1 /*- 2 * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' 15 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS 18 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 19 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 20 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 21 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 22 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 23 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 24 * THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #define BXE_DRIVER_VERSION "1.78.81" 31 32 #include "bxe.h" 33 #include "ecore_sp.h" 34 #include "ecore_init.h" 35 #include "ecore_init_ops.h" 36 37 #include "57710_int_offsets.h" 38 #include "57711_int_offsets.h" 39 #include "57712_int_offsets.h" 40 41 /* 42 * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these 43 * explicitly here for older kernels that don't include this changeset. 44 */ 45 #ifndef CTLTYPE_U64 46 #define CTLTYPE_U64 CTLTYPE_QUAD 47 #define sysctl_handle_64 sysctl_handle_quad 48 #endif 49 50 /* 51 * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these 52 * here as zero(0) for older kernels that don't include this changeset 53 * thereby masking the functionality. 54 */ 55 #ifndef CSUM_TCP_IPV6 56 #define CSUM_TCP_IPV6 0 57 #define CSUM_UDP_IPV6 0 58 #endif 59 60 /* 61 * pci_find_cap was added in r219865. Re-define this at pci_find_extcap 62 * for older kernels that don't include this changeset. 63 */ 64 #if __FreeBSD_version < 900035 65 #define pci_find_cap pci_find_extcap 66 #endif 67 68 #define BXE_DEF_SB_ATT_IDX 0x0001 69 #define BXE_DEF_SB_IDX 0x0002 70 71 /* 72 * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per 73 * function HW initialization. 74 */ 75 #define FLR_WAIT_USEC 10000 /* 10 msecs */ 76 #define FLR_WAIT_INTERVAL 50 /* usecs */ 77 #define FLR_POLL_CNT (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */ 78 79 struct pbf_pN_buf_regs { 80 int pN; 81 uint32_t init_crd; 82 uint32_t crd; 83 uint32_t crd_freed; 84 }; 85 86 struct pbf_pN_cmd_regs { 87 int pN; 88 uint32_t lines_occup; 89 uint32_t lines_freed; 90 }; 91 92 /* 93 * PCI Device ID Table used by bxe_probe(). 94 */ 95 #define BXE_DEVDESC_MAX 64 96 static struct bxe_device_type bxe_devs[] = { 97 { 98 BRCM_VENDORID, 99 CHIP_NUM_57710, 100 PCI_ANY_ID, PCI_ANY_ID, 101 "QLogic NetXtreme II BCM57710 10GbE" 102 }, 103 { 104 BRCM_VENDORID, 105 CHIP_NUM_57711, 106 PCI_ANY_ID, PCI_ANY_ID, 107 "QLogic NetXtreme II BCM57711 10GbE" 108 }, 109 { 110 BRCM_VENDORID, 111 CHIP_NUM_57711E, 112 PCI_ANY_ID, PCI_ANY_ID, 113 "QLogic NetXtreme II BCM57711E 10GbE" 114 }, 115 { 116 BRCM_VENDORID, 117 CHIP_NUM_57712, 118 PCI_ANY_ID, PCI_ANY_ID, 119 "QLogic NetXtreme II BCM57712 10GbE" 120 }, 121 { 122 BRCM_VENDORID, 123 CHIP_NUM_57712_MF, 124 PCI_ANY_ID, PCI_ANY_ID, 125 "QLogic NetXtreme II BCM57712 MF 10GbE" 126 }, 127 { 128 BRCM_VENDORID, 129 CHIP_NUM_57800, 130 PCI_ANY_ID, PCI_ANY_ID, 131 "QLogic NetXtreme II BCM57800 10GbE" 132 }, 133 { 134 BRCM_VENDORID, 135 CHIP_NUM_57800_MF, 136 PCI_ANY_ID, PCI_ANY_ID, 137 "QLogic NetXtreme II BCM57800 MF 10GbE" 138 }, 139 { 140 BRCM_VENDORID, 141 CHIP_NUM_57810, 142 PCI_ANY_ID, PCI_ANY_ID, 143 "QLogic NetXtreme II BCM57810 10GbE" 144 }, 145 { 146 BRCM_VENDORID, 147 CHIP_NUM_57810_MF, 148 PCI_ANY_ID, PCI_ANY_ID, 149 "QLogic NetXtreme II BCM57810 MF 10GbE" 150 }, 151 { 152 BRCM_VENDORID, 153 CHIP_NUM_57811, 154 PCI_ANY_ID, PCI_ANY_ID, 155 "QLogic NetXtreme II BCM57811 10GbE" 156 }, 157 { 158 BRCM_VENDORID, 159 CHIP_NUM_57811_MF, 160 PCI_ANY_ID, PCI_ANY_ID, 161 "QLogic NetXtreme II BCM57811 MF 10GbE" 162 }, 163 { 164 BRCM_VENDORID, 165 CHIP_NUM_57840_4_10, 166 PCI_ANY_ID, PCI_ANY_ID, 167 "QLogic NetXtreme II BCM57840 4x10GbE" 168 }, 169 { 170 BRCM_VENDORID, 171 CHIP_NUM_57840_MF, 172 PCI_ANY_ID, PCI_ANY_ID, 173 "QLogic NetXtreme II BCM57840 MF 10GbE" 174 }, 175 { 176 0, 0, 0, 0, NULL 177 } 178 }; 179 180 MALLOC_DECLARE(M_BXE_ILT); 181 MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer"); 182 183 /* 184 * FreeBSD device entry points. 185 */ 186 static int bxe_probe(device_t); 187 static int bxe_attach(device_t); 188 static int bxe_detach(device_t); 189 static int bxe_shutdown(device_t); 190 191 /* 192 * FreeBSD KLD module/device interface event handler method. 193 */ 194 static device_method_t bxe_methods[] = { 195 /* Device interface (device_if.h) */ 196 DEVMETHOD(device_probe, bxe_probe), 197 DEVMETHOD(device_attach, bxe_attach), 198 DEVMETHOD(device_detach, bxe_detach), 199 DEVMETHOD(device_shutdown, bxe_shutdown), 200 /* Bus interface (bus_if.h) */ 201 DEVMETHOD(bus_print_child, bus_generic_print_child), 202 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 203 KOBJMETHOD_END 204 }; 205 206 /* 207 * FreeBSD KLD Module data declaration 208 */ 209 static driver_t bxe_driver = { 210 "bxe", /* module name */ 211 bxe_methods, /* event handler */ 212 sizeof(struct bxe_softc) /* extra data */ 213 }; 214 215 /* 216 * FreeBSD dev class is needed to manage dev instances and 217 * to associate with a bus type 218 */ 219 static devclass_t bxe_devclass; 220 221 MODULE_DEPEND(bxe, pci, 1, 1, 1); 222 MODULE_DEPEND(bxe, ether, 1, 1, 1); 223 DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0); 224 225 /* resources needed for unloading a previously loaded device */ 226 227 #define BXE_PREV_WAIT_NEEDED 1 228 struct mtx bxe_prev_mtx; 229 MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF); 230 struct bxe_prev_list_node { 231 LIST_ENTRY(bxe_prev_list_node) node; 232 uint8_t bus; 233 uint8_t slot; 234 uint8_t path; 235 uint8_t aer; /* XXX automatic error recovery */ 236 uint8_t undi; 237 }; 238 static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list); 239 240 static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */ 241 242 /* Tunable device values... */ 243 244 SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters"); 245 246 /* Debug */ 247 unsigned long bxe_debug = 0; 248 SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, CTLFLAG_RDTUN, 249 &bxe_debug, 0, "Debug logging mode"); 250 251 /* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */ 252 static int bxe_interrupt_mode = INTR_MODE_MSIX; 253 SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN, 254 &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode"); 255 256 /* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */ 257 static int bxe_queue_count = 4; 258 SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN, 259 &bxe_queue_count, 0, "Multi-Queue queue count"); 260 261 /* max number of buffers per queue (default RX_BD_USABLE) */ 262 static int bxe_max_rx_bufs = 0; 263 SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN, 264 &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue"); 265 266 /* Host interrupt coalescing RX tick timer (usecs) */ 267 static int bxe_hc_rx_ticks = 25; 268 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN, 269 &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks"); 270 271 /* Host interrupt coalescing TX tick timer (usecs) */ 272 static int bxe_hc_tx_ticks = 50; 273 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN, 274 &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks"); 275 276 /* Maximum number of Rx packets to process at a time */ 277 static int bxe_rx_budget = 0xffffffff; 278 SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN, 279 &bxe_rx_budget, 0, "Rx processing budget"); 280 281 /* Maximum LRO aggregation size */ 282 static int bxe_max_aggregation_size = 0; 283 SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN, 284 &bxe_max_aggregation_size, 0, "max aggregation size"); 285 286 /* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */ 287 static int bxe_mrrs = -1; 288 SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN, 289 &bxe_mrrs, 0, "PCIe maximum read request size"); 290 291 /* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */ 292 static int bxe_autogreeen = 0; 293 SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN, 294 &bxe_autogreeen, 0, "AutoGrEEEn support"); 295 296 /* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */ 297 static int bxe_udp_rss = 0; 298 SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN, 299 &bxe_udp_rss, 0, "UDP RSS support"); 300 301 302 #define STAT_NAME_LEN 32 /* no stat names below can be longer than this */ 303 304 #define STATS_OFFSET32(stat_name) \ 305 (offsetof(struct bxe_eth_stats, stat_name) / 4) 306 307 #define Q_STATS_OFFSET32(stat_name) \ 308 (offsetof(struct bxe_eth_q_stats, stat_name) / 4) 309 310 static const struct { 311 uint32_t offset; 312 uint32_t size; 313 uint32_t flags; 314 #define STATS_FLAGS_PORT 1 315 #define STATS_FLAGS_FUNC 2 /* MF only cares about function stats */ 316 #define STATS_FLAGS_BOTH (STATS_FLAGS_FUNC | STATS_FLAGS_PORT) 317 char string[STAT_NAME_LEN]; 318 } bxe_eth_stats_arr[] = { 319 { STATS_OFFSET32(total_bytes_received_hi), 320 8, STATS_FLAGS_BOTH, "rx_bytes" }, 321 { STATS_OFFSET32(error_bytes_received_hi), 322 8, STATS_FLAGS_BOTH, "rx_error_bytes" }, 323 { STATS_OFFSET32(total_unicast_packets_received_hi), 324 8, STATS_FLAGS_BOTH, "rx_ucast_packets" }, 325 { STATS_OFFSET32(total_multicast_packets_received_hi), 326 8, STATS_FLAGS_BOTH, "rx_mcast_packets" }, 327 { STATS_OFFSET32(total_broadcast_packets_received_hi), 328 8, STATS_FLAGS_BOTH, "rx_bcast_packets" }, 329 { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi), 330 8, STATS_FLAGS_PORT, "rx_crc_errors" }, 331 { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi), 332 8, STATS_FLAGS_PORT, "rx_align_errors" }, 333 { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi), 334 8, STATS_FLAGS_PORT, "rx_undersize_packets" }, 335 { STATS_OFFSET32(etherstatsoverrsizepkts_hi), 336 8, STATS_FLAGS_PORT, "rx_oversize_packets" }, 337 { STATS_OFFSET32(rx_stat_etherstatsfragments_hi), 338 8, STATS_FLAGS_PORT, "rx_fragments" }, 339 { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi), 340 8, STATS_FLAGS_PORT, "rx_jabbers" }, 341 { STATS_OFFSET32(no_buff_discard_hi), 342 8, STATS_FLAGS_BOTH, "rx_discards" }, 343 { STATS_OFFSET32(mac_filter_discard), 344 4, STATS_FLAGS_PORT, "rx_filtered_packets" }, 345 { STATS_OFFSET32(mf_tag_discard), 346 4, STATS_FLAGS_PORT, "rx_mf_tag_discard" }, 347 { STATS_OFFSET32(pfc_frames_received_hi), 348 8, STATS_FLAGS_PORT, "pfc_frames_received" }, 349 { STATS_OFFSET32(pfc_frames_sent_hi), 350 8, STATS_FLAGS_PORT, "pfc_frames_sent" }, 351 { STATS_OFFSET32(brb_drop_hi), 352 8, STATS_FLAGS_PORT, "rx_brb_discard" }, 353 { STATS_OFFSET32(brb_truncate_hi), 354 8, STATS_FLAGS_PORT, "rx_brb_truncate" }, 355 { STATS_OFFSET32(pause_frames_received_hi), 356 8, STATS_FLAGS_PORT, "rx_pause_frames" }, 357 { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi), 358 8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" }, 359 { STATS_OFFSET32(nig_timer_max), 360 4, STATS_FLAGS_PORT, "rx_constant_pause_events" }, 361 { STATS_OFFSET32(total_bytes_transmitted_hi), 362 8, STATS_FLAGS_BOTH, "tx_bytes" }, 363 { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi), 364 8, STATS_FLAGS_PORT, "tx_error_bytes" }, 365 { STATS_OFFSET32(total_unicast_packets_transmitted_hi), 366 8, STATS_FLAGS_BOTH, "tx_ucast_packets" }, 367 { STATS_OFFSET32(total_multicast_packets_transmitted_hi), 368 8, STATS_FLAGS_BOTH, "tx_mcast_packets" }, 369 { STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 370 8, STATS_FLAGS_BOTH, "tx_bcast_packets" }, 371 { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi), 372 8, STATS_FLAGS_PORT, "tx_mac_errors" }, 373 { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi), 374 8, STATS_FLAGS_PORT, "tx_carrier_errors" }, 375 { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi), 376 8, STATS_FLAGS_PORT, "tx_single_collisions" }, 377 { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi), 378 8, STATS_FLAGS_PORT, "tx_multi_collisions" }, 379 { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi), 380 8, STATS_FLAGS_PORT, "tx_deferred" }, 381 { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi), 382 8, STATS_FLAGS_PORT, "tx_excess_collisions" }, 383 { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi), 384 8, STATS_FLAGS_PORT, "tx_late_collisions" }, 385 { STATS_OFFSET32(tx_stat_etherstatscollisions_hi), 386 8, STATS_FLAGS_PORT, "tx_total_collisions" }, 387 { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi), 388 8, STATS_FLAGS_PORT, "tx_64_byte_packets" }, 389 { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi), 390 8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" }, 391 { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi), 392 8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" }, 393 { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi), 394 8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" }, 395 { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi), 396 8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" }, 397 { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi), 398 8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" }, 399 { STATS_OFFSET32(etherstatspktsover1522octets_hi), 400 8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" }, 401 { STATS_OFFSET32(pause_frames_sent_hi), 402 8, STATS_FLAGS_PORT, "tx_pause_frames" }, 403 { STATS_OFFSET32(total_tpa_aggregations_hi), 404 8, STATS_FLAGS_FUNC, "tpa_aggregations" }, 405 { STATS_OFFSET32(total_tpa_aggregated_frames_hi), 406 8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"}, 407 { STATS_OFFSET32(total_tpa_bytes_hi), 408 8, STATS_FLAGS_FUNC, "tpa_bytes"}, 409 { STATS_OFFSET32(eee_tx_lpi), 410 4, STATS_FLAGS_PORT, "eee_tx_lpi"}, 411 { STATS_OFFSET32(rx_calls), 412 4, STATS_FLAGS_FUNC, "rx_calls"}, 413 { STATS_OFFSET32(rx_pkts), 414 4, STATS_FLAGS_FUNC, "rx_pkts"}, 415 { STATS_OFFSET32(rx_tpa_pkts), 416 4, STATS_FLAGS_FUNC, "rx_tpa_pkts"}, 417 { STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts), 418 4, STATS_FLAGS_FUNC, "rx_erroneous_jumbo_sge_pkts"}, 419 { STATS_OFFSET32(rx_bxe_service_rxsgl), 420 4, STATS_FLAGS_FUNC, "rx_bxe_service_rxsgl"}, 421 { STATS_OFFSET32(rx_jumbo_sge_pkts), 422 4, STATS_FLAGS_FUNC, "rx_jumbo_sge_pkts"}, 423 { STATS_OFFSET32(rx_soft_errors), 424 4, STATS_FLAGS_FUNC, "rx_soft_errors"}, 425 { STATS_OFFSET32(rx_hw_csum_errors), 426 4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"}, 427 { STATS_OFFSET32(rx_ofld_frames_csum_ip), 428 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"}, 429 { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 430 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"}, 431 { STATS_OFFSET32(rx_budget_reached), 432 4, STATS_FLAGS_FUNC, "rx_budget_reached"}, 433 { STATS_OFFSET32(tx_pkts), 434 4, STATS_FLAGS_FUNC, "tx_pkts"}, 435 { STATS_OFFSET32(tx_soft_errors), 436 4, STATS_FLAGS_FUNC, "tx_soft_errors"}, 437 { STATS_OFFSET32(tx_ofld_frames_csum_ip), 438 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"}, 439 { STATS_OFFSET32(tx_ofld_frames_csum_tcp), 440 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"}, 441 { STATS_OFFSET32(tx_ofld_frames_csum_udp), 442 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"}, 443 { STATS_OFFSET32(tx_ofld_frames_lso), 444 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"}, 445 { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 446 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"}, 447 { STATS_OFFSET32(tx_encap_failures), 448 4, STATS_FLAGS_FUNC, "tx_encap_failures"}, 449 { STATS_OFFSET32(tx_hw_queue_full), 450 4, STATS_FLAGS_FUNC, "tx_hw_queue_full"}, 451 { STATS_OFFSET32(tx_hw_max_queue_depth), 452 4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"}, 453 { STATS_OFFSET32(tx_dma_mapping_failure), 454 4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"}, 455 { STATS_OFFSET32(tx_max_drbr_queue_depth), 456 4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"}, 457 { STATS_OFFSET32(tx_window_violation_std), 458 4, STATS_FLAGS_FUNC, "tx_window_violation_std"}, 459 { STATS_OFFSET32(tx_window_violation_tso), 460 4, STATS_FLAGS_FUNC, "tx_window_violation_tso"}, 461 { STATS_OFFSET32(tx_chain_lost_mbuf), 462 4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"}, 463 { STATS_OFFSET32(tx_frames_deferred), 464 4, STATS_FLAGS_FUNC, "tx_frames_deferred"}, 465 { STATS_OFFSET32(tx_queue_xoff), 466 4, STATS_FLAGS_FUNC, "tx_queue_xoff"}, 467 { STATS_OFFSET32(mbuf_defrag_attempts), 468 4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"}, 469 { STATS_OFFSET32(mbuf_defrag_failures), 470 4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"}, 471 { STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 472 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"}, 473 { STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 474 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"}, 475 { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 476 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"}, 477 { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 478 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"}, 479 { STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 480 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"}, 481 { STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 482 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"}, 483 { STATS_OFFSET32(mbuf_alloc_tx), 484 4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"}, 485 { STATS_OFFSET32(mbuf_alloc_rx), 486 4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"}, 487 { STATS_OFFSET32(mbuf_alloc_sge), 488 4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"}, 489 { STATS_OFFSET32(mbuf_alloc_tpa), 490 4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"}, 491 { STATS_OFFSET32(tx_queue_full_return), 492 4, STATS_FLAGS_FUNC, "tx_queue_full_return"} 493 }; 494 495 static const struct { 496 uint32_t offset; 497 uint32_t size; 498 char string[STAT_NAME_LEN]; 499 } bxe_eth_q_stats_arr[] = { 500 { Q_STATS_OFFSET32(total_bytes_received_hi), 501 8, "rx_bytes" }, 502 { Q_STATS_OFFSET32(total_unicast_packets_received_hi), 503 8, "rx_ucast_packets" }, 504 { Q_STATS_OFFSET32(total_multicast_packets_received_hi), 505 8, "rx_mcast_packets" }, 506 { Q_STATS_OFFSET32(total_broadcast_packets_received_hi), 507 8, "rx_bcast_packets" }, 508 { Q_STATS_OFFSET32(no_buff_discard_hi), 509 8, "rx_discards" }, 510 { Q_STATS_OFFSET32(total_bytes_transmitted_hi), 511 8, "tx_bytes" }, 512 { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi), 513 8, "tx_ucast_packets" }, 514 { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi), 515 8, "tx_mcast_packets" }, 516 { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 517 8, "tx_bcast_packets" }, 518 { Q_STATS_OFFSET32(total_tpa_aggregations_hi), 519 8, "tpa_aggregations" }, 520 { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi), 521 8, "tpa_aggregated_frames"}, 522 { Q_STATS_OFFSET32(total_tpa_bytes_hi), 523 8, "tpa_bytes"}, 524 { Q_STATS_OFFSET32(rx_calls), 525 4, "rx_calls"}, 526 { Q_STATS_OFFSET32(rx_pkts), 527 4, "rx_pkts"}, 528 { Q_STATS_OFFSET32(rx_tpa_pkts), 529 4, "rx_tpa_pkts"}, 530 { Q_STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts), 531 4, "rx_erroneous_jumbo_sge_pkts"}, 532 { Q_STATS_OFFSET32(rx_bxe_service_rxsgl), 533 4, "rx_bxe_service_rxsgl"}, 534 { Q_STATS_OFFSET32(rx_jumbo_sge_pkts), 535 4, "rx_jumbo_sge_pkts"}, 536 { Q_STATS_OFFSET32(rx_soft_errors), 537 4, "rx_soft_errors"}, 538 { Q_STATS_OFFSET32(rx_hw_csum_errors), 539 4, "rx_hw_csum_errors"}, 540 { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip), 541 4, "rx_ofld_frames_csum_ip"}, 542 { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 543 4, "rx_ofld_frames_csum_tcp_udp"}, 544 { Q_STATS_OFFSET32(rx_budget_reached), 545 4, "rx_budget_reached"}, 546 { Q_STATS_OFFSET32(tx_pkts), 547 4, "tx_pkts"}, 548 { Q_STATS_OFFSET32(tx_soft_errors), 549 4, "tx_soft_errors"}, 550 { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip), 551 4, "tx_ofld_frames_csum_ip"}, 552 { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp), 553 4, "tx_ofld_frames_csum_tcp"}, 554 { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp), 555 4, "tx_ofld_frames_csum_udp"}, 556 { Q_STATS_OFFSET32(tx_ofld_frames_lso), 557 4, "tx_ofld_frames_lso"}, 558 { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 559 4, "tx_ofld_frames_lso_hdr_splits"}, 560 { Q_STATS_OFFSET32(tx_encap_failures), 561 4, "tx_encap_failures"}, 562 { Q_STATS_OFFSET32(tx_hw_queue_full), 563 4, "tx_hw_queue_full"}, 564 { Q_STATS_OFFSET32(tx_hw_max_queue_depth), 565 4, "tx_hw_max_queue_depth"}, 566 { Q_STATS_OFFSET32(tx_dma_mapping_failure), 567 4, "tx_dma_mapping_failure"}, 568 { Q_STATS_OFFSET32(tx_max_drbr_queue_depth), 569 4, "tx_max_drbr_queue_depth"}, 570 { Q_STATS_OFFSET32(tx_window_violation_std), 571 4, "tx_window_violation_std"}, 572 { Q_STATS_OFFSET32(tx_window_violation_tso), 573 4, "tx_window_violation_tso"}, 574 { Q_STATS_OFFSET32(tx_chain_lost_mbuf), 575 4, "tx_chain_lost_mbuf"}, 576 { Q_STATS_OFFSET32(tx_frames_deferred), 577 4, "tx_frames_deferred"}, 578 { Q_STATS_OFFSET32(tx_queue_xoff), 579 4, "tx_queue_xoff"}, 580 { Q_STATS_OFFSET32(mbuf_defrag_attempts), 581 4, "mbuf_defrag_attempts"}, 582 { Q_STATS_OFFSET32(mbuf_defrag_failures), 583 4, "mbuf_defrag_failures"}, 584 { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 585 4, "mbuf_rx_bd_alloc_failed"}, 586 { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 587 4, "mbuf_rx_bd_mapping_failed"}, 588 { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 589 4, "mbuf_rx_tpa_alloc_failed"}, 590 { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 591 4, "mbuf_rx_tpa_mapping_failed"}, 592 { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 593 4, "mbuf_rx_sge_alloc_failed"}, 594 { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 595 4, "mbuf_rx_sge_mapping_failed"}, 596 { Q_STATS_OFFSET32(mbuf_alloc_tx), 597 4, "mbuf_alloc_tx"}, 598 { Q_STATS_OFFSET32(mbuf_alloc_rx), 599 4, "mbuf_alloc_rx"}, 600 { Q_STATS_OFFSET32(mbuf_alloc_sge), 601 4, "mbuf_alloc_sge"}, 602 { Q_STATS_OFFSET32(mbuf_alloc_tpa), 603 4, "mbuf_alloc_tpa"}, 604 { Q_STATS_OFFSET32(tx_queue_full_return), 605 4, "tx_queue_full_return"} 606 }; 607 608 #define BXE_NUM_ETH_STATS ARRAY_SIZE(bxe_eth_stats_arr) 609 #define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr) 610 611 612 static void bxe_cmng_fns_init(struct bxe_softc *sc, 613 uint8_t read_cfg, 614 uint8_t cmng_type); 615 static int bxe_get_cmng_fns_mode(struct bxe_softc *sc); 616 static void storm_memset_cmng(struct bxe_softc *sc, 617 struct cmng_init *cmng, 618 uint8_t port); 619 static void bxe_set_reset_global(struct bxe_softc *sc); 620 static void bxe_set_reset_in_progress(struct bxe_softc *sc); 621 static uint8_t bxe_reset_is_done(struct bxe_softc *sc, 622 int engine); 623 static uint8_t bxe_clear_pf_load(struct bxe_softc *sc); 624 static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc, 625 uint8_t *global, 626 uint8_t print); 627 static void bxe_int_disable(struct bxe_softc *sc); 628 static int bxe_release_leader_lock(struct bxe_softc *sc); 629 static void bxe_pf_disable(struct bxe_softc *sc); 630 static void bxe_free_fp_buffers(struct bxe_softc *sc); 631 static inline void bxe_update_rx_prod(struct bxe_softc *sc, 632 struct bxe_fastpath *fp, 633 uint16_t rx_bd_prod, 634 uint16_t rx_cq_prod, 635 uint16_t rx_sge_prod); 636 static void bxe_link_report_locked(struct bxe_softc *sc); 637 static void bxe_link_report(struct bxe_softc *sc); 638 static void bxe_link_status_update(struct bxe_softc *sc); 639 static void bxe_periodic_callout_func(void *xsc); 640 static void bxe_periodic_start(struct bxe_softc *sc); 641 static void bxe_periodic_stop(struct bxe_softc *sc); 642 static int bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, 643 uint16_t prev_index, 644 uint16_t index); 645 static int bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, 646 int queue); 647 static int bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, 648 uint16_t index); 649 static uint8_t bxe_txeof(struct bxe_softc *sc, 650 struct bxe_fastpath *fp); 651 static void bxe_task_fp(struct bxe_fastpath *fp); 652 static __noinline void bxe_dump_mbuf(struct bxe_softc *sc, 653 struct mbuf *m, 654 uint8_t contents); 655 static int bxe_alloc_mem(struct bxe_softc *sc); 656 static void bxe_free_mem(struct bxe_softc *sc); 657 static int bxe_alloc_fw_stats_mem(struct bxe_softc *sc); 658 static void bxe_free_fw_stats_mem(struct bxe_softc *sc); 659 static int bxe_interrupt_attach(struct bxe_softc *sc); 660 static void bxe_interrupt_detach(struct bxe_softc *sc); 661 static void bxe_set_rx_mode(struct bxe_softc *sc); 662 static int bxe_init_locked(struct bxe_softc *sc); 663 static int bxe_stop_locked(struct bxe_softc *sc); 664 static __noinline int bxe_nic_load(struct bxe_softc *sc, 665 int load_mode); 666 static __noinline int bxe_nic_unload(struct bxe_softc *sc, 667 uint32_t unload_mode, 668 uint8_t keep_link); 669 670 static void bxe_handle_sp_tq(void *context, int pending); 671 static void bxe_handle_fp_tq(void *context, int pending); 672 673 static int bxe_add_cdev(struct bxe_softc *sc); 674 static void bxe_del_cdev(struct bxe_softc *sc); 675 static int bxe_alloc_buf_rings(struct bxe_softc *sc); 676 static void bxe_free_buf_rings(struct bxe_softc *sc); 677 678 /* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */ 679 uint32_t 680 calc_crc32(uint8_t *crc32_packet, 681 uint32_t crc32_length, 682 uint32_t crc32_seed, 683 uint8_t complement) 684 { 685 uint32_t byte = 0; 686 uint32_t bit = 0; 687 uint8_t msb = 0; 688 uint32_t temp = 0; 689 uint32_t shft = 0; 690 uint8_t current_byte = 0; 691 uint32_t crc32_result = crc32_seed; 692 const uint32_t CRC32_POLY = 0x1edc6f41; 693 694 if ((crc32_packet == NULL) || 695 (crc32_length == 0) || 696 ((crc32_length % 8) != 0)) 697 { 698 return (crc32_result); 699 } 700 701 for (byte = 0; byte < crc32_length; byte = byte + 1) 702 { 703 current_byte = crc32_packet[byte]; 704 for (bit = 0; bit < 8; bit = bit + 1) 705 { 706 /* msb = crc32_result[31]; */ 707 msb = (uint8_t)(crc32_result >> 31); 708 709 crc32_result = crc32_result << 1; 710 711 /* it (msb != current_byte[bit]) */ 712 if (msb != (0x1 & (current_byte >> bit))) 713 { 714 crc32_result = crc32_result ^ CRC32_POLY; 715 /* crc32_result[0] = 1 */ 716 crc32_result |= 1; 717 } 718 } 719 } 720 721 /* Last step is to: 722 * 1. "mirror" every bit 723 * 2. swap the 4 bytes 724 * 3. complement each bit 725 */ 726 727 /* Mirror */ 728 temp = crc32_result; 729 shft = sizeof(crc32_result) * 8 - 1; 730 731 for (crc32_result >>= 1; crc32_result; crc32_result >>= 1) 732 { 733 temp <<= 1; 734 temp |= crc32_result & 1; 735 shft-- ; 736 } 737 738 /* temp[31-bit] = crc32_result[bit] */ 739 temp <<= shft; 740 741 /* Swap */ 742 /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */ 743 { 744 uint32_t t0, t1, t2, t3; 745 t0 = (0x000000ff & (temp >> 24)); 746 t1 = (0x0000ff00 & (temp >> 8)); 747 t2 = (0x00ff0000 & (temp << 8)); 748 t3 = (0xff000000 & (temp << 24)); 749 crc32_result = t0 | t1 | t2 | t3; 750 } 751 752 /* Complement */ 753 if (complement) 754 { 755 crc32_result = ~crc32_result; 756 } 757 758 return (crc32_result); 759 } 760 761 int 762 bxe_test_bit(int nr, 763 volatile unsigned long *addr) 764 { 765 return ((atomic_load_acq_long(addr) & (1 << nr)) != 0); 766 } 767 768 void 769 bxe_set_bit(unsigned int nr, 770 volatile unsigned long *addr) 771 { 772 atomic_set_acq_long(addr, (1 << nr)); 773 } 774 775 void 776 bxe_clear_bit(int nr, 777 volatile unsigned long *addr) 778 { 779 atomic_clear_acq_long(addr, (1 << nr)); 780 } 781 782 int 783 bxe_test_and_set_bit(int nr, 784 volatile unsigned long *addr) 785 { 786 unsigned long x; 787 nr = (1 << nr); 788 do { 789 x = *addr; 790 } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0); 791 // if (x & nr) bit_was_set; else bit_was_not_set; 792 return (x & nr); 793 } 794 795 int 796 bxe_test_and_clear_bit(int nr, 797 volatile unsigned long *addr) 798 { 799 unsigned long x; 800 nr = (1 << nr); 801 do { 802 x = *addr; 803 } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0); 804 // if (x & nr) bit_was_set; else bit_was_not_set; 805 return (x & nr); 806 } 807 808 int 809 bxe_cmpxchg(volatile int *addr, 810 int old, 811 int new) 812 { 813 int x; 814 do { 815 x = *addr; 816 } while (atomic_cmpset_acq_int(addr, old, new) == 0); 817 return (x); 818 } 819 820 /* 821 * Get DMA memory from the OS. 822 * 823 * Validates that the OS has provided DMA buffers in response to a 824 * bus_dmamap_load call and saves the physical address of those buffers. 825 * When the callback is used the OS will return 0 for the mapping function 826 * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any 827 * failures back to the caller. 828 * 829 * Returns: 830 * Nothing. 831 */ 832 static void 833 bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 834 { 835 struct bxe_dma *dma = arg; 836 837 if (error) { 838 dma->paddr = 0; 839 dma->nseg = 0; 840 BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error); 841 } else { 842 dma->paddr = segs->ds_addr; 843 dma->nseg = nseg; 844 } 845 } 846 847 /* 848 * Allocate a block of memory and map it for DMA. No partial completions 849 * allowed and release any resources acquired if we can't acquire all 850 * resources. 851 * 852 * Returns: 853 * 0 = Success, !0 = Failure 854 */ 855 int 856 bxe_dma_alloc(struct bxe_softc *sc, 857 bus_size_t size, 858 struct bxe_dma *dma, 859 const char *msg) 860 { 861 int rc; 862 863 if (dma->size > 0) { 864 BLOGE(sc, "dma block '%s' already has size %lu\n", msg, 865 (unsigned long)dma->size); 866 return (1); 867 } 868 869 memset(dma, 0, sizeof(*dma)); /* sanity */ 870 dma->sc = sc; 871 dma->size = size; 872 snprintf(dma->msg, sizeof(dma->msg), "%s", msg); 873 874 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 875 BCM_PAGE_SIZE, /* alignment */ 876 0, /* boundary limit */ 877 BUS_SPACE_MAXADDR, /* restricted low */ 878 BUS_SPACE_MAXADDR, /* restricted hi */ 879 NULL, /* addr filter() */ 880 NULL, /* addr filter() arg */ 881 size, /* max map size */ 882 1, /* num discontinuous */ 883 size, /* max seg size */ 884 BUS_DMA_ALLOCNOW, /* flags */ 885 NULL, /* lock() */ 886 NULL, /* lock() arg */ 887 &dma->tag); /* returned dma tag */ 888 if (rc != 0) { 889 BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc); 890 memset(dma, 0, sizeof(*dma)); 891 return (1); 892 } 893 894 rc = bus_dmamem_alloc(dma->tag, 895 (void **)&dma->vaddr, 896 (BUS_DMA_NOWAIT | BUS_DMA_ZERO), 897 &dma->map); 898 if (rc != 0) { 899 BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc); 900 bus_dma_tag_destroy(dma->tag); 901 memset(dma, 0, sizeof(*dma)); 902 return (1); 903 } 904 905 rc = bus_dmamap_load(dma->tag, 906 dma->map, 907 dma->vaddr, 908 size, 909 bxe_dma_map_addr, /* BLOGD in here */ 910 dma, 911 BUS_DMA_NOWAIT); 912 if (rc != 0) { 913 BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc); 914 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 915 bus_dma_tag_destroy(dma->tag); 916 memset(dma, 0, sizeof(*dma)); 917 return (1); 918 } 919 920 return (0); 921 } 922 923 void 924 bxe_dma_free(struct bxe_softc *sc, 925 struct bxe_dma *dma) 926 { 927 if (dma->size > 0) { 928 DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL")); 929 930 bus_dmamap_sync(dma->tag, dma->map, 931 (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE)); 932 bus_dmamap_unload(dma->tag, dma->map); 933 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 934 bus_dma_tag_destroy(dma->tag); 935 } 936 937 memset(dma, 0, sizeof(*dma)); 938 } 939 940 /* 941 * These indirect read and write routines are only during init. 942 * The locking is handled by the MCP. 943 */ 944 945 void 946 bxe_reg_wr_ind(struct bxe_softc *sc, 947 uint32_t addr, 948 uint32_t val) 949 { 950 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); 951 pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4); 952 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 953 } 954 955 uint32_t 956 bxe_reg_rd_ind(struct bxe_softc *sc, 957 uint32_t addr) 958 { 959 uint32_t val; 960 961 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); 962 val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4); 963 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 964 965 return (val); 966 } 967 968 static int 969 bxe_acquire_hw_lock(struct bxe_softc *sc, 970 uint32_t resource) 971 { 972 uint32_t lock_status; 973 uint32_t resource_bit = (1 << resource); 974 int func = SC_FUNC(sc); 975 uint32_t hw_lock_control_reg; 976 int cnt; 977 978 /* validate the resource is within range */ 979 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 980 BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)" 981 " resource_bit 0x%x\n", resource, resource_bit); 982 return (-1); 983 } 984 985 if (func <= 5) { 986 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); 987 } else { 988 hw_lock_control_reg = 989 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); 990 } 991 992 /* validate the resource is not already taken */ 993 lock_status = REG_RD(sc, hw_lock_control_reg); 994 if (lock_status & resource_bit) { 995 BLOGE(sc, "resource (0x%x) in use (status 0x%x bit 0x%x)\n", 996 resource, lock_status, resource_bit); 997 return (-1); 998 } 999 1000 /* try every 5ms for 5 seconds */ 1001 for (cnt = 0; cnt < 1000; cnt++) { 1002 REG_WR(sc, (hw_lock_control_reg + 4), resource_bit); 1003 lock_status = REG_RD(sc, hw_lock_control_reg); 1004 if (lock_status & resource_bit) { 1005 return (0); 1006 } 1007 DELAY(5000); 1008 } 1009 1010 BLOGE(sc, "Resource 0x%x resource_bit 0x%x lock timeout!\n", 1011 resource, resource_bit); 1012 return (-1); 1013 } 1014 1015 static int 1016 bxe_release_hw_lock(struct bxe_softc *sc, 1017 uint32_t resource) 1018 { 1019 uint32_t lock_status; 1020 uint32_t resource_bit = (1 << resource); 1021 int func = SC_FUNC(sc); 1022 uint32_t hw_lock_control_reg; 1023 1024 /* validate the resource is within range */ 1025 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1026 BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)" 1027 " resource_bit 0x%x\n", resource, resource_bit); 1028 return (-1); 1029 } 1030 1031 if (func <= 5) { 1032 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); 1033 } else { 1034 hw_lock_control_reg = 1035 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); 1036 } 1037 1038 /* validate the resource is currently taken */ 1039 lock_status = REG_RD(sc, hw_lock_control_reg); 1040 if (!(lock_status & resource_bit)) { 1041 BLOGE(sc, "resource (0x%x) not in use (status 0x%x bit 0x%x)\n", 1042 resource, lock_status, resource_bit); 1043 return (-1); 1044 } 1045 1046 REG_WR(sc, hw_lock_control_reg, resource_bit); 1047 return (0); 1048 } 1049 static void bxe_acquire_phy_lock(struct bxe_softc *sc) 1050 { 1051 BXE_PHY_LOCK(sc); 1052 bxe_acquire_hw_lock(sc,HW_LOCK_RESOURCE_MDIO); 1053 } 1054 1055 static void bxe_release_phy_lock(struct bxe_softc *sc) 1056 { 1057 bxe_release_hw_lock(sc,HW_LOCK_RESOURCE_MDIO); 1058 BXE_PHY_UNLOCK(sc); 1059 } 1060 /* 1061 * Per pf misc lock must be acquired before the per port mcp lock. Otherwise, 1062 * had we done things the other way around, if two pfs from the same port 1063 * would attempt to access nvram at the same time, we could run into a 1064 * scenario such as: 1065 * pf A takes the port lock. 1066 * pf B succeeds in taking the same lock since they are from the same port. 1067 * pf A takes the per pf misc lock. Performs eeprom access. 1068 * pf A finishes. Unlocks the per pf misc lock. 1069 * Pf B takes the lock and proceeds to perform it's own access. 1070 * pf A unlocks the per port lock, while pf B is still working (!). 1071 * mcp takes the per port lock and corrupts pf B's access (and/or has it's own 1072 * access corrupted by pf B).* 1073 */ 1074 static int 1075 bxe_acquire_nvram_lock(struct bxe_softc *sc) 1076 { 1077 int port = SC_PORT(sc); 1078 int count, i; 1079 uint32_t val = 0; 1080 1081 /* acquire HW lock: protect against other PFs in PF Direct Assignment */ 1082 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); 1083 1084 /* adjust timeout for emulation/FPGA */ 1085 count = NVRAM_TIMEOUT_COUNT; 1086 if (CHIP_REV_IS_SLOW(sc)) { 1087 count *= 100; 1088 } 1089 1090 /* request access to nvram interface */ 1091 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 1092 (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port)); 1093 1094 for (i = 0; i < count*10; i++) { 1095 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); 1096 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { 1097 break; 1098 } 1099 1100 DELAY(5); 1101 } 1102 1103 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { 1104 BLOGE(sc, "Cannot get access to nvram interface " 1105 "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n", 1106 port, val); 1107 return (-1); 1108 } 1109 1110 return (0); 1111 } 1112 1113 static int 1114 bxe_release_nvram_lock(struct bxe_softc *sc) 1115 { 1116 int port = SC_PORT(sc); 1117 int count, i; 1118 uint32_t val = 0; 1119 1120 /* adjust timeout for emulation/FPGA */ 1121 count = NVRAM_TIMEOUT_COUNT; 1122 if (CHIP_REV_IS_SLOW(sc)) { 1123 count *= 100; 1124 } 1125 1126 /* relinquish nvram interface */ 1127 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 1128 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port)); 1129 1130 for (i = 0; i < count*10; i++) { 1131 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); 1132 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { 1133 break; 1134 } 1135 1136 DELAY(5); 1137 } 1138 1139 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { 1140 BLOGE(sc, "Cannot free access to nvram interface " 1141 "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n", 1142 port, val); 1143 return (-1); 1144 } 1145 1146 /* release HW lock: protect against other PFs in PF Direct Assignment */ 1147 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); 1148 1149 return (0); 1150 } 1151 1152 static void 1153 bxe_enable_nvram_access(struct bxe_softc *sc) 1154 { 1155 uint32_t val; 1156 1157 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); 1158 1159 /* enable both bits, even on read */ 1160 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, 1161 (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN)); 1162 } 1163 1164 static void 1165 bxe_disable_nvram_access(struct bxe_softc *sc) 1166 { 1167 uint32_t val; 1168 1169 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); 1170 1171 /* disable both bits, even after read */ 1172 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, 1173 (val & ~(MCPR_NVM_ACCESS_ENABLE_EN | 1174 MCPR_NVM_ACCESS_ENABLE_WR_EN))); 1175 } 1176 1177 static int 1178 bxe_nvram_read_dword(struct bxe_softc *sc, 1179 uint32_t offset, 1180 uint32_t *ret_val, 1181 uint32_t cmd_flags) 1182 { 1183 int count, i, rc; 1184 uint32_t val; 1185 1186 /* build the command word */ 1187 cmd_flags |= MCPR_NVM_COMMAND_DOIT; 1188 1189 /* need to clear DONE bit separately */ 1190 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); 1191 1192 /* address of the NVRAM to read from */ 1193 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, 1194 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); 1195 1196 /* issue a read command */ 1197 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); 1198 1199 /* adjust timeout for emulation/FPGA */ 1200 count = NVRAM_TIMEOUT_COUNT; 1201 if (CHIP_REV_IS_SLOW(sc)) { 1202 count *= 100; 1203 } 1204 1205 /* wait for completion */ 1206 *ret_val = 0; 1207 rc = -1; 1208 for (i = 0; i < count; i++) { 1209 DELAY(5); 1210 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); 1211 1212 if (val & MCPR_NVM_COMMAND_DONE) { 1213 val = REG_RD(sc, MCP_REG_MCPR_NVM_READ); 1214 /* we read nvram data in cpu order 1215 * but ethtool sees it as an array of bytes 1216 * converting to big-endian will do the work 1217 */ 1218 *ret_val = htobe32(val); 1219 rc = 0; 1220 break; 1221 } 1222 } 1223 1224 if (rc == -1) { 1225 BLOGE(sc, "nvram read timeout expired " 1226 "(offset 0x%x cmd_flags 0x%x val 0x%x)\n", 1227 offset, cmd_flags, val); 1228 } 1229 1230 return (rc); 1231 } 1232 1233 static int 1234 bxe_nvram_read(struct bxe_softc *sc, 1235 uint32_t offset, 1236 uint8_t *ret_buf, 1237 int buf_size) 1238 { 1239 uint32_t cmd_flags; 1240 uint32_t val; 1241 int rc; 1242 1243 if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) { 1244 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", 1245 offset, buf_size); 1246 return (-1); 1247 } 1248 1249 if ((offset + buf_size) > sc->devinfo.flash_size) { 1250 BLOGE(sc, "Invalid parameter, " 1251 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1252 offset, buf_size, sc->devinfo.flash_size); 1253 return (-1); 1254 } 1255 1256 /* request access to nvram interface */ 1257 rc = bxe_acquire_nvram_lock(sc); 1258 if (rc) { 1259 return (rc); 1260 } 1261 1262 /* enable access to nvram interface */ 1263 bxe_enable_nvram_access(sc); 1264 1265 /* read the first word(s) */ 1266 cmd_flags = MCPR_NVM_COMMAND_FIRST; 1267 while ((buf_size > sizeof(uint32_t)) && (rc == 0)) { 1268 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); 1269 memcpy(ret_buf, &val, 4); 1270 1271 /* advance to the next dword */ 1272 offset += sizeof(uint32_t); 1273 ret_buf += sizeof(uint32_t); 1274 buf_size -= sizeof(uint32_t); 1275 cmd_flags = 0; 1276 } 1277 1278 if (rc == 0) { 1279 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1280 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); 1281 memcpy(ret_buf, &val, 4); 1282 } 1283 1284 /* disable access to nvram interface */ 1285 bxe_disable_nvram_access(sc); 1286 bxe_release_nvram_lock(sc); 1287 1288 return (rc); 1289 } 1290 1291 static int 1292 bxe_nvram_write_dword(struct bxe_softc *sc, 1293 uint32_t offset, 1294 uint32_t val, 1295 uint32_t cmd_flags) 1296 { 1297 int count, i, rc; 1298 1299 /* build the command word */ 1300 cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR); 1301 1302 /* need to clear DONE bit separately */ 1303 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); 1304 1305 /* write the data */ 1306 REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val); 1307 1308 /* address of the NVRAM to write to */ 1309 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, 1310 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); 1311 1312 /* issue the write command */ 1313 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); 1314 1315 /* adjust timeout for emulation/FPGA */ 1316 count = NVRAM_TIMEOUT_COUNT; 1317 if (CHIP_REV_IS_SLOW(sc)) { 1318 count *= 100; 1319 } 1320 1321 /* wait for completion */ 1322 rc = -1; 1323 for (i = 0; i < count; i++) { 1324 DELAY(5); 1325 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); 1326 if (val & MCPR_NVM_COMMAND_DONE) { 1327 rc = 0; 1328 break; 1329 } 1330 } 1331 1332 if (rc == -1) { 1333 BLOGE(sc, "nvram write timeout expired " 1334 "(offset 0x%x cmd_flags 0x%x val 0x%x)\n", 1335 offset, cmd_flags, val); 1336 } 1337 1338 return (rc); 1339 } 1340 1341 #define BYTE_OFFSET(offset) (8 * (offset & 0x03)) 1342 1343 static int 1344 bxe_nvram_write1(struct bxe_softc *sc, 1345 uint32_t offset, 1346 uint8_t *data_buf, 1347 int buf_size) 1348 { 1349 uint32_t cmd_flags; 1350 uint32_t align_offset; 1351 uint32_t val; 1352 int rc; 1353 1354 if ((offset + buf_size) > sc->devinfo.flash_size) { 1355 BLOGE(sc, "Invalid parameter, " 1356 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1357 offset, buf_size, sc->devinfo.flash_size); 1358 return (-1); 1359 } 1360 1361 /* request access to nvram interface */ 1362 rc = bxe_acquire_nvram_lock(sc); 1363 if (rc) { 1364 return (rc); 1365 } 1366 1367 /* enable access to nvram interface */ 1368 bxe_enable_nvram_access(sc); 1369 1370 cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST); 1371 align_offset = (offset & ~0x03); 1372 rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags); 1373 1374 if (rc == 0) { 1375 val &= ~(0xff << BYTE_OFFSET(offset)); 1376 val |= (*data_buf << BYTE_OFFSET(offset)); 1377 1378 /* nvram data is returned as an array of bytes 1379 * convert it back to cpu order 1380 */ 1381 val = be32toh(val); 1382 1383 rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags); 1384 } 1385 1386 /* disable access to nvram interface */ 1387 bxe_disable_nvram_access(sc); 1388 bxe_release_nvram_lock(sc); 1389 1390 return (rc); 1391 } 1392 1393 static int 1394 bxe_nvram_write(struct bxe_softc *sc, 1395 uint32_t offset, 1396 uint8_t *data_buf, 1397 int buf_size) 1398 { 1399 uint32_t cmd_flags; 1400 uint32_t val; 1401 uint32_t written_so_far; 1402 int rc; 1403 1404 if (buf_size == 1) { 1405 return (bxe_nvram_write1(sc, offset, data_buf, buf_size)); 1406 } 1407 1408 if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) { 1409 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", 1410 offset, buf_size); 1411 return (-1); 1412 } 1413 1414 if (buf_size == 0) { 1415 return (0); /* nothing to do */ 1416 } 1417 1418 if ((offset + buf_size) > sc->devinfo.flash_size) { 1419 BLOGE(sc, "Invalid parameter, " 1420 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1421 offset, buf_size, sc->devinfo.flash_size); 1422 return (-1); 1423 } 1424 1425 /* request access to nvram interface */ 1426 rc = bxe_acquire_nvram_lock(sc); 1427 if (rc) { 1428 return (rc); 1429 } 1430 1431 /* enable access to nvram interface */ 1432 bxe_enable_nvram_access(sc); 1433 1434 written_so_far = 0; 1435 cmd_flags = MCPR_NVM_COMMAND_FIRST; 1436 while ((written_so_far < buf_size) && (rc == 0)) { 1437 if (written_so_far == (buf_size - sizeof(uint32_t))) { 1438 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1439 } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) { 1440 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1441 } else if ((offset % NVRAM_PAGE_SIZE) == 0) { 1442 cmd_flags |= MCPR_NVM_COMMAND_FIRST; 1443 } 1444 1445 memcpy(&val, data_buf, 4); 1446 1447 rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags); 1448 1449 /* advance to the next dword */ 1450 offset += sizeof(uint32_t); 1451 data_buf += sizeof(uint32_t); 1452 written_so_far += sizeof(uint32_t); 1453 cmd_flags = 0; 1454 } 1455 1456 /* disable access to nvram interface */ 1457 bxe_disable_nvram_access(sc); 1458 bxe_release_nvram_lock(sc); 1459 1460 return (rc); 1461 } 1462 1463 /* copy command into DMAE command memory and set DMAE command Go */ 1464 void 1465 bxe_post_dmae(struct bxe_softc *sc, 1466 struct dmae_cmd *dmae, 1467 int idx) 1468 { 1469 uint32_t cmd_offset; 1470 int i; 1471 1472 cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_cmd) * idx)); 1473 for (i = 0; i < ((sizeof(struct dmae_cmd) / 4)); i++) { 1474 REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i)); 1475 } 1476 1477 REG_WR(sc, dmae_reg_go_c[idx], 1); 1478 } 1479 1480 uint32_t 1481 bxe_dmae_opcode_add_comp(uint32_t opcode, 1482 uint8_t comp_type) 1483 { 1484 return (opcode | ((comp_type << DMAE_CMD_C_DST_SHIFT) | 1485 DMAE_CMD_C_TYPE_ENABLE)); 1486 } 1487 1488 uint32_t 1489 bxe_dmae_opcode_clr_src_reset(uint32_t opcode) 1490 { 1491 return (opcode & ~DMAE_CMD_SRC_RESET); 1492 } 1493 1494 uint32_t 1495 bxe_dmae_opcode(struct bxe_softc *sc, 1496 uint8_t src_type, 1497 uint8_t dst_type, 1498 uint8_t with_comp, 1499 uint8_t comp_type) 1500 { 1501 uint32_t opcode = 0; 1502 1503 opcode |= ((src_type << DMAE_CMD_SRC_SHIFT) | 1504 (dst_type << DMAE_CMD_DST_SHIFT)); 1505 1506 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET); 1507 1508 opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0); 1509 1510 opcode |= ((SC_VN(sc) << DMAE_CMD_E1HVN_SHIFT) | 1511 (SC_VN(sc) << DMAE_CMD_DST_VN_SHIFT)); 1512 1513 opcode |= (DMAE_COM_SET_ERR << DMAE_CMD_ERR_POLICY_SHIFT); 1514 1515 #ifdef __BIG_ENDIAN 1516 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP; 1517 #else 1518 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP; 1519 #endif 1520 1521 if (with_comp) { 1522 opcode = bxe_dmae_opcode_add_comp(opcode, comp_type); 1523 } 1524 1525 return (opcode); 1526 } 1527 1528 static void 1529 bxe_prep_dmae_with_comp(struct bxe_softc *sc, 1530 struct dmae_cmd *dmae, 1531 uint8_t src_type, 1532 uint8_t dst_type) 1533 { 1534 memset(dmae, 0, sizeof(struct dmae_cmd)); 1535 1536 /* set the opcode */ 1537 dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type, 1538 TRUE, DMAE_COMP_PCI); 1539 1540 /* fill in the completion parameters */ 1541 dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp)); 1542 dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp)); 1543 dmae->comp_val = DMAE_COMP_VAL; 1544 } 1545 1546 /* issue a DMAE command over the init channel and wait for completion */ 1547 static int 1548 bxe_issue_dmae_with_comp(struct bxe_softc *sc, 1549 struct dmae_cmd *dmae) 1550 { 1551 uint32_t *wb_comp = BXE_SP(sc, wb_comp); 1552 int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000; 1553 1554 BXE_DMAE_LOCK(sc); 1555 1556 /* reset completion */ 1557 *wb_comp = 0; 1558 1559 /* post the command on the channel used for initializations */ 1560 bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc)); 1561 1562 /* wait for completion */ 1563 DELAY(5); 1564 1565 while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) { 1566 if (!timeout || 1567 (sc->recovery_state != BXE_RECOVERY_DONE && 1568 sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) { 1569 BLOGE(sc, "DMAE timeout! *wb_comp 0x%x recovery_state 0x%x\n", 1570 *wb_comp, sc->recovery_state); 1571 BXE_DMAE_UNLOCK(sc); 1572 return (DMAE_TIMEOUT); 1573 } 1574 1575 timeout--; 1576 DELAY(50); 1577 } 1578 1579 if (*wb_comp & DMAE_PCI_ERR_FLAG) { 1580 BLOGE(sc, "DMAE PCI error! *wb_comp 0x%x recovery_state 0x%x\n", 1581 *wb_comp, sc->recovery_state); 1582 BXE_DMAE_UNLOCK(sc); 1583 return (DMAE_PCI_ERROR); 1584 } 1585 1586 BXE_DMAE_UNLOCK(sc); 1587 return (0); 1588 } 1589 1590 void 1591 bxe_read_dmae(struct bxe_softc *sc, 1592 uint32_t src_addr, 1593 uint32_t len32) 1594 { 1595 struct dmae_cmd dmae; 1596 uint32_t *data; 1597 int i, rc; 1598 1599 DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32)); 1600 1601 if (!sc->dmae_ready) { 1602 data = BXE_SP(sc, wb_data[0]); 1603 1604 for (i = 0; i < len32; i++) { 1605 data[i] = (CHIP_IS_E1(sc)) ? 1606 bxe_reg_rd_ind(sc, (src_addr + (i * 4))) : 1607 REG_RD(sc, (src_addr + (i * 4))); 1608 } 1609 1610 return; 1611 } 1612 1613 /* set opcode and fixed command fields */ 1614 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI); 1615 1616 /* fill in addresses and len */ 1617 dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */ 1618 dmae.src_addr_hi = 0; 1619 dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data)); 1620 dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data)); 1621 dmae.len = len32; 1622 1623 /* issue the command and wait for completion */ 1624 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { 1625 bxe_panic(sc, ("DMAE failed (%d)\n", rc)); 1626 } 1627 } 1628 1629 void 1630 bxe_write_dmae(struct bxe_softc *sc, 1631 bus_addr_t dma_addr, 1632 uint32_t dst_addr, 1633 uint32_t len32) 1634 { 1635 struct dmae_cmd dmae; 1636 int rc; 1637 1638 if (!sc->dmae_ready) { 1639 DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32)); 1640 1641 if (CHIP_IS_E1(sc)) { 1642 ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); 1643 } else { 1644 ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); 1645 } 1646 1647 return; 1648 } 1649 1650 /* set opcode and fixed command fields */ 1651 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC); 1652 1653 /* fill in addresses and len */ 1654 dmae.src_addr_lo = U64_LO(dma_addr); 1655 dmae.src_addr_hi = U64_HI(dma_addr); 1656 dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */ 1657 dmae.dst_addr_hi = 0; 1658 dmae.len = len32; 1659 1660 /* issue the command and wait for completion */ 1661 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { 1662 bxe_panic(sc, ("DMAE failed (%d)\n", rc)); 1663 } 1664 } 1665 1666 void 1667 bxe_write_dmae_phys_len(struct bxe_softc *sc, 1668 bus_addr_t phys_addr, 1669 uint32_t addr, 1670 uint32_t len) 1671 { 1672 int dmae_wr_max = DMAE_LEN32_WR_MAX(sc); 1673 int offset = 0; 1674 1675 while (len > dmae_wr_max) { 1676 bxe_write_dmae(sc, 1677 (phys_addr + offset), /* src DMA address */ 1678 (addr + offset), /* dst GRC address */ 1679 dmae_wr_max); 1680 offset += (dmae_wr_max * 4); 1681 len -= dmae_wr_max; 1682 } 1683 1684 bxe_write_dmae(sc, 1685 (phys_addr + offset), /* src DMA address */ 1686 (addr + offset), /* dst GRC address */ 1687 len); 1688 } 1689 1690 void 1691 bxe_set_ctx_validation(struct bxe_softc *sc, 1692 struct eth_context *cxt, 1693 uint32_t cid) 1694 { 1695 /* ustorm cxt validation */ 1696 cxt->ustorm_ag_context.cdu_usage = 1697 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), 1698 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE); 1699 /* xcontext validation */ 1700 cxt->xstorm_ag_context.cdu_reserved = 1701 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), 1702 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE); 1703 } 1704 1705 static void 1706 bxe_storm_memset_hc_timeout(struct bxe_softc *sc, 1707 uint8_t port, 1708 uint8_t fw_sb_id, 1709 uint8_t sb_index, 1710 uint8_t ticks) 1711 { 1712 uint32_t addr = 1713 (BAR_CSTRORM_INTMEM + 1714 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index)); 1715 1716 REG_WR8(sc, addr, ticks); 1717 1718 BLOGD(sc, DBG_LOAD, 1719 "port %d fw_sb_id %d sb_index %d ticks %d\n", 1720 port, fw_sb_id, sb_index, ticks); 1721 } 1722 1723 static void 1724 bxe_storm_memset_hc_disable(struct bxe_softc *sc, 1725 uint8_t port, 1726 uint16_t fw_sb_id, 1727 uint8_t sb_index, 1728 uint8_t disable) 1729 { 1730 uint32_t enable_flag = 1731 (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT); 1732 uint32_t addr = 1733 (BAR_CSTRORM_INTMEM + 1734 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index)); 1735 uint8_t flags; 1736 1737 /* clear and set */ 1738 flags = REG_RD8(sc, addr); 1739 flags &= ~HC_INDEX_DATA_HC_ENABLED; 1740 flags |= enable_flag; 1741 REG_WR8(sc, addr, flags); 1742 1743 BLOGD(sc, DBG_LOAD, 1744 "port %d fw_sb_id %d sb_index %d disable %d\n", 1745 port, fw_sb_id, sb_index, disable); 1746 } 1747 1748 void 1749 bxe_update_coalesce_sb_index(struct bxe_softc *sc, 1750 uint8_t fw_sb_id, 1751 uint8_t sb_index, 1752 uint8_t disable, 1753 uint16_t usec) 1754 { 1755 int port = SC_PORT(sc); 1756 uint8_t ticks = (usec / 4); /* XXX ??? */ 1757 1758 bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks); 1759 1760 disable = (disable) ? 1 : ((usec) ? 0 : 1); 1761 bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable); 1762 } 1763 1764 void 1765 elink_cb_udelay(struct bxe_softc *sc, 1766 uint32_t usecs) 1767 { 1768 DELAY(usecs); 1769 } 1770 1771 uint32_t 1772 elink_cb_reg_read(struct bxe_softc *sc, 1773 uint32_t reg_addr) 1774 { 1775 return (REG_RD(sc, reg_addr)); 1776 } 1777 1778 void 1779 elink_cb_reg_write(struct bxe_softc *sc, 1780 uint32_t reg_addr, 1781 uint32_t val) 1782 { 1783 REG_WR(sc, reg_addr, val); 1784 } 1785 1786 void 1787 elink_cb_reg_wb_write(struct bxe_softc *sc, 1788 uint32_t offset, 1789 uint32_t *wb_write, 1790 uint16_t len) 1791 { 1792 REG_WR_DMAE(sc, offset, wb_write, len); 1793 } 1794 1795 void 1796 elink_cb_reg_wb_read(struct bxe_softc *sc, 1797 uint32_t offset, 1798 uint32_t *wb_write, 1799 uint16_t len) 1800 { 1801 REG_RD_DMAE(sc, offset, wb_write, len); 1802 } 1803 1804 uint8_t 1805 elink_cb_path_id(struct bxe_softc *sc) 1806 { 1807 return (SC_PATH(sc)); 1808 } 1809 1810 void 1811 elink_cb_event_log(struct bxe_softc *sc, 1812 const elink_log_id_t elink_log_id, 1813 ...) 1814 { 1815 /* XXX */ 1816 BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id); 1817 } 1818 1819 static int 1820 bxe_set_spio(struct bxe_softc *sc, 1821 int spio, 1822 uint32_t mode) 1823 { 1824 uint32_t spio_reg; 1825 1826 /* Only 2 SPIOs are configurable */ 1827 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) { 1828 BLOGE(sc, "Invalid SPIO 0x%x mode 0x%x\n", spio, mode); 1829 return (-1); 1830 } 1831 1832 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); 1833 1834 /* read SPIO and mask except the float bits */ 1835 spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT); 1836 1837 switch (mode) { 1838 case MISC_SPIO_OUTPUT_LOW: 1839 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio); 1840 /* clear FLOAT and set CLR */ 1841 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 1842 spio_reg |= (spio << MISC_SPIO_CLR_POS); 1843 break; 1844 1845 case MISC_SPIO_OUTPUT_HIGH: 1846 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio); 1847 /* clear FLOAT and set SET */ 1848 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 1849 spio_reg |= (spio << MISC_SPIO_SET_POS); 1850 break; 1851 1852 case MISC_SPIO_INPUT_HI_Z: 1853 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio); 1854 /* set FLOAT */ 1855 spio_reg |= (spio << MISC_SPIO_FLOAT_POS); 1856 break; 1857 1858 default: 1859 break; 1860 } 1861 1862 REG_WR(sc, MISC_REG_SPIO, spio_reg); 1863 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); 1864 1865 return (0); 1866 } 1867 1868 static int 1869 bxe_gpio_read(struct bxe_softc *sc, 1870 int gpio_num, 1871 uint8_t port) 1872 { 1873 /* The GPIO should be swapped if swap register is set and active */ 1874 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 1875 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 1876 int gpio_shift = (gpio_num + 1877 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 1878 uint32_t gpio_mask = (1 << gpio_shift); 1879 uint32_t gpio_reg; 1880 1881 if (gpio_num > MISC_REGISTERS_GPIO_3) { 1882 BLOGE(sc, "Invalid GPIO %d port 0x%x gpio_port %d gpio_shift %d" 1883 " gpio_mask 0x%x\n", gpio_num, port, gpio_port, gpio_shift, 1884 gpio_mask); 1885 return (-1); 1886 } 1887 1888 /* read GPIO value */ 1889 gpio_reg = REG_RD(sc, MISC_REG_GPIO); 1890 1891 /* get the requested pin value */ 1892 return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0; 1893 } 1894 1895 static int 1896 bxe_gpio_write(struct bxe_softc *sc, 1897 int gpio_num, 1898 uint32_t mode, 1899 uint8_t port) 1900 { 1901 /* The GPIO should be swapped if swap register is set and active */ 1902 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 1903 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 1904 int gpio_shift = (gpio_num + 1905 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 1906 uint32_t gpio_mask = (1 << gpio_shift); 1907 uint32_t gpio_reg; 1908 1909 if (gpio_num > MISC_REGISTERS_GPIO_3) { 1910 BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d" 1911 " gpio_shift %d gpio_mask 0x%x\n", 1912 gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask); 1913 return (-1); 1914 } 1915 1916 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 1917 1918 /* read GPIO and mask except the float bits */ 1919 gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT); 1920 1921 switch (mode) { 1922 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 1923 BLOGD(sc, DBG_PHY, 1924 "Set GPIO %d (shift %d) -> output low\n", 1925 gpio_num, gpio_shift); 1926 /* clear FLOAT and set CLR */ 1927 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 1928 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS); 1929 break; 1930 1931 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 1932 BLOGD(sc, DBG_PHY, 1933 "Set GPIO %d (shift %d) -> output high\n", 1934 gpio_num, gpio_shift); 1935 /* clear FLOAT and set SET */ 1936 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 1937 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS); 1938 break; 1939 1940 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 1941 BLOGD(sc, DBG_PHY, 1942 "Set GPIO %d (shift %d) -> input\n", 1943 gpio_num, gpio_shift); 1944 /* set FLOAT */ 1945 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 1946 break; 1947 1948 default: 1949 break; 1950 } 1951 1952 REG_WR(sc, MISC_REG_GPIO, gpio_reg); 1953 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 1954 1955 return (0); 1956 } 1957 1958 static int 1959 bxe_gpio_mult_write(struct bxe_softc *sc, 1960 uint8_t pins, 1961 uint32_t mode) 1962 { 1963 uint32_t gpio_reg; 1964 1965 /* any port swapping should be handled by caller */ 1966 1967 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 1968 1969 /* read GPIO and mask except the float bits */ 1970 gpio_reg = REG_RD(sc, MISC_REG_GPIO); 1971 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS); 1972 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS); 1973 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS); 1974 1975 switch (mode) { 1976 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 1977 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins); 1978 /* set CLR */ 1979 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS); 1980 break; 1981 1982 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 1983 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins); 1984 /* set SET */ 1985 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS); 1986 break; 1987 1988 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 1989 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins); 1990 /* set FLOAT */ 1991 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS); 1992 break; 1993 1994 default: 1995 BLOGE(sc, "Invalid GPIO mode assignment pins 0x%x mode 0x%x" 1996 " gpio_reg 0x%x\n", pins, mode, gpio_reg); 1997 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 1998 return (-1); 1999 } 2000 2001 REG_WR(sc, MISC_REG_GPIO, gpio_reg); 2002 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2003 2004 return (0); 2005 } 2006 2007 static int 2008 bxe_gpio_int_write(struct bxe_softc *sc, 2009 int gpio_num, 2010 uint32_t mode, 2011 uint8_t port) 2012 { 2013 /* The GPIO should be swapped if swap register is set and active */ 2014 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 2015 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 2016 int gpio_shift = (gpio_num + 2017 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 2018 uint32_t gpio_mask = (1 << gpio_shift); 2019 uint32_t gpio_reg; 2020 2021 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2022 BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d" 2023 " gpio_shift %d gpio_mask 0x%x\n", 2024 gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask); 2025 return (-1); 2026 } 2027 2028 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2029 2030 /* read GPIO int */ 2031 gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT); 2032 2033 switch (mode) { 2034 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR: 2035 BLOGD(sc, DBG_PHY, 2036 "Clear GPIO INT %d (shift %d) -> output low\n", 2037 gpio_num, gpio_shift); 2038 /* clear SET and set CLR */ 2039 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2040 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2041 break; 2042 2043 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET: 2044 BLOGD(sc, DBG_PHY, 2045 "Set GPIO INT %d (shift %d) -> output high\n", 2046 gpio_num, gpio_shift); 2047 /* clear CLR and set SET */ 2048 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2049 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2050 break; 2051 2052 default: 2053 break; 2054 } 2055 2056 REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg); 2057 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2058 2059 return (0); 2060 } 2061 2062 uint32_t 2063 elink_cb_gpio_read(struct bxe_softc *sc, 2064 uint16_t gpio_num, 2065 uint8_t port) 2066 { 2067 return (bxe_gpio_read(sc, gpio_num, port)); 2068 } 2069 2070 uint8_t 2071 elink_cb_gpio_write(struct bxe_softc *sc, 2072 uint16_t gpio_num, 2073 uint8_t mode, /* 0=low 1=high */ 2074 uint8_t port) 2075 { 2076 return (bxe_gpio_write(sc, gpio_num, mode, port)); 2077 } 2078 2079 uint8_t 2080 elink_cb_gpio_mult_write(struct bxe_softc *sc, 2081 uint8_t pins, 2082 uint8_t mode) /* 0=low 1=high */ 2083 { 2084 return (bxe_gpio_mult_write(sc, pins, mode)); 2085 } 2086 2087 uint8_t 2088 elink_cb_gpio_int_write(struct bxe_softc *sc, 2089 uint16_t gpio_num, 2090 uint8_t mode, /* 0=low 1=high */ 2091 uint8_t port) 2092 { 2093 return (bxe_gpio_int_write(sc, gpio_num, mode, port)); 2094 } 2095 2096 void 2097 elink_cb_notify_link_changed(struct bxe_softc *sc) 2098 { 2099 REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 + 2100 (SC_FUNC(sc) * sizeof(uint32_t))), 1); 2101 } 2102 2103 /* send the MCP a request, block until there is a reply */ 2104 uint32_t 2105 elink_cb_fw_command(struct bxe_softc *sc, 2106 uint32_t command, 2107 uint32_t param) 2108 { 2109 int mb_idx = SC_FW_MB_IDX(sc); 2110 uint32_t seq; 2111 uint32_t rc = 0; 2112 uint32_t cnt = 1; 2113 uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10; 2114 2115 BXE_FWMB_LOCK(sc); 2116 2117 seq = ++sc->fw_seq; 2118 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param); 2119 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq)); 2120 2121 BLOGD(sc, DBG_PHY, 2122 "wrote command 0x%08x to FW MB param 0x%08x\n", 2123 (command | seq), param); 2124 2125 /* Let the FW do it's magic. GIve it up to 5 seconds... */ 2126 do { 2127 DELAY(delay * 1000); 2128 rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header); 2129 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500)); 2130 2131 BLOGD(sc, DBG_PHY, 2132 "[after %d ms] read 0x%x seq 0x%x from FW MB\n", 2133 cnt*delay, rc, seq); 2134 2135 /* is this a reply to our command? */ 2136 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) { 2137 rc &= FW_MSG_CODE_MASK; 2138 } else { 2139 /* Ruh-roh! */ 2140 BLOGE(sc, "FW failed to respond!\n"); 2141 // XXX bxe_fw_dump(sc); 2142 rc = 0; 2143 } 2144 2145 BXE_FWMB_UNLOCK(sc); 2146 return (rc); 2147 } 2148 2149 static uint32_t 2150 bxe_fw_command(struct bxe_softc *sc, 2151 uint32_t command, 2152 uint32_t param) 2153 { 2154 return (elink_cb_fw_command(sc, command, param)); 2155 } 2156 2157 static void 2158 __storm_memset_dma_mapping(struct bxe_softc *sc, 2159 uint32_t addr, 2160 bus_addr_t mapping) 2161 { 2162 REG_WR(sc, addr, U64_LO(mapping)); 2163 REG_WR(sc, (addr + 4), U64_HI(mapping)); 2164 } 2165 2166 static void 2167 storm_memset_spq_addr(struct bxe_softc *sc, 2168 bus_addr_t mapping, 2169 uint16_t abs_fid) 2170 { 2171 uint32_t addr = (XSEM_REG_FAST_MEMORY + 2172 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid)); 2173 __storm_memset_dma_mapping(sc, addr, mapping); 2174 } 2175 2176 static void 2177 storm_memset_vf_to_pf(struct bxe_softc *sc, 2178 uint16_t abs_fid, 2179 uint16_t pf_id) 2180 { 2181 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2182 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2183 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2184 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2185 } 2186 2187 static void 2188 storm_memset_func_en(struct bxe_softc *sc, 2189 uint16_t abs_fid, 2190 uint8_t enable) 2191 { 2192 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2193 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2194 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2195 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2196 } 2197 2198 static void 2199 storm_memset_eq_data(struct bxe_softc *sc, 2200 struct event_ring_data *eq_data, 2201 uint16_t pfid) 2202 { 2203 uint32_t addr; 2204 size_t size; 2205 2206 addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid)); 2207 size = sizeof(struct event_ring_data); 2208 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data); 2209 } 2210 2211 static void 2212 storm_memset_eq_prod(struct bxe_softc *sc, 2213 uint16_t eq_prod, 2214 uint16_t pfid) 2215 { 2216 uint32_t addr = (BAR_CSTRORM_INTMEM + 2217 CSTORM_EVENT_RING_PROD_OFFSET(pfid)); 2218 REG_WR16(sc, addr, eq_prod); 2219 } 2220 2221 /* 2222 * Post a slowpath command. 2223 * 2224 * A slowpath command is used to propagate a configuration change through 2225 * the controller in a controlled manner, allowing each STORM processor and 2226 * other H/W blocks to phase in the change. The commands sent on the 2227 * slowpath are referred to as ramrods. Depending on the ramrod used the 2228 * completion of the ramrod will occur in different ways. Here's a 2229 * breakdown of ramrods and how they complete: 2230 * 2231 * RAMROD_CMD_ID_ETH_PORT_SETUP 2232 * Used to setup the leading connection on a port. Completes on the 2233 * Receive Completion Queue (RCQ) of that port (typically fp[0]). 2234 * 2235 * RAMROD_CMD_ID_ETH_CLIENT_SETUP 2236 * Used to setup an additional connection on a port. Completes on the 2237 * RCQ of the multi-queue/RSS connection being initialized. 2238 * 2239 * RAMROD_CMD_ID_ETH_STAT_QUERY 2240 * Used to force the storm processors to update the statistics database 2241 * in host memory. This ramrod is send on the leading connection CID and 2242 * completes as an index increment of the CSTORM on the default status 2243 * block. 2244 * 2245 * RAMROD_CMD_ID_ETH_UPDATE 2246 * Used to update the state of the leading connection, usually to udpate 2247 * the RSS indirection table. Completes on the RCQ of the leading 2248 * connection. (Not currently used under FreeBSD until OS support becomes 2249 * available.) 2250 * 2251 * RAMROD_CMD_ID_ETH_HALT 2252 * Used when tearing down a connection prior to driver unload. Completes 2253 * on the RCQ of the multi-queue/RSS connection being torn down. Don't 2254 * use this on the leading connection. 2255 * 2256 * RAMROD_CMD_ID_ETH_SET_MAC 2257 * Sets the Unicast/Broadcast/Multicast used by the port. Completes on 2258 * the RCQ of the leading connection. 2259 * 2260 * RAMROD_CMD_ID_ETH_CFC_DEL 2261 * Used when tearing down a conneciton prior to driver unload. Completes 2262 * on the RCQ of the leading connection (since the current connection 2263 * has been completely removed from controller memory). 2264 * 2265 * RAMROD_CMD_ID_ETH_PORT_DEL 2266 * Used to tear down the leading connection prior to driver unload, 2267 * typically fp[0]. Completes as an index increment of the CSTORM on the 2268 * default status block. 2269 * 2270 * RAMROD_CMD_ID_ETH_FORWARD_SETUP 2271 * Used for connection offload. Completes on the RCQ of the multi-queue 2272 * RSS connection that is being offloaded. (Not currently used under 2273 * FreeBSD.) 2274 * 2275 * There can only be one command pending per function. 2276 * 2277 * Returns: 2278 * 0 = Success, !0 = Failure. 2279 */ 2280 2281 /* must be called under the spq lock */ 2282 static inline 2283 struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc) 2284 { 2285 struct eth_spe *next_spe = sc->spq_prod_bd; 2286 2287 if (sc->spq_prod_bd == sc->spq_last_bd) { 2288 /* wrap back to the first eth_spq */ 2289 sc->spq_prod_bd = sc->spq; 2290 sc->spq_prod_idx = 0; 2291 } else { 2292 sc->spq_prod_bd++; 2293 sc->spq_prod_idx++; 2294 } 2295 2296 return (next_spe); 2297 } 2298 2299 /* must be called under the spq lock */ 2300 static inline 2301 void bxe_sp_prod_update(struct bxe_softc *sc) 2302 { 2303 int func = SC_FUNC(sc); 2304 2305 /* 2306 * Make sure that BD data is updated before writing the producer. 2307 * BD data is written to the memory, the producer is read from the 2308 * memory, thus we need a full memory barrier to ensure the ordering. 2309 */ 2310 mb(); 2311 2312 REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)), 2313 sc->spq_prod_idx); 2314 2315 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 2316 BUS_SPACE_BARRIER_WRITE); 2317 } 2318 2319 /** 2320 * bxe_is_contextless_ramrod - check if the current command ends on EQ 2321 * 2322 * @cmd: command to check 2323 * @cmd_type: command type 2324 */ 2325 static inline 2326 int bxe_is_contextless_ramrod(int cmd, 2327 int cmd_type) 2328 { 2329 if ((cmd_type == NONE_CONNECTION_TYPE) || 2330 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) || 2331 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) || 2332 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) || 2333 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) || 2334 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) || 2335 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) { 2336 return (TRUE); 2337 } else { 2338 return (FALSE); 2339 } 2340 } 2341 2342 /** 2343 * bxe_sp_post - place a single command on an SP ring 2344 * 2345 * @sc: driver handle 2346 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.) 2347 * @cid: SW CID the command is related to 2348 * @data_hi: command private data address (high 32 bits) 2349 * @data_lo: command private data address (low 32 bits) 2350 * @cmd_type: command type (e.g. NONE, ETH) 2351 * 2352 * SP data is handled as if it's always an address pair, thus data fields are 2353 * not swapped to little endian in upper functions. Instead this function swaps 2354 * data as if it's two uint32 fields. 2355 */ 2356 int 2357 bxe_sp_post(struct bxe_softc *sc, 2358 int command, 2359 int cid, 2360 uint32_t data_hi, 2361 uint32_t data_lo, 2362 int cmd_type) 2363 { 2364 struct eth_spe *spe; 2365 uint16_t type; 2366 int common; 2367 2368 common = bxe_is_contextless_ramrod(command, cmd_type); 2369 2370 BXE_SP_LOCK(sc); 2371 2372 if (common) { 2373 if (!atomic_load_acq_long(&sc->eq_spq_left)) { 2374 BLOGE(sc, "EQ ring is full!\n"); 2375 BXE_SP_UNLOCK(sc); 2376 return (-1); 2377 } 2378 } else { 2379 if (!atomic_load_acq_long(&sc->cq_spq_left)) { 2380 BLOGE(sc, "SPQ ring is full!\n"); 2381 BXE_SP_UNLOCK(sc); 2382 return (-1); 2383 } 2384 } 2385 2386 spe = bxe_sp_get_next(sc); 2387 2388 /* CID needs port number to be encoded int it */ 2389 spe->hdr.conn_and_cmd_data = 2390 htole32((command << SPE_HDR_T_CMD_ID_SHIFT) | HW_CID(sc, cid)); 2391 2392 type = (cmd_type << SPE_HDR_T_CONN_TYPE_SHIFT) & SPE_HDR_T_CONN_TYPE; 2393 2394 /* TBD: Check if it works for VFs */ 2395 type |= ((SC_FUNC(sc) << SPE_HDR_T_FUNCTION_ID_SHIFT) & 2396 SPE_HDR_T_FUNCTION_ID); 2397 2398 spe->hdr.type = htole16(type); 2399 2400 spe->data.update_data_addr.hi = htole32(data_hi); 2401 spe->data.update_data_addr.lo = htole32(data_lo); 2402 2403 /* 2404 * It's ok if the actual decrement is issued towards the memory 2405 * somewhere between the lock and unlock. Thus no more explict 2406 * memory barrier is needed. 2407 */ 2408 if (common) { 2409 atomic_subtract_acq_long(&sc->eq_spq_left, 1); 2410 } else { 2411 atomic_subtract_acq_long(&sc->cq_spq_left, 1); 2412 } 2413 2414 BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr); 2415 BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n", 2416 BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata)); 2417 BLOGD(sc, DBG_SP, 2418 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n", 2419 sc->spq_prod_idx, 2420 (uint32_t)U64_HI(sc->spq_dma.paddr), 2421 (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq), 2422 command, 2423 common, 2424 HW_CID(sc, cid), 2425 data_hi, 2426 data_lo, 2427 type, 2428 atomic_load_acq_long(&sc->cq_spq_left), 2429 atomic_load_acq_long(&sc->eq_spq_left)); 2430 2431 bxe_sp_prod_update(sc); 2432 2433 BXE_SP_UNLOCK(sc); 2434 return (0); 2435 } 2436 2437 /** 2438 * bxe_debug_print_ind_table - prints the indirection table configuration. 2439 * 2440 * @sc: driver hanlde 2441 * @p: pointer to rss configuration 2442 */ 2443 2444 /* 2445 * FreeBSD Device probe function. 2446 * 2447 * Compares the device found to the driver's list of supported devices and 2448 * reports back to the bsd loader whether this is the right driver for the device. 2449 * This is the driver entry function called from the "kldload" command. 2450 * 2451 * Returns: 2452 * BUS_PROBE_DEFAULT on success, positive value on failure. 2453 */ 2454 static int 2455 bxe_probe(device_t dev) 2456 { 2457 struct bxe_device_type *t; 2458 char *descbuf; 2459 uint16_t did, sdid, svid, vid; 2460 2461 /* Find our device structure */ 2462 t = bxe_devs; 2463 2464 /* Get the data for the device to be probed. */ 2465 vid = pci_get_vendor(dev); 2466 did = pci_get_device(dev); 2467 svid = pci_get_subvendor(dev); 2468 sdid = pci_get_subdevice(dev); 2469 2470 /* Look through the list of known devices for a match. */ 2471 while (t->bxe_name != NULL) { 2472 if ((vid == t->bxe_vid) && (did == t->bxe_did) && 2473 ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) && 2474 ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) { 2475 descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT); 2476 if (descbuf == NULL) 2477 return (ENOMEM); 2478 2479 /* Print out the device identity. */ 2480 snprintf(descbuf, BXE_DEVDESC_MAX, 2481 "%s (%c%d) BXE v:%s\n", t->bxe_name, 2482 (((pci_read_config(dev, PCIR_REVID, 4) & 2483 0xf0) >> 4) + 'A'), 2484 (pci_read_config(dev, PCIR_REVID, 4) & 0xf), 2485 BXE_DRIVER_VERSION); 2486 2487 device_set_desc_copy(dev, descbuf); 2488 free(descbuf, M_TEMP); 2489 return (BUS_PROBE_DEFAULT); 2490 } 2491 t++; 2492 } 2493 2494 return (ENXIO); 2495 } 2496 2497 static void 2498 bxe_init_mutexes(struct bxe_softc *sc) 2499 { 2500 #ifdef BXE_CORE_LOCK_SX 2501 snprintf(sc->core_sx_name, sizeof(sc->core_sx_name), 2502 "bxe%d_core_lock", sc->unit); 2503 sx_init(&sc->core_sx, sc->core_sx_name); 2504 #else 2505 snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name), 2506 "bxe%d_core_lock", sc->unit); 2507 mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF); 2508 #endif 2509 2510 snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name), 2511 "bxe%d_sp_lock", sc->unit); 2512 mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF); 2513 2514 snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name), 2515 "bxe%d_dmae_lock", sc->unit); 2516 mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF); 2517 2518 snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name), 2519 "bxe%d_phy_lock", sc->unit); 2520 mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF); 2521 2522 snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name), 2523 "bxe%d_fwmb_lock", sc->unit); 2524 mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF); 2525 2526 snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name), 2527 "bxe%d_print_lock", sc->unit); 2528 mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF); 2529 2530 snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name), 2531 "bxe%d_stats_lock", sc->unit); 2532 mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF); 2533 2534 snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name), 2535 "bxe%d_mcast_lock", sc->unit); 2536 mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF); 2537 } 2538 2539 static void 2540 bxe_release_mutexes(struct bxe_softc *sc) 2541 { 2542 #ifdef BXE_CORE_LOCK_SX 2543 sx_destroy(&sc->core_sx); 2544 #else 2545 if (mtx_initialized(&sc->core_mtx)) { 2546 mtx_destroy(&sc->core_mtx); 2547 } 2548 #endif 2549 2550 if (mtx_initialized(&sc->sp_mtx)) { 2551 mtx_destroy(&sc->sp_mtx); 2552 } 2553 2554 if (mtx_initialized(&sc->dmae_mtx)) { 2555 mtx_destroy(&sc->dmae_mtx); 2556 } 2557 2558 if (mtx_initialized(&sc->port.phy_mtx)) { 2559 mtx_destroy(&sc->port.phy_mtx); 2560 } 2561 2562 if (mtx_initialized(&sc->fwmb_mtx)) { 2563 mtx_destroy(&sc->fwmb_mtx); 2564 } 2565 2566 if (mtx_initialized(&sc->print_mtx)) { 2567 mtx_destroy(&sc->print_mtx); 2568 } 2569 2570 if (mtx_initialized(&sc->stats_mtx)) { 2571 mtx_destroy(&sc->stats_mtx); 2572 } 2573 2574 if (mtx_initialized(&sc->mcast_mtx)) { 2575 mtx_destroy(&sc->mcast_mtx); 2576 } 2577 } 2578 2579 static void 2580 bxe_tx_disable(struct bxe_softc* sc) 2581 { 2582 if_t ifp = sc->ifp; 2583 2584 /* tell the stack the driver is stopped and TX queue is full */ 2585 if (ifp != NULL) { 2586 if_setdrvflags(ifp, 0); 2587 } 2588 } 2589 2590 static void 2591 bxe_drv_pulse(struct bxe_softc *sc) 2592 { 2593 SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb, 2594 sc->fw_drv_pulse_wr_seq); 2595 } 2596 2597 static inline uint16_t 2598 bxe_tx_avail(struct bxe_softc *sc, 2599 struct bxe_fastpath *fp) 2600 { 2601 int16_t used; 2602 uint16_t prod; 2603 uint16_t cons; 2604 2605 prod = fp->tx_bd_prod; 2606 cons = fp->tx_bd_cons; 2607 2608 used = SUB_S16(prod, cons); 2609 2610 return (int16_t)(sc->tx_ring_size) - used; 2611 } 2612 2613 static inline int 2614 bxe_tx_queue_has_work(struct bxe_fastpath *fp) 2615 { 2616 uint16_t hw_cons; 2617 2618 mb(); /* status block fields can change */ 2619 hw_cons = le16toh(*fp->tx_cons_sb); 2620 return (hw_cons != fp->tx_pkt_cons); 2621 } 2622 2623 static inline uint8_t 2624 bxe_has_tx_work(struct bxe_fastpath *fp) 2625 { 2626 /* expand this for multi-cos if ever supported */ 2627 return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE; 2628 } 2629 2630 static inline int 2631 bxe_has_rx_work(struct bxe_fastpath *fp) 2632 { 2633 uint16_t rx_cq_cons_sb; 2634 2635 mb(); /* status block fields can change */ 2636 rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb); 2637 if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX) 2638 rx_cq_cons_sb++; 2639 return (fp->rx_cq_cons != rx_cq_cons_sb); 2640 } 2641 2642 static void 2643 bxe_sp_event(struct bxe_softc *sc, 2644 struct bxe_fastpath *fp, 2645 union eth_rx_cqe *rr_cqe) 2646 { 2647 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data); 2648 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data); 2649 enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX; 2650 struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj; 2651 2652 BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n", 2653 fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type); 2654 2655 switch (command) { 2656 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE): 2657 BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid); 2658 drv_cmd = ECORE_Q_CMD_UPDATE; 2659 break; 2660 2661 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP): 2662 BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid); 2663 drv_cmd = ECORE_Q_CMD_SETUP; 2664 break; 2665 2666 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP): 2667 BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid); 2668 drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY; 2669 break; 2670 2671 case (RAMROD_CMD_ID_ETH_HALT): 2672 BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid); 2673 drv_cmd = ECORE_Q_CMD_HALT; 2674 break; 2675 2676 case (RAMROD_CMD_ID_ETH_TERMINATE): 2677 BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid); 2678 drv_cmd = ECORE_Q_CMD_TERMINATE; 2679 break; 2680 2681 case (RAMROD_CMD_ID_ETH_EMPTY): 2682 BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid); 2683 drv_cmd = ECORE_Q_CMD_EMPTY; 2684 break; 2685 2686 default: 2687 BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n", 2688 command, fp->index); 2689 return; 2690 } 2691 2692 if ((drv_cmd != ECORE_Q_CMD_MAX) && 2693 q_obj->complete_cmd(sc, q_obj, drv_cmd)) { 2694 /* 2695 * q_obj->complete_cmd() failure means that this was 2696 * an unexpected completion. 2697 * 2698 * In this case we don't want to increase the sc->spq_left 2699 * because apparently we haven't sent this command the first 2700 * place. 2701 */ 2702 // bxe_panic(sc, ("Unexpected SP completion\n")); 2703 return; 2704 } 2705 2706 atomic_add_acq_long(&sc->cq_spq_left, 1); 2707 2708 BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n", 2709 atomic_load_acq_long(&sc->cq_spq_left)); 2710 } 2711 2712 /* 2713 * The current mbuf is part of an aggregation. Move the mbuf into the TPA 2714 * aggregation queue, put an empty mbuf back onto the receive chain, and mark 2715 * the current aggregation queue as in-progress. 2716 */ 2717 static void 2718 bxe_tpa_start(struct bxe_softc *sc, 2719 struct bxe_fastpath *fp, 2720 uint16_t queue, 2721 uint16_t cons, 2722 uint16_t prod, 2723 struct eth_fast_path_rx_cqe *cqe) 2724 { 2725 struct bxe_sw_rx_bd tmp_bd; 2726 struct bxe_sw_rx_bd *rx_buf; 2727 struct eth_rx_bd *rx_bd; 2728 int max_agg_queues; 2729 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; 2730 uint16_t index; 2731 2732 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START " 2733 "cons=%d prod=%d\n", 2734 fp->index, queue, cons, prod); 2735 2736 max_agg_queues = MAX_AGG_QS(sc); 2737 2738 KASSERT((queue < max_agg_queues), 2739 ("fp[%02d] invalid aggr queue (%d >= %d)!", 2740 fp->index, queue, max_agg_queues)); 2741 2742 KASSERT((tpa_info->state == BXE_TPA_STATE_STOP), 2743 ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!", 2744 fp->index, queue)); 2745 2746 /* copy the existing mbuf and mapping from the TPA pool */ 2747 tmp_bd = tpa_info->bd; 2748 2749 if (tmp_bd.m == NULL) { 2750 uint32_t *tmp; 2751 2752 tmp = (uint32_t *)cqe; 2753 2754 BLOGE(sc, "fp[%02d].tpa[%02d] cons[%d] prod[%d]mbuf not allocated!\n", 2755 fp->index, queue, cons, prod); 2756 BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n", 2757 *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7)); 2758 2759 /* XXX Error handling? */ 2760 return; 2761 } 2762 2763 /* change the TPA queue to the start state */ 2764 tpa_info->state = BXE_TPA_STATE_START; 2765 tpa_info->placement_offset = cqe->placement_offset; 2766 tpa_info->parsing_flags = le16toh(cqe->pars_flags.flags); 2767 tpa_info->vlan_tag = le16toh(cqe->vlan_tag); 2768 tpa_info->len_on_bd = le16toh(cqe->len_on_bd); 2769 2770 fp->rx_tpa_queue_used |= (1 << queue); 2771 2772 /* 2773 * If all the buffer descriptors are filled with mbufs then fill in 2774 * the current consumer index with a new BD. Else if a maximum Rx 2775 * buffer limit is imposed then fill in the next producer index. 2776 */ 2777 index = (sc->max_rx_bufs != RX_BD_USABLE) ? 2778 prod : cons; 2779 2780 /* move the received mbuf and mapping to TPA pool */ 2781 tpa_info->bd = fp->rx_mbuf_chain[cons]; 2782 2783 /* release any existing RX BD mbuf mappings */ 2784 if (cons != index) { 2785 rx_buf = &fp->rx_mbuf_chain[cons]; 2786 2787 if (rx_buf->m_map != NULL) { 2788 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 2789 BUS_DMASYNC_POSTREAD); 2790 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 2791 } 2792 2793 /* 2794 * We get here when the maximum number of rx buffers is less than 2795 * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL 2796 * it out here without concern of a memory leak. 2797 */ 2798 fp->rx_mbuf_chain[cons].m = NULL; 2799 } 2800 2801 /* update the Rx SW BD with the mbuf info from the TPA pool */ 2802 fp->rx_mbuf_chain[index] = tmp_bd; 2803 2804 /* update the Rx BD with the empty mbuf phys address from the TPA pool */ 2805 rx_bd = &fp->rx_chain[index]; 2806 rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr)); 2807 rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr)); 2808 } 2809 2810 /* 2811 * When a TPA aggregation is completed, loop through the individual mbufs 2812 * of the aggregation, combining them into a single mbuf which will be sent 2813 * up the stack. Refill all freed SGEs with mbufs as we go along. 2814 */ 2815 static int 2816 bxe_fill_frag_mbuf(struct bxe_softc *sc, 2817 struct bxe_fastpath *fp, 2818 struct bxe_sw_tpa_info *tpa_info, 2819 uint16_t queue, 2820 uint16_t pages, 2821 struct mbuf *m, 2822 struct eth_end_agg_rx_cqe *cqe, 2823 uint16_t cqe_idx) 2824 { 2825 struct mbuf *m_frag; 2826 uint32_t frag_len, frag_size, i; 2827 uint16_t sge_idx; 2828 int rc = 0; 2829 int j; 2830 2831 frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd; 2832 2833 BLOGD(sc, DBG_LRO, 2834 "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n", 2835 fp->index, queue, tpa_info->len_on_bd, frag_size, pages); 2836 2837 /* make sure the aggregated frame is not too big to handle */ 2838 if (pages > 8 * PAGES_PER_SGE) { 2839 2840 uint32_t *tmp = (uint32_t *)cqe; 2841 2842 BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! " 2843 "pkt_len=%d len_on_bd=%d frag_size=%d\n", 2844 fp->index, cqe_idx, pages, le16toh(cqe->pkt_len), 2845 tpa_info->len_on_bd, frag_size); 2846 2847 BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n", 2848 *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7)); 2849 2850 bxe_panic(sc, ("sge page count error\n")); 2851 return (EINVAL); 2852 } 2853 2854 /* 2855 * Scan through the scatter gather list pulling individual mbufs into a 2856 * single mbuf for the host stack. 2857 */ 2858 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) { 2859 sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j])); 2860 2861 /* 2862 * Firmware gives the indices of the SGE as if the ring is an array 2863 * (meaning that the "next" element will consume 2 indices). 2864 */ 2865 frag_len = min(frag_size, (uint32_t)(SGE_PAGES)); 2866 2867 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d " 2868 "sge_idx=%d frag_size=%d frag_len=%d\n", 2869 fp->index, queue, i, j, sge_idx, frag_size, frag_len); 2870 2871 m_frag = fp->rx_sge_mbuf_chain[sge_idx].m; 2872 2873 /* allocate a new mbuf for the SGE */ 2874 rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx); 2875 if (rc) { 2876 /* Leave all remaining SGEs in the ring! */ 2877 return (rc); 2878 } 2879 2880 /* update the fragment length */ 2881 m_frag->m_len = frag_len; 2882 2883 /* concatenate the fragment to the head mbuf */ 2884 m_cat(m, m_frag); 2885 fp->eth_q_stats.mbuf_alloc_sge--; 2886 2887 /* update the TPA mbuf size and remaining fragment size */ 2888 m->m_pkthdr.len += frag_len; 2889 frag_size -= frag_len; 2890 } 2891 2892 BLOGD(sc, DBG_LRO, 2893 "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n", 2894 fp->index, queue, frag_size); 2895 2896 return (rc); 2897 } 2898 2899 static inline void 2900 bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp) 2901 { 2902 int i, j; 2903 2904 for (i = 1; i <= RX_SGE_NUM_PAGES; i++) { 2905 int idx = RX_SGE_TOTAL_PER_PAGE * i - 1; 2906 2907 for (j = 0; j < 2; j++) { 2908 BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx); 2909 idx--; 2910 } 2911 } 2912 } 2913 2914 static inline void 2915 bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp) 2916 { 2917 /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */ 2918 memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask)); 2919 2920 /* 2921 * Clear the two last indices in the page to 1. These are the indices that 2922 * correspond to the "next" element, hence will never be indicated and 2923 * should be removed from the calculations. 2924 */ 2925 bxe_clear_sge_mask_next_elems(fp); 2926 } 2927 2928 static inline void 2929 bxe_update_last_max_sge(struct bxe_fastpath *fp, 2930 uint16_t idx) 2931 { 2932 uint16_t last_max = fp->last_max_sge; 2933 2934 if (SUB_S16(idx, last_max) > 0) { 2935 fp->last_max_sge = idx; 2936 } 2937 } 2938 2939 static inline void 2940 bxe_update_sge_prod(struct bxe_softc *sc, 2941 struct bxe_fastpath *fp, 2942 uint16_t sge_len, 2943 union eth_sgl_or_raw_data *cqe) 2944 { 2945 uint16_t last_max, last_elem, first_elem; 2946 uint16_t delta = 0; 2947 uint16_t i; 2948 2949 if (!sge_len) { 2950 return; 2951 } 2952 2953 /* first mark all used pages */ 2954 for (i = 0; i < sge_len; i++) { 2955 BIT_VEC64_CLEAR_BIT(fp->sge_mask, 2956 RX_SGE(le16toh(cqe->sgl[i]))); 2957 } 2958 2959 BLOGD(sc, DBG_LRO, 2960 "fp[%02d] fp_cqe->sgl[%d] = %d\n", 2961 fp->index, sge_len - 1, 2962 le16toh(cqe->sgl[sge_len - 1])); 2963 2964 /* assume that the last SGE index is the biggest */ 2965 bxe_update_last_max_sge(fp, 2966 le16toh(cqe->sgl[sge_len - 1])); 2967 2968 last_max = RX_SGE(fp->last_max_sge); 2969 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT; 2970 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT; 2971 2972 /* if ring is not full */ 2973 if (last_elem + 1 != first_elem) { 2974 last_elem++; 2975 } 2976 2977 /* now update the prod */ 2978 for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) { 2979 if (__predict_true(fp->sge_mask[i])) { 2980 break; 2981 } 2982 2983 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK; 2984 delta += BIT_VEC64_ELEM_SZ; 2985 } 2986 2987 if (delta > 0) { 2988 fp->rx_sge_prod += delta; 2989 /* clear page-end entries */ 2990 bxe_clear_sge_mask_next_elems(fp); 2991 } 2992 2993 BLOGD(sc, DBG_LRO, 2994 "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n", 2995 fp->index, fp->last_max_sge, fp->rx_sge_prod); 2996 } 2997 2998 /* 2999 * The aggregation on the current TPA queue has completed. Pull the individual 3000 * mbuf fragments together into a single mbuf, perform all necessary checksum 3001 * calculations, and send the resuting mbuf to the stack. 3002 */ 3003 static void 3004 bxe_tpa_stop(struct bxe_softc *sc, 3005 struct bxe_fastpath *fp, 3006 struct bxe_sw_tpa_info *tpa_info, 3007 uint16_t queue, 3008 uint16_t pages, 3009 struct eth_end_agg_rx_cqe *cqe, 3010 uint16_t cqe_idx) 3011 { 3012 if_t ifp = sc->ifp; 3013 struct mbuf *m; 3014 int rc = 0; 3015 3016 BLOGD(sc, DBG_LRO, 3017 "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n", 3018 fp->index, queue, tpa_info->placement_offset, 3019 le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag); 3020 3021 m = tpa_info->bd.m; 3022 3023 /* allocate a replacement before modifying existing mbuf */ 3024 rc = bxe_alloc_rx_tpa_mbuf(fp, queue); 3025 if (rc) { 3026 /* drop the frame and log an error */ 3027 fp->eth_q_stats.rx_soft_errors++; 3028 goto bxe_tpa_stop_exit; 3029 } 3030 3031 /* we have a replacement, fixup the current mbuf */ 3032 m_adj(m, tpa_info->placement_offset); 3033 m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd; 3034 3035 /* mark the checksums valid (taken care of by the firmware) */ 3036 fp->eth_q_stats.rx_ofld_frames_csum_ip++; 3037 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; 3038 m->m_pkthdr.csum_data = 0xffff; 3039 m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED | 3040 CSUM_IP_VALID | 3041 CSUM_DATA_VALID | 3042 CSUM_PSEUDO_HDR); 3043 3044 /* aggregate all of the SGEs into a single mbuf */ 3045 rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx); 3046 if (rc) { 3047 /* drop the packet and log an error */ 3048 fp->eth_q_stats.rx_soft_errors++; 3049 m_freem(m); 3050 } else { 3051 if (tpa_info->parsing_flags & PARSING_FLAGS_INNER_VLAN_EXIST) { 3052 m->m_pkthdr.ether_vtag = tpa_info->vlan_tag; 3053 m->m_flags |= M_VLANTAG; 3054 } 3055 3056 /* assign packet to this interface interface */ 3057 if_setrcvif(m, ifp); 3058 3059 #if __FreeBSD_version >= 800000 3060 /* specify what RSS queue was used for this flow */ 3061 m->m_pkthdr.flowid = fp->index; 3062 BXE_SET_FLOWID(m); 3063 #endif 3064 3065 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 3066 fp->eth_q_stats.rx_tpa_pkts++; 3067 3068 /* pass the frame to the stack */ 3069 if_input(ifp, m); 3070 } 3071 3072 /* we passed an mbuf up the stack or dropped the frame */ 3073 fp->eth_q_stats.mbuf_alloc_tpa--; 3074 3075 bxe_tpa_stop_exit: 3076 3077 fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP; 3078 fp->rx_tpa_queue_used &= ~(1 << queue); 3079 } 3080 3081 static uint8_t 3082 bxe_service_rxsgl( 3083 struct bxe_fastpath *fp, 3084 uint16_t len, 3085 uint16_t lenonbd, 3086 struct mbuf *m, 3087 struct eth_fast_path_rx_cqe *cqe_fp) 3088 { 3089 struct mbuf *m_frag; 3090 uint16_t frags, frag_len; 3091 uint16_t sge_idx = 0; 3092 uint16_t j; 3093 uint8_t i, rc = 0; 3094 uint32_t frag_size; 3095 3096 /* adjust the mbuf */ 3097 m->m_len = lenonbd; 3098 3099 frag_size = len - lenonbd; 3100 frags = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT; 3101 3102 for (i = 0, j = 0; i < frags; i += PAGES_PER_SGE, j++) { 3103 sge_idx = RX_SGE(le16toh(cqe_fp->sgl_or_raw_data.sgl[j])); 3104 3105 m_frag = fp->rx_sge_mbuf_chain[sge_idx].m; 3106 frag_len = min(frag_size, (uint32_t)(SGE_PAGE_SIZE)); 3107 m_frag->m_len = frag_len; 3108 3109 /* allocate a new mbuf for the SGE */ 3110 rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx); 3111 if (rc) { 3112 /* Leave all remaining SGEs in the ring! */ 3113 return (rc); 3114 } 3115 fp->eth_q_stats.mbuf_alloc_sge--; 3116 3117 /* concatenate the fragment to the head mbuf */ 3118 m_cat(m, m_frag); 3119 3120 frag_size -= frag_len; 3121 } 3122 3123 bxe_update_sge_prod(fp->sc, fp, frags, &cqe_fp->sgl_or_raw_data); 3124 3125 return rc; 3126 } 3127 3128 static uint8_t 3129 bxe_rxeof(struct bxe_softc *sc, 3130 struct bxe_fastpath *fp) 3131 { 3132 if_t ifp = sc->ifp; 3133 uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons; 3134 uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod; 3135 int rx_pkts = 0; 3136 int rc = 0; 3137 3138 BXE_FP_RX_LOCK(fp); 3139 3140 /* CQ "next element" is of the size of the regular element */ 3141 hw_cq_cons = le16toh(*fp->rx_cq_cons_sb); 3142 if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) { 3143 hw_cq_cons++; 3144 } 3145 3146 bd_cons = fp->rx_bd_cons; 3147 bd_prod = fp->rx_bd_prod; 3148 bd_prod_fw = bd_prod; 3149 sw_cq_cons = fp->rx_cq_cons; 3150 sw_cq_prod = fp->rx_cq_prod; 3151 3152 /* 3153 * Memory barrier necessary as speculative reads of the rx 3154 * buffer can be ahead of the index in the status block 3155 */ 3156 rmb(); 3157 3158 BLOGD(sc, DBG_RX, 3159 "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n", 3160 fp->index, hw_cq_cons, sw_cq_cons); 3161 3162 while (sw_cq_cons != hw_cq_cons) { 3163 struct bxe_sw_rx_bd *rx_buf = NULL; 3164 union eth_rx_cqe *cqe; 3165 struct eth_fast_path_rx_cqe *cqe_fp; 3166 uint8_t cqe_fp_flags; 3167 enum eth_rx_cqe_type cqe_fp_type; 3168 uint16_t len, lenonbd, pad; 3169 struct mbuf *m = NULL; 3170 3171 comp_ring_cons = RCQ(sw_cq_cons); 3172 bd_prod = RX_BD(bd_prod); 3173 bd_cons = RX_BD(bd_cons); 3174 3175 cqe = &fp->rcq_chain[comp_ring_cons]; 3176 cqe_fp = &cqe->fast_path_cqe; 3177 cqe_fp_flags = cqe_fp->type_error_flags; 3178 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE; 3179 3180 BLOGD(sc, DBG_RX, 3181 "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d " 3182 "BD prod=%d cons=%d CQE type=0x%x err=0x%x " 3183 "status=0x%x rss_hash=0x%x vlan=0x%x len=%u lenonbd=%u\n", 3184 fp->index, 3185 hw_cq_cons, 3186 sw_cq_cons, 3187 bd_prod, 3188 bd_cons, 3189 CQE_TYPE(cqe_fp_flags), 3190 cqe_fp_flags, 3191 cqe_fp->status_flags, 3192 le32toh(cqe_fp->rss_hash_result), 3193 le16toh(cqe_fp->vlan_tag), 3194 le16toh(cqe_fp->pkt_len_or_gro_seg_len), 3195 le16toh(cqe_fp->len_on_bd)); 3196 3197 /* is this a slowpath msg? */ 3198 if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) { 3199 bxe_sp_event(sc, fp, cqe); 3200 goto next_cqe; 3201 } 3202 3203 rx_buf = &fp->rx_mbuf_chain[bd_cons]; 3204 3205 if (!CQE_TYPE_FAST(cqe_fp_type)) { 3206 struct bxe_sw_tpa_info *tpa_info; 3207 uint16_t frag_size, pages; 3208 uint8_t queue; 3209 3210 if (CQE_TYPE_START(cqe_fp_type)) { 3211 bxe_tpa_start(sc, fp, cqe_fp->queue_index, 3212 bd_cons, bd_prod, cqe_fp); 3213 m = NULL; /* packet not ready yet */ 3214 goto next_rx; 3215 } 3216 3217 KASSERT(CQE_TYPE_STOP(cqe_fp_type), 3218 ("CQE type is not STOP! (0x%x)\n", cqe_fp_type)); 3219 3220 queue = cqe->end_agg_cqe.queue_index; 3221 tpa_info = &fp->rx_tpa_info[queue]; 3222 3223 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n", 3224 fp->index, queue); 3225 3226 frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) - 3227 tpa_info->len_on_bd); 3228 pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT; 3229 3230 bxe_tpa_stop(sc, fp, tpa_info, queue, pages, 3231 &cqe->end_agg_cqe, comp_ring_cons); 3232 3233 bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe.sgl_or_raw_data); 3234 3235 goto next_cqe; 3236 } 3237 3238 /* non TPA */ 3239 3240 /* is this an error packet? */ 3241 if (__predict_false(cqe_fp_flags & 3242 ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) { 3243 BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons); 3244 fp->eth_q_stats.rx_soft_errors++; 3245 goto next_rx; 3246 } 3247 3248 len = le16toh(cqe_fp->pkt_len_or_gro_seg_len); 3249 lenonbd = le16toh(cqe_fp->len_on_bd); 3250 pad = cqe_fp->placement_offset; 3251 3252 m = rx_buf->m; 3253 3254 if (__predict_false(m == NULL)) { 3255 BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n", 3256 bd_cons, fp->index); 3257 goto next_rx; 3258 } 3259 3260 /* XXX double copy if packet length under a threshold */ 3261 3262 /* 3263 * If all the buffer descriptors are filled with mbufs then fill in 3264 * the current consumer index with a new BD. Else if a maximum Rx 3265 * buffer limit is imposed then fill in the next producer index. 3266 */ 3267 rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons, 3268 (sc->max_rx_bufs != RX_BD_USABLE) ? 3269 bd_prod : bd_cons); 3270 if (rc != 0) { 3271 3272 /* we simply reuse the received mbuf and don't post it to the stack */ 3273 m = NULL; 3274 3275 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", 3276 fp->index, rc); 3277 fp->eth_q_stats.rx_soft_errors++; 3278 3279 if (sc->max_rx_bufs != RX_BD_USABLE) { 3280 /* copy this consumer index to the producer index */ 3281 memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf, 3282 sizeof(struct bxe_sw_rx_bd)); 3283 memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd)); 3284 } 3285 3286 goto next_rx; 3287 } 3288 3289 /* current mbuf was detached from the bd */ 3290 fp->eth_q_stats.mbuf_alloc_rx--; 3291 3292 /* we allocated a replacement mbuf, fixup the current one */ 3293 m_adj(m, pad); 3294 m->m_pkthdr.len = m->m_len = len; 3295 3296 if ((len > 60) && (len > lenonbd)) { 3297 fp->eth_q_stats.rx_bxe_service_rxsgl++; 3298 rc = bxe_service_rxsgl(fp, len, lenonbd, m, cqe_fp); 3299 if (rc) 3300 break; 3301 fp->eth_q_stats.rx_jumbo_sge_pkts++; 3302 } else if (lenonbd < len) { 3303 fp->eth_q_stats.rx_erroneous_jumbo_sge_pkts++; 3304 } 3305 3306 /* assign packet to this interface interface */ 3307 if_setrcvif(m, ifp); 3308 3309 /* assume no hardware checksum has complated */ 3310 m->m_pkthdr.csum_flags = 0; 3311 3312 /* validate checksum if offload enabled */ 3313 if (if_getcapenable(ifp) & IFCAP_RXCSUM) { 3314 /* check for a valid IP frame */ 3315 if (!(cqe->fast_path_cqe.status_flags & 3316 ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) { 3317 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 3318 if (__predict_false(cqe_fp_flags & 3319 ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) { 3320 fp->eth_q_stats.rx_hw_csum_errors++; 3321 } else { 3322 fp->eth_q_stats.rx_ofld_frames_csum_ip++; 3323 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 3324 } 3325 } 3326 3327 /* check for a valid TCP/UDP frame */ 3328 if (!(cqe->fast_path_cqe.status_flags & 3329 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) { 3330 if (__predict_false(cqe_fp_flags & 3331 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) { 3332 fp->eth_q_stats.rx_hw_csum_errors++; 3333 } else { 3334 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; 3335 m->m_pkthdr.csum_data = 0xFFFF; 3336 m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID | 3337 CSUM_PSEUDO_HDR); 3338 } 3339 } 3340 } 3341 3342 /* if there is a VLAN tag then flag that info */ 3343 if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_INNER_VLAN_EXIST) { 3344 m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag; 3345 m->m_flags |= M_VLANTAG; 3346 } 3347 3348 #if __FreeBSD_version >= 800000 3349 /* specify what RSS queue was used for this flow */ 3350 m->m_pkthdr.flowid = fp->index; 3351 BXE_SET_FLOWID(m); 3352 #endif 3353 3354 next_rx: 3355 3356 bd_cons = RX_BD_NEXT(bd_cons); 3357 bd_prod = RX_BD_NEXT(bd_prod); 3358 bd_prod_fw = RX_BD_NEXT(bd_prod_fw); 3359 3360 /* pass the frame to the stack */ 3361 if (__predict_true(m != NULL)) { 3362 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 3363 rx_pkts++; 3364 if_input(ifp, m); 3365 } 3366 3367 next_cqe: 3368 3369 sw_cq_prod = RCQ_NEXT(sw_cq_prod); 3370 sw_cq_cons = RCQ_NEXT(sw_cq_cons); 3371 3372 /* limit spinning on the queue */ 3373 if (rc != 0) 3374 break; 3375 3376 if (rx_pkts == sc->rx_budget) { 3377 fp->eth_q_stats.rx_budget_reached++; 3378 break; 3379 } 3380 } /* while work to do */ 3381 3382 fp->rx_bd_cons = bd_cons; 3383 fp->rx_bd_prod = bd_prod_fw; 3384 fp->rx_cq_cons = sw_cq_cons; 3385 fp->rx_cq_prod = sw_cq_prod; 3386 3387 /* Update producers */ 3388 bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod); 3389 3390 fp->eth_q_stats.rx_pkts += rx_pkts; 3391 fp->eth_q_stats.rx_calls++; 3392 3393 BXE_FP_RX_UNLOCK(fp); 3394 3395 return (sw_cq_cons != hw_cq_cons); 3396 } 3397 3398 static uint16_t 3399 bxe_free_tx_pkt(struct bxe_softc *sc, 3400 struct bxe_fastpath *fp, 3401 uint16_t idx) 3402 { 3403 struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx]; 3404 struct eth_tx_start_bd *tx_start_bd; 3405 uint16_t bd_idx = TX_BD(tx_buf->first_bd); 3406 uint16_t new_cons; 3407 int nbd; 3408 3409 /* unmap the mbuf from non-paged memory */ 3410 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 3411 3412 tx_start_bd = &fp->tx_chain[bd_idx].start_bd; 3413 nbd = le16toh(tx_start_bd->nbd) - 1; 3414 3415 new_cons = (tx_buf->first_bd + nbd); 3416 3417 /* free the mbuf */ 3418 if (__predict_true(tx_buf->m != NULL)) { 3419 m_freem(tx_buf->m); 3420 fp->eth_q_stats.mbuf_alloc_tx--; 3421 } else { 3422 fp->eth_q_stats.tx_chain_lost_mbuf++; 3423 } 3424 3425 tx_buf->m = NULL; 3426 tx_buf->first_bd = 0; 3427 3428 return (new_cons); 3429 } 3430 3431 /* transmit timeout watchdog */ 3432 static int 3433 bxe_watchdog(struct bxe_softc *sc, 3434 struct bxe_fastpath *fp) 3435 { 3436 BXE_FP_TX_LOCK(fp); 3437 3438 if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) { 3439 BXE_FP_TX_UNLOCK(fp); 3440 return (0); 3441 } 3442 3443 BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index); 3444 if(sc->trigger_grcdump) { 3445 /* taking grcdump */ 3446 bxe_grc_dump(sc); 3447 } 3448 3449 BXE_FP_TX_UNLOCK(fp); 3450 3451 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT); 3452 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task); 3453 3454 return (-1); 3455 } 3456 3457 /* processes transmit completions */ 3458 static uint8_t 3459 bxe_txeof(struct bxe_softc *sc, 3460 struct bxe_fastpath *fp) 3461 { 3462 if_t ifp = sc->ifp; 3463 uint16_t bd_cons, hw_cons, sw_cons, pkt_cons; 3464 uint16_t tx_bd_avail; 3465 3466 BXE_FP_TX_LOCK_ASSERT(fp); 3467 3468 bd_cons = fp->tx_bd_cons; 3469 hw_cons = le16toh(*fp->tx_cons_sb); 3470 sw_cons = fp->tx_pkt_cons; 3471 3472 while (sw_cons != hw_cons) { 3473 pkt_cons = TX_BD(sw_cons); 3474 3475 BLOGD(sc, DBG_TX, 3476 "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n", 3477 fp->index, hw_cons, sw_cons, pkt_cons); 3478 3479 bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons); 3480 3481 sw_cons++; 3482 } 3483 3484 fp->tx_pkt_cons = sw_cons; 3485 fp->tx_bd_cons = bd_cons; 3486 3487 BLOGD(sc, DBG_TX, 3488 "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n", 3489 fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod); 3490 3491 mb(); 3492 3493 tx_bd_avail = bxe_tx_avail(sc, fp); 3494 3495 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 3496 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 3497 } else { 3498 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 3499 } 3500 3501 if (fp->tx_pkt_prod != fp->tx_pkt_cons) { 3502 /* reset the watchdog timer if there are pending transmits */ 3503 fp->watchdog_timer = BXE_TX_TIMEOUT; 3504 return (TRUE); 3505 } else { 3506 /* clear watchdog when there are no pending transmits */ 3507 fp->watchdog_timer = 0; 3508 return (FALSE); 3509 } 3510 } 3511 3512 static void 3513 bxe_drain_tx_queues(struct bxe_softc *sc) 3514 { 3515 struct bxe_fastpath *fp; 3516 int i, count; 3517 3518 /* wait until all TX fastpath tasks have completed */ 3519 for (i = 0; i < sc->num_queues; i++) { 3520 fp = &sc->fp[i]; 3521 3522 count = 1000; 3523 3524 while (bxe_has_tx_work(fp)) { 3525 3526 BXE_FP_TX_LOCK(fp); 3527 bxe_txeof(sc, fp); 3528 BXE_FP_TX_UNLOCK(fp); 3529 3530 if (count == 0) { 3531 BLOGE(sc, "Timeout waiting for fp[%d] " 3532 "transmits to complete!\n", i); 3533 bxe_panic(sc, ("tx drain failure\n")); 3534 return; 3535 } 3536 3537 count--; 3538 DELAY(1000); 3539 rmb(); 3540 } 3541 } 3542 3543 return; 3544 } 3545 3546 static int 3547 bxe_del_all_macs(struct bxe_softc *sc, 3548 struct ecore_vlan_mac_obj *mac_obj, 3549 int mac_type, 3550 uint8_t wait_for_comp) 3551 { 3552 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 3553 int rc; 3554 3555 /* wait for completion of requested */ 3556 if (wait_for_comp) { 3557 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 3558 } 3559 3560 /* Set the mac type of addresses we want to clear */ 3561 bxe_set_bit(mac_type, &vlan_mac_flags); 3562 3563 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags); 3564 if (rc < 0) { 3565 BLOGE(sc, "Failed to delete MACs (%d) mac_type %d wait_for_comp 0x%x\n", 3566 rc, mac_type, wait_for_comp); 3567 } 3568 3569 return (rc); 3570 } 3571 3572 static int 3573 bxe_fill_accept_flags(struct bxe_softc *sc, 3574 uint32_t rx_mode, 3575 unsigned long *rx_accept_flags, 3576 unsigned long *tx_accept_flags) 3577 { 3578 /* Clear the flags first */ 3579 *rx_accept_flags = 0; 3580 *tx_accept_flags = 0; 3581 3582 switch (rx_mode) { 3583 case BXE_RX_MODE_NONE: 3584 /* 3585 * 'drop all' supersedes any accept flags that may have been 3586 * passed to the function. 3587 */ 3588 break; 3589 3590 case BXE_RX_MODE_NORMAL: 3591 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3592 bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags); 3593 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3594 3595 /* internal switching mode */ 3596 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3597 bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags); 3598 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3599 3600 break; 3601 3602 case BXE_RX_MODE_ALLMULTI: 3603 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3604 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); 3605 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3606 3607 /* internal switching mode */ 3608 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3609 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); 3610 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3611 3612 break; 3613 3614 case BXE_RX_MODE_PROMISC: 3615 /* 3616 * According to deffinition of SI mode, iface in promisc mode 3617 * should receive matched and unmatched (in resolution of port) 3618 * unicast packets. 3619 */ 3620 bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags); 3621 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3622 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); 3623 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3624 3625 /* internal switching mode */ 3626 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); 3627 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3628 3629 if (IS_MF_SI(sc)) { 3630 bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags); 3631 } else { 3632 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3633 } 3634 3635 break; 3636 3637 default: 3638 BLOGE(sc, "Unknown rx_mode (0x%x)\n", rx_mode); 3639 return (-1); 3640 } 3641 3642 /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */ 3643 if (rx_mode != BXE_RX_MODE_NONE) { 3644 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags); 3645 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags); 3646 } 3647 3648 return (0); 3649 } 3650 3651 static int 3652 bxe_set_q_rx_mode(struct bxe_softc *sc, 3653 uint8_t cl_id, 3654 unsigned long rx_mode_flags, 3655 unsigned long rx_accept_flags, 3656 unsigned long tx_accept_flags, 3657 unsigned long ramrod_flags) 3658 { 3659 struct ecore_rx_mode_ramrod_params ramrod_param; 3660 int rc; 3661 3662 memset(&ramrod_param, 0, sizeof(ramrod_param)); 3663 3664 /* Prepare ramrod parameters */ 3665 ramrod_param.cid = 0; 3666 ramrod_param.cl_id = cl_id; 3667 ramrod_param.rx_mode_obj = &sc->rx_mode_obj; 3668 ramrod_param.func_id = SC_FUNC(sc); 3669 3670 ramrod_param.pstate = &sc->sp_state; 3671 ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING; 3672 3673 ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata); 3674 ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata); 3675 3676 bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); 3677 3678 ramrod_param.ramrod_flags = ramrod_flags; 3679 ramrod_param.rx_mode_flags = rx_mode_flags; 3680 3681 ramrod_param.rx_accept_flags = rx_accept_flags; 3682 ramrod_param.tx_accept_flags = tx_accept_flags; 3683 3684 rc = ecore_config_rx_mode(sc, &ramrod_param); 3685 if (rc < 0) { 3686 BLOGE(sc, "Set rx_mode %d cli_id 0x%x rx_mode_flags 0x%x " 3687 "rx_accept_flags 0x%x tx_accept_flags 0x%x " 3688 "ramrod_flags 0x%x rc %d failed\n", sc->rx_mode, cl_id, 3689 (uint32_t)rx_mode_flags, (uint32_t)rx_accept_flags, 3690 (uint32_t)tx_accept_flags, (uint32_t)ramrod_flags, rc); 3691 return (rc); 3692 } 3693 3694 return (0); 3695 } 3696 3697 static int 3698 bxe_set_storm_rx_mode(struct bxe_softc *sc) 3699 { 3700 unsigned long rx_mode_flags = 0, ramrod_flags = 0; 3701 unsigned long rx_accept_flags = 0, tx_accept_flags = 0; 3702 int rc; 3703 3704 rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags, 3705 &tx_accept_flags); 3706 if (rc) { 3707 return (rc); 3708 } 3709 3710 bxe_set_bit(RAMROD_RX, &ramrod_flags); 3711 bxe_set_bit(RAMROD_TX, &ramrod_flags); 3712 3713 /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */ 3714 return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags, 3715 rx_accept_flags, tx_accept_flags, 3716 ramrod_flags)); 3717 } 3718 3719 /* returns the "mcp load_code" according to global load_count array */ 3720 static int 3721 bxe_nic_load_no_mcp(struct bxe_softc *sc) 3722 { 3723 int path = SC_PATH(sc); 3724 int port = SC_PORT(sc); 3725 3726 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", 3727 path, load_count[path][0], load_count[path][1], 3728 load_count[path][2]); 3729 load_count[path][0]++; 3730 load_count[path][1 + port]++; 3731 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", 3732 path, load_count[path][0], load_count[path][1], 3733 load_count[path][2]); 3734 if (load_count[path][0] == 1) { 3735 return (FW_MSG_CODE_DRV_LOAD_COMMON); 3736 } else if (load_count[path][1 + port] == 1) { 3737 return (FW_MSG_CODE_DRV_LOAD_PORT); 3738 } else { 3739 return (FW_MSG_CODE_DRV_LOAD_FUNCTION); 3740 } 3741 } 3742 3743 /* returns the "mcp load_code" according to global load_count array */ 3744 static int 3745 bxe_nic_unload_no_mcp(struct bxe_softc *sc) 3746 { 3747 int port = SC_PORT(sc); 3748 int path = SC_PATH(sc); 3749 3750 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", 3751 path, load_count[path][0], load_count[path][1], 3752 load_count[path][2]); 3753 load_count[path][0]--; 3754 load_count[path][1 + port]--; 3755 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", 3756 path, load_count[path][0], load_count[path][1], 3757 load_count[path][2]); 3758 if (load_count[path][0] == 0) { 3759 return (FW_MSG_CODE_DRV_UNLOAD_COMMON); 3760 } else if (load_count[path][1 + port] == 0) { 3761 return (FW_MSG_CODE_DRV_UNLOAD_PORT); 3762 } else { 3763 return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION); 3764 } 3765 } 3766 3767 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */ 3768 static uint32_t 3769 bxe_send_unload_req(struct bxe_softc *sc, 3770 int unload_mode) 3771 { 3772 uint32_t reset_code = 0; 3773 3774 /* Select the UNLOAD request mode */ 3775 if (unload_mode == UNLOAD_NORMAL) { 3776 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 3777 } else { 3778 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 3779 } 3780 3781 /* Send the request to the MCP */ 3782 if (!BXE_NOMCP(sc)) { 3783 reset_code = bxe_fw_command(sc, reset_code, 0); 3784 } else { 3785 reset_code = bxe_nic_unload_no_mcp(sc); 3786 } 3787 3788 return (reset_code); 3789 } 3790 3791 /* send UNLOAD_DONE command to the MCP */ 3792 static void 3793 bxe_send_unload_done(struct bxe_softc *sc, 3794 uint8_t keep_link) 3795 { 3796 uint32_t reset_param = 3797 keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0; 3798 3799 /* Report UNLOAD_DONE to MCP */ 3800 if (!BXE_NOMCP(sc)) { 3801 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param); 3802 } 3803 } 3804 3805 static int 3806 bxe_func_wait_started(struct bxe_softc *sc) 3807 { 3808 int tout = 50; 3809 3810 if (!sc->port.pmf) { 3811 return (0); 3812 } 3813 3814 /* 3815 * (assumption: No Attention from MCP at this stage) 3816 * PMF probably in the middle of TX disable/enable transaction 3817 * 1. Sync IRS for default SB 3818 * 2. Sync SP queue - this guarantees us that attention handling started 3819 * 3. Wait, that TX disable/enable transaction completes 3820 * 3821 * 1+2 guarantee that if DCBX attention was scheduled it already changed 3822 * pending bit of transaction from STARTED-->TX_STOPPED, if we already 3823 * received completion for the transaction the state is TX_STOPPED. 3824 * State will return to STARTED after completion of TX_STOPPED-->STARTED 3825 * transaction. 3826 */ 3827 3828 /* XXX make sure default SB ISR is done */ 3829 /* need a way to synchronize an irq (intr_mtx?) */ 3830 3831 /* XXX flush any work queues */ 3832 3833 while (ecore_func_get_state(sc, &sc->func_obj) != 3834 ECORE_F_STATE_STARTED && tout--) { 3835 DELAY(20000); 3836 } 3837 3838 if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) { 3839 /* 3840 * Failed to complete the transaction in a "good way" 3841 * Force both transactions with CLR bit. 3842 */ 3843 struct ecore_func_state_params func_params = { NULL }; 3844 3845 BLOGE(sc, "Unexpected function state! " 3846 "Forcing STARTED-->TX_STOPPED-->STARTED\n"); 3847 3848 func_params.f_obj = &sc->func_obj; 3849 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 3850 3851 /* STARTED-->TX_STOPPED */ 3852 func_params.cmd = ECORE_F_CMD_TX_STOP; 3853 ecore_func_state_change(sc, &func_params); 3854 3855 /* TX_STOPPED-->STARTED */ 3856 func_params.cmd = ECORE_F_CMD_TX_START; 3857 return (ecore_func_state_change(sc, &func_params)); 3858 } 3859 3860 return (0); 3861 } 3862 3863 static int 3864 bxe_stop_queue(struct bxe_softc *sc, 3865 int index) 3866 { 3867 struct bxe_fastpath *fp = &sc->fp[index]; 3868 struct ecore_queue_state_params q_params = { NULL }; 3869 int rc; 3870 3871 BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index); 3872 3873 q_params.q_obj = &sc->sp_objs[fp->index].q_obj; 3874 /* We want to wait for completion in this context */ 3875 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 3876 3877 /* Stop the primary connection: */ 3878 3879 /* ...halt the connection */ 3880 q_params.cmd = ECORE_Q_CMD_HALT; 3881 rc = ecore_queue_state_change(sc, &q_params); 3882 if (rc) { 3883 return (rc); 3884 } 3885 3886 /* ...terminate the connection */ 3887 q_params.cmd = ECORE_Q_CMD_TERMINATE; 3888 memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate)); 3889 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX; 3890 rc = ecore_queue_state_change(sc, &q_params); 3891 if (rc) { 3892 return (rc); 3893 } 3894 3895 /* ...delete cfc entry */ 3896 q_params.cmd = ECORE_Q_CMD_CFC_DEL; 3897 memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del)); 3898 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX; 3899 return (ecore_queue_state_change(sc, &q_params)); 3900 } 3901 3902 /* wait for the outstanding SP commands */ 3903 static inline uint8_t 3904 bxe_wait_sp_comp(struct bxe_softc *sc, 3905 unsigned long mask) 3906 { 3907 unsigned long tmp; 3908 int tout = 5000; /* wait for 5 secs tops */ 3909 3910 while (tout--) { 3911 mb(); 3912 if (!(atomic_load_acq_long(&sc->sp_state) & mask)) { 3913 return (TRUE); 3914 } 3915 3916 DELAY(1000); 3917 } 3918 3919 mb(); 3920 3921 tmp = atomic_load_acq_long(&sc->sp_state); 3922 if (tmp & mask) { 3923 BLOGE(sc, "Filtering completion timed out: " 3924 "sp_state 0x%lx, mask 0x%lx\n", 3925 tmp, mask); 3926 return (FALSE); 3927 } 3928 3929 return (FALSE); 3930 } 3931 3932 static int 3933 bxe_func_stop(struct bxe_softc *sc) 3934 { 3935 struct ecore_func_state_params func_params = { NULL }; 3936 int rc; 3937 3938 /* prepare parameters for function state transitions */ 3939 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 3940 func_params.f_obj = &sc->func_obj; 3941 func_params.cmd = ECORE_F_CMD_STOP; 3942 3943 /* 3944 * Try to stop the function the 'good way'. If it fails (in case 3945 * of a parity error during bxe_chip_cleanup()) and we are 3946 * not in a debug mode, perform a state transaction in order to 3947 * enable further HW_RESET transaction. 3948 */ 3949 rc = ecore_func_state_change(sc, &func_params); 3950 if (rc) { 3951 BLOGE(sc, "FUNC_STOP ramrod failed. " 3952 "Running a dry transaction (%d)\n", rc); 3953 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 3954 return (ecore_func_state_change(sc, &func_params)); 3955 } 3956 3957 return (0); 3958 } 3959 3960 static int 3961 bxe_reset_hw(struct bxe_softc *sc, 3962 uint32_t load_code) 3963 { 3964 struct ecore_func_state_params func_params = { NULL }; 3965 3966 /* Prepare parameters for function state transitions */ 3967 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 3968 3969 func_params.f_obj = &sc->func_obj; 3970 func_params.cmd = ECORE_F_CMD_HW_RESET; 3971 3972 func_params.params.hw_init.load_phase = load_code; 3973 3974 return (ecore_func_state_change(sc, &func_params)); 3975 } 3976 3977 static void 3978 bxe_int_disable_sync(struct bxe_softc *sc, 3979 int disable_hw) 3980 { 3981 if (disable_hw) { 3982 /* prevent the HW from sending interrupts */ 3983 bxe_int_disable(sc); 3984 } 3985 3986 /* XXX need a way to synchronize ALL irqs (intr_mtx?) */ 3987 /* make sure all ISRs are done */ 3988 3989 /* XXX make sure sp_task is not running */ 3990 /* cancel and flush work queues */ 3991 } 3992 3993 static void 3994 bxe_chip_cleanup(struct bxe_softc *sc, 3995 uint32_t unload_mode, 3996 uint8_t keep_link) 3997 { 3998 int port = SC_PORT(sc); 3999 struct ecore_mcast_ramrod_params rparam = { NULL }; 4000 uint32_t reset_code; 4001 int i, rc = 0; 4002 4003 bxe_drain_tx_queues(sc); 4004 4005 /* give HW time to discard old tx messages */ 4006 DELAY(1000); 4007 4008 /* Clean all ETH MACs */ 4009 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE); 4010 if (rc < 0) { 4011 BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc); 4012 } 4013 4014 /* Clean up UC list */ 4015 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE); 4016 if (rc < 0) { 4017 BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc); 4018 } 4019 4020 /* Disable LLH */ 4021 if (!CHIP_IS_E1(sc)) { 4022 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); 4023 } 4024 4025 /* Set "drop all" to stop Rx */ 4026 4027 /* 4028 * We need to take the BXE_MCAST_LOCK() here in order to prevent 4029 * a race between the completion code and this code. 4030 */ 4031 BXE_MCAST_LOCK(sc); 4032 4033 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { 4034 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); 4035 } else { 4036 bxe_set_storm_rx_mode(sc); 4037 } 4038 4039 /* Clean up multicast configuration */ 4040 rparam.mcast_obj = &sc->mcast_obj; 4041 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 4042 if (rc < 0) { 4043 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); 4044 } 4045 4046 BXE_MCAST_UNLOCK(sc); 4047 4048 // XXX bxe_iov_chip_cleanup(sc); 4049 4050 /* 4051 * Send the UNLOAD_REQUEST to the MCP. This will return if 4052 * this function should perform FUNCTION, PORT, or COMMON HW 4053 * reset. 4054 */ 4055 reset_code = bxe_send_unload_req(sc, unload_mode); 4056 4057 /* 4058 * (assumption: No Attention from MCP at this stage) 4059 * PMF probably in the middle of TX disable/enable transaction 4060 */ 4061 rc = bxe_func_wait_started(sc); 4062 if (rc) { 4063 BLOGE(sc, "bxe_func_wait_started failed (%d)\n", rc); 4064 } 4065 4066 /* 4067 * Close multi and leading connections 4068 * Completions for ramrods are collected in a synchronous way 4069 */ 4070 for (i = 0; i < sc->num_queues; i++) { 4071 if (bxe_stop_queue(sc, i)) { 4072 goto unload_error; 4073 } 4074 } 4075 4076 /* 4077 * If SP settings didn't get completed so far - something 4078 * very wrong has happen. 4079 */ 4080 if (!bxe_wait_sp_comp(sc, ~0x0UL)) { 4081 BLOGE(sc, "Common slow path ramrods got stuck!(%d)\n", rc); 4082 } 4083 4084 unload_error: 4085 4086 rc = bxe_func_stop(sc); 4087 if (rc) { 4088 BLOGE(sc, "Function stop failed!(%d)\n", rc); 4089 } 4090 4091 /* disable HW interrupts */ 4092 bxe_int_disable_sync(sc, TRUE); 4093 4094 /* detach interrupts */ 4095 bxe_interrupt_detach(sc); 4096 4097 /* Reset the chip */ 4098 rc = bxe_reset_hw(sc, reset_code); 4099 if (rc) { 4100 BLOGE(sc, "Hardware reset failed(%d)\n", rc); 4101 } 4102 4103 /* Report UNLOAD_DONE to MCP */ 4104 bxe_send_unload_done(sc, keep_link); 4105 } 4106 4107 static void 4108 bxe_disable_close_the_gate(struct bxe_softc *sc) 4109 { 4110 uint32_t val; 4111 int port = SC_PORT(sc); 4112 4113 BLOGD(sc, DBG_LOAD, 4114 "Disabling 'close the gates'\n"); 4115 4116 if (CHIP_IS_E1(sc)) { 4117 uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 4118 MISC_REG_AEU_MASK_ATTN_FUNC_0; 4119 val = REG_RD(sc, addr); 4120 val &= ~(0x300); 4121 REG_WR(sc, addr, val); 4122 } else { 4123 val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK); 4124 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK | 4125 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK); 4126 REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val); 4127 } 4128 } 4129 4130 /* 4131 * Cleans the object that have internal lists without sending 4132 * ramrods. Should be run when interrutps are disabled. 4133 */ 4134 static void 4135 bxe_squeeze_objects(struct bxe_softc *sc) 4136 { 4137 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 4138 struct ecore_mcast_ramrod_params rparam = { NULL }; 4139 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; 4140 int rc; 4141 4142 /* Cleanup MACs' object first... */ 4143 4144 /* Wait for completion of requested */ 4145 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 4146 /* Perform a dry cleanup */ 4147 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags); 4148 4149 /* Clean ETH primary MAC */ 4150 bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags); 4151 rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags, 4152 &ramrod_flags); 4153 if (rc != 0) { 4154 BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc); 4155 } 4156 4157 /* Cleanup UC list */ 4158 vlan_mac_flags = 0; 4159 bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags); 4160 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, 4161 &ramrod_flags); 4162 if (rc != 0) { 4163 BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc); 4164 } 4165 4166 /* Now clean mcast object... */ 4167 4168 rparam.mcast_obj = &sc->mcast_obj; 4169 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags); 4170 4171 /* Add a DEL command... */ 4172 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 4173 if (rc < 0) { 4174 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); 4175 } 4176 4177 /* now wait until all pending commands are cleared */ 4178 4179 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 4180 while (rc != 0) { 4181 if (rc < 0) { 4182 BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc); 4183 return; 4184 } 4185 4186 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 4187 } 4188 } 4189 4190 /* stop the controller */ 4191 static __noinline int 4192 bxe_nic_unload(struct bxe_softc *sc, 4193 uint32_t unload_mode, 4194 uint8_t keep_link) 4195 { 4196 uint8_t global = FALSE; 4197 uint32_t val; 4198 int i; 4199 4200 BXE_CORE_LOCK_ASSERT(sc); 4201 4202 if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING); 4203 4204 for (i = 0; i < sc->num_queues; i++) { 4205 struct bxe_fastpath *fp; 4206 4207 fp = &sc->fp[i]; 4208 BXE_FP_TX_LOCK(fp); 4209 BXE_FP_TX_UNLOCK(fp); 4210 } 4211 4212 BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n"); 4213 4214 /* mark driver as unloaded in shmem2 */ 4215 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { 4216 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); 4217 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], 4218 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); 4219 } 4220 4221 if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE && 4222 (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) { 4223 /* 4224 * We can get here if the driver has been unloaded 4225 * during parity error recovery and is either waiting for a 4226 * leader to complete or for other functions to unload and 4227 * then ifconfig down has been issued. In this case we want to 4228 * unload and let other functions to complete a recovery 4229 * process. 4230 */ 4231 sc->recovery_state = BXE_RECOVERY_DONE; 4232 sc->is_leader = 0; 4233 bxe_release_leader_lock(sc); 4234 mb(); 4235 4236 BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n"); 4237 BLOGE(sc, "Can't unload in closed or error state recover_state 0x%x" 4238 " state = 0x%x\n", sc->recovery_state, sc->state); 4239 return (-1); 4240 } 4241 4242 /* 4243 * Nothing to do during unload if previous bxe_nic_load() 4244 * did not completed successfully - all resourses are released. 4245 */ 4246 if ((sc->state == BXE_STATE_CLOSED) || 4247 (sc->state == BXE_STATE_ERROR)) { 4248 return (0); 4249 } 4250 4251 sc->state = BXE_STATE_CLOSING_WAITING_HALT; 4252 mb(); 4253 4254 /* stop tx */ 4255 bxe_tx_disable(sc); 4256 4257 sc->rx_mode = BXE_RX_MODE_NONE; 4258 /* XXX set rx mode ??? */ 4259 4260 if (IS_PF(sc) && !sc->grcdump_done) { 4261 /* set ALWAYS_ALIVE bit in shmem */ 4262 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 4263 4264 bxe_drv_pulse(sc); 4265 4266 bxe_stats_handle(sc, STATS_EVENT_STOP); 4267 bxe_save_statistics(sc); 4268 } 4269 4270 /* wait till consumers catch up with producers in all queues */ 4271 bxe_drain_tx_queues(sc); 4272 4273 /* if VF indicate to PF this function is going down (PF will delete sp 4274 * elements and clear initializations 4275 */ 4276 if (IS_VF(sc)) { 4277 ; /* bxe_vfpf_close_vf(sc); */ 4278 } else if (unload_mode != UNLOAD_RECOVERY) { 4279 /* if this is a normal/close unload need to clean up chip */ 4280 if (!sc->grcdump_done) 4281 bxe_chip_cleanup(sc, unload_mode, keep_link); 4282 } else { 4283 /* Send the UNLOAD_REQUEST to the MCP */ 4284 bxe_send_unload_req(sc, unload_mode); 4285 4286 /* 4287 * Prevent transactions to host from the functions on the 4288 * engine that doesn't reset global blocks in case of global 4289 * attention once gloabl blocks are reset and gates are opened 4290 * (the engine which leader will perform the recovery 4291 * last). 4292 */ 4293 if (!CHIP_IS_E1x(sc)) { 4294 bxe_pf_disable(sc); 4295 } 4296 4297 /* disable HW interrupts */ 4298 bxe_int_disable_sync(sc, TRUE); 4299 4300 /* detach interrupts */ 4301 bxe_interrupt_detach(sc); 4302 4303 /* Report UNLOAD_DONE to MCP */ 4304 bxe_send_unload_done(sc, FALSE); 4305 } 4306 4307 /* 4308 * At this stage no more interrupts will arrive so we may safely clean 4309 * the queue'able objects here in case they failed to get cleaned so far. 4310 */ 4311 if (IS_PF(sc)) { 4312 bxe_squeeze_objects(sc); 4313 } 4314 4315 /* There should be no more pending SP commands at this stage */ 4316 sc->sp_state = 0; 4317 4318 sc->port.pmf = 0; 4319 4320 bxe_free_fp_buffers(sc); 4321 4322 if (IS_PF(sc)) { 4323 bxe_free_mem(sc); 4324 } 4325 4326 bxe_free_fw_stats_mem(sc); 4327 4328 sc->state = BXE_STATE_CLOSED; 4329 4330 /* 4331 * Check if there are pending parity attentions. If there are - set 4332 * RECOVERY_IN_PROGRESS. 4333 */ 4334 if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) { 4335 bxe_set_reset_in_progress(sc); 4336 4337 /* Set RESET_IS_GLOBAL if needed */ 4338 if (global) { 4339 bxe_set_reset_global(sc); 4340 } 4341 } 4342 4343 /* 4344 * The last driver must disable a "close the gate" if there is no 4345 * parity attention or "process kill" pending. 4346 */ 4347 if (IS_PF(sc) && !bxe_clear_pf_load(sc) && 4348 bxe_reset_is_done(sc, SC_PATH(sc))) { 4349 bxe_disable_close_the_gate(sc); 4350 } 4351 4352 BLOGD(sc, DBG_LOAD, "Ended NIC unload\n"); 4353 4354 return (0); 4355 } 4356 4357 /* 4358 * Called by the OS to set various media options (i.e. link, speed, etc.) when 4359 * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...". 4360 */ 4361 static int 4362 bxe_ifmedia_update(struct ifnet *ifp) 4363 { 4364 struct bxe_softc *sc = (struct bxe_softc *)if_getsoftc(ifp); 4365 struct ifmedia *ifm; 4366 4367 ifm = &sc->ifmedia; 4368 4369 /* We only support Ethernet media type. */ 4370 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) { 4371 return (EINVAL); 4372 } 4373 4374 switch (IFM_SUBTYPE(ifm->ifm_media)) { 4375 case IFM_AUTO: 4376 break; 4377 case IFM_10G_CX4: 4378 case IFM_10G_SR: 4379 case IFM_10G_T: 4380 case IFM_10G_TWINAX: 4381 default: 4382 /* We don't support changing the media type. */ 4383 BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n", 4384 IFM_SUBTYPE(ifm->ifm_media)); 4385 return (EINVAL); 4386 } 4387 4388 return (0); 4389 } 4390 4391 /* 4392 * Called by the OS to get the current media status (i.e. link, speed, etc.). 4393 */ 4394 static void 4395 bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr) 4396 { 4397 struct bxe_softc *sc = if_getsoftc(ifp); 4398 4399 /* Report link down if the driver isn't running. */ 4400 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) { 4401 ifmr->ifm_active |= IFM_NONE; 4402 return; 4403 } 4404 4405 /* Setup the default interface info. */ 4406 ifmr->ifm_status = IFM_AVALID; 4407 ifmr->ifm_active = IFM_ETHER; 4408 4409 if (sc->link_vars.link_up) { 4410 ifmr->ifm_status |= IFM_ACTIVE; 4411 } else { 4412 ifmr->ifm_active |= IFM_NONE; 4413 return; 4414 } 4415 4416 ifmr->ifm_active |= sc->media; 4417 4418 if (sc->link_vars.duplex == DUPLEX_FULL) { 4419 ifmr->ifm_active |= IFM_FDX; 4420 } else { 4421 ifmr->ifm_active |= IFM_HDX; 4422 } 4423 } 4424 4425 static void 4426 bxe_handle_chip_tq(void *context, 4427 int pending) 4428 { 4429 struct bxe_softc *sc = (struct bxe_softc *)context; 4430 long work = atomic_load_acq_long(&sc->chip_tq_flags); 4431 4432 switch (work) 4433 { 4434 4435 case CHIP_TQ_REINIT: 4436 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 4437 /* restart the interface */ 4438 BLOGD(sc, DBG_LOAD, "Restarting the interface...\n"); 4439 bxe_periodic_stop(sc); 4440 BXE_CORE_LOCK(sc); 4441 bxe_stop_locked(sc); 4442 bxe_init_locked(sc); 4443 BXE_CORE_UNLOCK(sc); 4444 } 4445 break; 4446 4447 default: 4448 break; 4449 } 4450 } 4451 4452 /* 4453 * Handles any IOCTL calls from the operating system. 4454 * 4455 * Returns: 4456 * 0 = Success, >0 Failure 4457 */ 4458 static int 4459 bxe_ioctl(if_t ifp, 4460 u_long command, 4461 caddr_t data) 4462 { 4463 struct bxe_softc *sc = if_getsoftc(ifp); 4464 struct ifreq *ifr = (struct ifreq *)data; 4465 int mask = 0; 4466 int reinit = 0; 4467 int error = 0; 4468 4469 int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN); 4470 int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING); 4471 4472 switch (command) 4473 { 4474 case SIOCSIFMTU: 4475 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n", 4476 ifr->ifr_mtu); 4477 4478 if (sc->mtu == ifr->ifr_mtu) { 4479 /* nothing to change */ 4480 break; 4481 } 4482 4483 if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) { 4484 BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n", 4485 ifr->ifr_mtu, mtu_min, mtu_max); 4486 error = EINVAL; 4487 break; 4488 } 4489 4490 atomic_store_rel_int((volatile unsigned int *)&sc->mtu, 4491 (unsigned long)ifr->ifr_mtu); 4492 /* 4493 atomic_store_rel_long((volatile unsigned long *)&if_getmtu(ifp), 4494 (unsigned long)ifr->ifr_mtu); 4495 XXX - Not sure why it needs to be atomic 4496 */ 4497 if_setmtu(ifp, ifr->ifr_mtu); 4498 reinit = 1; 4499 break; 4500 4501 case SIOCSIFFLAGS: 4502 /* toggle the interface state up or down */ 4503 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n"); 4504 4505 BXE_CORE_LOCK(sc); 4506 /* check if the interface is up */ 4507 if (if_getflags(ifp) & IFF_UP) { 4508 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4509 /* set the receive mode flags */ 4510 bxe_set_rx_mode(sc); 4511 } else if(sc->state != BXE_STATE_DISABLED) { 4512 bxe_init_locked(sc); 4513 } 4514 } else { 4515 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4516 bxe_periodic_stop(sc); 4517 bxe_stop_locked(sc); 4518 } 4519 } 4520 BXE_CORE_UNLOCK(sc); 4521 4522 break; 4523 4524 case SIOCADDMULTI: 4525 case SIOCDELMULTI: 4526 /* add/delete multicast addresses */ 4527 BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n"); 4528 4529 /* check if the interface is up */ 4530 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4531 /* set the receive mode flags */ 4532 BXE_CORE_LOCK(sc); 4533 bxe_set_rx_mode(sc); 4534 BXE_CORE_UNLOCK(sc); 4535 } 4536 4537 break; 4538 4539 case SIOCSIFCAP: 4540 /* find out which capabilities have changed */ 4541 mask = (ifr->ifr_reqcap ^ if_getcapenable(ifp)); 4542 4543 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n", 4544 mask); 4545 4546 /* toggle the LRO capabilites enable flag */ 4547 if (mask & IFCAP_LRO) { 4548 if_togglecapenable(ifp, IFCAP_LRO); 4549 BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n", 4550 (if_getcapenable(ifp) & IFCAP_LRO) ? "ON" : "OFF"); 4551 reinit = 1; 4552 } 4553 4554 /* toggle the TXCSUM checksum capabilites enable flag */ 4555 if (mask & IFCAP_TXCSUM) { 4556 if_togglecapenable(ifp, IFCAP_TXCSUM); 4557 BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n", 4558 (if_getcapenable(ifp) & IFCAP_TXCSUM) ? "ON" : "OFF"); 4559 if (if_getcapenable(ifp) & IFCAP_TXCSUM) { 4560 if_sethwassistbits(ifp, (CSUM_IP | 4561 CSUM_TCP | 4562 CSUM_UDP | 4563 CSUM_TSO | 4564 CSUM_TCP_IPV6 | 4565 CSUM_UDP_IPV6), 0); 4566 } else { 4567 if_clearhwassist(ifp); /* XXX */ 4568 } 4569 } 4570 4571 /* toggle the RXCSUM checksum capabilities enable flag */ 4572 if (mask & IFCAP_RXCSUM) { 4573 if_togglecapenable(ifp, IFCAP_RXCSUM); 4574 BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n", 4575 (if_getcapenable(ifp) & IFCAP_RXCSUM) ? "ON" : "OFF"); 4576 if (if_getcapenable(ifp) & IFCAP_RXCSUM) { 4577 if_sethwassistbits(ifp, (CSUM_IP | 4578 CSUM_TCP | 4579 CSUM_UDP | 4580 CSUM_TSO | 4581 CSUM_TCP_IPV6 | 4582 CSUM_UDP_IPV6), 0); 4583 } else { 4584 if_clearhwassist(ifp); /* XXX */ 4585 } 4586 } 4587 4588 /* toggle TSO4 capabilities enabled flag */ 4589 if (mask & IFCAP_TSO4) { 4590 if_togglecapenable(ifp, IFCAP_TSO4); 4591 BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n", 4592 (if_getcapenable(ifp) & IFCAP_TSO4) ? "ON" : "OFF"); 4593 } 4594 4595 /* toggle TSO6 capabilities enabled flag */ 4596 if (mask & IFCAP_TSO6) { 4597 if_togglecapenable(ifp, IFCAP_TSO6); 4598 BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n", 4599 (if_getcapenable(ifp) & IFCAP_TSO6) ? "ON" : "OFF"); 4600 } 4601 4602 /* toggle VLAN_HWTSO capabilities enabled flag */ 4603 if (mask & IFCAP_VLAN_HWTSO) { 4604 4605 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); 4606 BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n", 4607 (if_getcapenable(ifp) & IFCAP_VLAN_HWTSO) ? "ON" : "OFF"); 4608 } 4609 4610 /* toggle VLAN_HWCSUM capabilities enabled flag */ 4611 if (mask & IFCAP_VLAN_HWCSUM) { 4612 /* XXX investigate this... */ 4613 BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n"); 4614 error = EINVAL; 4615 } 4616 4617 /* toggle VLAN_MTU capabilities enable flag */ 4618 if (mask & IFCAP_VLAN_MTU) { 4619 /* XXX investigate this... */ 4620 BLOGE(sc, "Changing VLAN_MTU is not supported!\n"); 4621 error = EINVAL; 4622 } 4623 4624 /* toggle VLAN_HWTAGGING capabilities enabled flag */ 4625 if (mask & IFCAP_VLAN_HWTAGGING) { 4626 /* XXX investigate this... */ 4627 BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n"); 4628 error = EINVAL; 4629 } 4630 4631 /* toggle VLAN_HWFILTER capabilities enabled flag */ 4632 if (mask & IFCAP_VLAN_HWFILTER) { 4633 /* XXX investigate this... */ 4634 BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n"); 4635 error = EINVAL; 4636 } 4637 4638 /* XXX not yet... 4639 * IFCAP_WOL_MAGIC 4640 */ 4641 4642 break; 4643 4644 case SIOCSIFMEDIA: 4645 case SIOCGIFMEDIA: 4646 /* set/get interface media */ 4647 BLOGD(sc, DBG_IOCTL, 4648 "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n", 4649 (command & 0xff)); 4650 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command); 4651 break; 4652 4653 default: 4654 BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n", 4655 (command & 0xff)); 4656 error = ether_ioctl(ifp, command, data); 4657 break; 4658 } 4659 4660 if (reinit && (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { 4661 BLOGD(sc, DBG_LOAD | DBG_IOCTL, 4662 "Re-initializing hardware from IOCTL change\n"); 4663 bxe_periodic_stop(sc); 4664 BXE_CORE_LOCK(sc); 4665 bxe_stop_locked(sc); 4666 bxe_init_locked(sc); 4667 BXE_CORE_UNLOCK(sc); 4668 } 4669 4670 return (error); 4671 } 4672 4673 static __noinline void 4674 bxe_dump_mbuf(struct bxe_softc *sc, 4675 struct mbuf *m, 4676 uint8_t contents) 4677 { 4678 char * type; 4679 int i = 0; 4680 4681 if (!(sc->debug & DBG_MBUF)) { 4682 return; 4683 } 4684 4685 if (m == NULL) { 4686 BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n"); 4687 return; 4688 } 4689 4690 while (m) { 4691 4692 #if __FreeBSD_version >= 1000000 4693 BLOGD(sc, DBG_MBUF, 4694 "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n", 4695 i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data); 4696 4697 if (m->m_flags & M_PKTHDR) { 4698 BLOGD(sc, DBG_MBUF, 4699 "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n", 4700 i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS, 4701 (int)m->m_pkthdr.csum_flags, CSUM_BITS); 4702 } 4703 #else 4704 BLOGD(sc, DBG_MBUF, 4705 "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n", 4706 i, m, m->m_len, m->m_flags, 4707 "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", m->m_data); 4708 4709 if (m->m_flags & M_PKTHDR) { 4710 BLOGD(sc, DBG_MBUF, 4711 "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n", 4712 i, m->m_pkthdr.len, m->m_flags, 4713 "\20\12M_BCAST\13M_MCAST\14M_FRAG" 4714 "\15M_FIRSTFRAG\16M_LASTFRAG\21M_VLANTAG" 4715 "\22M_PROMISC\23M_NOFREE", 4716 (int)m->m_pkthdr.csum_flags, 4717 "\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP\4CSUM_IP_FRAGS" 4718 "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED" 4719 "\12CSUM_IP_VALID\13CSUM_DATA_VALID" 4720 "\14CSUM_PSEUDO_HDR"); 4721 } 4722 #endif /* #if __FreeBSD_version >= 1000000 */ 4723 4724 if (m->m_flags & M_EXT) { 4725 switch (m->m_ext.ext_type) { 4726 case EXT_CLUSTER: type = "EXT_CLUSTER"; break; 4727 case EXT_SFBUF: type = "EXT_SFBUF"; break; 4728 case EXT_JUMBOP: type = "EXT_JUMBOP"; break; 4729 case EXT_JUMBO9: type = "EXT_JUMBO9"; break; 4730 case EXT_JUMBO16: type = "EXT_JUMBO16"; break; 4731 case EXT_PACKET: type = "EXT_PACKET"; break; 4732 case EXT_MBUF: type = "EXT_MBUF"; break; 4733 case EXT_NET_DRV: type = "EXT_NET_DRV"; break; 4734 case EXT_MOD_TYPE: type = "EXT_MOD_TYPE"; break; 4735 case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break; 4736 case EXT_EXTREF: type = "EXT_EXTREF"; break; 4737 default: type = "UNKNOWN"; break; 4738 } 4739 4740 BLOGD(sc, DBG_MBUF, 4741 "%02d: - m_ext: %p ext_size=%d type=%s\n", 4742 i, m->m_ext.ext_buf, m->m_ext.ext_size, type); 4743 } 4744 4745 if (contents) { 4746 bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE); 4747 } 4748 4749 m = m->m_next; 4750 i++; 4751 } 4752 } 4753 4754 /* 4755 * Checks to ensure the 13 bd sliding window is >= MSS for TSO. 4756 * Check that (13 total bds - 3 bds) = 10 bd window >= MSS. 4757 * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD 4758 * The headers comes in a separate bd in FreeBSD so 13-3=10. 4759 * Returns: 0 if OK to send, 1 if packet needs further defragmentation 4760 */ 4761 static int 4762 bxe_chktso_window(struct bxe_softc *sc, 4763 int nsegs, 4764 bus_dma_segment_t *segs, 4765 struct mbuf *m) 4766 { 4767 uint32_t num_wnds, wnd_size, wnd_sum; 4768 int32_t frag_idx, wnd_idx; 4769 unsigned short lso_mss; 4770 int defrag; 4771 4772 defrag = 0; 4773 wnd_sum = 0; 4774 wnd_size = 10; 4775 num_wnds = nsegs - wnd_size; 4776 lso_mss = htole16(m->m_pkthdr.tso_segsz); 4777 4778 /* 4779 * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the 4780 * first window sum of data while skipping the first assuming it is the 4781 * header in FreeBSD. 4782 */ 4783 for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) { 4784 wnd_sum += htole16(segs[frag_idx].ds_len); 4785 } 4786 4787 /* check the first 10 bd window size */ 4788 if (wnd_sum < lso_mss) { 4789 return (1); 4790 } 4791 4792 /* run through the windows */ 4793 for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) { 4794 /* subtract the first mbuf->m_len of the last wndw(-header) */ 4795 wnd_sum -= htole16(segs[wnd_idx+1].ds_len); 4796 /* add the next mbuf len to the len of our new window */ 4797 wnd_sum += htole16(segs[frag_idx].ds_len); 4798 if (wnd_sum < lso_mss) { 4799 return (1); 4800 } 4801 } 4802 4803 return (0); 4804 } 4805 4806 static uint8_t 4807 bxe_set_pbd_csum_e2(struct bxe_fastpath *fp, 4808 struct mbuf *m, 4809 uint32_t *parsing_data) 4810 { 4811 struct ether_vlan_header *eh = NULL; 4812 struct ip *ip4 = NULL; 4813 struct ip6_hdr *ip6 = NULL; 4814 caddr_t ip = NULL; 4815 struct tcphdr *th = NULL; 4816 int e_hlen, ip_hlen, l4_off; 4817 uint16_t proto; 4818 4819 if (m->m_pkthdr.csum_flags == CSUM_IP) { 4820 /* no L4 checksum offload needed */ 4821 return (0); 4822 } 4823 4824 /* get the Ethernet header */ 4825 eh = mtod(m, struct ether_vlan_header *); 4826 4827 /* handle VLAN encapsulation if present */ 4828 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 4829 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 4830 proto = ntohs(eh->evl_proto); 4831 } else { 4832 e_hlen = ETHER_HDR_LEN; 4833 proto = ntohs(eh->evl_encap_proto); 4834 } 4835 4836 switch (proto) { 4837 case ETHERTYPE_IP: 4838 /* get the IP header, if mbuf len < 20 then header in next mbuf */ 4839 ip4 = (m->m_len < sizeof(struct ip)) ? 4840 (struct ip *)m->m_next->m_data : 4841 (struct ip *)(m->m_data + e_hlen); 4842 /* ip_hl is number of 32-bit words */ 4843 ip_hlen = (ip4->ip_hl << 2); 4844 ip = (caddr_t)ip4; 4845 break; 4846 case ETHERTYPE_IPV6: 4847 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ 4848 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? 4849 (struct ip6_hdr *)m->m_next->m_data : 4850 (struct ip6_hdr *)(m->m_data + e_hlen); 4851 /* XXX cannot support offload with IPv6 extensions */ 4852 ip_hlen = sizeof(struct ip6_hdr); 4853 ip = (caddr_t)ip6; 4854 break; 4855 default: 4856 /* We can't offload in this case... */ 4857 /* XXX error stat ??? */ 4858 return (0); 4859 } 4860 4861 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ 4862 l4_off = (e_hlen + ip_hlen); 4863 4864 *parsing_data |= 4865 (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 4866 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W); 4867 4868 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 4869 CSUM_TSO | 4870 CSUM_TCP_IPV6)) { 4871 fp->eth_q_stats.tx_ofld_frames_csum_tcp++; 4872 th = (struct tcphdr *)(ip + ip_hlen); 4873 /* th_off is number of 32-bit words */ 4874 *parsing_data |= ((th->th_off << 4875 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 4876 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW); 4877 return (l4_off + (th->th_off << 2)); /* entire header length */ 4878 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 4879 CSUM_UDP_IPV6)) { 4880 fp->eth_q_stats.tx_ofld_frames_csum_udp++; 4881 return (l4_off + sizeof(struct udphdr)); /* entire header length */ 4882 } else { 4883 /* XXX error stat ??? */ 4884 return (0); 4885 } 4886 } 4887 4888 static uint8_t 4889 bxe_set_pbd_csum(struct bxe_fastpath *fp, 4890 struct mbuf *m, 4891 struct eth_tx_parse_bd_e1x *pbd) 4892 { 4893 struct ether_vlan_header *eh = NULL; 4894 struct ip *ip4 = NULL; 4895 struct ip6_hdr *ip6 = NULL; 4896 caddr_t ip = NULL; 4897 struct tcphdr *th = NULL; 4898 struct udphdr *uh = NULL; 4899 int e_hlen, ip_hlen; 4900 uint16_t proto; 4901 uint8_t hlen; 4902 uint16_t tmp_csum; 4903 uint32_t *tmp_uh; 4904 4905 /* get the Ethernet header */ 4906 eh = mtod(m, struct ether_vlan_header *); 4907 4908 /* handle VLAN encapsulation if present */ 4909 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 4910 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 4911 proto = ntohs(eh->evl_proto); 4912 } else { 4913 e_hlen = ETHER_HDR_LEN; 4914 proto = ntohs(eh->evl_encap_proto); 4915 } 4916 4917 switch (proto) { 4918 case ETHERTYPE_IP: 4919 /* get the IP header, if mbuf len < 20 then header in next mbuf */ 4920 ip4 = (m->m_len < sizeof(struct ip)) ? 4921 (struct ip *)m->m_next->m_data : 4922 (struct ip *)(m->m_data + e_hlen); 4923 /* ip_hl is number of 32-bit words */ 4924 ip_hlen = (ip4->ip_hl << 1); 4925 ip = (caddr_t)ip4; 4926 break; 4927 case ETHERTYPE_IPV6: 4928 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ 4929 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? 4930 (struct ip6_hdr *)m->m_next->m_data : 4931 (struct ip6_hdr *)(m->m_data + e_hlen); 4932 /* XXX cannot support offload with IPv6 extensions */ 4933 ip_hlen = (sizeof(struct ip6_hdr) >> 1); 4934 ip = (caddr_t)ip6; 4935 break; 4936 default: 4937 /* We can't offload in this case... */ 4938 /* XXX error stat ??? */ 4939 return (0); 4940 } 4941 4942 hlen = (e_hlen >> 1); 4943 4944 /* note that rest of global_data is indirectly zeroed here */ 4945 if (m->m_flags & M_VLANTAG) { 4946 pbd->global_data = 4947 htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT)); 4948 } else { 4949 pbd->global_data = htole16(hlen); 4950 } 4951 4952 pbd->ip_hlen_w = ip_hlen; 4953 4954 hlen += pbd->ip_hlen_w; 4955 4956 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ 4957 4958 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 4959 CSUM_TSO | 4960 CSUM_TCP_IPV6)) { 4961 th = (struct tcphdr *)(ip + (ip_hlen << 1)); 4962 /* th_off is number of 32-bit words */ 4963 hlen += (uint16_t)(th->th_off << 1); 4964 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 4965 CSUM_UDP_IPV6)) { 4966 uh = (struct udphdr *)(ip + (ip_hlen << 1)); 4967 hlen += (sizeof(struct udphdr) / 2); 4968 } else { 4969 /* valid case as only CSUM_IP was set */ 4970 return (0); 4971 } 4972 4973 pbd->total_hlen_w = htole16(hlen); 4974 4975 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 4976 CSUM_TSO | 4977 CSUM_TCP_IPV6)) { 4978 fp->eth_q_stats.tx_ofld_frames_csum_tcp++; 4979 pbd->tcp_pseudo_csum = ntohs(th->th_sum); 4980 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 4981 CSUM_UDP_IPV6)) { 4982 fp->eth_q_stats.tx_ofld_frames_csum_udp++; 4983 4984 /* 4985 * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP 4986 * checksums and does not know anything about the UDP header and where 4987 * the checksum field is located. It only knows about TCP. Therefore 4988 * we "lie" to the hardware for outgoing UDP packets w/ checksum 4989 * offload. Since the checksum field offset for TCP is 16 bytes and 4990 * for UDP it is 6 bytes we pass a pointer to the hardware that is 10 4991 * bytes less than the start of the UDP header. This allows the 4992 * hardware to write the checksum in the correct spot. But the 4993 * hardware will compute a checksum which includes the last 10 bytes 4994 * of the IP header. To correct this we tweak the stack computed 4995 * pseudo checksum by folding in the calculation of the inverse 4996 * checksum for those final 10 bytes of the IP header. This allows 4997 * the correct checksum to be computed by the hardware. 4998 */ 4999 5000 /* set pointer 10 bytes before UDP header */ 5001 tmp_uh = (uint32_t *)((uint8_t *)uh - 10); 5002 5003 /* calculate a pseudo header checksum over the first 10 bytes */ 5004 tmp_csum = in_pseudo(*tmp_uh, 5005 *(tmp_uh + 1), 5006 *(uint16_t *)(tmp_uh + 2)); 5007 5008 pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum)); 5009 } 5010 5011 return (hlen * 2); /* entire header length, number of bytes */ 5012 } 5013 5014 static void 5015 bxe_set_pbd_lso_e2(struct mbuf *m, 5016 uint32_t *parsing_data) 5017 { 5018 *parsing_data |= ((m->m_pkthdr.tso_segsz << 5019 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) & 5020 ETH_TX_PARSE_BD_E2_LSO_MSS); 5021 5022 /* XXX test for IPv6 with extension header... */ 5023 } 5024 5025 static void 5026 bxe_set_pbd_lso(struct mbuf *m, 5027 struct eth_tx_parse_bd_e1x *pbd) 5028 { 5029 struct ether_vlan_header *eh = NULL; 5030 struct ip *ip = NULL; 5031 struct tcphdr *th = NULL; 5032 int e_hlen; 5033 5034 /* get the Ethernet header */ 5035 eh = mtod(m, struct ether_vlan_header *); 5036 5037 /* handle VLAN encapsulation if present */ 5038 e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ? 5039 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN; 5040 5041 /* get the IP and TCP header, with LSO entire header in first mbuf */ 5042 /* XXX assuming IPv4 */ 5043 ip = (struct ip *)(m->m_data + e_hlen); 5044 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 5045 5046 pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz); 5047 pbd->tcp_send_seq = ntohl(th->th_seq); 5048 pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff); 5049 5050 #if 1 5051 /* XXX IPv4 */ 5052 pbd->ip_id = ntohs(ip->ip_id); 5053 pbd->tcp_pseudo_csum = 5054 ntohs(in_pseudo(ip->ip_src.s_addr, 5055 ip->ip_dst.s_addr, 5056 htons(IPPROTO_TCP))); 5057 #else 5058 /* XXX IPv6 */ 5059 pbd->tcp_pseudo_csum = 5060 ntohs(in_pseudo(&ip6->ip6_src, 5061 &ip6->ip6_dst, 5062 htons(IPPROTO_TCP))); 5063 #endif 5064 5065 pbd->global_data |= 5066 htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN); 5067 } 5068 5069 /* 5070 * Encapsulte an mbuf cluster into the tx bd chain and makes the memory 5071 * visible to the controller. 5072 * 5073 * If an mbuf is submitted to this routine and cannot be given to the 5074 * controller (e.g. it has too many fragments) then the function may free 5075 * the mbuf and return to the caller. 5076 * 5077 * Returns: 5078 * 0 = Success, !0 = Failure 5079 * Note the side effect that an mbuf may be freed if it causes a problem. 5080 */ 5081 static int 5082 bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head) 5083 { 5084 bus_dma_segment_t segs[32]; 5085 struct mbuf *m0; 5086 struct bxe_sw_tx_bd *tx_buf; 5087 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL; 5088 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL; 5089 /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */ 5090 struct eth_tx_bd *tx_data_bd; 5091 struct eth_tx_bd *tx_total_pkt_size_bd; 5092 struct eth_tx_start_bd *tx_start_bd; 5093 uint16_t bd_prod, pkt_prod, total_pkt_size; 5094 uint8_t mac_type; 5095 int defragged, error, nsegs, rc, nbds, vlan_off, ovlan; 5096 struct bxe_softc *sc; 5097 uint16_t tx_bd_avail; 5098 struct ether_vlan_header *eh; 5099 uint32_t pbd_e2_parsing_data = 0; 5100 uint8_t hlen = 0; 5101 int tmp_bd; 5102 int i; 5103 5104 sc = fp->sc; 5105 5106 #if __FreeBSD_version >= 800000 5107 M_ASSERTPKTHDR(*m_head); 5108 #endif /* #if __FreeBSD_version >= 800000 */ 5109 5110 m0 = *m_head; 5111 rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0; 5112 tx_start_bd = NULL; 5113 tx_data_bd = NULL; 5114 tx_total_pkt_size_bd = NULL; 5115 5116 /* get the H/W pointer for packets and BDs */ 5117 pkt_prod = fp->tx_pkt_prod; 5118 bd_prod = fp->tx_bd_prod; 5119 5120 mac_type = UNICAST_ADDRESS; 5121 5122 /* map the mbuf into the next open DMAable memory */ 5123 tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)]; 5124 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5125 tx_buf->m_map, m0, 5126 segs, &nsegs, BUS_DMA_NOWAIT); 5127 5128 /* mapping errors */ 5129 if(__predict_false(error != 0)) { 5130 fp->eth_q_stats.tx_dma_mapping_failure++; 5131 if (error == ENOMEM) { 5132 /* resource issue, try again later */ 5133 rc = ENOMEM; 5134 } else if (error == EFBIG) { 5135 /* possibly recoverable with defragmentation */ 5136 fp->eth_q_stats.mbuf_defrag_attempts++; 5137 m0 = m_defrag(*m_head, M_NOWAIT); 5138 if (m0 == NULL) { 5139 fp->eth_q_stats.mbuf_defrag_failures++; 5140 rc = ENOBUFS; 5141 } else { 5142 /* defrag successful, try mapping again */ 5143 *m_head = m0; 5144 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5145 tx_buf->m_map, m0, 5146 segs, &nsegs, BUS_DMA_NOWAIT); 5147 if (error) { 5148 fp->eth_q_stats.tx_dma_mapping_failure++; 5149 rc = error; 5150 } 5151 } 5152 } else { 5153 /* unknown, unrecoverable mapping error */ 5154 BLOGE(sc, "Unknown TX mapping error rc=%d\n", error); 5155 bxe_dump_mbuf(sc, m0, FALSE); 5156 rc = error; 5157 } 5158 5159 goto bxe_tx_encap_continue; 5160 } 5161 5162 tx_bd_avail = bxe_tx_avail(sc, fp); 5163 5164 /* make sure there is enough room in the send queue */ 5165 if (__predict_false(tx_bd_avail < (nsegs + 2))) { 5166 /* Recoverable, try again later. */ 5167 fp->eth_q_stats.tx_hw_queue_full++; 5168 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5169 rc = ENOMEM; 5170 goto bxe_tx_encap_continue; 5171 } 5172 5173 /* capture the current H/W TX chain high watermark */ 5174 if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth < 5175 (TX_BD_USABLE - tx_bd_avail))) { 5176 fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail); 5177 } 5178 5179 /* make sure it fits in the packet window */ 5180 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) { 5181 /* 5182 * The mbuf may be to big for the controller to handle. If the frame 5183 * is a TSO frame we'll need to do an additional check. 5184 */ 5185 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 5186 if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) { 5187 goto bxe_tx_encap_continue; /* OK to send */ 5188 } else { 5189 fp->eth_q_stats.tx_window_violation_tso++; 5190 } 5191 } else { 5192 fp->eth_q_stats.tx_window_violation_std++; 5193 } 5194 5195 /* lets try to defragment this mbuf and remap it */ 5196 fp->eth_q_stats.mbuf_defrag_attempts++; 5197 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5198 5199 m0 = m_defrag(*m_head, M_NOWAIT); 5200 if (m0 == NULL) { 5201 fp->eth_q_stats.mbuf_defrag_failures++; 5202 /* Ugh, just drop the frame... :( */ 5203 rc = ENOBUFS; 5204 } else { 5205 /* defrag successful, try mapping again */ 5206 *m_head = m0; 5207 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5208 tx_buf->m_map, m0, 5209 segs, &nsegs, BUS_DMA_NOWAIT); 5210 if (error) { 5211 fp->eth_q_stats.tx_dma_mapping_failure++; 5212 /* No sense in trying to defrag/copy chain, drop it. :( */ 5213 rc = error; 5214 } 5215 else { 5216 /* if the chain is still too long then drop it */ 5217 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) { 5218 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5219 rc = ENODEV; 5220 } 5221 } 5222 } 5223 } 5224 5225 bxe_tx_encap_continue: 5226 5227 /* Check for errors */ 5228 if (rc) { 5229 if (rc == ENOMEM) { 5230 /* recoverable try again later */ 5231 } else { 5232 fp->eth_q_stats.tx_soft_errors++; 5233 fp->eth_q_stats.mbuf_alloc_tx--; 5234 m_freem(*m_head); 5235 *m_head = NULL; 5236 } 5237 5238 return (rc); 5239 } 5240 5241 /* set flag according to packet type (UNICAST_ADDRESS is default) */ 5242 if (m0->m_flags & M_BCAST) { 5243 mac_type = BROADCAST_ADDRESS; 5244 } else if (m0->m_flags & M_MCAST) { 5245 mac_type = MULTICAST_ADDRESS; 5246 } 5247 5248 /* store the mbuf into the mbuf ring */ 5249 tx_buf->m = m0; 5250 tx_buf->first_bd = fp->tx_bd_prod; 5251 tx_buf->flags = 0; 5252 5253 /* prepare the first transmit (start) BD for the mbuf */ 5254 tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd; 5255 5256 BLOGD(sc, DBG_TX, 5257 "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n", 5258 pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd); 5259 5260 tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 5261 tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 5262 tx_start_bd->nbytes = htole16(segs[0].ds_len); 5263 total_pkt_size += tx_start_bd->nbytes; 5264 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD; 5265 5266 tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT); 5267 5268 /* all frames have at least Start BD + Parsing BD */ 5269 nbds = nsegs + 1; 5270 tx_start_bd->nbd = htole16(nbds); 5271 5272 if (m0->m_flags & M_VLANTAG) { 5273 tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag); 5274 tx_start_bd->bd_flags.as_bitfield |= 5275 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT); 5276 } else { 5277 /* vf tx, start bd must hold the ethertype for fw to enforce it */ 5278 if (IS_VF(sc)) { 5279 /* map ethernet header to find type and header length */ 5280 eh = mtod(m0, struct ether_vlan_header *); 5281 tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto; 5282 } else { 5283 /* used by FW for packet accounting */ 5284 tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod); 5285 } 5286 } 5287 5288 /* 5289 * add a parsing BD from the chain. The parsing BD is always added 5290 * though it is only used for TSO and chksum 5291 */ 5292 bd_prod = TX_BD_NEXT(bd_prod); 5293 5294 if (m0->m_pkthdr.csum_flags) { 5295 if (m0->m_pkthdr.csum_flags & CSUM_IP) { 5296 fp->eth_q_stats.tx_ofld_frames_csum_ip++; 5297 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM; 5298 } 5299 5300 if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) { 5301 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | 5302 ETH_TX_BD_FLAGS_L4_CSUM); 5303 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) { 5304 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | 5305 ETH_TX_BD_FLAGS_IS_UDP | 5306 ETH_TX_BD_FLAGS_L4_CSUM); 5307 } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) || 5308 (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5309 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM; 5310 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) { 5311 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM | 5312 ETH_TX_BD_FLAGS_IS_UDP); 5313 } 5314 } 5315 5316 if (!CHIP_IS_E1x(sc)) { 5317 pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2; 5318 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2)); 5319 5320 if (m0->m_pkthdr.csum_flags) { 5321 hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data); 5322 } 5323 5324 SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, 5325 mac_type); 5326 } else { 5327 uint16_t global_data = 0; 5328 5329 pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x; 5330 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x)); 5331 5332 if (m0->m_pkthdr.csum_flags) { 5333 hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x); 5334 } 5335 5336 SET_FLAG(global_data, 5337 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type); 5338 pbd_e1x->global_data |= htole16(global_data); 5339 } 5340 5341 /* setup the parsing BD with TSO specific info */ 5342 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 5343 fp->eth_q_stats.tx_ofld_frames_lso++; 5344 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO; 5345 5346 if (__predict_false(tx_start_bd->nbytes > hlen)) { 5347 fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++; 5348 5349 /* split the first BD into header/data making the fw job easy */ 5350 nbds++; 5351 tx_start_bd->nbd = htole16(nbds); 5352 tx_start_bd->nbytes = htole16(hlen); 5353 5354 bd_prod = TX_BD_NEXT(bd_prod); 5355 5356 /* new transmit BD after the tx_parse_bd */ 5357 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; 5358 tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen)); 5359 tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen)); 5360 tx_data_bd->nbytes = htole16(segs[0].ds_len - hlen); 5361 if (tx_total_pkt_size_bd == NULL) { 5362 tx_total_pkt_size_bd = tx_data_bd; 5363 } 5364 5365 BLOGD(sc, DBG_TX, 5366 "TSO split header size is %d (%x:%x) nbds %d\n", 5367 le16toh(tx_start_bd->nbytes), 5368 le32toh(tx_start_bd->addr_hi), 5369 le32toh(tx_start_bd->addr_lo), 5370 nbds); 5371 } 5372 5373 if (!CHIP_IS_E1x(sc)) { 5374 bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data); 5375 } else { 5376 bxe_set_pbd_lso(m0, pbd_e1x); 5377 } 5378 } 5379 5380 if (pbd_e2_parsing_data) { 5381 pbd_e2->parsing_data = htole32(pbd_e2_parsing_data); 5382 } 5383 5384 /* prepare remaining BDs, start tx bd contains first seg/frag */ 5385 for (i = 1; i < nsegs ; i++) { 5386 bd_prod = TX_BD_NEXT(bd_prod); 5387 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; 5388 tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr)); 5389 tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr)); 5390 tx_data_bd->nbytes = htole16(segs[i].ds_len); 5391 if (tx_total_pkt_size_bd == NULL) { 5392 tx_total_pkt_size_bd = tx_data_bd; 5393 } 5394 total_pkt_size += tx_data_bd->nbytes; 5395 } 5396 5397 BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd); 5398 5399 if (tx_total_pkt_size_bd != NULL) { 5400 tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size; 5401 } 5402 5403 if (__predict_false(sc->debug & DBG_TX)) { 5404 tmp_bd = tx_buf->first_bd; 5405 for (i = 0; i < nbds; i++) 5406 { 5407 if (i == 0) { 5408 BLOGD(sc, DBG_TX, 5409 "TX Strt: %p bd=%d nbd=%d vlan=0x%x " 5410 "bd_flags=0x%x hdr_nbds=%d\n", 5411 tx_start_bd, 5412 tmp_bd, 5413 le16toh(tx_start_bd->nbd), 5414 le16toh(tx_start_bd->vlan_or_ethertype), 5415 tx_start_bd->bd_flags.as_bitfield, 5416 (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS)); 5417 } else if (i == 1) { 5418 if (pbd_e1x) { 5419 BLOGD(sc, DBG_TX, 5420 "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u " 5421 "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x " 5422 "tcp_seq=%u total_hlen_w=%u\n", 5423 pbd_e1x, 5424 tmp_bd, 5425 pbd_e1x->global_data, 5426 pbd_e1x->ip_hlen_w, 5427 pbd_e1x->ip_id, 5428 pbd_e1x->lso_mss, 5429 pbd_e1x->tcp_flags, 5430 pbd_e1x->tcp_pseudo_csum, 5431 pbd_e1x->tcp_send_seq, 5432 le16toh(pbd_e1x->total_hlen_w)); 5433 } else { /* if (pbd_e2) */ 5434 BLOGD(sc, DBG_TX, 5435 "-> Parse: %p bd=%d dst=%02x:%02x:%02x " 5436 "src=%02x:%02x:%02x parsing_data=0x%x\n", 5437 pbd_e2, 5438 tmp_bd, 5439 pbd_e2->data.mac_addr.dst_hi, 5440 pbd_e2->data.mac_addr.dst_mid, 5441 pbd_e2->data.mac_addr.dst_lo, 5442 pbd_e2->data.mac_addr.src_hi, 5443 pbd_e2->data.mac_addr.src_mid, 5444 pbd_e2->data.mac_addr.src_lo, 5445 pbd_e2->parsing_data); 5446 } 5447 } 5448 5449 if (i != 1) { /* skip parse db as it doesn't hold data */ 5450 tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd; 5451 BLOGD(sc, DBG_TX, 5452 "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n", 5453 tx_data_bd, 5454 tmp_bd, 5455 le16toh(tx_data_bd->nbytes), 5456 le32toh(tx_data_bd->addr_hi), 5457 le32toh(tx_data_bd->addr_lo)); 5458 } 5459 5460 tmp_bd = TX_BD_NEXT(tmp_bd); 5461 } 5462 } 5463 5464 BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod); 5465 5466 /* update TX BD producer index value for next TX */ 5467 bd_prod = TX_BD_NEXT(bd_prod); 5468 5469 /* 5470 * If the chain of tx_bd's describing this frame is adjacent to or spans 5471 * an eth_tx_next_bd element then we need to increment the nbds value. 5472 */ 5473 if (TX_BD_IDX(bd_prod) < nbds) { 5474 nbds++; 5475 } 5476 5477 /* don't allow reordering of writes for nbd and packets */ 5478 mb(); 5479 5480 fp->tx_db.data.prod += nbds; 5481 5482 /* producer points to the next free tx_bd at this point */ 5483 fp->tx_pkt_prod++; 5484 fp->tx_bd_prod = bd_prod; 5485 5486 DOORBELL(sc, fp->index, fp->tx_db.raw); 5487 5488 fp->eth_q_stats.tx_pkts++; 5489 5490 /* Prevent speculative reads from getting ahead of the status block. */ 5491 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 5492 0, 0, BUS_SPACE_BARRIER_READ); 5493 5494 /* Prevent speculative reads from getting ahead of the doorbell. */ 5495 bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle, 5496 0, 0, BUS_SPACE_BARRIER_READ); 5497 5498 return (0); 5499 } 5500 5501 static void 5502 bxe_tx_start_locked(struct bxe_softc *sc, 5503 if_t ifp, 5504 struct bxe_fastpath *fp) 5505 { 5506 struct mbuf *m = NULL; 5507 int tx_count = 0; 5508 uint16_t tx_bd_avail; 5509 5510 BXE_FP_TX_LOCK_ASSERT(fp); 5511 5512 /* keep adding entries while there are frames to send */ 5513 while (!if_sendq_empty(ifp)) { 5514 5515 /* 5516 * check for any frames to send 5517 * dequeue can still be NULL even if queue is not empty 5518 */ 5519 m = if_dequeue(ifp); 5520 if (__predict_false(m == NULL)) { 5521 break; 5522 } 5523 5524 /* the mbuf now belongs to us */ 5525 fp->eth_q_stats.mbuf_alloc_tx++; 5526 5527 /* 5528 * Put the frame into the transmit ring. If we don't have room, 5529 * place the mbuf back at the head of the TX queue, set the 5530 * OACTIVE flag, and wait for the NIC to drain the chain. 5531 */ 5532 if (__predict_false(bxe_tx_encap(fp, &m))) { 5533 fp->eth_q_stats.tx_encap_failures++; 5534 if (m != NULL) { 5535 /* mark the TX queue as full and return the frame */ 5536 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 5537 if_sendq_prepend(ifp, m); 5538 fp->eth_q_stats.mbuf_alloc_tx--; 5539 fp->eth_q_stats.tx_queue_xoff++; 5540 } 5541 5542 /* stop looking for more work */ 5543 break; 5544 } 5545 5546 /* the frame was enqueued successfully */ 5547 tx_count++; 5548 5549 /* send a copy of the frame to any BPF listeners. */ 5550 if_etherbpfmtap(ifp, m); 5551 5552 tx_bd_avail = bxe_tx_avail(sc, fp); 5553 5554 /* handle any completions if we're running low */ 5555 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 5556 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ 5557 bxe_txeof(sc, fp); 5558 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 5559 break; 5560 } 5561 } 5562 } 5563 5564 /* all TX packets were dequeued and/or the tx ring is full */ 5565 if (tx_count > 0) { 5566 /* reset the TX watchdog timeout timer */ 5567 fp->watchdog_timer = BXE_TX_TIMEOUT; 5568 } 5569 } 5570 5571 /* Legacy (non-RSS) dispatch routine */ 5572 static void 5573 bxe_tx_start(if_t ifp) 5574 { 5575 struct bxe_softc *sc; 5576 struct bxe_fastpath *fp; 5577 5578 sc = if_getsoftc(ifp); 5579 5580 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 5581 BLOGW(sc, "Interface not running, ignoring transmit request\n"); 5582 return; 5583 } 5584 5585 if (!sc->link_vars.link_up) { 5586 BLOGW(sc, "Interface link is down, ignoring transmit request\n"); 5587 return; 5588 } 5589 5590 fp = &sc->fp[0]; 5591 5592 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { 5593 fp->eth_q_stats.tx_queue_full_return++; 5594 return; 5595 } 5596 5597 BXE_FP_TX_LOCK(fp); 5598 bxe_tx_start_locked(sc, ifp, fp); 5599 BXE_FP_TX_UNLOCK(fp); 5600 } 5601 5602 #if __FreeBSD_version >= 800000 5603 5604 static int 5605 bxe_tx_mq_start_locked(struct bxe_softc *sc, 5606 if_t ifp, 5607 struct bxe_fastpath *fp, 5608 struct mbuf *m) 5609 { 5610 struct buf_ring *tx_br = fp->tx_br; 5611 struct mbuf *next; 5612 int depth, rc, tx_count; 5613 uint16_t tx_bd_avail; 5614 5615 rc = tx_count = 0; 5616 5617 BXE_FP_TX_LOCK_ASSERT(fp); 5618 5619 if (!tx_br) { 5620 BLOGE(sc, "Multiqueue TX and no buf_ring!\n"); 5621 return (EINVAL); 5622 } 5623 5624 if (!sc->link_vars.link_up || 5625 (if_getdrvflags(ifp) & 5626 (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING) { 5627 rc = drbr_enqueue(ifp, tx_br, m); 5628 goto bxe_tx_mq_start_locked_exit; 5629 } 5630 5631 /* fetch the depth of the driver queue */ 5632 depth = drbr_inuse_drv(ifp, tx_br); 5633 if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) { 5634 fp->eth_q_stats.tx_max_drbr_queue_depth = depth; 5635 } 5636 5637 if (m == NULL) { 5638 /* no new work, check for pending frames */ 5639 next = drbr_dequeue_drv(ifp, tx_br); 5640 } else if (drbr_needs_enqueue_drv(ifp, tx_br)) { 5641 /* have both new and pending work, maintain packet order */ 5642 rc = drbr_enqueue(ifp, tx_br, m); 5643 if (rc != 0) { 5644 fp->eth_q_stats.tx_soft_errors++; 5645 goto bxe_tx_mq_start_locked_exit; 5646 } 5647 next = drbr_dequeue_drv(ifp, tx_br); 5648 } else { 5649 /* new work only and nothing pending */ 5650 next = m; 5651 } 5652 5653 /* keep adding entries while there are frames to send */ 5654 while (next != NULL) { 5655 5656 /* the mbuf now belongs to us */ 5657 fp->eth_q_stats.mbuf_alloc_tx++; 5658 5659 /* 5660 * Put the frame into the transmit ring. If we don't have room, 5661 * place the mbuf back at the head of the TX queue, set the 5662 * OACTIVE flag, and wait for the NIC to drain the chain. 5663 */ 5664 rc = bxe_tx_encap(fp, &next); 5665 if (__predict_false(rc != 0)) { 5666 fp->eth_q_stats.tx_encap_failures++; 5667 if (next != NULL) { 5668 /* mark the TX queue as full and save the frame */ 5669 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 5670 /* XXX this may reorder the frame */ 5671 rc = drbr_enqueue(ifp, tx_br, next); 5672 fp->eth_q_stats.mbuf_alloc_tx--; 5673 fp->eth_q_stats.tx_frames_deferred++; 5674 } 5675 5676 /* stop looking for more work */ 5677 break; 5678 } 5679 5680 /* the transmit frame was enqueued successfully */ 5681 tx_count++; 5682 5683 /* send a copy of the frame to any BPF listeners */ 5684 if_etherbpfmtap(ifp, next); 5685 5686 tx_bd_avail = bxe_tx_avail(sc, fp); 5687 5688 /* handle any completions if we're running low */ 5689 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 5690 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ 5691 bxe_txeof(sc, fp); 5692 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 5693 break; 5694 } 5695 } 5696 5697 next = drbr_dequeue_drv(ifp, tx_br); 5698 } 5699 5700 /* all TX packets were dequeued and/or the tx ring is full */ 5701 if (tx_count > 0) { 5702 /* reset the TX watchdog timeout timer */ 5703 fp->watchdog_timer = BXE_TX_TIMEOUT; 5704 } 5705 5706 bxe_tx_mq_start_locked_exit: 5707 5708 return (rc); 5709 } 5710 5711 /* Multiqueue (TSS) dispatch routine. */ 5712 static int 5713 bxe_tx_mq_start(struct ifnet *ifp, 5714 struct mbuf *m) 5715 { 5716 struct bxe_softc *sc = if_getsoftc(ifp); 5717 struct bxe_fastpath *fp; 5718 int fp_index, rc; 5719 5720 fp_index = 0; /* default is the first queue */ 5721 5722 /* check if flowid is set */ 5723 5724 if (BXE_VALID_FLOWID(m)) 5725 fp_index = (m->m_pkthdr.flowid % sc->num_queues); 5726 5727 fp = &sc->fp[fp_index]; 5728 5729 if (BXE_FP_TX_TRYLOCK(fp)) { 5730 rc = bxe_tx_mq_start_locked(sc, ifp, fp, m); 5731 BXE_FP_TX_UNLOCK(fp); 5732 } else 5733 rc = drbr_enqueue(ifp, fp->tx_br, m); 5734 5735 return (rc); 5736 } 5737 5738 static void 5739 bxe_mq_flush(struct ifnet *ifp) 5740 { 5741 struct bxe_softc *sc = if_getsoftc(ifp); 5742 struct bxe_fastpath *fp; 5743 struct mbuf *m; 5744 int i; 5745 5746 for (i = 0; i < sc->num_queues; i++) { 5747 fp = &sc->fp[i]; 5748 5749 if (fp->state != BXE_FP_STATE_OPEN) { 5750 BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n", 5751 fp->index, fp->state); 5752 continue; 5753 } 5754 5755 if (fp->tx_br != NULL) { 5756 BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index); 5757 BXE_FP_TX_LOCK(fp); 5758 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) { 5759 m_freem(m); 5760 } 5761 BXE_FP_TX_UNLOCK(fp); 5762 } 5763 } 5764 5765 if_qflush(ifp); 5766 } 5767 5768 #endif /* FreeBSD_version >= 800000 */ 5769 5770 static uint16_t 5771 bxe_cid_ilt_lines(struct bxe_softc *sc) 5772 { 5773 if (IS_SRIOV(sc)) { 5774 return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS); 5775 } 5776 return (L2_ILT_LINES(sc)); 5777 } 5778 5779 static void 5780 bxe_ilt_set_info(struct bxe_softc *sc) 5781 { 5782 struct ilt_client_info *ilt_client; 5783 struct ecore_ilt *ilt = sc->ilt; 5784 uint16_t line = 0; 5785 5786 ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc)); 5787 BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line); 5788 5789 /* CDU */ 5790 ilt_client = &ilt->clients[ILT_CLIENT_CDU]; 5791 ilt_client->client_num = ILT_CLIENT_CDU; 5792 ilt_client->page_size = CDU_ILT_PAGE_SZ; 5793 ilt_client->flags = ILT_CLIENT_SKIP_MEM; 5794 ilt_client->start = line; 5795 line += bxe_cid_ilt_lines(sc); 5796 5797 if (CNIC_SUPPORT(sc)) { 5798 line += CNIC_ILT_LINES; 5799 } 5800 5801 ilt_client->end = (line - 1); 5802 5803 BLOGD(sc, DBG_LOAD, 5804 "ilt client[CDU]: start %d, end %d, " 5805 "psz 0x%x, flags 0x%x, hw psz %d\n", 5806 ilt_client->start, ilt_client->end, 5807 ilt_client->page_size, 5808 ilt_client->flags, 5809 ilog2(ilt_client->page_size >> 12)); 5810 5811 /* QM */ 5812 if (QM_INIT(sc->qm_cid_count)) { 5813 ilt_client = &ilt->clients[ILT_CLIENT_QM]; 5814 ilt_client->client_num = ILT_CLIENT_QM; 5815 ilt_client->page_size = QM_ILT_PAGE_SZ; 5816 ilt_client->flags = 0; 5817 ilt_client->start = line; 5818 5819 /* 4 bytes for each cid */ 5820 line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4, 5821 QM_ILT_PAGE_SZ); 5822 5823 ilt_client->end = (line - 1); 5824 5825 BLOGD(sc, DBG_LOAD, 5826 "ilt client[QM]: start %d, end %d, " 5827 "psz 0x%x, flags 0x%x, hw psz %d\n", 5828 ilt_client->start, ilt_client->end, 5829 ilt_client->page_size, ilt_client->flags, 5830 ilog2(ilt_client->page_size >> 12)); 5831 } 5832 5833 if (CNIC_SUPPORT(sc)) { 5834 /* SRC */ 5835 ilt_client = &ilt->clients[ILT_CLIENT_SRC]; 5836 ilt_client->client_num = ILT_CLIENT_SRC; 5837 ilt_client->page_size = SRC_ILT_PAGE_SZ; 5838 ilt_client->flags = 0; 5839 ilt_client->start = line; 5840 line += SRC_ILT_LINES; 5841 ilt_client->end = (line - 1); 5842 5843 BLOGD(sc, DBG_LOAD, 5844 "ilt client[SRC]: start %d, end %d, " 5845 "psz 0x%x, flags 0x%x, hw psz %d\n", 5846 ilt_client->start, ilt_client->end, 5847 ilt_client->page_size, ilt_client->flags, 5848 ilog2(ilt_client->page_size >> 12)); 5849 5850 /* TM */ 5851 ilt_client = &ilt->clients[ILT_CLIENT_TM]; 5852 ilt_client->client_num = ILT_CLIENT_TM; 5853 ilt_client->page_size = TM_ILT_PAGE_SZ; 5854 ilt_client->flags = 0; 5855 ilt_client->start = line; 5856 line += TM_ILT_LINES; 5857 ilt_client->end = (line - 1); 5858 5859 BLOGD(sc, DBG_LOAD, 5860 "ilt client[TM]: start %d, end %d, " 5861 "psz 0x%x, flags 0x%x, hw psz %d\n", 5862 ilt_client->start, ilt_client->end, 5863 ilt_client->page_size, ilt_client->flags, 5864 ilog2(ilt_client->page_size >> 12)); 5865 } 5866 5867 KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!")); 5868 } 5869 5870 static void 5871 bxe_set_fp_rx_buf_size(struct bxe_softc *sc) 5872 { 5873 int i; 5874 uint32_t rx_buf_size; 5875 5876 rx_buf_size = (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu); 5877 5878 for (i = 0; i < sc->num_queues; i++) { 5879 if(rx_buf_size <= MCLBYTES){ 5880 sc->fp[i].rx_buf_size = rx_buf_size; 5881 sc->fp[i].mbuf_alloc_size = MCLBYTES; 5882 }else if (rx_buf_size <= MJUMPAGESIZE){ 5883 sc->fp[i].rx_buf_size = rx_buf_size; 5884 sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE; 5885 }else if (rx_buf_size <= (MJUMPAGESIZE + MCLBYTES)){ 5886 sc->fp[i].rx_buf_size = MCLBYTES; 5887 sc->fp[i].mbuf_alloc_size = MCLBYTES; 5888 }else if (rx_buf_size <= (2 * MJUMPAGESIZE)){ 5889 sc->fp[i].rx_buf_size = MJUMPAGESIZE; 5890 sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE; 5891 }else { 5892 sc->fp[i].rx_buf_size = MCLBYTES; 5893 sc->fp[i].mbuf_alloc_size = MCLBYTES; 5894 } 5895 } 5896 } 5897 5898 static int 5899 bxe_alloc_ilt_mem(struct bxe_softc *sc) 5900 { 5901 int rc = 0; 5902 5903 if ((sc->ilt = 5904 (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt), 5905 M_BXE_ILT, 5906 (M_NOWAIT | M_ZERO))) == NULL) { 5907 rc = 1; 5908 } 5909 5910 return (rc); 5911 } 5912 5913 static int 5914 bxe_alloc_ilt_lines_mem(struct bxe_softc *sc) 5915 { 5916 int rc = 0; 5917 5918 if ((sc->ilt->lines = 5919 (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES), 5920 M_BXE_ILT, 5921 (M_NOWAIT | M_ZERO))) == NULL) { 5922 rc = 1; 5923 } 5924 5925 return (rc); 5926 } 5927 5928 static void 5929 bxe_free_ilt_mem(struct bxe_softc *sc) 5930 { 5931 if (sc->ilt != NULL) { 5932 free(sc->ilt, M_BXE_ILT); 5933 sc->ilt = NULL; 5934 } 5935 } 5936 5937 static void 5938 bxe_free_ilt_lines_mem(struct bxe_softc *sc) 5939 { 5940 if (sc->ilt->lines != NULL) { 5941 free(sc->ilt->lines, M_BXE_ILT); 5942 sc->ilt->lines = NULL; 5943 } 5944 } 5945 5946 static void 5947 bxe_free_mem(struct bxe_softc *sc) 5948 { 5949 int i; 5950 5951 for (i = 0; i < L2_ILT_LINES(sc); i++) { 5952 bxe_dma_free(sc, &sc->context[i].vcxt_dma); 5953 sc->context[i].vcxt = NULL; 5954 sc->context[i].size = 0; 5955 } 5956 5957 ecore_ilt_mem_op(sc, ILT_MEMOP_FREE); 5958 5959 bxe_free_ilt_lines_mem(sc); 5960 5961 } 5962 5963 static int 5964 bxe_alloc_mem(struct bxe_softc *sc) 5965 { 5966 int context_size; 5967 int allocated; 5968 int i; 5969 5970 /* 5971 * Allocate memory for CDU context: 5972 * This memory is allocated separately and not in the generic ILT 5973 * functions because CDU differs in few aspects: 5974 * 1. There can be multiple entities allocating memory for context - 5975 * regular L2, CNIC, and SRIOV drivers. Each separately controls 5976 * its own ILT lines. 5977 * 2. Since CDU page-size is not a single 4KB page (which is the case 5978 * for the other ILT clients), to be efficient we want to support 5979 * allocation of sub-page-size in the last entry. 5980 * 3. Context pointers are used by the driver to pass to FW / update 5981 * the context (for the other ILT clients the pointers are used just to 5982 * free the memory during unload). 5983 */ 5984 context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc)); 5985 for (i = 0, allocated = 0; allocated < context_size; i++) { 5986 sc->context[i].size = min(CDU_ILT_PAGE_SZ, 5987 (context_size - allocated)); 5988 5989 if (bxe_dma_alloc(sc, sc->context[i].size, 5990 &sc->context[i].vcxt_dma, 5991 "cdu context") != 0) { 5992 bxe_free_mem(sc); 5993 return (-1); 5994 } 5995 5996 sc->context[i].vcxt = 5997 (union cdu_context *)sc->context[i].vcxt_dma.vaddr; 5998 5999 allocated += sc->context[i].size; 6000 } 6001 6002 bxe_alloc_ilt_lines_mem(sc); 6003 6004 BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n", 6005 sc->ilt, sc->ilt->start_line, sc->ilt->lines); 6006 { 6007 for (i = 0; i < 4; i++) { 6008 BLOGD(sc, DBG_LOAD, 6009 "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n", 6010 i, 6011 sc->ilt->clients[i].page_size, 6012 sc->ilt->clients[i].start, 6013 sc->ilt->clients[i].end, 6014 sc->ilt->clients[i].client_num, 6015 sc->ilt->clients[i].flags); 6016 } 6017 } 6018 if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) { 6019 BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n"); 6020 bxe_free_mem(sc); 6021 return (-1); 6022 } 6023 6024 return (0); 6025 } 6026 6027 static void 6028 bxe_free_rx_bd_chain(struct bxe_fastpath *fp) 6029 { 6030 struct bxe_softc *sc; 6031 int i; 6032 6033 sc = fp->sc; 6034 6035 if (fp->rx_mbuf_tag == NULL) { 6036 return; 6037 } 6038 6039 /* free all mbufs and unload all maps */ 6040 for (i = 0; i < RX_BD_TOTAL; i++) { 6041 if (fp->rx_mbuf_chain[i].m_map != NULL) { 6042 bus_dmamap_sync(fp->rx_mbuf_tag, 6043 fp->rx_mbuf_chain[i].m_map, 6044 BUS_DMASYNC_POSTREAD); 6045 bus_dmamap_unload(fp->rx_mbuf_tag, 6046 fp->rx_mbuf_chain[i].m_map); 6047 } 6048 6049 if (fp->rx_mbuf_chain[i].m != NULL) { 6050 m_freem(fp->rx_mbuf_chain[i].m); 6051 fp->rx_mbuf_chain[i].m = NULL; 6052 fp->eth_q_stats.mbuf_alloc_rx--; 6053 } 6054 } 6055 } 6056 6057 static void 6058 bxe_free_tpa_pool(struct bxe_fastpath *fp) 6059 { 6060 struct bxe_softc *sc; 6061 int i, max_agg_queues; 6062 6063 sc = fp->sc; 6064 6065 if (fp->rx_mbuf_tag == NULL) { 6066 return; 6067 } 6068 6069 max_agg_queues = MAX_AGG_QS(sc); 6070 6071 /* release all mbufs and unload all DMA maps in the TPA pool */ 6072 for (i = 0; i < max_agg_queues; i++) { 6073 if (fp->rx_tpa_info[i].bd.m_map != NULL) { 6074 bus_dmamap_sync(fp->rx_mbuf_tag, 6075 fp->rx_tpa_info[i].bd.m_map, 6076 BUS_DMASYNC_POSTREAD); 6077 bus_dmamap_unload(fp->rx_mbuf_tag, 6078 fp->rx_tpa_info[i].bd.m_map); 6079 } 6080 6081 if (fp->rx_tpa_info[i].bd.m != NULL) { 6082 m_freem(fp->rx_tpa_info[i].bd.m); 6083 fp->rx_tpa_info[i].bd.m = NULL; 6084 fp->eth_q_stats.mbuf_alloc_tpa--; 6085 } 6086 } 6087 } 6088 6089 static void 6090 bxe_free_sge_chain(struct bxe_fastpath *fp) 6091 { 6092 struct bxe_softc *sc; 6093 int i; 6094 6095 sc = fp->sc; 6096 6097 if (fp->rx_sge_mbuf_tag == NULL) { 6098 return; 6099 } 6100 6101 /* rree all mbufs and unload all maps */ 6102 for (i = 0; i < RX_SGE_TOTAL; i++) { 6103 if (fp->rx_sge_mbuf_chain[i].m_map != NULL) { 6104 bus_dmamap_sync(fp->rx_sge_mbuf_tag, 6105 fp->rx_sge_mbuf_chain[i].m_map, 6106 BUS_DMASYNC_POSTREAD); 6107 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 6108 fp->rx_sge_mbuf_chain[i].m_map); 6109 } 6110 6111 if (fp->rx_sge_mbuf_chain[i].m != NULL) { 6112 m_freem(fp->rx_sge_mbuf_chain[i].m); 6113 fp->rx_sge_mbuf_chain[i].m = NULL; 6114 fp->eth_q_stats.mbuf_alloc_sge--; 6115 } 6116 } 6117 } 6118 6119 static void 6120 bxe_free_fp_buffers(struct bxe_softc *sc) 6121 { 6122 struct bxe_fastpath *fp; 6123 int i; 6124 6125 for (i = 0; i < sc->num_queues; i++) { 6126 fp = &sc->fp[i]; 6127 6128 #if __FreeBSD_version >= 800000 6129 if (fp->tx_br != NULL) { 6130 /* just in case bxe_mq_flush() wasn't called */ 6131 if (mtx_initialized(&fp->tx_mtx)) { 6132 struct mbuf *m; 6133 6134 BXE_FP_TX_LOCK(fp); 6135 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) 6136 m_freem(m); 6137 BXE_FP_TX_UNLOCK(fp); 6138 } 6139 } 6140 #endif 6141 6142 /* free all RX buffers */ 6143 bxe_free_rx_bd_chain(fp); 6144 bxe_free_tpa_pool(fp); 6145 bxe_free_sge_chain(fp); 6146 6147 if (fp->eth_q_stats.mbuf_alloc_rx != 0) { 6148 BLOGE(sc, "failed to claim all rx mbufs (%d left)\n", 6149 fp->eth_q_stats.mbuf_alloc_rx); 6150 } 6151 6152 if (fp->eth_q_stats.mbuf_alloc_sge != 0) { 6153 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", 6154 fp->eth_q_stats.mbuf_alloc_sge); 6155 } 6156 6157 if (fp->eth_q_stats.mbuf_alloc_tpa != 0) { 6158 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", 6159 fp->eth_q_stats.mbuf_alloc_tpa); 6160 } 6161 6162 if (fp->eth_q_stats.mbuf_alloc_tx != 0) { 6163 BLOGE(sc, "failed to release tx mbufs (%d left)\n", 6164 fp->eth_q_stats.mbuf_alloc_tx); 6165 } 6166 6167 /* XXX verify all mbufs were reclaimed */ 6168 } 6169 } 6170 6171 static int 6172 bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, 6173 uint16_t prev_index, 6174 uint16_t index) 6175 { 6176 struct bxe_sw_rx_bd *rx_buf; 6177 struct eth_rx_bd *rx_bd; 6178 bus_dma_segment_t segs[1]; 6179 bus_dmamap_t map; 6180 struct mbuf *m; 6181 int nsegs, rc; 6182 6183 rc = 0; 6184 6185 /* allocate the new RX BD mbuf */ 6186 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); 6187 if (__predict_false(m == NULL)) { 6188 fp->eth_q_stats.mbuf_rx_bd_alloc_failed++; 6189 return (ENOBUFS); 6190 } 6191 6192 fp->eth_q_stats.mbuf_alloc_rx++; 6193 6194 /* initialize the mbuf buffer length */ 6195 m->m_pkthdr.len = m->m_len = fp->rx_buf_size; 6196 6197 /* map the mbuf into non-paged pool */ 6198 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, 6199 fp->rx_mbuf_spare_map, 6200 m, segs, &nsegs, BUS_DMA_NOWAIT); 6201 if (__predict_false(rc != 0)) { 6202 fp->eth_q_stats.mbuf_rx_bd_mapping_failed++; 6203 m_freem(m); 6204 fp->eth_q_stats.mbuf_alloc_rx--; 6205 return (rc); 6206 } 6207 6208 /* all mbufs must map to a single segment */ 6209 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6210 6211 /* release any existing RX BD mbuf mappings */ 6212 6213 if (prev_index != index) { 6214 rx_buf = &fp->rx_mbuf_chain[prev_index]; 6215 6216 if (rx_buf->m_map != NULL) { 6217 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6218 BUS_DMASYNC_POSTREAD); 6219 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 6220 } 6221 6222 /* 6223 * We only get here from bxe_rxeof() when the maximum number 6224 * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already 6225 * holds the mbuf in the prev_index so it's OK to NULL it out 6226 * here without concern of a memory leak. 6227 */ 6228 fp->rx_mbuf_chain[prev_index].m = NULL; 6229 } 6230 6231 rx_buf = &fp->rx_mbuf_chain[index]; 6232 6233 if (rx_buf->m_map != NULL) { 6234 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6235 BUS_DMASYNC_POSTREAD); 6236 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 6237 } 6238 6239 /* save the mbuf and mapping info for a future packet */ 6240 map = (prev_index != index) ? 6241 fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map; 6242 rx_buf->m_map = fp->rx_mbuf_spare_map; 6243 fp->rx_mbuf_spare_map = map; 6244 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6245 BUS_DMASYNC_PREREAD); 6246 rx_buf->m = m; 6247 6248 rx_bd = &fp->rx_chain[index]; 6249 rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 6250 rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 6251 6252 return (rc); 6253 } 6254 6255 static int 6256 bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, 6257 int queue) 6258 { 6259 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; 6260 bus_dma_segment_t segs[1]; 6261 bus_dmamap_t map; 6262 struct mbuf *m; 6263 int nsegs; 6264 int rc = 0; 6265 6266 /* allocate the new TPA mbuf */ 6267 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); 6268 if (__predict_false(m == NULL)) { 6269 fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++; 6270 return (ENOBUFS); 6271 } 6272 6273 fp->eth_q_stats.mbuf_alloc_tpa++; 6274 6275 /* initialize the mbuf buffer length */ 6276 m->m_pkthdr.len = m->m_len = fp->rx_buf_size; 6277 6278 /* map the mbuf into non-paged pool */ 6279 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, 6280 fp->rx_tpa_info_mbuf_spare_map, 6281 m, segs, &nsegs, BUS_DMA_NOWAIT); 6282 if (__predict_false(rc != 0)) { 6283 fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++; 6284 m_free(m); 6285 fp->eth_q_stats.mbuf_alloc_tpa--; 6286 return (rc); 6287 } 6288 6289 /* all mbufs must map to a single segment */ 6290 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6291 6292 /* release any existing TPA mbuf mapping */ 6293 if (tpa_info->bd.m_map != NULL) { 6294 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, 6295 BUS_DMASYNC_POSTREAD); 6296 bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map); 6297 } 6298 6299 /* save the mbuf and mapping info for the TPA mbuf */ 6300 map = tpa_info->bd.m_map; 6301 tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map; 6302 fp->rx_tpa_info_mbuf_spare_map = map; 6303 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, 6304 BUS_DMASYNC_PREREAD); 6305 tpa_info->bd.m = m; 6306 tpa_info->seg = segs[0]; 6307 6308 return (rc); 6309 } 6310 6311 /* 6312 * Allocate an mbuf and assign it to the receive scatter gather chain. The 6313 * caller must take care to save a copy of the existing mbuf in the SG mbuf 6314 * chain. 6315 */ 6316 static int 6317 bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, 6318 uint16_t index) 6319 { 6320 struct bxe_sw_rx_bd *sge_buf; 6321 struct eth_rx_sge *sge; 6322 bus_dma_segment_t segs[1]; 6323 bus_dmamap_t map; 6324 struct mbuf *m; 6325 int nsegs; 6326 int rc = 0; 6327 6328 /* allocate a new SGE mbuf */ 6329 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE); 6330 if (__predict_false(m == NULL)) { 6331 fp->eth_q_stats.mbuf_rx_sge_alloc_failed++; 6332 return (ENOMEM); 6333 } 6334 6335 fp->eth_q_stats.mbuf_alloc_sge++; 6336 6337 /* initialize the mbuf buffer length */ 6338 m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE; 6339 6340 /* map the SGE mbuf into non-paged pool */ 6341 rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag, 6342 fp->rx_sge_mbuf_spare_map, 6343 m, segs, &nsegs, BUS_DMA_NOWAIT); 6344 if (__predict_false(rc != 0)) { 6345 fp->eth_q_stats.mbuf_rx_sge_mapping_failed++; 6346 m_freem(m); 6347 fp->eth_q_stats.mbuf_alloc_sge--; 6348 return (rc); 6349 } 6350 6351 /* all mbufs must map to a single segment */ 6352 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6353 6354 sge_buf = &fp->rx_sge_mbuf_chain[index]; 6355 6356 /* release any existing SGE mbuf mapping */ 6357 if (sge_buf->m_map != NULL) { 6358 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, 6359 BUS_DMASYNC_POSTREAD); 6360 bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map); 6361 } 6362 6363 /* save the mbuf and mapping info for a future packet */ 6364 map = sge_buf->m_map; 6365 sge_buf->m_map = fp->rx_sge_mbuf_spare_map; 6366 fp->rx_sge_mbuf_spare_map = map; 6367 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, 6368 BUS_DMASYNC_PREREAD); 6369 sge_buf->m = m; 6370 6371 sge = &fp->rx_sge_chain[index]; 6372 sge->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 6373 sge->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 6374 6375 return (rc); 6376 } 6377 6378 static __noinline int 6379 bxe_alloc_fp_buffers(struct bxe_softc *sc) 6380 { 6381 struct bxe_fastpath *fp; 6382 int i, j, rc = 0; 6383 int ring_prod, cqe_ring_prod; 6384 int max_agg_queues; 6385 6386 for (i = 0; i < sc->num_queues; i++) { 6387 fp = &sc->fp[i]; 6388 6389 ring_prod = cqe_ring_prod = 0; 6390 fp->rx_bd_cons = 0; 6391 fp->rx_cq_cons = 0; 6392 6393 /* allocate buffers for the RX BDs in RX BD chain */ 6394 for (j = 0; j < sc->max_rx_bufs; j++) { 6395 rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod); 6396 if (rc != 0) { 6397 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", 6398 i, rc); 6399 goto bxe_alloc_fp_buffers_error; 6400 } 6401 6402 ring_prod = RX_BD_NEXT(ring_prod); 6403 cqe_ring_prod = RCQ_NEXT(cqe_ring_prod); 6404 } 6405 6406 fp->rx_bd_prod = ring_prod; 6407 fp->rx_cq_prod = cqe_ring_prod; 6408 fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0; 6409 6410 max_agg_queues = MAX_AGG_QS(sc); 6411 6412 fp->tpa_enable = TRUE; 6413 6414 /* fill the TPA pool */ 6415 for (j = 0; j < max_agg_queues; j++) { 6416 rc = bxe_alloc_rx_tpa_mbuf(fp, j); 6417 if (rc != 0) { 6418 BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n", 6419 i, j); 6420 fp->tpa_enable = FALSE; 6421 goto bxe_alloc_fp_buffers_error; 6422 } 6423 6424 fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP; 6425 } 6426 6427 if (fp->tpa_enable) { 6428 /* fill the RX SGE chain */ 6429 ring_prod = 0; 6430 for (j = 0; j < RX_SGE_USABLE; j++) { 6431 rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod); 6432 if (rc != 0) { 6433 BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n", 6434 i, ring_prod); 6435 fp->tpa_enable = FALSE; 6436 ring_prod = 0; 6437 goto bxe_alloc_fp_buffers_error; 6438 } 6439 6440 ring_prod = RX_SGE_NEXT(ring_prod); 6441 } 6442 6443 fp->rx_sge_prod = ring_prod; 6444 } 6445 } 6446 6447 return (0); 6448 6449 bxe_alloc_fp_buffers_error: 6450 6451 /* unwind what was already allocated */ 6452 bxe_free_rx_bd_chain(fp); 6453 bxe_free_tpa_pool(fp); 6454 bxe_free_sge_chain(fp); 6455 6456 return (ENOBUFS); 6457 } 6458 6459 static void 6460 bxe_free_fw_stats_mem(struct bxe_softc *sc) 6461 { 6462 bxe_dma_free(sc, &sc->fw_stats_dma); 6463 6464 sc->fw_stats_num = 0; 6465 6466 sc->fw_stats_req_size = 0; 6467 sc->fw_stats_req = NULL; 6468 sc->fw_stats_req_mapping = 0; 6469 6470 sc->fw_stats_data_size = 0; 6471 sc->fw_stats_data = NULL; 6472 sc->fw_stats_data_mapping = 0; 6473 } 6474 6475 static int 6476 bxe_alloc_fw_stats_mem(struct bxe_softc *sc) 6477 { 6478 uint8_t num_queue_stats; 6479 int num_groups; 6480 6481 /* number of queues for statistics is number of eth queues */ 6482 num_queue_stats = BXE_NUM_ETH_QUEUES(sc); 6483 6484 /* 6485 * Total number of FW statistics requests = 6486 * 1 for port stats + 1 for PF stats + num of queues 6487 */ 6488 sc->fw_stats_num = (2 + num_queue_stats); 6489 6490 /* 6491 * Request is built from stats_query_header and an array of 6492 * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT 6493 * rules. The real number or requests is configured in the 6494 * stats_query_header. 6495 */ 6496 num_groups = 6497 ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) + 6498 ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0)); 6499 6500 BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n", 6501 sc->fw_stats_num, num_groups); 6502 6503 sc->fw_stats_req_size = 6504 (sizeof(struct stats_query_header) + 6505 (num_groups * sizeof(struct stats_query_cmd_group))); 6506 6507 /* 6508 * Data for statistics requests + stats_counter. 6509 * stats_counter holds per-STORM counters that are incremented when 6510 * STORM has finished with the current request. Memory for FCoE 6511 * offloaded statistics are counted anyway, even if they will not be sent. 6512 * VF stats are not accounted for here as the data of VF stats is stored 6513 * in memory allocated by the VF, not here. 6514 */ 6515 sc->fw_stats_data_size = 6516 (sizeof(struct stats_counter) + 6517 sizeof(struct per_port_stats) + 6518 sizeof(struct per_pf_stats) + 6519 /* sizeof(struct fcoe_statistics_params) + */ 6520 (sizeof(struct per_queue_stats) * num_queue_stats)); 6521 6522 if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size), 6523 &sc->fw_stats_dma, "fw stats") != 0) { 6524 bxe_free_fw_stats_mem(sc); 6525 return (-1); 6526 } 6527 6528 /* set up the shortcuts */ 6529 6530 sc->fw_stats_req = 6531 (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr; 6532 sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr; 6533 6534 sc->fw_stats_data = 6535 (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr + 6536 sc->fw_stats_req_size); 6537 sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr + 6538 sc->fw_stats_req_size); 6539 6540 BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n", 6541 (uintmax_t)sc->fw_stats_req_mapping); 6542 6543 BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n", 6544 (uintmax_t)sc->fw_stats_data_mapping); 6545 6546 return (0); 6547 } 6548 6549 /* 6550 * Bits map: 6551 * 0-7 - Engine0 load counter. 6552 * 8-15 - Engine1 load counter. 6553 * 16 - Engine0 RESET_IN_PROGRESS bit. 6554 * 17 - Engine1 RESET_IN_PROGRESS bit. 6555 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active 6556 * function on the engine 6557 * 19 - Engine1 ONE_IS_LOADED. 6558 * 20 - Chip reset flow bit. When set none-leader must wait for both engines 6559 * leader to complete (check for both RESET_IN_PROGRESS bits and not 6560 * for just the one belonging to its engine). 6561 */ 6562 #define BXE_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1 6563 #define BXE_PATH0_LOAD_CNT_MASK 0x000000ff 6564 #define BXE_PATH0_LOAD_CNT_SHIFT 0 6565 #define BXE_PATH1_LOAD_CNT_MASK 0x0000ff00 6566 #define BXE_PATH1_LOAD_CNT_SHIFT 8 6567 #define BXE_PATH0_RST_IN_PROG_BIT 0x00010000 6568 #define BXE_PATH1_RST_IN_PROG_BIT 0x00020000 6569 #define BXE_GLOBAL_RESET_BIT 0x00040000 6570 6571 /* set the GLOBAL_RESET bit, should be run under rtnl lock */ 6572 static void 6573 bxe_set_reset_global(struct bxe_softc *sc) 6574 { 6575 uint32_t val; 6576 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6577 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6578 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT); 6579 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6580 } 6581 6582 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */ 6583 static void 6584 bxe_clear_reset_global(struct bxe_softc *sc) 6585 { 6586 uint32_t val; 6587 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6588 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6589 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT)); 6590 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6591 } 6592 6593 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */ 6594 static uint8_t 6595 bxe_reset_is_global(struct bxe_softc *sc) 6596 { 6597 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6598 BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val); 6599 return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE; 6600 } 6601 6602 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */ 6603 static void 6604 bxe_set_reset_done(struct bxe_softc *sc) 6605 { 6606 uint32_t val; 6607 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : 6608 BXE_PATH0_RST_IN_PROG_BIT; 6609 6610 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6611 6612 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6613 /* Clear the bit */ 6614 val &= ~bit; 6615 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6616 6617 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6618 } 6619 6620 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */ 6621 static void 6622 bxe_set_reset_in_progress(struct bxe_softc *sc) 6623 { 6624 uint32_t val; 6625 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : 6626 BXE_PATH0_RST_IN_PROG_BIT; 6627 6628 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6629 6630 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6631 /* Set the bit */ 6632 val |= bit; 6633 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6634 6635 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6636 } 6637 6638 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */ 6639 static uint8_t 6640 bxe_reset_is_done(struct bxe_softc *sc, 6641 int engine) 6642 { 6643 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6644 uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT : 6645 BXE_PATH0_RST_IN_PROG_BIT; 6646 6647 /* return false if bit is set */ 6648 return (val & bit) ? FALSE : TRUE; 6649 } 6650 6651 /* get the load status for an engine, should be run under rtnl lock */ 6652 static uint8_t 6653 bxe_get_load_status(struct bxe_softc *sc, 6654 int engine) 6655 { 6656 uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK : 6657 BXE_PATH0_LOAD_CNT_MASK; 6658 uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT : 6659 BXE_PATH0_LOAD_CNT_SHIFT; 6660 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6661 6662 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); 6663 6664 val = ((val & mask) >> shift); 6665 6666 BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val); 6667 6668 return (val != 0); 6669 } 6670 6671 /* set pf load mark */ 6672 /* XXX needs to be under rtnl lock */ 6673 static void 6674 bxe_set_pf_load(struct bxe_softc *sc) 6675 { 6676 uint32_t val; 6677 uint32_t val1; 6678 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : 6679 BXE_PATH0_LOAD_CNT_MASK; 6680 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : 6681 BXE_PATH0_LOAD_CNT_SHIFT; 6682 6683 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6684 6685 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6686 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); 6687 6688 /* get the current counter value */ 6689 val1 = ((val & mask) >> shift); 6690 6691 /* set bit of this PF */ 6692 val1 |= (1 << SC_ABS_FUNC(sc)); 6693 6694 /* clear the old value */ 6695 val &= ~mask; 6696 6697 /* set the new one */ 6698 val |= ((val1 << shift) & mask); 6699 6700 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6701 6702 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6703 } 6704 6705 /* clear pf load mark */ 6706 /* XXX needs to be under rtnl lock */ 6707 static uint8_t 6708 bxe_clear_pf_load(struct bxe_softc *sc) 6709 { 6710 uint32_t val1, val; 6711 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : 6712 BXE_PATH0_LOAD_CNT_MASK; 6713 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : 6714 BXE_PATH0_LOAD_CNT_SHIFT; 6715 6716 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6717 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6718 BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val); 6719 6720 /* get the current counter value */ 6721 val1 = (val & mask) >> shift; 6722 6723 /* clear bit of that PF */ 6724 val1 &= ~(1 << SC_ABS_FUNC(sc)); 6725 6726 /* clear the old value */ 6727 val &= ~mask; 6728 6729 /* set the new one */ 6730 val |= ((val1 << shift) & mask); 6731 6732 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6733 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6734 return (val1 != 0); 6735 } 6736 6737 /* send load requrest to mcp and analyze response */ 6738 static int 6739 bxe_nic_load_request(struct bxe_softc *sc, 6740 uint32_t *load_code) 6741 { 6742 /* init fw_seq */ 6743 sc->fw_seq = 6744 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & 6745 DRV_MSG_SEQ_NUMBER_MASK); 6746 6747 BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq); 6748 6749 /* get the current FW pulse sequence */ 6750 sc->fw_drv_pulse_wr_seq = 6751 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) & 6752 DRV_PULSE_SEQ_MASK); 6753 6754 BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n", 6755 sc->fw_drv_pulse_wr_seq); 6756 6757 /* load request */ 6758 (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, 6759 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 6760 6761 /* if the MCP fails to respond we must abort */ 6762 if (!(*load_code)) { 6763 BLOGE(sc, "MCP response failure!\n"); 6764 return (-1); 6765 } 6766 6767 /* if MCP refused then must abort */ 6768 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) { 6769 BLOGE(sc, "MCP refused load request\n"); 6770 return (-1); 6771 } 6772 6773 return (0); 6774 } 6775 6776 /* 6777 * Check whether another PF has already loaded FW to chip. In virtualized 6778 * environments a pf from anoth VM may have already initialized the device 6779 * including loading FW. 6780 */ 6781 static int 6782 bxe_nic_load_analyze_req(struct bxe_softc *sc, 6783 uint32_t load_code) 6784 { 6785 uint32_t my_fw, loaded_fw; 6786 6787 /* is another pf loaded on this engine? */ 6788 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 6789 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 6790 /* build my FW version dword */ 6791 my_fw = (BCM_5710_FW_MAJOR_VERSION + 6792 (BCM_5710_FW_MINOR_VERSION << 8 ) + 6793 (BCM_5710_FW_REVISION_VERSION << 16) + 6794 (BCM_5710_FW_ENGINEERING_VERSION << 24)); 6795 6796 /* read loaded FW from chip */ 6797 loaded_fw = REG_RD(sc, XSEM_REG_PRAM); 6798 BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n", 6799 loaded_fw, my_fw); 6800 6801 /* abort nic load if version mismatch */ 6802 if (my_fw != loaded_fw) { 6803 BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)", 6804 loaded_fw, my_fw); 6805 return (-1); 6806 } 6807 } 6808 6809 return (0); 6810 } 6811 6812 /* mark PMF if applicable */ 6813 static void 6814 bxe_nic_load_pmf(struct bxe_softc *sc, 6815 uint32_t load_code) 6816 { 6817 uint32_t ncsi_oem_data_addr; 6818 6819 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 6820 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) || 6821 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) { 6822 /* 6823 * Barrier here for ordering between the writing to sc->port.pmf here 6824 * and reading it from the periodic task. 6825 */ 6826 sc->port.pmf = 1; 6827 mb(); 6828 } else { 6829 sc->port.pmf = 0; 6830 } 6831 6832 BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf); 6833 6834 /* XXX needed? */ 6835 if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) { 6836 if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) { 6837 ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr); 6838 if (ncsi_oem_data_addr) { 6839 REG_WR(sc, 6840 (ncsi_oem_data_addr + 6841 offsetof(struct glob_ncsi_oem_data, driver_version)), 6842 0); 6843 } 6844 } 6845 } 6846 } 6847 6848 static void 6849 bxe_read_mf_cfg(struct bxe_softc *sc) 6850 { 6851 int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1); 6852 int abs_func; 6853 int vn; 6854 6855 if (BXE_NOMCP(sc)) { 6856 return; /* what should be the default bvalue in this case */ 6857 } 6858 6859 /* 6860 * The formula for computing the absolute function number is... 6861 * For 2 port configuration (4 functions per port): 6862 * abs_func = 2 * vn + SC_PORT + SC_PATH 6863 * For 4 port configuration (2 functions per port): 6864 * abs_func = 4 * vn + 2 * SC_PORT + SC_PATH 6865 */ 6866 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 6867 abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc)); 6868 if (abs_func >= E1H_FUNC_MAX) { 6869 break; 6870 } 6871 sc->devinfo.mf_info.mf_config[vn] = 6872 MFCFG_RD(sc, func_mf_config[abs_func].config); 6873 } 6874 6875 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & 6876 FUNC_MF_CFG_FUNC_DISABLED) { 6877 BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n"); 6878 sc->flags |= BXE_MF_FUNC_DIS; 6879 } else { 6880 BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n"); 6881 sc->flags &= ~BXE_MF_FUNC_DIS; 6882 } 6883 } 6884 6885 /* acquire split MCP access lock register */ 6886 static int bxe_acquire_alr(struct bxe_softc *sc) 6887 { 6888 uint32_t j, val; 6889 6890 for (j = 0; j < 1000; j++) { 6891 val = (1UL << 31); 6892 REG_WR(sc, GRCBASE_MCP + 0x9c, val); 6893 val = REG_RD(sc, GRCBASE_MCP + 0x9c); 6894 if (val & (1L << 31)) 6895 break; 6896 6897 DELAY(5000); 6898 } 6899 6900 if (!(val & (1L << 31))) { 6901 BLOGE(sc, "Cannot acquire MCP access lock register\n"); 6902 return (-1); 6903 } 6904 6905 return (0); 6906 } 6907 6908 /* release split MCP access lock register */ 6909 static void bxe_release_alr(struct bxe_softc *sc) 6910 { 6911 REG_WR(sc, GRCBASE_MCP + 0x9c, 0); 6912 } 6913 6914 static void 6915 bxe_fan_failure(struct bxe_softc *sc) 6916 { 6917 int port = SC_PORT(sc); 6918 uint32_t ext_phy_config; 6919 6920 /* mark the failure */ 6921 ext_phy_config = 6922 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); 6923 6924 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK; 6925 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE; 6926 SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config, 6927 ext_phy_config); 6928 6929 /* log the failure */ 6930 BLOGW(sc, "Fan Failure has caused the driver to shutdown " 6931 "the card to prevent permanent damage. " 6932 "Please contact OEM Support for assistance\n"); 6933 6934 /* XXX */ 6935 #if 1 6936 bxe_panic(sc, ("Schedule task to handle fan failure\n")); 6937 #else 6938 /* 6939 * Schedule device reset (unload) 6940 * This is due to some boards consuming sufficient power when driver is 6941 * up to overheat if fan fails. 6942 */ 6943 bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state); 6944 schedule_delayed_work(&sc->sp_rtnl_task, 0); 6945 #endif 6946 } 6947 6948 /* this function is called upon a link interrupt */ 6949 static void 6950 bxe_link_attn(struct bxe_softc *sc) 6951 { 6952 uint32_t pause_enabled = 0; 6953 struct host_port_stats *pstats; 6954 int cmng_fns; 6955 6956 /* Make sure that we are synced with the current statistics */ 6957 bxe_stats_handle(sc, STATS_EVENT_STOP); 6958 6959 elink_link_update(&sc->link_params, &sc->link_vars); 6960 6961 if (sc->link_vars.link_up) { 6962 6963 /* dropless flow control */ 6964 if (!CHIP_IS_E1(sc) && sc->dropless_fc) { 6965 pause_enabled = 0; 6966 6967 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { 6968 pause_enabled = 1; 6969 } 6970 6971 REG_WR(sc, 6972 (BAR_USTRORM_INTMEM + 6973 USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))), 6974 pause_enabled); 6975 } 6976 6977 if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) { 6978 pstats = BXE_SP(sc, port_stats); 6979 /* reset old mac stats */ 6980 memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx)); 6981 } 6982 6983 if (sc->state == BXE_STATE_OPEN) { 6984 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 6985 } 6986 } 6987 6988 if (sc->link_vars.link_up && sc->link_vars.line_speed) { 6989 cmng_fns = bxe_get_cmng_fns_mode(sc); 6990 6991 if (cmng_fns != CMNG_FNS_NONE) { 6992 bxe_cmng_fns_init(sc, FALSE, cmng_fns); 6993 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 6994 } else { 6995 /* rate shaping and fairness are disabled */ 6996 BLOGD(sc, DBG_LOAD, "single function mode without fairness\n"); 6997 } 6998 } 6999 7000 bxe_link_report_locked(sc); 7001 7002 if (IS_MF(sc)) { 7003 ; // XXX bxe_link_sync_notify(sc); 7004 } 7005 } 7006 7007 static void 7008 bxe_attn_int_asserted(struct bxe_softc *sc, 7009 uint32_t asserted) 7010 { 7011 int port = SC_PORT(sc); 7012 uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 7013 MISC_REG_AEU_MASK_ATTN_FUNC_0; 7014 uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 : 7015 NIG_REG_MASK_INTERRUPT_PORT0; 7016 uint32_t aeu_mask; 7017 uint32_t nig_mask = 0; 7018 uint32_t reg_addr; 7019 uint32_t igu_acked; 7020 uint32_t cnt; 7021 7022 if (sc->attn_state & asserted) { 7023 BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted); 7024 } 7025 7026 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 7027 7028 aeu_mask = REG_RD(sc, aeu_addr); 7029 7030 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n", 7031 aeu_mask, asserted); 7032 7033 aeu_mask &= ~(asserted & 0x3ff); 7034 7035 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); 7036 7037 REG_WR(sc, aeu_addr, aeu_mask); 7038 7039 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 7040 7041 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); 7042 sc->attn_state |= asserted; 7043 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); 7044 7045 if (asserted & ATTN_HARD_WIRED_MASK) { 7046 if (asserted & ATTN_NIG_FOR_FUNC) { 7047 7048 bxe_acquire_phy_lock(sc); 7049 /* save nig interrupt mask */ 7050 nig_mask = REG_RD(sc, nig_int_mask_addr); 7051 7052 /* If nig_mask is not set, no need to call the update function */ 7053 if (nig_mask) { 7054 REG_WR(sc, nig_int_mask_addr, 0); 7055 7056 bxe_link_attn(sc); 7057 } 7058 7059 /* handle unicore attn? */ 7060 } 7061 7062 if (asserted & ATTN_SW_TIMER_4_FUNC) { 7063 BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n"); 7064 } 7065 7066 if (asserted & GPIO_2_FUNC) { 7067 BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n"); 7068 } 7069 7070 if (asserted & GPIO_3_FUNC) { 7071 BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n"); 7072 } 7073 7074 if (asserted & GPIO_4_FUNC) { 7075 BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n"); 7076 } 7077 7078 if (port == 0) { 7079 if (asserted & ATTN_GENERAL_ATTN_1) { 7080 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n"); 7081 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0); 7082 } 7083 if (asserted & ATTN_GENERAL_ATTN_2) { 7084 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n"); 7085 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0); 7086 } 7087 if (asserted & ATTN_GENERAL_ATTN_3) { 7088 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n"); 7089 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0); 7090 } 7091 } else { 7092 if (asserted & ATTN_GENERAL_ATTN_4) { 7093 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n"); 7094 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0); 7095 } 7096 if (asserted & ATTN_GENERAL_ATTN_5) { 7097 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n"); 7098 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0); 7099 } 7100 if (asserted & ATTN_GENERAL_ATTN_6) { 7101 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n"); 7102 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0); 7103 } 7104 } 7105 } /* hardwired */ 7106 7107 if (sc->devinfo.int_block == INT_BLOCK_HC) { 7108 reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET); 7109 } else { 7110 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8); 7111 } 7112 7113 BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n", 7114 asserted, 7115 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 7116 REG_WR(sc, reg_addr, asserted); 7117 7118 /* now set back the mask */ 7119 if (asserted & ATTN_NIG_FOR_FUNC) { 7120 /* 7121 * Verify that IGU ack through BAR was written before restoring 7122 * NIG mask. This loop should exit after 2-3 iterations max. 7123 */ 7124 if (sc->devinfo.int_block != INT_BLOCK_HC) { 7125 cnt = 0; 7126 7127 do { 7128 igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS); 7129 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) && 7130 (++cnt < MAX_IGU_ATTN_ACK_TO)); 7131 7132 if (!igu_acked) { 7133 BLOGE(sc, "Failed to verify IGU ack on time\n"); 7134 } 7135 7136 mb(); 7137 } 7138 7139 REG_WR(sc, nig_int_mask_addr, nig_mask); 7140 7141 bxe_release_phy_lock(sc); 7142 } 7143 } 7144 7145 static void 7146 bxe_print_next_block(struct bxe_softc *sc, 7147 int idx, 7148 const char *blk) 7149 { 7150 BLOGI(sc, "%s%s", idx ? ", " : "", blk); 7151 } 7152 7153 static int 7154 bxe_check_blocks_with_parity0(struct bxe_softc *sc, 7155 uint32_t sig, 7156 int par_num, 7157 uint8_t print) 7158 { 7159 uint32_t cur_bit = 0; 7160 int i = 0; 7161 7162 for (i = 0; sig; i++) { 7163 cur_bit = ((uint32_t)0x1 << i); 7164 if (sig & cur_bit) { 7165 switch (cur_bit) { 7166 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR: 7167 if (print) 7168 bxe_print_next_block(sc, par_num++, "BRB"); 7169 break; 7170 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR: 7171 if (print) 7172 bxe_print_next_block(sc, par_num++, "PARSER"); 7173 break; 7174 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR: 7175 if (print) 7176 bxe_print_next_block(sc, par_num++, "TSDM"); 7177 break; 7178 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR: 7179 if (print) 7180 bxe_print_next_block(sc, par_num++, "SEARCHER"); 7181 break; 7182 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR: 7183 if (print) 7184 bxe_print_next_block(sc, par_num++, "TCM"); 7185 break; 7186 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR: 7187 if (print) 7188 bxe_print_next_block(sc, par_num++, "TSEMI"); 7189 break; 7190 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR: 7191 if (print) 7192 bxe_print_next_block(sc, par_num++, "XPB"); 7193 break; 7194 } 7195 7196 /* Clear the bit */ 7197 sig &= ~cur_bit; 7198 } 7199 } 7200 7201 return (par_num); 7202 } 7203 7204 static int 7205 bxe_check_blocks_with_parity1(struct bxe_softc *sc, 7206 uint32_t sig, 7207 int par_num, 7208 uint8_t *global, 7209 uint8_t print) 7210 { 7211 int i = 0; 7212 uint32_t cur_bit = 0; 7213 for (i = 0; sig; i++) { 7214 cur_bit = ((uint32_t)0x1 << i); 7215 if (sig & cur_bit) { 7216 switch (cur_bit) { 7217 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR: 7218 if (print) 7219 bxe_print_next_block(sc, par_num++, "PBF"); 7220 break; 7221 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR: 7222 if (print) 7223 bxe_print_next_block(sc, par_num++, "QM"); 7224 break; 7225 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR: 7226 if (print) 7227 bxe_print_next_block(sc, par_num++, "TM"); 7228 break; 7229 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR: 7230 if (print) 7231 bxe_print_next_block(sc, par_num++, "XSDM"); 7232 break; 7233 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR: 7234 if (print) 7235 bxe_print_next_block(sc, par_num++, "XCM"); 7236 break; 7237 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR: 7238 if (print) 7239 bxe_print_next_block(sc, par_num++, "XSEMI"); 7240 break; 7241 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR: 7242 if (print) 7243 bxe_print_next_block(sc, par_num++, "DOORBELLQ"); 7244 break; 7245 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR: 7246 if (print) 7247 bxe_print_next_block(sc, par_num++, "NIG"); 7248 break; 7249 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR: 7250 if (print) 7251 bxe_print_next_block(sc, par_num++, "VAUX PCI CORE"); 7252 *global = TRUE; 7253 break; 7254 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR: 7255 if (print) 7256 bxe_print_next_block(sc, par_num++, "DEBUG"); 7257 break; 7258 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR: 7259 if (print) 7260 bxe_print_next_block(sc, par_num++, "USDM"); 7261 break; 7262 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR: 7263 if (print) 7264 bxe_print_next_block(sc, par_num++, "UCM"); 7265 break; 7266 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR: 7267 if (print) 7268 bxe_print_next_block(sc, par_num++, "USEMI"); 7269 break; 7270 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR: 7271 if (print) 7272 bxe_print_next_block(sc, par_num++, "UPB"); 7273 break; 7274 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR: 7275 if (print) 7276 bxe_print_next_block(sc, par_num++, "CSDM"); 7277 break; 7278 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR: 7279 if (print) 7280 bxe_print_next_block(sc, par_num++, "CCM"); 7281 break; 7282 } 7283 7284 /* Clear the bit */ 7285 sig &= ~cur_bit; 7286 } 7287 } 7288 7289 return (par_num); 7290 } 7291 7292 static int 7293 bxe_check_blocks_with_parity2(struct bxe_softc *sc, 7294 uint32_t sig, 7295 int par_num, 7296 uint8_t print) 7297 { 7298 uint32_t cur_bit = 0; 7299 int i = 0; 7300 7301 for (i = 0; sig; i++) { 7302 cur_bit = ((uint32_t)0x1 << i); 7303 if (sig & cur_bit) { 7304 switch (cur_bit) { 7305 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR: 7306 if (print) 7307 bxe_print_next_block(sc, par_num++, "CSEMI"); 7308 break; 7309 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR: 7310 if (print) 7311 bxe_print_next_block(sc, par_num++, "PXP"); 7312 break; 7313 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR: 7314 if (print) 7315 bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT"); 7316 break; 7317 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR: 7318 if (print) 7319 bxe_print_next_block(sc, par_num++, "CFC"); 7320 break; 7321 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR: 7322 if (print) 7323 bxe_print_next_block(sc, par_num++, "CDU"); 7324 break; 7325 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR: 7326 if (print) 7327 bxe_print_next_block(sc, par_num++, "DMAE"); 7328 break; 7329 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR: 7330 if (print) 7331 bxe_print_next_block(sc, par_num++, "IGU"); 7332 break; 7333 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR: 7334 if (print) 7335 bxe_print_next_block(sc, par_num++, "MISC"); 7336 break; 7337 } 7338 7339 /* Clear the bit */ 7340 sig &= ~cur_bit; 7341 } 7342 } 7343 7344 return (par_num); 7345 } 7346 7347 static int 7348 bxe_check_blocks_with_parity3(struct bxe_softc *sc, 7349 uint32_t sig, 7350 int par_num, 7351 uint8_t *global, 7352 uint8_t print) 7353 { 7354 uint32_t cur_bit = 0; 7355 int i = 0; 7356 7357 for (i = 0; sig; i++) { 7358 cur_bit = ((uint32_t)0x1 << i); 7359 if (sig & cur_bit) { 7360 switch (cur_bit) { 7361 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY: 7362 if (print) 7363 bxe_print_next_block(sc, par_num++, "MCP ROM"); 7364 *global = TRUE; 7365 break; 7366 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY: 7367 if (print) 7368 bxe_print_next_block(sc, par_num++, 7369 "MCP UMP RX"); 7370 *global = TRUE; 7371 break; 7372 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY: 7373 if (print) 7374 bxe_print_next_block(sc, par_num++, 7375 "MCP UMP TX"); 7376 *global = TRUE; 7377 break; 7378 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY: 7379 if (print) 7380 bxe_print_next_block(sc, par_num++, 7381 "MCP SCPAD"); 7382 *global = TRUE; 7383 break; 7384 } 7385 7386 /* Clear the bit */ 7387 sig &= ~cur_bit; 7388 } 7389 } 7390 7391 return (par_num); 7392 } 7393 7394 static int 7395 bxe_check_blocks_with_parity4(struct bxe_softc *sc, 7396 uint32_t sig, 7397 int par_num, 7398 uint8_t print) 7399 { 7400 uint32_t cur_bit = 0; 7401 int i = 0; 7402 7403 for (i = 0; sig; i++) { 7404 cur_bit = ((uint32_t)0x1 << i); 7405 if (sig & cur_bit) { 7406 switch (cur_bit) { 7407 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR: 7408 if (print) 7409 bxe_print_next_block(sc, par_num++, "PGLUE_B"); 7410 break; 7411 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR: 7412 if (print) 7413 bxe_print_next_block(sc, par_num++, "ATC"); 7414 break; 7415 } 7416 7417 /* Clear the bit */ 7418 sig &= ~cur_bit; 7419 } 7420 } 7421 7422 return (par_num); 7423 } 7424 7425 static uint8_t 7426 bxe_parity_attn(struct bxe_softc *sc, 7427 uint8_t *global, 7428 uint8_t print, 7429 uint32_t *sig) 7430 { 7431 int par_num = 0; 7432 7433 if ((sig[0] & HW_PRTY_ASSERT_SET_0) || 7434 (sig[1] & HW_PRTY_ASSERT_SET_1) || 7435 (sig[2] & HW_PRTY_ASSERT_SET_2) || 7436 (sig[3] & HW_PRTY_ASSERT_SET_3) || 7437 (sig[4] & HW_PRTY_ASSERT_SET_4)) { 7438 BLOGE(sc, "Parity error: HW block parity attention:\n" 7439 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n", 7440 (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0), 7441 (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1), 7442 (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2), 7443 (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3), 7444 (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4)); 7445 7446 if (print) 7447 BLOGI(sc, "Parity errors detected in blocks: "); 7448 7449 par_num = 7450 bxe_check_blocks_with_parity0(sc, sig[0] & 7451 HW_PRTY_ASSERT_SET_0, 7452 par_num, print); 7453 par_num = 7454 bxe_check_blocks_with_parity1(sc, sig[1] & 7455 HW_PRTY_ASSERT_SET_1, 7456 par_num, global, print); 7457 par_num = 7458 bxe_check_blocks_with_parity2(sc, sig[2] & 7459 HW_PRTY_ASSERT_SET_2, 7460 par_num, print); 7461 par_num = 7462 bxe_check_blocks_with_parity3(sc, sig[3] & 7463 HW_PRTY_ASSERT_SET_3, 7464 par_num, global, print); 7465 par_num = 7466 bxe_check_blocks_with_parity4(sc, sig[4] & 7467 HW_PRTY_ASSERT_SET_4, 7468 par_num, print); 7469 7470 if (print) 7471 BLOGI(sc, "\n"); 7472 7473 return (TRUE); 7474 } 7475 7476 return (FALSE); 7477 } 7478 7479 static uint8_t 7480 bxe_chk_parity_attn(struct bxe_softc *sc, 7481 uint8_t *global, 7482 uint8_t print) 7483 { 7484 struct attn_route attn = { {0} }; 7485 int port = SC_PORT(sc); 7486 7487 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 7488 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 7489 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 7490 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 7491 7492 /* 7493 * Since MCP attentions can't be disabled inside the block, we need to 7494 * read AEU registers to see whether they're currently disabled 7495 */ 7496 attn.sig[3] &= ((REG_RD(sc, (!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0 7497 : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0)) & 7498 MISC_AEU_ENABLE_MCP_PRTY_BITS) | 7499 ~MISC_AEU_ENABLE_MCP_PRTY_BITS); 7500 7501 7502 if (!CHIP_IS_E1x(sc)) 7503 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 7504 7505 return (bxe_parity_attn(sc, global, print, attn.sig)); 7506 } 7507 7508 static void 7509 bxe_attn_int_deasserted4(struct bxe_softc *sc, 7510 uint32_t attn) 7511 { 7512 uint32_t val; 7513 7514 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) { 7515 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR); 7516 BLOGE(sc, "PGLUE hw attention 0x%08x\n", val); 7517 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR) 7518 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n"); 7519 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR) 7520 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n"); 7521 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) 7522 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n"); 7523 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN) 7524 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n"); 7525 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN) 7526 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n"); 7527 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN) 7528 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n"); 7529 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN) 7530 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n"); 7531 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN) 7532 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n"); 7533 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW) 7534 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n"); 7535 } 7536 7537 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) { 7538 val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR); 7539 BLOGE(sc, "ATC hw attention 0x%08x\n", val); 7540 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR) 7541 BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n"); 7542 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND) 7543 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n"); 7544 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS) 7545 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n"); 7546 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT) 7547 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n"); 7548 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR) 7549 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n"); 7550 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU) 7551 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n"); 7552 } 7553 7554 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 7555 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) { 7556 BLOGE(sc, "FATAL parity attention set4 0x%08x\n", 7557 (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 7558 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR))); 7559 } 7560 } 7561 7562 static void 7563 bxe_e1h_disable(struct bxe_softc *sc) 7564 { 7565 int port = SC_PORT(sc); 7566 7567 bxe_tx_disable(sc); 7568 7569 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); 7570 } 7571 7572 static void 7573 bxe_e1h_enable(struct bxe_softc *sc) 7574 { 7575 int port = SC_PORT(sc); 7576 7577 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); 7578 7579 // XXX bxe_tx_enable(sc); 7580 } 7581 7582 /* 7583 * called due to MCP event (on pmf): 7584 * reread new bandwidth configuration 7585 * configure FW 7586 * notify others function about the change 7587 */ 7588 static void 7589 bxe_config_mf_bw(struct bxe_softc *sc) 7590 { 7591 if (sc->link_vars.link_up) { 7592 bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX); 7593 // XXX bxe_link_sync_notify(sc); 7594 } 7595 7596 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 7597 } 7598 7599 static void 7600 bxe_set_mf_bw(struct bxe_softc *sc) 7601 { 7602 bxe_config_mf_bw(sc); 7603 bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0); 7604 } 7605 7606 static void 7607 bxe_handle_eee_event(struct bxe_softc *sc) 7608 { 7609 BLOGD(sc, DBG_INTR, "EEE - LLDP event\n"); 7610 bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0); 7611 } 7612 7613 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3 7614 7615 static void 7616 bxe_drv_info_ether_stat(struct bxe_softc *sc) 7617 { 7618 struct eth_stats_info *ether_stat = 7619 &sc->sp->drv_info_to_mcp.ether_stat; 7620 7621 strlcpy(ether_stat->version, BXE_DRIVER_VERSION, 7622 ETH_STAT_INFO_VERSION_LEN); 7623 7624 /* XXX (+ MAC_PAD) taken from other driver... verify this is right */ 7625 sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj, 7626 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED, 7627 ether_stat->mac_local + MAC_PAD, 7628 MAC_PAD, ETH_ALEN); 7629 7630 ether_stat->mtu_size = sc->mtu; 7631 7632 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK; 7633 if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) { 7634 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK; 7635 } 7636 7637 // XXX ether_stat->feature_flags |= ???; 7638 7639 ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0; 7640 7641 ether_stat->txq_size = sc->tx_ring_size; 7642 ether_stat->rxq_size = sc->rx_ring_size; 7643 } 7644 7645 static void 7646 bxe_handle_drv_info_req(struct bxe_softc *sc) 7647 { 7648 enum drv_info_opcode op_code; 7649 uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control); 7650 7651 /* if drv_info version supported by MFW doesn't match - send NACK */ 7652 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) { 7653 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); 7654 return; 7655 } 7656 7657 op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >> 7658 DRV_INFO_CONTROL_OP_CODE_SHIFT); 7659 7660 memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp)); 7661 7662 switch (op_code) { 7663 case ETH_STATS_OPCODE: 7664 bxe_drv_info_ether_stat(sc); 7665 break; 7666 case FCOE_STATS_OPCODE: 7667 case ISCSI_STATS_OPCODE: 7668 default: 7669 /* if op code isn't supported - send NACK */ 7670 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); 7671 return; 7672 } 7673 7674 /* 7675 * If we got drv_info attn from MFW then these fields are defined in 7676 * shmem2 for sure 7677 */ 7678 SHMEM2_WR(sc, drv_info_host_addr_lo, 7679 U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp))); 7680 SHMEM2_WR(sc, drv_info_host_addr_hi, 7681 U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp))); 7682 7683 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0); 7684 } 7685 7686 static void 7687 bxe_dcc_event(struct bxe_softc *sc, 7688 uint32_t dcc_event) 7689 { 7690 BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event); 7691 7692 if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) { 7693 /* 7694 * This is the only place besides the function initialization 7695 * where the sc->flags can change so it is done without any 7696 * locks 7697 */ 7698 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) { 7699 BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n"); 7700 sc->flags |= BXE_MF_FUNC_DIS; 7701 bxe_e1h_disable(sc); 7702 } else { 7703 BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n"); 7704 sc->flags &= ~BXE_MF_FUNC_DIS; 7705 bxe_e1h_enable(sc); 7706 } 7707 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF; 7708 } 7709 7710 if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) { 7711 bxe_config_mf_bw(sc); 7712 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION; 7713 } 7714 7715 /* Report results to MCP */ 7716 if (dcc_event) 7717 bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0); 7718 else 7719 bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0); 7720 } 7721 7722 static void 7723 bxe_pmf_update(struct bxe_softc *sc) 7724 { 7725 int port = SC_PORT(sc); 7726 uint32_t val; 7727 7728 sc->port.pmf = 1; 7729 BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf); 7730 7731 /* 7732 * We need the mb() to ensure the ordering between the writing to 7733 * sc->port.pmf here and reading it from the bxe_periodic_task(). 7734 */ 7735 mb(); 7736 7737 /* queue a periodic task */ 7738 // XXX schedule task... 7739 7740 // XXX bxe_dcbx_pmf_update(sc); 7741 7742 /* enable nig attention */ 7743 val = (0xff0f | (1 << (SC_VN(sc) + 4))); 7744 if (sc->devinfo.int_block == INT_BLOCK_HC) { 7745 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val); 7746 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val); 7747 } else if (!CHIP_IS_E1x(sc)) { 7748 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); 7749 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); 7750 } 7751 7752 bxe_stats_handle(sc, STATS_EVENT_PMF); 7753 } 7754 7755 static int 7756 bxe_mc_assert(struct bxe_softc *sc) 7757 { 7758 char last_idx; 7759 int i, rc = 0; 7760 uint32_t row0, row1, row2, row3; 7761 7762 /* XSTORM */ 7763 last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET); 7764 if (last_idx) 7765 BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7766 7767 /* print the asserts */ 7768 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7769 7770 row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i)); 7771 row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4); 7772 row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8); 7773 row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12); 7774 7775 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7776 BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7777 i, row3, row2, row1, row0); 7778 rc++; 7779 } else { 7780 break; 7781 } 7782 } 7783 7784 /* TSTORM */ 7785 last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET); 7786 if (last_idx) { 7787 BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7788 } 7789 7790 /* print the asserts */ 7791 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7792 7793 row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i)); 7794 row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4); 7795 row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8); 7796 row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12); 7797 7798 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7799 BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7800 i, row3, row2, row1, row0); 7801 rc++; 7802 } else { 7803 break; 7804 } 7805 } 7806 7807 /* CSTORM */ 7808 last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET); 7809 if (last_idx) { 7810 BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7811 } 7812 7813 /* print the asserts */ 7814 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7815 7816 row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i)); 7817 row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4); 7818 row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8); 7819 row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12); 7820 7821 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7822 BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7823 i, row3, row2, row1, row0); 7824 rc++; 7825 } else { 7826 break; 7827 } 7828 } 7829 7830 /* USTORM */ 7831 last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET); 7832 if (last_idx) { 7833 BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7834 } 7835 7836 /* print the asserts */ 7837 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7838 7839 row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i)); 7840 row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4); 7841 row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8); 7842 row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12); 7843 7844 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7845 BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7846 i, row3, row2, row1, row0); 7847 rc++; 7848 } else { 7849 break; 7850 } 7851 } 7852 7853 return (rc); 7854 } 7855 7856 static void 7857 bxe_attn_int_deasserted3(struct bxe_softc *sc, 7858 uint32_t attn) 7859 { 7860 int func = SC_FUNC(sc); 7861 uint32_t val; 7862 7863 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) { 7864 7865 if (attn & BXE_PMF_LINK_ASSERT(sc)) { 7866 7867 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 7868 bxe_read_mf_cfg(sc); 7869 sc->devinfo.mf_info.mf_config[SC_VN(sc)] = 7870 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 7871 val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status); 7872 7873 if (val & DRV_STATUS_DCC_EVENT_MASK) 7874 bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK)); 7875 7876 if (val & DRV_STATUS_SET_MF_BW) 7877 bxe_set_mf_bw(sc); 7878 7879 if (val & DRV_STATUS_DRV_INFO_REQ) 7880 bxe_handle_drv_info_req(sc); 7881 7882 if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF)) 7883 bxe_pmf_update(sc); 7884 7885 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS) 7886 bxe_handle_eee_event(sc); 7887 7888 if (sc->link_vars.periodic_flags & 7889 ELINK_PERIODIC_FLAGS_LINK_EVENT) { 7890 /* sync with link */ 7891 bxe_acquire_phy_lock(sc); 7892 sc->link_vars.periodic_flags &= 7893 ~ELINK_PERIODIC_FLAGS_LINK_EVENT; 7894 bxe_release_phy_lock(sc); 7895 if (IS_MF(sc)) 7896 ; // XXX bxe_link_sync_notify(sc); 7897 bxe_link_report(sc); 7898 } 7899 7900 /* 7901 * Always call it here: bxe_link_report() will 7902 * prevent the link indication duplication. 7903 */ 7904 bxe_link_status_update(sc); 7905 7906 } else if (attn & BXE_MC_ASSERT_BITS) { 7907 7908 BLOGE(sc, "MC assert!\n"); 7909 bxe_mc_assert(sc); 7910 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0); 7911 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0); 7912 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0); 7913 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0); 7914 bxe_panic(sc, ("MC assert!\n")); 7915 7916 } else if (attn & BXE_MCP_ASSERT) { 7917 7918 BLOGE(sc, "MCP assert!\n"); 7919 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0); 7920 // XXX bxe_fw_dump(sc); 7921 7922 } else { 7923 BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn); 7924 } 7925 } 7926 7927 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) { 7928 BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn); 7929 if (attn & BXE_GRC_TIMEOUT) { 7930 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN); 7931 BLOGE(sc, "GRC time-out 0x%08x\n", val); 7932 } 7933 if (attn & BXE_GRC_RSV) { 7934 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN); 7935 BLOGE(sc, "GRC reserved 0x%08x\n", val); 7936 } 7937 REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff); 7938 } 7939 } 7940 7941 static void 7942 bxe_attn_int_deasserted2(struct bxe_softc *sc, 7943 uint32_t attn) 7944 { 7945 int port = SC_PORT(sc); 7946 int reg_offset; 7947 uint32_t val0, mask0, val1, mask1; 7948 uint32_t val; 7949 7950 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) { 7951 val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR); 7952 BLOGE(sc, "CFC hw attention 0x%08x\n", val); 7953 /* CFC error attention */ 7954 if (val & 0x2) { 7955 BLOGE(sc, "FATAL error from CFC\n"); 7956 } 7957 } 7958 7959 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) { 7960 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0); 7961 BLOGE(sc, "PXP hw attention-0 0x%08x\n", val); 7962 /* RQ_USDMDP_FIFO_OVERFLOW */ 7963 if (val & 0x18000) { 7964 BLOGE(sc, "FATAL error from PXP\n"); 7965 } 7966 7967 if (!CHIP_IS_E1x(sc)) { 7968 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1); 7969 BLOGE(sc, "PXP hw attention-1 0x%08x\n", val); 7970 } 7971 } 7972 7973 #define PXP2_EOP_ERROR_BIT PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR 7974 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT 7975 7976 if (attn & AEU_PXP2_HW_INT_BIT) { 7977 /* CQ47854 workaround do not panic on 7978 * PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR 7979 */ 7980 if (!CHIP_IS_E1x(sc)) { 7981 mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0); 7982 val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1); 7983 mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1); 7984 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0); 7985 /* 7986 * If the only PXP2_EOP_ERROR_BIT is set in 7987 * STS0 and STS1 - clear it 7988 * 7989 * probably we lose additional attentions between 7990 * STS0 and STS_CLR0, in this case user will not 7991 * be notified about them 7992 */ 7993 if (val0 & mask0 & PXP2_EOP_ERROR_BIT && 7994 !(val1 & mask1)) 7995 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); 7996 7997 /* print the register, since no one can restore it */ 7998 BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0); 7999 8000 /* 8001 * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR 8002 * then notify 8003 */ 8004 if (val0 & PXP2_EOP_ERROR_BIT) { 8005 BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n"); 8006 8007 /* 8008 * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is 8009 * set then clear attention from PXP2 block without panic 8010 */ 8011 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) && 8012 ((val1 & mask1) == 0)) 8013 attn &= ~AEU_PXP2_HW_INT_BIT; 8014 } 8015 } 8016 } 8017 8018 if (attn & HW_INTERRUT_ASSERT_SET_2) { 8019 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 : 8020 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2); 8021 8022 val = REG_RD(sc, reg_offset); 8023 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2); 8024 REG_WR(sc, reg_offset, val); 8025 8026 BLOGE(sc, "FATAL HW block attention set2 0x%x\n", 8027 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2)); 8028 bxe_panic(sc, ("HW block attention set2\n")); 8029 } 8030 } 8031 8032 static void 8033 bxe_attn_int_deasserted1(struct bxe_softc *sc, 8034 uint32_t attn) 8035 { 8036 int port = SC_PORT(sc); 8037 int reg_offset; 8038 uint32_t val; 8039 8040 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) { 8041 val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR); 8042 BLOGE(sc, "DB hw attention 0x%08x\n", val); 8043 /* DORQ discard attention */ 8044 if (val & 0x2) { 8045 BLOGE(sc, "FATAL error from DORQ\n"); 8046 } 8047 } 8048 8049 if (attn & HW_INTERRUT_ASSERT_SET_1) { 8050 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 : 8051 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1); 8052 8053 val = REG_RD(sc, reg_offset); 8054 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1); 8055 REG_WR(sc, reg_offset, val); 8056 8057 BLOGE(sc, "FATAL HW block attention set1 0x%08x\n", 8058 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1)); 8059 bxe_panic(sc, ("HW block attention set1\n")); 8060 } 8061 } 8062 8063 static void 8064 bxe_attn_int_deasserted0(struct bxe_softc *sc, 8065 uint32_t attn) 8066 { 8067 int port = SC_PORT(sc); 8068 int reg_offset; 8069 uint32_t val; 8070 8071 reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 8072 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; 8073 8074 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) { 8075 val = REG_RD(sc, reg_offset); 8076 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5; 8077 REG_WR(sc, reg_offset, val); 8078 8079 BLOGW(sc, "SPIO5 hw attention\n"); 8080 8081 /* Fan failure attention */ 8082 elink_hw_reset_phy(&sc->link_params); 8083 bxe_fan_failure(sc); 8084 } 8085 8086 if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) { 8087 bxe_acquire_phy_lock(sc); 8088 elink_handle_module_detect_int(&sc->link_params); 8089 bxe_release_phy_lock(sc); 8090 } 8091 8092 if (attn & HW_INTERRUT_ASSERT_SET_0) { 8093 val = REG_RD(sc, reg_offset); 8094 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0); 8095 REG_WR(sc, reg_offset, val); 8096 8097 bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n", 8098 (attn & HW_INTERRUT_ASSERT_SET_0))); 8099 } 8100 } 8101 8102 static void 8103 bxe_attn_int_deasserted(struct bxe_softc *sc, 8104 uint32_t deasserted) 8105 { 8106 struct attn_route attn; 8107 struct attn_route *group_mask; 8108 int port = SC_PORT(sc); 8109 int index; 8110 uint32_t reg_addr; 8111 uint32_t val; 8112 uint32_t aeu_mask; 8113 uint8_t global = FALSE; 8114 8115 /* 8116 * Need to take HW lock because MCP or other port might also 8117 * try to handle this event. 8118 */ 8119 bxe_acquire_alr(sc); 8120 8121 if (bxe_chk_parity_attn(sc, &global, TRUE)) { 8122 /* XXX 8123 * In case of parity errors don't handle attentions so that 8124 * other function would "see" parity errors. 8125 */ 8126 sc->recovery_state = BXE_RECOVERY_INIT; 8127 // XXX schedule a recovery task... 8128 /* disable HW interrupts */ 8129 bxe_int_disable(sc); 8130 bxe_release_alr(sc); 8131 return; 8132 } 8133 8134 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 8135 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 8136 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 8137 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 8138 if (!CHIP_IS_E1x(sc)) { 8139 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 8140 } else { 8141 attn.sig[4] = 0; 8142 } 8143 8144 BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", 8145 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]); 8146 8147 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 8148 if (deasserted & (1 << index)) { 8149 group_mask = &sc->attn_group[index]; 8150 8151 BLOGD(sc, DBG_INTR, 8152 "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index, 8153 group_mask->sig[0], group_mask->sig[1], 8154 group_mask->sig[2], group_mask->sig[3], 8155 group_mask->sig[4]); 8156 8157 bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]); 8158 bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]); 8159 bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]); 8160 bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]); 8161 bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]); 8162 } 8163 } 8164 8165 bxe_release_alr(sc); 8166 8167 if (sc->devinfo.int_block == INT_BLOCK_HC) { 8168 reg_addr = (HC_REG_COMMAND_REG + port*32 + 8169 COMMAND_REG_ATTN_BITS_CLR); 8170 } else { 8171 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8); 8172 } 8173 8174 val = ~deasserted; 8175 BLOGD(sc, DBG_INTR, 8176 "about to mask 0x%08x at %s addr 0x%08x\n", val, 8177 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 8178 REG_WR(sc, reg_addr, val); 8179 8180 if (~sc->attn_state & deasserted) { 8181 BLOGE(sc, "IGU error\n"); 8182 } 8183 8184 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 8185 MISC_REG_AEU_MASK_ATTN_FUNC_0; 8186 8187 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 8188 8189 aeu_mask = REG_RD(sc, reg_addr); 8190 8191 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n", 8192 aeu_mask, deasserted); 8193 aeu_mask |= (deasserted & 0x3ff); 8194 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); 8195 8196 REG_WR(sc, reg_addr, aeu_mask); 8197 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 8198 8199 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); 8200 sc->attn_state &= ~deasserted; 8201 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); 8202 } 8203 8204 static void 8205 bxe_attn_int(struct bxe_softc *sc) 8206 { 8207 /* read local copy of bits */ 8208 uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits); 8209 uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack); 8210 uint32_t attn_state = sc->attn_state; 8211 8212 /* look for changed bits */ 8213 uint32_t asserted = attn_bits & ~attn_ack & ~attn_state; 8214 uint32_t deasserted = ~attn_bits & attn_ack & attn_state; 8215 8216 BLOGD(sc, DBG_INTR, 8217 "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n", 8218 attn_bits, attn_ack, asserted, deasserted); 8219 8220 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) { 8221 BLOGE(sc, "BAD attention state\n"); 8222 } 8223 8224 /* handle bits that were raised */ 8225 if (asserted) { 8226 bxe_attn_int_asserted(sc, asserted); 8227 } 8228 8229 if (deasserted) { 8230 bxe_attn_int_deasserted(sc, deasserted); 8231 } 8232 } 8233 8234 static uint16_t 8235 bxe_update_dsb_idx(struct bxe_softc *sc) 8236 { 8237 struct host_sp_status_block *def_sb = sc->def_sb; 8238 uint16_t rc = 0; 8239 8240 mb(); /* status block is written to by the chip */ 8241 8242 if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) { 8243 sc->def_att_idx = def_sb->atten_status_block.attn_bits_index; 8244 rc |= BXE_DEF_SB_ATT_IDX; 8245 } 8246 8247 if (sc->def_idx != def_sb->sp_sb.running_index) { 8248 sc->def_idx = def_sb->sp_sb.running_index; 8249 rc |= BXE_DEF_SB_IDX; 8250 } 8251 8252 mb(); 8253 8254 return (rc); 8255 } 8256 8257 static inline struct ecore_queue_sp_obj * 8258 bxe_cid_to_q_obj(struct bxe_softc *sc, 8259 uint32_t cid) 8260 { 8261 BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid); 8262 return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj); 8263 } 8264 8265 static void 8266 bxe_handle_mcast_eqe(struct bxe_softc *sc) 8267 { 8268 struct ecore_mcast_ramrod_params rparam; 8269 int rc; 8270 8271 memset(&rparam, 0, sizeof(rparam)); 8272 8273 rparam.mcast_obj = &sc->mcast_obj; 8274 8275 BXE_MCAST_LOCK(sc); 8276 8277 /* clear pending state for the last command */ 8278 sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw); 8279 8280 /* if there are pending mcast commands - send them */ 8281 if (sc->mcast_obj.check_pending(&sc->mcast_obj)) { 8282 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 8283 if (rc < 0) { 8284 BLOGD(sc, DBG_SP, 8285 "ERROR: Failed to send pending mcast commands (%d)\n", rc); 8286 } 8287 } 8288 8289 BXE_MCAST_UNLOCK(sc); 8290 } 8291 8292 static void 8293 bxe_handle_classification_eqe(struct bxe_softc *sc, 8294 union event_ring_elem *elem) 8295 { 8296 unsigned long ramrod_flags = 0; 8297 int rc = 0; 8298 uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; 8299 struct ecore_vlan_mac_obj *vlan_mac_obj; 8300 8301 /* always push next commands out, don't wait here */ 8302 bit_set(&ramrod_flags, RAMROD_CONT); 8303 8304 switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) { 8305 case ECORE_FILTER_MAC_PENDING: 8306 BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n"); 8307 vlan_mac_obj = &sc->sp_objs[cid].mac_obj; 8308 break; 8309 8310 case ECORE_FILTER_MCAST_PENDING: 8311 BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n"); 8312 /* 8313 * This is only relevant for 57710 where multicast MACs are 8314 * configured as unicast MACs using the same ramrod. 8315 */ 8316 bxe_handle_mcast_eqe(sc); 8317 return; 8318 8319 default: 8320 BLOGE(sc, "Unsupported classification command: %d\n", 8321 elem->message.data.eth_event.echo); 8322 return; 8323 } 8324 8325 rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags); 8326 8327 if (rc < 0) { 8328 BLOGE(sc, "Failed to schedule new commands (%d)\n", rc); 8329 } else if (rc > 0) { 8330 BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n"); 8331 } 8332 } 8333 8334 static void 8335 bxe_handle_rx_mode_eqe(struct bxe_softc *sc, 8336 union event_ring_elem *elem) 8337 { 8338 bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); 8339 8340 /* send rx_mode command again if was requested */ 8341 if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED, 8342 &sc->sp_state)) { 8343 bxe_set_storm_rx_mode(sc); 8344 } 8345 } 8346 8347 static void 8348 bxe_update_eq_prod(struct bxe_softc *sc, 8349 uint16_t prod) 8350 { 8351 storm_memset_eq_prod(sc, prod, SC_FUNC(sc)); 8352 wmb(); /* keep prod updates ordered */ 8353 } 8354 8355 static void 8356 bxe_eq_int(struct bxe_softc *sc) 8357 { 8358 uint16_t hw_cons, sw_cons, sw_prod; 8359 union event_ring_elem *elem; 8360 uint8_t echo; 8361 uint32_t cid; 8362 uint8_t opcode; 8363 int spqe_cnt = 0; 8364 struct ecore_queue_sp_obj *q_obj; 8365 struct ecore_func_sp_obj *f_obj = &sc->func_obj; 8366 struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw; 8367 8368 hw_cons = le16toh(*sc->eq_cons_sb); 8369 8370 /* 8371 * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256. 8372 * when we get to the next-page we need to adjust so the loop 8373 * condition below will be met. The next element is the size of a 8374 * regular element and hence incrementing by 1 8375 */ 8376 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) { 8377 hw_cons++; 8378 } 8379 8380 /* 8381 * This function may never run in parallel with itself for a 8382 * specific sc and no need for a read memory barrier here. 8383 */ 8384 sw_cons = sc->eq_cons; 8385 sw_prod = sc->eq_prod; 8386 8387 BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n", 8388 hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left)); 8389 8390 for (; 8391 sw_cons != hw_cons; 8392 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) { 8393 8394 elem = &sc->eq[EQ_DESC(sw_cons)]; 8395 8396 /* elem CID originates from FW, actually LE */ 8397 cid = SW_CID(elem->message.data.cfc_del_event.cid); 8398 opcode = elem->message.opcode; 8399 8400 /* handle eq element */ 8401 switch (opcode) { 8402 8403 case EVENT_RING_OPCODE_STAT_QUERY: 8404 BLOGD(sc, DBG_SP, "got statistics completion event %d\n", 8405 sc->stats_comp++); 8406 /* nothing to do with stats comp */ 8407 goto next_spqe; 8408 8409 case EVENT_RING_OPCODE_CFC_DEL: 8410 /* handle according to cid range */ 8411 /* we may want to verify here that the sc state is HALTING */ 8412 BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid); 8413 q_obj = bxe_cid_to_q_obj(sc, cid); 8414 if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) { 8415 break; 8416 } 8417 goto next_spqe; 8418 8419 case EVENT_RING_OPCODE_STOP_TRAFFIC: 8420 BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n"); 8421 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) { 8422 break; 8423 } 8424 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED); 8425 goto next_spqe; 8426 8427 case EVENT_RING_OPCODE_START_TRAFFIC: 8428 BLOGD(sc, DBG_SP, "got START TRAFFIC\n"); 8429 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) { 8430 break; 8431 } 8432 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED); 8433 goto next_spqe; 8434 8435 case EVENT_RING_OPCODE_FUNCTION_UPDATE: 8436 echo = elem->message.data.function_update_event.echo; 8437 if (echo == SWITCH_UPDATE) { 8438 BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n"); 8439 if (f_obj->complete_cmd(sc, f_obj, 8440 ECORE_F_CMD_SWITCH_UPDATE)) { 8441 break; 8442 } 8443 } 8444 else { 8445 BLOGD(sc, DBG_SP, 8446 "AFEX: ramrod completed FUNCTION_UPDATE\n"); 8447 } 8448 goto next_spqe; 8449 8450 case EVENT_RING_OPCODE_FORWARD_SETUP: 8451 q_obj = &bxe_fwd_sp_obj(sc, q_obj); 8452 if (q_obj->complete_cmd(sc, q_obj, 8453 ECORE_Q_CMD_SETUP_TX_ONLY)) { 8454 break; 8455 } 8456 goto next_spqe; 8457 8458 case EVENT_RING_OPCODE_FUNCTION_START: 8459 BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n"); 8460 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) { 8461 break; 8462 } 8463 goto next_spqe; 8464 8465 case EVENT_RING_OPCODE_FUNCTION_STOP: 8466 BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n"); 8467 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) { 8468 break; 8469 } 8470 goto next_spqe; 8471 } 8472 8473 switch (opcode | sc->state) { 8474 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN): 8475 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT): 8476 cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; 8477 BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid); 8478 rss_raw->clear_pending(rss_raw); 8479 break; 8480 8481 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN): 8482 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG): 8483 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT): 8484 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN): 8485 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG): 8486 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8487 BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n"); 8488 bxe_handle_classification_eqe(sc, elem); 8489 break; 8490 8491 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN): 8492 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG): 8493 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8494 BLOGD(sc, DBG_SP, "got mcast ramrod\n"); 8495 bxe_handle_mcast_eqe(sc); 8496 break; 8497 8498 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN): 8499 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG): 8500 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8501 BLOGD(sc, DBG_SP, "got rx_mode ramrod\n"); 8502 bxe_handle_rx_mode_eqe(sc, elem); 8503 break; 8504 8505 default: 8506 /* unknown event log error and continue */ 8507 BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n", 8508 elem->message.opcode, sc->state); 8509 } 8510 8511 next_spqe: 8512 spqe_cnt++; 8513 } /* for */ 8514 8515 mb(); 8516 atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt); 8517 8518 sc->eq_cons = sw_cons; 8519 sc->eq_prod = sw_prod; 8520 8521 /* make sure that above mem writes were issued towards the memory */ 8522 wmb(); 8523 8524 /* update producer */ 8525 bxe_update_eq_prod(sc, sc->eq_prod); 8526 } 8527 8528 static void 8529 bxe_handle_sp_tq(void *context, 8530 int pending) 8531 { 8532 struct bxe_softc *sc = (struct bxe_softc *)context; 8533 uint16_t status; 8534 8535 BLOGD(sc, DBG_SP, "---> SP TASK <---\n"); 8536 8537 /* what work needs to be performed? */ 8538 status = bxe_update_dsb_idx(sc); 8539 8540 BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status); 8541 8542 /* HW attentions */ 8543 if (status & BXE_DEF_SB_ATT_IDX) { 8544 BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n"); 8545 bxe_attn_int(sc); 8546 status &= ~BXE_DEF_SB_ATT_IDX; 8547 } 8548 8549 /* SP events: STAT_QUERY and others */ 8550 if (status & BXE_DEF_SB_IDX) { 8551 /* handle EQ completions */ 8552 BLOGD(sc, DBG_SP, "---> EQ INTR <---\n"); 8553 bxe_eq_int(sc); 8554 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 8555 le16toh(sc->def_idx), IGU_INT_NOP, 1); 8556 status &= ~BXE_DEF_SB_IDX; 8557 } 8558 8559 /* if status is non zero then something went wrong */ 8560 if (__predict_false(status)) { 8561 BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status); 8562 } 8563 8564 /* ack status block only if something was actually handled */ 8565 bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID, 8566 le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1); 8567 8568 /* 8569 * Must be called after the EQ processing (since eq leads to sriov 8570 * ramrod completion flows). 8571 * This flow may have been scheduled by the arrival of a ramrod 8572 * completion, or by the sriov code rescheduling itself. 8573 */ 8574 // XXX bxe_iov_sp_task(sc); 8575 8576 } 8577 8578 static void 8579 bxe_handle_fp_tq(void *context, 8580 int pending) 8581 { 8582 struct bxe_fastpath *fp = (struct bxe_fastpath *)context; 8583 struct bxe_softc *sc = fp->sc; 8584 uint8_t more_tx = FALSE; 8585 uint8_t more_rx = FALSE; 8586 8587 BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index); 8588 8589 /* XXX 8590 * IFF_DRV_RUNNING state can't be checked here since we process 8591 * slowpath events on a client queue during setup. Instead 8592 * we need to add a "process/continue" flag here that the driver 8593 * can use to tell the task here not to do anything. 8594 */ 8595 #if 0 8596 if (!(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { 8597 return; 8598 } 8599 #endif 8600 8601 /* update the fastpath index */ 8602 bxe_update_fp_sb_idx(fp); 8603 8604 /* XXX add loop here if ever support multiple tx CoS */ 8605 /* fp->txdata[cos] */ 8606 if (bxe_has_tx_work(fp)) { 8607 BXE_FP_TX_LOCK(fp); 8608 more_tx = bxe_txeof(sc, fp); 8609 BXE_FP_TX_UNLOCK(fp); 8610 } 8611 8612 if (bxe_has_rx_work(fp)) { 8613 more_rx = bxe_rxeof(sc, fp); 8614 } 8615 8616 if (more_rx /*|| more_tx*/) { 8617 /* still more work to do */ 8618 taskqueue_enqueue(fp->tq, &fp->tq_task); 8619 return; 8620 } 8621 8622 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 8623 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); 8624 } 8625 8626 static void 8627 bxe_task_fp(struct bxe_fastpath *fp) 8628 { 8629 struct bxe_softc *sc = fp->sc; 8630 uint8_t more_tx = FALSE; 8631 uint8_t more_rx = FALSE; 8632 8633 BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index); 8634 8635 /* update the fastpath index */ 8636 bxe_update_fp_sb_idx(fp); 8637 8638 /* XXX add loop here if ever support multiple tx CoS */ 8639 /* fp->txdata[cos] */ 8640 if (bxe_has_tx_work(fp)) { 8641 BXE_FP_TX_LOCK(fp); 8642 more_tx = bxe_txeof(sc, fp); 8643 BXE_FP_TX_UNLOCK(fp); 8644 } 8645 8646 if (bxe_has_rx_work(fp)) { 8647 more_rx = bxe_rxeof(sc, fp); 8648 } 8649 8650 if (more_rx /*|| more_tx*/) { 8651 /* still more work to do, bail out if this ISR and process later */ 8652 taskqueue_enqueue(fp->tq, &fp->tq_task); 8653 return; 8654 } 8655 8656 /* 8657 * Here we write the fastpath index taken before doing any tx or rx work. 8658 * It is very well possible other hw events occurred up to this point and 8659 * they were actually processed accordingly above. Since we're going to 8660 * write an older fastpath index, an interrupt is coming which we might 8661 * not do any work in. 8662 */ 8663 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 8664 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); 8665 } 8666 8667 /* 8668 * Legacy interrupt entry point. 8669 * 8670 * Verifies that the controller generated the interrupt and 8671 * then calls a separate routine to handle the various 8672 * interrupt causes: link, RX, and TX. 8673 */ 8674 static void 8675 bxe_intr_legacy(void *xsc) 8676 { 8677 struct bxe_softc *sc = (struct bxe_softc *)xsc; 8678 struct bxe_fastpath *fp; 8679 uint16_t status, mask; 8680 int i; 8681 8682 BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n"); 8683 8684 /* 8685 * 0 for ustorm, 1 for cstorm 8686 * the bits returned from ack_int() are 0-15 8687 * bit 0 = attention status block 8688 * bit 1 = fast path status block 8689 * a mask of 0x2 or more = tx/rx event 8690 * a mask of 1 = slow path event 8691 */ 8692 8693 status = bxe_ack_int(sc); 8694 8695 /* the interrupt is not for us */ 8696 if (__predict_false(status == 0)) { 8697 BLOGD(sc, DBG_INTR, "Not our interrupt!\n"); 8698 return; 8699 } 8700 8701 BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status); 8702 8703 FOR_EACH_ETH_QUEUE(sc, i) { 8704 fp = &sc->fp[i]; 8705 mask = (0x2 << (fp->index + CNIC_SUPPORT(sc))); 8706 if (status & mask) { 8707 /* acknowledge and disable further fastpath interrupts */ 8708 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8709 bxe_task_fp(fp); 8710 status &= ~mask; 8711 } 8712 } 8713 8714 if (__predict_false(status & 0x1)) { 8715 /* acknowledge and disable further slowpath interrupts */ 8716 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8717 8718 /* schedule slowpath handler */ 8719 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task); 8720 8721 status &= ~0x1; 8722 } 8723 8724 if (__predict_false(status)) { 8725 BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status); 8726 } 8727 } 8728 8729 /* slowpath interrupt entry point */ 8730 static void 8731 bxe_intr_sp(void *xsc) 8732 { 8733 struct bxe_softc *sc = (struct bxe_softc *)xsc; 8734 8735 BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n"); 8736 8737 /* acknowledge and disable further slowpath interrupts */ 8738 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8739 8740 /* schedule slowpath handler */ 8741 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task); 8742 } 8743 8744 /* fastpath interrupt entry point */ 8745 static void 8746 bxe_intr_fp(void *xfp) 8747 { 8748 struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp; 8749 struct bxe_softc *sc = fp->sc; 8750 8751 BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index); 8752 8753 BLOGD(sc, DBG_INTR, 8754 "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n", 8755 curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id); 8756 8757 /* acknowledge and disable further fastpath interrupts */ 8758 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8759 8760 bxe_task_fp(fp); 8761 } 8762 8763 /* Release all interrupts allocated by the driver. */ 8764 static void 8765 bxe_interrupt_free(struct bxe_softc *sc) 8766 { 8767 int i; 8768 8769 switch (sc->interrupt_mode) { 8770 case INTR_MODE_INTX: 8771 BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n"); 8772 if (sc->intr[0].resource != NULL) { 8773 bus_release_resource(sc->dev, 8774 SYS_RES_IRQ, 8775 sc->intr[0].rid, 8776 sc->intr[0].resource); 8777 } 8778 break; 8779 case INTR_MODE_MSI: 8780 for (i = 0; i < sc->intr_count; i++) { 8781 BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i); 8782 if (sc->intr[i].resource && sc->intr[i].rid) { 8783 bus_release_resource(sc->dev, 8784 SYS_RES_IRQ, 8785 sc->intr[i].rid, 8786 sc->intr[i].resource); 8787 } 8788 } 8789 pci_release_msi(sc->dev); 8790 break; 8791 case INTR_MODE_MSIX: 8792 for (i = 0; i < sc->intr_count; i++) { 8793 BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i); 8794 if (sc->intr[i].resource && sc->intr[i].rid) { 8795 bus_release_resource(sc->dev, 8796 SYS_RES_IRQ, 8797 sc->intr[i].rid, 8798 sc->intr[i].resource); 8799 } 8800 } 8801 pci_release_msi(sc->dev); 8802 break; 8803 default: 8804 /* nothing to do as initial allocation failed */ 8805 break; 8806 } 8807 } 8808 8809 /* 8810 * This function determines and allocates the appropriate 8811 * interrupt based on system capabilites and user request. 8812 * 8813 * The user may force a particular interrupt mode, specify 8814 * the number of receive queues, specify the method for 8815 * distribuitng received frames to receive queues, or use 8816 * the default settings which will automatically select the 8817 * best supported combination. In addition, the OS may or 8818 * may not support certain combinations of these settings. 8819 * This routine attempts to reconcile the settings requested 8820 * by the user with the capabilites available from the system 8821 * to select the optimal combination of features. 8822 * 8823 * Returns: 8824 * 0 = Success, !0 = Failure. 8825 */ 8826 static int 8827 bxe_interrupt_alloc(struct bxe_softc *sc) 8828 { 8829 int msix_count = 0; 8830 int msi_count = 0; 8831 int num_requested = 0; 8832 int num_allocated = 0; 8833 int rid, i, j; 8834 int rc; 8835 8836 /* get the number of available MSI/MSI-X interrupts from the OS */ 8837 if (sc->interrupt_mode > 0) { 8838 if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) { 8839 msix_count = pci_msix_count(sc->dev); 8840 } 8841 8842 if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) { 8843 msi_count = pci_msi_count(sc->dev); 8844 } 8845 8846 BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n", 8847 msi_count, msix_count); 8848 } 8849 8850 do { /* try allocating MSI-X interrupt resources (at least 2) */ 8851 if (sc->interrupt_mode != INTR_MODE_MSIX) { 8852 break; 8853 } 8854 8855 if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) || 8856 (msix_count < 2)) { 8857 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 8858 break; 8859 } 8860 8861 /* ask for the necessary number of MSI-X vectors */ 8862 num_requested = min((sc->num_queues + 1), msix_count); 8863 8864 BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested); 8865 8866 num_allocated = num_requested; 8867 if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) { 8868 BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc); 8869 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 8870 break; 8871 } 8872 8873 if (num_allocated < 2) { /* possible? */ 8874 BLOGE(sc, "MSI-X allocation less than 2!\n"); 8875 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 8876 pci_release_msi(sc->dev); 8877 break; 8878 } 8879 8880 BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n", 8881 num_requested, num_allocated); 8882 8883 /* best effort so use the number of vectors allocated to us */ 8884 sc->intr_count = num_allocated; 8885 sc->num_queues = num_allocated - 1; 8886 8887 rid = 1; /* initial resource identifier */ 8888 8889 /* allocate the MSI-X vectors */ 8890 for (i = 0; i < num_allocated; i++) { 8891 sc->intr[i].rid = (rid + i); 8892 8893 if ((sc->intr[i].resource = 8894 bus_alloc_resource_any(sc->dev, 8895 SYS_RES_IRQ, 8896 &sc->intr[i].rid, 8897 RF_ACTIVE)) == NULL) { 8898 BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n", 8899 i, (rid + i)); 8900 8901 for (j = (i - 1); j >= 0; j--) { 8902 bus_release_resource(sc->dev, 8903 SYS_RES_IRQ, 8904 sc->intr[j].rid, 8905 sc->intr[j].resource); 8906 } 8907 8908 sc->intr_count = 0; 8909 sc->num_queues = 0; 8910 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 8911 pci_release_msi(sc->dev); 8912 break; 8913 } 8914 8915 BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i)); 8916 } 8917 } while (0); 8918 8919 do { /* try allocating MSI vector resources (at least 2) */ 8920 if (sc->interrupt_mode != INTR_MODE_MSI) { 8921 break; 8922 } 8923 8924 if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) || 8925 (msi_count < 1)) { 8926 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 8927 break; 8928 } 8929 8930 /* ask for a single MSI vector */ 8931 num_requested = 1; 8932 8933 BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested); 8934 8935 num_allocated = num_requested; 8936 if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) { 8937 BLOGE(sc, "MSI alloc failed (%d)!\n", rc); 8938 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 8939 break; 8940 } 8941 8942 if (num_allocated != 1) { /* possible? */ 8943 BLOGE(sc, "MSI allocation is not 1!\n"); 8944 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 8945 pci_release_msi(sc->dev); 8946 break; 8947 } 8948 8949 BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n", 8950 num_requested, num_allocated); 8951 8952 /* best effort so use the number of vectors allocated to us */ 8953 sc->intr_count = num_allocated; 8954 sc->num_queues = num_allocated; 8955 8956 rid = 1; /* initial resource identifier */ 8957 8958 sc->intr[0].rid = rid; 8959 8960 if ((sc->intr[0].resource = 8961 bus_alloc_resource_any(sc->dev, 8962 SYS_RES_IRQ, 8963 &sc->intr[0].rid, 8964 RF_ACTIVE)) == NULL) { 8965 BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid); 8966 sc->intr_count = 0; 8967 sc->num_queues = 0; 8968 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 8969 pci_release_msi(sc->dev); 8970 break; 8971 } 8972 8973 BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid); 8974 } while (0); 8975 8976 do { /* try allocating INTx vector resources */ 8977 if (sc->interrupt_mode != INTR_MODE_INTX) { 8978 break; 8979 } 8980 8981 BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n"); 8982 8983 /* only one vector for INTx */ 8984 sc->intr_count = 1; 8985 sc->num_queues = 1; 8986 8987 rid = 0; /* initial resource identifier */ 8988 8989 sc->intr[0].rid = rid; 8990 8991 if ((sc->intr[0].resource = 8992 bus_alloc_resource_any(sc->dev, 8993 SYS_RES_IRQ, 8994 &sc->intr[0].rid, 8995 (RF_ACTIVE | RF_SHAREABLE))) == NULL) { 8996 BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid); 8997 sc->intr_count = 0; 8998 sc->num_queues = 0; 8999 sc->interrupt_mode = -1; /* Failed! */ 9000 break; 9001 } 9002 9003 BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid); 9004 } while (0); 9005 9006 if (sc->interrupt_mode == -1) { 9007 BLOGE(sc, "Interrupt Allocation: FAILED!!!\n"); 9008 rc = 1; 9009 } else { 9010 BLOGD(sc, DBG_LOAD, 9011 "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n", 9012 sc->interrupt_mode, sc->num_queues); 9013 rc = 0; 9014 } 9015 9016 return (rc); 9017 } 9018 9019 static void 9020 bxe_interrupt_detach(struct bxe_softc *sc) 9021 { 9022 struct bxe_fastpath *fp; 9023 int i; 9024 9025 /* release interrupt resources */ 9026 for (i = 0; i < sc->intr_count; i++) { 9027 if (sc->intr[i].resource && sc->intr[i].tag) { 9028 BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i); 9029 bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag); 9030 } 9031 } 9032 9033 for (i = 0; i < sc->num_queues; i++) { 9034 fp = &sc->fp[i]; 9035 if (fp->tq) { 9036 taskqueue_drain(fp->tq, &fp->tq_task); 9037 taskqueue_free(fp->tq); 9038 fp->tq = NULL; 9039 } 9040 } 9041 9042 9043 if (sc->sp_tq) { 9044 taskqueue_drain(sc->sp_tq, &sc->sp_tq_task); 9045 taskqueue_free(sc->sp_tq); 9046 sc->sp_tq = NULL; 9047 } 9048 } 9049 9050 /* 9051 * Enables interrupts and attach to the ISR. 9052 * 9053 * When using multiple MSI/MSI-X vectors the first vector 9054 * is used for slowpath operations while all remaining 9055 * vectors are used for fastpath operations. If only a 9056 * single MSI/MSI-X vector is used (SINGLE_ISR) then the 9057 * ISR must look for both slowpath and fastpath completions. 9058 */ 9059 static int 9060 bxe_interrupt_attach(struct bxe_softc *sc) 9061 { 9062 struct bxe_fastpath *fp; 9063 int rc = 0; 9064 int i; 9065 9066 snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name), 9067 "bxe%d_sp_tq", sc->unit); 9068 TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc); 9069 sc->sp_tq = taskqueue_create_fast(sc->sp_tq_name, M_NOWAIT, 9070 taskqueue_thread_enqueue, 9071 &sc->sp_tq); 9072 taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */ 9073 "%s", sc->sp_tq_name); 9074 9075 9076 for (i = 0; i < sc->num_queues; i++) { 9077 fp = &sc->fp[i]; 9078 snprintf(fp->tq_name, sizeof(fp->tq_name), 9079 "bxe%d_fp%d_tq", sc->unit, i); 9080 TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp); 9081 fp->tq = taskqueue_create_fast(fp->tq_name, M_NOWAIT, 9082 taskqueue_thread_enqueue, 9083 &fp->tq); 9084 taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */ 9085 "%s", fp->tq_name); 9086 } 9087 9088 /* setup interrupt handlers */ 9089 if (sc->interrupt_mode == INTR_MODE_MSIX) { 9090 BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n"); 9091 9092 /* 9093 * Setup the interrupt handler. Note that we pass the driver instance 9094 * to the interrupt handler for the slowpath. 9095 */ 9096 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9097 (INTR_TYPE_NET | INTR_MPSAFE), 9098 NULL, bxe_intr_sp, sc, 9099 &sc->intr[0].tag)) != 0) { 9100 BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc); 9101 goto bxe_interrupt_attach_exit; 9102 } 9103 9104 bus_describe_intr(sc->dev, sc->intr[0].resource, 9105 sc->intr[0].tag, "sp"); 9106 9107 /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */ 9108 9109 /* initialize the fastpath vectors (note the first was used for sp) */ 9110 for (i = 0; i < sc->num_queues; i++) { 9111 fp = &sc->fp[i]; 9112 BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1)); 9113 9114 /* 9115 * Setup the interrupt handler. Note that we pass the 9116 * fastpath context to the interrupt handler in this 9117 * case. 9118 */ 9119 if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource, 9120 (INTR_TYPE_NET | INTR_MPSAFE), 9121 NULL, bxe_intr_fp, fp, 9122 &sc->intr[i + 1].tag)) != 0) { 9123 BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n", 9124 (i + 1), rc); 9125 goto bxe_interrupt_attach_exit; 9126 } 9127 9128 bus_describe_intr(sc->dev, sc->intr[i + 1].resource, 9129 sc->intr[i + 1].tag, "fp%02d", i); 9130 9131 /* bind the fastpath instance to a cpu */ 9132 if (sc->num_queues > 1) { 9133 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i); 9134 } 9135 9136 fp->state = BXE_FP_STATE_IRQ; 9137 } 9138 } else if (sc->interrupt_mode == INTR_MODE_MSI) { 9139 BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n"); 9140 9141 /* 9142 * Setup the interrupt handler. Note that we pass the 9143 * driver instance to the interrupt handler which 9144 * will handle both the slowpath and fastpath. 9145 */ 9146 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9147 (INTR_TYPE_NET | INTR_MPSAFE), 9148 NULL, bxe_intr_legacy, sc, 9149 &sc->intr[0].tag)) != 0) { 9150 BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc); 9151 goto bxe_interrupt_attach_exit; 9152 } 9153 9154 } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */ 9155 BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n"); 9156 9157 /* 9158 * Setup the interrupt handler. Note that we pass the 9159 * driver instance to the interrupt handler which 9160 * will handle both the slowpath and fastpath. 9161 */ 9162 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9163 (INTR_TYPE_NET | INTR_MPSAFE), 9164 NULL, bxe_intr_legacy, sc, 9165 &sc->intr[0].tag)) != 0) { 9166 BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc); 9167 goto bxe_interrupt_attach_exit; 9168 } 9169 } 9170 9171 bxe_interrupt_attach_exit: 9172 9173 return (rc); 9174 } 9175 9176 static int bxe_init_hw_common_chip(struct bxe_softc *sc); 9177 static int bxe_init_hw_common(struct bxe_softc *sc); 9178 static int bxe_init_hw_port(struct bxe_softc *sc); 9179 static int bxe_init_hw_func(struct bxe_softc *sc); 9180 static void bxe_reset_common(struct bxe_softc *sc); 9181 static void bxe_reset_port(struct bxe_softc *sc); 9182 static void bxe_reset_func(struct bxe_softc *sc); 9183 static int bxe_gunzip_init(struct bxe_softc *sc); 9184 static void bxe_gunzip_end(struct bxe_softc *sc); 9185 static int bxe_init_firmware(struct bxe_softc *sc); 9186 static void bxe_release_firmware(struct bxe_softc *sc); 9187 9188 static struct 9189 ecore_func_sp_drv_ops bxe_func_sp_drv = { 9190 .init_hw_cmn_chip = bxe_init_hw_common_chip, 9191 .init_hw_cmn = bxe_init_hw_common, 9192 .init_hw_port = bxe_init_hw_port, 9193 .init_hw_func = bxe_init_hw_func, 9194 9195 .reset_hw_cmn = bxe_reset_common, 9196 .reset_hw_port = bxe_reset_port, 9197 .reset_hw_func = bxe_reset_func, 9198 9199 .gunzip_init = bxe_gunzip_init, 9200 .gunzip_end = bxe_gunzip_end, 9201 9202 .init_fw = bxe_init_firmware, 9203 .release_fw = bxe_release_firmware, 9204 }; 9205 9206 static void 9207 bxe_init_func_obj(struct bxe_softc *sc) 9208 { 9209 sc->dmae_ready = 0; 9210 9211 ecore_init_func_obj(sc, 9212 &sc->func_obj, 9213 BXE_SP(sc, func_rdata), 9214 BXE_SP_MAPPING(sc, func_rdata), 9215 BXE_SP(sc, func_afex_rdata), 9216 BXE_SP_MAPPING(sc, func_afex_rdata), 9217 &bxe_func_sp_drv); 9218 } 9219 9220 static int 9221 bxe_init_hw(struct bxe_softc *sc, 9222 uint32_t load_code) 9223 { 9224 struct ecore_func_state_params func_params = { NULL }; 9225 int rc; 9226 9227 /* prepare the parameters for function state transitions */ 9228 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); 9229 9230 func_params.f_obj = &sc->func_obj; 9231 func_params.cmd = ECORE_F_CMD_HW_INIT; 9232 9233 func_params.params.hw_init.load_phase = load_code; 9234 9235 /* 9236 * Via a plethora of function pointers, we will eventually reach 9237 * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func(). 9238 */ 9239 rc = ecore_func_state_change(sc, &func_params); 9240 9241 return (rc); 9242 } 9243 9244 static void 9245 bxe_fill(struct bxe_softc *sc, 9246 uint32_t addr, 9247 int fill, 9248 uint32_t len) 9249 { 9250 uint32_t i; 9251 9252 if (!(len % 4) && !(addr % 4)) { 9253 for (i = 0; i < len; i += 4) { 9254 REG_WR(sc, (addr + i), fill); 9255 } 9256 } else { 9257 for (i = 0; i < len; i++) { 9258 REG_WR8(sc, (addr + i), fill); 9259 } 9260 } 9261 } 9262 9263 /* writes FP SP data to FW - data_size in dwords */ 9264 static void 9265 bxe_wr_fp_sb_data(struct bxe_softc *sc, 9266 int fw_sb_id, 9267 uint32_t *sb_data_p, 9268 uint32_t data_size) 9269 { 9270 int index; 9271 9272 for (index = 0; index < data_size; index++) { 9273 REG_WR(sc, 9274 (BAR_CSTRORM_INTMEM + 9275 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) + 9276 (sizeof(uint32_t) * index)), 9277 *(sb_data_p + index)); 9278 } 9279 } 9280 9281 static void 9282 bxe_zero_fp_sb(struct bxe_softc *sc, 9283 int fw_sb_id) 9284 { 9285 struct hc_status_block_data_e2 sb_data_e2; 9286 struct hc_status_block_data_e1x sb_data_e1x; 9287 uint32_t *sb_data_p; 9288 uint32_t data_size = 0; 9289 9290 if (!CHIP_IS_E1x(sc)) { 9291 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 9292 sb_data_e2.common.state = SB_DISABLED; 9293 sb_data_e2.common.p_func.vf_valid = FALSE; 9294 sb_data_p = (uint32_t *)&sb_data_e2; 9295 data_size = (sizeof(struct hc_status_block_data_e2) / 9296 sizeof(uint32_t)); 9297 } else { 9298 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); 9299 sb_data_e1x.common.state = SB_DISABLED; 9300 sb_data_e1x.common.p_func.vf_valid = FALSE; 9301 sb_data_p = (uint32_t *)&sb_data_e1x; 9302 data_size = (sizeof(struct hc_status_block_data_e1x) / 9303 sizeof(uint32_t)); 9304 } 9305 9306 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); 9307 9308 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)), 9309 0, CSTORM_STATUS_BLOCK_SIZE); 9310 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)), 9311 0, CSTORM_SYNC_BLOCK_SIZE); 9312 } 9313 9314 static void 9315 bxe_wr_sp_sb_data(struct bxe_softc *sc, 9316 struct hc_sp_status_block_data *sp_sb_data) 9317 { 9318 int i; 9319 9320 for (i = 0; 9321 i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t)); 9322 i++) { 9323 REG_WR(sc, 9324 (BAR_CSTRORM_INTMEM + 9325 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) + 9326 (i * sizeof(uint32_t))), 9327 *((uint32_t *)sp_sb_data + i)); 9328 } 9329 } 9330 9331 static void 9332 bxe_zero_sp_sb(struct bxe_softc *sc) 9333 { 9334 struct hc_sp_status_block_data sp_sb_data; 9335 9336 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 9337 9338 sp_sb_data.state = SB_DISABLED; 9339 sp_sb_data.p_func.vf_valid = FALSE; 9340 9341 bxe_wr_sp_sb_data(sc, &sp_sb_data); 9342 9343 bxe_fill(sc, 9344 (BAR_CSTRORM_INTMEM + 9345 CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))), 9346 0, CSTORM_SP_STATUS_BLOCK_SIZE); 9347 bxe_fill(sc, 9348 (BAR_CSTRORM_INTMEM + 9349 CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))), 9350 0, CSTORM_SP_SYNC_BLOCK_SIZE); 9351 } 9352 9353 static void 9354 bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, 9355 int igu_sb_id, 9356 int igu_seg_id) 9357 { 9358 hc_sm->igu_sb_id = igu_sb_id; 9359 hc_sm->igu_seg_id = igu_seg_id; 9360 hc_sm->timer_value = 0xFF; 9361 hc_sm->time_to_expire = 0xFFFFFFFF; 9362 } 9363 9364 static void 9365 bxe_map_sb_state_machines(struct hc_index_data *index_data) 9366 { 9367 /* zero out state machine indices */ 9368 9369 /* rx indices */ 9370 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 9371 9372 /* tx indices */ 9373 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 9374 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID; 9375 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID; 9376 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID; 9377 9378 /* map indices */ 9379 9380 /* rx indices */ 9381 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |= 9382 (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9383 9384 /* tx indices */ 9385 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |= 9386 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9387 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |= 9388 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9389 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |= 9390 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9391 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |= 9392 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9393 } 9394 9395 static void 9396 bxe_init_sb(struct bxe_softc *sc, 9397 bus_addr_t busaddr, 9398 int vfid, 9399 uint8_t vf_valid, 9400 int fw_sb_id, 9401 int igu_sb_id) 9402 { 9403 struct hc_status_block_data_e2 sb_data_e2; 9404 struct hc_status_block_data_e1x sb_data_e1x; 9405 struct hc_status_block_sm *hc_sm_p; 9406 uint32_t *sb_data_p; 9407 int igu_seg_id; 9408 int data_size; 9409 9410 if (CHIP_INT_MODE_IS_BC(sc)) { 9411 igu_seg_id = HC_SEG_ACCESS_NORM; 9412 } else { 9413 igu_seg_id = IGU_SEG_ACCESS_NORM; 9414 } 9415 9416 bxe_zero_fp_sb(sc, fw_sb_id); 9417 9418 if (!CHIP_IS_E1x(sc)) { 9419 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 9420 sb_data_e2.common.state = SB_ENABLED; 9421 sb_data_e2.common.p_func.pf_id = SC_FUNC(sc); 9422 sb_data_e2.common.p_func.vf_id = vfid; 9423 sb_data_e2.common.p_func.vf_valid = vf_valid; 9424 sb_data_e2.common.p_func.vnic_id = SC_VN(sc); 9425 sb_data_e2.common.same_igu_sb_1b = TRUE; 9426 sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr); 9427 sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr); 9428 hc_sm_p = sb_data_e2.common.state_machine; 9429 sb_data_p = (uint32_t *)&sb_data_e2; 9430 data_size = (sizeof(struct hc_status_block_data_e2) / 9431 sizeof(uint32_t)); 9432 bxe_map_sb_state_machines(sb_data_e2.index_data); 9433 } else { 9434 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); 9435 sb_data_e1x.common.state = SB_ENABLED; 9436 sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc); 9437 sb_data_e1x.common.p_func.vf_id = 0xff; 9438 sb_data_e1x.common.p_func.vf_valid = FALSE; 9439 sb_data_e1x.common.p_func.vnic_id = SC_VN(sc); 9440 sb_data_e1x.common.same_igu_sb_1b = TRUE; 9441 sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr); 9442 sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr); 9443 hc_sm_p = sb_data_e1x.common.state_machine; 9444 sb_data_p = (uint32_t *)&sb_data_e1x; 9445 data_size = (sizeof(struct hc_status_block_data_e1x) / 9446 sizeof(uint32_t)); 9447 bxe_map_sb_state_machines(sb_data_e1x.index_data); 9448 } 9449 9450 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id); 9451 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id); 9452 9453 BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id); 9454 9455 /* write indices to HW - PCI guarantees endianity of regpairs */ 9456 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); 9457 } 9458 9459 static inline uint8_t 9460 bxe_fp_qzone_id(struct bxe_fastpath *fp) 9461 { 9462 if (CHIP_IS_E1x(fp->sc)) { 9463 return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H); 9464 } else { 9465 return (fp->cl_id); 9466 } 9467 } 9468 9469 static inline uint32_t 9470 bxe_rx_ustorm_prods_offset(struct bxe_softc *sc, 9471 struct bxe_fastpath *fp) 9472 { 9473 uint32_t offset = BAR_USTRORM_INTMEM; 9474 9475 if (!CHIP_IS_E1x(sc)) { 9476 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id); 9477 } else { 9478 offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id); 9479 } 9480 9481 return (offset); 9482 } 9483 9484 static void 9485 bxe_init_eth_fp(struct bxe_softc *sc, 9486 int idx) 9487 { 9488 struct bxe_fastpath *fp = &sc->fp[idx]; 9489 uint32_t cids[ECORE_MULTI_TX_COS] = { 0 }; 9490 unsigned long q_type = 0; 9491 int cos; 9492 9493 fp->sc = sc; 9494 fp->index = idx; 9495 9496 fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc)); 9497 fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc)); 9498 9499 fp->cl_id = (CHIP_IS_E1x(sc)) ? 9500 (SC_L_ID(sc) + idx) : 9501 /* want client ID same as IGU SB ID for non-E1 */ 9502 fp->igu_sb_id; 9503 fp->cl_qzone_id = bxe_fp_qzone_id(fp); 9504 9505 /* setup sb indices */ 9506 if (!CHIP_IS_E1x(sc)) { 9507 fp->sb_index_values = fp->status_block.e2_sb->sb.index_values; 9508 fp->sb_running_index = fp->status_block.e2_sb->sb.running_index; 9509 } else { 9510 fp->sb_index_values = fp->status_block.e1x_sb->sb.index_values; 9511 fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index; 9512 } 9513 9514 /* init shortcut */ 9515 fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp); 9516 9517 fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS]; 9518 9519 /* 9520 * XXX If multiple CoS is ever supported then each fastpath structure 9521 * will need to maintain tx producer/consumer/dma/etc values *per* CoS. 9522 */ 9523 for (cos = 0; cos < sc->max_cos; cos++) { 9524 cids[cos] = idx; 9525 } 9526 fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0]; 9527 9528 /* nothing more for a VF to do */ 9529 if (IS_VF(sc)) { 9530 return; 9531 } 9532 9533 bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE, 9534 fp->fw_sb_id, fp->igu_sb_id); 9535 9536 bxe_update_fp_sb_idx(fp); 9537 9538 /* Configure Queue State object */ 9539 bit_set(&q_type, ECORE_Q_TYPE_HAS_RX); 9540 bit_set(&q_type, ECORE_Q_TYPE_HAS_TX); 9541 9542 ecore_init_queue_obj(sc, 9543 &sc->sp_objs[idx].q_obj, 9544 fp->cl_id, 9545 cids, 9546 sc->max_cos, 9547 SC_FUNC(sc), 9548 BXE_SP(sc, q_rdata), 9549 BXE_SP_MAPPING(sc, q_rdata), 9550 q_type); 9551 9552 /* configure classification DBs */ 9553 ecore_init_mac_obj(sc, 9554 &sc->sp_objs[idx].mac_obj, 9555 fp->cl_id, 9556 idx, 9557 SC_FUNC(sc), 9558 BXE_SP(sc, mac_rdata), 9559 BXE_SP_MAPPING(sc, mac_rdata), 9560 ECORE_FILTER_MAC_PENDING, 9561 &sc->sp_state, 9562 ECORE_OBJ_TYPE_RX_TX, 9563 &sc->macs_pool); 9564 9565 BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n", 9566 idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id); 9567 } 9568 9569 static inline void 9570 bxe_update_rx_prod(struct bxe_softc *sc, 9571 struct bxe_fastpath *fp, 9572 uint16_t rx_bd_prod, 9573 uint16_t rx_cq_prod, 9574 uint16_t rx_sge_prod) 9575 { 9576 struct ustorm_eth_rx_producers rx_prods = { 0 }; 9577 uint32_t i; 9578 9579 /* update producers */ 9580 rx_prods.bd_prod = rx_bd_prod; 9581 rx_prods.cqe_prod = rx_cq_prod; 9582 rx_prods.sge_prod = rx_sge_prod; 9583 9584 /* 9585 * Make sure that the BD and SGE data is updated before updating the 9586 * producers since FW might read the BD/SGE right after the producer 9587 * is updated. 9588 * This is only applicable for weak-ordered memory model archs such 9589 * as IA-64. The following barrier is also mandatory since FW will 9590 * assumes BDs must have buffers. 9591 */ 9592 wmb(); 9593 9594 for (i = 0; i < (sizeof(rx_prods) / 4); i++) { 9595 REG_WR(sc, 9596 (fp->ustorm_rx_prods_offset + (i * 4)), 9597 ((uint32_t *)&rx_prods)[i]); 9598 } 9599 9600 wmb(); /* keep prod updates ordered */ 9601 9602 BLOGD(sc, DBG_RX, 9603 "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n", 9604 fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod); 9605 } 9606 9607 static void 9608 bxe_init_rx_rings(struct bxe_softc *sc) 9609 { 9610 struct bxe_fastpath *fp; 9611 int i; 9612 9613 for (i = 0; i < sc->num_queues; i++) { 9614 fp = &sc->fp[i]; 9615 9616 fp->rx_bd_cons = 0; 9617 9618 /* 9619 * Activate the BD ring... 9620 * Warning, this will generate an interrupt (to the TSTORM) 9621 * so this can only be done after the chip is initialized 9622 */ 9623 bxe_update_rx_prod(sc, fp, 9624 fp->rx_bd_prod, 9625 fp->rx_cq_prod, 9626 fp->rx_sge_prod); 9627 9628 if (i != 0) { 9629 continue; 9630 } 9631 9632 if (CHIP_IS_E1(sc)) { 9633 REG_WR(sc, 9634 (BAR_USTRORM_INTMEM + 9635 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))), 9636 U64_LO(fp->rcq_dma.paddr)); 9637 REG_WR(sc, 9638 (BAR_USTRORM_INTMEM + 9639 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4), 9640 U64_HI(fp->rcq_dma.paddr)); 9641 } 9642 } 9643 } 9644 9645 static void 9646 bxe_init_tx_ring_one(struct bxe_fastpath *fp) 9647 { 9648 SET_FLAG(fp->tx_db.data.header.data, DOORBELL_HDR_T_DB_TYPE, 1); 9649 fp->tx_db.data.zero_fill1 = 0; 9650 fp->tx_db.data.prod = 0; 9651 9652 fp->tx_pkt_prod = 0; 9653 fp->tx_pkt_cons = 0; 9654 fp->tx_bd_prod = 0; 9655 fp->tx_bd_cons = 0; 9656 fp->eth_q_stats.tx_pkts = 0; 9657 } 9658 9659 static inline void 9660 bxe_init_tx_rings(struct bxe_softc *sc) 9661 { 9662 int i; 9663 9664 for (i = 0; i < sc->num_queues; i++) { 9665 bxe_init_tx_ring_one(&sc->fp[i]); 9666 } 9667 } 9668 9669 static void 9670 bxe_init_def_sb(struct bxe_softc *sc) 9671 { 9672 struct host_sp_status_block *def_sb = sc->def_sb; 9673 bus_addr_t mapping = sc->def_sb_dma.paddr; 9674 int igu_sp_sb_index; 9675 int igu_seg_id; 9676 int port = SC_PORT(sc); 9677 int func = SC_FUNC(sc); 9678 int reg_offset, reg_offset_en5; 9679 uint64_t section; 9680 int index, sindex; 9681 struct hc_sp_status_block_data sp_sb_data; 9682 9683 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 9684 9685 if (CHIP_INT_MODE_IS_BC(sc)) { 9686 igu_sp_sb_index = DEF_SB_IGU_ID; 9687 igu_seg_id = HC_SEG_ACCESS_DEF; 9688 } else { 9689 igu_sp_sb_index = sc->igu_dsb_id; 9690 igu_seg_id = IGU_SEG_ACCESS_DEF; 9691 } 9692 9693 /* attentions */ 9694 section = ((uint64_t)mapping + 9695 offsetof(struct host_sp_status_block, atten_status_block)); 9696 def_sb->atten_status_block.status_block_id = igu_sp_sb_index; 9697 sc->attn_state = 0; 9698 9699 reg_offset = (port) ? 9700 MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 9701 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; 9702 reg_offset_en5 = (port) ? 9703 MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 : 9704 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0; 9705 9706 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 9707 /* take care of sig[0]..sig[4] */ 9708 for (sindex = 0; sindex < 4; sindex++) { 9709 sc->attn_group[index].sig[sindex] = 9710 REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index))); 9711 } 9712 9713 if (!CHIP_IS_E1x(sc)) { 9714 /* 9715 * enable5 is separate from the rest of the registers, 9716 * and the address skip is 4 and not 16 between the 9717 * different groups 9718 */ 9719 sc->attn_group[index].sig[4] = 9720 REG_RD(sc, (reg_offset_en5 + (0x4 * index))); 9721 } else { 9722 sc->attn_group[index].sig[4] = 0; 9723 } 9724 } 9725 9726 if (sc->devinfo.int_block == INT_BLOCK_HC) { 9727 reg_offset = (port) ? 9728 HC_REG_ATTN_MSG1_ADDR_L : 9729 HC_REG_ATTN_MSG0_ADDR_L; 9730 REG_WR(sc, reg_offset, U64_LO(section)); 9731 REG_WR(sc, (reg_offset + 4), U64_HI(section)); 9732 } else if (!CHIP_IS_E1x(sc)) { 9733 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section)); 9734 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section)); 9735 } 9736 9737 section = ((uint64_t)mapping + 9738 offsetof(struct host_sp_status_block, sp_sb)); 9739 9740 bxe_zero_sp_sb(sc); 9741 9742 /* PCI guarantees endianity of regpair */ 9743 sp_sb_data.state = SB_ENABLED; 9744 sp_sb_data.host_sb_addr.lo = U64_LO(section); 9745 sp_sb_data.host_sb_addr.hi = U64_HI(section); 9746 sp_sb_data.igu_sb_id = igu_sp_sb_index; 9747 sp_sb_data.igu_seg_id = igu_seg_id; 9748 sp_sb_data.p_func.pf_id = func; 9749 sp_sb_data.p_func.vnic_id = SC_VN(sc); 9750 sp_sb_data.p_func.vf_id = 0xff; 9751 9752 bxe_wr_sp_sb_data(sc, &sp_sb_data); 9753 9754 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 9755 } 9756 9757 static void 9758 bxe_init_sp_ring(struct bxe_softc *sc) 9759 { 9760 atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING); 9761 sc->spq_prod_idx = 0; 9762 sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS]; 9763 sc->spq_prod_bd = sc->spq; 9764 sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT); 9765 } 9766 9767 static void 9768 bxe_init_eq_ring(struct bxe_softc *sc) 9769 { 9770 union event_ring_elem *elem; 9771 int i; 9772 9773 for (i = 1; i <= NUM_EQ_PAGES; i++) { 9774 elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1]; 9775 9776 elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr + 9777 BCM_PAGE_SIZE * 9778 (i % NUM_EQ_PAGES))); 9779 elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr + 9780 BCM_PAGE_SIZE * 9781 (i % NUM_EQ_PAGES))); 9782 } 9783 9784 sc->eq_cons = 0; 9785 sc->eq_prod = NUM_EQ_DESC; 9786 sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS]; 9787 9788 atomic_store_rel_long(&sc->eq_spq_left, 9789 (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING), 9790 NUM_EQ_DESC) - 1)); 9791 } 9792 9793 static void 9794 bxe_init_internal_common(struct bxe_softc *sc) 9795 { 9796 int i; 9797 9798 /* 9799 * Zero this manually as its initialization is currently missing 9800 * in the initTool. 9801 */ 9802 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) { 9803 REG_WR(sc, 9804 (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)), 9805 0); 9806 } 9807 9808 if (!CHIP_IS_E1x(sc)) { 9809 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET), 9810 CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE); 9811 } 9812 } 9813 9814 static void 9815 bxe_init_internal(struct bxe_softc *sc, 9816 uint32_t load_code) 9817 { 9818 switch (load_code) { 9819 case FW_MSG_CODE_DRV_LOAD_COMMON: 9820 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: 9821 bxe_init_internal_common(sc); 9822 /* no break */ 9823 9824 case FW_MSG_CODE_DRV_LOAD_PORT: 9825 /* nothing to do */ 9826 /* no break */ 9827 9828 case FW_MSG_CODE_DRV_LOAD_FUNCTION: 9829 /* internal memory per function is initialized inside bxe_pf_init */ 9830 break; 9831 9832 default: 9833 BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code); 9834 break; 9835 } 9836 } 9837 9838 static void 9839 storm_memset_func_cfg(struct bxe_softc *sc, 9840 struct tstorm_eth_function_common_config *tcfg, 9841 uint16_t abs_fid) 9842 { 9843 uint32_t addr; 9844 size_t size; 9845 9846 addr = (BAR_TSTRORM_INTMEM + 9847 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid)); 9848 size = sizeof(struct tstorm_eth_function_common_config); 9849 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg); 9850 } 9851 9852 static void 9853 bxe_func_init(struct bxe_softc *sc, 9854 struct bxe_func_init_params *p) 9855 { 9856 struct tstorm_eth_function_common_config tcfg = { 0 }; 9857 9858 if (CHIP_IS_E1x(sc)) { 9859 storm_memset_func_cfg(sc, &tcfg, p->func_id); 9860 } 9861 9862 /* Enable the function in the FW */ 9863 storm_memset_vf_to_pf(sc, p->func_id, p->pf_id); 9864 storm_memset_func_en(sc, p->func_id, 1); 9865 9866 /* spq */ 9867 if (p->func_flgs & FUNC_FLG_SPQ) { 9868 storm_memset_spq_addr(sc, p->spq_map, p->func_id); 9869 REG_WR(sc, 9870 (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)), 9871 p->spq_prod); 9872 } 9873 } 9874 9875 /* 9876 * Calculates the sum of vn_min_rates. 9877 * It's needed for further normalizing of the min_rates. 9878 * Returns: 9879 * sum of vn_min_rates. 9880 * or 9881 * 0 - if all the min_rates are 0. 9882 * In the later case fainess algorithm should be deactivated. 9883 * If all min rates are not zero then those that are zeroes will be set to 1. 9884 */ 9885 static void 9886 bxe_calc_vn_min(struct bxe_softc *sc, 9887 struct cmng_init_input *input) 9888 { 9889 uint32_t vn_cfg; 9890 uint32_t vn_min_rate; 9891 int all_zero = 1; 9892 int vn; 9893 9894 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 9895 vn_cfg = sc->devinfo.mf_info.mf_config[vn]; 9896 vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >> 9897 FUNC_MF_CFG_MIN_BW_SHIFT) * 100); 9898 9899 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { 9900 /* skip hidden VNs */ 9901 vn_min_rate = 0; 9902 } else if (!vn_min_rate) { 9903 /* If min rate is zero - set it to 100 */ 9904 vn_min_rate = DEF_MIN_RATE; 9905 } else { 9906 all_zero = 0; 9907 } 9908 9909 input->vnic_min_rate[vn] = vn_min_rate; 9910 } 9911 9912 /* if ETS or all min rates are zeros - disable fairness */ 9913 if (BXE_IS_ETS_ENABLED(sc)) { 9914 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 9915 BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n"); 9916 } else if (all_zero) { 9917 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 9918 BLOGD(sc, DBG_LOAD, 9919 "Fariness disabled (all MIN values are zeroes)\n"); 9920 } else { 9921 input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 9922 } 9923 } 9924 9925 static inline uint16_t 9926 bxe_extract_max_cfg(struct bxe_softc *sc, 9927 uint32_t mf_cfg) 9928 { 9929 uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >> 9930 FUNC_MF_CFG_MAX_BW_SHIFT); 9931 9932 if (!max_cfg) { 9933 BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n"); 9934 max_cfg = 100; 9935 } 9936 9937 return (max_cfg); 9938 } 9939 9940 static void 9941 bxe_calc_vn_max(struct bxe_softc *sc, 9942 int vn, 9943 struct cmng_init_input *input) 9944 { 9945 uint16_t vn_max_rate; 9946 uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn]; 9947 uint32_t max_cfg; 9948 9949 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { 9950 vn_max_rate = 0; 9951 } else { 9952 max_cfg = bxe_extract_max_cfg(sc, vn_cfg); 9953 9954 if (IS_MF_SI(sc)) { 9955 /* max_cfg in percents of linkspeed */ 9956 vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100); 9957 } else { /* SD modes */ 9958 /* max_cfg is absolute in 100Mb units */ 9959 vn_max_rate = (max_cfg * 100); 9960 } 9961 } 9962 9963 BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate); 9964 9965 input->vnic_max_rate[vn] = vn_max_rate; 9966 } 9967 9968 static void 9969 bxe_cmng_fns_init(struct bxe_softc *sc, 9970 uint8_t read_cfg, 9971 uint8_t cmng_type) 9972 { 9973 struct cmng_init_input input; 9974 int vn; 9975 9976 memset(&input, 0, sizeof(struct cmng_init_input)); 9977 9978 input.port_rate = sc->link_vars.line_speed; 9979 9980 if (cmng_type == CMNG_FNS_MINMAX) { 9981 /* read mf conf from shmem */ 9982 if (read_cfg) { 9983 bxe_read_mf_cfg(sc); 9984 } 9985 9986 /* get VN min rate and enable fairness if not 0 */ 9987 bxe_calc_vn_min(sc, &input); 9988 9989 /* get VN max rate */ 9990 if (sc->port.pmf) { 9991 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 9992 bxe_calc_vn_max(sc, vn, &input); 9993 } 9994 } 9995 9996 /* always enable rate shaping and fairness */ 9997 input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN; 9998 9999 ecore_init_cmng(&input, &sc->cmng); 10000 return; 10001 } 10002 10003 /* rate shaping and fairness are disabled */ 10004 BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n"); 10005 } 10006 10007 static int 10008 bxe_get_cmng_fns_mode(struct bxe_softc *sc) 10009 { 10010 if (CHIP_REV_IS_SLOW(sc)) { 10011 return (CMNG_FNS_NONE); 10012 } 10013 10014 if (IS_MF(sc)) { 10015 return (CMNG_FNS_MINMAX); 10016 } 10017 10018 return (CMNG_FNS_NONE); 10019 } 10020 10021 static void 10022 storm_memset_cmng(struct bxe_softc *sc, 10023 struct cmng_init *cmng, 10024 uint8_t port) 10025 { 10026 int vn; 10027 int func; 10028 uint32_t addr; 10029 size_t size; 10030 10031 addr = (BAR_XSTRORM_INTMEM + 10032 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port)); 10033 size = sizeof(struct cmng_struct_per_port); 10034 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port); 10035 10036 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10037 func = func_by_vn(sc, vn); 10038 10039 addr = (BAR_XSTRORM_INTMEM + 10040 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func)); 10041 size = sizeof(struct rate_shaping_vars_per_vn); 10042 ecore_storm_memset_struct(sc, addr, size, 10043 (uint32_t *)&cmng->vnic.vnic_max_rate[vn]); 10044 10045 addr = (BAR_XSTRORM_INTMEM + 10046 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func)); 10047 size = sizeof(struct fairness_vars_per_vn); 10048 ecore_storm_memset_struct(sc, addr, size, 10049 (uint32_t *)&cmng->vnic.vnic_min_rate[vn]); 10050 } 10051 } 10052 10053 static void 10054 bxe_pf_init(struct bxe_softc *sc) 10055 { 10056 struct bxe_func_init_params func_init = { 0 }; 10057 struct event_ring_data eq_data = { { 0 } }; 10058 uint16_t flags; 10059 10060 if (!CHIP_IS_E1x(sc)) { 10061 /* reset IGU PF statistics: MSIX + ATTN */ 10062 /* PF */ 10063 REG_WR(sc, 10064 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 10065 (BXE_IGU_STAS_MSG_VF_CNT * 4) + 10066 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 10067 0); 10068 /* ATTN */ 10069 REG_WR(sc, 10070 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 10071 (BXE_IGU_STAS_MSG_VF_CNT * 4) + 10072 (BXE_IGU_STAS_MSG_PF_CNT * 4) + 10073 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 10074 0); 10075 } 10076 10077 /* function setup flags */ 10078 flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ); 10079 10080 /* 10081 * This flag is relevant for E1x only. 10082 * E2 doesn't have a TPA configuration in a function level. 10083 */ 10084 flags |= (if_getcapenable(sc->ifp) & IFCAP_LRO) ? FUNC_FLG_TPA : 0; 10085 10086 func_init.func_flgs = flags; 10087 func_init.pf_id = SC_FUNC(sc); 10088 func_init.func_id = SC_FUNC(sc); 10089 func_init.spq_map = sc->spq_dma.paddr; 10090 func_init.spq_prod = sc->spq_prod_idx; 10091 10092 bxe_func_init(sc, &func_init); 10093 10094 memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port)); 10095 10096 /* 10097 * Congestion management values depend on the link rate. 10098 * There is no active link so initial link rate is set to 10Gbps. 10099 * When the link comes up the congestion management values are 10100 * re-calculated according to the actual link rate. 10101 */ 10102 sc->link_vars.line_speed = SPEED_10000; 10103 bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc)); 10104 10105 /* Only the PMF sets the HW */ 10106 if (sc->port.pmf) { 10107 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 10108 } 10109 10110 /* init Event Queue - PCI bus guarantees correct endainity */ 10111 eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr); 10112 eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr); 10113 eq_data.producer = sc->eq_prod; 10114 eq_data.index_id = HC_SP_INDEX_EQ_CONS; 10115 eq_data.sb_id = DEF_SB_ID; 10116 storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc)); 10117 } 10118 10119 static void 10120 bxe_hc_int_enable(struct bxe_softc *sc) 10121 { 10122 int port = SC_PORT(sc); 10123 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 10124 uint32_t val = REG_RD(sc, addr); 10125 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; 10126 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && 10127 (sc->intr_count == 1)) ? TRUE : FALSE; 10128 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; 10129 10130 if (msix) { 10131 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10132 HC_CONFIG_0_REG_INT_LINE_EN_0); 10133 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10134 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10135 if (single_msix) { 10136 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0; 10137 } 10138 } else if (msi) { 10139 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0; 10140 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10141 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10142 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10143 } else { 10144 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10145 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10146 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10147 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10148 10149 if (!CHIP_IS_E1(sc)) { 10150 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", 10151 val, port, addr); 10152 10153 REG_WR(sc, addr, val); 10154 10155 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0; 10156 } 10157 } 10158 10159 if (CHIP_IS_E1(sc)) { 10160 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF); 10161 } 10162 10163 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n", 10164 val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); 10165 10166 REG_WR(sc, addr, val); 10167 10168 /* ensure that HC_CONFIG is written before leading/trailing edge config */ 10169 mb(); 10170 10171 if (!CHIP_IS_E1(sc)) { 10172 /* init leading/trailing edge */ 10173 if (IS_MF(sc)) { 10174 val = (0xee0f | (1 << (SC_VN(sc) + 4))); 10175 if (sc->port.pmf) { 10176 /* enable nig and gpio3 attention */ 10177 val |= 0x1100; 10178 } 10179 } else { 10180 val = 0xffff; 10181 } 10182 10183 REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val); 10184 REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val); 10185 } 10186 10187 /* make sure that interrupts are indeed enabled from here on */ 10188 mb(); 10189 } 10190 10191 static void 10192 bxe_igu_int_enable(struct bxe_softc *sc) 10193 { 10194 uint32_t val; 10195 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; 10196 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && 10197 (sc->intr_count == 1)) ? TRUE : FALSE; 10198 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; 10199 10200 val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 10201 10202 if (msix) { 10203 val &= ~(IGU_PF_CONF_INT_LINE_EN | 10204 IGU_PF_CONF_SINGLE_ISR_EN); 10205 val |= (IGU_PF_CONF_MSI_MSIX_EN | 10206 IGU_PF_CONF_ATTN_BIT_EN); 10207 if (single_msix) { 10208 val |= IGU_PF_CONF_SINGLE_ISR_EN; 10209 } 10210 } else if (msi) { 10211 val &= ~IGU_PF_CONF_INT_LINE_EN; 10212 val |= (IGU_PF_CONF_MSI_MSIX_EN | 10213 IGU_PF_CONF_ATTN_BIT_EN | 10214 IGU_PF_CONF_SINGLE_ISR_EN); 10215 } else { 10216 val &= ~IGU_PF_CONF_MSI_MSIX_EN; 10217 val |= (IGU_PF_CONF_INT_LINE_EN | 10218 IGU_PF_CONF_ATTN_BIT_EN | 10219 IGU_PF_CONF_SINGLE_ISR_EN); 10220 } 10221 10222 /* clean previous status - need to configure igu prior to ack*/ 10223 if ((!msix) || single_msix) { 10224 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10225 bxe_ack_int(sc); 10226 } 10227 10228 val |= IGU_PF_CONF_FUNC_EN; 10229 10230 BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n", 10231 val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); 10232 10233 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10234 10235 mb(); 10236 10237 /* init leading/trailing edge */ 10238 if (IS_MF(sc)) { 10239 val = (0xee0f | (1 << (SC_VN(sc) + 4))); 10240 if (sc->port.pmf) { 10241 /* enable nig and gpio3 attention */ 10242 val |= 0x1100; 10243 } 10244 } else { 10245 val = 0xffff; 10246 } 10247 10248 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); 10249 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); 10250 10251 /* make sure that interrupts are indeed enabled from here on */ 10252 mb(); 10253 } 10254 10255 static void 10256 bxe_int_enable(struct bxe_softc *sc) 10257 { 10258 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10259 bxe_hc_int_enable(sc); 10260 } else { 10261 bxe_igu_int_enable(sc); 10262 } 10263 } 10264 10265 static void 10266 bxe_hc_int_disable(struct bxe_softc *sc) 10267 { 10268 int port = SC_PORT(sc); 10269 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 10270 uint32_t val = REG_RD(sc, addr); 10271 10272 /* 10273 * In E1 we must use only PCI configuration space to disable MSI/MSIX 10274 * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC 10275 * block 10276 */ 10277 if (CHIP_IS_E1(sc)) { 10278 /* 10279 * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register 10280 * to prevent from HC sending interrupts after we exit the function 10281 */ 10282 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0); 10283 10284 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10285 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10286 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10287 } else { 10288 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10289 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10290 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10291 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10292 } 10293 10294 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr); 10295 10296 /* flush all outstanding writes */ 10297 mb(); 10298 10299 REG_WR(sc, addr, val); 10300 if (REG_RD(sc, addr) != val) { 10301 BLOGE(sc, "proper val not read from HC IGU!\n"); 10302 } 10303 } 10304 10305 static void 10306 bxe_igu_int_disable(struct bxe_softc *sc) 10307 { 10308 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 10309 10310 val &= ~(IGU_PF_CONF_MSI_MSIX_EN | 10311 IGU_PF_CONF_INT_LINE_EN | 10312 IGU_PF_CONF_ATTN_BIT_EN); 10313 10314 BLOGD(sc, DBG_INTR, "write %x to IGU\n", val); 10315 10316 /* flush all outstanding writes */ 10317 mb(); 10318 10319 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10320 if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) { 10321 BLOGE(sc, "proper val not read from IGU!\n"); 10322 } 10323 } 10324 10325 static void 10326 bxe_int_disable(struct bxe_softc *sc) 10327 { 10328 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10329 bxe_hc_int_disable(sc); 10330 } else { 10331 bxe_igu_int_disable(sc); 10332 } 10333 } 10334 10335 static void 10336 bxe_nic_init(struct bxe_softc *sc, 10337 int load_code) 10338 { 10339 int i; 10340 10341 for (i = 0; i < sc->num_queues; i++) { 10342 bxe_init_eth_fp(sc, i); 10343 } 10344 10345 rmb(); /* ensure status block indices were read */ 10346 10347 bxe_init_rx_rings(sc); 10348 bxe_init_tx_rings(sc); 10349 10350 if (IS_VF(sc)) { 10351 return; 10352 } 10353 10354 /* initialize MOD_ABS interrupts */ 10355 elink_init_mod_abs_int(sc, &sc->link_vars, 10356 sc->devinfo.chip_id, 10357 sc->devinfo.shmem_base, 10358 sc->devinfo.shmem2_base, 10359 SC_PORT(sc)); 10360 10361 bxe_init_def_sb(sc); 10362 bxe_update_dsb_idx(sc); 10363 bxe_init_sp_ring(sc); 10364 bxe_init_eq_ring(sc); 10365 bxe_init_internal(sc, load_code); 10366 bxe_pf_init(sc); 10367 bxe_stats_init(sc); 10368 10369 /* flush all before enabling interrupts */ 10370 mb(); 10371 10372 bxe_int_enable(sc); 10373 10374 /* check for SPIO5 */ 10375 bxe_attn_int_deasserted0(sc, 10376 REG_RD(sc, 10377 (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + 10378 SC_PORT(sc)*4)) & 10379 AEU_INPUTS_ATTN_BITS_SPIO5); 10380 } 10381 10382 static inline void 10383 bxe_init_objs(struct bxe_softc *sc) 10384 { 10385 /* mcast rules must be added to tx if tx switching is enabled */ 10386 ecore_obj_type o_type = 10387 (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX : 10388 ECORE_OBJ_TYPE_RX; 10389 10390 /* RX_MODE controlling object */ 10391 ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj); 10392 10393 /* multicast configuration controlling object */ 10394 ecore_init_mcast_obj(sc, 10395 &sc->mcast_obj, 10396 sc->fp[0].cl_id, 10397 sc->fp[0].index, 10398 SC_FUNC(sc), 10399 SC_FUNC(sc), 10400 BXE_SP(sc, mcast_rdata), 10401 BXE_SP_MAPPING(sc, mcast_rdata), 10402 ECORE_FILTER_MCAST_PENDING, 10403 &sc->sp_state, 10404 o_type); 10405 10406 /* Setup CAM credit pools */ 10407 ecore_init_mac_credit_pool(sc, 10408 &sc->macs_pool, 10409 SC_FUNC(sc), 10410 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : 10411 VNICS_PER_PATH(sc)); 10412 10413 ecore_init_vlan_credit_pool(sc, 10414 &sc->vlans_pool, 10415 SC_ABS_FUNC(sc) >> 1, 10416 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : 10417 VNICS_PER_PATH(sc)); 10418 10419 /* RSS configuration object */ 10420 ecore_init_rss_config_obj(sc, 10421 &sc->rss_conf_obj, 10422 sc->fp[0].cl_id, 10423 sc->fp[0].index, 10424 SC_FUNC(sc), 10425 SC_FUNC(sc), 10426 BXE_SP(sc, rss_rdata), 10427 BXE_SP_MAPPING(sc, rss_rdata), 10428 ECORE_FILTER_RSS_CONF_PENDING, 10429 &sc->sp_state, ECORE_OBJ_TYPE_RX); 10430 } 10431 10432 /* 10433 * Initialize the function. This must be called before sending CLIENT_SETUP 10434 * for the first client. 10435 */ 10436 static inline int 10437 bxe_func_start(struct bxe_softc *sc) 10438 { 10439 struct ecore_func_state_params func_params = { NULL }; 10440 struct ecore_func_start_params *start_params = &func_params.params.start; 10441 10442 /* Prepare parameters for function state transitions */ 10443 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); 10444 10445 func_params.f_obj = &sc->func_obj; 10446 func_params.cmd = ECORE_F_CMD_START; 10447 10448 /* Function parameters */ 10449 start_params->mf_mode = sc->devinfo.mf_info.mf_mode; 10450 start_params->sd_vlan_tag = OVLAN(sc); 10451 10452 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) { 10453 start_params->network_cos_mode = STATIC_COS; 10454 } else { /* CHIP_IS_E1X */ 10455 start_params->network_cos_mode = FW_WRR; 10456 } 10457 10458 //start_params->gre_tunnel_mode = 0; 10459 //start_params->gre_tunnel_rss = 0; 10460 10461 return (ecore_func_state_change(sc, &func_params)); 10462 } 10463 10464 static int 10465 bxe_set_power_state(struct bxe_softc *sc, 10466 uint8_t state) 10467 { 10468 uint16_t pmcsr; 10469 10470 /* If there is no power capability, silently succeed */ 10471 if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) { 10472 BLOGW(sc, "No power capability\n"); 10473 return (0); 10474 } 10475 10476 pmcsr = pci_read_config(sc->dev, 10477 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10478 2); 10479 10480 switch (state) { 10481 case PCI_PM_D0: 10482 pci_write_config(sc->dev, 10483 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10484 ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2); 10485 10486 if (pmcsr & PCIM_PSTAT_DMASK) { 10487 /* delay required during transition out of D3hot */ 10488 DELAY(20000); 10489 } 10490 10491 break; 10492 10493 case PCI_PM_D3hot: 10494 /* XXX if there are other clients above don't shut down the power */ 10495 10496 /* don't shut down the power for emulation and FPGA */ 10497 if (CHIP_REV_IS_SLOW(sc)) { 10498 return (0); 10499 } 10500 10501 pmcsr &= ~PCIM_PSTAT_DMASK; 10502 pmcsr |= PCIM_PSTAT_D3; 10503 10504 if (sc->wol) { 10505 pmcsr |= PCIM_PSTAT_PMEENABLE; 10506 } 10507 10508 pci_write_config(sc->dev, 10509 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10510 pmcsr, 4); 10511 10512 /* 10513 * No more memory access after this point until device is brought back 10514 * to D0 state. 10515 */ 10516 break; 10517 10518 default: 10519 BLOGE(sc, "Can't support PCI power state = 0x%x pmcsr 0x%x\n", 10520 state, pmcsr); 10521 return (-1); 10522 } 10523 10524 return (0); 10525 } 10526 10527 10528 /* return true if succeeded to acquire the lock */ 10529 static uint8_t 10530 bxe_trylock_hw_lock(struct bxe_softc *sc, 10531 uint32_t resource) 10532 { 10533 uint32_t lock_status; 10534 uint32_t resource_bit = (1 << resource); 10535 int func = SC_FUNC(sc); 10536 uint32_t hw_lock_control_reg; 10537 10538 BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource); 10539 10540 /* Validating that the resource is within range */ 10541 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 10542 BLOGD(sc, DBG_LOAD, 10543 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 10544 resource, HW_LOCK_MAX_RESOURCE_VALUE); 10545 return (FALSE); 10546 } 10547 10548 if (func <= 5) { 10549 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 10550 } else { 10551 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 10552 } 10553 10554 /* try to acquire the lock */ 10555 REG_WR(sc, hw_lock_control_reg + 4, resource_bit); 10556 lock_status = REG_RD(sc, hw_lock_control_reg); 10557 if (lock_status & resource_bit) { 10558 return (TRUE); 10559 } 10560 10561 BLOGE(sc, "Failed to get a resource lock 0x%x func %d " 10562 "lock_status 0x%x resource_bit 0x%x\n", resource, func, 10563 lock_status, resource_bit); 10564 10565 return (FALSE); 10566 } 10567 10568 /* 10569 * Get the recovery leader resource id according to the engine this function 10570 * belongs to. Currently only only 2 engines is supported. 10571 */ 10572 static int 10573 bxe_get_leader_lock_resource(struct bxe_softc *sc) 10574 { 10575 if (SC_PATH(sc)) { 10576 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1); 10577 } else { 10578 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0); 10579 } 10580 } 10581 10582 /* try to acquire a leader lock for current engine */ 10583 static uint8_t 10584 bxe_trylock_leader_lock(struct bxe_softc *sc) 10585 { 10586 return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc))); 10587 } 10588 10589 static int 10590 bxe_release_leader_lock(struct bxe_softc *sc) 10591 { 10592 return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc))); 10593 } 10594 10595 /* close gates #2, #3 and #4 */ 10596 static void 10597 bxe_set_234_gates(struct bxe_softc *sc, 10598 uint8_t close) 10599 { 10600 uint32_t val; 10601 10602 /* gates #2 and #4a are closed/opened for "not E1" only */ 10603 if (!CHIP_IS_E1(sc)) { 10604 /* #4 */ 10605 REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close); 10606 /* #2 */ 10607 REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close); 10608 } 10609 10610 /* #3 */ 10611 if (CHIP_IS_E1x(sc)) { 10612 /* prevent interrupts from HC on both ports */ 10613 val = REG_RD(sc, HC_REG_CONFIG_1); 10614 REG_WR(sc, HC_REG_CONFIG_1, 10615 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) : 10616 (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1)); 10617 10618 val = REG_RD(sc, HC_REG_CONFIG_0); 10619 REG_WR(sc, HC_REG_CONFIG_0, 10620 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) : 10621 (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0)); 10622 } else { 10623 /* Prevent incoming interrupts in IGU */ 10624 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); 10625 10626 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, 10627 (!close) ? 10628 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) : 10629 (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE)); 10630 } 10631 10632 BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n", 10633 close ? "closing" : "opening"); 10634 10635 wmb(); 10636 } 10637 10638 /* poll for pending writes bit, it should get cleared in no more than 1s */ 10639 static int 10640 bxe_er_poll_igu_vq(struct bxe_softc *sc) 10641 { 10642 uint32_t cnt = 1000; 10643 uint32_t pend_bits = 0; 10644 10645 do { 10646 pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS); 10647 10648 if (pend_bits == 0) { 10649 break; 10650 } 10651 10652 DELAY(1000); 10653 } while (--cnt > 0); 10654 10655 if (cnt == 0) { 10656 BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits); 10657 return (-1); 10658 } 10659 10660 return (0); 10661 } 10662 10663 #define SHARED_MF_CLP_MAGIC 0x80000000 /* 'magic' bit */ 10664 10665 static void 10666 bxe_clp_reset_prep(struct bxe_softc *sc, 10667 uint32_t *magic_val) 10668 { 10669 /* Do some magic... */ 10670 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); 10671 *magic_val = val & SHARED_MF_CLP_MAGIC; 10672 MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC); 10673 } 10674 10675 /* restore the value of the 'magic' bit */ 10676 static void 10677 bxe_clp_reset_done(struct bxe_softc *sc, 10678 uint32_t magic_val) 10679 { 10680 /* Restore the 'magic' bit value... */ 10681 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); 10682 MFCFG_WR(sc, shared_mf_config.clp_mb, 10683 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val); 10684 } 10685 10686 /* prepare for MCP reset, takes care of CLP configurations */ 10687 static void 10688 bxe_reset_mcp_prep(struct bxe_softc *sc, 10689 uint32_t *magic_val) 10690 { 10691 uint32_t shmem; 10692 uint32_t validity_offset; 10693 10694 /* set `magic' bit in order to save MF config */ 10695 if (!CHIP_IS_E1(sc)) { 10696 bxe_clp_reset_prep(sc, magic_val); 10697 } 10698 10699 /* get shmem offset */ 10700 shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 10701 validity_offset = 10702 offsetof(struct shmem_region, validity_map[SC_PORT(sc)]); 10703 10704 /* Clear validity map flags */ 10705 if (shmem > 0) { 10706 REG_WR(sc, shmem + validity_offset, 0); 10707 } 10708 } 10709 10710 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */ 10711 #define MCP_ONE_TIMEOUT 100 /* 100 ms */ 10712 10713 static void 10714 bxe_mcp_wait_one(struct bxe_softc *sc) 10715 { 10716 /* special handling for emulation and FPGA (10 times longer) */ 10717 if (CHIP_REV_IS_SLOW(sc)) { 10718 DELAY((MCP_ONE_TIMEOUT*10) * 1000); 10719 } else { 10720 DELAY((MCP_ONE_TIMEOUT) * 1000); 10721 } 10722 } 10723 10724 /* initialize shmem_base and waits for validity signature to appear */ 10725 static int 10726 bxe_init_shmem(struct bxe_softc *sc) 10727 { 10728 int cnt = 0; 10729 uint32_t val = 0; 10730 10731 do { 10732 sc->devinfo.shmem_base = 10733 sc->link_params.shmem_base = 10734 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 10735 10736 if (sc->devinfo.shmem_base) { 10737 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); 10738 if (val & SHR_MEM_VALIDITY_MB) 10739 return (0); 10740 } 10741 10742 bxe_mcp_wait_one(sc); 10743 10744 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT)); 10745 10746 BLOGE(sc, "BAD MCP validity signature\n"); 10747 10748 return (-1); 10749 } 10750 10751 static int 10752 bxe_reset_mcp_comp(struct bxe_softc *sc, 10753 uint32_t magic_val) 10754 { 10755 int rc = bxe_init_shmem(sc); 10756 10757 /* Restore the `magic' bit value */ 10758 if (!CHIP_IS_E1(sc)) { 10759 bxe_clp_reset_done(sc, magic_val); 10760 } 10761 10762 return (rc); 10763 } 10764 10765 static void 10766 bxe_pxp_prep(struct bxe_softc *sc) 10767 { 10768 if (!CHIP_IS_E1(sc)) { 10769 REG_WR(sc, PXP2_REG_RD_START_INIT, 0); 10770 REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0); 10771 wmb(); 10772 } 10773 } 10774 10775 /* 10776 * Reset the whole chip except for: 10777 * - PCIE core 10778 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit) 10779 * - IGU 10780 * - MISC (including AEU) 10781 * - GRC 10782 * - RBCN, RBCP 10783 */ 10784 static void 10785 bxe_process_kill_chip_reset(struct bxe_softc *sc, 10786 uint8_t global) 10787 { 10788 uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2; 10789 uint32_t global_bits2, stay_reset2; 10790 10791 /* 10792 * Bits that have to be set in reset_mask2 if we want to reset 'global' 10793 * (per chip) blocks. 10794 */ 10795 global_bits2 = 10796 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU | 10797 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE; 10798 10799 /* 10800 * Don't reset the following blocks. 10801 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be 10802 * reset, as in 4 port device they might still be owned 10803 * by the MCP (there is only one leader per path). 10804 */ 10805 not_reset_mask1 = 10806 MISC_REGISTERS_RESET_REG_1_RST_HC | 10807 MISC_REGISTERS_RESET_REG_1_RST_PXPV | 10808 MISC_REGISTERS_RESET_REG_1_RST_PXP; 10809 10810 not_reset_mask2 = 10811 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO | 10812 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE | 10813 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE | 10814 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE | 10815 MISC_REGISTERS_RESET_REG_2_RST_RBCN | 10816 MISC_REGISTERS_RESET_REG_2_RST_GRC | 10817 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE | 10818 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B | 10819 MISC_REGISTERS_RESET_REG_2_RST_ATC | 10820 MISC_REGISTERS_RESET_REG_2_PGLC | 10821 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 | 10822 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 | 10823 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 | 10824 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 | 10825 MISC_REGISTERS_RESET_REG_2_UMAC0 | 10826 MISC_REGISTERS_RESET_REG_2_UMAC1; 10827 10828 /* 10829 * Keep the following blocks in reset: 10830 * - all xxMACs are handled by the elink code. 10831 */ 10832 stay_reset2 = 10833 MISC_REGISTERS_RESET_REG_2_XMAC | 10834 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT; 10835 10836 /* Full reset masks according to the chip */ 10837 reset_mask1 = 0xffffffff; 10838 10839 if (CHIP_IS_E1(sc)) 10840 reset_mask2 = 0xffff; 10841 else if (CHIP_IS_E1H(sc)) 10842 reset_mask2 = 0x1ffff; 10843 else if (CHIP_IS_E2(sc)) 10844 reset_mask2 = 0xfffff; 10845 else /* CHIP_IS_E3 */ 10846 reset_mask2 = 0x3ffffff; 10847 10848 /* Don't reset global blocks unless we need to */ 10849 if (!global) 10850 reset_mask2 &= ~global_bits2; 10851 10852 /* 10853 * In case of attention in the QM, we need to reset PXP 10854 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM 10855 * because otherwise QM reset would release 'close the gates' shortly 10856 * before resetting the PXP, then the PSWRQ would send a write 10857 * request to PGLUE. Then when PXP is reset, PGLUE would try to 10858 * read the payload data from PSWWR, but PSWWR would not 10859 * respond. The write queue in PGLUE would stuck, dmae commands 10860 * would not return. Therefore it's important to reset the second 10861 * reset register (containing the 10862 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the 10863 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM 10864 * bit). 10865 */ 10866 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, 10867 reset_mask2 & (~not_reset_mask2)); 10868 10869 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 10870 reset_mask1 & (~not_reset_mask1)); 10871 10872 mb(); 10873 wmb(); 10874 10875 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, 10876 reset_mask2 & (~stay_reset2)); 10877 10878 mb(); 10879 wmb(); 10880 10881 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1); 10882 wmb(); 10883 } 10884 10885 static int 10886 bxe_process_kill(struct bxe_softc *sc, 10887 uint8_t global) 10888 { 10889 int cnt = 1000; 10890 uint32_t val = 0; 10891 uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2; 10892 uint32_t tags_63_32 = 0; 10893 10894 /* Empty the Tetris buffer, wait for 1s */ 10895 do { 10896 sr_cnt = REG_RD(sc, PXP2_REG_RD_SR_CNT); 10897 blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT); 10898 port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0); 10899 port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1); 10900 pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2); 10901 if (CHIP_IS_E3(sc)) { 10902 tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32); 10903 } 10904 10905 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) && 10906 ((port_is_idle_0 & 0x1) == 0x1) && 10907 ((port_is_idle_1 & 0x1) == 0x1) && 10908 (pgl_exp_rom2 == 0xffffffff) && 10909 (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff))) 10910 break; 10911 DELAY(1000); 10912 } while (cnt-- > 0); 10913 10914 if (cnt <= 0) { 10915 BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there " 10916 "are still outstanding read requests after 1s! " 10917 "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, " 10918 "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n", 10919 sr_cnt, blk_cnt, port_is_idle_0, 10920 port_is_idle_1, pgl_exp_rom2); 10921 return (-1); 10922 } 10923 10924 mb(); 10925 10926 /* Close gates #2, #3 and #4 */ 10927 bxe_set_234_gates(sc, TRUE); 10928 10929 /* Poll for IGU VQs for 57712 and newer chips */ 10930 if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) { 10931 return (-1); 10932 } 10933 10934 /* XXX indicate that "process kill" is in progress to MCP */ 10935 10936 /* clear "unprepared" bit */ 10937 REG_WR(sc, MISC_REG_UNPREPARED, 0); 10938 mb(); 10939 10940 /* Make sure all is written to the chip before the reset */ 10941 wmb(); 10942 10943 /* 10944 * Wait for 1ms to empty GLUE and PCI-E core queues, 10945 * PSWHST, GRC and PSWRD Tetris buffer. 10946 */ 10947 DELAY(1000); 10948 10949 /* Prepare to chip reset: */ 10950 /* MCP */ 10951 if (global) { 10952 bxe_reset_mcp_prep(sc, &val); 10953 } 10954 10955 /* PXP */ 10956 bxe_pxp_prep(sc); 10957 mb(); 10958 10959 /* reset the chip */ 10960 bxe_process_kill_chip_reset(sc, global); 10961 mb(); 10962 10963 /* clear errors in PGB */ 10964 if (!CHIP_IS_E1(sc)) 10965 REG_WR(sc, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f); 10966 10967 /* Recover after reset: */ 10968 /* MCP */ 10969 if (global && bxe_reset_mcp_comp(sc, val)) { 10970 return (-1); 10971 } 10972 10973 /* XXX add resetting the NO_MCP mode DB here */ 10974 10975 /* Open the gates #2, #3 and #4 */ 10976 bxe_set_234_gates(sc, FALSE); 10977 10978 /* XXX 10979 * IGU/AEU preparation bring back the AEU/IGU to a reset state 10980 * re-enable attentions 10981 */ 10982 10983 return (0); 10984 } 10985 10986 static int 10987 bxe_leader_reset(struct bxe_softc *sc) 10988 { 10989 int rc = 0; 10990 uint8_t global = bxe_reset_is_global(sc); 10991 uint32_t load_code; 10992 10993 /* 10994 * If not going to reset MCP, load "fake" driver to reset HW while 10995 * driver is owner of the HW. 10996 */ 10997 if (!global && !BXE_NOMCP(sc)) { 10998 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, 10999 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 11000 if (!load_code) { 11001 BLOGE(sc, "MCP response failure, aborting\n"); 11002 rc = -1; 11003 goto exit_leader_reset; 11004 } 11005 11006 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 11007 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 11008 BLOGE(sc, "MCP unexpected response, aborting\n"); 11009 rc = -1; 11010 goto exit_leader_reset2; 11011 } 11012 11013 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 11014 if (!load_code) { 11015 BLOGE(sc, "MCP response failure, aborting\n"); 11016 rc = -1; 11017 goto exit_leader_reset2; 11018 } 11019 } 11020 11021 /* try to recover after the failure */ 11022 if (bxe_process_kill(sc, global)) { 11023 BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc)); 11024 rc = -1; 11025 goto exit_leader_reset2; 11026 } 11027 11028 /* 11029 * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver 11030 * state. 11031 */ 11032 bxe_set_reset_done(sc); 11033 if (global) { 11034 bxe_clear_reset_global(sc); 11035 } 11036 11037 exit_leader_reset2: 11038 11039 /* unload "fake driver" if it was loaded */ 11040 if (!global && !BXE_NOMCP(sc)) { 11041 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 11042 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); 11043 } 11044 11045 exit_leader_reset: 11046 11047 sc->is_leader = 0; 11048 bxe_release_leader_lock(sc); 11049 11050 mb(); 11051 return (rc); 11052 } 11053 11054 /* 11055 * prepare INIT transition, parameters configured: 11056 * - HC configuration 11057 * - Queue's CDU context 11058 */ 11059 static void 11060 bxe_pf_q_prep_init(struct bxe_softc *sc, 11061 struct bxe_fastpath *fp, 11062 struct ecore_queue_init_params *init_params) 11063 { 11064 uint8_t cos; 11065 int cxt_index, cxt_offset; 11066 11067 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags); 11068 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags); 11069 11070 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags); 11071 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags); 11072 11073 /* HC rate */ 11074 init_params->rx.hc_rate = 11075 sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0; 11076 init_params->tx.hc_rate = 11077 sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0; 11078 11079 /* FW SB ID */ 11080 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id; 11081 11082 /* CQ index among the SB indices */ 11083 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 11084 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS; 11085 11086 /* set maximum number of COSs supported by this queue */ 11087 init_params->max_cos = sc->max_cos; 11088 11089 BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n", 11090 fp->index, init_params->max_cos); 11091 11092 /* set the context pointers queue object */ 11093 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) { 11094 /* XXX change index/cid here if ever support multiple tx CoS */ 11095 /* fp->txdata[cos]->cid */ 11096 cxt_index = fp->index / ILT_PAGE_CIDS; 11097 cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS); 11098 init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth; 11099 } 11100 } 11101 11102 /* set flags that are common for the Tx-only and not normal connections */ 11103 static unsigned long 11104 bxe_get_common_flags(struct bxe_softc *sc, 11105 struct bxe_fastpath *fp, 11106 uint8_t zero_stats) 11107 { 11108 unsigned long flags = 0; 11109 11110 /* PF driver will always initialize the Queue to an ACTIVE state */ 11111 bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags); 11112 11113 /* 11114 * tx only connections collect statistics (on the same index as the 11115 * parent connection). The statistics are zeroed when the parent 11116 * connection is initialized. 11117 */ 11118 11119 bxe_set_bit(ECORE_Q_FLG_STATS, &flags); 11120 if (zero_stats) { 11121 bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags); 11122 } 11123 11124 /* 11125 * tx only connections can support tx-switching, though their 11126 * CoS-ness doesn't survive the loopback 11127 */ 11128 if (sc->flags & BXE_TX_SWITCHING) { 11129 bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags); 11130 } 11131 11132 bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags); 11133 11134 return (flags); 11135 } 11136 11137 static unsigned long 11138 bxe_get_q_flags(struct bxe_softc *sc, 11139 struct bxe_fastpath *fp, 11140 uint8_t leading) 11141 { 11142 unsigned long flags = 0; 11143 11144 if (IS_MF_SD(sc)) { 11145 bxe_set_bit(ECORE_Q_FLG_OV, &flags); 11146 } 11147 11148 if (if_getcapenable(sc->ifp) & IFCAP_LRO) { 11149 bxe_set_bit(ECORE_Q_FLG_TPA, &flags); 11150 bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags); 11151 } 11152 11153 if (leading) { 11154 bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags); 11155 bxe_set_bit(ECORE_Q_FLG_MCAST, &flags); 11156 } 11157 11158 bxe_set_bit(ECORE_Q_FLG_VLAN, &flags); 11159 11160 /* merge with common flags */ 11161 return (flags | bxe_get_common_flags(sc, fp, TRUE)); 11162 } 11163 11164 static void 11165 bxe_pf_q_prep_general(struct bxe_softc *sc, 11166 struct bxe_fastpath *fp, 11167 struct ecore_general_setup_params *gen_init, 11168 uint8_t cos) 11169 { 11170 gen_init->stat_id = bxe_stats_id(fp); 11171 gen_init->spcl_id = fp->cl_id; 11172 gen_init->mtu = sc->mtu; 11173 gen_init->cos = cos; 11174 } 11175 11176 static void 11177 bxe_pf_rx_q_prep(struct bxe_softc *sc, 11178 struct bxe_fastpath *fp, 11179 struct rxq_pause_params *pause, 11180 struct ecore_rxq_setup_params *rxq_init) 11181 { 11182 uint8_t max_sge = 0; 11183 uint16_t sge_sz = 0; 11184 uint16_t tpa_agg_size = 0; 11185 11186 pause->sge_th_lo = SGE_TH_LO(sc); 11187 pause->sge_th_hi = SGE_TH_HI(sc); 11188 11189 /* validate SGE ring has enough to cross high threshold */ 11190 if (sc->dropless_fc && 11191 (pause->sge_th_hi + FW_PREFETCH_CNT) > 11192 (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) { 11193 BLOGW(sc, "sge ring threshold limit\n"); 11194 } 11195 11196 /* minimum max_aggregation_size is 2*MTU (two full buffers) */ 11197 tpa_agg_size = (2 * sc->mtu); 11198 if (tpa_agg_size < sc->max_aggregation_size) { 11199 tpa_agg_size = sc->max_aggregation_size; 11200 } 11201 11202 max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT; 11203 max_sge = ((max_sge + PAGES_PER_SGE - 1) & 11204 (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT; 11205 sge_sz = (uint16_t)min(SGE_PAGES, 0xffff); 11206 11207 /* pause - not for e1 */ 11208 if (!CHIP_IS_E1(sc)) { 11209 pause->bd_th_lo = BD_TH_LO(sc); 11210 pause->bd_th_hi = BD_TH_HI(sc); 11211 11212 pause->rcq_th_lo = RCQ_TH_LO(sc); 11213 pause->rcq_th_hi = RCQ_TH_HI(sc); 11214 11215 /* validate rings have enough entries to cross high thresholds */ 11216 if (sc->dropless_fc && 11217 pause->bd_th_hi + FW_PREFETCH_CNT > 11218 sc->rx_ring_size) { 11219 BLOGW(sc, "rx bd ring threshold limit\n"); 11220 } 11221 11222 if (sc->dropless_fc && 11223 pause->rcq_th_hi + FW_PREFETCH_CNT > 11224 RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) { 11225 BLOGW(sc, "rcq ring threshold limit\n"); 11226 } 11227 11228 pause->pri_map = 1; 11229 } 11230 11231 /* rxq setup */ 11232 rxq_init->dscr_map = fp->rx_dma.paddr; 11233 rxq_init->sge_map = fp->rx_sge_dma.paddr; 11234 rxq_init->rcq_map = fp->rcq_dma.paddr; 11235 rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE); 11236 11237 /* 11238 * This should be a maximum number of data bytes that may be 11239 * placed on the BD (not including paddings). 11240 */ 11241 rxq_init->buf_sz = (fp->rx_buf_size - 11242 IP_HEADER_ALIGNMENT_PADDING); 11243 11244 rxq_init->cl_qzone_id = fp->cl_qzone_id; 11245 rxq_init->tpa_agg_sz = tpa_agg_size; 11246 rxq_init->sge_buf_sz = sge_sz; 11247 rxq_init->max_sges_pkt = max_sge; 11248 rxq_init->rss_engine_id = SC_FUNC(sc); 11249 rxq_init->mcast_engine_id = SC_FUNC(sc); 11250 11251 /* 11252 * Maximum number or simultaneous TPA aggregation for this Queue. 11253 * For PF Clients it should be the maximum available number. 11254 * VF driver(s) may want to define it to a smaller value. 11255 */ 11256 rxq_init->max_tpa_queues = MAX_AGG_QS(sc); 11257 11258 rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT; 11259 rxq_init->fw_sb_id = fp->fw_sb_id; 11260 11261 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 11262 11263 /* 11264 * configure silent vlan removal 11265 * if multi function mode is afex, then mask default vlan 11266 */ 11267 if (IS_MF_AFEX(sc)) { 11268 rxq_init->silent_removal_value = 11269 sc->devinfo.mf_info.afex_def_vlan_tag; 11270 rxq_init->silent_removal_mask = EVL_VLID_MASK; 11271 } 11272 } 11273 11274 static void 11275 bxe_pf_tx_q_prep(struct bxe_softc *sc, 11276 struct bxe_fastpath *fp, 11277 struct ecore_txq_setup_params *txq_init, 11278 uint8_t cos) 11279 { 11280 /* 11281 * XXX If multiple CoS is ever supported then each fastpath structure 11282 * will need to maintain tx producer/consumer/dma/etc values *per* CoS. 11283 * fp->txdata[cos]->tx_dma.paddr; 11284 */ 11285 txq_init->dscr_map = fp->tx_dma.paddr; 11286 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos; 11287 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW; 11288 txq_init->fw_sb_id = fp->fw_sb_id; 11289 11290 /* 11291 * set the TSS leading client id for TX classfication to the 11292 * leading RSS client id 11293 */ 11294 txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id); 11295 } 11296 11297 /* 11298 * This function performs 2 steps in a queue state machine: 11299 * 1) RESET->INIT 11300 * 2) INIT->SETUP 11301 */ 11302 static int 11303 bxe_setup_queue(struct bxe_softc *sc, 11304 struct bxe_fastpath *fp, 11305 uint8_t leading) 11306 { 11307 struct ecore_queue_state_params q_params = { NULL }; 11308 struct ecore_queue_setup_params *setup_params = 11309 &q_params.params.setup; 11310 int rc; 11311 11312 BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index); 11313 11314 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 11315 11316 q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj; 11317 11318 /* we want to wait for completion in this context */ 11319 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 11320 11321 /* prepare the INIT parameters */ 11322 bxe_pf_q_prep_init(sc, fp, &q_params.params.init); 11323 11324 /* Set the command */ 11325 q_params.cmd = ECORE_Q_CMD_INIT; 11326 11327 /* Change the state to INIT */ 11328 rc = ecore_queue_state_change(sc, &q_params); 11329 if (rc) { 11330 BLOGE(sc, "Queue(%d) INIT failed rc = %d\n", fp->index, rc); 11331 return (rc); 11332 } 11333 11334 BLOGD(sc, DBG_LOAD, "init complete\n"); 11335 11336 /* now move the Queue to the SETUP state */ 11337 memset(setup_params, 0, sizeof(*setup_params)); 11338 11339 /* set Queue flags */ 11340 setup_params->flags = bxe_get_q_flags(sc, fp, leading); 11341 11342 /* set general SETUP parameters */ 11343 bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params, 11344 FIRST_TX_COS_INDEX); 11345 11346 bxe_pf_rx_q_prep(sc, fp, 11347 &setup_params->pause_params, 11348 &setup_params->rxq_params); 11349 11350 bxe_pf_tx_q_prep(sc, fp, 11351 &setup_params->txq_params, 11352 FIRST_TX_COS_INDEX); 11353 11354 /* Set the command */ 11355 q_params.cmd = ECORE_Q_CMD_SETUP; 11356 11357 /* change the state to SETUP */ 11358 rc = ecore_queue_state_change(sc, &q_params); 11359 if (rc) { 11360 BLOGE(sc, "Queue(%d) SETUP failed (rc = %d)\n", fp->index, rc); 11361 return (rc); 11362 } 11363 11364 return (rc); 11365 } 11366 11367 static int 11368 bxe_setup_leading(struct bxe_softc *sc) 11369 { 11370 return (bxe_setup_queue(sc, &sc->fp[0], TRUE)); 11371 } 11372 11373 static int 11374 bxe_config_rss_pf(struct bxe_softc *sc, 11375 struct ecore_rss_config_obj *rss_obj, 11376 uint8_t config_hash) 11377 { 11378 struct ecore_config_rss_params params = { NULL }; 11379 int i; 11380 11381 /* 11382 * Although RSS is meaningless when there is a single HW queue we 11383 * still need it enabled in order to have HW Rx hash generated. 11384 */ 11385 11386 params.rss_obj = rss_obj; 11387 11388 bxe_set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags); 11389 11390 bxe_set_bit(ECORE_RSS_MODE_REGULAR, ¶ms.rss_flags); 11391 11392 /* RSS configuration */ 11393 bxe_set_bit(ECORE_RSS_IPV4, ¶ms.rss_flags); 11394 bxe_set_bit(ECORE_RSS_IPV4_TCP, ¶ms.rss_flags); 11395 bxe_set_bit(ECORE_RSS_IPV6, ¶ms.rss_flags); 11396 bxe_set_bit(ECORE_RSS_IPV6_TCP, ¶ms.rss_flags); 11397 if (rss_obj->udp_rss_v4) { 11398 bxe_set_bit(ECORE_RSS_IPV4_UDP, ¶ms.rss_flags); 11399 } 11400 if (rss_obj->udp_rss_v6) { 11401 bxe_set_bit(ECORE_RSS_IPV6_UDP, ¶ms.rss_flags); 11402 } 11403 11404 /* Hash bits */ 11405 params.rss_result_mask = MULTI_MASK; 11406 11407 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table)); 11408 11409 if (config_hash) { 11410 /* RSS keys */ 11411 for (i = 0; i < sizeof(params.rss_key) / 4; i++) { 11412 params.rss_key[i] = arc4random(); 11413 } 11414 11415 bxe_set_bit(ECORE_RSS_SET_SRCH, ¶ms.rss_flags); 11416 } 11417 11418 return (ecore_config_rss(sc, ¶ms)); 11419 } 11420 11421 static int 11422 bxe_config_rss_eth(struct bxe_softc *sc, 11423 uint8_t config_hash) 11424 { 11425 return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash)); 11426 } 11427 11428 static int 11429 bxe_init_rss_pf(struct bxe_softc *sc) 11430 { 11431 uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc); 11432 int i; 11433 11434 /* 11435 * Prepare the initial contents of the indirection table if 11436 * RSS is enabled 11437 */ 11438 for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) { 11439 sc->rss_conf_obj.ind_table[i] = 11440 (sc->fp->cl_id + (i % num_eth_queues)); 11441 } 11442 11443 if (sc->udp_rss) { 11444 sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1; 11445 } 11446 11447 /* 11448 * For 57710 and 57711 SEARCHER configuration (rss_keys) is 11449 * per-port, so if explicit configuration is needed, do it only 11450 * for a PMF. 11451 * 11452 * For 57712 and newer it's a per-function configuration. 11453 */ 11454 return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc))); 11455 } 11456 11457 static int 11458 bxe_set_mac_one(struct bxe_softc *sc, 11459 uint8_t *mac, 11460 struct ecore_vlan_mac_obj *obj, 11461 uint8_t set, 11462 int mac_type, 11463 unsigned long *ramrod_flags) 11464 { 11465 struct ecore_vlan_mac_ramrod_params ramrod_param; 11466 int rc; 11467 11468 memset(&ramrod_param, 0, sizeof(ramrod_param)); 11469 11470 /* fill in general parameters */ 11471 ramrod_param.vlan_mac_obj = obj; 11472 ramrod_param.ramrod_flags = *ramrod_flags; 11473 11474 /* fill a user request section if needed */ 11475 if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) { 11476 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN); 11477 11478 bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags); 11479 11480 /* Set the command: ADD or DEL */ 11481 ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD : 11482 ECORE_VLAN_MAC_DEL; 11483 } 11484 11485 rc = ecore_config_vlan_mac(sc, &ramrod_param); 11486 11487 if (rc == ECORE_EXISTS) { 11488 BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); 11489 /* do not treat adding same MAC as error */ 11490 rc = 0; 11491 } else if (rc < 0) { 11492 BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc); 11493 } 11494 11495 return (rc); 11496 } 11497 11498 static int 11499 bxe_set_eth_mac(struct bxe_softc *sc, 11500 uint8_t set) 11501 { 11502 unsigned long ramrod_flags = 0; 11503 11504 BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n"); 11505 11506 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 11507 11508 /* Eth MAC is set on RSS leading client (fp[0]) */ 11509 return (bxe_set_mac_one(sc, sc->link_params.mac_addr, 11510 &sc->sp_objs->mac_obj, 11511 set, ECORE_ETH_MAC, &ramrod_flags)); 11512 } 11513 11514 static int 11515 bxe_get_cur_phy_idx(struct bxe_softc *sc) 11516 { 11517 uint32_t sel_phy_idx = 0; 11518 11519 if (sc->link_params.num_phys <= 1) { 11520 return (ELINK_INT_PHY); 11521 } 11522 11523 if (sc->link_vars.link_up) { 11524 sel_phy_idx = ELINK_EXT_PHY1; 11525 /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */ 11526 if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) && 11527 (sc->link_params.phy[ELINK_EXT_PHY2].supported & 11528 ELINK_SUPPORTED_FIBRE)) 11529 sel_phy_idx = ELINK_EXT_PHY2; 11530 } else { 11531 switch (elink_phy_selection(&sc->link_params)) { 11532 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT: 11533 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY: 11534 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY: 11535 sel_phy_idx = ELINK_EXT_PHY1; 11536 break; 11537 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY: 11538 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY: 11539 sel_phy_idx = ELINK_EXT_PHY2; 11540 break; 11541 } 11542 } 11543 11544 return (sel_phy_idx); 11545 } 11546 11547 static int 11548 bxe_get_link_cfg_idx(struct bxe_softc *sc) 11549 { 11550 uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc); 11551 11552 /* 11553 * The selected activated PHY is always after swapping (in case PHY 11554 * swapping is enabled). So when swapping is enabled, we need to reverse 11555 * the configuration 11556 */ 11557 11558 if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 11559 if (sel_phy_idx == ELINK_EXT_PHY1) 11560 sel_phy_idx = ELINK_EXT_PHY2; 11561 else if (sel_phy_idx == ELINK_EXT_PHY2) 11562 sel_phy_idx = ELINK_EXT_PHY1; 11563 } 11564 11565 return (ELINK_LINK_CONFIG_IDX(sel_phy_idx)); 11566 } 11567 11568 static void 11569 bxe_set_requested_fc(struct bxe_softc *sc) 11570 { 11571 /* 11572 * Initialize link parameters structure variables 11573 * It is recommended to turn off RX FC for jumbo frames 11574 * for better performance 11575 */ 11576 if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) { 11577 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX; 11578 } else { 11579 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH; 11580 } 11581 } 11582 11583 static void 11584 bxe_calc_fc_adv(struct bxe_softc *sc) 11585 { 11586 uint8_t cfg_idx = bxe_get_link_cfg_idx(sc); 11587 switch (sc->link_vars.ieee_fc & 11588 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) { 11589 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE: 11590 default: 11591 sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | 11592 ADVERTISED_Pause); 11593 break; 11594 11595 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH: 11596 sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause | 11597 ADVERTISED_Pause); 11598 break; 11599 11600 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC: 11601 sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause; 11602 break; 11603 } 11604 } 11605 11606 static uint16_t 11607 bxe_get_mf_speed(struct bxe_softc *sc) 11608 { 11609 uint16_t line_speed = sc->link_vars.line_speed; 11610 if (IS_MF(sc)) { 11611 uint16_t maxCfg = 11612 bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]); 11613 11614 /* calculate the current MAX line speed limit for the MF devices */ 11615 if (IS_MF_SI(sc)) { 11616 line_speed = (line_speed * maxCfg) / 100; 11617 } else { /* SD mode */ 11618 uint16_t vn_max_rate = maxCfg * 100; 11619 11620 if (vn_max_rate < line_speed) { 11621 line_speed = vn_max_rate; 11622 } 11623 } 11624 } 11625 11626 return (line_speed); 11627 } 11628 11629 static void 11630 bxe_fill_report_data(struct bxe_softc *sc, 11631 struct bxe_link_report_data *data) 11632 { 11633 uint16_t line_speed = bxe_get_mf_speed(sc); 11634 11635 memset(data, 0, sizeof(*data)); 11636 11637 /* fill the report data with the effective line speed */ 11638 data->line_speed = line_speed; 11639 11640 /* Link is down */ 11641 if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) { 11642 bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags); 11643 } 11644 11645 /* Full DUPLEX */ 11646 if (sc->link_vars.duplex == DUPLEX_FULL) { 11647 bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags); 11648 } 11649 11650 /* Rx Flow Control is ON */ 11651 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) { 11652 bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags); 11653 } 11654 11655 /* Tx Flow Control is ON */ 11656 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { 11657 bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags); 11658 } 11659 } 11660 11661 /* report link status to OS, should be called under phy_lock */ 11662 static void 11663 bxe_link_report_locked(struct bxe_softc *sc) 11664 { 11665 struct bxe_link_report_data cur_data; 11666 11667 /* reread mf_cfg */ 11668 if (IS_PF(sc) && !CHIP_IS_E1(sc)) { 11669 bxe_read_mf_cfg(sc); 11670 } 11671 11672 /* Read the current link report info */ 11673 bxe_fill_report_data(sc, &cur_data); 11674 11675 /* Don't report link down or exactly the same link status twice */ 11676 if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) || 11677 (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 11678 &sc->last_reported_link.link_report_flags) && 11679 bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 11680 &cur_data.link_report_flags))) { 11681 return; 11682 } 11683 11684 sc->link_cnt++; 11685 11686 /* report new link params and remember the state for the next time */ 11687 memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data)); 11688 11689 if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 11690 &cur_data.link_report_flags)) { 11691 if_link_state_change(sc->ifp, LINK_STATE_DOWN); 11692 BLOGI(sc, "NIC Link is Down\n"); 11693 } else { 11694 const char *duplex; 11695 const char *flow; 11696 11697 if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX, 11698 &cur_data.link_report_flags)) { 11699 duplex = "full"; 11700 } else { 11701 duplex = "half"; 11702 } 11703 11704 /* 11705 * Handle the FC at the end so that only these flags would be 11706 * possibly set. This way we may easily check if there is no FC 11707 * enabled. 11708 */ 11709 if (cur_data.link_report_flags) { 11710 if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 11711 &cur_data.link_report_flags) && 11712 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 11713 &cur_data.link_report_flags)) { 11714 flow = "ON - receive & transmit"; 11715 } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 11716 &cur_data.link_report_flags) && 11717 !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 11718 &cur_data.link_report_flags)) { 11719 flow = "ON - receive"; 11720 } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 11721 &cur_data.link_report_flags) && 11722 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 11723 &cur_data.link_report_flags)) { 11724 flow = "ON - transmit"; 11725 } else { 11726 flow = "none"; /* possible? */ 11727 } 11728 } else { 11729 flow = "none"; 11730 } 11731 11732 if_link_state_change(sc->ifp, LINK_STATE_UP); 11733 BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n", 11734 cur_data.line_speed, duplex, flow); 11735 } 11736 } 11737 11738 static void 11739 bxe_link_report(struct bxe_softc *sc) 11740 { 11741 bxe_acquire_phy_lock(sc); 11742 bxe_link_report_locked(sc); 11743 bxe_release_phy_lock(sc); 11744 } 11745 11746 static void 11747 bxe_link_status_update(struct bxe_softc *sc) 11748 { 11749 if (sc->state != BXE_STATE_OPEN) { 11750 return; 11751 } 11752 11753 if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) { 11754 elink_link_status_update(&sc->link_params, &sc->link_vars); 11755 } else { 11756 sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half | 11757 ELINK_SUPPORTED_10baseT_Full | 11758 ELINK_SUPPORTED_100baseT_Half | 11759 ELINK_SUPPORTED_100baseT_Full | 11760 ELINK_SUPPORTED_1000baseT_Full | 11761 ELINK_SUPPORTED_2500baseX_Full | 11762 ELINK_SUPPORTED_10000baseT_Full | 11763 ELINK_SUPPORTED_TP | 11764 ELINK_SUPPORTED_FIBRE | 11765 ELINK_SUPPORTED_Autoneg | 11766 ELINK_SUPPORTED_Pause | 11767 ELINK_SUPPORTED_Asym_Pause); 11768 sc->port.advertising[0] = sc->port.supported[0]; 11769 11770 sc->link_params.sc = sc; 11771 sc->link_params.port = SC_PORT(sc); 11772 sc->link_params.req_duplex[0] = DUPLEX_FULL; 11773 sc->link_params.req_flow_ctrl[0] = ELINK_FLOW_CTRL_NONE; 11774 sc->link_params.req_line_speed[0] = SPEED_10000; 11775 sc->link_params.speed_cap_mask[0] = 0x7f0000; 11776 sc->link_params.switch_cfg = ELINK_SWITCH_CFG_10G; 11777 11778 if (CHIP_REV_IS_FPGA(sc)) { 11779 sc->link_vars.mac_type = ELINK_MAC_TYPE_EMAC; 11780 sc->link_vars.line_speed = ELINK_SPEED_1000; 11781 sc->link_vars.link_status = (LINK_STATUS_LINK_UP | 11782 LINK_STATUS_SPEED_AND_DUPLEX_1000TFD); 11783 } else { 11784 sc->link_vars.mac_type = ELINK_MAC_TYPE_BMAC; 11785 sc->link_vars.line_speed = ELINK_SPEED_10000; 11786 sc->link_vars.link_status = (LINK_STATUS_LINK_UP | 11787 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD); 11788 } 11789 11790 sc->link_vars.link_up = 1; 11791 11792 sc->link_vars.duplex = DUPLEX_FULL; 11793 sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE; 11794 11795 if (IS_PF(sc)) { 11796 REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0); 11797 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11798 bxe_link_report(sc); 11799 } 11800 } 11801 11802 if (IS_PF(sc)) { 11803 if (sc->link_vars.link_up) { 11804 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11805 } else { 11806 bxe_stats_handle(sc, STATS_EVENT_STOP); 11807 } 11808 bxe_link_report(sc); 11809 } else { 11810 bxe_link_report(sc); 11811 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11812 } 11813 } 11814 11815 static int 11816 bxe_initial_phy_init(struct bxe_softc *sc, 11817 int load_mode) 11818 { 11819 int rc, cfg_idx = bxe_get_link_cfg_idx(sc); 11820 uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx]; 11821 struct elink_params *lp = &sc->link_params; 11822 11823 bxe_set_requested_fc(sc); 11824 11825 if (CHIP_REV_IS_SLOW(sc)) { 11826 uint32_t bond = CHIP_BOND_ID(sc); 11827 uint32_t feat = 0; 11828 11829 if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) { 11830 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; 11831 } else if (bond & 0x4) { 11832 if (CHIP_IS_E3(sc)) { 11833 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC; 11834 } else { 11835 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; 11836 } 11837 } else if (bond & 0x8) { 11838 if (CHIP_IS_E3(sc)) { 11839 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC; 11840 } else { 11841 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; 11842 } 11843 } 11844 11845 /* disable EMAC for E3 and above */ 11846 if (bond & 0x2) { 11847 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; 11848 } 11849 11850 sc->link_params.feature_config_flags |= feat; 11851 } 11852 11853 bxe_acquire_phy_lock(sc); 11854 11855 if (load_mode == LOAD_DIAG) { 11856 lp->loopback_mode = ELINK_LOOPBACK_XGXS; 11857 /* Prefer doing PHY loopback at 10G speed, if possible */ 11858 if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) { 11859 if (lp->speed_cap_mask[cfg_idx] & 11860 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { 11861 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000; 11862 } else { 11863 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000; 11864 } 11865 } 11866 } 11867 11868 if (load_mode == LOAD_LOOPBACK_EXT) { 11869 lp->loopback_mode = ELINK_LOOPBACK_EXT; 11870 } 11871 11872 rc = elink_phy_init(&sc->link_params, &sc->link_vars); 11873 11874 bxe_release_phy_lock(sc); 11875 11876 bxe_calc_fc_adv(sc); 11877 11878 if (sc->link_vars.link_up) { 11879 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11880 bxe_link_report(sc); 11881 } 11882 11883 if (!CHIP_REV_IS_SLOW(sc)) { 11884 bxe_periodic_start(sc); 11885 } 11886 11887 sc->link_params.req_line_speed[cfg_idx] = req_line_speed; 11888 return (rc); 11889 } 11890 11891 /* must be called under IF_ADDR_LOCK */ 11892 11893 static int 11894 bxe_set_mc_list(struct bxe_softc *sc) 11895 { 11896 struct ecore_mcast_ramrod_params rparam = { NULL }; 11897 int rc = 0; 11898 int mc_count = 0; 11899 int mcnt, i; 11900 struct ecore_mcast_list_elem *mc_mac, *mc_mac_start; 11901 unsigned char *mta; 11902 if_t ifp = sc->ifp; 11903 11904 mc_count = if_multiaddr_count(ifp, -1);/* XXX they don't have a limit */ 11905 if (!mc_count) 11906 return (0); 11907 11908 mta = malloc(sizeof(unsigned char) * ETHER_ADDR_LEN * 11909 mc_count, M_DEVBUF, M_NOWAIT); 11910 11911 if(mta == NULL) { 11912 BLOGE(sc, "Failed to allocate temp mcast list\n"); 11913 return (-1); 11914 } 11915 bzero(mta, (sizeof(unsigned char) * ETHER_ADDR_LEN * mc_count)); 11916 11917 mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF, (M_NOWAIT | M_ZERO)); 11918 mc_mac_start = mc_mac; 11919 11920 if (!mc_mac) { 11921 free(mta, M_DEVBUF); 11922 BLOGE(sc, "Failed to allocate temp mcast list\n"); 11923 return (-1); 11924 } 11925 bzero(mc_mac, (sizeof(*mc_mac) * mc_count)); 11926 11927 /* mta and mcnt not expected to be different */ 11928 if_multiaddr_array(ifp, mta, &mcnt, mc_count); 11929 11930 11931 rparam.mcast_obj = &sc->mcast_obj; 11932 ECORE_LIST_INIT(&rparam.mcast_list); 11933 11934 for(i=0; i< mcnt; i++) { 11935 11936 mc_mac->mac = (uint8_t *)(mta + (i * ETHER_ADDR_LEN)); 11937 ECORE_LIST_PUSH_TAIL(&mc_mac->link, &rparam.mcast_list); 11938 11939 BLOGD(sc, DBG_LOAD, 11940 "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X\n", 11941 mc_mac->mac[0], mc_mac->mac[1], mc_mac->mac[2], 11942 mc_mac->mac[3], mc_mac->mac[4], mc_mac->mac[5]); 11943 11944 mc_mac++; 11945 } 11946 rparam.mcast_list_len = mc_count; 11947 11948 BXE_MCAST_LOCK(sc); 11949 11950 /* first, clear all configured multicast MACs */ 11951 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 11952 if (rc < 0) { 11953 BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc); 11954 BXE_MCAST_UNLOCK(sc); 11955 free(mc_mac_start, M_DEVBUF); 11956 free(mta, M_DEVBUF); 11957 return (rc); 11958 } 11959 11960 /* Now add the new MACs */ 11961 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD); 11962 if (rc < 0) { 11963 BLOGE(sc, "Failed to set new mcast config (%d)\n", rc); 11964 } 11965 11966 BXE_MCAST_UNLOCK(sc); 11967 11968 free(mc_mac_start, M_DEVBUF); 11969 free(mta, M_DEVBUF); 11970 11971 return (rc); 11972 } 11973 11974 static int 11975 bxe_set_uc_list(struct bxe_softc *sc) 11976 { 11977 if_t ifp = sc->ifp; 11978 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; 11979 struct ifaddr *ifa; 11980 unsigned long ramrod_flags = 0; 11981 int rc; 11982 11983 #if __FreeBSD_version < 800000 11984 IF_ADDR_LOCK(ifp); 11985 #else 11986 if_addr_rlock(ifp); 11987 #endif 11988 11989 /* first schedule a cleanup up of old configuration */ 11990 rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE); 11991 if (rc < 0) { 11992 BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc); 11993 #if __FreeBSD_version < 800000 11994 IF_ADDR_UNLOCK(ifp); 11995 #else 11996 if_addr_runlock(ifp); 11997 #endif 11998 return (rc); 11999 } 12000 12001 ifa = if_getifaddr(ifp); /* XXX Is this structure */ 12002 while (ifa) { 12003 if (ifa->ifa_addr->sa_family != AF_LINK) { 12004 ifa = TAILQ_NEXT(ifa, ifa_link); 12005 continue; 12006 } 12007 12008 rc = bxe_set_mac_one(sc, (uint8_t *)LLADDR((struct sockaddr_dl *)ifa->ifa_addr), 12009 mac_obj, TRUE, ECORE_UC_LIST_MAC, &ramrod_flags); 12010 if (rc == -EEXIST) { 12011 BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); 12012 /* do not treat adding same MAC as an error */ 12013 rc = 0; 12014 } else if (rc < 0) { 12015 BLOGE(sc, "Failed to schedule ADD operations (%d)\n", rc); 12016 #if __FreeBSD_version < 800000 12017 IF_ADDR_UNLOCK(ifp); 12018 #else 12019 if_addr_runlock(ifp); 12020 #endif 12021 return (rc); 12022 } 12023 12024 ifa = TAILQ_NEXT(ifa, ifa_link); 12025 } 12026 12027 #if __FreeBSD_version < 800000 12028 IF_ADDR_UNLOCK(ifp); 12029 #else 12030 if_addr_runlock(ifp); 12031 #endif 12032 12033 /* Execute the pending commands */ 12034 bit_set(&ramrod_flags, RAMROD_CONT); 12035 return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */, 12036 ECORE_UC_LIST_MAC, &ramrod_flags)); 12037 } 12038 12039 static void 12040 bxe_set_rx_mode(struct bxe_softc *sc) 12041 { 12042 if_t ifp = sc->ifp; 12043 uint32_t rx_mode = BXE_RX_MODE_NORMAL; 12044 12045 if (sc->state != BXE_STATE_OPEN) { 12046 BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state); 12047 return; 12048 } 12049 12050 BLOGD(sc, DBG_SP, "if_flags(ifp)=0x%x\n", if_getflags(sc->ifp)); 12051 12052 if (if_getflags(ifp) & IFF_PROMISC) { 12053 rx_mode = BXE_RX_MODE_PROMISC; 12054 } else if ((if_getflags(ifp) & IFF_ALLMULTI) || 12055 ((if_getamcount(ifp) > BXE_MAX_MULTICAST) && 12056 CHIP_IS_E1(sc))) { 12057 rx_mode = BXE_RX_MODE_ALLMULTI; 12058 } else { 12059 if (IS_PF(sc)) { 12060 /* some multicasts */ 12061 if (bxe_set_mc_list(sc) < 0) { 12062 rx_mode = BXE_RX_MODE_ALLMULTI; 12063 } 12064 if (bxe_set_uc_list(sc) < 0) { 12065 rx_mode = BXE_RX_MODE_PROMISC; 12066 } 12067 } 12068 } 12069 12070 sc->rx_mode = rx_mode; 12071 12072 /* schedule the rx_mode command */ 12073 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { 12074 BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n"); 12075 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); 12076 return; 12077 } 12078 12079 if (IS_PF(sc)) { 12080 bxe_set_storm_rx_mode(sc); 12081 } 12082 } 12083 12084 12085 /* update flags in shmem */ 12086 static void 12087 bxe_update_drv_flags(struct bxe_softc *sc, 12088 uint32_t flags, 12089 uint32_t set) 12090 { 12091 uint32_t drv_flags; 12092 12093 if (SHMEM2_HAS(sc, drv_flags)) { 12094 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); 12095 drv_flags = SHMEM2_RD(sc, drv_flags); 12096 12097 if (set) { 12098 SET_FLAGS(drv_flags, flags); 12099 } else { 12100 RESET_FLAGS(drv_flags, flags); 12101 } 12102 12103 SHMEM2_WR(sc, drv_flags, drv_flags); 12104 BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags); 12105 12106 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); 12107 } 12108 } 12109 12110 /* periodic timer callout routine, only runs when the interface is up */ 12111 12112 static void 12113 bxe_periodic_callout_func(void *xsc) 12114 { 12115 struct bxe_softc *sc = (struct bxe_softc *)xsc; 12116 struct bxe_fastpath *fp; 12117 uint16_t tx_bd_avail; 12118 int i; 12119 12120 if (!BXE_CORE_TRYLOCK(sc)) { 12121 /* just bail and try again next time */ 12122 12123 if ((sc->state == BXE_STATE_OPEN) && 12124 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { 12125 /* schedule the next periodic callout */ 12126 callout_reset(&sc->periodic_callout, hz, 12127 bxe_periodic_callout_func, sc); 12128 } 12129 12130 return; 12131 } 12132 12133 if ((sc->state != BXE_STATE_OPEN) || 12134 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) { 12135 BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state); 12136 BXE_CORE_UNLOCK(sc); 12137 return; 12138 } 12139 12140 #if __FreeBSD_version >= 800000 12141 12142 FOR_EACH_QUEUE(sc, i) { 12143 fp = &sc->fp[i]; 12144 12145 if (BXE_FP_TX_TRYLOCK(fp)) { 12146 if_t ifp = sc->ifp; 12147 /* 12148 * If interface was stopped due to unavailable 12149 * bds, try to process some tx completions 12150 */ 12151 (void) bxe_txeof(sc, fp); 12152 12153 tx_bd_avail = bxe_tx_avail(sc, fp); 12154 if (tx_bd_avail >= BXE_TX_CLEANUP_THRESHOLD) { 12155 bxe_tx_mq_start_locked(sc, ifp, fp, NULL); 12156 } 12157 BXE_FP_TX_UNLOCK(fp); 12158 } 12159 } 12160 12161 #else 12162 12163 fp = &sc->fp[0]; 12164 if (BXE_FP_TX_TRYLOCK(fp)) { 12165 struct ifnet *ifp = sc->ifnet; 12166 /* 12167 * If interface was stopped due to unavailable 12168 * bds, try to process some tx completions 12169 */ 12170 (void) bxe_txeof(sc, fp); 12171 12172 tx_bd_avail = bxe_tx_avail(sc, fp); 12173 if (tx_bd_avail >= BXE_TX_CLEANUP_THRESHOLD) { 12174 bxe_tx_start_locked(sc, ifp, fp); 12175 } 12176 12177 BXE_FP_TX_UNLOCK(fp); 12178 } 12179 12180 #endif /* #if __FreeBSD_version >= 800000 */ 12181 12182 /* Check for TX timeouts on any fastpath. */ 12183 FOR_EACH_QUEUE(sc, i) { 12184 if (bxe_watchdog(sc, &sc->fp[i]) != 0) { 12185 /* Ruh-Roh, chip was reset! */ 12186 break; 12187 } 12188 } 12189 12190 if (!CHIP_REV_IS_SLOW(sc)) { 12191 /* 12192 * This barrier is needed to ensure the ordering between the writing 12193 * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and 12194 * the reading here. 12195 */ 12196 mb(); 12197 if (sc->port.pmf) { 12198 bxe_acquire_phy_lock(sc); 12199 elink_period_func(&sc->link_params, &sc->link_vars); 12200 bxe_release_phy_lock(sc); 12201 } 12202 } 12203 12204 if (IS_PF(sc) && !(sc->flags & BXE_NO_PULSE)) { 12205 int mb_idx = SC_FW_MB_IDX(sc); 12206 uint32_t drv_pulse; 12207 uint32_t mcp_pulse; 12208 12209 ++sc->fw_drv_pulse_wr_seq; 12210 sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK; 12211 12212 drv_pulse = sc->fw_drv_pulse_wr_seq; 12213 bxe_drv_pulse(sc); 12214 12215 mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) & 12216 MCP_PULSE_SEQ_MASK); 12217 12218 /* 12219 * The delta between driver pulse and mcp response should 12220 * be 1 (before mcp response) or 0 (after mcp response). 12221 */ 12222 if ((drv_pulse != mcp_pulse) && 12223 (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) { 12224 /* someone lost a heartbeat... */ 12225 BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n", 12226 drv_pulse, mcp_pulse); 12227 } 12228 } 12229 12230 /* state is BXE_STATE_OPEN */ 12231 bxe_stats_handle(sc, STATS_EVENT_UPDATE); 12232 12233 BXE_CORE_UNLOCK(sc); 12234 12235 if ((sc->state == BXE_STATE_OPEN) && 12236 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { 12237 /* schedule the next periodic callout */ 12238 callout_reset(&sc->periodic_callout, hz, 12239 bxe_periodic_callout_func, sc); 12240 } 12241 } 12242 12243 static void 12244 bxe_periodic_start(struct bxe_softc *sc) 12245 { 12246 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO); 12247 callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc); 12248 } 12249 12250 static void 12251 bxe_periodic_stop(struct bxe_softc *sc) 12252 { 12253 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP); 12254 callout_drain(&sc->periodic_callout); 12255 } 12256 12257 /* start the controller */ 12258 static __noinline int 12259 bxe_nic_load(struct bxe_softc *sc, 12260 int load_mode) 12261 { 12262 uint32_t val; 12263 int load_code = 0; 12264 int i, rc = 0; 12265 12266 BXE_CORE_LOCK_ASSERT(sc); 12267 12268 BLOGD(sc, DBG_LOAD, "Starting NIC load...\n"); 12269 12270 sc->state = BXE_STATE_OPENING_WAITING_LOAD; 12271 12272 if (IS_PF(sc)) { 12273 /* must be called before memory allocation and HW init */ 12274 bxe_ilt_set_info(sc); 12275 } 12276 12277 sc->last_reported_link_state = LINK_STATE_UNKNOWN; 12278 12279 bxe_set_fp_rx_buf_size(sc); 12280 12281 if (bxe_alloc_fp_buffers(sc) != 0) { 12282 BLOGE(sc, "Failed to allocate fastpath memory\n"); 12283 sc->state = BXE_STATE_CLOSED; 12284 rc = ENOMEM; 12285 goto bxe_nic_load_error0; 12286 } 12287 12288 if (bxe_alloc_mem(sc) != 0) { 12289 sc->state = BXE_STATE_CLOSED; 12290 rc = ENOMEM; 12291 goto bxe_nic_load_error0; 12292 } 12293 12294 if (bxe_alloc_fw_stats_mem(sc) != 0) { 12295 sc->state = BXE_STATE_CLOSED; 12296 rc = ENOMEM; 12297 goto bxe_nic_load_error0; 12298 } 12299 12300 if (IS_PF(sc)) { 12301 /* set pf load just before approaching the MCP */ 12302 bxe_set_pf_load(sc); 12303 12304 /* if MCP exists send load request and analyze response */ 12305 if (!BXE_NOMCP(sc)) { 12306 /* attempt to load pf */ 12307 if (bxe_nic_load_request(sc, &load_code) != 0) { 12308 sc->state = BXE_STATE_CLOSED; 12309 rc = ENXIO; 12310 goto bxe_nic_load_error1; 12311 } 12312 12313 /* what did the MCP say? */ 12314 if (bxe_nic_load_analyze_req(sc, load_code) != 0) { 12315 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12316 sc->state = BXE_STATE_CLOSED; 12317 rc = ENXIO; 12318 goto bxe_nic_load_error2; 12319 } 12320 } else { 12321 BLOGI(sc, "Device has no MCP!\n"); 12322 load_code = bxe_nic_load_no_mcp(sc); 12323 } 12324 12325 /* mark PMF if applicable */ 12326 bxe_nic_load_pmf(sc, load_code); 12327 12328 /* Init Function state controlling object */ 12329 bxe_init_func_obj(sc); 12330 12331 /* Initialize HW */ 12332 if (bxe_init_hw(sc, load_code) != 0) { 12333 BLOGE(sc, "HW init failed\n"); 12334 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12335 sc->state = BXE_STATE_CLOSED; 12336 rc = ENXIO; 12337 goto bxe_nic_load_error2; 12338 } 12339 } 12340 12341 /* set ALWAYS_ALIVE bit in shmem */ 12342 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 12343 bxe_drv_pulse(sc); 12344 sc->flags |= BXE_NO_PULSE; 12345 12346 /* attach interrupts */ 12347 if (bxe_interrupt_attach(sc) != 0) { 12348 sc->state = BXE_STATE_CLOSED; 12349 rc = ENXIO; 12350 goto bxe_nic_load_error2; 12351 } 12352 12353 bxe_nic_init(sc, load_code); 12354 12355 /* Init per-function objects */ 12356 if (IS_PF(sc)) { 12357 bxe_init_objs(sc); 12358 // XXX bxe_iov_nic_init(sc); 12359 12360 /* set AFEX default VLAN tag to an invalid value */ 12361 sc->devinfo.mf_info.afex_def_vlan_tag = -1; 12362 // XXX bxe_nic_load_afex_dcc(sc, load_code); 12363 12364 sc->state = BXE_STATE_OPENING_WAITING_PORT; 12365 rc = bxe_func_start(sc); 12366 if (rc) { 12367 BLOGE(sc, "Function start failed! rc = %d\n", rc); 12368 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12369 sc->state = BXE_STATE_ERROR; 12370 goto bxe_nic_load_error3; 12371 } 12372 12373 /* send LOAD_DONE command to MCP */ 12374 if (!BXE_NOMCP(sc)) { 12375 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12376 if (!load_code) { 12377 BLOGE(sc, "MCP response failure, aborting\n"); 12378 sc->state = BXE_STATE_ERROR; 12379 rc = ENXIO; 12380 goto bxe_nic_load_error3; 12381 } 12382 } 12383 12384 rc = bxe_setup_leading(sc); 12385 if (rc) { 12386 BLOGE(sc, "Setup leading failed! rc = %d\n", rc); 12387 sc->state = BXE_STATE_ERROR; 12388 goto bxe_nic_load_error3; 12389 } 12390 12391 FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) { 12392 rc = bxe_setup_queue(sc, &sc->fp[i], FALSE); 12393 if (rc) { 12394 BLOGE(sc, "Queue(%d) setup failed rc = %d\n", i, rc); 12395 sc->state = BXE_STATE_ERROR; 12396 goto bxe_nic_load_error3; 12397 } 12398 } 12399 12400 rc = bxe_init_rss_pf(sc); 12401 if (rc) { 12402 BLOGE(sc, "PF RSS init failed\n"); 12403 sc->state = BXE_STATE_ERROR; 12404 goto bxe_nic_load_error3; 12405 } 12406 } 12407 /* XXX VF */ 12408 12409 /* now when Clients are configured we are ready to work */ 12410 sc->state = BXE_STATE_OPEN; 12411 12412 /* Configure a ucast MAC */ 12413 if (IS_PF(sc)) { 12414 rc = bxe_set_eth_mac(sc, TRUE); 12415 } 12416 if (rc) { 12417 BLOGE(sc, "Setting Ethernet MAC failed rc = %d\n", rc); 12418 sc->state = BXE_STATE_ERROR; 12419 goto bxe_nic_load_error3; 12420 } 12421 12422 if (sc->port.pmf) { 12423 rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN); 12424 if (rc) { 12425 sc->state = BXE_STATE_ERROR; 12426 goto bxe_nic_load_error3; 12427 } 12428 } 12429 12430 sc->link_params.feature_config_flags &= 12431 ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN; 12432 12433 /* start fast path */ 12434 12435 /* Initialize Rx filter */ 12436 bxe_set_rx_mode(sc); 12437 12438 /* start the Tx */ 12439 switch (/* XXX load_mode */LOAD_OPEN) { 12440 case LOAD_NORMAL: 12441 case LOAD_OPEN: 12442 break; 12443 12444 case LOAD_DIAG: 12445 case LOAD_LOOPBACK_EXT: 12446 sc->state = BXE_STATE_DIAG; 12447 break; 12448 12449 default: 12450 break; 12451 } 12452 12453 if (sc->port.pmf) { 12454 bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0); 12455 } else { 12456 bxe_link_status_update(sc); 12457 } 12458 12459 /* start the periodic timer callout */ 12460 bxe_periodic_start(sc); 12461 12462 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { 12463 /* mark driver is loaded in shmem2 */ 12464 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); 12465 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], 12466 (val | 12467 DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED | 12468 DRV_FLAGS_CAPABILITIES_LOADED_L2)); 12469 } 12470 12471 /* wait for all pending SP commands to complete */ 12472 if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) { 12473 BLOGE(sc, "Timeout waiting for all SPs to complete!\n"); 12474 bxe_periodic_stop(sc); 12475 bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE); 12476 return (ENXIO); 12477 } 12478 12479 /* Tell the stack the driver is running! */ 12480 if_setdrvflags(sc->ifp, IFF_DRV_RUNNING); 12481 12482 BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n"); 12483 12484 return (0); 12485 12486 bxe_nic_load_error3: 12487 12488 if (IS_PF(sc)) { 12489 bxe_int_disable_sync(sc, 1); 12490 12491 /* clean out queued objects */ 12492 bxe_squeeze_objects(sc); 12493 } 12494 12495 bxe_interrupt_detach(sc); 12496 12497 bxe_nic_load_error2: 12498 12499 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 12500 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 12501 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); 12502 } 12503 12504 sc->port.pmf = 0; 12505 12506 bxe_nic_load_error1: 12507 12508 /* clear pf_load status, as it was already set */ 12509 if (IS_PF(sc)) { 12510 bxe_clear_pf_load(sc); 12511 } 12512 12513 bxe_nic_load_error0: 12514 12515 bxe_free_fw_stats_mem(sc); 12516 bxe_free_fp_buffers(sc); 12517 bxe_free_mem(sc); 12518 12519 return (rc); 12520 } 12521 12522 static int 12523 bxe_init_locked(struct bxe_softc *sc) 12524 { 12525 int other_engine = SC_PATH(sc) ? 0 : 1; 12526 uint8_t other_load_status, load_status; 12527 uint8_t global = FALSE; 12528 int rc; 12529 12530 BXE_CORE_LOCK_ASSERT(sc); 12531 12532 /* check if the driver is already running */ 12533 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 12534 BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n"); 12535 return (0); 12536 } 12537 12538 bxe_set_power_state(sc, PCI_PM_D0); 12539 12540 /* 12541 * If parity occurred during the unload, then attentions and/or 12542 * RECOVERY_IN_PROGRES may still be set. If so we want the first function 12543 * loaded on the current engine to complete the recovery. Parity recovery 12544 * is only relevant for PF driver. 12545 */ 12546 if (IS_PF(sc)) { 12547 other_load_status = bxe_get_load_status(sc, other_engine); 12548 load_status = bxe_get_load_status(sc, SC_PATH(sc)); 12549 12550 if (!bxe_reset_is_done(sc, SC_PATH(sc)) || 12551 bxe_chk_parity_attn(sc, &global, TRUE)) { 12552 do { 12553 /* 12554 * If there are attentions and they are in global blocks, set 12555 * the GLOBAL_RESET bit regardless whether it will be this 12556 * function that will complete the recovery or not. 12557 */ 12558 if (global) { 12559 bxe_set_reset_global(sc); 12560 } 12561 12562 /* 12563 * Only the first function on the current engine should try 12564 * to recover in open. In case of attentions in global blocks 12565 * only the first in the chip should try to recover. 12566 */ 12567 if ((!load_status && (!global || !other_load_status)) && 12568 bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) { 12569 BLOGI(sc, "Recovered during init\n"); 12570 break; 12571 } 12572 12573 /* recovery has failed... */ 12574 bxe_set_power_state(sc, PCI_PM_D3hot); 12575 sc->recovery_state = BXE_RECOVERY_FAILED; 12576 12577 BLOGE(sc, "Recovery flow hasn't properly " 12578 "completed yet, try again later. " 12579 "If you still see this message after a " 12580 "few retries then power cycle is required.\n"); 12581 12582 rc = ENXIO; 12583 goto bxe_init_locked_done; 12584 } while (0); 12585 } 12586 } 12587 12588 sc->recovery_state = BXE_RECOVERY_DONE; 12589 12590 rc = bxe_nic_load(sc, LOAD_OPEN); 12591 12592 bxe_init_locked_done: 12593 12594 if (rc) { 12595 /* Tell the stack the driver is NOT running! */ 12596 BLOGE(sc, "Initialization failed, " 12597 "stack notified driver is NOT running!\n"); 12598 if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING); 12599 } 12600 12601 return (rc); 12602 } 12603 12604 static int 12605 bxe_stop_locked(struct bxe_softc *sc) 12606 { 12607 BXE_CORE_LOCK_ASSERT(sc); 12608 return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE)); 12609 } 12610 12611 /* 12612 * Handles controller initialization when called from an unlocked routine. 12613 * ifconfig calls this function. 12614 * 12615 * Returns: 12616 * void 12617 */ 12618 static void 12619 bxe_init(void *xsc) 12620 { 12621 struct bxe_softc *sc = (struct bxe_softc *)xsc; 12622 12623 BXE_CORE_LOCK(sc); 12624 bxe_init_locked(sc); 12625 BXE_CORE_UNLOCK(sc); 12626 } 12627 12628 static int 12629 bxe_init_ifnet(struct bxe_softc *sc) 12630 { 12631 if_t ifp; 12632 int capabilities; 12633 12634 /* ifconfig entrypoint for media type/status reporting */ 12635 ifmedia_init(&sc->ifmedia, IFM_IMASK, 12636 bxe_ifmedia_update, 12637 bxe_ifmedia_status); 12638 12639 /* set the default interface values */ 12640 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL); 12641 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL); 12642 ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO)); 12643 12644 sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */ 12645 12646 /* allocate the ifnet structure */ 12647 if ((ifp = if_gethandle(IFT_ETHER)) == NULL) { 12648 BLOGE(sc, "Interface allocation failed!\n"); 12649 return (ENXIO); 12650 } 12651 12652 if_setsoftc(ifp, sc); 12653 if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev)); 12654 if_setflags(ifp, (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST)); 12655 if_setioctlfn(ifp, bxe_ioctl); 12656 if_setstartfn(ifp, bxe_tx_start); 12657 if_setgetcounterfn(ifp, bxe_get_counter); 12658 #if __FreeBSD_version >= 800000 12659 if_settransmitfn(ifp, bxe_tx_mq_start); 12660 if_setqflushfn(ifp, bxe_mq_flush); 12661 #endif 12662 #ifdef FreeBSD8_0 12663 if_settimer(ifp, 0); 12664 #endif 12665 if_setinitfn(ifp, bxe_init); 12666 if_setmtu(ifp, sc->mtu); 12667 if_sethwassist(ifp, (CSUM_IP | 12668 CSUM_TCP | 12669 CSUM_UDP | 12670 CSUM_TSO | 12671 CSUM_TCP_IPV6 | 12672 CSUM_UDP_IPV6)); 12673 12674 capabilities = 12675 #if __FreeBSD_version < 700000 12676 (IFCAP_VLAN_MTU | 12677 IFCAP_VLAN_HWTAGGING | 12678 IFCAP_HWCSUM | 12679 IFCAP_JUMBO_MTU | 12680 IFCAP_LRO); 12681 #else 12682 (IFCAP_VLAN_MTU | 12683 IFCAP_VLAN_HWTAGGING | 12684 IFCAP_VLAN_HWTSO | 12685 IFCAP_VLAN_HWFILTER | 12686 IFCAP_VLAN_HWCSUM | 12687 IFCAP_HWCSUM | 12688 IFCAP_JUMBO_MTU | 12689 IFCAP_LRO | 12690 IFCAP_TSO4 | 12691 IFCAP_TSO6 | 12692 IFCAP_WOL_MAGIC); 12693 #endif 12694 if_setcapabilitiesbit(ifp, capabilities, 0); /* XXX */ 12695 if_setbaudrate(ifp, IF_Gbps(10)); 12696 /* XXX */ 12697 if_setsendqlen(ifp, sc->tx_ring_size); 12698 if_setsendqready(ifp); 12699 /* XXX */ 12700 12701 sc->ifp = ifp; 12702 12703 /* attach to the Ethernet interface list */ 12704 ether_ifattach(ifp, sc->link_params.mac_addr); 12705 12706 return (0); 12707 } 12708 12709 static void 12710 bxe_deallocate_bars(struct bxe_softc *sc) 12711 { 12712 int i; 12713 12714 for (i = 0; i < MAX_BARS; i++) { 12715 if (sc->bar[i].resource != NULL) { 12716 bus_release_resource(sc->dev, 12717 SYS_RES_MEMORY, 12718 sc->bar[i].rid, 12719 sc->bar[i].resource); 12720 BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n", 12721 i, PCIR_BAR(i)); 12722 } 12723 } 12724 } 12725 12726 static int 12727 bxe_allocate_bars(struct bxe_softc *sc) 12728 { 12729 u_int flags; 12730 int i; 12731 12732 memset(sc->bar, 0, sizeof(sc->bar)); 12733 12734 for (i = 0; i < MAX_BARS; i++) { 12735 12736 /* memory resources reside at BARs 0, 2, 4 */ 12737 /* Run `pciconf -lb` to see mappings */ 12738 if ((i != 0) && (i != 2) && (i != 4)) { 12739 continue; 12740 } 12741 12742 sc->bar[i].rid = PCIR_BAR(i); 12743 12744 flags = RF_ACTIVE; 12745 if (i == 0) { 12746 flags |= RF_SHAREABLE; 12747 } 12748 12749 if ((sc->bar[i].resource = 12750 bus_alloc_resource_any(sc->dev, 12751 SYS_RES_MEMORY, 12752 &sc->bar[i].rid, 12753 flags)) == NULL) { 12754 return (0); 12755 } 12756 12757 sc->bar[i].tag = rman_get_bustag(sc->bar[i].resource); 12758 sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource); 12759 sc->bar[i].kva = (vm_offset_t)rman_get_virtual(sc->bar[i].resource); 12760 12761 BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %p-%p (%jd) -> %p\n", 12762 i, PCIR_BAR(i), 12763 (void *)rman_get_start(sc->bar[i].resource), 12764 (void *)rman_get_end(sc->bar[i].resource), 12765 rman_get_size(sc->bar[i].resource), 12766 (void *)sc->bar[i].kva); 12767 } 12768 12769 return (0); 12770 } 12771 12772 static void 12773 bxe_get_function_num(struct bxe_softc *sc) 12774 { 12775 uint32_t val = 0; 12776 12777 /* 12778 * Read the ME register to get the function number. The ME register 12779 * holds the relative-function number and absolute-function number. The 12780 * absolute-function number appears only in E2 and above. Before that 12781 * these bits always contained zero, therefore we cannot blindly use them. 12782 */ 12783 12784 val = REG_RD(sc, BAR_ME_REGISTER); 12785 12786 sc->pfunc_rel = 12787 (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT); 12788 sc->path_id = 12789 (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1; 12790 12791 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 12792 sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id); 12793 } else { 12794 sc->pfunc_abs = (sc->pfunc_rel | sc->path_id); 12795 } 12796 12797 BLOGD(sc, DBG_LOAD, 12798 "Relative function %d, Absolute function %d, Path %d\n", 12799 sc->pfunc_rel, sc->pfunc_abs, sc->path_id); 12800 } 12801 12802 static uint32_t 12803 bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc) 12804 { 12805 uint32_t shmem2_size; 12806 uint32_t offset; 12807 uint32_t mf_cfg_offset_value; 12808 12809 /* Non 57712 */ 12810 offset = (SHMEM_RD(sc, func_mb) + 12811 (MAX_FUNC_NUM * sizeof(struct drv_func_mb))); 12812 12813 /* 57712 plus */ 12814 if (sc->devinfo.shmem2_base != 0) { 12815 shmem2_size = SHMEM2_RD(sc, size); 12816 if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) { 12817 mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr); 12818 if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) { 12819 offset = mf_cfg_offset_value; 12820 } 12821 } 12822 } 12823 12824 return (offset); 12825 } 12826 12827 static uint32_t 12828 bxe_pcie_capability_read(struct bxe_softc *sc, 12829 int reg, 12830 int width) 12831 { 12832 int pcie_reg; 12833 12834 /* ensure PCIe capability is enabled */ 12835 if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) { 12836 if (pcie_reg != 0) { 12837 BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg); 12838 return (pci_read_config(sc->dev, (pcie_reg + reg), width)); 12839 } 12840 } 12841 12842 BLOGE(sc, "PCIe capability NOT FOUND!!!\n"); 12843 12844 return (0); 12845 } 12846 12847 static uint8_t 12848 bxe_is_pcie_pending(struct bxe_softc *sc) 12849 { 12850 return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) & 12851 PCIM_EXP_STA_TRANSACTION_PND); 12852 } 12853 12854 /* 12855 * Walk the PCI capabiites list for the device to find what features are 12856 * supported. These capabilites may be enabled/disabled by firmware so it's 12857 * best to walk the list rather than make assumptions. 12858 */ 12859 static void 12860 bxe_probe_pci_caps(struct bxe_softc *sc) 12861 { 12862 uint16_t link_status; 12863 int reg; 12864 12865 /* check if PCI Power Management is enabled */ 12866 if (pci_find_cap(sc->dev, PCIY_PMG, ®) == 0) { 12867 if (reg != 0) { 12868 BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg); 12869 12870 sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG; 12871 sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg; 12872 } 12873 } 12874 12875 link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2); 12876 12877 /* handle PCIe 2.0 workarounds for 57710 */ 12878 if (CHIP_IS_E1(sc)) { 12879 /* workaround for 57710 errata E4_57710_27462 */ 12880 sc->devinfo.pcie_link_speed = 12881 (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1; 12882 12883 /* workaround for 57710 errata E4_57710_27488 */ 12884 sc->devinfo.pcie_link_width = 12885 ((link_status & PCIM_LINK_STA_WIDTH) >> 4); 12886 if (sc->devinfo.pcie_link_speed > 1) { 12887 sc->devinfo.pcie_link_width = 12888 ((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1; 12889 } 12890 } else { 12891 sc->devinfo.pcie_link_speed = 12892 (link_status & PCIM_LINK_STA_SPEED); 12893 sc->devinfo.pcie_link_width = 12894 ((link_status & PCIM_LINK_STA_WIDTH) >> 4); 12895 } 12896 12897 BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n", 12898 sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width); 12899 12900 sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG; 12901 sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg; 12902 12903 /* check if MSI capability is enabled */ 12904 if (pci_find_cap(sc->dev, PCIY_MSI, ®) == 0) { 12905 if (reg != 0) { 12906 BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg); 12907 12908 sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG; 12909 sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg; 12910 } 12911 } 12912 12913 /* check if MSI-X capability is enabled */ 12914 if (pci_find_cap(sc->dev, PCIY_MSIX, ®) == 0) { 12915 if (reg != 0) { 12916 BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg); 12917 12918 sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG; 12919 sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg; 12920 } 12921 } 12922 } 12923 12924 static int 12925 bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc) 12926 { 12927 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 12928 uint32_t val; 12929 12930 /* get the outer vlan if we're in switch-dependent mode */ 12931 12932 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 12933 mf_info->ext_id = (uint16_t)val; 12934 12935 mf_info->multi_vnics_mode = 1; 12936 12937 if (!VALID_OVLAN(mf_info->ext_id)) { 12938 BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id); 12939 return (1); 12940 } 12941 12942 /* get the capabilities */ 12943 if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == 12944 FUNC_MF_CFG_PROTOCOL_ISCSI) { 12945 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI; 12946 } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == 12947 FUNC_MF_CFG_PROTOCOL_FCOE) { 12948 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE; 12949 } else { 12950 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET; 12951 } 12952 12953 mf_info->vnics_per_port = 12954 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 12955 12956 return (0); 12957 } 12958 12959 static uint32_t 12960 bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc) 12961 { 12962 uint32_t retval = 0; 12963 uint32_t val; 12964 12965 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); 12966 12967 if (val & MACP_FUNC_CFG_FLAGS_ENABLED) { 12968 if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) { 12969 retval |= MF_PROTO_SUPPORT_ETHERNET; 12970 } 12971 if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) { 12972 retval |= MF_PROTO_SUPPORT_ISCSI; 12973 } 12974 if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) { 12975 retval |= MF_PROTO_SUPPORT_FCOE; 12976 } 12977 } 12978 12979 return (retval); 12980 } 12981 12982 static int 12983 bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc) 12984 { 12985 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 12986 uint32_t val; 12987 12988 /* 12989 * There is no outer vlan if we're in switch-independent mode. 12990 * If the mac is valid then assume multi-function. 12991 */ 12992 12993 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); 12994 12995 mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0); 12996 12997 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); 12998 12999 mf_info->vnics_per_port = 13000 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13001 13002 return (0); 13003 } 13004 13005 static int 13006 bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc) 13007 { 13008 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13009 uint32_t e1hov_tag; 13010 uint32_t func_config; 13011 uint32_t niv_config; 13012 13013 mf_info->multi_vnics_mode = 1; 13014 13015 e1hov_tag = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13016 func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 13017 niv_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config); 13018 13019 mf_info->ext_id = 13020 (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >> 13021 FUNC_MF_CFG_E1HOV_TAG_SHIFT); 13022 13023 mf_info->default_vlan = 13024 (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >> 13025 FUNC_MF_CFG_AFEX_VLAN_SHIFT); 13026 13027 mf_info->niv_allowed_priorities = 13028 (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >> 13029 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT); 13030 13031 mf_info->niv_default_cos = 13032 (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >> 13033 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT); 13034 13035 mf_info->afex_vlan_mode = 13036 ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >> 13037 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT); 13038 13039 mf_info->niv_mba_enabled = 13040 ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >> 13041 FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT); 13042 13043 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); 13044 13045 mf_info->vnics_per_port = 13046 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13047 13048 return (0); 13049 } 13050 13051 static int 13052 bxe_check_valid_mf_cfg(struct bxe_softc *sc) 13053 { 13054 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13055 uint32_t mf_cfg1; 13056 uint32_t mf_cfg2; 13057 uint32_t ovlan1; 13058 uint32_t ovlan2; 13059 uint8_t i, j; 13060 13061 BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n", 13062 SC_PORT(sc)); 13063 BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n", 13064 mf_info->mf_config[SC_VN(sc)]); 13065 BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n", 13066 mf_info->multi_vnics_mode); 13067 BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n", 13068 mf_info->vnics_per_port); 13069 BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n", 13070 mf_info->ext_id); 13071 BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n", 13072 mf_info->min_bw[0], mf_info->min_bw[1], 13073 mf_info->min_bw[2], mf_info->min_bw[3]); 13074 BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n", 13075 mf_info->max_bw[0], mf_info->max_bw[1], 13076 mf_info->max_bw[2], mf_info->max_bw[3]); 13077 BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n", 13078 sc->mac_addr_str); 13079 13080 /* various MF mode sanity checks... */ 13081 13082 if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) { 13083 BLOGE(sc, "Enumerated function %d is marked as hidden\n", 13084 SC_PORT(sc)); 13085 return (1); 13086 } 13087 13088 if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) { 13089 BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n", 13090 mf_info->vnics_per_port, mf_info->multi_vnics_mode); 13091 return (1); 13092 } 13093 13094 if (mf_info->mf_mode == MULTI_FUNCTION_SD) { 13095 /* vnic id > 0 must have valid ovlan in switch-dependent mode */ 13096 if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) { 13097 BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n", 13098 SC_VN(sc), OVLAN(sc)); 13099 return (1); 13100 } 13101 13102 if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) { 13103 BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n", 13104 mf_info->multi_vnics_mode, OVLAN(sc)); 13105 return (1); 13106 } 13107 13108 /* 13109 * Verify all functions are either MF or SF mode. If MF, make sure 13110 * sure that all non-hidden functions have a valid ovlan. If SF, 13111 * make sure that all non-hidden functions have an invalid ovlan. 13112 */ 13113 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13114 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); 13115 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); 13116 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && 13117 (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) || 13118 ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) { 13119 BLOGE(sc, "mf_mode=SD function %d MF config " 13120 "mismatch, multi_vnics_mode=%d ovlan=%d\n", 13121 i, mf_info->multi_vnics_mode, ovlan1); 13122 return (1); 13123 } 13124 } 13125 13126 /* Verify all funcs on the same port each have a different ovlan. */ 13127 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13128 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); 13129 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); 13130 /* iterate from the next function on the port to the max func */ 13131 for (j = i + 2; j < MAX_FUNC_NUM; j += 2) { 13132 mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config); 13133 ovlan2 = MFCFG_RD(sc, func_mf_config[j].e1hov_tag); 13134 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && 13135 VALID_OVLAN(ovlan1) && 13136 !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) && 13137 VALID_OVLAN(ovlan2) && 13138 (ovlan1 == ovlan2)) { 13139 BLOGE(sc, "mf_mode=SD functions %d and %d " 13140 "have the same ovlan (%d)\n", 13141 i, j, ovlan1); 13142 return (1); 13143 } 13144 } 13145 } 13146 } /* MULTI_FUNCTION_SD */ 13147 13148 return (0); 13149 } 13150 13151 static int 13152 bxe_get_mf_cfg_info(struct bxe_softc *sc) 13153 { 13154 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13155 uint32_t val, mac_upper; 13156 uint8_t i, vnic; 13157 13158 /* initialize mf_info defaults */ 13159 mf_info->vnics_per_port = 1; 13160 mf_info->multi_vnics_mode = FALSE; 13161 mf_info->path_has_ovlan = FALSE; 13162 mf_info->mf_mode = SINGLE_FUNCTION; 13163 13164 if (!CHIP_IS_MF_CAP(sc)) { 13165 return (0); 13166 } 13167 13168 if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) { 13169 BLOGE(sc, "Invalid mf_cfg_base!\n"); 13170 return (1); 13171 } 13172 13173 /* get the MF mode (switch dependent / independent / single-function) */ 13174 13175 val = SHMEM_RD(sc, dev_info.shared_feature_config.config); 13176 13177 switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK) 13178 { 13179 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT: 13180 13181 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13182 13183 /* check for legal upper mac bytes */ 13184 if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) { 13185 mf_info->mf_mode = MULTI_FUNCTION_SI; 13186 } else { 13187 BLOGE(sc, "Invalid config for Switch Independent mode\n"); 13188 } 13189 13190 break; 13191 13192 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED: 13193 case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4: 13194 13195 /* get outer vlan configuration */ 13196 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13197 13198 if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) != 13199 FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 13200 mf_info->mf_mode = MULTI_FUNCTION_SD; 13201 } else { 13202 BLOGE(sc, "Invalid config for Switch Dependent mode\n"); 13203 } 13204 13205 break; 13206 13207 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF: 13208 13209 /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */ 13210 return (0); 13211 13212 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE: 13213 13214 /* 13215 * Mark MF mode as NIV if MCP version includes NPAR-SD support 13216 * and the MAC address is valid. 13217 */ 13218 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13219 13220 if ((SHMEM2_HAS(sc, afex_driver_support)) && 13221 (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) { 13222 mf_info->mf_mode = MULTI_FUNCTION_AFEX; 13223 } else { 13224 BLOGE(sc, "Invalid config for AFEX mode\n"); 13225 } 13226 13227 break; 13228 13229 default: 13230 13231 BLOGE(sc, "Unknown MF mode (0x%08x)\n", 13232 (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)); 13233 13234 return (1); 13235 } 13236 13237 /* set path mf_mode (which could be different than function mf_mode) */ 13238 if (mf_info->mf_mode == MULTI_FUNCTION_SD) { 13239 mf_info->path_has_ovlan = TRUE; 13240 } else if (mf_info->mf_mode == SINGLE_FUNCTION) { 13241 /* 13242 * Decide on path multi vnics mode. If we're not in MF mode and in 13243 * 4-port mode, this is good enough to check vnic-0 of the other port 13244 * on the same path 13245 */ 13246 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 13247 uint8_t other_port = !(PORT_ID(sc) & 1); 13248 uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port)); 13249 13250 val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag); 13251 13252 mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0; 13253 } 13254 } 13255 13256 if (mf_info->mf_mode == SINGLE_FUNCTION) { 13257 /* invalid MF config */ 13258 if (SC_VN(sc) >= 1) { 13259 BLOGE(sc, "VNIC ID >= 1 in SF mode\n"); 13260 return (1); 13261 } 13262 13263 return (0); 13264 } 13265 13266 /* get the MF configuration */ 13267 mf_info->mf_config[SC_VN(sc)] = 13268 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 13269 13270 switch(mf_info->mf_mode) 13271 { 13272 case MULTI_FUNCTION_SD: 13273 13274 bxe_get_shmem_mf_cfg_info_sd(sc); 13275 break; 13276 13277 case MULTI_FUNCTION_SI: 13278 13279 bxe_get_shmem_mf_cfg_info_si(sc); 13280 break; 13281 13282 case MULTI_FUNCTION_AFEX: 13283 13284 bxe_get_shmem_mf_cfg_info_niv(sc); 13285 break; 13286 13287 default: 13288 13289 BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n", 13290 mf_info->mf_mode); 13291 return (1); 13292 } 13293 13294 /* get the congestion management parameters */ 13295 13296 vnic = 0; 13297 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13298 /* get min/max bw */ 13299 val = MFCFG_RD(sc, func_mf_config[i].config); 13300 mf_info->min_bw[vnic] = 13301 ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT); 13302 mf_info->max_bw[vnic] = 13303 ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT); 13304 vnic++; 13305 } 13306 13307 return (bxe_check_valid_mf_cfg(sc)); 13308 } 13309 13310 static int 13311 bxe_get_shmem_info(struct bxe_softc *sc) 13312 { 13313 int port; 13314 uint32_t mac_hi, mac_lo, val; 13315 13316 port = SC_PORT(sc); 13317 mac_hi = mac_lo = 0; 13318 13319 sc->link_params.sc = sc; 13320 sc->link_params.port = port; 13321 13322 /* get the hardware config info */ 13323 sc->devinfo.hw_config = 13324 SHMEM_RD(sc, dev_info.shared_hw_config.config); 13325 sc->devinfo.hw_config2 = 13326 SHMEM_RD(sc, dev_info.shared_hw_config.config2); 13327 13328 sc->link_params.hw_led_mode = 13329 ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >> 13330 SHARED_HW_CFG_LED_MODE_SHIFT); 13331 13332 /* get the port feature config */ 13333 sc->port.config = 13334 SHMEM_RD(sc, dev_info.port_feature_config[port].config), 13335 13336 /* get the link params */ 13337 sc->link_params.speed_cap_mask[0] = 13338 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask); 13339 sc->link_params.speed_cap_mask[1] = 13340 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2); 13341 13342 /* get the lane config */ 13343 sc->link_params.lane_config = 13344 SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config); 13345 13346 /* get the link config */ 13347 val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config); 13348 sc->port.link_config[ELINK_INT_PHY] = val; 13349 sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK); 13350 sc->port.link_config[ELINK_EXT_PHY1] = 13351 SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2); 13352 13353 /* get the override preemphasis flag and enable it or turn it off */ 13354 val = SHMEM_RD(sc, dev_info.shared_feature_config.config); 13355 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) { 13356 sc->link_params.feature_config_flags |= 13357 ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 13358 } else { 13359 sc->link_params.feature_config_flags &= 13360 ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 13361 } 13362 13363 /* get the initial value of the link params */ 13364 sc->link_params.multi_phy_config = 13365 SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config); 13366 13367 /* get external phy info */ 13368 sc->port.ext_phy_config = 13369 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); 13370 13371 /* get the multifunction configuration */ 13372 bxe_get_mf_cfg_info(sc); 13373 13374 /* get the mac address */ 13375 if (IS_MF(sc)) { 13376 mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13377 mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower); 13378 } else { 13379 mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper); 13380 mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower); 13381 } 13382 13383 if ((mac_lo == 0) && (mac_hi == 0)) { 13384 *sc->mac_addr_str = 0; 13385 BLOGE(sc, "No Ethernet address programmed!\n"); 13386 } else { 13387 sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8); 13388 sc->link_params.mac_addr[1] = (uint8_t)(mac_hi); 13389 sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24); 13390 sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16); 13391 sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8); 13392 sc->link_params.mac_addr[5] = (uint8_t)(mac_lo); 13393 snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str), 13394 "%02x:%02x:%02x:%02x:%02x:%02x", 13395 sc->link_params.mac_addr[0], sc->link_params.mac_addr[1], 13396 sc->link_params.mac_addr[2], sc->link_params.mac_addr[3], 13397 sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]); 13398 BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str); 13399 } 13400 13401 return (0); 13402 } 13403 13404 static void 13405 bxe_get_tunable_params(struct bxe_softc *sc) 13406 { 13407 /* sanity checks */ 13408 13409 if ((bxe_interrupt_mode != INTR_MODE_INTX) && 13410 (bxe_interrupt_mode != INTR_MODE_MSI) && 13411 (bxe_interrupt_mode != INTR_MODE_MSIX)) { 13412 BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode); 13413 bxe_interrupt_mode = INTR_MODE_MSIX; 13414 } 13415 13416 if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) { 13417 BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count); 13418 bxe_queue_count = 0; 13419 } 13420 13421 if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) { 13422 if (bxe_max_rx_bufs == 0) { 13423 bxe_max_rx_bufs = RX_BD_USABLE; 13424 } else { 13425 BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs); 13426 bxe_max_rx_bufs = 2048; 13427 } 13428 } 13429 13430 if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) { 13431 BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks); 13432 bxe_hc_rx_ticks = 25; 13433 } 13434 13435 if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) { 13436 BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks); 13437 bxe_hc_tx_ticks = 50; 13438 } 13439 13440 if (bxe_max_aggregation_size == 0) { 13441 bxe_max_aggregation_size = TPA_AGG_SIZE; 13442 } 13443 13444 if (bxe_max_aggregation_size > 0xffff) { 13445 BLOGW(sc, "invalid max_aggregation_size (%d)\n", 13446 bxe_max_aggregation_size); 13447 bxe_max_aggregation_size = TPA_AGG_SIZE; 13448 } 13449 13450 if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) { 13451 BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs); 13452 bxe_mrrs = -1; 13453 } 13454 13455 if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) { 13456 BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen); 13457 bxe_autogreeen = 0; 13458 } 13459 13460 if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) { 13461 BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss); 13462 bxe_udp_rss = 0; 13463 } 13464 13465 /* pull in user settings */ 13466 13467 sc->interrupt_mode = bxe_interrupt_mode; 13468 sc->max_rx_bufs = bxe_max_rx_bufs; 13469 sc->hc_rx_ticks = bxe_hc_rx_ticks; 13470 sc->hc_tx_ticks = bxe_hc_tx_ticks; 13471 sc->max_aggregation_size = bxe_max_aggregation_size; 13472 sc->mrrs = bxe_mrrs; 13473 sc->autogreeen = bxe_autogreeen; 13474 sc->udp_rss = bxe_udp_rss; 13475 13476 if (bxe_interrupt_mode == INTR_MODE_INTX) { 13477 sc->num_queues = 1; 13478 } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */ 13479 sc->num_queues = 13480 min((bxe_queue_count ? bxe_queue_count : mp_ncpus), 13481 MAX_RSS_CHAINS); 13482 if (sc->num_queues > mp_ncpus) { 13483 sc->num_queues = mp_ncpus; 13484 } 13485 } 13486 13487 BLOGD(sc, DBG_LOAD, 13488 "User Config: " 13489 "debug=0x%lx " 13490 "interrupt_mode=%d " 13491 "queue_count=%d " 13492 "hc_rx_ticks=%d " 13493 "hc_tx_ticks=%d " 13494 "rx_budget=%d " 13495 "max_aggregation_size=%d " 13496 "mrrs=%d " 13497 "autogreeen=%d " 13498 "udp_rss=%d\n", 13499 bxe_debug, 13500 sc->interrupt_mode, 13501 sc->num_queues, 13502 sc->hc_rx_ticks, 13503 sc->hc_tx_ticks, 13504 bxe_rx_budget, 13505 sc->max_aggregation_size, 13506 sc->mrrs, 13507 sc->autogreeen, 13508 sc->udp_rss); 13509 } 13510 13511 static int 13512 bxe_media_detect(struct bxe_softc *sc) 13513 { 13514 int port_type; 13515 uint32_t phy_idx = bxe_get_cur_phy_idx(sc); 13516 13517 switch (sc->link_params.phy[phy_idx].media_type) { 13518 case ELINK_ETH_PHY_SFPP_10G_FIBER: 13519 case ELINK_ETH_PHY_XFP_FIBER: 13520 BLOGI(sc, "Found 10Gb Fiber media.\n"); 13521 sc->media = IFM_10G_SR; 13522 port_type = PORT_FIBRE; 13523 break; 13524 case ELINK_ETH_PHY_SFP_1G_FIBER: 13525 BLOGI(sc, "Found 1Gb Fiber media.\n"); 13526 sc->media = IFM_1000_SX; 13527 port_type = PORT_FIBRE; 13528 break; 13529 case ELINK_ETH_PHY_KR: 13530 case ELINK_ETH_PHY_CX4: 13531 BLOGI(sc, "Found 10GBase-CX4 media.\n"); 13532 sc->media = IFM_10G_CX4; 13533 port_type = PORT_FIBRE; 13534 break; 13535 case ELINK_ETH_PHY_DA_TWINAX: 13536 BLOGI(sc, "Found 10Gb Twinax media.\n"); 13537 sc->media = IFM_10G_TWINAX; 13538 port_type = PORT_DA; 13539 break; 13540 case ELINK_ETH_PHY_BASE_T: 13541 if (sc->link_params.speed_cap_mask[0] & 13542 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { 13543 BLOGI(sc, "Found 10GBase-T media.\n"); 13544 sc->media = IFM_10G_T; 13545 port_type = PORT_TP; 13546 } else { 13547 BLOGI(sc, "Found 1000Base-T media.\n"); 13548 sc->media = IFM_1000_T; 13549 port_type = PORT_TP; 13550 } 13551 break; 13552 case ELINK_ETH_PHY_NOT_PRESENT: 13553 BLOGI(sc, "Media not present.\n"); 13554 sc->media = 0; 13555 port_type = PORT_OTHER; 13556 break; 13557 case ELINK_ETH_PHY_UNSPECIFIED: 13558 default: 13559 BLOGI(sc, "Unknown media!\n"); 13560 sc->media = 0; 13561 port_type = PORT_OTHER; 13562 break; 13563 } 13564 return port_type; 13565 } 13566 13567 #define GET_FIELD(value, fname) \ 13568 (((value) & (fname##_MASK)) >> (fname##_SHIFT)) 13569 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID) 13570 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR) 13571 13572 static int 13573 bxe_get_igu_cam_info(struct bxe_softc *sc) 13574 { 13575 int pfid = SC_FUNC(sc); 13576 int igu_sb_id; 13577 uint32_t val; 13578 uint8_t fid, igu_sb_cnt = 0; 13579 13580 sc->igu_base_sb = 0xff; 13581 13582 if (CHIP_INT_MODE_IS_BC(sc)) { 13583 int vn = SC_VN(sc); 13584 igu_sb_cnt = sc->igu_sb_cnt; 13585 sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) * 13586 FP_SB_MAX_E1x); 13587 sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x + 13588 (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn)); 13589 return (0); 13590 } 13591 13592 /* IGU in normal mode - read CAM */ 13593 for (igu_sb_id = 0; 13594 igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; 13595 igu_sb_id++) { 13596 val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4); 13597 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) { 13598 continue; 13599 } 13600 fid = IGU_FID(val); 13601 if ((fid & IGU_FID_ENCODE_IS_PF)) { 13602 if ((fid & IGU_FID_PF_NUM_MASK) != pfid) { 13603 continue; 13604 } 13605 if (IGU_VEC(val) == 0) { 13606 /* default status block */ 13607 sc->igu_dsb_id = igu_sb_id; 13608 } else { 13609 if (sc->igu_base_sb == 0xff) { 13610 sc->igu_base_sb = igu_sb_id; 13611 } 13612 igu_sb_cnt++; 13613 } 13614 } 13615 } 13616 13617 /* 13618 * Due to new PF resource allocation by MFW T7.4 and above, it's optional 13619 * that number of CAM entries will not be equal to the value advertised in 13620 * PCI. Driver should use the minimal value of both as the actual status 13621 * block count 13622 */ 13623 sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt); 13624 13625 if (igu_sb_cnt == 0) { 13626 BLOGE(sc, "CAM configuration error\n"); 13627 return (-1); 13628 } 13629 13630 return (0); 13631 } 13632 13633 /* 13634 * Gather various information from the device config space, the device itself, 13635 * shmem, and the user input. 13636 */ 13637 static int 13638 bxe_get_device_info(struct bxe_softc *sc) 13639 { 13640 uint32_t val; 13641 int rc; 13642 13643 /* Get the data for the device */ 13644 sc->devinfo.vendor_id = pci_get_vendor(sc->dev); 13645 sc->devinfo.device_id = pci_get_device(sc->dev); 13646 sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev); 13647 sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev); 13648 13649 /* get the chip revision (chip metal comes from pci config space) */ 13650 sc->devinfo.chip_id = 13651 sc->link_params.chip_id = 13652 (((REG_RD(sc, MISC_REG_CHIP_NUM) & 0xffff) << 16) | 13653 ((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12) | 13654 (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf) << 4) | 13655 ((REG_RD(sc, MISC_REG_BOND_ID) & 0xf) << 0)); 13656 13657 /* force 57811 according to MISC register */ 13658 if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) { 13659 if (CHIP_IS_57810(sc)) { 13660 sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) | 13661 (sc->devinfo.chip_id & 0x0000ffff)); 13662 } else if (CHIP_IS_57810_MF(sc)) { 13663 sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) | 13664 (sc->devinfo.chip_id & 0x0000ffff)); 13665 } 13666 sc->devinfo.chip_id |= 0x1; 13667 } 13668 13669 BLOGD(sc, DBG_LOAD, 13670 "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n", 13671 sc->devinfo.chip_id, 13672 ((sc->devinfo.chip_id >> 16) & 0xffff), 13673 ((sc->devinfo.chip_id >> 12) & 0xf), 13674 ((sc->devinfo.chip_id >> 4) & 0xff), 13675 ((sc->devinfo.chip_id >> 0) & 0xf)); 13676 13677 val = (REG_RD(sc, 0x2874) & 0x55); 13678 if ((sc->devinfo.chip_id & 0x1) || 13679 (CHIP_IS_E1(sc) && val) || 13680 (CHIP_IS_E1H(sc) && (val == 0x55))) { 13681 sc->flags |= BXE_ONE_PORT_FLAG; 13682 BLOGD(sc, DBG_LOAD, "single port device\n"); 13683 } 13684 13685 /* set the doorbell size */ 13686 sc->doorbell_size = (1 << BXE_DB_SHIFT); 13687 13688 /* determine whether the device is in 2 port or 4 port mode */ 13689 sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/ 13690 if (CHIP_IS_E2E3(sc)) { 13691 /* 13692 * Read port4mode_en_ovwr[0]: 13693 * If 1, four port mode is in port4mode_en_ovwr[1]. 13694 * If 0, four port mode is in port4mode_en[0]. 13695 */ 13696 val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR); 13697 if (val & 1) { 13698 val = ((val >> 1) & 1); 13699 } else { 13700 val = REG_RD(sc, MISC_REG_PORT4MODE_EN); 13701 } 13702 13703 sc->devinfo.chip_port_mode = 13704 (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE; 13705 13706 BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2"); 13707 } 13708 13709 /* get the function and path info for the device */ 13710 bxe_get_function_num(sc); 13711 13712 /* get the shared memory base address */ 13713 sc->devinfo.shmem_base = 13714 sc->link_params.shmem_base = 13715 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 13716 sc->devinfo.shmem2_base = 13717 REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 : 13718 MISC_REG_GENERIC_CR_0)); 13719 13720 BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n", 13721 sc->devinfo.shmem_base, sc->devinfo.shmem2_base); 13722 13723 if (!sc->devinfo.shmem_base) { 13724 /* this should ONLY prevent upcoming shmem reads */ 13725 BLOGI(sc, "MCP not active\n"); 13726 sc->flags |= BXE_NO_MCP_FLAG; 13727 return (0); 13728 } 13729 13730 /* make sure the shared memory contents are valid */ 13731 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); 13732 if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) != 13733 (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) { 13734 BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val); 13735 return (0); 13736 } 13737 BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val); 13738 13739 /* get the bootcode version */ 13740 sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev); 13741 snprintf(sc->devinfo.bc_ver_str, 13742 sizeof(sc->devinfo.bc_ver_str), 13743 "%d.%d.%d", 13744 ((sc->devinfo.bc_ver >> 24) & 0xff), 13745 ((sc->devinfo.bc_ver >> 16) & 0xff), 13746 ((sc->devinfo.bc_ver >> 8) & 0xff)); 13747 BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str); 13748 13749 /* get the bootcode shmem address */ 13750 sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc); 13751 BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base); 13752 13753 /* clean indirect addresses as they're not used */ 13754 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 13755 if (IS_PF(sc)) { 13756 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0); 13757 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0); 13758 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0); 13759 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0); 13760 if (CHIP_IS_E1x(sc)) { 13761 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0); 13762 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0); 13763 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0); 13764 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0); 13765 } 13766 13767 /* 13768 * Enable internal target-read (in case we are probed after PF 13769 * FLR). Must be done prior to any BAR read access. Only for 13770 * 57712 and up 13771 */ 13772 if (!CHIP_IS_E1x(sc)) { 13773 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 13774 } 13775 } 13776 13777 /* get the nvram size */ 13778 val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4); 13779 sc->devinfo.flash_size = 13780 (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE)); 13781 BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size); 13782 13783 /* get PCI capabilites */ 13784 bxe_probe_pci_caps(sc); 13785 13786 bxe_set_power_state(sc, PCI_PM_D0); 13787 13788 /* get various configuration parameters from shmem */ 13789 bxe_get_shmem_info(sc); 13790 13791 if (sc->devinfo.pcie_msix_cap_reg != 0) { 13792 val = pci_read_config(sc->dev, 13793 (sc->devinfo.pcie_msix_cap_reg + 13794 PCIR_MSIX_CTRL), 13795 2); 13796 sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE); 13797 } else { 13798 sc->igu_sb_cnt = 1; 13799 } 13800 13801 sc->igu_base_addr = BAR_IGU_INTMEM; 13802 13803 /* initialize IGU parameters */ 13804 if (CHIP_IS_E1x(sc)) { 13805 sc->devinfo.int_block = INT_BLOCK_HC; 13806 sc->igu_dsb_id = DEF_SB_IGU_ID; 13807 sc->igu_base_sb = 0; 13808 } else { 13809 sc->devinfo.int_block = INT_BLOCK_IGU; 13810 13811 /* do not allow device reset during IGU info preocessing */ 13812 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 13813 13814 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); 13815 13816 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 13817 int tout = 5000; 13818 13819 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n"); 13820 13821 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN); 13822 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val); 13823 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f); 13824 13825 while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) { 13826 tout--; 13827 DELAY(1000); 13828 } 13829 13830 if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) { 13831 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n"); 13832 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 13833 return (-1); 13834 } 13835 } 13836 13837 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 13838 BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n"); 13839 sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP; 13840 } else { 13841 BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n"); 13842 } 13843 13844 rc = bxe_get_igu_cam_info(sc); 13845 13846 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 13847 13848 if (rc) { 13849 return (rc); 13850 } 13851 } 13852 13853 /* 13854 * Get base FW non-default (fast path) status block ID. This value is 13855 * used to initialize the fw_sb_id saved on the fp/queue structure to 13856 * determine the id used by the FW. 13857 */ 13858 if (CHIP_IS_E1x(sc)) { 13859 sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc)); 13860 } else { 13861 /* 13862 * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of 13863 * the same queue are indicated on the same IGU SB). So we prefer 13864 * FW and IGU SBs to be the same value. 13865 */ 13866 sc->base_fw_ndsb = sc->igu_base_sb; 13867 } 13868 13869 BLOGD(sc, DBG_LOAD, 13870 "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n", 13871 sc->igu_dsb_id, sc->igu_base_sb, 13872 sc->igu_sb_cnt, sc->base_fw_ndsb); 13873 13874 elink_phy_probe(&sc->link_params); 13875 13876 return (0); 13877 } 13878 13879 static void 13880 bxe_link_settings_supported(struct bxe_softc *sc, 13881 uint32_t switch_cfg) 13882 { 13883 uint32_t cfg_size = 0; 13884 uint32_t idx; 13885 uint8_t port = SC_PORT(sc); 13886 13887 /* aggregation of supported attributes of all external phys */ 13888 sc->port.supported[0] = 0; 13889 sc->port.supported[1] = 0; 13890 13891 switch (sc->link_params.num_phys) { 13892 case 1: 13893 sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported; 13894 cfg_size = 1; 13895 break; 13896 case 2: 13897 sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported; 13898 cfg_size = 1; 13899 break; 13900 case 3: 13901 if (sc->link_params.multi_phy_config & 13902 PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 13903 sc->port.supported[1] = 13904 sc->link_params.phy[ELINK_EXT_PHY1].supported; 13905 sc->port.supported[0] = 13906 sc->link_params.phy[ELINK_EXT_PHY2].supported; 13907 } else { 13908 sc->port.supported[0] = 13909 sc->link_params.phy[ELINK_EXT_PHY1].supported; 13910 sc->port.supported[1] = 13911 sc->link_params.phy[ELINK_EXT_PHY2].supported; 13912 } 13913 cfg_size = 2; 13914 break; 13915 } 13916 13917 if (!(sc->port.supported[0] || sc->port.supported[1])) { 13918 BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n", 13919 SHMEM_RD(sc, 13920 dev_info.port_hw_config[port].external_phy_config), 13921 SHMEM_RD(sc, 13922 dev_info.port_hw_config[port].external_phy_config2)); 13923 return; 13924 } 13925 13926 if (CHIP_IS_E3(sc)) 13927 sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR); 13928 else { 13929 switch (switch_cfg) { 13930 case ELINK_SWITCH_CFG_1G: 13931 sc->port.phy_addr = 13932 REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10); 13933 break; 13934 case ELINK_SWITCH_CFG_10G: 13935 sc->port.phy_addr = 13936 REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18); 13937 break; 13938 default: 13939 BLOGE(sc, "Invalid switch config in link_config=0x%08x\n", 13940 sc->port.link_config[0]); 13941 return; 13942 } 13943 } 13944 13945 BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr); 13946 13947 /* mask what we support according to speed_cap_mask per configuration */ 13948 for (idx = 0; idx < cfg_size; idx++) { 13949 if (!(sc->link_params.speed_cap_mask[idx] & 13950 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) { 13951 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half; 13952 } 13953 13954 if (!(sc->link_params.speed_cap_mask[idx] & 13955 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) { 13956 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full; 13957 } 13958 13959 if (!(sc->link_params.speed_cap_mask[idx] & 13960 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) { 13961 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half; 13962 } 13963 13964 if (!(sc->link_params.speed_cap_mask[idx] & 13965 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) { 13966 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full; 13967 } 13968 13969 if (!(sc->link_params.speed_cap_mask[idx] & 13970 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) { 13971 sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full; 13972 } 13973 13974 if (!(sc->link_params.speed_cap_mask[idx] & 13975 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) { 13976 sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full; 13977 } 13978 13979 if (!(sc->link_params.speed_cap_mask[idx] & 13980 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) { 13981 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full; 13982 } 13983 13984 if (!(sc->link_params.speed_cap_mask[idx] & 13985 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) { 13986 sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full; 13987 } 13988 } 13989 13990 BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n", 13991 sc->port.supported[0], sc->port.supported[1]); 13992 } 13993 13994 static void 13995 bxe_link_settings_requested(struct bxe_softc *sc) 13996 { 13997 uint32_t link_config; 13998 uint32_t idx; 13999 uint32_t cfg_size = 0; 14000 14001 sc->port.advertising[0] = 0; 14002 sc->port.advertising[1] = 0; 14003 14004 switch (sc->link_params.num_phys) { 14005 case 1: 14006 case 2: 14007 cfg_size = 1; 14008 break; 14009 case 3: 14010 cfg_size = 2; 14011 break; 14012 } 14013 14014 for (idx = 0; idx < cfg_size; idx++) { 14015 sc->link_params.req_duplex[idx] = DUPLEX_FULL; 14016 link_config = sc->port.link_config[idx]; 14017 14018 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) { 14019 case PORT_FEATURE_LINK_SPEED_AUTO: 14020 if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) { 14021 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; 14022 sc->port.advertising[idx] |= sc->port.supported[idx]; 14023 if (sc->link_params.phy[ELINK_EXT_PHY1].type == 14024 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833) 14025 sc->port.advertising[idx] |= 14026 (ELINK_SUPPORTED_100baseT_Half | 14027 ELINK_SUPPORTED_100baseT_Full); 14028 } else { 14029 /* force 10G, no AN */ 14030 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; 14031 sc->port.advertising[idx] |= 14032 (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE); 14033 continue; 14034 } 14035 break; 14036 14037 case PORT_FEATURE_LINK_SPEED_10M_FULL: 14038 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) { 14039 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; 14040 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full | 14041 ADVERTISED_TP); 14042 } else { 14043 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14044 "speed_cap_mask=0x%08x\n", 14045 link_config, sc->link_params.speed_cap_mask[idx]); 14046 return; 14047 } 14048 break; 14049 14050 case PORT_FEATURE_LINK_SPEED_10M_HALF: 14051 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) { 14052 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; 14053 sc->link_params.req_duplex[idx] = DUPLEX_HALF; 14054 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half | 14055 ADVERTISED_TP); 14056 } else { 14057 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14058 "speed_cap_mask=0x%08x\n", 14059 link_config, sc->link_params.speed_cap_mask[idx]); 14060 return; 14061 } 14062 break; 14063 14064 case PORT_FEATURE_LINK_SPEED_100M_FULL: 14065 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) { 14066 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; 14067 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full | 14068 ADVERTISED_TP); 14069 } else { 14070 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14071 "speed_cap_mask=0x%08x\n", 14072 link_config, sc->link_params.speed_cap_mask[idx]); 14073 return; 14074 } 14075 break; 14076 14077 case PORT_FEATURE_LINK_SPEED_100M_HALF: 14078 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) { 14079 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; 14080 sc->link_params.req_duplex[idx] = DUPLEX_HALF; 14081 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half | 14082 ADVERTISED_TP); 14083 } else { 14084 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14085 "speed_cap_mask=0x%08x\n", 14086 link_config, sc->link_params.speed_cap_mask[idx]); 14087 return; 14088 } 14089 break; 14090 14091 case PORT_FEATURE_LINK_SPEED_1G: 14092 if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) { 14093 sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000; 14094 sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full | 14095 ADVERTISED_TP); 14096 } else { 14097 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14098 "speed_cap_mask=0x%08x\n", 14099 link_config, sc->link_params.speed_cap_mask[idx]); 14100 return; 14101 } 14102 break; 14103 14104 case PORT_FEATURE_LINK_SPEED_2_5G: 14105 if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) { 14106 sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500; 14107 sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full | 14108 ADVERTISED_TP); 14109 } else { 14110 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14111 "speed_cap_mask=0x%08x\n", 14112 link_config, sc->link_params.speed_cap_mask[idx]); 14113 return; 14114 } 14115 break; 14116 14117 case PORT_FEATURE_LINK_SPEED_10G_CX4: 14118 if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) { 14119 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; 14120 sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full | 14121 ADVERTISED_FIBRE); 14122 } else { 14123 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14124 "speed_cap_mask=0x%08x\n", 14125 link_config, sc->link_params.speed_cap_mask[idx]); 14126 return; 14127 } 14128 break; 14129 14130 case PORT_FEATURE_LINK_SPEED_20G: 14131 sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000; 14132 break; 14133 14134 default: 14135 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14136 "speed_cap_mask=0x%08x\n", 14137 link_config, sc->link_params.speed_cap_mask[idx]); 14138 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; 14139 sc->port.advertising[idx] = sc->port.supported[idx]; 14140 break; 14141 } 14142 14143 sc->link_params.req_flow_ctrl[idx] = 14144 (link_config & PORT_FEATURE_FLOW_CONTROL_MASK); 14145 14146 if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) { 14147 if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) { 14148 sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE; 14149 } else { 14150 bxe_set_requested_fc(sc); 14151 } 14152 } 14153 14154 BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d " 14155 "req_flow_ctrl=0x%x advertising=0x%x\n", 14156 sc->link_params.req_line_speed[idx], 14157 sc->link_params.req_duplex[idx], 14158 sc->link_params.req_flow_ctrl[idx], 14159 sc->port.advertising[idx]); 14160 } 14161 } 14162 14163 static void 14164 bxe_get_phy_info(struct bxe_softc *sc) 14165 { 14166 uint8_t port = SC_PORT(sc); 14167 uint32_t config = sc->port.config; 14168 uint32_t eee_mode; 14169 14170 /* shmem data already read in bxe_get_shmem_info() */ 14171 14172 BLOGD(sc, DBG_LOAD, "lane_config=0x%08x speed_cap_mask0=0x%08x " 14173 "link_config0=0x%08x\n", 14174 sc->link_params.lane_config, 14175 sc->link_params.speed_cap_mask[0], 14176 sc->port.link_config[0]); 14177 14178 bxe_link_settings_supported(sc, sc->link_params.switch_cfg); 14179 bxe_link_settings_requested(sc); 14180 14181 if (sc->autogreeen == AUTO_GREEN_FORCE_ON) { 14182 sc->link_params.feature_config_flags |= 14183 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14184 } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) { 14185 sc->link_params.feature_config_flags &= 14186 ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14187 } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) { 14188 sc->link_params.feature_config_flags |= 14189 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14190 } 14191 14192 /* configure link feature according to nvram value */ 14193 eee_mode = 14194 (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) & 14195 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >> 14196 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT); 14197 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) { 14198 sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI | 14199 ELINK_EEE_MODE_ENABLE_LPI | 14200 ELINK_EEE_MODE_OUTPUT_TIME); 14201 } else { 14202 sc->link_params.eee_mode = 0; 14203 } 14204 14205 /* get the media type */ 14206 bxe_media_detect(sc); 14207 } 14208 14209 static void 14210 bxe_get_params(struct bxe_softc *sc) 14211 { 14212 /* get user tunable params */ 14213 bxe_get_tunable_params(sc); 14214 14215 /* select the RX and TX ring sizes */ 14216 sc->tx_ring_size = TX_BD_USABLE; 14217 sc->rx_ring_size = RX_BD_USABLE; 14218 14219 /* XXX disable WoL */ 14220 sc->wol = 0; 14221 } 14222 14223 static void 14224 bxe_set_modes_bitmap(struct bxe_softc *sc) 14225 { 14226 uint32_t flags = 0; 14227 14228 if (CHIP_REV_IS_FPGA(sc)) { 14229 SET_FLAGS(flags, MODE_FPGA); 14230 } else if (CHIP_REV_IS_EMUL(sc)) { 14231 SET_FLAGS(flags, MODE_EMUL); 14232 } else { 14233 SET_FLAGS(flags, MODE_ASIC); 14234 } 14235 14236 if (CHIP_IS_MODE_4_PORT(sc)) { 14237 SET_FLAGS(flags, MODE_PORT4); 14238 } else { 14239 SET_FLAGS(flags, MODE_PORT2); 14240 } 14241 14242 if (CHIP_IS_E2(sc)) { 14243 SET_FLAGS(flags, MODE_E2); 14244 } else if (CHIP_IS_E3(sc)) { 14245 SET_FLAGS(flags, MODE_E3); 14246 if (CHIP_REV(sc) == CHIP_REV_Ax) { 14247 SET_FLAGS(flags, MODE_E3_A0); 14248 } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ { 14249 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3); 14250 } 14251 } 14252 14253 if (IS_MF(sc)) { 14254 SET_FLAGS(flags, MODE_MF); 14255 switch (sc->devinfo.mf_info.mf_mode) { 14256 case MULTI_FUNCTION_SD: 14257 SET_FLAGS(flags, MODE_MF_SD); 14258 break; 14259 case MULTI_FUNCTION_SI: 14260 SET_FLAGS(flags, MODE_MF_SI); 14261 break; 14262 case MULTI_FUNCTION_AFEX: 14263 SET_FLAGS(flags, MODE_MF_AFEX); 14264 break; 14265 } 14266 } else { 14267 SET_FLAGS(flags, MODE_SF); 14268 } 14269 14270 #if defined(__LITTLE_ENDIAN) 14271 SET_FLAGS(flags, MODE_LITTLE_ENDIAN); 14272 #else /* __BIG_ENDIAN */ 14273 SET_FLAGS(flags, MODE_BIG_ENDIAN); 14274 #endif 14275 14276 INIT_MODE_FLAGS(sc) = flags; 14277 } 14278 14279 static int 14280 bxe_alloc_hsi_mem(struct bxe_softc *sc) 14281 { 14282 struct bxe_fastpath *fp; 14283 bus_addr_t busaddr; 14284 int max_agg_queues; 14285 int max_segments; 14286 bus_size_t max_size; 14287 bus_size_t max_seg_size; 14288 char buf[32]; 14289 int rc; 14290 int i, j; 14291 14292 /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */ 14293 14294 /* allocate the parent bus DMA tag */ 14295 rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */ 14296 1, /* alignment */ 14297 0, /* boundary limit */ 14298 BUS_SPACE_MAXADDR, /* restricted low */ 14299 BUS_SPACE_MAXADDR, /* restricted hi */ 14300 NULL, /* addr filter() */ 14301 NULL, /* addr filter() arg */ 14302 BUS_SPACE_MAXSIZE_32BIT, /* max map size */ 14303 BUS_SPACE_UNRESTRICTED, /* num discontinuous */ 14304 BUS_SPACE_MAXSIZE_32BIT, /* max seg size */ 14305 0, /* flags */ 14306 NULL, /* lock() */ 14307 NULL, /* lock() arg */ 14308 &sc->parent_dma_tag); /* returned dma tag */ 14309 if (rc != 0) { 14310 BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc); 14311 return (1); 14312 } 14313 14314 /************************/ 14315 /* DEFAULT STATUS BLOCK */ 14316 /************************/ 14317 14318 if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block), 14319 &sc->def_sb_dma, "default status block") != 0) { 14320 /* XXX */ 14321 bus_dma_tag_destroy(sc->parent_dma_tag); 14322 return (1); 14323 } 14324 14325 sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr; 14326 14327 /***************/ 14328 /* EVENT QUEUE */ 14329 /***************/ 14330 14331 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, 14332 &sc->eq_dma, "event queue") != 0) { 14333 /* XXX */ 14334 bxe_dma_free(sc, &sc->def_sb_dma); 14335 sc->def_sb = NULL; 14336 bus_dma_tag_destroy(sc->parent_dma_tag); 14337 return (1); 14338 } 14339 14340 sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr; 14341 14342 /*************/ 14343 /* SLOW PATH */ 14344 /*************/ 14345 14346 if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath), 14347 &sc->sp_dma, "slow path") != 0) { 14348 /* XXX */ 14349 bxe_dma_free(sc, &sc->eq_dma); 14350 sc->eq = NULL; 14351 bxe_dma_free(sc, &sc->def_sb_dma); 14352 sc->def_sb = NULL; 14353 bus_dma_tag_destroy(sc->parent_dma_tag); 14354 return (1); 14355 } 14356 14357 sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr; 14358 14359 /*******************/ 14360 /* SLOW PATH QUEUE */ 14361 /*******************/ 14362 14363 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, 14364 &sc->spq_dma, "slow path queue") != 0) { 14365 /* XXX */ 14366 bxe_dma_free(sc, &sc->sp_dma); 14367 sc->sp = NULL; 14368 bxe_dma_free(sc, &sc->eq_dma); 14369 sc->eq = NULL; 14370 bxe_dma_free(sc, &sc->def_sb_dma); 14371 sc->def_sb = NULL; 14372 bus_dma_tag_destroy(sc->parent_dma_tag); 14373 return (1); 14374 } 14375 14376 sc->spq = (struct eth_spe *)sc->spq_dma.vaddr; 14377 14378 /***************************/ 14379 /* FW DECOMPRESSION BUFFER */ 14380 /***************************/ 14381 14382 if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma, 14383 "fw decompression buffer") != 0) { 14384 /* XXX */ 14385 bxe_dma_free(sc, &sc->spq_dma); 14386 sc->spq = NULL; 14387 bxe_dma_free(sc, &sc->sp_dma); 14388 sc->sp = NULL; 14389 bxe_dma_free(sc, &sc->eq_dma); 14390 sc->eq = NULL; 14391 bxe_dma_free(sc, &sc->def_sb_dma); 14392 sc->def_sb = NULL; 14393 bus_dma_tag_destroy(sc->parent_dma_tag); 14394 return (1); 14395 } 14396 14397 sc->gz_buf = (void *)sc->gz_buf_dma.vaddr; 14398 14399 if ((sc->gz_strm = 14400 malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) { 14401 /* XXX */ 14402 bxe_dma_free(sc, &sc->gz_buf_dma); 14403 sc->gz_buf = NULL; 14404 bxe_dma_free(sc, &sc->spq_dma); 14405 sc->spq = NULL; 14406 bxe_dma_free(sc, &sc->sp_dma); 14407 sc->sp = NULL; 14408 bxe_dma_free(sc, &sc->eq_dma); 14409 sc->eq = NULL; 14410 bxe_dma_free(sc, &sc->def_sb_dma); 14411 sc->def_sb = NULL; 14412 bus_dma_tag_destroy(sc->parent_dma_tag); 14413 return (1); 14414 } 14415 14416 /*************/ 14417 /* FASTPATHS */ 14418 /*************/ 14419 14420 /* allocate DMA memory for each fastpath structure */ 14421 for (i = 0; i < sc->num_queues; i++) { 14422 fp = &sc->fp[i]; 14423 fp->sc = sc; 14424 fp->index = i; 14425 14426 /*******************/ 14427 /* FP STATUS BLOCK */ 14428 /*******************/ 14429 14430 snprintf(buf, sizeof(buf), "fp %d status block", i); 14431 if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block), 14432 &fp->sb_dma, buf) != 0) { 14433 /* XXX unwind and free previous fastpath allocations */ 14434 BLOGE(sc, "Failed to alloc %s\n", buf); 14435 return (1); 14436 } else { 14437 if (CHIP_IS_E2E3(sc)) { 14438 fp->status_block.e2_sb = 14439 (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr; 14440 } else { 14441 fp->status_block.e1x_sb = 14442 (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr; 14443 } 14444 } 14445 14446 /******************/ 14447 /* FP TX BD CHAIN */ 14448 /******************/ 14449 14450 snprintf(buf, sizeof(buf), "fp %d tx bd chain", i); 14451 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES), 14452 &fp->tx_dma, buf) != 0) { 14453 /* XXX unwind and free previous fastpath allocations */ 14454 BLOGE(sc, "Failed to alloc %s\n", buf); 14455 return (1); 14456 } else { 14457 fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr; 14458 } 14459 14460 /* link together the tx bd chain pages */ 14461 for (j = 1; j <= TX_BD_NUM_PAGES; j++) { 14462 /* index into the tx bd chain array to last entry per page */ 14463 struct eth_tx_next_bd *tx_next_bd = 14464 &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd; 14465 /* point to the next page and wrap from last page */ 14466 busaddr = (fp->tx_dma.paddr + 14467 (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES))); 14468 tx_next_bd->addr_hi = htole32(U64_HI(busaddr)); 14469 tx_next_bd->addr_lo = htole32(U64_LO(busaddr)); 14470 } 14471 14472 /******************/ 14473 /* FP RX BD CHAIN */ 14474 /******************/ 14475 14476 snprintf(buf, sizeof(buf), "fp %d rx bd chain", i); 14477 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES), 14478 &fp->rx_dma, buf) != 0) { 14479 /* XXX unwind and free previous fastpath allocations */ 14480 BLOGE(sc, "Failed to alloc %s\n", buf); 14481 return (1); 14482 } else { 14483 fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr; 14484 } 14485 14486 /* link together the rx bd chain pages */ 14487 for (j = 1; j <= RX_BD_NUM_PAGES; j++) { 14488 /* index into the rx bd chain array to last entry per page */ 14489 struct eth_rx_bd *rx_bd = 14490 &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2]; 14491 /* point to the next page and wrap from last page */ 14492 busaddr = (fp->rx_dma.paddr + 14493 (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES))); 14494 rx_bd->addr_hi = htole32(U64_HI(busaddr)); 14495 rx_bd->addr_lo = htole32(U64_LO(busaddr)); 14496 } 14497 14498 /*******************/ 14499 /* FP RX RCQ CHAIN */ 14500 /*******************/ 14501 14502 snprintf(buf, sizeof(buf), "fp %d rcq chain", i); 14503 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES), 14504 &fp->rcq_dma, buf) != 0) { 14505 /* XXX unwind and free previous fastpath allocations */ 14506 BLOGE(sc, "Failed to alloc %s\n", buf); 14507 return (1); 14508 } else { 14509 fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr; 14510 } 14511 14512 /* link together the rcq chain pages */ 14513 for (j = 1; j <= RCQ_NUM_PAGES; j++) { 14514 /* index into the rcq chain array to last entry per page */ 14515 struct eth_rx_cqe_next_page *rx_cqe_next = 14516 (struct eth_rx_cqe_next_page *) 14517 &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1]; 14518 /* point to the next page and wrap from last page */ 14519 busaddr = (fp->rcq_dma.paddr + 14520 (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES))); 14521 rx_cqe_next->addr_hi = htole32(U64_HI(busaddr)); 14522 rx_cqe_next->addr_lo = htole32(U64_LO(busaddr)); 14523 } 14524 14525 /*******************/ 14526 /* FP RX SGE CHAIN */ 14527 /*******************/ 14528 14529 snprintf(buf, sizeof(buf), "fp %d sge chain", i); 14530 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES), 14531 &fp->rx_sge_dma, buf) != 0) { 14532 /* XXX unwind and free previous fastpath allocations */ 14533 BLOGE(sc, "Failed to alloc %s\n", buf); 14534 return (1); 14535 } else { 14536 fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr; 14537 } 14538 14539 /* link together the sge chain pages */ 14540 for (j = 1; j <= RX_SGE_NUM_PAGES; j++) { 14541 /* index into the rcq chain array to last entry per page */ 14542 struct eth_rx_sge *rx_sge = 14543 &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2]; 14544 /* point to the next page and wrap from last page */ 14545 busaddr = (fp->rx_sge_dma.paddr + 14546 (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES))); 14547 rx_sge->addr_hi = htole32(U64_HI(busaddr)); 14548 rx_sge->addr_lo = htole32(U64_LO(busaddr)); 14549 } 14550 14551 /***********************/ 14552 /* FP TX MBUF DMA MAPS */ 14553 /***********************/ 14554 14555 /* set required sizes before mapping to conserve resources */ 14556 if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) { 14557 max_size = BXE_TSO_MAX_SIZE; 14558 max_segments = BXE_TSO_MAX_SEGMENTS; 14559 max_seg_size = BXE_TSO_MAX_SEG_SIZE; 14560 } else { 14561 max_size = (MCLBYTES * BXE_MAX_SEGMENTS); 14562 max_segments = BXE_MAX_SEGMENTS; 14563 max_seg_size = MCLBYTES; 14564 } 14565 14566 /* create a dma tag for the tx mbufs */ 14567 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 14568 1, /* alignment */ 14569 0, /* boundary limit */ 14570 BUS_SPACE_MAXADDR, /* restricted low */ 14571 BUS_SPACE_MAXADDR, /* restricted hi */ 14572 NULL, /* addr filter() */ 14573 NULL, /* addr filter() arg */ 14574 max_size, /* max map size */ 14575 max_segments, /* num discontinuous */ 14576 max_seg_size, /* max seg size */ 14577 0, /* flags */ 14578 NULL, /* lock() */ 14579 NULL, /* lock() arg */ 14580 &fp->tx_mbuf_tag); /* returned dma tag */ 14581 if (rc != 0) { 14582 /* XXX unwind and free previous fastpath allocations */ 14583 BLOGE(sc, "Failed to create dma tag for " 14584 "'fp %d tx mbufs' (%d)\n", i, rc); 14585 return (1); 14586 } 14587 14588 /* create dma maps for each of the tx mbuf clusters */ 14589 for (j = 0; j < TX_BD_TOTAL; j++) { 14590 if (bus_dmamap_create(fp->tx_mbuf_tag, 14591 BUS_DMA_NOWAIT, 14592 &fp->tx_mbuf_chain[j].m_map)) { 14593 /* XXX unwind and free previous fastpath allocations */ 14594 BLOGE(sc, "Failed to create dma map for " 14595 "'fp %d tx mbuf %d' (%d)\n", i, j, rc); 14596 return (1); 14597 } 14598 } 14599 14600 /***********************/ 14601 /* FP RX MBUF DMA MAPS */ 14602 /***********************/ 14603 14604 /* create a dma tag for the rx mbufs */ 14605 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 14606 1, /* alignment */ 14607 0, /* boundary limit */ 14608 BUS_SPACE_MAXADDR, /* restricted low */ 14609 BUS_SPACE_MAXADDR, /* restricted hi */ 14610 NULL, /* addr filter() */ 14611 NULL, /* addr filter() arg */ 14612 MJUM9BYTES, /* max map size */ 14613 1, /* num discontinuous */ 14614 MJUM9BYTES, /* max seg size */ 14615 0, /* flags */ 14616 NULL, /* lock() */ 14617 NULL, /* lock() arg */ 14618 &fp->rx_mbuf_tag); /* returned dma tag */ 14619 if (rc != 0) { 14620 /* XXX unwind and free previous fastpath allocations */ 14621 BLOGE(sc, "Failed to create dma tag for " 14622 "'fp %d rx mbufs' (%d)\n", i, rc); 14623 return (1); 14624 } 14625 14626 /* create dma maps for each of the rx mbuf clusters */ 14627 for (j = 0; j < RX_BD_TOTAL; j++) { 14628 if (bus_dmamap_create(fp->rx_mbuf_tag, 14629 BUS_DMA_NOWAIT, 14630 &fp->rx_mbuf_chain[j].m_map)) { 14631 /* XXX unwind and free previous fastpath allocations */ 14632 BLOGE(sc, "Failed to create dma map for " 14633 "'fp %d rx mbuf %d' (%d)\n", i, j, rc); 14634 return (1); 14635 } 14636 } 14637 14638 /* create dma map for the spare rx mbuf cluster */ 14639 if (bus_dmamap_create(fp->rx_mbuf_tag, 14640 BUS_DMA_NOWAIT, 14641 &fp->rx_mbuf_spare_map)) { 14642 /* XXX unwind and free previous fastpath allocations */ 14643 BLOGE(sc, "Failed to create dma map for " 14644 "'fp %d spare rx mbuf' (%d)\n", i, rc); 14645 return (1); 14646 } 14647 14648 /***************************/ 14649 /* FP RX SGE MBUF DMA MAPS */ 14650 /***************************/ 14651 14652 /* create a dma tag for the rx sge mbufs */ 14653 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 14654 1, /* alignment */ 14655 0, /* boundary limit */ 14656 BUS_SPACE_MAXADDR, /* restricted low */ 14657 BUS_SPACE_MAXADDR, /* restricted hi */ 14658 NULL, /* addr filter() */ 14659 NULL, /* addr filter() arg */ 14660 BCM_PAGE_SIZE, /* max map size */ 14661 1, /* num discontinuous */ 14662 BCM_PAGE_SIZE, /* max seg size */ 14663 0, /* flags */ 14664 NULL, /* lock() */ 14665 NULL, /* lock() arg */ 14666 &fp->rx_sge_mbuf_tag); /* returned dma tag */ 14667 if (rc != 0) { 14668 /* XXX unwind and free previous fastpath allocations */ 14669 BLOGE(sc, "Failed to create dma tag for " 14670 "'fp %d rx sge mbufs' (%d)\n", i, rc); 14671 return (1); 14672 } 14673 14674 /* create dma maps for the rx sge mbuf clusters */ 14675 for (j = 0; j < RX_SGE_TOTAL; j++) { 14676 if (bus_dmamap_create(fp->rx_sge_mbuf_tag, 14677 BUS_DMA_NOWAIT, 14678 &fp->rx_sge_mbuf_chain[j].m_map)) { 14679 /* XXX unwind and free previous fastpath allocations */ 14680 BLOGE(sc, "Failed to create dma map for " 14681 "'fp %d rx sge mbuf %d' (%d)\n", i, j, rc); 14682 return (1); 14683 } 14684 } 14685 14686 /* create dma map for the spare rx sge mbuf cluster */ 14687 if (bus_dmamap_create(fp->rx_sge_mbuf_tag, 14688 BUS_DMA_NOWAIT, 14689 &fp->rx_sge_mbuf_spare_map)) { 14690 /* XXX unwind and free previous fastpath allocations */ 14691 BLOGE(sc, "Failed to create dma map for " 14692 "'fp %d spare rx sge mbuf' (%d)\n", i, rc); 14693 return (1); 14694 } 14695 14696 /***************************/ 14697 /* FP RX TPA MBUF DMA MAPS */ 14698 /***************************/ 14699 14700 /* create dma maps for the rx tpa mbuf clusters */ 14701 max_agg_queues = MAX_AGG_QS(sc); 14702 14703 for (j = 0; j < max_agg_queues; j++) { 14704 if (bus_dmamap_create(fp->rx_mbuf_tag, 14705 BUS_DMA_NOWAIT, 14706 &fp->rx_tpa_info[j].bd.m_map)) { 14707 /* XXX unwind and free previous fastpath allocations */ 14708 BLOGE(sc, "Failed to create dma map for " 14709 "'fp %d rx tpa mbuf %d' (%d)\n", i, j, rc); 14710 return (1); 14711 } 14712 } 14713 14714 /* create dma map for the spare rx tpa mbuf cluster */ 14715 if (bus_dmamap_create(fp->rx_mbuf_tag, 14716 BUS_DMA_NOWAIT, 14717 &fp->rx_tpa_info_mbuf_spare_map)) { 14718 /* XXX unwind and free previous fastpath allocations */ 14719 BLOGE(sc, "Failed to create dma map for " 14720 "'fp %d spare rx tpa mbuf' (%d)\n", i, rc); 14721 return (1); 14722 } 14723 14724 bxe_init_sge_ring_bit_mask(fp); 14725 } 14726 14727 return (0); 14728 } 14729 14730 static void 14731 bxe_free_hsi_mem(struct bxe_softc *sc) 14732 { 14733 struct bxe_fastpath *fp; 14734 int max_agg_queues; 14735 int i, j; 14736 14737 if (sc->parent_dma_tag == NULL) { 14738 return; /* assume nothing was allocated */ 14739 } 14740 14741 for (i = 0; i < sc->num_queues; i++) { 14742 fp = &sc->fp[i]; 14743 14744 /*******************/ 14745 /* FP STATUS BLOCK */ 14746 /*******************/ 14747 14748 bxe_dma_free(sc, &fp->sb_dma); 14749 memset(&fp->status_block, 0, sizeof(fp->status_block)); 14750 14751 /******************/ 14752 /* FP TX BD CHAIN */ 14753 /******************/ 14754 14755 bxe_dma_free(sc, &fp->tx_dma); 14756 fp->tx_chain = NULL; 14757 14758 /******************/ 14759 /* FP RX BD CHAIN */ 14760 /******************/ 14761 14762 bxe_dma_free(sc, &fp->rx_dma); 14763 fp->rx_chain = NULL; 14764 14765 /*******************/ 14766 /* FP RX RCQ CHAIN */ 14767 /*******************/ 14768 14769 bxe_dma_free(sc, &fp->rcq_dma); 14770 fp->rcq_chain = NULL; 14771 14772 /*******************/ 14773 /* FP RX SGE CHAIN */ 14774 /*******************/ 14775 14776 bxe_dma_free(sc, &fp->rx_sge_dma); 14777 fp->rx_sge_chain = NULL; 14778 14779 /***********************/ 14780 /* FP TX MBUF DMA MAPS */ 14781 /***********************/ 14782 14783 if (fp->tx_mbuf_tag != NULL) { 14784 for (j = 0; j < TX_BD_TOTAL; j++) { 14785 if (fp->tx_mbuf_chain[j].m_map != NULL) { 14786 bus_dmamap_unload(fp->tx_mbuf_tag, 14787 fp->tx_mbuf_chain[j].m_map); 14788 bus_dmamap_destroy(fp->tx_mbuf_tag, 14789 fp->tx_mbuf_chain[j].m_map); 14790 } 14791 } 14792 14793 bus_dma_tag_destroy(fp->tx_mbuf_tag); 14794 fp->tx_mbuf_tag = NULL; 14795 } 14796 14797 /***********************/ 14798 /* FP RX MBUF DMA MAPS */ 14799 /***********************/ 14800 14801 if (fp->rx_mbuf_tag != NULL) { 14802 for (j = 0; j < RX_BD_TOTAL; j++) { 14803 if (fp->rx_mbuf_chain[j].m_map != NULL) { 14804 bus_dmamap_unload(fp->rx_mbuf_tag, 14805 fp->rx_mbuf_chain[j].m_map); 14806 bus_dmamap_destroy(fp->rx_mbuf_tag, 14807 fp->rx_mbuf_chain[j].m_map); 14808 } 14809 } 14810 14811 if (fp->rx_mbuf_spare_map != NULL) { 14812 bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); 14813 bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); 14814 } 14815 14816 /***************************/ 14817 /* FP RX TPA MBUF DMA MAPS */ 14818 /***************************/ 14819 14820 max_agg_queues = MAX_AGG_QS(sc); 14821 14822 for (j = 0; j < max_agg_queues; j++) { 14823 if (fp->rx_tpa_info[j].bd.m_map != NULL) { 14824 bus_dmamap_unload(fp->rx_mbuf_tag, 14825 fp->rx_tpa_info[j].bd.m_map); 14826 bus_dmamap_destroy(fp->rx_mbuf_tag, 14827 fp->rx_tpa_info[j].bd.m_map); 14828 } 14829 } 14830 14831 if (fp->rx_tpa_info_mbuf_spare_map != NULL) { 14832 bus_dmamap_unload(fp->rx_mbuf_tag, 14833 fp->rx_tpa_info_mbuf_spare_map); 14834 bus_dmamap_destroy(fp->rx_mbuf_tag, 14835 fp->rx_tpa_info_mbuf_spare_map); 14836 } 14837 14838 bus_dma_tag_destroy(fp->rx_mbuf_tag); 14839 fp->rx_mbuf_tag = NULL; 14840 } 14841 14842 /***************************/ 14843 /* FP RX SGE MBUF DMA MAPS */ 14844 /***************************/ 14845 14846 if (fp->rx_sge_mbuf_tag != NULL) { 14847 for (j = 0; j < RX_SGE_TOTAL; j++) { 14848 if (fp->rx_sge_mbuf_chain[j].m_map != NULL) { 14849 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 14850 fp->rx_sge_mbuf_chain[j].m_map); 14851 bus_dmamap_destroy(fp->rx_sge_mbuf_tag, 14852 fp->rx_sge_mbuf_chain[j].m_map); 14853 } 14854 } 14855 14856 if (fp->rx_sge_mbuf_spare_map != NULL) { 14857 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 14858 fp->rx_sge_mbuf_spare_map); 14859 bus_dmamap_destroy(fp->rx_sge_mbuf_tag, 14860 fp->rx_sge_mbuf_spare_map); 14861 } 14862 14863 bus_dma_tag_destroy(fp->rx_sge_mbuf_tag); 14864 fp->rx_sge_mbuf_tag = NULL; 14865 } 14866 } 14867 14868 /***************************/ 14869 /* FW DECOMPRESSION BUFFER */ 14870 /***************************/ 14871 14872 bxe_dma_free(sc, &sc->gz_buf_dma); 14873 sc->gz_buf = NULL; 14874 free(sc->gz_strm, M_DEVBUF); 14875 sc->gz_strm = NULL; 14876 14877 /*******************/ 14878 /* SLOW PATH QUEUE */ 14879 /*******************/ 14880 14881 bxe_dma_free(sc, &sc->spq_dma); 14882 sc->spq = NULL; 14883 14884 /*************/ 14885 /* SLOW PATH */ 14886 /*************/ 14887 14888 bxe_dma_free(sc, &sc->sp_dma); 14889 sc->sp = NULL; 14890 14891 /***************/ 14892 /* EVENT QUEUE */ 14893 /***************/ 14894 14895 bxe_dma_free(sc, &sc->eq_dma); 14896 sc->eq = NULL; 14897 14898 /************************/ 14899 /* DEFAULT STATUS BLOCK */ 14900 /************************/ 14901 14902 bxe_dma_free(sc, &sc->def_sb_dma); 14903 sc->def_sb = NULL; 14904 14905 bus_dma_tag_destroy(sc->parent_dma_tag); 14906 sc->parent_dma_tag = NULL; 14907 } 14908 14909 /* 14910 * Previous driver DMAE transaction may have occurred when pre-boot stage 14911 * ended and boot began. This would invalidate the addresses of the 14912 * transaction, resulting in was-error bit set in the PCI causing all 14913 * hw-to-host PCIe transactions to timeout. If this happened we want to clear 14914 * the interrupt which detected this from the pglueb and the was-done bit 14915 */ 14916 static void 14917 bxe_prev_interrupted_dmae(struct bxe_softc *sc) 14918 { 14919 uint32_t val; 14920 14921 if (!CHIP_IS_E1x(sc)) { 14922 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS); 14923 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) { 14924 BLOGD(sc, DBG_LOAD, 14925 "Clearing 'was-error' bit that was set in pglueb"); 14926 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc)); 14927 } 14928 } 14929 } 14930 14931 static int 14932 bxe_prev_mcp_done(struct bxe_softc *sc) 14933 { 14934 uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 14935 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET); 14936 if (!rc) { 14937 BLOGE(sc, "MCP response failure, aborting\n"); 14938 return (-1); 14939 } 14940 14941 return (0); 14942 } 14943 14944 static struct bxe_prev_list_node * 14945 bxe_prev_path_get_entry(struct bxe_softc *sc) 14946 { 14947 struct bxe_prev_list_node *tmp; 14948 14949 LIST_FOREACH(tmp, &bxe_prev_list, node) { 14950 if ((sc->pcie_bus == tmp->bus) && 14951 (sc->pcie_device == tmp->slot) && 14952 (SC_PATH(sc) == tmp->path)) { 14953 return (tmp); 14954 } 14955 } 14956 14957 return (NULL); 14958 } 14959 14960 static uint8_t 14961 bxe_prev_is_path_marked(struct bxe_softc *sc) 14962 { 14963 struct bxe_prev_list_node *tmp; 14964 int rc = FALSE; 14965 14966 mtx_lock(&bxe_prev_mtx); 14967 14968 tmp = bxe_prev_path_get_entry(sc); 14969 if (tmp) { 14970 if (tmp->aer) { 14971 BLOGD(sc, DBG_LOAD, 14972 "Path %d/%d/%d was marked by AER\n", 14973 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 14974 } else { 14975 rc = TRUE; 14976 BLOGD(sc, DBG_LOAD, 14977 "Path %d/%d/%d was already cleaned from previous drivers\n", 14978 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 14979 } 14980 } 14981 14982 mtx_unlock(&bxe_prev_mtx); 14983 14984 return (rc); 14985 } 14986 14987 static int 14988 bxe_prev_mark_path(struct bxe_softc *sc, 14989 uint8_t after_undi) 14990 { 14991 struct bxe_prev_list_node *tmp; 14992 14993 mtx_lock(&bxe_prev_mtx); 14994 14995 /* Check whether the entry for this path already exists */ 14996 tmp = bxe_prev_path_get_entry(sc); 14997 if (tmp) { 14998 if (!tmp->aer) { 14999 BLOGD(sc, DBG_LOAD, 15000 "Re-marking AER in path %d/%d/%d\n", 15001 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15002 } else { 15003 BLOGD(sc, DBG_LOAD, 15004 "Removing AER indication from path %d/%d/%d\n", 15005 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15006 tmp->aer = 0; 15007 } 15008 15009 mtx_unlock(&bxe_prev_mtx); 15010 return (0); 15011 } 15012 15013 mtx_unlock(&bxe_prev_mtx); 15014 15015 /* Create an entry for this path and add it */ 15016 tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF, 15017 (M_NOWAIT | M_ZERO)); 15018 if (!tmp) { 15019 BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n"); 15020 return (-1); 15021 } 15022 15023 tmp->bus = sc->pcie_bus; 15024 tmp->slot = sc->pcie_device; 15025 tmp->path = SC_PATH(sc); 15026 tmp->aer = 0; 15027 tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0; 15028 15029 mtx_lock(&bxe_prev_mtx); 15030 15031 BLOGD(sc, DBG_LOAD, 15032 "Marked path %d/%d/%d - finished previous unload\n", 15033 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15034 LIST_INSERT_HEAD(&bxe_prev_list, tmp, node); 15035 15036 mtx_unlock(&bxe_prev_mtx); 15037 15038 return (0); 15039 } 15040 15041 static int 15042 bxe_do_flr(struct bxe_softc *sc) 15043 { 15044 int i; 15045 15046 /* only E2 and onwards support FLR */ 15047 if (CHIP_IS_E1x(sc)) { 15048 BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n"); 15049 return (-1); 15050 } 15051 15052 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */ 15053 if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) { 15054 BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n", 15055 sc->devinfo.bc_ver); 15056 return (-1); 15057 } 15058 15059 /* Wait for Transaction Pending bit clean */ 15060 for (i = 0; i < 4; i++) { 15061 if (i) { 15062 DELAY(((1 << (i - 1)) * 100) * 1000); 15063 } 15064 15065 if (!bxe_is_pcie_pending(sc)) { 15066 goto clear; 15067 } 15068 } 15069 15070 BLOGE(sc, "PCIE transaction is not cleared, " 15071 "proceeding with reset anyway\n"); 15072 15073 clear: 15074 15075 BLOGD(sc, DBG_LOAD, "Initiating FLR\n"); 15076 bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0); 15077 15078 return (0); 15079 } 15080 15081 struct bxe_mac_vals { 15082 uint32_t xmac_addr; 15083 uint32_t xmac_val; 15084 uint32_t emac_addr; 15085 uint32_t emac_val; 15086 uint32_t umac_addr; 15087 uint32_t umac_val; 15088 uint32_t bmac_addr; 15089 uint32_t bmac_val[2]; 15090 }; 15091 15092 static void 15093 bxe_prev_unload_close_mac(struct bxe_softc *sc, 15094 struct bxe_mac_vals *vals) 15095 { 15096 uint32_t val, base_addr, offset, mask, reset_reg; 15097 uint8_t mac_stopped = FALSE; 15098 uint8_t port = SC_PORT(sc); 15099 uint32_t wb_data[2]; 15100 15101 /* reset addresses as they also mark which values were changed */ 15102 vals->bmac_addr = 0; 15103 vals->umac_addr = 0; 15104 vals->xmac_addr = 0; 15105 vals->emac_addr = 0; 15106 15107 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2); 15108 15109 if (!CHIP_IS_E3(sc)) { 15110 val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4); 15111 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port; 15112 if ((mask & reset_reg) && val) { 15113 BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n"); 15114 base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM 15115 : NIG_REG_INGRESS_BMAC0_MEM; 15116 offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL 15117 : BIGMAC_REGISTER_BMAC_CONTROL; 15118 15119 /* 15120 * use rd/wr since we cannot use dmae. This is safe 15121 * since MCP won't access the bus due to the request 15122 * to unload, and no function on the path can be 15123 * loaded at this time. 15124 */ 15125 wb_data[0] = REG_RD(sc, base_addr + offset); 15126 wb_data[1] = REG_RD(sc, base_addr + offset + 0x4); 15127 vals->bmac_addr = base_addr + offset; 15128 vals->bmac_val[0] = wb_data[0]; 15129 vals->bmac_val[1] = wb_data[1]; 15130 wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE; 15131 REG_WR(sc, vals->bmac_addr, wb_data[0]); 15132 REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]); 15133 } 15134 15135 BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n"); 15136 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4; 15137 vals->emac_val = REG_RD(sc, vals->emac_addr); 15138 REG_WR(sc, vals->emac_addr, 0); 15139 mac_stopped = TRUE; 15140 } else { 15141 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) { 15142 BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n"); 15143 base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0; 15144 val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI); 15145 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1)); 15146 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1)); 15147 vals->xmac_addr = base_addr + XMAC_REG_CTRL; 15148 vals->xmac_val = REG_RD(sc, vals->xmac_addr); 15149 REG_WR(sc, vals->xmac_addr, 0); 15150 mac_stopped = TRUE; 15151 } 15152 15153 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port; 15154 if (mask & reset_reg) { 15155 BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n"); 15156 base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0; 15157 vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG; 15158 vals->umac_val = REG_RD(sc, vals->umac_addr); 15159 REG_WR(sc, vals->umac_addr, 0); 15160 mac_stopped = TRUE; 15161 } 15162 } 15163 15164 if (mac_stopped) { 15165 DELAY(20000); 15166 } 15167 } 15168 15169 #define BXE_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4)) 15170 #define BXE_PREV_UNDI_RCQ(val) ((val) & 0xffff) 15171 #define BXE_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff) 15172 #define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq)) 15173 15174 static void 15175 bxe_prev_unload_undi_inc(struct bxe_softc *sc, 15176 uint8_t port, 15177 uint8_t inc) 15178 { 15179 uint16_t rcq, bd; 15180 uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port)); 15181 15182 rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc; 15183 bd = BXE_PREV_UNDI_BD(tmp_reg) + inc; 15184 15185 tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd); 15186 REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg); 15187 15188 BLOGD(sc, DBG_LOAD, 15189 "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n", 15190 port, bd, rcq); 15191 } 15192 15193 static int 15194 bxe_prev_unload_common(struct bxe_softc *sc) 15195 { 15196 uint32_t reset_reg, tmp_reg = 0, rc; 15197 uint8_t prev_undi = FALSE; 15198 struct bxe_mac_vals mac_vals; 15199 uint32_t timer_count = 1000; 15200 uint32_t prev_brb; 15201 15202 /* 15203 * It is possible a previous function received 'common' answer, 15204 * but hasn't loaded yet, therefore creating a scenario of 15205 * multiple functions receiving 'common' on the same path. 15206 */ 15207 BLOGD(sc, DBG_LOAD, "Common unload Flow\n"); 15208 15209 memset(&mac_vals, 0, sizeof(mac_vals)); 15210 15211 if (bxe_prev_is_path_marked(sc)) { 15212 return (bxe_prev_mcp_done(sc)); 15213 } 15214 15215 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1); 15216 15217 /* Reset should be performed after BRB is emptied */ 15218 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) { 15219 /* Close the MAC Rx to prevent BRB from filling up */ 15220 bxe_prev_unload_close_mac(sc, &mac_vals); 15221 15222 /* close LLH filters towards the BRB */ 15223 elink_set_rx_filter(&sc->link_params, 0); 15224 15225 /* 15226 * Check if the UNDI driver was previously loaded. 15227 * UNDI driver initializes CID offset for normal bell to 0x7 15228 */ 15229 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) { 15230 tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST); 15231 if (tmp_reg == 0x7) { 15232 BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n"); 15233 prev_undi = TRUE; 15234 /* clear the UNDI indication */ 15235 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0); 15236 /* clear possible idle check errors */ 15237 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0); 15238 } 15239 } 15240 15241 /* wait until BRB is empty */ 15242 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); 15243 while (timer_count) { 15244 prev_brb = tmp_reg; 15245 15246 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); 15247 if (!tmp_reg) { 15248 break; 15249 } 15250 15251 BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg); 15252 15253 /* reset timer as long as BRB actually gets emptied */ 15254 if (prev_brb > tmp_reg) { 15255 timer_count = 1000; 15256 } else { 15257 timer_count--; 15258 } 15259 15260 /* If UNDI resides in memory, manually increment it */ 15261 if (prev_undi) { 15262 bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1); 15263 } 15264 15265 DELAY(10); 15266 } 15267 15268 if (!timer_count) { 15269 BLOGE(sc, "Failed to empty BRB\n"); 15270 } 15271 } 15272 15273 /* No packets are in the pipeline, path is ready for reset */ 15274 bxe_reset_common(sc); 15275 15276 if (mac_vals.xmac_addr) { 15277 REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val); 15278 } 15279 if (mac_vals.umac_addr) { 15280 REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val); 15281 } 15282 if (mac_vals.emac_addr) { 15283 REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val); 15284 } 15285 if (mac_vals.bmac_addr) { 15286 REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]); 15287 REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]); 15288 } 15289 15290 rc = bxe_prev_mark_path(sc, prev_undi); 15291 if (rc) { 15292 bxe_prev_mcp_done(sc); 15293 return (rc); 15294 } 15295 15296 return (bxe_prev_mcp_done(sc)); 15297 } 15298 15299 static int 15300 bxe_prev_unload_uncommon(struct bxe_softc *sc) 15301 { 15302 int rc; 15303 15304 BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n"); 15305 15306 /* Test if previous unload process was already finished for this path */ 15307 if (bxe_prev_is_path_marked(sc)) { 15308 return (bxe_prev_mcp_done(sc)); 15309 } 15310 15311 BLOGD(sc, DBG_LOAD, "Path is unmarked\n"); 15312 15313 /* 15314 * If function has FLR capabilities, and existing FW version matches 15315 * the one required, then FLR will be sufficient to clean any residue 15316 * left by previous driver 15317 */ 15318 rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION); 15319 if (!rc) { 15320 /* fw version is good */ 15321 BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n"); 15322 rc = bxe_do_flr(sc); 15323 } 15324 15325 if (!rc) { 15326 /* FLR was performed */ 15327 BLOGD(sc, DBG_LOAD, "FLR successful\n"); 15328 return (0); 15329 } 15330 15331 BLOGD(sc, DBG_LOAD, "Could not FLR\n"); 15332 15333 /* Close the MCP request, return failure*/ 15334 rc = bxe_prev_mcp_done(sc); 15335 if (!rc) { 15336 rc = BXE_PREV_WAIT_NEEDED; 15337 } 15338 15339 return (rc); 15340 } 15341 15342 static int 15343 bxe_prev_unload(struct bxe_softc *sc) 15344 { 15345 int time_counter = 10; 15346 uint32_t fw, hw_lock_reg, hw_lock_val; 15347 uint32_t rc = 0; 15348 15349 /* 15350 * Clear HW from errors which may have resulted from an interrupted 15351 * DMAE transaction. 15352 */ 15353 bxe_prev_interrupted_dmae(sc); 15354 15355 /* Release previously held locks */ 15356 hw_lock_reg = 15357 (SC_FUNC(sc) <= 5) ? 15358 (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) : 15359 (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8); 15360 15361 hw_lock_val = (REG_RD(sc, hw_lock_reg)); 15362 if (hw_lock_val) { 15363 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) { 15364 BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n"); 15365 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 15366 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc))); 15367 } 15368 BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n"); 15369 REG_WR(sc, hw_lock_reg, 0xffffffff); 15370 } else { 15371 BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n"); 15372 } 15373 15374 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) { 15375 BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n"); 15376 REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0); 15377 } 15378 15379 do { 15380 /* Lock MCP using an unload request */ 15381 fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0); 15382 if (!fw) { 15383 BLOGE(sc, "MCP response failure, aborting\n"); 15384 rc = -1; 15385 break; 15386 } 15387 15388 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) { 15389 rc = bxe_prev_unload_common(sc); 15390 break; 15391 } 15392 15393 /* non-common reply from MCP night require looping */ 15394 rc = bxe_prev_unload_uncommon(sc); 15395 if (rc != BXE_PREV_WAIT_NEEDED) { 15396 break; 15397 } 15398 15399 DELAY(20000); 15400 } while (--time_counter); 15401 15402 if (!time_counter || rc) { 15403 BLOGE(sc, "Failed to unload previous driver!" 15404 " time_counter %d rc %d\n", time_counter, rc); 15405 rc = -1; 15406 } 15407 15408 return (rc); 15409 } 15410 15411 void 15412 bxe_dcbx_set_state(struct bxe_softc *sc, 15413 uint8_t dcb_on, 15414 uint32_t dcbx_enabled) 15415 { 15416 if (!CHIP_IS_E1x(sc)) { 15417 sc->dcb_state = dcb_on; 15418 sc->dcbx_enabled = dcbx_enabled; 15419 } else { 15420 sc->dcb_state = FALSE; 15421 sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID; 15422 } 15423 BLOGD(sc, DBG_LOAD, 15424 "DCB state [%s:%s]\n", 15425 dcb_on ? "ON" : "OFF", 15426 (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" : 15427 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" : 15428 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ? 15429 "on-chip with negotiation" : "invalid"); 15430 } 15431 15432 /* must be called after sriov-enable */ 15433 static int 15434 bxe_set_qm_cid_count(struct bxe_softc *sc) 15435 { 15436 int cid_count = BXE_L2_MAX_CID(sc); 15437 15438 if (IS_SRIOV(sc)) { 15439 cid_count += BXE_VF_CIDS; 15440 } 15441 15442 if (CNIC_SUPPORT(sc)) { 15443 cid_count += CNIC_CID_MAX; 15444 } 15445 15446 return (roundup(cid_count, QM_CID_ROUND)); 15447 } 15448 15449 static void 15450 bxe_init_multi_cos(struct bxe_softc *sc) 15451 { 15452 int pri, cos; 15453 15454 uint32_t pri_map = 0; /* XXX change to user config */ 15455 15456 for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) { 15457 cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4)); 15458 if (cos < sc->max_cos) { 15459 sc->prio_to_cos[pri] = cos; 15460 } else { 15461 BLOGW(sc, "Invalid COS %d for priority %d " 15462 "(max COS is %d), setting to 0\n", 15463 cos, pri, (sc->max_cos - 1)); 15464 sc->prio_to_cos[pri] = 0; 15465 } 15466 } 15467 } 15468 15469 static int 15470 bxe_sysctl_state(SYSCTL_HANDLER_ARGS) 15471 { 15472 struct bxe_softc *sc; 15473 int error, result; 15474 15475 result = 0; 15476 error = sysctl_handle_int(oidp, &result, 0, req); 15477 15478 if (error || !req->newptr) { 15479 return (error); 15480 } 15481 15482 if (result == 1) { 15483 uint32_t temp; 15484 sc = (struct bxe_softc *)arg1; 15485 15486 BLOGI(sc, "... dumping driver state ...\n"); 15487 temp = SHMEM2_RD(sc, temperature_in_half_celsius); 15488 BLOGI(sc, "\t Device Temperature = %d Celsius\n", (temp/2)); 15489 } 15490 15491 return (error); 15492 } 15493 15494 static int 15495 bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS) 15496 { 15497 struct bxe_softc *sc = (struct bxe_softc *)arg1; 15498 uint32_t *eth_stats = (uint32_t *)&sc->eth_stats; 15499 uint32_t *offset; 15500 uint64_t value = 0; 15501 int index = (int)arg2; 15502 15503 if (index >= BXE_NUM_ETH_STATS) { 15504 BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index); 15505 return (-1); 15506 } 15507 15508 offset = (eth_stats + bxe_eth_stats_arr[index].offset); 15509 15510 switch (bxe_eth_stats_arr[index].size) { 15511 case 4: 15512 value = (uint64_t)*offset; 15513 break; 15514 case 8: 15515 value = HILO_U64(*offset, *(offset + 1)); 15516 break; 15517 default: 15518 BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n", 15519 index, bxe_eth_stats_arr[index].size); 15520 return (-1); 15521 } 15522 15523 return (sysctl_handle_64(oidp, &value, 0, req)); 15524 } 15525 15526 static int 15527 bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS) 15528 { 15529 struct bxe_softc *sc = (struct bxe_softc *)arg1; 15530 uint32_t *eth_stats; 15531 uint32_t *offset; 15532 uint64_t value = 0; 15533 uint32_t q_stat = (uint32_t)arg2; 15534 uint32_t fp_index = ((q_stat >> 16) & 0xffff); 15535 uint32_t index = (q_stat & 0xffff); 15536 15537 eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats; 15538 15539 if (index >= BXE_NUM_ETH_Q_STATS) { 15540 BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index); 15541 return (-1); 15542 } 15543 15544 offset = (eth_stats + bxe_eth_q_stats_arr[index].offset); 15545 15546 switch (bxe_eth_q_stats_arr[index].size) { 15547 case 4: 15548 value = (uint64_t)*offset; 15549 break; 15550 case 8: 15551 value = HILO_U64(*offset, *(offset + 1)); 15552 break; 15553 default: 15554 BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n", 15555 index, bxe_eth_q_stats_arr[index].size); 15556 return (-1); 15557 } 15558 15559 return (sysctl_handle_64(oidp, &value, 0, req)); 15560 } 15561 15562 static void 15563 bxe_add_sysctls(struct bxe_softc *sc) 15564 { 15565 struct sysctl_ctx_list *ctx; 15566 struct sysctl_oid_list *children; 15567 struct sysctl_oid *queue_top, *queue; 15568 struct sysctl_oid_list *queue_top_children, *queue_children; 15569 char queue_num_buf[32]; 15570 uint32_t q_stat; 15571 int i, j; 15572 15573 ctx = device_get_sysctl_ctx(sc->dev); 15574 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)); 15575 15576 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version", 15577 CTLFLAG_RD, BXE_DRIVER_VERSION, 0, 15578 "version"); 15579 15580 snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d", 15581 BCM_5710_FW_MAJOR_VERSION, 15582 BCM_5710_FW_MINOR_VERSION, 15583 BCM_5710_FW_REVISION_VERSION, 15584 BCM_5710_FW_ENGINEERING_VERSION); 15585 15586 snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s", 15587 ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION) ? "Single" : 15588 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD) ? "MF-SD" : 15589 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI) ? "MF-SI" : 15590 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" : 15591 "Unknown")); 15592 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics", 15593 CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0, 15594 "multifunction vnics per port"); 15595 15596 snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d", 15597 ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" : 15598 (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" : 15599 (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" : 15600 "???GT/s"), 15601 sc->devinfo.pcie_link_width); 15602 15603 sc->debug = bxe_debug; 15604 15605 #if __FreeBSD_version >= 900000 15606 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version", 15607 CTLFLAG_RD, sc->devinfo.bc_ver_str, 0, 15608 "bootcode version"); 15609 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version", 15610 CTLFLAG_RD, sc->fw_ver_str, 0, 15611 "firmware version"); 15612 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode", 15613 CTLFLAG_RD, sc->mf_mode_str, 0, 15614 "multifunction mode"); 15615 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr", 15616 CTLFLAG_RD, sc->mac_addr_str, 0, 15617 "mac address"); 15618 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link", 15619 CTLFLAG_RD, sc->pci_link_str, 0, 15620 "pci link status"); 15621 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "debug", 15622 CTLFLAG_RW, &sc->debug, 15623 "debug logging mode"); 15624 #else 15625 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version", 15626 CTLFLAG_RD, &sc->devinfo.bc_ver_str, 0, 15627 "bootcode version"); 15628 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version", 15629 CTLFLAG_RD, &sc->fw_ver_str, 0, 15630 "firmware version"); 15631 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode", 15632 CTLFLAG_RD, &sc->mf_mode_str, 0, 15633 "multifunction mode"); 15634 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr", 15635 CTLFLAG_RD, &sc->mac_addr_str, 0, 15636 "mac address"); 15637 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link", 15638 CTLFLAG_RD, &sc->pci_link_str, 0, 15639 "pci link status"); 15640 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "debug", 15641 CTLFLAG_RW, &sc->debug, 0, 15642 "debug logging mode"); 15643 #endif /* #if __FreeBSD_version >= 900000 */ 15644 15645 sc->trigger_grcdump = 0; 15646 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "trigger_grcdump", 15647 CTLFLAG_RW, &sc->trigger_grcdump, 0, 15648 "trigger grcdump should be invoked" 15649 " before collecting grcdump"); 15650 15651 sc->grcdump_started = 0; 15652 sc->grcdump_done = 0; 15653 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "grcdump_done", 15654 CTLFLAG_RD, &sc->grcdump_done, 0, 15655 "set by driver when grcdump is done"); 15656 15657 sc->rx_budget = bxe_rx_budget; 15658 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget", 15659 CTLFLAG_RW, &sc->rx_budget, 0, 15660 "rx processing budget"); 15661 15662 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state", 15663 CTLTYPE_UINT | CTLFLAG_RW, sc, 0, 15664 bxe_sysctl_state, "IU", "dump driver state"); 15665 15666 for (i = 0; i < BXE_NUM_ETH_STATS; i++) { 15667 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 15668 bxe_eth_stats_arr[i].string, 15669 CTLTYPE_U64 | CTLFLAG_RD, sc, i, 15670 bxe_sysctl_eth_stat, "LU", 15671 bxe_eth_stats_arr[i].string); 15672 } 15673 15674 /* add a new parent node for all queues "dev.bxe.#.queue" */ 15675 queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue", 15676 CTLFLAG_RD, NULL, "queue"); 15677 queue_top_children = SYSCTL_CHILDREN(queue_top); 15678 15679 for (i = 0; i < sc->num_queues; i++) { 15680 /* add a new parent node for a single queue "dev.bxe.#.queue.#" */ 15681 snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i); 15682 queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO, 15683 queue_num_buf, CTLFLAG_RD, NULL, 15684 "single queue"); 15685 queue_children = SYSCTL_CHILDREN(queue); 15686 15687 for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) { 15688 q_stat = ((i << 16) | j); 15689 SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO, 15690 bxe_eth_q_stats_arr[j].string, 15691 CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat, 15692 bxe_sysctl_eth_q_stat, "LU", 15693 bxe_eth_q_stats_arr[j].string); 15694 } 15695 } 15696 } 15697 15698 static int 15699 bxe_alloc_buf_rings(struct bxe_softc *sc) 15700 { 15701 #if __FreeBSD_version >= 800000 15702 15703 int i; 15704 struct bxe_fastpath *fp; 15705 15706 for (i = 0; i < sc->num_queues; i++) { 15707 15708 fp = &sc->fp[i]; 15709 15710 fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF, 15711 M_NOWAIT, &fp->tx_mtx); 15712 if (fp->tx_br == NULL) 15713 return (-1); 15714 } 15715 #endif 15716 return (0); 15717 } 15718 15719 static void 15720 bxe_free_buf_rings(struct bxe_softc *sc) 15721 { 15722 #if __FreeBSD_version >= 800000 15723 15724 int i; 15725 struct bxe_fastpath *fp; 15726 15727 for (i = 0; i < sc->num_queues; i++) { 15728 15729 fp = &sc->fp[i]; 15730 15731 if (fp->tx_br) { 15732 buf_ring_free(fp->tx_br, M_DEVBUF); 15733 fp->tx_br = NULL; 15734 } 15735 } 15736 15737 #endif 15738 } 15739 15740 static void 15741 bxe_init_fp_mutexs(struct bxe_softc *sc) 15742 { 15743 int i; 15744 struct bxe_fastpath *fp; 15745 15746 for (i = 0; i < sc->num_queues; i++) { 15747 15748 fp = &sc->fp[i]; 15749 15750 snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name), 15751 "bxe%d_fp%d_tx_lock", sc->unit, i); 15752 mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF); 15753 15754 snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name), 15755 "bxe%d_fp%d_rx_lock", sc->unit, i); 15756 mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF); 15757 } 15758 } 15759 15760 static void 15761 bxe_destroy_fp_mutexs(struct bxe_softc *sc) 15762 { 15763 int i; 15764 struct bxe_fastpath *fp; 15765 15766 for (i = 0; i < sc->num_queues; i++) { 15767 15768 fp = &sc->fp[i]; 15769 15770 if (mtx_initialized(&fp->tx_mtx)) { 15771 mtx_destroy(&fp->tx_mtx); 15772 } 15773 15774 if (mtx_initialized(&fp->rx_mtx)) { 15775 mtx_destroy(&fp->rx_mtx); 15776 } 15777 } 15778 } 15779 15780 15781 /* 15782 * Device attach function. 15783 * 15784 * Allocates device resources, performs secondary chip identification, and 15785 * initializes driver instance variables. This function is called from driver 15786 * load after a successful probe. 15787 * 15788 * Returns: 15789 * 0 = Success, >0 = Failure 15790 */ 15791 static int 15792 bxe_attach(device_t dev) 15793 { 15794 struct bxe_softc *sc; 15795 15796 sc = device_get_softc(dev); 15797 15798 BLOGD(sc, DBG_LOAD, "Starting attach...\n"); 15799 15800 sc->state = BXE_STATE_CLOSED; 15801 15802 sc->dev = dev; 15803 sc->unit = device_get_unit(dev); 15804 15805 BLOGD(sc, DBG_LOAD, "softc = %p\n", sc); 15806 15807 sc->pcie_bus = pci_get_bus(dev); 15808 sc->pcie_device = pci_get_slot(dev); 15809 sc->pcie_func = pci_get_function(dev); 15810 15811 /* enable bus master capability */ 15812 pci_enable_busmaster(dev); 15813 15814 /* get the BARs */ 15815 if (bxe_allocate_bars(sc) != 0) { 15816 return (ENXIO); 15817 } 15818 15819 /* initialize the mutexes */ 15820 bxe_init_mutexes(sc); 15821 15822 /* prepare the periodic callout */ 15823 callout_init(&sc->periodic_callout, 0); 15824 15825 /* prepare the chip taskqueue */ 15826 sc->chip_tq_flags = CHIP_TQ_NONE; 15827 snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name), 15828 "bxe%d_chip_tq", sc->unit); 15829 TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc); 15830 sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT, 15831 taskqueue_thread_enqueue, 15832 &sc->chip_tq); 15833 taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */ 15834 "%s", sc->chip_tq_name); 15835 15836 /* get device info and set params */ 15837 if (bxe_get_device_info(sc) != 0) { 15838 BLOGE(sc, "getting device info\n"); 15839 bxe_deallocate_bars(sc); 15840 pci_disable_busmaster(dev); 15841 return (ENXIO); 15842 } 15843 15844 /* get final misc params */ 15845 bxe_get_params(sc); 15846 15847 /* set the default MTU (changed via ifconfig) */ 15848 sc->mtu = ETHERMTU; 15849 15850 bxe_set_modes_bitmap(sc); 15851 15852 /* XXX 15853 * If in AFEX mode and the function is configured for FCoE 15854 * then bail... no L2 allowed. 15855 */ 15856 15857 /* get phy settings from shmem and 'and' against admin settings */ 15858 bxe_get_phy_info(sc); 15859 15860 /* initialize the FreeBSD ifnet interface */ 15861 if (bxe_init_ifnet(sc) != 0) { 15862 bxe_release_mutexes(sc); 15863 bxe_deallocate_bars(sc); 15864 pci_disable_busmaster(dev); 15865 return (ENXIO); 15866 } 15867 15868 if (bxe_add_cdev(sc) != 0) { 15869 if (sc->ifp != NULL) { 15870 ether_ifdetach(sc->ifp); 15871 } 15872 ifmedia_removeall(&sc->ifmedia); 15873 bxe_release_mutexes(sc); 15874 bxe_deallocate_bars(sc); 15875 pci_disable_busmaster(dev); 15876 return (ENXIO); 15877 } 15878 15879 /* allocate device interrupts */ 15880 if (bxe_interrupt_alloc(sc) != 0) { 15881 bxe_del_cdev(sc); 15882 if (sc->ifp != NULL) { 15883 ether_ifdetach(sc->ifp); 15884 } 15885 ifmedia_removeall(&sc->ifmedia); 15886 bxe_release_mutexes(sc); 15887 bxe_deallocate_bars(sc); 15888 pci_disable_busmaster(dev); 15889 return (ENXIO); 15890 } 15891 15892 bxe_init_fp_mutexs(sc); 15893 15894 if (bxe_alloc_buf_rings(sc) != 0) { 15895 bxe_free_buf_rings(sc); 15896 bxe_interrupt_free(sc); 15897 bxe_del_cdev(sc); 15898 if (sc->ifp != NULL) { 15899 ether_ifdetach(sc->ifp); 15900 } 15901 ifmedia_removeall(&sc->ifmedia); 15902 bxe_release_mutexes(sc); 15903 bxe_deallocate_bars(sc); 15904 pci_disable_busmaster(dev); 15905 return (ENXIO); 15906 } 15907 15908 /* allocate ilt */ 15909 if (bxe_alloc_ilt_mem(sc) != 0) { 15910 bxe_free_buf_rings(sc); 15911 bxe_interrupt_free(sc); 15912 bxe_del_cdev(sc); 15913 if (sc->ifp != NULL) { 15914 ether_ifdetach(sc->ifp); 15915 } 15916 ifmedia_removeall(&sc->ifmedia); 15917 bxe_release_mutexes(sc); 15918 bxe_deallocate_bars(sc); 15919 pci_disable_busmaster(dev); 15920 return (ENXIO); 15921 } 15922 15923 /* allocate the host hardware/software hsi structures */ 15924 if (bxe_alloc_hsi_mem(sc) != 0) { 15925 bxe_free_ilt_mem(sc); 15926 bxe_free_buf_rings(sc); 15927 bxe_interrupt_free(sc); 15928 bxe_del_cdev(sc); 15929 if (sc->ifp != NULL) { 15930 ether_ifdetach(sc->ifp); 15931 } 15932 ifmedia_removeall(&sc->ifmedia); 15933 bxe_release_mutexes(sc); 15934 bxe_deallocate_bars(sc); 15935 pci_disable_busmaster(dev); 15936 return (ENXIO); 15937 } 15938 15939 /* need to reset chip if UNDI was active */ 15940 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 15941 /* init fw_seq */ 15942 sc->fw_seq = 15943 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & 15944 DRV_MSG_SEQ_NUMBER_MASK); 15945 BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq); 15946 bxe_prev_unload(sc); 15947 } 15948 15949 #if 1 15950 /* XXX */ 15951 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); 15952 #else 15953 if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) && 15954 SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) && 15955 SHMEM2_RD(sc, dcbx_lldp_params_offset) && 15956 SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) { 15957 bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON); 15958 bxe_dcbx_init_params(sc); 15959 } else { 15960 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); 15961 } 15962 #endif 15963 15964 /* calculate qm_cid_count */ 15965 sc->qm_cid_count = bxe_set_qm_cid_count(sc); 15966 BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count); 15967 15968 sc->max_cos = 1; 15969 bxe_init_multi_cos(sc); 15970 15971 bxe_add_sysctls(sc); 15972 15973 return (0); 15974 } 15975 15976 /* 15977 * Device detach function. 15978 * 15979 * Stops the controller, resets the controller, and releases resources. 15980 * 15981 * Returns: 15982 * 0 = Success, >0 = Failure 15983 */ 15984 static int 15985 bxe_detach(device_t dev) 15986 { 15987 struct bxe_softc *sc; 15988 if_t ifp; 15989 15990 sc = device_get_softc(dev); 15991 15992 BLOGD(sc, DBG_LOAD, "Starting detach...\n"); 15993 15994 ifp = sc->ifp; 15995 if (ifp != NULL && if_vlantrunkinuse(ifp)) { 15996 BLOGE(sc, "Cannot detach while VLANs are in use.\n"); 15997 return(EBUSY); 15998 } 15999 16000 bxe_del_cdev(sc); 16001 16002 /* stop the periodic callout */ 16003 bxe_periodic_stop(sc); 16004 16005 /* stop the chip taskqueue */ 16006 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE); 16007 if (sc->chip_tq) { 16008 taskqueue_drain(sc->chip_tq, &sc->chip_tq_task); 16009 taskqueue_free(sc->chip_tq); 16010 sc->chip_tq = NULL; 16011 } 16012 16013 /* stop and reset the controller if it was open */ 16014 if (sc->state != BXE_STATE_CLOSED) { 16015 BXE_CORE_LOCK(sc); 16016 bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE); 16017 sc->state = BXE_STATE_DISABLED; 16018 BXE_CORE_UNLOCK(sc); 16019 } 16020 16021 /* release the network interface */ 16022 if (ifp != NULL) { 16023 ether_ifdetach(ifp); 16024 } 16025 ifmedia_removeall(&sc->ifmedia); 16026 16027 /* XXX do the following based on driver state... */ 16028 16029 /* free the host hardware/software hsi structures */ 16030 bxe_free_hsi_mem(sc); 16031 16032 /* free ilt */ 16033 bxe_free_ilt_mem(sc); 16034 16035 bxe_free_buf_rings(sc); 16036 16037 /* release the interrupts */ 16038 bxe_interrupt_free(sc); 16039 16040 /* Release the mutexes*/ 16041 bxe_destroy_fp_mutexs(sc); 16042 bxe_release_mutexes(sc); 16043 16044 16045 /* Release the PCIe BAR mapped memory */ 16046 bxe_deallocate_bars(sc); 16047 16048 /* Release the FreeBSD interface. */ 16049 if (sc->ifp != NULL) { 16050 if_free(sc->ifp); 16051 } 16052 16053 pci_disable_busmaster(dev); 16054 16055 return (0); 16056 } 16057 16058 /* 16059 * Device shutdown function. 16060 * 16061 * Stops and resets the controller. 16062 * 16063 * Returns: 16064 * Nothing 16065 */ 16066 static int 16067 bxe_shutdown(device_t dev) 16068 { 16069 struct bxe_softc *sc; 16070 16071 sc = device_get_softc(dev); 16072 16073 BLOGD(sc, DBG_LOAD, "Starting shutdown...\n"); 16074 16075 /* stop the periodic callout */ 16076 bxe_periodic_stop(sc); 16077 16078 BXE_CORE_LOCK(sc); 16079 bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE); 16080 BXE_CORE_UNLOCK(sc); 16081 16082 return (0); 16083 } 16084 16085 void 16086 bxe_igu_ack_sb(struct bxe_softc *sc, 16087 uint8_t igu_sb_id, 16088 uint8_t segment, 16089 uint16_t index, 16090 uint8_t op, 16091 uint8_t update) 16092 { 16093 uint32_t igu_addr = sc->igu_base_addr; 16094 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8; 16095 bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr); 16096 } 16097 16098 static void 16099 bxe_igu_clear_sb_gen(struct bxe_softc *sc, 16100 uint8_t func, 16101 uint8_t idu_sb_id, 16102 uint8_t is_pf) 16103 { 16104 uint32_t data, ctl, cnt = 100; 16105 uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; 16106 uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; 16107 uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4; 16108 uint32_t sb_bit = 1 << (idu_sb_id%32); 16109 uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT; 16110 uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id; 16111 16112 /* Not supported in BC mode */ 16113 if (CHIP_INT_MODE_IS_BC(sc)) { 16114 return; 16115 } 16116 16117 data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup << 16118 IGU_REGULAR_CLEANUP_TYPE_SHIFT) | 16119 IGU_REGULAR_CLEANUP_SET | 16120 IGU_REGULAR_BCLEANUP); 16121 16122 ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) | 16123 (func_encode << IGU_CTRL_REG_FID_SHIFT) | 16124 (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT)); 16125 16126 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 16127 data, igu_addr_data); 16128 REG_WR(sc, igu_addr_data, data); 16129 16130 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 16131 BUS_SPACE_BARRIER_WRITE); 16132 mb(); 16133 16134 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 16135 ctl, igu_addr_ctl); 16136 REG_WR(sc, igu_addr_ctl, ctl); 16137 16138 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 16139 BUS_SPACE_BARRIER_WRITE); 16140 mb(); 16141 16142 /* wait for clean up to finish */ 16143 while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) { 16144 DELAY(20000); 16145 } 16146 16147 if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) { 16148 BLOGD(sc, DBG_LOAD, 16149 "Unable to finish IGU cleanup: " 16150 "idu_sb_id %d offset %d bit %d (cnt %d)\n", 16151 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt); 16152 } 16153 } 16154 16155 static void 16156 bxe_igu_clear_sb(struct bxe_softc *sc, 16157 uint8_t idu_sb_id) 16158 { 16159 bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/); 16160 } 16161 16162 16163 16164 16165 16166 16167 16168 /*******************/ 16169 /* ECORE CALLBACKS */ 16170 /*******************/ 16171 16172 static void 16173 bxe_reset_common(struct bxe_softc *sc) 16174 { 16175 uint32_t val = 0x1400; 16176 16177 /* reset_common */ 16178 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f); 16179 16180 if (CHIP_IS_E3(sc)) { 16181 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 16182 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 16183 } 16184 16185 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val); 16186 } 16187 16188 static void 16189 bxe_common_init_phy(struct bxe_softc *sc) 16190 { 16191 uint32_t shmem_base[2]; 16192 uint32_t shmem2_base[2]; 16193 16194 /* Avoid common init in case MFW supports LFA */ 16195 if (SHMEM2_RD(sc, size) > 16196 (uint32_t)offsetof(struct shmem2_region, 16197 lfa_host_addr[SC_PORT(sc)])) { 16198 return; 16199 } 16200 16201 shmem_base[0] = sc->devinfo.shmem_base; 16202 shmem2_base[0] = sc->devinfo.shmem2_base; 16203 16204 if (!CHIP_IS_E1x(sc)) { 16205 shmem_base[1] = SHMEM2_RD(sc, other_shmem_base_addr); 16206 shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr); 16207 } 16208 16209 bxe_acquire_phy_lock(sc); 16210 elink_common_init_phy(sc, shmem_base, shmem2_base, 16211 sc->devinfo.chip_id, 0); 16212 bxe_release_phy_lock(sc); 16213 } 16214 16215 static void 16216 bxe_pf_disable(struct bxe_softc *sc) 16217 { 16218 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 16219 16220 val &= ~IGU_PF_CONF_FUNC_EN; 16221 16222 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 16223 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 16224 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0); 16225 } 16226 16227 static void 16228 bxe_init_pxp(struct bxe_softc *sc) 16229 { 16230 uint16_t devctl; 16231 int r_order, w_order; 16232 16233 devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2); 16234 16235 BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl); 16236 16237 w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5); 16238 16239 if (sc->mrrs == -1) { 16240 r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12); 16241 } else { 16242 BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs); 16243 r_order = sc->mrrs; 16244 } 16245 16246 ecore_init_pxp_arb(sc, r_order, w_order); 16247 } 16248 16249 static uint32_t 16250 bxe_get_pretend_reg(struct bxe_softc *sc) 16251 { 16252 uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0; 16253 uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base); 16254 return (base + (SC_ABS_FUNC(sc)) * stride); 16255 } 16256 16257 /* 16258 * Called only on E1H or E2. 16259 * When pretending to be PF, the pretend value is the function number 0..7. 16260 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID 16261 * combination. 16262 */ 16263 static int 16264 bxe_pretend_func(struct bxe_softc *sc, 16265 uint16_t pretend_func_val) 16266 { 16267 uint32_t pretend_reg; 16268 16269 if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) { 16270 return (-1); 16271 } 16272 16273 /* get my own pretend register */ 16274 pretend_reg = bxe_get_pretend_reg(sc); 16275 REG_WR(sc, pretend_reg, pretend_func_val); 16276 REG_RD(sc, pretend_reg); 16277 return (0); 16278 } 16279 16280 static void 16281 bxe_iov_init_dmae(struct bxe_softc *sc) 16282 { 16283 return; 16284 } 16285 16286 static void 16287 bxe_iov_init_dq(struct bxe_softc *sc) 16288 { 16289 return; 16290 } 16291 16292 /* send a NIG loopback debug packet */ 16293 static void 16294 bxe_lb_pckt(struct bxe_softc *sc) 16295 { 16296 uint32_t wb_write[3]; 16297 16298 /* Ethernet source and destination addresses */ 16299 wb_write[0] = 0x55555555; 16300 wb_write[1] = 0x55555555; 16301 wb_write[2] = 0x20; /* SOP */ 16302 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 16303 16304 /* NON-IP protocol */ 16305 wb_write[0] = 0x09000000; 16306 wb_write[1] = 0x55555555; 16307 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */ 16308 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 16309 } 16310 16311 /* 16312 * Some of the internal memories are not directly readable from the driver. 16313 * To test them we send debug packets. 16314 */ 16315 static int 16316 bxe_int_mem_test(struct bxe_softc *sc) 16317 { 16318 int factor; 16319 int count, i; 16320 uint32_t val = 0; 16321 16322 if (CHIP_REV_IS_FPGA(sc)) { 16323 factor = 120; 16324 } else if (CHIP_REV_IS_EMUL(sc)) { 16325 factor = 200; 16326 } else { 16327 factor = 1; 16328 } 16329 16330 /* disable inputs of parser neighbor blocks */ 16331 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); 16332 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); 16333 REG_WR(sc, CFC_REG_DEBUG0, 0x1); 16334 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); 16335 16336 /* write 0 to parser credits for CFC search request */ 16337 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 16338 16339 /* send Ethernet packet */ 16340 bxe_lb_pckt(sc); 16341 16342 /* TODO do i reset NIG statistic? */ 16343 /* Wait until NIG register shows 1 packet of size 0x10 */ 16344 count = 1000 * factor; 16345 while (count) { 16346 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 16347 val = *BXE_SP(sc, wb_data[0]); 16348 if (val == 0x10) { 16349 break; 16350 } 16351 16352 DELAY(10000); 16353 count--; 16354 } 16355 16356 if (val != 0x10) { 16357 BLOGE(sc, "NIG timeout val=0x%x\n", val); 16358 return (-1); 16359 } 16360 16361 /* wait until PRS register shows 1 packet */ 16362 count = (1000 * factor); 16363 while (count) { 16364 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16365 if (val == 1) { 16366 break; 16367 } 16368 16369 DELAY(10000); 16370 count--; 16371 } 16372 16373 if (val != 0x1) { 16374 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16375 return (-2); 16376 } 16377 16378 /* Reset and init BRB, PRS */ 16379 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 16380 DELAY(50000); 16381 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 16382 DELAY(50000); 16383 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 16384 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 16385 16386 /* Disable inputs of parser neighbor blocks */ 16387 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); 16388 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); 16389 REG_WR(sc, CFC_REG_DEBUG0, 0x1); 16390 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); 16391 16392 /* Write 0 to parser credits for CFC search request */ 16393 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 16394 16395 /* send 10 Ethernet packets */ 16396 for (i = 0; i < 10; i++) { 16397 bxe_lb_pckt(sc); 16398 } 16399 16400 /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */ 16401 count = (1000 * factor); 16402 while (count) { 16403 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 16404 val = *BXE_SP(sc, wb_data[0]); 16405 if (val == 0xb0) { 16406 break; 16407 } 16408 16409 DELAY(10000); 16410 count--; 16411 } 16412 16413 if (val != 0xb0) { 16414 BLOGE(sc, "NIG timeout val=0x%x\n", val); 16415 return (-3); 16416 } 16417 16418 /* Wait until PRS register shows 2 packets */ 16419 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16420 if (val != 2) { 16421 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16422 } 16423 16424 /* Write 1 to parser credits for CFC search request */ 16425 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1); 16426 16427 /* Wait until PRS register shows 3 packets */ 16428 DELAY(10000 * factor); 16429 16430 /* Wait until NIG register shows 1 packet of size 0x10 */ 16431 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16432 if (val != 3) { 16433 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16434 } 16435 16436 /* clear NIG EOP FIFO */ 16437 for (i = 0; i < 11; i++) { 16438 REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO); 16439 } 16440 16441 val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY); 16442 if (val != 1) { 16443 BLOGE(sc, "clear of NIG failed val=0x%x\n", val); 16444 return (-4); 16445 } 16446 16447 /* Reset and init BRB, PRS, NIG */ 16448 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 16449 DELAY(50000); 16450 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 16451 DELAY(50000); 16452 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 16453 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 16454 if (!CNIC_SUPPORT(sc)) { 16455 /* set NIC mode */ 16456 REG_WR(sc, PRS_REG_NIC_MODE, 1); 16457 } 16458 16459 /* Enable inputs of parser neighbor blocks */ 16460 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff); 16461 REG_WR(sc, TCM_REG_PRS_IFEN, 0x1); 16462 REG_WR(sc, CFC_REG_DEBUG0, 0x0); 16463 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1); 16464 16465 return (0); 16466 } 16467 16468 static void 16469 bxe_setup_fan_failure_detection(struct bxe_softc *sc) 16470 { 16471 int is_required; 16472 uint32_t val; 16473 int port; 16474 16475 is_required = 0; 16476 val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) & 16477 SHARED_HW_CFG_FAN_FAILURE_MASK); 16478 16479 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) { 16480 is_required = 1; 16481 } 16482 /* 16483 * The fan failure mechanism is usually related to the PHY type since 16484 * the power consumption of the board is affected by the PHY. Currently, 16485 * fan is required for most designs with SFX7101, BCM8727 and BCM8481. 16486 */ 16487 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) { 16488 for (port = PORT_0; port < PORT_MAX; port++) { 16489 is_required |= elink_fan_failure_det_req(sc, 16490 sc->devinfo.shmem_base, 16491 sc->devinfo.shmem2_base, 16492 port); 16493 } 16494 } 16495 16496 BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required); 16497 16498 if (is_required == 0) { 16499 return; 16500 } 16501 16502 /* Fan failure is indicated by SPIO 5 */ 16503 bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z); 16504 16505 /* set to active low mode */ 16506 val = REG_RD(sc, MISC_REG_SPIO_INT); 16507 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS); 16508 REG_WR(sc, MISC_REG_SPIO_INT, val); 16509 16510 /* enable interrupt to signal the IGU */ 16511 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); 16512 val |= MISC_SPIO_SPIO5; 16513 REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val); 16514 } 16515 16516 static void 16517 bxe_enable_blocks_attention(struct bxe_softc *sc) 16518 { 16519 uint32_t val; 16520 16521 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); 16522 if (!CHIP_IS_E1x(sc)) { 16523 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40); 16524 } else { 16525 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0); 16526 } 16527 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); 16528 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); 16529 /* 16530 * mask read length error interrupts in brb for parser 16531 * (parsing unit and 'checksum and crc' unit) 16532 * these errors are legal (PU reads fixed length and CAC can cause 16533 * read length error on truncated packets) 16534 */ 16535 REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00); 16536 REG_WR(sc, QM_REG_QM_INT_MASK, 0); 16537 REG_WR(sc, TM_REG_TM_INT_MASK, 0); 16538 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0); 16539 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0); 16540 REG_WR(sc, XCM_REG_XCM_INT_MASK, 0); 16541 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */ 16542 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */ 16543 REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0); 16544 REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0); 16545 REG_WR(sc, UCM_REG_UCM_INT_MASK, 0); 16546 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */ 16547 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */ 16548 REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0); 16549 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0); 16550 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0); 16551 REG_WR(sc, CCM_REG_CCM_INT_MASK, 0); 16552 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */ 16553 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */ 16554 16555 val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT | 16556 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF | 16557 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN); 16558 if (!CHIP_IS_E1x(sc)) { 16559 val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED | 16560 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED); 16561 } 16562 REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val); 16563 16564 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0); 16565 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0); 16566 REG_WR(sc, TCM_REG_TCM_INT_MASK, 0); 16567 /* REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */ 16568 16569 if (!CHIP_IS_E1x(sc)) { 16570 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */ 16571 REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff); 16572 } 16573 16574 REG_WR(sc, CDU_REG_CDU_INT_MASK, 0); 16575 REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0); 16576 /* REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */ 16577 REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */ 16578 } 16579 16580 /** 16581 * bxe_init_hw_common - initialize the HW at the COMMON phase. 16582 * 16583 * @sc: driver handle 16584 */ 16585 static int 16586 bxe_init_hw_common(struct bxe_softc *sc) 16587 { 16588 uint8_t abs_func_id; 16589 uint32_t val; 16590 16591 BLOGD(sc, DBG_LOAD, "starting common init for func %d\n", 16592 SC_ABS_FUNC(sc)); 16593 16594 /* 16595 * take the RESET lock to protect undi_unload flow from accessing 16596 * registers while we are resetting the chip 16597 */ 16598 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 16599 16600 bxe_reset_common(sc); 16601 16602 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff); 16603 16604 val = 0xfffc; 16605 if (CHIP_IS_E3(sc)) { 16606 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 16607 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 16608 } 16609 16610 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val); 16611 16612 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 16613 16614 ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON); 16615 BLOGD(sc, DBG_LOAD, "after misc block init\n"); 16616 16617 if (!CHIP_IS_E1x(sc)) { 16618 /* 16619 * 4-port mode or 2-port mode we need to turn off master-enable for 16620 * everyone. After that we turn it back on for self. So, we disregard 16621 * multi-function, and always disable all functions on the given path, 16622 * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1 16623 */ 16624 for (abs_func_id = SC_PATH(sc); 16625 abs_func_id < (E2_FUNC_MAX * 2); 16626 abs_func_id += 2) { 16627 if (abs_func_id == SC_ABS_FUNC(sc)) { 16628 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 16629 continue; 16630 } 16631 16632 bxe_pretend_func(sc, abs_func_id); 16633 16634 /* clear pf enable */ 16635 bxe_pf_disable(sc); 16636 16637 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 16638 } 16639 } 16640 16641 BLOGD(sc, DBG_LOAD, "after pf disable\n"); 16642 16643 ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON); 16644 16645 if (CHIP_IS_E1(sc)) { 16646 /* 16647 * enable HW interrupt from PXP on USDM overflow 16648 * bit 16 on INT_MASK_0 16649 */ 16650 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); 16651 } 16652 16653 ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON); 16654 bxe_init_pxp(sc); 16655 16656 #ifdef __BIG_ENDIAN 16657 REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1); 16658 REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1); 16659 REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1); 16660 REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1); 16661 REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1); 16662 /* make sure this value is 0 */ 16663 REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0); 16664 16665 //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1); 16666 REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1); 16667 REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1); 16668 REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1); 16669 REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1); 16670 #endif 16671 16672 ecore_ilt_init_page_size(sc, INITOP_SET); 16673 16674 if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) { 16675 REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1); 16676 } 16677 16678 /* let the HW do it's magic... */ 16679 DELAY(100000); 16680 16681 /* finish PXP init */ 16682 val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE); 16683 if (val != 1) { 16684 BLOGE(sc, "PXP2 CFG failed PXP2_REG_RQ_CFG_DONE val = 0x%x\n", 16685 val); 16686 return (-1); 16687 } 16688 val = REG_RD(sc, PXP2_REG_RD_INIT_DONE); 16689 if (val != 1) { 16690 BLOGE(sc, "PXP2 RD_INIT failed val = 0x%x\n", val); 16691 return (-1); 16692 } 16693 16694 BLOGD(sc, DBG_LOAD, "after pxp init\n"); 16695 16696 /* 16697 * Timer bug workaround for E2 only. We need to set the entire ILT to have 16698 * entries with value "0" and valid bit on. This needs to be done by the 16699 * first PF that is loaded in a path (i.e. common phase) 16700 */ 16701 if (!CHIP_IS_E1x(sc)) { 16702 /* 16703 * In E2 there is a bug in the timers block that can cause function 6 / 7 16704 * (i.e. vnic3) to start even if it is marked as "scan-off". 16705 * This occurs when a different function (func2,3) is being marked 16706 * as "scan-off". Real-life scenario for example: if a driver is being 16707 * load-unloaded while func6,7 are down. This will cause the timer to access 16708 * the ilt, translate to a logical address and send a request to read/write. 16709 * Since the ilt for the function that is down is not valid, this will cause 16710 * a translation error which is unrecoverable. 16711 * The Workaround is intended to make sure that when this happens nothing 16712 * fatal will occur. The workaround: 16713 * 1. First PF driver which loads on a path will: 16714 * a. After taking the chip out of reset, by using pretend, 16715 * it will write "0" to the following registers of 16716 * the other vnics. 16717 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 16718 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0); 16719 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0); 16720 * And for itself it will write '1' to 16721 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable 16722 * dmae-operations (writing to pram for example.) 16723 * note: can be done for only function 6,7 but cleaner this 16724 * way. 16725 * b. Write zero+valid to the entire ILT. 16726 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of 16727 * VNIC3 (of that port). The range allocated will be the 16728 * entire ILT. This is needed to prevent ILT range error. 16729 * 2. Any PF driver load flow: 16730 * a. ILT update with the physical addresses of the allocated 16731 * logical pages. 16732 * b. Wait 20msec. - note that this timeout is needed to make 16733 * sure there are no requests in one of the PXP internal 16734 * queues with "old" ILT addresses. 16735 * c. PF enable in the PGLC. 16736 * d. Clear the was_error of the PF in the PGLC. (could have 16737 * occurred while driver was down) 16738 * e. PF enable in the CFC (WEAK + STRONG) 16739 * f. Timers scan enable 16740 * 3. PF driver unload flow: 16741 * a. Clear the Timers scan_en. 16742 * b. Polling for scan_on=0 for that PF. 16743 * c. Clear the PF enable bit in the PXP. 16744 * d. Clear the PF enable in the CFC (WEAK + STRONG) 16745 * e. Write zero+valid to all ILT entries (The valid bit must 16746 * stay set) 16747 * f. If this is VNIC 3 of a port then also init 16748 * first_timers_ilt_entry to zero and last_timers_ilt_entry 16749 * to the last enrty in the ILT. 16750 * 16751 * Notes: 16752 * Currently the PF error in the PGLC is non recoverable. 16753 * In the future the there will be a recovery routine for this error. 16754 * Currently attention is masked. 16755 * Having an MCP lock on the load/unload process does not guarantee that 16756 * there is no Timer disable during Func6/7 enable. This is because the 16757 * Timers scan is currently being cleared by the MCP on FLR. 16758 * Step 2.d can be done only for PF6/7 and the driver can also check if 16759 * there is error before clearing it. But the flow above is simpler and 16760 * more general. 16761 * All ILT entries are written by zero+valid and not just PF6/7 16762 * ILT entries since in the future the ILT entries allocation for 16763 * PF-s might be dynamic. 16764 */ 16765 struct ilt_client_info ilt_cli; 16766 struct ecore_ilt ilt; 16767 16768 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 16769 memset(&ilt, 0, sizeof(struct ecore_ilt)); 16770 16771 /* initialize dummy TM client */ 16772 ilt_cli.start = 0; 16773 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 16774 ilt_cli.client_num = ILT_CLIENT_TM; 16775 16776 /* 16777 * Step 1: set zeroes to all ilt page entries with valid bit on 16778 * Step 2: set the timers first/last ilt entry to point 16779 * to the entire range to prevent ILT range error for 3rd/4th 16780 * vnic (this code assumes existence of the vnic) 16781 * 16782 * both steps performed by call to ecore_ilt_client_init_op() 16783 * with dummy TM client 16784 * 16785 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT 16786 * and his brother are split registers 16787 */ 16788 16789 bxe_pretend_func(sc, (SC_PATH(sc) + 6)); 16790 ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR); 16791 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 16792 16793 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN); 16794 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN); 16795 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1); 16796 } 16797 16798 REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0); 16799 REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0); 16800 16801 if (!CHIP_IS_E1x(sc)) { 16802 int factor = CHIP_REV_IS_EMUL(sc) ? 1000 : 16803 (CHIP_REV_IS_FPGA(sc) ? 400 : 0); 16804 16805 ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON); 16806 ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON); 16807 16808 /* let the HW do it's magic... */ 16809 do { 16810 DELAY(200000); 16811 val = REG_RD(sc, ATC_REG_ATC_INIT_DONE); 16812 } while (factor-- && (val != 1)); 16813 16814 if (val != 1) { 16815 BLOGE(sc, "ATC_INIT failed val = 0x%x\n", val); 16816 return (-1); 16817 } 16818 } 16819 16820 BLOGD(sc, DBG_LOAD, "after pglue and atc init\n"); 16821 16822 ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON); 16823 16824 bxe_iov_init_dmae(sc); 16825 16826 /* clean the DMAE memory */ 16827 sc->dmae_ready = 1; 16828 ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1); 16829 16830 ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON); 16831 16832 ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON); 16833 16834 ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON); 16835 16836 ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON); 16837 16838 bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3); 16839 bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3); 16840 bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3); 16841 bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3); 16842 16843 ecore_init_block(sc, BLOCK_QM, PHASE_COMMON); 16844 16845 /* QM queues pointers table */ 16846 ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET); 16847 16848 /* soft reset pulse */ 16849 REG_WR(sc, QM_REG_SOFT_RESET, 1); 16850 REG_WR(sc, QM_REG_SOFT_RESET, 0); 16851 16852 if (CNIC_SUPPORT(sc)) 16853 ecore_init_block(sc, BLOCK_TM, PHASE_COMMON); 16854 16855 ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON); 16856 REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT); 16857 if (!CHIP_REV_IS_SLOW(sc)) { 16858 /* enable hw interrupt from doorbell Q */ 16859 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); 16860 } 16861 16862 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 16863 16864 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 16865 REG_WR(sc, PRS_REG_A_PRSU_20, 0xf); 16866 16867 if (!CHIP_IS_E1(sc)) { 16868 REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan); 16869 } 16870 16871 if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) { 16872 if (IS_MF_AFEX(sc)) { 16873 /* 16874 * configure that AFEX and VLAN headers must be 16875 * received in AFEX mode 16876 */ 16877 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE); 16878 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA); 16879 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6); 16880 REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926); 16881 REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4); 16882 } else { 16883 /* 16884 * Bit-map indicating which L2 hdrs may appear 16885 * after the basic Ethernet header 16886 */ 16887 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 16888 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); 16889 } 16890 } 16891 16892 ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON); 16893 ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON); 16894 ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON); 16895 ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON); 16896 16897 if (!CHIP_IS_E1x(sc)) { 16898 /* reset VFC memories */ 16899 REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 16900 VFC_MEMORIES_RST_REG_CAM_RST | 16901 VFC_MEMORIES_RST_REG_RAM_RST); 16902 REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 16903 VFC_MEMORIES_RST_REG_CAM_RST | 16904 VFC_MEMORIES_RST_REG_RAM_RST); 16905 16906 DELAY(20000); 16907 } 16908 16909 ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON); 16910 ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON); 16911 ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON); 16912 ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON); 16913 16914 /* sync semi rtc */ 16915 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 16916 0x80000000); 16917 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 16918 0x80000000); 16919 16920 ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON); 16921 ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON); 16922 ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON); 16923 16924 if (!CHIP_IS_E1x(sc)) { 16925 if (IS_MF_AFEX(sc)) { 16926 /* 16927 * configure that AFEX and VLAN headers must be 16928 * sent in AFEX mode 16929 */ 16930 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE); 16931 REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA); 16932 REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6); 16933 REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926); 16934 REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4); 16935 } else { 16936 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 16937 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); 16938 } 16939 } 16940 16941 REG_WR(sc, SRC_REG_SOFT_RST, 1); 16942 16943 ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON); 16944 16945 if (CNIC_SUPPORT(sc)) { 16946 REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672); 16947 REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc); 16948 REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b); 16949 REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a); 16950 REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116); 16951 REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b); 16952 REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf); 16953 REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09); 16954 REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f); 16955 REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7); 16956 } 16957 REG_WR(sc, SRC_REG_SOFT_RST, 0); 16958 16959 if (sizeof(union cdu_context) != 1024) { 16960 /* we currently assume that a context is 1024 bytes */ 16961 BLOGE(sc, "please adjust the size of cdu_context(%ld)\n", 16962 (long)sizeof(union cdu_context)); 16963 } 16964 16965 ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON); 16966 val = (4 << 24) + (0 << 12) + 1024; 16967 REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val); 16968 16969 ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON); 16970 16971 REG_WR(sc, CFC_REG_INIT_REG, 0x7FF); 16972 /* enable context validation interrupt from CFC */ 16973 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); 16974 16975 /* set the thresholds to prevent CFC/CDU race */ 16976 REG_WR(sc, CFC_REG_DEBUG0, 0x20020000); 16977 ecore_init_block(sc, BLOCK_HC, PHASE_COMMON); 16978 16979 if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) { 16980 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36); 16981 } 16982 16983 ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON); 16984 ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON); 16985 16986 /* Reset PCIE errors for debug */ 16987 REG_WR(sc, 0x2814, 0xffffffff); 16988 REG_WR(sc, 0x3820, 0xffffffff); 16989 16990 if (!CHIP_IS_E1x(sc)) { 16991 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5, 16992 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 | 16993 PXPCS_TL_CONTROL_5_ERR_UNSPPORT)); 16994 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT, 16995 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 | 16996 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 | 16997 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2)); 16998 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT, 16999 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 | 17000 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 | 17001 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5)); 17002 } 17003 17004 ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON); 17005 17006 if (!CHIP_IS_E1(sc)) { 17007 /* in E3 this done in per-port section */ 17008 if (!CHIP_IS_E3(sc)) 17009 REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc)); 17010 } 17011 17012 if (CHIP_IS_E1H(sc)) { 17013 /* not applicable for E2 (and above ...) */ 17014 REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc)); 17015 } 17016 17017 if (CHIP_REV_IS_SLOW(sc)) { 17018 DELAY(200000); 17019 } 17020 17021 /* finish CFC init */ 17022 val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10); 17023 if (val != 1) { 17024 BLOGE(sc, "CFC LL_INIT failed val=0x%x\n", val); 17025 return (-1); 17026 } 17027 val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10); 17028 if (val != 1) { 17029 BLOGE(sc, "CFC AC_INIT failed val=0x%x\n", val); 17030 return (-1); 17031 } 17032 val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10); 17033 if (val != 1) { 17034 BLOGE(sc, "CFC CAM_INIT failed val=0x%x\n", val); 17035 return (-1); 17036 } 17037 REG_WR(sc, CFC_REG_DEBUG0, 0); 17038 17039 if (CHIP_IS_E1(sc)) { 17040 /* read NIG statistic to see if this is our first up since powerup */ 17041 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 17042 val = *BXE_SP(sc, wb_data[0]); 17043 17044 /* do internal memory self test */ 17045 if ((val == 0) && bxe_int_mem_test(sc)) { 17046 BLOGE(sc, "internal mem self test failed val=0x%x\n", val); 17047 return (-1); 17048 } 17049 } 17050 17051 bxe_setup_fan_failure_detection(sc); 17052 17053 /* clear PXP2 attentions */ 17054 REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); 17055 17056 bxe_enable_blocks_attention(sc); 17057 17058 if (!CHIP_REV_IS_SLOW(sc)) { 17059 ecore_enable_blocks_parity(sc); 17060 } 17061 17062 if (!BXE_NOMCP(sc)) { 17063 if (CHIP_IS_E1x(sc)) { 17064 bxe_common_init_phy(sc); 17065 } 17066 } 17067 17068 return (0); 17069 } 17070 17071 /** 17072 * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase. 17073 * 17074 * @sc: driver handle 17075 */ 17076 static int 17077 bxe_init_hw_common_chip(struct bxe_softc *sc) 17078 { 17079 int rc = bxe_init_hw_common(sc); 17080 17081 if (rc) { 17082 BLOGE(sc, "bxe_init_hw_common failed rc=%d\n", rc); 17083 return (rc); 17084 } 17085 17086 /* In E2 2-PORT mode, same ext phy is used for the two paths */ 17087 if (!BXE_NOMCP(sc)) { 17088 bxe_common_init_phy(sc); 17089 } 17090 17091 return (0); 17092 } 17093 17094 static int 17095 bxe_init_hw_port(struct bxe_softc *sc) 17096 { 17097 int port = SC_PORT(sc); 17098 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0; 17099 uint32_t low, high; 17100 uint32_t val; 17101 17102 BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port); 17103 17104 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 17105 17106 ecore_init_block(sc, BLOCK_MISC, init_phase); 17107 ecore_init_block(sc, BLOCK_PXP, init_phase); 17108 ecore_init_block(sc, BLOCK_PXP2, init_phase); 17109 17110 /* 17111 * Timers bug workaround: disables the pf_master bit in pglue at 17112 * common phase, we need to enable it here before any dmae access are 17113 * attempted. Therefore we manually added the enable-master to the 17114 * port phase (it also happens in the function phase) 17115 */ 17116 if (!CHIP_IS_E1x(sc)) { 17117 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17118 } 17119 17120 ecore_init_block(sc, BLOCK_ATC, init_phase); 17121 ecore_init_block(sc, BLOCK_DMAE, init_phase); 17122 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); 17123 ecore_init_block(sc, BLOCK_QM, init_phase); 17124 17125 ecore_init_block(sc, BLOCK_TCM, init_phase); 17126 ecore_init_block(sc, BLOCK_UCM, init_phase); 17127 ecore_init_block(sc, BLOCK_CCM, init_phase); 17128 ecore_init_block(sc, BLOCK_XCM, init_phase); 17129 17130 /* QM cid (connection) count */ 17131 ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET); 17132 17133 if (CNIC_SUPPORT(sc)) { 17134 ecore_init_block(sc, BLOCK_TM, init_phase); 17135 REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20); 17136 REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31); 17137 } 17138 17139 ecore_init_block(sc, BLOCK_DORQ, init_phase); 17140 17141 ecore_init_block(sc, BLOCK_BRB1, init_phase); 17142 17143 if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) { 17144 if (IS_MF(sc)) { 17145 low = (BXE_ONE_PORT(sc) ? 160 : 246); 17146 } else if (sc->mtu > 4096) { 17147 if (BXE_ONE_PORT(sc)) { 17148 low = 160; 17149 } else { 17150 val = sc->mtu; 17151 /* (24*1024 + val*4)/256 */ 17152 low = (96 + (val / 64) + ((val % 64) ? 1 : 0)); 17153 } 17154 } else { 17155 low = (BXE_ONE_PORT(sc) ? 80 : 160); 17156 } 17157 high = (low + 56); /* 14*1024/256 */ 17158 REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low); 17159 REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high); 17160 } 17161 17162 if (CHIP_IS_MODE_4_PORT(sc)) { 17163 REG_WR(sc, SC_PORT(sc) ? 17164 BRB1_REG_MAC_GUARANTIED_1 : 17165 BRB1_REG_MAC_GUARANTIED_0, 40); 17166 } 17167 17168 ecore_init_block(sc, BLOCK_PRS, init_phase); 17169 if (CHIP_IS_E3B0(sc)) { 17170 if (IS_MF_AFEX(sc)) { 17171 /* configure headers for AFEX mode */ 17172 REG_WR(sc, SC_PORT(sc) ? 17173 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 17174 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE); 17175 REG_WR(sc, SC_PORT(sc) ? 17176 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 : 17177 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6); 17178 REG_WR(sc, SC_PORT(sc) ? 17179 PRS_REG_MUST_HAVE_HDRS_PORT_1 : 17180 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA); 17181 } else { 17182 /* Ovlan exists only if we are in multi-function + 17183 * switch-dependent mode, in switch-independent there 17184 * is no ovlan headers 17185 */ 17186 REG_WR(sc, SC_PORT(sc) ? 17187 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 17188 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 17189 (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6)); 17190 } 17191 } 17192 17193 ecore_init_block(sc, BLOCK_TSDM, init_phase); 17194 ecore_init_block(sc, BLOCK_CSDM, init_phase); 17195 ecore_init_block(sc, BLOCK_USDM, init_phase); 17196 ecore_init_block(sc, BLOCK_XSDM, init_phase); 17197 17198 ecore_init_block(sc, BLOCK_TSEM, init_phase); 17199 ecore_init_block(sc, BLOCK_USEM, init_phase); 17200 ecore_init_block(sc, BLOCK_CSEM, init_phase); 17201 ecore_init_block(sc, BLOCK_XSEM, init_phase); 17202 17203 ecore_init_block(sc, BLOCK_UPB, init_phase); 17204 ecore_init_block(sc, BLOCK_XPB, init_phase); 17205 17206 ecore_init_block(sc, BLOCK_PBF, init_phase); 17207 17208 if (CHIP_IS_E1x(sc)) { 17209 /* configure PBF to work without PAUSE mtu 9000 */ 17210 REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0); 17211 17212 /* update threshold */ 17213 REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16)); 17214 /* update init credit */ 17215 REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22); 17216 17217 /* probe changes */ 17218 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1); 17219 DELAY(50); 17220 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0); 17221 } 17222 17223 if (CNIC_SUPPORT(sc)) { 17224 ecore_init_block(sc, BLOCK_SRC, init_phase); 17225 } 17226 17227 ecore_init_block(sc, BLOCK_CDU, init_phase); 17228 ecore_init_block(sc, BLOCK_CFC, init_phase); 17229 17230 if (CHIP_IS_E1(sc)) { 17231 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 17232 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 17233 } 17234 ecore_init_block(sc, BLOCK_HC, init_phase); 17235 17236 ecore_init_block(sc, BLOCK_IGU, init_phase); 17237 17238 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); 17239 /* init aeu_mask_attn_func_0/1: 17240 * - SF mode: bits 3-7 are masked. only bits 0-2 are in use 17241 * - MF mode: bit 3 is masked. bits 0-2 are in use as in SF 17242 * bits 4-7 are used for "per vn group attention" */ 17243 val = IS_MF(sc) ? 0xF7 : 0x7; 17244 /* Enable DCBX attention for all but E1 */ 17245 val |= CHIP_IS_E1(sc) ? 0 : 0x10; 17246 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val); 17247 17248 ecore_init_block(sc, BLOCK_NIG, init_phase); 17249 17250 if (!CHIP_IS_E1x(sc)) { 17251 /* Bit-map indicating which L2 hdrs may appear after the 17252 * basic Ethernet header 17253 */ 17254 if (IS_MF_AFEX(sc)) { 17255 REG_WR(sc, SC_PORT(sc) ? 17256 NIG_REG_P1_HDRS_AFTER_BASIC : 17257 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE); 17258 } else { 17259 REG_WR(sc, SC_PORT(sc) ? 17260 NIG_REG_P1_HDRS_AFTER_BASIC : 17261 NIG_REG_P0_HDRS_AFTER_BASIC, 17262 IS_MF_SD(sc) ? 7 : 6); 17263 } 17264 17265 if (CHIP_IS_E3(sc)) { 17266 REG_WR(sc, SC_PORT(sc) ? 17267 NIG_REG_LLH1_MF_MODE : 17268 NIG_REG_LLH_MF_MODE, IS_MF(sc)); 17269 } 17270 } 17271 if (!CHIP_IS_E3(sc)) { 17272 REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1); 17273 } 17274 17275 if (!CHIP_IS_E1(sc)) { 17276 /* 0x2 disable mf_ov, 0x1 enable */ 17277 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4, 17278 (IS_MF_SD(sc) ? 0x1 : 0x2)); 17279 17280 if (!CHIP_IS_E1x(sc)) { 17281 val = 0; 17282 switch (sc->devinfo.mf_info.mf_mode) { 17283 case MULTI_FUNCTION_SD: 17284 val = 1; 17285 break; 17286 case MULTI_FUNCTION_SI: 17287 case MULTI_FUNCTION_AFEX: 17288 val = 2; 17289 break; 17290 } 17291 17292 REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE : 17293 NIG_REG_LLH0_CLS_TYPE), val); 17294 } 17295 REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0); 17296 REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0); 17297 REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1); 17298 } 17299 17300 /* If SPIO5 is set to generate interrupts, enable it for this port */ 17301 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); 17302 if (val & MISC_SPIO_SPIO5) { 17303 uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 17304 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 17305 val = REG_RD(sc, reg_addr); 17306 val |= AEU_INPUTS_ATTN_BITS_SPIO5; 17307 REG_WR(sc, reg_addr, val); 17308 } 17309 17310 return (0); 17311 } 17312 17313 static uint32_t 17314 bxe_flr_clnup_reg_poll(struct bxe_softc *sc, 17315 uint32_t reg, 17316 uint32_t expected, 17317 uint32_t poll_count) 17318 { 17319 uint32_t cur_cnt = poll_count; 17320 uint32_t val; 17321 17322 while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) { 17323 DELAY(FLR_WAIT_INTERVAL); 17324 } 17325 17326 return (val); 17327 } 17328 17329 static int 17330 bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc, 17331 uint32_t reg, 17332 char *msg, 17333 uint32_t poll_cnt) 17334 { 17335 uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt); 17336 17337 if (val != 0) { 17338 BLOGE(sc, "%s usage count=%d\n", msg, val); 17339 return (1); 17340 } 17341 17342 return (0); 17343 } 17344 17345 /* Common routines with VF FLR cleanup */ 17346 static uint32_t 17347 bxe_flr_clnup_poll_count(struct bxe_softc *sc) 17348 { 17349 /* adjust polling timeout */ 17350 if (CHIP_REV_IS_EMUL(sc)) { 17351 return (FLR_POLL_CNT * 2000); 17352 } 17353 17354 if (CHIP_REV_IS_FPGA(sc)) { 17355 return (FLR_POLL_CNT * 120); 17356 } 17357 17358 return (FLR_POLL_CNT); 17359 } 17360 17361 static int 17362 bxe_poll_hw_usage_counters(struct bxe_softc *sc, 17363 uint32_t poll_cnt) 17364 { 17365 /* wait for CFC PF usage-counter to zero (includes all the VFs) */ 17366 if (bxe_flr_clnup_poll_hw_counter(sc, 17367 CFC_REG_NUM_LCIDS_INSIDE_PF, 17368 "CFC PF usage counter timed out", 17369 poll_cnt)) { 17370 return (1); 17371 } 17372 17373 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */ 17374 if (bxe_flr_clnup_poll_hw_counter(sc, 17375 DORQ_REG_PF_USAGE_CNT, 17376 "DQ PF usage counter timed out", 17377 poll_cnt)) { 17378 return (1); 17379 } 17380 17381 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */ 17382 if (bxe_flr_clnup_poll_hw_counter(sc, 17383 QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc), 17384 "QM PF usage counter timed out", 17385 poll_cnt)) { 17386 return (1); 17387 } 17388 17389 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */ 17390 if (bxe_flr_clnup_poll_hw_counter(sc, 17391 TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc), 17392 "Timers VNIC usage counter timed out", 17393 poll_cnt)) { 17394 return (1); 17395 } 17396 17397 if (bxe_flr_clnup_poll_hw_counter(sc, 17398 TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc), 17399 "Timers NUM_SCANS usage counter timed out", 17400 poll_cnt)) { 17401 return (1); 17402 } 17403 17404 /* Wait DMAE PF usage counter to zero */ 17405 if (bxe_flr_clnup_poll_hw_counter(sc, 17406 dmae_reg_go_c[INIT_DMAE_C(sc)], 17407 "DMAE dommand register timed out", 17408 poll_cnt)) { 17409 return (1); 17410 } 17411 17412 return (0); 17413 } 17414 17415 #define OP_GEN_PARAM(param) \ 17416 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM) 17417 #define OP_GEN_TYPE(type) \ 17418 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE) 17419 #define OP_GEN_AGG_VECT(index) \ 17420 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX) 17421 17422 static int 17423 bxe_send_final_clnup(struct bxe_softc *sc, 17424 uint8_t clnup_func, 17425 uint32_t poll_cnt) 17426 { 17427 uint32_t op_gen_command = 0; 17428 uint32_t comp_addr = (BAR_CSTRORM_INTMEM + 17429 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func)); 17430 int ret = 0; 17431 17432 if (REG_RD(sc, comp_addr)) { 17433 BLOGE(sc, "Cleanup complete was not 0 before sending\n"); 17434 return (1); 17435 } 17436 17437 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX); 17438 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE); 17439 op_gen_command |= OP_GEN_AGG_VECT(clnup_func); 17440 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT; 17441 17442 BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n"); 17443 REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command); 17444 17445 if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) { 17446 BLOGE(sc, "FW final cleanup did not succeed\n"); 17447 BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n", 17448 (REG_RD(sc, comp_addr))); 17449 bxe_panic(sc, ("FLR cleanup failed\n")); 17450 return (1); 17451 } 17452 17453 /* Zero completion for nxt FLR */ 17454 REG_WR(sc, comp_addr, 0); 17455 17456 return (ret); 17457 } 17458 17459 static void 17460 bxe_pbf_pN_buf_flushed(struct bxe_softc *sc, 17461 struct pbf_pN_buf_regs *regs, 17462 uint32_t poll_count) 17463 { 17464 uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start; 17465 uint32_t cur_cnt = poll_count; 17466 17467 crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed); 17468 crd = crd_start = REG_RD(sc, regs->crd); 17469 init_crd = REG_RD(sc, regs->init_crd); 17470 17471 BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd); 17472 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : s:%x\n", regs->pN, crd); 17473 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed); 17474 17475 while ((crd != init_crd) && 17476 ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) < 17477 (init_crd - crd_start))) { 17478 if (cur_cnt--) { 17479 DELAY(FLR_WAIT_INTERVAL); 17480 crd = REG_RD(sc, regs->crd); 17481 crd_freed = REG_RD(sc, regs->crd_freed); 17482 } else { 17483 BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN); 17484 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : c:%x\n", regs->pN, crd); 17485 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed); 17486 break; 17487 } 17488 } 17489 17490 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n", 17491 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 17492 } 17493 17494 static void 17495 bxe_pbf_pN_cmd_flushed(struct bxe_softc *sc, 17496 struct pbf_pN_cmd_regs *regs, 17497 uint32_t poll_count) 17498 { 17499 uint32_t occup, to_free, freed, freed_start; 17500 uint32_t cur_cnt = poll_count; 17501 17502 occup = to_free = REG_RD(sc, regs->lines_occup); 17503 freed = freed_start = REG_RD(sc, regs->lines_freed); 17504 17505 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 17506 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 17507 17508 while (occup && 17509 ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) { 17510 if (cur_cnt--) { 17511 DELAY(FLR_WAIT_INTERVAL); 17512 occup = REG_RD(sc, regs->lines_occup); 17513 freed = REG_RD(sc, regs->lines_freed); 17514 } else { 17515 BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN); 17516 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 17517 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 17518 break; 17519 } 17520 } 17521 17522 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n", 17523 poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 17524 } 17525 17526 static void 17527 bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count) 17528 { 17529 struct pbf_pN_cmd_regs cmd_regs[] = { 17530 {0, (CHIP_IS_E3B0(sc)) ? 17531 PBF_REG_TQ_OCCUPANCY_Q0 : 17532 PBF_REG_P0_TQ_OCCUPANCY, 17533 (CHIP_IS_E3B0(sc)) ? 17534 PBF_REG_TQ_LINES_FREED_CNT_Q0 : 17535 PBF_REG_P0_TQ_LINES_FREED_CNT}, 17536 {1, (CHIP_IS_E3B0(sc)) ? 17537 PBF_REG_TQ_OCCUPANCY_Q1 : 17538 PBF_REG_P1_TQ_OCCUPANCY, 17539 (CHIP_IS_E3B0(sc)) ? 17540 PBF_REG_TQ_LINES_FREED_CNT_Q1 : 17541 PBF_REG_P1_TQ_LINES_FREED_CNT}, 17542 {4, (CHIP_IS_E3B0(sc)) ? 17543 PBF_REG_TQ_OCCUPANCY_LB_Q : 17544 PBF_REG_P4_TQ_OCCUPANCY, 17545 (CHIP_IS_E3B0(sc)) ? 17546 PBF_REG_TQ_LINES_FREED_CNT_LB_Q : 17547 PBF_REG_P4_TQ_LINES_FREED_CNT} 17548 }; 17549 17550 struct pbf_pN_buf_regs buf_regs[] = { 17551 {0, (CHIP_IS_E3B0(sc)) ? 17552 PBF_REG_INIT_CRD_Q0 : 17553 PBF_REG_P0_INIT_CRD , 17554 (CHIP_IS_E3B0(sc)) ? 17555 PBF_REG_CREDIT_Q0 : 17556 PBF_REG_P0_CREDIT, 17557 (CHIP_IS_E3B0(sc)) ? 17558 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 : 17559 PBF_REG_P0_INTERNAL_CRD_FREED_CNT}, 17560 {1, (CHIP_IS_E3B0(sc)) ? 17561 PBF_REG_INIT_CRD_Q1 : 17562 PBF_REG_P1_INIT_CRD, 17563 (CHIP_IS_E3B0(sc)) ? 17564 PBF_REG_CREDIT_Q1 : 17565 PBF_REG_P1_CREDIT, 17566 (CHIP_IS_E3B0(sc)) ? 17567 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 : 17568 PBF_REG_P1_INTERNAL_CRD_FREED_CNT}, 17569 {4, (CHIP_IS_E3B0(sc)) ? 17570 PBF_REG_INIT_CRD_LB_Q : 17571 PBF_REG_P4_INIT_CRD, 17572 (CHIP_IS_E3B0(sc)) ? 17573 PBF_REG_CREDIT_LB_Q : 17574 PBF_REG_P4_CREDIT, 17575 (CHIP_IS_E3B0(sc)) ? 17576 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q : 17577 PBF_REG_P4_INTERNAL_CRD_FREED_CNT}, 17578 }; 17579 17580 int i; 17581 17582 /* Verify the command queues are flushed P0, P1, P4 */ 17583 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) { 17584 bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count); 17585 } 17586 17587 /* Verify the transmission buffers are flushed P0, P1, P4 */ 17588 for (i = 0; i < ARRAY_SIZE(buf_regs); i++) { 17589 bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count); 17590 } 17591 } 17592 17593 static void 17594 bxe_hw_enable_status(struct bxe_softc *sc) 17595 { 17596 uint32_t val; 17597 17598 val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF); 17599 BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val); 17600 17601 val = REG_RD(sc, PBF_REG_DISABLE_PF); 17602 BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val); 17603 17604 val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN); 17605 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val); 17606 17607 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN); 17608 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val); 17609 17610 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK); 17611 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val); 17612 17613 val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR); 17614 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val); 17615 17616 val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR); 17617 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val); 17618 17619 val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); 17620 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val); 17621 } 17622 17623 static int 17624 bxe_pf_flr_clnup(struct bxe_softc *sc) 17625 { 17626 uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc); 17627 17628 BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc)); 17629 17630 /* Re-enable PF target read access */ 17631 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 17632 17633 /* Poll HW usage counters */ 17634 BLOGD(sc, DBG_LOAD, "Polling usage counters\n"); 17635 if (bxe_poll_hw_usage_counters(sc, poll_cnt)) { 17636 return (-1); 17637 } 17638 17639 /* Zero the igu 'trailing edge' and 'leading edge' */ 17640 17641 /* Send the FW cleanup command */ 17642 if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) { 17643 return (-1); 17644 } 17645 17646 /* ATC cleanup */ 17647 17648 /* Verify TX hw is flushed */ 17649 bxe_tx_hw_flushed(sc, poll_cnt); 17650 17651 /* Wait 100ms (not adjusted according to platform) */ 17652 DELAY(100000); 17653 17654 /* Verify no pending pci transactions */ 17655 if (bxe_is_pcie_pending(sc)) { 17656 BLOGE(sc, "PCIE Transactions still pending\n"); 17657 } 17658 17659 /* Debug */ 17660 bxe_hw_enable_status(sc); 17661 17662 /* 17663 * Master enable - Due to WB DMAE writes performed before this 17664 * register is re-initialized as part of the regular function init 17665 */ 17666 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17667 17668 return (0); 17669 } 17670 17671 static int 17672 bxe_init_hw_func(struct bxe_softc *sc) 17673 { 17674 int port = SC_PORT(sc); 17675 int func = SC_FUNC(sc); 17676 int init_phase = PHASE_PF0 + func; 17677 struct ecore_ilt *ilt = sc->ilt; 17678 uint16_t cdu_ilt_start; 17679 uint32_t addr, val; 17680 uint32_t main_mem_base, main_mem_size, main_mem_prty_clr; 17681 int i, main_mem_width, rc; 17682 17683 BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func); 17684 17685 /* FLR cleanup */ 17686 if (!CHIP_IS_E1x(sc)) { 17687 rc = bxe_pf_flr_clnup(sc); 17688 if (rc) { 17689 BLOGE(sc, "FLR cleanup failed!\n"); 17690 // XXX bxe_fw_dump(sc); 17691 // XXX bxe_idle_chk(sc); 17692 return (rc); 17693 } 17694 } 17695 17696 /* set MSI reconfigure capability */ 17697 if (sc->devinfo.int_block == INT_BLOCK_HC) { 17698 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0); 17699 val = REG_RD(sc, addr); 17700 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0; 17701 REG_WR(sc, addr, val); 17702 } 17703 17704 ecore_init_block(sc, BLOCK_PXP, init_phase); 17705 ecore_init_block(sc, BLOCK_PXP2, init_phase); 17706 17707 ilt = sc->ilt; 17708 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 17709 17710 for (i = 0; i < L2_ILT_LINES(sc); i++) { 17711 ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt; 17712 ilt->lines[cdu_ilt_start + i].page_mapping = 17713 sc->context[i].vcxt_dma.paddr; 17714 ilt->lines[cdu_ilt_start + i].size = sc->context[i].size; 17715 } 17716 ecore_ilt_init_op(sc, INITOP_SET); 17717 17718 /* Set NIC mode */ 17719 REG_WR(sc, PRS_REG_NIC_MODE, 1); 17720 BLOGD(sc, DBG_LOAD, "NIC MODE configured\n"); 17721 17722 if (!CHIP_IS_E1x(sc)) { 17723 uint32_t pf_conf = IGU_PF_CONF_FUNC_EN; 17724 17725 /* Turn on a single ISR mode in IGU if driver is going to use 17726 * INT#x or MSI 17727 */ 17728 if (sc->interrupt_mode != INTR_MODE_MSIX) { 17729 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; 17730 } 17731 17732 /* 17733 * Timers workaround bug: function init part. 17734 * Need to wait 20msec after initializing ILT, 17735 * needed to make sure there are no requests in 17736 * one of the PXP internal queues with "old" ILT addresses 17737 */ 17738 DELAY(20000); 17739 17740 /* 17741 * Master enable - Due to WB DMAE writes performed before this 17742 * register is re-initialized as part of the regular function 17743 * init 17744 */ 17745 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17746 /* Enable the function in IGU */ 17747 REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf); 17748 } 17749 17750 sc->dmae_ready = 1; 17751 17752 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); 17753 17754 if (!CHIP_IS_E1x(sc)) 17755 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func); 17756 17757 ecore_init_block(sc, BLOCK_ATC, init_phase); 17758 ecore_init_block(sc, BLOCK_DMAE, init_phase); 17759 ecore_init_block(sc, BLOCK_NIG, init_phase); 17760 ecore_init_block(sc, BLOCK_SRC, init_phase); 17761 ecore_init_block(sc, BLOCK_MISC, init_phase); 17762 ecore_init_block(sc, BLOCK_TCM, init_phase); 17763 ecore_init_block(sc, BLOCK_UCM, init_phase); 17764 ecore_init_block(sc, BLOCK_CCM, init_phase); 17765 ecore_init_block(sc, BLOCK_XCM, init_phase); 17766 ecore_init_block(sc, BLOCK_TSEM, init_phase); 17767 ecore_init_block(sc, BLOCK_USEM, init_phase); 17768 ecore_init_block(sc, BLOCK_CSEM, init_phase); 17769 ecore_init_block(sc, BLOCK_XSEM, init_phase); 17770 17771 if (!CHIP_IS_E1x(sc)) 17772 REG_WR(sc, QM_REG_PF_EN, 1); 17773 17774 if (!CHIP_IS_E1x(sc)) { 17775 REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 17776 REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 17777 REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 17778 REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 17779 } 17780 ecore_init_block(sc, BLOCK_QM, init_phase); 17781 17782 ecore_init_block(sc, BLOCK_TM, init_phase); 17783 ecore_init_block(sc, BLOCK_DORQ, init_phase); 17784 17785 bxe_iov_init_dq(sc); 17786 17787 ecore_init_block(sc, BLOCK_BRB1, init_phase); 17788 ecore_init_block(sc, BLOCK_PRS, init_phase); 17789 ecore_init_block(sc, BLOCK_TSDM, init_phase); 17790 ecore_init_block(sc, BLOCK_CSDM, init_phase); 17791 ecore_init_block(sc, BLOCK_USDM, init_phase); 17792 ecore_init_block(sc, BLOCK_XSDM, init_phase); 17793 ecore_init_block(sc, BLOCK_UPB, init_phase); 17794 ecore_init_block(sc, BLOCK_XPB, init_phase); 17795 ecore_init_block(sc, BLOCK_PBF, init_phase); 17796 if (!CHIP_IS_E1x(sc)) 17797 REG_WR(sc, PBF_REG_DISABLE_PF, 0); 17798 17799 ecore_init_block(sc, BLOCK_CDU, init_phase); 17800 17801 ecore_init_block(sc, BLOCK_CFC, init_phase); 17802 17803 if (!CHIP_IS_E1x(sc)) 17804 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1); 17805 17806 if (IS_MF(sc)) { 17807 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); 17808 REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc)); 17809 } 17810 17811 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); 17812 17813 /* HC init per function */ 17814 if (sc->devinfo.int_block == INT_BLOCK_HC) { 17815 if (CHIP_IS_E1H(sc)) { 17816 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 17817 17818 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 17819 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 17820 } 17821 ecore_init_block(sc, BLOCK_HC, init_phase); 17822 17823 } else { 17824 int num_segs, sb_idx, prod_offset; 17825 17826 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 17827 17828 if (!CHIP_IS_E1x(sc)) { 17829 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); 17830 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); 17831 } 17832 17833 ecore_init_block(sc, BLOCK_IGU, init_phase); 17834 17835 if (!CHIP_IS_E1x(sc)) { 17836 int dsb_idx = 0; 17837 /** 17838 * Producer memory: 17839 * E2 mode: address 0-135 match to the mapping memory; 17840 * 136 - PF0 default prod; 137 - PF1 default prod; 17841 * 138 - PF2 default prod; 139 - PF3 default prod; 17842 * 140 - PF0 attn prod; 141 - PF1 attn prod; 17843 * 142 - PF2 attn prod; 143 - PF3 attn prod; 17844 * 144-147 reserved. 17845 * 17846 * E1.5 mode - In backward compatible mode; 17847 * for non default SB; each even line in the memory 17848 * holds the U producer and each odd line hold 17849 * the C producer. The first 128 producers are for 17850 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20 17851 * producers are for the DSB for each PF. 17852 * Each PF has five segments: (the order inside each 17853 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods; 17854 * 132-135 C prods; 136-139 X prods; 140-143 T prods; 17855 * 144-147 attn prods; 17856 */ 17857 /* non-default-status-blocks */ 17858 num_segs = CHIP_INT_MODE_IS_BC(sc) ? 17859 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS; 17860 for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) { 17861 prod_offset = (sc->igu_base_sb + sb_idx) * 17862 num_segs; 17863 17864 for (i = 0; i < num_segs; i++) { 17865 addr = IGU_REG_PROD_CONS_MEMORY + 17866 (prod_offset + i) * 4; 17867 REG_WR(sc, addr, 0); 17868 } 17869 /* send consumer update with value 0 */ 17870 bxe_ack_sb(sc, sc->igu_base_sb + sb_idx, 17871 USTORM_ID, 0, IGU_INT_NOP, 1); 17872 bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx); 17873 } 17874 17875 /* default-status-blocks */ 17876 num_segs = CHIP_INT_MODE_IS_BC(sc) ? 17877 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS; 17878 17879 if (CHIP_IS_MODE_4_PORT(sc)) 17880 dsb_idx = SC_FUNC(sc); 17881 else 17882 dsb_idx = SC_VN(sc); 17883 17884 prod_offset = (CHIP_INT_MODE_IS_BC(sc) ? 17885 IGU_BC_BASE_DSB_PROD + dsb_idx : 17886 IGU_NORM_BASE_DSB_PROD + dsb_idx); 17887 17888 /* 17889 * igu prods come in chunks of E1HVN_MAX (4) - 17890 * does not matters what is the current chip mode 17891 */ 17892 for (i = 0; i < (num_segs * E1HVN_MAX); 17893 i += E1HVN_MAX) { 17894 addr = IGU_REG_PROD_CONS_MEMORY + 17895 (prod_offset + i)*4; 17896 REG_WR(sc, addr, 0); 17897 } 17898 /* send consumer update with 0 */ 17899 if (CHIP_INT_MODE_IS_BC(sc)) { 17900 bxe_ack_sb(sc, sc->igu_dsb_id, 17901 USTORM_ID, 0, IGU_INT_NOP, 1); 17902 bxe_ack_sb(sc, sc->igu_dsb_id, 17903 CSTORM_ID, 0, IGU_INT_NOP, 1); 17904 bxe_ack_sb(sc, sc->igu_dsb_id, 17905 XSTORM_ID, 0, IGU_INT_NOP, 1); 17906 bxe_ack_sb(sc, sc->igu_dsb_id, 17907 TSTORM_ID, 0, IGU_INT_NOP, 1); 17908 bxe_ack_sb(sc, sc->igu_dsb_id, 17909 ATTENTION_ID, 0, IGU_INT_NOP, 1); 17910 } else { 17911 bxe_ack_sb(sc, sc->igu_dsb_id, 17912 USTORM_ID, 0, IGU_INT_NOP, 1); 17913 bxe_ack_sb(sc, sc->igu_dsb_id, 17914 ATTENTION_ID, 0, IGU_INT_NOP, 1); 17915 } 17916 bxe_igu_clear_sb(sc, sc->igu_dsb_id); 17917 17918 /* !!! these should become driver const once 17919 rf-tool supports split-68 const */ 17920 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); 17921 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); 17922 REG_WR(sc, IGU_REG_SB_MASK_LSB, 0); 17923 REG_WR(sc, IGU_REG_SB_MASK_MSB, 0); 17924 REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0); 17925 REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0); 17926 } 17927 } 17928 17929 /* Reset PCIE errors for debug */ 17930 REG_WR(sc, 0x2114, 0xffffffff); 17931 REG_WR(sc, 0x2120, 0xffffffff); 17932 17933 if (CHIP_IS_E1x(sc)) { 17934 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/ 17935 main_mem_base = HC_REG_MAIN_MEMORY + 17936 SC_PORT(sc) * (main_mem_size * 4); 17937 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR; 17938 main_mem_width = 8; 17939 17940 val = REG_RD(sc, main_mem_prty_clr); 17941 if (val) { 17942 BLOGD(sc, DBG_LOAD, 17943 "Parity errors in HC block during function init (0x%x)!\n", 17944 val); 17945 } 17946 17947 /* Clear "false" parity errors in MSI-X table */ 17948 for (i = main_mem_base; 17949 i < main_mem_base + main_mem_size * 4; 17950 i += main_mem_width) { 17951 bxe_read_dmae(sc, i, main_mem_width / 4); 17952 bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data), 17953 i, main_mem_width / 4); 17954 } 17955 /* Clear HC parity attention */ 17956 REG_RD(sc, main_mem_prty_clr); 17957 } 17958 17959 #if 1 17960 /* Enable STORMs SP logging */ 17961 REG_WR8(sc, BAR_USTRORM_INTMEM + 17962 USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 17963 REG_WR8(sc, BAR_TSTRORM_INTMEM + 17964 TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 17965 REG_WR8(sc, BAR_CSTRORM_INTMEM + 17966 CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 17967 REG_WR8(sc, BAR_XSTRORM_INTMEM + 17968 XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 17969 #endif 17970 17971 elink_phy_probe(&sc->link_params); 17972 17973 return (0); 17974 } 17975 17976 static void 17977 bxe_link_reset(struct bxe_softc *sc) 17978 { 17979 if (!BXE_NOMCP(sc)) { 17980 bxe_acquire_phy_lock(sc); 17981 elink_lfa_reset(&sc->link_params, &sc->link_vars); 17982 bxe_release_phy_lock(sc); 17983 } else { 17984 if (!CHIP_REV_IS_SLOW(sc)) { 17985 BLOGW(sc, "Bootcode is missing - cannot reset link\n"); 17986 } 17987 } 17988 } 17989 17990 static void 17991 bxe_reset_port(struct bxe_softc *sc) 17992 { 17993 int port = SC_PORT(sc); 17994 uint32_t val; 17995 17996 /* reset physical Link */ 17997 bxe_link_reset(sc); 17998 17999 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 18000 18001 /* Do not rcv packets to BRB */ 18002 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0); 18003 /* Do not direct rcv packets that are not for MCP to the BRB */ 18004 REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP : 18005 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0); 18006 18007 /* Configure AEU */ 18008 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0); 18009 18010 DELAY(100000); 18011 18012 /* Check for BRB port occupancy */ 18013 val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4); 18014 if (val) { 18015 BLOGD(sc, DBG_LOAD, 18016 "BRB1 is not empty, %d blocks are occupied\n", val); 18017 } 18018 18019 /* TODO: Close Doorbell port? */ 18020 } 18021 18022 static void 18023 bxe_ilt_wr(struct bxe_softc *sc, 18024 uint32_t index, 18025 bus_addr_t addr) 18026 { 18027 int reg; 18028 uint32_t wb_write[2]; 18029 18030 if (CHIP_IS_E1(sc)) { 18031 reg = PXP2_REG_RQ_ONCHIP_AT + index*8; 18032 } else { 18033 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8; 18034 } 18035 18036 wb_write[0] = ONCHIP_ADDR1(addr); 18037 wb_write[1] = ONCHIP_ADDR2(addr); 18038 REG_WR_DMAE(sc, reg, wb_write, 2); 18039 } 18040 18041 static void 18042 bxe_clear_func_ilt(struct bxe_softc *sc, 18043 uint32_t func) 18044 { 18045 uint32_t i, base = FUNC_ILT_BASE(func); 18046 for (i = base; i < base + ILT_PER_FUNC; i++) { 18047 bxe_ilt_wr(sc, i, 0); 18048 } 18049 } 18050 18051 static void 18052 bxe_reset_func(struct bxe_softc *sc) 18053 { 18054 struct bxe_fastpath *fp; 18055 int port = SC_PORT(sc); 18056 int func = SC_FUNC(sc); 18057 int i; 18058 18059 /* Disable the function in the FW */ 18060 REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0); 18061 REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0); 18062 REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0); 18063 REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0); 18064 18065 /* FP SBs */ 18066 FOR_EACH_ETH_QUEUE(sc, i) { 18067 fp = &sc->fp[i]; 18068 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18069 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id), 18070 SB_DISABLED); 18071 } 18072 18073 /* SP SB */ 18074 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18075 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), 18076 SB_DISABLED); 18077 18078 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) { 18079 REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0); 18080 } 18081 18082 /* Configure IGU */ 18083 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18084 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 18085 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 18086 } else { 18087 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); 18088 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); 18089 } 18090 18091 if (CNIC_LOADED(sc)) { 18092 /* Disable Timer scan */ 18093 REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0); 18094 /* 18095 * Wait for at least 10ms and up to 2 second for the timers 18096 * scan to complete 18097 */ 18098 for (i = 0; i < 200; i++) { 18099 DELAY(10000); 18100 if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4)) 18101 break; 18102 } 18103 } 18104 18105 /* Clear ILT */ 18106 bxe_clear_func_ilt(sc, func); 18107 18108 /* 18109 * Timers workaround bug for E2: if this is vnic-3, 18110 * we need to set the entire ilt range for this timers. 18111 */ 18112 if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) { 18113 struct ilt_client_info ilt_cli; 18114 /* use dummy TM client */ 18115 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 18116 ilt_cli.start = 0; 18117 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 18118 ilt_cli.client_num = ILT_CLIENT_TM; 18119 18120 ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR); 18121 } 18122 18123 /* this assumes that reset_port() called before reset_func()*/ 18124 if (!CHIP_IS_E1x(sc)) { 18125 bxe_pf_disable(sc); 18126 } 18127 18128 sc->dmae_ready = 0; 18129 } 18130 18131 static int 18132 bxe_gunzip_init(struct bxe_softc *sc) 18133 { 18134 return (0); 18135 } 18136 18137 static void 18138 bxe_gunzip_end(struct bxe_softc *sc) 18139 { 18140 return; 18141 } 18142 18143 static int 18144 bxe_init_firmware(struct bxe_softc *sc) 18145 { 18146 if (CHIP_IS_E1(sc)) { 18147 ecore_init_e1_firmware(sc); 18148 sc->iro_array = e1_iro_arr; 18149 } else if (CHIP_IS_E1H(sc)) { 18150 ecore_init_e1h_firmware(sc); 18151 sc->iro_array = e1h_iro_arr; 18152 } else if (!CHIP_IS_E1x(sc)) { 18153 ecore_init_e2_firmware(sc); 18154 sc->iro_array = e2_iro_arr; 18155 } else { 18156 BLOGE(sc, "Unsupported chip revision\n"); 18157 return (-1); 18158 } 18159 18160 return (0); 18161 } 18162 18163 static void 18164 bxe_release_firmware(struct bxe_softc *sc) 18165 { 18166 /* Do nothing */ 18167 return; 18168 } 18169 18170 static int 18171 ecore_gunzip(struct bxe_softc *sc, 18172 const uint8_t *zbuf, 18173 int len) 18174 { 18175 /* XXX : Implement... */ 18176 BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n"); 18177 return (FALSE); 18178 } 18179 18180 static void 18181 ecore_reg_wr_ind(struct bxe_softc *sc, 18182 uint32_t addr, 18183 uint32_t val) 18184 { 18185 bxe_reg_wr_ind(sc, addr, val); 18186 } 18187 18188 static void 18189 ecore_write_dmae_phys_len(struct bxe_softc *sc, 18190 bus_addr_t phys_addr, 18191 uint32_t addr, 18192 uint32_t len) 18193 { 18194 bxe_write_dmae_phys_len(sc, phys_addr, addr, len); 18195 } 18196 18197 void 18198 ecore_storm_memset_struct(struct bxe_softc *sc, 18199 uint32_t addr, 18200 size_t size, 18201 uint32_t *data) 18202 { 18203 uint8_t i; 18204 for (i = 0; i < size/4; i++) { 18205 REG_WR(sc, addr + (i * 4), data[i]); 18206 } 18207 } 18208 18209 18210 /* 18211 * character device - ioctl interface definitions 18212 */ 18213 18214 18215 #include "bxe_dump.h" 18216 #include "bxe_ioctl.h" 18217 #include <sys/conf.h> 18218 18219 static int bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, 18220 struct thread *td); 18221 18222 static struct cdevsw bxe_cdevsw = { 18223 .d_version = D_VERSION, 18224 .d_ioctl = bxe_eioctl, 18225 .d_name = "bxecnic", 18226 }; 18227 18228 #define BXE_PATH(sc) (CHIP_IS_E1x(sc) ? 0 : (sc->pcie_func & 1)) 18229 18230 18231 #define DUMP_ALL_PRESETS 0x1FFF 18232 #define DUMP_MAX_PRESETS 13 18233 #define IS_E1_REG(chips) ((chips & DUMP_CHIP_E1) == DUMP_CHIP_E1) 18234 #define IS_E1H_REG(chips) ((chips & DUMP_CHIP_E1H) == DUMP_CHIP_E1H) 18235 #define IS_E2_REG(chips) ((chips & DUMP_CHIP_E2) == DUMP_CHIP_E2) 18236 #define IS_E3A0_REG(chips) ((chips & DUMP_CHIP_E3A0) == DUMP_CHIP_E3A0) 18237 #define IS_E3B0_REG(chips) ((chips & DUMP_CHIP_E3B0) == DUMP_CHIP_E3B0) 18238 18239 #define IS_REG_IN_PRESET(presets, idx) \ 18240 ((presets & (1 << (idx-1))) == (1 << (idx-1))) 18241 18242 18243 static int 18244 bxe_get_preset_regs_len(struct bxe_softc *sc, uint32_t preset) 18245 { 18246 if (CHIP_IS_E1(sc)) 18247 return dump_num_registers[0][preset-1]; 18248 else if (CHIP_IS_E1H(sc)) 18249 return dump_num_registers[1][preset-1]; 18250 else if (CHIP_IS_E2(sc)) 18251 return dump_num_registers[2][preset-1]; 18252 else if (CHIP_IS_E3A0(sc)) 18253 return dump_num_registers[3][preset-1]; 18254 else if (CHIP_IS_E3B0(sc)) 18255 return dump_num_registers[4][preset-1]; 18256 else 18257 return 0; 18258 } 18259 18260 static int 18261 bxe_get_total_regs_len32(struct bxe_softc *sc) 18262 { 18263 uint32_t preset_idx; 18264 int regdump_len32 = 0; 18265 18266 18267 /* Calculate the total preset regs length */ 18268 for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) { 18269 regdump_len32 += bxe_get_preset_regs_len(sc, preset_idx); 18270 } 18271 18272 return regdump_len32; 18273 } 18274 18275 static const uint32_t * 18276 __bxe_get_page_addr_ar(struct bxe_softc *sc) 18277 { 18278 if (CHIP_IS_E2(sc)) 18279 return page_vals_e2; 18280 else if (CHIP_IS_E3(sc)) 18281 return page_vals_e3; 18282 else 18283 return NULL; 18284 } 18285 18286 static uint32_t 18287 __bxe_get_page_reg_num(struct bxe_softc *sc) 18288 { 18289 if (CHIP_IS_E2(sc)) 18290 return PAGE_MODE_VALUES_E2; 18291 else if (CHIP_IS_E3(sc)) 18292 return PAGE_MODE_VALUES_E3; 18293 else 18294 return 0; 18295 } 18296 18297 static const uint32_t * 18298 __bxe_get_page_write_ar(struct bxe_softc *sc) 18299 { 18300 if (CHIP_IS_E2(sc)) 18301 return page_write_regs_e2; 18302 else if (CHIP_IS_E3(sc)) 18303 return page_write_regs_e3; 18304 else 18305 return NULL; 18306 } 18307 18308 static uint32_t 18309 __bxe_get_page_write_num(struct bxe_softc *sc) 18310 { 18311 if (CHIP_IS_E2(sc)) 18312 return PAGE_WRITE_REGS_E2; 18313 else if (CHIP_IS_E3(sc)) 18314 return PAGE_WRITE_REGS_E3; 18315 else 18316 return 0; 18317 } 18318 18319 static const struct reg_addr * 18320 __bxe_get_page_read_ar(struct bxe_softc *sc) 18321 { 18322 if (CHIP_IS_E2(sc)) 18323 return page_read_regs_e2; 18324 else if (CHIP_IS_E3(sc)) 18325 return page_read_regs_e3; 18326 else 18327 return NULL; 18328 } 18329 18330 static uint32_t 18331 __bxe_get_page_read_num(struct bxe_softc *sc) 18332 { 18333 if (CHIP_IS_E2(sc)) 18334 return PAGE_READ_REGS_E2; 18335 else if (CHIP_IS_E3(sc)) 18336 return PAGE_READ_REGS_E3; 18337 else 18338 return 0; 18339 } 18340 18341 static bool 18342 bxe_is_reg_in_chip(struct bxe_softc *sc, const struct reg_addr *reg_info) 18343 { 18344 if (CHIP_IS_E1(sc)) 18345 return IS_E1_REG(reg_info->chips); 18346 else if (CHIP_IS_E1H(sc)) 18347 return IS_E1H_REG(reg_info->chips); 18348 else if (CHIP_IS_E2(sc)) 18349 return IS_E2_REG(reg_info->chips); 18350 else if (CHIP_IS_E3A0(sc)) 18351 return IS_E3A0_REG(reg_info->chips); 18352 else if (CHIP_IS_E3B0(sc)) 18353 return IS_E3B0_REG(reg_info->chips); 18354 else 18355 return 0; 18356 } 18357 18358 static bool 18359 bxe_is_wreg_in_chip(struct bxe_softc *sc, const struct wreg_addr *wreg_info) 18360 { 18361 if (CHIP_IS_E1(sc)) 18362 return IS_E1_REG(wreg_info->chips); 18363 else if (CHIP_IS_E1H(sc)) 18364 return IS_E1H_REG(wreg_info->chips); 18365 else if (CHIP_IS_E2(sc)) 18366 return IS_E2_REG(wreg_info->chips); 18367 else if (CHIP_IS_E3A0(sc)) 18368 return IS_E3A0_REG(wreg_info->chips); 18369 else if (CHIP_IS_E3B0(sc)) 18370 return IS_E3B0_REG(wreg_info->chips); 18371 else 18372 return 0; 18373 } 18374 18375 /** 18376 * bxe_read_pages_regs - read "paged" registers 18377 * 18378 * @bp device handle 18379 * @p output buffer 18380 * 18381 * Reads "paged" memories: memories that may only be read by first writing to a 18382 * specific address ("write address") and then reading from a specific address 18383 * ("read address"). There may be more than one write address per "page" and 18384 * more than one read address per write address. 18385 */ 18386 static void 18387 bxe_read_pages_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset) 18388 { 18389 uint32_t i, j, k, n; 18390 18391 /* addresses of the paged registers */ 18392 const uint32_t *page_addr = __bxe_get_page_addr_ar(sc); 18393 /* number of paged registers */ 18394 int num_pages = __bxe_get_page_reg_num(sc); 18395 /* write addresses */ 18396 const uint32_t *write_addr = __bxe_get_page_write_ar(sc); 18397 /* number of write addresses */ 18398 int write_num = __bxe_get_page_write_num(sc); 18399 /* read addresses info */ 18400 const struct reg_addr *read_addr = __bxe_get_page_read_ar(sc); 18401 /* number of read addresses */ 18402 int read_num = __bxe_get_page_read_num(sc); 18403 uint32_t addr, size; 18404 18405 for (i = 0; i < num_pages; i++) { 18406 for (j = 0; j < write_num; j++) { 18407 REG_WR(sc, write_addr[j], page_addr[i]); 18408 18409 for (k = 0; k < read_num; k++) { 18410 if (IS_REG_IN_PRESET(read_addr[k].presets, preset)) { 18411 size = read_addr[k].size; 18412 for (n = 0; n < size; n++) { 18413 addr = read_addr[k].addr + n*4; 18414 *p++ = REG_RD(sc, addr); 18415 } 18416 } 18417 } 18418 } 18419 } 18420 return; 18421 } 18422 18423 18424 static int 18425 bxe_get_preset_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset) 18426 { 18427 uint32_t i, j, addr; 18428 const struct wreg_addr *wreg_addr_p = NULL; 18429 18430 if (CHIP_IS_E1(sc)) 18431 wreg_addr_p = &wreg_addr_e1; 18432 else if (CHIP_IS_E1H(sc)) 18433 wreg_addr_p = &wreg_addr_e1h; 18434 else if (CHIP_IS_E2(sc)) 18435 wreg_addr_p = &wreg_addr_e2; 18436 else if (CHIP_IS_E3A0(sc)) 18437 wreg_addr_p = &wreg_addr_e3; 18438 else if (CHIP_IS_E3B0(sc)) 18439 wreg_addr_p = &wreg_addr_e3b0; 18440 else 18441 return (-1); 18442 18443 /* Read the idle_chk registers */ 18444 for (i = 0; i < IDLE_REGS_COUNT; i++) { 18445 if (bxe_is_reg_in_chip(sc, &idle_reg_addrs[i]) && 18446 IS_REG_IN_PRESET(idle_reg_addrs[i].presets, preset)) { 18447 for (j = 0; j < idle_reg_addrs[i].size; j++) 18448 *p++ = REG_RD(sc, idle_reg_addrs[i].addr + j*4); 18449 } 18450 } 18451 18452 /* Read the regular registers */ 18453 for (i = 0; i < REGS_COUNT; i++) { 18454 if (bxe_is_reg_in_chip(sc, ®_addrs[i]) && 18455 IS_REG_IN_PRESET(reg_addrs[i].presets, preset)) { 18456 for (j = 0; j < reg_addrs[i].size; j++) 18457 *p++ = REG_RD(sc, reg_addrs[i].addr + j*4); 18458 } 18459 } 18460 18461 /* Read the CAM registers */ 18462 if (bxe_is_wreg_in_chip(sc, wreg_addr_p) && 18463 IS_REG_IN_PRESET(wreg_addr_p->presets, preset)) { 18464 for (i = 0; i < wreg_addr_p->size; i++) { 18465 *p++ = REG_RD(sc, wreg_addr_p->addr + i*4); 18466 18467 /* In case of wreg_addr register, read additional 18468 registers from read_regs array 18469 */ 18470 for (j = 0; j < wreg_addr_p->read_regs_count; j++) { 18471 addr = *(wreg_addr_p->read_regs); 18472 *p++ = REG_RD(sc, addr + j*4); 18473 } 18474 } 18475 } 18476 18477 /* Paged registers are supported in E2 & E3 only */ 18478 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) { 18479 /* Read "paged" registers */ 18480 bxe_read_pages_regs(sc, p, preset); 18481 } 18482 18483 return 0; 18484 } 18485 18486 int 18487 bxe_grc_dump(struct bxe_softc *sc) 18488 { 18489 int rval = 0; 18490 uint32_t preset_idx; 18491 uint8_t *buf; 18492 uint32_t size; 18493 struct dump_header *d_hdr; 18494 uint32_t i; 18495 uint32_t reg_val; 18496 uint32_t reg_addr; 18497 uint32_t cmd_offset; 18498 int context_size; 18499 int allocated; 18500 struct ecore_ilt *ilt = SC_ILT(sc); 18501 struct bxe_fastpath *fp; 18502 struct ilt_client_info *ilt_cli; 18503 int grc_dump_size; 18504 18505 18506 if (sc->grcdump_done || sc->grcdump_started) 18507 return (rval); 18508 18509 sc->grcdump_started = 1; 18510 BLOGI(sc, "Started collecting grcdump\n"); 18511 18512 grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) + 18513 sizeof(struct dump_header); 18514 18515 sc->grc_dump = malloc(grc_dump_size, M_DEVBUF, M_NOWAIT); 18516 18517 if (sc->grc_dump == NULL) { 18518 BLOGW(sc, "Unable to allocate memory for grcdump collection\n"); 18519 return(ENOMEM); 18520 } 18521 18522 18523 18524 /* Disable parity attentions as long as following dump may 18525 * cause false alarms by reading never written registers. We 18526 * will re-enable parity attentions right after the dump. 18527 */ 18528 18529 /* Disable parity on path 0 */ 18530 bxe_pretend_func(sc, 0); 18531 18532 ecore_disable_blocks_parity(sc); 18533 18534 /* Disable parity on path 1 */ 18535 bxe_pretend_func(sc, 1); 18536 ecore_disable_blocks_parity(sc); 18537 18538 /* Return to current function */ 18539 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 18540 18541 buf = sc->grc_dump; 18542 d_hdr = sc->grc_dump; 18543 18544 d_hdr->header_size = (sizeof(struct dump_header) >> 2) - 1; 18545 d_hdr->version = BNX2X_DUMP_VERSION; 18546 d_hdr->preset = DUMP_ALL_PRESETS; 18547 18548 if (CHIP_IS_E1(sc)) { 18549 d_hdr->dump_meta_data = DUMP_CHIP_E1; 18550 } else if (CHIP_IS_E1H(sc)) { 18551 d_hdr->dump_meta_data = DUMP_CHIP_E1H; 18552 } else if (CHIP_IS_E2(sc)) { 18553 d_hdr->dump_meta_data = DUMP_CHIP_E2 | 18554 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0); 18555 } else if (CHIP_IS_E3A0(sc)) { 18556 d_hdr->dump_meta_data = DUMP_CHIP_E3A0 | 18557 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0); 18558 } else if (CHIP_IS_E3B0(sc)) { 18559 d_hdr->dump_meta_data = DUMP_CHIP_E3B0 | 18560 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0); 18561 } 18562 18563 buf += sizeof(struct dump_header); 18564 18565 for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) { 18566 18567 /* Skip presets with IOR */ 18568 if ((preset_idx == 2) || (preset_idx == 5) || (preset_idx == 8) || 18569 (preset_idx == 11)) 18570 continue; 18571 18572 rval = bxe_get_preset_regs(sc, (uint32_t *)buf, preset_idx); 18573 18574 if (rval) 18575 break; 18576 18577 size = bxe_get_preset_regs_len(sc, preset_idx) * (sizeof (uint32_t)); 18578 18579 buf += size; 18580 } 18581 18582 bxe_pretend_func(sc, 0); 18583 ecore_clear_blocks_parity(sc); 18584 ecore_enable_blocks_parity(sc); 18585 18586 bxe_pretend_func(sc, 1); 18587 ecore_clear_blocks_parity(sc); 18588 ecore_enable_blocks_parity(sc); 18589 18590 /* Return to current function */ 18591 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 18592 18593 18594 context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc)); 18595 for (i = 0, allocated = 0; allocated < context_size; i++) { 18596 18597 BLOGI(sc, "cdu_context i %d paddr %#jx vaddr %p size 0x%zx\n", i, 18598 (uintmax_t)sc->context[i].vcxt_dma.paddr, 18599 sc->context[i].vcxt_dma.vaddr, 18600 sc->context[i].size); 18601 allocated += sc->context[i].size; 18602 } 18603 BLOGI(sc, "fw stats start_paddr %#jx end_paddr %#jx vaddr %p size 0x%x\n", 18604 (uintmax_t)sc->fw_stats_req_mapping, 18605 (uintmax_t)sc->fw_stats_data_mapping, 18606 sc->fw_stats_req, (sc->fw_stats_req_size + sc->fw_stats_data_size)); 18607 BLOGI(sc, "def_status_block paddr %p vaddr %p size 0x%zx\n", 18608 (void *)sc->def_sb_dma.paddr, sc->def_sb, 18609 sizeof(struct host_sp_status_block)); 18610 BLOGI(sc, "event_queue paddr %#jx vaddr %p size 0x%x\n", 18611 (uintmax_t)sc->eq_dma.paddr, sc->eq_dma.vaddr, BCM_PAGE_SIZE); 18612 BLOGI(sc, "slow path paddr %#jx vaddr %p size 0x%zx\n", 18613 (uintmax_t)sc->sp_dma.paddr, sc->sp_dma.vaddr, 18614 sizeof(struct bxe_slowpath)); 18615 BLOGI(sc, "slow path queue paddr %#jx vaddr %p size 0x%x\n", 18616 (uintmax_t)sc->spq_dma.paddr, sc->spq_dma.vaddr, BCM_PAGE_SIZE); 18617 BLOGI(sc, "fw_buf paddr %#jx vaddr %p size 0x%x\n", 18618 (uintmax_t)sc->gz_buf_dma.paddr, sc->gz_buf_dma.vaddr, 18619 FW_BUF_SIZE); 18620 for (i = 0; i < sc->num_queues; i++) { 18621 fp = &sc->fp[i]; 18622 BLOGI(sc, "FP status block fp %d paddr %#jx vaddr %p size 0x%zx\n", i, 18623 (uintmax_t)fp->sb_dma.paddr, fp->sb_dma.vaddr, 18624 sizeof(union bxe_host_hc_status_block)); 18625 BLOGI(sc, "TX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i, 18626 (uintmax_t)fp->tx_dma.paddr, fp->tx_dma.vaddr, 18627 (BCM_PAGE_SIZE * TX_BD_NUM_PAGES)); 18628 BLOGI(sc, "RX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i, 18629 (uintmax_t)fp->rx_dma.paddr, fp->rx_dma.vaddr, 18630 (BCM_PAGE_SIZE * RX_BD_NUM_PAGES)); 18631 BLOGI(sc, "RX RCQ CHAIN fp %d paddr %#jx vaddr %p size 0x%zx\n", i, 18632 (uintmax_t)fp->rcq_dma.paddr, fp->rcq_dma.vaddr, 18633 (BCM_PAGE_SIZE * RCQ_NUM_PAGES)); 18634 BLOGI(sc, "RX SGE CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i, 18635 (uintmax_t)fp->rx_sge_dma.paddr, fp->rx_sge_dma.vaddr, 18636 (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES)); 18637 } 18638 18639 ilt_cli = &ilt->clients[1]; 18640 for (i = ilt_cli->start; i <= ilt_cli->end; i++) { 18641 BLOGI(sc, "ECORE_ILT paddr %#jx vaddr %p size 0x%x\n", 18642 (uintmax_t)(((struct bxe_dma *)((&ilt->lines[i])->page))->paddr), 18643 ((struct bxe_dma *)((&ilt->lines[i])->page))->vaddr, BCM_PAGE_SIZE); 18644 } 18645 18646 18647 cmd_offset = DMAE_REG_CMD_MEM; 18648 for (i = 0; i < 224; i++) { 18649 reg_addr = (cmd_offset +(i * 4)); 18650 reg_val = REG_RD(sc, reg_addr); 18651 BLOGI(sc, "DMAE_REG_CMD_MEM i=%d reg_addr 0x%x reg_val 0x%08x\n",i, 18652 reg_addr, reg_val); 18653 } 18654 18655 18656 BLOGI(sc, "Collection of grcdump done\n"); 18657 sc->grcdump_done = 1; 18658 return(rval); 18659 } 18660 18661 static int 18662 bxe_add_cdev(struct bxe_softc *sc) 18663 { 18664 sc->eeprom = malloc(BXE_EEPROM_MAX_DATA_LEN, M_DEVBUF, M_NOWAIT); 18665 18666 if (sc->eeprom == NULL) { 18667 BLOGW(sc, "Unable to alloc for eeprom size buffer\n"); 18668 return (-1); 18669 } 18670 18671 sc->ioctl_dev = make_dev(&bxe_cdevsw, 18672 sc->ifp->if_dunit, 18673 UID_ROOT, 18674 GID_WHEEL, 18675 0600, 18676 "%s", 18677 if_name(sc->ifp)); 18678 18679 if (sc->ioctl_dev == NULL) { 18680 free(sc->eeprom, M_DEVBUF); 18681 sc->eeprom = NULL; 18682 return (-1); 18683 } 18684 18685 sc->ioctl_dev->si_drv1 = sc; 18686 18687 return (0); 18688 } 18689 18690 static void 18691 bxe_del_cdev(struct bxe_softc *sc) 18692 { 18693 if (sc->ioctl_dev != NULL) 18694 destroy_dev(sc->ioctl_dev); 18695 18696 if (sc->eeprom != NULL) { 18697 free(sc->eeprom, M_DEVBUF); 18698 sc->eeprom = NULL; 18699 } 18700 sc->ioctl_dev = NULL; 18701 18702 return; 18703 } 18704 18705 static bool bxe_is_nvram_accessible(struct bxe_softc *sc) 18706 { 18707 18708 if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) == 0) 18709 return FALSE; 18710 18711 return TRUE; 18712 } 18713 18714 18715 static int 18716 bxe_wr_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len) 18717 { 18718 int rval = 0; 18719 18720 if(!bxe_is_nvram_accessible(sc)) { 18721 BLOGW(sc, "Cannot access eeprom when interface is down\n"); 18722 return (-EAGAIN); 18723 } 18724 rval = bxe_nvram_write(sc, offset, (uint8_t *)data, len); 18725 18726 18727 return (rval); 18728 } 18729 18730 static int 18731 bxe_rd_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len) 18732 { 18733 int rval = 0; 18734 18735 if(!bxe_is_nvram_accessible(sc)) { 18736 BLOGW(sc, "Cannot access eeprom when interface is down\n"); 18737 return (-EAGAIN); 18738 } 18739 rval = bxe_nvram_read(sc, offset, (uint8_t *)data, len); 18740 18741 return (rval); 18742 } 18743 18744 static int 18745 bxe_eeprom_rd_wr(struct bxe_softc *sc, bxe_eeprom_t *eeprom) 18746 { 18747 int rval = 0; 18748 18749 switch (eeprom->eeprom_cmd) { 18750 18751 case BXE_EEPROM_CMD_SET_EEPROM: 18752 18753 rval = copyin(eeprom->eeprom_data, sc->eeprom, 18754 eeprom->eeprom_data_len); 18755 18756 if (rval) 18757 break; 18758 18759 rval = bxe_wr_eeprom(sc, sc->eeprom, eeprom->eeprom_offset, 18760 eeprom->eeprom_data_len); 18761 break; 18762 18763 case BXE_EEPROM_CMD_GET_EEPROM: 18764 18765 rval = bxe_rd_eeprom(sc, sc->eeprom, eeprom->eeprom_offset, 18766 eeprom->eeprom_data_len); 18767 18768 if (rval) { 18769 break; 18770 } 18771 18772 rval = copyout(sc->eeprom, eeprom->eeprom_data, 18773 eeprom->eeprom_data_len); 18774 break; 18775 18776 default: 18777 rval = EINVAL; 18778 break; 18779 } 18780 18781 if (rval) { 18782 BLOGW(sc, "ioctl cmd %d failed rval %d\n", eeprom->eeprom_cmd, rval); 18783 } 18784 18785 return (rval); 18786 } 18787 18788 static int 18789 bxe_get_settings(struct bxe_softc *sc, bxe_dev_setting_t *dev_p) 18790 { 18791 uint32_t ext_phy_config; 18792 int port = SC_PORT(sc); 18793 int cfg_idx = bxe_get_link_cfg_idx(sc); 18794 18795 dev_p->supported = sc->port.supported[cfg_idx] | 18796 (sc->port.supported[cfg_idx ^ 1] & 18797 (ELINK_SUPPORTED_TP | ELINK_SUPPORTED_FIBRE)); 18798 dev_p->advertising = sc->port.advertising[cfg_idx]; 18799 if(sc->link_params.phy[bxe_get_cur_phy_idx(sc)].media_type == 18800 ELINK_ETH_PHY_SFP_1G_FIBER) { 18801 dev_p->supported = ~(ELINK_SUPPORTED_10000baseT_Full); 18802 dev_p->advertising &= ~(ADVERTISED_10000baseT_Full); 18803 } 18804 if ((sc->state == BXE_STATE_OPEN) && sc->link_vars.link_up && 18805 !(sc->flags & BXE_MF_FUNC_DIS)) { 18806 dev_p->duplex = sc->link_vars.duplex; 18807 if (IS_MF(sc) && !BXE_NOMCP(sc)) 18808 dev_p->speed = bxe_get_mf_speed(sc); 18809 else 18810 dev_p->speed = sc->link_vars.line_speed; 18811 } else { 18812 dev_p->duplex = DUPLEX_UNKNOWN; 18813 dev_p->speed = SPEED_UNKNOWN; 18814 } 18815 18816 dev_p->port = bxe_media_detect(sc); 18817 18818 ext_phy_config = SHMEM_RD(sc, 18819 dev_info.port_hw_config[port].external_phy_config); 18820 if((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) == 18821 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT) 18822 dev_p->phy_address = sc->port.phy_addr; 18823 else if(((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) != 18824 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) && 18825 ((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) != 18826 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN)) 18827 dev_p->phy_address = ELINK_XGXS_EXT_PHY_ADDR(ext_phy_config); 18828 else 18829 dev_p->phy_address = 0; 18830 18831 if(sc->link_params.req_line_speed[cfg_idx] == ELINK_SPEED_AUTO_NEG) 18832 dev_p->autoneg = AUTONEG_ENABLE; 18833 else 18834 dev_p->autoneg = AUTONEG_DISABLE; 18835 18836 18837 return 0; 18838 } 18839 18840 static int 18841 bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, 18842 struct thread *td) 18843 { 18844 struct bxe_softc *sc; 18845 int rval = 0; 18846 device_t pci_dev; 18847 bxe_grcdump_t *dump = NULL; 18848 int grc_dump_size; 18849 bxe_drvinfo_t *drv_infop = NULL; 18850 bxe_dev_setting_t *dev_p; 18851 bxe_dev_setting_t dev_set; 18852 bxe_get_regs_t *reg_p; 18853 bxe_reg_rdw_t *reg_rdw_p; 18854 bxe_pcicfg_rdw_t *cfg_rdw_p; 18855 bxe_perm_mac_addr_t *mac_addr_p; 18856 18857 18858 if ((sc = (struct bxe_softc *)dev->si_drv1) == NULL) 18859 return ENXIO; 18860 18861 pci_dev= sc->dev; 18862 18863 dump = (bxe_grcdump_t *)data; 18864 18865 switch(cmd) { 18866 18867 case BXE_GRC_DUMP_SIZE: 18868 dump->pci_func = sc->pcie_func; 18869 dump->grcdump_size = 18870 (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) + 18871 sizeof(struct dump_header); 18872 break; 18873 18874 case BXE_GRC_DUMP: 18875 18876 grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) + 18877 sizeof(struct dump_header); 18878 if ((!sc->trigger_grcdump) || (dump->grcdump == NULL) || 18879 (dump->grcdump_size < grc_dump_size)) { 18880 rval = EINVAL; 18881 break; 18882 } 18883 18884 if((sc->trigger_grcdump) && (!sc->grcdump_done) && 18885 (!sc->grcdump_started)) { 18886 rval = bxe_grc_dump(sc); 18887 } 18888 18889 if((!rval) && (sc->grcdump_done) && (sc->grcdump_started) && 18890 (sc->grc_dump != NULL)) { 18891 dump->grcdump_dwords = grc_dump_size >> 2; 18892 rval = copyout(sc->grc_dump, dump->grcdump, grc_dump_size); 18893 free(sc->grc_dump, M_DEVBUF); 18894 sc->grc_dump = NULL; 18895 sc->grcdump_started = 0; 18896 sc->grcdump_done = 0; 18897 } 18898 18899 break; 18900 18901 case BXE_DRV_INFO: 18902 drv_infop = (bxe_drvinfo_t *)data; 18903 snprintf(drv_infop->drv_name, BXE_DRV_NAME_LENGTH, "%s", "bxe"); 18904 snprintf(drv_infop->drv_version, BXE_DRV_VERSION_LENGTH, "v:%s", 18905 BXE_DRIVER_VERSION); 18906 snprintf(drv_infop->mfw_version, BXE_MFW_VERSION_LENGTH, "%s", 18907 sc->devinfo.bc_ver_str); 18908 snprintf(drv_infop->stormfw_version, BXE_STORMFW_VERSION_LENGTH, 18909 "%s", sc->fw_ver_str); 18910 drv_infop->eeprom_dump_len = sc->devinfo.flash_size; 18911 drv_infop->reg_dump_len = 18912 (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) 18913 + sizeof(struct dump_header); 18914 snprintf(drv_infop->bus_info, BXE_BUS_INFO_LENGTH, "%d:%d:%d", 18915 sc->pcie_bus, sc->pcie_device, sc->pcie_func); 18916 break; 18917 18918 case BXE_DEV_SETTING: 18919 dev_p = (bxe_dev_setting_t *)data; 18920 bxe_get_settings(sc, &dev_set); 18921 dev_p->supported = dev_set.supported; 18922 dev_p->advertising = dev_set.advertising; 18923 dev_p->speed = dev_set.speed; 18924 dev_p->duplex = dev_set.duplex; 18925 dev_p->port = dev_set.port; 18926 dev_p->phy_address = dev_set.phy_address; 18927 dev_p->autoneg = dev_set.autoneg; 18928 18929 break; 18930 18931 case BXE_GET_REGS: 18932 18933 reg_p = (bxe_get_regs_t *)data; 18934 grc_dump_size = reg_p->reg_buf_len; 18935 18936 if((!sc->grcdump_done) && (!sc->grcdump_started)) { 18937 bxe_grc_dump(sc); 18938 } 18939 if((sc->grcdump_done) && (sc->grcdump_started) && 18940 (sc->grc_dump != NULL)) { 18941 rval = copyout(sc->grc_dump, reg_p->reg_buf, grc_dump_size); 18942 free(sc->grc_dump, M_DEVBUF); 18943 sc->grc_dump = NULL; 18944 sc->grcdump_started = 0; 18945 sc->grcdump_done = 0; 18946 } 18947 18948 break; 18949 18950 case BXE_RDW_REG: 18951 reg_rdw_p = (bxe_reg_rdw_t *)data; 18952 if((reg_rdw_p->reg_cmd == BXE_READ_REG_CMD) && 18953 (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT)) 18954 reg_rdw_p->reg_val = REG_RD(sc, reg_rdw_p->reg_id); 18955 18956 if((reg_rdw_p->reg_cmd == BXE_WRITE_REG_CMD) && 18957 (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT)) 18958 REG_WR(sc, reg_rdw_p->reg_id, reg_rdw_p->reg_val); 18959 18960 break; 18961 18962 case BXE_RDW_PCICFG: 18963 cfg_rdw_p = (bxe_pcicfg_rdw_t *)data; 18964 if(cfg_rdw_p->cfg_cmd == BXE_READ_PCICFG) { 18965 18966 cfg_rdw_p->cfg_val = pci_read_config(sc->dev, cfg_rdw_p->cfg_id, 18967 cfg_rdw_p->cfg_width); 18968 18969 } else if(cfg_rdw_p->cfg_cmd == BXE_WRITE_PCICFG) { 18970 pci_write_config(sc->dev, cfg_rdw_p->cfg_id, cfg_rdw_p->cfg_val, 18971 cfg_rdw_p->cfg_width); 18972 } else { 18973 BLOGW(sc, "BXE_RDW_PCICFG ioctl wrong cmd passed\n"); 18974 } 18975 break; 18976 18977 case BXE_MAC_ADDR: 18978 mac_addr_p = (bxe_perm_mac_addr_t *)data; 18979 snprintf(mac_addr_p->mac_addr_str, sizeof(sc->mac_addr_str), "%s", 18980 sc->mac_addr_str); 18981 break; 18982 18983 case BXE_EEPROM: 18984 rval = bxe_eeprom_rd_wr(sc, (bxe_eeprom_t *)data); 18985 break; 18986 18987 18988 default: 18989 break; 18990 } 18991 18992 return (rval); 18993 } 18994