xref: /freebsd/sys/dev/bxe/bxe.h (revision 40a8ac8f62b535d30349faf28cf47106b7041b83)
1 /*-
2  * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
15  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
18  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
19  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
20  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
21  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
22  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
23  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
24  * THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #ifndef __BXE_H__
28 #define __BXE_H__
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/kernel.h>
35 #include <sys/systm.h>
36 #include <sys/lock.h>
37 #include <sys/mutex.h>
38 #include <sys/sx.h>
39 #include <sys/module.h>
40 #include <sys/endian.h>
41 #include <sys/types.h>
42 #include <sys/malloc.h>
43 #include <sys/kobj.h>
44 #include <sys/bus.h>
45 #include <sys/rman.h>
46 #include <sys/socket.h>
47 #include <sys/sockio.h>
48 #include <sys/sysctl.h>
49 #include <sys/smp.h>
50 #include <sys/bitstring.h>
51 #include <sys/limits.h>
52 #include <sys/queue.h>
53 #include <sys/taskqueue.h>
54 
55 #include <net/if.h>
56 #include <net/if_types.h>
57 #include <net/if_arp.h>
58 #include <net/ethernet.h>
59 #include <net/if_dl.h>
60 #include <net/if_var.h>
61 #include <net/if_media.h>
62 #include <net/if_vlan_var.h>
63 #include <net/zlib.h>
64 #include <net/bpf.h>
65 
66 #include <netinet/in.h>
67 #include <netinet/ip.h>
68 #include <netinet/ip6.h>
69 #include <netinet/tcp.h>
70 #include <netinet/udp.h>
71 
72 #include <dev/pci/pcireg.h>
73 #include <dev/pci/pcivar.h>
74 
75 #include <machine/atomic.h>
76 #include <machine/resource.h>
77 #include <machine/endian.h>
78 #include <machine/bus.h>
79 #include <machine/in_cksum.h>
80 
81 #include "device_if.h"
82 #include "bus_if.h"
83 #include "pci_if.h"
84 
85 #if _BYTE_ORDER == _LITTLE_ENDIAN
86 #ifndef LITTLE_ENDIAN
87 #define LITTLE_ENDIAN
88 #endif
89 #ifndef __LITTLE_ENDIAN
90 #define __LITTLE_ENDIAN
91 #endif
92 #undef BIG_ENDIAN
93 #undef __BIG_ENDIAN
94 #else /* _BIG_ENDIAN */
95 #ifndef BIG_ENDIAN
96 #define BIG_ENDIAN
97 #endif
98 #ifndef __BIG_ENDIAN
99 #define __BIG_ENDIAN
100 #endif
101 #undef LITTLE_ENDIAN
102 #undef __LITTLE_ENDIAN
103 #endif
104 
105 #include "ecore_mfw_req.h"
106 #include "ecore_fw_defs.h"
107 #include "ecore_hsi.h"
108 #include "ecore_reg.h"
109 #include "bxe_dcb.h"
110 #include "bxe_stats.h"
111 
112 #include "bxe_elink.h"
113 
114 #if __FreeBSD_version < 800054
115 #if defined(__i386__) || defined(__amd64__)
116 #define mb()  __asm volatile("mfence;" : : : "memory")
117 #define wmb() __asm volatile("sfence;" : : : "memory")
118 #define rmb() __asm volatile("lfence;" : : : "memory")
119 static __inline void prefetch(void *x)
120 {
121     __asm volatile("prefetcht0 %0" :: "m" (*(unsigned long *)x));
122 }
123 #else
124 #define mb()
125 #define rmb()
126 #define wmb()
127 #define prefetch(x)
128 #endif
129 #endif
130 
131 #if __FreeBSD_version >= 1000000
132 #define PCIR_EXPRESS_DEVICE_STA        PCIER_DEVICE_STA
133 #define PCIM_EXP_STA_TRANSACTION_PND   PCIEM_STA_TRANSACTION_PND
134 #define PCIR_EXPRESS_LINK_STA          PCIER_LINK_STA
135 #define PCIM_LINK_STA_WIDTH            PCIEM_LINK_STA_WIDTH
136 #define PCIM_LINK_STA_SPEED            PCIEM_LINK_STA_SPEED
137 #define PCIR_EXPRESS_DEVICE_CTL        PCIER_DEVICE_CTL
138 #define PCIM_EXP_CTL_MAX_PAYLOAD       PCIEM_CTL_MAX_PAYLOAD
139 #define PCIM_EXP_CTL_MAX_READ_REQUEST  PCIEM_CTL_MAX_READ_REQUEST
140 #endif
141 
142 #ifndef ARRAY_SIZE
143 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
144 #endif
145 #ifndef ARRSIZE
146 #define ARRSIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
147 #endif
148 #ifndef DIV_ROUND_UP
149 #define DIV_ROUND_UP(n, d) (((n) + (d) - 1) / (d))
150 #endif
151 #ifndef roundup
152 #define roundup(x, y) ((((x) + ((y) - 1)) / (y)) * (y))
153 #endif
154 #ifndef ilog2
155 static inline
156 int bxe_ilog2(int x)
157 {
158     int log = 0;
159     while (x >>= 1) log++;
160     return (log);
161 }
162 #define ilog2(x) bxe_ilog2(x)
163 #endif
164 
165 #include "ecore_sp.h"
166 
167 #define BRCM_VENDORID 0x14e4
168 #define PCI_ANY_ID    (uint16_t)(~0U)
169 
170 struct bxe_device_type
171 {
172     uint16_t bxe_vid;
173     uint16_t bxe_did;
174     uint16_t bxe_svid;
175     uint16_t bxe_sdid;
176     char     *bxe_name;
177 };
178 
179 #define BCM_PAGE_SHIFT       12
180 #define BCM_PAGE_SIZE        (1 << BCM_PAGE_SHIFT)
181 #define BCM_PAGE_MASK        (~(BCM_PAGE_SIZE - 1))
182 #define BCM_PAGE_ALIGN(addr) ((addr + BCM_PAGE_SIZE - 1) & BCM_PAGE_MASK)
183 
184 #if BCM_PAGE_SIZE != 4096
185 #error Page sizes other than 4KB are unsupported!
186 #endif
187 
188 #if (BUS_SPACE_MAXADDR > 0xFFFFFFFF)
189 #define U64_LO(addr) ((uint32_t)(((uint64_t)(addr)) & 0xFFFFFFFF))
190 #define U64_HI(addr) ((uint32_t)(((uint64_t)(addr)) >> 32))
191 #else
192 #define U64_LO(addr) ((uint32_t)(addr))
193 #define U64_HI(addr) (0)
194 #endif
195 #define HILO_U64(hi, lo) ((((uint64_t)(hi)) << 32) + (lo))
196 
197 #define SET_FLAG(value, mask, flag)            \
198     do {                                       \
199         (value) &= ~(mask);                    \
200         (value) |= ((flag) << (mask##_SHIFT)); \
201     } while (0)
202 
203 #define GET_FLAG(value, mask)              \
204     (((value) & (mask)) >> (mask##_SHIFT))
205 
206 #define GET_FIELD(value, fname)                     \
207     (((value) & (fname##_MASK)) >> (fname##_SHIFT))
208 
209 #define BXE_MAX_SEGMENTS     12 /* 13-1 for parsing buffer */
210 #define BXE_TSO_MAX_SEGMENTS 32
211 #define BXE_TSO_MAX_SIZE     (65535 + sizeof(struct ether_vlan_header))
212 #define BXE_TSO_MAX_SEG_SIZE 4096
213 
214 /* dropless fc FW/HW related params */
215 #define BRB_SIZE(sc)         (CHIP_IS_E3(sc) ? 1024 : 512)
216 #define MAX_AGG_QS(sc)       (CHIP_IS_E1(sc) ?                       \
217                                   ETH_MAX_AGGREGATION_QUEUES_E1 :    \
218                                   ETH_MAX_AGGREGATION_QUEUES_E1H_E2)
219 #define FW_DROP_LEVEL(sc)    (3 + MAX_SPQ_PENDING + MAX_AGG_QS(sc))
220 #define FW_PREFETCH_CNT      16
221 #define DROPLESS_FC_HEADROOM 100
222 
223 /******************/
224 /* RX SGE defines */
225 /******************/
226 
227 #define RX_SGE_NUM_PAGES       2 /* must be a power of 2 */
228 #define RX_SGE_TOTAL_PER_PAGE  (BCM_PAGE_SIZE / sizeof(struct eth_rx_sge))
229 #define RX_SGE_NEXT_PAGE_DESC_CNT 2
230 #define RX_SGE_USABLE_PER_PAGE (RX_SGE_TOTAL_PER_PAGE - RX_SGE_NEXT_PAGE_DESC_CNT)
231 #define RX_SGE_PER_PAGE_MASK   (RX_SGE_TOTAL_PER_PAGE - 1)
232 #define RX_SGE_TOTAL           (RX_SGE_TOTAL_PER_PAGE * RX_SGE_NUM_PAGES)
233 #define RX_SGE_USABLE          (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)
234 #define RX_SGE_MAX             (RX_SGE_TOTAL - 1)
235 #define RX_SGE(x)              ((x) & RX_SGE_MAX)
236 
237 #define RX_SGE_NEXT(x)                                              \
238     ((((x) & RX_SGE_PER_PAGE_MASK) == (RX_SGE_USABLE_PER_PAGE - 1)) \
239      ? (x) + 1 + RX_SGE_NEXT_PAGE_DESC_CNT : (x) + 1)
240 
241 #define RX_SGE_MASK_ELEM_SZ    64
242 #define RX_SGE_MASK_ELEM_SHIFT 6
243 #define RX_SGE_MASK_ELEM_MASK  ((uint64_t)RX_SGE_MASK_ELEM_SZ - 1)
244 
245 /*
246  * Creates a bitmask of all ones in less significant bits.
247  * idx - index of the most significant bit in the created mask.
248  */
249 #define RX_SGE_ONES_MASK(idx)                                      \
250     (((uint64_t)0x1 << (((idx) & RX_SGE_MASK_ELEM_MASK) + 1)) - 1)
251 #define RX_SGE_MASK_ELEM_ONE_MASK ((uint64_t)(~0))
252 
253 /* Number of uint64_t elements in SGE mask array. */
254 #define RX_SGE_MASK_LEN                                                \
255     ((RX_SGE_NUM_PAGES * RX_SGE_TOTAL_PER_PAGE) / RX_SGE_MASK_ELEM_SZ)
256 #define RX_SGE_MASK_LEN_MASK      (RX_SGE_MASK_LEN - 1)
257 #define RX_SGE_NEXT_MASK_ELEM(el) (((el) + 1) & RX_SGE_MASK_LEN_MASK)
258 
259 /*
260  * dropless fc calculations for SGEs
261  * Number of required SGEs is the sum of two:
262  * 1. Number of possible opened aggregations (next packet for
263  *    these aggregations will probably consume SGE immidiatelly)
264  * 2. Rest of BRB blocks divided by 2 (block will consume new SGE only
265  *    after placement on BD for new TPA aggregation)
266  * Takes into account RX_SGE_NEXT_PAGE_DESC_CNT "next" elements on each page
267  */
268 #define NUM_SGE_REQ(sc)                                    \
269     (MAX_AGG_QS(sc) + (BRB_SIZE(sc) - MAX_AGG_QS(sc)) / 2)
270 #define NUM_SGE_PG_REQ(sc)                                                    \
271     ((NUM_SGE_REQ(sc) + RX_SGE_USABLE_PER_PAGE - 1) / RX_SGE_USABLE_PER_PAGE)
272 #define SGE_TH_LO(sc)                                                  \
273     (NUM_SGE_REQ(sc) + NUM_SGE_PG_REQ(sc) * RX_SGE_NEXT_PAGE_DESC_CNT)
274 #define SGE_TH_HI(sc)                      \
275     (SGE_TH_LO(sc) + DROPLESS_FC_HEADROOM)
276 
277 #define PAGES_PER_SGE_SHIFT  0
278 #define PAGES_PER_SGE        (1 << PAGES_PER_SGE_SHIFT)
279 #define SGE_PAGE_SIZE        BCM_PAGE_SIZE
280 #define SGE_PAGE_SHIFT       BCM_PAGE_SHIFT
281 #define SGE_PAGE_ALIGN(addr) BCM_PAGE_ALIGN(addr)
282 #define SGE_PAGES            (SGE_PAGE_SIZE * PAGES_PER_SGE)
283 #define TPA_AGG_SIZE         min((8 * SGE_PAGES), 0xffff)
284 
285 /*****************/
286 /* TX BD defines */
287 /*****************/
288 
289 #define TX_BD_NUM_PAGES       16 /* must be a power of 2 */
290 #define TX_BD_TOTAL_PER_PAGE  (BCM_PAGE_SIZE / sizeof(union eth_tx_bd_types))
291 #define TX_BD_USABLE_PER_PAGE (TX_BD_TOTAL_PER_PAGE - 1)
292 #define TX_BD_TOTAL           (TX_BD_TOTAL_PER_PAGE * TX_BD_NUM_PAGES)
293 #define TX_BD_USABLE          (TX_BD_USABLE_PER_PAGE * TX_BD_NUM_PAGES)
294 #define TX_BD_MAX             (TX_BD_TOTAL - 1)
295 
296 #define TX_BD_NEXT(x)                                                 \
297     ((((x) & TX_BD_USABLE_PER_PAGE) == (TX_BD_USABLE_PER_PAGE - 1)) ? \
298      ((x) + 2) : ((x) + 1))
299 #define TX_BD(x)      ((x) & TX_BD_MAX)
300 #define TX_BD_PAGE(x) (((x) & ~TX_BD_USABLE_PER_PAGE) >> 8)
301 #define TX_BD_IDX(x)  ((x) & TX_BD_USABLE_PER_PAGE)
302 
303 /*
304  * Trigger pending transmits when the number of available BDs is greater
305  * than 1/8 of the total number of usable BDs.
306  */
307 #define BXE_TX_CLEANUP_THRESHOLD (TX_BD_USABLE / 8)
308 #define BXE_TX_TIMEOUT 5
309 
310 /*****************/
311 /* RX BD defines */
312 /*****************/
313 
314 #define RX_BD_NUM_PAGES       8 /* power of 2 */
315 #define RX_BD_TOTAL_PER_PAGE  (BCM_PAGE_SIZE / sizeof(struct eth_rx_bd))
316 #define RX_BD_NEXT_PAGE_DESC_CNT 2
317 #define RX_BD_USABLE_PER_PAGE (RX_BD_TOTAL_PER_PAGE - RX_BD_NEXT_PAGE_DESC_CNT)
318 #define RX_BD_PER_PAGE_MASK   (RX_BD_TOTAL_PER_PAGE - 1)
319 #define RX_BD_TOTAL           (RX_BD_TOTAL_PER_PAGE * RX_BD_NUM_PAGES)
320 #define RX_BD_USABLE          (RX_BD_USABLE_PER_PAGE * RX_BD_NUM_PAGES)
321 #define RX_BD_MAX             (RX_BD_TOTAL - 1)
322 
323 #if 0
324 #define NUM_RX_RINGS RX_BD_NUM_PAGES
325 #define NUM_RX_BD    RX_BD_TOTAL
326 #define MAX_RX_BD    RX_BD_MAX
327 #define MAX_RX_AVAIL RX_BD_USABLE
328 #endif
329 
330 #define RX_BD_NEXT(x)                                               \
331     ((((x) & RX_BD_PER_PAGE_MASK) == (RX_BD_USABLE_PER_PAGE - 1)) ? \
332      ((x) + 3) : ((x) + 1))
333 #define RX_BD(x)      ((x) & RX_BD_MAX)
334 #define RX_BD_PAGE(x) (((x) & ~RX_BD_PER_PAGE_MASK) >> 9)
335 #define RX_BD_IDX(x)  ((x) & RX_BD_PER_PAGE_MASK)
336 
337 /*
338  * dropless fc calculations for BDs
339  * Number of BDs should be as number of buffers in BRB:
340  * Low threshold takes into account RX_BD_NEXT_PAGE_DESC_CNT
341  * "next" elements on each page
342  */
343 #define NUM_BD_REQ(sc) \
344     BRB_SIZE(sc)
345 #define NUM_BD_PG_REQ(sc)                                                  \
346     ((NUM_BD_REQ(sc) + RX_BD_USABLE_PER_PAGE - 1) / RX_BD_USABLE_PER_PAGE)
347 #define BD_TH_LO(sc)                                \
348     (NUM_BD_REQ(sc) +                               \
349      NUM_BD_PG_REQ(sc) * RX_BD_NEXT_PAGE_DESC_CNT + \
350      FW_DROP_LEVEL(sc))
351 #define BD_TH_HI(sc)                      \
352     (BD_TH_LO(sc) + DROPLESS_FC_HEADROOM)
353 #define MIN_RX_AVAIL(sc)                           \
354     ((sc)->dropless_fc ? BD_TH_HI(sc) + 128 : 128)
355 #define MIN_RX_SIZE_TPA_HW(sc)                         \
356     (CHIP_IS_E1(sc) ? ETH_MIN_RX_CQES_WITH_TPA_E1 :    \
357                       ETH_MIN_RX_CQES_WITH_TPA_E1H_E2)
358 #define MIN_RX_SIZE_NONTPA_HW ETH_MIN_RX_CQES_WITHOUT_TPA
359 #define MIN_RX_SIZE_TPA(sc)                         \
360     (max(MIN_RX_SIZE_TPA_HW(sc), MIN_RX_AVAIL(sc)))
361 #define MIN_RX_SIZE_NONTPA(sc)                     \
362     (max(MIN_RX_SIZE_NONTPA_HW, MIN_RX_AVAIL(sc)))
363 
364 /***************/
365 /* RCQ defines */
366 /***************/
367 
368 /*
369  * As long as CQE is X times bigger than BD entry we have to allocate X times
370  * more pages for CQ ring in order to keep it balanced with BD ring
371  */
372 #define CQE_BD_REL          (sizeof(union eth_rx_cqe) / \
373                              sizeof(struct eth_rx_bd))
374 #define RCQ_NUM_PAGES       (RX_BD_NUM_PAGES * CQE_BD_REL) /* power of 2 */
375 #define RCQ_TOTAL_PER_PAGE  (BCM_PAGE_SIZE / sizeof(union eth_rx_cqe))
376 #define RCQ_NEXT_PAGE_DESC_CNT 1
377 #define RCQ_USABLE_PER_PAGE (RCQ_TOTAL_PER_PAGE - RCQ_NEXT_PAGE_DESC_CNT)
378 #define RCQ_TOTAL           (RCQ_TOTAL_PER_PAGE * RCQ_NUM_PAGES)
379 #define RCQ_USABLE          (RCQ_USABLE_PER_PAGE * RCQ_NUM_PAGES)
380 #define RCQ_MAX             (RCQ_TOTAL - 1)
381 
382 #define RCQ_NEXT(x)                                               \
383     ((((x) & RCQ_USABLE_PER_PAGE) == (RCQ_USABLE_PER_PAGE - 1)) ? \
384      ((x) + 1 + RCQ_NEXT_PAGE_DESC_CNT) : ((x) + 1))
385 #define RCQ(x)      ((x) & RCQ_MAX)
386 #define RCQ_PAGE(x) (((x) & ~RCQ_USABLE_PER_PAGE) >> 7)
387 #define RCQ_IDX(x)  ((x) & RCQ_USABLE_PER_PAGE)
388 
389 #if 0
390 #define NUM_RCQ_RINGS RCQ_NUM_PAGES
391 #define NUM_RCQ_BD    RCQ_TOTAL
392 #define MAX_RCQ_BD    RCQ_MAX
393 #define MAX_RCQ_AVAIL RCQ_USABLE
394 #endif
395 
396 /*
397  * dropless fc calculations for RCQs
398  * Number of RCQs should be as number of buffers in BRB:
399  * Low threshold takes into account RCQ_NEXT_PAGE_DESC_CNT
400  * "next" elements on each page
401  */
402 #define NUM_RCQ_REQ(sc) \
403     BRB_SIZE(sc)
404 #define NUM_RCQ_PG_REQ(sc)                                              \
405     ((NUM_RCQ_REQ(sc) + RCQ_USABLE_PER_PAGE - 1) / RCQ_USABLE_PER_PAGE)
406 #define RCQ_TH_LO(sc)                              \
407     (NUM_RCQ_REQ(sc) +                             \
408      NUM_RCQ_PG_REQ(sc) * RCQ_NEXT_PAGE_DESC_CNT + \
409      FW_DROP_LEVEL(sc))
410 #define RCQ_TH_HI(sc)                      \
411     (RCQ_TH_LO(sc) + DROPLESS_FC_HEADROOM)
412 
413 /* This is needed for determening of last_max */
414 #define SUB_S16(a, b) (int16_t)((int16_t)(a) - (int16_t)(b))
415 
416 #define __SGE_MASK_SET_BIT(el, bit)               \
417     do {                                          \
418         (el) = ((el) | ((uint64_t)0x1 << (bit))); \
419     } while (0)
420 
421 #define __SGE_MASK_CLEAR_BIT(el, bit)                \
422     do {                                             \
423         (el) = ((el) & (~((uint64_t)0x1 << (bit)))); \
424     } while (0)
425 
426 #define SGE_MASK_SET_BIT(fp, idx)                                       \
427     __SGE_MASK_SET_BIT((fp)->sge_mask[(idx) >> RX_SGE_MASK_ELEM_SHIFT], \
428                        ((idx) & RX_SGE_MASK_ELEM_MASK))
429 
430 #define SGE_MASK_CLEAR_BIT(fp, idx)                                       \
431     __SGE_MASK_CLEAR_BIT((fp)->sge_mask[(idx) >> RX_SGE_MASK_ELEM_SHIFT], \
432                          ((idx) & RX_SGE_MASK_ELEM_MASK))
433 
434 /* Load / Unload modes */
435 #define LOAD_NORMAL       0
436 #define LOAD_OPEN         1
437 #define LOAD_DIAG         2
438 #define LOAD_LOOPBACK_EXT 3
439 #define UNLOAD_NORMAL     0
440 #define UNLOAD_CLOSE      1
441 #define UNLOAD_RECOVERY   2
442 
443 /* Some constants... */
444 //#define MAX_PATH_NUM       2
445 //#define E2_MAX_NUM_OF_VFS  64
446 //#define E1H_FUNC_MAX       8
447 //#define E2_FUNC_MAX        4   /* per path */
448 #define MAX_VNIC_NUM       4
449 #define MAX_FUNC_NUM       8   /* common to all chips */
450 //#define MAX_NDSB           HC_SB_MAX_SB_E2 /* max non-default status block */
451 #define MAX_RSS_CHAINS     16 /* a constant for HW limit */
452 #define MAX_MSI_VECTOR     8  /* a constant for HW limit */
453 
454 #define ILT_NUM_PAGE_ENTRIES 3072
455 /*
456  * 57710/11 we use whole table since we have 8 functions.
457  * 57712 we have only 4 functions, but use same size per func, so only half
458  * of the table is used.
459  */
460 #define ILT_PER_FUNC        (ILT_NUM_PAGE_ENTRIES / 8)
461 #define FUNC_ILT_BASE(func) (func * ILT_PER_FUNC)
462 /*
463  * the phys address is shifted right 12 bits and has an added
464  * 1=valid bit added to the 53rd bit
465  * then since this is a wide register(TM)
466  * we split it into two 32 bit writes
467  */
468 #define ONCHIP_ADDR1(x) ((uint32_t)(((uint64_t)x >> 12) & 0xFFFFFFFF))
469 #define ONCHIP_ADDR2(x) ((uint32_t)((1 << 20) | ((uint64_t)x >> 44)))
470 
471 /* L2 header size + 2*VLANs (8 bytes) + LLC SNAP (8 bytes) */
472 #define ETH_HLEN                  14
473 #define ETH_OVERHEAD              (ETH_HLEN + 8 + 8)
474 #define ETH_MIN_PACKET_SIZE       60
475 #define ETH_MAX_PACKET_SIZE       ETHERMTU /* 1500 */
476 #define ETH_MAX_JUMBO_PACKET_SIZE 9600
477 /* TCP with Timestamp Option (32) + IPv6 (40) */
478 #define ETH_MAX_TPA_HEADER_SIZE   72
479 
480 /* max supported alignment is 256 (8 shift) */
481 //#define BXE_RX_ALIGN_SHIFT ((CACHE_LINE_SHIFT < 8) ? CACHE_LINE_SHIFT : 8)
482 #define BXE_RX_ALIGN_SHIFT 8
483 /* FW uses 2 cache lines alignment for start packet and size  */
484 #define BXE_FW_RX_ALIGN_START (1 << BXE_RX_ALIGN_SHIFT)
485 #define BXE_FW_RX_ALIGN_END   (1 << BXE_RX_ALIGN_SHIFT)
486 
487 #define BXE_PXP_DRAM_ALIGN (BXE_RX_ALIGN_SHIFT - 5) /* XXX ??? */
488 
489 struct bxe_bar {
490     struct resource    *resource;
491     int                rid;
492     bus_space_tag_t    tag;
493     bus_space_handle_t handle;
494     vm_offset_t        kva;
495 };
496 
497 struct bxe_intr {
498     struct resource *resource;
499     int             rid;
500     void            *tag;
501 };
502 
503 /* Used to manage DMA allocations. */
504 struct bxe_dma {
505     struct bxe_softc  *sc;
506     bus_addr_t        paddr;
507     void              *vaddr;
508     bus_dma_tag_t     tag;
509     bus_dmamap_t      map;
510     bus_dma_segment_t seg;
511     bus_size_t        size;
512     int               nseg;
513     char              msg[32];
514 };
515 
516 /* attn group wiring */
517 #define MAX_DYNAMIC_ATTN_GRPS 8
518 
519 struct attn_route {
520     uint32_t sig[5];
521 };
522 
523 struct iro {
524     uint32_t base;
525     uint16_t m1;
526     uint16_t m2;
527     uint16_t m3;
528     uint16_t size;
529 };
530 
531 union bxe_host_hc_status_block {
532     /* pointer to fp status block e2 */
533     struct host_hc_status_block_e2  *e2_sb;
534     /* pointer to fp status block e1x */
535     struct host_hc_status_block_e1x *e1x_sb;
536 };
537 
538 union bxe_db_prod {
539     struct doorbell_set_prod data;
540     uint32_t                 raw;
541 };
542 
543 struct bxe_sw_tx_bd {
544     struct mbuf  *m;
545     bus_dmamap_t m_map;
546     uint16_t     first_bd;
547     uint8_t      flags;
548 /* set on the first BD descriptor when there is a split BD */
549 #define BXE_TSO_SPLIT_BD (1 << 0)
550 };
551 
552 struct bxe_sw_rx_bd {
553     struct mbuf  *m;
554     bus_dmamap_t m_map;
555 };
556 
557 struct bxe_sw_tpa_info {
558     struct bxe_sw_rx_bd bd;
559     bus_dma_segment_t   seg;
560     uint8_t             state;
561 #define BXE_TPA_STATE_START 1
562 #define BXE_TPA_STATE_STOP  2
563     uint8_t             placement_offset;
564     uint16_t            parsing_flags;
565     uint16_t            vlan_tag;
566     uint16_t            len_on_bd;
567 };
568 
569 /*
570  * This is the HSI fastpath data structure. There can be up to MAX_RSS_CHAIN
571  * instances of the fastpath structure when using multiple queues.
572  */
573 struct bxe_fastpath {
574     /* pointer back to parent structure */
575     struct bxe_softc *sc;
576 
577     struct mtx tx_mtx;
578     char       tx_mtx_name[32];
579     struct mtx rx_mtx;
580     char       rx_mtx_name[32];
581 
582 #define BXE_FP_TX_LOCK(fp)        mtx_lock(&fp->tx_mtx)
583 #define BXE_FP_TX_UNLOCK(fp)      mtx_unlock(&fp->tx_mtx)
584 #define BXE_FP_TX_LOCK_ASSERT(fp) mtx_assert(&fp->tx_mtx, MA_OWNED)
585 
586 #define BXE_FP_RX_LOCK(fp)        mtx_lock(&fp->rx_mtx)
587 #define BXE_FP_RX_UNLOCK(fp)      mtx_unlock(&fp->rx_mtx)
588 #define BXE_FP_RX_LOCK_ASSERT(fp) mtx_assert(&fp->rx_mtx, MA_OWNED)
589 
590     /* status block */
591     struct bxe_dma                 sb_dma;
592     union bxe_host_hc_status_block status_block;
593 
594     /* transmit chain (tx bds) */
595     struct bxe_dma        tx_dma;
596     union eth_tx_bd_types *tx_chain;
597 
598     /* receive chain (rx bds) */
599     struct bxe_dma   rx_dma;
600     struct eth_rx_bd *rx_chain;
601 
602     /* receive completion queue chain (rcq bds) */
603     struct bxe_dma   rcq_dma;
604     union eth_rx_cqe *rcq_chain;
605 
606     /* receive scatter/gather entry chain (for TPA) */
607     struct bxe_dma    rx_sge_dma;
608     struct eth_rx_sge *rx_sge_chain;
609 
610     /* tx mbufs */
611     bus_dma_tag_t       tx_mbuf_tag;
612     struct bxe_sw_tx_bd tx_mbuf_chain[TX_BD_TOTAL];
613 
614     /* rx mbufs */
615     bus_dma_tag_t       rx_mbuf_tag;
616     struct bxe_sw_rx_bd rx_mbuf_chain[RX_BD_TOTAL];
617     bus_dmamap_t        rx_mbuf_spare_map;
618 
619     /* rx sge mbufs */
620     bus_dma_tag_t       rx_sge_mbuf_tag;
621     struct bxe_sw_rx_bd rx_sge_mbuf_chain[RX_SGE_TOTAL];
622     bus_dmamap_t        rx_sge_mbuf_spare_map;
623 
624     /* rx tpa mbufs (use the larger size for TPA queue length) */
625     int                    tpa_enable; /* disabled per fastpath upon error */
626     struct bxe_sw_tpa_info rx_tpa_info[ETH_MAX_AGGREGATION_QUEUES_E1H_E2];
627     bus_dmamap_t           rx_tpa_info_mbuf_spare_map;
628     uint64_t               rx_tpa_queue_used;
629 #if 0
630     bus_dmamap_t      rx_tpa_mbuf_map[ETH_MAX_AGGREGATION_QUEUES_E1H_E2];
631     bus_dmamap_t      rx_tpa_mbuf_spare_map;
632     struct mbuf       *rx_tpa_mbuf_ptr[ETH_MAX_AGGREGATION_QUEUES_E1H_E2];
633     bus_dma_segment_t rx_tpa_mbuf_segs[ETH_MAX_AGGREGATION_QUEUES_E1H_E2];
634 
635     uint8_t tpa_state[ETH_MAX_AGGREGATION_QUEUES_E1H_E2];
636 #endif
637 
638     uint16_t *sb_index_values;
639     uint16_t *sb_running_index;
640     uint32_t ustorm_rx_prods_offset;
641 
642     uint8_t igu_sb_id; /* status block number in HW */
643     uint8_t fw_sb_id;  /* status block number in FW */
644 
645     uint32_t rx_buf_size;
646     int mbuf_alloc_size;
647 
648     int state;
649 #define BXE_FP_STATE_CLOSED  0x01
650 #define BXE_FP_STATE_IRQ     0x02
651 #define BXE_FP_STATE_OPENING 0x04
652 #define BXE_FP_STATE_OPEN    0x08
653 #define BXE_FP_STATE_HALTING 0x10
654 #define BXE_FP_STATE_HALTED  0x20
655 
656     /* reference back to this fastpath queue number */
657     uint8_t index; /* this is also the 'cid' */
658 #define FP_IDX(fp) (fp->index)
659 
660     /* interrupt taskqueue (fast) */
661     struct task      tq_task;
662     struct taskqueue *tq;
663     char             tq_name[32];
664 
665     /* ethernet client ID (each fastpath set of RX/TX/CQE is a client) */
666     uint8_t cl_id;
667 #define FP_CL_ID(fp) (fp->cl_id)
668     uint8_t cl_qzone_id;
669 
670     uint16_t fp_hc_idx;
671 
672     /* driver copy of the receive buffer descriptor prod/cons indices */
673     uint16_t rx_bd_prod;
674     uint16_t rx_bd_cons;
675 
676     /* driver copy of the receive completion queue prod/cons indices */
677     uint16_t rx_cq_prod;
678     uint16_t rx_cq_cons;
679 
680     union bxe_db_prod tx_db;
681 
682     /* Transmit packet producer index (used in eth_tx_bd). */
683     uint16_t tx_pkt_prod;
684     uint16_t tx_pkt_cons;
685 
686     /* Transmit buffer descriptor producer index. */
687     uint16_t tx_bd_prod;
688     uint16_t tx_bd_cons;
689 
690 #if 0
691     /* status block number in hardware */
692     uint8_t sb_id;
693 #define FP_SB_ID(fp) (fp->sb_id)
694 
695     /* driver copy of the fastpath CSTORM/USTORM indices */
696     uint16_t fp_c_idx;
697     uint16_t fp_u_idx;
698 #endif
699 
700     uint64_t sge_mask[RX_SGE_MASK_LEN];
701     uint16_t rx_sge_prod;
702 
703     struct tstorm_per_queue_stats old_tclient;
704     struct ustorm_per_queue_stats old_uclient;
705     struct xstorm_per_queue_stats old_xclient;
706     struct bxe_eth_q_stats        eth_q_stats;
707     struct bxe_eth_q_stats_old    eth_q_stats_old;
708 
709     /* Pointer to the receive consumer in the status block */
710     uint16_t *rx_cq_cons_sb;
711 
712     /* Pointer to the transmit consumer in the status block */
713     uint16_t *tx_cons_sb;
714 
715     /* transmit timeout until chip reset */
716     int watchdog_timer;
717 
718     /* Free/used buffer descriptor counters. */
719     //uint16_t used_tx_bd;
720 
721     /* Last maximal completed SGE */
722     uint16_t last_max_sge;
723 
724     //uint16_t rx_sge_free_idx;
725 
726     //uint8_t segs;
727 
728 #if __FreeBSD_version >= 800000
729 #define BXE_BR_SIZE 4096
730     struct buf_ring *tx_br;
731 #endif
732 }; /* struct bxe_fastpath */
733 
734 /* sriov XXX */
735 #define BXE_MAX_NUM_OF_VFS 64
736 #define BXE_VF_CID_WND     0
737 #define BXE_CIDS_PER_VF    (1 << BXE_VF_CID_WND)
738 #define BXE_CLIENTS_PER_VF 1
739 #define BXE_FIRST_VF_CID   256
740 #define BXE_VF_CIDS        (BXE_MAX_NUM_OF_VFS * BXE_CIDS_PER_VF)
741 #define BXE_VF_ID_INVALID  0xFF
742 #define IS_SRIOV(sc) 0
743 
744 #define GET_NUM_VFS_PER_PATH(sc) 0
745 #define GET_NUM_VFS_PER_PF(sc)   0
746 
747 /* maximum number of fast-path interrupt contexts */
748 #define FP_SB_MAX_E1x 16
749 #define FP_SB_MAX_E2  HC_SB_MAX_SB_E2
750 
751 union cdu_context {
752     struct eth_context eth;
753     char pad[1024];
754 };
755 
756 /* CDU host DB constants */
757 #define CDU_ILT_PAGE_SZ_HW 2
758 #define CDU_ILT_PAGE_SZ    (8192 << CDU_ILT_PAGE_SZ_HW) /* 32K */
759 #define ILT_PAGE_CIDS      (CDU_ILT_PAGE_SZ / sizeof(union cdu_context))
760 
761 #define CNIC_ISCSI_CID_MAX 256
762 #define CNIC_FCOE_CID_MAX  2048
763 #define CNIC_CID_MAX       (CNIC_ISCSI_CID_MAX + CNIC_FCOE_CID_MAX)
764 #define CNIC_ILT_LINES     DIV_ROUND_UP(CNIC_CID_MAX, ILT_PAGE_CIDS)
765 
766 #define QM_ILT_PAGE_SZ_HW  0
767 #define QM_ILT_PAGE_SZ     (4096 << QM_ILT_PAGE_SZ_HW) /* 4K */
768 #define QM_CID_ROUND       1024
769 
770 /* TM (timers) host DB constants */
771 #define TM_ILT_PAGE_SZ_HW  0
772 #define TM_ILT_PAGE_SZ     (4096 << TM_ILT_PAGE_SZ_HW) /* 4K */
773 /*#define TM_CONN_NUM        (CNIC_STARTING_CID+CNIC_ISCSI_CXT_MAX) */
774 #define TM_CONN_NUM        1024
775 #define TM_ILT_SZ          (8 * TM_CONN_NUM)
776 #define TM_ILT_LINES       DIV_ROUND_UP(TM_ILT_SZ, TM_ILT_PAGE_SZ)
777 
778 /* SRC (Searcher) host DB constants */
779 #define SRC_ILT_PAGE_SZ_HW 0
780 #define SRC_ILT_PAGE_SZ    (4096 << SRC_ILT_PAGE_SZ_HW) /* 4K */
781 #define SRC_HASH_BITS      10
782 #define SRC_CONN_NUM       (1 << SRC_HASH_BITS) /* 1024 */
783 #define SRC_ILT_SZ         (sizeof(struct src_ent) * SRC_CONN_NUM)
784 #define SRC_T2_SZ          SRC_ILT_SZ
785 #define SRC_ILT_LINES      DIV_ROUND_UP(SRC_ILT_SZ, SRC_ILT_PAGE_SZ)
786 
787 struct hw_context {
788     struct bxe_dma    vcxt_dma;
789     union cdu_context *vcxt;
790     //bus_addr_t        cxt_mapping;
791     size_t            size;
792 };
793 
794 #define SM_RX_ID 0
795 #define SM_TX_ID 1
796 
797 /* defines for multiple tx priority indices */
798 #define FIRST_TX_ONLY_COS_INDEX 1
799 #define FIRST_TX_COS_INDEX      0
800 
801 #define CID_TO_FP(cid, sc) ((cid) % BXE_NUM_NON_CNIC_QUEUES(sc))
802 
803 #define HC_INDEX_ETH_RX_CQ_CONS       1
804 #define HC_INDEX_OOO_TX_CQ_CONS       4
805 #define HC_INDEX_ETH_TX_CQ_CONS_COS0  5
806 #define HC_INDEX_ETH_TX_CQ_CONS_COS1  6
807 #define HC_INDEX_ETH_TX_CQ_CONS_COS2  7
808 #define HC_INDEX_ETH_FIRST_TX_CQ_CONS HC_INDEX_ETH_TX_CQ_CONS_COS0
809 
810 /* congestion management fairness mode */
811 #define CMNG_FNS_NONE   0
812 #define CMNG_FNS_MINMAX 1
813 
814 /* CMNG constants, as derived from system spec calculations */
815 /* default MIN rate in case VNIC min rate is configured to zero - 100Mbps */
816 #define DEF_MIN_RATE 100
817 /* resolution of the rate shaping timer - 400 usec */
818 #define RS_PERIODIC_TIMEOUT_USEC 400
819 /* number of bytes in single QM arbitration cycle -
820  * coefficient for calculating the fairness timer */
821 #define QM_ARB_BYTES 160000
822 /* resolution of Min algorithm 1:100 */
823 #define MIN_RES 100
824 /* how many bytes above threshold for the minimal credit of Min algorithm*/
825 #define MIN_ABOVE_THRESH 32768
826 /* fairness algorithm integration time coefficient -
827  * for calculating the actual Tfair */
828 #define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES)
829 /* memory of fairness algorithm - 2 cycles */
830 #define FAIR_MEM 2
831 
832 #define HC_SEG_ACCESS_DEF   0 /* Driver decision 0-3 */
833 #define HC_SEG_ACCESS_ATTN  4
834 #define HC_SEG_ACCESS_NORM  0 /* Driver decision 0-1 */
835 
836 /*
837  * The total number of L2 queues, MSIX vectors and HW contexts (CIDs) is
838  * control by the number of fast-path status blocks supported by the
839  * device (HW/FW). Each fast-path status block (FP-SB) aka non-default
840  * status block represents an independent interrupts context that can
841  * serve a regular L2 networking queue. However special L2 queues such
842  * as the FCoE queue do not require a FP-SB and other components like
843  * the CNIC may consume FP-SB reducing the number of possible L2 queues
844  *
845  * If the maximum number of FP-SB available is X then:
846  * a. If CNIC is supported it consumes 1 FP-SB thus the max number of
847  *    regular L2 queues is Y=X-1
848  * b. in MF mode the actual number of L2 queues is Y= (X-1/MF_factor)
849  * c. If the FCoE L2 queue is supported the actual number of L2 queues
850  *    is Y+1
851  * d. The number of irqs (MSIX vectors) is either Y+1 (one extra for
852  *    slow-path interrupts) or Y+2 if CNIC is supported (one additional
853  *    FP interrupt context for the CNIC).
854  * e. The number of HW context (CID count) is always X or X+1 if FCoE
855  *    L2 queue is supported. the cid for the FCoE L2 queue is always X.
856  *
857  * So this is quite simple for now as no ULPs are supported yet. :-)
858  */
859 #define BXE_NUM_QUEUES(sc)          ((sc)->num_queues)
860 #define BXE_NUM_ETH_QUEUES(sc)      BXE_NUM_QUEUES(sc)
861 #define BXE_NUM_NON_CNIC_QUEUES(sc) BXE_NUM_QUEUES(sc)
862 #define BXE_NUM_RX_QUEUES(sc)       BXE_NUM_QUEUES(sc)
863 
864 #define FOR_EACH_QUEUE(sc, var)                          \
865     for ((var) = 0; (var) < BXE_NUM_QUEUES(sc); (var)++)
866 
867 #define FOR_EACH_NONDEFAULT_QUEUE(sc, var)               \
868     for ((var) = 1; (var) < BXE_NUM_QUEUES(sc); (var)++)
869 
870 #define FOR_EACH_ETH_QUEUE(sc, var)                          \
871     for ((var) = 0; (var) < BXE_NUM_ETH_QUEUES(sc); (var)++)
872 
873 #define FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, var)               \
874     for ((var) = 1; (var) < BXE_NUM_ETH_QUEUES(sc); (var)++)
875 
876 #define FOR_EACH_COS_IN_TX_QUEUE(sc, var)           \
877     for ((var) = 0; (var) < (sc)->max_cos; (var)++)
878 
879 #define FOR_EACH_CNIC_QUEUE(sc, var)     \
880     for ((var) = BXE_NUM_ETH_QUEUES(sc); \
881          (var) < BXE_NUM_QUEUES(sc);     \
882          (var)++)
883 
884 enum {
885     OOO_IDX_OFFSET,
886     FCOE_IDX_OFFSET,
887     FWD_IDX_OFFSET,
888 };
889 
890 #define FCOE_IDX(sc)              (BXE_NUM_NON_CNIC_QUEUES(sc) + FCOE_IDX_OFFSET)
891 #define bxe_fcoe_fp(sc)           (&sc->fp[FCOE_IDX(sc)])
892 #define bxe_fcoe(sc, var)         (bxe_fcoe_fp(sc)->var)
893 #define bxe_fcoe_inner_sp_obj(sc) (&sc->sp_objs[FCOE_IDX(sc)])
894 #define bxe_fcoe_sp_obj(sc, var)  (bxe_fcoe_inner_sp_obj(sc)->var)
895 #define bxe_fcoe_tx(sc, var)      (bxe_fcoe_fp(sc)->txdata_ptr[FIRST_TX_COS_INDEX]->var)
896 
897 #define OOO_IDX(sc)               (BXE_NUM_NON_CNIC_QUEUES(sc) + OOO_IDX_OFFSET)
898 #define bxe_ooo_fp(sc)            (&sc->fp[OOO_IDX(sc)])
899 #define bxe_ooo(sc, var)          (bxe_ooo_fp(sc)->var)
900 #define bxe_ooo_inner_sp_obj(sc)  (&sc->sp_objs[OOO_IDX(sc)])
901 #define bxe_ooo_sp_obj(sc, var)   (bxe_ooo_inner_sp_obj(sc)->var)
902 
903 #define FWD_IDX(sc)               (BXE_NUM_NON_CNIC_QUEUES(sc) + FWD_IDX_OFFSET)
904 #define bxe_fwd_fp(sc)            (&sc->fp[FWD_IDX(sc)])
905 #define bxe_fwd(sc, var)          (bxe_fwd_fp(sc)->var)
906 #define bxe_fwd_inner_sp_obj(sc)  (&sc->sp_objs[FWD_IDX(sc)])
907 #define bxe_fwd_sp_obj(sc, var)   (bxe_fwd_inner_sp_obj(sc)->var)
908 #define bxe_fwd_txdata(fp)        (fp->txdata_ptr[FIRST_TX_COS_INDEX])
909 
910 #define IS_ETH_FP(fp)    ((fp)->index < BXE_NUM_ETH_QUEUES((fp)->sc))
911 #define IS_FCOE_FP(fp)   ((fp)->index == FCOE_IDX((fp)->sc))
912 #define IS_FCOE_IDX(idx) ((idx) == FCOE_IDX(sc))
913 #define IS_FWD_FP(fp)    ((fp)->index == FWD_IDX((fp)->sc))
914 #define IS_FWD_IDX(idx)  ((idx) == FWD_IDX(sc))
915 #define IS_OOO_FP(fp)    ((fp)->index == OOO_IDX((fp)->sc))
916 #define IS_OOO_IDX(idx)  ((idx) == OOO_IDX(sc))
917 
918 enum {
919     BXE_PORT_QUERY_IDX,
920     BXE_PF_QUERY_IDX,
921     BXE_FCOE_QUERY_IDX,
922     BXE_FIRST_QUEUE_QUERY_IDX,
923 };
924 
925 struct bxe_fw_stats_req {
926     struct stats_query_header hdr;
927     struct stats_query_entry  query[FP_SB_MAX_E1x +
928                                     BXE_FIRST_QUEUE_QUERY_IDX];
929 };
930 
931 struct bxe_fw_stats_data {
932     struct stats_counter          storm_counters;
933     struct per_port_stats         port;
934     struct per_pf_stats           pf;
935     //struct fcoe_statistics_params fcoe;
936     struct per_queue_stats        queue_stats[1];
937 };
938 
939 /* IGU MSIX STATISTICS on 57712: 64 for VFs; 4 for PFs; 4 for Attentions */
940 #define BXE_IGU_STAS_MSG_VF_CNT 64
941 #define BXE_IGU_STAS_MSG_PF_CNT 4
942 
943 #define MAX_DMAE_C 8
944 
945 /*
946  * For the main interface up/down code paths, a not-so-fine-grained CORE
947  * mutex lock is used. Inside this code are various calls to kernel routines
948  * that can cause a sleep to occur. Namely memory allocations and taskqueue
949  * handling. If using an MTX lock we are *not* allowed to sleep but we can
950  * with an SX lock. This define forces the CORE lock to use and SX lock.
951  * Undefine this and an MTX lock will be used instead. Note that the IOCTL
952  * path can cause problems since it's called by a non-sleepable thread. To
953  * alleviate a potential sleep, any IOCTL processing that results in the
954  * chip/interface being started/stopped/reinitialized, the actual work is
955  * offloaded to a taskqueue.
956  */
957 #define BXE_CORE_LOCK_SX
958 
959 /*
960  * This is the slowpath data structure. It is mapped into non-paged memory
961  * so that the hardware can access it's contents directly and must be page
962  * aligned.
963  */
964 struct bxe_slowpath {
965 
966 #if 0
967     /*
968      * The cdu_context array MUST be the first element in this
969      * structure. It is used during the leading edge ramrod
970      * operation.
971      */
972     union cdu_context context[MAX_CONTEXT];
973 
974     /* Used as a DMA source for MAC configuration. */
975     struct mac_configuration_cmd    mac_config;
976     struct mac_configuration_cmd    mcast_config;
977 #endif
978 
979     /* used by the DMAE command executer */
980     struct dmae_command dmae[MAX_DMAE_C];
981 
982     /* statistics completion */
983     uint32_t stats_comp;
984 
985     /* firmware defined statistics blocks */
986     union mac_stats        mac_stats;
987     struct nig_stats       nig_stats;
988     struct host_port_stats port_stats;
989     struct host_func_stats func_stats;
990     //struct host_func_stats func_stats_base;
991 
992     /* DMAE completion value and data source/sink */
993     uint32_t wb_comp;
994     uint32_t wb_data[4];
995 
996     union {
997         struct mac_configuration_cmd          e1x;
998         struct eth_classify_rules_ramrod_data e2;
999     } mac_rdata;
1000 
1001     union {
1002         struct tstorm_eth_mac_filter_config e1x;
1003         struct eth_filter_rules_ramrod_data e2;
1004     } rx_mode_rdata;
1005 
1006     struct eth_rss_update_ramrod_data rss_rdata;
1007 
1008     union {
1009         struct mac_configuration_cmd           e1;
1010         struct eth_multicast_rules_ramrod_data e2;
1011     } mcast_rdata;
1012 
1013     union {
1014         struct function_start_data        func_start;
1015         struct flow_control_configuration pfc_config; /* for DCBX ramrod */
1016     } func_rdata;
1017 
1018     /* Queue State related ramrods */
1019     union {
1020         struct client_init_ramrod_data   init_data;
1021         struct client_update_ramrod_data update_data;
1022     } q_rdata;
1023 
1024     /*
1025      * AFEX ramrod can not be a part of func_rdata union because these
1026      * events might arrive in parallel to other events from func_rdata.
1027      * If they were defined in the same union the data can get corrupted.
1028      */
1029     struct afex_vif_list_ramrod_data func_afex_rdata;
1030 
1031     union drv_info_to_mcp drv_info_to_mcp;
1032 }; /* struct bxe_slowpath */
1033 
1034 /*
1035  * Port specifc data structure.
1036  */
1037 struct bxe_port {
1038     /*
1039      * Port Management Function (for 57711E only).
1040      * When this field is set the driver instance is
1041      * responsible for managing port specifc
1042      * configurations such as handling link attentions.
1043      */
1044     uint32_t pmf;
1045 
1046     /* Ethernet maximum transmission unit. */
1047     uint16_t ether_mtu;
1048 
1049     uint32_t link_config[ELINK_LINK_CONFIG_SIZE];
1050 
1051     uint32_t ext_phy_config;
1052 
1053     /* Port feature config.*/
1054     uint32_t config;
1055 
1056     /* Defines the features supported by the PHY. */
1057     uint32_t supported[ELINK_LINK_CONFIG_SIZE];
1058 
1059     /* Defines the features advertised by the PHY. */
1060     uint32_t advertising[ELINK_LINK_CONFIG_SIZE];
1061 #define ADVERTISED_10baseT_Half    (1 << 1)
1062 #define ADVERTISED_10baseT_Full    (1 << 2)
1063 #define ADVERTISED_100baseT_Half   (1 << 3)
1064 #define ADVERTISED_100baseT_Full   (1 << 4)
1065 #define ADVERTISED_1000baseT_Half  (1 << 5)
1066 #define ADVERTISED_1000baseT_Full  (1 << 6)
1067 #define ADVERTISED_TP              (1 << 7)
1068 #define ADVERTISED_FIBRE           (1 << 8)
1069 #define ADVERTISED_Autoneg         (1 << 9)
1070 #define ADVERTISED_Asym_Pause      (1 << 10)
1071 #define ADVERTISED_Pause           (1 << 11)
1072 #define ADVERTISED_2500baseX_Full  (1 << 15)
1073 #define ADVERTISED_10000baseT_Full (1 << 16)
1074 
1075     uint32_t    phy_addr;
1076 
1077     /* Used to synchronize phy accesses. */
1078     struct mtx  phy_mtx;
1079     char        phy_mtx_name[32];
1080 
1081 #define BXE_PHY_LOCK(sc)          mtx_lock(&sc->port.phy_mtx)
1082 #define BXE_PHY_UNLOCK(sc)        mtx_unlock(&sc->port.phy_mtx)
1083 #define BXE_PHY_LOCK_ASSERT(sc)   mtx_assert(&sc->port.phy_mtx, MA_OWNED)
1084 
1085     /*
1086      * MCP scratchpad address for port specific statistics.
1087      * The device is responsible for writing statistcss
1088      * back to the MCP for use with management firmware such
1089      * as UMP/NC-SI.
1090      */
1091     uint32_t port_stx;
1092 
1093     struct nig_stats old_nig_stats;
1094 }; /* struct bxe_port */
1095 
1096 struct bxe_mf_info {
1097     uint32_t mf_config[E1HVN_MAX];
1098 
1099     uint32_t vnics_per_port;   /* 1, 2 or 4 */
1100     uint32_t multi_vnics_mode; /* can be set even if vnics_per_port = 1 */
1101     uint32_t path_has_ovlan;   /* MF mode in the path (can be different than the MF mode of the function */
1102 
1103 #define IS_MULTI_VNIC(sc)  ((sc)->devinfo.mf_info.multi_vnics_mode)
1104 #define VNICS_PER_PORT(sc) ((sc)->devinfo.mf_info.vnics_per_port)
1105 #define VNICS_PER_PATH(sc)                                  \
1106     ((sc)->devinfo.mf_info.vnics_per_port *                 \
1107      ((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 1 ))
1108 
1109     uint8_t min_bw[MAX_VNIC_NUM];
1110     uint8_t max_bw[MAX_VNIC_NUM];
1111 
1112     uint16_t ext_id; /* vnic outer vlan or VIF ID */
1113 #define VALID_OVLAN(ovlan) ((ovlan) <= 4096)
1114 #define INVALID_VIF_ID 0xFFFF
1115 #define OVLAN(sc) ((sc)->devinfo.mf_info.ext_id)
1116 #define VIF_ID(sc) ((sc)->devinfo.mf_info.ext_id)
1117 
1118     uint16_t default_vlan;
1119 #define NIV_DEFAULT_VLAN(sc) ((sc)->devinfo.mf_info.default_vlan)
1120 
1121     uint8_t niv_allowed_priorities;
1122 #define NIV_ALLOWED_PRIORITIES(sc) ((sc)->devinfo.mf_info.niv_allowed_priorities)
1123 
1124     uint8_t niv_default_cos;
1125 #define NIV_DEFAULT_COS(sc) ((sc)->devinfo.mf_info.niv_default_cos)
1126 
1127     uint8_t niv_mba_enabled;
1128 
1129     enum mf_cfg_afex_vlan_mode afex_vlan_mode;
1130 #define AFEX_VLAN_MODE(sc) ((sc)->devinfo.mf_info.afex_vlan_mode)
1131     int                        afex_def_vlan_tag;
1132     uint32_t                   pending_max;
1133 
1134     uint16_t flags;
1135 #define MF_INFO_VALID_MAC       0x0001
1136 
1137     uint8_t mf_mode; /* Switch-Dependent or Switch-Independent */
1138 #define IS_MF(sc)                        \
1139     (IS_MULTI_VNIC(sc) &&                \
1140      ((sc)->devinfo.mf_info.mf_mode != 0))
1141 #define IS_MF_SD(sc)                                     \
1142     (IS_MULTI_VNIC(sc) &&                                \
1143      ((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD))
1144 #define IS_MF_SI(sc)                                     \
1145     (IS_MULTI_VNIC(sc) &&                                \
1146      ((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI))
1147 #define IS_MF_AFEX(sc)                              \
1148     (IS_MULTI_VNIC(sc) &&                           \
1149      ((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX))
1150 #define IS_MF_SD_MODE(sc)   IS_MF_SD(sc)
1151 #define IS_MF_SI_MODE(sc)   IS_MF_SI(sc)
1152 #define IS_MF_AFEX_MODE(sc) IS_MF_AFEX(sc)
1153 
1154     uint32_t mf_protos_supported;
1155     #define MF_PROTO_SUPPORT_ETHERNET 0x1
1156     #define MF_PROTO_SUPPORT_ISCSI    0x2
1157     #define MF_PROTO_SUPPORT_FCOE     0x4
1158 }; /* struct bxe_mf_info */
1159 
1160 /* Device information data structure. */
1161 struct bxe_devinfo {
1162     /* PCIe info */
1163     uint16_t vendor_id;
1164     uint16_t device_id;
1165     uint16_t subvendor_id;
1166     uint16_t subdevice_id;
1167 
1168     /*
1169      * chip_id = 0b'CCCCCCCCCCCCCCCCRRRRMMMMMMMMBBBB'
1170      *   C = Chip Number   (bits 16-31)
1171      *   R = Chip Revision (bits 12-15)
1172      *   M = Chip Metal    (bits 4-11)
1173      *   B = Chip Bond ID  (bits 0-3)
1174      */
1175     uint32_t chip_id;
1176 #define CHIP_ID(sc)           ((sc)->devinfo.chip_id & 0xffff0000)
1177 #define CHIP_NUM(sc)          ((sc)->devinfo.chip_id >> 16)
1178 /* device ids */
1179 #define CHIP_NUM_57710        0x164e
1180 #define CHIP_NUM_57711        0x164f
1181 #define CHIP_NUM_57711E       0x1650
1182 #define CHIP_NUM_57712        0x1662
1183 #define CHIP_NUM_57712_MF     0x1663
1184 #define CHIP_NUM_57712_VF     0x166f
1185 #define CHIP_NUM_57800        0x168a
1186 #define CHIP_NUM_57800_MF     0x16a5
1187 #define CHIP_NUM_57800_VF     0x16a9
1188 #define CHIP_NUM_57810        0x168e
1189 #define CHIP_NUM_57810_MF     0x16ae
1190 #define CHIP_NUM_57810_VF     0x16af
1191 #define CHIP_NUM_57811        0x163d
1192 #define CHIP_NUM_57811_MF     0x163e
1193 #define CHIP_NUM_57811_VF     0x163f
1194 #define CHIP_NUM_57840_OBS    0x168d
1195 #define CHIP_NUM_57840_OBS_MF 0x16ab
1196 #define CHIP_NUM_57840_4_10   0x16a1
1197 #define CHIP_NUM_57840_2_20   0x16a2
1198 #define CHIP_NUM_57840_MF     0x16a4
1199 #define CHIP_NUM_57840_VF     0x16ad
1200 
1201 #define CHIP_REV_SHIFT      12
1202 #define CHIP_REV_MASK       (0xF << CHIP_REV_SHIFT)
1203 #define CHIP_REV(sc)        ((sc)->devinfo.chip_id & CHIP_REV_MASK)
1204 
1205 #define CHIP_REV_Ax         (0x0 << CHIP_REV_SHIFT)
1206 #define CHIP_REV_Bx         (0x1 << CHIP_REV_SHIFT)
1207 #define CHIP_REV_Cx         (0x2 << CHIP_REV_SHIFT)
1208 
1209 #define CHIP_REV_IS_SLOW(sc)    \
1210     (CHIP_REV(sc) > 0x00005000)
1211 #define CHIP_REV_IS_FPGA(sc)                              \
1212     (CHIP_REV_IS_SLOW(sc) && (CHIP_REV(sc) & 0x00001000))
1213 #define CHIP_REV_IS_EMUL(sc)                               \
1214     (CHIP_REV_IS_SLOW(sc) && !(CHIP_REV(sc) & 0x00001000))
1215 #define CHIP_REV_IS_ASIC(sc) \
1216     (!CHIP_REV_IS_SLOW(sc))
1217 
1218 #define CHIP_METAL(sc)      ((sc->devinfo.chip_id) & 0x00000ff0)
1219 #define CHIP_BOND_ID(sc)    ((sc->devinfo.chip_id) & 0x0000000f)
1220 
1221 #define CHIP_IS_E1(sc)      (CHIP_NUM(sc) == CHIP_NUM_57710)
1222 #define CHIP_IS_57710(sc)   (CHIP_NUM(sc) == CHIP_NUM_57710)
1223 #define CHIP_IS_57711(sc)   (CHIP_NUM(sc) == CHIP_NUM_57711)
1224 #define CHIP_IS_57711E(sc)  (CHIP_NUM(sc) == CHIP_NUM_57711E)
1225 #define CHIP_IS_E1H(sc)     ((CHIP_IS_57711(sc)) || \
1226                              (CHIP_IS_57711E(sc)))
1227 #define CHIP_IS_E1x(sc)     (CHIP_IS_E1((sc)) || \
1228                              CHIP_IS_E1H((sc)))
1229 
1230 #define CHIP_IS_57712(sc)    (CHIP_NUM(sc) == CHIP_NUM_57712)
1231 #define CHIP_IS_57712_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57712_MF)
1232 #define CHIP_IS_57712_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57712_VF)
1233 #define CHIP_IS_E2(sc)       (CHIP_IS_57712(sc) ||  \
1234                               CHIP_IS_57712_MF(sc))
1235 
1236 #define CHIP_IS_57800(sc)    (CHIP_NUM(sc) == CHIP_NUM_57800)
1237 #define CHIP_IS_57800_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57800_MF)
1238 #define CHIP_IS_57800_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57800_VF)
1239 #define CHIP_IS_57810(sc)    (CHIP_NUM(sc) == CHIP_NUM_57810)
1240 #define CHIP_IS_57810_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57810_MF)
1241 #define CHIP_IS_57810_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57810_VF)
1242 #define CHIP_IS_57811(sc)    (CHIP_NUM(sc) == CHIP_NUM_57811)
1243 #define CHIP_IS_57811_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57811_MF)
1244 #define CHIP_IS_57811_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57811_VF)
1245 #define CHIP_IS_57840(sc)    ((CHIP_NUM(sc) == CHIP_NUM_57840_OBS)  || \
1246                               (CHIP_NUM(sc) == CHIP_NUM_57840_4_10) || \
1247                               (CHIP_NUM(sc) == CHIP_NUM_57840_2_20))
1248 #define CHIP_IS_57840_MF(sc) ((CHIP_NUM(sc) == CHIP_NUM_57840_OBS_MF) || \
1249                               (CHIP_NUM(sc) == CHIP_NUM_57840_MF))
1250 #define CHIP_IS_57840_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57840_VF)
1251 
1252 #define CHIP_IS_E3(sc)      (CHIP_IS_57800(sc)    || \
1253                              CHIP_IS_57800_MF(sc) || \
1254                              CHIP_IS_57800_VF(sc) || \
1255                              CHIP_IS_57810(sc)    || \
1256                              CHIP_IS_57810_MF(sc) || \
1257                              CHIP_IS_57810_VF(sc) || \
1258                              CHIP_IS_57811(sc)    || \
1259                              CHIP_IS_57811_MF(sc) || \
1260                              CHIP_IS_57811_VF(sc) || \
1261                              CHIP_IS_57840(sc)    || \
1262                              CHIP_IS_57840_MF(sc) || \
1263                              CHIP_IS_57840_VF(sc))
1264 #define CHIP_IS_E3A0(sc)    (CHIP_IS_E3(sc) &&              \
1265                              (CHIP_REV(sc) == CHIP_REV_Ax))
1266 #define CHIP_IS_E3B0(sc)    (CHIP_IS_E3(sc) &&              \
1267                              (CHIP_REV(sc) == CHIP_REV_Bx))
1268 
1269 #define USES_WARPCORE(sc)   (CHIP_IS_E3(sc))
1270 #define CHIP_IS_E2E3(sc)    (CHIP_IS_E2(sc) || \
1271                              CHIP_IS_E3(sc))
1272 
1273 #define CHIP_IS_MF_CAP(sc)  (CHIP_IS_57711E(sc)  ||  \
1274                              CHIP_IS_57712_MF(sc) || \
1275                              CHIP_IS_E3(sc))
1276 
1277 #define IS_VF(sc)           (CHIP_IS_57712_VF(sc) || \
1278                              CHIP_IS_57800_VF(sc) || \
1279                              CHIP_IS_57810_VF(sc) || \
1280                              CHIP_IS_57840_VF(sc))
1281 #define IS_PF(sc)           (!IS_VF(sc))
1282 
1283 /*
1284  * This define is used in two main places:
1285  * 1. In the early stages of nic_load, to know if to configure Parser/Searcher
1286  * to nic-only mode or to offload mode. Offload mode is configured if either
1287  * the chip is E1x (where NIC_MODE register is not applicable), or if cnic
1288  * already registered for this port (which means that the user wants storage
1289  * services).
1290  * 2. During cnic-related load, to know if offload mode is already configured
1291  * in the HW or needs to be configrued. Since the transition from nic-mode to
1292  * offload-mode in HW causes traffic coruption, nic-mode is configured only
1293  * in ports on which storage services where never requested.
1294  */
1295 #define CONFIGURE_NIC_MODE(sc) (!CHIP_IS_E1x(sc) && !CNIC_ENABLED(sc))
1296 
1297     uint8_t  chip_port_mode;
1298 #define CHIP_4_PORT_MODE        0x0
1299 #define CHIP_2_PORT_MODE        0x1
1300 #define CHIP_PORT_MODE_NONE     0x2
1301 #define CHIP_PORT_MODE(sc)      ((sc)->devinfo.chip_port_mode)
1302 #define CHIP_IS_MODE_4_PORT(sc) (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE)
1303 
1304     uint8_t int_block;
1305 #define INT_BLOCK_HC            0
1306 #define INT_BLOCK_IGU           1
1307 #define INT_BLOCK_MODE_NORMAL   0
1308 #define INT_BLOCK_MODE_BW_COMP  2
1309 #define CHIP_INT_MODE_IS_NBC(sc)                          \
1310     (!CHIP_IS_E1x(sc) &&                                  \
1311      !((sc)->devinfo.int_block & INT_BLOCK_MODE_BW_COMP))
1312 #define CHIP_INT_MODE_IS_BC(sc) (!CHIP_INT_MODE_IS_NBC(sc))
1313 
1314     uint32_t shmem_base;
1315     uint32_t shmem2_base;
1316     uint32_t bc_ver;
1317     char bc_ver_str[32];
1318     uint32_t mf_cfg_base; /* bootcode shmem address in BAR memory */
1319     struct bxe_mf_info mf_info;
1320 
1321     int flash_size;
1322 #define NVRAM_1MB_SIZE      0x20000
1323 #define NVRAM_TIMEOUT_COUNT 30000
1324 #define NVRAM_PAGE_SIZE     256
1325 
1326     /* PCIe capability information */
1327     uint32_t pcie_cap_flags;
1328 #define BXE_PM_CAPABLE_FLAG     0x00000001
1329 #define BXE_PCIE_CAPABLE_FLAG   0x00000002
1330 #define BXE_MSI_CAPABLE_FLAG    0x00000004
1331 #define BXE_MSIX_CAPABLE_FLAG   0x00000008
1332     uint16_t pcie_pm_cap_reg;
1333     uint16_t pcie_pcie_cap_reg;
1334     //uint16_t pcie_devctl;
1335     uint16_t pcie_link_width;
1336     uint16_t pcie_link_speed;
1337     uint16_t pcie_msi_cap_reg;
1338     uint16_t pcie_msix_cap_reg;
1339 
1340     /* device configuration read from bootcode shared memory */
1341     uint32_t hw_config;
1342     uint32_t hw_config2;
1343 }; /* struct bxe_devinfo */
1344 
1345 struct bxe_sp_objs {
1346     struct ecore_vlan_mac_obj mac_obj; /* MACs object */
1347     struct ecore_queue_sp_obj q_obj; /* Queue State object */
1348 }; /* struct bxe_sp_objs */
1349 
1350 /*
1351  * Data that will be used to create a link report message. We will keep the
1352  * data used for the last link report in order to prevent reporting the same
1353  * link parameters twice.
1354  */
1355 struct bxe_link_report_data {
1356     uint16_t      line_speed;        /* Effective line speed */
1357     unsigned long link_report_flags; /* BXE_LINK_REPORT_XXX flags */
1358 };
1359 enum {
1360     BXE_LINK_REPORT_FULL_DUPLEX,
1361     BXE_LINK_REPORT_LINK_DOWN,
1362     BXE_LINK_REPORT_RX_FC_ON,
1363     BXE_LINK_REPORT_TX_FC_ON
1364 };
1365 
1366 /* Top level device private data structure. */
1367 struct bxe_softc {
1368     /*
1369      * First entry must be a pointer to the BSD ifnet struct which
1370      * has a first element of 'void *if_softc' (which is us). XXX
1371      */
1372     if_t 	    ifp;
1373     struct ifmedia  ifmedia; /* network interface media structure */
1374     int             media;
1375 
1376     int             state; /* device state */
1377 #define BXE_STATE_CLOSED                 0x0000
1378 #define BXE_STATE_OPENING_WAITING_LOAD   0x1000
1379 #define BXE_STATE_OPENING_WAITING_PORT   0x2000
1380 #define BXE_STATE_OPEN                   0x3000
1381 #define BXE_STATE_CLOSING_WAITING_HALT   0x4000
1382 #define BXE_STATE_CLOSING_WAITING_DELETE 0x5000
1383 #define BXE_STATE_CLOSING_WAITING_UNLOAD 0x6000
1384 #define BXE_STATE_DISABLED               0xD000
1385 #define BXE_STATE_DIAG                   0xE000
1386 #define BXE_STATE_ERROR                  0xF000
1387 
1388     int flags;
1389 #define BXE_ONE_PORT_FLAG    0x00000001
1390 #define BXE_NO_ISCSI         0x00000002
1391 #define BXE_NO_FCOE          0x00000004
1392 #define BXE_ONE_PORT(sc)     (sc->flags & BXE_ONE_PORT_FLAG)
1393 //#define BXE_NO_WOL_FLAG      0x00000008
1394 //#define BXE_USING_DAC_FLAG   0x00000010
1395 //#define BXE_USING_MSIX_FLAG  0x00000020
1396 //#define BXE_USING_MSI_FLAG   0x00000040
1397 //#define BXE_DISABLE_MSI_FLAG 0x00000080
1398 #define BXE_NO_MCP_FLAG      0x00000200
1399 #define BXE_NOMCP(sc)        (sc->flags & BXE_NO_MCP_FLAG)
1400 //#define BXE_SAFC_TX_FLAG     0x00000400
1401 #define BXE_MF_FUNC_DIS      0x00000800
1402 #define BXE_TX_SWITCHING     0x00001000
1403 
1404     unsigned long debug; /* per-instance debug logging config */
1405 
1406 #define MAX_BARS 5
1407     struct bxe_bar bar[MAX_BARS]; /* map BARs 0, 2, 4 */
1408 
1409     uint16_t doorbell_size;
1410 
1411     /* periodic timer callout */
1412 #define PERIODIC_STOP 0
1413 #define PERIODIC_GO   1
1414     volatile unsigned long periodic_flags;
1415     struct callout         periodic_callout;
1416 
1417     /* chip start/stop/reset taskqueue */
1418 #define CHIP_TQ_NONE   0
1419 #define CHIP_TQ_START  1
1420 #define CHIP_TQ_STOP   2
1421 #define CHIP_TQ_REINIT 3
1422     volatile unsigned long chip_tq_flags;
1423     struct task            chip_tq_task;
1424     struct taskqueue       *chip_tq;
1425     char                   chip_tq_name[32];
1426 
1427     /* slowpath interrupt taskqueue */
1428     struct task      sp_tq_task;
1429     struct taskqueue *sp_tq;
1430     char             sp_tq_name[32];
1431 
1432     /* set rx_mode asynchronous taskqueue */
1433     struct task      rx_mode_tq_task;
1434     struct taskqueue *rx_mode_tq;
1435     char             rx_mode_tq_name[32];
1436 
1437     struct bxe_fastpath fp[MAX_RSS_CHAINS];
1438     struct bxe_sp_objs  sp_objs[MAX_RSS_CHAINS];
1439 
1440     device_t dev;  /* parent device handle */
1441     uint8_t  unit; /* driver instance number */
1442 
1443     int pcie_bus;    /* PCIe bus number */
1444     int pcie_device; /* PCIe device/slot number */
1445     int pcie_func;   /* PCIe function number */
1446 
1447     uint8_t pfunc_rel; /* function relative */
1448     uint8_t pfunc_abs; /* function absolute */
1449     uint8_t path_id;   /* function absolute */
1450 #define SC_PATH(sc)     (sc->path_id)
1451 #define SC_PORT(sc)     (sc->pfunc_rel & 1)
1452 #define SC_FUNC(sc)     (sc->pfunc_rel)
1453 #define SC_ABS_FUNC(sc) (sc->pfunc_abs)
1454 #define SC_VN(sc)       (sc->pfunc_rel >> 1)
1455 #define SC_L_ID(sc)     (SC_VN(sc) << 2)
1456 #define PORT_ID(sc)     SC_PORT(sc)
1457 #define PATH_ID(sc)     SC_PATH(sc)
1458 #define VNIC_ID(sc)     SC_VN(sc)
1459 #define FUNC_ID(sc)     SC_FUNC(sc)
1460 #define ABS_FUNC_ID(sc) SC_ABS_FUNC(sc)
1461 #define SC_FW_MB_IDX_VN(sc, vn)                                \
1462     (SC_PORT(sc) + (vn) *                                      \
1463      ((CHIP_IS_E1x(sc) || (CHIP_IS_MODE_4_PORT(sc))) ? 2 : 1))
1464 #define SC_FW_MB_IDX(sc) SC_FW_MB_IDX_VN(sc, SC_VN(sc))
1465 
1466     int if_capen; /* enabled interface capabilities */
1467 
1468     struct bxe_devinfo devinfo;
1469     char fw_ver_str[32];
1470     char mf_mode_str[32];
1471     char pci_link_str[32];
1472 
1473     const struct iro *iro_array;
1474 
1475 #ifdef BXE_CORE_LOCK_SX
1476     struct sx      core_sx;
1477     char           core_sx_name[32];
1478 #else
1479     struct mtx     core_mtx;
1480     char           core_mtx_name[32];
1481 #endif
1482     struct mtx     sp_mtx;
1483     char           sp_mtx_name[32];
1484     struct mtx     dmae_mtx;
1485     char           dmae_mtx_name[32];
1486     struct mtx     fwmb_mtx;
1487     char           fwmb_mtx_name[32];
1488     struct mtx     print_mtx;
1489     char           print_mtx_name[32];
1490     struct mtx     stats_mtx;
1491     char           stats_mtx_name[32];
1492     struct mtx     mcast_mtx;
1493     char           mcast_mtx_name[32];
1494 
1495 #ifdef BXE_CORE_LOCK_SX
1496 #define BXE_CORE_TRYLOCK(sc)      sx_try_xlock(&sc->core_sx)
1497 #define BXE_CORE_LOCK(sc)         sx_xlock(&sc->core_sx)
1498 #define BXE_CORE_UNLOCK(sc)       sx_xunlock(&sc->core_sx)
1499 #define BXE_CORE_LOCK_ASSERT(sc)  sx_assert(&sc->core_sx, SA_XLOCKED)
1500 #else
1501 #define BXE_CORE_TRYLOCK(sc)      mtx_trylock(&sc->core_mtx)
1502 #define BXE_CORE_LOCK(sc)         mtx_lock(&sc->core_mtx)
1503 #define BXE_CORE_UNLOCK(sc)       mtx_unlock(&sc->core_mtx)
1504 #define BXE_CORE_LOCK_ASSERT(sc)  mtx_assert(&sc->core_mtx, MA_OWNED)
1505 #endif
1506 
1507 #define BXE_SP_LOCK(sc)           mtx_lock(&sc->sp_mtx)
1508 #define BXE_SP_UNLOCK(sc)         mtx_unlock(&sc->sp_mtx)
1509 #define BXE_SP_LOCK_ASSERT(sc)    mtx_assert(&sc->sp_mtx, MA_OWNED)
1510 
1511 #define BXE_DMAE_LOCK(sc)         mtx_lock(&sc->dmae_mtx)
1512 #define BXE_DMAE_UNLOCK(sc)       mtx_unlock(&sc->dmae_mtx)
1513 #define BXE_DMAE_LOCK_ASSERT(sc)  mtx_assert(&sc->dmae_mtx, MA_OWNED)
1514 
1515 #define BXE_FWMB_LOCK(sc)         mtx_lock(&sc->fwmb_mtx)
1516 #define BXE_FWMB_UNLOCK(sc)       mtx_unlock(&sc->fwmb_mtx)
1517 #define BXE_FWMB_LOCK_ASSERT(sc)  mtx_assert(&sc->fwmb_mtx, MA_OWNED)
1518 
1519 #define BXE_PRINT_LOCK(sc)        mtx_lock(&sc->print_mtx)
1520 #define BXE_PRINT_UNLOCK(sc)      mtx_unlock(&sc->print_mtx)
1521 #define BXE_PRINT_LOCK_ASSERT(sc) mtx_assert(&sc->print_mtx, MA_OWNED)
1522 
1523 #define BXE_STATS_LOCK(sc)        mtx_lock(&sc->stats_mtx)
1524 #define BXE_STATS_UNLOCK(sc)      mtx_unlock(&sc->stats_mtx)
1525 #define BXE_STATS_LOCK_ASSERT(sc) mtx_assert(&sc->stats_mtx, MA_OWNED)
1526 
1527 #if __FreeBSD_version < 800000
1528 #define BXE_MCAST_LOCK(sc)        \
1529     do {                          \
1530         mtx_lock(&sc->mcast_mtx); \
1531         IF_ADDR_LOCK(sc->ifp);  \
1532     } while (0)
1533 #define BXE_MCAST_UNLOCK(sc)        \
1534     do {                            \
1535         IF_ADDR_UNLOCK(sc->ifp);  \
1536         mtx_unlock(&sc->mcast_mtx); \
1537     } while (0)
1538 #else
1539 #define BXE_MCAST_LOCK(sc)         \
1540     do {                           \
1541         mtx_lock(&sc->mcast_mtx);  \
1542         if_maddr_rlock(sc->ifp); \
1543     } while (0)
1544 #define BXE_MCAST_UNLOCK(sc)         \
1545     do {                             \
1546         if_maddr_runlock(sc->ifp); \
1547         mtx_unlock(&sc->mcast_mtx);  \
1548     } while (0)
1549 #endif
1550 #define BXE_MCAST_LOCK_ASSERT(sc) mtx_assert(&sc->mcast_mtx, MA_OWNED)
1551 
1552     int dmae_ready;
1553 #define DMAE_READY(sc) (sc->dmae_ready)
1554 
1555     struct ecore_credit_pool_obj vlans_pool;
1556     struct ecore_credit_pool_obj macs_pool;
1557     struct ecore_rx_mode_obj     rx_mode_obj;
1558     struct ecore_mcast_obj       mcast_obj;
1559     struct ecore_rss_config_obj  rss_conf_obj;
1560     struct ecore_func_sp_obj     func_obj;
1561 
1562     uint16_t fw_seq;
1563     uint16_t fw_drv_pulse_wr_seq;
1564     uint32_t func_stx;
1565 
1566     struct elink_params         link_params;
1567     struct elink_vars           link_vars;
1568     uint32_t                    link_cnt;
1569     struct bxe_link_report_data last_reported_link;
1570     char mac_addr_str[32];
1571 
1572     int last_reported_link_state;
1573 
1574     int tx_ring_size;
1575     int rx_ring_size;
1576     int wol;
1577 
1578     int is_leader;
1579     int recovery_state;
1580 #define BXE_RECOVERY_DONE        1
1581 #define BXE_RECOVERY_INIT        2
1582 #define BXE_RECOVERY_WAIT        3
1583 #define BXE_RECOVERY_FAILED      4
1584 #define BXE_RECOVERY_NIC_LOADING 5
1585 
1586     uint32_t rx_mode;
1587 #define BXE_RX_MODE_NONE     0
1588 #define BXE_RX_MODE_NORMAL   1
1589 #define BXE_RX_MODE_ALLMULTI 2
1590 #define BXE_RX_MODE_PROMISC  3
1591 #define BXE_MAX_MULTICAST    64
1592 
1593     struct bxe_port port;
1594 
1595     struct cmng_init cmng;
1596 
1597     /* user configs */
1598     int      num_queues;
1599     int      max_rx_bufs;
1600     int      hc_rx_ticks;
1601     int      hc_tx_ticks;
1602     int      rx_budget;
1603     int      max_aggregation_size;
1604     int      mrrs;
1605     int      autogreeen;
1606 #define AUTO_GREEN_HW_DEFAULT 0
1607 #define AUTO_GREEN_FORCE_ON   1
1608 #define AUTO_GREEN_FORCE_OFF  2
1609     int      interrupt_mode;
1610 #define INTR_MODE_INTX 0
1611 #define INTR_MODE_MSI  1
1612 #define INTR_MODE_MSIX 2
1613     int      udp_rss;
1614 
1615     /* interrupt allocations */
1616     struct bxe_intr intr[MAX_RSS_CHAINS+1];
1617     int             intr_count;
1618     uint8_t         igu_dsb_id;
1619     uint8_t         igu_base_sb;
1620     uint8_t         igu_sb_cnt;
1621     //uint8_t         min_msix_vec_cnt;
1622     uint32_t        igu_base_addr;
1623     //bus_addr_t      def_status_blk_mapping;
1624     uint8_t         base_fw_ndsb;
1625 #define DEF_SB_IGU_ID 16
1626 #define DEF_SB_ID     HC_SP_SB_ID
1627 
1628     /* parent bus DMA tag  */
1629     bus_dma_tag_t parent_dma_tag;
1630 
1631     /* default status block */
1632     struct bxe_dma              def_sb_dma;
1633     struct host_sp_status_block *def_sb;
1634     uint16_t                    def_idx;
1635     uint16_t                    def_att_idx;
1636     uint32_t                    attn_state;
1637     struct attn_route           attn_group[MAX_DYNAMIC_ATTN_GRPS];
1638 
1639 /* general SP events - stats query, cfc delete, etc */
1640 #define HC_SP_INDEX_ETH_DEF_CONS         3
1641 /* EQ completions */
1642 #define HC_SP_INDEX_EQ_CONS              7
1643 /* FCoE L2 connection completions */
1644 #define HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS  6
1645 #define HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS  4
1646 /* iSCSI L2 */
1647 #define HC_SP_INDEX_ETH_ISCSI_CQ_CONS    5
1648 #define HC_SP_INDEX_ETH_ISCSI_RX_CQ_CONS 1
1649 
1650     /* event queue */
1651     struct bxe_dma        eq_dma;
1652     union event_ring_elem *eq;
1653     uint16_t              eq_prod;
1654     uint16_t              eq_cons;
1655     uint16_t              *eq_cons_sb;
1656 #define NUM_EQ_PAGES     1 /* must be a power of 2 */
1657 #define EQ_DESC_CNT_PAGE (BCM_PAGE_SIZE / sizeof(union event_ring_elem))
1658 #define EQ_DESC_MAX_PAGE (EQ_DESC_CNT_PAGE - 1)
1659 #define NUM_EQ_DESC      (EQ_DESC_CNT_PAGE * NUM_EQ_PAGES)
1660 #define EQ_DESC_MASK     (NUM_EQ_DESC - 1)
1661 #define MAX_EQ_AVAIL     (EQ_DESC_MAX_PAGE * NUM_EQ_PAGES - 2)
1662 /* depends on EQ_DESC_CNT_PAGE being a power of 2 */
1663 #define NEXT_EQ_IDX(x)                                      \
1664     ((((x) & EQ_DESC_MAX_PAGE) == (EQ_DESC_MAX_PAGE - 1)) ? \
1665          ((x) + 2) : ((x) + 1))
1666 /* depends on the above and on NUM_EQ_PAGES being a power of 2 */
1667 #define EQ_DESC(x) ((x) & EQ_DESC_MASK)
1668 
1669     /* slow path */
1670     struct bxe_dma      sp_dma;
1671     struct bxe_slowpath *sp;
1672     unsigned long       sp_state;
1673 
1674     /* slow path queue */
1675     struct bxe_dma spq_dma;
1676     struct eth_spe *spq;
1677 #define SP_DESC_CNT     (BCM_PAGE_SIZE / sizeof(struct eth_spe))
1678 #define MAX_SP_DESC_CNT (SP_DESC_CNT - 1)
1679 #define MAX_SPQ_PENDING 8
1680 
1681     uint16_t       spq_prod_idx;
1682     struct eth_spe *spq_prod_bd;
1683     struct eth_spe *spq_last_bd;
1684     uint16_t       *dsb_sp_prod;
1685     //uint16_t       *spq_hw_con;
1686     //uint16_t       spq_left;
1687 
1688     volatile unsigned long eq_spq_left; /* COMMON_xxx ramrod credit */
1689     volatile unsigned long cq_spq_left; /* ETH_xxx ramrod credit */
1690 
1691     /* fw decompression buffer */
1692     struct bxe_dma gz_buf_dma;
1693     void           *gz_buf;
1694     z_streamp      gz_strm;
1695     uint32_t       gz_outlen;
1696 #define GUNZIP_BUF(sc)    (sc->gz_buf)
1697 #define GUNZIP_OUTLEN(sc) (sc->gz_outlen)
1698 #define GUNZIP_PHYS(sc)   (sc->gz_buf_dma.paddr)
1699 #define FW_BUF_SIZE       0x40000
1700 
1701     const struct raw_op *init_ops;
1702     const uint16_t *init_ops_offsets; /* init block offsets inside init_ops */
1703     const uint32_t *init_data;        /* data blob, 32 bit granularity */
1704     uint32_t       init_mode_flags;
1705 #define INIT_MODE_FLAGS(sc) (sc->init_mode_flags)
1706     /* PRAM blobs - raw data */
1707     const uint8_t *tsem_int_table_data;
1708     const uint8_t *tsem_pram_data;
1709     const uint8_t *usem_int_table_data;
1710     const uint8_t *usem_pram_data;
1711     const uint8_t *xsem_int_table_data;
1712     const uint8_t *xsem_pram_data;
1713     const uint8_t *csem_int_table_data;
1714     const uint8_t *csem_pram_data;
1715 #define INIT_OPS(sc)                 (sc->init_ops)
1716 #define INIT_OPS_OFFSETS(sc)         (sc->init_ops_offsets)
1717 #define INIT_DATA(sc)                (sc->init_data)
1718 #define INIT_TSEM_INT_TABLE_DATA(sc) (sc->tsem_int_table_data)
1719 #define INIT_TSEM_PRAM_DATA(sc)      (sc->tsem_pram_data)
1720 #define INIT_USEM_INT_TABLE_DATA(sc) (sc->usem_int_table_data)
1721 #define INIT_USEM_PRAM_DATA(sc)      (sc->usem_pram_data)
1722 #define INIT_XSEM_INT_TABLE_DATA(sc) (sc->xsem_int_table_data)
1723 #define INIT_XSEM_PRAM_DATA(sc)      (sc->xsem_pram_data)
1724 #define INIT_CSEM_INT_TABLE_DATA(sc) (sc->csem_int_table_data)
1725 #define INIT_CSEM_PRAM_DATA(sc)      (sc->csem_pram_data)
1726 
1727     /* ILT
1728      * For max 196 cids (64*3 + non-eth), 32KB ILT page size and 1KB
1729      * context size we need 8 ILT entries.
1730      */
1731 #define ILT_MAX_L2_LINES 8
1732     struct hw_context context[ILT_MAX_L2_LINES];
1733     struct ecore_ilt *ilt;
1734 #define ILT_MAX_LINES 256
1735 
1736 /* max supported number of RSS queues: IGU SBs minus one for CNIC */
1737 #define BXE_MAX_RSS_COUNT(sc) ((sc)->igu_sb_cnt - CNIC_SUPPORT(sc))
1738 /* max CID count: Max RSS * Max_Tx_Multi_Cos + FCoE + iSCSI */
1739 #if 1
1740 #define BXE_L2_MAX_CID(sc)                                              \
1741     (BXE_MAX_RSS_COUNT(sc) * ECORE_MULTI_TX_COS + 2 * CNIC_SUPPORT(sc))
1742 #else
1743 #define BXE_L2_MAX_CID(sc) /* OOO + FWD */                              \
1744     (BXE_MAX_RSS_COUNT(sc) * ECORE_MULTI_TX_COS + 4 * CNIC_SUPPORT(sc))
1745 #endif
1746 #if 1
1747 #define BXE_L2_CID_COUNT(sc)                                             \
1748     (BXE_NUM_ETH_QUEUES(sc) * ECORE_MULTI_TX_COS + 2 * CNIC_SUPPORT(sc))
1749 #else
1750 #define BXE_L2_CID_COUNT(sc) /* OOO + FWD */                             \
1751     (BXE_NUM_ETH_QUEUES(sc) * ECORE_MULTI_TX_COS + 4 * CNIC_SUPPORT(sc))
1752 #endif
1753 #define L2_ILT_LINES(sc)                                \
1754     (DIV_ROUND_UP(BXE_L2_CID_COUNT(sc), ILT_PAGE_CIDS))
1755 
1756     int qm_cid_count;
1757 
1758     uint8_t dropless_fc;
1759 
1760 #if 0
1761     struct bxe_dma *t2;
1762 #endif
1763 
1764     /* total number of FW statistics requests */
1765     uint8_t fw_stats_num;
1766     /*
1767      * This is a memory buffer that will contain both statistics ramrod
1768      * request and data.
1769      */
1770     struct bxe_dma fw_stats_dma;
1771     /*
1772      * FW statistics request shortcut (points at the beginning of fw_stats
1773      * buffer).
1774      */
1775     int                     fw_stats_req_size;
1776     struct bxe_fw_stats_req *fw_stats_req;
1777     bus_addr_t              fw_stats_req_mapping;
1778     /*
1779      * FW statistics data shortcut (points at the beginning of fw_stats
1780      * buffer + fw_stats_req_size).
1781      */
1782     int                      fw_stats_data_size;
1783     struct bxe_fw_stats_data *fw_stats_data;
1784     bus_addr_t               fw_stats_data_mapping;
1785 
1786     /* tracking a pending STAT_QUERY ramrod */
1787     uint16_t stats_pending;
1788     /* number of completed statistics ramrods */
1789     uint16_t stats_comp;
1790     uint16_t stats_counter;
1791     uint8_t  stats_init;
1792     int      stats_state;
1793 
1794     struct bxe_eth_stats         eth_stats;
1795     struct host_func_stats       func_stats;
1796     struct bxe_eth_stats_old     eth_stats_old;
1797     struct bxe_net_stats_old     net_stats_old;
1798     struct bxe_fw_port_stats_old fw_stats_old;
1799 
1800     struct dmae_command stats_dmae; /* used by dmae command loader */
1801     int                 executer_idx;
1802 
1803     int mtu;
1804 
1805     /* LLDP params */
1806     struct bxe_config_lldp_params lldp_config_params;
1807     /* DCB support on/off */
1808     int dcb_state;
1809 #define BXE_DCB_STATE_OFF 0
1810 #define BXE_DCB_STATE_ON  1
1811     /* DCBX engine mode */
1812     int dcbx_enabled;
1813 #define BXE_DCBX_ENABLED_OFF        0
1814 #define BXE_DCBX_ENABLED_ON_NEG_OFF 1
1815 #define BXE_DCBX_ENABLED_ON_NEG_ON  2
1816 #define BXE_DCBX_ENABLED_INVALID    -1
1817     uint8_t dcbx_mode_uset;
1818     struct bxe_config_dcbx_params dcbx_config_params;
1819     struct bxe_dcbx_port_params   dcbx_port_params;
1820     int dcb_version;
1821 
1822     uint8_t cnic_support;
1823     uint8_t cnic_enabled;
1824     uint8_t cnic_loaded;
1825 #define CNIC_SUPPORT(sc) 0 /* ((sc)->cnic_support) */
1826 #define CNIC_ENABLED(sc) 0 /* ((sc)->cnic_enabled) */
1827 #define CNIC_LOADED(sc)  0 /* ((sc)->cnic_loaded) */
1828 
1829     /* multiple tx classes of service */
1830     uint8_t max_cos;
1831 #define BXE_MAX_PRIORITY 8
1832     /* priority to cos mapping */
1833     uint8_t prio_to_cos[BXE_MAX_PRIORITY];
1834 
1835     int panic;
1836 }; /* struct bxe_softc */
1837 
1838 /* IOCTL sub-commands for edebug and firmware upgrade */
1839 #define BXE_IOC_RD_NVRAM        1
1840 #define BXE_IOC_WR_NVRAM        2
1841 #define BXE_IOC_STATS_SHOW_NUM  3
1842 #define BXE_IOC_STATS_SHOW_STR  4
1843 #define BXE_IOC_STATS_SHOW_CNT  5
1844 
1845 struct bxe_nvram_data {
1846     uint32_t op; /* ioctl sub-command */
1847     uint32_t offset;
1848     uint32_t len;
1849     uint32_t value[1]; /* variable */
1850 };
1851 
1852 union bxe_stats_show_data {
1853     uint32_t op; /* ioctl sub-command */
1854 
1855     struct {
1856         uint32_t num; /* return number of stats */
1857         uint32_t len; /* length of each string item */
1858     } desc;
1859 
1860     /* variable length... */
1861     char str[1]; /* holds names of desc.num stats, each desc.len in length */
1862 
1863     /* variable length... */
1864     uint64_t stats[1]; /* holds all stats */
1865 };
1866 
1867 /* function init flags */
1868 #define FUNC_FLG_RSS     0x0001
1869 #define FUNC_FLG_STATS   0x0002
1870 /* FUNC_FLG_UNMATCHED       0x0004 */
1871 #define FUNC_FLG_TPA     0x0008
1872 #define FUNC_FLG_SPQ     0x0010
1873 #define FUNC_FLG_LEADING 0x0020 /* PF only */
1874 
1875 struct bxe_func_init_params {
1876     bus_addr_t fw_stat_map; /* (dma) valid if FUNC_FLG_STATS */
1877     bus_addr_t spq_map;     /* (dma) valid if FUNC_FLG_SPQ */
1878     uint16_t   func_flgs;
1879     uint16_t   func_id;     /* abs function id */
1880     uint16_t   pf_id;
1881     uint16_t   spq_prod;    /* valid if FUNC_FLG_SPQ */
1882 };
1883 
1884 /* memory resources reside at BARs 0, 2, 4 */
1885 /* Run `pciconf -lb` to see mappings */
1886 #define BAR0 0
1887 #define BAR1 2
1888 #define BAR2 4
1889 
1890 #ifdef BXE_REG_NO_INLINE
1891 
1892 uint8_t bxe_reg_read8(struct bxe_softc *sc, bus_size_t offset);
1893 uint16_t bxe_reg_read16(struct bxe_softc *sc, bus_size_t offset);
1894 uint32_t bxe_reg_read32(struct bxe_softc *sc, bus_size_t offset);
1895 
1896 void bxe_reg_write8(struct bxe_softc *sc, bus_size_t offset, uint8_t val);
1897 void bxe_reg_write16(struct bxe_softc *sc, bus_size_t offset, uint16_t val);
1898 void bxe_reg_write32(struct bxe_softc *sc, bus_size_t offset, uint32_t val);
1899 
1900 #define REG_RD8(sc, offset)  bxe_reg_read8(sc, offset)
1901 #define REG_RD16(sc, offset) bxe_reg_read16(sc, offset)
1902 #define REG_RD32(sc, offset) bxe_reg_read32(sc, offset)
1903 
1904 #define REG_WR8(sc, offset, val)  bxe_reg_write8(sc, offset, val)
1905 #define REG_WR16(sc, offset, val) bxe_reg_write16(sc, offset, val)
1906 #define REG_WR32(sc, offset, val) bxe_reg_write32(sc, offset, val)
1907 
1908 #else /* not BXE_REG_NO_INLINE */
1909 
1910 #define REG_WR8(sc, offset, val)            \
1911     bus_space_write_1(sc->bar[BAR0].tag,    \
1912                       sc->bar[BAR0].handle, \
1913                       offset, val)
1914 
1915 #define REG_WR16(sc, offset, val)           \
1916     bus_space_write_2(sc->bar[BAR0].tag,    \
1917                       sc->bar[BAR0].handle, \
1918                       offset, val)
1919 
1920 #define REG_WR32(sc, offset, val)           \
1921     bus_space_write_4(sc->bar[BAR0].tag,    \
1922                       sc->bar[BAR0].handle, \
1923                       offset, val)
1924 
1925 #define REG_RD8(sc, offset)                \
1926     bus_space_read_1(sc->bar[BAR0].tag,    \
1927                      sc->bar[BAR0].handle, \
1928                      offset)
1929 
1930 #define REG_RD16(sc, offset)               \
1931     bus_space_read_2(sc->bar[BAR0].tag,    \
1932                      sc->bar[BAR0].handle, \
1933                      offset)
1934 
1935 #define REG_RD32(sc, offset)               \
1936     bus_space_read_4(sc->bar[BAR0].tag,    \
1937                      sc->bar[BAR0].handle, \
1938                      offset)
1939 
1940 #endif /* BXE_REG_NO_INLINE */
1941 
1942 #define REG_RD(sc, offset)      REG_RD32(sc, offset)
1943 #define REG_WR(sc, offset, val) REG_WR32(sc, offset, val)
1944 
1945 #define REG_RD_IND(sc, offset)      bxe_reg_rd_ind(sc, offset)
1946 #define REG_WR_IND(sc, offset, val) bxe_reg_wr_ind(sc, offset, val)
1947 
1948 #define BXE_SP(sc, var) (&(sc)->sp->var)
1949 #define BXE_SP_MAPPING(sc, var) \
1950     (sc->sp_dma.paddr + offsetof(struct bxe_slowpath, var))
1951 
1952 #define BXE_FP(sc, nr, var) ((sc)->fp[(nr)].var)
1953 #define BXE_SP_OBJ(sc, fp) ((sc)->sp_objs[(fp)->index])
1954 
1955 #if 0
1956 #define bxe_fp(sc, nr, var)   ((sc)->fp[nr].var)
1957 #define bxe_sp_obj(sc, fp)    ((sc)->sp_objs[(fp)->index])
1958 #define bxe_fp_stats(sc, fp)  (&(sc)->fp_stats[(fp)->index])
1959 #define bxe_fp_qstats(sc, fp) (&(sc)->fp_stats[(fp)->index].eth_q_stats)
1960 #endif
1961 
1962 #define REG_RD_DMAE(sc, offset, valp, len32)               \
1963     do {                                                   \
1964         bxe_read_dmae(sc, offset, len32);                  \
1965         memcpy(valp, BXE_SP(sc, wb_data[0]), (len32) * 4); \
1966     } while (0)
1967 
1968 #define REG_WR_DMAE(sc, offset, valp, len32)                            \
1969     do {                                                                \
1970         memcpy(BXE_SP(sc, wb_data[0]), valp, (len32) * 4);              \
1971         bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data), offset, len32); \
1972     } while (0)
1973 
1974 #define REG_WR_DMAE_LEN(sc, offset, valp, len32) \
1975     REG_WR_DMAE(sc, offset, valp, len32)
1976 
1977 #define REG_RD_DMAE_LEN(sc, offset, valp, len32) \
1978     REG_RD_DMAE(sc, offset, valp, len32)
1979 
1980 #define VIRT_WR_DMAE_LEN(sc, data, addr, len32, le32_swap)         \
1981     do {                                                           \
1982         /* if (le32_swap) {                                     */ \
1983         /*    BLOGW(sc, "VIRT_WR_DMAE_LEN with le32_swap=1\n"); */ \
1984         /* }                                                    */ \
1985         memcpy(GUNZIP_BUF(sc), data, len32 * 4);                   \
1986         ecore_write_big_buf_wb(sc, addr, len32);                   \
1987     } while (0)
1988 
1989 #define BXE_DB_MIN_SHIFT 3   /* 8 bytes */
1990 #define BXE_DB_SHIFT     7   /* 128 bytes */
1991 #if (BXE_DB_SHIFT < BXE_DB_MIN_SHIFT)
1992 #error "Minimum DB doorbell stride is 8"
1993 #endif
1994 #define DPM_TRIGGER_TYPE 0x40
1995 #define DOORBELL(sc, cid, val)                                              \
1996     do {                                                                    \
1997         bus_space_write_4(sc->bar[BAR1].tag, sc->bar[BAR1].handle,          \
1998                           ((sc->doorbell_size * (cid)) + DPM_TRIGGER_TYPE), \
1999                           (uint32_t)val);                                   \
2000     } while(0)
2001 
2002 #define SHMEM_ADDR(sc, field)                                       \
2003     (sc->devinfo.shmem_base + offsetof(struct shmem_region, field))
2004 #define SHMEM_RD(sc, field)      REG_RD(sc, SHMEM_ADDR(sc, field))
2005 #define SHMEM_RD16(sc, field)    REG_RD16(sc, SHMEM_ADDR(sc, field))
2006 #define SHMEM_WR(sc, field, val) REG_WR(sc, SHMEM_ADDR(sc, field), val)
2007 
2008 #define SHMEM2_ADDR(sc, field)                                        \
2009     (sc->devinfo.shmem2_base + offsetof(struct shmem2_region, field))
2010 #define SHMEM2_HAS(sc, field)                                            \
2011     (sc->devinfo.shmem2_base && (REG_RD(sc, SHMEM2_ADDR(sc, size)) >     \
2012                                  offsetof(struct shmem2_region, field)))
2013 #define SHMEM2_RD(sc, field)      REG_RD(sc, SHMEM2_ADDR(sc, field))
2014 #define SHMEM2_WR(sc, field, val) REG_WR(sc, SHMEM2_ADDR(sc, field), val)
2015 
2016 #define MFCFG_ADDR(sc, field)                                  \
2017     (sc->devinfo.mf_cfg_base + offsetof(struct mf_cfg, field))
2018 #define MFCFG_RD(sc, field)      REG_RD(sc, MFCFG_ADDR(sc, field))
2019 #define MFCFG_RD16(sc, field)    REG_RD16(sc, MFCFG_ADDR(sc, field))
2020 #define MFCFG_WR(sc, field, val) REG_WR(sc, MFCFG_ADDR(sc, field), val)
2021 
2022 /* DMAE command defines */
2023 
2024 #define DMAE_TIMEOUT      -1
2025 #define DMAE_PCI_ERROR    -2 /* E2 and onward */
2026 #define DMAE_NOT_RDY      -3
2027 #define DMAE_PCI_ERR_FLAG 0x80000000
2028 
2029 #define DMAE_SRC_PCI      0
2030 #define DMAE_SRC_GRC      1
2031 
2032 #define DMAE_DST_NONE     0
2033 #define DMAE_DST_PCI      1
2034 #define DMAE_DST_GRC      2
2035 
2036 #define DMAE_COMP_PCI     0
2037 #define DMAE_COMP_GRC     1
2038 
2039 #define DMAE_COMP_REGULAR 0
2040 #define DMAE_COM_SET_ERR  1
2041 
2042 #define DMAE_CMD_SRC_PCI (DMAE_SRC_PCI << DMAE_COMMAND_SRC_SHIFT)
2043 #define DMAE_CMD_SRC_GRC (DMAE_SRC_GRC << DMAE_COMMAND_SRC_SHIFT)
2044 #define DMAE_CMD_DST_PCI (DMAE_DST_PCI << DMAE_COMMAND_DST_SHIFT)
2045 #define DMAE_CMD_DST_GRC (DMAE_DST_GRC << DMAE_COMMAND_DST_SHIFT)
2046 
2047 #define DMAE_CMD_C_DST_PCI (DMAE_COMP_PCI << DMAE_COMMAND_C_DST_SHIFT)
2048 #define DMAE_CMD_C_DST_GRC (DMAE_COMP_GRC << DMAE_COMMAND_C_DST_SHIFT)
2049 
2050 #define DMAE_CMD_ENDIANITY_NO_SWAP   (0 << DMAE_COMMAND_ENDIANITY_SHIFT)
2051 #define DMAE_CMD_ENDIANITY_B_SWAP    (1 << DMAE_COMMAND_ENDIANITY_SHIFT)
2052 #define DMAE_CMD_ENDIANITY_DW_SWAP   (2 << DMAE_COMMAND_ENDIANITY_SHIFT)
2053 #define DMAE_CMD_ENDIANITY_B_DW_SWAP (3 << DMAE_COMMAND_ENDIANITY_SHIFT)
2054 
2055 #define DMAE_CMD_PORT_0 0
2056 #define DMAE_CMD_PORT_1 DMAE_COMMAND_PORT
2057 
2058 #define DMAE_SRC_PF 0
2059 #define DMAE_SRC_VF 1
2060 
2061 #define DMAE_DST_PF 0
2062 #define DMAE_DST_VF 1
2063 
2064 #define DMAE_C_SRC 0
2065 #define DMAE_C_DST 1
2066 
2067 #define DMAE_LEN32_RD_MAX     0x80
2068 #define DMAE_LEN32_WR_MAX(sc) (CHIP_IS_E1(sc) ? 0x400 : 0x2000)
2069 
2070 #define DMAE_COMP_VAL 0x60d0d0ae /* E2 and beyond, upper bit indicates error */
2071 
2072 #define MAX_DMAE_C_PER_PORT 8
2073 #define INIT_DMAE_C(sc)     ((SC_PORT(sc) * MAX_DMAE_C_PER_PORT) + SC_VN(sc))
2074 #define PMF_DMAE_C(sc)      ((SC_PORT(sc) * MAX_DMAE_C_PER_PORT) + E1HVN_MAX)
2075 
2076 static const uint32_t dmae_reg_go_c[] = {
2077     DMAE_REG_GO_C0,  DMAE_REG_GO_C1,  DMAE_REG_GO_C2,  DMAE_REG_GO_C3,
2078     DMAE_REG_GO_C4,  DMAE_REG_GO_C5,  DMAE_REG_GO_C6,  DMAE_REG_GO_C7,
2079     DMAE_REG_GO_C8,  DMAE_REG_GO_C9,  DMAE_REG_GO_C10, DMAE_REG_GO_C11,
2080     DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15
2081 };
2082 
2083 #define ATTN_NIG_FOR_FUNC     (1L << 8)
2084 #define ATTN_SW_TIMER_4_FUNC  (1L << 9)
2085 #define GPIO_2_FUNC           (1L << 10)
2086 #define GPIO_3_FUNC           (1L << 11)
2087 #define GPIO_4_FUNC           (1L << 12)
2088 #define ATTN_GENERAL_ATTN_1   (1L << 13)
2089 #define ATTN_GENERAL_ATTN_2   (1L << 14)
2090 #define ATTN_GENERAL_ATTN_3   (1L << 15)
2091 #define ATTN_GENERAL_ATTN_4   (1L << 13)
2092 #define ATTN_GENERAL_ATTN_5   (1L << 14)
2093 #define ATTN_GENERAL_ATTN_6   (1L << 15)
2094 #define ATTN_HARD_WIRED_MASK  0xff00
2095 #define ATTENTION_ID          4
2096 
2097 #define AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR \
2098     AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR
2099 
2100 #define MAX_IGU_ATTN_ACK_TO 100
2101 
2102 #define STORM_ASSERT_ARRAY_SIZE 50
2103 
2104 #define BXE_PMF_LINK_ASSERT(sc) \
2105     GENERAL_ATTEN_OFFSET(LINK_SYNC_ATTENTION_BIT_FUNC_0 + SC_FUNC(sc))
2106 
2107 #define BXE_MC_ASSERT_BITS \
2108     (GENERAL_ATTEN_OFFSET(TSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2109      GENERAL_ATTEN_OFFSET(USTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2110      GENERAL_ATTEN_OFFSET(CSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2111      GENERAL_ATTEN_OFFSET(XSTORM_FATAL_ASSERT_ATTENTION_BIT))
2112 
2113 #define BXE_MCP_ASSERT \
2114     GENERAL_ATTEN_OFFSET(MCP_FATAL_ASSERT_ATTENTION_BIT)
2115 
2116 #define BXE_GRC_TIMEOUT GENERAL_ATTEN_OFFSET(LATCHED_ATTN_TIMEOUT_GRC)
2117 #define BXE_GRC_RSV     (GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCR) | \
2118                          GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCT) | \
2119                          GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCN) | \
2120                          GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCU) | \
2121                          GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCP) | \
2122                          GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RSVD_GRC))
2123 
2124 #define MULTI_MASK 0x7f
2125 
2126 #define PFS_PER_PORT(sc)                               \
2127     ((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4)
2128 #define SC_MAX_VN_NUM(sc) PFS_PER_PORT(sc)
2129 
2130 #define FIRST_ABS_FUNC_IN_PORT(sc)                    \
2131     ((CHIP_PORT_MODE(sc) == CHIP_PORT_MODE_NONE) ?    \
2132      PORT_ID(sc) : (PATH_ID(sc) + (2 * PORT_ID(sc))))
2133 
2134 #define FOREACH_ABS_FUNC_IN_PORT(sc, i)            \
2135     for ((i) = FIRST_ABS_FUNC_IN_PORT(sc);         \
2136          (i) < MAX_FUNC_NUM;                       \
2137          (i) += (MAX_FUNC_NUM / PFS_PER_PORT(sc)))
2138 
2139 #define BXE_SWCID_SHIFT 17
2140 #define BXE_SWCID_MASK  ((0x1 << BXE_SWCID_SHIFT) - 1)
2141 
2142 #define SW_CID(x)  (le32toh(x) & BXE_SWCID_MASK)
2143 #define CQE_CMD(x) (le32toh(x) >> COMMON_RAMROD_ETH_RX_CQE_CMD_ID_SHIFT)
2144 
2145 #define CQE_TYPE(cqe_fp_flags)   ((cqe_fp_flags) & ETH_FAST_PATH_RX_CQE_TYPE)
2146 #define CQE_TYPE_START(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_START_AGG)
2147 #define CQE_TYPE_STOP(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_STOP_AGG)
2148 #define CQE_TYPE_SLOW(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_RAMROD)
2149 #define CQE_TYPE_FAST(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_FASTPATH)
2150 
2151 /* must be used on a CID before placing it on a HW ring */
2152 #define HW_CID(sc, x) \
2153     ((SC_PORT(sc) << 23) | (SC_VN(sc) << BXE_SWCID_SHIFT) | (x))
2154 
2155 #define SPEED_10    10
2156 #define SPEED_100   100
2157 #define SPEED_1000  1000
2158 #define SPEED_2500  2500
2159 #define SPEED_10000 10000
2160 
2161 #define PCI_PM_D0    1
2162 #define PCI_PM_D3hot 2
2163 
2164 int  bxe_test_bit(int nr, volatile unsigned long * addr);
2165 void bxe_set_bit(unsigned int nr, volatile unsigned long * addr);
2166 void bxe_clear_bit(int nr, volatile unsigned long * addr);
2167 int  bxe_test_and_set_bit(int nr, volatile unsigned long * addr);
2168 int  bxe_test_and_clear_bit(int nr, volatile unsigned long * addr);
2169 int  bxe_cmpxchg(volatile int *addr, int old, int new);
2170 
2171 void bxe_reg_wr_ind(struct bxe_softc *sc, uint32_t addr,
2172                     uint32_t val);
2173 uint32_t bxe_reg_rd_ind(struct bxe_softc *sc, uint32_t addr);
2174 
2175 
2176 int bxe_dma_alloc(struct bxe_softc *sc, bus_size_t size,
2177                   struct bxe_dma *dma, const char *msg);
2178 void bxe_dma_free(struct bxe_softc *sc, struct bxe_dma *dma);
2179 
2180 uint32_t bxe_dmae_opcode_add_comp(uint32_t opcode, uint8_t comp_type);
2181 uint32_t bxe_dmae_opcode_clr_src_reset(uint32_t opcode);
2182 uint32_t bxe_dmae_opcode(struct bxe_softc *sc, uint8_t src_type,
2183                          uint8_t dst_type, uint8_t with_comp,
2184                          uint8_t comp_type);
2185 void bxe_post_dmae(struct bxe_softc *sc, struct dmae_command *dmae, int idx);
2186 void bxe_read_dmae(struct bxe_softc *sc, uint32_t src_addr, uint32_t len32);
2187 void bxe_write_dmae(struct bxe_softc *sc, bus_addr_t dma_addr,
2188                     uint32_t dst_addr, uint32_t len32);
2189 void bxe_write_dmae_phys_len(struct bxe_softc *sc, bus_addr_t phys_addr,
2190                              uint32_t addr, uint32_t len);
2191 
2192 void bxe_set_ctx_validation(struct bxe_softc *sc, struct eth_context *cxt,
2193                             uint32_t cid);
2194 void bxe_update_coalesce_sb_index(struct bxe_softc *sc, uint8_t fw_sb_id,
2195                                   uint8_t sb_index, uint8_t disable,
2196                                   uint16_t usec);
2197 
2198 int bxe_sp_post(struct bxe_softc *sc, int command, int cid,
2199                 uint32_t data_hi, uint32_t data_lo, int cmd_type);
2200 
2201 void bxe_igu_ack_sb(struct bxe_softc *sc, uint8_t igu_sb_id,
2202                     uint8_t segment, uint16_t index, uint8_t op,
2203                     uint8_t update);
2204 
2205 void ecore_init_e1_firmware(struct bxe_softc *sc);
2206 void ecore_init_e1h_firmware(struct bxe_softc *sc);
2207 void ecore_init_e2_firmware(struct bxe_softc *sc);
2208 
2209 void ecore_storm_memset_struct(struct bxe_softc *sc, uint32_t addr,
2210                                size_t size, uint32_t *data);
2211 
2212 /*********************/
2213 /* LOGGING AND DEBUG */
2214 /*********************/
2215 
2216 /* debug logging codepaths */
2217 #define DBG_LOAD   0x00000001 /* load and unload    */
2218 #define DBG_INTR   0x00000002 /* interrupt handling */
2219 #define DBG_SP     0x00000004 /* slowpath handling  */
2220 #define DBG_STATS  0x00000008 /* stats updates      */
2221 #define DBG_TX     0x00000010 /* packet transmit    */
2222 #define DBG_RX     0x00000020 /* packet receive     */
2223 #define DBG_PHY    0x00000040 /* phy/link handling  */
2224 #define DBG_IOCTL  0x00000080 /* ioctl handling     */
2225 #define DBG_MBUF   0x00000100 /* dumping mbuf info  */
2226 #define DBG_REGS   0x00000200 /* register access    */
2227 #define DBG_LRO    0x00000400 /* lro processing     */
2228 #define DBG_ASSERT 0x80000000 /* debug assert       */
2229 #define DBG_ALL    0xFFFFFFFF /* flying monkeys     */
2230 
2231 #define DBASSERT(sc, exp, msg)                         \
2232     do {                                               \
2233         if (__predict_false(sc->debug & DBG_ASSERT)) { \
2234             if (__predict_false(!(exp))) {             \
2235                 panic msg;                             \
2236             }                                          \
2237         }                                              \
2238     } while (0)
2239 
2240 /* log a debug message */
2241 #define BLOGD(sc, codepath, format, args...)           \
2242     do {                                               \
2243         if (__predict_false(sc->debug & (codepath))) { \
2244             device_printf((sc)->dev,                   \
2245                           "%s(%s:%d) " format,         \
2246                           __FUNCTION__,                \
2247                           __FILE__,                    \
2248                           __LINE__,                    \
2249                           ## args);                    \
2250         }                                              \
2251     } while(0)
2252 
2253 /* log a info message */
2254 #define BLOGI(sc, format, args...)             \
2255     do {                                       \
2256         if (__predict_false(sc->debug)) {      \
2257             device_printf((sc)->dev,           \
2258                           "%s(%s:%d) " format, \
2259                           __FUNCTION__,        \
2260                           __FILE__,            \
2261                           __LINE__,            \
2262                           ## args);            \
2263         } else {                               \
2264             device_printf((sc)->dev,           \
2265                           format,              \
2266                           ## args);            \
2267         }                                      \
2268     } while(0)
2269 
2270 /* log a warning message */
2271 #define BLOGW(sc, format, args...)                      \
2272     do {                                                \
2273         if (__predict_false(sc->debug)) {               \
2274             device_printf((sc)->dev,                    \
2275                           "%s(%s:%d) WARNING: " format, \
2276                           __FUNCTION__,                 \
2277                           __FILE__,                     \
2278                           __LINE__,                     \
2279                           ## args);                     \
2280         } else {                                        \
2281             device_printf((sc)->dev,                    \
2282                           "WARNING: " format,           \
2283                           ## args);                     \
2284         }                                               \
2285     } while(0)
2286 
2287 /* log a error message */
2288 #define BLOGE(sc, format, args...)                    \
2289     do {                                              \
2290         if (__predict_false(sc->debug)) {             \
2291             device_printf((sc)->dev,                  \
2292                           "%s(%s:%d) ERROR: " format, \
2293                           __FUNCTION__,               \
2294                           __FILE__,                   \
2295                           __LINE__,                   \
2296                           ## args);                   \
2297         } else {                                      \
2298             device_printf((sc)->dev,                  \
2299                           "ERROR: " format,           \
2300                           ## args);                   \
2301         }                                             \
2302     } while(0)
2303 
2304 #ifdef ECORE_STOP_ON_ERROR
2305 
2306 #define bxe_panic(sc, msg) \
2307     do {                   \
2308         panic msg;         \
2309     } while (0)
2310 
2311 #else
2312 
2313 #define bxe_panic(sc, msg) \
2314     device_printf((sc)->dev, "%s (%s,%d)\n", __FUNCTION__, __FILE__, __LINE__);
2315 
2316 #endif
2317 
2318 #define CATC_TRIGGER(sc, data) REG_WR((sc), 0x2000, (data));
2319 #define CATC_TRIGGER_START(sc) CATC_TRIGGER((sc), 0xcafecafe)
2320 
2321 void bxe_dump_mem(struct bxe_softc *sc, char *tag,
2322                   uint8_t *mem, uint32_t len);
2323 void bxe_dump_mbuf_data(struct bxe_softc *sc, char *pTag,
2324                         struct mbuf *m, uint8_t contents);
2325 
2326 /***********/
2327 /* INLINES */
2328 /***********/
2329 
2330 static inline uint32_t
2331 reg_poll(struct bxe_softc *sc,
2332          uint32_t         reg,
2333          uint32_t         expected,
2334          int              ms,
2335          int              wait)
2336 {
2337     uint32_t val;
2338 
2339     do {
2340         val = REG_RD(sc, reg);
2341         if (val == expected) {
2342             break;
2343         }
2344         ms -= wait;
2345         DELAY(wait * 1000);
2346     } while (ms > 0);
2347 
2348     return (val);
2349 }
2350 
2351 static inline void
2352 bxe_update_fp_sb_idx(struct bxe_fastpath *fp)
2353 {
2354     mb(); /* status block is written to by the chip */
2355     fp->fp_hc_idx = fp->sb_running_index[SM_RX_ID];
2356 }
2357 
2358 static inline void
2359 bxe_igu_ack_sb_gen(struct bxe_softc *sc,
2360                    uint8_t          igu_sb_id,
2361                    uint8_t          segment,
2362                    uint16_t         index,
2363                    uint8_t          op,
2364                    uint8_t          update,
2365                    uint32_t         igu_addr)
2366 {
2367     struct igu_regular cmd_data = {0};
2368 
2369     cmd_data.sb_id_and_flags =
2370         ((index << IGU_REGULAR_SB_INDEX_SHIFT) |
2371          (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
2372          (update << IGU_REGULAR_BUPDATE_SHIFT) |
2373          (op << IGU_REGULAR_ENABLE_INT_SHIFT));
2374 
2375     BLOGD(sc, DBG_INTR, "write 0x%08x to IGU addr 0x%x\n",
2376             cmd_data.sb_id_and_flags, igu_addr);
2377     REG_WR(sc, igu_addr, cmd_data.sb_id_and_flags);
2378 
2379     /* Make sure that ACK is written */
2380     bus_space_barrier(sc->bar[0].tag, sc->bar[0].handle, 0, 0,
2381                       BUS_SPACE_BARRIER_WRITE);
2382     mb();
2383 }
2384 
2385 static inline void
2386 bxe_hc_ack_sb(struct bxe_softc *sc,
2387               uint8_t          sb_id,
2388               uint8_t          storm,
2389               uint16_t         index,
2390               uint8_t          op,
2391               uint8_t          update)
2392 {
2393     uint32_t hc_addr = (HC_REG_COMMAND_REG + SC_PORT(sc)*32 +
2394                         COMMAND_REG_INT_ACK);
2395     struct igu_ack_register igu_ack;
2396 
2397     igu_ack.status_block_index = index;
2398     igu_ack.sb_id_and_flags =
2399         ((sb_id << IGU_ACK_REGISTER_STATUS_BLOCK_ID_SHIFT) |
2400          (storm << IGU_ACK_REGISTER_STORM_ID_SHIFT) |
2401          (update << IGU_ACK_REGISTER_UPDATE_INDEX_SHIFT) |
2402          (op << IGU_ACK_REGISTER_INTERRUPT_MODE_SHIFT));
2403 
2404     REG_WR(sc, hc_addr, (*(uint32_t *)&igu_ack));
2405 
2406     /* Make sure that ACK is written */
2407     bus_space_barrier(sc->bar[0].tag, sc->bar[0].handle, 0, 0,
2408                       BUS_SPACE_BARRIER_WRITE);
2409     mb();
2410 }
2411 
2412 static inline void
2413 bxe_ack_sb(struct bxe_softc *sc,
2414            uint8_t          igu_sb_id,
2415            uint8_t          storm,
2416            uint16_t         index,
2417            uint8_t          op,
2418            uint8_t          update)
2419 {
2420     if (sc->devinfo.int_block == INT_BLOCK_HC)
2421         bxe_hc_ack_sb(sc, igu_sb_id, storm, index, op, update);
2422     else {
2423         uint8_t segment;
2424         if (CHIP_INT_MODE_IS_BC(sc)) {
2425             segment = storm;
2426         } else if (igu_sb_id != sc->igu_dsb_id) {
2427             segment = IGU_SEG_ACCESS_DEF;
2428         } else if (storm == ATTENTION_ID) {
2429             segment = IGU_SEG_ACCESS_ATTN;
2430         } else {
2431             segment = IGU_SEG_ACCESS_DEF;
2432         }
2433         bxe_igu_ack_sb(sc, igu_sb_id, segment, index, op, update);
2434     }
2435 }
2436 
2437 static inline uint16_t
2438 bxe_hc_ack_int(struct bxe_softc *sc)
2439 {
2440     uint32_t hc_addr = (HC_REG_COMMAND_REG + SC_PORT(sc)*32 +
2441                         COMMAND_REG_SIMD_MASK);
2442     uint32_t result = REG_RD(sc, hc_addr);
2443 
2444     mb();
2445     return (result);
2446 }
2447 
2448 static inline uint16_t
2449 bxe_igu_ack_int(struct bxe_softc *sc)
2450 {
2451     uint32_t igu_addr = (BAR_IGU_INTMEM + IGU_REG_SISR_MDPC_WMASK_LSB_UPPER*8);
2452     uint32_t result = REG_RD(sc, igu_addr);
2453 
2454     BLOGD(sc, DBG_INTR, "read 0x%08x from IGU addr 0x%x\n",
2455           result, igu_addr);
2456 
2457     mb();
2458     return (result);
2459 }
2460 
2461 static inline uint16_t
2462 bxe_ack_int(struct bxe_softc *sc)
2463 {
2464     mb();
2465     if (sc->devinfo.int_block == INT_BLOCK_HC) {
2466         return (bxe_hc_ack_int(sc));
2467     } else {
2468         return (bxe_igu_ack_int(sc));
2469     }
2470 }
2471 
2472 static inline int
2473 func_by_vn(struct bxe_softc *sc,
2474            int              vn)
2475 {
2476     return (2 * vn + SC_PORT(sc));
2477 }
2478 
2479 /*
2480  * Statistics ID are global per chip/path, while Client IDs for E1x
2481  * are per port.
2482  */
2483 static inline uint8_t
2484 bxe_stats_id(struct bxe_fastpath *fp)
2485 {
2486     struct bxe_softc *sc = fp->sc;
2487 
2488     if (!CHIP_IS_E1x(sc)) {
2489 #if 0
2490         /* there are special statistics counters for FCoE 136..140 */
2491         if (IS_FCOE_FP(fp)) {
2492             return (sc->cnic_base_cl_id + (sc->pf_num >> 1));
2493         }
2494 #endif
2495         return (fp->cl_id);
2496     }
2497 
2498     return (fp->cl_id + SC_PORT(sc) * FP_SB_MAX_E1x);
2499 }
2500 
2501 #endif /* __BXE_H__ */
2502 
2503