xref: /freebsd/sys/dev/bxe/bxe.h (revision 7661de35d15f582ab33e3bd6b8d909601557e436)
1 /*-
2  * Copyright (c) 2007-2013 Broadcom Corporation. All rights reserved.
3  *
4  * Eric Davis        <edavis@broadcom.com>
5  * David Christensen <davidch@broadcom.com>
6  * Gary Zambrano     <zambrano@broadcom.com>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written consent.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #ifndef __BXE_H__
35 #define __BXE_H__
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include <sys/param.h>
41 #include <sys/kernel.h>
42 #include <sys/systm.h>
43 #include <sys/lock.h>
44 #include <sys/mutex.h>
45 #include <sys/sx.h>
46 #include <sys/module.h>
47 #include <sys/endian.h>
48 #include <sys/types.h>
49 #include <sys/malloc.h>
50 #include <sys/kobj.h>
51 #include <sys/bus.h>
52 #include <sys/rman.h>
53 #include <sys/socket.h>
54 #include <sys/sockio.h>
55 #include <sys/sysctl.h>
56 #include <sys/smp.h>
57 #include <sys/bitstring.h>
58 #include <sys/limits.h>
59 #include <sys/queue.h>
60 #include <sys/taskqueue.h>
61 
62 #include <net/if.h>
63 #include <net/if_types.h>
64 #include <net/if_arp.h>
65 #include <net/ethernet.h>
66 #include <net/if_dl.h>
67 #include <net/if_media.h>
68 #include <net/if_var.h>
69 #include <net/if_vlan_var.h>
70 #include <net/zlib.h>
71 #include <net/bpf.h>
72 
73 #include <netinet/in.h>
74 #include <netinet/ip.h>
75 #include <netinet/ip6.h>
76 #include <netinet/tcp.h>
77 #include <netinet/udp.h>
78 
79 #include <dev/pci/pcireg.h>
80 #include <dev/pci/pcivar.h>
81 
82 #include <machine/atomic.h>
83 #include <machine/resource.h>
84 #include <machine/endian.h>
85 #include <machine/bus.h>
86 #include <machine/in_cksum.h>
87 
88 #include "device_if.h"
89 #include "bus_if.h"
90 #include "pci_if.h"
91 
92 #if _BYTE_ORDER == _LITTLE_ENDIAN
93 #ifndef LITTLE_ENDIAN
94 #define LITTLE_ENDIAN
95 #endif
96 #ifndef __LITTLE_ENDIAN
97 #define __LITTLE_ENDIAN
98 #endif
99 #undef BIG_ENDIAN
100 #undef __BIG_ENDIAN
101 #else /* _BIG_ENDIAN */
102 #ifndef BIG_ENDIAN
103 #define BIG_ENDIAN
104 #endif
105 #ifndef __BIG_ENDIAN
106 #define __BIG_ENDIAN
107 #endif
108 #undef LITTLE_ENDIAN
109 #undef __LITTLE_ENDIAN
110 #endif
111 
112 #include "ecore_mfw_req.h"
113 #include "ecore_fw_defs.h"
114 #include "ecore_hsi.h"
115 #include "ecore_reg.h"
116 #include "bxe_dcb.h"
117 #include "bxe_stats.h"
118 
119 #include "bxe_elink.h"
120 
121 #if __FreeBSD_version < 800054
122 #if defined(__i386__) || defined(__amd64__)
123 #define mb()  __asm volatile("mfence;" : : : "memory")
124 #define wmb() __asm volatile("sfence;" : : : "memory")
125 #define rmb() __asm volatile("lfence;" : : : "memory")
126 static __inline void prefetch(void *x)
127 {
128     __asm volatile("prefetcht0 %0" :: "m" (*(unsigned long *)x));
129 }
130 #else
131 #define mb()
132 #define rmb()
133 #define wmb()
134 #define prefetch(x)
135 #endif
136 #endif
137 
138 #if __FreeBSD_version >= 1000000
139 #define PCIR_EXPRESS_DEVICE_STA        PCIER_DEVICE_STA
140 #define PCIM_EXP_STA_TRANSACTION_PND   PCIEM_STA_TRANSACTION_PND
141 #define PCIR_EXPRESS_LINK_STA          PCIER_LINK_STA
142 #define PCIM_LINK_STA_WIDTH            PCIEM_LINK_STA_WIDTH
143 #define PCIM_LINK_STA_SPEED            PCIEM_LINK_STA_SPEED
144 #define PCIR_EXPRESS_DEVICE_CTL        PCIER_DEVICE_CTL
145 #define PCIM_EXP_CTL_MAX_PAYLOAD       PCIEM_CTL_MAX_PAYLOAD
146 #define PCIM_EXP_CTL_MAX_READ_REQUEST  PCIEM_CTL_MAX_READ_REQUEST
147 #endif
148 
149 #ifndef ARRAY_SIZE
150 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
151 #endif
152 #ifndef ARRSIZE
153 #define ARRSIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
154 #endif
155 #ifndef DIV_ROUND_UP
156 #define DIV_ROUND_UP(n, d) (((n) + (d) - 1) / (d))
157 #endif
158 #ifndef roundup
159 #define roundup(x, y) ((((x) + ((y) - 1)) / (y)) * (y))
160 #endif
161 #ifndef ilog2
162 static inline
163 int bxe_ilog2(int x)
164 {
165     int log = 0;
166     while (x >>= 1) log++;
167     return (log);
168 }
169 #define ilog2(x) bxe_ilog2(x)
170 #endif
171 
172 #include "ecore_sp.h"
173 
174 #define BRCM_VENDORID 0x14e4
175 #define PCI_ANY_ID    (uint16_t)(~0U)
176 
177 struct bxe_device_type
178 {
179     uint16_t bxe_vid;
180     uint16_t bxe_did;
181     uint16_t bxe_svid;
182     uint16_t bxe_sdid;
183     char     *bxe_name;
184 };
185 
186 #define BCM_PAGE_SHIFT       12
187 #define BCM_PAGE_SIZE        (1 << BCM_PAGE_SHIFT)
188 #define BCM_PAGE_MASK        (~(BCM_PAGE_SIZE - 1))
189 #define BCM_PAGE_ALIGN(addr) ((addr + BCM_PAGE_SIZE - 1) & BCM_PAGE_MASK)
190 
191 #if BCM_PAGE_SIZE != 4096
192 #error Page sizes other than 4KB are unsupported!
193 #endif
194 
195 #if (BUS_SPACE_MAXADDR > 0xFFFFFFFF)
196 #define U64_LO(addr) ((uint32_t)(((uint64_t)(addr)) & 0xFFFFFFFF))
197 #define U64_HI(addr) ((uint32_t)(((uint64_t)(addr)) >> 32))
198 #else
199 #define U64_LO(addr) ((uint32_t)(addr))
200 #define U64_HI(addr) (0)
201 #endif
202 #define HILO_U64(hi, lo) ((((uint64_t)(hi)) << 32) + (lo))
203 
204 #define SET_FLAG(value, mask, flag)            \
205     do {                                       \
206         (value) &= ~(mask);                    \
207         (value) |= ((flag) << (mask##_SHIFT)); \
208     } while (0)
209 
210 #define GET_FLAG(value, mask)              \
211     (((value) & (mask)) >> (mask##_SHIFT))
212 
213 #define GET_FIELD(value, fname)                     \
214     (((value) & (fname##_MASK)) >> (fname##_SHIFT))
215 
216 #define BXE_MAX_SEGMENTS     12 /* 13-1 for parsing buffer */
217 #define BXE_TSO_MAX_SEGMENTS 32
218 #define BXE_TSO_MAX_SIZE     (65535 + sizeof(struct ether_vlan_header))
219 #define BXE_TSO_MAX_SEG_SIZE 4096
220 
221 /* dropless fc FW/HW related params */
222 #define BRB_SIZE(sc)         (CHIP_IS_E3(sc) ? 1024 : 512)
223 #define MAX_AGG_QS(sc)       (CHIP_IS_E1(sc) ?                       \
224                                   ETH_MAX_AGGREGATION_QUEUES_E1 :    \
225                                   ETH_MAX_AGGREGATION_QUEUES_E1H_E2)
226 #define FW_DROP_LEVEL(sc)    (3 + MAX_SPQ_PENDING + MAX_AGG_QS(sc))
227 #define FW_PREFETCH_CNT      16
228 #define DROPLESS_FC_HEADROOM 100
229 
230 /******************/
231 /* RX SGE defines */
232 /******************/
233 
234 #define RX_SGE_NUM_PAGES       2 /* must be a power of 2 */
235 #define RX_SGE_TOTAL_PER_PAGE  (BCM_PAGE_SIZE / sizeof(struct eth_rx_sge))
236 #define RX_SGE_NEXT_PAGE_DESC_CNT 2
237 #define RX_SGE_USABLE_PER_PAGE (RX_SGE_TOTAL_PER_PAGE - RX_SGE_NEXT_PAGE_DESC_CNT)
238 #define RX_SGE_PER_PAGE_MASK   (RX_SGE_TOTAL_PER_PAGE - 1)
239 #define RX_SGE_TOTAL           (RX_SGE_TOTAL_PER_PAGE * RX_SGE_NUM_PAGES)
240 #define RX_SGE_USABLE          (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)
241 #define RX_SGE_MAX             (RX_SGE_TOTAL - 1)
242 #define RX_SGE(x)              ((x) & RX_SGE_MAX)
243 
244 #define RX_SGE_NEXT(x)                                              \
245     ((((x) & RX_SGE_PER_PAGE_MASK) == (RX_SGE_USABLE_PER_PAGE - 1)) \
246      ? (x) + 1 + RX_SGE_NEXT_PAGE_DESC_CNT : (x) + 1)
247 
248 #define RX_SGE_MASK_ELEM_SZ    64
249 #define RX_SGE_MASK_ELEM_SHIFT 6
250 #define RX_SGE_MASK_ELEM_MASK  ((uint64_t)RX_SGE_MASK_ELEM_SZ - 1)
251 
252 /*
253  * Creates a bitmask of all ones in less significant bits.
254  * idx - index of the most significant bit in the created mask.
255  */
256 #define RX_SGE_ONES_MASK(idx)                                      \
257     (((uint64_t)0x1 << (((idx) & RX_SGE_MASK_ELEM_MASK) + 1)) - 1)
258 #define RX_SGE_MASK_ELEM_ONE_MASK ((uint64_t)(~0))
259 
260 /* Number of uint64_t elements in SGE mask array. */
261 #define RX_SGE_MASK_LEN                                                \
262     ((RX_SGE_NUM_PAGES * RX_SGE_TOTAL_PER_PAGE) / RX_SGE_MASK_ELEM_SZ)
263 #define RX_SGE_MASK_LEN_MASK      (RX_SGE_MASK_LEN - 1)
264 #define RX_SGE_NEXT_MASK_ELEM(el) (((el) + 1) & RX_SGE_MASK_LEN_MASK)
265 
266 /*
267  * dropless fc calculations for SGEs
268  * Number of required SGEs is the sum of two:
269  * 1. Number of possible opened aggregations (next packet for
270  *    these aggregations will probably consume SGE immidiatelly)
271  * 2. Rest of BRB blocks divided by 2 (block will consume new SGE only
272  *    after placement on BD for new TPA aggregation)
273  * Takes into account RX_SGE_NEXT_PAGE_DESC_CNT "next" elements on each page
274  */
275 #define NUM_SGE_REQ(sc)                                    \
276     (MAX_AGG_QS(sc) + (BRB_SIZE(sc) - MAX_AGG_QS(sc)) / 2)
277 #define NUM_SGE_PG_REQ(sc)                                                    \
278     ((NUM_SGE_REQ(sc) + RX_SGE_USABLE_PER_PAGE - 1) / RX_SGE_USABLE_PER_PAGE)
279 #define SGE_TH_LO(sc)                                                  \
280     (NUM_SGE_REQ(sc) + NUM_SGE_PG_REQ(sc) * RX_SGE_NEXT_PAGE_DESC_CNT)
281 #define SGE_TH_HI(sc)                      \
282     (SGE_TH_LO(sc) + DROPLESS_FC_HEADROOM)
283 
284 #define PAGES_PER_SGE_SHIFT  0
285 #define PAGES_PER_SGE        (1 << PAGES_PER_SGE_SHIFT)
286 #define SGE_PAGE_SIZE        BCM_PAGE_SIZE
287 #define SGE_PAGE_SHIFT       BCM_PAGE_SHIFT
288 #define SGE_PAGE_ALIGN(addr) BCM_PAGE_ALIGN(addr)
289 #define SGE_PAGES            (SGE_PAGE_SIZE * PAGES_PER_SGE)
290 #define TPA_AGG_SIZE         min((8 * SGE_PAGES), 0xffff)
291 
292 /*****************/
293 /* TX BD defines */
294 /*****************/
295 
296 #define TX_BD_NUM_PAGES       16 /* must be a power of 2 */
297 #define TX_BD_TOTAL_PER_PAGE  (BCM_PAGE_SIZE / sizeof(union eth_tx_bd_types))
298 #define TX_BD_USABLE_PER_PAGE (TX_BD_TOTAL_PER_PAGE - 1)
299 #define TX_BD_TOTAL           (TX_BD_TOTAL_PER_PAGE * TX_BD_NUM_PAGES)
300 #define TX_BD_USABLE          (TX_BD_USABLE_PER_PAGE * TX_BD_NUM_PAGES)
301 #define TX_BD_MAX             (TX_BD_TOTAL - 1)
302 
303 #define TX_BD_NEXT(x)                                                 \
304     ((((x) & TX_BD_USABLE_PER_PAGE) == (TX_BD_USABLE_PER_PAGE - 1)) ? \
305      ((x) + 2) : ((x) + 1))
306 #define TX_BD(x)      ((x) & TX_BD_MAX)
307 #define TX_BD_PAGE(x) (((x) & ~TX_BD_USABLE_PER_PAGE) >> 8)
308 #define TX_BD_IDX(x)  ((x) & TX_BD_USABLE_PER_PAGE)
309 
310 /*
311  * Trigger pending transmits when the number of available BDs is greater
312  * than 1/8 of the total number of usable BDs.
313  */
314 #define BXE_TX_CLEANUP_THRESHOLD (TX_BD_USABLE / 8)
315 #define BXE_TX_TIMEOUT 5
316 
317 /*****************/
318 /* RX BD defines */
319 /*****************/
320 
321 #define RX_BD_NUM_PAGES       8 /* power of 2 */
322 #define RX_BD_TOTAL_PER_PAGE  (BCM_PAGE_SIZE / sizeof(struct eth_rx_bd))
323 #define RX_BD_NEXT_PAGE_DESC_CNT 2
324 #define RX_BD_USABLE_PER_PAGE (RX_BD_TOTAL_PER_PAGE - RX_BD_NEXT_PAGE_DESC_CNT)
325 #define RX_BD_PER_PAGE_MASK   (RX_BD_TOTAL_PER_PAGE - 1)
326 #define RX_BD_TOTAL           (RX_BD_TOTAL_PER_PAGE * RX_BD_NUM_PAGES)
327 #define RX_BD_USABLE          (RX_BD_USABLE_PER_PAGE * RX_BD_NUM_PAGES)
328 #define RX_BD_MAX             (RX_BD_TOTAL - 1)
329 
330 #if 0
331 #define NUM_RX_RINGS RX_BD_NUM_PAGES
332 #define NUM_RX_BD    RX_BD_TOTAL
333 #define MAX_RX_BD    RX_BD_MAX
334 #define MAX_RX_AVAIL RX_BD_USABLE
335 #endif
336 
337 #define RX_BD_NEXT(x)                                               \
338     ((((x) & RX_BD_PER_PAGE_MASK) == (RX_BD_USABLE_PER_PAGE - 1)) ? \
339      ((x) + 3) : ((x) + 1))
340 #define RX_BD(x)      ((x) & RX_BD_MAX)
341 #define RX_BD_PAGE(x) (((x) & ~RX_BD_PER_PAGE_MASK) >> 9)
342 #define RX_BD_IDX(x)  ((x) & RX_BD_PER_PAGE_MASK)
343 
344 /*
345  * dropless fc calculations for BDs
346  * Number of BDs should be as number of buffers in BRB:
347  * Low threshold takes into account RX_BD_NEXT_PAGE_DESC_CNT
348  * "next" elements on each page
349  */
350 #define NUM_BD_REQ(sc) \
351     BRB_SIZE(sc)
352 #define NUM_BD_PG_REQ(sc)                                                  \
353     ((NUM_BD_REQ(sc) + RX_BD_USABLE_PER_PAGE - 1) / RX_BD_USABLE_PER_PAGE)
354 #define BD_TH_LO(sc)                                \
355     (NUM_BD_REQ(sc) +                               \
356      NUM_BD_PG_REQ(sc) * RX_BD_NEXT_PAGE_DESC_CNT + \
357      FW_DROP_LEVEL(sc))
358 #define BD_TH_HI(sc)                      \
359     (BD_TH_LO(sc) + DROPLESS_FC_HEADROOM)
360 #define MIN_RX_AVAIL(sc)                           \
361     ((sc)->dropless_fc ? BD_TH_HI(sc) + 128 : 128)
362 #define MIN_RX_SIZE_TPA_HW(sc)                         \
363     (CHIP_IS_E1(sc) ? ETH_MIN_RX_CQES_WITH_TPA_E1 :    \
364                       ETH_MIN_RX_CQES_WITH_TPA_E1H_E2)
365 #define MIN_RX_SIZE_NONTPA_HW ETH_MIN_RX_CQES_WITHOUT_TPA
366 #define MIN_RX_SIZE_TPA(sc)                         \
367     (max(MIN_RX_SIZE_TPA_HW(sc), MIN_RX_AVAIL(sc)))
368 #define MIN_RX_SIZE_NONTPA(sc)                     \
369     (max(MIN_RX_SIZE_NONTPA_HW, MIN_RX_AVAIL(sc)))
370 
371 /***************/
372 /* RCQ defines */
373 /***************/
374 
375 /*
376  * As long as CQE is X times bigger than BD entry we have to allocate X times
377  * more pages for CQ ring in order to keep it balanced with BD ring
378  */
379 #define CQE_BD_REL          (sizeof(union eth_rx_cqe) / \
380                              sizeof(struct eth_rx_bd))
381 #define RCQ_NUM_PAGES       (RX_BD_NUM_PAGES * CQE_BD_REL) /* power of 2 */
382 #define RCQ_TOTAL_PER_PAGE  (BCM_PAGE_SIZE / sizeof(union eth_rx_cqe))
383 #define RCQ_NEXT_PAGE_DESC_CNT 1
384 #define RCQ_USABLE_PER_PAGE (RCQ_TOTAL_PER_PAGE - RCQ_NEXT_PAGE_DESC_CNT)
385 #define RCQ_TOTAL           (RCQ_TOTAL_PER_PAGE * RCQ_NUM_PAGES)
386 #define RCQ_USABLE          (RCQ_USABLE_PER_PAGE * RCQ_NUM_PAGES)
387 #define RCQ_MAX             (RCQ_TOTAL - 1)
388 
389 #define RCQ_NEXT(x)                                               \
390     ((((x) & RCQ_USABLE_PER_PAGE) == (RCQ_USABLE_PER_PAGE - 1)) ? \
391      ((x) + 1 + RCQ_NEXT_PAGE_DESC_CNT) : ((x) + 1))
392 #define RCQ(x)      ((x) & RCQ_MAX)
393 #define RCQ_PAGE(x) (((x) & ~RCQ_USABLE_PER_PAGE) >> 7)
394 #define RCQ_IDX(x)  ((x) & RCQ_USABLE_PER_PAGE)
395 
396 #if 0
397 #define NUM_RCQ_RINGS RCQ_NUM_PAGES
398 #define NUM_RCQ_BD    RCQ_TOTAL
399 #define MAX_RCQ_BD    RCQ_MAX
400 #define MAX_RCQ_AVAIL RCQ_USABLE
401 #endif
402 
403 /*
404  * dropless fc calculations for RCQs
405  * Number of RCQs should be as number of buffers in BRB:
406  * Low threshold takes into account RCQ_NEXT_PAGE_DESC_CNT
407  * "next" elements on each page
408  */
409 #define NUM_RCQ_REQ(sc) \
410     BRB_SIZE(sc)
411 #define NUM_RCQ_PG_REQ(sc)                                              \
412     ((NUM_RCQ_REQ(sc) + RCQ_USABLE_PER_PAGE - 1) / RCQ_USABLE_PER_PAGE)
413 #define RCQ_TH_LO(sc)                              \
414     (NUM_RCQ_REQ(sc) +                             \
415      NUM_RCQ_PG_REQ(sc) * RCQ_NEXT_PAGE_DESC_CNT + \
416      FW_DROP_LEVEL(sc))
417 #define RCQ_TH_HI(sc)                      \
418     (RCQ_TH_LO(sc) + DROPLESS_FC_HEADROOM)
419 
420 /* This is needed for determening of last_max */
421 #define SUB_S16(a, b) (int16_t)((int16_t)(a) - (int16_t)(b))
422 
423 #define __SGE_MASK_SET_BIT(el, bit)               \
424     do {                                          \
425         (el) = ((el) | ((uint64_t)0x1 << (bit))); \
426     } while (0)
427 
428 #define __SGE_MASK_CLEAR_BIT(el, bit)                \
429     do {                                             \
430         (el) = ((el) & (~((uint64_t)0x1 << (bit)))); \
431     } while (0)
432 
433 #define SGE_MASK_SET_BIT(fp, idx)                                       \
434     __SGE_MASK_SET_BIT((fp)->sge_mask[(idx) >> RX_SGE_MASK_ELEM_SHIFT], \
435                        ((idx) & RX_SGE_MASK_ELEM_MASK))
436 
437 #define SGE_MASK_CLEAR_BIT(fp, idx)                                       \
438     __SGE_MASK_CLEAR_BIT((fp)->sge_mask[(idx) >> RX_SGE_MASK_ELEM_SHIFT], \
439                          ((idx) & RX_SGE_MASK_ELEM_MASK))
440 
441 /* Load / Unload modes */
442 #define LOAD_NORMAL       0
443 #define LOAD_OPEN         1
444 #define LOAD_DIAG         2
445 #define LOAD_LOOPBACK_EXT 3
446 #define UNLOAD_NORMAL     0
447 #define UNLOAD_CLOSE      1
448 #define UNLOAD_RECOVERY   2
449 
450 /* Some constants... */
451 //#define MAX_PATH_NUM       2
452 //#define E2_MAX_NUM_OF_VFS  64
453 //#define E1H_FUNC_MAX       8
454 //#define E2_FUNC_MAX        4   /* per path */
455 #define MAX_VNIC_NUM       4
456 #define MAX_FUNC_NUM       8   /* common to all chips */
457 //#define MAX_NDSB           HC_SB_MAX_SB_E2 /* max non-default status block */
458 #define MAX_RSS_CHAINS     16 /* a constant for HW limit */
459 #define MAX_MSI_VECTOR     8  /* a constant for HW limit */
460 
461 #define ILT_NUM_PAGE_ENTRIES 3072
462 /*
463  * 57710/11 we use whole table since we have 8 functions.
464  * 57712 we have only 4 functions, but use same size per func, so only half
465  * of the table is used.
466  */
467 #define ILT_PER_FUNC        (ILT_NUM_PAGE_ENTRIES / 8)
468 #define FUNC_ILT_BASE(func) (func * ILT_PER_FUNC)
469 /*
470  * the phys address is shifted right 12 bits and has an added
471  * 1=valid bit added to the 53rd bit
472  * then since this is a wide register(TM)
473  * we split it into two 32 bit writes
474  */
475 #define ONCHIP_ADDR1(x) ((uint32_t)(((uint64_t)x >> 12) & 0xFFFFFFFF))
476 #define ONCHIP_ADDR2(x) ((uint32_t)((1 << 20) | ((uint64_t)x >> 44)))
477 
478 /* L2 header size + 2*VLANs (8 bytes) + LLC SNAP (8 bytes) */
479 #define ETH_HLEN                  14
480 #define ETH_OVERHEAD              (ETH_HLEN + 8 + 8)
481 #define ETH_MIN_PACKET_SIZE       60
482 #define ETH_MAX_PACKET_SIZE       ETHERMTU /* 1500 */
483 #define ETH_MAX_JUMBO_PACKET_SIZE 9600
484 /* TCP with Timestamp Option (32) + IPv6 (40) */
485 #define ETH_MAX_TPA_HEADER_SIZE   72
486 
487 /* max supported alignment is 256 (8 shift) */
488 //#define BXE_RX_ALIGN_SHIFT ((CACHE_LINE_SHIFT < 8) ? CACHE_LINE_SHIFT : 8)
489 #define BXE_RX_ALIGN_SHIFT 8
490 /* FW uses 2 cache lines alignment for start packet and size  */
491 #define BXE_FW_RX_ALIGN_START (1 << BXE_RX_ALIGN_SHIFT)
492 #define BXE_FW_RX_ALIGN_END   (1 << BXE_RX_ALIGN_SHIFT)
493 
494 #define BXE_PXP_DRAM_ALIGN (BXE_RX_ALIGN_SHIFT - 5) /* XXX ??? */
495 
496 struct bxe_bar {
497     struct resource    *resource;
498     int                rid;
499     bus_space_tag_t    tag;
500     bus_space_handle_t handle;
501     vm_offset_t        kva;
502 };
503 
504 struct bxe_intr {
505     struct resource *resource;
506     int             rid;
507     void            *tag;
508 };
509 
510 /* Used to manage DMA allocations. */
511 struct bxe_dma {
512     struct bxe_softc  *sc;
513     bus_addr_t        paddr;
514     void              *vaddr;
515     bus_dma_tag_t     tag;
516     bus_dmamap_t      map;
517     bus_dma_segment_t seg;
518     bus_size_t        size;
519     int               nseg;
520     char              msg[32];
521 };
522 
523 /* attn group wiring */
524 #define MAX_DYNAMIC_ATTN_GRPS 8
525 
526 struct attn_route {
527     uint32_t sig[5];
528 };
529 
530 struct iro {
531     uint32_t base;
532     uint16_t m1;
533     uint16_t m2;
534     uint16_t m3;
535     uint16_t size;
536 };
537 
538 union bxe_host_hc_status_block {
539     /* pointer to fp status block e2 */
540     struct host_hc_status_block_e2  *e2_sb;
541     /* pointer to fp status block e1x */
542     struct host_hc_status_block_e1x *e1x_sb;
543 };
544 
545 union bxe_db_prod {
546     struct doorbell_set_prod data;
547     uint32_t                 raw;
548 };
549 
550 struct bxe_sw_tx_bd {
551     struct mbuf  *m;
552     bus_dmamap_t m_map;
553     uint16_t     first_bd;
554     uint8_t      flags;
555 /* set on the first BD descriptor when there is a split BD */
556 #define BXE_TSO_SPLIT_BD (1 << 0)
557 };
558 
559 struct bxe_sw_rx_bd {
560     struct mbuf  *m;
561     bus_dmamap_t m_map;
562 };
563 
564 struct bxe_sw_tpa_info {
565     struct bxe_sw_rx_bd bd;
566     bus_dma_segment_t   seg;
567     uint8_t             state;
568 #define BXE_TPA_STATE_START 1
569 #define BXE_TPA_STATE_STOP  2
570     uint8_t             placement_offset;
571     uint16_t            parsing_flags;
572     uint16_t            vlan_tag;
573     uint16_t            len_on_bd;
574 };
575 
576 /*
577  * This is the HSI fastpath data structure. There can be up to MAX_RSS_CHAIN
578  * instances of the fastpath structure when using multiple queues.
579  */
580 struct bxe_fastpath {
581     /* pointer back to parent structure */
582     struct bxe_softc *sc;
583 
584     struct mtx tx_mtx;
585     char       tx_mtx_name[32];
586     struct mtx rx_mtx;
587     char       rx_mtx_name[32];
588 
589 #define BXE_FP_TX_LOCK(fp)        mtx_lock(&fp->tx_mtx)
590 #define BXE_FP_TX_UNLOCK(fp)      mtx_unlock(&fp->tx_mtx)
591 #define BXE_FP_TX_LOCK_ASSERT(fp) mtx_assert(&fp->tx_mtx, MA_OWNED)
592 
593 #define BXE_FP_RX_LOCK(fp)        mtx_lock(&fp->rx_mtx)
594 #define BXE_FP_RX_UNLOCK(fp)      mtx_unlock(&fp->rx_mtx)
595 #define BXE_FP_RX_LOCK_ASSERT(fp) mtx_assert(&fp->rx_mtx, MA_OWNED)
596 
597     /* status block */
598     struct bxe_dma                 sb_dma;
599     union bxe_host_hc_status_block status_block;
600 
601     /* transmit chain (tx bds) */
602     struct bxe_dma        tx_dma;
603     union eth_tx_bd_types *tx_chain;
604 
605     /* receive chain (rx bds) */
606     struct bxe_dma   rx_dma;
607     struct eth_rx_bd *rx_chain;
608 
609     /* receive completion queue chain (rcq bds) */
610     struct bxe_dma   rcq_dma;
611     union eth_rx_cqe *rcq_chain;
612 
613     /* receive scatter/gather entry chain (for TPA) */
614     struct bxe_dma    rx_sge_dma;
615     struct eth_rx_sge *rx_sge_chain;
616 
617     /* tx mbufs */
618     bus_dma_tag_t       tx_mbuf_tag;
619     struct bxe_sw_tx_bd tx_mbuf_chain[TX_BD_TOTAL];
620 
621     /* rx mbufs */
622     bus_dma_tag_t       rx_mbuf_tag;
623     struct bxe_sw_rx_bd rx_mbuf_chain[RX_BD_TOTAL];
624     bus_dmamap_t        rx_mbuf_spare_map;
625 
626     /* rx sge mbufs */
627     bus_dma_tag_t       rx_sge_mbuf_tag;
628     struct bxe_sw_rx_bd rx_sge_mbuf_chain[RX_SGE_TOTAL];
629     bus_dmamap_t        rx_sge_mbuf_spare_map;
630 
631     /* rx tpa mbufs (use the larger size for TPA queue length) */
632     int                    tpa_enable; /* disabled per fastpath upon error */
633     struct bxe_sw_tpa_info rx_tpa_info[ETH_MAX_AGGREGATION_QUEUES_E1H_E2];
634     bus_dmamap_t           rx_tpa_info_mbuf_spare_map;
635     uint64_t               rx_tpa_queue_used;
636 #if 0
637     bus_dmamap_t      rx_tpa_mbuf_map[ETH_MAX_AGGREGATION_QUEUES_E1H_E2];
638     bus_dmamap_t      rx_tpa_mbuf_spare_map;
639     struct mbuf       *rx_tpa_mbuf_ptr[ETH_MAX_AGGREGATION_QUEUES_E1H_E2];
640     bus_dma_segment_t rx_tpa_mbuf_segs[ETH_MAX_AGGREGATION_QUEUES_E1H_E2];
641 
642     uint8_t tpa_state[ETH_MAX_AGGREGATION_QUEUES_E1H_E2];
643 #endif
644 
645     uint16_t *sb_index_values;
646     uint16_t *sb_running_index;
647     uint32_t ustorm_rx_prods_offset;
648 
649     uint8_t igu_sb_id; /* status block number in HW */
650     uint8_t fw_sb_id;  /* status block number in FW */
651 
652     uint32_t rx_buf_size;
653     int mbuf_alloc_size;
654 
655     int state;
656 #define BXE_FP_STATE_CLOSED  0x01
657 #define BXE_FP_STATE_IRQ     0x02
658 #define BXE_FP_STATE_OPENING 0x04
659 #define BXE_FP_STATE_OPEN    0x08
660 #define BXE_FP_STATE_HALTING 0x10
661 #define BXE_FP_STATE_HALTED  0x20
662 
663     /* reference back to this fastpath queue number */
664     uint8_t index; /* this is also the 'cid' */
665 #define FP_IDX(fp) (fp->index)
666 
667     /* interrupt taskqueue (fast) */
668     struct task      tq_task;
669     struct taskqueue *tq;
670     char             tq_name[32];
671 
672     /* ethernet client ID (each fastpath set of RX/TX/CQE is a client) */
673     uint8_t cl_id;
674 #define FP_CL_ID(fp) (fp->cl_id)
675     uint8_t cl_qzone_id;
676 
677     uint16_t fp_hc_idx;
678 
679     /* driver copy of the receive buffer descriptor prod/cons indices */
680     uint16_t rx_bd_prod;
681     uint16_t rx_bd_cons;
682 
683     /* driver copy of the receive completion queue prod/cons indices */
684     uint16_t rx_cq_prod;
685     uint16_t rx_cq_cons;
686 
687     union bxe_db_prod tx_db;
688 
689     /* Transmit packet producer index (used in eth_tx_bd). */
690     uint16_t tx_pkt_prod;
691     uint16_t tx_pkt_cons;
692 
693     /* Transmit buffer descriptor producer index. */
694     uint16_t tx_bd_prod;
695     uint16_t tx_bd_cons;
696 
697 #if 0
698     /* status block number in hardware */
699     uint8_t sb_id;
700 #define FP_SB_ID(fp) (fp->sb_id)
701 
702     /* driver copy of the fastpath CSTORM/USTORM indices */
703     uint16_t fp_c_idx;
704     uint16_t fp_u_idx;
705 #endif
706 
707     uint64_t sge_mask[RX_SGE_MASK_LEN];
708     uint16_t rx_sge_prod;
709 
710     struct tstorm_per_queue_stats old_tclient;
711     struct ustorm_per_queue_stats old_uclient;
712     struct xstorm_per_queue_stats old_xclient;
713     struct bxe_eth_q_stats        eth_q_stats;
714     struct bxe_eth_q_stats_old    eth_q_stats_old;
715 
716     /* Pointer to the receive consumer in the status block */
717     uint16_t *rx_cq_cons_sb;
718 
719     /* Pointer to the transmit consumer in the status block */
720     uint16_t *tx_cons_sb;
721 
722     /* transmit timeout until chip reset */
723     int watchdog_timer;
724 
725     /* Free/used buffer descriptor counters. */
726     //uint16_t used_tx_bd;
727 
728     /* Last maximal completed SGE */
729     uint16_t last_max_sge;
730 
731     //uint16_t rx_sge_free_idx;
732 
733     //uint8_t segs;
734 
735 #if __FreeBSD_version >= 800000
736 #define BXE_BR_SIZE 4096
737     struct buf_ring *tx_br;
738 #endif
739 }; /* struct bxe_fastpath */
740 
741 /* sriov XXX */
742 #define BXE_MAX_NUM_OF_VFS 64
743 #define BXE_VF_CID_WND     0
744 #define BXE_CIDS_PER_VF    (1 << BXE_VF_CID_WND)
745 #define BXE_CLIENTS_PER_VF 1
746 #define BXE_FIRST_VF_CID   256
747 #define BXE_VF_CIDS        (BXE_MAX_NUM_OF_VFS * BXE_CIDS_PER_VF)
748 #define BXE_VF_ID_INVALID  0xFF
749 #define IS_SRIOV(sc) 0
750 
751 #define GET_NUM_VFS_PER_PATH(sc) 0
752 #define GET_NUM_VFS_PER_PF(sc)   0
753 
754 /* maximum number of fast-path interrupt contexts */
755 #define FP_SB_MAX_E1x 16
756 #define FP_SB_MAX_E2  HC_SB_MAX_SB_E2
757 
758 union cdu_context {
759     struct eth_context eth;
760     char pad[1024];
761 };
762 
763 /* CDU host DB constants */
764 #define CDU_ILT_PAGE_SZ_HW 2
765 #define CDU_ILT_PAGE_SZ    (8192 << CDU_ILT_PAGE_SZ_HW) /* 32K */
766 #define ILT_PAGE_CIDS      (CDU_ILT_PAGE_SZ / sizeof(union cdu_context))
767 
768 #define CNIC_ISCSI_CID_MAX 256
769 #define CNIC_FCOE_CID_MAX  2048
770 #define CNIC_CID_MAX       (CNIC_ISCSI_CID_MAX + CNIC_FCOE_CID_MAX)
771 #define CNIC_ILT_LINES     DIV_ROUND_UP(CNIC_CID_MAX, ILT_PAGE_CIDS)
772 
773 #define QM_ILT_PAGE_SZ_HW  0
774 #define QM_ILT_PAGE_SZ     (4096 << QM_ILT_PAGE_SZ_HW) /* 4K */
775 #define QM_CID_ROUND       1024
776 
777 /* TM (timers) host DB constants */
778 #define TM_ILT_PAGE_SZ_HW  0
779 #define TM_ILT_PAGE_SZ     (4096 << TM_ILT_PAGE_SZ_HW) /* 4K */
780 /*#define TM_CONN_NUM        (CNIC_STARTING_CID+CNIC_ISCSI_CXT_MAX) */
781 #define TM_CONN_NUM        1024
782 #define TM_ILT_SZ          (8 * TM_CONN_NUM)
783 #define TM_ILT_LINES       DIV_ROUND_UP(TM_ILT_SZ, TM_ILT_PAGE_SZ)
784 
785 /* SRC (Searcher) host DB constants */
786 #define SRC_ILT_PAGE_SZ_HW 0
787 #define SRC_ILT_PAGE_SZ    (4096 << SRC_ILT_PAGE_SZ_HW) /* 4K */
788 #define SRC_HASH_BITS      10
789 #define SRC_CONN_NUM       (1 << SRC_HASH_BITS) /* 1024 */
790 #define SRC_ILT_SZ         (sizeof(struct src_ent) * SRC_CONN_NUM)
791 #define SRC_T2_SZ          SRC_ILT_SZ
792 #define SRC_ILT_LINES      DIV_ROUND_UP(SRC_ILT_SZ, SRC_ILT_PAGE_SZ)
793 
794 struct hw_context {
795     struct bxe_dma    vcxt_dma;
796     union cdu_context *vcxt;
797     //bus_addr_t        cxt_mapping;
798     size_t            size;
799 };
800 
801 #define SM_RX_ID 0
802 #define SM_TX_ID 1
803 
804 /* defines for multiple tx priority indices */
805 #define FIRST_TX_ONLY_COS_INDEX 1
806 #define FIRST_TX_COS_INDEX      0
807 
808 #define CID_TO_FP(cid, sc) ((cid) % BXE_NUM_NON_CNIC_QUEUES(sc))
809 
810 #define HC_INDEX_ETH_RX_CQ_CONS       1
811 #define HC_INDEX_OOO_TX_CQ_CONS       4
812 #define HC_INDEX_ETH_TX_CQ_CONS_COS0  5
813 #define HC_INDEX_ETH_TX_CQ_CONS_COS1  6
814 #define HC_INDEX_ETH_TX_CQ_CONS_COS2  7
815 #define HC_INDEX_ETH_FIRST_TX_CQ_CONS HC_INDEX_ETH_TX_CQ_CONS_COS0
816 
817 /* congestion management fairness mode */
818 #define CMNG_FNS_NONE   0
819 #define CMNG_FNS_MINMAX 1
820 
821 /* CMNG constants, as derived from system spec calculations */
822 /* default MIN rate in case VNIC min rate is configured to zero - 100Mbps */
823 #define DEF_MIN_RATE 100
824 /* resolution of the rate shaping timer - 400 usec */
825 #define RS_PERIODIC_TIMEOUT_USEC 400
826 /* number of bytes in single QM arbitration cycle -
827  * coefficient for calculating the fairness timer */
828 #define QM_ARB_BYTES 160000
829 /* resolution of Min algorithm 1:100 */
830 #define MIN_RES 100
831 /* how many bytes above threshold for the minimal credit of Min algorithm*/
832 #define MIN_ABOVE_THRESH 32768
833 /* fairness algorithm integration time coefficient -
834  * for calculating the actual Tfair */
835 #define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES)
836 /* memory of fairness algorithm - 2 cycles */
837 #define FAIR_MEM 2
838 
839 #define HC_SEG_ACCESS_DEF   0 /* Driver decision 0-3 */
840 #define HC_SEG_ACCESS_ATTN  4
841 #define HC_SEG_ACCESS_NORM  0 /* Driver decision 0-1 */
842 
843 /*
844  * The total number of L2 queues, MSIX vectors and HW contexts (CIDs) is
845  * control by the number of fast-path status blocks supported by the
846  * device (HW/FW). Each fast-path status block (FP-SB) aka non-default
847  * status block represents an independent interrupts context that can
848  * serve a regular L2 networking queue. However special L2 queues such
849  * as the FCoE queue do not require a FP-SB and other components like
850  * the CNIC may consume FP-SB reducing the number of possible L2 queues
851  *
852  * If the maximum number of FP-SB available is X then:
853  * a. If CNIC is supported it consumes 1 FP-SB thus the max number of
854  *    regular L2 queues is Y=X-1
855  * b. in MF mode the actual number of L2 queues is Y= (X-1/MF_factor)
856  * c. If the FCoE L2 queue is supported the actual number of L2 queues
857  *    is Y+1
858  * d. The number of irqs (MSIX vectors) is either Y+1 (one extra for
859  *    slow-path interrupts) or Y+2 if CNIC is supported (one additional
860  *    FP interrupt context for the CNIC).
861  * e. The number of HW context (CID count) is always X or X+1 if FCoE
862  *    L2 queue is supported. the cid for the FCoE L2 queue is always X.
863  *
864  * So this is quite simple for now as no ULPs are supported yet. :-)
865  */
866 #define BXE_NUM_QUEUES(sc)          ((sc)->num_queues)
867 #define BXE_NUM_ETH_QUEUES(sc)      BXE_NUM_QUEUES(sc)
868 #define BXE_NUM_NON_CNIC_QUEUES(sc) BXE_NUM_QUEUES(sc)
869 #define BXE_NUM_RX_QUEUES(sc)       BXE_NUM_QUEUES(sc)
870 
871 #define FOR_EACH_QUEUE(sc, var)                          \
872     for ((var) = 0; (var) < BXE_NUM_QUEUES(sc); (var)++)
873 
874 #define FOR_EACH_NONDEFAULT_QUEUE(sc, var)               \
875     for ((var) = 1; (var) < BXE_NUM_QUEUES(sc); (var)++)
876 
877 #define FOR_EACH_ETH_QUEUE(sc, var)                          \
878     for ((var) = 0; (var) < BXE_NUM_ETH_QUEUES(sc); (var)++)
879 
880 #define FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, var)               \
881     for ((var) = 1; (var) < BXE_NUM_ETH_QUEUES(sc); (var)++)
882 
883 #define FOR_EACH_COS_IN_TX_QUEUE(sc, var)           \
884     for ((var) = 0; (var) < (sc)->max_cos; (var)++)
885 
886 #define FOR_EACH_CNIC_QUEUE(sc, var)     \
887     for ((var) = BXE_NUM_ETH_QUEUES(sc); \
888          (var) < BXE_NUM_QUEUES(sc);     \
889          (var)++)
890 
891 enum {
892     OOO_IDX_OFFSET,
893     FCOE_IDX_OFFSET,
894     FWD_IDX_OFFSET,
895 };
896 
897 #define FCOE_IDX(sc)              (BXE_NUM_NON_CNIC_QUEUES(sc) + FCOE_IDX_OFFSET)
898 #define bxe_fcoe_fp(sc)           (&sc->fp[FCOE_IDX(sc)])
899 #define bxe_fcoe(sc, var)         (bxe_fcoe_fp(sc)->var)
900 #define bxe_fcoe_inner_sp_obj(sc) (&sc->sp_objs[FCOE_IDX(sc)])
901 #define bxe_fcoe_sp_obj(sc, var)  (bxe_fcoe_inner_sp_obj(sc)->var)
902 #define bxe_fcoe_tx(sc, var)      (bxe_fcoe_fp(sc)->txdata_ptr[FIRST_TX_COS_INDEX]->var)
903 
904 #define OOO_IDX(sc)               (BXE_NUM_NON_CNIC_QUEUES(sc) + OOO_IDX_OFFSET)
905 #define bxe_ooo_fp(sc)            (&sc->fp[OOO_IDX(sc)])
906 #define bxe_ooo(sc, var)          (bxe_ooo_fp(sc)->var)
907 #define bxe_ooo_inner_sp_obj(sc)  (&sc->sp_objs[OOO_IDX(sc)])
908 #define bxe_ooo_sp_obj(sc, var)   (bxe_ooo_inner_sp_obj(sc)->var)
909 
910 #define FWD_IDX(sc)               (BXE_NUM_NON_CNIC_QUEUES(sc) + FWD_IDX_OFFSET)
911 #define bxe_fwd_fp(sc)            (&sc->fp[FWD_IDX(sc)])
912 #define bxe_fwd(sc, var)          (bxe_fwd_fp(sc)->var)
913 #define bxe_fwd_inner_sp_obj(sc)  (&sc->sp_objs[FWD_IDX(sc)])
914 #define bxe_fwd_sp_obj(sc, var)   (bxe_fwd_inner_sp_obj(sc)->var)
915 #define bxe_fwd_txdata(fp)        (fp->txdata_ptr[FIRST_TX_COS_INDEX])
916 
917 #define IS_ETH_FP(fp)    ((fp)->index < BXE_NUM_ETH_QUEUES((fp)->sc))
918 #define IS_FCOE_FP(fp)   ((fp)->index == FCOE_IDX((fp)->sc))
919 #define IS_FCOE_IDX(idx) ((idx) == FCOE_IDX(sc))
920 #define IS_FWD_FP(fp)    ((fp)->index == FWD_IDX((fp)->sc))
921 #define IS_FWD_IDX(idx)  ((idx) == FWD_IDX(sc))
922 #define IS_OOO_FP(fp)    ((fp)->index == OOO_IDX((fp)->sc))
923 #define IS_OOO_IDX(idx)  ((idx) == OOO_IDX(sc))
924 
925 enum {
926     BXE_PORT_QUERY_IDX,
927     BXE_PF_QUERY_IDX,
928     BXE_FCOE_QUERY_IDX,
929     BXE_FIRST_QUEUE_QUERY_IDX,
930 };
931 
932 struct bxe_fw_stats_req {
933     struct stats_query_header hdr;
934     struct stats_query_entry  query[FP_SB_MAX_E1x +
935                                     BXE_FIRST_QUEUE_QUERY_IDX];
936 };
937 
938 struct bxe_fw_stats_data {
939     struct stats_counter          storm_counters;
940     struct per_port_stats         port;
941     struct per_pf_stats           pf;
942     //struct fcoe_statistics_params fcoe;
943     struct per_queue_stats        queue_stats[1];
944 };
945 
946 /* IGU MSIX STATISTICS on 57712: 64 for VFs; 4 for PFs; 4 for Attentions */
947 #define BXE_IGU_STAS_MSG_VF_CNT 64
948 #define BXE_IGU_STAS_MSG_PF_CNT 4
949 
950 #define MAX_DMAE_C 8
951 
952 /*
953  * For the main interface up/down code paths, a not-so-fine-grained CORE
954  * mutex lock is used. Inside this code are various calls to kernel routines
955  * that can cause a sleep to occur. Namely memory allocations and taskqueue
956  * handling. If using an MTX lock we are *not* allowed to sleep but we can
957  * with an SX lock. This define forces the CORE lock to use and SX lock.
958  * Undefine this and an MTX lock will be used instead. Note that the IOCTL
959  * path can cause problems since it's called by a non-sleepable thread. To
960  * alleviate a potential sleep, any IOCTL processing that results in the
961  * chip/interface being started/stopped/reinitialized, the actual work is
962  * offloaded to a taskqueue.
963  */
964 #define BXE_CORE_LOCK_SX
965 
966 /*
967  * This is the slowpath data structure. It is mapped into non-paged memory
968  * so that the hardware can access it's contents directly and must be page
969  * aligned.
970  */
971 struct bxe_slowpath {
972 
973 #if 0
974     /*
975      * The cdu_context array MUST be the first element in this
976      * structure. It is used during the leading edge ramrod
977      * operation.
978      */
979     union cdu_context context[MAX_CONTEXT];
980 
981     /* Used as a DMA source for MAC configuration. */
982     struct mac_configuration_cmd    mac_config;
983     struct mac_configuration_cmd    mcast_config;
984 #endif
985 
986     /* used by the DMAE command executer */
987     struct dmae_command dmae[MAX_DMAE_C];
988 
989     /* statistics completion */
990     uint32_t stats_comp;
991 
992     /* firmware defined statistics blocks */
993     union mac_stats        mac_stats;
994     struct nig_stats       nig_stats;
995     struct host_port_stats port_stats;
996     struct host_func_stats func_stats;
997     //struct host_func_stats func_stats_base;
998 
999     /* DMAE completion value and data source/sink */
1000     uint32_t wb_comp;
1001     uint32_t wb_data[4];
1002 
1003     union {
1004         struct mac_configuration_cmd          e1x;
1005         struct eth_classify_rules_ramrod_data e2;
1006     } mac_rdata;
1007 
1008     union {
1009         struct tstorm_eth_mac_filter_config e1x;
1010         struct eth_filter_rules_ramrod_data e2;
1011     } rx_mode_rdata;
1012 
1013     struct eth_rss_update_ramrod_data rss_rdata;
1014 
1015     union {
1016         struct mac_configuration_cmd           e1;
1017         struct eth_multicast_rules_ramrod_data e2;
1018     } mcast_rdata;
1019 
1020     union {
1021         struct function_start_data        func_start;
1022         struct flow_control_configuration pfc_config; /* for DCBX ramrod */
1023     } func_rdata;
1024 
1025     /* Queue State related ramrods */
1026     union {
1027         struct client_init_ramrod_data   init_data;
1028         struct client_update_ramrod_data update_data;
1029     } q_rdata;
1030 
1031     /*
1032      * AFEX ramrod can not be a part of func_rdata union because these
1033      * events might arrive in parallel to other events from func_rdata.
1034      * If they were defined in the same union the data can get corrupted.
1035      */
1036     struct afex_vif_list_ramrod_data func_afex_rdata;
1037 
1038     union drv_info_to_mcp drv_info_to_mcp;
1039 }; /* struct bxe_slowpath */
1040 
1041 /*
1042  * Port specifc data structure.
1043  */
1044 struct bxe_port {
1045     /*
1046      * Port Management Function (for 57711E only).
1047      * When this field is set the driver instance is
1048      * responsible for managing port specifc
1049      * configurations such as handling link attentions.
1050      */
1051     uint32_t pmf;
1052 
1053     /* Ethernet maximum transmission unit. */
1054     uint16_t ether_mtu;
1055 
1056     uint32_t link_config[ELINK_LINK_CONFIG_SIZE];
1057 
1058     uint32_t ext_phy_config;
1059 
1060     /* Port feature config.*/
1061     uint32_t config;
1062 
1063     /* Defines the features supported by the PHY. */
1064     uint32_t supported[ELINK_LINK_CONFIG_SIZE];
1065 
1066     /* Defines the features advertised by the PHY. */
1067     uint32_t advertising[ELINK_LINK_CONFIG_SIZE];
1068 #define ADVERTISED_10baseT_Half    (1 << 1)
1069 #define ADVERTISED_10baseT_Full    (1 << 2)
1070 #define ADVERTISED_100baseT_Half   (1 << 3)
1071 #define ADVERTISED_100baseT_Full   (1 << 4)
1072 #define ADVERTISED_1000baseT_Half  (1 << 5)
1073 #define ADVERTISED_1000baseT_Full  (1 << 6)
1074 #define ADVERTISED_TP              (1 << 7)
1075 #define ADVERTISED_FIBRE           (1 << 8)
1076 #define ADVERTISED_Autoneg         (1 << 9)
1077 #define ADVERTISED_Asym_Pause      (1 << 10)
1078 #define ADVERTISED_Pause           (1 << 11)
1079 #define ADVERTISED_2500baseX_Full  (1 << 15)
1080 #define ADVERTISED_10000baseT_Full (1 << 16)
1081 
1082     uint32_t    phy_addr;
1083 
1084     /* Used to synchronize phy accesses. */
1085     struct mtx  phy_mtx;
1086     char        phy_mtx_name[32];
1087 
1088 #define BXE_PHY_LOCK(sc)          mtx_lock(&sc->port.phy_mtx)
1089 #define BXE_PHY_UNLOCK(sc)        mtx_unlock(&sc->port.phy_mtx)
1090 #define BXE_PHY_LOCK_ASSERT(sc)   mtx_assert(&sc->port.phy_mtx, MA_OWNED)
1091 
1092     /*
1093      * MCP scratchpad address for port specific statistics.
1094      * The device is responsible for writing statistcss
1095      * back to the MCP for use with management firmware such
1096      * as UMP/NC-SI.
1097      */
1098     uint32_t port_stx;
1099 
1100     struct nig_stats old_nig_stats;
1101 }; /* struct bxe_port */
1102 
1103 struct bxe_mf_info {
1104     uint32_t mf_config[E1HVN_MAX];
1105 
1106     uint32_t vnics_per_port;   /* 1, 2 or 4 */
1107     uint32_t multi_vnics_mode; /* can be set even if vnics_per_port = 1 */
1108     uint32_t path_has_ovlan;   /* MF mode in the path (can be different than the MF mode of the function */
1109 
1110 #define IS_MULTI_VNIC(sc)  ((sc)->devinfo.mf_info.multi_vnics_mode)
1111 #define VNICS_PER_PORT(sc) ((sc)->devinfo.mf_info.vnics_per_port)
1112 #define VNICS_PER_PATH(sc)                                  \
1113     ((sc)->devinfo.mf_info.vnics_per_port *                 \
1114      ((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 1 ))
1115 
1116     uint8_t min_bw[MAX_VNIC_NUM];
1117     uint8_t max_bw[MAX_VNIC_NUM];
1118 
1119     uint16_t ext_id; /* vnic outer vlan or VIF ID */
1120 #define VALID_OVLAN(ovlan) ((ovlan) <= 4096)
1121 #define INVALID_VIF_ID 0xFFFF
1122 #define OVLAN(sc) ((sc)->devinfo.mf_info.ext_id)
1123 #define VIF_ID(sc) ((sc)->devinfo.mf_info.ext_id)
1124 
1125     uint16_t default_vlan;
1126 #define NIV_DEFAULT_VLAN(sc) ((sc)->devinfo.mf_info.default_vlan)
1127 
1128     uint8_t niv_allowed_priorities;
1129 #define NIV_ALLOWED_PRIORITIES(sc) ((sc)->devinfo.mf_info.niv_allowed_priorities)
1130 
1131     uint8_t niv_default_cos;
1132 #define NIV_DEFAULT_COS(sc) ((sc)->devinfo.mf_info.niv_default_cos)
1133 
1134     uint8_t niv_mba_enabled;
1135 
1136     enum mf_cfg_afex_vlan_mode afex_vlan_mode;
1137 #define AFEX_VLAN_MODE(sc) ((sc)->devinfo.mf_info.afex_vlan_mode)
1138     int                        afex_def_vlan_tag;
1139     uint32_t                   pending_max;
1140 
1141     uint16_t flags;
1142 #define MF_INFO_VALID_MAC       0x0001
1143 
1144     uint8_t mf_mode; /* Switch-Dependent or Switch-Independent */
1145 #define IS_MF(sc)                        \
1146     (IS_MULTI_VNIC(sc) &&                \
1147      ((sc)->devinfo.mf_info.mf_mode != 0))
1148 #define IS_MF_SD(sc)                                     \
1149     (IS_MULTI_VNIC(sc) &&                                \
1150      ((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD))
1151 #define IS_MF_SI(sc)                                     \
1152     (IS_MULTI_VNIC(sc) &&                                \
1153      ((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI))
1154 #define IS_MF_AFEX(sc)                              \
1155     (IS_MULTI_VNIC(sc) &&                           \
1156      ((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX))
1157 #define IS_MF_SD_MODE(sc)   IS_MF_SD(sc)
1158 #define IS_MF_SI_MODE(sc)   IS_MF_SI(sc)
1159 #define IS_MF_AFEX_MODE(sc) IS_MF_AFEX(sc)
1160 
1161     uint32_t mf_protos_supported;
1162     #define MF_PROTO_SUPPORT_ETHERNET 0x1
1163     #define MF_PROTO_SUPPORT_ISCSI    0x2
1164     #define MF_PROTO_SUPPORT_FCOE     0x4
1165 }; /* struct bxe_mf_info */
1166 
1167 /* Device information data structure. */
1168 struct bxe_devinfo {
1169     /* PCIe info */
1170     uint16_t vendor_id;
1171     uint16_t device_id;
1172     uint16_t subvendor_id;
1173     uint16_t subdevice_id;
1174 
1175     /*
1176      * chip_id = 0b'CCCCCCCCCCCCCCCCRRRRMMMMMMMMBBBB'
1177      *   C = Chip Number   (bits 16-31)
1178      *   R = Chip Revision (bits 12-15)
1179      *   M = Chip Metal    (bits 4-11)
1180      *   B = Chip Bond ID  (bits 0-3)
1181      */
1182     uint32_t chip_id;
1183 #define CHIP_ID(sc)           ((sc)->devinfo.chip_id & 0xffff0000)
1184 #define CHIP_NUM(sc)          ((sc)->devinfo.chip_id >> 16)
1185 /* device ids */
1186 #define CHIP_NUM_57710        0x164e
1187 #define CHIP_NUM_57711        0x164f
1188 #define CHIP_NUM_57711E       0x1650
1189 #define CHIP_NUM_57712        0x1662
1190 #define CHIP_NUM_57712_MF     0x1663
1191 #define CHIP_NUM_57712_VF     0x166f
1192 #define CHIP_NUM_57800        0x168a
1193 #define CHIP_NUM_57800_MF     0x16a5
1194 #define CHIP_NUM_57800_VF     0x16a9
1195 #define CHIP_NUM_57810        0x168e
1196 #define CHIP_NUM_57810_MF     0x16ae
1197 #define CHIP_NUM_57810_VF     0x16af
1198 #define CHIP_NUM_57811        0x163d
1199 #define CHIP_NUM_57811_MF     0x163e
1200 #define CHIP_NUM_57811_VF     0x163f
1201 #define CHIP_NUM_57840_OBS    0x168d
1202 #define CHIP_NUM_57840_OBS_MF 0x16ab
1203 #define CHIP_NUM_57840_4_10   0x16a1
1204 #define CHIP_NUM_57840_2_20   0x16a2
1205 #define CHIP_NUM_57840_MF     0x16a4
1206 #define CHIP_NUM_57840_VF     0x16ad
1207 
1208 #define CHIP_REV_SHIFT      12
1209 #define CHIP_REV_MASK       (0xF << CHIP_REV_SHIFT)
1210 #define CHIP_REV(sc)        ((sc)->devinfo.chip_id & CHIP_REV_MASK)
1211 
1212 #define CHIP_REV_Ax         (0x0 << CHIP_REV_SHIFT)
1213 #define CHIP_REV_Bx         (0x1 << CHIP_REV_SHIFT)
1214 #define CHIP_REV_Cx         (0x2 << CHIP_REV_SHIFT)
1215 
1216 #define CHIP_REV_IS_SLOW(sc)    \
1217     (CHIP_REV(sc) > 0x00005000)
1218 #define CHIP_REV_IS_FPGA(sc)                              \
1219     (CHIP_REV_IS_SLOW(sc) && (CHIP_REV(sc) & 0x00001000))
1220 #define CHIP_REV_IS_EMUL(sc)                               \
1221     (CHIP_REV_IS_SLOW(sc) && !(CHIP_REV(sc) & 0x00001000))
1222 #define CHIP_REV_IS_ASIC(sc) \
1223     (!CHIP_REV_IS_SLOW(sc))
1224 
1225 #define CHIP_METAL(sc)      ((sc->devinfo.chip_id) & 0x00000ff0)
1226 #define CHIP_BOND_ID(sc)    ((sc->devinfo.chip_id) & 0x0000000f)
1227 
1228 #define CHIP_IS_E1(sc)      (CHIP_NUM(sc) == CHIP_NUM_57710)
1229 #define CHIP_IS_57710(sc)   (CHIP_NUM(sc) == CHIP_NUM_57710)
1230 #define CHIP_IS_57711(sc)   (CHIP_NUM(sc) == CHIP_NUM_57711)
1231 #define CHIP_IS_57711E(sc)  (CHIP_NUM(sc) == CHIP_NUM_57711E)
1232 #define CHIP_IS_E1H(sc)     ((CHIP_IS_57711(sc)) || \
1233                              (CHIP_IS_57711E(sc)))
1234 #define CHIP_IS_E1x(sc)     (CHIP_IS_E1((sc)) || \
1235                              CHIP_IS_E1H((sc)))
1236 
1237 #define CHIP_IS_57712(sc)    (CHIP_NUM(sc) == CHIP_NUM_57712)
1238 #define CHIP_IS_57712_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57712_MF)
1239 #define CHIP_IS_57712_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57712_VF)
1240 #define CHIP_IS_E2(sc)       (CHIP_IS_57712(sc) ||  \
1241                               CHIP_IS_57712_MF(sc))
1242 
1243 #define CHIP_IS_57800(sc)    (CHIP_NUM(sc) == CHIP_NUM_57800)
1244 #define CHIP_IS_57800_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57800_MF)
1245 #define CHIP_IS_57800_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57800_VF)
1246 #define CHIP_IS_57810(sc)    (CHIP_NUM(sc) == CHIP_NUM_57810)
1247 #define CHIP_IS_57810_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57810_MF)
1248 #define CHIP_IS_57810_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57810_VF)
1249 #define CHIP_IS_57811(sc)    (CHIP_NUM(sc) == CHIP_NUM_57811)
1250 #define CHIP_IS_57811_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57811_MF)
1251 #define CHIP_IS_57811_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57811_VF)
1252 #define CHIP_IS_57840(sc)    ((CHIP_NUM(sc) == CHIP_NUM_57840_OBS)  || \
1253                               (CHIP_NUM(sc) == CHIP_NUM_57840_4_10) || \
1254                               (CHIP_NUM(sc) == CHIP_NUM_57840_2_20))
1255 #define CHIP_IS_57840_MF(sc) ((CHIP_NUM(sc) == CHIP_NUM_57840_OBS_MF) || \
1256                               (CHIP_NUM(sc) == CHIP_NUM_57840_MF))
1257 #define CHIP_IS_57840_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57840_VF)
1258 
1259 #define CHIP_IS_E3(sc)      (CHIP_IS_57800(sc)    || \
1260                              CHIP_IS_57800_MF(sc) || \
1261                              CHIP_IS_57800_VF(sc) || \
1262                              CHIP_IS_57810(sc)    || \
1263                              CHIP_IS_57810_MF(sc) || \
1264                              CHIP_IS_57810_VF(sc) || \
1265                              CHIP_IS_57811(sc)    || \
1266                              CHIP_IS_57811_MF(sc) || \
1267                              CHIP_IS_57811_VF(sc) || \
1268                              CHIP_IS_57840(sc)    || \
1269                              CHIP_IS_57840_MF(sc) || \
1270                              CHIP_IS_57840_VF(sc))
1271 #define CHIP_IS_E3A0(sc)    (CHIP_IS_E3(sc) &&              \
1272                              (CHIP_REV(sc) == CHIP_REV_Ax))
1273 #define CHIP_IS_E3B0(sc)    (CHIP_IS_E3(sc) &&              \
1274                              (CHIP_REV(sc) == CHIP_REV_Bx))
1275 
1276 #define USES_WARPCORE(sc)   (CHIP_IS_E3(sc))
1277 #define CHIP_IS_E2E3(sc)    (CHIP_IS_E2(sc) || \
1278                              CHIP_IS_E3(sc))
1279 
1280 #define CHIP_IS_MF_CAP(sc)  (CHIP_IS_57711E(sc)  ||  \
1281                              CHIP_IS_57712_MF(sc) || \
1282                              CHIP_IS_E3(sc))
1283 
1284 #define IS_VF(sc)           (CHIP_IS_57712_VF(sc) || \
1285                              CHIP_IS_57800_VF(sc) || \
1286                              CHIP_IS_57810_VF(sc) || \
1287                              CHIP_IS_57840_VF(sc))
1288 #define IS_PF(sc)           (!IS_VF(sc))
1289 
1290 /*
1291  * This define is used in two main places:
1292  * 1. In the early stages of nic_load, to know if to configure Parser/Searcher
1293  * to nic-only mode or to offload mode. Offload mode is configured if either
1294  * the chip is E1x (where NIC_MODE register is not applicable), or if cnic
1295  * already registered for this port (which means that the user wants storage
1296  * services).
1297  * 2. During cnic-related load, to know if offload mode is already configured
1298  * in the HW or needs to be configrued. Since the transition from nic-mode to
1299  * offload-mode in HW causes traffic coruption, nic-mode is configured only
1300  * in ports on which storage services where never requested.
1301  */
1302 #define CONFIGURE_NIC_MODE(sc) (!CHIP_IS_E1x(sc) && !CNIC_ENABLED(sc))
1303 
1304     uint8_t  chip_port_mode;
1305 #define CHIP_4_PORT_MODE        0x0
1306 #define CHIP_2_PORT_MODE        0x1
1307 #define CHIP_PORT_MODE_NONE     0x2
1308 #define CHIP_PORT_MODE(sc)      ((sc)->devinfo.chip_port_mode)
1309 #define CHIP_IS_MODE_4_PORT(sc) (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE)
1310 
1311     uint8_t int_block;
1312 #define INT_BLOCK_HC            0
1313 #define INT_BLOCK_IGU           1
1314 #define INT_BLOCK_MODE_NORMAL   0
1315 #define INT_BLOCK_MODE_BW_COMP  2
1316 #define CHIP_INT_MODE_IS_NBC(sc)                          \
1317     (!CHIP_IS_E1x(sc) &&                                  \
1318      !((sc)->devinfo.int_block & INT_BLOCK_MODE_BW_COMP))
1319 #define CHIP_INT_MODE_IS_BC(sc) (!CHIP_INT_MODE_IS_NBC(sc))
1320 
1321     uint32_t shmem_base;
1322     uint32_t shmem2_base;
1323     uint32_t bc_ver;
1324     char bc_ver_str[32];
1325     uint32_t mf_cfg_base; /* bootcode shmem address in BAR memory */
1326     struct bxe_mf_info mf_info;
1327 
1328     int flash_size;
1329 #define NVRAM_1MB_SIZE      0x20000
1330 #define NVRAM_TIMEOUT_COUNT 30000
1331 #define NVRAM_PAGE_SIZE     256
1332 
1333     /* PCIe capability information */
1334     uint32_t pcie_cap_flags;
1335 #define BXE_PM_CAPABLE_FLAG     0x00000001
1336 #define BXE_PCIE_CAPABLE_FLAG   0x00000002
1337 #define BXE_MSI_CAPABLE_FLAG    0x00000004
1338 #define BXE_MSIX_CAPABLE_FLAG   0x00000008
1339     uint16_t pcie_pm_cap_reg;
1340     uint16_t pcie_pcie_cap_reg;
1341     //uint16_t pcie_devctl;
1342     uint16_t pcie_link_width;
1343     uint16_t pcie_link_speed;
1344     uint16_t pcie_msi_cap_reg;
1345     uint16_t pcie_msix_cap_reg;
1346 
1347     /* device configuration read from bootcode shared memory */
1348     uint32_t hw_config;
1349     uint32_t hw_config2;
1350 }; /* struct bxe_devinfo */
1351 
1352 struct bxe_sp_objs {
1353     struct ecore_vlan_mac_obj mac_obj; /* MACs object */
1354     struct ecore_queue_sp_obj q_obj; /* Queue State object */
1355 }; /* struct bxe_sp_objs */
1356 
1357 /*
1358  * Data that will be used to create a link report message. We will keep the
1359  * data used for the last link report in order to prevent reporting the same
1360  * link parameters twice.
1361  */
1362 struct bxe_link_report_data {
1363     uint16_t      line_speed;        /* Effective line speed */
1364     unsigned long link_report_flags; /* BXE_LINK_REPORT_XXX flags */
1365 };
1366 enum {
1367     BXE_LINK_REPORT_FULL_DUPLEX,
1368     BXE_LINK_REPORT_LINK_DOWN,
1369     BXE_LINK_REPORT_RX_FC_ON,
1370     BXE_LINK_REPORT_TX_FC_ON
1371 };
1372 
1373 /* Top level device private data structure. */
1374 struct bxe_softc {
1375     /*
1376      * First entry must be a pointer to the BSD ifnet struct which
1377      * has a first element of 'void *if_softc' (which is us).
1378      */
1379     struct ifnet   *ifnet;
1380     struct ifmedia  ifmedia; /* network interface media structure */
1381     int             media;
1382 
1383     int             state; /* device state */
1384 #define BXE_STATE_CLOSED                 0x0000
1385 #define BXE_STATE_OPENING_WAITING_LOAD   0x1000
1386 #define BXE_STATE_OPENING_WAITING_PORT   0x2000
1387 #define BXE_STATE_OPEN                   0x3000
1388 #define BXE_STATE_CLOSING_WAITING_HALT   0x4000
1389 #define BXE_STATE_CLOSING_WAITING_DELETE 0x5000
1390 #define BXE_STATE_CLOSING_WAITING_UNLOAD 0x6000
1391 #define BXE_STATE_DISABLED               0xD000
1392 #define BXE_STATE_DIAG                   0xE000
1393 #define BXE_STATE_ERROR                  0xF000
1394 
1395     int flags;
1396 #define BXE_ONE_PORT_FLAG    0x00000001
1397 #define BXE_NO_ISCSI         0x00000002
1398 #define BXE_NO_FCOE          0x00000004
1399 #define BXE_ONE_PORT(sc)     (sc->flags & BXE_ONE_PORT_FLAG)
1400 //#define BXE_NO_WOL_FLAG      0x00000008
1401 //#define BXE_USING_DAC_FLAG   0x00000010
1402 //#define BXE_USING_MSIX_FLAG  0x00000020
1403 //#define BXE_USING_MSI_FLAG   0x00000040
1404 //#define BXE_DISABLE_MSI_FLAG 0x00000080
1405 #define BXE_NO_MCP_FLAG      0x00000200
1406 #define BXE_NOMCP(sc)        (sc->flags & BXE_NO_MCP_FLAG)
1407 //#define BXE_SAFC_TX_FLAG     0x00000400
1408 #define BXE_MF_FUNC_DIS      0x00000800
1409 #define BXE_TX_SWITCHING     0x00001000
1410 
1411     unsigned long debug; /* per-instance debug logging config */
1412 
1413 #define MAX_BARS 5
1414     struct bxe_bar bar[MAX_BARS]; /* map BARs 0, 2, 4 */
1415 
1416     uint16_t doorbell_size;
1417 
1418     /* periodic timer callout */
1419 #define PERIODIC_STOP 0
1420 #define PERIODIC_GO   1
1421     volatile unsigned long periodic_flags;
1422     struct callout         periodic_callout;
1423 
1424     /* chip start/stop/reset taskqueue */
1425 #define CHIP_TQ_NONE   0
1426 #define CHIP_TQ_START  1
1427 #define CHIP_TQ_STOP   2
1428 #define CHIP_TQ_REINIT 3
1429     volatile unsigned long chip_tq_flags;
1430     struct task            chip_tq_task;
1431     struct taskqueue       *chip_tq;
1432     char                   chip_tq_name[32];
1433 
1434     /* slowpath interrupt taskqueue */
1435     struct task      sp_tq_task;
1436     struct taskqueue *sp_tq;
1437     char             sp_tq_name[32];
1438 
1439     /* set rx_mode asynchronous taskqueue */
1440     struct task      rx_mode_tq_task;
1441     struct taskqueue *rx_mode_tq;
1442     char             rx_mode_tq_name[32];
1443 
1444     struct bxe_fastpath fp[MAX_RSS_CHAINS];
1445     struct bxe_sp_objs  sp_objs[MAX_RSS_CHAINS];
1446 
1447     device_t dev;  /* parent device handle */
1448     uint8_t  unit; /* driver instance number */
1449 
1450     int pcie_bus;    /* PCIe bus number */
1451     int pcie_device; /* PCIe device/slot number */
1452     int pcie_func;   /* PCIe function number */
1453 
1454     uint8_t pfunc_rel; /* function relative */
1455     uint8_t pfunc_abs; /* function absolute */
1456     uint8_t path_id;   /* function absolute */
1457 #define SC_PATH(sc)     (sc->path_id)
1458 #define SC_PORT(sc)     (sc->pfunc_rel & 1)
1459 #define SC_FUNC(sc)     (sc->pfunc_rel)
1460 #define SC_ABS_FUNC(sc) (sc->pfunc_abs)
1461 #define SC_VN(sc)       (sc->pfunc_rel >> 1)
1462 #define SC_L_ID(sc)     (SC_VN(sc) << 2)
1463 #define PORT_ID(sc)     SC_PORT(sc)
1464 #define PATH_ID(sc)     SC_PATH(sc)
1465 #define VNIC_ID(sc)     SC_VN(sc)
1466 #define FUNC_ID(sc)     SC_FUNC(sc)
1467 #define ABS_FUNC_ID(sc) SC_ABS_FUNC(sc)
1468 #define SC_FW_MB_IDX_VN(sc, vn)                                \
1469     (SC_PORT(sc) + (vn) *                                      \
1470      ((CHIP_IS_E1x(sc) || (CHIP_IS_MODE_4_PORT(sc))) ? 2 : 1))
1471 #define SC_FW_MB_IDX(sc) SC_FW_MB_IDX_VN(sc, SC_VN(sc))
1472 
1473     int if_capen; /* enabled interface capabilities */
1474 
1475     struct bxe_devinfo devinfo;
1476     char fw_ver_str[32];
1477     char mf_mode_str[32];
1478     char pci_link_str[32];
1479 
1480     const struct iro *iro_array;
1481 
1482 #ifdef BXE_CORE_LOCK_SX
1483     struct sx      core_sx;
1484     char           core_sx_name[32];
1485 #else
1486     struct mtx     core_mtx;
1487     char           core_mtx_name[32];
1488 #endif
1489     struct mtx     sp_mtx;
1490     char           sp_mtx_name[32];
1491     struct mtx     dmae_mtx;
1492     char           dmae_mtx_name[32];
1493     struct mtx     fwmb_mtx;
1494     char           fwmb_mtx_name[32];
1495     struct mtx     print_mtx;
1496     char           print_mtx_name[32];
1497     struct mtx     stats_mtx;
1498     char           stats_mtx_name[32];
1499     struct mtx     mcast_mtx;
1500     char           mcast_mtx_name[32];
1501 
1502 #ifdef BXE_CORE_LOCK_SX
1503 #define BXE_CORE_TRYLOCK(sc)      sx_try_xlock(&sc->core_sx)
1504 #define BXE_CORE_LOCK(sc)         sx_xlock(&sc->core_sx)
1505 #define BXE_CORE_UNLOCK(sc)       sx_xunlock(&sc->core_sx)
1506 #define BXE_CORE_LOCK_ASSERT(sc)  sx_assert(&sc->core_sx, SA_XLOCKED)
1507 #else
1508 #define BXE_CORE_TRYLOCK(sc)      mtx_trylock(&sc->core_mtx)
1509 #define BXE_CORE_LOCK(sc)         mtx_lock(&sc->core_mtx)
1510 #define BXE_CORE_UNLOCK(sc)       mtx_unlock(&sc->core_mtx)
1511 #define BXE_CORE_LOCK_ASSERT(sc)  mtx_assert(&sc->core_mtx, MA_OWNED)
1512 #endif
1513 
1514 #define BXE_SP_LOCK(sc)           mtx_lock(&sc->sp_mtx)
1515 #define BXE_SP_UNLOCK(sc)         mtx_unlock(&sc->sp_mtx)
1516 #define BXE_SP_LOCK_ASSERT(sc)    mtx_assert(&sc->sp_mtx, MA_OWNED)
1517 
1518 #define BXE_DMAE_LOCK(sc)         mtx_lock(&sc->dmae_mtx)
1519 #define BXE_DMAE_UNLOCK(sc)       mtx_unlock(&sc->dmae_mtx)
1520 #define BXE_DMAE_LOCK_ASSERT(sc)  mtx_assert(&sc->dmae_mtx, MA_OWNED)
1521 
1522 #define BXE_FWMB_LOCK(sc)         mtx_lock(&sc->fwmb_mtx)
1523 #define BXE_FWMB_UNLOCK(sc)       mtx_unlock(&sc->fwmb_mtx)
1524 #define BXE_FWMB_LOCK_ASSERT(sc)  mtx_assert(&sc->fwmb_mtx, MA_OWNED)
1525 
1526 #define BXE_PRINT_LOCK(sc)        mtx_lock(&sc->print_mtx)
1527 #define BXE_PRINT_UNLOCK(sc)      mtx_unlock(&sc->print_mtx)
1528 #define BXE_PRINT_LOCK_ASSERT(sc) mtx_assert(&sc->print_mtx, MA_OWNED)
1529 
1530 #define BXE_STATS_LOCK(sc)        mtx_lock(&sc->stats_mtx)
1531 #define BXE_STATS_UNLOCK(sc)      mtx_unlock(&sc->stats_mtx)
1532 #define BXE_STATS_LOCK_ASSERT(sc) mtx_assert(&sc->stats_mtx, MA_OWNED)
1533 
1534 #if __FreeBSD_version < 800000
1535 #define BXE_MCAST_LOCK(sc)        \
1536     do {                          \
1537         mtx_lock(&sc->mcast_mtx); \
1538         IF_ADDR_LOCK(sc->ifnet);  \
1539     } while (0)
1540 #define BXE_MCAST_UNLOCK(sc)        \
1541     do {                            \
1542         IF_ADDR_UNLOCK(sc->ifnet);  \
1543         mtx_unlock(&sc->mcast_mtx); \
1544     } while (0)
1545 #else
1546 #define BXE_MCAST_LOCK(sc)         \
1547     do {                           \
1548         mtx_lock(&sc->mcast_mtx);  \
1549         if_maddr_rlock(sc->ifnet); \
1550     } while (0)
1551 #define BXE_MCAST_UNLOCK(sc)         \
1552     do {                             \
1553         if_maddr_runlock(sc->ifnet); \
1554         mtx_unlock(&sc->mcast_mtx);  \
1555     } while (0)
1556 #endif
1557 #define BXE_MCAST_LOCK_ASSERT(sc) mtx_assert(&sc->mcast_mtx, MA_OWNED)
1558 
1559     int dmae_ready;
1560 #define DMAE_READY(sc) (sc->dmae_ready)
1561 
1562     struct ecore_credit_pool_obj vlans_pool;
1563     struct ecore_credit_pool_obj macs_pool;
1564     struct ecore_rx_mode_obj     rx_mode_obj;
1565     struct ecore_mcast_obj       mcast_obj;
1566     struct ecore_rss_config_obj  rss_conf_obj;
1567     struct ecore_func_sp_obj     func_obj;
1568 
1569     uint16_t fw_seq;
1570     uint16_t fw_drv_pulse_wr_seq;
1571     uint32_t func_stx;
1572 
1573     struct elink_params         link_params;
1574     struct elink_vars           link_vars;
1575     uint32_t                    link_cnt;
1576     struct bxe_link_report_data last_reported_link;
1577     char mac_addr_str[32];
1578 
1579     int last_reported_link_state;
1580 
1581     int tx_ring_size;
1582     int rx_ring_size;
1583     int wol;
1584 
1585     int is_leader;
1586     int recovery_state;
1587 #define BXE_RECOVERY_DONE        1
1588 #define BXE_RECOVERY_INIT        2
1589 #define BXE_RECOVERY_WAIT        3
1590 #define BXE_RECOVERY_FAILED      4
1591 #define BXE_RECOVERY_NIC_LOADING 5
1592 
1593     uint32_t rx_mode;
1594 #define BXE_RX_MODE_NONE     0
1595 #define BXE_RX_MODE_NORMAL   1
1596 #define BXE_RX_MODE_ALLMULTI 2
1597 #define BXE_RX_MODE_PROMISC  3
1598 #define BXE_MAX_MULTICAST    64
1599 
1600     struct bxe_port port;
1601 
1602     struct cmng_init cmng;
1603 
1604     /* user configs */
1605     int      num_queues;
1606     int      max_rx_bufs;
1607     int      hc_rx_ticks;
1608     int      hc_tx_ticks;
1609     int      rx_budget;
1610     int      max_aggregation_size;
1611     int      mrrs;
1612     int      autogreeen;
1613 #define AUTO_GREEN_HW_DEFAULT 0
1614 #define AUTO_GREEN_FORCE_ON   1
1615 #define AUTO_GREEN_FORCE_OFF  2
1616     int      interrupt_mode;
1617 #define INTR_MODE_INTX 0
1618 #define INTR_MODE_MSI  1
1619 #define INTR_MODE_MSIX 2
1620     int      udp_rss;
1621 
1622     /* interrupt allocations */
1623     struct bxe_intr intr[MAX_RSS_CHAINS+1];
1624     int             intr_count;
1625     uint8_t         igu_dsb_id;
1626     uint8_t         igu_base_sb;
1627     uint8_t         igu_sb_cnt;
1628     //uint8_t         min_msix_vec_cnt;
1629     uint32_t        igu_base_addr;
1630     //bus_addr_t      def_status_blk_mapping;
1631     uint8_t         base_fw_ndsb;
1632 #define DEF_SB_IGU_ID 16
1633 #define DEF_SB_ID     HC_SP_SB_ID
1634 
1635     /* parent bus DMA tag  */
1636     bus_dma_tag_t parent_dma_tag;
1637 
1638     /* default status block */
1639     struct bxe_dma              def_sb_dma;
1640     struct host_sp_status_block *def_sb;
1641     uint16_t                    def_idx;
1642     uint16_t                    def_att_idx;
1643     uint32_t                    attn_state;
1644     struct attn_route           attn_group[MAX_DYNAMIC_ATTN_GRPS];
1645 
1646 /* general SP events - stats query, cfc delete, etc */
1647 #define HC_SP_INDEX_ETH_DEF_CONS         3
1648 /* EQ completions */
1649 #define HC_SP_INDEX_EQ_CONS              7
1650 /* FCoE L2 connection completions */
1651 #define HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS  6
1652 #define HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS  4
1653 /* iSCSI L2 */
1654 #define HC_SP_INDEX_ETH_ISCSI_CQ_CONS    5
1655 #define HC_SP_INDEX_ETH_ISCSI_RX_CQ_CONS 1
1656 
1657     /* event queue */
1658     struct bxe_dma        eq_dma;
1659     union event_ring_elem *eq;
1660     uint16_t              eq_prod;
1661     uint16_t              eq_cons;
1662     uint16_t              *eq_cons_sb;
1663 #define NUM_EQ_PAGES     1 /* must be a power of 2 */
1664 #define EQ_DESC_CNT_PAGE (BCM_PAGE_SIZE / sizeof(union event_ring_elem))
1665 #define EQ_DESC_MAX_PAGE (EQ_DESC_CNT_PAGE - 1)
1666 #define NUM_EQ_DESC      (EQ_DESC_CNT_PAGE * NUM_EQ_PAGES)
1667 #define EQ_DESC_MASK     (NUM_EQ_DESC - 1)
1668 #define MAX_EQ_AVAIL     (EQ_DESC_MAX_PAGE * NUM_EQ_PAGES - 2)
1669 /* depends on EQ_DESC_CNT_PAGE being a power of 2 */
1670 #define NEXT_EQ_IDX(x)                                      \
1671     ((((x) & EQ_DESC_MAX_PAGE) == (EQ_DESC_MAX_PAGE - 1)) ? \
1672          ((x) + 2) : ((x) + 1))
1673 /* depends on the above and on NUM_EQ_PAGES being a power of 2 */
1674 #define EQ_DESC(x) ((x) & EQ_DESC_MASK)
1675 
1676     /* slow path */
1677     struct bxe_dma      sp_dma;
1678     struct bxe_slowpath *sp;
1679     unsigned long       sp_state;
1680 
1681     /* slow path queue */
1682     struct bxe_dma spq_dma;
1683     struct eth_spe *spq;
1684 #define SP_DESC_CNT     (BCM_PAGE_SIZE / sizeof(struct eth_spe))
1685 #define MAX_SP_DESC_CNT (SP_DESC_CNT - 1)
1686 #define MAX_SPQ_PENDING 8
1687 
1688     uint16_t       spq_prod_idx;
1689     struct eth_spe *spq_prod_bd;
1690     struct eth_spe *spq_last_bd;
1691     uint16_t       *dsb_sp_prod;
1692     //uint16_t       *spq_hw_con;
1693     //uint16_t       spq_left;
1694 
1695     volatile unsigned long eq_spq_left; /* COMMON_xxx ramrod credit */
1696     volatile unsigned long cq_spq_left; /* ETH_xxx ramrod credit */
1697 
1698     /* fw decompression buffer */
1699     struct bxe_dma gz_buf_dma;
1700     void           *gz_buf;
1701     z_streamp      gz_strm;
1702     uint32_t       gz_outlen;
1703 #define GUNZIP_BUF(sc)    (sc->gz_buf)
1704 #define GUNZIP_OUTLEN(sc) (sc->gz_outlen)
1705 #define GUNZIP_PHYS(sc)   (sc->gz_buf_dma.paddr)
1706 #define FW_BUF_SIZE       0x40000
1707 
1708     const struct raw_op *init_ops;
1709     const uint16_t *init_ops_offsets; /* init block offsets inside init_ops */
1710     const uint32_t *init_data;        /* data blob, 32 bit granularity */
1711     uint32_t       init_mode_flags;
1712 #define INIT_MODE_FLAGS(sc) (sc->init_mode_flags)
1713     /* PRAM blobs - raw data */
1714     const uint8_t *tsem_int_table_data;
1715     const uint8_t *tsem_pram_data;
1716     const uint8_t *usem_int_table_data;
1717     const uint8_t *usem_pram_data;
1718     const uint8_t *xsem_int_table_data;
1719     const uint8_t *xsem_pram_data;
1720     const uint8_t *csem_int_table_data;
1721     const uint8_t *csem_pram_data;
1722 #define INIT_OPS(sc)                 (sc->init_ops)
1723 #define INIT_OPS_OFFSETS(sc)         (sc->init_ops_offsets)
1724 #define INIT_DATA(sc)                (sc->init_data)
1725 #define INIT_TSEM_INT_TABLE_DATA(sc) (sc->tsem_int_table_data)
1726 #define INIT_TSEM_PRAM_DATA(sc)      (sc->tsem_pram_data)
1727 #define INIT_USEM_INT_TABLE_DATA(sc) (sc->usem_int_table_data)
1728 #define INIT_USEM_PRAM_DATA(sc)      (sc->usem_pram_data)
1729 #define INIT_XSEM_INT_TABLE_DATA(sc) (sc->xsem_int_table_data)
1730 #define INIT_XSEM_PRAM_DATA(sc)      (sc->xsem_pram_data)
1731 #define INIT_CSEM_INT_TABLE_DATA(sc) (sc->csem_int_table_data)
1732 #define INIT_CSEM_PRAM_DATA(sc)      (sc->csem_pram_data)
1733 
1734     /* ILT
1735      * For max 196 cids (64*3 + non-eth), 32KB ILT page size and 1KB
1736      * context size we need 8 ILT entries.
1737      */
1738 #define ILT_MAX_L2_LINES 8
1739     struct hw_context context[ILT_MAX_L2_LINES];
1740     struct ecore_ilt *ilt;
1741 #define ILT_MAX_LINES 256
1742 
1743 /* max supported number of RSS queues: IGU SBs minus one for CNIC */
1744 #define BXE_MAX_RSS_COUNT(sc) ((sc)->igu_sb_cnt - CNIC_SUPPORT(sc))
1745 /* max CID count: Max RSS * Max_Tx_Multi_Cos + FCoE + iSCSI */
1746 #if 1
1747 #define BXE_L2_MAX_CID(sc)                                              \
1748     (BXE_MAX_RSS_COUNT(sc) * ECORE_MULTI_TX_COS + 2 * CNIC_SUPPORT(sc))
1749 #else
1750 #define BXE_L2_MAX_CID(sc) /* OOO + FWD */                              \
1751     (BXE_MAX_RSS_COUNT(sc) * ECORE_MULTI_TX_COS + 4 * CNIC_SUPPORT(sc))
1752 #endif
1753 #if 1
1754 #define BXE_L2_CID_COUNT(sc)                                             \
1755     (BXE_NUM_ETH_QUEUES(sc) * ECORE_MULTI_TX_COS + 2 * CNIC_SUPPORT(sc))
1756 #else
1757 #define BXE_L2_CID_COUNT(sc) /* OOO + FWD */                             \
1758     (BXE_NUM_ETH_QUEUES(sc) * ECORE_MULTI_TX_COS + 4 * CNIC_SUPPORT(sc))
1759 #endif
1760 #define L2_ILT_LINES(sc)                                \
1761     (DIV_ROUND_UP(BXE_L2_CID_COUNT(sc), ILT_PAGE_CIDS))
1762 
1763     int qm_cid_count;
1764 
1765     uint8_t dropless_fc;
1766 
1767 #if 0
1768     struct bxe_dma *t2;
1769 #endif
1770 
1771     /* total number of FW statistics requests */
1772     uint8_t fw_stats_num;
1773     /*
1774      * This is a memory buffer that will contain both statistics ramrod
1775      * request and data.
1776      */
1777     struct bxe_dma fw_stats_dma;
1778     /*
1779      * FW statistics request shortcut (points at the beginning of fw_stats
1780      * buffer).
1781      */
1782     int                     fw_stats_req_size;
1783     struct bxe_fw_stats_req *fw_stats_req;
1784     bus_addr_t              fw_stats_req_mapping;
1785     /*
1786      * FW statistics data shortcut (points at the beginning of fw_stats
1787      * buffer + fw_stats_req_size).
1788      */
1789     int                      fw_stats_data_size;
1790     struct bxe_fw_stats_data *fw_stats_data;
1791     bus_addr_t               fw_stats_data_mapping;
1792 
1793     /* tracking a pending STAT_QUERY ramrod */
1794     uint16_t stats_pending;
1795     /* number of completed statistics ramrods */
1796     uint16_t stats_comp;
1797     uint16_t stats_counter;
1798     uint8_t  stats_init;
1799     int      stats_state;
1800 
1801     struct bxe_eth_stats         eth_stats;
1802     struct host_func_stats       func_stats;
1803     struct bxe_eth_stats_old     eth_stats_old;
1804     struct bxe_net_stats_old     net_stats_old;
1805     struct bxe_fw_port_stats_old fw_stats_old;
1806 
1807     struct dmae_command stats_dmae; /* used by dmae command loader */
1808     int                 executer_idx;
1809 
1810     int mtu;
1811 
1812     /* LLDP params */
1813     struct bxe_config_lldp_params lldp_config_params;
1814     /* DCB support on/off */
1815     int dcb_state;
1816 #define BXE_DCB_STATE_OFF 0
1817 #define BXE_DCB_STATE_ON  1
1818     /* DCBX engine mode */
1819     int dcbx_enabled;
1820 #define BXE_DCBX_ENABLED_OFF        0
1821 #define BXE_DCBX_ENABLED_ON_NEG_OFF 1
1822 #define BXE_DCBX_ENABLED_ON_NEG_ON  2
1823 #define BXE_DCBX_ENABLED_INVALID    -1
1824     uint8_t dcbx_mode_uset;
1825     struct bxe_config_dcbx_params dcbx_config_params;
1826     struct bxe_dcbx_port_params   dcbx_port_params;
1827     int dcb_version;
1828 
1829     uint8_t cnic_support;
1830     uint8_t cnic_enabled;
1831     uint8_t cnic_loaded;
1832 #define CNIC_SUPPORT(sc) 0 /* ((sc)->cnic_support) */
1833 #define CNIC_ENABLED(sc) 0 /* ((sc)->cnic_enabled) */
1834 #define CNIC_LOADED(sc)  0 /* ((sc)->cnic_loaded) */
1835 
1836     /* multiple tx classes of service */
1837     uint8_t max_cos;
1838 #define BXE_MAX_PRIORITY 8
1839     /* priority to cos mapping */
1840     uint8_t prio_to_cos[BXE_MAX_PRIORITY];
1841 
1842     int panic;
1843 }; /* struct bxe_softc */
1844 
1845 /* IOCTL sub-commands for edebug and firmware upgrade */
1846 #define BXE_IOC_RD_NVRAM        1
1847 #define BXE_IOC_WR_NVRAM        2
1848 #define BXE_IOC_STATS_SHOW_NUM  3
1849 #define BXE_IOC_STATS_SHOW_STR  4
1850 #define BXE_IOC_STATS_SHOW_CNT  5
1851 
1852 struct bxe_nvram_data {
1853     uint32_t op; /* ioctl sub-command */
1854     uint32_t offset;
1855     uint32_t len;
1856     uint32_t value[1]; /* variable */
1857 };
1858 
1859 union bxe_stats_show_data {
1860     uint32_t op; /* ioctl sub-command */
1861 
1862     struct {
1863         uint32_t num; /* return number of stats */
1864         uint32_t len; /* length of each string item */
1865     } desc;
1866 
1867     /* variable length... */
1868     char str[1]; /* holds names of desc.num stats, each desc.len in length */
1869 
1870     /* variable length... */
1871     uint64_t stats[1]; /* holds all stats */
1872 };
1873 
1874 /* function init flags */
1875 #define FUNC_FLG_RSS     0x0001
1876 #define FUNC_FLG_STATS   0x0002
1877 /* FUNC_FLG_UNMATCHED       0x0004 */
1878 #define FUNC_FLG_TPA     0x0008
1879 #define FUNC_FLG_SPQ     0x0010
1880 #define FUNC_FLG_LEADING 0x0020 /* PF only */
1881 
1882 struct bxe_func_init_params {
1883     bus_addr_t fw_stat_map; /* (dma) valid if FUNC_FLG_STATS */
1884     bus_addr_t spq_map;     /* (dma) valid if FUNC_FLG_SPQ */
1885     uint16_t   func_flgs;
1886     uint16_t   func_id;     /* abs function id */
1887     uint16_t   pf_id;
1888     uint16_t   spq_prod;    /* valid if FUNC_FLG_SPQ */
1889 };
1890 
1891 /* memory resources reside at BARs 0, 2, 4 */
1892 /* Run `pciconf -lb` to see mappings */
1893 #define BAR0 0
1894 #define BAR1 2
1895 #define BAR2 4
1896 
1897 #ifdef BXE_REG_NO_INLINE
1898 
1899 uint8_t bxe_reg_read8(struct bxe_softc *sc, bus_size_t offset);
1900 uint16_t bxe_reg_read16(struct bxe_softc *sc, bus_size_t offset);
1901 uint32_t bxe_reg_read32(struct bxe_softc *sc, bus_size_t offset);
1902 
1903 void bxe_reg_write8(struct bxe_softc *sc, bus_size_t offset, uint8_t val);
1904 void bxe_reg_write16(struct bxe_softc *sc, bus_size_t offset, uint16_t val);
1905 void bxe_reg_write32(struct bxe_softc *sc, bus_size_t offset, uint32_t val);
1906 
1907 #define REG_RD8(sc, offset)  bxe_reg_read8(sc, offset)
1908 #define REG_RD16(sc, offset) bxe_reg_read16(sc, offset)
1909 #define REG_RD32(sc, offset) bxe_reg_read32(sc, offset)
1910 
1911 #define REG_WR8(sc, offset, val)  bxe_reg_write8(sc, offset, val)
1912 #define REG_WR16(sc, offset, val) bxe_reg_write16(sc, offset, val)
1913 #define REG_WR32(sc, offset, val) bxe_reg_write32(sc, offset, val)
1914 
1915 #else /* not BXE_REG_NO_INLINE */
1916 
1917 #define REG_WR8(sc, offset, val)            \
1918     bus_space_write_1(sc->bar[BAR0].tag,    \
1919                       sc->bar[BAR0].handle, \
1920                       offset, val)
1921 
1922 #define REG_WR16(sc, offset, val)           \
1923     bus_space_write_2(sc->bar[BAR0].tag,    \
1924                       sc->bar[BAR0].handle, \
1925                       offset, val)
1926 
1927 #define REG_WR32(sc, offset, val)           \
1928     bus_space_write_4(sc->bar[BAR0].tag,    \
1929                       sc->bar[BAR0].handle, \
1930                       offset, val)
1931 
1932 #define REG_RD8(sc, offset)                \
1933     bus_space_read_1(sc->bar[BAR0].tag,    \
1934                      sc->bar[BAR0].handle, \
1935                      offset)
1936 
1937 #define REG_RD16(sc, offset)               \
1938     bus_space_read_2(sc->bar[BAR0].tag,    \
1939                      sc->bar[BAR0].handle, \
1940                      offset)
1941 
1942 #define REG_RD32(sc, offset)               \
1943     bus_space_read_4(sc->bar[BAR0].tag,    \
1944                      sc->bar[BAR0].handle, \
1945                      offset)
1946 
1947 #endif /* BXE_REG_NO_INLINE */
1948 
1949 #define REG_RD(sc, offset)      REG_RD32(sc, offset)
1950 #define REG_WR(sc, offset, val) REG_WR32(sc, offset, val)
1951 
1952 #define REG_RD_IND(sc, offset)      bxe_reg_rd_ind(sc, offset)
1953 #define REG_WR_IND(sc, offset, val) bxe_reg_wr_ind(sc, offset, val)
1954 
1955 #define BXE_SP(sc, var) (&(sc)->sp->var)
1956 #define BXE_SP_MAPPING(sc, var) \
1957     (sc->sp_dma.paddr + offsetof(struct bxe_slowpath, var))
1958 
1959 #define BXE_FP(sc, nr, var) ((sc)->fp[(nr)].var)
1960 #define BXE_SP_OBJ(sc, fp) ((sc)->sp_objs[(fp)->index])
1961 
1962 #if 0
1963 #define bxe_fp(sc, nr, var)   ((sc)->fp[nr].var)
1964 #define bxe_sp_obj(sc, fp)    ((sc)->sp_objs[(fp)->index])
1965 #define bxe_fp_stats(sc, fp)  (&(sc)->fp_stats[(fp)->index])
1966 #define bxe_fp_qstats(sc, fp) (&(sc)->fp_stats[(fp)->index].eth_q_stats)
1967 #endif
1968 
1969 #define REG_RD_DMAE(sc, offset, valp, len32)               \
1970     do {                                                   \
1971         bxe_read_dmae(sc, offset, len32);                  \
1972         memcpy(valp, BXE_SP(sc, wb_data[0]), (len32) * 4); \
1973     } while (0)
1974 
1975 #define REG_WR_DMAE(sc, offset, valp, len32)                            \
1976     do {                                                                \
1977         memcpy(BXE_SP(sc, wb_data[0]), valp, (len32) * 4);              \
1978         bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data), offset, len32); \
1979     } while (0)
1980 
1981 #define REG_WR_DMAE_LEN(sc, offset, valp, len32) \
1982     REG_WR_DMAE(sc, offset, valp, len32)
1983 
1984 #define REG_RD_DMAE_LEN(sc, offset, valp, len32) \
1985     REG_RD_DMAE(sc, offset, valp, len32)
1986 
1987 #define VIRT_WR_DMAE_LEN(sc, data, addr, len32, le32_swap)         \
1988     do {                                                           \
1989         /* if (le32_swap) {                                     */ \
1990         /*    BLOGW(sc, "VIRT_WR_DMAE_LEN with le32_swap=1\n"); */ \
1991         /* }                                                    */ \
1992         memcpy(GUNZIP_BUF(sc), data, len32 * 4);                   \
1993         ecore_write_big_buf_wb(sc, addr, len32);                   \
1994     } while (0)
1995 
1996 #define BXE_DB_MIN_SHIFT 3   /* 8 bytes */
1997 #define BXE_DB_SHIFT     7   /* 128 bytes */
1998 #if (BXE_DB_SHIFT < BXE_DB_MIN_SHIFT)
1999 #error "Minimum DB doorbell stride is 8"
2000 #endif
2001 #define DPM_TRIGGER_TYPE 0x40
2002 #define DOORBELL(sc, cid, val)                                              \
2003     do {                                                                    \
2004         bus_space_write_4(sc->bar[BAR1].tag, sc->bar[BAR1].handle,          \
2005                           ((sc->doorbell_size * (cid)) + DPM_TRIGGER_TYPE), \
2006                           (uint32_t)val);                                   \
2007     } while(0)
2008 
2009 #define SHMEM_ADDR(sc, field)                                       \
2010     (sc->devinfo.shmem_base + offsetof(struct shmem_region, field))
2011 #define SHMEM_RD(sc, field)      REG_RD(sc, SHMEM_ADDR(sc, field))
2012 #define SHMEM_RD16(sc, field)    REG_RD16(sc, SHMEM_ADDR(sc, field))
2013 #define SHMEM_WR(sc, field, val) REG_WR(sc, SHMEM_ADDR(sc, field), val)
2014 
2015 #define SHMEM2_ADDR(sc, field)                                        \
2016     (sc->devinfo.shmem2_base + offsetof(struct shmem2_region, field))
2017 #define SHMEM2_HAS(sc, field)                                            \
2018     (sc->devinfo.shmem2_base && (REG_RD(sc, SHMEM2_ADDR(sc, size)) >     \
2019                                  offsetof(struct shmem2_region, field)))
2020 #define SHMEM2_RD(sc, field)      REG_RD(sc, SHMEM2_ADDR(sc, field))
2021 #define SHMEM2_WR(sc, field, val) REG_WR(sc, SHMEM2_ADDR(sc, field), val)
2022 
2023 #define MFCFG_ADDR(sc, field)                                  \
2024     (sc->devinfo.mf_cfg_base + offsetof(struct mf_cfg, field))
2025 #define MFCFG_RD(sc, field)      REG_RD(sc, MFCFG_ADDR(sc, field))
2026 #define MFCFG_RD16(sc, field)    REG_RD16(sc, MFCFG_ADDR(sc, field))
2027 #define MFCFG_WR(sc, field, val) REG_WR(sc, MFCFG_ADDR(sc, field), val)
2028 
2029 /* DMAE command defines */
2030 
2031 #define DMAE_TIMEOUT      -1
2032 #define DMAE_PCI_ERROR    -2 /* E2 and onward */
2033 #define DMAE_NOT_RDY      -3
2034 #define DMAE_PCI_ERR_FLAG 0x80000000
2035 
2036 #define DMAE_SRC_PCI      0
2037 #define DMAE_SRC_GRC      1
2038 
2039 #define DMAE_DST_NONE     0
2040 #define DMAE_DST_PCI      1
2041 #define DMAE_DST_GRC      2
2042 
2043 #define DMAE_COMP_PCI     0
2044 #define DMAE_COMP_GRC     1
2045 
2046 #define DMAE_COMP_REGULAR 0
2047 #define DMAE_COM_SET_ERR  1
2048 
2049 #define DMAE_CMD_SRC_PCI (DMAE_SRC_PCI << DMAE_COMMAND_SRC_SHIFT)
2050 #define DMAE_CMD_SRC_GRC (DMAE_SRC_GRC << DMAE_COMMAND_SRC_SHIFT)
2051 #define DMAE_CMD_DST_PCI (DMAE_DST_PCI << DMAE_COMMAND_DST_SHIFT)
2052 #define DMAE_CMD_DST_GRC (DMAE_DST_GRC << DMAE_COMMAND_DST_SHIFT)
2053 
2054 #define DMAE_CMD_C_DST_PCI (DMAE_COMP_PCI << DMAE_COMMAND_C_DST_SHIFT)
2055 #define DMAE_CMD_C_DST_GRC (DMAE_COMP_GRC << DMAE_COMMAND_C_DST_SHIFT)
2056 
2057 #define DMAE_CMD_ENDIANITY_NO_SWAP   (0 << DMAE_COMMAND_ENDIANITY_SHIFT)
2058 #define DMAE_CMD_ENDIANITY_B_SWAP    (1 << DMAE_COMMAND_ENDIANITY_SHIFT)
2059 #define DMAE_CMD_ENDIANITY_DW_SWAP   (2 << DMAE_COMMAND_ENDIANITY_SHIFT)
2060 #define DMAE_CMD_ENDIANITY_B_DW_SWAP (3 << DMAE_COMMAND_ENDIANITY_SHIFT)
2061 
2062 #define DMAE_CMD_PORT_0 0
2063 #define DMAE_CMD_PORT_1 DMAE_COMMAND_PORT
2064 
2065 #define DMAE_SRC_PF 0
2066 #define DMAE_SRC_VF 1
2067 
2068 #define DMAE_DST_PF 0
2069 #define DMAE_DST_VF 1
2070 
2071 #define DMAE_C_SRC 0
2072 #define DMAE_C_DST 1
2073 
2074 #define DMAE_LEN32_RD_MAX     0x80
2075 #define DMAE_LEN32_WR_MAX(sc) (CHIP_IS_E1(sc) ? 0x400 : 0x2000)
2076 
2077 #define DMAE_COMP_VAL 0x60d0d0ae /* E2 and beyond, upper bit indicates error */
2078 
2079 #define MAX_DMAE_C_PER_PORT 8
2080 #define INIT_DMAE_C(sc)     ((SC_PORT(sc) * MAX_DMAE_C_PER_PORT) + SC_VN(sc))
2081 #define PMF_DMAE_C(sc)      ((SC_PORT(sc) * MAX_DMAE_C_PER_PORT) + E1HVN_MAX)
2082 
2083 static const uint32_t dmae_reg_go_c[] = {
2084     DMAE_REG_GO_C0,  DMAE_REG_GO_C1,  DMAE_REG_GO_C2,  DMAE_REG_GO_C3,
2085     DMAE_REG_GO_C4,  DMAE_REG_GO_C5,  DMAE_REG_GO_C6,  DMAE_REG_GO_C7,
2086     DMAE_REG_GO_C8,  DMAE_REG_GO_C9,  DMAE_REG_GO_C10, DMAE_REG_GO_C11,
2087     DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15
2088 };
2089 
2090 #define ATTN_NIG_FOR_FUNC     (1L << 8)
2091 #define ATTN_SW_TIMER_4_FUNC  (1L << 9)
2092 #define GPIO_2_FUNC           (1L << 10)
2093 #define GPIO_3_FUNC           (1L << 11)
2094 #define GPIO_4_FUNC           (1L << 12)
2095 #define ATTN_GENERAL_ATTN_1   (1L << 13)
2096 #define ATTN_GENERAL_ATTN_2   (1L << 14)
2097 #define ATTN_GENERAL_ATTN_3   (1L << 15)
2098 #define ATTN_GENERAL_ATTN_4   (1L << 13)
2099 #define ATTN_GENERAL_ATTN_5   (1L << 14)
2100 #define ATTN_GENERAL_ATTN_6   (1L << 15)
2101 #define ATTN_HARD_WIRED_MASK  0xff00
2102 #define ATTENTION_ID          4
2103 
2104 #define AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR \
2105     AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR
2106 
2107 #define MAX_IGU_ATTN_ACK_TO 100
2108 
2109 #define STORM_ASSERT_ARRAY_SIZE 50
2110 
2111 #define BXE_PMF_LINK_ASSERT(sc) \
2112     GENERAL_ATTEN_OFFSET(LINK_SYNC_ATTENTION_BIT_FUNC_0 + SC_FUNC(sc))
2113 
2114 #define BXE_MC_ASSERT_BITS \
2115     (GENERAL_ATTEN_OFFSET(TSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2116      GENERAL_ATTEN_OFFSET(USTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2117      GENERAL_ATTEN_OFFSET(CSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2118      GENERAL_ATTEN_OFFSET(XSTORM_FATAL_ASSERT_ATTENTION_BIT))
2119 
2120 #define BXE_MCP_ASSERT \
2121     GENERAL_ATTEN_OFFSET(MCP_FATAL_ASSERT_ATTENTION_BIT)
2122 
2123 #define BXE_GRC_TIMEOUT GENERAL_ATTEN_OFFSET(LATCHED_ATTN_TIMEOUT_GRC)
2124 #define BXE_GRC_RSV     (GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCR) | \
2125                          GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCT) | \
2126                          GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCN) | \
2127                          GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCU) | \
2128                          GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCP) | \
2129                          GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RSVD_GRC))
2130 
2131 #define MULTI_MASK 0x7f
2132 
2133 #define PFS_PER_PORT(sc)                               \
2134     ((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4)
2135 #define SC_MAX_VN_NUM(sc) PFS_PER_PORT(sc)
2136 
2137 #define FIRST_ABS_FUNC_IN_PORT(sc)                    \
2138     ((CHIP_PORT_MODE(sc) == CHIP_PORT_MODE_NONE) ?    \
2139      PORT_ID(sc) : (PATH_ID(sc) + (2 * PORT_ID(sc))))
2140 
2141 #define FOREACH_ABS_FUNC_IN_PORT(sc, i)            \
2142     for ((i) = FIRST_ABS_FUNC_IN_PORT(sc);         \
2143          (i) < MAX_FUNC_NUM;                       \
2144          (i) += (MAX_FUNC_NUM / PFS_PER_PORT(sc)))
2145 
2146 #define BXE_SWCID_SHIFT 17
2147 #define BXE_SWCID_MASK  ((0x1 << BXE_SWCID_SHIFT) - 1)
2148 
2149 #define SW_CID(x)  (le32toh(x) & BXE_SWCID_MASK)
2150 #define CQE_CMD(x) (le32toh(x) >> COMMON_RAMROD_ETH_RX_CQE_CMD_ID_SHIFT)
2151 
2152 #define CQE_TYPE(cqe_fp_flags)   ((cqe_fp_flags) & ETH_FAST_PATH_RX_CQE_TYPE)
2153 #define CQE_TYPE_START(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_START_AGG)
2154 #define CQE_TYPE_STOP(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_STOP_AGG)
2155 #define CQE_TYPE_SLOW(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_RAMROD)
2156 #define CQE_TYPE_FAST(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_FASTPATH)
2157 
2158 /* must be used on a CID before placing it on a HW ring */
2159 #define HW_CID(sc, x) \
2160     ((SC_PORT(sc) << 23) | (SC_VN(sc) << BXE_SWCID_SHIFT) | (x))
2161 
2162 #define SPEED_10    10
2163 #define SPEED_100   100
2164 #define SPEED_1000  1000
2165 #define SPEED_2500  2500
2166 #define SPEED_10000 10000
2167 
2168 #define PCI_PM_D0    1
2169 #define PCI_PM_D3hot 2
2170 
2171 int  bxe_test_bit(int nr, volatile unsigned long * addr);
2172 void bxe_set_bit(unsigned int nr, volatile unsigned long * addr);
2173 void bxe_clear_bit(int nr, volatile unsigned long * addr);
2174 int  bxe_test_and_set_bit(int nr, volatile unsigned long * addr);
2175 int  bxe_test_and_clear_bit(int nr, volatile unsigned long * addr);
2176 int  bxe_cmpxchg(volatile int *addr, int old, int new);
2177 
2178 void bxe_reg_wr_ind(struct bxe_softc *sc, uint32_t addr,
2179                     uint32_t val);
2180 uint32_t bxe_reg_rd_ind(struct bxe_softc *sc, uint32_t addr);
2181 
2182 
2183 int bxe_dma_alloc(struct bxe_softc *sc, bus_size_t size,
2184                   struct bxe_dma *dma, const char *msg);
2185 void bxe_dma_free(struct bxe_softc *sc, struct bxe_dma *dma);
2186 
2187 uint32_t bxe_dmae_opcode_add_comp(uint32_t opcode, uint8_t comp_type);
2188 uint32_t bxe_dmae_opcode_clr_src_reset(uint32_t opcode);
2189 uint32_t bxe_dmae_opcode(struct bxe_softc *sc, uint8_t src_type,
2190                          uint8_t dst_type, uint8_t with_comp,
2191                          uint8_t comp_type);
2192 void bxe_post_dmae(struct bxe_softc *sc, struct dmae_command *dmae, int idx);
2193 void bxe_read_dmae(struct bxe_softc *sc, uint32_t src_addr, uint32_t len32);
2194 void bxe_write_dmae(struct bxe_softc *sc, bus_addr_t dma_addr,
2195                     uint32_t dst_addr, uint32_t len32);
2196 void bxe_write_dmae_phys_len(struct bxe_softc *sc, bus_addr_t phys_addr,
2197                              uint32_t addr, uint32_t len);
2198 
2199 void bxe_set_ctx_validation(struct bxe_softc *sc, struct eth_context *cxt,
2200                             uint32_t cid);
2201 void bxe_update_coalesce_sb_index(struct bxe_softc *sc, uint8_t fw_sb_id,
2202                                   uint8_t sb_index, uint8_t disable,
2203                                   uint16_t usec);
2204 
2205 int bxe_sp_post(struct bxe_softc *sc, int command, int cid,
2206                 uint32_t data_hi, uint32_t data_lo, int cmd_type);
2207 
2208 void bxe_igu_ack_sb(struct bxe_softc *sc, uint8_t igu_sb_id,
2209                     uint8_t segment, uint16_t index, uint8_t op,
2210                     uint8_t update);
2211 
2212 void ecore_init_e1_firmware(struct bxe_softc *sc);
2213 void ecore_init_e1h_firmware(struct bxe_softc *sc);
2214 void ecore_init_e2_firmware(struct bxe_softc *sc);
2215 
2216 void ecore_storm_memset_struct(struct bxe_softc *sc, uint32_t addr,
2217                                size_t size, uint32_t *data);
2218 
2219 /*********************/
2220 /* LOGGING AND DEBUG */
2221 /*********************/
2222 
2223 /* debug logging codepaths */
2224 #define DBG_LOAD   0x00000001 /* load and unload    */
2225 #define DBG_INTR   0x00000002 /* interrupt handling */
2226 #define DBG_SP     0x00000004 /* slowpath handling  */
2227 #define DBG_STATS  0x00000008 /* stats updates      */
2228 #define DBG_TX     0x00000010 /* packet transmit    */
2229 #define DBG_RX     0x00000020 /* packet receive     */
2230 #define DBG_PHY    0x00000040 /* phy/link handling  */
2231 #define DBG_IOCTL  0x00000080 /* ioctl handling     */
2232 #define DBG_MBUF   0x00000100 /* dumping mbuf info  */
2233 #define DBG_REGS   0x00000200 /* register access    */
2234 #define DBG_LRO    0x00000400 /* lro processing     */
2235 #define DBG_ASSERT 0x80000000 /* debug assert       */
2236 #define DBG_ALL    0xFFFFFFFF /* flying monkeys     */
2237 
2238 #define DBASSERT(sc, exp, msg)                         \
2239     do {                                               \
2240         if (__predict_false(sc->debug & DBG_ASSERT)) { \
2241             if (__predict_false(!(exp))) {             \
2242                 panic msg;                             \
2243             }                                          \
2244         }                                              \
2245     } while (0)
2246 
2247 /* log a debug message */
2248 #define BLOGD(sc, codepath, format, args...)           \
2249     do {                                               \
2250         if (__predict_false(sc->debug & (codepath))) { \
2251             device_printf((sc)->dev,                   \
2252                           "%s(%s:%d) " format,         \
2253                           __FUNCTION__,                \
2254                           __FILE__,                    \
2255                           __LINE__,                    \
2256                           ## args);                    \
2257         }                                              \
2258     } while(0)
2259 
2260 /* log a info message */
2261 #define BLOGI(sc, format, args...)             \
2262     do {                                       \
2263         if (__predict_false(sc->debug)) {      \
2264             device_printf((sc)->dev,           \
2265                           "%s(%s:%d) " format, \
2266                           __FUNCTION__,        \
2267                           __FILE__,            \
2268                           __LINE__,            \
2269                           ## args);            \
2270         } else {                               \
2271             device_printf((sc)->dev,           \
2272                           format,              \
2273                           ## args);            \
2274         }                                      \
2275     } while(0)
2276 
2277 /* log a warning message */
2278 #define BLOGW(sc, format, args...)                      \
2279     do {                                                \
2280         if (__predict_false(sc->debug)) {               \
2281             device_printf((sc)->dev,                    \
2282                           "%s(%s:%d) WARNING: " format, \
2283                           __FUNCTION__,                 \
2284                           __FILE__,                     \
2285                           __LINE__,                     \
2286                           ## args);                     \
2287         } else {                                        \
2288             device_printf((sc)->dev,                    \
2289                           "WARNING: " format,           \
2290                           ## args);                     \
2291         }                                               \
2292     } while(0)
2293 
2294 /* log a error message */
2295 #define BLOGE(sc, format, args...)                    \
2296     do {                                              \
2297         if (__predict_false(sc->debug)) {             \
2298             device_printf((sc)->dev,                  \
2299                           "%s(%s:%d) ERROR: " format, \
2300                           __FUNCTION__,               \
2301                           __FILE__,                   \
2302                           __LINE__,                   \
2303                           ## args);                   \
2304         } else {                                      \
2305             device_printf((sc)->dev,                  \
2306                           "ERROR: " format,           \
2307                           ## args);                   \
2308         }                                             \
2309     } while(0)
2310 
2311 #define bxe_panic(sc, msg) \
2312     do {                   \
2313         panic msg;         \
2314     } while (0)
2315 
2316 #define CATC_TRIGGER(sc, data) REG_WR((sc), 0x2000, (data));
2317 #define CATC_TRIGGER_START(sc) CATC_TRIGGER((sc), 0xcafecafe)
2318 
2319 void bxe_dump_mem(struct bxe_softc *sc, char *tag,
2320                   uint8_t *mem, uint32_t len);
2321 void bxe_dump_mbuf_data(struct bxe_softc *sc, char *pTag,
2322                         struct mbuf *m, uint8_t contents);
2323 
2324 /***********/
2325 /* INLINES */
2326 /***********/
2327 
2328 static inline uint32_t
2329 reg_poll(struct bxe_softc *sc,
2330          uint32_t         reg,
2331          uint32_t         expected,
2332          int              ms,
2333          int              wait)
2334 {
2335     uint32_t val;
2336 
2337     do {
2338         val = REG_RD(sc, reg);
2339         if (val == expected) {
2340             break;
2341         }
2342         ms -= wait;
2343         DELAY(wait * 1000);
2344     } while (ms > 0);
2345 
2346     return (val);
2347 }
2348 
2349 static inline void
2350 bxe_update_fp_sb_idx(struct bxe_fastpath *fp)
2351 {
2352     mb(); /* status block is written to by the chip */
2353     fp->fp_hc_idx = fp->sb_running_index[SM_RX_ID];
2354 }
2355 
2356 static inline void
2357 bxe_igu_ack_sb_gen(struct bxe_softc *sc,
2358                    uint8_t          igu_sb_id,
2359                    uint8_t          segment,
2360                    uint16_t         index,
2361                    uint8_t          op,
2362                    uint8_t          update,
2363                    uint32_t         igu_addr)
2364 {
2365     struct igu_regular cmd_data = {0};
2366 
2367     cmd_data.sb_id_and_flags =
2368         ((index << IGU_REGULAR_SB_INDEX_SHIFT) |
2369          (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
2370          (update << IGU_REGULAR_BUPDATE_SHIFT) |
2371          (op << IGU_REGULAR_ENABLE_INT_SHIFT));
2372 
2373     BLOGD(sc, DBG_INTR, "write 0x%08x to IGU addr 0x%x\n",
2374             cmd_data.sb_id_and_flags, igu_addr);
2375     REG_WR(sc, igu_addr, cmd_data.sb_id_and_flags);
2376 
2377     /* Make sure that ACK is written */
2378     bus_space_barrier(sc->bar[0].tag, sc->bar[0].handle, 0, 0,
2379                       BUS_SPACE_BARRIER_WRITE);
2380     mb();
2381 }
2382 
2383 static inline void
2384 bxe_hc_ack_sb(struct bxe_softc *sc,
2385               uint8_t          sb_id,
2386               uint8_t          storm,
2387               uint16_t         index,
2388               uint8_t          op,
2389               uint8_t          update)
2390 {
2391     uint32_t hc_addr = (HC_REG_COMMAND_REG + SC_PORT(sc)*32 +
2392                         COMMAND_REG_INT_ACK);
2393     struct igu_ack_register igu_ack;
2394 
2395     igu_ack.status_block_index = index;
2396     igu_ack.sb_id_and_flags =
2397         ((sb_id << IGU_ACK_REGISTER_STATUS_BLOCK_ID_SHIFT) |
2398          (storm << IGU_ACK_REGISTER_STORM_ID_SHIFT) |
2399          (update << IGU_ACK_REGISTER_UPDATE_INDEX_SHIFT) |
2400          (op << IGU_ACK_REGISTER_INTERRUPT_MODE_SHIFT));
2401 
2402     REG_WR(sc, hc_addr, (*(uint32_t *)&igu_ack));
2403 
2404     /* Make sure that ACK is written */
2405     bus_space_barrier(sc->bar[0].tag, sc->bar[0].handle, 0, 0,
2406                       BUS_SPACE_BARRIER_WRITE);
2407     mb();
2408 }
2409 
2410 static inline void
2411 bxe_ack_sb(struct bxe_softc *sc,
2412            uint8_t          igu_sb_id,
2413            uint8_t          storm,
2414            uint16_t         index,
2415            uint8_t          op,
2416            uint8_t          update)
2417 {
2418     if (sc->devinfo.int_block == INT_BLOCK_HC)
2419         bxe_hc_ack_sb(sc, igu_sb_id, storm, index, op, update);
2420     else {
2421         uint8_t segment;
2422         if (CHIP_INT_MODE_IS_BC(sc)) {
2423             segment = storm;
2424         } else if (igu_sb_id != sc->igu_dsb_id) {
2425             segment = IGU_SEG_ACCESS_DEF;
2426         } else if (storm == ATTENTION_ID) {
2427             segment = IGU_SEG_ACCESS_ATTN;
2428         } else {
2429             segment = IGU_SEG_ACCESS_DEF;
2430         }
2431         bxe_igu_ack_sb(sc, igu_sb_id, segment, index, op, update);
2432     }
2433 }
2434 
2435 static inline uint16_t
2436 bxe_hc_ack_int(struct bxe_softc *sc)
2437 {
2438     uint32_t hc_addr = (HC_REG_COMMAND_REG + SC_PORT(sc)*32 +
2439                         COMMAND_REG_SIMD_MASK);
2440     uint32_t result = REG_RD(sc, hc_addr);
2441 
2442     mb();
2443     return (result);
2444 }
2445 
2446 static inline uint16_t
2447 bxe_igu_ack_int(struct bxe_softc *sc)
2448 {
2449     uint32_t igu_addr = (BAR_IGU_INTMEM + IGU_REG_SISR_MDPC_WMASK_LSB_UPPER*8);
2450     uint32_t result = REG_RD(sc, igu_addr);
2451 
2452     BLOGD(sc, DBG_INTR, "read 0x%08x from IGU addr 0x%x\n",
2453           result, igu_addr);
2454 
2455     mb();
2456     return (result);
2457 }
2458 
2459 static inline uint16_t
2460 bxe_ack_int(struct bxe_softc *sc)
2461 {
2462     mb();
2463     if (sc->devinfo.int_block == INT_BLOCK_HC) {
2464         return (bxe_hc_ack_int(sc));
2465     } else {
2466         return (bxe_igu_ack_int(sc));
2467     }
2468 }
2469 
2470 static inline int
2471 func_by_vn(struct bxe_softc *sc,
2472            int              vn)
2473 {
2474     return (2 * vn + SC_PORT(sc));
2475 }
2476 
2477 /*
2478  * Statistics ID are global per chip/path, while Client IDs for E1x
2479  * are per port.
2480  */
2481 static inline uint8_t
2482 bxe_stats_id(struct bxe_fastpath *fp)
2483 {
2484     struct bxe_softc *sc = fp->sc;
2485 
2486     if (!CHIP_IS_E1x(sc)) {
2487 #if 0
2488         /* there are special statistics counters for FCoE 136..140 */
2489         if (IS_FCOE_FP(fp)) {
2490             return (sc->cnic_base_cl_id + (sc->pf_num >> 1));
2491         }
2492 #endif
2493         return (fp->cl_id);
2494     }
2495 
2496     return (fp->cl_id + SC_PORT(sc) * FP_SB_MAX_E1x);
2497 }
2498 
2499 #endif /* __BXE_H__ */
2500 
2501