc) && (CHIP_REV(sc) & 0x00001000))
1175 #define CHIP_REV_IS_EMUL(sc)                               \
1176     (CHIP_REV_IS_SLOW(sc) && !(CHIP_REV(sc) & 0x00001000))
1177 #define CHIP_REV_IS_ASIC(sc) \
1178     (!CHIP_REV_IS_SLOW(sc))
1179 
1180 #define CHIP_METAL(sc)      ((sc->devinfo.chip_id) & 0x00000ff0)
1181 #define CHIP_BOND_ID(sc)    ((sc->devinfo.chip_id) & 0x0000000f)
1182 
1183 #define CHIP_IS_E1(sc)      (CHIP_NUM(sc) == CHIP_NUM_57710)
1184 #define CHIP_IS_57710(sc)   (CHIP_NUM(sc) == CHIP_NUM_57710)
1185 #define CHIP_IS_57711(sc)   (CHIP_NUM(sc) == CHIP_NUM_57711)
1186 #define CHIP_IS_57711E(sc)  (CHIP_NUM(sc) == CHIP_NUM_57711E)
1187 #define CHIP_IS_E1H(sc)     ((CHIP_IS_57711(sc)) || \
1188                              (CHIP_IS_57711E(sc)))
1189 #define CHIP_IS_E1x(sc)     (CHIP_IS_E1((sc)) || \
1190                              CHIP_IS_E1H((sc)))
1191 
1192 #define CHIP_IS_57712(sc)    (CHIP_NUM(sc) == CHIP_NUM_57712)
1193 #define CHIP_IS_57712_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57712_MF)
1194 #define CHIP_IS_57712_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57712_VF)
1195 #define CHIP_IS_E2(sc)       (CHIP_IS_57712(sc) ||  \
1196                               CHIP_IS_57712_MF(sc))
1197 
1198 #define CHIP_IS_57800(sc)    (CHIP_NUM(sc) == CHIP_NUM_57800)
1199 #define CHIP_IS_57800_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57800_MF)
1200 #define CHIP_IS_57800_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57800_VF)
1201 #define CHIP_IS_57810(sc)    (CHIP_NUM(sc) == CHIP_NUM_57810)
1202 #define CHIP_IS_57810_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57810_MF)
1203 #define CHIP_IS_57810_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57810_VF)
1204 #define CHIP_IS_57811(sc)    (CHIP_NUM(sc) == CHIP_NUM_57811)
1205 #define CHIP_IS_57811_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57811_MF)
1206 #define CHIP_IS_57811_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57811_VF)
1207 #define CHIP_IS_57840(sc)    ((CHIP_NUM(sc) == CHIP_NUM_57840_OBS)  || \
1208                               (CHIP_NUM(sc) == CHIP_NUM_57840_4_10) || \
1209                               (CHIP_NUM(sc) == CHIP_NUM_57840_2_20))
1210 #define CHIP_IS_57840_MF(sc) ((CHIP_NUM(sc) == CHIP_NUM_57840_OBS_MF) || \
1211                               (CHIP_NUM(sc) == CHIP_NUM_57840_MF))
1212 #define CHIP_IS_57840_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57840_VF)
1213 
1214 #define CHIP_IS_E3(sc)      (CHIP_IS_57800(sc)    || \
1215                              CHIP_IS_57800_MF(sc) || \
1216                              CHIP_IS_57800_VF(sc) || \
1217                              CHIP_IS_57810(sc)    || \
1218                              CHIP_IS_57810_MF(sc) || \
1219                              CHIP_IS_57810_VF(sc) || \
1220                              CHIP_IS_57811(sc)    || \
1221                              CHIP_IS_57811_MF(sc) || \
1222                              CHIP_IS_57811_VF(sc) || \
1223                              CHIP_IS_57840(sc)    || \
1224                              CHIP_IS_57840_MF(sc) || \
1225                              CHIP_IS_57840_VF(sc))
1226 #define CHIP_IS_E3A0(sc)    (CHIP_IS_E3(sc) &&              \
1227                              (CHIP_REV(sc) == CHIP_REV_Ax))
1228 #define CHIP_IS_E3B0(sc)    (CHIP_IS_E3(sc) &&              \
1229                              (CHIP_REV(sc) == CHIP_REV_Bx))
1230 
1231 #define USES_WARPCORE(sc)   (CHIP_IS_E3(sc))
1232 #define CHIP_IS_E2E3(sc)    (CHIP_IS_E2(sc) || \
1233                              CHIP_IS_E3(sc))
1234 
1235 #define CHIP_IS_MF_CAP(sc)  (CHIP_IS_57711E(sc)  ||  \
1236                              CHIP_IS_57712_MF(sc) || \
1237                              CHIP_IS_E3(sc))
1238 
1239 #define IS_VF(sc)           (CHIP_IS_57712_VF(sc) || \
1240                              CHIP_IS_57800_VF(sc) || \
1241                              CHIP_IS_57810_VF(sc) || \
1242                              CHIP_IS_57840_VF(sc))
1243 #define IS_PF(sc)           (!IS_VF(sc))
1244 
1245 /*
1246  * This define is used in two main places:
1247  * 1. In the early stages of nic_load, to know if to configure Parser/Searcher
1248  * to nic-only mode or to offload mode. Offload mode is configured if either
1249  * the chip is E1x (where NIC_MODE register is not applicable), or if cnic
1250  * already registered for this port (which means that the user wants storage
1251  * services).
1252  * 2. During cnic-related load, to know if offload mode is already configured
1253  * in the HW or needs to be configrued. Since the transition from nic-mode to
1254  * offload-mode in HW causes traffic coruption, nic-mode is configured only
1255  * in ports on which storage services where never requested.
1256  */
1257 #define CONFIGURE_NIC_MODE(sc) (!CHIP_IS_E1x(sc) && !CNIC_ENABLED(sc))
1258 
1259     uint8_t  chip_port_mode;
1260 #define CHIP_4_PORT_MODE        0x0
1261 #define CHIP_2_PORT_MODE        0x1
1262 #define CHIP_PORT_MODE_NONE     0x2
1263 #define CHIP_PORT_MODE(sc)      ((sc)->devinfo.chip_port_mode)
1264 #define CHIP_IS_MODE_4_PORT(sc) (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE)
1265 
1266     uint8_t int_block;
1267 #define INT_BLOCK_HC            0
1268 #define INT_BLOCK_IGU           1
1269 #define INT_BLOCK_MODE_NORMAL   0
1270 #define INT_BLOCK_MODE_BW_COMP  2
1271 #define CHIP_INT_MODE_IS_NBC(sc)                          \
1272     (!CHIP_IS_E1x(sc) &&                                  \
1273      !((sc)->devinfo.int_block & INT_BLOCK_MODE_BW_COMP))
1274 #define CHIP_INT_MODE_IS_BC(sc) (!CHIP_INT_MODE_IS_NBC(sc))
1275 
1276     uint32_t shmem_base;
1277     uint32_t shmem2_base;
1278     uint32_t bc_ver;
1279     char bc_ver_str[32];
1280     uint32_t mf_cfg_base; /* bootcode shmem address in BAR memory */
1281     struct bxe_mf_info mf_info;
1282 
1283     int flash_size;
1284 #define NVRAM_1MB_SIZE      0x20000
1285 #define NVRAM_TIMEOUT_COUNT 30000
1286 #define NVRAM_PAGE_SIZE     256
1287 
1288     /* PCIe capability information */
1289     uint32_t pcie_cap_flags;
1290 #define BXE_PM_CAPABLE_FLAG     0x00000001
1291 #define BXE_PCIE_CAPABLE_FLAG   0x00000002
1292 #define BXE_MSI_CAPABLE_FLAG    0x00000004
1293 #define BXE_MSIX_CAPABLE_FLAG   0x00000008
1294     uint16_t pcie_pm_cap_reg;
1295     uint16_t pcie_pcie_cap_reg;
1296     //uint16_t pcie_devctl;
1297     uint16_t pcie_link_width;
1298     uint16_t pcie_link_speed;
1299     uint16_t pcie_msi_cap_reg;
1300     uint16_t pcie_msix_cap_reg;
1301 
1302     /* device configuration read from bootcode shared memory */
1303     uint32_t hw_config;
1304     uint32_t hw_config2;
1305 }; /* struct bxe_devinfo */
1306 
1307 struct bxe_sp_objs {
1308     struct ecore_vlan_mac_obj mac_obj; /* MACs object */
1309     struct ecore_queue_sp_obj q_obj; /* Queue State object */
1310 }; /* struct bxe_sp_objs */
1311 
1312 /*
1313  * Data that will be used to create a link report message. We will keep the
1314  * data used for the last link report in order to prevent reporting the same
1315  * link parameters twice.
1316  */
1317 struct bxe_link_report_data {
1318     uint16_t      line_speed;        /* Effective line speed */
1319     unsigned long link_report_flags; /* BXE_LINK_REPORT_XXX flags */
1320 };
1321 enum {
1322     BXE_LINK_REPORT_FULL_DUPLEX,
1323     BXE_LINK_REPORT_LINK_DOWN,
1324     BXE_LINK_REPORT_RX_FC_ON,
1325     BXE_LINK_REPORT_TX_FC_ON
1326 };
1327 
1328 /* Top level device private data structure. */
1329 struct bxe_softc {
1330     /*
1331      * First entry must be a pointer to the BSD ifnet struct which
1332      * has a first element of 'void *if_softc' (which is us). XXX
1333      */
1334     if_t 	    ifp;
1335     struct ifmedia  ifmedia; /* network interface media structure */
1336     int             media;
1337 
1338     volatile int    state; /* device state */
1339 #define BXE_STATE_CLOSED                 0x0000
1340 #define BXE_STATE_OPENING_WAITING_LOAD   0x1000
1341 #define BXE_STATE_OPENING_WAITING_PORT   0x2000
1342 #define BXE_STATE_OPEN                   0x3000
1343 #define BXE_STATE_CLOSING_WAITING_HALT   0x4000
1344 #define BXE_STATE_CLOSING_WAITING_DELETE 0x5000
1345 #define BXE_STATE_CLOSING_WAITING_UNLOAD 0x6000
1346 #define BXE_STATE_DISABLED               0xD000
1347 #define BXE_STATE_DIAG                   0xE000
1348 #define BXE_STATE_ERROR                  0xF000
1349 
1350     int flags;
1351 #define BXE_ONE_PORT_FLAG    0x00000001
1352 #define BXE_NO_ISCSI         0x00000002
1353 #define BXE_NO_FCOE          0x00000004
1354 #define BXE_ONE_PORT(sc)     (sc->flags & BXE_ONE_PORT_FLAG)
1355 //#define BXE_NO_WOL_FLAG      0x00000008
1356 //#define BXE_USING_DAC_FLAG   0x00000010
1357 //#define BXE_USING_MSIX_FLAG  0x00000020
1358 //#define BXE_USING_MSI_FLAG   0x00000040
1359 //#define BXE_DISABLE_MSI_FLAG 0x00000080
1360 #define BXE_NO_MCP_FLAG      0x00000200
1361 #define BXE_NOMCP(sc)        (sc->flags & BXE_NO_MCP_FLAG)
1362 //#define BXE_SAFC_TX_FLAG     0x00000400
1363 #define BXE_MF_FUNC_DIS      0x00000800
1364 #define BXE_TX_SWITCHING     0x00001000
1365 #define BXE_NO_PULSE	     0x00002000
1366 
1367     unsigned long debug; /* per-instance debug logging config */
1368 
1369 #define MAX_BARS 5
1370     struct bxe_bar bar[MAX_BARS]; /* map BARs 0, 2, 4 */
1371 
1372     uint16_t doorbell_size;
1373 
1374     /* periodic timer callout */
1375 #define PERIODIC_STOP 0
1376 #define PERIODIC_GO   1
1377     volatile unsigned long periodic_flags;
1378     struct callout         periodic_callout;
1379 
1380     /* chip start/stop/reset taskqueue */
1381 #define CHIP_TQ_NONE   0
1382 #define CHIP_TQ_START  1
1383 #define CHIP_TQ_STOP   2
1384 #define CHIP_TQ_REINIT 3
1385     volatile unsigned long chip_tq_flags;
1386     struct task            chip_tq_task;
1387     struct taskqueue       *chip_tq;
1388     char                   chip_tq_name[32];
1389 
1390     /* slowpath interrupt taskqueue */
1391     struct task      sp_tq_task;
1392     struct taskqueue *sp_tq;
1393     char             sp_tq_name[32];
1394 
1395     struct bxe_fastpath fp[MAX_RSS_CHAINS];
1396     struct bxe_sp_objs  sp_objs[MAX_RSS_CHAINS];
1397 
1398     device_t dev;  /* parent device handle */
1399     uint8_t  unit; /* driver instance number */
1400 
1401     int pcie_bus;    /* PCIe bus number */
1402     int pcie_device; /* PCIe device/slot number */
1403     int pcie_func;   /* PCIe function number */
1404 
1405     uint8_t pfunc_rel; /* function relative */
1406     uint8_t pfunc_abs; /* function absolute */
1407     uint8_t path_id;   /* function absolute */
1408 #define SC_PATH(sc)     (sc->path_id)
1409 #define SC_PORT(sc)     (sc->pfunc_rel & 1)
1410 #define SC_FUNC(sc)     (sc->pfunc_rel)
1411 #define SC_ABS_FUNC(sc) (sc->pfunc_abs)
1412 #define SC_VN(sc)       (sc->pfunc_rel >> 1)
1413 #define SC_L_ID(sc)     (SC_VN(sc) << 2)
1414 #define PORT_ID(sc)     SC_PORT(sc)
1415 #define PATH_ID(sc)     SC_PATH(sc)
1416 #define VNIC_ID(sc)     SC_VN(sc)
1417 #define FUNC_ID(sc)     SC_FUNC(sc)
1418 #define ABS_FUNC_ID(sc) SC_ABS_FUNC(sc)
1419 #define SC_FW_MB_IDX_VN(sc, vn)                                \
1420     (SC_PORT(sc) + (vn) *                                      \
1421      ((CHIP_IS_E1x(sc) || (CHIP_IS_MODE_4_PORT(sc))) ? 2 : 1))
1422 #define SC_FW_MB_IDX(sc) SC_FW_MB_IDX_VN(sc, SC_VN(sc))
1423 
1424     int if_capen; /* enabled interface capabilities */
1425 
1426     struct bxe_devinfo devinfo;
1427     char fw_ver_str[32];
1428     char mf_mode_str[32];
1429     char pci_link_str[32];
1430 
1431     const struct iro *iro_array;
1432 
1433 #ifdef BXE_CORE_LOCK_SX
1434     struct sx      core_sx;
1435     char           core_sx_name[32];
1436 #else
1437     struct mtx     core_mtx;
1438     char           core_mtx_name[32];
1439 #endif
1440     struct mtx     sp_mtx;
1441     char           sp_mtx_name[32];
1442     struct mtx     dmae_mtx;
1443     char           dmae_mtx_name[32];
1444     struct mtx     fwmb_mtx;
1445     char           fwmb_mtx_name[32];
1446     struct mtx     print_mtx;
1447     char           print_mtx_name[32];
1448     struct mtx     stats_mtx;
1449     char           stats_mtx_name[32];
1450     struct mtx     mcast_mtx;
1451     char           mcast_mtx_name[32];
1452 
1453 #ifdef BXE_CORE_LOCK_SX
1454 #define BXE_CORE_TRYLOCK(sc)      sx_try_xlock(&sc->core_sx)
1455 #define BXE_CORE_LOCK(sc)         sx_xlock(&sc->core_sx)
1456 #define BXE_CORE_UNLOCK(sc)       sx_xunlock(&sc->core_sx)
1457 #define BXE_CORE_LOCK_ASSERT(sc)  sx_assert(&sc->core_sx, SA_XLOCKED)
1458 #else
1459 #define BXE_CORE_TRYLOCK(sc)      mtx_trylock(&sc->core_mtx)
1460 #define BXE_CORE_LOCK(sc)         mtx_lock(&sc->core_mtx)
1461 #define BXE_CORE_UNLOCK(sc)       mtx_unlock(&sc->core_mtx)
1462 #define BXE_CORE_LOCK_ASSERT(sc)  mtx_assert(&sc->core_mtx, MA_OWNED)
1463 #endif
1464 
1465 #define BXE_SP_LOCK(sc)           mtx_lock(&sc->sp_mtx)
1466 #define BXE_SP_UNLOCK(sc)         mtx_unlock(&sc->sp_mtx)
1467 #define BXE_SP_LOCK_ASSERT(sc)    mtx_assert(&sc->sp_mtx, MA_OWNED)
1468 
1469 #define BXE_DMAE_LOCK(sc)         mtx_lock(&sc->dmae_mtx)
1470 #define BXE_DMAE_UNLOCK(sc)       mtx_unlock(&sc->dmae_mtx)
1471 #define BXE_DMAE_LOCK_ASSERT(sc)  mtx_assert(&sc->dmae_mtx, MA_OWNED)
1472 
1473 #define BXE_FWMB_LOCK(sc)         mtx_lock(&sc->fwmb_mtx)
1474 #define BXE_FWMB_UNLOCK(sc)       mtx_unlock(&sc->fwmb_mtx)
1475 #define BXE_FWMB_LOCK_ASSERT(sc)  mtx_assert(&sc->fwmb_mtx, MA_OWNED)
1476 
1477 #define BXE_PRINT_LOCK(sc)        mtx_lock(&sc->print_mtx)
1478 #define BXE_PRINT_UNLOCK(sc)      mtx_unlock(&sc->print_mtx)
1479 #define BXE_PRINT_LOCK_ASSERT(sc) mtx_assert(&sc->print_mtx, MA_OWNED)
1480 
1481 #define BXE_STATS_LOCK(sc)        mtx_lock(&sc->stats_mtx)
1482 #define BXE_STATS_UNLOCK(sc)      mtx_unlock(&sc->stats_mtx)
1483 #define BXE_STATS_LOCK_ASSERT(sc) mtx_assert(&sc->stats_mtx, MA_OWNED)
1484 
1485 #if __FreeBSD_version < 800000
1486 #define BXE_MCAST_LOCK(sc)        \
1487     do {                          \
1488         mtx_lock(&sc->mcast_mtx); \
1489         IF_ADDR_LOCK(sc->ifp);  \
1490     } while (0)
1491 #define BXE_MCAST_UNLOCK(sc)        \
1492     do {                            \
1493         IF_ADDR_UNLOCK(sc->ifp);  \
1494         mtx_unlock(&sc->mcast_mtx); \
1495     } while (0)
1496 #else
1497 #define BXE_MCAST_LOCK(sc)         \
1498     do {                           \
1499         mtx_lock(&sc->mcast_mtx);  \
1500         if_maddr_rlock(sc->ifp); \
1501     } while (0)
1502 #define BXE_MCAST_UNLOCK(sc)         \
1503     do {                             \
1504         if_maddr_runlock(sc->ifp); \
1505         mtx_unlock(&sc->mcast_mtx);  \
1506     } while (0)
1507 #endif
1508 #define BXE_MCAST_LOCK_ASSERT(sc) mtx_assert(&sc->mcast_mtx, MA_OWNED)
1509 
1510     int dmae_ready;
1511 #define DMAE_READY(sc) (sc->dmae_ready)
1512 
1513     struct ecore_credit_pool_obj vlans_pool;
1514     struct ecore_credit_pool_obj macs_pool;
1515     struct ecore_rx_mode_obj     rx_mode_obj;
1516     struct ecore_mcast_obj       mcast_obj;
1517     struct ecore_rss_config_obj  rss_conf_obj;
1518     struct ecore_func_sp_obj     func_obj;
1519 
1520     uint16_t fw_seq;
1521     uint16_t fw_drv_pulse_wr_seq;
1522     uint32_t func_stx;
1523 
1524     struct elink_params         link_params;
1525     struct elink_vars           link_vars;
1526     uint32_t                    link_cnt;
1527     struct bxe_link_report_data last_reported_link;
1528     char mac_addr_str[32];
1529 
1530     int last_reported_link_state;
1531 
1532     int tx_ring_size;
1533     int rx_ring_size;
1534     int wol;
1535 
1536     int is_leader;
1537     int recovery_state;
1538 #define BXE_RECOVERY_DONE        1
1539 #define BXE_RECOVERY_INIT        2
1540 #define BXE_RECOVERY_WAIT        3
1541 #define BXE_RECOVERY_FAILED      4
1542 #define BXE_RECOVERY_NIC_LOADING 5
1543 
1544     uint32_t rx_mode;
1545 #define BXE_RX_MODE_NONE     0
1546 #define BXE_RX_MODE_NORMAL   1
1547 #define BXE_RX_MODE_ALLMULTI 2
1548 #define BXE_RX_MODE_PROMISC  3
1549 #define BXE_MAX_MULTICAST    64
1550 
1551     struct bxe_port port;
1552 
1553     struct cmng_init cmng;
1554 
1555     /* user configs */
1556     int      num_queues;
1557     int      max_rx_bufs;
1558     int      hc_rx_ticks;
1559     int      hc_tx_ticks;
1560     int      rx_budget;
1561     int      max_aggregation_size;
1562     int      mrrs;
1563     int      autogreeen;
1564 #define AUTO_GREEN_HW_DEFAULT 0
1565 #define AUTO_GREEN_FORCE_ON   1
1566 #define AUTO_GREEN_FORCE_OFF  2
1567     int      interrupt_mode;
1568 #define INTR_MODE_INTX 0
1569 #define INTR_MODE_MSI  1
1570 #define INTR_MODE_MSIX 2
1571     int      udp_rss;
1572 
1573     /* interrupt allocations */
1574     struct bxe_intr intr[MAX_RSS_CHAINS+1];
1575     int             intr_count;
1576     uint8_t         igu_dsb_id;
1577     uint8_t         igu_base_sb;
1578     uint8_t         igu_sb_cnt;
1579     //uint8_t         min_msix_vec_cnt;
1580     uint32_t        igu_base_addr;
1581     //bus_addr_t      def_status_blk_mapping;
1582     uint8_t         base_fw_ndsb;
1583 #define DEF_SB_IGU_ID 16
1584 #define DEF_SB_ID     HC_SP_SB_ID
1585 
1586     /* parent bus DMA tag  */
1587     bus_dma_tag_t parent_dma_tag;
1588 
1589     /* default status block */
1590     struct bxe_dma              def_sb_dma;
1591     struct host_sp_status_block *def_sb;
1592     uint16_t                    def_idx;
1593     uint16_t                    def_att_idx;
1594     uint32_t                    attn_state;
1595     struct attn_route           attn_group[MAX_DYNAMIC_ATTN_GRPS];
1596 
1597 /* general SP events - stats query, cfc delete, etc */
1598 #define HC_SP_INDEX_ETH_DEF_CONS         3
1599 /* EQ completions */
1600 #define HC_SP_INDEX_EQ_CONS              7
1601 /* FCoE L2 connection completions */
1602 #define HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS  6
1603 #define HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS  4
1604 /* iSCSI L2 */
1605 #define HC_SP_INDEX_ETH_ISCSI_CQ_CONS    5
1606 #define HC_SP_INDEX_ETH_ISCSI_RX_CQ_CONS 1
1607 
1608     /* event queue */
1609     struct bxe_dma        eq_dma;
1610     union event_ring_elem *eq;
1611     uint16_t              eq_prod;
1612     uint16_t              eq_cons;
1613     uint16_t              *eq_cons_sb;
1614 #define NUM_EQ_PAGES     1 /* must be a power of 2 */
1615 #define EQ_DESC_CNT_PAGE (BCM_PAGE_SIZE / sizeof(union event_ring_elem))
1616 #define EQ_DESC_MAX_PAGE (EQ_DESC_CNT_PAGE - 1)
1617 #define NUM_EQ_DESC      (EQ_DESC_CNT_PAGE * NUM_EQ_PAGES)
1618 #define EQ_DESC_MASK     (NUM_EQ_DESC - 1)
1619 #define MAX_EQ_AVAIL     (EQ_DESC_MAX_PAGE * NUM_EQ_PAGES - 2)
1620 /* depends on EQ_DESC_CNT_PAGE being a power of 2 */
1621 #define NEXT_EQ_IDX(x)                                      \
1622     ((((x) & EQ_DESC_MAX_PAGE) == (EQ_DESC_MAX_PAGE - 1)) ? \
1623          ((x) + 2) : ((x) + 1))
1624 /* depends on the above and on NUM_EQ_PAGES being a power of 2 */
1625 #define EQ_DESC(x) ((x) & EQ_DESC_MASK)
1626 
1627     /* slow path */
1628     struct bxe_dma      sp_dma;
1629     struct bxe_slowpath *sp;
1630     unsigned long       sp_state;
1631 
1632     /* slow path queue */
1633     struct bxe_dma spq_dma;
1634     struct eth_spe *spq;
1635 #define SP_DESC_CNT     (BCM_PAGE_SIZE / sizeof(struct eth_spe))
1636 #define MAX_SP_DESC_CNT (SP_DESC_CNT - 1)
1637 #define MAX_SPQ_PENDING 8
1638 
1639     uint16_t       spq_prod_idx;
1640     struct eth_spe *spq_prod_bd;
1641     struct eth_spe *spq_last_bd;
1642     uint16_t       *dsb_sp_prod;
1643     //uint16_t       *spq_hw_con;
1644     //uint16_t       spq_left;
1645 
1646     volatile unsigned long eq_spq_left; /* COMMON_xxx ramrod credit */
1647     volatile unsigned long cq_spq_left; /* ETH_xxx ramrod credit */
1648 
1649     /* fw decompression buffer */
1650     struct bxe_dma gz_buf_dma;
1651     void           *gz_buf;
1652     z_streamp      gz_strm;
1653     uint32_t       gz_outlen;
1654 #define GUNZIP_BUF(sc)    (sc->gz_buf)
1655 #define GUNZIP_OUTLEN(sc) (sc->gz_outlen)
1656 #define GUNZIP_PHYS(sc)   (sc->gz_buf_dma.paddr)
1657 #define FW_BUF_SIZE       0x40000
1658 
1659     const struct raw_op *init_ops;
1660     const uint16_t *init_ops_offsets; /* init block offsets inside init_ops */
1661     const uint32_t *init_data;        /* data blob, 32 bit granularity */
1662     uint32_t       init_mode_flags;
1663 #define INIT_MODE_FLAGS(sc) (sc->init_mode_flags)
1664     /* PRAM blobs - raw data */
1665     const uint8_t *tsem_int_table_data;
1666     const uint8_t *tsem_pram_data;
1667     const uint8_t *usem_int_table_data;
1668     const uint8_t *usem_pram_data;
1669     const uint8_t *xsem_int_table_data;
1670     const uint8_t *xsem_pram_data;
1671     const uint8_t *csem_int_table_data;
1672     const uint8_t *csem_pram_data;
1673 #define INIT_OPS(sc)                 (sc->init_ops)
1674 #define INIT_OPS_OFFSETS(sc)         (sc->init_ops_offsets)
1675 #define INIT_DATA(sc)                (sc->init_data)
1676 #define INIT_TSEM_INT_TABLE_DATA(sc) (sc->tsem_int_table_data)
1677 #define INIT_TSEM_PRAM_DATA(sc)      (sc->tsem_pram_data)
1678 #define INIT_USEM_INT_TABLE_DATA(sc) (sc->usem_int_table_data)
1679 #define INIT_USEM_PRAM_DATA(sc)      (sc->usem_pram_data)
1680 #define INIT_XSEM_INT_TABLE_DATA(sc) (sc->xsem_int_table_data)
1681 #define INIT_XSEM_PRAM_DATA(sc)      (sc->xsem_pram_data)
1682 #define INIT_CSEM_INT_TABLE_DATA(sc) (sc->csem_int_table_data)
1683 #define INIT_CSEM_PRAM_DATA(sc)      (sc->csem_pram_data)
1684 
1685     /* ILT
1686      * For max 196 cids (64*3 + non-eth), 32KB ILT page size and 1KB
1687      * context size we need 8 ILT entries.
1688      */
1689 #define ILT_MAX_L2_LINES 8
1690     struct hw_context context[ILT_MAX_L2_LINES];
1691     struct ecore_ilt *ilt;
1692 #define ILT_MAX_LINES 256
1693 
1694 /* max supported number of RSS queues: IGU SBs minus one for CNIC */
1695 #define BXE_MAX_RSS_COUNT(sc) ((sc)->igu_sb_cnt - CNIC_SUPPORT(sc))
1696 /* max CID count: Max RSS * Max_Tx_Multi_Cos + FCoE + iSCSI */
1697 #if 1
1698 #define BXE_L2_MAX_CID(sc)                                              \
1699     (BXE_MAX_RSS_COUNT(sc) * ECORE_MULTI_TX_COS + 2 * CNIC_SUPPORT(sc))
1700 #else
1701 #define BXE_L2_MAX_CID(sc) /* OOO + FWD */                              \
1702     (BXE_MAX_RSS_COUNT(sc) * ECORE_MULTI_TX_COS + 4 * CNIC_SUPPORT(sc))
1703 #endif
1704 #if 1
1705 #define BXE_L2_CID_COUNT(sc)                                             \
1706     (BXE_NUM_ETH_QUEUES(sc) * ECORE_MULTI_TX_COS + 2 * CNIC_SUPPORT(sc))
1707 #else
1708 #define BXE_L2_CID_COUNT(sc) /* OOO + FWD */                             \
1709     (BXE_NUM_ETH_QUEUES(sc) * ECORE_MULTI_TX_COS + 4 * CNIC_SUPPORT(sc))
1710 #endif
1711 #define L2_ILT_LINES(sc)                                \
1712     (DIV_ROUND_UP(BXE_L2_CID_COUNT(sc), ILT_PAGE_CIDS))
1713 
1714     int qm_cid_count;
1715 
1716     uint8_t dropless_fc;
1717 
1718     /* total number of FW statistics requests */
1719     uint8_t fw_stats_num;
1720     /*
1721      * This is a memory buffer that will contain both statistics ramrod
1722      * request and data.
1723      */
1724     struct bxe_dma fw_stats_dma;
1725     /*
1726      * FW statistics request shortcut (points at the beginning of fw_stats
1727      * buffer).
1728      */
1729     int                     fw_stats_req_size;
1730     struct bxe_fw_stats_req *fw_stats_req;
1731     bus_addr_t              fw_stats_req_mapping;
1732     /*
1733      * FW statistics data shortcut (points at the beginning of fw_stats
1734      * buffer + fw_stats_req_size).
1735      */
1736     int                      fw_stats_data_size;
1737     struct bxe_fw_stats_data *fw_stats_data;
1738     bus_addr_t               fw_stats_data_mapping;
1739 
1740     /* tracking a pending STAT_QUERY ramrod */
1741     uint16_t stats_pending;
1742     /* number of completed statistics ramrods */
1743     uint16_t stats_comp;
1744     uint16_t stats_counter;
1745     uint8_t  stats_init;
1746     int      stats_state;
1747 
1748     struct bxe_eth_stats         eth_stats;
1749     struct host_func_stats       func_stats;
1750     struct bxe_eth_stats_old     eth_stats_old;
1751     struct bxe_net_stats_old     net_stats_old;
1752     struct bxe_fw_port_stats_old fw_stats_old;
1753 
1754     struct dmae_cmd stats_dmae; /* used by dmae command loader */
1755     int                 executer_idx;
1756 
1757     int mtu;
1758 
1759     /* LLDP params */
1760     struct bxe_config_lldp_params lldp_config_params;
1761     /* DCB support on/off */
1762     int dcb_state;
1763 #define BXE_DCB_STATE_OFF 0
1764 #define BXE_DCB_STATE_ON  1
1765     /* DCBX engine mode */
1766     int dcbx_enabled;
1767 #define BXE_DCBX_ENABLED_OFF        0
1768 #define BXE_DCBX_ENABLED_ON_NEG_OFF 1
1769 #define BXE_DCBX_ENABLED_ON_NEG_ON  2
1770 #define BXE_DCBX_ENABLED_INVALID    -1
1771     uint8_t dcbx_mode_uset;
1772     struct bxe_config_dcbx_params dcbx_config_params;
1773     struct bxe_dcbx_port_params   dcbx_port_params;
1774     int dcb_version;
1775 
1776     uint8_t cnic_support;
1777     uint8_t cnic_enabled;
1778     uint8_t cnic_loaded;
1779 #define CNIC_SUPPORT(sc) 0 /* ((sc)->cnic_support) */
1780 #define CNIC_ENABLED(sc) 0 /* ((sc)->cnic_enabled) */
1781 #define CNIC_LOADED(sc)  0 /* ((sc)->cnic_loaded) */
1782 
1783     /* multiple tx classes of service */
1784     uint8_t max_cos;
1785 #define BXE_MAX_PRIORITY 8
1786     /* priority to cos mapping */
1787     uint8_t prio_to_cos[BXE_MAX_PRIORITY];
1788 
1789     int panic;
1790 
1791     struct cdev *ioctl_dev;
1792 
1793     void *grc_dump;
1794     unsigned int trigger_grcdump;
1795     unsigned int  grcdump_done;
1796     unsigned int grcdump_started;
1797     int bxe_pause_param;
1798     void *eeprom;
1799 }; /* struct bxe_softc */
1800 
1801 /* IOCTL sub-commands for edebug and firmware upgrade */
1802 #define BXE_IOC_RD_NVRAM        1
1803 #define BXE_IOC_WR_NVRAM        2
1804 #define BXE_IOC_STATS_SHOW_NUM  3
1805 #define BXE_IOC_STATS_SHOW_STR  4
1806 #define BXE_IOC_STATS_SHOW_CNT  5
1807 
1808 struct bxe_nvram_data {
1809     uint32_t op; /* ioctl sub-command */
1810     uint32_t offset;
1811     uint32_t len;
1812     uint32_t value[1]; /* variable */
1813 };
1814 
1815 union bxe_stats_show_data {
1816     uint32_t op; /* ioctl sub-command */
1817 
1818     struct {
1819         uint32_t num; /* return number of stats */
1820         uint32_t len; /* length of each string item */
1821     } desc;
1822 
1823     /* variable length... */
1824     char str[1]; /* holds names of desc.num stats, each desc.len in length */
1825 
1826     /* variable length... */
1827     uint64_t stats[1]; /* holds all stats */
1828 };
1829 
1830 /* function init flags */
1831 #define FUNC_FLG_RSS     0x0001
1832 #define FUNC_FLG_STATS   0x0002
1833 /* FUNC_FLG_UNMATCHED       0x0004 */
1834 #define FUNC_FLG_TPA     0x0008
1835 #define FUNC_FLG_SPQ     0x0010
1836 #define FUNC_FLG_LEADING 0x0020 /* PF only */
1837 
1838 struct bxe_func_init_params {
1839     bus_addr_t fw_stat_map; /* (dma) valid if FUNC_FLG_STATS */
1840     bus_addr_t spq_map;     /* (dma) valid if FUNC_FLG_SPQ */
1841     uint16_t   func_flgs;
1842     uint16_t   func_id;     /* abs function id */
1843     uint16_t   pf_id;
1844     uint16_t   spq_prod;    /* valid if FUNC_FLG_SPQ */
1845 };
1846 
1847 /* memory resources reside at BARs 0, 2, 4 */
1848 /* Run `pciconf -lb` to see mappings */
1849 #define BAR0 0
1850 #define BAR1 2
1851 #define BAR2 4
1852 
1853 #ifdef BXE_REG_NO_INLINE
1854 
1855 uint8_t bxe_reg_read8(struct bxe_softc *sc, bus_size_t offset);
1856 uint16_t bxe_reg_read16(struct bxe_softc *sc, bus_size_t offset);
1857 uint32_t bxe_reg_read32(struct bxe_softc *sc, bus_size_t offset);
1858 
1859 void bxe_reg_write8(struct bxe_softc *sc, bus_size_t offset, uint8_t val);
1860 void bxe_reg_write16(struct bxe_softc *sc, bus_size_t offset, uint16_t val);
1861 void bxe_reg_write32(struct bxe_softc *sc, bus_size_t offset, uint32_t val);
1862 
1863 #define REG_RD8(sc, offset)  bxe_reg_read8(sc, offset)
1864 #define REG_RD16(sc, offset) bxe_reg_read16(sc, offset)
1865 #define REG_RD32(sc, offset) bxe_reg_read32(sc, offset)
1866 
1867 #define REG_WR8(sc, offset, val)  bxe_reg_write8(sc, offset, val)
1868 #define REG_WR16(sc, offset, val) bxe_reg_write16(sc, offset, val)
1869 #define REG_WR32(sc, offset, val) bxe_reg_write32(sc, offset, val)
1870 
1871 #else /* not BXE_REG_NO_INLINE */
1872 
1873 #define REG_WR8(sc, offset, val)            \
1874     bus_space_write_1(sc->bar[BAR0].tag,    \
1875                       sc->bar[BAR0].handle, \
1876                       offset, val)
1877 
1878 #define REG_WR16(sc, offset, val)           \
1879     bus_space_write_2(sc->bar[BAR0].tag,    \
1880                       sc->bar[BAR0].handle, \
1881                       offset, val)
1882 
1883 #define REG_WR32(sc, offset, val)           \
1884     bus_space_write_4(sc->bar[BAR0].tag,    \
1885                       sc->bar[BAR0].handle, \
1886                       offset, val)
1887 
1888 #define REG_RD8(sc, offset)                \
1889     bus_space_read_1(sc->bar[BAR0].tag,    \
1890                      sc->bar[BAR0].handle, \
1891                      offset)
1892 
1893 #define REG_RD16(sc, offset)               \
1894     bus_space_read_2(sc->bar[BAR0].tag,    \
1895                      sc->bar[BAR0].handle, \
1896                      offset)
1897 
1898 #define REG_RD32(sc, offset)               \
1899     bus_space_read_4(sc->bar[BAR0].tag,    \
1900                      sc->bar[BAR0].handle, \
1901                      offset)
1902 
1903 #endif /* BXE_REG_NO_INLINE */
1904 
1905 #define REG_RD(sc, offset)      REG_RD32(sc, offset)
1906 #define REG_WR(sc, offset, val) REG_WR32(sc, offset, val)
1907 
1908 #define REG_RD_IND(sc, offset)      bxe_reg_rd_ind(sc, offset)
1909 #define REG_WR_IND(sc, offset, val) bxe_reg_wr_ind(sc, offset, val)
1910 
1911 #define BXE_SP(sc, var) (&(sc)->sp->var)
1912 #define BXE_SP_MAPPING(sc, var) \
1913     (sc->sp_dma.paddr + offsetof(struct bxe_slowpath, var))
1914 
1915 #define BXE_FP(sc, nr, var) ((sc)->fp[(nr)].var)
1916 #define BXE_SP_OBJ(sc, fp) ((sc)->sp_objs[(fp)->index])
1917 
1918 #define REG_RD_DMAE(sc, offset, valp, len32)               \
1919     do {                                                   \
1920         bxe_read_dmae(sc, offset, len32);                  \
1921         memcpy(valp, BXE_SP(sc, wb_data[0]), (len32) * 4); \
1922     } while (0)
1923 
1924 #define REG_WR_DMAE(sc, offset, valp, len32)                            \
1925     do {                                                                \
1926         memcpy(BXE_SP(sc, wb_data[0]), valp, (len32) * 4);              \
1927         bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data), offset, len32); \
1928     } while (0)
1929 
1930 #define REG_WR_DMAE_LEN(sc, offset, valp, len32) \
1931     REG_WR_DMAE(sc, offset, valp, len32)
1932 
1933 #define REG_RD_DMAE_LEN(sc, offset, valp, len32) \
1934     REG_RD_DMAE(sc, offset, valp, len32)
1935 
1936 #define VIRT_WR_DMAE_LEN(sc, data, addr, len32, le32_swap)         \
1937     do {                                                           \
1938         /* if (le32_swap) {                                     */ \
1939         /*    BLOGW(sc, "VIRT_WR_DMAE_LEN with le32_swap=1\n"); */ \
1940         /* }                                                    */ \
1941         memcpy(GUNZIP_BUF(sc), data, len32 * 4);                   \
1942         ecore_write_big_buf_wb(sc, addr, len32);                   \
1943     } while (0)
1944 
1945 #define BXE_DB_MIN_SHIFT 3   /* 8 bytes */
1946 #define BXE_DB_SHIFT     7   /* 128 bytes */
1947 #if (BXE_DB_SHIFT < BXE_DB_MIN_SHIFT)
1948 #error "Minimum DB doorbell stride is 8"
1949 #endif
1950 #define DPM_TRIGGER_TYPE 0x40
1951 #define DOORBELL(sc, cid, val)                                              \
1952     do {                                                                    \
1953         bus_space_write_4(sc->bar[BAR1].tag, sc->bar[BAR1].handle,          \
1954                           ((sc->doorbell_size * (cid)) + DPM_TRIGGER_TYPE), \
1955                           (uint32_t)val);                                   \
1956     } while(0)
1957 
1958 #define SHMEM_ADDR(sc, field)                                       \
1959     (sc->devinfo.shmem_base + offsetof(struct shmem_region, field))
1960 #define SHMEM_RD(sc, field)      REG_RD(sc, SHMEM_ADDR(sc, field))
1961 #define SHMEM_RD16(sc, field)    REG_RD16(sc, SHMEM_ADDR(sc, field))
1962 #define SHMEM_WR(sc, field, val) REG_WR(sc, SHMEM_ADDR(sc, field), val)
1963 
1964 #define SHMEM2_ADDR(sc, field)                                        \
1965     (sc->devinfo.shmem2_base + offsetof(struct shmem2_region, field))
1966 #define SHMEM2_HAS(sc, field)                                            \
1967     (sc->devinfo.shmem2_base && (REG_RD(sc, SHMEM2_ADDR(sc, size)) >     \
1968                                  offsetof(struct shmem2_region, field)))
1969 #define SHMEM2_RD(sc, field)      REG_RD(sc, SHMEM2_ADDR(sc, field))
1970 #define SHMEM2_WR(sc, field, val) REG_WR(sc, SHMEM2_ADDR(sc, field), val)
1971 
1972 #define MFCFG_ADDR(sc, field)                                  \
1973     (sc->devinfo.mf_cfg_base + offsetof(struct mf_cfg, field))
1974 #define MFCFG_RD(sc, field)      REG_RD(sc, MFCFG_ADDR(sc, field))
1975 #define MFCFG_RD16(sc, field)    REG_RD16(sc, MFCFG_ADDR(sc, field))
1976 #define MFCFG_WR(sc, field, val) REG_WR(sc, MFCFG_ADDR(sc, field), val)
1977 
1978 /* DMAE command defines */
1979 
1980 #define DMAE_TIMEOUT      -1
1981 #define DMAE_PCI_ERROR    -2 /* E2 and onward */
1982 #define DMAE_NOT_RDY      -3
1983 #define DMAE_PCI_ERR_FLAG 0x80000000
1984 
1985 #define DMAE_SRC_PCI      0
1986 #define DMAE_SRC_GRC      1
1987 
1988 #define DMAE_DST_NONE     0
1989 #define DMAE_DST_PCI      1
1990 #define DMAE_DST_GRC      2
1991 
1992 #define DMAE_COMP_PCI     0
1993 #define DMAE_COMP_GRC     1
1994 
1995 #define DMAE_COMP_REGULAR 0
1996 #define DMAE_COM_SET_ERR  1
1997 
1998 #define DMAE_CMD_SRC_PCI (DMAE_SRC_PCI << DMAE_CMD_SRC_SHIFT)
1999 #define DMAE_CMD_SRC_GRC (DMAE_SRC_GRC << DMAE_CMD_SRC_SHIFT)
2000 #define DMAE_CMD_DST_PCI (DMAE_DST_PCI << DMAE_CMD_DST_SHIFT)
2001 #define DMAE_CMD_DST_GRC (DMAE_DST_GRC << DMAE_CMD_DST_SHIFT)
2002 
2003 #define DMAE_CMD_C_DST_PCI (DMAE_COMP_PCI << DMAE_CMD_C_DST_SHIFT)
2004 #define DMAE_CMD_C_DST_GRC (DMAE_COMP_GRC << DMAE_CMD_C_DST_SHIFT)
2005 
2006 #define DMAE_CMD_ENDIANITY_NO_SWAP   (0 << DMAE_CMD_ENDIANITY_SHIFT)
2007 #define DMAE_CMD_ENDIANITY_B_SWAP    (1 << DMAE_CMD_ENDIANITY_SHIFT)
2008 #define DMAE_CMD_ENDIANITY_DW_SWAP   (2 << DMAE_CMD_ENDIANITY_SHIFT)
2009 #define DMAE_CMD_ENDIANITY_B_DW_SWAP (3 << DMAE_CMD_ENDIANITY_SHIFT)
2010 
2011 #define DMAE_CMD_PORT_0 0
2012 #define DMAE_CMD_PORT_1 DMAE_CMD_PORT
2013 
2014 #define DMAE_SRC_PF 0
2015 #define DMAE_SRC_VF 1
2016 
2017 #define DMAE_DST_PF 0
2018 #define DMAE_DST_VF 1
2019 
2020 #define DMAE_C_SRC 0
2021 #define DMAE_C_DST 1
2022 
2023 #define DMAE_LEN32_RD_MAX     0x80
2024 #define DMAE_LEN32_WR_MAX(sc) (CHIP_IS_E1(sc) ? 0x400 : 0x2000)
2025 
2026 #define DMAE_COMP_VAL 0x60d0d0ae /* E2 and beyond, upper bit indicates error */
2027 
2028 #define MAX_DMAE_C_PER_PORT 8
2029 #define INIT_DMAE_C(sc)     ((SC_PORT(sc) * MAX_DMAE_C_PER_PORT) + SC_VN(sc))
2030 #define PMF_DMAE_C(sc)      ((SC_PORT(sc) * MAX_DMAE_C_PER_PORT) + E1HVN_MAX)
2031 
2032 static const uint32_t dmae_reg_go_c[] = {
2033     DMAE_REG_GO_C0,  DMAE_REG_GO_C1,  DMAE_REG_GO_C2,  DMAE_REG_GO_C3,
2034     DMAE_REG_GO_C4,  DMAE_REG_GO_C5,  DMAE_REG_GO_C6,  DMAE_REG_GO_C7,
2035     DMAE_REG_GO_C8,  DMAE_REG_GO_C9,  DMAE_REG_GO_C10, DMAE_REG_GO_C11,
2036     DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15
2037 };
2038 
2039 #define ATTN_NIG_FOR_FUNC     (1L << 8)
2040 #define ATTN_SW_TIMER_4_FUNC  (1L << 9)
2041 #define GPIO_2_FUNC           (1L << 10)
2042 #define GPIO_3_FUNC           (1L << 11)
2043 #define GPIO_4_FUNC           (1L << 12)
2044 #define ATTN_GENERAL_ATTN_1   (1L << 13)
2045 #define ATTN_GENERAL_ATTN_2   (1L << 14)
2046 #define ATTN_GENERAL_ATTN_3   (1L << 15)
2047 #define ATTN_GENERAL_ATTN_4   (1L << 13)
2048 #define ATTN_GENERAL_ATTN_5   (1L << 14)
2049 #define ATTN_GENERAL_ATTN_6   (1L << 15)
2050 #define ATTN_HARD_WIRED_MASK  0xff00
2051 #define ATTENTION_ID          4
2052 
2053 #define AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR \
2054     AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR
2055 
2056 #define MAX_IGU_ATTN_ACK_TO 100
2057 
2058 #define STORM_ASSERT_ARRAY_SIZE 50
2059 
2060 #define BXE_PMF_LINK_ASSERT(sc) \
2061     GENERAL_ATTEN_OFFSET(LINK_SYNC_ATTENTION_BIT_FUNC_0 + SC_FUNC(sc))
2062 
2063 #define BXE_MC_ASSERT_BITS \
2064     (GENERAL_ATTEN_OFFSET(TSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2065      GENERAL_ATTEN_OFFSET(USTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2066      GENERAL_ATTEN_OFFSET(CSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2067      GENERAL_ATTEN_OFFSET(XSTORM_FATAL_ASSERT_ATTENTION_BIT))
2068 
2069 #define BXE_MCP_ASSERT \
2070     GENERAL_ATTEN_OFFSET(MCP_FATAL_ASSERT_ATTENTION_BIT)
2071 
2072 #define BXE_GRC_TIMEOUT GENERAL_ATTEN_OFFSET(LATCHED_ATTN_TIMEOUT_GRC)
2073 #define BXE_GRC_RSV     (GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCR) | \
2074                          GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCT) | \
2075                          GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCN) | \
2076                          GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCU) | \
2077                          GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCP) | \
2078                          GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RSVD_GRC))
2079 
2080 #define MULTI_MASK 0x7f
2081 
2082 #define PFS_PER_PORT(sc)                               \
2083     ((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4)
2084 #define SC_MAX_VN_NUM(sc) PFS_PER_PORT(sc)
2085 
2086 #define FIRST_ABS_FUNC_IN_PORT(sc)                    \
2087     ((CHIP_PORT_MODE(sc) == CHIP_PORT_MODE_NONE) ?    \
2088      PORT_ID(sc) : (PATH_ID(sc) + (2 * PORT_ID(sc))))
2089 
2090 #define FOREACH_ABS_FUNC_IN_PORT(sc, i)            \
2091     for ((i) = FIRST_ABS_FUNC_IN_PORT(sc);         \
2092          (i) < MAX_FUNC_NUM;                       \
2093          (i) += (MAX_FUNC_NUM / PFS_PER_PORT(sc)))
2094 
2095 #define BXE_SWCID_SHIFT 17
2096 #define BXE_SWCID_MASK  ((0x1 << BXE_SWCID_SHIFT) - 1)
2097 
2098 #define SW_CID(x)  (le32toh(x) & BXE_SWCID_MASK)
2099 #define CQE_CMD(x) (le32toh(x) >> COMMON_RAMROD_ETH_RX_CQE_CMD_ID_SHIFT)
2100 
2101 #define CQE_TYPE(cqe_fp_flags)   ((cqe_fp_flags) & ETH_FAST_PATH_RX_CQE_TYPE)
2102 #define CQE_TYPE_START(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_START_AGG)
2103 #define CQE_TYPE_STOP(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_STOP_AGG)
2104 #define CQE_TYPE_SLOW(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_RAMROD)
2105 #define CQE_TYPE_FAST(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_FASTPATH)
2106 
2107 /* must be used on a CID before placing it on a HW ring */
2108 #define HW_CID(sc, x) \
2109     ((SC_PORT(sc) << 23) | (SC_VN(sc) << BXE_SWCID_SHIFT) | (x))
2110 
2111 #define SPEED_10    10
2112 #define SPEED_100   100
2113 #define SPEED_1000  1000
2114 #define SPEED_2500  2500
2115 #define SPEED_10000 10000
2116 
2117 #define PCI_PM_D0    1
2118 #define PCI_PM_D3hot 2
2119 
2120 #ifndef DUPLEX_UNKNOWN
2121 #define DUPLEX_UNKNOWN (0xff)
2122 #endif
2123 
2124 #ifndef SPEED_UNKNOWN
2125 #define SPEED_UNKNOWN (-1)
2126 #endif
2127 
2128 /* Enable or disable autonegotiation. */
2129 #define AUTONEG_DISABLE         0x00
2130 #define AUTONEG_ENABLE          0x01
2131 
2132 /* Which connector port. */
2133 #define PORT_TP                 0x00
2134 #define PORT_AUI                0x01
2135 #define PORT_MII                0x02
2136 #define PORT_FIBRE              0x03
2137 #define PORT_BNC                0x04
2138 #define PORT_DA                 0x05
2139 #define PORT_NONE               0xef
2140 #define PORT_OTHER              0xff
2141 
2142 int  bxe_test_bit(int nr, volatile unsigned long * addr);
2143 void bxe_set_bit(unsigned int nr, volatile unsigned long * addr);
2144 void bxe_clear_bit(int nr, volatile unsigned long * addr);
2145 int  bxe_test_and_set_bit(int nr, volatile unsigned long * addr);
2146 int  bxe_test_and_clear_bit(int nr, volatile unsigned long * addr);
2147 int  bxe_cmpxchg(volatile int *addr, int old, int new);
2148 
2149 void bxe_reg_wr_ind(struct bxe_softc *sc, uint32_t addr,
2150                     uint32_t val);
2151 uint32_t bxe_reg_rd_ind(struct bxe_softc *sc, uint32_t addr);
2152 
2153 
2154 int bxe_dma_alloc(struct bxe_softc *sc, bus_size_t size,
2155                   struct bxe_dma *dma, const char *msg);
2156 void bxe_dma_free(struct bxe_softc *sc, struct bxe_dma *dma);
2157 
2158 uint32_t bxe_dmae_opcode_add_comp(uint32_t opcode, uint8_t comp_type);
2159 uint32_t bxe_dmae_opcode_clr_src_reset(uint32_t opcode);
2160 uint32_t bxe_dmae_opcode(struct bxe_softc *sc, uint8_t src_type,
2161                          uint8_t dst_type, uint8_t with_comp,
2162                          uint8_t comp_type);
2163 void bxe_post_dmae(struct bxe_softc *sc, struct dmae_cmd *dmae, int idx);
2164 void bxe_read_dmae(struct bxe_softc *sc, uint32_t src_addr, uint32_t len32);
2165 void bxe_write_dmae(struct bxe_softc *sc, bus_addr_t dma_addr,
2166                     uint32_t dst_addr, uint32_t len32);
2167 void bxe_write_dmae_phys_len(struct bxe_softc *sc, bus_addr_t phys_addr,
2168                              uint32_t addr, uint32_t len);
2169 
2170 void bxe_set_ctx_validation(struct bxe_softc *sc, struct eth_context *cxt,
2171                             uint32_t cid);
2172 void bxe_update_coalesce_sb_index(struct bxe_softc *sc, uint8_t fw_sb_id,
2173                                   uint8_t sb_index, uint8_t disable,
2174                                   uint16_t usec);
2175 
2176 int bxe_sp_post(struct bxe_softc *sc, int command, int cid,
2177                 uint32_t data_hi, uint32_t data_lo, int cmd_type);
2178 
2179 void bxe_igu_ack_sb(struct bxe_softc *sc, uint8_t igu_sb_id,
2180                     uint8_t segment, uint16_t index, uint8_t op,
2181                     uint8_t update);
2182 
2183 void ecore_init_e1_firmware(struct bxe_softc *sc);
2184 void ecore_init_e1h_firmware(struct bxe_softc *sc);
2185 void ecore_init_e2_firmware(struct bxe_softc *sc);
2186 
2187 void ecore_storm_memset_struct(struct bxe_softc *sc, uint32_t addr,
2188                                size_t size, uint32_t *data);
2189 
2190 /*********************/
2191 /* LOGGING AND DEBUG */
2192 /*********************/
2193 
2194 /* debug logging codepaths */
2195 #define DBG_LOAD   0x00000001 /* load and unload    */
2196 #define DBG_INTR   0x00000002 /* interrupt handling */
2197 #define DBG_SP     0x00000004 /* slowpath handling  */
2198 #define DBG_STATS  0x00000008 /* stats updates      */
2199 #define DBG_TX     0x00000010 /* packet transmit    */
2200 #define DBG_RX     0x00000020 /* packet receive     */
2201 #define DBG_PHY    0x00000040 /* phy/link handling  */
2202 #define DBG_IOCTL  0x00000080 /* ioctl handling     */
2203 #define DBG_MBUF   0x00000100 /* dumping mbuf info  */
2204 #define DBG_REGS   0x00000200 /* register access    */
2205 #define DBG_LRO    0x00000400 /* lro processing     */
2206 #define DBG_ASSERT 0x80000000 /* debug assert       */
2207 #define DBG_ALL    0xFFFFFFFF /* flying monkeys     */
2208 
2209 #define DBASSERT(sc, exp, msg)                         \
2210     do {                                               \
2211         if (__predict_false(sc->debug & DBG_ASSERT)) { \
2212             if (__predict_false(!(exp))) {             \
2213                 panic msg;                             \
2214             }                                          \
2215         }                                              \
2216     } while (0)
2217 
2218 /* log a debug message */
2219 #define BLOGD(sc, codepath, format, args...)           \
2220     do {                                               \
2221         if (__predict_false(sc->debug & (codepath))) { \
2222             device_printf((sc)->dev,                   \
2223                           "%s(%s:%d) " format,         \
2224                           __FUNCTION__,                \
2225                           __FILE__,                    \
2226                           __LINE__,                    \
2227                           ## args);                    \
2228         }                                              \
2229     } while(0)
2230 
2231 /* log a info message */
2232 #define BLOGI(sc, format, args...)             \
2233     do {                                       \
2234         if (__predict_false(sc->debug)) {      \
2235             device_printf((sc)->dev,           \
2236                           "%s(%s:%d) " format, \
2237                           __FUNCTION__,        \
2238                           __FILE__,            \
2239                           __LINE__,            \
2240                           ## args);            \
2241         } else {                               \
2242             device_printf((sc)->dev,           \
2243                           format,              \
2244                           ## args);            \
2245         }                                      \
2246     } while(0)
2247 
2248 /* log a warning message */
2249 #define BLOGW(sc, format, args...)                      \
2250     do {                                                \
2251         if (__predict_false(sc->debug)) {               \
2252             device_printf((sc)->dev,                    \
2253                           "%s(%s:%d) WARNING: " format, \
2254                           __FUNCTION__,                 \
2255                           __FILE__,                     \
2256                           __LINE__,                     \
2257                           ## args);                     \
2258         } else {                                        \
2259             device_printf((sc)->dev,                    \
2260                           "WARNING: " format,           \
2261                           ## args);                     \
2262         }                                               \
2263     } while(0)
2264 
2265 /* log a error message */
2266 #define BLOGE(sc, format, args...)                    \
2267     do {                                              \
2268         if (__predict_false(sc->debug)) {             \
2269             device_printf((sc)->dev,                  \
2270                           "%s(%s:%d) ERROR: " format, \
2271                           __FUNCTION__,               \
2272                           __FILE__,                   \
2273                           __LINE__,                   \
2274                           ## args);                   \
2275         } else {                                      \
2276             device_printf((sc)->dev,                  \
2277                           "ERROR: " format,           \
2278                           ## args);                   \
2279         }                                             \
2280     } while(0)
2281 
2282 #ifdef ECORE_STOP_ON_ERROR
2283 
2284 #define bxe_panic(sc, msg) \
2285     do {                   \
2286         panic msg;         \
2287     } while (0)
2288 
2289 #else
2290 
2291 #define bxe_panic(sc, msg) \
2292     device_printf((sc)->dev, "%s (%s,%d)\n", __FUNCTION__, __FILE__, __LINE__);
2293 
2294 #endif
2295 
2296 #define CATC_TRIGGER(sc, data) REG_WR((sc), 0x2000, (data));
2297 #define CATC_TRIGGER_START(sc) CATC_TRIGGER((sc), 0xcafecafe)
2298 
2299 void bxe_dump_mem(struct bxe_softc *sc, char *tag,
2300                   uint8_t *mem, uint32_t len);
2301 void bxe_dump_mbuf_data(struct bxe_softc *sc, char *pTag,
2302                         struct mbuf *m, uint8_t contents);
2303 
2304 #if __FreeBSD_version >= 800000
2305 #if (__FreeBSD_version >= 1001513 && __FreeBSD_version < 1100000) ||\
2306     __FreeBSD_version >= 1100048
2307 #define BXE_SET_FLOWID(m) M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE)
2308 #define BXE_VALID_FLOWID(m) (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
2309 #else
2310 #define BXE_VALID_FLOWID(m) ((m->m_flags & M_FLOWID) != 0)
2311 #define BXE_SET_FLOWID(m) m->m_flags |= M_FLOWID
2312 #endif
2313 #endif /* #if __FreeBSD_version >= 800000 */
2314 
2315 /***********/
2316 /* INLINES */
2317 /***********/
2318 
2319 static inline uint32_t
2320 reg_poll(struct bxe_softc *sc,
2321          uint32_t         reg,
2322          uint32_t         expected,
2323          int              ms,
2324          int              wait)
2325 {
2326     uint32_t val;
2327 
2328     do {
2329         val = REG_RD(sc, reg);
2330         if (val == expected) {
2331             break;
2332         }
2333         ms -= wait;
2334         DELAY(wait * 1000);
2335     } while (ms > 0);
2336 
2337     return (val);
2338 }
2339 
2340 static inline void
2341 bxe_update_fp_sb_idx(struct bxe_fastpath *fp)
2342 {
2343     mb(); /* status block is written to by the chip */
2344     fp->fp_hc_idx = fp->sb_running_index[SM_RX_ID];
2345 }
2346 
2347 static inline void
2348 bxe_igu_ack_sb_gen(struct bxe_softc *sc,
2349                    uint8_t          igu_sb_id,
2350                    uint8_t          segment,
2351                    uint16_t         index,
2352                    uint8_t          op,
2353                    uint8_t          update,
2354                    uint32_t         igu_addr)
2355 {
2356     struct igu_regular cmd_data = {0};
2357 
2358     cmd_data.sb_id_and_flags =
2359         ((index << IGU_REGULAR_SB_INDEX_SHIFT) |
2360          (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
2361          (update << IGU_REGULAR_BUPDATE_SHIFT) |
2362          (op << IGU_REGULAR_ENABLE_INT_SHIFT));
2363 
2364     BLOGD(sc, DBG_INTR, "write 0x%08x to IGU addr 0x%x\n",
2365             cmd_data.sb_id_and_flags, igu_addr);
2366     REG_WR(sc, igu_addr, cmd_data.sb_id_and_flags);
2367 
2368     /* Make sure that ACK is written */
2369     bus_space_barrier(sc->bar[0].tag, sc->bar[0].handle, 0, 0,
2370                       BUS_SPACE_BARRIER_WRITE);
2371     mb();
2372 }
2373 
2374 static inline void
2375 bxe_hc_ack_sb(struct bxe_softc *sc,
2376               uint8_t          sb_id,
2377               uint8_t          storm,
2378               uint16_t         index,
2379               uint8_t          op,
2380               uint8_t          update)
2381 {
2382     uint32_t hc_addr = (HC_REG_COMMAND_REG + SC_PORT(sc)*32 +
2383                         COMMAND_REG_INT_ACK);
2384     struct igu_ack_register igu_ack;
2385 
2386     igu_ack.status_block_index = index;
2387     igu_ack.sb_id_and_flags =
2388         ((sb_id << IGU_ACK_REGISTER_STATUS_BLOCK_ID_SHIFT) |
2389          (storm << IGU_ACK_REGISTER_STORM_ID_SHIFT) |
2390          (update << IGU_ACK_REGISTER_UPDATE_INDEX_SHIFT) |
2391          (op << IGU_ACK_REGISTER_INTERRUPT_MODE_SHIFT));
2392 
2393     REG_WR(sc, hc_addr, (*(uint32_t *)&igu_ack));
2394 
2395     /* Make sure that ACK is written */
2396     bus_space_barrier(sc->bar[0].tag, sc->bar[0].handle, 0, 0,
2397                       BUS_SPACE_BARRIER_WRITE);
2398     mb();
2399 }
2400 
2401 static inline void
2402 bxe_ack_sb(struct bxe_softc *sc,
2403            uint8_t          igu_sb_id,
2404            uint8_t          storm,
2405            uint16_t         index,
2406            uint8_t          op,
2407            uint8_t          update)
2408 {
2409     if (sc->devinfo.int_block == INT_BLOCK_HC)
2410         bxe_hc_ack_sb(sc, igu_sb_id, storm, index, op, update);
2411     else {
2412         uint8_t segment;
2413         if (CHIP_INT_MODE_IS_BC(sc)) {
2414             segment = storm;
2415         } else if (igu_sb_id != sc->igu_dsb_id) {
2416             segment = IGU_SEG_ACCESS_DEF;
2417         } else if (storm == ATTENTION_ID) {
2418             segment = IGU_SEG_ACCESS_ATTN;
2419         } else {
2420             segment = IGU_SEG_ACCESS_DEF;
2421         }
2422         bxe_igu_ack_sb(sc, igu_sb_id, segment, index, op, update);
2423     }
2424 }
2425 
2426 static inline uint16_t
2427 bxe_hc_ack_int(struct bxe_softc *sc)
2428 {
2429     uint32_t hc_addr = (HC_REG_COMMAND_REG + SC_PORT(sc)*32 +
2430                         COMMAND_REG_SIMD_MASK);
2431     uint32_t result = REG_RD(sc, hc_addr);
2432 
2433     mb();
2434     return (result);
2435 }
2436 
2437 static inline uint16_t
2438 bxe_igu_ack_int(struct bxe_softc *sc)
2439 {
2440     uint32_t igu_addr = (BAR_IGU_INTMEM + IGU_REG_SISR_MDPC_WMASK_LSB_UPPER*8);
2441     uint32_t result = REG_RD(sc, igu_addr);
2442 
2443     BLOGD(sc, DBG_INTR, "read 0x%08x from IGU addr 0x%x\n",
2444           result, igu_addr);
2445 
2446     mb();
2447     return (result);
2448 }
2449 
2450 static inline uint16_t
2451 bxe_ack_int(struct bxe_softc *sc)
2452 {
2453     mb();
2454     if (sc->devinfo.int_block == INT_BLOCK_HC) {
2455         return (bxe_hc_ack_int(sc));
2456     } else {
2457         return (bxe_igu_ack_int(sc));
2458     }
2459 }
2460 
2461 static inline int
2462 func_by_vn(struct bxe_softc *sc,
2463            int              vn)
2464 {
2465     return (2 * vn + SC_PORT(sc));
2466 }
2467 
2468 /*
2469  * Statistics ID are global per chip/path, while Client IDs for E1x
2470  * are per port.
2471  */
2472 static inline uint8_t
2473 bxe_stats_id(struct bxe_fastpath *fp)
2474 {
2475     struct bxe_softc *sc = fp->sc;
2476 
2477     if (!CHIP_IS_E1x(sc)) {
2478         return (fp->cl_id);
2479     }
2480 
2481     return (fp->cl_id + SC_PORT(sc) * FP_SB_MAX_E1x);
2482 }
2483 
2484 #endif /* __BXE_H__ */
2485 
2486