1 /*- 2 * Copyright (c) 2007-2013 Broadcom Corporation. All rights reserved. 3 * 4 * Eric Davis <edavis@broadcom.com> 5 * David Christensen <davidch@broadcom.com> 6 * Gary Zambrano <zambrano@broadcom.com> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. Neither the name of Broadcom Corporation nor the name of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written consent. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' 22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 31 * THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #ifndef __BXE_H__ 35 #define __BXE_H__ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 #include <sys/param.h> 41 #include <sys/kernel.h> 42 #include <sys/systm.h> 43 #include <sys/lock.h> 44 #include <sys/mutex.h> 45 #include <sys/sx.h> 46 #include <sys/module.h> 47 #include <sys/endian.h> 48 #include <sys/types.h> 49 #include <sys/malloc.h> 50 #include <sys/kobj.h> 51 #include <sys/bus.h> 52 #include <sys/rman.h> 53 #include <sys/socket.h> 54 #include <sys/sockio.h> 55 #include <sys/sysctl.h> 56 #include <sys/smp.h> 57 #include <sys/bitstring.h> 58 #include <sys/limits.h> 59 #include <sys/queue.h> 60 #include <sys/taskqueue.h> 61 62 #include <net/if.h> 63 #include <net/if_types.h> 64 #include <net/if_arp.h> 65 #include <net/ethernet.h> 66 #include <net/if_dl.h> 67 #include <net/if_media.h> 68 #include <net/if_var.h> 69 #include <net/if_vlan_var.h> 70 #include <net/zlib.h> 71 #include <net/bpf.h> 72 73 #include <netinet/in.h> 74 #include <netinet/ip.h> 75 #include <netinet/ip6.h> 76 #include <netinet/tcp.h> 77 #include <netinet/udp.h> 78 79 #include <dev/pci/pcireg.h> 80 #include <dev/pci/pcivar.h> 81 82 #include <machine/atomic.h> 83 #include <machine/resource.h> 84 #include <machine/endian.h> 85 #include <machine/bus.h> 86 #include <machine/in_cksum.h> 87 88 #include "device_if.h" 89 #include "bus_if.h" 90 #include "pci_if.h" 91 92 #if _BYTE_ORDER == _LITTLE_ENDIAN 93 #ifndef LITTLE_ENDIAN 94 #define LITTLE_ENDIAN 95 #endif 96 #ifndef __LITTLE_ENDIAN 97 #define __LITTLE_ENDIAN 98 #endif 99 #undef BIG_ENDIAN 100 #undef __BIG_ENDIAN 101 #else /* _BIG_ENDIAN */ 102 #ifndef BIG_ENDIAN 103 #define BIG_ENDIAN 104 #endif 105 #ifndef __BIG_ENDIAN 106 #define __BIG_ENDIAN 107 #endif 108 #undef LITTLE_ENDIAN 109 #undef __LITTLE_ENDIAN 110 #endif 111 112 #include "ecore_mfw_req.h" 113 #include "ecore_fw_defs.h" 114 #include "ecore_hsi.h" 115 #include "ecore_reg.h" 116 #include "bxe_dcb.h" 117 #include "bxe_stats.h" 118 119 #include "bxe_elink.h" 120 121 #if __FreeBSD_version < 800054 122 #if defined(__i386__) || defined(__amd64__) 123 #define mb() __asm volatile("mfence;" : : : "memory") 124 #define wmb() __asm volatile("sfence;" : : : "memory") 125 #define rmb() __asm volatile("lfence;" : : : "memory") 126 static __inline void prefetch(void *x) 127 { 128 __asm volatile("prefetcht0 %0" :: "m" (*(unsigned long *)x)); 129 } 130 #else 131 #define mb() 132 #define rmb() 133 #define wmb() 134 #define prefetch(x) 135 #endif 136 #endif 137 138 #if __FreeBSD_version >= 1000000 139 #define PCIR_EXPRESS_DEVICE_STA PCIER_DEVICE_STA 140 #define PCIM_EXP_STA_TRANSACTION_PND PCIEM_STA_TRANSACTION_PND 141 #define PCIR_EXPRESS_LINK_STA PCIER_LINK_STA 142 #define PCIM_LINK_STA_WIDTH PCIEM_LINK_STA_WIDTH 143 #define PCIM_LINK_STA_SPEED PCIEM_LINK_STA_SPEED 144 #define PCIR_EXPRESS_DEVICE_CTL PCIER_DEVICE_CTL 145 #define PCIM_EXP_CTL_MAX_PAYLOAD PCIEM_CTL_MAX_PAYLOAD 146 #define PCIM_EXP_CTL_MAX_READ_REQUEST PCIEM_CTL_MAX_READ_REQUEST 147 #endif 148 149 #ifndef ARRAY_SIZE 150 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0])) 151 #endif 152 #ifndef ARRSIZE 153 #define ARRSIZE(arr) (sizeof(arr) / sizeof((arr)[0])) 154 #endif 155 #ifndef DIV_ROUND_UP 156 #define DIV_ROUND_UP(n, d) (((n) + (d) - 1) / (d)) 157 #endif 158 #ifndef roundup 159 #define roundup(x, y) ((((x) + ((y) - 1)) / (y)) * (y)) 160 #endif 161 #ifndef ilog2 162 static inline 163 int bxe_ilog2(int x) 164 { 165 int log = 0; 166 while (x >>= 1) log++; 167 return (log); 168 } 169 #define ilog2(x) bxe_ilog2(x) 170 #endif 171 172 #include "ecore_sp.h" 173 174 #define BRCM_VENDORID 0x14e4 175 #define PCI_ANY_ID (uint16_t)(~0U) 176 177 struct bxe_device_type 178 { 179 uint16_t bxe_vid; 180 uint16_t bxe_did; 181 uint16_t bxe_svid; 182 uint16_t bxe_sdid; 183 char *bxe_name; 184 }; 185 186 #define BCM_PAGE_SHIFT 12 187 #define BCM_PAGE_SIZE (1 << BCM_PAGE_SHIFT) 188 #define BCM_PAGE_MASK (~(BCM_PAGE_SIZE - 1)) 189 #define BCM_PAGE_ALIGN(addr) ((addr + BCM_PAGE_SIZE - 1) & BCM_PAGE_MASK) 190 191 #if BCM_PAGE_SIZE != 4096 192 #error Page sizes other than 4KB are unsupported! 193 #endif 194 195 #if (BUS_SPACE_MAXADDR > 0xFFFFFFFF) 196 #define U64_LO(addr) ((uint32_t)(((uint64_t)(addr)) & 0xFFFFFFFF)) 197 #define U64_HI(addr) ((uint32_t)(((uint64_t)(addr)) >> 32)) 198 #else 199 #define U64_LO(addr) ((uint32_t)(addr)) 200 #define U64_HI(addr) (0) 201 #endif 202 #define HILO_U64(hi, lo) ((((uint64_t)(hi)) << 32) + (lo)) 203 204 #define SET_FLAG(value, mask, flag) \ 205 do { \ 206 (value) &= ~(mask); \ 207 (value) |= ((flag) << (mask##_SHIFT)); \ 208 } while (0) 209 210 #define GET_FLAG(value, mask) \ 211 (((value) & (mask)) >> (mask##_SHIFT)) 212 213 #define GET_FIELD(value, fname) \ 214 (((value) & (fname##_MASK)) >> (fname##_SHIFT)) 215 216 #define BXE_MAX_SEGMENTS 12 /* 13-1 for parsing buffer */ 217 #define BXE_TSO_MAX_SEGMENTS 32 218 #define BXE_TSO_MAX_SIZE (65535 + sizeof(struct ether_vlan_header)) 219 #define BXE_TSO_MAX_SEG_SIZE 4096 220 221 /* dropless fc FW/HW related params */ 222 #define BRB_SIZE(sc) (CHIP_IS_E3(sc) ? 1024 : 512) 223 #define MAX_AGG_QS(sc) (CHIP_IS_E1(sc) ? \ 224 ETH_MAX_AGGREGATION_QUEUES_E1 : \ 225 ETH_MAX_AGGREGATION_QUEUES_E1H_E2) 226 #define FW_DROP_LEVEL(sc) (3 + MAX_SPQ_PENDING + MAX_AGG_QS(sc)) 227 #define FW_PREFETCH_CNT 16 228 #define DROPLESS_FC_HEADROOM 100 229 230 /******************/ 231 /* RX SGE defines */ 232 /******************/ 233 234 #define RX_SGE_NUM_PAGES 2 /* must be a power of 2 */ 235 #define RX_SGE_TOTAL_PER_PAGE (BCM_PAGE_SIZE / sizeof(struct eth_rx_sge)) 236 #define RX_SGE_NEXT_PAGE_DESC_CNT 2 237 #define RX_SGE_USABLE_PER_PAGE (RX_SGE_TOTAL_PER_PAGE - RX_SGE_NEXT_PAGE_DESC_CNT) 238 #define RX_SGE_PER_PAGE_MASK (RX_SGE_TOTAL_PER_PAGE - 1) 239 #define RX_SGE_TOTAL (RX_SGE_TOTAL_PER_PAGE * RX_SGE_NUM_PAGES) 240 #define RX_SGE_USABLE (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES) 241 #define RX_SGE_MAX (RX_SGE_TOTAL - 1) 242 #define RX_SGE(x) ((x) & RX_SGE_MAX) 243 244 #define RX_SGE_NEXT(x) \ 245 ((((x) & RX_SGE_PER_PAGE_MASK) == (RX_SGE_USABLE_PER_PAGE - 1)) \ 246 ? (x) + 1 + RX_SGE_NEXT_PAGE_DESC_CNT : (x) + 1) 247 248 #define RX_SGE_MASK_ELEM_SZ 64 249 #define RX_SGE_MASK_ELEM_SHIFT 6 250 #define RX_SGE_MASK_ELEM_MASK ((uint64_t)RX_SGE_MASK_ELEM_SZ - 1) 251 252 /* 253 * Creates a bitmask of all ones in less significant bits. 254 * idx - index of the most significant bit in the created mask. 255 */ 256 #define RX_SGE_ONES_MASK(idx) \ 257 (((uint64_t)0x1 << (((idx) & RX_SGE_MASK_ELEM_MASK) + 1)) - 1) 258 #define RX_SGE_MASK_ELEM_ONE_MASK ((uint64_t)(~0)) 259 260 /* Number of uint64_t elements in SGE mask array. */ 261 #define RX_SGE_MASK_LEN \ 262 ((RX_SGE_NUM_PAGES * RX_SGE_TOTAL_PER_PAGE) / RX_SGE_MASK_ELEM_SZ) 263 #define RX_SGE_MASK_LEN_MASK (RX_SGE_MASK_LEN - 1) 264 #define RX_SGE_NEXT_MASK_ELEM(el) (((el) + 1) & RX_SGE_MASK_LEN_MASK) 265 266 /* 267 * dropless fc calculations for SGEs 268 * Number of required SGEs is the sum of two: 269 * 1. Number of possible opened aggregations (next packet for 270 * these aggregations will probably consume SGE immidiatelly) 271 * 2. Rest of BRB blocks divided by 2 (block will consume new SGE only 272 * after placement on BD for new TPA aggregation) 273 * Takes into account RX_SGE_NEXT_PAGE_DESC_CNT "next" elements on each page 274 */ 275 #define NUM_SGE_REQ(sc) \ 276 (MAX_AGG_QS(sc) + (BRB_SIZE(sc) - MAX_AGG_QS(sc)) / 2) 277 #define NUM_SGE_PG_REQ(sc) \ 278 ((NUM_SGE_REQ(sc) + RX_SGE_USABLE_PER_PAGE - 1) / RX_SGE_USABLE_PER_PAGE) 279 #define SGE_TH_LO(sc) \ 280 (NUM_SGE_REQ(sc) + NUM_SGE_PG_REQ(sc) * RX_SGE_NEXT_PAGE_DESC_CNT) 281 #define SGE_TH_HI(sc) \ 282 (SGE_TH_LO(sc) + DROPLESS_FC_HEADROOM) 283 284 #define PAGES_PER_SGE_SHIFT 0 285 #define PAGES_PER_SGE (1 << PAGES_PER_SGE_SHIFT) 286 #define SGE_PAGE_SIZE BCM_PAGE_SIZE 287 #define SGE_PAGE_SHIFT BCM_PAGE_SHIFT 288 #define SGE_PAGE_ALIGN(addr) BCM_PAGE_ALIGN(addr) 289 #define SGE_PAGES (SGE_PAGE_SIZE * PAGES_PER_SGE) 290 #define TPA_AGG_SIZE min((8 * SGE_PAGES), 0xffff) 291 292 /*****************/ 293 /* TX BD defines */ 294 /*****************/ 295 296 #define TX_BD_NUM_PAGES 16 /* must be a power of 2 */ 297 #define TX_BD_TOTAL_PER_PAGE (BCM_PAGE_SIZE / sizeof(union eth_tx_bd_types)) 298 #define TX_BD_USABLE_PER_PAGE (TX_BD_TOTAL_PER_PAGE - 1) 299 #define TX_BD_TOTAL (TX_BD_TOTAL_PER_PAGE * TX_BD_NUM_PAGES) 300 #define TX_BD_USABLE (TX_BD_USABLE_PER_PAGE * TX_BD_NUM_PAGES) 301 #define TX_BD_MAX (TX_BD_TOTAL - 1) 302 303 #define TX_BD_NEXT(x) \ 304 ((((x) & TX_BD_USABLE_PER_PAGE) == (TX_BD_USABLE_PER_PAGE - 1)) ? \ 305 ((x) + 2) : ((x) + 1)) 306 #define TX_BD(x) ((x) & TX_BD_MAX) 307 #define TX_BD_PAGE(x) (((x) & ~TX_BD_USABLE_PER_PAGE) >> 8) 308 #define TX_BD_IDX(x) ((x) & TX_BD_USABLE_PER_PAGE) 309 310 /* 311 * Trigger pending transmits when the number of available BDs is greater 312 * than 1/8 of the total number of usable BDs. 313 */ 314 #define BXE_TX_CLEANUP_THRESHOLD (TX_BD_USABLE / 8) 315 #define BXE_TX_TIMEOUT 5 316 317 /*****************/ 318 /* RX BD defines */ 319 /*****************/ 320 321 #define RX_BD_NUM_PAGES 8 /* power of 2 */ 322 #define RX_BD_TOTAL_PER_PAGE (BCM_PAGE_SIZE / sizeof(struct eth_rx_bd)) 323 #define RX_BD_NEXT_PAGE_DESC_CNT 2 324 #define RX_BD_USABLE_PER_PAGE (RX_BD_TOTAL_PER_PAGE - RX_BD_NEXT_PAGE_DESC_CNT) 325 #define RX_BD_PER_PAGE_MASK (RX_BD_TOTAL_PER_PAGE - 1) 326 #define RX_BD_TOTAL (RX_BD_TOTAL_PER_PAGE * RX_BD_NUM_PAGES) 327 #define RX_BD_USABLE (RX_BD_USABLE_PER_PAGE * RX_BD_NUM_PAGES) 328 #define RX_BD_MAX (RX_BD_TOTAL - 1) 329 330 #if 0 331 #define NUM_RX_RINGS RX_BD_NUM_PAGES 332 #define NUM_RX_BD RX_BD_TOTAL 333 #define MAX_RX_BD RX_BD_MAX 334 #define MAX_RX_AVAIL RX_BD_USABLE 335 #endif 336 337 #define RX_BD_NEXT(x) \ 338 ((((x) & RX_BD_PER_PAGE_MASK) == (RX_BD_USABLE_PER_PAGE - 1)) ? \ 339 ((x) + 3) : ((x) + 1)) 340 #define RX_BD(x) ((x) & RX_BD_MAX) 341 #define RX_BD_PAGE(x) (((x) & ~RX_BD_PER_PAGE_MASK) >> 9) 342 #define RX_BD_IDX(x) ((x) & RX_BD_PER_PAGE_MASK) 343 344 /* 345 * dropless fc calculations for BDs 346 * Number of BDs should be as number of buffers in BRB: 347 * Low threshold takes into account RX_BD_NEXT_PAGE_DESC_CNT 348 * "next" elements on each page 349 */ 350 #define NUM_BD_REQ(sc) \ 351 BRB_SIZE(sc) 352 #define NUM_BD_PG_REQ(sc) \ 353 ((NUM_BD_REQ(sc) + RX_BD_USABLE_PER_PAGE - 1) / RX_BD_USABLE_PER_PAGE) 354 #define BD_TH_LO(sc) \ 355 (NUM_BD_REQ(sc) + \ 356 NUM_BD_PG_REQ(sc) * RX_BD_NEXT_PAGE_DESC_CNT + \ 357 FW_DROP_LEVEL(sc)) 358 #define BD_TH_HI(sc) \ 359 (BD_TH_LO(sc) + DROPLESS_FC_HEADROOM) 360 #define MIN_RX_AVAIL(sc) \ 361 ((sc)->dropless_fc ? BD_TH_HI(sc) + 128 : 128) 362 #define MIN_RX_SIZE_TPA_HW(sc) \ 363 (CHIP_IS_E1(sc) ? ETH_MIN_RX_CQES_WITH_TPA_E1 : \ 364 ETH_MIN_RX_CQES_WITH_TPA_E1H_E2) 365 #define MIN_RX_SIZE_NONTPA_HW ETH_MIN_RX_CQES_WITHOUT_TPA 366 #define MIN_RX_SIZE_TPA(sc) \ 367 (max(MIN_RX_SIZE_TPA_HW(sc), MIN_RX_AVAIL(sc))) 368 #define MIN_RX_SIZE_NONTPA(sc) \ 369 (max(MIN_RX_SIZE_NONTPA_HW, MIN_RX_AVAIL(sc))) 370 371 /***************/ 372 /* RCQ defines */ 373 /***************/ 374 375 /* 376 * As long as CQE is X times bigger than BD entry we have to allocate X times 377 * more pages for CQ ring in order to keep it balanced with BD ring 378 */ 379 #define CQE_BD_REL (sizeof(union eth_rx_cqe) / \ 380 sizeof(struct eth_rx_bd)) 381 #define RCQ_NUM_PAGES (RX_BD_NUM_PAGES * CQE_BD_REL) /* power of 2 */ 382 #define RCQ_TOTAL_PER_PAGE (BCM_PAGE_SIZE / sizeof(union eth_rx_cqe)) 383 #define RCQ_NEXT_PAGE_DESC_CNT 1 384 #define RCQ_USABLE_PER_PAGE (RCQ_TOTAL_PER_PAGE - RCQ_NEXT_PAGE_DESC_CNT) 385 #define RCQ_TOTAL (RCQ_TOTAL_PER_PAGE * RCQ_NUM_PAGES) 386 #define RCQ_USABLE (RCQ_USABLE_PER_PAGE * RCQ_NUM_PAGES) 387 #define RCQ_MAX (RCQ_TOTAL - 1) 388 389 #define RCQ_NEXT(x) \ 390 ((((x) & RCQ_USABLE_PER_PAGE) == (RCQ_USABLE_PER_PAGE - 1)) ? \ 391 ((x) + 1 + RCQ_NEXT_PAGE_DESC_CNT) : ((x) + 1)) 392 #define RCQ(x) ((x) & RCQ_MAX) 393 #define RCQ_PAGE(x) (((x) & ~RCQ_USABLE_PER_PAGE) >> 7) 394 #define RCQ_IDX(x) ((x) & RCQ_USABLE_PER_PAGE) 395 396 #if 0 397 #define NUM_RCQ_RINGS RCQ_NUM_PAGES 398 #define NUM_RCQ_BD RCQ_TOTAL 399 #define MAX_RCQ_BD RCQ_MAX 400 #define MAX_RCQ_AVAIL RCQ_USABLE 401 #endif 402 403 /* 404 * dropless fc calculations for RCQs 405 * Number of RCQs should be as number of buffers in BRB: 406 * Low threshold takes into account RCQ_NEXT_PAGE_DESC_CNT 407 * "next" elements on each page 408 */ 409 #define NUM_RCQ_REQ(sc) \ 410 BRB_SIZE(sc) 411 #define NUM_RCQ_PG_REQ(sc) \ 412 ((NUM_RCQ_REQ(sc) + RCQ_USABLE_PER_PAGE - 1) / RCQ_USABLE_PER_PAGE) 413 #define RCQ_TH_LO(sc) \ 414 (NUM_RCQ_REQ(sc) + \ 415 NUM_RCQ_PG_REQ(sc) * RCQ_NEXT_PAGE_DESC_CNT + \ 416 FW_DROP_LEVEL(sc)) 417 #define RCQ_TH_HI(sc) \ 418 (RCQ_TH_LO(sc) + DROPLESS_FC_HEADROOM) 419 420 /* This is needed for determening of last_max */ 421 #define SUB_S16(a, b) (int16_t)((int16_t)(a) - (int16_t)(b)) 422 423 #define __SGE_MASK_SET_BIT(el, bit) \ 424 do { \ 425 (el) = ((el) | ((uint64_t)0x1 << (bit))); \ 426 } while (0) 427 428 #define __SGE_MASK_CLEAR_BIT(el, bit) \ 429 do { \ 430 (el) = ((el) & (~((uint64_t)0x1 << (bit)))); \ 431 } while (0) 432 433 #define SGE_MASK_SET_BIT(fp, idx) \ 434 __SGE_MASK_SET_BIT((fp)->sge_mask[(idx) >> RX_SGE_MASK_ELEM_SHIFT], \ 435 ((idx) & RX_SGE_MASK_ELEM_MASK)) 436 437 #define SGE_MASK_CLEAR_BIT(fp, idx) \ 438 __SGE_MASK_CLEAR_BIT((fp)->sge_mask[(idx) >> RX_SGE_MASK_ELEM_SHIFT], \ 439 ((idx) & RX_SGE_MASK_ELEM_MASK)) 440 441 /* Load / Unload modes */ 442 #define LOAD_NORMAL 0 443 #define LOAD_OPEN 1 444 #define LOAD_DIAG 2 445 #define LOAD_LOOPBACK_EXT 3 446 #define UNLOAD_NORMAL 0 447 #define UNLOAD_CLOSE 1 448 #define UNLOAD_RECOVERY 2 449 450 /* Some constants... */ 451 //#define MAX_PATH_NUM 2 452 //#define E2_MAX_NUM_OF_VFS 64 453 //#define E1H_FUNC_MAX 8 454 //#define E2_FUNC_MAX 4 /* per path */ 455 #define MAX_VNIC_NUM 4 456 #define MAX_FUNC_NUM 8 /* common to all chips */ 457 //#define MAX_NDSB HC_SB_MAX_SB_E2 /* max non-default status block */ 458 #define MAX_RSS_CHAINS 16 /* a constant for HW limit */ 459 #define MAX_MSI_VECTOR 8 /* a constant for HW limit */ 460 461 #define ILT_NUM_PAGE_ENTRIES 3072 462 /* 463 * 57710/11 we use whole table since we have 8 functions. 464 * 57712 we have only 4 functions, but use same size per func, so only half 465 * of the table is used. 466 */ 467 #define ILT_PER_FUNC (ILT_NUM_PAGE_ENTRIES / 8) 468 #define FUNC_ILT_BASE(func) (func * ILT_PER_FUNC) 469 /* 470 * the phys address is shifted right 12 bits and has an added 471 * 1=valid bit added to the 53rd bit 472 * then since this is a wide register(TM) 473 * we split it into two 32 bit writes 474 */ 475 #define ONCHIP_ADDR1(x) ((uint32_t)(((uint64_t)x >> 12) & 0xFFFFFFFF)) 476 #define ONCHIP_ADDR2(x) ((uint32_t)((1 << 20) | ((uint64_t)x >> 44))) 477 478 /* L2 header size + 2*VLANs (8 bytes) + LLC SNAP (8 bytes) */ 479 #define ETH_HLEN 14 480 #define ETH_OVERHEAD (ETH_HLEN + 8 + 8) 481 #define ETH_MIN_PACKET_SIZE 60 482 #define ETH_MAX_PACKET_SIZE ETHERMTU /* 1500 */ 483 #define ETH_MAX_JUMBO_PACKET_SIZE 9600 484 /* TCP with Timestamp Option (32) + IPv6 (40) */ 485 #define ETH_MAX_TPA_HEADER_SIZE 72 486 487 /* max supported alignment is 256 (8 shift) */ 488 //#define BXE_RX_ALIGN_SHIFT ((CACHE_LINE_SHIFT < 8) ? CACHE_LINE_SHIFT : 8) 489 #define BXE_RX_ALIGN_SHIFT 8 490 /* FW uses 2 cache lines alignment for start packet and size */ 491 #define BXE_FW_RX_ALIGN_START (1 << BXE_RX_ALIGN_SHIFT) 492 #define BXE_FW_RX_ALIGN_END (1 << BXE_RX_ALIGN_SHIFT) 493 494 #define BXE_PXP_DRAM_ALIGN (BXE_RX_ALIGN_SHIFT - 5) /* XXX ??? */ 495 496 struct bxe_bar { 497 struct resource *resource; 498 int rid; 499 bus_space_tag_t tag; 500 bus_space_handle_t handle; 501 vm_offset_t kva; 502 }; 503 504 struct bxe_intr { 505 struct resource *resource; 506 int rid; 507 void *tag; 508 }; 509 510 /* Used to manage DMA allocations. */ 511 struct bxe_dma { 512 struct bxe_softc *sc; 513 bus_addr_t paddr; 514 void *vaddr; 515 bus_dma_tag_t tag; 516 bus_dmamap_t map; 517 bus_dma_segment_t seg; 518 bus_size_t size; 519 int nseg; 520 char msg[32]; 521 }; 522 523 /* attn group wiring */ 524 #define MAX_DYNAMIC_ATTN_GRPS 8 525 526 struct attn_route { 527 uint32_t sig[5]; 528 }; 529 530 struct iro { 531 uint32_t base; 532 uint16_t m1; 533 uint16_t m2; 534 uint16_t m3; 535 uint16_t size; 536 }; 537 538 union bxe_host_hc_status_block { 539 /* pointer to fp status block e2 */ 540 struct host_hc_status_block_e2 *e2_sb; 541 /* pointer to fp status block e1x */ 542 struct host_hc_status_block_e1x *e1x_sb; 543 }; 544 545 union bxe_db_prod { 546 struct doorbell_set_prod data; 547 uint32_t raw; 548 }; 549 550 struct bxe_sw_tx_bd { 551 struct mbuf *m; 552 bus_dmamap_t m_map; 553 uint16_t first_bd; 554 uint8_t flags; 555 /* set on the first BD descriptor when there is a split BD */ 556 #define BXE_TSO_SPLIT_BD (1 << 0) 557 }; 558 559 struct bxe_sw_rx_bd { 560 struct mbuf *m; 561 bus_dmamap_t m_map; 562 }; 563 564 struct bxe_sw_tpa_info { 565 struct bxe_sw_rx_bd bd; 566 bus_dma_segment_t seg; 567 uint8_t state; 568 #define BXE_TPA_STATE_START 1 569 #define BXE_TPA_STATE_STOP 2 570 uint8_t placement_offset; 571 uint16_t parsing_flags; 572 uint16_t vlan_tag; 573 uint16_t len_on_bd; 574 }; 575 576 /* 577 * This is the HSI fastpath data structure. There can be up to MAX_RSS_CHAIN 578 * instances of the fastpath structure when using multiple queues. 579 */ 580 struct bxe_fastpath { 581 /* pointer back to parent structure */ 582 struct bxe_softc *sc; 583 584 struct mtx tx_mtx; 585 char tx_mtx_name[32]; 586 struct mtx rx_mtx; 587 char rx_mtx_name[32]; 588 589 #define BXE_FP_TX_LOCK(fp) mtx_lock(&fp->tx_mtx) 590 #define BXE_FP_TX_UNLOCK(fp) mtx_unlock(&fp->tx_mtx) 591 #define BXE_FP_TX_LOCK_ASSERT(fp) mtx_assert(&fp->tx_mtx, MA_OWNED) 592 593 #define BXE_FP_RX_LOCK(fp) mtx_lock(&fp->rx_mtx) 594 #define BXE_FP_RX_UNLOCK(fp) mtx_unlock(&fp->rx_mtx) 595 #define BXE_FP_RX_LOCK_ASSERT(fp) mtx_assert(&fp->rx_mtx, MA_OWNED) 596 597 /* status block */ 598 struct bxe_dma sb_dma; 599 union bxe_host_hc_status_block status_block; 600 601 /* transmit chain (tx bds) */ 602 struct bxe_dma tx_dma; 603 union eth_tx_bd_types *tx_chain; 604 605 /* receive chain (rx bds) */ 606 struct bxe_dma rx_dma; 607 struct eth_rx_bd *rx_chain; 608 609 /* receive completion queue chain (rcq bds) */ 610 struct bxe_dma rcq_dma; 611 union eth_rx_cqe *rcq_chain; 612 613 /* receive scatter/gather entry chain (for TPA) */ 614 struct bxe_dma rx_sge_dma; 615 struct eth_rx_sge *rx_sge_chain; 616 617 /* tx mbufs */ 618 bus_dma_tag_t tx_mbuf_tag; 619 struct bxe_sw_tx_bd tx_mbuf_chain[TX_BD_TOTAL]; 620 621 /* rx mbufs */ 622 bus_dma_tag_t rx_mbuf_tag; 623 struct bxe_sw_rx_bd rx_mbuf_chain[RX_BD_TOTAL]; 624 bus_dmamap_t rx_mbuf_spare_map; 625 626 /* rx sge mbufs */ 627 bus_dma_tag_t rx_sge_mbuf_tag; 628 struct bxe_sw_rx_bd rx_sge_mbuf_chain[RX_SGE_TOTAL]; 629 bus_dmamap_t rx_sge_mbuf_spare_map; 630 631 /* rx tpa mbufs (use the larger size for TPA queue length) */ 632 int tpa_enable; /* disabled per fastpath upon error */ 633 struct bxe_sw_tpa_info rx_tpa_info[ETH_MAX_AGGREGATION_QUEUES_E1H_E2]; 634 bus_dmamap_t rx_tpa_info_mbuf_spare_map; 635 uint64_t rx_tpa_queue_used; 636 #if 0 637 bus_dmamap_t rx_tpa_mbuf_map[ETH_MAX_AGGREGATION_QUEUES_E1H_E2]; 638 bus_dmamap_t rx_tpa_mbuf_spare_map; 639 struct mbuf *rx_tpa_mbuf_ptr[ETH_MAX_AGGREGATION_QUEUES_E1H_E2]; 640 bus_dma_segment_t rx_tpa_mbuf_segs[ETH_MAX_AGGREGATION_QUEUES_E1H_E2]; 641 642 uint8_t tpa_state[ETH_MAX_AGGREGATION_QUEUES_E1H_E2]; 643 #endif 644 645 uint16_t *sb_index_values; 646 uint16_t *sb_running_index; 647 uint32_t ustorm_rx_prods_offset; 648 649 uint8_t igu_sb_id; /* status block number in HW */ 650 uint8_t fw_sb_id; /* status block number in FW */ 651 652 uint32_t rx_buf_size; 653 int mbuf_alloc_size; 654 655 int state; 656 #define BXE_FP_STATE_CLOSED 0x01 657 #define BXE_FP_STATE_IRQ 0x02 658 #define BXE_FP_STATE_OPENING 0x04 659 #define BXE_FP_STATE_OPEN 0x08 660 #define BXE_FP_STATE_HALTING 0x10 661 #define BXE_FP_STATE_HALTED 0x20 662 663 /* reference back to this fastpath queue number */ 664 uint8_t index; /* this is also the 'cid' */ 665 #define FP_IDX(fp) (fp->index) 666 667 /* interrupt taskqueue (fast) */ 668 struct task tq_task; 669 struct taskqueue *tq; 670 char tq_name[32]; 671 672 /* ethernet client ID (each fastpath set of RX/TX/CQE is a client) */ 673 uint8_t cl_id; 674 #define FP_CL_ID(fp) (fp->cl_id) 675 uint8_t cl_qzone_id; 676 677 uint16_t fp_hc_idx; 678 679 /* driver copy of the receive buffer descriptor prod/cons indices */ 680 uint16_t rx_bd_prod; 681 uint16_t rx_bd_cons; 682 683 /* driver copy of the receive completion queue prod/cons indices */ 684 uint16_t rx_cq_prod; 685 uint16_t rx_cq_cons; 686 687 union bxe_db_prod tx_db; 688 689 /* Transmit packet producer index (used in eth_tx_bd). */ 690 uint16_t tx_pkt_prod; 691 uint16_t tx_pkt_cons; 692 693 /* Transmit buffer descriptor producer index. */ 694 uint16_t tx_bd_prod; 695 uint16_t tx_bd_cons; 696 697 #if 0 698 /* status block number in hardware */ 699 uint8_t sb_id; 700 #define FP_SB_ID(fp) (fp->sb_id) 701 702 /* driver copy of the fastpath CSTORM/USTORM indices */ 703 uint16_t fp_c_idx; 704 uint16_t fp_u_idx; 705 #endif 706 707 uint64_t sge_mask[RX_SGE_MASK_LEN]; 708 uint16_t rx_sge_prod; 709 710 struct tstorm_per_queue_stats old_tclient; 711 struct ustorm_per_queue_stats old_uclient; 712 struct xstorm_per_queue_stats old_xclient; 713 struct bxe_eth_q_stats eth_q_stats; 714 struct bxe_eth_q_stats_old eth_q_stats_old; 715 716 /* Pointer to the receive consumer in the status block */ 717 uint16_t *rx_cq_cons_sb; 718 719 /* Pointer to the transmit consumer in the status block */ 720 uint16_t *tx_cons_sb; 721 722 /* transmit timeout until chip reset */ 723 int watchdog_timer; 724 725 /* Free/used buffer descriptor counters. */ 726 //uint16_t used_tx_bd; 727 728 /* Last maximal completed SGE */ 729 uint16_t last_max_sge; 730 731 //uint16_t rx_sge_free_idx; 732 733 //uint8_t segs; 734 735 #if __FreeBSD_version >= 800000 736 #define BXE_BR_SIZE 4096 737 struct buf_ring *tx_br; 738 #endif 739 }; /* struct bxe_fastpath */ 740 741 /* sriov XXX */ 742 #define BXE_MAX_NUM_OF_VFS 64 743 #define BXE_VF_CID_WND 0 744 #define BXE_CIDS_PER_VF (1 << BXE_VF_CID_WND) 745 #define BXE_CLIENTS_PER_VF 1 746 #define BXE_FIRST_VF_CID 256 747 #define BXE_VF_CIDS (BXE_MAX_NUM_OF_VFS * BXE_CIDS_PER_VF) 748 #define BXE_VF_ID_INVALID 0xFF 749 #define IS_SRIOV(sc) 0 750 751 #define GET_NUM_VFS_PER_PATH(sc) 0 752 #define GET_NUM_VFS_PER_PF(sc) 0 753 754 /* maximum number of fast-path interrupt contexts */ 755 #define FP_SB_MAX_E1x 16 756 #define FP_SB_MAX_E2 HC_SB_MAX_SB_E2 757 758 union cdu_context { 759 struct eth_context eth; 760 char pad[1024]; 761 }; 762 763 /* CDU host DB constants */ 764 #define CDU_ILT_PAGE_SZ_HW 2 765 #define CDU_ILT_PAGE_SZ (8192 << CDU_ILT_PAGE_SZ_HW) /* 32K */ 766 #define ILT_PAGE_CIDS (CDU_ILT_PAGE_SZ / sizeof(union cdu_context)) 767 768 #define CNIC_ISCSI_CID_MAX 256 769 #define CNIC_FCOE_CID_MAX 2048 770 #define CNIC_CID_MAX (CNIC_ISCSI_CID_MAX + CNIC_FCOE_CID_MAX) 771 #define CNIC_ILT_LINES DIV_ROUND_UP(CNIC_CID_MAX, ILT_PAGE_CIDS) 772 773 #define QM_ILT_PAGE_SZ_HW 0 774 #define QM_ILT_PAGE_SZ (4096 << QM_ILT_PAGE_SZ_HW) /* 4K */ 775 #define QM_CID_ROUND 1024 776 777 /* TM (timers) host DB constants */ 778 #define TM_ILT_PAGE_SZ_HW 0 779 #define TM_ILT_PAGE_SZ (4096 << TM_ILT_PAGE_SZ_HW) /* 4K */ 780 /*#define TM_CONN_NUM (CNIC_STARTING_CID+CNIC_ISCSI_CXT_MAX) */ 781 #define TM_CONN_NUM 1024 782 #define TM_ILT_SZ (8 * TM_CONN_NUM) 783 #define TM_ILT_LINES DIV_ROUND_UP(TM_ILT_SZ, TM_ILT_PAGE_SZ) 784 785 /* SRC (Searcher) host DB constants */ 786 #define SRC_ILT_PAGE_SZ_HW 0 787 #define SRC_ILT_PAGE_SZ (4096 << SRC_ILT_PAGE_SZ_HW) /* 4K */ 788 #define SRC_HASH_BITS 10 789 #define SRC_CONN_NUM (1 << SRC_HASH_BITS) /* 1024 */ 790 #define SRC_ILT_SZ (sizeof(struct src_ent) * SRC_CONN_NUM) 791 #define SRC_T2_SZ SRC_ILT_SZ 792 #define SRC_ILT_LINES DIV_ROUND_UP(SRC_ILT_SZ, SRC_ILT_PAGE_SZ) 793 794 struct hw_context { 795 struct bxe_dma vcxt_dma; 796 union cdu_context *vcxt; 797 //bus_addr_t cxt_mapping; 798 size_t size; 799 }; 800 801 #define SM_RX_ID 0 802 #define SM_TX_ID 1 803 804 /* defines for multiple tx priority indices */ 805 #define FIRST_TX_ONLY_COS_INDEX 1 806 #define FIRST_TX_COS_INDEX 0 807 808 #define CID_TO_FP(cid, sc) ((cid) % BXE_NUM_NON_CNIC_QUEUES(sc)) 809 810 #define HC_INDEX_ETH_RX_CQ_CONS 1 811 #define HC_INDEX_OOO_TX_CQ_CONS 4 812 #define HC_INDEX_ETH_TX_CQ_CONS_COS0 5 813 #define HC_INDEX_ETH_TX_CQ_CONS_COS1 6 814 #define HC_INDEX_ETH_TX_CQ_CONS_COS2 7 815 #define HC_INDEX_ETH_FIRST_TX_CQ_CONS HC_INDEX_ETH_TX_CQ_CONS_COS0 816 817 /* congestion management fairness mode */ 818 #define CMNG_FNS_NONE 0 819 #define CMNG_FNS_MINMAX 1 820 821 /* CMNG constants, as derived from system spec calculations */ 822 /* default MIN rate in case VNIC min rate is configured to zero - 100Mbps */ 823 #define DEF_MIN_RATE 100 824 /* resolution of the rate shaping timer - 400 usec */ 825 #define RS_PERIODIC_TIMEOUT_USEC 400 826 /* number of bytes in single QM arbitration cycle - 827 * coefficient for calculating the fairness timer */ 828 #define QM_ARB_BYTES 160000 829 /* resolution of Min algorithm 1:100 */ 830 #define MIN_RES 100 831 /* how many bytes above threshold for the minimal credit of Min algorithm*/ 832 #define MIN_ABOVE_THRESH 32768 833 /* fairness algorithm integration time coefficient - 834 * for calculating the actual Tfair */ 835 #define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES) 836 /* memory of fairness algorithm - 2 cycles */ 837 #define FAIR_MEM 2 838 839 #define HC_SEG_ACCESS_DEF 0 /* Driver decision 0-3 */ 840 #define HC_SEG_ACCESS_ATTN 4 841 #define HC_SEG_ACCESS_NORM 0 /* Driver decision 0-1 */ 842 843 /* 844 * The total number of L2 queues, MSIX vectors and HW contexts (CIDs) is 845 * control by the number of fast-path status blocks supported by the 846 * device (HW/FW). Each fast-path status block (FP-SB) aka non-default 847 * status block represents an independent interrupts context that can 848 * serve a regular L2 networking queue. However special L2 queues such 849 * as the FCoE queue do not require a FP-SB and other components like 850 * the CNIC may consume FP-SB reducing the number of possible L2 queues 851 * 852 * If the maximum number of FP-SB available is X then: 853 * a. If CNIC is supported it consumes 1 FP-SB thus the max number of 854 * regular L2 queues is Y=X-1 855 * b. in MF mode the actual number of L2 queues is Y= (X-1/MF_factor) 856 * c. If the FCoE L2 queue is supported the actual number of L2 queues 857 * is Y+1 858 * d. The number of irqs (MSIX vectors) is either Y+1 (one extra for 859 * slow-path interrupts) or Y+2 if CNIC is supported (one additional 860 * FP interrupt context for the CNIC). 861 * e. The number of HW context (CID count) is always X or X+1 if FCoE 862 * L2 queue is supported. the cid for the FCoE L2 queue is always X. 863 * 864 * So this is quite simple for now as no ULPs are supported yet. :-) 865 */ 866 #define BXE_NUM_QUEUES(sc) ((sc)->num_queues) 867 #define BXE_NUM_ETH_QUEUES(sc) BXE_NUM_QUEUES(sc) 868 #define BXE_NUM_NON_CNIC_QUEUES(sc) BXE_NUM_QUEUES(sc) 869 #define BXE_NUM_RX_QUEUES(sc) BXE_NUM_QUEUES(sc) 870 871 #define FOR_EACH_QUEUE(sc, var) \ 872 for ((var) = 0; (var) < BXE_NUM_QUEUES(sc); (var)++) 873 874 #define FOR_EACH_NONDEFAULT_QUEUE(sc, var) \ 875 for ((var) = 1; (var) < BXE_NUM_QUEUES(sc); (var)++) 876 877 #define FOR_EACH_ETH_QUEUE(sc, var) \ 878 for ((var) = 0; (var) < BXE_NUM_ETH_QUEUES(sc); (var)++) 879 880 #define FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, var) \ 881 for ((var) = 1; (var) < BXE_NUM_ETH_QUEUES(sc); (var)++) 882 883 #define FOR_EACH_COS_IN_TX_QUEUE(sc, var) \ 884 for ((var) = 0; (var) < (sc)->max_cos; (var)++) 885 886 #define FOR_EACH_CNIC_QUEUE(sc, var) \ 887 for ((var) = BXE_NUM_ETH_QUEUES(sc); \ 888 (var) < BXE_NUM_QUEUES(sc); \ 889 (var)++) 890 891 enum { 892 OOO_IDX_OFFSET, 893 FCOE_IDX_OFFSET, 894 FWD_IDX_OFFSET, 895 }; 896 897 #define FCOE_IDX(sc) (BXE_NUM_NON_CNIC_QUEUES(sc) + FCOE_IDX_OFFSET) 898 #define bxe_fcoe_fp(sc) (&sc->fp[FCOE_IDX(sc)]) 899 #define bxe_fcoe(sc, var) (bxe_fcoe_fp(sc)->var) 900 #define bxe_fcoe_inner_sp_obj(sc) (&sc->sp_objs[FCOE_IDX(sc)]) 901 #define bxe_fcoe_sp_obj(sc, var) (bxe_fcoe_inner_sp_obj(sc)->var) 902 #define bxe_fcoe_tx(sc, var) (bxe_fcoe_fp(sc)->txdata_ptr[FIRST_TX_COS_INDEX]->var) 903 904 #define OOO_IDX(sc) (BXE_NUM_NON_CNIC_QUEUES(sc) + OOO_IDX_OFFSET) 905 #define bxe_ooo_fp(sc) (&sc->fp[OOO_IDX(sc)]) 906 #define bxe_ooo(sc, var) (bxe_ooo_fp(sc)->var) 907 #define bxe_ooo_inner_sp_obj(sc) (&sc->sp_objs[OOO_IDX(sc)]) 908 #define bxe_ooo_sp_obj(sc, var) (bxe_ooo_inner_sp_obj(sc)->var) 909 910 #define FWD_IDX(sc) (BXE_NUM_NON_CNIC_QUEUES(sc) + FWD_IDX_OFFSET) 911 #define bxe_fwd_fp(sc) (&sc->fp[FWD_IDX(sc)]) 912 #define bxe_fwd(sc, var) (bxe_fwd_fp(sc)->var) 913 #define bxe_fwd_inner_sp_obj(sc) (&sc->sp_objs[FWD_IDX(sc)]) 914 #define bxe_fwd_sp_obj(sc, var) (bxe_fwd_inner_sp_obj(sc)->var) 915 #define bxe_fwd_txdata(fp) (fp->txdata_ptr[FIRST_TX_COS_INDEX]) 916 917 #define IS_ETH_FP(fp) ((fp)->index < BXE_NUM_ETH_QUEUES((fp)->sc)) 918 #define IS_FCOE_FP(fp) ((fp)->index == FCOE_IDX((fp)->sc)) 919 #define IS_FCOE_IDX(idx) ((idx) == FCOE_IDX(sc)) 920 #define IS_FWD_FP(fp) ((fp)->index == FWD_IDX((fp)->sc)) 921 #define IS_FWD_IDX(idx) ((idx) == FWD_IDX(sc)) 922 #define IS_OOO_FP(fp) ((fp)->index == OOO_IDX((fp)->sc)) 923 #define IS_OOO_IDX(idx) ((idx) == OOO_IDX(sc)) 924 925 enum { 926 BXE_PORT_QUERY_IDX, 927 BXE_PF_QUERY_IDX, 928 BXE_FCOE_QUERY_IDX, 929 BXE_FIRST_QUEUE_QUERY_IDX, 930 }; 931 932 struct bxe_fw_stats_req { 933 struct stats_query_header hdr; 934 struct stats_query_entry query[FP_SB_MAX_E1x + 935 BXE_FIRST_QUEUE_QUERY_IDX]; 936 }; 937 938 struct bxe_fw_stats_data { 939 struct stats_counter storm_counters; 940 struct per_port_stats port; 941 struct per_pf_stats pf; 942 //struct fcoe_statistics_params fcoe; 943 struct per_queue_stats queue_stats[1]; 944 }; 945 946 /* IGU MSIX STATISTICS on 57712: 64 for VFs; 4 for PFs; 4 for Attentions */ 947 #define BXE_IGU_STAS_MSG_VF_CNT 64 948 #define BXE_IGU_STAS_MSG_PF_CNT 4 949 950 #define MAX_DMAE_C 8 951 952 /* 953 * For the main interface up/down code paths, a not-so-fine-grained CORE 954 * mutex lock is used. Inside this code are various calls to kernel routines 955 * that can cause a sleep to occur. Namely memory allocations and taskqueue 956 * handling. If using an MTX lock we are *not* allowed to sleep but we can 957 * with an SX lock. This define forces the CORE lock to use and SX lock. 958 * Undefine this and an MTX lock will be used instead. Note that the IOCTL 959 * path can cause problems since it's called by a non-sleepable thread. To 960 * alleviate a potential sleep, any IOCTL processing that results in the 961 * chip/interface being started/stopped/reinitialized, the actual work is 962 * offloaded to a taskqueue. 963 */ 964 #define BXE_CORE_LOCK_SX 965 966 /* 967 * This is the slowpath data structure. It is mapped into non-paged memory 968 * so that the hardware can access it's contents directly and must be page 969 * aligned. 970 */ 971 struct bxe_slowpath { 972 973 #if 0 974 /* 975 * The cdu_context array MUST be the first element in this 976 * structure. It is used during the leading edge ramrod 977 * operation. 978 */ 979 union cdu_context context[MAX_CONTEXT]; 980 981 /* Used as a DMA source for MAC configuration. */ 982 struct mac_configuration_cmd mac_config; 983 struct mac_configuration_cmd mcast_config; 984 #endif 985 986 /* used by the DMAE command executer */ 987 struct dmae_command dmae[MAX_DMAE_C]; 988 989 /* statistics completion */ 990 uint32_t stats_comp; 991 992 /* firmware defined statistics blocks */ 993 union mac_stats mac_stats; 994 struct nig_stats nig_stats; 995 struct host_port_stats port_stats; 996 struct host_func_stats func_stats; 997 //struct host_func_stats func_stats_base; 998 999 /* DMAE completion value and data source/sink */ 1000 uint32_t wb_comp; 1001 uint32_t wb_data[4]; 1002 1003 union { 1004 struct mac_configuration_cmd e1x; 1005 struct eth_classify_rules_ramrod_data e2; 1006 } mac_rdata; 1007 1008 union { 1009 struct tstorm_eth_mac_filter_config e1x; 1010 struct eth_filter_rules_ramrod_data e2; 1011 } rx_mode_rdata; 1012 1013 struct eth_rss_update_ramrod_data rss_rdata; 1014 1015 union { 1016 struct mac_configuration_cmd e1; 1017 struct eth_multicast_rules_ramrod_data e2; 1018 } mcast_rdata; 1019 1020 union { 1021 struct function_start_data func_start; 1022 struct flow_control_configuration pfc_config; /* for DCBX ramrod */ 1023 } func_rdata; 1024 1025 /* Queue State related ramrods */ 1026 union { 1027 struct client_init_ramrod_data init_data; 1028 struct client_update_ramrod_data update_data; 1029 } q_rdata; 1030 1031 /* 1032 * AFEX ramrod can not be a part of func_rdata union because these 1033 * events might arrive in parallel to other events from func_rdata. 1034 * If they were defined in the same union the data can get corrupted. 1035 */ 1036 struct afex_vif_list_ramrod_data func_afex_rdata; 1037 1038 union drv_info_to_mcp drv_info_to_mcp; 1039 }; /* struct bxe_slowpath */ 1040 1041 /* 1042 * Port specifc data structure. 1043 */ 1044 struct bxe_port { 1045 /* 1046 * Port Management Function (for 57711E only). 1047 * When this field is set the driver instance is 1048 * responsible for managing port specifc 1049 * configurations such as handling link attentions. 1050 */ 1051 uint32_t pmf; 1052 1053 /* Ethernet maximum transmission unit. */ 1054 uint16_t ether_mtu; 1055 1056 uint32_t link_config[ELINK_LINK_CONFIG_SIZE]; 1057 1058 uint32_t ext_phy_config; 1059 1060 /* Port feature config.*/ 1061 uint32_t config; 1062 1063 /* Defines the features supported by the PHY. */ 1064 uint32_t supported[ELINK_LINK_CONFIG_SIZE]; 1065 1066 /* Defines the features advertised by the PHY. */ 1067 uint32_t advertising[ELINK_LINK_CONFIG_SIZE]; 1068 #define ADVERTISED_10baseT_Half (1 << 1) 1069 #define ADVERTISED_10baseT_Full (1 << 2) 1070 #define ADVERTISED_100baseT_Half (1 << 3) 1071 #define ADVERTISED_100baseT_Full (1 << 4) 1072 #define ADVERTISED_1000baseT_Half (1 << 5) 1073 #define ADVERTISED_1000baseT_Full (1 << 6) 1074 #define ADVERTISED_TP (1 << 7) 1075 #define ADVERTISED_FIBRE (1 << 8) 1076 #define ADVERTISED_Autoneg (1 << 9) 1077 #define ADVERTISED_Asym_Pause (1 << 10) 1078 #define ADVERTISED_Pause (1 << 11) 1079 #define ADVERTISED_2500baseX_Full (1 << 15) 1080 #define ADVERTISED_10000baseT_Full (1 << 16) 1081 1082 uint32_t phy_addr; 1083 1084 /* Used to synchronize phy accesses. */ 1085 struct mtx phy_mtx; 1086 char phy_mtx_name[32]; 1087 1088 #define BXE_PHY_LOCK(sc) mtx_lock(&sc->port.phy_mtx) 1089 #define BXE_PHY_UNLOCK(sc) mtx_unlock(&sc->port.phy_mtx) 1090 #define BXE_PHY_LOCK_ASSERT(sc) mtx_assert(&sc->port.phy_mtx, MA_OWNED) 1091 1092 /* 1093 * MCP scratchpad address for port specific statistics. 1094 * The device is responsible for writing statistcss 1095 * back to the MCP for use with management firmware such 1096 * as UMP/NC-SI. 1097 */ 1098 uint32_t port_stx; 1099 1100 struct nig_stats old_nig_stats; 1101 }; /* struct bxe_port */ 1102 1103 struct bxe_mf_info { 1104 uint32_t mf_config[E1HVN_MAX]; 1105 1106 uint32_t vnics_per_port; /* 1, 2 or 4 */ 1107 uint32_t multi_vnics_mode; /* can be set even if vnics_per_port = 1 */ 1108 uint32_t path_has_ovlan; /* MF mode in the path (can be different than the MF mode of the function */ 1109 1110 #define IS_MULTI_VNIC(sc) ((sc)->devinfo.mf_info.multi_vnics_mode) 1111 #define VNICS_PER_PORT(sc) ((sc)->devinfo.mf_info.vnics_per_port) 1112 #define VNICS_PER_PATH(sc) \ 1113 ((sc)->devinfo.mf_info.vnics_per_port * \ 1114 ((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 1 )) 1115 1116 uint8_t min_bw[MAX_VNIC_NUM]; 1117 uint8_t max_bw[MAX_VNIC_NUM]; 1118 1119 uint16_t ext_id; /* vnic outer vlan or VIF ID */ 1120 #define VALID_OVLAN(ovlan) ((ovlan) <= 4096) 1121 #define INVALID_VIF_ID 0xFFFF 1122 #define OVLAN(sc) ((sc)->devinfo.mf_info.ext_id) 1123 #define VIF_ID(sc) ((sc)->devinfo.mf_info.ext_id) 1124 1125 uint16_t default_vlan; 1126 #define NIV_DEFAULT_VLAN(sc) ((sc)->devinfo.mf_info.default_vlan) 1127 1128 uint8_t niv_allowed_priorities; 1129 #define NIV_ALLOWED_PRIORITIES(sc) ((sc)->devinfo.mf_info.niv_allowed_priorities) 1130 1131 uint8_t niv_default_cos; 1132 #define NIV_DEFAULT_COS(sc) ((sc)->devinfo.mf_info.niv_default_cos) 1133 1134 uint8_t niv_mba_enabled; 1135 1136 enum mf_cfg_afex_vlan_mode afex_vlan_mode; 1137 #define AFEX_VLAN_MODE(sc) ((sc)->devinfo.mf_info.afex_vlan_mode) 1138 int afex_def_vlan_tag; 1139 uint32_t pending_max; 1140 1141 uint16_t flags; 1142 #define MF_INFO_VALID_MAC 0x0001 1143 1144 uint8_t mf_mode; /* Switch-Dependent or Switch-Independent */ 1145 #define IS_MF(sc) \ 1146 (IS_MULTI_VNIC(sc) && \ 1147 ((sc)->devinfo.mf_info.mf_mode != 0)) 1148 #define IS_MF_SD(sc) \ 1149 (IS_MULTI_VNIC(sc) && \ 1150 ((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD)) 1151 #define IS_MF_SI(sc) \ 1152 (IS_MULTI_VNIC(sc) && \ 1153 ((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI)) 1154 #define IS_MF_AFEX(sc) \ 1155 (IS_MULTI_VNIC(sc) && \ 1156 ((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX)) 1157 #define IS_MF_SD_MODE(sc) IS_MF_SD(sc) 1158 #define IS_MF_SI_MODE(sc) IS_MF_SI(sc) 1159 #define IS_MF_AFEX_MODE(sc) IS_MF_AFEX(sc) 1160 1161 uint32_t mf_protos_supported; 1162 #define MF_PROTO_SUPPORT_ETHERNET 0x1 1163 #define MF_PROTO_SUPPORT_ISCSI 0x2 1164 #define MF_PROTO_SUPPORT_FCOE 0x4 1165 }; /* struct bxe_mf_info */ 1166 1167 /* Device information data structure. */ 1168 struct bxe_devinfo { 1169 /* PCIe info */ 1170 uint16_t vendor_id; 1171 uint16_t device_id; 1172 uint16_t subvendor_id; 1173 uint16_t subdevice_id; 1174 1175 /* 1176 * chip_id = 0b'CCCCCCCCCCCCCCCCRRRRMMMMMMMMBBBB' 1177 * C = Chip Number (bits 16-31) 1178 * R = Chip Revision (bits 12-15) 1179 * M = Chip Metal (bits 4-11) 1180 * B = Chip Bond ID (bits 0-3) 1181 */ 1182 uint32_t chip_id; 1183 #define CHIP_ID(sc) ((sc)->devinfo.chip_id & 0xffff0000) 1184 #define CHIP_NUM(sc) ((sc)->devinfo.chip_id >> 16) 1185 /* device ids */ 1186 #define CHIP_NUM_57710 0x164e 1187 #define CHIP_NUM_57711 0x164f 1188 #define CHIP_NUM_57711E 0x1650 1189 #define CHIP_NUM_57712 0x1662 1190 #define CHIP_NUM_57712_MF 0x1663 1191 #define CHIP_NUM_57712_VF 0x166f 1192 #define CHIP_NUM_57800 0x168a 1193 #define CHIP_NUM_57800_MF 0x16a5 1194 #define CHIP_NUM_57800_VF 0x16a9 1195 #define CHIP_NUM_57810 0x168e 1196 #define CHIP_NUM_57810_MF 0x16ae 1197 #define CHIP_NUM_57810_VF 0x16af 1198 #define CHIP_NUM_57811 0x163d 1199 #define CHIP_NUM_57811_MF 0x163e 1200 #define CHIP_NUM_57811_VF 0x163f 1201 #define CHIP_NUM_57840_OBS 0x168d 1202 #define CHIP_NUM_57840_OBS_MF 0x16ab 1203 #define CHIP_NUM_57840_4_10 0x16a1 1204 #define CHIP_NUM_57840_2_20 0x16a2 1205 #define CHIP_NUM_57840_MF 0x16a4 1206 #define CHIP_NUM_57840_VF 0x16ad 1207 1208 #define CHIP_REV_SHIFT 12 1209 #define CHIP_REV_MASK (0xF << CHIP_REV_SHIFT) 1210 #define CHIP_REV(sc) ((sc)->devinfo.chip_id & CHIP_REV_MASK) 1211 1212 #define CHIP_REV_Ax (0x0 << CHIP_REV_SHIFT) 1213 #define CHIP_REV_Bx (0x1 << CHIP_REV_SHIFT) 1214 #define CHIP_REV_Cx (0x2 << CHIP_REV_SHIFT) 1215 1216 #define CHIP_REV_IS_SLOW(sc) \ 1217 (CHIP_REV(sc) > 0x00005000) 1218 #define CHIP_REV_IS_FPGA(sc) \ 1219 (CHIP_REV_IS_SLOW(sc) && (CHIP_REV(sc) & 0x00001000)) 1220 #define CHIP_REV_IS_EMUL(sc) \ 1221 (CHIP_REV_IS_SLOW(sc) && !(CHIP_REV(sc) & 0x00001000)) 1222 #define CHIP_REV_IS_ASIC(sc) \ 1223 (!CHIP_REV_IS_SLOW(sc)) 1224 1225 #define CHIP_METAL(sc) ((sc->devinfo.chip_id) & 0x00000ff0) 1226 #define CHIP_BOND_ID(sc) ((sc->devinfo.chip_id) & 0x0000000f) 1227 1228 #define CHIP_IS_E1(sc) (CHIP_NUM(sc) == CHIP_NUM_57710) 1229 #define CHIP_IS_57710(sc) (CHIP_NUM(sc) == CHIP_NUM_57710) 1230 #define CHIP_IS_57711(sc) (CHIP_NUM(sc) == CHIP_NUM_57711) 1231 #define CHIP_IS_57711E(sc) (CHIP_NUM(sc) == CHIP_NUM_57711E) 1232 #define CHIP_IS_E1H(sc) ((CHIP_IS_57711(sc)) || \ 1233 (CHIP_IS_57711E(sc))) 1234 #define CHIP_IS_E1x(sc) (CHIP_IS_E1((sc)) || \ 1235 CHIP_IS_E1H((sc))) 1236 1237 #define CHIP_IS_57712(sc) (CHIP_NUM(sc) == CHIP_NUM_57712) 1238 #define CHIP_IS_57712_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57712_MF) 1239 #define CHIP_IS_57712_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57712_VF) 1240 #define CHIP_IS_E2(sc) (CHIP_IS_57712(sc) || \ 1241 CHIP_IS_57712_MF(sc)) 1242 1243 #define CHIP_IS_57800(sc) (CHIP_NUM(sc) == CHIP_NUM_57800) 1244 #define CHIP_IS_57800_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57800_MF) 1245 #define CHIP_IS_57800_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57800_VF) 1246 #define CHIP_IS_57810(sc) (CHIP_NUM(sc) == CHIP_NUM_57810) 1247 #define CHIP_IS_57810_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57810_MF) 1248 #define CHIP_IS_57810_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57810_VF) 1249 #define CHIP_IS_57811(sc) (CHIP_NUM(sc) == CHIP_NUM_57811) 1250 #define CHIP_IS_57811_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57811_MF) 1251 #define CHIP_IS_57811_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57811_VF) 1252 #define CHIP_IS_57840(sc) ((CHIP_NUM(sc) == CHIP_NUM_57840_OBS) || \ 1253 (CHIP_NUM(sc) == CHIP_NUM_57840_4_10) || \ 1254 (CHIP_NUM(sc) == CHIP_NUM_57840_2_20)) 1255 #define CHIP_IS_57840_MF(sc) ((CHIP_NUM(sc) == CHIP_NUM_57840_OBS_MF) || \ 1256 (CHIP_NUM(sc) == CHIP_NUM_57840_MF)) 1257 #define CHIP_IS_57840_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57840_VF) 1258 1259 #define CHIP_IS_E3(sc) (CHIP_IS_57800(sc) || \ 1260 CHIP_IS_57800_MF(sc) || \ 1261 CHIP_IS_57800_VF(sc) || \ 1262 CHIP_IS_57810(sc) || \ 1263 CHIP_IS_57810_MF(sc) || \ 1264 CHIP_IS_57810_VF(sc) || \ 1265 CHIP_IS_57811(sc) || \ 1266 CHIP_IS_57811_MF(sc) || \ 1267 CHIP_IS_57811_VF(sc) || \ 1268 CHIP_IS_57840(sc) || \ 1269 CHIP_IS_57840_MF(sc) || \ 1270 CHIP_IS_57840_VF(sc)) 1271 #define CHIP_IS_E3A0(sc) (CHIP_IS_E3(sc) && \ 1272 (CHIP_REV(sc) == CHIP_REV_Ax)) 1273 #define CHIP_IS_E3B0(sc) (CHIP_IS_E3(sc) && \ 1274 (CHIP_REV(sc) == CHIP_REV_Bx)) 1275 1276 #define USES_WARPCORE(sc) (CHIP_IS_E3(sc)) 1277 #define CHIP_IS_E2E3(sc) (CHIP_IS_E2(sc) || \ 1278 CHIP_IS_E3(sc)) 1279 1280 #define CHIP_IS_MF_CAP(sc) (CHIP_IS_57711E(sc) || \ 1281 CHIP_IS_57712_MF(sc) || \ 1282 CHIP_IS_E3(sc)) 1283 1284 #define IS_VF(sc) (CHIP_IS_57712_VF(sc) || \ 1285 CHIP_IS_57800_VF(sc) || \ 1286 CHIP_IS_57810_VF(sc) || \ 1287 CHIP_IS_57840_VF(sc)) 1288 #define IS_PF(sc) (!IS_VF(sc)) 1289 1290 /* 1291 * This define is used in two main places: 1292 * 1. In the early stages of nic_load, to know if to configure Parser/Searcher 1293 * to nic-only mode or to offload mode. Offload mode is configured if either 1294 * the chip is E1x (where NIC_MODE register is not applicable), or if cnic 1295 * already registered for this port (which means that the user wants storage 1296 * services). 1297 * 2. During cnic-related load, to know if offload mode is already configured 1298 * in the HW or needs to be configrued. Since the transition from nic-mode to 1299 * offload-mode in HW causes traffic coruption, nic-mode is configured only 1300 * in ports on which storage services where never requested. 1301 */ 1302 #define CONFIGURE_NIC_MODE(sc) (!CHIP_IS_E1x(sc) && !CNIC_ENABLED(sc)) 1303 1304 uint8_t chip_port_mode; 1305 #define CHIP_4_PORT_MODE 0x0 1306 #define CHIP_2_PORT_MODE 0x1 1307 #define CHIP_PORT_MODE_NONE 0x2 1308 #define CHIP_PORT_MODE(sc) ((sc)->devinfo.chip_port_mode) 1309 #define CHIP_IS_MODE_4_PORT(sc) (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) 1310 1311 uint8_t int_block; 1312 #define INT_BLOCK_HC 0 1313 #define INT_BLOCK_IGU 1 1314 #define INT_BLOCK_MODE_NORMAL 0 1315 #define INT_BLOCK_MODE_BW_COMP 2 1316 #define CHIP_INT_MODE_IS_NBC(sc) \ 1317 (!CHIP_IS_E1x(sc) && \ 1318 !((sc)->devinfo.int_block & INT_BLOCK_MODE_BW_COMP)) 1319 #define CHIP_INT_MODE_IS_BC(sc) (!CHIP_INT_MODE_IS_NBC(sc)) 1320 1321 uint32_t shmem_base; 1322 uint32_t shmem2_base; 1323 uint32_t bc_ver; 1324 char bc_ver_str[32]; 1325 uint32_t mf_cfg_base; /* bootcode shmem address in BAR memory */ 1326 struct bxe_mf_info mf_info; 1327 1328 int flash_size; 1329 #define NVRAM_1MB_SIZE 0x20000 1330 #define NVRAM_TIMEOUT_COUNT 30000 1331 #define NVRAM_PAGE_SIZE 256 1332 1333 /* PCIe capability information */ 1334 uint32_t pcie_cap_flags; 1335 #define BXE_PM_CAPABLE_FLAG 0x00000001 1336 #define BXE_PCIE_CAPABLE_FLAG 0x00000002 1337 #define BXE_MSI_CAPABLE_FLAG 0x00000004 1338 #define BXE_MSIX_CAPABLE_FLAG 0x00000008 1339 uint16_t pcie_pm_cap_reg; 1340 uint16_t pcie_pcie_cap_reg; 1341 //uint16_t pcie_devctl; 1342 uint16_t pcie_link_width; 1343 uint16_t pcie_link_speed; 1344 uint16_t pcie_msi_cap_reg; 1345 uint16_t pcie_msix_cap_reg; 1346 1347 /* device configuration read from bootcode shared memory */ 1348 uint32_t hw_config; 1349 uint32_t hw_config2; 1350 }; /* struct bxe_devinfo */ 1351 1352 struct bxe_sp_objs { 1353 struct ecore_vlan_mac_obj mac_obj; /* MACs object */ 1354 struct ecore_queue_sp_obj q_obj; /* Queue State object */ 1355 }; /* struct bxe_sp_objs */ 1356 1357 /* 1358 * Data that will be used to create a link report message. We will keep the 1359 * data used for the last link report in order to prevent reporting the same 1360 * link parameters twice. 1361 */ 1362 struct bxe_link_report_data { 1363 uint16_t line_speed; /* Effective line speed */ 1364 unsigned long link_report_flags; /* BXE_LINK_REPORT_XXX flags */ 1365 }; 1366 enum { 1367 BXE_LINK_REPORT_FULL_DUPLEX, 1368 BXE_LINK_REPORT_LINK_DOWN, 1369 BXE_LINK_REPORT_RX_FC_ON, 1370 BXE_LINK_REPORT_TX_FC_ON 1371 }; 1372 1373 /* Top level device private data structure. */ 1374 struct bxe_softc { 1375 /* 1376 * First entry must be a pointer to the BSD ifnet struct which 1377 * has a first element of 'void *if_softc' (which is us). 1378 */ 1379 struct ifnet *ifnet; 1380 struct ifmedia ifmedia; /* network interface media structure */ 1381 int media; 1382 1383 int state; /* device state */ 1384 #define BXE_STATE_CLOSED 0x0000 1385 #define BXE_STATE_OPENING_WAITING_LOAD 0x1000 1386 #define BXE_STATE_OPENING_WAITING_PORT 0x2000 1387 #define BXE_STATE_OPEN 0x3000 1388 #define BXE_STATE_CLOSING_WAITING_HALT 0x4000 1389 #define BXE_STATE_CLOSING_WAITING_DELETE 0x5000 1390 #define BXE_STATE_CLOSING_WAITING_UNLOAD 0x6000 1391 #define BXE_STATE_DISABLED 0xD000 1392 #define BXE_STATE_DIAG 0xE000 1393 #define BXE_STATE_ERROR 0xF000 1394 1395 int flags; 1396 #define BXE_ONE_PORT_FLAG 0x00000001 1397 #define BXE_NO_ISCSI 0x00000002 1398 #define BXE_NO_FCOE 0x00000004 1399 #define BXE_ONE_PORT(sc) (sc->flags & BXE_ONE_PORT_FLAG) 1400 //#define BXE_NO_WOL_FLAG 0x00000008 1401 //#define BXE_USING_DAC_FLAG 0x00000010 1402 //#define BXE_USING_MSIX_FLAG 0x00000020 1403 //#define BXE_USING_MSI_FLAG 0x00000040 1404 //#define BXE_DISABLE_MSI_FLAG 0x00000080 1405 #define BXE_NO_MCP_FLAG 0x00000200 1406 #define BXE_NOMCP(sc) (sc->flags & BXE_NO_MCP_FLAG) 1407 //#define BXE_SAFC_TX_FLAG 0x00000400 1408 #define BXE_MF_FUNC_DIS 0x00000800 1409 #define BXE_TX_SWITCHING 0x00001000 1410 1411 unsigned long debug; /* per-instance debug logging config */ 1412 1413 #define MAX_BARS 5 1414 struct bxe_bar bar[MAX_BARS]; /* map BARs 0, 2, 4 */ 1415 1416 uint16_t doorbell_size; 1417 1418 /* periodic timer callout */ 1419 #define PERIODIC_STOP 0 1420 #define PERIODIC_GO 1 1421 volatile unsigned long periodic_flags; 1422 struct callout periodic_callout; 1423 1424 /* chip start/stop/reset taskqueue */ 1425 #define CHIP_TQ_NONE 0 1426 #define CHIP_TQ_START 1 1427 #define CHIP_TQ_STOP 2 1428 #define CHIP_TQ_REINIT 3 1429 volatile unsigned long chip_tq_flags; 1430 struct task chip_tq_task; 1431 struct taskqueue *chip_tq; 1432 char chip_tq_name[32]; 1433 1434 /* slowpath interrupt taskqueue */ 1435 struct task sp_tq_task; 1436 struct taskqueue *sp_tq; 1437 char sp_tq_name[32]; 1438 1439 /* set rx_mode asynchronous taskqueue */ 1440 struct task rx_mode_tq_task; 1441 struct taskqueue *rx_mode_tq; 1442 char rx_mode_tq_name[32]; 1443 1444 struct bxe_fastpath fp[MAX_RSS_CHAINS]; 1445 struct bxe_sp_objs sp_objs[MAX_RSS_CHAINS]; 1446 1447 device_t dev; /* parent device handle */ 1448 uint8_t unit; /* driver instance number */ 1449 1450 int pcie_bus; /* PCIe bus number */ 1451 int pcie_device; /* PCIe device/slot number */ 1452 int pcie_func; /* PCIe function number */ 1453 1454 uint8_t pfunc_rel; /* function relative */ 1455 uint8_t pfunc_abs; /* function absolute */ 1456 uint8_t path_id; /* function absolute */ 1457 #define SC_PATH(sc) (sc->path_id) 1458 #define SC_PORT(sc) (sc->pfunc_rel & 1) 1459 #define SC_FUNC(sc) (sc->pfunc_rel) 1460 #define SC_ABS_FUNC(sc) (sc->pfunc_abs) 1461 #define SC_VN(sc) (sc->pfunc_rel >> 1) 1462 #define SC_L_ID(sc) (SC_VN(sc) << 2) 1463 #define PORT_ID(sc) SC_PORT(sc) 1464 #define PATH_ID(sc) SC_PATH(sc) 1465 #define VNIC_ID(sc) SC_VN(sc) 1466 #define FUNC_ID(sc) SC_FUNC(sc) 1467 #define ABS_FUNC_ID(sc) SC_ABS_FUNC(sc) 1468 #define SC_FW_MB_IDX_VN(sc, vn) \ 1469 (SC_PORT(sc) + (vn) * \ 1470 ((CHIP_IS_E1x(sc) || (CHIP_IS_MODE_4_PORT(sc))) ? 2 : 1)) 1471 #define SC_FW_MB_IDX(sc) SC_FW_MB_IDX_VN(sc, SC_VN(sc)) 1472 1473 int if_capen; /* enabled interface capabilities */ 1474 1475 struct bxe_devinfo devinfo; 1476 char fw_ver_str[32]; 1477 char mf_mode_str[32]; 1478 char pci_link_str[32]; 1479 1480 const struct iro *iro_array; 1481 1482 #ifdef BXE_CORE_LOCK_SX 1483 struct sx core_sx; 1484 char core_sx_name[32]; 1485 #else 1486 struct mtx core_mtx; 1487 char core_mtx_name[32]; 1488 #endif 1489 struct mtx sp_mtx; 1490 char sp_mtx_name[32]; 1491 struct mtx dmae_mtx; 1492 char dmae_mtx_name[32]; 1493 struct mtx fwmb_mtx; 1494 char fwmb_mtx_name[32]; 1495 struct mtx print_mtx; 1496 char print_mtx_name[32]; 1497 struct mtx stats_mtx; 1498 char stats_mtx_name[32]; 1499 struct mtx mcast_mtx; 1500 char mcast_mtx_name[32]; 1501 1502 #ifdef BXE_CORE_LOCK_SX 1503 #define BXE_CORE_TRYLOCK(sc) sx_try_xlock(&sc->core_sx) 1504 #define BXE_CORE_LOCK(sc) sx_xlock(&sc->core_sx) 1505 #define BXE_CORE_UNLOCK(sc) sx_xunlock(&sc->core_sx) 1506 #define BXE_CORE_LOCK_ASSERT(sc) sx_assert(&sc->core_sx, SA_XLOCKED) 1507 #else 1508 #define BXE_CORE_TRYLOCK(sc) mtx_trylock(&sc->core_mtx) 1509 #define BXE_CORE_LOCK(sc) mtx_lock(&sc->core_mtx) 1510 #define BXE_CORE_UNLOCK(sc) mtx_unlock(&sc->core_mtx) 1511 #define BXE_CORE_LOCK_ASSERT(sc) mtx_assert(&sc->core_mtx, MA_OWNED) 1512 #endif 1513 1514 #define BXE_SP_LOCK(sc) mtx_lock(&sc->sp_mtx) 1515 #define BXE_SP_UNLOCK(sc) mtx_unlock(&sc->sp_mtx) 1516 #define BXE_SP_LOCK_ASSERT(sc) mtx_assert(&sc->sp_mtx, MA_OWNED) 1517 1518 #define BXE_DMAE_LOCK(sc) mtx_lock(&sc->dmae_mtx) 1519 #define BXE_DMAE_UNLOCK(sc) mtx_unlock(&sc->dmae_mtx) 1520 #define BXE_DMAE_LOCK_ASSERT(sc) mtx_assert(&sc->dmae_mtx, MA_OWNED) 1521 1522 #define BXE_FWMB_LOCK(sc) mtx_lock(&sc->fwmb_mtx) 1523 #define BXE_FWMB_UNLOCK(sc) mtx_unlock(&sc->fwmb_mtx) 1524 #define BXE_FWMB_LOCK_ASSERT(sc) mtx_assert(&sc->fwmb_mtx, MA_OWNED) 1525 1526 #define BXE_PRINT_LOCK(sc) mtx_lock(&sc->print_mtx) 1527 #define BXE_PRINT_UNLOCK(sc) mtx_unlock(&sc->print_mtx) 1528 #define BXE_PRINT_LOCK_ASSERT(sc) mtx_assert(&sc->print_mtx, MA_OWNED) 1529 1530 #define BXE_STATS_LOCK(sc) mtx_lock(&sc->stats_mtx) 1531 #define BXE_STATS_UNLOCK(sc) mtx_unlock(&sc->stats_mtx) 1532 #define BXE_STATS_LOCK_ASSERT(sc) mtx_assert(&sc->stats_mtx, MA_OWNED) 1533 1534 #if __FreeBSD_version < 800000 1535 #define BXE_MCAST_LOCK(sc) \ 1536 do { \ 1537 mtx_lock(&sc->mcast_mtx); \ 1538 IF_ADDR_LOCK(sc->ifnet); \ 1539 } while (0) 1540 #define BXE_MCAST_UNLOCK(sc) \ 1541 do { \ 1542 IF_ADDR_UNLOCK(sc->ifnet); \ 1543 mtx_unlock(&sc->mcast_mtx); \ 1544 } while (0) 1545 #else 1546 #define BXE_MCAST_LOCK(sc) \ 1547 do { \ 1548 mtx_lock(&sc->mcast_mtx); \ 1549 if_maddr_rlock(sc->ifnet); \ 1550 } while (0) 1551 #define BXE_MCAST_UNLOCK(sc) \ 1552 do { \ 1553 if_maddr_runlock(sc->ifnet); \ 1554 mtx_unlock(&sc->mcast_mtx); \ 1555 } while (0) 1556 #endif 1557 #define BXE_MCAST_LOCK_ASSERT(sc) mtx_assert(&sc->mcast_mtx, MA_OWNED) 1558 1559 int dmae_ready; 1560 #define DMAE_READY(sc) (sc->dmae_ready) 1561 1562 struct ecore_credit_pool_obj vlans_pool; 1563 struct ecore_credit_pool_obj macs_pool; 1564 struct ecore_rx_mode_obj rx_mode_obj; 1565 struct ecore_mcast_obj mcast_obj; 1566 struct ecore_rss_config_obj rss_conf_obj; 1567 struct ecore_func_sp_obj func_obj; 1568 1569 uint16_t fw_seq; 1570 uint16_t fw_drv_pulse_wr_seq; 1571 uint32_t func_stx; 1572 1573 struct elink_params link_params; 1574 struct elink_vars link_vars; 1575 uint32_t link_cnt; 1576 struct bxe_link_report_data last_reported_link; 1577 char mac_addr_str[32]; 1578 1579 int last_reported_link_state; 1580 1581 int tx_ring_size; 1582 int rx_ring_size; 1583 int wol; 1584 1585 int is_leader; 1586 int recovery_state; 1587 #define BXE_RECOVERY_DONE 1 1588 #define BXE_RECOVERY_INIT 2 1589 #define BXE_RECOVERY_WAIT 3 1590 #define BXE_RECOVERY_FAILED 4 1591 #define BXE_RECOVERY_NIC_LOADING 5 1592 1593 uint32_t rx_mode; 1594 #define BXE_RX_MODE_NONE 0 1595 #define BXE_RX_MODE_NORMAL 1 1596 #define BXE_RX_MODE_ALLMULTI 2 1597 #define BXE_RX_MODE_PROMISC 3 1598 #define BXE_MAX_MULTICAST 64 1599 1600 struct bxe_port port; 1601 1602 struct cmng_init cmng; 1603 1604 /* user configs */ 1605 int num_queues; 1606 int max_rx_bufs; 1607 int hc_rx_ticks; 1608 int hc_tx_ticks; 1609 int rx_budget; 1610 int max_aggregation_size; 1611 int mrrs; 1612 int autogreeen; 1613 #define AUTO_GREEN_HW_DEFAULT 0 1614 #define AUTO_GREEN_FORCE_ON 1 1615 #define AUTO_GREEN_FORCE_OFF 2 1616 int interrupt_mode; 1617 #define INTR_MODE_INTX 0 1618 #define INTR_MODE_MSI 1 1619 #define INTR_MODE_MSIX 2 1620 int udp_rss; 1621 1622 /* interrupt allocations */ 1623 struct bxe_intr intr[MAX_RSS_CHAINS+1]; 1624 int intr_count; 1625 uint8_t igu_dsb_id; 1626 uint8_t igu_base_sb; 1627 uint8_t igu_sb_cnt; 1628 //uint8_t min_msix_vec_cnt; 1629 uint32_t igu_base_addr; 1630 //bus_addr_t def_status_blk_mapping; 1631 uint8_t base_fw_ndsb; 1632 #define DEF_SB_IGU_ID 16 1633 #define DEF_SB_ID HC_SP_SB_ID 1634 1635 /* parent bus DMA tag */ 1636 bus_dma_tag_t parent_dma_tag; 1637 1638 /* default status block */ 1639 struct bxe_dma def_sb_dma; 1640 struct host_sp_status_block *def_sb; 1641 uint16_t def_idx; 1642 uint16_t def_att_idx; 1643 uint32_t attn_state; 1644 struct attn_route attn_group[MAX_DYNAMIC_ATTN_GRPS]; 1645 1646 /* general SP events - stats query, cfc delete, etc */ 1647 #define HC_SP_INDEX_ETH_DEF_CONS 3 1648 /* EQ completions */ 1649 #define HC_SP_INDEX_EQ_CONS 7 1650 /* FCoE L2 connection completions */ 1651 #define HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS 6 1652 #define HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS 4 1653 /* iSCSI L2 */ 1654 #define HC_SP_INDEX_ETH_ISCSI_CQ_CONS 5 1655 #define HC_SP_INDEX_ETH_ISCSI_RX_CQ_CONS 1 1656 1657 /* event queue */ 1658 struct bxe_dma eq_dma; 1659 union event_ring_elem *eq; 1660 uint16_t eq_prod; 1661 uint16_t eq_cons; 1662 uint16_t *eq_cons_sb; 1663 #define NUM_EQ_PAGES 1 /* must be a power of 2 */ 1664 #define EQ_DESC_CNT_PAGE (BCM_PAGE_SIZE / sizeof(union event_ring_elem)) 1665 #define EQ_DESC_MAX_PAGE (EQ_DESC_CNT_PAGE - 1) 1666 #define NUM_EQ_DESC (EQ_DESC_CNT_PAGE * NUM_EQ_PAGES) 1667 #define EQ_DESC_MASK (NUM_EQ_DESC - 1) 1668 #define MAX_EQ_AVAIL (EQ_DESC_MAX_PAGE * NUM_EQ_PAGES - 2) 1669 /* depends on EQ_DESC_CNT_PAGE being a power of 2 */ 1670 #define NEXT_EQ_IDX(x) \ 1671 ((((x) & EQ_DESC_MAX_PAGE) == (EQ_DESC_MAX_PAGE - 1)) ? \ 1672 ((x) + 2) : ((x) + 1)) 1673 /* depends on the above and on NUM_EQ_PAGES being a power of 2 */ 1674 #define EQ_DESC(x) ((x) & EQ_DESC_MASK) 1675 1676 /* slow path */ 1677 struct bxe_dma sp_dma; 1678 struct bxe_slowpath *sp; 1679 unsigned long sp_state; 1680 1681 /* slow path queue */ 1682 struct bxe_dma spq_dma; 1683 struct eth_spe *spq; 1684 #define SP_DESC_CNT (BCM_PAGE_SIZE / sizeof(struct eth_spe)) 1685 #define MAX_SP_DESC_CNT (SP_DESC_CNT - 1) 1686 #define MAX_SPQ_PENDING 8 1687 1688 uint16_t spq_prod_idx; 1689 struct eth_spe *spq_prod_bd; 1690 struct eth_spe *spq_last_bd; 1691 uint16_t *dsb_sp_prod; 1692 //uint16_t *spq_hw_con; 1693 //uint16_t spq_left; 1694 1695 volatile unsigned long eq_spq_left; /* COMMON_xxx ramrod credit */ 1696 volatile unsigned long cq_spq_left; /* ETH_xxx ramrod credit */ 1697 1698 /* fw decompression buffer */ 1699 struct bxe_dma gz_buf_dma; 1700 void *gz_buf; 1701 z_streamp gz_strm; 1702 uint32_t gz_outlen; 1703 #define GUNZIP_BUF(sc) (sc->gz_buf) 1704 #define GUNZIP_OUTLEN(sc) (sc->gz_outlen) 1705 #define GUNZIP_PHYS(sc) (sc->gz_buf_dma.paddr) 1706 #define FW_BUF_SIZE 0x40000 1707 1708 const struct raw_op *init_ops; 1709 const uint16_t *init_ops_offsets; /* init block offsets inside init_ops */ 1710 const uint32_t *init_data; /* data blob, 32 bit granularity */ 1711 uint32_t init_mode_flags; 1712 #define INIT_MODE_FLAGS(sc) (sc->init_mode_flags) 1713 /* PRAM blobs - raw data */ 1714 const uint8_t *tsem_int_table_data; 1715 const uint8_t *tsem_pram_data; 1716 const uint8_t *usem_int_table_data; 1717 const uint8_t *usem_pram_data; 1718 const uint8_t *xsem_int_table_data; 1719 const uint8_t *xsem_pram_data; 1720 const uint8_t *csem_int_table_data; 1721 const uint8_t *csem_pram_data; 1722 #define INIT_OPS(sc) (sc->init_ops) 1723 #define INIT_OPS_OFFSETS(sc) (sc->init_ops_offsets) 1724 #define INIT_DATA(sc) (sc->init_data) 1725 #define INIT_TSEM_INT_TABLE_DATA(sc) (sc->tsem_int_table_data) 1726 #define INIT_TSEM_PRAM_DATA(sc) (sc->tsem_pram_data) 1727 #define INIT_USEM_INT_TABLE_DATA(sc) (sc->usem_int_table_data) 1728 #define INIT_USEM_PRAM_DATA(sc) (sc->usem_pram_data) 1729 #define INIT_XSEM_INT_TABLE_DATA(sc) (sc->xsem_int_table_data) 1730 #define INIT_XSEM_PRAM_DATA(sc) (sc->xsem_pram_data) 1731 #define INIT_CSEM_INT_TABLE_DATA(sc) (sc->csem_int_table_data) 1732 #define INIT_CSEM_PRAM_DATA(sc) (sc->csem_pram_data) 1733 1734 /* ILT 1735 * For max 196 cids (64*3 + non-eth), 32KB ILT page size and 1KB 1736 * context size we need 8 ILT entries. 1737 */ 1738 #define ILT_MAX_L2_LINES 8 1739 struct hw_context context[ILT_MAX_L2_LINES]; 1740 struct ecore_ilt *ilt; 1741 #define ILT_MAX_LINES 256 1742 1743 /* max supported number of RSS queues: IGU SBs minus one for CNIC */ 1744 #define BXE_MAX_RSS_COUNT(sc) ((sc)->igu_sb_cnt - CNIC_SUPPORT(sc)) 1745 /* max CID count: Max RSS * Max_Tx_Multi_Cos + FCoE + iSCSI */ 1746 #if 1 1747 #define BXE_L2_MAX_CID(sc) \ 1748 (BXE_MAX_RSS_COUNT(sc) * ECORE_MULTI_TX_COS + 2 * CNIC_SUPPORT(sc)) 1749 #else 1750 #define BXE_L2_MAX_CID(sc) /* OOO + FWD */ \ 1751 (BXE_MAX_RSS_COUNT(sc) * ECORE_MULTI_TX_COS + 4 * CNIC_SUPPORT(sc)) 1752 #endif 1753 #if 1 1754 #define BXE_L2_CID_COUNT(sc) \ 1755 (BXE_NUM_ETH_QUEUES(sc) * ECORE_MULTI_TX_COS + 2 * CNIC_SUPPORT(sc)) 1756 #else 1757 #define BXE_L2_CID_COUNT(sc) /* OOO + FWD */ \ 1758 (BXE_NUM_ETH_QUEUES(sc) * ECORE_MULTI_TX_COS + 4 * CNIC_SUPPORT(sc)) 1759 #endif 1760 #define L2_ILT_LINES(sc) \ 1761 (DIV_ROUND_UP(BXE_L2_CID_COUNT(sc), ILT_PAGE_CIDS)) 1762 1763 int qm_cid_count; 1764 1765 uint8_t dropless_fc; 1766 1767 #if 0 1768 struct bxe_dma *t2; 1769 #endif 1770 1771 /* total number of FW statistics requests */ 1772 uint8_t fw_stats_num; 1773 /* 1774 * This is a memory buffer that will contain both statistics ramrod 1775 * request and data. 1776 */ 1777 struct bxe_dma fw_stats_dma; 1778 /* 1779 * FW statistics request shortcut (points at the beginning of fw_stats 1780 * buffer). 1781 */ 1782 int fw_stats_req_size; 1783 struct bxe_fw_stats_req *fw_stats_req; 1784 bus_addr_t fw_stats_req_mapping; 1785 /* 1786 * FW statistics data shortcut (points at the beginning of fw_stats 1787 * buffer + fw_stats_req_size). 1788 */ 1789 int fw_stats_data_size; 1790 struct bxe_fw_stats_data *fw_stats_data; 1791 bus_addr_t fw_stats_data_mapping; 1792 1793 /* tracking a pending STAT_QUERY ramrod */ 1794 uint16_t stats_pending; 1795 /* number of completed statistics ramrods */ 1796 uint16_t stats_comp; 1797 uint16_t stats_counter; 1798 uint8_t stats_init; 1799 int stats_state; 1800 1801 struct bxe_eth_stats eth_stats; 1802 struct host_func_stats func_stats; 1803 struct bxe_eth_stats_old eth_stats_old; 1804 struct bxe_net_stats_old net_stats_old; 1805 struct bxe_fw_port_stats_old fw_stats_old; 1806 1807 struct dmae_command stats_dmae; /* used by dmae command loader */ 1808 int executer_idx; 1809 1810 int mtu; 1811 1812 /* LLDP params */ 1813 struct bxe_config_lldp_params lldp_config_params; 1814 /* DCB support on/off */ 1815 int dcb_state; 1816 #define BXE_DCB_STATE_OFF 0 1817 #define BXE_DCB_STATE_ON 1 1818 /* DCBX engine mode */ 1819 int dcbx_enabled; 1820 #define BXE_DCBX_ENABLED_OFF 0 1821 #define BXE_DCBX_ENABLED_ON_NEG_OFF 1 1822 #define BXE_DCBX_ENABLED_ON_NEG_ON 2 1823 #define BXE_DCBX_ENABLED_INVALID -1 1824 uint8_t dcbx_mode_uset; 1825 struct bxe_config_dcbx_params dcbx_config_params; 1826 struct bxe_dcbx_port_params dcbx_port_params; 1827 int dcb_version; 1828 1829 uint8_t cnic_support; 1830 uint8_t cnic_enabled; 1831 uint8_t cnic_loaded; 1832 #define CNIC_SUPPORT(sc) 0 /* ((sc)->cnic_support) */ 1833 #define CNIC_ENABLED(sc) 0 /* ((sc)->cnic_enabled) */ 1834 #define CNIC_LOADED(sc) 0 /* ((sc)->cnic_loaded) */ 1835 1836 /* multiple tx classes of service */ 1837 uint8_t max_cos; 1838 #define BXE_MAX_PRIORITY 8 1839 /* priority to cos mapping */ 1840 uint8_t prio_to_cos[BXE_MAX_PRIORITY]; 1841 1842 int panic; 1843 }; /* struct bxe_softc */ 1844 1845 /* IOCTL sub-commands for edebug and firmware upgrade */ 1846 #define BXE_IOC_RD_NVRAM 1 1847 #define BXE_IOC_WR_NVRAM 2 1848 #define BXE_IOC_STATS_SHOW_NUM 3 1849 #define BXE_IOC_STATS_SHOW_STR 4 1850 #define BXE_IOC_STATS_SHOW_CNT 5 1851 1852 struct bxe_nvram_data { 1853 uint32_t op; /* ioctl sub-command */ 1854 uint32_t offset; 1855 uint32_t len; 1856 uint32_t value[1]; /* variable */ 1857 }; 1858 1859 union bxe_stats_show_data { 1860 uint32_t op; /* ioctl sub-command */ 1861 1862 struct { 1863 uint32_t num; /* return number of stats */ 1864 uint32_t len; /* length of each string item */ 1865 } desc; 1866 1867 /* variable length... */ 1868 char str[1]; /* holds names of desc.num stats, each desc.len in length */ 1869 1870 /* variable length... */ 1871 uint64_t stats[1]; /* holds all stats */ 1872 }; 1873 1874 /* function init flags */ 1875 #define FUNC_FLG_RSS 0x0001 1876 #define FUNC_FLG_STATS 0x0002 1877 /* FUNC_FLG_UNMATCHED 0x0004 */ 1878 #define FUNC_FLG_TPA 0x0008 1879 #define FUNC_FLG_SPQ 0x0010 1880 #define FUNC_FLG_LEADING 0x0020 /* PF only */ 1881 1882 struct bxe_func_init_params { 1883 bus_addr_t fw_stat_map; /* (dma) valid if FUNC_FLG_STATS */ 1884 bus_addr_t spq_map; /* (dma) valid if FUNC_FLG_SPQ */ 1885 uint16_t func_flgs; 1886 uint16_t func_id; /* abs function id */ 1887 uint16_t pf_id; 1888 uint16_t spq_prod; /* valid if FUNC_FLG_SPQ */ 1889 }; 1890 1891 /* memory resources reside at BARs 0, 2, 4 */ 1892 /* Run `pciconf -lb` to see mappings */ 1893 #define BAR0 0 1894 #define BAR1 2 1895 #define BAR2 4 1896 1897 #ifdef BXE_REG_NO_INLINE 1898 1899 uint8_t bxe_reg_read8(struct bxe_softc *sc, bus_size_t offset); 1900 uint16_t bxe_reg_read16(struct bxe_softc *sc, bus_size_t offset); 1901 uint32_t bxe_reg_read32(struct bxe_softc *sc, bus_size_t offset); 1902 1903 void bxe_reg_write8(struct bxe_softc *sc, bus_size_t offset, uint8_t val); 1904 void bxe_reg_write16(struct bxe_softc *sc, bus_size_t offset, uint16_t val); 1905 void bxe_reg_write32(struct bxe_softc *sc, bus_size_t offset, uint32_t val); 1906 1907 #define REG_RD8(sc, offset) bxe_reg_read8(sc, offset) 1908 #define REG_RD16(sc, offset) bxe_reg_read16(sc, offset) 1909 #define REG_RD32(sc, offset) bxe_reg_read32(sc, offset) 1910 1911 #define REG_WR8(sc, offset, val) bxe_reg_write8(sc, offset, val) 1912 #define REG_WR16(sc, offset, val) bxe_reg_write16(sc, offset, val) 1913 #define REG_WR32(sc, offset, val) bxe_reg_write32(sc, offset, val) 1914 1915 #else /* not BXE_REG_NO_INLINE */ 1916 1917 #define REG_WR8(sc, offset, val) \ 1918 bus_space_write_1(sc->bar[BAR0].tag, \ 1919 sc->bar[BAR0].handle, \ 1920 offset, val) 1921 1922 #define REG_WR16(sc, offset, val) \ 1923 bus_space_write_2(sc->bar[BAR0].tag, \ 1924 sc->bar[BAR0].handle, \ 1925 offset, val) 1926 1927 #define REG_WR32(sc, offset, val) \ 1928 bus_space_write_4(sc->bar[BAR0].tag, \ 1929 sc->bar[BAR0].handle, \ 1930 offset, val) 1931 1932 #define REG_RD8(sc, offset) \ 1933 bus_space_read_1(sc->bar[BAR0].tag, \ 1934 sc->bar[BAR0].handle, \ 1935 offset) 1936 1937 #define REG_RD16(sc, offset) \ 1938 bus_space_read_2(sc->bar[BAR0].tag, \ 1939 sc->bar[BAR0].handle, \ 1940 offset) 1941 1942 #define REG_RD32(sc, offset) \ 1943 bus_space_read_4(sc->bar[BAR0].tag, \ 1944 sc->bar[BAR0].handle, \ 1945 offset) 1946 1947 #endif /* BXE_REG_NO_INLINE */ 1948 1949 #define REG_RD(sc, offset) REG_RD32(sc, offset) 1950 #define REG_WR(sc, offset, val) REG_WR32(sc, offset, val) 1951 1952 #define REG_RD_IND(sc, offset) bxe_reg_rd_ind(sc, offset) 1953 #define REG_WR_IND(sc, offset, val) bxe_reg_wr_ind(sc, offset, val) 1954 1955 #define BXE_SP(sc, var) (&(sc)->sp->var) 1956 #define BXE_SP_MAPPING(sc, var) \ 1957 (sc->sp_dma.paddr + offsetof(struct bxe_slowpath, var)) 1958 1959 #define BXE_FP(sc, nr, var) ((sc)->fp[(nr)].var) 1960 #define BXE_SP_OBJ(sc, fp) ((sc)->sp_objs[(fp)->index]) 1961 1962 #if 0 1963 #define bxe_fp(sc, nr, var) ((sc)->fp[nr].var) 1964 #define bxe_sp_obj(sc, fp) ((sc)->sp_objs[(fp)->index]) 1965 #define bxe_fp_stats(sc, fp) (&(sc)->fp_stats[(fp)->index]) 1966 #define bxe_fp_qstats(sc, fp) (&(sc)->fp_stats[(fp)->index].eth_q_stats) 1967 #endif 1968 1969 #define REG_RD_DMAE(sc, offset, valp, len32) \ 1970 do { \ 1971 bxe_read_dmae(sc, offset, len32); \ 1972 memcpy(valp, BXE_SP(sc, wb_data[0]), (len32) * 4); \ 1973 } while (0) 1974 1975 #define REG_WR_DMAE(sc, offset, valp, len32) \ 1976 do { \ 1977 memcpy(BXE_SP(sc, wb_data[0]), valp, (len32) * 4); \ 1978 bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data), offset, len32); \ 1979 } while (0) 1980 1981 #define REG_WR_DMAE_LEN(sc, offset, valp, len32) \ 1982 REG_WR_DMAE(sc, offset, valp, len32) 1983 1984 #define REG_RD_DMAE_LEN(sc, offset, valp, len32) \ 1985 REG_RD_DMAE(sc, offset, valp, len32) 1986 1987 #define VIRT_WR_DMAE_LEN(sc, data, addr, len32, le32_swap) \ 1988 do { \ 1989 /* if (le32_swap) { */ \ 1990 /* BLOGW(sc, "VIRT_WR_DMAE_LEN with le32_swap=1\n"); */ \ 1991 /* } */ \ 1992 memcpy(GUNZIP_BUF(sc), data, len32 * 4); \ 1993 ecore_write_big_buf_wb(sc, addr, len32); \ 1994 } while (0) 1995 1996 #define BXE_DB_MIN_SHIFT 3 /* 8 bytes */ 1997 #define BXE_DB_SHIFT 7 /* 128 bytes */ 1998 #if (BXE_DB_SHIFT < BXE_DB_MIN_SHIFT) 1999 #error "Minimum DB doorbell stride is 8" 2000 #endif 2001 #define DPM_TRIGGER_TYPE 0x40 2002 #define DOORBELL(sc, cid, val) \ 2003 do { \ 2004 bus_space_write_4(sc->bar[BAR1].tag, sc->bar[BAR1].handle, \ 2005 ((sc->doorbell_size * (cid)) + DPM_TRIGGER_TYPE), \ 2006 (uint32_t)val); \ 2007 } while(0) 2008 2009 #define SHMEM_ADDR(sc, field) \ 2010 (sc->devinfo.shmem_base + offsetof(struct shmem_region, field)) 2011 #define SHMEM_RD(sc, field) REG_RD(sc, SHMEM_ADDR(sc, field)) 2012 #define SHMEM_RD16(sc, field) REG_RD16(sc, SHMEM_ADDR(sc, field)) 2013 #define SHMEM_WR(sc, field, val) REG_WR(sc, SHMEM_ADDR(sc, field), val) 2014 2015 #define SHMEM2_ADDR(sc, field) \ 2016 (sc->devinfo.shmem2_base + offsetof(struct shmem2_region, field)) 2017 #define SHMEM2_HAS(sc, field) \ 2018 (sc->devinfo.shmem2_base && (REG_RD(sc, SHMEM2_ADDR(sc, size)) > \ 2019 offsetof(struct shmem2_region, field))) 2020 #define SHMEM2_RD(sc, field) REG_RD(sc, SHMEM2_ADDR(sc, field)) 2021 #define SHMEM2_WR(sc, field, val) REG_WR(sc, SHMEM2_ADDR(sc, field), val) 2022 2023 #define MFCFG_ADDR(sc, field) \ 2024 (sc->devinfo.mf_cfg_base + offsetof(struct mf_cfg, field)) 2025 #define MFCFG_RD(sc, field) REG_RD(sc, MFCFG_ADDR(sc, field)) 2026 #define MFCFG_RD16(sc, field) REG_RD16(sc, MFCFG_ADDR(sc, field)) 2027 #define MFCFG_WR(sc, field, val) REG_WR(sc, MFCFG_ADDR(sc, field), val) 2028 2029 /* DMAE command defines */ 2030 2031 #define DMAE_TIMEOUT -1 2032 #define DMAE_PCI_ERROR -2 /* E2 and onward */ 2033 #define DMAE_NOT_RDY -3 2034 #define DMAE_PCI_ERR_FLAG 0x80000000 2035 2036 #define DMAE_SRC_PCI 0 2037 #define DMAE_SRC_GRC 1 2038 2039 #define DMAE_DST_NONE 0 2040 #define DMAE_DST_PCI 1 2041 #define DMAE_DST_GRC 2 2042 2043 #define DMAE_COMP_PCI 0 2044 #define DMAE_COMP_GRC 1 2045 2046 #define DMAE_COMP_REGULAR 0 2047 #define DMAE_COM_SET_ERR 1 2048 2049 #define DMAE_CMD_SRC_PCI (DMAE_SRC_PCI << DMAE_COMMAND_SRC_SHIFT) 2050 #define DMAE_CMD_SRC_GRC (DMAE_SRC_GRC << DMAE_COMMAND_SRC_SHIFT) 2051 #define DMAE_CMD_DST_PCI (DMAE_DST_PCI << DMAE_COMMAND_DST_SHIFT) 2052 #define DMAE_CMD_DST_GRC (DMAE_DST_GRC << DMAE_COMMAND_DST_SHIFT) 2053 2054 #define DMAE_CMD_C_DST_PCI (DMAE_COMP_PCI << DMAE_COMMAND_C_DST_SHIFT) 2055 #define DMAE_CMD_C_DST_GRC (DMAE_COMP_GRC << DMAE_COMMAND_C_DST_SHIFT) 2056 2057 #define DMAE_CMD_ENDIANITY_NO_SWAP (0 << DMAE_COMMAND_ENDIANITY_SHIFT) 2058 #define DMAE_CMD_ENDIANITY_B_SWAP (1 << DMAE_COMMAND_ENDIANITY_SHIFT) 2059 #define DMAE_CMD_ENDIANITY_DW_SWAP (2 << DMAE_COMMAND_ENDIANITY_SHIFT) 2060 #define DMAE_CMD_ENDIANITY_B_DW_SWAP (3 << DMAE_COMMAND_ENDIANITY_SHIFT) 2061 2062 #define DMAE_CMD_PORT_0 0 2063 #define DMAE_CMD_PORT_1 DMAE_COMMAND_PORT 2064 2065 #define DMAE_SRC_PF 0 2066 #define DMAE_SRC_VF 1 2067 2068 #define DMAE_DST_PF 0 2069 #define DMAE_DST_VF 1 2070 2071 #define DMAE_C_SRC 0 2072 #define DMAE_C_DST 1 2073 2074 #define DMAE_LEN32_RD_MAX 0x80 2075 #define DMAE_LEN32_WR_MAX(sc) (CHIP_IS_E1(sc) ? 0x400 : 0x2000) 2076 2077 #define DMAE_COMP_VAL 0x60d0d0ae /* E2 and beyond, upper bit indicates error */ 2078 2079 #define MAX_DMAE_C_PER_PORT 8 2080 #define INIT_DMAE_C(sc) ((SC_PORT(sc) * MAX_DMAE_C_PER_PORT) + SC_VN(sc)) 2081 #define PMF_DMAE_C(sc) ((SC_PORT(sc) * MAX_DMAE_C_PER_PORT) + E1HVN_MAX) 2082 2083 static const uint32_t dmae_reg_go_c[] = { 2084 DMAE_REG_GO_C0, DMAE_REG_GO_C1, DMAE_REG_GO_C2, DMAE_REG_GO_C3, 2085 DMAE_REG_GO_C4, DMAE_REG_GO_C5, DMAE_REG_GO_C6, DMAE_REG_GO_C7, 2086 DMAE_REG_GO_C8, DMAE_REG_GO_C9, DMAE_REG_GO_C10, DMAE_REG_GO_C11, 2087 DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15 2088 }; 2089 2090 #define ATTN_NIG_FOR_FUNC (1L << 8) 2091 #define ATTN_SW_TIMER_4_FUNC (1L << 9) 2092 #define GPIO_2_FUNC (1L << 10) 2093 #define GPIO_3_FUNC (1L << 11) 2094 #define GPIO_4_FUNC (1L << 12) 2095 #define ATTN_GENERAL_ATTN_1 (1L << 13) 2096 #define ATTN_GENERAL_ATTN_2 (1L << 14) 2097 #define ATTN_GENERAL_ATTN_3 (1L << 15) 2098 #define ATTN_GENERAL_ATTN_4 (1L << 13) 2099 #define ATTN_GENERAL_ATTN_5 (1L << 14) 2100 #define ATTN_GENERAL_ATTN_6 (1L << 15) 2101 #define ATTN_HARD_WIRED_MASK 0xff00 2102 #define ATTENTION_ID 4 2103 2104 #define AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR \ 2105 AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR 2106 2107 #define MAX_IGU_ATTN_ACK_TO 100 2108 2109 #define STORM_ASSERT_ARRAY_SIZE 50 2110 2111 #define BXE_PMF_LINK_ASSERT(sc) \ 2112 GENERAL_ATTEN_OFFSET(LINK_SYNC_ATTENTION_BIT_FUNC_0 + SC_FUNC(sc)) 2113 2114 #define BXE_MC_ASSERT_BITS \ 2115 (GENERAL_ATTEN_OFFSET(TSTORM_FATAL_ASSERT_ATTENTION_BIT) | \ 2116 GENERAL_ATTEN_OFFSET(USTORM_FATAL_ASSERT_ATTENTION_BIT) | \ 2117 GENERAL_ATTEN_OFFSET(CSTORM_FATAL_ASSERT_ATTENTION_BIT) | \ 2118 GENERAL_ATTEN_OFFSET(XSTORM_FATAL_ASSERT_ATTENTION_BIT)) 2119 2120 #define BXE_MCP_ASSERT \ 2121 GENERAL_ATTEN_OFFSET(MCP_FATAL_ASSERT_ATTENTION_BIT) 2122 2123 #define BXE_GRC_TIMEOUT GENERAL_ATTEN_OFFSET(LATCHED_ATTN_TIMEOUT_GRC) 2124 #define BXE_GRC_RSV (GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCR) | \ 2125 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCT) | \ 2126 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCN) | \ 2127 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCU) | \ 2128 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCP) | \ 2129 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RSVD_GRC)) 2130 2131 #define MULTI_MASK 0x7f 2132 2133 #define PFS_PER_PORT(sc) \ 2134 ((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4) 2135 #define SC_MAX_VN_NUM(sc) PFS_PER_PORT(sc) 2136 2137 #define FIRST_ABS_FUNC_IN_PORT(sc) \ 2138 ((CHIP_PORT_MODE(sc) == CHIP_PORT_MODE_NONE) ? \ 2139 PORT_ID(sc) : (PATH_ID(sc) + (2 * PORT_ID(sc)))) 2140 2141 #define FOREACH_ABS_FUNC_IN_PORT(sc, i) \ 2142 for ((i) = FIRST_ABS_FUNC_IN_PORT(sc); \ 2143 (i) < MAX_FUNC_NUM; \ 2144 (i) += (MAX_FUNC_NUM / PFS_PER_PORT(sc))) 2145 2146 #define BXE_SWCID_SHIFT 17 2147 #define BXE_SWCID_MASK ((0x1 << BXE_SWCID_SHIFT) - 1) 2148 2149 #define SW_CID(x) (le32toh(x) & BXE_SWCID_MASK) 2150 #define CQE_CMD(x) (le32toh(x) >> COMMON_RAMROD_ETH_RX_CQE_CMD_ID_SHIFT) 2151 2152 #define CQE_TYPE(cqe_fp_flags) ((cqe_fp_flags) & ETH_FAST_PATH_RX_CQE_TYPE) 2153 #define CQE_TYPE_START(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_START_AGG) 2154 #define CQE_TYPE_STOP(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_STOP_AGG) 2155 #define CQE_TYPE_SLOW(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_RAMROD) 2156 #define CQE_TYPE_FAST(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_FASTPATH) 2157 2158 /* must be used on a CID before placing it on a HW ring */ 2159 #define HW_CID(sc, x) \ 2160 ((SC_PORT(sc) << 23) | (SC_VN(sc) << BXE_SWCID_SHIFT) | (x)) 2161 2162 #define SPEED_10 10 2163 #define SPEED_100 100 2164 #define SPEED_1000 1000 2165 #define SPEED_2500 2500 2166 #define SPEED_10000 10000 2167 2168 #define PCI_PM_D0 1 2169 #define PCI_PM_D3hot 2 2170 2171 int bxe_test_bit(int nr, volatile unsigned long * addr); 2172 void bxe_set_bit(unsigned int nr, volatile unsigned long * addr); 2173 void bxe_clear_bit(int nr, volatile unsigned long * addr); 2174 int bxe_test_and_set_bit(int nr, volatile unsigned long * addr); 2175 int bxe_test_and_clear_bit(int nr, volatile unsigned long * addr); 2176 int bxe_cmpxchg(volatile int *addr, int old, int new); 2177 2178 void bxe_reg_wr_ind(struct bxe_softc *sc, uint32_t addr, 2179 uint32_t val); 2180 uint32_t bxe_reg_rd_ind(struct bxe_softc *sc, uint32_t addr); 2181 2182 2183 int bxe_dma_alloc(struct bxe_softc *sc, bus_size_t size, 2184 struct bxe_dma *dma, const char *msg); 2185 void bxe_dma_free(struct bxe_softc *sc, struct bxe_dma *dma); 2186 2187 uint32_t bxe_dmae_opcode_add_comp(uint32_t opcode, uint8_t comp_type); 2188 uint32_t bxe_dmae_opcode_clr_src_reset(uint32_t opcode); 2189 uint32_t bxe_dmae_opcode(struct bxe_softc *sc, uint8_t src_type, 2190 uint8_t dst_type, uint8_t with_comp, 2191 uint8_t comp_type); 2192 void bxe_post_dmae(struct bxe_softc *sc, struct dmae_command *dmae, int idx); 2193 void bxe_read_dmae(struct bxe_softc *sc, uint32_t src_addr, uint32_t len32); 2194 void bxe_write_dmae(struct bxe_softc *sc, bus_addr_t dma_addr, 2195 uint32_t dst_addr, uint32_t len32); 2196 void bxe_write_dmae_phys_len(struct bxe_softc *sc, bus_addr_t phys_addr, 2197 uint32_t addr, uint32_t len); 2198 2199 void bxe_set_ctx_validation(struct bxe_softc *sc, struct eth_context *cxt, 2200 uint32_t cid); 2201 void bxe_update_coalesce_sb_index(struct bxe_softc *sc, uint8_t fw_sb_id, 2202 uint8_t sb_index, uint8_t disable, 2203 uint16_t usec); 2204 2205 int bxe_sp_post(struct bxe_softc *sc, int command, int cid, 2206 uint32_t data_hi, uint32_t data_lo, int cmd_type); 2207 2208 void bxe_igu_ack_sb(struct bxe_softc *sc, uint8_t igu_sb_id, 2209 uint8_t segment, uint16_t index, uint8_t op, 2210 uint8_t update); 2211 2212 void ecore_init_e1_firmware(struct bxe_softc *sc); 2213 void ecore_init_e1h_firmware(struct bxe_softc *sc); 2214 void ecore_init_e2_firmware(struct bxe_softc *sc); 2215 2216 void ecore_storm_memset_struct(struct bxe_softc *sc, uint32_t addr, 2217 size_t size, uint32_t *data); 2218 2219 /*********************/ 2220 /* LOGGING AND DEBUG */ 2221 /*********************/ 2222 2223 /* debug logging codepaths */ 2224 #define DBG_LOAD 0x00000001 /* load and unload */ 2225 #define DBG_INTR 0x00000002 /* interrupt handling */ 2226 #define DBG_SP 0x00000004 /* slowpath handling */ 2227 #define DBG_STATS 0x00000008 /* stats updates */ 2228 #define DBG_TX 0x00000010 /* packet transmit */ 2229 #define DBG_RX 0x00000020 /* packet receive */ 2230 #define DBG_PHY 0x00000040 /* phy/link handling */ 2231 #define DBG_IOCTL 0x00000080 /* ioctl handling */ 2232 #define DBG_MBUF 0x00000100 /* dumping mbuf info */ 2233 #define DBG_REGS 0x00000200 /* register access */ 2234 #define DBG_LRO 0x00000400 /* lro processing */ 2235 #define DBG_ASSERT 0x80000000 /* debug assert */ 2236 #define DBG_ALL 0xFFFFFFFF /* flying monkeys */ 2237 2238 #define DBASSERT(sc, exp, msg) \ 2239 do { \ 2240 if (__predict_false(sc->debug & DBG_ASSERT)) { \ 2241 if (__predict_false(!(exp))) { \ 2242 panic msg; \ 2243 } \ 2244 } \ 2245 } while (0) 2246 2247 /* log a debug message */ 2248 #define BLOGD(sc, codepath, format, args...) \ 2249 do { \ 2250 if (__predict_false(sc->debug & (codepath))) { \ 2251 device_printf((sc)->dev, \ 2252 "%s(%s:%d) " format, \ 2253 __FUNCTION__, \ 2254 __FILE__, \ 2255 __LINE__, \ 2256 ## args); \ 2257 } \ 2258 } while(0) 2259 2260 /* log a info message */ 2261 #define BLOGI(sc, format, args...) \ 2262 do { \ 2263 if (__predict_false(sc->debug)) { \ 2264 device_printf((sc)->dev, \ 2265 "%s(%s:%d) " format, \ 2266 __FUNCTION__, \ 2267 __FILE__, \ 2268 __LINE__, \ 2269 ## args); \ 2270 } else { \ 2271 device_printf((sc)->dev, \ 2272 format, \ 2273 ## args); \ 2274 } \ 2275 } while(0) 2276 2277 /* log a warning message */ 2278 #define BLOGW(sc, format, args...) \ 2279 do { \ 2280 if (__predict_false(sc->debug)) { \ 2281 device_printf((sc)->dev, \ 2282 "%s(%s:%d) WARNING: " format, \ 2283 __FUNCTION__, \ 2284 __FILE__, \ 2285 __LINE__, \ 2286 ## args); \ 2287 } else { \ 2288 device_printf((sc)->dev, \ 2289 "WARNING: " format, \ 2290 ## args); \ 2291 } \ 2292 } while(0) 2293 2294 /* log a error message */ 2295 #define BLOGE(sc, format, args...) \ 2296 do { \ 2297 if (__predict_false(sc->debug)) { \ 2298 device_printf((sc)->dev, \ 2299 "%s(%s:%d) ERROR: " format, \ 2300 __FUNCTION__, \ 2301 __FILE__, \ 2302 __LINE__, \ 2303 ## args); \ 2304 } else { \ 2305 device_printf((sc)->dev, \ 2306 "ERROR: " format, \ 2307 ## args); \ 2308 } \ 2309 } while(0) 2310 2311 #define bxe_panic(sc, msg) \ 2312 do { \ 2313 panic msg; \ 2314 } while (0) 2315 2316 #define CATC_TRIGGER(sc, data) REG_WR((sc), 0x2000, (data)); 2317 #define CATC_TRIGGER_START(sc) CATC_TRIGGER((sc), 0xcafecafe) 2318 2319 void bxe_dump_mem(struct bxe_softc *sc, char *tag, 2320 uint8_t *mem, uint32_t len); 2321 void bxe_dump_mbuf_data(struct bxe_softc *sc, char *pTag, 2322 struct mbuf *m, uint8_t contents); 2323 2324 /***********/ 2325 /* INLINES */ 2326 /***********/ 2327 2328 static inline uint32_t 2329 reg_poll(struct bxe_softc *sc, 2330 uint32_t reg, 2331 uint32_t expected, 2332 int ms, 2333 int wait) 2334 { 2335 uint32_t val; 2336 2337 do { 2338 val = REG_RD(sc, reg); 2339 if (val == expected) { 2340 break; 2341 } 2342 ms -= wait; 2343 DELAY(wait * 1000); 2344 } while (ms > 0); 2345 2346 return (val); 2347 } 2348 2349 static inline void 2350 bxe_update_fp_sb_idx(struct bxe_fastpath *fp) 2351 { 2352 mb(); /* status block is written to by the chip */ 2353 fp->fp_hc_idx = fp->sb_running_index[SM_RX_ID]; 2354 } 2355 2356 static inline void 2357 bxe_igu_ack_sb_gen(struct bxe_softc *sc, 2358 uint8_t igu_sb_id, 2359 uint8_t segment, 2360 uint16_t index, 2361 uint8_t op, 2362 uint8_t update, 2363 uint32_t igu_addr) 2364 { 2365 struct igu_regular cmd_data = {0}; 2366 2367 cmd_data.sb_id_and_flags = 2368 ((index << IGU_REGULAR_SB_INDEX_SHIFT) | 2369 (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) | 2370 (update << IGU_REGULAR_BUPDATE_SHIFT) | 2371 (op << IGU_REGULAR_ENABLE_INT_SHIFT)); 2372 2373 BLOGD(sc, DBG_INTR, "write 0x%08x to IGU addr 0x%x\n", 2374 cmd_data.sb_id_and_flags, igu_addr); 2375 REG_WR(sc, igu_addr, cmd_data.sb_id_and_flags); 2376 2377 /* Make sure that ACK is written */ 2378 bus_space_barrier(sc->bar[0].tag, sc->bar[0].handle, 0, 0, 2379 BUS_SPACE_BARRIER_WRITE); 2380 mb(); 2381 } 2382 2383 static inline void 2384 bxe_hc_ack_sb(struct bxe_softc *sc, 2385 uint8_t sb_id, 2386 uint8_t storm, 2387 uint16_t index, 2388 uint8_t op, 2389 uint8_t update) 2390 { 2391 uint32_t hc_addr = (HC_REG_COMMAND_REG + SC_PORT(sc)*32 + 2392 COMMAND_REG_INT_ACK); 2393 struct igu_ack_register igu_ack; 2394 2395 igu_ack.status_block_index = index; 2396 igu_ack.sb_id_and_flags = 2397 ((sb_id << IGU_ACK_REGISTER_STATUS_BLOCK_ID_SHIFT) | 2398 (storm << IGU_ACK_REGISTER_STORM_ID_SHIFT) | 2399 (update << IGU_ACK_REGISTER_UPDATE_INDEX_SHIFT) | 2400 (op << IGU_ACK_REGISTER_INTERRUPT_MODE_SHIFT)); 2401 2402 REG_WR(sc, hc_addr, (*(uint32_t *)&igu_ack)); 2403 2404 /* Make sure that ACK is written */ 2405 bus_space_barrier(sc->bar[0].tag, sc->bar[0].handle, 0, 0, 2406 BUS_SPACE_BARRIER_WRITE); 2407 mb(); 2408 } 2409 2410 static inline void 2411 bxe_ack_sb(struct bxe_softc *sc, 2412 uint8_t igu_sb_id, 2413 uint8_t storm, 2414 uint16_t index, 2415 uint8_t op, 2416 uint8_t update) 2417 { 2418 if (sc->devinfo.int_block == INT_BLOCK_HC) 2419 bxe_hc_ack_sb(sc, igu_sb_id, storm, index, op, update); 2420 else { 2421 uint8_t segment; 2422 if (CHIP_INT_MODE_IS_BC(sc)) { 2423 segment = storm; 2424 } else if (igu_sb_id != sc->igu_dsb_id) { 2425 segment = IGU_SEG_ACCESS_DEF; 2426 } else if (storm == ATTENTION_ID) { 2427 segment = IGU_SEG_ACCESS_ATTN; 2428 } else { 2429 segment = IGU_SEG_ACCESS_DEF; 2430 } 2431 bxe_igu_ack_sb(sc, igu_sb_id, segment, index, op, update); 2432 } 2433 } 2434 2435 static inline uint16_t 2436 bxe_hc_ack_int(struct bxe_softc *sc) 2437 { 2438 uint32_t hc_addr = (HC_REG_COMMAND_REG + SC_PORT(sc)*32 + 2439 COMMAND_REG_SIMD_MASK); 2440 uint32_t result = REG_RD(sc, hc_addr); 2441 2442 mb(); 2443 return (result); 2444 } 2445 2446 static inline uint16_t 2447 bxe_igu_ack_int(struct bxe_softc *sc) 2448 { 2449 uint32_t igu_addr = (BAR_IGU_INTMEM + IGU_REG_SISR_MDPC_WMASK_LSB_UPPER*8); 2450 uint32_t result = REG_RD(sc, igu_addr); 2451 2452 BLOGD(sc, DBG_INTR, "read 0x%08x from IGU addr 0x%x\n", 2453 result, igu_addr); 2454 2455 mb(); 2456 return (result); 2457 } 2458 2459 static inline uint16_t 2460 bxe_ack_int(struct bxe_softc *sc) 2461 { 2462 mb(); 2463 if (sc->devinfo.int_block == INT_BLOCK_HC) { 2464 return (bxe_hc_ack_int(sc)); 2465 } else { 2466 return (bxe_igu_ack_int(sc)); 2467 } 2468 } 2469 2470 static inline int 2471 func_by_vn(struct bxe_softc *sc, 2472 int vn) 2473 { 2474 return (2 * vn + SC_PORT(sc)); 2475 } 2476 2477 /* 2478 * Statistics ID are global per chip/path, while Client IDs for E1x 2479 * are per port. 2480 */ 2481 static inline uint8_t 2482 bxe_stats_id(struct bxe_fastpath *fp) 2483 { 2484 struct bxe_softc *sc = fp->sc; 2485 2486 if (!CHIP_IS_E1x(sc)) { 2487 #if 0 2488 /* there are special statistics counters for FCoE 136..140 */ 2489 if (IS_FCOE_FP(fp)) { 2490 return (sc->cnic_base_cl_id + (sc->pf_num >> 1)); 2491 } 2492 #endif 2493 return (fp->cl_id); 2494 } 2495 2496 return (fp->cl_id + SC_PORT(sc) * FP_SB_MAX_E1x); 2497 } 2498 2499 #endif /* __BXE_H__ */ 2500 2501