1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' 17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS 20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 26 * THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #define BXE_DRIVER_VERSION "1.78.91" 33 34 #include "bxe.h" 35 #include "ecore_sp.h" 36 #include "ecore_init.h" 37 #include "ecore_init_ops.h" 38 39 #include "57710_int_offsets.h" 40 #include "57711_int_offsets.h" 41 #include "57712_int_offsets.h" 42 43 /* 44 * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these 45 * explicitly here for older kernels that don't include this changeset. 46 */ 47 #ifndef CTLTYPE_U64 48 #define CTLTYPE_U64 CTLTYPE_QUAD 49 #define sysctl_handle_64 sysctl_handle_quad 50 #endif 51 52 /* 53 * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these 54 * here as zero(0) for older kernels that don't include this changeset 55 * thereby masking the functionality. 56 */ 57 #ifndef CSUM_TCP_IPV6 58 #define CSUM_TCP_IPV6 0 59 #define CSUM_UDP_IPV6 0 60 #endif 61 62 /* 63 * pci_find_cap was added in r219865. Re-define this at pci_find_extcap 64 * for older kernels that don't include this changeset. 65 */ 66 #if __FreeBSD_version < 900035 67 #define pci_find_cap pci_find_extcap 68 #endif 69 70 #define BXE_DEF_SB_ATT_IDX 0x0001 71 #define BXE_DEF_SB_IDX 0x0002 72 73 /* 74 * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per 75 * function HW initialization. 76 */ 77 #define FLR_WAIT_USEC 10000 /* 10 msecs */ 78 #define FLR_WAIT_INTERVAL 50 /* usecs */ 79 #define FLR_POLL_CNT (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */ 80 81 struct pbf_pN_buf_regs { 82 int pN; 83 uint32_t init_crd; 84 uint32_t crd; 85 uint32_t crd_freed; 86 }; 87 88 struct pbf_pN_cmd_regs { 89 int pN; 90 uint32_t lines_occup; 91 uint32_t lines_freed; 92 }; 93 94 /* 95 * PCI Device ID Table used by bxe_probe(). 96 */ 97 #define BXE_DEVDESC_MAX 64 98 static struct bxe_device_type bxe_devs[] = { 99 { 100 BRCM_VENDORID, 101 CHIP_NUM_57710, 102 PCI_ANY_ID, PCI_ANY_ID, 103 "QLogic NetXtreme II BCM57710 10GbE" 104 }, 105 { 106 BRCM_VENDORID, 107 CHIP_NUM_57711, 108 PCI_ANY_ID, PCI_ANY_ID, 109 "QLogic NetXtreme II BCM57711 10GbE" 110 }, 111 { 112 BRCM_VENDORID, 113 CHIP_NUM_57711E, 114 PCI_ANY_ID, PCI_ANY_ID, 115 "QLogic NetXtreme II BCM57711E 10GbE" 116 }, 117 { 118 BRCM_VENDORID, 119 CHIP_NUM_57712, 120 PCI_ANY_ID, PCI_ANY_ID, 121 "QLogic NetXtreme II BCM57712 10GbE" 122 }, 123 { 124 BRCM_VENDORID, 125 CHIP_NUM_57712_MF, 126 PCI_ANY_ID, PCI_ANY_ID, 127 "QLogic NetXtreme II BCM57712 MF 10GbE" 128 }, 129 { 130 BRCM_VENDORID, 131 CHIP_NUM_57800, 132 PCI_ANY_ID, PCI_ANY_ID, 133 "QLogic NetXtreme II BCM57800 10GbE" 134 }, 135 { 136 BRCM_VENDORID, 137 CHIP_NUM_57800_MF, 138 PCI_ANY_ID, PCI_ANY_ID, 139 "QLogic NetXtreme II BCM57800 MF 10GbE" 140 }, 141 { 142 BRCM_VENDORID, 143 CHIP_NUM_57810, 144 PCI_ANY_ID, PCI_ANY_ID, 145 "QLogic NetXtreme II BCM57810 10GbE" 146 }, 147 { 148 BRCM_VENDORID, 149 CHIP_NUM_57810_MF, 150 PCI_ANY_ID, PCI_ANY_ID, 151 "QLogic NetXtreme II BCM57810 MF 10GbE" 152 }, 153 { 154 BRCM_VENDORID, 155 CHIP_NUM_57811, 156 PCI_ANY_ID, PCI_ANY_ID, 157 "QLogic NetXtreme II BCM57811 10GbE" 158 }, 159 { 160 BRCM_VENDORID, 161 CHIP_NUM_57811_MF, 162 PCI_ANY_ID, PCI_ANY_ID, 163 "QLogic NetXtreme II BCM57811 MF 10GbE" 164 }, 165 { 166 BRCM_VENDORID, 167 CHIP_NUM_57840_4_10, 168 PCI_ANY_ID, PCI_ANY_ID, 169 "QLogic NetXtreme II BCM57840 4x10GbE" 170 }, 171 { 172 QLOGIC_VENDORID, 173 CHIP_NUM_57840_4_10, 174 PCI_ANY_ID, PCI_ANY_ID, 175 "QLogic NetXtreme II BCM57840 4x10GbE" 176 }, 177 { 178 BRCM_VENDORID, 179 CHIP_NUM_57840_2_20, 180 PCI_ANY_ID, PCI_ANY_ID, 181 "QLogic NetXtreme II BCM57840 2x20GbE" 182 }, 183 { 184 BRCM_VENDORID, 185 CHIP_NUM_57840_MF, 186 PCI_ANY_ID, PCI_ANY_ID, 187 "QLogic NetXtreme II BCM57840 MF 10GbE" 188 }, 189 { 190 0, 0, 0, 0, NULL 191 } 192 }; 193 194 MALLOC_DECLARE(M_BXE_ILT); 195 MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer"); 196 197 /* 198 * FreeBSD device entry points. 199 */ 200 static int bxe_probe(device_t); 201 static int bxe_attach(device_t); 202 static int bxe_detach(device_t); 203 static int bxe_shutdown(device_t); 204 205 206 /* 207 * FreeBSD KLD module/device interface event handler method. 208 */ 209 static device_method_t bxe_methods[] = { 210 /* Device interface (device_if.h) */ 211 DEVMETHOD(device_probe, bxe_probe), 212 DEVMETHOD(device_attach, bxe_attach), 213 DEVMETHOD(device_detach, bxe_detach), 214 DEVMETHOD(device_shutdown, bxe_shutdown), 215 /* Bus interface (bus_if.h) */ 216 DEVMETHOD(bus_print_child, bus_generic_print_child), 217 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 218 KOBJMETHOD_END 219 }; 220 221 /* 222 * FreeBSD KLD Module data declaration 223 */ 224 static driver_t bxe_driver = { 225 "bxe", /* module name */ 226 bxe_methods, /* event handler */ 227 sizeof(struct bxe_softc) /* extra data */ 228 }; 229 230 /* 231 * FreeBSD dev class is needed to manage dev instances and 232 * to associate with a bus type 233 */ 234 static devclass_t bxe_devclass; 235 236 MODULE_DEPEND(bxe, pci, 1, 1, 1); 237 MODULE_DEPEND(bxe, ether, 1, 1, 1); 238 DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0); 239 240 DEBUGNET_DEFINE(bxe); 241 242 /* resources needed for unloading a previously loaded device */ 243 244 #define BXE_PREV_WAIT_NEEDED 1 245 struct mtx bxe_prev_mtx; 246 MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF); 247 struct bxe_prev_list_node { 248 LIST_ENTRY(bxe_prev_list_node) node; 249 uint8_t bus; 250 uint8_t slot; 251 uint8_t path; 252 uint8_t aer; /* XXX automatic error recovery */ 253 uint8_t undi; 254 }; 255 static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list); 256 257 static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */ 258 259 /* Tunable device values... */ 260 261 SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters"); 262 263 /* Debug */ 264 unsigned long bxe_debug = 0; 265 SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, CTLFLAG_RDTUN, 266 &bxe_debug, 0, "Debug logging mode"); 267 268 /* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */ 269 static int bxe_interrupt_mode = INTR_MODE_MSIX; 270 SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN, 271 &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode"); 272 273 /* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */ 274 static int bxe_queue_count = 4; 275 SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN, 276 &bxe_queue_count, 0, "Multi-Queue queue count"); 277 278 /* max number of buffers per queue (default RX_BD_USABLE) */ 279 static int bxe_max_rx_bufs = 0; 280 SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN, 281 &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue"); 282 283 /* Host interrupt coalescing RX tick timer (usecs) */ 284 static int bxe_hc_rx_ticks = 25; 285 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN, 286 &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks"); 287 288 /* Host interrupt coalescing TX tick timer (usecs) */ 289 static int bxe_hc_tx_ticks = 50; 290 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN, 291 &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks"); 292 293 /* Maximum number of Rx packets to process at a time */ 294 static int bxe_rx_budget = 0xffffffff; 295 SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN, 296 &bxe_rx_budget, 0, "Rx processing budget"); 297 298 /* Maximum LRO aggregation size */ 299 static int bxe_max_aggregation_size = 0; 300 SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN, 301 &bxe_max_aggregation_size, 0, "max aggregation size"); 302 303 /* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */ 304 static int bxe_mrrs = -1; 305 SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN, 306 &bxe_mrrs, 0, "PCIe maximum read request size"); 307 308 /* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */ 309 static int bxe_autogreeen = 0; 310 SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN, 311 &bxe_autogreeen, 0, "AutoGrEEEn support"); 312 313 /* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */ 314 static int bxe_udp_rss = 0; 315 SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN, 316 &bxe_udp_rss, 0, "UDP RSS support"); 317 318 319 #define STAT_NAME_LEN 32 /* no stat names below can be longer than this */ 320 321 #define STATS_OFFSET32(stat_name) \ 322 (offsetof(struct bxe_eth_stats, stat_name) / 4) 323 324 #define Q_STATS_OFFSET32(stat_name) \ 325 (offsetof(struct bxe_eth_q_stats, stat_name) / 4) 326 327 static const struct { 328 uint32_t offset; 329 uint32_t size; 330 uint32_t flags; 331 #define STATS_FLAGS_PORT 1 332 #define STATS_FLAGS_FUNC 2 /* MF only cares about function stats */ 333 #define STATS_FLAGS_BOTH (STATS_FLAGS_FUNC | STATS_FLAGS_PORT) 334 char string[STAT_NAME_LEN]; 335 } bxe_eth_stats_arr[] = { 336 { STATS_OFFSET32(total_bytes_received_hi), 337 8, STATS_FLAGS_BOTH, "rx_bytes" }, 338 { STATS_OFFSET32(error_bytes_received_hi), 339 8, STATS_FLAGS_BOTH, "rx_error_bytes" }, 340 { STATS_OFFSET32(total_unicast_packets_received_hi), 341 8, STATS_FLAGS_BOTH, "rx_ucast_packets" }, 342 { STATS_OFFSET32(total_multicast_packets_received_hi), 343 8, STATS_FLAGS_BOTH, "rx_mcast_packets" }, 344 { STATS_OFFSET32(total_broadcast_packets_received_hi), 345 8, STATS_FLAGS_BOTH, "rx_bcast_packets" }, 346 { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi), 347 8, STATS_FLAGS_PORT, "rx_crc_errors" }, 348 { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi), 349 8, STATS_FLAGS_PORT, "rx_align_errors" }, 350 { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi), 351 8, STATS_FLAGS_PORT, "rx_undersize_packets" }, 352 { STATS_OFFSET32(etherstatsoverrsizepkts_hi), 353 8, STATS_FLAGS_PORT, "rx_oversize_packets" }, 354 { STATS_OFFSET32(rx_stat_etherstatsfragments_hi), 355 8, STATS_FLAGS_PORT, "rx_fragments" }, 356 { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi), 357 8, STATS_FLAGS_PORT, "rx_jabbers" }, 358 { STATS_OFFSET32(no_buff_discard_hi), 359 8, STATS_FLAGS_BOTH, "rx_discards" }, 360 { STATS_OFFSET32(mac_filter_discard), 361 4, STATS_FLAGS_PORT, "rx_filtered_packets" }, 362 { STATS_OFFSET32(mf_tag_discard), 363 4, STATS_FLAGS_PORT, "rx_mf_tag_discard" }, 364 { STATS_OFFSET32(pfc_frames_received_hi), 365 8, STATS_FLAGS_PORT, "pfc_frames_received" }, 366 { STATS_OFFSET32(pfc_frames_sent_hi), 367 8, STATS_FLAGS_PORT, "pfc_frames_sent" }, 368 { STATS_OFFSET32(brb_drop_hi), 369 8, STATS_FLAGS_PORT, "rx_brb_discard" }, 370 { STATS_OFFSET32(brb_truncate_hi), 371 8, STATS_FLAGS_PORT, "rx_brb_truncate" }, 372 { STATS_OFFSET32(pause_frames_received_hi), 373 8, STATS_FLAGS_PORT, "rx_pause_frames" }, 374 { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi), 375 8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" }, 376 { STATS_OFFSET32(nig_timer_max), 377 4, STATS_FLAGS_PORT, "rx_constant_pause_events" }, 378 { STATS_OFFSET32(total_bytes_transmitted_hi), 379 8, STATS_FLAGS_BOTH, "tx_bytes" }, 380 { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi), 381 8, STATS_FLAGS_PORT, "tx_error_bytes" }, 382 { STATS_OFFSET32(total_unicast_packets_transmitted_hi), 383 8, STATS_FLAGS_BOTH, "tx_ucast_packets" }, 384 { STATS_OFFSET32(total_multicast_packets_transmitted_hi), 385 8, STATS_FLAGS_BOTH, "tx_mcast_packets" }, 386 { STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 387 8, STATS_FLAGS_BOTH, "tx_bcast_packets" }, 388 { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi), 389 8, STATS_FLAGS_PORT, "tx_mac_errors" }, 390 { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi), 391 8, STATS_FLAGS_PORT, "tx_carrier_errors" }, 392 { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi), 393 8, STATS_FLAGS_PORT, "tx_single_collisions" }, 394 { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi), 395 8, STATS_FLAGS_PORT, "tx_multi_collisions" }, 396 { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi), 397 8, STATS_FLAGS_PORT, "tx_deferred" }, 398 { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi), 399 8, STATS_FLAGS_PORT, "tx_excess_collisions" }, 400 { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi), 401 8, STATS_FLAGS_PORT, "tx_late_collisions" }, 402 { STATS_OFFSET32(tx_stat_etherstatscollisions_hi), 403 8, STATS_FLAGS_PORT, "tx_total_collisions" }, 404 { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi), 405 8, STATS_FLAGS_PORT, "tx_64_byte_packets" }, 406 { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi), 407 8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" }, 408 { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi), 409 8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" }, 410 { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi), 411 8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" }, 412 { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi), 413 8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" }, 414 { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi), 415 8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" }, 416 { STATS_OFFSET32(etherstatspktsover1522octets_hi), 417 8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" }, 418 { STATS_OFFSET32(pause_frames_sent_hi), 419 8, STATS_FLAGS_PORT, "tx_pause_frames" }, 420 { STATS_OFFSET32(total_tpa_aggregations_hi), 421 8, STATS_FLAGS_FUNC, "tpa_aggregations" }, 422 { STATS_OFFSET32(total_tpa_aggregated_frames_hi), 423 8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"}, 424 { STATS_OFFSET32(total_tpa_bytes_hi), 425 8, STATS_FLAGS_FUNC, "tpa_bytes"}, 426 { STATS_OFFSET32(eee_tx_lpi), 427 4, STATS_FLAGS_PORT, "eee_tx_lpi"}, 428 { STATS_OFFSET32(rx_calls), 429 4, STATS_FLAGS_FUNC, "rx_calls"}, 430 { STATS_OFFSET32(rx_pkts), 431 4, STATS_FLAGS_FUNC, "rx_pkts"}, 432 { STATS_OFFSET32(rx_tpa_pkts), 433 4, STATS_FLAGS_FUNC, "rx_tpa_pkts"}, 434 { STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts), 435 4, STATS_FLAGS_FUNC, "rx_erroneous_jumbo_sge_pkts"}, 436 { STATS_OFFSET32(rx_bxe_service_rxsgl), 437 4, STATS_FLAGS_FUNC, "rx_bxe_service_rxsgl"}, 438 { STATS_OFFSET32(rx_jumbo_sge_pkts), 439 4, STATS_FLAGS_FUNC, "rx_jumbo_sge_pkts"}, 440 { STATS_OFFSET32(rx_soft_errors), 441 4, STATS_FLAGS_FUNC, "rx_soft_errors"}, 442 { STATS_OFFSET32(rx_hw_csum_errors), 443 4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"}, 444 { STATS_OFFSET32(rx_ofld_frames_csum_ip), 445 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"}, 446 { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 447 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"}, 448 { STATS_OFFSET32(rx_budget_reached), 449 4, STATS_FLAGS_FUNC, "rx_budget_reached"}, 450 { STATS_OFFSET32(tx_pkts), 451 4, STATS_FLAGS_FUNC, "tx_pkts"}, 452 { STATS_OFFSET32(tx_soft_errors), 453 4, STATS_FLAGS_FUNC, "tx_soft_errors"}, 454 { STATS_OFFSET32(tx_ofld_frames_csum_ip), 455 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"}, 456 { STATS_OFFSET32(tx_ofld_frames_csum_tcp), 457 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"}, 458 { STATS_OFFSET32(tx_ofld_frames_csum_udp), 459 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"}, 460 { STATS_OFFSET32(tx_ofld_frames_lso), 461 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"}, 462 { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 463 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"}, 464 { STATS_OFFSET32(tx_encap_failures), 465 4, STATS_FLAGS_FUNC, "tx_encap_failures"}, 466 { STATS_OFFSET32(tx_hw_queue_full), 467 4, STATS_FLAGS_FUNC, "tx_hw_queue_full"}, 468 { STATS_OFFSET32(tx_hw_max_queue_depth), 469 4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"}, 470 { STATS_OFFSET32(tx_dma_mapping_failure), 471 4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"}, 472 { STATS_OFFSET32(tx_max_drbr_queue_depth), 473 4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"}, 474 { STATS_OFFSET32(tx_window_violation_std), 475 4, STATS_FLAGS_FUNC, "tx_window_violation_std"}, 476 { STATS_OFFSET32(tx_window_violation_tso), 477 4, STATS_FLAGS_FUNC, "tx_window_violation_tso"}, 478 { STATS_OFFSET32(tx_chain_lost_mbuf), 479 4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"}, 480 { STATS_OFFSET32(tx_frames_deferred), 481 4, STATS_FLAGS_FUNC, "tx_frames_deferred"}, 482 { STATS_OFFSET32(tx_queue_xoff), 483 4, STATS_FLAGS_FUNC, "tx_queue_xoff"}, 484 { STATS_OFFSET32(mbuf_defrag_attempts), 485 4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"}, 486 { STATS_OFFSET32(mbuf_defrag_failures), 487 4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"}, 488 { STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 489 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"}, 490 { STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 491 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"}, 492 { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 493 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"}, 494 { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 495 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"}, 496 { STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 497 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"}, 498 { STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 499 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"}, 500 { STATS_OFFSET32(mbuf_alloc_tx), 501 4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"}, 502 { STATS_OFFSET32(mbuf_alloc_rx), 503 4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"}, 504 { STATS_OFFSET32(mbuf_alloc_sge), 505 4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"}, 506 { STATS_OFFSET32(mbuf_alloc_tpa), 507 4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"}, 508 { STATS_OFFSET32(tx_queue_full_return), 509 4, STATS_FLAGS_FUNC, "tx_queue_full_return"}, 510 { STATS_OFFSET32(bxe_tx_mq_sc_state_failures), 511 4, STATS_FLAGS_FUNC, "bxe_tx_mq_sc_state_failures"}, 512 { STATS_OFFSET32(tx_request_link_down_failures), 513 4, STATS_FLAGS_FUNC, "tx_request_link_down_failures"}, 514 { STATS_OFFSET32(bd_avail_too_less_failures), 515 4, STATS_FLAGS_FUNC, "bd_avail_too_less_failures"}, 516 { STATS_OFFSET32(tx_mq_not_empty), 517 4, STATS_FLAGS_FUNC, "tx_mq_not_empty"}, 518 { STATS_OFFSET32(nsegs_path1_errors), 519 4, STATS_FLAGS_FUNC, "nsegs_path1_errors"}, 520 { STATS_OFFSET32(nsegs_path2_errors), 521 4, STATS_FLAGS_FUNC, "nsegs_path2_errors"} 522 523 524 }; 525 526 static const struct { 527 uint32_t offset; 528 uint32_t size; 529 char string[STAT_NAME_LEN]; 530 } bxe_eth_q_stats_arr[] = { 531 { Q_STATS_OFFSET32(total_bytes_received_hi), 532 8, "rx_bytes" }, 533 { Q_STATS_OFFSET32(total_unicast_packets_received_hi), 534 8, "rx_ucast_packets" }, 535 { Q_STATS_OFFSET32(total_multicast_packets_received_hi), 536 8, "rx_mcast_packets" }, 537 { Q_STATS_OFFSET32(total_broadcast_packets_received_hi), 538 8, "rx_bcast_packets" }, 539 { Q_STATS_OFFSET32(no_buff_discard_hi), 540 8, "rx_discards" }, 541 { Q_STATS_OFFSET32(total_bytes_transmitted_hi), 542 8, "tx_bytes" }, 543 { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi), 544 8, "tx_ucast_packets" }, 545 { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi), 546 8, "tx_mcast_packets" }, 547 { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 548 8, "tx_bcast_packets" }, 549 { Q_STATS_OFFSET32(total_tpa_aggregations_hi), 550 8, "tpa_aggregations" }, 551 { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi), 552 8, "tpa_aggregated_frames"}, 553 { Q_STATS_OFFSET32(total_tpa_bytes_hi), 554 8, "tpa_bytes"}, 555 { Q_STATS_OFFSET32(rx_calls), 556 4, "rx_calls"}, 557 { Q_STATS_OFFSET32(rx_pkts), 558 4, "rx_pkts"}, 559 { Q_STATS_OFFSET32(rx_tpa_pkts), 560 4, "rx_tpa_pkts"}, 561 { Q_STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts), 562 4, "rx_erroneous_jumbo_sge_pkts"}, 563 { Q_STATS_OFFSET32(rx_bxe_service_rxsgl), 564 4, "rx_bxe_service_rxsgl"}, 565 { Q_STATS_OFFSET32(rx_jumbo_sge_pkts), 566 4, "rx_jumbo_sge_pkts"}, 567 { Q_STATS_OFFSET32(rx_soft_errors), 568 4, "rx_soft_errors"}, 569 { Q_STATS_OFFSET32(rx_hw_csum_errors), 570 4, "rx_hw_csum_errors"}, 571 { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip), 572 4, "rx_ofld_frames_csum_ip"}, 573 { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 574 4, "rx_ofld_frames_csum_tcp_udp"}, 575 { Q_STATS_OFFSET32(rx_budget_reached), 576 4, "rx_budget_reached"}, 577 { Q_STATS_OFFSET32(tx_pkts), 578 4, "tx_pkts"}, 579 { Q_STATS_OFFSET32(tx_soft_errors), 580 4, "tx_soft_errors"}, 581 { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip), 582 4, "tx_ofld_frames_csum_ip"}, 583 { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp), 584 4, "tx_ofld_frames_csum_tcp"}, 585 { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp), 586 4, "tx_ofld_frames_csum_udp"}, 587 { Q_STATS_OFFSET32(tx_ofld_frames_lso), 588 4, "tx_ofld_frames_lso"}, 589 { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 590 4, "tx_ofld_frames_lso_hdr_splits"}, 591 { Q_STATS_OFFSET32(tx_encap_failures), 592 4, "tx_encap_failures"}, 593 { Q_STATS_OFFSET32(tx_hw_queue_full), 594 4, "tx_hw_queue_full"}, 595 { Q_STATS_OFFSET32(tx_hw_max_queue_depth), 596 4, "tx_hw_max_queue_depth"}, 597 { Q_STATS_OFFSET32(tx_dma_mapping_failure), 598 4, "tx_dma_mapping_failure"}, 599 { Q_STATS_OFFSET32(tx_max_drbr_queue_depth), 600 4, "tx_max_drbr_queue_depth"}, 601 { Q_STATS_OFFSET32(tx_window_violation_std), 602 4, "tx_window_violation_std"}, 603 { Q_STATS_OFFSET32(tx_window_violation_tso), 604 4, "tx_window_violation_tso"}, 605 { Q_STATS_OFFSET32(tx_chain_lost_mbuf), 606 4, "tx_chain_lost_mbuf"}, 607 { Q_STATS_OFFSET32(tx_frames_deferred), 608 4, "tx_frames_deferred"}, 609 { Q_STATS_OFFSET32(tx_queue_xoff), 610 4, "tx_queue_xoff"}, 611 { Q_STATS_OFFSET32(mbuf_defrag_attempts), 612 4, "mbuf_defrag_attempts"}, 613 { Q_STATS_OFFSET32(mbuf_defrag_failures), 614 4, "mbuf_defrag_failures"}, 615 { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 616 4, "mbuf_rx_bd_alloc_failed"}, 617 { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 618 4, "mbuf_rx_bd_mapping_failed"}, 619 { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 620 4, "mbuf_rx_tpa_alloc_failed"}, 621 { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 622 4, "mbuf_rx_tpa_mapping_failed"}, 623 { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 624 4, "mbuf_rx_sge_alloc_failed"}, 625 { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 626 4, "mbuf_rx_sge_mapping_failed"}, 627 { Q_STATS_OFFSET32(mbuf_alloc_tx), 628 4, "mbuf_alloc_tx"}, 629 { Q_STATS_OFFSET32(mbuf_alloc_rx), 630 4, "mbuf_alloc_rx"}, 631 { Q_STATS_OFFSET32(mbuf_alloc_sge), 632 4, "mbuf_alloc_sge"}, 633 { Q_STATS_OFFSET32(mbuf_alloc_tpa), 634 4, "mbuf_alloc_tpa"}, 635 { Q_STATS_OFFSET32(tx_queue_full_return), 636 4, "tx_queue_full_return"}, 637 { Q_STATS_OFFSET32(bxe_tx_mq_sc_state_failures), 638 4, "bxe_tx_mq_sc_state_failures"}, 639 { Q_STATS_OFFSET32(tx_request_link_down_failures), 640 4, "tx_request_link_down_failures"}, 641 { Q_STATS_OFFSET32(bd_avail_too_less_failures), 642 4, "bd_avail_too_less_failures"}, 643 { Q_STATS_OFFSET32(tx_mq_not_empty), 644 4, "tx_mq_not_empty"}, 645 { Q_STATS_OFFSET32(nsegs_path1_errors), 646 4, "nsegs_path1_errors"}, 647 { Q_STATS_OFFSET32(nsegs_path2_errors), 648 4, "nsegs_path2_errors"} 649 650 651 }; 652 653 #define BXE_NUM_ETH_STATS ARRAY_SIZE(bxe_eth_stats_arr) 654 #define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr) 655 656 657 static void bxe_cmng_fns_init(struct bxe_softc *sc, 658 uint8_t read_cfg, 659 uint8_t cmng_type); 660 static int bxe_get_cmng_fns_mode(struct bxe_softc *sc); 661 static void storm_memset_cmng(struct bxe_softc *sc, 662 struct cmng_init *cmng, 663 uint8_t port); 664 static void bxe_set_reset_global(struct bxe_softc *sc); 665 static void bxe_set_reset_in_progress(struct bxe_softc *sc); 666 static uint8_t bxe_reset_is_done(struct bxe_softc *sc, 667 int engine); 668 static uint8_t bxe_clear_pf_load(struct bxe_softc *sc); 669 static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc, 670 uint8_t *global, 671 uint8_t print); 672 static void bxe_int_disable(struct bxe_softc *sc); 673 static int bxe_release_leader_lock(struct bxe_softc *sc); 674 static void bxe_pf_disable(struct bxe_softc *sc); 675 static void bxe_free_fp_buffers(struct bxe_softc *sc); 676 static inline void bxe_update_rx_prod(struct bxe_softc *sc, 677 struct bxe_fastpath *fp, 678 uint16_t rx_bd_prod, 679 uint16_t rx_cq_prod, 680 uint16_t rx_sge_prod); 681 static void bxe_link_report_locked(struct bxe_softc *sc); 682 static void bxe_link_report(struct bxe_softc *sc); 683 static void bxe_link_status_update(struct bxe_softc *sc); 684 static void bxe_periodic_callout_func(void *xsc); 685 static void bxe_periodic_start(struct bxe_softc *sc); 686 static void bxe_periodic_stop(struct bxe_softc *sc); 687 static int bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, 688 uint16_t prev_index, 689 uint16_t index); 690 static int bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, 691 int queue); 692 static int bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, 693 uint16_t index); 694 static uint8_t bxe_txeof(struct bxe_softc *sc, 695 struct bxe_fastpath *fp); 696 static void bxe_task_fp(struct bxe_fastpath *fp); 697 static __noinline void bxe_dump_mbuf(struct bxe_softc *sc, 698 struct mbuf *m, 699 uint8_t contents); 700 static int bxe_alloc_mem(struct bxe_softc *sc); 701 static void bxe_free_mem(struct bxe_softc *sc); 702 static int bxe_alloc_fw_stats_mem(struct bxe_softc *sc); 703 static void bxe_free_fw_stats_mem(struct bxe_softc *sc); 704 static int bxe_interrupt_attach(struct bxe_softc *sc); 705 static void bxe_interrupt_detach(struct bxe_softc *sc); 706 static void bxe_set_rx_mode(struct bxe_softc *sc); 707 static int bxe_init_locked(struct bxe_softc *sc); 708 static int bxe_stop_locked(struct bxe_softc *sc); 709 static void bxe_sp_err_timeout_task(void *arg, int pending); 710 void bxe_parity_recover(struct bxe_softc *sc); 711 void bxe_handle_error(struct bxe_softc *sc); 712 static __noinline int bxe_nic_load(struct bxe_softc *sc, 713 int load_mode); 714 static __noinline int bxe_nic_unload(struct bxe_softc *sc, 715 uint32_t unload_mode, 716 uint8_t keep_link); 717 718 static void bxe_handle_sp_tq(void *context, int pending); 719 static void bxe_handle_fp_tq(void *context, int pending); 720 721 static int bxe_add_cdev(struct bxe_softc *sc); 722 static void bxe_del_cdev(struct bxe_softc *sc); 723 int bxe_grc_dump(struct bxe_softc *sc); 724 static int bxe_alloc_buf_rings(struct bxe_softc *sc); 725 static void bxe_free_buf_rings(struct bxe_softc *sc); 726 727 /* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */ 728 uint32_t 729 calc_crc32(uint8_t *crc32_packet, 730 uint32_t crc32_length, 731 uint32_t crc32_seed, 732 uint8_t complement) 733 { 734 uint32_t byte = 0; 735 uint32_t bit = 0; 736 uint8_t msb = 0; 737 uint32_t temp = 0; 738 uint32_t shft = 0; 739 uint8_t current_byte = 0; 740 uint32_t crc32_result = crc32_seed; 741 const uint32_t CRC32_POLY = 0x1edc6f41; 742 743 if ((crc32_packet == NULL) || 744 (crc32_length == 0) || 745 ((crc32_length % 8) != 0)) 746 { 747 return (crc32_result); 748 } 749 750 for (byte = 0; byte < crc32_length; byte = byte + 1) 751 { 752 current_byte = crc32_packet[byte]; 753 for (bit = 0; bit < 8; bit = bit + 1) 754 { 755 /* msb = crc32_result[31]; */ 756 msb = (uint8_t)(crc32_result >> 31); 757 758 crc32_result = crc32_result << 1; 759 760 /* it (msb != current_byte[bit]) */ 761 if (msb != (0x1 & (current_byte >> bit))) 762 { 763 crc32_result = crc32_result ^ CRC32_POLY; 764 /* crc32_result[0] = 1 */ 765 crc32_result |= 1; 766 } 767 } 768 } 769 770 /* Last step is to: 771 * 1. "mirror" every bit 772 * 2. swap the 4 bytes 773 * 3. complement each bit 774 */ 775 776 /* Mirror */ 777 temp = crc32_result; 778 shft = sizeof(crc32_result) * 8 - 1; 779 780 for (crc32_result >>= 1; crc32_result; crc32_result >>= 1) 781 { 782 temp <<= 1; 783 temp |= crc32_result & 1; 784 shft-- ; 785 } 786 787 /* temp[31-bit] = crc32_result[bit] */ 788 temp <<= shft; 789 790 /* Swap */ 791 /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */ 792 { 793 uint32_t t0, t1, t2, t3; 794 t0 = (0x000000ff & (temp >> 24)); 795 t1 = (0x0000ff00 & (temp >> 8)); 796 t2 = (0x00ff0000 & (temp << 8)); 797 t3 = (0xff000000 & (temp << 24)); 798 crc32_result = t0 | t1 | t2 | t3; 799 } 800 801 /* Complement */ 802 if (complement) 803 { 804 crc32_result = ~crc32_result; 805 } 806 807 return (crc32_result); 808 } 809 810 int 811 bxe_test_bit(int nr, 812 volatile unsigned long *addr) 813 { 814 return ((atomic_load_acq_long(addr) & (1 << nr)) != 0); 815 } 816 817 void 818 bxe_set_bit(unsigned int nr, 819 volatile unsigned long *addr) 820 { 821 atomic_set_acq_long(addr, (1 << nr)); 822 } 823 824 void 825 bxe_clear_bit(int nr, 826 volatile unsigned long *addr) 827 { 828 atomic_clear_acq_long(addr, (1 << nr)); 829 } 830 831 int 832 bxe_test_and_set_bit(int nr, 833 volatile unsigned long *addr) 834 { 835 unsigned long x; 836 nr = (1 << nr); 837 do { 838 x = *addr; 839 } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0); 840 // if (x & nr) bit_was_set; else bit_was_not_set; 841 return (x & nr); 842 } 843 844 int 845 bxe_test_and_clear_bit(int nr, 846 volatile unsigned long *addr) 847 { 848 unsigned long x; 849 nr = (1 << nr); 850 do { 851 x = *addr; 852 } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0); 853 // if (x & nr) bit_was_set; else bit_was_not_set; 854 return (x & nr); 855 } 856 857 int 858 bxe_cmpxchg(volatile int *addr, 859 int old, 860 int new) 861 { 862 int x; 863 do { 864 x = *addr; 865 } while (atomic_cmpset_acq_int(addr, old, new) == 0); 866 return (x); 867 } 868 869 /* 870 * Get DMA memory from the OS. 871 * 872 * Validates that the OS has provided DMA buffers in response to a 873 * bus_dmamap_load call and saves the physical address of those buffers. 874 * When the callback is used the OS will return 0 for the mapping function 875 * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any 876 * failures back to the caller. 877 * 878 * Returns: 879 * Nothing. 880 */ 881 static void 882 bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 883 { 884 struct bxe_dma *dma = arg; 885 886 if (error) { 887 dma->paddr = 0; 888 dma->nseg = 0; 889 BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error); 890 } else { 891 dma->paddr = segs->ds_addr; 892 dma->nseg = nseg; 893 } 894 } 895 896 /* 897 * Allocate a block of memory and map it for DMA. No partial completions 898 * allowed and release any resources acquired if we can't acquire all 899 * resources. 900 * 901 * Returns: 902 * 0 = Success, !0 = Failure 903 */ 904 int 905 bxe_dma_alloc(struct bxe_softc *sc, 906 bus_size_t size, 907 struct bxe_dma *dma, 908 const char *msg) 909 { 910 int rc; 911 912 if (dma->size > 0) { 913 BLOGE(sc, "dma block '%s' already has size %lu\n", msg, 914 (unsigned long)dma->size); 915 return (1); 916 } 917 918 memset(dma, 0, sizeof(*dma)); /* sanity */ 919 dma->sc = sc; 920 dma->size = size; 921 snprintf(dma->msg, sizeof(dma->msg), "%s", msg); 922 923 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 924 BCM_PAGE_SIZE, /* alignment */ 925 0, /* boundary limit */ 926 BUS_SPACE_MAXADDR, /* restricted low */ 927 BUS_SPACE_MAXADDR, /* restricted hi */ 928 NULL, /* addr filter() */ 929 NULL, /* addr filter() arg */ 930 size, /* max map size */ 931 1, /* num discontinuous */ 932 size, /* max seg size */ 933 BUS_DMA_ALLOCNOW, /* flags */ 934 NULL, /* lock() */ 935 NULL, /* lock() arg */ 936 &dma->tag); /* returned dma tag */ 937 if (rc != 0) { 938 BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc); 939 memset(dma, 0, sizeof(*dma)); 940 return (1); 941 } 942 943 rc = bus_dmamem_alloc(dma->tag, 944 (void **)&dma->vaddr, 945 (BUS_DMA_NOWAIT | BUS_DMA_ZERO), 946 &dma->map); 947 if (rc != 0) { 948 BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc); 949 bus_dma_tag_destroy(dma->tag); 950 memset(dma, 0, sizeof(*dma)); 951 return (1); 952 } 953 954 rc = bus_dmamap_load(dma->tag, 955 dma->map, 956 dma->vaddr, 957 size, 958 bxe_dma_map_addr, /* BLOGD in here */ 959 dma, 960 BUS_DMA_NOWAIT); 961 if (rc != 0) { 962 BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc); 963 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 964 bus_dma_tag_destroy(dma->tag); 965 memset(dma, 0, sizeof(*dma)); 966 return (1); 967 } 968 969 return (0); 970 } 971 972 void 973 bxe_dma_free(struct bxe_softc *sc, 974 struct bxe_dma *dma) 975 { 976 if (dma->size > 0) { 977 DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL")); 978 979 bus_dmamap_sync(dma->tag, dma->map, 980 (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE)); 981 bus_dmamap_unload(dma->tag, dma->map); 982 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 983 bus_dma_tag_destroy(dma->tag); 984 } 985 986 memset(dma, 0, sizeof(*dma)); 987 } 988 989 /* 990 * These indirect read and write routines are only during init. 991 * The locking is handled by the MCP. 992 */ 993 994 void 995 bxe_reg_wr_ind(struct bxe_softc *sc, 996 uint32_t addr, 997 uint32_t val) 998 { 999 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); 1000 pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4); 1001 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 1002 } 1003 1004 uint32_t 1005 bxe_reg_rd_ind(struct bxe_softc *sc, 1006 uint32_t addr) 1007 { 1008 uint32_t val; 1009 1010 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); 1011 val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4); 1012 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 1013 1014 return (val); 1015 } 1016 1017 static int 1018 bxe_acquire_hw_lock(struct bxe_softc *sc, 1019 uint32_t resource) 1020 { 1021 uint32_t lock_status; 1022 uint32_t resource_bit = (1 << resource); 1023 int func = SC_FUNC(sc); 1024 uint32_t hw_lock_control_reg; 1025 int cnt; 1026 1027 /* validate the resource is within range */ 1028 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1029 BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)" 1030 " resource_bit 0x%x\n", resource, resource_bit); 1031 return (-1); 1032 } 1033 1034 if (func <= 5) { 1035 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); 1036 } else { 1037 hw_lock_control_reg = 1038 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); 1039 } 1040 1041 /* validate the resource is not already taken */ 1042 lock_status = REG_RD(sc, hw_lock_control_reg); 1043 if (lock_status & resource_bit) { 1044 BLOGE(sc, "resource (0x%x) in use (status 0x%x bit 0x%x)\n", 1045 resource, lock_status, resource_bit); 1046 return (-1); 1047 } 1048 1049 /* try every 5ms for 5 seconds */ 1050 for (cnt = 0; cnt < 1000; cnt++) { 1051 REG_WR(sc, (hw_lock_control_reg + 4), resource_bit); 1052 lock_status = REG_RD(sc, hw_lock_control_reg); 1053 if (lock_status & resource_bit) { 1054 return (0); 1055 } 1056 DELAY(5000); 1057 } 1058 1059 BLOGE(sc, "Resource 0x%x resource_bit 0x%x lock timeout!\n", 1060 resource, resource_bit); 1061 return (-1); 1062 } 1063 1064 static int 1065 bxe_release_hw_lock(struct bxe_softc *sc, 1066 uint32_t resource) 1067 { 1068 uint32_t lock_status; 1069 uint32_t resource_bit = (1 << resource); 1070 int func = SC_FUNC(sc); 1071 uint32_t hw_lock_control_reg; 1072 1073 /* validate the resource is within range */ 1074 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1075 BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)" 1076 " resource_bit 0x%x\n", resource, resource_bit); 1077 return (-1); 1078 } 1079 1080 if (func <= 5) { 1081 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); 1082 } else { 1083 hw_lock_control_reg = 1084 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); 1085 } 1086 1087 /* validate the resource is currently taken */ 1088 lock_status = REG_RD(sc, hw_lock_control_reg); 1089 if (!(lock_status & resource_bit)) { 1090 BLOGE(sc, "resource (0x%x) not in use (status 0x%x bit 0x%x)\n", 1091 resource, lock_status, resource_bit); 1092 return (-1); 1093 } 1094 1095 REG_WR(sc, hw_lock_control_reg, resource_bit); 1096 return (0); 1097 } 1098 static void bxe_acquire_phy_lock(struct bxe_softc *sc) 1099 { 1100 BXE_PHY_LOCK(sc); 1101 bxe_acquire_hw_lock(sc,HW_LOCK_RESOURCE_MDIO); 1102 } 1103 1104 static void bxe_release_phy_lock(struct bxe_softc *sc) 1105 { 1106 bxe_release_hw_lock(sc,HW_LOCK_RESOURCE_MDIO); 1107 BXE_PHY_UNLOCK(sc); 1108 } 1109 /* 1110 * Per pf misc lock must be acquired before the per port mcp lock. Otherwise, 1111 * had we done things the other way around, if two pfs from the same port 1112 * would attempt to access nvram at the same time, we could run into a 1113 * scenario such as: 1114 * pf A takes the port lock. 1115 * pf B succeeds in taking the same lock since they are from the same port. 1116 * pf A takes the per pf misc lock. Performs eeprom access. 1117 * pf A finishes. Unlocks the per pf misc lock. 1118 * Pf B takes the lock and proceeds to perform it's own access. 1119 * pf A unlocks the per port lock, while pf B is still working (!). 1120 * mcp takes the per port lock and corrupts pf B's access (and/or has it's own 1121 * access corrupted by pf B).* 1122 */ 1123 static int 1124 bxe_acquire_nvram_lock(struct bxe_softc *sc) 1125 { 1126 int port = SC_PORT(sc); 1127 int count, i; 1128 uint32_t val = 0; 1129 1130 /* acquire HW lock: protect against other PFs in PF Direct Assignment */ 1131 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); 1132 1133 /* adjust timeout for emulation/FPGA */ 1134 count = NVRAM_TIMEOUT_COUNT; 1135 if (CHIP_REV_IS_SLOW(sc)) { 1136 count *= 100; 1137 } 1138 1139 /* request access to nvram interface */ 1140 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 1141 (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port)); 1142 1143 for (i = 0; i < count*10; i++) { 1144 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); 1145 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { 1146 break; 1147 } 1148 1149 DELAY(5); 1150 } 1151 1152 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { 1153 BLOGE(sc, "Cannot get access to nvram interface " 1154 "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n", 1155 port, val); 1156 return (-1); 1157 } 1158 1159 return (0); 1160 } 1161 1162 static int 1163 bxe_release_nvram_lock(struct bxe_softc *sc) 1164 { 1165 int port = SC_PORT(sc); 1166 int count, i; 1167 uint32_t val = 0; 1168 1169 /* adjust timeout for emulation/FPGA */ 1170 count = NVRAM_TIMEOUT_COUNT; 1171 if (CHIP_REV_IS_SLOW(sc)) { 1172 count *= 100; 1173 } 1174 1175 /* relinquish nvram interface */ 1176 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 1177 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port)); 1178 1179 for (i = 0; i < count*10; i++) { 1180 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); 1181 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { 1182 break; 1183 } 1184 1185 DELAY(5); 1186 } 1187 1188 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { 1189 BLOGE(sc, "Cannot free access to nvram interface " 1190 "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n", 1191 port, val); 1192 return (-1); 1193 } 1194 1195 /* release HW lock: protect against other PFs in PF Direct Assignment */ 1196 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); 1197 1198 return (0); 1199 } 1200 1201 static void 1202 bxe_enable_nvram_access(struct bxe_softc *sc) 1203 { 1204 uint32_t val; 1205 1206 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); 1207 1208 /* enable both bits, even on read */ 1209 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, 1210 (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN)); 1211 } 1212 1213 static void 1214 bxe_disable_nvram_access(struct bxe_softc *sc) 1215 { 1216 uint32_t val; 1217 1218 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); 1219 1220 /* disable both bits, even after read */ 1221 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, 1222 (val & ~(MCPR_NVM_ACCESS_ENABLE_EN | 1223 MCPR_NVM_ACCESS_ENABLE_WR_EN))); 1224 } 1225 1226 static int 1227 bxe_nvram_read_dword(struct bxe_softc *sc, 1228 uint32_t offset, 1229 uint32_t *ret_val, 1230 uint32_t cmd_flags) 1231 { 1232 int count, i, rc; 1233 uint32_t val; 1234 1235 /* build the command word */ 1236 cmd_flags |= MCPR_NVM_COMMAND_DOIT; 1237 1238 /* need to clear DONE bit separately */ 1239 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); 1240 1241 /* address of the NVRAM to read from */ 1242 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, 1243 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); 1244 1245 /* issue a read command */ 1246 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); 1247 1248 /* adjust timeout for emulation/FPGA */ 1249 count = NVRAM_TIMEOUT_COUNT; 1250 if (CHIP_REV_IS_SLOW(sc)) { 1251 count *= 100; 1252 } 1253 1254 /* wait for completion */ 1255 *ret_val = 0; 1256 rc = -1; 1257 for (i = 0; i < count; i++) { 1258 DELAY(5); 1259 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); 1260 1261 if (val & MCPR_NVM_COMMAND_DONE) { 1262 val = REG_RD(sc, MCP_REG_MCPR_NVM_READ); 1263 /* we read nvram data in cpu order 1264 * but ethtool sees it as an array of bytes 1265 * converting to big-endian will do the work 1266 */ 1267 *ret_val = htobe32(val); 1268 rc = 0; 1269 break; 1270 } 1271 } 1272 1273 if (rc == -1) { 1274 BLOGE(sc, "nvram read timeout expired " 1275 "(offset 0x%x cmd_flags 0x%x val 0x%x)\n", 1276 offset, cmd_flags, val); 1277 } 1278 1279 return (rc); 1280 } 1281 1282 static int 1283 bxe_nvram_read(struct bxe_softc *sc, 1284 uint32_t offset, 1285 uint8_t *ret_buf, 1286 int buf_size) 1287 { 1288 uint32_t cmd_flags; 1289 uint32_t val; 1290 int rc; 1291 1292 if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) { 1293 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", 1294 offset, buf_size); 1295 return (-1); 1296 } 1297 1298 if ((offset + buf_size) > sc->devinfo.flash_size) { 1299 BLOGE(sc, "Invalid parameter, " 1300 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1301 offset, buf_size, sc->devinfo.flash_size); 1302 return (-1); 1303 } 1304 1305 /* request access to nvram interface */ 1306 rc = bxe_acquire_nvram_lock(sc); 1307 if (rc) { 1308 return (rc); 1309 } 1310 1311 /* enable access to nvram interface */ 1312 bxe_enable_nvram_access(sc); 1313 1314 /* read the first word(s) */ 1315 cmd_flags = MCPR_NVM_COMMAND_FIRST; 1316 while ((buf_size > sizeof(uint32_t)) && (rc == 0)) { 1317 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); 1318 memcpy(ret_buf, &val, 4); 1319 1320 /* advance to the next dword */ 1321 offset += sizeof(uint32_t); 1322 ret_buf += sizeof(uint32_t); 1323 buf_size -= sizeof(uint32_t); 1324 cmd_flags = 0; 1325 } 1326 1327 if (rc == 0) { 1328 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1329 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); 1330 memcpy(ret_buf, &val, 4); 1331 } 1332 1333 /* disable access to nvram interface */ 1334 bxe_disable_nvram_access(sc); 1335 bxe_release_nvram_lock(sc); 1336 1337 return (rc); 1338 } 1339 1340 static int 1341 bxe_nvram_write_dword(struct bxe_softc *sc, 1342 uint32_t offset, 1343 uint32_t val, 1344 uint32_t cmd_flags) 1345 { 1346 int count, i, rc; 1347 1348 /* build the command word */ 1349 cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR); 1350 1351 /* need to clear DONE bit separately */ 1352 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); 1353 1354 /* write the data */ 1355 REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val); 1356 1357 /* address of the NVRAM to write to */ 1358 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, 1359 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); 1360 1361 /* issue the write command */ 1362 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); 1363 1364 /* adjust timeout for emulation/FPGA */ 1365 count = NVRAM_TIMEOUT_COUNT; 1366 if (CHIP_REV_IS_SLOW(sc)) { 1367 count *= 100; 1368 } 1369 1370 /* wait for completion */ 1371 rc = -1; 1372 for (i = 0; i < count; i++) { 1373 DELAY(5); 1374 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); 1375 if (val & MCPR_NVM_COMMAND_DONE) { 1376 rc = 0; 1377 break; 1378 } 1379 } 1380 1381 if (rc == -1) { 1382 BLOGE(sc, "nvram write timeout expired " 1383 "(offset 0x%x cmd_flags 0x%x val 0x%x)\n", 1384 offset, cmd_flags, val); 1385 } 1386 1387 return (rc); 1388 } 1389 1390 #define BYTE_OFFSET(offset) (8 * (offset & 0x03)) 1391 1392 static int 1393 bxe_nvram_write1(struct bxe_softc *sc, 1394 uint32_t offset, 1395 uint8_t *data_buf, 1396 int buf_size) 1397 { 1398 uint32_t cmd_flags; 1399 uint32_t align_offset; 1400 uint32_t val; 1401 int rc; 1402 1403 if ((offset + buf_size) > sc->devinfo.flash_size) { 1404 BLOGE(sc, "Invalid parameter, " 1405 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1406 offset, buf_size, sc->devinfo.flash_size); 1407 return (-1); 1408 } 1409 1410 /* request access to nvram interface */ 1411 rc = bxe_acquire_nvram_lock(sc); 1412 if (rc) { 1413 return (rc); 1414 } 1415 1416 /* enable access to nvram interface */ 1417 bxe_enable_nvram_access(sc); 1418 1419 cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST); 1420 align_offset = (offset & ~0x03); 1421 rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags); 1422 1423 if (rc == 0) { 1424 val &= ~(0xff << BYTE_OFFSET(offset)); 1425 val |= (*data_buf << BYTE_OFFSET(offset)); 1426 1427 /* nvram data is returned as an array of bytes 1428 * convert it back to cpu order 1429 */ 1430 val = be32toh(val); 1431 1432 rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags); 1433 } 1434 1435 /* disable access to nvram interface */ 1436 bxe_disable_nvram_access(sc); 1437 bxe_release_nvram_lock(sc); 1438 1439 return (rc); 1440 } 1441 1442 static int 1443 bxe_nvram_write(struct bxe_softc *sc, 1444 uint32_t offset, 1445 uint8_t *data_buf, 1446 int buf_size) 1447 { 1448 uint32_t cmd_flags; 1449 uint32_t val; 1450 uint32_t written_so_far; 1451 int rc; 1452 1453 if (buf_size == 1) { 1454 return (bxe_nvram_write1(sc, offset, data_buf, buf_size)); 1455 } 1456 1457 if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) { 1458 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", 1459 offset, buf_size); 1460 return (-1); 1461 } 1462 1463 if (buf_size == 0) { 1464 return (0); /* nothing to do */ 1465 } 1466 1467 if ((offset + buf_size) > sc->devinfo.flash_size) { 1468 BLOGE(sc, "Invalid parameter, " 1469 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1470 offset, buf_size, sc->devinfo.flash_size); 1471 return (-1); 1472 } 1473 1474 /* request access to nvram interface */ 1475 rc = bxe_acquire_nvram_lock(sc); 1476 if (rc) { 1477 return (rc); 1478 } 1479 1480 /* enable access to nvram interface */ 1481 bxe_enable_nvram_access(sc); 1482 1483 written_so_far = 0; 1484 cmd_flags = MCPR_NVM_COMMAND_FIRST; 1485 while ((written_so_far < buf_size) && (rc == 0)) { 1486 if (written_so_far == (buf_size - sizeof(uint32_t))) { 1487 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1488 } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) { 1489 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1490 } else if ((offset % NVRAM_PAGE_SIZE) == 0) { 1491 cmd_flags |= MCPR_NVM_COMMAND_FIRST; 1492 } 1493 1494 memcpy(&val, data_buf, 4); 1495 1496 rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags); 1497 1498 /* advance to the next dword */ 1499 offset += sizeof(uint32_t); 1500 data_buf += sizeof(uint32_t); 1501 written_so_far += sizeof(uint32_t); 1502 cmd_flags = 0; 1503 } 1504 1505 /* disable access to nvram interface */ 1506 bxe_disable_nvram_access(sc); 1507 bxe_release_nvram_lock(sc); 1508 1509 return (rc); 1510 } 1511 1512 /* copy command into DMAE command memory and set DMAE command Go */ 1513 void 1514 bxe_post_dmae(struct bxe_softc *sc, 1515 struct dmae_cmd *dmae, 1516 int idx) 1517 { 1518 uint32_t cmd_offset; 1519 int i; 1520 1521 cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_cmd) * idx)); 1522 for (i = 0; i < ((sizeof(struct dmae_cmd) / 4)); i++) { 1523 REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i)); 1524 } 1525 1526 REG_WR(sc, dmae_reg_go_c[idx], 1); 1527 } 1528 1529 uint32_t 1530 bxe_dmae_opcode_add_comp(uint32_t opcode, 1531 uint8_t comp_type) 1532 { 1533 return (opcode | ((comp_type << DMAE_CMD_C_DST_SHIFT) | 1534 DMAE_CMD_C_TYPE_ENABLE)); 1535 } 1536 1537 uint32_t 1538 bxe_dmae_opcode_clr_src_reset(uint32_t opcode) 1539 { 1540 return (opcode & ~DMAE_CMD_SRC_RESET); 1541 } 1542 1543 uint32_t 1544 bxe_dmae_opcode(struct bxe_softc *sc, 1545 uint8_t src_type, 1546 uint8_t dst_type, 1547 uint8_t with_comp, 1548 uint8_t comp_type) 1549 { 1550 uint32_t opcode = 0; 1551 1552 opcode |= ((src_type << DMAE_CMD_SRC_SHIFT) | 1553 (dst_type << DMAE_CMD_DST_SHIFT)); 1554 1555 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET); 1556 1557 opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0); 1558 1559 opcode |= ((SC_VN(sc) << DMAE_CMD_E1HVN_SHIFT) | 1560 (SC_VN(sc) << DMAE_CMD_DST_VN_SHIFT)); 1561 1562 opcode |= (DMAE_COM_SET_ERR << DMAE_CMD_ERR_POLICY_SHIFT); 1563 1564 #ifdef __BIG_ENDIAN 1565 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP; 1566 #else 1567 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP; 1568 #endif 1569 1570 if (with_comp) { 1571 opcode = bxe_dmae_opcode_add_comp(opcode, comp_type); 1572 } 1573 1574 return (opcode); 1575 } 1576 1577 static void 1578 bxe_prep_dmae_with_comp(struct bxe_softc *sc, 1579 struct dmae_cmd *dmae, 1580 uint8_t src_type, 1581 uint8_t dst_type) 1582 { 1583 memset(dmae, 0, sizeof(struct dmae_cmd)); 1584 1585 /* set the opcode */ 1586 dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type, 1587 TRUE, DMAE_COMP_PCI); 1588 1589 /* fill in the completion parameters */ 1590 dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp)); 1591 dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp)); 1592 dmae->comp_val = DMAE_COMP_VAL; 1593 } 1594 1595 /* issue a DMAE command over the init channel and wait for completion */ 1596 static int 1597 bxe_issue_dmae_with_comp(struct bxe_softc *sc, 1598 struct dmae_cmd *dmae) 1599 { 1600 uint32_t *wb_comp = BXE_SP(sc, wb_comp); 1601 int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000; 1602 1603 BXE_DMAE_LOCK(sc); 1604 1605 /* reset completion */ 1606 *wb_comp = 0; 1607 1608 /* post the command on the channel used for initializations */ 1609 bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc)); 1610 1611 /* wait for completion */ 1612 DELAY(5); 1613 1614 while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) { 1615 if (!timeout || 1616 (sc->recovery_state != BXE_RECOVERY_DONE && 1617 sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) { 1618 BLOGE(sc, "DMAE timeout! *wb_comp 0x%x recovery_state 0x%x\n", 1619 *wb_comp, sc->recovery_state); 1620 BXE_DMAE_UNLOCK(sc); 1621 return (DMAE_TIMEOUT); 1622 } 1623 1624 timeout--; 1625 DELAY(50); 1626 } 1627 1628 if (*wb_comp & DMAE_PCI_ERR_FLAG) { 1629 BLOGE(sc, "DMAE PCI error! *wb_comp 0x%x recovery_state 0x%x\n", 1630 *wb_comp, sc->recovery_state); 1631 BXE_DMAE_UNLOCK(sc); 1632 return (DMAE_PCI_ERROR); 1633 } 1634 1635 BXE_DMAE_UNLOCK(sc); 1636 return (0); 1637 } 1638 1639 void 1640 bxe_read_dmae(struct bxe_softc *sc, 1641 uint32_t src_addr, 1642 uint32_t len32) 1643 { 1644 struct dmae_cmd dmae; 1645 uint32_t *data; 1646 int i, rc; 1647 1648 DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32)); 1649 1650 if (!sc->dmae_ready) { 1651 data = BXE_SP(sc, wb_data[0]); 1652 1653 for (i = 0; i < len32; i++) { 1654 data[i] = (CHIP_IS_E1(sc)) ? 1655 bxe_reg_rd_ind(sc, (src_addr + (i * 4))) : 1656 REG_RD(sc, (src_addr + (i * 4))); 1657 } 1658 1659 return; 1660 } 1661 1662 /* set opcode and fixed command fields */ 1663 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI); 1664 1665 /* fill in addresses and len */ 1666 dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */ 1667 dmae.src_addr_hi = 0; 1668 dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data)); 1669 dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data)); 1670 dmae.len = len32; 1671 1672 /* issue the command and wait for completion */ 1673 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { 1674 bxe_panic(sc, ("DMAE failed (%d)\n", rc)); 1675 } 1676 } 1677 1678 void 1679 bxe_write_dmae(struct bxe_softc *sc, 1680 bus_addr_t dma_addr, 1681 uint32_t dst_addr, 1682 uint32_t len32) 1683 { 1684 struct dmae_cmd dmae; 1685 int rc; 1686 1687 if (!sc->dmae_ready) { 1688 DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32)); 1689 1690 if (CHIP_IS_E1(sc)) { 1691 ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); 1692 } else { 1693 ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); 1694 } 1695 1696 return; 1697 } 1698 1699 /* set opcode and fixed command fields */ 1700 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC); 1701 1702 /* fill in addresses and len */ 1703 dmae.src_addr_lo = U64_LO(dma_addr); 1704 dmae.src_addr_hi = U64_HI(dma_addr); 1705 dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */ 1706 dmae.dst_addr_hi = 0; 1707 dmae.len = len32; 1708 1709 /* issue the command and wait for completion */ 1710 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { 1711 bxe_panic(sc, ("DMAE failed (%d)\n", rc)); 1712 } 1713 } 1714 1715 void 1716 bxe_write_dmae_phys_len(struct bxe_softc *sc, 1717 bus_addr_t phys_addr, 1718 uint32_t addr, 1719 uint32_t len) 1720 { 1721 int dmae_wr_max = DMAE_LEN32_WR_MAX(sc); 1722 int offset = 0; 1723 1724 while (len > dmae_wr_max) { 1725 bxe_write_dmae(sc, 1726 (phys_addr + offset), /* src DMA address */ 1727 (addr + offset), /* dst GRC address */ 1728 dmae_wr_max); 1729 offset += (dmae_wr_max * 4); 1730 len -= dmae_wr_max; 1731 } 1732 1733 bxe_write_dmae(sc, 1734 (phys_addr + offset), /* src DMA address */ 1735 (addr + offset), /* dst GRC address */ 1736 len); 1737 } 1738 1739 void 1740 bxe_set_ctx_validation(struct bxe_softc *sc, 1741 struct eth_context *cxt, 1742 uint32_t cid) 1743 { 1744 /* ustorm cxt validation */ 1745 cxt->ustorm_ag_context.cdu_usage = 1746 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), 1747 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE); 1748 /* xcontext validation */ 1749 cxt->xstorm_ag_context.cdu_reserved = 1750 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), 1751 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE); 1752 } 1753 1754 static void 1755 bxe_storm_memset_hc_timeout(struct bxe_softc *sc, 1756 uint8_t port, 1757 uint8_t fw_sb_id, 1758 uint8_t sb_index, 1759 uint8_t ticks) 1760 { 1761 uint32_t addr = 1762 (BAR_CSTRORM_INTMEM + 1763 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index)); 1764 1765 REG_WR8(sc, addr, ticks); 1766 1767 BLOGD(sc, DBG_LOAD, 1768 "port %d fw_sb_id %d sb_index %d ticks %d\n", 1769 port, fw_sb_id, sb_index, ticks); 1770 } 1771 1772 static void 1773 bxe_storm_memset_hc_disable(struct bxe_softc *sc, 1774 uint8_t port, 1775 uint16_t fw_sb_id, 1776 uint8_t sb_index, 1777 uint8_t disable) 1778 { 1779 uint32_t enable_flag = 1780 (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT); 1781 uint32_t addr = 1782 (BAR_CSTRORM_INTMEM + 1783 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index)); 1784 uint8_t flags; 1785 1786 /* clear and set */ 1787 flags = REG_RD8(sc, addr); 1788 flags &= ~HC_INDEX_DATA_HC_ENABLED; 1789 flags |= enable_flag; 1790 REG_WR8(sc, addr, flags); 1791 1792 BLOGD(sc, DBG_LOAD, 1793 "port %d fw_sb_id %d sb_index %d disable %d\n", 1794 port, fw_sb_id, sb_index, disable); 1795 } 1796 1797 void 1798 bxe_update_coalesce_sb_index(struct bxe_softc *sc, 1799 uint8_t fw_sb_id, 1800 uint8_t sb_index, 1801 uint8_t disable, 1802 uint16_t usec) 1803 { 1804 int port = SC_PORT(sc); 1805 uint8_t ticks = (usec / 4); /* XXX ??? */ 1806 1807 bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks); 1808 1809 disable = (disable) ? 1 : ((usec) ? 0 : 1); 1810 bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable); 1811 } 1812 1813 void 1814 elink_cb_udelay(struct bxe_softc *sc, 1815 uint32_t usecs) 1816 { 1817 DELAY(usecs); 1818 } 1819 1820 uint32_t 1821 elink_cb_reg_read(struct bxe_softc *sc, 1822 uint32_t reg_addr) 1823 { 1824 return (REG_RD(sc, reg_addr)); 1825 } 1826 1827 void 1828 elink_cb_reg_write(struct bxe_softc *sc, 1829 uint32_t reg_addr, 1830 uint32_t val) 1831 { 1832 REG_WR(sc, reg_addr, val); 1833 } 1834 1835 void 1836 elink_cb_reg_wb_write(struct bxe_softc *sc, 1837 uint32_t offset, 1838 uint32_t *wb_write, 1839 uint16_t len) 1840 { 1841 REG_WR_DMAE(sc, offset, wb_write, len); 1842 } 1843 1844 void 1845 elink_cb_reg_wb_read(struct bxe_softc *sc, 1846 uint32_t offset, 1847 uint32_t *wb_write, 1848 uint16_t len) 1849 { 1850 REG_RD_DMAE(sc, offset, wb_write, len); 1851 } 1852 1853 uint8_t 1854 elink_cb_path_id(struct bxe_softc *sc) 1855 { 1856 return (SC_PATH(sc)); 1857 } 1858 1859 void 1860 elink_cb_event_log(struct bxe_softc *sc, 1861 const elink_log_id_t elink_log_id, 1862 ...) 1863 { 1864 /* XXX */ 1865 BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id); 1866 } 1867 1868 static int 1869 bxe_set_spio(struct bxe_softc *sc, 1870 int spio, 1871 uint32_t mode) 1872 { 1873 uint32_t spio_reg; 1874 1875 /* Only 2 SPIOs are configurable */ 1876 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) { 1877 BLOGE(sc, "Invalid SPIO 0x%x mode 0x%x\n", spio, mode); 1878 return (-1); 1879 } 1880 1881 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); 1882 1883 /* read SPIO and mask except the float bits */ 1884 spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT); 1885 1886 switch (mode) { 1887 case MISC_SPIO_OUTPUT_LOW: 1888 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio); 1889 /* clear FLOAT and set CLR */ 1890 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 1891 spio_reg |= (spio << MISC_SPIO_CLR_POS); 1892 break; 1893 1894 case MISC_SPIO_OUTPUT_HIGH: 1895 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio); 1896 /* clear FLOAT and set SET */ 1897 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 1898 spio_reg |= (spio << MISC_SPIO_SET_POS); 1899 break; 1900 1901 case MISC_SPIO_INPUT_HI_Z: 1902 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio); 1903 /* set FLOAT */ 1904 spio_reg |= (spio << MISC_SPIO_FLOAT_POS); 1905 break; 1906 1907 default: 1908 break; 1909 } 1910 1911 REG_WR(sc, MISC_REG_SPIO, spio_reg); 1912 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); 1913 1914 return (0); 1915 } 1916 1917 static int 1918 bxe_gpio_read(struct bxe_softc *sc, 1919 int gpio_num, 1920 uint8_t port) 1921 { 1922 /* The GPIO should be swapped if swap register is set and active */ 1923 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 1924 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 1925 int gpio_shift = (gpio_num + 1926 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 1927 uint32_t gpio_mask = (1 << gpio_shift); 1928 uint32_t gpio_reg; 1929 1930 if (gpio_num > MISC_REGISTERS_GPIO_3) { 1931 BLOGE(sc, "Invalid GPIO %d port 0x%x gpio_port %d gpio_shift %d" 1932 " gpio_mask 0x%x\n", gpio_num, port, gpio_port, gpio_shift, 1933 gpio_mask); 1934 return (-1); 1935 } 1936 1937 /* read GPIO value */ 1938 gpio_reg = REG_RD(sc, MISC_REG_GPIO); 1939 1940 /* get the requested pin value */ 1941 return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0; 1942 } 1943 1944 static int 1945 bxe_gpio_write(struct bxe_softc *sc, 1946 int gpio_num, 1947 uint32_t mode, 1948 uint8_t port) 1949 { 1950 /* The GPIO should be swapped if swap register is set and active */ 1951 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 1952 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 1953 int gpio_shift = (gpio_num + 1954 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 1955 uint32_t gpio_mask = (1 << gpio_shift); 1956 uint32_t gpio_reg; 1957 1958 if (gpio_num > MISC_REGISTERS_GPIO_3) { 1959 BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d" 1960 " gpio_shift %d gpio_mask 0x%x\n", 1961 gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask); 1962 return (-1); 1963 } 1964 1965 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 1966 1967 /* read GPIO and mask except the float bits */ 1968 gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT); 1969 1970 switch (mode) { 1971 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 1972 BLOGD(sc, DBG_PHY, 1973 "Set GPIO %d (shift %d) -> output low\n", 1974 gpio_num, gpio_shift); 1975 /* clear FLOAT and set CLR */ 1976 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 1977 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS); 1978 break; 1979 1980 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 1981 BLOGD(sc, DBG_PHY, 1982 "Set GPIO %d (shift %d) -> output high\n", 1983 gpio_num, gpio_shift); 1984 /* clear FLOAT and set SET */ 1985 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 1986 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS); 1987 break; 1988 1989 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 1990 BLOGD(sc, DBG_PHY, 1991 "Set GPIO %d (shift %d) -> input\n", 1992 gpio_num, gpio_shift); 1993 /* set FLOAT */ 1994 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 1995 break; 1996 1997 default: 1998 break; 1999 } 2000 2001 REG_WR(sc, MISC_REG_GPIO, gpio_reg); 2002 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2003 2004 return (0); 2005 } 2006 2007 static int 2008 bxe_gpio_mult_write(struct bxe_softc *sc, 2009 uint8_t pins, 2010 uint32_t mode) 2011 { 2012 uint32_t gpio_reg; 2013 2014 /* any port swapping should be handled by caller */ 2015 2016 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2017 2018 /* read GPIO and mask except the float bits */ 2019 gpio_reg = REG_RD(sc, MISC_REG_GPIO); 2020 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2021 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS); 2022 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS); 2023 2024 switch (mode) { 2025 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 2026 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins); 2027 /* set CLR */ 2028 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS); 2029 break; 2030 2031 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 2032 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins); 2033 /* set SET */ 2034 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS); 2035 break; 2036 2037 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2038 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins); 2039 /* set FLOAT */ 2040 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2041 break; 2042 2043 default: 2044 BLOGE(sc, "Invalid GPIO mode assignment pins 0x%x mode 0x%x" 2045 " gpio_reg 0x%x\n", pins, mode, gpio_reg); 2046 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2047 return (-1); 2048 } 2049 2050 REG_WR(sc, MISC_REG_GPIO, gpio_reg); 2051 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2052 2053 return (0); 2054 } 2055 2056 static int 2057 bxe_gpio_int_write(struct bxe_softc *sc, 2058 int gpio_num, 2059 uint32_t mode, 2060 uint8_t port) 2061 { 2062 /* The GPIO should be swapped if swap register is set and active */ 2063 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 2064 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 2065 int gpio_shift = (gpio_num + 2066 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 2067 uint32_t gpio_mask = (1 << gpio_shift); 2068 uint32_t gpio_reg; 2069 2070 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2071 BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d" 2072 " gpio_shift %d gpio_mask 0x%x\n", 2073 gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask); 2074 return (-1); 2075 } 2076 2077 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2078 2079 /* read GPIO int */ 2080 gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT); 2081 2082 switch (mode) { 2083 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR: 2084 BLOGD(sc, DBG_PHY, 2085 "Clear GPIO INT %d (shift %d) -> output low\n", 2086 gpio_num, gpio_shift); 2087 /* clear SET and set CLR */ 2088 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2089 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2090 break; 2091 2092 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET: 2093 BLOGD(sc, DBG_PHY, 2094 "Set GPIO INT %d (shift %d) -> output high\n", 2095 gpio_num, gpio_shift); 2096 /* clear CLR and set SET */ 2097 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2098 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2099 break; 2100 2101 default: 2102 break; 2103 } 2104 2105 REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg); 2106 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2107 2108 return (0); 2109 } 2110 2111 uint32_t 2112 elink_cb_gpio_read(struct bxe_softc *sc, 2113 uint16_t gpio_num, 2114 uint8_t port) 2115 { 2116 return (bxe_gpio_read(sc, gpio_num, port)); 2117 } 2118 2119 uint8_t 2120 elink_cb_gpio_write(struct bxe_softc *sc, 2121 uint16_t gpio_num, 2122 uint8_t mode, /* 0=low 1=high */ 2123 uint8_t port) 2124 { 2125 return (bxe_gpio_write(sc, gpio_num, mode, port)); 2126 } 2127 2128 uint8_t 2129 elink_cb_gpio_mult_write(struct bxe_softc *sc, 2130 uint8_t pins, 2131 uint8_t mode) /* 0=low 1=high */ 2132 { 2133 return (bxe_gpio_mult_write(sc, pins, mode)); 2134 } 2135 2136 uint8_t 2137 elink_cb_gpio_int_write(struct bxe_softc *sc, 2138 uint16_t gpio_num, 2139 uint8_t mode, /* 0=low 1=high */ 2140 uint8_t port) 2141 { 2142 return (bxe_gpio_int_write(sc, gpio_num, mode, port)); 2143 } 2144 2145 void 2146 elink_cb_notify_link_changed(struct bxe_softc *sc) 2147 { 2148 REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 + 2149 (SC_FUNC(sc) * sizeof(uint32_t))), 1); 2150 } 2151 2152 /* send the MCP a request, block until there is a reply */ 2153 uint32_t 2154 elink_cb_fw_command(struct bxe_softc *sc, 2155 uint32_t command, 2156 uint32_t param) 2157 { 2158 int mb_idx = SC_FW_MB_IDX(sc); 2159 uint32_t seq; 2160 uint32_t rc = 0; 2161 uint32_t cnt = 1; 2162 uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10; 2163 2164 BXE_FWMB_LOCK(sc); 2165 2166 seq = ++sc->fw_seq; 2167 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param); 2168 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq)); 2169 2170 BLOGD(sc, DBG_PHY, 2171 "wrote command 0x%08x to FW MB param 0x%08x\n", 2172 (command | seq), param); 2173 2174 /* Let the FW do it's magic. GIve it up to 5 seconds... */ 2175 do { 2176 DELAY(delay * 1000); 2177 rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header); 2178 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500)); 2179 2180 BLOGD(sc, DBG_PHY, 2181 "[after %d ms] read 0x%x seq 0x%x from FW MB\n", 2182 cnt*delay, rc, seq); 2183 2184 /* is this a reply to our command? */ 2185 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) { 2186 rc &= FW_MSG_CODE_MASK; 2187 } else { 2188 /* Ruh-roh! */ 2189 BLOGE(sc, "FW failed to respond!\n"); 2190 // XXX bxe_fw_dump(sc); 2191 rc = 0; 2192 } 2193 2194 BXE_FWMB_UNLOCK(sc); 2195 return (rc); 2196 } 2197 2198 static uint32_t 2199 bxe_fw_command(struct bxe_softc *sc, 2200 uint32_t command, 2201 uint32_t param) 2202 { 2203 return (elink_cb_fw_command(sc, command, param)); 2204 } 2205 2206 static void 2207 __storm_memset_dma_mapping(struct bxe_softc *sc, 2208 uint32_t addr, 2209 bus_addr_t mapping) 2210 { 2211 REG_WR(sc, addr, U64_LO(mapping)); 2212 REG_WR(sc, (addr + 4), U64_HI(mapping)); 2213 } 2214 2215 static void 2216 storm_memset_spq_addr(struct bxe_softc *sc, 2217 bus_addr_t mapping, 2218 uint16_t abs_fid) 2219 { 2220 uint32_t addr = (XSEM_REG_FAST_MEMORY + 2221 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid)); 2222 __storm_memset_dma_mapping(sc, addr, mapping); 2223 } 2224 2225 static void 2226 storm_memset_vf_to_pf(struct bxe_softc *sc, 2227 uint16_t abs_fid, 2228 uint16_t pf_id) 2229 { 2230 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2231 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2232 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2233 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2234 } 2235 2236 static void 2237 storm_memset_func_en(struct bxe_softc *sc, 2238 uint16_t abs_fid, 2239 uint8_t enable) 2240 { 2241 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2242 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2243 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2244 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2245 } 2246 2247 static void 2248 storm_memset_eq_data(struct bxe_softc *sc, 2249 struct event_ring_data *eq_data, 2250 uint16_t pfid) 2251 { 2252 uint32_t addr; 2253 size_t size; 2254 2255 addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid)); 2256 size = sizeof(struct event_ring_data); 2257 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data); 2258 } 2259 2260 static void 2261 storm_memset_eq_prod(struct bxe_softc *sc, 2262 uint16_t eq_prod, 2263 uint16_t pfid) 2264 { 2265 uint32_t addr = (BAR_CSTRORM_INTMEM + 2266 CSTORM_EVENT_RING_PROD_OFFSET(pfid)); 2267 REG_WR16(sc, addr, eq_prod); 2268 } 2269 2270 /* 2271 * Post a slowpath command. 2272 * 2273 * A slowpath command is used to propagate a configuration change through 2274 * the controller in a controlled manner, allowing each STORM processor and 2275 * other H/W blocks to phase in the change. The commands sent on the 2276 * slowpath are referred to as ramrods. Depending on the ramrod used the 2277 * completion of the ramrod will occur in different ways. Here's a 2278 * breakdown of ramrods and how they complete: 2279 * 2280 * RAMROD_CMD_ID_ETH_PORT_SETUP 2281 * Used to setup the leading connection on a port. Completes on the 2282 * Receive Completion Queue (RCQ) of that port (typically fp[0]). 2283 * 2284 * RAMROD_CMD_ID_ETH_CLIENT_SETUP 2285 * Used to setup an additional connection on a port. Completes on the 2286 * RCQ of the multi-queue/RSS connection being initialized. 2287 * 2288 * RAMROD_CMD_ID_ETH_STAT_QUERY 2289 * Used to force the storm processors to update the statistics database 2290 * in host memory. This ramrod is send on the leading connection CID and 2291 * completes as an index increment of the CSTORM on the default status 2292 * block. 2293 * 2294 * RAMROD_CMD_ID_ETH_UPDATE 2295 * Used to update the state of the leading connection, usually to udpate 2296 * the RSS indirection table. Completes on the RCQ of the leading 2297 * connection. (Not currently used under FreeBSD until OS support becomes 2298 * available.) 2299 * 2300 * RAMROD_CMD_ID_ETH_HALT 2301 * Used when tearing down a connection prior to driver unload. Completes 2302 * on the RCQ of the multi-queue/RSS connection being torn down. Don't 2303 * use this on the leading connection. 2304 * 2305 * RAMROD_CMD_ID_ETH_SET_MAC 2306 * Sets the Unicast/Broadcast/Multicast used by the port. Completes on 2307 * the RCQ of the leading connection. 2308 * 2309 * RAMROD_CMD_ID_ETH_CFC_DEL 2310 * Used when tearing down a conneciton prior to driver unload. Completes 2311 * on the RCQ of the leading connection (since the current connection 2312 * has been completely removed from controller memory). 2313 * 2314 * RAMROD_CMD_ID_ETH_PORT_DEL 2315 * Used to tear down the leading connection prior to driver unload, 2316 * typically fp[0]. Completes as an index increment of the CSTORM on the 2317 * default status block. 2318 * 2319 * RAMROD_CMD_ID_ETH_FORWARD_SETUP 2320 * Used for connection offload. Completes on the RCQ of the multi-queue 2321 * RSS connection that is being offloaded. (Not currently used under 2322 * FreeBSD.) 2323 * 2324 * There can only be one command pending per function. 2325 * 2326 * Returns: 2327 * 0 = Success, !0 = Failure. 2328 */ 2329 2330 /* must be called under the spq lock */ 2331 static inline 2332 struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc) 2333 { 2334 struct eth_spe *next_spe = sc->spq_prod_bd; 2335 2336 if (sc->spq_prod_bd == sc->spq_last_bd) { 2337 /* wrap back to the first eth_spq */ 2338 sc->spq_prod_bd = sc->spq; 2339 sc->spq_prod_idx = 0; 2340 } else { 2341 sc->spq_prod_bd++; 2342 sc->spq_prod_idx++; 2343 } 2344 2345 return (next_spe); 2346 } 2347 2348 /* must be called under the spq lock */ 2349 static inline 2350 void bxe_sp_prod_update(struct bxe_softc *sc) 2351 { 2352 int func = SC_FUNC(sc); 2353 2354 /* 2355 * Make sure that BD data is updated before writing the producer. 2356 * BD data is written to the memory, the producer is read from the 2357 * memory, thus we need a full memory barrier to ensure the ordering. 2358 */ 2359 mb(); 2360 2361 REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)), 2362 sc->spq_prod_idx); 2363 2364 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 2365 BUS_SPACE_BARRIER_WRITE); 2366 } 2367 2368 /** 2369 * bxe_is_contextless_ramrod - check if the current command ends on EQ 2370 * 2371 * @cmd: command to check 2372 * @cmd_type: command type 2373 */ 2374 static inline 2375 int bxe_is_contextless_ramrod(int cmd, 2376 int cmd_type) 2377 { 2378 if ((cmd_type == NONE_CONNECTION_TYPE) || 2379 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) || 2380 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) || 2381 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) || 2382 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) || 2383 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) || 2384 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) { 2385 return (TRUE); 2386 } else { 2387 return (FALSE); 2388 } 2389 } 2390 2391 /** 2392 * bxe_sp_post - place a single command on an SP ring 2393 * 2394 * @sc: driver handle 2395 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.) 2396 * @cid: SW CID the command is related to 2397 * @data_hi: command private data address (high 32 bits) 2398 * @data_lo: command private data address (low 32 bits) 2399 * @cmd_type: command type (e.g. NONE, ETH) 2400 * 2401 * SP data is handled as if it's always an address pair, thus data fields are 2402 * not swapped to little endian in upper functions. Instead this function swaps 2403 * data as if it's two uint32 fields. 2404 */ 2405 int 2406 bxe_sp_post(struct bxe_softc *sc, 2407 int command, 2408 int cid, 2409 uint32_t data_hi, 2410 uint32_t data_lo, 2411 int cmd_type) 2412 { 2413 struct eth_spe *spe; 2414 uint16_t type; 2415 int common; 2416 2417 common = bxe_is_contextless_ramrod(command, cmd_type); 2418 2419 BXE_SP_LOCK(sc); 2420 2421 if (common) { 2422 if (!atomic_load_acq_long(&sc->eq_spq_left)) { 2423 BLOGE(sc, "EQ ring is full!\n"); 2424 BXE_SP_UNLOCK(sc); 2425 return (-1); 2426 } 2427 } else { 2428 if (!atomic_load_acq_long(&sc->cq_spq_left)) { 2429 BLOGE(sc, "SPQ ring is full!\n"); 2430 BXE_SP_UNLOCK(sc); 2431 return (-1); 2432 } 2433 } 2434 2435 spe = bxe_sp_get_next(sc); 2436 2437 /* CID needs port number to be encoded int it */ 2438 spe->hdr.conn_and_cmd_data = 2439 htole32((command << SPE_HDR_T_CMD_ID_SHIFT) | HW_CID(sc, cid)); 2440 2441 type = (cmd_type << SPE_HDR_T_CONN_TYPE_SHIFT) & SPE_HDR_T_CONN_TYPE; 2442 2443 /* TBD: Check if it works for VFs */ 2444 type |= ((SC_FUNC(sc) << SPE_HDR_T_FUNCTION_ID_SHIFT) & 2445 SPE_HDR_T_FUNCTION_ID); 2446 2447 spe->hdr.type = htole16(type); 2448 2449 spe->data.update_data_addr.hi = htole32(data_hi); 2450 spe->data.update_data_addr.lo = htole32(data_lo); 2451 2452 /* 2453 * It's ok if the actual decrement is issued towards the memory 2454 * somewhere between the lock and unlock. Thus no more explict 2455 * memory barrier is needed. 2456 */ 2457 if (common) { 2458 atomic_subtract_acq_long(&sc->eq_spq_left, 1); 2459 } else { 2460 atomic_subtract_acq_long(&sc->cq_spq_left, 1); 2461 } 2462 2463 BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr); 2464 BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n", 2465 BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata)); 2466 BLOGD(sc, DBG_SP, 2467 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n", 2468 sc->spq_prod_idx, 2469 (uint32_t)U64_HI(sc->spq_dma.paddr), 2470 (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq), 2471 command, 2472 common, 2473 HW_CID(sc, cid), 2474 data_hi, 2475 data_lo, 2476 type, 2477 atomic_load_acq_long(&sc->cq_spq_left), 2478 atomic_load_acq_long(&sc->eq_spq_left)); 2479 2480 bxe_sp_prod_update(sc); 2481 2482 BXE_SP_UNLOCK(sc); 2483 return (0); 2484 } 2485 2486 /** 2487 * bxe_debug_print_ind_table - prints the indirection table configuration. 2488 * 2489 * @sc: driver hanlde 2490 * @p: pointer to rss configuration 2491 */ 2492 2493 /* 2494 * FreeBSD Device probe function. 2495 * 2496 * Compares the device found to the driver's list of supported devices and 2497 * reports back to the bsd loader whether this is the right driver for the device. 2498 * This is the driver entry function called from the "kldload" command. 2499 * 2500 * Returns: 2501 * BUS_PROBE_DEFAULT on success, positive value on failure. 2502 */ 2503 static int 2504 bxe_probe(device_t dev) 2505 { 2506 struct bxe_device_type *t; 2507 char *descbuf; 2508 uint16_t did, sdid, svid, vid; 2509 2510 /* Find our device structure */ 2511 t = bxe_devs; 2512 2513 /* Get the data for the device to be probed. */ 2514 vid = pci_get_vendor(dev); 2515 did = pci_get_device(dev); 2516 svid = pci_get_subvendor(dev); 2517 sdid = pci_get_subdevice(dev); 2518 2519 /* Look through the list of known devices for a match. */ 2520 while (t->bxe_name != NULL) { 2521 if ((vid == t->bxe_vid) && (did == t->bxe_did) && 2522 ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) && 2523 ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) { 2524 descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT); 2525 if (descbuf == NULL) 2526 return (ENOMEM); 2527 2528 /* Print out the device identity. */ 2529 snprintf(descbuf, BXE_DEVDESC_MAX, 2530 "%s (%c%d) BXE v:%s\n", t->bxe_name, 2531 (((pci_read_config(dev, PCIR_REVID, 4) & 2532 0xf0) >> 4) + 'A'), 2533 (pci_read_config(dev, PCIR_REVID, 4) & 0xf), 2534 BXE_DRIVER_VERSION); 2535 2536 device_set_desc_copy(dev, descbuf); 2537 free(descbuf, M_TEMP); 2538 return (BUS_PROBE_DEFAULT); 2539 } 2540 t++; 2541 } 2542 2543 return (ENXIO); 2544 } 2545 2546 static void 2547 bxe_init_mutexes(struct bxe_softc *sc) 2548 { 2549 #ifdef BXE_CORE_LOCK_SX 2550 snprintf(sc->core_sx_name, sizeof(sc->core_sx_name), 2551 "bxe%d_core_lock", sc->unit); 2552 sx_init(&sc->core_sx, sc->core_sx_name); 2553 #else 2554 snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name), 2555 "bxe%d_core_lock", sc->unit); 2556 mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF); 2557 #endif 2558 2559 snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name), 2560 "bxe%d_sp_lock", sc->unit); 2561 mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF); 2562 2563 snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name), 2564 "bxe%d_dmae_lock", sc->unit); 2565 mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF); 2566 2567 snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name), 2568 "bxe%d_phy_lock", sc->unit); 2569 mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF); 2570 2571 snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name), 2572 "bxe%d_fwmb_lock", sc->unit); 2573 mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF); 2574 2575 snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name), 2576 "bxe%d_print_lock", sc->unit); 2577 mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF); 2578 2579 snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name), 2580 "bxe%d_stats_lock", sc->unit); 2581 mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF); 2582 2583 snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name), 2584 "bxe%d_mcast_lock", sc->unit); 2585 mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF); 2586 } 2587 2588 static void 2589 bxe_release_mutexes(struct bxe_softc *sc) 2590 { 2591 #ifdef BXE_CORE_LOCK_SX 2592 sx_destroy(&sc->core_sx); 2593 #else 2594 if (mtx_initialized(&sc->core_mtx)) { 2595 mtx_destroy(&sc->core_mtx); 2596 } 2597 #endif 2598 2599 if (mtx_initialized(&sc->sp_mtx)) { 2600 mtx_destroy(&sc->sp_mtx); 2601 } 2602 2603 if (mtx_initialized(&sc->dmae_mtx)) { 2604 mtx_destroy(&sc->dmae_mtx); 2605 } 2606 2607 if (mtx_initialized(&sc->port.phy_mtx)) { 2608 mtx_destroy(&sc->port.phy_mtx); 2609 } 2610 2611 if (mtx_initialized(&sc->fwmb_mtx)) { 2612 mtx_destroy(&sc->fwmb_mtx); 2613 } 2614 2615 if (mtx_initialized(&sc->print_mtx)) { 2616 mtx_destroy(&sc->print_mtx); 2617 } 2618 2619 if (mtx_initialized(&sc->stats_mtx)) { 2620 mtx_destroy(&sc->stats_mtx); 2621 } 2622 2623 if (mtx_initialized(&sc->mcast_mtx)) { 2624 mtx_destroy(&sc->mcast_mtx); 2625 } 2626 } 2627 2628 static void 2629 bxe_tx_disable(struct bxe_softc* sc) 2630 { 2631 if_t ifp = sc->ifp; 2632 2633 /* tell the stack the driver is stopped and TX queue is full */ 2634 if (ifp != NULL) { 2635 if_setdrvflags(ifp, 0); 2636 } 2637 } 2638 2639 static void 2640 bxe_drv_pulse(struct bxe_softc *sc) 2641 { 2642 SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb, 2643 sc->fw_drv_pulse_wr_seq); 2644 } 2645 2646 static inline uint16_t 2647 bxe_tx_avail(struct bxe_softc *sc, 2648 struct bxe_fastpath *fp) 2649 { 2650 int16_t used; 2651 uint16_t prod; 2652 uint16_t cons; 2653 2654 prod = fp->tx_bd_prod; 2655 cons = fp->tx_bd_cons; 2656 2657 used = SUB_S16(prod, cons); 2658 2659 return (int16_t)(sc->tx_ring_size) - used; 2660 } 2661 2662 static inline int 2663 bxe_tx_queue_has_work(struct bxe_fastpath *fp) 2664 { 2665 uint16_t hw_cons; 2666 2667 mb(); /* status block fields can change */ 2668 hw_cons = le16toh(*fp->tx_cons_sb); 2669 return (hw_cons != fp->tx_pkt_cons); 2670 } 2671 2672 static inline uint8_t 2673 bxe_has_tx_work(struct bxe_fastpath *fp) 2674 { 2675 /* expand this for multi-cos if ever supported */ 2676 return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE; 2677 } 2678 2679 static inline int 2680 bxe_has_rx_work(struct bxe_fastpath *fp) 2681 { 2682 uint16_t rx_cq_cons_sb; 2683 2684 mb(); /* status block fields can change */ 2685 rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb); 2686 if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX) 2687 rx_cq_cons_sb++; 2688 return (fp->rx_cq_cons != rx_cq_cons_sb); 2689 } 2690 2691 static void 2692 bxe_sp_event(struct bxe_softc *sc, 2693 struct bxe_fastpath *fp, 2694 union eth_rx_cqe *rr_cqe) 2695 { 2696 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data); 2697 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data); 2698 enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX; 2699 struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj; 2700 2701 BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n", 2702 fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type); 2703 2704 switch (command) { 2705 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE): 2706 BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid); 2707 drv_cmd = ECORE_Q_CMD_UPDATE; 2708 break; 2709 2710 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP): 2711 BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid); 2712 drv_cmd = ECORE_Q_CMD_SETUP; 2713 break; 2714 2715 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP): 2716 BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid); 2717 drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY; 2718 break; 2719 2720 case (RAMROD_CMD_ID_ETH_HALT): 2721 BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid); 2722 drv_cmd = ECORE_Q_CMD_HALT; 2723 break; 2724 2725 case (RAMROD_CMD_ID_ETH_TERMINATE): 2726 BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid); 2727 drv_cmd = ECORE_Q_CMD_TERMINATE; 2728 break; 2729 2730 case (RAMROD_CMD_ID_ETH_EMPTY): 2731 BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid); 2732 drv_cmd = ECORE_Q_CMD_EMPTY; 2733 break; 2734 2735 default: 2736 BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n", 2737 command, fp->index); 2738 return; 2739 } 2740 2741 if ((drv_cmd != ECORE_Q_CMD_MAX) && 2742 q_obj->complete_cmd(sc, q_obj, drv_cmd)) { 2743 /* 2744 * q_obj->complete_cmd() failure means that this was 2745 * an unexpected completion. 2746 * 2747 * In this case we don't want to increase the sc->spq_left 2748 * because apparently we haven't sent this command the first 2749 * place. 2750 */ 2751 // bxe_panic(sc, ("Unexpected SP completion\n")); 2752 return; 2753 } 2754 2755 atomic_add_acq_long(&sc->cq_spq_left, 1); 2756 2757 BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n", 2758 atomic_load_acq_long(&sc->cq_spq_left)); 2759 } 2760 2761 /* 2762 * The current mbuf is part of an aggregation. Move the mbuf into the TPA 2763 * aggregation queue, put an empty mbuf back onto the receive chain, and mark 2764 * the current aggregation queue as in-progress. 2765 */ 2766 static void 2767 bxe_tpa_start(struct bxe_softc *sc, 2768 struct bxe_fastpath *fp, 2769 uint16_t queue, 2770 uint16_t cons, 2771 uint16_t prod, 2772 struct eth_fast_path_rx_cqe *cqe) 2773 { 2774 struct bxe_sw_rx_bd tmp_bd; 2775 struct bxe_sw_rx_bd *rx_buf; 2776 struct eth_rx_bd *rx_bd; 2777 int max_agg_queues; 2778 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; 2779 uint16_t index; 2780 2781 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START " 2782 "cons=%d prod=%d\n", 2783 fp->index, queue, cons, prod); 2784 2785 max_agg_queues = MAX_AGG_QS(sc); 2786 2787 KASSERT((queue < max_agg_queues), 2788 ("fp[%02d] invalid aggr queue (%d >= %d)!", 2789 fp->index, queue, max_agg_queues)); 2790 2791 KASSERT((tpa_info->state == BXE_TPA_STATE_STOP), 2792 ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!", 2793 fp->index, queue)); 2794 2795 /* copy the existing mbuf and mapping from the TPA pool */ 2796 tmp_bd = tpa_info->bd; 2797 2798 if (tmp_bd.m == NULL) { 2799 uint32_t *tmp; 2800 2801 tmp = (uint32_t *)cqe; 2802 2803 BLOGE(sc, "fp[%02d].tpa[%02d] cons[%d] prod[%d]mbuf not allocated!\n", 2804 fp->index, queue, cons, prod); 2805 BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n", 2806 *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7)); 2807 2808 /* XXX Error handling? */ 2809 return; 2810 } 2811 2812 /* change the TPA queue to the start state */ 2813 tpa_info->state = BXE_TPA_STATE_START; 2814 tpa_info->placement_offset = cqe->placement_offset; 2815 tpa_info->parsing_flags = le16toh(cqe->pars_flags.flags); 2816 tpa_info->vlan_tag = le16toh(cqe->vlan_tag); 2817 tpa_info->len_on_bd = le16toh(cqe->len_on_bd); 2818 2819 fp->rx_tpa_queue_used |= (1 << queue); 2820 2821 /* 2822 * If all the buffer descriptors are filled with mbufs then fill in 2823 * the current consumer index with a new BD. Else if a maximum Rx 2824 * buffer limit is imposed then fill in the next producer index. 2825 */ 2826 index = (sc->max_rx_bufs != RX_BD_USABLE) ? 2827 prod : cons; 2828 2829 /* move the received mbuf and mapping to TPA pool */ 2830 tpa_info->bd = fp->rx_mbuf_chain[cons]; 2831 2832 /* release any existing RX BD mbuf mappings */ 2833 if (cons != index) { 2834 rx_buf = &fp->rx_mbuf_chain[cons]; 2835 2836 if (rx_buf->m_map != NULL) { 2837 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 2838 BUS_DMASYNC_POSTREAD); 2839 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 2840 } 2841 2842 /* 2843 * We get here when the maximum number of rx buffers is less than 2844 * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL 2845 * it out here without concern of a memory leak. 2846 */ 2847 fp->rx_mbuf_chain[cons].m = NULL; 2848 } 2849 2850 /* update the Rx SW BD with the mbuf info from the TPA pool */ 2851 fp->rx_mbuf_chain[index] = tmp_bd; 2852 2853 /* update the Rx BD with the empty mbuf phys address from the TPA pool */ 2854 rx_bd = &fp->rx_chain[index]; 2855 rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr)); 2856 rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr)); 2857 } 2858 2859 /* 2860 * When a TPA aggregation is completed, loop through the individual mbufs 2861 * of the aggregation, combining them into a single mbuf which will be sent 2862 * up the stack. Refill all freed SGEs with mbufs as we go along. 2863 */ 2864 static int 2865 bxe_fill_frag_mbuf(struct bxe_softc *sc, 2866 struct bxe_fastpath *fp, 2867 struct bxe_sw_tpa_info *tpa_info, 2868 uint16_t queue, 2869 uint16_t pages, 2870 struct mbuf *m, 2871 struct eth_end_agg_rx_cqe *cqe, 2872 uint16_t cqe_idx) 2873 { 2874 struct mbuf *m_frag; 2875 uint32_t frag_len, frag_size, i; 2876 uint16_t sge_idx; 2877 int rc = 0; 2878 int j; 2879 2880 frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd; 2881 2882 BLOGD(sc, DBG_LRO, 2883 "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n", 2884 fp->index, queue, tpa_info->len_on_bd, frag_size, pages); 2885 2886 /* make sure the aggregated frame is not too big to handle */ 2887 if (pages > 8 * PAGES_PER_SGE) { 2888 2889 uint32_t *tmp = (uint32_t *)cqe; 2890 2891 BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! " 2892 "pkt_len=%d len_on_bd=%d frag_size=%d\n", 2893 fp->index, cqe_idx, pages, le16toh(cqe->pkt_len), 2894 tpa_info->len_on_bd, frag_size); 2895 2896 BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n", 2897 *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7)); 2898 2899 bxe_panic(sc, ("sge page count error\n")); 2900 return (EINVAL); 2901 } 2902 2903 /* 2904 * Scan through the scatter gather list pulling individual mbufs into a 2905 * single mbuf for the host stack. 2906 */ 2907 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) { 2908 sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j])); 2909 2910 /* 2911 * Firmware gives the indices of the SGE as if the ring is an array 2912 * (meaning that the "next" element will consume 2 indices). 2913 */ 2914 frag_len = min(frag_size, (uint32_t)(SGE_PAGES)); 2915 2916 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d " 2917 "sge_idx=%d frag_size=%d frag_len=%d\n", 2918 fp->index, queue, i, j, sge_idx, frag_size, frag_len); 2919 2920 m_frag = fp->rx_sge_mbuf_chain[sge_idx].m; 2921 2922 /* allocate a new mbuf for the SGE */ 2923 rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx); 2924 if (rc) { 2925 /* Leave all remaining SGEs in the ring! */ 2926 return (rc); 2927 } 2928 2929 /* update the fragment length */ 2930 m_frag->m_len = frag_len; 2931 2932 /* concatenate the fragment to the head mbuf */ 2933 m_cat(m, m_frag); 2934 fp->eth_q_stats.mbuf_alloc_sge--; 2935 2936 /* update the TPA mbuf size and remaining fragment size */ 2937 m->m_pkthdr.len += frag_len; 2938 frag_size -= frag_len; 2939 } 2940 2941 BLOGD(sc, DBG_LRO, 2942 "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n", 2943 fp->index, queue, frag_size); 2944 2945 return (rc); 2946 } 2947 2948 static inline void 2949 bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp) 2950 { 2951 int i, j; 2952 2953 for (i = 1; i <= RX_SGE_NUM_PAGES; i++) { 2954 int idx = RX_SGE_TOTAL_PER_PAGE * i - 1; 2955 2956 for (j = 0; j < 2; j++) { 2957 BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx); 2958 idx--; 2959 } 2960 } 2961 } 2962 2963 static inline void 2964 bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp) 2965 { 2966 /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */ 2967 memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask)); 2968 2969 /* 2970 * Clear the two last indices in the page to 1. These are the indices that 2971 * correspond to the "next" element, hence will never be indicated and 2972 * should be removed from the calculations. 2973 */ 2974 bxe_clear_sge_mask_next_elems(fp); 2975 } 2976 2977 static inline void 2978 bxe_update_last_max_sge(struct bxe_fastpath *fp, 2979 uint16_t idx) 2980 { 2981 uint16_t last_max = fp->last_max_sge; 2982 2983 if (SUB_S16(idx, last_max) > 0) { 2984 fp->last_max_sge = idx; 2985 } 2986 } 2987 2988 static inline void 2989 bxe_update_sge_prod(struct bxe_softc *sc, 2990 struct bxe_fastpath *fp, 2991 uint16_t sge_len, 2992 union eth_sgl_or_raw_data *cqe) 2993 { 2994 uint16_t last_max, last_elem, first_elem; 2995 uint16_t delta = 0; 2996 uint16_t i; 2997 2998 if (!sge_len) { 2999 return; 3000 } 3001 3002 /* first mark all used pages */ 3003 for (i = 0; i < sge_len; i++) { 3004 BIT_VEC64_CLEAR_BIT(fp->sge_mask, 3005 RX_SGE(le16toh(cqe->sgl[i]))); 3006 } 3007 3008 BLOGD(sc, DBG_LRO, 3009 "fp[%02d] fp_cqe->sgl[%d] = %d\n", 3010 fp->index, sge_len - 1, 3011 le16toh(cqe->sgl[sge_len - 1])); 3012 3013 /* assume that the last SGE index is the biggest */ 3014 bxe_update_last_max_sge(fp, 3015 le16toh(cqe->sgl[sge_len - 1])); 3016 3017 last_max = RX_SGE(fp->last_max_sge); 3018 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT; 3019 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT; 3020 3021 /* if ring is not full */ 3022 if (last_elem + 1 != first_elem) { 3023 last_elem++; 3024 } 3025 3026 /* now update the prod */ 3027 for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) { 3028 if (__predict_true(fp->sge_mask[i])) { 3029 break; 3030 } 3031 3032 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK; 3033 delta += BIT_VEC64_ELEM_SZ; 3034 } 3035 3036 if (delta > 0) { 3037 fp->rx_sge_prod += delta; 3038 /* clear page-end entries */ 3039 bxe_clear_sge_mask_next_elems(fp); 3040 } 3041 3042 BLOGD(sc, DBG_LRO, 3043 "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n", 3044 fp->index, fp->last_max_sge, fp->rx_sge_prod); 3045 } 3046 3047 /* 3048 * The aggregation on the current TPA queue has completed. Pull the individual 3049 * mbuf fragments together into a single mbuf, perform all necessary checksum 3050 * calculations, and send the resuting mbuf to the stack. 3051 */ 3052 static void 3053 bxe_tpa_stop(struct bxe_softc *sc, 3054 struct bxe_fastpath *fp, 3055 struct bxe_sw_tpa_info *tpa_info, 3056 uint16_t queue, 3057 uint16_t pages, 3058 struct eth_end_agg_rx_cqe *cqe, 3059 uint16_t cqe_idx) 3060 { 3061 if_t ifp = sc->ifp; 3062 struct mbuf *m; 3063 int rc = 0; 3064 3065 BLOGD(sc, DBG_LRO, 3066 "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n", 3067 fp->index, queue, tpa_info->placement_offset, 3068 le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag); 3069 3070 m = tpa_info->bd.m; 3071 3072 /* allocate a replacement before modifying existing mbuf */ 3073 rc = bxe_alloc_rx_tpa_mbuf(fp, queue); 3074 if (rc) { 3075 /* drop the frame and log an error */ 3076 fp->eth_q_stats.rx_soft_errors++; 3077 goto bxe_tpa_stop_exit; 3078 } 3079 3080 /* we have a replacement, fixup the current mbuf */ 3081 m_adj(m, tpa_info->placement_offset); 3082 m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd; 3083 3084 /* mark the checksums valid (taken care of by the firmware) */ 3085 fp->eth_q_stats.rx_ofld_frames_csum_ip++; 3086 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; 3087 m->m_pkthdr.csum_data = 0xffff; 3088 m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED | 3089 CSUM_IP_VALID | 3090 CSUM_DATA_VALID | 3091 CSUM_PSEUDO_HDR); 3092 3093 /* aggregate all of the SGEs into a single mbuf */ 3094 rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx); 3095 if (rc) { 3096 /* drop the packet and log an error */ 3097 fp->eth_q_stats.rx_soft_errors++; 3098 m_freem(m); 3099 } else { 3100 if (tpa_info->parsing_flags & PARSING_FLAGS_INNER_VLAN_EXIST) { 3101 m->m_pkthdr.ether_vtag = tpa_info->vlan_tag; 3102 m->m_flags |= M_VLANTAG; 3103 } 3104 3105 /* assign packet to this interface interface */ 3106 if_setrcvif(m, ifp); 3107 3108 #if __FreeBSD_version >= 800000 3109 /* specify what RSS queue was used for this flow */ 3110 m->m_pkthdr.flowid = fp->index; 3111 BXE_SET_FLOWID(m); 3112 #endif 3113 3114 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 3115 fp->eth_q_stats.rx_tpa_pkts++; 3116 3117 /* pass the frame to the stack */ 3118 if_input(ifp, m); 3119 } 3120 3121 /* we passed an mbuf up the stack or dropped the frame */ 3122 fp->eth_q_stats.mbuf_alloc_tpa--; 3123 3124 bxe_tpa_stop_exit: 3125 3126 fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP; 3127 fp->rx_tpa_queue_used &= ~(1 << queue); 3128 } 3129 3130 static uint8_t 3131 bxe_service_rxsgl( 3132 struct bxe_fastpath *fp, 3133 uint16_t len, 3134 uint16_t lenonbd, 3135 struct mbuf *m, 3136 struct eth_fast_path_rx_cqe *cqe_fp) 3137 { 3138 struct mbuf *m_frag; 3139 uint16_t frags, frag_len; 3140 uint16_t sge_idx = 0; 3141 uint16_t j; 3142 uint8_t i, rc = 0; 3143 uint32_t frag_size; 3144 3145 /* adjust the mbuf */ 3146 m->m_len = lenonbd; 3147 3148 frag_size = len - lenonbd; 3149 frags = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT; 3150 3151 for (i = 0, j = 0; i < frags; i += PAGES_PER_SGE, j++) { 3152 sge_idx = RX_SGE(le16toh(cqe_fp->sgl_or_raw_data.sgl[j])); 3153 3154 m_frag = fp->rx_sge_mbuf_chain[sge_idx].m; 3155 frag_len = min(frag_size, (uint32_t)(SGE_PAGE_SIZE)); 3156 m_frag->m_len = frag_len; 3157 3158 /* allocate a new mbuf for the SGE */ 3159 rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx); 3160 if (rc) { 3161 /* Leave all remaining SGEs in the ring! */ 3162 return (rc); 3163 } 3164 fp->eth_q_stats.mbuf_alloc_sge--; 3165 3166 /* concatenate the fragment to the head mbuf */ 3167 m_cat(m, m_frag); 3168 3169 frag_size -= frag_len; 3170 } 3171 3172 bxe_update_sge_prod(fp->sc, fp, frags, &cqe_fp->sgl_or_raw_data); 3173 3174 return rc; 3175 } 3176 3177 static uint8_t 3178 bxe_rxeof(struct bxe_softc *sc, 3179 struct bxe_fastpath *fp) 3180 { 3181 if_t ifp = sc->ifp; 3182 uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons; 3183 uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod; 3184 int rx_pkts = 0; 3185 int rc = 0; 3186 3187 BXE_FP_RX_LOCK(fp); 3188 3189 /* CQ "next element" is of the size of the regular element */ 3190 hw_cq_cons = le16toh(*fp->rx_cq_cons_sb); 3191 if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) { 3192 hw_cq_cons++; 3193 } 3194 3195 bd_cons = fp->rx_bd_cons; 3196 bd_prod = fp->rx_bd_prod; 3197 bd_prod_fw = bd_prod; 3198 sw_cq_cons = fp->rx_cq_cons; 3199 sw_cq_prod = fp->rx_cq_prod; 3200 3201 /* 3202 * Memory barrier necessary as speculative reads of the rx 3203 * buffer can be ahead of the index in the status block 3204 */ 3205 rmb(); 3206 3207 BLOGD(sc, DBG_RX, 3208 "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n", 3209 fp->index, hw_cq_cons, sw_cq_cons); 3210 3211 while (sw_cq_cons != hw_cq_cons) { 3212 struct bxe_sw_rx_bd *rx_buf = NULL; 3213 union eth_rx_cqe *cqe; 3214 struct eth_fast_path_rx_cqe *cqe_fp; 3215 uint8_t cqe_fp_flags; 3216 enum eth_rx_cqe_type cqe_fp_type; 3217 uint16_t len, lenonbd, pad; 3218 struct mbuf *m = NULL; 3219 3220 comp_ring_cons = RCQ(sw_cq_cons); 3221 bd_prod = RX_BD(bd_prod); 3222 bd_cons = RX_BD(bd_cons); 3223 3224 cqe = &fp->rcq_chain[comp_ring_cons]; 3225 cqe_fp = &cqe->fast_path_cqe; 3226 cqe_fp_flags = cqe_fp->type_error_flags; 3227 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE; 3228 3229 BLOGD(sc, DBG_RX, 3230 "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d " 3231 "BD prod=%d cons=%d CQE type=0x%x err=0x%x " 3232 "status=0x%x rss_hash=0x%x vlan=0x%x len=%u lenonbd=%u\n", 3233 fp->index, 3234 hw_cq_cons, 3235 sw_cq_cons, 3236 bd_prod, 3237 bd_cons, 3238 CQE_TYPE(cqe_fp_flags), 3239 cqe_fp_flags, 3240 cqe_fp->status_flags, 3241 le32toh(cqe_fp->rss_hash_result), 3242 le16toh(cqe_fp->vlan_tag), 3243 le16toh(cqe_fp->pkt_len_or_gro_seg_len), 3244 le16toh(cqe_fp->len_on_bd)); 3245 3246 /* is this a slowpath msg? */ 3247 if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) { 3248 bxe_sp_event(sc, fp, cqe); 3249 goto next_cqe; 3250 } 3251 3252 rx_buf = &fp->rx_mbuf_chain[bd_cons]; 3253 3254 if (!CQE_TYPE_FAST(cqe_fp_type)) { 3255 struct bxe_sw_tpa_info *tpa_info; 3256 uint16_t frag_size, pages; 3257 uint8_t queue; 3258 3259 if (CQE_TYPE_START(cqe_fp_type)) { 3260 bxe_tpa_start(sc, fp, cqe_fp->queue_index, 3261 bd_cons, bd_prod, cqe_fp); 3262 m = NULL; /* packet not ready yet */ 3263 goto next_rx; 3264 } 3265 3266 KASSERT(CQE_TYPE_STOP(cqe_fp_type), 3267 ("CQE type is not STOP! (0x%x)\n", cqe_fp_type)); 3268 3269 queue = cqe->end_agg_cqe.queue_index; 3270 tpa_info = &fp->rx_tpa_info[queue]; 3271 3272 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n", 3273 fp->index, queue); 3274 3275 frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) - 3276 tpa_info->len_on_bd); 3277 pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT; 3278 3279 bxe_tpa_stop(sc, fp, tpa_info, queue, pages, 3280 &cqe->end_agg_cqe, comp_ring_cons); 3281 3282 bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe.sgl_or_raw_data); 3283 3284 goto next_cqe; 3285 } 3286 3287 /* non TPA */ 3288 3289 /* is this an error packet? */ 3290 if (__predict_false(cqe_fp_flags & 3291 ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) { 3292 BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons); 3293 fp->eth_q_stats.rx_soft_errors++; 3294 goto next_rx; 3295 } 3296 3297 len = le16toh(cqe_fp->pkt_len_or_gro_seg_len); 3298 lenonbd = le16toh(cqe_fp->len_on_bd); 3299 pad = cqe_fp->placement_offset; 3300 3301 m = rx_buf->m; 3302 3303 if (__predict_false(m == NULL)) { 3304 BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n", 3305 bd_cons, fp->index); 3306 goto next_rx; 3307 } 3308 3309 /* XXX double copy if packet length under a threshold */ 3310 3311 /* 3312 * If all the buffer descriptors are filled with mbufs then fill in 3313 * the current consumer index with a new BD. Else if a maximum Rx 3314 * buffer limit is imposed then fill in the next producer index. 3315 */ 3316 rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons, 3317 (sc->max_rx_bufs != RX_BD_USABLE) ? 3318 bd_prod : bd_cons); 3319 if (rc != 0) { 3320 3321 /* we simply reuse the received mbuf and don't post it to the stack */ 3322 m = NULL; 3323 3324 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", 3325 fp->index, rc); 3326 fp->eth_q_stats.rx_soft_errors++; 3327 3328 if (sc->max_rx_bufs != RX_BD_USABLE) { 3329 /* copy this consumer index to the producer index */ 3330 memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf, 3331 sizeof(struct bxe_sw_rx_bd)); 3332 memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd)); 3333 } 3334 3335 goto next_rx; 3336 } 3337 3338 /* current mbuf was detached from the bd */ 3339 fp->eth_q_stats.mbuf_alloc_rx--; 3340 3341 /* we allocated a replacement mbuf, fixup the current one */ 3342 m_adj(m, pad); 3343 m->m_pkthdr.len = m->m_len = len; 3344 3345 if ((len > 60) && (len > lenonbd)) { 3346 fp->eth_q_stats.rx_bxe_service_rxsgl++; 3347 rc = bxe_service_rxsgl(fp, len, lenonbd, m, cqe_fp); 3348 if (rc) 3349 break; 3350 fp->eth_q_stats.rx_jumbo_sge_pkts++; 3351 } else if (lenonbd < len) { 3352 fp->eth_q_stats.rx_erroneous_jumbo_sge_pkts++; 3353 } 3354 3355 /* assign packet to this interface interface */ 3356 if_setrcvif(m, ifp); 3357 3358 /* assume no hardware checksum has complated */ 3359 m->m_pkthdr.csum_flags = 0; 3360 3361 /* validate checksum if offload enabled */ 3362 if (if_getcapenable(ifp) & IFCAP_RXCSUM) { 3363 /* check for a valid IP frame */ 3364 if (!(cqe->fast_path_cqe.status_flags & 3365 ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) { 3366 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 3367 if (__predict_false(cqe_fp_flags & 3368 ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) { 3369 fp->eth_q_stats.rx_hw_csum_errors++; 3370 } else { 3371 fp->eth_q_stats.rx_ofld_frames_csum_ip++; 3372 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 3373 } 3374 } 3375 3376 /* check for a valid TCP/UDP frame */ 3377 if (!(cqe->fast_path_cqe.status_flags & 3378 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) { 3379 if (__predict_false(cqe_fp_flags & 3380 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) { 3381 fp->eth_q_stats.rx_hw_csum_errors++; 3382 } else { 3383 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; 3384 m->m_pkthdr.csum_data = 0xFFFF; 3385 m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID | 3386 CSUM_PSEUDO_HDR); 3387 } 3388 } 3389 } 3390 3391 /* if there is a VLAN tag then flag that info */ 3392 if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_INNER_VLAN_EXIST) { 3393 m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag; 3394 m->m_flags |= M_VLANTAG; 3395 } 3396 3397 #if __FreeBSD_version >= 800000 3398 /* specify what RSS queue was used for this flow */ 3399 m->m_pkthdr.flowid = fp->index; 3400 BXE_SET_FLOWID(m); 3401 #endif 3402 3403 next_rx: 3404 3405 bd_cons = RX_BD_NEXT(bd_cons); 3406 bd_prod = RX_BD_NEXT(bd_prod); 3407 bd_prod_fw = RX_BD_NEXT(bd_prod_fw); 3408 3409 /* pass the frame to the stack */ 3410 if (__predict_true(m != NULL)) { 3411 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 3412 rx_pkts++; 3413 if_input(ifp, m); 3414 } 3415 3416 next_cqe: 3417 3418 sw_cq_prod = RCQ_NEXT(sw_cq_prod); 3419 sw_cq_cons = RCQ_NEXT(sw_cq_cons); 3420 3421 /* limit spinning on the queue */ 3422 if (rc != 0) 3423 break; 3424 3425 if (rx_pkts == sc->rx_budget) { 3426 fp->eth_q_stats.rx_budget_reached++; 3427 break; 3428 } 3429 } /* while work to do */ 3430 3431 fp->rx_bd_cons = bd_cons; 3432 fp->rx_bd_prod = bd_prod_fw; 3433 fp->rx_cq_cons = sw_cq_cons; 3434 fp->rx_cq_prod = sw_cq_prod; 3435 3436 /* Update producers */ 3437 bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod); 3438 3439 fp->eth_q_stats.rx_pkts += rx_pkts; 3440 fp->eth_q_stats.rx_calls++; 3441 3442 BXE_FP_RX_UNLOCK(fp); 3443 3444 return (sw_cq_cons != hw_cq_cons); 3445 } 3446 3447 static uint16_t 3448 bxe_free_tx_pkt(struct bxe_softc *sc, 3449 struct bxe_fastpath *fp, 3450 uint16_t idx) 3451 { 3452 struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx]; 3453 struct eth_tx_start_bd *tx_start_bd; 3454 uint16_t bd_idx = TX_BD(tx_buf->first_bd); 3455 uint16_t new_cons; 3456 int nbd; 3457 3458 /* unmap the mbuf from non-paged memory */ 3459 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 3460 3461 tx_start_bd = &fp->tx_chain[bd_idx].start_bd; 3462 nbd = le16toh(tx_start_bd->nbd) - 1; 3463 3464 new_cons = (tx_buf->first_bd + nbd); 3465 3466 /* free the mbuf */ 3467 if (__predict_true(tx_buf->m != NULL)) { 3468 m_freem(tx_buf->m); 3469 fp->eth_q_stats.mbuf_alloc_tx--; 3470 } else { 3471 fp->eth_q_stats.tx_chain_lost_mbuf++; 3472 } 3473 3474 tx_buf->m = NULL; 3475 tx_buf->first_bd = 0; 3476 3477 return (new_cons); 3478 } 3479 3480 /* transmit timeout watchdog */ 3481 static int 3482 bxe_watchdog(struct bxe_softc *sc, 3483 struct bxe_fastpath *fp) 3484 { 3485 BXE_FP_TX_LOCK(fp); 3486 3487 if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) { 3488 BXE_FP_TX_UNLOCK(fp); 3489 return (0); 3490 } 3491 3492 BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index); 3493 3494 BXE_FP_TX_UNLOCK(fp); 3495 BXE_SET_ERROR_BIT(sc, BXE_ERR_TXQ_STUCK); 3496 taskqueue_enqueue_timeout(taskqueue_thread, 3497 &sc->sp_err_timeout_task, hz/10); 3498 3499 return (-1); 3500 } 3501 3502 /* processes transmit completions */ 3503 static uint8_t 3504 bxe_txeof(struct bxe_softc *sc, 3505 struct bxe_fastpath *fp) 3506 { 3507 if_t ifp = sc->ifp; 3508 uint16_t bd_cons, hw_cons, sw_cons, pkt_cons; 3509 uint16_t tx_bd_avail; 3510 3511 BXE_FP_TX_LOCK_ASSERT(fp); 3512 3513 bd_cons = fp->tx_bd_cons; 3514 hw_cons = le16toh(*fp->tx_cons_sb); 3515 sw_cons = fp->tx_pkt_cons; 3516 3517 while (sw_cons != hw_cons) { 3518 pkt_cons = TX_BD(sw_cons); 3519 3520 BLOGD(sc, DBG_TX, 3521 "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n", 3522 fp->index, hw_cons, sw_cons, pkt_cons); 3523 3524 bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons); 3525 3526 sw_cons++; 3527 } 3528 3529 fp->tx_pkt_cons = sw_cons; 3530 fp->tx_bd_cons = bd_cons; 3531 3532 BLOGD(sc, DBG_TX, 3533 "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n", 3534 fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod); 3535 3536 mb(); 3537 3538 tx_bd_avail = bxe_tx_avail(sc, fp); 3539 3540 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 3541 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 3542 } else { 3543 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 3544 } 3545 3546 if (fp->tx_pkt_prod != fp->tx_pkt_cons) { 3547 /* reset the watchdog timer if there are pending transmits */ 3548 fp->watchdog_timer = BXE_TX_TIMEOUT; 3549 return (TRUE); 3550 } else { 3551 /* clear watchdog when there are no pending transmits */ 3552 fp->watchdog_timer = 0; 3553 return (FALSE); 3554 } 3555 } 3556 3557 static void 3558 bxe_drain_tx_queues(struct bxe_softc *sc) 3559 { 3560 struct bxe_fastpath *fp; 3561 int i, count; 3562 3563 /* wait until all TX fastpath tasks have completed */ 3564 for (i = 0; i < sc->num_queues; i++) { 3565 fp = &sc->fp[i]; 3566 3567 count = 1000; 3568 3569 while (bxe_has_tx_work(fp)) { 3570 3571 BXE_FP_TX_LOCK(fp); 3572 bxe_txeof(sc, fp); 3573 BXE_FP_TX_UNLOCK(fp); 3574 3575 if (count == 0) { 3576 BLOGE(sc, "Timeout waiting for fp[%d] " 3577 "transmits to complete!\n", i); 3578 bxe_panic(sc, ("tx drain failure\n")); 3579 return; 3580 } 3581 3582 count--; 3583 DELAY(1000); 3584 rmb(); 3585 } 3586 } 3587 3588 return; 3589 } 3590 3591 static int 3592 bxe_del_all_macs(struct bxe_softc *sc, 3593 struct ecore_vlan_mac_obj *mac_obj, 3594 int mac_type, 3595 uint8_t wait_for_comp) 3596 { 3597 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 3598 int rc; 3599 3600 /* wait for completion of requested */ 3601 if (wait_for_comp) { 3602 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 3603 } 3604 3605 /* Set the mac type of addresses we want to clear */ 3606 bxe_set_bit(mac_type, &vlan_mac_flags); 3607 3608 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags); 3609 if (rc < 0) { 3610 BLOGE(sc, "Failed to delete MACs (%d) mac_type %d wait_for_comp 0x%x\n", 3611 rc, mac_type, wait_for_comp); 3612 } 3613 3614 return (rc); 3615 } 3616 3617 static int 3618 bxe_fill_accept_flags(struct bxe_softc *sc, 3619 uint32_t rx_mode, 3620 unsigned long *rx_accept_flags, 3621 unsigned long *tx_accept_flags) 3622 { 3623 /* Clear the flags first */ 3624 *rx_accept_flags = 0; 3625 *tx_accept_flags = 0; 3626 3627 switch (rx_mode) { 3628 case BXE_RX_MODE_NONE: 3629 /* 3630 * 'drop all' supersedes any accept flags that may have been 3631 * passed to the function. 3632 */ 3633 break; 3634 3635 case BXE_RX_MODE_NORMAL: 3636 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3637 bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags); 3638 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3639 3640 /* internal switching mode */ 3641 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3642 bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags); 3643 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3644 3645 break; 3646 3647 case BXE_RX_MODE_ALLMULTI: 3648 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3649 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); 3650 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3651 3652 /* internal switching mode */ 3653 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3654 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); 3655 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3656 3657 break; 3658 3659 case BXE_RX_MODE_PROMISC: 3660 /* 3661 * According to deffinition of SI mode, iface in promisc mode 3662 * should receive matched and unmatched (in resolution of port) 3663 * unicast packets. 3664 */ 3665 bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags); 3666 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3667 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); 3668 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3669 3670 /* internal switching mode */ 3671 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); 3672 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3673 3674 if (IS_MF_SI(sc)) { 3675 bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags); 3676 } else { 3677 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3678 } 3679 3680 break; 3681 3682 default: 3683 BLOGE(sc, "Unknown rx_mode (0x%x)\n", rx_mode); 3684 return (-1); 3685 } 3686 3687 /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */ 3688 if (rx_mode != BXE_RX_MODE_NONE) { 3689 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags); 3690 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags); 3691 } 3692 3693 return (0); 3694 } 3695 3696 static int 3697 bxe_set_q_rx_mode(struct bxe_softc *sc, 3698 uint8_t cl_id, 3699 unsigned long rx_mode_flags, 3700 unsigned long rx_accept_flags, 3701 unsigned long tx_accept_flags, 3702 unsigned long ramrod_flags) 3703 { 3704 struct ecore_rx_mode_ramrod_params ramrod_param; 3705 int rc; 3706 3707 memset(&ramrod_param, 0, sizeof(ramrod_param)); 3708 3709 /* Prepare ramrod parameters */ 3710 ramrod_param.cid = 0; 3711 ramrod_param.cl_id = cl_id; 3712 ramrod_param.rx_mode_obj = &sc->rx_mode_obj; 3713 ramrod_param.func_id = SC_FUNC(sc); 3714 3715 ramrod_param.pstate = &sc->sp_state; 3716 ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING; 3717 3718 ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata); 3719 ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata); 3720 3721 bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); 3722 3723 ramrod_param.ramrod_flags = ramrod_flags; 3724 ramrod_param.rx_mode_flags = rx_mode_flags; 3725 3726 ramrod_param.rx_accept_flags = rx_accept_flags; 3727 ramrod_param.tx_accept_flags = tx_accept_flags; 3728 3729 rc = ecore_config_rx_mode(sc, &ramrod_param); 3730 if (rc < 0) { 3731 BLOGE(sc, "Set rx_mode %d cli_id 0x%x rx_mode_flags 0x%x " 3732 "rx_accept_flags 0x%x tx_accept_flags 0x%x " 3733 "ramrod_flags 0x%x rc %d failed\n", sc->rx_mode, cl_id, 3734 (uint32_t)rx_mode_flags, (uint32_t)rx_accept_flags, 3735 (uint32_t)tx_accept_flags, (uint32_t)ramrod_flags, rc); 3736 return (rc); 3737 } 3738 3739 return (0); 3740 } 3741 3742 static int 3743 bxe_set_storm_rx_mode(struct bxe_softc *sc) 3744 { 3745 unsigned long rx_mode_flags = 0, ramrod_flags = 0; 3746 unsigned long rx_accept_flags = 0, tx_accept_flags = 0; 3747 int rc; 3748 3749 rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags, 3750 &tx_accept_flags); 3751 if (rc) { 3752 return (rc); 3753 } 3754 3755 bxe_set_bit(RAMROD_RX, &ramrod_flags); 3756 bxe_set_bit(RAMROD_TX, &ramrod_flags); 3757 3758 /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */ 3759 return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags, 3760 rx_accept_flags, tx_accept_flags, 3761 ramrod_flags)); 3762 } 3763 3764 /* returns the "mcp load_code" according to global load_count array */ 3765 static int 3766 bxe_nic_load_no_mcp(struct bxe_softc *sc) 3767 { 3768 int path = SC_PATH(sc); 3769 int port = SC_PORT(sc); 3770 3771 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", 3772 path, load_count[path][0], load_count[path][1], 3773 load_count[path][2]); 3774 load_count[path][0]++; 3775 load_count[path][1 + port]++; 3776 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", 3777 path, load_count[path][0], load_count[path][1], 3778 load_count[path][2]); 3779 if (load_count[path][0] == 1) { 3780 return (FW_MSG_CODE_DRV_LOAD_COMMON); 3781 } else if (load_count[path][1 + port] == 1) { 3782 return (FW_MSG_CODE_DRV_LOAD_PORT); 3783 } else { 3784 return (FW_MSG_CODE_DRV_LOAD_FUNCTION); 3785 } 3786 } 3787 3788 /* returns the "mcp load_code" according to global load_count array */ 3789 static int 3790 bxe_nic_unload_no_mcp(struct bxe_softc *sc) 3791 { 3792 int port = SC_PORT(sc); 3793 int path = SC_PATH(sc); 3794 3795 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", 3796 path, load_count[path][0], load_count[path][1], 3797 load_count[path][2]); 3798 load_count[path][0]--; 3799 load_count[path][1 + port]--; 3800 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", 3801 path, load_count[path][0], load_count[path][1], 3802 load_count[path][2]); 3803 if (load_count[path][0] == 0) { 3804 return (FW_MSG_CODE_DRV_UNLOAD_COMMON); 3805 } else if (load_count[path][1 + port] == 0) { 3806 return (FW_MSG_CODE_DRV_UNLOAD_PORT); 3807 } else { 3808 return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION); 3809 } 3810 } 3811 3812 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */ 3813 static uint32_t 3814 bxe_send_unload_req(struct bxe_softc *sc, 3815 int unload_mode) 3816 { 3817 uint32_t reset_code = 0; 3818 3819 /* Select the UNLOAD request mode */ 3820 if (unload_mode == UNLOAD_NORMAL) { 3821 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 3822 } else { 3823 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 3824 } 3825 3826 /* Send the request to the MCP */ 3827 if (!BXE_NOMCP(sc)) { 3828 reset_code = bxe_fw_command(sc, reset_code, 0); 3829 } else { 3830 reset_code = bxe_nic_unload_no_mcp(sc); 3831 } 3832 3833 return (reset_code); 3834 } 3835 3836 /* send UNLOAD_DONE command to the MCP */ 3837 static void 3838 bxe_send_unload_done(struct bxe_softc *sc, 3839 uint8_t keep_link) 3840 { 3841 uint32_t reset_param = 3842 keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0; 3843 3844 /* Report UNLOAD_DONE to MCP */ 3845 if (!BXE_NOMCP(sc)) { 3846 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param); 3847 } 3848 } 3849 3850 static int 3851 bxe_func_wait_started(struct bxe_softc *sc) 3852 { 3853 int tout = 50; 3854 3855 if (!sc->port.pmf) { 3856 return (0); 3857 } 3858 3859 /* 3860 * (assumption: No Attention from MCP at this stage) 3861 * PMF probably in the middle of TX disable/enable transaction 3862 * 1. Sync IRS for default SB 3863 * 2. Sync SP queue - this guarantees us that attention handling started 3864 * 3. Wait, that TX disable/enable transaction completes 3865 * 3866 * 1+2 guarantee that if DCBX attention was scheduled it already changed 3867 * pending bit of transaction from STARTED-->TX_STOPPED, if we already 3868 * received completion for the transaction the state is TX_STOPPED. 3869 * State will return to STARTED after completion of TX_STOPPED-->STARTED 3870 * transaction. 3871 */ 3872 3873 /* XXX make sure default SB ISR is done */ 3874 /* need a way to synchronize an irq (intr_mtx?) */ 3875 3876 /* XXX flush any work queues */ 3877 3878 while (ecore_func_get_state(sc, &sc->func_obj) != 3879 ECORE_F_STATE_STARTED && tout--) { 3880 DELAY(20000); 3881 } 3882 3883 if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) { 3884 /* 3885 * Failed to complete the transaction in a "good way" 3886 * Force both transactions with CLR bit. 3887 */ 3888 struct ecore_func_state_params func_params = { NULL }; 3889 3890 BLOGE(sc, "Unexpected function state! " 3891 "Forcing STARTED-->TX_STOPPED-->STARTED\n"); 3892 3893 func_params.f_obj = &sc->func_obj; 3894 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 3895 3896 /* STARTED-->TX_STOPPED */ 3897 func_params.cmd = ECORE_F_CMD_TX_STOP; 3898 ecore_func_state_change(sc, &func_params); 3899 3900 /* TX_STOPPED-->STARTED */ 3901 func_params.cmd = ECORE_F_CMD_TX_START; 3902 return (ecore_func_state_change(sc, &func_params)); 3903 } 3904 3905 return (0); 3906 } 3907 3908 static int 3909 bxe_stop_queue(struct bxe_softc *sc, 3910 int index) 3911 { 3912 struct bxe_fastpath *fp = &sc->fp[index]; 3913 struct ecore_queue_state_params q_params = { NULL }; 3914 int rc; 3915 3916 BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index); 3917 3918 q_params.q_obj = &sc->sp_objs[fp->index].q_obj; 3919 /* We want to wait for completion in this context */ 3920 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 3921 3922 /* Stop the primary connection: */ 3923 3924 /* ...halt the connection */ 3925 q_params.cmd = ECORE_Q_CMD_HALT; 3926 rc = ecore_queue_state_change(sc, &q_params); 3927 if (rc) { 3928 return (rc); 3929 } 3930 3931 /* ...terminate the connection */ 3932 q_params.cmd = ECORE_Q_CMD_TERMINATE; 3933 memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate)); 3934 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX; 3935 rc = ecore_queue_state_change(sc, &q_params); 3936 if (rc) { 3937 return (rc); 3938 } 3939 3940 /* ...delete cfc entry */ 3941 q_params.cmd = ECORE_Q_CMD_CFC_DEL; 3942 memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del)); 3943 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX; 3944 return (ecore_queue_state_change(sc, &q_params)); 3945 } 3946 3947 /* wait for the outstanding SP commands */ 3948 static inline uint8_t 3949 bxe_wait_sp_comp(struct bxe_softc *sc, 3950 unsigned long mask) 3951 { 3952 unsigned long tmp; 3953 int tout = 5000; /* wait for 5 secs tops */ 3954 3955 while (tout--) { 3956 mb(); 3957 if (!(atomic_load_acq_long(&sc->sp_state) & mask)) { 3958 return (TRUE); 3959 } 3960 3961 DELAY(1000); 3962 } 3963 3964 mb(); 3965 3966 tmp = atomic_load_acq_long(&sc->sp_state); 3967 if (tmp & mask) { 3968 BLOGE(sc, "Filtering completion timed out: " 3969 "sp_state 0x%lx, mask 0x%lx\n", 3970 tmp, mask); 3971 return (FALSE); 3972 } 3973 3974 return (FALSE); 3975 } 3976 3977 static int 3978 bxe_func_stop(struct bxe_softc *sc) 3979 { 3980 struct ecore_func_state_params func_params = { NULL }; 3981 int rc; 3982 3983 /* prepare parameters for function state transitions */ 3984 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 3985 func_params.f_obj = &sc->func_obj; 3986 func_params.cmd = ECORE_F_CMD_STOP; 3987 3988 /* 3989 * Try to stop the function the 'good way'. If it fails (in case 3990 * of a parity error during bxe_chip_cleanup()) and we are 3991 * not in a debug mode, perform a state transaction in order to 3992 * enable further HW_RESET transaction. 3993 */ 3994 rc = ecore_func_state_change(sc, &func_params); 3995 if (rc) { 3996 BLOGE(sc, "FUNC_STOP ramrod failed. " 3997 "Running a dry transaction (%d)\n", rc); 3998 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 3999 return (ecore_func_state_change(sc, &func_params)); 4000 } 4001 4002 return (0); 4003 } 4004 4005 static int 4006 bxe_reset_hw(struct bxe_softc *sc, 4007 uint32_t load_code) 4008 { 4009 struct ecore_func_state_params func_params = { NULL }; 4010 4011 /* Prepare parameters for function state transitions */ 4012 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 4013 4014 func_params.f_obj = &sc->func_obj; 4015 func_params.cmd = ECORE_F_CMD_HW_RESET; 4016 4017 func_params.params.hw_init.load_phase = load_code; 4018 4019 return (ecore_func_state_change(sc, &func_params)); 4020 } 4021 4022 static void 4023 bxe_int_disable_sync(struct bxe_softc *sc, 4024 int disable_hw) 4025 { 4026 if (disable_hw) { 4027 /* prevent the HW from sending interrupts */ 4028 bxe_int_disable(sc); 4029 } 4030 4031 /* XXX need a way to synchronize ALL irqs (intr_mtx?) */ 4032 /* make sure all ISRs are done */ 4033 4034 /* XXX make sure sp_task is not running */ 4035 /* cancel and flush work queues */ 4036 } 4037 4038 static void 4039 bxe_chip_cleanup(struct bxe_softc *sc, 4040 uint32_t unload_mode, 4041 uint8_t keep_link) 4042 { 4043 int port = SC_PORT(sc); 4044 struct ecore_mcast_ramrod_params rparam = { NULL }; 4045 uint32_t reset_code; 4046 int i, rc = 0; 4047 4048 bxe_drain_tx_queues(sc); 4049 4050 /* give HW time to discard old tx messages */ 4051 DELAY(1000); 4052 4053 /* Clean all ETH MACs */ 4054 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE); 4055 if (rc < 0) { 4056 BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc); 4057 } 4058 4059 /* Clean up UC list */ 4060 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE); 4061 if (rc < 0) { 4062 BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc); 4063 } 4064 4065 /* Disable LLH */ 4066 if (!CHIP_IS_E1(sc)) { 4067 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); 4068 } 4069 4070 /* Set "drop all" to stop Rx */ 4071 4072 /* 4073 * We need to take the BXE_MCAST_LOCK() here in order to prevent 4074 * a race between the completion code and this code. 4075 */ 4076 BXE_MCAST_LOCK(sc); 4077 4078 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { 4079 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); 4080 } else { 4081 bxe_set_storm_rx_mode(sc); 4082 } 4083 4084 /* Clean up multicast configuration */ 4085 rparam.mcast_obj = &sc->mcast_obj; 4086 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 4087 if (rc < 0) { 4088 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); 4089 } 4090 4091 BXE_MCAST_UNLOCK(sc); 4092 4093 // XXX bxe_iov_chip_cleanup(sc); 4094 4095 /* 4096 * Send the UNLOAD_REQUEST to the MCP. This will return if 4097 * this function should perform FUNCTION, PORT, or COMMON HW 4098 * reset. 4099 */ 4100 reset_code = bxe_send_unload_req(sc, unload_mode); 4101 4102 /* 4103 * (assumption: No Attention from MCP at this stage) 4104 * PMF probably in the middle of TX disable/enable transaction 4105 */ 4106 rc = bxe_func_wait_started(sc); 4107 if (rc) { 4108 BLOGE(sc, "bxe_func_wait_started failed (%d)\n", rc); 4109 } 4110 4111 /* 4112 * Close multi and leading connections 4113 * Completions for ramrods are collected in a synchronous way 4114 */ 4115 for (i = 0; i < sc->num_queues; i++) { 4116 if (bxe_stop_queue(sc, i)) { 4117 goto unload_error; 4118 } 4119 } 4120 4121 /* 4122 * If SP settings didn't get completed so far - something 4123 * very wrong has happen. 4124 */ 4125 if (!bxe_wait_sp_comp(sc, ~0x0UL)) { 4126 BLOGE(sc, "Common slow path ramrods got stuck!(%d)\n", rc); 4127 } 4128 4129 unload_error: 4130 4131 rc = bxe_func_stop(sc); 4132 if (rc) { 4133 BLOGE(sc, "Function stop failed!(%d)\n", rc); 4134 } 4135 4136 /* disable HW interrupts */ 4137 bxe_int_disable_sync(sc, TRUE); 4138 4139 /* detach interrupts */ 4140 bxe_interrupt_detach(sc); 4141 4142 /* Reset the chip */ 4143 rc = bxe_reset_hw(sc, reset_code); 4144 if (rc) { 4145 BLOGE(sc, "Hardware reset failed(%d)\n", rc); 4146 } 4147 4148 /* Report UNLOAD_DONE to MCP */ 4149 bxe_send_unload_done(sc, keep_link); 4150 } 4151 4152 static void 4153 bxe_disable_close_the_gate(struct bxe_softc *sc) 4154 { 4155 uint32_t val; 4156 int port = SC_PORT(sc); 4157 4158 BLOGD(sc, DBG_LOAD, 4159 "Disabling 'close the gates'\n"); 4160 4161 if (CHIP_IS_E1(sc)) { 4162 uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 4163 MISC_REG_AEU_MASK_ATTN_FUNC_0; 4164 val = REG_RD(sc, addr); 4165 val &= ~(0x300); 4166 REG_WR(sc, addr, val); 4167 } else { 4168 val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK); 4169 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK | 4170 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK); 4171 REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val); 4172 } 4173 } 4174 4175 /* 4176 * Cleans the object that have internal lists without sending 4177 * ramrods. Should be run when interrutps are disabled. 4178 */ 4179 static void 4180 bxe_squeeze_objects(struct bxe_softc *sc) 4181 { 4182 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 4183 struct ecore_mcast_ramrod_params rparam = { NULL }; 4184 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; 4185 int rc; 4186 4187 /* Cleanup MACs' object first... */ 4188 4189 /* Wait for completion of requested */ 4190 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 4191 /* Perform a dry cleanup */ 4192 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags); 4193 4194 /* Clean ETH primary MAC */ 4195 bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags); 4196 rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags, 4197 &ramrod_flags); 4198 if (rc != 0) { 4199 BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc); 4200 } 4201 4202 /* Cleanup UC list */ 4203 vlan_mac_flags = 0; 4204 bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags); 4205 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, 4206 &ramrod_flags); 4207 if (rc != 0) { 4208 BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc); 4209 } 4210 4211 /* Now clean mcast object... */ 4212 4213 rparam.mcast_obj = &sc->mcast_obj; 4214 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags); 4215 4216 /* Add a DEL command... */ 4217 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 4218 if (rc < 0) { 4219 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); 4220 } 4221 4222 /* now wait until all pending commands are cleared */ 4223 4224 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 4225 while (rc != 0) { 4226 if (rc < 0) { 4227 BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc); 4228 return; 4229 } 4230 4231 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 4232 } 4233 } 4234 4235 /* stop the controller */ 4236 static __noinline int 4237 bxe_nic_unload(struct bxe_softc *sc, 4238 uint32_t unload_mode, 4239 uint8_t keep_link) 4240 { 4241 uint8_t global = FALSE; 4242 uint32_t val; 4243 int i; 4244 4245 BXE_CORE_LOCK_ASSERT(sc); 4246 4247 if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING); 4248 4249 for (i = 0; i < sc->num_queues; i++) { 4250 struct bxe_fastpath *fp; 4251 4252 fp = &sc->fp[i]; 4253 fp->watchdog_timer = 0; 4254 BXE_FP_TX_LOCK(fp); 4255 BXE_FP_TX_UNLOCK(fp); 4256 } 4257 4258 BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n"); 4259 4260 /* mark driver as unloaded in shmem2 */ 4261 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { 4262 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); 4263 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], 4264 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); 4265 } 4266 4267 if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE && 4268 (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) { 4269 4270 if(CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 4271 /* 4272 * We can get here if the driver has been unloaded 4273 * during parity error recovery and is either waiting for a 4274 * leader to complete or for other functions to unload and 4275 * then ifconfig down has been issued. In this case we want to 4276 * unload and let other functions to complete a recovery 4277 * process. 4278 */ 4279 sc->recovery_state = BXE_RECOVERY_DONE; 4280 sc->is_leader = 0; 4281 bxe_release_leader_lock(sc); 4282 mb(); 4283 BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n"); 4284 } 4285 BLOGE(sc, "Can't unload in closed or error state recover_state 0x%x" 4286 " state = 0x%x\n", sc->recovery_state, sc->state); 4287 return (-1); 4288 } 4289 4290 /* 4291 * Nothing to do during unload if previous bxe_nic_load() 4292 * did not completed successfully - all resourses are released. 4293 */ 4294 if ((sc->state == BXE_STATE_CLOSED) || 4295 (sc->state == BXE_STATE_ERROR)) { 4296 return (0); 4297 } 4298 4299 sc->state = BXE_STATE_CLOSING_WAITING_HALT; 4300 mb(); 4301 4302 /* stop tx */ 4303 bxe_tx_disable(sc); 4304 4305 sc->rx_mode = BXE_RX_MODE_NONE; 4306 /* XXX set rx mode ??? */ 4307 4308 if (IS_PF(sc) && !sc->grcdump_done) { 4309 /* set ALWAYS_ALIVE bit in shmem */ 4310 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 4311 4312 bxe_drv_pulse(sc); 4313 4314 bxe_stats_handle(sc, STATS_EVENT_STOP); 4315 bxe_save_statistics(sc); 4316 } 4317 4318 /* wait till consumers catch up with producers in all queues */ 4319 bxe_drain_tx_queues(sc); 4320 4321 /* if VF indicate to PF this function is going down (PF will delete sp 4322 * elements and clear initializations 4323 */ 4324 if (IS_VF(sc)) { 4325 ; /* bxe_vfpf_close_vf(sc); */ 4326 } else if (unload_mode != UNLOAD_RECOVERY) { 4327 /* if this is a normal/close unload need to clean up chip */ 4328 if (!sc->grcdump_done) 4329 bxe_chip_cleanup(sc, unload_mode, keep_link); 4330 } else { 4331 /* Send the UNLOAD_REQUEST to the MCP */ 4332 bxe_send_unload_req(sc, unload_mode); 4333 4334 /* 4335 * Prevent transactions to host from the functions on the 4336 * engine that doesn't reset global blocks in case of global 4337 * attention once gloabl blocks are reset and gates are opened 4338 * (the engine which leader will perform the recovery 4339 * last). 4340 */ 4341 if (!CHIP_IS_E1x(sc)) { 4342 bxe_pf_disable(sc); 4343 } 4344 4345 /* disable HW interrupts */ 4346 bxe_int_disable_sync(sc, TRUE); 4347 4348 /* detach interrupts */ 4349 bxe_interrupt_detach(sc); 4350 4351 /* Report UNLOAD_DONE to MCP */ 4352 bxe_send_unload_done(sc, FALSE); 4353 } 4354 4355 /* 4356 * At this stage no more interrupts will arrive so we may safely clean 4357 * the queue'able objects here in case they failed to get cleaned so far. 4358 */ 4359 if (IS_PF(sc)) { 4360 bxe_squeeze_objects(sc); 4361 } 4362 4363 /* There should be no more pending SP commands at this stage */ 4364 sc->sp_state = 0; 4365 4366 sc->port.pmf = 0; 4367 4368 bxe_free_fp_buffers(sc); 4369 4370 if (IS_PF(sc)) { 4371 bxe_free_mem(sc); 4372 } 4373 4374 bxe_free_fw_stats_mem(sc); 4375 4376 sc->state = BXE_STATE_CLOSED; 4377 4378 /* 4379 * Check if there are pending parity attentions. If there are - set 4380 * RECOVERY_IN_PROGRESS. 4381 */ 4382 if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) { 4383 bxe_set_reset_in_progress(sc); 4384 4385 /* Set RESET_IS_GLOBAL if needed */ 4386 if (global) { 4387 bxe_set_reset_global(sc); 4388 } 4389 } 4390 4391 /* 4392 * The last driver must disable a "close the gate" if there is no 4393 * parity attention or "process kill" pending. 4394 */ 4395 if (IS_PF(sc) && !bxe_clear_pf_load(sc) && 4396 bxe_reset_is_done(sc, SC_PATH(sc))) { 4397 bxe_disable_close_the_gate(sc); 4398 } 4399 4400 BLOGD(sc, DBG_LOAD, "Ended NIC unload\n"); 4401 4402 bxe_link_report(sc); 4403 4404 return (0); 4405 } 4406 4407 /* 4408 * Called by the OS to set various media options (i.e. link, speed, etc.) when 4409 * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...". 4410 */ 4411 static int 4412 bxe_ifmedia_update(struct ifnet *ifp) 4413 { 4414 struct bxe_softc *sc = (struct bxe_softc *)if_getsoftc(ifp); 4415 struct ifmedia *ifm; 4416 4417 ifm = &sc->ifmedia; 4418 4419 /* We only support Ethernet media type. */ 4420 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) { 4421 return (EINVAL); 4422 } 4423 4424 switch (IFM_SUBTYPE(ifm->ifm_media)) { 4425 case IFM_AUTO: 4426 break; 4427 case IFM_10G_CX4: 4428 case IFM_10G_SR: 4429 case IFM_10G_T: 4430 case IFM_10G_TWINAX: 4431 default: 4432 /* We don't support changing the media type. */ 4433 BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n", 4434 IFM_SUBTYPE(ifm->ifm_media)); 4435 return (EINVAL); 4436 } 4437 4438 return (0); 4439 } 4440 4441 /* 4442 * Called by the OS to get the current media status (i.e. link, speed, etc.). 4443 */ 4444 static void 4445 bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr) 4446 { 4447 struct bxe_softc *sc = if_getsoftc(ifp); 4448 4449 /* Bug 165447: the 'ifconfig' tool skips printing of the "status: ..." 4450 line if the IFM_AVALID flag is *NOT* set. So we need to set this 4451 flag unconditionally (irrespective of the admininistrative 4452 'up/down' state of the interface) to ensure that that line is always 4453 displayed. 4454 */ 4455 ifmr->ifm_status = IFM_AVALID; 4456 4457 /* Setup the default interface info. */ 4458 ifmr->ifm_active = IFM_ETHER; 4459 4460 /* Report link down if the driver isn't running. */ 4461 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 4462 ifmr->ifm_active |= IFM_NONE; 4463 BLOGD(sc, DBG_PHY, "in %s : nic still not loaded fully\n", __func__); 4464 BLOGD(sc, DBG_PHY, "in %s : link_up (1) : %d\n", 4465 __func__, sc->link_vars.link_up); 4466 return; 4467 } 4468 4469 4470 if (sc->link_vars.link_up) { 4471 ifmr->ifm_status |= IFM_ACTIVE; 4472 ifmr->ifm_active |= IFM_FDX; 4473 } else { 4474 ifmr->ifm_active |= IFM_NONE; 4475 BLOGD(sc, DBG_PHY, "in %s : setting IFM_NONE\n", 4476 __func__); 4477 return; 4478 } 4479 4480 ifmr->ifm_active |= sc->media; 4481 return; 4482 } 4483 4484 static void 4485 bxe_handle_chip_tq(void *context, 4486 int pending) 4487 { 4488 struct bxe_softc *sc = (struct bxe_softc *)context; 4489 long work = atomic_load_acq_long(&sc->chip_tq_flags); 4490 4491 switch (work) 4492 { 4493 4494 case CHIP_TQ_REINIT: 4495 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 4496 /* restart the interface */ 4497 BLOGD(sc, DBG_LOAD, "Restarting the interface...\n"); 4498 bxe_periodic_stop(sc); 4499 BXE_CORE_LOCK(sc); 4500 bxe_stop_locked(sc); 4501 bxe_init_locked(sc); 4502 BXE_CORE_UNLOCK(sc); 4503 } 4504 break; 4505 4506 default: 4507 break; 4508 } 4509 } 4510 4511 /* 4512 * Handles any IOCTL calls from the operating system. 4513 * 4514 * Returns: 4515 * 0 = Success, >0 Failure 4516 */ 4517 static int 4518 bxe_ioctl(if_t ifp, 4519 u_long command, 4520 caddr_t data) 4521 { 4522 struct bxe_softc *sc = if_getsoftc(ifp); 4523 struct ifreq *ifr = (struct ifreq *)data; 4524 int mask = 0; 4525 int reinit = 0; 4526 int error = 0; 4527 4528 int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN); 4529 int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING); 4530 4531 switch (command) 4532 { 4533 case SIOCSIFMTU: 4534 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n", 4535 ifr->ifr_mtu); 4536 4537 if (sc->mtu == ifr->ifr_mtu) { 4538 /* nothing to change */ 4539 break; 4540 } 4541 4542 if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) { 4543 BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n", 4544 ifr->ifr_mtu, mtu_min, mtu_max); 4545 error = EINVAL; 4546 break; 4547 } 4548 4549 atomic_store_rel_int((volatile unsigned int *)&sc->mtu, 4550 (unsigned long)ifr->ifr_mtu); 4551 /* 4552 atomic_store_rel_long((volatile unsigned long *)&if_getmtu(ifp), 4553 (unsigned long)ifr->ifr_mtu); 4554 XXX - Not sure why it needs to be atomic 4555 */ 4556 if_setmtu(ifp, ifr->ifr_mtu); 4557 reinit = 1; 4558 break; 4559 4560 case SIOCSIFFLAGS: 4561 /* toggle the interface state up or down */ 4562 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n"); 4563 4564 BXE_CORE_LOCK(sc); 4565 /* check if the interface is up */ 4566 if (if_getflags(ifp) & IFF_UP) { 4567 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4568 /* set the receive mode flags */ 4569 bxe_set_rx_mode(sc); 4570 } else if(sc->state != BXE_STATE_DISABLED) { 4571 bxe_init_locked(sc); 4572 } 4573 } else { 4574 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4575 bxe_periodic_stop(sc); 4576 bxe_stop_locked(sc); 4577 } 4578 } 4579 BXE_CORE_UNLOCK(sc); 4580 4581 break; 4582 4583 case SIOCADDMULTI: 4584 case SIOCDELMULTI: 4585 /* add/delete multicast addresses */ 4586 BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n"); 4587 4588 /* check if the interface is up */ 4589 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4590 /* set the receive mode flags */ 4591 BXE_CORE_LOCK(sc); 4592 bxe_set_rx_mode(sc); 4593 BXE_CORE_UNLOCK(sc); 4594 } 4595 4596 break; 4597 4598 case SIOCSIFCAP: 4599 /* find out which capabilities have changed */ 4600 mask = (ifr->ifr_reqcap ^ if_getcapenable(ifp)); 4601 4602 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n", 4603 mask); 4604 4605 /* toggle the LRO capabilites enable flag */ 4606 if (mask & IFCAP_LRO) { 4607 if_togglecapenable(ifp, IFCAP_LRO); 4608 BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n", 4609 (if_getcapenable(ifp) & IFCAP_LRO) ? "ON" : "OFF"); 4610 reinit = 1; 4611 } 4612 4613 /* toggle the TXCSUM checksum capabilites enable flag */ 4614 if (mask & IFCAP_TXCSUM) { 4615 if_togglecapenable(ifp, IFCAP_TXCSUM); 4616 BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n", 4617 (if_getcapenable(ifp) & IFCAP_TXCSUM) ? "ON" : "OFF"); 4618 if (if_getcapenable(ifp) & IFCAP_TXCSUM) { 4619 if_sethwassistbits(ifp, (CSUM_IP | 4620 CSUM_TCP | 4621 CSUM_UDP | 4622 CSUM_TSO | 4623 CSUM_TCP_IPV6 | 4624 CSUM_UDP_IPV6), 0); 4625 } else { 4626 if_clearhwassist(ifp); /* XXX */ 4627 } 4628 } 4629 4630 /* toggle the RXCSUM checksum capabilities enable flag */ 4631 if (mask & IFCAP_RXCSUM) { 4632 if_togglecapenable(ifp, IFCAP_RXCSUM); 4633 BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n", 4634 (if_getcapenable(ifp) & IFCAP_RXCSUM) ? "ON" : "OFF"); 4635 if (if_getcapenable(ifp) & IFCAP_RXCSUM) { 4636 if_sethwassistbits(ifp, (CSUM_IP | 4637 CSUM_TCP | 4638 CSUM_UDP | 4639 CSUM_TSO | 4640 CSUM_TCP_IPV6 | 4641 CSUM_UDP_IPV6), 0); 4642 } else { 4643 if_clearhwassist(ifp); /* XXX */ 4644 } 4645 } 4646 4647 /* toggle TSO4 capabilities enabled flag */ 4648 if (mask & IFCAP_TSO4) { 4649 if_togglecapenable(ifp, IFCAP_TSO4); 4650 BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n", 4651 (if_getcapenable(ifp) & IFCAP_TSO4) ? "ON" : "OFF"); 4652 } 4653 4654 /* toggle TSO6 capabilities enabled flag */ 4655 if (mask & IFCAP_TSO6) { 4656 if_togglecapenable(ifp, IFCAP_TSO6); 4657 BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n", 4658 (if_getcapenable(ifp) & IFCAP_TSO6) ? "ON" : "OFF"); 4659 } 4660 4661 /* toggle VLAN_HWTSO capabilities enabled flag */ 4662 if (mask & IFCAP_VLAN_HWTSO) { 4663 4664 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); 4665 BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n", 4666 (if_getcapenable(ifp) & IFCAP_VLAN_HWTSO) ? "ON" : "OFF"); 4667 } 4668 4669 /* toggle VLAN_HWCSUM capabilities enabled flag */ 4670 if (mask & IFCAP_VLAN_HWCSUM) { 4671 /* XXX investigate this... */ 4672 BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n"); 4673 error = EINVAL; 4674 } 4675 4676 /* toggle VLAN_MTU capabilities enable flag */ 4677 if (mask & IFCAP_VLAN_MTU) { 4678 /* XXX investigate this... */ 4679 BLOGE(sc, "Changing VLAN_MTU is not supported!\n"); 4680 error = EINVAL; 4681 } 4682 4683 /* toggle VLAN_HWTAGGING capabilities enabled flag */ 4684 if (mask & IFCAP_VLAN_HWTAGGING) { 4685 /* XXX investigate this... */ 4686 BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n"); 4687 error = EINVAL; 4688 } 4689 4690 /* toggle VLAN_HWFILTER capabilities enabled flag */ 4691 if (mask & IFCAP_VLAN_HWFILTER) { 4692 /* XXX investigate this... */ 4693 BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n"); 4694 error = EINVAL; 4695 } 4696 4697 /* XXX not yet... 4698 * IFCAP_WOL_MAGIC 4699 */ 4700 4701 break; 4702 4703 case SIOCSIFMEDIA: 4704 case SIOCGIFMEDIA: 4705 /* set/get interface media */ 4706 BLOGD(sc, DBG_IOCTL, 4707 "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n", 4708 (command & 0xff)); 4709 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command); 4710 break; 4711 4712 default: 4713 BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n", 4714 (command & 0xff)); 4715 error = ether_ioctl(ifp, command, data); 4716 break; 4717 } 4718 4719 if (reinit && (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { 4720 BLOGD(sc, DBG_LOAD | DBG_IOCTL, 4721 "Re-initializing hardware from IOCTL change\n"); 4722 bxe_periodic_stop(sc); 4723 BXE_CORE_LOCK(sc); 4724 bxe_stop_locked(sc); 4725 bxe_init_locked(sc); 4726 BXE_CORE_UNLOCK(sc); 4727 } 4728 4729 return (error); 4730 } 4731 4732 static __noinline void 4733 bxe_dump_mbuf(struct bxe_softc *sc, 4734 struct mbuf *m, 4735 uint8_t contents) 4736 { 4737 char * type; 4738 int i = 0; 4739 4740 if (!(sc->debug & DBG_MBUF)) { 4741 return; 4742 } 4743 4744 if (m == NULL) { 4745 BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n"); 4746 return; 4747 } 4748 4749 while (m) { 4750 4751 #if __FreeBSD_version >= 1000000 4752 BLOGD(sc, DBG_MBUF, 4753 "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n", 4754 i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data); 4755 4756 if (m->m_flags & M_PKTHDR) { 4757 BLOGD(sc, DBG_MBUF, 4758 "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n", 4759 i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS, 4760 (int)m->m_pkthdr.csum_flags, CSUM_BITS); 4761 } 4762 #else 4763 BLOGD(sc, DBG_MBUF, 4764 "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n", 4765 i, m, m->m_len, m->m_flags, 4766 "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", m->m_data); 4767 4768 if (m->m_flags & M_PKTHDR) { 4769 BLOGD(sc, DBG_MBUF, 4770 "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n", 4771 i, m->m_pkthdr.len, m->m_flags, 4772 "\20\12M_BCAST\13M_MCAST\14M_FRAG" 4773 "\15M_FIRSTFRAG\16M_LASTFRAG\21M_VLANTAG" 4774 "\22M_PROMISC\23M_NOFREE", 4775 (int)m->m_pkthdr.csum_flags, 4776 "\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP\4CSUM_IP_FRAGS" 4777 "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED" 4778 "\12CSUM_IP_VALID\13CSUM_DATA_VALID" 4779 "\14CSUM_PSEUDO_HDR"); 4780 } 4781 #endif /* #if __FreeBSD_version >= 1000000 */ 4782 4783 if (m->m_flags & M_EXT) { 4784 switch (m->m_ext.ext_type) { 4785 case EXT_CLUSTER: type = "EXT_CLUSTER"; break; 4786 case EXT_SFBUF: type = "EXT_SFBUF"; break; 4787 case EXT_JUMBOP: type = "EXT_JUMBOP"; break; 4788 case EXT_JUMBO9: type = "EXT_JUMBO9"; break; 4789 case EXT_JUMBO16: type = "EXT_JUMBO16"; break; 4790 case EXT_PACKET: type = "EXT_PACKET"; break; 4791 case EXT_MBUF: type = "EXT_MBUF"; break; 4792 case EXT_NET_DRV: type = "EXT_NET_DRV"; break; 4793 case EXT_MOD_TYPE: type = "EXT_MOD_TYPE"; break; 4794 case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break; 4795 case EXT_EXTREF: type = "EXT_EXTREF"; break; 4796 default: type = "UNKNOWN"; break; 4797 } 4798 4799 BLOGD(sc, DBG_MBUF, 4800 "%02d: - m_ext: %p ext_size=%d type=%s\n", 4801 i, m->m_ext.ext_buf, m->m_ext.ext_size, type); 4802 } 4803 4804 if (contents) { 4805 bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE); 4806 } 4807 4808 m = m->m_next; 4809 i++; 4810 } 4811 } 4812 4813 /* 4814 * Checks to ensure the 13 bd sliding window is >= MSS for TSO. 4815 * Check that (13 total bds - 3 bds) = 10 bd window >= MSS. 4816 * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD 4817 * The headers comes in a separate bd in FreeBSD so 13-3=10. 4818 * Returns: 0 if OK to send, 1 if packet needs further defragmentation 4819 */ 4820 static int 4821 bxe_chktso_window(struct bxe_softc *sc, 4822 int nsegs, 4823 bus_dma_segment_t *segs, 4824 struct mbuf *m) 4825 { 4826 uint32_t num_wnds, wnd_size, wnd_sum; 4827 int32_t frag_idx, wnd_idx; 4828 unsigned short lso_mss; 4829 int defrag; 4830 4831 defrag = 0; 4832 wnd_sum = 0; 4833 wnd_size = 10; 4834 num_wnds = nsegs - wnd_size; 4835 lso_mss = htole16(m->m_pkthdr.tso_segsz); 4836 4837 /* 4838 * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the 4839 * first window sum of data while skipping the first assuming it is the 4840 * header in FreeBSD. 4841 */ 4842 for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) { 4843 wnd_sum += htole16(segs[frag_idx].ds_len); 4844 } 4845 4846 /* check the first 10 bd window size */ 4847 if (wnd_sum < lso_mss) { 4848 return (1); 4849 } 4850 4851 /* run through the windows */ 4852 for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) { 4853 /* subtract the first mbuf->m_len of the last wndw(-header) */ 4854 wnd_sum -= htole16(segs[wnd_idx+1].ds_len); 4855 /* add the next mbuf len to the len of our new window */ 4856 wnd_sum += htole16(segs[frag_idx].ds_len); 4857 if (wnd_sum < lso_mss) { 4858 return (1); 4859 } 4860 } 4861 4862 return (0); 4863 } 4864 4865 static uint8_t 4866 bxe_set_pbd_csum_e2(struct bxe_fastpath *fp, 4867 struct mbuf *m, 4868 uint32_t *parsing_data) 4869 { 4870 struct ether_vlan_header *eh = NULL; 4871 struct ip *ip4 = NULL; 4872 struct ip6_hdr *ip6 = NULL; 4873 caddr_t ip = NULL; 4874 struct tcphdr *th = NULL; 4875 int e_hlen, ip_hlen, l4_off; 4876 uint16_t proto; 4877 4878 if (m->m_pkthdr.csum_flags == CSUM_IP) { 4879 /* no L4 checksum offload needed */ 4880 return (0); 4881 } 4882 4883 /* get the Ethernet header */ 4884 eh = mtod(m, struct ether_vlan_header *); 4885 4886 /* handle VLAN encapsulation if present */ 4887 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 4888 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 4889 proto = ntohs(eh->evl_proto); 4890 } else { 4891 e_hlen = ETHER_HDR_LEN; 4892 proto = ntohs(eh->evl_encap_proto); 4893 } 4894 4895 switch (proto) { 4896 case ETHERTYPE_IP: 4897 /* get the IP header, if mbuf len < 20 then header in next mbuf */ 4898 ip4 = (m->m_len < sizeof(struct ip)) ? 4899 (struct ip *)m->m_next->m_data : 4900 (struct ip *)(m->m_data + e_hlen); 4901 /* ip_hl is number of 32-bit words */ 4902 ip_hlen = (ip4->ip_hl << 2); 4903 ip = (caddr_t)ip4; 4904 break; 4905 case ETHERTYPE_IPV6: 4906 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ 4907 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? 4908 (struct ip6_hdr *)m->m_next->m_data : 4909 (struct ip6_hdr *)(m->m_data + e_hlen); 4910 /* XXX cannot support offload with IPv6 extensions */ 4911 ip_hlen = sizeof(struct ip6_hdr); 4912 ip = (caddr_t)ip6; 4913 break; 4914 default: 4915 /* We can't offload in this case... */ 4916 /* XXX error stat ??? */ 4917 return (0); 4918 } 4919 4920 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ 4921 l4_off = (e_hlen + ip_hlen); 4922 4923 *parsing_data |= 4924 (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 4925 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W); 4926 4927 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 4928 CSUM_TSO | 4929 CSUM_TCP_IPV6)) { 4930 fp->eth_q_stats.tx_ofld_frames_csum_tcp++; 4931 th = (struct tcphdr *)(ip + ip_hlen); 4932 /* th_off is number of 32-bit words */ 4933 *parsing_data |= ((th->th_off << 4934 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 4935 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW); 4936 return (l4_off + (th->th_off << 2)); /* entire header length */ 4937 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 4938 CSUM_UDP_IPV6)) { 4939 fp->eth_q_stats.tx_ofld_frames_csum_udp++; 4940 return (l4_off + sizeof(struct udphdr)); /* entire header length */ 4941 } else { 4942 /* XXX error stat ??? */ 4943 return (0); 4944 } 4945 } 4946 4947 static uint8_t 4948 bxe_set_pbd_csum(struct bxe_fastpath *fp, 4949 struct mbuf *m, 4950 struct eth_tx_parse_bd_e1x *pbd) 4951 { 4952 struct ether_vlan_header *eh = NULL; 4953 struct ip *ip4 = NULL; 4954 struct ip6_hdr *ip6 = NULL; 4955 caddr_t ip = NULL; 4956 struct tcphdr *th = NULL; 4957 struct udphdr *uh = NULL; 4958 int e_hlen, ip_hlen; 4959 uint16_t proto; 4960 uint8_t hlen; 4961 uint16_t tmp_csum; 4962 uint32_t *tmp_uh; 4963 4964 /* get the Ethernet header */ 4965 eh = mtod(m, struct ether_vlan_header *); 4966 4967 /* handle VLAN encapsulation if present */ 4968 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 4969 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 4970 proto = ntohs(eh->evl_proto); 4971 } else { 4972 e_hlen = ETHER_HDR_LEN; 4973 proto = ntohs(eh->evl_encap_proto); 4974 } 4975 4976 switch (proto) { 4977 case ETHERTYPE_IP: 4978 /* get the IP header, if mbuf len < 20 then header in next mbuf */ 4979 ip4 = (m->m_len < sizeof(struct ip)) ? 4980 (struct ip *)m->m_next->m_data : 4981 (struct ip *)(m->m_data + e_hlen); 4982 /* ip_hl is number of 32-bit words */ 4983 ip_hlen = (ip4->ip_hl << 1); 4984 ip = (caddr_t)ip4; 4985 break; 4986 case ETHERTYPE_IPV6: 4987 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ 4988 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? 4989 (struct ip6_hdr *)m->m_next->m_data : 4990 (struct ip6_hdr *)(m->m_data + e_hlen); 4991 /* XXX cannot support offload with IPv6 extensions */ 4992 ip_hlen = (sizeof(struct ip6_hdr) >> 1); 4993 ip = (caddr_t)ip6; 4994 break; 4995 default: 4996 /* We can't offload in this case... */ 4997 /* XXX error stat ??? */ 4998 return (0); 4999 } 5000 5001 hlen = (e_hlen >> 1); 5002 5003 /* note that rest of global_data is indirectly zeroed here */ 5004 if (m->m_flags & M_VLANTAG) { 5005 pbd->global_data = 5006 htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT)); 5007 } else { 5008 pbd->global_data = htole16(hlen); 5009 } 5010 5011 pbd->ip_hlen_w = ip_hlen; 5012 5013 hlen += pbd->ip_hlen_w; 5014 5015 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ 5016 5017 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 5018 CSUM_TSO | 5019 CSUM_TCP_IPV6)) { 5020 th = (struct tcphdr *)(ip + (ip_hlen << 1)); 5021 /* th_off is number of 32-bit words */ 5022 hlen += (uint16_t)(th->th_off << 1); 5023 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 5024 CSUM_UDP_IPV6)) { 5025 uh = (struct udphdr *)(ip + (ip_hlen << 1)); 5026 hlen += (sizeof(struct udphdr) / 2); 5027 } else { 5028 /* valid case as only CSUM_IP was set */ 5029 return (0); 5030 } 5031 5032 pbd->total_hlen_w = htole16(hlen); 5033 5034 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 5035 CSUM_TSO | 5036 CSUM_TCP_IPV6)) { 5037 fp->eth_q_stats.tx_ofld_frames_csum_tcp++; 5038 pbd->tcp_pseudo_csum = ntohs(th->th_sum); 5039 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 5040 CSUM_UDP_IPV6)) { 5041 fp->eth_q_stats.tx_ofld_frames_csum_udp++; 5042 5043 /* 5044 * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP 5045 * checksums and does not know anything about the UDP header and where 5046 * the checksum field is located. It only knows about TCP. Therefore 5047 * we "lie" to the hardware for outgoing UDP packets w/ checksum 5048 * offload. Since the checksum field offset for TCP is 16 bytes and 5049 * for UDP it is 6 bytes we pass a pointer to the hardware that is 10 5050 * bytes less than the start of the UDP header. This allows the 5051 * hardware to write the checksum in the correct spot. But the 5052 * hardware will compute a checksum which includes the last 10 bytes 5053 * of the IP header. To correct this we tweak the stack computed 5054 * pseudo checksum by folding in the calculation of the inverse 5055 * checksum for those final 10 bytes of the IP header. This allows 5056 * the correct checksum to be computed by the hardware. 5057 */ 5058 5059 /* set pointer 10 bytes before UDP header */ 5060 tmp_uh = (uint32_t *)((uint8_t *)uh - 10); 5061 5062 /* calculate a pseudo header checksum over the first 10 bytes */ 5063 tmp_csum = in_pseudo(*tmp_uh, 5064 *(tmp_uh + 1), 5065 *(uint16_t *)(tmp_uh + 2)); 5066 5067 pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum)); 5068 } 5069 5070 return (hlen * 2); /* entire header length, number of bytes */ 5071 } 5072 5073 static void 5074 bxe_set_pbd_lso_e2(struct mbuf *m, 5075 uint32_t *parsing_data) 5076 { 5077 *parsing_data |= ((m->m_pkthdr.tso_segsz << 5078 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) & 5079 ETH_TX_PARSE_BD_E2_LSO_MSS); 5080 5081 /* XXX test for IPv6 with extension header... */ 5082 } 5083 5084 static void 5085 bxe_set_pbd_lso(struct mbuf *m, 5086 struct eth_tx_parse_bd_e1x *pbd) 5087 { 5088 struct ether_vlan_header *eh = NULL; 5089 struct ip *ip = NULL; 5090 struct tcphdr *th = NULL; 5091 int e_hlen; 5092 5093 /* get the Ethernet header */ 5094 eh = mtod(m, struct ether_vlan_header *); 5095 5096 /* handle VLAN encapsulation if present */ 5097 e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ? 5098 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN; 5099 5100 /* get the IP and TCP header, with LSO entire header in first mbuf */ 5101 /* XXX assuming IPv4 */ 5102 ip = (struct ip *)(m->m_data + e_hlen); 5103 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 5104 5105 pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz); 5106 pbd->tcp_send_seq = ntohl(th->th_seq); 5107 pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff); 5108 5109 #if 1 5110 /* XXX IPv4 */ 5111 pbd->ip_id = ntohs(ip->ip_id); 5112 pbd->tcp_pseudo_csum = 5113 ntohs(in_pseudo(ip->ip_src.s_addr, 5114 ip->ip_dst.s_addr, 5115 htons(IPPROTO_TCP))); 5116 #else 5117 /* XXX IPv6 */ 5118 pbd->tcp_pseudo_csum = 5119 ntohs(in_pseudo(&ip6->ip6_src, 5120 &ip6->ip6_dst, 5121 htons(IPPROTO_TCP))); 5122 #endif 5123 5124 pbd->global_data |= 5125 htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN); 5126 } 5127 5128 /* 5129 * Encapsulte an mbuf cluster into the tx bd chain and makes the memory 5130 * visible to the controller. 5131 * 5132 * If an mbuf is submitted to this routine and cannot be given to the 5133 * controller (e.g. it has too many fragments) then the function may free 5134 * the mbuf and return to the caller. 5135 * 5136 * Returns: 5137 * 0 = Success, !0 = Failure 5138 * Note the side effect that an mbuf may be freed if it causes a problem. 5139 */ 5140 static int 5141 bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head) 5142 { 5143 bus_dma_segment_t segs[32]; 5144 struct mbuf *m0; 5145 struct bxe_sw_tx_bd *tx_buf; 5146 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL; 5147 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL; 5148 /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */ 5149 struct eth_tx_bd *tx_data_bd; 5150 struct eth_tx_bd *tx_total_pkt_size_bd; 5151 struct eth_tx_start_bd *tx_start_bd; 5152 uint16_t bd_prod, pkt_prod, total_pkt_size; 5153 uint8_t mac_type; 5154 int defragged, error, nsegs, rc, nbds, vlan_off, ovlan; 5155 struct bxe_softc *sc; 5156 uint16_t tx_bd_avail; 5157 struct ether_vlan_header *eh; 5158 uint32_t pbd_e2_parsing_data = 0; 5159 uint8_t hlen = 0; 5160 int tmp_bd; 5161 int i; 5162 5163 sc = fp->sc; 5164 5165 #if __FreeBSD_version >= 800000 5166 M_ASSERTPKTHDR(*m_head); 5167 #endif /* #if __FreeBSD_version >= 800000 */ 5168 5169 m0 = *m_head; 5170 rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0; 5171 tx_start_bd = NULL; 5172 tx_data_bd = NULL; 5173 tx_total_pkt_size_bd = NULL; 5174 5175 /* get the H/W pointer for packets and BDs */ 5176 pkt_prod = fp->tx_pkt_prod; 5177 bd_prod = fp->tx_bd_prod; 5178 5179 mac_type = UNICAST_ADDRESS; 5180 5181 /* map the mbuf into the next open DMAable memory */ 5182 tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)]; 5183 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5184 tx_buf->m_map, m0, 5185 segs, &nsegs, BUS_DMA_NOWAIT); 5186 5187 /* mapping errors */ 5188 if(__predict_false(error != 0)) { 5189 fp->eth_q_stats.tx_dma_mapping_failure++; 5190 if (error == ENOMEM) { 5191 /* resource issue, try again later */ 5192 rc = ENOMEM; 5193 } else if (error == EFBIG) { 5194 /* possibly recoverable with defragmentation */ 5195 fp->eth_q_stats.mbuf_defrag_attempts++; 5196 m0 = m_defrag(*m_head, M_NOWAIT); 5197 if (m0 == NULL) { 5198 fp->eth_q_stats.mbuf_defrag_failures++; 5199 rc = ENOBUFS; 5200 } else { 5201 /* defrag successful, try mapping again */ 5202 *m_head = m0; 5203 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5204 tx_buf->m_map, m0, 5205 segs, &nsegs, BUS_DMA_NOWAIT); 5206 if (error) { 5207 fp->eth_q_stats.tx_dma_mapping_failure++; 5208 rc = error; 5209 } 5210 } 5211 } else { 5212 /* unknown, unrecoverable mapping error */ 5213 BLOGE(sc, "Unknown TX mapping error rc=%d\n", error); 5214 bxe_dump_mbuf(sc, m0, FALSE); 5215 rc = error; 5216 } 5217 5218 goto bxe_tx_encap_continue; 5219 } 5220 5221 tx_bd_avail = bxe_tx_avail(sc, fp); 5222 5223 /* make sure there is enough room in the send queue */ 5224 if (__predict_false(tx_bd_avail < (nsegs + 2))) { 5225 /* Recoverable, try again later. */ 5226 fp->eth_q_stats.tx_hw_queue_full++; 5227 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5228 rc = ENOMEM; 5229 goto bxe_tx_encap_continue; 5230 } 5231 5232 /* capture the current H/W TX chain high watermark */ 5233 if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth < 5234 (TX_BD_USABLE - tx_bd_avail))) { 5235 fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail); 5236 } 5237 5238 /* make sure it fits in the packet window */ 5239 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) { 5240 /* 5241 * The mbuf may be to big for the controller to handle. If the frame 5242 * is a TSO frame we'll need to do an additional check. 5243 */ 5244 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 5245 if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) { 5246 goto bxe_tx_encap_continue; /* OK to send */ 5247 } else { 5248 fp->eth_q_stats.tx_window_violation_tso++; 5249 } 5250 } else { 5251 fp->eth_q_stats.tx_window_violation_std++; 5252 } 5253 5254 /* lets try to defragment this mbuf and remap it */ 5255 fp->eth_q_stats.mbuf_defrag_attempts++; 5256 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5257 5258 m0 = m_defrag(*m_head, M_NOWAIT); 5259 if (m0 == NULL) { 5260 fp->eth_q_stats.mbuf_defrag_failures++; 5261 /* Ugh, just drop the frame... :( */ 5262 rc = ENOBUFS; 5263 } else { 5264 /* defrag successful, try mapping again */ 5265 *m_head = m0; 5266 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5267 tx_buf->m_map, m0, 5268 segs, &nsegs, BUS_DMA_NOWAIT); 5269 if (error) { 5270 fp->eth_q_stats.tx_dma_mapping_failure++; 5271 /* No sense in trying to defrag/copy chain, drop it. :( */ 5272 rc = error; 5273 } else { 5274 /* if the chain is still too long then drop it */ 5275 if(m0->m_pkthdr.csum_flags & CSUM_TSO) { 5276 /* 5277 * in case TSO is enabled nsegs should be checked against 5278 * BXE_TSO_MAX_SEGMENTS 5279 */ 5280 if (__predict_false(nsegs > BXE_TSO_MAX_SEGMENTS)) { 5281 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5282 fp->eth_q_stats.nsegs_path1_errors++; 5283 rc = ENODEV; 5284 } 5285 } else { 5286 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) { 5287 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5288 fp->eth_q_stats.nsegs_path2_errors++; 5289 rc = ENODEV; 5290 } 5291 } 5292 } 5293 } 5294 } 5295 5296 bxe_tx_encap_continue: 5297 5298 /* Check for errors */ 5299 if (rc) { 5300 if (rc == ENOMEM) { 5301 /* recoverable try again later */ 5302 } else { 5303 fp->eth_q_stats.tx_soft_errors++; 5304 fp->eth_q_stats.mbuf_alloc_tx--; 5305 m_freem(*m_head); 5306 *m_head = NULL; 5307 } 5308 5309 return (rc); 5310 } 5311 5312 /* set flag according to packet type (UNICAST_ADDRESS is default) */ 5313 if (m0->m_flags & M_BCAST) { 5314 mac_type = BROADCAST_ADDRESS; 5315 } else if (m0->m_flags & M_MCAST) { 5316 mac_type = MULTICAST_ADDRESS; 5317 } 5318 5319 /* store the mbuf into the mbuf ring */ 5320 tx_buf->m = m0; 5321 tx_buf->first_bd = fp->tx_bd_prod; 5322 tx_buf->flags = 0; 5323 5324 /* prepare the first transmit (start) BD for the mbuf */ 5325 tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd; 5326 5327 BLOGD(sc, DBG_TX, 5328 "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n", 5329 pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd); 5330 5331 tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 5332 tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 5333 tx_start_bd->nbytes = htole16(segs[0].ds_len); 5334 total_pkt_size += tx_start_bd->nbytes; 5335 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD; 5336 5337 tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT); 5338 5339 /* all frames have at least Start BD + Parsing BD */ 5340 nbds = nsegs + 1; 5341 tx_start_bd->nbd = htole16(nbds); 5342 5343 if (m0->m_flags & M_VLANTAG) { 5344 tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag); 5345 tx_start_bd->bd_flags.as_bitfield |= 5346 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT); 5347 } else { 5348 /* vf tx, start bd must hold the ethertype for fw to enforce it */ 5349 if (IS_VF(sc)) { 5350 /* map ethernet header to find type and header length */ 5351 eh = mtod(m0, struct ether_vlan_header *); 5352 tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto; 5353 } else { 5354 /* used by FW for packet accounting */ 5355 tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod); 5356 } 5357 } 5358 5359 /* 5360 * add a parsing BD from the chain. The parsing BD is always added 5361 * though it is only used for TSO and chksum 5362 */ 5363 bd_prod = TX_BD_NEXT(bd_prod); 5364 5365 if (m0->m_pkthdr.csum_flags) { 5366 if (m0->m_pkthdr.csum_flags & CSUM_IP) { 5367 fp->eth_q_stats.tx_ofld_frames_csum_ip++; 5368 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM; 5369 } 5370 5371 if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) { 5372 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | 5373 ETH_TX_BD_FLAGS_L4_CSUM); 5374 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) { 5375 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | 5376 ETH_TX_BD_FLAGS_IS_UDP | 5377 ETH_TX_BD_FLAGS_L4_CSUM); 5378 } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) || 5379 (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5380 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM; 5381 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) { 5382 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM | 5383 ETH_TX_BD_FLAGS_IS_UDP); 5384 } 5385 } 5386 5387 if (!CHIP_IS_E1x(sc)) { 5388 pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2; 5389 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2)); 5390 5391 if (m0->m_pkthdr.csum_flags) { 5392 hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data); 5393 } 5394 5395 SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, 5396 mac_type); 5397 } else { 5398 uint16_t global_data = 0; 5399 5400 pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x; 5401 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x)); 5402 5403 if (m0->m_pkthdr.csum_flags) { 5404 hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x); 5405 } 5406 5407 SET_FLAG(global_data, 5408 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type); 5409 pbd_e1x->global_data |= htole16(global_data); 5410 } 5411 5412 /* setup the parsing BD with TSO specific info */ 5413 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 5414 fp->eth_q_stats.tx_ofld_frames_lso++; 5415 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO; 5416 5417 if (__predict_false(tx_start_bd->nbytes > hlen)) { 5418 fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++; 5419 5420 /* split the first BD into header/data making the fw job easy */ 5421 nbds++; 5422 tx_start_bd->nbd = htole16(nbds); 5423 tx_start_bd->nbytes = htole16(hlen); 5424 5425 bd_prod = TX_BD_NEXT(bd_prod); 5426 5427 /* new transmit BD after the tx_parse_bd */ 5428 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; 5429 tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen)); 5430 tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen)); 5431 tx_data_bd->nbytes = htole16(segs[0].ds_len - hlen); 5432 if (tx_total_pkt_size_bd == NULL) { 5433 tx_total_pkt_size_bd = tx_data_bd; 5434 } 5435 5436 BLOGD(sc, DBG_TX, 5437 "TSO split header size is %d (%x:%x) nbds %d\n", 5438 le16toh(tx_start_bd->nbytes), 5439 le32toh(tx_start_bd->addr_hi), 5440 le32toh(tx_start_bd->addr_lo), 5441 nbds); 5442 } 5443 5444 if (!CHIP_IS_E1x(sc)) { 5445 bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data); 5446 } else { 5447 bxe_set_pbd_lso(m0, pbd_e1x); 5448 } 5449 } 5450 5451 if (pbd_e2_parsing_data) { 5452 pbd_e2->parsing_data = htole32(pbd_e2_parsing_data); 5453 } 5454 5455 /* prepare remaining BDs, start tx bd contains first seg/frag */ 5456 for (i = 1; i < nsegs ; i++) { 5457 bd_prod = TX_BD_NEXT(bd_prod); 5458 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; 5459 tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr)); 5460 tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr)); 5461 tx_data_bd->nbytes = htole16(segs[i].ds_len); 5462 if (tx_total_pkt_size_bd == NULL) { 5463 tx_total_pkt_size_bd = tx_data_bd; 5464 } 5465 total_pkt_size += tx_data_bd->nbytes; 5466 } 5467 5468 BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd); 5469 5470 if (tx_total_pkt_size_bd != NULL) { 5471 tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size; 5472 } 5473 5474 if (__predict_false(sc->debug & DBG_TX)) { 5475 tmp_bd = tx_buf->first_bd; 5476 for (i = 0; i < nbds; i++) 5477 { 5478 if (i == 0) { 5479 BLOGD(sc, DBG_TX, 5480 "TX Strt: %p bd=%d nbd=%d vlan=0x%x " 5481 "bd_flags=0x%x hdr_nbds=%d\n", 5482 tx_start_bd, 5483 tmp_bd, 5484 le16toh(tx_start_bd->nbd), 5485 le16toh(tx_start_bd->vlan_or_ethertype), 5486 tx_start_bd->bd_flags.as_bitfield, 5487 (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS)); 5488 } else if (i == 1) { 5489 if (pbd_e1x) { 5490 BLOGD(sc, DBG_TX, 5491 "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u " 5492 "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x " 5493 "tcp_seq=%u total_hlen_w=%u\n", 5494 pbd_e1x, 5495 tmp_bd, 5496 pbd_e1x->global_data, 5497 pbd_e1x->ip_hlen_w, 5498 pbd_e1x->ip_id, 5499 pbd_e1x->lso_mss, 5500 pbd_e1x->tcp_flags, 5501 pbd_e1x->tcp_pseudo_csum, 5502 pbd_e1x->tcp_send_seq, 5503 le16toh(pbd_e1x->total_hlen_w)); 5504 } else { /* if (pbd_e2) */ 5505 BLOGD(sc, DBG_TX, 5506 "-> Parse: %p bd=%d dst=%02x:%02x:%02x " 5507 "src=%02x:%02x:%02x parsing_data=0x%x\n", 5508 pbd_e2, 5509 tmp_bd, 5510 pbd_e2->data.mac_addr.dst_hi, 5511 pbd_e2->data.mac_addr.dst_mid, 5512 pbd_e2->data.mac_addr.dst_lo, 5513 pbd_e2->data.mac_addr.src_hi, 5514 pbd_e2->data.mac_addr.src_mid, 5515 pbd_e2->data.mac_addr.src_lo, 5516 pbd_e2->parsing_data); 5517 } 5518 } 5519 5520 if (i != 1) { /* skip parse db as it doesn't hold data */ 5521 tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd; 5522 BLOGD(sc, DBG_TX, 5523 "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n", 5524 tx_data_bd, 5525 tmp_bd, 5526 le16toh(tx_data_bd->nbytes), 5527 le32toh(tx_data_bd->addr_hi), 5528 le32toh(tx_data_bd->addr_lo)); 5529 } 5530 5531 tmp_bd = TX_BD_NEXT(tmp_bd); 5532 } 5533 } 5534 5535 BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod); 5536 5537 /* update TX BD producer index value for next TX */ 5538 bd_prod = TX_BD_NEXT(bd_prod); 5539 5540 /* 5541 * If the chain of tx_bd's describing this frame is adjacent to or spans 5542 * an eth_tx_next_bd element then we need to increment the nbds value. 5543 */ 5544 if (TX_BD_IDX(bd_prod) < nbds) { 5545 nbds++; 5546 } 5547 5548 /* don't allow reordering of writes for nbd and packets */ 5549 mb(); 5550 5551 fp->tx_db.data.prod += nbds; 5552 5553 /* producer points to the next free tx_bd at this point */ 5554 fp->tx_pkt_prod++; 5555 fp->tx_bd_prod = bd_prod; 5556 5557 DOORBELL(sc, fp->index, fp->tx_db.raw); 5558 5559 fp->eth_q_stats.tx_pkts++; 5560 5561 /* Prevent speculative reads from getting ahead of the status block. */ 5562 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 5563 0, 0, BUS_SPACE_BARRIER_READ); 5564 5565 /* Prevent speculative reads from getting ahead of the doorbell. */ 5566 bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle, 5567 0, 0, BUS_SPACE_BARRIER_READ); 5568 5569 return (0); 5570 } 5571 5572 static void 5573 bxe_tx_start_locked(struct bxe_softc *sc, 5574 if_t ifp, 5575 struct bxe_fastpath *fp) 5576 { 5577 struct mbuf *m = NULL; 5578 int tx_count = 0; 5579 uint16_t tx_bd_avail; 5580 5581 BXE_FP_TX_LOCK_ASSERT(fp); 5582 5583 /* keep adding entries while there are frames to send */ 5584 while (!if_sendq_empty(ifp)) { 5585 5586 /* 5587 * check for any frames to send 5588 * dequeue can still be NULL even if queue is not empty 5589 */ 5590 m = if_dequeue(ifp); 5591 if (__predict_false(m == NULL)) { 5592 break; 5593 } 5594 5595 /* the mbuf now belongs to us */ 5596 fp->eth_q_stats.mbuf_alloc_tx++; 5597 5598 /* 5599 * Put the frame into the transmit ring. If we don't have room, 5600 * place the mbuf back at the head of the TX queue, set the 5601 * OACTIVE flag, and wait for the NIC to drain the chain. 5602 */ 5603 if (__predict_false(bxe_tx_encap(fp, &m))) { 5604 fp->eth_q_stats.tx_encap_failures++; 5605 if (m != NULL) { 5606 /* mark the TX queue as full and return the frame */ 5607 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 5608 if_sendq_prepend(ifp, m); 5609 fp->eth_q_stats.mbuf_alloc_tx--; 5610 fp->eth_q_stats.tx_queue_xoff++; 5611 } 5612 5613 /* stop looking for more work */ 5614 break; 5615 } 5616 5617 /* the frame was enqueued successfully */ 5618 tx_count++; 5619 5620 /* send a copy of the frame to any BPF listeners. */ 5621 if_etherbpfmtap(ifp, m); 5622 5623 tx_bd_avail = bxe_tx_avail(sc, fp); 5624 5625 /* handle any completions if we're running low */ 5626 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 5627 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ 5628 bxe_txeof(sc, fp); 5629 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 5630 break; 5631 } 5632 } 5633 } 5634 5635 /* all TX packets were dequeued and/or the tx ring is full */ 5636 if (tx_count > 0) { 5637 /* reset the TX watchdog timeout timer */ 5638 fp->watchdog_timer = BXE_TX_TIMEOUT; 5639 } 5640 } 5641 5642 /* Legacy (non-RSS) dispatch routine */ 5643 static void 5644 bxe_tx_start(if_t ifp) 5645 { 5646 struct bxe_softc *sc; 5647 struct bxe_fastpath *fp; 5648 5649 sc = if_getsoftc(ifp); 5650 5651 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 5652 BLOGW(sc, "Interface not running, ignoring transmit request\n"); 5653 return; 5654 } 5655 5656 if (!sc->link_vars.link_up) { 5657 BLOGW(sc, "Interface link is down, ignoring transmit request\n"); 5658 return; 5659 } 5660 5661 fp = &sc->fp[0]; 5662 5663 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 5664 fp->eth_q_stats.tx_queue_full_return++; 5665 return; 5666 } 5667 5668 BXE_FP_TX_LOCK(fp); 5669 bxe_tx_start_locked(sc, ifp, fp); 5670 BXE_FP_TX_UNLOCK(fp); 5671 } 5672 5673 #if __FreeBSD_version >= 901504 5674 5675 static int 5676 bxe_tx_mq_start_locked(struct bxe_softc *sc, 5677 if_t ifp, 5678 struct bxe_fastpath *fp, 5679 struct mbuf *m) 5680 { 5681 struct buf_ring *tx_br = fp->tx_br; 5682 struct mbuf *next; 5683 int depth, rc, tx_count; 5684 uint16_t tx_bd_avail; 5685 5686 rc = tx_count = 0; 5687 5688 BXE_FP_TX_LOCK_ASSERT(fp); 5689 5690 if (sc->state != BXE_STATE_OPEN) { 5691 fp->eth_q_stats.bxe_tx_mq_sc_state_failures++; 5692 return ENETDOWN; 5693 } 5694 5695 if (!tx_br) { 5696 BLOGE(sc, "Multiqueue TX and no buf_ring!\n"); 5697 return (EINVAL); 5698 } 5699 5700 if (m != NULL) { 5701 rc = drbr_enqueue(ifp, tx_br, m); 5702 if (rc != 0) { 5703 fp->eth_q_stats.tx_soft_errors++; 5704 goto bxe_tx_mq_start_locked_exit; 5705 } 5706 } 5707 5708 if (!sc->link_vars.link_up || !(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 5709 fp->eth_q_stats.tx_request_link_down_failures++; 5710 goto bxe_tx_mq_start_locked_exit; 5711 } 5712 5713 /* fetch the depth of the driver queue */ 5714 depth = drbr_inuse_drv(ifp, tx_br); 5715 if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) { 5716 fp->eth_q_stats.tx_max_drbr_queue_depth = depth; 5717 } 5718 5719 /* keep adding entries while there are frames to send */ 5720 while ((next = drbr_peek(ifp, tx_br)) != NULL) { 5721 /* handle any completions if we're running low */ 5722 tx_bd_avail = bxe_tx_avail(sc, fp); 5723 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 5724 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ 5725 bxe_txeof(sc, fp); 5726 tx_bd_avail = bxe_tx_avail(sc, fp); 5727 if (tx_bd_avail < (BXE_TSO_MAX_SEGMENTS + 1)) { 5728 fp->eth_q_stats.bd_avail_too_less_failures++; 5729 m_freem(next); 5730 drbr_advance(ifp, tx_br); 5731 rc = ENOBUFS; 5732 break; 5733 } 5734 } 5735 5736 /* the mbuf now belongs to us */ 5737 fp->eth_q_stats.mbuf_alloc_tx++; 5738 5739 /* 5740 * Put the frame into the transmit ring. If we don't have room, 5741 * place the mbuf back at the head of the TX queue, set the 5742 * OACTIVE flag, and wait for the NIC to drain the chain. 5743 */ 5744 rc = bxe_tx_encap(fp, &next); 5745 if (__predict_false(rc != 0)) { 5746 fp->eth_q_stats.tx_encap_failures++; 5747 if (next != NULL) { 5748 /* mark the TX queue as full and save the frame */ 5749 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 5750 drbr_putback(ifp, tx_br, next); 5751 fp->eth_q_stats.mbuf_alloc_tx--; 5752 fp->eth_q_stats.tx_frames_deferred++; 5753 } else 5754 drbr_advance(ifp, tx_br); 5755 5756 /* stop looking for more work */ 5757 break; 5758 } 5759 5760 /* the transmit frame was enqueued successfully */ 5761 tx_count++; 5762 5763 /* send a copy of the frame to any BPF listeners */ 5764 if_etherbpfmtap(ifp, next); 5765 5766 drbr_advance(ifp, tx_br); 5767 } 5768 5769 /* all TX packets were dequeued and/or the tx ring is full */ 5770 if (tx_count > 0) { 5771 /* reset the TX watchdog timeout timer */ 5772 fp->watchdog_timer = BXE_TX_TIMEOUT; 5773 } 5774 5775 bxe_tx_mq_start_locked_exit: 5776 /* If we didn't drain the drbr, enqueue a task in the future to do it. */ 5777 if (!drbr_empty(ifp, tx_br)) { 5778 fp->eth_q_stats.tx_mq_not_empty++; 5779 taskqueue_enqueue_timeout(fp->tq, &fp->tx_timeout_task, 1); 5780 } 5781 5782 return (rc); 5783 } 5784 5785 static void 5786 bxe_tx_mq_start_deferred(void *arg, 5787 int pending) 5788 { 5789 struct bxe_fastpath *fp = (struct bxe_fastpath *)arg; 5790 struct bxe_softc *sc = fp->sc; 5791 if_t ifp = sc->ifp; 5792 5793 BXE_FP_TX_LOCK(fp); 5794 bxe_tx_mq_start_locked(sc, ifp, fp, NULL); 5795 BXE_FP_TX_UNLOCK(fp); 5796 } 5797 5798 /* Multiqueue (TSS) dispatch routine. */ 5799 static int 5800 bxe_tx_mq_start(struct ifnet *ifp, 5801 struct mbuf *m) 5802 { 5803 struct bxe_softc *sc = if_getsoftc(ifp); 5804 struct bxe_fastpath *fp; 5805 int fp_index, rc; 5806 5807 fp_index = 0; /* default is the first queue */ 5808 5809 /* check if flowid is set */ 5810 5811 if (BXE_VALID_FLOWID(m)) 5812 fp_index = (m->m_pkthdr.flowid % sc->num_queues); 5813 5814 fp = &sc->fp[fp_index]; 5815 5816 if (sc->state != BXE_STATE_OPEN) { 5817 fp->eth_q_stats.bxe_tx_mq_sc_state_failures++; 5818 return ENETDOWN; 5819 } 5820 5821 if (BXE_FP_TX_TRYLOCK(fp)) { 5822 rc = bxe_tx_mq_start_locked(sc, ifp, fp, m); 5823 BXE_FP_TX_UNLOCK(fp); 5824 } else { 5825 rc = drbr_enqueue(ifp, fp->tx_br, m); 5826 taskqueue_enqueue(fp->tq, &fp->tx_task); 5827 } 5828 5829 return (rc); 5830 } 5831 5832 static void 5833 bxe_mq_flush(struct ifnet *ifp) 5834 { 5835 struct bxe_softc *sc = if_getsoftc(ifp); 5836 struct bxe_fastpath *fp; 5837 struct mbuf *m; 5838 int i; 5839 5840 for (i = 0; i < sc->num_queues; i++) { 5841 fp = &sc->fp[i]; 5842 5843 if (fp->state != BXE_FP_STATE_IRQ) { 5844 BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n", 5845 fp->index, fp->state); 5846 continue; 5847 } 5848 5849 if (fp->tx_br != NULL) { 5850 BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index); 5851 BXE_FP_TX_LOCK(fp); 5852 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) { 5853 m_freem(m); 5854 } 5855 BXE_FP_TX_UNLOCK(fp); 5856 } 5857 } 5858 5859 if_qflush(ifp); 5860 } 5861 5862 #endif /* FreeBSD_version >= 901504 */ 5863 5864 static uint16_t 5865 bxe_cid_ilt_lines(struct bxe_softc *sc) 5866 { 5867 if (IS_SRIOV(sc)) { 5868 return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS); 5869 } 5870 return (L2_ILT_LINES(sc)); 5871 } 5872 5873 static void 5874 bxe_ilt_set_info(struct bxe_softc *sc) 5875 { 5876 struct ilt_client_info *ilt_client; 5877 struct ecore_ilt *ilt = sc->ilt; 5878 uint16_t line = 0; 5879 5880 ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc)); 5881 BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line); 5882 5883 /* CDU */ 5884 ilt_client = &ilt->clients[ILT_CLIENT_CDU]; 5885 ilt_client->client_num = ILT_CLIENT_CDU; 5886 ilt_client->page_size = CDU_ILT_PAGE_SZ; 5887 ilt_client->flags = ILT_CLIENT_SKIP_MEM; 5888 ilt_client->start = line; 5889 line += bxe_cid_ilt_lines(sc); 5890 5891 if (CNIC_SUPPORT(sc)) { 5892 line += CNIC_ILT_LINES; 5893 } 5894 5895 ilt_client->end = (line - 1); 5896 5897 BLOGD(sc, DBG_LOAD, 5898 "ilt client[CDU]: start %d, end %d, " 5899 "psz 0x%x, flags 0x%x, hw psz %d\n", 5900 ilt_client->start, ilt_client->end, 5901 ilt_client->page_size, 5902 ilt_client->flags, 5903 ilog2(ilt_client->page_size >> 12)); 5904 5905 /* QM */ 5906 if (QM_INIT(sc->qm_cid_count)) { 5907 ilt_client = &ilt->clients[ILT_CLIENT_QM]; 5908 ilt_client->client_num = ILT_CLIENT_QM; 5909 ilt_client->page_size = QM_ILT_PAGE_SZ; 5910 ilt_client->flags = 0; 5911 ilt_client->start = line; 5912 5913 /* 4 bytes for each cid */ 5914 line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4, 5915 QM_ILT_PAGE_SZ); 5916 5917 ilt_client->end = (line - 1); 5918 5919 BLOGD(sc, DBG_LOAD, 5920 "ilt client[QM]: start %d, end %d, " 5921 "psz 0x%x, flags 0x%x, hw psz %d\n", 5922 ilt_client->start, ilt_client->end, 5923 ilt_client->page_size, ilt_client->flags, 5924 ilog2(ilt_client->page_size >> 12)); 5925 } 5926 5927 if (CNIC_SUPPORT(sc)) { 5928 /* SRC */ 5929 ilt_client = &ilt->clients[ILT_CLIENT_SRC]; 5930 ilt_client->client_num = ILT_CLIENT_SRC; 5931 ilt_client->page_size = SRC_ILT_PAGE_SZ; 5932 ilt_client->flags = 0; 5933 ilt_client->start = line; 5934 line += SRC_ILT_LINES; 5935 ilt_client->end = (line - 1); 5936 5937 BLOGD(sc, DBG_LOAD, 5938 "ilt client[SRC]: start %d, end %d, " 5939 "psz 0x%x, flags 0x%x, hw psz %d\n", 5940 ilt_client->start, ilt_client->end, 5941 ilt_client->page_size, ilt_client->flags, 5942 ilog2(ilt_client->page_size >> 12)); 5943 5944 /* TM */ 5945 ilt_client = &ilt->clients[ILT_CLIENT_TM]; 5946 ilt_client->client_num = ILT_CLIENT_TM; 5947 ilt_client->page_size = TM_ILT_PAGE_SZ; 5948 ilt_client->flags = 0; 5949 ilt_client->start = line; 5950 line += TM_ILT_LINES; 5951 ilt_client->end = (line - 1); 5952 5953 BLOGD(sc, DBG_LOAD, 5954 "ilt client[TM]: start %d, end %d, " 5955 "psz 0x%x, flags 0x%x, hw psz %d\n", 5956 ilt_client->start, ilt_client->end, 5957 ilt_client->page_size, ilt_client->flags, 5958 ilog2(ilt_client->page_size >> 12)); 5959 } 5960 5961 KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!")); 5962 } 5963 5964 static void 5965 bxe_set_fp_rx_buf_size(struct bxe_softc *sc) 5966 { 5967 int i; 5968 uint32_t rx_buf_size; 5969 5970 rx_buf_size = (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu); 5971 5972 for (i = 0; i < sc->num_queues; i++) { 5973 if(rx_buf_size <= MCLBYTES){ 5974 sc->fp[i].rx_buf_size = rx_buf_size; 5975 sc->fp[i].mbuf_alloc_size = MCLBYTES; 5976 }else if (rx_buf_size <= MJUMPAGESIZE){ 5977 sc->fp[i].rx_buf_size = rx_buf_size; 5978 sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE; 5979 }else if (rx_buf_size <= (MJUMPAGESIZE + MCLBYTES)){ 5980 sc->fp[i].rx_buf_size = MCLBYTES; 5981 sc->fp[i].mbuf_alloc_size = MCLBYTES; 5982 }else if (rx_buf_size <= (2 * MJUMPAGESIZE)){ 5983 sc->fp[i].rx_buf_size = MJUMPAGESIZE; 5984 sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE; 5985 }else { 5986 sc->fp[i].rx_buf_size = MCLBYTES; 5987 sc->fp[i].mbuf_alloc_size = MCLBYTES; 5988 } 5989 } 5990 } 5991 5992 static int 5993 bxe_alloc_ilt_mem(struct bxe_softc *sc) 5994 { 5995 int rc = 0; 5996 5997 if ((sc->ilt = 5998 (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt), 5999 M_BXE_ILT, 6000 (M_NOWAIT | M_ZERO))) == NULL) { 6001 rc = 1; 6002 } 6003 6004 return (rc); 6005 } 6006 6007 static int 6008 bxe_alloc_ilt_lines_mem(struct bxe_softc *sc) 6009 { 6010 int rc = 0; 6011 6012 if ((sc->ilt->lines = 6013 (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES), 6014 M_BXE_ILT, 6015 (M_NOWAIT | M_ZERO))) == NULL) { 6016 rc = 1; 6017 } 6018 6019 return (rc); 6020 } 6021 6022 static void 6023 bxe_free_ilt_mem(struct bxe_softc *sc) 6024 { 6025 if (sc->ilt != NULL) { 6026 free(sc->ilt, M_BXE_ILT); 6027 sc->ilt = NULL; 6028 } 6029 } 6030 6031 static void 6032 bxe_free_ilt_lines_mem(struct bxe_softc *sc) 6033 { 6034 if (sc->ilt->lines != NULL) { 6035 free(sc->ilt->lines, M_BXE_ILT); 6036 sc->ilt->lines = NULL; 6037 } 6038 } 6039 6040 static void 6041 bxe_free_mem(struct bxe_softc *sc) 6042 { 6043 int i; 6044 6045 for (i = 0; i < L2_ILT_LINES(sc); i++) { 6046 bxe_dma_free(sc, &sc->context[i].vcxt_dma); 6047 sc->context[i].vcxt = NULL; 6048 sc->context[i].size = 0; 6049 } 6050 6051 ecore_ilt_mem_op(sc, ILT_MEMOP_FREE); 6052 6053 bxe_free_ilt_lines_mem(sc); 6054 6055 } 6056 6057 static int 6058 bxe_alloc_mem(struct bxe_softc *sc) 6059 { 6060 6061 int context_size; 6062 int allocated; 6063 int i; 6064 6065 /* 6066 * Allocate memory for CDU context: 6067 * This memory is allocated separately and not in the generic ILT 6068 * functions because CDU differs in few aspects: 6069 * 1. There can be multiple entities allocating memory for context - 6070 * regular L2, CNIC, and SRIOV drivers. Each separately controls 6071 * its own ILT lines. 6072 * 2. Since CDU page-size is not a single 4KB page (which is the case 6073 * for the other ILT clients), to be efficient we want to support 6074 * allocation of sub-page-size in the last entry. 6075 * 3. Context pointers are used by the driver to pass to FW / update 6076 * the context (for the other ILT clients the pointers are used just to 6077 * free the memory during unload). 6078 */ 6079 context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc)); 6080 for (i = 0, allocated = 0; allocated < context_size; i++) { 6081 sc->context[i].size = min(CDU_ILT_PAGE_SZ, 6082 (context_size - allocated)); 6083 6084 if (bxe_dma_alloc(sc, sc->context[i].size, 6085 &sc->context[i].vcxt_dma, 6086 "cdu context") != 0) { 6087 bxe_free_mem(sc); 6088 return (-1); 6089 } 6090 6091 sc->context[i].vcxt = 6092 (union cdu_context *)sc->context[i].vcxt_dma.vaddr; 6093 6094 allocated += sc->context[i].size; 6095 } 6096 6097 bxe_alloc_ilt_lines_mem(sc); 6098 6099 BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n", 6100 sc->ilt, sc->ilt->start_line, sc->ilt->lines); 6101 { 6102 for (i = 0; i < 4; i++) { 6103 BLOGD(sc, DBG_LOAD, 6104 "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n", 6105 i, 6106 sc->ilt->clients[i].page_size, 6107 sc->ilt->clients[i].start, 6108 sc->ilt->clients[i].end, 6109 sc->ilt->clients[i].client_num, 6110 sc->ilt->clients[i].flags); 6111 } 6112 } 6113 if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) { 6114 BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n"); 6115 bxe_free_mem(sc); 6116 return (-1); 6117 } 6118 6119 return (0); 6120 } 6121 6122 static void 6123 bxe_free_rx_bd_chain(struct bxe_fastpath *fp) 6124 { 6125 struct bxe_softc *sc; 6126 int i; 6127 6128 sc = fp->sc; 6129 6130 if (fp->rx_mbuf_tag == NULL) { 6131 return; 6132 } 6133 6134 /* free all mbufs and unload all maps */ 6135 for (i = 0; i < RX_BD_TOTAL; i++) { 6136 if (fp->rx_mbuf_chain[i].m_map != NULL) { 6137 bus_dmamap_sync(fp->rx_mbuf_tag, 6138 fp->rx_mbuf_chain[i].m_map, 6139 BUS_DMASYNC_POSTREAD); 6140 bus_dmamap_unload(fp->rx_mbuf_tag, 6141 fp->rx_mbuf_chain[i].m_map); 6142 } 6143 6144 if (fp->rx_mbuf_chain[i].m != NULL) { 6145 m_freem(fp->rx_mbuf_chain[i].m); 6146 fp->rx_mbuf_chain[i].m = NULL; 6147 fp->eth_q_stats.mbuf_alloc_rx--; 6148 } 6149 } 6150 } 6151 6152 static void 6153 bxe_free_tpa_pool(struct bxe_fastpath *fp) 6154 { 6155 struct bxe_softc *sc; 6156 int i, max_agg_queues; 6157 6158 sc = fp->sc; 6159 6160 if (fp->rx_mbuf_tag == NULL) { 6161 return; 6162 } 6163 6164 max_agg_queues = MAX_AGG_QS(sc); 6165 6166 /* release all mbufs and unload all DMA maps in the TPA pool */ 6167 for (i = 0; i < max_agg_queues; i++) { 6168 if (fp->rx_tpa_info[i].bd.m_map != NULL) { 6169 bus_dmamap_sync(fp->rx_mbuf_tag, 6170 fp->rx_tpa_info[i].bd.m_map, 6171 BUS_DMASYNC_POSTREAD); 6172 bus_dmamap_unload(fp->rx_mbuf_tag, 6173 fp->rx_tpa_info[i].bd.m_map); 6174 } 6175 6176 if (fp->rx_tpa_info[i].bd.m != NULL) { 6177 m_freem(fp->rx_tpa_info[i].bd.m); 6178 fp->rx_tpa_info[i].bd.m = NULL; 6179 fp->eth_q_stats.mbuf_alloc_tpa--; 6180 } 6181 } 6182 } 6183 6184 static void 6185 bxe_free_sge_chain(struct bxe_fastpath *fp) 6186 { 6187 struct bxe_softc *sc; 6188 int i; 6189 6190 sc = fp->sc; 6191 6192 if (fp->rx_sge_mbuf_tag == NULL) { 6193 return; 6194 } 6195 6196 /* rree all mbufs and unload all maps */ 6197 for (i = 0; i < RX_SGE_TOTAL; i++) { 6198 if (fp->rx_sge_mbuf_chain[i].m_map != NULL) { 6199 bus_dmamap_sync(fp->rx_sge_mbuf_tag, 6200 fp->rx_sge_mbuf_chain[i].m_map, 6201 BUS_DMASYNC_POSTREAD); 6202 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 6203 fp->rx_sge_mbuf_chain[i].m_map); 6204 } 6205 6206 if (fp->rx_sge_mbuf_chain[i].m != NULL) { 6207 m_freem(fp->rx_sge_mbuf_chain[i].m); 6208 fp->rx_sge_mbuf_chain[i].m = NULL; 6209 fp->eth_q_stats.mbuf_alloc_sge--; 6210 } 6211 } 6212 } 6213 6214 static void 6215 bxe_free_fp_buffers(struct bxe_softc *sc) 6216 { 6217 struct bxe_fastpath *fp; 6218 int i; 6219 6220 for (i = 0; i < sc->num_queues; i++) { 6221 fp = &sc->fp[i]; 6222 6223 #if __FreeBSD_version >= 901504 6224 if (fp->tx_br != NULL) { 6225 /* just in case bxe_mq_flush() wasn't called */ 6226 if (mtx_initialized(&fp->tx_mtx)) { 6227 struct mbuf *m; 6228 6229 BXE_FP_TX_LOCK(fp); 6230 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) 6231 m_freem(m); 6232 BXE_FP_TX_UNLOCK(fp); 6233 } 6234 } 6235 #endif 6236 6237 /* free all RX buffers */ 6238 bxe_free_rx_bd_chain(fp); 6239 bxe_free_tpa_pool(fp); 6240 bxe_free_sge_chain(fp); 6241 6242 if (fp->eth_q_stats.mbuf_alloc_rx != 0) { 6243 BLOGE(sc, "failed to claim all rx mbufs (%d left)\n", 6244 fp->eth_q_stats.mbuf_alloc_rx); 6245 } 6246 6247 if (fp->eth_q_stats.mbuf_alloc_sge != 0) { 6248 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", 6249 fp->eth_q_stats.mbuf_alloc_sge); 6250 } 6251 6252 if (fp->eth_q_stats.mbuf_alloc_tpa != 0) { 6253 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", 6254 fp->eth_q_stats.mbuf_alloc_tpa); 6255 } 6256 6257 if (fp->eth_q_stats.mbuf_alloc_tx != 0) { 6258 BLOGE(sc, "failed to release tx mbufs (%d left)\n", 6259 fp->eth_q_stats.mbuf_alloc_tx); 6260 } 6261 6262 /* XXX verify all mbufs were reclaimed */ 6263 } 6264 } 6265 6266 static int 6267 bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, 6268 uint16_t prev_index, 6269 uint16_t index) 6270 { 6271 struct bxe_sw_rx_bd *rx_buf; 6272 struct eth_rx_bd *rx_bd; 6273 bus_dma_segment_t segs[1]; 6274 bus_dmamap_t map; 6275 struct mbuf *m; 6276 int nsegs, rc; 6277 6278 rc = 0; 6279 6280 /* allocate the new RX BD mbuf */ 6281 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); 6282 if (__predict_false(m == NULL)) { 6283 fp->eth_q_stats.mbuf_rx_bd_alloc_failed++; 6284 return (ENOBUFS); 6285 } 6286 6287 fp->eth_q_stats.mbuf_alloc_rx++; 6288 6289 /* initialize the mbuf buffer length */ 6290 m->m_pkthdr.len = m->m_len = fp->rx_buf_size; 6291 6292 /* map the mbuf into non-paged pool */ 6293 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, 6294 fp->rx_mbuf_spare_map, 6295 m, segs, &nsegs, BUS_DMA_NOWAIT); 6296 if (__predict_false(rc != 0)) { 6297 fp->eth_q_stats.mbuf_rx_bd_mapping_failed++; 6298 m_freem(m); 6299 fp->eth_q_stats.mbuf_alloc_rx--; 6300 return (rc); 6301 } 6302 6303 /* all mbufs must map to a single segment */ 6304 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6305 6306 /* release any existing RX BD mbuf mappings */ 6307 6308 if (prev_index != index) { 6309 rx_buf = &fp->rx_mbuf_chain[prev_index]; 6310 6311 if (rx_buf->m_map != NULL) { 6312 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6313 BUS_DMASYNC_POSTREAD); 6314 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 6315 } 6316 6317 /* 6318 * We only get here from bxe_rxeof() when the maximum number 6319 * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already 6320 * holds the mbuf in the prev_index so it's OK to NULL it out 6321 * here without concern of a memory leak. 6322 */ 6323 fp->rx_mbuf_chain[prev_index].m = NULL; 6324 } 6325 6326 rx_buf = &fp->rx_mbuf_chain[index]; 6327 6328 if (rx_buf->m_map != NULL) { 6329 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6330 BUS_DMASYNC_POSTREAD); 6331 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 6332 } 6333 6334 /* save the mbuf and mapping info for a future packet */ 6335 map = (prev_index != index) ? 6336 fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map; 6337 rx_buf->m_map = fp->rx_mbuf_spare_map; 6338 fp->rx_mbuf_spare_map = map; 6339 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6340 BUS_DMASYNC_PREREAD); 6341 rx_buf->m = m; 6342 6343 rx_bd = &fp->rx_chain[index]; 6344 rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 6345 rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 6346 6347 return (rc); 6348 } 6349 6350 static int 6351 bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, 6352 int queue) 6353 { 6354 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; 6355 bus_dma_segment_t segs[1]; 6356 bus_dmamap_t map; 6357 struct mbuf *m; 6358 int nsegs; 6359 int rc = 0; 6360 6361 /* allocate the new TPA mbuf */ 6362 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); 6363 if (__predict_false(m == NULL)) { 6364 fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++; 6365 return (ENOBUFS); 6366 } 6367 6368 fp->eth_q_stats.mbuf_alloc_tpa++; 6369 6370 /* initialize the mbuf buffer length */ 6371 m->m_pkthdr.len = m->m_len = fp->rx_buf_size; 6372 6373 /* map the mbuf into non-paged pool */ 6374 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, 6375 fp->rx_tpa_info_mbuf_spare_map, 6376 m, segs, &nsegs, BUS_DMA_NOWAIT); 6377 if (__predict_false(rc != 0)) { 6378 fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++; 6379 m_free(m); 6380 fp->eth_q_stats.mbuf_alloc_tpa--; 6381 return (rc); 6382 } 6383 6384 /* all mbufs must map to a single segment */ 6385 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6386 6387 /* release any existing TPA mbuf mapping */ 6388 if (tpa_info->bd.m_map != NULL) { 6389 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, 6390 BUS_DMASYNC_POSTREAD); 6391 bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map); 6392 } 6393 6394 /* save the mbuf and mapping info for the TPA mbuf */ 6395 map = tpa_info->bd.m_map; 6396 tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map; 6397 fp->rx_tpa_info_mbuf_spare_map = map; 6398 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, 6399 BUS_DMASYNC_PREREAD); 6400 tpa_info->bd.m = m; 6401 tpa_info->seg = segs[0]; 6402 6403 return (rc); 6404 } 6405 6406 /* 6407 * Allocate an mbuf and assign it to the receive scatter gather chain. The 6408 * caller must take care to save a copy of the existing mbuf in the SG mbuf 6409 * chain. 6410 */ 6411 static int 6412 bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, 6413 uint16_t index) 6414 { 6415 struct bxe_sw_rx_bd *sge_buf; 6416 struct eth_rx_sge *sge; 6417 bus_dma_segment_t segs[1]; 6418 bus_dmamap_t map; 6419 struct mbuf *m; 6420 int nsegs; 6421 int rc = 0; 6422 6423 /* allocate a new SGE mbuf */ 6424 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE); 6425 if (__predict_false(m == NULL)) { 6426 fp->eth_q_stats.mbuf_rx_sge_alloc_failed++; 6427 return (ENOMEM); 6428 } 6429 6430 fp->eth_q_stats.mbuf_alloc_sge++; 6431 6432 /* initialize the mbuf buffer length */ 6433 m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE; 6434 6435 /* map the SGE mbuf into non-paged pool */ 6436 rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag, 6437 fp->rx_sge_mbuf_spare_map, 6438 m, segs, &nsegs, BUS_DMA_NOWAIT); 6439 if (__predict_false(rc != 0)) { 6440 fp->eth_q_stats.mbuf_rx_sge_mapping_failed++; 6441 m_freem(m); 6442 fp->eth_q_stats.mbuf_alloc_sge--; 6443 return (rc); 6444 } 6445 6446 /* all mbufs must map to a single segment */ 6447 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6448 6449 sge_buf = &fp->rx_sge_mbuf_chain[index]; 6450 6451 /* release any existing SGE mbuf mapping */ 6452 if (sge_buf->m_map != NULL) { 6453 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, 6454 BUS_DMASYNC_POSTREAD); 6455 bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map); 6456 } 6457 6458 /* save the mbuf and mapping info for a future packet */ 6459 map = sge_buf->m_map; 6460 sge_buf->m_map = fp->rx_sge_mbuf_spare_map; 6461 fp->rx_sge_mbuf_spare_map = map; 6462 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, 6463 BUS_DMASYNC_PREREAD); 6464 sge_buf->m = m; 6465 6466 sge = &fp->rx_sge_chain[index]; 6467 sge->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 6468 sge->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 6469 6470 return (rc); 6471 } 6472 6473 static __noinline int 6474 bxe_alloc_fp_buffers(struct bxe_softc *sc) 6475 { 6476 struct bxe_fastpath *fp; 6477 int i, j, rc = 0; 6478 int ring_prod, cqe_ring_prod; 6479 int max_agg_queues; 6480 6481 for (i = 0; i < sc->num_queues; i++) { 6482 fp = &sc->fp[i]; 6483 6484 ring_prod = cqe_ring_prod = 0; 6485 fp->rx_bd_cons = 0; 6486 fp->rx_cq_cons = 0; 6487 6488 /* allocate buffers for the RX BDs in RX BD chain */ 6489 for (j = 0; j < sc->max_rx_bufs; j++) { 6490 rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod); 6491 if (rc != 0) { 6492 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", 6493 i, rc); 6494 goto bxe_alloc_fp_buffers_error; 6495 } 6496 6497 ring_prod = RX_BD_NEXT(ring_prod); 6498 cqe_ring_prod = RCQ_NEXT(cqe_ring_prod); 6499 } 6500 6501 fp->rx_bd_prod = ring_prod; 6502 fp->rx_cq_prod = cqe_ring_prod; 6503 fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0; 6504 6505 max_agg_queues = MAX_AGG_QS(sc); 6506 6507 fp->tpa_enable = TRUE; 6508 6509 /* fill the TPA pool */ 6510 for (j = 0; j < max_agg_queues; j++) { 6511 rc = bxe_alloc_rx_tpa_mbuf(fp, j); 6512 if (rc != 0) { 6513 BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n", 6514 i, j); 6515 fp->tpa_enable = FALSE; 6516 goto bxe_alloc_fp_buffers_error; 6517 } 6518 6519 fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP; 6520 } 6521 6522 if (fp->tpa_enable) { 6523 /* fill the RX SGE chain */ 6524 ring_prod = 0; 6525 for (j = 0; j < RX_SGE_USABLE; j++) { 6526 rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod); 6527 if (rc != 0) { 6528 BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n", 6529 i, ring_prod); 6530 fp->tpa_enable = FALSE; 6531 ring_prod = 0; 6532 goto bxe_alloc_fp_buffers_error; 6533 } 6534 6535 ring_prod = RX_SGE_NEXT(ring_prod); 6536 } 6537 6538 fp->rx_sge_prod = ring_prod; 6539 } 6540 } 6541 6542 return (0); 6543 6544 bxe_alloc_fp_buffers_error: 6545 6546 /* unwind what was already allocated */ 6547 bxe_free_rx_bd_chain(fp); 6548 bxe_free_tpa_pool(fp); 6549 bxe_free_sge_chain(fp); 6550 6551 return (ENOBUFS); 6552 } 6553 6554 static void 6555 bxe_free_fw_stats_mem(struct bxe_softc *sc) 6556 { 6557 bxe_dma_free(sc, &sc->fw_stats_dma); 6558 6559 sc->fw_stats_num = 0; 6560 6561 sc->fw_stats_req_size = 0; 6562 sc->fw_stats_req = NULL; 6563 sc->fw_stats_req_mapping = 0; 6564 6565 sc->fw_stats_data_size = 0; 6566 sc->fw_stats_data = NULL; 6567 sc->fw_stats_data_mapping = 0; 6568 } 6569 6570 static int 6571 bxe_alloc_fw_stats_mem(struct bxe_softc *sc) 6572 { 6573 uint8_t num_queue_stats; 6574 int num_groups; 6575 6576 /* number of queues for statistics is number of eth queues */ 6577 num_queue_stats = BXE_NUM_ETH_QUEUES(sc); 6578 6579 /* 6580 * Total number of FW statistics requests = 6581 * 1 for port stats + 1 for PF stats + num of queues 6582 */ 6583 sc->fw_stats_num = (2 + num_queue_stats); 6584 6585 /* 6586 * Request is built from stats_query_header and an array of 6587 * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT 6588 * rules. The real number or requests is configured in the 6589 * stats_query_header. 6590 */ 6591 num_groups = 6592 ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) + 6593 ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0)); 6594 6595 BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n", 6596 sc->fw_stats_num, num_groups); 6597 6598 sc->fw_stats_req_size = 6599 (sizeof(struct stats_query_header) + 6600 (num_groups * sizeof(struct stats_query_cmd_group))); 6601 6602 /* 6603 * Data for statistics requests + stats_counter. 6604 * stats_counter holds per-STORM counters that are incremented when 6605 * STORM has finished with the current request. Memory for FCoE 6606 * offloaded statistics are counted anyway, even if they will not be sent. 6607 * VF stats are not accounted for here as the data of VF stats is stored 6608 * in memory allocated by the VF, not here. 6609 */ 6610 sc->fw_stats_data_size = 6611 (sizeof(struct stats_counter) + 6612 sizeof(struct per_port_stats) + 6613 sizeof(struct per_pf_stats) + 6614 /* sizeof(struct fcoe_statistics_params) + */ 6615 (sizeof(struct per_queue_stats) * num_queue_stats)); 6616 6617 if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size), 6618 &sc->fw_stats_dma, "fw stats") != 0) { 6619 bxe_free_fw_stats_mem(sc); 6620 return (-1); 6621 } 6622 6623 /* set up the shortcuts */ 6624 6625 sc->fw_stats_req = 6626 (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr; 6627 sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr; 6628 6629 sc->fw_stats_data = 6630 (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr + 6631 sc->fw_stats_req_size); 6632 sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr + 6633 sc->fw_stats_req_size); 6634 6635 BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n", 6636 (uintmax_t)sc->fw_stats_req_mapping); 6637 6638 BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n", 6639 (uintmax_t)sc->fw_stats_data_mapping); 6640 6641 return (0); 6642 } 6643 6644 /* 6645 * Bits map: 6646 * 0-7 - Engine0 load counter. 6647 * 8-15 - Engine1 load counter. 6648 * 16 - Engine0 RESET_IN_PROGRESS bit. 6649 * 17 - Engine1 RESET_IN_PROGRESS bit. 6650 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active 6651 * function on the engine 6652 * 19 - Engine1 ONE_IS_LOADED. 6653 * 20 - Chip reset flow bit. When set none-leader must wait for both engines 6654 * leader to complete (check for both RESET_IN_PROGRESS bits and not 6655 * for just the one belonging to its engine). 6656 */ 6657 #define BXE_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1 6658 #define BXE_PATH0_LOAD_CNT_MASK 0x000000ff 6659 #define BXE_PATH0_LOAD_CNT_SHIFT 0 6660 #define BXE_PATH1_LOAD_CNT_MASK 0x0000ff00 6661 #define BXE_PATH1_LOAD_CNT_SHIFT 8 6662 #define BXE_PATH0_RST_IN_PROG_BIT 0x00010000 6663 #define BXE_PATH1_RST_IN_PROG_BIT 0x00020000 6664 #define BXE_GLOBAL_RESET_BIT 0x00040000 6665 6666 /* set the GLOBAL_RESET bit, should be run under rtnl lock */ 6667 static void 6668 bxe_set_reset_global(struct bxe_softc *sc) 6669 { 6670 uint32_t val; 6671 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6672 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6673 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT); 6674 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6675 } 6676 6677 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */ 6678 static void 6679 bxe_clear_reset_global(struct bxe_softc *sc) 6680 { 6681 uint32_t val; 6682 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6683 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6684 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT)); 6685 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6686 } 6687 6688 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */ 6689 static uint8_t 6690 bxe_reset_is_global(struct bxe_softc *sc) 6691 { 6692 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6693 BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val); 6694 return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE; 6695 } 6696 6697 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */ 6698 static void 6699 bxe_set_reset_done(struct bxe_softc *sc) 6700 { 6701 uint32_t val; 6702 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : 6703 BXE_PATH0_RST_IN_PROG_BIT; 6704 6705 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6706 6707 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6708 /* Clear the bit */ 6709 val &= ~bit; 6710 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6711 6712 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6713 } 6714 6715 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */ 6716 static void 6717 bxe_set_reset_in_progress(struct bxe_softc *sc) 6718 { 6719 uint32_t val; 6720 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : 6721 BXE_PATH0_RST_IN_PROG_BIT; 6722 6723 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6724 6725 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6726 /* Set the bit */ 6727 val |= bit; 6728 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6729 6730 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6731 } 6732 6733 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */ 6734 static uint8_t 6735 bxe_reset_is_done(struct bxe_softc *sc, 6736 int engine) 6737 { 6738 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6739 uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT : 6740 BXE_PATH0_RST_IN_PROG_BIT; 6741 6742 /* return false if bit is set */ 6743 return (val & bit) ? FALSE : TRUE; 6744 } 6745 6746 /* get the load status for an engine, should be run under rtnl lock */ 6747 static uint8_t 6748 bxe_get_load_status(struct bxe_softc *sc, 6749 int engine) 6750 { 6751 uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK : 6752 BXE_PATH0_LOAD_CNT_MASK; 6753 uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT : 6754 BXE_PATH0_LOAD_CNT_SHIFT; 6755 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6756 6757 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); 6758 6759 val = ((val & mask) >> shift); 6760 6761 BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val); 6762 6763 return (val != 0); 6764 } 6765 6766 /* set pf load mark */ 6767 /* XXX needs to be under rtnl lock */ 6768 static void 6769 bxe_set_pf_load(struct bxe_softc *sc) 6770 { 6771 uint32_t val; 6772 uint32_t val1; 6773 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : 6774 BXE_PATH0_LOAD_CNT_MASK; 6775 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : 6776 BXE_PATH0_LOAD_CNT_SHIFT; 6777 6778 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6779 6780 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6781 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); 6782 6783 /* get the current counter value */ 6784 val1 = ((val & mask) >> shift); 6785 6786 /* set bit of this PF */ 6787 val1 |= (1 << SC_ABS_FUNC(sc)); 6788 6789 /* clear the old value */ 6790 val &= ~mask; 6791 6792 /* set the new one */ 6793 val |= ((val1 << shift) & mask); 6794 6795 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6796 6797 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6798 } 6799 6800 /* clear pf load mark */ 6801 /* XXX needs to be under rtnl lock */ 6802 static uint8_t 6803 bxe_clear_pf_load(struct bxe_softc *sc) 6804 { 6805 uint32_t val1, val; 6806 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : 6807 BXE_PATH0_LOAD_CNT_MASK; 6808 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : 6809 BXE_PATH0_LOAD_CNT_SHIFT; 6810 6811 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6812 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6813 BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val); 6814 6815 /* get the current counter value */ 6816 val1 = (val & mask) >> shift; 6817 6818 /* clear bit of that PF */ 6819 val1 &= ~(1 << SC_ABS_FUNC(sc)); 6820 6821 /* clear the old value */ 6822 val &= ~mask; 6823 6824 /* set the new one */ 6825 val |= ((val1 << shift) & mask); 6826 6827 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6828 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6829 return (val1 != 0); 6830 } 6831 6832 /* send load requrest to mcp and analyze response */ 6833 static int 6834 bxe_nic_load_request(struct bxe_softc *sc, 6835 uint32_t *load_code) 6836 { 6837 /* init fw_seq */ 6838 sc->fw_seq = 6839 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & 6840 DRV_MSG_SEQ_NUMBER_MASK); 6841 6842 BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq); 6843 6844 /* get the current FW pulse sequence */ 6845 sc->fw_drv_pulse_wr_seq = 6846 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) & 6847 DRV_PULSE_SEQ_MASK); 6848 6849 BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n", 6850 sc->fw_drv_pulse_wr_seq); 6851 6852 /* load request */ 6853 (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, 6854 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 6855 6856 /* if the MCP fails to respond we must abort */ 6857 if (!(*load_code)) { 6858 BLOGE(sc, "MCP response failure!\n"); 6859 return (-1); 6860 } 6861 6862 /* if MCP refused then must abort */ 6863 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) { 6864 BLOGE(sc, "MCP refused load request\n"); 6865 return (-1); 6866 } 6867 6868 return (0); 6869 } 6870 6871 /* 6872 * Check whether another PF has already loaded FW to chip. In virtualized 6873 * environments a pf from anoth VM may have already initialized the device 6874 * including loading FW. 6875 */ 6876 static int 6877 bxe_nic_load_analyze_req(struct bxe_softc *sc, 6878 uint32_t load_code) 6879 { 6880 uint32_t my_fw, loaded_fw; 6881 6882 /* is another pf loaded on this engine? */ 6883 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 6884 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 6885 /* build my FW version dword */ 6886 my_fw = (BCM_5710_FW_MAJOR_VERSION + 6887 (BCM_5710_FW_MINOR_VERSION << 8 ) + 6888 (BCM_5710_FW_REVISION_VERSION << 16) + 6889 (BCM_5710_FW_ENGINEERING_VERSION << 24)); 6890 6891 /* read loaded FW from chip */ 6892 loaded_fw = REG_RD(sc, XSEM_REG_PRAM); 6893 BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n", 6894 loaded_fw, my_fw); 6895 6896 /* abort nic load if version mismatch */ 6897 if (my_fw != loaded_fw) { 6898 BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)", 6899 loaded_fw, my_fw); 6900 return (-1); 6901 } 6902 } 6903 6904 return (0); 6905 } 6906 6907 /* mark PMF if applicable */ 6908 static void 6909 bxe_nic_load_pmf(struct bxe_softc *sc, 6910 uint32_t load_code) 6911 { 6912 uint32_t ncsi_oem_data_addr; 6913 6914 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 6915 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) || 6916 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) { 6917 /* 6918 * Barrier here for ordering between the writing to sc->port.pmf here 6919 * and reading it from the periodic task. 6920 */ 6921 sc->port.pmf = 1; 6922 mb(); 6923 } else { 6924 sc->port.pmf = 0; 6925 } 6926 6927 BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf); 6928 6929 /* XXX needed? */ 6930 if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) { 6931 if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) { 6932 ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr); 6933 if (ncsi_oem_data_addr) { 6934 REG_WR(sc, 6935 (ncsi_oem_data_addr + 6936 offsetof(struct glob_ncsi_oem_data, driver_version)), 6937 0); 6938 } 6939 } 6940 } 6941 } 6942 6943 static void 6944 bxe_read_mf_cfg(struct bxe_softc *sc) 6945 { 6946 int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1); 6947 int abs_func; 6948 int vn; 6949 6950 if (BXE_NOMCP(sc)) { 6951 return; /* what should be the default bvalue in this case */ 6952 } 6953 6954 /* 6955 * The formula for computing the absolute function number is... 6956 * For 2 port configuration (4 functions per port): 6957 * abs_func = 2 * vn + SC_PORT + SC_PATH 6958 * For 4 port configuration (2 functions per port): 6959 * abs_func = 4 * vn + 2 * SC_PORT + SC_PATH 6960 */ 6961 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 6962 abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc)); 6963 if (abs_func >= E1H_FUNC_MAX) { 6964 break; 6965 } 6966 sc->devinfo.mf_info.mf_config[vn] = 6967 MFCFG_RD(sc, func_mf_config[abs_func].config); 6968 } 6969 6970 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & 6971 FUNC_MF_CFG_FUNC_DISABLED) { 6972 BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n"); 6973 sc->flags |= BXE_MF_FUNC_DIS; 6974 } else { 6975 BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n"); 6976 sc->flags &= ~BXE_MF_FUNC_DIS; 6977 } 6978 } 6979 6980 /* acquire split MCP access lock register */ 6981 static int bxe_acquire_alr(struct bxe_softc *sc) 6982 { 6983 uint32_t j, val; 6984 6985 for (j = 0; j < 1000; j++) { 6986 val = (1UL << 31); 6987 REG_WR(sc, GRCBASE_MCP + 0x9c, val); 6988 val = REG_RD(sc, GRCBASE_MCP + 0x9c); 6989 if (val & (1L << 31)) 6990 break; 6991 6992 DELAY(5000); 6993 } 6994 6995 if (!(val & (1L << 31))) { 6996 BLOGE(sc, "Cannot acquire MCP access lock register\n"); 6997 return (-1); 6998 } 6999 7000 return (0); 7001 } 7002 7003 /* release split MCP access lock register */ 7004 static void bxe_release_alr(struct bxe_softc *sc) 7005 { 7006 REG_WR(sc, GRCBASE_MCP + 0x9c, 0); 7007 } 7008 7009 static void 7010 bxe_fan_failure(struct bxe_softc *sc) 7011 { 7012 int port = SC_PORT(sc); 7013 uint32_t ext_phy_config; 7014 7015 /* mark the failure */ 7016 ext_phy_config = 7017 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); 7018 7019 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK; 7020 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE; 7021 SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config, 7022 ext_phy_config); 7023 7024 /* log the failure */ 7025 BLOGW(sc, "Fan Failure has caused the driver to shutdown " 7026 "the card to prevent permanent damage. " 7027 "Please contact OEM Support for assistance\n"); 7028 7029 /* XXX */ 7030 #if 1 7031 bxe_panic(sc, ("Schedule task to handle fan failure\n")); 7032 #else 7033 /* 7034 * Schedule device reset (unload) 7035 * This is due to some boards consuming sufficient power when driver is 7036 * up to overheat if fan fails. 7037 */ 7038 bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state); 7039 schedule_delayed_work(&sc->sp_rtnl_task, 0); 7040 #endif 7041 } 7042 7043 /* this function is called upon a link interrupt */ 7044 static void 7045 bxe_link_attn(struct bxe_softc *sc) 7046 { 7047 uint32_t pause_enabled = 0; 7048 struct host_port_stats *pstats; 7049 int cmng_fns; 7050 struct bxe_fastpath *fp; 7051 int i; 7052 7053 /* Make sure that we are synced with the current statistics */ 7054 bxe_stats_handle(sc, STATS_EVENT_STOP); 7055 BLOGD(sc, DBG_LOAD, "link_vars phy_flags : %x\n", sc->link_vars.phy_flags); 7056 elink_link_update(&sc->link_params, &sc->link_vars); 7057 7058 if (sc->link_vars.link_up) { 7059 7060 /* dropless flow control */ 7061 if (!CHIP_IS_E1(sc) && sc->dropless_fc) { 7062 pause_enabled = 0; 7063 7064 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { 7065 pause_enabled = 1; 7066 } 7067 7068 REG_WR(sc, 7069 (BAR_USTRORM_INTMEM + 7070 USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))), 7071 pause_enabled); 7072 } 7073 7074 if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) { 7075 pstats = BXE_SP(sc, port_stats); 7076 /* reset old mac stats */ 7077 memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx)); 7078 } 7079 7080 if (sc->state == BXE_STATE_OPEN) { 7081 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 7082 /* Restart tx when the link comes back. */ 7083 FOR_EACH_ETH_QUEUE(sc, i) { 7084 fp = &sc->fp[i]; 7085 taskqueue_enqueue(fp->tq, &fp->tx_task); 7086 } 7087 } 7088 7089 } 7090 7091 if (sc->link_vars.link_up && sc->link_vars.line_speed) { 7092 cmng_fns = bxe_get_cmng_fns_mode(sc); 7093 7094 if (cmng_fns != CMNG_FNS_NONE) { 7095 bxe_cmng_fns_init(sc, FALSE, cmng_fns); 7096 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 7097 } else { 7098 /* rate shaping and fairness are disabled */ 7099 BLOGD(sc, DBG_LOAD, "single function mode without fairness\n"); 7100 } 7101 } 7102 7103 bxe_link_report_locked(sc); 7104 7105 if (IS_MF(sc)) { 7106 ; // XXX bxe_link_sync_notify(sc); 7107 } 7108 } 7109 7110 static void 7111 bxe_attn_int_asserted(struct bxe_softc *sc, 7112 uint32_t asserted) 7113 { 7114 int port = SC_PORT(sc); 7115 uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 7116 MISC_REG_AEU_MASK_ATTN_FUNC_0; 7117 uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 : 7118 NIG_REG_MASK_INTERRUPT_PORT0; 7119 uint32_t aeu_mask; 7120 uint32_t nig_mask = 0; 7121 uint32_t reg_addr; 7122 uint32_t igu_acked; 7123 uint32_t cnt; 7124 7125 if (sc->attn_state & asserted) { 7126 BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted); 7127 } 7128 7129 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 7130 7131 aeu_mask = REG_RD(sc, aeu_addr); 7132 7133 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n", 7134 aeu_mask, asserted); 7135 7136 aeu_mask &= ~(asserted & 0x3ff); 7137 7138 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); 7139 7140 REG_WR(sc, aeu_addr, aeu_mask); 7141 7142 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 7143 7144 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); 7145 sc->attn_state |= asserted; 7146 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); 7147 7148 if (asserted & ATTN_HARD_WIRED_MASK) { 7149 if (asserted & ATTN_NIG_FOR_FUNC) { 7150 7151 bxe_acquire_phy_lock(sc); 7152 /* save nig interrupt mask */ 7153 nig_mask = REG_RD(sc, nig_int_mask_addr); 7154 7155 /* If nig_mask is not set, no need to call the update function */ 7156 if (nig_mask) { 7157 REG_WR(sc, nig_int_mask_addr, 0); 7158 7159 bxe_link_attn(sc); 7160 } 7161 7162 /* handle unicore attn? */ 7163 } 7164 7165 if (asserted & ATTN_SW_TIMER_4_FUNC) { 7166 BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n"); 7167 } 7168 7169 if (asserted & GPIO_2_FUNC) { 7170 BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n"); 7171 } 7172 7173 if (asserted & GPIO_3_FUNC) { 7174 BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n"); 7175 } 7176 7177 if (asserted & GPIO_4_FUNC) { 7178 BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n"); 7179 } 7180 7181 if (port == 0) { 7182 if (asserted & ATTN_GENERAL_ATTN_1) { 7183 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n"); 7184 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0); 7185 } 7186 if (asserted & ATTN_GENERAL_ATTN_2) { 7187 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n"); 7188 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0); 7189 } 7190 if (asserted & ATTN_GENERAL_ATTN_3) { 7191 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n"); 7192 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0); 7193 } 7194 } else { 7195 if (asserted & ATTN_GENERAL_ATTN_4) { 7196 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n"); 7197 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0); 7198 } 7199 if (asserted & ATTN_GENERAL_ATTN_5) { 7200 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n"); 7201 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0); 7202 } 7203 if (asserted & ATTN_GENERAL_ATTN_6) { 7204 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n"); 7205 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0); 7206 } 7207 } 7208 } /* hardwired */ 7209 7210 if (sc->devinfo.int_block == INT_BLOCK_HC) { 7211 reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET); 7212 } else { 7213 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8); 7214 } 7215 7216 BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n", 7217 asserted, 7218 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 7219 REG_WR(sc, reg_addr, asserted); 7220 7221 /* now set back the mask */ 7222 if (asserted & ATTN_NIG_FOR_FUNC) { 7223 /* 7224 * Verify that IGU ack through BAR was written before restoring 7225 * NIG mask. This loop should exit after 2-3 iterations max. 7226 */ 7227 if (sc->devinfo.int_block != INT_BLOCK_HC) { 7228 cnt = 0; 7229 7230 do { 7231 igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS); 7232 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) && 7233 (++cnt < MAX_IGU_ATTN_ACK_TO)); 7234 7235 if (!igu_acked) { 7236 BLOGE(sc, "Failed to verify IGU ack on time\n"); 7237 } 7238 7239 mb(); 7240 } 7241 7242 REG_WR(sc, nig_int_mask_addr, nig_mask); 7243 7244 bxe_release_phy_lock(sc); 7245 } 7246 } 7247 7248 static void 7249 bxe_print_next_block(struct bxe_softc *sc, 7250 int idx, 7251 const char *blk) 7252 { 7253 BLOGI(sc, "%s%s", idx ? ", " : "", blk); 7254 } 7255 7256 static int 7257 bxe_check_blocks_with_parity0(struct bxe_softc *sc, 7258 uint32_t sig, 7259 int par_num, 7260 uint8_t print) 7261 { 7262 uint32_t cur_bit = 0; 7263 int i = 0; 7264 7265 for (i = 0; sig; i++) { 7266 cur_bit = ((uint32_t)0x1 << i); 7267 if (sig & cur_bit) { 7268 switch (cur_bit) { 7269 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR: 7270 if (print) 7271 bxe_print_next_block(sc, par_num++, "BRB"); 7272 break; 7273 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR: 7274 if (print) 7275 bxe_print_next_block(sc, par_num++, "PARSER"); 7276 break; 7277 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR: 7278 if (print) 7279 bxe_print_next_block(sc, par_num++, "TSDM"); 7280 break; 7281 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR: 7282 if (print) 7283 bxe_print_next_block(sc, par_num++, "SEARCHER"); 7284 break; 7285 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR: 7286 if (print) 7287 bxe_print_next_block(sc, par_num++, "TCM"); 7288 break; 7289 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR: 7290 if (print) 7291 bxe_print_next_block(sc, par_num++, "TSEMI"); 7292 break; 7293 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR: 7294 if (print) 7295 bxe_print_next_block(sc, par_num++, "XPB"); 7296 break; 7297 } 7298 7299 /* Clear the bit */ 7300 sig &= ~cur_bit; 7301 } 7302 } 7303 7304 return (par_num); 7305 } 7306 7307 static int 7308 bxe_check_blocks_with_parity1(struct bxe_softc *sc, 7309 uint32_t sig, 7310 int par_num, 7311 uint8_t *global, 7312 uint8_t print) 7313 { 7314 int i = 0; 7315 uint32_t cur_bit = 0; 7316 for (i = 0; sig; i++) { 7317 cur_bit = ((uint32_t)0x1 << i); 7318 if (sig & cur_bit) { 7319 switch (cur_bit) { 7320 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR: 7321 if (print) 7322 bxe_print_next_block(sc, par_num++, "PBF"); 7323 break; 7324 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR: 7325 if (print) 7326 bxe_print_next_block(sc, par_num++, "QM"); 7327 break; 7328 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR: 7329 if (print) 7330 bxe_print_next_block(sc, par_num++, "TM"); 7331 break; 7332 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR: 7333 if (print) 7334 bxe_print_next_block(sc, par_num++, "XSDM"); 7335 break; 7336 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR: 7337 if (print) 7338 bxe_print_next_block(sc, par_num++, "XCM"); 7339 break; 7340 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR: 7341 if (print) 7342 bxe_print_next_block(sc, par_num++, "XSEMI"); 7343 break; 7344 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR: 7345 if (print) 7346 bxe_print_next_block(sc, par_num++, "DOORBELLQ"); 7347 break; 7348 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR: 7349 if (print) 7350 bxe_print_next_block(sc, par_num++, "NIG"); 7351 break; 7352 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR: 7353 if (print) 7354 bxe_print_next_block(sc, par_num++, "VAUX PCI CORE"); 7355 *global = TRUE; 7356 break; 7357 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR: 7358 if (print) 7359 bxe_print_next_block(sc, par_num++, "DEBUG"); 7360 break; 7361 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR: 7362 if (print) 7363 bxe_print_next_block(sc, par_num++, "USDM"); 7364 break; 7365 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR: 7366 if (print) 7367 bxe_print_next_block(sc, par_num++, "UCM"); 7368 break; 7369 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR: 7370 if (print) 7371 bxe_print_next_block(sc, par_num++, "USEMI"); 7372 break; 7373 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR: 7374 if (print) 7375 bxe_print_next_block(sc, par_num++, "UPB"); 7376 break; 7377 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR: 7378 if (print) 7379 bxe_print_next_block(sc, par_num++, "CSDM"); 7380 break; 7381 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR: 7382 if (print) 7383 bxe_print_next_block(sc, par_num++, "CCM"); 7384 break; 7385 } 7386 7387 /* Clear the bit */ 7388 sig &= ~cur_bit; 7389 } 7390 } 7391 7392 return (par_num); 7393 } 7394 7395 static int 7396 bxe_check_blocks_with_parity2(struct bxe_softc *sc, 7397 uint32_t sig, 7398 int par_num, 7399 uint8_t print) 7400 { 7401 uint32_t cur_bit = 0; 7402 int i = 0; 7403 7404 for (i = 0; sig; i++) { 7405 cur_bit = ((uint32_t)0x1 << i); 7406 if (sig & cur_bit) { 7407 switch (cur_bit) { 7408 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR: 7409 if (print) 7410 bxe_print_next_block(sc, par_num++, "CSEMI"); 7411 break; 7412 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR: 7413 if (print) 7414 bxe_print_next_block(sc, par_num++, "PXP"); 7415 break; 7416 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR: 7417 if (print) 7418 bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT"); 7419 break; 7420 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR: 7421 if (print) 7422 bxe_print_next_block(sc, par_num++, "CFC"); 7423 break; 7424 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR: 7425 if (print) 7426 bxe_print_next_block(sc, par_num++, "CDU"); 7427 break; 7428 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR: 7429 if (print) 7430 bxe_print_next_block(sc, par_num++, "DMAE"); 7431 break; 7432 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR: 7433 if (print) 7434 bxe_print_next_block(sc, par_num++, "IGU"); 7435 break; 7436 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR: 7437 if (print) 7438 bxe_print_next_block(sc, par_num++, "MISC"); 7439 break; 7440 } 7441 7442 /* Clear the bit */ 7443 sig &= ~cur_bit; 7444 } 7445 } 7446 7447 return (par_num); 7448 } 7449 7450 static int 7451 bxe_check_blocks_with_parity3(struct bxe_softc *sc, 7452 uint32_t sig, 7453 int par_num, 7454 uint8_t *global, 7455 uint8_t print) 7456 { 7457 uint32_t cur_bit = 0; 7458 int i = 0; 7459 7460 for (i = 0; sig; i++) { 7461 cur_bit = ((uint32_t)0x1 << i); 7462 if (sig & cur_bit) { 7463 switch (cur_bit) { 7464 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY: 7465 if (print) 7466 bxe_print_next_block(sc, par_num++, "MCP ROM"); 7467 *global = TRUE; 7468 break; 7469 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY: 7470 if (print) 7471 bxe_print_next_block(sc, par_num++, 7472 "MCP UMP RX"); 7473 *global = TRUE; 7474 break; 7475 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY: 7476 if (print) 7477 bxe_print_next_block(sc, par_num++, 7478 "MCP UMP TX"); 7479 *global = TRUE; 7480 break; 7481 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY: 7482 if (print) 7483 bxe_print_next_block(sc, par_num++, 7484 "MCP SCPAD"); 7485 *global = TRUE; 7486 break; 7487 } 7488 7489 /* Clear the bit */ 7490 sig &= ~cur_bit; 7491 } 7492 } 7493 7494 return (par_num); 7495 } 7496 7497 static int 7498 bxe_check_blocks_with_parity4(struct bxe_softc *sc, 7499 uint32_t sig, 7500 int par_num, 7501 uint8_t print) 7502 { 7503 uint32_t cur_bit = 0; 7504 int i = 0; 7505 7506 for (i = 0; sig; i++) { 7507 cur_bit = ((uint32_t)0x1 << i); 7508 if (sig & cur_bit) { 7509 switch (cur_bit) { 7510 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR: 7511 if (print) 7512 bxe_print_next_block(sc, par_num++, "PGLUE_B"); 7513 break; 7514 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR: 7515 if (print) 7516 bxe_print_next_block(sc, par_num++, "ATC"); 7517 break; 7518 } 7519 7520 /* Clear the bit */ 7521 sig &= ~cur_bit; 7522 } 7523 } 7524 7525 return (par_num); 7526 } 7527 7528 static uint8_t 7529 bxe_parity_attn(struct bxe_softc *sc, 7530 uint8_t *global, 7531 uint8_t print, 7532 uint32_t *sig) 7533 { 7534 int par_num = 0; 7535 7536 if ((sig[0] & HW_PRTY_ASSERT_SET_0) || 7537 (sig[1] & HW_PRTY_ASSERT_SET_1) || 7538 (sig[2] & HW_PRTY_ASSERT_SET_2) || 7539 (sig[3] & HW_PRTY_ASSERT_SET_3) || 7540 (sig[4] & HW_PRTY_ASSERT_SET_4)) { 7541 BLOGE(sc, "Parity error: HW block parity attention:\n" 7542 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n", 7543 (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0), 7544 (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1), 7545 (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2), 7546 (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3), 7547 (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4)); 7548 7549 if (print) 7550 BLOGI(sc, "Parity errors detected in blocks: "); 7551 7552 par_num = 7553 bxe_check_blocks_with_parity0(sc, sig[0] & 7554 HW_PRTY_ASSERT_SET_0, 7555 par_num, print); 7556 par_num = 7557 bxe_check_blocks_with_parity1(sc, sig[1] & 7558 HW_PRTY_ASSERT_SET_1, 7559 par_num, global, print); 7560 par_num = 7561 bxe_check_blocks_with_parity2(sc, sig[2] & 7562 HW_PRTY_ASSERT_SET_2, 7563 par_num, print); 7564 par_num = 7565 bxe_check_blocks_with_parity3(sc, sig[3] & 7566 HW_PRTY_ASSERT_SET_3, 7567 par_num, global, print); 7568 par_num = 7569 bxe_check_blocks_with_parity4(sc, sig[4] & 7570 HW_PRTY_ASSERT_SET_4, 7571 par_num, print); 7572 7573 if (print) 7574 BLOGI(sc, "\n"); 7575 7576 if( *global == TRUE ) { 7577 BXE_SET_ERROR_BIT(sc, BXE_ERR_GLOBAL); 7578 } 7579 7580 return (TRUE); 7581 } 7582 7583 return (FALSE); 7584 } 7585 7586 static uint8_t 7587 bxe_chk_parity_attn(struct bxe_softc *sc, 7588 uint8_t *global, 7589 uint8_t print) 7590 { 7591 struct attn_route attn = { {0} }; 7592 int port = SC_PORT(sc); 7593 7594 if(sc->state != BXE_STATE_OPEN) 7595 return FALSE; 7596 7597 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 7598 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 7599 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 7600 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 7601 7602 /* 7603 * Since MCP attentions can't be disabled inside the block, we need to 7604 * read AEU registers to see whether they're currently disabled 7605 */ 7606 attn.sig[3] &= ((REG_RD(sc, (!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0 7607 : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0)) & 7608 MISC_AEU_ENABLE_MCP_PRTY_BITS) | 7609 ~MISC_AEU_ENABLE_MCP_PRTY_BITS); 7610 7611 7612 if (!CHIP_IS_E1x(sc)) 7613 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 7614 7615 return (bxe_parity_attn(sc, global, print, attn.sig)); 7616 } 7617 7618 static void 7619 bxe_attn_int_deasserted4(struct bxe_softc *sc, 7620 uint32_t attn) 7621 { 7622 uint32_t val; 7623 boolean_t err_flg = FALSE; 7624 7625 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) { 7626 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR); 7627 BLOGE(sc, "PGLUE hw attention 0x%08x\n", val); 7628 err_flg = TRUE; 7629 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR) 7630 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n"); 7631 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR) 7632 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n"); 7633 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) 7634 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n"); 7635 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN) 7636 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n"); 7637 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN) 7638 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n"); 7639 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN) 7640 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n"); 7641 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN) 7642 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n"); 7643 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN) 7644 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n"); 7645 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW) 7646 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n"); 7647 } 7648 7649 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) { 7650 val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR); 7651 BLOGE(sc, "ATC hw attention 0x%08x\n", val); 7652 err_flg = TRUE; 7653 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR) 7654 BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n"); 7655 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND) 7656 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n"); 7657 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS) 7658 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n"); 7659 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT) 7660 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n"); 7661 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR) 7662 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n"); 7663 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU) 7664 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n"); 7665 } 7666 7667 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 7668 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) { 7669 BLOGE(sc, "FATAL parity attention set4 0x%08x\n", 7670 (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 7671 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR))); 7672 err_flg = TRUE; 7673 } 7674 if (err_flg) { 7675 BXE_SET_ERROR_BIT(sc, BXE_ERR_MISC); 7676 taskqueue_enqueue_timeout(taskqueue_thread, 7677 &sc->sp_err_timeout_task, hz/10); 7678 } 7679 7680 } 7681 7682 static void 7683 bxe_e1h_disable(struct bxe_softc *sc) 7684 { 7685 int port = SC_PORT(sc); 7686 7687 bxe_tx_disable(sc); 7688 7689 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); 7690 } 7691 7692 static void 7693 bxe_e1h_enable(struct bxe_softc *sc) 7694 { 7695 int port = SC_PORT(sc); 7696 7697 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); 7698 7699 // XXX bxe_tx_enable(sc); 7700 } 7701 7702 /* 7703 * called due to MCP event (on pmf): 7704 * reread new bandwidth configuration 7705 * configure FW 7706 * notify others function about the change 7707 */ 7708 static void 7709 bxe_config_mf_bw(struct bxe_softc *sc) 7710 { 7711 if (sc->link_vars.link_up) { 7712 bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX); 7713 // XXX bxe_link_sync_notify(sc); 7714 } 7715 7716 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 7717 } 7718 7719 static void 7720 bxe_set_mf_bw(struct bxe_softc *sc) 7721 { 7722 bxe_config_mf_bw(sc); 7723 bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0); 7724 } 7725 7726 static void 7727 bxe_handle_eee_event(struct bxe_softc *sc) 7728 { 7729 BLOGD(sc, DBG_INTR, "EEE - LLDP event\n"); 7730 bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0); 7731 } 7732 7733 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3 7734 7735 static void 7736 bxe_drv_info_ether_stat(struct bxe_softc *sc) 7737 { 7738 struct eth_stats_info *ether_stat = 7739 &sc->sp->drv_info_to_mcp.ether_stat; 7740 7741 strlcpy(ether_stat->version, BXE_DRIVER_VERSION, 7742 ETH_STAT_INFO_VERSION_LEN); 7743 7744 /* XXX (+ MAC_PAD) taken from other driver... verify this is right */ 7745 sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj, 7746 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED, 7747 ether_stat->mac_local + MAC_PAD, 7748 MAC_PAD, ETH_ALEN); 7749 7750 ether_stat->mtu_size = sc->mtu; 7751 7752 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK; 7753 if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) { 7754 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK; 7755 } 7756 7757 // XXX ether_stat->feature_flags |= ???; 7758 7759 ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0; 7760 7761 ether_stat->txq_size = sc->tx_ring_size; 7762 ether_stat->rxq_size = sc->rx_ring_size; 7763 } 7764 7765 static void 7766 bxe_handle_drv_info_req(struct bxe_softc *sc) 7767 { 7768 enum drv_info_opcode op_code; 7769 uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control); 7770 7771 /* if drv_info version supported by MFW doesn't match - send NACK */ 7772 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) { 7773 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); 7774 return; 7775 } 7776 7777 op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >> 7778 DRV_INFO_CONTROL_OP_CODE_SHIFT); 7779 7780 memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp)); 7781 7782 switch (op_code) { 7783 case ETH_STATS_OPCODE: 7784 bxe_drv_info_ether_stat(sc); 7785 break; 7786 case FCOE_STATS_OPCODE: 7787 case ISCSI_STATS_OPCODE: 7788 default: 7789 /* if op code isn't supported - send NACK */ 7790 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); 7791 return; 7792 } 7793 7794 /* 7795 * If we got drv_info attn from MFW then these fields are defined in 7796 * shmem2 for sure 7797 */ 7798 SHMEM2_WR(sc, drv_info_host_addr_lo, 7799 U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp))); 7800 SHMEM2_WR(sc, drv_info_host_addr_hi, 7801 U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp))); 7802 7803 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0); 7804 } 7805 7806 static void 7807 bxe_dcc_event(struct bxe_softc *sc, 7808 uint32_t dcc_event) 7809 { 7810 BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event); 7811 7812 if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) { 7813 /* 7814 * This is the only place besides the function initialization 7815 * where the sc->flags can change so it is done without any 7816 * locks 7817 */ 7818 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) { 7819 BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n"); 7820 sc->flags |= BXE_MF_FUNC_DIS; 7821 bxe_e1h_disable(sc); 7822 } else { 7823 BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n"); 7824 sc->flags &= ~BXE_MF_FUNC_DIS; 7825 bxe_e1h_enable(sc); 7826 } 7827 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF; 7828 } 7829 7830 if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) { 7831 bxe_config_mf_bw(sc); 7832 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION; 7833 } 7834 7835 /* Report results to MCP */ 7836 if (dcc_event) 7837 bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0); 7838 else 7839 bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0); 7840 } 7841 7842 static void 7843 bxe_pmf_update(struct bxe_softc *sc) 7844 { 7845 int port = SC_PORT(sc); 7846 uint32_t val; 7847 7848 sc->port.pmf = 1; 7849 BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf); 7850 7851 /* 7852 * We need the mb() to ensure the ordering between the writing to 7853 * sc->port.pmf here and reading it from the bxe_periodic_task(). 7854 */ 7855 mb(); 7856 7857 /* queue a periodic task */ 7858 // XXX schedule task... 7859 7860 // XXX bxe_dcbx_pmf_update(sc); 7861 7862 /* enable nig attention */ 7863 val = (0xff0f | (1 << (SC_VN(sc) + 4))); 7864 if (sc->devinfo.int_block == INT_BLOCK_HC) { 7865 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val); 7866 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val); 7867 } else if (!CHIP_IS_E1x(sc)) { 7868 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); 7869 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); 7870 } 7871 7872 bxe_stats_handle(sc, STATS_EVENT_PMF); 7873 } 7874 7875 static int 7876 bxe_mc_assert(struct bxe_softc *sc) 7877 { 7878 char last_idx; 7879 int i, rc = 0; 7880 uint32_t row0, row1, row2, row3; 7881 7882 /* XSTORM */ 7883 last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET); 7884 if (last_idx) 7885 BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7886 7887 /* print the asserts */ 7888 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7889 7890 row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i)); 7891 row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4); 7892 row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8); 7893 row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12); 7894 7895 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7896 BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7897 i, row3, row2, row1, row0); 7898 rc++; 7899 } else { 7900 break; 7901 } 7902 } 7903 7904 /* TSTORM */ 7905 last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET); 7906 if (last_idx) { 7907 BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7908 } 7909 7910 /* print the asserts */ 7911 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7912 7913 row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i)); 7914 row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4); 7915 row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8); 7916 row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12); 7917 7918 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7919 BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7920 i, row3, row2, row1, row0); 7921 rc++; 7922 } else { 7923 break; 7924 } 7925 } 7926 7927 /* CSTORM */ 7928 last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET); 7929 if (last_idx) { 7930 BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7931 } 7932 7933 /* print the asserts */ 7934 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7935 7936 row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i)); 7937 row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4); 7938 row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8); 7939 row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12); 7940 7941 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7942 BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7943 i, row3, row2, row1, row0); 7944 rc++; 7945 } else { 7946 break; 7947 } 7948 } 7949 7950 /* USTORM */ 7951 last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET); 7952 if (last_idx) { 7953 BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7954 } 7955 7956 /* print the asserts */ 7957 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7958 7959 row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i)); 7960 row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4); 7961 row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8); 7962 row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12); 7963 7964 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7965 BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7966 i, row3, row2, row1, row0); 7967 rc++; 7968 } else { 7969 break; 7970 } 7971 } 7972 7973 return (rc); 7974 } 7975 7976 static void 7977 bxe_attn_int_deasserted3(struct bxe_softc *sc, 7978 uint32_t attn) 7979 { 7980 int func = SC_FUNC(sc); 7981 uint32_t val; 7982 7983 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) { 7984 7985 if (attn & BXE_PMF_LINK_ASSERT(sc)) { 7986 7987 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 7988 bxe_read_mf_cfg(sc); 7989 sc->devinfo.mf_info.mf_config[SC_VN(sc)] = 7990 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 7991 val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status); 7992 7993 if (val & DRV_STATUS_DCC_EVENT_MASK) 7994 bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK)); 7995 7996 if (val & DRV_STATUS_SET_MF_BW) 7997 bxe_set_mf_bw(sc); 7998 7999 if (val & DRV_STATUS_DRV_INFO_REQ) 8000 bxe_handle_drv_info_req(sc); 8001 8002 if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF)) 8003 bxe_pmf_update(sc); 8004 8005 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS) 8006 bxe_handle_eee_event(sc); 8007 8008 if (sc->link_vars.periodic_flags & 8009 ELINK_PERIODIC_FLAGS_LINK_EVENT) { 8010 /* sync with link */ 8011 bxe_acquire_phy_lock(sc); 8012 sc->link_vars.periodic_flags &= 8013 ~ELINK_PERIODIC_FLAGS_LINK_EVENT; 8014 bxe_release_phy_lock(sc); 8015 if (IS_MF(sc)) 8016 ; // XXX bxe_link_sync_notify(sc); 8017 bxe_link_report(sc); 8018 } 8019 8020 /* 8021 * Always call it here: bxe_link_report() will 8022 * prevent the link indication duplication. 8023 */ 8024 bxe_link_status_update(sc); 8025 8026 } else if (attn & BXE_MC_ASSERT_BITS) { 8027 8028 BLOGE(sc, "MC assert!\n"); 8029 bxe_mc_assert(sc); 8030 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0); 8031 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0); 8032 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0); 8033 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0); 8034 bxe_int_disable(sc); 8035 BXE_SET_ERROR_BIT(sc, BXE_ERR_MC_ASSERT); 8036 taskqueue_enqueue_timeout(taskqueue_thread, 8037 &sc->sp_err_timeout_task, hz/10); 8038 8039 } else if (attn & BXE_MCP_ASSERT) { 8040 8041 BLOGE(sc, "MCP assert!\n"); 8042 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0); 8043 BXE_SET_ERROR_BIT(sc, BXE_ERR_MCP_ASSERT); 8044 taskqueue_enqueue_timeout(taskqueue_thread, 8045 &sc->sp_err_timeout_task, hz/10); 8046 bxe_int_disable(sc); /*avoid repetive assert alert */ 8047 8048 8049 } else { 8050 BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn); 8051 } 8052 } 8053 8054 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) { 8055 BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn); 8056 if (attn & BXE_GRC_TIMEOUT) { 8057 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN); 8058 BLOGE(sc, "GRC time-out 0x%08x\n", val); 8059 } 8060 if (attn & BXE_GRC_RSV) { 8061 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN); 8062 BLOGE(sc, "GRC reserved 0x%08x\n", val); 8063 } 8064 REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff); 8065 } 8066 } 8067 8068 static void 8069 bxe_attn_int_deasserted2(struct bxe_softc *sc, 8070 uint32_t attn) 8071 { 8072 int port = SC_PORT(sc); 8073 int reg_offset; 8074 uint32_t val0, mask0, val1, mask1; 8075 uint32_t val; 8076 boolean_t err_flg = FALSE; 8077 8078 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) { 8079 val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR); 8080 BLOGE(sc, "CFC hw attention 0x%08x\n", val); 8081 /* CFC error attention */ 8082 if (val & 0x2) { 8083 BLOGE(sc, "FATAL error from CFC\n"); 8084 err_flg = TRUE; 8085 } 8086 } 8087 8088 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) { 8089 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0); 8090 BLOGE(sc, "PXP hw attention-0 0x%08x\n", val); 8091 /* RQ_USDMDP_FIFO_OVERFLOW */ 8092 if (val & 0x18000) { 8093 BLOGE(sc, "FATAL error from PXP\n"); 8094 err_flg = TRUE; 8095 } 8096 8097 if (!CHIP_IS_E1x(sc)) { 8098 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1); 8099 BLOGE(sc, "PXP hw attention-1 0x%08x\n", val); 8100 err_flg = TRUE; 8101 } 8102 } 8103 8104 #define PXP2_EOP_ERROR_BIT PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR 8105 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT 8106 8107 if (attn & AEU_PXP2_HW_INT_BIT) { 8108 /* CQ47854 workaround do not panic on 8109 * PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR 8110 */ 8111 if (!CHIP_IS_E1x(sc)) { 8112 mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0); 8113 val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1); 8114 mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1); 8115 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0); 8116 /* 8117 * If the only PXP2_EOP_ERROR_BIT is set in 8118 * STS0 and STS1 - clear it 8119 * 8120 * probably we lose additional attentions between 8121 * STS0 and STS_CLR0, in this case user will not 8122 * be notified about them 8123 */ 8124 if (val0 & mask0 & PXP2_EOP_ERROR_BIT && 8125 !(val1 & mask1)) 8126 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); 8127 8128 /* print the register, since no one can restore it */ 8129 BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0); 8130 8131 /* 8132 * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR 8133 * then notify 8134 */ 8135 if (val0 & PXP2_EOP_ERROR_BIT) { 8136 BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n"); 8137 err_flg = TRUE; 8138 8139 /* 8140 * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is 8141 * set then clear attention from PXP2 block without panic 8142 */ 8143 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) && 8144 ((val1 & mask1) == 0)) 8145 attn &= ~AEU_PXP2_HW_INT_BIT; 8146 } 8147 } 8148 } 8149 8150 if (attn & HW_INTERRUT_ASSERT_SET_2) { 8151 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 : 8152 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2); 8153 8154 val = REG_RD(sc, reg_offset); 8155 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2); 8156 REG_WR(sc, reg_offset, val); 8157 8158 BLOGE(sc, "FATAL HW block attention set2 0x%x\n", 8159 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2)); 8160 err_flg = TRUE; 8161 bxe_panic(sc, ("HW block attention set2\n")); 8162 } 8163 if(err_flg) { 8164 BXE_SET_ERROR_BIT(sc, BXE_ERR_GLOBAL); 8165 taskqueue_enqueue_timeout(taskqueue_thread, 8166 &sc->sp_err_timeout_task, hz/10); 8167 } 8168 8169 } 8170 8171 static void 8172 bxe_attn_int_deasserted1(struct bxe_softc *sc, 8173 uint32_t attn) 8174 { 8175 int port = SC_PORT(sc); 8176 int reg_offset; 8177 uint32_t val; 8178 boolean_t err_flg = FALSE; 8179 8180 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) { 8181 val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR); 8182 BLOGE(sc, "DB hw attention 0x%08x\n", val); 8183 /* DORQ discard attention */ 8184 if (val & 0x2) { 8185 BLOGE(sc, "FATAL error from DORQ\n"); 8186 err_flg = TRUE; 8187 } 8188 } 8189 8190 if (attn & HW_INTERRUT_ASSERT_SET_1) { 8191 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 : 8192 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1); 8193 8194 val = REG_RD(sc, reg_offset); 8195 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1); 8196 REG_WR(sc, reg_offset, val); 8197 8198 BLOGE(sc, "FATAL HW block attention set1 0x%08x\n", 8199 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1)); 8200 err_flg = TRUE; 8201 bxe_panic(sc, ("HW block attention set1\n")); 8202 } 8203 if(err_flg) { 8204 BXE_SET_ERROR_BIT(sc, BXE_ERR_MISC); 8205 taskqueue_enqueue_timeout(taskqueue_thread, 8206 &sc->sp_err_timeout_task, hz/10); 8207 } 8208 8209 } 8210 8211 static void 8212 bxe_attn_int_deasserted0(struct bxe_softc *sc, 8213 uint32_t attn) 8214 { 8215 int port = SC_PORT(sc); 8216 int reg_offset; 8217 uint32_t val; 8218 8219 reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 8220 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; 8221 8222 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) { 8223 val = REG_RD(sc, reg_offset); 8224 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5; 8225 REG_WR(sc, reg_offset, val); 8226 8227 BLOGW(sc, "SPIO5 hw attention\n"); 8228 8229 /* Fan failure attention */ 8230 elink_hw_reset_phy(&sc->link_params); 8231 bxe_fan_failure(sc); 8232 } 8233 8234 if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) { 8235 bxe_acquire_phy_lock(sc); 8236 elink_handle_module_detect_int(&sc->link_params); 8237 bxe_release_phy_lock(sc); 8238 } 8239 8240 if (attn & HW_INTERRUT_ASSERT_SET_0) { 8241 val = REG_RD(sc, reg_offset); 8242 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0); 8243 REG_WR(sc, reg_offset, val); 8244 8245 8246 BXE_SET_ERROR_BIT(sc, BXE_ERR_MISC); 8247 taskqueue_enqueue_timeout(taskqueue_thread, 8248 &sc->sp_err_timeout_task, hz/10); 8249 8250 bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n", 8251 (attn & HW_INTERRUT_ASSERT_SET_0))); 8252 } 8253 } 8254 8255 static void 8256 bxe_attn_int_deasserted(struct bxe_softc *sc, 8257 uint32_t deasserted) 8258 { 8259 struct attn_route attn; 8260 struct attn_route *group_mask; 8261 int port = SC_PORT(sc); 8262 int index; 8263 uint32_t reg_addr; 8264 uint32_t val; 8265 uint32_t aeu_mask; 8266 uint8_t global = FALSE; 8267 8268 /* 8269 * Need to take HW lock because MCP or other port might also 8270 * try to handle this event. 8271 */ 8272 bxe_acquire_alr(sc); 8273 8274 if (bxe_chk_parity_attn(sc, &global, TRUE)) { 8275 /* XXX 8276 * In case of parity errors don't handle attentions so that 8277 * other function would "see" parity errors. 8278 */ 8279 // XXX schedule a recovery task... 8280 /* disable HW interrupts */ 8281 bxe_int_disable(sc); 8282 BXE_SET_ERROR_BIT(sc, BXE_ERR_PARITY); 8283 taskqueue_enqueue_timeout(taskqueue_thread, 8284 &sc->sp_err_timeout_task, hz/10); 8285 bxe_release_alr(sc); 8286 return; 8287 } 8288 8289 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 8290 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 8291 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 8292 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 8293 if (!CHIP_IS_E1x(sc)) { 8294 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 8295 } else { 8296 attn.sig[4] = 0; 8297 } 8298 8299 BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", 8300 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]); 8301 8302 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 8303 if (deasserted & (1 << index)) { 8304 group_mask = &sc->attn_group[index]; 8305 8306 BLOGD(sc, DBG_INTR, 8307 "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index, 8308 group_mask->sig[0], group_mask->sig[1], 8309 group_mask->sig[2], group_mask->sig[3], 8310 group_mask->sig[4]); 8311 8312 bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]); 8313 bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]); 8314 bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]); 8315 bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]); 8316 bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]); 8317 } 8318 } 8319 8320 bxe_release_alr(sc); 8321 8322 if (sc->devinfo.int_block == INT_BLOCK_HC) { 8323 reg_addr = (HC_REG_COMMAND_REG + port*32 + 8324 COMMAND_REG_ATTN_BITS_CLR); 8325 } else { 8326 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8); 8327 } 8328 8329 val = ~deasserted; 8330 BLOGD(sc, DBG_INTR, 8331 "about to mask 0x%08x at %s addr 0x%08x\n", val, 8332 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 8333 REG_WR(sc, reg_addr, val); 8334 8335 if (~sc->attn_state & deasserted) { 8336 BLOGE(sc, "IGU error\n"); 8337 } 8338 8339 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 8340 MISC_REG_AEU_MASK_ATTN_FUNC_0; 8341 8342 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 8343 8344 aeu_mask = REG_RD(sc, reg_addr); 8345 8346 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n", 8347 aeu_mask, deasserted); 8348 aeu_mask |= (deasserted & 0x3ff); 8349 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); 8350 8351 REG_WR(sc, reg_addr, aeu_mask); 8352 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 8353 8354 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); 8355 sc->attn_state &= ~deasserted; 8356 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); 8357 } 8358 8359 static void 8360 bxe_attn_int(struct bxe_softc *sc) 8361 { 8362 /* read local copy of bits */ 8363 uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits); 8364 uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack); 8365 uint32_t attn_state = sc->attn_state; 8366 8367 /* look for changed bits */ 8368 uint32_t asserted = attn_bits & ~attn_ack & ~attn_state; 8369 uint32_t deasserted = ~attn_bits & attn_ack & attn_state; 8370 8371 BLOGD(sc, DBG_INTR, 8372 "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n", 8373 attn_bits, attn_ack, asserted, deasserted); 8374 8375 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) { 8376 BLOGE(sc, "BAD attention state\n"); 8377 } 8378 8379 /* handle bits that were raised */ 8380 if (asserted) { 8381 bxe_attn_int_asserted(sc, asserted); 8382 } 8383 8384 if (deasserted) { 8385 bxe_attn_int_deasserted(sc, deasserted); 8386 } 8387 } 8388 8389 static uint16_t 8390 bxe_update_dsb_idx(struct bxe_softc *sc) 8391 { 8392 struct host_sp_status_block *def_sb = sc->def_sb; 8393 uint16_t rc = 0; 8394 8395 mb(); /* status block is written to by the chip */ 8396 8397 if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) { 8398 sc->def_att_idx = def_sb->atten_status_block.attn_bits_index; 8399 rc |= BXE_DEF_SB_ATT_IDX; 8400 } 8401 8402 if (sc->def_idx != def_sb->sp_sb.running_index) { 8403 sc->def_idx = def_sb->sp_sb.running_index; 8404 rc |= BXE_DEF_SB_IDX; 8405 } 8406 8407 mb(); 8408 8409 return (rc); 8410 } 8411 8412 static inline struct ecore_queue_sp_obj * 8413 bxe_cid_to_q_obj(struct bxe_softc *sc, 8414 uint32_t cid) 8415 { 8416 BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid); 8417 return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj); 8418 } 8419 8420 static void 8421 bxe_handle_mcast_eqe(struct bxe_softc *sc) 8422 { 8423 struct ecore_mcast_ramrod_params rparam; 8424 int rc; 8425 8426 memset(&rparam, 0, sizeof(rparam)); 8427 8428 rparam.mcast_obj = &sc->mcast_obj; 8429 8430 BXE_MCAST_LOCK(sc); 8431 8432 /* clear pending state for the last command */ 8433 sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw); 8434 8435 /* if there are pending mcast commands - send them */ 8436 if (sc->mcast_obj.check_pending(&sc->mcast_obj)) { 8437 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 8438 if (rc < 0) { 8439 BLOGD(sc, DBG_SP, 8440 "ERROR: Failed to send pending mcast commands (%d)\n", rc); 8441 } 8442 } 8443 8444 BXE_MCAST_UNLOCK(sc); 8445 } 8446 8447 static void 8448 bxe_handle_classification_eqe(struct bxe_softc *sc, 8449 union event_ring_elem *elem) 8450 { 8451 unsigned long ramrod_flags = 0; 8452 int rc = 0; 8453 uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; 8454 struct ecore_vlan_mac_obj *vlan_mac_obj; 8455 8456 /* always push next commands out, don't wait here */ 8457 bit_set(&ramrod_flags, RAMROD_CONT); 8458 8459 switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) { 8460 case ECORE_FILTER_MAC_PENDING: 8461 BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n"); 8462 vlan_mac_obj = &sc->sp_objs[cid].mac_obj; 8463 break; 8464 8465 case ECORE_FILTER_MCAST_PENDING: 8466 BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n"); 8467 /* 8468 * This is only relevant for 57710 where multicast MACs are 8469 * configured as unicast MACs using the same ramrod. 8470 */ 8471 bxe_handle_mcast_eqe(sc); 8472 return; 8473 8474 default: 8475 BLOGE(sc, "Unsupported classification command: %d\n", 8476 elem->message.data.eth_event.echo); 8477 return; 8478 } 8479 8480 rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags); 8481 8482 if (rc < 0) { 8483 BLOGE(sc, "Failed to schedule new commands (%d)\n", rc); 8484 } else if (rc > 0) { 8485 BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n"); 8486 } 8487 } 8488 8489 static void 8490 bxe_handle_rx_mode_eqe(struct bxe_softc *sc, 8491 union event_ring_elem *elem) 8492 { 8493 bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); 8494 8495 /* send rx_mode command again if was requested */ 8496 if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED, 8497 &sc->sp_state)) { 8498 bxe_set_storm_rx_mode(sc); 8499 } 8500 } 8501 8502 static void 8503 bxe_update_eq_prod(struct bxe_softc *sc, 8504 uint16_t prod) 8505 { 8506 storm_memset_eq_prod(sc, prod, SC_FUNC(sc)); 8507 wmb(); /* keep prod updates ordered */ 8508 } 8509 8510 static void 8511 bxe_eq_int(struct bxe_softc *sc) 8512 { 8513 uint16_t hw_cons, sw_cons, sw_prod; 8514 union event_ring_elem *elem; 8515 uint8_t echo; 8516 uint32_t cid; 8517 uint8_t opcode; 8518 int spqe_cnt = 0; 8519 struct ecore_queue_sp_obj *q_obj; 8520 struct ecore_func_sp_obj *f_obj = &sc->func_obj; 8521 struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw; 8522 8523 hw_cons = le16toh(*sc->eq_cons_sb); 8524 8525 /* 8526 * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256. 8527 * when we get to the next-page we need to adjust so the loop 8528 * condition below will be met. The next element is the size of a 8529 * regular element and hence incrementing by 1 8530 */ 8531 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) { 8532 hw_cons++; 8533 } 8534 8535 /* 8536 * This function may never run in parallel with itself for a 8537 * specific sc and no need for a read memory barrier here. 8538 */ 8539 sw_cons = sc->eq_cons; 8540 sw_prod = sc->eq_prod; 8541 8542 BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n", 8543 hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left)); 8544 8545 for (; 8546 sw_cons != hw_cons; 8547 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) { 8548 8549 elem = &sc->eq[EQ_DESC(sw_cons)]; 8550 8551 /* elem CID originates from FW, actually LE */ 8552 cid = SW_CID(elem->message.data.cfc_del_event.cid); 8553 opcode = elem->message.opcode; 8554 8555 /* handle eq element */ 8556 switch (opcode) { 8557 8558 case EVENT_RING_OPCODE_STAT_QUERY: 8559 BLOGD(sc, DBG_SP, "got statistics completion event %d\n", 8560 sc->stats_comp++); 8561 /* nothing to do with stats comp */ 8562 goto next_spqe; 8563 8564 case EVENT_RING_OPCODE_CFC_DEL: 8565 /* handle according to cid range */ 8566 /* we may want to verify here that the sc state is HALTING */ 8567 BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid); 8568 q_obj = bxe_cid_to_q_obj(sc, cid); 8569 if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) { 8570 break; 8571 } 8572 goto next_spqe; 8573 8574 case EVENT_RING_OPCODE_STOP_TRAFFIC: 8575 BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n"); 8576 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) { 8577 break; 8578 } 8579 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED); 8580 goto next_spqe; 8581 8582 case EVENT_RING_OPCODE_START_TRAFFIC: 8583 BLOGD(sc, DBG_SP, "got START TRAFFIC\n"); 8584 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) { 8585 break; 8586 } 8587 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED); 8588 goto next_spqe; 8589 8590 case EVENT_RING_OPCODE_FUNCTION_UPDATE: 8591 echo = elem->message.data.function_update_event.echo; 8592 if (echo == SWITCH_UPDATE) { 8593 BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n"); 8594 if (f_obj->complete_cmd(sc, f_obj, 8595 ECORE_F_CMD_SWITCH_UPDATE)) { 8596 break; 8597 } 8598 } 8599 else { 8600 BLOGD(sc, DBG_SP, 8601 "AFEX: ramrod completed FUNCTION_UPDATE\n"); 8602 } 8603 goto next_spqe; 8604 8605 case EVENT_RING_OPCODE_FORWARD_SETUP: 8606 q_obj = &bxe_fwd_sp_obj(sc, q_obj); 8607 if (q_obj->complete_cmd(sc, q_obj, 8608 ECORE_Q_CMD_SETUP_TX_ONLY)) { 8609 break; 8610 } 8611 goto next_spqe; 8612 8613 case EVENT_RING_OPCODE_FUNCTION_START: 8614 BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n"); 8615 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) { 8616 break; 8617 } 8618 goto next_spqe; 8619 8620 case EVENT_RING_OPCODE_FUNCTION_STOP: 8621 BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n"); 8622 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) { 8623 break; 8624 } 8625 goto next_spqe; 8626 } 8627 8628 switch (opcode | sc->state) { 8629 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN): 8630 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT): 8631 cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; 8632 BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid); 8633 rss_raw->clear_pending(rss_raw); 8634 break; 8635 8636 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN): 8637 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG): 8638 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT): 8639 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN): 8640 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG): 8641 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8642 BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n"); 8643 bxe_handle_classification_eqe(sc, elem); 8644 break; 8645 8646 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN): 8647 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG): 8648 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8649 BLOGD(sc, DBG_SP, "got mcast ramrod\n"); 8650 bxe_handle_mcast_eqe(sc); 8651 break; 8652 8653 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN): 8654 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG): 8655 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8656 BLOGD(sc, DBG_SP, "got rx_mode ramrod\n"); 8657 bxe_handle_rx_mode_eqe(sc, elem); 8658 break; 8659 8660 default: 8661 /* unknown event log error and continue */ 8662 BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n", 8663 elem->message.opcode, sc->state); 8664 } 8665 8666 next_spqe: 8667 spqe_cnt++; 8668 } /* for */ 8669 8670 mb(); 8671 atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt); 8672 8673 sc->eq_cons = sw_cons; 8674 sc->eq_prod = sw_prod; 8675 8676 /* make sure that above mem writes were issued towards the memory */ 8677 wmb(); 8678 8679 /* update producer */ 8680 bxe_update_eq_prod(sc, sc->eq_prod); 8681 } 8682 8683 static void 8684 bxe_handle_sp_tq(void *context, 8685 int pending) 8686 { 8687 struct bxe_softc *sc = (struct bxe_softc *)context; 8688 uint16_t status; 8689 8690 BLOGD(sc, DBG_SP, "---> SP TASK <---\n"); 8691 8692 /* what work needs to be performed? */ 8693 status = bxe_update_dsb_idx(sc); 8694 8695 BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status); 8696 8697 /* HW attentions */ 8698 if (status & BXE_DEF_SB_ATT_IDX) { 8699 BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n"); 8700 bxe_attn_int(sc); 8701 status &= ~BXE_DEF_SB_ATT_IDX; 8702 } 8703 8704 /* SP events: STAT_QUERY and others */ 8705 if (status & BXE_DEF_SB_IDX) { 8706 /* handle EQ completions */ 8707 BLOGD(sc, DBG_SP, "---> EQ INTR <---\n"); 8708 bxe_eq_int(sc); 8709 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 8710 le16toh(sc->def_idx), IGU_INT_NOP, 1); 8711 status &= ~BXE_DEF_SB_IDX; 8712 } 8713 8714 /* if status is non zero then something went wrong */ 8715 if (__predict_false(status)) { 8716 BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status); 8717 } 8718 8719 /* ack status block only if something was actually handled */ 8720 bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID, 8721 le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1); 8722 8723 /* 8724 * Must be called after the EQ processing (since eq leads to sriov 8725 * ramrod completion flows). 8726 * This flow may have been scheduled by the arrival of a ramrod 8727 * completion, or by the sriov code rescheduling itself. 8728 */ 8729 // XXX bxe_iov_sp_task(sc); 8730 8731 } 8732 8733 static void 8734 bxe_handle_fp_tq(void *context, 8735 int pending) 8736 { 8737 struct bxe_fastpath *fp = (struct bxe_fastpath *)context; 8738 struct bxe_softc *sc = fp->sc; 8739 uint8_t more_tx = FALSE; 8740 uint8_t more_rx = FALSE; 8741 8742 BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index); 8743 8744 /* XXX 8745 * IFF_DRV_RUNNING state can't be checked here since we process 8746 * slowpath events on a client queue during setup. Instead 8747 * we need to add a "process/continue" flag here that the driver 8748 * can use to tell the task here not to do anything. 8749 */ 8750 #if 0 8751 if (!(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { 8752 return; 8753 } 8754 #endif 8755 8756 /* update the fastpath index */ 8757 bxe_update_fp_sb_idx(fp); 8758 8759 /* XXX add loop here if ever support multiple tx CoS */ 8760 /* fp->txdata[cos] */ 8761 if (bxe_has_tx_work(fp)) { 8762 BXE_FP_TX_LOCK(fp); 8763 more_tx = bxe_txeof(sc, fp); 8764 BXE_FP_TX_UNLOCK(fp); 8765 } 8766 8767 if (bxe_has_rx_work(fp)) { 8768 more_rx = bxe_rxeof(sc, fp); 8769 } 8770 8771 if (more_rx /*|| more_tx*/) { 8772 /* still more work to do */ 8773 taskqueue_enqueue(fp->tq, &fp->tq_task); 8774 return; 8775 } 8776 8777 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 8778 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); 8779 } 8780 8781 static void 8782 bxe_task_fp(struct bxe_fastpath *fp) 8783 { 8784 struct bxe_softc *sc = fp->sc; 8785 uint8_t more_tx = FALSE; 8786 uint8_t more_rx = FALSE; 8787 8788 BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index); 8789 8790 /* update the fastpath index */ 8791 bxe_update_fp_sb_idx(fp); 8792 8793 /* XXX add loop here if ever support multiple tx CoS */ 8794 /* fp->txdata[cos] */ 8795 if (bxe_has_tx_work(fp)) { 8796 BXE_FP_TX_LOCK(fp); 8797 more_tx = bxe_txeof(sc, fp); 8798 BXE_FP_TX_UNLOCK(fp); 8799 } 8800 8801 if (bxe_has_rx_work(fp)) { 8802 more_rx = bxe_rxeof(sc, fp); 8803 } 8804 8805 if (more_rx /*|| more_tx*/) { 8806 /* still more work to do, bail out if this ISR and process later */ 8807 taskqueue_enqueue(fp->tq, &fp->tq_task); 8808 return; 8809 } 8810 8811 /* 8812 * Here we write the fastpath index taken before doing any tx or rx work. 8813 * It is very well possible other hw events occurred up to this point and 8814 * they were actually processed accordingly above. Since we're going to 8815 * write an older fastpath index, an interrupt is coming which we might 8816 * not do any work in. 8817 */ 8818 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 8819 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); 8820 } 8821 8822 /* 8823 * Legacy interrupt entry point. 8824 * 8825 * Verifies that the controller generated the interrupt and 8826 * then calls a separate routine to handle the various 8827 * interrupt causes: link, RX, and TX. 8828 */ 8829 static void 8830 bxe_intr_legacy(void *xsc) 8831 { 8832 struct bxe_softc *sc = (struct bxe_softc *)xsc; 8833 struct bxe_fastpath *fp; 8834 uint16_t status, mask; 8835 int i; 8836 8837 BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n"); 8838 8839 /* 8840 * 0 for ustorm, 1 for cstorm 8841 * the bits returned from ack_int() are 0-15 8842 * bit 0 = attention status block 8843 * bit 1 = fast path status block 8844 * a mask of 0x2 or more = tx/rx event 8845 * a mask of 1 = slow path event 8846 */ 8847 8848 status = bxe_ack_int(sc); 8849 8850 /* the interrupt is not for us */ 8851 if (__predict_false(status == 0)) { 8852 BLOGD(sc, DBG_INTR, "Not our interrupt!\n"); 8853 return; 8854 } 8855 8856 BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status); 8857 8858 FOR_EACH_ETH_QUEUE(sc, i) { 8859 fp = &sc->fp[i]; 8860 mask = (0x2 << (fp->index + CNIC_SUPPORT(sc))); 8861 if (status & mask) { 8862 /* acknowledge and disable further fastpath interrupts */ 8863 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8864 bxe_task_fp(fp); 8865 status &= ~mask; 8866 } 8867 } 8868 8869 if (__predict_false(status & 0x1)) { 8870 /* acknowledge and disable further slowpath interrupts */ 8871 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8872 8873 /* schedule slowpath handler */ 8874 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task); 8875 8876 status &= ~0x1; 8877 } 8878 8879 if (__predict_false(status)) { 8880 BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status); 8881 } 8882 } 8883 8884 /* slowpath interrupt entry point */ 8885 static void 8886 bxe_intr_sp(void *xsc) 8887 { 8888 struct bxe_softc *sc = (struct bxe_softc *)xsc; 8889 8890 BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n"); 8891 8892 /* acknowledge and disable further slowpath interrupts */ 8893 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8894 8895 /* schedule slowpath handler */ 8896 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task); 8897 } 8898 8899 /* fastpath interrupt entry point */ 8900 static void 8901 bxe_intr_fp(void *xfp) 8902 { 8903 struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp; 8904 struct bxe_softc *sc = fp->sc; 8905 8906 BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index); 8907 8908 BLOGD(sc, DBG_INTR, 8909 "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n", 8910 curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id); 8911 8912 /* acknowledge and disable further fastpath interrupts */ 8913 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8914 8915 bxe_task_fp(fp); 8916 } 8917 8918 /* Release all interrupts allocated by the driver. */ 8919 static void 8920 bxe_interrupt_free(struct bxe_softc *sc) 8921 { 8922 int i; 8923 8924 switch (sc->interrupt_mode) { 8925 case INTR_MODE_INTX: 8926 BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n"); 8927 if (sc->intr[0].resource != NULL) { 8928 bus_release_resource(sc->dev, 8929 SYS_RES_IRQ, 8930 sc->intr[0].rid, 8931 sc->intr[0].resource); 8932 } 8933 break; 8934 case INTR_MODE_MSI: 8935 for (i = 0; i < sc->intr_count; i++) { 8936 BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i); 8937 if (sc->intr[i].resource && sc->intr[i].rid) { 8938 bus_release_resource(sc->dev, 8939 SYS_RES_IRQ, 8940 sc->intr[i].rid, 8941 sc->intr[i].resource); 8942 } 8943 } 8944 pci_release_msi(sc->dev); 8945 break; 8946 case INTR_MODE_MSIX: 8947 for (i = 0; i < sc->intr_count; i++) { 8948 BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i); 8949 if (sc->intr[i].resource && sc->intr[i].rid) { 8950 bus_release_resource(sc->dev, 8951 SYS_RES_IRQ, 8952 sc->intr[i].rid, 8953 sc->intr[i].resource); 8954 } 8955 } 8956 pci_release_msi(sc->dev); 8957 break; 8958 default: 8959 /* nothing to do as initial allocation failed */ 8960 break; 8961 } 8962 } 8963 8964 /* 8965 * This function determines and allocates the appropriate 8966 * interrupt based on system capabilites and user request. 8967 * 8968 * The user may force a particular interrupt mode, specify 8969 * the number of receive queues, specify the method for 8970 * distribuitng received frames to receive queues, or use 8971 * the default settings which will automatically select the 8972 * best supported combination. In addition, the OS may or 8973 * may not support certain combinations of these settings. 8974 * This routine attempts to reconcile the settings requested 8975 * by the user with the capabilites available from the system 8976 * to select the optimal combination of features. 8977 * 8978 * Returns: 8979 * 0 = Success, !0 = Failure. 8980 */ 8981 static int 8982 bxe_interrupt_alloc(struct bxe_softc *sc) 8983 { 8984 int msix_count = 0; 8985 int msi_count = 0; 8986 int num_requested = 0; 8987 int num_allocated = 0; 8988 int rid, i, j; 8989 int rc; 8990 8991 /* get the number of available MSI/MSI-X interrupts from the OS */ 8992 if (sc->interrupt_mode > 0) { 8993 if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) { 8994 msix_count = pci_msix_count(sc->dev); 8995 } 8996 8997 if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) { 8998 msi_count = pci_msi_count(sc->dev); 8999 } 9000 9001 BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n", 9002 msi_count, msix_count); 9003 } 9004 9005 do { /* try allocating MSI-X interrupt resources (at least 2) */ 9006 if (sc->interrupt_mode != INTR_MODE_MSIX) { 9007 break; 9008 } 9009 9010 if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) || 9011 (msix_count < 2)) { 9012 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9013 break; 9014 } 9015 9016 /* ask for the necessary number of MSI-X vectors */ 9017 num_requested = min((sc->num_queues + 1), msix_count); 9018 9019 BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested); 9020 9021 num_allocated = num_requested; 9022 if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) { 9023 BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc); 9024 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9025 break; 9026 } 9027 9028 if (num_allocated < 2) { /* possible? */ 9029 BLOGE(sc, "MSI-X allocation less than 2!\n"); 9030 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9031 pci_release_msi(sc->dev); 9032 break; 9033 } 9034 9035 BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n", 9036 num_requested, num_allocated); 9037 9038 /* best effort so use the number of vectors allocated to us */ 9039 sc->intr_count = num_allocated; 9040 sc->num_queues = num_allocated - 1; 9041 9042 rid = 1; /* initial resource identifier */ 9043 9044 /* allocate the MSI-X vectors */ 9045 for (i = 0; i < num_allocated; i++) { 9046 sc->intr[i].rid = (rid + i); 9047 9048 if ((sc->intr[i].resource = 9049 bus_alloc_resource_any(sc->dev, 9050 SYS_RES_IRQ, 9051 &sc->intr[i].rid, 9052 RF_ACTIVE)) == NULL) { 9053 BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n", 9054 i, (rid + i)); 9055 9056 for (j = (i - 1); j >= 0; j--) { 9057 bus_release_resource(sc->dev, 9058 SYS_RES_IRQ, 9059 sc->intr[j].rid, 9060 sc->intr[j].resource); 9061 } 9062 9063 sc->intr_count = 0; 9064 sc->num_queues = 0; 9065 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9066 pci_release_msi(sc->dev); 9067 break; 9068 } 9069 9070 BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i)); 9071 } 9072 } while (0); 9073 9074 do { /* try allocating MSI vector resources (at least 2) */ 9075 if (sc->interrupt_mode != INTR_MODE_MSI) { 9076 break; 9077 } 9078 9079 if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) || 9080 (msi_count < 1)) { 9081 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9082 break; 9083 } 9084 9085 /* ask for a single MSI vector */ 9086 num_requested = 1; 9087 9088 BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested); 9089 9090 num_allocated = num_requested; 9091 if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) { 9092 BLOGE(sc, "MSI alloc failed (%d)!\n", rc); 9093 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9094 break; 9095 } 9096 9097 if (num_allocated != 1) { /* possible? */ 9098 BLOGE(sc, "MSI allocation is not 1!\n"); 9099 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9100 pci_release_msi(sc->dev); 9101 break; 9102 } 9103 9104 BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n", 9105 num_requested, num_allocated); 9106 9107 /* best effort so use the number of vectors allocated to us */ 9108 sc->intr_count = num_allocated; 9109 sc->num_queues = num_allocated; 9110 9111 rid = 1; /* initial resource identifier */ 9112 9113 sc->intr[0].rid = rid; 9114 9115 if ((sc->intr[0].resource = 9116 bus_alloc_resource_any(sc->dev, 9117 SYS_RES_IRQ, 9118 &sc->intr[0].rid, 9119 RF_ACTIVE)) == NULL) { 9120 BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid); 9121 sc->intr_count = 0; 9122 sc->num_queues = 0; 9123 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9124 pci_release_msi(sc->dev); 9125 break; 9126 } 9127 9128 BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid); 9129 } while (0); 9130 9131 do { /* try allocating INTx vector resources */ 9132 if (sc->interrupt_mode != INTR_MODE_INTX) { 9133 break; 9134 } 9135 9136 BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n"); 9137 9138 /* only one vector for INTx */ 9139 sc->intr_count = 1; 9140 sc->num_queues = 1; 9141 9142 rid = 0; /* initial resource identifier */ 9143 9144 sc->intr[0].rid = rid; 9145 9146 if ((sc->intr[0].resource = 9147 bus_alloc_resource_any(sc->dev, 9148 SYS_RES_IRQ, 9149 &sc->intr[0].rid, 9150 (RF_ACTIVE | RF_SHAREABLE))) == NULL) { 9151 BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid); 9152 sc->intr_count = 0; 9153 sc->num_queues = 0; 9154 sc->interrupt_mode = -1; /* Failed! */ 9155 break; 9156 } 9157 9158 BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid); 9159 } while (0); 9160 9161 if (sc->interrupt_mode == -1) { 9162 BLOGE(sc, "Interrupt Allocation: FAILED!!!\n"); 9163 rc = 1; 9164 } else { 9165 BLOGD(sc, DBG_LOAD, 9166 "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n", 9167 sc->interrupt_mode, sc->num_queues); 9168 rc = 0; 9169 } 9170 9171 return (rc); 9172 } 9173 9174 static void 9175 bxe_interrupt_detach(struct bxe_softc *sc) 9176 { 9177 struct bxe_fastpath *fp; 9178 int i; 9179 9180 /* release interrupt resources */ 9181 for (i = 0; i < sc->intr_count; i++) { 9182 if (sc->intr[i].resource && sc->intr[i].tag) { 9183 BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i); 9184 bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag); 9185 } 9186 } 9187 9188 for (i = 0; i < sc->num_queues; i++) { 9189 fp = &sc->fp[i]; 9190 if (fp->tq) { 9191 taskqueue_drain(fp->tq, &fp->tq_task); 9192 taskqueue_drain(fp->tq, &fp->tx_task); 9193 while (taskqueue_cancel_timeout(fp->tq, &fp->tx_timeout_task, 9194 NULL)) 9195 taskqueue_drain_timeout(fp->tq, &fp->tx_timeout_task); 9196 } 9197 9198 for (i = 0; i < sc->num_queues; i++) { 9199 fp = &sc->fp[i]; 9200 if (fp->tq != NULL) { 9201 taskqueue_free(fp->tq); 9202 fp->tq = NULL; 9203 } 9204 } 9205 } 9206 9207 if (sc->sp_tq) { 9208 taskqueue_drain(sc->sp_tq, &sc->sp_tq_task); 9209 taskqueue_free(sc->sp_tq); 9210 sc->sp_tq = NULL; 9211 } 9212 } 9213 9214 /* 9215 * Enables interrupts and attach to the ISR. 9216 * 9217 * When using multiple MSI/MSI-X vectors the first vector 9218 * is used for slowpath operations while all remaining 9219 * vectors are used for fastpath operations. If only a 9220 * single MSI/MSI-X vector is used (SINGLE_ISR) then the 9221 * ISR must look for both slowpath and fastpath completions. 9222 */ 9223 static int 9224 bxe_interrupt_attach(struct bxe_softc *sc) 9225 { 9226 struct bxe_fastpath *fp; 9227 int rc = 0; 9228 int i; 9229 9230 snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name), 9231 "bxe%d_sp_tq", sc->unit); 9232 TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc); 9233 sc->sp_tq = taskqueue_create(sc->sp_tq_name, M_NOWAIT, 9234 taskqueue_thread_enqueue, 9235 &sc->sp_tq); 9236 taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */ 9237 "%s", sc->sp_tq_name); 9238 9239 9240 for (i = 0; i < sc->num_queues; i++) { 9241 fp = &sc->fp[i]; 9242 snprintf(fp->tq_name, sizeof(fp->tq_name), 9243 "bxe%d_fp%d_tq", sc->unit, i); 9244 TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp); 9245 TASK_INIT(&fp->tx_task, 0, bxe_tx_mq_start_deferred, fp); 9246 fp->tq = taskqueue_create(fp->tq_name, M_NOWAIT, 9247 taskqueue_thread_enqueue, 9248 &fp->tq); 9249 TIMEOUT_TASK_INIT(fp->tq, &fp->tx_timeout_task, 0, 9250 bxe_tx_mq_start_deferred, fp); 9251 taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */ 9252 "%s", fp->tq_name); 9253 } 9254 9255 /* setup interrupt handlers */ 9256 if (sc->interrupt_mode == INTR_MODE_MSIX) { 9257 BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n"); 9258 9259 /* 9260 * Setup the interrupt handler. Note that we pass the driver instance 9261 * to the interrupt handler for the slowpath. 9262 */ 9263 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9264 (INTR_TYPE_NET | INTR_MPSAFE), 9265 NULL, bxe_intr_sp, sc, 9266 &sc->intr[0].tag)) != 0) { 9267 BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc); 9268 goto bxe_interrupt_attach_exit; 9269 } 9270 9271 bus_describe_intr(sc->dev, sc->intr[0].resource, 9272 sc->intr[0].tag, "sp"); 9273 9274 /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */ 9275 9276 /* initialize the fastpath vectors (note the first was used for sp) */ 9277 for (i = 0; i < sc->num_queues; i++) { 9278 fp = &sc->fp[i]; 9279 BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1)); 9280 9281 /* 9282 * Setup the interrupt handler. Note that we pass the 9283 * fastpath context to the interrupt handler in this 9284 * case. 9285 */ 9286 if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource, 9287 (INTR_TYPE_NET | INTR_MPSAFE), 9288 NULL, bxe_intr_fp, fp, 9289 &sc->intr[i + 1].tag)) != 0) { 9290 BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n", 9291 (i + 1), rc); 9292 goto bxe_interrupt_attach_exit; 9293 } 9294 9295 bus_describe_intr(sc->dev, sc->intr[i + 1].resource, 9296 sc->intr[i + 1].tag, "fp%02d", i); 9297 9298 /* bind the fastpath instance to a cpu */ 9299 if (sc->num_queues > 1) { 9300 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i); 9301 } 9302 9303 fp->state = BXE_FP_STATE_IRQ; 9304 } 9305 } else if (sc->interrupt_mode == INTR_MODE_MSI) { 9306 BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n"); 9307 9308 /* 9309 * Setup the interrupt handler. Note that we pass the 9310 * driver instance to the interrupt handler which 9311 * will handle both the slowpath and fastpath. 9312 */ 9313 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9314 (INTR_TYPE_NET | INTR_MPSAFE), 9315 NULL, bxe_intr_legacy, sc, 9316 &sc->intr[0].tag)) != 0) { 9317 BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc); 9318 goto bxe_interrupt_attach_exit; 9319 } 9320 9321 } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */ 9322 BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n"); 9323 9324 /* 9325 * Setup the interrupt handler. Note that we pass the 9326 * driver instance to the interrupt handler which 9327 * will handle both the slowpath and fastpath. 9328 */ 9329 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9330 (INTR_TYPE_NET | INTR_MPSAFE), 9331 NULL, bxe_intr_legacy, sc, 9332 &sc->intr[0].tag)) != 0) { 9333 BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc); 9334 goto bxe_interrupt_attach_exit; 9335 } 9336 } 9337 9338 bxe_interrupt_attach_exit: 9339 9340 return (rc); 9341 } 9342 9343 static int bxe_init_hw_common_chip(struct bxe_softc *sc); 9344 static int bxe_init_hw_common(struct bxe_softc *sc); 9345 static int bxe_init_hw_port(struct bxe_softc *sc); 9346 static int bxe_init_hw_func(struct bxe_softc *sc); 9347 static void bxe_reset_common(struct bxe_softc *sc); 9348 static void bxe_reset_port(struct bxe_softc *sc); 9349 static void bxe_reset_func(struct bxe_softc *sc); 9350 static int bxe_gunzip_init(struct bxe_softc *sc); 9351 static void bxe_gunzip_end(struct bxe_softc *sc); 9352 static int bxe_init_firmware(struct bxe_softc *sc); 9353 static void bxe_release_firmware(struct bxe_softc *sc); 9354 9355 static struct 9356 ecore_func_sp_drv_ops bxe_func_sp_drv = { 9357 .init_hw_cmn_chip = bxe_init_hw_common_chip, 9358 .init_hw_cmn = bxe_init_hw_common, 9359 .init_hw_port = bxe_init_hw_port, 9360 .init_hw_func = bxe_init_hw_func, 9361 9362 .reset_hw_cmn = bxe_reset_common, 9363 .reset_hw_port = bxe_reset_port, 9364 .reset_hw_func = bxe_reset_func, 9365 9366 .gunzip_init = bxe_gunzip_init, 9367 .gunzip_end = bxe_gunzip_end, 9368 9369 .init_fw = bxe_init_firmware, 9370 .release_fw = bxe_release_firmware, 9371 }; 9372 9373 static void 9374 bxe_init_func_obj(struct bxe_softc *sc) 9375 { 9376 sc->dmae_ready = 0; 9377 9378 ecore_init_func_obj(sc, 9379 &sc->func_obj, 9380 BXE_SP(sc, func_rdata), 9381 BXE_SP_MAPPING(sc, func_rdata), 9382 BXE_SP(sc, func_afex_rdata), 9383 BXE_SP_MAPPING(sc, func_afex_rdata), 9384 &bxe_func_sp_drv); 9385 } 9386 9387 static int 9388 bxe_init_hw(struct bxe_softc *sc, 9389 uint32_t load_code) 9390 { 9391 struct ecore_func_state_params func_params = { NULL }; 9392 int rc; 9393 9394 /* prepare the parameters for function state transitions */ 9395 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); 9396 9397 func_params.f_obj = &sc->func_obj; 9398 func_params.cmd = ECORE_F_CMD_HW_INIT; 9399 9400 func_params.params.hw_init.load_phase = load_code; 9401 9402 /* 9403 * Via a plethora of function pointers, we will eventually reach 9404 * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func(). 9405 */ 9406 rc = ecore_func_state_change(sc, &func_params); 9407 9408 return (rc); 9409 } 9410 9411 static void 9412 bxe_fill(struct bxe_softc *sc, 9413 uint32_t addr, 9414 int fill, 9415 uint32_t len) 9416 { 9417 uint32_t i; 9418 9419 if (!(len % 4) && !(addr % 4)) { 9420 for (i = 0; i < len; i += 4) { 9421 REG_WR(sc, (addr + i), fill); 9422 } 9423 } else { 9424 for (i = 0; i < len; i++) { 9425 REG_WR8(sc, (addr + i), fill); 9426 } 9427 } 9428 } 9429 9430 /* writes FP SP data to FW - data_size in dwords */ 9431 static void 9432 bxe_wr_fp_sb_data(struct bxe_softc *sc, 9433 int fw_sb_id, 9434 uint32_t *sb_data_p, 9435 uint32_t data_size) 9436 { 9437 int index; 9438 9439 for (index = 0; index < data_size; index++) { 9440 REG_WR(sc, 9441 (BAR_CSTRORM_INTMEM + 9442 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) + 9443 (sizeof(uint32_t) * index)), 9444 *(sb_data_p + index)); 9445 } 9446 } 9447 9448 static void 9449 bxe_zero_fp_sb(struct bxe_softc *sc, 9450 int fw_sb_id) 9451 { 9452 struct hc_status_block_data_e2 sb_data_e2; 9453 struct hc_status_block_data_e1x sb_data_e1x; 9454 uint32_t *sb_data_p; 9455 uint32_t data_size = 0; 9456 9457 if (!CHIP_IS_E1x(sc)) { 9458 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 9459 sb_data_e2.common.state = SB_DISABLED; 9460 sb_data_e2.common.p_func.vf_valid = FALSE; 9461 sb_data_p = (uint32_t *)&sb_data_e2; 9462 data_size = (sizeof(struct hc_status_block_data_e2) / 9463 sizeof(uint32_t)); 9464 } else { 9465 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); 9466 sb_data_e1x.common.state = SB_DISABLED; 9467 sb_data_e1x.common.p_func.vf_valid = FALSE; 9468 sb_data_p = (uint32_t *)&sb_data_e1x; 9469 data_size = (sizeof(struct hc_status_block_data_e1x) / 9470 sizeof(uint32_t)); 9471 } 9472 9473 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); 9474 9475 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)), 9476 0, CSTORM_STATUS_BLOCK_SIZE); 9477 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)), 9478 0, CSTORM_SYNC_BLOCK_SIZE); 9479 } 9480 9481 static void 9482 bxe_wr_sp_sb_data(struct bxe_softc *sc, 9483 struct hc_sp_status_block_data *sp_sb_data) 9484 { 9485 int i; 9486 9487 for (i = 0; 9488 i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t)); 9489 i++) { 9490 REG_WR(sc, 9491 (BAR_CSTRORM_INTMEM + 9492 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) + 9493 (i * sizeof(uint32_t))), 9494 *((uint32_t *)sp_sb_data + i)); 9495 } 9496 } 9497 9498 static void 9499 bxe_zero_sp_sb(struct bxe_softc *sc) 9500 { 9501 struct hc_sp_status_block_data sp_sb_data; 9502 9503 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 9504 9505 sp_sb_data.state = SB_DISABLED; 9506 sp_sb_data.p_func.vf_valid = FALSE; 9507 9508 bxe_wr_sp_sb_data(sc, &sp_sb_data); 9509 9510 bxe_fill(sc, 9511 (BAR_CSTRORM_INTMEM + 9512 CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))), 9513 0, CSTORM_SP_STATUS_BLOCK_SIZE); 9514 bxe_fill(sc, 9515 (BAR_CSTRORM_INTMEM + 9516 CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))), 9517 0, CSTORM_SP_SYNC_BLOCK_SIZE); 9518 } 9519 9520 static void 9521 bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, 9522 int igu_sb_id, 9523 int igu_seg_id) 9524 { 9525 hc_sm->igu_sb_id = igu_sb_id; 9526 hc_sm->igu_seg_id = igu_seg_id; 9527 hc_sm->timer_value = 0xFF; 9528 hc_sm->time_to_expire = 0xFFFFFFFF; 9529 } 9530 9531 static void 9532 bxe_map_sb_state_machines(struct hc_index_data *index_data) 9533 { 9534 /* zero out state machine indices */ 9535 9536 /* rx indices */ 9537 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 9538 9539 /* tx indices */ 9540 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 9541 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID; 9542 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID; 9543 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID; 9544 9545 /* map indices */ 9546 9547 /* rx indices */ 9548 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |= 9549 (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9550 9551 /* tx indices */ 9552 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |= 9553 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9554 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |= 9555 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9556 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |= 9557 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9558 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |= 9559 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9560 } 9561 9562 static void 9563 bxe_init_sb(struct bxe_softc *sc, 9564 bus_addr_t busaddr, 9565 int vfid, 9566 uint8_t vf_valid, 9567 int fw_sb_id, 9568 int igu_sb_id) 9569 { 9570 struct hc_status_block_data_e2 sb_data_e2; 9571 struct hc_status_block_data_e1x sb_data_e1x; 9572 struct hc_status_block_sm *hc_sm_p; 9573 uint32_t *sb_data_p; 9574 int igu_seg_id; 9575 int data_size; 9576 9577 if (CHIP_INT_MODE_IS_BC(sc)) { 9578 igu_seg_id = HC_SEG_ACCESS_NORM; 9579 } else { 9580 igu_seg_id = IGU_SEG_ACCESS_NORM; 9581 } 9582 9583 bxe_zero_fp_sb(sc, fw_sb_id); 9584 9585 if (!CHIP_IS_E1x(sc)) { 9586 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 9587 sb_data_e2.common.state = SB_ENABLED; 9588 sb_data_e2.common.p_func.pf_id = SC_FUNC(sc); 9589 sb_data_e2.common.p_func.vf_id = vfid; 9590 sb_data_e2.common.p_func.vf_valid = vf_valid; 9591 sb_data_e2.common.p_func.vnic_id = SC_VN(sc); 9592 sb_data_e2.common.same_igu_sb_1b = TRUE; 9593 sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr); 9594 sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr); 9595 hc_sm_p = sb_data_e2.common.state_machine; 9596 sb_data_p = (uint32_t *)&sb_data_e2; 9597 data_size = (sizeof(struct hc_status_block_data_e2) / 9598 sizeof(uint32_t)); 9599 bxe_map_sb_state_machines(sb_data_e2.index_data); 9600 } else { 9601 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); 9602 sb_data_e1x.common.state = SB_ENABLED; 9603 sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc); 9604 sb_data_e1x.common.p_func.vf_id = 0xff; 9605 sb_data_e1x.common.p_func.vf_valid = FALSE; 9606 sb_data_e1x.common.p_func.vnic_id = SC_VN(sc); 9607 sb_data_e1x.common.same_igu_sb_1b = TRUE; 9608 sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr); 9609 sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr); 9610 hc_sm_p = sb_data_e1x.common.state_machine; 9611 sb_data_p = (uint32_t *)&sb_data_e1x; 9612 data_size = (sizeof(struct hc_status_block_data_e1x) / 9613 sizeof(uint32_t)); 9614 bxe_map_sb_state_machines(sb_data_e1x.index_data); 9615 } 9616 9617 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id); 9618 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id); 9619 9620 BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id); 9621 9622 /* write indices to HW - PCI guarantees endianity of regpairs */ 9623 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); 9624 } 9625 9626 static inline uint8_t 9627 bxe_fp_qzone_id(struct bxe_fastpath *fp) 9628 { 9629 if (CHIP_IS_E1x(fp->sc)) { 9630 return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H); 9631 } else { 9632 return (fp->cl_id); 9633 } 9634 } 9635 9636 static inline uint32_t 9637 bxe_rx_ustorm_prods_offset(struct bxe_softc *sc, 9638 struct bxe_fastpath *fp) 9639 { 9640 uint32_t offset = BAR_USTRORM_INTMEM; 9641 9642 if (!CHIP_IS_E1x(sc)) { 9643 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id); 9644 } else { 9645 offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id); 9646 } 9647 9648 return (offset); 9649 } 9650 9651 static void 9652 bxe_init_eth_fp(struct bxe_softc *sc, 9653 int idx) 9654 { 9655 struct bxe_fastpath *fp = &sc->fp[idx]; 9656 uint32_t cids[ECORE_MULTI_TX_COS] = { 0 }; 9657 unsigned long q_type = 0; 9658 int cos; 9659 9660 fp->sc = sc; 9661 fp->index = idx; 9662 9663 fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc)); 9664 fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc)); 9665 9666 fp->cl_id = (CHIP_IS_E1x(sc)) ? 9667 (SC_L_ID(sc) + idx) : 9668 /* want client ID same as IGU SB ID for non-E1 */ 9669 fp->igu_sb_id; 9670 fp->cl_qzone_id = bxe_fp_qzone_id(fp); 9671 9672 /* setup sb indices */ 9673 if (!CHIP_IS_E1x(sc)) { 9674 fp->sb_index_values = fp->status_block.e2_sb->sb.index_values; 9675 fp->sb_running_index = fp->status_block.e2_sb->sb.running_index; 9676 } else { 9677 fp->sb_index_values = fp->status_block.e1x_sb->sb.index_values; 9678 fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index; 9679 } 9680 9681 /* init shortcut */ 9682 fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp); 9683 9684 fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS]; 9685 9686 /* 9687 * XXX If multiple CoS is ever supported then each fastpath structure 9688 * will need to maintain tx producer/consumer/dma/etc values *per* CoS. 9689 */ 9690 for (cos = 0; cos < sc->max_cos; cos++) { 9691 cids[cos] = idx; 9692 } 9693 fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0]; 9694 9695 /* nothing more for a VF to do */ 9696 if (IS_VF(sc)) { 9697 return; 9698 } 9699 9700 bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE, 9701 fp->fw_sb_id, fp->igu_sb_id); 9702 9703 bxe_update_fp_sb_idx(fp); 9704 9705 /* Configure Queue State object */ 9706 bit_set(&q_type, ECORE_Q_TYPE_HAS_RX); 9707 bit_set(&q_type, ECORE_Q_TYPE_HAS_TX); 9708 9709 ecore_init_queue_obj(sc, 9710 &sc->sp_objs[idx].q_obj, 9711 fp->cl_id, 9712 cids, 9713 sc->max_cos, 9714 SC_FUNC(sc), 9715 BXE_SP(sc, q_rdata), 9716 BXE_SP_MAPPING(sc, q_rdata), 9717 q_type); 9718 9719 /* configure classification DBs */ 9720 ecore_init_mac_obj(sc, 9721 &sc->sp_objs[idx].mac_obj, 9722 fp->cl_id, 9723 idx, 9724 SC_FUNC(sc), 9725 BXE_SP(sc, mac_rdata), 9726 BXE_SP_MAPPING(sc, mac_rdata), 9727 ECORE_FILTER_MAC_PENDING, 9728 &sc->sp_state, 9729 ECORE_OBJ_TYPE_RX_TX, 9730 &sc->macs_pool); 9731 9732 BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n", 9733 idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id); 9734 } 9735 9736 static inline void 9737 bxe_update_rx_prod(struct bxe_softc *sc, 9738 struct bxe_fastpath *fp, 9739 uint16_t rx_bd_prod, 9740 uint16_t rx_cq_prod, 9741 uint16_t rx_sge_prod) 9742 { 9743 struct ustorm_eth_rx_producers rx_prods = { 0 }; 9744 uint32_t i; 9745 9746 /* update producers */ 9747 rx_prods.bd_prod = rx_bd_prod; 9748 rx_prods.cqe_prod = rx_cq_prod; 9749 rx_prods.sge_prod = rx_sge_prod; 9750 9751 /* 9752 * Make sure that the BD and SGE data is updated before updating the 9753 * producers since FW might read the BD/SGE right after the producer 9754 * is updated. 9755 * This is only applicable for weak-ordered memory model archs such 9756 * as IA-64. The following barrier is also mandatory since FW will 9757 * assumes BDs must have buffers. 9758 */ 9759 wmb(); 9760 9761 for (i = 0; i < (sizeof(rx_prods) / 4); i++) { 9762 REG_WR(sc, 9763 (fp->ustorm_rx_prods_offset + (i * 4)), 9764 ((uint32_t *)&rx_prods)[i]); 9765 } 9766 9767 wmb(); /* keep prod updates ordered */ 9768 9769 BLOGD(sc, DBG_RX, 9770 "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n", 9771 fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod); 9772 } 9773 9774 static void 9775 bxe_init_rx_rings(struct bxe_softc *sc) 9776 { 9777 struct bxe_fastpath *fp; 9778 int i; 9779 9780 for (i = 0; i < sc->num_queues; i++) { 9781 fp = &sc->fp[i]; 9782 9783 fp->rx_bd_cons = 0; 9784 9785 /* 9786 * Activate the BD ring... 9787 * Warning, this will generate an interrupt (to the TSTORM) 9788 * so this can only be done after the chip is initialized 9789 */ 9790 bxe_update_rx_prod(sc, fp, 9791 fp->rx_bd_prod, 9792 fp->rx_cq_prod, 9793 fp->rx_sge_prod); 9794 9795 if (i != 0) { 9796 continue; 9797 } 9798 9799 if (CHIP_IS_E1(sc)) { 9800 REG_WR(sc, 9801 (BAR_USTRORM_INTMEM + 9802 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))), 9803 U64_LO(fp->rcq_dma.paddr)); 9804 REG_WR(sc, 9805 (BAR_USTRORM_INTMEM + 9806 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4), 9807 U64_HI(fp->rcq_dma.paddr)); 9808 } 9809 } 9810 } 9811 9812 static void 9813 bxe_init_tx_ring_one(struct bxe_fastpath *fp) 9814 { 9815 SET_FLAG(fp->tx_db.data.header.data, DOORBELL_HDR_T_DB_TYPE, 1); 9816 fp->tx_db.data.zero_fill1 = 0; 9817 fp->tx_db.data.prod = 0; 9818 9819 fp->tx_pkt_prod = 0; 9820 fp->tx_pkt_cons = 0; 9821 fp->tx_bd_prod = 0; 9822 fp->tx_bd_cons = 0; 9823 fp->eth_q_stats.tx_pkts = 0; 9824 } 9825 9826 static inline void 9827 bxe_init_tx_rings(struct bxe_softc *sc) 9828 { 9829 int i; 9830 9831 for (i = 0; i < sc->num_queues; i++) { 9832 bxe_init_tx_ring_one(&sc->fp[i]); 9833 } 9834 } 9835 9836 static void 9837 bxe_init_def_sb(struct bxe_softc *sc) 9838 { 9839 struct host_sp_status_block *def_sb = sc->def_sb; 9840 bus_addr_t mapping = sc->def_sb_dma.paddr; 9841 int igu_sp_sb_index; 9842 int igu_seg_id; 9843 int port = SC_PORT(sc); 9844 int func = SC_FUNC(sc); 9845 int reg_offset, reg_offset_en5; 9846 uint64_t section; 9847 int index, sindex; 9848 struct hc_sp_status_block_data sp_sb_data; 9849 9850 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 9851 9852 if (CHIP_INT_MODE_IS_BC(sc)) { 9853 igu_sp_sb_index = DEF_SB_IGU_ID; 9854 igu_seg_id = HC_SEG_ACCESS_DEF; 9855 } else { 9856 igu_sp_sb_index = sc->igu_dsb_id; 9857 igu_seg_id = IGU_SEG_ACCESS_DEF; 9858 } 9859 9860 /* attentions */ 9861 section = ((uint64_t)mapping + 9862 offsetof(struct host_sp_status_block, atten_status_block)); 9863 def_sb->atten_status_block.status_block_id = igu_sp_sb_index; 9864 sc->attn_state = 0; 9865 9866 reg_offset = (port) ? 9867 MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 9868 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; 9869 reg_offset_en5 = (port) ? 9870 MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 : 9871 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0; 9872 9873 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 9874 /* take care of sig[0]..sig[4] */ 9875 for (sindex = 0; sindex < 4; sindex++) { 9876 sc->attn_group[index].sig[sindex] = 9877 REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index))); 9878 } 9879 9880 if (!CHIP_IS_E1x(sc)) { 9881 /* 9882 * enable5 is separate from the rest of the registers, 9883 * and the address skip is 4 and not 16 between the 9884 * different groups 9885 */ 9886 sc->attn_group[index].sig[4] = 9887 REG_RD(sc, (reg_offset_en5 + (0x4 * index))); 9888 } else { 9889 sc->attn_group[index].sig[4] = 0; 9890 } 9891 } 9892 9893 if (sc->devinfo.int_block == INT_BLOCK_HC) { 9894 reg_offset = (port) ? 9895 HC_REG_ATTN_MSG1_ADDR_L : 9896 HC_REG_ATTN_MSG0_ADDR_L; 9897 REG_WR(sc, reg_offset, U64_LO(section)); 9898 REG_WR(sc, (reg_offset + 4), U64_HI(section)); 9899 } else if (!CHIP_IS_E1x(sc)) { 9900 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section)); 9901 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section)); 9902 } 9903 9904 section = ((uint64_t)mapping + 9905 offsetof(struct host_sp_status_block, sp_sb)); 9906 9907 bxe_zero_sp_sb(sc); 9908 9909 /* PCI guarantees endianity of regpair */ 9910 sp_sb_data.state = SB_ENABLED; 9911 sp_sb_data.host_sb_addr.lo = U64_LO(section); 9912 sp_sb_data.host_sb_addr.hi = U64_HI(section); 9913 sp_sb_data.igu_sb_id = igu_sp_sb_index; 9914 sp_sb_data.igu_seg_id = igu_seg_id; 9915 sp_sb_data.p_func.pf_id = func; 9916 sp_sb_data.p_func.vnic_id = SC_VN(sc); 9917 sp_sb_data.p_func.vf_id = 0xff; 9918 9919 bxe_wr_sp_sb_data(sc, &sp_sb_data); 9920 9921 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 9922 } 9923 9924 static void 9925 bxe_init_sp_ring(struct bxe_softc *sc) 9926 { 9927 atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING); 9928 sc->spq_prod_idx = 0; 9929 sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS]; 9930 sc->spq_prod_bd = sc->spq; 9931 sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT); 9932 } 9933 9934 static void 9935 bxe_init_eq_ring(struct bxe_softc *sc) 9936 { 9937 union event_ring_elem *elem; 9938 int i; 9939 9940 for (i = 1; i <= NUM_EQ_PAGES; i++) { 9941 elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1]; 9942 9943 elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr + 9944 BCM_PAGE_SIZE * 9945 (i % NUM_EQ_PAGES))); 9946 elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr + 9947 BCM_PAGE_SIZE * 9948 (i % NUM_EQ_PAGES))); 9949 } 9950 9951 sc->eq_cons = 0; 9952 sc->eq_prod = NUM_EQ_DESC; 9953 sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS]; 9954 9955 atomic_store_rel_long(&sc->eq_spq_left, 9956 (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING), 9957 NUM_EQ_DESC) - 1)); 9958 } 9959 9960 static void 9961 bxe_init_internal_common(struct bxe_softc *sc) 9962 { 9963 int i; 9964 9965 /* 9966 * Zero this manually as its initialization is currently missing 9967 * in the initTool. 9968 */ 9969 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) { 9970 REG_WR(sc, 9971 (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)), 9972 0); 9973 } 9974 9975 if (!CHIP_IS_E1x(sc)) { 9976 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET), 9977 CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE); 9978 } 9979 } 9980 9981 static void 9982 bxe_init_internal(struct bxe_softc *sc, 9983 uint32_t load_code) 9984 { 9985 switch (load_code) { 9986 case FW_MSG_CODE_DRV_LOAD_COMMON: 9987 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: 9988 bxe_init_internal_common(sc); 9989 /* no break */ 9990 9991 case FW_MSG_CODE_DRV_LOAD_PORT: 9992 /* nothing to do */ 9993 /* no break */ 9994 9995 case FW_MSG_CODE_DRV_LOAD_FUNCTION: 9996 /* internal memory per function is initialized inside bxe_pf_init */ 9997 break; 9998 9999 default: 10000 BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code); 10001 break; 10002 } 10003 } 10004 10005 static void 10006 storm_memset_func_cfg(struct bxe_softc *sc, 10007 struct tstorm_eth_function_common_config *tcfg, 10008 uint16_t abs_fid) 10009 { 10010 uint32_t addr; 10011 size_t size; 10012 10013 addr = (BAR_TSTRORM_INTMEM + 10014 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid)); 10015 size = sizeof(struct tstorm_eth_function_common_config); 10016 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg); 10017 } 10018 10019 static void 10020 bxe_func_init(struct bxe_softc *sc, 10021 struct bxe_func_init_params *p) 10022 { 10023 struct tstorm_eth_function_common_config tcfg = { 0 }; 10024 10025 if (CHIP_IS_E1x(sc)) { 10026 storm_memset_func_cfg(sc, &tcfg, p->func_id); 10027 } 10028 10029 /* Enable the function in the FW */ 10030 storm_memset_vf_to_pf(sc, p->func_id, p->pf_id); 10031 storm_memset_func_en(sc, p->func_id, 1); 10032 10033 /* spq */ 10034 if (p->func_flgs & FUNC_FLG_SPQ) { 10035 storm_memset_spq_addr(sc, p->spq_map, p->func_id); 10036 REG_WR(sc, 10037 (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)), 10038 p->spq_prod); 10039 } 10040 } 10041 10042 /* 10043 * Calculates the sum of vn_min_rates. 10044 * It's needed for further normalizing of the min_rates. 10045 * Returns: 10046 * sum of vn_min_rates. 10047 * or 10048 * 0 - if all the min_rates are 0. 10049 * In the later case fainess algorithm should be deactivated. 10050 * If all min rates are not zero then those that are zeroes will be set to 1. 10051 */ 10052 static void 10053 bxe_calc_vn_min(struct bxe_softc *sc, 10054 struct cmng_init_input *input) 10055 { 10056 uint32_t vn_cfg; 10057 uint32_t vn_min_rate; 10058 int all_zero = 1; 10059 int vn; 10060 10061 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10062 vn_cfg = sc->devinfo.mf_info.mf_config[vn]; 10063 vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >> 10064 FUNC_MF_CFG_MIN_BW_SHIFT) * 100); 10065 10066 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { 10067 /* skip hidden VNs */ 10068 vn_min_rate = 0; 10069 } else if (!vn_min_rate) { 10070 /* If min rate is zero - set it to 100 */ 10071 vn_min_rate = DEF_MIN_RATE; 10072 } else { 10073 all_zero = 0; 10074 } 10075 10076 input->vnic_min_rate[vn] = vn_min_rate; 10077 } 10078 10079 /* if ETS or all min rates are zeros - disable fairness */ 10080 if (BXE_IS_ETS_ENABLED(sc)) { 10081 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10082 BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n"); 10083 } else if (all_zero) { 10084 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10085 BLOGD(sc, DBG_LOAD, 10086 "Fariness disabled (all MIN values are zeroes)\n"); 10087 } else { 10088 input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10089 } 10090 } 10091 10092 static inline uint16_t 10093 bxe_extract_max_cfg(struct bxe_softc *sc, 10094 uint32_t mf_cfg) 10095 { 10096 uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >> 10097 FUNC_MF_CFG_MAX_BW_SHIFT); 10098 10099 if (!max_cfg) { 10100 BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n"); 10101 max_cfg = 100; 10102 } 10103 10104 return (max_cfg); 10105 } 10106 10107 static void 10108 bxe_calc_vn_max(struct bxe_softc *sc, 10109 int vn, 10110 struct cmng_init_input *input) 10111 { 10112 uint16_t vn_max_rate; 10113 uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn]; 10114 uint32_t max_cfg; 10115 10116 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { 10117 vn_max_rate = 0; 10118 } else { 10119 max_cfg = bxe_extract_max_cfg(sc, vn_cfg); 10120 10121 if (IS_MF_SI(sc)) { 10122 /* max_cfg in percents of linkspeed */ 10123 vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100); 10124 } else { /* SD modes */ 10125 /* max_cfg is absolute in 100Mb units */ 10126 vn_max_rate = (max_cfg * 100); 10127 } 10128 } 10129 10130 BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate); 10131 10132 input->vnic_max_rate[vn] = vn_max_rate; 10133 } 10134 10135 static void 10136 bxe_cmng_fns_init(struct bxe_softc *sc, 10137 uint8_t read_cfg, 10138 uint8_t cmng_type) 10139 { 10140 struct cmng_init_input input; 10141 int vn; 10142 10143 memset(&input, 0, sizeof(struct cmng_init_input)); 10144 10145 input.port_rate = sc->link_vars.line_speed; 10146 10147 if (cmng_type == CMNG_FNS_MINMAX) { 10148 /* read mf conf from shmem */ 10149 if (read_cfg) { 10150 bxe_read_mf_cfg(sc); 10151 } 10152 10153 /* get VN min rate and enable fairness if not 0 */ 10154 bxe_calc_vn_min(sc, &input); 10155 10156 /* get VN max rate */ 10157 if (sc->port.pmf) { 10158 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10159 bxe_calc_vn_max(sc, vn, &input); 10160 } 10161 } 10162 10163 /* always enable rate shaping and fairness */ 10164 input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN; 10165 10166 ecore_init_cmng(&input, &sc->cmng); 10167 return; 10168 } 10169 10170 /* rate shaping and fairness are disabled */ 10171 BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n"); 10172 } 10173 10174 static int 10175 bxe_get_cmng_fns_mode(struct bxe_softc *sc) 10176 { 10177 if (CHIP_REV_IS_SLOW(sc)) { 10178 return (CMNG_FNS_NONE); 10179 } 10180 10181 if (IS_MF(sc)) { 10182 return (CMNG_FNS_MINMAX); 10183 } 10184 10185 return (CMNG_FNS_NONE); 10186 } 10187 10188 static void 10189 storm_memset_cmng(struct bxe_softc *sc, 10190 struct cmng_init *cmng, 10191 uint8_t port) 10192 { 10193 int vn; 10194 int func; 10195 uint32_t addr; 10196 size_t size; 10197 10198 addr = (BAR_XSTRORM_INTMEM + 10199 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port)); 10200 size = sizeof(struct cmng_struct_per_port); 10201 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port); 10202 10203 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10204 func = func_by_vn(sc, vn); 10205 10206 addr = (BAR_XSTRORM_INTMEM + 10207 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func)); 10208 size = sizeof(struct rate_shaping_vars_per_vn); 10209 ecore_storm_memset_struct(sc, addr, size, 10210 (uint32_t *)&cmng->vnic.vnic_max_rate[vn]); 10211 10212 addr = (BAR_XSTRORM_INTMEM + 10213 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func)); 10214 size = sizeof(struct fairness_vars_per_vn); 10215 ecore_storm_memset_struct(sc, addr, size, 10216 (uint32_t *)&cmng->vnic.vnic_min_rate[vn]); 10217 } 10218 } 10219 10220 static void 10221 bxe_pf_init(struct bxe_softc *sc) 10222 { 10223 struct bxe_func_init_params func_init = { 0 }; 10224 struct event_ring_data eq_data = { { 0 } }; 10225 uint16_t flags; 10226 10227 if (!CHIP_IS_E1x(sc)) { 10228 /* reset IGU PF statistics: MSIX + ATTN */ 10229 /* PF */ 10230 REG_WR(sc, 10231 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 10232 (BXE_IGU_STAS_MSG_VF_CNT * 4) + 10233 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 10234 0); 10235 /* ATTN */ 10236 REG_WR(sc, 10237 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 10238 (BXE_IGU_STAS_MSG_VF_CNT * 4) + 10239 (BXE_IGU_STAS_MSG_PF_CNT * 4) + 10240 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 10241 0); 10242 } 10243 10244 /* function setup flags */ 10245 flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ); 10246 10247 /* 10248 * This flag is relevant for E1x only. 10249 * E2 doesn't have a TPA configuration in a function level. 10250 */ 10251 flags |= (if_getcapenable(sc->ifp) & IFCAP_LRO) ? FUNC_FLG_TPA : 0; 10252 10253 func_init.func_flgs = flags; 10254 func_init.pf_id = SC_FUNC(sc); 10255 func_init.func_id = SC_FUNC(sc); 10256 func_init.spq_map = sc->spq_dma.paddr; 10257 func_init.spq_prod = sc->spq_prod_idx; 10258 10259 bxe_func_init(sc, &func_init); 10260 10261 memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port)); 10262 10263 /* 10264 * Congestion management values depend on the link rate. 10265 * There is no active link so initial link rate is set to 10Gbps. 10266 * When the link comes up the congestion management values are 10267 * re-calculated according to the actual link rate. 10268 */ 10269 sc->link_vars.line_speed = SPEED_10000; 10270 bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc)); 10271 10272 /* Only the PMF sets the HW */ 10273 if (sc->port.pmf) { 10274 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 10275 } 10276 10277 /* init Event Queue - PCI bus guarantees correct endainity */ 10278 eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr); 10279 eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr); 10280 eq_data.producer = sc->eq_prod; 10281 eq_data.index_id = HC_SP_INDEX_EQ_CONS; 10282 eq_data.sb_id = DEF_SB_ID; 10283 storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc)); 10284 } 10285 10286 static void 10287 bxe_hc_int_enable(struct bxe_softc *sc) 10288 { 10289 int port = SC_PORT(sc); 10290 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 10291 uint32_t val = REG_RD(sc, addr); 10292 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; 10293 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && 10294 (sc->intr_count == 1)) ? TRUE : FALSE; 10295 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; 10296 10297 if (msix) { 10298 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10299 HC_CONFIG_0_REG_INT_LINE_EN_0); 10300 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10301 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10302 if (single_msix) { 10303 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0; 10304 } 10305 } else if (msi) { 10306 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0; 10307 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10308 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10309 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10310 } else { 10311 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10312 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10313 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10314 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10315 10316 if (!CHIP_IS_E1(sc)) { 10317 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", 10318 val, port, addr); 10319 10320 REG_WR(sc, addr, val); 10321 10322 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0; 10323 } 10324 } 10325 10326 if (CHIP_IS_E1(sc)) { 10327 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF); 10328 } 10329 10330 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n", 10331 val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); 10332 10333 REG_WR(sc, addr, val); 10334 10335 /* ensure that HC_CONFIG is written before leading/trailing edge config */ 10336 mb(); 10337 10338 if (!CHIP_IS_E1(sc)) { 10339 /* init leading/trailing edge */ 10340 if (IS_MF(sc)) { 10341 val = (0xee0f | (1 << (SC_VN(sc) + 4))); 10342 if (sc->port.pmf) { 10343 /* enable nig and gpio3 attention */ 10344 val |= 0x1100; 10345 } 10346 } else { 10347 val = 0xffff; 10348 } 10349 10350 REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val); 10351 REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val); 10352 } 10353 10354 /* make sure that interrupts are indeed enabled from here on */ 10355 mb(); 10356 } 10357 10358 static void 10359 bxe_igu_int_enable(struct bxe_softc *sc) 10360 { 10361 uint32_t val; 10362 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; 10363 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && 10364 (sc->intr_count == 1)) ? TRUE : FALSE; 10365 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; 10366 10367 val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 10368 10369 if (msix) { 10370 val &= ~(IGU_PF_CONF_INT_LINE_EN | 10371 IGU_PF_CONF_SINGLE_ISR_EN); 10372 val |= (IGU_PF_CONF_MSI_MSIX_EN | 10373 IGU_PF_CONF_ATTN_BIT_EN); 10374 if (single_msix) { 10375 val |= IGU_PF_CONF_SINGLE_ISR_EN; 10376 } 10377 } else if (msi) { 10378 val &= ~IGU_PF_CONF_INT_LINE_EN; 10379 val |= (IGU_PF_CONF_MSI_MSIX_EN | 10380 IGU_PF_CONF_ATTN_BIT_EN | 10381 IGU_PF_CONF_SINGLE_ISR_EN); 10382 } else { 10383 val &= ~IGU_PF_CONF_MSI_MSIX_EN; 10384 val |= (IGU_PF_CONF_INT_LINE_EN | 10385 IGU_PF_CONF_ATTN_BIT_EN | 10386 IGU_PF_CONF_SINGLE_ISR_EN); 10387 } 10388 10389 /* clean previous status - need to configure igu prior to ack*/ 10390 if ((!msix) || single_msix) { 10391 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10392 bxe_ack_int(sc); 10393 } 10394 10395 val |= IGU_PF_CONF_FUNC_EN; 10396 10397 BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n", 10398 val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); 10399 10400 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10401 10402 mb(); 10403 10404 /* init leading/trailing edge */ 10405 if (IS_MF(sc)) { 10406 val = (0xee0f | (1 << (SC_VN(sc) + 4))); 10407 if (sc->port.pmf) { 10408 /* enable nig and gpio3 attention */ 10409 val |= 0x1100; 10410 } 10411 } else { 10412 val = 0xffff; 10413 } 10414 10415 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); 10416 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); 10417 10418 /* make sure that interrupts are indeed enabled from here on */ 10419 mb(); 10420 } 10421 10422 static void 10423 bxe_int_enable(struct bxe_softc *sc) 10424 { 10425 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10426 bxe_hc_int_enable(sc); 10427 } else { 10428 bxe_igu_int_enable(sc); 10429 } 10430 } 10431 10432 static void 10433 bxe_hc_int_disable(struct bxe_softc *sc) 10434 { 10435 int port = SC_PORT(sc); 10436 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 10437 uint32_t val = REG_RD(sc, addr); 10438 10439 /* 10440 * In E1 we must use only PCI configuration space to disable MSI/MSIX 10441 * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC 10442 * block 10443 */ 10444 if (CHIP_IS_E1(sc)) { 10445 /* 10446 * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register 10447 * to prevent from HC sending interrupts after we exit the function 10448 */ 10449 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0); 10450 10451 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10452 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10453 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10454 } else { 10455 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10456 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10457 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10458 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10459 } 10460 10461 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr); 10462 10463 /* flush all outstanding writes */ 10464 mb(); 10465 10466 REG_WR(sc, addr, val); 10467 if (REG_RD(sc, addr) != val) { 10468 BLOGE(sc, "proper val not read from HC IGU!\n"); 10469 } 10470 } 10471 10472 static void 10473 bxe_igu_int_disable(struct bxe_softc *sc) 10474 { 10475 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 10476 10477 val &= ~(IGU_PF_CONF_MSI_MSIX_EN | 10478 IGU_PF_CONF_INT_LINE_EN | 10479 IGU_PF_CONF_ATTN_BIT_EN); 10480 10481 BLOGD(sc, DBG_INTR, "write %x to IGU\n", val); 10482 10483 /* flush all outstanding writes */ 10484 mb(); 10485 10486 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10487 if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) { 10488 BLOGE(sc, "proper val not read from IGU!\n"); 10489 } 10490 } 10491 10492 static void 10493 bxe_int_disable(struct bxe_softc *sc) 10494 { 10495 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10496 bxe_hc_int_disable(sc); 10497 } else { 10498 bxe_igu_int_disable(sc); 10499 } 10500 } 10501 10502 static void 10503 bxe_nic_init(struct bxe_softc *sc, 10504 int load_code) 10505 { 10506 int i; 10507 10508 for (i = 0; i < sc->num_queues; i++) { 10509 bxe_init_eth_fp(sc, i); 10510 } 10511 10512 rmb(); /* ensure status block indices were read */ 10513 10514 bxe_init_rx_rings(sc); 10515 bxe_init_tx_rings(sc); 10516 10517 if (IS_VF(sc)) { 10518 return; 10519 } 10520 10521 /* initialize MOD_ABS interrupts */ 10522 elink_init_mod_abs_int(sc, &sc->link_vars, 10523 sc->devinfo.chip_id, 10524 sc->devinfo.shmem_base, 10525 sc->devinfo.shmem2_base, 10526 SC_PORT(sc)); 10527 10528 bxe_init_def_sb(sc); 10529 bxe_update_dsb_idx(sc); 10530 bxe_init_sp_ring(sc); 10531 bxe_init_eq_ring(sc); 10532 bxe_init_internal(sc, load_code); 10533 bxe_pf_init(sc); 10534 bxe_stats_init(sc); 10535 10536 /* flush all before enabling interrupts */ 10537 mb(); 10538 10539 bxe_int_enable(sc); 10540 10541 /* check for SPIO5 */ 10542 bxe_attn_int_deasserted0(sc, 10543 REG_RD(sc, 10544 (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + 10545 SC_PORT(sc)*4)) & 10546 AEU_INPUTS_ATTN_BITS_SPIO5); 10547 } 10548 10549 static inline void 10550 bxe_init_objs(struct bxe_softc *sc) 10551 { 10552 /* mcast rules must be added to tx if tx switching is enabled */ 10553 ecore_obj_type o_type = 10554 (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX : 10555 ECORE_OBJ_TYPE_RX; 10556 10557 /* RX_MODE controlling object */ 10558 ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj); 10559 10560 /* multicast configuration controlling object */ 10561 ecore_init_mcast_obj(sc, 10562 &sc->mcast_obj, 10563 sc->fp[0].cl_id, 10564 sc->fp[0].index, 10565 SC_FUNC(sc), 10566 SC_FUNC(sc), 10567 BXE_SP(sc, mcast_rdata), 10568 BXE_SP_MAPPING(sc, mcast_rdata), 10569 ECORE_FILTER_MCAST_PENDING, 10570 &sc->sp_state, 10571 o_type); 10572 10573 /* Setup CAM credit pools */ 10574 ecore_init_mac_credit_pool(sc, 10575 &sc->macs_pool, 10576 SC_FUNC(sc), 10577 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : 10578 VNICS_PER_PATH(sc)); 10579 10580 ecore_init_vlan_credit_pool(sc, 10581 &sc->vlans_pool, 10582 SC_ABS_FUNC(sc) >> 1, 10583 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : 10584 VNICS_PER_PATH(sc)); 10585 10586 /* RSS configuration object */ 10587 ecore_init_rss_config_obj(sc, 10588 &sc->rss_conf_obj, 10589 sc->fp[0].cl_id, 10590 sc->fp[0].index, 10591 SC_FUNC(sc), 10592 SC_FUNC(sc), 10593 BXE_SP(sc, rss_rdata), 10594 BXE_SP_MAPPING(sc, rss_rdata), 10595 ECORE_FILTER_RSS_CONF_PENDING, 10596 &sc->sp_state, ECORE_OBJ_TYPE_RX); 10597 } 10598 10599 /* 10600 * Initialize the function. This must be called before sending CLIENT_SETUP 10601 * for the first client. 10602 */ 10603 static inline int 10604 bxe_func_start(struct bxe_softc *sc) 10605 { 10606 struct ecore_func_state_params func_params = { NULL }; 10607 struct ecore_func_start_params *start_params = &func_params.params.start; 10608 10609 /* Prepare parameters for function state transitions */ 10610 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); 10611 10612 func_params.f_obj = &sc->func_obj; 10613 func_params.cmd = ECORE_F_CMD_START; 10614 10615 /* Function parameters */ 10616 start_params->mf_mode = sc->devinfo.mf_info.mf_mode; 10617 start_params->sd_vlan_tag = OVLAN(sc); 10618 10619 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) { 10620 start_params->network_cos_mode = STATIC_COS; 10621 } else { /* CHIP_IS_E1X */ 10622 start_params->network_cos_mode = FW_WRR; 10623 } 10624 10625 //start_params->gre_tunnel_mode = 0; 10626 //start_params->gre_tunnel_rss = 0; 10627 10628 return (ecore_func_state_change(sc, &func_params)); 10629 } 10630 10631 static int 10632 bxe_set_power_state(struct bxe_softc *sc, 10633 uint8_t state) 10634 { 10635 uint16_t pmcsr; 10636 10637 /* If there is no power capability, silently succeed */ 10638 if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) { 10639 BLOGW(sc, "No power capability\n"); 10640 return (0); 10641 } 10642 10643 pmcsr = pci_read_config(sc->dev, 10644 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10645 2); 10646 10647 switch (state) { 10648 case PCI_PM_D0: 10649 pci_write_config(sc->dev, 10650 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10651 ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2); 10652 10653 if (pmcsr & PCIM_PSTAT_DMASK) { 10654 /* delay required during transition out of D3hot */ 10655 DELAY(20000); 10656 } 10657 10658 break; 10659 10660 case PCI_PM_D3hot: 10661 /* XXX if there are other clients above don't shut down the power */ 10662 10663 /* don't shut down the power for emulation and FPGA */ 10664 if (CHIP_REV_IS_SLOW(sc)) { 10665 return (0); 10666 } 10667 10668 pmcsr &= ~PCIM_PSTAT_DMASK; 10669 pmcsr |= PCIM_PSTAT_D3; 10670 10671 if (sc->wol) { 10672 pmcsr |= PCIM_PSTAT_PMEENABLE; 10673 } 10674 10675 pci_write_config(sc->dev, 10676 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10677 pmcsr, 4); 10678 10679 /* 10680 * No more memory access after this point until device is brought back 10681 * to D0 state. 10682 */ 10683 break; 10684 10685 default: 10686 BLOGE(sc, "Can't support PCI power state = 0x%x pmcsr 0x%x\n", 10687 state, pmcsr); 10688 return (-1); 10689 } 10690 10691 return (0); 10692 } 10693 10694 10695 /* return true if succeeded to acquire the lock */ 10696 static uint8_t 10697 bxe_trylock_hw_lock(struct bxe_softc *sc, 10698 uint32_t resource) 10699 { 10700 uint32_t lock_status; 10701 uint32_t resource_bit = (1 << resource); 10702 int func = SC_FUNC(sc); 10703 uint32_t hw_lock_control_reg; 10704 10705 BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource); 10706 10707 /* Validating that the resource is within range */ 10708 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 10709 BLOGD(sc, DBG_LOAD, 10710 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 10711 resource, HW_LOCK_MAX_RESOURCE_VALUE); 10712 return (FALSE); 10713 } 10714 10715 if (func <= 5) { 10716 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 10717 } else { 10718 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 10719 } 10720 10721 /* try to acquire the lock */ 10722 REG_WR(sc, hw_lock_control_reg + 4, resource_bit); 10723 lock_status = REG_RD(sc, hw_lock_control_reg); 10724 if (lock_status & resource_bit) { 10725 return (TRUE); 10726 } 10727 10728 BLOGE(sc, "Failed to get a resource lock 0x%x func %d " 10729 "lock_status 0x%x resource_bit 0x%x\n", resource, func, 10730 lock_status, resource_bit); 10731 10732 return (FALSE); 10733 } 10734 10735 /* 10736 * Get the recovery leader resource id according to the engine this function 10737 * belongs to. Currently only only 2 engines is supported. 10738 */ 10739 static int 10740 bxe_get_leader_lock_resource(struct bxe_softc *sc) 10741 { 10742 if (SC_PATH(sc)) { 10743 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1); 10744 } else { 10745 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0); 10746 } 10747 } 10748 10749 /* try to acquire a leader lock for current engine */ 10750 static uint8_t 10751 bxe_trylock_leader_lock(struct bxe_softc *sc) 10752 { 10753 return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc))); 10754 } 10755 10756 static int 10757 bxe_release_leader_lock(struct bxe_softc *sc) 10758 { 10759 return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc))); 10760 } 10761 10762 /* close gates #2, #3 and #4 */ 10763 static void 10764 bxe_set_234_gates(struct bxe_softc *sc, 10765 uint8_t close) 10766 { 10767 uint32_t val; 10768 10769 /* gates #2 and #4a are closed/opened for "not E1" only */ 10770 if (!CHIP_IS_E1(sc)) { 10771 /* #4 */ 10772 REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close); 10773 /* #2 */ 10774 REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close); 10775 } 10776 10777 /* #3 */ 10778 if (CHIP_IS_E1x(sc)) { 10779 /* prevent interrupts from HC on both ports */ 10780 val = REG_RD(sc, HC_REG_CONFIG_1); 10781 REG_WR(sc, HC_REG_CONFIG_1, 10782 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) : 10783 (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1)); 10784 10785 val = REG_RD(sc, HC_REG_CONFIG_0); 10786 REG_WR(sc, HC_REG_CONFIG_0, 10787 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) : 10788 (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0)); 10789 } else { 10790 /* Prevent incoming interrupts in IGU */ 10791 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); 10792 10793 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, 10794 (!close) ? 10795 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) : 10796 (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE)); 10797 } 10798 10799 BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n", 10800 close ? "closing" : "opening"); 10801 10802 wmb(); 10803 } 10804 10805 /* poll for pending writes bit, it should get cleared in no more than 1s */ 10806 static int 10807 bxe_er_poll_igu_vq(struct bxe_softc *sc) 10808 { 10809 uint32_t cnt = 1000; 10810 uint32_t pend_bits = 0; 10811 10812 do { 10813 pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS); 10814 10815 if (pend_bits == 0) { 10816 break; 10817 } 10818 10819 DELAY(1000); 10820 } while (--cnt > 0); 10821 10822 if (cnt == 0) { 10823 BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits); 10824 return (-1); 10825 } 10826 10827 return (0); 10828 } 10829 10830 #define SHARED_MF_CLP_MAGIC 0x80000000 /* 'magic' bit */ 10831 10832 static void 10833 bxe_clp_reset_prep(struct bxe_softc *sc, 10834 uint32_t *magic_val) 10835 { 10836 /* Do some magic... */ 10837 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); 10838 *magic_val = val & SHARED_MF_CLP_MAGIC; 10839 MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC); 10840 } 10841 10842 /* restore the value of the 'magic' bit */ 10843 static void 10844 bxe_clp_reset_done(struct bxe_softc *sc, 10845 uint32_t magic_val) 10846 { 10847 /* Restore the 'magic' bit value... */ 10848 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); 10849 MFCFG_WR(sc, shared_mf_config.clp_mb, 10850 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val); 10851 } 10852 10853 /* prepare for MCP reset, takes care of CLP configurations */ 10854 static void 10855 bxe_reset_mcp_prep(struct bxe_softc *sc, 10856 uint32_t *magic_val) 10857 { 10858 uint32_t shmem; 10859 uint32_t validity_offset; 10860 10861 /* set `magic' bit in order to save MF config */ 10862 if (!CHIP_IS_E1(sc)) { 10863 bxe_clp_reset_prep(sc, magic_val); 10864 } 10865 10866 /* get shmem offset */ 10867 shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 10868 validity_offset = 10869 offsetof(struct shmem_region, validity_map[SC_PORT(sc)]); 10870 10871 /* Clear validity map flags */ 10872 if (shmem > 0) { 10873 REG_WR(sc, shmem + validity_offset, 0); 10874 } 10875 } 10876 10877 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */ 10878 #define MCP_ONE_TIMEOUT 100 /* 100 ms */ 10879 10880 static void 10881 bxe_mcp_wait_one(struct bxe_softc *sc) 10882 { 10883 /* special handling for emulation and FPGA (10 times longer) */ 10884 if (CHIP_REV_IS_SLOW(sc)) { 10885 DELAY((MCP_ONE_TIMEOUT*10) * 1000); 10886 } else { 10887 DELAY((MCP_ONE_TIMEOUT) * 1000); 10888 } 10889 } 10890 10891 /* initialize shmem_base and waits for validity signature to appear */ 10892 static int 10893 bxe_init_shmem(struct bxe_softc *sc) 10894 { 10895 int cnt = 0; 10896 uint32_t val = 0; 10897 10898 do { 10899 sc->devinfo.shmem_base = 10900 sc->link_params.shmem_base = 10901 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 10902 10903 if (sc->devinfo.shmem_base) { 10904 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); 10905 if (val & SHR_MEM_VALIDITY_MB) 10906 return (0); 10907 } 10908 10909 bxe_mcp_wait_one(sc); 10910 10911 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT)); 10912 10913 BLOGE(sc, "BAD MCP validity signature\n"); 10914 10915 return (-1); 10916 } 10917 10918 static int 10919 bxe_reset_mcp_comp(struct bxe_softc *sc, 10920 uint32_t magic_val) 10921 { 10922 int rc = bxe_init_shmem(sc); 10923 10924 /* Restore the `magic' bit value */ 10925 if (!CHIP_IS_E1(sc)) { 10926 bxe_clp_reset_done(sc, magic_val); 10927 } 10928 10929 return (rc); 10930 } 10931 10932 static void 10933 bxe_pxp_prep(struct bxe_softc *sc) 10934 { 10935 if (!CHIP_IS_E1(sc)) { 10936 REG_WR(sc, PXP2_REG_RD_START_INIT, 0); 10937 REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0); 10938 wmb(); 10939 } 10940 } 10941 10942 /* 10943 * Reset the whole chip except for: 10944 * - PCIE core 10945 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit) 10946 * - IGU 10947 * - MISC (including AEU) 10948 * - GRC 10949 * - RBCN, RBCP 10950 */ 10951 static void 10952 bxe_process_kill_chip_reset(struct bxe_softc *sc, 10953 uint8_t global) 10954 { 10955 uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2; 10956 uint32_t global_bits2, stay_reset2; 10957 10958 /* 10959 * Bits that have to be set in reset_mask2 if we want to reset 'global' 10960 * (per chip) blocks. 10961 */ 10962 global_bits2 = 10963 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU | 10964 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE; 10965 10966 /* 10967 * Don't reset the following blocks. 10968 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be 10969 * reset, as in 4 port device they might still be owned 10970 * by the MCP (there is only one leader per path). 10971 */ 10972 not_reset_mask1 = 10973 MISC_REGISTERS_RESET_REG_1_RST_HC | 10974 MISC_REGISTERS_RESET_REG_1_RST_PXPV | 10975 MISC_REGISTERS_RESET_REG_1_RST_PXP; 10976 10977 not_reset_mask2 = 10978 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO | 10979 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE | 10980 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE | 10981 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE | 10982 MISC_REGISTERS_RESET_REG_2_RST_RBCN | 10983 MISC_REGISTERS_RESET_REG_2_RST_GRC | 10984 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE | 10985 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B | 10986 MISC_REGISTERS_RESET_REG_2_RST_ATC | 10987 MISC_REGISTERS_RESET_REG_2_PGLC | 10988 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 | 10989 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 | 10990 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 | 10991 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 | 10992 MISC_REGISTERS_RESET_REG_2_UMAC0 | 10993 MISC_REGISTERS_RESET_REG_2_UMAC1; 10994 10995 /* 10996 * Keep the following blocks in reset: 10997 * - all xxMACs are handled by the elink code. 10998 */ 10999 stay_reset2 = 11000 MISC_REGISTERS_RESET_REG_2_XMAC | 11001 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT; 11002 11003 /* Full reset masks according to the chip */ 11004 reset_mask1 = 0xffffffff; 11005 11006 if (CHIP_IS_E1(sc)) 11007 reset_mask2 = 0xffff; 11008 else if (CHIP_IS_E1H(sc)) 11009 reset_mask2 = 0x1ffff; 11010 else if (CHIP_IS_E2(sc)) 11011 reset_mask2 = 0xfffff; 11012 else /* CHIP_IS_E3 */ 11013 reset_mask2 = 0x3ffffff; 11014 11015 /* Don't reset global blocks unless we need to */ 11016 if (!global) 11017 reset_mask2 &= ~global_bits2; 11018 11019 /* 11020 * In case of attention in the QM, we need to reset PXP 11021 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM 11022 * because otherwise QM reset would release 'close the gates' shortly 11023 * before resetting the PXP, then the PSWRQ would send a write 11024 * request to PGLUE. Then when PXP is reset, PGLUE would try to 11025 * read the payload data from PSWWR, but PSWWR would not 11026 * respond. The write queue in PGLUE would stuck, dmae commands 11027 * would not return. Therefore it's important to reset the second 11028 * reset register (containing the 11029 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the 11030 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM 11031 * bit). 11032 */ 11033 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, 11034 reset_mask2 & (~not_reset_mask2)); 11035 11036 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 11037 reset_mask1 & (~not_reset_mask1)); 11038 11039 mb(); 11040 wmb(); 11041 11042 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, 11043 reset_mask2 & (~stay_reset2)); 11044 11045 mb(); 11046 wmb(); 11047 11048 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1); 11049 wmb(); 11050 } 11051 11052 static int 11053 bxe_process_kill(struct bxe_softc *sc, 11054 uint8_t global) 11055 { 11056 int cnt = 1000; 11057 uint32_t val = 0; 11058 uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2; 11059 uint32_t tags_63_32 = 0; 11060 11061 /* Empty the Tetris buffer, wait for 1s */ 11062 do { 11063 sr_cnt = REG_RD(sc, PXP2_REG_RD_SR_CNT); 11064 blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT); 11065 port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0); 11066 port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1); 11067 pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2); 11068 if (CHIP_IS_E3(sc)) { 11069 tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32); 11070 } 11071 11072 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) && 11073 ((port_is_idle_0 & 0x1) == 0x1) && 11074 ((port_is_idle_1 & 0x1) == 0x1) && 11075 (pgl_exp_rom2 == 0xffffffff) && 11076 (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff))) 11077 break; 11078 DELAY(1000); 11079 } while (cnt-- > 0); 11080 11081 if (cnt <= 0) { 11082 BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there " 11083 "are still outstanding read requests after 1s! " 11084 "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, " 11085 "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n", 11086 sr_cnt, blk_cnt, port_is_idle_0, 11087 port_is_idle_1, pgl_exp_rom2); 11088 return (-1); 11089 } 11090 11091 mb(); 11092 11093 /* Close gates #2, #3 and #4 */ 11094 bxe_set_234_gates(sc, TRUE); 11095 11096 /* Poll for IGU VQs for 57712 and newer chips */ 11097 if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) { 11098 return (-1); 11099 } 11100 11101 /* XXX indicate that "process kill" is in progress to MCP */ 11102 11103 /* clear "unprepared" bit */ 11104 REG_WR(sc, MISC_REG_UNPREPARED, 0); 11105 mb(); 11106 11107 /* Make sure all is written to the chip before the reset */ 11108 wmb(); 11109 11110 /* 11111 * Wait for 1ms to empty GLUE and PCI-E core queues, 11112 * PSWHST, GRC and PSWRD Tetris buffer. 11113 */ 11114 DELAY(1000); 11115 11116 /* Prepare to chip reset: */ 11117 /* MCP */ 11118 if (global) { 11119 bxe_reset_mcp_prep(sc, &val); 11120 } 11121 11122 /* PXP */ 11123 bxe_pxp_prep(sc); 11124 mb(); 11125 11126 /* reset the chip */ 11127 bxe_process_kill_chip_reset(sc, global); 11128 mb(); 11129 11130 /* clear errors in PGB */ 11131 if (!CHIP_IS_E1(sc)) 11132 REG_WR(sc, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f); 11133 11134 /* Recover after reset: */ 11135 /* MCP */ 11136 if (global && bxe_reset_mcp_comp(sc, val)) { 11137 return (-1); 11138 } 11139 11140 /* XXX add resetting the NO_MCP mode DB here */ 11141 11142 /* Open the gates #2, #3 and #4 */ 11143 bxe_set_234_gates(sc, FALSE); 11144 11145 /* XXX 11146 * IGU/AEU preparation bring back the AEU/IGU to a reset state 11147 * re-enable attentions 11148 */ 11149 11150 return (0); 11151 } 11152 11153 static int 11154 bxe_leader_reset(struct bxe_softc *sc) 11155 { 11156 int rc = 0; 11157 uint8_t global = bxe_reset_is_global(sc); 11158 uint32_t load_code; 11159 11160 /* 11161 * If not going to reset MCP, load "fake" driver to reset HW while 11162 * driver is owner of the HW. 11163 */ 11164 if (!global && !BXE_NOMCP(sc)) { 11165 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, 11166 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 11167 if (!load_code) { 11168 BLOGE(sc, "MCP response failure, aborting\n"); 11169 rc = -1; 11170 goto exit_leader_reset; 11171 } 11172 11173 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 11174 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 11175 BLOGE(sc, "MCP unexpected response, aborting\n"); 11176 rc = -1; 11177 goto exit_leader_reset2; 11178 } 11179 11180 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 11181 if (!load_code) { 11182 BLOGE(sc, "MCP response failure, aborting\n"); 11183 rc = -1; 11184 goto exit_leader_reset2; 11185 } 11186 } 11187 11188 /* try to recover after the failure */ 11189 if (bxe_process_kill(sc, global)) { 11190 BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc)); 11191 rc = -1; 11192 goto exit_leader_reset2; 11193 } 11194 11195 /* 11196 * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver 11197 * state. 11198 */ 11199 bxe_set_reset_done(sc); 11200 if (global) { 11201 bxe_clear_reset_global(sc); 11202 } 11203 11204 exit_leader_reset2: 11205 11206 /* unload "fake driver" if it was loaded */ 11207 if (!global && !BXE_NOMCP(sc)) { 11208 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 11209 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); 11210 } 11211 11212 exit_leader_reset: 11213 11214 sc->is_leader = 0; 11215 bxe_release_leader_lock(sc); 11216 11217 mb(); 11218 return (rc); 11219 } 11220 11221 /* 11222 * prepare INIT transition, parameters configured: 11223 * - HC configuration 11224 * - Queue's CDU context 11225 */ 11226 static void 11227 bxe_pf_q_prep_init(struct bxe_softc *sc, 11228 struct bxe_fastpath *fp, 11229 struct ecore_queue_init_params *init_params) 11230 { 11231 uint8_t cos; 11232 int cxt_index, cxt_offset; 11233 11234 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags); 11235 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags); 11236 11237 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags); 11238 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags); 11239 11240 /* HC rate */ 11241 init_params->rx.hc_rate = 11242 sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0; 11243 init_params->tx.hc_rate = 11244 sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0; 11245 11246 /* FW SB ID */ 11247 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id; 11248 11249 /* CQ index among the SB indices */ 11250 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 11251 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS; 11252 11253 /* set maximum number of COSs supported by this queue */ 11254 init_params->max_cos = sc->max_cos; 11255 11256 BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n", 11257 fp->index, init_params->max_cos); 11258 11259 /* set the context pointers queue object */ 11260 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) { 11261 /* XXX change index/cid here if ever support multiple tx CoS */ 11262 /* fp->txdata[cos]->cid */ 11263 cxt_index = fp->index / ILT_PAGE_CIDS; 11264 cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS); 11265 init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth; 11266 } 11267 } 11268 11269 /* set flags that are common for the Tx-only and not normal connections */ 11270 static unsigned long 11271 bxe_get_common_flags(struct bxe_softc *sc, 11272 struct bxe_fastpath *fp, 11273 uint8_t zero_stats) 11274 { 11275 unsigned long flags = 0; 11276 11277 /* PF driver will always initialize the Queue to an ACTIVE state */ 11278 bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags); 11279 11280 /* 11281 * tx only connections collect statistics (on the same index as the 11282 * parent connection). The statistics are zeroed when the parent 11283 * connection is initialized. 11284 */ 11285 11286 bxe_set_bit(ECORE_Q_FLG_STATS, &flags); 11287 if (zero_stats) { 11288 bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags); 11289 } 11290 11291 /* 11292 * tx only connections can support tx-switching, though their 11293 * CoS-ness doesn't survive the loopback 11294 */ 11295 if (sc->flags & BXE_TX_SWITCHING) { 11296 bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags); 11297 } 11298 11299 bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags); 11300 11301 return (flags); 11302 } 11303 11304 static unsigned long 11305 bxe_get_q_flags(struct bxe_softc *sc, 11306 struct bxe_fastpath *fp, 11307 uint8_t leading) 11308 { 11309 unsigned long flags = 0; 11310 11311 if (IS_MF_SD(sc)) { 11312 bxe_set_bit(ECORE_Q_FLG_OV, &flags); 11313 } 11314 11315 if (if_getcapenable(sc->ifp) & IFCAP_LRO) { 11316 bxe_set_bit(ECORE_Q_FLG_TPA, &flags); 11317 #if __FreeBSD_version >= 800000 11318 bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags); 11319 #endif 11320 } 11321 11322 if (leading) { 11323 bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags); 11324 bxe_set_bit(ECORE_Q_FLG_MCAST, &flags); 11325 } 11326 11327 bxe_set_bit(ECORE_Q_FLG_VLAN, &flags); 11328 11329 /* merge with common flags */ 11330 return (flags | bxe_get_common_flags(sc, fp, TRUE)); 11331 } 11332 11333 static void 11334 bxe_pf_q_prep_general(struct bxe_softc *sc, 11335 struct bxe_fastpath *fp, 11336 struct ecore_general_setup_params *gen_init, 11337 uint8_t cos) 11338 { 11339 gen_init->stat_id = bxe_stats_id(fp); 11340 gen_init->spcl_id = fp->cl_id; 11341 gen_init->mtu = sc->mtu; 11342 gen_init->cos = cos; 11343 } 11344 11345 static void 11346 bxe_pf_rx_q_prep(struct bxe_softc *sc, 11347 struct bxe_fastpath *fp, 11348 struct rxq_pause_params *pause, 11349 struct ecore_rxq_setup_params *rxq_init) 11350 { 11351 uint8_t max_sge = 0; 11352 uint16_t sge_sz = 0; 11353 uint16_t tpa_agg_size = 0; 11354 11355 pause->sge_th_lo = SGE_TH_LO(sc); 11356 pause->sge_th_hi = SGE_TH_HI(sc); 11357 11358 /* validate SGE ring has enough to cross high threshold */ 11359 if (sc->dropless_fc && 11360 (pause->sge_th_hi + FW_PREFETCH_CNT) > 11361 (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) { 11362 BLOGW(sc, "sge ring threshold limit\n"); 11363 } 11364 11365 /* minimum max_aggregation_size is 2*MTU (two full buffers) */ 11366 tpa_agg_size = (2 * sc->mtu); 11367 if (tpa_agg_size < sc->max_aggregation_size) { 11368 tpa_agg_size = sc->max_aggregation_size; 11369 } 11370 11371 max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT; 11372 max_sge = ((max_sge + PAGES_PER_SGE - 1) & 11373 (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT; 11374 sge_sz = (uint16_t)min(SGE_PAGES, 0xffff); 11375 11376 /* pause - not for e1 */ 11377 if (!CHIP_IS_E1(sc)) { 11378 pause->bd_th_lo = BD_TH_LO(sc); 11379 pause->bd_th_hi = BD_TH_HI(sc); 11380 11381 pause->rcq_th_lo = RCQ_TH_LO(sc); 11382 pause->rcq_th_hi = RCQ_TH_HI(sc); 11383 11384 /* validate rings have enough entries to cross high thresholds */ 11385 if (sc->dropless_fc && 11386 pause->bd_th_hi + FW_PREFETCH_CNT > 11387 sc->rx_ring_size) { 11388 BLOGW(sc, "rx bd ring threshold limit\n"); 11389 } 11390 11391 if (sc->dropless_fc && 11392 pause->rcq_th_hi + FW_PREFETCH_CNT > 11393 RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) { 11394 BLOGW(sc, "rcq ring threshold limit\n"); 11395 } 11396 11397 pause->pri_map = 1; 11398 } 11399 11400 /* rxq setup */ 11401 rxq_init->dscr_map = fp->rx_dma.paddr; 11402 rxq_init->sge_map = fp->rx_sge_dma.paddr; 11403 rxq_init->rcq_map = fp->rcq_dma.paddr; 11404 rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE); 11405 11406 /* 11407 * This should be a maximum number of data bytes that may be 11408 * placed on the BD (not including paddings). 11409 */ 11410 rxq_init->buf_sz = (fp->rx_buf_size - 11411 IP_HEADER_ALIGNMENT_PADDING); 11412 11413 rxq_init->cl_qzone_id = fp->cl_qzone_id; 11414 rxq_init->tpa_agg_sz = tpa_agg_size; 11415 rxq_init->sge_buf_sz = sge_sz; 11416 rxq_init->max_sges_pkt = max_sge; 11417 rxq_init->rss_engine_id = SC_FUNC(sc); 11418 rxq_init->mcast_engine_id = SC_FUNC(sc); 11419 11420 /* 11421 * Maximum number or simultaneous TPA aggregation for this Queue. 11422 * For PF Clients it should be the maximum available number. 11423 * VF driver(s) may want to define it to a smaller value. 11424 */ 11425 rxq_init->max_tpa_queues = MAX_AGG_QS(sc); 11426 11427 rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT; 11428 rxq_init->fw_sb_id = fp->fw_sb_id; 11429 11430 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 11431 11432 /* 11433 * configure silent vlan removal 11434 * if multi function mode is afex, then mask default vlan 11435 */ 11436 if (IS_MF_AFEX(sc)) { 11437 rxq_init->silent_removal_value = 11438 sc->devinfo.mf_info.afex_def_vlan_tag; 11439 rxq_init->silent_removal_mask = EVL_VLID_MASK; 11440 } 11441 } 11442 11443 static void 11444 bxe_pf_tx_q_prep(struct bxe_softc *sc, 11445 struct bxe_fastpath *fp, 11446 struct ecore_txq_setup_params *txq_init, 11447 uint8_t cos) 11448 { 11449 /* 11450 * XXX If multiple CoS is ever supported then each fastpath structure 11451 * will need to maintain tx producer/consumer/dma/etc values *per* CoS. 11452 * fp->txdata[cos]->tx_dma.paddr; 11453 */ 11454 txq_init->dscr_map = fp->tx_dma.paddr; 11455 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos; 11456 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW; 11457 txq_init->fw_sb_id = fp->fw_sb_id; 11458 11459 /* 11460 * set the TSS leading client id for TX classfication to the 11461 * leading RSS client id 11462 */ 11463 txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id); 11464 } 11465 11466 /* 11467 * This function performs 2 steps in a queue state machine: 11468 * 1) RESET->INIT 11469 * 2) INIT->SETUP 11470 */ 11471 static int 11472 bxe_setup_queue(struct bxe_softc *sc, 11473 struct bxe_fastpath *fp, 11474 uint8_t leading) 11475 { 11476 struct ecore_queue_state_params q_params = { NULL }; 11477 struct ecore_queue_setup_params *setup_params = 11478 &q_params.params.setup; 11479 int rc; 11480 11481 BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index); 11482 11483 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 11484 11485 q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj; 11486 11487 /* we want to wait for completion in this context */ 11488 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 11489 11490 /* prepare the INIT parameters */ 11491 bxe_pf_q_prep_init(sc, fp, &q_params.params.init); 11492 11493 /* Set the command */ 11494 q_params.cmd = ECORE_Q_CMD_INIT; 11495 11496 /* Change the state to INIT */ 11497 rc = ecore_queue_state_change(sc, &q_params); 11498 if (rc) { 11499 BLOGE(sc, "Queue(%d) INIT failed rc = %d\n", fp->index, rc); 11500 return (rc); 11501 } 11502 11503 BLOGD(sc, DBG_LOAD, "init complete\n"); 11504 11505 /* now move the Queue to the SETUP state */ 11506 memset(setup_params, 0, sizeof(*setup_params)); 11507 11508 /* set Queue flags */ 11509 setup_params->flags = bxe_get_q_flags(sc, fp, leading); 11510 11511 /* set general SETUP parameters */ 11512 bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params, 11513 FIRST_TX_COS_INDEX); 11514 11515 bxe_pf_rx_q_prep(sc, fp, 11516 &setup_params->pause_params, 11517 &setup_params->rxq_params); 11518 11519 bxe_pf_tx_q_prep(sc, fp, 11520 &setup_params->txq_params, 11521 FIRST_TX_COS_INDEX); 11522 11523 /* Set the command */ 11524 q_params.cmd = ECORE_Q_CMD_SETUP; 11525 11526 /* change the state to SETUP */ 11527 rc = ecore_queue_state_change(sc, &q_params); 11528 if (rc) { 11529 BLOGE(sc, "Queue(%d) SETUP failed (rc = %d)\n", fp->index, rc); 11530 return (rc); 11531 } 11532 11533 return (rc); 11534 } 11535 11536 static int 11537 bxe_setup_leading(struct bxe_softc *sc) 11538 { 11539 return (bxe_setup_queue(sc, &sc->fp[0], TRUE)); 11540 } 11541 11542 static int 11543 bxe_config_rss_pf(struct bxe_softc *sc, 11544 struct ecore_rss_config_obj *rss_obj, 11545 uint8_t config_hash) 11546 { 11547 struct ecore_config_rss_params params = { NULL }; 11548 int i; 11549 11550 /* 11551 * Although RSS is meaningless when there is a single HW queue we 11552 * still need it enabled in order to have HW Rx hash generated. 11553 */ 11554 11555 params.rss_obj = rss_obj; 11556 11557 bxe_set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags); 11558 11559 bxe_set_bit(ECORE_RSS_MODE_REGULAR, ¶ms.rss_flags); 11560 11561 /* RSS configuration */ 11562 bxe_set_bit(ECORE_RSS_IPV4, ¶ms.rss_flags); 11563 bxe_set_bit(ECORE_RSS_IPV4_TCP, ¶ms.rss_flags); 11564 bxe_set_bit(ECORE_RSS_IPV6, ¶ms.rss_flags); 11565 bxe_set_bit(ECORE_RSS_IPV6_TCP, ¶ms.rss_flags); 11566 if (rss_obj->udp_rss_v4) { 11567 bxe_set_bit(ECORE_RSS_IPV4_UDP, ¶ms.rss_flags); 11568 } 11569 if (rss_obj->udp_rss_v6) { 11570 bxe_set_bit(ECORE_RSS_IPV6_UDP, ¶ms.rss_flags); 11571 } 11572 11573 /* Hash bits */ 11574 params.rss_result_mask = MULTI_MASK; 11575 11576 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table)); 11577 11578 if (config_hash) { 11579 /* RSS keys */ 11580 for (i = 0; i < sizeof(params.rss_key) / 4; i++) { 11581 params.rss_key[i] = arc4random(); 11582 } 11583 11584 bxe_set_bit(ECORE_RSS_SET_SRCH, ¶ms.rss_flags); 11585 } 11586 11587 return (ecore_config_rss(sc, ¶ms)); 11588 } 11589 11590 static int 11591 bxe_config_rss_eth(struct bxe_softc *sc, 11592 uint8_t config_hash) 11593 { 11594 return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash)); 11595 } 11596 11597 static int 11598 bxe_init_rss_pf(struct bxe_softc *sc) 11599 { 11600 uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc); 11601 int i; 11602 11603 /* 11604 * Prepare the initial contents of the indirection table if 11605 * RSS is enabled 11606 */ 11607 for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) { 11608 sc->rss_conf_obj.ind_table[i] = 11609 (sc->fp->cl_id + (i % num_eth_queues)); 11610 } 11611 11612 if (sc->udp_rss) { 11613 sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1; 11614 } 11615 11616 /* 11617 * For 57710 and 57711 SEARCHER configuration (rss_keys) is 11618 * per-port, so if explicit configuration is needed, do it only 11619 * for a PMF. 11620 * 11621 * For 57712 and newer it's a per-function configuration. 11622 */ 11623 return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc))); 11624 } 11625 11626 static int 11627 bxe_set_mac_one(struct bxe_softc *sc, 11628 uint8_t *mac, 11629 struct ecore_vlan_mac_obj *obj, 11630 uint8_t set, 11631 int mac_type, 11632 unsigned long *ramrod_flags) 11633 { 11634 struct ecore_vlan_mac_ramrod_params ramrod_param; 11635 int rc; 11636 11637 memset(&ramrod_param, 0, sizeof(ramrod_param)); 11638 11639 /* fill in general parameters */ 11640 ramrod_param.vlan_mac_obj = obj; 11641 ramrod_param.ramrod_flags = *ramrod_flags; 11642 11643 /* fill a user request section if needed */ 11644 if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) { 11645 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN); 11646 11647 bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags); 11648 11649 /* Set the command: ADD or DEL */ 11650 ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD : 11651 ECORE_VLAN_MAC_DEL; 11652 } 11653 11654 rc = ecore_config_vlan_mac(sc, &ramrod_param); 11655 11656 if (rc == ECORE_EXISTS) { 11657 BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); 11658 /* do not treat adding same MAC as error */ 11659 rc = 0; 11660 } else if (rc < 0) { 11661 BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc); 11662 } 11663 11664 return (rc); 11665 } 11666 11667 static int 11668 bxe_set_eth_mac(struct bxe_softc *sc, 11669 uint8_t set) 11670 { 11671 unsigned long ramrod_flags = 0; 11672 11673 BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n"); 11674 11675 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 11676 11677 /* Eth MAC is set on RSS leading client (fp[0]) */ 11678 return (bxe_set_mac_one(sc, sc->link_params.mac_addr, 11679 &sc->sp_objs->mac_obj, 11680 set, ECORE_ETH_MAC, &ramrod_flags)); 11681 } 11682 11683 static int 11684 bxe_get_cur_phy_idx(struct bxe_softc *sc) 11685 { 11686 uint32_t sel_phy_idx = 0; 11687 11688 if (sc->link_params.num_phys <= 1) { 11689 return (ELINK_INT_PHY); 11690 } 11691 11692 if (sc->link_vars.link_up) { 11693 sel_phy_idx = ELINK_EXT_PHY1; 11694 /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */ 11695 if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) && 11696 (sc->link_params.phy[ELINK_EXT_PHY2].supported & 11697 ELINK_SUPPORTED_FIBRE)) 11698 sel_phy_idx = ELINK_EXT_PHY2; 11699 } else { 11700 switch (elink_phy_selection(&sc->link_params)) { 11701 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT: 11702 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY: 11703 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY: 11704 sel_phy_idx = ELINK_EXT_PHY1; 11705 break; 11706 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY: 11707 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY: 11708 sel_phy_idx = ELINK_EXT_PHY2; 11709 break; 11710 } 11711 } 11712 11713 return (sel_phy_idx); 11714 } 11715 11716 static int 11717 bxe_get_link_cfg_idx(struct bxe_softc *sc) 11718 { 11719 uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc); 11720 11721 /* 11722 * The selected activated PHY is always after swapping (in case PHY 11723 * swapping is enabled). So when swapping is enabled, we need to reverse 11724 * the configuration 11725 */ 11726 11727 if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 11728 if (sel_phy_idx == ELINK_EXT_PHY1) 11729 sel_phy_idx = ELINK_EXT_PHY2; 11730 else if (sel_phy_idx == ELINK_EXT_PHY2) 11731 sel_phy_idx = ELINK_EXT_PHY1; 11732 } 11733 11734 return (ELINK_LINK_CONFIG_IDX(sel_phy_idx)); 11735 } 11736 11737 static void 11738 bxe_set_requested_fc(struct bxe_softc *sc) 11739 { 11740 /* 11741 * Initialize link parameters structure variables 11742 * It is recommended to turn off RX FC for jumbo frames 11743 * for better performance 11744 */ 11745 if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) { 11746 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX; 11747 } else { 11748 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH; 11749 } 11750 } 11751 11752 static void 11753 bxe_calc_fc_adv(struct bxe_softc *sc) 11754 { 11755 uint8_t cfg_idx = bxe_get_link_cfg_idx(sc); 11756 11757 11758 sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | 11759 ADVERTISED_Pause); 11760 11761 switch (sc->link_vars.ieee_fc & 11762 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) { 11763 11764 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH: 11765 sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause | 11766 ADVERTISED_Pause); 11767 break; 11768 11769 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC: 11770 sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause; 11771 break; 11772 11773 default: 11774 break; 11775 11776 } 11777 } 11778 11779 static uint16_t 11780 bxe_get_mf_speed(struct bxe_softc *sc) 11781 { 11782 uint16_t line_speed = sc->link_vars.line_speed; 11783 if (IS_MF(sc)) { 11784 uint16_t maxCfg = 11785 bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]); 11786 11787 /* calculate the current MAX line speed limit for the MF devices */ 11788 if (IS_MF_SI(sc)) { 11789 line_speed = (line_speed * maxCfg) / 100; 11790 } else { /* SD mode */ 11791 uint16_t vn_max_rate = maxCfg * 100; 11792 11793 if (vn_max_rate < line_speed) { 11794 line_speed = vn_max_rate; 11795 } 11796 } 11797 } 11798 11799 return (line_speed); 11800 } 11801 11802 static void 11803 bxe_fill_report_data(struct bxe_softc *sc, 11804 struct bxe_link_report_data *data) 11805 { 11806 uint16_t line_speed = bxe_get_mf_speed(sc); 11807 11808 memset(data, 0, sizeof(*data)); 11809 11810 /* fill the report data with the effective line speed */ 11811 data->line_speed = line_speed; 11812 11813 /* Link is down */ 11814 if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) { 11815 bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags); 11816 } 11817 11818 /* Full DUPLEX */ 11819 if (sc->link_vars.duplex == DUPLEX_FULL) { 11820 bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags); 11821 } 11822 11823 /* Rx Flow Control is ON */ 11824 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) { 11825 bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags); 11826 } 11827 11828 /* Tx Flow Control is ON */ 11829 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { 11830 bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags); 11831 } 11832 } 11833 11834 /* report link status to OS, should be called under phy_lock */ 11835 static void 11836 bxe_link_report_locked(struct bxe_softc *sc) 11837 { 11838 struct bxe_link_report_data cur_data; 11839 11840 /* reread mf_cfg */ 11841 if (IS_PF(sc) && !CHIP_IS_E1(sc)) { 11842 bxe_read_mf_cfg(sc); 11843 } 11844 11845 /* Read the current link report info */ 11846 bxe_fill_report_data(sc, &cur_data); 11847 11848 /* Don't report link down or exactly the same link status twice */ 11849 if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) || 11850 (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 11851 &sc->last_reported_link.link_report_flags) && 11852 bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 11853 &cur_data.link_report_flags))) { 11854 return; 11855 } 11856 11857 ELINK_DEBUG_P2(sc, "Change in link status : cur_data = %x, last_reported_link = %x\n", 11858 cur_data.link_report_flags, sc->last_reported_link.link_report_flags); 11859 sc->link_cnt++; 11860 11861 ELINK_DEBUG_P1(sc, "link status change count = %x\n", sc->link_cnt); 11862 /* report new link params and remember the state for the next time */ 11863 memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data)); 11864 11865 if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 11866 &cur_data.link_report_flags)) { 11867 if_link_state_change(sc->ifp, LINK_STATE_DOWN); 11868 } else { 11869 const char *duplex; 11870 const char *flow; 11871 11872 if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX, 11873 &cur_data.link_report_flags)) { 11874 duplex = "full"; 11875 ELINK_DEBUG_P0(sc, "link set to full duplex\n"); 11876 } else { 11877 duplex = "half"; 11878 ELINK_DEBUG_P0(sc, "link set to half duplex\n"); 11879 } 11880 11881 /* 11882 * Handle the FC at the end so that only these flags would be 11883 * possibly set. This way we may easily check if there is no FC 11884 * enabled. 11885 */ 11886 if (cur_data.link_report_flags) { 11887 if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 11888 &cur_data.link_report_flags) && 11889 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 11890 &cur_data.link_report_flags)) { 11891 flow = "ON - receive & transmit"; 11892 } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 11893 &cur_data.link_report_flags) && 11894 !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 11895 &cur_data.link_report_flags)) { 11896 flow = "ON - receive"; 11897 } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 11898 &cur_data.link_report_flags) && 11899 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 11900 &cur_data.link_report_flags)) { 11901 flow = "ON - transmit"; 11902 } else { 11903 flow = "none"; /* possible? */ 11904 } 11905 } else { 11906 flow = "none"; 11907 } 11908 11909 if_link_state_change(sc->ifp, LINK_STATE_UP); 11910 BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n", 11911 cur_data.line_speed, duplex, flow); 11912 } 11913 } 11914 11915 static void 11916 bxe_link_report(struct bxe_softc *sc) 11917 { 11918 bxe_acquire_phy_lock(sc); 11919 bxe_link_report_locked(sc); 11920 bxe_release_phy_lock(sc); 11921 } 11922 11923 static void 11924 bxe_link_status_update(struct bxe_softc *sc) 11925 { 11926 if (sc->state != BXE_STATE_OPEN) { 11927 return; 11928 } 11929 11930 if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) { 11931 elink_link_status_update(&sc->link_params, &sc->link_vars); 11932 } else { 11933 sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half | 11934 ELINK_SUPPORTED_10baseT_Full | 11935 ELINK_SUPPORTED_100baseT_Half | 11936 ELINK_SUPPORTED_100baseT_Full | 11937 ELINK_SUPPORTED_1000baseT_Full | 11938 ELINK_SUPPORTED_2500baseX_Full | 11939 ELINK_SUPPORTED_10000baseT_Full | 11940 ELINK_SUPPORTED_TP | 11941 ELINK_SUPPORTED_FIBRE | 11942 ELINK_SUPPORTED_Autoneg | 11943 ELINK_SUPPORTED_Pause | 11944 ELINK_SUPPORTED_Asym_Pause); 11945 sc->port.advertising[0] = sc->port.supported[0]; 11946 11947 sc->link_params.sc = sc; 11948 sc->link_params.port = SC_PORT(sc); 11949 sc->link_params.req_duplex[0] = DUPLEX_FULL; 11950 sc->link_params.req_flow_ctrl[0] = ELINK_FLOW_CTRL_NONE; 11951 sc->link_params.req_line_speed[0] = SPEED_10000; 11952 sc->link_params.speed_cap_mask[0] = 0x7f0000; 11953 sc->link_params.switch_cfg = ELINK_SWITCH_CFG_10G; 11954 11955 if (CHIP_REV_IS_FPGA(sc)) { 11956 sc->link_vars.mac_type = ELINK_MAC_TYPE_EMAC; 11957 sc->link_vars.line_speed = ELINK_SPEED_1000; 11958 sc->link_vars.link_status = (LINK_STATUS_LINK_UP | 11959 LINK_STATUS_SPEED_AND_DUPLEX_1000TFD); 11960 } else { 11961 sc->link_vars.mac_type = ELINK_MAC_TYPE_BMAC; 11962 sc->link_vars.line_speed = ELINK_SPEED_10000; 11963 sc->link_vars.link_status = (LINK_STATUS_LINK_UP | 11964 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD); 11965 } 11966 11967 sc->link_vars.link_up = 1; 11968 11969 sc->link_vars.duplex = DUPLEX_FULL; 11970 sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE; 11971 11972 if (IS_PF(sc)) { 11973 REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0); 11974 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11975 bxe_link_report(sc); 11976 } 11977 } 11978 11979 if (IS_PF(sc)) { 11980 if (sc->link_vars.link_up) { 11981 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11982 } else { 11983 bxe_stats_handle(sc, STATS_EVENT_STOP); 11984 } 11985 bxe_link_report(sc); 11986 } else { 11987 bxe_link_report(sc); 11988 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11989 } 11990 } 11991 11992 static int 11993 bxe_initial_phy_init(struct bxe_softc *sc, 11994 int load_mode) 11995 { 11996 int rc, cfg_idx = bxe_get_link_cfg_idx(sc); 11997 uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx]; 11998 struct elink_params *lp = &sc->link_params; 11999 12000 bxe_set_requested_fc(sc); 12001 12002 if (CHIP_REV_IS_SLOW(sc)) { 12003 uint32_t bond = CHIP_BOND_ID(sc); 12004 uint32_t feat = 0; 12005 12006 if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) { 12007 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; 12008 } else if (bond & 0x4) { 12009 if (CHIP_IS_E3(sc)) { 12010 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC; 12011 } else { 12012 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; 12013 } 12014 } else if (bond & 0x8) { 12015 if (CHIP_IS_E3(sc)) { 12016 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC; 12017 } else { 12018 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; 12019 } 12020 } 12021 12022 /* disable EMAC for E3 and above */ 12023 if (bond & 0x2) { 12024 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; 12025 } 12026 12027 sc->link_params.feature_config_flags |= feat; 12028 } 12029 12030 bxe_acquire_phy_lock(sc); 12031 12032 if (load_mode == LOAD_DIAG) { 12033 lp->loopback_mode = ELINK_LOOPBACK_XGXS; 12034 /* Prefer doing PHY loopback at 10G speed, if possible */ 12035 if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) { 12036 if (lp->speed_cap_mask[cfg_idx] & 12037 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { 12038 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000; 12039 } else { 12040 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000; 12041 } 12042 } 12043 } 12044 12045 if (load_mode == LOAD_LOOPBACK_EXT) { 12046 lp->loopback_mode = ELINK_LOOPBACK_EXT; 12047 } 12048 12049 rc = elink_phy_init(&sc->link_params, &sc->link_vars); 12050 12051 bxe_release_phy_lock(sc); 12052 12053 bxe_calc_fc_adv(sc); 12054 12055 if (sc->link_vars.link_up) { 12056 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 12057 bxe_link_report(sc); 12058 } 12059 12060 if (!CHIP_REV_IS_SLOW(sc)) { 12061 bxe_periodic_start(sc); 12062 } 12063 12064 sc->link_params.req_line_speed[cfg_idx] = req_line_speed; 12065 return (rc); 12066 } 12067 12068 static u_int 12069 bxe_push_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 12070 { 12071 struct ecore_mcast_list_elem *mc_mac = arg; 12072 12073 mc_mac += cnt; 12074 mc_mac->mac = (uint8_t *)LLADDR(sdl); 12075 12076 return (1); 12077 } 12078 12079 static int 12080 bxe_init_mcast_macs_list(struct bxe_softc *sc, 12081 struct ecore_mcast_ramrod_params *p) 12082 { 12083 if_t ifp = sc->ifp; 12084 int mc_count; 12085 struct ecore_mcast_list_elem *mc_mac; 12086 12087 ECORE_LIST_INIT(&p->mcast_list); 12088 p->mcast_list_len = 0; 12089 12090 /* XXXGL: multicast count may change later */ 12091 mc_count = if_llmaddr_count(ifp); 12092 12093 if (!mc_count) { 12094 return (0); 12095 } 12096 12097 mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF, 12098 (M_NOWAIT | M_ZERO)); 12099 if (!mc_mac) { 12100 BLOGE(sc, "Failed to allocate temp mcast list\n"); 12101 return (-1); 12102 } 12103 bzero(mc_mac, (sizeof(*mc_mac) * mc_count)); 12104 if_foreach_llmaddr(ifp, bxe_push_maddr, mc_mac); 12105 12106 for (int i = 0; i < mc_count; i ++) { 12107 ECORE_LIST_PUSH_TAIL(&mc_mac[i].link, &p->mcast_list); 12108 BLOGD(sc, DBG_LOAD, 12109 "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X and mc_count %d\n", 12110 mc_mac[i].mac[0], mc_mac[i].mac[1], mc_mac[i].mac[2], 12111 mc_mac[i].mac[3], mc_mac[i].mac[4], mc_mac[i].mac[5], 12112 mc_count); 12113 } 12114 12115 p->mcast_list_len = mc_count; 12116 12117 return (0); 12118 } 12119 12120 static void 12121 bxe_free_mcast_macs_list(struct ecore_mcast_ramrod_params *p) 12122 { 12123 struct ecore_mcast_list_elem *mc_mac = 12124 ECORE_LIST_FIRST_ENTRY(&p->mcast_list, 12125 struct ecore_mcast_list_elem, 12126 link); 12127 12128 if (mc_mac) { 12129 /* only a single free as all mc_macs are in the same heap array */ 12130 free(mc_mac, M_DEVBUF); 12131 } 12132 } 12133 static int 12134 bxe_set_mc_list(struct bxe_softc *sc) 12135 { 12136 struct ecore_mcast_ramrod_params rparam = { NULL }; 12137 int rc = 0; 12138 12139 rparam.mcast_obj = &sc->mcast_obj; 12140 12141 BXE_MCAST_LOCK(sc); 12142 12143 /* first, clear all configured multicast MACs */ 12144 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 12145 if (rc < 0) { 12146 BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc); 12147 /* Manual backport parts of FreeBSD upstream r284470. */ 12148 BXE_MCAST_UNLOCK(sc); 12149 return (rc); 12150 } 12151 12152 /* configure a new MACs list */ 12153 rc = bxe_init_mcast_macs_list(sc, &rparam); 12154 if (rc) { 12155 BLOGE(sc, "Failed to create mcast MACs list (%d)\n", rc); 12156 BXE_MCAST_UNLOCK(sc); 12157 return (rc); 12158 } 12159 12160 /* Now add the new MACs */ 12161 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD); 12162 if (rc < 0) { 12163 BLOGE(sc, "Failed to set new mcast config (%d)\n", rc); 12164 } 12165 12166 bxe_free_mcast_macs_list(&rparam); 12167 12168 BXE_MCAST_UNLOCK(sc); 12169 12170 return (rc); 12171 } 12172 12173 struct bxe_set_addr_ctx { 12174 struct bxe_softc *sc; 12175 unsigned long ramrod_flags; 12176 int rc; 12177 }; 12178 12179 static u_int 12180 bxe_set_addr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 12181 { 12182 struct bxe_set_addr_ctx *ctx = arg; 12183 struct ecore_vlan_mac_obj *mac_obj = &ctx->sc->sp_objs->mac_obj; 12184 int rc; 12185 12186 if (ctx->rc < 0) 12187 return (0); 12188 12189 rc = bxe_set_mac_one(ctx->sc, (uint8_t *)LLADDR(sdl), mac_obj, TRUE, 12190 ECORE_UC_LIST_MAC, &ctx->ramrod_flags); 12191 12192 /* do not treat adding same MAC as an error */ 12193 if (rc == -EEXIST) 12194 BLOGD(ctx->sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); 12195 else if (rc < 0) { 12196 BLOGE(ctx->sc, "Failed to schedule ADD operations (%d)\n", rc); 12197 ctx->rc = rc; 12198 } 12199 12200 return (1); 12201 } 12202 12203 static int 12204 bxe_set_uc_list(struct bxe_softc *sc) 12205 { 12206 if_t ifp = sc->ifp; 12207 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; 12208 struct bxe_set_addr_ctx ctx = { sc, 0, 0 }; 12209 int rc; 12210 12211 /* first schedule a cleanup up of old configuration */ 12212 rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE); 12213 if (rc < 0) { 12214 BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc); 12215 return (rc); 12216 } 12217 12218 if_foreach_lladdr(ifp, bxe_set_addr, &ctx); 12219 if (ctx.rc < 0) 12220 return (ctx.rc); 12221 12222 /* Execute the pending commands */ 12223 bit_set(&ctx.ramrod_flags, RAMROD_CONT); 12224 return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */, 12225 ECORE_UC_LIST_MAC, &ctx.ramrod_flags)); 12226 } 12227 12228 static void 12229 bxe_set_rx_mode(struct bxe_softc *sc) 12230 { 12231 if_t ifp = sc->ifp; 12232 uint32_t rx_mode = BXE_RX_MODE_NORMAL; 12233 12234 if (sc->state != BXE_STATE_OPEN) { 12235 BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state); 12236 return; 12237 } 12238 12239 BLOGD(sc, DBG_SP, "if_flags(ifp)=0x%x\n", if_getflags(sc->ifp)); 12240 12241 if (if_getflags(ifp) & IFF_PROMISC) { 12242 rx_mode = BXE_RX_MODE_PROMISC; 12243 } else if ((if_getflags(ifp) & IFF_ALLMULTI) || 12244 ((if_getamcount(ifp) > BXE_MAX_MULTICAST) && 12245 CHIP_IS_E1(sc))) { 12246 rx_mode = BXE_RX_MODE_ALLMULTI; 12247 } else { 12248 if (IS_PF(sc)) { 12249 /* some multicasts */ 12250 if (bxe_set_mc_list(sc) < 0) { 12251 rx_mode = BXE_RX_MODE_ALLMULTI; 12252 } 12253 if (bxe_set_uc_list(sc) < 0) { 12254 rx_mode = BXE_RX_MODE_PROMISC; 12255 } 12256 } 12257 } 12258 12259 sc->rx_mode = rx_mode; 12260 12261 /* schedule the rx_mode command */ 12262 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { 12263 BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n"); 12264 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); 12265 return; 12266 } 12267 12268 if (IS_PF(sc)) { 12269 bxe_set_storm_rx_mode(sc); 12270 } 12271 } 12272 12273 12274 /* update flags in shmem */ 12275 static void 12276 bxe_update_drv_flags(struct bxe_softc *sc, 12277 uint32_t flags, 12278 uint32_t set) 12279 { 12280 uint32_t drv_flags; 12281 12282 if (SHMEM2_HAS(sc, drv_flags)) { 12283 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); 12284 drv_flags = SHMEM2_RD(sc, drv_flags); 12285 12286 if (set) { 12287 SET_FLAGS(drv_flags, flags); 12288 } else { 12289 RESET_FLAGS(drv_flags, flags); 12290 } 12291 12292 SHMEM2_WR(sc, drv_flags, drv_flags); 12293 BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags); 12294 12295 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); 12296 } 12297 } 12298 12299 /* periodic timer callout routine, only runs when the interface is up */ 12300 12301 static void 12302 bxe_periodic_callout_func(void *xsc) 12303 { 12304 struct bxe_softc *sc = (struct bxe_softc *)xsc; 12305 int i; 12306 12307 if (!BXE_CORE_TRYLOCK(sc)) { 12308 /* just bail and try again next time */ 12309 12310 if ((sc->state == BXE_STATE_OPEN) && 12311 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { 12312 /* schedule the next periodic callout */ 12313 callout_reset(&sc->periodic_callout, hz, 12314 bxe_periodic_callout_func, sc); 12315 } 12316 12317 return; 12318 } 12319 12320 if ((sc->state != BXE_STATE_OPEN) || 12321 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) { 12322 BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state); 12323 BXE_CORE_UNLOCK(sc); 12324 return; 12325 } 12326 12327 12328 /* Check for TX timeouts on any fastpath. */ 12329 FOR_EACH_QUEUE(sc, i) { 12330 if (bxe_watchdog(sc, &sc->fp[i]) != 0) { 12331 /* Ruh-Roh, chip was reset! */ 12332 break; 12333 } 12334 } 12335 12336 if (!CHIP_REV_IS_SLOW(sc)) { 12337 /* 12338 * This barrier is needed to ensure the ordering between the writing 12339 * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and 12340 * the reading here. 12341 */ 12342 mb(); 12343 if (sc->port.pmf) { 12344 bxe_acquire_phy_lock(sc); 12345 elink_period_func(&sc->link_params, &sc->link_vars); 12346 bxe_release_phy_lock(sc); 12347 } 12348 } 12349 12350 if (IS_PF(sc) && !(sc->flags & BXE_NO_PULSE)) { 12351 int mb_idx = SC_FW_MB_IDX(sc); 12352 uint32_t drv_pulse; 12353 uint32_t mcp_pulse; 12354 12355 ++sc->fw_drv_pulse_wr_seq; 12356 sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK; 12357 12358 drv_pulse = sc->fw_drv_pulse_wr_seq; 12359 bxe_drv_pulse(sc); 12360 12361 mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) & 12362 MCP_PULSE_SEQ_MASK); 12363 12364 /* 12365 * The delta between driver pulse and mcp response should 12366 * be 1 (before mcp response) or 0 (after mcp response). 12367 */ 12368 if ((drv_pulse != mcp_pulse) && 12369 (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) { 12370 /* someone lost a heartbeat... */ 12371 BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n", 12372 drv_pulse, mcp_pulse); 12373 } 12374 } 12375 12376 /* state is BXE_STATE_OPEN */ 12377 bxe_stats_handle(sc, STATS_EVENT_UPDATE); 12378 12379 BXE_CORE_UNLOCK(sc); 12380 12381 if ((sc->state == BXE_STATE_OPEN) && 12382 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { 12383 /* schedule the next periodic callout */ 12384 callout_reset(&sc->periodic_callout, hz, 12385 bxe_periodic_callout_func, sc); 12386 } 12387 } 12388 12389 static void 12390 bxe_periodic_start(struct bxe_softc *sc) 12391 { 12392 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO); 12393 callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc); 12394 } 12395 12396 static void 12397 bxe_periodic_stop(struct bxe_softc *sc) 12398 { 12399 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP); 12400 callout_drain(&sc->periodic_callout); 12401 } 12402 12403 void 12404 bxe_parity_recover(struct bxe_softc *sc) 12405 { 12406 uint8_t global = FALSE; 12407 uint32_t error_recovered, error_unrecovered; 12408 bool is_parity; 12409 12410 12411 if ((sc->recovery_state == BXE_RECOVERY_FAILED) && 12412 (sc->state == BXE_STATE_ERROR)) { 12413 BLOGE(sc, "RECOVERY failed, " 12414 "stack notified driver is NOT running! " 12415 "Please reboot/power cycle the system.\n"); 12416 return; 12417 } 12418 12419 while (1) { 12420 BLOGD(sc, DBG_SP, 12421 "%s sc=%p state=0x%x rec_state=0x%x error_status=%x\n", 12422 __func__, sc, sc->state, sc->recovery_state, sc->error_status); 12423 12424 switch(sc->recovery_state) { 12425 12426 case BXE_RECOVERY_INIT: 12427 is_parity = bxe_chk_parity_attn(sc, &global, FALSE); 12428 12429 if ((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) || 12430 (sc->error_status & BXE_ERR_MCP_ASSERT) || 12431 (sc->error_status & BXE_ERR_GLOBAL)) { 12432 12433 BXE_CORE_LOCK(sc); 12434 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 12435 bxe_periodic_stop(sc); 12436 } 12437 bxe_nic_unload(sc, UNLOAD_RECOVERY, false); 12438 sc->state = BXE_STATE_ERROR; 12439 sc->recovery_state = BXE_RECOVERY_FAILED; 12440 BLOGE(sc, " No Recovery tried for error 0x%x" 12441 " stack notified driver is NOT running!" 12442 " Please reboot/power cycle the system.\n", 12443 sc->error_status); 12444 BXE_CORE_UNLOCK(sc); 12445 return; 12446 } 12447 12448 12449 /* Try to get a LEADER_LOCK HW lock */ 12450 if (bxe_trylock_leader_lock(sc)) { 12451 12452 bxe_set_reset_in_progress(sc); 12453 /* 12454 * Check if there is a global attention and if 12455 * there was a global attention, set the global 12456 * reset bit. 12457 */ 12458 if (global) { 12459 bxe_set_reset_global(sc); 12460 } 12461 sc->is_leader = 1; 12462 } 12463 12464 /* If interface has been removed - break */ 12465 12466 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 12467 bxe_periodic_stop(sc); 12468 } 12469 12470 BXE_CORE_LOCK(sc); 12471 bxe_nic_unload(sc,UNLOAD_RECOVERY, false); 12472 sc->recovery_state = BXE_RECOVERY_WAIT; 12473 BXE_CORE_UNLOCK(sc); 12474 12475 /* 12476 * Ensure "is_leader", MCP command sequence and 12477 * "recovery_state" update values are seen on other 12478 * CPUs. 12479 */ 12480 mb(); 12481 break; 12482 case BXE_RECOVERY_WAIT: 12483 12484 if (sc->is_leader) { 12485 int other_engine = SC_PATH(sc) ? 0 : 1; 12486 bool other_load_status = 12487 bxe_get_load_status(sc, other_engine); 12488 bool load_status = 12489 bxe_get_load_status(sc, SC_PATH(sc)); 12490 global = bxe_reset_is_global(sc); 12491 12492 /* 12493 * In case of a parity in a global block, let 12494 * the first leader that performs a 12495 * leader_reset() reset the global blocks in 12496 * order to clear global attentions. Otherwise 12497 * the gates will remain closed for that 12498 * engine. 12499 */ 12500 if (load_status || 12501 (global && other_load_status)) { 12502 /* 12503 * Wait until all other functions get 12504 * down. 12505 */ 12506 taskqueue_enqueue_timeout(taskqueue_thread, 12507 &sc->sp_err_timeout_task, hz/10); 12508 return; 12509 } else { 12510 /* 12511 * If all other functions got down 12512 * try to bring the chip back to 12513 * normal. In any case it's an exit 12514 * point for a leader. 12515 */ 12516 if (bxe_leader_reset(sc)) { 12517 BLOGE(sc, "RECOVERY failed, " 12518 "stack notified driver is NOT running!\n"); 12519 sc->recovery_state = BXE_RECOVERY_FAILED; 12520 sc->state = BXE_STATE_ERROR; 12521 mb(); 12522 return; 12523 } 12524 12525 /* 12526 * If we are here, means that the 12527 * leader has succeeded and doesn't 12528 * want to be a leader any more. Try 12529 * to continue as a none-leader. 12530 */ 12531 break; 12532 } 12533 12534 } else { /* non-leader */ 12535 if (!bxe_reset_is_done(sc, SC_PATH(sc))) { 12536 /* 12537 * Try to get a LEADER_LOCK HW lock as 12538 * long as a former leader may have 12539 * been unloaded by the user or 12540 * released a leadership by another 12541 * reason. 12542 */ 12543 if (bxe_trylock_leader_lock(sc)) { 12544 /* 12545 * I'm a leader now! Restart a 12546 * switch case. 12547 */ 12548 sc->is_leader = 1; 12549 break; 12550 } 12551 12552 taskqueue_enqueue_timeout(taskqueue_thread, 12553 &sc->sp_err_timeout_task, hz/10); 12554 return; 12555 12556 } else { 12557 /* 12558 * If there was a global attention, wait 12559 * for it to be cleared. 12560 */ 12561 if (bxe_reset_is_global(sc)) { 12562 taskqueue_enqueue_timeout(taskqueue_thread, 12563 &sc->sp_err_timeout_task, hz/10); 12564 return; 12565 } 12566 12567 error_recovered = 12568 sc->eth_stats.recoverable_error; 12569 error_unrecovered = 12570 sc->eth_stats.unrecoverable_error; 12571 BXE_CORE_LOCK(sc); 12572 sc->recovery_state = 12573 BXE_RECOVERY_NIC_LOADING; 12574 if (bxe_nic_load(sc, LOAD_NORMAL)) { 12575 error_unrecovered++; 12576 sc->recovery_state = BXE_RECOVERY_FAILED; 12577 sc->state = BXE_STATE_ERROR; 12578 BLOGE(sc, "Recovery is NOT successfull, " 12579 " state=0x%x recovery_state=0x%x error=%x\n", 12580 sc->state, sc->recovery_state, sc->error_status); 12581 sc->error_status = 0; 12582 } else { 12583 sc->recovery_state = 12584 BXE_RECOVERY_DONE; 12585 error_recovered++; 12586 BLOGI(sc, "Recovery is successfull from errors %x," 12587 " state=0x%x" 12588 " recovery_state=0x%x \n", sc->error_status, 12589 sc->state, sc->recovery_state); 12590 mb(); 12591 } 12592 sc->error_status = 0; 12593 BXE_CORE_UNLOCK(sc); 12594 sc->eth_stats.recoverable_error = 12595 error_recovered; 12596 sc->eth_stats.unrecoverable_error = 12597 error_unrecovered; 12598 12599 return; 12600 } 12601 } 12602 default: 12603 return; 12604 } 12605 } 12606 } 12607 void 12608 bxe_handle_error(struct bxe_softc * sc) 12609 { 12610 12611 if(sc->recovery_state == BXE_RECOVERY_WAIT) { 12612 return; 12613 } 12614 if(sc->error_status) { 12615 if (sc->state == BXE_STATE_OPEN) { 12616 bxe_int_disable(sc); 12617 } 12618 if (sc->link_vars.link_up) { 12619 if_link_state_change(sc->ifp, LINK_STATE_DOWN); 12620 } 12621 sc->recovery_state = BXE_RECOVERY_INIT; 12622 BLOGI(sc, "bxe%d: Recovery started errors 0x%x recovery state 0x%x\n", 12623 sc->unit, sc->error_status, sc->recovery_state); 12624 bxe_parity_recover(sc); 12625 } 12626 } 12627 12628 static void 12629 bxe_sp_err_timeout_task(void *arg, int pending) 12630 { 12631 12632 struct bxe_softc *sc = (struct bxe_softc *)arg; 12633 12634 BLOGD(sc, DBG_SP, 12635 "%s state = 0x%x rec state=0x%x error_status=%x\n", 12636 __func__, sc->state, sc->recovery_state, sc->error_status); 12637 12638 if((sc->recovery_state == BXE_RECOVERY_FAILED) && 12639 (sc->state == BXE_STATE_ERROR)) { 12640 return; 12641 } 12642 /* if can be taken */ 12643 if ((sc->error_status) && (sc->trigger_grcdump)) { 12644 bxe_grc_dump(sc); 12645 } 12646 if (sc->recovery_state != BXE_RECOVERY_DONE) { 12647 bxe_handle_error(sc); 12648 bxe_parity_recover(sc); 12649 } else if (sc->error_status) { 12650 bxe_handle_error(sc); 12651 } 12652 12653 return; 12654 } 12655 12656 /* start the controller */ 12657 static __noinline int 12658 bxe_nic_load(struct bxe_softc *sc, 12659 int load_mode) 12660 { 12661 uint32_t val; 12662 int load_code = 0; 12663 int i, rc = 0; 12664 12665 BXE_CORE_LOCK_ASSERT(sc); 12666 12667 BLOGD(sc, DBG_LOAD, "Starting NIC load...\n"); 12668 12669 sc->state = BXE_STATE_OPENING_WAITING_LOAD; 12670 12671 if (IS_PF(sc)) { 12672 /* must be called before memory allocation and HW init */ 12673 bxe_ilt_set_info(sc); 12674 } 12675 12676 sc->last_reported_link_state = LINK_STATE_UNKNOWN; 12677 12678 bxe_set_fp_rx_buf_size(sc); 12679 12680 if (bxe_alloc_fp_buffers(sc) != 0) { 12681 BLOGE(sc, "Failed to allocate fastpath memory\n"); 12682 sc->state = BXE_STATE_CLOSED; 12683 rc = ENOMEM; 12684 goto bxe_nic_load_error0; 12685 } 12686 12687 if (bxe_alloc_mem(sc) != 0) { 12688 sc->state = BXE_STATE_CLOSED; 12689 rc = ENOMEM; 12690 goto bxe_nic_load_error0; 12691 } 12692 12693 if (bxe_alloc_fw_stats_mem(sc) != 0) { 12694 sc->state = BXE_STATE_CLOSED; 12695 rc = ENOMEM; 12696 goto bxe_nic_load_error0; 12697 } 12698 12699 if (IS_PF(sc)) { 12700 /* set pf load just before approaching the MCP */ 12701 bxe_set_pf_load(sc); 12702 12703 /* if MCP exists send load request and analyze response */ 12704 if (!BXE_NOMCP(sc)) { 12705 /* attempt to load pf */ 12706 if (bxe_nic_load_request(sc, &load_code) != 0) { 12707 sc->state = BXE_STATE_CLOSED; 12708 rc = ENXIO; 12709 goto bxe_nic_load_error1; 12710 } 12711 12712 /* what did the MCP say? */ 12713 if (bxe_nic_load_analyze_req(sc, load_code) != 0) { 12714 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12715 sc->state = BXE_STATE_CLOSED; 12716 rc = ENXIO; 12717 goto bxe_nic_load_error2; 12718 } 12719 } else { 12720 BLOGI(sc, "Device has no MCP!\n"); 12721 load_code = bxe_nic_load_no_mcp(sc); 12722 } 12723 12724 /* mark PMF if applicable */ 12725 bxe_nic_load_pmf(sc, load_code); 12726 12727 /* Init Function state controlling object */ 12728 bxe_init_func_obj(sc); 12729 12730 /* Initialize HW */ 12731 if (bxe_init_hw(sc, load_code) != 0) { 12732 BLOGE(sc, "HW init failed\n"); 12733 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12734 sc->state = BXE_STATE_CLOSED; 12735 rc = ENXIO; 12736 goto bxe_nic_load_error2; 12737 } 12738 } 12739 12740 /* set ALWAYS_ALIVE bit in shmem */ 12741 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 12742 bxe_drv_pulse(sc); 12743 sc->flags |= BXE_NO_PULSE; 12744 12745 /* attach interrupts */ 12746 if (bxe_interrupt_attach(sc) != 0) { 12747 sc->state = BXE_STATE_CLOSED; 12748 rc = ENXIO; 12749 goto bxe_nic_load_error2; 12750 } 12751 12752 bxe_nic_init(sc, load_code); 12753 12754 /* Init per-function objects */ 12755 if (IS_PF(sc)) { 12756 bxe_init_objs(sc); 12757 // XXX bxe_iov_nic_init(sc); 12758 12759 /* set AFEX default VLAN tag to an invalid value */ 12760 sc->devinfo.mf_info.afex_def_vlan_tag = -1; 12761 // XXX bxe_nic_load_afex_dcc(sc, load_code); 12762 12763 sc->state = BXE_STATE_OPENING_WAITING_PORT; 12764 rc = bxe_func_start(sc); 12765 if (rc) { 12766 BLOGE(sc, "Function start failed! rc = %d\n", rc); 12767 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12768 sc->state = BXE_STATE_ERROR; 12769 goto bxe_nic_load_error3; 12770 } 12771 12772 /* send LOAD_DONE command to MCP */ 12773 if (!BXE_NOMCP(sc)) { 12774 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12775 if (!load_code) { 12776 BLOGE(sc, "MCP response failure, aborting\n"); 12777 sc->state = BXE_STATE_ERROR; 12778 rc = ENXIO; 12779 goto bxe_nic_load_error3; 12780 } 12781 } 12782 12783 rc = bxe_setup_leading(sc); 12784 if (rc) { 12785 BLOGE(sc, "Setup leading failed! rc = %d\n", rc); 12786 sc->state = BXE_STATE_ERROR; 12787 goto bxe_nic_load_error3; 12788 } 12789 12790 FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) { 12791 rc = bxe_setup_queue(sc, &sc->fp[i], FALSE); 12792 if (rc) { 12793 BLOGE(sc, "Queue(%d) setup failed rc = %d\n", i, rc); 12794 sc->state = BXE_STATE_ERROR; 12795 goto bxe_nic_load_error3; 12796 } 12797 } 12798 12799 rc = bxe_init_rss_pf(sc); 12800 if (rc) { 12801 BLOGE(sc, "PF RSS init failed\n"); 12802 sc->state = BXE_STATE_ERROR; 12803 goto bxe_nic_load_error3; 12804 } 12805 } 12806 /* XXX VF */ 12807 12808 /* now when Clients are configured we are ready to work */ 12809 sc->state = BXE_STATE_OPEN; 12810 12811 /* Configure a ucast MAC */ 12812 if (IS_PF(sc)) { 12813 rc = bxe_set_eth_mac(sc, TRUE); 12814 } 12815 if (rc) { 12816 BLOGE(sc, "Setting Ethernet MAC failed rc = %d\n", rc); 12817 sc->state = BXE_STATE_ERROR; 12818 goto bxe_nic_load_error3; 12819 } 12820 12821 if (sc->port.pmf) { 12822 rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN); 12823 if (rc) { 12824 sc->state = BXE_STATE_ERROR; 12825 goto bxe_nic_load_error3; 12826 } 12827 } 12828 12829 sc->link_params.feature_config_flags &= 12830 ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN; 12831 12832 /* start fast path */ 12833 12834 /* Initialize Rx filter */ 12835 bxe_set_rx_mode(sc); 12836 12837 /* start the Tx */ 12838 switch (/* XXX load_mode */LOAD_OPEN) { 12839 case LOAD_NORMAL: 12840 case LOAD_OPEN: 12841 break; 12842 12843 case LOAD_DIAG: 12844 case LOAD_LOOPBACK_EXT: 12845 sc->state = BXE_STATE_DIAG; 12846 break; 12847 12848 default: 12849 break; 12850 } 12851 12852 if (sc->port.pmf) { 12853 bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0); 12854 } else { 12855 bxe_link_status_update(sc); 12856 } 12857 12858 /* start the periodic timer callout */ 12859 bxe_periodic_start(sc); 12860 12861 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { 12862 /* mark driver is loaded in shmem2 */ 12863 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); 12864 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], 12865 (val | 12866 DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED | 12867 DRV_FLAGS_CAPABILITIES_LOADED_L2)); 12868 } 12869 12870 /* wait for all pending SP commands to complete */ 12871 if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) { 12872 BLOGE(sc, "Timeout waiting for all SPs to complete!\n"); 12873 bxe_periodic_stop(sc); 12874 bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE); 12875 return (ENXIO); 12876 } 12877 12878 /* Tell the stack the driver is running! */ 12879 if_setdrvflags(sc->ifp, IFF_DRV_RUNNING); 12880 12881 BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n"); 12882 12883 return (0); 12884 12885 bxe_nic_load_error3: 12886 12887 if (IS_PF(sc)) { 12888 bxe_int_disable_sync(sc, 1); 12889 12890 /* clean out queued objects */ 12891 bxe_squeeze_objects(sc); 12892 } 12893 12894 bxe_interrupt_detach(sc); 12895 12896 bxe_nic_load_error2: 12897 12898 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 12899 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 12900 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); 12901 } 12902 12903 sc->port.pmf = 0; 12904 12905 bxe_nic_load_error1: 12906 12907 /* clear pf_load status, as it was already set */ 12908 if (IS_PF(sc)) { 12909 bxe_clear_pf_load(sc); 12910 } 12911 12912 bxe_nic_load_error0: 12913 12914 bxe_free_fw_stats_mem(sc); 12915 bxe_free_fp_buffers(sc); 12916 bxe_free_mem(sc); 12917 12918 return (rc); 12919 } 12920 12921 static int 12922 bxe_init_locked(struct bxe_softc *sc) 12923 { 12924 int other_engine = SC_PATH(sc) ? 0 : 1; 12925 uint8_t other_load_status, load_status; 12926 uint8_t global = FALSE; 12927 int rc; 12928 12929 BXE_CORE_LOCK_ASSERT(sc); 12930 12931 /* check if the driver is already running */ 12932 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 12933 BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n"); 12934 return (0); 12935 } 12936 12937 if((sc->state == BXE_STATE_ERROR) && 12938 (sc->recovery_state == BXE_RECOVERY_FAILED)) { 12939 BLOGE(sc, "Initialization not done, " 12940 "as previous recovery failed." 12941 "Reboot/Power-cycle the system\n" ); 12942 return (ENXIO); 12943 } 12944 12945 12946 bxe_set_power_state(sc, PCI_PM_D0); 12947 12948 /* 12949 * If parity occurred during the unload, then attentions and/or 12950 * RECOVERY_IN_PROGRES may still be set. If so we want the first function 12951 * loaded on the current engine to complete the recovery. Parity recovery 12952 * is only relevant for PF driver. 12953 */ 12954 if (IS_PF(sc)) { 12955 other_load_status = bxe_get_load_status(sc, other_engine); 12956 load_status = bxe_get_load_status(sc, SC_PATH(sc)); 12957 12958 if (!bxe_reset_is_done(sc, SC_PATH(sc)) || 12959 bxe_chk_parity_attn(sc, &global, TRUE)) { 12960 do { 12961 /* 12962 * If there are attentions and they are in global blocks, set 12963 * the GLOBAL_RESET bit regardless whether it will be this 12964 * function that will complete the recovery or not. 12965 */ 12966 if (global) { 12967 bxe_set_reset_global(sc); 12968 } 12969 12970 /* 12971 * Only the first function on the current engine should try 12972 * to recover in open. In case of attentions in global blocks 12973 * only the first in the chip should try to recover. 12974 */ 12975 if ((!load_status && (!global || !other_load_status)) && 12976 bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) { 12977 BLOGI(sc, "Recovered during init\n"); 12978 break; 12979 } 12980 12981 /* recovery has failed... */ 12982 bxe_set_power_state(sc, PCI_PM_D3hot); 12983 sc->recovery_state = BXE_RECOVERY_FAILED; 12984 12985 BLOGE(sc, "Recovery flow hasn't properly " 12986 "completed yet, try again later. " 12987 "If you still see this message after a " 12988 "few retries then power cycle is required.\n"); 12989 12990 rc = ENXIO; 12991 goto bxe_init_locked_done; 12992 } while (0); 12993 } 12994 } 12995 12996 sc->recovery_state = BXE_RECOVERY_DONE; 12997 12998 rc = bxe_nic_load(sc, LOAD_OPEN); 12999 13000 bxe_init_locked_done: 13001 13002 if (rc) { 13003 /* Tell the stack the driver is NOT running! */ 13004 BLOGE(sc, "Initialization failed, " 13005 "stack notified driver is NOT running!\n"); 13006 if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING); 13007 } 13008 13009 return (rc); 13010 } 13011 13012 static int 13013 bxe_stop_locked(struct bxe_softc *sc) 13014 { 13015 BXE_CORE_LOCK_ASSERT(sc); 13016 return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE)); 13017 } 13018 13019 /* 13020 * Handles controller initialization when called from an unlocked routine. 13021 * ifconfig calls this function. 13022 * 13023 * Returns: 13024 * void 13025 */ 13026 static void 13027 bxe_init(void *xsc) 13028 { 13029 struct bxe_softc *sc = (struct bxe_softc *)xsc; 13030 13031 BXE_CORE_LOCK(sc); 13032 bxe_init_locked(sc); 13033 BXE_CORE_UNLOCK(sc); 13034 } 13035 13036 static int 13037 bxe_init_ifnet(struct bxe_softc *sc) 13038 { 13039 if_t ifp; 13040 int capabilities; 13041 13042 /* ifconfig entrypoint for media type/status reporting */ 13043 ifmedia_init(&sc->ifmedia, IFM_IMASK, 13044 bxe_ifmedia_update, 13045 bxe_ifmedia_status); 13046 13047 /* set the default interface values */ 13048 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL); 13049 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL); 13050 ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO)); 13051 13052 sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */ 13053 BLOGI(sc, "IFMEDIA flags : %x\n", sc->ifmedia.ifm_media); 13054 13055 /* allocate the ifnet structure */ 13056 if ((ifp = if_gethandle(IFT_ETHER)) == NULL) { 13057 BLOGE(sc, "Interface allocation failed!\n"); 13058 return (ENXIO); 13059 } 13060 13061 if_setsoftc(ifp, sc); 13062 if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev)); 13063 if_setflags(ifp, (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST)); 13064 if_setioctlfn(ifp, bxe_ioctl); 13065 if_setstartfn(ifp, bxe_tx_start); 13066 if_setgetcounterfn(ifp, bxe_get_counter); 13067 #if __FreeBSD_version >= 901504 13068 if_settransmitfn(ifp, bxe_tx_mq_start); 13069 if_setqflushfn(ifp, bxe_mq_flush); 13070 #endif 13071 #ifdef FreeBSD8_0 13072 if_settimer(ifp, 0); 13073 #endif 13074 if_setinitfn(ifp, bxe_init); 13075 if_setmtu(ifp, sc->mtu); 13076 if_sethwassist(ifp, (CSUM_IP | 13077 CSUM_TCP | 13078 CSUM_UDP | 13079 CSUM_TSO | 13080 CSUM_TCP_IPV6 | 13081 CSUM_UDP_IPV6)); 13082 13083 capabilities = 13084 #if __FreeBSD_version < 700000 13085 (IFCAP_VLAN_MTU | 13086 IFCAP_VLAN_HWTAGGING | 13087 IFCAP_HWCSUM | 13088 IFCAP_JUMBO_MTU | 13089 IFCAP_LRO); 13090 #else 13091 (IFCAP_VLAN_MTU | 13092 IFCAP_VLAN_HWTAGGING | 13093 IFCAP_VLAN_HWTSO | 13094 IFCAP_VLAN_HWFILTER | 13095 IFCAP_VLAN_HWCSUM | 13096 IFCAP_HWCSUM | 13097 IFCAP_JUMBO_MTU | 13098 IFCAP_LRO | 13099 IFCAP_TSO4 | 13100 IFCAP_TSO6 | 13101 IFCAP_WOL_MAGIC); 13102 #endif 13103 if_setcapabilitiesbit(ifp, capabilities, 0); /* XXX */ 13104 if_setcapenable(ifp, if_getcapabilities(ifp)); 13105 if_setbaudrate(ifp, IF_Gbps(10)); 13106 /* XXX */ 13107 if_setsendqlen(ifp, sc->tx_ring_size); 13108 if_setsendqready(ifp); 13109 /* XXX */ 13110 13111 sc->ifp = ifp; 13112 13113 /* attach to the Ethernet interface list */ 13114 ether_ifattach(ifp, sc->link_params.mac_addr); 13115 13116 /* Attach driver debugnet methods. */ 13117 DEBUGNET_SET(ifp, bxe); 13118 13119 return (0); 13120 } 13121 13122 static void 13123 bxe_deallocate_bars(struct bxe_softc *sc) 13124 { 13125 int i; 13126 13127 for (i = 0; i < MAX_BARS; i++) { 13128 if (sc->bar[i].resource != NULL) { 13129 bus_release_resource(sc->dev, 13130 SYS_RES_MEMORY, 13131 sc->bar[i].rid, 13132 sc->bar[i].resource); 13133 BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n", 13134 i, PCIR_BAR(i)); 13135 } 13136 } 13137 } 13138 13139 static int 13140 bxe_allocate_bars(struct bxe_softc *sc) 13141 { 13142 u_int flags; 13143 int i; 13144 13145 memset(sc->bar, 0, sizeof(sc->bar)); 13146 13147 for (i = 0; i < MAX_BARS; i++) { 13148 13149 /* memory resources reside at BARs 0, 2, 4 */ 13150 /* Run `pciconf -lb` to see mappings */ 13151 if ((i != 0) && (i != 2) && (i != 4)) { 13152 continue; 13153 } 13154 13155 sc->bar[i].rid = PCIR_BAR(i); 13156 13157 flags = RF_ACTIVE; 13158 if (i == 0) { 13159 flags |= RF_SHAREABLE; 13160 } 13161 13162 if ((sc->bar[i].resource = 13163 bus_alloc_resource_any(sc->dev, 13164 SYS_RES_MEMORY, 13165 &sc->bar[i].rid, 13166 flags)) == NULL) { 13167 return (0); 13168 } 13169 13170 sc->bar[i].tag = rman_get_bustag(sc->bar[i].resource); 13171 sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource); 13172 sc->bar[i].kva = (vm_offset_t)rman_get_virtual(sc->bar[i].resource); 13173 13174 BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %#jx-%#jx (%jd) -> %#jx\n", 13175 i, PCIR_BAR(i), 13176 rman_get_start(sc->bar[i].resource), 13177 rman_get_end(sc->bar[i].resource), 13178 rman_get_size(sc->bar[i].resource), 13179 (uintmax_t)sc->bar[i].kva); 13180 } 13181 13182 return (0); 13183 } 13184 13185 static void 13186 bxe_get_function_num(struct bxe_softc *sc) 13187 { 13188 uint32_t val = 0; 13189 13190 /* 13191 * Read the ME register to get the function number. The ME register 13192 * holds the relative-function number and absolute-function number. The 13193 * absolute-function number appears only in E2 and above. Before that 13194 * these bits always contained zero, therefore we cannot blindly use them. 13195 */ 13196 13197 val = REG_RD(sc, BAR_ME_REGISTER); 13198 13199 sc->pfunc_rel = 13200 (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT); 13201 sc->path_id = 13202 (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1; 13203 13204 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 13205 sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id); 13206 } else { 13207 sc->pfunc_abs = (sc->pfunc_rel | sc->path_id); 13208 } 13209 13210 BLOGD(sc, DBG_LOAD, 13211 "Relative function %d, Absolute function %d, Path %d\n", 13212 sc->pfunc_rel, sc->pfunc_abs, sc->path_id); 13213 } 13214 13215 static uint32_t 13216 bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc) 13217 { 13218 uint32_t shmem2_size; 13219 uint32_t offset; 13220 uint32_t mf_cfg_offset_value; 13221 13222 /* Non 57712 */ 13223 offset = (SHMEM_RD(sc, func_mb) + 13224 (MAX_FUNC_NUM * sizeof(struct drv_func_mb))); 13225 13226 /* 57712 plus */ 13227 if (sc->devinfo.shmem2_base != 0) { 13228 shmem2_size = SHMEM2_RD(sc, size); 13229 if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) { 13230 mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr); 13231 if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) { 13232 offset = mf_cfg_offset_value; 13233 } 13234 } 13235 } 13236 13237 return (offset); 13238 } 13239 13240 static uint32_t 13241 bxe_pcie_capability_read(struct bxe_softc *sc, 13242 int reg, 13243 int width) 13244 { 13245 int pcie_reg; 13246 13247 /* ensure PCIe capability is enabled */ 13248 if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) { 13249 if (pcie_reg != 0) { 13250 BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg); 13251 return (pci_read_config(sc->dev, (pcie_reg + reg), width)); 13252 } 13253 } 13254 13255 BLOGE(sc, "PCIe capability NOT FOUND!!!\n"); 13256 13257 return (0); 13258 } 13259 13260 static uint8_t 13261 bxe_is_pcie_pending(struct bxe_softc *sc) 13262 { 13263 return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) & 13264 PCIM_EXP_STA_TRANSACTION_PND); 13265 } 13266 13267 /* 13268 * Walk the PCI capabiites list for the device to find what features are 13269 * supported. These capabilites may be enabled/disabled by firmware so it's 13270 * best to walk the list rather than make assumptions. 13271 */ 13272 static void 13273 bxe_probe_pci_caps(struct bxe_softc *sc) 13274 { 13275 uint16_t link_status; 13276 int reg; 13277 13278 /* check if PCI Power Management is enabled */ 13279 if (pci_find_cap(sc->dev, PCIY_PMG, ®) == 0) { 13280 if (reg != 0) { 13281 BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg); 13282 13283 sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG; 13284 sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg; 13285 } 13286 } 13287 13288 link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2); 13289 13290 /* handle PCIe 2.0 workarounds for 57710 */ 13291 if (CHIP_IS_E1(sc)) { 13292 /* workaround for 57710 errata E4_57710_27462 */ 13293 sc->devinfo.pcie_link_speed = 13294 (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1; 13295 13296 /* workaround for 57710 errata E4_57710_27488 */ 13297 sc->devinfo.pcie_link_width = 13298 ((link_status & PCIM_LINK_STA_WIDTH) >> 4); 13299 if (sc->devinfo.pcie_link_speed > 1) { 13300 sc->devinfo.pcie_link_width = 13301 ((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1; 13302 } 13303 } else { 13304 sc->devinfo.pcie_link_speed = 13305 (link_status & PCIM_LINK_STA_SPEED); 13306 sc->devinfo.pcie_link_width = 13307 ((link_status & PCIM_LINK_STA_WIDTH) >> 4); 13308 } 13309 13310 BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n", 13311 sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width); 13312 13313 sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG; 13314 sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg; 13315 13316 /* check if MSI capability is enabled */ 13317 if (pci_find_cap(sc->dev, PCIY_MSI, ®) == 0) { 13318 if (reg != 0) { 13319 BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg); 13320 13321 sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG; 13322 sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg; 13323 } 13324 } 13325 13326 /* check if MSI-X capability is enabled */ 13327 if (pci_find_cap(sc->dev, PCIY_MSIX, ®) == 0) { 13328 if (reg != 0) { 13329 BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg); 13330 13331 sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG; 13332 sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg; 13333 } 13334 } 13335 } 13336 13337 static int 13338 bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc) 13339 { 13340 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13341 uint32_t val; 13342 13343 /* get the outer vlan if we're in switch-dependent mode */ 13344 13345 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13346 mf_info->ext_id = (uint16_t)val; 13347 13348 mf_info->multi_vnics_mode = 1; 13349 13350 if (!VALID_OVLAN(mf_info->ext_id)) { 13351 BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id); 13352 return (1); 13353 } 13354 13355 /* get the capabilities */ 13356 if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == 13357 FUNC_MF_CFG_PROTOCOL_ISCSI) { 13358 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI; 13359 } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == 13360 FUNC_MF_CFG_PROTOCOL_FCOE) { 13361 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE; 13362 } else { 13363 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET; 13364 } 13365 13366 mf_info->vnics_per_port = 13367 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13368 13369 return (0); 13370 } 13371 13372 static uint32_t 13373 bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc) 13374 { 13375 uint32_t retval = 0; 13376 uint32_t val; 13377 13378 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); 13379 13380 if (val & MACP_FUNC_CFG_FLAGS_ENABLED) { 13381 if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) { 13382 retval |= MF_PROTO_SUPPORT_ETHERNET; 13383 } 13384 if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) { 13385 retval |= MF_PROTO_SUPPORT_ISCSI; 13386 } 13387 if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) { 13388 retval |= MF_PROTO_SUPPORT_FCOE; 13389 } 13390 } 13391 13392 return (retval); 13393 } 13394 13395 static int 13396 bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc) 13397 { 13398 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13399 uint32_t val; 13400 13401 /* 13402 * There is no outer vlan if we're in switch-independent mode. 13403 * If the mac is valid then assume multi-function. 13404 */ 13405 13406 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); 13407 13408 mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0); 13409 13410 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); 13411 13412 mf_info->vnics_per_port = 13413 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13414 13415 return (0); 13416 } 13417 13418 static int 13419 bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc) 13420 { 13421 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13422 uint32_t e1hov_tag; 13423 uint32_t func_config; 13424 uint32_t niv_config; 13425 13426 mf_info->multi_vnics_mode = 1; 13427 13428 e1hov_tag = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13429 func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 13430 niv_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config); 13431 13432 mf_info->ext_id = 13433 (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >> 13434 FUNC_MF_CFG_E1HOV_TAG_SHIFT); 13435 13436 mf_info->default_vlan = 13437 (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >> 13438 FUNC_MF_CFG_AFEX_VLAN_SHIFT); 13439 13440 mf_info->niv_allowed_priorities = 13441 (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >> 13442 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT); 13443 13444 mf_info->niv_default_cos = 13445 (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >> 13446 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT); 13447 13448 mf_info->afex_vlan_mode = 13449 ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >> 13450 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT); 13451 13452 mf_info->niv_mba_enabled = 13453 ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >> 13454 FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT); 13455 13456 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); 13457 13458 mf_info->vnics_per_port = 13459 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13460 13461 return (0); 13462 } 13463 13464 static int 13465 bxe_check_valid_mf_cfg(struct bxe_softc *sc) 13466 { 13467 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13468 uint32_t mf_cfg1; 13469 uint32_t mf_cfg2; 13470 uint32_t ovlan1; 13471 uint32_t ovlan2; 13472 uint8_t i, j; 13473 13474 BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n", 13475 SC_PORT(sc)); 13476 BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n", 13477 mf_info->mf_config[SC_VN(sc)]); 13478 BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n", 13479 mf_info->multi_vnics_mode); 13480 BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n", 13481 mf_info->vnics_per_port); 13482 BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n", 13483 mf_info->ext_id); 13484 BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n", 13485 mf_info->min_bw[0], mf_info->min_bw[1], 13486 mf_info->min_bw[2], mf_info->min_bw[3]); 13487 BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n", 13488 mf_info->max_bw[0], mf_info->max_bw[1], 13489 mf_info->max_bw[2], mf_info->max_bw[3]); 13490 BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n", 13491 sc->mac_addr_str); 13492 13493 /* various MF mode sanity checks... */ 13494 13495 if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) { 13496 BLOGE(sc, "Enumerated function %d is marked as hidden\n", 13497 SC_PORT(sc)); 13498 return (1); 13499 } 13500 13501 if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) { 13502 BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n", 13503 mf_info->vnics_per_port, mf_info->multi_vnics_mode); 13504 return (1); 13505 } 13506 13507 if (mf_info->mf_mode == MULTI_FUNCTION_SD) { 13508 /* vnic id > 0 must have valid ovlan in switch-dependent mode */ 13509 if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) { 13510 BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n", 13511 SC_VN(sc), OVLAN(sc)); 13512 return (1); 13513 } 13514 13515 if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) { 13516 BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n", 13517 mf_info->multi_vnics_mode, OVLAN(sc)); 13518 return (1); 13519 } 13520 13521 /* 13522 * Verify all functions are either MF or SF mode. If MF, make sure 13523 * sure that all non-hidden functions have a valid ovlan. If SF, 13524 * make sure that all non-hidden functions have an invalid ovlan. 13525 */ 13526 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13527 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); 13528 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); 13529 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && 13530 (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) || 13531 ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) { 13532 BLOGE(sc, "mf_mode=SD function %d MF config " 13533 "mismatch, multi_vnics_mode=%d ovlan=%d\n", 13534 i, mf_info->multi_vnics_mode, ovlan1); 13535 return (1); 13536 } 13537 } 13538 13539 /* Verify all funcs on the same port each have a different ovlan. */ 13540 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13541 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); 13542 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); 13543 /* iterate from the next function on the port to the max func */ 13544 for (j = i + 2; j < MAX_FUNC_NUM; j += 2) { 13545 mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config); 13546 ovlan2 = MFCFG_RD(sc, func_mf_config[j].e1hov_tag); 13547 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && 13548 VALID_OVLAN(ovlan1) && 13549 !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) && 13550 VALID_OVLAN(ovlan2) && 13551 (ovlan1 == ovlan2)) { 13552 BLOGE(sc, "mf_mode=SD functions %d and %d " 13553 "have the same ovlan (%d)\n", 13554 i, j, ovlan1); 13555 return (1); 13556 } 13557 } 13558 } 13559 } /* MULTI_FUNCTION_SD */ 13560 13561 return (0); 13562 } 13563 13564 static int 13565 bxe_get_mf_cfg_info(struct bxe_softc *sc) 13566 { 13567 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13568 uint32_t val, mac_upper; 13569 uint8_t i, vnic; 13570 13571 /* initialize mf_info defaults */ 13572 mf_info->vnics_per_port = 1; 13573 mf_info->multi_vnics_mode = FALSE; 13574 mf_info->path_has_ovlan = FALSE; 13575 mf_info->mf_mode = SINGLE_FUNCTION; 13576 13577 if (!CHIP_IS_MF_CAP(sc)) { 13578 return (0); 13579 } 13580 13581 if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) { 13582 BLOGE(sc, "Invalid mf_cfg_base!\n"); 13583 return (1); 13584 } 13585 13586 /* get the MF mode (switch dependent / independent / single-function) */ 13587 13588 val = SHMEM_RD(sc, dev_info.shared_feature_config.config); 13589 13590 switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK) 13591 { 13592 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT: 13593 13594 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13595 13596 /* check for legal upper mac bytes */ 13597 if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) { 13598 mf_info->mf_mode = MULTI_FUNCTION_SI; 13599 } else { 13600 BLOGE(sc, "Invalid config for Switch Independent mode\n"); 13601 } 13602 13603 break; 13604 13605 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED: 13606 case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4: 13607 13608 /* get outer vlan configuration */ 13609 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13610 13611 if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) != 13612 FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 13613 mf_info->mf_mode = MULTI_FUNCTION_SD; 13614 } else { 13615 BLOGE(sc, "Invalid config for Switch Dependent mode\n"); 13616 } 13617 13618 break; 13619 13620 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF: 13621 13622 /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */ 13623 return (0); 13624 13625 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE: 13626 13627 /* 13628 * Mark MF mode as NIV if MCP version includes NPAR-SD support 13629 * and the MAC address is valid. 13630 */ 13631 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13632 13633 if ((SHMEM2_HAS(sc, afex_driver_support)) && 13634 (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) { 13635 mf_info->mf_mode = MULTI_FUNCTION_AFEX; 13636 } else { 13637 BLOGE(sc, "Invalid config for AFEX mode\n"); 13638 } 13639 13640 break; 13641 13642 default: 13643 13644 BLOGE(sc, "Unknown MF mode (0x%08x)\n", 13645 (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)); 13646 13647 return (1); 13648 } 13649 13650 /* set path mf_mode (which could be different than function mf_mode) */ 13651 if (mf_info->mf_mode == MULTI_FUNCTION_SD) { 13652 mf_info->path_has_ovlan = TRUE; 13653 } else if (mf_info->mf_mode == SINGLE_FUNCTION) { 13654 /* 13655 * Decide on path multi vnics mode. If we're not in MF mode and in 13656 * 4-port mode, this is good enough to check vnic-0 of the other port 13657 * on the same path 13658 */ 13659 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 13660 uint8_t other_port = !(PORT_ID(sc) & 1); 13661 uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port)); 13662 13663 val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag); 13664 13665 mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0; 13666 } 13667 } 13668 13669 if (mf_info->mf_mode == SINGLE_FUNCTION) { 13670 /* invalid MF config */ 13671 if (SC_VN(sc) >= 1) { 13672 BLOGE(sc, "VNIC ID >= 1 in SF mode\n"); 13673 return (1); 13674 } 13675 13676 return (0); 13677 } 13678 13679 /* get the MF configuration */ 13680 mf_info->mf_config[SC_VN(sc)] = 13681 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 13682 13683 switch(mf_info->mf_mode) 13684 { 13685 case MULTI_FUNCTION_SD: 13686 13687 bxe_get_shmem_mf_cfg_info_sd(sc); 13688 break; 13689 13690 case MULTI_FUNCTION_SI: 13691 13692 bxe_get_shmem_mf_cfg_info_si(sc); 13693 break; 13694 13695 case MULTI_FUNCTION_AFEX: 13696 13697 bxe_get_shmem_mf_cfg_info_niv(sc); 13698 break; 13699 13700 default: 13701 13702 BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n", 13703 mf_info->mf_mode); 13704 return (1); 13705 } 13706 13707 /* get the congestion management parameters */ 13708 13709 vnic = 0; 13710 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13711 /* get min/max bw */ 13712 val = MFCFG_RD(sc, func_mf_config[i].config); 13713 mf_info->min_bw[vnic] = 13714 ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT); 13715 mf_info->max_bw[vnic] = 13716 ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT); 13717 vnic++; 13718 } 13719 13720 return (bxe_check_valid_mf_cfg(sc)); 13721 } 13722 13723 static int 13724 bxe_get_shmem_info(struct bxe_softc *sc) 13725 { 13726 int port; 13727 uint32_t mac_hi, mac_lo, val; 13728 13729 port = SC_PORT(sc); 13730 mac_hi = mac_lo = 0; 13731 13732 sc->link_params.sc = sc; 13733 sc->link_params.port = port; 13734 13735 /* get the hardware config info */ 13736 sc->devinfo.hw_config = 13737 SHMEM_RD(sc, dev_info.shared_hw_config.config); 13738 sc->devinfo.hw_config2 = 13739 SHMEM_RD(sc, dev_info.shared_hw_config.config2); 13740 13741 sc->link_params.hw_led_mode = 13742 ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >> 13743 SHARED_HW_CFG_LED_MODE_SHIFT); 13744 13745 /* get the port feature config */ 13746 sc->port.config = 13747 SHMEM_RD(sc, dev_info.port_feature_config[port].config); 13748 13749 /* get the link params */ 13750 sc->link_params.speed_cap_mask[0] = 13751 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask); 13752 sc->link_params.speed_cap_mask[1] = 13753 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2); 13754 13755 /* get the lane config */ 13756 sc->link_params.lane_config = 13757 SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config); 13758 13759 /* get the link config */ 13760 val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config); 13761 sc->port.link_config[ELINK_INT_PHY] = val; 13762 sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK); 13763 sc->port.link_config[ELINK_EXT_PHY1] = 13764 SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2); 13765 13766 /* get the override preemphasis flag and enable it or turn it off */ 13767 val = SHMEM_RD(sc, dev_info.shared_feature_config.config); 13768 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) { 13769 sc->link_params.feature_config_flags |= 13770 ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 13771 } else { 13772 sc->link_params.feature_config_flags &= 13773 ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 13774 } 13775 13776 /* get the initial value of the link params */ 13777 sc->link_params.multi_phy_config = 13778 SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config); 13779 13780 /* get external phy info */ 13781 sc->port.ext_phy_config = 13782 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); 13783 13784 /* get the multifunction configuration */ 13785 bxe_get_mf_cfg_info(sc); 13786 13787 /* get the mac address */ 13788 if (IS_MF(sc)) { 13789 mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13790 mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower); 13791 } else { 13792 mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper); 13793 mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower); 13794 } 13795 13796 if ((mac_lo == 0) && (mac_hi == 0)) { 13797 *sc->mac_addr_str = 0; 13798 BLOGE(sc, "No Ethernet address programmed!\n"); 13799 } else { 13800 sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8); 13801 sc->link_params.mac_addr[1] = (uint8_t)(mac_hi); 13802 sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24); 13803 sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16); 13804 sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8); 13805 sc->link_params.mac_addr[5] = (uint8_t)(mac_lo); 13806 snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str), 13807 "%02x:%02x:%02x:%02x:%02x:%02x", 13808 sc->link_params.mac_addr[0], sc->link_params.mac_addr[1], 13809 sc->link_params.mac_addr[2], sc->link_params.mac_addr[3], 13810 sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]); 13811 BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str); 13812 } 13813 13814 return (0); 13815 } 13816 13817 static void 13818 bxe_get_tunable_params(struct bxe_softc *sc) 13819 { 13820 /* sanity checks */ 13821 13822 if ((bxe_interrupt_mode != INTR_MODE_INTX) && 13823 (bxe_interrupt_mode != INTR_MODE_MSI) && 13824 (bxe_interrupt_mode != INTR_MODE_MSIX)) { 13825 BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode); 13826 bxe_interrupt_mode = INTR_MODE_MSIX; 13827 } 13828 13829 if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) { 13830 BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count); 13831 bxe_queue_count = 0; 13832 } 13833 13834 if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) { 13835 if (bxe_max_rx_bufs == 0) { 13836 bxe_max_rx_bufs = RX_BD_USABLE; 13837 } else { 13838 BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs); 13839 bxe_max_rx_bufs = 2048; 13840 } 13841 } 13842 13843 if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) { 13844 BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks); 13845 bxe_hc_rx_ticks = 25; 13846 } 13847 13848 if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) { 13849 BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks); 13850 bxe_hc_tx_ticks = 50; 13851 } 13852 13853 if (bxe_max_aggregation_size == 0) { 13854 bxe_max_aggregation_size = TPA_AGG_SIZE; 13855 } 13856 13857 if (bxe_max_aggregation_size > 0xffff) { 13858 BLOGW(sc, "invalid max_aggregation_size (%d)\n", 13859 bxe_max_aggregation_size); 13860 bxe_max_aggregation_size = TPA_AGG_SIZE; 13861 } 13862 13863 if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) { 13864 BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs); 13865 bxe_mrrs = -1; 13866 } 13867 13868 if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) { 13869 BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen); 13870 bxe_autogreeen = 0; 13871 } 13872 13873 if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) { 13874 BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss); 13875 bxe_udp_rss = 0; 13876 } 13877 13878 /* pull in user settings */ 13879 13880 sc->interrupt_mode = bxe_interrupt_mode; 13881 sc->max_rx_bufs = bxe_max_rx_bufs; 13882 sc->hc_rx_ticks = bxe_hc_rx_ticks; 13883 sc->hc_tx_ticks = bxe_hc_tx_ticks; 13884 sc->max_aggregation_size = bxe_max_aggregation_size; 13885 sc->mrrs = bxe_mrrs; 13886 sc->autogreeen = bxe_autogreeen; 13887 sc->udp_rss = bxe_udp_rss; 13888 13889 if (bxe_interrupt_mode == INTR_MODE_INTX) { 13890 sc->num_queues = 1; 13891 } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */ 13892 sc->num_queues = 13893 min((bxe_queue_count ? bxe_queue_count : mp_ncpus), 13894 MAX_RSS_CHAINS); 13895 if (sc->num_queues > mp_ncpus) { 13896 sc->num_queues = mp_ncpus; 13897 } 13898 } 13899 13900 BLOGD(sc, DBG_LOAD, 13901 "User Config: " 13902 "debug=0x%lx " 13903 "interrupt_mode=%d " 13904 "queue_count=%d " 13905 "hc_rx_ticks=%d " 13906 "hc_tx_ticks=%d " 13907 "rx_budget=%d " 13908 "max_aggregation_size=%d " 13909 "mrrs=%d " 13910 "autogreeen=%d " 13911 "udp_rss=%d\n", 13912 bxe_debug, 13913 sc->interrupt_mode, 13914 sc->num_queues, 13915 sc->hc_rx_ticks, 13916 sc->hc_tx_ticks, 13917 bxe_rx_budget, 13918 sc->max_aggregation_size, 13919 sc->mrrs, 13920 sc->autogreeen, 13921 sc->udp_rss); 13922 } 13923 13924 static int 13925 bxe_media_detect(struct bxe_softc *sc) 13926 { 13927 int port_type; 13928 uint32_t phy_idx = bxe_get_cur_phy_idx(sc); 13929 13930 switch (sc->link_params.phy[phy_idx].media_type) { 13931 case ELINK_ETH_PHY_SFPP_10G_FIBER: 13932 case ELINK_ETH_PHY_XFP_FIBER: 13933 BLOGI(sc, "Found 10Gb Fiber media.\n"); 13934 sc->media = IFM_10G_SR; 13935 port_type = PORT_FIBRE; 13936 break; 13937 case ELINK_ETH_PHY_SFP_1G_FIBER: 13938 BLOGI(sc, "Found 1Gb Fiber media.\n"); 13939 sc->media = IFM_1000_SX; 13940 port_type = PORT_FIBRE; 13941 break; 13942 case ELINK_ETH_PHY_KR: 13943 case ELINK_ETH_PHY_CX4: 13944 BLOGI(sc, "Found 10GBase-CX4 media.\n"); 13945 sc->media = IFM_10G_CX4; 13946 port_type = PORT_FIBRE; 13947 break; 13948 case ELINK_ETH_PHY_DA_TWINAX: 13949 BLOGI(sc, "Found 10Gb Twinax media.\n"); 13950 sc->media = IFM_10G_TWINAX; 13951 port_type = PORT_DA; 13952 break; 13953 case ELINK_ETH_PHY_BASE_T: 13954 if (sc->link_params.speed_cap_mask[0] & 13955 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { 13956 BLOGI(sc, "Found 10GBase-T media.\n"); 13957 sc->media = IFM_10G_T; 13958 port_type = PORT_TP; 13959 } else { 13960 BLOGI(sc, "Found 1000Base-T media.\n"); 13961 sc->media = IFM_1000_T; 13962 port_type = PORT_TP; 13963 } 13964 break; 13965 case ELINK_ETH_PHY_NOT_PRESENT: 13966 BLOGI(sc, "Media not present.\n"); 13967 sc->media = 0; 13968 port_type = PORT_OTHER; 13969 break; 13970 case ELINK_ETH_PHY_UNSPECIFIED: 13971 default: 13972 BLOGI(sc, "Unknown media!\n"); 13973 sc->media = 0; 13974 port_type = PORT_OTHER; 13975 break; 13976 } 13977 return port_type; 13978 } 13979 13980 #define GET_FIELD(value, fname) \ 13981 (((value) & (fname##_MASK)) >> (fname##_SHIFT)) 13982 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID) 13983 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR) 13984 13985 static int 13986 bxe_get_igu_cam_info(struct bxe_softc *sc) 13987 { 13988 int pfid = SC_FUNC(sc); 13989 int igu_sb_id; 13990 uint32_t val; 13991 uint8_t fid, igu_sb_cnt = 0; 13992 13993 sc->igu_base_sb = 0xff; 13994 13995 if (CHIP_INT_MODE_IS_BC(sc)) { 13996 int vn = SC_VN(sc); 13997 igu_sb_cnt = sc->igu_sb_cnt; 13998 sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) * 13999 FP_SB_MAX_E1x); 14000 sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x + 14001 (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn)); 14002 return (0); 14003 } 14004 14005 /* IGU in normal mode - read CAM */ 14006 for (igu_sb_id = 0; 14007 igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; 14008 igu_sb_id++) { 14009 val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4); 14010 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) { 14011 continue; 14012 } 14013 fid = IGU_FID(val); 14014 if ((fid & IGU_FID_ENCODE_IS_PF)) { 14015 if ((fid & IGU_FID_PF_NUM_MASK) != pfid) { 14016 continue; 14017 } 14018 if (IGU_VEC(val) == 0) { 14019 /* default status block */ 14020 sc->igu_dsb_id = igu_sb_id; 14021 } else { 14022 if (sc->igu_base_sb == 0xff) { 14023 sc->igu_base_sb = igu_sb_id; 14024 } 14025 igu_sb_cnt++; 14026 } 14027 } 14028 } 14029 14030 /* 14031 * Due to new PF resource allocation by MFW T7.4 and above, it's optional 14032 * that number of CAM entries will not be equal to the value advertised in 14033 * PCI. Driver should use the minimal value of both as the actual status 14034 * block count 14035 */ 14036 sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt); 14037 14038 if (igu_sb_cnt == 0) { 14039 BLOGE(sc, "CAM configuration error\n"); 14040 return (-1); 14041 } 14042 14043 return (0); 14044 } 14045 14046 /* 14047 * Gather various information from the device config space, the device itself, 14048 * shmem, and the user input. 14049 */ 14050 static int 14051 bxe_get_device_info(struct bxe_softc *sc) 14052 { 14053 uint32_t val; 14054 int rc; 14055 14056 /* Get the data for the device */ 14057 sc->devinfo.vendor_id = pci_get_vendor(sc->dev); 14058 sc->devinfo.device_id = pci_get_device(sc->dev); 14059 sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev); 14060 sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev); 14061 14062 /* get the chip revision (chip metal comes from pci config space) */ 14063 sc->devinfo.chip_id = 14064 sc->link_params.chip_id = 14065 (((REG_RD(sc, MISC_REG_CHIP_NUM) & 0xffff) << 16) | 14066 ((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12) | 14067 (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf) << 4) | 14068 ((REG_RD(sc, MISC_REG_BOND_ID) & 0xf) << 0)); 14069 14070 /* force 57811 according to MISC register */ 14071 if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) { 14072 if (CHIP_IS_57810(sc)) { 14073 sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) | 14074 (sc->devinfo.chip_id & 0x0000ffff)); 14075 } else if (CHIP_IS_57810_MF(sc)) { 14076 sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) | 14077 (sc->devinfo.chip_id & 0x0000ffff)); 14078 } 14079 sc->devinfo.chip_id |= 0x1; 14080 } 14081 14082 BLOGD(sc, DBG_LOAD, 14083 "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n", 14084 sc->devinfo.chip_id, 14085 ((sc->devinfo.chip_id >> 16) & 0xffff), 14086 ((sc->devinfo.chip_id >> 12) & 0xf), 14087 ((sc->devinfo.chip_id >> 4) & 0xff), 14088 ((sc->devinfo.chip_id >> 0) & 0xf)); 14089 14090 val = (REG_RD(sc, 0x2874) & 0x55); 14091 if ((sc->devinfo.chip_id & 0x1) || 14092 (CHIP_IS_E1(sc) && val) || 14093 (CHIP_IS_E1H(sc) && (val == 0x55))) { 14094 sc->flags |= BXE_ONE_PORT_FLAG; 14095 BLOGD(sc, DBG_LOAD, "single port device\n"); 14096 } 14097 14098 /* set the doorbell size */ 14099 sc->doorbell_size = (1 << BXE_DB_SHIFT); 14100 14101 /* determine whether the device is in 2 port or 4 port mode */ 14102 sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/ 14103 if (CHIP_IS_E2E3(sc)) { 14104 /* 14105 * Read port4mode_en_ovwr[0]: 14106 * If 1, four port mode is in port4mode_en_ovwr[1]. 14107 * If 0, four port mode is in port4mode_en[0]. 14108 */ 14109 val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR); 14110 if (val & 1) { 14111 val = ((val >> 1) & 1); 14112 } else { 14113 val = REG_RD(sc, MISC_REG_PORT4MODE_EN); 14114 } 14115 14116 sc->devinfo.chip_port_mode = 14117 (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE; 14118 14119 BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2"); 14120 } 14121 14122 /* get the function and path info for the device */ 14123 bxe_get_function_num(sc); 14124 14125 /* get the shared memory base address */ 14126 sc->devinfo.shmem_base = 14127 sc->link_params.shmem_base = 14128 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 14129 sc->devinfo.shmem2_base = 14130 REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 : 14131 MISC_REG_GENERIC_CR_0)); 14132 14133 BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n", 14134 sc->devinfo.shmem_base, sc->devinfo.shmem2_base); 14135 14136 if (!sc->devinfo.shmem_base) { 14137 /* this should ONLY prevent upcoming shmem reads */ 14138 BLOGI(sc, "MCP not active\n"); 14139 sc->flags |= BXE_NO_MCP_FLAG; 14140 return (0); 14141 } 14142 14143 /* make sure the shared memory contents are valid */ 14144 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); 14145 if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) != 14146 (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) { 14147 BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val); 14148 return (0); 14149 } 14150 BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val); 14151 14152 /* get the bootcode version */ 14153 sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev); 14154 snprintf(sc->devinfo.bc_ver_str, 14155 sizeof(sc->devinfo.bc_ver_str), 14156 "%d.%d.%d", 14157 ((sc->devinfo.bc_ver >> 24) & 0xff), 14158 ((sc->devinfo.bc_ver >> 16) & 0xff), 14159 ((sc->devinfo.bc_ver >> 8) & 0xff)); 14160 BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str); 14161 14162 /* get the bootcode shmem address */ 14163 sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc); 14164 BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base); 14165 14166 /* clean indirect addresses as they're not used */ 14167 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 14168 if (IS_PF(sc)) { 14169 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0); 14170 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0); 14171 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0); 14172 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0); 14173 if (CHIP_IS_E1x(sc)) { 14174 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0); 14175 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0); 14176 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0); 14177 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0); 14178 } 14179 14180 /* 14181 * Enable internal target-read (in case we are probed after PF 14182 * FLR). Must be done prior to any BAR read access. Only for 14183 * 57712 and up 14184 */ 14185 if (!CHIP_IS_E1x(sc)) { 14186 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 14187 } 14188 } 14189 14190 /* get the nvram size */ 14191 val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4); 14192 sc->devinfo.flash_size = 14193 (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE)); 14194 BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size); 14195 14196 /* get PCI capabilites */ 14197 bxe_probe_pci_caps(sc); 14198 14199 bxe_set_power_state(sc, PCI_PM_D0); 14200 14201 /* get various configuration parameters from shmem */ 14202 bxe_get_shmem_info(sc); 14203 14204 if (sc->devinfo.pcie_msix_cap_reg != 0) { 14205 val = pci_read_config(sc->dev, 14206 (sc->devinfo.pcie_msix_cap_reg + 14207 PCIR_MSIX_CTRL), 14208 2); 14209 sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE); 14210 } else { 14211 sc->igu_sb_cnt = 1; 14212 } 14213 14214 sc->igu_base_addr = BAR_IGU_INTMEM; 14215 14216 /* initialize IGU parameters */ 14217 if (CHIP_IS_E1x(sc)) { 14218 sc->devinfo.int_block = INT_BLOCK_HC; 14219 sc->igu_dsb_id = DEF_SB_IGU_ID; 14220 sc->igu_base_sb = 0; 14221 } else { 14222 sc->devinfo.int_block = INT_BLOCK_IGU; 14223 14224 /* do not allow device reset during IGU info preocessing */ 14225 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 14226 14227 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); 14228 14229 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 14230 int tout = 5000; 14231 14232 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n"); 14233 14234 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN); 14235 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val); 14236 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f); 14237 14238 while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) { 14239 tout--; 14240 DELAY(1000); 14241 } 14242 14243 if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) { 14244 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n"); 14245 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 14246 return (-1); 14247 } 14248 } 14249 14250 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 14251 BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n"); 14252 sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP; 14253 } else { 14254 BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n"); 14255 } 14256 14257 rc = bxe_get_igu_cam_info(sc); 14258 14259 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 14260 14261 if (rc) { 14262 return (rc); 14263 } 14264 } 14265 14266 /* 14267 * Get base FW non-default (fast path) status block ID. This value is 14268 * used to initialize the fw_sb_id saved on the fp/queue structure to 14269 * determine the id used by the FW. 14270 */ 14271 if (CHIP_IS_E1x(sc)) { 14272 sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc)); 14273 } else { 14274 /* 14275 * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of 14276 * the same queue are indicated on the same IGU SB). So we prefer 14277 * FW and IGU SBs to be the same value. 14278 */ 14279 sc->base_fw_ndsb = sc->igu_base_sb; 14280 } 14281 14282 BLOGD(sc, DBG_LOAD, 14283 "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n", 14284 sc->igu_dsb_id, sc->igu_base_sb, 14285 sc->igu_sb_cnt, sc->base_fw_ndsb); 14286 14287 elink_phy_probe(&sc->link_params); 14288 14289 return (0); 14290 } 14291 14292 static void 14293 bxe_link_settings_supported(struct bxe_softc *sc, 14294 uint32_t switch_cfg) 14295 { 14296 uint32_t cfg_size = 0; 14297 uint32_t idx; 14298 uint8_t port = SC_PORT(sc); 14299 14300 /* aggregation of supported attributes of all external phys */ 14301 sc->port.supported[0] = 0; 14302 sc->port.supported[1] = 0; 14303 14304 switch (sc->link_params.num_phys) { 14305 case 1: 14306 sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported; 14307 cfg_size = 1; 14308 break; 14309 case 2: 14310 sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported; 14311 cfg_size = 1; 14312 break; 14313 case 3: 14314 if (sc->link_params.multi_phy_config & 14315 PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 14316 sc->port.supported[1] = 14317 sc->link_params.phy[ELINK_EXT_PHY1].supported; 14318 sc->port.supported[0] = 14319 sc->link_params.phy[ELINK_EXT_PHY2].supported; 14320 } else { 14321 sc->port.supported[0] = 14322 sc->link_params.phy[ELINK_EXT_PHY1].supported; 14323 sc->port.supported[1] = 14324 sc->link_params.phy[ELINK_EXT_PHY2].supported; 14325 } 14326 cfg_size = 2; 14327 break; 14328 } 14329 14330 if (!(sc->port.supported[0] || sc->port.supported[1])) { 14331 BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n", 14332 SHMEM_RD(sc, 14333 dev_info.port_hw_config[port].external_phy_config), 14334 SHMEM_RD(sc, 14335 dev_info.port_hw_config[port].external_phy_config2)); 14336 return; 14337 } 14338 14339 if (CHIP_IS_E3(sc)) 14340 sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR); 14341 else { 14342 switch (switch_cfg) { 14343 case ELINK_SWITCH_CFG_1G: 14344 sc->port.phy_addr = 14345 REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10); 14346 break; 14347 case ELINK_SWITCH_CFG_10G: 14348 sc->port.phy_addr = 14349 REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18); 14350 break; 14351 default: 14352 BLOGE(sc, "Invalid switch config in link_config=0x%08x\n", 14353 sc->port.link_config[0]); 14354 return; 14355 } 14356 } 14357 14358 BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr); 14359 14360 /* mask what we support according to speed_cap_mask per configuration */ 14361 for (idx = 0; idx < cfg_size; idx++) { 14362 if (!(sc->link_params.speed_cap_mask[idx] & 14363 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) { 14364 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half; 14365 } 14366 14367 if (!(sc->link_params.speed_cap_mask[idx] & 14368 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) { 14369 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full; 14370 } 14371 14372 if (!(sc->link_params.speed_cap_mask[idx] & 14373 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) { 14374 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half; 14375 } 14376 14377 if (!(sc->link_params.speed_cap_mask[idx] & 14378 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) { 14379 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full; 14380 } 14381 14382 if (!(sc->link_params.speed_cap_mask[idx] & 14383 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) { 14384 sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full; 14385 } 14386 14387 if (!(sc->link_params.speed_cap_mask[idx] & 14388 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) { 14389 sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full; 14390 } 14391 14392 if (!(sc->link_params.speed_cap_mask[idx] & 14393 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) { 14394 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full; 14395 } 14396 14397 if (!(sc->link_params.speed_cap_mask[idx] & 14398 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) { 14399 sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full; 14400 } 14401 } 14402 14403 BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n", 14404 sc->port.supported[0], sc->port.supported[1]); 14405 ELINK_DEBUG_P2(sc, "PHY supported 0=0x%08x 1=0x%08x\n", 14406 sc->port.supported[0], sc->port.supported[1]); 14407 } 14408 14409 static void 14410 bxe_link_settings_requested(struct bxe_softc *sc) 14411 { 14412 uint32_t link_config; 14413 uint32_t idx; 14414 uint32_t cfg_size = 0; 14415 14416 sc->port.advertising[0] = 0; 14417 sc->port.advertising[1] = 0; 14418 14419 switch (sc->link_params.num_phys) { 14420 case 1: 14421 case 2: 14422 cfg_size = 1; 14423 break; 14424 case 3: 14425 cfg_size = 2; 14426 break; 14427 } 14428 14429 for (idx = 0; idx < cfg_size; idx++) { 14430 sc->link_params.req_duplex[idx] = DUPLEX_FULL; 14431 link_config = sc->port.link_config[idx]; 14432 14433 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) { 14434 case PORT_FEATURE_LINK_SPEED_AUTO: 14435 if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) { 14436 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; 14437 sc->port.advertising[idx] |= sc->port.supported[idx]; 14438 if (sc->link_params.phy[ELINK_EXT_PHY1].type == 14439 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833) 14440 sc->port.advertising[idx] |= 14441 (ELINK_SUPPORTED_100baseT_Half | 14442 ELINK_SUPPORTED_100baseT_Full); 14443 } else { 14444 /* force 10G, no AN */ 14445 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; 14446 sc->port.advertising[idx] |= 14447 (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE); 14448 continue; 14449 } 14450 break; 14451 14452 case PORT_FEATURE_LINK_SPEED_10M_FULL: 14453 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) { 14454 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; 14455 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full | 14456 ADVERTISED_TP); 14457 } else { 14458 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14459 "speed_cap_mask=0x%08x\n", 14460 link_config, sc->link_params.speed_cap_mask[idx]); 14461 return; 14462 } 14463 break; 14464 14465 case PORT_FEATURE_LINK_SPEED_10M_HALF: 14466 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) { 14467 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; 14468 sc->link_params.req_duplex[idx] = DUPLEX_HALF; 14469 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half | 14470 ADVERTISED_TP); 14471 ELINK_DEBUG_P1(sc, "driver requesting DUPLEX_HALF req_duplex = %x!\n", 14472 sc->link_params.req_duplex[idx]); 14473 } else { 14474 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14475 "speed_cap_mask=0x%08x\n", 14476 link_config, sc->link_params.speed_cap_mask[idx]); 14477 return; 14478 } 14479 break; 14480 14481 case PORT_FEATURE_LINK_SPEED_100M_FULL: 14482 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) { 14483 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; 14484 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full | 14485 ADVERTISED_TP); 14486 } else { 14487 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14488 "speed_cap_mask=0x%08x\n", 14489 link_config, sc->link_params.speed_cap_mask[idx]); 14490 return; 14491 } 14492 break; 14493 14494 case PORT_FEATURE_LINK_SPEED_100M_HALF: 14495 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) { 14496 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; 14497 sc->link_params.req_duplex[idx] = DUPLEX_HALF; 14498 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half | 14499 ADVERTISED_TP); 14500 } else { 14501 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14502 "speed_cap_mask=0x%08x\n", 14503 link_config, sc->link_params.speed_cap_mask[idx]); 14504 return; 14505 } 14506 break; 14507 14508 case PORT_FEATURE_LINK_SPEED_1G: 14509 if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) { 14510 sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000; 14511 sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full | 14512 ADVERTISED_TP); 14513 } else { 14514 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14515 "speed_cap_mask=0x%08x\n", 14516 link_config, sc->link_params.speed_cap_mask[idx]); 14517 return; 14518 } 14519 break; 14520 14521 case PORT_FEATURE_LINK_SPEED_2_5G: 14522 if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) { 14523 sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500; 14524 sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full | 14525 ADVERTISED_TP); 14526 } else { 14527 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14528 "speed_cap_mask=0x%08x\n", 14529 link_config, sc->link_params.speed_cap_mask[idx]); 14530 return; 14531 } 14532 break; 14533 14534 case PORT_FEATURE_LINK_SPEED_10G_CX4: 14535 if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) { 14536 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; 14537 sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full | 14538 ADVERTISED_FIBRE); 14539 } else { 14540 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14541 "speed_cap_mask=0x%08x\n", 14542 link_config, sc->link_params.speed_cap_mask[idx]); 14543 return; 14544 } 14545 break; 14546 14547 case PORT_FEATURE_LINK_SPEED_20G: 14548 sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000; 14549 break; 14550 14551 default: 14552 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14553 "speed_cap_mask=0x%08x\n", 14554 link_config, sc->link_params.speed_cap_mask[idx]); 14555 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; 14556 sc->port.advertising[idx] = sc->port.supported[idx]; 14557 break; 14558 } 14559 14560 sc->link_params.req_flow_ctrl[idx] = 14561 (link_config & PORT_FEATURE_FLOW_CONTROL_MASK); 14562 14563 if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) { 14564 if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) { 14565 sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE; 14566 } else { 14567 bxe_set_requested_fc(sc); 14568 } 14569 } 14570 14571 BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d " 14572 "req_flow_ctrl=0x%x advertising=0x%x\n", 14573 sc->link_params.req_line_speed[idx], 14574 sc->link_params.req_duplex[idx], 14575 sc->link_params.req_flow_ctrl[idx], 14576 sc->port.advertising[idx]); 14577 ELINK_DEBUG_P3(sc, "req_line_speed=%d req_duplex=%d " 14578 "advertising=0x%x\n", 14579 sc->link_params.req_line_speed[idx], 14580 sc->link_params.req_duplex[idx], 14581 sc->port.advertising[idx]); 14582 } 14583 } 14584 14585 static void 14586 bxe_get_phy_info(struct bxe_softc *sc) 14587 { 14588 uint8_t port = SC_PORT(sc); 14589 uint32_t config = sc->port.config; 14590 uint32_t eee_mode; 14591 14592 /* shmem data already read in bxe_get_shmem_info() */ 14593 14594 ELINK_DEBUG_P3(sc, "lane_config=0x%08x speed_cap_mask0=0x%08x " 14595 "link_config0=0x%08x\n", 14596 sc->link_params.lane_config, 14597 sc->link_params.speed_cap_mask[0], 14598 sc->port.link_config[0]); 14599 14600 14601 bxe_link_settings_supported(sc, sc->link_params.switch_cfg); 14602 bxe_link_settings_requested(sc); 14603 14604 if (sc->autogreeen == AUTO_GREEN_FORCE_ON) { 14605 sc->link_params.feature_config_flags |= 14606 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14607 } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) { 14608 sc->link_params.feature_config_flags &= 14609 ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14610 } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) { 14611 sc->link_params.feature_config_flags |= 14612 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14613 } 14614 14615 /* configure link feature according to nvram value */ 14616 eee_mode = 14617 (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) & 14618 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >> 14619 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT); 14620 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) { 14621 sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI | 14622 ELINK_EEE_MODE_ENABLE_LPI | 14623 ELINK_EEE_MODE_OUTPUT_TIME); 14624 } else { 14625 sc->link_params.eee_mode = 0; 14626 } 14627 14628 /* get the media type */ 14629 bxe_media_detect(sc); 14630 ELINK_DEBUG_P1(sc, "detected media type\n", sc->media); 14631 } 14632 14633 static void 14634 bxe_get_params(struct bxe_softc *sc) 14635 { 14636 /* get user tunable params */ 14637 bxe_get_tunable_params(sc); 14638 14639 /* select the RX and TX ring sizes */ 14640 sc->tx_ring_size = TX_BD_USABLE; 14641 sc->rx_ring_size = RX_BD_USABLE; 14642 14643 /* XXX disable WoL */ 14644 sc->wol = 0; 14645 } 14646 14647 static void 14648 bxe_set_modes_bitmap(struct bxe_softc *sc) 14649 { 14650 uint32_t flags = 0; 14651 14652 if (CHIP_REV_IS_FPGA(sc)) { 14653 SET_FLAGS(flags, MODE_FPGA); 14654 } else if (CHIP_REV_IS_EMUL(sc)) { 14655 SET_FLAGS(flags, MODE_EMUL); 14656 } else { 14657 SET_FLAGS(flags, MODE_ASIC); 14658 } 14659 14660 if (CHIP_IS_MODE_4_PORT(sc)) { 14661 SET_FLAGS(flags, MODE_PORT4); 14662 } else { 14663 SET_FLAGS(flags, MODE_PORT2); 14664 } 14665 14666 if (CHIP_IS_E2(sc)) { 14667 SET_FLAGS(flags, MODE_E2); 14668 } else if (CHIP_IS_E3(sc)) { 14669 SET_FLAGS(flags, MODE_E3); 14670 if (CHIP_REV(sc) == CHIP_REV_Ax) { 14671 SET_FLAGS(flags, MODE_E3_A0); 14672 } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ { 14673 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3); 14674 } 14675 } 14676 14677 if (IS_MF(sc)) { 14678 SET_FLAGS(flags, MODE_MF); 14679 switch (sc->devinfo.mf_info.mf_mode) { 14680 case MULTI_FUNCTION_SD: 14681 SET_FLAGS(flags, MODE_MF_SD); 14682 break; 14683 case MULTI_FUNCTION_SI: 14684 SET_FLAGS(flags, MODE_MF_SI); 14685 break; 14686 case MULTI_FUNCTION_AFEX: 14687 SET_FLAGS(flags, MODE_MF_AFEX); 14688 break; 14689 } 14690 } else { 14691 SET_FLAGS(flags, MODE_SF); 14692 } 14693 14694 #if defined(__LITTLE_ENDIAN) 14695 SET_FLAGS(flags, MODE_LITTLE_ENDIAN); 14696 #else /* __BIG_ENDIAN */ 14697 SET_FLAGS(flags, MODE_BIG_ENDIAN); 14698 #endif 14699 14700 INIT_MODE_FLAGS(sc) = flags; 14701 } 14702 14703 static int 14704 bxe_alloc_hsi_mem(struct bxe_softc *sc) 14705 { 14706 struct bxe_fastpath *fp; 14707 bus_addr_t busaddr; 14708 int max_agg_queues; 14709 int max_segments; 14710 bus_size_t max_size; 14711 bus_size_t max_seg_size; 14712 char buf[32]; 14713 int rc; 14714 int i, j; 14715 14716 /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */ 14717 14718 /* allocate the parent bus DMA tag */ 14719 rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */ 14720 1, /* alignment */ 14721 0, /* boundary limit */ 14722 BUS_SPACE_MAXADDR, /* restricted low */ 14723 BUS_SPACE_MAXADDR, /* restricted hi */ 14724 NULL, /* addr filter() */ 14725 NULL, /* addr filter() arg */ 14726 BUS_SPACE_MAXSIZE_32BIT, /* max map size */ 14727 BUS_SPACE_UNRESTRICTED, /* num discontinuous */ 14728 BUS_SPACE_MAXSIZE_32BIT, /* max seg size */ 14729 0, /* flags */ 14730 NULL, /* lock() */ 14731 NULL, /* lock() arg */ 14732 &sc->parent_dma_tag); /* returned dma tag */ 14733 if (rc != 0) { 14734 BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc); 14735 return (1); 14736 } 14737 14738 /************************/ 14739 /* DEFAULT STATUS BLOCK */ 14740 /************************/ 14741 14742 if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block), 14743 &sc->def_sb_dma, "default status block") != 0) { 14744 /* XXX */ 14745 bus_dma_tag_destroy(sc->parent_dma_tag); 14746 return (1); 14747 } 14748 14749 sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr; 14750 14751 /***************/ 14752 /* EVENT QUEUE */ 14753 /***************/ 14754 14755 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, 14756 &sc->eq_dma, "event queue") != 0) { 14757 /* XXX */ 14758 bxe_dma_free(sc, &sc->def_sb_dma); 14759 sc->def_sb = NULL; 14760 bus_dma_tag_destroy(sc->parent_dma_tag); 14761 return (1); 14762 } 14763 14764 sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr; 14765 14766 /*************/ 14767 /* SLOW PATH */ 14768 /*************/ 14769 14770 if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath), 14771 &sc->sp_dma, "slow path") != 0) { 14772 /* XXX */ 14773 bxe_dma_free(sc, &sc->eq_dma); 14774 sc->eq = NULL; 14775 bxe_dma_free(sc, &sc->def_sb_dma); 14776 sc->def_sb = NULL; 14777 bus_dma_tag_destroy(sc->parent_dma_tag); 14778 return (1); 14779 } 14780 14781 sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr; 14782 14783 /*******************/ 14784 /* SLOW PATH QUEUE */ 14785 /*******************/ 14786 14787 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, 14788 &sc->spq_dma, "slow path queue") != 0) { 14789 /* XXX */ 14790 bxe_dma_free(sc, &sc->sp_dma); 14791 sc->sp = NULL; 14792 bxe_dma_free(sc, &sc->eq_dma); 14793 sc->eq = NULL; 14794 bxe_dma_free(sc, &sc->def_sb_dma); 14795 sc->def_sb = NULL; 14796 bus_dma_tag_destroy(sc->parent_dma_tag); 14797 return (1); 14798 } 14799 14800 sc->spq = (struct eth_spe *)sc->spq_dma.vaddr; 14801 14802 /***************************/ 14803 /* FW DECOMPRESSION BUFFER */ 14804 /***************************/ 14805 14806 if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma, 14807 "fw decompression buffer") != 0) { 14808 /* XXX */ 14809 bxe_dma_free(sc, &sc->spq_dma); 14810 sc->spq = NULL; 14811 bxe_dma_free(sc, &sc->sp_dma); 14812 sc->sp = NULL; 14813 bxe_dma_free(sc, &sc->eq_dma); 14814 sc->eq = NULL; 14815 bxe_dma_free(sc, &sc->def_sb_dma); 14816 sc->def_sb = NULL; 14817 bus_dma_tag_destroy(sc->parent_dma_tag); 14818 return (1); 14819 } 14820 14821 sc->gz_buf = (void *)sc->gz_buf_dma.vaddr; 14822 14823 if ((sc->gz_strm = 14824 malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) { 14825 /* XXX */ 14826 bxe_dma_free(sc, &sc->gz_buf_dma); 14827 sc->gz_buf = NULL; 14828 bxe_dma_free(sc, &sc->spq_dma); 14829 sc->spq = NULL; 14830 bxe_dma_free(sc, &sc->sp_dma); 14831 sc->sp = NULL; 14832 bxe_dma_free(sc, &sc->eq_dma); 14833 sc->eq = NULL; 14834 bxe_dma_free(sc, &sc->def_sb_dma); 14835 sc->def_sb = NULL; 14836 bus_dma_tag_destroy(sc->parent_dma_tag); 14837 return (1); 14838 } 14839 14840 /*************/ 14841 /* FASTPATHS */ 14842 /*************/ 14843 14844 /* allocate DMA memory for each fastpath structure */ 14845 for (i = 0; i < sc->num_queues; i++) { 14846 fp = &sc->fp[i]; 14847 fp->sc = sc; 14848 fp->index = i; 14849 14850 /*******************/ 14851 /* FP STATUS BLOCK */ 14852 /*******************/ 14853 14854 snprintf(buf, sizeof(buf), "fp %d status block", i); 14855 if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block), 14856 &fp->sb_dma, buf) != 0) { 14857 /* XXX unwind and free previous fastpath allocations */ 14858 BLOGE(sc, "Failed to alloc %s\n", buf); 14859 return (1); 14860 } else { 14861 if (CHIP_IS_E2E3(sc)) { 14862 fp->status_block.e2_sb = 14863 (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr; 14864 } else { 14865 fp->status_block.e1x_sb = 14866 (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr; 14867 } 14868 } 14869 14870 /******************/ 14871 /* FP TX BD CHAIN */ 14872 /******************/ 14873 14874 snprintf(buf, sizeof(buf), "fp %d tx bd chain", i); 14875 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES), 14876 &fp->tx_dma, buf) != 0) { 14877 /* XXX unwind and free previous fastpath allocations */ 14878 BLOGE(sc, "Failed to alloc %s\n", buf); 14879 return (1); 14880 } else { 14881 fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr; 14882 } 14883 14884 /* link together the tx bd chain pages */ 14885 for (j = 1; j <= TX_BD_NUM_PAGES; j++) { 14886 /* index into the tx bd chain array to last entry per page */ 14887 struct eth_tx_next_bd *tx_next_bd = 14888 &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd; 14889 /* point to the next page and wrap from last page */ 14890 busaddr = (fp->tx_dma.paddr + 14891 (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES))); 14892 tx_next_bd->addr_hi = htole32(U64_HI(busaddr)); 14893 tx_next_bd->addr_lo = htole32(U64_LO(busaddr)); 14894 } 14895 14896 /******************/ 14897 /* FP RX BD CHAIN */ 14898 /******************/ 14899 14900 snprintf(buf, sizeof(buf), "fp %d rx bd chain", i); 14901 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES), 14902 &fp->rx_dma, buf) != 0) { 14903 /* XXX unwind and free previous fastpath allocations */ 14904 BLOGE(sc, "Failed to alloc %s\n", buf); 14905 return (1); 14906 } else { 14907 fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr; 14908 } 14909 14910 /* link together the rx bd chain pages */ 14911 for (j = 1; j <= RX_BD_NUM_PAGES; j++) { 14912 /* index into the rx bd chain array to last entry per page */ 14913 struct eth_rx_bd *rx_bd = 14914 &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2]; 14915 /* point to the next page and wrap from last page */ 14916 busaddr = (fp->rx_dma.paddr + 14917 (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES))); 14918 rx_bd->addr_hi = htole32(U64_HI(busaddr)); 14919 rx_bd->addr_lo = htole32(U64_LO(busaddr)); 14920 } 14921 14922 /*******************/ 14923 /* FP RX RCQ CHAIN */ 14924 /*******************/ 14925 14926 snprintf(buf, sizeof(buf), "fp %d rcq chain", i); 14927 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES), 14928 &fp->rcq_dma, buf) != 0) { 14929 /* XXX unwind and free previous fastpath allocations */ 14930 BLOGE(sc, "Failed to alloc %s\n", buf); 14931 return (1); 14932 } else { 14933 fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr; 14934 } 14935 14936 /* link together the rcq chain pages */ 14937 for (j = 1; j <= RCQ_NUM_PAGES; j++) { 14938 /* index into the rcq chain array to last entry per page */ 14939 struct eth_rx_cqe_next_page *rx_cqe_next = 14940 (struct eth_rx_cqe_next_page *) 14941 &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1]; 14942 /* point to the next page and wrap from last page */ 14943 busaddr = (fp->rcq_dma.paddr + 14944 (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES))); 14945 rx_cqe_next->addr_hi = htole32(U64_HI(busaddr)); 14946 rx_cqe_next->addr_lo = htole32(U64_LO(busaddr)); 14947 } 14948 14949 /*******************/ 14950 /* FP RX SGE CHAIN */ 14951 /*******************/ 14952 14953 snprintf(buf, sizeof(buf), "fp %d sge chain", i); 14954 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES), 14955 &fp->rx_sge_dma, buf) != 0) { 14956 /* XXX unwind and free previous fastpath allocations */ 14957 BLOGE(sc, "Failed to alloc %s\n", buf); 14958 return (1); 14959 } else { 14960 fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr; 14961 } 14962 14963 /* link together the sge chain pages */ 14964 for (j = 1; j <= RX_SGE_NUM_PAGES; j++) { 14965 /* index into the rcq chain array to last entry per page */ 14966 struct eth_rx_sge *rx_sge = 14967 &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2]; 14968 /* point to the next page and wrap from last page */ 14969 busaddr = (fp->rx_sge_dma.paddr + 14970 (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES))); 14971 rx_sge->addr_hi = htole32(U64_HI(busaddr)); 14972 rx_sge->addr_lo = htole32(U64_LO(busaddr)); 14973 } 14974 14975 /***********************/ 14976 /* FP TX MBUF DMA MAPS */ 14977 /***********************/ 14978 14979 /* set required sizes before mapping to conserve resources */ 14980 if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) { 14981 max_size = BXE_TSO_MAX_SIZE; 14982 max_segments = BXE_TSO_MAX_SEGMENTS; 14983 max_seg_size = BXE_TSO_MAX_SEG_SIZE; 14984 } else { 14985 max_size = (MCLBYTES * BXE_MAX_SEGMENTS); 14986 max_segments = BXE_MAX_SEGMENTS; 14987 max_seg_size = MCLBYTES; 14988 } 14989 14990 /* create a dma tag for the tx mbufs */ 14991 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 14992 1, /* alignment */ 14993 0, /* boundary limit */ 14994 BUS_SPACE_MAXADDR, /* restricted low */ 14995 BUS_SPACE_MAXADDR, /* restricted hi */ 14996 NULL, /* addr filter() */ 14997 NULL, /* addr filter() arg */ 14998 max_size, /* max map size */ 14999 max_segments, /* num discontinuous */ 15000 max_seg_size, /* max seg size */ 15001 0, /* flags */ 15002 NULL, /* lock() */ 15003 NULL, /* lock() arg */ 15004 &fp->tx_mbuf_tag); /* returned dma tag */ 15005 if (rc != 0) { 15006 /* XXX unwind and free previous fastpath allocations */ 15007 BLOGE(sc, "Failed to create dma tag for " 15008 "'fp %d tx mbufs' (%d)\n", i, rc); 15009 return (1); 15010 } 15011 15012 /* create dma maps for each of the tx mbuf clusters */ 15013 for (j = 0; j < TX_BD_TOTAL; j++) { 15014 if (bus_dmamap_create(fp->tx_mbuf_tag, 15015 BUS_DMA_NOWAIT, 15016 &fp->tx_mbuf_chain[j].m_map)) { 15017 /* XXX unwind and free previous fastpath allocations */ 15018 BLOGE(sc, "Failed to create dma map for " 15019 "'fp %d tx mbuf %d' (%d)\n", i, j, rc); 15020 return (1); 15021 } 15022 } 15023 15024 /***********************/ 15025 /* FP RX MBUF DMA MAPS */ 15026 /***********************/ 15027 15028 /* create a dma tag for the rx mbufs */ 15029 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 15030 1, /* alignment */ 15031 0, /* boundary limit */ 15032 BUS_SPACE_MAXADDR, /* restricted low */ 15033 BUS_SPACE_MAXADDR, /* restricted hi */ 15034 NULL, /* addr filter() */ 15035 NULL, /* addr filter() arg */ 15036 MJUM9BYTES, /* max map size */ 15037 1, /* num discontinuous */ 15038 MJUM9BYTES, /* max seg size */ 15039 0, /* flags */ 15040 NULL, /* lock() */ 15041 NULL, /* lock() arg */ 15042 &fp->rx_mbuf_tag); /* returned dma tag */ 15043 if (rc != 0) { 15044 /* XXX unwind and free previous fastpath allocations */ 15045 BLOGE(sc, "Failed to create dma tag for " 15046 "'fp %d rx mbufs' (%d)\n", i, rc); 15047 return (1); 15048 } 15049 15050 /* create dma maps for each of the rx mbuf clusters */ 15051 for (j = 0; j < RX_BD_TOTAL; j++) { 15052 if (bus_dmamap_create(fp->rx_mbuf_tag, 15053 BUS_DMA_NOWAIT, 15054 &fp->rx_mbuf_chain[j].m_map)) { 15055 /* XXX unwind and free previous fastpath allocations */ 15056 BLOGE(sc, "Failed to create dma map for " 15057 "'fp %d rx mbuf %d' (%d)\n", i, j, rc); 15058 return (1); 15059 } 15060 } 15061 15062 /* create dma map for the spare rx mbuf cluster */ 15063 if (bus_dmamap_create(fp->rx_mbuf_tag, 15064 BUS_DMA_NOWAIT, 15065 &fp->rx_mbuf_spare_map)) { 15066 /* XXX unwind and free previous fastpath allocations */ 15067 BLOGE(sc, "Failed to create dma map for " 15068 "'fp %d spare rx mbuf' (%d)\n", i, rc); 15069 return (1); 15070 } 15071 15072 /***************************/ 15073 /* FP RX SGE MBUF DMA MAPS */ 15074 /***************************/ 15075 15076 /* create a dma tag for the rx sge mbufs */ 15077 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 15078 1, /* alignment */ 15079 0, /* boundary limit */ 15080 BUS_SPACE_MAXADDR, /* restricted low */ 15081 BUS_SPACE_MAXADDR, /* restricted hi */ 15082 NULL, /* addr filter() */ 15083 NULL, /* addr filter() arg */ 15084 BCM_PAGE_SIZE, /* max map size */ 15085 1, /* num discontinuous */ 15086 BCM_PAGE_SIZE, /* max seg size */ 15087 0, /* flags */ 15088 NULL, /* lock() */ 15089 NULL, /* lock() arg */ 15090 &fp->rx_sge_mbuf_tag); /* returned dma tag */ 15091 if (rc != 0) { 15092 /* XXX unwind and free previous fastpath allocations */ 15093 BLOGE(sc, "Failed to create dma tag for " 15094 "'fp %d rx sge mbufs' (%d)\n", i, rc); 15095 return (1); 15096 } 15097 15098 /* create dma maps for the rx sge mbuf clusters */ 15099 for (j = 0; j < RX_SGE_TOTAL; j++) { 15100 if (bus_dmamap_create(fp->rx_sge_mbuf_tag, 15101 BUS_DMA_NOWAIT, 15102 &fp->rx_sge_mbuf_chain[j].m_map)) { 15103 /* XXX unwind and free previous fastpath allocations */ 15104 BLOGE(sc, "Failed to create dma map for " 15105 "'fp %d rx sge mbuf %d' (%d)\n", i, j, rc); 15106 return (1); 15107 } 15108 } 15109 15110 /* create dma map for the spare rx sge mbuf cluster */ 15111 if (bus_dmamap_create(fp->rx_sge_mbuf_tag, 15112 BUS_DMA_NOWAIT, 15113 &fp->rx_sge_mbuf_spare_map)) { 15114 /* XXX unwind and free previous fastpath allocations */ 15115 BLOGE(sc, "Failed to create dma map for " 15116 "'fp %d spare rx sge mbuf' (%d)\n", i, rc); 15117 return (1); 15118 } 15119 15120 /***************************/ 15121 /* FP RX TPA MBUF DMA MAPS */ 15122 /***************************/ 15123 15124 /* create dma maps for the rx tpa mbuf clusters */ 15125 max_agg_queues = MAX_AGG_QS(sc); 15126 15127 for (j = 0; j < max_agg_queues; j++) { 15128 if (bus_dmamap_create(fp->rx_mbuf_tag, 15129 BUS_DMA_NOWAIT, 15130 &fp->rx_tpa_info[j].bd.m_map)) { 15131 /* XXX unwind and free previous fastpath allocations */ 15132 BLOGE(sc, "Failed to create dma map for " 15133 "'fp %d rx tpa mbuf %d' (%d)\n", i, j, rc); 15134 return (1); 15135 } 15136 } 15137 15138 /* create dma map for the spare rx tpa mbuf cluster */ 15139 if (bus_dmamap_create(fp->rx_mbuf_tag, 15140 BUS_DMA_NOWAIT, 15141 &fp->rx_tpa_info_mbuf_spare_map)) { 15142 /* XXX unwind and free previous fastpath allocations */ 15143 BLOGE(sc, "Failed to create dma map for " 15144 "'fp %d spare rx tpa mbuf' (%d)\n", i, rc); 15145 return (1); 15146 } 15147 15148 bxe_init_sge_ring_bit_mask(fp); 15149 } 15150 15151 return (0); 15152 } 15153 15154 static void 15155 bxe_free_hsi_mem(struct bxe_softc *sc) 15156 { 15157 struct bxe_fastpath *fp; 15158 int max_agg_queues; 15159 int i, j; 15160 15161 if (sc->parent_dma_tag == NULL) { 15162 return; /* assume nothing was allocated */ 15163 } 15164 15165 for (i = 0; i < sc->num_queues; i++) { 15166 fp = &sc->fp[i]; 15167 15168 /*******************/ 15169 /* FP STATUS BLOCK */ 15170 /*******************/ 15171 15172 bxe_dma_free(sc, &fp->sb_dma); 15173 memset(&fp->status_block, 0, sizeof(fp->status_block)); 15174 15175 /******************/ 15176 /* FP TX BD CHAIN */ 15177 /******************/ 15178 15179 bxe_dma_free(sc, &fp->tx_dma); 15180 fp->tx_chain = NULL; 15181 15182 /******************/ 15183 /* FP RX BD CHAIN */ 15184 /******************/ 15185 15186 bxe_dma_free(sc, &fp->rx_dma); 15187 fp->rx_chain = NULL; 15188 15189 /*******************/ 15190 /* FP RX RCQ CHAIN */ 15191 /*******************/ 15192 15193 bxe_dma_free(sc, &fp->rcq_dma); 15194 fp->rcq_chain = NULL; 15195 15196 /*******************/ 15197 /* FP RX SGE CHAIN */ 15198 /*******************/ 15199 15200 bxe_dma_free(sc, &fp->rx_sge_dma); 15201 fp->rx_sge_chain = NULL; 15202 15203 /***********************/ 15204 /* FP TX MBUF DMA MAPS */ 15205 /***********************/ 15206 15207 if (fp->tx_mbuf_tag != NULL) { 15208 for (j = 0; j < TX_BD_TOTAL; j++) { 15209 if (fp->tx_mbuf_chain[j].m_map != NULL) { 15210 bus_dmamap_unload(fp->tx_mbuf_tag, 15211 fp->tx_mbuf_chain[j].m_map); 15212 bus_dmamap_destroy(fp->tx_mbuf_tag, 15213 fp->tx_mbuf_chain[j].m_map); 15214 } 15215 } 15216 15217 bus_dma_tag_destroy(fp->tx_mbuf_tag); 15218 fp->tx_mbuf_tag = NULL; 15219 } 15220 15221 /***********************/ 15222 /* FP RX MBUF DMA MAPS */ 15223 /***********************/ 15224 15225 if (fp->rx_mbuf_tag != NULL) { 15226 for (j = 0; j < RX_BD_TOTAL; j++) { 15227 if (fp->rx_mbuf_chain[j].m_map != NULL) { 15228 bus_dmamap_unload(fp->rx_mbuf_tag, 15229 fp->rx_mbuf_chain[j].m_map); 15230 bus_dmamap_destroy(fp->rx_mbuf_tag, 15231 fp->rx_mbuf_chain[j].m_map); 15232 } 15233 } 15234 15235 if (fp->rx_mbuf_spare_map != NULL) { 15236 bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); 15237 bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); 15238 } 15239 15240 /***************************/ 15241 /* FP RX TPA MBUF DMA MAPS */ 15242 /***************************/ 15243 15244 max_agg_queues = MAX_AGG_QS(sc); 15245 15246 for (j = 0; j < max_agg_queues; j++) { 15247 if (fp->rx_tpa_info[j].bd.m_map != NULL) { 15248 bus_dmamap_unload(fp->rx_mbuf_tag, 15249 fp->rx_tpa_info[j].bd.m_map); 15250 bus_dmamap_destroy(fp->rx_mbuf_tag, 15251 fp->rx_tpa_info[j].bd.m_map); 15252 } 15253 } 15254 15255 if (fp->rx_tpa_info_mbuf_spare_map != NULL) { 15256 bus_dmamap_unload(fp->rx_mbuf_tag, 15257 fp->rx_tpa_info_mbuf_spare_map); 15258 bus_dmamap_destroy(fp->rx_mbuf_tag, 15259 fp->rx_tpa_info_mbuf_spare_map); 15260 } 15261 15262 bus_dma_tag_destroy(fp->rx_mbuf_tag); 15263 fp->rx_mbuf_tag = NULL; 15264 } 15265 15266 /***************************/ 15267 /* FP RX SGE MBUF DMA MAPS */ 15268 /***************************/ 15269 15270 if (fp->rx_sge_mbuf_tag != NULL) { 15271 for (j = 0; j < RX_SGE_TOTAL; j++) { 15272 if (fp->rx_sge_mbuf_chain[j].m_map != NULL) { 15273 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 15274 fp->rx_sge_mbuf_chain[j].m_map); 15275 bus_dmamap_destroy(fp->rx_sge_mbuf_tag, 15276 fp->rx_sge_mbuf_chain[j].m_map); 15277 } 15278 } 15279 15280 if (fp->rx_sge_mbuf_spare_map != NULL) { 15281 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 15282 fp->rx_sge_mbuf_spare_map); 15283 bus_dmamap_destroy(fp->rx_sge_mbuf_tag, 15284 fp->rx_sge_mbuf_spare_map); 15285 } 15286 15287 bus_dma_tag_destroy(fp->rx_sge_mbuf_tag); 15288 fp->rx_sge_mbuf_tag = NULL; 15289 } 15290 } 15291 15292 /***************************/ 15293 /* FW DECOMPRESSION BUFFER */ 15294 /***************************/ 15295 15296 bxe_dma_free(sc, &sc->gz_buf_dma); 15297 sc->gz_buf = NULL; 15298 free(sc->gz_strm, M_DEVBUF); 15299 sc->gz_strm = NULL; 15300 15301 /*******************/ 15302 /* SLOW PATH QUEUE */ 15303 /*******************/ 15304 15305 bxe_dma_free(sc, &sc->spq_dma); 15306 sc->spq = NULL; 15307 15308 /*************/ 15309 /* SLOW PATH */ 15310 /*************/ 15311 15312 bxe_dma_free(sc, &sc->sp_dma); 15313 sc->sp = NULL; 15314 15315 /***************/ 15316 /* EVENT QUEUE */ 15317 /***************/ 15318 15319 bxe_dma_free(sc, &sc->eq_dma); 15320 sc->eq = NULL; 15321 15322 /************************/ 15323 /* DEFAULT STATUS BLOCK */ 15324 /************************/ 15325 15326 bxe_dma_free(sc, &sc->def_sb_dma); 15327 sc->def_sb = NULL; 15328 15329 bus_dma_tag_destroy(sc->parent_dma_tag); 15330 sc->parent_dma_tag = NULL; 15331 } 15332 15333 /* 15334 * Previous driver DMAE transaction may have occurred when pre-boot stage 15335 * ended and boot began. This would invalidate the addresses of the 15336 * transaction, resulting in was-error bit set in the PCI causing all 15337 * hw-to-host PCIe transactions to timeout. If this happened we want to clear 15338 * the interrupt which detected this from the pglueb and the was-done bit 15339 */ 15340 static void 15341 bxe_prev_interrupted_dmae(struct bxe_softc *sc) 15342 { 15343 uint32_t val; 15344 15345 if (!CHIP_IS_E1x(sc)) { 15346 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS); 15347 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) { 15348 BLOGD(sc, DBG_LOAD, 15349 "Clearing 'was-error' bit that was set in pglueb"); 15350 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc)); 15351 } 15352 } 15353 } 15354 15355 static int 15356 bxe_prev_mcp_done(struct bxe_softc *sc) 15357 { 15358 uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 15359 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET); 15360 if (!rc) { 15361 BLOGE(sc, "MCP response failure, aborting\n"); 15362 return (-1); 15363 } 15364 15365 return (0); 15366 } 15367 15368 static struct bxe_prev_list_node * 15369 bxe_prev_path_get_entry(struct bxe_softc *sc) 15370 { 15371 struct bxe_prev_list_node *tmp; 15372 15373 LIST_FOREACH(tmp, &bxe_prev_list, node) { 15374 if ((sc->pcie_bus == tmp->bus) && 15375 (sc->pcie_device == tmp->slot) && 15376 (SC_PATH(sc) == tmp->path)) { 15377 return (tmp); 15378 } 15379 } 15380 15381 return (NULL); 15382 } 15383 15384 static uint8_t 15385 bxe_prev_is_path_marked(struct bxe_softc *sc) 15386 { 15387 struct bxe_prev_list_node *tmp; 15388 int rc = FALSE; 15389 15390 mtx_lock(&bxe_prev_mtx); 15391 15392 tmp = bxe_prev_path_get_entry(sc); 15393 if (tmp) { 15394 if (tmp->aer) { 15395 BLOGD(sc, DBG_LOAD, 15396 "Path %d/%d/%d was marked by AER\n", 15397 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15398 } else { 15399 rc = TRUE; 15400 BLOGD(sc, DBG_LOAD, 15401 "Path %d/%d/%d was already cleaned from previous drivers\n", 15402 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15403 } 15404 } 15405 15406 mtx_unlock(&bxe_prev_mtx); 15407 15408 return (rc); 15409 } 15410 15411 static int 15412 bxe_prev_mark_path(struct bxe_softc *sc, 15413 uint8_t after_undi) 15414 { 15415 struct bxe_prev_list_node *tmp; 15416 15417 mtx_lock(&bxe_prev_mtx); 15418 15419 /* Check whether the entry for this path already exists */ 15420 tmp = bxe_prev_path_get_entry(sc); 15421 if (tmp) { 15422 if (!tmp->aer) { 15423 BLOGD(sc, DBG_LOAD, 15424 "Re-marking AER in path %d/%d/%d\n", 15425 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15426 } else { 15427 BLOGD(sc, DBG_LOAD, 15428 "Removing AER indication from path %d/%d/%d\n", 15429 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15430 tmp->aer = 0; 15431 } 15432 15433 mtx_unlock(&bxe_prev_mtx); 15434 return (0); 15435 } 15436 15437 mtx_unlock(&bxe_prev_mtx); 15438 15439 /* Create an entry for this path and add it */ 15440 tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF, 15441 (M_NOWAIT | M_ZERO)); 15442 if (!tmp) { 15443 BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n"); 15444 return (-1); 15445 } 15446 15447 tmp->bus = sc->pcie_bus; 15448 tmp->slot = sc->pcie_device; 15449 tmp->path = SC_PATH(sc); 15450 tmp->aer = 0; 15451 tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0; 15452 15453 mtx_lock(&bxe_prev_mtx); 15454 15455 BLOGD(sc, DBG_LOAD, 15456 "Marked path %d/%d/%d - finished previous unload\n", 15457 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15458 LIST_INSERT_HEAD(&bxe_prev_list, tmp, node); 15459 15460 mtx_unlock(&bxe_prev_mtx); 15461 15462 return (0); 15463 } 15464 15465 static int 15466 bxe_do_flr(struct bxe_softc *sc) 15467 { 15468 int i; 15469 15470 /* only E2 and onwards support FLR */ 15471 if (CHIP_IS_E1x(sc)) { 15472 BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n"); 15473 return (-1); 15474 } 15475 15476 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */ 15477 if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) { 15478 BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n", 15479 sc->devinfo.bc_ver); 15480 return (-1); 15481 } 15482 15483 /* Wait for Transaction Pending bit clean */ 15484 for (i = 0; i < 4; i++) { 15485 if (i) { 15486 DELAY(((1 << (i - 1)) * 100) * 1000); 15487 } 15488 15489 if (!bxe_is_pcie_pending(sc)) { 15490 goto clear; 15491 } 15492 } 15493 15494 BLOGE(sc, "PCIE transaction is not cleared, " 15495 "proceeding with reset anyway\n"); 15496 15497 clear: 15498 15499 BLOGD(sc, DBG_LOAD, "Initiating FLR\n"); 15500 bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0); 15501 15502 return (0); 15503 } 15504 15505 struct bxe_mac_vals { 15506 uint32_t xmac_addr; 15507 uint32_t xmac_val; 15508 uint32_t emac_addr; 15509 uint32_t emac_val; 15510 uint32_t umac_addr; 15511 uint32_t umac_val; 15512 uint32_t bmac_addr; 15513 uint32_t bmac_val[2]; 15514 }; 15515 15516 static void 15517 bxe_prev_unload_close_mac(struct bxe_softc *sc, 15518 struct bxe_mac_vals *vals) 15519 { 15520 uint32_t val, base_addr, offset, mask, reset_reg; 15521 uint8_t mac_stopped = FALSE; 15522 uint8_t port = SC_PORT(sc); 15523 uint32_t wb_data[2]; 15524 15525 /* reset addresses as they also mark which values were changed */ 15526 vals->bmac_addr = 0; 15527 vals->umac_addr = 0; 15528 vals->xmac_addr = 0; 15529 vals->emac_addr = 0; 15530 15531 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2); 15532 15533 if (!CHIP_IS_E3(sc)) { 15534 val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4); 15535 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port; 15536 if ((mask & reset_reg) && val) { 15537 BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n"); 15538 base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM 15539 : NIG_REG_INGRESS_BMAC0_MEM; 15540 offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL 15541 : BIGMAC_REGISTER_BMAC_CONTROL; 15542 15543 /* 15544 * use rd/wr since we cannot use dmae. This is safe 15545 * since MCP won't access the bus due to the request 15546 * to unload, and no function on the path can be 15547 * loaded at this time. 15548 */ 15549 wb_data[0] = REG_RD(sc, base_addr + offset); 15550 wb_data[1] = REG_RD(sc, base_addr + offset + 0x4); 15551 vals->bmac_addr = base_addr + offset; 15552 vals->bmac_val[0] = wb_data[0]; 15553 vals->bmac_val[1] = wb_data[1]; 15554 wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE; 15555 REG_WR(sc, vals->bmac_addr, wb_data[0]); 15556 REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]); 15557 } 15558 15559 BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n"); 15560 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4; 15561 vals->emac_val = REG_RD(sc, vals->emac_addr); 15562 REG_WR(sc, vals->emac_addr, 0); 15563 mac_stopped = TRUE; 15564 } else { 15565 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) { 15566 BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n"); 15567 base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0; 15568 val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI); 15569 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1)); 15570 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1)); 15571 vals->xmac_addr = base_addr + XMAC_REG_CTRL; 15572 vals->xmac_val = REG_RD(sc, vals->xmac_addr); 15573 REG_WR(sc, vals->xmac_addr, 0); 15574 mac_stopped = TRUE; 15575 } 15576 15577 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port; 15578 if (mask & reset_reg) { 15579 BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n"); 15580 base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0; 15581 vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG; 15582 vals->umac_val = REG_RD(sc, vals->umac_addr); 15583 REG_WR(sc, vals->umac_addr, 0); 15584 mac_stopped = TRUE; 15585 } 15586 } 15587 15588 if (mac_stopped) { 15589 DELAY(20000); 15590 } 15591 } 15592 15593 #define BXE_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4)) 15594 #define BXE_PREV_UNDI_RCQ(val) ((val) & 0xffff) 15595 #define BXE_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff) 15596 #define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq)) 15597 15598 static void 15599 bxe_prev_unload_undi_inc(struct bxe_softc *sc, 15600 uint8_t port, 15601 uint8_t inc) 15602 { 15603 uint16_t rcq, bd; 15604 uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port)); 15605 15606 rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc; 15607 bd = BXE_PREV_UNDI_BD(tmp_reg) + inc; 15608 15609 tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd); 15610 REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg); 15611 15612 BLOGD(sc, DBG_LOAD, 15613 "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n", 15614 port, bd, rcq); 15615 } 15616 15617 static int 15618 bxe_prev_unload_common(struct bxe_softc *sc) 15619 { 15620 uint32_t reset_reg, tmp_reg = 0, rc; 15621 uint8_t prev_undi = FALSE; 15622 struct bxe_mac_vals mac_vals; 15623 uint32_t timer_count = 1000; 15624 uint32_t prev_brb; 15625 15626 /* 15627 * It is possible a previous function received 'common' answer, 15628 * but hasn't loaded yet, therefore creating a scenario of 15629 * multiple functions receiving 'common' on the same path. 15630 */ 15631 BLOGD(sc, DBG_LOAD, "Common unload Flow\n"); 15632 15633 memset(&mac_vals, 0, sizeof(mac_vals)); 15634 15635 if (bxe_prev_is_path_marked(sc)) { 15636 return (bxe_prev_mcp_done(sc)); 15637 } 15638 15639 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1); 15640 15641 /* Reset should be performed after BRB is emptied */ 15642 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) { 15643 /* Close the MAC Rx to prevent BRB from filling up */ 15644 bxe_prev_unload_close_mac(sc, &mac_vals); 15645 15646 /* close LLH filters towards the BRB */ 15647 elink_set_rx_filter(&sc->link_params, 0); 15648 15649 /* 15650 * Check if the UNDI driver was previously loaded. 15651 * UNDI driver initializes CID offset for normal bell to 0x7 15652 */ 15653 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) { 15654 tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST); 15655 if (tmp_reg == 0x7) { 15656 BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n"); 15657 prev_undi = TRUE; 15658 /* clear the UNDI indication */ 15659 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0); 15660 /* clear possible idle check errors */ 15661 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0); 15662 } 15663 } 15664 15665 /* wait until BRB is empty */ 15666 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); 15667 while (timer_count) { 15668 prev_brb = tmp_reg; 15669 15670 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); 15671 if (!tmp_reg) { 15672 break; 15673 } 15674 15675 BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg); 15676 15677 /* reset timer as long as BRB actually gets emptied */ 15678 if (prev_brb > tmp_reg) { 15679 timer_count = 1000; 15680 } else { 15681 timer_count--; 15682 } 15683 15684 /* If UNDI resides in memory, manually increment it */ 15685 if (prev_undi) { 15686 bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1); 15687 } 15688 15689 DELAY(10); 15690 } 15691 15692 if (!timer_count) { 15693 BLOGE(sc, "Failed to empty BRB\n"); 15694 } 15695 } 15696 15697 /* No packets are in the pipeline, path is ready for reset */ 15698 bxe_reset_common(sc); 15699 15700 if (mac_vals.xmac_addr) { 15701 REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val); 15702 } 15703 if (mac_vals.umac_addr) { 15704 REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val); 15705 } 15706 if (mac_vals.emac_addr) { 15707 REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val); 15708 } 15709 if (mac_vals.bmac_addr) { 15710 REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]); 15711 REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]); 15712 } 15713 15714 rc = bxe_prev_mark_path(sc, prev_undi); 15715 if (rc) { 15716 bxe_prev_mcp_done(sc); 15717 return (rc); 15718 } 15719 15720 return (bxe_prev_mcp_done(sc)); 15721 } 15722 15723 static int 15724 bxe_prev_unload_uncommon(struct bxe_softc *sc) 15725 { 15726 int rc; 15727 15728 BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n"); 15729 15730 /* Test if previous unload process was already finished for this path */ 15731 if (bxe_prev_is_path_marked(sc)) { 15732 return (bxe_prev_mcp_done(sc)); 15733 } 15734 15735 BLOGD(sc, DBG_LOAD, "Path is unmarked\n"); 15736 15737 /* 15738 * If function has FLR capabilities, and existing FW version matches 15739 * the one required, then FLR will be sufficient to clean any residue 15740 * left by previous driver 15741 */ 15742 rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION); 15743 if (!rc) { 15744 /* fw version is good */ 15745 BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n"); 15746 rc = bxe_do_flr(sc); 15747 } 15748 15749 if (!rc) { 15750 /* FLR was performed */ 15751 BLOGD(sc, DBG_LOAD, "FLR successful\n"); 15752 return (0); 15753 } 15754 15755 BLOGD(sc, DBG_LOAD, "Could not FLR\n"); 15756 15757 /* Close the MCP request, return failure*/ 15758 rc = bxe_prev_mcp_done(sc); 15759 if (!rc) { 15760 rc = BXE_PREV_WAIT_NEEDED; 15761 } 15762 15763 return (rc); 15764 } 15765 15766 static int 15767 bxe_prev_unload(struct bxe_softc *sc) 15768 { 15769 int time_counter = 10; 15770 uint32_t fw, hw_lock_reg, hw_lock_val; 15771 uint32_t rc = 0; 15772 15773 /* 15774 * Clear HW from errors which may have resulted from an interrupted 15775 * DMAE transaction. 15776 */ 15777 bxe_prev_interrupted_dmae(sc); 15778 15779 /* Release previously held locks */ 15780 hw_lock_reg = 15781 (SC_FUNC(sc) <= 5) ? 15782 (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) : 15783 (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8); 15784 15785 hw_lock_val = (REG_RD(sc, hw_lock_reg)); 15786 if (hw_lock_val) { 15787 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) { 15788 BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n"); 15789 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 15790 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc))); 15791 } 15792 BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n"); 15793 REG_WR(sc, hw_lock_reg, 0xffffffff); 15794 } else { 15795 BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n"); 15796 } 15797 15798 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) { 15799 BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n"); 15800 REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0); 15801 } 15802 15803 do { 15804 /* Lock MCP using an unload request */ 15805 fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0); 15806 if (!fw) { 15807 BLOGE(sc, "MCP response failure, aborting\n"); 15808 rc = -1; 15809 break; 15810 } 15811 15812 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) { 15813 rc = bxe_prev_unload_common(sc); 15814 break; 15815 } 15816 15817 /* non-common reply from MCP night require looping */ 15818 rc = bxe_prev_unload_uncommon(sc); 15819 if (rc != BXE_PREV_WAIT_NEEDED) { 15820 break; 15821 } 15822 15823 DELAY(20000); 15824 } while (--time_counter); 15825 15826 if (!time_counter || rc) { 15827 BLOGE(sc, "Failed to unload previous driver!" 15828 " time_counter %d rc %d\n", time_counter, rc); 15829 rc = -1; 15830 } 15831 15832 return (rc); 15833 } 15834 15835 void 15836 bxe_dcbx_set_state(struct bxe_softc *sc, 15837 uint8_t dcb_on, 15838 uint32_t dcbx_enabled) 15839 { 15840 if (!CHIP_IS_E1x(sc)) { 15841 sc->dcb_state = dcb_on; 15842 sc->dcbx_enabled = dcbx_enabled; 15843 } else { 15844 sc->dcb_state = FALSE; 15845 sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID; 15846 } 15847 BLOGD(sc, DBG_LOAD, 15848 "DCB state [%s:%s]\n", 15849 dcb_on ? "ON" : "OFF", 15850 (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" : 15851 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" : 15852 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ? 15853 "on-chip with negotiation" : "invalid"); 15854 } 15855 15856 /* must be called after sriov-enable */ 15857 static int 15858 bxe_set_qm_cid_count(struct bxe_softc *sc) 15859 { 15860 int cid_count = BXE_L2_MAX_CID(sc); 15861 15862 if (IS_SRIOV(sc)) { 15863 cid_count += BXE_VF_CIDS; 15864 } 15865 15866 if (CNIC_SUPPORT(sc)) { 15867 cid_count += CNIC_CID_MAX; 15868 } 15869 15870 return (roundup(cid_count, QM_CID_ROUND)); 15871 } 15872 15873 static void 15874 bxe_init_multi_cos(struct bxe_softc *sc) 15875 { 15876 int pri, cos; 15877 15878 uint32_t pri_map = 0; /* XXX change to user config */ 15879 15880 for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) { 15881 cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4)); 15882 if (cos < sc->max_cos) { 15883 sc->prio_to_cos[pri] = cos; 15884 } else { 15885 BLOGW(sc, "Invalid COS %d for priority %d " 15886 "(max COS is %d), setting to 0\n", 15887 cos, pri, (sc->max_cos - 1)); 15888 sc->prio_to_cos[pri] = 0; 15889 } 15890 } 15891 } 15892 15893 static int 15894 bxe_sysctl_state(SYSCTL_HANDLER_ARGS) 15895 { 15896 struct bxe_softc *sc; 15897 int error, result; 15898 15899 result = 0; 15900 error = sysctl_handle_int(oidp, &result, 0, req); 15901 15902 if (error || !req->newptr) { 15903 return (error); 15904 } 15905 15906 if (result == 1) { 15907 uint32_t temp; 15908 sc = (struct bxe_softc *)arg1; 15909 15910 BLOGI(sc, "... dumping driver state ...\n"); 15911 temp = SHMEM2_RD(sc, temperature_in_half_celsius); 15912 BLOGI(sc, "\t Device Temperature = %d Celsius\n", (temp/2)); 15913 } 15914 15915 return (error); 15916 } 15917 15918 static int 15919 bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS) 15920 { 15921 struct bxe_softc *sc = (struct bxe_softc *)arg1; 15922 uint32_t *eth_stats = (uint32_t *)&sc->eth_stats; 15923 uint32_t *offset; 15924 uint64_t value = 0; 15925 int index = (int)arg2; 15926 15927 if (index >= BXE_NUM_ETH_STATS) { 15928 BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index); 15929 return (-1); 15930 } 15931 15932 offset = (eth_stats + bxe_eth_stats_arr[index].offset); 15933 15934 switch (bxe_eth_stats_arr[index].size) { 15935 case 4: 15936 value = (uint64_t)*offset; 15937 break; 15938 case 8: 15939 value = HILO_U64(*offset, *(offset + 1)); 15940 break; 15941 default: 15942 BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n", 15943 index, bxe_eth_stats_arr[index].size); 15944 return (-1); 15945 } 15946 15947 return (sysctl_handle_64(oidp, &value, 0, req)); 15948 } 15949 15950 static int 15951 bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS) 15952 { 15953 struct bxe_softc *sc = (struct bxe_softc *)arg1; 15954 uint32_t *eth_stats; 15955 uint32_t *offset; 15956 uint64_t value = 0; 15957 uint32_t q_stat = (uint32_t)arg2; 15958 uint32_t fp_index = ((q_stat >> 16) & 0xffff); 15959 uint32_t index = (q_stat & 0xffff); 15960 15961 eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats; 15962 15963 if (index >= BXE_NUM_ETH_Q_STATS) { 15964 BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index); 15965 return (-1); 15966 } 15967 15968 offset = (eth_stats + bxe_eth_q_stats_arr[index].offset); 15969 15970 switch (bxe_eth_q_stats_arr[index].size) { 15971 case 4: 15972 value = (uint64_t)*offset; 15973 break; 15974 case 8: 15975 value = HILO_U64(*offset, *(offset + 1)); 15976 break; 15977 default: 15978 BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n", 15979 index, bxe_eth_q_stats_arr[index].size); 15980 return (-1); 15981 } 15982 15983 return (sysctl_handle_64(oidp, &value, 0, req)); 15984 } 15985 15986 static void bxe_force_link_reset(struct bxe_softc *sc) 15987 { 15988 15989 bxe_acquire_phy_lock(sc); 15990 elink_link_reset(&sc->link_params, &sc->link_vars, 1); 15991 bxe_release_phy_lock(sc); 15992 } 15993 15994 static int 15995 bxe_sysctl_pauseparam(SYSCTL_HANDLER_ARGS) 15996 { 15997 struct bxe_softc *sc = (struct bxe_softc *)arg1;; 15998 uint32_t cfg_idx = bxe_get_link_cfg_idx(sc); 15999 int rc = 0; 16000 int error; 16001 int result; 16002 16003 16004 error = sysctl_handle_int(oidp, &sc->bxe_pause_param, 0, req); 16005 16006 if (error || !req->newptr) { 16007 return (error); 16008 } 16009 if ((sc->bxe_pause_param < 0) || (sc->bxe_pause_param > 8)) { 16010 BLOGW(sc, "invalid pause param (%d) - use intergers between 1 & 8\n",sc->bxe_pause_param); 16011 sc->bxe_pause_param = 8; 16012 } 16013 16014 result = (sc->bxe_pause_param << PORT_FEATURE_FLOW_CONTROL_SHIFT); 16015 16016 16017 if((result & 0x400) && !(sc->port.supported[cfg_idx] & ELINK_SUPPORTED_Autoneg)) { 16018 BLOGW(sc, "Does not support Autoneg pause_param %d\n", sc->bxe_pause_param); 16019 return -EINVAL; 16020 } 16021 16022 if(IS_MF(sc)) 16023 return 0; 16024 sc->link_params.req_flow_ctrl[cfg_idx] = ELINK_FLOW_CTRL_AUTO; 16025 if(result & ELINK_FLOW_CTRL_RX) 16026 sc->link_params.req_flow_ctrl[cfg_idx] |= ELINK_FLOW_CTRL_RX; 16027 16028 if(result & ELINK_FLOW_CTRL_TX) 16029 sc->link_params.req_flow_ctrl[cfg_idx] |= ELINK_FLOW_CTRL_TX; 16030 if(sc->link_params.req_flow_ctrl[cfg_idx] == ELINK_FLOW_CTRL_AUTO) 16031 sc->link_params.req_flow_ctrl[cfg_idx] = ELINK_FLOW_CTRL_NONE; 16032 16033 if(result & 0x400) { 16034 if (sc->link_params.req_line_speed[cfg_idx] == ELINK_SPEED_AUTO_NEG) { 16035 sc->link_params.req_flow_ctrl[cfg_idx] = 16036 ELINK_FLOW_CTRL_AUTO; 16037 } 16038 sc->link_params.req_fc_auto_adv = 0; 16039 if (result & ELINK_FLOW_CTRL_RX) 16040 sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_RX; 16041 16042 if (result & ELINK_FLOW_CTRL_TX) 16043 sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_TX; 16044 if (!sc->link_params.req_fc_auto_adv) 16045 sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_NONE; 16046 } 16047 if (IS_PF(sc)) { 16048 if (sc->link_vars.link_up) { 16049 bxe_stats_handle(sc, STATS_EVENT_STOP); 16050 } 16051 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 16052 bxe_force_link_reset(sc); 16053 bxe_acquire_phy_lock(sc); 16054 16055 rc = elink_phy_init(&sc->link_params, &sc->link_vars); 16056 16057 bxe_release_phy_lock(sc); 16058 16059 bxe_calc_fc_adv(sc); 16060 } 16061 } 16062 return rc; 16063 } 16064 16065 16066 static void 16067 bxe_add_sysctls(struct bxe_softc *sc) 16068 { 16069 struct sysctl_ctx_list *ctx; 16070 struct sysctl_oid_list *children; 16071 struct sysctl_oid *queue_top, *queue; 16072 struct sysctl_oid_list *queue_top_children, *queue_children; 16073 char queue_num_buf[32]; 16074 uint32_t q_stat; 16075 int i, j; 16076 16077 ctx = device_get_sysctl_ctx(sc->dev); 16078 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)); 16079 16080 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version", 16081 CTLFLAG_RD, BXE_DRIVER_VERSION, 0, 16082 "version"); 16083 16084 snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d", 16085 BCM_5710_FW_MAJOR_VERSION, 16086 BCM_5710_FW_MINOR_VERSION, 16087 BCM_5710_FW_REVISION_VERSION, 16088 BCM_5710_FW_ENGINEERING_VERSION); 16089 16090 snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s", 16091 ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION) ? "Single" : 16092 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD) ? "MF-SD" : 16093 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI) ? "MF-SI" : 16094 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" : 16095 "Unknown")); 16096 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics", 16097 CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0, 16098 "multifunction vnics per port"); 16099 16100 snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d", 16101 ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" : 16102 (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" : 16103 (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" : 16104 "???GT/s"), 16105 sc->devinfo.pcie_link_width); 16106 16107 sc->debug = bxe_debug; 16108 16109 #if __FreeBSD_version >= 900000 16110 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version", 16111 CTLFLAG_RD, sc->devinfo.bc_ver_str, 0, 16112 "bootcode version"); 16113 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version", 16114 CTLFLAG_RD, sc->fw_ver_str, 0, 16115 "firmware version"); 16116 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode", 16117 CTLFLAG_RD, sc->mf_mode_str, 0, 16118 "multifunction mode"); 16119 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr", 16120 CTLFLAG_RD, sc->mac_addr_str, 0, 16121 "mac address"); 16122 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link", 16123 CTLFLAG_RD, sc->pci_link_str, 0, 16124 "pci link status"); 16125 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "debug", 16126 CTLFLAG_RW, &sc->debug, 16127 "debug logging mode"); 16128 #else 16129 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version", 16130 CTLFLAG_RD, &sc->devinfo.bc_ver_str, 0, 16131 "bootcode version"); 16132 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version", 16133 CTLFLAG_RD, &sc->fw_ver_str, 0, 16134 "firmware version"); 16135 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode", 16136 CTLFLAG_RD, &sc->mf_mode_str, 0, 16137 "multifunction mode"); 16138 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr", 16139 CTLFLAG_RD, &sc->mac_addr_str, 0, 16140 "mac address"); 16141 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link", 16142 CTLFLAG_RD, &sc->pci_link_str, 0, 16143 "pci link status"); 16144 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "debug", 16145 CTLFLAG_RW, &sc->debug, 0, 16146 "debug logging mode"); 16147 #endif /* #if __FreeBSD_version >= 900000 */ 16148 16149 sc->trigger_grcdump = 0; 16150 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "trigger_grcdump", 16151 CTLFLAG_RW, &sc->trigger_grcdump, 0, 16152 "trigger grcdump should be invoked" 16153 " before collecting grcdump"); 16154 16155 sc->grcdump_started = 0; 16156 sc->grcdump_done = 0; 16157 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "grcdump_done", 16158 CTLFLAG_RD, &sc->grcdump_done, 0, 16159 "set by driver when grcdump is done"); 16160 16161 sc->rx_budget = bxe_rx_budget; 16162 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget", 16163 CTLFLAG_RW, &sc->rx_budget, 0, 16164 "rx processing budget"); 16165 16166 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_param", 16167 CTLTYPE_UINT | CTLFLAG_RW, sc, 0, 16168 bxe_sysctl_pauseparam, "IU", 16169 "need pause frames- DEF:0/TX:1/RX:2/BOTH:3/AUTO:4/AUTOTX:5/AUTORX:6/AUTORXTX:7/NONE:8"); 16170 16171 16172 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state", 16173 CTLTYPE_UINT | CTLFLAG_RW, sc, 0, 16174 bxe_sysctl_state, "IU", "dump driver state"); 16175 16176 for (i = 0; i < BXE_NUM_ETH_STATS; i++) { 16177 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 16178 bxe_eth_stats_arr[i].string, 16179 CTLTYPE_U64 | CTLFLAG_RD, sc, i, 16180 bxe_sysctl_eth_stat, "LU", 16181 bxe_eth_stats_arr[i].string); 16182 } 16183 16184 /* add a new parent node for all queues "dev.bxe.#.queue" */ 16185 queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue", 16186 CTLFLAG_RD, NULL, "queue"); 16187 queue_top_children = SYSCTL_CHILDREN(queue_top); 16188 16189 for (i = 0; i < sc->num_queues; i++) { 16190 /* add a new parent node for a single queue "dev.bxe.#.queue.#" */ 16191 snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i); 16192 queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO, 16193 queue_num_buf, CTLFLAG_RD, NULL, 16194 "single queue"); 16195 queue_children = SYSCTL_CHILDREN(queue); 16196 16197 for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) { 16198 q_stat = ((i << 16) | j); 16199 SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO, 16200 bxe_eth_q_stats_arr[j].string, 16201 CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat, 16202 bxe_sysctl_eth_q_stat, "LU", 16203 bxe_eth_q_stats_arr[j].string); 16204 } 16205 } 16206 } 16207 16208 static int 16209 bxe_alloc_buf_rings(struct bxe_softc *sc) 16210 { 16211 #if __FreeBSD_version >= 901504 16212 16213 int i; 16214 struct bxe_fastpath *fp; 16215 16216 for (i = 0; i < sc->num_queues; i++) { 16217 16218 fp = &sc->fp[i]; 16219 16220 fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF, 16221 M_NOWAIT, &fp->tx_mtx); 16222 if (fp->tx_br == NULL) 16223 return (-1); 16224 } 16225 #endif 16226 return (0); 16227 } 16228 16229 static void 16230 bxe_free_buf_rings(struct bxe_softc *sc) 16231 { 16232 #if __FreeBSD_version >= 901504 16233 16234 int i; 16235 struct bxe_fastpath *fp; 16236 16237 for (i = 0; i < sc->num_queues; i++) { 16238 16239 fp = &sc->fp[i]; 16240 16241 if (fp->tx_br) { 16242 buf_ring_free(fp->tx_br, M_DEVBUF); 16243 fp->tx_br = NULL; 16244 } 16245 } 16246 16247 #endif 16248 } 16249 16250 static void 16251 bxe_init_fp_mutexs(struct bxe_softc *sc) 16252 { 16253 int i; 16254 struct bxe_fastpath *fp; 16255 16256 for (i = 0; i < sc->num_queues; i++) { 16257 16258 fp = &sc->fp[i]; 16259 16260 snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name), 16261 "bxe%d_fp%d_tx_lock", sc->unit, i); 16262 mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF); 16263 16264 snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name), 16265 "bxe%d_fp%d_rx_lock", sc->unit, i); 16266 mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF); 16267 } 16268 } 16269 16270 static void 16271 bxe_destroy_fp_mutexs(struct bxe_softc *sc) 16272 { 16273 int i; 16274 struct bxe_fastpath *fp; 16275 16276 for (i = 0; i < sc->num_queues; i++) { 16277 16278 fp = &sc->fp[i]; 16279 16280 if (mtx_initialized(&fp->tx_mtx)) { 16281 mtx_destroy(&fp->tx_mtx); 16282 } 16283 16284 if (mtx_initialized(&fp->rx_mtx)) { 16285 mtx_destroy(&fp->rx_mtx); 16286 } 16287 } 16288 } 16289 16290 16291 /* 16292 * Device attach function. 16293 * 16294 * Allocates device resources, performs secondary chip identification, and 16295 * initializes driver instance variables. This function is called from driver 16296 * load after a successful probe. 16297 * 16298 * Returns: 16299 * 0 = Success, >0 = Failure 16300 */ 16301 static int 16302 bxe_attach(device_t dev) 16303 { 16304 struct bxe_softc *sc; 16305 16306 sc = device_get_softc(dev); 16307 16308 BLOGD(sc, DBG_LOAD, "Starting attach...\n"); 16309 16310 sc->state = BXE_STATE_CLOSED; 16311 16312 sc->dev = dev; 16313 sc->unit = device_get_unit(dev); 16314 16315 BLOGD(sc, DBG_LOAD, "softc = %p\n", sc); 16316 16317 sc->pcie_bus = pci_get_bus(dev); 16318 sc->pcie_device = pci_get_slot(dev); 16319 sc->pcie_func = pci_get_function(dev); 16320 16321 /* enable bus master capability */ 16322 pci_enable_busmaster(dev); 16323 16324 /* get the BARs */ 16325 if (bxe_allocate_bars(sc) != 0) { 16326 return (ENXIO); 16327 } 16328 16329 /* initialize the mutexes */ 16330 bxe_init_mutexes(sc); 16331 16332 /* prepare the periodic callout */ 16333 callout_init(&sc->periodic_callout, 0); 16334 16335 /* prepare the chip taskqueue */ 16336 sc->chip_tq_flags = CHIP_TQ_NONE; 16337 snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name), 16338 "bxe%d_chip_tq", sc->unit); 16339 TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc); 16340 sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT, 16341 taskqueue_thread_enqueue, 16342 &sc->chip_tq); 16343 taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */ 16344 "%s", sc->chip_tq_name); 16345 16346 TIMEOUT_TASK_INIT(taskqueue_thread, 16347 &sc->sp_err_timeout_task, 0, bxe_sp_err_timeout_task, sc); 16348 16349 16350 /* get device info and set params */ 16351 if (bxe_get_device_info(sc) != 0) { 16352 BLOGE(sc, "getting device info\n"); 16353 bxe_deallocate_bars(sc); 16354 pci_disable_busmaster(dev); 16355 return (ENXIO); 16356 } 16357 16358 /* get final misc params */ 16359 bxe_get_params(sc); 16360 16361 /* set the default MTU (changed via ifconfig) */ 16362 sc->mtu = ETHERMTU; 16363 16364 bxe_set_modes_bitmap(sc); 16365 16366 /* XXX 16367 * If in AFEX mode and the function is configured for FCoE 16368 * then bail... no L2 allowed. 16369 */ 16370 16371 /* get phy settings from shmem and 'and' against admin settings */ 16372 bxe_get_phy_info(sc); 16373 16374 /* initialize the FreeBSD ifnet interface */ 16375 if (bxe_init_ifnet(sc) != 0) { 16376 bxe_release_mutexes(sc); 16377 bxe_deallocate_bars(sc); 16378 pci_disable_busmaster(dev); 16379 return (ENXIO); 16380 } 16381 16382 if (bxe_add_cdev(sc) != 0) { 16383 if (sc->ifp != NULL) { 16384 ether_ifdetach(sc->ifp); 16385 } 16386 ifmedia_removeall(&sc->ifmedia); 16387 bxe_release_mutexes(sc); 16388 bxe_deallocate_bars(sc); 16389 pci_disable_busmaster(dev); 16390 return (ENXIO); 16391 } 16392 16393 /* allocate device interrupts */ 16394 if (bxe_interrupt_alloc(sc) != 0) { 16395 bxe_del_cdev(sc); 16396 if (sc->ifp != NULL) { 16397 ether_ifdetach(sc->ifp); 16398 } 16399 ifmedia_removeall(&sc->ifmedia); 16400 bxe_release_mutexes(sc); 16401 bxe_deallocate_bars(sc); 16402 pci_disable_busmaster(dev); 16403 return (ENXIO); 16404 } 16405 16406 bxe_init_fp_mutexs(sc); 16407 16408 if (bxe_alloc_buf_rings(sc) != 0) { 16409 bxe_free_buf_rings(sc); 16410 bxe_interrupt_free(sc); 16411 bxe_del_cdev(sc); 16412 if (sc->ifp != NULL) { 16413 ether_ifdetach(sc->ifp); 16414 } 16415 ifmedia_removeall(&sc->ifmedia); 16416 bxe_release_mutexes(sc); 16417 bxe_deallocate_bars(sc); 16418 pci_disable_busmaster(dev); 16419 return (ENXIO); 16420 } 16421 16422 /* allocate ilt */ 16423 if (bxe_alloc_ilt_mem(sc) != 0) { 16424 bxe_free_buf_rings(sc); 16425 bxe_interrupt_free(sc); 16426 bxe_del_cdev(sc); 16427 if (sc->ifp != NULL) { 16428 ether_ifdetach(sc->ifp); 16429 } 16430 ifmedia_removeall(&sc->ifmedia); 16431 bxe_release_mutexes(sc); 16432 bxe_deallocate_bars(sc); 16433 pci_disable_busmaster(dev); 16434 return (ENXIO); 16435 } 16436 16437 /* allocate the host hardware/software hsi structures */ 16438 if (bxe_alloc_hsi_mem(sc) != 0) { 16439 bxe_free_ilt_mem(sc); 16440 bxe_free_buf_rings(sc); 16441 bxe_interrupt_free(sc); 16442 bxe_del_cdev(sc); 16443 if (sc->ifp != NULL) { 16444 ether_ifdetach(sc->ifp); 16445 } 16446 ifmedia_removeall(&sc->ifmedia); 16447 bxe_release_mutexes(sc); 16448 bxe_deallocate_bars(sc); 16449 pci_disable_busmaster(dev); 16450 return (ENXIO); 16451 } 16452 16453 /* need to reset chip if UNDI was active */ 16454 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 16455 /* init fw_seq */ 16456 sc->fw_seq = 16457 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & 16458 DRV_MSG_SEQ_NUMBER_MASK); 16459 BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq); 16460 bxe_prev_unload(sc); 16461 } 16462 16463 #if 1 16464 /* XXX */ 16465 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); 16466 #else 16467 if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) && 16468 SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) && 16469 SHMEM2_RD(sc, dcbx_lldp_params_offset) && 16470 SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) { 16471 bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON); 16472 bxe_dcbx_init_params(sc); 16473 } else { 16474 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); 16475 } 16476 #endif 16477 16478 /* calculate qm_cid_count */ 16479 sc->qm_cid_count = bxe_set_qm_cid_count(sc); 16480 BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count); 16481 16482 sc->max_cos = 1; 16483 bxe_init_multi_cos(sc); 16484 16485 bxe_add_sysctls(sc); 16486 16487 return (0); 16488 } 16489 16490 /* 16491 * Device detach function. 16492 * 16493 * Stops the controller, resets the controller, and releases resources. 16494 * 16495 * Returns: 16496 * 0 = Success, >0 = Failure 16497 */ 16498 static int 16499 bxe_detach(device_t dev) 16500 { 16501 struct bxe_softc *sc; 16502 if_t ifp; 16503 16504 sc = device_get_softc(dev); 16505 16506 BLOGD(sc, DBG_LOAD, "Starting detach...\n"); 16507 16508 ifp = sc->ifp; 16509 if (ifp != NULL && if_vlantrunkinuse(ifp)) { 16510 BLOGE(sc, "Cannot detach while VLANs are in use.\n"); 16511 return(EBUSY); 16512 } 16513 16514 bxe_del_cdev(sc); 16515 16516 /* stop the periodic callout */ 16517 bxe_periodic_stop(sc); 16518 16519 /* stop the chip taskqueue */ 16520 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE); 16521 if (sc->chip_tq) { 16522 taskqueue_drain(sc->chip_tq, &sc->chip_tq_task); 16523 taskqueue_free(sc->chip_tq); 16524 sc->chip_tq = NULL; 16525 taskqueue_drain_timeout(taskqueue_thread, 16526 &sc->sp_err_timeout_task); 16527 } 16528 16529 /* stop and reset the controller if it was open */ 16530 if (sc->state != BXE_STATE_CLOSED) { 16531 BXE_CORE_LOCK(sc); 16532 bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE); 16533 sc->state = BXE_STATE_DISABLED; 16534 BXE_CORE_UNLOCK(sc); 16535 } 16536 16537 /* release the network interface */ 16538 if (ifp != NULL) { 16539 ether_ifdetach(ifp); 16540 } 16541 ifmedia_removeall(&sc->ifmedia); 16542 16543 /* XXX do the following based on driver state... */ 16544 16545 /* free the host hardware/software hsi structures */ 16546 bxe_free_hsi_mem(sc); 16547 16548 /* free ilt */ 16549 bxe_free_ilt_mem(sc); 16550 16551 bxe_free_buf_rings(sc); 16552 16553 /* release the interrupts */ 16554 bxe_interrupt_free(sc); 16555 16556 /* Release the mutexes*/ 16557 bxe_destroy_fp_mutexs(sc); 16558 bxe_release_mutexes(sc); 16559 16560 16561 /* Release the PCIe BAR mapped memory */ 16562 bxe_deallocate_bars(sc); 16563 16564 /* Release the FreeBSD interface. */ 16565 if (sc->ifp != NULL) { 16566 if_free(sc->ifp); 16567 } 16568 16569 pci_disable_busmaster(dev); 16570 16571 return (0); 16572 } 16573 16574 /* 16575 * Device shutdown function. 16576 * 16577 * Stops and resets the controller. 16578 * 16579 * Returns: 16580 * Nothing 16581 */ 16582 static int 16583 bxe_shutdown(device_t dev) 16584 { 16585 struct bxe_softc *sc; 16586 16587 sc = device_get_softc(dev); 16588 16589 BLOGD(sc, DBG_LOAD, "Starting shutdown...\n"); 16590 16591 /* stop the periodic callout */ 16592 bxe_periodic_stop(sc); 16593 16594 if (sc->state != BXE_STATE_CLOSED) { 16595 BXE_CORE_LOCK(sc); 16596 bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE); 16597 BXE_CORE_UNLOCK(sc); 16598 } 16599 16600 return (0); 16601 } 16602 16603 void 16604 bxe_igu_ack_sb(struct bxe_softc *sc, 16605 uint8_t igu_sb_id, 16606 uint8_t segment, 16607 uint16_t index, 16608 uint8_t op, 16609 uint8_t update) 16610 { 16611 uint32_t igu_addr = sc->igu_base_addr; 16612 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8; 16613 bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr); 16614 } 16615 16616 static void 16617 bxe_igu_clear_sb_gen(struct bxe_softc *sc, 16618 uint8_t func, 16619 uint8_t idu_sb_id, 16620 uint8_t is_pf) 16621 { 16622 uint32_t data, ctl, cnt = 100; 16623 uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; 16624 uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; 16625 uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4; 16626 uint32_t sb_bit = 1 << (idu_sb_id%32); 16627 uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT; 16628 uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id; 16629 16630 /* Not supported in BC mode */ 16631 if (CHIP_INT_MODE_IS_BC(sc)) { 16632 return; 16633 } 16634 16635 data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup << 16636 IGU_REGULAR_CLEANUP_TYPE_SHIFT) | 16637 IGU_REGULAR_CLEANUP_SET | 16638 IGU_REGULAR_BCLEANUP); 16639 16640 ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) | 16641 (func_encode << IGU_CTRL_REG_FID_SHIFT) | 16642 (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT)); 16643 16644 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 16645 data, igu_addr_data); 16646 REG_WR(sc, igu_addr_data, data); 16647 16648 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 16649 BUS_SPACE_BARRIER_WRITE); 16650 mb(); 16651 16652 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 16653 ctl, igu_addr_ctl); 16654 REG_WR(sc, igu_addr_ctl, ctl); 16655 16656 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 16657 BUS_SPACE_BARRIER_WRITE); 16658 mb(); 16659 16660 /* wait for clean up to finish */ 16661 while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) { 16662 DELAY(20000); 16663 } 16664 16665 if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) { 16666 BLOGD(sc, DBG_LOAD, 16667 "Unable to finish IGU cleanup: " 16668 "idu_sb_id %d offset %d bit %d (cnt %d)\n", 16669 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt); 16670 } 16671 } 16672 16673 static void 16674 bxe_igu_clear_sb(struct bxe_softc *sc, 16675 uint8_t idu_sb_id) 16676 { 16677 bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/); 16678 } 16679 16680 16681 16682 16683 16684 16685 16686 /*******************/ 16687 /* ECORE CALLBACKS */ 16688 /*******************/ 16689 16690 static void 16691 bxe_reset_common(struct bxe_softc *sc) 16692 { 16693 uint32_t val = 0x1400; 16694 16695 /* reset_common */ 16696 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f); 16697 16698 if (CHIP_IS_E3(sc)) { 16699 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 16700 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 16701 } 16702 16703 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val); 16704 } 16705 16706 static void 16707 bxe_common_init_phy(struct bxe_softc *sc) 16708 { 16709 uint32_t shmem_base[2]; 16710 uint32_t shmem2_base[2]; 16711 16712 /* Avoid common init in case MFW supports LFA */ 16713 if (SHMEM2_RD(sc, size) > 16714 (uint32_t)offsetof(struct shmem2_region, 16715 lfa_host_addr[SC_PORT(sc)])) { 16716 return; 16717 } 16718 16719 shmem_base[0] = sc->devinfo.shmem_base; 16720 shmem2_base[0] = sc->devinfo.shmem2_base; 16721 16722 if (!CHIP_IS_E1x(sc)) { 16723 shmem_base[1] = SHMEM2_RD(sc, other_shmem_base_addr); 16724 shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr); 16725 } 16726 16727 bxe_acquire_phy_lock(sc); 16728 elink_common_init_phy(sc, shmem_base, shmem2_base, 16729 sc->devinfo.chip_id, 0); 16730 bxe_release_phy_lock(sc); 16731 } 16732 16733 static void 16734 bxe_pf_disable(struct bxe_softc *sc) 16735 { 16736 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 16737 16738 val &= ~IGU_PF_CONF_FUNC_EN; 16739 16740 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 16741 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 16742 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0); 16743 } 16744 16745 static void 16746 bxe_init_pxp(struct bxe_softc *sc) 16747 { 16748 uint16_t devctl; 16749 int r_order, w_order; 16750 16751 devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2); 16752 16753 BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl); 16754 16755 w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5); 16756 16757 if (sc->mrrs == -1) { 16758 r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12); 16759 } else { 16760 BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs); 16761 r_order = sc->mrrs; 16762 } 16763 16764 ecore_init_pxp_arb(sc, r_order, w_order); 16765 } 16766 16767 static uint32_t 16768 bxe_get_pretend_reg(struct bxe_softc *sc) 16769 { 16770 uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0; 16771 uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base); 16772 return (base + (SC_ABS_FUNC(sc)) * stride); 16773 } 16774 16775 /* 16776 * Called only on E1H or E2. 16777 * When pretending to be PF, the pretend value is the function number 0..7. 16778 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID 16779 * combination. 16780 */ 16781 static int 16782 bxe_pretend_func(struct bxe_softc *sc, 16783 uint16_t pretend_func_val) 16784 { 16785 uint32_t pretend_reg; 16786 16787 if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) { 16788 return (-1); 16789 } 16790 16791 /* get my own pretend register */ 16792 pretend_reg = bxe_get_pretend_reg(sc); 16793 REG_WR(sc, pretend_reg, pretend_func_val); 16794 REG_RD(sc, pretend_reg); 16795 return (0); 16796 } 16797 16798 static void 16799 bxe_iov_init_dmae(struct bxe_softc *sc) 16800 { 16801 return; 16802 } 16803 16804 static void 16805 bxe_iov_init_dq(struct bxe_softc *sc) 16806 { 16807 return; 16808 } 16809 16810 /* send a NIG loopback debug packet */ 16811 static void 16812 bxe_lb_pckt(struct bxe_softc *sc) 16813 { 16814 uint32_t wb_write[3]; 16815 16816 /* Ethernet source and destination addresses */ 16817 wb_write[0] = 0x55555555; 16818 wb_write[1] = 0x55555555; 16819 wb_write[2] = 0x20; /* SOP */ 16820 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 16821 16822 /* NON-IP protocol */ 16823 wb_write[0] = 0x09000000; 16824 wb_write[1] = 0x55555555; 16825 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */ 16826 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 16827 } 16828 16829 /* 16830 * Some of the internal memories are not directly readable from the driver. 16831 * To test them we send debug packets. 16832 */ 16833 static int 16834 bxe_int_mem_test(struct bxe_softc *sc) 16835 { 16836 int factor; 16837 int count, i; 16838 uint32_t val = 0; 16839 16840 if (CHIP_REV_IS_FPGA(sc)) { 16841 factor = 120; 16842 } else if (CHIP_REV_IS_EMUL(sc)) { 16843 factor = 200; 16844 } else { 16845 factor = 1; 16846 } 16847 16848 /* disable inputs of parser neighbor blocks */ 16849 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); 16850 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); 16851 REG_WR(sc, CFC_REG_DEBUG0, 0x1); 16852 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); 16853 16854 /* write 0 to parser credits for CFC search request */ 16855 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 16856 16857 /* send Ethernet packet */ 16858 bxe_lb_pckt(sc); 16859 16860 /* TODO do i reset NIG statistic? */ 16861 /* Wait until NIG register shows 1 packet of size 0x10 */ 16862 count = 1000 * factor; 16863 while (count) { 16864 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 16865 val = *BXE_SP(sc, wb_data[0]); 16866 if (val == 0x10) { 16867 break; 16868 } 16869 16870 DELAY(10000); 16871 count--; 16872 } 16873 16874 if (val != 0x10) { 16875 BLOGE(sc, "NIG timeout val=0x%x\n", val); 16876 return (-1); 16877 } 16878 16879 /* wait until PRS register shows 1 packet */ 16880 count = (1000 * factor); 16881 while (count) { 16882 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16883 if (val == 1) { 16884 break; 16885 } 16886 16887 DELAY(10000); 16888 count--; 16889 } 16890 16891 if (val != 0x1) { 16892 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16893 return (-2); 16894 } 16895 16896 /* Reset and init BRB, PRS */ 16897 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 16898 DELAY(50000); 16899 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 16900 DELAY(50000); 16901 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 16902 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 16903 16904 /* Disable inputs of parser neighbor blocks */ 16905 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); 16906 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); 16907 REG_WR(sc, CFC_REG_DEBUG0, 0x1); 16908 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); 16909 16910 /* Write 0 to parser credits for CFC search request */ 16911 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 16912 16913 /* send 10 Ethernet packets */ 16914 for (i = 0; i < 10; i++) { 16915 bxe_lb_pckt(sc); 16916 } 16917 16918 /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */ 16919 count = (1000 * factor); 16920 while (count) { 16921 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 16922 val = *BXE_SP(sc, wb_data[0]); 16923 if (val == 0xb0) { 16924 break; 16925 } 16926 16927 DELAY(10000); 16928 count--; 16929 } 16930 16931 if (val != 0xb0) { 16932 BLOGE(sc, "NIG timeout val=0x%x\n", val); 16933 return (-3); 16934 } 16935 16936 /* Wait until PRS register shows 2 packets */ 16937 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16938 if (val != 2) { 16939 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16940 } 16941 16942 /* Write 1 to parser credits for CFC search request */ 16943 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1); 16944 16945 /* Wait until PRS register shows 3 packets */ 16946 DELAY(10000 * factor); 16947 16948 /* Wait until NIG register shows 1 packet of size 0x10 */ 16949 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16950 if (val != 3) { 16951 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16952 } 16953 16954 /* clear NIG EOP FIFO */ 16955 for (i = 0; i < 11; i++) { 16956 REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO); 16957 } 16958 16959 val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY); 16960 if (val != 1) { 16961 BLOGE(sc, "clear of NIG failed val=0x%x\n", val); 16962 return (-4); 16963 } 16964 16965 /* Reset and init BRB, PRS, NIG */ 16966 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 16967 DELAY(50000); 16968 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 16969 DELAY(50000); 16970 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 16971 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 16972 if (!CNIC_SUPPORT(sc)) { 16973 /* set NIC mode */ 16974 REG_WR(sc, PRS_REG_NIC_MODE, 1); 16975 } 16976 16977 /* Enable inputs of parser neighbor blocks */ 16978 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff); 16979 REG_WR(sc, TCM_REG_PRS_IFEN, 0x1); 16980 REG_WR(sc, CFC_REG_DEBUG0, 0x0); 16981 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1); 16982 16983 return (0); 16984 } 16985 16986 static void 16987 bxe_setup_fan_failure_detection(struct bxe_softc *sc) 16988 { 16989 int is_required; 16990 uint32_t val; 16991 int port; 16992 16993 is_required = 0; 16994 val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) & 16995 SHARED_HW_CFG_FAN_FAILURE_MASK); 16996 16997 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) { 16998 is_required = 1; 16999 } 17000 /* 17001 * The fan failure mechanism is usually related to the PHY type since 17002 * the power consumption of the board is affected by the PHY. Currently, 17003 * fan is required for most designs with SFX7101, BCM8727 and BCM8481. 17004 */ 17005 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) { 17006 for (port = PORT_0; port < PORT_MAX; port++) { 17007 is_required |= elink_fan_failure_det_req(sc, 17008 sc->devinfo.shmem_base, 17009 sc->devinfo.shmem2_base, 17010 port); 17011 } 17012 } 17013 17014 BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required); 17015 17016 if (is_required == 0) { 17017 return; 17018 } 17019 17020 /* Fan failure is indicated by SPIO 5 */ 17021 bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z); 17022 17023 /* set to active low mode */ 17024 val = REG_RD(sc, MISC_REG_SPIO_INT); 17025 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS); 17026 REG_WR(sc, MISC_REG_SPIO_INT, val); 17027 17028 /* enable interrupt to signal the IGU */ 17029 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); 17030 val |= MISC_SPIO_SPIO5; 17031 REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val); 17032 } 17033 17034 static void 17035 bxe_enable_blocks_attention(struct bxe_softc *sc) 17036 { 17037 uint32_t val; 17038 17039 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); 17040 if (!CHIP_IS_E1x(sc)) { 17041 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40); 17042 } else { 17043 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0); 17044 } 17045 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); 17046 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); 17047 /* 17048 * mask read length error interrupts in brb for parser 17049 * (parsing unit and 'checksum and crc' unit) 17050 * these errors are legal (PU reads fixed length and CAC can cause 17051 * read length error on truncated packets) 17052 */ 17053 REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00); 17054 REG_WR(sc, QM_REG_QM_INT_MASK, 0); 17055 REG_WR(sc, TM_REG_TM_INT_MASK, 0); 17056 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0); 17057 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0); 17058 REG_WR(sc, XCM_REG_XCM_INT_MASK, 0); 17059 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */ 17060 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */ 17061 REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0); 17062 REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0); 17063 REG_WR(sc, UCM_REG_UCM_INT_MASK, 0); 17064 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */ 17065 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */ 17066 REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0); 17067 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0); 17068 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0); 17069 REG_WR(sc, CCM_REG_CCM_INT_MASK, 0); 17070 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */ 17071 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */ 17072 17073 val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT | 17074 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF | 17075 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN); 17076 if (!CHIP_IS_E1x(sc)) { 17077 val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED | 17078 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED); 17079 } 17080 REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val); 17081 17082 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0); 17083 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0); 17084 REG_WR(sc, TCM_REG_TCM_INT_MASK, 0); 17085 /* REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */ 17086 17087 if (!CHIP_IS_E1x(sc)) { 17088 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */ 17089 REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff); 17090 } 17091 17092 REG_WR(sc, CDU_REG_CDU_INT_MASK, 0); 17093 REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0); 17094 /* REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */ 17095 REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */ 17096 } 17097 17098 /** 17099 * bxe_init_hw_common - initialize the HW at the COMMON phase. 17100 * 17101 * @sc: driver handle 17102 */ 17103 static int 17104 bxe_init_hw_common(struct bxe_softc *sc) 17105 { 17106 uint8_t abs_func_id; 17107 uint32_t val; 17108 17109 BLOGD(sc, DBG_LOAD, "starting common init for func %d\n", 17110 SC_ABS_FUNC(sc)); 17111 17112 /* 17113 * take the RESET lock to protect undi_unload flow from accessing 17114 * registers while we are resetting the chip 17115 */ 17116 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 17117 17118 bxe_reset_common(sc); 17119 17120 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff); 17121 17122 val = 0xfffc; 17123 if (CHIP_IS_E3(sc)) { 17124 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 17125 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 17126 } 17127 17128 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val); 17129 17130 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 17131 17132 ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON); 17133 BLOGD(sc, DBG_LOAD, "after misc block init\n"); 17134 17135 if (!CHIP_IS_E1x(sc)) { 17136 /* 17137 * 4-port mode or 2-port mode we need to turn off master-enable for 17138 * everyone. After that we turn it back on for self. So, we disregard 17139 * multi-function, and always disable all functions on the given path, 17140 * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1 17141 */ 17142 for (abs_func_id = SC_PATH(sc); 17143 abs_func_id < (E2_FUNC_MAX * 2); 17144 abs_func_id += 2) { 17145 if (abs_func_id == SC_ABS_FUNC(sc)) { 17146 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17147 continue; 17148 } 17149 17150 bxe_pretend_func(sc, abs_func_id); 17151 17152 /* clear pf enable */ 17153 bxe_pf_disable(sc); 17154 17155 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 17156 } 17157 } 17158 17159 BLOGD(sc, DBG_LOAD, "after pf disable\n"); 17160 17161 ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON); 17162 17163 if (CHIP_IS_E1(sc)) { 17164 /* 17165 * enable HW interrupt from PXP on USDM overflow 17166 * bit 16 on INT_MASK_0 17167 */ 17168 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); 17169 } 17170 17171 ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON); 17172 bxe_init_pxp(sc); 17173 17174 #ifdef __BIG_ENDIAN 17175 REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1); 17176 REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1); 17177 REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1); 17178 REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1); 17179 REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1); 17180 /* make sure this value is 0 */ 17181 REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0); 17182 17183 //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1); 17184 REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1); 17185 REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1); 17186 REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1); 17187 REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1); 17188 #endif 17189 17190 ecore_ilt_init_page_size(sc, INITOP_SET); 17191 17192 if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) { 17193 REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1); 17194 } 17195 17196 /* let the HW do it's magic... */ 17197 DELAY(100000); 17198 17199 /* finish PXP init */ 17200 val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE); 17201 if (val != 1) { 17202 BLOGE(sc, "PXP2 CFG failed PXP2_REG_RQ_CFG_DONE val = 0x%x\n", 17203 val); 17204 return (-1); 17205 } 17206 val = REG_RD(sc, PXP2_REG_RD_INIT_DONE); 17207 if (val != 1) { 17208 BLOGE(sc, "PXP2 RD_INIT failed val = 0x%x\n", val); 17209 return (-1); 17210 } 17211 17212 BLOGD(sc, DBG_LOAD, "after pxp init\n"); 17213 17214 /* 17215 * Timer bug workaround for E2 only. We need to set the entire ILT to have 17216 * entries with value "0" and valid bit on. This needs to be done by the 17217 * first PF that is loaded in a path (i.e. common phase) 17218 */ 17219 if (!CHIP_IS_E1x(sc)) { 17220 /* 17221 * In E2 there is a bug in the timers block that can cause function 6 / 7 17222 * (i.e. vnic3) to start even if it is marked as "scan-off". 17223 * This occurs when a different function (func2,3) is being marked 17224 * as "scan-off". Real-life scenario for example: if a driver is being 17225 * load-unloaded while func6,7 are down. This will cause the timer to access 17226 * the ilt, translate to a logical address and send a request to read/write. 17227 * Since the ilt for the function that is down is not valid, this will cause 17228 * a translation error which is unrecoverable. 17229 * The Workaround is intended to make sure that when this happens nothing 17230 * fatal will occur. The workaround: 17231 * 1. First PF driver which loads on a path will: 17232 * a. After taking the chip out of reset, by using pretend, 17233 * it will write "0" to the following registers of 17234 * the other vnics. 17235 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 17236 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0); 17237 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0); 17238 * And for itself it will write '1' to 17239 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable 17240 * dmae-operations (writing to pram for example.) 17241 * note: can be done for only function 6,7 but cleaner this 17242 * way. 17243 * b. Write zero+valid to the entire ILT. 17244 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of 17245 * VNIC3 (of that port). The range allocated will be the 17246 * entire ILT. This is needed to prevent ILT range error. 17247 * 2. Any PF driver load flow: 17248 * a. ILT update with the physical addresses of the allocated 17249 * logical pages. 17250 * b. Wait 20msec. - note that this timeout is needed to make 17251 * sure there are no requests in one of the PXP internal 17252 * queues with "old" ILT addresses. 17253 * c. PF enable in the PGLC. 17254 * d. Clear the was_error of the PF in the PGLC. (could have 17255 * occurred while driver was down) 17256 * e. PF enable in the CFC (WEAK + STRONG) 17257 * f. Timers scan enable 17258 * 3. PF driver unload flow: 17259 * a. Clear the Timers scan_en. 17260 * b. Polling for scan_on=0 for that PF. 17261 * c. Clear the PF enable bit in the PXP. 17262 * d. Clear the PF enable in the CFC (WEAK + STRONG) 17263 * e. Write zero+valid to all ILT entries (The valid bit must 17264 * stay set) 17265 * f. If this is VNIC 3 of a port then also init 17266 * first_timers_ilt_entry to zero and last_timers_ilt_entry 17267 * to the last enrty in the ILT. 17268 * 17269 * Notes: 17270 * Currently the PF error in the PGLC is non recoverable. 17271 * In the future the there will be a recovery routine for this error. 17272 * Currently attention is masked. 17273 * Having an MCP lock on the load/unload process does not guarantee that 17274 * there is no Timer disable during Func6/7 enable. This is because the 17275 * Timers scan is currently being cleared by the MCP on FLR. 17276 * Step 2.d can be done only for PF6/7 and the driver can also check if 17277 * there is error before clearing it. But the flow above is simpler and 17278 * more general. 17279 * All ILT entries are written by zero+valid and not just PF6/7 17280 * ILT entries since in the future the ILT entries allocation for 17281 * PF-s might be dynamic. 17282 */ 17283 struct ilt_client_info ilt_cli; 17284 struct ecore_ilt ilt; 17285 17286 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 17287 memset(&ilt, 0, sizeof(struct ecore_ilt)); 17288 17289 /* initialize dummy TM client */ 17290 ilt_cli.start = 0; 17291 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 17292 ilt_cli.client_num = ILT_CLIENT_TM; 17293 17294 /* 17295 * Step 1: set zeroes to all ilt page entries with valid bit on 17296 * Step 2: set the timers first/last ilt entry to point 17297 * to the entire range to prevent ILT range error for 3rd/4th 17298 * vnic (this code assumes existence of the vnic) 17299 * 17300 * both steps performed by call to ecore_ilt_client_init_op() 17301 * with dummy TM client 17302 * 17303 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT 17304 * and his brother are split registers 17305 */ 17306 17307 bxe_pretend_func(sc, (SC_PATH(sc) + 6)); 17308 ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR); 17309 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 17310 17311 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN); 17312 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN); 17313 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1); 17314 } 17315 17316 REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0); 17317 REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0); 17318 17319 if (!CHIP_IS_E1x(sc)) { 17320 int factor = CHIP_REV_IS_EMUL(sc) ? 1000 : 17321 (CHIP_REV_IS_FPGA(sc) ? 400 : 0); 17322 17323 ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON); 17324 ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON); 17325 17326 /* let the HW do it's magic... */ 17327 do { 17328 DELAY(200000); 17329 val = REG_RD(sc, ATC_REG_ATC_INIT_DONE); 17330 } while (factor-- && (val != 1)); 17331 17332 if (val != 1) { 17333 BLOGE(sc, "ATC_INIT failed val = 0x%x\n", val); 17334 return (-1); 17335 } 17336 } 17337 17338 BLOGD(sc, DBG_LOAD, "after pglue and atc init\n"); 17339 17340 ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON); 17341 17342 bxe_iov_init_dmae(sc); 17343 17344 /* clean the DMAE memory */ 17345 sc->dmae_ready = 1; 17346 ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1); 17347 17348 ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON); 17349 17350 ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON); 17351 17352 ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON); 17353 17354 ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON); 17355 17356 bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3); 17357 bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3); 17358 bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3); 17359 bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3); 17360 17361 ecore_init_block(sc, BLOCK_QM, PHASE_COMMON); 17362 17363 /* QM queues pointers table */ 17364 ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET); 17365 17366 /* soft reset pulse */ 17367 REG_WR(sc, QM_REG_SOFT_RESET, 1); 17368 REG_WR(sc, QM_REG_SOFT_RESET, 0); 17369 17370 if (CNIC_SUPPORT(sc)) 17371 ecore_init_block(sc, BLOCK_TM, PHASE_COMMON); 17372 17373 ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON); 17374 REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT); 17375 if (!CHIP_REV_IS_SLOW(sc)) { 17376 /* enable hw interrupt from doorbell Q */ 17377 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); 17378 } 17379 17380 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 17381 17382 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 17383 REG_WR(sc, PRS_REG_A_PRSU_20, 0xf); 17384 17385 if (!CHIP_IS_E1(sc)) { 17386 REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan); 17387 } 17388 17389 if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) { 17390 if (IS_MF_AFEX(sc)) { 17391 /* 17392 * configure that AFEX and VLAN headers must be 17393 * received in AFEX mode 17394 */ 17395 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE); 17396 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA); 17397 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6); 17398 REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926); 17399 REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4); 17400 } else { 17401 /* 17402 * Bit-map indicating which L2 hdrs may appear 17403 * after the basic Ethernet header 17404 */ 17405 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 17406 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); 17407 } 17408 } 17409 17410 ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON); 17411 ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON); 17412 ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON); 17413 ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON); 17414 17415 if (!CHIP_IS_E1x(sc)) { 17416 /* reset VFC memories */ 17417 REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 17418 VFC_MEMORIES_RST_REG_CAM_RST | 17419 VFC_MEMORIES_RST_REG_RAM_RST); 17420 REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 17421 VFC_MEMORIES_RST_REG_CAM_RST | 17422 VFC_MEMORIES_RST_REG_RAM_RST); 17423 17424 DELAY(20000); 17425 } 17426 17427 ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON); 17428 ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON); 17429 ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON); 17430 ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON); 17431 17432 /* sync semi rtc */ 17433 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 17434 0x80000000); 17435 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 17436 0x80000000); 17437 17438 ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON); 17439 ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON); 17440 ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON); 17441 17442 if (!CHIP_IS_E1x(sc)) { 17443 if (IS_MF_AFEX(sc)) { 17444 /* 17445 * configure that AFEX and VLAN headers must be 17446 * sent in AFEX mode 17447 */ 17448 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE); 17449 REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA); 17450 REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6); 17451 REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926); 17452 REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4); 17453 } else { 17454 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 17455 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); 17456 } 17457 } 17458 17459 REG_WR(sc, SRC_REG_SOFT_RST, 1); 17460 17461 ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON); 17462 17463 if (CNIC_SUPPORT(sc)) { 17464 REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672); 17465 REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc); 17466 REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b); 17467 REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a); 17468 REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116); 17469 REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b); 17470 REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf); 17471 REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09); 17472 REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f); 17473 REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7); 17474 } 17475 REG_WR(sc, SRC_REG_SOFT_RST, 0); 17476 17477 if (sizeof(union cdu_context) != 1024) { 17478 /* we currently assume that a context is 1024 bytes */ 17479 BLOGE(sc, "please adjust the size of cdu_context(%ld)\n", 17480 (long)sizeof(union cdu_context)); 17481 } 17482 17483 ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON); 17484 val = (4 << 24) + (0 << 12) + 1024; 17485 REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val); 17486 17487 ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON); 17488 17489 REG_WR(sc, CFC_REG_INIT_REG, 0x7FF); 17490 /* enable context validation interrupt from CFC */ 17491 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); 17492 17493 /* set the thresholds to prevent CFC/CDU race */ 17494 REG_WR(sc, CFC_REG_DEBUG0, 0x20020000); 17495 ecore_init_block(sc, BLOCK_HC, PHASE_COMMON); 17496 17497 if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) { 17498 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36); 17499 } 17500 17501 ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON); 17502 ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON); 17503 17504 /* Reset PCIE errors for debug */ 17505 REG_WR(sc, 0x2814, 0xffffffff); 17506 REG_WR(sc, 0x3820, 0xffffffff); 17507 17508 if (!CHIP_IS_E1x(sc)) { 17509 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5, 17510 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 | 17511 PXPCS_TL_CONTROL_5_ERR_UNSPPORT)); 17512 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT, 17513 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 | 17514 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 | 17515 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2)); 17516 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT, 17517 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 | 17518 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 | 17519 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5)); 17520 } 17521 17522 ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON); 17523 17524 if (!CHIP_IS_E1(sc)) { 17525 /* in E3 this done in per-port section */ 17526 if (!CHIP_IS_E3(sc)) 17527 REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc)); 17528 } 17529 17530 if (CHIP_IS_E1H(sc)) { 17531 /* not applicable for E2 (and above ...) */ 17532 REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc)); 17533 } 17534 17535 if (CHIP_REV_IS_SLOW(sc)) { 17536 DELAY(200000); 17537 } 17538 17539 /* finish CFC init */ 17540 val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10); 17541 if (val != 1) { 17542 BLOGE(sc, "CFC LL_INIT failed val=0x%x\n", val); 17543 return (-1); 17544 } 17545 val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10); 17546 if (val != 1) { 17547 BLOGE(sc, "CFC AC_INIT failed val=0x%x\n", val); 17548 return (-1); 17549 } 17550 val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10); 17551 if (val != 1) { 17552 BLOGE(sc, "CFC CAM_INIT failed val=0x%x\n", val); 17553 return (-1); 17554 } 17555 REG_WR(sc, CFC_REG_DEBUG0, 0); 17556 17557 if (CHIP_IS_E1(sc)) { 17558 /* read NIG statistic to see if this is our first up since powerup */ 17559 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 17560 val = *BXE_SP(sc, wb_data[0]); 17561 17562 /* do internal memory self test */ 17563 if ((val == 0) && bxe_int_mem_test(sc)) { 17564 BLOGE(sc, "internal mem self test failed val=0x%x\n", val); 17565 return (-1); 17566 } 17567 } 17568 17569 bxe_setup_fan_failure_detection(sc); 17570 17571 /* clear PXP2 attentions */ 17572 REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); 17573 17574 bxe_enable_blocks_attention(sc); 17575 17576 if (!CHIP_REV_IS_SLOW(sc)) { 17577 ecore_enable_blocks_parity(sc); 17578 } 17579 17580 if (!BXE_NOMCP(sc)) { 17581 if (CHIP_IS_E1x(sc)) { 17582 bxe_common_init_phy(sc); 17583 } 17584 } 17585 17586 return (0); 17587 } 17588 17589 /** 17590 * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase. 17591 * 17592 * @sc: driver handle 17593 */ 17594 static int 17595 bxe_init_hw_common_chip(struct bxe_softc *sc) 17596 { 17597 int rc = bxe_init_hw_common(sc); 17598 17599 if (rc) { 17600 BLOGE(sc, "bxe_init_hw_common failed rc=%d\n", rc); 17601 return (rc); 17602 } 17603 17604 /* In E2 2-PORT mode, same ext phy is used for the two paths */ 17605 if (!BXE_NOMCP(sc)) { 17606 bxe_common_init_phy(sc); 17607 } 17608 17609 return (0); 17610 } 17611 17612 static int 17613 bxe_init_hw_port(struct bxe_softc *sc) 17614 { 17615 int port = SC_PORT(sc); 17616 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0; 17617 uint32_t low, high; 17618 uint32_t val; 17619 17620 BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port); 17621 17622 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 17623 17624 ecore_init_block(sc, BLOCK_MISC, init_phase); 17625 ecore_init_block(sc, BLOCK_PXP, init_phase); 17626 ecore_init_block(sc, BLOCK_PXP2, init_phase); 17627 17628 /* 17629 * Timers bug workaround: disables the pf_master bit in pglue at 17630 * common phase, we need to enable it here before any dmae access are 17631 * attempted. Therefore we manually added the enable-master to the 17632 * port phase (it also happens in the function phase) 17633 */ 17634 if (!CHIP_IS_E1x(sc)) { 17635 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17636 } 17637 17638 ecore_init_block(sc, BLOCK_ATC, init_phase); 17639 ecore_init_block(sc, BLOCK_DMAE, init_phase); 17640 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); 17641 ecore_init_block(sc, BLOCK_QM, init_phase); 17642 17643 ecore_init_block(sc, BLOCK_TCM, init_phase); 17644 ecore_init_block(sc, BLOCK_UCM, init_phase); 17645 ecore_init_block(sc, BLOCK_CCM, init_phase); 17646 ecore_init_block(sc, BLOCK_XCM, init_phase); 17647 17648 /* QM cid (connection) count */ 17649 ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET); 17650 17651 if (CNIC_SUPPORT(sc)) { 17652 ecore_init_block(sc, BLOCK_TM, init_phase); 17653 REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20); 17654 REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31); 17655 } 17656 17657 ecore_init_block(sc, BLOCK_DORQ, init_phase); 17658 17659 ecore_init_block(sc, BLOCK_BRB1, init_phase); 17660 17661 if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) { 17662 if (IS_MF(sc)) { 17663 low = (BXE_ONE_PORT(sc) ? 160 : 246); 17664 } else if (sc->mtu > 4096) { 17665 if (BXE_ONE_PORT(sc)) { 17666 low = 160; 17667 } else { 17668 val = sc->mtu; 17669 /* (24*1024 + val*4)/256 */ 17670 low = (96 + (val / 64) + ((val % 64) ? 1 : 0)); 17671 } 17672 } else { 17673 low = (BXE_ONE_PORT(sc) ? 80 : 160); 17674 } 17675 high = (low + 56); /* 14*1024/256 */ 17676 REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low); 17677 REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high); 17678 } 17679 17680 if (CHIP_IS_MODE_4_PORT(sc)) { 17681 REG_WR(sc, SC_PORT(sc) ? 17682 BRB1_REG_MAC_GUARANTIED_1 : 17683 BRB1_REG_MAC_GUARANTIED_0, 40); 17684 } 17685 17686 ecore_init_block(sc, BLOCK_PRS, init_phase); 17687 if (CHIP_IS_E3B0(sc)) { 17688 if (IS_MF_AFEX(sc)) { 17689 /* configure headers for AFEX mode */ 17690 REG_WR(sc, SC_PORT(sc) ? 17691 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 17692 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE); 17693 REG_WR(sc, SC_PORT(sc) ? 17694 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 : 17695 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6); 17696 REG_WR(sc, SC_PORT(sc) ? 17697 PRS_REG_MUST_HAVE_HDRS_PORT_1 : 17698 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA); 17699 } else { 17700 /* Ovlan exists only if we are in multi-function + 17701 * switch-dependent mode, in switch-independent there 17702 * is no ovlan headers 17703 */ 17704 REG_WR(sc, SC_PORT(sc) ? 17705 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 17706 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 17707 (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6)); 17708 } 17709 } 17710 17711 ecore_init_block(sc, BLOCK_TSDM, init_phase); 17712 ecore_init_block(sc, BLOCK_CSDM, init_phase); 17713 ecore_init_block(sc, BLOCK_USDM, init_phase); 17714 ecore_init_block(sc, BLOCK_XSDM, init_phase); 17715 17716 ecore_init_block(sc, BLOCK_TSEM, init_phase); 17717 ecore_init_block(sc, BLOCK_USEM, init_phase); 17718 ecore_init_block(sc, BLOCK_CSEM, init_phase); 17719 ecore_init_block(sc, BLOCK_XSEM, init_phase); 17720 17721 ecore_init_block(sc, BLOCK_UPB, init_phase); 17722 ecore_init_block(sc, BLOCK_XPB, init_phase); 17723 17724 ecore_init_block(sc, BLOCK_PBF, init_phase); 17725 17726 if (CHIP_IS_E1x(sc)) { 17727 /* configure PBF to work without PAUSE mtu 9000 */ 17728 REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0); 17729 17730 /* update threshold */ 17731 REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16)); 17732 /* update init credit */ 17733 REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22); 17734 17735 /* probe changes */ 17736 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1); 17737 DELAY(50); 17738 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0); 17739 } 17740 17741 if (CNIC_SUPPORT(sc)) { 17742 ecore_init_block(sc, BLOCK_SRC, init_phase); 17743 } 17744 17745 ecore_init_block(sc, BLOCK_CDU, init_phase); 17746 ecore_init_block(sc, BLOCK_CFC, init_phase); 17747 17748 if (CHIP_IS_E1(sc)) { 17749 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 17750 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 17751 } 17752 ecore_init_block(sc, BLOCK_HC, init_phase); 17753 17754 ecore_init_block(sc, BLOCK_IGU, init_phase); 17755 17756 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); 17757 /* init aeu_mask_attn_func_0/1: 17758 * - SF mode: bits 3-7 are masked. only bits 0-2 are in use 17759 * - MF mode: bit 3 is masked. bits 0-2 are in use as in SF 17760 * bits 4-7 are used for "per vn group attention" */ 17761 val = IS_MF(sc) ? 0xF7 : 0x7; 17762 /* Enable DCBX attention for all but E1 */ 17763 val |= CHIP_IS_E1(sc) ? 0 : 0x10; 17764 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val); 17765 17766 ecore_init_block(sc, BLOCK_NIG, init_phase); 17767 17768 if (!CHIP_IS_E1x(sc)) { 17769 /* Bit-map indicating which L2 hdrs may appear after the 17770 * basic Ethernet header 17771 */ 17772 if (IS_MF_AFEX(sc)) { 17773 REG_WR(sc, SC_PORT(sc) ? 17774 NIG_REG_P1_HDRS_AFTER_BASIC : 17775 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE); 17776 } else { 17777 REG_WR(sc, SC_PORT(sc) ? 17778 NIG_REG_P1_HDRS_AFTER_BASIC : 17779 NIG_REG_P0_HDRS_AFTER_BASIC, 17780 IS_MF_SD(sc) ? 7 : 6); 17781 } 17782 17783 if (CHIP_IS_E3(sc)) { 17784 REG_WR(sc, SC_PORT(sc) ? 17785 NIG_REG_LLH1_MF_MODE : 17786 NIG_REG_LLH_MF_MODE, IS_MF(sc)); 17787 } 17788 } 17789 if (!CHIP_IS_E3(sc)) { 17790 REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1); 17791 } 17792 17793 if (!CHIP_IS_E1(sc)) { 17794 /* 0x2 disable mf_ov, 0x1 enable */ 17795 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4, 17796 (IS_MF_SD(sc) ? 0x1 : 0x2)); 17797 17798 if (!CHIP_IS_E1x(sc)) { 17799 val = 0; 17800 switch (sc->devinfo.mf_info.mf_mode) { 17801 case MULTI_FUNCTION_SD: 17802 val = 1; 17803 break; 17804 case MULTI_FUNCTION_SI: 17805 case MULTI_FUNCTION_AFEX: 17806 val = 2; 17807 break; 17808 } 17809 17810 REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE : 17811 NIG_REG_LLH0_CLS_TYPE), val); 17812 } 17813 REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0); 17814 REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0); 17815 REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1); 17816 } 17817 17818 /* If SPIO5 is set to generate interrupts, enable it for this port */ 17819 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); 17820 if (val & MISC_SPIO_SPIO5) { 17821 uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 17822 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 17823 val = REG_RD(sc, reg_addr); 17824 val |= AEU_INPUTS_ATTN_BITS_SPIO5; 17825 REG_WR(sc, reg_addr, val); 17826 } 17827 17828 return (0); 17829 } 17830 17831 static uint32_t 17832 bxe_flr_clnup_reg_poll(struct bxe_softc *sc, 17833 uint32_t reg, 17834 uint32_t expected, 17835 uint32_t poll_count) 17836 { 17837 uint32_t cur_cnt = poll_count; 17838 uint32_t val; 17839 17840 while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) { 17841 DELAY(FLR_WAIT_INTERVAL); 17842 } 17843 17844 return (val); 17845 } 17846 17847 static int 17848 bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc, 17849 uint32_t reg, 17850 char *msg, 17851 uint32_t poll_cnt) 17852 { 17853 uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt); 17854 17855 if (val != 0) { 17856 BLOGE(sc, "%s usage count=%d\n", msg, val); 17857 return (1); 17858 } 17859 17860 return (0); 17861 } 17862 17863 /* Common routines with VF FLR cleanup */ 17864 static uint32_t 17865 bxe_flr_clnup_poll_count(struct bxe_softc *sc) 17866 { 17867 /* adjust polling timeout */ 17868 if (CHIP_REV_IS_EMUL(sc)) { 17869 return (FLR_POLL_CNT * 2000); 17870 } 17871 17872 if (CHIP_REV_IS_FPGA(sc)) { 17873 return (FLR_POLL_CNT * 120); 17874 } 17875 17876 return (FLR_POLL_CNT); 17877 } 17878 17879 static int 17880 bxe_poll_hw_usage_counters(struct bxe_softc *sc, 17881 uint32_t poll_cnt) 17882 { 17883 /* wait for CFC PF usage-counter to zero (includes all the VFs) */ 17884 if (bxe_flr_clnup_poll_hw_counter(sc, 17885 CFC_REG_NUM_LCIDS_INSIDE_PF, 17886 "CFC PF usage counter timed out", 17887 poll_cnt)) { 17888 return (1); 17889 } 17890 17891 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */ 17892 if (bxe_flr_clnup_poll_hw_counter(sc, 17893 DORQ_REG_PF_USAGE_CNT, 17894 "DQ PF usage counter timed out", 17895 poll_cnt)) { 17896 return (1); 17897 } 17898 17899 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */ 17900 if (bxe_flr_clnup_poll_hw_counter(sc, 17901 QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc), 17902 "QM PF usage counter timed out", 17903 poll_cnt)) { 17904 return (1); 17905 } 17906 17907 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */ 17908 if (bxe_flr_clnup_poll_hw_counter(sc, 17909 TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc), 17910 "Timers VNIC usage counter timed out", 17911 poll_cnt)) { 17912 return (1); 17913 } 17914 17915 if (bxe_flr_clnup_poll_hw_counter(sc, 17916 TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc), 17917 "Timers NUM_SCANS usage counter timed out", 17918 poll_cnt)) { 17919 return (1); 17920 } 17921 17922 /* Wait DMAE PF usage counter to zero */ 17923 if (bxe_flr_clnup_poll_hw_counter(sc, 17924 dmae_reg_go_c[INIT_DMAE_C(sc)], 17925 "DMAE dommand register timed out", 17926 poll_cnt)) { 17927 return (1); 17928 } 17929 17930 return (0); 17931 } 17932 17933 #define OP_GEN_PARAM(param) \ 17934 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM) 17935 #define OP_GEN_TYPE(type) \ 17936 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE) 17937 #define OP_GEN_AGG_VECT(index) \ 17938 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX) 17939 17940 static int 17941 bxe_send_final_clnup(struct bxe_softc *sc, 17942 uint8_t clnup_func, 17943 uint32_t poll_cnt) 17944 { 17945 uint32_t op_gen_command = 0; 17946 uint32_t comp_addr = (BAR_CSTRORM_INTMEM + 17947 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func)); 17948 int ret = 0; 17949 17950 if (REG_RD(sc, comp_addr)) { 17951 BLOGE(sc, "Cleanup complete was not 0 before sending\n"); 17952 return (1); 17953 } 17954 17955 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX); 17956 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE); 17957 op_gen_command |= OP_GEN_AGG_VECT(clnup_func); 17958 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT; 17959 17960 BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n"); 17961 REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command); 17962 17963 if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) { 17964 BLOGE(sc, "FW final cleanup did not succeed\n"); 17965 BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n", 17966 (REG_RD(sc, comp_addr))); 17967 bxe_panic(sc, ("FLR cleanup failed\n")); 17968 return (1); 17969 } 17970 17971 /* Zero completion for nxt FLR */ 17972 REG_WR(sc, comp_addr, 0); 17973 17974 return (ret); 17975 } 17976 17977 static void 17978 bxe_pbf_pN_buf_flushed(struct bxe_softc *sc, 17979 struct pbf_pN_buf_regs *regs, 17980 uint32_t poll_count) 17981 { 17982 uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start; 17983 uint32_t cur_cnt = poll_count; 17984 17985 crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed); 17986 crd = crd_start = REG_RD(sc, regs->crd); 17987 init_crd = REG_RD(sc, regs->init_crd); 17988 17989 BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd); 17990 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : s:%x\n", regs->pN, crd); 17991 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed); 17992 17993 while ((crd != init_crd) && 17994 ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) < 17995 (init_crd - crd_start))) { 17996 if (cur_cnt--) { 17997 DELAY(FLR_WAIT_INTERVAL); 17998 crd = REG_RD(sc, regs->crd); 17999 crd_freed = REG_RD(sc, regs->crd_freed); 18000 } else { 18001 BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN); 18002 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : c:%x\n", regs->pN, crd); 18003 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed); 18004 break; 18005 } 18006 } 18007 18008 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n", 18009 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 18010 } 18011 18012 static void 18013 bxe_pbf_pN_cmd_flushed(struct bxe_softc *sc, 18014 struct pbf_pN_cmd_regs *regs, 18015 uint32_t poll_count) 18016 { 18017 uint32_t occup, to_free, freed, freed_start; 18018 uint32_t cur_cnt = poll_count; 18019 18020 occup = to_free = REG_RD(sc, regs->lines_occup); 18021 freed = freed_start = REG_RD(sc, regs->lines_freed); 18022 18023 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 18024 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 18025 18026 while (occup && 18027 ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) { 18028 if (cur_cnt--) { 18029 DELAY(FLR_WAIT_INTERVAL); 18030 occup = REG_RD(sc, regs->lines_occup); 18031 freed = REG_RD(sc, regs->lines_freed); 18032 } else { 18033 BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN); 18034 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 18035 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 18036 break; 18037 } 18038 } 18039 18040 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n", 18041 poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 18042 } 18043 18044 static void 18045 bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count) 18046 { 18047 struct pbf_pN_cmd_regs cmd_regs[] = { 18048 {0, (CHIP_IS_E3B0(sc)) ? 18049 PBF_REG_TQ_OCCUPANCY_Q0 : 18050 PBF_REG_P0_TQ_OCCUPANCY, 18051 (CHIP_IS_E3B0(sc)) ? 18052 PBF_REG_TQ_LINES_FREED_CNT_Q0 : 18053 PBF_REG_P0_TQ_LINES_FREED_CNT}, 18054 {1, (CHIP_IS_E3B0(sc)) ? 18055 PBF_REG_TQ_OCCUPANCY_Q1 : 18056 PBF_REG_P1_TQ_OCCUPANCY, 18057 (CHIP_IS_E3B0(sc)) ? 18058 PBF_REG_TQ_LINES_FREED_CNT_Q1 : 18059 PBF_REG_P1_TQ_LINES_FREED_CNT}, 18060 {4, (CHIP_IS_E3B0(sc)) ? 18061 PBF_REG_TQ_OCCUPANCY_LB_Q : 18062 PBF_REG_P4_TQ_OCCUPANCY, 18063 (CHIP_IS_E3B0(sc)) ? 18064 PBF_REG_TQ_LINES_FREED_CNT_LB_Q : 18065 PBF_REG_P4_TQ_LINES_FREED_CNT} 18066 }; 18067 18068 struct pbf_pN_buf_regs buf_regs[] = { 18069 {0, (CHIP_IS_E3B0(sc)) ? 18070 PBF_REG_INIT_CRD_Q0 : 18071 PBF_REG_P0_INIT_CRD , 18072 (CHIP_IS_E3B0(sc)) ? 18073 PBF_REG_CREDIT_Q0 : 18074 PBF_REG_P0_CREDIT, 18075 (CHIP_IS_E3B0(sc)) ? 18076 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 : 18077 PBF_REG_P0_INTERNAL_CRD_FREED_CNT}, 18078 {1, (CHIP_IS_E3B0(sc)) ? 18079 PBF_REG_INIT_CRD_Q1 : 18080 PBF_REG_P1_INIT_CRD, 18081 (CHIP_IS_E3B0(sc)) ? 18082 PBF_REG_CREDIT_Q1 : 18083 PBF_REG_P1_CREDIT, 18084 (CHIP_IS_E3B0(sc)) ? 18085 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 : 18086 PBF_REG_P1_INTERNAL_CRD_FREED_CNT}, 18087 {4, (CHIP_IS_E3B0(sc)) ? 18088 PBF_REG_INIT_CRD_LB_Q : 18089 PBF_REG_P4_INIT_CRD, 18090 (CHIP_IS_E3B0(sc)) ? 18091 PBF_REG_CREDIT_LB_Q : 18092 PBF_REG_P4_CREDIT, 18093 (CHIP_IS_E3B0(sc)) ? 18094 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q : 18095 PBF_REG_P4_INTERNAL_CRD_FREED_CNT}, 18096 }; 18097 18098 int i; 18099 18100 /* Verify the command queues are flushed P0, P1, P4 */ 18101 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) { 18102 bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count); 18103 } 18104 18105 /* Verify the transmission buffers are flushed P0, P1, P4 */ 18106 for (i = 0; i < ARRAY_SIZE(buf_regs); i++) { 18107 bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count); 18108 } 18109 } 18110 18111 static void 18112 bxe_hw_enable_status(struct bxe_softc *sc) 18113 { 18114 uint32_t val; 18115 18116 val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF); 18117 BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val); 18118 18119 val = REG_RD(sc, PBF_REG_DISABLE_PF); 18120 BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val); 18121 18122 val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN); 18123 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val); 18124 18125 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN); 18126 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val); 18127 18128 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK); 18129 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val); 18130 18131 val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR); 18132 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val); 18133 18134 val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR); 18135 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val); 18136 18137 val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); 18138 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val); 18139 } 18140 18141 static int 18142 bxe_pf_flr_clnup(struct bxe_softc *sc) 18143 { 18144 uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc); 18145 18146 BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc)); 18147 18148 /* Re-enable PF target read access */ 18149 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 18150 18151 /* Poll HW usage counters */ 18152 BLOGD(sc, DBG_LOAD, "Polling usage counters\n"); 18153 if (bxe_poll_hw_usage_counters(sc, poll_cnt)) { 18154 return (-1); 18155 } 18156 18157 /* Zero the igu 'trailing edge' and 'leading edge' */ 18158 18159 /* Send the FW cleanup command */ 18160 if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) { 18161 return (-1); 18162 } 18163 18164 /* ATC cleanup */ 18165 18166 /* Verify TX hw is flushed */ 18167 bxe_tx_hw_flushed(sc, poll_cnt); 18168 18169 /* Wait 100ms (not adjusted according to platform) */ 18170 DELAY(100000); 18171 18172 /* Verify no pending pci transactions */ 18173 if (bxe_is_pcie_pending(sc)) { 18174 BLOGE(sc, "PCIE Transactions still pending\n"); 18175 } 18176 18177 /* Debug */ 18178 bxe_hw_enable_status(sc); 18179 18180 /* 18181 * Master enable - Due to WB DMAE writes performed before this 18182 * register is re-initialized as part of the regular function init 18183 */ 18184 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 18185 18186 return (0); 18187 } 18188 18189 static int 18190 bxe_init_hw_func(struct bxe_softc *sc) 18191 { 18192 int port = SC_PORT(sc); 18193 int func = SC_FUNC(sc); 18194 int init_phase = PHASE_PF0 + func; 18195 struct ecore_ilt *ilt = sc->ilt; 18196 uint16_t cdu_ilt_start; 18197 uint32_t addr, val; 18198 uint32_t main_mem_base, main_mem_size, main_mem_prty_clr; 18199 int i, main_mem_width, rc; 18200 18201 BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func); 18202 18203 /* FLR cleanup */ 18204 if (!CHIP_IS_E1x(sc)) { 18205 rc = bxe_pf_flr_clnup(sc); 18206 if (rc) { 18207 BLOGE(sc, "FLR cleanup failed!\n"); 18208 // XXX bxe_fw_dump(sc); 18209 // XXX bxe_idle_chk(sc); 18210 return (rc); 18211 } 18212 } 18213 18214 /* set MSI reconfigure capability */ 18215 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18216 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0); 18217 val = REG_RD(sc, addr); 18218 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0; 18219 REG_WR(sc, addr, val); 18220 } 18221 18222 ecore_init_block(sc, BLOCK_PXP, init_phase); 18223 ecore_init_block(sc, BLOCK_PXP2, init_phase); 18224 18225 ilt = sc->ilt; 18226 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 18227 18228 for (i = 0; i < L2_ILT_LINES(sc); i++) { 18229 ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt; 18230 ilt->lines[cdu_ilt_start + i].page_mapping = 18231 sc->context[i].vcxt_dma.paddr; 18232 ilt->lines[cdu_ilt_start + i].size = sc->context[i].size; 18233 } 18234 ecore_ilt_init_op(sc, INITOP_SET); 18235 18236 /* Set NIC mode */ 18237 REG_WR(sc, PRS_REG_NIC_MODE, 1); 18238 BLOGD(sc, DBG_LOAD, "NIC MODE configured\n"); 18239 18240 if (!CHIP_IS_E1x(sc)) { 18241 uint32_t pf_conf = IGU_PF_CONF_FUNC_EN; 18242 18243 /* Turn on a single ISR mode in IGU if driver is going to use 18244 * INT#x or MSI 18245 */ 18246 if (sc->interrupt_mode != INTR_MODE_MSIX) { 18247 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; 18248 } 18249 18250 /* 18251 * Timers workaround bug: function init part. 18252 * Need to wait 20msec after initializing ILT, 18253 * needed to make sure there are no requests in 18254 * one of the PXP internal queues with "old" ILT addresses 18255 */ 18256 DELAY(20000); 18257 18258 /* 18259 * Master enable - Due to WB DMAE writes performed before this 18260 * register is re-initialized as part of the regular function 18261 * init 18262 */ 18263 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 18264 /* Enable the function in IGU */ 18265 REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf); 18266 } 18267 18268 sc->dmae_ready = 1; 18269 18270 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); 18271 18272 if (!CHIP_IS_E1x(sc)) 18273 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func); 18274 18275 ecore_init_block(sc, BLOCK_ATC, init_phase); 18276 ecore_init_block(sc, BLOCK_DMAE, init_phase); 18277 ecore_init_block(sc, BLOCK_NIG, init_phase); 18278 ecore_init_block(sc, BLOCK_SRC, init_phase); 18279 ecore_init_block(sc, BLOCK_MISC, init_phase); 18280 ecore_init_block(sc, BLOCK_TCM, init_phase); 18281 ecore_init_block(sc, BLOCK_UCM, init_phase); 18282 ecore_init_block(sc, BLOCK_CCM, init_phase); 18283 ecore_init_block(sc, BLOCK_XCM, init_phase); 18284 ecore_init_block(sc, BLOCK_TSEM, init_phase); 18285 ecore_init_block(sc, BLOCK_USEM, init_phase); 18286 ecore_init_block(sc, BLOCK_CSEM, init_phase); 18287 ecore_init_block(sc, BLOCK_XSEM, init_phase); 18288 18289 if (!CHIP_IS_E1x(sc)) 18290 REG_WR(sc, QM_REG_PF_EN, 1); 18291 18292 if (!CHIP_IS_E1x(sc)) { 18293 REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18294 REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18295 REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18296 REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18297 } 18298 ecore_init_block(sc, BLOCK_QM, init_phase); 18299 18300 ecore_init_block(sc, BLOCK_TM, init_phase); 18301 ecore_init_block(sc, BLOCK_DORQ, init_phase); 18302 18303 bxe_iov_init_dq(sc); 18304 18305 ecore_init_block(sc, BLOCK_BRB1, init_phase); 18306 ecore_init_block(sc, BLOCK_PRS, init_phase); 18307 ecore_init_block(sc, BLOCK_TSDM, init_phase); 18308 ecore_init_block(sc, BLOCK_CSDM, init_phase); 18309 ecore_init_block(sc, BLOCK_USDM, init_phase); 18310 ecore_init_block(sc, BLOCK_XSDM, init_phase); 18311 ecore_init_block(sc, BLOCK_UPB, init_phase); 18312 ecore_init_block(sc, BLOCK_XPB, init_phase); 18313 ecore_init_block(sc, BLOCK_PBF, init_phase); 18314 if (!CHIP_IS_E1x(sc)) 18315 REG_WR(sc, PBF_REG_DISABLE_PF, 0); 18316 18317 ecore_init_block(sc, BLOCK_CDU, init_phase); 18318 18319 ecore_init_block(sc, BLOCK_CFC, init_phase); 18320 18321 if (!CHIP_IS_E1x(sc)) 18322 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1); 18323 18324 if (IS_MF(sc)) { 18325 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); 18326 REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc)); 18327 } 18328 18329 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); 18330 18331 /* HC init per function */ 18332 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18333 if (CHIP_IS_E1H(sc)) { 18334 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 18335 18336 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 18337 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 18338 } 18339 ecore_init_block(sc, BLOCK_HC, init_phase); 18340 18341 } else { 18342 int num_segs, sb_idx, prod_offset; 18343 18344 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 18345 18346 if (!CHIP_IS_E1x(sc)) { 18347 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); 18348 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); 18349 } 18350 18351 ecore_init_block(sc, BLOCK_IGU, init_phase); 18352 18353 if (!CHIP_IS_E1x(sc)) { 18354 int dsb_idx = 0; 18355 /** 18356 * Producer memory: 18357 * E2 mode: address 0-135 match to the mapping memory; 18358 * 136 - PF0 default prod; 137 - PF1 default prod; 18359 * 138 - PF2 default prod; 139 - PF3 default prod; 18360 * 140 - PF0 attn prod; 141 - PF1 attn prod; 18361 * 142 - PF2 attn prod; 143 - PF3 attn prod; 18362 * 144-147 reserved. 18363 * 18364 * E1.5 mode - In backward compatible mode; 18365 * for non default SB; each even line in the memory 18366 * holds the U producer and each odd line hold 18367 * the C producer. The first 128 producers are for 18368 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20 18369 * producers are for the DSB for each PF. 18370 * Each PF has five segments: (the order inside each 18371 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods; 18372 * 132-135 C prods; 136-139 X prods; 140-143 T prods; 18373 * 144-147 attn prods; 18374 */ 18375 /* non-default-status-blocks */ 18376 num_segs = CHIP_INT_MODE_IS_BC(sc) ? 18377 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS; 18378 for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) { 18379 prod_offset = (sc->igu_base_sb + sb_idx) * 18380 num_segs; 18381 18382 for (i = 0; i < num_segs; i++) { 18383 addr = IGU_REG_PROD_CONS_MEMORY + 18384 (prod_offset + i) * 4; 18385 REG_WR(sc, addr, 0); 18386 } 18387 /* send consumer update with value 0 */ 18388 bxe_ack_sb(sc, sc->igu_base_sb + sb_idx, 18389 USTORM_ID, 0, IGU_INT_NOP, 1); 18390 bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx); 18391 } 18392 18393 /* default-status-blocks */ 18394 num_segs = CHIP_INT_MODE_IS_BC(sc) ? 18395 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS; 18396 18397 if (CHIP_IS_MODE_4_PORT(sc)) 18398 dsb_idx = SC_FUNC(sc); 18399 else 18400 dsb_idx = SC_VN(sc); 18401 18402 prod_offset = (CHIP_INT_MODE_IS_BC(sc) ? 18403 IGU_BC_BASE_DSB_PROD + dsb_idx : 18404 IGU_NORM_BASE_DSB_PROD + dsb_idx); 18405 18406 /* 18407 * igu prods come in chunks of E1HVN_MAX (4) - 18408 * does not matters what is the current chip mode 18409 */ 18410 for (i = 0; i < (num_segs * E1HVN_MAX); 18411 i += E1HVN_MAX) { 18412 addr = IGU_REG_PROD_CONS_MEMORY + 18413 (prod_offset + i)*4; 18414 REG_WR(sc, addr, 0); 18415 } 18416 /* send consumer update with 0 */ 18417 if (CHIP_INT_MODE_IS_BC(sc)) { 18418 bxe_ack_sb(sc, sc->igu_dsb_id, 18419 USTORM_ID, 0, IGU_INT_NOP, 1); 18420 bxe_ack_sb(sc, sc->igu_dsb_id, 18421 CSTORM_ID, 0, IGU_INT_NOP, 1); 18422 bxe_ack_sb(sc, sc->igu_dsb_id, 18423 XSTORM_ID, 0, IGU_INT_NOP, 1); 18424 bxe_ack_sb(sc, sc->igu_dsb_id, 18425 TSTORM_ID, 0, IGU_INT_NOP, 1); 18426 bxe_ack_sb(sc, sc->igu_dsb_id, 18427 ATTENTION_ID, 0, IGU_INT_NOP, 1); 18428 } else { 18429 bxe_ack_sb(sc, sc->igu_dsb_id, 18430 USTORM_ID, 0, IGU_INT_NOP, 1); 18431 bxe_ack_sb(sc, sc->igu_dsb_id, 18432 ATTENTION_ID, 0, IGU_INT_NOP, 1); 18433 } 18434 bxe_igu_clear_sb(sc, sc->igu_dsb_id); 18435 18436 /* !!! these should become driver const once 18437 rf-tool supports split-68 const */ 18438 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); 18439 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); 18440 REG_WR(sc, IGU_REG_SB_MASK_LSB, 0); 18441 REG_WR(sc, IGU_REG_SB_MASK_MSB, 0); 18442 REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0); 18443 REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0); 18444 } 18445 } 18446 18447 /* Reset PCIE errors for debug */ 18448 REG_WR(sc, 0x2114, 0xffffffff); 18449 REG_WR(sc, 0x2120, 0xffffffff); 18450 18451 if (CHIP_IS_E1x(sc)) { 18452 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/ 18453 main_mem_base = HC_REG_MAIN_MEMORY + 18454 SC_PORT(sc) * (main_mem_size * 4); 18455 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR; 18456 main_mem_width = 8; 18457 18458 val = REG_RD(sc, main_mem_prty_clr); 18459 if (val) { 18460 BLOGD(sc, DBG_LOAD, 18461 "Parity errors in HC block during function init (0x%x)!\n", 18462 val); 18463 } 18464 18465 /* Clear "false" parity errors in MSI-X table */ 18466 for (i = main_mem_base; 18467 i < main_mem_base + main_mem_size * 4; 18468 i += main_mem_width) { 18469 bxe_read_dmae(sc, i, main_mem_width / 4); 18470 bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data), 18471 i, main_mem_width / 4); 18472 } 18473 /* Clear HC parity attention */ 18474 REG_RD(sc, main_mem_prty_clr); 18475 } 18476 18477 #if 1 18478 /* Enable STORMs SP logging */ 18479 REG_WR8(sc, BAR_USTRORM_INTMEM + 18480 USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18481 REG_WR8(sc, BAR_TSTRORM_INTMEM + 18482 TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18483 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18484 CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18485 REG_WR8(sc, BAR_XSTRORM_INTMEM + 18486 XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18487 #endif 18488 18489 elink_phy_probe(&sc->link_params); 18490 18491 return (0); 18492 } 18493 18494 static void 18495 bxe_link_reset(struct bxe_softc *sc) 18496 { 18497 if (!BXE_NOMCP(sc)) { 18498 bxe_acquire_phy_lock(sc); 18499 elink_lfa_reset(&sc->link_params, &sc->link_vars); 18500 bxe_release_phy_lock(sc); 18501 } else { 18502 if (!CHIP_REV_IS_SLOW(sc)) { 18503 BLOGW(sc, "Bootcode is missing - cannot reset link\n"); 18504 } 18505 } 18506 } 18507 18508 static void 18509 bxe_reset_port(struct bxe_softc *sc) 18510 { 18511 int port = SC_PORT(sc); 18512 uint32_t val; 18513 18514 ELINK_DEBUG_P0(sc, "bxe_reset_port called\n"); 18515 /* reset physical Link */ 18516 bxe_link_reset(sc); 18517 18518 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 18519 18520 /* Do not rcv packets to BRB */ 18521 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0); 18522 /* Do not direct rcv packets that are not for MCP to the BRB */ 18523 REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP : 18524 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0); 18525 18526 /* Configure AEU */ 18527 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0); 18528 18529 DELAY(100000); 18530 18531 /* Check for BRB port occupancy */ 18532 val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4); 18533 if (val) { 18534 BLOGD(sc, DBG_LOAD, 18535 "BRB1 is not empty, %d blocks are occupied\n", val); 18536 } 18537 18538 /* TODO: Close Doorbell port? */ 18539 } 18540 18541 static void 18542 bxe_ilt_wr(struct bxe_softc *sc, 18543 uint32_t index, 18544 bus_addr_t addr) 18545 { 18546 int reg; 18547 uint32_t wb_write[2]; 18548 18549 if (CHIP_IS_E1(sc)) { 18550 reg = PXP2_REG_RQ_ONCHIP_AT + index*8; 18551 } else { 18552 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8; 18553 } 18554 18555 wb_write[0] = ONCHIP_ADDR1(addr); 18556 wb_write[1] = ONCHIP_ADDR2(addr); 18557 REG_WR_DMAE(sc, reg, wb_write, 2); 18558 } 18559 18560 static void 18561 bxe_clear_func_ilt(struct bxe_softc *sc, 18562 uint32_t func) 18563 { 18564 uint32_t i, base = FUNC_ILT_BASE(func); 18565 for (i = base; i < base + ILT_PER_FUNC; i++) { 18566 bxe_ilt_wr(sc, i, 0); 18567 } 18568 } 18569 18570 static void 18571 bxe_reset_func(struct bxe_softc *sc) 18572 { 18573 struct bxe_fastpath *fp; 18574 int port = SC_PORT(sc); 18575 int func = SC_FUNC(sc); 18576 int i; 18577 18578 /* Disable the function in the FW */ 18579 REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0); 18580 REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0); 18581 REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0); 18582 REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0); 18583 18584 /* FP SBs */ 18585 FOR_EACH_ETH_QUEUE(sc, i) { 18586 fp = &sc->fp[i]; 18587 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18588 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id), 18589 SB_DISABLED); 18590 } 18591 18592 /* SP SB */ 18593 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18594 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), 18595 SB_DISABLED); 18596 18597 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) { 18598 REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0); 18599 } 18600 18601 /* Configure IGU */ 18602 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18603 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 18604 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 18605 } else { 18606 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); 18607 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); 18608 } 18609 18610 if (CNIC_LOADED(sc)) { 18611 /* Disable Timer scan */ 18612 REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0); 18613 /* 18614 * Wait for at least 10ms and up to 2 second for the timers 18615 * scan to complete 18616 */ 18617 for (i = 0; i < 200; i++) { 18618 DELAY(10000); 18619 if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4)) 18620 break; 18621 } 18622 } 18623 18624 /* Clear ILT */ 18625 bxe_clear_func_ilt(sc, func); 18626 18627 /* 18628 * Timers workaround bug for E2: if this is vnic-3, 18629 * we need to set the entire ilt range for this timers. 18630 */ 18631 if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) { 18632 struct ilt_client_info ilt_cli; 18633 /* use dummy TM client */ 18634 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 18635 ilt_cli.start = 0; 18636 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 18637 ilt_cli.client_num = ILT_CLIENT_TM; 18638 18639 ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR); 18640 } 18641 18642 /* this assumes that reset_port() called before reset_func()*/ 18643 if (!CHIP_IS_E1x(sc)) { 18644 bxe_pf_disable(sc); 18645 } 18646 18647 sc->dmae_ready = 0; 18648 } 18649 18650 static int 18651 bxe_gunzip_init(struct bxe_softc *sc) 18652 { 18653 return (0); 18654 } 18655 18656 static void 18657 bxe_gunzip_end(struct bxe_softc *sc) 18658 { 18659 return; 18660 } 18661 18662 static int 18663 bxe_init_firmware(struct bxe_softc *sc) 18664 { 18665 if (CHIP_IS_E1(sc)) { 18666 ecore_init_e1_firmware(sc); 18667 sc->iro_array = e1_iro_arr; 18668 } else if (CHIP_IS_E1H(sc)) { 18669 ecore_init_e1h_firmware(sc); 18670 sc->iro_array = e1h_iro_arr; 18671 } else if (!CHIP_IS_E1x(sc)) { 18672 ecore_init_e2_firmware(sc); 18673 sc->iro_array = e2_iro_arr; 18674 } else { 18675 BLOGE(sc, "Unsupported chip revision\n"); 18676 return (-1); 18677 } 18678 18679 return (0); 18680 } 18681 18682 static void 18683 bxe_release_firmware(struct bxe_softc *sc) 18684 { 18685 /* Do nothing */ 18686 return; 18687 } 18688 18689 static int 18690 ecore_gunzip(struct bxe_softc *sc, 18691 const uint8_t *zbuf, 18692 int len) 18693 { 18694 /* XXX : Implement... */ 18695 BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n"); 18696 return (FALSE); 18697 } 18698 18699 static void 18700 ecore_reg_wr_ind(struct bxe_softc *sc, 18701 uint32_t addr, 18702 uint32_t val) 18703 { 18704 bxe_reg_wr_ind(sc, addr, val); 18705 } 18706 18707 static void 18708 ecore_write_dmae_phys_len(struct bxe_softc *sc, 18709 bus_addr_t phys_addr, 18710 uint32_t addr, 18711 uint32_t len) 18712 { 18713 bxe_write_dmae_phys_len(sc, phys_addr, addr, len); 18714 } 18715 18716 void 18717 ecore_storm_memset_struct(struct bxe_softc *sc, 18718 uint32_t addr, 18719 size_t size, 18720 uint32_t *data) 18721 { 18722 uint8_t i; 18723 for (i = 0; i < size/4; i++) { 18724 REG_WR(sc, addr + (i * 4), data[i]); 18725 } 18726 } 18727 18728 18729 /* 18730 * character device - ioctl interface definitions 18731 */ 18732 18733 18734 #include "bxe_dump.h" 18735 #include "bxe_ioctl.h" 18736 #include <sys/conf.h> 18737 18738 static int bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, 18739 struct thread *td); 18740 18741 static struct cdevsw bxe_cdevsw = { 18742 .d_version = D_VERSION, 18743 .d_ioctl = bxe_eioctl, 18744 .d_name = "bxecnic", 18745 }; 18746 18747 #define BXE_PATH(sc) (CHIP_IS_E1x(sc) ? 0 : (sc->pcie_func & 1)) 18748 18749 18750 #define DUMP_ALL_PRESETS 0x1FFF 18751 #define DUMP_MAX_PRESETS 13 18752 #define IS_E1_REG(chips) ((chips & DUMP_CHIP_E1) == DUMP_CHIP_E1) 18753 #define IS_E1H_REG(chips) ((chips & DUMP_CHIP_E1H) == DUMP_CHIP_E1H) 18754 #define IS_E2_REG(chips) ((chips & DUMP_CHIP_E2) == DUMP_CHIP_E2) 18755 #define IS_E3A0_REG(chips) ((chips & DUMP_CHIP_E3A0) == DUMP_CHIP_E3A0) 18756 #define IS_E3B0_REG(chips) ((chips & DUMP_CHIP_E3B0) == DUMP_CHIP_E3B0) 18757 18758 #define IS_REG_IN_PRESET(presets, idx) \ 18759 ((presets & (1 << (idx-1))) == (1 << (idx-1))) 18760 18761 18762 static int 18763 bxe_get_preset_regs_len(struct bxe_softc *sc, uint32_t preset) 18764 { 18765 if (CHIP_IS_E1(sc)) 18766 return dump_num_registers[0][preset-1]; 18767 else if (CHIP_IS_E1H(sc)) 18768 return dump_num_registers[1][preset-1]; 18769 else if (CHIP_IS_E2(sc)) 18770 return dump_num_registers[2][preset-1]; 18771 else if (CHIP_IS_E3A0(sc)) 18772 return dump_num_registers[3][preset-1]; 18773 else if (CHIP_IS_E3B0(sc)) 18774 return dump_num_registers[4][preset-1]; 18775 else 18776 return 0; 18777 } 18778 18779 static int 18780 bxe_get_total_regs_len32(struct bxe_softc *sc) 18781 { 18782 uint32_t preset_idx; 18783 int regdump_len32 = 0; 18784 18785 18786 /* Calculate the total preset regs length */ 18787 for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) { 18788 regdump_len32 += bxe_get_preset_regs_len(sc, preset_idx); 18789 } 18790 18791 return regdump_len32; 18792 } 18793 18794 static const uint32_t * 18795 __bxe_get_page_addr_ar(struct bxe_softc *sc) 18796 { 18797 if (CHIP_IS_E2(sc)) 18798 return page_vals_e2; 18799 else if (CHIP_IS_E3(sc)) 18800 return page_vals_e3; 18801 else 18802 return NULL; 18803 } 18804 18805 static uint32_t 18806 __bxe_get_page_reg_num(struct bxe_softc *sc) 18807 { 18808 if (CHIP_IS_E2(sc)) 18809 return PAGE_MODE_VALUES_E2; 18810 else if (CHIP_IS_E3(sc)) 18811 return PAGE_MODE_VALUES_E3; 18812 else 18813 return 0; 18814 } 18815 18816 static const uint32_t * 18817 __bxe_get_page_write_ar(struct bxe_softc *sc) 18818 { 18819 if (CHIP_IS_E2(sc)) 18820 return page_write_regs_e2; 18821 else if (CHIP_IS_E3(sc)) 18822 return page_write_regs_e3; 18823 else 18824 return NULL; 18825 } 18826 18827 static uint32_t 18828 __bxe_get_page_write_num(struct bxe_softc *sc) 18829 { 18830 if (CHIP_IS_E2(sc)) 18831 return PAGE_WRITE_REGS_E2; 18832 else if (CHIP_IS_E3(sc)) 18833 return PAGE_WRITE_REGS_E3; 18834 else 18835 return 0; 18836 } 18837 18838 static const struct reg_addr * 18839 __bxe_get_page_read_ar(struct bxe_softc *sc) 18840 { 18841 if (CHIP_IS_E2(sc)) 18842 return page_read_regs_e2; 18843 else if (CHIP_IS_E3(sc)) 18844 return page_read_regs_e3; 18845 else 18846 return NULL; 18847 } 18848 18849 static uint32_t 18850 __bxe_get_page_read_num(struct bxe_softc *sc) 18851 { 18852 if (CHIP_IS_E2(sc)) 18853 return PAGE_READ_REGS_E2; 18854 else if (CHIP_IS_E3(sc)) 18855 return PAGE_READ_REGS_E3; 18856 else 18857 return 0; 18858 } 18859 18860 static bool 18861 bxe_is_reg_in_chip(struct bxe_softc *sc, const struct reg_addr *reg_info) 18862 { 18863 if (CHIP_IS_E1(sc)) 18864 return IS_E1_REG(reg_info->chips); 18865 else if (CHIP_IS_E1H(sc)) 18866 return IS_E1H_REG(reg_info->chips); 18867 else if (CHIP_IS_E2(sc)) 18868 return IS_E2_REG(reg_info->chips); 18869 else if (CHIP_IS_E3A0(sc)) 18870 return IS_E3A0_REG(reg_info->chips); 18871 else if (CHIP_IS_E3B0(sc)) 18872 return IS_E3B0_REG(reg_info->chips); 18873 else 18874 return 0; 18875 } 18876 18877 static bool 18878 bxe_is_wreg_in_chip(struct bxe_softc *sc, const struct wreg_addr *wreg_info) 18879 { 18880 if (CHIP_IS_E1(sc)) 18881 return IS_E1_REG(wreg_info->chips); 18882 else if (CHIP_IS_E1H(sc)) 18883 return IS_E1H_REG(wreg_info->chips); 18884 else if (CHIP_IS_E2(sc)) 18885 return IS_E2_REG(wreg_info->chips); 18886 else if (CHIP_IS_E3A0(sc)) 18887 return IS_E3A0_REG(wreg_info->chips); 18888 else if (CHIP_IS_E3B0(sc)) 18889 return IS_E3B0_REG(wreg_info->chips); 18890 else 18891 return 0; 18892 } 18893 18894 /** 18895 * bxe_read_pages_regs - read "paged" registers 18896 * 18897 * @bp device handle 18898 * @p output buffer 18899 * 18900 * Reads "paged" memories: memories that may only be read by first writing to a 18901 * specific address ("write address") and then reading from a specific address 18902 * ("read address"). There may be more than one write address per "page" and 18903 * more than one read address per write address. 18904 */ 18905 static void 18906 bxe_read_pages_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset) 18907 { 18908 uint32_t i, j, k, n; 18909 18910 /* addresses of the paged registers */ 18911 const uint32_t *page_addr = __bxe_get_page_addr_ar(sc); 18912 /* number of paged registers */ 18913 int num_pages = __bxe_get_page_reg_num(sc); 18914 /* write addresses */ 18915 const uint32_t *write_addr = __bxe_get_page_write_ar(sc); 18916 /* number of write addresses */ 18917 int write_num = __bxe_get_page_write_num(sc); 18918 /* read addresses info */ 18919 const struct reg_addr *read_addr = __bxe_get_page_read_ar(sc); 18920 /* number of read addresses */ 18921 int read_num = __bxe_get_page_read_num(sc); 18922 uint32_t addr, size; 18923 18924 for (i = 0; i < num_pages; i++) { 18925 for (j = 0; j < write_num; j++) { 18926 REG_WR(sc, write_addr[j], page_addr[i]); 18927 18928 for (k = 0; k < read_num; k++) { 18929 if (IS_REG_IN_PRESET(read_addr[k].presets, preset)) { 18930 size = read_addr[k].size; 18931 for (n = 0; n < size; n++) { 18932 addr = read_addr[k].addr + n*4; 18933 *p++ = REG_RD(sc, addr); 18934 } 18935 } 18936 } 18937 } 18938 } 18939 return; 18940 } 18941 18942 18943 static int 18944 bxe_get_preset_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset) 18945 { 18946 uint32_t i, j, addr; 18947 const struct wreg_addr *wreg_addr_p = NULL; 18948 18949 if (CHIP_IS_E1(sc)) 18950 wreg_addr_p = &wreg_addr_e1; 18951 else if (CHIP_IS_E1H(sc)) 18952 wreg_addr_p = &wreg_addr_e1h; 18953 else if (CHIP_IS_E2(sc)) 18954 wreg_addr_p = &wreg_addr_e2; 18955 else if (CHIP_IS_E3A0(sc)) 18956 wreg_addr_p = &wreg_addr_e3; 18957 else if (CHIP_IS_E3B0(sc)) 18958 wreg_addr_p = &wreg_addr_e3b0; 18959 else 18960 return (-1); 18961 18962 /* Read the idle_chk registers */ 18963 for (i = 0; i < IDLE_REGS_COUNT; i++) { 18964 if (bxe_is_reg_in_chip(sc, &idle_reg_addrs[i]) && 18965 IS_REG_IN_PRESET(idle_reg_addrs[i].presets, preset)) { 18966 for (j = 0; j < idle_reg_addrs[i].size; j++) 18967 *p++ = REG_RD(sc, idle_reg_addrs[i].addr + j*4); 18968 } 18969 } 18970 18971 /* Read the regular registers */ 18972 for (i = 0; i < REGS_COUNT; i++) { 18973 if (bxe_is_reg_in_chip(sc, ®_addrs[i]) && 18974 IS_REG_IN_PRESET(reg_addrs[i].presets, preset)) { 18975 for (j = 0; j < reg_addrs[i].size; j++) 18976 *p++ = REG_RD(sc, reg_addrs[i].addr + j*4); 18977 } 18978 } 18979 18980 /* Read the CAM registers */ 18981 if (bxe_is_wreg_in_chip(sc, wreg_addr_p) && 18982 IS_REG_IN_PRESET(wreg_addr_p->presets, preset)) { 18983 for (i = 0; i < wreg_addr_p->size; i++) { 18984 *p++ = REG_RD(sc, wreg_addr_p->addr + i*4); 18985 18986 /* In case of wreg_addr register, read additional 18987 registers from read_regs array 18988 */ 18989 for (j = 0; j < wreg_addr_p->read_regs_count; j++) { 18990 addr = *(wreg_addr_p->read_regs); 18991 *p++ = REG_RD(sc, addr + j*4); 18992 } 18993 } 18994 } 18995 18996 /* Paged registers are supported in E2 & E3 only */ 18997 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) { 18998 /* Read "paged" registers */ 18999 bxe_read_pages_regs(sc, p, preset); 19000 } 19001 19002 return 0; 19003 } 19004 19005 int 19006 bxe_grc_dump(struct bxe_softc *sc) 19007 { 19008 int rval = 0; 19009 uint32_t preset_idx; 19010 uint8_t *buf; 19011 uint32_t size; 19012 struct dump_header *d_hdr; 19013 uint32_t i; 19014 uint32_t reg_val; 19015 uint32_t reg_addr; 19016 uint32_t cmd_offset; 19017 struct ecore_ilt *ilt = SC_ILT(sc); 19018 struct bxe_fastpath *fp; 19019 struct ilt_client_info *ilt_cli; 19020 int grc_dump_size; 19021 19022 19023 if (sc->grcdump_done || sc->grcdump_started) 19024 return (rval); 19025 19026 sc->grcdump_started = 1; 19027 BLOGI(sc, "Started collecting grcdump\n"); 19028 19029 grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) + 19030 sizeof(struct dump_header); 19031 19032 sc->grc_dump = malloc(grc_dump_size, M_DEVBUF, M_NOWAIT); 19033 19034 if (sc->grc_dump == NULL) { 19035 BLOGW(sc, "Unable to allocate memory for grcdump collection\n"); 19036 return(ENOMEM); 19037 } 19038 19039 19040 19041 /* Disable parity attentions as long as following dump may 19042 * cause false alarms by reading never written registers. We 19043 * will re-enable parity attentions right after the dump. 19044 */ 19045 19046 /* Disable parity on path 0 */ 19047 bxe_pretend_func(sc, 0); 19048 19049 ecore_disable_blocks_parity(sc); 19050 19051 /* Disable parity on path 1 */ 19052 bxe_pretend_func(sc, 1); 19053 ecore_disable_blocks_parity(sc); 19054 19055 /* Return to current function */ 19056 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 19057 19058 buf = sc->grc_dump; 19059 d_hdr = sc->grc_dump; 19060 19061 d_hdr->header_size = (sizeof(struct dump_header) >> 2) - 1; 19062 d_hdr->version = BNX2X_DUMP_VERSION; 19063 d_hdr->preset = DUMP_ALL_PRESETS; 19064 19065 if (CHIP_IS_E1(sc)) { 19066 d_hdr->dump_meta_data = DUMP_CHIP_E1; 19067 } else if (CHIP_IS_E1H(sc)) { 19068 d_hdr->dump_meta_data = DUMP_CHIP_E1H; 19069 } else if (CHIP_IS_E2(sc)) { 19070 d_hdr->dump_meta_data = DUMP_CHIP_E2 | 19071 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0); 19072 } else if (CHIP_IS_E3A0(sc)) { 19073 d_hdr->dump_meta_data = DUMP_CHIP_E3A0 | 19074 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0); 19075 } else if (CHIP_IS_E3B0(sc)) { 19076 d_hdr->dump_meta_data = DUMP_CHIP_E3B0 | 19077 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0); 19078 } 19079 19080 buf += sizeof(struct dump_header); 19081 19082 for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) { 19083 19084 /* Skip presets with IOR */ 19085 if ((preset_idx == 2) || (preset_idx == 5) || (preset_idx == 8) || 19086 (preset_idx == 11)) 19087 continue; 19088 19089 rval = bxe_get_preset_regs(sc, (uint32_t *)buf, preset_idx); 19090 19091 if (rval) 19092 break; 19093 19094 size = bxe_get_preset_regs_len(sc, preset_idx) * (sizeof (uint32_t)); 19095 19096 buf += size; 19097 } 19098 19099 bxe_pretend_func(sc, 0); 19100 ecore_clear_blocks_parity(sc); 19101 ecore_enable_blocks_parity(sc); 19102 19103 bxe_pretend_func(sc, 1); 19104 ecore_clear_blocks_parity(sc); 19105 ecore_enable_blocks_parity(sc); 19106 19107 /* Return to current function */ 19108 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 19109 19110 19111 19112 if(sc->state == BXE_STATE_OPEN) { 19113 if(sc->fw_stats_req != NULL) { 19114 BLOGI(sc, "fw stats start_paddr %#jx end_paddr %#jx vaddr %p size 0x%x\n", 19115 (uintmax_t)sc->fw_stats_req_mapping, 19116 (uintmax_t)sc->fw_stats_data_mapping, 19117 sc->fw_stats_req, (sc->fw_stats_req_size + sc->fw_stats_data_size)); 19118 } 19119 if(sc->def_sb != NULL) { 19120 BLOGI(sc, "def_status_block paddr %p vaddr %p size 0x%zx\n", 19121 (void *)sc->def_sb_dma.paddr, sc->def_sb, 19122 sizeof(struct host_sp_status_block)); 19123 } 19124 if(sc->eq_dma.vaddr != NULL) { 19125 BLOGI(sc, "event_queue paddr %#jx vaddr %p size 0x%x\n", 19126 (uintmax_t)sc->eq_dma.paddr, sc->eq_dma.vaddr, BCM_PAGE_SIZE); 19127 } 19128 if(sc->sp_dma.vaddr != NULL) { 19129 BLOGI(sc, "slow path paddr %#jx vaddr %p size 0x%zx\n", 19130 (uintmax_t)sc->sp_dma.paddr, sc->sp_dma.vaddr, 19131 sizeof(struct bxe_slowpath)); 19132 } 19133 if(sc->spq_dma.vaddr != NULL) { 19134 BLOGI(sc, "slow path queue paddr %#jx vaddr %p size 0x%x\n", 19135 (uintmax_t)sc->spq_dma.paddr, sc->spq_dma.vaddr, BCM_PAGE_SIZE); 19136 } 19137 if(sc->gz_buf_dma.vaddr != NULL) { 19138 BLOGI(sc, "fw_buf paddr %#jx vaddr %p size 0x%x\n", 19139 (uintmax_t)sc->gz_buf_dma.paddr, sc->gz_buf_dma.vaddr, 19140 FW_BUF_SIZE); 19141 } 19142 for (i = 0; i < sc->num_queues; i++) { 19143 fp = &sc->fp[i]; 19144 if(fp->sb_dma.vaddr != NULL && fp->tx_dma.vaddr != NULL && 19145 fp->rx_dma.vaddr != NULL && fp->rcq_dma.vaddr != NULL && 19146 fp->rx_sge_dma.vaddr != NULL) { 19147 19148 BLOGI(sc, "FP status block fp %d paddr %#jx vaddr %p size 0x%zx\n", i, 19149 (uintmax_t)fp->sb_dma.paddr, fp->sb_dma.vaddr, 19150 sizeof(union bxe_host_hc_status_block)); 19151 BLOGI(sc, "TX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i, 19152 (uintmax_t)fp->tx_dma.paddr, fp->tx_dma.vaddr, 19153 (BCM_PAGE_SIZE * TX_BD_NUM_PAGES)); 19154 BLOGI(sc, "RX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i, 19155 (uintmax_t)fp->rx_dma.paddr, fp->rx_dma.vaddr, 19156 (BCM_PAGE_SIZE * RX_BD_NUM_PAGES)); 19157 BLOGI(sc, "RX RCQ CHAIN fp %d paddr %#jx vaddr %p size 0x%zx\n", i, 19158 (uintmax_t)fp->rcq_dma.paddr, fp->rcq_dma.vaddr, 19159 (BCM_PAGE_SIZE * RCQ_NUM_PAGES)); 19160 BLOGI(sc, "RX SGE CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i, 19161 (uintmax_t)fp->rx_sge_dma.paddr, fp->rx_sge_dma.vaddr, 19162 (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES)); 19163 } 19164 } 19165 if(ilt != NULL ) { 19166 ilt_cli = &ilt->clients[1]; 19167 if(ilt->lines != NULL) { 19168 for (i = ilt_cli->start; i <= ilt_cli->end; i++) { 19169 BLOGI(sc, "ECORE_ILT paddr %#jx vaddr %p size 0x%x\n", 19170 (uintmax_t)(((struct bxe_dma *)((&ilt->lines[i])->page))->paddr), 19171 ((struct bxe_dma *)((&ilt->lines[i])->page))->vaddr, BCM_PAGE_SIZE); 19172 } 19173 } 19174 } 19175 19176 19177 cmd_offset = DMAE_REG_CMD_MEM; 19178 for (i = 0; i < 224; i++) { 19179 reg_addr = (cmd_offset +(i * 4)); 19180 reg_val = REG_RD(sc, reg_addr); 19181 BLOGI(sc, "DMAE_REG_CMD_MEM i=%d reg_addr 0x%x reg_val 0x%08x\n",i, 19182 reg_addr, reg_val); 19183 } 19184 } 19185 19186 BLOGI(sc, "Collection of grcdump done\n"); 19187 sc->grcdump_done = 1; 19188 return(rval); 19189 } 19190 19191 static int 19192 bxe_add_cdev(struct bxe_softc *sc) 19193 { 19194 sc->eeprom = malloc(BXE_EEPROM_MAX_DATA_LEN, M_DEVBUF, M_NOWAIT); 19195 19196 if (sc->eeprom == NULL) { 19197 BLOGW(sc, "Unable to alloc for eeprom size buffer\n"); 19198 return (-1); 19199 } 19200 19201 sc->ioctl_dev = make_dev(&bxe_cdevsw, 19202 sc->ifp->if_dunit, 19203 UID_ROOT, 19204 GID_WHEEL, 19205 0600, 19206 "%s", 19207 if_name(sc->ifp)); 19208 19209 if (sc->ioctl_dev == NULL) { 19210 free(sc->eeprom, M_DEVBUF); 19211 sc->eeprom = NULL; 19212 return (-1); 19213 } 19214 19215 sc->ioctl_dev->si_drv1 = sc; 19216 19217 return (0); 19218 } 19219 19220 static void 19221 bxe_del_cdev(struct bxe_softc *sc) 19222 { 19223 if (sc->ioctl_dev != NULL) 19224 destroy_dev(sc->ioctl_dev); 19225 19226 if (sc->eeprom != NULL) { 19227 free(sc->eeprom, M_DEVBUF); 19228 sc->eeprom = NULL; 19229 } 19230 sc->ioctl_dev = NULL; 19231 19232 return; 19233 } 19234 19235 static bool bxe_is_nvram_accessible(struct bxe_softc *sc) 19236 { 19237 19238 if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) == 0) 19239 return FALSE; 19240 19241 return TRUE; 19242 } 19243 19244 19245 static int 19246 bxe_wr_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len) 19247 { 19248 int rval = 0; 19249 19250 if(!bxe_is_nvram_accessible(sc)) { 19251 BLOGW(sc, "Cannot access eeprom when interface is down\n"); 19252 return (-EAGAIN); 19253 } 19254 rval = bxe_nvram_write(sc, offset, (uint8_t *)data, len); 19255 19256 19257 return (rval); 19258 } 19259 19260 static int 19261 bxe_rd_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len) 19262 { 19263 int rval = 0; 19264 19265 if(!bxe_is_nvram_accessible(sc)) { 19266 BLOGW(sc, "Cannot access eeprom when interface is down\n"); 19267 return (-EAGAIN); 19268 } 19269 rval = bxe_nvram_read(sc, offset, (uint8_t *)data, len); 19270 19271 return (rval); 19272 } 19273 19274 static int 19275 bxe_eeprom_rd_wr(struct bxe_softc *sc, bxe_eeprom_t *eeprom) 19276 { 19277 int rval = 0; 19278 19279 switch (eeprom->eeprom_cmd) { 19280 19281 case BXE_EEPROM_CMD_SET_EEPROM: 19282 19283 rval = copyin(eeprom->eeprom_data, sc->eeprom, 19284 eeprom->eeprom_data_len); 19285 19286 if (rval) 19287 break; 19288 19289 rval = bxe_wr_eeprom(sc, sc->eeprom, eeprom->eeprom_offset, 19290 eeprom->eeprom_data_len); 19291 break; 19292 19293 case BXE_EEPROM_CMD_GET_EEPROM: 19294 19295 rval = bxe_rd_eeprom(sc, sc->eeprom, eeprom->eeprom_offset, 19296 eeprom->eeprom_data_len); 19297 19298 if (rval) { 19299 break; 19300 } 19301 19302 rval = copyout(sc->eeprom, eeprom->eeprom_data, 19303 eeprom->eeprom_data_len); 19304 break; 19305 19306 default: 19307 rval = EINVAL; 19308 break; 19309 } 19310 19311 if (rval) { 19312 BLOGW(sc, "ioctl cmd %d failed rval %d\n", eeprom->eeprom_cmd, rval); 19313 } 19314 19315 return (rval); 19316 } 19317 19318 static int 19319 bxe_get_settings(struct bxe_softc *sc, bxe_dev_setting_t *dev_p) 19320 { 19321 uint32_t ext_phy_config; 19322 int port = SC_PORT(sc); 19323 int cfg_idx = bxe_get_link_cfg_idx(sc); 19324 19325 dev_p->supported = sc->port.supported[cfg_idx] | 19326 (sc->port.supported[cfg_idx ^ 1] & 19327 (ELINK_SUPPORTED_TP | ELINK_SUPPORTED_FIBRE)); 19328 dev_p->advertising = sc->port.advertising[cfg_idx]; 19329 if(sc->link_params.phy[bxe_get_cur_phy_idx(sc)].media_type == 19330 ELINK_ETH_PHY_SFP_1G_FIBER) { 19331 dev_p->supported = ~(ELINK_SUPPORTED_10000baseT_Full); 19332 dev_p->advertising &= ~(ADVERTISED_10000baseT_Full); 19333 } 19334 if ((sc->state == BXE_STATE_OPEN) && sc->link_vars.link_up && 19335 !(sc->flags & BXE_MF_FUNC_DIS)) { 19336 dev_p->duplex = sc->link_vars.duplex; 19337 if (IS_MF(sc) && !BXE_NOMCP(sc)) 19338 dev_p->speed = bxe_get_mf_speed(sc); 19339 else 19340 dev_p->speed = sc->link_vars.line_speed; 19341 } else { 19342 dev_p->duplex = DUPLEX_UNKNOWN; 19343 dev_p->speed = SPEED_UNKNOWN; 19344 } 19345 19346 dev_p->port = bxe_media_detect(sc); 19347 19348 ext_phy_config = SHMEM_RD(sc, 19349 dev_info.port_hw_config[port].external_phy_config); 19350 if((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) == 19351 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT) 19352 dev_p->phy_address = sc->port.phy_addr; 19353 else if(((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) != 19354 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) && 19355 ((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) != 19356 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN)) 19357 dev_p->phy_address = ELINK_XGXS_EXT_PHY_ADDR(ext_phy_config); 19358 else 19359 dev_p->phy_address = 0; 19360 19361 if(sc->link_params.req_line_speed[cfg_idx] == ELINK_SPEED_AUTO_NEG) 19362 dev_p->autoneg = AUTONEG_ENABLE; 19363 else 19364 dev_p->autoneg = AUTONEG_DISABLE; 19365 19366 19367 return 0; 19368 } 19369 19370 static int 19371 bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, 19372 struct thread *td) 19373 { 19374 struct bxe_softc *sc; 19375 int rval = 0; 19376 device_t pci_dev; 19377 bxe_grcdump_t *dump = NULL; 19378 int grc_dump_size; 19379 bxe_drvinfo_t *drv_infop = NULL; 19380 bxe_dev_setting_t *dev_p; 19381 bxe_dev_setting_t dev_set; 19382 bxe_get_regs_t *reg_p; 19383 bxe_reg_rdw_t *reg_rdw_p; 19384 bxe_pcicfg_rdw_t *cfg_rdw_p; 19385 bxe_perm_mac_addr_t *mac_addr_p; 19386 19387 19388 if ((sc = (struct bxe_softc *)dev->si_drv1) == NULL) 19389 return ENXIO; 19390 19391 pci_dev= sc->dev; 19392 19393 dump = (bxe_grcdump_t *)data; 19394 19395 switch(cmd) { 19396 19397 case BXE_GRC_DUMP_SIZE: 19398 dump->pci_func = sc->pcie_func; 19399 dump->grcdump_size = 19400 (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) + 19401 sizeof(struct dump_header); 19402 break; 19403 19404 case BXE_GRC_DUMP: 19405 19406 grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) + 19407 sizeof(struct dump_header); 19408 if ((!sc->trigger_grcdump) || (dump->grcdump == NULL) || 19409 (dump->grcdump_size < grc_dump_size)) { 19410 rval = EINVAL; 19411 break; 19412 } 19413 19414 if((sc->trigger_grcdump) && (!sc->grcdump_done) && 19415 (!sc->grcdump_started)) { 19416 rval = bxe_grc_dump(sc); 19417 } 19418 19419 if((!rval) && (sc->grcdump_done) && (sc->grcdump_started) && 19420 (sc->grc_dump != NULL)) { 19421 dump->grcdump_dwords = grc_dump_size >> 2; 19422 rval = copyout(sc->grc_dump, dump->grcdump, grc_dump_size); 19423 free(sc->grc_dump, M_DEVBUF); 19424 sc->grc_dump = NULL; 19425 sc->grcdump_started = 0; 19426 sc->grcdump_done = 0; 19427 } 19428 19429 break; 19430 19431 case BXE_DRV_INFO: 19432 drv_infop = (bxe_drvinfo_t *)data; 19433 snprintf(drv_infop->drv_name, BXE_DRV_NAME_LENGTH, "%s", "bxe"); 19434 snprintf(drv_infop->drv_version, BXE_DRV_VERSION_LENGTH, "v:%s", 19435 BXE_DRIVER_VERSION); 19436 snprintf(drv_infop->mfw_version, BXE_MFW_VERSION_LENGTH, "%s", 19437 sc->devinfo.bc_ver_str); 19438 snprintf(drv_infop->stormfw_version, BXE_STORMFW_VERSION_LENGTH, 19439 "%s", sc->fw_ver_str); 19440 drv_infop->eeprom_dump_len = sc->devinfo.flash_size; 19441 drv_infop->reg_dump_len = 19442 (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) 19443 + sizeof(struct dump_header); 19444 snprintf(drv_infop->bus_info, BXE_BUS_INFO_LENGTH, "%d:%d:%d", 19445 sc->pcie_bus, sc->pcie_device, sc->pcie_func); 19446 break; 19447 19448 case BXE_DEV_SETTING: 19449 dev_p = (bxe_dev_setting_t *)data; 19450 bxe_get_settings(sc, &dev_set); 19451 dev_p->supported = dev_set.supported; 19452 dev_p->advertising = dev_set.advertising; 19453 dev_p->speed = dev_set.speed; 19454 dev_p->duplex = dev_set.duplex; 19455 dev_p->port = dev_set.port; 19456 dev_p->phy_address = dev_set.phy_address; 19457 dev_p->autoneg = dev_set.autoneg; 19458 19459 break; 19460 19461 case BXE_GET_REGS: 19462 19463 reg_p = (bxe_get_regs_t *)data; 19464 grc_dump_size = reg_p->reg_buf_len; 19465 19466 if((!sc->grcdump_done) && (!sc->grcdump_started)) { 19467 bxe_grc_dump(sc); 19468 } 19469 if((sc->grcdump_done) && (sc->grcdump_started) && 19470 (sc->grc_dump != NULL)) { 19471 rval = copyout(sc->grc_dump, reg_p->reg_buf, grc_dump_size); 19472 free(sc->grc_dump, M_DEVBUF); 19473 sc->grc_dump = NULL; 19474 sc->grcdump_started = 0; 19475 sc->grcdump_done = 0; 19476 } 19477 19478 break; 19479 19480 case BXE_RDW_REG: 19481 reg_rdw_p = (bxe_reg_rdw_t *)data; 19482 if((reg_rdw_p->reg_cmd == BXE_READ_REG_CMD) && 19483 (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT)) 19484 reg_rdw_p->reg_val = REG_RD(sc, reg_rdw_p->reg_id); 19485 19486 if((reg_rdw_p->reg_cmd == BXE_WRITE_REG_CMD) && 19487 (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT)) 19488 REG_WR(sc, reg_rdw_p->reg_id, reg_rdw_p->reg_val); 19489 19490 break; 19491 19492 case BXE_RDW_PCICFG: 19493 cfg_rdw_p = (bxe_pcicfg_rdw_t *)data; 19494 if(cfg_rdw_p->cfg_cmd == BXE_READ_PCICFG) { 19495 19496 cfg_rdw_p->cfg_val = pci_read_config(sc->dev, cfg_rdw_p->cfg_id, 19497 cfg_rdw_p->cfg_width); 19498 19499 } else if(cfg_rdw_p->cfg_cmd == BXE_WRITE_PCICFG) { 19500 pci_write_config(sc->dev, cfg_rdw_p->cfg_id, cfg_rdw_p->cfg_val, 19501 cfg_rdw_p->cfg_width); 19502 } else { 19503 BLOGW(sc, "BXE_RDW_PCICFG ioctl wrong cmd passed\n"); 19504 } 19505 break; 19506 19507 case BXE_MAC_ADDR: 19508 mac_addr_p = (bxe_perm_mac_addr_t *)data; 19509 snprintf(mac_addr_p->mac_addr_str, sizeof(sc->mac_addr_str), "%s", 19510 sc->mac_addr_str); 19511 break; 19512 19513 case BXE_EEPROM: 19514 rval = bxe_eeprom_rd_wr(sc, (bxe_eeprom_t *)data); 19515 break; 19516 19517 19518 default: 19519 break; 19520 } 19521 19522 return (rval); 19523 } 19524 19525 #ifdef DEBUGNET 19526 static void 19527 bxe_debugnet_init(struct ifnet *ifp, int *nrxr, int *ncl, int *clsize) 19528 { 19529 struct bxe_softc *sc; 19530 19531 sc = if_getsoftc(ifp); 19532 BXE_CORE_LOCK(sc); 19533 *nrxr = sc->num_queues; 19534 *ncl = DEBUGNET_MAX_IN_FLIGHT; 19535 *clsize = sc->fp[0].mbuf_alloc_size; 19536 BXE_CORE_UNLOCK(sc); 19537 } 19538 19539 static void 19540 bxe_debugnet_event(struct ifnet *ifp __unused, enum debugnet_ev event __unused) 19541 { 19542 } 19543 19544 static int 19545 bxe_debugnet_transmit(struct ifnet *ifp, struct mbuf *m) 19546 { 19547 struct bxe_softc *sc; 19548 int error; 19549 19550 sc = if_getsoftc(ifp); 19551 if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 19552 IFF_DRV_RUNNING || !sc->link_vars.link_up) 19553 return (ENOENT); 19554 19555 error = bxe_tx_encap(&sc->fp[0], &m); 19556 if (error != 0 && m != NULL) 19557 m_freem(m); 19558 return (error); 19559 } 19560 19561 static int 19562 bxe_debugnet_poll(struct ifnet *ifp, int count) 19563 { 19564 struct bxe_softc *sc; 19565 int i; 19566 19567 sc = if_getsoftc(ifp); 19568 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 || 19569 !sc->link_vars.link_up) 19570 return (ENOENT); 19571 19572 for (i = 0; i < sc->num_queues; i++) 19573 (void)bxe_rxeof(sc, &sc->fp[i]); 19574 (void)bxe_txeof(sc, &sc->fp[0]); 19575 return (0); 19576 } 19577 #endif /* DEBUGNET */ 19578