1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' 17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS 20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 26 * THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #define BXE_DRIVER_VERSION "1.78.91" 33 34 #include "bxe.h" 35 #include "ecore_sp.h" 36 #include "ecore_init.h" 37 #include "ecore_init_ops.h" 38 39 #include "57710_int_offsets.h" 40 #include "57711_int_offsets.h" 41 #include "57712_int_offsets.h" 42 43 /* 44 * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these 45 * explicitly here for older kernels that don't include this changeset. 46 */ 47 #ifndef CTLTYPE_U64 48 #define CTLTYPE_U64 CTLTYPE_QUAD 49 #define sysctl_handle_64 sysctl_handle_quad 50 #endif 51 52 /* 53 * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these 54 * here as zero(0) for older kernels that don't include this changeset 55 * thereby masking the functionality. 56 */ 57 #ifndef CSUM_TCP_IPV6 58 #define CSUM_TCP_IPV6 0 59 #define CSUM_UDP_IPV6 0 60 #endif 61 62 #define BXE_DEF_SB_ATT_IDX 0x0001 63 #define BXE_DEF_SB_IDX 0x0002 64 65 /* 66 * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per 67 * function HW initialization. 68 */ 69 #define FLR_WAIT_USEC 10000 /* 10 msecs */ 70 #define FLR_WAIT_INTERVAL 50 /* usecs */ 71 #define FLR_POLL_CNT (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */ 72 73 struct pbf_pN_buf_regs { 74 int pN; 75 uint32_t init_crd; 76 uint32_t crd; 77 uint32_t crd_freed; 78 }; 79 80 struct pbf_pN_cmd_regs { 81 int pN; 82 uint32_t lines_occup; 83 uint32_t lines_freed; 84 }; 85 86 /* 87 * PCI Device ID Table used by bxe_probe(). 88 */ 89 #define BXE_DEVDESC_MAX 64 90 static struct bxe_device_type bxe_devs[] = { 91 { 92 BRCM_VENDORID, 93 CHIP_NUM_57710, 94 PCI_ANY_ID, PCI_ANY_ID, 95 "QLogic NetXtreme II BCM57710 10GbE" 96 }, 97 { 98 BRCM_VENDORID, 99 CHIP_NUM_57711, 100 PCI_ANY_ID, PCI_ANY_ID, 101 "QLogic NetXtreme II BCM57711 10GbE" 102 }, 103 { 104 BRCM_VENDORID, 105 CHIP_NUM_57711E, 106 PCI_ANY_ID, PCI_ANY_ID, 107 "QLogic NetXtreme II BCM57711E 10GbE" 108 }, 109 { 110 BRCM_VENDORID, 111 CHIP_NUM_57712, 112 PCI_ANY_ID, PCI_ANY_ID, 113 "QLogic NetXtreme II BCM57712 10GbE" 114 }, 115 { 116 BRCM_VENDORID, 117 CHIP_NUM_57712_MF, 118 PCI_ANY_ID, PCI_ANY_ID, 119 "QLogic NetXtreme II BCM57712 MF 10GbE" 120 }, 121 { 122 BRCM_VENDORID, 123 CHIP_NUM_57800, 124 PCI_ANY_ID, PCI_ANY_ID, 125 "QLogic NetXtreme II BCM57800 10GbE" 126 }, 127 { 128 BRCM_VENDORID, 129 CHIP_NUM_57800_MF, 130 PCI_ANY_ID, PCI_ANY_ID, 131 "QLogic NetXtreme II BCM57800 MF 10GbE" 132 }, 133 { 134 BRCM_VENDORID, 135 CHIP_NUM_57810, 136 PCI_ANY_ID, PCI_ANY_ID, 137 "QLogic NetXtreme II BCM57810 10GbE" 138 }, 139 { 140 BRCM_VENDORID, 141 CHIP_NUM_57810_MF, 142 PCI_ANY_ID, PCI_ANY_ID, 143 "QLogic NetXtreme II BCM57810 MF 10GbE" 144 }, 145 { 146 BRCM_VENDORID, 147 CHIP_NUM_57811, 148 PCI_ANY_ID, PCI_ANY_ID, 149 "QLogic NetXtreme II BCM57811 10GbE" 150 }, 151 { 152 BRCM_VENDORID, 153 CHIP_NUM_57811_MF, 154 PCI_ANY_ID, PCI_ANY_ID, 155 "QLogic NetXtreme II BCM57811 MF 10GbE" 156 }, 157 { 158 BRCM_VENDORID, 159 CHIP_NUM_57840_4_10, 160 PCI_ANY_ID, PCI_ANY_ID, 161 "QLogic NetXtreme II BCM57840 4x10GbE" 162 }, 163 { 164 QLOGIC_VENDORID, 165 CHIP_NUM_57840_4_10, 166 PCI_ANY_ID, PCI_ANY_ID, 167 "QLogic NetXtreme II BCM57840 4x10GbE" 168 }, 169 { 170 BRCM_VENDORID, 171 CHIP_NUM_57840_2_20, 172 PCI_ANY_ID, PCI_ANY_ID, 173 "QLogic NetXtreme II BCM57840 2x20GbE" 174 }, 175 { 176 BRCM_VENDORID, 177 CHIP_NUM_57840_MF, 178 PCI_ANY_ID, PCI_ANY_ID, 179 "QLogic NetXtreme II BCM57840 MF 10GbE" 180 }, 181 { 182 0, 0, 0, 0, NULL 183 } 184 }; 185 186 MALLOC_DECLARE(M_BXE_ILT); 187 MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer"); 188 189 /* 190 * FreeBSD device entry points. 191 */ 192 static int bxe_probe(device_t); 193 static int bxe_attach(device_t); 194 static int bxe_detach(device_t); 195 static int bxe_shutdown(device_t); 196 197 198 /* 199 * FreeBSD KLD module/device interface event handler method. 200 */ 201 static device_method_t bxe_methods[] = { 202 /* Device interface (device_if.h) */ 203 DEVMETHOD(device_probe, bxe_probe), 204 DEVMETHOD(device_attach, bxe_attach), 205 DEVMETHOD(device_detach, bxe_detach), 206 DEVMETHOD(device_shutdown, bxe_shutdown), 207 /* Bus interface (bus_if.h) */ 208 DEVMETHOD(bus_print_child, bus_generic_print_child), 209 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 210 KOBJMETHOD_END 211 }; 212 213 /* 214 * FreeBSD KLD Module data declaration 215 */ 216 static driver_t bxe_driver = { 217 "bxe", /* module name */ 218 bxe_methods, /* event handler */ 219 sizeof(struct bxe_softc) /* extra data */ 220 }; 221 222 MODULE_DEPEND(bxe, pci, 1, 1, 1); 223 MODULE_DEPEND(bxe, ether, 1, 1, 1); 224 DRIVER_MODULE(bxe, pci, bxe_driver, 0, 0); 225 226 DEBUGNET_DEFINE(bxe); 227 228 /* resources needed for unloading a previously loaded device */ 229 230 #define BXE_PREV_WAIT_NEEDED 1 231 struct mtx bxe_prev_mtx; 232 MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF); 233 struct bxe_prev_list_node { 234 LIST_ENTRY(bxe_prev_list_node) node; 235 uint8_t bus; 236 uint8_t slot; 237 uint8_t path; 238 uint8_t aer; /* XXX automatic error recovery */ 239 uint8_t undi; 240 }; 241 static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list); 242 243 static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */ 244 245 /* Tunable device values... */ 246 247 SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 248 "bxe driver parameters"); 249 250 /* Debug */ 251 unsigned long bxe_debug = 0; 252 SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, CTLFLAG_RDTUN, 253 &bxe_debug, 0, "Debug logging mode"); 254 255 /* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */ 256 static int bxe_interrupt_mode = INTR_MODE_MSIX; 257 SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN, 258 &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode"); 259 260 /* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */ 261 static int bxe_queue_count = 4; 262 SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN, 263 &bxe_queue_count, 0, "Multi-Queue queue count"); 264 265 /* max number of buffers per queue (default RX_BD_USABLE) */ 266 static int bxe_max_rx_bufs = 0; 267 SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN, 268 &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue"); 269 270 /* Host interrupt coalescing RX tick timer (usecs) */ 271 static int bxe_hc_rx_ticks = 25; 272 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN, 273 &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks"); 274 275 /* Host interrupt coalescing TX tick timer (usecs) */ 276 static int bxe_hc_tx_ticks = 50; 277 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN, 278 &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks"); 279 280 /* Maximum number of Rx packets to process at a time */ 281 static int bxe_rx_budget = 0xffffffff; 282 SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_RDTUN, 283 &bxe_rx_budget, 0, "Rx processing budget"); 284 285 /* Maximum LRO aggregation size */ 286 static int bxe_max_aggregation_size = 0; 287 SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_RDTUN, 288 &bxe_max_aggregation_size, 0, "max aggregation size"); 289 290 /* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */ 291 static int bxe_mrrs = -1; 292 SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN, 293 &bxe_mrrs, 0, "PCIe maximum read request size"); 294 295 /* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */ 296 static int bxe_autogreeen = 0; 297 SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN, 298 &bxe_autogreeen, 0, "AutoGrEEEn support"); 299 300 /* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */ 301 static int bxe_udp_rss = 0; 302 SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN, 303 &bxe_udp_rss, 0, "UDP RSS support"); 304 305 306 #define STAT_NAME_LEN 32 /* no stat names below can be longer than this */ 307 308 #define STATS_OFFSET32(stat_name) \ 309 (offsetof(struct bxe_eth_stats, stat_name) / 4) 310 311 #define Q_STATS_OFFSET32(stat_name) \ 312 (offsetof(struct bxe_eth_q_stats, stat_name) / 4) 313 314 static const struct { 315 uint32_t offset; 316 uint32_t size; 317 uint32_t flags; 318 #define STATS_FLAGS_PORT 1 319 #define STATS_FLAGS_FUNC 2 /* MF only cares about function stats */ 320 #define STATS_FLAGS_BOTH (STATS_FLAGS_FUNC | STATS_FLAGS_PORT) 321 char string[STAT_NAME_LEN]; 322 } bxe_eth_stats_arr[] = { 323 { STATS_OFFSET32(total_bytes_received_hi), 324 8, STATS_FLAGS_BOTH, "rx_bytes" }, 325 { STATS_OFFSET32(error_bytes_received_hi), 326 8, STATS_FLAGS_BOTH, "rx_error_bytes" }, 327 { STATS_OFFSET32(total_unicast_packets_received_hi), 328 8, STATS_FLAGS_BOTH, "rx_ucast_packets" }, 329 { STATS_OFFSET32(total_multicast_packets_received_hi), 330 8, STATS_FLAGS_BOTH, "rx_mcast_packets" }, 331 { STATS_OFFSET32(total_broadcast_packets_received_hi), 332 8, STATS_FLAGS_BOTH, "rx_bcast_packets" }, 333 { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi), 334 8, STATS_FLAGS_PORT, "rx_crc_errors" }, 335 { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi), 336 8, STATS_FLAGS_PORT, "rx_align_errors" }, 337 { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi), 338 8, STATS_FLAGS_PORT, "rx_undersize_packets" }, 339 { STATS_OFFSET32(etherstatsoverrsizepkts_hi), 340 8, STATS_FLAGS_PORT, "rx_oversize_packets" }, 341 { STATS_OFFSET32(rx_stat_etherstatsfragments_hi), 342 8, STATS_FLAGS_PORT, "rx_fragments" }, 343 { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi), 344 8, STATS_FLAGS_PORT, "rx_jabbers" }, 345 { STATS_OFFSET32(no_buff_discard_hi), 346 8, STATS_FLAGS_BOTH, "rx_discards" }, 347 { STATS_OFFSET32(mac_filter_discard), 348 4, STATS_FLAGS_PORT, "rx_filtered_packets" }, 349 { STATS_OFFSET32(mf_tag_discard), 350 4, STATS_FLAGS_PORT, "rx_mf_tag_discard" }, 351 { STATS_OFFSET32(pfc_frames_received_hi), 352 8, STATS_FLAGS_PORT, "pfc_frames_received" }, 353 { STATS_OFFSET32(pfc_frames_sent_hi), 354 8, STATS_FLAGS_PORT, "pfc_frames_sent" }, 355 { STATS_OFFSET32(brb_drop_hi), 356 8, STATS_FLAGS_PORT, "rx_brb_discard" }, 357 { STATS_OFFSET32(brb_truncate_hi), 358 8, STATS_FLAGS_PORT, "rx_brb_truncate" }, 359 { STATS_OFFSET32(pause_frames_received_hi), 360 8, STATS_FLAGS_PORT, "rx_pause_frames" }, 361 { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi), 362 8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" }, 363 { STATS_OFFSET32(nig_timer_max), 364 4, STATS_FLAGS_PORT, "rx_constant_pause_events" }, 365 { STATS_OFFSET32(total_bytes_transmitted_hi), 366 8, STATS_FLAGS_BOTH, "tx_bytes" }, 367 { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi), 368 8, STATS_FLAGS_PORT, "tx_error_bytes" }, 369 { STATS_OFFSET32(total_unicast_packets_transmitted_hi), 370 8, STATS_FLAGS_BOTH, "tx_ucast_packets" }, 371 { STATS_OFFSET32(total_multicast_packets_transmitted_hi), 372 8, STATS_FLAGS_BOTH, "tx_mcast_packets" }, 373 { STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 374 8, STATS_FLAGS_BOTH, "tx_bcast_packets" }, 375 { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi), 376 8, STATS_FLAGS_PORT, "tx_mac_errors" }, 377 { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi), 378 8, STATS_FLAGS_PORT, "tx_carrier_errors" }, 379 { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi), 380 8, STATS_FLAGS_PORT, "tx_single_collisions" }, 381 { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi), 382 8, STATS_FLAGS_PORT, "tx_multi_collisions" }, 383 { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi), 384 8, STATS_FLAGS_PORT, "tx_deferred" }, 385 { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi), 386 8, STATS_FLAGS_PORT, "tx_excess_collisions" }, 387 { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi), 388 8, STATS_FLAGS_PORT, "tx_late_collisions" }, 389 { STATS_OFFSET32(tx_stat_etherstatscollisions_hi), 390 8, STATS_FLAGS_PORT, "tx_total_collisions" }, 391 { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi), 392 8, STATS_FLAGS_PORT, "tx_64_byte_packets" }, 393 { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi), 394 8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" }, 395 { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi), 396 8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" }, 397 { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi), 398 8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" }, 399 { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi), 400 8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" }, 401 { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi), 402 8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" }, 403 { STATS_OFFSET32(etherstatspktsover1522octets_hi), 404 8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" }, 405 { STATS_OFFSET32(pause_frames_sent_hi), 406 8, STATS_FLAGS_PORT, "tx_pause_frames" }, 407 { STATS_OFFSET32(total_tpa_aggregations_hi), 408 8, STATS_FLAGS_FUNC, "tpa_aggregations" }, 409 { STATS_OFFSET32(total_tpa_aggregated_frames_hi), 410 8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"}, 411 { STATS_OFFSET32(total_tpa_bytes_hi), 412 8, STATS_FLAGS_FUNC, "tpa_bytes"}, 413 { STATS_OFFSET32(eee_tx_lpi), 414 4, STATS_FLAGS_PORT, "eee_tx_lpi"}, 415 { STATS_OFFSET32(rx_calls), 416 4, STATS_FLAGS_FUNC, "rx_calls"}, 417 { STATS_OFFSET32(rx_pkts), 418 4, STATS_FLAGS_FUNC, "rx_pkts"}, 419 { STATS_OFFSET32(rx_tpa_pkts), 420 4, STATS_FLAGS_FUNC, "rx_tpa_pkts"}, 421 { STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts), 422 4, STATS_FLAGS_FUNC, "rx_erroneous_jumbo_sge_pkts"}, 423 { STATS_OFFSET32(rx_bxe_service_rxsgl), 424 4, STATS_FLAGS_FUNC, "rx_bxe_service_rxsgl"}, 425 { STATS_OFFSET32(rx_jumbo_sge_pkts), 426 4, STATS_FLAGS_FUNC, "rx_jumbo_sge_pkts"}, 427 { STATS_OFFSET32(rx_soft_errors), 428 4, STATS_FLAGS_FUNC, "rx_soft_errors"}, 429 { STATS_OFFSET32(rx_hw_csum_errors), 430 4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"}, 431 { STATS_OFFSET32(rx_ofld_frames_csum_ip), 432 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"}, 433 { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 434 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"}, 435 { STATS_OFFSET32(rx_budget_reached), 436 4, STATS_FLAGS_FUNC, "rx_budget_reached"}, 437 { STATS_OFFSET32(tx_pkts), 438 4, STATS_FLAGS_FUNC, "tx_pkts"}, 439 { STATS_OFFSET32(tx_soft_errors), 440 4, STATS_FLAGS_FUNC, "tx_soft_errors"}, 441 { STATS_OFFSET32(tx_ofld_frames_csum_ip), 442 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"}, 443 { STATS_OFFSET32(tx_ofld_frames_csum_tcp), 444 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"}, 445 { STATS_OFFSET32(tx_ofld_frames_csum_udp), 446 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"}, 447 { STATS_OFFSET32(tx_ofld_frames_lso), 448 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"}, 449 { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 450 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"}, 451 { STATS_OFFSET32(tx_encap_failures), 452 4, STATS_FLAGS_FUNC, "tx_encap_failures"}, 453 { STATS_OFFSET32(tx_hw_queue_full), 454 4, STATS_FLAGS_FUNC, "tx_hw_queue_full"}, 455 { STATS_OFFSET32(tx_hw_max_queue_depth), 456 4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"}, 457 { STATS_OFFSET32(tx_dma_mapping_failure), 458 4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"}, 459 { STATS_OFFSET32(tx_max_drbr_queue_depth), 460 4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"}, 461 { STATS_OFFSET32(tx_window_violation_std), 462 4, STATS_FLAGS_FUNC, "tx_window_violation_std"}, 463 { STATS_OFFSET32(tx_window_violation_tso), 464 4, STATS_FLAGS_FUNC, "tx_window_violation_tso"}, 465 { STATS_OFFSET32(tx_chain_lost_mbuf), 466 4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"}, 467 { STATS_OFFSET32(tx_frames_deferred), 468 4, STATS_FLAGS_FUNC, "tx_frames_deferred"}, 469 { STATS_OFFSET32(tx_queue_xoff), 470 4, STATS_FLAGS_FUNC, "tx_queue_xoff"}, 471 { STATS_OFFSET32(mbuf_defrag_attempts), 472 4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"}, 473 { STATS_OFFSET32(mbuf_defrag_failures), 474 4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"}, 475 { STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 476 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"}, 477 { STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 478 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"}, 479 { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 480 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"}, 481 { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 482 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"}, 483 { STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 484 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"}, 485 { STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 486 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"}, 487 { STATS_OFFSET32(mbuf_alloc_tx), 488 4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"}, 489 { STATS_OFFSET32(mbuf_alloc_rx), 490 4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"}, 491 { STATS_OFFSET32(mbuf_alloc_sge), 492 4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"}, 493 { STATS_OFFSET32(mbuf_alloc_tpa), 494 4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"}, 495 { STATS_OFFSET32(tx_queue_full_return), 496 4, STATS_FLAGS_FUNC, "tx_queue_full_return"}, 497 { STATS_OFFSET32(bxe_tx_mq_sc_state_failures), 498 4, STATS_FLAGS_FUNC, "bxe_tx_mq_sc_state_failures"}, 499 { STATS_OFFSET32(tx_request_link_down_failures), 500 4, STATS_FLAGS_FUNC, "tx_request_link_down_failures"}, 501 { STATS_OFFSET32(bd_avail_too_less_failures), 502 4, STATS_FLAGS_FUNC, "bd_avail_too_less_failures"}, 503 { STATS_OFFSET32(tx_mq_not_empty), 504 4, STATS_FLAGS_FUNC, "tx_mq_not_empty"}, 505 { STATS_OFFSET32(nsegs_path1_errors), 506 4, STATS_FLAGS_FUNC, "nsegs_path1_errors"}, 507 { STATS_OFFSET32(nsegs_path2_errors), 508 4, STATS_FLAGS_FUNC, "nsegs_path2_errors"} 509 510 511 }; 512 513 static const struct { 514 uint32_t offset; 515 uint32_t size; 516 char string[STAT_NAME_LEN]; 517 } bxe_eth_q_stats_arr[] = { 518 { Q_STATS_OFFSET32(total_bytes_received_hi), 519 8, "rx_bytes" }, 520 { Q_STATS_OFFSET32(total_unicast_packets_received_hi), 521 8, "rx_ucast_packets" }, 522 { Q_STATS_OFFSET32(total_multicast_packets_received_hi), 523 8, "rx_mcast_packets" }, 524 { Q_STATS_OFFSET32(total_broadcast_packets_received_hi), 525 8, "rx_bcast_packets" }, 526 { Q_STATS_OFFSET32(no_buff_discard_hi), 527 8, "rx_discards" }, 528 { Q_STATS_OFFSET32(total_bytes_transmitted_hi), 529 8, "tx_bytes" }, 530 { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi), 531 8, "tx_ucast_packets" }, 532 { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi), 533 8, "tx_mcast_packets" }, 534 { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 535 8, "tx_bcast_packets" }, 536 { Q_STATS_OFFSET32(total_tpa_aggregations_hi), 537 8, "tpa_aggregations" }, 538 { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi), 539 8, "tpa_aggregated_frames"}, 540 { Q_STATS_OFFSET32(total_tpa_bytes_hi), 541 8, "tpa_bytes"}, 542 { Q_STATS_OFFSET32(rx_calls), 543 4, "rx_calls"}, 544 { Q_STATS_OFFSET32(rx_pkts), 545 4, "rx_pkts"}, 546 { Q_STATS_OFFSET32(rx_tpa_pkts), 547 4, "rx_tpa_pkts"}, 548 { Q_STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts), 549 4, "rx_erroneous_jumbo_sge_pkts"}, 550 { Q_STATS_OFFSET32(rx_bxe_service_rxsgl), 551 4, "rx_bxe_service_rxsgl"}, 552 { Q_STATS_OFFSET32(rx_jumbo_sge_pkts), 553 4, "rx_jumbo_sge_pkts"}, 554 { Q_STATS_OFFSET32(rx_soft_errors), 555 4, "rx_soft_errors"}, 556 { Q_STATS_OFFSET32(rx_hw_csum_errors), 557 4, "rx_hw_csum_errors"}, 558 { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip), 559 4, "rx_ofld_frames_csum_ip"}, 560 { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 561 4, "rx_ofld_frames_csum_tcp_udp"}, 562 { Q_STATS_OFFSET32(rx_budget_reached), 563 4, "rx_budget_reached"}, 564 { Q_STATS_OFFSET32(tx_pkts), 565 4, "tx_pkts"}, 566 { Q_STATS_OFFSET32(tx_soft_errors), 567 4, "tx_soft_errors"}, 568 { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip), 569 4, "tx_ofld_frames_csum_ip"}, 570 { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp), 571 4, "tx_ofld_frames_csum_tcp"}, 572 { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp), 573 4, "tx_ofld_frames_csum_udp"}, 574 { Q_STATS_OFFSET32(tx_ofld_frames_lso), 575 4, "tx_ofld_frames_lso"}, 576 { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 577 4, "tx_ofld_frames_lso_hdr_splits"}, 578 { Q_STATS_OFFSET32(tx_encap_failures), 579 4, "tx_encap_failures"}, 580 { Q_STATS_OFFSET32(tx_hw_queue_full), 581 4, "tx_hw_queue_full"}, 582 { Q_STATS_OFFSET32(tx_hw_max_queue_depth), 583 4, "tx_hw_max_queue_depth"}, 584 { Q_STATS_OFFSET32(tx_dma_mapping_failure), 585 4, "tx_dma_mapping_failure"}, 586 { Q_STATS_OFFSET32(tx_max_drbr_queue_depth), 587 4, "tx_max_drbr_queue_depth"}, 588 { Q_STATS_OFFSET32(tx_window_violation_std), 589 4, "tx_window_violation_std"}, 590 { Q_STATS_OFFSET32(tx_window_violation_tso), 591 4, "tx_window_violation_tso"}, 592 { Q_STATS_OFFSET32(tx_chain_lost_mbuf), 593 4, "tx_chain_lost_mbuf"}, 594 { Q_STATS_OFFSET32(tx_frames_deferred), 595 4, "tx_frames_deferred"}, 596 { Q_STATS_OFFSET32(tx_queue_xoff), 597 4, "tx_queue_xoff"}, 598 { Q_STATS_OFFSET32(mbuf_defrag_attempts), 599 4, "mbuf_defrag_attempts"}, 600 { Q_STATS_OFFSET32(mbuf_defrag_failures), 601 4, "mbuf_defrag_failures"}, 602 { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 603 4, "mbuf_rx_bd_alloc_failed"}, 604 { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 605 4, "mbuf_rx_bd_mapping_failed"}, 606 { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 607 4, "mbuf_rx_tpa_alloc_failed"}, 608 { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 609 4, "mbuf_rx_tpa_mapping_failed"}, 610 { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 611 4, "mbuf_rx_sge_alloc_failed"}, 612 { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 613 4, "mbuf_rx_sge_mapping_failed"}, 614 { Q_STATS_OFFSET32(mbuf_alloc_tx), 615 4, "mbuf_alloc_tx"}, 616 { Q_STATS_OFFSET32(mbuf_alloc_rx), 617 4, "mbuf_alloc_rx"}, 618 { Q_STATS_OFFSET32(mbuf_alloc_sge), 619 4, "mbuf_alloc_sge"}, 620 { Q_STATS_OFFSET32(mbuf_alloc_tpa), 621 4, "mbuf_alloc_tpa"}, 622 { Q_STATS_OFFSET32(tx_queue_full_return), 623 4, "tx_queue_full_return"}, 624 { Q_STATS_OFFSET32(bxe_tx_mq_sc_state_failures), 625 4, "bxe_tx_mq_sc_state_failures"}, 626 { Q_STATS_OFFSET32(tx_request_link_down_failures), 627 4, "tx_request_link_down_failures"}, 628 { Q_STATS_OFFSET32(bd_avail_too_less_failures), 629 4, "bd_avail_too_less_failures"}, 630 { Q_STATS_OFFSET32(tx_mq_not_empty), 631 4, "tx_mq_not_empty"}, 632 { Q_STATS_OFFSET32(nsegs_path1_errors), 633 4, "nsegs_path1_errors"}, 634 { Q_STATS_OFFSET32(nsegs_path2_errors), 635 4, "nsegs_path2_errors"} 636 637 638 }; 639 640 #define BXE_NUM_ETH_STATS ARRAY_SIZE(bxe_eth_stats_arr) 641 #define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr) 642 643 644 static void bxe_cmng_fns_init(struct bxe_softc *sc, 645 uint8_t read_cfg, 646 uint8_t cmng_type); 647 static int bxe_get_cmng_fns_mode(struct bxe_softc *sc); 648 static void storm_memset_cmng(struct bxe_softc *sc, 649 struct cmng_init *cmng, 650 uint8_t port); 651 static void bxe_set_reset_global(struct bxe_softc *sc); 652 static void bxe_set_reset_in_progress(struct bxe_softc *sc); 653 static uint8_t bxe_reset_is_done(struct bxe_softc *sc, 654 int engine); 655 static uint8_t bxe_clear_pf_load(struct bxe_softc *sc); 656 static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc, 657 uint8_t *global, 658 uint8_t print); 659 static void bxe_int_disable(struct bxe_softc *sc); 660 static int bxe_release_leader_lock(struct bxe_softc *sc); 661 static void bxe_pf_disable(struct bxe_softc *sc); 662 static void bxe_free_fp_buffers(struct bxe_softc *sc); 663 static inline void bxe_update_rx_prod(struct bxe_softc *sc, 664 struct bxe_fastpath *fp, 665 uint16_t rx_bd_prod, 666 uint16_t rx_cq_prod, 667 uint16_t rx_sge_prod); 668 static void bxe_link_report_locked(struct bxe_softc *sc); 669 static void bxe_link_report(struct bxe_softc *sc); 670 static void bxe_link_status_update(struct bxe_softc *sc); 671 static void bxe_periodic_callout_func(void *xsc); 672 static void bxe_periodic_start(struct bxe_softc *sc); 673 static void bxe_periodic_stop(struct bxe_softc *sc); 674 static int bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, 675 uint16_t prev_index, 676 uint16_t index); 677 static int bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, 678 int queue); 679 static int bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, 680 uint16_t index); 681 static uint8_t bxe_txeof(struct bxe_softc *sc, 682 struct bxe_fastpath *fp); 683 static void bxe_task_fp(struct bxe_fastpath *fp); 684 static __noinline void bxe_dump_mbuf(struct bxe_softc *sc, 685 struct mbuf *m, 686 uint8_t contents); 687 static int bxe_alloc_mem(struct bxe_softc *sc); 688 static void bxe_free_mem(struct bxe_softc *sc); 689 static int bxe_alloc_fw_stats_mem(struct bxe_softc *sc); 690 static void bxe_free_fw_stats_mem(struct bxe_softc *sc); 691 static int bxe_interrupt_attach(struct bxe_softc *sc); 692 static void bxe_interrupt_detach(struct bxe_softc *sc); 693 static void bxe_set_rx_mode(struct bxe_softc *sc); 694 static int bxe_init_locked(struct bxe_softc *sc); 695 static int bxe_stop_locked(struct bxe_softc *sc); 696 static void bxe_sp_err_timeout_task(void *arg, int pending); 697 void bxe_parity_recover(struct bxe_softc *sc); 698 void bxe_handle_error(struct bxe_softc *sc); 699 static __noinline int bxe_nic_load(struct bxe_softc *sc, 700 int load_mode); 701 static __noinline int bxe_nic_unload(struct bxe_softc *sc, 702 uint32_t unload_mode, 703 uint8_t keep_link); 704 705 static void bxe_handle_sp_tq(void *context, int pending); 706 static void bxe_handle_fp_tq(void *context, int pending); 707 708 static int bxe_add_cdev(struct bxe_softc *sc); 709 static void bxe_del_cdev(struct bxe_softc *sc); 710 int bxe_grc_dump(struct bxe_softc *sc); 711 static int bxe_alloc_buf_rings(struct bxe_softc *sc); 712 static void bxe_free_buf_rings(struct bxe_softc *sc); 713 714 /* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */ 715 uint32_t 716 calc_crc32(uint8_t *crc32_packet, 717 uint32_t crc32_length, 718 uint32_t crc32_seed, 719 uint8_t complement) 720 { 721 uint32_t byte = 0; 722 uint32_t bit = 0; 723 uint8_t msb = 0; 724 uint32_t temp = 0; 725 uint32_t shft = 0; 726 uint8_t current_byte = 0; 727 uint32_t crc32_result = crc32_seed; 728 const uint32_t CRC32_POLY = 0x1edc6f41; 729 730 if ((crc32_packet == NULL) || 731 (crc32_length == 0) || 732 ((crc32_length % 8) != 0)) 733 { 734 return (crc32_result); 735 } 736 737 for (byte = 0; byte < crc32_length; byte = byte + 1) 738 { 739 current_byte = crc32_packet[byte]; 740 for (bit = 0; bit < 8; bit = bit + 1) 741 { 742 /* msb = crc32_result[31]; */ 743 msb = (uint8_t)(crc32_result >> 31); 744 745 crc32_result = crc32_result << 1; 746 747 /* it (msb != current_byte[bit]) */ 748 if (msb != (0x1 & (current_byte >> bit))) 749 { 750 crc32_result = crc32_result ^ CRC32_POLY; 751 /* crc32_result[0] = 1 */ 752 crc32_result |= 1; 753 } 754 } 755 } 756 757 /* Last step is to: 758 * 1. "mirror" every bit 759 * 2. swap the 4 bytes 760 * 3. complement each bit 761 */ 762 763 /* Mirror */ 764 temp = crc32_result; 765 shft = sizeof(crc32_result) * 8 - 1; 766 767 for (crc32_result >>= 1; crc32_result; crc32_result >>= 1) 768 { 769 temp <<= 1; 770 temp |= crc32_result & 1; 771 shft-- ; 772 } 773 774 /* temp[31-bit] = crc32_result[bit] */ 775 temp <<= shft; 776 777 /* Swap */ 778 /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */ 779 { 780 uint32_t t0, t1, t2, t3; 781 t0 = (0x000000ff & (temp >> 24)); 782 t1 = (0x0000ff00 & (temp >> 8)); 783 t2 = (0x00ff0000 & (temp << 8)); 784 t3 = (0xff000000 & (temp << 24)); 785 crc32_result = t0 | t1 | t2 | t3; 786 } 787 788 /* Complement */ 789 if (complement) 790 { 791 crc32_result = ~crc32_result; 792 } 793 794 return (crc32_result); 795 } 796 797 int 798 bxe_test_bit(int nr, 799 volatile unsigned long *addr) 800 { 801 return ((atomic_load_acq_long(addr) & (1 << nr)) != 0); 802 } 803 804 void 805 bxe_set_bit(unsigned int nr, 806 volatile unsigned long *addr) 807 { 808 atomic_set_acq_long(addr, (1 << nr)); 809 } 810 811 void 812 bxe_clear_bit(int nr, 813 volatile unsigned long *addr) 814 { 815 atomic_clear_acq_long(addr, (1 << nr)); 816 } 817 818 int 819 bxe_test_and_set_bit(int nr, 820 volatile unsigned long *addr) 821 { 822 unsigned long x; 823 nr = (1 << nr); 824 do { 825 x = *addr; 826 } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0); 827 // if (x & nr) bit_was_set; else bit_was_not_set; 828 return (x & nr); 829 } 830 831 int 832 bxe_test_and_clear_bit(int nr, 833 volatile unsigned long *addr) 834 { 835 unsigned long x; 836 nr = (1 << nr); 837 do { 838 x = *addr; 839 } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0); 840 // if (x & nr) bit_was_set; else bit_was_not_set; 841 return (x & nr); 842 } 843 844 int 845 bxe_cmpxchg(volatile int *addr, 846 int old, 847 int new) 848 { 849 int x; 850 do { 851 x = *addr; 852 } while (atomic_cmpset_acq_int(addr, old, new) == 0); 853 return (x); 854 } 855 856 /* 857 * Get DMA memory from the OS. 858 * 859 * Validates that the OS has provided DMA buffers in response to a 860 * bus_dmamap_load call and saves the physical address of those buffers. 861 * When the callback is used the OS will return 0 for the mapping function 862 * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any 863 * failures back to the caller. 864 * 865 * Returns: 866 * Nothing. 867 */ 868 static void 869 bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 870 { 871 struct bxe_dma *dma = arg; 872 873 if (error) { 874 dma->paddr = 0; 875 dma->nseg = 0; 876 BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error); 877 } else { 878 dma->paddr = segs->ds_addr; 879 dma->nseg = nseg; 880 } 881 } 882 883 /* 884 * Allocate a block of memory and map it for DMA. No partial completions 885 * allowed and release any resources acquired if we can't acquire all 886 * resources. 887 * 888 * Returns: 889 * 0 = Success, !0 = Failure 890 */ 891 int 892 bxe_dma_alloc(struct bxe_softc *sc, 893 bus_size_t size, 894 struct bxe_dma *dma, 895 const char *msg) 896 { 897 int rc; 898 899 if (dma->size > 0) { 900 BLOGE(sc, "dma block '%s' already has size %lu\n", msg, 901 (unsigned long)dma->size); 902 return (1); 903 } 904 905 memset(dma, 0, sizeof(*dma)); /* sanity */ 906 dma->sc = sc; 907 dma->size = size; 908 snprintf(dma->msg, sizeof(dma->msg), "%s", msg); 909 910 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 911 BCM_PAGE_SIZE, /* alignment */ 912 0, /* boundary limit */ 913 BUS_SPACE_MAXADDR, /* restricted low */ 914 BUS_SPACE_MAXADDR, /* restricted hi */ 915 NULL, /* addr filter() */ 916 NULL, /* addr filter() arg */ 917 size, /* max map size */ 918 1, /* num discontinuous */ 919 size, /* max seg size */ 920 BUS_DMA_ALLOCNOW, /* flags */ 921 NULL, /* lock() */ 922 NULL, /* lock() arg */ 923 &dma->tag); /* returned dma tag */ 924 if (rc != 0) { 925 BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc); 926 memset(dma, 0, sizeof(*dma)); 927 return (1); 928 } 929 930 rc = bus_dmamem_alloc(dma->tag, 931 (void **)&dma->vaddr, 932 (BUS_DMA_NOWAIT | BUS_DMA_ZERO), 933 &dma->map); 934 if (rc != 0) { 935 BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc); 936 bus_dma_tag_destroy(dma->tag); 937 memset(dma, 0, sizeof(*dma)); 938 return (1); 939 } 940 941 rc = bus_dmamap_load(dma->tag, 942 dma->map, 943 dma->vaddr, 944 size, 945 bxe_dma_map_addr, /* BLOGD in here */ 946 dma, 947 BUS_DMA_NOWAIT); 948 if (rc != 0) { 949 BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc); 950 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 951 bus_dma_tag_destroy(dma->tag); 952 memset(dma, 0, sizeof(*dma)); 953 return (1); 954 } 955 956 return (0); 957 } 958 959 void 960 bxe_dma_free(struct bxe_softc *sc, 961 struct bxe_dma *dma) 962 { 963 if (dma->size > 0) { 964 DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL")); 965 966 bus_dmamap_sync(dma->tag, dma->map, 967 (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE)); 968 bus_dmamap_unload(dma->tag, dma->map); 969 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 970 bus_dma_tag_destroy(dma->tag); 971 } 972 973 memset(dma, 0, sizeof(*dma)); 974 } 975 976 /* 977 * These indirect read and write routines are only during init. 978 * The locking is handled by the MCP. 979 */ 980 981 void 982 bxe_reg_wr_ind(struct bxe_softc *sc, 983 uint32_t addr, 984 uint32_t val) 985 { 986 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); 987 pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4); 988 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 989 } 990 991 uint32_t 992 bxe_reg_rd_ind(struct bxe_softc *sc, 993 uint32_t addr) 994 { 995 uint32_t val; 996 997 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); 998 val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4); 999 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 1000 1001 return (val); 1002 } 1003 1004 static int 1005 bxe_acquire_hw_lock(struct bxe_softc *sc, 1006 uint32_t resource) 1007 { 1008 uint32_t lock_status; 1009 uint32_t resource_bit = (1 << resource); 1010 int func = SC_FUNC(sc); 1011 uint32_t hw_lock_control_reg; 1012 int cnt; 1013 1014 /* validate the resource is within range */ 1015 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1016 BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)" 1017 " resource_bit 0x%x\n", resource, resource_bit); 1018 return (-1); 1019 } 1020 1021 if (func <= 5) { 1022 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); 1023 } else { 1024 hw_lock_control_reg = 1025 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); 1026 } 1027 1028 /* validate the resource is not already taken */ 1029 lock_status = REG_RD(sc, hw_lock_control_reg); 1030 if (lock_status & resource_bit) { 1031 BLOGE(sc, "resource (0x%x) in use (status 0x%x bit 0x%x)\n", 1032 resource, lock_status, resource_bit); 1033 return (-1); 1034 } 1035 1036 /* try every 5ms for 5 seconds */ 1037 for (cnt = 0; cnt < 1000; cnt++) { 1038 REG_WR(sc, (hw_lock_control_reg + 4), resource_bit); 1039 lock_status = REG_RD(sc, hw_lock_control_reg); 1040 if (lock_status & resource_bit) { 1041 return (0); 1042 } 1043 DELAY(5000); 1044 } 1045 1046 BLOGE(sc, "Resource 0x%x resource_bit 0x%x lock timeout!\n", 1047 resource, resource_bit); 1048 return (-1); 1049 } 1050 1051 static int 1052 bxe_release_hw_lock(struct bxe_softc *sc, 1053 uint32_t resource) 1054 { 1055 uint32_t lock_status; 1056 uint32_t resource_bit = (1 << resource); 1057 int func = SC_FUNC(sc); 1058 uint32_t hw_lock_control_reg; 1059 1060 /* validate the resource is within range */ 1061 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1062 BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)" 1063 " resource_bit 0x%x\n", resource, resource_bit); 1064 return (-1); 1065 } 1066 1067 if (func <= 5) { 1068 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); 1069 } else { 1070 hw_lock_control_reg = 1071 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); 1072 } 1073 1074 /* validate the resource is currently taken */ 1075 lock_status = REG_RD(sc, hw_lock_control_reg); 1076 if (!(lock_status & resource_bit)) { 1077 BLOGE(sc, "resource (0x%x) not in use (status 0x%x bit 0x%x)\n", 1078 resource, lock_status, resource_bit); 1079 return (-1); 1080 } 1081 1082 REG_WR(sc, hw_lock_control_reg, resource_bit); 1083 return (0); 1084 } 1085 static void bxe_acquire_phy_lock(struct bxe_softc *sc) 1086 { 1087 BXE_PHY_LOCK(sc); 1088 bxe_acquire_hw_lock(sc,HW_LOCK_RESOURCE_MDIO); 1089 } 1090 1091 static void bxe_release_phy_lock(struct bxe_softc *sc) 1092 { 1093 bxe_release_hw_lock(sc,HW_LOCK_RESOURCE_MDIO); 1094 BXE_PHY_UNLOCK(sc); 1095 } 1096 /* 1097 * Per pf misc lock must be acquired before the per port mcp lock. Otherwise, 1098 * had we done things the other way around, if two pfs from the same port 1099 * would attempt to access nvram at the same time, we could run into a 1100 * scenario such as: 1101 * pf A takes the port lock. 1102 * pf B succeeds in taking the same lock since they are from the same port. 1103 * pf A takes the per pf misc lock. Performs eeprom access. 1104 * pf A finishes. Unlocks the per pf misc lock. 1105 * Pf B takes the lock and proceeds to perform it's own access. 1106 * pf A unlocks the per port lock, while pf B is still working (!). 1107 * mcp takes the per port lock and corrupts pf B's access (and/or has it's own 1108 * access corrupted by pf B).* 1109 */ 1110 static int 1111 bxe_acquire_nvram_lock(struct bxe_softc *sc) 1112 { 1113 int port = SC_PORT(sc); 1114 int count, i; 1115 uint32_t val = 0; 1116 1117 /* acquire HW lock: protect against other PFs in PF Direct Assignment */ 1118 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); 1119 1120 /* adjust timeout for emulation/FPGA */ 1121 count = NVRAM_TIMEOUT_COUNT; 1122 if (CHIP_REV_IS_SLOW(sc)) { 1123 count *= 100; 1124 } 1125 1126 /* request access to nvram interface */ 1127 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 1128 (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port)); 1129 1130 for (i = 0; i < count*10; i++) { 1131 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); 1132 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { 1133 break; 1134 } 1135 1136 DELAY(5); 1137 } 1138 1139 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { 1140 BLOGE(sc, "Cannot get access to nvram interface " 1141 "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n", 1142 port, val); 1143 return (-1); 1144 } 1145 1146 return (0); 1147 } 1148 1149 static int 1150 bxe_release_nvram_lock(struct bxe_softc *sc) 1151 { 1152 int port = SC_PORT(sc); 1153 int count, i; 1154 uint32_t val = 0; 1155 1156 /* adjust timeout for emulation/FPGA */ 1157 count = NVRAM_TIMEOUT_COUNT; 1158 if (CHIP_REV_IS_SLOW(sc)) { 1159 count *= 100; 1160 } 1161 1162 /* relinquish nvram interface */ 1163 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 1164 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port)); 1165 1166 for (i = 0; i < count*10; i++) { 1167 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); 1168 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { 1169 break; 1170 } 1171 1172 DELAY(5); 1173 } 1174 1175 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { 1176 BLOGE(sc, "Cannot free access to nvram interface " 1177 "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n", 1178 port, val); 1179 return (-1); 1180 } 1181 1182 /* release HW lock: protect against other PFs in PF Direct Assignment */ 1183 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); 1184 1185 return (0); 1186 } 1187 1188 static void 1189 bxe_enable_nvram_access(struct bxe_softc *sc) 1190 { 1191 uint32_t val; 1192 1193 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); 1194 1195 /* enable both bits, even on read */ 1196 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, 1197 (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN)); 1198 } 1199 1200 static void 1201 bxe_disable_nvram_access(struct bxe_softc *sc) 1202 { 1203 uint32_t val; 1204 1205 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); 1206 1207 /* disable both bits, even after read */ 1208 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, 1209 (val & ~(MCPR_NVM_ACCESS_ENABLE_EN | 1210 MCPR_NVM_ACCESS_ENABLE_WR_EN))); 1211 } 1212 1213 static int 1214 bxe_nvram_read_dword(struct bxe_softc *sc, 1215 uint32_t offset, 1216 uint32_t *ret_val, 1217 uint32_t cmd_flags) 1218 { 1219 int count, i, rc; 1220 uint32_t val; 1221 1222 /* build the command word */ 1223 cmd_flags |= MCPR_NVM_COMMAND_DOIT; 1224 1225 /* need to clear DONE bit separately */ 1226 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); 1227 1228 /* address of the NVRAM to read from */ 1229 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, 1230 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); 1231 1232 /* issue a read command */ 1233 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); 1234 1235 /* adjust timeout for emulation/FPGA */ 1236 count = NVRAM_TIMEOUT_COUNT; 1237 if (CHIP_REV_IS_SLOW(sc)) { 1238 count *= 100; 1239 } 1240 1241 /* wait for completion */ 1242 *ret_val = 0; 1243 rc = -1; 1244 for (i = 0; i < count; i++) { 1245 DELAY(5); 1246 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); 1247 1248 if (val & MCPR_NVM_COMMAND_DONE) { 1249 val = REG_RD(sc, MCP_REG_MCPR_NVM_READ); 1250 /* we read nvram data in cpu order 1251 * but ethtool sees it as an array of bytes 1252 * converting to big-endian will do the work 1253 */ 1254 *ret_val = htobe32(val); 1255 rc = 0; 1256 break; 1257 } 1258 } 1259 1260 if (rc == -1) { 1261 BLOGE(sc, "nvram read timeout expired " 1262 "(offset 0x%x cmd_flags 0x%x val 0x%x)\n", 1263 offset, cmd_flags, val); 1264 } 1265 1266 return (rc); 1267 } 1268 1269 static int 1270 bxe_nvram_read(struct bxe_softc *sc, 1271 uint32_t offset, 1272 uint8_t *ret_buf, 1273 int buf_size) 1274 { 1275 uint32_t cmd_flags; 1276 uint32_t val; 1277 int rc; 1278 1279 if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) { 1280 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", 1281 offset, buf_size); 1282 return (-1); 1283 } 1284 1285 if ((offset + buf_size) > sc->devinfo.flash_size) { 1286 BLOGE(sc, "Invalid parameter, " 1287 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1288 offset, buf_size, sc->devinfo.flash_size); 1289 return (-1); 1290 } 1291 1292 /* request access to nvram interface */ 1293 rc = bxe_acquire_nvram_lock(sc); 1294 if (rc) { 1295 return (rc); 1296 } 1297 1298 /* enable access to nvram interface */ 1299 bxe_enable_nvram_access(sc); 1300 1301 /* read the first word(s) */ 1302 cmd_flags = MCPR_NVM_COMMAND_FIRST; 1303 while ((buf_size > sizeof(uint32_t)) && (rc == 0)) { 1304 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); 1305 memcpy(ret_buf, &val, 4); 1306 1307 /* advance to the next dword */ 1308 offset += sizeof(uint32_t); 1309 ret_buf += sizeof(uint32_t); 1310 buf_size -= sizeof(uint32_t); 1311 cmd_flags = 0; 1312 } 1313 1314 if (rc == 0) { 1315 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1316 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); 1317 memcpy(ret_buf, &val, 4); 1318 } 1319 1320 /* disable access to nvram interface */ 1321 bxe_disable_nvram_access(sc); 1322 bxe_release_nvram_lock(sc); 1323 1324 return (rc); 1325 } 1326 1327 static int 1328 bxe_nvram_write_dword(struct bxe_softc *sc, 1329 uint32_t offset, 1330 uint32_t val, 1331 uint32_t cmd_flags) 1332 { 1333 int count, i, rc; 1334 1335 /* build the command word */ 1336 cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR); 1337 1338 /* need to clear DONE bit separately */ 1339 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); 1340 1341 /* write the data */ 1342 REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val); 1343 1344 /* address of the NVRAM to write to */ 1345 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, 1346 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); 1347 1348 /* issue the write command */ 1349 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); 1350 1351 /* adjust timeout for emulation/FPGA */ 1352 count = NVRAM_TIMEOUT_COUNT; 1353 if (CHIP_REV_IS_SLOW(sc)) { 1354 count *= 100; 1355 } 1356 1357 /* wait for completion */ 1358 rc = -1; 1359 for (i = 0; i < count; i++) { 1360 DELAY(5); 1361 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); 1362 if (val & MCPR_NVM_COMMAND_DONE) { 1363 rc = 0; 1364 break; 1365 } 1366 } 1367 1368 if (rc == -1) { 1369 BLOGE(sc, "nvram write timeout expired " 1370 "(offset 0x%x cmd_flags 0x%x val 0x%x)\n", 1371 offset, cmd_flags, val); 1372 } 1373 1374 return (rc); 1375 } 1376 1377 #define BYTE_OFFSET(offset) (8 * (offset & 0x03)) 1378 1379 static int 1380 bxe_nvram_write1(struct bxe_softc *sc, 1381 uint32_t offset, 1382 uint8_t *data_buf, 1383 int buf_size) 1384 { 1385 uint32_t cmd_flags; 1386 uint32_t align_offset; 1387 uint32_t val; 1388 int rc; 1389 1390 if ((offset + buf_size) > sc->devinfo.flash_size) { 1391 BLOGE(sc, "Invalid parameter, " 1392 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1393 offset, buf_size, sc->devinfo.flash_size); 1394 return (-1); 1395 } 1396 1397 /* request access to nvram interface */ 1398 rc = bxe_acquire_nvram_lock(sc); 1399 if (rc) { 1400 return (rc); 1401 } 1402 1403 /* enable access to nvram interface */ 1404 bxe_enable_nvram_access(sc); 1405 1406 cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST); 1407 align_offset = (offset & ~0x03); 1408 rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags); 1409 1410 if (rc == 0) { 1411 val &= ~(0xff << BYTE_OFFSET(offset)); 1412 val |= (*data_buf << BYTE_OFFSET(offset)); 1413 1414 /* nvram data is returned as an array of bytes 1415 * convert it back to cpu order 1416 */ 1417 val = be32toh(val); 1418 1419 rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags); 1420 } 1421 1422 /* disable access to nvram interface */ 1423 bxe_disable_nvram_access(sc); 1424 bxe_release_nvram_lock(sc); 1425 1426 return (rc); 1427 } 1428 1429 static int 1430 bxe_nvram_write(struct bxe_softc *sc, 1431 uint32_t offset, 1432 uint8_t *data_buf, 1433 int buf_size) 1434 { 1435 uint32_t cmd_flags; 1436 uint32_t val; 1437 uint32_t written_so_far; 1438 int rc; 1439 1440 if (buf_size == 1) { 1441 return (bxe_nvram_write1(sc, offset, data_buf, buf_size)); 1442 } 1443 1444 if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) { 1445 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", 1446 offset, buf_size); 1447 return (-1); 1448 } 1449 1450 if (buf_size == 0) { 1451 return (0); /* nothing to do */ 1452 } 1453 1454 if ((offset + buf_size) > sc->devinfo.flash_size) { 1455 BLOGE(sc, "Invalid parameter, " 1456 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1457 offset, buf_size, sc->devinfo.flash_size); 1458 return (-1); 1459 } 1460 1461 /* request access to nvram interface */ 1462 rc = bxe_acquire_nvram_lock(sc); 1463 if (rc) { 1464 return (rc); 1465 } 1466 1467 /* enable access to nvram interface */ 1468 bxe_enable_nvram_access(sc); 1469 1470 written_so_far = 0; 1471 cmd_flags = MCPR_NVM_COMMAND_FIRST; 1472 while ((written_so_far < buf_size) && (rc == 0)) { 1473 if (written_so_far == (buf_size - sizeof(uint32_t))) { 1474 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1475 } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) { 1476 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1477 } else if ((offset % NVRAM_PAGE_SIZE) == 0) { 1478 cmd_flags |= MCPR_NVM_COMMAND_FIRST; 1479 } 1480 1481 memcpy(&val, data_buf, 4); 1482 1483 rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags); 1484 1485 /* advance to the next dword */ 1486 offset += sizeof(uint32_t); 1487 data_buf += sizeof(uint32_t); 1488 written_so_far += sizeof(uint32_t); 1489 cmd_flags = 0; 1490 } 1491 1492 /* disable access to nvram interface */ 1493 bxe_disable_nvram_access(sc); 1494 bxe_release_nvram_lock(sc); 1495 1496 return (rc); 1497 } 1498 1499 /* copy command into DMAE command memory and set DMAE command Go */ 1500 void 1501 bxe_post_dmae(struct bxe_softc *sc, 1502 struct dmae_cmd *dmae, 1503 int idx) 1504 { 1505 uint32_t cmd_offset; 1506 int i; 1507 1508 cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_cmd) * idx)); 1509 for (i = 0; i < ((sizeof(struct dmae_cmd) / 4)); i++) { 1510 REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i)); 1511 } 1512 1513 REG_WR(sc, dmae_reg_go_c[idx], 1); 1514 } 1515 1516 uint32_t 1517 bxe_dmae_opcode_add_comp(uint32_t opcode, 1518 uint8_t comp_type) 1519 { 1520 return (opcode | ((comp_type << DMAE_CMD_C_DST_SHIFT) | 1521 DMAE_CMD_C_TYPE_ENABLE)); 1522 } 1523 1524 uint32_t 1525 bxe_dmae_opcode_clr_src_reset(uint32_t opcode) 1526 { 1527 return (opcode & ~DMAE_CMD_SRC_RESET); 1528 } 1529 1530 uint32_t 1531 bxe_dmae_opcode(struct bxe_softc *sc, 1532 uint8_t src_type, 1533 uint8_t dst_type, 1534 uint8_t with_comp, 1535 uint8_t comp_type) 1536 { 1537 uint32_t opcode = 0; 1538 1539 opcode |= ((src_type << DMAE_CMD_SRC_SHIFT) | 1540 (dst_type << DMAE_CMD_DST_SHIFT)); 1541 1542 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET); 1543 1544 opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0); 1545 1546 opcode |= ((SC_VN(sc) << DMAE_CMD_E1HVN_SHIFT) | 1547 (SC_VN(sc) << DMAE_CMD_DST_VN_SHIFT)); 1548 1549 opcode |= (DMAE_COM_SET_ERR << DMAE_CMD_ERR_POLICY_SHIFT); 1550 1551 #ifdef __BIG_ENDIAN 1552 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP; 1553 #else 1554 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP; 1555 #endif 1556 1557 if (with_comp) { 1558 opcode = bxe_dmae_opcode_add_comp(opcode, comp_type); 1559 } 1560 1561 return (opcode); 1562 } 1563 1564 static void 1565 bxe_prep_dmae_with_comp(struct bxe_softc *sc, 1566 struct dmae_cmd *dmae, 1567 uint8_t src_type, 1568 uint8_t dst_type) 1569 { 1570 memset(dmae, 0, sizeof(struct dmae_cmd)); 1571 1572 /* set the opcode */ 1573 dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type, 1574 TRUE, DMAE_COMP_PCI); 1575 1576 /* fill in the completion parameters */ 1577 dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp)); 1578 dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp)); 1579 dmae->comp_val = DMAE_COMP_VAL; 1580 } 1581 1582 /* issue a DMAE command over the init channel and wait for completion */ 1583 static int 1584 bxe_issue_dmae_with_comp(struct bxe_softc *sc, 1585 struct dmae_cmd *dmae) 1586 { 1587 uint32_t *wb_comp = BXE_SP(sc, wb_comp); 1588 int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000; 1589 1590 BXE_DMAE_LOCK(sc); 1591 1592 /* reset completion */ 1593 *wb_comp = 0; 1594 1595 /* post the command on the channel used for initializations */ 1596 bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc)); 1597 1598 /* wait for completion */ 1599 DELAY(5); 1600 1601 while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) { 1602 if (!timeout || 1603 (sc->recovery_state != BXE_RECOVERY_DONE && 1604 sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) { 1605 BLOGE(sc, "DMAE timeout! *wb_comp 0x%x recovery_state 0x%x\n", 1606 *wb_comp, sc->recovery_state); 1607 BXE_DMAE_UNLOCK(sc); 1608 return (DMAE_TIMEOUT); 1609 } 1610 1611 timeout--; 1612 DELAY(50); 1613 } 1614 1615 if (*wb_comp & DMAE_PCI_ERR_FLAG) { 1616 BLOGE(sc, "DMAE PCI error! *wb_comp 0x%x recovery_state 0x%x\n", 1617 *wb_comp, sc->recovery_state); 1618 BXE_DMAE_UNLOCK(sc); 1619 return (DMAE_PCI_ERROR); 1620 } 1621 1622 BXE_DMAE_UNLOCK(sc); 1623 return (0); 1624 } 1625 1626 void 1627 bxe_read_dmae(struct bxe_softc *sc, 1628 uint32_t src_addr, 1629 uint32_t len32) 1630 { 1631 struct dmae_cmd dmae; 1632 uint32_t *data; 1633 int i, rc; 1634 1635 DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32)); 1636 1637 if (!sc->dmae_ready) { 1638 data = BXE_SP(sc, wb_data[0]); 1639 1640 for (i = 0; i < len32; i++) { 1641 data[i] = (CHIP_IS_E1(sc)) ? 1642 bxe_reg_rd_ind(sc, (src_addr + (i * 4))) : 1643 REG_RD(sc, (src_addr + (i * 4))); 1644 } 1645 1646 return; 1647 } 1648 1649 /* set opcode and fixed command fields */ 1650 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI); 1651 1652 /* fill in addresses and len */ 1653 dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */ 1654 dmae.src_addr_hi = 0; 1655 dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data)); 1656 dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data)); 1657 dmae.len = len32; 1658 1659 /* issue the command and wait for completion */ 1660 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { 1661 bxe_panic(sc, ("DMAE failed (%d)\n", rc)); 1662 } 1663 } 1664 1665 void 1666 bxe_write_dmae(struct bxe_softc *sc, 1667 bus_addr_t dma_addr, 1668 uint32_t dst_addr, 1669 uint32_t len32) 1670 { 1671 struct dmae_cmd dmae; 1672 int rc; 1673 1674 if (!sc->dmae_ready) { 1675 DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32)); 1676 1677 if (CHIP_IS_E1(sc)) { 1678 ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); 1679 } else { 1680 ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); 1681 } 1682 1683 return; 1684 } 1685 1686 /* set opcode and fixed command fields */ 1687 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC); 1688 1689 /* fill in addresses and len */ 1690 dmae.src_addr_lo = U64_LO(dma_addr); 1691 dmae.src_addr_hi = U64_HI(dma_addr); 1692 dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */ 1693 dmae.dst_addr_hi = 0; 1694 dmae.len = len32; 1695 1696 /* issue the command and wait for completion */ 1697 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { 1698 bxe_panic(sc, ("DMAE failed (%d)\n", rc)); 1699 } 1700 } 1701 1702 void 1703 bxe_write_dmae_phys_len(struct bxe_softc *sc, 1704 bus_addr_t phys_addr, 1705 uint32_t addr, 1706 uint32_t len) 1707 { 1708 int dmae_wr_max = DMAE_LEN32_WR_MAX(sc); 1709 int offset = 0; 1710 1711 while (len > dmae_wr_max) { 1712 bxe_write_dmae(sc, 1713 (phys_addr + offset), /* src DMA address */ 1714 (addr + offset), /* dst GRC address */ 1715 dmae_wr_max); 1716 offset += (dmae_wr_max * 4); 1717 len -= dmae_wr_max; 1718 } 1719 1720 bxe_write_dmae(sc, 1721 (phys_addr + offset), /* src DMA address */ 1722 (addr + offset), /* dst GRC address */ 1723 len); 1724 } 1725 1726 void 1727 bxe_set_ctx_validation(struct bxe_softc *sc, 1728 struct eth_context *cxt, 1729 uint32_t cid) 1730 { 1731 /* ustorm cxt validation */ 1732 cxt->ustorm_ag_context.cdu_usage = 1733 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), 1734 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE); 1735 /* xcontext validation */ 1736 cxt->xstorm_ag_context.cdu_reserved = 1737 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), 1738 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE); 1739 } 1740 1741 static void 1742 bxe_storm_memset_hc_timeout(struct bxe_softc *sc, 1743 uint8_t port, 1744 uint8_t fw_sb_id, 1745 uint8_t sb_index, 1746 uint8_t ticks) 1747 { 1748 uint32_t addr = 1749 (BAR_CSTRORM_INTMEM + 1750 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index)); 1751 1752 REG_WR8(sc, addr, ticks); 1753 1754 BLOGD(sc, DBG_LOAD, 1755 "port %d fw_sb_id %d sb_index %d ticks %d\n", 1756 port, fw_sb_id, sb_index, ticks); 1757 } 1758 1759 static void 1760 bxe_storm_memset_hc_disable(struct bxe_softc *sc, 1761 uint8_t port, 1762 uint16_t fw_sb_id, 1763 uint8_t sb_index, 1764 uint8_t disable) 1765 { 1766 uint32_t enable_flag = 1767 (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT); 1768 uint32_t addr = 1769 (BAR_CSTRORM_INTMEM + 1770 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index)); 1771 uint8_t flags; 1772 1773 /* clear and set */ 1774 flags = REG_RD8(sc, addr); 1775 flags &= ~HC_INDEX_DATA_HC_ENABLED; 1776 flags |= enable_flag; 1777 REG_WR8(sc, addr, flags); 1778 1779 BLOGD(sc, DBG_LOAD, 1780 "port %d fw_sb_id %d sb_index %d disable %d\n", 1781 port, fw_sb_id, sb_index, disable); 1782 } 1783 1784 void 1785 bxe_update_coalesce_sb_index(struct bxe_softc *sc, 1786 uint8_t fw_sb_id, 1787 uint8_t sb_index, 1788 uint8_t disable, 1789 uint16_t usec) 1790 { 1791 int port = SC_PORT(sc); 1792 uint8_t ticks = (usec / 4); /* XXX ??? */ 1793 1794 bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks); 1795 1796 disable = (disable) ? 1 : ((usec) ? 0 : 1); 1797 bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable); 1798 } 1799 1800 void 1801 elink_cb_udelay(struct bxe_softc *sc, 1802 uint32_t usecs) 1803 { 1804 DELAY(usecs); 1805 } 1806 1807 uint32_t 1808 elink_cb_reg_read(struct bxe_softc *sc, 1809 uint32_t reg_addr) 1810 { 1811 return (REG_RD(sc, reg_addr)); 1812 } 1813 1814 void 1815 elink_cb_reg_write(struct bxe_softc *sc, 1816 uint32_t reg_addr, 1817 uint32_t val) 1818 { 1819 REG_WR(sc, reg_addr, val); 1820 } 1821 1822 void 1823 elink_cb_reg_wb_write(struct bxe_softc *sc, 1824 uint32_t offset, 1825 uint32_t *wb_write, 1826 uint16_t len) 1827 { 1828 REG_WR_DMAE(sc, offset, wb_write, len); 1829 } 1830 1831 void 1832 elink_cb_reg_wb_read(struct bxe_softc *sc, 1833 uint32_t offset, 1834 uint32_t *wb_write, 1835 uint16_t len) 1836 { 1837 REG_RD_DMAE(sc, offset, wb_write, len); 1838 } 1839 1840 uint8_t 1841 elink_cb_path_id(struct bxe_softc *sc) 1842 { 1843 return (SC_PATH(sc)); 1844 } 1845 1846 void 1847 elink_cb_event_log(struct bxe_softc *sc, 1848 const elink_log_id_t elink_log_id, 1849 ...) 1850 { 1851 /* XXX */ 1852 BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id); 1853 } 1854 1855 static int 1856 bxe_set_spio(struct bxe_softc *sc, 1857 int spio, 1858 uint32_t mode) 1859 { 1860 uint32_t spio_reg; 1861 1862 /* Only 2 SPIOs are configurable */ 1863 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) { 1864 BLOGE(sc, "Invalid SPIO 0x%x mode 0x%x\n", spio, mode); 1865 return (-1); 1866 } 1867 1868 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); 1869 1870 /* read SPIO and mask except the float bits */ 1871 spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT); 1872 1873 switch (mode) { 1874 case MISC_SPIO_OUTPUT_LOW: 1875 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio); 1876 /* clear FLOAT and set CLR */ 1877 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 1878 spio_reg |= (spio << MISC_SPIO_CLR_POS); 1879 break; 1880 1881 case MISC_SPIO_OUTPUT_HIGH: 1882 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio); 1883 /* clear FLOAT and set SET */ 1884 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 1885 spio_reg |= (spio << MISC_SPIO_SET_POS); 1886 break; 1887 1888 case MISC_SPIO_INPUT_HI_Z: 1889 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio); 1890 /* set FLOAT */ 1891 spio_reg |= (spio << MISC_SPIO_FLOAT_POS); 1892 break; 1893 1894 default: 1895 break; 1896 } 1897 1898 REG_WR(sc, MISC_REG_SPIO, spio_reg); 1899 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); 1900 1901 return (0); 1902 } 1903 1904 static int 1905 bxe_gpio_read(struct bxe_softc *sc, 1906 int gpio_num, 1907 uint8_t port) 1908 { 1909 /* The GPIO should be swapped if swap register is set and active */ 1910 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 1911 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 1912 int gpio_shift = (gpio_num + 1913 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 1914 uint32_t gpio_mask = (1 << gpio_shift); 1915 uint32_t gpio_reg; 1916 1917 if (gpio_num > MISC_REGISTERS_GPIO_3) { 1918 BLOGE(sc, "Invalid GPIO %d port 0x%x gpio_port %d gpio_shift %d" 1919 " gpio_mask 0x%x\n", gpio_num, port, gpio_port, gpio_shift, 1920 gpio_mask); 1921 return (-1); 1922 } 1923 1924 /* read GPIO value */ 1925 gpio_reg = REG_RD(sc, MISC_REG_GPIO); 1926 1927 /* get the requested pin value */ 1928 return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0; 1929 } 1930 1931 static int 1932 bxe_gpio_write(struct bxe_softc *sc, 1933 int gpio_num, 1934 uint32_t mode, 1935 uint8_t port) 1936 { 1937 /* The GPIO should be swapped if swap register is set and active */ 1938 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 1939 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 1940 int gpio_shift = (gpio_num + 1941 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 1942 uint32_t gpio_mask = (1 << gpio_shift); 1943 uint32_t gpio_reg; 1944 1945 if (gpio_num > MISC_REGISTERS_GPIO_3) { 1946 BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d" 1947 " gpio_shift %d gpio_mask 0x%x\n", 1948 gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask); 1949 return (-1); 1950 } 1951 1952 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 1953 1954 /* read GPIO and mask except the float bits */ 1955 gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT); 1956 1957 switch (mode) { 1958 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 1959 BLOGD(sc, DBG_PHY, 1960 "Set GPIO %d (shift %d) -> output low\n", 1961 gpio_num, gpio_shift); 1962 /* clear FLOAT and set CLR */ 1963 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 1964 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS); 1965 break; 1966 1967 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 1968 BLOGD(sc, DBG_PHY, 1969 "Set GPIO %d (shift %d) -> output high\n", 1970 gpio_num, gpio_shift); 1971 /* clear FLOAT and set SET */ 1972 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 1973 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS); 1974 break; 1975 1976 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 1977 BLOGD(sc, DBG_PHY, 1978 "Set GPIO %d (shift %d) -> input\n", 1979 gpio_num, gpio_shift); 1980 /* set FLOAT */ 1981 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 1982 break; 1983 1984 default: 1985 break; 1986 } 1987 1988 REG_WR(sc, MISC_REG_GPIO, gpio_reg); 1989 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 1990 1991 return (0); 1992 } 1993 1994 static int 1995 bxe_gpio_mult_write(struct bxe_softc *sc, 1996 uint8_t pins, 1997 uint32_t mode) 1998 { 1999 uint32_t gpio_reg; 2000 2001 /* any port swapping should be handled by caller */ 2002 2003 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2004 2005 /* read GPIO and mask except the float bits */ 2006 gpio_reg = REG_RD(sc, MISC_REG_GPIO); 2007 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2008 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS); 2009 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS); 2010 2011 switch (mode) { 2012 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 2013 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins); 2014 /* set CLR */ 2015 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS); 2016 break; 2017 2018 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 2019 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins); 2020 /* set SET */ 2021 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS); 2022 break; 2023 2024 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2025 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins); 2026 /* set FLOAT */ 2027 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2028 break; 2029 2030 default: 2031 BLOGE(sc, "Invalid GPIO mode assignment pins 0x%x mode 0x%x" 2032 " gpio_reg 0x%x\n", pins, mode, gpio_reg); 2033 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2034 return (-1); 2035 } 2036 2037 REG_WR(sc, MISC_REG_GPIO, gpio_reg); 2038 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2039 2040 return (0); 2041 } 2042 2043 static int 2044 bxe_gpio_int_write(struct bxe_softc *sc, 2045 int gpio_num, 2046 uint32_t mode, 2047 uint8_t port) 2048 { 2049 /* The GPIO should be swapped if swap register is set and active */ 2050 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 2051 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 2052 int gpio_shift = (gpio_num + 2053 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 2054 uint32_t gpio_mask = (1 << gpio_shift); 2055 uint32_t gpio_reg; 2056 2057 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2058 BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d" 2059 " gpio_shift %d gpio_mask 0x%x\n", 2060 gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask); 2061 return (-1); 2062 } 2063 2064 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2065 2066 /* read GPIO int */ 2067 gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT); 2068 2069 switch (mode) { 2070 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR: 2071 BLOGD(sc, DBG_PHY, 2072 "Clear GPIO INT %d (shift %d) -> output low\n", 2073 gpio_num, gpio_shift); 2074 /* clear SET and set CLR */ 2075 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2076 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2077 break; 2078 2079 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET: 2080 BLOGD(sc, DBG_PHY, 2081 "Set GPIO INT %d (shift %d) -> output high\n", 2082 gpio_num, gpio_shift); 2083 /* clear CLR and set SET */ 2084 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2085 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2086 break; 2087 2088 default: 2089 break; 2090 } 2091 2092 REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg); 2093 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2094 2095 return (0); 2096 } 2097 2098 uint32_t 2099 elink_cb_gpio_read(struct bxe_softc *sc, 2100 uint16_t gpio_num, 2101 uint8_t port) 2102 { 2103 return (bxe_gpio_read(sc, gpio_num, port)); 2104 } 2105 2106 uint8_t 2107 elink_cb_gpio_write(struct bxe_softc *sc, 2108 uint16_t gpio_num, 2109 uint8_t mode, /* 0=low 1=high */ 2110 uint8_t port) 2111 { 2112 return (bxe_gpio_write(sc, gpio_num, mode, port)); 2113 } 2114 2115 uint8_t 2116 elink_cb_gpio_mult_write(struct bxe_softc *sc, 2117 uint8_t pins, 2118 uint8_t mode) /* 0=low 1=high */ 2119 { 2120 return (bxe_gpio_mult_write(sc, pins, mode)); 2121 } 2122 2123 uint8_t 2124 elink_cb_gpio_int_write(struct bxe_softc *sc, 2125 uint16_t gpio_num, 2126 uint8_t mode, /* 0=low 1=high */ 2127 uint8_t port) 2128 { 2129 return (bxe_gpio_int_write(sc, gpio_num, mode, port)); 2130 } 2131 2132 void 2133 elink_cb_notify_link_changed(struct bxe_softc *sc) 2134 { 2135 REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 + 2136 (SC_FUNC(sc) * sizeof(uint32_t))), 1); 2137 } 2138 2139 /* send the MCP a request, block until there is a reply */ 2140 uint32_t 2141 elink_cb_fw_command(struct bxe_softc *sc, 2142 uint32_t command, 2143 uint32_t param) 2144 { 2145 int mb_idx = SC_FW_MB_IDX(sc); 2146 uint32_t seq; 2147 uint32_t rc = 0; 2148 uint32_t cnt = 1; 2149 uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10; 2150 2151 BXE_FWMB_LOCK(sc); 2152 2153 seq = ++sc->fw_seq; 2154 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param); 2155 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq)); 2156 2157 BLOGD(sc, DBG_PHY, 2158 "wrote command 0x%08x to FW MB param 0x%08x\n", 2159 (command | seq), param); 2160 2161 /* Let the FW do it's magic. GIve it up to 5 seconds... */ 2162 do { 2163 DELAY(delay * 1000); 2164 rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header); 2165 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500)); 2166 2167 BLOGD(sc, DBG_PHY, 2168 "[after %d ms] read 0x%x seq 0x%x from FW MB\n", 2169 cnt*delay, rc, seq); 2170 2171 /* is this a reply to our command? */ 2172 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) { 2173 rc &= FW_MSG_CODE_MASK; 2174 } else { 2175 /* Ruh-roh! */ 2176 BLOGE(sc, "FW failed to respond!\n"); 2177 // XXX bxe_fw_dump(sc); 2178 rc = 0; 2179 } 2180 2181 BXE_FWMB_UNLOCK(sc); 2182 return (rc); 2183 } 2184 2185 static uint32_t 2186 bxe_fw_command(struct bxe_softc *sc, 2187 uint32_t command, 2188 uint32_t param) 2189 { 2190 return (elink_cb_fw_command(sc, command, param)); 2191 } 2192 2193 static void 2194 __storm_memset_dma_mapping(struct bxe_softc *sc, 2195 uint32_t addr, 2196 bus_addr_t mapping) 2197 { 2198 REG_WR(sc, addr, U64_LO(mapping)); 2199 REG_WR(sc, (addr + 4), U64_HI(mapping)); 2200 } 2201 2202 static void 2203 storm_memset_spq_addr(struct bxe_softc *sc, 2204 bus_addr_t mapping, 2205 uint16_t abs_fid) 2206 { 2207 uint32_t addr = (XSEM_REG_FAST_MEMORY + 2208 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid)); 2209 __storm_memset_dma_mapping(sc, addr, mapping); 2210 } 2211 2212 static void 2213 storm_memset_vf_to_pf(struct bxe_softc *sc, 2214 uint16_t abs_fid, 2215 uint16_t pf_id) 2216 { 2217 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2218 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2219 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2220 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2221 } 2222 2223 static void 2224 storm_memset_func_en(struct bxe_softc *sc, 2225 uint16_t abs_fid, 2226 uint8_t enable) 2227 { 2228 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2229 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2230 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2231 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2232 } 2233 2234 static void 2235 storm_memset_eq_data(struct bxe_softc *sc, 2236 struct event_ring_data *eq_data, 2237 uint16_t pfid) 2238 { 2239 uint32_t addr; 2240 size_t size; 2241 2242 addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid)); 2243 size = sizeof(struct event_ring_data); 2244 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data); 2245 } 2246 2247 static void 2248 storm_memset_eq_prod(struct bxe_softc *sc, 2249 uint16_t eq_prod, 2250 uint16_t pfid) 2251 { 2252 uint32_t addr = (BAR_CSTRORM_INTMEM + 2253 CSTORM_EVENT_RING_PROD_OFFSET(pfid)); 2254 REG_WR16(sc, addr, eq_prod); 2255 } 2256 2257 /* 2258 * Post a slowpath command. 2259 * 2260 * A slowpath command is used to propagate a configuration change through 2261 * the controller in a controlled manner, allowing each STORM processor and 2262 * other H/W blocks to phase in the change. The commands sent on the 2263 * slowpath are referred to as ramrods. Depending on the ramrod used the 2264 * completion of the ramrod will occur in different ways. Here's a 2265 * breakdown of ramrods and how they complete: 2266 * 2267 * RAMROD_CMD_ID_ETH_PORT_SETUP 2268 * Used to setup the leading connection on a port. Completes on the 2269 * Receive Completion Queue (RCQ) of that port (typically fp[0]). 2270 * 2271 * RAMROD_CMD_ID_ETH_CLIENT_SETUP 2272 * Used to setup an additional connection on a port. Completes on the 2273 * RCQ of the multi-queue/RSS connection being initialized. 2274 * 2275 * RAMROD_CMD_ID_ETH_STAT_QUERY 2276 * Used to force the storm processors to update the statistics database 2277 * in host memory. This ramrod is send on the leading connection CID and 2278 * completes as an index increment of the CSTORM on the default status 2279 * block. 2280 * 2281 * RAMROD_CMD_ID_ETH_UPDATE 2282 * Used to update the state of the leading connection, usually to udpate 2283 * the RSS indirection table. Completes on the RCQ of the leading 2284 * connection. (Not currently used under FreeBSD until OS support becomes 2285 * available.) 2286 * 2287 * RAMROD_CMD_ID_ETH_HALT 2288 * Used when tearing down a connection prior to driver unload. Completes 2289 * on the RCQ of the multi-queue/RSS connection being torn down. Don't 2290 * use this on the leading connection. 2291 * 2292 * RAMROD_CMD_ID_ETH_SET_MAC 2293 * Sets the Unicast/Broadcast/Multicast used by the port. Completes on 2294 * the RCQ of the leading connection. 2295 * 2296 * RAMROD_CMD_ID_ETH_CFC_DEL 2297 * Used when tearing down a conneciton prior to driver unload. Completes 2298 * on the RCQ of the leading connection (since the current connection 2299 * has been completely removed from controller memory). 2300 * 2301 * RAMROD_CMD_ID_ETH_PORT_DEL 2302 * Used to tear down the leading connection prior to driver unload, 2303 * typically fp[0]. Completes as an index increment of the CSTORM on the 2304 * default status block. 2305 * 2306 * RAMROD_CMD_ID_ETH_FORWARD_SETUP 2307 * Used for connection offload. Completes on the RCQ of the multi-queue 2308 * RSS connection that is being offloaded. (Not currently used under 2309 * FreeBSD.) 2310 * 2311 * There can only be one command pending per function. 2312 * 2313 * Returns: 2314 * 0 = Success, !0 = Failure. 2315 */ 2316 2317 /* must be called under the spq lock */ 2318 static inline 2319 struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc) 2320 { 2321 struct eth_spe *next_spe = sc->spq_prod_bd; 2322 2323 if (sc->spq_prod_bd == sc->spq_last_bd) { 2324 /* wrap back to the first eth_spq */ 2325 sc->spq_prod_bd = sc->spq; 2326 sc->spq_prod_idx = 0; 2327 } else { 2328 sc->spq_prod_bd++; 2329 sc->spq_prod_idx++; 2330 } 2331 2332 return (next_spe); 2333 } 2334 2335 /* must be called under the spq lock */ 2336 static inline 2337 void bxe_sp_prod_update(struct bxe_softc *sc) 2338 { 2339 int func = SC_FUNC(sc); 2340 2341 /* 2342 * Make sure that BD data is updated before writing the producer. 2343 * BD data is written to the memory, the producer is read from the 2344 * memory, thus we need a full memory barrier to ensure the ordering. 2345 */ 2346 mb(); 2347 2348 REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)), 2349 sc->spq_prod_idx); 2350 2351 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 2352 BUS_SPACE_BARRIER_WRITE); 2353 } 2354 2355 /** 2356 * bxe_is_contextless_ramrod - check if the current command ends on EQ 2357 * 2358 * @cmd: command to check 2359 * @cmd_type: command type 2360 */ 2361 static inline 2362 int bxe_is_contextless_ramrod(int cmd, 2363 int cmd_type) 2364 { 2365 if ((cmd_type == NONE_CONNECTION_TYPE) || 2366 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) || 2367 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) || 2368 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) || 2369 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) || 2370 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) || 2371 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) { 2372 return (TRUE); 2373 } else { 2374 return (FALSE); 2375 } 2376 } 2377 2378 /** 2379 * bxe_sp_post - place a single command on an SP ring 2380 * 2381 * @sc: driver handle 2382 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.) 2383 * @cid: SW CID the command is related to 2384 * @data_hi: command private data address (high 32 bits) 2385 * @data_lo: command private data address (low 32 bits) 2386 * @cmd_type: command type (e.g. NONE, ETH) 2387 * 2388 * SP data is handled as if it's always an address pair, thus data fields are 2389 * not swapped to little endian in upper functions. Instead this function swaps 2390 * data as if it's two uint32 fields. 2391 */ 2392 int 2393 bxe_sp_post(struct bxe_softc *sc, 2394 int command, 2395 int cid, 2396 uint32_t data_hi, 2397 uint32_t data_lo, 2398 int cmd_type) 2399 { 2400 struct eth_spe *spe; 2401 uint16_t type; 2402 int common; 2403 2404 common = bxe_is_contextless_ramrod(command, cmd_type); 2405 2406 BXE_SP_LOCK(sc); 2407 2408 if (common) { 2409 if (!atomic_load_acq_long(&sc->eq_spq_left)) { 2410 BLOGE(sc, "EQ ring is full!\n"); 2411 BXE_SP_UNLOCK(sc); 2412 return (-1); 2413 } 2414 } else { 2415 if (!atomic_load_acq_long(&sc->cq_spq_left)) { 2416 BLOGE(sc, "SPQ ring is full!\n"); 2417 BXE_SP_UNLOCK(sc); 2418 return (-1); 2419 } 2420 } 2421 2422 spe = bxe_sp_get_next(sc); 2423 2424 /* CID needs port number to be encoded int it */ 2425 spe->hdr.conn_and_cmd_data = 2426 htole32((command << SPE_HDR_T_CMD_ID_SHIFT) | HW_CID(sc, cid)); 2427 2428 type = (cmd_type << SPE_HDR_T_CONN_TYPE_SHIFT) & SPE_HDR_T_CONN_TYPE; 2429 2430 /* TBD: Check if it works for VFs */ 2431 type |= ((SC_FUNC(sc) << SPE_HDR_T_FUNCTION_ID_SHIFT) & 2432 SPE_HDR_T_FUNCTION_ID); 2433 2434 spe->hdr.type = htole16(type); 2435 2436 spe->data.update_data_addr.hi = htole32(data_hi); 2437 spe->data.update_data_addr.lo = htole32(data_lo); 2438 2439 /* 2440 * It's ok if the actual decrement is issued towards the memory 2441 * somewhere between the lock and unlock. Thus no more explict 2442 * memory barrier is needed. 2443 */ 2444 if (common) { 2445 atomic_subtract_acq_long(&sc->eq_spq_left, 1); 2446 } else { 2447 atomic_subtract_acq_long(&sc->cq_spq_left, 1); 2448 } 2449 2450 BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr); 2451 BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n", 2452 BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata)); 2453 BLOGD(sc, DBG_SP, 2454 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n", 2455 sc->spq_prod_idx, 2456 (uint32_t)U64_HI(sc->spq_dma.paddr), 2457 (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq), 2458 command, 2459 common, 2460 HW_CID(sc, cid), 2461 data_hi, 2462 data_lo, 2463 type, 2464 atomic_load_acq_long(&sc->cq_spq_left), 2465 atomic_load_acq_long(&sc->eq_spq_left)); 2466 2467 bxe_sp_prod_update(sc); 2468 2469 BXE_SP_UNLOCK(sc); 2470 return (0); 2471 } 2472 2473 /** 2474 * bxe_debug_print_ind_table - prints the indirection table configuration. 2475 * 2476 * @sc: driver hanlde 2477 * @p: pointer to rss configuration 2478 */ 2479 2480 /* 2481 * FreeBSD Device probe function. 2482 * 2483 * Compares the device found to the driver's list of supported devices and 2484 * reports back to the bsd loader whether this is the right driver for the device. 2485 * This is the driver entry function called from the "kldload" command. 2486 * 2487 * Returns: 2488 * BUS_PROBE_DEFAULT on success, positive value on failure. 2489 */ 2490 static int 2491 bxe_probe(device_t dev) 2492 { 2493 struct bxe_device_type *t; 2494 char *descbuf; 2495 uint16_t did, sdid, svid, vid; 2496 2497 /* Find our device structure */ 2498 t = bxe_devs; 2499 2500 /* Get the data for the device to be probed. */ 2501 vid = pci_get_vendor(dev); 2502 did = pci_get_device(dev); 2503 svid = pci_get_subvendor(dev); 2504 sdid = pci_get_subdevice(dev); 2505 2506 /* Look through the list of known devices for a match. */ 2507 while (t->bxe_name != NULL) { 2508 if ((vid == t->bxe_vid) && (did == t->bxe_did) && 2509 ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) && 2510 ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) { 2511 descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT); 2512 if (descbuf == NULL) 2513 return (ENOMEM); 2514 2515 /* Print out the device identity. */ 2516 snprintf(descbuf, BXE_DEVDESC_MAX, 2517 "%s (%c%d) BXE v:%s", t->bxe_name, 2518 (((pci_read_config(dev, PCIR_REVID, 4) & 2519 0xf0) >> 4) + 'A'), 2520 (pci_read_config(dev, PCIR_REVID, 4) & 0xf), 2521 BXE_DRIVER_VERSION); 2522 2523 device_set_desc_copy(dev, descbuf); 2524 free(descbuf, M_TEMP); 2525 return (BUS_PROBE_DEFAULT); 2526 } 2527 t++; 2528 } 2529 2530 return (ENXIO); 2531 } 2532 2533 static void 2534 bxe_init_mutexes(struct bxe_softc *sc) 2535 { 2536 #ifdef BXE_CORE_LOCK_SX 2537 snprintf(sc->core_sx_name, sizeof(sc->core_sx_name), 2538 "bxe%d_core_lock", sc->unit); 2539 sx_init(&sc->core_sx, sc->core_sx_name); 2540 #else 2541 snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name), 2542 "bxe%d_core_lock", sc->unit); 2543 mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF); 2544 #endif 2545 2546 snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name), 2547 "bxe%d_sp_lock", sc->unit); 2548 mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF); 2549 2550 snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name), 2551 "bxe%d_dmae_lock", sc->unit); 2552 mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF); 2553 2554 snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name), 2555 "bxe%d_phy_lock", sc->unit); 2556 mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF); 2557 2558 snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name), 2559 "bxe%d_fwmb_lock", sc->unit); 2560 mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF); 2561 2562 snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name), 2563 "bxe%d_print_lock", sc->unit); 2564 mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF); 2565 2566 snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name), 2567 "bxe%d_stats_lock", sc->unit); 2568 mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF); 2569 2570 snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name), 2571 "bxe%d_mcast_lock", sc->unit); 2572 mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF); 2573 } 2574 2575 static void 2576 bxe_release_mutexes(struct bxe_softc *sc) 2577 { 2578 #ifdef BXE_CORE_LOCK_SX 2579 sx_destroy(&sc->core_sx); 2580 #else 2581 if (mtx_initialized(&sc->core_mtx)) { 2582 mtx_destroy(&sc->core_mtx); 2583 } 2584 #endif 2585 2586 if (mtx_initialized(&sc->sp_mtx)) { 2587 mtx_destroy(&sc->sp_mtx); 2588 } 2589 2590 if (mtx_initialized(&sc->dmae_mtx)) { 2591 mtx_destroy(&sc->dmae_mtx); 2592 } 2593 2594 if (mtx_initialized(&sc->port.phy_mtx)) { 2595 mtx_destroy(&sc->port.phy_mtx); 2596 } 2597 2598 if (mtx_initialized(&sc->fwmb_mtx)) { 2599 mtx_destroy(&sc->fwmb_mtx); 2600 } 2601 2602 if (mtx_initialized(&sc->print_mtx)) { 2603 mtx_destroy(&sc->print_mtx); 2604 } 2605 2606 if (mtx_initialized(&sc->stats_mtx)) { 2607 mtx_destroy(&sc->stats_mtx); 2608 } 2609 2610 if (mtx_initialized(&sc->mcast_mtx)) { 2611 mtx_destroy(&sc->mcast_mtx); 2612 } 2613 } 2614 2615 static void 2616 bxe_tx_disable(struct bxe_softc* sc) 2617 { 2618 if_t ifp = sc->ifp; 2619 2620 /* tell the stack the driver is stopped and TX queue is full */ 2621 if (ifp != NULL) { 2622 if_setdrvflags(ifp, 0); 2623 } 2624 } 2625 2626 static void 2627 bxe_drv_pulse(struct bxe_softc *sc) 2628 { 2629 SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb, 2630 sc->fw_drv_pulse_wr_seq); 2631 } 2632 2633 static inline uint16_t 2634 bxe_tx_avail(struct bxe_softc *sc, 2635 struct bxe_fastpath *fp) 2636 { 2637 int16_t used; 2638 uint16_t prod; 2639 uint16_t cons; 2640 2641 prod = fp->tx_bd_prod; 2642 cons = fp->tx_bd_cons; 2643 2644 used = SUB_S16(prod, cons); 2645 2646 return (int16_t)(sc->tx_ring_size) - used; 2647 } 2648 2649 static inline int 2650 bxe_tx_queue_has_work(struct bxe_fastpath *fp) 2651 { 2652 uint16_t hw_cons; 2653 2654 mb(); /* status block fields can change */ 2655 hw_cons = le16toh(*fp->tx_cons_sb); 2656 return (hw_cons != fp->tx_pkt_cons); 2657 } 2658 2659 static inline uint8_t 2660 bxe_has_tx_work(struct bxe_fastpath *fp) 2661 { 2662 /* expand this for multi-cos if ever supported */ 2663 return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE; 2664 } 2665 2666 static inline int 2667 bxe_has_rx_work(struct bxe_fastpath *fp) 2668 { 2669 uint16_t rx_cq_cons_sb; 2670 2671 mb(); /* status block fields can change */ 2672 rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb); 2673 if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX) 2674 rx_cq_cons_sb++; 2675 return (fp->rx_cq_cons != rx_cq_cons_sb); 2676 } 2677 2678 static void 2679 bxe_sp_event(struct bxe_softc *sc, 2680 struct bxe_fastpath *fp, 2681 union eth_rx_cqe *rr_cqe) 2682 { 2683 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data); 2684 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data); 2685 enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX; 2686 struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj; 2687 2688 BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n", 2689 fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type); 2690 2691 switch (command) { 2692 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE): 2693 BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid); 2694 drv_cmd = ECORE_Q_CMD_UPDATE; 2695 break; 2696 2697 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP): 2698 BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid); 2699 drv_cmd = ECORE_Q_CMD_SETUP; 2700 break; 2701 2702 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP): 2703 BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid); 2704 drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY; 2705 break; 2706 2707 case (RAMROD_CMD_ID_ETH_HALT): 2708 BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid); 2709 drv_cmd = ECORE_Q_CMD_HALT; 2710 break; 2711 2712 case (RAMROD_CMD_ID_ETH_TERMINATE): 2713 BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid); 2714 drv_cmd = ECORE_Q_CMD_TERMINATE; 2715 break; 2716 2717 case (RAMROD_CMD_ID_ETH_EMPTY): 2718 BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid); 2719 drv_cmd = ECORE_Q_CMD_EMPTY; 2720 break; 2721 2722 default: 2723 BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n", 2724 command, fp->index); 2725 return; 2726 } 2727 2728 if ((drv_cmd != ECORE_Q_CMD_MAX) && 2729 q_obj->complete_cmd(sc, q_obj, drv_cmd)) { 2730 /* 2731 * q_obj->complete_cmd() failure means that this was 2732 * an unexpected completion. 2733 * 2734 * In this case we don't want to increase the sc->spq_left 2735 * because apparently we haven't sent this command the first 2736 * place. 2737 */ 2738 // bxe_panic(sc, ("Unexpected SP completion\n")); 2739 return; 2740 } 2741 2742 atomic_add_acq_long(&sc->cq_spq_left, 1); 2743 2744 BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n", 2745 atomic_load_acq_long(&sc->cq_spq_left)); 2746 } 2747 2748 /* 2749 * The current mbuf is part of an aggregation. Move the mbuf into the TPA 2750 * aggregation queue, put an empty mbuf back onto the receive chain, and mark 2751 * the current aggregation queue as in-progress. 2752 */ 2753 static void 2754 bxe_tpa_start(struct bxe_softc *sc, 2755 struct bxe_fastpath *fp, 2756 uint16_t queue, 2757 uint16_t cons, 2758 uint16_t prod, 2759 struct eth_fast_path_rx_cqe *cqe) 2760 { 2761 struct bxe_sw_rx_bd tmp_bd; 2762 struct bxe_sw_rx_bd *rx_buf; 2763 struct eth_rx_bd *rx_bd; 2764 int max_agg_queues __diagused; 2765 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; 2766 uint16_t index; 2767 2768 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START " 2769 "cons=%d prod=%d\n", 2770 fp->index, queue, cons, prod); 2771 2772 max_agg_queues = MAX_AGG_QS(sc); 2773 2774 KASSERT((queue < max_agg_queues), 2775 ("fp[%02d] invalid aggr queue (%d >= %d)!", 2776 fp->index, queue, max_agg_queues)); 2777 2778 KASSERT((tpa_info->state == BXE_TPA_STATE_STOP), 2779 ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!", 2780 fp->index, queue)); 2781 2782 /* copy the existing mbuf and mapping from the TPA pool */ 2783 tmp_bd = tpa_info->bd; 2784 2785 if (tmp_bd.m == NULL) { 2786 uint32_t *tmp; 2787 2788 tmp = (uint32_t *)cqe; 2789 2790 BLOGE(sc, "fp[%02d].tpa[%02d] cons[%d] prod[%d]mbuf not allocated!\n", 2791 fp->index, queue, cons, prod); 2792 BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n", 2793 *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7)); 2794 2795 /* XXX Error handling? */ 2796 return; 2797 } 2798 2799 /* change the TPA queue to the start state */ 2800 tpa_info->state = BXE_TPA_STATE_START; 2801 tpa_info->placement_offset = cqe->placement_offset; 2802 tpa_info->parsing_flags = le16toh(cqe->pars_flags.flags); 2803 tpa_info->vlan_tag = le16toh(cqe->vlan_tag); 2804 tpa_info->len_on_bd = le16toh(cqe->len_on_bd); 2805 2806 fp->rx_tpa_queue_used |= (1 << queue); 2807 2808 /* 2809 * If all the buffer descriptors are filled with mbufs then fill in 2810 * the current consumer index with a new BD. Else if a maximum Rx 2811 * buffer limit is imposed then fill in the next producer index. 2812 */ 2813 index = (sc->max_rx_bufs != RX_BD_USABLE) ? 2814 prod : cons; 2815 2816 /* move the received mbuf and mapping to TPA pool */ 2817 tpa_info->bd = fp->rx_mbuf_chain[cons]; 2818 2819 /* release any existing RX BD mbuf mappings */ 2820 if (cons != index) { 2821 rx_buf = &fp->rx_mbuf_chain[cons]; 2822 2823 if (rx_buf->m_map != NULL) { 2824 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 2825 BUS_DMASYNC_POSTREAD); 2826 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 2827 } 2828 2829 /* 2830 * We get here when the maximum number of rx buffers is less than 2831 * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL 2832 * it out here without concern of a memory leak. 2833 */ 2834 fp->rx_mbuf_chain[cons].m = NULL; 2835 } 2836 2837 /* update the Rx SW BD with the mbuf info from the TPA pool */ 2838 fp->rx_mbuf_chain[index] = tmp_bd; 2839 2840 /* update the Rx BD with the empty mbuf phys address from the TPA pool */ 2841 rx_bd = &fp->rx_chain[index]; 2842 rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr)); 2843 rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr)); 2844 } 2845 2846 /* 2847 * When a TPA aggregation is completed, loop through the individual mbufs 2848 * of the aggregation, combining them into a single mbuf which will be sent 2849 * up the stack. Refill all freed SGEs with mbufs as we go along. 2850 */ 2851 static int 2852 bxe_fill_frag_mbuf(struct bxe_softc *sc, 2853 struct bxe_fastpath *fp, 2854 struct bxe_sw_tpa_info *tpa_info, 2855 uint16_t queue, 2856 uint16_t pages, 2857 struct mbuf *m, 2858 struct eth_end_agg_rx_cqe *cqe, 2859 uint16_t cqe_idx) 2860 { 2861 struct mbuf *m_frag; 2862 uint32_t frag_len, frag_size, i; 2863 uint16_t sge_idx; 2864 int rc = 0; 2865 int j; 2866 2867 frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd; 2868 2869 BLOGD(sc, DBG_LRO, 2870 "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n", 2871 fp->index, queue, tpa_info->len_on_bd, frag_size, pages); 2872 2873 /* make sure the aggregated frame is not too big to handle */ 2874 if (pages > 8 * PAGES_PER_SGE) { 2875 2876 uint32_t *tmp = (uint32_t *)cqe; 2877 2878 BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! " 2879 "pkt_len=%d len_on_bd=%d frag_size=%d\n", 2880 fp->index, cqe_idx, pages, le16toh(cqe->pkt_len), 2881 tpa_info->len_on_bd, frag_size); 2882 2883 BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n", 2884 *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7)); 2885 2886 bxe_panic(sc, ("sge page count error\n")); 2887 return (EINVAL); 2888 } 2889 2890 /* 2891 * Scan through the scatter gather list pulling individual mbufs into a 2892 * single mbuf for the host stack. 2893 */ 2894 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) { 2895 sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j])); 2896 2897 /* 2898 * Firmware gives the indices of the SGE as if the ring is an array 2899 * (meaning that the "next" element will consume 2 indices). 2900 */ 2901 frag_len = min(frag_size, (uint32_t)(SGE_PAGES)); 2902 2903 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d " 2904 "sge_idx=%d frag_size=%d frag_len=%d\n", 2905 fp->index, queue, i, j, sge_idx, frag_size, frag_len); 2906 2907 m_frag = fp->rx_sge_mbuf_chain[sge_idx].m; 2908 2909 /* allocate a new mbuf for the SGE */ 2910 rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx); 2911 if (rc) { 2912 /* Leave all remaining SGEs in the ring! */ 2913 return (rc); 2914 } 2915 2916 /* update the fragment length */ 2917 m_frag->m_len = frag_len; 2918 2919 /* concatenate the fragment to the head mbuf */ 2920 m_cat(m, m_frag); 2921 fp->eth_q_stats.mbuf_alloc_sge--; 2922 2923 /* update the TPA mbuf size and remaining fragment size */ 2924 m->m_pkthdr.len += frag_len; 2925 frag_size -= frag_len; 2926 } 2927 2928 BLOGD(sc, DBG_LRO, 2929 "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n", 2930 fp->index, queue, frag_size); 2931 2932 return (rc); 2933 } 2934 2935 static inline void 2936 bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp) 2937 { 2938 int i, j; 2939 2940 for (i = 1; i <= RX_SGE_NUM_PAGES; i++) { 2941 int idx = RX_SGE_TOTAL_PER_PAGE * i - 1; 2942 2943 for (j = 0; j < 2; j++) { 2944 BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx); 2945 idx--; 2946 } 2947 } 2948 } 2949 2950 static inline void 2951 bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp) 2952 { 2953 /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */ 2954 memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask)); 2955 2956 /* 2957 * Clear the two last indices in the page to 1. These are the indices that 2958 * correspond to the "next" element, hence will never be indicated and 2959 * should be removed from the calculations. 2960 */ 2961 bxe_clear_sge_mask_next_elems(fp); 2962 } 2963 2964 static inline void 2965 bxe_update_last_max_sge(struct bxe_fastpath *fp, 2966 uint16_t idx) 2967 { 2968 uint16_t last_max = fp->last_max_sge; 2969 2970 if (SUB_S16(idx, last_max) > 0) { 2971 fp->last_max_sge = idx; 2972 } 2973 } 2974 2975 static inline void 2976 bxe_update_sge_prod(struct bxe_softc *sc, 2977 struct bxe_fastpath *fp, 2978 uint16_t sge_len, 2979 union eth_sgl_or_raw_data *cqe) 2980 { 2981 uint16_t last_max, last_elem, first_elem; 2982 uint16_t delta = 0; 2983 uint16_t i; 2984 2985 if (!sge_len) { 2986 return; 2987 } 2988 2989 /* first mark all used pages */ 2990 for (i = 0; i < sge_len; i++) { 2991 BIT_VEC64_CLEAR_BIT(fp->sge_mask, 2992 RX_SGE(le16toh(cqe->sgl[i]))); 2993 } 2994 2995 BLOGD(sc, DBG_LRO, 2996 "fp[%02d] fp_cqe->sgl[%d] = %d\n", 2997 fp->index, sge_len - 1, 2998 le16toh(cqe->sgl[sge_len - 1])); 2999 3000 /* assume that the last SGE index is the biggest */ 3001 bxe_update_last_max_sge(fp, 3002 le16toh(cqe->sgl[sge_len - 1])); 3003 3004 last_max = RX_SGE(fp->last_max_sge); 3005 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT; 3006 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT; 3007 3008 /* if ring is not full */ 3009 if (last_elem + 1 != first_elem) { 3010 last_elem++; 3011 } 3012 3013 /* now update the prod */ 3014 for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) { 3015 if (__predict_true(fp->sge_mask[i])) { 3016 break; 3017 } 3018 3019 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK; 3020 delta += BIT_VEC64_ELEM_SZ; 3021 } 3022 3023 if (delta > 0) { 3024 fp->rx_sge_prod += delta; 3025 /* clear page-end entries */ 3026 bxe_clear_sge_mask_next_elems(fp); 3027 } 3028 3029 BLOGD(sc, DBG_LRO, 3030 "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n", 3031 fp->index, fp->last_max_sge, fp->rx_sge_prod); 3032 } 3033 3034 /* 3035 * The aggregation on the current TPA queue has completed. Pull the individual 3036 * mbuf fragments together into a single mbuf, perform all necessary checksum 3037 * calculations, and send the resuting mbuf to the stack. 3038 */ 3039 static void 3040 bxe_tpa_stop(struct bxe_softc *sc, 3041 struct bxe_fastpath *fp, 3042 struct bxe_sw_tpa_info *tpa_info, 3043 uint16_t queue, 3044 uint16_t pages, 3045 struct eth_end_agg_rx_cqe *cqe, 3046 uint16_t cqe_idx) 3047 { 3048 if_t ifp = sc->ifp; 3049 struct mbuf *m; 3050 int rc = 0; 3051 3052 BLOGD(sc, DBG_LRO, 3053 "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n", 3054 fp->index, queue, tpa_info->placement_offset, 3055 le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag); 3056 3057 m = tpa_info->bd.m; 3058 3059 /* allocate a replacement before modifying existing mbuf */ 3060 rc = bxe_alloc_rx_tpa_mbuf(fp, queue); 3061 if (rc) { 3062 /* drop the frame and log an error */ 3063 fp->eth_q_stats.rx_soft_errors++; 3064 goto bxe_tpa_stop_exit; 3065 } 3066 3067 /* we have a replacement, fixup the current mbuf */ 3068 m_adj(m, tpa_info->placement_offset); 3069 m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd; 3070 3071 /* mark the checksums valid (taken care of by the firmware) */ 3072 fp->eth_q_stats.rx_ofld_frames_csum_ip++; 3073 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; 3074 m->m_pkthdr.csum_data = 0xffff; 3075 m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED | 3076 CSUM_IP_VALID | 3077 CSUM_DATA_VALID | 3078 CSUM_PSEUDO_HDR); 3079 3080 /* aggregate all of the SGEs into a single mbuf */ 3081 rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx); 3082 if (rc) { 3083 /* drop the packet and log an error */ 3084 fp->eth_q_stats.rx_soft_errors++; 3085 m_freem(m); 3086 } else { 3087 if (tpa_info->parsing_flags & PARSING_FLAGS_INNER_VLAN_EXIST) { 3088 m->m_pkthdr.ether_vtag = tpa_info->vlan_tag; 3089 m->m_flags |= M_VLANTAG; 3090 } 3091 3092 /* assign packet to this interface interface */ 3093 if_setrcvif(m, ifp); 3094 3095 /* specify what RSS queue was used for this flow */ 3096 m->m_pkthdr.flowid = fp->index; 3097 BXE_SET_FLOWID(m); 3098 3099 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 3100 fp->eth_q_stats.rx_tpa_pkts++; 3101 3102 /* pass the frame to the stack */ 3103 if_input(ifp, m); 3104 } 3105 3106 /* we passed an mbuf up the stack or dropped the frame */ 3107 fp->eth_q_stats.mbuf_alloc_tpa--; 3108 3109 bxe_tpa_stop_exit: 3110 3111 fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP; 3112 fp->rx_tpa_queue_used &= ~(1 << queue); 3113 } 3114 3115 static uint8_t 3116 bxe_service_rxsgl( 3117 struct bxe_fastpath *fp, 3118 uint16_t len, 3119 uint16_t lenonbd, 3120 struct mbuf *m, 3121 struct eth_fast_path_rx_cqe *cqe_fp) 3122 { 3123 struct mbuf *m_frag; 3124 uint16_t frags, frag_len; 3125 uint16_t sge_idx = 0; 3126 uint16_t j; 3127 uint8_t i, rc = 0; 3128 uint32_t frag_size; 3129 3130 /* adjust the mbuf */ 3131 m->m_len = lenonbd; 3132 3133 frag_size = len - lenonbd; 3134 frags = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT; 3135 3136 for (i = 0, j = 0; i < frags; i += PAGES_PER_SGE, j++) { 3137 sge_idx = RX_SGE(le16toh(cqe_fp->sgl_or_raw_data.sgl[j])); 3138 3139 m_frag = fp->rx_sge_mbuf_chain[sge_idx].m; 3140 frag_len = min(frag_size, (uint32_t)(SGE_PAGE_SIZE)); 3141 m_frag->m_len = frag_len; 3142 3143 /* allocate a new mbuf for the SGE */ 3144 rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx); 3145 if (rc) { 3146 /* Leave all remaining SGEs in the ring! */ 3147 return (rc); 3148 } 3149 fp->eth_q_stats.mbuf_alloc_sge--; 3150 3151 /* concatenate the fragment to the head mbuf */ 3152 m_cat(m, m_frag); 3153 3154 frag_size -= frag_len; 3155 } 3156 3157 bxe_update_sge_prod(fp->sc, fp, frags, &cqe_fp->sgl_or_raw_data); 3158 3159 return rc; 3160 } 3161 3162 static uint8_t 3163 bxe_rxeof(struct bxe_softc *sc, 3164 struct bxe_fastpath *fp) 3165 { 3166 if_t ifp = sc->ifp; 3167 uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons; 3168 uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod; 3169 int rx_pkts = 0; 3170 int rc = 0; 3171 3172 BXE_FP_RX_LOCK(fp); 3173 3174 /* CQ "next element" is of the size of the regular element */ 3175 hw_cq_cons = le16toh(*fp->rx_cq_cons_sb); 3176 if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) { 3177 hw_cq_cons++; 3178 } 3179 3180 bd_cons = fp->rx_bd_cons; 3181 bd_prod = fp->rx_bd_prod; 3182 bd_prod_fw = bd_prod; 3183 sw_cq_cons = fp->rx_cq_cons; 3184 sw_cq_prod = fp->rx_cq_prod; 3185 3186 /* 3187 * Memory barrier necessary as speculative reads of the rx 3188 * buffer can be ahead of the index in the status block 3189 */ 3190 rmb(); 3191 3192 BLOGD(sc, DBG_RX, 3193 "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n", 3194 fp->index, hw_cq_cons, sw_cq_cons); 3195 3196 while (sw_cq_cons != hw_cq_cons) { 3197 struct bxe_sw_rx_bd *rx_buf = NULL; 3198 union eth_rx_cqe *cqe; 3199 struct eth_fast_path_rx_cqe *cqe_fp; 3200 uint8_t cqe_fp_flags; 3201 enum eth_rx_cqe_type cqe_fp_type; 3202 uint16_t len, lenonbd, pad; 3203 struct mbuf *m = NULL; 3204 3205 comp_ring_cons = RCQ(sw_cq_cons); 3206 bd_prod = RX_BD(bd_prod); 3207 bd_cons = RX_BD(bd_cons); 3208 3209 cqe = &fp->rcq_chain[comp_ring_cons]; 3210 cqe_fp = &cqe->fast_path_cqe; 3211 cqe_fp_flags = cqe_fp->type_error_flags; 3212 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE; 3213 3214 BLOGD(sc, DBG_RX, 3215 "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d " 3216 "BD prod=%d cons=%d CQE type=0x%x err=0x%x " 3217 "status=0x%x rss_hash=0x%x vlan=0x%x len=%u lenonbd=%u\n", 3218 fp->index, 3219 hw_cq_cons, 3220 sw_cq_cons, 3221 bd_prod, 3222 bd_cons, 3223 CQE_TYPE(cqe_fp_flags), 3224 cqe_fp_flags, 3225 cqe_fp->status_flags, 3226 le32toh(cqe_fp->rss_hash_result), 3227 le16toh(cqe_fp->vlan_tag), 3228 le16toh(cqe_fp->pkt_len_or_gro_seg_len), 3229 le16toh(cqe_fp->len_on_bd)); 3230 3231 /* is this a slowpath msg? */ 3232 if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) { 3233 bxe_sp_event(sc, fp, cqe); 3234 goto next_cqe; 3235 } 3236 3237 rx_buf = &fp->rx_mbuf_chain[bd_cons]; 3238 3239 if (!CQE_TYPE_FAST(cqe_fp_type)) { 3240 struct bxe_sw_tpa_info *tpa_info; 3241 uint16_t frag_size, pages; 3242 uint8_t queue; 3243 3244 if (CQE_TYPE_START(cqe_fp_type)) { 3245 bxe_tpa_start(sc, fp, cqe_fp->queue_index, 3246 bd_cons, bd_prod, cqe_fp); 3247 m = NULL; /* packet not ready yet */ 3248 goto next_rx; 3249 } 3250 3251 KASSERT(CQE_TYPE_STOP(cqe_fp_type), 3252 ("CQE type is not STOP! (0x%x)\n", cqe_fp_type)); 3253 3254 queue = cqe->end_agg_cqe.queue_index; 3255 tpa_info = &fp->rx_tpa_info[queue]; 3256 3257 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n", 3258 fp->index, queue); 3259 3260 frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) - 3261 tpa_info->len_on_bd); 3262 pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT; 3263 3264 bxe_tpa_stop(sc, fp, tpa_info, queue, pages, 3265 &cqe->end_agg_cqe, comp_ring_cons); 3266 3267 bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe.sgl_or_raw_data); 3268 3269 goto next_cqe; 3270 } 3271 3272 /* non TPA */ 3273 3274 /* is this an error packet? */ 3275 if (__predict_false(cqe_fp_flags & 3276 ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) { 3277 BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons); 3278 fp->eth_q_stats.rx_soft_errors++; 3279 goto next_rx; 3280 } 3281 3282 len = le16toh(cqe_fp->pkt_len_or_gro_seg_len); 3283 lenonbd = le16toh(cqe_fp->len_on_bd); 3284 pad = cqe_fp->placement_offset; 3285 3286 m = rx_buf->m; 3287 3288 if (__predict_false(m == NULL)) { 3289 BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n", 3290 bd_cons, fp->index); 3291 goto next_rx; 3292 } 3293 3294 /* XXX double copy if packet length under a threshold */ 3295 3296 /* 3297 * If all the buffer descriptors are filled with mbufs then fill in 3298 * the current consumer index with a new BD. Else if a maximum Rx 3299 * buffer limit is imposed then fill in the next producer index. 3300 */ 3301 rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons, 3302 (sc->max_rx_bufs != RX_BD_USABLE) ? 3303 bd_prod : bd_cons); 3304 if (rc != 0) { 3305 3306 /* we simply reuse the received mbuf and don't post it to the stack */ 3307 m = NULL; 3308 3309 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", 3310 fp->index, rc); 3311 fp->eth_q_stats.rx_soft_errors++; 3312 3313 if (sc->max_rx_bufs != RX_BD_USABLE) { 3314 /* copy this consumer index to the producer index */ 3315 memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf, 3316 sizeof(struct bxe_sw_rx_bd)); 3317 memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd)); 3318 } 3319 3320 goto next_rx; 3321 } 3322 3323 /* current mbuf was detached from the bd */ 3324 fp->eth_q_stats.mbuf_alloc_rx--; 3325 3326 /* we allocated a replacement mbuf, fixup the current one */ 3327 m_adj(m, pad); 3328 m->m_pkthdr.len = m->m_len = len; 3329 3330 if ((len > 60) && (len > lenonbd)) { 3331 fp->eth_q_stats.rx_bxe_service_rxsgl++; 3332 rc = bxe_service_rxsgl(fp, len, lenonbd, m, cqe_fp); 3333 if (rc) 3334 break; 3335 fp->eth_q_stats.rx_jumbo_sge_pkts++; 3336 } else if (lenonbd < len) { 3337 fp->eth_q_stats.rx_erroneous_jumbo_sge_pkts++; 3338 } 3339 3340 /* assign packet to this interface interface */ 3341 if_setrcvif(m, ifp); 3342 3343 /* assume no hardware checksum has complated */ 3344 m->m_pkthdr.csum_flags = 0; 3345 3346 /* validate checksum if offload enabled */ 3347 if (if_getcapenable(ifp) & IFCAP_RXCSUM) { 3348 /* check for a valid IP frame */ 3349 if (!(cqe->fast_path_cqe.status_flags & 3350 ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) { 3351 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 3352 if (__predict_false(cqe_fp_flags & 3353 ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) { 3354 fp->eth_q_stats.rx_hw_csum_errors++; 3355 } else { 3356 fp->eth_q_stats.rx_ofld_frames_csum_ip++; 3357 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 3358 } 3359 } 3360 3361 /* check for a valid TCP/UDP frame */ 3362 if (!(cqe->fast_path_cqe.status_flags & 3363 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) { 3364 if (__predict_false(cqe_fp_flags & 3365 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) { 3366 fp->eth_q_stats.rx_hw_csum_errors++; 3367 } else { 3368 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; 3369 m->m_pkthdr.csum_data = 0xFFFF; 3370 m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID | 3371 CSUM_PSEUDO_HDR); 3372 } 3373 } 3374 } 3375 3376 /* if there is a VLAN tag then flag that info */ 3377 if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_INNER_VLAN_EXIST) { 3378 m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag; 3379 m->m_flags |= M_VLANTAG; 3380 } 3381 3382 /* specify what RSS queue was used for this flow */ 3383 m->m_pkthdr.flowid = fp->index; 3384 BXE_SET_FLOWID(m); 3385 3386 next_rx: 3387 3388 bd_cons = RX_BD_NEXT(bd_cons); 3389 bd_prod = RX_BD_NEXT(bd_prod); 3390 bd_prod_fw = RX_BD_NEXT(bd_prod_fw); 3391 3392 /* pass the frame to the stack */ 3393 if (__predict_true(m != NULL)) { 3394 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 3395 rx_pkts++; 3396 if_input(ifp, m); 3397 } 3398 3399 next_cqe: 3400 3401 sw_cq_prod = RCQ_NEXT(sw_cq_prod); 3402 sw_cq_cons = RCQ_NEXT(sw_cq_cons); 3403 3404 /* limit spinning on the queue */ 3405 if (rc != 0) 3406 break; 3407 3408 if (rx_pkts == sc->rx_budget) { 3409 fp->eth_q_stats.rx_budget_reached++; 3410 break; 3411 } 3412 } /* while work to do */ 3413 3414 fp->rx_bd_cons = bd_cons; 3415 fp->rx_bd_prod = bd_prod_fw; 3416 fp->rx_cq_cons = sw_cq_cons; 3417 fp->rx_cq_prod = sw_cq_prod; 3418 3419 /* Update producers */ 3420 bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod); 3421 3422 fp->eth_q_stats.rx_pkts += rx_pkts; 3423 fp->eth_q_stats.rx_calls++; 3424 3425 BXE_FP_RX_UNLOCK(fp); 3426 3427 return (sw_cq_cons != hw_cq_cons); 3428 } 3429 3430 static uint16_t 3431 bxe_free_tx_pkt(struct bxe_softc *sc, 3432 struct bxe_fastpath *fp, 3433 uint16_t idx) 3434 { 3435 struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx]; 3436 struct eth_tx_start_bd *tx_start_bd; 3437 uint16_t bd_idx = TX_BD(tx_buf->first_bd); 3438 uint16_t new_cons; 3439 int nbd; 3440 3441 /* unmap the mbuf from non-paged memory */ 3442 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 3443 3444 tx_start_bd = &fp->tx_chain[bd_idx].start_bd; 3445 nbd = le16toh(tx_start_bd->nbd) - 1; 3446 3447 new_cons = (tx_buf->first_bd + nbd); 3448 3449 /* free the mbuf */ 3450 if (__predict_true(tx_buf->m != NULL)) { 3451 m_freem(tx_buf->m); 3452 fp->eth_q_stats.mbuf_alloc_tx--; 3453 } else { 3454 fp->eth_q_stats.tx_chain_lost_mbuf++; 3455 } 3456 3457 tx_buf->m = NULL; 3458 tx_buf->first_bd = 0; 3459 3460 return (new_cons); 3461 } 3462 3463 /* transmit timeout watchdog */ 3464 static int 3465 bxe_watchdog(struct bxe_softc *sc, 3466 struct bxe_fastpath *fp) 3467 { 3468 BXE_FP_TX_LOCK(fp); 3469 3470 if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) { 3471 BXE_FP_TX_UNLOCK(fp); 3472 return (0); 3473 } 3474 3475 BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index); 3476 3477 BXE_FP_TX_UNLOCK(fp); 3478 BXE_SET_ERROR_BIT(sc, BXE_ERR_TXQ_STUCK); 3479 taskqueue_enqueue_timeout(taskqueue_thread, 3480 &sc->sp_err_timeout_task, hz/10); 3481 3482 return (-1); 3483 } 3484 3485 /* processes transmit completions */ 3486 static uint8_t 3487 bxe_txeof(struct bxe_softc *sc, 3488 struct bxe_fastpath *fp) 3489 { 3490 if_t ifp = sc->ifp; 3491 uint16_t bd_cons, hw_cons, sw_cons, pkt_cons; 3492 uint16_t tx_bd_avail; 3493 3494 BXE_FP_TX_LOCK_ASSERT(fp); 3495 3496 bd_cons = fp->tx_bd_cons; 3497 hw_cons = le16toh(*fp->tx_cons_sb); 3498 sw_cons = fp->tx_pkt_cons; 3499 3500 while (sw_cons != hw_cons) { 3501 pkt_cons = TX_BD(sw_cons); 3502 3503 BLOGD(sc, DBG_TX, 3504 "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n", 3505 fp->index, hw_cons, sw_cons, pkt_cons); 3506 3507 bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons); 3508 3509 sw_cons++; 3510 } 3511 3512 fp->tx_pkt_cons = sw_cons; 3513 fp->tx_bd_cons = bd_cons; 3514 3515 BLOGD(sc, DBG_TX, 3516 "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n", 3517 fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod); 3518 3519 mb(); 3520 3521 tx_bd_avail = bxe_tx_avail(sc, fp); 3522 3523 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 3524 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 3525 } else { 3526 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 3527 } 3528 3529 if (fp->tx_pkt_prod != fp->tx_pkt_cons) { 3530 /* reset the watchdog timer if there are pending transmits */ 3531 fp->watchdog_timer = BXE_TX_TIMEOUT; 3532 return (TRUE); 3533 } else { 3534 /* clear watchdog when there are no pending transmits */ 3535 fp->watchdog_timer = 0; 3536 return (FALSE); 3537 } 3538 } 3539 3540 static void 3541 bxe_drain_tx_queues(struct bxe_softc *sc) 3542 { 3543 struct bxe_fastpath *fp; 3544 int i, count; 3545 3546 /* wait until all TX fastpath tasks have completed */ 3547 for (i = 0; i < sc->num_queues; i++) { 3548 fp = &sc->fp[i]; 3549 3550 count = 1000; 3551 3552 while (bxe_has_tx_work(fp)) { 3553 3554 BXE_FP_TX_LOCK(fp); 3555 bxe_txeof(sc, fp); 3556 BXE_FP_TX_UNLOCK(fp); 3557 3558 if (count == 0) { 3559 BLOGE(sc, "Timeout waiting for fp[%d] " 3560 "transmits to complete!\n", i); 3561 bxe_panic(sc, ("tx drain failure\n")); 3562 return; 3563 } 3564 3565 count--; 3566 DELAY(1000); 3567 rmb(); 3568 } 3569 } 3570 3571 return; 3572 } 3573 3574 static int 3575 bxe_del_all_macs(struct bxe_softc *sc, 3576 struct ecore_vlan_mac_obj *mac_obj, 3577 int mac_type, 3578 uint8_t wait_for_comp) 3579 { 3580 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 3581 int rc; 3582 3583 /* wait for completion of requested */ 3584 if (wait_for_comp) { 3585 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 3586 } 3587 3588 /* Set the mac type of addresses we want to clear */ 3589 bxe_set_bit(mac_type, &vlan_mac_flags); 3590 3591 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags); 3592 if (rc < 0) { 3593 BLOGE(sc, "Failed to delete MACs (%d) mac_type %d wait_for_comp 0x%x\n", 3594 rc, mac_type, wait_for_comp); 3595 } 3596 3597 return (rc); 3598 } 3599 3600 static int 3601 bxe_fill_accept_flags(struct bxe_softc *sc, 3602 uint32_t rx_mode, 3603 unsigned long *rx_accept_flags, 3604 unsigned long *tx_accept_flags) 3605 { 3606 /* Clear the flags first */ 3607 *rx_accept_flags = 0; 3608 *tx_accept_flags = 0; 3609 3610 switch (rx_mode) { 3611 case BXE_RX_MODE_NONE: 3612 /* 3613 * 'drop all' supersedes any accept flags that may have been 3614 * passed to the function. 3615 */ 3616 break; 3617 3618 case BXE_RX_MODE_NORMAL: 3619 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3620 bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags); 3621 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3622 3623 /* internal switching mode */ 3624 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3625 bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags); 3626 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3627 3628 break; 3629 3630 case BXE_RX_MODE_ALLMULTI: 3631 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3632 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); 3633 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3634 3635 /* internal switching mode */ 3636 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3637 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); 3638 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3639 3640 break; 3641 3642 case BXE_RX_MODE_PROMISC: 3643 /* 3644 * According to deffinition of SI mode, iface in promisc mode 3645 * should receive matched and unmatched (in resolution of port) 3646 * unicast packets. 3647 */ 3648 bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags); 3649 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3650 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); 3651 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3652 3653 /* internal switching mode */ 3654 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); 3655 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3656 3657 if (IS_MF_SI(sc)) { 3658 bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags); 3659 } else { 3660 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3661 } 3662 3663 break; 3664 3665 default: 3666 BLOGE(sc, "Unknown rx_mode (0x%x)\n", rx_mode); 3667 return (-1); 3668 } 3669 3670 /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */ 3671 if (rx_mode != BXE_RX_MODE_NONE) { 3672 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags); 3673 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags); 3674 } 3675 3676 return (0); 3677 } 3678 3679 static int 3680 bxe_set_q_rx_mode(struct bxe_softc *sc, 3681 uint8_t cl_id, 3682 unsigned long rx_mode_flags, 3683 unsigned long rx_accept_flags, 3684 unsigned long tx_accept_flags, 3685 unsigned long ramrod_flags) 3686 { 3687 struct ecore_rx_mode_ramrod_params ramrod_param; 3688 int rc; 3689 3690 memset(&ramrod_param, 0, sizeof(ramrod_param)); 3691 3692 /* Prepare ramrod parameters */ 3693 ramrod_param.cid = 0; 3694 ramrod_param.cl_id = cl_id; 3695 ramrod_param.rx_mode_obj = &sc->rx_mode_obj; 3696 ramrod_param.func_id = SC_FUNC(sc); 3697 3698 ramrod_param.pstate = &sc->sp_state; 3699 ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING; 3700 3701 ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata); 3702 ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata); 3703 3704 bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); 3705 3706 ramrod_param.ramrod_flags = ramrod_flags; 3707 ramrod_param.rx_mode_flags = rx_mode_flags; 3708 3709 ramrod_param.rx_accept_flags = rx_accept_flags; 3710 ramrod_param.tx_accept_flags = tx_accept_flags; 3711 3712 rc = ecore_config_rx_mode(sc, &ramrod_param); 3713 if (rc < 0) { 3714 BLOGE(sc, "Set rx_mode %d cli_id 0x%x rx_mode_flags 0x%x " 3715 "rx_accept_flags 0x%x tx_accept_flags 0x%x " 3716 "ramrod_flags 0x%x rc %d failed\n", sc->rx_mode, cl_id, 3717 (uint32_t)rx_mode_flags, (uint32_t)rx_accept_flags, 3718 (uint32_t)tx_accept_flags, (uint32_t)ramrod_flags, rc); 3719 return (rc); 3720 } 3721 3722 return (0); 3723 } 3724 3725 static int 3726 bxe_set_storm_rx_mode(struct bxe_softc *sc) 3727 { 3728 unsigned long rx_mode_flags = 0, ramrod_flags = 0; 3729 unsigned long rx_accept_flags = 0, tx_accept_flags = 0; 3730 int rc; 3731 3732 rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags, 3733 &tx_accept_flags); 3734 if (rc) { 3735 return (rc); 3736 } 3737 3738 bxe_set_bit(RAMROD_RX, &ramrod_flags); 3739 bxe_set_bit(RAMROD_TX, &ramrod_flags); 3740 3741 /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */ 3742 return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags, 3743 rx_accept_flags, tx_accept_flags, 3744 ramrod_flags)); 3745 } 3746 3747 /* returns the "mcp load_code" according to global load_count array */ 3748 static int 3749 bxe_nic_load_no_mcp(struct bxe_softc *sc) 3750 { 3751 int path = SC_PATH(sc); 3752 int port = SC_PORT(sc); 3753 3754 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", 3755 path, load_count[path][0], load_count[path][1], 3756 load_count[path][2]); 3757 load_count[path][0]++; 3758 load_count[path][1 + port]++; 3759 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", 3760 path, load_count[path][0], load_count[path][1], 3761 load_count[path][2]); 3762 if (load_count[path][0] == 1) { 3763 return (FW_MSG_CODE_DRV_LOAD_COMMON); 3764 } else if (load_count[path][1 + port] == 1) { 3765 return (FW_MSG_CODE_DRV_LOAD_PORT); 3766 } else { 3767 return (FW_MSG_CODE_DRV_LOAD_FUNCTION); 3768 } 3769 } 3770 3771 /* returns the "mcp load_code" according to global load_count array */ 3772 static int 3773 bxe_nic_unload_no_mcp(struct bxe_softc *sc) 3774 { 3775 int port = SC_PORT(sc); 3776 int path = SC_PATH(sc); 3777 3778 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", 3779 path, load_count[path][0], load_count[path][1], 3780 load_count[path][2]); 3781 load_count[path][0]--; 3782 load_count[path][1 + port]--; 3783 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", 3784 path, load_count[path][0], load_count[path][1], 3785 load_count[path][2]); 3786 if (load_count[path][0] == 0) { 3787 return (FW_MSG_CODE_DRV_UNLOAD_COMMON); 3788 } else if (load_count[path][1 + port] == 0) { 3789 return (FW_MSG_CODE_DRV_UNLOAD_PORT); 3790 } else { 3791 return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION); 3792 } 3793 } 3794 3795 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */ 3796 static uint32_t 3797 bxe_send_unload_req(struct bxe_softc *sc, 3798 int unload_mode) 3799 { 3800 uint32_t reset_code = 0; 3801 3802 /* Select the UNLOAD request mode */ 3803 if (unload_mode == UNLOAD_NORMAL) { 3804 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 3805 } else { 3806 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 3807 } 3808 3809 /* Send the request to the MCP */ 3810 if (!BXE_NOMCP(sc)) { 3811 reset_code = bxe_fw_command(sc, reset_code, 0); 3812 } else { 3813 reset_code = bxe_nic_unload_no_mcp(sc); 3814 } 3815 3816 return (reset_code); 3817 } 3818 3819 /* send UNLOAD_DONE command to the MCP */ 3820 static void 3821 bxe_send_unload_done(struct bxe_softc *sc, 3822 uint8_t keep_link) 3823 { 3824 uint32_t reset_param = 3825 keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0; 3826 3827 /* Report UNLOAD_DONE to MCP */ 3828 if (!BXE_NOMCP(sc)) { 3829 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param); 3830 } 3831 } 3832 3833 static int 3834 bxe_func_wait_started(struct bxe_softc *sc) 3835 { 3836 int tout = 50; 3837 3838 if (!sc->port.pmf) { 3839 return (0); 3840 } 3841 3842 /* 3843 * (assumption: No Attention from MCP at this stage) 3844 * PMF probably in the middle of TX disable/enable transaction 3845 * 1. Sync IRS for default SB 3846 * 2. Sync SP queue - this guarantees us that attention handling started 3847 * 3. Wait, that TX disable/enable transaction completes 3848 * 3849 * 1+2 guarantee that if DCBX attention was scheduled it already changed 3850 * pending bit of transaction from STARTED-->TX_STOPPED, if we already 3851 * received completion for the transaction the state is TX_STOPPED. 3852 * State will return to STARTED after completion of TX_STOPPED-->STARTED 3853 * transaction. 3854 */ 3855 3856 /* XXX make sure default SB ISR is done */ 3857 /* need a way to synchronize an irq (intr_mtx?) */ 3858 3859 /* XXX flush any work queues */ 3860 3861 while (ecore_func_get_state(sc, &sc->func_obj) != 3862 ECORE_F_STATE_STARTED && tout--) { 3863 DELAY(20000); 3864 } 3865 3866 if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) { 3867 /* 3868 * Failed to complete the transaction in a "good way" 3869 * Force both transactions with CLR bit. 3870 */ 3871 struct ecore_func_state_params func_params = { NULL }; 3872 3873 BLOGE(sc, "Unexpected function state! " 3874 "Forcing STARTED-->TX_STOPPED-->STARTED\n"); 3875 3876 func_params.f_obj = &sc->func_obj; 3877 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 3878 3879 /* STARTED-->TX_STOPPED */ 3880 func_params.cmd = ECORE_F_CMD_TX_STOP; 3881 ecore_func_state_change(sc, &func_params); 3882 3883 /* TX_STOPPED-->STARTED */ 3884 func_params.cmd = ECORE_F_CMD_TX_START; 3885 return (ecore_func_state_change(sc, &func_params)); 3886 } 3887 3888 return (0); 3889 } 3890 3891 static int 3892 bxe_stop_queue(struct bxe_softc *sc, 3893 int index) 3894 { 3895 struct bxe_fastpath *fp = &sc->fp[index]; 3896 struct ecore_queue_state_params q_params = { NULL }; 3897 int rc; 3898 3899 BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index); 3900 3901 q_params.q_obj = &sc->sp_objs[fp->index].q_obj; 3902 /* We want to wait for completion in this context */ 3903 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 3904 3905 /* Stop the primary connection: */ 3906 3907 /* ...halt the connection */ 3908 q_params.cmd = ECORE_Q_CMD_HALT; 3909 rc = ecore_queue_state_change(sc, &q_params); 3910 if (rc) { 3911 return (rc); 3912 } 3913 3914 /* ...terminate the connection */ 3915 q_params.cmd = ECORE_Q_CMD_TERMINATE; 3916 memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate)); 3917 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX; 3918 rc = ecore_queue_state_change(sc, &q_params); 3919 if (rc) { 3920 return (rc); 3921 } 3922 3923 /* ...delete cfc entry */ 3924 q_params.cmd = ECORE_Q_CMD_CFC_DEL; 3925 memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del)); 3926 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX; 3927 return (ecore_queue_state_change(sc, &q_params)); 3928 } 3929 3930 /* wait for the outstanding SP commands */ 3931 static inline uint8_t 3932 bxe_wait_sp_comp(struct bxe_softc *sc, 3933 unsigned long mask) 3934 { 3935 unsigned long tmp; 3936 int tout = 5000; /* wait for 5 secs tops */ 3937 3938 while (tout--) { 3939 mb(); 3940 if (!(atomic_load_acq_long(&sc->sp_state) & mask)) { 3941 return (TRUE); 3942 } 3943 3944 DELAY(1000); 3945 } 3946 3947 mb(); 3948 3949 tmp = atomic_load_acq_long(&sc->sp_state); 3950 if (tmp & mask) { 3951 BLOGE(sc, "Filtering completion timed out: " 3952 "sp_state 0x%lx, mask 0x%lx\n", 3953 tmp, mask); 3954 return (FALSE); 3955 } 3956 3957 return (FALSE); 3958 } 3959 3960 static int 3961 bxe_func_stop(struct bxe_softc *sc) 3962 { 3963 struct ecore_func_state_params func_params = { NULL }; 3964 int rc; 3965 3966 /* prepare parameters for function state transitions */ 3967 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 3968 func_params.f_obj = &sc->func_obj; 3969 func_params.cmd = ECORE_F_CMD_STOP; 3970 3971 /* 3972 * Try to stop the function the 'good way'. If it fails (in case 3973 * of a parity error during bxe_chip_cleanup()) and we are 3974 * not in a debug mode, perform a state transaction in order to 3975 * enable further HW_RESET transaction. 3976 */ 3977 rc = ecore_func_state_change(sc, &func_params); 3978 if (rc) { 3979 BLOGE(sc, "FUNC_STOP ramrod failed. " 3980 "Running a dry transaction (%d)\n", rc); 3981 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 3982 return (ecore_func_state_change(sc, &func_params)); 3983 } 3984 3985 return (0); 3986 } 3987 3988 static int 3989 bxe_reset_hw(struct bxe_softc *sc, 3990 uint32_t load_code) 3991 { 3992 struct ecore_func_state_params func_params = { NULL }; 3993 3994 /* Prepare parameters for function state transitions */ 3995 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 3996 3997 func_params.f_obj = &sc->func_obj; 3998 func_params.cmd = ECORE_F_CMD_HW_RESET; 3999 4000 func_params.params.hw_init.load_phase = load_code; 4001 4002 return (ecore_func_state_change(sc, &func_params)); 4003 } 4004 4005 static void 4006 bxe_int_disable_sync(struct bxe_softc *sc, 4007 int disable_hw) 4008 { 4009 if (disable_hw) { 4010 /* prevent the HW from sending interrupts */ 4011 bxe_int_disable(sc); 4012 } 4013 4014 /* XXX need a way to synchronize ALL irqs (intr_mtx?) */ 4015 /* make sure all ISRs are done */ 4016 4017 /* XXX make sure sp_task is not running */ 4018 /* cancel and flush work queues */ 4019 } 4020 4021 static void 4022 bxe_chip_cleanup(struct bxe_softc *sc, 4023 uint32_t unload_mode, 4024 uint8_t keep_link) 4025 { 4026 int port = SC_PORT(sc); 4027 struct ecore_mcast_ramrod_params rparam = { NULL }; 4028 uint32_t reset_code; 4029 int i, rc = 0; 4030 4031 bxe_drain_tx_queues(sc); 4032 4033 /* give HW time to discard old tx messages */ 4034 DELAY(1000); 4035 4036 /* Clean all ETH MACs */ 4037 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE); 4038 if (rc < 0) { 4039 BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc); 4040 } 4041 4042 /* Clean up UC list */ 4043 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE); 4044 if (rc < 0) { 4045 BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc); 4046 } 4047 4048 /* Disable LLH */ 4049 if (!CHIP_IS_E1(sc)) { 4050 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); 4051 } 4052 4053 /* Set "drop all" to stop Rx */ 4054 4055 /* 4056 * We need to take the BXE_MCAST_LOCK() here in order to prevent 4057 * a race between the completion code and this code. 4058 */ 4059 BXE_MCAST_LOCK(sc); 4060 4061 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { 4062 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); 4063 } else { 4064 bxe_set_storm_rx_mode(sc); 4065 } 4066 4067 /* Clean up multicast configuration */ 4068 rparam.mcast_obj = &sc->mcast_obj; 4069 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 4070 if (rc < 0) { 4071 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); 4072 } 4073 4074 BXE_MCAST_UNLOCK(sc); 4075 4076 // XXX bxe_iov_chip_cleanup(sc); 4077 4078 /* 4079 * Send the UNLOAD_REQUEST to the MCP. This will return if 4080 * this function should perform FUNCTION, PORT, or COMMON HW 4081 * reset. 4082 */ 4083 reset_code = bxe_send_unload_req(sc, unload_mode); 4084 4085 /* 4086 * (assumption: No Attention from MCP at this stage) 4087 * PMF probably in the middle of TX disable/enable transaction 4088 */ 4089 rc = bxe_func_wait_started(sc); 4090 if (rc) { 4091 BLOGE(sc, "bxe_func_wait_started failed (%d)\n", rc); 4092 } 4093 4094 /* 4095 * Close multi and leading connections 4096 * Completions for ramrods are collected in a synchronous way 4097 */ 4098 for (i = 0; i < sc->num_queues; i++) { 4099 if (bxe_stop_queue(sc, i)) { 4100 goto unload_error; 4101 } 4102 } 4103 4104 /* 4105 * If SP settings didn't get completed so far - something 4106 * very wrong has happen. 4107 */ 4108 if (!bxe_wait_sp_comp(sc, ~0x0UL)) { 4109 BLOGE(sc, "Common slow path ramrods got stuck!(%d)\n", rc); 4110 } 4111 4112 unload_error: 4113 4114 rc = bxe_func_stop(sc); 4115 if (rc) { 4116 BLOGE(sc, "Function stop failed!(%d)\n", rc); 4117 } 4118 4119 /* disable HW interrupts */ 4120 bxe_int_disable_sync(sc, TRUE); 4121 4122 /* detach interrupts */ 4123 bxe_interrupt_detach(sc); 4124 4125 /* Reset the chip */ 4126 rc = bxe_reset_hw(sc, reset_code); 4127 if (rc) { 4128 BLOGE(sc, "Hardware reset failed(%d)\n", rc); 4129 } 4130 4131 /* Report UNLOAD_DONE to MCP */ 4132 bxe_send_unload_done(sc, keep_link); 4133 } 4134 4135 static void 4136 bxe_disable_close_the_gate(struct bxe_softc *sc) 4137 { 4138 uint32_t val; 4139 int port = SC_PORT(sc); 4140 4141 BLOGD(sc, DBG_LOAD, 4142 "Disabling 'close the gates'\n"); 4143 4144 if (CHIP_IS_E1(sc)) { 4145 uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 4146 MISC_REG_AEU_MASK_ATTN_FUNC_0; 4147 val = REG_RD(sc, addr); 4148 val &= ~(0x300); 4149 REG_WR(sc, addr, val); 4150 } else { 4151 val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK); 4152 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK | 4153 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK); 4154 REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val); 4155 } 4156 } 4157 4158 /* 4159 * Cleans the object that have internal lists without sending 4160 * ramrods. Should be run when interrupts are disabled. 4161 */ 4162 static void 4163 bxe_squeeze_objects(struct bxe_softc *sc) 4164 { 4165 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 4166 struct ecore_mcast_ramrod_params rparam = { NULL }; 4167 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; 4168 int rc; 4169 4170 /* Cleanup MACs' object first... */ 4171 4172 /* Wait for completion of requested */ 4173 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 4174 /* Perform a dry cleanup */ 4175 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags); 4176 4177 /* Clean ETH primary MAC */ 4178 bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags); 4179 rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags, 4180 &ramrod_flags); 4181 if (rc != 0) { 4182 BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc); 4183 } 4184 4185 /* Cleanup UC list */ 4186 vlan_mac_flags = 0; 4187 bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags); 4188 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, 4189 &ramrod_flags); 4190 if (rc != 0) { 4191 BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc); 4192 } 4193 4194 /* Now clean mcast object... */ 4195 4196 rparam.mcast_obj = &sc->mcast_obj; 4197 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags); 4198 4199 /* Add a DEL command... */ 4200 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 4201 if (rc < 0) { 4202 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); 4203 } 4204 4205 /* now wait until all pending commands are cleared */ 4206 4207 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 4208 while (rc != 0) { 4209 if (rc < 0) { 4210 BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc); 4211 return; 4212 } 4213 4214 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 4215 } 4216 } 4217 4218 /* stop the controller */ 4219 static __noinline int 4220 bxe_nic_unload(struct bxe_softc *sc, 4221 uint32_t unload_mode, 4222 uint8_t keep_link) 4223 { 4224 uint8_t global = FALSE; 4225 uint32_t val; 4226 int i; 4227 4228 BXE_CORE_LOCK_ASSERT(sc); 4229 4230 if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING); 4231 4232 for (i = 0; i < sc->num_queues; i++) { 4233 struct bxe_fastpath *fp; 4234 4235 fp = &sc->fp[i]; 4236 fp->watchdog_timer = 0; 4237 BXE_FP_TX_LOCK(fp); 4238 BXE_FP_TX_UNLOCK(fp); 4239 } 4240 4241 BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n"); 4242 4243 /* mark driver as unloaded in shmem2 */ 4244 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { 4245 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); 4246 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], 4247 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); 4248 } 4249 4250 if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE && 4251 (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) { 4252 4253 if(CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 4254 /* 4255 * We can get here if the driver has been unloaded 4256 * during parity error recovery and is either waiting for a 4257 * leader to complete or for other functions to unload and 4258 * then ifconfig down has been issued. In this case we want to 4259 * unload and let other functions to complete a recovery 4260 * process. 4261 */ 4262 sc->recovery_state = BXE_RECOVERY_DONE; 4263 sc->is_leader = 0; 4264 bxe_release_leader_lock(sc); 4265 mb(); 4266 BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n"); 4267 } 4268 BLOGE(sc, "Can't unload in closed or error state recover_state 0x%x" 4269 " state = 0x%x\n", sc->recovery_state, sc->state); 4270 return (-1); 4271 } 4272 4273 /* 4274 * Nothing to do during unload if previous bxe_nic_load() 4275 * did not completed successfully - all resourses are released. 4276 */ 4277 if ((sc->state == BXE_STATE_CLOSED) || 4278 (sc->state == BXE_STATE_ERROR)) { 4279 return (0); 4280 } 4281 4282 sc->state = BXE_STATE_CLOSING_WAITING_HALT; 4283 mb(); 4284 4285 /* stop tx */ 4286 bxe_tx_disable(sc); 4287 4288 sc->rx_mode = BXE_RX_MODE_NONE; 4289 /* XXX set rx mode ??? */ 4290 4291 if (IS_PF(sc) && !sc->grcdump_done) { 4292 /* set ALWAYS_ALIVE bit in shmem */ 4293 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 4294 4295 bxe_drv_pulse(sc); 4296 4297 bxe_stats_handle(sc, STATS_EVENT_STOP); 4298 bxe_save_statistics(sc); 4299 } 4300 4301 /* wait till consumers catch up with producers in all queues */ 4302 bxe_drain_tx_queues(sc); 4303 4304 /* if VF indicate to PF this function is going down (PF will delete sp 4305 * elements and clear initializations 4306 */ 4307 if (IS_VF(sc)) { 4308 ; /* bxe_vfpf_close_vf(sc); */ 4309 } else if (unload_mode != UNLOAD_RECOVERY) { 4310 /* if this is a normal/close unload need to clean up chip */ 4311 if (!sc->grcdump_done) 4312 bxe_chip_cleanup(sc, unload_mode, keep_link); 4313 } else { 4314 /* Send the UNLOAD_REQUEST to the MCP */ 4315 bxe_send_unload_req(sc, unload_mode); 4316 4317 /* 4318 * Prevent transactions to host from the functions on the 4319 * engine that doesn't reset global blocks in case of global 4320 * attention once gloabl blocks are reset and gates are opened 4321 * (the engine which leader will perform the recovery 4322 * last). 4323 */ 4324 if (!CHIP_IS_E1x(sc)) { 4325 bxe_pf_disable(sc); 4326 } 4327 4328 /* disable HW interrupts */ 4329 bxe_int_disable_sync(sc, TRUE); 4330 4331 /* detach interrupts */ 4332 bxe_interrupt_detach(sc); 4333 4334 /* Report UNLOAD_DONE to MCP */ 4335 bxe_send_unload_done(sc, FALSE); 4336 } 4337 4338 /* 4339 * At this stage no more interrupts will arrive so we may safely clean 4340 * the queue'able objects here in case they failed to get cleaned so far. 4341 */ 4342 if (IS_PF(sc)) { 4343 bxe_squeeze_objects(sc); 4344 } 4345 4346 /* There should be no more pending SP commands at this stage */ 4347 sc->sp_state = 0; 4348 4349 sc->port.pmf = 0; 4350 4351 bxe_free_fp_buffers(sc); 4352 4353 if (IS_PF(sc)) { 4354 bxe_free_mem(sc); 4355 } 4356 4357 bxe_free_fw_stats_mem(sc); 4358 4359 sc->state = BXE_STATE_CLOSED; 4360 4361 /* 4362 * Check if there are pending parity attentions. If there are - set 4363 * RECOVERY_IN_PROGRESS. 4364 */ 4365 if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) { 4366 bxe_set_reset_in_progress(sc); 4367 4368 /* Set RESET_IS_GLOBAL if needed */ 4369 if (global) { 4370 bxe_set_reset_global(sc); 4371 } 4372 } 4373 4374 /* 4375 * The last driver must disable a "close the gate" if there is no 4376 * parity attention or "process kill" pending. 4377 */ 4378 if (IS_PF(sc) && !bxe_clear_pf_load(sc) && 4379 bxe_reset_is_done(sc, SC_PATH(sc))) { 4380 bxe_disable_close_the_gate(sc); 4381 } 4382 4383 BLOGD(sc, DBG_LOAD, "Ended NIC unload\n"); 4384 4385 bxe_link_report(sc); 4386 4387 return (0); 4388 } 4389 4390 /* 4391 * Called by the OS to set various media options (i.e. link, speed, etc.) when 4392 * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...". 4393 */ 4394 static int 4395 bxe_ifmedia_update(if_t ifp) 4396 { 4397 struct bxe_softc *sc = (struct bxe_softc *)if_getsoftc(ifp); 4398 struct ifmedia *ifm; 4399 4400 ifm = &sc->ifmedia; 4401 4402 /* We only support Ethernet media type. */ 4403 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) { 4404 return (EINVAL); 4405 } 4406 4407 switch (IFM_SUBTYPE(ifm->ifm_media)) { 4408 case IFM_AUTO: 4409 break; 4410 case IFM_10G_CX4: 4411 case IFM_10G_SR: 4412 case IFM_10G_T: 4413 case IFM_10G_TWINAX: 4414 default: 4415 /* We don't support changing the media type. */ 4416 BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n", 4417 IFM_SUBTYPE(ifm->ifm_media)); 4418 return (EINVAL); 4419 } 4420 4421 return (0); 4422 } 4423 4424 /* 4425 * Called by the OS to get the current media status (i.e. link, speed, etc.). 4426 */ 4427 static void 4428 bxe_ifmedia_status(if_t ifp, struct ifmediareq *ifmr) 4429 { 4430 struct bxe_softc *sc = if_getsoftc(ifp); 4431 4432 /* Bug 165447: the 'ifconfig' tool skips printing of the "status: ..." 4433 line if the IFM_AVALID flag is *NOT* set. So we need to set this 4434 flag unconditionally (irrespective of the admininistrative 4435 'up/down' state of the interface) to ensure that the line is always 4436 displayed. 4437 */ 4438 ifmr->ifm_status = IFM_AVALID; 4439 4440 /* Setup the default interface info. */ 4441 ifmr->ifm_active = IFM_ETHER; 4442 4443 /* Report link down if the driver isn't running. */ 4444 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) { 4445 ifmr->ifm_active |= IFM_NONE; 4446 BLOGD(sc, DBG_PHY, "in %s : nic still not loaded fully\n", __func__); 4447 BLOGD(sc, DBG_PHY, "in %s : link_up (1) : %d\n", 4448 __func__, sc->link_vars.link_up); 4449 return; 4450 } 4451 4452 4453 if (sc->link_vars.link_up) { 4454 ifmr->ifm_status |= IFM_ACTIVE; 4455 ifmr->ifm_active |= IFM_FDX; 4456 } else { 4457 ifmr->ifm_active |= IFM_NONE; 4458 BLOGD(sc, DBG_PHY, "in %s : setting IFM_NONE\n", 4459 __func__); 4460 return; 4461 } 4462 4463 ifmr->ifm_active |= sc->media; 4464 return; 4465 } 4466 4467 static void 4468 bxe_handle_chip_tq(void *context, 4469 int pending) 4470 { 4471 struct bxe_softc *sc = (struct bxe_softc *)context; 4472 long work = atomic_load_acq_long(&sc->chip_tq_flags); 4473 4474 switch (work) 4475 { 4476 4477 case CHIP_TQ_REINIT: 4478 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 4479 /* restart the interface */ 4480 BLOGD(sc, DBG_LOAD, "Restarting the interface...\n"); 4481 bxe_periodic_stop(sc); 4482 BXE_CORE_LOCK(sc); 4483 bxe_stop_locked(sc); 4484 bxe_init_locked(sc); 4485 BXE_CORE_UNLOCK(sc); 4486 } 4487 break; 4488 4489 default: 4490 break; 4491 } 4492 } 4493 4494 /* 4495 * Handles any IOCTL calls from the operating system. 4496 * 4497 * Returns: 4498 * 0 = Success, >0 Failure 4499 */ 4500 static int 4501 bxe_ioctl(if_t ifp, 4502 u_long command, 4503 caddr_t data) 4504 { 4505 struct bxe_softc *sc = if_getsoftc(ifp); 4506 struct ifreq *ifr = (struct ifreq *)data; 4507 int mask = 0; 4508 int reinit = 0; 4509 int error = 0; 4510 4511 int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN); 4512 int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING); 4513 4514 switch (command) 4515 { 4516 case SIOCSIFMTU: 4517 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n", 4518 ifr->ifr_mtu); 4519 4520 if (sc->mtu == ifr->ifr_mtu) { 4521 /* nothing to change */ 4522 break; 4523 } 4524 4525 if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) { 4526 BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n", 4527 ifr->ifr_mtu, mtu_min, mtu_max); 4528 error = EINVAL; 4529 break; 4530 } 4531 4532 atomic_store_rel_int((volatile unsigned int *)&sc->mtu, 4533 (unsigned long)ifr->ifr_mtu); 4534 /* 4535 atomic_store_rel_long((volatile unsigned long *)&if_getmtu(ifp), 4536 (unsigned long)ifr->ifr_mtu); 4537 XXX - Not sure why it needs to be atomic 4538 */ 4539 if_setmtu(ifp, ifr->ifr_mtu); 4540 reinit = 1; 4541 break; 4542 4543 case SIOCSIFFLAGS: 4544 /* toggle the interface state up or down */ 4545 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n"); 4546 4547 BXE_CORE_LOCK(sc); 4548 /* check if the interface is up */ 4549 if (if_getflags(ifp) & IFF_UP) { 4550 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4551 /* set the receive mode flags */ 4552 bxe_set_rx_mode(sc); 4553 } else if(sc->state != BXE_STATE_DISABLED) { 4554 bxe_init_locked(sc); 4555 } 4556 } else { 4557 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4558 bxe_periodic_stop(sc); 4559 bxe_stop_locked(sc); 4560 } 4561 } 4562 BXE_CORE_UNLOCK(sc); 4563 4564 break; 4565 4566 case SIOCADDMULTI: 4567 case SIOCDELMULTI: 4568 /* add/delete multicast addresses */ 4569 BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n"); 4570 4571 /* check if the interface is up */ 4572 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4573 /* set the receive mode flags */ 4574 BXE_CORE_LOCK(sc); 4575 bxe_set_rx_mode(sc); 4576 BXE_CORE_UNLOCK(sc); 4577 } 4578 4579 break; 4580 4581 case SIOCSIFCAP: 4582 /* find out which capabilities have changed */ 4583 mask = (ifr->ifr_reqcap ^ if_getcapenable(ifp)); 4584 4585 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n", 4586 mask); 4587 4588 /* toggle the LRO capabilites enable flag */ 4589 if (mask & IFCAP_LRO) { 4590 if_togglecapenable(ifp, IFCAP_LRO); 4591 BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n", 4592 (if_getcapenable(ifp) & IFCAP_LRO) ? "ON" : "OFF"); 4593 reinit = 1; 4594 } 4595 4596 /* toggle the TXCSUM checksum capabilites enable flag */ 4597 if (mask & IFCAP_TXCSUM) { 4598 if_togglecapenable(ifp, IFCAP_TXCSUM); 4599 BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n", 4600 (if_getcapenable(ifp) & IFCAP_TXCSUM) ? "ON" : "OFF"); 4601 if (if_getcapenable(ifp) & IFCAP_TXCSUM) { 4602 if_sethwassistbits(ifp, (CSUM_IP | 4603 CSUM_TCP | 4604 CSUM_UDP | 4605 CSUM_TSO | 4606 CSUM_TCP_IPV6 | 4607 CSUM_UDP_IPV6), 0); 4608 } else { 4609 if_clearhwassist(ifp); /* XXX */ 4610 } 4611 } 4612 4613 /* toggle the RXCSUM checksum capabilities enable flag */ 4614 if (mask & IFCAP_RXCSUM) { 4615 if_togglecapenable(ifp, IFCAP_RXCSUM); 4616 BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n", 4617 (if_getcapenable(ifp) & IFCAP_RXCSUM) ? "ON" : "OFF"); 4618 if (if_getcapenable(ifp) & IFCAP_RXCSUM) { 4619 if_sethwassistbits(ifp, (CSUM_IP | 4620 CSUM_TCP | 4621 CSUM_UDP | 4622 CSUM_TSO | 4623 CSUM_TCP_IPV6 | 4624 CSUM_UDP_IPV6), 0); 4625 } else { 4626 if_clearhwassist(ifp); /* XXX */ 4627 } 4628 } 4629 4630 /* toggle TSO4 capabilities enabled flag */ 4631 if (mask & IFCAP_TSO4) { 4632 if_togglecapenable(ifp, IFCAP_TSO4); 4633 BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n", 4634 (if_getcapenable(ifp) & IFCAP_TSO4) ? "ON" : "OFF"); 4635 } 4636 4637 /* toggle TSO6 capabilities enabled flag */ 4638 if (mask & IFCAP_TSO6) { 4639 if_togglecapenable(ifp, IFCAP_TSO6); 4640 BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n", 4641 (if_getcapenable(ifp) & IFCAP_TSO6) ? "ON" : "OFF"); 4642 } 4643 4644 /* toggle VLAN_HWTSO capabilities enabled flag */ 4645 if (mask & IFCAP_VLAN_HWTSO) { 4646 4647 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); 4648 BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n", 4649 (if_getcapenable(ifp) & IFCAP_VLAN_HWTSO) ? "ON" : "OFF"); 4650 } 4651 4652 /* toggle VLAN_HWCSUM capabilities enabled flag */ 4653 if (mask & IFCAP_VLAN_HWCSUM) { 4654 /* XXX investigate this... */ 4655 BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n"); 4656 error = EINVAL; 4657 } 4658 4659 /* toggle VLAN_MTU capabilities enable flag */ 4660 if (mask & IFCAP_VLAN_MTU) { 4661 /* XXX investigate this... */ 4662 BLOGE(sc, "Changing VLAN_MTU is not supported!\n"); 4663 error = EINVAL; 4664 } 4665 4666 /* toggle VLAN_HWTAGGING capabilities enabled flag */ 4667 if (mask & IFCAP_VLAN_HWTAGGING) { 4668 /* XXX investigate this... */ 4669 BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n"); 4670 error = EINVAL; 4671 } 4672 4673 /* toggle VLAN_HWFILTER capabilities enabled flag */ 4674 if (mask & IFCAP_VLAN_HWFILTER) { 4675 /* XXX investigate this... */ 4676 BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n"); 4677 error = EINVAL; 4678 } 4679 4680 /* XXX not yet... 4681 * IFCAP_WOL_MAGIC 4682 */ 4683 4684 break; 4685 4686 case SIOCSIFMEDIA: 4687 case SIOCGIFMEDIA: 4688 /* set/get interface media */ 4689 BLOGD(sc, DBG_IOCTL, 4690 "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n", 4691 (command & 0xff)); 4692 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command); 4693 break; 4694 4695 default: 4696 BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n", 4697 (command & 0xff)); 4698 error = ether_ioctl(ifp, command, data); 4699 break; 4700 } 4701 4702 if (reinit && (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { 4703 BLOGD(sc, DBG_LOAD | DBG_IOCTL, 4704 "Re-initializing hardware from IOCTL change\n"); 4705 bxe_periodic_stop(sc); 4706 BXE_CORE_LOCK(sc); 4707 bxe_stop_locked(sc); 4708 bxe_init_locked(sc); 4709 BXE_CORE_UNLOCK(sc); 4710 } 4711 4712 return (error); 4713 } 4714 4715 static __noinline void 4716 bxe_dump_mbuf(struct bxe_softc *sc, 4717 struct mbuf *m, 4718 uint8_t contents) 4719 { 4720 char * type; 4721 int i = 0; 4722 4723 if (!(sc->debug & DBG_MBUF)) { 4724 return; 4725 } 4726 4727 if (m == NULL) { 4728 BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n"); 4729 return; 4730 } 4731 4732 while (m) { 4733 4734 BLOGD(sc, DBG_MBUF, 4735 "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n", 4736 i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data); 4737 4738 if (m->m_flags & M_PKTHDR) { 4739 BLOGD(sc, DBG_MBUF, 4740 "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n", 4741 i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS, 4742 (int)m->m_pkthdr.csum_flags, CSUM_BITS); 4743 } 4744 4745 if (m->m_flags & M_EXT) { 4746 switch (m->m_ext.ext_type) { 4747 case EXT_CLUSTER: type = "EXT_CLUSTER"; break; 4748 case EXT_SFBUF: type = "EXT_SFBUF"; break; 4749 case EXT_JUMBOP: type = "EXT_JUMBOP"; break; 4750 case EXT_JUMBO9: type = "EXT_JUMBO9"; break; 4751 case EXT_JUMBO16: type = "EXT_JUMBO16"; break; 4752 case EXT_PACKET: type = "EXT_PACKET"; break; 4753 case EXT_MBUF: type = "EXT_MBUF"; break; 4754 case EXT_NET_DRV: type = "EXT_NET_DRV"; break; 4755 case EXT_MOD_TYPE: type = "EXT_MOD_TYPE"; break; 4756 case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break; 4757 case EXT_EXTREF: type = "EXT_EXTREF"; break; 4758 default: type = "UNKNOWN"; break; 4759 } 4760 4761 BLOGD(sc, DBG_MBUF, 4762 "%02d: - m_ext: %p ext_size=%d type=%s\n", 4763 i, m->m_ext.ext_buf, m->m_ext.ext_size, type); 4764 } 4765 4766 if (contents) { 4767 bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE); 4768 } 4769 4770 m = m->m_next; 4771 i++; 4772 } 4773 } 4774 4775 /* 4776 * Checks to ensure the 13 bd sliding window is >= MSS for TSO. 4777 * Check that (13 total bds - 3 bds) = 10 bd window >= MSS. 4778 * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD 4779 * The headers comes in a separate bd in FreeBSD so 13-3=10. 4780 * Returns: 0 if OK to send, 1 if packet needs further defragmentation 4781 */ 4782 static int 4783 bxe_chktso_window(struct bxe_softc *sc, 4784 int nsegs, 4785 bus_dma_segment_t *segs, 4786 struct mbuf *m) 4787 { 4788 uint32_t num_wnds, wnd_size, wnd_sum; 4789 int32_t frag_idx, wnd_idx; 4790 unsigned short lso_mss; 4791 4792 wnd_sum = 0; 4793 wnd_size = 10; 4794 num_wnds = nsegs - wnd_size; 4795 lso_mss = htole16(m->m_pkthdr.tso_segsz); 4796 4797 /* 4798 * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the 4799 * first window sum of data while skipping the first assuming it is the 4800 * header in FreeBSD. 4801 */ 4802 for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) { 4803 wnd_sum += htole16(segs[frag_idx].ds_len); 4804 } 4805 4806 /* check the first 10 bd window size */ 4807 if (wnd_sum < lso_mss) { 4808 return (1); 4809 } 4810 4811 /* run through the windows */ 4812 for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) { 4813 /* subtract the first mbuf->m_len of the last wndw(-header) */ 4814 wnd_sum -= htole16(segs[wnd_idx+1].ds_len); 4815 /* add the next mbuf len to the len of our new window */ 4816 wnd_sum += htole16(segs[frag_idx].ds_len); 4817 if (wnd_sum < lso_mss) { 4818 return (1); 4819 } 4820 } 4821 4822 return (0); 4823 } 4824 4825 static uint8_t 4826 bxe_set_pbd_csum_e2(struct bxe_fastpath *fp, 4827 struct mbuf *m, 4828 uint32_t *parsing_data) 4829 { 4830 struct ether_vlan_header *eh = NULL; 4831 struct ip *ip4 = NULL; 4832 struct ip6_hdr *ip6 = NULL; 4833 caddr_t ip = NULL; 4834 struct tcphdr *th = NULL; 4835 int e_hlen, ip_hlen, l4_off; 4836 uint16_t proto; 4837 4838 if (m->m_pkthdr.csum_flags == CSUM_IP) { 4839 /* no L4 checksum offload needed */ 4840 return (0); 4841 } 4842 4843 /* get the Ethernet header */ 4844 eh = mtod(m, struct ether_vlan_header *); 4845 4846 /* handle VLAN encapsulation if present */ 4847 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 4848 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 4849 proto = ntohs(eh->evl_proto); 4850 } else { 4851 e_hlen = ETHER_HDR_LEN; 4852 proto = ntohs(eh->evl_encap_proto); 4853 } 4854 4855 switch (proto) { 4856 case ETHERTYPE_IP: 4857 /* get the IP header, if mbuf len < 20 then header in next mbuf */ 4858 ip4 = (m->m_len < sizeof(struct ip)) ? 4859 (struct ip *)m->m_next->m_data : 4860 (struct ip *)(m->m_data + e_hlen); 4861 /* ip_hl is number of 32-bit words */ 4862 ip_hlen = (ip4->ip_hl << 2); 4863 ip = (caddr_t)ip4; 4864 break; 4865 case ETHERTYPE_IPV6: 4866 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ 4867 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? 4868 (struct ip6_hdr *)m->m_next->m_data : 4869 (struct ip6_hdr *)(m->m_data + e_hlen); 4870 /* XXX cannot support offload with IPv6 extensions */ 4871 ip_hlen = sizeof(struct ip6_hdr); 4872 ip = (caddr_t)ip6; 4873 break; 4874 default: 4875 /* We can't offload in this case... */ 4876 /* XXX error stat ??? */ 4877 return (0); 4878 } 4879 4880 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ 4881 l4_off = (e_hlen + ip_hlen); 4882 4883 *parsing_data |= 4884 (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 4885 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W); 4886 4887 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 4888 CSUM_TSO | 4889 CSUM_TCP_IPV6)) { 4890 fp->eth_q_stats.tx_ofld_frames_csum_tcp++; 4891 th = (struct tcphdr *)(ip + ip_hlen); 4892 /* th_off is number of 32-bit words */ 4893 *parsing_data |= ((th->th_off << 4894 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 4895 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW); 4896 return (l4_off + (th->th_off << 2)); /* entire header length */ 4897 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 4898 CSUM_UDP_IPV6)) { 4899 fp->eth_q_stats.tx_ofld_frames_csum_udp++; 4900 return (l4_off + sizeof(struct udphdr)); /* entire header length */ 4901 } else { 4902 /* XXX error stat ??? */ 4903 return (0); 4904 } 4905 } 4906 4907 static uint8_t 4908 bxe_set_pbd_csum(struct bxe_fastpath *fp, 4909 struct mbuf *m, 4910 struct eth_tx_parse_bd_e1x *pbd) 4911 { 4912 struct ether_vlan_header *eh = NULL; 4913 struct ip *ip4 = NULL; 4914 struct ip6_hdr *ip6 = NULL; 4915 caddr_t ip = NULL; 4916 struct tcphdr *th = NULL; 4917 struct udphdr *uh = NULL; 4918 int e_hlen, ip_hlen; 4919 uint16_t proto; 4920 uint8_t hlen; 4921 uint16_t tmp_csum; 4922 uint32_t *tmp_uh; 4923 4924 /* get the Ethernet header */ 4925 eh = mtod(m, struct ether_vlan_header *); 4926 4927 /* handle VLAN encapsulation if present */ 4928 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 4929 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 4930 proto = ntohs(eh->evl_proto); 4931 } else { 4932 e_hlen = ETHER_HDR_LEN; 4933 proto = ntohs(eh->evl_encap_proto); 4934 } 4935 4936 switch (proto) { 4937 case ETHERTYPE_IP: 4938 /* get the IP header, if mbuf len < 20 then header in next mbuf */ 4939 ip4 = (m->m_len < sizeof(struct ip)) ? 4940 (struct ip *)m->m_next->m_data : 4941 (struct ip *)(m->m_data + e_hlen); 4942 /* ip_hl is number of 32-bit words */ 4943 ip_hlen = (ip4->ip_hl << 1); 4944 ip = (caddr_t)ip4; 4945 break; 4946 case ETHERTYPE_IPV6: 4947 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ 4948 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? 4949 (struct ip6_hdr *)m->m_next->m_data : 4950 (struct ip6_hdr *)(m->m_data + e_hlen); 4951 /* XXX cannot support offload with IPv6 extensions */ 4952 ip_hlen = (sizeof(struct ip6_hdr) >> 1); 4953 ip = (caddr_t)ip6; 4954 break; 4955 default: 4956 /* We can't offload in this case... */ 4957 /* XXX error stat ??? */ 4958 return (0); 4959 } 4960 4961 hlen = (e_hlen >> 1); 4962 4963 /* note that rest of global_data is indirectly zeroed here */ 4964 if (m->m_flags & M_VLANTAG) { 4965 pbd->global_data = 4966 htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT)); 4967 } else { 4968 pbd->global_data = htole16(hlen); 4969 } 4970 4971 pbd->ip_hlen_w = ip_hlen; 4972 4973 hlen += pbd->ip_hlen_w; 4974 4975 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ 4976 4977 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 4978 CSUM_TSO | 4979 CSUM_TCP_IPV6)) { 4980 th = (struct tcphdr *)(ip + (ip_hlen << 1)); 4981 /* th_off is number of 32-bit words */ 4982 hlen += (uint16_t)(th->th_off << 1); 4983 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 4984 CSUM_UDP_IPV6)) { 4985 uh = (struct udphdr *)(ip + (ip_hlen << 1)); 4986 hlen += (sizeof(struct udphdr) / 2); 4987 } else { 4988 /* valid case as only CSUM_IP was set */ 4989 return (0); 4990 } 4991 4992 pbd->total_hlen_w = htole16(hlen); 4993 4994 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 4995 CSUM_TSO | 4996 CSUM_TCP_IPV6)) { 4997 fp->eth_q_stats.tx_ofld_frames_csum_tcp++; 4998 pbd->tcp_pseudo_csum = ntohs(th->th_sum); 4999 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 5000 CSUM_UDP_IPV6)) { 5001 fp->eth_q_stats.tx_ofld_frames_csum_udp++; 5002 5003 /* 5004 * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP 5005 * checksums and does not know anything about the UDP header and where 5006 * the checksum field is located. It only knows about TCP. Therefore 5007 * we "lie" to the hardware for outgoing UDP packets w/ checksum 5008 * offload. Since the checksum field offset for TCP is 16 bytes and 5009 * for UDP it is 6 bytes we pass a pointer to the hardware that is 10 5010 * bytes less than the start of the UDP header. This allows the 5011 * hardware to write the checksum in the correct spot. But the 5012 * hardware will compute a checksum which includes the last 10 bytes 5013 * of the IP header. To correct this we tweak the stack computed 5014 * pseudo checksum by folding in the calculation of the inverse 5015 * checksum for those final 10 bytes of the IP header. This allows 5016 * the correct checksum to be computed by the hardware. 5017 */ 5018 5019 /* set pointer 10 bytes before UDP header */ 5020 tmp_uh = (uint32_t *)((uint8_t *)uh - 10); 5021 5022 /* calculate a pseudo header checksum over the first 10 bytes */ 5023 tmp_csum = in_pseudo(*tmp_uh, 5024 *(tmp_uh + 1), 5025 *(uint16_t *)(tmp_uh + 2)); 5026 5027 pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum)); 5028 } 5029 5030 return (hlen * 2); /* entire header length, number of bytes */ 5031 } 5032 5033 static void 5034 bxe_set_pbd_lso_e2(struct mbuf *m, 5035 uint32_t *parsing_data) 5036 { 5037 *parsing_data |= ((m->m_pkthdr.tso_segsz << 5038 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) & 5039 ETH_TX_PARSE_BD_E2_LSO_MSS); 5040 5041 /* XXX test for IPv6 with extension header... */ 5042 } 5043 5044 static void 5045 bxe_set_pbd_lso(struct mbuf *m, 5046 struct eth_tx_parse_bd_e1x *pbd) 5047 { 5048 struct ether_vlan_header *eh = NULL; 5049 struct ip *ip = NULL; 5050 struct tcphdr *th = NULL; 5051 int e_hlen; 5052 5053 /* get the Ethernet header */ 5054 eh = mtod(m, struct ether_vlan_header *); 5055 5056 /* handle VLAN encapsulation if present */ 5057 e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ? 5058 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN; 5059 5060 /* get the IP and TCP header, with LSO entire header in first mbuf */ 5061 /* XXX assuming IPv4 */ 5062 ip = (struct ip *)(m->m_data + e_hlen); 5063 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 5064 5065 pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz); 5066 pbd->tcp_send_seq = ntohl(th->th_seq); 5067 pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff); 5068 5069 #if 1 5070 /* XXX IPv4 */ 5071 pbd->ip_id = ntohs(ip->ip_id); 5072 pbd->tcp_pseudo_csum = 5073 ntohs(in_pseudo(ip->ip_src.s_addr, 5074 ip->ip_dst.s_addr, 5075 htons(IPPROTO_TCP))); 5076 #else 5077 /* XXX IPv6 */ 5078 pbd->tcp_pseudo_csum = 5079 ntohs(in_pseudo(&ip6->ip6_src, 5080 &ip6->ip6_dst, 5081 htons(IPPROTO_TCP))); 5082 #endif 5083 5084 pbd->global_data |= 5085 htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN); 5086 } 5087 5088 /* 5089 * Encapsulte an mbuf cluster into the tx bd chain and makes the memory 5090 * visible to the controller. 5091 * 5092 * If an mbuf is submitted to this routine and cannot be given to the 5093 * controller (e.g. it has too many fragments) then the function may free 5094 * the mbuf and return to the caller. 5095 * 5096 * Returns: 5097 * 0 = Success, !0 = Failure 5098 * Note the side effect that an mbuf may be freed if it causes a problem. 5099 */ 5100 static int 5101 bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head) 5102 { 5103 bus_dma_segment_t segs[32]; 5104 struct mbuf *m0; 5105 struct bxe_sw_tx_bd *tx_buf; 5106 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL; 5107 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL; 5108 /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */ 5109 struct eth_tx_bd *tx_data_bd; 5110 struct eth_tx_bd *tx_total_pkt_size_bd; 5111 struct eth_tx_start_bd *tx_start_bd; 5112 uint16_t bd_prod, pkt_prod, total_pkt_size; 5113 uint8_t mac_type; 5114 int defragged, error, nsegs, rc, nbds, vlan_off, ovlan; 5115 struct bxe_softc *sc; 5116 uint16_t tx_bd_avail; 5117 struct ether_vlan_header *eh; 5118 uint32_t pbd_e2_parsing_data = 0; 5119 uint8_t hlen = 0; 5120 int tmp_bd; 5121 int i; 5122 5123 sc = fp->sc; 5124 5125 M_ASSERTPKTHDR(*m_head); 5126 5127 m0 = *m_head; 5128 rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0; 5129 tx_start_bd = NULL; 5130 tx_data_bd = NULL; 5131 tx_total_pkt_size_bd = NULL; 5132 5133 /* get the H/W pointer for packets and BDs */ 5134 pkt_prod = fp->tx_pkt_prod; 5135 bd_prod = fp->tx_bd_prod; 5136 5137 mac_type = UNICAST_ADDRESS; 5138 5139 /* map the mbuf into the next open DMAable memory */ 5140 tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)]; 5141 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5142 tx_buf->m_map, m0, 5143 segs, &nsegs, BUS_DMA_NOWAIT); 5144 5145 /* mapping errors */ 5146 if(__predict_false(error != 0)) { 5147 fp->eth_q_stats.tx_dma_mapping_failure++; 5148 if (error == ENOMEM) { 5149 /* resource issue, try again later */ 5150 rc = ENOMEM; 5151 } else if (error == EFBIG) { 5152 /* possibly recoverable with defragmentation */ 5153 fp->eth_q_stats.mbuf_defrag_attempts++; 5154 m0 = m_defrag(*m_head, M_NOWAIT); 5155 if (m0 == NULL) { 5156 fp->eth_q_stats.mbuf_defrag_failures++; 5157 rc = ENOBUFS; 5158 } else { 5159 /* defrag successful, try mapping again */ 5160 *m_head = m0; 5161 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5162 tx_buf->m_map, m0, 5163 segs, &nsegs, BUS_DMA_NOWAIT); 5164 if (error) { 5165 fp->eth_q_stats.tx_dma_mapping_failure++; 5166 rc = error; 5167 } 5168 } 5169 } else { 5170 /* unknown, unrecoverable mapping error */ 5171 BLOGE(sc, "Unknown TX mapping error rc=%d\n", error); 5172 bxe_dump_mbuf(sc, m0, FALSE); 5173 rc = error; 5174 } 5175 5176 goto bxe_tx_encap_continue; 5177 } 5178 5179 tx_bd_avail = bxe_tx_avail(sc, fp); 5180 5181 /* make sure there is enough room in the send queue */ 5182 if (__predict_false(tx_bd_avail < (nsegs + 2))) { 5183 /* Recoverable, try again later. */ 5184 fp->eth_q_stats.tx_hw_queue_full++; 5185 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5186 rc = ENOMEM; 5187 goto bxe_tx_encap_continue; 5188 } 5189 5190 /* capture the current H/W TX chain high watermark */ 5191 if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth < 5192 (TX_BD_USABLE - tx_bd_avail))) { 5193 fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail); 5194 } 5195 5196 /* make sure it fits in the packet window */ 5197 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) { 5198 /* 5199 * The mbuf may be to big for the controller to handle. If the frame 5200 * is a TSO frame we'll need to do an additional check. 5201 */ 5202 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 5203 if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) { 5204 goto bxe_tx_encap_continue; /* OK to send */ 5205 } else { 5206 fp->eth_q_stats.tx_window_violation_tso++; 5207 } 5208 } else { 5209 fp->eth_q_stats.tx_window_violation_std++; 5210 } 5211 5212 /* lets try to defragment this mbuf and remap it */ 5213 fp->eth_q_stats.mbuf_defrag_attempts++; 5214 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5215 5216 m0 = m_defrag(*m_head, M_NOWAIT); 5217 if (m0 == NULL) { 5218 fp->eth_q_stats.mbuf_defrag_failures++; 5219 /* Ugh, just drop the frame... :( */ 5220 rc = ENOBUFS; 5221 } else { 5222 /* defrag successful, try mapping again */ 5223 *m_head = m0; 5224 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5225 tx_buf->m_map, m0, 5226 segs, &nsegs, BUS_DMA_NOWAIT); 5227 if (error) { 5228 fp->eth_q_stats.tx_dma_mapping_failure++; 5229 /* No sense in trying to defrag/copy chain, drop it. :( */ 5230 rc = error; 5231 } else { 5232 /* if the chain is still too long then drop it */ 5233 if(m0->m_pkthdr.csum_flags & CSUM_TSO) { 5234 /* 5235 * in case TSO is enabled nsegs should be checked against 5236 * BXE_TSO_MAX_SEGMENTS 5237 */ 5238 if (__predict_false(nsegs > BXE_TSO_MAX_SEGMENTS)) { 5239 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5240 fp->eth_q_stats.nsegs_path1_errors++; 5241 rc = ENODEV; 5242 } 5243 } else { 5244 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) { 5245 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5246 fp->eth_q_stats.nsegs_path2_errors++; 5247 rc = ENODEV; 5248 } 5249 } 5250 } 5251 } 5252 } 5253 5254 bxe_tx_encap_continue: 5255 5256 /* Check for errors */ 5257 if (rc) { 5258 if (rc == ENOMEM) { 5259 /* recoverable try again later */ 5260 } else { 5261 fp->eth_q_stats.tx_soft_errors++; 5262 fp->eth_q_stats.mbuf_alloc_tx--; 5263 m_freem(*m_head); 5264 *m_head = NULL; 5265 } 5266 5267 return (rc); 5268 } 5269 5270 /* set flag according to packet type (UNICAST_ADDRESS is default) */ 5271 if (m0->m_flags & M_BCAST) { 5272 mac_type = BROADCAST_ADDRESS; 5273 } else if (m0->m_flags & M_MCAST) { 5274 mac_type = MULTICAST_ADDRESS; 5275 } 5276 5277 /* store the mbuf into the mbuf ring */ 5278 tx_buf->m = m0; 5279 tx_buf->first_bd = fp->tx_bd_prod; 5280 tx_buf->flags = 0; 5281 5282 /* prepare the first transmit (start) BD for the mbuf */ 5283 tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd; 5284 5285 BLOGD(sc, DBG_TX, 5286 "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n", 5287 pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd); 5288 5289 tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 5290 tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 5291 tx_start_bd->nbytes = htole16(segs[0].ds_len); 5292 total_pkt_size += tx_start_bd->nbytes; 5293 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD; 5294 5295 tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT); 5296 5297 /* all frames have at least Start BD + Parsing BD */ 5298 nbds = nsegs + 1; 5299 tx_start_bd->nbd = htole16(nbds); 5300 5301 if (m0->m_flags & M_VLANTAG) { 5302 tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag); 5303 tx_start_bd->bd_flags.as_bitfield |= 5304 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT); 5305 } else { 5306 /* vf tx, start bd must hold the ethertype for fw to enforce it */ 5307 if (IS_VF(sc)) { 5308 /* map ethernet header to find type and header length */ 5309 eh = mtod(m0, struct ether_vlan_header *); 5310 tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto; 5311 } else { 5312 /* used by FW for packet accounting */ 5313 tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod); 5314 } 5315 } 5316 5317 /* 5318 * add a parsing BD from the chain. The parsing BD is always added 5319 * though it is only used for TSO and chksum 5320 */ 5321 bd_prod = TX_BD_NEXT(bd_prod); 5322 5323 if (m0->m_pkthdr.csum_flags) { 5324 if (m0->m_pkthdr.csum_flags & CSUM_IP) { 5325 fp->eth_q_stats.tx_ofld_frames_csum_ip++; 5326 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM; 5327 } 5328 5329 if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) { 5330 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | 5331 ETH_TX_BD_FLAGS_L4_CSUM); 5332 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) { 5333 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | 5334 ETH_TX_BD_FLAGS_IS_UDP | 5335 ETH_TX_BD_FLAGS_L4_CSUM); 5336 } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) || 5337 (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5338 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM; 5339 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) { 5340 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM | 5341 ETH_TX_BD_FLAGS_IS_UDP); 5342 } 5343 } 5344 5345 if (!CHIP_IS_E1x(sc)) { 5346 pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2; 5347 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2)); 5348 5349 if (m0->m_pkthdr.csum_flags) { 5350 hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data); 5351 } 5352 5353 SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, 5354 mac_type); 5355 } else { 5356 uint16_t global_data = 0; 5357 5358 pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x; 5359 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x)); 5360 5361 if (m0->m_pkthdr.csum_flags) { 5362 hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x); 5363 } 5364 5365 SET_FLAG(global_data, 5366 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type); 5367 pbd_e1x->global_data |= htole16(global_data); 5368 } 5369 5370 /* setup the parsing BD with TSO specific info */ 5371 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 5372 fp->eth_q_stats.tx_ofld_frames_lso++; 5373 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO; 5374 5375 if (__predict_false(tx_start_bd->nbytes > hlen)) { 5376 fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++; 5377 5378 /* split the first BD into header/data making the fw job easy */ 5379 nbds++; 5380 tx_start_bd->nbd = htole16(nbds); 5381 tx_start_bd->nbytes = htole16(hlen); 5382 5383 bd_prod = TX_BD_NEXT(bd_prod); 5384 5385 /* new transmit BD after the tx_parse_bd */ 5386 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; 5387 tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen)); 5388 tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen)); 5389 tx_data_bd->nbytes = htole16(segs[0].ds_len - hlen); 5390 if (tx_total_pkt_size_bd == NULL) { 5391 tx_total_pkt_size_bd = tx_data_bd; 5392 } 5393 5394 BLOGD(sc, DBG_TX, 5395 "TSO split header size is %d (%x:%x) nbds %d\n", 5396 le16toh(tx_start_bd->nbytes), 5397 le32toh(tx_start_bd->addr_hi), 5398 le32toh(tx_start_bd->addr_lo), 5399 nbds); 5400 } 5401 5402 if (!CHIP_IS_E1x(sc)) { 5403 bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data); 5404 } else { 5405 bxe_set_pbd_lso(m0, pbd_e1x); 5406 } 5407 } 5408 5409 if (pbd_e2_parsing_data) { 5410 pbd_e2->parsing_data = htole32(pbd_e2_parsing_data); 5411 } 5412 5413 /* prepare remaining BDs, start tx bd contains first seg/frag */ 5414 for (i = 1; i < nsegs ; i++) { 5415 bd_prod = TX_BD_NEXT(bd_prod); 5416 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; 5417 tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr)); 5418 tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr)); 5419 tx_data_bd->nbytes = htole16(segs[i].ds_len); 5420 if (tx_total_pkt_size_bd == NULL) { 5421 tx_total_pkt_size_bd = tx_data_bd; 5422 } 5423 total_pkt_size += tx_data_bd->nbytes; 5424 } 5425 5426 BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd); 5427 5428 if (tx_total_pkt_size_bd != NULL) { 5429 tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size; 5430 } 5431 5432 if (__predict_false(sc->debug & DBG_TX)) { 5433 tmp_bd = tx_buf->first_bd; 5434 for (i = 0; i < nbds; i++) 5435 { 5436 if (i == 0) { 5437 BLOGD(sc, DBG_TX, 5438 "TX Strt: %p bd=%d nbd=%d vlan=0x%x " 5439 "bd_flags=0x%x hdr_nbds=%d\n", 5440 tx_start_bd, 5441 tmp_bd, 5442 le16toh(tx_start_bd->nbd), 5443 le16toh(tx_start_bd->vlan_or_ethertype), 5444 tx_start_bd->bd_flags.as_bitfield, 5445 (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS)); 5446 } else if (i == 1) { 5447 if (pbd_e1x) { 5448 BLOGD(sc, DBG_TX, 5449 "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u " 5450 "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x " 5451 "tcp_seq=%u total_hlen_w=%u\n", 5452 pbd_e1x, 5453 tmp_bd, 5454 pbd_e1x->global_data, 5455 pbd_e1x->ip_hlen_w, 5456 pbd_e1x->ip_id, 5457 pbd_e1x->lso_mss, 5458 pbd_e1x->tcp_flags, 5459 pbd_e1x->tcp_pseudo_csum, 5460 pbd_e1x->tcp_send_seq, 5461 le16toh(pbd_e1x->total_hlen_w)); 5462 } else { /* if (pbd_e2) */ 5463 BLOGD(sc, DBG_TX, 5464 "-> Parse: %p bd=%d dst=%02x:%02x:%02x " 5465 "src=%02x:%02x:%02x parsing_data=0x%x\n", 5466 pbd_e2, 5467 tmp_bd, 5468 pbd_e2->data.mac_addr.dst_hi, 5469 pbd_e2->data.mac_addr.dst_mid, 5470 pbd_e2->data.mac_addr.dst_lo, 5471 pbd_e2->data.mac_addr.src_hi, 5472 pbd_e2->data.mac_addr.src_mid, 5473 pbd_e2->data.mac_addr.src_lo, 5474 pbd_e2->parsing_data); 5475 } 5476 } 5477 5478 if (i != 1) { /* skip parse db as it doesn't hold data */ 5479 tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd; 5480 BLOGD(sc, DBG_TX, 5481 "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n", 5482 tx_data_bd, 5483 tmp_bd, 5484 le16toh(tx_data_bd->nbytes), 5485 le32toh(tx_data_bd->addr_hi), 5486 le32toh(tx_data_bd->addr_lo)); 5487 } 5488 5489 tmp_bd = TX_BD_NEXT(tmp_bd); 5490 } 5491 } 5492 5493 BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod); 5494 5495 /* update TX BD producer index value for next TX */ 5496 bd_prod = TX_BD_NEXT(bd_prod); 5497 5498 /* 5499 * If the chain of tx_bd's describing this frame is adjacent to or spans 5500 * an eth_tx_next_bd element then we need to increment the nbds value. 5501 */ 5502 if (TX_BD_IDX(bd_prod) < nbds) { 5503 nbds++; 5504 } 5505 5506 /* don't allow reordering of writes for nbd and packets */ 5507 mb(); 5508 5509 fp->tx_db.data.prod += nbds; 5510 5511 /* producer points to the next free tx_bd at this point */ 5512 fp->tx_pkt_prod++; 5513 fp->tx_bd_prod = bd_prod; 5514 5515 DOORBELL(sc, fp->index, fp->tx_db.raw); 5516 5517 fp->eth_q_stats.tx_pkts++; 5518 5519 /* Prevent speculative reads from getting ahead of the status block. */ 5520 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 5521 0, 0, BUS_SPACE_BARRIER_READ); 5522 5523 /* Prevent speculative reads from getting ahead of the doorbell. */ 5524 bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle, 5525 0, 0, BUS_SPACE_BARRIER_READ); 5526 5527 return (0); 5528 } 5529 5530 static void 5531 bxe_tx_start_locked(struct bxe_softc *sc, 5532 if_t ifp, 5533 struct bxe_fastpath *fp) 5534 { 5535 struct mbuf *m = NULL; 5536 int tx_count = 0; 5537 uint16_t tx_bd_avail; 5538 5539 BXE_FP_TX_LOCK_ASSERT(fp); 5540 5541 /* keep adding entries while there are frames to send */ 5542 while (!if_sendq_empty(ifp)) { 5543 5544 /* 5545 * check for any frames to send 5546 * dequeue can still be NULL even if queue is not empty 5547 */ 5548 m = if_dequeue(ifp); 5549 if (__predict_false(m == NULL)) { 5550 break; 5551 } 5552 5553 /* the mbuf now belongs to us */ 5554 fp->eth_q_stats.mbuf_alloc_tx++; 5555 5556 /* 5557 * Put the frame into the transmit ring. If we don't have room, 5558 * place the mbuf back at the head of the TX queue, set the 5559 * OACTIVE flag, and wait for the NIC to drain the chain. 5560 */ 5561 if (__predict_false(bxe_tx_encap(fp, &m))) { 5562 fp->eth_q_stats.tx_encap_failures++; 5563 if (m != NULL) { 5564 /* mark the TX queue as full and return the frame */ 5565 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 5566 if_sendq_prepend(ifp, m); 5567 fp->eth_q_stats.mbuf_alloc_tx--; 5568 fp->eth_q_stats.tx_queue_xoff++; 5569 } 5570 5571 /* stop looking for more work */ 5572 break; 5573 } 5574 5575 /* the frame was enqueued successfully */ 5576 tx_count++; 5577 5578 /* send a copy of the frame to any BPF listeners. */ 5579 if_etherbpfmtap(ifp, m); 5580 5581 tx_bd_avail = bxe_tx_avail(sc, fp); 5582 5583 /* handle any completions if we're running low */ 5584 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 5585 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ 5586 bxe_txeof(sc, fp); 5587 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 5588 break; 5589 } 5590 } 5591 } 5592 5593 /* all TX packets were dequeued and/or the tx ring is full */ 5594 if (tx_count > 0) { 5595 /* reset the TX watchdog timeout timer */ 5596 fp->watchdog_timer = BXE_TX_TIMEOUT; 5597 } 5598 } 5599 5600 /* Legacy (non-RSS) dispatch routine */ 5601 static void 5602 bxe_tx_start(if_t ifp) 5603 { 5604 struct bxe_softc *sc; 5605 struct bxe_fastpath *fp; 5606 5607 sc = if_getsoftc(ifp); 5608 5609 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 5610 BLOGW(sc, "Interface not running, ignoring transmit request\n"); 5611 return; 5612 } 5613 5614 if (!sc->link_vars.link_up) { 5615 BLOGW(sc, "Interface link is down, ignoring transmit request\n"); 5616 return; 5617 } 5618 5619 fp = &sc->fp[0]; 5620 5621 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 5622 fp->eth_q_stats.tx_queue_full_return++; 5623 return; 5624 } 5625 5626 BXE_FP_TX_LOCK(fp); 5627 bxe_tx_start_locked(sc, ifp, fp); 5628 BXE_FP_TX_UNLOCK(fp); 5629 } 5630 5631 static int 5632 bxe_tx_mq_start_locked(struct bxe_softc *sc, 5633 if_t ifp, 5634 struct bxe_fastpath *fp, 5635 struct mbuf *m) 5636 { 5637 struct buf_ring *tx_br = fp->tx_br; 5638 struct mbuf *next; 5639 int depth, rc, tx_count; 5640 uint16_t tx_bd_avail; 5641 5642 rc = tx_count = 0; 5643 5644 BXE_FP_TX_LOCK_ASSERT(fp); 5645 5646 if (sc->state != BXE_STATE_OPEN) { 5647 fp->eth_q_stats.bxe_tx_mq_sc_state_failures++; 5648 return ENETDOWN; 5649 } 5650 5651 if (!tx_br) { 5652 BLOGE(sc, "Multiqueue TX and no buf_ring!\n"); 5653 return (EINVAL); 5654 } 5655 5656 if (m != NULL) { 5657 rc = drbr_enqueue(ifp, tx_br, m); 5658 if (rc != 0) { 5659 fp->eth_q_stats.tx_soft_errors++; 5660 goto bxe_tx_mq_start_locked_exit; 5661 } 5662 } 5663 5664 if (!sc->link_vars.link_up || !(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 5665 fp->eth_q_stats.tx_request_link_down_failures++; 5666 goto bxe_tx_mq_start_locked_exit; 5667 } 5668 5669 /* fetch the depth of the driver queue */ 5670 depth = drbr_inuse(ifp, tx_br); 5671 if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) { 5672 fp->eth_q_stats.tx_max_drbr_queue_depth = depth; 5673 } 5674 5675 /* keep adding entries while there are frames to send */ 5676 while ((next = drbr_peek(ifp, tx_br)) != NULL) { 5677 /* handle any completions if we're running low */ 5678 tx_bd_avail = bxe_tx_avail(sc, fp); 5679 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 5680 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ 5681 bxe_txeof(sc, fp); 5682 tx_bd_avail = bxe_tx_avail(sc, fp); 5683 if (tx_bd_avail < (BXE_TSO_MAX_SEGMENTS + 1)) { 5684 fp->eth_q_stats.bd_avail_too_less_failures++; 5685 m_freem(next); 5686 drbr_advance(ifp, tx_br); 5687 rc = ENOBUFS; 5688 break; 5689 } 5690 } 5691 5692 /* the mbuf now belongs to us */ 5693 fp->eth_q_stats.mbuf_alloc_tx++; 5694 5695 /* 5696 * Put the frame into the transmit ring. If we don't have room, 5697 * place the mbuf back at the head of the TX queue, set the 5698 * OACTIVE flag, and wait for the NIC to drain the chain. 5699 */ 5700 rc = bxe_tx_encap(fp, &next); 5701 if (__predict_false(rc != 0)) { 5702 fp->eth_q_stats.tx_encap_failures++; 5703 if (next != NULL) { 5704 /* mark the TX queue as full and save the frame */ 5705 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 5706 drbr_putback(ifp, tx_br, next); 5707 fp->eth_q_stats.mbuf_alloc_tx--; 5708 fp->eth_q_stats.tx_frames_deferred++; 5709 } else 5710 drbr_advance(ifp, tx_br); 5711 5712 /* stop looking for more work */ 5713 break; 5714 } 5715 5716 /* the transmit frame was enqueued successfully */ 5717 tx_count++; 5718 5719 /* send a copy of the frame to any BPF listeners */ 5720 if_etherbpfmtap(ifp, next); 5721 5722 drbr_advance(ifp, tx_br); 5723 } 5724 5725 /* all TX packets were dequeued and/or the tx ring is full */ 5726 if (tx_count > 0) { 5727 /* reset the TX watchdog timeout timer */ 5728 fp->watchdog_timer = BXE_TX_TIMEOUT; 5729 } 5730 5731 bxe_tx_mq_start_locked_exit: 5732 /* If we didn't drain the drbr, enqueue a task in the future to do it. */ 5733 if (!drbr_empty(ifp, tx_br)) { 5734 fp->eth_q_stats.tx_mq_not_empty++; 5735 taskqueue_enqueue_timeout(fp->tq, &fp->tx_timeout_task, 1); 5736 } 5737 5738 return (rc); 5739 } 5740 5741 static void 5742 bxe_tx_mq_start_deferred(void *arg, 5743 int pending) 5744 { 5745 struct bxe_fastpath *fp = (struct bxe_fastpath *)arg; 5746 struct bxe_softc *sc = fp->sc; 5747 if_t ifp = sc->ifp; 5748 5749 BXE_FP_TX_LOCK(fp); 5750 bxe_tx_mq_start_locked(sc, ifp, fp, NULL); 5751 BXE_FP_TX_UNLOCK(fp); 5752 } 5753 5754 /* Multiqueue (TSS) dispatch routine. */ 5755 static int 5756 bxe_tx_mq_start(if_t ifp, 5757 struct mbuf *m) 5758 { 5759 struct bxe_softc *sc = if_getsoftc(ifp); 5760 struct bxe_fastpath *fp; 5761 int fp_index, rc; 5762 5763 fp_index = 0; /* default is the first queue */ 5764 5765 /* check if flowid is set */ 5766 5767 if (BXE_VALID_FLOWID(m)) 5768 fp_index = (m->m_pkthdr.flowid % sc->num_queues); 5769 5770 fp = &sc->fp[fp_index]; 5771 5772 if (sc->state != BXE_STATE_OPEN) { 5773 fp->eth_q_stats.bxe_tx_mq_sc_state_failures++; 5774 return ENETDOWN; 5775 } 5776 5777 if (BXE_FP_TX_TRYLOCK(fp)) { 5778 rc = bxe_tx_mq_start_locked(sc, ifp, fp, m); 5779 BXE_FP_TX_UNLOCK(fp); 5780 } else { 5781 rc = drbr_enqueue(ifp, fp->tx_br, m); 5782 taskqueue_enqueue(fp->tq, &fp->tx_task); 5783 } 5784 5785 return (rc); 5786 } 5787 5788 static void 5789 bxe_mq_flush(if_t ifp) 5790 { 5791 struct bxe_softc *sc = if_getsoftc(ifp); 5792 struct bxe_fastpath *fp; 5793 struct mbuf *m; 5794 int i; 5795 5796 for (i = 0; i < sc->num_queues; i++) { 5797 fp = &sc->fp[i]; 5798 5799 if (fp->state != BXE_FP_STATE_IRQ) { 5800 BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n", 5801 fp->index, fp->state); 5802 continue; 5803 } 5804 5805 if (fp->tx_br != NULL) { 5806 BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index); 5807 BXE_FP_TX_LOCK(fp); 5808 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) { 5809 m_freem(m); 5810 } 5811 BXE_FP_TX_UNLOCK(fp); 5812 } 5813 } 5814 5815 if_qflush(ifp); 5816 } 5817 5818 static uint16_t 5819 bxe_cid_ilt_lines(struct bxe_softc *sc) 5820 { 5821 if (IS_SRIOV(sc)) { 5822 return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS); 5823 } 5824 return (L2_ILT_LINES(sc)); 5825 } 5826 5827 static void 5828 bxe_ilt_set_info(struct bxe_softc *sc) 5829 { 5830 struct ilt_client_info *ilt_client; 5831 struct ecore_ilt *ilt = sc->ilt; 5832 uint16_t line = 0; 5833 5834 ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc)); 5835 BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line); 5836 5837 /* CDU */ 5838 ilt_client = &ilt->clients[ILT_CLIENT_CDU]; 5839 ilt_client->client_num = ILT_CLIENT_CDU; 5840 ilt_client->page_size = CDU_ILT_PAGE_SZ; 5841 ilt_client->flags = ILT_CLIENT_SKIP_MEM; 5842 ilt_client->start = line; 5843 line += bxe_cid_ilt_lines(sc); 5844 5845 if (CNIC_SUPPORT(sc)) { 5846 line += CNIC_ILT_LINES; 5847 } 5848 5849 ilt_client->end = (line - 1); 5850 5851 BLOGD(sc, DBG_LOAD, 5852 "ilt client[CDU]: start %d, end %d, " 5853 "psz 0x%x, flags 0x%x, hw psz %d\n", 5854 ilt_client->start, ilt_client->end, 5855 ilt_client->page_size, 5856 ilt_client->flags, 5857 ilog2(ilt_client->page_size >> 12)); 5858 5859 /* QM */ 5860 if (QM_INIT(sc->qm_cid_count)) { 5861 ilt_client = &ilt->clients[ILT_CLIENT_QM]; 5862 ilt_client->client_num = ILT_CLIENT_QM; 5863 ilt_client->page_size = QM_ILT_PAGE_SZ; 5864 ilt_client->flags = 0; 5865 ilt_client->start = line; 5866 5867 /* 4 bytes for each cid */ 5868 line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4, 5869 QM_ILT_PAGE_SZ); 5870 5871 ilt_client->end = (line - 1); 5872 5873 BLOGD(sc, DBG_LOAD, 5874 "ilt client[QM]: start %d, end %d, " 5875 "psz 0x%x, flags 0x%x, hw psz %d\n", 5876 ilt_client->start, ilt_client->end, 5877 ilt_client->page_size, ilt_client->flags, 5878 ilog2(ilt_client->page_size >> 12)); 5879 } 5880 5881 if (CNIC_SUPPORT(sc)) { 5882 /* SRC */ 5883 ilt_client = &ilt->clients[ILT_CLIENT_SRC]; 5884 ilt_client->client_num = ILT_CLIENT_SRC; 5885 ilt_client->page_size = SRC_ILT_PAGE_SZ; 5886 ilt_client->flags = 0; 5887 ilt_client->start = line; 5888 line += SRC_ILT_LINES; 5889 ilt_client->end = (line - 1); 5890 5891 BLOGD(sc, DBG_LOAD, 5892 "ilt client[SRC]: start %d, end %d, " 5893 "psz 0x%x, flags 0x%x, hw psz %d\n", 5894 ilt_client->start, ilt_client->end, 5895 ilt_client->page_size, ilt_client->flags, 5896 ilog2(ilt_client->page_size >> 12)); 5897 5898 /* TM */ 5899 ilt_client = &ilt->clients[ILT_CLIENT_TM]; 5900 ilt_client->client_num = ILT_CLIENT_TM; 5901 ilt_client->page_size = TM_ILT_PAGE_SZ; 5902 ilt_client->flags = 0; 5903 ilt_client->start = line; 5904 line += TM_ILT_LINES; 5905 ilt_client->end = (line - 1); 5906 5907 BLOGD(sc, DBG_LOAD, 5908 "ilt client[TM]: start %d, end %d, " 5909 "psz 0x%x, flags 0x%x, hw psz %d\n", 5910 ilt_client->start, ilt_client->end, 5911 ilt_client->page_size, ilt_client->flags, 5912 ilog2(ilt_client->page_size >> 12)); 5913 } 5914 5915 KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!")); 5916 } 5917 5918 static void 5919 bxe_set_fp_rx_buf_size(struct bxe_softc *sc) 5920 { 5921 int i; 5922 uint32_t rx_buf_size; 5923 5924 rx_buf_size = (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu); 5925 5926 for (i = 0; i < sc->num_queues; i++) { 5927 if(rx_buf_size <= MCLBYTES){ 5928 sc->fp[i].rx_buf_size = rx_buf_size; 5929 sc->fp[i].mbuf_alloc_size = MCLBYTES; 5930 }else if (rx_buf_size <= MJUMPAGESIZE){ 5931 sc->fp[i].rx_buf_size = rx_buf_size; 5932 sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE; 5933 }else if (rx_buf_size <= (MJUMPAGESIZE + MCLBYTES)){ 5934 sc->fp[i].rx_buf_size = MCLBYTES; 5935 sc->fp[i].mbuf_alloc_size = MCLBYTES; 5936 }else if (rx_buf_size <= (2 * MJUMPAGESIZE)){ 5937 sc->fp[i].rx_buf_size = MJUMPAGESIZE; 5938 sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE; 5939 }else { 5940 sc->fp[i].rx_buf_size = MCLBYTES; 5941 sc->fp[i].mbuf_alloc_size = MCLBYTES; 5942 } 5943 } 5944 } 5945 5946 static int 5947 bxe_alloc_ilt_mem(struct bxe_softc *sc) 5948 { 5949 int rc = 0; 5950 5951 if ((sc->ilt = 5952 (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt), 5953 M_BXE_ILT, 5954 (M_NOWAIT | M_ZERO))) == NULL) { 5955 rc = 1; 5956 } 5957 5958 return (rc); 5959 } 5960 5961 static int 5962 bxe_alloc_ilt_lines_mem(struct bxe_softc *sc) 5963 { 5964 int rc = 0; 5965 5966 if ((sc->ilt->lines = 5967 (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES), 5968 M_BXE_ILT, 5969 (M_NOWAIT | M_ZERO))) == NULL) { 5970 rc = 1; 5971 } 5972 5973 return (rc); 5974 } 5975 5976 static void 5977 bxe_free_ilt_mem(struct bxe_softc *sc) 5978 { 5979 if (sc->ilt != NULL) { 5980 free(sc->ilt, M_BXE_ILT); 5981 sc->ilt = NULL; 5982 } 5983 } 5984 5985 static void 5986 bxe_free_ilt_lines_mem(struct bxe_softc *sc) 5987 { 5988 if (sc->ilt->lines != NULL) { 5989 free(sc->ilt->lines, M_BXE_ILT); 5990 sc->ilt->lines = NULL; 5991 } 5992 } 5993 5994 static void 5995 bxe_free_mem(struct bxe_softc *sc) 5996 { 5997 int i; 5998 5999 for (i = 0; i < L2_ILT_LINES(sc); i++) { 6000 bxe_dma_free(sc, &sc->context[i].vcxt_dma); 6001 sc->context[i].vcxt = NULL; 6002 sc->context[i].size = 0; 6003 } 6004 6005 ecore_ilt_mem_op(sc, ILT_MEMOP_FREE); 6006 6007 bxe_free_ilt_lines_mem(sc); 6008 6009 } 6010 6011 static int 6012 bxe_alloc_mem(struct bxe_softc *sc) 6013 { 6014 6015 int context_size; 6016 int allocated; 6017 int i; 6018 6019 /* 6020 * Allocate memory for CDU context: 6021 * This memory is allocated separately and not in the generic ILT 6022 * functions because CDU differs in few aspects: 6023 * 1. There can be multiple entities allocating memory for context - 6024 * regular L2, CNIC, and SRIOV drivers. Each separately controls 6025 * its own ILT lines. 6026 * 2. Since CDU page-size is not a single 4KB page (which is the case 6027 * for the other ILT clients), to be efficient we want to support 6028 * allocation of sub-page-size in the last entry. 6029 * 3. Context pointers are used by the driver to pass to FW / update 6030 * the context (for the other ILT clients the pointers are used just to 6031 * free the memory during unload). 6032 */ 6033 context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc)); 6034 for (i = 0, allocated = 0; allocated < context_size; i++) { 6035 sc->context[i].size = min(CDU_ILT_PAGE_SZ, 6036 (context_size - allocated)); 6037 6038 if (bxe_dma_alloc(sc, sc->context[i].size, 6039 &sc->context[i].vcxt_dma, 6040 "cdu context") != 0) { 6041 bxe_free_mem(sc); 6042 return (-1); 6043 } 6044 6045 sc->context[i].vcxt = 6046 (union cdu_context *)sc->context[i].vcxt_dma.vaddr; 6047 6048 allocated += sc->context[i].size; 6049 } 6050 6051 bxe_alloc_ilt_lines_mem(sc); 6052 6053 BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n", 6054 sc->ilt, sc->ilt->start_line, sc->ilt->lines); 6055 { 6056 for (i = 0; i < 4; i++) { 6057 BLOGD(sc, DBG_LOAD, 6058 "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n", 6059 i, 6060 sc->ilt->clients[i].page_size, 6061 sc->ilt->clients[i].start, 6062 sc->ilt->clients[i].end, 6063 sc->ilt->clients[i].client_num, 6064 sc->ilt->clients[i].flags); 6065 } 6066 } 6067 if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) { 6068 BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n"); 6069 bxe_free_mem(sc); 6070 return (-1); 6071 } 6072 6073 return (0); 6074 } 6075 6076 static void 6077 bxe_free_rx_bd_chain(struct bxe_fastpath *fp) 6078 { 6079 int i; 6080 6081 if (fp->rx_mbuf_tag == NULL) { 6082 return; 6083 } 6084 6085 /* free all mbufs and unload all maps */ 6086 for (i = 0; i < RX_BD_TOTAL; i++) { 6087 if (fp->rx_mbuf_chain[i].m_map != NULL) { 6088 bus_dmamap_sync(fp->rx_mbuf_tag, 6089 fp->rx_mbuf_chain[i].m_map, 6090 BUS_DMASYNC_POSTREAD); 6091 bus_dmamap_unload(fp->rx_mbuf_tag, 6092 fp->rx_mbuf_chain[i].m_map); 6093 } 6094 6095 if (fp->rx_mbuf_chain[i].m != NULL) { 6096 m_freem(fp->rx_mbuf_chain[i].m); 6097 fp->rx_mbuf_chain[i].m = NULL; 6098 fp->eth_q_stats.mbuf_alloc_rx--; 6099 } 6100 } 6101 } 6102 6103 static void 6104 bxe_free_tpa_pool(struct bxe_fastpath *fp) 6105 { 6106 struct bxe_softc *sc; 6107 int i, max_agg_queues; 6108 6109 sc = fp->sc; 6110 6111 if (fp->rx_mbuf_tag == NULL) { 6112 return; 6113 } 6114 6115 max_agg_queues = MAX_AGG_QS(sc); 6116 6117 /* release all mbufs and unload all DMA maps in the TPA pool */ 6118 for (i = 0; i < max_agg_queues; i++) { 6119 if (fp->rx_tpa_info[i].bd.m_map != NULL) { 6120 bus_dmamap_sync(fp->rx_mbuf_tag, 6121 fp->rx_tpa_info[i].bd.m_map, 6122 BUS_DMASYNC_POSTREAD); 6123 bus_dmamap_unload(fp->rx_mbuf_tag, 6124 fp->rx_tpa_info[i].bd.m_map); 6125 } 6126 6127 if (fp->rx_tpa_info[i].bd.m != NULL) { 6128 m_freem(fp->rx_tpa_info[i].bd.m); 6129 fp->rx_tpa_info[i].bd.m = NULL; 6130 fp->eth_q_stats.mbuf_alloc_tpa--; 6131 } 6132 } 6133 } 6134 6135 static void 6136 bxe_free_sge_chain(struct bxe_fastpath *fp) 6137 { 6138 int i; 6139 6140 if (fp->rx_sge_mbuf_tag == NULL) { 6141 return; 6142 } 6143 6144 /* rree all mbufs and unload all maps */ 6145 for (i = 0; i < RX_SGE_TOTAL; i++) { 6146 if (fp->rx_sge_mbuf_chain[i].m_map != NULL) { 6147 bus_dmamap_sync(fp->rx_sge_mbuf_tag, 6148 fp->rx_sge_mbuf_chain[i].m_map, 6149 BUS_DMASYNC_POSTREAD); 6150 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 6151 fp->rx_sge_mbuf_chain[i].m_map); 6152 } 6153 6154 if (fp->rx_sge_mbuf_chain[i].m != NULL) { 6155 m_freem(fp->rx_sge_mbuf_chain[i].m); 6156 fp->rx_sge_mbuf_chain[i].m = NULL; 6157 fp->eth_q_stats.mbuf_alloc_sge--; 6158 } 6159 } 6160 } 6161 6162 static void 6163 bxe_free_fp_buffers(struct bxe_softc *sc) 6164 { 6165 struct bxe_fastpath *fp; 6166 int i; 6167 6168 for (i = 0; i < sc->num_queues; i++) { 6169 fp = &sc->fp[i]; 6170 6171 if (fp->tx_br != NULL) { 6172 /* just in case bxe_mq_flush() wasn't called */ 6173 if (mtx_initialized(&fp->tx_mtx)) { 6174 struct mbuf *m; 6175 6176 BXE_FP_TX_LOCK(fp); 6177 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) 6178 m_freem(m); 6179 BXE_FP_TX_UNLOCK(fp); 6180 } 6181 } 6182 6183 /* free all RX buffers */ 6184 bxe_free_rx_bd_chain(fp); 6185 bxe_free_tpa_pool(fp); 6186 bxe_free_sge_chain(fp); 6187 6188 if (fp->eth_q_stats.mbuf_alloc_rx != 0) { 6189 BLOGE(sc, "failed to claim all rx mbufs (%d left)\n", 6190 fp->eth_q_stats.mbuf_alloc_rx); 6191 } 6192 6193 if (fp->eth_q_stats.mbuf_alloc_sge != 0) { 6194 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", 6195 fp->eth_q_stats.mbuf_alloc_sge); 6196 } 6197 6198 if (fp->eth_q_stats.mbuf_alloc_tpa != 0) { 6199 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", 6200 fp->eth_q_stats.mbuf_alloc_tpa); 6201 } 6202 6203 if (fp->eth_q_stats.mbuf_alloc_tx != 0) { 6204 BLOGE(sc, "failed to release tx mbufs (%d left)\n", 6205 fp->eth_q_stats.mbuf_alloc_tx); 6206 } 6207 6208 /* XXX verify all mbufs were reclaimed */ 6209 } 6210 } 6211 6212 static int 6213 bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, 6214 uint16_t prev_index, 6215 uint16_t index) 6216 { 6217 struct bxe_sw_rx_bd *rx_buf; 6218 struct eth_rx_bd *rx_bd; 6219 bus_dma_segment_t segs[1]; 6220 bus_dmamap_t map; 6221 struct mbuf *m; 6222 int nsegs, rc; 6223 6224 rc = 0; 6225 6226 /* allocate the new RX BD mbuf */ 6227 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); 6228 if (__predict_false(m == NULL)) { 6229 fp->eth_q_stats.mbuf_rx_bd_alloc_failed++; 6230 return (ENOBUFS); 6231 } 6232 6233 fp->eth_q_stats.mbuf_alloc_rx++; 6234 6235 /* initialize the mbuf buffer length */ 6236 m->m_pkthdr.len = m->m_len = fp->rx_buf_size; 6237 6238 /* map the mbuf into non-paged pool */ 6239 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, 6240 fp->rx_mbuf_spare_map, 6241 m, segs, &nsegs, BUS_DMA_NOWAIT); 6242 if (__predict_false(rc != 0)) { 6243 fp->eth_q_stats.mbuf_rx_bd_mapping_failed++; 6244 m_freem(m); 6245 fp->eth_q_stats.mbuf_alloc_rx--; 6246 return (rc); 6247 } 6248 6249 /* all mbufs must map to a single segment */ 6250 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6251 6252 /* release any existing RX BD mbuf mappings */ 6253 6254 if (prev_index != index) { 6255 rx_buf = &fp->rx_mbuf_chain[prev_index]; 6256 6257 if (rx_buf->m_map != NULL) { 6258 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6259 BUS_DMASYNC_POSTREAD); 6260 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 6261 } 6262 6263 /* 6264 * We only get here from bxe_rxeof() when the maximum number 6265 * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already 6266 * holds the mbuf in the prev_index so it's OK to NULL it out 6267 * here without concern of a memory leak. 6268 */ 6269 fp->rx_mbuf_chain[prev_index].m = NULL; 6270 } 6271 6272 rx_buf = &fp->rx_mbuf_chain[index]; 6273 6274 if (rx_buf->m_map != NULL) { 6275 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6276 BUS_DMASYNC_POSTREAD); 6277 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 6278 } 6279 6280 /* save the mbuf and mapping info for a future packet */ 6281 map = (prev_index != index) ? 6282 fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map; 6283 rx_buf->m_map = fp->rx_mbuf_spare_map; 6284 fp->rx_mbuf_spare_map = map; 6285 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6286 BUS_DMASYNC_PREREAD); 6287 rx_buf->m = m; 6288 6289 rx_bd = &fp->rx_chain[index]; 6290 rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 6291 rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 6292 6293 return (rc); 6294 } 6295 6296 static int 6297 bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, 6298 int queue) 6299 { 6300 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; 6301 bus_dma_segment_t segs[1]; 6302 bus_dmamap_t map; 6303 struct mbuf *m; 6304 int nsegs; 6305 int rc = 0; 6306 6307 /* allocate the new TPA mbuf */ 6308 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); 6309 if (__predict_false(m == NULL)) { 6310 fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++; 6311 return (ENOBUFS); 6312 } 6313 6314 fp->eth_q_stats.mbuf_alloc_tpa++; 6315 6316 /* initialize the mbuf buffer length */ 6317 m->m_pkthdr.len = m->m_len = fp->rx_buf_size; 6318 6319 /* map the mbuf into non-paged pool */ 6320 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, 6321 fp->rx_tpa_info_mbuf_spare_map, 6322 m, segs, &nsegs, BUS_DMA_NOWAIT); 6323 if (__predict_false(rc != 0)) { 6324 fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++; 6325 m_free(m); 6326 fp->eth_q_stats.mbuf_alloc_tpa--; 6327 return (rc); 6328 } 6329 6330 /* all mbufs must map to a single segment */ 6331 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6332 6333 /* release any existing TPA mbuf mapping */ 6334 if (tpa_info->bd.m_map != NULL) { 6335 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, 6336 BUS_DMASYNC_POSTREAD); 6337 bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map); 6338 } 6339 6340 /* save the mbuf and mapping info for the TPA mbuf */ 6341 map = tpa_info->bd.m_map; 6342 tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map; 6343 fp->rx_tpa_info_mbuf_spare_map = map; 6344 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, 6345 BUS_DMASYNC_PREREAD); 6346 tpa_info->bd.m = m; 6347 tpa_info->seg = segs[0]; 6348 6349 return (rc); 6350 } 6351 6352 /* 6353 * Allocate an mbuf and assign it to the receive scatter gather chain. The 6354 * caller must take care to save a copy of the existing mbuf in the SG mbuf 6355 * chain. 6356 */ 6357 static int 6358 bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, 6359 uint16_t index) 6360 { 6361 struct bxe_sw_rx_bd *sge_buf; 6362 struct eth_rx_sge *sge; 6363 bus_dma_segment_t segs[1]; 6364 bus_dmamap_t map; 6365 struct mbuf *m; 6366 int nsegs; 6367 int rc = 0; 6368 6369 /* allocate a new SGE mbuf */ 6370 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE); 6371 if (__predict_false(m == NULL)) { 6372 fp->eth_q_stats.mbuf_rx_sge_alloc_failed++; 6373 return (ENOMEM); 6374 } 6375 6376 fp->eth_q_stats.mbuf_alloc_sge++; 6377 6378 /* initialize the mbuf buffer length */ 6379 m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE; 6380 6381 /* map the SGE mbuf into non-paged pool */ 6382 rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag, 6383 fp->rx_sge_mbuf_spare_map, 6384 m, segs, &nsegs, BUS_DMA_NOWAIT); 6385 if (__predict_false(rc != 0)) { 6386 fp->eth_q_stats.mbuf_rx_sge_mapping_failed++; 6387 m_freem(m); 6388 fp->eth_q_stats.mbuf_alloc_sge--; 6389 return (rc); 6390 } 6391 6392 /* all mbufs must map to a single segment */ 6393 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6394 6395 sge_buf = &fp->rx_sge_mbuf_chain[index]; 6396 6397 /* release any existing SGE mbuf mapping */ 6398 if (sge_buf->m_map != NULL) { 6399 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, 6400 BUS_DMASYNC_POSTREAD); 6401 bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map); 6402 } 6403 6404 /* save the mbuf and mapping info for a future packet */ 6405 map = sge_buf->m_map; 6406 sge_buf->m_map = fp->rx_sge_mbuf_spare_map; 6407 fp->rx_sge_mbuf_spare_map = map; 6408 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, 6409 BUS_DMASYNC_PREREAD); 6410 sge_buf->m = m; 6411 6412 sge = &fp->rx_sge_chain[index]; 6413 sge->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 6414 sge->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 6415 6416 return (rc); 6417 } 6418 6419 static __noinline int 6420 bxe_alloc_fp_buffers(struct bxe_softc *sc) 6421 { 6422 struct bxe_fastpath *fp; 6423 int i, j, rc = 0; 6424 int ring_prod, cqe_ring_prod; 6425 int max_agg_queues; 6426 6427 for (i = 0; i < sc->num_queues; i++) { 6428 fp = &sc->fp[i]; 6429 6430 ring_prod = cqe_ring_prod = 0; 6431 fp->rx_bd_cons = 0; 6432 fp->rx_cq_cons = 0; 6433 6434 /* allocate buffers for the RX BDs in RX BD chain */ 6435 for (j = 0; j < sc->max_rx_bufs; j++) { 6436 rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod); 6437 if (rc != 0) { 6438 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", 6439 i, rc); 6440 goto bxe_alloc_fp_buffers_error; 6441 } 6442 6443 ring_prod = RX_BD_NEXT(ring_prod); 6444 cqe_ring_prod = RCQ_NEXT(cqe_ring_prod); 6445 } 6446 6447 fp->rx_bd_prod = ring_prod; 6448 fp->rx_cq_prod = cqe_ring_prod; 6449 fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0; 6450 6451 max_agg_queues = MAX_AGG_QS(sc); 6452 6453 fp->tpa_enable = TRUE; 6454 6455 /* fill the TPA pool */ 6456 for (j = 0; j < max_agg_queues; j++) { 6457 rc = bxe_alloc_rx_tpa_mbuf(fp, j); 6458 if (rc != 0) { 6459 BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n", 6460 i, j); 6461 fp->tpa_enable = FALSE; 6462 goto bxe_alloc_fp_buffers_error; 6463 } 6464 6465 fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP; 6466 } 6467 6468 if (fp->tpa_enable) { 6469 /* fill the RX SGE chain */ 6470 ring_prod = 0; 6471 for (j = 0; j < RX_SGE_USABLE; j++) { 6472 rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod); 6473 if (rc != 0) { 6474 BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n", 6475 i, ring_prod); 6476 fp->tpa_enable = FALSE; 6477 ring_prod = 0; 6478 goto bxe_alloc_fp_buffers_error; 6479 } 6480 6481 ring_prod = RX_SGE_NEXT(ring_prod); 6482 } 6483 6484 fp->rx_sge_prod = ring_prod; 6485 } 6486 } 6487 6488 return (0); 6489 6490 bxe_alloc_fp_buffers_error: 6491 6492 /* unwind what was already allocated */ 6493 bxe_free_rx_bd_chain(fp); 6494 bxe_free_tpa_pool(fp); 6495 bxe_free_sge_chain(fp); 6496 6497 return (ENOBUFS); 6498 } 6499 6500 static void 6501 bxe_free_fw_stats_mem(struct bxe_softc *sc) 6502 { 6503 bxe_dma_free(sc, &sc->fw_stats_dma); 6504 6505 sc->fw_stats_num = 0; 6506 6507 sc->fw_stats_req_size = 0; 6508 sc->fw_stats_req = NULL; 6509 sc->fw_stats_req_mapping = 0; 6510 6511 sc->fw_stats_data_size = 0; 6512 sc->fw_stats_data = NULL; 6513 sc->fw_stats_data_mapping = 0; 6514 } 6515 6516 static int 6517 bxe_alloc_fw_stats_mem(struct bxe_softc *sc) 6518 { 6519 uint8_t num_queue_stats; 6520 int num_groups; 6521 6522 /* number of queues for statistics is number of eth queues */ 6523 num_queue_stats = BXE_NUM_ETH_QUEUES(sc); 6524 6525 /* 6526 * Total number of FW statistics requests = 6527 * 1 for port stats + 1 for PF stats + num of queues 6528 */ 6529 sc->fw_stats_num = (2 + num_queue_stats); 6530 6531 /* 6532 * Request is built from stats_query_header and an array of 6533 * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT 6534 * rules. The real number or requests is configured in the 6535 * stats_query_header. 6536 */ 6537 num_groups = 6538 ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) + 6539 ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0)); 6540 6541 BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n", 6542 sc->fw_stats_num, num_groups); 6543 6544 sc->fw_stats_req_size = 6545 (sizeof(struct stats_query_header) + 6546 (num_groups * sizeof(struct stats_query_cmd_group))); 6547 6548 /* 6549 * Data for statistics requests + stats_counter. 6550 * stats_counter holds per-STORM counters that are incremented when 6551 * STORM has finished with the current request. Memory for FCoE 6552 * offloaded statistics are counted anyway, even if they will not be sent. 6553 * VF stats are not accounted for here as the data of VF stats is stored 6554 * in memory allocated by the VF, not here. 6555 */ 6556 sc->fw_stats_data_size = 6557 (sizeof(struct stats_counter) + 6558 sizeof(struct per_port_stats) + 6559 sizeof(struct per_pf_stats) + 6560 /* sizeof(struct fcoe_statistics_params) + */ 6561 (sizeof(struct per_queue_stats) * num_queue_stats)); 6562 6563 if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size), 6564 &sc->fw_stats_dma, "fw stats") != 0) { 6565 bxe_free_fw_stats_mem(sc); 6566 return (-1); 6567 } 6568 6569 /* set up the shortcuts */ 6570 6571 sc->fw_stats_req = 6572 (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr; 6573 sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr; 6574 6575 sc->fw_stats_data = 6576 (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr + 6577 sc->fw_stats_req_size); 6578 sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr + 6579 sc->fw_stats_req_size); 6580 6581 BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n", 6582 (uintmax_t)sc->fw_stats_req_mapping); 6583 6584 BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n", 6585 (uintmax_t)sc->fw_stats_data_mapping); 6586 6587 return (0); 6588 } 6589 6590 /* 6591 * Bits map: 6592 * 0-7 - Engine0 load counter. 6593 * 8-15 - Engine1 load counter. 6594 * 16 - Engine0 RESET_IN_PROGRESS bit. 6595 * 17 - Engine1 RESET_IN_PROGRESS bit. 6596 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active 6597 * function on the engine 6598 * 19 - Engine1 ONE_IS_LOADED. 6599 * 20 - Chip reset flow bit. When set none-leader must wait for both engines 6600 * leader to complete (check for both RESET_IN_PROGRESS bits and not 6601 * for just the one belonging to its engine). 6602 */ 6603 #define BXE_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1 6604 #define BXE_PATH0_LOAD_CNT_MASK 0x000000ff 6605 #define BXE_PATH0_LOAD_CNT_SHIFT 0 6606 #define BXE_PATH1_LOAD_CNT_MASK 0x0000ff00 6607 #define BXE_PATH1_LOAD_CNT_SHIFT 8 6608 #define BXE_PATH0_RST_IN_PROG_BIT 0x00010000 6609 #define BXE_PATH1_RST_IN_PROG_BIT 0x00020000 6610 #define BXE_GLOBAL_RESET_BIT 0x00040000 6611 6612 /* set the GLOBAL_RESET bit, should be run under rtnl lock */ 6613 static void 6614 bxe_set_reset_global(struct bxe_softc *sc) 6615 { 6616 uint32_t val; 6617 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6618 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6619 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT); 6620 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6621 } 6622 6623 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */ 6624 static void 6625 bxe_clear_reset_global(struct bxe_softc *sc) 6626 { 6627 uint32_t val; 6628 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6629 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6630 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT)); 6631 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6632 } 6633 6634 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */ 6635 static uint8_t 6636 bxe_reset_is_global(struct bxe_softc *sc) 6637 { 6638 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6639 BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val); 6640 return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE; 6641 } 6642 6643 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */ 6644 static void 6645 bxe_set_reset_done(struct bxe_softc *sc) 6646 { 6647 uint32_t val; 6648 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : 6649 BXE_PATH0_RST_IN_PROG_BIT; 6650 6651 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6652 6653 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6654 /* Clear the bit */ 6655 val &= ~bit; 6656 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6657 6658 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6659 } 6660 6661 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */ 6662 static void 6663 bxe_set_reset_in_progress(struct bxe_softc *sc) 6664 { 6665 uint32_t val; 6666 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : 6667 BXE_PATH0_RST_IN_PROG_BIT; 6668 6669 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6670 6671 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6672 /* Set the bit */ 6673 val |= bit; 6674 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6675 6676 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6677 } 6678 6679 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */ 6680 static uint8_t 6681 bxe_reset_is_done(struct bxe_softc *sc, 6682 int engine) 6683 { 6684 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6685 uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT : 6686 BXE_PATH0_RST_IN_PROG_BIT; 6687 6688 /* return false if bit is set */ 6689 return (val & bit) ? FALSE : TRUE; 6690 } 6691 6692 /* get the load status for an engine, should be run under rtnl lock */ 6693 static uint8_t 6694 bxe_get_load_status(struct bxe_softc *sc, 6695 int engine) 6696 { 6697 uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK : 6698 BXE_PATH0_LOAD_CNT_MASK; 6699 uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT : 6700 BXE_PATH0_LOAD_CNT_SHIFT; 6701 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6702 6703 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); 6704 6705 val = ((val & mask) >> shift); 6706 6707 BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val); 6708 6709 return (val != 0); 6710 } 6711 6712 /* set pf load mark */ 6713 /* XXX needs to be under rtnl lock */ 6714 static void 6715 bxe_set_pf_load(struct bxe_softc *sc) 6716 { 6717 uint32_t val; 6718 uint32_t val1; 6719 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : 6720 BXE_PATH0_LOAD_CNT_MASK; 6721 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : 6722 BXE_PATH0_LOAD_CNT_SHIFT; 6723 6724 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6725 6726 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6727 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); 6728 6729 /* get the current counter value */ 6730 val1 = ((val & mask) >> shift); 6731 6732 /* set bit of this PF */ 6733 val1 |= (1 << SC_ABS_FUNC(sc)); 6734 6735 /* clear the old value */ 6736 val &= ~mask; 6737 6738 /* set the new one */ 6739 val |= ((val1 << shift) & mask); 6740 6741 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6742 6743 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6744 } 6745 6746 /* clear pf load mark */ 6747 /* XXX needs to be under rtnl lock */ 6748 static uint8_t 6749 bxe_clear_pf_load(struct bxe_softc *sc) 6750 { 6751 uint32_t val1, val; 6752 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : 6753 BXE_PATH0_LOAD_CNT_MASK; 6754 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : 6755 BXE_PATH0_LOAD_CNT_SHIFT; 6756 6757 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6758 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6759 BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val); 6760 6761 /* get the current counter value */ 6762 val1 = (val & mask) >> shift; 6763 6764 /* clear bit of that PF */ 6765 val1 &= ~(1 << SC_ABS_FUNC(sc)); 6766 6767 /* clear the old value */ 6768 val &= ~mask; 6769 6770 /* set the new one */ 6771 val |= ((val1 << shift) & mask); 6772 6773 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6774 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6775 return (val1 != 0); 6776 } 6777 6778 /* send load requrest to mcp and analyze response */ 6779 static int 6780 bxe_nic_load_request(struct bxe_softc *sc, 6781 uint32_t *load_code) 6782 { 6783 /* init fw_seq */ 6784 sc->fw_seq = 6785 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & 6786 DRV_MSG_SEQ_NUMBER_MASK); 6787 6788 BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq); 6789 6790 /* get the current FW pulse sequence */ 6791 sc->fw_drv_pulse_wr_seq = 6792 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) & 6793 DRV_PULSE_SEQ_MASK); 6794 6795 BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n", 6796 sc->fw_drv_pulse_wr_seq); 6797 6798 /* load request */ 6799 (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, 6800 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 6801 6802 /* if the MCP fails to respond we must abort */ 6803 if (!(*load_code)) { 6804 BLOGE(sc, "MCP response failure!\n"); 6805 return (-1); 6806 } 6807 6808 /* if MCP refused then must abort */ 6809 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) { 6810 BLOGE(sc, "MCP refused load request\n"); 6811 return (-1); 6812 } 6813 6814 return (0); 6815 } 6816 6817 /* 6818 * Check whether another PF has already loaded FW to chip. In virtualized 6819 * environments a pf from anoth VM may have already initialized the device 6820 * including loading FW. 6821 */ 6822 static int 6823 bxe_nic_load_analyze_req(struct bxe_softc *sc, 6824 uint32_t load_code) 6825 { 6826 uint32_t my_fw, loaded_fw; 6827 6828 /* is another pf loaded on this engine? */ 6829 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 6830 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 6831 /* build my FW version dword */ 6832 my_fw = (BCM_5710_FW_MAJOR_VERSION + 6833 (BCM_5710_FW_MINOR_VERSION << 8 ) + 6834 (BCM_5710_FW_REVISION_VERSION << 16) + 6835 (BCM_5710_FW_ENGINEERING_VERSION << 24)); 6836 6837 /* read loaded FW from chip */ 6838 loaded_fw = REG_RD(sc, XSEM_REG_PRAM); 6839 BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n", 6840 loaded_fw, my_fw); 6841 6842 /* abort nic load if version mismatch */ 6843 if (my_fw != loaded_fw) { 6844 BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)", 6845 loaded_fw, my_fw); 6846 return (-1); 6847 } 6848 } 6849 6850 return (0); 6851 } 6852 6853 /* mark PMF if applicable */ 6854 static void 6855 bxe_nic_load_pmf(struct bxe_softc *sc, 6856 uint32_t load_code) 6857 { 6858 uint32_t ncsi_oem_data_addr; 6859 6860 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 6861 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) || 6862 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) { 6863 /* 6864 * Barrier here for ordering between the writing to sc->port.pmf here 6865 * and reading it from the periodic task. 6866 */ 6867 sc->port.pmf = 1; 6868 mb(); 6869 } else { 6870 sc->port.pmf = 0; 6871 } 6872 6873 BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf); 6874 6875 /* XXX needed? */ 6876 if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) { 6877 if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) { 6878 ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr); 6879 if (ncsi_oem_data_addr) { 6880 REG_WR(sc, 6881 (ncsi_oem_data_addr + 6882 offsetof(struct glob_ncsi_oem_data, driver_version)), 6883 0); 6884 } 6885 } 6886 } 6887 } 6888 6889 static void 6890 bxe_read_mf_cfg(struct bxe_softc *sc) 6891 { 6892 int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1); 6893 int abs_func; 6894 int vn; 6895 6896 if (BXE_NOMCP(sc)) { 6897 return; /* what should be the default bvalue in this case */ 6898 } 6899 6900 /* 6901 * The formula for computing the absolute function number is... 6902 * For 2 port configuration (4 functions per port): 6903 * abs_func = 2 * vn + SC_PORT + SC_PATH 6904 * For 4 port configuration (2 functions per port): 6905 * abs_func = 4 * vn + 2 * SC_PORT + SC_PATH 6906 */ 6907 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 6908 abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc)); 6909 if (abs_func >= E1H_FUNC_MAX) { 6910 break; 6911 } 6912 sc->devinfo.mf_info.mf_config[vn] = 6913 MFCFG_RD(sc, func_mf_config[abs_func].config); 6914 } 6915 6916 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & 6917 FUNC_MF_CFG_FUNC_DISABLED) { 6918 BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n"); 6919 sc->flags |= BXE_MF_FUNC_DIS; 6920 } else { 6921 BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n"); 6922 sc->flags &= ~BXE_MF_FUNC_DIS; 6923 } 6924 } 6925 6926 /* acquire split MCP access lock register */ 6927 static int bxe_acquire_alr(struct bxe_softc *sc) 6928 { 6929 uint32_t j, val; 6930 6931 for (j = 0; j < 1000; j++) { 6932 val = (1UL << 31); 6933 REG_WR(sc, GRCBASE_MCP + 0x9c, val); 6934 val = REG_RD(sc, GRCBASE_MCP + 0x9c); 6935 if (val & (1L << 31)) 6936 break; 6937 6938 DELAY(5000); 6939 } 6940 6941 if (!(val & (1L << 31))) { 6942 BLOGE(sc, "Cannot acquire MCP access lock register\n"); 6943 return (-1); 6944 } 6945 6946 return (0); 6947 } 6948 6949 /* release split MCP access lock register */ 6950 static void bxe_release_alr(struct bxe_softc *sc) 6951 { 6952 REG_WR(sc, GRCBASE_MCP + 0x9c, 0); 6953 } 6954 6955 static void 6956 bxe_fan_failure(struct bxe_softc *sc) 6957 { 6958 int port = SC_PORT(sc); 6959 uint32_t ext_phy_config; 6960 6961 /* mark the failure */ 6962 ext_phy_config = 6963 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); 6964 6965 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK; 6966 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE; 6967 SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config, 6968 ext_phy_config); 6969 6970 /* log the failure */ 6971 BLOGW(sc, "Fan Failure has caused the driver to shutdown " 6972 "the card to prevent permanent damage. " 6973 "Please contact OEM Support for assistance\n"); 6974 6975 /* XXX */ 6976 #if 1 6977 bxe_panic(sc, ("Schedule task to handle fan failure\n")); 6978 #else 6979 /* 6980 * Schedule device reset (unload) 6981 * This is due to some boards consuming sufficient power when driver is 6982 * up to overheat if fan fails. 6983 */ 6984 bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state); 6985 schedule_delayed_work(&sc->sp_rtnl_task, 0); 6986 #endif 6987 } 6988 6989 /* this function is called upon a link interrupt */ 6990 static void 6991 bxe_link_attn(struct bxe_softc *sc) 6992 { 6993 uint32_t pause_enabled = 0; 6994 struct host_port_stats *pstats; 6995 int cmng_fns; 6996 struct bxe_fastpath *fp; 6997 int i; 6998 6999 /* Make sure that we are synced with the current statistics */ 7000 bxe_stats_handle(sc, STATS_EVENT_STOP); 7001 BLOGD(sc, DBG_LOAD, "link_vars phy_flags : %x\n", sc->link_vars.phy_flags); 7002 elink_link_update(&sc->link_params, &sc->link_vars); 7003 7004 if (sc->link_vars.link_up) { 7005 7006 /* dropless flow control */ 7007 if (!CHIP_IS_E1(sc) && sc->dropless_fc) { 7008 pause_enabled = 0; 7009 7010 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { 7011 pause_enabled = 1; 7012 } 7013 7014 REG_WR(sc, 7015 (BAR_USTRORM_INTMEM + 7016 USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))), 7017 pause_enabled); 7018 } 7019 7020 if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) { 7021 pstats = BXE_SP(sc, port_stats); 7022 /* reset old mac stats */ 7023 memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx)); 7024 } 7025 7026 if (sc->state == BXE_STATE_OPEN) { 7027 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 7028 /* Restart tx when the link comes back. */ 7029 FOR_EACH_ETH_QUEUE(sc, i) { 7030 fp = &sc->fp[i]; 7031 taskqueue_enqueue(fp->tq, &fp->tx_task); 7032 } 7033 } 7034 7035 } 7036 7037 if (sc->link_vars.link_up && sc->link_vars.line_speed) { 7038 cmng_fns = bxe_get_cmng_fns_mode(sc); 7039 7040 if (cmng_fns != CMNG_FNS_NONE) { 7041 bxe_cmng_fns_init(sc, FALSE, cmng_fns); 7042 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 7043 } else { 7044 /* rate shaping and fairness are disabled */ 7045 BLOGD(sc, DBG_LOAD, "single function mode without fairness\n"); 7046 } 7047 } 7048 7049 bxe_link_report_locked(sc); 7050 7051 if (IS_MF(sc)) { 7052 ; // XXX bxe_link_sync_notify(sc); 7053 } 7054 } 7055 7056 static void 7057 bxe_attn_int_asserted(struct bxe_softc *sc, 7058 uint32_t asserted) 7059 { 7060 int port = SC_PORT(sc); 7061 uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 7062 MISC_REG_AEU_MASK_ATTN_FUNC_0; 7063 uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 : 7064 NIG_REG_MASK_INTERRUPT_PORT0; 7065 uint32_t aeu_mask; 7066 uint32_t nig_mask = 0; 7067 uint32_t reg_addr; 7068 uint32_t igu_acked; 7069 uint32_t cnt; 7070 7071 if (sc->attn_state & asserted) { 7072 BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted); 7073 } 7074 7075 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 7076 7077 aeu_mask = REG_RD(sc, aeu_addr); 7078 7079 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n", 7080 aeu_mask, asserted); 7081 7082 aeu_mask &= ~(asserted & 0x3ff); 7083 7084 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); 7085 7086 REG_WR(sc, aeu_addr, aeu_mask); 7087 7088 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 7089 7090 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); 7091 sc->attn_state |= asserted; 7092 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); 7093 7094 if (asserted & ATTN_HARD_WIRED_MASK) { 7095 if (asserted & ATTN_NIG_FOR_FUNC) { 7096 7097 bxe_acquire_phy_lock(sc); 7098 /* save nig interrupt mask */ 7099 nig_mask = REG_RD(sc, nig_int_mask_addr); 7100 7101 /* If nig_mask is not set, no need to call the update function */ 7102 if (nig_mask) { 7103 REG_WR(sc, nig_int_mask_addr, 0); 7104 7105 bxe_link_attn(sc); 7106 } 7107 7108 /* handle unicore attn? */ 7109 } 7110 7111 if (asserted & ATTN_SW_TIMER_4_FUNC) { 7112 BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n"); 7113 } 7114 7115 if (asserted & GPIO_2_FUNC) { 7116 BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n"); 7117 } 7118 7119 if (asserted & GPIO_3_FUNC) { 7120 BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n"); 7121 } 7122 7123 if (asserted & GPIO_4_FUNC) { 7124 BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n"); 7125 } 7126 7127 if (port == 0) { 7128 if (asserted & ATTN_GENERAL_ATTN_1) { 7129 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n"); 7130 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0); 7131 } 7132 if (asserted & ATTN_GENERAL_ATTN_2) { 7133 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n"); 7134 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0); 7135 } 7136 if (asserted & ATTN_GENERAL_ATTN_3) { 7137 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n"); 7138 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0); 7139 } 7140 } else { 7141 if (asserted & ATTN_GENERAL_ATTN_4) { 7142 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n"); 7143 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0); 7144 } 7145 if (asserted & ATTN_GENERAL_ATTN_5) { 7146 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n"); 7147 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0); 7148 } 7149 if (asserted & ATTN_GENERAL_ATTN_6) { 7150 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n"); 7151 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0); 7152 } 7153 } 7154 } /* hardwired */ 7155 7156 if (sc->devinfo.int_block == INT_BLOCK_HC) { 7157 reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET); 7158 } else { 7159 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8); 7160 } 7161 7162 BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n", 7163 asserted, 7164 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 7165 REG_WR(sc, reg_addr, asserted); 7166 7167 /* now set back the mask */ 7168 if (asserted & ATTN_NIG_FOR_FUNC) { 7169 /* 7170 * Verify that IGU ack through BAR was written before restoring 7171 * NIG mask. This loop should exit after 2-3 iterations max. 7172 */ 7173 if (sc->devinfo.int_block != INT_BLOCK_HC) { 7174 cnt = 0; 7175 7176 do { 7177 igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS); 7178 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) && 7179 (++cnt < MAX_IGU_ATTN_ACK_TO)); 7180 7181 if (!igu_acked) { 7182 BLOGE(sc, "Failed to verify IGU ack on time\n"); 7183 } 7184 7185 mb(); 7186 } 7187 7188 REG_WR(sc, nig_int_mask_addr, nig_mask); 7189 7190 bxe_release_phy_lock(sc); 7191 } 7192 } 7193 7194 static void 7195 bxe_print_next_block(struct bxe_softc *sc, 7196 int idx, 7197 const char *blk) 7198 { 7199 BLOGI(sc, "%s%s", idx ? ", " : "", blk); 7200 } 7201 7202 static int 7203 bxe_check_blocks_with_parity0(struct bxe_softc *sc, 7204 uint32_t sig, 7205 int par_num, 7206 uint8_t print) 7207 { 7208 uint32_t cur_bit = 0; 7209 int i = 0; 7210 7211 for (i = 0; sig; i++) { 7212 cur_bit = ((uint32_t)0x1 << i); 7213 if (sig & cur_bit) { 7214 switch (cur_bit) { 7215 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR: 7216 if (print) 7217 bxe_print_next_block(sc, par_num++, "BRB"); 7218 break; 7219 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR: 7220 if (print) 7221 bxe_print_next_block(sc, par_num++, "PARSER"); 7222 break; 7223 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR: 7224 if (print) 7225 bxe_print_next_block(sc, par_num++, "TSDM"); 7226 break; 7227 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR: 7228 if (print) 7229 bxe_print_next_block(sc, par_num++, "SEARCHER"); 7230 break; 7231 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR: 7232 if (print) 7233 bxe_print_next_block(sc, par_num++, "TCM"); 7234 break; 7235 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR: 7236 if (print) 7237 bxe_print_next_block(sc, par_num++, "TSEMI"); 7238 break; 7239 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR: 7240 if (print) 7241 bxe_print_next_block(sc, par_num++, "XPB"); 7242 break; 7243 } 7244 7245 /* Clear the bit */ 7246 sig &= ~cur_bit; 7247 } 7248 } 7249 7250 return (par_num); 7251 } 7252 7253 static int 7254 bxe_check_blocks_with_parity1(struct bxe_softc *sc, 7255 uint32_t sig, 7256 int par_num, 7257 uint8_t *global, 7258 uint8_t print) 7259 { 7260 int i = 0; 7261 uint32_t cur_bit = 0; 7262 for (i = 0; sig; i++) { 7263 cur_bit = ((uint32_t)0x1 << i); 7264 if (sig & cur_bit) { 7265 switch (cur_bit) { 7266 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR: 7267 if (print) 7268 bxe_print_next_block(sc, par_num++, "PBF"); 7269 break; 7270 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR: 7271 if (print) 7272 bxe_print_next_block(sc, par_num++, "QM"); 7273 break; 7274 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR: 7275 if (print) 7276 bxe_print_next_block(sc, par_num++, "TM"); 7277 break; 7278 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR: 7279 if (print) 7280 bxe_print_next_block(sc, par_num++, "XSDM"); 7281 break; 7282 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR: 7283 if (print) 7284 bxe_print_next_block(sc, par_num++, "XCM"); 7285 break; 7286 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR: 7287 if (print) 7288 bxe_print_next_block(sc, par_num++, "XSEMI"); 7289 break; 7290 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR: 7291 if (print) 7292 bxe_print_next_block(sc, par_num++, "DOORBELLQ"); 7293 break; 7294 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR: 7295 if (print) 7296 bxe_print_next_block(sc, par_num++, "NIG"); 7297 break; 7298 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR: 7299 if (print) 7300 bxe_print_next_block(sc, par_num++, "VAUX PCI CORE"); 7301 *global = TRUE; 7302 break; 7303 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR: 7304 if (print) 7305 bxe_print_next_block(sc, par_num++, "DEBUG"); 7306 break; 7307 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR: 7308 if (print) 7309 bxe_print_next_block(sc, par_num++, "USDM"); 7310 break; 7311 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR: 7312 if (print) 7313 bxe_print_next_block(sc, par_num++, "UCM"); 7314 break; 7315 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR: 7316 if (print) 7317 bxe_print_next_block(sc, par_num++, "USEMI"); 7318 break; 7319 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR: 7320 if (print) 7321 bxe_print_next_block(sc, par_num++, "UPB"); 7322 break; 7323 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR: 7324 if (print) 7325 bxe_print_next_block(sc, par_num++, "CSDM"); 7326 break; 7327 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR: 7328 if (print) 7329 bxe_print_next_block(sc, par_num++, "CCM"); 7330 break; 7331 } 7332 7333 /* Clear the bit */ 7334 sig &= ~cur_bit; 7335 } 7336 } 7337 7338 return (par_num); 7339 } 7340 7341 static int 7342 bxe_check_blocks_with_parity2(struct bxe_softc *sc, 7343 uint32_t sig, 7344 int par_num, 7345 uint8_t print) 7346 { 7347 uint32_t cur_bit = 0; 7348 int i = 0; 7349 7350 for (i = 0; sig; i++) { 7351 cur_bit = ((uint32_t)0x1 << i); 7352 if (sig & cur_bit) { 7353 switch (cur_bit) { 7354 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR: 7355 if (print) 7356 bxe_print_next_block(sc, par_num++, "CSEMI"); 7357 break; 7358 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR: 7359 if (print) 7360 bxe_print_next_block(sc, par_num++, "PXP"); 7361 break; 7362 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR: 7363 if (print) 7364 bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT"); 7365 break; 7366 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR: 7367 if (print) 7368 bxe_print_next_block(sc, par_num++, "CFC"); 7369 break; 7370 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR: 7371 if (print) 7372 bxe_print_next_block(sc, par_num++, "CDU"); 7373 break; 7374 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR: 7375 if (print) 7376 bxe_print_next_block(sc, par_num++, "DMAE"); 7377 break; 7378 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR: 7379 if (print) 7380 bxe_print_next_block(sc, par_num++, "IGU"); 7381 break; 7382 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR: 7383 if (print) 7384 bxe_print_next_block(sc, par_num++, "MISC"); 7385 break; 7386 } 7387 7388 /* Clear the bit */ 7389 sig &= ~cur_bit; 7390 } 7391 } 7392 7393 return (par_num); 7394 } 7395 7396 static int 7397 bxe_check_blocks_with_parity3(struct bxe_softc *sc, 7398 uint32_t sig, 7399 int par_num, 7400 uint8_t *global, 7401 uint8_t print) 7402 { 7403 uint32_t cur_bit = 0; 7404 int i = 0; 7405 7406 for (i = 0; sig; i++) { 7407 cur_bit = ((uint32_t)0x1 << i); 7408 if (sig & cur_bit) { 7409 switch (cur_bit) { 7410 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY: 7411 if (print) 7412 bxe_print_next_block(sc, par_num++, "MCP ROM"); 7413 *global = TRUE; 7414 break; 7415 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY: 7416 if (print) 7417 bxe_print_next_block(sc, par_num++, 7418 "MCP UMP RX"); 7419 *global = TRUE; 7420 break; 7421 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY: 7422 if (print) 7423 bxe_print_next_block(sc, par_num++, 7424 "MCP UMP TX"); 7425 *global = TRUE; 7426 break; 7427 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY: 7428 if (print) 7429 bxe_print_next_block(sc, par_num++, 7430 "MCP SCPAD"); 7431 *global = TRUE; 7432 break; 7433 } 7434 7435 /* Clear the bit */ 7436 sig &= ~cur_bit; 7437 } 7438 } 7439 7440 return (par_num); 7441 } 7442 7443 static int 7444 bxe_check_blocks_with_parity4(struct bxe_softc *sc, 7445 uint32_t sig, 7446 int par_num, 7447 uint8_t print) 7448 { 7449 uint32_t cur_bit = 0; 7450 int i = 0; 7451 7452 for (i = 0; sig; i++) { 7453 cur_bit = ((uint32_t)0x1 << i); 7454 if (sig & cur_bit) { 7455 switch (cur_bit) { 7456 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR: 7457 if (print) 7458 bxe_print_next_block(sc, par_num++, "PGLUE_B"); 7459 break; 7460 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR: 7461 if (print) 7462 bxe_print_next_block(sc, par_num++, "ATC"); 7463 break; 7464 } 7465 7466 /* Clear the bit */ 7467 sig &= ~cur_bit; 7468 } 7469 } 7470 7471 return (par_num); 7472 } 7473 7474 static uint8_t 7475 bxe_parity_attn(struct bxe_softc *sc, 7476 uint8_t *global, 7477 uint8_t print, 7478 uint32_t *sig) 7479 { 7480 int par_num = 0; 7481 7482 if ((sig[0] & HW_PRTY_ASSERT_SET_0) || 7483 (sig[1] & HW_PRTY_ASSERT_SET_1) || 7484 (sig[2] & HW_PRTY_ASSERT_SET_2) || 7485 (sig[3] & HW_PRTY_ASSERT_SET_3) || 7486 (sig[4] & HW_PRTY_ASSERT_SET_4)) { 7487 BLOGE(sc, "Parity error: HW block parity attention:\n" 7488 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n", 7489 (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0), 7490 (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1), 7491 (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2), 7492 (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3), 7493 (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4)); 7494 7495 if (print) 7496 BLOGI(sc, "Parity errors detected in blocks: "); 7497 7498 par_num = 7499 bxe_check_blocks_with_parity0(sc, sig[0] & 7500 HW_PRTY_ASSERT_SET_0, 7501 par_num, print); 7502 par_num = 7503 bxe_check_blocks_with_parity1(sc, sig[1] & 7504 HW_PRTY_ASSERT_SET_1, 7505 par_num, global, print); 7506 par_num = 7507 bxe_check_blocks_with_parity2(sc, sig[2] & 7508 HW_PRTY_ASSERT_SET_2, 7509 par_num, print); 7510 par_num = 7511 bxe_check_blocks_with_parity3(sc, sig[3] & 7512 HW_PRTY_ASSERT_SET_3, 7513 par_num, global, print); 7514 par_num = 7515 bxe_check_blocks_with_parity4(sc, sig[4] & 7516 HW_PRTY_ASSERT_SET_4, 7517 par_num, print); 7518 7519 if (print) 7520 BLOGI(sc, "\n"); 7521 7522 if( *global == TRUE ) { 7523 BXE_SET_ERROR_BIT(sc, BXE_ERR_GLOBAL); 7524 } 7525 7526 return (TRUE); 7527 } 7528 7529 return (FALSE); 7530 } 7531 7532 static uint8_t 7533 bxe_chk_parity_attn(struct bxe_softc *sc, 7534 uint8_t *global, 7535 uint8_t print) 7536 { 7537 struct attn_route attn = { {0} }; 7538 int port = SC_PORT(sc); 7539 7540 if(sc->state != BXE_STATE_OPEN) 7541 return FALSE; 7542 7543 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 7544 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 7545 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 7546 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 7547 7548 /* 7549 * Since MCP attentions can't be disabled inside the block, we need to 7550 * read AEU registers to see whether they're currently disabled 7551 */ 7552 attn.sig[3] &= ((REG_RD(sc, (!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0 7553 : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0)) & 7554 MISC_AEU_ENABLE_MCP_PRTY_BITS) | 7555 ~MISC_AEU_ENABLE_MCP_PRTY_BITS); 7556 7557 7558 if (!CHIP_IS_E1x(sc)) 7559 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 7560 7561 return (bxe_parity_attn(sc, global, print, attn.sig)); 7562 } 7563 7564 static void 7565 bxe_attn_int_deasserted4(struct bxe_softc *sc, 7566 uint32_t attn) 7567 { 7568 uint32_t val; 7569 boolean_t err_flg = FALSE; 7570 7571 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) { 7572 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR); 7573 BLOGE(sc, "PGLUE hw attention 0x%08x\n", val); 7574 err_flg = TRUE; 7575 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR) 7576 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n"); 7577 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR) 7578 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n"); 7579 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) 7580 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n"); 7581 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN) 7582 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n"); 7583 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN) 7584 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n"); 7585 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN) 7586 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n"); 7587 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN) 7588 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n"); 7589 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN) 7590 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n"); 7591 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW) 7592 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n"); 7593 } 7594 7595 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) { 7596 val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR); 7597 BLOGE(sc, "ATC hw attention 0x%08x\n", val); 7598 err_flg = TRUE; 7599 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR) 7600 BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n"); 7601 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND) 7602 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n"); 7603 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS) 7604 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n"); 7605 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT) 7606 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n"); 7607 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR) 7608 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n"); 7609 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU) 7610 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n"); 7611 } 7612 7613 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 7614 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) { 7615 BLOGE(sc, "FATAL parity attention set4 0x%08x\n", 7616 (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 7617 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR))); 7618 err_flg = TRUE; 7619 } 7620 if (err_flg) { 7621 BXE_SET_ERROR_BIT(sc, BXE_ERR_MISC); 7622 taskqueue_enqueue_timeout(taskqueue_thread, 7623 &sc->sp_err_timeout_task, hz/10); 7624 } 7625 7626 } 7627 7628 static void 7629 bxe_e1h_disable(struct bxe_softc *sc) 7630 { 7631 int port = SC_PORT(sc); 7632 7633 bxe_tx_disable(sc); 7634 7635 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); 7636 } 7637 7638 static void 7639 bxe_e1h_enable(struct bxe_softc *sc) 7640 { 7641 int port = SC_PORT(sc); 7642 7643 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); 7644 7645 // XXX bxe_tx_enable(sc); 7646 } 7647 7648 /* 7649 * called due to MCP event (on pmf): 7650 * reread new bandwidth configuration 7651 * configure FW 7652 * notify others function about the change 7653 */ 7654 static void 7655 bxe_config_mf_bw(struct bxe_softc *sc) 7656 { 7657 if (sc->link_vars.link_up) { 7658 bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX); 7659 // XXX bxe_link_sync_notify(sc); 7660 } 7661 7662 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 7663 } 7664 7665 static void 7666 bxe_set_mf_bw(struct bxe_softc *sc) 7667 { 7668 bxe_config_mf_bw(sc); 7669 bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0); 7670 } 7671 7672 static void 7673 bxe_handle_eee_event(struct bxe_softc *sc) 7674 { 7675 BLOGD(sc, DBG_INTR, "EEE - LLDP event\n"); 7676 bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0); 7677 } 7678 7679 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3 7680 7681 static void 7682 bxe_drv_info_ether_stat(struct bxe_softc *sc) 7683 { 7684 struct eth_stats_info *ether_stat = 7685 &sc->sp->drv_info_to_mcp.ether_stat; 7686 7687 strlcpy(ether_stat->version, BXE_DRIVER_VERSION, 7688 ETH_STAT_INFO_VERSION_LEN); 7689 7690 /* XXX (+ MAC_PAD) taken from other driver... verify this is right */ 7691 sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj, 7692 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED, 7693 ether_stat->mac_local + MAC_PAD, 7694 MAC_PAD, ETH_ALEN); 7695 7696 ether_stat->mtu_size = sc->mtu; 7697 7698 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK; 7699 if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) { 7700 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK; 7701 } 7702 7703 // XXX ether_stat->feature_flags |= ???; 7704 7705 ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0; 7706 7707 ether_stat->txq_size = sc->tx_ring_size; 7708 ether_stat->rxq_size = sc->rx_ring_size; 7709 } 7710 7711 static void 7712 bxe_handle_drv_info_req(struct bxe_softc *sc) 7713 { 7714 enum drv_info_opcode op_code; 7715 uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control); 7716 7717 /* if drv_info version supported by MFW doesn't match - send NACK */ 7718 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) { 7719 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); 7720 return; 7721 } 7722 7723 op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >> 7724 DRV_INFO_CONTROL_OP_CODE_SHIFT); 7725 7726 memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp)); 7727 7728 switch (op_code) { 7729 case ETH_STATS_OPCODE: 7730 bxe_drv_info_ether_stat(sc); 7731 break; 7732 case FCOE_STATS_OPCODE: 7733 case ISCSI_STATS_OPCODE: 7734 default: 7735 /* if op code isn't supported - send NACK */ 7736 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); 7737 return; 7738 } 7739 7740 /* 7741 * If we got drv_info attn from MFW then these fields are defined in 7742 * shmem2 for sure 7743 */ 7744 SHMEM2_WR(sc, drv_info_host_addr_lo, 7745 U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp))); 7746 SHMEM2_WR(sc, drv_info_host_addr_hi, 7747 U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp))); 7748 7749 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0); 7750 } 7751 7752 static void 7753 bxe_dcc_event(struct bxe_softc *sc, 7754 uint32_t dcc_event) 7755 { 7756 BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event); 7757 7758 if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) { 7759 /* 7760 * This is the only place besides the function initialization 7761 * where the sc->flags can change so it is done without any 7762 * locks 7763 */ 7764 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) { 7765 BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n"); 7766 sc->flags |= BXE_MF_FUNC_DIS; 7767 bxe_e1h_disable(sc); 7768 } else { 7769 BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n"); 7770 sc->flags &= ~BXE_MF_FUNC_DIS; 7771 bxe_e1h_enable(sc); 7772 } 7773 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF; 7774 } 7775 7776 if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) { 7777 bxe_config_mf_bw(sc); 7778 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION; 7779 } 7780 7781 /* Report results to MCP */ 7782 if (dcc_event) 7783 bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0); 7784 else 7785 bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0); 7786 } 7787 7788 static void 7789 bxe_pmf_update(struct bxe_softc *sc) 7790 { 7791 int port = SC_PORT(sc); 7792 uint32_t val; 7793 7794 sc->port.pmf = 1; 7795 BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf); 7796 7797 /* 7798 * We need the mb() to ensure the ordering between the writing to 7799 * sc->port.pmf here and reading it from the bxe_periodic_task(). 7800 */ 7801 mb(); 7802 7803 /* queue a periodic task */ 7804 // XXX schedule task... 7805 7806 // XXX bxe_dcbx_pmf_update(sc); 7807 7808 /* enable nig attention */ 7809 val = (0xff0f | (1 << (SC_VN(sc) + 4))); 7810 if (sc->devinfo.int_block == INT_BLOCK_HC) { 7811 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val); 7812 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val); 7813 } else if (!CHIP_IS_E1x(sc)) { 7814 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); 7815 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); 7816 } 7817 7818 bxe_stats_handle(sc, STATS_EVENT_PMF); 7819 } 7820 7821 static int 7822 bxe_mc_assert(struct bxe_softc *sc) 7823 { 7824 char last_idx; 7825 int i, rc = 0; 7826 uint32_t row0, row1, row2, row3; 7827 7828 /* XSTORM */ 7829 last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET); 7830 if (last_idx) 7831 BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7832 7833 /* print the asserts */ 7834 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7835 7836 row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i)); 7837 row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4); 7838 row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8); 7839 row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12); 7840 7841 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7842 BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7843 i, row3, row2, row1, row0); 7844 rc++; 7845 } else { 7846 break; 7847 } 7848 } 7849 7850 /* TSTORM */ 7851 last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET); 7852 if (last_idx) { 7853 BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7854 } 7855 7856 /* print the asserts */ 7857 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7858 7859 row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i)); 7860 row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4); 7861 row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8); 7862 row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12); 7863 7864 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7865 BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7866 i, row3, row2, row1, row0); 7867 rc++; 7868 } else { 7869 break; 7870 } 7871 } 7872 7873 /* CSTORM */ 7874 last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET); 7875 if (last_idx) { 7876 BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7877 } 7878 7879 /* print the asserts */ 7880 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7881 7882 row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i)); 7883 row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4); 7884 row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8); 7885 row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12); 7886 7887 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7888 BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7889 i, row3, row2, row1, row0); 7890 rc++; 7891 } else { 7892 break; 7893 } 7894 } 7895 7896 /* USTORM */ 7897 last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET); 7898 if (last_idx) { 7899 BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7900 } 7901 7902 /* print the asserts */ 7903 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7904 7905 row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i)); 7906 row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4); 7907 row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8); 7908 row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12); 7909 7910 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7911 BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7912 i, row3, row2, row1, row0); 7913 rc++; 7914 } else { 7915 break; 7916 } 7917 } 7918 7919 return (rc); 7920 } 7921 7922 static void 7923 bxe_attn_int_deasserted3(struct bxe_softc *sc, 7924 uint32_t attn) 7925 { 7926 int func = SC_FUNC(sc); 7927 uint32_t val; 7928 7929 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) { 7930 7931 if (attn & BXE_PMF_LINK_ASSERT(sc)) { 7932 7933 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 7934 bxe_read_mf_cfg(sc); 7935 sc->devinfo.mf_info.mf_config[SC_VN(sc)] = 7936 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 7937 val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status); 7938 7939 if (val & DRV_STATUS_DCC_EVENT_MASK) 7940 bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK)); 7941 7942 if (val & DRV_STATUS_SET_MF_BW) 7943 bxe_set_mf_bw(sc); 7944 7945 if (val & DRV_STATUS_DRV_INFO_REQ) 7946 bxe_handle_drv_info_req(sc); 7947 7948 if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF)) 7949 bxe_pmf_update(sc); 7950 7951 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS) 7952 bxe_handle_eee_event(sc); 7953 7954 if (sc->link_vars.periodic_flags & 7955 ELINK_PERIODIC_FLAGS_LINK_EVENT) { 7956 /* sync with link */ 7957 bxe_acquire_phy_lock(sc); 7958 sc->link_vars.periodic_flags &= 7959 ~ELINK_PERIODIC_FLAGS_LINK_EVENT; 7960 bxe_release_phy_lock(sc); 7961 if (IS_MF(sc)) 7962 ; // XXX bxe_link_sync_notify(sc); 7963 bxe_link_report(sc); 7964 } 7965 7966 /* 7967 * Always call it here: bxe_link_report() will 7968 * prevent the link indication duplication. 7969 */ 7970 bxe_link_status_update(sc); 7971 7972 } else if (attn & BXE_MC_ASSERT_BITS) { 7973 7974 BLOGE(sc, "MC assert!\n"); 7975 bxe_mc_assert(sc); 7976 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0); 7977 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0); 7978 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0); 7979 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0); 7980 bxe_int_disable(sc); 7981 BXE_SET_ERROR_BIT(sc, BXE_ERR_MC_ASSERT); 7982 taskqueue_enqueue_timeout(taskqueue_thread, 7983 &sc->sp_err_timeout_task, hz/10); 7984 7985 } else if (attn & BXE_MCP_ASSERT) { 7986 7987 BLOGE(sc, "MCP assert!\n"); 7988 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0); 7989 BXE_SET_ERROR_BIT(sc, BXE_ERR_MCP_ASSERT); 7990 taskqueue_enqueue_timeout(taskqueue_thread, 7991 &sc->sp_err_timeout_task, hz/10); 7992 bxe_int_disable(sc); /*avoid repetive assert alert */ 7993 7994 7995 } else { 7996 BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn); 7997 } 7998 } 7999 8000 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) { 8001 BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn); 8002 if (attn & BXE_GRC_TIMEOUT) { 8003 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN); 8004 BLOGE(sc, "GRC time-out 0x%08x\n", val); 8005 } 8006 if (attn & BXE_GRC_RSV) { 8007 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN); 8008 BLOGE(sc, "GRC reserved 0x%08x\n", val); 8009 } 8010 REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff); 8011 } 8012 } 8013 8014 static void 8015 bxe_attn_int_deasserted2(struct bxe_softc *sc, 8016 uint32_t attn) 8017 { 8018 int port = SC_PORT(sc); 8019 int reg_offset; 8020 uint32_t val0, mask0, val1, mask1; 8021 uint32_t val; 8022 boolean_t err_flg = FALSE; 8023 8024 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) { 8025 val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR); 8026 BLOGE(sc, "CFC hw attention 0x%08x\n", val); 8027 /* CFC error attention */ 8028 if (val & 0x2) { 8029 BLOGE(sc, "FATAL error from CFC\n"); 8030 err_flg = TRUE; 8031 } 8032 } 8033 8034 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) { 8035 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0); 8036 BLOGE(sc, "PXP hw attention-0 0x%08x\n", val); 8037 /* RQ_USDMDP_FIFO_OVERFLOW */ 8038 if (val & 0x18000) { 8039 BLOGE(sc, "FATAL error from PXP\n"); 8040 err_flg = TRUE; 8041 } 8042 8043 if (!CHIP_IS_E1x(sc)) { 8044 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1); 8045 BLOGE(sc, "PXP hw attention-1 0x%08x\n", val); 8046 err_flg = TRUE; 8047 } 8048 } 8049 8050 #define PXP2_EOP_ERROR_BIT PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR 8051 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT 8052 8053 if (attn & AEU_PXP2_HW_INT_BIT) { 8054 /* CQ47854 workaround do not panic on 8055 * PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR 8056 */ 8057 if (!CHIP_IS_E1x(sc)) { 8058 mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0); 8059 val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1); 8060 mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1); 8061 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0); 8062 /* 8063 * If the only PXP2_EOP_ERROR_BIT is set in 8064 * STS0 and STS1 - clear it 8065 * 8066 * probably we lose additional attentions between 8067 * STS0 and STS_CLR0, in this case user will not 8068 * be notified about them 8069 */ 8070 if (val0 & mask0 & PXP2_EOP_ERROR_BIT && 8071 !(val1 & mask1)) 8072 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); 8073 8074 /* print the register, since no one can restore it */ 8075 BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0); 8076 8077 /* 8078 * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR 8079 * then notify 8080 */ 8081 if (val0 & PXP2_EOP_ERROR_BIT) { 8082 BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n"); 8083 err_flg = TRUE; 8084 8085 /* 8086 * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is 8087 * set then clear attention from PXP2 block without panic 8088 */ 8089 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) && 8090 ((val1 & mask1) == 0)) 8091 attn &= ~AEU_PXP2_HW_INT_BIT; 8092 } 8093 } 8094 } 8095 8096 if (attn & HW_INTERRUT_ASSERT_SET_2) { 8097 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 : 8098 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2); 8099 8100 val = REG_RD(sc, reg_offset); 8101 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2); 8102 REG_WR(sc, reg_offset, val); 8103 8104 BLOGE(sc, "FATAL HW block attention set2 0x%x\n", 8105 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2)); 8106 err_flg = TRUE; 8107 bxe_panic(sc, ("HW block attention set2\n")); 8108 } 8109 if(err_flg) { 8110 BXE_SET_ERROR_BIT(sc, BXE_ERR_GLOBAL); 8111 taskqueue_enqueue_timeout(taskqueue_thread, 8112 &sc->sp_err_timeout_task, hz/10); 8113 } 8114 8115 } 8116 8117 static void 8118 bxe_attn_int_deasserted1(struct bxe_softc *sc, 8119 uint32_t attn) 8120 { 8121 int port = SC_PORT(sc); 8122 int reg_offset; 8123 uint32_t val; 8124 boolean_t err_flg = FALSE; 8125 8126 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) { 8127 val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR); 8128 BLOGE(sc, "DB hw attention 0x%08x\n", val); 8129 /* DORQ discard attention */ 8130 if (val & 0x2) { 8131 BLOGE(sc, "FATAL error from DORQ\n"); 8132 err_flg = TRUE; 8133 } 8134 } 8135 8136 if (attn & HW_INTERRUT_ASSERT_SET_1) { 8137 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 : 8138 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1); 8139 8140 val = REG_RD(sc, reg_offset); 8141 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1); 8142 REG_WR(sc, reg_offset, val); 8143 8144 BLOGE(sc, "FATAL HW block attention set1 0x%08x\n", 8145 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1)); 8146 err_flg = TRUE; 8147 bxe_panic(sc, ("HW block attention set1\n")); 8148 } 8149 if(err_flg) { 8150 BXE_SET_ERROR_BIT(sc, BXE_ERR_MISC); 8151 taskqueue_enqueue_timeout(taskqueue_thread, 8152 &sc->sp_err_timeout_task, hz/10); 8153 } 8154 8155 } 8156 8157 static void 8158 bxe_attn_int_deasserted0(struct bxe_softc *sc, 8159 uint32_t attn) 8160 { 8161 int port = SC_PORT(sc); 8162 int reg_offset; 8163 uint32_t val; 8164 8165 reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 8166 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; 8167 8168 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) { 8169 val = REG_RD(sc, reg_offset); 8170 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5; 8171 REG_WR(sc, reg_offset, val); 8172 8173 BLOGW(sc, "SPIO5 hw attention\n"); 8174 8175 /* Fan failure attention */ 8176 elink_hw_reset_phy(&sc->link_params); 8177 bxe_fan_failure(sc); 8178 } 8179 8180 if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) { 8181 bxe_acquire_phy_lock(sc); 8182 elink_handle_module_detect_int(&sc->link_params); 8183 bxe_release_phy_lock(sc); 8184 } 8185 8186 if (attn & HW_INTERRUT_ASSERT_SET_0) { 8187 val = REG_RD(sc, reg_offset); 8188 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0); 8189 REG_WR(sc, reg_offset, val); 8190 8191 8192 BXE_SET_ERROR_BIT(sc, BXE_ERR_MISC); 8193 taskqueue_enqueue_timeout(taskqueue_thread, 8194 &sc->sp_err_timeout_task, hz/10); 8195 8196 bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n", 8197 (attn & HW_INTERRUT_ASSERT_SET_0))); 8198 } 8199 } 8200 8201 static void 8202 bxe_attn_int_deasserted(struct bxe_softc *sc, 8203 uint32_t deasserted) 8204 { 8205 struct attn_route attn; 8206 struct attn_route *group_mask; 8207 int port = SC_PORT(sc); 8208 int index; 8209 uint32_t reg_addr; 8210 uint32_t val; 8211 uint32_t aeu_mask; 8212 uint8_t global = FALSE; 8213 8214 /* 8215 * Need to take HW lock because MCP or other port might also 8216 * try to handle this event. 8217 */ 8218 bxe_acquire_alr(sc); 8219 8220 if (bxe_chk_parity_attn(sc, &global, TRUE)) { 8221 /* XXX 8222 * In case of parity errors don't handle attentions so that 8223 * other function would "see" parity errors. 8224 */ 8225 // XXX schedule a recovery task... 8226 /* disable HW interrupts */ 8227 bxe_int_disable(sc); 8228 BXE_SET_ERROR_BIT(sc, BXE_ERR_PARITY); 8229 taskqueue_enqueue_timeout(taskqueue_thread, 8230 &sc->sp_err_timeout_task, hz/10); 8231 bxe_release_alr(sc); 8232 return; 8233 } 8234 8235 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 8236 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 8237 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 8238 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 8239 if (!CHIP_IS_E1x(sc)) { 8240 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 8241 } else { 8242 attn.sig[4] = 0; 8243 } 8244 8245 BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", 8246 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]); 8247 8248 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 8249 if (deasserted & (1 << index)) { 8250 group_mask = &sc->attn_group[index]; 8251 8252 BLOGD(sc, DBG_INTR, 8253 "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index, 8254 group_mask->sig[0], group_mask->sig[1], 8255 group_mask->sig[2], group_mask->sig[3], 8256 group_mask->sig[4]); 8257 8258 bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]); 8259 bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]); 8260 bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]); 8261 bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]); 8262 bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]); 8263 } 8264 } 8265 8266 bxe_release_alr(sc); 8267 8268 if (sc->devinfo.int_block == INT_BLOCK_HC) { 8269 reg_addr = (HC_REG_COMMAND_REG + port*32 + 8270 COMMAND_REG_ATTN_BITS_CLR); 8271 } else { 8272 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8); 8273 } 8274 8275 val = ~deasserted; 8276 BLOGD(sc, DBG_INTR, 8277 "about to mask 0x%08x at %s addr 0x%08x\n", val, 8278 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 8279 REG_WR(sc, reg_addr, val); 8280 8281 if (~sc->attn_state & deasserted) { 8282 BLOGE(sc, "IGU error\n"); 8283 } 8284 8285 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 8286 MISC_REG_AEU_MASK_ATTN_FUNC_0; 8287 8288 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 8289 8290 aeu_mask = REG_RD(sc, reg_addr); 8291 8292 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n", 8293 aeu_mask, deasserted); 8294 aeu_mask |= (deasserted & 0x3ff); 8295 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); 8296 8297 REG_WR(sc, reg_addr, aeu_mask); 8298 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 8299 8300 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); 8301 sc->attn_state &= ~deasserted; 8302 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); 8303 } 8304 8305 static void 8306 bxe_attn_int(struct bxe_softc *sc) 8307 { 8308 /* read local copy of bits */ 8309 uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits); 8310 uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack); 8311 uint32_t attn_state = sc->attn_state; 8312 8313 /* look for changed bits */ 8314 uint32_t asserted = attn_bits & ~attn_ack & ~attn_state; 8315 uint32_t deasserted = ~attn_bits & attn_ack & attn_state; 8316 8317 BLOGD(sc, DBG_INTR, 8318 "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n", 8319 attn_bits, attn_ack, asserted, deasserted); 8320 8321 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) { 8322 BLOGE(sc, "BAD attention state\n"); 8323 } 8324 8325 /* handle bits that were raised */ 8326 if (asserted) { 8327 bxe_attn_int_asserted(sc, asserted); 8328 } 8329 8330 if (deasserted) { 8331 bxe_attn_int_deasserted(sc, deasserted); 8332 } 8333 } 8334 8335 static uint16_t 8336 bxe_update_dsb_idx(struct bxe_softc *sc) 8337 { 8338 struct host_sp_status_block *def_sb = sc->def_sb; 8339 uint16_t rc = 0; 8340 8341 mb(); /* status block is written to by the chip */ 8342 8343 if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) { 8344 sc->def_att_idx = def_sb->atten_status_block.attn_bits_index; 8345 rc |= BXE_DEF_SB_ATT_IDX; 8346 } 8347 8348 if (sc->def_idx != def_sb->sp_sb.running_index) { 8349 sc->def_idx = def_sb->sp_sb.running_index; 8350 rc |= BXE_DEF_SB_IDX; 8351 } 8352 8353 mb(); 8354 8355 return (rc); 8356 } 8357 8358 static inline struct ecore_queue_sp_obj * 8359 bxe_cid_to_q_obj(struct bxe_softc *sc, 8360 uint32_t cid) 8361 { 8362 BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid); 8363 return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj); 8364 } 8365 8366 static void 8367 bxe_handle_mcast_eqe(struct bxe_softc *sc) 8368 { 8369 struct ecore_mcast_ramrod_params rparam; 8370 int rc; 8371 8372 memset(&rparam, 0, sizeof(rparam)); 8373 8374 rparam.mcast_obj = &sc->mcast_obj; 8375 8376 BXE_MCAST_LOCK(sc); 8377 8378 /* clear pending state for the last command */ 8379 sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw); 8380 8381 /* if there are pending mcast commands - send them */ 8382 if (sc->mcast_obj.check_pending(&sc->mcast_obj)) { 8383 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 8384 if (rc < 0) { 8385 BLOGD(sc, DBG_SP, 8386 "ERROR: Failed to send pending mcast commands (%d)\n", rc); 8387 } 8388 } 8389 8390 BXE_MCAST_UNLOCK(sc); 8391 } 8392 8393 static void 8394 bxe_handle_classification_eqe(struct bxe_softc *sc, 8395 union event_ring_elem *elem) 8396 { 8397 unsigned long ramrod_flags = 0; 8398 int rc = 0; 8399 uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; 8400 struct ecore_vlan_mac_obj *vlan_mac_obj; 8401 8402 /* always push next commands out, don't wait here */ 8403 bit_set(&ramrod_flags, RAMROD_CONT); 8404 8405 switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) { 8406 case ECORE_FILTER_MAC_PENDING: 8407 BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n"); 8408 vlan_mac_obj = &sc->sp_objs[cid].mac_obj; 8409 break; 8410 8411 case ECORE_FILTER_MCAST_PENDING: 8412 BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n"); 8413 /* 8414 * This is only relevant for 57710 where multicast MACs are 8415 * configured as unicast MACs using the same ramrod. 8416 */ 8417 bxe_handle_mcast_eqe(sc); 8418 return; 8419 8420 default: 8421 BLOGE(sc, "Unsupported classification command: %d\n", 8422 elem->message.data.eth_event.echo); 8423 return; 8424 } 8425 8426 rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags); 8427 8428 if (rc < 0) { 8429 BLOGE(sc, "Failed to schedule new commands (%d)\n", rc); 8430 } else if (rc > 0) { 8431 BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n"); 8432 } 8433 } 8434 8435 static void 8436 bxe_handle_rx_mode_eqe(struct bxe_softc *sc, 8437 union event_ring_elem *elem) 8438 { 8439 bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); 8440 8441 /* send rx_mode command again if was requested */ 8442 if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED, 8443 &sc->sp_state)) { 8444 bxe_set_storm_rx_mode(sc); 8445 } 8446 } 8447 8448 static void 8449 bxe_update_eq_prod(struct bxe_softc *sc, 8450 uint16_t prod) 8451 { 8452 storm_memset_eq_prod(sc, prod, SC_FUNC(sc)); 8453 wmb(); /* keep prod updates ordered */ 8454 } 8455 8456 static void 8457 bxe_eq_int(struct bxe_softc *sc) 8458 { 8459 uint16_t hw_cons, sw_cons, sw_prod; 8460 union event_ring_elem *elem; 8461 uint8_t echo; 8462 uint32_t cid; 8463 uint8_t opcode; 8464 int spqe_cnt = 0; 8465 struct ecore_queue_sp_obj *q_obj; 8466 struct ecore_func_sp_obj *f_obj = &sc->func_obj; 8467 struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw; 8468 8469 hw_cons = le16toh(*sc->eq_cons_sb); 8470 8471 /* 8472 * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256. 8473 * when we get to the next-page we need to adjust so the loop 8474 * condition below will be met. The next element is the size of a 8475 * regular element and hence incrementing by 1 8476 */ 8477 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) { 8478 hw_cons++; 8479 } 8480 8481 /* 8482 * This function may never run in parallel with itself for a 8483 * specific sc and no need for a read memory barrier here. 8484 */ 8485 sw_cons = sc->eq_cons; 8486 sw_prod = sc->eq_prod; 8487 8488 BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n", 8489 hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left)); 8490 8491 for (; 8492 sw_cons != hw_cons; 8493 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) { 8494 8495 elem = &sc->eq[EQ_DESC(sw_cons)]; 8496 8497 /* elem CID originates from FW, actually LE */ 8498 cid = SW_CID(elem->message.data.cfc_del_event.cid); 8499 opcode = elem->message.opcode; 8500 8501 /* handle eq element */ 8502 switch (opcode) { 8503 8504 case EVENT_RING_OPCODE_STAT_QUERY: 8505 BLOGD(sc, DBG_SP, "got statistics completion event %d\n", 8506 sc->stats_comp++); 8507 /* nothing to do with stats comp */ 8508 goto next_spqe; 8509 8510 case EVENT_RING_OPCODE_CFC_DEL: 8511 /* handle according to cid range */ 8512 /* we may want to verify here that the sc state is HALTING */ 8513 BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid); 8514 q_obj = bxe_cid_to_q_obj(sc, cid); 8515 if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) { 8516 break; 8517 } 8518 goto next_spqe; 8519 8520 case EVENT_RING_OPCODE_STOP_TRAFFIC: 8521 BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n"); 8522 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) { 8523 break; 8524 } 8525 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED); 8526 goto next_spqe; 8527 8528 case EVENT_RING_OPCODE_START_TRAFFIC: 8529 BLOGD(sc, DBG_SP, "got START TRAFFIC\n"); 8530 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) { 8531 break; 8532 } 8533 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED); 8534 goto next_spqe; 8535 8536 case EVENT_RING_OPCODE_FUNCTION_UPDATE: 8537 echo = elem->message.data.function_update_event.echo; 8538 if (echo == SWITCH_UPDATE) { 8539 BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n"); 8540 if (f_obj->complete_cmd(sc, f_obj, 8541 ECORE_F_CMD_SWITCH_UPDATE)) { 8542 break; 8543 } 8544 } 8545 else { 8546 BLOGD(sc, DBG_SP, 8547 "AFEX: ramrod completed FUNCTION_UPDATE\n"); 8548 } 8549 goto next_spqe; 8550 8551 case EVENT_RING_OPCODE_FORWARD_SETUP: 8552 q_obj = &bxe_fwd_sp_obj(sc, q_obj); 8553 if (q_obj->complete_cmd(sc, q_obj, 8554 ECORE_Q_CMD_SETUP_TX_ONLY)) { 8555 break; 8556 } 8557 goto next_spqe; 8558 8559 case EVENT_RING_OPCODE_FUNCTION_START: 8560 BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n"); 8561 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) { 8562 break; 8563 } 8564 goto next_spqe; 8565 8566 case EVENT_RING_OPCODE_FUNCTION_STOP: 8567 BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n"); 8568 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) { 8569 break; 8570 } 8571 goto next_spqe; 8572 } 8573 8574 switch (opcode | sc->state) { 8575 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN): 8576 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT): 8577 cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; 8578 BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid); 8579 rss_raw->clear_pending(rss_raw); 8580 break; 8581 8582 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN): 8583 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG): 8584 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT): 8585 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN): 8586 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG): 8587 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8588 BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n"); 8589 bxe_handle_classification_eqe(sc, elem); 8590 break; 8591 8592 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN): 8593 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG): 8594 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8595 BLOGD(sc, DBG_SP, "got mcast ramrod\n"); 8596 bxe_handle_mcast_eqe(sc); 8597 break; 8598 8599 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN): 8600 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG): 8601 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8602 BLOGD(sc, DBG_SP, "got rx_mode ramrod\n"); 8603 bxe_handle_rx_mode_eqe(sc, elem); 8604 break; 8605 8606 default: 8607 /* unknown event log error and continue */ 8608 BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n", 8609 elem->message.opcode, sc->state); 8610 } 8611 8612 next_spqe: 8613 spqe_cnt++; 8614 } /* for */ 8615 8616 mb(); 8617 atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt); 8618 8619 sc->eq_cons = sw_cons; 8620 sc->eq_prod = sw_prod; 8621 8622 /* make sure that above mem writes were issued towards the memory */ 8623 wmb(); 8624 8625 /* update producer */ 8626 bxe_update_eq_prod(sc, sc->eq_prod); 8627 } 8628 8629 static void 8630 bxe_handle_sp_tq(void *context, 8631 int pending) 8632 { 8633 struct bxe_softc *sc = (struct bxe_softc *)context; 8634 uint16_t status; 8635 8636 BLOGD(sc, DBG_SP, "---> SP TASK <---\n"); 8637 8638 /* what work needs to be performed? */ 8639 status = bxe_update_dsb_idx(sc); 8640 8641 BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status); 8642 8643 /* HW attentions */ 8644 if (status & BXE_DEF_SB_ATT_IDX) { 8645 BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n"); 8646 bxe_attn_int(sc); 8647 status &= ~BXE_DEF_SB_ATT_IDX; 8648 } 8649 8650 /* SP events: STAT_QUERY and others */ 8651 if (status & BXE_DEF_SB_IDX) { 8652 /* handle EQ completions */ 8653 BLOGD(sc, DBG_SP, "---> EQ INTR <---\n"); 8654 bxe_eq_int(sc); 8655 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 8656 le16toh(sc->def_idx), IGU_INT_NOP, 1); 8657 status &= ~BXE_DEF_SB_IDX; 8658 } 8659 8660 /* if status is non zero then something went wrong */ 8661 if (__predict_false(status)) { 8662 BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status); 8663 } 8664 8665 /* ack status block only if something was actually handled */ 8666 bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID, 8667 le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1); 8668 8669 /* 8670 * Must be called after the EQ processing (since eq leads to sriov 8671 * ramrod completion flows). 8672 * This flow may have been scheduled by the arrival of a ramrod 8673 * completion, or by the sriov code rescheduling itself. 8674 */ 8675 // XXX bxe_iov_sp_task(sc); 8676 8677 } 8678 8679 static void 8680 bxe_handle_fp_tq(void *context, 8681 int pending) 8682 { 8683 struct bxe_fastpath *fp = (struct bxe_fastpath *)context; 8684 struct bxe_softc *sc = fp->sc; 8685 /* uint8_t more_tx = FALSE; */ 8686 uint8_t more_rx = FALSE; 8687 8688 BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index); 8689 8690 /* XXX 8691 * IFF_DRV_RUNNING state can't be checked here since we process 8692 * slowpath events on a client queue during setup. Instead 8693 * we need to add a "process/continue" flag here that the driver 8694 * can use to tell the task here not to do anything. 8695 */ 8696 #if 0 8697 if (!(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { 8698 return; 8699 } 8700 #endif 8701 8702 /* update the fastpath index */ 8703 bxe_update_fp_sb_idx(fp); 8704 8705 /* XXX add loop here if ever support multiple tx CoS */ 8706 /* fp->txdata[cos] */ 8707 if (bxe_has_tx_work(fp)) { 8708 BXE_FP_TX_LOCK(fp); 8709 /* more_tx = */ bxe_txeof(sc, fp); 8710 BXE_FP_TX_UNLOCK(fp); 8711 } 8712 8713 if (bxe_has_rx_work(fp)) { 8714 more_rx = bxe_rxeof(sc, fp); 8715 } 8716 8717 if (more_rx /*|| more_tx*/) { 8718 /* still more work to do */ 8719 taskqueue_enqueue(fp->tq, &fp->tq_task); 8720 return; 8721 } 8722 8723 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 8724 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); 8725 } 8726 8727 static void 8728 bxe_task_fp(struct bxe_fastpath *fp) 8729 { 8730 struct bxe_softc *sc = fp->sc; 8731 /* uint8_t more_tx = FALSE; */ 8732 uint8_t more_rx = FALSE; 8733 8734 BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index); 8735 8736 /* update the fastpath index */ 8737 bxe_update_fp_sb_idx(fp); 8738 8739 /* XXX add loop here if ever support multiple tx CoS */ 8740 /* fp->txdata[cos] */ 8741 if (bxe_has_tx_work(fp)) { 8742 BXE_FP_TX_LOCK(fp); 8743 /* more_tx = */ bxe_txeof(sc, fp); 8744 BXE_FP_TX_UNLOCK(fp); 8745 } 8746 8747 if (bxe_has_rx_work(fp)) { 8748 more_rx = bxe_rxeof(sc, fp); 8749 } 8750 8751 if (more_rx /*|| more_tx*/) { 8752 /* still more work to do, bail out if this ISR and process later */ 8753 taskqueue_enqueue(fp->tq, &fp->tq_task); 8754 return; 8755 } 8756 8757 /* 8758 * Here we write the fastpath index taken before doing any tx or rx work. 8759 * It is very well possible other hw events occurred up to this point and 8760 * they were actually processed accordingly above. Since we're going to 8761 * write an older fastpath index, an interrupt is coming which we might 8762 * not do any work in. 8763 */ 8764 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 8765 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); 8766 } 8767 8768 /* 8769 * Legacy interrupt entry point. 8770 * 8771 * Verifies that the controller generated the interrupt and 8772 * then calls a separate routine to handle the various 8773 * interrupt causes: link, RX, and TX. 8774 */ 8775 static void 8776 bxe_intr_legacy(void *xsc) 8777 { 8778 struct bxe_softc *sc = (struct bxe_softc *)xsc; 8779 struct bxe_fastpath *fp; 8780 uint16_t status, mask; 8781 int i; 8782 8783 BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n"); 8784 8785 /* 8786 * 0 for ustorm, 1 for cstorm 8787 * the bits returned from ack_int() are 0-15 8788 * bit 0 = attention status block 8789 * bit 1 = fast path status block 8790 * a mask of 0x2 or more = tx/rx event 8791 * a mask of 1 = slow path event 8792 */ 8793 8794 status = bxe_ack_int(sc); 8795 8796 /* the interrupt is not for us */ 8797 if (__predict_false(status == 0)) { 8798 BLOGD(sc, DBG_INTR, "Not our interrupt!\n"); 8799 return; 8800 } 8801 8802 BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status); 8803 8804 FOR_EACH_ETH_QUEUE(sc, i) { 8805 fp = &sc->fp[i]; 8806 mask = (0x2 << (fp->index + CNIC_SUPPORT(sc))); 8807 if (status & mask) { 8808 /* acknowledge and disable further fastpath interrupts */ 8809 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8810 bxe_task_fp(fp); 8811 status &= ~mask; 8812 } 8813 } 8814 8815 if (__predict_false(status & 0x1)) { 8816 /* acknowledge and disable further slowpath interrupts */ 8817 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8818 8819 /* schedule slowpath handler */ 8820 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task); 8821 8822 status &= ~0x1; 8823 } 8824 8825 if (__predict_false(status)) { 8826 BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status); 8827 } 8828 } 8829 8830 /* slowpath interrupt entry point */ 8831 static void 8832 bxe_intr_sp(void *xsc) 8833 { 8834 struct bxe_softc *sc = (struct bxe_softc *)xsc; 8835 8836 BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n"); 8837 8838 /* acknowledge and disable further slowpath interrupts */ 8839 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8840 8841 /* schedule slowpath handler */ 8842 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task); 8843 } 8844 8845 /* fastpath interrupt entry point */ 8846 static void 8847 bxe_intr_fp(void *xfp) 8848 { 8849 struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp; 8850 struct bxe_softc *sc = fp->sc; 8851 8852 BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index); 8853 8854 BLOGD(sc, DBG_INTR, 8855 "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n", 8856 curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id); 8857 8858 /* acknowledge and disable further fastpath interrupts */ 8859 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8860 8861 bxe_task_fp(fp); 8862 } 8863 8864 /* Release all interrupts allocated by the driver. */ 8865 static void 8866 bxe_interrupt_free(struct bxe_softc *sc) 8867 { 8868 int i; 8869 8870 switch (sc->interrupt_mode) { 8871 case INTR_MODE_INTX: 8872 BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n"); 8873 if (sc->intr[0].resource != NULL) { 8874 bus_release_resource(sc->dev, 8875 SYS_RES_IRQ, 8876 sc->intr[0].rid, 8877 sc->intr[0].resource); 8878 } 8879 break; 8880 case INTR_MODE_MSI: 8881 for (i = 0; i < sc->intr_count; i++) { 8882 BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i); 8883 if (sc->intr[i].resource && sc->intr[i].rid) { 8884 bus_release_resource(sc->dev, 8885 SYS_RES_IRQ, 8886 sc->intr[i].rid, 8887 sc->intr[i].resource); 8888 } 8889 } 8890 pci_release_msi(sc->dev); 8891 break; 8892 case INTR_MODE_MSIX: 8893 for (i = 0; i < sc->intr_count; i++) { 8894 BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i); 8895 if (sc->intr[i].resource && sc->intr[i].rid) { 8896 bus_release_resource(sc->dev, 8897 SYS_RES_IRQ, 8898 sc->intr[i].rid, 8899 sc->intr[i].resource); 8900 } 8901 } 8902 pci_release_msi(sc->dev); 8903 break; 8904 default: 8905 /* nothing to do as initial allocation failed */ 8906 break; 8907 } 8908 } 8909 8910 /* 8911 * This function determines and allocates the appropriate 8912 * interrupt based on system capabilites and user request. 8913 * 8914 * The user may force a particular interrupt mode, specify 8915 * the number of receive queues, specify the method for 8916 * distribuitng received frames to receive queues, or use 8917 * the default settings which will automatically select the 8918 * best supported combination. In addition, the OS may or 8919 * may not support certain combinations of these settings. 8920 * This routine attempts to reconcile the settings requested 8921 * by the user with the capabilites available from the system 8922 * to select the optimal combination of features. 8923 * 8924 * Returns: 8925 * 0 = Success, !0 = Failure. 8926 */ 8927 static int 8928 bxe_interrupt_alloc(struct bxe_softc *sc) 8929 { 8930 int msix_count = 0; 8931 int msi_count = 0; 8932 int num_requested = 0; 8933 int num_allocated = 0; 8934 int rid, i, j; 8935 int rc; 8936 8937 /* get the number of available MSI/MSI-X interrupts from the OS */ 8938 if (sc->interrupt_mode > 0) { 8939 if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) { 8940 msix_count = pci_msix_count(sc->dev); 8941 } 8942 8943 if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) { 8944 msi_count = pci_msi_count(sc->dev); 8945 } 8946 8947 BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n", 8948 msi_count, msix_count); 8949 } 8950 8951 do { /* try allocating MSI-X interrupt resources (at least 2) */ 8952 if (sc->interrupt_mode != INTR_MODE_MSIX) { 8953 break; 8954 } 8955 8956 if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) || 8957 (msix_count < 2)) { 8958 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 8959 break; 8960 } 8961 8962 /* ask for the necessary number of MSI-X vectors */ 8963 num_requested = min((sc->num_queues + 1), msix_count); 8964 8965 BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested); 8966 8967 num_allocated = num_requested; 8968 if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) { 8969 BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc); 8970 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 8971 break; 8972 } 8973 8974 if (num_allocated < 2) { /* possible? */ 8975 BLOGE(sc, "MSI-X allocation less than 2!\n"); 8976 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 8977 pci_release_msi(sc->dev); 8978 break; 8979 } 8980 8981 BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n", 8982 num_requested, num_allocated); 8983 8984 /* best effort so use the number of vectors allocated to us */ 8985 sc->intr_count = num_allocated; 8986 sc->num_queues = num_allocated - 1; 8987 8988 rid = 1; /* initial resource identifier */ 8989 8990 /* allocate the MSI-X vectors */ 8991 for (i = 0; i < num_allocated; i++) { 8992 sc->intr[i].rid = (rid + i); 8993 8994 if ((sc->intr[i].resource = 8995 bus_alloc_resource_any(sc->dev, 8996 SYS_RES_IRQ, 8997 &sc->intr[i].rid, 8998 RF_ACTIVE)) == NULL) { 8999 BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n", 9000 i, (rid + i)); 9001 9002 for (j = (i - 1); j >= 0; j--) { 9003 bus_release_resource(sc->dev, 9004 SYS_RES_IRQ, 9005 sc->intr[j].rid, 9006 sc->intr[j].resource); 9007 } 9008 9009 sc->intr_count = 0; 9010 sc->num_queues = 0; 9011 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9012 pci_release_msi(sc->dev); 9013 break; 9014 } 9015 9016 BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i)); 9017 } 9018 } while (0); 9019 9020 do { /* try allocating MSI vector resources (at least 2) */ 9021 if (sc->interrupt_mode != INTR_MODE_MSI) { 9022 break; 9023 } 9024 9025 if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) || 9026 (msi_count < 1)) { 9027 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9028 break; 9029 } 9030 9031 /* ask for a single MSI vector */ 9032 num_requested = 1; 9033 9034 BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested); 9035 9036 num_allocated = num_requested; 9037 if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) { 9038 BLOGE(sc, "MSI alloc failed (%d)!\n", rc); 9039 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9040 break; 9041 } 9042 9043 if (num_allocated != 1) { /* possible? */ 9044 BLOGE(sc, "MSI allocation is not 1!\n"); 9045 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9046 pci_release_msi(sc->dev); 9047 break; 9048 } 9049 9050 BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n", 9051 num_requested, num_allocated); 9052 9053 /* best effort so use the number of vectors allocated to us */ 9054 sc->intr_count = num_allocated; 9055 sc->num_queues = num_allocated; 9056 9057 rid = 1; /* initial resource identifier */ 9058 9059 sc->intr[0].rid = rid; 9060 9061 if ((sc->intr[0].resource = 9062 bus_alloc_resource_any(sc->dev, 9063 SYS_RES_IRQ, 9064 &sc->intr[0].rid, 9065 RF_ACTIVE)) == NULL) { 9066 BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid); 9067 sc->intr_count = 0; 9068 sc->num_queues = 0; 9069 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9070 pci_release_msi(sc->dev); 9071 break; 9072 } 9073 9074 BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid); 9075 } while (0); 9076 9077 do { /* try allocating INTx vector resources */ 9078 if (sc->interrupt_mode != INTR_MODE_INTX) { 9079 break; 9080 } 9081 9082 BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n"); 9083 9084 /* only one vector for INTx */ 9085 sc->intr_count = 1; 9086 sc->num_queues = 1; 9087 9088 rid = 0; /* initial resource identifier */ 9089 9090 sc->intr[0].rid = rid; 9091 9092 if ((sc->intr[0].resource = 9093 bus_alloc_resource_any(sc->dev, 9094 SYS_RES_IRQ, 9095 &sc->intr[0].rid, 9096 (RF_ACTIVE | RF_SHAREABLE))) == NULL) { 9097 BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid); 9098 sc->intr_count = 0; 9099 sc->num_queues = 0; 9100 sc->interrupt_mode = -1; /* Failed! */ 9101 break; 9102 } 9103 9104 BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid); 9105 } while (0); 9106 9107 if (sc->interrupt_mode == -1) { 9108 BLOGE(sc, "Interrupt Allocation: FAILED!!!\n"); 9109 rc = 1; 9110 } else { 9111 BLOGD(sc, DBG_LOAD, 9112 "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n", 9113 sc->interrupt_mode, sc->num_queues); 9114 rc = 0; 9115 } 9116 9117 return (rc); 9118 } 9119 9120 static void 9121 bxe_interrupt_detach(struct bxe_softc *sc) 9122 { 9123 struct bxe_fastpath *fp; 9124 int i; 9125 9126 /* release interrupt resources */ 9127 for (i = 0; i < sc->intr_count; i++) { 9128 if (sc->intr[i].resource && sc->intr[i].tag) { 9129 BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i); 9130 bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag); 9131 } 9132 } 9133 9134 for (i = 0; i < sc->num_queues; i++) { 9135 fp = &sc->fp[i]; 9136 if (fp->tq) { 9137 taskqueue_drain(fp->tq, &fp->tq_task); 9138 taskqueue_drain(fp->tq, &fp->tx_task); 9139 while (taskqueue_cancel_timeout(fp->tq, &fp->tx_timeout_task, 9140 NULL)) 9141 taskqueue_drain_timeout(fp->tq, &fp->tx_timeout_task); 9142 } 9143 9144 for (i = 0; i < sc->num_queues; i++) { 9145 fp = &sc->fp[i]; 9146 if (fp->tq != NULL) { 9147 taskqueue_free(fp->tq); 9148 fp->tq = NULL; 9149 } 9150 } 9151 } 9152 9153 if (sc->sp_tq) { 9154 taskqueue_drain(sc->sp_tq, &sc->sp_tq_task); 9155 taskqueue_free(sc->sp_tq); 9156 sc->sp_tq = NULL; 9157 } 9158 } 9159 9160 /* 9161 * Enables interrupts and attach to the ISR. 9162 * 9163 * When using multiple MSI/MSI-X vectors the first vector 9164 * is used for slowpath operations while all remaining 9165 * vectors are used for fastpath operations. If only a 9166 * single MSI/MSI-X vector is used (SINGLE_ISR) then the 9167 * ISR must look for both slowpath and fastpath completions. 9168 */ 9169 static int 9170 bxe_interrupt_attach(struct bxe_softc *sc) 9171 { 9172 struct bxe_fastpath *fp; 9173 int rc = 0; 9174 int i; 9175 9176 snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name), 9177 "bxe%d_sp_tq", sc->unit); 9178 TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc); 9179 sc->sp_tq = taskqueue_create(sc->sp_tq_name, M_NOWAIT, 9180 taskqueue_thread_enqueue, 9181 &sc->sp_tq); 9182 taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */ 9183 "%s", sc->sp_tq_name); 9184 9185 9186 for (i = 0; i < sc->num_queues; i++) { 9187 fp = &sc->fp[i]; 9188 snprintf(fp->tq_name, sizeof(fp->tq_name), 9189 "bxe%d_fp%d_tq", sc->unit, i); 9190 NET_TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp); 9191 TASK_INIT(&fp->tx_task, 0, bxe_tx_mq_start_deferred, fp); 9192 fp->tq = taskqueue_create(fp->tq_name, M_NOWAIT, 9193 taskqueue_thread_enqueue, 9194 &fp->tq); 9195 TIMEOUT_TASK_INIT(fp->tq, &fp->tx_timeout_task, 0, 9196 bxe_tx_mq_start_deferred, fp); 9197 taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */ 9198 "%s", fp->tq_name); 9199 } 9200 9201 /* setup interrupt handlers */ 9202 if (sc->interrupt_mode == INTR_MODE_MSIX) { 9203 BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n"); 9204 9205 /* 9206 * Setup the interrupt handler. Note that we pass the driver instance 9207 * to the interrupt handler for the slowpath. 9208 */ 9209 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9210 (INTR_TYPE_NET | INTR_MPSAFE), 9211 NULL, bxe_intr_sp, sc, 9212 &sc->intr[0].tag)) != 0) { 9213 BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc); 9214 goto bxe_interrupt_attach_exit; 9215 } 9216 9217 bus_describe_intr(sc->dev, sc->intr[0].resource, 9218 sc->intr[0].tag, "sp"); 9219 9220 /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */ 9221 9222 /* initialize the fastpath vectors (note the first was used for sp) */ 9223 for (i = 0; i < sc->num_queues; i++) { 9224 fp = &sc->fp[i]; 9225 BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1)); 9226 9227 /* 9228 * Setup the interrupt handler. Note that we pass the 9229 * fastpath context to the interrupt handler in this 9230 * case. 9231 */ 9232 if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource, 9233 (INTR_TYPE_NET | INTR_MPSAFE), 9234 NULL, bxe_intr_fp, fp, 9235 &sc->intr[i + 1].tag)) != 0) { 9236 BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n", 9237 (i + 1), rc); 9238 goto bxe_interrupt_attach_exit; 9239 } 9240 9241 bus_describe_intr(sc->dev, sc->intr[i + 1].resource, 9242 sc->intr[i + 1].tag, "fp%02d", i); 9243 9244 /* bind the fastpath instance to a cpu */ 9245 if (sc->num_queues > 1) { 9246 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i); 9247 } 9248 9249 fp->state = BXE_FP_STATE_IRQ; 9250 } 9251 } else if (sc->interrupt_mode == INTR_MODE_MSI) { 9252 BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n"); 9253 9254 /* 9255 * Setup the interrupt handler. Note that we pass the 9256 * driver instance to the interrupt handler which 9257 * will handle both the slowpath and fastpath. 9258 */ 9259 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9260 (INTR_TYPE_NET | INTR_MPSAFE), 9261 NULL, bxe_intr_legacy, sc, 9262 &sc->intr[0].tag)) != 0) { 9263 BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc); 9264 goto bxe_interrupt_attach_exit; 9265 } 9266 9267 } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */ 9268 BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n"); 9269 9270 /* 9271 * Setup the interrupt handler. Note that we pass the 9272 * driver instance to the interrupt handler which 9273 * will handle both the slowpath and fastpath. 9274 */ 9275 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9276 (INTR_TYPE_NET | INTR_MPSAFE), 9277 NULL, bxe_intr_legacy, sc, 9278 &sc->intr[0].tag)) != 0) { 9279 BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc); 9280 goto bxe_interrupt_attach_exit; 9281 } 9282 } 9283 9284 bxe_interrupt_attach_exit: 9285 9286 return (rc); 9287 } 9288 9289 static int bxe_init_hw_common_chip(struct bxe_softc *sc); 9290 static int bxe_init_hw_common(struct bxe_softc *sc); 9291 static int bxe_init_hw_port(struct bxe_softc *sc); 9292 static int bxe_init_hw_func(struct bxe_softc *sc); 9293 static void bxe_reset_common(struct bxe_softc *sc); 9294 static void bxe_reset_port(struct bxe_softc *sc); 9295 static void bxe_reset_func(struct bxe_softc *sc); 9296 static int bxe_gunzip_init(struct bxe_softc *sc); 9297 static void bxe_gunzip_end(struct bxe_softc *sc); 9298 static int bxe_init_firmware(struct bxe_softc *sc); 9299 static void bxe_release_firmware(struct bxe_softc *sc); 9300 9301 static struct 9302 ecore_func_sp_drv_ops bxe_func_sp_drv = { 9303 .init_hw_cmn_chip = bxe_init_hw_common_chip, 9304 .init_hw_cmn = bxe_init_hw_common, 9305 .init_hw_port = bxe_init_hw_port, 9306 .init_hw_func = bxe_init_hw_func, 9307 9308 .reset_hw_cmn = bxe_reset_common, 9309 .reset_hw_port = bxe_reset_port, 9310 .reset_hw_func = bxe_reset_func, 9311 9312 .gunzip_init = bxe_gunzip_init, 9313 .gunzip_end = bxe_gunzip_end, 9314 9315 .init_fw = bxe_init_firmware, 9316 .release_fw = bxe_release_firmware, 9317 }; 9318 9319 static void 9320 bxe_init_func_obj(struct bxe_softc *sc) 9321 { 9322 sc->dmae_ready = 0; 9323 9324 ecore_init_func_obj(sc, 9325 &sc->func_obj, 9326 BXE_SP(sc, func_rdata), 9327 BXE_SP_MAPPING(sc, func_rdata), 9328 BXE_SP(sc, func_afex_rdata), 9329 BXE_SP_MAPPING(sc, func_afex_rdata), 9330 &bxe_func_sp_drv); 9331 } 9332 9333 static int 9334 bxe_init_hw(struct bxe_softc *sc, 9335 uint32_t load_code) 9336 { 9337 struct ecore_func_state_params func_params = { NULL }; 9338 int rc; 9339 9340 /* prepare the parameters for function state transitions */ 9341 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); 9342 9343 func_params.f_obj = &sc->func_obj; 9344 func_params.cmd = ECORE_F_CMD_HW_INIT; 9345 9346 func_params.params.hw_init.load_phase = load_code; 9347 9348 /* 9349 * Via a plethora of function pointers, we will eventually reach 9350 * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func(). 9351 */ 9352 rc = ecore_func_state_change(sc, &func_params); 9353 9354 return (rc); 9355 } 9356 9357 static void 9358 bxe_fill(struct bxe_softc *sc, 9359 uint32_t addr, 9360 int fill, 9361 uint32_t len) 9362 { 9363 uint32_t i; 9364 9365 if (!(len % 4) && !(addr % 4)) { 9366 for (i = 0; i < len; i += 4) { 9367 REG_WR(sc, (addr + i), fill); 9368 } 9369 } else { 9370 for (i = 0; i < len; i++) { 9371 REG_WR8(sc, (addr + i), fill); 9372 } 9373 } 9374 } 9375 9376 /* writes FP SP data to FW - data_size in dwords */ 9377 static void 9378 bxe_wr_fp_sb_data(struct bxe_softc *sc, 9379 int fw_sb_id, 9380 uint32_t *sb_data_p, 9381 uint32_t data_size) 9382 { 9383 int index; 9384 9385 for (index = 0; index < data_size; index++) { 9386 REG_WR(sc, 9387 (BAR_CSTRORM_INTMEM + 9388 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) + 9389 (sizeof(uint32_t) * index)), 9390 *(sb_data_p + index)); 9391 } 9392 } 9393 9394 static void 9395 bxe_zero_fp_sb(struct bxe_softc *sc, 9396 int fw_sb_id) 9397 { 9398 struct hc_status_block_data_e2 sb_data_e2; 9399 struct hc_status_block_data_e1x sb_data_e1x; 9400 uint32_t *sb_data_p; 9401 uint32_t data_size = 0; 9402 9403 if (!CHIP_IS_E1x(sc)) { 9404 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 9405 sb_data_e2.common.state = SB_DISABLED; 9406 sb_data_e2.common.p_func.vf_valid = FALSE; 9407 sb_data_p = (uint32_t *)&sb_data_e2; 9408 data_size = (sizeof(struct hc_status_block_data_e2) / 9409 sizeof(uint32_t)); 9410 } else { 9411 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); 9412 sb_data_e1x.common.state = SB_DISABLED; 9413 sb_data_e1x.common.p_func.vf_valid = FALSE; 9414 sb_data_p = (uint32_t *)&sb_data_e1x; 9415 data_size = (sizeof(struct hc_status_block_data_e1x) / 9416 sizeof(uint32_t)); 9417 } 9418 9419 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); 9420 9421 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)), 9422 0, CSTORM_STATUS_BLOCK_SIZE); 9423 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)), 9424 0, CSTORM_SYNC_BLOCK_SIZE); 9425 } 9426 9427 static void 9428 bxe_wr_sp_sb_data(struct bxe_softc *sc, 9429 struct hc_sp_status_block_data *sp_sb_data) 9430 { 9431 int i; 9432 9433 for (i = 0; 9434 i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t)); 9435 i++) { 9436 REG_WR(sc, 9437 (BAR_CSTRORM_INTMEM + 9438 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) + 9439 (i * sizeof(uint32_t))), 9440 *((uint32_t *)sp_sb_data + i)); 9441 } 9442 } 9443 9444 static void 9445 bxe_zero_sp_sb(struct bxe_softc *sc) 9446 { 9447 struct hc_sp_status_block_data sp_sb_data; 9448 9449 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 9450 9451 sp_sb_data.state = SB_DISABLED; 9452 sp_sb_data.p_func.vf_valid = FALSE; 9453 9454 bxe_wr_sp_sb_data(sc, &sp_sb_data); 9455 9456 bxe_fill(sc, 9457 (BAR_CSTRORM_INTMEM + 9458 CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))), 9459 0, CSTORM_SP_STATUS_BLOCK_SIZE); 9460 bxe_fill(sc, 9461 (BAR_CSTRORM_INTMEM + 9462 CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))), 9463 0, CSTORM_SP_SYNC_BLOCK_SIZE); 9464 } 9465 9466 static void 9467 bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, 9468 int igu_sb_id, 9469 int igu_seg_id) 9470 { 9471 hc_sm->igu_sb_id = igu_sb_id; 9472 hc_sm->igu_seg_id = igu_seg_id; 9473 hc_sm->timer_value = 0xFF; 9474 hc_sm->time_to_expire = 0xFFFFFFFF; 9475 } 9476 9477 static void 9478 bxe_map_sb_state_machines(struct hc_index_data *index_data) 9479 { 9480 /* zero out state machine indices */ 9481 9482 /* rx indices */ 9483 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 9484 9485 /* tx indices */ 9486 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 9487 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID; 9488 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID; 9489 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID; 9490 9491 /* map indices */ 9492 9493 /* rx indices */ 9494 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |= 9495 (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9496 9497 /* tx indices */ 9498 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |= 9499 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9500 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |= 9501 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9502 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |= 9503 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9504 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |= 9505 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9506 } 9507 9508 static void 9509 bxe_init_sb(struct bxe_softc *sc, 9510 bus_addr_t busaddr, 9511 int vfid, 9512 uint8_t vf_valid, 9513 int fw_sb_id, 9514 int igu_sb_id) 9515 { 9516 struct hc_status_block_data_e2 sb_data_e2; 9517 struct hc_status_block_data_e1x sb_data_e1x; 9518 struct hc_status_block_sm *hc_sm_p; 9519 uint32_t *sb_data_p; 9520 int igu_seg_id; 9521 int data_size; 9522 9523 if (CHIP_INT_MODE_IS_BC(sc)) { 9524 igu_seg_id = HC_SEG_ACCESS_NORM; 9525 } else { 9526 igu_seg_id = IGU_SEG_ACCESS_NORM; 9527 } 9528 9529 bxe_zero_fp_sb(sc, fw_sb_id); 9530 9531 if (!CHIP_IS_E1x(sc)) { 9532 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 9533 sb_data_e2.common.state = SB_ENABLED; 9534 sb_data_e2.common.p_func.pf_id = SC_FUNC(sc); 9535 sb_data_e2.common.p_func.vf_id = vfid; 9536 sb_data_e2.common.p_func.vf_valid = vf_valid; 9537 sb_data_e2.common.p_func.vnic_id = SC_VN(sc); 9538 sb_data_e2.common.same_igu_sb_1b = TRUE; 9539 sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr); 9540 sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr); 9541 hc_sm_p = sb_data_e2.common.state_machine; 9542 sb_data_p = (uint32_t *)&sb_data_e2; 9543 data_size = (sizeof(struct hc_status_block_data_e2) / 9544 sizeof(uint32_t)); 9545 bxe_map_sb_state_machines(sb_data_e2.index_data); 9546 } else { 9547 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); 9548 sb_data_e1x.common.state = SB_ENABLED; 9549 sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc); 9550 sb_data_e1x.common.p_func.vf_id = 0xff; 9551 sb_data_e1x.common.p_func.vf_valid = FALSE; 9552 sb_data_e1x.common.p_func.vnic_id = SC_VN(sc); 9553 sb_data_e1x.common.same_igu_sb_1b = TRUE; 9554 sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr); 9555 sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr); 9556 hc_sm_p = sb_data_e1x.common.state_machine; 9557 sb_data_p = (uint32_t *)&sb_data_e1x; 9558 data_size = (sizeof(struct hc_status_block_data_e1x) / 9559 sizeof(uint32_t)); 9560 bxe_map_sb_state_machines(sb_data_e1x.index_data); 9561 } 9562 9563 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id); 9564 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id); 9565 9566 BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id); 9567 9568 /* write indices to HW - PCI guarantees endianity of regpairs */ 9569 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); 9570 } 9571 9572 static inline uint8_t 9573 bxe_fp_qzone_id(struct bxe_fastpath *fp) 9574 { 9575 if (CHIP_IS_E1x(fp->sc)) { 9576 return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H); 9577 } else { 9578 return (fp->cl_id); 9579 } 9580 } 9581 9582 static inline uint32_t 9583 bxe_rx_ustorm_prods_offset(struct bxe_softc *sc, 9584 struct bxe_fastpath *fp) 9585 { 9586 uint32_t offset = BAR_USTRORM_INTMEM; 9587 9588 if (!CHIP_IS_E1x(sc)) { 9589 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id); 9590 } else { 9591 offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id); 9592 } 9593 9594 return (offset); 9595 } 9596 9597 static void 9598 bxe_init_eth_fp(struct bxe_softc *sc, 9599 int idx) 9600 { 9601 struct bxe_fastpath *fp = &sc->fp[idx]; 9602 uint32_t cids[ECORE_MULTI_TX_COS] = { 0 }; 9603 unsigned long q_type = 0; 9604 int cos; 9605 9606 fp->sc = sc; 9607 fp->index = idx; 9608 9609 fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc)); 9610 fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc)); 9611 9612 fp->cl_id = (CHIP_IS_E1x(sc)) ? 9613 (SC_L_ID(sc) + idx) : 9614 /* want client ID same as IGU SB ID for non-E1 */ 9615 fp->igu_sb_id; 9616 fp->cl_qzone_id = bxe_fp_qzone_id(fp); 9617 9618 /* setup sb indices */ 9619 if (!CHIP_IS_E1x(sc)) { 9620 fp->sb_index_values = fp->status_block.e2_sb->sb.index_values; 9621 fp->sb_running_index = fp->status_block.e2_sb->sb.running_index; 9622 } else { 9623 fp->sb_index_values = fp->status_block.e1x_sb->sb.index_values; 9624 fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index; 9625 } 9626 9627 /* init shortcut */ 9628 fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp); 9629 9630 fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS]; 9631 9632 /* 9633 * XXX If multiple CoS is ever supported then each fastpath structure 9634 * will need to maintain tx producer/consumer/dma/etc values *per* CoS. 9635 */ 9636 for (cos = 0; cos < sc->max_cos; cos++) { 9637 cids[cos] = idx; 9638 } 9639 fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0]; 9640 9641 /* nothing more for a VF to do */ 9642 if (IS_VF(sc)) { 9643 return; 9644 } 9645 9646 bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE, 9647 fp->fw_sb_id, fp->igu_sb_id); 9648 9649 bxe_update_fp_sb_idx(fp); 9650 9651 /* Configure Queue State object */ 9652 bit_set(&q_type, ECORE_Q_TYPE_HAS_RX); 9653 bit_set(&q_type, ECORE_Q_TYPE_HAS_TX); 9654 9655 ecore_init_queue_obj(sc, 9656 &sc->sp_objs[idx].q_obj, 9657 fp->cl_id, 9658 cids, 9659 sc->max_cos, 9660 SC_FUNC(sc), 9661 BXE_SP(sc, q_rdata), 9662 BXE_SP_MAPPING(sc, q_rdata), 9663 q_type); 9664 9665 /* configure classification DBs */ 9666 ecore_init_mac_obj(sc, 9667 &sc->sp_objs[idx].mac_obj, 9668 fp->cl_id, 9669 idx, 9670 SC_FUNC(sc), 9671 BXE_SP(sc, mac_rdata), 9672 BXE_SP_MAPPING(sc, mac_rdata), 9673 ECORE_FILTER_MAC_PENDING, 9674 &sc->sp_state, 9675 ECORE_OBJ_TYPE_RX_TX, 9676 &sc->macs_pool); 9677 9678 BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n", 9679 idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id); 9680 } 9681 9682 static inline void 9683 bxe_update_rx_prod(struct bxe_softc *sc, 9684 struct bxe_fastpath *fp, 9685 uint16_t rx_bd_prod, 9686 uint16_t rx_cq_prod, 9687 uint16_t rx_sge_prod) 9688 { 9689 struct ustorm_eth_rx_producers rx_prods = { 0 }; 9690 uint32_t i; 9691 9692 /* update producers */ 9693 rx_prods.bd_prod = rx_bd_prod; 9694 rx_prods.cqe_prod = rx_cq_prod; 9695 rx_prods.sge_prod = rx_sge_prod; 9696 9697 /* 9698 * Make sure that the BD and SGE data is updated before updating the 9699 * producers since FW might read the BD/SGE right after the producer 9700 * is updated. 9701 * This is only applicable for weak-ordered memory model archs such 9702 * as IA-64. The following barrier is also mandatory since FW will 9703 * assumes BDs must have buffers. 9704 */ 9705 wmb(); 9706 9707 for (i = 0; i < (sizeof(rx_prods) / 4); i++) { 9708 REG_WR(sc, 9709 (fp->ustorm_rx_prods_offset + (i * 4)), 9710 ((uint32_t *)&rx_prods)[i]); 9711 } 9712 9713 wmb(); /* keep prod updates ordered */ 9714 9715 BLOGD(sc, DBG_RX, 9716 "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n", 9717 fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod); 9718 } 9719 9720 static void 9721 bxe_init_rx_rings(struct bxe_softc *sc) 9722 { 9723 struct bxe_fastpath *fp; 9724 int i; 9725 9726 for (i = 0; i < sc->num_queues; i++) { 9727 fp = &sc->fp[i]; 9728 9729 fp->rx_bd_cons = 0; 9730 9731 /* 9732 * Activate the BD ring... 9733 * Warning, this will generate an interrupt (to the TSTORM) 9734 * so this can only be done after the chip is initialized 9735 */ 9736 bxe_update_rx_prod(sc, fp, 9737 fp->rx_bd_prod, 9738 fp->rx_cq_prod, 9739 fp->rx_sge_prod); 9740 9741 if (i != 0) { 9742 continue; 9743 } 9744 9745 if (CHIP_IS_E1(sc)) { 9746 REG_WR(sc, 9747 (BAR_USTRORM_INTMEM + 9748 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))), 9749 U64_LO(fp->rcq_dma.paddr)); 9750 REG_WR(sc, 9751 (BAR_USTRORM_INTMEM + 9752 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4), 9753 U64_HI(fp->rcq_dma.paddr)); 9754 } 9755 } 9756 } 9757 9758 static void 9759 bxe_init_tx_ring_one(struct bxe_fastpath *fp) 9760 { 9761 SET_FLAG(fp->tx_db.data.header.data, DOORBELL_HDR_T_DB_TYPE, 1); 9762 fp->tx_db.data.zero_fill1 = 0; 9763 fp->tx_db.data.prod = 0; 9764 9765 fp->tx_pkt_prod = 0; 9766 fp->tx_pkt_cons = 0; 9767 fp->tx_bd_prod = 0; 9768 fp->tx_bd_cons = 0; 9769 fp->eth_q_stats.tx_pkts = 0; 9770 } 9771 9772 static inline void 9773 bxe_init_tx_rings(struct bxe_softc *sc) 9774 { 9775 int i; 9776 9777 for (i = 0; i < sc->num_queues; i++) { 9778 bxe_init_tx_ring_one(&sc->fp[i]); 9779 } 9780 } 9781 9782 static void 9783 bxe_init_def_sb(struct bxe_softc *sc) 9784 { 9785 struct host_sp_status_block *def_sb = sc->def_sb; 9786 bus_addr_t mapping = sc->def_sb_dma.paddr; 9787 int igu_sp_sb_index; 9788 int igu_seg_id; 9789 int port = SC_PORT(sc); 9790 int func = SC_FUNC(sc); 9791 int reg_offset, reg_offset_en5; 9792 uint64_t section; 9793 int index, sindex; 9794 struct hc_sp_status_block_data sp_sb_data; 9795 9796 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 9797 9798 if (CHIP_INT_MODE_IS_BC(sc)) { 9799 igu_sp_sb_index = DEF_SB_IGU_ID; 9800 igu_seg_id = HC_SEG_ACCESS_DEF; 9801 } else { 9802 igu_sp_sb_index = sc->igu_dsb_id; 9803 igu_seg_id = IGU_SEG_ACCESS_DEF; 9804 } 9805 9806 /* attentions */ 9807 section = ((uint64_t)mapping + 9808 offsetof(struct host_sp_status_block, atten_status_block)); 9809 def_sb->atten_status_block.status_block_id = igu_sp_sb_index; 9810 sc->attn_state = 0; 9811 9812 reg_offset = (port) ? 9813 MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 9814 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; 9815 reg_offset_en5 = (port) ? 9816 MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 : 9817 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0; 9818 9819 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 9820 /* take care of sig[0]..sig[4] */ 9821 for (sindex = 0; sindex < 4; sindex++) { 9822 sc->attn_group[index].sig[sindex] = 9823 REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index))); 9824 } 9825 9826 if (!CHIP_IS_E1x(sc)) { 9827 /* 9828 * enable5 is separate from the rest of the registers, 9829 * and the address skip is 4 and not 16 between the 9830 * different groups 9831 */ 9832 sc->attn_group[index].sig[4] = 9833 REG_RD(sc, (reg_offset_en5 + (0x4 * index))); 9834 } else { 9835 sc->attn_group[index].sig[4] = 0; 9836 } 9837 } 9838 9839 if (sc->devinfo.int_block == INT_BLOCK_HC) { 9840 reg_offset = (port) ? 9841 HC_REG_ATTN_MSG1_ADDR_L : 9842 HC_REG_ATTN_MSG0_ADDR_L; 9843 REG_WR(sc, reg_offset, U64_LO(section)); 9844 REG_WR(sc, (reg_offset + 4), U64_HI(section)); 9845 } else if (!CHIP_IS_E1x(sc)) { 9846 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section)); 9847 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section)); 9848 } 9849 9850 section = ((uint64_t)mapping + 9851 offsetof(struct host_sp_status_block, sp_sb)); 9852 9853 bxe_zero_sp_sb(sc); 9854 9855 /* PCI guarantees endianity of regpair */ 9856 sp_sb_data.state = SB_ENABLED; 9857 sp_sb_data.host_sb_addr.lo = U64_LO(section); 9858 sp_sb_data.host_sb_addr.hi = U64_HI(section); 9859 sp_sb_data.igu_sb_id = igu_sp_sb_index; 9860 sp_sb_data.igu_seg_id = igu_seg_id; 9861 sp_sb_data.p_func.pf_id = func; 9862 sp_sb_data.p_func.vnic_id = SC_VN(sc); 9863 sp_sb_data.p_func.vf_id = 0xff; 9864 9865 bxe_wr_sp_sb_data(sc, &sp_sb_data); 9866 9867 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 9868 } 9869 9870 static void 9871 bxe_init_sp_ring(struct bxe_softc *sc) 9872 { 9873 atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING); 9874 sc->spq_prod_idx = 0; 9875 sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS]; 9876 sc->spq_prod_bd = sc->spq; 9877 sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT); 9878 } 9879 9880 static void 9881 bxe_init_eq_ring(struct bxe_softc *sc) 9882 { 9883 union event_ring_elem *elem; 9884 int i; 9885 9886 for (i = 1; i <= NUM_EQ_PAGES; i++) { 9887 elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1]; 9888 9889 elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr + 9890 BCM_PAGE_SIZE * 9891 (i % NUM_EQ_PAGES))); 9892 elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr + 9893 BCM_PAGE_SIZE * 9894 (i % NUM_EQ_PAGES))); 9895 } 9896 9897 sc->eq_cons = 0; 9898 sc->eq_prod = NUM_EQ_DESC; 9899 sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS]; 9900 9901 atomic_store_rel_long(&sc->eq_spq_left, 9902 (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING), 9903 NUM_EQ_DESC) - 1)); 9904 } 9905 9906 static void 9907 bxe_init_internal_common(struct bxe_softc *sc) 9908 { 9909 int i; 9910 9911 /* 9912 * Zero this manually as its initialization is currently missing 9913 * in the initTool. 9914 */ 9915 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) { 9916 REG_WR(sc, 9917 (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)), 9918 0); 9919 } 9920 9921 if (!CHIP_IS_E1x(sc)) { 9922 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET), 9923 CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE); 9924 } 9925 } 9926 9927 static void 9928 bxe_init_internal(struct bxe_softc *sc, 9929 uint32_t load_code) 9930 { 9931 switch (load_code) { 9932 case FW_MSG_CODE_DRV_LOAD_COMMON: 9933 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: 9934 bxe_init_internal_common(sc); 9935 /* no break */ 9936 9937 case FW_MSG_CODE_DRV_LOAD_PORT: 9938 /* nothing to do */ 9939 /* no break */ 9940 9941 case FW_MSG_CODE_DRV_LOAD_FUNCTION: 9942 /* internal memory per function is initialized inside bxe_pf_init */ 9943 break; 9944 9945 default: 9946 BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code); 9947 break; 9948 } 9949 } 9950 9951 static void 9952 storm_memset_func_cfg(struct bxe_softc *sc, 9953 struct tstorm_eth_function_common_config *tcfg, 9954 uint16_t abs_fid) 9955 { 9956 uint32_t addr; 9957 size_t size; 9958 9959 addr = (BAR_TSTRORM_INTMEM + 9960 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid)); 9961 size = sizeof(struct tstorm_eth_function_common_config); 9962 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg); 9963 } 9964 9965 static void 9966 bxe_func_init(struct bxe_softc *sc, 9967 struct bxe_func_init_params *p) 9968 { 9969 struct tstorm_eth_function_common_config tcfg = { 0 }; 9970 9971 if (CHIP_IS_E1x(sc)) { 9972 storm_memset_func_cfg(sc, &tcfg, p->func_id); 9973 } 9974 9975 /* Enable the function in the FW */ 9976 storm_memset_vf_to_pf(sc, p->func_id, p->pf_id); 9977 storm_memset_func_en(sc, p->func_id, 1); 9978 9979 /* spq */ 9980 if (p->func_flgs & FUNC_FLG_SPQ) { 9981 storm_memset_spq_addr(sc, p->spq_map, p->func_id); 9982 REG_WR(sc, 9983 (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)), 9984 p->spq_prod); 9985 } 9986 } 9987 9988 /* 9989 * Calculates the sum of vn_min_rates. 9990 * It's needed for further normalizing of the min_rates. 9991 * Returns: 9992 * sum of vn_min_rates. 9993 * or 9994 * 0 - if all the min_rates are 0. 9995 * In the later case fainess algorithm should be deactivated. 9996 * If all min rates are not zero then those that are zeroes will be set to 1. 9997 */ 9998 static void 9999 bxe_calc_vn_min(struct bxe_softc *sc, 10000 struct cmng_init_input *input) 10001 { 10002 uint32_t vn_cfg; 10003 uint32_t vn_min_rate; 10004 int all_zero = 1; 10005 int vn; 10006 10007 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10008 vn_cfg = sc->devinfo.mf_info.mf_config[vn]; 10009 vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >> 10010 FUNC_MF_CFG_MIN_BW_SHIFT) * 100); 10011 10012 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { 10013 /* skip hidden VNs */ 10014 vn_min_rate = 0; 10015 } else if (!vn_min_rate) { 10016 /* If min rate is zero - set it to 100 */ 10017 vn_min_rate = DEF_MIN_RATE; 10018 } else { 10019 all_zero = 0; 10020 } 10021 10022 input->vnic_min_rate[vn] = vn_min_rate; 10023 } 10024 10025 /* if ETS or all min rates are zeros - disable fairness */ 10026 if (BXE_IS_ETS_ENABLED(sc)) { 10027 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10028 BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n"); 10029 } else if (all_zero) { 10030 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10031 BLOGD(sc, DBG_LOAD, 10032 "Fariness disabled (all MIN values are zeroes)\n"); 10033 } else { 10034 input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10035 } 10036 } 10037 10038 static inline uint16_t 10039 bxe_extract_max_cfg(struct bxe_softc *sc, 10040 uint32_t mf_cfg) 10041 { 10042 uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >> 10043 FUNC_MF_CFG_MAX_BW_SHIFT); 10044 10045 if (!max_cfg) { 10046 BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n"); 10047 max_cfg = 100; 10048 } 10049 10050 return (max_cfg); 10051 } 10052 10053 static void 10054 bxe_calc_vn_max(struct bxe_softc *sc, 10055 int vn, 10056 struct cmng_init_input *input) 10057 { 10058 uint16_t vn_max_rate; 10059 uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn]; 10060 uint32_t max_cfg; 10061 10062 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { 10063 vn_max_rate = 0; 10064 } else { 10065 max_cfg = bxe_extract_max_cfg(sc, vn_cfg); 10066 10067 if (IS_MF_SI(sc)) { 10068 /* max_cfg in percents of linkspeed */ 10069 vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100); 10070 } else { /* SD modes */ 10071 /* max_cfg is absolute in 100Mb units */ 10072 vn_max_rate = (max_cfg * 100); 10073 } 10074 } 10075 10076 BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate); 10077 10078 input->vnic_max_rate[vn] = vn_max_rate; 10079 } 10080 10081 static void 10082 bxe_cmng_fns_init(struct bxe_softc *sc, 10083 uint8_t read_cfg, 10084 uint8_t cmng_type) 10085 { 10086 struct cmng_init_input input; 10087 int vn; 10088 10089 memset(&input, 0, sizeof(struct cmng_init_input)); 10090 10091 input.port_rate = sc->link_vars.line_speed; 10092 10093 if (cmng_type == CMNG_FNS_MINMAX) { 10094 /* read mf conf from shmem */ 10095 if (read_cfg) { 10096 bxe_read_mf_cfg(sc); 10097 } 10098 10099 /* get VN min rate and enable fairness if not 0 */ 10100 bxe_calc_vn_min(sc, &input); 10101 10102 /* get VN max rate */ 10103 if (sc->port.pmf) { 10104 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10105 bxe_calc_vn_max(sc, vn, &input); 10106 } 10107 } 10108 10109 /* always enable rate shaping and fairness */ 10110 input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN; 10111 10112 ecore_init_cmng(&input, &sc->cmng); 10113 return; 10114 } 10115 10116 /* rate shaping and fairness are disabled */ 10117 BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n"); 10118 } 10119 10120 static int 10121 bxe_get_cmng_fns_mode(struct bxe_softc *sc) 10122 { 10123 if (CHIP_REV_IS_SLOW(sc)) { 10124 return (CMNG_FNS_NONE); 10125 } 10126 10127 if (IS_MF(sc)) { 10128 return (CMNG_FNS_MINMAX); 10129 } 10130 10131 return (CMNG_FNS_NONE); 10132 } 10133 10134 static void 10135 storm_memset_cmng(struct bxe_softc *sc, 10136 struct cmng_init *cmng, 10137 uint8_t port) 10138 { 10139 int vn; 10140 int func; 10141 uint32_t addr; 10142 size_t size; 10143 10144 addr = (BAR_XSTRORM_INTMEM + 10145 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port)); 10146 size = sizeof(struct cmng_struct_per_port); 10147 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port); 10148 10149 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10150 func = func_by_vn(sc, vn); 10151 10152 addr = (BAR_XSTRORM_INTMEM + 10153 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func)); 10154 size = sizeof(struct rate_shaping_vars_per_vn); 10155 ecore_storm_memset_struct(sc, addr, size, 10156 (uint32_t *)&cmng->vnic.vnic_max_rate[vn]); 10157 10158 addr = (BAR_XSTRORM_INTMEM + 10159 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func)); 10160 size = sizeof(struct fairness_vars_per_vn); 10161 ecore_storm_memset_struct(sc, addr, size, 10162 (uint32_t *)&cmng->vnic.vnic_min_rate[vn]); 10163 } 10164 } 10165 10166 static void 10167 bxe_pf_init(struct bxe_softc *sc) 10168 { 10169 struct bxe_func_init_params func_init = { 0 }; 10170 struct event_ring_data eq_data = { { 0 } }; 10171 uint16_t flags; 10172 10173 if (!CHIP_IS_E1x(sc)) { 10174 /* reset IGU PF statistics: MSIX + ATTN */ 10175 /* PF */ 10176 REG_WR(sc, 10177 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 10178 (BXE_IGU_STAS_MSG_VF_CNT * 4) + 10179 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 10180 0); 10181 /* ATTN */ 10182 REG_WR(sc, 10183 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 10184 (BXE_IGU_STAS_MSG_VF_CNT * 4) + 10185 (BXE_IGU_STAS_MSG_PF_CNT * 4) + 10186 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 10187 0); 10188 } 10189 10190 /* function setup flags */ 10191 flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ); 10192 10193 /* 10194 * This flag is relevant for E1x only. 10195 * E2 doesn't have a TPA configuration in a function level. 10196 */ 10197 flags |= (if_getcapenable(sc->ifp) & IFCAP_LRO) ? FUNC_FLG_TPA : 0; 10198 10199 func_init.func_flgs = flags; 10200 func_init.pf_id = SC_FUNC(sc); 10201 func_init.func_id = SC_FUNC(sc); 10202 func_init.spq_map = sc->spq_dma.paddr; 10203 func_init.spq_prod = sc->spq_prod_idx; 10204 10205 bxe_func_init(sc, &func_init); 10206 10207 memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port)); 10208 10209 /* 10210 * Congestion management values depend on the link rate. 10211 * There is no active link so initial link rate is set to 10Gbps. 10212 * When the link comes up the congestion management values are 10213 * re-calculated according to the actual link rate. 10214 */ 10215 sc->link_vars.line_speed = SPEED_10000; 10216 bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc)); 10217 10218 /* Only the PMF sets the HW */ 10219 if (sc->port.pmf) { 10220 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 10221 } 10222 10223 /* init Event Queue - PCI bus guarantees correct endainity */ 10224 eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr); 10225 eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr); 10226 eq_data.producer = sc->eq_prod; 10227 eq_data.index_id = HC_SP_INDEX_EQ_CONS; 10228 eq_data.sb_id = DEF_SB_ID; 10229 storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc)); 10230 } 10231 10232 static void 10233 bxe_hc_int_enable(struct bxe_softc *sc) 10234 { 10235 int port = SC_PORT(sc); 10236 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 10237 uint32_t val = REG_RD(sc, addr); 10238 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; 10239 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && 10240 (sc->intr_count == 1)) ? TRUE : FALSE; 10241 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; 10242 10243 if (msix) { 10244 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10245 HC_CONFIG_0_REG_INT_LINE_EN_0); 10246 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10247 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10248 if (single_msix) { 10249 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0; 10250 } 10251 } else if (msi) { 10252 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0; 10253 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10254 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10255 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10256 } else { 10257 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10258 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10259 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10260 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10261 10262 if (!CHIP_IS_E1(sc)) { 10263 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", 10264 val, port, addr); 10265 10266 REG_WR(sc, addr, val); 10267 10268 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0; 10269 } 10270 } 10271 10272 if (CHIP_IS_E1(sc)) { 10273 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF); 10274 } 10275 10276 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n", 10277 val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); 10278 10279 REG_WR(sc, addr, val); 10280 10281 /* ensure that HC_CONFIG is written before leading/trailing edge config */ 10282 mb(); 10283 10284 if (!CHIP_IS_E1(sc)) { 10285 /* init leading/trailing edge */ 10286 if (IS_MF(sc)) { 10287 val = (0xee0f | (1 << (SC_VN(sc) + 4))); 10288 if (sc->port.pmf) { 10289 /* enable nig and gpio3 attention */ 10290 val |= 0x1100; 10291 } 10292 } else { 10293 val = 0xffff; 10294 } 10295 10296 REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val); 10297 REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val); 10298 } 10299 10300 /* make sure that interrupts are indeed enabled from here on */ 10301 mb(); 10302 } 10303 10304 static void 10305 bxe_igu_int_enable(struct bxe_softc *sc) 10306 { 10307 uint32_t val; 10308 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; 10309 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && 10310 (sc->intr_count == 1)) ? TRUE : FALSE; 10311 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; 10312 10313 val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 10314 10315 if (msix) { 10316 val &= ~(IGU_PF_CONF_INT_LINE_EN | 10317 IGU_PF_CONF_SINGLE_ISR_EN); 10318 val |= (IGU_PF_CONF_MSI_MSIX_EN | 10319 IGU_PF_CONF_ATTN_BIT_EN); 10320 if (single_msix) { 10321 val |= IGU_PF_CONF_SINGLE_ISR_EN; 10322 } 10323 } else if (msi) { 10324 val &= ~IGU_PF_CONF_INT_LINE_EN; 10325 val |= (IGU_PF_CONF_MSI_MSIX_EN | 10326 IGU_PF_CONF_ATTN_BIT_EN | 10327 IGU_PF_CONF_SINGLE_ISR_EN); 10328 } else { 10329 val &= ~IGU_PF_CONF_MSI_MSIX_EN; 10330 val |= (IGU_PF_CONF_INT_LINE_EN | 10331 IGU_PF_CONF_ATTN_BIT_EN | 10332 IGU_PF_CONF_SINGLE_ISR_EN); 10333 } 10334 10335 /* clean previous status - need to configure igu prior to ack*/ 10336 if ((!msix) || single_msix) { 10337 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10338 bxe_ack_int(sc); 10339 } 10340 10341 val |= IGU_PF_CONF_FUNC_EN; 10342 10343 BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n", 10344 val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); 10345 10346 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10347 10348 mb(); 10349 10350 /* init leading/trailing edge */ 10351 if (IS_MF(sc)) { 10352 val = (0xee0f | (1 << (SC_VN(sc) + 4))); 10353 if (sc->port.pmf) { 10354 /* enable nig and gpio3 attention */ 10355 val |= 0x1100; 10356 } 10357 } else { 10358 val = 0xffff; 10359 } 10360 10361 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); 10362 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); 10363 10364 /* make sure that interrupts are indeed enabled from here on */ 10365 mb(); 10366 } 10367 10368 static void 10369 bxe_int_enable(struct bxe_softc *sc) 10370 { 10371 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10372 bxe_hc_int_enable(sc); 10373 } else { 10374 bxe_igu_int_enable(sc); 10375 } 10376 } 10377 10378 static void 10379 bxe_hc_int_disable(struct bxe_softc *sc) 10380 { 10381 int port = SC_PORT(sc); 10382 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 10383 uint32_t val = REG_RD(sc, addr); 10384 10385 /* 10386 * In E1 we must use only PCI configuration space to disable MSI/MSIX 10387 * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC 10388 * block 10389 */ 10390 if (CHIP_IS_E1(sc)) { 10391 /* 10392 * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register 10393 * to prevent from HC sending interrupts after we exit the function 10394 */ 10395 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0); 10396 10397 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10398 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10399 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10400 } else { 10401 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10402 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10403 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10404 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10405 } 10406 10407 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr); 10408 10409 /* flush all outstanding writes */ 10410 mb(); 10411 10412 REG_WR(sc, addr, val); 10413 if (REG_RD(sc, addr) != val) { 10414 BLOGE(sc, "proper val not read from HC IGU!\n"); 10415 } 10416 } 10417 10418 static void 10419 bxe_igu_int_disable(struct bxe_softc *sc) 10420 { 10421 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 10422 10423 val &= ~(IGU_PF_CONF_MSI_MSIX_EN | 10424 IGU_PF_CONF_INT_LINE_EN | 10425 IGU_PF_CONF_ATTN_BIT_EN); 10426 10427 BLOGD(sc, DBG_INTR, "write %x to IGU\n", val); 10428 10429 /* flush all outstanding writes */ 10430 mb(); 10431 10432 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10433 if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) { 10434 BLOGE(sc, "proper val not read from IGU!\n"); 10435 } 10436 } 10437 10438 static void 10439 bxe_int_disable(struct bxe_softc *sc) 10440 { 10441 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10442 bxe_hc_int_disable(sc); 10443 } else { 10444 bxe_igu_int_disable(sc); 10445 } 10446 } 10447 10448 static void 10449 bxe_nic_init(struct bxe_softc *sc, 10450 int load_code) 10451 { 10452 int i; 10453 10454 for (i = 0; i < sc->num_queues; i++) { 10455 bxe_init_eth_fp(sc, i); 10456 } 10457 10458 rmb(); /* ensure status block indices were read */ 10459 10460 bxe_init_rx_rings(sc); 10461 bxe_init_tx_rings(sc); 10462 10463 if (IS_VF(sc)) { 10464 return; 10465 } 10466 10467 /* initialize MOD_ABS interrupts */ 10468 elink_init_mod_abs_int(sc, &sc->link_vars, 10469 sc->devinfo.chip_id, 10470 sc->devinfo.shmem_base, 10471 sc->devinfo.shmem2_base, 10472 SC_PORT(sc)); 10473 10474 bxe_init_def_sb(sc); 10475 bxe_update_dsb_idx(sc); 10476 bxe_init_sp_ring(sc); 10477 bxe_init_eq_ring(sc); 10478 bxe_init_internal(sc, load_code); 10479 bxe_pf_init(sc); 10480 bxe_stats_init(sc); 10481 10482 /* flush all before enabling interrupts */ 10483 mb(); 10484 10485 bxe_int_enable(sc); 10486 10487 /* check for SPIO5 */ 10488 bxe_attn_int_deasserted0(sc, 10489 REG_RD(sc, 10490 (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + 10491 SC_PORT(sc)*4)) & 10492 AEU_INPUTS_ATTN_BITS_SPIO5); 10493 } 10494 10495 static inline void 10496 bxe_init_objs(struct bxe_softc *sc) 10497 { 10498 /* mcast rules must be added to tx if tx switching is enabled */ 10499 ecore_obj_type o_type = 10500 (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX : 10501 ECORE_OBJ_TYPE_RX; 10502 10503 /* RX_MODE controlling object */ 10504 ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj); 10505 10506 /* multicast configuration controlling object */ 10507 ecore_init_mcast_obj(sc, 10508 &sc->mcast_obj, 10509 sc->fp[0].cl_id, 10510 sc->fp[0].index, 10511 SC_FUNC(sc), 10512 SC_FUNC(sc), 10513 BXE_SP(sc, mcast_rdata), 10514 BXE_SP_MAPPING(sc, mcast_rdata), 10515 ECORE_FILTER_MCAST_PENDING, 10516 &sc->sp_state, 10517 o_type); 10518 10519 /* Setup CAM credit pools */ 10520 ecore_init_mac_credit_pool(sc, 10521 &sc->macs_pool, 10522 SC_FUNC(sc), 10523 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : 10524 VNICS_PER_PATH(sc)); 10525 10526 ecore_init_vlan_credit_pool(sc, 10527 &sc->vlans_pool, 10528 SC_ABS_FUNC(sc) >> 1, 10529 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : 10530 VNICS_PER_PATH(sc)); 10531 10532 /* RSS configuration object */ 10533 ecore_init_rss_config_obj(sc, 10534 &sc->rss_conf_obj, 10535 sc->fp[0].cl_id, 10536 sc->fp[0].index, 10537 SC_FUNC(sc), 10538 SC_FUNC(sc), 10539 BXE_SP(sc, rss_rdata), 10540 BXE_SP_MAPPING(sc, rss_rdata), 10541 ECORE_FILTER_RSS_CONF_PENDING, 10542 &sc->sp_state, ECORE_OBJ_TYPE_RX); 10543 } 10544 10545 /* 10546 * Initialize the function. This must be called before sending CLIENT_SETUP 10547 * for the first client. 10548 */ 10549 static inline int 10550 bxe_func_start(struct bxe_softc *sc) 10551 { 10552 struct ecore_func_state_params func_params = { NULL }; 10553 struct ecore_func_start_params *start_params = &func_params.params.start; 10554 10555 /* Prepare parameters for function state transitions */ 10556 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); 10557 10558 func_params.f_obj = &sc->func_obj; 10559 func_params.cmd = ECORE_F_CMD_START; 10560 10561 /* Function parameters */ 10562 start_params->mf_mode = sc->devinfo.mf_info.mf_mode; 10563 start_params->sd_vlan_tag = OVLAN(sc); 10564 10565 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) { 10566 start_params->network_cos_mode = STATIC_COS; 10567 } else { /* CHIP_IS_E1X */ 10568 start_params->network_cos_mode = FW_WRR; 10569 } 10570 10571 //start_params->gre_tunnel_mode = 0; 10572 //start_params->gre_tunnel_rss = 0; 10573 10574 return (ecore_func_state_change(sc, &func_params)); 10575 } 10576 10577 static int 10578 bxe_set_power_state(struct bxe_softc *sc, 10579 uint8_t state) 10580 { 10581 uint16_t pmcsr; 10582 10583 /* If there is no power capability, silently succeed */ 10584 if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) { 10585 BLOGW(sc, "No power capability\n"); 10586 return (0); 10587 } 10588 10589 pmcsr = pci_read_config(sc->dev, 10590 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10591 2); 10592 10593 switch (state) { 10594 case PCI_PM_D0: 10595 pci_write_config(sc->dev, 10596 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10597 ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2); 10598 10599 if (pmcsr & PCIM_PSTAT_DMASK) { 10600 /* delay required during transition out of D3hot */ 10601 DELAY(20000); 10602 } 10603 10604 break; 10605 10606 case PCI_PM_D3hot: 10607 /* XXX if there are other clients above don't shut down the power */ 10608 10609 /* don't shut down the power for emulation and FPGA */ 10610 if (CHIP_REV_IS_SLOW(sc)) { 10611 return (0); 10612 } 10613 10614 pmcsr &= ~PCIM_PSTAT_DMASK; 10615 pmcsr |= PCIM_PSTAT_D3; 10616 10617 if (sc->wol) { 10618 pmcsr |= PCIM_PSTAT_PMEENABLE; 10619 } 10620 10621 pci_write_config(sc->dev, 10622 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10623 pmcsr, 4); 10624 10625 /* 10626 * No more memory access after this point until device is brought back 10627 * to D0 state. 10628 */ 10629 break; 10630 10631 default: 10632 BLOGE(sc, "Can't support PCI power state = 0x%x pmcsr 0x%x\n", 10633 state, pmcsr); 10634 return (-1); 10635 } 10636 10637 return (0); 10638 } 10639 10640 10641 /* return true if succeeded to acquire the lock */ 10642 static uint8_t 10643 bxe_trylock_hw_lock(struct bxe_softc *sc, 10644 uint32_t resource) 10645 { 10646 uint32_t lock_status; 10647 uint32_t resource_bit = (1 << resource); 10648 int func = SC_FUNC(sc); 10649 uint32_t hw_lock_control_reg; 10650 10651 BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource); 10652 10653 /* Validating that the resource is within range */ 10654 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 10655 BLOGD(sc, DBG_LOAD, 10656 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 10657 resource, HW_LOCK_MAX_RESOURCE_VALUE); 10658 return (FALSE); 10659 } 10660 10661 if (func <= 5) { 10662 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 10663 } else { 10664 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 10665 } 10666 10667 /* try to acquire the lock */ 10668 REG_WR(sc, hw_lock_control_reg + 4, resource_bit); 10669 lock_status = REG_RD(sc, hw_lock_control_reg); 10670 if (lock_status & resource_bit) { 10671 return (TRUE); 10672 } 10673 10674 BLOGE(sc, "Failed to get a resource lock 0x%x func %d " 10675 "lock_status 0x%x resource_bit 0x%x\n", resource, func, 10676 lock_status, resource_bit); 10677 10678 return (FALSE); 10679 } 10680 10681 /* 10682 * Get the recovery leader resource id according to the engine this function 10683 * belongs to. Currently only only 2 engines is supported. 10684 */ 10685 static int 10686 bxe_get_leader_lock_resource(struct bxe_softc *sc) 10687 { 10688 if (SC_PATH(sc)) { 10689 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1); 10690 } else { 10691 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0); 10692 } 10693 } 10694 10695 /* try to acquire a leader lock for current engine */ 10696 static uint8_t 10697 bxe_trylock_leader_lock(struct bxe_softc *sc) 10698 { 10699 return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc))); 10700 } 10701 10702 static int 10703 bxe_release_leader_lock(struct bxe_softc *sc) 10704 { 10705 return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc))); 10706 } 10707 10708 /* close gates #2, #3 and #4 */ 10709 static void 10710 bxe_set_234_gates(struct bxe_softc *sc, 10711 uint8_t close) 10712 { 10713 uint32_t val; 10714 10715 /* gates #2 and #4a are closed/opened for "not E1" only */ 10716 if (!CHIP_IS_E1(sc)) { 10717 /* #4 */ 10718 REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close); 10719 /* #2 */ 10720 REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close); 10721 } 10722 10723 /* #3 */ 10724 if (CHIP_IS_E1x(sc)) { 10725 /* prevent interrupts from HC on both ports */ 10726 val = REG_RD(sc, HC_REG_CONFIG_1); 10727 REG_WR(sc, HC_REG_CONFIG_1, 10728 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) : 10729 (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1)); 10730 10731 val = REG_RD(sc, HC_REG_CONFIG_0); 10732 REG_WR(sc, HC_REG_CONFIG_0, 10733 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) : 10734 (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0)); 10735 } else { 10736 /* Prevent incoming interrupts in IGU */ 10737 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); 10738 10739 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, 10740 (!close) ? 10741 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) : 10742 (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE)); 10743 } 10744 10745 BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n", 10746 close ? "closing" : "opening"); 10747 10748 wmb(); 10749 } 10750 10751 /* poll for pending writes bit, it should get cleared in no more than 1s */ 10752 static int 10753 bxe_er_poll_igu_vq(struct bxe_softc *sc) 10754 { 10755 uint32_t cnt = 1000; 10756 uint32_t pend_bits = 0; 10757 10758 do { 10759 pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS); 10760 10761 if (pend_bits == 0) { 10762 break; 10763 } 10764 10765 DELAY(1000); 10766 } while (--cnt > 0); 10767 10768 if (cnt == 0) { 10769 BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits); 10770 return (-1); 10771 } 10772 10773 return (0); 10774 } 10775 10776 #define SHARED_MF_CLP_MAGIC 0x80000000 /* 'magic' bit */ 10777 10778 static void 10779 bxe_clp_reset_prep(struct bxe_softc *sc, 10780 uint32_t *magic_val) 10781 { 10782 /* Do some magic... */ 10783 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); 10784 *magic_val = val & SHARED_MF_CLP_MAGIC; 10785 MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC); 10786 } 10787 10788 /* restore the value of the 'magic' bit */ 10789 static void 10790 bxe_clp_reset_done(struct bxe_softc *sc, 10791 uint32_t magic_val) 10792 { 10793 /* Restore the 'magic' bit value... */ 10794 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); 10795 MFCFG_WR(sc, shared_mf_config.clp_mb, 10796 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val); 10797 } 10798 10799 /* prepare for MCP reset, takes care of CLP configurations */ 10800 static void 10801 bxe_reset_mcp_prep(struct bxe_softc *sc, 10802 uint32_t *magic_val) 10803 { 10804 uint32_t shmem; 10805 uint32_t validity_offset; 10806 10807 /* set `magic' bit in order to save MF config */ 10808 if (!CHIP_IS_E1(sc)) { 10809 bxe_clp_reset_prep(sc, magic_val); 10810 } 10811 10812 /* get shmem offset */ 10813 shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 10814 validity_offset = 10815 offsetof(struct shmem_region, validity_map[SC_PORT(sc)]); 10816 10817 /* Clear validity map flags */ 10818 if (shmem > 0) { 10819 REG_WR(sc, shmem + validity_offset, 0); 10820 } 10821 } 10822 10823 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */ 10824 #define MCP_ONE_TIMEOUT 100 /* 100 ms */ 10825 10826 static void 10827 bxe_mcp_wait_one(struct bxe_softc *sc) 10828 { 10829 /* special handling for emulation and FPGA (10 times longer) */ 10830 if (CHIP_REV_IS_SLOW(sc)) { 10831 DELAY((MCP_ONE_TIMEOUT*10) * 1000); 10832 } else { 10833 DELAY((MCP_ONE_TIMEOUT) * 1000); 10834 } 10835 } 10836 10837 /* initialize shmem_base and waits for validity signature to appear */ 10838 static int 10839 bxe_init_shmem(struct bxe_softc *sc) 10840 { 10841 int cnt = 0; 10842 uint32_t val = 0; 10843 10844 do { 10845 sc->devinfo.shmem_base = 10846 sc->link_params.shmem_base = 10847 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 10848 10849 if (sc->devinfo.shmem_base) { 10850 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); 10851 if (val & SHR_MEM_VALIDITY_MB) 10852 return (0); 10853 } 10854 10855 bxe_mcp_wait_one(sc); 10856 10857 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT)); 10858 10859 BLOGE(sc, "BAD MCP validity signature\n"); 10860 10861 return (-1); 10862 } 10863 10864 static int 10865 bxe_reset_mcp_comp(struct bxe_softc *sc, 10866 uint32_t magic_val) 10867 { 10868 int rc = bxe_init_shmem(sc); 10869 10870 /* Restore the `magic' bit value */ 10871 if (!CHIP_IS_E1(sc)) { 10872 bxe_clp_reset_done(sc, magic_val); 10873 } 10874 10875 return (rc); 10876 } 10877 10878 static void 10879 bxe_pxp_prep(struct bxe_softc *sc) 10880 { 10881 if (!CHIP_IS_E1(sc)) { 10882 REG_WR(sc, PXP2_REG_RD_START_INIT, 0); 10883 REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0); 10884 wmb(); 10885 } 10886 } 10887 10888 /* 10889 * Reset the whole chip except for: 10890 * - PCIE core 10891 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit) 10892 * - IGU 10893 * - MISC (including AEU) 10894 * - GRC 10895 * - RBCN, RBCP 10896 */ 10897 static void 10898 bxe_process_kill_chip_reset(struct bxe_softc *sc, 10899 uint8_t global) 10900 { 10901 uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2; 10902 uint32_t global_bits2, stay_reset2; 10903 10904 /* 10905 * Bits that have to be set in reset_mask2 if we want to reset 'global' 10906 * (per chip) blocks. 10907 */ 10908 global_bits2 = 10909 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU | 10910 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE; 10911 10912 /* 10913 * Don't reset the following blocks. 10914 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be 10915 * reset, as in 4 port device they might still be owned 10916 * by the MCP (there is only one leader per path). 10917 */ 10918 not_reset_mask1 = 10919 MISC_REGISTERS_RESET_REG_1_RST_HC | 10920 MISC_REGISTERS_RESET_REG_1_RST_PXPV | 10921 MISC_REGISTERS_RESET_REG_1_RST_PXP; 10922 10923 not_reset_mask2 = 10924 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO | 10925 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE | 10926 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE | 10927 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE | 10928 MISC_REGISTERS_RESET_REG_2_RST_RBCN | 10929 MISC_REGISTERS_RESET_REG_2_RST_GRC | 10930 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE | 10931 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B | 10932 MISC_REGISTERS_RESET_REG_2_RST_ATC | 10933 MISC_REGISTERS_RESET_REG_2_PGLC | 10934 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 | 10935 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 | 10936 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 | 10937 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 | 10938 MISC_REGISTERS_RESET_REG_2_UMAC0 | 10939 MISC_REGISTERS_RESET_REG_2_UMAC1; 10940 10941 /* 10942 * Keep the following blocks in reset: 10943 * - all xxMACs are handled by the elink code. 10944 */ 10945 stay_reset2 = 10946 MISC_REGISTERS_RESET_REG_2_XMAC | 10947 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT; 10948 10949 /* Full reset masks according to the chip */ 10950 reset_mask1 = 0xffffffff; 10951 10952 if (CHIP_IS_E1(sc)) 10953 reset_mask2 = 0xffff; 10954 else if (CHIP_IS_E1H(sc)) 10955 reset_mask2 = 0x1ffff; 10956 else if (CHIP_IS_E2(sc)) 10957 reset_mask2 = 0xfffff; 10958 else /* CHIP_IS_E3 */ 10959 reset_mask2 = 0x3ffffff; 10960 10961 /* Don't reset global blocks unless we need to */ 10962 if (!global) 10963 reset_mask2 &= ~global_bits2; 10964 10965 /* 10966 * In case of attention in the QM, we need to reset PXP 10967 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM 10968 * because otherwise QM reset would release 'close the gates' shortly 10969 * before resetting the PXP, then the PSWRQ would send a write 10970 * request to PGLUE. Then when PXP is reset, PGLUE would try to 10971 * read the payload data from PSWWR, but PSWWR would not 10972 * respond. The write queue in PGLUE would stuck, dmae commands 10973 * would not return. Therefore it's important to reset the second 10974 * reset register (containing the 10975 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the 10976 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM 10977 * bit). 10978 */ 10979 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, 10980 reset_mask2 & (~not_reset_mask2)); 10981 10982 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 10983 reset_mask1 & (~not_reset_mask1)); 10984 10985 mb(); 10986 wmb(); 10987 10988 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, 10989 reset_mask2 & (~stay_reset2)); 10990 10991 mb(); 10992 wmb(); 10993 10994 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1); 10995 wmb(); 10996 } 10997 10998 static int 10999 bxe_process_kill(struct bxe_softc *sc, 11000 uint8_t global) 11001 { 11002 int cnt = 1000; 11003 uint32_t val = 0; 11004 uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2; 11005 uint32_t tags_63_32 = 0; 11006 11007 /* Empty the Tetris buffer, wait for 1s */ 11008 do { 11009 sr_cnt = REG_RD(sc, PXP2_REG_RD_SR_CNT); 11010 blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT); 11011 port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0); 11012 port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1); 11013 pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2); 11014 if (CHIP_IS_E3(sc)) { 11015 tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32); 11016 } 11017 11018 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) && 11019 ((port_is_idle_0 & 0x1) == 0x1) && 11020 ((port_is_idle_1 & 0x1) == 0x1) && 11021 (pgl_exp_rom2 == 0xffffffff) && 11022 (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff))) 11023 break; 11024 DELAY(1000); 11025 } while (cnt-- > 0); 11026 11027 if (cnt <= 0) { 11028 BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there " 11029 "are still outstanding read requests after 1s! " 11030 "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, " 11031 "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n", 11032 sr_cnt, blk_cnt, port_is_idle_0, 11033 port_is_idle_1, pgl_exp_rom2); 11034 return (-1); 11035 } 11036 11037 mb(); 11038 11039 /* Close gates #2, #3 and #4 */ 11040 bxe_set_234_gates(sc, TRUE); 11041 11042 /* Poll for IGU VQs for 57712 and newer chips */ 11043 if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) { 11044 return (-1); 11045 } 11046 11047 /* XXX indicate that "process kill" is in progress to MCP */ 11048 11049 /* clear "unprepared" bit */ 11050 REG_WR(sc, MISC_REG_UNPREPARED, 0); 11051 mb(); 11052 11053 /* Make sure all is written to the chip before the reset */ 11054 wmb(); 11055 11056 /* 11057 * Wait for 1ms to empty GLUE and PCI-E core queues, 11058 * PSWHST, GRC and PSWRD Tetris buffer. 11059 */ 11060 DELAY(1000); 11061 11062 /* Prepare to chip reset: */ 11063 /* MCP */ 11064 if (global) { 11065 bxe_reset_mcp_prep(sc, &val); 11066 } 11067 11068 /* PXP */ 11069 bxe_pxp_prep(sc); 11070 mb(); 11071 11072 /* reset the chip */ 11073 bxe_process_kill_chip_reset(sc, global); 11074 mb(); 11075 11076 /* clear errors in PGB */ 11077 if (!CHIP_IS_E1(sc)) 11078 REG_WR(sc, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f); 11079 11080 /* Recover after reset: */ 11081 /* MCP */ 11082 if (global && bxe_reset_mcp_comp(sc, val)) { 11083 return (-1); 11084 } 11085 11086 /* XXX add resetting the NO_MCP mode DB here */ 11087 11088 /* Open the gates #2, #3 and #4 */ 11089 bxe_set_234_gates(sc, FALSE); 11090 11091 /* XXX 11092 * IGU/AEU preparation bring back the AEU/IGU to a reset state 11093 * re-enable attentions 11094 */ 11095 11096 return (0); 11097 } 11098 11099 static int 11100 bxe_leader_reset(struct bxe_softc *sc) 11101 { 11102 int rc = 0; 11103 uint8_t global = bxe_reset_is_global(sc); 11104 uint32_t load_code; 11105 11106 /* 11107 * If not going to reset MCP, load "fake" driver to reset HW while 11108 * driver is owner of the HW. 11109 */ 11110 if (!global && !BXE_NOMCP(sc)) { 11111 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, 11112 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 11113 if (!load_code) { 11114 BLOGE(sc, "MCP response failure, aborting\n"); 11115 rc = -1; 11116 goto exit_leader_reset; 11117 } 11118 11119 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 11120 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 11121 BLOGE(sc, "MCP unexpected response, aborting\n"); 11122 rc = -1; 11123 goto exit_leader_reset2; 11124 } 11125 11126 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 11127 if (!load_code) { 11128 BLOGE(sc, "MCP response failure, aborting\n"); 11129 rc = -1; 11130 goto exit_leader_reset2; 11131 } 11132 } 11133 11134 /* try to recover after the failure */ 11135 if (bxe_process_kill(sc, global)) { 11136 BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc)); 11137 rc = -1; 11138 goto exit_leader_reset2; 11139 } 11140 11141 /* 11142 * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver 11143 * state. 11144 */ 11145 bxe_set_reset_done(sc); 11146 if (global) { 11147 bxe_clear_reset_global(sc); 11148 } 11149 11150 exit_leader_reset2: 11151 11152 /* unload "fake driver" if it was loaded */ 11153 if (!global && !BXE_NOMCP(sc)) { 11154 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 11155 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); 11156 } 11157 11158 exit_leader_reset: 11159 11160 sc->is_leader = 0; 11161 bxe_release_leader_lock(sc); 11162 11163 mb(); 11164 return (rc); 11165 } 11166 11167 /* 11168 * prepare INIT transition, parameters configured: 11169 * - HC configuration 11170 * - Queue's CDU context 11171 */ 11172 static void 11173 bxe_pf_q_prep_init(struct bxe_softc *sc, 11174 struct bxe_fastpath *fp, 11175 struct ecore_queue_init_params *init_params) 11176 { 11177 uint8_t cos; 11178 int cxt_index, cxt_offset; 11179 11180 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags); 11181 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags); 11182 11183 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags); 11184 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags); 11185 11186 /* HC rate */ 11187 init_params->rx.hc_rate = 11188 sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0; 11189 init_params->tx.hc_rate = 11190 sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0; 11191 11192 /* FW SB ID */ 11193 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id; 11194 11195 /* CQ index among the SB indices */ 11196 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 11197 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS; 11198 11199 /* set maximum number of COSs supported by this queue */ 11200 init_params->max_cos = sc->max_cos; 11201 11202 BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n", 11203 fp->index, init_params->max_cos); 11204 11205 /* set the context pointers queue object */ 11206 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) { 11207 /* XXX change index/cid here if ever support multiple tx CoS */ 11208 /* fp->txdata[cos]->cid */ 11209 cxt_index = fp->index / ILT_PAGE_CIDS; 11210 cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS); 11211 init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth; 11212 } 11213 } 11214 11215 /* set flags that are common for the Tx-only and not normal connections */ 11216 static unsigned long 11217 bxe_get_common_flags(struct bxe_softc *sc, 11218 struct bxe_fastpath *fp, 11219 uint8_t zero_stats) 11220 { 11221 unsigned long flags = 0; 11222 11223 /* PF driver will always initialize the Queue to an ACTIVE state */ 11224 bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags); 11225 11226 /* 11227 * tx only connections collect statistics (on the same index as the 11228 * parent connection). The statistics are zeroed when the parent 11229 * connection is initialized. 11230 */ 11231 11232 bxe_set_bit(ECORE_Q_FLG_STATS, &flags); 11233 if (zero_stats) { 11234 bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags); 11235 } 11236 11237 /* 11238 * tx only connections can support tx-switching, though their 11239 * CoS-ness doesn't survive the loopback 11240 */ 11241 if (sc->flags & BXE_TX_SWITCHING) { 11242 bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags); 11243 } 11244 11245 bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags); 11246 11247 return (flags); 11248 } 11249 11250 static unsigned long 11251 bxe_get_q_flags(struct bxe_softc *sc, 11252 struct bxe_fastpath *fp, 11253 uint8_t leading) 11254 { 11255 unsigned long flags = 0; 11256 11257 if (IS_MF_SD(sc)) { 11258 bxe_set_bit(ECORE_Q_FLG_OV, &flags); 11259 } 11260 11261 if (if_getcapenable(sc->ifp) & IFCAP_LRO) { 11262 bxe_set_bit(ECORE_Q_FLG_TPA, &flags); 11263 bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags); 11264 } 11265 11266 if (leading) { 11267 bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags); 11268 bxe_set_bit(ECORE_Q_FLG_MCAST, &flags); 11269 } 11270 11271 bxe_set_bit(ECORE_Q_FLG_VLAN, &flags); 11272 11273 /* merge with common flags */ 11274 return (flags | bxe_get_common_flags(sc, fp, TRUE)); 11275 } 11276 11277 static void 11278 bxe_pf_q_prep_general(struct bxe_softc *sc, 11279 struct bxe_fastpath *fp, 11280 struct ecore_general_setup_params *gen_init, 11281 uint8_t cos) 11282 { 11283 gen_init->stat_id = bxe_stats_id(fp); 11284 gen_init->spcl_id = fp->cl_id; 11285 gen_init->mtu = sc->mtu; 11286 gen_init->cos = cos; 11287 } 11288 11289 static void 11290 bxe_pf_rx_q_prep(struct bxe_softc *sc, 11291 struct bxe_fastpath *fp, 11292 struct rxq_pause_params *pause, 11293 struct ecore_rxq_setup_params *rxq_init) 11294 { 11295 uint8_t max_sge = 0; 11296 uint16_t sge_sz = 0; 11297 uint16_t tpa_agg_size = 0; 11298 11299 pause->sge_th_lo = SGE_TH_LO(sc); 11300 pause->sge_th_hi = SGE_TH_HI(sc); 11301 11302 /* validate SGE ring has enough to cross high threshold */ 11303 if (sc->dropless_fc && 11304 (pause->sge_th_hi + FW_PREFETCH_CNT) > 11305 (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) { 11306 BLOGW(sc, "sge ring threshold limit\n"); 11307 } 11308 11309 /* minimum max_aggregation_size is 2*MTU (two full buffers) */ 11310 tpa_agg_size = (2 * sc->mtu); 11311 if (tpa_agg_size < sc->max_aggregation_size) { 11312 tpa_agg_size = sc->max_aggregation_size; 11313 } 11314 11315 max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT; 11316 max_sge = ((max_sge + PAGES_PER_SGE - 1) & 11317 (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT; 11318 sge_sz = (uint16_t)min(SGE_PAGES, 0xffff); 11319 11320 /* pause - not for e1 */ 11321 if (!CHIP_IS_E1(sc)) { 11322 pause->bd_th_lo = BD_TH_LO(sc); 11323 pause->bd_th_hi = BD_TH_HI(sc); 11324 11325 pause->rcq_th_lo = RCQ_TH_LO(sc); 11326 pause->rcq_th_hi = RCQ_TH_HI(sc); 11327 11328 /* validate rings have enough entries to cross high thresholds */ 11329 if (sc->dropless_fc && 11330 pause->bd_th_hi + FW_PREFETCH_CNT > 11331 sc->rx_ring_size) { 11332 BLOGW(sc, "rx bd ring threshold limit\n"); 11333 } 11334 11335 if (sc->dropless_fc && 11336 pause->rcq_th_hi + FW_PREFETCH_CNT > 11337 RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) { 11338 BLOGW(sc, "rcq ring threshold limit\n"); 11339 } 11340 11341 pause->pri_map = 1; 11342 } 11343 11344 /* rxq setup */ 11345 rxq_init->dscr_map = fp->rx_dma.paddr; 11346 rxq_init->sge_map = fp->rx_sge_dma.paddr; 11347 rxq_init->rcq_map = fp->rcq_dma.paddr; 11348 rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE); 11349 11350 /* 11351 * This should be a maximum number of data bytes that may be 11352 * placed on the BD (not including paddings). 11353 */ 11354 rxq_init->buf_sz = (fp->rx_buf_size - 11355 IP_HEADER_ALIGNMENT_PADDING); 11356 11357 rxq_init->cl_qzone_id = fp->cl_qzone_id; 11358 rxq_init->tpa_agg_sz = tpa_agg_size; 11359 rxq_init->sge_buf_sz = sge_sz; 11360 rxq_init->max_sges_pkt = max_sge; 11361 rxq_init->rss_engine_id = SC_FUNC(sc); 11362 rxq_init->mcast_engine_id = SC_FUNC(sc); 11363 11364 /* 11365 * Maximum number or simultaneous TPA aggregation for this Queue. 11366 * For PF Clients it should be the maximum available number. 11367 * VF driver(s) may want to define it to a smaller value. 11368 */ 11369 rxq_init->max_tpa_queues = MAX_AGG_QS(sc); 11370 11371 rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT; 11372 rxq_init->fw_sb_id = fp->fw_sb_id; 11373 11374 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 11375 11376 /* 11377 * configure silent vlan removal 11378 * if multi function mode is afex, then mask default vlan 11379 */ 11380 if (IS_MF_AFEX(sc)) { 11381 rxq_init->silent_removal_value = 11382 sc->devinfo.mf_info.afex_def_vlan_tag; 11383 rxq_init->silent_removal_mask = EVL_VLID_MASK; 11384 } 11385 } 11386 11387 static void 11388 bxe_pf_tx_q_prep(struct bxe_softc *sc, 11389 struct bxe_fastpath *fp, 11390 struct ecore_txq_setup_params *txq_init, 11391 uint8_t cos) 11392 { 11393 /* 11394 * XXX If multiple CoS is ever supported then each fastpath structure 11395 * will need to maintain tx producer/consumer/dma/etc values *per* CoS. 11396 * fp->txdata[cos]->tx_dma.paddr; 11397 */ 11398 txq_init->dscr_map = fp->tx_dma.paddr; 11399 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos; 11400 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW; 11401 txq_init->fw_sb_id = fp->fw_sb_id; 11402 11403 /* 11404 * set the TSS leading client id for TX classfication to the 11405 * leading RSS client id 11406 */ 11407 txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id); 11408 } 11409 11410 /* 11411 * This function performs 2 steps in a queue state machine: 11412 * 1) RESET->INIT 11413 * 2) INIT->SETUP 11414 */ 11415 static int 11416 bxe_setup_queue(struct bxe_softc *sc, 11417 struct bxe_fastpath *fp, 11418 uint8_t leading) 11419 { 11420 struct ecore_queue_state_params q_params = { NULL }; 11421 struct ecore_queue_setup_params *setup_params = 11422 &q_params.params.setup; 11423 int rc; 11424 11425 BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index); 11426 11427 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 11428 11429 q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj; 11430 11431 /* we want to wait for completion in this context */ 11432 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 11433 11434 /* prepare the INIT parameters */ 11435 bxe_pf_q_prep_init(sc, fp, &q_params.params.init); 11436 11437 /* Set the command */ 11438 q_params.cmd = ECORE_Q_CMD_INIT; 11439 11440 /* Change the state to INIT */ 11441 rc = ecore_queue_state_change(sc, &q_params); 11442 if (rc) { 11443 BLOGE(sc, "Queue(%d) INIT failed rc = %d\n", fp->index, rc); 11444 return (rc); 11445 } 11446 11447 BLOGD(sc, DBG_LOAD, "init complete\n"); 11448 11449 /* now move the Queue to the SETUP state */ 11450 memset(setup_params, 0, sizeof(*setup_params)); 11451 11452 /* set Queue flags */ 11453 setup_params->flags = bxe_get_q_flags(sc, fp, leading); 11454 11455 /* set general SETUP parameters */ 11456 bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params, 11457 FIRST_TX_COS_INDEX); 11458 11459 bxe_pf_rx_q_prep(sc, fp, 11460 &setup_params->pause_params, 11461 &setup_params->rxq_params); 11462 11463 bxe_pf_tx_q_prep(sc, fp, 11464 &setup_params->txq_params, 11465 FIRST_TX_COS_INDEX); 11466 11467 /* Set the command */ 11468 q_params.cmd = ECORE_Q_CMD_SETUP; 11469 11470 /* change the state to SETUP */ 11471 rc = ecore_queue_state_change(sc, &q_params); 11472 if (rc) { 11473 BLOGE(sc, "Queue(%d) SETUP failed (rc = %d)\n", fp->index, rc); 11474 return (rc); 11475 } 11476 11477 return (rc); 11478 } 11479 11480 static int 11481 bxe_setup_leading(struct bxe_softc *sc) 11482 { 11483 return (bxe_setup_queue(sc, &sc->fp[0], TRUE)); 11484 } 11485 11486 static int 11487 bxe_config_rss_pf(struct bxe_softc *sc, 11488 struct ecore_rss_config_obj *rss_obj, 11489 uint8_t config_hash) 11490 { 11491 struct ecore_config_rss_params params = { NULL }; 11492 int i; 11493 11494 /* 11495 * Although RSS is meaningless when there is a single HW queue we 11496 * still need it enabled in order to have HW Rx hash generated. 11497 */ 11498 11499 params.rss_obj = rss_obj; 11500 11501 bxe_set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags); 11502 11503 bxe_set_bit(ECORE_RSS_MODE_REGULAR, ¶ms.rss_flags); 11504 11505 /* RSS configuration */ 11506 bxe_set_bit(ECORE_RSS_IPV4, ¶ms.rss_flags); 11507 bxe_set_bit(ECORE_RSS_IPV4_TCP, ¶ms.rss_flags); 11508 bxe_set_bit(ECORE_RSS_IPV6, ¶ms.rss_flags); 11509 bxe_set_bit(ECORE_RSS_IPV6_TCP, ¶ms.rss_flags); 11510 if (rss_obj->udp_rss_v4) { 11511 bxe_set_bit(ECORE_RSS_IPV4_UDP, ¶ms.rss_flags); 11512 } 11513 if (rss_obj->udp_rss_v6) { 11514 bxe_set_bit(ECORE_RSS_IPV6_UDP, ¶ms.rss_flags); 11515 } 11516 11517 /* Hash bits */ 11518 params.rss_result_mask = MULTI_MASK; 11519 11520 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table)); 11521 11522 if (config_hash) { 11523 /* RSS keys */ 11524 for (i = 0; i < sizeof(params.rss_key) / 4; i++) { 11525 params.rss_key[i] = arc4random(); 11526 } 11527 11528 bxe_set_bit(ECORE_RSS_SET_SRCH, ¶ms.rss_flags); 11529 } 11530 11531 return (ecore_config_rss(sc, ¶ms)); 11532 } 11533 11534 static int 11535 bxe_config_rss_eth(struct bxe_softc *sc, 11536 uint8_t config_hash) 11537 { 11538 return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash)); 11539 } 11540 11541 static int 11542 bxe_init_rss_pf(struct bxe_softc *sc) 11543 { 11544 uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc); 11545 int i; 11546 11547 /* 11548 * Prepare the initial contents of the indirection table if 11549 * RSS is enabled 11550 */ 11551 for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) { 11552 sc->rss_conf_obj.ind_table[i] = 11553 (sc->fp->cl_id + (i % num_eth_queues)); 11554 } 11555 11556 if (sc->udp_rss) { 11557 sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1; 11558 } 11559 11560 /* 11561 * For 57710 and 57711 SEARCHER configuration (rss_keys) is 11562 * per-port, so if explicit configuration is needed, do it only 11563 * for a PMF. 11564 * 11565 * For 57712 and newer it's a per-function configuration. 11566 */ 11567 return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc))); 11568 } 11569 11570 static int 11571 bxe_set_mac_one(struct bxe_softc *sc, 11572 uint8_t *mac, 11573 struct ecore_vlan_mac_obj *obj, 11574 uint8_t set, 11575 int mac_type, 11576 unsigned long *ramrod_flags) 11577 { 11578 struct ecore_vlan_mac_ramrod_params ramrod_param; 11579 int rc; 11580 11581 memset(&ramrod_param, 0, sizeof(ramrod_param)); 11582 11583 /* fill in general parameters */ 11584 ramrod_param.vlan_mac_obj = obj; 11585 ramrod_param.ramrod_flags = *ramrod_flags; 11586 11587 /* fill a user request section if needed */ 11588 if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) { 11589 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN); 11590 11591 bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags); 11592 11593 /* Set the command: ADD or DEL */ 11594 ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD : 11595 ECORE_VLAN_MAC_DEL; 11596 } 11597 11598 rc = ecore_config_vlan_mac(sc, &ramrod_param); 11599 11600 if (rc == ECORE_EXISTS) { 11601 BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); 11602 /* do not treat adding same MAC as error */ 11603 rc = 0; 11604 } else if (rc < 0) { 11605 BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc); 11606 } 11607 11608 return (rc); 11609 } 11610 11611 static int 11612 bxe_set_eth_mac(struct bxe_softc *sc, 11613 uint8_t set) 11614 { 11615 unsigned long ramrod_flags = 0; 11616 11617 BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n"); 11618 11619 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 11620 11621 /* Eth MAC is set on RSS leading client (fp[0]) */ 11622 return (bxe_set_mac_one(sc, sc->link_params.mac_addr, 11623 &sc->sp_objs->mac_obj, 11624 set, ECORE_ETH_MAC, &ramrod_flags)); 11625 } 11626 11627 static int 11628 bxe_get_cur_phy_idx(struct bxe_softc *sc) 11629 { 11630 uint32_t sel_phy_idx = 0; 11631 11632 if (sc->link_params.num_phys <= 1) { 11633 return (ELINK_INT_PHY); 11634 } 11635 11636 if (sc->link_vars.link_up) { 11637 sel_phy_idx = ELINK_EXT_PHY1; 11638 /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */ 11639 if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) && 11640 (sc->link_params.phy[ELINK_EXT_PHY2].supported & 11641 ELINK_SUPPORTED_FIBRE)) 11642 sel_phy_idx = ELINK_EXT_PHY2; 11643 } else { 11644 switch (elink_phy_selection(&sc->link_params)) { 11645 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT: 11646 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY: 11647 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY: 11648 sel_phy_idx = ELINK_EXT_PHY1; 11649 break; 11650 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY: 11651 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY: 11652 sel_phy_idx = ELINK_EXT_PHY2; 11653 break; 11654 } 11655 } 11656 11657 return (sel_phy_idx); 11658 } 11659 11660 static int 11661 bxe_get_link_cfg_idx(struct bxe_softc *sc) 11662 { 11663 uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc); 11664 11665 /* 11666 * The selected activated PHY is always after swapping (in case PHY 11667 * swapping is enabled). So when swapping is enabled, we need to reverse 11668 * the configuration 11669 */ 11670 11671 if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 11672 if (sel_phy_idx == ELINK_EXT_PHY1) 11673 sel_phy_idx = ELINK_EXT_PHY2; 11674 else if (sel_phy_idx == ELINK_EXT_PHY2) 11675 sel_phy_idx = ELINK_EXT_PHY1; 11676 } 11677 11678 return (ELINK_LINK_CONFIG_IDX(sel_phy_idx)); 11679 } 11680 11681 static void 11682 bxe_set_requested_fc(struct bxe_softc *sc) 11683 { 11684 /* 11685 * Initialize link parameters structure variables 11686 * It is recommended to turn off RX FC for jumbo frames 11687 * for better performance 11688 */ 11689 if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) { 11690 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX; 11691 } else { 11692 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH; 11693 } 11694 } 11695 11696 static void 11697 bxe_calc_fc_adv(struct bxe_softc *sc) 11698 { 11699 uint8_t cfg_idx = bxe_get_link_cfg_idx(sc); 11700 11701 11702 sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | 11703 ADVERTISED_Pause); 11704 11705 switch (sc->link_vars.ieee_fc & 11706 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) { 11707 11708 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH: 11709 sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause | 11710 ADVERTISED_Pause); 11711 break; 11712 11713 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC: 11714 sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause; 11715 break; 11716 11717 default: 11718 break; 11719 11720 } 11721 } 11722 11723 static uint16_t 11724 bxe_get_mf_speed(struct bxe_softc *sc) 11725 { 11726 uint16_t line_speed = sc->link_vars.line_speed; 11727 if (IS_MF(sc)) { 11728 uint16_t maxCfg = 11729 bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]); 11730 11731 /* calculate the current MAX line speed limit for the MF devices */ 11732 if (IS_MF_SI(sc)) { 11733 line_speed = (line_speed * maxCfg) / 100; 11734 } else { /* SD mode */ 11735 uint16_t vn_max_rate = maxCfg * 100; 11736 11737 if (vn_max_rate < line_speed) { 11738 line_speed = vn_max_rate; 11739 } 11740 } 11741 } 11742 11743 return (line_speed); 11744 } 11745 11746 static void 11747 bxe_fill_report_data(struct bxe_softc *sc, 11748 struct bxe_link_report_data *data) 11749 { 11750 uint16_t line_speed = bxe_get_mf_speed(sc); 11751 11752 memset(data, 0, sizeof(*data)); 11753 11754 /* fill the report data with the effective line speed */ 11755 data->line_speed = line_speed; 11756 11757 /* Link is down */ 11758 if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) { 11759 bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags); 11760 } 11761 11762 /* Full DUPLEX */ 11763 if (sc->link_vars.duplex == DUPLEX_FULL) { 11764 bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags); 11765 } 11766 11767 /* Rx Flow Control is ON */ 11768 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) { 11769 bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags); 11770 } 11771 11772 /* Tx Flow Control is ON */ 11773 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { 11774 bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags); 11775 } 11776 } 11777 11778 /* report link status to OS, should be called under phy_lock */ 11779 static void 11780 bxe_link_report_locked(struct bxe_softc *sc) 11781 { 11782 struct bxe_link_report_data cur_data; 11783 11784 /* reread mf_cfg */ 11785 if (IS_PF(sc) && !CHIP_IS_E1(sc)) { 11786 bxe_read_mf_cfg(sc); 11787 } 11788 11789 /* Read the current link report info */ 11790 bxe_fill_report_data(sc, &cur_data); 11791 11792 /* Don't report link down or exactly the same link status twice */ 11793 if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) || 11794 (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 11795 &sc->last_reported_link.link_report_flags) && 11796 bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 11797 &cur_data.link_report_flags))) { 11798 return; 11799 } 11800 11801 ELINK_DEBUG_P2(sc, "Change in link status : cur_data = %x, last_reported_link = %x\n", 11802 cur_data.link_report_flags, sc->last_reported_link.link_report_flags); 11803 sc->link_cnt++; 11804 11805 ELINK_DEBUG_P1(sc, "link status change count = %x\n", sc->link_cnt); 11806 /* report new link params and remember the state for the next time */ 11807 memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data)); 11808 11809 if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 11810 &cur_data.link_report_flags)) { 11811 if_link_state_change(sc->ifp, LINK_STATE_DOWN); 11812 } else { 11813 const char *duplex; 11814 const char *flow; 11815 11816 if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX, 11817 &cur_data.link_report_flags)) { 11818 duplex = "full"; 11819 ELINK_DEBUG_P0(sc, "link set to full duplex\n"); 11820 } else { 11821 duplex = "half"; 11822 ELINK_DEBUG_P0(sc, "link set to half duplex\n"); 11823 } 11824 11825 /* 11826 * Handle the FC at the end so that only these flags would be 11827 * possibly set. This way we may easily check if there is no FC 11828 * enabled. 11829 */ 11830 if (cur_data.link_report_flags) { 11831 if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 11832 &cur_data.link_report_flags) && 11833 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 11834 &cur_data.link_report_flags)) { 11835 flow = "ON - receive & transmit"; 11836 } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 11837 &cur_data.link_report_flags) && 11838 !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 11839 &cur_data.link_report_flags)) { 11840 flow = "ON - receive"; 11841 } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 11842 &cur_data.link_report_flags) && 11843 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 11844 &cur_data.link_report_flags)) { 11845 flow = "ON - transmit"; 11846 } else { 11847 flow = "none"; /* possible? */ 11848 } 11849 } else { 11850 flow = "none"; 11851 } 11852 11853 if_link_state_change(sc->ifp, LINK_STATE_UP); 11854 BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n", 11855 cur_data.line_speed, duplex, flow); 11856 } 11857 } 11858 11859 static void 11860 bxe_link_report(struct bxe_softc *sc) 11861 { 11862 bxe_acquire_phy_lock(sc); 11863 bxe_link_report_locked(sc); 11864 bxe_release_phy_lock(sc); 11865 } 11866 11867 static void 11868 bxe_link_status_update(struct bxe_softc *sc) 11869 { 11870 if (sc->state != BXE_STATE_OPEN) { 11871 return; 11872 } 11873 11874 if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) { 11875 elink_link_status_update(&sc->link_params, &sc->link_vars); 11876 } else { 11877 sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half | 11878 ELINK_SUPPORTED_10baseT_Full | 11879 ELINK_SUPPORTED_100baseT_Half | 11880 ELINK_SUPPORTED_100baseT_Full | 11881 ELINK_SUPPORTED_1000baseT_Full | 11882 ELINK_SUPPORTED_2500baseX_Full | 11883 ELINK_SUPPORTED_10000baseT_Full | 11884 ELINK_SUPPORTED_TP | 11885 ELINK_SUPPORTED_FIBRE | 11886 ELINK_SUPPORTED_Autoneg | 11887 ELINK_SUPPORTED_Pause | 11888 ELINK_SUPPORTED_Asym_Pause); 11889 sc->port.advertising[0] = sc->port.supported[0]; 11890 11891 sc->link_params.sc = sc; 11892 sc->link_params.port = SC_PORT(sc); 11893 sc->link_params.req_duplex[0] = DUPLEX_FULL; 11894 sc->link_params.req_flow_ctrl[0] = ELINK_FLOW_CTRL_NONE; 11895 sc->link_params.req_line_speed[0] = SPEED_10000; 11896 sc->link_params.speed_cap_mask[0] = 0x7f0000; 11897 sc->link_params.switch_cfg = ELINK_SWITCH_CFG_10G; 11898 11899 if (CHIP_REV_IS_FPGA(sc)) { 11900 sc->link_vars.mac_type = ELINK_MAC_TYPE_EMAC; 11901 sc->link_vars.line_speed = ELINK_SPEED_1000; 11902 sc->link_vars.link_status = (LINK_STATUS_LINK_UP | 11903 LINK_STATUS_SPEED_AND_DUPLEX_1000TFD); 11904 } else { 11905 sc->link_vars.mac_type = ELINK_MAC_TYPE_BMAC; 11906 sc->link_vars.line_speed = ELINK_SPEED_10000; 11907 sc->link_vars.link_status = (LINK_STATUS_LINK_UP | 11908 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD); 11909 } 11910 11911 sc->link_vars.link_up = 1; 11912 11913 sc->link_vars.duplex = DUPLEX_FULL; 11914 sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE; 11915 11916 if (IS_PF(sc)) { 11917 REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0); 11918 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11919 bxe_link_report(sc); 11920 } 11921 } 11922 11923 if (IS_PF(sc)) { 11924 if (sc->link_vars.link_up) { 11925 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11926 } else { 11927 bxe_stats_handle(sc, STATS_EVENT_STOP); 11928 } 11929 bxe_link_report(sc); 11930 } else { 11931 bxe_link_report(sc); 11932 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11933 } 11934 } 11935 11936 static int 11937 bxe_initial_phy_init(struct bxe_softc *sc, 11938 int load_mode) 11939 { 11940 int rc, cfg_idx = bxe_get_link_cfg_idx(sc); 11941 uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx]; 11942 struct elink_params *lp = &sc->link_params; 11943 11944 bxe_set_requested_fc(sc); 11945 11946 if (CHIP_REV_IS_SLOW(sc)) { 11947 uint32_t bond = CHIP_BOND_ID(sc); 11948 uint32_t feat = 0; 11949 11950 if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) { 11951 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; 11952 } else if (bond & 0x4) { 11953 if (CHIP_IS_E3(sc)) { 11954 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC; 11955 } else { 11956 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; 11957 } 11958 } else if (bond & 0x8) { 11959 if (CHIP_IS_E3(sc)) { 11960 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC; 11961 } else { 11962 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; 11963 } 11964 } 11965 11966 /* disable EMAC for E3 and above */ 11967 if (bond & 0x2) { 11968 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; 11969 } 11970 11971 sc->link_params.feature_config_flags |= feat; 11972 } 11973 11974 bxe_acquire_phy_lock(sc); 11975 11976 if (load_mode == LOAD_DIAG) { 11977 lp->loopback_mode = ELINK_LOOPBACK_XGXS; 11978 /* Prefer doing PHY loopback at 10G speed, if possible */ 11979 if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) { 11980 if (lp->speed_cap_mask[cfg_idx] & 11981 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { 11982 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000; 11983 } else { 11984 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000; 11985 } 11986 } 11987 } 11988 11989 if (load_mode == LOAD_LOOPBACK_EXT) { 11990 lp->loopback_mode = ELINK_LOOPBACK_EXT; 11991 } 11992 11993 rc = elink_phy_init(&sc->link_params, &sc->link_vars); 11994 11995 bxe_release_phy_lock(sc); 11996 11997 bxe_calc_fc_adv(sc); 11998 11999 if (sc->link_vars.link_up) { 12000 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 12001 bxe_link_report(sc); 12002 } 12003 12004 if (!CHIP_REV_IS_SLOW(sc)) { 12005 bxe_periodic_start(sc); 12006 } 12007 12008 sc->link_params.req_line_speed[cfg_idx] = req_line_speed; 12009 return (rc); 12010 } 12011 12012 static u_int 12013 bxe_push_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 12014 { 12015 struct ecore_mcast_list_elem *mc_mac = arg; 12016 12017 mc_mac += cnt; 12018 mc_mac->mac = (uint8_t *)LLADDR(sdl); 12019 12020 return (1); 12021 } 12022 12023 static int 12024 bxe_init_mcast_macs_list(struct bxe_softc *sc, 12025 struct ecore_mcast_ramrod_params *p) 12026 { 12027 if_t ifp = sc->ifp; 12028 int mc_count; 12029 struct ecore_mcast_list_elem *mc_mac; 12030 12031 ECORE_LIST_INIT(&p->mcast_list); 12032 p->mcast_list_len = 0; 12033 12034 /* XXXGL: multicast count may change later */ 12035 mc_count = if_llmaddr_count(ifp); 12036 12037 if (!mc_count) { 12038 return (0); 12039 } 12040 12041 mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF, 12042 (M_NOWAIT | M_ZERO)); 12043 if (!mc_mac) { 12044 BLOGE(sc, "Failed to allocate temp mcast list\n"); 12045 return (-1); 12046 } 12047 bzero(mc_mac, (sizeof(*mc_mac) * mc_count)); 12048 if_foreach_llmaddr(ifp, bxe_push_maddr, mc_mac); 12049 12050 for (int i = 0; i < mc_count; i ++) { 12051 ECORE_LIST_PUSH_TAIL(&mc_mac[i].link, &p->mcast_list); 12052 BLOGD(sc, DBG_LOAD, 12053 "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X and mc_count %d\n", 12054 mc_mac[i].mac[0], mc_mac[i].mac[1], mc_mac[i].mac[2], 12055 mc_mac[i].mac[3], mc_mac[i].mac[4], mc_mac[i].mac[5], 12056 mc_count); 12057 } 12058 12059 p->mcast_list_len = mc_count; 12060 12061 return (0); 12062 } 12063 12064 static void 12065 bxe_free_mcast_macs_list(struct ecore_mcast_ramrod_params *p) 12066 { 12067 struct ecore_mcast_list_elem *mc_mac = 12068 ECORE_LIST_FIRST_ENTRY(&p->mcast_list, 12069 struct ecore_mcast_list_elem, 12070 link); 12071 12072 if (mc_mac) { 12073 /* only a single free as all mc_macs are in the same heap array */ 12074 free(mc_mac, M_DEVBUF); 12075 } 12076 } 12077 static int 12078 bxe_set_mc_list(struct bxe_softc *sc) 12079 { 12080 struct ecore_mcast_ramrod_params rparam = { NULL }; 12081 int rc = 0; 12082 12083 rparam.mcast_obj = &sc->mcast_obj; 12084 12085 BXE_MCAST_LOCK(sc); 12086 12087 /* first, clear all configured multicast MACs */ 12088 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 12089 if (rc < 0) { 12090 BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc); 12091 /* Manual backport parts of FreeBSD upstream r284470. */ 12092 BXE_MCAST_UNLOCK(sc); 12093 return (rc); 12094 } 12095 12096 /* configure a new MACs list */ 12097 rc = bxe_init_mcast_macs_list(sc, &rparam); 12098 if (rc) { 12099 BLOGE(sc, "Failed to create mcast MACs list (%d)\n", rc); 12100 BXE_MCAST_UNLOCK(sc); 12101 return (rc); 12102 } 12103 12104 /* Now add the new MACs */ 12105 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD); 12106 if (rc < 0) { 12107 BLOGE(sc, "Failed to set new mcast config (%d)\n", rc); 12108 } 12109 12110 bxe_free_mcast_macs_list(&rparam); 12111 12112 BXE_MCAST_UNLOCK(sc); 12113 12114 return (rc); 12115 } 12116 12117 struct bxe_set_addr_ctx { 12118 struct bxe_softc *sc; 12119 unsigned long ramrod_flags; 12120 int rc; 12121 }; 12122 12123 static u_int 12124 bxe_set_addr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 12125 { 12126 struct bxe_set_addr_ctx *ctx = arg; 12127 struct ecore_vlan_mac_obj *mac_obj = &ctx->sc->sp_objs->mac_obj; 12128 int rc; 12129 12130 if (ctx->rc < 0) 12131 return (0); 12132 12133 rc = bxe_set_mac_one(ctx->sc, (uint8_t *)LLADDR(sdl), mac_obj, TRUE, 12134 ECORE_UC_LIST_MAC, &ctx->ramrod_flags); 12135 12136 /* do not treat adding same MAC as an error */ 12137 if (rc == -EEXIST) 12138 BLOGD(ctx->sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); 12139 else if (rc < 0) { 12140 BLOGE(ctx->sc, "Failed to schedule ADD operations (%d)\n", rc); 12141 ctx->rc = rc; 12142 } 12143 12144 return (1); 12145 } 12146 12147 static int 12148 bxe_set_uc_list(struct bxe_softc *sc) 12149 { 12150 if_t ifp = sc->ifp; 12151 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; 12152 struct bxe_set_addr_ctx ctx = { sc, 0, 0 }; 12153 int rc; 12154 12155 /* first schedule a cleanup up of old configuration */ 12156 rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE); 12157 if (rc < 0) { 12158 BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc); 12159 return (rc); 12160 } 12161 12162 if_foreach_lladdr(ifp, bxe_set_addr, &ctx); 12163 if (ctx.rc < 0) 12164 return (ctx.rc); 12165 12166 /* Execute the pending commands */ 12167 bit_set(&ctx.ramrod_flags, RAMROD_CONT); 12168 return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */, 12169 ECORE_UC_LIST_MAC, &ctx.ramrod_flags)); 12170 } 12171 12172 static void 12173 bxe_set_rx_mode(struct bxe_softc *sc) 12174 { 12175 if_t ifp = sc->ifp; 12176 uint32_t rx_mode = BXE_RX_MODE_NORMAL; 12177 12178 if (sc->state != BXE_STATE_OPEN) { 12179 BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state); 12180 return; 12181 } 12182 12183 BLOGD(sc, DBG_SP, "if_flags(ifp)=0x%x\n", if_getflags(sc->ifp)); 12184 12185 if (if_getflags(ifp) & IFF_PROMISC) { 12186 rx_mode = BXE_RX_MODE_PROMISC; 12187 } else if ((if_getflags(ifp) & IFF_ALLMULTI) || 12188 ((if_getamcount(ifp) > BXE_MAX_MULTICAST) && 12189 CHIP_IS_E1(sc))) { 12190 rx_mode = BXE_RX_MODE_ALLMULTI; 12191 } else { 12192 if (IS_PF(sc)) { 12193 /* some multicasts */ 12194 if (bxe_set_mc_list(sc) < 0) { 12195 rx_mode = BXE_RX_MODE_ALLMULTI; 12196 } 12197 if (bxe_set_uc_list(sc) < 0) { 12198 rx_mode = BXE_RX_MODE_PROMISC; 12199 } 12200 } 12201 } 12202 12203 sc->rx_mode = rx_mode; 12204 12205 /* schedule the rx_mode command */ 12206 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { 12207 BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n"); 12208 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); 12209 return; 12210 } 12211 12212 if (IS_PF(sc)) { 12213 bxe_set_storm_rx_mode(sc); 12214 } 12215 } 12216 12217 12218 /* update flags in shmem */ 12219 static void 12220 bxe_update_drv_flags(struct bxe_softc *sc, 12221 uint32_t flags, 12222 uint32_t set) 12223 { 12224 uint32_t drv_flags; 12225 12226 if (SHMEM2_HAS(sc, drv_flags)) { 12227 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); 12228 drv_flags = SHMEM2_RD(sc, drv_flags); 12229 12230 if (set) { 12231 SET_FLAGS(drv_flags, flags); 12232 } else { 12233 RESET_FLAGS(drv_flags, flags); 12234 } 12235 12236 SHMEM2_WR(sc, drv_flags, drv_flags); 12237 BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags); 12238 12239 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); 12240 } 12241 } 12242 12243 /* periodic timer callout routine, only runs when the interface is up */ 12244 12245 static void 12246 bxe_periodic_callout_func(void *xsc) 12247 { 12248 struct bxe_softc *sc = (struct bxe_softc *)xsc; 12249 int i; 12250 12251 if (!BXE_CORE_TRYLOCK(sc)) { 12252 /* just bail and try again next time */ 12253 12254 if ((sc->state == BXE_STATE_OPEN) && 12255 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { 12256 /* schedule the next periodic callout */ 12257 callout_reset(&sc->periodic_callout, hz, 12258 bxe_periodic_callout_func, sc); 12259 } 12260 12261 return; 12262 } 12263 12264 if ((sc->state != BXE_STATE_OPEN) || 12265 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) { 12266 BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state); 12267 BXE_CORE_UNLOCK(sc); 12268 return; 12269 } 12270 12271 12272 /* Check for TX timeouts on any fastpath. */ 12273 FOR_EACH_QUEUE(sc, i) { 12274 if (bxe_watchdog(sc, &sc->fp[i]) != 0) { 12275 /* Ruh-Roh, chip was reset! */ 12276 break; 12277 } 12278 } 12279 12280 if (!CHIP_REV_IS_SLOW(sc)) { 12281 /* 12282 * This barrier is needed to ensure the ordering between the writing 12283 * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and 12284 * the reading here. 12285 */ 12286 mb(); 12287 if (sc->port.pmf) { 12288 bxe_acquire_phy_lock(sc); 12289 elink_period_func(&sc->link_params, &sc->link_vars); 12290 bxe_release_phy_lock(sc); 12291 } 12292 } 12293 12294 if (IS_PF(sc) && !(sc->flags & BXE_NO_PULSE)) { 12295 int mb_idx = SC_FW_MB_IDX(sc); 12296 uint32_t drv_pulse; 12297 uint32_t mcp_pulse; 12298 12299 ++sc->fw_drv_pulse_wr_seq; 12300 sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK; 12301 12302 drv_pulse = sc->fw_drv_pulse_wr_seq; 12303 bxe_drv_pulse(sc); 12304 12305 mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) & 12306 MCP_PULSE_SEQ_MASK); 12307 12308 /* 12309 * The delta between driver pulse and mcp response should 12310 * be 1 (before mcp response) or 0 (after mcp response). 12311 */ 12312 if ((drv_pulse != mcp_pulse) && 12313 (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) { 12314 /* someone lost a heartbeat... */ 12315 BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n", 12316 drv_pulse, mcp_pulse); 12317 } 12318 } 12319 12320 /* state is BXE_STATE_OPEN */ 12321 bxe_stats_handle(sc, STATS_EVENT_UPDATE); 12322 12323 BXE_CORE_UNLOCK(sc); 12324 12325 if ((sc->state == BXE_STATE_OPEN) && 12326 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { 12327 /* schedule the next periodic callout */ 12328 callout_reset(&sc->periodic_callout, hz, 12329 bxe_periodic_callout_func, sc); 12330 } 12331 } 12332 12333 static void 12334 bxe_periodic_start(struct bxe_softc *sc) 12335 { 12336 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO); 12337 callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc); 12338 } 12339 12340 static void 12341 bxe_periodic_stop(struct bxe_softc *sc) 12342 { 12343 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP); 12344 callout_drain(&sc->periodic_callout); 12345 } 12346 12347 void 12348 bxe_parity_recover(struct bxe_softc *sc) 12349 { 12350 uint8_t global = FALSE; 12351 uint32_t error_recovered, error_unrecovered; 12352 12353 12354 if ((sc->recovery_state == BXE_RECOVERY_FAILED) && 12355 (sc->state == BXE_STATE_ERROR)) { 12356 BLOGE(sc, "RECOVERY failed, " 12357 "stack notified driver is NOT running! " 12358 "Please reboot/power cycle the system.\n"); 12359 return; 12360 } 12361 12362 while (1) { 12363 BLOGD(sc, DBG_SP, 12364 "%s sc=%p state=0x%x rec_state=0x%x error_status=%x\n", 12365 __func__, sc, sc->state, sc->recovery_state, sc->error_status); 12366 12367 switch(sc->recovery_state) { 12368 12369 case BXE_RECOVERY_INIT: 12370 bxe_chk_parity_attn(sc, &global, FALSE); 12371 12372 if ((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) || 12373 (sc->error_status & BXE_ERR_MCP_ASSERT) || 12374 (sc->error_status & BXE_ERR_GLOBAL)) { 12375 12376 BXE_CORE_LOCK(sc); 12377 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 12378 bxe_periodic_stop(sc); 12379 } 12380 bxe_nic_unload(sc, UNLOAD_RECOVERY, false); 12381 sc->state = BXE_STATE_ERROR; 12382 sc->recovery_state = BXE_RECOVERY_FAILED; 12383 BLOGE(sc, " No Recovery tried for error 0x%x" 12384 " stack notified driver is NOT running!" 12385 " Please reboot/power cycle the system.\n", 12386 sc->error_status); 12387 BXE_CORE_UNLOCK(sc); 12388 return; 12389 } 12390 12391 12392 /* Try to get a LEADER_LOCK HW lock */ 12393 if (bxe_trylock_leader_lock(sc)) { 12394 12395 bxe_set_reset_in_progress(sc); 12396 /* 12397 * Check if there is a global attention and if 12398 * there was a global attention, set the global 12399 * reset bit. 12400 */ 12401 if (global) { 12402 bxe_set_reset_global(sc); 12403 } 12404 sc->is_leader = 1; 12405 } 12406 12407 /* If interface has been removed - break */ 12408 12409 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 12410 bxe_periodic_stop(sc); 12411 } 12412 12413 BXE_CORE_LOCK(sc); 12414 bxe_nic_unload(sc,UNLOAD_RECOVERY, false); 12415 sc->recovery_state = BXE_RECOVERY_WAIT; 12416 BXE_CORE_UNLOCK(sc); 12417 12418 /* 12419 * Ensure "is_leader", MCP command sequence and 12420 * "recovery_state" update values are seen on other 12421 * CPUs. 12422 */ 12423 mb(); 12424 break; 12425 case BXE_RECOVERY_WAIT: 12426 12427 if (sc->is_leader) { 12428 int other_engine = SC_PATH(sc) ? 0 : 1; 12429 bool other_load_status = 12430 bxe_get_load_status(sc, other_engine); 12431 bool load_status = 12432 bxe_get_load_status(sc, SC_PATH(sc)); 12433 global = bxe_reset_is_global(sc); 12434 12435 /* 12436 * In case of a parity in a global block, let 12437 * the first leader that performs a 12438 * leader_reset() reset the global blocks in 12439 * order to clear global attentions. Otherwise 12440 * the gates will remain closed for that 12441 * engine. 12442 */ 12443 if (load_status || 12444 (global && other_load_status)) { 12445 /* 12446 * Wait until all other functions get 12447 * down. 12448 */ 12449 taskqueue_enqueue_timeout(taskqueue_thread, 12450 &sc->sp_err_timeout_task, hz/10); 12451 return; 12452 } else { 12453 /* 12454 * If all other functions got down 12455 * try to bring the chip back to 12456 * normal. In any case it's an exit 12457 * point for a leader. 12458 */ 12459 if (bxe_leader_reset(sc)) { 12460 BLOGE(sc, "RECOVERY failed, " 12461 "stack notified driver is NOT running!\n"); 12462 sc->recovery_state = BXE_RECOVERY_FAILED; 12463 sc->state = BXE_STATE_ERROR; 12464 mb(); 12465 return; 12466 } 12467 12468 /* 12469 * If we are here, means that the 12470 * leader has succeeded and doesn't 12471 * want to be a leader any more. Try 12472 * to continue as a none-leader. 12473 */ 12474 break; 12475 } 12476 12477 } else { /* non-leader */ 12478 if (!bxe_reset_is_done(sc, SC_PATH(sc))) { 12479 /* 12480 * Try to get a LEADER_LOCK HW lock as 12481 * long as a former leader may have 12482 * been unloaded by the user or 12483 * released a leadership by another 12484 * reason. 12485 */ 12486 if (bxe_trylock_leader_lock(sc)) { 12487 /* 12488 * I'm a leader now! Restart a 12489 * switch case. 12490 */ 12491 sc->is_leader = 1; 12492 break; 12493 } 12494 12495 taskqueue_enqueue_timeout(taskqueue_thread, 12496 &sc->sp_err_timeout_task, hz/10); 12497 return; 12498 12499 } else { 12500 /* 12501 * If there was a global attention, wait 12502 * for it to be cleared. 12503 */ 12504 if (bxe_reset_is_global(sc)) { 12505 taskqueue_enqueue_timeout(taskqueue_thread, 12506 &sc->sp_err_timeout_task, hz/10); 12507 return; 12508 } 12509 12510 error_recovered = 12511 sc->eth_stats.recoverable_error; 12512 error_unrecovered = 12513 sc->eth_stats.unrecoverable_error; 12514 BXE_CORE_LOCK(sc); 12515 sc->recovery_state = 12516 BXE_RECOVERY_NIC_LOADING; 12517 if (bxe_nic_load(sc, LOAD_NORMAL)) { 12518 error_unrecovered++; 12519 sc->recovery_state = BXE_RECOVERY_FAILED; 12520 sc->state = BXE_STATE_ERROR; 12521 BLOGE(sc, "Recovery is NOT successfull, " 12522 " state=0x%x recovery_state=0x%x error=%x\n", 12523 sc->state, sc->recovery_state, sc->error_status); 12524 sc->error_status = 0; 12525 } else { 12526 sc->recovery_state = 12527 BXE_RECOVERY_DONE; 12528 error_recovered++; 12529 BLOGI(sc, "Recovery is successfull from errors %x," 12530 " state=0x%x" 12531 " recovery_state=0x%x \n", sc->error_status, 12532 sc->state, sc->recovery_state); 12533 mb(); 12534 } 12535 sc->error_status = 0; 12536 BXE_CORE_UNLOCK(sc); 12537 sc->eth_stats.recoverable_error = 12538 error_recovered; 12539 sc->eth_stats.unrecoverable_error = 12540 error_unrecovered; 12541 12542 return; 12543 } 12544 } 12545 default: 12546 return; 12547 } 12548 } 12549 } 12550 void 12551 bxe_handle_error(struct bxe_softc * sc) 12552 { 12553 12554 if(sc->recovery_state == BXE_RECOVERY_WAIT) { 12555 return; 12556 } 12557 if(sc->error_status) { 12558 if (sc->state == BXE_STATE_OPEN) { 12559 bxe_int_disable(sc); 12560 } 12561 if (sc->link_vars.link_up) { 12562 if_link_state_change(sc->ifp, LINK_STATE_DOWN); 12563 } 12564 sc->recovery_state = BXE_RECOVERY_INIT; 12565 BLOGI(sc, "bxe%d: Recovery started errors 0x%x recovery state 0x%x\n", 12566 sc->unit, sc->error_status, sc->recovery_state); 12567 bxe_parity_recover(sc); 12568 } 12569 } 12570 12571 static void 12572 bxe_sp_err_timeout_task(void *arg, int pending) 12573 { 12574 12575 struct bxe_softc *sc = (struct bxe_softc *)arg; 12576 12577 BLOGD(sc, DBG_SP, 12578 "%s state = 0x%x rec state=0x%x error_status=%x\n", 12579 __func__, sc->state, sc->recovery_state, sc->error_status); 12580 12581 if((sc->recovery_state == BXE_RECOVERY_FAILED) && 12582 (sc->state == BXE_STATE_ERROR)) { 12583 return; 12584 } 12585 /* if can be taken */ 12586 if ((sc->error_status) && (sc->trigger_grcdump)) { 12587 bxe_grc_dump(sc); 12588 } 12589 if (sc->recovery_state != BXE_RECOVERY_DONE) { 12590 bxe_handle_error(sc); 12591 bxe_parity_recover(sc); 12592 } else if (sc->error_status) { 12593 bxe_handle_error(sc); 12594 } 12595 12596 return; 12597 } 12598 12599 /* start the controller */ 12600 static __noinline int 12601 bxe_nic_load(struct bxe_softc *sc, 12602 int load_mode) 12603 { 12604 uint32_t val; 12605 int load_code = 0; 12606 int i, rc = 0; 12607 12608 BXE_CORE_LOCK_ASSERT(sc); 12609 12610 BLOGD(sc, DBG_LOAD, "Starting NIC load...\n"); 12611 12612 sc->state = BXE_STATE_OPENING_WAITING_LOAD; 12613 12614 if (IS_PF(sc)) { 12615 /* must be called before memory allocation and HW init */ 12616 bxe_ilt_set_info(sc); 12617 } 12618 12619 sc->last_reported_link_state = LINK_STATE_UNKNOWN; 12620 12621 bxe_set_fp_rx_buf_size(sc); 12622 12623 if (bxe_alloc_fp_buffers(sc) != 0) { 12624 BLOGE(sc, "Failed to allocate fastpath memory\n"); 12625 sc->state = BXE_STATE_CLOSED; 12626 rc = ENOMEM; 12627 goto bxe_nic_load_error0; 12628 } 12629 12630 if (bxe_alloc_mem(sc) != 0) { 12631 sc->state = BXE_STATE_CLOSED; 12632 rc = ENOMEM; 12633 goto bxe_nic_load_error0; 12634 } 12635 12636 if (bxe_alloc_fw_stats_mem(sc) != 0) { 12637 sc->state = BXE_STATE_CLOSED; 12638 rc = ENOMEM; 12639 goto bxe_nic_load_error0; 12640 } 12641 12642 if (IS_PF(sc)) { 12643 /* set pf load just before approaching the MCP */ 12644 bxe_set_pf_load(sc); 12645 12646 /* if MCP exists send load request and analyze response */ 12647 if (!BXE_NOMCP(sc)) { 12648 /* attempt to load pf */ 12649 if (bxe_nic_load_request(sc, &load_code) != 0) { 12650 sc->state = BXE_STATE_CLOSED; 12651 rc = ENXIO; 12652 goto bxe_nic_load_error1; 12653 } 12654 12655 /* what did the MCP say? */ 12656 if (bxe_nic_load_analyze_req(sc, load_code) != 0) { 12657 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12658 sc->state = BXE_STATE_CLOSED; 12659 rc = ENXIO; 12660 goto bxe_nic_load_error2; 12661 } 12662 } else { 12663 BLOGI(sc, "Device has no MCP!\n"); 12664 load_code = bxe_nic_load_no_mcp(sc); 12665 } 12666 12667 /* mark PMF if applicable */ 12668 bxe_nic_load_pmf(sc, load_code); 12669 12670 /* Init Function state controlling object */ 12671 bxe_init_func_obj(sc); 12672 12673 /* Initialize HW */ 12674 if (bxe_init_hw(sc, load_code) != 0) { 12675 BLOGE(sc, "HW init failed\n"); 12676 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12677 sc->state = BXE_STATE_CLOSED; 12678 rc = ENXIO; 12679 goto bxe_nic_load_error2; 12680 } 12681 } 12682 12683 /* set ALWAYS_ALIVE bit in shmem */ 12684 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 12685 bxe_drv_pulse(sc); 12686 sc->flags |= BXE_NO_PULSE; 12687 12688 /* attach interrupts */ 12689 if (bxe_interrupt_attach(sc) != 0) { 12690 sc->state = BXE_STATE_CLOSED; 12691 rc = ENXIO; 12692 goto bxe_nic_load_error2; 12693 } 12694 12695 bxe_nic_init(sc, load_code); 12696 12697 /* Init per-function objects */ 12698 if (IS_PF(sc)) { 12699 bxe_init_objs(sc); 12700 // XXX bxe_iov_nic_init(sc); 12701 12702 /* set AFEX default VLAN tag to an invalid value */ 12703 sc->devinfo.mf_info.afex_def_vlan_tag = -1; 12704 // XXX bxe_nic_load_afex_dcc(sc, load_code); 12705 12706 sc->state = BXE_STATE_OPENING_WAITING_PORT; 12707 rc = bxe_func_start(sc); 12708 if (rc) { 12709 BLOGE(sc, "Function start failed! rc = %d\n", rc); 12710 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12711 sc->state = BXE_STATE_ERROR; 12712 goto bxe_nic_load_error3; 12713 } 12714 12715 /* send LOAD_DONE command to MCP */ 12716 if (!BXE_NOMCP(sc)) { 12717 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12718 if (!load_code) { 12719 BLOGE(sc, "MCP response failure, aborting\n"); 12720 sc->state = BXE_STATE_ERROR; 12721 rc = ENXIO; 12722 goto bxe_nic_load_error3; 12723 } 12724 } 12725 12726 rc = bxe_setup_leading(sc); 12727 if (rc) { 12728 BLOGE(sc, "Setup leading failed! rc = %d\n", rc); 12729 sc->state = BXE_STATE_ERROR; 12730 goto bxe_nic_load_error3; 12731 } 12732 12733 FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) { 12734 rc = bxe_setup_queue(sc, &sc->fp[i], FALSE); 12735 if (rc) { 12736 BLOGE(sc, "Queue(%d) setup failed rc = %d\n", i, rc); 12737 sc->state = BXE_STATE_ERROR; 12738 goto bxe_nic_load_error3; 12739 } 12740 } 12741 12742 rc = bxe_init_rss_pf(sc); 12743 if (rc) { 12744 BLOGE(sc, "PF RSS init failed\n"); 12745 sc->state = BXE_STATE_ERROR; 12746 goto bxe_nic_load_error3; 12747 } 12748 } 12749 /* XXX VF */ 12750 12751 /* now when Clients are configured we are ready to work */ 12752 sc->state = BXE_STATE_OPEN; 12753 12754 /* Configure a ucast MAC */ 12755 if (IS_PF(sc)) { 12756 rc = bxe_set_eth_mac(sc, TRUE); 12757 } 12758 if (rc) { 12759 BLOGE(sc, "Setting Ethernet MAC failed rc = %d\n", rc); 12760 sc->state = BXE_STATE_ERROR; 12761 goto bxe_nic_load_error3; 12762 } 12763 12764 if (sc->port.pmf) { 12765 rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN); 12766 if (rc) { 12767 sc->state = BXE_STATE_ERROR; 12768 goto bxe_nic_load_error3; 12769 } 12770 } 12771 12772 sc->link_params.feature_config_flags &= 12773 ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN; 12774 12775 /* start fast path */ 12776 12777 /* Initialize Rx filter */ 12778 bxe_set_rx_mode(sc); 12779 12780 /* start the Tx */ 12781 switch (/* XXX load_mode */LOAD_OPEN) { 12782 case LOAD_NORMAL: 12783 case LOAD_OPEN: 12784 break; 12785 12786 case LOAD_DIAG: 12787 case LOAD_LOOPBACK_EXT: 12788 sc->state = BXE_STATE_DIAG; 12789 break; 12790 12791 default: 12792 break; 12793 } 12794 12795 if (sc->port.pmf) { 12796 bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0); 12797 } else { 12798 bxe_link_status_update(sc); 12799 } 12800 12801 /* start the periodic timer callout */ 12802 bxe_periodic_start(sc); 12803 12804 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { 12805 /* mark driver is loaded in shmem2 */ 12806 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); 12807 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], 12808 (val | 12809 DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED | 12810 DRV_FLAGS_CAPABILITIES_LOADED_L2)); 12811 } 12812 12813 /* wait for all pending SP commands to complete */ 12814 if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) { 12815 BLOGE(sc, "Timeout waiting for all SPs to complete!\n"); 12816 bxe_periodic_stop(sc); 12817 bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE); 12818 return (ENXIO); 12819 } 12820 12821 /* Tell the stack the driver is running! */ 12822 if_setdrvflags(sc->ifp, IFF_DRV_RUNNING); 12823 12824 BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n"); 12825 12826 return (0); 12827 12828 bxe_nic_load_error3: 12829 12830 if (IS_PF(sc)) { 12831 bxe_int_disable_sync(sc, 1); 12832 12833 /* clean out queued objects */ 12834 bxe_squeeze_objects(sc); 12835 } 12836 12837 bxe_interrupt_detach(sc); 12838 12839 bxe_nic_load_error2: 12840 12841 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 12842 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 12843 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); 12844 } 12845 12846 sc->port.pmf = 0; 12847 12848 bxe_nic_load_error1: 12849 12850 /* clear pf_load status, as it was already set */ 12851 if (IS_PF(sc)) { 12852 bxe_clear_pf_load(sc); 12853 } 12854 12855 bxe_nic_load_error0: 12856 12857 bxe_free_fw_stats_mem(sc); 12858 bxe_free_fp_buffers(sc); 12859 bxe_free_mem(sc); 12860 12861 return (rc); 12862 } 12863 12864 static int 12865 bxe_init_locked(struct bxe_softc *sc) 12866 { 12867 int other_engine = SC_PATH(sc) ? 0 : 1; 12868 uint8_t other_load_status, load_status; 12869 uint8_t global = FALSE; 12870 int rc; 12871 12872 BXE_CORE_LOCK_ASSERT(sc); 12873 12874 /* check if the driver is already running */ 12875 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 12876 BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n"); 12877 return (0); 12878 } 12879 12880 if((sc->state == BXE_STATE_ERROR) && 12881 (sc->recovery_state == BXE_RECOVERY_FAILED)) { 12882 BLOGE(sc, "Initialization not done, " 12883 "as previous recovery failed." 12884 "Reboot/Power-cycle the system\n" ); 12885 return (ENXIO); 12886 } 12887 12888 12889 bxe_set_power_state(sc, PCI_PM_D0); 12890 12891 /* 12892 * If parity occurred during the unload, then attentions and/or 12893 * RECOVERY_IN_PROGRES may still be set. If so we want the first function 12894 * loaded on the current engine to complete the recovery. Parity recovery 12895 * is only relevant for PF driver. 12896 */ 12897 if (IS_PF(sc)) { 12898 other_load_status = bxe_get_load_status(sc, other_engine); 12899 load_status = bxe_get_load_status(sc, SC_PATH(sc)); 12900 12901 if (!bxe_reset_is_done(sc, SC_PATH(sc)) || 12902 bxe_chk_parity_attn(sc, &global, TRUE)) { 12903 do { 12904 /* 12905 * If there are attentions and they are in global blocks, set 12906 * the GLOBAL_RESET bit regardless whether it will be this 12907 * function that will complete the recovery or not. 12908 */ 12909 if (global) { 12910 bxe_set_reset_global(sc); 12911 } 12912 12913 /* 12914 * Only the first function on the current engine should try 12915 * to recover in open. In case of attentions in global blocks 12916 * only the first in the chip should try to recover. 12917 */ 12918 if ((!load_status && (!global || !other_load_status)) && 12919 bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) { 12920 BLOGI(sc, "Recovered during init\n"); 12921 break; 12922 } 12923 12924 /* recovery has failed... */ 12925 bxe_set_power_state(sc, PCI_PM_D3hot); 12926 sc->recovery_state = BXE_RECOVERY_FAILED; 12927 12928 BLOGE(sc, "Recovery flow hasn't properly " 12929 "completed yet, try again later. " 12930 "If you still see this message after a " 12931 "few retries then power cycle is required.\n"); 12932 12933 rc = ENXIO; 12934 goto bxe_init_locked_done; 12935 } while (0); 12936 } 12937 } 12938 12939 sc->recovery_state = BXE_RECOVERY_DONE; 12940 12941 rc = bxe_nic_load(sc, LOAD_OPEN); 12942 12943 bxe_init_locked_done: 12944 12945 if (rc) { 12946 /* Tell the stack the driver is NOT running! */ 12947 BLOGE(sc, "Initialization failed, " 12948 "stack notified driver is NOT running!\n"); 12949 if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING); 12950 } 12951 12952 return (rc); 12953 } 12954 12955 static int 12956 bxe_stop_locked(struct bxe_softc *sc) 12957 { 12958 BXE_CORE_LOCK_ASSERT(sc); 12959 return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE)); 12960 } 12961 12962 /* 12963 * Handles controller initialization when called from an unlocked routine. 12964 * ifconfig calls this function. 12965 * 12966 * Returns: 12967 * void 12968 */ 12969 static void 12970 bxe_init(void *xsc) 12971 { 12972 struct bxe_softc *sc = (struct bxe_softc *)xsc; 12973 12974 BXE_CORE_LOCK(sc); 12975 bxe_init_locked(sc); 12976 BXE_CORE_UNLOCK(sc); 12977 } 12978 12979 static int 12980 bxe_init_ifnet(struct bxe_softc *sc) 12981 { 12982 if_t ifp; 12983 int capabilities; 12984 12985 /* ifconfig entrypoint for media type/status reporting */ 12986 ifmedia_init(&sc->ifmedia, IFM_IMASK, 12987 bxe_ifmedia_update, 12988 bxe_ifmedia_status); 12989 12990 /* set the default interface values */ 12991 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL); 12992 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL); 12993 ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO)); 12994 12995 sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */ 12996 BLOGI(sc, "IFMEDIA flags : %x\n", sc->ifmedia.ifm_media); 12997 12998 /* allocate the ifnet structure */ 12999 if ((ifp = if_gethandle(IFT_ETHER)) == NULL) { 13000 BLOGE(sc, "Interface allocation failed!\n"); 13001 return (ENXIO); 13002 } 13003 13004 if_setsoftc(ifp, sc); 13005 if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev)); 13006 if_setflags(ifp, (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST)); 13007 if_setioctlfn(ifp, bxe_ioctl); 13008 if_setstartfn(ifp, bxe_tx_start); 13009 if_setgetcounterfn(ifp, bxe_get_counter); 13010 if_settransmitfn(ifp, bxe_tx_mq_start); 13011 if_setqflushfn(ifp, bxe_mq_flush); 13012 if_setinitfn(ifp, bxe_init); 13013 if_setmtu(ifp, sc->mtu); 13014 if_sethwassist(ifp, (CSUM_IP | 13015 CSUM_TCP | 13016 CSUM_UDP | 13017 CSUM_TSO | 13018 CSUM_TCP_IPV6 | 13019 CSUM_UDP_IPV6)); 13020 13021 capabilities = 13022 (IFCAP_VLAN_MTU | 13023 IFCAP_VLAN_HWTAGGING | 13024 IFCAP_VLAN_HWTSO | 13025 IFCAP_VLAN_HWFILTER | 13026 IFCAP_VLAN_HWCSUM | 13027 IFCAP_HWCSUM | 13028 IFCAP_JUMBO_MTU | 13029 IFCAP_LRO | 13030 IFCAP_TSO4 | 13031 IFCAP_TSO6 | 13032 IFCAP_WOL_MAGIC); 13033 if_setcapabilitiesbit(ifp, capabilities, 0); /* XXX */ 13034 if_setcapenable(ifp, if_getcapabilities(ifp)); 13035 if_setbaudrate(ifp, IF_Gbps(10)); 13036 /* XXX */ 13037 if_setsendqlen(ifp, sc->tx_ring_size); 13038 if_setsendqready(ifp); 13039 /* XXX */ 13040 13041 sc->ifp = ifp; 13042 13043 /* attach to the Ethernet interface list */ 13044 ether_ifattach(ifp, sc->link_params.mac_addr); 13045 13046 /* Attach driver debugnet methods. */ 13047 DEBUGNET_SET(ifp, bxe); 13048 13049 return (0); 13050 } 13051 13052 static void 13053 bxe_deallocate_bars(struct bxe_softc *sc) 13054 { 13055 int i; 13056 13057 for (i = 0; i < MAX_BARS; i++) { 13058 if (sc->bar[i].resource != NULL) { 13059 bus_release_resource(sc->dev, 13060 SYS_RES_MEMORY, 13061 sc->bar[i].rid, 13062 sc->bar[i].resource); 13063 BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n", 13064 i, PCIR_BAR(i)); 13065 } 13066 } 13067 } 13068 13069 static int 13070 bxe_allocate_bars(struct bxe_softc *sc) 13071 { 13072 u_int flags; 13073 int i; 13074 13075 memset(sc->bar, 0, sizeof(sc->bar)); 13076 13077 for (i = 0; i < MAX_BARS; i++) { 13078 13079 /* memory resources reside at BARs 0, 2, 4 */ 13080 /* Run `pciconf -lb` to see mappings */ 13081 if ((i != 0) && (i != 2) && (i != 4)) { 13082 continue; 13083 } 13084 13085 sc->bar[i].rid = PCIR_BAR(i); 13086 13087 flags = RF_ACTIVE; 13088 if (i == 0) { 13089 flags |= RF_SHAREABLE; 13090 } 13091 13092 if ((sc->bar[i].resource = 13093 bus_alloc_resource_any(sc->dev, 13094 SYS_RES_MEMORY, 13095 &sc->bar[i].rid, 13096 flags)) == NULL) { 13097 return (0); 13098 } 13099 13100 sc->bar[i].tag = rman_get_bustag(sc->bar[i].resource); 13101 sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource); 13102 sc->bar[i].kva = (vm_offset_t)rman_get_virtual(sc->bar[i].resource); 13103 13104 BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %#jx-%#jx (%jd) -> %#jx\n", 13105 i, PCIR_BAR(i), 13106 rman_get_start(sc->bar[i].resource), 13107 rman_get_end(sc->bar[i].resource), 13108 rman_get_size(sc->bar[i].resource), 13109 (uintmax_t)sc->bar[i].kva); 13110 } 13111 13112 return (0); 13113 } 13114 13115 static void 13116 bxe_get_function_num(struct bxe_softc *sc) 13117 { 13118 uint32_t val = 0; 13119 13120 /* 13121 * Read the ME register to get the function number. The ME register 13122 * holds the relative-function number and absolute-function number. The 13123 * absolute-function number appears only in E2 and above. Before that 13124 * these bits always contained zero, therefore we cannot blindly use them. 13125 */ 13126 13127 val = REG_RD(sc, BAR_ME_REGISTER); 13128 13129 sc->pfunc_rel = 13130 (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT); 13131 sc->path_id = 13132 (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1; 13133 13134 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 13135 sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id); 13136 } else { 13137 sc->pfunc_abs = (sc->pfunc_rel | sc->path_id); 13138 } 13139 13140 BLOGD(sc, DBG_LOAD, 13141 "Relative function %d, Absolute function %d, Path %d\n", 13142 sc->pfunc_rel, sc->pfunc_abs, sc->path_id); 13143 } 13144 13145 static uint32_t 13146 bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc) 13147 { 13148 uint32_t shmem2_size; 13149 uint32_t offset; 13150 uint32_t mf_cfg_offset_value; 13151 13152 /* Non 57712 */ 13153 offset = (SHMEM_RD(sc, func_mb) + 13154 (MAX_FUNC_NUM * sizeof(struct drv_func_mb))); 13155 13156 /* 57712 plus */ 13157 if (sc->devinfo.shmem2_base != 0) { 13158 shmem2_size = SHMEM2_RD(sc, size); 13159 if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) { 13160 mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr); 13161 if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) { 13162 offset = mf_cfg_offset_value; 13163 } 13164 } 13165 } 13166 13167 return (offset); 13168 } 13169 13170 static uint32_t 13171 bxe_pcie_capability_read(struct bxe_softc *sc, 13172 int reg, 13173 int width) 13174 { 13175 int pcie_reg; 13176 13177 /* ensure PCIe capability is enabled */ 13178 if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) { 13179 if (pcie_reg != 0) { 13180 BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg); 13181 return (pci_read_config(sc->dev, (pcie_reg + reg), width)); 13182 } 13183 } 13184 13185 BLOGE(sc, "PCIe capability NOT FOUND!!!\n"); 13186 13187 return (0); 13188 } 13189 13190 static uint8_t 13191 bxe_is_pcie_pending(struct bxe_softc *sc) 13192 { 13193 return (bxe_pcie_capability_read(sc, PCIER_DEVICE_STA, 2) & 13194 PCIEM_STA_TRANSACTION_PND); 13195 } 13196 13197 /* 13198 * Walk the PCI capabiites list for the device to find what features are 13199 * supported. These capabilites may be enabled/disabled by firmware so it's 13200 * best to walk the list rather than make assumptions. 13201 */ 13202 static void 13203 bxe_probe_pci_caps(struct bxe_softc *sc) 13204 { 13205 uint16_t link_status; 13206 int reg; 13207 13208 /* check if PCI Power Management is enabled */ 13209 if (pci_find_cap(sc->dev, PCIY_PMG, ®) == 0) { 13210 if (reg != 0) { 13211 BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg); 13212 13213 sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG; 13214 sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg; 13215 } 13216 } 13217 13218 link_status = bxe_pcie_capability_read(sc, PCIER_LINK_STA, 2); 13219 13220 /* handle PCIe 2.0 workarounds for 57710 */ 13221 if (CHIP_IS_E1(sc)) { 13222 /* workaround for 57710 errata E4_57710_27462 */ 13223 sc->devinfo.pcie_link_speed = 13224 (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1; 13225 13226 /* workaround for 57710 errata E4_57710_27488 */ 13227 sc->devinfo.pcie_link_width = 13228 ((link_status & PCIEM_LINK_STA_WIDTH) >> 4); 13229 if (sc->devinfo.pcie_link_speed > 1) { 13230 sc->devinfo.pcie_link_width = 13231 ((link_status & PCIEM_LINK_STA_WIDTH) >> 4) >> 1; 13232 } 13233 } else { 13234 sc->devinfo.pcie_link_speed = 13235 (link_status & PCIEM_LINK_STA_SPEED); 13236 sc->devinfo.pcie_link_width = 13237 ((link_status & PCIEM_LINK_STA_WIDTH) >> 4); 13238 } 13239 13240 BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n", 13241 sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width); 13242 13243 sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG; 13244 sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg; 13245 13246 /* check if MSI capability is enabled */ 13247 if (pci_find_cap(sc->dev, PCIY_MSI, ®) == 0) { 13248 if (reg != 0) { 13249 BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg); 13250 13251 sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG; 13252 sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg; 13253 } 13254 } 13255 13256 /* check if MSI-X capability is enabled */ 13257 if (pci_find_cap(sc->dev, PCIY_MSIX, ®) == 0) { 13258 if (reg != 0) { 13259 BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg); 13260 13261 sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG; 13262 sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg; 13263 } 13264 } 13265 } 13266 13267 static int 13268 bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc) 13269 { 13270 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13271 uint32_t val; 13272 13273 /* get the outer vlan if we're in switch-dependent mode */ 13274 13275 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13276 mf_info->ext_id = (uint16_t)val; 13277 13278 mf_info->multi_vnics_mode = 1; 13279 13280 if (!VALID_OVLAN(mf_info->ext_id)) { 13281 BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id); 13282 return (1); 13283 } 13284 13285 /* get the capabilities */ 13286 if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == 13287 FUNC_MF_CFG_PROTOCOL_ISCSI) { 13288 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI; 13289 } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == 13290 FUNC_MF_CFG_PROTOCOL_FCOE) { 13291 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE; 13292 } else { 13293 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET; 13294 } 13295 13296 mf_info->vnics_per_port = 13297 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13298 13299 return (0); 13300 } 13301 13302 static uint32_t 13303 bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc) 13304 { 13305 uint32_t retval = 0; 13306 uint32_t val; 13307 13308 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); 13309 13310 if (val & MACP_FUNC_CFG_FLAGS_ENABLED) { 13311 if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) { 13312 retval |= MF_PROTO_SUPPORT_ETHERNET; 13313 } 13314 if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) { 13315 retval |= MF_PROTO_SUPPORT_ISCSI; 13316 } 13317 if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) { 13318 retval |= MF_PROTO_SUPPORT_FCOE; 13319 } 13320 } 13321 13322 return (retval); 13323 } 13324 13325 static int 13326 bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc) 13327 { 13328 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13329 uint32_t val; 13330 13331 /* 13332 * There is no outer vlan if we're in switch-independent mode. 13333 * If the mac is valid then assume multi-function. 13334 */ 13335 13336 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); 13337 13338 mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0); 13339 13340 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); 13341 13342 mf_info->vnics_per_port = 13343 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13344 13345 return (0); 13346 } 13347 13348 static int 13349 bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc) 13350 { 13351 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13352 uint32_t e1hov_tag; 13353 uint32_t func_config; 13354 uint32_t niv_config; 13355 13356 mf_info->multi_vnics_mode = 1; 13357 13358 e1hov_tag = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13359 func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 13360 niv_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config); 13361 13362 mf_info->ext_id = 13363 (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >> 13364 FUNC_MF_CFG_E1HOV_TAG_SHIFT); 13365 13366 mf_info->default_vlan = 13367 (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >> 13368 FUNC_MF_CFG_AFEX_VLAN_SHIFT); 13369 13370 mf_info->niv_allowed_priorities = 13371 (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >> 13372 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT); 13373 13374 mf_info->niv_default_cos = 13375 (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >> 13376 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT); 13377 13378 mf_info->afex_vlan_mode = 13379 ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >> 13380 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT); 13381 13382 mf_info->niv_mba_enabled = 13383 ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >> 13384 FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT); 13385 13386 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); 13387 13388 mf_info->vnics_per_port = 13389 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13390 13391 return (0); 13392 } 13393 13394 static int 13395 bxe_check_valid_mf_cfg(struct bxe_softc *sc) 13396 { 13397 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13398 uint32_t mf_cfg1; 13399 uint32_t mf_cfg2; 13400 uint32_t ovlan1; 13401 uint32_t ovlan2; 13402 uint8_t i, j; 13403 13404 BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n", 13405 SC_PORT(sc)); 13406 BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n", 13407 mf_info->mf_config[SC_VN(sc)]); 13408 BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n", 13409 mf_info->multi_vnics_mode); 13410 BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n", 13411 mf_info->vnics_per_port); 13412 BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n", 13413 mf_info->ext_id); 13414 BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n", 13415 mf_info->min_bw[0], mf_info->min_bw[1], 13416 mf_info->min_bw[2], mf_info->min_bw[3]); 13417 BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n", 13418 mf_info->max_bw[0], mf_info->max_bw[1], 13419 mf_info->max_bw[2], mf_info->max_bw[3]); 13420 BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n", 13421 sc->mac_addr_str); 13422 13423 /* various MF mode sanity checks... */ 13424 13425 if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) { 13426 BLOGE(sc, "Enumerated function %d is marked as hidden\n", 13427 SC_PORT(sc)); 13428 return (1); 13429 } 13430 13431 if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) { 13432 BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n", 13433 mf_info->vnics_per_port, mf_info->multi_vnics_mode); 13434 return (1); 13435 } 13436 13437 if (mf_info->mf_mode == MULTI_FUNCTION_SD) { 13438 /* vnic id > 0 must have valid ovlan in switch-dependent mode */ 13439 if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) { 13440 BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n", 13441 SC_VN(sc), OVLAN(sc)); 13442 return (1); 13443 } 13444 13445 if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) { 13446 BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n", 13447 mf_info->multi_vnics_mode, OVLAN(sc)); 13448 return (1); 13449 } 13450 13451 /* 13452 * Verify all functions are either MF or SF mode. If MF, make sure 13453 * sure that all non-hidden functions have a valid ovlan. If SF, 13454 * make sure that all non-hidden functions have an invalid ovlan. 13455 */ 13456 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13457 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); 13458 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); 13459 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && 13460 (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) || 13461 ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) { 13462 BLOGE(sc, "mf_mode=SD function %d MF config " 13463 "mismatch, multi_vnics_mode=%d ovlan=%d\n", 13464 i, mf_info->multi_vnics_mode, ovlan1); 13465 return (1); 13466 } 13467 } 13468 13469 /* Verify all funcs on the same port each have a different ovlan. */ 13470 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13471 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); 13472 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); 13473 /* iterate from the next function on the port to the max func */ 13474 for (j = i + 2; j < MAX_FUNC_NUM; j += 2) { 13475 mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config); 13476 ovlan2 = MFCFG_RD(sc, func_mf_config[j].e1hov_tag); 13477 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && 13478 VALID_OVLAN(ovlan1) && 13479 !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) && 13480 VALID_OVLAN(ovlan2) && 13481 (ovlan1 == ovlan2)) { 13482 BLOGE(sc, "mf_mode=SD functions %d and %d " 13483 "have the same ovlan (%d)\n", 13484 i, j, ovlan1); 13485 return (1); 13486 } 13487 } 13488 } 13489 } /* MULTI_FUNCTION_SD */ 13490 13491 return (0); 13492 } 13493 13494 static int 13495 bxe_get_mf_cfg_info(struct bxe_softc *sc) 13496 { 13497 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13498 uint32_t val, mac_upper; 13499 uint8_t i, vnic; 13500 13501 /* initialize mf_info defaults */ 13502 mf_info->vnics_per_port = 1; 13503 mf_info->multi_vnics_mode = FALSE; 13504 mf_info->path_has_ovlan = FALSE; 13505 mf_info->mf_mode = SINGLE_FUNCTION; 13506 13507 if (!CHIP_IS_MF_CAP(sc)) { 13508 return (0); 13509 } 13510 13511 if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) { 13512 BLOGE(sc, "Invalid mf_cfg_base!\n"); 13513 return (1); 13514 } 13515 13516 /* get the MF mode (switch dependent / independent / single-function) */ 13517 13518 val = SHMEM_RD(sc, dev_info.shared_feature_config.config); 13519 13520 switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK) 13521 { 13522 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT: 13523 13524 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13525 13526 /* check for legal upper mac bytes */ 13527 if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) { 13528 mf_info->mf_mode = MULTI_FUNCTION_SI; 13529 } else { 13530 BLOGE(sc, "Invalid config for Switch Independent mode\n"); 13531 } 13532 13533 break; 13534 13535 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED: 13536 case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4: 13537 13538 /* get outer vlan configuration */ 13539 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13540 13541 if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) != 13542 FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 13543 mf_info->mf_mode = MULTI_FUNCTION_SD; 13544 } else { 13545 BLOGE(sc, "Invalid config for Switch Dependent mode\n"); 13546 } 13547 13548 break; 13549 13550 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF: 13551 13552 /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */ 13553 return (0); 13554 13555 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE: 13556 13557 /* 13558 * Mark MF mode as NIV if MCP version includes NPAR-SD support 13559 * and the MAC address is valid. 13560 */ 13561 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13562 13563 if ((SHMEM2_HAS(sc, afex_driver_support)) && 13564 (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) { 13565 mf_info->mf_mode = MULTI_FUNCTION_AFEX; 13566 } else { 13567 BLOGE(sc, "Invalid config for AFEX mode\n"); 13568 } 13569 13570 break; 13571 13572 default: 13573 13574 BLOGE(sc, "Unknown MF mode (0x%08x)\n", 13575 (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)); 13576 13577 return (1); 13578 } 13579 13580 /* set path mf_mode (which could be different than function mf_mode) */ 13581 if (mf_info->mf_mode == MULTI_FUNCTION_SD) { 13582 mf_info->path_has_ovlan = TRUE; 13583 } else if (mf_info->mf_mode == SINGLE_FUNCTION) { 13584 /* 13585 * Decide on path multi vnics mode. If we're not in MF mode and in 13586 * 4-port mode, this is good enough to check vnic-0 of the other port 13587 * on the same path 13588 */ 13589 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 13590 uint8_t other_port = !(PORT_ID(sc) & 1); 13591 uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port)); 13592 13593 val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag); 13594 13595 mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0; 13596 } 13597 } 13598 13599 if (mf_info->mf_mode == SINGLE_FUNCTION) { 13600 /* invalid MF config */ 13601 if (SC_VN(sc) >= 1) { 13602 BLOGE(sc, "VNIC ID >= 1 in SF mode\n"); 13603 return (1); 13604 } 13605 13606 return (0); 13607 } 13608 13609 /* get the MF configuration */ 13610 mf_info->mf_config[SC_VN(sc)] = 13611 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 13612 13613 switch(mf_info->mf_mode) 13614 { 13615 case MULTI_FUNCTION_SD: 13616 13617 bxe_get_shmem_mf_cfg_info_sd(sc); 13618 break; 13619 13620 case MULTI_FUNCTION_SI: 13621 13622 bxe_get_shmem_mf_cfg_info_si(sc); 13623 break; 13624 13625 case MULTI_FUNCTION_AFEX: 13626 13627 bxe_get_shmem_mf_cfg_info_niv(sc); 13628 break; 13629 13630 default: 13631 13632 BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n", 13633 mf_info->mf_mode); 13634 return (1); 13635 } 13636 13637 /* get the congestion management parameters */ 13638 13639 vnic = 0; 13640 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13641 /* get min/max bw */ 13642 val = MFCFG_RD(sc, func_mf_config[i].config); 13643 mf_info->min_bw[vnic] = 13644 ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT); 13645 mf_info->max_bw[vnic] = 13646 ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT); 13647 vnic++; 13648 } 13649 13650 return (bxe_check_valid_mf_cfg(sc)); 13651 } 13652 13653 static int 13654 bxe_get_shmem_info(struct bxe_softc *sc) 13655 { 13656 int port; 13657 uint32_t mac_hi, mac_lo, val; 13658 13659 port = SC_PORT(sc); 13660 mac_hi = mac_lo = 0; 13661 13662 sc->link_params.sc = sc; 13663 sc->link_params.port = port; 13664 13665 /* get the hardware config info */ 13666 sc->devinfo.hw_config = 13667 SHMEM_RD(sc, dev_info.shared_hw_config.config); 13668 sc->devinfo.hw_config2 = 13669 SHMEM_RD(sc, dev_info.shared_hw_config.config2); 13670 13671 sc->link_params.hw_led_mode = 13672 ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >> 13673 SHARED_HW_CFG_LED_MODE_SHIFT); 13674 13675 /* get the port feature config */ 13676 sc->port.config = 13677 SHMEM_RD(sc, dev_info.port_feature_config[port].config); 13678 13679 /* get the link params */ 13680 sc->link_params.speed_cap_mask[0] = 13681 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask); 13682 sc->link_params.speed_cap_mask[1] = 13683 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2); 13684 13685 /* get the lane config */ 13686 sc->link_params.lane_config = 13687 SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config); 13688 13689 /* get the link config */ 13690 val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config); 13691 sc->port.link_config[ELINK_INT_PHY] = val; 13692 sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK); 13693 sc->port.link_config[ELINK_EXT_PHY1] = 13694 SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2); 13695 13696 /* get the override preemphasis flag and enable it or turn it off */ 13697 val = SHMEM_RD(sc, dev_info.shared_feature_config.config); 13698 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) { 13699 sc->link_params.feature_config_flags |= 13700 ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 13701 } else { 13702 sc->link_params.feature_config_flags &= 13703 ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 13704 } 13705 13706 /* get the initial value of the link params */ 13707 sc->link_params.multi_phy_config = 13708 SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config); 13709 13710 /* get external phy info */ 13711 sc->port.ext_phy_config = 13712 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); 13713 13714 /* get the multifunction configuration */ 13715 bxe_get_mf_cfg_info(sc); 13716 13717 /* get the mac address */ 13718 if (IS_MF(sc)) { 13719 mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13720 mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower); 13721 } else { 13722 mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper); 13723 mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower); 13724 } 13725 13726 if ((mac_lo == 0) && (mac_hi == 0)) { 13727 *sc->mac_addr_str = 0; 13728 BLOGE(sc, "No Ethernet address programmed!\n"); 13729 } else { 13730 sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8); 13731 sc->link_params.mac_addr[1] = (uint8_t)(mac_hi); 13732 sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24); 13733 sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16); 13734 sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8); 13735 sc->link_params.mac_addr[5] = (uint8_t)(mac_lo); 13736 snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str), 13737 "%02x:%02x:%02x:%02x:%02x:%02x", 13738 sc->link_params.mac_addr[0], sc->link_params.mac_addr[1], 13739 sc->link_params.mac_addr[2], sc->link_params.mac_addr[3], 13740 sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]); 13741 BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str); 13742 } 13743 13744 return (0); 13745 } 13746 13747 static void 13748 bxe_get_tunable_params(struct bxe_softc *sc) 13749 { 13750 /* sanity checks */ 13751 13752 if ((bxe_interrupt_mode != INTR_MODE_INTX) && 13753 (bxe_interrupt_mode != INTR_MODE_MSI) && 13754 (bxe_interrupt_mode != INTR_MODE_MSIX)) { 13755 BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode); 13756 bxe_interrupt_mode = INTR_MODE_MSIX; 13757 } 13758 13759 if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) { 13760 BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count); 13761 bxe_queue_count = 0; 13762 } 13763 13764 if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) { 13765 if (bxe_max_rx_bufs == 0) { 13766 bxe_max_rx_bufs = RX_BD_USABLE; 13767 } else { 13768 BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs); 13769 bxe_max_rx_bufs = 2048; 13770 } 13771 } 13772 13773 if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) { 13774 BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks); 13775 bxe_hc_rx_ticks = 25; 13776 } 13777 13778 if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) { 13779 BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks); 13780 bxe_hc_tx_ticks = 50; 13781 } 13782 13783 if (bxe_max_aggregation_size == 0) { 13784 bxe_max_aggregation_size = TPA_AGG_SIZE; 13785 } 13786 13787 if (bxe_max_aggregation_size > 0xffff) { 13788 BLOGW(sc, "invalid max_aggregation_size (%d)\n", 13789 bxe_max_aggregation_size); 13790 bxe_max_aggregation_size = TPA_AGG_SIZE; 13791 } 13792 13793 if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) { 13794 BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs); 13795 bxe_mrrs = -1; 13796 } 13797 13798 if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) { 13799 BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen); 13800 bxe_autogreeen = 0; 13801 } 13802 13803 if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) { 13804 BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss); 13805 bxe_udp_rss = 0; 13806 } 13807 13808 /* pull in user settings */ 13809 13810 sc->interrupt_mode = bxe_interrupt_mode; 13811 sc->max_rx_bufs = bxe_max_rx_bufs; 13812 sc->hc_rx_ticks = bxe_hc_rx_ticks; 13813 sc->hc_tx_ticks = bxe_hc_tx_ticks; 13814 sc->max_aggregation_size = bxe_max_aggregation_size; 13815 sc->mrrs = bxe_mrrs; 13816 sc->autogreeen = bxe_autogreeen; 13817 sc->udp_rss = bxe_udp_rss; 13818 13819 if (bxe_interrupt_mode == INTR_MODE_INTX) { 13820 sc->num_queues = 1; 13821 } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */ 13822 sc->num_queues = 13823 min((bxe_queue_count ? bxe_queue_count : mp_ncpus), 13824 MAX_RSS_CHAINS); 13825 if (sc->num_queues > mp_ncpus) { 13826 sc->num_queues = mp_ncpus; 13827 } 13828 } 13829 13830 BLOGD(sc, DBG_LOAD, 13831 "User Config: " 13832 "debug=0x%lx " 13833 "interrupt_mode=%d " 13834 "queue_count=%d " 13835 "hc_rx_ticks=%d " 13836 "hc_tx_ticks=%d " 13837 "rx_budget=%d " 13838 "max_aggregation_size=%d " 13839 "mrrs=%d " 13840 "autogreeen=%d " 13841 "udp_rss=%d\n", 13842 bxe_debug, 13843 sc->interrupt_mode, 13844 sc->num_queues, 13845 sc->hc_rx_ticks, 13846 sc->hc_tx_ticks, 13847 bxe_rx_budget, 13848 sc->max_aggregation_size, 13849 sc->mrrs, 13850 sc->autogreeen, 13851 sc->udp_rss); 13852 } 13853 13854 static int 13855 bxe_media_detect(struct bxe_softc *sc) 13856 { 13857 int port_type; 13858 uint32_t phy_idx = bxe_get_cur_phy_idx(sc); 13859 13860 switch (sc->link_params.phy[phy_idx].media_type) { 13861 case ELINK_ETH_PHY_SFPP_10G_FIBER: 13862 case ELINK_ETH_PHY_XFP_FIBER: 13863 BLOGI(sc, "Found 10Gb Fiber media.\n"); 13864 sc->media = IFM_10G_SR; 13865 port_type = PORT_FIBRE; 13866 break; 13867 case ELINK_ETH_PHY_SFP_1G_FIBER: 13868 BLOGI(sc, "Found 1Gb Fiber media.\n"); 13869 sc->media = IFM_1000_SX; 13870 port_type = PORT_FIBRE; 13871 break; 13872 case ELINK_ETH_PHY_KR: 13873 case ELINK_ETH_PHY_CX4: 13874 BLOGI(sc, "Found 10GBase-CX4 media.\n"); 13875 sc->media = IFM_10G_CX4; 13876 port_type = PORT_FIBRE; 13877 break; 13878 case ELINK_ETH_PHY_DA_TWINAX: 13879 BLOGI(sc, "Found 10Gb Twinax media.\n"); 13880 sc->media = IFM_10G_TWINAX; 13881 port_type = PORT_DA; 13882 break; 13883 case ELINK_ETH_PHY_BASE_T: 13884 if (sc->link_params.speed_cap_mask[0] & 13885 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { 13886 BLOGI(sc, "Found 10GBase-T media.\n"); 13887 sc->media = IFM_10G_T; 13888 port_type = PORT_TP; 13889 } else { 13890 BLOGI(sc, "Found 1000Base-T media.\n"); 13891 sc->media = IFM_1000_T; 13892 port_type = PORT_TP; 13893 } 13894 break; 13895 case ELINK_ETH_PHY_NOT_PRESENT: 13896 BLOGI(sc, "Media not present.\n"); 13897 sc->media = 0; 13898 port_type = PORT_OTHER; 13899 break; 13900 case ELINK_ETH_PHY_UNSPECIFIED: 13901 default: 13902 BLOGI(sc, "Unknown media!\n"); 13903 sc->media = 0; 13904 port_type = PORT_OTHER; 13905 break; 13906 } 13907 return port_type; 13908 } 13909 13910 #define GET_FIELD(value, fname) \ 13911 (((value) & (fname##_MASK)) >> (fname##_SHIFT)) 13912 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID) 13913 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR) 13914 13915 static int 13916 bxe_get_igu_cam_info(struct bxe_softc *sc) 13917 { 13918 int pfid = SC_FUNC(sc); 13919 int igu_sb_id; 13920 uint32_t val; 13921 uint8_t fid, igu_sb_cnt = 0; 13922 13923 sc->igu_base_sb = 0xff; 13924 13925 if (CHIP_INT_MODE_IS_BC(sc)) { 13926 int vn = SC_VN(sc); 13927 igu_sb_cnt = sc->igu_sb_cnt; 13928 sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) * 13929 FP_SB_MAX_E1x); 13930 sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x + 13931 (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn)); 13932 return (0); 13933 } 13934 13935 /* IGU in normal mode - read CAM */ 13936 for (igu_sb_id = 0; 13937 igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; 13938 igu_sb_id++) { 13939 val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4); 13940 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) { 13941 continue; 13942 } 13943 fid = IGU_FID(val); 13944 if ((fid & IGU_FID_ENCODE_IS_PF)) { 13945 if ((fid & IGU_FID_PF_NUM_MASK) != pfid) { 13946 continue; 13947 } 13948 if (IGU_VEC(val) == 0) { 13949 /* default status block */ 13950 sc->igu_dsb_id = igu_sb_id; 13951 } else { 13952 if (sc->igu_base_sb == 0xff) { 13953 sc->igu_base_sb = igu_sb_id; 13954 } 13955 igu_sb_cnt++; 13956 } 13957 } 13958 } 13959 13960 /* 13961 * Due to new PF resource allocation by MFW T7.4 and above, it's optional 13962 * that number of CAM entries will not be equal to the value advertised in 13963 * PCI. Driver should use the minimal value of both as the actual status 13964 * block count 13965 */ 13966 sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt); 13967 13968 if (igu_sb_cnt == 0) { 13969 BLOGE(sc, "CAM configuration error\n"); 13970 return (-1); 13971 } 13972 13973 return (0); 13974 } 13975 13976 /* 13977 * Gather various information from the device config space, the device itself, 13978 * shmem, and the user input. 13979 */ 13980 static int 13981 bxe_get_device_info(struct bxe_softc *sc) 13982 { 13983 uint32_t val; 13984 int rc; 13985 13986 /* Get the data for the device */ 13987 sc->devinfo.vendor_id = pci_get_vendor(sc->dev); 13988 sc->devinfo.device_id = pci_get_device(sc->dev); 13989 sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev); 13990 sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev); 13991 13992 /* get the chip revision (chip metal comes from pci config space) */ 13993 sc->devinfo.chip_id = 13994 sc->link_params.chip_id = 13995 (((REG_RD(sc, MISC_REG_CHIP_NUM) & 0xffff) << 16) | 13996 ((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12) | 13997 (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf) << 4) | 13998 ((REG_RD(sc, MISC_REG_BOND_ID) & 0xf) << 0)); 13999 14000 /* force 57811 according to MISC register */ 14001 if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) { 14002 if (CHIP_IS_57810(sc)) { 14003 sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) | 14004 (sc->devinfo.chip_id & 0x0000ffff)); 14005 } else if (CHIP_IS_57810_MF(sc)) { 14006 sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) | 14007 (sc->devinfo.chip_id & 0x0000ffff)); 14008 } 14009 sc->devinfo.chip_id |= 0x1; 14010 } 14011 14012 BLOGD(sc, DBG_LOAD, 14013 "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n", 14014 sc->devinfo.chip_id, 14015 ((sc->devinfo.chip_id >> 16) & 0xffff), 14016 ((sc->devinfo.chip_id >> 12) & 0xf), 14017 ((sc->devinfo.chip_id >> 4) & 0xff), 14018 ((sc->devinfo.chip_id >> 0) & 0xf)); 14019 14020 val = (REG_RD(sc, 0x2874) & 0x55); 14021 if ((sc->devinfo.chip_id & 0x1) || 14022 (CHIP_IS_E1(sc) && val) || 14023 (CHIP_IS_E1H(sc) && (val == 0x55))) { 14024 sc->flags |= BXE_ONE_PORT_FLAG; 14025 BLOGD(sc, DBG_LOAD, "single port device\n"); 14026 } 14027 14028 /* set the doorbell size */ 14029 sc->doorbell_size = (1 << BXE_DB_SHIFT); 14030 14031 /* determine whether the device is in 2 port or 4 port mode */ 14032 sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/ 14033 if (CHIP_IS_E2E3(sc)) { 14034 /* 14035 * Read port4mode_en_ovwr[0]: 14036 * If 1, four port mode is in port4mode_en_ovwr[1]. 14037 * If 0, four port mode is in port4mode_en[0]. 14038 */ 14039 val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR); 14040 if (val & 1) { 14041 val = ((val >> 1) & 1); 14042 } else { 14043 val = REG_RD(sc, MISC_REG_PORT4MODE_EN); 14044 } 14045 14046 sc->devinfo.chip_port_mode = 14047 (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE; 14048 14049 BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2"); 14050 } 14051 14052 /* get the function and path info for the device */ 14053 bxe_get_function_num(sc); 14054 14055 /* get the shared memory base address */ 14056 sc->devinfo.shmem_base = 14057 sc->link_params.shmem_base = 14058 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 14059 sc->devinfo.shmem2_base = 14060 REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 : 14061 MISC_REG_GENERIC_CR_0)); 14062 14063 BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n", 14064 sc->devinfo.shmem_base, sc->devinfo.shmem2_base); 14065 14066 if (!sc->devinfo.shmem_base) { 14067 /* this should ONLY prevent upcoming shmem reads */ 14068 BLOGI(sc, "MCP not active\n"); 14069 sc->flags |= BXE_NO_MCP_FLAG; 14070 return (0); 14071 } 14072 14073 /* make sure the shared memory contents are valid */ 14074 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); 14075 if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) != 14076 (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) { 14077 BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val); 14078 return (0); 14079 } 14080 BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val); 14081 14082 /* get the bootcode version */ 14083 sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev); 14084 snprintf(sc->devinfo.bc_ver_str, 14085 sizeof(sc->devinfo.bc_ver_str), 14086 "%d.%d.%d", 14087 ((sc->devinfo.bc_ver >> 24) & 0xff), 14088 ((sc->devinfo.bc_ver >> 16) & 0xff), 14089 ((sc->devinfo.bc_ver >> 8) & 0xff)); 14090 BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str); 14091 14092 /* get the bootcode shmem address */ 14093 sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc); 14094 BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base); 14095 14096 /* clean indirect addresses as they're not used */ 14097 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 14098 if (IS_PF(sc)) { 14099 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0); 14100 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0); 14101 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0); 14102 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0); 14103 if (CHIP_IS_E1x(sc)) { 14104 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0); 14105 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0); 14106 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0); 14107 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0); 14108 } 14109 14110 /* 14111 * Enable internal target-read (in case we are probed after PF 14112 * FLR). Must be done prior to any BAR read access. Only for 14113 * 57712 and up 14114 */ 14115 if (!CHIP_IS_E1x(sc)) { 14116 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 14117 } 14118 } 14119 14120 /* get the nvram size */ 14121 val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4); 14122 sc->devinfo.flash_size = 14123 (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE)); 14124 BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size); 14125 14126 /* get PCI capabilites */ 14127 bxe_probe_pci_caps(sc); 14128 14129 bxe_set_power_state(sc, PCI_PM_D0); 14130 14131 /* get various configuration parameters from shmem */ 14132 bxe_get_shmem_info(sc); 14133 14134 if (sc->devinfo.pcie_msix_cap_reg != 0) { 14135 val = pci_read_config(sc->dev, 14136 (sc->devinfo.pcie_msix_cap_reg + 14137 PCIR_MSIX_CTRL), 14138 2); 14139 sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE); 14140 } else { 14141 sc->igu_sb_cnt = 1; 14142 } 14143 14144 sc->igu_base_addr = BAR_IGU_INTMEM; 14145 14146 /* initialize IGU parameters */ 14147 if (CHIP_IS_E1x(sc)) { 14148 sc->devinfo.int_block = INT_BLOCK_HC; 14149 sc->igu_dsb_id = DEF_SB_IGU_ID; 14150 sc->igu_base_sb = 0; 14151 } else { 14152 sc->devinfo.int_block = INT_BLOCK_IGU; 14153 14154 /* do not allow device reset during IGU info preocessing */ 14155 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 14156 14157 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); 14158 14159 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 14160 int tout = 5000; 14161 14162 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n"); 14163 14164 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN); 14165 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val); 14166 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f); 14167 14168 while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) { 14169 tout--; 14170 DELAY(1000); 14171 } 14172 14173 if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) { 14174 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n"); 14175 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 14176 return (-1); 14177 } 14178 } 14179 14180 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 14181 BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n"); 14182 sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP; 14183 } else { 14184 BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n"); 14185 } 14186 14187 rc = bxe_get_igu_cam_info(sc); 14188 14189 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 14190 14191 if (rc) { 14192 return (rc); 14193 } 14194 } 14195 14196 /* 14197 * Get base FW non-default (fast path) status block ID. This value is 14198 * used to initialize the fw_sb_id saved on the fp/queue structure to 14199 * determine the id used by the FW. 14200 */ 14201 if (CHIP_IS_E1x(sc)) { 14202 sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc)); 14203 } else { 14204 /* 14205 * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of 14206 * the same queue are indicated on the same IGU SB). So we prefer 14207 * FW and IGU SBs to be the same value. 14208 */ 14209 sc->base_fw_ndsb = sc->igu_base_sb; 14210 } 14211 14212 BLOGD(sc, DBG_LOAD, 14213 "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n", 14214 sc->igu_dsb_id, sc->igu_base_sb, 14215 sc->igu_sb_cnt, sc->base_fw_ndsb); 14216 14217 elink_phy_probe(&sc->link_params); 14218 14219 return (0); 14220 } 14221 14222 static void 14223 bxe_link_settings_supported(struct bxe_softc *sc, 14224 uint32_t switch_cfg) 14225 { 14226 uint32_t cfg_size = 0; 14227 uint32_t idx; 14228 uint8_t port = SC_PORT(sc); 14229 14230 /* aggregation of supported attributes of all external phys */ 14231 sc->port.supported[0] = 0; 14232 sc->port.supported[1] = 0; 14233 14234 switch (sc->link_params.num_phys) { 14235 case 1: 14236 sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported; 14237 cfg_size = 1; 14238 break; 14239 case 2: 14240 sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported; 14241 cfg_size = 1; 14242 break; 14243 case 3: 14244 if (sc->link_params.multi_phy_config & 14245 PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 14246 sc->port.supported[1] = 14247 sc->link_params.phy[ELINK_EXT_PHY1].supported; 14248 sc->port.supported[0] = 14249 sc->link_params.phy[ELINK_EXT_PHY2].supported; 14250 } else { 14251 sc->port.supported[0] = 14252 sc->link_params.phy[ELINK_EXT_PHY1].supported; 14253 sc->port.supported[1] = 14254 sc->link_params.phy[ELINK_EXT_PHY2].supported; 14255 } 14256 cfg_size = 2; 14257 break; 14258 } 14259 14260 if (!(sc->port.supported[0] || sc->port.supported[1])) { 14261 BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n", 14262 SHMEM_RD(sc, 14263 dev_info.port_hw_config[port].external_phy_config), 14264 SHMEM_RD(sc, 14265 dev_info.port_hw_config[port].external_phy_config2)); 14266 return; 14267 } 14268 14269 if (CHIP_IS_E3(sc)) 14270 sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR); 14271 else { 14272 switch (switch_cfg) { 14273 case ELINK_SWITCH_CFG_1G: 14274 sc->port.phy_addr = 14275 REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10); 14276 break; 14277 case ELINK_SWITCH_CFG_10G: 14278 sc->port.phy_addr = 14279 REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18); 14280 break; 14281 default: 14282 BLOGE(sc, "Invalid switch config in link_config=0x%08x\n", 14283 sc->port.link_config[0]); 14284 return; 14285 } 14286 } 14287 14288 BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr); 14289 14290 /* mask what we support according to speed_cap_mask per configuration */ 14291 for (idx = 0; idx < cfg_size; idx++) { 14292 if (!(sc->link_params.speed_cap_mask[idx] & 14293 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) { 14294 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half; 14295 } 14296 14297 if (!(sc->link_params.speed_cap_mask[idx] & 14298 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) { 14299 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full; 14300 } 14301 14302 if (!(sc->link_params.speed_cap_mask[idx] & 14303 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) { 14304 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half; 14305 } 14306 14307 if (!(sc->link_params.speed_cap_mask[idx] & 14308 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) { 14309 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full; 14310 } 14311 14312 if (!(sc->link_params.speed_cap_mask[idx] & 14313 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) { 14314 sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full; 14315 } 14316 14317 if (!(sc->link_params.speed_cap_mask[idx] & 14318 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) { 14319 sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full; 14320 } 14321 14322 if (!(sc->link_params.speed_cap_mask[idx] & 14323 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) { 14324 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full; 14325 } 14326 14327 if (!(sc->link_params.speed_cap_mask[idx] & 14328 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) { 14329 sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full; 14330 } 14331 } 14332 14333 BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n", 14334 sc->port.supported[0], sc->port.supported[1]); 14335 ELINK_DEBUG_P2(sc, "PHY supported 0=0x%08x 1=0x%08x\n", 14336 sc->port.supported[0], sc->port.supported[1]); 14337 } 14338 14339 static void 14340 bxe_link_settings_requested(struct bxe_softc *sc) 14341 { 14342 uint32_t link_config; 14343 uint32_t idx; 14344 uint32_t cfg_size = 0; 14345 14346 sc->port.advertising[0] = 0; 14347 sc->port.advertising[1] = 0; 14348 14349 switch (sc->link_params.num_phys) { 14350 case 1: 14351 case 2: 14352 cfg_size = 1; 14353 break; 14354 case 3: 14355 cfg_size = 2; 14356 break; 14357 } 14358 14359 for (idx = 0; idx < cfg_size; idx++) { 14360 sc->link_params.req_duplex[idx] = DUPLEX_FULL; 14361 link_config = sc->port.link_config[idx]; 14362 14363 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) { 14364 case PORT_FEATURE_LINK_SPEED_AUTO: 14365 if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) { 14366 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; 14367 sc->port.advertising[idx] |= sc->port.supported[idx]; 14368 if (sc->link_params.phy[ELINK_EXT_PHY1].type == 14369 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833) 14370 sc->port.advertising[idx] |= 14371 (ELINK_SUPPORTED_100baseT_Half | 14372 ELINK_SUPPORTED_100baseT_Full); 14373 } else { 14374 /* force 10G, no AN */ 14375 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; 14376 sc->port.advertising[idx] |= 14377 (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE); 14378 continue; 14379 } 14380 break; 14381 14382 case PORT_FEATURE_LINK_SPEED_10M_FULL: 14383 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) { 14384 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; 14385 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full | 14386 ADVERTISED_TP); 14387 } else { 14388 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14389 "speed_cap_mask=0x%08x\n", 14390 link_config, sc->link_params.speed_cap_mask[idx]); 14391 return; 14392 } 14393 break; 14394 14395 case PORT_FEATURE_LINK_SPEED_10M_HALF: 14396 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) { 14397 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; 14398 sc->link_params.req_duplex[idx] = DUPLEX_HALF; 14399 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half | 14400 ADVERTISED_TP); 14401 ELINK_DEBUG_P1(sc, "driver requesting DUPLEX_HALF req_duplex = %x!\n", 14402 sc->link_params.req_duplex[idx]); 14403 } else { 14404 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14405 "speed_cap_mask=0x%08x\n", 14406 link_config, sc->link_params.speed_cap_mask[idx]); 14407 return; 14408 } 14409 break; 14410 14411 case PORT_FEATURE_LINK_SPEED_100M_FULL: 14412 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) { 14413 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; 14414 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full | 14415 ADVERTISED_TP); 14416 } else { 14417 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14418 "speed_cap_mask=0x%08x\n", 14419 link_config, sc->link_params.speed_cap_mask[idx]); 14420 return; 14421 } 14422 break; 14423 14424 case PORT_FEATURE_LINK_SPEED_100M_HALF: 14425 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) { 14426 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; 14427 sc->link_params.req_duplex[idx] = DUPLEX_HALF; 14428 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half | 14429 ADVERTISED_TP); 14430 } else { 14431 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14432 "speed_cap_mask=0x%08x\n", 14433 link_config, sc->link_params.speed_cap_mask[idx]); 14434 return; 14435 } 14436 break; 14437 14438 case PORT_FEATURE_LINK_SPEED_1G: 14439 if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) { 14440 sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000; 14441 sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full | 14442 ADVERTISED_TP); 14443 } else { 14444 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14445 "speed_cap_mask=0x%08x\n", 14446 link_config, sc->link_params.speed_cap_mask[idx]); 14447 return; 14448 } 14449 break; 14450 14451 case PORT_FEATURE_LINK_SPEED_2_5G: 14452 if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) { 14453 sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500; 14454 sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full | 14455 ADVERTISED_TP); 14456 } else { 14457 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14458 "speed_cap_mask=0x%08x\n", 14459 link_config, sc->link_params.speed_cap_mask[idx]); 14460 return; 14461 } 14462 break; 14463 14464 case PORT_FEATURE_LINK_SPEED_10G_CX4: 14465 if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) { 14466 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; 14467 sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full | 14468 ADVERTISED_FIBRE); 14469 } else { 14470 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14471 "speed_cap_mask=0x%08x\n", 14472 link_config, sc->link_params.speed_cap_mask[idx]); 14473 return; 14474 } 14475 break; 14476 14477 case PORT_FEATURE_LINK_SPEED_20G: 14478 sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000; 14479 break; 14480 14481 default: 14482 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14483 "speed_cap_mask=0x%08x\n", 14484 link_config, sc->link_params.speed_cap_mask[idx]); 14485 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; 14486 sc->port.advertising[idx] = sc->port.supported[idx]; 14487 break; 14488 } 14489 14490 sc->link_params.req_flow_ctrl[idx] = 14491 (link_config & PORT_FEATURE_FLOW_CONTROL_MASK); 14492 14493 if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) { 14494 if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) { 14495 sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE; 14496 } else { 14497 bxe_set_requested_fc(sc); 14498 } 14499 } 14500 14501 BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d " 14502 "req_flow_ctrl=0x%x advertising=0x%x\n", 14503 sc->link_params.req_line_speed[idx], 14504 sc->link_params.req_duplex[idx], 14505 sc->link_params.req_flow_ctrl[idx], 14506 sc->port.advertising[idx]); 14507 ELINK_DEBUG_P3(sc, "req_line_speed=%d req_duplex=%d " 14508 "advertising=0x%x\n", 14509 sc->link_params.req_line_speed[idx], 14510 sc->link_params.req_duplex[idx], 14511 sc->port.advertising[idx]); 14512 } 14513 } 14514 14515 static void 14516 bxe_get_phy_info(struct bxe_softc *sc) 14517 { 14518 uint8_t port = SC_PORT(sc); 14519 uint32_t config = sc->port.config; 14520 uint32_t eee_mode; 14521 14522 /* shmem data already read in bxe_get_shmem_info() */ 14523 14524 ELINK_DEBUG_P3(sc, "lane_config=0x%08x speed_cap_mask0=0x%08x " 14525 "link_config0=0x%08x\n", 14526 sc->link_params.lane_config, 14527 sc->link_params.speed_cap_mask[0], 14528 sc->port.link_config[0]); 14529 14530 14531 bxe_link_settings_supported(sc, sc->link_params.switch_cfg); 14532 bxe_link_settings_requested(sc); 14533 14534 if (sc->autogreeen == AUTO_GREEN_FORCE_ON) { 14535 sc->link_params.feature_config_flags |= 14536 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14537 } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) { 14538 sc->link_params.feature_config_flags &= 14539 ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14540 } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) { 14541 sc->link_params.feature_config_flags |= 14542 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14543 } 14544 14545 /* configure link feature according to nvram value */ 14546 eee_mode = 14547 (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) & 14548 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >> 14549 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT); 14550 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) { 14551 sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI | 14552 ELINK_EEE_MODE_ENABLE_LPI | 14553 ELINK_EEE_MODE_OUTPUT_TIME); 14554 } else { 14555 sc->link_params.eee_mode = 0; 14556 } 14557 14558 /* get the media type */ 14559 bxe_media_detect(sc); 14560 ELINK_DEBUG_P1(sc, "detected media type\n", sc->media); 14561 } 14562 14563 static void 14564 bxe_get_params(struct bxe_softc *sc) 14565 { 14566 /* get user tunable params */ 14567 bxe_get_tunable_params(sc); 14568 14569 /* select the RX and TX ring sizes */ 14570 sc->tx_ring_size = TX_BD_USABLE; 14571 sc->rx_ring_size = RX_BD_USABLE; 14572 14573 /* XXX disable WoL */ 14574 sc->wol = 0; 14575 } 14576 14577 static void 14578 bxe_set_modes_bitmap(struct bxe_softc *sc) 14579 { 14580 uint32_t flags = 0; 14581 14582 if (CHIP_REV_IS_FPGA(sc)) { 14583 SET_FLAGS(flags, MODE_FPGA); 14584 } else if (CHIP_REV_IS_EMUL(sc)) { 14585 SET_FLAGS(flags, MODE_EMUL); 14586 } else { 14587 SET_FLAGS(flags, MODE_ASIC); 14588 } 14589 14590 if (CHIP_IS_MODE_4_PORT(sc)) { 14591 SET_FLAGS(flags, MODE_PORT4); 14592 } else { 14593 SET_FLAGS(flags, MODE_PORT2); 14594 } 14595 14596 if (CHIP_IS_E2(sc)) { 14597 SET_FLAGS(flags, MODE_E2); 14598 } else if (CHIP_IS_E3(sc)) { 14599 SET_FLAGS(flags, MODE_E3); 14600 if (CHIP_REV(sc) == CHIP_REV_Ax) { 14601 SET_FLAGS(flags, MODE_E3_A0); 14602 } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ { 14603 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3); 14604 } 14605 } 14606 14607 if (IS_MF(sc)) { 14608 SET_FLAGS(flags, MODE_MF); 14609 switch (sc->devinfo.mf_info.mf_mode) { 14610 case MULTI_FUNCTION_SD: 14611 SET_FLAGS(flags, MODE_MF_SD); 14612 break; 14613 case MULTI_FUNCTION_SI: 14614 SET_FLAGS(flags, MODE_MF_SI); 14615 break; 14616 case MULTI_FUNCTION_AFEX: 14617 SET_FLAGS(flags, MODE_MF_AFEX); 14618 break; 14619 } 14620 } else { 14621 SET_FLAGS(flags, MODE_SF); 14622 } 14623 14624 #if defined(__LITTLE_ENDIAN) 14625 SET_FLAGS(flags, MODE_LITTLE_ENDIAN); 14626 #else /* __BIG_ENDIAN */ 14627 SET_FLAGS(flags, MODE_BIG_ENDIAN); 14628 #endif 14629 14630 INIT_MODE_FLAGS(sc) = flags; 14631 } 14632 14633 static int 14634 bxe_alloc_hsi_mem(struct bxe_softc *sc) 14635 { 14636 struct bxe_fastpath *fp; 14637 bus_addr_t busaddr; 14638 int max_agg_queues; 14639 int max_segments; 14640 bus_size_t max_size; 14641 bus_size_t max_seg_size; 14642 char buf[32]; 14643 int rc; 14644 int i, j; 14645 14646 /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */ 14647 14648 /* allocate the parent bus DMA tag */ 14649 rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */ 14650 1, /* alignment */ 14651 0, /* boundary limit */ 14652 BUS_SPACE_MAXADDR, /* restricted low */ 14653 BUS_SPACE_MAXADDR, /* restricted hi */ 14654 NULL, /* addr filter() */ 14655 NULL, /* addr filter() arg */ 14656 BUS_SPACE_MAXSIZE_32BIT, /* max map size */ 14657 BUS_SPACE_UNRESTRICTED, /* num discontinuous */ 14658 BUS_SPACE_MAXSIZE_32BIT, /* max seg size */ 14659 0, /* flags */ 14660 NULL, /* lock() */ 14661 NULL, /* lock() arg */ 14662 &sc->parent_dma_tag); /* returned dma tag */ 14663 if (rc != 0) { 14664 BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc); 14665 return (1); 14666 } 14667 14668 /************************/ 14669 /* DEFAULT STATUS BLOCK */ 14670 /************************/ 14671 14672 if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block), 14673 &sc->def_sb_dma, "default status block") != 0) { 14674 /* XXX */ 14675 bus_dma_tag_destroy(sc->parent_dma_tag); 14676 return (1); 14677 } 14678 14679 sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr; 14680 14681 /***************/ 14682 /* EVENT QUEUE */ 14683 /***************/ 14684 14685 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, 14686 &sc->eq_dma, "event queue") != 0) { 14687 /* XXX */ 14688 bxe_dma_free(sc, &sc->def_sb_dma); 14689 sc->def_sb = NULL; 14690 bus_dma_tag_destroy(sc->parent_dma_tag); 14691 return (1); 14692 } 14693 14694 sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr; 14695 14696 /*************/ 14697 /* SLOW PATH */ 14698 /*************/ 14699 14700 if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath), 14701 &sc->sp_dma, "slow path") != 0) { 14702 /* XXX */ 14703 bxe_dma_free(sc, &sc->eq_dma); 14704 sc->eq = NULL; 14705 bxe_dma_free(sc, &sc->def_sb_dma); 14706 sc->def_sb = NULL; 14707 bus_dma_tag_destroy(sc->parent_dma_tag); 14708 return (1); 14709 } 14710 14711 sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr; 14712 14713 /*******************/ 14714 /* SLOW PATH QUEUE */ 14715 /*******************/ 14716 14717 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, 14718 &sc->spq_dma, "slow path queue") != 0) { 14719 /* XXX */ 14720 bxe_dma_free(sc, &sc->sp_dma); 14721 sc->sp = NULL; 14722 bxe_dma_free(sc, &sc->eq_dma); 14723 sc->eq = NULL; 14724 bxe_dma_free(sc, &sc->def_sb_dma); 14725 sc->def_sb = NULL; 14726 bus_dma_tag_destroy(sc->parent_dma_tag); 14727 return (1); 14728 } 14729 14730 sc->spq = (struct eth_spe *)sc->spq_dma.vaddr; 14731 14732 /***************************/ 14733 /* FW DECOMPRESSION BUFFER */ 14734 /***************************/ 14735 14736 if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma, 14737 "fw decompression buffer") != 0) { 14738 /* XXX */ 14739 bxe_dma_free(sc, &sc->spq_dma); 14740 sc->spq = NULL; 14741 bxe_dma_free(sc, &sc->sp_dma); 14742 sc->sp = NULL; 14743 bxe_dma_free(sc, &sc->eq_dma); 14744 sc->eq = NULL; 14745 bxe_dma_free(sc, &sc->def_sb_dma); 14746 sc->def_sb = NULL; 14747 bus_dma_tag_destroy(sc->parent_dma_tag); 14748 return (1); 14749 } 14750 14751 sc->gz_buf = (void *)sc->gz_buf_dma.vaddr; 14752 14753 if ((sc->gz_strm = 14754 malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) { 14755 /* XXX */ 14756 bxe_dma_free(sc, &sc->gz_buf_dma); 14757 sc->gz_buf = NULL; 14758 bxe_dma_free(sc, &sc->spq_dma); 14759 sc->spq = NULL; 14760 bxe_dma_free(sc, &sc->sp_dma); 14761 sc->sp = NULL; 14762 bxe_dma_free(sc, &sc->eq_dma); 14763 sc->eq = NULL; 14764 bxe_dma_free(sc, &sc->def_sb_dma); 14765 sc->def_sb = NULL; 14766 bus_dma_tag_destroy(sc->parent_dma_tag); 14767 return (1); 14768 } 14769 14770 /*************/ 14771 /* FASTPATHS */ 14772 /*************/ 14773 14774 /* allocate DMA memory for each fastpath structure */ 14775 for (i = 0; i < sc->num_queues; i++) { 14776 fp = &sc->fp[i]; 14777 fp->sc = sc; 14778 fp->index = i; 14779 14780 /*******************/ 14781 /* FP STATUS BLOCK */ 14782 /*******************/ 14783 14784 snprintf(buf, sizeof(buf), "fp %d status block", i); 14785 if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block), 14786 &fp->sb_dma, buf) != 0) { 14787 /* XXX unwind and free previous fastpath allocations */ 14788 BLOGE(sc, "Failed to alloc %s\n", buf); 14789 return (1); 14790 } else { 14791 if (CHIP_IS_E2E3(sc)) { 14792 fp->status_block.e2_sb = 14793 (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr; 14794 } else { 14795 fp->status_block.e1x_sb = 14796 (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr; 14797 } 14798 } 14799 14800 /******************/ 14801 /* FP TX BD CHAIN */ 14802 /******************/ 14803 14804 snprintf(buf, sizeof(buf), "fp %d tx bd chain", i); 14805 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES), 14806 &fp->tx_dma, buf) != 0) { 14807 /* XXX unwind and free previous fastpath allocations */ 14808 BLOGE(sc, "Failed to alloc %s\n", buf); 14809 return (1); 14810 } else { 14811 fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr; 14812 } 14813 14814 /* link together the tx bd chain pages */ 14815 for (j = 1; j <= TX_BD_NUM_PAGES; j++) { 14816 /* index into the tx bd chain array to last entry per page */ 14817 struct eth_tx_next_bd *tx_next_bd = 14818 &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd; 14819 /* point to the next page and wrap from last page */ 14820 busaddr = (fp->tx_dma.paddr + 14821 (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES))); 14822 tx_next_bd->addr_hi = htole32(U64_HI(busaddr)); 14823 tx_next_bd->addr_lo = htole32(U64_LO(busaddr)); 14824 } 14825 14826 /******************/ 14827 /* FP RX BD CHAIN */ 14828 /******************/ 14829 14830 snprintf(buf, sizeof(buf), "fp %d rx bd chain", i); 14831 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES), 14832 &fp->rx_dma, buf) != 0) { 14833 /* XXX unwind and free previous fastpath allocations */ 14834 BLOGE(sc, "Failed to alloc %s\n", buf); 14835 return (1); 14836 } else { 14837 fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr; 14838 } 14839 14840 /* link together the rx bd chain pages */ 14841 for (j = 1; j <= RX_BD_NUM_PAGES; j++) { 14842 /* index into the rx bd chain array to last entry per page */ 14843 struct eth_rx_bd *rx_bd = 14844 &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2]; 14845 /* point to the next page and wrap from last page */ 14846 busaddr = (fp->rx_dma.paddr + 14847 (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES))); 14848 rx_bd->addr_hi = htole32(U64_HI(busaddr)); 14849 rx_bd->addr_lo = htole32(U64_LO(busaddr)); 14850 } 14851 14852 /*******************/ 14853 /* FP RX RCQ CHAIN */ 14854 /*******************/ 14855 14856 snprintf(buf, sizeof(buf), "fp %d rcq chain", i); 14857 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES), 14858 &fp->rcq_dma, buf) != 0) { 14859 /* XXX unwind and free previous fastpath allocations */ 14860 BLOGE(sc, "Failed to alloc %s\n", buf); 14861 return (1); 14862 } else { 14863 fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr; 14864 } 14865 14866 /* link together the rcq chain pages */ 14867 for (j = 1; j <= RCQ_NUM_PAGES; j++) { 14868 /* index into the rcq chain array to last entry per page */ 14869 struct eth_rx_cqe_next_page *rx_cqe_next = 14870 (struct eth_rx_cqe_next_page *) 14871 &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1]; 14872 /* point to the next page and wrap from last page */ 14873 busaddr = (fp->rcq_dma.paddr + 14874 (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES))); 14875 rx_cqe_next->addr_hi = htole32(U64_HI(busaddr)); 14876 rx_cqe_next->addr_lo = htole32(U64_LO(busaddr)); 14877 } 14878 14879 /*******************/ 14880 /* FP RX SGE CHAIN */ 14881 /*******************/ 14882 14883 snprintf(buf, sizeof(buf), "fp %d sge chain", i); 14884 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES), 14885 &fp->rx_sge_dma, buf) != 0) { 14886 /* XXX unwind and free previous fastpath allocations */ 14887 BLOGE(sc, "Failed to alloc %s\n", buf); 14888 return (1); 14889 } else { 14890 fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr; 14891 } 14892 14893 /* link together the sge chain pages */ 14894 for (j = 1; j <= RX_SGE_NUM_PAGES; j++) { 14895 /* index into the rcq chain array to last entry per page */ 14896 struct eth_rx_sge *rx_sge = 14897 &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2]; 14898 /* point to the next page and wrap from last page */ 14899 busaddr = (fp->rx_sge_dma.paddr + 14900 (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES))); 14901 rx_sge->addr_hi = htole32(U64_HI(busaddr)); 14902 rx_sge->addr_lo = htole32(U64_LO(busaddr)); 14903 } 14904 14905 /***********************/ 14906 /* FP TX MBUF DMA MAPS */ 14907 /***********************/ 14908 14909 /* set required sizes before mapping to conserve resources */ 14910 if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) { 14911 max_size = BXE_TSO_MAX_SIZE; 14912 max_segments = BXE_TSO_MAX_SEGMENTS; 14913 max_seg_size = BXE_TSO_MAX_SEG_SIZE; 14914 } else { 14915 max_size = (MCLBYTES * BXE_MAX_SEGMENTS); 14916 max_segments = BXE_MAX_SEGMENTS; 14917 max_seg_size = MCLBYTES; 14918 } 14919 14920 /* create a dma tag for the tx mbufs */ 14921 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 14922 1, /* alignment */ 14923 0, /* boundary limit */ 14924 BUS_SPACE_MAXADDR, /* restricted low */ 14925 BUS_SPACE_MAXADDR, /* restricted hi */ 14926 NULL, /* addr filter() */ 14927 NULL, /* addr filter() arg */ 14928 max_size, /* max map size */ 14929 max_segments, /* num discontinuous */ 14930 max_seg_size, /* max seg size */ 14931 0, /* flags */ 14932 NULL, /* lock() */ 14933 NULL, /* lock() arg */ 14934 &fp->tx_mbuf_tag); /* returned dma tag */ 14935 if (rc != 0) { 14936 /* XXX unwind and free previous fastpath allocations */ 14937 BLOGE(sc, "Failed to create dma tag for " 14938 "'fp %d tx mbufs' (%d)\n", i, rc); 14939 return (1); 14940 } 14941 14942 /* create dma maps for each of the tx mbuf clusters */ 14943 for (j = 0; j < TX_BD_TOTAL; j++) { 14944 if (bus_dmamap_create(fp->tx_mbuf_tag, 14945 BUS_DMA_NOWAIT, 14946 &fp->tx_mbuf_chain[j].m_map)) { 14947 /* XXX unwind and free previous fastpath allocations */ 14948 BLOGE(sc, "Failed to create dma map for " 14949 "'fp %d tx mbuf %d' (%d)\n", i, j, rc); 14950 return (1); 14951 } 14952 } 14953 14954 /***********************/ 14955 /* FP RX MBUF DMA MAPS */ 14956 /***********************/ 14957 14958 /* create a dma tag for the rx mbufs */ 14959 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 14960 1, /* alignment */ 14961 0, /* boundary limit */ 14962 BUS_SPACE_MAXADDR, /* restricted low */ 14963 BUS_SPACE_MAXADDR, /* restricted hi */ 14964 NULL, /* addr filter() */ 14965 NULL, /* addr filter() arg */ 14966 MJUM9BYTES, /* max map size */ 14967 1, /* num discontinuous */ 14968 MJUM9BYTES, /* max seg size */ 14969 0, /* flags */ 14970 NULL, /* lock() */ 14971 NULL, /* lock() arg */ 14972 &fp->rx_mbuf_tag); /* returned dma tag */ 14973 if (rc != 0) { 14974 /* XXX unwind and free previous fastpath allocations */ 14975 BLOGE(sc, "Failed to create dma tag for " 14976 "'fp %d rx mbufs' (%d)\n", i, rc); 14977 return (1); 14978 } 14979 14980 /* create dma maps for each of the rx mbuf clusters */ 14981 for (j = 0; j < RX_BD_TOTAL; j++) { 14982 if (bus_dmamap_create(fp->rx_mbuf_tag, 14983 BUS_DMA_NOWAIT, 14984 &fp->rx_mbuf_chain[j].m_map)) { 14985 /* XXX unwind and free previous fastpath allocations */ 14986 BLOGE(sc, "Failed to create dma map for " 14987 "'fp %d rx mbuf %d' (%d)\n", i, j, rc); 14988 return (1); 14989 } 14990 } 14991 14992 /* create dma map for the spare rx mbuf cluster */ 14993 if (bus_dmamap_create(fp->rx_mbuf_tag, 14994 BUS_DMA_NOWAIT, 14995 &fp->rx_mbuf_spare_map)) { 14996 /* XXX unwind and free previous fastpath allocations */ 14997 BLOGE(sc, "Failed to create dma map for " 14998 "'fp %d spare rx mbuf' (%d)\n", i, rc); 14999 return (1); 15000 } 15001 15002 /***************************/ 15003 /* FP RX SGE MBUF DMA MAPS */ 15004 /***************************/ 15005 15006 /* create a dma tag for the rx sge mbufs */ 15007 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 15008 1, /* alignment */ 15009 0, /* boundary limit */ 15010 BUS_SPACE_MAXADDR, /* restricted low */ 15011 BUS_SPACE_MAXADDR, /* restricted hi */ 15012 NULL, /* addr filter() */ 15013 NULL, /* addr filter() arg */ 15014 BCM_PAGE_SIZE, /* max map size */ 15015 1, /* num discontinuous */ 15016 BCM_PAGE_SIZE, /* max seg size */ 15017 0, /* flags */ 15018 NULL, /* lock() */ 15019 NULL, /* lock() arg */ 15020 &fp->rx_sge_mbuf_tag); /* returned dma tag */ 15021 if (rc != 0) { 15022 /* XXX unwind and free previous fastpath allocations */ 15023 BLOGE(sc, "Failed to create dma tag for " 15024 "'fp %d rx sge mbufs' (%d)\n", i, rc); 15025 return (1); 15026 } 15027 15028 /* create dma maps for the rx sge mbuf clusters */ 15029 for (j = 0; j < RX_SGE_TOTAL; j++) { 15030 if (bus_dmamap_create(fp->rx_sge_mbuf_tag, 15031 BUS_DMA_NOWAIT, 15032 &fp->rx_sge_mbuf_chain[j].m_map)) { 15033 /* XXX unwind and free previous fastpath allocations */ 15034 BLOGE(sc, "Failed to create dma map for " 15035 "'fp %d rx sge mbuf %d' (%d)\n", i, j, rc); 15036 return (1); 15037 } 15038 } 15039 15040 /* create dma map for the spare rx sge mbuf cluster */ 15041 if (bus_dmamap_create(fp->rx_sge_mbuf_tag, 15042 BUS_DMA_NOWAIT, 15043 &fp->rx_sge_mbuf_spare_map)) { 15044 /* XXX unwind and free previous fastpath allocations */ 15045 BLOGE(sc, "Failed to create dma map for " 15046 "'fp %d spare rx sge mbuf' (%d)\n", i, rc); 15047 return (1); 15048 } 15049 15050 /***************************/ 15051 /* FP RX TPA MBUF DMA MAPS */ 15052 /***************************/ 15053 15054 /* create dma maps for the rx tpa mbuf clusters */ 15055 max_agg_queues = MAX_AGG_QS(sc); 15056 15057 for (j = 0; j < max_agg_queues; j++) { 15058 if (bus_dmamap_create(fp->rx_mbuf_tag, 15059 BUS_DMA_NOWAIT, 15060 &fp->rx_tpa_info[j].bd.m_map)) { 15061 /* XXX unwind and free previous fastpath allocations */ 15062 BLOGE(sc, "Failed to create dma map for " 15063 "'fp %d rx tpa mbuf %d' (%d)\n", i, j, rc); 15064 return (1); 15065 } 15066 } 15067 15068 /* create dma map for the spare rx tpa mbuf cluster */ 15069 if (bus_dmamap_create(fp->rx_mbuf_tag, 15070 BUS_DMA_NOWAIT, 15071 &fp->rx_tpa_info_mbuf_spare_map)) { 15072 /* XXX unwind and free previous fastpath allocations */ 15073 BLOGE(sc, "Failed to create dma map for " 15074 "'fp %d spare rx tpa mbuf' (%d)\n", i, rc); 15075 return (1); 15076 } 15077 15078 bxe_init_sge_ring_bit_mask(fp); 15079 } 15080 15081 return (0); 15082 } 15083 15084 static void 15085 bxe_free_hsi_mem(struct bxe_softc *sc) 15086 { 15087 struct bxe_fastpath *fp; 15088 int max_agg_queues; 15089 int i, j; 15090 15091 if (sc->parent_dma_tag == NULL) { 15092 return; /* assume nothing was allocated */ 15093 } 15094 15095 for (i = 0; i < sc->num_queues; i++) { 15096 fp = &sc->fp[i]; 15097 15098 /*******************/ 15099 /* FP STATUS BLOCK */ 15100 /*******************/ 15101 15102 bxe_dma_free(sc, &fp->sb_dma); 15103 memset(&fp->status_block, 0, sizeof(fp->status_block)); 15104 15105 /******************/ 15106 /* FP TX BD CHAIN */ 15107 /******************/ 15108 15109 bxe_dma_free(sc, &fp->tx_dma); 15110 fp->tx_chain = NULL; 15111 15112 /******************/ 15113 /* FP RX BD CHAIN */ 15114 /******************/ 15115 15116 bxe_dma_free(sc, &fp->rx_dma); 15117 fp->rx_chain = NULL; 15118 15119 /*******************/ 15120 /* FP RX RCQ CHAIN */ 15121 /*******************/ 15122 15123 bxe_dma_free(sc, &fp->rcq_dma); 15124 fp->rcq_chain = NULL; 15125 15126 /*******************/ 15127 /* FP RX SGE CHAIN */ 15128 /*******************/ 15129 15130 bxe_dma_free(sc, &fp->rx_sge_dma); 15131 fp->rx_sge_chain = NULL; 15132 15133 /***********************/ 15134 /* FP TX MBUF DMA MAPS */ 15135 /***********************/ 15136 15137 if (fp->tx_mbuf_tag != NULL) { 15138 for (j = 0; j < TX_BD_TOTAL; j++) { 15139 if (fp->tx_mbuf_chain[j].m_map != NULL) { 15140 bus_dmamap_unload(fp->tx_mbuf_tag, 15141 fp->tx_mbuf_chain[j].m_map); 15142 bus_dmamap_destroy(fp->tx_mbuf_tag, 15143 fp->tx_mbuf_chain[j].m_map); 15144 } 15145 } 15146 15147 bus_dma_tag_destroy(fp->tx_mbuf_tag); 15148 fp->tx_mbuf_tag = NULL; 15149 } 15150 15151 /***********************/ 15152 /* FP RX MBUF DMA MAPS */ 15153 /***********************/ 15154 15155 if (fp->rx_mbuf_tag != NULL) { 15156 for (j = 0; j < RX_BD_TOTAL; j++) { 15157 if (fp->rx_mbuf_chain[j].m_map != NULL) { 15158 bus_dmamap_unload(fp->rx_mbuf_tag, 15159 fp->rx_mbuf_chain[j].m_map); 15160 bus_dmamap_destroy(fp->rx_mbuf_tag, 15161 fp->rx_mbuf_chain[j].m_map); 15162 } 15163 } 15164 15165 if (fp->rx_mbuf_spare_map != NULL) { 15166 bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); 15167 bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); 15168 } 15169 15170 /***************************/ 15171 /* FP RX TPA MBUF DMA MAPS */ 15172 /***************************/ 15173 15174 max_agg_queues = MAX_AGG_QS(sc); 15175 15176 for (j = 0; j < max_agg_queues; j++) { 15177 if (fp->rx_tpa_info[j].bd.m_map != NULL) { 15178 bus_dmamap_unload(fp->rx_mbuf_tag, 15179 fp->rx_tpa_info[j].bd.m_map); 15180 bus_dmamap_destroy(fp->rx_mbuf_tag, 15181 fp->rx_tpa_info[j].bd.m_map); 15182 } 15183 } 15184 15185 if (fp->rx_tpa_info_mbuf_spare_map != NULL) { 15186 bus_dmamap_unload(fp->rx_mbuf_tag, 15187 fp->rx_tpa_info_mbuf_spare_map); 15188 bus_dmamap_destroy(fp->rx_mbuf_tag, 15189 fp->rx_tpa_info_mbuf_spare_map); 15190 } 15191 15192 bus_dma_tag_destroy(fp->rx_mbuf_tag); 15193 fp->rx_mbuf_tag = NULL; 15194 } 15195 15196 /***************************/ 15197 /* FP RX SGE MBUF DMA MAPS */ 15198 /***************************/ 15199 15200 if (fp->rx_sge_mbuf_tag != NULL) { 15201 for (j = 0; j < RX_SGE_TOTAL; j++) { 15202 if (fp->rx_sge_mbuf_chain[j].m_map != NULL) { 15203 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 15204 fp->rx_sge_mbuf_chain[j].m_map); 15205 bus_dmamap_destroy(fp->rx_sge_mbuf_tag, 15206 fp->rx_sge_mbuf_chain[j].m_map); 15207 } 15208 } 15209 15210 if (fp->rx_sge_mbuf_spare_map != NULL) { 15211 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 15212 fp->rx_sge_mbuf_spare_map); 15213 bus_dmamap_destroy(fp->rx_sge_mbuf_tag, 15214 fp->rx_sge_mbuf_spare_map); 15215 } 15216 15217 bus_dma_tag_destroy(fp->rx_sge_mbuf_tag); 15218 fp->rx_sge_mbuf_tag = NULL; 15219 } 15220 } 15221 15222 /***************************/ 15223 /* FW DECOMPRESSION BUFFER */ 15224 /***************************/ 15225 15226 bxe_dma_free(sc, &sc->gz_buf_dma); 15227 sc->gz_buf = NULL; 15228 free(sc->gz_strm, M_DEVBUF); 15229 sc->gz_strm = NULL; 15230 15231 /*******************/ 15232 /* SLOW PATH QUEUE */ 15233 /*******************/ 15234 15235 bxe_dma_free(sc, &sc->spq_dma); 15236 sc->spq = NULL; 15237 15238 /*************/ 15239 /* SLOW PATH */ 15240 /*************/ 15241 15242 bxe_dma_free(sc, &sc->sp_dma); 15243 sc->sp = NULL; 15244 15245 /***************/ 15246 /* EVENT QUEUE */ 15247 /***************/ 15248 15249 bxe_dma_free(sc, &sc->eq_dma); 15250 sc->eq = NULL; 15251 15252 /************************/ 15253 /* DEFAULT STATUS BLOCK */ 15254 /************************/ 15255 15256 bxe_dma_free(sc, &sc->def_sb_dma); 15257 sc->def_sb = NULL; 15258 15259 bus_dma_tag_destroy(sc->parent_dma_tag); 15260 sc->parent_dma_tag = NULL; 15261 } 15262 15263 /* 15264 * Previous driver DMAE transaction may have occurred when pre-boot stage 15265 * ended and boot began. This would invalidate the addresses of the 15266 * transaction, resulting in was-error bit set in the PCI causing all 15267 * hw-to-host PCIe transactions to timeout. If this happened we want to clear 15268 * the interrupt which detected this from the pglueb and the was-done bit 15269 */ 15270 static void 15271 bxe_prev_interrupted_dmae(struct bxe_softc *sc) 15272 { 15273 uint32_t val; 15274 15275 if (!CHIP_IS_E1x(sc)) { 15276 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS); 15277 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) { 15278 BLOGD(sc, DBG_LOAD, 15279 "Clearing 'was-error' bit that was set in pglueb"); 15280 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc)); 15281 } 15282 } 15283 } 15284 15285 static int 15286 bxe_prev_mcp_done(struct bxe_softc *sc) 15287 { 15288 uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 15289 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET); 15290 if (!rc) { 15291 BLOGE(sc, "MCP response failure, aborting\n"); 15292 return (-1); 15293 } 15294 15295 return (0); 15296 } 15297 15298 static struct bxe_prev_list_node * 15299 bxe_prev_path_get_entry(struct bxe_softc *sc) 15300 { 15301 struct bxe_prev_list_node *tmp; 15302 15303 LIST_FOREACH(tmp, &bxe_prev_list, node) { 15304 if ((sc->pcie_bus == tmp->bus) && 15305 (sc->pcie_device == tmp->slot) && 15306 (SC_PATH(sc) == tmp->path)) { 15307 return (tmp); 15308 } 15309 } 15310 15311 return (NULL); 15312 } 15313 15314 static uint8_t 15315 bxe_prev_is_path_marked(struct bxe_softc *sc) 15316 { 15317 struct bxe_prev_list_node *tmp; 15318 int rc = FALSE; 15319 15320 mtx_lock(&bxe_prev_mtx); 15321 15322 tmp = bxe_prev_path_get_entry(sc); 15323 if (tmp) { 15324 if (tmp->aer) { 15325 BLOGD(sc, DBG_LOAD, 15326 "Path %d/%d/%d was marked by AER\n", 15327 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15328 } else { 15329 rc = TRUE; 15330 BLOGD(sc, DBG_LOAD, 15331 "Path %d/%d/%d was already cleaned from previous drivers\n", 15332 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15333 } 15334 } 15335 15336 mtx_unlock(&bxe_prev_mtx); 15337 15338 return (rc); 15339 } 15340 15341 static int 15342 bxe_prev_mark_path(struct bxe_softc *sc, 15343 uint8_t after_undi) 15344 { 15345 struct bxe_prev_list_node *tmp; 15346 15347 mtx_lock(&bxe_prev_mtx); 15348 15349 /* Check whether the entry for this path already exists */ 15350 tmp = bxe_prev_path_get_entry(sc); 15351 if (tmp) { 15352 if (!tmp->aer) { 15353 BLOGD(sc, DBG_LOAD, 15354 "Re-marking AER in path %d/%d/%d\n", 15355 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15356 } else { 15357 BLOGD(sc, DBG_LOAD, 15358 "Removing AER indication from path %d/%d/%d\n", 15359 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15360 tmp->aer = 0; 15361 } 15362 15363 mtx_unlock(&bxe_prev_mtx); 15364 return (0); 15365 } 15366 15367 mtx_unlock(&bxe_prev_mtx); 15368 15369 /* Create an entry for this path and add it */ 15370 tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF, 15371 (M_NOWAIT | M_ZERO)); 15372 if (!tmp) { 15373 BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n"); 15374 return (-1); 15375 } 15376 15377 tmp->bus = sc->pcie_bus; 15378 tmp->slot = sc->pcie_device; 15379 tmp->path = SC_PATH(sc); 15380 tmp->aer = 0; 15381 tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0; 15382 15383 mtx_lock(&bxe_prev_mtx); 15384 15385 BLOGD(sc, DBG_LOAD, 15386 "Marked path %d/%d/%d - finished previous unload\n", 15387 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15388 LIST_INSERT_HEAD(&bxe_prev_list, tmp, node); 15389 15390 mtx_unlock(&bxe_prev_mtx); 15391 15392 return (0); 15393 } 15394 15395 static int 15396 bxe_do_flr(struct bxe_softc *sc) 15397 { 15398 int i; 15399 15400 /* only E2 and onwards support FLR */ 15401 if (CHIP_IS_E1x(sc)) { 15402 BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n"); 15403 return (-1); 15404 } 15405 15406 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */ 15407 if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) { 15408 BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n", 15409 sc->devinfo.bc_ver); 15410 return (-1); 15411 } 15412 15413 /* Wait for Transaction Pending bit clean */ 15414 for (i = 0; i < 4; i++) { 15415 if (i) { 15416 DELAY(((1 << (i - 1)) * 100) * 1000); 15417 } 15418 15419 if (!bxe_is_pcie_pending(sc)) { 15420 goto clear; 15421 } 15422 } 15423 15424 BLOGE(sc, "PCIE transaction is not cleared, " 15425 "proceeding with reset anyway\n"); 15426 15427 clear: 15428 15429 BLOGD(sc, DBG_LOAD, "Initiating FLR\n"); 15430 bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0); 15431 15432 return (0); 15433 } 15434 15435 struct bxe_mac_vals { 15436 uint32_t xmac_addr; 15437 uint32_t xmac_val; 15438 uint32_t emac_addr; 15439 uint32_t emac_val; 15440 uint32_t umac_addr; 15441 uint32_t umac_val; 15442 uint32_t bmac_addr; 15443 uint32_t bmac_val[2]; 15444 }; 15445 15446 static void 15447 bxe_prev_unload_close_mac(struct bxe_softc *sc, 15448 struct bxe_mac_vals *vals) 15449 { 15450 uint32_t val, base_addr, offset, mask, reset_reg; 15451 uint8_t mac_stopped = FALSE; 15452 uint8_t port = SC_PORT(sc); 15453 uint32_t wb_data[2]; 15454 15455 /* reset addresses as they also mark which values were changed */ 15456 vals->bmac_addr = 0; 15457 vals->umac_addr = 0; 15458 vals->xmac_addr = 0; 15459 vals->emac_addr = 0; 15460 15461 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2); 15462 15463 if (!CHIP_IS_E3(sc)) { 15464 val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4); 15465 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port; 15466 if ((mask & reset_reg) && val) { 15467 BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n"); 15468 base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM 15469 : NIG_REG_INGRESS_BMAC0_MEM; 15470 offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL 15471 : BIGMAC_REGISTER_BMAC_CONTROL; 15472 15473 /* 15474 * use rd/wr since we cannot use dmae. This is safe 15475 * since MCP won't access the bus due to the request 15476 * to unload, and no function on the path can be 15477 * loaded at this time. 15478 */ 15479 wb_data[0] = REG_RD(sc, base_addr + offset); 15480 wb_data[1] = REG_RD(sc, base_addr + offset + 0x4); 15481 vals->bmac_addr = base_addr + offset; 15482 vals->bmac_val[0] = wb_data[0]; 15483 vals->bmac_val[1] = wb_data[1]; 15484 wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE; 15485 REG_WR(sc, vals->bmac_addr, wb_data[0]); 15486 REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]); 15487 } 15488 15489 BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n"); 15490 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4; 15491 vals->emac_val = REG_RD(sc, vals->emac_addr); 15492 REG_WR(sc, vals->emac_addr, 0); 15493 mac_stopped = TRUE; 15494 } else { 15495 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) { 15496 BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n"); 15497 base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0; 15498 val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI); 15499 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1)); 15500 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1)); 15501 vals->xmac_addr = base_addr + XMAC_REG_CTRL; 15502 vals->xmac_val = REG_RD(sc, vals->xmac_addr); 15503 REG_WR(sc, vals->xmac_addr, 0); 15504 mac_stopped = TRUE; 15505 } 15506 15507 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port; 15508 if (mask & reset_reg) { 15509 BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n"); 15510 base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0; 15511 vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG; 15512 vals->umac_val = REG_RD(sc, vals->umac_addr); 15513 REG_WR(sc, vals->umac_addr, 0); 15514 mac_stopped = TRUE; 15515 } 15516 } 15517 15518 if (mac_stopped) { 15519 DELAY(20000); 15520 } 15521 } 15522 15523 #define BXE_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4)) 15524 #define BXE_PREV_UNDI_RCQ(val) ((val) & 0xffff) 15525 #define BXE_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff) 15526 #define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq)) 15527 15528 static void 15529 bxe_prev_unload_undi_inc(struct bxe_softc *sc, 15530 uint8_t port, 15531 uint8_t inc) 15532 { 15533 uint16_t rcq, bd; 15534 uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port)); 15535 15536 rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc; 15537 bd = BXE_PREV_UNDI_BD(tmp_reg) + inc; 15538 15539 tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd); 15540 REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg); 15541 15542 BLOGD(sc, DBG_LOAD, 15543 "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n", 15544 port, bd, rcq); 15545 } 15546 15547 static int 15548 bxe_prev_unload_common(struct bxe_softc *sc) 15549 { 15550 uint32_t reset_reg, tmp_reg = 0, rc; 15551 uint8_t prev_undi = FALSE; 15552 struct bxe_mac_vals mac_vals; 15553 uint32_t timer_count = 1000; 15554 uint32_t prev_brb; 15555 15556 /* 15557 * It is possible a previous function received 'common' answer, 15558 * but hasn't loaded yet, therefore creating a scenario of 15559 * multiple functions receiving 'common' on the same path. 15560 */ 15561 BLOGD(sc, DBG_LOAD, "Common unload Flow\n"); 15562 15563 memset(&mac_vals, 0, sizeof(mac_vals)); 15564 15565 if (bxe_prev_is_path_marked(sc)) { 15566 return (bxe_prev_mcp_done(sc)); 15567 } 15568 15569 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1); 15570 15571 /* Reset should be performed after BRB is emptied */ 15572 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) { 15573 /* Close the MAC Rx to prevent BRB from filling up */ 15574 bxe_prev_unload_close_mac(sc, &mac_vals); 15575 15576 /* close LLH filters towards the BRB */ 15577 elink_set_rx_filter(&sc->link_params, 0); 15578 15579 /* 15580 * Check if the UNDI driver was previously loaded. 15581 * UNDI driver initializes CID offset for normal bell to 0x7 15582 */ 15583 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) { 15584 tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST); 15585 if (tmp_reg == 0x7) { 15586 BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n"); 15587 prev_undi = TRUE; 15588 /* clear the UNDI indication */ 15589 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0); 15590 /* clear possible idle check errors */ 15591 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0); 15592 } 15593 } 15594 15595 /* wait until BRB is empty */ 15596 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); 15597 while (timer_count) { 15598 prev_brb = tmp_reg; 15599 15600 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); 15601 if (!tmp_reg) { 15602 break; 15603 } 15604 15605 BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg); 15606 15607 /* reset timer as long as BRB actually gets emptied */ 15608 if (prev_brb > tmp_reg) { 15609 timer_count = 1000; 15610 } else { 15611 timer_count--; 15612 } 15613 15614 /* If UNDI resides in memory, manually increment it */ 15615 if (prev_undi) { 15616 bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1); 15617 } 15618 15619 DELAY(10); 15620 } 15621 15622 if (!timer_count) { 15623 BLOGE(sc, "Failed to empty BRB\n"); 15624 } 15625 } 15626 15627 /* No packets are in the pipeline, path is ready for reset */ 15628 bxe_reset_common(sc); 15629 15630 if (mac_vals.xmac_addr) { 15631 REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val); 15632 } 15633 if (mac_vals.umac_addr) { 15634 REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val); 15635 } 15636 if (mac_vals.emac_addr) { 15637 REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val); 15638 } 15639 if (mac_vals.bmac_addr) { 15640 REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]); 15641 REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]); 15642 } 15643 15644 rc = bxe_prev_mark_path(sc, prev_undi); 15645 if (rc) { 15646 bxe_prev_mcp_done(sc); 15647 return (rc); 15648 } 15649 15650 return (bxe_prev_mcp_done(sc)); 15651 } 15652 15653 static int 15654 bxe_prev_unload_uncommon(struct bxe_softc *sc) 15655 { 15656 int rc; 15657 15658 BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n"); 15659 15660 /* Test if previous unload process was already finished for this path */ 15661 if (bxe_prev_is_path_marked(sc)) { 15662 return (bxe_prev_mcp_done(sc)); 15663 } 15664 15665 BLOGD(sc, DBG_LOAD, "Path is unmarked\n"); 15666 15667 /* 15668 * If function has FLR capabilities, and existing FW version matches 15669 * the one required, then FLR will be sufficient to clean any residue 15670 * left by previous driver 15671 */ 15672 rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION); 15673 if (!rc) { 15674 /* fw version is good */ 15675 BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n"); 15676 rc = bxe_do_flr(sc); 15677 } 15678 15679 if (!rc) { 15680 /* FLR was performed */ 15681 BLOGD(sc, DBG_LOAD, "FLR successful\n"); 15682 return (0); 15683 } 15684 15685 BLOGD(sc, DBG_LOAD, "Could not FLR\n"); 15686 15687 /* Close the MCP request, return failure*/ 15688 rc = bxe_prev_mcp_done(sc); 15689 if (!rc) { 15690 rc = BXE_PREV_WAIT_NEEDED; 15691 } 15692 15693 return (rc); 15694 } 15695 15696 static int 15697 bxe_prev_unload(struct bxe_softc *sc) 15698 { 15699 int time_counter = 10; 15700 uint32_t fw, hw_lock_reg, hw_lock_val; 15701 uint32_t rc = 0; 15702 15703 /* 15704 * Clear HW from errors which may have resulted from an interrupted 15705 * DMAE transaction. 15706 */ 15707 bxe_prev_interrupted_dmae(sc); 15708 15709 /* Release previously held locks */ 15710 hw_lock_reg = 15711 (SC_FUNC(sc) <= 5) ? 15712 (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) : 15713 (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8); 15714 15715 hw_lock_val = (REG_RD(sc, hw_lock_reg)); 15716 if (hw_lock_val) { 15717 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) { 15718 BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n"); 15719 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 15720 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc))); 15721 } 15722 BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n"); 15723 REG_WR(sc, hw_lock_reg, 0xffffffff); 15724 } else { 15725 BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n"); 15726 } 15727 15728 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) { 15729 BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n"); 15730 REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0); 15731 } 15732 15733 do { 15734 /* Lock MCP using an unload request */ 15735 fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0); 15736 if (!fw) { 15737 BLOGE(sc, "MCP response failure, aborting\n"); 15738 rc = -1; 15739 break; 15740 } 15741 15742 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) { 15743 rc = bxe_prev_unload_common(sc); 15744 break; 15745 } 15746 15747 /* non-common reply from MCP night require looping */ 15748 rc = bxe_prev_unload_uncommon(sc); 15749 if (rc != BXE_PREV_WAIT_NEEDED) { 15750 break; 15751 } 15752 15753 DELAY(20000); 15754 } while (--time_counter); 15755 15756 if (!time_counter || rc) { 15757 BLOGE(sc, "Failed to unload previous driver!" 15758 " time_counter %d rc %d\n", time_counter, rc); 15759 rc = -1; 15760 } 15761 15762 return (rc); 15763 } 15764 15765 void 15766 bxe_dcbx_set_state(struct bxe_softc *sc, 15767 uint8_t dcb_on, 15768 uint32_t dcbx_enabled) 15769 { 15770 if (!CHIP_IS_E1x(sc)) { 15771 sc->dcb_state = dcb_on; 15772 sc->dcbx_enabled = dcbx_enabled; 15773 } else { 15774 sc->dcb_state = FALSE; 15775 sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID; 15776 } 15777 BLOGD(sc, DBG_LOAD, 15778 "DCB state [%s:%s]\n", 15779 dcb_on ? "ON" : "OFF", 15780 (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" : 15781 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" : 15782 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ? 15783 "on-chip with negotiation" : "invalid"); 15784 } 15785 15786 /* must be called after sriov-enable */ 15787 static int 15788 bxe_set_qm_cid_count(struct bxe_softc *sc) 15789 { 15790 int cid_count = BXE_L2_MAX_CID(sc); 15791 15792 if (IS_SRIOV(sc)) { 15793 cid_count += BXE_VF_CIDS; 15794 } 15795 15796 if (CNIC_SUPPORT(sc)) { 15797 cid_count += CNIC_CID_MAX; 15798 } 15799 15800 return (roundup(cid_count, QM_CID_ROUND)); 15801 } 15802 15803 static void 15804 bxe_init_multi_cos(struct bxe_softc *sc) 15805 { 15806 int pri, cos; 15807 15808 uint32_t pri_map = 0; /* XXX change to user config */ 15809 15810 for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) { 15811 cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4)); 15812 if (cos < sc->max_cos) { 15813 sc->prio_to_cos[pri] = cos; 15814 } else { 15815 BLOGW(sc, "Invalid COS %d for priority %d " 15816 "(max COS is %d), setting to 0\n", 15817 cos, pri, (sc->max_cos - 1)); 15818 sc->prio_to_cos[pri] = 0; 15819 } 15820 } 15821 } 15822 15823 static int 15824 bxe_sysctl_state(SYSCTL_HANDLER_ARGS) 15825 { 15826 struct bxe_softc *sc; 15827 int error, result; 15828 15829 result = 0; 15830 error = sysctl_handle_int(oidp, &result, 0, req); 15831 15832 if (error || !req->newptr) { 15833 return (error); 15834 } 15835 15836 if (result == 1) { 15837 uint32_t temp; 15838 sc = (struct bxe_softc *)arg1; 15839 15840 BLOGI(sc, "... dumping driver state ...\n"); 15841 temp = SHMEM2_RD(sc, temperature_in_half_celsius); 15842 BLOGI(sc, "\t Device Temperature = %d Celsius\n", (temp/2)); 15843 } 15844 15845 return (error); 15846 } 15847 15848 static int 15849 bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS) 15850 { 15851 struct bxe_softc *sc = (struct bxe_softc *)arg1; 15852 uint32_t *eth_stats = (uint32_t *)&sc->eth_stats; 15853 uint32_t *offset; 15854 uint64_t value = 0; 15855 int index = (int)arg2; 15856 15857 if (index >= BXE_NUM_ETH_STATS) { 15858 BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index); 15859 return (-1); 15860 } 15861 15862 offset = (eth_stats + bxe_eth_stats_arr[index].offset); 15863 15864 switch (bxe_eth_stats_arr[index].size) { 15865 case 4: 15866 value = (uint64_t)*offset; 15867 break; 15868 case 8: 15869 value = HILO_U64(*offset, *(offset + 1)); 15870 break; 15871 default: 15872 BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n", 15873 index, bxe_eth_stats_arr[index].size); 15874 return (-1); 15875 } 15876 15877 return (sysctl_handle_64(oidp, &value, 0, req)); 15878 } 15879 15880 static int 15881 bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS) 15882 { 15883 struct bxe_softc *sc = (struct bxe_softc *)arg1; 15884 uint32_t *eth_stats; 15885 uint32_t *offset; 15886 uint64_t value = 0; 15887 uint32_t q_stat = (uint32_t)arg2; 15888 uint32_t fp_index = ((q_stat >> 16) & 0xffff); 15889 uint32_t index = (q_stat & 0xffff); 15890 15891 eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats; 15892 15893 if (index >= BXE_NUM_ETH_Q_STATS) { 15894 BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index); 15895 return (-1); 15896 } 15897 15898 offset = (eth_stats + bxe_eth_q_stats_arr[index].offset); 15899 15900 switch (bxe_eth_q_stats_arr[index].size) { 15901 case 4: 15902 value = (uint64_t)*offset; 15903 break; 15904 case 8: 15905 value = HILO_U64(*offset, *(offset + 1)); 15906 break; 15907 default: 15908 BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n", 15909 index, bxe_eth_q_stats_arr[index].size); 15910 return (-1); 15911 } 15912 15913 return (sysctl_handle_64(oidp, &value, 0, req)); 15914 } 15915 15916 static void bxe_force_link_reset(struct bxe_softc *sc) 15917 { 15918 15919 bxe_acquire_phy_lock(sc); 15920 elink_link_reset(&sc->link_params, &sc->link_vars, 1); 15921 bxe_release_phy_lock(sc); 15922 } 15923 15924 static int 15925 bxe_sysctl_pauseparam(SYSCTL_HANDLER_ARGS) 15926 { 15927 struct bxe_softc *sc = (struct bxe_softc *)arg1; 15928 uint32_t cfg_idx = bxe_get_link_cfg_idx(sc); 15929 int rc = 0; 15930 int error; 15931 int result; 15932 15933 15934 error = sysctl_handle_int(oidp, &sc->bxe_pause_param, 0, req); 15935 15936 if (error || !req->newptr) { 15937 return (error); 15938 } 15939 if ((sc->bxe_pause_param < 0) || (sc->bxe_pause_param > 8)) { 15940 BLOGW(sc, "invalid pause param (%d) - use integers between 1 & 8\n",sc->bxe_pause_param); 15941 sc->bxe_pause_param = 8; 15942 } 15943 15944 result = (sc->bxe_pause_param << PORT_FEATURE_FLOW_CONTROL_SHIFT); 15945 15946 15947 if((result & 0x400) && !(sc->port.supported[cfg_idx] & ELINK_SUPPORTED_Autoneg)) { 15948 BLOGW(sc, "Does not support Autoneg pause_param %d\n", sc->bxe_pause_param); 15949 return -EINVAL; 15950 } 15951 15952 if(IS_MF(sc)) 15953 return 0; 15954 sc->link_params.req_flow_ctrl[cfg_idx] = ELINK_FLOW_CTRL_AUTO; 15955 if(result & ELINK_FLOW_CTRL_RX) 15956 sc->link_params.req_flow_ctrl[cfg_idx] |= ELINK_FLOW_CTRL_RX; 15957 15958 if(result & ELINK_FLOW_CTRL_TX) 15959 sc->link_params.req_flow_ctrl[cfg_idx] |= ELINK_FLOW_CTRL_TX; 15960 if(sc->link_params.req_flow_ctrl[cfg_idx] == ELINK_FLOW_CTRL_AUTO) 15961 sc->link_params.req_flow_ctrl[cfg_idx] = ELINK_FLOW_CTRL_NONE; 15962 15963 if(result & 0x400) { 15964 if (sc->link_params.req_line_speed[cfg_idx] == ELINK_SPEED_AUTO_NEG) { 15965 sc->link_params.req_flow_ctrl[cfg_idx] = 15966 ELINK_FLOW_CTRL_AUTO; 15967 } 15968 sc->link_params.req_fc_auto_adv = 0; 15969 if (result & ELINK_FLOW_CTRL_RX) 15970 sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_RX; 15971 15972 if (result & ELINK_FLOW_CTRL_TX) 15973 sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_TX; 15974 if (!sc->link_params.req_fc_auto_adv) 15975 sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_NONE; 15976 } 15977 if (IS_PF(sc)) { 15978 if (sc->link_vars.link_up) { 15979 bxe_stats_handle(sc, STATS_EVENT_STOP); 15980 } 15981 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 15982 bxe_force_link_reset(sc); 15983 bxe_acquire_phy_lock(sc); 15984 15985 rc = elink_phy_init(&sc->link_params, &sc->link_vars); 15986 15987 bxe_release_phy_lock(sc); 15988 15989 bxe_calc_fc_adv(sc); 15990 } 15991 } 15992 return rc; 15993 } 15994 15995 15996 static void 15997 bxe_add_sysctls(struct bxe_softc *sc) 15998 { 15999 struct sysctl_ctx_list *ctx; 16000 struct sysctl_oid_list *children; 16001 struct sysctl_oid *queue_top, *queue; 16002 struct sysctl_oid_list *queue_top_children, *queue_children; 16003 char queue_num_buf[32]; 16004 uint32_t q_stat; 16005 int i, j; 16006 16007 ctx = device_get_sysctl_ctx(sc->dev); 16008 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)); 16009 16010 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version", 16011 CTLFLAG_RD, BXE_DRIVER_VERSION, 0, 16012 "version"); 16013 16014 snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d", 16015 BCM_5710_FW_MAJOR_VERSION, 16016 BCM_5710_FW_MINOR_VERSION, 16017 BCM_5710_FW_REVISION_VERSION, 16018 BCM_5710_FW_ENGINEERING_VERSION); 16019 16020 snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s", 16021 ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION) ? "Single" : 16022 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD) ? "MF-SD" : 16023 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI) ? "MF-SI" : 16024 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" : 16025 "Unknown")); 16026 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics", 16027 CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0, 16028 "multifunction vnics per port"); 16029 16030 snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d", 16031 ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" : 16032 (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" : 16033 (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" : 16034 "???GT/s"), 16035 sc->devinfo.pcie_link_width); 16036 16037 sc->debug = bxe_debug; 16038 16039 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version", 16040 CTLFLAG_RD, sc->devinfo.bc_ver_str, 0, 16041 "bootcode version"); 16042 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version", 16043 CTLFLAG_RD, sc->fw_ver_str, 0, 16044 "firmware version"); 16045 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode", 16046 CTLFLAG_RD, sc->mf_mode_str, 0, 16047 "multifunction mode"); 16048 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr", 16049 CTLFLAG_RD, sc->mac_addr_str, 0, 16050 "mac address"); 16051 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link", 16052 CTLFLAG_RD, sc->pci_link_str, 0, 16053 "pci link status"); 16054 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "debug", 16055 CTLFLAG_RW, &sc->debug, 16056 "debug logging mode"); 16057 16058 sc->trigger_grcdump = 0; 16059 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "trigger_grcdump", 16060 CTLFLAG_RW, &sc->trigger_grcdump, 0, 16061 "trigger grcdump should be invoked" 16062 " before collecting grcdump"); 16063 16064 sc->grcdump_started = 0; 16065 sc->grcdump_done = 0; 16066 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "grcdump_done", 16067 CTLFLAG_RD, &sc->grcdump_done, 0, 16068 "set by driver when grcdump is done"); 16069 16070 sc->rx_budget = bxe_rx_budget; 16071 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget", 16072 CTLFLAG_RW, &sc->rx_budget, 0, 16073 "rx processing budget"); 16074 16075 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_param", 16076 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 16077 bxe_sysctl_pauseparam, "IU", 16078 "need pause frames- DEF:0/TX:1/RX:2/BOTH:3/AUTO:4/AUTOTX:5/AUTORX:6/AUTORXTX:7/NONE:8"); 16079 16080 16081 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state", 16082 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 16083 bxe_sysctl_state, "IU", "dump driver state"); 16084 16085 for (i = 0; i < BXE_NUM_ETH_STATS; i++) { 16086 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 16087 bxe_eth_stats_arr[i].string, 16088 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i, 16089 bxe_sysctl_eth_stat, "LU", bxe_eth_stats_arr[i].string); 16090 } 16091 16092 /* add a new parent node for all queues "dev.bxe.#.queue" */ 16093 queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue", 16094 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "queue"); 16095 queue_top_children = SYSCTL_CHILDREN(queue_top); 16096 16097 for (i = 0; i < sc->num_queues; i++) { 16098 /* add a new parent node for a single queue "dev.bxe.#.queue.#" */ 16099 snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i); 16100 queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO, 16101 queue_num_buf, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "single queue"); 16102 queue_children = SYSCTL_CHILDREN(queue); 16103 16104 for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) { 16105 q_stat = ((i << 16) | j); 16106 SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO, 16107 bxe_eth_q_stats_arr[j].string, 16108 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, q_stat, 16109 bxe_sysctl_eth_q_stat, "LU", bxe_eth_q_stats_arr[j].string); 16110 } 16111 } 16112 } 16113 16114 static int 16115 bxe_alloc_buf_rings(struct bxe_softc *sc) 16116 { 16117 int i; 16118 struct bxe_fastpath *fp; 16119 16120 for (i = 0; i < sc->num_queues; i++) { 16121 16122 fp = &sc->fp[i]; 16123 16124 fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF, 16125 M_NOWAIT, &fp->tx_mtx); 16126 if (fp->tx_br == NULL) 16127 return (-1); 16128 } 16129 16130 return (0); 16131 } 16132 16133 static void 16134 bxe_free_buf_rings(struct bxe_softc *sc) 16135 { 16136 int i; 16137 struct bxe_fastpath *fp; 16138 16139 for (i = 0; i < sc->num_queues; i++) { 16140 16141 fp = &sc->fp[i]; 16142 16143 if (fp->tx_br) { 16144 buf_ring_free(fp->tx_br, M_DEVBUF); 16145 fp->tx_br = NULL; 16146 } 16147 } 16148 } 16149 16150 static void 16151 bxe_init_fp_mutexs(struct bxe_softc *sc) 16152 { 16153 int i; 16154 struct bxe_fastpath *fp; 16155 16156 for (i = 0; i < sc->num_queues; i++) { 16157 16158 fp = &sc->fp[i]; 16159 16160 snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name), 16161 "bxe%d_fp%d_tx_lock", sc->unit, i); 16162 mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF); 16163 16164 snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name), 16165 "bxe%d_fp%d_rx_lock", sc->unit, i); 16166 mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF); 16167 } 16168 } 16169 16170 static void 16171 bxe_destroy_fp_mutexs(struct bxe_softc *sc) 16172 { 16173 int i; 16174 struct bxe_fastpath *fp; 16175 16176 for (i = 0; i < sc->num_queues; i++) { 16177 16178 fp = &sc->fp[i]; 16179 16180 if (mtx_initialized(&fp->tx_mtx)) { 16181 mtx_destroy(&fp->tx_mtx); 16182 } 16183 16184 if (mtx_initialized(&fp->rx_mtx)) { 16185 mtx_destroy(&fp->rx_mtx); 16186 } 16187 } 16188 } 16189 16190 16191 /* 16192 * Device attach function. 16193 * 16194 * Allocates device resources, performs secondary chip identification, and 16195 * initializes driver instance variables. This function is called from driver 16196 * load after a successful probe. 16197 * 16198 * Returns: 16199 * 0 = Success, >0 = Failure 16200 */ 16201 static int 16202 bxe_attach(device_t dev) 16203 { 16204 struct bxe_softc *sc; 16205 16206 sc = device_get_softc(dev); 16207 16208 BLOGD(sc, DBG_LOAD, "Starting attach...\n"); 16209 16210 sc->state = BXE_STATE_CLOSED; 16211 16212 sc->dev = dev; 16213 sc->unit = device_get_unit(dev); 16214 16215 BLOGD(sc, DBG_LOAD, "softc = %p\n", sc); 16216 16217 sc->pcie_bus = pci_get_bus(dev); 16218 sc->pcie_device = pci_get_slot(dev); 16219 sc->pcie_func = pci_get_function(dev); 16220 16221 /* enable bus master capability */ 16222 pci_enable_busmaster(dev); 16223 16224 /* get the BARs */ 16225 if (bxe_allocate_bars(sc) != 0) { 16226 return (ENXIO); 16227 } 16228 16229 /* initialize the mutexes */ 16230 bxe_init_mutexes(sc); 16231 16232 /* prepare the periodic callout */ 16233 callout_init(&sc->periodic_callout, 1); 16234 16235 /* prepare the chip taskqueue */ 16236 sc->chip_tq_flags = CHIP_TQ_NONE; 16237 snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name), 16238 "bxe%d_chip_tq", sc->unit); 16239 TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc); 16240 sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT, 16241 taskqueue_thread_enqueue, 16242 &sc->chip_tq); 16243 taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */ 16244 "%s", sc->chip_tq_name); 16245 16246 TIMEOUT_TASK_INIT(taskqueue_thread, 16247 &sc->sp_err_timeout_task, 0, bxe_sp_err_timeout_task, sc); 16248 16249 16250 /* get device info and set params */ 16251 if (bxe_get_device_info(sc) != 0) { 16252 BLOGE(sc, "getting device info\n"); 16253 bxe_deallocate_bars(sc); 16254 pci_disable_busmaster(dev); 16255 return (ENXIO); 16256 } 16257 16258 /* get final misc params */ 16259 bxe_get_params(sc); 16260 16261 /* set the default MTU (changed via ifconfig) */ 16262 sc->mtu = ETHERMTU; 16263 16264 bxe_set_modes_bitmap(sc); 16265 16266 /* XXX 16267 * If in AFEX mode and the function is configured for FCoE 16268 * then bail... no L2 allowed. 16269 */ 16270 16271 /* get phy settings from shmem and 'and' against admin settings */ 16272 bxe_get_phy_info(sc); 16273 16274 /* initialize the FreeBSD ifnet interface */ 16275 if (bxe_init_ifnet(sc) != 0) { 16276 bxe_release_mutexes(sc); 16277 bxe_deallocate_bars(sc); 16278 pci_disable_busmaster(dev); 16279 return (ENXIO); 16280 } 16281 16282 if (bxe_add_cdev(sc) != 0) { 16283 if (sc->ifp != NULL) { 16284 ether_ifdetach(sc->ifp); 16285 } 16286 ifmedia_removeall(&sc->ifmedia); 16287 bxe_release_mutexes(sc); 16288 bxe_deallocate_bars(sc); 16289 pci_disable_busmaster(dev); 16290 return (ENXIO); 16291 } 16292 16293 /* allocate device interrupts */ 16294 if (bxe_interrupt_alloc(sc) != 0) { 16295 bxe_del_cdev(sc); 16296 if (sc->ifp != NULL) { 16297 ether_ifdetach(sc->ifp); 16298 } 16299 ifmedia_removeall(&sc->ifmedia); 16300 bxe_release_mutexes(sc); 16301 bxe_deallocate_bars(sc); 16302 pci_disable_busmaster(dev); 16303 return (ENXIO); 16304 } 16305 16306 bxe_init_fp_mutexs(sc); 16307 16308 if (bxe_alloc_buf_rings(sc) != 0) { 16309 bxe_free_buf_rings(sc); 16310 bxe_interrupt_free(sc); 16311 bxe_del_cdev(sc); 16312 if (sc->ifp != NULL) { 16313 ether_ifdetach(sc->ifp); 16314 } 16315 ifmedia_removeall(&sc->ifmedia); 16316 bxe_release_mutexes(sc); 16317 bxe_deallocate_bars(sc); 16318 pci_disable_busmaster(dev); 16319 return (ENXIO); 16320 } 16321 16322 /* allocate ilt */ 16323 if (bxe_alloc_ilt_mem(sc) != 0) { 16324 bxe_free_buf_rings(sc); 16325 bxe_interrupt_free(sc); 16326 bxe_del_cdev(sc); 16327 if (sc->ifp != NULL) { 16328 ether_ifdetach(sc->ifp); 16329 } 16330 ifmedia_removeall(&sc->ifmedia); 16331 bxe_release_mutexes(sc); 16332 bxe_deallocate_bars(sc); 16333 pci_disable_busmaster(dev); 16334 return (ENXIO); 16335 } 16336 16337 /* allocate the host hardware/software hsi structures */ 16338 if (bxe_alloc_hsi_mem(sc) != 0) { 16339 bxe_free_ilt_mem(sc); 16340 bxe_free_buf_rings(sc); 16341 bxe_interrupt_free(sc); 16342 bxe_del_cdev(sc); 16343 if (sc->ifp != NULL) { 16344 ether_ifdetach(sc->ifp); 16345 } 16346 ifmedia_removeall(&sc->ifmedia); 16347 bxe_release_mutexes(sc); 16348 bxe_deallocate_bars(sc); 16349 pci_disable_busmaster(dev); 16350 return (ENXIO); 16351 } 16352 16353 /* need to reset chip if UNDI was active */ 16354 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 16355 /* init fw_seq */ 16356 sc->fw_seq = 16357 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & 16358 DRV_MSG_SEQ_NUMBER_MASK); 16359 BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq); 16360 bxe_prev_unload(sc); 16361 } 16362 16363 #if 1 16364 /* XXX */ 16365 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); 16366 #else 16367 if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) && 16368 SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) && 16369 SHMEM2_RD(sc, dcbx_lldp_params_offset) && 16370 SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) { 16371 bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON); 16372 bxe_dcbx_init_params(sc); 16373 } else { 16374 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); 16375 } 16376 #endif 16377 16378 /* calculate qm_cid_count */ 16379 sc->qm_cid_count = bxe_set_qm_cid_count(sc); 16380 BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count); 16381 16382 sc->max_cos = 1; 16383 bxe_init_multi_cos(sc); 16384 16385 bxe_add_sysctls(sc); 16386 16387 return (0); 16388 } 16389 16390 /* 16391 * Device detach function. 16392 * 16393 * Stops the controller, resets the controller, and releases resources. 16394 * 16395 * Returns: 16396 * 0 = Success, >0 = Failure 16397 */ 16398 static int 16399 bxe_detach(device_t dev) 16400 { 16401 struct bxe_softc *sc; 16402 if_t ifp; 16403 16404 sc = device_get_softc(dev); 16405 16406 BLOGD(sc, DBG_LOAD, "Starting detach...\n"); 16407 16408 ifp = sc->ifp; 16409 if (ifp != NULL && if_vlantrunkinuse(ifp)) { 16410 BLOGE(sc, "Cannot detach while VLANs are in use.\n"); 16411 return(EBUSY); 16412 } 16413 16414 bxe_del_cdev(sc); 16415 16416 /* stop the periodic callout */ 16417 bxe_periodic_stop(sc); 16418 16419 /* stop the chip taskqueue */ 16420 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE); 16421 if (sc->chip_tq) { 16422 taskqueue_drain(sc->chip_tq, &sc->chip_tq_task); 16423 taskqueue_free(sc->chip_tq); 16424 sc->chip_tq = NULL; 16425 taskqueue_drain_timeout(taskqueue_thread, 16426 &sc->sp_err_timeout_task); 16427 } 16428 16429 /* stop and reset the controller if it was open */ 16430 if (sc->state != BXE_STATE_CLOSED) { 16431 BXE_CORE_LOCK(sc); 16432 bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE); 16433 sc->state = BXE_STATE_DISABLED; 16434 BXE_CORE_UNLOCK(sc); 16435 } 16436 16437 /* release the network interface */ 16438 if (ifp != NULL) { 16439 ether_ifdetach(ifp); 16440 } 16441 ifmedia_removeall(&sc->ifmedia); 16442 16443 /* XXX do the following based on driver state... */ 16444 16445 /* free the host hardware/software hsi structures */ 16446 bxe_free_hsi_mem(sc); 16447 16448 /* free ilt */ 16449 bxe_free_ilt_mem(sc); 16450 16451 bxe_free_buf_rings(sc); 16452 16453 /* release the interrupts */ 16454 bxe_interrupt_free(sc); 16455 16456 /* Release the mutexes*/ 16457 bxe_destroy_fp_mutexs(sc); 16458 bxe_release_mutexes(sc); 16459 16460 16461 /* Release the PCIe BAR mapped memory */ 16462 bxe_deallocate_bars(sc); 16463 16464 /* Release the FreeBSD interface. */ 16465 if (sc->ifp != NULL) { 16466 if_free(sc->ifp); 16467 } 16468 16469 pci_disable_busmaster(dev); 16470 16471 return (0); 16472 } 16473 16474 /* 16475 * Device shutdown function. 16476 * 16477 * Stops and resets the controller. 16478 * 16479 * Returns: 16480 * Nothing 16481 */ 16482 static int 16483 bxe_shutdown(device_t dev) 16484 { 16485 struct bxe_softc *sc; 16486 16487 sc = device_get_softc(dev); 16488 16489 BLOGD(sc, DBG_LOAD, "Starting shutdown...\n"); 16490 16491 /* stop the periodic callout */ 16492 bxe_periodic_stop(sc); 16493 16494 if (sc->state != BXE_STATE_CLOSED) { 16495 BXE_CORE_LOCK(sc); 16496 bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE); 16497 BXE_CORE_UNLOCK(sc); 16498 } 16499 16500 return (0); 16501 } 16502 16503 void 16504 bxe_igu_ack_sb(struct bxe_softc *sc, 16505 uint8_t igu_sb_id, 16506 uint8_t segment, 16507 uint16_t index, 16508 uint8_t op, 16509 uint8_t update) 16510 { 16511 uint32_t igu_addr = sc->igu_base_addr; 16512 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8; 16513 bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr); 16514 } 16515 16516 static void 16517 bxe_igu_clear_sb_gen(struct bxe_softc *sc, 16518 uint8_t func, 16519 uint8_t idu_sb_id, 16520 uint8_t is_pf) 16521 { 16522 uint32_t data, ctl, cnt = 100; 16523 uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; 16524 uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; 16525 uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4; 16526 uint32_t sb_bit = 1 << (idu_sb_id%32); 16527 uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT; 16528 uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id; 16529 16530 /* Not supported in BC mode */ 16531 if (CHIP_INT_MODE_IS_BC(sc)) { 16532 return; 16533 } 16534 16535 data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup << 16536 IGU_REGULAR_CLEANUP_TYPE_SHIFT) | 16537 IGU_REGULAR_CLEANUP_SET | 16538 IGU_REGULAR_BCLEANUP); 16539 16540 ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) | 16541 (func_encode << IGU_CTRL_REG_FID_SHIFT) | 16542 (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT)); 16543 16544 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 16545 data, igu_addr_data); 16546 REG_WR(sc, igu_addr_data, data); 16547 16548 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 16549 BUS_SPACE_BARRIER_WRITE); 16550 mb(); 16551 16552 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 16553 ctl, igu_addr_ctl); 16554 REG_WR(sc, igu_addr_ctl, ctl); 16555 16556 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 16557 BUS_SPACE_BARRIER_WRITE); 16558 mb(); 16559 16560 /* wait for clean up to finish */ 16561 while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) { 16562 DELAY(20000); 16563 } 16564 16565 if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) { 16566 BLOGD(sc, DBG_LOAD, 16567 "Unable to finish IGU cleanup: " 16568 "idu_sb_id %d offset %d bit %d (cnt %d)\n", 16569 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt); 16570 } 16571 } 16572 16573 static void 16574 bxe_igu_clear_sb(struct bxe_softc *sc, 16575 uint8_t idu_sb_id) 16576 { 16577 bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/); 16578 } 16579 16580 16581 16582 16583 16584 16585 16586 /*******************/ 16587 /* ECORE CALLBACKS */ 16588 /*******************/ 16589 16590 static void 16591 bxe_reset_common(struct bxe_softc *sc) 16592 { 16593 uint32_t val = 0x1400; 16594 16595 /* reset_common */ 16596 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f); 16597 16598 if (CHIP_IS_E3(sc)) { 16599 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 16600 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 16601 } 16602 16603 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val); 16604 } 16605 16606 static void 16607 bxe_common_init_phy(struct bxe_softc *sc) 16608 { 16609 uint32_t shmem_base[2]; 16610 uint32_t shmem2_base[2]; 16611 16612 /* Avoid common init in case MFW supports LFA */ 16613 if (SHMEM2_RD(sc, size) > 16614 (uint32_t)offsetof(struct shmem2_region, 16615 lfa_host_addr[SC_PORT(sc)])) { 16616 return; 16617 } 16618 16619 shmem_base[0] = sc->devinfo.shmem_base; 16620 shmem2_base[0] = sc->devinfo.shmem2_base; 16621 16622 if (!CHIP_IS_E1x(sc)) { 16623 shmem_base[1] = SHMEM2_RD(sc, other_shmem_base_addr); 16624 shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr); 16625 } 16626 16627 bxe_acquire_phy_lock(sc); 16628 elink_common_init_phy(sc, shmem_base, shmem2_base, 16629 sc->devinfo.chip_id, 0); 16630 bxe_release_phy_lock(sc); 16631 } 16632 16633 static void 16634 bxe_pf_disable(struct bxe_softc *sc) 16635 { 16636 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 16637 16638 val &= ~IGU_PF_CONF_FUNC_EN; 16639 16640 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 16641 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 16642 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0); 16643 } 16644 16645 static void 16646 bxe_init_pxp(struct bxe_softc *sc) 16647 { 16648 uint16_t devctl; 16649 int r_order, w_order; 16650 16651 devctl = bxe_pcie_capability_read(sc, PCIER_DEVICE_CTL, 2); 16652 16653 BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl); 16654 16655 w_order = ((devctl & PCIEM_CTL_MAX_PAYLOAD) >> 5); 16656 16657 if (sc->mrrs == -1) { 16658 r_order = ((devctl & PCIEM_CTL_MAX_READ_REQUEST) >> 12); 16659 } else { 16660 BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs); 16661 r_order = sc->mrrs; 16662 } 16663 16664 ecore_init_pxp_arb(sc, r_order, w_order); 16665 } 16666 16667 static uint32_t 16668 bxe_get_pretend_reg(struct bxe_softc *sc) 16669 { 16670 uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0; 16671 uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base); 16672 return (base + (SC_ABS_FUNC(sc)) * stride); 16673 } 16674 16675 /* 16676 * Called only on E1H or E2. 16677 * When pretending to be PF, the pretend value is the function number 0..7. 16678 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID 16679 * combination. 16680 */ 16681 static int 16682 bxe_pretend_func(struct bxe_softc *sc, 16683 uint16_t pretend_func_val) 16684 { 16685 uint32_t pretend_reg; 16686 16687 if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) { 16688 return (-1); 16689 } 16690 16691 /* get my own pretend register */ 16692 pretend_reg = bxe_get_pretend_reg(sc); 16693 REG_WR(sc, pretend_reg, pretend_func_val); 16694 REG_RD(sc, pretend_reg); 16695 return (0); 16696 } 16697 16698 static void 16699 bxe_iov_init_dmae(struct bxe_softc *sc) 16700 { 16701 return; 16702 } 16703 16704 static void 16705 bxe_iov_init_dq(struct bxe_softc *sc) 16706 { 16707 return; 16708 } 16709 16710 /* send a NIG loopback debug packet */ 16711 static void 16712 bxe_lb_pckt(struct bxe_softc *sc) 16713 { 16714 uint32_t wb_write[3]; 16715 16716 /* Ethernet source and destination addresses */ 16717 wb_write[0] = 0x55555555; 16718 wb_write[1] = 0x55555555; 16719 wb_write[2] = 0x20; /* SOP */ 16720 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 16721 16722 /* NON-IP protocol */ 16723 wb_write[0] = 0x09000000; 16724 wb_write[1] = 0x55555555; 16725 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */ 16726 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 16727 } 16728 16729 /* 16730 * Some of the internal memories are not directly readable from the driver. 16731 * To test them we send debug packets. 16732 */ 16733 static int 16734 bxe_int_mem_test(struct bxe_softc *sc) 16735 { 16736 int factor; 16737 int count, i; 16738 uint32_t val = 0; 16739 16740 if (CHIP_REV_IS_FPGA(sc)) { 16741 factor = 120; 16742 } else if (CHIP_REV_IS_EMUL(sc)) { 16743 factor = 200; 16744 } else { 16745 factor = 1; 16746 } 16747 16748 /* disable inputs of parser neighbor blocks */ 16749 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); 16750 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); 16751 REG_WR(sc, CFC_REG_DEBUG0, 0x1); 16752 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); 16753 16754 /* write 0 to parser credits for CFC search request */ 16755 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 16756 16757 /* send Ethernet packet */ 16758 bxe_lb_pckt(sc); 16759 16760 /* TODO do i reset NIG statistic? */ 16761 /* Wait until NIG register shows 1 packet of size 0x10 */ 16762 count = 1000 * factor; 16763 while (count) { 16764 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 16765 val = *BXE_SP(sc, wb_data[0]); 16766 if (val == 0x10) { 16767 break; 16768 } 16769 16770 DELAY(10000); 16771 count--; 16772 } 16773 16774 if (val != 0x10) { 16775 BLOGE(sc, "NIG timeout val=0x%x\n", val); 16776 return (-1); 16777 } 16778 16779 /* wait until PRS register shows 1 packet */ 16780 count = (1000 * factor); 16781 while (count) { 16782 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16783 if (val == 1) { 16784 break; 16785 } 16786 16787 DELAY(10000); 16788 count--; 16789 } 16790 16791 if (val != 0x1) { 16792 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16793 return (-2); 16794 } 16795 16796 /* Reset and init BRB, PRS */ 16797 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 16798 DELAY(50000); 16799 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 16800 DELAY(50000); 16801 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 16802 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 16803 16804 /* Disable inputs of parser neighbor blocks */ 16805 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); 16806 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); 16807 REG_WR(sc, CFC_REG_DEBUG0, 0x1); 16808 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); 16809 16810 /* Write 0 to parser credits for CFC search request */ 16811 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 16812 16813 /* send 10 Ethernet packets */ 16814 for (i = 0; i < 10; i++) { 16815 bxe_lb_pckt(sc); 16816 } 16817 16818 /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */ 16819 count = (1000 * factor); 16820 while (count) { 16821 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 16822 val = *BXE_SP(sc, wb_data[0]); 16823 if (val == 0xb0) { 16824 break; 16825 } 16826 16827 DELAY(10000); 16828 count--; 16829 } 16830 16831 if (val != 0xb0) { 16832 BLOGE(sc, "NIG timeout val=0x%x\n", val); 16833 return (-3); 16834 } 16835 16836 /* Wait until PRS register shows 2 packets */ 16837 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16838 if (val != 2) { 16839 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16840 } 16841 16842 /* Write 1 to parser credits for CFC search request */ 16843 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1); 16844 16845 /* Wait until PRS register shows 3 packets */ 16846 DELAY(10000 * factor); 16847 16848 /* Wait until NIG register shows 1 packet of size 0x10 */ 16849 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16850 if (val != 3) { 16851 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16852 } 16853 16854 /* clear NIG EOP FIFO */ 16855 for (i = 0; i < 11; i++) { 16856 REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO); 16857 } 16858 16859 val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY); 16860 if (val != 1) { 16861 BLOGE(sc, "clear of NIG failed val=0x%x\n", val); 16862 return (-4); 16863 } 16864 16865 /* Reset and init BRB, PRS, NIG */ 16866 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 16867 DELAY(50000); 16868 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 16869 DELAY(50000); 16870 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 16871 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 16872 if (!CNIC_SUPPORT(sc)) { 16873 /* set NIC mode */ 16874 REG_WR(sc, PRS_REG_NIC_MODE, 1); 16875 } 16876 16877 /* Enable inputs of parser neighbor blocks */ 16878 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff); 16879 REG_WR(sc, TCM_REG_PRS_IFEN, 0x1); 16880 REG_WR(sc, CFC_REG_DEBUG0, 0x0); 16881 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1); 16882 16883 return (0); 16884 } 16885 16886 static void 16887 bxe_setup_fan_failure_detection(struct bxe_softc *sc) 16888 { 16889 int is_required; 16890 uint32_t val; 16891 int port; 16892 16893 is_required = 0; 16894 val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) & 16895 SHARED_HW_CFG_FAN_FAILURE_MASK); 16896 16897 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) { 16898 is_required = 1; 16899 } 16900 /* 16901 * The fan failure mechanism is usually related to the PHY type since 16902 * the power consumption of the board is affected by the PHY. Currently, 16903 * fan is required for most designs with SFX7101, BCM8727 and BCM8481. 16904 */ 16905 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) { 16906 for (port = PORT_0; port < PORT_MAX; port++) { 16907 is_required |= elink_fan_failure_det_req(sc, 16908 sc->devinfo.shmem_base, 16909 sc->devinfo.shmem2_base, 16910 port); 16911 } 16912 } 16913 16914 BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required); 16915 16916 if (is_required == 0) { 16917 return; 16918 } 16919 16920 /* Fan failure is indicated by SPIO 5 */ 16921 bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z); 16922 16923 /* set to active low mode */ 16924 val = REG_RD(sc, MISC_REG_SPIO_INT); 16925 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS); 16926 REG_WR(sc, MISC_REG_SPIO_INT, val); 16927 16928 /* enable interrupt to signal the IGU */ 16929 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); 16930 val |= MISC_SPIO_SPIO5; 16931 REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val); 16932 } 16933 16934 static void 16935 bxe_enable_blocks_attention(struct bxe_softc *sc) 16936 { 16937 uint32_t val; 16938 16939 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); 16940 if (!CHIP_IS_E1x(sc)) { 16941 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40); 16942 } else { 16943 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0); 16944 } 16945 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); 16946 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); 16947 /* 16948 * mask read length error interrupts in brb for parser 16949 * (parsing unit and 'checksum and crc' unit) 16950 * these errors are legal (PU reads fixed length and CAC can cause 16951 * read length error on truncated packets) 16952 */ 16953 REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00); 16954 REG_WR(sc, QM_REG_QM_INT_MASK, 0); 16955 REG_WR(sc, TM_REG_TM_INT_MASK, 0); 16956 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0); 16957 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0); 16958 REG_WR(sc, XCM_REG_XCM_INT_MASK, 0); 16959 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */ 16960 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */ 16961 REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0); 16962 REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0); 16963 REG_WR(sc, UCM_REG_UCM_INT_MASK, 0); 16964 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */ 16965 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */ 16966 REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0); 16967 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0); 16968 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0); 16969 REG_WR(sc, CCM_REG_CCM_INT_MASK, 0); 16970 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */ 16971 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */ 16972 16973 val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT | 16974 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF | 16975 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN); 16976 if (!CHIP_IS_E1x(sc)) { 16977 val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED | 16978 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED); 16979 } 16980 REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val); 16981 16982 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0); 16983 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0); 16984 REG_WR(sc, TCM_REG_TCM_INT_MASK, 0); 16985 /* REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */ 16986 16987 if (!CHIP_IS_E1x(sc)) { 16988 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */ 16989 REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff); 16990 } 16991 16992 REG_WR(sc, CDU_REG_CDU_INT_MASK, 0); 16993 REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0); 16994 /* REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */ 16995 REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */ 16996 } 16997 16998 /** 16999 * bxe_init_hw_common - initialize the HW at the COMMON phase. 17000 * 17001 * @sc: driver handle 17002 */ 17003 static int 17004 bxe_init_hw_common(struct bxe_softc *sc) 17005 { 17006 uint8_t abs_func_id; 17007 uint32_t val; 17008 17009 BLOGD(sc, DBG_LOAD, "starting common init for func %d\n", 17010 SC_ABS_FUNC(sc)); 17011 17012 /* 17013 * take the RESET lock to protect undi_unload flow from accessing 17014 * registers while we are resetting the chip 17015 */ 17016 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 17017 17018 bxe_reset_common(sc); 17019 17020 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff); 17021 17022 val = 0xfffc; 17023 if (CHIP_IS_E3(sc)) { 17024 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 17025 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 17026 } 17027 17028 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val); 17029 17030 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 17031 17032 ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON); 17033 BLOGD(sc, DBG_LOAD, "after misc block init\n"); 17034 17035 if (!CHIP_IS_E1x(sc)) { 17036 /* 17037 * 4-port mode or 2-port mode we need to turn off master-enable for 17038 * everyone. After that we turn it back on for self. So, we disregard 17039 * multi-function, and always disable all functions on the given path, 17040 * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1 17041 */ 17042 for (abs_func_id = SC_PATH(sc); 17043 abs_func_id < (E2_FUNC_MAX * 2); 17044 abs_func_id += 2) { 17045 if (abs_func_id == SC_ABS_FUNC(sc)) { 17046 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17047 continue; 17048 } 17049 17050 bxe_pretend_func(sc, abs_func_id); 17051 17052 /* clear pf enable */ 17053 bxe_pf_disable(sc); 17054 17055 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 17056 } 17057 } 17058 17059 BLOGD(sc, DBG_LOAD, "after pf disable\n"); 17060 17061 ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON); 17062 17063 if (CHIP_IS_E1(sc)) { 17064 /* 17065 * enable HW interrupt from PXP on USDM overflow 17066 * bit 16 on INT_MASK_0 17067 */ 17068 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); 17069 } 17070 17071 ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON); 17072 bxe_init_pxp(sc); 17073 17074 #ifdef __BIG_ENDIAN 17075 REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1); 17076 REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1); 17077 REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1); 17078 REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1); 17079 REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1); 17080 /* make sure this value is 0 */ 17081 REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0); 17082 17083 //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1); 17084 REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1); 17085 REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1); 17086 REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1); 17087 REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1); 17088 #endif 17089 17090 ecore_ilt_init_page_size(sc, INITOP_SET); 17091 17092 if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) { 17093 REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1); 17094 } 17095 17096 /* let the HW do it's magic... */ 17097 DELAY(100000); 17098 17099 /* finish PXP init */ 17100 val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE); 17101 if (val != 1) { 17102 BLOGE(sc, "PXP2 CFG failed PXP2_REG_RQ_CFG_DONE val = 0x%x\n", 17103 val); 17104 return (-1); 17105 } 17106 val = REG_RD(sc, PXP2_REG_RD_INIT_DONE); 17107 if (val != 1) { 17108 BLOGE(sc, "PXP2 RD_INIT failed val = 0x%x\n", val); 17109 return (-1); 17110 } 17111 17112 BLOGD(sc, DBG_LOAD, "after pxp init\n"); 17113 17114 /* 17115 * Timer bug workaround for E2 only. We need to set the entire ILT to have 17116 * entries with value "0" and valid bit on. This needs to be done by the 17117 * first PF that is loaded in a path (i.e. common phase) 17118 */ 17119 if (!CHIP_IS_E1x(sc)) { 17120 /* 17121 * In E2 there is a bug in the timers block that can cause function 6 / 7 17122 * (i.e. vnic3) to start even if it is marked as "scan-off". 17123 * This occurs when a different function (func2,3) is being marked 17124 * as "scan-off". Real-life scenario for example: if a driver is being 17125 * load-unloaded while func6,7 are down. This will cause the timer to access 17126 * the ilt, translate to a logical address and send a request to read/write. 17127 * Since the ilt for the function that is down is not valid, this will cause 17128 * a translation error which is unrecoverable. 17129 * The Workaround is intended to make sure that when this happens nothing 17130 * fatal will occur. The workaround: 17131 * 1. First PF driver which loads on a path will: 17132 * a. After taking the chip out of reset, by using pretend, 17133 * it will write "0" to the following registers of 17134 * the other vnics. 17135 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 17136 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0); 17137 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0); 17138 * And for itself it will write '1' to 17139 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable 17140 * dmae-operations (writing to pram for example.) 17141 * note: can be done for only function 6,7 but cleaner this 17142 * way. 17143 * b. Write zero+valid to the entire ILT. 17144 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of 17145 * VNIC3 (of that port). The range allocated will be the 17146 * entire ILT. This is needed to prevent ILT range error. 17147 * 2. Any PF driver load flow: 17148 * a. ILT update with the physical addresses of the allocated 17149 * logical pages. 17150 * b. Wait 20msec. - note that this timeout is needed to make 17151 * sure there are no requests in one of the PXP internal 17152 * queues with "old" ILT addresses. 17153 * c. PF enable in the PGLC. 17154 * d. Clear the was_error of the PF in the PGLC. (could have 17155 * occurred while driver was down) 17156 * e. PF enable in the CFC (WEAK + STRONG) 17157 * f. Timers scan enable 17158 * 3. PF driver unload flow: 17159 * a. Clear the Timers scan_en. 17160 * b. Polling for scan_on=0 for that PF. 17161 * c. Clear the PF enable bit in the PXP. 17162 * d. Clear the PF enable in the CFC (WEAK + STRONG) 17163 * e. Write zero+valid to all ILT entries (The valid bit must 17164 * stay set) 17165 * f. If this is VNIC 3 of a port then also init 17166 * first_timers_ilt_entry to zero and last_timers_ilt_entry 17167 * to the last entry in the ILT. 17168 * 17169 * Notes: 17170 * Currently the PF error in the PGLC is non recoverable. 17171 * In the future the there will be a recovery routine for this error. 17172 * Currently attention is masked. 17173 * Having an MCP lock on the load/unload process does not guarantee that 17174 * there is no Timer disable during Func6/7 enable. This is because the 17175 * Timers scan is currently being cleared by the MCP on FLR. 17176 * Step 2.d can be done only for PF6/7 and the driver can also check if 17177 * there is error before clearing it. But the flow above is simpler and 17178 * more general. 17179 * All ILT entries are written by zero+valid and not just PF6/7 17180 * ILT entries since in the future the ILT entries allocation for 17181 * PF-s might be dynamic. 17182 */ 17183 struct ilt_client_info ilt_cli; 17184 struct ecore_ilt ilt; 17185 17186 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 17187 memset(&ilt, 0, sizeof(struct ecore_ilt)); 17188 17189 /* initialize dummy TM client */ 17190 ilt_cli.start = 0; 17191 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 17192 ilt_cli.client_num = ILT_CLIENT_TM; 17193 17194 /* 17195 * Step 1: set zeroes to all ilt page entries with valid bit on 17196 * Step 2: set the timers first/last ilt entry to point 17197 * to the entire range to prevent ILT range error for 3rd/4th 17198 * vnic (this code assumes existence of the vnic) 17199 * 17200 * both steps performed by call to ecore_ilt_client_init_op() 17201 * with dummy TM client 17202 * 17203 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT 17204 * and his brother are split registers 17205 */ 17206 17207 bxe_pretend_func(sc, (SC_PATH(sc) + 6)); 17208 ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR); 17209 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 17210 17211 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN); 17212 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN); 17213 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1); 17214 } 17215 17216 REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0); 17217 REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0); 17218 17219 if (!CHIP_IS_E1x(sc)) { 17220 int factor = CHIP_REV_IS_EMUL(sc) ? 1000 : 17221 (CHIP_REV_IS_FPGA(sc) ? 400 : 0); 17222 17223 ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON); 17224 ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON); 17225 17226 /* let the HW do it's magic... */ 17227 do { 17228 DELAY(200000); 17229 val = REG_RD(sc, ATC_REG_ATC_INIT_DONE); 17230 } while (factor-- && (val != 1)); 17231 17232 if (val != 1) { 17233 BLOGE(sc, "ATC_INIT failed val = 0x%x\n", val); 17234 return (-1); 17235 } 17236 } 17237 17238 BLOGD(sc, DBG_LOAD, "after pglue and atc init\n"); 17239 17240 ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON); 17241 17242 bxe_iov_init_dmae(sc); 17243 17244 /* clean the DMAE memory */ 17245 sc->dmae_ready = 1; 17246 ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1); 17247 17248 ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON); 17249 17250 ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON); 17251 17252 ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON); 17253 17254 ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON); 17255 17256 bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3); 17257 bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3); 17258 bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3); 17259 bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3); 17260 17261 ecore_init_block(sc, BLOCK_QM, PHASE_COMMON); 17262 17263 /* QM queues pointers table */ 17264 ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET); 17265 17266 /* soft reset pulse */ 17267 REG_WR(sc, QM_REG_SOFT_RESET, 1); 17268 REG_WR(sc, QM_REG_SOFT_RESET, 0); 17269 17270 if (CNIC_SUPPORT(sc)) 17271 ecore_init_block(sc, BLOCK_TM, PHASE_COMMON); 17272 17273 ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON); 17274 REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT); 17275 if (!CHIP_REV_IS_SLOW(sc)) { 17276 /* enable hw interrupt from doorbell Q */ 17277 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); 17278 } 17279 17280 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 17281 17282 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 17283 REG_WR(sc, PRS_REG_A_PRSU_20, 0xf); 17284 17285 if (!CHIP_IS_E1(sc)) { 17286 REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan); 17287 } 17288 17289 if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) { 17290 if (IS_MF_AFEX(sc)) { 17291 /* 17292 * configure that AFEX and VLAN headers must be 17293 * received in AFEX mode 17294 */ 17295 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE); 17296 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA); 17297 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6); 17298 REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926); 17299 REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4); 17300 } else { 17301 /* 17302 * Bit-map indicating which L2 hdrs may appear 17303 * after the basic Ethernet header 17304 */ 17305 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 17306 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); 17307 } 17308 } 17309 17310 ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON); 17311 ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON); 17312 ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON); 17313 ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON); 17314 17315 if (!CHIP_IS_E1x(sc)) { 17316 /* reset VFC memories */ 17317 REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 17318 VFC_MEMORIES_RST_REG_CAM_RST | 17319 VFC_MEMORIES_RST_REG_RAM_RST); 17320 REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 17321 VFC_MEMORIES_RST_REG_CAM_RST | 17322 VFC_MEMORIES_RST_REG_RAM_RST); 17323 17324 DELAY(20000); 17325 } 17326 17327 ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON); 17328 ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON); 17329 ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON); 17330 ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON); 17331 17332 /* sync semi rtc */ 17333 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 17334 0x80000000); 17335 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 17336 0x80000000); 17337 17338 ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON); 17339 ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON); 17340 ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON); 17341 17342 if (!CHIP_IS_E1x(sc)) { 17343 if (IS_MF_AFEX(sc)) { 17344 /* 17345 * configure that AFEX and VLAN headers must be 17346 * sent in AFEX mode 17347 */ 17348 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE); 17349 REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA); 17350 REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6); 17351 REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926); 17352 REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4); 17353 } else { 17354 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 17355 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); 17356 } 17357 } 17358 17359 REG_WR(sc, SRC_REG_SOFT_RST, 1); 17360 17361 ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON); 17362 17363 if (CNIC_SUPPORT(sc)) { 17364 REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672); 17365 REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc); 17366 REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b); 17367 REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a); 17368 REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116); 17369 REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b); 17370 REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf); 17371 REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09); 17372 REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f); 17373 REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7); 17374 } 17375 REG_WR(sc, SRC_REG_SOFT_RST, 0); 17376 17377 if (sizeof(union cdu_context) != 1024) { 17378 /* we currently assume that a context is 1024 bytes */ 17379 BLOGE(sc, "please adjust the size of cdu_context(%ld)\n", 17380 (long)sizeof(union cdu_context)); 17381 } 17382 17383 ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON); 17384 val = (4 << 24) + (0 << 12) + 1024; 17385 REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val); 17386 17387 ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON); 17388 17389 REG_WR(sc, CFC_REG_INIT_REG, 0x7FF); 17390 /* enable context validation interrupt from CFC */ 17391 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); 17392 17393 /* set the thresholds to prevent CFC/CDU race */ 17394 REG_WR(sc, CFC_REG_DEBUG0, 0x20020000); 17395 ecore_init_block(sc, BLOCK_HC, PHASE_COMMON); 17396 17397 if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) { 17398 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36); 17399 } 17400 17401 ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON); 17402 ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON); 17403 17404 /* Reset PCIE errors for debug */ 17405 REG_WR(sc, 0x2814, 0xffffffff); 17406 REG_WR(sc, 0x3820, 0xffffffff); 17407 17408 if (!CHIP_IS_E1x(sc)) { 17409 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5, 17410 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 | 17411 PXPCS_TL_CONTROL_5_ERR_UNSPPORT)); 17412 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT, 17413 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 | 17414 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 | 17415 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2)); 17416 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT, 17417 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 | 17418 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 | 17419 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5)); 17420 } 17421 17422 ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON); 17423 17424 if (!CHIP_IS_E1(sc)) { 17425 /* in E3 this done in per-port section */ 17426 if (!CHIP_IS_E3(sc)) 17427 REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc)); 17428 } 17429 17430 if (CHIP_IS_E1H(sc)) { 17431 /* not applicable for E2 (and above ...) */ 17432 REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc)); 17433 } 17434 17435 if (CHIP_REV_IS_SLOW(sc)) { 17436 DELAY(200000); 17437 } 17438 17439 /* finish CFC init */ 17440 val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10); 17441 if (val != 1) { 17442 BLOGE(sc, "CFC LL_INIT failed val=0x%x\n", val); 17443 return (-1); 17444 } 17445 val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10); 17446 if (val != 1) { 17447 BLOGE(sc, "CFC AC_INIT failed val=0x%x\n", val); 17448 return (-1); 17449 } 17450 val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10); 17451 if (val != 1) { 17452 BLOGE(sc, "CFC CAM_INIT failed val=0x%x\n", val); 17453 return (-1); 17454 } 17455 REG_WR(sc, CFC_REG_DEBUG0, 0); 17456 17457 if (CHIP_IS_E1(sc)) { 17458 /* read NIG statistic to see if this is our first up since powerup */ 17459 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 17460 val = *BXE_SP(sc, wb_data[0]); 17461 17462 /* do internal memory self test */ 17463 if ((val == 0) && bxe_int_mem_test(sc)) { 17464 BLOGE(sc, "internal mem self test failed val=0x%x\n", val); 17465 return (-1); 17466 } 17467 } 17468 17469 bxe_setup_fan_failure_detection(sc); 17470 17471 /* clear PXP2 attentions */ 17472 REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); 17473 17474 bxe_enable_blocks_attention(sc); 17475 17476 if (!CHIP_REV_IS_SLOW(sc)) { 17477 ecore_enable_blocks_parity(sc); 17478 } 17479 17480 if (!BXE_NOMCP(sc)) { 17481 if (CHIP_IS_E1x(sc)) { 17482 bxe_common_init_phy(sc); 17483 } 17484 } 17485 17486 return (0); 17487 } 17488 17489 /** 17490 * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase. 17491 * 17492 * @sc: driver handle 17493 */ 17494 static int 17495 bxe_init_hw_common_chip(struct bxe_softc *sc) 17496 { 17497 int rc = bxe_init_hw_common(sc); 17498 17499 if (rc) { 17500 BLOGE(sc, "bxe_init_hw_common failed rc=%d\n", rc); 17501 return (rc); 17502 } 17503 17504 /* In E2 2-PORT mode, same ext phy is used for the two paths */ 17505 if (!BXE_NOMCP(sc)) { 17506 bxe_common_init_phy(sc); 17507 } 17508 17509 return (0); 17510 } 17511 17512 static int 17513 bxe_init_hw_port(struct bxe_softc *sc) 17514 { 17515 int port = SC_PORT(sc); 17516 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0; 17517 uint32_t low, high; 17518 uint32_t val; 17519 17520 BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port); 17521 17522 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 17523 17524 ecore_init_block(sc, BLOCK_MISC, init_phase); 17525 ecore_init_block(sc, BLOCK_PXP, init_phase); 17526 ecore_init_block(sc, BLOCK_PXP2, init_phase); 17527 17528 /* 17529 * Timers bug workaround: disables the pf_master bit in pglue at 17530 * common phase, we need to enable it here before any dmae access are 17531 * attempted. Therefore we manually added the enable-master to the 17532 * port phase (it also happens in the function phase) 17533 */ 17534 if (!CHIP_IS_E1x(sc)) { 17535 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17536 } 17537 17538 ecore_init_block(sc, BLOCK_ATC, init_phase); 17539 ecore_init_block(sc, BLOCK_DMAE, init_phase); 17540 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); 17541 ecore_init_block(sc, BLOCK_QM, init_phase); 17542 17543 ecore_init_block(sc, BLOCK_TCM, init_phase); 17544 ecore_init_block(sc, BLOCK_UCM, init_phase); 17545 ecore_init_block(sc, BLOCK_CCM, init_phase); 17546 ecore_init_block(sc, BLOCK_XCM, init_phase); 17547 17548 /* QM cid (connection) count */ 17549 ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET); 17550 17551 if (CNIC_SUPPORT(sc)) { 17552 ecore_init_block(sc, BLOCK_TM, init_phase); 17553 REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20); 17554 REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31); 17555 } 17556 17557 ecore_init_block(sc, BLOCK_DORQ, init_phase); 17558 17559 ecore_init_block(sc, BLOCK_BRB1, init_phase); 17560 17561 if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) { 17562 if (IS_MF(sc)) { 17563 low = (BXE_ONE_PORT(sc) ? 160 : 246); 17564 } else if (sc->mtu > 4096) { 17565 if (BXE_ONE_PORT(sc)) { 17566 low = 160; 17567 } else { 17568 val = sc->mtu; 17569 /* (24*1024 + val*4)/256 */ 17570 low = (96 + (val / 64) + ((val % 64) ? 1 : 0)); 17571 } 17572 } else { 17573 low = (BXE_ONE_PORT(sc) ? 80 : 160); 17574 } 17575 high = (low + 56); /* 14*1024/256 */ 17576 REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low); 17577 REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high); 17578 } 17579 17580 if (CHIP_IS_MODE_4_PORT(sc)) { 17581 REG_WR(sc, SC_PORT(sc) ? 17582 BRB1_REG_MAC_GUARANTIED_1 : 17583 BRB1_REG_MAC_GUARANTIED_0, 40); 17584 } 17585 17586 ecore_init_block(sc, BLOCK_PRS, init_phase); 17587 if (CHIP_IS_E3B0(sc)) { 17588 if (IS_MF_AFEX(sc)) { 17589 /* configure headers for AFEX mode */ 17590 REG_WR(sc, SC_PORT(sc) ? 17591 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 17592 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE); 17593 REG_WR(sc, SC_PORT(sc) ? 17594 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 : 17595 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6); 17596 REG_WR(sc, SC_PORT(sc) ? 17597 PRS_REG_MUST_HAVE_HDRS_PORT_1 : 17598 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA); 17599 } else { 17600 /* Ovlan exists only if we are in multi-function + 17601 * switch-dependent mode, in switch-independent there 17602 * is no ovlan headers 17603 */ 17604 REG_WR(sc, SC_PORT(sc) ? 17605 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 17606 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 17607 (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6)); 17608 } 17609 } 17610 17611 ecore_init_block(sc, BLOCK_TSDM, init_phase); 17612 ecore_init_block(sc, BLOCK_CSDM, init_phase); 17613 ecore_init_block(sc, BLOCK_USDM, init_phase); 17614 ecore_init_block(sc, BLOCK_XSDM, init_phase); 17615 17616 ecore_init_block(sc, BLOCK_TSEM, init_phase); 17617 ecore_init_block(sc, BLOCK_USEM, init_phase); 17618 ecore_init_block(sc, BLOCK_CSEM, init_phase); 17619 ecore_init_block(sc, BLOCK_XSEM, init_phase); 17620 17621 ecore_init_block(sc, BLOCK_UPB, init_phase); 17622 ecore_init_block(sc, BLOCK_XPB, init_phase); 17623 17624 ecore_init_block(sc, BLOCK_PBF, init_phase); 17625 17626 if (CHIP_IS_E1x(sc)) { 17627 /* configure PBF to work without PAUSE mtu 9000 */ 17628 REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0); 17629 17630 /* update threshold */ 17631 REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16)); 17632 /* update init credit */ 17633 REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22); 17634 17635 /* probe changes */ 17636 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1); 17637 DELAY(50); 17638 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0); 17639 } 17640 17641 if (CNIC_SUPPORT(sc)) { 17642 ecore_init_block(sc, BLOCK_SRC, init_phase); 17643 } 17644 17645 ecore_init_block(sc, BLOCK_CDU, init_phase); 17646 ecore_init_block(sc, BLOCK_CFC, init_phase); 17647 17648 if (CHIP_IS_E1(sc)) { 17649 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 17650 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 17651 } 17652 ecore_init_block(sc, BLOCK_HC, init_phase); 17653 17654 ecore_init_block(sc, BLOCK_IGU, init_phase); 17655 17656 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); 17657 /* init aeu_mask_attn_func_0/1: 17658 * - SF mode: bits 3-7 are masked. only bits 0-2 are in use 17659 * - MF mode: bit 3 is masked. bits 0-2 are in use as in SF 17660 * bits 4-7 are used for "per vn group attention" */ 17661 val = IS_MF(sc) ? 0xF7 : 0x7; 17662 /* Enable DCBX attention for all but E1 */ 17663 val |= CHIP_IS_E1(sc) ? 0 : 0x10; 17664 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val); 17665 17666 ecore_init_block(sc, BLOCK_NIG, init_phase); 17667 17668 if (!CHIP_IS_E1x(sc)) { 17669 /* Bit-map indicating which L2 hdrs may appear after the 17670 * basic Ethernet header 17671 */ 17672 if (IS_MF_AFEX(sc)) { 17673 REG_WR(sc, SC_PORT(sc) ? 17674 NIG_REG_P1_HDRS_AFTER_BASIC : 17675 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE); 17676 } else { 17677 REG_WR(sc, SC_PORT(sc) ? 17678 NIG_REG_P1_HDRS_AFTER_BASIC : 17679 NIG_REG_P0_HDRS_AFTER_BASIC, 17680 IS_MF_SD(sc) ? 7 : 6); 17681 } 17682 17683 if (CHIP_IS_E3(sc)) { 17684 REG_WR(sc, SC_PORT(sc) ? 17685 NIG_REG_LLH1_MF_MODE : 17686 NIG_REG_LLH_MF_MODE, IS_MF(sc)); 17687 } 17688 } 17689 if (!CHIP_IS_E3(sc)) { 17690 REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1); 17691 } 17692 17693 if (!CHIP_IS_E1(sc)) { 17694 /* 0x2 disable mf_ov, 0x1 enable */ 17695 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4, 17696 (IS_MF_SD(sc) ? 0x1 : 0x2)); 17697 17698 if (!CHIP_IS_E1x(sc)) { 17699 val = 0; 17700 switch (sc->devinfo.mf_info.mf_mode) { 17701 case MULTI_FUNCTION_SD: 17702 val = 1; 17703 break; 17704 case MULTI_FUNCTION_SI: 17705 case MULTI_FUNCTION_AFEX: 17706 val = 2; 17707 break; 17708 } 17709 17710 REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE : 17711 NIG_REG_LLH0_CLS_TYPE), val); 17712 } 17713 REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0); 17714 REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0); 17715 REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1); 17716 } 17717 17718 /* If SPIO5 is set to generate interrupts, enable it for this port */ 17719 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); 17720 if (val & MISC_SPIO_SPIO5) { 17721 uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 17722 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 17723 val = REG_RD(sc, reg_addr); 17724 val |= AEU_INPUTS_ATTN_BITS_SPIO5; 17725 REG_WR(sc, reg_addr, val); 17726 } 17727 17728 return (0); 17729 } 17730 17731 static uint32_t 17732 bxe_flr_clnup_reg_poll(struct bxe_softc *sc, 17733 uint32_t reg, 17734 uint32_t expected, 17735 uint32_t poll_count) 17736 { 17737 uint32_t cur_cnt = poll_count; 17738 uint32_t val; 17739 17740 while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) { 17741 DELAY(FLR_WAIT_INTERVAL); 17742 } 17743 17744 return (val); 17745 } 17746 17747 static int 17748 bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc, 17749 uint32_t reg, 17750 char *msg, 17751 uint32_t poll_cnt) 17752 { 17753 uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt); 17754 17755 if (val != 0) { 17756 BLOGE(sc, "%s usage count=%d\n", msg, val); 17757 return (1); 17758 } 17759 17760 return (0); 17761 } 17762 17763 /* Common routines with VF FLR cleanup */ 17764 static uint32_t 17765 bxe_flr_clnup_poll_count(struct bxe_softc *sc) 17766 { 17767 /* adjust polling timeout */ 17768 if (CHIP_REV_IS_EMUL(sc)) { 17769 return (FLR_POLL_CNT * 2000); 17770 } 17771 17772 if (CHIP_REV_IS_FPGA(sc)) { 17773 return (FLR_POLL_CNT * 120); 17774 } 17775 17776 return (FLR_POLL_CNT); 17777 } 17778 17779 static int 17780 bxe_poll_hw_usage_counters(struct bxe_softc *sc, 17781 uint32_t poll_cnt) 17782 { 17783 /* wait for CFC PF usage-counter to zero (includes all the VFs) */ 17784 if (bxe_flr_clnup_poll_hw_counter(sc, 17785 CFC_REG_NUM_LCIDS_INSIDE_PF, 17786 "CFC PF usage counter timed out", 17787 poll_cnt)) { 17788 return (1); 17789 } 17790 17791 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */ 17792 if (bxe_flr_clnup_poll_hw_counter(sc, 17793 DORQ_REG_PF_USAGE_CNT, 17794 "DQ PF usage counter timed out", 17795 poll_cnt)) { 17796 return (1); 17797 } 17798 17799 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */ 17800 if (bxe_flr_clnup_poll_hw_counter(sc, 17801 QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc), 17802 "QM PF usage counter timed out", 17803 poll_cnt)) { 17804 return (1); 17805 } 17806 17807 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */ 17808 if (bxe_flr_clnup_poll_hw_counter(sc, 17809 TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc), 17810 "Timers VNIC usage counter timed out", 17811 poll_cnt)) { 17812 return (1); 17813 } 17814 17815 if (bxe_flr_clnup_poll_hw_counter(sc, 17816 TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc), 17817 "Timers NUM_SCANS usage counter timed out", 17818 poll_cnt)) { 17819 return (1); 17820 } 17821 17822 /* Wait DMAE PF usage counter to zero */ 17823 if (bxe_flr_clnup_poll_hw_counter(sc, 17824 dmae_reg_go_c[INIT_DMAE_C(sc)], 17825 "DMAE dommand register timed out", 17826 poll_cnt)) { 17827 return (1); 17828 } 17829 17830 return (0); 17831 } 17832 17833 #define OP_GEN_PARAM(param) \ 17834 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM) 17835 #define OP_GEN_TYPE(type) \ 17836 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE) 17837 #define OP_GEN_AGG_VECT(index) \ 17838 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX) 17839 17840 static int 17841 bxe_send_final_clnup(struct bxe_softc *sc, 17842 uint8_t clnup_func, 17843 uint32_t poll_cnt) 17844 { 17845 uint32_t op_gen_command = 0; 17846 uint32_t comp_addr = (BAR_CSTRORM_INTMEM + 17847 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func)); 17848 int ret = 0; 17849 17850 if (REG_RD(sc, comp_addr)) { 17851 BLOGE(sc, "Cleanup complete was not 0 before sending\n"); 17852 return (1); 17853 } 17854 17855 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX); 17856 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE); 17857 op_gen_command |= OP_GEN_AGG_VECT(clnup_func); 17858 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT; 17859 17860 BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n"); 17861 REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command); 17862 17863 if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) { 17864 BLOGE(sc, "FW final cleanup did not succeed\n"); 17865 BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n", 17866 (REG_RD(sc, comp_addr))); 17867 bxe_panic(sc, ("FLR cleanup failed\n")); 17868 return (1); 17869 } 17870 17871 /* Zero completion for nxt FLR */ 17872 REG_WR(sc, comp_addr, 0); 17873 17874 return (ret); 17875 } 17876 17877 static void 17878 bxe_pbf_pN_buf_flushed(struct bxe_softc *sc, 17879 struct pbf_pN_buf_regs *regs, 17880 uint32_t poll_count) 17881 { 17882 uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start; 17883 uint32_t cur_cnt = poll_count; 17884 17885 crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed); 17886 crd = crd_start = REG_RD(sc, regs->crd); 17887 init_crd = REG_RD(sc, regs->init_crd); 17888 17889 BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd); 17890 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : s:%x\n", regs->pN, crd); 17891 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed); 17892 17893 while ((crd != init_crd) && 17894 ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) < 17895 (init_crd - crd_start))) { 17896 if (cur_cnt--) { 17897 DELAY(FLR_WAIT_INTERVAL); 17898 crd = REG_RD(sc, regs->crd); 17899 crd_freed = REG_RD(sc, regs->crd_freed); 17900 } else { 17901 BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN); 17902 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : c:%x\n", regs->pN, crd); 17903 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed); 17904 break; 17905 } 17906 } 17907 17908 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n", 17909 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 17910 } 17911 17912 static void 17913 bxe_pbf_pN_cmd_flushed(struct bxe_softc *sc, 17914 struct pbf_pN_cmd_regs *regs, 17915 uint32_t poll_count) 17916 { 17917 uint32_t occup, to_free, freed, freed_start; 17918 uint32_t cur_cnt = poll_count; 17919 17920 occup = to_free = REG_RD(sc, regs->lines_occup); 17921 freed = freed_start = REG_RD(sc, regs->lines_freed); 17922 17923 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 17924 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 17925 17926 while (occup && 17927 ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) { 17928 if (cur_cnt--) { 17929 DELAY(FLR_WAIT_INTERVAL); 17930 occup = REG_RD(sc, regs->lines_occup); 17931 freed = REG_RD(sc, regs->lines_freed); 17932 } else { 17933 BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN); 17934 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 17935 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 17936 break; 17937 } 17938 } 17939 17940 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n", 17941 poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 17942 } 17943 17944 static void 17945 bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count) 17946 { 17947 struct pbf_pN_cmd_regs cmd_regs[] = { 17948 {0, (CHIP_IS_E3B0(sc)) ? 17949 PBF_REG_TQ_OCCUPANCY_Q0 : 17950 PBF_REG_P0_TQ_OCCUPANCY, 17951 (CHIP_IS_E3B0(sc)) ? 17952 PBF_REG_TQ_LINES_FREED_CNT_Q0 : 17953 PBF_REG_P0_TQ_LINES_FREED_CNT}, 17954 {1, (CHIP_IS_E3B0(sc)) ? 17955 PBF_REG_TQ_OCCUPANCY_Q1 : 17956 PBF_REG_P1_TQ_OCCUPANCY, 17957 (CHIP_IS_E3B0(sc)) ? 17958 PBF_REG_TQ_LINES_FREED_CNT_Q1 : 17959 PBF_REG_P1_TQ_LINES_FREED_CNT}, 17960 {4, (CHIP_IS_E3B0(sc)) ? 17961 PBF_REG_TQ_OCCUPANCY_LB_Q : 17962 PBF_REG_P4_TQ_OCCUPANCY, 17963 (CHIP_IS_E3B0(sc)) ? 17964 PBF_REG_TQ_LINES_FREED_CNT_LB_Q : 17965 PBF_REG_P4_TQ_LINES_FREED_CNT} 17966 }; 17967 17968 struct pbf_pN_buf_regs buf_regs[] = { 17969 {0, (CHIP_IS_E3B0(sc)) ? 17970 PBF_REG_INIT_CRD_Q0 : 17971 PBF_REG_P0_INIT_CRD , 17972 (CHIP_IS_E3B0(sc)) ? 17973 PBF_REG_CREDIT_Q0 : 17974 PBF_REG_P0_CREDIT, 17975 (CHIP_IS_E3B0(sc)) ? 17976 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 : 17977 PBF_REG_P0_INTERNAL_CRD_FREED_CNT}, 17978 {1, (CHIP_IS_E3B0(sc)) ? 17979 PBF_REG_INIT_CRD_Q1 : 17980 PBF_REG_P1_INIT_CRD, 17981 (CHIP_IS_E3B0(sc)) ? 17982 PBF_REG_CREDIT_Q1 : 17983 PBF_REG_P1_CREDIT, 17984 (CHIP_IS_E3B0(sc)) ? 17985 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 : 17986 PBF_REG_P1_INTERNAL_CRD_FREED_CNT}, 17987 {4, (CHIP_IS_E3B0(sc)) ? 17988 PBF_REG_INIT_CRD_LB_Q : 17989 PBF_REG_P4_INIT_CRD, 17990 (CHIP_IS_E3B0(sc)) ? 17991 PBF_REG_CREDIT_LB_Q : 17992 PBF_REG_P4_CREDIT, 17993 (CHIP_IS_E3B0(sc)) ? 17994 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q : 17995 PBF_REG_P4_INTERNAL_CRD_FREED_CNT}, 17996 }; 17997 17998 int i; 17999 18000 /* Verify the command queues are flushed P0, P1, P4 */ 18001 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) { 18002 bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count); 18003 } 18004 18005 /* Verify the transmission buffers are flushed P0, P1, P4 */ 18006 for (i = 0; i < ARRAY_SIZE(buf_regs); i++) { 18007 bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count); 18008 } 18009 } 18010 18011 static void 18012 bxe_hw_enable_status(struct bxe_softc *sc) 18013 { 18014 uint32_t val; 18015 18016 val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF); 18017 BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val); 18018 18019 val = REG_RD(sc, PBF_REG_DISABLE_PF); 18020 BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val); 18021 18022 val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN); 18023 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val); 18024 18025 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN); 18026 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val); 18027 18028 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK); 18029 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val); 18030 18031 val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR); 18032 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val); 18033 18034 val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR); 18035 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val); 18036 18037 val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); 18038 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val); 18039 } 18040 18041 static int 18042 bxe_pf_flr_clnup(struct bxe_softc *sc) 18043 { 18044 uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc); 18045 18046 BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc)); 18047 18048 /* Re-enable PF target read access */ 18049 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 18050 18051 /* Poll HW usage counters */ 18052 BLOGD(sc, DBG_LOAD, "Polling usage counters\n"); 18053 if (bxe_poll_hw_usage_counters(sc, poll_cnt)) { 18054 return (-1); 18055 } 18056 18057 /* Zero the igu 'trailing edge' and 'leading edge' */ 18058 18059 /* Send the FW cleanup command */ 18060 if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) { 18061 return (-1); 18062 } 18063 18064 /* ATC cleanup */ 18065 18066 /* Verify TX hw is flushed */ 18067 bxe_tx_hw_flushed(sc, poll_cnt); 18068 18069 /* Wait 100ms (not adjusted according to platform) */ 18070 DELAY(100000); 18071 18072 /* Verify no pending pci transactions */ 18073 if (bxe_is_pcie_pending(sc)) { 18074 BLOGE(sc, "PCIE Transactions still pending\n"); 18075 } 18076 18077 /* Debug */ 18078 bxe_hw_enable_status(sc); 18079 18080 /* 18081 * Master enable - Due to WB DMAE writes performed before this 18082 * register is re-initialized as part of the regular function init 18083 */ 18084 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 18085 18086 return (0); 18087 } 18088 18089 static int 18090 bxe_init_hw_func(struct bxe_softc *sc) 18091 { 18092 int port = SC_PORT(sc); 18093 int func = SC_FUNC(sc); 18094 int init_phase = PHASE_PF0 + func; 18095 struct ecore_ilt *ilt = sc->ilt; 18096 uint16_t cdu_ilt_start; 18097 uint32_t addr, val; 18098 uint32_t main_mem_base, main_mem_size, main_mem_prty_clr; 18099 int i, main_mem_width, rc; 18100 18101 BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func); 18102 18103 /* FLR cleanup */ 18104 if (!CHIP_IS_E1x(sc)) { 18105 rc = bxe_pf_flr_clnup(sc); 18106 if (rc) { 18107 BLOGE(sc, "FLR cleanup failed!\n"); 18108 // XXX bxe_fw_dump(sc); 18109 // XXX bxe_idle_chk(sc); 18110 return (rc); 18111 } 18112 } 18113 18114 /* set MSI reconfigure capability */ 18115 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18116 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0); 18117 val = REG_RD(sc, addr); 18118 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0; 18119 REG_WR(sc, addr, val); 18120 } 18121 18122 ecore_init_block(sc, BLOCK_PXP, init_phase); 18123 ecore_init_block(sc, BLOCK_PXP2, init_phase); 18124 18125 ilt = sc->ilt; 18126 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 18127 18128 for (i = 0; i < L2_ILT_LINES(sc); i++) { 18129 ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt; 18130 ilt->lines[cdu_ilt_start + i].page_mapping = 18131 sc->context[i].vcxt_dma.paddr; 18132 ilt->lines[cdu_ilt_start + i].size = sc->context[i].size; 18133 } 18134 ecore_ilt_init_op(sc, INITOP_SET); 18135 18136 /* Set NIC mode */ 18137 REG_WR(sc, PRS_REG_NIC_MODE, 1); 18138 BLOGD(sc, DBG_LOAD, "NIC MODE configured\n"); 18139 18140 if (!CHIP_IS_E1x(sc)) { 18141 uint32_t pf_conf = IGU_PF_CONF_FUNC_EN; 18142 18143 /* Turn on a single ISR mode in IGU if driver is going to use 18144 * INT#x or MSI 18145 */ 18146 if (sc->interrupt_mode != INTR_MODE_MSIX) { 18147 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; 18148 } 18149 18150 /* 18151 * Timers workaround bug: function init part. 18152 * Need to wait 20msec after initializing ILT, 18153 * needed to make sure there are no requests in 18154 * one of the PXP internal queues with "old" ILT addresses 18155 */ 18156 DELAY(20000); 18157 18158 /* 18159 * Master enable - Due to WB DMAE writes performed before this 18160 * register is re-initialized as part of the regular function 18161 * init 18162 */ 18163 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 18164 /* Enable the function in IGU */ 18165 REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf); 18166 } 18167 18168 sc->dmae_ready = 1; 18169 18170 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); 18171 18172 if (!CHIP_IS_E1x(sc)) 18173 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func); 18174 18175 ecore_init_block(sc, BLOCK_ATC, init_phase); 18176 ecore_init_block(sc, BLOCK_DMAE, init_phase); 18177 ecore_init_block(sc, BLOCK_NIG, init_phase); 18178 ecore_init_block(sc, BLOCK_SRC, init_phase); 18179 ecore_init_block(sc, BLOCK_MISC, init_phase); 18180 ecore_init_block(sc, BLOCK_TCM, init_phase); 18181 ecore_init_block(sc, BLOCK_UCM, init_phase); 18182 ecore_init_block(sc, BLOCK_CCM, init_phase); 18183 ecore_init_block(sc, BLOCK_XCM, init_phase); 18184 ecore_init_block(sc, BLOCK_TSEM, init_phase); 18185 ecore_init_block(sc, BLOCK_USEM, init_phase); 18186 ecore_init_block(sc, BLOCK_CSEM, init_phase); 18187 ecore_init_block(sc, BLOCK_XSEM, init_phase); 18188 18189 if (!CHIP_IS_E1x(sc)) 18190 REG_WR(sc, QM_REG_PF_EN, 1); 18191 18192 if (!CHIP_IS_E1x(sc)) { 18193 REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18194 REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18195 REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18196 REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18197 } 18198 ecore_init_block(sc, BLOCK_QM, init_phase); 18199 18200 ecore_init_block(sc, BLOCK_TM, init_phase); 18201 ecore_init_block(sc, BLOCK_DORQ, init_phase); 18202 18203 bxe_iov_init_dq(sc); 18204 18205 ecore_init_block(sc, BLOCK_BRB1, init_phase); 18206 ecore_init_block(sc, BLOCK_PRS, init_phase); 18207 ecore_init_block(sc, BLOCK_TSDM, init_phase); 18208 ecore_init_block(sc, BLOCK_CSDM, init_phase); 18209 ecore_init_block(sc, BLOCK_USDM, init_phase); 18210 ecore_init_block(sc, BLOCK_XSDM, init_phase); 18211 ecore_init_block(sc, BLOCK_UPB, init_phase); 18212 ecore_init_block(sc, BLOCK_XPB, init_phase); 18213 ecore_init_block(sc, BLOCK_PBF, init_phase); 18214 if (!CHIP_IS_E1x(sc)) 18215 REG_WR(sc, PBF_REG_DISABLE_PF, 0); 18216 18217 ecore_init_block(sc, BLOCK_CDU, init_phase); 18218 18219 ecore_init_block(sc, BLOCK_CFC, init_phase); 18220 18221 if (!CHIP_IS_E1x(sc)) 18222 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1); 18223 18224 if (IS_MF(sc)) { 18225 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); 18226 REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc)); 18227 } 18228 18229 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); 18230 18231 /* HC init per function */ 18232 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18233 if (CHIP_IS_E1H(sc)) { 18234 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 18235 18236 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 18237 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 18238 } 18239 ecore_init_block(sc, BLOCK_HC, init_phase); 18240 18241 } else { 18242 int num_segs, sb_idx, prod_offset; 18243 18244 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 18245 18246 if (!CHIP_IS_E1x(sc)) { 18247 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); 18248 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); 18249 } 18250 18251 ecore_init_block(sc, BLOCK_IGU, init_phase); 18252 18253 if (!CHIP_IS_E1x(sc)) { 18254 int dsb_idx = 0; 18255 /** 18256 * Producer memory: 18257 * E2 mode: address 0-135 match to the mapping memory; 18258 * 136 - PF0 default prod; 137 - PF1 default prod; 18259 * 138 - PF2 default prod; 139 - PF3 default prod; 18260 * 140 - PF0 attn prod; 141 - PF1 attn prod; 18261 * 142 - PF2 attn prod; 143 - PF3 attn prod; 18262 * 144-147 reserved. 18263 * 18264 * E1.5 mode - In backward compatible mode; 18265 * for non default SB; each even line in the memory 18266 * holds the U producer and each odd line hold 18267 * the C producer. The first 128 producers are for 18268 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20 18269 * producers are for the DSB for each PF. 18270 * Each PF has five segments: (the order inside each 18271 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods; 18272 * 132-135 C prods; 136-139 X prods; 140-143 T prods; 18273 * 144-147 attn prods; 18274 */ 18275 /* non-default-status-blocks */ 18276 num_segs = CHIP_INT_MODE_IS_BC(sc) ? 18277 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS; 18278 for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) { 18279 prod_offset = (sc->igu_base_sb + sb_idx) * 18280 num_segs; 18281 18282 for (i = 0; i < num_segs; i++) { 18283 addr = IGU_REG_PROD_CONS_MEMORY + 18284 (prod_offset + i) * 4; 18285 REG_WR(sc, addr, 0); 18286 } 18287 /* send consumer update with value 0 */ 18288 bxe_ack_sb(sc, sc->igu_base_sb + sb_idx, 18289 USTORM_ID, 0, IGU_INT_NOP, 1); 18290 bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx); 18291 } 18292 18293 /* default-status-blocks */ 18294 num_segs = CHIP_INT_MODE_IS_BC(sc) ? 18295 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS; 18296 18297 if (CHIP_IS_MODE_4_PORT(sc)) 18298 dsb_idx = SC_FUNC(sc); 18299 else 18300 dsb_idx = SC_VN(sc); 18301 18302 prod_offset = (CHIP_INT_MODE_IS_BC(sc) ? 18303 IGU_BC_BASE_DSB_PROD + dsb_idx : 18304 IGU_NORM_BASE_DSB_PROD + dsb_idx); 18305 18306 /* 18307 * igu prods come in chunks of E1HVN_MAX (4) - 18308 * does not matters what is the current chip mode 18309 */ 18310 for (i = 0; i < (num_segs * E1HVN_MAX); 18311 i += E1HVN_MAX) { 18312 addr = IGU_REG_PROD_CONS_MEMORY + 18313 (prod_offset + i)*4; 18314 REG_WR(sc, addr, 0); 18315 } 18316 /* send consumer update with 0 */ 18317 if (CHIP_INT_MODE_IS_BC(sc)) { 18318 bxe_ack_sb(sc, sc->igu_dsb_id, 18319 USTORM_ID, 0, IGU_INT_NOP, 1); 18320 bxe_ack_sb(sc, sc->igu_dsb_id, 18321 CSTORM_ID, 0, IGU_INT_NOP, 1); 18322 bxe_ack_sb(sc, sc->igu_dsb_id, 18323 XSTORM_ID, 0, IGU_INT_NOP, 1); 18324 bxe_ack_sb(sc, sc->igu_dsb_id, 18325 TSTORM_ID, 0, IGU_INT_NOP, 1); 18326 bxe_ack_sb(sc, sc->igu_dsb_id, 18327 ATTENTION_ID, 0, IGU_INT_NOP, 1); 18328 } else { 18329 bxe_ack_sb(sc, sc->igu_dsb_id, 18330 USTORM_ID, 0, IGU_INT_NOP, 1); 18331 bxe_ack_sb(sc, sc->igu_dsb_id, 18332 ATTENTION_ID, 0, IGU_INT_NOP, 1); 18333 } 18334 bxe_igu_clear_sb(sc, sc->igu_dsb_id); 18335 18336 /* !!! these should become driver const once 18337 rf-tool supports split-68 const */ 18338 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); 18339 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); 18340 REG_WR(sc, IGU_REG_SB_MASK_LSB, 0); 18341 REG_WR(sc, IGU_REG_SB_MASK_MSB, 0); 18342 REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0); 18343 REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0); 18344 } 18345 } 18346 18347 /* Reset PCIE errors for debug */ 18348 REG_WR(sc, 0x2114, 0xffffffff); 18349 REG_WR(sc, 0x2120, 0xffffffff); 18350 18351 if (CHIP_IS_E1x(sc)) { 18352 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/ 18353 main_mem_base = HC_REG_MAIN_MEMORY + 18354 SC_PORT(sc) * (main_mem_size * 4); 18355 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR; 18356 main_mem_width = 8; 18357 18358 val = REG_RD(sc, main_mem_prty_clr); 18359 if (val) { 18360 BLOGD(sc, DBG_LOAD, 18361 "Parity errors in HC block during function init (0x%x)!\n", 18362 val); 18363 } 18364 18365 /* Clear "false" parity errors in MSI-X table */ 18366 for (i = main_mem_base; 18367 i < main_mem_base + main_mem_size * 4; 18368 i += main_mem_width) { 18369 bxe_read_dmae(sc, i, main_mem_width / 4); 18370 bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data), 18371 i, main_mem_width / 4); 18372 } 18373 /* Clear HC parity attention */ 18374 REG_RD(sc, main_mem_prty_clr); 18375 } 18376 18377 #if 1 18378 /* Enable STORMs SP logging */ 18379 REG_WR8(sc, BAR_USTRORM_INTMEM + 18380 USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18381 REG_WR8(sc, BAR_TSTRORM_INTMEM + 18382 TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18383 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18384 CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18385 REG_WR8(sc, BAR_XSTRORM_INTMEM + 18386 XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18387 #endif 18388 18389 elink_phy_probe(&sc->link_params); 18390 18391 return (0); 18392 } 18393 18394 static void 18395 bxe_link_reset(struct bxe_softc *sc) 18396 { 18397 if (!BXE_NOMCP(sc)) { 18398 bxe_acquire_phy_lock(sc); 18399 elink_lfa_reset(&sc->link_params, &sc->link_vars); 18400 bxe_release_phy_lock(sc); 18401 } else { 18402 if (!CHIP_REV_IS_SLOW(sc)) { 18403 BLOGW(sc, "Bootcode is missing - cannot reset link\n"); 18404 } 18405 } 18406 } 18407 18408 static void 18409 bxe_reset_port(struct bxe_softc *sc) 18410 { 18411 int port = SC_PORT(sc); 18412 uint32_t val; 18413 18414 ELINK_DEBUG_P0(sc, "bxe_reset_port called\n"); 18415 /* reset physical Link */ 18416 bxe_link_reset(sc); 18417 18418 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 18419 18420 /* Do not rcv packets to BRB */ 18421 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0); 18422 /* Do not direct rcv packets that are not for MCP to the BRB */ 18423 REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP : 18424 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0); 18425 18426 /* Configure AEU */ 18427 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0); 18428 18429 DELAY(100000); 18430 18431 /* Check for BRB port occupancy */ 18432 val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4); 18433 if (val) { 18434 BLOGD(sc, DBG_LOAD, 18435 "BRB1 is not empty, %d blocks are occupied\n", val); 18436 } 18437 18438 /* TODO: Close Doorbell port? */ 18439 } 18440 18441 static void 18442 bxe_ilt_wr(struct bxe_softc *sc, 18443 uint32_t index, 18444 bus_addr_t addr) 18445 { 18446 int reg; 18447 uint32_t wb_write[2]; 18448 18449 if (CHIP_IS_E1(sc)) { 18450 reg = PXP2_REG_RQ_ONCHIP_AT + index*8; 18451 } else { 18452 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8; 18453 } 18454 18455 wb_write[0] = ONCHIP_ADDR1(addr); 18456 wb_write[1] = ONCHIP_ADDR2(addr); 18457 REG_WR_DMAE(sc, reg, wb_write, 2); 18458 } 18459 18460 static void 18461 bxe_clear_func_ilt(struct bxe_softc *sc, 18462 uint32_t func) 18463 { 18464 uint32_t i, base = FUNC_ILT_BASE(func); 18465 for (i = base; i < base + ILT_PER_FUNC; i++) { 18466 bxe_ilt_wr(sc, i, 0); 18467 } 18468 } 18469 18470 static void 18471 bxe_reset_func(struct bxe_softc *sc) 18472 { 18473 struct bxe_fastpath *fp; 18474 int port = SC_PORT(sc); 18475 int func = SC_FUNC(sc); 18476 int i; 18477 18478 /* Disable the function in the FW */ 18479 REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0); 18480 REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0); 18481 REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0); 18482 REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0); 18483 18484 /* FP SBs */ 18485 FOR_EACH_ETH_QUEUE(sc, i) { 18486 fp = &sc->fp[i]; 18487 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18488 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id), 18489 SB_DISABLED); 18490 } 18491 18492 /* SP SB */ 18493 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18494 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), 18495 SB_DISABLED); 18496 18497 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) { 18498 REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0); 18499 } 18500 18501 /* Configure IGU */ 18502 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18503 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 18504 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 18505 } else { 18506 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); 18507 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); 18508 } 18509 18510 if (CNIC_LOADED(sc)) { 18511 /* Disable Timer scan */ 18512 REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0); 18513 /* 18514 * Wait for at least 10ms and up to 2 second for the timers 18515 * scan to complete 18516 */ 18517 for (i = 0; i < 200; i++) { 18518 DELAY(10000); 18519 if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4)) 18520 break; 18521 } 18522 } 18523 18524 /* Clear ILT */ 18525 bxe_clear_func_ilt(sc, func); 18526 18527 /* 18528 * Timers workaround bug for E2: if this is vnic-3, 18529 * we need to set the entire ilt range for this timers. 18530 */ 18531 if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) { 18532 struct ilt_client_info ilt_cli; 18533 /* use dummy TM client */ 18534 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 18535 ilt_cli.start = 0; 18536 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 18537 ilt_cli.client_num = ILT_CLIENT_TM; 18538 18539 ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR); 18540 } 18541 18542 /* this assumes that reset_port() called before reset_func()*/ 18543 if (!CHIP_IS_E1x(sc)) { 18544 bxe_pf_disable(sc); 18545 } 18546 18547 sc->dmae_ready = 0; 18548 } 18549 18550 static int 18551 bxe_gunzip_init(struct bxe_softc *sc) 18552 { 18553 return (0); 18554 } 18555 18556 static void 18557 bxe_gunzip_end(struct bxe_softc *sc) 18558 { 18559 return; 18560 } 18561 18562 static int 18563 bxe_init_firmware(struct bxe_softc *sc) 18564 { 18565 if (CHIP_IS_E1(sc)) { 18566 ecore_init_e1_firmware(sc); 18567 sc->iro_array = e1_iro_arr; 18568 } else if (CHIP_IS_E1H(sc)) { 18569 ecore_init_e1h_firmware(sc); 18570 sc->iro_array = e1h_iro_arr; 18571 } else if (!CHIP_IS_E1x(sc)) { 18572 ecore_init_e2_firmware(sc); 18573 sc->iro_array = e2_iro_arr; 18574 } else { 18575 BLOGE(sc, "Unsupported chip revision\n"); 18576 return (-1); 18577 } 18578 18579 return (0); 18580 } 18581 18582 static void 18583 bxe_release_firmware(struct bxe_softc *sc) 18584 { 18585 /* Do nothing */ 18586 return; 18587 } 18588 18589 static int 18590 ecore_gunzip(struct bxe_softc *sc, 18591 const uint8_t *zbuf, 18592 int len) 18593 { 18594 /* XXX : Implement... */ 18595 BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n"); 18596 return (FALSE); 18597 } 18598 18599 static void 18600 ecore_reg_wr_ind(struct bxe_softc *sc, 18601 uint32_t addr, 18602 uint32_t val) 18603 { 18604 bxe_reg_wr_ind(sc, addr, val); 18605 } 18606 18607 static void 18608 ecore_write_dmae_phys_len(struct bxe_softc *sc, 18609 bus_addr_t phys_addr, 18610 uint32_t addr, 18611 uint32_t len) 18612 { 18613 bxe_write_dmae_phys_len(sc, phys_addr, addr, len); 18614 } 18615 18616 void 18617 ecore_storm_memset_struct(struct bxe_softc *sc, 18618 uint32_t addr, 18619 size_t size, 18620 uint32_t *data) 18621 { 18622 uint8_t i; 18623 for (i = 0; i < size/4; i++) { 18624 REG_WR(sc, addr + (i * 4), data[i]); 18625 } 18626 } 18627 18628 18629 /* 18630 * character device - ioctl interface definitions 18631 */ 18632 18633 18634 #include "bxe_dump.h" 18635 #include "bxe_ioctl.h" 18636 #include <sys/conf.h> 18637 18638 static int bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, 18639 struct thread *td); 18640 18641 static struct cdevsw bxe_cdevsw = { 18642 .d_version = D_VERSION, 18643 .d_ioctl = bxe_eioctl, 18644 .d_name = "bxecnic", 18645 }; 18646 18647 #define BXE_PATH(sc) (CHIP_IS_E1x(sc) ? 0 : (sc->pcie_func & 1)) 18648 18649 18650 #define DUMP_ALL_PRESETS 0x1FFF 18651 #define DUMP_MAX_PRESETS 13 18652 #define IS_E1_REG(chips) ((chips & DUMP_CHIP_E1) == DUMP_CHIP_E1) 18653 #define IS_E1H_REG(chips) ((chips & DUMP_CHIP_E1H) == DUMP_CHIP_E1H) 18654 #define IS_E2_REG(chips) ((chips & DUMP_CHIP_E2) == DUMP_CHIP_E2) 18655 #define IS_E3A0_REG(chips) ((chips & DUMP_CHIP_E3A0) == DUMP_CHIP_E3A0) 18656 #define IS_E3B0_REG(chips) ((chips & DUMP_CHIP_E3B0) == DUMP_CHIP_E3B0) 18657 18658 #define IS_REG_IN_PRESET(presets, idx) \ 18659 ((presets & (1 << (idx-1))) == (1 << (idx-1))) 18660 18661 18662 static int 18663 bxe_get_preset_regs_len(struct bxe_softc *sc, uint32_t preset) 18664 { 18665 if (CHIP_IS_E1(sc)) 18666 return dump_num_registers[0][preset-1]; 18667 else if (CHIP_IS_E1H(sc)) 18668 return dump_num_registers[1][preset-1]; 18669 else if (CHIP_IS_E2(sc)) 18670 return dump_num_registers[2][preset-1]; 18671 else if (CHIP_IS_E3A0(sc)) 18672 return dump_num_registers[3][preset-1]; 18673 else if (CHIP_IS_E3B0(sc)) 18674 return dump_num_registers[4][preset-1]; 18675 else 18676 return 0; 18677 } 18678 18679 static int 18680 bxe_get_total_regs_len32(struct bxe_softc *sc) 18681 { 18682 uint32_t preset_idx; 18683 int regdump_len32 = 0; 18684 18685 18686 /* Calculate the total preset regs length */ 18687 for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) { 18688 regdump_len32 += bxe_get_preset_regs_len(sc, preset_idx); 18689 } 18690 18691 return regdump_len32; 18692 } 18693 18694 static const uint32_t * 18695 __bxe_get_page_addr_ar(struct bxe_softc *sc) 18696 { 18697 if (CHIP_IS_E2(sc)) 18698 return page_vals_e2; 18699 else if (CHIP_IS_E3(sc)) 18700 return page_vals_e3; 18701 else 18702 return NULL; 18703 } 18704 18705 static uint32_t 18706 __bxe_get_page_reg_num(struct bxe_softc *sc) 18707 { 18708 if (CHIP_IS_E2(sc)) 18709 return PAGE_MODE_VALUES_E2; 18710 else if (CHIP_IS_E3(sc)) 18711 return PAGE_MODE_VALUES_E3; 18712 else 18713 return 0; 18714 } 18715 18716 static const uint32_t * 18717 __bxe_get_page_write_ar(struct bxe_softc *sc) 18718 { 18719 if (CHIP_IS_E2(sc)) 18720 return page_write_regs_e2; 18721 else if (CHIP_IS_E3(sc)) 18722 return page_write_regs_e3; 18723 else 18724 return NULL; 18725 } 18726 18727 static uint32_t 18728 __bxe_get_page_write_num(struct bxe_softc *sc) 18729 { 18730 if (CHIP_IS_E2(sc)) 18731 return PAGE_WRITE_REGS_E2; 18732 else if (CHIP_IS_E3(sc)) 18733 return PAGE_WRITE_REGS_E3; 18734 else 18735 return 0; 18736 } 18737 18738 static const struct reg_addr * 18739 __bxe_get_page_read_ar(struct bxe_softc *sc) 18740 { 18741 if (CHIP_IS_E2(sc)) 18742 return page_read_regs_e2; 18743 else if (CHIP_IS_E3(sc)) 18744 return page_read_regs_e3; 18745 else 18746 return NULL; 18747 } 18748 18749 static uint32_t 18750 __bxe_get_page_read_num(struct bxe_softc *sc) 18751 { 18752 if (CHIP_IS_E2(sc)) 18753 return PAGE_READ_REGS_E2; 18754 else if (CHIP_IS_E3(sc)) 18755 return PAGE_READ_REGS_E3; 18756 else 18757 return 0; 18758 } 18759 18760 static bool 18761 bxe_is_reg_in_chip(struct bxe_softc *sc, const struct reg_addr *reg_info) 18762 { 18763 if (CHIP_IS_E1(sc)) 18764 return IS_E1_REG(reg_info->chips); 18765 else if (CHIP_IS_E1H(sc)) 18766 return IS_E1H_REG(reg_info->chips); 18767 else if (CHIP_IS_E2(sc)) 18768 return IS_E2_REG(reg_info->chips); 18769 else if (CHIP_IS_E3A0(sc)) 18770 return IS_E3A0_REG(reg_info->chips); 18771 else if (CHIP_IS_E3B0(sc)) 18772 return IS_E3B0_REG(reg_info->chips); 18773 else 18774 return 0; 18775 } 18776 18777 static bool 18778 bxe_is_wreg_in_chip(struct bxe_softc *sc, const struct wreg_addr *wreg_info) 18779 { 18780 if (CHIP_IS_E1(sc)) 18781 return IS_E1_REG(wreg_info->chips); 18782 else if (CHIP_IS_E1H(sc)) 18783 return IS_E1H_REG(wreg_info->chips); 18784 else if (CHIP_IS_E2(sc)) 18785 return IS_E2_REG(wreg_info->chips); 18786 else if (CHIP_IS_E3A0(sc)) 18787 return IS_E3A0_REG(wreg_info->chips); 18788 else if (CHIP_IS_E3B0(sc)) 18789 return IS_E3B0_REG(wreg_info->chips); 18790 else 18791 return 0; 18792 } 18793 18794 /** 18795 * bxe_read_pages_regs - read "paged" registers 18796 * 18797 * @bp device handle 18798 * @p output buffer 18799 * 18800 * Reads "paged" memories: memories that may only be read by first writing to a 18801 * specific address ("write address") and then reading from a specific address 18802 * ("read address"). There may be more than one write address per "page" and 18803 * more than one read address per write address. 18804 */ 18805 static void 18806 bxe_read_pages_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset) 18807 { 18808 uint32_t i, j, k, n; 18809 18810 /* addresses of the paged registers */ 18811 const uint32_t *page_addr = __bxe_get_page_addr_ar(sc); 18812 /* number of paged registers */ 18813 int num_pages = __bxe_get_page_reg_num(sc); 18814 /* write addresses */ 18815 const uint32_t *write_addr = __bxe_get_page_write_ar(sc); 18816 /* number of write addresses */ 18817 int write_num = __bxe_get_page_write_num(sc); 18818 /* read addresses info */ 18819 const struct reg_addr *read_addr = __bxe_get_page_read_ar(sc); 18820 /* number of read addresses */ 18821 int read_num = __bxe_get_page_read_num(sc); 18822 uint32_t addr, size; 18823 18824 for (i = 0; i < num_pages; i++) { 18825 for (j = 0; j < write_num; j++) { 18826 REG_WR(sc, write_addr[j], page_addr[i]); 18827 18828 for (k = 0; k < read_num; k++) { 18829 if (IS_REG_IN_PRESET(read_addr[k].presets, preset)) { 18830 size = read_addr[k].size; 18831 for (n = 0; n < size; n++) { 18832 addr = read_addr[k].addr + n*4; 18833 *p++ = REG_RD(sc, addr); 18834 } 18835 } 18836 } 18837 } 18838 } 18839 return; 18840 } 18841 18842 18843 static int 18844 bxe_get_preset_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset) 18845 { 18846 uint32_t i, j, addr; 18847 const struct wreg_addr *wreg_addr_p = NULL; 18848 18849 if (CHIP_IS_E1(sc)) 18850 wreg_addr_p = &wreg_addr_e1; 18851 else if (CHIP_IS_E1H(sc)) 18852 wreg_addr_p = &wreg_addr_e1h; 18853 else if (CHIP_IS_E2(sc)) 18854 wreg_addr_p = &wreg_addr_e2; 18855 else if (CHIP_IS_E3A0(sc)) 18856 wreg_addr_p = &wreg_addr_e3; 18857 else if (CHIP_IS_E3B0(sc)) 18858 wreg_addr_p = &wreg_addr_e3b0; 18859 else 18860 return (-1); 18861 18862 /* Read the idle_chk registers */ 18863 for (i = 0; i < IDLE_REGS_COUNT; i++) { 18864 if (bxe_is_reg_in_chip(sc, &idle_reg_addrs[i]) && 18865 IS_REG_IN_PRESET(idle_reg_addrs[i].presets, preset)) { 18866 for (j = 0; j < idle_reg_addrs[i].size; j++) 18867 *p++ = REG_RD(sc, idle_reg_addrs[i].addr + j*4); 18868 } 18869 } 18870 18871 /* Read the regular registers */ 18872 for (i = 0; i < REGS_COUNT; i++) { 18873 if (bxe_is_reg_in_chip(sc, ®_addrs[i]) && 18874 IS_REG_IN_PRESET(reg_addrs[i].presets, preset)) { 18875 for (j = 0; j < reg_addrs[i].size; j++) 18876 *p++ = REG_RD(sc, reg_addrs[i].addr + j*4); 18877 } 18878 } 18879 18880 /* Read the CAM registers */ 18881 if (bxe_is_wreg_in_chip(sc, wreg_addr_p) && 18882 IS_REG_IN_PRESET(wreg_addr_p->presets, preset)) { 18883 for (i = 0; i < wreg_addr_p->size; i++) { 18884 *p++ = REG_RD(sc, wreg_addr_p->addr + i*4); 18885 18886 /* In case of wreg_addr register, read additional 18887 registers from read_regs array 18888 */ 18889 for (j = 0; j < wreg_addr_p->read_regs_count; j++) { 18890 addr = *(wreg_addr_p->read_regs); 18891 *p++ = REG_RD(sc, addr + j*4); 18892 } 18893 } 18894 } 18895 18896 /* Paged registers are supported in E2 & E3 only */ 18897 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) { 18898 /* Read "paged" registers */ 18899 bxe_read_pages_regs(sc, p, preset); 18900 } 18901 18902 return 0; 18903 } 18904 18905 int 18906 bxe_grc_dump(struct bxe_softc *sc) 18907 { 18908 int rval = 0; 18909 uint32_t preset_idx; 18910 uint8_t *buf; 18911 uint32_t size; 18912 struct dump_header *d_hdr; 18913 uint32_t i; 18914 uint32_t reg_val; 18915 uint32_t reg_addr; 18916 uint32_t cmd_offset; 18917 struct ecore_ilt *ilt = SC_ILT(sc); 18918 struct bxe_fastpath *fp; 18919 struct ilt_client_info *ilt_cli; 18920 int grc_dump_size; 18921 18922 18923 if (sc->grcdump_done || sc->grcdump_started) 18924 return (rval); 18925 18926 sc->grcdump_started = 1; 18927 BLOGI(sc, "Started collecting grcdump\n"); 18928 18929 grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) + 18930 sizeof(struct dump_header); 18931 18932 sc->grc_dump = malloc(grc_dump_size, M_DEVBUF, M_NOWAIT); 18933 18934 if (sc->grc_dump == NULL) { 18935 BLOGW(sc, "Unable to allocate memory for grcdump collection\n"); 18936 return(ENOMEM); 18937 } 18938 18939 18940 18941 /* Disable parity attentions as long as following dump may 18942 * cause false alarms by reading never written registers. We 18943 * will re-enable parity attentions right after the dump. 18944 */ 18945 18946 /* Disable parity on path 0 */ 18947 bxe_pretend_func(sc, 0); 18948 18949 ecore_disable_blocks_parity(sc); 18950 18951 /* Disable parity on path 1 */ 18952 bxe_pretend_func(sc, 1); 18953 ecore_disable_blocks_parity(sc); 18954 18955 /* Return to current function */ 18956 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 18957 18958 buf = sc->grc_dump; 18959 d_hdr = sc->grc_dump; 18960 18961 d_hdr->header_size = (sizeof(struct dump_header) >> 2) - 1; 18962 d_hdr->version = BNX2X_DUMP_VERSION; 18963 d_hdr->preset = DUMP_ALL_PRESETS; 18964 18965 if (CHIP_IS_E1(sc)) { 18966 d_hdr->dump_meta_data = DUMP_CHIP_E1; 18967 } else if (CHIP_IS_E1H(sc)) { 18968 d_hdr->dump_meta_data = DUMP_CHIP_E1H; 18969 } else if (CHIP_IS_E2(sc)) { 18970 d_hdr->dump_meta_data = DUMP_CHIP_E2 | 18971 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0); 18972 } else if (CHIP_IS_E3A0(sc)) { 18973 d_hdr->dump_meta_data = DUMP_CHIP_E3A0 | 18974 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0); 18975 } else if (CHIP_IS_E3B0(sc)) { 18976 d_hdr->dump_meta_data = DUMP_CHIP_E3B0 | 18977 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0); 18978 } 18979 18980 buf += sizeof(struct dump_header); 18981 18982 for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) { 18983 18984 /* Skip presets with IOR */ 18985 if ((preset_idx == 2) || (preset_idx == 5) || (preset_idx == 8) || 18986 (preset_idx == 11)) 18987 continue; 18988 18989 rval = bxe_get_preset_regs(sc, (uint32_t *)buf, preset_idx); 18990 18991 if (rval) 18992 break; 18993 18994 size = bxe_get_preset_regs_len(sc, preset_idx) * (sizeof (uint32_t)); 18995 18996 buf += size; 18997 } 18998 18999 bxe_pretend_func(sc, 0); 19000 ecore_clear_blocks_parity(sc); 19001 ecore_enable_blocks_parity(sc); 19002 19003 bxe_pretend_func(sc, 1); 19004 ecore_clear_blocks_parity(sc); 19005 ecore_enable_blocks_parity(sc); 19006 19007 /* Return to current function */ 19008 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 19009 19010 19011 19012 if(sc->state == BXE_STATE_OPEN) { 19013 if(sc->fw_stats_req != NULL) { 19014 BLOGI(sc, "fw stats start_paddr %#jx end_paddr %#jx vaddr %p size 0x%x\n", 19015 (uintmax_t)sc->fw_stats_req_mapping, 19016 (uintmax_t)sc->fw_stats_data_mapping, 19017 sc->fw_stats_req, (sc->fw_stats_req_size + sc->fw_stats_data_size)); 19018 } 19019 if(sc->def_sb != NULL) { 19020 BLOGI(sc, "def_status_block paddr %p vaddr %p size 0x%zx\n", 19021 (void *)sc->def_sb_dma.paddr, sc->def_sb, 19022 sizeof(struct host_sp_status_block)); 19023 } 19024 if(sc->eq_dma.vaddr != NULL) { 19025 BLOGI(sc, "event_queue paddr %#jx vaddr %p size 0x%x\n", 19026 (uintmax_t)sc->eq_dma.paddr, sc->eq_dma.vaddr, BCM_PAGE_SIZE); 19027 } 19028 if(sc->sp_dma.vaddr != NULL) { 19029 BLOGI(sc, "slow path paddr %#jx vaddr %p size 0x%zx\n", 19030 (uintmax_t)sc->sp_dma.paddr, sc->sp_dma.vaddr, 19031 sizeof(struct bxe_slowpath)); 19032 } 19033 if(sc->spq_dma.vaddr != NULL) { 19034 BLOGI(sc, "slow path queue paddr %#jx vaddr %p size 0x%x\n", 19035 (uintmax_t)sc->spq_dma.paddr, sc->spq_dma.vaddr, BCM_PAGE_SIZE); 19036 } 19037 if(sc->gz_buf_dma.vaddr != NULL) { 19038 BLOGI(sc, "fw_buf paddr %#jx vaddr %p size 0x%x\n", 19039 (uintmax_t)sc->gz_buf_dma.paddr, sc->gz_buf_dma.vaddr, 19040 FW_BUF_SIZE); 19041 } 19042 for (i = 0; i < sc->num_queues; i++) { 19043 fp = &sc->fp[i]; 19044 if(fp->sb_dma.vaddr != NULL && fp->tx_dma.vaddr != NULL && 19045 fp->rx_dma.vaddr != NULL && fp->rcq_dma.vaddr != NULL && 19046 fp->rx_sge_dma.vaddr != NULL) { 19047 19048 BLOGI(sc, "FP status block fp %d paddr %#jx vaddr %p size 0x%zx\n", i, 19049 (uintmax_t)fp->sb_dma.paddr, fp->sb_dma.vaddr, 19050 sizeof(union bxe_host_hc_status_block)); 19051 BLOGI(sc, "TX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i, 19052 (uintmax_t)fp->tx_dma.paddr, fp->tx_dma.vaddr, 19053 (BCM_PAGE_SIZE * TX_BD_NUM_PAGES)); 19054 BLOGI(sc, "RX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i, 19055 (uintmax_t)fp->rx_dma.paddr, fp->rx_dma.vaddr, 19056 (BCM_PAGE_SIZE * RX_BD_NUM_PAGES)); 19057 BLOGI(sc, "RX RCQ CHAIN fp %d paddr %#jx vaddr %p size 0x%zx\n", i, 19058 (uintmax_t)fp->rcq_dma.paddr, fp->rcq_dma.vaddr, 19059 (BCM_PAGE_SIZE * RCQ_NUM_PAGES)); 19060 BLOGI(sc, "RX SGE CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i, 19061 (uintmax_t)fp->rx_sge_dma.paddr, fp->rx_sge_dma.vaddr, 19062 (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES)); 19063 } 19064 } 19065 if(ilt != NULL ) { 19066 ilt_cli = &ilt->clients[1]; 19067 if(ilt->lines != NULL) { 19068 for (i = ilt_cli->start; i <= ilt_cli->end; i++) { 19069 BLOGI(sc, "ECORE_ILT paddr %#jx vaddr %p size 0x%x\n", 19070 (uintmax_t)(((struct bxe_dma *)((&ilt->lines[i])->page))->paddr), 19071 ((struct bxe_dma *)((&ilt->lines[i])->page))->vaddr, BCM_PAGE_SIZE); 19072 } 19073 } 19074 } 19075 19076 19077 cmd_offset = DMAE_REG_CMD_MEM; 19078 for (i = 0; i < 224; i++) { 19079 reg_addr = (cmd_offset +(i * 4)); 19080 reg_val = REG_RD(sc, reg_addr); 19081 BLOGI(sc, "DMAE_REG_CMD_MEM i=%d reg_addr 0x%x reg_val 0x%08x\n",i, 19082 reg_addr, reg_val); 19083 } 19084 } 19085 19086 BLOGI(sc, "Collection of grcdump done\n"); 19087 sc->grcdump_done = 1; 19088 return(rval); 19089 } 19090 19091 static int 19092 bxe_add_cdev(struct bxe_softc *sc) 19093 { 19094 sc->eeprom = malloc(BXE_EEPROM_MAX_DATA_LEN, M_DEVBUF, M_NOWAIT); 19095 19096 if (sc->eeprom == NULL) { 19097 BLOGW(sc, "Unable to alloc for eeprom size buffer\n"); 19098 return (-1); 19099 } 19100 19101 sc->ioctl_dev = make_dev(&bxe_cdevsw, 19102 if_getdunit(sc->ifp), 19103 UID_ROOT, 19104 GID_WHEEL, 19105 0600, 19106 "%s", 19107 if_name(sc->ifp)); 19108 19109 if (sc->ioctl_dev == NULL) { 19110 free(sc->eeprom, M_DEVBUF); 19111 sc->eeprom = NULL; 19112 return (-1); 19113 } 19114 19115 sc->ioctl_dev->si_drv1 = sc; 19116 19117 return (0); 19118 } 19119 19120 static void 19121 bxe_del_cdev(struct bxe_softc *sc) 19122 { 19123 if (sc->ioctl_dev != NULL) 19124 destroy_dev(sc->ioctl_dev); 19125 19126 if (sc->eeprom != NULL) { 19127 free(sc->eeprom, M_DEVBUF); 19128 sc->eeprom = NULL; 19129 } 19130 sc->ioctl_dev = NULL; 19131 19132 return; 19133 } 19134 19135 static bool bxe_is_nvram_accessible(struct bxe_softc *sc) 19136 { 19137 19138 if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) == 0) 19139 return FALSE; 19140 19141 return TRUE; 19142 } 19143 19144 19145 static int 19146 bxe_wr_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len) 19147 { 19148 int rval = 0; 19149 19150 if(!bxe_is_nvram_accessible(sc)) { 19151 BLOGW(sc, "Cannot access eeprom when interface is down\n"); 19152 return (-EAGAIN); 19153 } 19154 rval = bxe_nvram_write(sc, offset, (uint8_t *)data, len); 19155 19156 19157 return (rval); 19158 } 19159 19160 static int 19161 bxe_rd_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len) 19162 { 19163 int rval = 0; 19164 19165 if(!bxe_is_nvram_accessible(sc)) { 19166 BLOGW(sc, "Cannot access eeprom when interface is down\n"); 19167 return (-EAGAIN); 19168 } 19169 rval = bxe_nvram_read(sc, offset, (uint8_t *)data, len); 19170 19171 return (rval); 19172 } 19173 19174 static int 19175 bxe_eeprom_rd_wr(struct bxe_softc *sc, bxe_eeprom_t *eeprom) 19176 { 19177 int rval = 0; 19178 19179 switch (eeprom->eeprom_cmd) { 19180 19181 case BXE_EEPROM_CMD_SET_EEPROM: 19182 19183 rval = copyin(eeprom->eeprom_data, sc->eeprom, 19184 eeprom->eeprom_data_len); 19185 19186 if (rval) 19187 break; 19188 19189 rval = bxe_wr_eeprom(sc, sc->eeprom, eeprom->eeprom_offset, 19190 eeprom->eeprom_data_len); 19191 break; 19192 19193 case BXE_EEPROM_CMD_GET_EEPROM: 19194 19195 rval = bxe_rd_eeprom(sc, sc->eeprom, eeprom->eeprom_offset, 19196 eeprom->eeprom_data_len); 19197 19198 if (rval) { 19199 break; 19200 } 19201 19202 rval = copyout(sc->eeprom, eeprom->eeprom_data, 19203 eeprom->eeprom_data_len); 19204 break; 19205 19206 default: 19207 rval = EINVAL; 19208 break; 19209 } 19210 19211 if (rval) { 19212 BLOGW(sc, "ioctl cmd %d failed rval %d\n", eeprom->eeprom_cmd, rval); 19213 } 19214 19215 return (rval); 19216 } 19217 19218 static int 19219 bxe_get_settings(struct bxe_softc *sc, bxe_dev_setting_t *dev_p) 19220 { 19221 uint32_t ext_phy_config; 19222 int port = SC_PORT(sc); 19223 int cfg_idx = bxe_get_link_cfg_idx(sc); 19224 19225 dev_p->supported = sc->port.supported[cfg_idx] | 19226 (sc->port.supported[cfg_idx ^ 1] & 19227 (ELINK_SUPPORTED_TP | ELINK_SUPPORTED_FIBRE)); 19228 dev_p->advertising = sc->port.advertising[cfg_idx]; 19229 if(sc->link_params.phy[bxe_get_cur_phy_idx(sc)].media_type == 19230 ELINK_ETH_PHY_SFP_1G_FIBER) { 19231 dev_p->supported = ~(ELINK_SUPPORTED_10000baseT_Full); 19232 dev_p->advertising &= ~(ADVERTISED_10000baseT_Full); 19233 } 19234 if ((sc->state == BXE_STATE_OPEN) && sc->link_vars.link_up && 19235 !(sc->flags & BXE_MF_FUNC_DIS)) { 19236 dev_p->duplex = sc->link_vars.duplex; 19237 if (IS_MF(sc) && !BXE_NOMCP(sc)) 19238 dev_p->speed = bxe_get_mf_speed(sc); 19239 else 19240 dev_p->speed = sc->link_vars.line_speed; 19241 } else { 19242 dev_p->duplex = DUPLEX_UNKNOWN; 19243 dev_p->speed = SPEED_UNKNOWN; 19244 } 19245 19246 dev_p->port = bxe_media_detect(sc); 19247 19248 ext_phy_config = SHMEM_RD(sc, 19249 dev_info.port_hw_config[port].external_phy_config); 19250 if((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) == 19251 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT) 19252 dev_p->phy_address = sc->port.phy_addr; 19253 else if(((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) != 19254 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) && 19255 ((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) != 19256 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN)) 19257 dev_p->phy_address = ELINK_XGXS_EXT_PHY_ADDR(ext_phy_config); 19258 else 19259 dev_p->phy_address = 0; 19260 19261 if(sc->link_params.req_line_speed[cfg_idx] == ELINK_SPEED_AUTO_NEG) 19262 dev_p->autoneg = AUTONEG_ENABLE; 19263 else 19264 dev_p->autoneg = AUTONEG_DISABLE; 19265 19266 19267 return 0; 19268 } 19269 19270 static int 19271 bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, 19272 struct thread *td) 19273 { 19274 struct bxe_softc *sc; 19275 int rval = 0; 19276 bxe_grcdump_t *dump = NULL; 19277 int grc_dump_size; 19278 bxe_drvinfo_t *drv_infop = NULL; 19279 bxe_dev_setting_t *dev_p; 19280 bxe_dev_setting_t dev_set; 19281 bxe_get_regs_t *reg_p; 19282 bxe_reg_rdw_t *reg_rdw_p; 19283 bxe_pcicfg_rdw_t *cfg_rdw_p; 19284 bxe_perm_mac_addr_t *mac_addr_p; 19285 19286 19287 if ((sc = (struct bxe_softc *)dev->si_drv1) == NULL) 19288 return ENXIO; 19289 19290 dump = (bxe_grcdump_t *)data; 19291 19292 switch(cmd) { 19293 19294 case BXE_GRC_DUMP_SIZE: 19295 dump->pci_func = sc->pcie_func; 19296 dump->grcdump_size = 19297 (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) + 19298 sizeof(struct dump_header); 19299 break; 19300 19301 case BXE_GRC_DUMP: 19302 19303 grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) + 19304 sizeof(struct dump_header); 19305 if ((!sc->trigger_grcdump) || (dump->grcdump == NULL) || 19306 (dump->grcdump_size < grc_dump_size)) { 19307 rval = EINVAL; 19308 break; 19309 } 19310 19311 if((sc->trigger_grcdump) && (!sc->grcdump_done) && 19312 (!sc->grcdump_started)) { 19313 rval = bxe_grc_dump(sc); 19314 } 19315 19316 if((!rval) && (sc->grcdump_done) && (sc->grcdump_started) && 19317 (sc->grc_dump != NULL)) { 19318 dump->grcdump_dwords = grc_dump_size >> 2; 19319 rval = copyout(sc->grc_dump, dump->grcdump, grc_dump_size); 19320 free(sc->grc_dump, M_DEVBUF); 19321 sc->grc_dump = NULL; 19322 sc->grcdump_started = 0; 19323 sc->grcdump_done = 0; 19324 } 19325 19326 break; 19327 19328 case BXE_DRV_INFO: 19329 drv_infop = (bxe_drvinfo_t *)data; 19330 snprintf(drv_infop->drv_name, BXE_DRV_NAME_LENGTH, "%s", "bxe"); 19331 snprintf(drv_infop->drv_version, BXE_DRV_VERSION_LENGTH, "v:%s", 19332 BXE_DRIVER_VERSION); 19333 snprintf(drv_infop->mfw_version, BXE_MFW_VERSION_LENGTH, "%s", 19334 sc->devinfo.bc_ver_str); 19335 snprintf(drv_infop->stormfw_version, BXE_STORMFW_VERSION_LENGTH, 19336 "%s", sc->fw_ver_str); 19337 drv_infop->eeprom_dump_len = sc->devinfo.flash_size; 19338 drv_infop->reg_dump_len = 19339 (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) 19340 + sizeof(struct dump_header); 19341 snprintf(drv_infop->bus_info, BXE_BUS_INFO_LENGTH, "%d:%d:%d", 19342 sc->pcie_bus, sc->pcie_device, sc->pcie_func); 19343 break; 19344 19345 case BXE_DEV_SETTING: 19346 dev_p = (bxe_dev_setting_t *)data; 19347 bxe_get_settings(sc, &dev_set); 19348 dev_p->supported = dev_set.supported; 19349 dev_p->advertising = dev_set.advertising; 19350 dev_p->speed = dev_set.speed; 19351 dev_p->duplex = dev_set.duplex; 19352 dev_p->port = dev_set.port; 19353 dev_p->phy_address = dev_set.phy_address; 19354 dev_p->autoneg = dev_set.autoneg; 19355 19356 break; 19357 19358 case BXE_GET_REGS: 19359 19360 reg_p = (bxe_get_regs_t *)data; 19361 grc_dump_size = reg_p->reg_buf_len; 19362 19363 if((!sc->grcdump_done) && (!sc->grcdump_started)) { 19364 bxe_grc_dump(sc); 19365 } 19366 if((sc->grcdump_done) && (sc->grcdump_started) && 19367 (sc->grc_dump != NULL)) { 19368 rval = copyout(sc->grc_dump, reg_p->reg_buf, grc_dump_size); 19369 free(sc->grc_dump, M_DEVBUF); 19370 sc->grc_dump = NULL; 19371 sc->grcdump_started = 0; 19372 sc->grcdump_done = 0; 19373 } 19374 19375 break; 19376 19377 case BXE_RDW_REG: 19378 reg_rdw_p = (bxe_reg_rdw_t *)data; 19379 if((reg_rdw_p->reg_cmd == BXE_READ_REG_CMD) && 19380 (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT)) 19381 reg_rdw_p->reg_val = REG_RD(sc, reg_rdw_p->reg_id); 19382 19383 if((reg_rdw_p->reg_cmd == BXE_WRITE_REG_CMD) && 19384 (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT)) 19385 REG_WR(sc, reg_rdw_p->reg_id, reg_rdw_p->reg_val); 19386 19387 break; 19388 19389 case BXE_RDW_PCICFG: 19390 cfg_rdw_p = (bxe_pcicfg_rdw_t *)data; 19391 if(cfg_rdw_p->cfg_cmd == BXE_READ_PCICFG) { 19392 19393 cfg_rdw_p->cfg_val = pci_read_config(sc->dev, cfg_rdw_p->cfg_id, 19394 cfg_rdw_p->cfg_width); 19395 19396 } else if(cfg_rdw_p->cfg_cmd == BXE_WRITE_PCICFG) { 19397 pci_write_config(sc->dev, cfg_rdw_p->cfg_id, cfg_rdw_p->cfg_val, 19398 cfg_rdw_p->cfg_width); 19399 } else { 19400 BLOGW(sc, "BXE_RDW_PCICFG ioctl wrong cmd passed\n"); 19401 } 19402 break; 19403 19404 case BXE_MAC_ADDR: 19405 mac_addr_p = (bxe_perm_mac_addr_t *)data; 19406 snprintf(mac_addr_p->mac_addr_str, sizeof(sc->mac_addr_str), "%s", 19407 sc->mac_addr_str); 19408 break; 19409 19410 case BXE_EEPROM: 19411 rval = bxe_eeprom_rd_wr(sc, (bxe_eeprom_t *)data); 19412 break; 19413 19414 19415 default: 19416 break; 19417 } 19418 19419 return (rval); 19420 } 19421 19422 #ifdef DEBUGNET 19423 static void 19424 bxe_debugnet_init(if_t ifp, int *nrxr, int *ncl, int *clsize) 19425 { 19426 struct bxe_softc *sc; 19427 19428 sc = if_getsoftc(ifp); 19429 BXE_CORE_LOCK(sc); 19430 *nrxr = sc->num_queues; 19431 *ncl = DEBUGNET_MAX_IN_FLIGHT; 19432 *clsize = sc->fp[0].mbuf_alloc_size; 19433 BXE_CORE_UNLOCK(sc); 19434 } 19435 19436 static void 19437 bxe_debugnet_event(if_t ifp __unused, enum debugnet_ev event __unused) 19438 { 19439 } 19440 19441 static int 19442 bxe_debugnet_transmit(if_t ifp, struct mbuf *m) 19443 { 19444 struct bxe_softc *sc; 19445 int error; 19446 19447 sc = if_getsoftc(ifp); 19448 if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 19449 IFF_DRV_RUNNING || !sc->link_vars.link_up) 19450 return (ENOENT); 19451 19452 error = bxe_tx_encap(&sc->fp[0], &m); 19453 if (error != 0 && m != NULL) 19454 m_freem(m); 19455 return (error); 19456 } 19457 19458 static int 19459 bxe_debugnet_poll(if_t ifp, int count) 19460 { 19461 struct bxe_softc *sc; 19462 int i; 19463 19464 sc = if_getsoftc(ifp); 19465 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 || 19466 !sc->link_vars.link_up) 19467 return (ENOENT); 19468 19469 for (i = 0; i < sc->num_queues; i++) 19470 (void)bxe_rxeof(sc, &sc->fp[i]); 19471 (void)bxe_txeof(sc, &sc->fp[0]); 19472 return (0); 19473 } 19474 #endif /* DEBUGNET */ 19475