1 /*- 2 * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' 15 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS 18 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 19 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 20 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 21 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 22 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 23 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 24 * THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #define BXE_DRIVER_VERSION "1.78.78" 31 32 #include "bxe.h" 33 #include "ecore_sp.h" 34 #include "ecore_init.h" 35 #include "ecore_init_ops.h" 36 37 #include "57710_int_offsets.h" 38 #include "57711_int_offsets.h" 39 #include "57712_int_offsets.h" 40 41 /* 42 * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these 43 * explicitly here for older kernels that don't include this changeset. 44 */ 45 #ifndef CTLTYPE_U64 46 #define CTLTYPE_U64 CTLTYPE_QUAD 47 #define sysctl_handle_64 sysctl_handle_quad 48 #endif 49 50 /* 51 * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these 52 * here as zero(0) for older kernels that don't include this changeset 53 * thereby masking the functionality. 54 */ 55 #ifndef CSUM_TCP_IPV6 56 #define CSUM_TCP_IPV6 0 57 #define CSUM_UDP_IPV6 0 58 #endif 59 60 /* 61 * pci_find_cap was added in r219865. Re-define this at pci_find_extcap 62 * for older kernels that don't include this changeset. 63 */ 64 #if __FreeBSD_version < 900035 65 #define pci_find_cap pci_find_extcap 66 #endif 67 68 #define BXE_DEF_SB_ATT_IDX 0x0001 69 #define BXE_DEF_SB_IDX 0x0002 70 71 /* 72 * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per 73 * function HW initialization. 74 */ 75 #define FLR_WAIT_USEC 10000 /* 10 msecs */ 76 #define FLR_WAIT_INTERVAL 50 /* usecs */ 77 #define FLR_POLL_CNT (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */ 78 79 struct pbf_pN_buf_regs { 80 int pN; 81 uint32_t init_crd; 82 uint32_t crd; 83 uint32_t crd_freed; 84 }; 85 86 struct pbf_pN_cmd_regs { 87 int pN; 88 uint32_t lines_occup; 89 uint32_t lines_freed; 90 }; 91 92 /* 93 * PCI Device ID Table used by bxe_probe(). 94 */ 95 #define BXE_DEVDESC_MAX 64 96 static struct bxe_device_type bxe_devs[] = { 97 { 98 BRCM_VENDORID, 99 CHIP_NUM_57710, 100 PCI_ANY_ID, PCI_ANY_ID, 101 "QLogic NetXtreme II BCM57710 10GbE" 102 }, 103 { 104 BRCM_VENDORID, 105 CHIP_NUM_57711, 106 PCI_ANY_ID, PCI_ANY_ID, 107 "QLogic NetXtreme II BCM57711 10GbE" 108 }, 109 { 110 BRCM_VENDORID, 111 CHIP_NUM_57711E, 112 PCI_ANY_ID, PCI_ANY_ID, 113 "QLogic NetXtreme II BCM57711E 10GbE" 114 }, 115 { 116 BRCM_VENDORID, 117 CHIP_NUM_57712, 118 PCI_ANY_ID, PCI_ANY_ID, 119 "QLogic NetXtreme II BCM57712 10GbE" 120 }, 121 { 122 BRCM_VENDORID, 123 CHIP_NUM_57712_MF, 124 PCI_ANY_ID, PCI_ANY_ID, 125 "QLogic NetXtreme II BCM57712 MF 10GbE" 126 }, 127 #if 0 128 { 129 BRCM_VENDORID, 130 CHIP_NUM_57712_VF, 131 PCI_ANY_ID, PCI_ANY_ID, 132 "QLogic NetXtreme II BCM57712 VF 10GbE" 133 }, 134 #endif 135 { 136 BRCM_VENDORID, 137 CHIP_NUM_57800, 138 PCI_ANY_ID, PCI_ANY_ID, 139 "QLogic NetXtreme II BCM57800 10GbE" 140 }, 141 { 142 BRCM_VENDORID, 143 CHIP_NUM_57800_MF, 144 PCI_ANY_ID, PCI_ANY_ID, 145 "QLogic NetXtreme II BCM57800 MF 10GbE" 146 }, 147 #if 0 148 { 149 BRCM_VENDORID, 150 CHIP_NUM_57800_VF, 151 PCI_ANY_ID, PCI_ANY_ID, 152 "QLogic NetXtreme II BCM57800 VF 10GbE" 153 }, 154 #endif 155 { 156 BRCM_VENDORID, 157 CHIP_NUM_57810, 158 PCI_ANY_ID, PCI_ANY_ID, 159 "QLogic NetXtreme II BCM57810 10GbE" 160 }, 161 { 162 BRCM_VENDORID, 163 CHIP_NUM_57810_MF, 164 PCI_ANY_ID, PCI_ANY_ID, 165 "QLogic NetXtreme II BCM57810 MF 10GbE" 166 }, 167 #if 0 168 { 169 BRCM_VENDORID, 170 CHIP_NUM_57810_VF, 171 PCI_ANY_ID, PCI_ANY_ID, 172 "QLogic NetXtreme II BCM57810 VF 10GbE" 173 }, 174 #endif 175 { 176 BRCM_VENDORID, 177 CHIP_NUM_57811, 178 PCI_ANY_ID, PCI_ANY_ID, 179 "QLogic NetXtreme II BCM57811 10GbE" 180 }, 181 { 182 BRCM_VENDORID, 183 CHIP_NUM_57811_MF, 184 PCI_ANY_ID, PCI_ANY_ID, 185 "QLogic NetXtreme II BCM57811 MF 10GbE" 186 }, 187 #if 0 188 { 189 BRCM_VENDORID, 190 CHIP_NUM_57811_VF, 191 PCI_ANY_ID, PCI_ANY_ID, 192 "QLogic NetXtreme II BCM57811 VF 10GbE" 193 }, 194 #endif 195 { 196 BRCM_VENDORID, 197 CHIP_NUM_57840_4_10, 198 PCI_ANY_ID, PCI_ANY_ID, 199 "QLogic NetXtreme II BCM57840 4x10GbE" 200 }, 201 #if 0 202 { 203 BRCM_VENDORID, 204 CHIP_NUM_57840_2_20, 205 PCI_ANY_ID, PCI_ANY_ID, 206 "QLogic NetXtreme II BCM57840 2x20GbE" 207 }, 208 #endif 209 { 210 BRCM_VENDORID, 211 CHIP_NUM_57840_MF, 212 PCI_ANY_ID, PCI_ANY_ID, 213 "QLogic NetXtreme II BCM57840 MF 10GbE" 214 }, 215 #if 0 216 { 217 BRCM_VENDORID, 218 CHIP_NUM_57840_VF, 219 PCI_ANY_ID, PCI_ANY_ID, 220 "QLogic NetXtreme II BCM57840 VF 10GbE" 221 }, 222 #endif 223 { 224 0, 0, 0, 0, NULL 225 } 226 }; 227 228 MALLOC_DECLARE(M_BXE_ILT); 229 MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer"); 230 231 /* 232 * FreeBSD device entry points. 233 */ 234 static int bxe_probe(device_t); 235 static int bxe_attach(device_t); 236 static int bxe_detach(device_t); 237 static int bxe_shutdown(device_t); 238 239 /* 240 * FreeBSD KLD module/device interface event handler method. 241 */ 242 static device_method_t bxe_methods[] = { 243 /* Device interface (device_if.h) */ 244 DEVMETHOD(device_probe, bxe_probe), 245 DEVMETHOD(device_attach, bxe_attach), 246 DEVMETHOD(device_detach, bxe_detach), 247 DEVMETHOD(device_shutdown, bxe_shutdown), 248 #if 0 249 DEVMETHOD(device_suspend, bxe_suspend), 250 DEVMETHOD(device_resume, bxe_resume), 251 #endif 252 /* Bus interface (bus_if.h) */ 253 DEVMETHOD(bus_print_child, bus_generic_print_child), 254 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 255 KOBJMETHOD_END 256 }; 257 258 /* 259 * FreeBSD KLD Module data declaration 260 */ 261 static driver_t bxe_driver = { 262 "bxe", /* module name */ 263 bxe_methods, /* event handler */ 264 sizeof(struct bxe_softc) /* extra data */ 265 }; 266 267 /* 268 * FreeBSD dev class is needed to manage dev instances and 269 * to associate with a bus type 270 */ 271 static devclass_t bxe_devclass; 272 273 MODULE_DEPEND(bxe, pci, 1, 1, 1); 274 MODULE_DEPEND(bxe, ether, 1, 1, 1); 275 DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0); 276 277 /* resources needed for unloading a previously loaded device */ 278 279 #define BXE_PREV_WAIT_NEEDED 1 280 struct mtx bxe_prev_mtx; 281 MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF); 282 struct bxe_prev_list_node { 283 LIST_ENTRY(bxe_prev_list_node) node; 284 uint8_t bus; 285 uint8_t slot; 286 uint8_t path; 287 uint8_t aer; /* XXX automatic error recovery */ 288 uint8_t undi; 289 }; 290 static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list); 291 292 static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */ 293 294 /* Tunable device values... */ 295 296 SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters"); 297 298 /* Debug */ 299 unsigned long bxe_debug = 0; 300 SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, CTLFLAG_RDTUN, 301 &bxe_debug, 0, "Debug logging mode"); 302 303 /* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */ 304 static int bxe_interrupt_mode = INTR_MODE_MSIX; 305 SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN, 306 &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode"); 307 308 /* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */ 309 static int bxe_queue_count = 4; 310 SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN, 311 &bxe_queue_count, 0, "Multi-Queue queue count"); 312 313 /* max number of buffers per queue (default RX_BD_USABLE) */ 314 static int bxe_max_rx_bufs = 0; 315 SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN, 316 &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue"); 317 318 /* Host interrupt coalescing RX tick timer (usecs) */ 319 static int bxe_hc_rx_ticks = 25; 320 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN, 321 &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks"); 322 323 /* Host interrupt coalescing TX tick timer (usecs) */ 324 static int bxe_hc_tx_ticks = 50; 325 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN, 326 &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks"); 327 328 /* Maximum number of Rx packets to process at a time */ 329 static int bxe_rx_budget = 0xffffffff; 330 SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN, 331 &bxe_rx_budget, 0, "Rx processing budget"); 332 333 /* Maximum LRO aggregation size */ 334 static int bxe_max_aggregation_size = 0; 335 SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN, 336 &bxe_max_aggregation_size, 0, "max aggregation size"); 337 338 /* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */ 339 static int bxe_mrrs = -1; 340 SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN, 341 &bxe_mrrs, 0, "PCIe maximum read request size"); 342 343 /* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */ 344 static int bxe_autogreeen = 0; 345 SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN, 346 &bxe_autogreeen, 0, "AutoGrEEEn support"); 347 348 /* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */ 349 static int bxe_udp_rss = 0; 350 SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN, 351 &bxe_udp_rss, 0, "UDP RSS support"); 352 353 354 #define STAT_NAME_LEN 32 /* no stat names below can be longer than this */ 355 356 #define STATS_OFFSET32(stat_name) \ 357 (offsetof(struct bxe_eth_stats, stat_name) / 4) 358 359 #define Q_STATS_OFFSET32(stat_name) \ 360 (offsetof(struct bxe_eth_q_stats, stat_name) / 4) 361 362 static const struct { 363 uint32_t offset; 364 uint32_t size; 365 uint32_t flags; 366 #define STATS_FLAGS_PORT 1 367 #define STATS_FLAGS_FUNC 2 /* MF only cares about function stats */ 368 #define STATS_FLAGS_BOTH (STATS_FLAGS_FUNC | STATS_FLAGS_PORT) 369 char string[STAT_NAME_LEN]; 370 } bxe_eth_stats_arr[] = { 371 { STATS_OFFSET32(total_bytes_received_hi), 372 8, STATS_FLAGS_BOTH, "rx_bytes" }, 373 { STATS_OFFSET32(error_bytes_received_hi), 374 8, STATS_FLAGS_BOTH, "rx_error_bytes" }, 375 { STATS_OFFSET32(total_unicast_packets_received_hi), 376 8, STATS_FLAGS_BOTH, "rx_ucast_packets" }, 377 { STATS_OFFSET32(total_multicast_packets_received_hi), 378 8, STATS_FLAGS_BOTH, "rx_mcast_packets" }, 379 { STATS_OFFSET32(total_broadcast_packets_received_hi), 380 8, STATS_FLAGS_BOTH, "rx_bcast_packets" }, 381 { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi), 382 8, STATS_FLAGS_PORT, "rx_crc_errors" }, 383 { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi), 384 8, STATS_FLAGS_PORT, "rx_align_errors" }, 385 { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi), 386 8, STATS_FLAGS_PORT, "rx_undersize_packets" }, 387 { STATS_OFFSET32(etherstatsoverrsizepkts_hi), 388 8, STATS_FLAGS_PORT, "rx_oversize_packets" }, 389 { STATS_OFFSET32(rx_stat_etherstatsfragments_hi), 390 8, STATS_FLAGS_PORT, "rx_fragments" }, 391 { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi), 392 8, STATS_FLAGS_PORT, "rx_jabbers" }, 393 { STATS_OFFSET32(no_buff_discard_hi), 394 8, STATS_FLAGS_BOTH, "rx_discards" }, 395 { STATS_OFFSET32(mac_filter_discard), 396 4, STATS_FLAGS_PORT, "rx_filtered_packets" }, 397 { STATS_OFFSET32(mf_tag_discard), 398 4, STATS_FLAGS_PORT, "rx_mf_tag_discard" }, 399 { STATS_OFFSET32(pfc_frames_received_hi), 400 8, STATS_FLAGS_PORT, "pfc_frames_received" }, 401 { STATS_OFFSET32(pfc_frames_sent_hi), 402 8, STATS_FLAGS_PORT, "pfc_frames_sent" }, 403 { STATS_OFFSET32(brb_drop_hi), 404 8, STATS_FLAGS_PORT, "rx_brb_discard" }, 405 { STATS_OFFSET32(brb_truncate_hi), 406 8, STATS_FLAGS_PORT, "rx_brb_truncate" }, 407 { STATS_OFFSET32(pause_frames_received_hi), 408 8, STATS_FLAGS_PORT, "rx_pause_frames" }, 409 { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi), 410 8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" }, 411 { STATS_OFFSET32(nig_timer_max), 412 4, STATS_FLAGS_PORT, "rx_constant_pause_events" }, 413 { STATS_OFFSET32(total_bytes_transmitted_hi), 414 8, STATS_FLAGS_BOTH, "tx_bytes" }, 415 { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi), 416 8, STATS_FLAGS_PORT, "tx_error_bytes" }, 417 { STATS_OFFSET32(total_unicast_packets_transmitted_hi), 418 8, STATS_FLAGS_BOTH, "tx_ucast_packets" }, 419 { STATS_OFFSET32(total_multicast_packets_transmitted_hi), 420 8, STATS_FLAGS_BOTH, "tx_mcast_packets" }, 421 { STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 422 8, STATS_FLAGS_BOTH, "tx_bcast_packets" }, 423 { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi), 424 8, STATS_FLAGS_PORT, "tx_mac_errors" }, 425 { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi), 426 8, STATS_FLAGS_PORT, "tx_carrier_errors" }, 427 { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi), 428 8, STATS_FLAGS_PORT, "tx_single_collisions" }, 429 { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi), 430 8, STATS_FLAGS_PORT, "tx_multi_collisions" }, 431 { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi), 432 8, STATS_FLAGS_PORT, "tx_deferred" }, 433 { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi), 434 8, STATS_FLAGS_PORT, "tx_excess_collisions" }, 435 { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi), 436 8, STATS_FLAGS_PORT, "tx_late_collisions" }, 437 { STATS_OFFSET32(tx_stat_etherstatscollisions_hi), 438 8, STATS_FLAGS_PORT, "tx_total_collisions" }, 439 { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi), 440 8, STATS_FLAGS_PORT, "tx_64_byte_packets" }, 441 { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi), 442 8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" }, 443 { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi), 444 8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" }, 445 { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi), 446 8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" }, 447 { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi), 448 8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" }, 449 { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi), 450 8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" }, 451 { STATS_OFFSET32(etherstatspktsover1522octets_hi), 452 8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" }, 453 { STATS_OFFSET32(pause_frames_sent_hi), 454 8, STATS_FLAGS_PORT, "tx_pause_frames" }, 455 { STATS_OFFSET32(total_tpa_aggregations_hi), 456 8, STATS_FLAGS_FUNC, "tpa_aggregations" }, 457 { STATS_OFFSET32(total_tpa_aggregated_frames_hi), 458 8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"}, 459 { STATS_OFFSET32(total_tpa_bytes_hi), 460 8, STATS_FLAGS_FUNC, "tpa_bytes"}, 461 #if 0 462 { STATS_OFFSET32(recoverable_error), 463 4, STATS_FLAGS_FUNC, "recoverable_errors" }, 464 { STATS_OFFSET32(unrecoverable_error), 465 4, STATS_FLAGS_FUNC, "unrecoverable_errors" }, 466 #endif 467 { STATS_OFFSET32(eee_tx_lpi), 468 4, STATS_FLAGS_PORT, "eee_tx_lpi"}, 469 { STATS_OFFSET32(rx_calls), 470 4, STATS_FLAGS_FUNC, "rx_calls"}, 471 { STATS_OFFSET32(rx_pkts), 472 4, STATS_FLAGS_FUNC, "rx_pkts"}, 473 { STATS_OFFSET32(rx_tpa_pkts), 474 4, STATS_FLAGS_FUNC, "rx_tpa_pkts"}, 475 { STATS_OFFSET32(rx_soft_errors), 476 4, STATS_FLAGS_FUNC, "rx_soft_errors"}, 477 { STATS_OFFSET32(rx_hw_csum_errors), 478 4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"}, 479 { STATS_OFFSET32(rx_ofld_frames_csum_ip), 480 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"}, 481 { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 482 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"}, 483 { STATS_OFFSET32(rx_budget_reached), 484 4, STATS_FLAGS_FUNC, "rx_budget_reached"}, 485 { STATS_OFFSET32(tx_pkts), 486 4, STATS_FLAGS_FUNC, "tx_pkts"}, 487 { STATS_OFFSET32(tx_soft_errors), 488 4, STATS_FLAGS_FUNC, "tx_soft_errors"}, 489 { STATS_OFFSET32(tx_ofld_frames_csum_ip), 490 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"}, 491 { STATS_OFFSET32(tx_ofld_frames_csum_tcp), 492 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"}, 493 { STATS_OFFSET32(tx_ofld_frames_csum_udp), 494 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"}, 495 { STATS_OFFSET32(tx_ofld_frames_lso), 496 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"}, 497 { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 498 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"}, 499 { STATS_OFFSET32(tx_encap_failures), 500 4, STATS_FLAGS_FUNC, "tx_encap_failures"}, 501 { STATS_OFFSET32(tx_hw_queue_full), 502 4, STATS_FLAGS_FUNC, "tx_hw_queue_full"}, 503 { STATS_OFFSET32(tx_hw_max_queue_depth), 504 4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"}, 505 { STATS_OFFSET32(tx_dma_mapping_failure), 506 4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"}, 507 { STATS_OFFSET32(tx_max_drbr_queue_depth), 508 4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"}, 509 { STATS_OFFSET32(tx_window_violation_std), 510 4, STATS_FLAGS_FUNC, "tx_window_violation_std"}, 511 { STATS_OFFSET32(tx_window_violation_tso), 512 4, STATS_FLAGS_FUNC, "tx_window_violation_tso"}, 513 #if 0 514 { STATS_OFFSET32(tx_unsupported_tso_request_ipv6), 515 4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_ipv6"}, 516 { STATS_OFFSET32(tx_unsupported_tso_request_not_tcp), 517 4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_not_tcp"}, 518 #endif 519 { STATS_OFFSET32(tx_chain_lost_mbuf), 520 4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"}, 521 { STATS_OFFSET32(tx_frames_deferred), 522 4, STATS_FLAGS_FUNC, "tx_frames_deferred"}, 523 { STATS_OFFSET32(tx_queue_xoff), 524 4, STATS_FLAGS_FUNC, "tx_queue_xoff"}, 525 { STATS_OFFSET32(mbuf_defrag_attempts), 526 4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"}, 527 { STATS_OFFSET32(mbuf_defrag_failures), 528 4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"}, 529 { STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 530 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"}, 531 { STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 532 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"}, 533 { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 534 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"}, 535 { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 536 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"}, 537 { STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 538 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"}, 539 { STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 540 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"}, 541 { STATS_OFFSET32(mbuf_alloc_tx), 542 4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"}, 543 { STATS_OFFSET32(mbuf_alloc_rx), 544 4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"}, 545 { STATS_OFFSET32(mbuf_alloc_sge), 546 4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"}, 547 { STATS_OFFSET32(mbuf_alloc_tpa), 548 4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"} 549 }; 550 551 static const struct { 552 uint32_t offset; 553 uint32_t size; 554 char string[STAT_NAME_LEN]; 555 } bxe_eth_q_stats_arr[] = { 556 { Q_STATS_OFFSET32(total_bytes_received_hi), 557 8, "rx_bytes" }, 558 { Q_STATS_OFFSET32(total_unicast_packets_received_hi), 559 8, "rx_ucast_packets" }, 560 { Q_STATS_OFFSET32(total_multicast_packets_received_hi), 561 8, "rx_mcast_packets" }, 562 { Q_STATS_OFFSET32(total_broadcast_packets_received_hi), 563 8, "rx_bcast_packets" }, 564 { Q_STATS_OFFSET32(no_buff_discard_hi), 565 8, "rx_discards" }, 566 { Q_STATS_OFFSET32(total_bytes_transmitted_hi), 567 8, "tx_bytes" }, 568 { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi), 569 8, "tx_ucast_packets" }, 570 { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi), 571 8, "tx_mcast_packets" }, 572 { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 573 8, "tx_bcast_packets" }, 574 { Q_STATS_OFFSET32(total_tpa_aggregations_hi), 575 8, "tpa_aggregations" }, 576 { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi), 577 8, "tpa_aggregated_frames"}, 578 { Q_STATS_OFFSET32(total_tpa_bytes_hi), 579 8, "tpa_bytes"}, 580 { Q_STATS_OFFSET32(rx_calls), 581 4, "rx_calls"}, 582 { Q_STATS_OFFSET32(rx_pkts), 583 4, "rx_pkts"}, 584 { Q_STATS_OFFSET32(rx_tpa_pkts), 585 4, "rx_tpa_pkts"}, 586 { Q_STATS_OFFSET32(rx_soft_errors), 587 4, "rx_soft_errors"}, 588 { Q_STATS_OFFSET32(rx_hw_csum_errors), 589 4, "rx_hw_csum_errors"}, 590 { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip), 591 4, "rx_ofld_frames_csum_ip"}, 592 { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 593 4, "rx_ofld_frames_csum_tcp_udp"}, 594 { Q_STATS_OFFSET32(rx_budget_reached), 595 4, "rx_budget_reached"}, 596 { Q_STATS_OFFSET32(tx_pkts), 597 4, "tx_pkts"}, 598 { Q_STATS_OFFSET32(tx_soft_errors), 599 4, "tx_soft_errors"}, 600 { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip), 601 4, "tx_ofld_frames_csum_ip"}, 602 { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp), 603 4, "tx_ofld_frames_csum_tcp"}, 604 { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp), 605 4, "tx_ofld_frames_csum_udp"}, 606 { Q_STATS_OFFSET32(tx_ofld_frames_lso), 607 4, "tx_ofld_frames_lso"}, 608 { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 609 4, "tx_ofld_frames_lso_hdr_splits"}, 610 { Q_STATS_OFFSET32(tx_encap_failures), 611 4, "tx_encap_failures"}, 612 { Q_STATS_OFFSET32(tx_hw_queue_full), 613 4, "tx_hw_queue_full"}, 614 { Q_STATS_OFFSET32(tx_hw_max_queue_depth), 615 4, "tx_hw_max_queue_depth"}, 616 { Q_STATS_OFFSET32(tx_dma_mapping_failure), 617 4, "tx_dma_mapping_failure"}, 618 { Q_STATS_OFFSET32(tx_max_drbr_queue_depth), 619 4, "tx_max_drbr_queue_depth"}, 620 { Q_STATS_OFFSET32(tx_window_violation_std), 621 4, "tx_window_violation_std"}, 622 { Q_STATS_OFFSET32(tx_window_violation_tso), 623 4, "tx_window_violation_tso"}, 624 #if 0 625 { Q_STATS_OFFSET32(tx_unsupported_tso_request_ipv6), 626 4, "tx_unsupported_tso_request_ipv6"}, 627 { Q_STATS_OFFSET32(tx_unsupported_tso_request_not_tcp), 628 4, "tx_unsupported_tso_request_not_tcp"}, 629 #endif 630 { Q_STATS_OFFSET32(tx_chain_lost_mbuf), 631 4, "tx_chain_lost_mbuf"}, 632 { Q_STATS_OFFSET32(tx_frames_deferred), 633 4, "tx_frames_deferred"}, 634 { Q_STATS_OFFSET32(tx_queue_xoff), 635 4, "tx_queue_xoff"}, 636 { Q_STATS_OFFSET32(mbuf_defrag_attempts), 637 4, "mbuf_defrag_attempts"}, 638 { Q_STATS_OFFSET32(mbuf_defrag_failures), 639 4, "mbuf_defrag_failures"}, 640 { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 641 4, "mbuf_rx_bd_alloc_failed"}, 642 { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 643 4, "mbuf_rx_bd_mapping_failed"}, 644 { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 645 4, "mbuf_rx_tpa_alloc_failed"}, 646 { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 647 4, "mbuf_rx_tpa_mapping_failed"}, 648 { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 649 4, "mbuf_rx_sge_alloc_failed"}, 650 { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 651 4, "mbuf_rx_sge_mapping_failed"}, 652 { Q_STATS_OFFSET32(mbuf_alloc_tx), 653 4, "mbuf_alloc_tx"}, 654 { Q_STATS_OFFSET32(mbuf_alloc_rx), 655 4, "mbuf_alloc_rx"}, 656 { Q_STATS_OFFSET32(mbuf_alloc_sge), 657 4, "mbuf_alloc_sge"}, 658 { Q_STATS_OFFSET32(mbuf_alloc_tpa), 659 4, "mbuf_alloc_tpa"} 660 }; 661 662 #define BXE_NUM_ETH_STATS ARRAY_SIZE(bxe_eth_stats_arr) 663 #define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr) 664 665 666 static void bxe_cmng_fns_init(struct bxe_softc *sc, 667 uint8_t read_cfg, 668 uint8_t cmng_type); 669 static int bxe_get_cmng_fns_mode(struct bxe_softc *sc); 670 static void storm_memset_cmng(struct bxe_softc *sc, 671 struct cmng_init *cmng, 672 uint8_t port); 673 static void bxe_set_reset_global(struct bxe_softc *sc); 674 static void bxe_set_reset_in_progress(struct bxe_softc *sc); 675 static uint8_t bxe_reset_is_done(struct bxe_softc *sc, 676 int engine); 677 static uint8_t bxe_clear_pf_load(struct bxe_softc *sc); 678 static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc, 679 uint8_t *global, 680 uint8_t print); 681 static void bxe_int_disable(struct bxe_softc *sc); 682 static int bxe_release_leader_lock(struct bxe_softc *sc); 683 static void bxe_pf_disable(struct bxe_softc *sc); 684 static void bxe_free_fp_buffers(struct bxe_softc *sc); 685 static inline void bxe_update_rx_prod(struct bxe_softc *sc, 686 struct bxe_fastpath *fp, 687 uint16_t rx_bd_prod, 688 uint16_t rx_cq_prod, 689 uint16_t rx_sge_prod); 690 static void bxe_link_report_locked(struct bxe_softc *sc); 691 static void bxe_link_report(struct bxe_softc *sc); 692 static void bxe_link_status_update(struct bxe_softc *sc); 693 static void bxe_periodic_callout_func(void *xsc); 694 static void bxe_periodic_start(struct bxe_softc *sc); 695 static void bxe_periodic_stop(struct bxe_softc *sc); 696 static int bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, 697 uint16_t prev_index, 698 uint16_t index); 699 static int bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, 700 int queue); 701 static int bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, 702 uint16_t index); 703 static uint8_t bxe_txeof(struct bxe_softc *sc, 704 struct bxe_fastpath *fp); 705 static void bxe_task_fp(struct bxe_fastpath *fp); 706 static __noinline void bxe_dump_mbuf(struct bxe_softc *sc, 707 struct mbuf *m, 708 uint8_t contents); 709 static int bxe_alloc_mem(struct bxe_softc *sc); 710 static void bxe_free_mem(struct bxe_softc *sc); 711 static int bxe_alloc_fw_stats_mem(struct bxe_softc *sc); 712 static void bxe_free_fw_stats_mem(struct bxe_softc *sc); 713 static int bxe_interrupt_attach(struct bxe_softc *sc); 714 static void bxe_interrupt_detach(struct bxe_softc *sc); 715 static void bxe_set_rx_mode(struct bxe_softc *sc); 716 static int bxe_init_locked(struct bxe_softc *sc); 717 static int bxe_stop_locked(struct bxe_softc *sc); 718 static __noinline int bxe_nic_load(struct bxe_softc *sc, 719 int load_mode); 720 static __noinline int bxe_nic_unload(struct bxe_softc *sc, 721 uint32_t unload_mode, 722 uint8_t keep_link); 723 724 static void bxe_handle_sp_tq(void *context, int pending); 725 static void bxe_handle_rx_mode_tq(void *context, int pending); 726 static void bxe_handle_fp_tq(void *context, int pending); 727 728 729 /* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */ 730 uint32_t 731 calc_crc32(uint8_t *crc32_packet, 732 uint32_t crc32_length, 733 uint32_t crc32_seed, 734 uint8_t complement) 735 { 736 uint32_t byte = 0; 737 uint32_t bit = 0; 738 uint8_t msb = 0; 739 uint32_t temp = 0; 740 uint32_t shft = 0; 741 uint8_t current_byte = 0; 742 uint32_t crc32_result = crc32_seed; 743 const uint32_t CRC32_POLY = 0x1edc6f41; 744 745 if ((crc32_packet == NULL) || 746 (crc32_length == 0) || 747 ((crc32_length % 8) != 0)) 748 { 749 return (crc32_result); 750 } 751 752 for (byte = 0; byte < crc32_length; byte = byte + 1) 753 { 754 current_byte = crc32_packet[byte]; 755 for (bit = 0; bit < 8; bit = bit + 1) 756 { 757 /* msb = crc32_result[31]; */ 758 msb = (uint8_t)(crc32_result >> 31); 759 760 crc32_result = crc32_result << 1; 761 762 /* it (msb != current_byte[bit]) */ 763 if (msb != (0x1 & (current_byte >> bit))) 764 { 765 crc32_result = crc32_result ^ CRC32_POLY; 766 /* crc32_result[0] = 1 */ 767 crc32_result |= 1; 768 } 769 } 770 } 771 772 /* Last step is to: 773 * 1. "mirror" every bit 774 * 2. swap the 4 bytes 775 * 3. complement each bit 776 */ 777 778 /* Mirror */ 779 temp = crc32_result; 780 shft = sizeof(crc32_result) * 8 - 1; 781 782 for (crc32_result >>= 1; crc32_result; crc32_result >>= 1) 783 { 784 temp <<= 1; 785 temp |= crc32_result & 1; 786 shft-- ; 787 } 788 789 /* temp[31-bit] = crc32_result[bit] */ 790 temp <<= shft; 791 792 /* Swap */ 793 /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */ 794 { 795 uint32_t t0, t1, t2, t3; 796 t0 = (0x000000ff & (temp >> 24)); 797 t1 = (0x0000ff00 & (temp >> 8)); 798 t2 = (0x00ff0000 & (temp << 8)); 799 t3 = (0xff000000 & (temp << 24)); 800 crc32_result = t0 | t1 | t2 | t3; 801 } 802 803 /* Complement */ 804 if (complement) 805 { 806 crc32_result = ~crc32_result; 807 } 808 809 return (crc32_result); 810 } 811 812 int 813 bxe_test_bit(int nr, 814 volatile unsigned long *addr) 815 { 816 return ((atomic_load_acq_long(addr) & (1 << nr)) != 0); 817 } 818 819 void 820 bxe_set_bit(unsigned int nr, 821 volatile unsigned long *addr) 822 { 823 atomic_set_acq_long(addr, (1 << nr)); 824 } 825 826 void 827 bxe_clear_bit(int nr, 828 volatile unsigned long *addr) 829 { 830 atomic_clear_acq_long(addr, (1 << nr)); 831 } 832 833 int 834 bxe_test_and_set_bit(int nr, 835 volatile unsigned long *addr) 836 { 837 unsigned long x; 838 nr = (1 << nr); 839 do { 840 x = *addr; 841 } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0); 842 // if (x & nr) bit_was_set; else bit_was_not_set; 843 return (x & nr); 844 } 845 846 int 847 bxe_test_and_clear_bit(int nr, 848 volatile unsigned long *addr) 849 { 850 unsigned long x; 851 nr = (1 << nr); 852 do { 853 x = *addr; 854 } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0); 855 // if (x & nr) bit_was_set; else bit_was_not_set; 856 return (x & nr); 857 } 858 859 int 860 bxe_cmpxchg(volatile int *addr, 861 int old, 862 int new) 863 { 864 int x; 865 do { 866 x = *addr; 867 } while (atomic_cmpset_acq_int(addr, old, new) == 0); 868 return (x); 869 } 870 871 /* 872 * Get DMA memory from the OS. 873 * 874 * Validates that the OS has provided DMA buffers in response to a 875 * bus_dmamap_load call and saves the physical address of those buffers. 876 * When the callback is used the OS will return 0 for the mapping function 877 * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any 878 * failures back to the caller. 879 * 880 * Returns: 881 * Nothing. 882 */ 883 static void 884 bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 885 { 886 struct bxe_dma *dma = arg; 887 888 if (error) { 889 dma->paddr = 0; 890 dma->nseg = 0; 891 BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error); 892 } else { 893 dma->paddr = segs->ds_addr; 894 dma->nseg = nseg; 895 #if 0 896 BLOGD(dma->sc, DBG_LOAD, 897 "DMA alloc '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n", 898 dma->msg, dma->vaddr, (void *)dma->paddr, 899 dma->nseg, dma->size); 900 #endif 901 } 902 } 903 904 /* 905 * Allocate a block of memory and map it for DMA. No partial completions 906 * allowed and release any resources acquired if we can't acquire all 907 * resources. 908 * 909 * Returns: 910 * 0 = Success, !0 = Failure 911 */ 912 int 913 bxe_dma_alloc(struct bxe_softc *sc, 914 bus_size_t size, 915 struct bxe_dma *dma, 916 const char *msg) 917 { 918 int rc; 919 920 if (dma->size > 0) { 921 BLOGE(sc, "dma block '%s' already has size %lu\n", msg, 922 (unsigned long)dma->size); 923 return (1); 924 } 925 926 memset(dma, 0, sizeof(*dma)); /* sanity */ 927 dma->sc = sc; 928 dma->size = size; 929 snprintf(dma->msg, sizeof(dma->msg), "%s", msg); 930 931 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 932 BCM_PAGE_SIZE, /* alignment */ 933 0, /* boundary limit */ 934 BUS_SPACE_MAXADDR, /* restricted low */ 935 BUS_SPACE_MAXADDR, /* restricted hi */ 936 NULL, /* addr filter() */ 937 NULL, /* addr filter() arg */ 938 size, /* max map size */ 939 1, /* num discontinuous */ 940 size, /* max seg size */ 941 BUS_DMA_ALLOCNOW, /* flags */ 942 NULL, /* lock() */ 943 NULL, /* lock() arg */ 944 &dma->tag); /* returned dma tag */ 945 if (rc != 0) { 946 BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc); 947 memset(dma, 0, sizeof(*dma)); 948 return (1); 949 } 950 951 rc = bus_dmamem_alloc(dma->tag, 952 (void **)&dma->vaddr, 953 (BUS_DMA_NOWAIT | BUS_DMA_ZERO), 954 &dma->map); 955 if (rc != 0) { 956 BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc); 957 bus_dma_tag_destroy(dma->tag); 958 memset(dma, 0, sizeof(*dma)); 959 return (1); 960 } 961 962 rc = bus_dmamap_load(dma->tag, 963 dma->map, 964 dma->vaddr, 965 size, 966 bxe_dma_map_addr, /* BLOGD in here */ 967 dma, 968 BUS_DMA_NOWAIT); 969 if (rc != 0) { 970 BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc); 971 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 972 bus_dma_tag_destroy(dma->tag); 973 memset(dma, 0, sizeof(*dma)); 974 return (1); 975 } 976 977 return (0); 978 } 979 980 void 981 bxe_dma_free(struct bxe_softc *sc, 982 struct bxe_dma *dma) 983 { 984 if (dma->size > 0) { 985 #if 0 986 BLOGD(sc, DBG_LOAD, 987 "DMA free '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n", 988 dma->msg, dma->vaddr, (void *)dma->paddr, 989 dma->nseg, dma->size); 990 #endif 991 992 DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL")); 993 994 bus_dmamap_sync(dma->tag, dma->map, 995 (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE)); 996 bus_dmamap_unload(dma->tag, dma->map); 997 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 998 bus_dma_tag_destroy(dma->tag); 999 } 1000 1001 memset(dma, 0, sizeof(*dma)); 1002 } 1003 1004 /* 1005 * These indirect read and write routines are only during init. 1006 * The locking is handled by the MCP. 1007 */ 1008 1009 void 1010 bxe_reg_wr_ind(struct bxe_softc *sc, 1011 uint32_t addr, 1012 uint32_t val) 1013 { 1014 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); 1015 pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4); 1016 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 1017 } 1018 1019 uint32_t 1020 bxe_reg_rd_ind(struct bxe_softc *sc, 1021 uint32_t addr) 1022 { 1023 uint32_t val; 1024 1025 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); 1026 val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4); 1027 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 1028 1029 return (val); 1030 } 1031 1032 #if 0 1033 void bxe_dp_dmae(struct bxe_softc *sc, struct dmae_command *dmae, int msglvl) 1034 { 1035 uint32_t src_type = dmae->opcode & DMAE_COMMAND_SRC; 1036 1037 switch (dmae->opcode & DMAE_COMMAND_DST) { 1038 case DMAE_CMD_DST_PCI: 1039 if (src_type == DMAE_CMD_SRC_PCI) 1040 DP(msglvl, "DMAE: opcode 0x%08x\n" 1041 "src [%x:%08x], len [%d*4], dst [%x:%08x]\n" 1042 "comp_addr [%x:%08x], comp_val 0x%08x\n", 1043 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 1044 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, 1045 dmae->comp_addr_hi, dmae->comp_addr_lo, 1046 dmae->comp_val); 1047 else 1048 DP(msglvl, "DMAE: opcode 0x%08x\n" 1049 "src [%08x], len [%d*4], dst [%x:%08x]\n" 1050 "comp_addr [%x:%08x], comp_val 0x%08x\n", 1051 dmae->opcode, dmae->src_addr_lo >> 2, 1052 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, 1053 dmae->comp_addr_hi, dmae->comp_addr_lo, 1054 dmae->comp_val); 1055 break; 1056 case DMAE_CMD_DST_GRC: 1057 if (src_type == DMAE_CMD_SRC_PCI) 1058 DP(msglvl, "DMAE: opcode 0x%08x\n" 1059 "src [%x:%08x], len [%d*4], dst_addr [%08x]\n" 1060 "comp_addr [%x:%08x], comp_val 0x%08x\n", 1061 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 1062 dmae->len, dmae->dst_addr_lo >> 2, 1063 dmae->comp_addr_hi, dmae->comp_addr_lo, 1064 dmae->comp_val); 1065 else 1066 DP(msglvl, "DMAE: opcode 0x%08x\n" 1067 "src [%08x], len [%d*4], dst [%08x]\n" 1068 "comp_addr [%x:%08x], comp_val 0x%08x\n", 1069 dmae->opcode, dmae->src_addr_lo >> 2, 1070 dmae->len, dmae->dst_addr_lo >> 2, 1071 dmae->comp_addr_hi, dmae->comp_addr_lo, 1072 dmae->comp_val); 1073 break; 1074 default: 1075 if (src_type == DMAE_CMD_SRC_PCI) 1076 DP(msglvl, "DMAE: opcode 0x%08x\n" 1077 "src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n" 1078 "comp_addr [%x:%08x] comp_val 0x%08x\n", 1079 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 1080 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, 1081 dmae->comp_val); 1082 else 1083 DP(msglvl, "DMAE: opcode 0x%08x\n" 1084 "src_addr [%08x] len [%d * 4] dst_addr [none]\n" 1085 "comp_addr [%x:%08x] comp_val 0x%08x\n", 1086 dmae->opcode, dmae->src_addr_lo >> 2, 1087 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, 1088 dmae->comp_val); 1089 break; 1090 } 1091 1092 } 1093 #endif 1094 1095 static int 1096 bxe_acquire_hw_lock(struct bxe_softc *sc, 1097 uint32_t resource) 1098 { 1099 uint32_t lock_status; 1100 uint32_t resource_bit = (1 << resource); 1101 int func = SC_FUNC(sc); 1102 uint32_t hw_lock_control_reg; 1103 int cnt; 1104 1105 /* validate the resource is within range */ 1106 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1107 BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource); 1108 return (-1); 1109 } 1110 1111 if (func <= 5) { 1112 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); 1113 } else { 1114 hw_lock_control_reg = 1115 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); 1116 } 1117 1118 /* validate the resource is not already taken */ 1119 lock_status = REG_RD(sc, hw_lock_control_reg); 1120 if (lock_status & resource_bit) { 1121 BLOGE(sc, "resource in use (status 0x%x bit 0x%x)\n", 1122 lock_status, resource_bit); 1123 return (-1); 1124 } 1125 1126 /* try every 5ms for 5 seconds */ 1127 for (cnt = 0; cnt < 1000; cnt++) { 1128 REG_WR(sc, (hw_lock_control_reg + 4), resource_bit); 1129 lock_status = REG_RD(sc, hw_lock_control_reg); 1130 if (lock_status & resource_bit) { 1131 return (0); 1132 } 1133 DELAY(5000); 1134 } 1135 1136 BLOGE(sc, "Resource lock timeout!\n"); 1137 return (-1); 1138 } 1139 1140 static int 1141 bxe_release_hw_lock(struct bxe_softc *sc, 1142 uint32_t resource) 1143 { 1144 uint32_t lock_status; 1145 uint32_t resource_bit = (1 << resource); 1146 int func = SC_FUNC(sc); 1147 uint32_t hw_lock_control_reg; 1148 1149 /* validate the resource is within range */ 1150 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1151 BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource); 1152 return (-1); 1153 } 1154 1155 if (func <= 5) { 1156 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); 1157 } else { 1158 hw_lock_control_reg = 1159 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); 1160 } 1161 1162 /* validate the resource is currently taken */ 1163 lock_status = REG_RD(sc, hw_lock_control_reg); 1164 if (!(lock_status & resource_bit)) { 1165 BLOGE(sc, "resource not in use (status 0x%x bit 0x%x)\n", 1166 lock_status, resource_bit); 1167 return (-1); 1168 } 1169 1170 REG_WR(sc, hw_lock_control_reg, resource_bit); 1171 return (0); 1172 } 1173 1174 /* 1175 * Per pf misc lock must be acquired before the per port mcp lock. Otherwise, 1176 * had we done things the other way around, if two pfs from the same port 1177 * would attempt to access nvram at the same time, we could run into a 1178 * scenario such as: 1179 * pf A takes the port lock. 1180 * pf B succeeds in taking the same lock since they are from the same port. 1181 * pf A takes the per pf misc lock. Performs eeprom access. 1182 * pf A finishes. Unlocks the per pf misc lock. 1183 * Pf B takes the lock and proceeds to perform it's own access. 1184 * pf A unlocks the per port lock, while pf B is still working (!). 1185 * mcp takes the per port lock and corrupts pf B's access (and/or has it's own 1186 * access corrupted by pf B).* 1187 */ 1188 static int 1189 bxe_acquire_nvram_lock(struct bxe_softc *sc) 1190 { 1191 int port = SC_PORT(sc); 1192 int count, i; 1193 uint32_t val = 0; 1194 1195 /* acquire HW lock: protect against other PFs in PF Direct Assignment */ 1196 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); 1197 1198 /* adjust timeout for emulation/FPGA */ 1199 count = NVRAM_TIMEOUT_COUNT; 1200 if (CHIP_REV_IS_SLOW(sc)) { 1201 count *= 100; 1202 } 1203 1204 /* request access to nvram interface */ 1205 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 1206 (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port)); 1207 1208 for (i = 0; i < count*10; i++) { 1209 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); 1210 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { 1211 break; 1212 } 1213 1214 DELAY(5); 1215 } 1216 1217 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { 1218 BLOGE(sc, "Cannot get access to nvram interface\n"); 1219 return (-1); 1220 } 1221 1222 return (0); 1223 } 1224 1225 static int 1226 bxe_release_nvram_lock(struct bxe_softc *sc) 1227 { 1228 int port = SC_PORT(sc); 1229 int count, i; 1230 uint32_t val = 0; 1231 1232 /* adjust timeout for emulation/FPGA */ 1233 count = NVRAM_TIMEOUT_COUNT; 1234 if (CHIP_REV_IS_SLOW(sc)) { 1235 count *= 100; 1236 } 1237 1238 /* relinquish nvram interface */ 1239 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 1240 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port)); 1241 1242 for (i = 0; i < count*10; i++) { 1243 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); 1244 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { 1245 break; 1246 } 1247 1248 DELAY(5); 1249 } 1250 1251 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { 1252 BLOGE(sc, "Cannot free access to nvram interface\n"); 1253 return (-1); 1254 } 1255 1256 /* release HW lock: protect against other PFs in PF Direct Assignment */ 1257 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); 1258 1259 return (0); 1260 } 1261 1262 static void 1263 bxe_enable_nvram_access(struct bxe_softc *sc) 1264 { 1265 uint32_t val; 1266 1267 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); 1268 1269 /* enable both bits, even on read */ 1270 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, 1271 (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN)); 1272 } 1273 1274 static void 1275 bxe_disable_nvram_access(struct bxe_softc *sc) 1276 { 1277 uint32_t val; 1278 1279 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); 1280 1281 /* disable both bits, even after read */ 1282 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, 1283 (val & ~(MCPR_NVM_ACCESS_ENABLE_EN | 1284 MCPR_NVM_ACCESS_ENABLE_WR_EN))); 1285 } 1286 1287 static int 1288 bxe_nvram_read_dword(struct bxe_softc *sc, 1289 uint32_t offset, 1290 uint32_t *ret_val, 1291 uint32_t cmd_flags) 1292 { 1293 int count, i, rc; 1294 uint32_t val; 1295 1296 /* build the command word */ 1297 cmd_flags |= MCPR_NVM_COMMAND_DOIT; 1298 1299 /* need to clear DONE bit separately */ 1300 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); 1301 1302 /* address of the NVRAM to read from */ 1303 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, 1304 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); 1305 1306 /* issue a read command */ 1307 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); 1308 1309 /* adjust timeout for emulation/FPGA */ 1310 count = NVRAM_TIMEOUT_COUNT; 1311 if (CHIP_REV_IS_SLOW(sc)) { 1312 count *= 100; 1313 } 1314 1315 /* wait for completion */ 1316 *ret_val = 0; 1317 rc = -1; 1318 for (i = 0; i < count; i++) { 1319 DELAY(5); 1320 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); 1321 1322 if (val & MCPR_NVM_COMMAND_DONE) { 1323 val = REG_RD(sc, MCP_REG_MCPR_NVM_READ); 1324 /* we read nvram data in cpu order 1325 * but ethtool sees it as an array of bytes 1326 * converting to big-endian will do the work 1327 */ 1328 *ret_val = htobe32(val); 1329 rc = 0; 1330 break; 1331 } 1332 } 1333 1334 if (rc == -1) { 1335 BLOGE(sc, "nvram read timeout expired\n"); 1336 } 1337 1338 return (rc); 1339 } 1340 1341 static int 1342 bxe_nvram_read(struct bxe_softc *sc, 1343 uint32_t offset, 1344 uint8_t *ret_buf, 1345 int buf_size) 1346 { 1347 uint32_t cmd_flags; 1348 uint32_t val; 1349 int rc; 1350 1351 if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) { 1352 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", 1353 offset, buf_size); 1354 return (-1); 1355 } 1356 1357 if ((offset + buf_size) > sc->devinfo.flash_size) { 1358 BLOGE(sc, "Invalid parameter, " 1359 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1360 offset, buf_size, sc->devinfo.flash_size); 1361 return (-1); 1362 } 1363 1364 /* request access to nvram interface */ 1365 rc = bxe_acquire_nvram_lock(sc); 1366 if (rc) { 1367 return (rc); 1368 } 1369 1370 /* enable access to nvram interface */ 1371 bxe_enable_nvram_access(sc); 1372 1373 /* read the first word(s) */ 1374 cmd_flags = MCPR_NVM_COMMAND_FIRST; 1375 while ((buf_size > sizeof(uint32_t)) && (rc == 0)) { 1376 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); 1377 memcpy(ret_buf, &val, 4); 1378 1379 /* advance to the next dword */ 1380 offset += sizeof(uint32_t); 1381 ret_buf += sizeof(uint32_t); 1382 buf_size -= sizeof(uint32_t); 1383 cmd_flags = 0; 1384 } 1385 1386 if (rc == 0) { 1387 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1388 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); 1389 memcpy(ret_buf, &val, 4); 1390 } 1391 1392 /* disable access to nvram interface */ 1393 bxe_disable_nvram_access(sc); 1394 bxe_release_nvram_lock(sc); 1395 1396 return (rc); 1397 } 1398 1399 static int 1400 bxe_nvram_write_dword(struct bxe_softc *sc, 1401 uint32_t offset, 1402 uint32_t val, 1403 uint32_t cmd_flags) 1404 { 1405 int count, i, rc; 1406 1407 /* build the command word */ 1408 cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR); 1409 1410 /* need to clear DONE bit separately */ 1411 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); 1412 1413 /* write the data */ 1414 REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val); 1415 1416 /* address of the NVRAM to write to */ 1417 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, 1418 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); 1419 1420 /* issue the write command */ 1421 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); 1422 1423 /* adjust timeout for emulation/FPGA */ 1424 count = NVRAM_TIMEOUT_COUNT; 1425 if (CHIP_REV_IS_SLOW(sc)) { 1426 count *= 100; 1427 } 1428 1429 /* wait for completion */ 1430 rc = -1; 1431 for (i = 0; i < count; i++) { 1432 DELAY(5); 1433 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); 1434 if (val & MCPR_NVM_COMMAND_DONE) { 1435 rc = 0; 1436 break; 1437 } 1438 } 1439 1440 if (rc == -1) { 1441 BLOGE(sc, "nvram write timeout expired\n"); 1442 } 1443 1444 return (rc); 1445 } 1446 1447 #define BYTE_OFFSET(offset) (8 * (offset & 0x03)) 1448 1449 static int 1450 bxe_nvram_write1(struct bxe_softc *sc, 1451 uint32_t offset, 1452 uint8_t *data_buf, 1453 int buf_size) 1454 { 1455 uint32_t cmd_flags; 1456 uint32_t align_offset; 1457 uint32_t val; 1458 int rc; 1459 1460 if ((offset + buf_size) > sc->devinfo.flash_size) { 1461 BLOGE(sc, "Invalid parameter, " 1462 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1463 offset, buf_size, sc->devinfo.flash_size); 1464 return (-1); 1465 } 1466 1467 /* request access to nvram interface */ 1468 rc = bxe_acquire_nvram_lock(sc); 1469 if (rc) { 1470 return (rc); 1471 } 1472 1473 /* enable access to nvram interface */ 1474 bxe_enable_nvram_access(sc); 1475 1476 cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST); 1477 align_offset = (offset & ~0x03); 1478 rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags); 1479 1480 if (rc == 0) { 1481 val &= ~(0xff << BYTE_OFFSET(offset)); 1482 val |= (*data_buf << BYTE_OFFSET(offset)); 1483 1484 /* nvram data is returned as an array of bytes 1485 * convert it back to cpu order 1486 */ 1487 val = be32toh(val); 1488 1489 rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags); 1490 } 1491 1492 /* disable access to nvram interface */ 1493 bxe_disable_nvram_access(sc); 1494 bxe_release_nvram_lock(sc); 1495 1496 return (rc); 1497 } 1498 1499 static int 1500 bxe_nvram_write(struct bxe_softc *sc, 1501 uint32_t offset, 1502 uint8_t *data_buf, 1503 int buf_size) 1504 { 1505 uint32_t cmd_flags; 1506 uint32_t val; 1507 uint32_t written_so_far; 1508 int rc; 1509 1510 if (buf_size == 1) { 1511 return (bxe_nvram_write1(sc, offset, data_buf, buf_size)); 1512 } 1513 1514 if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) { 1515 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", 1516 offset, buf_size); 1517 return (-1); 1518 } 1519 1520 if (buf_size == 0) { 1521 return (0); /* nothing to do */ 1522 } 1523 1524 if ((offset + buf_size) > sc->devinfo.flash_size) { 1525 BLOGE(sc, "Invalid parameter, " 1526 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1527 offset, buf_size, sc->devinfo.flash_size); 1528 return (-1); 1529 } 1530 1531 /* request access to nvram interface */ 1532 rc = bxe_acquire_nvram_lock(sc); 1533 if (rc) { 1534 return (rc); 1535 } 1536 1537 /* enable access to nvram interface */ 1538 bxe_enable_nvram_access(sc); 1539 1540 written_so_far = 0; 1541 cmd_flags = MCPR_NVM_COMMAND_FIRST; 1542 while ((written_so_far < buf_size) && (rc == 0)) { 1543 if (written_so_far == (buf_size - sizeof(uint32_t))) { 1544 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1545 } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) { 1546 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1547 } else if ((offset % NVRAM_PAGE_SIZE) == 0) { 1548 cmd_flags |= MCPR_NVM_COMMAND_FIRST; 1549 } 1550 1551 memcpy(&val, data_buf, 4); 1552 1553 rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags); 1554 1555 /* advance to the next dword */ 1556 offset += sizeof(uint32_t); 1557 data_buf += sizeof(uint32_t); 1558 written_so_far += sizeof(uint32_t); 1559 cmd_flags = 0; 1560 } 1561 1562 /* disable access to nvram interface */ 1563 bxe_disable_nvram_access(sc); 1564 bxe_release_nvram_lock(sc); 1565 1566 return (rc); 1567 } 1568 1569 /* copy command into DMAE command memory and set DMAE command Go */ 1570 void 1571 bxe_post_dmae(struct bxe_softc *sc, 1572 struct dmae_command *dmae, 1573 int idx) 1574 { 1575 uint32_t cmd_offset; 1576 int i; 1577 1578 cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_command) * idx)); 1579 for (i = 0; i < ((sizeof(struct dmae_command) / 4)); i++) { 1580 REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i)); 1581 } 1582 1583 REG_WR(sc, dmae_reg_go_c[idx], 1); 1584 } 1585 1586 uint32_t 1587 bxe_dmae_opcode_add_comp(uint32_t opcode, 1588 uint8_t comp_type) 1589 { 1590 return (opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) | 1591 DMAE_COMMAND_C_TYPE_ENABLE)); 1592 } 1593 1594 uint32_t 1595 bxe_dmae_opcode_clr_src_reset(uint32_t opcode) 1596 { 1597 return (opcode & ~DMAE_COMMAND_SRC_RESET); 1598 } 1599 1600 uint32_t 1601 bxe_dmae_opcode(struct bxe_softc *sc, 1602 uint8_t src_type, 1603 uint8_t dst_type, 1604 uint8_t with_comp, 1605 uint8_t comp_type) 1606 { 1607 uint32_t opcode = 0; 1608 1609 opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) | 1610 (dst_type << DMAE_COMMAND_DST_SHIFT)); 1611 1612 opcode |= (DMAE_COMMAND_SRC_RESET | DMAE_COMMAND_DST_RESET); 1613 1614 opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0); 1615 1616 opcode |= ((SC_VN(sc) << DMAE_COMMAND_E1HVN_SHIFT) | 1617 (SC_VN(sc) << DMAE_COMMAND_DST_VN_SHIFT)); 1618 1619 opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT); 1620 1621 #ifdef __BIG_ENDIAN 1622 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP; 1623 #else 1624 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP; 1625 #endif 1626 1627 if (with_comp) { 1628 opcode = bxe_dmae_opcode_add_comp(opcode, comp_type); 1629 } 1630 1631 return (opcode); 1632 } 1633 1634 static void 1635 bxe_prep_dmae_with_comp(struct bxe_softc *sc, 1636 struct dmae_command *dmae, 1637 uint8_t src_type, 1638 uint8_t dst_type) 1639 { 1640 memset(dmae, 0, sizeof(struct dmae_command)); 1641 1642 /* set the opcode */ 1643 dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type, 1644 TRUE, DMAE_COMP_PCI); 1645 1646 /* fill in the completion parameters */ 1647 dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp)); 1648 dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp)); 1649 dmae->comp_val = DMAE_COMP_VAL; 1650 } 1651 1652 /* issue a DMAE command over the init channel and wait for completion */ 1653 static int 1654 bxe_issue_dmae_with_comp(struct bxe_softc *sc, 1655 struct dmae_command *dmae) 1656 { 1657 uint32_t *wb_comp = BXE_SP(sc, wb_comp); 1658 int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000; 1659 1660 BXE_DMAE_LOCK(sc); 1661 1662 /* reset completion */ 1663 *wb_comp = 0; 1664 1665 /* post the command on the channel used for initializations */ 1666 bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc)); 1667 1668 /* wait for completion */ 1669 DELAY(5); 1670 1671 while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) { 1672 if (!timeout || 1673 (sc->recovery_state != BXE_RECOVERY_DONE && 1674 sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) { 1675 BLOGE(sc, "DMAE timeout!\n"); 1676 BXE_DMAE_UNLOCK(sc); 1677 return (DMAE_TIMEOUT); 1678 } 1679 1680 timeout--; 1681 DELAY(50); 1682 } 1683 1684 if (*wb_comp & DMAE_PCI_ERR_FLAG) { 1685 BLOGE(sc, "DMAE PCI error!\n"); 1686 BXE_DMAE_UNLOCK(sc); 1687 return (DMAE_PCI_ERROR); 1688 } 1689 1690 BXE_DMAE_UNLOCK(sc); 1691 return (0); 1692 } 1693 1694 void 1695 bxe_read_dmae(struct bxe_softc *sc, 1696 uint32_t src_addr, 1697 uint32_t len32) 1698 { 1699 struct dmae_command dmae; 1700 uint32_t *data; 1701 int i, rc; 1702 1703 DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32)); 1704 1705 if (!sc->dmae_ready) { 1706 data = BXE_SP(sc, wb_data[0]); 1707 1708 for (i = 0; i < len32; i++) { 1709 data[i] = (CHIP_IS_E1(sc)) ? 1710 bxe_reg_rd_ind(sc, (src_addr + (i * 4))) : 1711 REG_RD(sc, (src_addr + (i * 4))); 1712 } 1713 1714 return; 1715 } 1716 1717 /* set opcode and fixed command fields */ 1718 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI); 1719 1720 /* fill in addresses and len */ 1721 dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */ 1722 dmae.src_addr_hi = 0; 1723 dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data)); 1724 dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data)); 1725 dmae.len = len32; 1726 1727 /* issue the command and wait for completion */ 1728 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { 1729 bxe_panic(sc, ("DMAE failed (%d)\n", rc)); 1730 }; 1731 } 1732 1733 void 1734 bxe_write_dmae(struct bxe_softc *sc, 1735 bus_addr_t dma_addr, 1736 uint32_t dst_addr, 1737 uint32_t len32) 1738 { 1739 struct dmae_command dmae; 1740 int rc; 1741 1742 if (!sc->dmae_ready) { 1743 DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32)); 1744 1745 if (CHIP_IS_E1(sc)) { 1746 ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); 1747 } else { 1748 ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); 1749 } 1750 1751 return; 1752 } 1753 1754 /* set opcode and fixed command fields */ 1755 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC); 1756 1757 /* fill in addresses and len */ 1758 dmae.src_addr_lo = U64_LO(dma_addr); 1759 dmae.src_addr_hi = U64_HI(dma_addr); 1760 dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */ 1761 dmae.dst_addr_hi = 0; 1762 dmae.len = len32; 1763 1764 /* issue the command and wait for completion */ 1765 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { 1766 bxe_panic(sc, ("DMAE failed (%d)\n", rc)); 1767 } 1768 } 1769 1770 void 1771 bxe_write_dmae_phys_len(struct bxe_softc *sc, 1772 bus_addr_t phys_addr, 1773 uint32_t addr, 1774 uint32_t len) 1775 { 1776 int dmae_wr_max = DMAE_LEN32_WR_MAX(sc); 1777 int offset = 0; 1778 1779 while (len > dmae_wr_max) { 1780 bxe_write_dmae(sc, 1781 (phys_addr + offset), /* src DMA address */ 1782 (addr + offset), /* dst GRC address */ 1783 dmae_wr_max); 1784 offset += (dmae_wr_max * 4); 1785 len -= dmae_wr_max; 1786 } 1787 1788 bxe_write_dmae(sc, 1789 (phys_addr + offset), /* src DMA address */ 1790 (addr + offset), /* dst GRC address */ 1791 len); 1792 } 1793 1794 void 1795 bxe_set_ctx_validation(struct bxe_softc *sc, 1796 struct eth_context *cxt, 1797 uint32_t cid) 1798 { 1799 /* ustorm cxt validation */ 1800 cxt->ustorm_ag_context.cdu_usage = 1801 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), 1802 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE); 1803 /* xcontext validation */ 1804 cxt->xstorm_ag_context.cdu_reserved = 1805 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), 1806 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE); 1807 } 1808 1809 static void 1810 bxe_storm_memset_hc_timeout(struct bxe_softc *sc, 1811 uint8_t port, 1812 uint8_t fw_sb_id, 1813 uint8_t sb_index, 1814 uint8_t ticks) 1815 { 1816 uint32_t addr = 1817 (BAR_CSTRORM_INTMEM + 1818 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index)); 1819 1820 REG_WR8(sc, addr, ticks); 1821 1822 BLOGD(sc, DBG_LOAD, 1823 "port %d fw_sb_id %d sb_index %d ticks %d\n", 1824 port, fw_sb_id, sb_index, ticks); 1825 } 1826 1827 static void 1828 bxe_storm_memset_hc_disable(struct bxe_softc *sc, 1829 uint8_t port, 1830 uint16_t fw_sb_id, 1831 uint8_t sb_index, 1832 uint8_t disable) 1833 { 1834 uint32_t enable_flag = 1835 (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT); 1836 uint32_t addr = 1837 (BAR_CSTRORM_INTMEM + 1838 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index)); 1839 uint8_t flags; 1840 1841 /* clear and set */ 1842 flags = REG_RD8(sc, addr); 1843 flags &= ~HC_INDEX_DATA_HC_ENABLED; 1844 flags |= enable_flag; 1845 REG_WR8(sc, addr, flags); 1846 1847 BLOGD(sc, DBG_LOAD, 1848 "port %d fw_sb_id %d sb_index %d disable %d\n", 1849 port, fw_sb_id, sb_index, disable); 1850 } 1851 1852 void 1853 bxe_update_coalesce_sb_index(struct bxe_softc *sc, 1854 uint8_t fw_sb_id, 1855 uint8_t sb_index, 1856 uint8_t disable, 1857 uint16_t usec) 1858 { 1859 int port = SC_PORT(sc); 1860 uint8_t ticks = (usec / 4); /* XXX ??? */ 1861 1862 bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks); 1863 1864 disable = (disable) ? 1 : ((usec) ? 0 : 1); 1865 bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable); 1866 } 1867 1868 void 1869 elink_cb_udelay(struct bxe_softc *sc, 1870 uint32_t usecs) 1871 { 1872 DELAY(usecs); 1873 } 1874 1875 uint32_t 1876 elink_cb_reg_read(struct bxe_softc *sc, 1877 uint32_t reg_addr) 1878 { 1879 return (REG_RD(sc, reg_addr)); 1880 } 1881 1882 void 1883 elink_cb_reg_write(struct bxe_softc *sc, 1884 uint32_t reg_addr, 1885 uint32_t val) 1886 { 1887 REG_WR(sc, reg_addr, val); 1888 } 1889 1890 void 1891 elink_cb_reg_wb_write(struct bxe_softc *sc, 1892 uint32_t offset, 1893 uint32_t *wb_write, 1894 uint16_t len) 1895 { 1896 REG_WR_DMAE(sc, offset, wb_write, len); 1897 } 1898 1899 void 1900 elink_cb_reg_wb_read(struct bxe_softc *sc, 1901 uint32_t offset, 1902 uint32_t *wb_write, 1903 uint16_t len) 1904 { 1905 REG_RD_DMAE(sc, offset, wb_write, len); 1906 } 1907 1908 uint8_t 1909 elink_cb_path_id(struct bxe_softc *sc) 1910 { 1911 return (SC_PATH(sc)); 1912 } 1913 1914 void 1915 elink_cb_event_log(struct bxe_softc *sc, 1916 const elink_log_id_t elink_log_id, 1917 ...) 1918 { 1919 /* XXX */ 1920 #if 0 1921 //va_list ap; 1922 va_start(ap, elink_log_id); 1923 _XXX_(sc, lm_log_id, ap); 1924 va_end(ap); 1925 #endif 1926 BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id); 1927 } 1928 1929 static int 1930 bxe_set_spio(struct bxe_softc *sc, 1931 int spio, 1932 uint32_t mode) 1933 { 1934 uint32_t spio_reg; 1935 1936 /* Only 2 SPIOs are configurable */ 1937 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) { 1938 BLOGE(sc, "Invalid SPIO 0x%x\n", spio); 1939 return (-1); 1940 } 1941 1942 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); 1943 1944 /* read SPIO and mask except the float bits */ 1945 spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT); 1946 1947 switch (mode) { 1948 case MISC_SPIO_OUTPUT_LOW: 1949 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio); 1950 /* clear FLOAT and set CLR */ 1951 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 1952 spio_reg |= (spio << MISC_SPIO_CLR_POS); 1953 break; 1954 1955 case MISC_SPIO_OUTPUT_HIGH: 1956 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio); 1957 /* clear FLOAT and set SET */ 1958 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 1959 spio_reg |= (spio << MISC_SPIO_SET_POS); 1960 break; 1961 1962 case MISC_SPIO_INPUT_HI_Z: 1963 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio); 1964 /* set FLOAT */ 1965 spio_reg |= (spio << MISC_SPIO_FLOAT_POS); 1966 break; 1967 1968 default: 1969 break; 1970 } 1971 1972 REG_WR(sc, MISC_REG_SPIO, spio_reg); 1973 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); 1974 1975 return (0); 1976 } 1977 1978 static int 1979 bxe_gpio_read(struct bxe_softc *sc, 1980 int gpio_num, 1981 uint8_t port) 1982 { 1983 /* The GPIO should be swapped if swap register is set and active */ 1984 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 1985 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 1986 int gpio_shift = (gpio_num + 1987 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 1988 uint32_t gpio_mask = (1 << gpio_shift); 1989 uint32_t gpio_reg; 1990 1991 if (gpio_num > MISC_REGISTERS_GPIO_3) { 1992 BLOGE(sc, "Invalid GPIO %d\n", gpio_num); 1993 return (-1); 1994 } 1995 1996 /* read GPIO value */ 1997 gpio_reg = REG_RD(sc, MISC_REG_GPIO); 1998 1999 /* get the requested pin value */ 2000 return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0; 2001 } 2002 2003 static int 2004 bxe_gpio_write(struct bxe_softc *sc, 2005 int gpio_num, 2006 uint32_t mode, 2007 uint8_t port) 2008 { 2009 /* The GPIO should be swapped if swap register is set and active */ 2010 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 2011 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 2012 int gpio_shift = (gpio_num + 2013 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 2014 uint32_t gpio_mask = (1 << gpio_shift); 2015 uint32_t gpio_reg; 2016 2017 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2018 BLOGE(sc, "Invalid GPIO %d\n", gpio_num); 2019 return (-1); 2020 } 2021 2022 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2023 2024 /* read GPIO and mask except the float bits */ 2025 gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT); 2026 2027 switch (mode) { 2028 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 2029 BLOGD(sc, DBG_PHY, 2030 "Set GPIO %d (shift %d) -> output low\n", 2031 gpio_num, gpio_shift); 2032 /* clear FLOAT and set CLR */ 2033 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2034 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS); 2035 break; 2036 2037 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 2038 BLOGD(sc, DBG_PHY, 2039 "Set GPIO %d (shift %d) -> output high\n", 2040 gpio_num, gpio_shift); 2041 /* clear FLOAT and set SET */ 2042 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2043 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS); 2044 break; 2045 2046 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2047 BLOGD(sc, DBG_PHY, 2048 "Set GPIO %d (shift %d) -> input\n", 2049 gpio_num, gpio_shift); 2050 /* set FLOAT */ 2051 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2052 break; 2053 2054 default: 2055 break; 2056 } 2057 2058 REG_WR(sc, MISC_REG_GPIO, gpio_reg); 2059 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2060 2061 return (0); 2062 } 2063 2064 static int 2065 bxe_gpio_mult_write(struct bxe_softc *sc, 2066 uint8_t pins, 2067 uint32_t mode) 2068 { 2069 uint32_t gpio_reg; 2070 2071 /* any port swapping should be handled by caller */ 2072 2073 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2074 2075 /* read GPIO and mask except the float bits */ 2076 gpio_reg = REG_RD(sc, MISC_REG_GPIO); 2077 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2078 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS); 2079 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS); 2080 2081 switch (mode) { 2082 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 2083 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins); 2084 /* set CLR */ 2085 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS); 2086 break; 2087 2088 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 2089 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins); 2090 /* set SET */ 2091 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS); 2092 break; 2093 2094 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2095 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins); 2096 /* set FLOAT */ 2097 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2098 break; 2099 2100 default: 2101 BLOGE(sc, "Invalid GPIO mode assignment %d\n", mode); 2102 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2103 return (-1); 2104 } 2105 2106 REG_WR(sc, MISC_REG_GPIO, gpio_reg); 2107 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2108 2109 return (0); 2110 } 2111 2112 static int 2113 bxe_gpio_int_write(struct bxe_softc *sc, 2114 int gpio_num, 2115 uint32_t mode, 2116 uint8_t port) 2117 { 2118 /* The GPIO should be swapped if swap register is set and active */ 2119 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 2120 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 2121 int gpio_shift = (gpio_num + 2122 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 2123 uint32_t gpio_mask = (1 << gpio_shift); 2124 uint32_t gpio_reg; 2125 2126 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2127 BLOGE(sc, "Invalid GPIO %d\n", gpio_num); 2128 return (-1); 2129 } 2130 2131 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2132 2133 /* read GPIO int */ 2134 gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT); 2135 2136 switch (mode) { 2137 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR: 2138 BLOGD(sc, DBG_PHY, 2139 "Clear GPIO INT %d (shift %d) -> output low\n", 2140 gpio_num, gpio_shift); 2141 /* clear SET and set CLR */ 2142 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2143 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2144 break; 2145 2146 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET: 2147 BLOGD(sc, DBG_PHY, 2148 "Set GPIO INT %d (shift %d) -> output high\n", 2149 gpio_num, gpio_shift); 2150 /* clear CLR and set SET */ 2151 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2152 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2153 break; 2154 2155 default: 2156 break; 2157 } 2158 2159 REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg); 2160 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2161 2162 return (0); 2163 } 2164 2165 uint32_t 2166 elink_cb_gpio_read(struct bxe_softc *sc, 2167 uint16_t gpio_num, 2168 uint8_t port) 2169 { 2170 return (bxe_gpio_read(sc, gpio_num, port)); 2171 } 2172 2173 uint8_t 2174 elink_cb_gpio_write(struct bxe_softc *sc, 2175 uint16_t gpio_num, 2176 uint8_t mode, /* 0=low 1=high */ 2177 uint8_t port) 2178 { 2179 return (bxe_gpio_write(sc, gpio_num, mode, port)); 2180 } 2181 2182 uint8_t 2183 elink_cb_gpio_mult_write(struct bxe_softc *sc, 2184 uint8_t pins, 2185 uint8_t mode) /* 0=low 1=high */ 2186 { 2187 return (bxe_gpio_mult_write(sc, pins, mode)); 2188 } 2189 2190 uint8_t 2191 elink_cb_gpio_int_write(struct bxe_softc *sc, 2192 uint16_t gpio_num, 2193 uint8_t mode, /* 0=low 1=high */ 2194 uint8_t port) 2195 { 2196 return (bxe_gpio_int_write(sc, gpio_num, mode, port)); 2197 } 2198 2199 void 2200 elink_cb_notify_link_changed(struct bxe_softc *sc) 2201 { 2202 REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 + 2203 (SC_FUNC(sc) * sizeof(uint32_t))), 1); 2204 } 2205 2206 /* send the MCP a request, block until there is a reply */ 2207 uint32_t 2208 elink_cb_fw_command(struct bxe_softc *sc, 2209 uint32_t command, 2210 uint32_t param) 2211 { 2212 int mb_idx = SC_FW_MB_IDX(sc); 2213 uint32_t seq; 2214 uint32_t rc = 0; 2215 uint32_t cnt = 1; 2216 uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10; 2217 2218 BXE_FWMB_LOCK(sc); 2219 2220 seq = ++sc->fw_seq; 2221 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param); 2222 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq)); 2223 2224 BLOGD(sc, DBG_PHY, 2225 "wrote command 0x%08x to FW MB param 0x%08x\n", 2226 (command | seq), param); 2227 2228 /* Let the FW do it's magic. GIve it up to 5 seconds... */ 2229 do { 2230 DELAY(delay * 1000); 2231 rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header); 2232 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500)); 2233 2234 BLOGD(sc, DBG_PHY, 2235 "[after %d ms] read 0x%x seq 0x%x from FW MB\n", 2236 cnt*delay, rc, seq); 2237 2238 /* is this a reply to our command? */ 2239 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) { 2240 rc &= FW_MSG_CODE_MASK; 2241 } else { 2242 /* Ruh-roh! */ 2243 BLOGE(sc, "FW failed to respond!\n"); 2244 // XXX bxe_fw_dump(sc); 2245 rc = 0; 2246 } 2247 2248 BXE_FWMB_UNLOCK(sc); 2249 return (rc); 2250 } 2251 2252 static uint32_t 2253 bxe_fw_command(struct bxe_softc *sc, 2254 uint32_t command, 2255 uint32_t param) 2256 { 2257 return (elink_cb_fw_command(sc, command, param)); 2258 } 2259 2260 static void 2261 __storm_memset_dma_mapping(struct bxe_softc *sc, 2262 uint32_t addr, 2263 bus_addr_t mapping) 2264 { 2265 REG_WR(sc, addr, U64_LO(mapping)); 2266 REG_WR(sc, (addr + 4), U64_HI(mapping)); 2267 } 2268 2269 static void 2270 storm_memset_spq_addr(struct bxe_softc *sc, 2271 bus_addr_t mapping, 2272 uint16_t abs_fid) 2273 { 2274 uint32_t addr = (XSEM_REG_FAST_MEMORY + 2275 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid)); 2276 __storm_memset_dma_mapping(sc, addr, mapping); 2277 } 2278 2279 static void 2280 storm_memset_vf_to_pf(struct bxe_softc *sc, 2281 uint16_t abs_fid, 2282 uint16_t pf_id) 2283 { 2284 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2285 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2286 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2287 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2288 } 2289 2290 static void 2291 storm_memset_func_en(struct bxe_softc *sc, 2292 uint16_t abs_fid, 2293 uint8_t enable) 2294 { 2295 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2296 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2297 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2298 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2299 } 2300 2301 static void 2302 storm_memset_eq_data(struct bxe_softc *sc, 2303 struct event_ring_data *eq_data, 2304 uint16_t pfid) 2305 { 2306 uint32_t addr; 2307 size_t size; 2308 2309 addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid)); 2310 size = sizeof(struct event_ring_data); 2311 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data); 2312 } 2313 2314 static void 2315 storm_memset_eq_prod(struct bxe_softc *sc, 2316 uint16_t eq_prod, 2317 uint16_t pfid) 2318 { 2319 uint32_t addr = (BAR_CSTRORM_INTMEM + 2320 CSTORM_EVENT_RING_PROD_OFFSET(pfid)); 2321 REG_WR16(sc, addr, eq_prod); 2322 } 2323 2324 /* 2325 * Post a slowpath command. 2326 * 2327 * A slowpath command is used to propogate a configuration change through 2328 * the controller in a controlled manner, allowing each STORM processor and 2329 * other H/W blocks to phase in the change. The commands sent on the 2330 * slowpath are referred to as ramrods. Depending on the ramrod used the 2331 * completion of the ramrod will occur in different ways. Here's a 2332 * breakdown of ramrods and how they complete: 2333 * 2334 * RAMROD_CMD_ID_ETH_PORT_SETUP 2335 * Used to setup the leading connection on a port. Completes on the 2336 * Receive Completion Queue (RCQ) of that port (typically fp[0]). 2337 * 2338 * RAMROD_CMD_ID_ETH_CLIENT_SETUP 2339 * Used to setup an additional connection on a port. Completes on the 2340 * RCQ of the multi-queue/RSS connection being initialized. 2341 * 2342 * RAMROD_CMD_ID_ETH_STAT_QUERY 2343 * Used to force the storm processors to update the statistics database 2344 * in host memory. This ramrod is send on the leading connection CID and 2345 * completes as an index increment of the CSTORM on the default status 2346 * block. 2347 * 2348 * RAMROD_CMD_ID_ETH_UPDATE 2349 * Used to update the state of the leading connection, usually to udpate 2350 * the RSS indirection table. Completes on the RCQ of the leading 2351 * connection. (Not currently used under FreeBSD until OS support becomes 2352 * available.) 2353 * 2354 * RAMROD_CMD_ID_ETH_HALT 2355 * Used when tearing down a connection prior to driver unload. Completes 2356 * on the RCQ of the multi-queue/RSS connection being torn down. Don't 2357 * use this on the leading connection. 2358 * 2359 * RAMROD_CMD_ID_ETH_SET_MAC 2360 * Sets the Unicast/Broadcast/Multicast used by the port. Completes on 2361 * the RCQ of the leading connection. 2362 * 2363 * RAMROD_CMD_ID_ETH_CFC_DEL 2364 * Used when tearing down a conneciton prior to driver unload. Completes 2365 * on the RCQ of the leading connection (since the current connection 2366 * has been completely removed from controller memory). 2367 * 2368 * RAMROD_CMD_ID_ETH_PORT_DEL 2369 * Used to tear down the leading connection prior to driver unload, 2370 * typically fp[0]. Completes as an index increment of the CSTORM on the 2371 * default status block. 2372 * 2373 * RAMROD_CMD_ID_ETH_FORWARD_SETUP 2374 * Used for connection offload. Completes on the RCQ of the multi-queue 2375 * RSS connection that is being offloaded. (Not currently used under 2376 * FreeBSD.) 2377 * 2378 * There can only be one command pending per function. 2379 * 2380 * Returns: 2381 * 0 = Success, !0 = Failure. 2382 */ 2383 2384 /* must be called under the spq lock */ 2385 static inline 2386 struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc) 2387 { 2388 struct eth_spe *next_spe = sc->spq_prod_bd; 2389 2390 if (sc->spq_prod_bd == sc->spq_last_bd) { 2391 /* wrap back to the first eth_spq */ 2392 sc->spq_prod_bd = sc->spq; 2393 sc->spq_prod_idx = 0; 2394 } else { 2395 sc->spq_prod_bd++; 2396 sc->spq_prod_idx++; 2397 } 2398 2399 return (next_spe); 2400 } 2401 2402 /* must be called under the spq lock */ 2403 static inline 2404 void bxe_sp_prod_update(struct bxe_softc *sc) 2405 { 2406 int func = SC_FUNC(sc); 2407 2408 /* 2409 * Make sure that BD data is updated before writing the producer. 2410 * BD data is written to the memory, the producer is read from the 2411 * memory, thus we need a full memory barrier to ensure the ordering. 2412 */ 2413 mb(); 2414 2415 REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)), 2416 sc->spq_prod_idx); 2417 2418 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 2419 BUS_SPACE_BARRIER_WRITE); 2420 } 2421 2422 /** 2423 * bxe_is_contextless_ramrod - check if the current command ends on EQ 2424 * 2425 * @cmd: command to check 2426 * @cmd_type: command type 2427 */ 2428 static inline 2429 int bxe_is_contextless_ramrod(int cmd, 2430 int cmd_type) 2431 { 2432 if ((cmd_type == NONE_CONNECTION_TYPE) || 2433 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) || 2434 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) || 2435 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) || 2436 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) || 2437 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) || 2438 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) { 2439 return (TRUE); 2440 } else { 2441 return (FALSE); 2442 } 2443 } 2444 2445 /** 2446 * bxe_sp_post - place a single command on an SP ring 2447 * 2448 * @sc: driver handle 2449 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.) 2450 * @cid: SW CID the command is related to 2451 * @data_hi: command private data address (high 32 bits) 2452 * @data_lo: command private data address (low 32 bits) 2453 * @cmd_type: command type (e.g. NONE, ETH) 2454 * 2455 * SP data is handled as if it's always an address pair, thus data fields are 2456 * not swapped to little endian in upper functions. Instead this function swaps 2457 * data as if it's two uint32 fields. 2458 */ 2459 int 2460 bxe_sp_post(struct bxe_softc *sc, 2461 int command, 2462 int cid, 2463 uint32_t data_hi, 2464 uint32_t data_lo, 2465 int cmd_type) 2466 { 2467 struct eth_spe *spe; 2468 uint16_t type; 2469 int common; 2470 2471 common = bxe_is_contextless_ramrod(command, cmd_type); 2472 2473 BXE_SP_LOCK(sc); 2474 2475 if (common) { 2476 if (!atomic_load_acq_long(&sc->eq_spq_left)) { 2477 BLOGE(sc, "EQ ring is full!\n"); 2478 BXE_SP_UNLOCK(sc); 2479 return (-1); 2480 } 2481 } else { 2482 if (!atomic_load_acq_long(&sc->cq_spq_left)) { 2483 BLOGE(sc, "SPQ ring is full!\n"); 2484 BXE_SP_UNLOCK(sc); 2485 return (-1); 2486 } 2487 } 2488 2489 spe = bxe_sp_get_next(sc); 2490 2491 /* CID needs port number to be encoded int it */ 2492 spe->hdr.conn_and_cmd_data = 2493 htole32((command << SPE_HDR_CMD_ID_SHIFT) | HW_CID(sc, cid)); 2494 2495 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE; 2496 2497 /* TBD: Check if it works for VFs */ 2498 type |= ((SC_FUNC(sc) << SPE_HDR_FUNCTION_ID_SHIFT) & 2499 SPE_HDR_FUNCTION_ID); 2500 2501 spe->hdr.type = htole16(type); 2502 2503 spe->data.update_data_addr.hi = htole32(data_hi); 2504 spe->data.update_data_addr.lo = htole32(data_lo); 2505 2506 /* 2507 * It's ok if the actual decrement is issued towards the memory 2508 * somewhere between the lock and unlock. Thus no more explict 2509 * memory barrier is needed. 2510 */ 2511 if (common) { 2512 atomic_subtract_acq_long(&sc->eq_spq_left, 1); 2513 } else { 2514 atomic_subtract_acq_long(&sc->cq_spq_left, 1); 2515 } 2516 2517 BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr); 2518 BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n", 2519 BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata)); 2520 BLOGD(sc, DBG_SP, 2521 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n", 2522 sc->spq_prod_idx, 2523 (uint32_t)U64_HI(sc->spq_dma.paddr), 2524 (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq), 2525 command, 2526 common, 2527 HW_CID(sc, cid), 2528 data_hi, 2529 data_lo, 2530 type, 2531 atomic_load_acq_long(&sc->cq_spq_left), 2532 atomic_load_acq_long(&sc->eq_spq_left)); 2533 2534 bxe_sp_prod_update(sc); 2535 2536 BXE_SP_UNLOCK(sc); 2537 return (0); 2538 } 2539 2540 /** 2541 * bxe_debug_print_ind_table - prints the indirection table configuration. 2542 * 2543 * @sc: driver hanlde 2544 * @p: pointer to rss configuration 2545 */ 2546 #if 0 2547 static void 2548 bxe_debug_print_ind_table(struct bxe_softc *sc, 2549 struct ecore_config_rss_params *p) 2550 { 2551 int i; 2552 2553 BLOGD(sc, DBG_LOAD, "Setting indirection table to:\n"); 2554 BLOGD(sc, DBG_LOAD, " 0x0000: "); 2555 for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) { 2556 BLOGD(sc, DBG_LOAD, "0x%02x ", p->ind_table[i]); 2557 2558 /* Print 4 bytes in a line */ 2559 if ((i + 1 < T_ETH_INDIRECTION_TABLE_SIZE) && 2560 (((i + 1) & 0x3) == 0)) { 2561 BLOGD(sc, DBG_LOAD, "\n"); 2562 BLOGD(sc, DBG_LOAD, "0x%04x: ", i + 1); 2563 } 2564 } 2565 2566 BLOGD(sc, DBG_LOAD, "\n"); 2567 } 2568 #endif 2569 2570 /* 2571 * FreeBSD Device probe function. 2572 * 2573 * Compares the device found to the driver's list of supported devices and 2574 * reports back to the bsd loader whether this is the right driver for the device. 2575 * This is the driver entry function called from the "kldload" command. 2576 * 2577 * Returns: 2578 * BUS_PROBE_DEFAULT on success, positive value on failure. 2579 */ 2580 static int 2581 bxe_probe(device_t dev) 2582 { 2583 struct bxe_softc *sc; 2584 struct bxe_device_type *t; 2585 char *descbuf; 2586 uint16_t did, sdid, svid, vid; 2587 2588 /* Find our device structure */ 2589 sc = device_get_softc(dev); 2590 sc->dev = dev; 2591 t = bxe_devs; 2592 2593 /* Get the data for the device to be probed. */ 2594 vid = pci_get_vendor(dev); 2595 did = pci_get_device(dev); 2596 svid = pci_get_subvendor(dev); 2597 sdid = pci_get_subdevice(dev); 2598 2599 BLOGD(sc, DBG_LOAD, 2600 "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, " 2601 "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid); 2602 2603 /* Look through the list of known devices for a match. */ 2604 while (t->bxe_name != NULL) { 2605 if ((vid == t->bxe_vid) && (did == t->bxe_did) && 2606 ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) && 2607 ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) { 2608 descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT); 2609 if (descbuf == NULL) 2610 return (ENOMEM); 2611 2612 /* Print out the device identity. */ 2613 snprintf(descbuf, BXE_DEVDESC_MAX, 2614 "%s (%c%d) BXE v:%s\n", t->bxe_name, 2615 (((pci_read_config(dev, PCIR_REVID, 4) & 2616 0xf0) >> 4) + 'A'), 2617 (pci_read_config(dev, PCIR_REVID, 4) & 0xf), 2618 BXE_DRIVER_VERSION); 2619 2620 device_set_desc_copy(dev, descbuf); 2621 free(descbuf, M_TEMP); 2622 return (BUS_PROBE_DEFAULT); 2623 } 2624 t++; 2625 } 2626 2627 return (ENXIO); 2628 } 2629 2630 static void 2631 bxe_init_mutexes(struct bxe_softc *sc) 2632 { 2633 #ifdef BXE_CORE_LOCK_SX 2634 snprintf(sc->core_sx_name, sizeof(sc->core_sx_name), 2635 "bxe%d_core_lock", sc->unit); 2636 sx_init(&sc->core_sx, sc->core_sx_name); 2637 #else 2638 snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name), 2639 "bxe%d_core_lock", sc->unit); 2640 mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF); 2641 #endif 2642 2643 snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name), 2644 "bxe%d_sp_lock", sc->unit); 2645 mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF); 2646 2647 snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name), 2648 "bxe%d_dmae_lock", sc->unit); 2649 mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF); 2650 2651 snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name), 2652 "bxe%d_phy_lock", sc->unit); 2653 mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF); 2654 2655 snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name), 2656 "bxe%d_fwmb_lock", sc->unit); 2657 mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF); 2658 2659 snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name), 2660 "bxe%d_print_lock", sc->unit); 2661 mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF); 2662 2663 snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name), 2664 "bxe%d_stats_lock", sc->unit); 2665 mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF); 2666 2667 snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name), 2668 "bxe%d_mcast_lock", sc->unit); 2669 mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF); 2670 } 2671 2672 static void 2673 bxe_release_mutexes(struct bxe_softc *sc) 2674 { 2675 #ifdef BXE_CORE_LOCK_SX 2676 sx_destroy(&sc->core_sx); 2677 #else 2678 if (mtx_initialized(&sc->core_mtx)) { 2679 mtx_destroy(&sc->core_mtx); 2680 } 2681 #endif 2682 2683 if (mtx_initialized(&sc->sp_mtx)) { 2684 mtx_destroy(&sc->sp_mtx); 2685 } 2686 2687 if (mtx_initialized(&sc->dmae_mtx)) { 2688 mtx_destroy(&sc->dmae_mtx); 2689 } 2690 2691 if (mtx_initialized(&sc->port.phy_mtx)) { 2692 mtx_destroy(&sc->port.phy_mtx); 2693 } 2694 2695 if (mtx_initialized(&sc->fwmb_mtx)) { 2696 mtx_destroy(&sc->fwmb_mtx); 2697 } 2698 2699 if (mtx_initialized(&sc->print_mtx)) { 2700 mtx_destroy(&sc->print_mtx); 2701 } 2702 2703 if (mtx_initialized(&sc->stats_mtx)) { 2704 mtx_destroy(&sc->stats_mtx); 2705 } 2706 2707 if (mtx_initialized(&sc->mcast_mtx)) { 2708 mtx_destroy(&sc->mcast_mtx); 2709 } 2710 } 2711 2712 static void 2713 bxe_tx_disable(struct bxe_softc* sc) 2714 { 2715 if_t ifp = sc->ifp; 2716 2717 /* tell the stack the driver is stopped and TX queue is full */ 2718 if (ifp != NULL) { 2719 if_setdrvflags(ifp, 0); 2720 } 2721 } 2722 2723 static void 2724 bxe_drv_pulse(struct bxe_softc *sc) 2725 { 2726 SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb, 2727 sc->fw_drv_pulse_wr_seq); 2728 } 2729 2730 static inline uint16_t 2731 bxe_tx_avail(struct bxe_softc *sc, 2732 struct bxe_fastpath *fp) 2733 { 2734 int16_t used; 2735 uint16_t prod; 2736 uint16_t cons; 2737 2738 prod = fp->tx_bd_prod; 2739 cons = fp->tx_bd_cons; 2740 2741 used = SUB_S16(prod, cons); 2742 2743 #if 0 2744 KASSERT((used < 0), ("used tx bds < 0")); 2745 KASSERT((used > sc->tx_ring_size), ("used tx bds > tx_ring_size")); 2746 KASSERT(((sc->tx_ring_size - used) > MAX_TX_AVAIL), 2747 ("invalid number of tx bds used")); 2748 #endif 2749 2750 return (int16_t)(sc->tx_ring_size) - used; 2751 } 2752 2753 static inline int 2754 bxe_tx_queue_has_work(struct bxe_fastpath *fp) 2755 { 2756 uint16_t hw_cons; 2757 2758 mb(); /* status block fields can change */ 2759 hw_cons = le16toh(*fp->tx_cons_sb); 2760 return (hw_cons != fp->tx_pkt_cons); 2761 } 2762 2763 static inline uint8_t 2764 bxe_has_tx_work(struct bxe_fastpath *fp) 2765 { 2766 /* expand this for multi-cos if ever supported */ 2767 return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE; 2768 } 2769 2770 static inline int 2771 bxe_has_rx_work(struct bxe_fastpath *fp) 2772 { 2773 uint16_t rx_cq_cons_sb; 2774 2775 mb(); /* status block fields can change */ 2776 rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb); 2777 if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX) 2778 rx_cq_cons_sb++; 2779 return (fp->rx_cq_cons != rx_cq_cons_sb); 2780 } 2781 2782 static void 2783 bxe_sp_event(struct bxe_softc *sc, 2784 struct bxe_fastpath *fp, 2785 union eth_rx_cqe *rr_cqe) 2786 { 2787 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data); 2788 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data); 2789 enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX; 2790 struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj; 2791 2792 BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n", 2793 fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type); 2794 2795 #if 0 2796 /* 2797 * If cid is within VF range, replace the slowpath object with the 2798 * one corresponding to this VF 2799 */ 2800 if ((cid >= BXE_FIRST_VF_CID) && (cid < BXE_FIRST_VF_CID + BXE_VF_CIDS)) { 2801 bxe_iov_set_queue_sp_obj(sc, cid, &q_obj); 2802 } 2803 #endif 2804 2805 switch (command) { 2806 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE): 2807 BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid); 2808 drv_cmd = ECORE_Q_CMD_UPDATE; 2809 break; 2810 2811 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP): 2812 BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid); 2813 drv_cmd = ECORE_Q_CMD_SETUP; 2814 break; 2815 2816 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP): 2817 BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid); 2818 drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY; 2819 break; 2820 2821 case (RAMROD_CMD_ID_ETH_HALT): 2822 BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid); 2823 drv_cmd = ECORE_Q_CMD_HALT; 2824 break; 2825 2826 case (RAMROD_CMD_ID_ETH_TERMINATE): 2827 BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid); 2828 drv_cmd = ECORE_Q_CMD_TERMINATE; 2829 break; 2830 2831 case (RAMROD_CMD_ID_ETH_EMPTY): 2832 BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid); 2833 drv_cmd = ECORE_Q_CMD_EMPTY; 2834 break; 2835 2836 default: 2837 BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n", 2838 command, fp->index); 2839 return; 2840 } 2841 2842 if ((drv_cmd != ECORE_Q_CMD_MAX) && 2843 q_obj->complete_cmd(sc, q_obj, drv_cmd)) { 2844 /* 2845 * q_obj->complete_cmd() failure means that this was 2846 * an unexpected completion. 2847 * 2848 * In this case we don't want to increase the sc->spq_left 2849 * because apparently we haven't sent this command the first 2850 * place. 2851 */ 2852 // bxe_panic(sc, ("Unexpected SP completion\n")); 2853 return; 2854 } 2855 2856 #if 0 2857 /* SRIOV: reschedule any 'in_progress' operations */ 2858 bxe_iov_sp_event(sc, cid, TRUE); 2859 #endif 2860 2861 atomic_add_acq_long(&sc->cq_spq_left, 1); 2862 2863 BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n", 2864 atomic_load_acq_long(&sc->cq_spq_left)); 2865 2866 #if 0 2867 if ((drv_cmd == ECORE_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) && 2868 (!!bxe_test_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state))) { 2869 /* 2870 * If Queue update ramrod is completed for last Queue in AFEX VIF set 2871 * flow, then ACK MCP at the end. Mark pending ACK to MCP bit to 2872 * prevent case that both bits are cleared. At the end of load/unload 2873 * driver checks that sp_state is cleared and this order prevents 2874 * races. 2875 */ 2876 bxe_set_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK, &sc->sp_state); 2877 wmb(); 2878 bxe_clear_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state); 2879 2880 /* schedule the sp task as MCP ack is required */ 2881 bxe_schedule_sp_task(sc); 2882 } 2883 #endif 2884 } 2885 2886 /* 2887 * The current mbuf is part of an aggregation. Move the mbuf into the TPA 2888 * aggregation queue, put an empty mbuf back onto the receive chain, and mark 2889 * the current aggregation queue as in-progress. 2890 */ 2891 static void 2892 bxe_tpa_start(struct bxe_softc *sc, 2893 struct bxe_fastpath *fp, 2894 uint16_t queue, 2895 uint16_t cons, 2896 uint16_t prod, 2897 struct eth_fast_path_rx_cqe *cqe) 2898 { 2899 struct bxe_sw_rx_bd tmp_bd; 2900 struct bxe_sw_rx_bd *rx_buf; 2901 struct eth_rx_bd *rx_bd; 2902 int max_agg_queues; 2903 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; 2904 uint16_t index; 2905 2906 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START " 2907 "cons=%d prod=%d\n", 2908 fp->index, queue, cons, prod); 2909 2910 max_agg_queues = MAX_AGG_QS(sc); 2911 2912 KASSERT((queue < max_agg_queues), 2913 ("fp[%02d] invalid aggr queue (%d >= %d)!", 2914 fp->index, queue, max_agg_queues)); 2915 2916 KASSERT((tpa_info->state == BXE_TPA_STATE_STOP), 2917 ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!", 2918 fp->index, queue)); 2919 2920 /* copy the existing mbuf and mapping from the TPA pool */ 2921 tmp_bd = tpa_info->bd; 2922 2923 if (tmp_bd.m == NULL) { 2924 BLOGE(sc, "fp[%02d].tpa[%02d] mbuf not allocated!\n", 2925 fp->index, queue); 2926 /* XXX Error handling? */ 2927 return; 2928 } 2929 2930 /* change the TPA queue to the start state */ 2931 tpa_info->state = BXE_TPA_STATE_START; 2932 tpa_info->placement_offset = cqe->placement_offset; 2933 tpa_info->parsing_flags = le16toh(cqe->pars_flags.flags); 2934 tpa_info->vlan_tag = le16toh(cqe->vlan_tag); 2935 tpa_info->len_on_bd = le16toh(cqe->len_on_bd); 2936 2937 fp->rx_tpa_queue_used |= (1 << queue); 2938 2939 /* 2940 * If all the buffer descriptors are filled with mbufs then fill in 2941 * the current consumer index with a new BD. Else if a maximum Rx 2942 * buffer limit is imposed then fill in the next producer index. 2943 */ 2944 index = (sc->max_rx_bufs != RX_BD_USABLE) ? 2945 prod : cons; 2946 2947 /* move the received mbuf and mapping to TPA pool */ 2948 tpa_info->bd = fp->rx_mbuf_chain[cons]; 2949 2950 /* release any existing RX BD mbuf mappings */ 2951 if (cons != index) { 2952 rx_buf = &fp->rx_mbuf_chain[cons]; 2953 2954 if (rx_buf->m_map != NULL) { 2955 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 2956 BUS_DMASYNC_POSTREAD); 2957 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 2958 } 2959 2960 /* 2961 * We get here when the maximum number of rx buffers is less than 2962 * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL 2963 * it out here without concern of a memory leak. 2964 */ 2965 fp->rx_mbuf_chain[cons].m = NULL; 2966 } 2967 2968 /* update the Rx SW BD with the mbuf info from the TPA pool */ 2969 fp->rx_mbuf_chain[index] = tmp_bd; 2970 2971 /* update the Rx BD with the empty mbuf phys address from the TPA pool */ 2972 rx_bd = &fp->rx_chain[index]; 2973 rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr)); 2974 rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr)); 2975 } 2976 2977 /* 2978 * When a TPA aggregation is completed, loop through the individual mbufs 2979 * of the aggregation, combining them into a single mbuf which will be sent 2980 * up the stack. Refill all freed SGEs with mbufs as we go along. 2981 */ 2982 static int 2983 bxe_fill_frag_mbuf(struct bxe_softc *sc, 2984 struct bxe_fastpath *fp, 2985 struct bxe_sw_tpa_info *tpa_info, 2986 uint16_t queue, 2987 uint16_t pages, 2988 struct mbuf *m, 2989 struct eth_end_agg_rx_cqe *cqe, 2990 uint16_t cqe_idx) 2991 { 2992 struct mbuf *m_frag; 2993 uint32_t frag_len, frag_size, i; 2994 uint16_t sge_idx; 2995 int rc = 0; 2996 int j; 2997 2998 frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd; 2999 3000 BLOGD(sc, DBG_LRO, 3001 "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n", 3002 fp->index, queue, tpa_info->len_on_bd, frag_size, pages); 3003 3004 /* make sure the aggregated frame is not too big to handle */ 3005 if (pages > 8 * PAGES_PER_SGE) { 3006 BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! " 3007 "pkt_len=%d len_on_bd=%d frag_size=%d\n", 3008 fp->index, cqe_idx, pages, le16toh(cqe->pkt_len), 3009 tpa_info->len_on_bd, frag_size); 3010 bxe_panic(sc, ("sge page count error\n")); 3011 return (EINVAL); 3012 } 3013 3014 /* 3015 * Scan through the scatter gather list pulling individual mbufs into a 3016 * single mbuf for the host stack. 3017 */ 3018 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) { 3019 sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j])); 3020 3021 /* 3022 * Firmware gives the indices of the SGE as if the ring is an array 3023 * (meaning that the "next" element will consume 2 indices). 3024 */ 3025 frag_len = min(frag_size, (uint32_t)(SGE_PAGES)); 3026 3027 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d " 3028 "sge_idx=%d frag_size=%d frag_len=%d\n", 3029 fp->index, queue, i, j, sge_idx, frag_size, frag_len); 3030 3031 m_frag = fp->rx_sge_mbuf_chain[sge_idx].m; 3032 3033 /* allocate a new mbuf for the SGE */ 3034 rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx); 3035 if (rc) { 3036 /* Leave all remaining SGEs in the ring! */ 3037 return (rc); 3038 } 3039 3040 /* update the fragment length */ 3041 m_frag->m_len = frag_len; 3042 3043 /* concatenate the fragment to the head mbuf */ 3044 m_cat(m, m_frag); 3045 fp->eth_q_stats.mbuf_alloc_sge--; 3046 3047 /* update the TPA mbuf size and remaining fragment size */ 3048 m->m_pkthdr.len += frag_len; 3049 frag_size -= frag_len; 3050 } 3051 3052 BLOGD(sc, DBG_LRO, 3053 "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n", 3054 fp->index, queue, frag_size); 3055 3056 return (rc); 3057 } 3058 3059 static inline void 3060 bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp) 3061 { 3062 int i, j; 3063 3064 for (i = 1; i <= RX_SGE_NUM_PAGES; i++) { 3065 int idx = RX_SGE_TOTAL_PER_PAGE * i - 1; 3066 3067 for (j = 0; j < 2; j++) { 3068 BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx); 3069 idx--; 3070 } 3071 } 3072 } 3073 3074 static inline void 3075 bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp) 3076 { 3077 /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */ 3078 memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask)); 3079 3080 /* 3081 * Clear the two last indices in the page to 1. These are the indices that 3082 * correspond to the "next" element, hence will never be indicated and 3083 * should be removed from the calculations. 3084 */ 3085 bxe_clear_sge_mask_next_elems(fp); 3086 } 3087 3088 static inline void 3089 bxe_update_last_max_sge(struct bxe_fastpath *fp, 3090 uint16_t idx) 3091 { 3092 uint16_t last_max = fp->last_max_sge; 3093 3094 if (SUB_S16(idx, last_max) > 0) { 3095 fp->last_max_sge = idx; 3096 } 3097 } 3098 3099 static inline void 3100 bxe_update_sge_prod(struct bxe_softc *sc, 3101 struct bxe_fastpath *fp, 3102 uint16_t sge_len, 3103 struct eth_end_agg_rx_cqe *cqe) 3104 { 3105 uint16_t last_max, last_elem, first_elem; 3106 uint16_t delta = 0; 3107 uint16_t i; 3108 3109 if (!sge_len) { 3110 return; 3111 } 3112 3113 /* first mark all used pages */ 3114 for (i = 0; i < sge_len; i++) { 3115 BIT_VEC64_CLEAR_BIT(fp->sge_mask, 3116 RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[i]))); 3117 } 3118 3119 BLOGD(sc, DBG_LRO, 3120 "fp[%02d] fp_cqe->sgl[%d] = %d\n", 3121 fp->index, sge_len - 1, 3122 le16toh(cqe->sgl_or_raw_data.sgl[sge_len - 1])); 3123 3124 /* assume that the last SGE index is the biggest */ 3125 bxe_update_last_max_sge(fp, 3126 le16toh(cqe->sgl_or_raw_data.sgl[sge_len - 1])); 3127 3128 last_max = RX_SGE(fp->last_max_sge); 3129 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT; 3130 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT; 3131 3132 /* if ring is not full */ 3133 if (last_elem + 1 != first_elem) { 3134 last_elem++; 3135 } 3136 3137 /* now update the prod */ 3138 for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) { 3139 if (__predict_true(fp->sge_mask[i])) { 3140 break; 3141 } 3142 3143 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK; 3144 delta += BIT_VEC64_ELEM_SZ; 3145 } 3146 3147 if (delta > 0) { 3148 fp->rx_sge_prod += delta; 3149 /* clear page-end entries */ 3150 bxe_clear_sge_mask_next_elems(fp); 3151 } 3152 3153 BLOGD(sc, DBG_LRO, 3154 "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n", 3155 fp->index, fp->last_max_sge, fp->rx_sge_prod); 3156 } 3157 3158 /* 3159 * The aggregation on the current TPA queue has completed. Pull the individual 3160 * mbuf fragments together into a single mbuf, perform all necessary checksum 3161 * calculations, and send the resuting mbuf to the stack. 3162 */ 3163 static void 3164 bxe_tpa_stop(struct bxe_softc *sc, 3165 struct bxe_fastpath *fp, 3166 struct bxe_sw_tpa_info *tpa_info, 3167 uint16_t queue, 3168 uint16_t pages, 3169 struct eth_end_agg_rx_cqe *cqe, 3170 uint16_t cqe_idx) 3171 { 3172 if_t ifp = sc->ifp; 3173 struct mbuf *m; 3174 int rc = 0; 3175 3176 BLOGD(sc, DBG_LRO, 3177 "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n", 3178 fp->index, queue, tpa_info->placement_offset, 3179 le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag); 3180 3181 m = tpa_info->bd.m; 3182 3183 /* allocate a replacement before modifying existing mbuf */ 3184 rc = bxe_alloc_rx_tpa_mbuf(fp, queue); 3185 if (rc) { 3186 /* drop the frame and log an error */ 3187 fp->eth_q_stats.rx_soft_errors++; 3188 goto bxe_tpa_stop_exit; 3189 } 3190 3191 /* we have a replacement, fixup the current mbuf */ 3192 m_adj(m, tpa_info->placement_offset); 3193 m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd; 3194 3195 /* mark the checksums valid (taken care of by the firmware) */ 3196 fp->eth_q_stats.rx_ofld_frames_csum_ip++; 3197 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; 3198 m->m_pkthdr.csum_data = 0xffff; 3199 m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED | 3200 CSUM_IP_VALID | 3201 CSUM_DATA_VALID | 3202 CSUM_PSEUDO_HDR); 3203 3204 /* aggregate all of the SGEs into a single mbuf */ 3205 rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx); 3206 if (rc) { 3207 /* drop the packet and log an error */ 3208 fp->eth_q_stats.rx_soft_errors++; 3209 m_freem(m); 3210 } else { 3211 if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN) { 3212 m->m_pkthdr.ether_vtag = tpa_info->vlan_tag; 3213 m->m_flags |= M_VLANTAG; 3214 } 3215 3216 /* assign packet to this interface interface */ 3217 if_setrcvif(m, ifp); 3218 3219 #if __FreeBSD_version >= 800000 3220 /* specify what RSS queue was used for this flow */ 3221 m->m_pkthdr.flowid = fp->index; 3222 m->m_flags |= M_FLOWID; 3223 #endif 3224 3225 if_incipackets(ifp, 1); 3226 fp->eth_q_stats.rx_tpa_pkts++; 3227 3228 /* pass the frame to the stack */ 3229 if_input(ifp, m); 3230 } 3231 3232 /* we passed an mbuf up the stack or dropped the frame */ 3233 fp->eth_q_stats.mbuf_alloc_tpa--; 3234 3235 bxe_tpa_stop_exit: 3236 3237 fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP; 3238 fp->rx_tpa_queue_used &= ~(1 << queue); 3239 } 3240 3241 static uint8_t 3242 bxe_rxeof(struct bxe_softc *sc, 3243 struct bxe_fastpath *fp) 3244 { 3245 if_t ifp = sc->ifp; 3246 uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons; 3247 uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod; 3248 int rx_pkts = 0; 3249 int rc; 3250 3251 BXE_FP_RX_LOCK(fp); 3252 3253 /* CQ "next element" is of the size of the regular element */ 3254 hw_cq_cons = le16toh(*fp->rx_cq_cons_sb); 3255 if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) { 3256 hw_cq_cons++; 3257 } 3258 3259 bd_cons = fp->rx_bd_cons; 3260 bd_prod = fp->rx_bd_prod; 3261 bd_prod_fw = bd_prod; 3262 sw_cq_cons = fp->rx_cq_cons; 3263 sw_cq_prod = fp->rx_cq_prod; 3264 3265 /* 3266 * Memory barrier necessary as speculative reads of the rx 3267 * buffer can be ahead of the index in the status block 3268 */ 3269 rmb(); 3270 3271 BLOGD(sc, DBG_RX, 3272 "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n", 3273 fp->index, hw_cq_cons, sw_cq_cons); 3274 3275 while (sw_cq_cons != hw_cq_cons) { 3276 struct bxe_sw_rx_bd *rx_buf = NULL; 3277 union eth_rx_cqe *cqe; 3278 struct eth_fast_path_rx_cqe *cqe_fp; 3279 uint8_t cqe_fp_flags; 3280 enum eth_rx_cqe_type cqe_fp_type; 3281 uint16_t len, pad; 3282 struct mbuf *m = NULL; 3283 3284 comp_ring_cons = RCQ(sw_cq_cons); 3285 bd_prod = RX_BD(bd_prod); 3286 bd_cons = RX_BD(bd_cons); 3287 3288 cqe = &fp->rcq_chain[comp_ring_cons]; 3289 cqe_fp = &cqe->fast_path_cqe; 3290 cqe_fp_flags = cqe_fp->type_error_flags; 3291 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE; 3292 3293 BLOGD(sc, DBG_RX, 3294 "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d " 3295 "BD prod=%d cons=%d CQE type=0x%x err=0x%x " 3296 "status=0x%x rss_hash=0x%x vlan=0x%x len=%u\n", 3297 fp->index, 3298 hw_cq_cons, 3299 sw_cq_cons, 3300 bd_prod, 3301 bd_cons, 3302 CQE_TYPE(cqe_fp_flags), 3303 cqe_fp_flags, 3304 cqe_fp->status_flags, 3305 le32toh(cqe_fp->rss_hash_result), 3306 le16toh(cqe_fp->vlan_tag), 3307 le16toh(cqe_fp->pkt_len_or_gro_seg_len)); 3308 3309 /* is this a slowpath msg? */ 3310 if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) { 3311 bxe_sp_event(sc, fp, cqe); 3312 goto next_cqe; 3313 } 3314 3315 rx_buf = &fp->rx_mbuf_chain[bd_cons]; 3316 3317 if (!CQE_TYPE_FAST(cqe_fp_type)) { 3318 struct bxe_sw_tpa_info *tpa_info; 3319 uint16_t frag_size, pages; 3320 uint8_t queue; 3321 3322 #if 0 3323 /* sanity check */ 3324 if (!fp->tpa_enable && 3325 (CQE_TYPE_START(cqe_fp_type) || CQE_TYPE_STOP(cqe_fp_type))) { 3326 BLOGE(sc, "START/STOP packet while !tpa_enable type (0x%x)\n", 3327 CQE_TYPE(cqe_fp_type)); 3328 } 3329 #endif 3330 3331 if (CQE_TYPE_START(cqe_fp_type)) { 3332 bxe_tpa_start(sc, fp, cqe_fp->queue_index, 3333 bd_cons, bd_prod, cqe_fp); 3334 m = NULL; /* packet not ready yet */ 3335 goto next_rx; 3336 } 3337 3338 KASSERT(CQE_TYPE_STOP(cqe_fp_type), 3339 ("CQE type is not STOP! (0x%x)\n", cqe_fp_type)); 3340 3341 queue = cqe->end_agg_cqe.queue_index; 3342 tpa_info = &fp->rx_tpa_info[queue]; 3343 3344 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n", 3345 fp->index, queue); 3346 3347 frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) - 3348 tpa_info->len_on_bd); 3349 pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT; 3350 3351 bxe_tpa_stop(sc, fp, tpa_info, queue, pages, 3352 &cqe->end_agg_cqe, comp_ring_cons); 3353 3354 bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe); 3355 3356 goto next_cqe; 3357 } 3358 3359 /* non TPA */ 3360 3361 /* is this an error packet? */ 3362 if (__predict_false(cqe_fp_flags & 3363 ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) { 3364 BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons); 3365 fp->eth_q_stats.rx_soft_errors++; 3366 goto next_rx; 3367 } 3368 3369 len = le16toh(cqe_fp->pkt_len_or_gro_seg_len); 3370 pad = cqe_fp->placement_offset; 3371 3372 m = rx_buf->m; 3373 3374 if (__predict_false(m == NULL)) { 3375 BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n", 3376 bd_cons, fp->index); 3377 goto next_rx; 3378 } 3379 3380 /* XXX double copy if packet length under a threshold */ 3381 3382 /* 3383 * If all the buffer descriptors are filled with mbufs then fill in 3384 * the current consumer index with a new BD. Else if a maximum Rx 3385 * buffer limit is imposed then fill in the next producer index. 3386 */ 3387 rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons, 3388 (sc->max_rx_bufs != RX_BD_USABLE) ? 3389 bd_prod : bd_cons); 3390 if (rc != 0) { 3391 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", 3392 fp->index, rc); 3393 fp->eth_q_stats.rx_soft_errors++; 3394 3395 if (sc->max_rx_bufs != RX_BD_USABLE) { 3396 /* copy this consumer index to the producer index */ 3397 memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf, 3398 sizeof(struct bxe_sw_rx_bd)); 3399 memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd)); 3400 } 3401 3402 goto next_rx; 3403 } 3404 3405 /* current mbuf was detached from the bd */ 3406 fp->eth_q_stats.mbuf_alloc_rx--; 3407 3408 /* we allocated a replacement mbuf, fixup the current one */ 3409 m_adj(m, pad); 3410 m->m_pkthdr.len = m->m_len = len; 3411 3412 /* assign packet to this interface interface */ 3413 if_setrcvif(m, ifp); 3414 3415 /* assume no hardware checksum has complated */ 3416 m->m_pkthdr.csum_flags = 0; 3417 3418 /* validate checksum if offload enabled */ 3419 if (if_getcapenable(ifp) & IFCAP_RXCSUM) { 3420 /* check for a valid IP frame */ 3421 if (!(cqe->fast_path_cqe.status_flags & 3422 ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) { 3423 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 3424 if (__predict_false(cqe_fp_flags & 3425 ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) { 3426 fp->eth_q_stats.rx_hw_csum_errors++; 3427 } else { 3428 fp->eth_q_stats.rx_ofld_frames_csum_ip++; 3429 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 3430 } 3431 } 3432 3433 /* check for a valid TCP/UDP frame */ 3434 if (!(cqe->fast_path_cqe.status_flags & 3435 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) { 3436 if (__predict_false(cqe_fp_flags & 3437 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) { 3438 fp->eth_q_stats.rx_hw_csum_errors++; 3439 } else { 3440 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; 3441 m->m_pkthdr.csum_data = 0xFFFF; 3442 m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID | 3443 CSUM_PSEUDO_HDR); 3444 } 3445 } 3446 } 3447 3448 /* if there is a VLAN tag then flag that info */ 3449 if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_VLAN) { 3450 m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag; 3451 m->m_flags |= M_VLANTAG; 3452 } 3453 3454 #if __FreeBSD_version >= 800000 3455 /* specify what RSS queue was used for this flow */ 3456 m->m_pkthdr.flowid = fp->index; 3457 m->m_flags |= M_FLOWID; 3458 #endif 3459 3460 next_rx: 3461 3462 bd_cons = RX_BD_NEXT(bd_cons); 3463 bd_prod = RX_BD_NEXT(bd_prod); 3464 bd_prod_fw = RX_BD_NEXT(bd_prod_fw); 3465 3466 /* pass the frame to the stack */ 3467 if (__predict_true(m != NULL)) { 3468 if_incipackets(ifp, 1); 3469 rx_pkts++; 3470 if_input(ifp, m); 3471 } 3472 3473 next_cqe: 3474 3475 sw_cq_prod = RCQ_NEXT(sw_cq_prod); 3476 sw_cq_cons = RCQ_NEXT(sw_cq_cons); 3477 3478 /* limit spinning on the queue */ 3479 if (rx_pkts == sc->rx_budget) { 3480 fp->eth_q_stats.rx_budget_reached++; 3481 break; 3482 } 3483 } /* while work to do */ 3484 3485 fp->rx_bd_cons = bd_cons; 3486 fp->rx_bd_prod = bd_prod_fw; 3487 fp->rx_cq_cons = sw_cq_cons; 3488 fp->rx_cq_prod = sw_cq_prod; 3489 3490 /* Update producers */ 3491 bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod); 3492 3493 fp->eth_q_stats.rx_pkts += rx_pkts; 3494 fp->eth_q_stats.rx_calls++; 3495 3496 BXE_FP_RX_UNLOCK(fp); 3497 3498 return (sw_cq_cons != hw_cq_cons); 3499 } 3500 3501 static uint16_t 3502 bxe_free_tx_pkt(struct bxe_softc *sc, 3503 struct bxe_fastpath *fp, 3504 uint16_t idx) 3505 { 3506 struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx]; 3507 struct eth_tx_start_bd *tx_start_bd; 3508 uint16_t bd_idx = TX_BD(tx_buf->first_bd); 3509 uint16_t new_cons; 3510 int nbd; 3511 3512 /* unmap the mbuf from non-paged memory */ 3513 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 3514 3515 tx_start_bd = &fp->tx_chain[bd_idx].start_bd; 3516 nbd = le16toh(tx_start_bd->nbd) - 1; 3517 3518 #if 0 3519 if ((nbd - 1) > (MAX_MBUF_FRAGS + 2)) { 3520 bxe_panic(sc, ("BAD nbd!\n")); 3521 } 3522 #endif 3523 3524 new_cons = (tx_buf->first_bd + nbd); 3525 3526 #if 0 3527 struct eth_tx_bd *tx_data_bd; 3528 3529 /* 3530 * The following code doesn't do anything but is left here 3531 * for clarity on what the new value of new_cons skipped. 3532 */ 3533 3534 /* get the next bd */ 3535 bd_idx = TX_BD(TX_BD_NEXT(bd_idx)); 3536 3537 /* skip the parse bd */ 3538 --nbd; 3539 bd_idx = TX_BD(TX_BD_NEXT(bd_idx)); 3540 3541 /* skip the TSO split header bd since they have no mapping */ 3542 if (tx_buf->flags & BXE_TSO_SPLIT_BD) { 3543 --nbd; 3544 bd_idx = TX_BD(TX_BD_NEXT(bd_idx)); 3545 } 3546 3547 /* now free frags */ 3548 while (nbd > 0) { 3549 tx_data_bd = &fp->tx_chain[bd_idx].reg_bd; 3550 if (--nbd) { 3551 bd_idx = TX_BD(TX_BD_NEXT(bd_idx)); 3552 } 3553 } 3554 #endif 3555 3556 /* free the mbuf */ 3557 if (__predict_true(tx_buf->m != NULL)) { 3558 m_freem(tx_buf->m); 3559 fp->eth_q_stats.mbuf_alloc_tx--; 3560 } else { 3561 fp->eth_q_stats.tx_chain_lost_mbuf++; 3562 } 3563 3564 tx_buf->m = NULL; 3565 tx_buf->first_bd = 0; 3566 3567 return (new_cons); 3568 } 3569 3570 /* transmit timeout watchdog */ 3571 static int 3572 bxe_watchdog(struct bxe_softc *sc, 3573 struct bxe_fastpath *fp) 3574 { 3575 BXE_FP_TX_LOCK(fp); 3576 3577 if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) { 3578 BXE_FP_TX_UNLOCK(fp); 3579 return (0); 3580 } 3581 3582 BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index); 3583 3584 BXE_FP_TX_UNLOCK(fp); 3585 3586 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT); 3587 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task); 3588 3589 return (-1); 3590 } 3591 3592 /* processes transmit completions */ 3593 static uint8_t 3594 bxe_txeof(struct bxe_softc *sc, 3595 struct bxe_fastpath *fp) 3596 { 3597 if_t ifp = sc->ifp; 3598 uint16_t bd_cons, hw_cons, sw_cons, pkt_cons; 3599 uint16_t tx_bd_avail; 3600 3601 BXE_FP_TX_LOCK_ASSERT(fp); 3602 3603 bd_cons = fp->tx_bd_cons; 3604 hw_cons = le16toh(*fp->tx_cons_sb); 3605 sw_cons = fp->tx_pkt_cons; 3606 3607 while (sw_cons != hw_cons) { 3608 pkt_cons = TX_BD(sw_cons); 3609 3610 BLOGD(sc, DBG_TX, 3611 "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n", 3612 fp->index, hw_cons, sw_cons, pkt_cons); 3613 3614 bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons); 3615 3616 sw_cons++; 3617 } 3618 3619 fp->tx_pkt_cons = sw_cons; 3620 fp->tx_bd_cons = bd_cons; 3621 3622 BLOGD(sc, DBG_TX, 3623 "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n", 3624 fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod); 3625 3626 mb(); 3627 3628 tx_bd_avail = bxe_tx_avail(sc, fp); 3629 3630 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 3631 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 3632 } else { 3633 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 3634 } 3635 3636 if (fp->tx_pkt_prod != fp->tx_pkt_cons) { 3637 /* reset the watchdog timer if there are pending transmits */ 3638 fp->watchdog_timer = BXE_TX_TIMEOUT; 3639 return (TRUE); 3640 } else { 3641 /* clear watchdog when there are no pending transmits */ 3642 fp->watchdog_timer = 0; 3643 return (FALSE); 3644 } 3645 } 3646 3647 static void 3648 bxe_drain_tx_queues(struct bxe_softc *sc) 3649 { 3650 struct bxe_fastpath *fp; 3651 int i, count; 3652 3653 /* wait until all TX fastpath tasks have completed */ 3654 for (i = 0; i < sc->num_queues; i++) { 3655 fp = &sc->fp[i]; 3656 3657 count = 1000; 3658 3659 while (bxe_has_tx_work(fp)) { 3660 3661 BXE_FP_TX_LOCK(fp); 3662 bxe_txeof(sc, fp); 3663 BXE_FP_TX_UNLOCK(fp); 3664 3665 if (count == 0) { 3666 BLOGE(sc, "Timeout waiting for fp[%d] " 3667 "transmits to complete!\n", i); 3668 bxe_panic(sc, ("tx drain failure\n")); 3669 return; 3670 } 3671 3672 count--; 3673 DELAY(1000); 3674 rmb(); 3675 } 3676 } 3677 3678 return; 3679 } 3680 3681 static int 3682 bxe_del_all_macs(struct bxe_softc *sc, 3683 struct ecore_vlan_mac_obj *mac_obj, 3684 int mac_type, 3685 uint8_t wait_for_comp) 3686 { 3687 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 3688 int rc; 3689 3690 /* wait for completion of requested */ 3691 if (wait_for_comp) { 3692 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 3693 } 3694 3695 /* Set the mac type of addresses we want to clear */ 3696 bxe_set_bit(mac_type, &vlan_mac_flags); 3697 3698 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags); 3699 if (rc < 0) { 3700 BLOGE(sc, "Failed to delete MACs (%d)\n", rc); 3701 } 3702 3703 return (rc); 3704 } 3705 3706 static int 3707 bxe_fill_accept_flags(struct bxe_softc *sc, 3708 uint32_t rx_mode, 3709 unsigned long *rx_accept_flags, 3710 unsigned long *tx_accept_flags) 3711 { 3712 /* Clear the flags first */ 3713 *rx_accept_flags = 0; 3714 *tx_accept_flags = 0; 3715 3716 switch (rx_mode) { 3717 case BXE_RX_MODE_NONE: 3718 /* 3719 * 'drop all' supersedes any accept flags that may have been 3720 * passed to the function. 3721 */ 3722 break; 3723 3724 case BXE_RX_MODE_NORMAL: 3725 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3726 bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags); 3727 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3728 3729 /* internal switching mode */ 3730 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3731 bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags); 3732 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3733 3734 break; 3735 3736 case BXE_RX_MODE_ALLMULTI: 3737 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3738 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); 3739 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3740 3741 /* internal switching mode */ 3742 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3743 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); 3744 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3745 3746 break; 3747 3748 case BXE_RX_MODE_PROMISC: 3749 /* 3750 * According to deffinition of SI mode, iface in promisc mode 3751 * should receive matched and unmatched (in resolution of port) 3752 * unicast packets. 3753 */ 3754 bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags); 3755 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3756 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); 3757 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3758 3759 /* internal switching mode */ 3760 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); 3761 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3762 3763 if (IS_MF_SI(sc)) { 3764 bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags); 3765 } else { 3766 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3767 } 3768 3769 break; 3770 3771 default: 3772 BLOGE(sc, "Unknown rx_mode (%d)\n", rx_mode); 3773 return (-1); 3774 } 3775 3776 /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */ 3777 if (rx_mode != BXE_RX_MODE_NONE) { 3778 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags); 3779 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags); 3780 } 3781 3782 return (0); 3783 } 3784 3785 static int 3786 bxe_set_q_rx_mode(struct bxe_softc *sc, 3787 uint8_t cl_id, 3788 unsigned long rx_mode_flags, 3789 unsigned long rx_accept_flags, 3790 unsigned long tx_accept_flags, 3791 unsigned long ramrod_flags) 3792 { 3793 struct ecore_rx_mode_ramrod_params ramrod_param; 3794 int rc; 3795 3796 memset(&ramrod_param, 0, sizeof(ramrod_param)); 3797 3798 /* Prepare ramrod parameters */ 3799 ramrod_param.cid = 0; 3800 ramrod_param.cl_id = cl_id; 3801 ramrod_param.rx_mode_obj = &sc->rx_mode_obj; 3802 ramrod_param.func_id = SC_FUNC(sc); 3803 3804 ramrod_param.pstate = &sc->sp_state; 3805 ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING; 3806 3807 ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata); 3808 ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata); 3809 3810 bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); 3811 3812 ramrod_param.ramrod_flags = ramrod_flags; 3813 ramrod_param.rx_mode_flags = rx_mode_flags; 3814 3815 ramrod_param.rx_accept_flags = rx_accept_flags; 3816 ramrod_param.tx_accept_flags = tx_accept_flags; 3817 3818 rc = ecore_config_rx_mode(sc, &ramrod_param); 3819 if (rc < 0) { 3820 BLOGE(sc, "Set rx_mode %d failed\n", sc->rx_mode); 3821 return (rc); 3822 } 3823 3824 return (0); 3825 } 3826 3827 static int 3828 bxe_set_storm_rx_mode(struct bxe_softc *sc) 3829 { 3830 unsigned long rx_mode_flags = 0, ramrod_flags = 0; 3831 unsigned long rx_accept_flags = 0, tx_accept_flags = 0; 3832 int rc; 3833 3834 rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags, 3835 &tx_accept_flags); 3836 if (rc) { 3837 return (rc); 3838 } 3839 3840 bxe_set_bit(RAMROD_RX, &ramrod_flags); 3841 bxe_set_bit(RAMROD_TX, &ramrod_flags); 3842 3843 /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */ 3844 return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags, 3845 rx_accept_flags, tx_accept_flags, 3846 ramrod_flags)); 3847 } 3848 3849 /* returns the "mcp load_code" according to global load_count array */ 3850 static int 3851 bxe_nic_load_no_mcp(struct bxe_softc *sc) 3852 { 3853 int path = SC_PATH(sc); 3854 int port = SC_PORT(sc); 3855 3856 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", 3857 path, load_count[path][0], load_count[path][1], 3858 load_count[path][2]); 3859 load_count[path][0]++; 3860 load_count[path][1 + port]++; 3861 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", 3862 path, load_count[path][0], load_count[path][1], 3863 load_count[path][2]); 3864 if (load_count[path][0] == 1) { 3865 return (FW_MSG_CODE_DRV_LOAD_COMMON); 3866 } else if (load_count[path][1 + port] == 1) { 3867 return (FW_MSG_CODE_DRV_LOAD_PORT); 3868 } else { 3869 return (FW_MSG_CODE_DRV_LOAD_FUNCTION); 3870 } 3871 } 3872 3873 /* returns the "mcp load_code" according to global load_count array */ 3874 static int 3875 bxe_nic_unload_no_mcp(struct bxe_softc *sc) 3876 { 3877 int port = SC_PORT(sc); 3878 int path = SC_PATH(sc); 3879 3880 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", 3881 path, load_count[path][0], load_count[path][1], 3882 load_count[path][2]); 3883 load_count[path][0]--; 3884 load_count[path][1 + port]--; 3885 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", 3886 path, load_count[path][0], load_count[path][1], 3887 load_count[path][2]); 3888 if (load_count[path][0] == 0) { 3889 return (FW_MSG_CODE_DRV_UNLOAD_COMMON); 3890 } else if (load_count[path][1 + port] == 0) { 3891 return (FW_MSG_CODE_DRV_UNLOAD_PORT); 3892 } else { 3893 return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION); 3894 } 3895 } 3896 3897 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */ 3898 static uint32_t 3899 bxe_send_unload_req(struct bxe_softc *sc, 3900 int unload_mode) 3901 { 3902 uint32_t reset_code = 0; 3903 #if 0 3904 int port = SC_PORT(sc); 3905 int path = SC_PATH(sc); 3906 #endif 3907 3908 /* Select the UNLOAD request mode */ 3909 if (unload_mode == UNLOAD_NORMAL) { 3910 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 3911 } 3912 #if 0 3913 else if (sc->flags & BXE_NO_WOL_FLAG) { 3914 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP; 3915 } else if (sc->wol) { 3916 uint32_t emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0; 3917 uint8_t *mac_addr = sc->dev->dev_addr; 3918 uint32_t val; 3919 uint16_t pmc; 3920 3921 /* 3922 * The mac address is written to entries 1-4 to 3923 * preserve entry 0 which is used by the PMF 3924 */ 3925 uint8_t entry = (SC_VN(sc) + 1)*8; 3926 3927 val = (mac_addr[0] << 8) | mac_addr[1]; 3928 EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry, val); 3929 3930 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) | 3931 (mac_addr[4] << 8) | mac_addr[5]; 3932 EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val); 3933 3934 /* Enable the PME and clear the status */ 3935 pmc = pci_read_config(sc->dev, 3936 (sc->devinfo.pcie_pm_cap_reg + 3937 PCIR_POWER_STATUS), 3938 2); 3939 pmc |= PCIM_PSTAT_PMEENABLE | PCIM_PSTAT_PME; 3940 pci_write_config(sc->dev, 3941 (sc->devinfo.pcie_pm_cap_reg + 3942 PCIR_POWER_STATUS), 3943 pmc, 4); 3944 3945 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN; 3946 } 3947 #endif 3948 else { 3949 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 3950 } 3951 3952 /* Send the request to the MCP */ 3953 if (!BXE_NOMCP(sc)) { 3954 reset_code = bxe_fw_command(sc, reset_code, 0); 3955 } else { 3956 reset_code = bxe_nic_unload_no_mcp(sc); 3957 } 3958 3959 return (reset_code); 3960 } 3961 3962 /* send UNLOAD_DONE command to the MCP */ 3963 static void 3964 bxe_send_unload_done(struct bxe_softc *sc, 3965 uint8_t keep_link) 3966 { 3967 uint32_t reset_param = 3968 keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0; 3969 3970 /* Report UNLOAD_DONE to MCP */ 3971 if (!BXE_NOMCP(sc)) { 3972 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param); 3973 } 3974 } 3975 3976 static int 3977 bxe_func_wait_started(struct bxe_softc *sc) 3978 { 3979 int tout = 50; 3980 3981 if (!sc->port.pmf) { 3982 return (0); 3983 } 3984 3985 /* 3986 * (assumption: No Attention from MCP at this stage) 3987 * PMF probably in the middle of TX disable/enable transaction 3988 * 1. Sync IRS for default SB 3989 * 2. Sync SP queue - this guarantees us that attention handling started 3990 * 3. Wait, that TX disable/enable transaction completes 3991 * 3992 * 1+2 guarantee that if DCBX attention was scheduled it already changed 3993 * pending bit of transaction from STARTED-->TX_STOPPED, if we already 3994 * received completion for the transaction the state is TX_STOPPED. 3995 * State will return to STARTED after completion of TX_STOPPED-->STARTED 3996 * transaction. 3997 */ 3998 3999 /* XXX make sure default SB ISR is done */ 4000 /* need a way to synchronize an irq (intr_mtx?) */ 4001 4002 /* XXX flush any work queues */ 4003 4004 while (ecore_func_get_state(sc, &sc->func_obj) != 4005 ECORE_F_STATE_STARTED && tout--) { 4006 DELAY(20000); 4007 } 4008 4009 if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) { 4010 /* 4011 * Failed to complete the transaction in a "good way" 4012 * Force both transactions with CLR bit. 4013 */ 4014 struct ecore_func_state_params func_params = { NULL }; 4015 4016 BLOGE(sc, "Unexpected function state! " 4017 "Forcing STARTED-->TX_STOPPED-->STARTED\n"); 4018 4019 func_params.f_obj = &sc->func_obj; 4020 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 4021 4022 /* STARTED-->TX_STOPPED */ 4023 func_params.cmd = ECORE_F_CMD_TX_STOP; 4024 ecore_func_state_change(sc, &func_params); 4025 4026 /* TX_STOPPED-->STARTED */ 4027 func_params.cmd = ECORE_F_CMD_TX_START; 4028 return (ecore_func_state_change(sc, &func_params)); 4029 } 4030 4031 return (0); 4032 } 4033 4034 static int 4035 bxe_stop_queue(struct bxe_softc *sc, 4036 int index) 4037 { 4038 struct bxe_fastpath *fp = &sc->fp[index]; 4039 struct ecore_queue_state_params q_params = { NULL }; 4040 int rc; 4041 4042 BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index); 4043 4044 q_params.q_obj = &sc->sp_objs[fp->index].q_obj; 4045 /* We want to wait for completion in this context */ 4046 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 4047 4048 /* Stop the primary connection: */ 4049 4050 /* ...halt the connection */ 4051 q_params.cmd = ECORE_Q_CMD_HALT; 4052 rc = ecore_queue_state_change(sc, &q_params); 4053 if (rc) { 4054 return (rc); 4055 } 4056 4057 /* ...terminate the connection */ 4058 q_params.cmd = ECORE_Q_CMD_TERMINATE; 4059 memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate)); 4060 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX; 4061 rc = ecore_queue_state_change(sc, &q_params); 4062 if (rc) { 4063 return (rc); 4064 } 4065 4066 /* ...delete cfc entry */ 4067 q_params.cmd = ECORE_Q_CMD_CFC_DEL; 4068 memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del)); 4069 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX; 4070 return (ecore_queue_state_change(sc, &q_params)); 4071 } 4072 4073 /* wait for the outstanding SP commands */ 4074 static inline uint8_t 4075 bxe_wait_sp_comp(struct bxe_softc *sc, 4076 unsigned long mask) 4077 { 4078 unsigned long tmp; 4079 int tout = 5000; /* wait for 5 secs tops */ 4080 4081 while (tout--) { 4082 mb(); 4083 if (!(atomic_load_acq_long(&sc->sp_state) & mask)) { 4084 return (TRUE); 4085 } 4086 4087 DELAY(1000); 4088 } 4089 4090 mb(); 4091 4092 tmp = atomic_load_acq_long(&sc->sp_state); 4093 if (tmp & mask) { 4094 BLOGE(sc, "Filtering completion timed out: " 4095 "sp_state 0x%lx, mask 0x%lx\n", 4096 tmp, mask); 4097 return (FALSE); 4098 } 4099 4100 return (FALSE); 4101 } 4102 4103 static int 4104 bxe_func_stop(struct bxe_softc *sc) 4105 { 4106 struct ecore_func_state_params func_params = { NULL }; 4107 int rc; 4108 4109 /* prepare parameters for function state transitions */ 4110 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 4111 func_params.f_obj = &sc->func_obj; 4112 func_params.cmd = ECORE_F_CMD_STOP; 4113 4114 /* 4115 * Try to stop the function the 'good way'. If it fails (in case 4116 * of a parity error during bxe_chip_cleanup()) and we are 4117 * not in a debug mode, perform a state transaction in order to 4118 * enable further HW_RESET transaction. 4119 */ 4120 rc = ecore_func_state_change(sc, &func_params); 4121 if (rc) { 4122 BLOGE(sc, "FUNC_STOP ramrod failed. " 4123 "Running a dry transaction\n"); 4124 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 4125 return (ecore_func_state_change(sc, &func_params)); 4126 } 4127 4128 return (0); 4129 } 4130 4131 static int 4132 bxe_reset_hw(struct bxe_softc *sc, 4133 uint32_t load_code) 4134 { 4135 struct ecore_func_state_params func_params = { NULL }; 4136 4137 /* Prepare parameters for function state transitions */ 4138 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 4139 4140 func_params.f_obj = &sc->func_obj; 4141 func_params.cmd = ECORE_F_CMD_HW_RESET; 4142 4143 func_params.params.hw_init.load_phase = load_code; 4144 4145 return (ecore_func_state_change(sc, &func_params)); 4146 } 4147 4148 static void 4149 bxe_int_disable_sync(struct bxe_softc *sc, 4150 int disable_hw) 4151 { 4152 if (disable_hw) { 4153 /* prevent the HW from sending interrupts */ 4154 bxe_int_disable(sc); 4155 } 4156 4157 /* XXX need a way to synchronize ALL irqs (intr_mtx?) */ 4158 /* make sure all ISRs are done */ 4159 4160 /* XXX make sure sp_task is not running */ 4161 /* cancel and flush work queues */ 4162 } 4163 4164 static void 4165 bxe_chip_cleanup(struct bxe_softc *sc, 4166 uint32_t unload_mode, 4167 uint8_t keep_link) 4168 { 4169 int port = SC_PORT(sc); 4170 struct ecore_mcast_ramrod_params rparam = { NULL }; 4171 uint32_t reset_code; 4172 int i, rc = 0; 4173 4174 bxe_drain_tx_queues(sc); 4175 4176 /* give HW time to discard old tx messages */ 4177 DELAY(1000); 4178 4179 /* Clean all ETH MACs */ 4180 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE); 4181 if (rc < 0) { 4182 BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc); 4183 } 4184 4185 /* Clean up UC list */ 4186 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE); 4187 if (rc < 0) { 4188 BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc); 4189 } 4190 4191 /* Disable LLH */ 4192 if (!CHIP_IS_E1(sc)) { 4193 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); 4194 } 4195 4196 /* Set "drop all" to stop Rx */ 4197 4198 /* 4199 * We need to take the BXE_MCAST_LOCK() here in order to prevent 4200 * a race between the completion code and this code. 4201 */ 4202 BXE_MCAST_LOCK(sc); 4203 4204 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { 4205 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); 4206 } else { 4207 bxe_set_storm_rx_mode(sc); 4208 } 4209 4210 /* Clean up multicast configuration */ 4211 rparam.mcast_obj = &sc->mcast_obj; 4212 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 4213 if (rc < 0) { 4214 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); 4215 } 4216 4217 BXE_MCAST_UNLOCK(sc); 4218 4219 // XXX bxe_iov_chip_cleanup(sc); 4220 4221 /* 4222 * Send the UNLOAD_REQUEST to the MCP. This will return if 4223 * this function should perform FUNCTION, PORT, or COMMON HW 4224 * reset. 4225 */ 4226 reset_code = bxe_send_unload_req(sc, unload_mode); 4227 4228 /* 4229 * (assumption: No Attention from MCP at this stage) 4230 * PMF probably in the middle of TX disable/enable transaction 4231 */ 4232 rc = bxe_func_wait_started(sc); 4233 if (rc) { 4234 BLOGE(sc, "bxe_func_wait_started failed\n"); 4235 } 4236 4237 /* 4238 * Close multi and leading connections 4239 * Completions for ramrods are collected in a synchronous way 4240 */ 4241 for (i = 0; i < sc->num_queues; i++) { 4242 if (bxe_stop_queue(sc, i)) { 4243 goto unload_error; 4244 } 4245 } 4246 4247 /* 4248 * If SP settings didn't get completed so far - something 4249 * very wrong has happen. 4250 */ 4251 if (!bxe_wait_sp_comp(sc, ~0x0UL)) { 4252 BLOGE(sc, "Common slow path ramrods got stuck!\n"); 4253 } 4254 4255 unload_error: 4256 4257 rc = bxe_func_stop(sc); 4258 if (rc) { 4259 BLOGE(sc, "Function stop failed!\n"); 4260 } 4261 4262 /* disable HW interrupts */ 4263 bxe_int_disable_sync(sc, TRUE); 4264 4265 /* detach interrupts */ 4266 bxe_interrupt_detach(sc); 4267 4268 /* Reset the chip */ 4269 rc = bxe_reset_hw(sc, reset_code); 4270 if (rc) { 4271 BLOGE(sc, "Hardware reset failed\n"); 4272 } 4273 4274 /* Report UNLOAD_DONE to MCP */ 4275 bxe_send_unload_done(sc, keep_link); 4276 } 4277 4278 static void 4279 bxe_disable_close_the_gate(struct bxe_softc *sc) 4280 { 4281 uint32_t val; 4282 int port = SC_PORT(sc); 4283 4284 BLOGD(sc, DBG_LOAD, 4285 "Disabling 'close the gates'\n"); 4286 4287 if (CHIP_IS_E1(sc)) { 4288 uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 4289 MISC_REG_AEU_MASK_ATTN_FUNC_0; 4290 val = REG_RD(sc, addr); 4291 val &= ~(0x300); 4292 REG_WR(sc, addr, val); 4293 } else { 4294 val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK); 4295 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK | 4296 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK); 4297 REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val); 4298 } 4299 } 4300 4301 /* 4302 * Cleans the object that have internal lists without sending 4303 * ramrods. Should be run when interrutps are disabled. 4304 */ 4305 static void 4306 bxe_squeeze_objects(struct bxe_softc *sc) 4307 { 4308 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 4309 struct ecore_mcast_ramrod_params rparam = { NULL }; 4310 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; 4311 int rc; 4312 4313 /* Cleanup MACs' object first... */ 4314 4315 /* Wait for completion of requested */ 4316 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 4317 /* Perform a dry cleanup */ 4318 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags); 4319 4320 /* Clean ETH primary MAC */ 4321 bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags); 4322 rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags, 4323 &ramrod_flags); 4324 if (rc != 0) { 4325 BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc); 4326 } 4327 4328 /* Cleanup UC list */ 4329 vlan_mac_flags = 0; 4330 bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags); 4331 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, 4332 &ramrod_flags); 4333 if (rc != 0) { 4334 BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc); 4335 } 4336 4337 /* Now clean mcast object... */ 4338 4339 rparam.mcast_obj = &sc->mcast_obj; 4340 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags); 4341 4342 /* Add a DEL command... */ 4343 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 4344 if (rc < 0) { 4345 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); 4346 } 4347 4348 /* now wait until all pending commands are cleared */ 4349 4350 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 4351 while (rc != 0) { 4352 if (rc < 0) { 4353 BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc); 4354 return; 4355 } 4356 4357 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 4358 } 4359 } 4360 4361 /* stop the controller */ 4362 static __noinline int 4363 bxe_nic_unload(struct bxe_softc *sc, 4364 uint32_t unload_mode, 4365 uint8_t keep_link) 4366 { 4367 uint8_t global = FALSE; 4368 uint32_t val; 4369 4370 BXE_CORE_LOCK_ASSERT(sc); 4371 4372 BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n"); 4373 4374 /* mark driver as unloaded in shmem2 */ 4375 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { 4376 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); 4377 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], 4378 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); 4379 } 4380 4381 if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE && 4382 (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) { 4383 /* 4384 * We can get here if the driver has been unloaded 4385 * during parity error recovery and is either waiting for a 4386 * leader to complete or for other functions to unload and 4387 * then ifconfig down has been issued. In this case we want to 4388 * unload and let other functions to complete a recovery 4389 * process. 4390 */ 4391 sc->recovery_state = BXE_RECOVERY_DONE; 4392 sc->is_leader = 0; 4393 bxe_release_leader_lock(sc); 4394 mb(); 4395 4396 BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n"); 4397 BLOGE(sc, "Can't unload in closed or error state\n"); 4398 return (-1); 4399 } 4400 4401 /* 4402 * Nothing to do during unload if previous bxe_nic_load() 4403 * did not completed succesfully - all resourses are released. 4404 */ 4405 if ((sc->state == BXE_STATE_CLOSED) || 4406 (sc->state == BXE_STATE_ERROR)) { 4407 return (0); 4408 } 4409 4410 sc->state = BXE_STATE_CLOSING_WAITING_HALT; 4411 mb(); 4412 4413 /* stop tx */ 4414 bxe_tx_disable(sc); 4415 4416 sc->rx_mode = BXE_RX_MODE_NONE; 4417 /* XXX set rx mode ??? */ 4418 4419 if (IS_PF(sc)) { 4420 /* set ALWAYS_ALIVE bit in shmem */ 4421 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 4422 4423 bxe_drv_pulse(sc); 4424 4425 bxe_stats_handle(sc, STATS_EVENT_STOP); 4426 bxe_save_statistics(sc); 4427 } 4428 4429 /* wait till consumers catch up with producers in all queues */ 4430 bxe_drain_tx_queues(sc); 4431 4432 /* if VF indicate to PF this function is going down (PF will delete sp 4433 * elements and clear initializations 4434 */ 4435 if (IS_VF(sc)) { 4436 ; /* bxe_vfpf_close_vf(sc); */ 4437 } else if (unload_mode != UNLOAD_RECOVERY) { 4438 /* if this is a normal/close unload need to clean up chip */ 4439 bxe_chip_cleanup(sc, unload_mode, keep_link); 4440 } else { 4441 /* Send the UNLOAD_REQUEST to the MCP */ 4442 bxe_send_unload_req(sc, unload_mode); 4443 4444 /* 4445 * Prevent transactions to host from the functions on the 4446 * engine that doesn't reset global blocks in case of global 4447 * attention once gloabl blocks are reset and gates are opened 4448 * (the engine which leader will perform the recovery 4449 * last). 4450 */ 4451 if (!CHIP_IS_E1x(sc)) { 4452 bxe_pf_disable(sc); 4453 } 4454 4455 /* disable HW interrupts */ 4456 bxe_int_disable_sync(sc, TRUE); 4457 4458 /* detach interrupts */ 4459 bxe_interrupt_detach(sc); 4460 4461 /* Report UNLOAD_DONE to MCP */ 4462 bxe_send_unload_done(sc, FALSE); 4463 } 4464 4465 /* 4466 * At this stage no more interrupts will arrive so we may safely clean 4467 * the queue'able objects here in case they failed to get cleaned so far. 4468 */ 4469 if (IS_PF(sc)) { 4470 bxe_squeeze_objects(sc); 4471 } 4472 4473 /* There should be no more pending SP commands at this stage */ 4474 sc->sp_state = 0; 4475 4476 sc->port.pmf = 0; 4477 4478 bxe_free_fp_buffers(sc); 4479 4480 if (IS_PF(sc)) { 4481 bxe_free_mem(sc); 4482 } 4483 4484 bxe_free_fw_stats_mem(sc); 4485 4486 sc->state = BXE_STATE_CLOSED; 4487 4488 /* 4489 * Check if there are pending parity attentions. If there are - set 4490 * RECOVERY_IN_PROGRESS. 4491 */ 4492 if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) { 4493 bxe_set_reset_in_progress(sc); 4494 4495 /* Set RESET_IS_GLOBAL if needed */ 4496 if (global) { 4497 bxe_set_reset_global(sc); 4498 } 4499 } 4500 4501 /* 4502 * The last driver must disable a "close the gate" if there is no 4503 * parity attention or "process kill" pending. 4504 */ 4505 if (IS_PF(sc) && !bxe_clear_pf_load(sc) && 4506 bxe_reset_is_done(sc, SC_PATH(sc))) { 4507 bxe_disable_close_the_gate(sc); 4508 } 4509 4510 BLOGD(sc, DBG_LOAD, "Ended NIC unload\n"); 4511 4512 return (0); 4513 } 4514 4515 /* 4516 * Called by the OS to set various media options (i.e. link, speed, etc.) when 4517 * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...". 4518 */ 4519 static int 4520 bxe_ifmedia_update(struct ifnet *ifp) 4521 { 4522 struct bxe_softc *sc = (struct bxe_softc *)if_getsoftc(ifp); 4523 struct ifmedia *ifm; 4524 4525 ifm = &sc->ifmedia; 4526 4527 /* We only support Ethernet media type. */ 4528 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) { 4529 return (EINVAL); 4530 } 4531 4532 switch (IFM_SUBTYPE(ifm->ifm_media)) { 4533 case IFM_AUTO: 4534 break; 4535 case IFM_10G_CX4: 4536 case IFM_10G_SR: 4537 case IFM_10G_T: 4538 case IFM_10G_TWINAX: 4539 default: 4540 /* We don't support changing the media type. */ 4541 BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n", 4542 IFM_SUBTYPE(ifm->ifm_media)); 4543 return (EINVAL); 4544 } 4545 4546 return (0); 4547 } 4548 4549 /* 4550 * Called by the OS to get the current media status (i.e. link, speed, etc.). 4551 */ 4552 static void 4553 bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr) 4554 { 4555 struct bxe_softc *sc = if_getsoftc(ifp); 4556 4557 /* Report link down if the driver isn't running. */ 4558 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) { 4559 ifmr->ifm_active |= IFM_NONE; 4560 return; 4561 } 4562 4563 /* Setup the default interface info. */ 4564 ifmr->ifm_status = IFM_AVALID; 4565 ifmr->ifm_active = IFM_ETHER; 4566 4567 if (sc->link_vars.link_up) { 4568 ifmr->ifm_status |= IFM_ACTIVE; 4569 } else { 4570 ifmr->ifm_active |= IFM_NONE; 4571 return; 4572 } 4573 4574 ifmr->ifm_active |= sc->media; 4575 4576 if (sc->link_vars.duplex == DUPLEX_FULL) { 4577 ifmr->ifm_active |= IFM_FDX; 4578 } else { 4579 ifmr->ifm_active |= IFM_HDX; 4580 } 4581 } 4582 4583 static int 4584 bxe_ioctl_nvram(struct bxe_softc *sc, 4585 uint32_t priv_op, 4586 struct ifreq *ifr) 4587 { 4588 struct bxe_nvram_data nvdata_base; 4589 struct bxe_nvram_data *nvdata; 4590 int len; 4591 int error = 0; 4592 4593 copyin(ifr->ifr_data, &nvdata_base, sizeof(nvdata_base)); 4594 4595 len = (sizeof(struct bxe_nvram_data) + 4596 nvdata_base.len - 4597 sizeof(uint32_t)); 4598 4599 if (len > sizeof(struct bxe_nvram_data)) { 4600 if ((nvdata = (struct bxe_nvram_data *) 4601 malloc(len, M_DEVBUF, 4602 (M_NOWAIT | M_ZERO))) == NULL) { 4603 BLOGE(sc, "BXE_IOC_RD_NVRAM malloc failed\n"); 4604 return (1); 4605 } 4606 memcpy(nvdata, &nvdata_base, sizeof(struct bxe_nvram_data)); 4607 } else { 4608 nvdata = &nvdata_base; 4609 } 4610 4611 if (priv_op == BXE_IOC_RD_NVRAM) { 4612 BLOGD(sc, DBG_IOCTL, "IOC_RD_NVRAM 0x%x %d\n", 4613 nvdata->offset, nvdata->len); 4614 error = bxe_nvram_read(sc, 4615 nvdata->offset, 4616 (uint8_t *)nvdata->value, 4617 nvdata->len); 4618 copyout(nvdata, ifr->ifr_data, len); 4619 } else { /* BXE_IOC_WR_NVRAM */ 4620 BLOGD(sc, DBG_IOCTL, "IOC_WR_NVRAM 0x%x %d\n", 4621 nvdata->offset, nvdata->len); 4622 copyin(ifr->ifr_data, nvdata, len); 4623 error = bxe_nvram_write(sc, 4624 nvdata->offset, 4625 (uint8_t *)nvdata->value, 4626 nvdata->len); 4627 } 4628 4629 if (len > sizeof(struct bxe_nvram_data)) { 4630 free(nvdata, M_DEVBUF); 4631 } 4632 4633 return (error); 4634 } 4635 4636 static int 4637 bxe_ioctl_stats_show(struct bxe_softc *sc, 4638 uint32_t priv_op, 4639 struct ifreq *ifr) 4640 { 4641 const size_t str_size = (BXE_NUM_ETH_STATS * STAT_NAME_LEN); 4642 const size_t stats_size = (BXE_NUM_ETH_STATS * sizeof(uint64_t)); 4643 caddr_t p_tmp; 4644 uint32_t *offset; 4645 int i; 4646 4647 switch (priv_op) 4648 { 4649 case BXE_IOC_STATS_SHOW_NUM: 4650 memset(ifr->ifr_data, 0, sizeof(union bxe_stats_show_data)); 4651 ((union bxe_stats_show_data *)ifr->ifr_data)->desc.num = 4652 BXE_NUM_ETH_STATS; 4653 ((union bxe_stats_show_data *)ifr->ifr_data)->desc.len = 4654 STAT_NAME_LEN; 4655 return (0); 4656 4657 case BXE_IOC_STATS_SHOW_STR: 4658 memset(ifr->ifr_data, 0, str_size); 4659 p_tmp = ifr->ifr_data; 4660 for (i = 0; i < BXE_NUM_ETH_STATS; i++) { 4661 strcpy(p_tmp, bxe_eth_stats_arr[i].string); 4662 p_tmp += STAT_NAME_LEN; 4663 } 4664 return (0); 4665 4666 case BXE_IOC_STATS_SHOW_CNT: 4667 memset(ifr->ifr_data, 0, stats_size); 4668 p_tmp = ifr->ifr_data; 4669 for (i = 0; i < BXE_NUM_ETH_STATS; i++) { 4670 offset = ((uint32_t *)&sc->eth_stats + 4671 bxe_eth_stats_arr[i].offset); 4672 switch (bxe_eth_stats_arr[i].size) { 4673 case 4: 4674 *((uint64_t *)p_tmp) = (uint64_t)*offset; 4675 break; 4676 case 8: 4677 *((uint64_t *)p_tmp) = HILO_U64(*offset, *(offset + 1)); 4678 break; 4679 default: 4680 *((uint64_t *)p_tmp) = 0; 4681 } 4682 p_tmp += sizeof(uint64_t); 4683 } 4684 return (0); 4685 4686 default: 4687 return (-1); 4688 } 4689 } 4690 4691 static void 4692 bxe_handle_chip_tq(void *context, 4693 int pending) 4694 { 4695 struct bxe_softc *sc = (struct bxe_softc *)context; 4696 long work = atomic_load_acq_long(&sc->chip_tq_flags); 4697 4698 switch (work) 4699 { 4700 case CHIP_TQ_START: 4701 if ((if_getflags(sc->ifp) & IFF_UP) && 4702 !(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { 4703 /* start the interface */ 4704 BLOGD(sc, DBG_LOAD, "Starting the interface...\n"); 4705 BXE_CORE_LOCK(sc); 4706 bxe_init_locked(sc); 4707 BXE_CORE_UNLOCK(sc); 4708 } 4709 break; 4710 4711 case CHIP_TQ_STOP: 4712 if (!(if_getflags(sc->ifp) & IFF_UP) && 4713 (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { 4714 /* bring down the interface */ 4715 BLOGD(sc, DBG_LOAD, "Stopping the interface...\n"); 4716 bxe_periodic_stop(sc); 4717 BXE_CORE_LOCK(sc); 4718 bxe_stop_locked(sc); 4719 BXE_CORE_UNLOCK(sc); 4720 } 4721 break; 4722 4723 case CHIP_TQ_REINIT: 4724 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 4725 /* restart the interface */ 4726 BLOGD(sc, DBG_LOAD, "Restarting the interface...\n"); 4727 bxe_periodic_stop(sc); 4728 BXE_CORE_LOCK(sc); 4729 bxe_stop_locked(sc); 4730 bxe_init_locked(sc); 4731 BXE_CORE_UNLOCK(sc); 4732 } 4733 break; 4734 4735 default: 4736 break; 4737 } 4738 } 4739 4740 /* 4741 * Handles any IOCTL calls from the operating system. 4742 * 4743 * Returns: 4744 * 0 = Success, >0 Failure 4745 */ 4746 static int 4747 bxe_ioctl(if_t ifp, 4748 u_long command, 4749 caddr_t data) 4750 { 4751 struct bxe_softc *sc = if_getsoftc(ifp); 4752 struct ifreq *ifr = (struct ifreq *)data; 4753 struct bxe_nvram_data *nvdata; 4754 uint32_t priv_op; 4755 int mask = 0; 4756 int reinit = 0; 4757 int error = 0; 4758 4759 int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN); 4760 int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING); 4761 4762 switch (command) 4763 { 4764 case SIOCSIFMTU: 4765 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n", 4766 ifr->ifr_mtu); 4767 4768 if (sc->mtu == ifr->ifr_mtu) { 4769 /* nothing to change */ 4770 break; 4771 } 4772 4773 if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) { 4774 BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n", 4775 ifr->ifr_mtu, mtu_min, mtu_max); 4776 error = EINVAL; 4777 break; 4778 } 4779 4780 atomic_store_rel_int((volatile unsigned int *)&sc->mtu, 4781 (unsigned long)ifr->ifr_mtu); 4782 /* 4783 atomic_store_rel_long((volatile unsigned long *)&if_getmtu(ifp), 4784 (unsigned long)ifr->ifr_mtu); 4785 XXX - Not sure why it needs to be atomic 4786 */ 4787 if_setmtu(ifp, ifr->ifr_mtu); 4788 reinit = 1; 4789 break; 4790 4791 case SIOCSIFFLAGS: 4792 /* toggle the interface state up or down */ 4793 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n"); 4794 4795 /* check if the interface is up */ 4796 if (if_getflags(ifp) & IFF_UP) { 4797 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4798 /* set the receive mode flags */ 4799 bxe_set_rx_mode(sc); 4800 } else { 4801 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_START); 4802 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task); 4803 } 4804 } else { 4805 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4806 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_STOP); 4807 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task); 4808 } 4809 } 4810 4811 break; 4812 4813 case SIOCADDMULTI: 4814 case SIOCDELMULTI: 4815 /* add/delete multicast addresses */ 4816 BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n"); 4817 4818 /* check if the interface is up */ 4819 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4820 /* set the receive mode flags */ 4821 bxe_set_rx_mode(sc); 4822 } 4823 4824 break; 4825 4826 case SIOCSIFCAP: 4827 /* find out which capabilities have changed */ 4828 mask = (ifr->ifr_reqcap ^ if_getcapenable(ifp)); 4829 4830 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n", 4831 mask); 4832 4833 /* toggle the LRO capabilites enable flag */ 4834 if (mask & IFCAP_LRO) { 4835 if_togglecapenable(ifp, IFCAP_LRO); 4836 BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n", 4837 (if_getcapenable(ifp) & IFCAP_LRO) ? "ON" : "OFF"); 4838 reinit = 1; 4839 } 4840 4841 /* toggle the TXCSUM checksum capabilites enable flag */ 4842 if (mask & IFCAP_TXCSUM) { 4843 if_togglecapenable(ifp, IFCAP_TXCSUM); 4844 BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n", 4845 (if_getcapenable(ifp) & IFCAP_TXCSUM) ? "ON" : "OFF"); 4846 if (if_getcapenable(ifp) & IFCAP_TXCSUM) { 4847 if_sethwassistbits(ifp, (CSUM_IP | 4848 CSUM_TCP | 4849 CSUM_UDP | 4850 CSUM_TSO | 4851 CSUM_TCP_IPV6 | 4852 CSUM_UDP_IPV6), 0); 4853 } else { 4854 if_clearhwassist(ifp); /* XXX */ 4855 } 4856 } 4857 4858 /* toggle the RXCSUM checksum capabilities enable flag */ 4859 if (mask & IFCAP_RXCSUM) { 4860 if_togglecapenable(ifp, IFCAP_RXCSUM); 4861 BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n", 4862 (if_getcapenable(ifp) & IFCAP_RXCSUM) ? "ON" : "OFF"); 4863 if (if_getcapenable(ifp) & IFCAP_RXCSUM) { 4864 if_sethwassistbits(ifp, (CSUM_IP | 4865 CSUM_TCP | 4866 CSUM_UDP | 4867 CSUM_TSO | 4868 CSUM_TCP_IPV6 | 4869 CSUM_UDP_IPV6), 0); 4870 } else { 4871 if_clearhwassist(ifp); /* XXX */ 4872 } 4873 } 4874 4875 /* toggle TSO4 capabilities enabled flag */ 4876 if (mask & IFCAP_TSO4) { 4877 if_togglecapenable(ifp, IFCAP_TSO4); 4878 BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n", 4879 (if_getcapenable(ifp) & IFCAP_TSO4) ? "ON" : "OFF"); 4880 } 4881 4882 /* toggle TSO6 capabilities enabled flag */ 4883 if (mask & IFCAP_TSO6) { 4884 if_togglecapenable(ifp, IFCAP_TSO6); 4885 BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n", 4886 (if_getcapenable(ifp) & IFCAP_TSO6) ? "ON" : "OFF"); 4887 } 4888 4889 /* toggle VLAN_HWTSO capabilities enabled flag */ 4890 if (mask & IFCAP_VLAN_HWTSO) { 4891 4892 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); 4893 BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n", 4894 (if_getcapenable(ifp) & IFCAP_VLAN_HWTSO) ? "ON" : "OFF"); 4895 } 4896 4897 /* toggle VLAN_HWCSUM capabilities enabled flag */ 4898 if (mask & IFCAP_VLAN_HWCSUM) { 4899 /* XXX investigate this... */ 4900 BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n"); 4901 error = EINVAL; 4902 } 4903 4904 /* toggle VLAN_MTU capabilities enable flag */ 4905 if (mask & IFCAP_VLAN_MTU) { 4906 /* XXX investigate this... */ 4907 BLOGE(sc, "Changing VLAN_MTU is not supported!\n"); 4908 error = EINVAL; 4909 } 4910 4911 /* toggle VLAN_HWTAGGING capabilities enabled flag */ 4912 if (mask & IFCAP_VLAN_HWTAGGING) { 4913 /* XXX investigate this... */ 4914 BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n"); 4915 error = EINVAL; 4916 } 4917 4918 /* toggle VLAN_HWFILTER capabilities enabled flag */ 4919 if (mask & IFCAP_VLAN_HWFILTER) { 4920 /* XXX investigate this... */ 4921 BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n"); 4922 error = EINVAL; 4923 } 4924 4925 /* XXX not yet... 4926 * IFCAP_WOL_MAGIC 4927 */ 4928 4929 break; 4930 4931 case SIOCSIFMEDIA: 4932 case SIOCGIFMEDIA: 4933 /* set/get interface media */ 4934 BLOGD(sc, DBG_IOCTL, 4935 "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n", 4936 (command & 0xff)); 4937 error = ifmedia_ioctl_drv(ifp, ifr, &sc->ifmedia, command); 4938 break; 4939 4940 case SIOCGPRIVATE_0: 4941 copyin(ifr->ifr_data, &priv_op, sizeof(priv_op)); 4942 4943 switch (priv_op) 4944 { 4945 case BXE_IOC_RD_NVRAM: 4946 case BXE_IOC_WR_NVRAM: 4947 nvdata = (struct bxe_nvram_data *)ifr->ifr_data; 4948 BLOGD(sc, DBG_IOCTL, 4949 "Received Private NVRAM ioctl addr=0x%x size=%u\n", 4950 nvdata->offset, nvdata->len); 4951 error = bxe_ioctl_nvram(sc, priv_op, ifr); 4952 break; 4953 4954 case BXE_IOC_STATS_SHOW_NUM: 4955 case BXE_IOC_STATS_SHOW_STR: 4956 case BXE_IOC_STATS_SHOW_CNT: 4957 BLOGD(sc, DBG_IOCTL, "Received Private Stats ioctl (%d)\n", 4958 priv_op); 4959 error = bxe_ioctl_stats_show(sc, priv_op, ifr); 4960 break; 4961 4962 default: 4963 BLOGW(sc, "Received Private Unknown ioctl (%d)\n", priv_op); 4964 error = EINVAL; 4965 break; 4966 } 4967 4968 break; 4969 4970 default: 4971 BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n", 4972 (command & 0xff)); 4973 error = ether_ioctl_drv(ifp, command, data); 4974 break; 4975 } 4976 4977 if (reinit && (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { 4978 BLOGD(sc, DBG_LOAD | DBG_IOCTL, 4979 "Re-initializing hardware from IOCTL change\n"); 4980 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT); 4981 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task); 4982 } 4983 4984 return (error); 4985 } 4986 4987 static __noinline void 4988 bxe_dump_mbuf(struct bxe_softc *sc, 4989 struct mbuf *m, 4990 uint8_t contents) 4991 { 4992 char * type; 4993 int i = 0; 4994 4995 if (!(sc->debug & DBG_MBUF)) { 4996 return; 4997 } 4998 4999 if (m == NULL) { 5000 BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n"); 5001 return; 5002 } 5003 5004 while (m) { 5005 BLOGD(sc, DBG_MBUF, 5006 "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n", 5007 i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data); 5008 5009 if (m->m_flags & M_PKTHDR) { 5010 BLOGD(sc, DBG_MBUF, 5011 "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n", 5012 i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS, 5013 (int)m->m_pkthdr.csum_flags, CSUM_BITS); 5014 } 5015 5016 if (m->m_flags & M_EXT) { 5017 switch (m->m_ext.ext_type) { 5018 case EXT_CLUSTER: type = "EXT_CLUSTER"; break; 5019 case EXT_SFBUF: type = "EXT_SFBUF"; break; 5020 case EXT_JUMBOP: type = "EXT_JUMBOP"; break; 5021 case EXT_JUMBO9: type = "EXT_JUMBO9"; break; 5022 case EXT_JUMBO16: type = "EXT_JUMBO16"; break; 5023 case EXT_PACKET: type = "EXT_PACKET"; break; 5024 case EXT_MBUF: type = "EXT_MBUF"; break; 5025 case EXT_NET_DRV: type = "EXT_NET_DRV"; break; 5026 case EXT_MOD_TYPE: type = "EXT_MOD_TYPE"; break; 5027 case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break; 5028 case EXT_EXTREF: type = "EXT_EXTREF"; break; 5029 default: type = "UNKNOWN"; break; 5030 } 5031 5032 BLOGD(sc, DBG_MBUF, 5033 "%02d: - m_ext: %p ext_size=%d type=%s\n", 5034 i, m->m_ext.ext_buf, m->m_ext.ext_size, type); 5035 } 5036 5037 if (contents) { 5038 bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE); 5039 } 5040 5041 m = m->m_next; 5042 i++; 5043 } 5044 } 5045 5046 /* 5047 * Checks to ensure the 13 bd sliding window is >= MSS for TSO. 5048 * Check that (13 total bds - 3 bds) = 10 bd window >= MSS. 5049 * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD 5050 * The headers comes in a seperate bd in FreeBSD so 13-3=10. 5051 * Returns: 0 if OK to send, 1 if packet needs further defragmentation 5052 */ 5053 static int 5054 bxe_chktso_window(struct bxe_softc *sc, 5055 int nsegs, 5056 bus_dma_segment_t *segs, 5057 struct mbuf *m) 5058 { 5059 uint32_t num_wnds, wnd_size, wnd_sum; 5060 int32_t frag_idx, wnd_idx; 5061 unsigned short lso_mss; 5062 int defrag; 5063 5064 defrag = 0; 5065 wnd_sum = 0; 5066 wnd_size = 10; 5067 num_wnds = nsegs - wnd_size; 5068 lso_mss = htole16(m->m_pkthdr.tso_segsz); 5069 5070 /* 5071 * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the 5072 * first window sum of data while skipping the first assuming it is the 5073 * header in FreeBSD. 5074 */ 5075 for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) { 5076 wnd_sum += htole16(segs[frag_idx].ds_len); 5077 } 5078 5079 /* check the first 10 bd window size */ 5080 if (wnd_sum < lso_mss) { 5081 return (1); 5082 } 5083 5084 /* run through the windows */ 5085 for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) { 5086 /* subtract the first mbuf->m_len of the last wndw(-header) */ 5087 wnd_sum -= htole16(segs[wnd_idx+1].ds_len); 5088 /* add the next mbuf len to the len of our new window */ 5089 wnd_sum += htole16(segs[frag_idx].ds_len); 5090 if (wnd_sum < lso_mss) { 5091 return (1); 5092 } 5093 } 5094 5095 return (0); 5096 } 5097 5098 static uint8_t 5099 bxe_set_pbd_csum_e2(struct bxe_fastpath *fp, 5100 struct mbuf *m, 5101 uint32_t *parsing_data) 5102 { 5103 struct ether_vlan_header *eh = NULL; 5104 struct ip *ip4 = NULL; 5105 struct ip6_hdr *ip6 = NULL; 5106 caddr_t ip = NULL; 5107 struct tcphdr *th = NULL; 5108 int e_hlen, ip_hlen, l4_off; 5109 uint16_t proto; 5110 5111 if (m->m_pkthdr.csum_flags == CSUM_IP) { 5112 /* no L4 checksum offload needed */ 5113 return (0); 5114 } 5115 5116 /* get the Ethernet header */ 5117 eh = mtod(m, struct ether_vlan_header *); 5118 5119 /* handle VLAN encapsulation if present */ 5120 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 5121 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 5122 proto = ntohs(eh->evl_proto); 5123 } else { 5124 e_hlen = ETHER_HDR_LEN; 5125 proto = ntohs(eh->evl_encap_proto); 5126 } 5127 5128 switch (proto) { 5129 case ETHERTYPE_IP: 5130 /* get the IP header, if mbuf len < 20 then header in next mbuf */ 5131 ip4 = (m->m_len < sizeof(struct ip)) ? 5132 (struct ip *)m->m_next->m_data : 5133 (struct ip *)(m->m_data + e_hlen); 5134 /* ip_hl is number of 32-bit words */ 5135 ip_hlen = (ip4->ip_hl << 2); 5136 ip = (caddr_t)ip4; 5137 break; 5138 case ETHERTYPE_IPV6: 5139 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ 5140 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? 5141 (struct ip6_hdr *)m->m_next->m_data : 5142 (struct ip6_hdr *)(m->m_data + e_hlen); 5143 /* XXX cannot support offload with IPv6 extensions */ 5144 ip_hlen = sizeof(struct ip6_hdr); 5145 ip = (caddr_t)ip6; 5146 break; 5147 default: 5148 /* We can't offload in this case... */ 5149 /* XXX error stat ??? */ 5150 return (0); 5151 } 5152 5153 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ 5154 l4_off = (e_hlen + ip_hlen); 5155 5156 *parsing_data |= 5157 (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 5158 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W); 5159 5160 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 5161 CSUM_TSO | 5162 CSUM_TCP_IPV6)) { 5163 fp->eth_q_stats.tx_ofld_frames_csum_tcp++; 5164 th = (struct tcphdr *)(ip + ip_hlen); 5165 /* th_off is number of 32-bit words */ 5166 *parsing_data |= ((th->th_off << 5167 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 5168 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW); 5169 return (l4_off + (th->th_off << 2)); /* entire header length */ 5170 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 5171 CSUM_UDP_IPV6)) { 5172 fp->eth_q_stats.tx_ofld_frames_csum_udp++; 5173 return (l4_off + sizeof(struct udphdr)); /* entire header length */ 5174 } else { 5175 /* XXX error stat ??? */ 5176 return (0); 5177 } 5178 } 5179 5180 static uint8_t 5181 bxe_set_pbd_csum(struct bxe_fastpath *fp, 5182 struct mbuf *m, 5183 struct eth_tx_parse_bd_e1x *pbd) 5184 { 5185 struct ether_vlan_header *eh = NULL; 5186 struct ip *ip4 = NULL; 5187 struct ip6_hdr *ip6 = NULL; 5188 caddr_t ip = NULL; 5189 struct tcphdr *th = NULL; 5190 struct udphdr *uh = NULL; 5191 int e_hlen, ip_hlen; 5192 uint16_t proto; 5193 uint8_t hlen; 5194 uint16_t tmp_csum; 5195 uint32_t *tmp_uh; 5196 5197 /* get the Ethernet header */ 5198 eh = mtod(m, struct ether_vlan_header *); 5199 5200 /* handle VLAN encapsulation if present */ 5201 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 5202 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 5203 proto = ntohs(eh->evl_proto); 5204 } else { 5205 e_hlen = ETHER_HDR_LEN; 5206 proto = ntohs(eh->evl_encap_proto); 5207 } 5208 5209 switch (proto) { 5210 case ETHERTYPE_IP: 5211 /* get the IP header, if mbuf len < 20 then header in next mbuf */ 5212 ip4 = (m->m_len < sizeof(struct ip)) ? 5213 (struct ip *)m->m_next->m_data : 5214 (struct ip *)(m->m_data + e_hlen); 5215 /* ip_hl is number of 32-bit words */ 5216 ip_hlen = (ip4->ip_hl << 1); 5217 ip = (caddr_t)ip4; 5218 break; 5219 case ETHERTYPE_IPV6: 5220 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ 5221 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? 5222 (struct ip6_hdr *)m->m_next->m_data : 5223 (struct ip6_hdr *)(m->m_data + e_hlen); 5224 /* XXX cannot support offload with IPv6 extensions */ 5225 ip_hlen = (sizeof(struct ip6_hdr) >> 1); 5226 ip = (caddr_t)ip6; 5227 break; 5228 default: 5229 /* We can't offload in this case... */ 5230 /* XXX error stat ??? */ 5231 return (0); 5232 } 5233 5234 hlen = (e_hlen >> 1); 5235 5236 /* note that rest of global_data is indirectly zeroed here */ 5237 if (m->m_flags & M_VLANTAG) { 5238 pbd->global_data = 5239 htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT)); 5240 } else { 5241 pbd->global_data = htole16(hlen); 5242 } 5243 5244 pbd->ip_hlen_w = ip_hlen; 5245 5246 hlen += pbd->ip_hlen_w; 5247 5248 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ 5249 5250 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 5251 CSUM_TSO | 5252 CSUM_TCP_IPV6)) { 5253 th = (struct tcphdr *)(ip + (ip_hlen << 1)); 5254 /* th_off is number of 32-bit words */ 5255 hlen += (uint16_t)(th->th_off << 1); 5256 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 5257 CSUM_UDP_IPV6)) { 5258 uh = (struct udphdr *)(ip + (ip_hlen << 1)); 5259 hlen += (sizeof(struct udphdr) / 2); 5260 } else { 5261 /* valid case as only CSUM_IP was set */ 5262 return (0); 5263 } 5264 5265 pbd->total_hlen_w = htole16(hlen); 5266 5267 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 5268 CSUM_TSO | 5269 CSUM_TCP_IPV6)) { 5270 fp->eth_q_stats.tx_ofld_frames_csum_tcp++; 5271 pbd->tcp_pseudo_csum = ntohs(th->th_sum); 5272 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 5273 CSUM_UDP_IPV6)) { 5274 fp->eth_q_stats.tx_ofld_frames_csum_udp++; 5275 5276 /* 5277 * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP 5278 * checksums and does not know anything about the UDP header and where 5279 * the checksum field is located. It only knows about TCP. Therefore 5280 * we "lie" to the hardware for outgoing UDP packets w/ checksum 5281 * offload. Since the checksum field offset for TCP is 16 bytes and 5282 * for UDP it is 6 bytes we pass a pointer to the hardware that is 10 5283 * bytes less than the start of the UDP header. This allows the 5284 * hardware to write the checksum in the correct spot. But the 5285 * hardware will compute a checksum which includes the last 10 bytes 5286 * of the IP header. To correct this we tweak the stack computed 5287 * pseudo checksum by folding in the calculation of the inverse 5288 * checksum for those final 10 bytes of the IP header. This allows 5289 * the correct checksum to be computed by the hardware. 5290 */ 5291 5292 /* set pointer 10 bytes before UDP header */ 5293 tmp_uh = (uint32_t *)((uint8_t *)uh - 10); 5294 5295 /* calculate a pseudo header checksum over the first 10 bytes */ 5296 tmp_csum = in_pseudo(*tmp_uh, 5297 *(tmp_uh + 1), 5298 *(uint16_t *)(tmp_uh + 2)); 5299 5300 pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum)); 5301 } 5302 5303 return (hlen * 2); /* entire header length, number of bytes */ 5304 } 5305 5306 static void 5307 bxe_set_pbd_lso_e2(struct mbuf *m, 5308 uint32_t *parsing_data) 5309 { 5310 *parsing_data |= ((m->m_pkthdr.tso_segsz << 5311 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) & 5312 ETH_TX_PARSE_BD_E2_LSO_MSS); 5313 5314 /* XXX test for IPv6 with extension header... */ 5315 #if 0 5316 struct ip6_hdr *ip6; 5317 if (ip6 && ip6->ip6_nxt == 'some ipv6 extension header') 5318 *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR; 5319 #endif 5320 } 5321 5322 static void 5323 bxe_set_pbd_lso(struct mbuf *m, 5324 struct eth_tx_parse_bd_e1x *pbd) 5325 { 5326 struct ether_vlan_header *eh = NULL; 5327 struct ip *ip = NULL; 5328 struct tcphdr *th = NULL; 5329 int e_hlen; 5330 5331 /* get the Ethernet header */ 5332 eh = mtod(m, struct ether_vlan_header *); 5333 5334 /* handle VLAN encapsulation if present */ 5335 e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ? 5336 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN; 5337 5338 /* get the IP and TCP header, with LSO entire header in first mbuf */ 5339 /* XXX assuming IPv4 */ 5340 ip = (struct ip *)(m->m_data + e_hlen); 5341 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 5342 5343 pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz); 5344 pbd->tcp_send_seq = ntohl(th->th_seq); 5345 pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff); 5346 5347 #if 1 5348 /* XXX IPv4 */ 5349 pbd->ip_id = ntohs(ip->ip_id); 5350 pbd->tcp_pseudo_csum = 5351 ntohs(in_pseudo(ip->ip_src.s_addr, 5352 ip->ip_dst.s_addr, 5353 htons(IPPROTO_TCP))); 5354 #else 5355 /* XXX IPv6 */ 5356 pbd->tcp_pseudo_csum = 5357 ntohs(in_pseudo(&ip6->ip6_src, 5358 &ip6->ip6_dst, 5359 htons(IPPROTO_TCP))); 5360 #endif 5361 5362 pbd->global_data |= 5363 htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN); 5364 } 5365 5366 /* 5367 * Encapsulte an mbuf cluster into the tx bd chain and makes the memory 5368 * visible to the controller. 5369 * 5370 * If an mbuf is submitted to this routine and cannot be given to the 5371 * controller (e.g. it has too many fragments) then the function may free 5372 * the mbuf and return to the caller. 5373 * 5374 * Returns: 5375 * 0 = Success, !0 = Failure 5376 * Note the side effect that an mbuf may be freed if it causes a problem. 5377 */ 5378 static int 5379 bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head) 5380 { 5381 bus_dma_segment_t segs[32]; 5382 struct mbuf *m0; 5383 struct bxe_sw_tx_bd *tx_buf; 5384 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL; 5385 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL; 5386 /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */ 5387 struct eth_tx_bd *tx_data_bd; 5388 struct eth_tx_bd *tx_total_pkt_size_bd; 5389 struct eth_tx_start_bd *tx_start_bd; 5390 uint16_t bd_prod, pkt_prod, total_pkt_size; 5391 uint8_t mac_type; 5392 int defragged, error, nsegs, rc, nbds, vlan_off, ovlan; 5393 struct bxe_softc *sc; 5394 uint16_t tx_bd_avail; 5395 struct ether_vlan_header *eh; 5396 uint32_t pbd_e2_parsing_data = 0; 5397 uint8_t hlen = 0; 5398 int tmp_bd; 5399 int i; 5400 5401 sc = fp->sc; 5402 5403 M_ASSERTPKTHDR(*m_head); 5404 5405 m0 = *m_head; 5406 rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0; 5407 tx_start_bd = NULL; 5408 tx_data_bd = NULL; 5409 tx_total_pkt_size_bd = NULL; 5410 5411 /* get the H/W pointer for packets and BDs */ 5412 pkt_prod = fp->tx_pkt_prod; 5413 bd_prod = fp->tx_bd_prod; 5414 5415 mac_type = UNICAST_ADDRESS; 5416 5417 /* map the mbuf into the next open DMAable memory */ 5418 tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)]; 5419 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5420 tx_buf->m_map, m0, 5421 segs, &nsegs, BUS_DMA_NOWAIT); 5422 5423 /* mapping errors */ 5424 if(__predict_false(error != 0)) { 5425 fp->eth_q_stats.tx_dma_mapping_failure++; 5426 if (error == ENOMEM) { 5427 /* resource issue, try again later */ 5428 rc = ENOMEM; 5429 } else if (error == EFBIG) { 5430 /* possibly recoverable with defragmentation */ 5431 fp->eth_q_stats.mbuf_defrag_attempts++; 5432 m0 = m_defrag(*m_head, M_NOWAIT); 5433 if (m0 == NULL) { 5434 fp->eth_q_stats.mbuf_defrag_failures++; 5435 rc = ENOBUFS; 5436 } else { 5437 /* defrag successful, try mapping again */ 5438 *m_head = m0; 5439 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5440 tx_buf->m_map, m0, 5441 segs, &nsegs, BUS_DMA_NOWAIT); 5442 if (error) { 5443 fp->eth_q_stats.tx_dma_mapping_failure++; 5444 rc = error; 5445 } 5446 } 5447 } else { 5448 /* unknown, unrecoverable mapping error */ 5449 BLOGE(sc, "Unknown TX mapping error rc=%d\n", error); 5450 bxe_dump_mbuf(sc, m0, FALSE); 5451 rc = error; 5452 } 5453 5454 goto bxe_tx_encap_continue; 5455 } 5456 5457 tx_bd_avail = bxe_tx_avail(sc, fp); 5458 5459 /* make sure there is enough room in the send queue */ 5460 if (__predict_false(tx_bd_avail < (nsegs + 2))) { 5461 /* Recoverable, try again later. */ 5462 fp->eth_q_stats.tx_hw_queue_full++; 5463 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5464 rc = ENOMEM; 5465 goto bxe_tx_encap_continue; 5466 } 5467 5468 /* capture the current H/W TX chain high watermark */ 5469 if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth < 5470 (TX_BD_USABLE - tx_bd_avail))) { 5471 fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail); 5472 } 5473 5474 /* make sure it fits in the packet window */ 5475 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) { 5476 /* 5477 * The mbuf may be to big for the controller to handle. If the frame 5478 * is a TSO frame we'll need to do an additional check. 5479 */ 5480 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 5481 if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) { 5482 goto bxe_tx_encap_continue; /* OK to send */ 5483 } else { 5484 fp->eth_q_stats.tx_window_violation_tso++; 5485 } 5486 } else { 5487 fp->eth_q_stats.tx_window_violation_std++; 5488 } 5489 5490 /* lets try to defragment this mbuf and remap it */ 5491 fp->eth_q_stats.mbuf_defrag_attempts++; 5492 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5493 5494 m0 = m_defrag(*m_head, M_NOWAIT); 5495 if (m0 == NULL) { 5496 fp->eth_q_stats.mbuf_defrag_failures++; 5497 /* Ugh, just drop the frame... :( */ 5498 rc = ENOBUFS; 5499 } else { 5500 /* defrag successful, try mapping again */ 5501 *m_head = m0; 5502 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5503 tx_buf->m_map, m0, 5504 segs, &nsegs, BUS_DMA_NOWAIT); 5505 if (error) { 5506 fp->eth_q_stats.tx_dma_mapping_failure++; 5507 /* No sense in trying to defrag/copy chain, drop it. :( */ 5508 rc = error; 5509 } 5510 else { 5511 /* if the chain is still too long then drop it */ 5512 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) { 5513 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5514 rc = ENODEV; 5515 } 5516 } 5517 } 5518 } 5519 5520 bxe_tx_encap_continue: 5521 5522 /* Check for errors */ 5523 if (rc) { 5524 if (rc == ENOMEM) { 5525 /* recoverable try again later */ 5526 } else { 5527 fp->eth_q_stats.tx_soft_errors++; 5528 fp->eth_q_stats.mbuf_alloc_tx--; 5529 m_freem(*m_head); 5530 *m_head = NULL; 5531 } 5532 5533 return (rc); 5534 } 5535 5536 /* set flag according to packet type (UNICAST_ADDRESS is default) */ 5537 if (m0->m_flags & M_BCAST) { 5538 mac_type = BROADCAST_ADDRESS; 5539 } else if (m0->m_flags & M_MCAST) { 5540 mac_type = MULTICAST_ADDRESS; 5541 } 5542 5543 /* store the mbuf into the mbuf ring */ 5544 tx_buf->m = m0; 5545 tx_buf->first_bd = fp->tx_bd_prod; 5546 tx_buf->flags = 0; 5547 5548 /* prepare the first transmit (start) BD for the mbuf */ 5549 tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd; 5550 5551 BLOGD(sc, DBG_TX, 5552 "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n", 5553 pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd); 5554 5555 tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 5556 tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 5557 tx_start_bd->nbytes = htole16(segs[0].ds_len); 5558 total_pkt_size += tx_start_bd->nbytes; 5559 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD; 5560 5561 tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT); 5562 5563 /* all frames have at least Start BD + Parsing BD */ 5564 nbds = nsegs + 1; 5565 tx_start_bd->nbd = htole16(nbds); 5566 5567 if (m0->m_flags & M_VLANTAG) { 5568 tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag); 5569 tx_start_bd->bd_flags.as_bitfield |= 5570 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT); 5571 } else { 5572 /* vf tx, start bd must hold the ethertype for fw to enforce it */ 5573 if (IS_VF(sc)) { 5574 /* map ethernet header to find type and header length */ 5575 eh = mtod(m0, struct ether_vlan_header *); 5576 tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto; 5577 } else { 5578 /* used by FW for packet accounting */ 5579 tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod); 5580 #if 0 5581 /* 5582 * If NPAR-SD is active then FW should do the tagging regardless 5583 * of value of priority. Otherwise, if priority indicates this is 5584 * a control packet we need to indicate to FW to avoid tagging. 5585 */ 5586 if (!IS_MF_AFEX(sc) && (mbuf priority == PRIO_CONTROL)) { 5587 SET_FLAG(tx_start_bd->general_data, 5588 ETH_TX_START_BD_FORCE_VLAN_MODE, 1); 5589 } 5590 #endif 5591 } 5592 } 5593 5594 /* 5595 * add a parsing BD from the chain. The parsing BD is always added 5596 * though it is only used for TSO and chksum 5597 */ 5598 bd_prod = TX_BD_NEXT(bd_prod); 5599 5600 if (m0->m_pkthdr.csum_flags) { 5601 if (m0->m_pkthdr.csum_flags & CSUM_IP) { 5602 fp->eth_q_stats.tx_ofld_frames_csum_ip++; 5603 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM; 5604 } 5605 5606 if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) { 5607 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | 5608 ETH_TX_BD_FLAGS_L4_CSUM); 5609 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) { 5610 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | 5611 ETH_TX_BD_FLAGS_IS_UDP | 5612 ETH_TX_BD_FLAGS_L4_CSUM); 5613 } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) || 5614 (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5615 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM; 5616 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) { 5617 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM | 5618 ETH_TX_BD_FLAGS_IS_UDP); 5619 } 5620 } 5621 5622 if (!CHIP_IS_E1x(sc)) { 5623 pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2; 5624 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2)); 5625 5626 if (m0->m_pkthdr.csum_flags) { 5627 hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data); 5628 } 5629 5630 #if 0 5631 /* 5632 * Add the MACs to the parsing BD if the module param was 5633 * explicitly set, if this is a vf, or in switch independent 5634 * mode. 5635 */ 5636 if (sc->flags & BXE_TX_SWITCHING || IS_VF(sc) || IS_MF_SI(sc)) { 5637 eh = mtod(m0, struct ether_vlan_header *); 5638 bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi, 5639 &pbd_e2->data.mac_addr.src_mid, 5640 &pbd_e2->data.mac_addr.src_lo, 5641 eh->evl_shost); 5642 bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi, 5643 &pbd_e2->data.mac_addr.dst_mid, 5644 &pbd_e2->data.mac_addr.dst_lo, 5645 eh->evl_dhost); 5646 } 5647 #endif 5648 5649 SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, 5650 mac_type); 5651 } else { 5652 uint16_t global_data = 0; 5653 5654 pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x; 5655 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x)); 5656 5657 if (m0->m_pkthdr.csum_flags) { 5658 hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x); 5659 } 5660 5661 SET_FLAG(global_data, 5662 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type); 5663 pbd_e1x->global_data |= htole16(global_data); 5664 } 5665 5666 /* setup the parsing BD with TSO specific info */ 5667 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 5668 fp->eth_q_stats.tx_ofld_frames_lso++; 5669 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO; 5670 5671 if (__predict_false(tx_start_bd->nbytes > hlen)) { 5672 fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++; 5673 5674 /* split the first BD into header/data making the fw job easy */ 5675 nbds++; 5676 tx_start_bd->nbd = htole16(nbds); 5677 tx_start_bd->nbytes = htole16(hlen); 5678 5679 bd_prod = TX_BD_NEXT(bd_prod); 5680 5681 /* new transmit BD after the tx_parse_bd */ 5682 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; 5683 tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen)); 5684 tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen)); 5685 tx_data_bd->nbytes = htole16(segs[0].ds_len - hlen); 5686 if (tx_total_pkt_size_bd == NULL) { 5687 tx_total_pkt_size_bd = tx_data_bd; 5688 } 5689 5690 BLOGD(sc, DBG_TX, 5691 "TSO split header size is %d (%x:%x) nbds %d\n", 5692 le16toh(tx_start_bd->nbytes), 5693 le32toh(tx_start_bd->addr_hi), 5694 le32toh(tx_start_bd->addr_lo), 5695 nbds); 5696 } 5697 5698 if (!CHIP_IS_E1x(sc)) { 5699 bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data); 5700 } else { 5701 bxe_set_pbd_lso(m0, pbd_e1x); 5702 } 5703 } 5704 5705 if (pbd_e2_parsing_data) { 5706 pbd_e2->parsing_data = htole32(pbd_e2_parsing_data); 5707 } 5708 5709 /* prepare remaining BDs, start tx bd contains first seg/frag */ 5710 for (i = 1; i < nsegs ; i++) { 5711 bd_prod = TX_BD_NEXT(bd_prod); 5712 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; 5713 tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr)); 5714 tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr)); 5715 tx_data_bd->nbytes = htole16(segs[i].ds_len); 5716 if (tx_total_pkt_size_bd == NULL) { 5717 tx_total_pkt_size_bd = tx_data_bd; 5718 } 5719 total_pkt_size += tx_data_bd->nbytes; 5720 } 5721 5722 BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd); 5723 5724 if (tx_total_pkt_size_bd != NULL) { 5725 tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size; 5726 } 5727 5728 if (__predict_false(sc->debug & DBG_TX)) { 5729 tmp_bd = tx_buf->first_bd; 5730 for (i = 0; i < nbds; i++) 5731 { 5732 if (i == 0) { 5733 BLOGD(sc, DBG_TX, 5734 "TX Strt: %p bd=%d nbd=%d vlan=0x%x " 5735 "bd_flags=0x%x hdr_nbds=%d\n", 5736 tx_start_bd, 5737 tmp_bd, 5738 le16toh(tx_start_bd->nbd), 5739 le16toh(tx_start_bd->vlan_or_ethertype), 5740 tx_start_bd->bd_flags.as_bitfield, 5741 (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS)); 5742 } else if (i == 1) { 5743 if (pbd_e1x) { 5744 BLOGD(sc, DBG_TX, 5745 "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u " 5746 "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x " 5747 "tcp_seq=%u total_hlen_w=%u\n", 5748 pbd_e1x, 5749 tmp_bd, 5750 pbd_e1x->global_data, 5751 pbd_e1x->ip_hlen_w, 5752 pbd_e1x->ip_id, 5753 pbd_e1x->lso_mss, 5754 pbd_e1x->tcp_flags, 5755 pbd_e1x->tcp_pseudo_csum, 5756 pbd_e1x->tcp_send_seq, 5757 le16toh(pbd_e1x->total_hlen_w)); 5758 } else { /* if (pbd_e2) */ 5759 BLOGD(sc, DBG_TX, 5760 "-> Parse: %p bd=%d dst=%02x:%02x:%02x " 5761 "src=%02x:%02x:%02x parsing_data=0x%x\n", 5762 pbd_e2, 5763 tmp_bd, 5764 pbd_e2->data.mac_addr.dst_hi, 5765 pbd_e2->data.mac_addr.dst_mid, 5766 pbd_e2->data.mac_addr.dst_lo, 5767 pbd_e2->data.mac_addr.src_hi, 5768 pbd_e2->data.mac_addr.src_mid, 5769 pbd_e2->data.mac_addr.src_lo, 5770 pbd_e2->parsing_data); 5771 } 5772 } 5773 5774 if (i != 1) { /* skip parse db as it doesn't hold data */ 5775 tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd; 5776 BLOGD(sc, DBG_TX, 5777 "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n", 5778 tx_data_bd, 5779 tmp_bd, 5780 le16toh(tx_data_bd->nbytes), 5781 le32toh(tx_data_bd->addr_hi), 5782 le32toh(tx_data_bd->addr_lo)); 5783 } 5784 5785 tmp_bd = TX_BD_NEXT(tmp_bd); 5786 } 5787 } 5788 5789 BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod); 5790 5791 /* update TX BD producer index value for next TX */ 5792 bd_prod = TX_BD_NEXT(bd_prod); 5793 5794 /* 5795 * If the chain of tx_bd's describing this frame is adjacent to or spans 5796 * an eth_tx_next_bd element then we need to increment the nbds value. 5797 */ 5798 if (TX_BD_IDX(bd_prod) < nbds) { 5799 nbds++; 5800 } 5801 5802 /* don't allow reordering of writes for nbd and packets */ 5803 mb(); 5804 5805 fp->tx_db.data.prod += nbds; 5806 5807 /* producer points to the next free tx_bd at this point */ 5808 fp->tx_pkt_prod++; 5809 fp->tx_bd_prod = bd_prod; 5810 5811 DOORBELL(sc, fp->index, fp->tx_db.raw); 5812 5813 fp->eth_q_stats.tx_pkts++; 5814 5815 /* Prevent speculative reads from getting ahead of the status block. */ 5816 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 5817 0, 0, BUS_SPACE_BARRIER_READ); 5818 5819 /* Prevent speculative reads from getting ahead of the doorbell. */ 5820 bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle, 5821 0, 0, BUS_SPACE_BARRIER_READ); 5822 5823 return (0); 5824 } 5825 5826 static void 5827 bxe_tx_start_locked(struct bxe_softc *sc, 5828 if_t ifp, 5829 struct bxe_fastpath *fp) 5830 { 5831 struct mbuf *m = NULL; 5832 int tx_count = 0; 5833 uint16_t tx_bd_avail; 5834 5835 BXE_FP_TX_LOCK_ASSERT(fp); 5836 5837 /* keep adding entries while there are frames to send */ 5838 while (!if_sendq_empty(ifp)) { 5839 5840 /* 5841 * check for any frames to send 5842 * dequeue can still be NULL even if queue is not empty 5843 */ 5844 m = if_dequeue(ifp); 5845 if (__predict_false(m == NULL)) { 5846 break; 5847 } 5848 5849 /* the mbuf now belongs to us */ 5850 fp->eth_q_stats.mbuf_alloc_tx++; 5851 5852 /* 5853 * Put the frame into the transmit ring. If we don't have room, 5854 * place the mbuf back at the head of the TX queue, set the 5855 * OACTIVE flag, and wait for the NIC to drain the chain. 5856 */ 5857 if (__predict_false(bxe_tx_encap(fp, &m))) { 5858 fp->eth_q_stats.tx_encap_failures++; 5859 if (m != NULL) { 5860 /* mark the TX queue as full and return the frame */ 5861 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 5862 if_sendq_prepend(ifp, m); 5863 fp->eth_q_stats.mbuf_alloc_tx--; 5864 fp->eth_q_stats.tx_queue_xoff++; 5865 } 5866 5867 /* stop looking for more work */ 5868 break; 5869 } 5870 5871 /* the frame was enqueued successfully */ 5872 tx_count++; 5873 5874 /* send a copy of the frame to any BPF listeners. */ 5875 if_etherbpfmtap(ifp, m); 5876 5877 tx_bd_avail = bxe_tx_avail(sc, fp); 5878 5879 /* handle any completions if we're running low */ 5880 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 5881 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ 5882 bxe_txeof(sc, fp); 5883 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 5884 break; 5885 } 5886 } 5887 } 5888 5889 /* all TX packets were dequeued and/or the tx ring is full */ 5890 if (tx_count > 0) { 5891 /* reset the TX watchdog timeout timer */ 5892 fp->watchdog_timer = BXE_TX_TIMEOUT; 5893 } 5894 } 5895 5896 /* Legacy (non-RSS) dispatch routine */ 5897 static void 5898 bxe_tx_start(if_t ifp) 5899 { 5900 struct bxe_softc *sc; 5901 struct bxe_fastpath *fp; 5902 5903 sc = if_getsoftc(ifp); 5904 5905 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 5906 BLOGW(sc, "Interface not running, ignoring transmit request\n"); 5907 return; 5908 } 5909 5910 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 5911 BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n"); 5912 return; 5913 } 5914 5915 if (!sc->link_vars.link_up) { 5916 BLOGW(sc, "Interface link is down, ignoring transmit request\n"); 5917 return; 5918 } 5919 5920 fp = &sc->fp[0]; 5921 5922 BXE_FP_TX_LOCK(fp); 5923 bxe_tx_start_locked(sc, ifp, fp); 5924 BXE_FP_TX_UNLOCK(fp); 5925 } 5926 5927 #if __FreeBSD_version >= 800000 5928 5929 static int 5930 bxe_tx_mq_start_locked(struct bxe_softc *sc, 5931 if_t ifp, 5932 struct bxe_fastpath *fp, 5933 struct mbuf *m) 5934 { 5935 struct buf_ring *tx_br = fp->tx_br; 5936 struct mbuf *next; 5937 int depth, rc, tx_count; 5938 uint16_t tx_bd_avail; 5939 5940 rc = tx_count = 0; 5941 5942 if (!tx_br) { 5943 BLOGE(sc, "Multiqueue TX and no buf_ring!\n"); 5944 return (EINVAL); 5945 } 5946 5947 /* fetch the depth of the driver queue */ 5948 depth = drbr_inuse_drv(ifp, tx_br); 5949 if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) { 5950 fp->eth_q_stats.tx_max_drbr_queue_depth = depth; 5951 } 5952 5953 BXE_FP_TX_LOCK_ASSERT(fp); 5954 5955 if (m == NULL) { 5956 /* no new work, check for pending frames */ 5957 next = drbr_dequeue_drv(ifp, tx_br); 5958 } else if (drbr_needs_enqueue_drv(ifp, tx_br)) { 5959 /* have both new and pending work, maintain packet order */ 5960 rc = drbr_enqueue_drv(ifp, tx_br, m); 5961 if (rc != 0) { 5962 fp->eth_q_stats.tx_soft_errors++; 5963 goto bxe_tx_mq_start_locked_exit; 5964 } 5965 next = drbr_dequeue_drv(ifp, tx_br); 5966 } else { 5967 /* new work only and nothing pending */ 5968 next = m; 5969 } 5970 5971 /* keep adding entries while there are frames to send */ 5972 while (next != NULL) { 5973 5974 /* the mbuf now belongs to us */ 5975 fp->eth_q_stats.mbuf_alloc_tx++; 5976 5977 /* 5978 * Put the frame into the transmit ring. If we don't have room, 5979 * place the mbuf back at the head of the TX queue, set the 5980 * OACTIVE flag, and wait for the NIC to drain the chain. 5981 */ 5982 rc = bxe_tx_encap(fp, &next); 5983 if (__predict_false(rc != 0)) { 5984 fp->eth_q_stats.tx_encap_failures++; 5985 if (next != NULL) { 5986 /* mark the TX queue as full and save the frame */ 5987 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 5988 /* XXX this may reorder the frame */ 5989 rc = drbr_enqueue_drv(ifp, tx_br, next); 5990 fp->eth_q_stats.mbuf_alloc_tx--; 5991 fp->eth_q_stats.tx_frames_deferred++; 5992 } 5993 5994 /* stop looking for more work */ 5995 break; 5996 } 5997 5998 /* the transmit frame was enqueued successfully */ 5999 tx_count++; 6000 6001 /* send a copy of the frame to any BPF listeners */ 6002 if_etherbpfmtap(ifp, next); 6003 6004 tx_bd_avail = bxe_tx_avail(sc, fp); 6005 6006 /* handle any completions if we're running low */ 6007 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 6008 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ 6009 bxe_txeof(sc, fp); 6010 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 6011 break; 6012 } 6013 } 6014 6015 next = drbr_dequeue_drv(ifp, tx_br); 6016 } 6017 6018 /* all TX packets were dequeued and/or the tx ring is full */ 6019 if (tx_count > 0) { 6020 /* reset the TX watchdog timeout timer */ 6021 fp->watchdog_timer = BXE_TX_TIMEOUT; 6022 } 6023 6024 bxe_tx_mq_start_locked_exit: 6025 6026 return (rc); 6027 } 6028 6029 /* Multiqueue (TSS) dispatch routine. */ 6030 static int 6031 bxe_tx_mq_start(struct ifnet *ifp, 6032 struct mbuf *m) 6033 { 6034 struct bxe_softc *sc = if_getsoftc(ifp); 6035 struct bxe_fastpath *fp; 6036 int fp_index, rc; 6037 6038 fp_index = 0; /* default is the first queue */ 6039 6040 /* change the queue if using flow ID */ 6041 if ((m->m_flags & M_FLOWID) != 0) { 6042 fp_index = (m->m_pkthdr.flowid % sc->num_queues); 6043 } 6044 6045 fp = &sc->fp[fp_index]; 6046 6047 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 6048 BLOGW(sc, "Interface not running, ignoring transmit request\n"); 6049 return (ENETDOWN); 6050 } 6051 6052 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 6053 BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n"); 6054 return (EBUSY); 6055 } 6056 6057 if (!sc->link_vars.link_up) { 6058 BLOGW(sc, "Interface link is down, ignoring transmit request\n"); 6059 return (ENETDOWN); 6060 } 6061 6062 /* XXX change to TRYLOCK here and if failed then schedule taskqueue */ 6063 6064 BXE_FP_TX_LOCK(fp); 6065 rc = bxe_tx_mq_start_locked(sc, ifp, fp, m); 6066 BXE_FP_TX_UNLOCK(fp); 6067 6068 return (rc); 6069 } 6070 6071 static void 6072 bxe_mq_flush(struct ifnet *ifp) 6073 { 6074 struct bxe_softc *sc = if_getsoftc(ifp); 6075 struct bxe_fastpath *fp; 6076 struct mbuf *m; 6077 int i; 6078 6079 for (i = 0; i < sc->num_queues; i++) { 6080 fp = &sc->fp[i]; 6081 6082 if (fp->state != BXE_FP_STATE_OPEN) { 6083 BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n", 6084 fp->index, fp->state); 6085 continue; 6086 } 6087 6088 if (fp->tx_br != NULL) { 6089 BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index); 6090 BXE_FP_TX_LOCK(fp); 6091 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) { 6092 m_freem(m); 6093 } 6094 BXE_FP_TX_UNLOCK(fp); 6095 } 6096 } 6097 6098 if_qflush_drv(ifp); 6099 } 6100 6101 #endif /* FreeBSD_version >= 800000 */ 6102 6103 static uint16_t 6104 bxe_cid_ilt_lines(struct bxe_softc *sc) 6105 { 6106 if (IS_SRIOV(sc)) { 6107 return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS); 6108 } 6109 return (L2_ILT_LINES(sc)); 6110 } 6111 6112 static void 6113 bxe_ilt_set_info(struct bxe_softc *sc) 6114 { 6115 struct ilt_client_info *ilt_client; 6116 struct ecore_ilt *ilt = sc->ilt; 6117 uint16_t line = 0; 6118 6119 ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc)); 6120 BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line); 6121 6122 /* CDU */ 6123 ilt_client = &ilt->clients[ILT_CLIENT_CDU]; 6124 ilt_client->client_num = ILT_CLIENT_CDU; 6125 ilt_client->page_size = CDU_ILT_PAGE_SZ; 6126 ilt_client->flags = ILT_CLIENT_SKIP_MEM; 6127 ilt_client->start = line; 6128 line += bxe_cid_ilt_lines(sc); 6129 6130 if (CNIC_SUPPORT(sc)) { 6131 line += CNIC_ILT_LINES; 6132 } 6133 6134 ilt_client->end = (line - 1); 6135 6136 BLOGD(sc, DBG_LOAD, 6137 "ilt client[CDU]: start %d, end %d, " 6138 "psz 0x%x, flags 0x%x, hw psz %d\n", 6139 ilt_client->start, ilt_client->end, 6140 ilt_client->page_size, 6141 ilt_client->flags, 6142 ilog2(ilt_client->page_size >> 12)); 6143 6144 /* QM */ 6145 if (QM_INIT(sc->qm_cid_count)) { 6146 ilt_client = &ilt->clients[ILT_CLIENT_QM]; 6147 ilt_client->client_num = ILT_CLIENT_QM; 6148 ilt_client->page_size = QM_ILT_PAGE_SZ; 6149 ilt_client->flags = 0; 6150 ilt_client->start = line; 6151 6152 /* 4 bytes for each cid */ 6153 line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4, 6154 QM_ILT_PAGE_SZ); 6155 6156 ilt_client->end = (line - 1); 6157 6158 BLOGD(sc, DBG_LOAD, 6159 "ilt client[QM]: start %d, end %d, " 6160 "psz 0x%x, flags 0x%x, hw psz %d\n", 6161 ilt_client->start, ilt_client->end, 6162 ilt_client->page_size, ilt_client->flags, 6163 ilog2(ilt_client->page_size >> 12)); 6164 } 6165 6166 if (CNIC_SUPPORT(sc)) { 6167 /* SRC */ 6168 ilt_client = &ilt->clients[ILT_CLIENT_SRC]; 6169 ilt_client->client_num = ILT_CLIENT_SRC; 6170 ilt_client->page_size = SRC_ILT_PAGE_SZ; 6171 ilt_client->flags = 0; 6172 ilt_client->start = line; 6173 line += SRC_ILT_LINES; 6174 ilt_client->end = (line - 1); 6175 6176 BLOGD(sc, DBG_LOAD, 6177 "ilt client[SRC]: start %d, end %d, " 6178 "psz 0x%x, flags 0x%x, hw psz %d\n", 6179 ilt_client->start, ilt_client->end, 6180 ilt_client->page_size, ilt_client->flags, 6181 ilog2(ilt_client->page_size >> 12)); 6182 6183 /* TM */ 6184 ilt_client = &ilt->clients[ILT_CLIENT_TM]; 6185 ilt_client->client_num = ILT_CLIENT_TM; 6186 ilt_client->page_size = TM_ILT_PAGE_SZ; 6187 ilt_client->flags = 0; 6188 ilt_client->start = line; 6189 line += TM_ILT_LINES; 6190 ilt_client->end = (line - 1); 6191 6192 BLOGD(sc, DBG_LOAD, 6193 "ilt client[TM]: start %d, end %d, " 6194 "psz 0x%x, flags 0x%x, hw psz %d\n", 6195 ilt_client->start, ilt_client->end, 6196 ilt_client->page_size, ilt_client->flags, 6197 ilog2(ilt_client->page_size >> 12)); 6198 } 6199 6200 KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!")); 6201 } 6202 6203 static void 6204 bxe_set_fp_rx_buf_size(struct bxe_softc *sc) 6205 { 6206 int i; 6207 6208 BLOGD(sc, DBG_LOAD, "mtu = %d\n", sc->mtu); 6209 6210 for (i = 0; i < sc->num_queues; i++) { 6211 /* get the Rx buffer size for RX frames */ 6212 sc->fp[i].rx_buf_size = 6213 (IP_HEADER_ALIGNMENT_PADDING + 6214 ETH_OVERHEAD + 6215 sc->mtu); 6216 6217 BLOGD(sc, DBG_LOAD, "rx_buf_size for fp[%02d] = %d\n", 6218 i, sc->fp[i].rx_buf_size); 6219 6220 /* get the mbuf allocation size for RX frames */ 6221 if (sc->fp[i].rx_buf_size <= MCLBYTES) { 6222 sc->fp[i].mbuf_alloc_size = MCLBYTES; 6223 } else if (sc->fp[i].rx_buf_size <= BCM_PAGE_SIZE) { 6224 sc->fp[i].mbuf_alloc_size = PAGE_SIZE; 6225 } else { 6226 sc->fp[i].mbuf_alloc_size = MJUM9BYTES; 6227 } 6228 6229 BLOGD(sc, DBG_LOAD, "mbuf_alloc_size for fp[%02d] = %d\n", 6230 i, sc->fp[i].mbuf_alloc_size); 6231 } 6232 } 6233 6234 static int 6235 bxe_alloc_ilt_mem(struct bxe_softc *sc) 6236 { 6237 int rc = 0; 6238 6239 if ((sc->ilt = 6240 (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt), 6241 M_BXE_ILT, 6242 (M_NOWAIT | M_ZERO))) == NULL) { 6243 rc = 1; 6244 } 6245 6246 return (rc); 6247 } 6248 6249 static int 6250 bxe_alloc_ilt_lines_mem(struct bxe_softc *sc) 6251 { 6252 int rc = 0; 6253 6254 if ((sc->ilt->lines = 6255 (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES), 6256 M_BXE_ILT, 6257 (M_NOWAIT | M_ZERO))) == NULL) { 6258 rc = 1; 6259 } 6260 6261 return (rc); 6262 } 6263 6264 static void 6265 bxe_free_ilt_mem(struct bxe_softc *sc) 6266 { 6267 if (sc->ilt != NULL) { 6268 free(sc->ilt, M_BXE_ILT); 6269 sc->ilt = NULL; 6270 } 6271 } 6272 6273 static void 6274 bxe_free_ilt_lines_mem(struct bxe_softc *sc) 6275 { 6276 if (sc->ilt->lines != NULL) { 6277 free(sc->ilt->lines, M_BXE_ILT); 6278 sc->ilt->lines = NULL; 6279 } 6280 } 6281 6282 static void 6283 bxe_free_mem(struct bxe_softc *sc) 6284 { 6285 int i; 6286 6287 #if 0 6288 if (!CONFIGURE_NIC_MODE(sc)) { 6289 /* free searcher T2 table */ 6290 bxe_dma_free(sc, &sc->t2); 6291 } 6292 #endif 6293 6294 for (i = 0; i < L2_ILT_LINES(sc); i++) { 6295 bxe_dma_free(sc, &sc->context[i].vcxt_dma); 6296 sc->context[i].vcxt = NULL; 6297 sc->context[i].size = 0; 6298 } 6299 6300 ecore_ilt_mem_op(sc, ILT_MEMOP_FREE); 6301 6302 bxe_free_ilt_lines_mem(sc); 6303 6304 #if 0 6305 bxe_iov_free_mem(sc); 6306 #endif 6307 } 6308 6309 static int 6310 bxe_alloc_mem(struct bxe_softc *sc) 6311 { 6312 int context_size; 6313 int allocated; 6314 int i; 6315 6316 #if 0 6317 if (!CONFIGURE_NIC_MODE(sc)) { 6318 /* allocate searcher T2 table */ 6319 if (bxe_dma_alloc(sc, SRC_T2_SZ, 6320 &sc->t2, "searcher t2 table") != 0) { 6321 return (-1); 6322 } 6323 } 6324 #endif 6325 6326 /* 6327 * Allocate memory for CDU context: 6328 * This memory is allocated separately and not in the generic ILT 6329 * functions because CDU differs in few aspects: 6330 * 1. There can be multiple entities allocating memory for context - 6331 * regular L2, CNIC, and SRIOV drivers. Each separately controls 6332 * its own ILT lines. 6333 * 2. Since CDU page-size is not a single 4KB page (which is the case 6334 * for the other ILT clients), to be efficient we want to support 6335 * allocation of sub-page-size in the last entry. 6336 * 3. Context pointers are used by the driver to pass to FW / update 6337 * the context (for the other ILT clients the pointers are used just to 6338 * free the memory during unload). 6339 */ 6340 context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc)); 6341 for (i = 0, allocated = 0; allocated < context_size; i++) { 6342 sc->context[i].size = min(CDU_ILT_PAGE_SZ, 6343 (context_size - allocated)); 6344 6345 if (bxe_dma_alloc(sc, sc->context[i].size, 6346 &sc->context[i].vcxt_dma, 6347 "cdu context") != 0) { 6348 bxe_free_mem(sc); 6349 return (-1); 6350 } 6351 6352 sc->context[i].vcxt = 6353 (union cdu_context *)sc->context[i].vcxt_dma.vaddr; 6354 6355 allocated += sc->context[i].size; 6356 } 6357 6358 bxe_alloc_ilt_lines_mem(sc); 6359 6360 BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n", 6361 sc->ilt, sc->ilt->start_line, sc->ilt->lines); 6362 { 6363 for (i = 0; i < 4; i++) { 6364 BLOGD(sc, DBG_LOAD, 6365 "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n", 6366 i, 6367 sc->ilt->clients[i].page_size, 6368 sc->ilt->clients[i].start, 6369 sc->ilt->clients[i].end, 6370 sc->ilt->clients[i].client_num, 6371 sc->ilt->clients[i].flags); 6372 } 6373 } 6374 if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) { 6375 BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n"); 6376 bxe_free_mem(sc); 6377 return (-1); 6378 } 6379 6380 #if 0 6381 if (bxe_iov_alloc_mem(sc)) { 6382 BLOGE(sc, "Failed to allocate memory for SRIOV\n"); 6383 bxe_free_mem(sc); 6384 return (-1); 6385 } 6386 #endif 6387 6388 return (0); 6389 } 6390 6391 static void 6392 bxe_free_rx_bd_chain(struct bxe_fastpath *fp) 6393 { 6394 struct bxe_softc *sc; 6395 int i; 6396 6397 sc = fp->sc; 6398 6399 if (fp->rx_mbuf_tag == NULL) { 6400 return; 6401 } 6402 6403 /* free all mbufs and unload all maps */ 6404 for (i = 0; i < RX_BD_TOTAL; i++) { 6405 if (fp->rx_mbuf_chain[i].m_map != NULL) { 6406 bus_dmamap_sync(fp->rx_mbuf_tag, 6407 fp->rx_mbuf_chain[i].m_map, 6408 BUS_DMASYNC_POSTREAD); 6409 bus_dmamap_unload(fp->rx_mbuf_tag, 6410 fp->rx_mbuf_chain[i].m_map); 6411 } 6412 6413 if (fp->rx_mbuf_chain[i].m != NULL) { 6414 m_freem(fp->rx_mbuf_chain[i].m); 6415 fp->rx_mbuf_chain[i].m = NULL; 6416 fp->eth_q_stats.mbuf_alloc_rx--; 6417 } 6418 } 6419 } 6420 6421 static void 6422 bxe_free_tpa_pool(struct bxe_fastpath *fp) 6423 { 6424 struct bxe_softc *sc; 6425 int i, max_agg_queues; 6426 6427 sc = fp->sc; 6428 6429 if (fp->rx_mbuf_tag == NULL) { 6430 return; 6431 } 6432 6433 max_agg_queues = MAX_AGG_QS(sc); 6434 6435 /* release all mbufs and unload all DMA maps in the TPA pool */ 6436 for (i = 0; i < max_agg_queues; i++) { 6437 if (fp->rx_tpa_info[i].bd.m_map != NULL) { 6438 bus_dmamap_sync(fp->rx_mbuf_tag, 6439 fp->rx_tpa_info[i].bd.m_map, 6440 BUS_DMASYNC_POSTREAD); 6441 bus_dmamap_unload(fp->rx_mbuf_tag, 6442 fp->rx_tpa_info[i].bd.m_map); 6443 } 6444 6445 if (fp->rx_tpa_info[i].bd.m != NULL) { 6446 m_freem(fp->rx_tpa_info[i].bd.m); 6447 fp->rx_tpa_info[i].bd.m = NULL; 6448 fp->eth_q_stats.mbuf_alloc_tpa--; 6449 } 6450 } 6451 } 6452 6453 static void 6454 bxe_free_sge_chain(struct bxe_fastpath *fp) 6455 { 6456 struct bxe_softc *sc; 6457 int i; 6458 6459 sc = fp->sc; 6460 6461 if (fp->rx_sge_mbuf_tag == NULL) { 6462 return; 6463 } 6464 6465 /* rree all mbufs and unload all maps */ 6466 for (i = 0; i < RX_SGE_TOTAL; i++) { 6467 if (fp->rx_sge_mbuf_chain[i].m_map != NULL) { 6468 bus_dmamap_sync(fp->rx_sge_mbuf_tag, 6469 fp->rx_sge_mbuf_chain[i].m_map, 6470 BUS_DMASYNC_POSTREAD); 6471 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 6472 fp->rx_sge_mbuf_chain[i].m_map); 6473 } 6474 6475 if (fp->rx_sge_mbuf_chain[i].m != NULL) { 6476 m_freem(fp->rx_sge_mbuf_chain[i].m); 6477 fp->rx_sge_mbuf_chain[i].m = NULL; 6478 fp->eth_q_stats.mbuf_alloc_sge--; 6479 } 6480 } 6481 } 6482 6483 static void 6484 bxe_free_fp_buffers(struct bxe_softc *sc) 6485 { 6486 struct bxe_fastpath *fp; 6487 int i; 6488 6489 for (i = 0; i < sc->num_queues; i++) { 6490 fp = &sc->fp[i]; 6491 6492 #if __FreeBSD_version >= 800000 6493 if (fp->tx_br != NULL) { 6494 struct mbuf *m; 6495 /* just in case bxe_mq_flush() wasn't called */ 6496 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) { 6497 m_freem(m); 6498 } 6499 buf_ring_free(fp->tx_br, M_DEVBUF); 6500 fp->tx_br = NULL; 6501 } 6502 #endif 6503 6504 /* free all RX buffers */ 6505 bxe_free_rx_bd_chain(fp); 6506 bxe_free_tpa_pool(fp); 6507 bxe_free_sge_chain(fp); 6508 6509 if (fp->eth_q_stats.mbuf_alloc_rx != 0) { 6510 BLOGE(sc, "failed to claim all rx mbufs (%d left)\n", 6511 fp->eth_q_stats.mbuf_alloc_rx); 6512 } 6513 6514 if (fp->eth_q_stats.mbuf_alloc_sge != 0) { 6515 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", 6516 fp->eth_q_stats.mbuf_alloc_sge); 6517 } 6518 6519 if (fp->eth_q_stats.mbuf_alloc_tpa != 0) { 6520 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", 6521 fp->eth_q_stats.mbuf_alloc_tpa); 6522 } 6523 6524 if (fp->eth_q_stats.mbuf_alloc_tx != 0) { 6525 BLOGE(sc, "failed to release tx mbufs (%d left)\n", 6526 fp->eth_q_stats.mbuf_alloc_tx); 6527 } 6528 6529 /* XXX verify all mbufs were reclaimed */ 6530 6531 if (mtx_initialized(&fp->tx_mtx)) { 6532 mtx_destroy(&fp->tx_mtx); 6533 } 6534 6535 if (mtx_initialized(&fp->rx_mtx)) { 6536 mtx_destroy(&fp->rx_mtx); 6537 } 6538 } 6539 } 6540 6541 static int 6542 bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, 6543 uint16_t prev_index, 6544 uint16_t index) 6545 { 6546 struct bxe_sw_rx_bd *rx_buf; 6547 struct eth_rx_bd *rx_bd; 6548 bus_dma_segment_t segs[1]; 6549 bus_dmamap_t map; 6550 struct mbuf *m; 6551 int nsegs, rc; 6552 6553 rc = 0; 6554 6555 /* allocate the new RX BD mbuf */ 6556 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); 6557 if (__predict_false(m == NULL)) { 6558 fp->eth_q_stats.mbuf_rx_bd_alloc_failed++; 6559 return (ENOBUFS); 6560 } 6561 6562 fp->eth_q_stats.mbuf_alloc_rx++; 6563 6564 /* initialize the mbuf buffer length */ 6565 m->m_pkthdr.len = m->m_len = fp->rx_buf_size; 6566 6567 /* map the mbuf into non-paged pool */ 6568 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, 6569 fp->rx_mbuf_spare_map, 6570 m, segs, &nsegs, BUS_DMA_NOWAIT); 6571 if (__predict_false(rc != 0)) { 6572 fp->eth_q_stats.mbuf_rx_bd_mapping_failed++; 6573 m_freem(m); 6574 fp->eth_q_stats.mbuf_alloc_rx--; 6575 return (rc); 6576 } 6577 6578 /* all mbufs must map to a single segment */ 6579 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6580 6581 /* release any existing RX BD mbuf mappings */ 6582 6583 if (prev_index != index) { 6584 rx_buf = &fp->rx_mbuf_chain[prev_index]; 6585 6586 if (rx_buf->m_map != NULL) { 6587 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6588 BUS_DMASYNC_POSTREAD); 6589 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 6590 } 6591 6592 /* 6593 * We only get here from bxe_rxeof() when the maximum number 6594 * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already 6595 * holds the mbuf in the prev_index so it's OK to NULL it out 6596 * here without concern of a memory leak. 6597 */ 6598 fp->rx_mbuf_chain[prev_index].m = NULL; 6599 } 6600 6601 rx_buf = &fp->rx_mbuf_chain[index]; 6602 6603 if (rx_buf->m_map != NULL) { 6604 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6605 BUS_DMASYNC_POSTREAD); 6606 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 6607 } 6608 6609 /* save the mbuf and mapping info for a future packet */ 6610 map = (prev_index != index) ? 6611 fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map; 6612 rx_buf->m_map = fp->rx_mbuf_spare_map; 6613 fp->rx_mbuf_spare_map = map; 6614 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6615 BUS_DMASYNC_PREREAD); 6616 rx_buf->m = m; 6617 6618 rx_bd = &fp->rx_chain[index]; 6619 rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 6620 rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 6621 6622 return (rc); 6623 } 6624 6625 static int 6626 bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, 6627 int queue) 6628 { 6629 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; 6630 bus_dma_segment_t segs[1]; 6631 bus_dmamap_t map; 6632 struct mbuf *m; 6633 int nsegs; 6634 int rc = 0; 6635 6636 /* allocate the new TPA mbuf */ 6637 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); 6638 if (__predict_false(m == NULL)) { 6639 fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++; 6640 return (ENOBUFS); 6641 } 6642 6643 fp->eth_q_stats.mbuf_alloc_tpa++; 6644 6645 /* initialize the mbuf buffer length */ 6646 m->m_pkthdr.len = m->m_len = fp->rx_buf_size; 6647 6648 /* map the mbuf into non-paged pool */ 6649 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, 6650 fp->rx_tpa_info_mbuf_spare_map, 6651 m, segs, &nsegs, BUS_DMA_NOWAIT); 6652 if (__predict_false(rc != 0)) { 6653 fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++; 6654 m_free(m); 6655 fp->eth_q_stats.mbuf_alloc_tpa--; 6656 return (rc); 6657 } 6658 6659 /* all mbufs must map to a single segment */ 6660 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6661 6662 /* release any existing TPA mbuf mapping */ 6663 if (tpa_info->bd.m_map != NULL) { 6664 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, 6665 BUS_DMASYNC_POSTREAD); 6666 bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map); 6667 } 6668 6669 /* save the mbuf and mapping info for the TPA mbuf */ 6670 map = tpa_info->bd.m_map; 6671 tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map; 6672 fp->rx_tpa_info_mbuf_spare_map = map; 6673 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, 6674 BUS_DMASYNC_PREREAD); 6675 tpa_info->bd.m = m; 6676 tpa_info->seg = segs[0]; 6677 6678 return (rc); 6679 } 6680 6681 /* 6682 * Allocate an mbuf and assign it to the receive scatter gather chain. The 6683 * caller must take care to save a copy of the existing mbuf in the SG mbuf 6684 * chain. 6685 */ 6686 static int 6687 bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, 6688 uint16_t index) 6689 { 6690 struct bxe_sw_rx_bd *sge_buf; 6691 struct eth_rx_sge *sge; 6692 bus_dma_segment_t segs[1]; 6693 bus_dmamap_t map; 6694 struct mbuf *m; 6695 int nsegs; 6696 int rc = 0; 6697 6698 /* allocate a new SGE mbuf */ 6699 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE); 6700 if (__predict_false(m == NULL)) { 6701 fp->eth_q_stats.mbuf_rx_sge_alloc_failed++; 6702 return (ENOMEM); 6703 } 6704 6705 fp->eth_q_stats.mbuf_alloc_sge++; 6706 6707 /* initialize the mbuf buffer length */ 6708 m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE; 6709 6710 /* map the SGE mbuf into non-paged pool */ 6711 rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag, 6712 fp->rx_sge_mbuf_spare_map, 6713 m, segs, &nsegs, BUS_DMA_NOWAIT); 6714 if (__predict_false(rc != 0)) { 6715 fp->eth_q_stats.mbuf_rx_sge_mapping_failed++; 6716 m_freem(m); 6717 fp->eth_q_stats.mbuf_alloc_sge--; 6718 return (rc); 6719 } 6720 6721 /* all mbufs must map to a single segment */ 6722 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6723 6724 sge_buf = &fp->rx_sge_mbuf_chain[index]; 6725 6726 /* release any existing SGE mbuf mapping */ 6727 if (sge_buf->m_map != NULL) { 6728 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, 6729 BUS_DMASYNC_POSTREAD); 6730 bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map); 6731 } 6732 6733 /* save the mbuf and mapping info for a future packet */ 6734 map = sge_buf->m_map; 6735 sge_buf->m_map = fp->rx_sge_mbuf_spare_map; 6736 fp->rx_sge_mbuf_spare_map = map; 6737 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, 6738 BUS_DMASYNC_PREREAD); 6739 sge_buf->m = m; 6740 6741 sge = &fp->rx_sge_chain[index]; 6742 sge->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 6743 sge->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 6744 6745 return (rc); 6746 } 6747 6748 static __noinline int 6749 bxe_alloc_fp_buffers(struct bxe_softc *sc) 6750 { 6751 struct bxe_fastpath *fp; 6752 int i, j, rc = 0; 6753 int ring_prod, cqe_ring_prod; 6754 int max_agg_queues; 6755 6756 for (i = 0; i < sc->num_queues; i++) { 6757 fp = &sc->fp[i]; 6758 6759 #if __FreeBSD_version >= 800000 6760 fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF, 6761 M_NOWAIT, &fp->tx_mtx); 6762 if (fp->tx_br == NULL) { 6763 BLOGE(sc, "buf_ring alloc fail for fp[%02d]\n", i); 6764 goto bxe_alloc_fp_buffers_error; 6765 } 6766 #endif 6767 6768 ring_prod = cqe_ring_prod = 0; 6769 fp->rx_bd_cons = 0; 6770 fp->rx_cq_cons = 0; 6771 6772 /* allocate buffers for the RX BDs in RX BD chain */ 6773 for (j = 0; j < sc->max_rx_bufs; j++) { 6774 rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod); 6775 if (rc != 0) { 6776 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", 6777 i, rc); 6778 goto bxe_alloc_fp_buffers_error; 6779 } 6780 6781 ring_prod = RX_BD_NEXT(ring_prod); 6782 cqe_ring_prod = RCQ_NEXT(cqe_ring_prod); 6783 } 6784 6785 fp->rx_bd_prod = ring_prod; 6786 fp->rx_cq_prod = cqe_ring_prod; 6787 fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0; 6788 6789 if (if_getcapenable(sc->ifp) & IFCAP_LRO) { 6790 max_agg_queues = MAX_AGG_QS(sc); 6791 6792 fp->tpa_enable = TRUE; 6793 6794 /* fill the TPA pool */ 6795 for (j = 0; j < max_agg_queues; j++) { 6796 rc = bxe_alloc_rx_tpa_mbuf(fp, j); 6797 if (rc != 0) { 6798 BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n", 6799 i, j); 6800 fp->tpa_enable = FALSE; 6801 goto bxe_alloc_fp_buffers_error; 6802 } 6803 6804 fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP; 6805 } 6806 6807 if (fp->tpa_enable) { 6808 /* fill the RX SGE chain */ 6809 ring_prod = 0; 6810 for (j = 0; j < RX_SGE_USABLE; j++) { 6811 rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod); 6812 if (rc != 0) { 6813 BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n", 6814 i, ring_prod); 6815 fp->tpa_enable = FALSE; 6816 ring_prod = 0; 6817 goto bxe_alloc_fp_buffers_error; 6818 } 6819 6820 ring_prod = RX_SGE_NEXT(ring_prod); 6821 } 6822 6823 fp->rx_sge_prod = ring_prod; 6824 } 6825 } 6826 } 6827 6828 return (0); 6829 6830 bxe_alloc_fp_buffers_error: 6831 6832 /* unwind what was already allocated */ 6833 bxe_free_rx_bd_chain(fp); 6834 bxe_free_tpa_pool(fp); 6835 bxe_free_sge_chain(fp); 6836 6837 return (ENOBUFS); 6838 } 6839 6840 static void 6841 bxe_free_fw_stats_mem(struct bxe_softc *sc) 6842 { 6843 bxe_dma_free(sc, &sc->fw_stats_dma); 6844 6845 sc->fw_stats_num = 0; 6846 6847 sc->fw_stats_req_size = 0; 6848 sc->fw_stats_req = NULL; 6849 sc->fw_stats_req_mapping = 0; 6850 6851 sc->fw_stats_data_size = 0; 6852 sc->fw_stats_data = NULL; 6853 sc->fw_stats_data_mapping = 0; 6854 } 6855 6856 static int 6857 bxe_alloc_fw_stats_mem(struct bxe_softc *sc) 6858 { 6859 uint8_t num_queue_stats; 6860 int num_groups; 6861 6862 /* number of queues for statistics is number of eth queues */ 6863 num_queue_stats = BXE_NUM_ETH_QUEUES(sc); 6864 6865 /* 6866 * Total number of FW statistics requests = 6867 * 1 for port stats + 1 for PF stats + num of queues 6868 */ 6869 sc->fw_stats_num = (2 + num_queue_stats); 6870 6871 /* 6872 * Request is built from stats_query_header and an array of 6873 * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT 6874 * rules. The real number or requests is configured in the 6875 * stats_query_header. 6876 */ 6877 num_groups = 6878 ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) + 6879 ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0)); 6880 6881 BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n", 6882 sc->fw_stats_num, num_groups); 6883 6884 sc->fw_stats_req_size = 6885 (sizeof(struct stats_query_header) + 6886 (num_groups * sizeof(struct stats_query_cmd_group))); 6887 6888 /* 6889 * Data for statistics requests + stats_counter. 6890 * stats_counter holds per-STORM counters that are incremented when 6891 * STORM has finished with the current request. Memory for FCoE 6892 * offloaded statistics are counted anyway, even if they will not be sent. 6893 * VF stats are not accounted for here as the data of VF stats is stored 6894 * in memory allocated by the VF, not here. 6895 */ 6896 sc->fw_stats_data_size = 6897 (sizeof(struct stats_counter) + 6898 sizeof(struct per_port_stats) + 6899 sizeof(struct per_pf_stats) + 6900 /* sizeof(struct fcoe_statistics_params) + */ 6901 (sizeof(struct per_queue_stats) * num_queue_stats)); 6902 6903 if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size), 6904 &sc->fw_stats_dma, "fw stats") != 0) { 6905 bxe_free_fw_stats_mem(sc); 6906 return (-1); 6907 } 6908 6909 /* set up the shortcuts */ 6910 6911 sc->fw_stats_req = 6912 (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr; 6913 sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr; 6914 6915 sc->fw_stats_data = 6916 (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr + 6917 sc->fw_stats_req_size); 6918 sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr + 6919 sc->fw_stats_req_size); 6920 6921 BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n", 6922 (uintmax_t)sc->fw_stats_req_mapping); 6923 6924 BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n", 6925 (uintmax_t)sc->fw_stats_data_mapping); 6926 6927 return (0); 6928 } 6929 6930 /* 6931 * Bits map: 6932 * 0-7 - Engine0 load counter. 6933 * 8-15 - Engine1 load counter. 6934 * 16 - Engine0 RESET_IN_PROGRESS bit. 6935 * 17 - Engine1 RESET_IN_PROGRESS bit. 6936 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active 6937 * function on the engine 6938 * 19 - Engine1 ONE_IS_LOADED. 6939 * 20 - Chip reset flow bit. When set none-leader must wait for both engines 6940 * leader to complete (check for both RESET_IN_PROGRESS bits and not 6941 * for just the one belonging to its engine). 6942 */ 6943 #define BXE_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1 6944 #define BXE_PATH0_LOAD_CNT_MASK 0x000000ff 6945 #define BXE_PATH0_LOAD_CNT_SHIFT 0 6946 #define BXE_PATH1_LOAD_CNT_MASK 0x0000ff00 6947 #define BXE_PATH1_LOAD_CNT_SHIFT 8 6948 #define BXE_PATH0_RST_IN_PROG_BIT 0x00010000 6949 #define BXE_PATH1_RST_IN_PROG_BIT 0x00020000 6950 #define BXE_GLOBAL_RESET_BIT 0x00040000 6951 6952 /* set the GLOBAL_RESET bit, should be run under rtnl lock */ 6953 static void 6954 bxe_set_reset_global(struct bxe_softc *sc) 6955 { 6956 uint32_t val; 6957 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6958 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6959 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT); 6960 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6961 } 6962 6963 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */ 6964 static void 6965 bxe_clear_reset_global(struct bxe_softc *sc) 6966 { 6967 uint32_t val; 6968 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6969 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6970 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT)); 6971 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6972 } 6973 6974 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */ 6975 static uint8_t 6976 bxe_reset_is_global(struct bxe_softc *sc) 6977 { 6978 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6979 BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val); 6980 return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE; 6981 } 6982 6983 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */ 6984 static void 6985 bxe_set_reset_done(struct bxe_softc *sc) 6986 { 6987 uint32_t val; 6988 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : 6989 BXE_PATH0_RST_IN_PROG_BIT; 6990 6991 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6992 6993 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6994 /* Clear the bit */ 6995 val &= ~bit; 6996 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6997 6998 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6999 } 7000 7001 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */ 7002 static void 7003 bxe_set_reset_in_progress(struct bxe_softc *sc) 7004 { 7005 uint32_t val; 7006 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : 7007 BXE_PATH0_RST_IN_PROG_BIT; 7008 7009 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7010 7011 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7012 /* Set the bit */ 7013 val |= bit; 7014 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 7015 7016 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7017 } 7018 7019 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */ 7020 static uint8_t 7021 bxe_reset_is_done(struct bxe_softc *sc, 7022 int engine) 7023 { 7024 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7025 uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT : 7026 BXE_PATH0_RST_IN_PROG_BIT; 7027 7028 /* return false if bit is set */ 7029 return (val & bit) ? FALSE : TRUE; 7030 } 7031 7032 /* get the load status for an engine, should be run under rtnl lock */ 7033 static uint8_t 7034 bxe_get_load_status(struct bxe_softc *sc, 7035 int engine) 7036 { 7037 uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK : 7038 BXE_PATH0_LOAD_CNT_MASK; 7039 uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT : 7040 BXE_PATH0_LOAD_CNT_SHIFT; 7041 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7042 7043 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); 7044 7045 val = ((val & mask) >> shift); 7046 7047 BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val); 7048 7049 return (val != 0); 7050 } 7051 7052 /* set pf load mark */ 7053 /* XXX needs to be under rtnl lock */ 7054 static void 7055 bxe_set_pf_load(struct bxe_softc *sc) 7056 { 7057 uint32_t val; 7058 uint32_t val1; 7059 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : 7060 BXE_PATH0_LOAD_CNT_MASK; 7061 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : 7062 BXE_PATH0_LOAD_CNT_SHIFT; 7063 7064 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7065 7066 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7067 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); 7068 7069 /* get the current counter value */ 7070 val1 = ((val & mask) >> shift); 7071 7072 /* set bit of this PF */ 7073 val1 |= (1 << SC_ABS_FUNC(sc)); 7074 7075 /* clear the old value */ 7076 val &= ~mask; 7077 7078 /* set the new one */ 7079 val |= ((val1 << shift) & mask); 7080 7081 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 7082 7083 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7084 } 7085 7086 /* clear pf load mark */ 7087 /* XXX needs to be under rtnl lock */ 7088 static uint8_t 7089 bxe_clear_pf_load(struct bxe_softc *sc) 7090 { 7091 uint32_t val1, val; 7092 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : 7093 BXE_PATH0_LOAD_CNT_MASK; 7094 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : 7095 BXE_PATH0_LOAD_CNT_SHIFT; 7096 7097 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7098 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7099 BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val); 7100 7101 /* get the current counter value */ 7102 val1 = (val & mask) >> shift; 7103 7104 /* clear bit of that PF */ 7105 val1 &= ~(1 << SC_ABS_FUNC(sc)); 7106 7107 /* clear the old value */ 7108 val &= ~mask; 7109 7110 /* set the new one */ 7111 val |= ((val1 << shift) & mask); 7112 7113 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 7114 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7115 return (val1 != 0); 7116 } 7117 7118 /* send load requrest to mcp and analyze response */ 7119 static int 7120 bxe_nic_load_request(struct bxe_softc *sc, 7121 uint32_t *load_code) 7122 { 7123 /* init fw_seq */ 7124 sc->fw_seq = 7125 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & 7126 DRV_MSG_SEQ_NUMBER_MASK); 7127 7128 BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq); 7129 7130 /* get the current FW pulse sequence */ 7131 sc->fw_drv_pulse_wr_seq = 7132 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) & 7133 DRV_PULSE_SEQ_MASK); 7134 7135 BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n", 7136 sc->fw_drv_pulse_wr_seq); 7137 7138 /* load request */ 7139 (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, 7140 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 7141 7142 /* if the MCP fails to respond we must abort */ 7143 if (!(*load_code)) { 7144 BLOGE(sc, "MCP response failure!\n"); 7145 return (-1); 7146 } 7147 7148 /* if MCP refused then must abort */ 7149 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) { 7150 BLOGE(sc, "MCP refused load request\n"); 7151 return (-1); 7152 } 7153 7154 return (0); 7155 } 7156 7157 /* 7158 * Check whether another PF has already loaded FW to chip. In virtualized 7159 * environments a pf from anoth VM may have already initialized the device 7160 * including loading FW. 7161 */ 7162 static int 7163 bxe_nic_load_analyze_req(struct bxe_softc *sc, 7164 uint32_t load_code) 7165 { 7166 uint32_t my_fw, loaded_fw; 7167 7168 /* is another pf loaded on this engine? */ 7169 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 7170 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 7171 /* build my FW version dword */ 7172 my_fw = (BCM_5710_FW_MAJOR_VERSION + 7173 (BCM_5710_FW_MINOR_VERSION << 8 ) + 7174 (BCM_5710_FW_REVISION_VERSION << 16) + 7175 (BCM_5710_FW_ENGINEERING_VERSION << 24)); 7176 7177 /* read loaded FW from chip */ 7178 loaded_fw = REG_RD(sc, XSEM_REG_PRAM); 7179 BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n", 7180 loaded_fw, my_fw); 7181 7182 /* abort nic load if version mismatch */ 7183 if (my_fw != loaded_fw) { 7184 BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)", 7185 loaded_fw, my_fw); 7186 return (-1); 7187 } 7188 } 7189 7190 return (0); 7191 } 7192 7193 /* mark PMF if applicable */ 7194 static void 7195 bxe_nic_load_pmf(struct bxe_softc *sc, 7196 uint32_t load_code) 7197 { 7198 uint32_t ncsi_oem_data_addr; 7199 7200 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 7201 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) || 7202 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) { 7203 /* 7204 * Barrier here for ordering between the writing to sc->port.pmf here 7205 * and reading it from the periodic task. 7206 */ 7207 sc->port.pmf = 1; 7208 mb(); 7209 } else { 7210 sc->port.pmf = 0; 7211 } 7212 7213 BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf); 7214 7215 /* XXX needed? */ 7216 if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) { 7217 if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) { 7218 ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr); 7219 if (ncsi_oem_data_addr) { 7220 REG_WR(sc, 7221 (ncsi_oem_data_addr + 7222 offsetof(struct glob_ncsi_oem_data, driver_version)), 7223 0); 7224 } 7225 } 7226 } 7227 } 7228 7229 static void 7230 bxe_read_mf_cfg(struct bxe_softc *sc) 7231 { 7232 int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1); 7233 int abs_func; 7234 int vn; 7235 7236 if (BXE_NOMCP(sc)) { 7237 return; /* what should be the default bvalue in this case */ 7238 } 7239 7240 /* 7241 * The formula for computing the absolute function number is... 7242 * For 2 port configuration (4 functions per port): 7243 * abs_func = 2 * vn + SC_PORT + SC_PATH 7244 * For 4 port configuration (2 functions per port): 7245 * abs_func = 4 * vn + 2 * SC_PORT + SC_PATH 7246 */ 7247 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 7248 abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc)); 7249 if (abs_func >= E1H_FUNC_MAX) { 7250 break; 7251 } 7252 sc->devinfo.mf_info.mf_config[vn] = 7253 MFCFG_RD(sc, func_mf_config[abs_func].config); 7254 } 7255 7256 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & 7257 FUNC_MF_CFG_FUNC_DISABLED) { 7258 BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n"); 7259 sc->flags |= BXE_MF_FUNC_DIS; 7260 } else { 7261 BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n"); 7262 sc->flags &= ~BXE_MF_FUNC_DIS; 7263 } 7264 } 7265 7266 /* acquire split MCP access lock register */ 7267 static int bxe_acquire_alr(struct bxe_softc *sc) 7268 { 7269 uint32_t j, val; 7270 7271 for (j = 0; j < 1000; j++) { 7272 val = (1UL << 31); 7273 REG_WR(sc, GRCBASE_MCP + 0x9c, val); 7274 val = REG_RD(sc, GRCBASE_MCP + 0x9c); 7275 if (val & (1L << 31)) 7276 break; 7277 7278 DELAY(5000); 7279 } 7280 7281 if (!(val & (1L << 31))) { 7282 BLOGE(sc, "Cannot acquire MCP access lock register\n"); 7283 return (-1); 7284 } 7285 7286 return (0); 7287 } 7288 7289 /* release split MCP access lock register */ 7290 static void bxe_release_alr(struct bxe_softc *sc) 7291 { 7292 REG_WR(sc, GRCBASE_MCP + 0x9c, 0); 7293 } 7294 7295 static void 7296 bxe_fan_failure(struct bxe_softc *sc) 7297 { 7298 int port = SC_PORT(sc); 7299 uint32_t ext_phy_config; 7300 7301 /* mark the failure */ 7302 ext_phy_config = 7303 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); 7304 7305 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK; 7306 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE; 7307 SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config, 7308 ext_phy_config); 7309 7310 /* log the failure */ 7311 BLOGW(sc, "Fan Failure has caused the driver to shutdown " 7312 "the card to prevent permanent damage. " 7313 "Please contact OEM Support for assistance\n"); 7314 7315 /* XXX */ 7316 #if 1 7317 bxe_panic(sc, ("Schedule task to handle fan failure\n")); 7318 #else 7319 /* 7320 * Schedule device reset (unload) 7321 * This is due to some boards consuming sufficient power when driver is 7322 * up to overheat if fan fails. 7323 */ 7324 bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state); 7325 schedule_delayed_work(&sc->sp_rtnl_task, 0); 7326 #endif 7327 } 7328 7329 /* this function is called upon a link interrupt */ 7330 static void 7331 bxe_link_attn(struct bxe_softc *sc) 7332 { 7333 uint32_t pause_enabled = 0; 7334 struct host_port_stats *pstats; 7335 int cmng_fns; 7336 7337 /* Make sure that we are synced with the current statistics */ 7338 bxe_stats_handle(sc, STATS_EVENT_STOP); 7339 7340 elink_link_update(&sc->link_params, &sc->link_vars); 7341 7342 if (sc->link_vars.link_up) { 7343 7344 /* dropless flow control */ 7345 if (!CHIP_IS_E1(sc) && sc->dropless_fc) { 7346 pause_enabled = 0; 7347 7348 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { 7349 pause_enabled = 1; 7350 } 7351 7352 REG_WR(sc, 7353 (BAR_USTRORM_INTMEM + 7354 USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))), 7355 pause_enabled); 7356 } 7357 7358 if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) { 7359 pstats = BXE_SP(sc, port_stats); 7360 /* reset old mac stats */ 7361 memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx)); 7362 } 7363 7364 if (sc->state == BXE_STATE_OPEN) { 7365 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 7366 } 7367 } 7368 7369 if (sc->link_vars.link_up && sc->link_vars.line_speed) { 7370 cmng_fns = bxe_get_cmng_fns_mode(sc); 7371 7372 if (cmng_fns != CMNG_FNS_NONE) { 7373 bxe_cmng_fns_init(sc, FALSE, cmng_fns); 7374 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 7375 } else { 7376 /* rate shaping and fairness are disabled */ 7377 BLOGD(sc, DBG_LOAD, "single function mode without fairness\n"); 7378 } 7379 } 7380 7381 bxe_link_report_locked(sc); 7382 7383 if (IS_MF(sc)) { 7384 ; // XXX bxe_link_sync_notify(sc); 7385 } 7386 } 7387 7388 static void 7389 bxe_attn_int_asserted(struct bxe_softc *sc, 7390 uint32_t asserted) 7391 { 7392 int port = SC_PORT(sc); 7393 uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 7394 MISC_REG_AEU_MASK_ATTN_FUNC_0; 7395 uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 : 7396 NIG_REG_MASK_INTERRUPT_PORT0; 7397 uint32_t aeu_mask; 7398 uint32_t nig_mask = 0; 7399 uint32_t reg_addr; 7400 uint32_t igu_acked; 7401 uint32_t cnt; 7402 7403 if (sc->attn_state & asserted) { 7404 BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted); 7405 } 7406 7407 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 7408 7409 aeu_mask = REG_RD(sc, aeu_addr); 7410 7411 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n", 7412 aeu_mask, asserted); 7413 7414 aeu_mask &= ~(asserted & 0x3ff); 7415 7416 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); 7417 7418 REG_WR(sc, aeu_addr, aeu_mask); 7419 7420 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 7421 7422 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); 7423 sc->attn_state |= asserted; 7424 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); 7425 7426 if (asserted & ATTN_HARD_WIRED_MASK) { 7427 if (asserted & ATTN_NIG_FOR_FUNC) { 7428 7429 BXE_PHY_LOCK(sc); 7430 7431 /* save nig interrupt mask */ 7432 nig_mask = REG_RD(sc, nig_int_mask_addr); 7433 7434 /* If nig_mask is not set, no need to call the update function */ 7435 if (nig_mask) { 7436 REG_WR(sc, nig_int_mask_addr, 0); 7437 7438 bxe_link_attn(sc); 7439 } 7440 7441 /* handle unicore attn? */ 7442 } 7443 7444 if (asserted & ATTN_SW_TIMER_4_FUNC) { 7445 BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n"); 7446 } 7447 7448 if (asserted & GPIO_2_FUNC) { 7449 BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n"); 7450 } 7451 7452 if (asserted & GPIO_3_FUNC) { 7453 BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n"); 7454 } 7455 7456 if (asserted & GPIO_4_FUNC) { 7457 BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n"); 7458 } 7459 7460 if (port == 0) { 7461 if (asserted & ATTN_GENERAL_ATTN_1) { 7462 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n"); 7463 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0); 7464 } 7465 if (asserted & ATTN_GENERAL_ATTN_2) { 7466 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n"); 7467 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0); 7468 } 7469 if (asserted & ATTN_GENERAL_ATTN_3) { 7470 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n"); 7471 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0); 7472 } 7473 } else { 7474 if (asserted & ATTN_GENERAL_ATTN_4) { 7475 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n"); 7476 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0); 7477 } 7478 if (asserted & ATTN_GENERAL_ATTN_5) { 7479 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n"); 7480 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0); 7481 } 7482 if (asserted & ATTN_GENERAL_ATTN_6) { 7483 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n"); 7484 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0); 7485 } 7486 } 7487 } /* hardwired */ 7488 7489 if (sc->devinfo.int_block == INT_BLOCK_HC) { 7490 reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET); 7491 } else { 7492 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8); 7493 } 7494 7495 BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n", 7496 asserted, 7497 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 7498 REG_WR(sc, reg_addr, asserted); 7499 7500 /* now set back the mask */ 7501 if (asserted & ATTN_NIG_FOR_FUNC) { 7502 /* 7503 * Verify that IGU ack through BAR was written before restoring 7504 * NIG mask. This loop should exit after 2-3 iterations max. 7505 */ 7506 if (sc->devinfo.int_block != INT_BLOCK_HC) { 7507 cnt = 0; 7508 7509 do { 7510 igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS); 7511 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) && 7512 (++cnt < MAX_IGU_ATTN_ACK_TO)); 7513 7514 if (!igu_acked) { 7515 BLOGE(sc, "Failed to verify IGU ack on time\n"); 7516 } 7517 7518 mb(); 7519 } 7520 7521 REG_WR(sc, nig_int_mask_addr, nig_mask); 7522 7523 BXE_PHY_UNLOCK(sc); 7524 } 7525 } 7526 7527 static void 7528 bxe_print_next_block(struct bxe_softc *sc, 7529 int idx, 7530 const char *blk) 7531 { 7532 BLOGI(sc, "%s%s", idx ? ", " : "", blk); 7533 } 7534 7535 static int 7536 bxe_check_blocks_with_parity0(struct bxe_softc *sc, 7537 uint32_t sig, 7538 int par_num, 7539 uint8_t print) 7540 { 7541 uint32_t cur_bit = 0; 7542 int i = 0; 7543 7544 for (i = 0; sig; i++) { 7545 cur_bit = ((uint32_t)0x1 << i); 7546 if (sig & cur_bit) { 7547 switch (cur_bit) { 7548 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR: 7549 if (print) 7550 bxe_print_next_block(sc, par_num++, "BRB"); 7551 break; 7552 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR: 7553 if (print) 7554 bxe_print_next_block(sc, par_num++, "PARSER"); 7555 break; 7556 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR: 7557 if (print) 7558 bxe_print_next_block(sc, par_num++, "TSDM"); 7559 break; 7560 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR: 7561 if (print) 7562 bxe_print_next_block(sc, par_num++, "SEARCHER"); 7563 break; 7564 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR: 7565 if (print) 7566 bxe_print_next_block(sc, par_num++, "TCM"); 7567 break; 7568 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR: 7569 if (print) 7570 bxe_print_next_block(sc, par_num++, "TSEMI"); 7571 break; 7572 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR: 7573 if (print) 7574 bxe_print_next_block(sc, par_num++, "XPB"); 7575 break; 7576 } 7577 7578 /* Clear the bit */ 7579 sig &= ~cur_bit; 7580 } 7581 } 7582 7583 return (par_num); 7584 } 7585 7586 static int 7587 bxe_check_blocks_with_parity1(struct bxe_softc *sc, 7588 uint32_t sig, 7589 int par_num, 7590 uint8_t *global, 7591 uint8_t print) 7592 { 7593 int i = 0; 7594 uint32_t cur_bit = 0; 7595 for (i = 0; sig; i++) { 7596 cur_bit = ((uint32_t)0x1 << i); 7597 if (sig & cur_bit) { 7598 switch (cur_bit) { 7599 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR: 7600 if (print) 7601 bxe_print_next_block(sc, par_num++, "PBF"); 7602 break; 7603 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR: 7604 if (print) 7605 bxe_print_next_block(sc, par_num++, "QM"); 7606 break; 7607 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR: 7608 if (print) 7609 bxe_print_next_block(sc, par_num++, "TM"); 7610 break; 7611 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR: 7612 if (print) 7613 bxe_print_next_block(sc, par_num++, "XSDM"); 7614 break; 7615 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR: 7616 if (print) 7617 bxe_print_next_block(sc, par_num++, "XCM"); 7618 break; 7619 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR: 7620 if (print) 7621 bxe_print_next_block(sc, par_num++, "XSEMI"); 7622 break; 7623 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR: 7624 if (print) 7625 bxe_print_next_block(sc, par_num++, "DOORBELLQ"); 7626 break; 7627 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR: 7628 if (print) 7629 bxe_print_next_block(sc, par_num++, "NIG"); 7630 break; 7631 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR: 7632 if (print) 7633 bxe_print_next_block(sc, par_num++, "VAUX PCI CORE"); 7634 *global = TRUE; 7635 break; 7636 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR: 7637 if (print) 7638 bxe_print_next_block(sc, par_num++, "DEBUG"); 7639 break; 7640 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR: 7641 if (print) 7642 bxe_print_next_block(sc, par_num++, "USDM"); 7643 break; 7644 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR: 7645 if (print) 7646 bxe_print_next_block(sc, par_num++, "UCM"); 7647 break; 7648 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR: 7649 if (print) 7650 bxe_print_next_block(sc, par_num++, "USEMI"); 7651 break; 7652 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR: 7653 if (print) 7654 bxe_print_next_block(sc, par_num++, "UPB"); 7655 break; 7656 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR: 7657 if (print) 7658 bxe_print_next_block(sc, par_num++, "CSDM"); 7659 break; 7660 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR: 7661 if (print) 7662 bxe_print_next_block(sc, par_num++, "CCM"); 7663 break; 7664 } 7665 7666 /* Clear the bit */ 7667 sig &= ~cur_bit; 7668 } 7669 } 7670 7671 return (par_num); 7672 } 7673 7674 static int 7675 bxe_check_blocks_with_parity2(struct bxe_softc *sc, 7676 uint32_t sig, 7677 int par_num, 7678 uint8_t print) 7679 { 7680 uint32_t cur_bit = 0; 7681 int i = 0; 7682 7683 for (i = 0; sig; i++) { 7684 cur_bit = ((uint32_t)0x1 << i); 7685 if (sig & cur_bit) { 7686 switch (cur_bit) { 7687 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR: 7688 if (print) 7689 bxe_print_next_block(sc, par_num++, "CSEMI"); 7690 break; 7691 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR: 7692 if (print) 7693 bxe_print_next_block(sc, par_num++, "PXP"); 7694 break; 7695 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR: 7696 if (print) 7697 bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT"); 7698 break; 7699 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR: 7700 if (print) 7701 bxe_print_next_block(sc, par_num++, "CFC"); 7702 break; 7703 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR: 7704 if (print) 7705 bxe_print_next_block(sc, par_num++, "CDU"); 7706 break; 7707 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR: 7708 if (print) 7709 bxe_print_next_block(sc, par_num++, "DMAE"); 7710 break; 7711 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR: 7712 if (print) 7713 bxe_print_next_block(sc, par_num++, "IGU"); 7714 break; 7715 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR: 7716 if (print) 7717 bxe_print_next_block(sc, par_num++, "MISC"); 7718 break; 7719 } 7720 7721 /* Clear the bit */ 7722 sig &= ~cur_bit; 7723 } 7724 } 7725 7726 return (par_num); 7727 } 7728 7729 static int 7730 bxe_check_blocks_with_parity3(struct bxe_softc *sc, 7731 uint32_t sig, 7732 int par_num, 7733 uint8_t *global, 7734 uint8_t print) 7735 { 7736 uint32_t cur_bit = 0; 7737 int i = 0; 7738 7739 for (i = 0; sig; i++) { 7740 cur_bit = ((uint32_t)0x1 << i); 7741 if (sig & cur_bit) { 7742 switch (cur_bit) { 7743 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY: 7744 if (print) 7745 bxe_print_next_block(sc, par_num++, "MCP ROM"); 7746 *global = TRUE; 7747 break; 7748 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY: 7749 if (print) 7750 bxe_print_next_block(sc, par_num++, 7751 "MCP UMP RX"); 7752 *global = TRUE; 7753 break; 7754 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY: 7755 if (print) 7756 bxe_print_next_block(sc, par_num++, 7757 "MCP UMP TX"); 7758 *global = TRUE; 7759 break; 7760 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY: 7761 if (print) 7762 bxe_print_next_block(sc, par_num++, 7763 "MCP SCPAD"); 7764 *global = TRUE; 7765 break; 7766 } 7767 7768 /* Clear the bit */ 7769 sig &= ~cur_bit; 7770 } 7771 } 7772 7773 return (par_num); 7774 } 7775 7776 static int 7777 bxe_check_blocks_with_parity4(struct bxe_softc *sc, 7778 uint32_t sig, 7779 int par_num, 7780 uint8_t print) 7781 { 7782 uint32_t cur_bit = 0; 7783 int i = 0; 7784 7785 for (i = 0; sig; i++) { 7786 cur_bit = ((uint32_t)0x1 << i); 7787 if (sig & cur_bit) { 7788 switch (cur_bit) { 7789 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR: 7790 if (print) 7791 bxe_print_next_block(sc, par_num++, "PGLUE_B"); 7792 break; 7793 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR: 7794 if (print) 7795 bxe_print_next_block(sc, par_num++, "ATC"); 7796 break; 7797 } 7798 7799 /* Clear the bit */ 7800 sig &= ~cur_bit; 7801 } 7802 } 7803 7804 return (par_num); 7805 } 7806 7807 static uint8_t 7808 bxe_parity_attn(struct bxe_softc *sc, 7809 uint8_t *global, 7810 uint8_t print, 7811 uint32_t *sig) 7812 { 7813 int par_num = 0; 7814 7815 if ((sig[0] & HW_PRTY_ASSERT_SET_0) || 7816 (sig[1] & HW_PRTY_ASSERT_SET_1) || 7817 (sig[2] & HW_PRTY_ASSERT_SET_2) || 7818 (sig[3] & HW_PRTY_ASSERT_SET_3) || 7819 (sig[4] & HW_PRTY_ASSERT_SET_4)) { 7820 BLOGE(sc, "Parity error: HW block parity attention:\n" 7821 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n", 7822 (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0), 7823 (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1), 7824 (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2), 7825 (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3), 7826 (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4)); 7827 7828 if (print) 7829 BLOGI(sc, "Parity errors detected in blocks: "); 7830 7831 par_num = 7832 bxe_check_blocks_with_parity0(sc, sig[0] & 7833 HW_PRTY_ASSERT_SET_0, 7834 par_num, print); 7835 par_num = 7836 bxe_check_blocks_with_parity1(sc, sig[1] & 7837 HW_PRTY_ASSERT_SET_1, 7838 par_num, global, print); 7839 par_num = 7840 bxe_check_blocks_with_parity2(sc, sig[2] & 7841 HW_PRTY_ASSERT_SET_2, 7842 par_num, print); 7843 par_num = 7844 bxe_check_blocks_with_parity3(sc, sig[3] & 7845 HW_PRTY_ASSERT_SET_3, 7846 par_num, global, print); 7847 par_num = 7848 bxe_check_blocks_with_parity4(sc, sig[4] & 7849 HW_PRTY_ASSERT_SET_4, 7850 par_num, print); 7851 7852 if (print) 7853 BLOGI(sc, "\n"); 7854 7855 return (TRUE); 7856 } 7857 7858 return (FALSE); 7859 } 7860 7861 static uint8_t 7862 bxe_chk_parity_attn(struct bxe_softc *sc, 7863 uint8_t *global, 7864 uint8_t print) 7865 { 7866 struct attn_route attn = { {0} }; 7867 int port = SC_PORT(sc); 7868 7869 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 7870 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 7871 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 7872 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 7873 7874 if (!CHIP_IS_E1x(sc)) 7875 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 7876 7877 return (bxe_parity_attn(sc, global, print, attn.sig)); 7878 } 7879 7880 static void 7881 bxe_attn_int_deasserted4(struct bxe_softc *sc, 7882 uint32_t attn) 7883 { 7884 uint32_t val; 7885 7886 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) { 7887 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR); 7888 BLOGE(sc, "PGLUE hw attention 0x%08x\n", val); 7889 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR) 7890 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n"); 7891 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR) 7892 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n"); 7893 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) 7894 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n"); 7895 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN) 7896 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n"); 7897 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN) 7898 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n"); 7899 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN) 7900 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n"); 7901 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN) 7902 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n"); 7903 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN) 7904 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n"); 7905 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW) 7906 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n"); 7907 } 7908 7909 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) { 7910 val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR); 7911 BLOGE(sc, "ATC hw attention 0x%08x\n", val); 7912 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR) 7913 BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n"); 7914 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND) 7915 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n"); 7916 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS) 7917 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n"); 7918 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT) 7919 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n"); 7920 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR) 7921 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n"); 7922 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU) 7923 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n"); 7924 } 7925 7926 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 7927 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) { 7928 BLOGE(sc, "FATAL parity attention set4 0x%08x\n", 7929 (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 7930 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR))); 7931 } 7932 } 7933 7934 static void 7935 bxe_e1h_disable(struct bxe_softc *sc) 7936 { 7937 int port = SC_PORT(sc); 7938 7939 bxe_tx_disable(sc); 7940 7941 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); 7942 } 7943 7944 static void 7945 bxe_e1h_enable(struct bxe_softc *sc) 7946 { 7947 int port = SC_PORT(sc); 7948 7949 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); 7950 7951 // XXX bxe_tx_enable(sc); 7952 } 7953 7954 /* 7955 * called due to MCP event (on pmf): 7956 * reread new bandwidth configuration 7957 * configure FW 7958 * notify others function about the change 7959 */ 7960 static void 7961 bxe_config_mf_bw(struct bxe_softc *sc) 7962 { 7963 if (sc->link_vars.link_up) { 7964 bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX); 7965 // XXX bxe_link_sync_notify(sc); 7966 } 7967 7968 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 7969 } 7970 7971 static void 7972 bxe_set_mf_bw(struct bxe_softc *sc) 7973 { 7974 bxe_config_mf_bw(sc); 7975 bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0); 7976 } 7977 7978 static void 7979 bxe_handle_eee_event(struct bxe_softc *sc) 7980 { 7981 BLOGD(sc, DBG_INTR, "EEE - LLDP event\n"); 7982 bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0); 7983 } 7984 7985 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3 7986 7987 static void 7988 bxe_drv_info_ether_stat(struct bxe_softc *sc) 7989 { 7990 struct eth_stats_info *ether_stat = 7991 &sc->sp->drv_info_to_mcp.ether_stat; 7992 7993 strlcpy(ether_stat->version, BXE_DRIVER_VERSION, 7994 ETH_STAT_INFO_VERSION_LEN); 7995 7996 /* XXX (+ MAC_PAD) taken from other driver... verify this is right */ 7997 sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj, 7998 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED, 7999 ether_stat->mac_local + MAC_PAD, 8000 MAC_PAD, ETH_ALEN); 8001 8002 ether_stat->mtu_size = sc->mtu; 8003 8004 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK; 8005 if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) { 8006 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK; 8007 } 8008 8009 // XXX ether_stat->feature_flags |= ???; 8010 8011 ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0; 8012 8013 ether_stat->txq_size = sc->tx_ring_size; 8014 ether_stat->rxq_size = sc->rx_ring_size; 8015 } 8016 8017 static void 8018 bxe_handle_drv_info_req(struct bxe_softc *sc) 8019 { 8020 enum drv_info_opcode op_code; 8021 uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control); 8022 8023 /* if drv_info version supported by MFW doesn't match - send NACK */ 8024 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) { 8025 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); 8026 return; 8027 } 8028 8029 op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >> 8030 DRV_INFO_CONTROL_OP_CODE_SHIFT); 8031 8032 memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp)); 8033 8034 switch (op_code) { 8035 case ETH_STATS_OPCODE: 8036 bxe_drv_info_ether_stat(sc); 8037 break; 8038 case FCOE_STATS_OPCODE: 8039 case ISCSI_STATS_OPCODE: 8040 default: 8041 /* if op code isn't supported - send NACK */ 8042 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); 8043 return; 8044 } 8045 8046 /* 8047 * If we got drv_info attn from MFW then these fields are defined in 8048 * shmem2 for sure 8049 */ 8050 SHMEM2_WR(sc, drv_info_host_addr_lo, 8051 U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp))); 8052 SHMEM2_WR(sc, drv_info_host_addr_hi, 8053 U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp))); 8054 8055 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0); 8056 } 8057 8058 static void 8059 bxe_dcc_event(struct bxe_softc *sc, 8060 uint32_t dcc_event) 8061 { 8062 BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event); 8063 8064 if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) { 8065 /* 8066 * This is the only place besides the function initialization 8067 * where the sc->flags can change so it is done without any 8068 * locks 8069 */ 8070 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) { 8071 BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n"); 8072 sc->flags |= BXE_MF_FUNC_DIS; 8073 bxe_e1h_disable(sc); 8074 } else { 8075 BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n"); 8076 sc->flags &= ~BXE_MF_FUNC_DIS; 8077 bxe_e1h_enable(sc); 8078 } 8079 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF; 8080 } 8081 8082 if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) { 8083 bxe_config_mf_bw(sc); 8084 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION; 8085 } 8086 8087 /* Report results to MCP */ 8088 if (dcc_event) 8089 bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0); 8090 else 8091 bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0); 8092 } 8093 8094 static void 8095 bxe_pmf_update(struct bxe_softc *sc) 8096 { 8097 int port = SC_PORT(sc); 8098 uint32_t val; 8099 8100 sc->port.pmf = 1; 8101 BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf); 8102 8103 /* 8104 * We need the mb() to ensure the ordering between the writing to 8105 * sc->port.pmf here and reading it from the bxe_periodic_task(). 8106 */ 8107 mb(); 8108 8109 /* queue a periodic task */ 8110 // XXX schedule task... 8111 8112 // XXX bxe_dcbx_pmf_update(sc); 8113 8114 /* enable nig attention */ 8115 val = (0xff0f | (1 << (SC_VN(sc) + 4))); 8116 if (sc->devinfo.int_block == INT_BLOCK_HC) { 8117 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val); 8118 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val); 8119 } else if (!CHIP_IS_E1x(sc)) { 8120 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); 8121 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); 8122 } 8123 8124 bxe_stats_handle(sc, STATS_EVENT_PMF); 8125 } 8126 8127 static int 8128 bxe_mc_assert(struct bxe_softc *sc) 8129 { 8130 char last_idx; 8131 int i, rc = 0; 8132 uint32_t row0, row1, row2, row3; 8133 8134 /* XSTORM */ 8135 last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET); 8136 if (last_idx) 8137 BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 8138 8139 /* print the asserts */ 8140 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 8141 8142 row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i)); 8143 row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4); 8144 row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8); 8145 row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12); 8146 8147 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 8148 BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 8149 i, row3, row2, row1, row0); 8150 rc++; 8151 } else { 8152 break; 8153 } 8154 } 8155 8156 /* TSTORM */ 8157 last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET); 8158 if (last_idx) { 8159 BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 8160 } 8161 8162 /* print the asserts */ 8163 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 8164 8165 row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i)); 8166 row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4); 8167 row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8); 8168 row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12); 8169 8170 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 8171 BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 8172 i, row3, row2, row1, row0); 8173 rc++; 8174 } else { 8175 break; 8176 } 8177 } 8178 8179 /* CSTORM */ 8180 last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET); 8181 if (last_idx) { 8182 BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 8183 } 8184 8185 /* print the asserts */ 8186 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 8187 8188 row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i)); 8189 row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4); 8190 row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8); 8191 row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12); 8192 8193 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 8194 BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 8195 i, row3, row2, row1, row0); 8196 rc++; 8197 } else { 8198 break; 8199 } 8200 } 8201 8202 /* USTORM */ 8203 last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET); 8204 if (last_idx) { 8205 BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 8206 } 8207 8208 /* print the asserts */ 8209 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 8210 8211 row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i)); 8212 row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4); 8213 row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8); 8214 row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12); 8215 8216 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 8217 BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 8218 i, row3, row2, row1, row0); 8219 rc++; 8220 } else { 8221 break; 8222 } 8223 } 8224 8225 return (rc); 8226 } 8227 8228 static void 8229 bxe_attn_int_deasserted3(struct bxe_softc *sc, 8230 uint32_t attn) 8231 { 8232 int func = SC_FUNC(sc); 8233 uint32_t val; 8234 8235 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) { 8236 8237 if (attn & BXE_PMF_LINK_ASSERT(sc)) { 8238 8239 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 8240 bxe_read_mf_cfg(sc); 8241 sc->devinfo.mf_info.mf_config[SC_VN(sc)] = 8242 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 8243 val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status); 8244 8245 if (val & DRV_STATUS_DCC_EVENT_MASK) 8246 bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK)); 8247 8248 if (val & DRV_STATUS_SET_MF_BW) 8249 bxe_set_mf_bw(sc); 8250 8251 if (val & DRV_STATUS_DRV_INFO_REQ) 8252 bxe_handle_drv_info_req(sc); 8253 8254 #if 0 8255 if (val & DRV_STATUS_VF_DISABLED) 8256 bxe_vf_handle_flr_event(sc); 8257 #endif 8258 8259 if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF)) 8260 bxe_pmf_update(sc); 8261 8262 #if 0 8263 if (sc->port.pmf && 8264 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) && 8265 (sc->dcbx_enabled > 0)) 8266 /* start dcbx state machine */ 8267 bxe_dcbx_set_params(sc, BXE_DCBX_STATE_NEG_RECEIVED); 8268 #endif 8269 8270 #if 0 8271 if (val & DRV_STATUS_AFEX_EVENT_MASK) 8272 bxe_handle_afex_cmd(sc, val & DRV_STATUS_AFEX_EVENT_MASK); 8273 #endif 8274 8275 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS) 8276 bxe_handle_eee_event(sc); 8277 8278 if (sc->link_vars.periodic_flags & 8279 ELINK_PERIODIC_FLAGS_LINK_EVENT) { 8280 /* sync with link */ 8281 BXE_PHY_LOCK(sc); 8282 sc->link_vars.periodic_flags &= 8283 ~ELINK_PERIODIC_FLAGS_LINK_EVENT; 8284 BXE_PHY_UNLOCK(sc); 8285 if (IS_MF(sc)) 8286 ; // XXX bxe_link_sync_notify(sc); 8287 bxe_link_report(sc); 8288 } 8289 8290 /* 8291 * Always call it here: bxe_link_report() will 8292 * prevent the link indication duplication. 8293 */ 8294 bxe_link_status_update(sc); 8295 8296 } else if (attn & BXE_MC_ASSERT_BITS) { 8297 8298 BLOGE(sc, "MC assert!\n"); 8299 bxe_mc_assert(sc); 8300 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0); 8301 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0); 8302 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0); 8303 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0); 8304 bxe_panic(sc, ("MC assert!\n")); 8305 8306 } else if (attn & BXE_MCP_ASSERT) { 8307 8308 BLOGE(sc, "MCP assert!\n"); 8309 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0); 8310 // XXX bxe_fw_dump(sc); 8311 8312 } else { 8313 BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn); 8314 } 8315 } 8316 8317 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) { 8318 BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn); 8319 if (attn & BXE_GRC_TIMEOUT) { 8320 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN); 8321 BLOGE(sc, "GRC time-out 0x%08x\n", val); 8322 } 8323 if (attn & BXE_GRC_RSV) { 8324 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN); 8325 BLOGE(sc, "GRC reserved 0x%08x\n", val); 8326 } 8327 REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff); 8328 } 8329 } 8330 8331 static void 8332 bxe_attn_int_deasserted2(struct bxe_softc *sc, 8333 uint32_t attn) 8334 { 8335 int port = SC_PORT(sc); 8336 int reg_offset; 8337 uint32_t val0, mask0, val1, mask1; 8338 uint32_t val; 8339 8340 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) { 8341 val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR); 8342 BLOGE(sc, "CFC hw attention 0x%08x\n", val); 8343 /* CFC error attention */ 8344 if (val & 0x2) { 8345 BLOGE(sc, "FATAL error from CFC\n"); 8346 } 8347 } 8348 8349 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) { 8350 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0); 8351 BLOGE(sc, "PXP hw attention-0 0x%08x\n", val); 8352 /* RQ_USDMDP_FIFO_OVERFLOW */ 8353 if (val & 0x18000) { 8354 BLOGE(sc, "FATAL error from PXP\n"); 8355 } 8356 8357 if (!CHIP_IS_E1x(sc)) { 8358 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1); 8359 BLOGE(sc, "PXP hw attention-1 0x%08x\n", val); 8360 } 8361 } 8362 8363 #define PXP2_EOP_ERROR_BIT PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR 8364 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT 8365 8366 if (attn & AEU_PXP2_HW_INT_BIT) { 8367 /* CQ47854 workaround do not panic on 8368 * PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR 8369 */ 8370 if (!CHIP_IS_E1x(sc)) { 8371 mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0); 8372 val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1); 8373 mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1); 8374 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0); 8375 /* 8376 * If the olny PXP2_EOP_ERROR_BIT is set in 8377 * STS0 and STS1 - clear it 8378 * 8379 * probably we lose additional attentions between 8380 * STS0 and STS_CLR0, in this case user will not 8381 * be notified about them 8382 */ 8383 if (val0 & mask0 & PXP2_EOP_ERROR_BIT && 8384 !(val1 & mask1)) 8385 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); 8386 8387 /* print the register, since no one can restore it */ 8388 BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0); 8389 8390 /* 8391 * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR 8392 * then notify 8393 */ 8394 if (val0 & PXP2_EOP_ERROR_BIT) { 8395 BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n"); 8396 8397 /* 8398 * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is 8399 * set then clear attention from PXP2 block without panic 8400 */ 8401 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) && 8402 ((val1 & mask1) == 0)) 8403 attn &= ~AEU_PXP2_HW_INT_BIT; 8404 } 8405 } 8406 } 8407 8408 if (attn & HW_INTERRUT_ASSERT_SET_2) { 8409 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 : 8410 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2); 8411 8412 val = REG_RD(sc, reg_offset); 8413 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2); 8414 REG_WR(sc, reg_offset, val); 8415 8416 BLOGE(sc, "FATAL HW block attention set2 0x%x\n", 8417 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2)); 8418 bxe_panic(sc, ("HW block attention set2\n")); 8419 } 8420 } 8421 8422 static void 8423 bxe_attn_int_deasserted1(struct bxe_softc *sc, 8424 uint32_t attn) 8425 { 8426 int port = SC_PORT(sc); 8427 int reg_offset; 8428 uint32_t val; 8429 8430 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) { 8431 val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR); 8432 BLOGE(sc, "DB hw attention 0x%08x\n", val); 8433 /* DORQ discard attention */ 8434 if (val & 0x2) { 8435 BLOGE(sc, "FATAL error from DORQ\n"); 8436 } 8437 } 8438 8439 if (attn & HW_INTERRUT_ASSERT_SET_1) { 8440 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 : 8441 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1); 8442 8443 val = REG_RD(sc, reg_offset); 8444 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1); 8445 REG_WR(sc, reg_offset, val); 8446 8447 BLOGE(sc, "FATAL HW block attention set1 0x%08x\n", 8448 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1)); 8449 bxe_panic(sc, ("HW block attention set1\n")); 8450 } 8451 } 8452 8453 static void 8454 bxe_attn_int_deasserted0(struct bxe_softc *sc, 8455 uint32_t attn) 8456 { 8457 int port = SC_PORT(sc); 8458 int reg_offset; 8459 uint32_t val; 8460 8461 reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 8462 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; 8463 8464 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) { 8465 val = REG_RD(sc, reg_offset); 8466 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5; 8467 REG_WR(sc, reg_offset, val); 8468 8469 BLOGW(sc, "SPIO5 hw attention\n"); 8470 8471 /* Fan failure attention */ 8472 elink_hw_reset_phy(&sc->link_params); 8473 bxe_fan_failure(sc); 8474 } 8475 8476 if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) { 8477 BXE_PHY_LOCK(sc); 8478 elink_handle_module_detect_int(&sc->link_params); 8479 BXE_PHY_UNLOCK(sc); 8480 } 8481 8482 if (attn & HW_INTERRUT_ASSERT_SET_0) { 8483 val = REG_RD(sc, reg_offset); 8484 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0); 8485 REG_WR(sc, reg_offset, val); 8486 8487 bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n", 8488 (attn & HW_INTERRUT_ASSERT_SET_0))); 8489 } 8490 } 8491 8492 static void 8493 bxe_attn_int_deasserted(struct bxe_softc *sc, 8494 uint32_t deasserted) 8495 { 8496 struct attn_route attn; 8497 struct attn_route *group_mask; 8498 int port = SC_PORT(sc); 8499 int index; 8500 uint32_t reg_addr; 8501 uint32_t val; 8502 uint32_t aeu_mask; 8503 uint8_t global = FALSE; 8504 8505 /* 8506 * Need to take HW lock because MCP or other port might also 8507 * try to handle this event. 8508 */ 8509 bxe_acquire_alr(sc); 8510 8511 if (bxe_chk_parity_attn(sc, &global, TRUE)) { 8512 /* XXX 8513 * In case of parity errors don't handle attentions so that 8514 * other function would "see" parity errors. 8515 */ 8516 sc->recovery_state = BXE_RECOVERY_INIT; 8517 // XXX schedule a recovery task... 8518 /* disable HW interrupts */ 8519 bxe_int_disable(sc); 8520 bxe_release_alr(sc); 8521 return; 8522 } 8523 8524 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 8525 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 8526 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 8527 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 8528 if (!CHIP_IS_E1x(sc)) { 8529 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 8530 } else { 8531 attn.sig[4] = 0; 8532 } 8533 8534 BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", 8535 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]); 8536 8537 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 8538 if (deasserted & (1 << index)) { 8539 group_mask = &sc->attn_group[index]; 8540 8541 BLOGD(sc, DBG_INTR, 8542 "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index, 8543 group_mask->sig[0], group_mask->sig[1], 8544 group_mask->sig[2], group_mask->sig[3], 8545 group_mask->sig[4]); 8546 8547 bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]); 8548 bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]); 8549 bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]); 8550 bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]); 8551 bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]); 8552 } 8553 } 8554 8555 bxe_release_alr(sc); 8556 8557 if (sc->devinfo.int_block == INT_BLOCK_HC) { 8558 reg_addr = (HC_REG_COMMAND_REG + port*32 + 8559 COMMAND_REG_ATTN_BITS_CLR); 8560 } else { 8561 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8); 8562 } 8563 8564 val = ~deasserted; 8565 BLOGD(sc, DBG_INTR, 8566 "about to mask 0x%08x at %s addr 0x%08x\n", val, 8567 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 8568 REG_WR(sc, reg_addr, val); 8569 8570 if (~sc->attn_state & deasserted) { 8571 BLOGE(sc, "IGU error\n"); 8572 } 8573 8574 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 8575 MISC_REG_AEU_MASK_ATTN_FUNC_0; 8576 8577 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 8578 8579 aeu_mask = REG_RD(sc, reg_addr); 8580 8581 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n", 8582 aeu_mask, deasserted); 8583 aeu_mask |= (deasserted & 0x3ff); 8584 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); 8585 8586 REG_WR(sc, reg_addr, aeu_mask); 8587 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 8588 8589 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); 8590 sc->attn_state &= ~deasserted; 8591 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); 8592 } 8593 8594 static void 8595 bxe_attn_int(struct bxe_softc *sc) 8596 { 8597 /* read local copy of bits */ 8598 uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits); 8599 uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack); 8600 uint32_t attn_state = sc->attn_state; 8601 8602 /* look for changed bits */ 8603 uint32_t asserted = attn_bits & ~attn_ack & ~attn_state; 8604 uint32_t deasserted = ~attn_bits & attn_ack & attn_state; 8605 8606 BLOGD(sc, DBG_INTR, 8607 "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n", 8608 attn_bits, attn_ack, asserted, deasserted); 8609 8610 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) { 8611 BLOGE(sc, "BAD attention state\n"); 8612 } 8613 8614 /* handle bits that were raised */ 8615 if (asserted) { 8616 bxe_attn_int_asserted(sc, asserted); 8617 } 8618 8619 if (deasserted) { 8620 bxe_attn_int_deasserted(sc, deasserted); 8621 } 8622 } 8623 8624 static uint16_t 8625 bxe_update_dsb_idx(struct bxe_softc *sc) 8626 { 8627 struct host_sp_status_block *def_sb = sc->def_sb; 8628 uint16_t rc = 0; 8629 8630 mb(); /* status block is written to by the chip */ 8631 8632 if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) { 8633 sc->def_att_idx = def_sb->atten_status_block.attn_bits_index; 8634 rc |= BXE_DEF_SB_ATT_IDX; 8635 } 8636 8637 if (sc->def_idx != def_sb->sp_sb.running_index) { 8638 sc->def_idx = def_sb->sp_sb.running_index; 8639 rc |= BXE_DEF_SB_IDX; 8640 } 8641 8642 mb(); 8643 8644 return (rc); 8645 } 8646 8647 static inline struct ecore_queue_sp_obj * 8648 bxe_cid_to_q_obj(struct bxe_softc *sc, 8649 uint32_t cid) 8650 { 8651 BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid); 8652 return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj); 8653 } 8654 8655 static void 8656 bxe_handle_mcast_eqe(struct bxe_softc *sc) 8657 { 8658 struct ecore_mcast_ramrod_params rparam; 8659 int rc; 8660 8661 memset(&rparam, 0, sizeof(rparam)); 8662 8663 rparam.mcast_obj = &sc->mcast_obj; 8664 8665 BXE_MCAST_LOCK(sc); 8666 8667 /* clear pending state for the last command */ 8668 sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw); 8669 8670 /* if there are pending mcast commands - send them */ 8671 if (sc->mcast_obj.check_pending(&sc->mcast_obj)) { 8672 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 8673 if (rc < 0) { 8674 BLOGD(sc, DBG_SP, 8675 "ERROR: Failed to send pending mcast commands (%d)\n", 8676 rc); 8677 } 8678 } 8679 8680 BXE_MCAST_UNLOCK(sc); 8681 } 8682 8683 static void 8684 bxe_handle_classification_eqe(struct bxe_softc *sc, 8685 union event_ring_elem *elem) 8686 { 8687 unsigned long ramrod_flags = 0; 8688 int rc = 0; 8689 uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; 8690 struct ecore_vlan_mac_obj *vlan_mac_obj; 8691 8692 /* always push next commands out, don't wait here */ 8693 bit_set(&ramrod_flags, RAMROD_CONT); 8694 8695 switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) { 8696 case ECORE_FILTER_MAC_PENDING: 8697 BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n"); 8698 vlan_mac_obj = &sc->sp_objs[cid].mac_obj; 8699 break; 8700 8701 case ECORE_FILTER_MCAST_PENDING: 8702 BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n"); 8703 /* 8704 * This is only relevant for 57710 where multicast MACs are 8705 * configured as unicast MACs using the same ramrod. 8706 */ 8707 bxe_handle_mcast_eqe(sc); 8708 return; 8709 8710 default: 8711 BLOGE(sc, "Unsupported classification command: %d\n", 8712 elem->message.data.eth_event.echo); 8713 return; 8714 } 8715 8716 rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags); 8717 8718 if (rc < 0) { 8719 BLOGE(sc, "Failed to schedule new commands (%d)\n", rc); 8720 } else if (rc > 0) { 8721 BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n"); 8722 } 8723 } 8724 8725 static void 8726 bxe_handle_rx_mode_eqe(struct bxe_softc *sc, 8727 union event_ring_elem *elem) 8728 { 8729 bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); 8730 8731 /* send rx_mode command again if was requested */ 8732 if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED, 8733 &sc->sp_state)) { 8734 bxe_set_storm_rx_mode(sc); 8735 } 8736 #if 0 8737 else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_START_SCHED, 8738 &sc->sp_state)) { 8739 bxe_set_iscsi_eth_rx_mode(sc, TRUE); 8740 } 8741 else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_STOP_SCHED, 8742 &sc->sp_state)) { 8743 bxe_set_iscsi_eth_rx_mode(sc, FALSE); 8744 } 8745 #endif 8746 } 8747 8748 static void 8749 bxe_update_eq_prod(struct bxe_softc *sc, 8750 uint16_t prod) 8751 { 8752 storm_memset_eq_prod(sc, prod, SC_FUNC(sc)); 8753 wmb(); /* keep prod updates ordered */ 8754 } 8755 8756 static void 8757 bxe_eq_int(struct bxe_softc *sc) 8758 { 8759 uint16_t hw_cons, sw_cons, sw_prod; 8760 union event_ring_elem *elem; 8761 uint8_t echo; 8762 uint32_t cid; 8763 uint8_t opcode; 8764 int spqe_cnt = 0; 8765 struct ecore_queue_sp_obj *q_obj; 8766 struct ecore_func_sp_obj *f_obj = &sc->func_obj; 8767 struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw; 8768 8769 hw_cons = le16toh(*sc->eq_cons_sb); 8770 8771 /* 8772 * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256. 8773 * when we get to the next-page we need to adjust so the loop 8774 * condition below will be met. The next element is the size of a 8775 * regular element and hence incrementing by 1 8776 */ 8777 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) { 8778 hw_cons++; 8779 } 8780 8781 /* 8782 * This function may never run in parallel with itself for a 8783 * specific sc and no need for a read memory barrier here. 8784 */ 8785 sw_cons = sc->eq_cons; 8786 sw_prod = sc->eq_prod; 8787 8788 BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n", 8789 hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left)); 8790 8791 for (; 8792 sw_cons != hw_cons; 8793 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) { 8794 8795 elem = &sc->eq[EQ_DESC(sw_cons)]; 8796 8797 #if 0 8798 int rc; 8799 rc = bxe_iov_eq_sp_event(sc, elem); 8800 if (!rc) { 8801 BLOGE(sc, "bxe_iov_eq_sp_event returned %d\n", rc); 8802 goto next_spqe; 8803 } 8804 #endif 8805 8806 /* elem CID originates from FW, actually LE */ 8807 cid = SW_CID(elem->message.data.cfc_del_event.cid); 8808 opcode = elem->message.opcode; 8809 8810 /* handle eq element */ 8811 switch (opcode) { 8812 #if 0 8813 case EVENT_RING_OPCODE_VF_PF_CHANNEL: 8814 BLOGD(sc, DBG_SP, "vf/pf channel element on eq\n"); 8815 bxe_vf_mbx(sc, &elem->message.data.vf_pf_event); 8816 continue; 8817 #endif 8818 8819 case EVENT_RING_OPCODE_STAT_QUERY: 8820 BLOGD(sc, DBG_SP, "got statistics completion event %d\n", 8821 sc->stats_comp++); 8822 /* nothing to do with stats comp */ 8823 goto next_spqe; 8824 8825 case EVENT_RING_OPCODE_CFC_DEL: 8826 /* handle according to cid range */ 8827 /* we may want to verify here that the sc state is HALTING */ 8828 BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid); 8829 q_obj = bxe_cid_to_q_obj(sc, cid); 8830 if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) { 8831 break; 8832 } 8833 goto next_spqe; 8834 8835 case EVENT_RING_OPCODE_STOP_TRAFFIC: 8836 BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n"); 8837 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) { 8838 break; 8839 } 8840 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED); 8841 goto next_spqe; 8842 8843 case EVENT_RING_OPCODE_START_TRAFFIC: 8844 BLOGD(sc, DBG_SP, "got START TRAFFIC\n"); 8845 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) { 8846 break; 8847 } 8848 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED); 8849 goto next_spqe; 8850 8851 case EVENT_RING_OPCODE_FUNCTION_UPDATE: 8852 echo = elem->message.data.function_update_event.echo; 8853 if (echo == SWITCH_UPDATE) { 8854 BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n"); 8855 if (f_obj->complete_cmd(sc, f_obj, 8856 ECORE_F_CMD_SWITCH_UPDATE)) { 8857 break; 8858 } 8859 } 8860 else { 8861 BLOGD(sc, DBG_SP, 8862 "AFEX: ramrod completed FUNCTION_UPDATE\n"); 8863 #if 0 8864 f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_UPDATE); 8865 /* 8866 * We will perform the queues update from the sp_core_task as 8867 * all queue SP operations should run with CORE_LOCK. 8868 */ 8869 bxe_set_bit(BXE_SP_CORE_AFEX_F_UPDATE, &sc->sp_core_state); 8870 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task); 8871 #endif 8872 } 8873 goto next_spqe; 8874 8875 #if 0 8876 case EVENT_RING_OPCODE_AFEX_VIF_LISTS: 8877 f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_VIFLISTS); 8878 bxe_after_afex_vif_lists(sc, elem); 8879 goto next_spqe; 8880 #endif 8881 8882 case EVENT_RING_OPCODE_FORWARD_SETUP: 8883 q_obj = &bxe_fwd_sp_obj(sc, q_obj); 8884 if (q_obj->complete_cmd(sc, q_obj, 8885 ECORE_Q_CMD_SETUP_TX_ONLY)) { 8886 break; 8887 } 8888 goto next_spqe; 8889 8890 case EVENT_RING_OPCODE_FUNCTION_START: 8891 BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n"); 8892 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) { 8893 break; 8894 } 8895 goto next_spqe; 8896 8897 case EVENT_RING_OPCODE_FUNCTION_STOP: 8898 BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n"); 8899 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) { 8900 break; 8901 } 8902 goto next_spqe; 8903 } 8904 8905 switch (opcode | sc->state) { 8906 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN): 8907 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT): 8908 cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; 8909 BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid); 8910 rss_raw->clear_pending(rss_raw); 8911 break; 8912 8913 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN): 8914 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG): 8915 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT): 8916 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN): 8917 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG): 8918 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8919 BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n"); 8920 bxe_handle_classification_eqe(sc, elem); 8921 break; 8922 8923 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN): 8924 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG): 8925 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8926 BLOGD(sc, DBG_SP, "got mcast ramrod\n"); 8927 bxe_handle_mcast_eqe(sc); 8928 break; 8929 8930 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN): 8931 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG): 8932 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8933 BLOGD(sc, DBG_SP, "got rx_mode ramrod\n"); 8934 bxe_handle_rx_mode_eqe(sc, elem); 8935 break; 8936 8937 default: 8938 /* unknown event log error and continue */ 8939 BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n", 8940 elem->message.opcode, sc->state); 8941 } 8942 8943 next_spqe: 8944 spqe_cnt++; 8945 } /* for */ 8946 8947 mb(); 8948 atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt); 8949 8950 sc->eq_cons = sw_cons; 8951 sc->eq_prod = sw_prod; 8952 8953 /* make sure that above mem writes were issued towards the memory */ 8954 wmb(); 8955 8956 /* update producer */ 8957 bxe_update_eq_prod(sc, sc->eq_prod); 8958 } 8959 8960 static void 8961 bxe_handle_sp_tq(void *context, 8962 int pending) 8963 { 8964 struct bxe_softc *sc = (struct bxe_softc *)context; 8965 uint16_t status; 8966 8967 BLOGD(sc, DBG_SP, "---> SP TASK <---\n"); 8968 8969 /* what work needs to be performed? */ 8970 status = bxe_update_dsb_idx(sc); 8971 8972 BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status); 8973 8974 /* HW attentions */ 8975 if (status & BXE_DEF_SB_ATT_IDX) { 8976 BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n"); 8977 bxe_attn_int(sc); 8978 status &= ~BXE_DEF_SB_ATT_IDX; 8979 } 8980 8981 /* SP events: STAT_QUERY and others */ 8982 if (status & BXE_DEF_SB_IDX) { 8983 /* handle EQ completions */ 8984 BLOGD(sc, DBG_SP, "---> EQ INTR <---\n"); 8985 bxe_eq_int(sc); 8986 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 8987 le16toh(sc->def_idx), IGU_INT_NOP, 1); 8988 status &= ~BXE_DEF_SB_IDX; 8989 } 8990 8991 /* if status is non zero then something went wrong */ 8992 if (__predict_false(status)) { 8993 BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status); 8994 } 8995 8996 /* ack status block only if something was actually handled */ 8997 bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID, 8998 le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1); 8999 9000 /* 9001 * Must be called after the EQ processing (since eq leads to sriov 9002 * ramrod completion flows). 9003 * This flow may have been scheduled by the arrival of a ramrod 9004 * completion, or by the sriov code rescheduling itself. 9005 */ 9006 // XXX bxe_iov_sp_task(sc); 9007 9008 #if 0 9009 /* AFEX - poll to check if VIFSET_ACK should be sent to MFW */ 9010 if (bxe_test_and_clear_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK, 9011 &sc->sp_state)) { 9012 bxe_link_report(sc); 9013 bxe_fw_command(sc, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); 9014 } 9015 #endif 9016 } 9017 9018 static void 9019 bxe_handle_fp_tq(void *context, 9020 int pending) 9021 { 9022 struct bxe_fastpath *fp = (struct bxe_fastpath *)context; 9023 struct bxe_softc *sc = fp->sc; 9024 uint8_t more_tx = FALSE; 9025 uint8_t more_rx = FALSE; 9026 9027 BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index); 9028 9029 /* XXX 9030 * IFF_DRV_RUNNING state can't be checked here since we process 9031 * slowpath events on a client queue during setup. Instead 9032 * we need to add a "process/continue" flag here that the driver 9033 * can use to tell the task here not to do anything. 9034 */ 9035 #if 0 9036 if (!(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { 9037 return; 9038 } 9039 #endif 9040 9041 /* update the fastpath index */ 9042 bxe_update_fp_sb_idx(fp); 9043 9044 /* XXX add loop here if ever support multiple tx CoS */ 9045 /* fp->txdata[cos] */ 9046 if (bxe_has_tx_work(fp)) { 9047 BXE_FP_TX_LOCK(fp); 9048 more_tx = bxe_txeof(sc, fp); 9049 BXE_FP_TX_UNLOCK(fp); 9050 } 9051 9052 if (bxe_has_rx_work(fp)) { 9053 more_rx = bxe_rxeof(sc, fp); 9054 } 9055 9056 if (more_rx /*|| more_tx*/) { 9057 /* still more work to do */ 9058 taskqueue_enqueue_fast(fp->tq, &fp->tq_task); 9059 return; 9060 } 9061 9062 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 9063 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); 9064 } 9065 9066 static void 9067 bxe_task_fp(struct bxe_fastpath *fp) 9068 { 9069 struct bxe_softc *sc = fp->sc; 9070 uint8_t more_tx = FALSE; 9071 uint8_t more_rx = FALSE; 9072 9073 BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index); 9074 9075 /* update the fastpath index */ 9076 bxe_update_fp_sb_idx(fp); 9077 9078 /* XXX add loop here if ever support multiple tx CoS */ 9079 /* fp->txdata[cos] */ 9080 if (bxe_has_tx_work(fp)) { 9081 BXE_FP_TX_LOCK(fp); 9082 more_tx = bxe_txeof(sc, fp); 9083 BXE_FP_TX_UNLOCK(fp); 9084 } 9085 9086 if (bxe_has_rx_work(fp)) { 9087 more_rx = bxe_rxeof(sc, fp); 9088 } 9089 9090 if (more_rx /*|| more_tx*/) { 9091 /* still more work to do, bail out if this ISR and process later */ 9092 taskqueue_enqueue_fast(fp->tq, &fp->tq_task); 9093 return; 9094 } 9095 9096 /* 9097 * Here we write the fastpath index taken before doing any tx or rx work. 9098 * It is very well possible other hw events occurred up to this point and 9099 * they were actually processed accordingly above. Since we're going to 9100 * write an older fastpath index, an interrupt is coming which we might 9101 * not do any work in. 9102 */ 9103 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 9104 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); 9105 } 9106 9107 /* 9108 * Legacy interrupt entry point. 9109 * 9110 * Verifies that the controller generated the interrupt and 9111 * then calls a separate routine to handle the various 9112 * interrupt causes: link, RX, and TX. 9113 */ 9114 static void 9115 bxe_intr_legacy(void *xsc) 9116 { 9117 struct bxe_softc *sc = (struct bxe_softc *)xsc; 9118 struct bxe_fastpath *fp; 9119 uint16_t status, mask; 9120 int i; 9121 9122 BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n"); 9123 9124 #if 0 9125 /* Don't handle any interrupts if we're not ready. */ 9126 if (__predict_false(sc->intr_sem != 0)) { 9127 return; 9128 } 9129 #endif 9130 9131 /* 9132 * 0 for ustorm, 1 for cstorm 9133 * the bits returned from ack_int() are 0-15 9134 * bit 0 = attention status block 9135 * bit 1 = fast path status block 9136 * a mask of 0x2 or more = tx/rx event 9137 * a mask of 1 = slow path event 9138 */ 9139 9140 status = bxe_ack_int(sc); 9141 9142 /* the interrupt is not for us */ 9143 if (__predict_false(status == 0)) { 9144 BLOGD(sc, DBG_INTR, "Not our interrupt!\n"); 9145 return; 9146 } 9147 9148 BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status); 9149 9150 FOR_EACH_ETH_QUEUE(sc, i) { 9151 fp = &sc->fp[i]; 9152 mask = (0x2 << (fp->index + CNIC_SUPPORT(sc))); 9153 if (status & mask) { 9154 /* acknowledge and disable further fastpath interrupts */ 9155 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 9156 bxe_task_fp(fp); 9157 status &= ~mask; 9158 } 9159 } 9160 9161 #if 0 9162 if (CNIC_SUPPORT(sc)) { 9163 mask = 0x2; 9164 if (status & (mask | 0x1)) { 9165 ... 9166 status &= ~mask; 9167 } 9168 } 9169 #endif 9170 9171 if (__predict_false(status & 0x1)) { 9172 /* acknowledge and disable further slowpath interrupts */ 9173 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 9174 9175 /* schedule slowpath handler */ 9176 taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task); 9177 9178 status &= ~0x1; 9179 } 9180 9181 if (__predict_false(status)) { 9182 BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status); 9183 } 9184 } 9185 9186 /* slowpath interrupt entry point */ 9187 static void 9188 bxe_intr_sp(void *xsc) 9189 { 9190 struct bxe_softc *sc = (struct bxe_softc *)xsc; 9191 9192 BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n"); 9193 9194 /* acknowledge and disable further slowpath interrupts */ 9195 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 9196 9197 /* schedule slowpath handler */ 9198 taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task); 9199 } 9200 9201 /* fastpath interrupt entry point */ 9202 static void 9203 bxe_intr_fp(void *xfp) 9204 { 9205 struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp; 9206 struct bxe_softc *sc = fp->sc; 9207 9208 BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index); 9209 9210 BLOGD(sc, DBG_INTR, 9211 "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n", 9212 curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id); 9213 9214 #if 0 9215 /* Don't handle any interrupts if we're not ready. */ 9216 if (__predict_false(sc->intr_sem != 0)) { 9217 return; 9218 } 9219 #endif 9220 9221 /* acknowledge and disable further fastpath interrupts */ 9222 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 9223 9224 bxe_task_fp(fp); 9225 } 9226 9227 /* Release all interrupts allocated by the driver. */ 9228 static void 9229 bxe_interrupt_free(struct bxe_softc *sc) 9230 { 9231 int i; 9232 9233 switch (sc->interrupt_mode) { 9234 case INTR_MODE_INTX: 9235 BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n"); 9236 if (sc->intr[0].resource != NULL) { 9237 bus_release_resource(sc->dev, 9238 SYS_RES_IRQ, 9239 sc->intr[0].rid, 9240 sc->intr[0].resource); 9241 } 9242 break; 9243 case INTR_MODE_MSI: 9244 for (i = 0; i < sc->intr_count; i++) { 9245 BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i); 9246 if (sc->intr[i].resource && sc->intr[i].rid) { 9247 bus_release_resource(sc->dev, 9248 SYS_RES_IRQ, 9249 sc->intr[i].rid, 9250 sc->intr[i].resource); 9251 } 9252 } 9253 pci_release_msi(sc->dev); 9254 break; 9255 case INTR_MODE_MSIX: 9256 for (i = 0; i < sc->intr_count; i++) { 9257 BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i); 9258 if (sc->intr[i].resource && sc->intr[i].rid) { 9259 bus_release_resource(sc->dev, 9260 SYS_RES_IRQ, 9261 sc->intr[i].rid, 9262 sc->intr[i].resource); 9263 } 9264 } 9265 pci_release_msi(sc->dev); 9266 break; 9267 default: 9268 /* nothing to do as initial allocation failed */ 9269 break; 9270 } 9271 } 9272 9273 /* 9274 * This function determines and allocates the appropriate 9275 * interrupt based on system capabilites and user request. 9276 * 9277 * The user may force a particular interrupt mode, specify 9278 * the number of receive queues, specify the method for 9279 * distribuitng received frames to receive queues, or use 9280 * the default settings which will automatically select the 9281 * best supported combination. In addition, the OS may or 9282 * may not support certain combinations of these settings. 9283 * This routine attempts to reconcile the settings requested 9284 * by the user with the capabilites available from the system 9285 * to select the optimal combination of features. 9286 * 9287 * Returns: 9288 * 0 = Success, !0 = Failure. 9289 */ 9290 static int 9291 bxe_interrupt_alloc(struct bxe_softc *sc) 9292 { 9293 int msix_count = 0; 9294 int msi_count = 0; 9295 int num_requested = 0; 9296 int num_allocated = 0; 9297 int rid, i, j; 9298 int rc; 9299 9300 /* get the number of available MSI/MSI-X interrupts from the OS */ 9301 if (sc->interrupt_mode > 0) { 9302 if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) { 9303 msix_count = pci_msix_count(sc->dev); 9304 } 9305 9306 if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) { 9307 msi_count = pci_msi_count(sc->dev); 9308 } 9309 9310 BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n", 9311 msi_count, msix_count); 9312 } 9313 9314 do { /* try allocating MSI-X interrupt resources (at least 2) */ 9315 if (sc->interrupt_mode != INTR_MODE_MSIX) { 9316 break; 9317 } 9318 9319 if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) || 9320 (msix_count < 2)) { 9321 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9322 break; 9323 } 9324 9325 /* ask for the necessary number of MSI-X vectors */ 9326 num_requested = min((sc->num_queues + 1), msix_count); 9327 9328 BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested); 9329 9330 num_allocated = num_requested; 9331 if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) { 9332 BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc); 9333 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9334 break; 9335 } 9336 9337 if (num_allocated < 2) { /* possible? */ 9338 BLOGE(sc, "MSI-X allocation less than 2!\n"); 9339 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9340 pci_release_msi(sc->dev); 9341 break; 9342 } 9343 9344 BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n", 9345 num_requested, num_allocated); 9346 9347 /* best effort so use the number of vectors allocated to us */ 9348 sc->intr_count = num_allocated; 9349 sc->num_queues = num_allocated - 1; 9350 9351 rid = 1; /* initial resource identifier */ 9352 9353 /* allocate the MSI-X vectors */ 9354 for (i = 0; i < num_allocated; i++) { 9355 sc->intr[i].rid = (rid + i); 9356 9357 if ((sc->intr[i].resource = 9358 bus_alloc_resource_any(sc->dev, 9359 SYS_RES_IRQ, 9360 &sc->intr[i].rid, 9361 RF_ACTIVE)) == NULL) { 9362 BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n", 9363 i, (rid + i)); 9364 9365 for (j = (i - 1); j >= 0; j--) { 9366 bus_release_resource(sc->dev, 9367 SYS_RES_IRQ, 9368 sc->intr[j].rid, 9369 sc->intr[j].resource); 9370 } 9371 9372 sc->intr_count = 0; 9373 sc->num_queues = 0; 9374 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9375 pci_release_msi(sc->dev); 9376 break; 9377 } 9378 9379 BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i)); 9380 } 9381 } while (0); 9382 9383 do { /* try allocating MSI vector resources (at least 2) */ 9384 if (sc->interrupt_mode != INTR_MODE_MSI) { 9385 break; 9386 } 9387 9388 if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) || 9389 (msi_count < 1)) { 9390 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9391 break; 9392 } 9393 9394 /* ask for a single MSI vector */ 9395 num_requested = 1; 9396 9397 BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested); 9398 9399 num_allocated = num_requested; 9400 if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) { 9401 BLOGE(sc, "MSI alloc failed (%d)!\n", rc); 9402 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9403 break; 9404 } 9405 9406 if (num_allocated != 1) { /* possible? */ 9407 BLOGE(sc, "MSI allocation is not 1!\n"); 9408 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9409 pci_release_msi(sc->dev); 9410 break; 9411 } 9412 9413 BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n", 9414 num_requested, num_allocated); 9415 9416 /* best effort so use the number of vectors allocated to us */ 9417 sc->intr_count = num_allocated; 9418 sc->num_queues = num_allocated; 9419 9420 rid = 1; /* initial resource identifier */ 9421 9422 sc->intr[0].rid = rid; 9423 9424 if ((sc->intr[0].resource = 9425 bus_alloc_resource_any(sc->dev, 9426 SYS_RES_IRQ, 9427 &sc->intr[0].rid, 9428 RF_ACTIVE)) == NULL) { 9429 BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid); 9430 sc->intr_count = 0; 9431 sc->num_queues = 0; 9432 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9433 pci_release_msi(sc->dev); 9434 break; 9435 } 9436 9437 BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid); 9438 } while (0); 9439 9440 do { /* try allocating INTx vector resources */ 9441 if (sc->interrupt_mode != INTR_MODE_INTX) { 9442 break; 9443 } 9444 9445 BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n"); 9446 9447 /* only one vector for INTx */ 9448 sc->intr_count = 1; 9449 sc->num_queues = 1; 9450 9451 rid = 0; /* initial resource identifier */ 9452 9453 sc->intr[0].rid = rid; 9454 9455 if ((sc->intr[0].resource = 9456 bus_alloc_resource_any(sc->dev, 9457 SYS_RES_IRQ, 9458 &sc->intr[0].rid, 9459 (RF_ACTIVE | RF_SHAREABLE))) == NULL) { 9460 BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid); 9461 sc->intr_count = 0; 9462 sc->num_queues = 0; 9463 sc->interrupt_mode = -1; /* Failed! */ 9464 break; 9465 } 9466 9467 BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid); 9468 } while (0); 9469 9470 if (sc->interrupt_mode == -1) { 9471 BLOGE(sc, "Interrupt Allocation: FAILED!!!\n"); 9472 rc = 1; 9473 } else { 9474 BLOGD(sc, DBG_LOAD, 9475 "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n", 9476 sc->interrupt_mode, sc->num_queues); 9477 rc = 0; 9478 } 9479 9480 return (rc); 9481 } 9482 9483 static void 9484 bxe_interrupt_detach(struct bxe_softc *sc) 9485 { 9486 struct bxe_fastpath *fp; 9487 int i; 9488 9489 /* release interrupt resources */ 9490 for (i = 0; i < sc->intr_count; i++) { 9491 if (sc->intr[i].resource && sc->intr[i].tag) { 9492 BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i); 9493 bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag); 9494 } 9495 } 9496 9497 for (i = 0; i < sc->num_queues; i++) { 9498 fp = &sc->fp[i]; 9499 if (fp->tq) { 9500 taskqueue_drain(fp->tq, &fp->tq_task); 9501 taskqueue_free(fp->tq); 9502 fp->tq = NULL; 9503 } 9504 } 9505 9506 if (sc->rx_mode_tq) { 9507 taskqueue_drain(sc->rx_mode_tq, &sc->rx_mode_tq_task); 9508 taskqueue_free(sc->rx_mode_tq); 9509 sc->rx_mode_tq = NULL; 9510 } 9511 9512 if (sc->sp_tq) { 9513 taskqueue_drain(sc->sp_tq, &sc->sp_tq_task); 9514 taskqueue_free(sc->sp_tq); 9515 sc->sp_tq = NULL; 9516 } 9517 } 9518 9519 /* 9520 * Enables interrupts and attach to the ISR. 9521 * 9522 * When using multiple MSI/MSI-X vectors the first vector 9523 * is used for slowpath operations while all remaining 9524 * vectors are used for fastpath operations. If only a 9525 * single MSI/MSI-X vector is used (SINGLE_ISR) then the 9526 * ISR must look for both slowpath and fastpath completions. 9527 */ 9528 static int 9529 bxe_interrupt_attach(struct bxe_softc *sc) 9530 { 9531 struct bxe_fastpath *fp; 9532 int rc = 0; 9533 int i; 9534 9535 snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name), 9536 "bxe%d_sp_tq", sc->unit); 9537 TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc); 9538 sc->sp_tq = taskqueue_create_fast(sc->sp_tq_name, M_NOWAIT, 9539 taskqueue_thread_enqueue, 9540 &sc->sp_tq); 9541 taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */ 9542 "%s", sc->sp_tq_name); 9543 9544 snprintf(sc->rx_mode_tq_name, sizeof(sc->rx_mode_tq_name), 9545 "bxe%d_rx_mode_tq", sc->unit); 9546 TASK_INIT(&sc->rx_mode_tq_task, 0, bxe_handle_rx_mode_tq, sc); 9547 sc->rx_mode_tq = taskqueue_create_fast(sc->rx_mode_tq_name, M_NOWAIT, 9548 taskqueue_thread_enqueue, 9549 &sc->rx_mode_tq); 9550 taskqueue_start_threads(&sc->rx_mode_tq, 1, PWAIT, /* lower priority */ 9551 "%s", sc->rx_mode_tq_name); 9552 9553 for (i = 0; i < sc->num_queues; i++) { 9554 fp = &sc->fp[i]; 9555 snprintf(fp->tq_name, sizeof(fp->tq_name), 9556 "bxe%d_fp%d_tq", sc->unit, i); 9557 TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp); 9558 fp->tq = taskqueue_create_fast(fp->tq_name, M_NOWAIT, 9559 taskqueue_thread_enqueue, 9560 &fp->tq); 9561 taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */ 9562 "%s", fp->tq_name); 9563 } 9564 9565 /* setup interrupt handlers */ 9566 if (sc->interrupt_mode == INTR_MODE_MSIX) { 9567 BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n"); 9568 9569 /* 9570 * Setup the interrupt handler. Note that we pass the driver instance 9571 * to the interrupt handler for the slowpath. 9572 */ 9573 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9574 (INTR_TYPE_NET | INTR_MPSAFE), 9575 NULL, bxe_intr_sp, sc, 9576 &sc->intr[0].tag)) != 0) { 9577 BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc); 9578 goto bxe_interrupt_attach_exit; 9579 } 9580 9581 bus_describe_intr(sc->dev, sc->intr[0].resource, 9582 sc->intr[0].tag, "sp"); 9583 9584 /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */ 9585 9586 /* initialize the fastpath vectors (note the first was used for sp) */ 9587 for (i = 0; i < sc->num_queues; i++) { 9588 fp = &sc->fp[i]; 9589 BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1)); 9590 9591 /* 9592 * Setup the interrupt handler. Note that we pass the 9593 * fastpath context to the interrupt handler in this 9594 * case. 9595 */ 9596 if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource, 9597 (INTR_TYPE_NET | INTR_MPSAFE), 9598 NULL, bxe_intr_fp, fp, 9599 &sc->intr[i + 1].tag)) != 0) { 9600 BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n", 9601 (i + 1), rc); 9602 goto bxe_interrupt_attach_exit; 9603 } 9604 9605 bus_describe_intr(sc->dev, sc->intr[i + 1].resource, 9606 sc->intr[i + 1].tag, "fp%02d", i); 9607 9608 /* bind the fastpath instance to a cpu */ 9609 if (sc->num_queues > 1) { 9610 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i); 9611 } 9612 9613 fp->state = BXE_FP_STATE_IRQ; 9614 } 9615 } else if (sc->interrupt_mode == INTR_MODE_MSI) { 9616 BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n"); 9617 9618 /* 9619 * Setup the interrupt handler. Note that we pass the 9620 * driver instance to the interrupt handler which 9621 * will handle both the slowpath and fastpath. 9622 */ 9623 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9624 (INTR_TYPE_NET | INTR_MPSAFE), 9625 NULL, bxe_intr_legacy, sc, 9626 &sc->intr[0].tag)) != 0) { 9627 BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc); 9628 goto bxe_interrupt_attach_exit; 9629 } 9630 9631 } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */ 9632 BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n"); 9633 9634 /* 9635 * Setup the interrupt handler. Note that we pass the 9636 * driver instance to the interrupt handler which 9637 * will handle both the slowpath and fastpath. 9638 */ 9639 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9640 (INTR_TYPE_NET | INTR_MPSAFE), 9641 NULL, bxe_intr_legacy, sc, 9642 &sc->intr[0].tag)) != 0) { 9643 BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc); 9644 goto bxe_interrupt_attach_exit; 9645 } 9646 } 9647 9648 bxe_interrupt_attach_exit: 9649 9650 return (rc); 9651 } 9652 9653 static int bxe_init_hw_common_chip(struct bxe_softc *sc); 9654 static int bxe_init_hw_common(struct bxe_softc *sc); 9655 static int bxe_init_hw_port(struct bxe_softc *sc); 9656 static int bxe_init_hw_func(struct bxe_softc *sc); 9657 static void bxe_reset_common(struct bxe_softc *sc); 9658 static void bxe_reset_port(struct bxe_softc *sc); 9659 static void bxe_reset_func(struct bxe_softc *sc); 9660 static int bxe_gunzip_init(struct bxe_softc *sc); 9661 static void bxe_gunzip_end(struct bxe_softc *sc); 9662 static int bxe_init_firmware(struct bxe_softc *sc); 9663 static void bxe_release_firmware(struct bxe_softc *sc); 9664 9665 static struct 9666 ecore_func_sp_drv_ops bxe_func_sp_drv = { 9667 .init_hw_cmn_chip = bxe_init_hw_common_chip, 9668 .init_hw_cmn = bxe_init_hw_common, 9669 .init_hw_port = bxe_init_hw_port, 9670 .init_hw_func = bxe_init_hw_func, 9671 9672 .reset_hw_cmn = bxe_reset_common, 9673 .reset_hw_port = bxe_reset_port, 9674 .reset_hw_func = bxe_reset_func, 9675 9676 .gunzip_init = bxe_gunzip_init, 9677 .gunzip_end = bxe_gunzip_end, 9678 9679 .init_fw = bxe_init_firmware, 9680 .release_fw = bxe_release_firmware, 9681 }; 9682 9683 static void 9684 bxe_init_func_obj(struct bxe_softc *sc) 9685 { 9686 sc->dmae_ready = 0; 9687 9688 ecore_init_func_obj(sc, 9689 &sc->func_obj, 9690 BXE_SP(sc, func_rdata), 9691 BXE_SP_MAPPING(sc, func_rdata), 9692 BXE_SP(sc, func_afex_rdata), 9693 BXE_SP_MAPPING(sc, func_afex_rdata), 9694 &bxe_func_sp_drv); 9695 } 9696 9697 static int 9698 bxe_init_hw(struct bxe_softc *sc, 9699 uint32_t load_code) 9700 { 9701 struct ecore_func_state_params func_params = { NULL }; 9702 int rc; 9703 9704 /* prepare the parameters for function state transitions */ 9705 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); 9706 9707 func_params.f_obj = &sc->func_obj; 9708 func_params.cmd = ECORE_F_CMD_HW_INIT; 9709 9710 func_params.params.hw_init.load_phase = load_code; 9711 9712 /* 9713 * Via a plethora of function pointers, we will eventually reach 9714 * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func(). 9715 */ 9716 rc = ecore_func_state_change(sc, &func_params); 9717 9718 return (rc); 9719 } 9720 9721 static void 9722 bxe_fill(struct bxe_softc *sc, 9723 uint32_t addr, 9724 int fill, 9725 uint32_t len) 9726 { 9727 uint32_t i; 9728 9729 if (!(len % 4) && !(addr % 4)) { 9730 for (i = 0; i < len; i += 4) { 9731 REG_WR(sc, (addr + i), fill); 9732 } 9733 } else { 9734 for (i = 0; i < len; i++) { 9735 REG_WR8(sc, (addr + i), fill); 9736 } 9737 } 9738 } 9739 9740 /* writes FP SP data to FW - data_size in dwords */ 9741 static void 9742 bxe_wr_fp_sb_data(struct bxe_softc *sc, 9743 int fw_sb_id, 9744 uint32_t *sb_data_p, 9745 uint32_t data_size) 9746 { 9747 int index; 9748 9749 for (index = 0; index < data_size; index++) { 9750 REG_WR(sc, 9751 (BAR_CSTRORM_INTMEM + 9752 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) + 9753 (sizeof(uint32_t) * index)), 9754 *(sb_data_p + index)); 9755 } 9756 } 9757 9758 static void 9759 bxe_zero_fp_sb(struct bxe_softc *sc, 9760 int fw_sb_id) 9761 { 9762 struct hc_status_block_data_e2 sb_data_e2; 9763 struct hc_status_block_data_e1x sb_data_e1x; 9764 uint32_t *sb_data_p; 9765 uint32_t data_size = 0; 9766 9767 if (!CHIP_IS_E1x(sc)) { 9768 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 9769 sb_data_e2.common.state = SB_DISABLED; 9770 sb_data_e2.common.p_func.vf_valid = FALSE; 9771 sb_data_p = (uint32_t *)&sb_data_e2; 9772 data_size = (sizeof(struct hc_status_block_data_e2) / 9773 sizeof(uint32_t)); 9774 } else { 9775 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); 9776 sb_data_e1x.common.state = SB_DISABLED; 9777 sb_data_e1x.common.p_func.vf_valid = FALSE; 9778 sb_data_p = (uint32_t *)&sb_data_e1x; 9779 data_size = (sizeof(struct hc_status_block_data_e1x) / 9780 sizeof(uint32_t)); 9781 } 9782 9783 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); 9784 9785 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)), 9786 0, CSTORM_STATUS_BLOCK_SIZE); 9787 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)), 9788 0, CSTORM_SYNC_BLOCK_SIZE); 9789 } 9790 9791 static void 9792 bxe_wr_sp_sb_data(struct bxe_softc *sc, 9793 struct hc_sp_status_block_data *sp_sb_data) 9794 { 9795 int i; 9796 9797 for (i = 0; 9798 i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t)); 9799 i++) { 9800 REG_WR(sc, 9801 (BAR_CSTRORM_INTMEM + 9802 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) + 9803 (i * sizeof(uint32_t))), 9804 *((uint32_t *)sp_sb_data + i)); 9805 } 9806 } 9807 9808 static void 9809 bxe_zero_sp_sb(struct bxe_softc *sc) 9810 { 9811 struct hc_sp_status_block_data sp_sb_data; 9812 9813 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 9814 9815 sp_sb_data.state = SB_DISABLED; 9816 sp_sb_data.p_func.vf_valid = FALSE; 9817 9818 bxe_wr_sp_sb_data(sc, &sp_sb_data); 9819 9820 bxe_fill(sc, 9821 (BAR_CSTRORM_INTMEM + 9822 CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))), 9823 0, CSTORM_SP_STATUS_BLOCK_SIZE); 9824 bxe_fill(sc, 9825 (BAR_CSTRORM_INTMEM + 9826 CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))), 9827 0, CSTORM_SP_SYNC_BLOCK_SIZE); 9828 } 9829 9830 static void 9831 bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, 9832 int igu_sb_id, 9833 int igu_seg_id) 9834 { 9835 hc_sm->igu_sb_id = igu_sb_id; 9836 hc_sm->igu_seg_id = igu_seg_id; 9837 hc_sm->timer_value = 0xFF; 9838 hc_sm->time_to_expire = 0xFFFFFFFF; 9839 } 9840 9841 static void 9842 bxe_map_sb_state_machines(struct hc_index_data *index_data) 9843 { 9844 /* zero out state machine indices */ 9845 9846 /* rx indices */ 9847 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 9848 9849 /* tx indices */ 9850 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 9851 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID; 9852 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID; 9853 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID; 9854 9855 /* map indices */ 9856 9857 /* rx indices */ 9858 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |= 9859 (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9860 9861 /* tx indices */ 9862 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |= 9863 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9864 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |= 9865 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9866 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |= 9867 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9868 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |= 9869 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9870 } 9871 9872 static void 9873 bxe_init_sb(struct bxe_softc *sc, 9874 bus_addr_t busaddr, 9875 int vfid, 9876 uint8_t vf_valid, 9877 int fw_sb_id, 9878 int igu_sb_id) 9879 { 9880 struct hc_status_block_data_e2 sb_data_e2; 9881 struct hc_status_block_data_e1x sb_data_e1x; 9882 struct hc_status_block_sm *hc_sm_p; 9883 uint32_t *sb_data_p; 9884 int igu_seg_id; 9885 int data_size; 9886 9887 if (CHIP_INT_MODE_IS_BC(sc)) { 9888 igu_seg_id = HC_SEG_ACCESS_NORM; 9889 } else { 9890 igu_seg_id = IGU_SEG_ACCESS_NORM; 9891 } 9892 9893 bxe_zero_fp_sb(sc, fw_sb_id); 9894 9895 if (!CHIP_IS_E1x(sc)) { 9896 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 9897 sb_data_e2.common.state = SB_ENABLED; 9898 sb_data_e2.common.p_func.pf_id = SC_FUNC(sc); 9899 sb_data_e2.common.p_func.vf_id = vfid; 9900 sb_data_e2.common.p_func.vf_valid = vf_valid; 9901 sb_data_e2.common.p_func.vnic_id = SC_VN(sc); 9902 sb_data_e2.common.same_igu_sb_1b = TRUE; 9903 sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr); 9904 sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr); 9905 hc_sm_p = sb_data_e2.common.state_machine; 9906 sb_data_p = (uint32_t *)&sb_data_e2; 9907 data_size = (sizeof(struct hc_status_block_data_e2) / 9908 sizeof(uint32_t)); 9909 bxe_map_sb_state_machines(sb_data_e2.index_data); 9910 } else { 9911 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); 9912 sb_data_e1x.common.state = SB_ENABLED; 9913 sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc); 9914 sb_data_e1x.common.p_func.vf_id = 0xff; 9915 sb_data_e1x.common.p_func.vf_valid = FALSE; 9916 sb_data_e1x.common.p_func.vnic_id = SC_VN(sc); 9917 sb_data_e1x.common.same_igu_sb_1b = TRUE; 9918 sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr); 9919 sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr); 9920 hc_sm_p = sb_data_e1x.common.state_machine; 9921 sb_data_p = (uint32_t *)&sb_data_e1x; 9922 data_size = (sizeof(struct hc_status_block_data_e1x) / 9923 sizeof(uint32_t)); 9924 bxe_map_sb_state_machines(sb_data_e1x.index_data); 9925 } 9926 9927 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id); 9928 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id); 9929 9930 BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id); 9931 9932 /* write indices to HW - PCI guarantees endianity of regpairs */ 9933 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); 9934 } 9935 9936 static inline uint8_t 9937 bxe_fp_qzone_id(struct bxe_fastpath *fp) 9938 { 9939 if (CHIP_IS_E1x(fp->sc)) { 9940 return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H); 9941 } else { 9942 return (fp->cl_id); 9943 } 9944 } 9945 9946 static inline uint32_t 9947 bxe_rx_ustorm_prods_offset(struct bxe_softc *sc, 9948 struct bxe_fastpath *fp) 9949 { 9950 uint32_t offset = BAR_USTRORM_INTMEM; 9951 9952 #if 0 9953 if (IS_VF(sc)) { 9954 return (PXP_VF_ADDR_USDM_QUEUES_START + 9955 (sc->acquire_resp.resc.hw_qid[fp->index] * 9956 sizeof(struct ustorm_queue_zone_data))); 9957 } else 9958 #endif 9959 if (!CHIP_IS_E1x(sc)) { 9960 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id); 9961 } else { 9962 offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id); 9963 } 9964 9965 return (offset); 9966 } 9967 9968 static void 9969 bxe_init_eth_fp(struct bxe_softc *sc, 9970 int idx) 9971 { 9972 struct bxe_fastpath *fp = &sc->fp[idx]; 9973 uint32_t cids[ECORE_MULTI_TX_COS] = { 0 }; 9974 unsigned long q_type = 0; 9975 int cos; 9976 9977 fp->sc = sc; 9978 fp->index = idx; 9979 9980 snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name), 9981 "bxe%d_fp%d_tx_lock", sc->unit, idx); 9982 mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF); 9983 9984 snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name), 9985 "bxe%d_fp%d_rx_lock", sc->unit, idx); 9986 mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF); 9987 9988 fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc)); 9989 fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc)); 9990 9991 fp->cl_id = (CHIP_IS_E1x(sc)) ? 9992 (SC_L_ID(sc) + idx) : 9993 /* want client ID same as IGU SB ID for non-E1 */ 9994 fp->igu_sb_id; 9995 fp->cl_qzone_id = bxe_fp_qzone_id(fp); 9996 9997 /* setup sb indices */ 9998 if (!CHIP_IS_E1x(sc)) { 9999 fp->sb_index_values = fp->status_block.e2_sb->sb.index_values; 10000 fp->sb_running_index = fp->status_block.e2_sb->sb.running_index; 10001 } else { 10002 fp->sb_index_values = fp->status_block.e1x_sb->sb.index_values; 10003 fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index; 10004 } 10005 10006 /* init shortcut */ 10007 fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp); 10008 10009 fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS]; 10010 10011 /* 10012 * XXX If multiple CoS is ever supported then each fastpath structure 10013 * will need to maintain tx producer/consumer/dma/etc values *per* CoS. 10014 */ 10015 for (cos = 0; cos < sc->max_cos; cos++) { 10016 cids[cos] = idx; 10017 } 10018 fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0]; 10019 10020 /* nothing more for a VF to do */ 10021 if (IS_VF(sc)) { 10022 return; 10023 } 10024 10025 bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE, 10026 fp->fw_sb_id, fp->igu_sb_id); 10027 10028 bxe_update_fp_sb_idx(fp); 10029 10030 /* Configure Queue State object */ 10031 bit_set(&q_type, ECORE_Q_TYPE_HAS_RX); 10032 bit_set(&q_type, ECORE_Q_TYPE_HAS_TX); 10033 10034 ecore_init_queue_obj(sc, 10035 &sc->sp_objs[idx].q_obj, 10036 fp->cl_id, 10037 cids, 10038 sc->max_cos, 10039 SC_FUNC(sc), 10040 BXE_SP(sc, q_rdata), 10041 BXE_SP_MAPPING(sc, q_rdata), 10042 q_type); 10043 10044 /* configure classification DBs */ 10045 ecore_init_mac_obj(sc, 10046 &sc->sp_objs[idx].mac_obj, 10047 fp->cl_id, 10048 idx, 10049 SC_FUNC(sc), 10050 BXE_SP(sc, mac_rdata), 10051 BXE_SP_MAPPING(sc, mac_rdata), 10052 ECORE_FILTER_MAC_PENDING, 10053 &sc->sp_state, 10054 ECORE_OBJ_TYPE_RX_TX, 10055 &sc->macs_pool); 10056 10057 BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n", 10058 idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id); 10059 } 10060 10061 static inline void 10062 bxe_update_rx_prod(struct bxe_softc *sc, 10063 struct bxe_fastpath *fp, 10064 uint16_t rx_bd_prod, 10065 uint16_t rx_cq_prod, 10066 uint16_t rx_sge_prod) 10067 { 10068 struct ustorm_eth_rx_producers rx_prods = { 0 }; 10069 uint32_t i; 10070 10071 /* update producers */ 10072 rx_prods.bd_prod = rx_bd_prod; 10073 rx_prods.cqe_prod = rx_cq_prod; 10074 rx_prods.sge_prod = rx_sge_prod; 10075 10076 /* 10077 * Make sure that the BD and SGE data is updated before updating the 10078 * producers since FW might read the BD/SGE right after the producer 10079 * is updated. 10080 * This is only applicable for weak-ordered memory model archs such 10081 * as IA-64. The following barrier is also mandatory since FW will 10082 * assumes BDs must have buffers. 10083 */ 10084 wmb(); 10085 10086 for (i = 0; i < (sizeof(rx_prods) / 4); i++) { 10087 REG_WR(sc, 10088 (fp->ustorm_rx_prods_offset + (i * 4)), 10089 ((uint32_t *)&rx_prods)[i]); 10090 } 10091 10092 wmb(); /* keep prod updates ordered */ 10093 10094 BLOGD(sc, DBG_RX, 10095 "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n", 10096 fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod); 10097 } 10098 10099 static void 10100 bxe_init_rx_rings(struct bxe_softc *sc) 10101 { 10102 struct bxe_fastpath *fp; 10103 int i; 10104 10105 for (i = 0; i < sc->num_queues; i++) { 10106 fp = &sc->fp[i]; 10107 10108 fp->rx_bd_cons = 0; 10109 10110 /* 10111 * Activate the BD ring... 10112 * Warning, this will generate an interrupt (to the TSTORM) 10113 * so this can only be done after the chip is initialized 10114 */ 10115 bxe_update_rx_prod(sc, fp, 10116 fp->rx_bd_prod, 10117 fp->rx_cq_prod, 10118 fp->rx_sge_prod); 10119 10120 if (i != 0) { 10121 continue; 10122 } 10123 10124 if (CHIP_IS_E1(sc)) { 10125 REG_WR(sc, 10126 (BAR_USTRORM_INTMEM + 10127 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))), 10128 U64_LO(fp->rcq_dma.paddr)); 10129 REG_WR(sc, 10130 (BAR_USTRORM_INTMEM + 10131 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4), 10132 U64_HI(fp->rcq_dma.paddr)); 10133 } 10134 } 10135 } 10136 10137 static void 10138 bxe_init_tx_ring_one(struct bxe_fastpath *fp) 10139 { 10140 SET_FLAG(fp->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1); 10141 fp->tx_db.data.zero_fill1 = 0; 10142 fp->tx_db.data.prod = 0; 10143 10144 fp->tx_pkt_prod = 0; 10145 fp->tx_pkt_cons = 0; 10146 fp->tx_bd_prod = 0; 10147 fp->tx_bd_cons = 0; 10148 fp->eth_q_stats.tx_pkts = 0; 10149 } 10150 10151 static inline void 10152 bxe_init_tx_rings(struct bxe_softc *sc) 10153 { 10154 int i; 10155 10156 for (i = 0; i < sc->num_queues; i++) { 10157 #if 0 10158 uint8_t cos; 10159 for (cos = 0; cos < sc->max_cos; cos++) { 10160 bxe_init_tx_ring_one(&sc->fp[i].txdata[cos]); 10161 } 10162 #else 10163 bxe_init_tx_ring_one(&sc->fp[i]); 10164 #endif 10165 } 10166 } 10167 10168 static void 10169 bxe_init_def_sb(struct bxe_softc *sc) 10170 { 10171 struct host_sp_status_block *def_sb = sc->def_sb; 10172 bus_addr_t mapping = sc->def_sb_dma.paddr; 10173 int igu_sp_sb_index; 10174 int igu_seg_id; 10175 int port = SC_PORT(sc); 10176 int func = SC_FUNC(sc); 10177 int reg_offset, reg_offset_en5; 10178 uint64_t section; 10179 int index, sindex; 10180 struct hc_sp_status_block_data sp_sb_data; 10181 10182 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 10183 10184 if (CHIP_INT_MODE_IS_BC(sc)) { 10185 igu_sp_sb_index = DEF_SB_IGU_ID; 10186 igu_seg_id = HC_SEG_ACCESS_DEF; 10187 } else { 10188 igu_sp_sb_index = sc->igu_dsb_id; 10189 igu_seg_id = IGU_SEG_ACCESS_DEF; 10190 } 10191 10192 /* attentions */ 10193 section = ((uint64_t)mapping + 10194 offsetof(struct host_sp_status_block, atten_status_block)); 10195 def_sb->atten_status_block.status_block_id = igu_sp_sb_index; 10196 sc->attn_state = 0; 10197 10198 reg_offset = (port) ? 10199 MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 10200 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; 10201 reg_offset_en5 = (port) ? 10202 MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 : 10203 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0; 10204 10205 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 10206 /* take care of sig[0]..sig[4] */ 10207 for (sindex = 0; sindex < 4; sindex++) { 10208 sc->attn_group[index].sig[sindex] = 10209 REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index))); 10210 } 10211 10212 if (!CHIP_IS_E1x(sc)) { 10213 /* 10214 * enable5 is separate from the rest of the registers, 10215 * and the address skip is 4 and not 16 between the 10216 * different groups 10217 */ 10218 sc->attn_group[index].sig[4] = 10219 REG_RD(sc, (reg_offset_en5 + (0x4 * index))); 10220 } else { 10221 sc->attn_group[index].sig[4] = 0; 10222 } 10223 } 10224 10225 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10226 reg_offset = (port) ? 10227 HC_REG_ATTN_MSG1_ADDR_L : 10228 HC_REG_ATTN_MSG0_ADDR_L; 10229 REG_WR(sc, reg_offset, U64_LO(section)); 10230 REG_WR(sc, (reg_offset + 4), U64_HI(section)); 10231 } else if (!CHIP_IS_E1x(sc)) { 10232 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section)); 10233 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section)); 10234 } 10235 10236 section = ((uint64_t)mapping + 10237 offsetof(struct host_sp_status_block, sp_sb)); 10238 10239 bxe_zero_sp_sb(sc); 10240 10241 /* PCI guarantees endianity of regpair */ 10242 sp_sb_data.state = SB_ENABLED; 10243 sp_sb_data.host_sb_addr.lo = U64_LO(section); 10244 sp_sb_data.host_sb_addr.hi = U64_HI(section); 10245 sp_sb_data.igu_sb_id = igu_sp_sb_index; 10246 sp_sb_data.igu_seg_id = igu_seg_id; 10247 sp_sb_data.p_func.pf_id = func; 10248 sp_sb_data.p_func.vnic_id = SC_VN(sc); 10249 sp_sb_data.p_func.vf_id = 0xff; 10250 10251 bxe_wr_sp_sb_data(sc, &sp_sb_data); 10252 10253 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 10254 } 10255 10256 static void 10257 bxe_init_sp_ring(struct bxe_softc *sc) 10258 { 10259 atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING); 10260 sc->spq_prod_idx = 0; 10261 sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS]; 10262 sc->spq_prod_bd = sc->spq; 10263 sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT); 10264 } 10265 10266 static void 10267 bxe_init_eq_ring(struct bxe_softc *sc) 10268 { 10269 union event_ring_elem *elem; 10270 int i; 10271 10272 for (i = 1; i <= NUM_EQ_PAGES; i++) { 10273 elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1]; 10274 10275 elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr + 10276 BCM_PAGE_SIZE * 10277 (i % NUM_EQ_PAGES))); 10278 elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr + 10279 BCM_PAGE_SIZE * 10280 (i % NUM_EQ_PAGES))); 10281 } 10282 10283 sc->eq_cons = 0; 10284 sc->eq_prod = NUM_EQ_DESC; 10285 sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS]; 10286 10287 atomic_store_rel_long(&sc->eq_spq_left, 10288 (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING), 10289 NUM_EQ_DESC) - 1)); 10290 } 10291 10292 static void 10293 bxe_init_internal_common(struct bxe_softc *sc) 10294 { 10295 int i; 10296 10297 if (IS_MF_SI(sc)) { 10298 /* 10299 * In switch independent mode, the TSTORM needs to accept 10300 * packets that failed classification, since approximate match 10301 * mac addresses aren't written to NIG LLH. 10302 */ 10303 REG_WR8(sc, 10304 (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), 10305 2); 10306 } else if (!CHIP_IS_E1(sc)) { /* 57710 doesn't support MF */ 10307 REG_WR8(sc, 10308 (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), 10309 0); 10310 } 10311 10312 /* 10313 * Zero this manually as its initialization is currently missing 10314 * in the initTool. 10315 */ 10316 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) { 10317 REG_WR(sc, 10318 (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)), 10319 0); 10320 } 10321 10322 if (!CHIP_IS_E1x(sc)) { 10323 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET), 10324 CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE); 10325 } 10326 } 10327 10328 static void 10329 bxe_init_internal(struct bxe_softc *sc, 10330 uint32_t load_code) 10331 { 10332 switch (load_code) { 10333 case FW_MSG_CODE_DRV_LOAD_COMMON: 10334 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: 10335 bxe_init_internal_common(sc); 10336 /* no break */ 10337 10338 case FW_MSG_CODE_DRV_LOAD_PORT: 10339 /* nothing to do */ 10340 /* no break */ 10341 10342 case FW_MSG_CODE_DRV_LOAD_FUNCTION: 10343 /* internal memory per function is initialized inside bxe_pf_init */ 10344 break; 10345 10346 default: 10347 BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code); 10348 break; 10349 } 10350 } 10351 10352 static void 10353 storm_memset_func_cfg(struct bxe_softc *sc, 10354 struct tstorm_eth_function_common_config *tcfg, 10355 uint16_t abs_fid) 10356 { 10357 uint32_t addr; 10358 size_t size; 10359 10360 addr = (BAR_TSTRORM_INTMEM + 10361 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid)); 10362 size = sizeof(struct tstorm_eth_function_common_config); 10363 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg); 10364 } 10365 10366 static void 10367 bxe_func_init(struct bxe_softc *sc, 10368 struct bxe_func_init_params *p) 10369 { 10370 struct tstorm_eth_function_common_config tcfg = { 0 }; 10371 10372 if (CHIP_IS_E1x(sc)) { 10373 storm_memset_func_cfg(sc, &tcfg, p->func_id); 10374 } 10375 10376 /* Enable the function in the FW */ 10377 storm_memset_vf_to_pf(sc, p->func_id, p->pf_id); 10378 storm_memset_func_en(sc, p->func_id, 1); 10379 10380 /* spq */ 10381 if (p->func_flgs & FUNC_FLG_SPQ) { 10382 storm_memset_spq_addr(sc, p->spq_map, p->func_id); 10383 REG_WR(sc, 10384 (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)), 10385 p->spq_prod); 10386 } 10387 } 10388 10389 /* 10390 * Calculates the sum of vn_min_rates. 10391 * It's needed for further normalizing of the min_rates. 10392 * Returns: 10393 * sum of vn_min_rates. 10394 * or 10395 * 0 - if all the min_rates are 0. 10396 * In the later case fainess algorithm should be deactivated. 10397 * If all min rates are not zero then those that are zeroes will be set to 1. 10398 */ 10399 static void 10400 bxe_calc_vn_min(struct bxe_softc *sc, 10401 struct cmng_init_input *input) 10402 { 10403 uint32_t vn_cfg; 10404 uint32_t vn_min_rate; 10405 int all_zero = 1; 10406 int vn; 10407 10408 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10409 vn_cfg = sc->devinfo.mf_info.mf_config[vn]; 10410 vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >> 10411 FUNC_MF_CFG_MIN_BW_SHIFT) * 100); 10412 10413 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { 10414 /* skip hidden VNs */ 10415 vn_min_rate = 0; 10416 } else if (!vn_min_rate) { 10417 /* If min rate is zero - set it to 100 */ 10418 vn_min_rate = DEF_MIN_RATE; 10419 } else { 10420 all_zero = 0; 10421 } 10422 10423 input->vnic_min_rate[vn] = vn_min_rate; 10424 } 10425 10426 /* if ETS or all min rates are zeros - disable fairness */ 10427 if (BXE_IS_ETS_ENABLED(sc)) { 10428 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10429 BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n"); 10430 } else if (all_zero) { 10431 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10432 BLOGD(sc, DBG_LOAD, 10433 "Fariness disabled (all MIN values are zeroes)\n"); 10434 } else { 10435 input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10436 } 10437 } 10438 10439 static inline uint16_t 10440 bxe_extract_max_cfg(struct bxe_softc *sc, 10441 uint32_t mf_cfg) 10442 { 10443 uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >> 10444 FUNC_MF_CFG_MAX_BW_SHIFT); 10445 10446 if (!max_cfg) { 10447 BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n"); 10448 max_cfg = 100; 10449 } 10450 10451 return (max_cfg); 10452 } 10453 10454 static void 10455 bxe_calc_vn_max(struct bxe_softc *sc, 10456 int vn, 10457 struct cmng_init_input *input) 10458 { 10459 uint16_t vn_max_rate; 10460 uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn]; 10461 uint32_t max_cfg; 10462 10463 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { 10464 vn_max_rate = 0; 10465 } else { 10466 max_cfg = bxe_extract_max_cfg(sc, vn_cfg); 10467 10468 if (IS_MF_SI(sc)) { 10469 /* max_cfg in percents of linkspeed */ 10470 vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100); 10471 } else { /* SD modes */ 10472 /* max_cfg is absolute in 100Mb units */ 10473 vn_max_rate = (max_cfg * 100); 10474 } 10475 } 10476 10477 BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate); 10478 10479 input->vnic_max_rate[vn] = vn_max_rate; 10480 } 10481 10482 static void 10483 bxe_cmng_fns_init(struct bxe_softc *sc, 10484 uint8_t read_cfg, 10485 uint8_t cmng_type) 10486 { 10487 struct cmng_init_input input; 10488 int vn; 10489 10490 memset(&input, 0, sizeof(struct cmng_init_input)); 10491 10492 input.port_rate = sc->link_vars.line_speed; 10493 10494 if (cmng_type == CMNG_FNS_MINMAX) { 10495 /* read mf conf from shmem */ 10496 if (read_cfg) { 10497 bxe_read_mf_cfg(sc); 10498 } 10499 10500 /* get VN min rate and enable fairness if not 0 */ 10501 bxe_calc_vn_min(sc, &input); 10502 10503 /* get VN max rate */ 10504 if (sc->port.pmf) { 10505 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10506 bxe_calc_vn_max(sc, vn, &input); 10507 } 10508 } 10509 10510 /* always enable rate shaping and fairness */ 10511 input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN; 10512 10513 ecore_init_cmng(&input, &sc->cmng); 10514 return; 10515 } 10516 10517 /* rate shaping and fairness are disabled */ 10518 BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n"); 10519 } 10520 10521 static int 10522 bxe_get_cmng_fns_mode(struct bxe_softc *sc) 10523 { 10524 if (CHIP_REV_IS_SLOW(sc)) { 10525 return (CMNG_FNS_NONE); 10526 } 10527 10528 if (IS_MF(sc)) { 10529 return (CMNG_FNS_MINMAX); 10530 } 10531 10532 return (CMNG_FNS_NONE); 10533 } 10534 10535 static void 10536 storm_memset_cmng(struct bxe_softc *sc, 10537 struct cmng_init *cmng, 10538 uint8_t port) 10539 { 10540 int vn; 10541 int func; 10542 uint32_t addr; 10543 size_t size; 10544 10545 addr = (BAR_XSTRORM_INTMEM + 10546 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port)); 10547 size = sizeof(struct cmng_struct_per_port); 10548 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port); 10549 10550 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10551 func = func_by_vn(sc, vn); 10552 10553 addr = (BAR_XSTRORM_INTMEM + 10554 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func)); 10555 size = sizeof(struct rate_shaping_vars_per_vn); 10556 ecore_storm_memset_struct(sc, addr, size, 10557 (uint32_t *)&cmng->vnic.vnic_max_rate[vn]); 10558 10559 addr = (BAR_XSTRORM_INTMEM + 10560 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func)); 10561 size = sizeof(struct fairness_vars_per_vn); 10562 ecore_storm_memset_struct(sc, addr, size, 10563 (uint32_t *)&cmng->vnic.vnic_min_rate[vn]); 10564 } 10565 } 10566 10567 static void 10568 bxe_pf_init(struct bxe_softc *sc) 10569 { 10570 struct bxe_func_init_params func_init = { 0 }; 10571 struct event_ring_data eq_data = { { 0 } }; 10572 uint16_t flags; 10573 10574 if (!CHIP_IS_E1x(sc)) { 10575 /* reset IGU PF statistics: MSIX + ATTN */ 10576 /* PF */ 10577 REG_WR(sc, 10578 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 10579 (BXE_IGU_STAS_MSG_VF_CNT * 4) + 10580 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 10581 0); 10582 /* ATTN */ 10583 REG_WR(sc, 10584 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 10585 (BXE_IGU_STAS_MSG_VF_CNT * 4) + 10586 (BXE_IGU_STAS_MSG_PF_CNT * 4) + 10587 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 10588 0); 10589 } 10590 10591 /* function setup flags */ 10592 flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ); 10593 10594 /* 10595 * This flag is relevant for E1x only. 10596 * E2 doesn't have a TPA configuration in a function level. 10597 */ 10598 flags |= (if_getcapenable(sc->ifp) & IFCAP_LRO) ? FUNC_FLG_TPA : 0; 10599 10600 func_init.func_flgs = flags; 10601 func_init.pf_id = SC_FUNC(sc); 10602 func_init.func_id = SC_FUNC(sc); 10603 func_init.spq_map = sc->spq_dma.paddr; 10604 func_init.spq_prod = sc->spq_prod_idx; 10605 10606 bxe_func_init(sc, &func_init); 10607 10608 memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port)); 10609 10610 /* 10611 * Congestion management values depend on the link rate. 10612 * There is no active link so initial link rate is set to 10Gbps. 10613 * When the link comes up the congestion management values are 10614 * re-calculated according to the actual link rate. 10615 */ 10616 sc->link_vars.line_speed = SPEED_10000; 10617 bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc)); 10618 10619 /* Only the PMF sets the HW */ 10620 if (sc->port.pmf) { 10621 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 10622 } 10623 10624 /* init Event Queue - PCI bus guarantees correct endainity */ 10625 eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr); 10626 eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr); 10627 eq_data.producer = sc->eq_prod; 10628 eq_data.index_id = HC_SP_INDEX_EQ_CONS; 10629 eq_data.sb_id = DEF_SB_ID; 10630 storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc)); 10631 } 10632 10633 static void 10634 bxe_hc_int_enable(struct bxe_softc *sc) 10635 { 10636 int port = SC_PORT(sc); 10637 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 10638 uint32_t val = REG_RD(sc, addr); 10639 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; 10640 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && 10641 (sc->intr_count == 1)) ? TRUE : FALSE; 10642 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; 10643 10644 if (msix) { 10645 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10646 HC_CONFIG_0_REG_INT_LINE_EN_0); 10647 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10648 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10649 if (single_msix) { 10650 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0; 10651 } 10652 } else if (msi) { 10653 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0; 10654 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10655 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10656 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10657 } else { 10658 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10659 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10660 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10661 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10662 10663 if (!CHIP_IS_E1(sc)) { 10664 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", 10665 val, port, addr); 10666 10667 REG_WR(sc, addr, val); 10668 10669 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0; 10670 } 10671 } 10672 10673 if (CHIP_IS_E1(sc)) { 10674 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF); 10675 } 10676 10677 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n", 10678 val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); 10679 10680 REG_WR(sc, addr, val); 10681 10682 /* ensure that HC_CONFIG is written before leading/trailing edge config */ 10683 mb(); 10684 10685 if (!CHIP_IS_E1(sc)) { 10686 /* init leading/trailing edge */ 10687 if (IS_MF(sc)) { 10688 val = (0xee0f | (1 << (SC_VN(sc) + 4))); 10689 if (sc->port.pmf) { 10690 /* enable nig and gpio3 attention */ 10691 val |= 0x1100; 10692 } 10693 } else { 10694 val = 0xffff; 10695 } 10696 10697 REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val); 10698 REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val); 10699 } 10700 10701 /* make sure that interrupts are indeed enabled from here on */ 10702 mb(); 10703 } 10704 10705 static void 10706 bxe_igu_int_enable(struct bxe_softc *sc) 10707 { 10708 uint32_t val; 10709 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; 10710 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && 10711 (sc->intr_count == 1)) ? TRUE : FALSE; 10712 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; 10713 10714 val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 10715 10716 if (msix) { 10717 val &= ~(IGU_PF_CONF_INT_LINE_EN | 10718 IGU_PF_CONF_SINGLE_ISR_EN); 10719 val |= (IGU_PF_CONF_MSI_MSIX_EN | 10720 IGU_PF_CONF_ATTN_BIT_EN); 10721 if (single_msix) { 10722 val |= IGU_PF_CONF_SINGLE_ISR_EN; 10723 } 10724 } else if (msi) { 10725 val &= ~IGU_PF_CONF_INT_LINE_EN; 10726 val |= (IGU_PF_CONF_MSI_MSIX_EN | 10727 IGU_PF_CONF_ATTN_BIT_EN | 10728 IGU_PF_CONF_SINGLE_ISR_EN); 10729 } else { 10730 val &= ~IGU_PF_CONF_MSI_MSIX_EN; 10731 val |= (IGU_PF_CONF_INT_LINE_EN | 10732 IGU_PF_CONF_ATTN_BIT_EN | 10733 IGU_PF_CONF_SINGLE_ISR_EN); 10734 } 10735 10736 /* clean previous status - need to configure igu prior to ack*/ 10737 if ((!msix) || single_msix) { 10738 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10739 bxe_ack_int(sc); 10740 } 10741 10742 val |= IGU_PF_CONF_FUNC_EN; 10743 10744 BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n", 10745 val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); 10746 10747 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10748 10749 mb(); 10750 10751 /* init leading/trailing edge */ 10752 if (IS_MF(sc)) { 10753 val = (0xee0f | (1 << (SC_VN(sc) + 4))); 10754 if (sc->port.pmf) { 10755 /* enable nig and gpio3 attention */ 10756 val |= 0x1100; 10757 } 10758 } else { 10759 val = 0xffff; 10760 } 10761 10762 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); 10763 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); 10764 10765 /* make sure that interrupts are indeed enabled from here on */ 10766 mb(); 10767 } 10768 10769 static void 10770 bxe_int_enable(struct bxe_softc *sc) 10771 { 10772 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10773 bxe_hc_int_enable(sc); 10774 } else { 10775 bxe_igu_int_enable(sc); 10776 } 10777 } 10778 10779 static void 10780 bxe_hc_int_disable(struct bxe_softc *sc) 10781 { 10782 int port = SC_PORT(sc); 10783 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 10784 uint32_t val = REG_RD(sc, addr); 10785 10786 /* 10787 * In E1 we must use only PCI configuration space to disable MSI/MSIX 10788 * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC 10789 * block 10790 */ 10791 if (CHIP_IS_E1(sc)) { 10792 /* 10793 * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register 10794 * to prevent from HC sending interrupts after we exit the function 10795 */ 10796 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0); 10797 10798 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10799 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10800 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10801 } else { 10802 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10803 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10804 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10805 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10806 } 10807 10808 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr); 10809 10810 /* flush all outstanding writes */ 10811 mb(); 10812 10813 REG_WR(sc, addr, val); 10814 if (REG_RD(sc, addr) != val) { 10815 BLOGE(sc, "proper val not read from HC IGU!\n"); 10816 } 10817 } 10818 10819 static void 10820 bxe_igu_int_disable(struct bxe_softc *sc) 10821 { 10822 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 10823 10824 val &= ~(IGU_PF_CONF_MSI_MSIX_EN | 10825 IGU_PF_CONF_INT_LINE_EN | 10826 IGU_PF_CONF_ATTN_BIT_EN); 10827 10828 BLOGD(sc, DBG_INTR, "write %x to IGU\n", val); 10829 10830 /* flush all outstanding writes */ 10831 mb(); 10832 10833 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10834 if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) { 10835 BLOGE(sc, "proper val not read from IGU!\n"); 10836 } 10837 } 10838 10839 static void 10840 bxe_int_disable(struct bxe_softc *sc) 10841 { 10842 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10843 bxe_hc_int_disable(sc); 10844 } else { 10845 bxe_igu_int_disable(sc); 10846 } 10847 } 10848 10849 static void 10850 bxe_nic_init(struct bxe_softc *sc, 10851 int load_code) 10852 { 10853 int i; 10854 10855 for (i = 0; i < sc->num_queues; i++) { 10856 bxe_init_eth_fp(sc, i); 10857 } 10858 10859 rmb(); /* ensure status block indices were read */ 10860 10861 bxe_init_rx_rings(sc); 10862 bxe_init_tx_rings(sc); 10863 10864 if (IS_VF(sc)) { 10865 return; 10866 } 10867 10868 /* initialize MOD_ABS interrupts */ 10869 elink_init_mod_abs_int(sc, &sc->link_vars, 10870 sc->devinfo.chip_id, 10871 sc->devinfo.shmem_base, 10872 sc->devinfo.shmem2_base, 10873 SC_PORT(sc)); 10874 10875 bxe_init_def_sb(sc); 10876 bxe_update_dsb_idx(sc); 10877 bxe_init_sp_ring(sc); 10878 bxe_init_eq_ring(sc); 10879 bxe_init_internal(sc, load_code); 10880 bxe_pf_init(sc); 10881 bxe_stats_init(sc); 10882 10883 /* flush all before enabling interrupts */ 10884 mb(); 10885 10886 bxe_int_enable(sc); 10887 10888 /* check for SPIO5 */ 10889 bxe_attn_int_deasserted0(sc, 10890 REG_RD(sc, 10891 (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + 10892 SC_PORT(sc)*4)) & 10893 AEU_INPUTS_ATTN_BITS_SPIO5); 10894 } 10895 10896 static inline void 10897 bxe_init_objs(struct bxe_softc *sc) 10898 { 10899 /* mcast rules must be added to tx if tx switching is enabled */ 10900 ecore_obj_type o_type = 10901 (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX : 10902 ECORE_OBJ_TYPE_RX; 10903 10904 /* RX_MODE controlling object */ 10905 ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj); 10906 10907 /* multicast configuration controlling object */ 10908 ecore_init_mcast_obj(sc, 10909 &sc->mcast_obj, 10910 sc->fp[0].cl_id, 10911 sc->fp[0].index, 10912 SC_FUNC(sc), 10913 SC_FUNC(sc), 10914 BXE_SP(sc, mcast_rdata), 10915 BXE_SP_MAPPING(sc, mcast_rdata), 10916 ECORE_FILTER_MCAST_PENDING, 10917 &sc->sp_state, 10918 o_type); 10919 10920 /* Setup CAM credit pools */ 10921 ecore_init_mac_credit_pool(sc, 10922 &sc->macs_pool, 10923 SC_FUNC(sc), 10924 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : 10925 VNICS_PER_PATH(sc)); 10926 10927 ecore_init_vlan_credit_pool(sc, 10928 &sc->vlans_pool, 10929 SC_ABS_FUNC(sc) >> 1, 10930 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : 10931 VNICS_PER_PATH(sc)); 10932 10933 /* RSS configuration object */ 10934 ecore_init_rss_config_obj(sc, 10935 &sc->rss_conf_obj, 10936 sc->fp[0].cl_id, 10937 sc->fp[0].index, 10938 SC_FUNC(sc), 10939 SC_FUNC(sc), 10940 BXE_SP(sc, rss_rdata), 10941 BXE_SP_MAPPING(sc, rss_rdata), 10942 ECORE_FILTER_RSS_CONF_PENDING, 10943 &sc->sp_state, ECORE_OBJ_TYPE_RX); 10944 } 10945 10946 /* 10947 * Initialize the function. This must be called before sending CLIENT_SETUP 10948 * for the first client. 10949 */ 10950 static inline int 10951 bxe_func_start(struct bxe_softc *sc) 10952 { 10953 struct ecore_func_state_params func_params = { NULL }; 10954 struct ecore_func_start_params *start_params = &func_params.params.start; 10955 10956 /* Prepare parameters for function state transitions */ 10957 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); 10958 10959 func_params.f_obj = &sc->func_obj; 10960 func_params.cmd = ECORE_F_CMD_START; 10961 10962 /* Function parameters */ 10963 start_params->mf_mode = sc->devinfo.mf_info.mf_mode; 10964 start_params->sd_vlan_tag = OVLAN(sc); 10965 10966 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) { 10967 start_params->network_cos_mode = STATIC_COS; 10968 } else { /* CHIP_IS_E1X */ 10969 start_params->network_cos_mode = FW_WRR; 10970 } 10971 10972 start_params->gre_tunnel_mode = 0; 10973 start_params->gre_tunnel_rss = 0; 10974 10975 return (ecore_func_state_change(sc, &func_params)); 10976 } 10977 10978 static int 10979 bxe_set_power_state(struct bxe_softc *sc, 10980 uint8_t state) 10981 { 10982 uint16_t pmcsr; 10983 10984 /* If there is no power capability, silently succeed */ 10985 if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) { 10986 BLOGW(sc, "No power capability\n"); 10987 return (0); 10988 } 10989 10990 pmcsr = pci_read_config(sc->dev, 10991 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10992 2); 10993 10994 switch (state) { 10995 case PCI_PM_D0: 10996 pci_write_config(sc->dev, 10997 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10998 ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2); 10999 11000 if (pmcsr & PCIM_PSTAT_DMASK) { 11001 /* delay required during transition out of D3hot */ 11002 DELAY(20000); 11003 } 11004 11005 break; 11006 11007 case PCI_PM_D3hot: 11008 /* XXX if there are other clients above don't shut down the power */ 11009 11010 /* don't shut down the power for emulation and FPGA */ 11011 if (CHIP_REV_IS_SLOW(sc)) { 11012 return (0); 11013 } 11014 11015 pmcsr &= ~PCIM_PSTAT_DMASK; 11016 pmcsr |= PCIM_PSTAT_D3; 11017 11018 if (sc->wol) { 11019 pmcsr |= PCIM_PSTAT_PMEENABLE; 11020 } 11021 11022 pci_write_config(sc->dev, 11023 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 11024 pmcsr, 4); 11025 11026 /* 11027 * No more memory access after this point until device is brought back 11028 * to D0 state. 11029 */ 11030 break; 11031 11032 default: 11033 BLOGE(sc, "Can't support PCI power state = %d\n", state); 11034 return (-1); 11035 } 11036 11037 return (0); 11038 } 11039 11040 11041 /* return true if succeeded to acquire the lock */ 11042 static uint8_t 11043 bxe_trylock_hw_lock(struct bxe_softc *sc, 11044 uint32_t resource) 11045 { 11046 uint32_t lock_status; 11047 uint32_t resource_bit = (1 << resource); 11048 int func = SC_FUNC(sc); 11049 uint32_t hw_lock_control_reg; 11050 11051 BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource); 11052 11053 /* Validating that the resource is within range */ 11054 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 11055 BLOGD(sc, DBG_LOAD, 11056 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 11057 resource, HW_LOCK_MAX_RESOURCE_VALUE); 11058 return (FALSE); 11059 } 11060 11061 if (func <= 5) { 11062 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 11063 } else { 11064 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 11065 } 11066 11067 /* try to acquire the lock */ 11068 REG_WR(sc, hw_lock_control_reg + 4, resource_bit); 11069 lock_status = REG_RD(sc, hw_lock_control_reg); 11070 if (lock_status & resource_bit) { 11071 return (TRUE); 11072 } 11073 11074 BLOGE(sc, "Failed to get a resource lock 0x%x\n", resource); 11075 11076 return (FALSE); 11077 } 11078 11079 /* 11080 * Get the recovery leader resource id according to the engine this function 11081 * belongs to. Currently only only 2 engines is supported. 11082 */ 11083 static int 11084 bxe_get_leader_lock_resource(struct bxe_softc *sc) 11085 { 11086 if (SC_PATH(sc)) { 11087 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1); 11088 } else { 11089 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0); 11090 } 11091 } 11092 11093 /* try to acquire a leader lock for current engine */ 11094 static uint8_t 11095 bxe_trylock_leader_lock(struct bxe_softc *sc) 11096 { 11097 return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc))); 11098 } 11099 11100 static int 11101 bxe_release_leader_lock(struct bxe_softc *sc) 11102 { 11103 return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc))); 11104 } 11105 11106 /* close gates #2, #3 and #4 */ 11107 static void 11108 bxe_set_234_gates(struct bxe_softc *sc, 11109 uint8_t close) 11110 { 11111 uint32_t val; 11112 11113 /* gates #2 and #4a are closed/opened for "not E1" only */ 11114 if (!CHIP_IS_E1(sc)) { 11115 /* #4 */ 11116 REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close); 11117 /* #2 */ 11118 REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close); 11119 } 11120 11121 /* #3 */ 11122 if (CHIP_IS_E1x(sc)) { 11123 /* prevent interrupts from HC on both ports */ 11124 val = REG_RD(sc, HC_REG_CONFIG_1); 11125 REG_WR(sc, HC_REG_CONFIG_1, 11126 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) : 11127 (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1)); 11128 11129 val = REG_RD(sc, HC_REG_CONFIG_0); 11130 REG_WR(sc, HC_REG_CONFIG_0, 11131 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) : 11132 (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0)); 11133 } else { 11134 /* Prevent incomming interrupts in IGU */ 11135 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); 11136 11137 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, 11138 (!close) ? 11139 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) : 11140 (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE)); 11141 } 11142 11143 BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n", 11144 close ? "closing" : "opening"); 11145 11146 wmb(); 11147 } 11148 11149 /* poll for pending writes bit, it should get cleared in no more than 1s */ 11150 static int 11151 bxe_er_poll_igu_vq(struct bxe_softc *sc) 11152 { 11153 uint32_t cnt = 1000; 11154 uint32_t pend_bits = 0; 11155 11156 do { 11157 pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS); 11158 11159 if (pend_bits == 0) { 11160 break; 11161 } 11162 11163 DELAY(1000); 11164 } while (--cnt > 0); 11165 11166 if (cnt == 0) { 11167 BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits); 11168 return (-1); 11169 } 11170 11171 return (0); 11172 } 11173 11174 #define SHARED_MF_CLP_MAGIC 0x80000000 /* 'magic' bit */ 11175 11176 static void 11177 bxe_clp_reset_prep(struct bxe_softc *sc, 11178 uint32_t *magic_val) 11179 { 11180 /* Do some magic... */ 11181 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); 11182 *magic_val = val & SHARED_MF_CLP_MAGIC; 11183 MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC); 11184 } 11185 11186 /* restore the value of the 'magic' bit */ 11187 static void 11188 bxe_clp_reset_done(struct bxe_softc *sc, 11189 uint32_t magic_val) 11190 { 11191 /* Restore the 'magic' bit value... */ 11192 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); 11193 MFCFG_WR(sc, shared_mf_config.clp_mb, 11194 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val); 11195 } 11196 11197 /* prepare for MCP reset, takes care of CLP configurations */ 11198 static void 11199 bxe_reset_mcp_prep(struct bxe_softc *sc, 11200 uint32_t *magic_val) 11201 { 11202 uint32_t shmem; 11203 uint32_t validity_offset; 11204 11205 /* set `magic' bit in order to save MF config */ 11206 if (!CHIP_IS_E1(sc)) { 11207 bxe_clp_reset_prep(sc, magic_val); 11208 } 11209 11210 /* get shmem offset */ 11211 shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 11212 validity_offset = 11213 offsetof(struct shmem_region, validity_map[SC_PORT(sc)]); 11214 11215 /* Clear validity map flags */ 11216 if (shmem > 0) { 11217 REG_WR(sc, shmem + validity_offset, 0); 11218 } 11219 } 11220 11221 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */ 11222 #define MCP_ONE_TIMEOUT 100 /* 100 ms */ 11223 11224 static void 11225 bxe_mcp_wait_one(struct bxe_softc *sc) 11226 { 11227 /* special handling for emulation and FPGA (10 times longer) */ 11228 if (CHIP_REV_IS_SLOW(sc)) { 11229 DELAY((MCP_ONE_TIMEOUT*10) * 1000); 11230 } else { 11231 DELAY((MCP_ONE_TIMEOUT) * 1000); 11232 } 11233 } 11234 11235 /* initialize shmem_base and waits for validity signature to appear */ 11236 static int 11237 bxe_init_shmem(struct bxe_softc *sc) 11238 { 11239 int cnt = 0; 11240 uint32_t val = 0; 11241 11242 do { 11243 sc->devinfo.shmem_base = 11244 sc->link_params.shmem_base = 11245 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 11246 11247 if (sc->devinfo.shmem_base) { 11248 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); 11249 if (val & SHR_MEM_VALIDITY_MB) 11250 return (0); 11251 } 11252 11253 bxe_mcp_wait_one(sc); 11254 11255 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT)); 11256 11257 BLOGE(sc, "BAD MCP validity signature\n"); 11258 11259 return (-1); 11260 } 11261 11262 static int 11263 bxe_reset_mcp_comp(struct bxe_softc *sc, 11264 uint32_t magic_val) 11265 { 11266 int rc = bxe_init_shmem(sc); 11267 11268 /* Restore the `magic' bit value */ 11269 if (!CHIP_IS_E1(sc)) { 11270 bxe_clp_reset_done(sc, magic_val); 11271 } 11272 11273 return (rc); 11274 } 11275 11276 static void 11277 bxe_pxp_prep(struct bxe_softc *sc) 11278 { 11279 if (!CHIP_IS_E1(sc)) { 11280 REG_WR(sc, PXP2_REG_RD_START_INIT, 0); 11281 REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0); 11282 wmb(); 11283 } 11284 } 11285 11286 /* 11287 * Reset the whole chip except for: 11288 * - PCIE core 11289 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit) 11290 * - IGU 11291 * - MISC (including AEU) 11292 * - GRC 11293 * - RBCN, RBCP 11294 */ 11295 static void 11296 bxe_process_kill_chip_reset(struct bxe_softc *sc, 11297 uint8_t global) 11298 { 11299 uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2; 11300 uint32_t global_bits2, stay_reset2; 11301 11302 /* 11303 * Bits that have to be set in reset_mask2 if we want to reset 'global' 11304 * (per chip) blocks. 11305 */ 11306 global_bits2 = 11307 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU | 11308 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE; 11309 11310 /* 11311 * Don't reset the following blocks. 11312 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be 11313 * reset, as in 4 port device they might still be owned 11314 * by the MCP (there is only one leader per path). 11315 */ 11316 not_reset_mask1 = 11317 MISC_REGISTERS_RESET_REG_1_RST_HC | 11318 MISC_REGISTERS_RESET_REG_1_RST_PXPV | 11319 MISC_REGISTERS_RESET_REG_1_RST_PXP; 11320 11321 not_reset_mask2 = 11322 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO | 11323 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE | 11324 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE | 11325 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE | 11326 MISC_REGISTERS_RESET_REG_2_RST_RBCN | 11327 MISC_REGISTERS_RESET_REG_2_RST_GRC | 11328 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE | 11329 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B | 11330 MISC_REGISTERS_RESET_REG_2_RST_ATC | 11331 MISC_REGISTERS_RESET_REG_2_PGLC | 11332 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 | 11333 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 | 11334 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 | 11335 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 | 11336 MISC_REGISTERS_RESET_REG_2_UMAC0 | 11337 MISC_REGISTERS_RESET_REG_2_UMAC1; 11338 11339 /* 11340 * Keep the following blocks in reset: 11341 * - all xxMACs are handled by the elink code. 11342 */ 11343 stay_reset2 = 11344 MISC_REGISTERS_RESET_REG_2_XMAC | 11345 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT; 11346 11347 /* Full reset masks according to the chip */ 11348 reset_mask1 = 0xffffffff; 11349 11350 if (CHIP_IS_E1(sc)) 11351 reset_mask2 = 0xffff; 11352 else if (CHIP_IS_E1H(sc)) 11353 reset_mask2 = 0x1ffff; 11354 else if (CHIP_IS_E2(sc)) 11355 reset_mask2 = 0xfffff; 11356 else /* CHIP_IS_E3 */ 11357 reset_mask2 = 0x3ffffff; 11358 11359 /* Don't reset global blocks unless we need to */ 11360 if (!global) 11361 reset_mask2 &= ~global_bits2; 11362 11363 /* 11364 * In case of attention in the QM, we need to reset PXP 11365 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM 11366 * because otherwise QM reset would release 'close the gates' shortly 11367 * before resetting the PXP, then the PSWRQ would send a write 11368 * request to PGLUE. Then when PXP is reset, PGLUE would try to 11369 * read the payload data from PSWWR, but PSWWR would not 11370 * respond. The write queue in PGLUE would stuck, dmae commands 11371 * would not return. Therefore it's important to reset the second 11372 * reset register (containing the 11373 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the 11374 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM 11375 * bit). 11376 */ 11377 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, 11378 reset_mask2 & (~not_reset_mask2)); 11379 11380 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 11381 reset_mask1 & (~not_reset_mask1)); 11382 11383 mb(); 11384 wmb(); 11385 11386 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, 11387 reset_mask2 & (~stay_reset2)); 11388 11389 mb(); 11390 wmb(); 11391 11392 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1); 11393 wmb(); 11394 } 11395 11396 static int 11397 bxe_process_kill(struct bxe_softc *sc, 11398 uint8_t global) 11399 { 11400 int cnt = 1000; 11401 uint32_t val = 0; 11402 uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2; 11403 uint32_t tags_63_32 = 0; 11404 11405 /* Empty the Tetris buffer, wait for 1s */ 11406 do { 11407 sr_cnt = REG_RD(sc, PXP2_REG_RD_SR_CNT); 11408 blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT); 11409 port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0); 11410 port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1); 11411 pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2); 11412 if (CHIP_IS_E3(sc)) { 11413 tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32); 11414 } 11415 11416 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) && 11417 ((port_is_idle_0 & 0x1) == 0x1) && 11418 ((port_is_idle_1 & 0x1) == 0x1) && 11419 (pgl_exp_rom2 == 0xffffffff) && 11420 (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff))) 11421 break; 11422 DELAY(1000); 11423 } while (cnt-- > 0); 11424 11425 if (cnt <= 0) { 11426 BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there " 11427 "are still outstanding read requests after 1s! " 11428 "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, " 11429 "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n", 11430 sr_cnt, blk_cnt, port_is_idle_0, 11431 port_is_idle_1, pgl_exp_rom2); 11432 return (-1); 11433 } 11434 11435 mb(); 11436 11437 /* Close gates #2, #3 and #4 */ 11438 bxe_set_234_gates(sc, TRUE); 11439 11440 /* Poll for IGU VQs for 57712 and newer chips */ 11441 if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) { 11442 return (-1); 11443 } 11444 11445 /* XXX indicate that "process kill" is in progress to MCP */ 11446 11447 /* clear "unprepared" bit */ 11448 REG_WR(sc, MISC_REG_UNPREPARED, 0); 11449 mb(); 11450 11451 /* Make sure all is written to the chip before the reset */ 11452 wmb(); 11453 11454 /* 11455 * Wait for 1ms to empty GLUE and PCI-E core queues, 11456 * PSWHST, GRC and PSWRD Tetris buffer. 11457 */ 11458 DELAY(1000); 11459 11460 /* Prepare to chip reset: */ 11461 /* MCP */ 11462 if (global) { 11463 bxe_reset_mcp_prep(sc, &val); 11464 } 11465 11466 /* PXP */ 11467 bxe_pxp_prep(sc); 11468 mb(); 11469 11470 /* reset the chip */ 11471 bxe_process_kill_chip_reset(sc, global); 11472 mb(); 11473 11474 /* clear errors in PGB */ 11475 if (!CHIP_IS_E1(sc)) 11476 REG_WR(sc, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f); 11477 11478 /* Recover after reset: */ 11479 /* MCP */ 11480 if (global && bxe_reset_mcp_comp(sc, val)) { 11481 return (-1); 11482 } 11483 11484 /* XXX add resetting the NO_MCP mode DB here */ 11485 11486 /* Open the gates #2, #3 and #4 */ 11487 bxe_set_234_gates(sc, FALSE); 11488 11489 /* XXX 11490 * IGU/AEU preparation bring back the AEU/IGU to a reset state 11491 * re-enable attentions 11492 */ 11493 11494 return (0); 11495 } 11496 11497 static int 11498 bxe_leader_reset(struct bxe_softc *sc) 11499 { 11500 int rc = 0; 11501 uint8_t global = bxe_reset_is_global(sc); 11502 uint32_t load_code; 11503 11504 /* 11505 * If not going to reset MCP, load "fake" driver to reset HW while 11506 * driver is owner of the HW. 11507 */ 11508 if (!global && !BXE_NOMCP(sc)) { 11509 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, 11510 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 11511 if (!load_code) { 11512 BLOGE(sc, "MCP response failure, aborting\n"); 11513 rc = -1; 11514 goto exit_leader_reset; 11515 } 11516 11517 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 11518 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 11519 BLOGE(sc, "MCP unexpected response, aborting\n"); 11520 rc = -1; 11521 goto exit_leader_reset2; 11522 } 11523 11524 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 11525 if (!load_code) { 11526 BLOGE(sc, "MCP response failure, aborting\n"); 11527 rc = -1; 11528 goto exit_leader_reset2; 11529 } 11530 } 11531 11532 /* try to recover after the failure */ 11533 if (bxe_process_kill(sc, global)) { 11534 BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc)); 11535 rc = -1; 11536 goto exit_leader_reset2; 11537 } 11538 11539 /* 11540 * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver 11541 * state. 11542 */ 11543 bxe_set_reset_done(sc); 11544 if (global) { 11545 bxe_clear_reset_global(sc); 11546 } 11547 11548 exit_leader_reset2: 11549 11550 /* unload "fake driver" if it was loaded */ 11551 if (!global && !BXE_NOMCP(sc)) { 11552 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 11553 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); 11554 } 11555 11556 exit_leader_reset: 11557 11558 sc->is_leader = 0; 11559 bxe_release_leader_lock(sc); 11560 11561 mb(); 11562 return (rc); 11563 } 11564 11565 /* 11566 * prepare INIT transition, parameters configured: 11567 * - HC configuration 11568 * - Queue's CDU context 11569 */ 11570 static void 11571 bxe_pf_q_prep_init(struct bxe_softc *sc, 11572 struct bxe_fastpath *fp, 11573 struct ecore_queue_init_params *init_params) 11574 { 11575 uint8_t cos; 11576 int cxt_index, cxt_offset; 11577 11578 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags); 11579 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags); 11580 11581 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags); 11582 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags); 11583 11584 /* HC rate */ 11585 init_params->rx.hc_rate = 11586 sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0; 11587 init_params->tx.hc_rate = 11588 sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0; 11589 11590 /* FW SB ID */ 11591 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id; 11592 11593 /* CQ index among the SB indices */ 11594 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 11595 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS; 11596 11597 /* set maximum number of COSs supported by this queue */ 11598 init_params->max_cos = sc->max_cos; 11599 11600 BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n", 11601 fp->index, init_params->max_cos); 11602 11603 /* set the context pointers queue object */ 11604 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) { 11605 /* XXX change index/cid here if ever support multiple tx CoS */ 11606 /* fp->txdata[cos]->cid */ 11607 cxt_index = fp->index / ILT_PAGE_CIDS; 11608 cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS); 11609 init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth; 11610 } 11611 } 11612 11613 /* set flags that are common for the Tx-only and not normal connections */ 11614 static unsigned long 11615 bxe_get_common_flags(struct bxe_softc *sc, 11616 struct bxe_fastpath *fp, 11617 uint8_t zero_stats) 11618 { 11619 unsigned long flags = 0; 11620 11621 /* PF driver will always initialize the Queue to an ACTIVE state */ 11622 bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags); 11623 11624 /* 11625 * tx only connections collect statistics (on the same index as the 11626 * parent connection). The statistics are zeroed when the parent 11627 * connection is initialized. 11628 */ 11629 11630 bxe_set_bit(ECORE_Q_FLG_STATS, &flags); 11631 if (zero_stats) { 11632 bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags); 11633 } 11634 11635 /* 11636 * tx only connections can support tx-switching, though their 11637 * CoS-ness doesn't survive the loopback 11638 */ 11639 if (sc->flags & BXE_TX_SWITCHING) { 11640 bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags); 11641 } 11642 11643 bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags); 11644 11645 return (flags); 11646 } 11647 11648 static unsigned long 11649 bxe_get_q_flags(struct bxe_softc *sc, 11650 struct bxe_fastpath *fp, 11651 uint8_t leading) 11652 { 11653 unsigned long flags = 0; 11654 11655 if (IS_MF_SD(sc)) { 11656 bxe_set_bit(ECORE_Q_FLG_OV, &flags); 11657 } 11658 11659 if (if_getcapenable(sc->ifp) & IFCAP_LRO) { 11660 bxe_set_bit(ECORE_Q_FLG_TPA, &flags); 11661 bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags); 11662 #if 0 11663 if (fp->mode == TPA_MODE_GRO) 11664 __set_bit(ECORE_Q_FLG_TPA_GRO, &flags); 11665 #endif 11666 } 11667 11668 if (leading) { 11669 bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags); 11670 bxe_set_bit(ECORE_Q_FLG_MCAST, &flags); 11671 } 11672 11673 bxe_set_bit(ECORE_Q_FLG_VLAN, &flags); 11674 11675 #if 0 11676 /* configure silent vlan removal */ 11677 if (IS_MF_AFEX(sc)) { 11678 bxe_set_bit(ECORE_Q_FLG_SILENT_VLAN_REM, &flags); 11679 } 11680 #endif 11681 11682 /* merge with common flags */ 11683 return (flags | bxe_get_common_flags(sc, fp, TRUE)); 11684 } 11685 11686 static void 11687 bxe_pf_q_prep_general(struct bxe_softc *sc, 11688 struct bxe_fastpath *fp, 11689 struct ecore_general_setup_params *gen_init, 11690 uint8_t cos) 11691 { 11692 gen_init->stat_id = bxe_stats_id(fp); 11693 gen_init->spcl_id = fp->cl_id; 11694 gen_init->mtu = sc->mtu; 11695 gen_init->cos = cos; 11696 } 11697 11698 static void 11699 bxe_pf_rx_q_prep(struct bxe_softc *sc, 11700 struct bxe_fastpath *fp, 11701 struct rxq_pause_params *pause, 11702 struct ecore_rxq_setup_params *rxq_init) 11703 { 11704 uint8_t max_sge = 0; 11705 uint16_t sge_sz = 0; 11706 uint16_t tpa_agg_size = 0; 11707 11708 if (if_getcapenable(sc->ifp) & IFCAP_LRO) { 11709 pause->sge_th_lo = SGE_TH_LO(sc); 11710 pause->sge_th_hi = SGE_TH_HI(sc); 11711 11712 /* validate SGE ring has enough to cross high threshold */ 11713 if (sc->dropless_fc && 11714 (pause->sge_th_hi + FW_PREFETCH_CNT) > 11715 (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) { 11716 BLOGW(sc, "sge ring threshold limit\n"); 11717 } 11718 11719 /* minimum max_aggregation_size is 2*MTU (two full buffers) */ 11720 tpa_agg_size = (2 * sc->mtu); 11721 if (tpa_agg_size < sc->max_aggregation_size) { 11722 tpa_agg_size = sc->max_aggregation_size; 11723 } 11724 11725 max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT; 11726 max_sge = ((max_sge + PAGES_PER_SGE - 1) & 11727 (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT; 11728 sge_sz = (uint16_t)min(SGE_PAGES, 0xffff); 11729 } 11730 11731 /* pause - not for e1 */ 11732 if (!CHIP_IS_E1(sc)) { 11733 pause->bd_th_lo = BD_TH_LO(sc); 11734 pause->bd_th_hi = BD_TH_HI(sc); 11735 11736 pause->rcq_th_lo = RCQ_TH_LO(sc); 11737 pause->rcq_th_hi = RCQ_TH_HI(sc); 11738 11739 /* validate rings have enough entries to cross high thresholds */ 11740 if (sc->dropless_fc && 11741 pause->bd_th_hi + FW_PREFETCH_CNT > 11742 sc->rx_ring_size) { 11743 BLOGW(sc, "rx bd ring threshold limit\n"); 11744 } 11745 11746 if (sc->dropless_fc && 11747 pause->rcq_th_hi + FW_PREFETCH_CNT > 11748 RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) { 11749 BLOGW(sc, "rcq ring threshold limit\n"); 11750 } 11751 11752 pause->pri_map = 1; 11753 } 11754 11755 /* rxq setup */ 11756 rxq_init->dscr_map = fp->rx_dma.paddr; 11757 rxq_init->sge_map = fp->rx_sge_dma.paddr; 11758 rxq_init->rcq_map = fp->rcq_dma.paddr; 11759 rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE); 11760 11761 /* 11762 * This should be a maximum number of data bytes that may be 11763 * placed on the BD (not including paddings). 11764 */ 11765 rxq_init->buf_sz = (fp->rx_buf_size - 11766 IP_HEADER_ALIGNMENT_PADDING); 11767 11768 rxq_init->cl_qzone_id = fp->cl_qzone_id; 11769 rxq_init->tpa_agg_sz = tpa_agg_size; 11770 rxq_init->sge_buf_sz = sge_sz; 11771 rxq_init->max_sges_pkt = max_sge; 11772 rxq_init->rss_engine_id = SC_FUNC(sc); 11773 rxq_init->mcast_engine_id = SC_FUNC(sc); 11774 11775 /* 11776 * Maximum number or simultaneous TPA aggregation for this Queue. 11777 * For PF Clients it should be the maximum available number. 11778 * VF driver(s) may want to define it to a smaller value. 11779 */ 11780 rxq_init->max_tpa_queues = MAX_AGG_QS(sc); 11781 11782 rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT; 11783 rxq_init->fw_sb_id = fp->fw_sb_id; 11784 11785 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 11786 11787 /* 11788 * configure silent vlan removal 11789 * if multi function mode is afex, then mask default vlan 11790 */ 11791 if (IS_MF_AFEX(sc)) { 11792 rxq_init->silent_removal_value = 11793 sc->devinfo.mf_info.afex_def_vlan_tag; 11794 rxq_init->silent_removal_mask = EVL_VLID_MASK; 11795 } 11796 } 11797 11798 static void 11799 bxe_pf_tx_q_prep(struct bxe_softc *sc, 11800 struct bxe_fastpath *fp, 11801 struct ecore_txq_setup_params *txq_init, 11802 uint8_t cos) 11803 { 11804 /* 11805 * XXX If multiple CoS is ever supported then each fastpath structure 11806 * will need to maintain tx producer/consumer/dma/etc values *per* CoS. 11807 * fp->txdata[cos]->tx_dma.paddr; 11808 */ 11809 txq_init->dscr_map = fp->tx_dma.paddr; 11810 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos; 11811 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW; 11812 txq_init->fw_sb_id = fp->fw_sb_id; 11813 11814 /* 11815 * set the TSS leading client id for TX classfication to the 11816 * leading RSS client id 11817 */ 11818 txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id); 11819 } 11820 11821 /* 11822 * This function performs 2 steps in a queue state machine: 11823 * 1) RESET->INIT 11824 * 2) INIT->SETUP 11825 */ 11826 static int 11827 bxe_setup_queue(struct bxe_softc *sc, 11828 struct bxe_fastpath *fp, 11829 uint8_t leading) 11830 { 11831 struct ecore_queue_state_params q_params = { NULL }; 11832 struct ecore_queue_setup_params *setup_params = 11833 &q_params.params.setup; 11834 #if 0 11835 struct ecore_queue_setup_tx_only_params *tx_only_params = 11836 &q_params.params.tx_only; 11837 uint8_t tx_index; 11838 #endif 11839 int rc; 11840 11841 BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index); 11842 11843 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 11844 11845 q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj; 11846 11847 /* we want to wait for completion in this context */ 11848 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 11849 11850 /* prepare the INIT parameters */ 11851 bxe_pf_q_prep_init(sc, fp, &q_params.params.init); 11852 11853 /* Set the command */ 11854 q_params.cmd = ECORE_Q_CMD_INIT; 11855 11856 /* Change the state to INIT */ 11857 rc = ecore_queue_state_change(sc, &q_params); 11858 if (rc) { 11859 BLOGE(sc, "Queue(%d) INIT failed\n", fp->index); 11860 return (rc); 11861 } 11862 11863 BLOGD(sc, DBG_LOAD, "init complete\n"); 11864 11865 /* now move the Queue to the SETUP state */ 11866 memset(setup_params, 0, sizeof(*setup_params)); 11867 11868 /* set Queue flags */ 11869 setup_params->flags = bxe_get_q_flags(sc, fp, leading); 11870 11871 /* set general SETUP parameters */ 11872 bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params, 11873 FIRST_TX_COS_INDEX); 11874 11875 bxe_pf_rx_q_prep(sc, fp, 11876 &setup_params->pause_params, 11877 &setup_params->rxq_params); 11878 11879 bxe_pf_tx_q_prep(sc, fp, 11880 &setup_params->txq_params, 11881 FIRST_TX_COS_INDEX); 11882 11883 /* Set the command */ 11884 q_params.cmd = ECORE_Q_CMD_SETUP; 11885 11886 /* change the state to SETUP */ 11887 rc = ecore_queue_state_change(sc, &q_params); 11888 if (rc) { 11889 BLOGE(sc, "Queue(%d) SETUP failed\n", fp->index); 11890 return (rc); 11891 } 11892 11893 #if 0 11894 /* loop through the relevant tx-only indices */ 11895 for (tx_index = FIRST_TX_ONLY_COS_INDEX; 11896 tx_index < sc->max_cos; 11897 tx_index++) { 11898 /* prepare and send tx-only ramrod*/ 11899 rc = bxe_setup_tx_only(sc, fp, &q_params, 11900 tx_only_params, tx_index, leading); 11901 if (rc) { 11902 BLOGE(sc, "Queue(%d.%d) TX_ONLY_SETUP failed\n", 11903 fp->index, tx_index); 11904 return (rc); 11905 } 11906 } 11907 #endif 11908 11909 return (rc); 11910 } 11911 11912 static int 11913 bxe_setup_leading(struct bxe_softc *sc) 11914 { 11915 return (bxe_setup_queue(sc, &sc->fp[0], TRUE)); 11916 } 11917 11918 static int 11919 bxe_config_rss_pf(struct bxe_softc *sc, 11920 struct ecore_rss_config_obj *rss_obj, 11921 uint8_t config_hash) 11922 { 11923 struct ecore_config_rss_params params = { NULL }; 11924 int i; 11925 11926 /* 11927 * Although RSS is meaningless when there is a single HW queue we 11928 * still need it enabled in order to have HW Rx hash generated. 11929 */ 11930 11931 params.rss_obj = rss_obj; 11932 11933 bxe_set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags); 11934 11935 bxe_set_bit(ECORE_RSS_MODE_REGULAR, ¶ms.rss_flags); 11936 11937 /* RSS configuration */ 11938 bxe_set_bit(ECORE_RSS_IPV4, ¶ms.rss_flags); 11939 bxe_set_bit(ECORE_RSS_IPV4_TCP, ¶ms.rss_flags); 11940 bxe_set_bit(ECORE_RSS_IPV6, ¶ms.rss_flags); 11941 bxe_set_bit(ECORE_RSS_IPV6_TCP, ¶ms.rss_flags); 11942 if (rss_obj->udp_rss_v4) { 11943 bxe_set_bit(ECORE_RSS_IPV4_UDP, ¶ms.rss_flags); 11944 } 11945 if (rss_obj->udp_rss_v6) { 11946 bxe_set_bit(ECORE_RSS_IPV6_UDP, ¶ms.rss_flags); 11947 } 11948 11949 /* Hash bits */ 11950 params.rss_result_mask = MULTI_MASK; 11951 11952 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table)); 11953 11954 if (config_hash) { 11955 /* RSS keys */ 11956 for (i = 0; i < sizeof(params.rss_key) / 4; i++) { 11957 params.rss_key[i] = arc4random(); 11958 } 11959 11960 bxe_set_bit(ECORE_RSS_SET_SRCH, ¶ms.rss_flags); 11961 } 11962 11963 return (ecore_config_rss(sc, ¶ms)); 11964 } 11965 11966 static int 11967 bxe_config_rss_eth(struct bxe_softc *sc, 11968 uint8_t config_hash) 11969 { 11970 return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash)); 11971 } 11972 11973 static int 11974 bxe_init_rss_pf(struct bxe_softc *sc) 11975 { 11976 uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc); 11977 int i; 11978 11979 /* 11980 * Prepare the initial contents of the indirection table if 11981 * RSS is enabled 11982 */ 11983 for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) { 11984 sc->rss_conf_obj.ind_table[i] = 11985 (sc->fp->cl_id + (i % num_eth_queues)); 11986 } 11987 11988 if (sc->udp_rss) { 11989 sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1; 11990 } 11991 11992 /* 11993 * For 57710 and 57711 SEARCHER configuration (rss_keys) is 11994 * per-port, so if explicit configuration is needed, do it only 11995 * for a PMF. 11996 * 11997 * For 57712 and newer it's a per-function configuration. 11998 */ 11999 return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc))); 12000 } 12001 12002 static int 12003 bxe_set_mac_one(struct bxe_softc *sc, 12004 uint8_t *mac, 12005 struct ecore_vlan_mac_obj *obj, 12006 uint8_t set, 12007 int mac_type, 12008 unsigned long *ramrod_flags) 12009 { 12010 struct ecore_vlan_mac_ramrod_params ramrod_param; 12011 int rc; 12012 12013 memset(&ramrod_param, 0, sizeof(ramrod_param)); 12014 12015 /* fill in general parameters */ 12016 ramrod_param.vlan_mac_obj = obj; 12017 ramrod_param.ramrod_flags = *ramrod_flags; 12018 12019 /* fill a user request section if needed */ 12020 if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) { 12021 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN); 12022 12023 bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags); 12024 12025 /* Set the command: ADD or DEL */ 12026 ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD : 12027 ECORE_VLAN_MAC_DEL; 12028 } 12029 12030 rc = ecore_config_vlan_mac(sc, &ramrod_param); 12031 12032 if (rc == ECORE_EXISTS) { 12033 BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); 12034 /* do not treat adding same MAC as error */ 12035 rc = 0; 12036 } else if (rc < 0) { 12037 BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc); 12038 } 12039 12040 return (rc); 12041 } 12042 12043 static int 12044 bxe_set_eth_mac(struct bxe_softc *sc, 12045 uint8_t set) 12046 { 12047 unsigned long ramrod_flags = 0; 12048 12049 BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n"); 12050 12051 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 12052 12053 /* Eth MAC is set on RSS leading client (fp[0]) */ 12054 return (bxe_set_mac_one(sc, sc->link_params.mac_addr, 12055 &sc->sp_objs->mac_obj, 12056 set, ECORE_ETH_MAC, &ramrod_flags)); 12057 } 12058 12059 #if 0 12060 static void 12061 bxe_update_max_mf_config(struct bxe_softc *sc, 12062 uint32_t value) 12063 { 12064 /* load old values */ 12065 uint32_t mf_cfg = sc->devinfo.mf_info.mf_config[SC_VN(sc)]; 12066 12067 if (value != bxe_extract_max_cfg(sc, mf_cfg)) { 12068 /* leave all but MAX value */ 12069 mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK; 12070 12071 /* set new MAX value */ 12072 mf_cfg |= ((value << FUNC_MF_CFG_MAX_BW_SHIFT) & 12073 FUNC_MF_CFG_MAX_BW_MASK); 12074 12075 bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW, mf_cfg); 12076 } 12077 } 12078 #endif 12079 12080 static int 12081 bxe_get_cur_phy_idx(struct bxe_softc *sc) 12082 { 12083 uint32_t sel_phy_idx = 0; 12084 12085 if (sc->link_params.num_phys <= 1) { 12086 return (ELINK_INT_PHY); 12087 } 12088 12089 if (sc->link_vars.link_up) { 12090 sel_phy_idx = ELINK_EXT_PHY1; 12091 /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */ 12092 if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) && 12093 (sc->link_params.phy[ELINK_EXT_PHY2].supported & 12094 ELINK_SUPPORTED_FIBRE)) 12095 sel_phy_idx = ELINK_EXT_PHY2; 12096 } else { 12097 switch (elink_phy_selection(&sc->link_params)) { 12098 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT: 12099 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY: 12100 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY: 12101 sel_phy_idx = ELINK_EXT_PHY1; 12102 break; 12103 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY: 12104 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY: 12105 sel_phy_idx = ELINK_EXT_PHY2; 12106 break; 12107 } 12108 } 12109 12110 return (sel_phy_idx); 12111 } 12112 12113 static int 12114 bxe_get_link_cfg_idx(struct bxe_softc *sc) 12115 { 12116 uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc); 12117 12118 /* 12119 * The selected activated PHY is always after swapping (in case PHY 12120 * swapping is enabled). So when swapping is enabled, we need to reverse 12121 * the configuration 12122 */ 12123 12124 if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 12125 if (sel_phy_idx == ELINK_EXT_PHY1) 12126 sel_phy_idx = ELINK_EXT_PHY2; 12127 else if (sel_phy_idx == ELINK_EXT_PHY2) 12128 sel_phy_idx = ELINK_EXT_PHY1; 12129 } 12130 12131 return (ELINK_LINK_CONFIG_IDX(sel_phy_idx)); 12132 } 12133 12134 static void 12135 bxe_set_requested_fc(struct bxe_softc *sc) 12136 { 12137 /* 12138 * Initialize link parameters structure variables 12139 * It is recommended to turn off RX FC for jumbo frames 12140 * for better performance 12141 */ 12142 if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) { 12143 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX; 12144 } else { 12145 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH; 12146 } 12147 } 12148 12149 static void 12150 bxe_calc_fc_adv(struct bxe_softc *sc) 12151 { 12152 uint8_t cfg_idx = bxe_get_link_cfg_idx(sc); 12153 switch (sc->link_vars.ieee_fc & 12154 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) { 12155 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE: 12156 default: 12157 sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | 12158 ADVERTISED_Pause); 12159 break; 12160 12161 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH: 12162 sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause | 12163 ADVERTISED_Pause); 12164 break; 12165 12166 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC: 12167 sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause; 12168 break; 12169 } 12170 } 12171 12172 static uint16_t 12173 bxe_get_mf_speed(struct bxe_softc *sc) 12174 { 12175 uint16_t line_speed = sc->link_vars.line_speed; 12176 if (IS_MF(sc)) { 12177 uint16_t maxCfg = 12178 bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]); 12179 12180 /* calculate the current MAX line speed limit for the MF devices */ 12181 if (IS_MF_SI(sc)) { 12182 line_speed = (line_speed * maxCfg) / 100; 12183 } else { /* SD mode */ 12184 uint16_t vn_max_rate = maxCfg * 100; 12185 12186 if (vn_max_rate < line_speed) { 12187 line_speed = vn_max_rate; 12188 } 12189 } 12190 } 12191 12192 return (line_speed); 12193 } 12194 12195 static void 12196 bxe_fill_report_data(struct bxe_softc *sc, 12197 struct bxe_link_report_data *data) 12198 { 12199 uint16_t line_speed = bxe_get_mf_speed(sc); 12200 12201 memset(data, 0, sizeof(*data)); 12202 12203 /* fill the report data with the effective line speed */ 12204 data->line_speed = line_speed; 12205 12206 /* Link is down */ 12207 if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) { 12208 bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags); 12209 } 12210 12211 /* Full DUPLEX */ 12212 if (sc->link_vars.duplex == DUPLEX_FULL) { 12213 bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags); 12214 } 12215 12216 /* Rx Flow Control is ON */ 12217 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) { 12218 bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags); 12219 } 12220 12221 /* Tx Flow Control is ON */ 12222 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { 12223 bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags); 12224 } 12225 } 12226 12227 /* report link status to OS, should be called under phy_lock */ 12228 static void 12229 bxe_link_report_locked(struct bxe_softc *sc) 12230 { 12231 struct bxe_link_report_data cur_data; 12232 12233 /* reread mf_cfg */ 12234 if (IS_PF(sc) && !CHIP_IS_E1(sc)) { 12235 bxe_read_mf_cfg(sc); 12236 } 12237 12238 /* Read the current link report info */ 12239 bxe_fill_report_data(sc, &cur_data); 12240 12241 /* Don't report link down or exactly the same link status twice */ 12242 if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) || 12243 (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 12244 &sc->last_reported_link.link_report_flags) && 12245 bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 12246 &cur_data.link_report_flags))) { 12247 return; 12248 } 12249 12250 sc->link_cnt++; 12251 12252 /* report new link params and remember the state for the next time */ 12253 memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data)); 12254 12255 if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 12256 &cur_data.link_report_flags)) { 12257 if_linkstate_change_drv(sc->ifp, LINK_STATE_DOWN); 12258 BLOGI(sc, "NIC Link is Down\n"); 12259 } else { 12260 const char *duplex; 12261 const char *flow; 12262 12263 if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX, 12264 &cur_data.link_report_flags)) { 12265 duplex = "full"; 12266 } else { 12267 duplex = "half"; 12268 } 12269 12270 /* 12271 * Handle the FC at the end so that only these flags would be 12272 * possibly set. This way we may easily check if there is no FC 12273 * enabled. 12274 */ 12275 if (cur_data.link_report_flags) { 12276 if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 12277 &cur_data.link_report_flags) && 12278 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 12279 &cur_data.link_report_flags)) { 12280 flow = "ON - receive & transmit"; 12281 } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 12282 &cur_data.link_report_flags) && 12283 !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 12284 &cur_data.link_report_flags)) { 12285 flow = "ON - receive"; 12286 } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 12287 &cur_data.link_report_flags) && 12288 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 12289 &cur_data.link_report_flags)) { 12290 flow = "ON - transmit"; 12291 } else { 12292 flow = "none"; /* possible? */ 12293 } 12294 } else { 12295 flow = "none"; 12296 } 12297 12298 if_linkstate_change_drv(sc->ifp, LINK_STATE_UP); 12299 BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n", 12300 cur_data.line_speed, duplex, flow); 12301 } 12302 } 12303 12304 static void 12305 bxe_link_report(struct bxe_softc *sc) 12306 { 12307 BXE_PHY_LOCK(sc); 12308 bxe_link_report_locked(sc); 12309 BXE_PHY_UNLOCK(sc); 12310 } 12311 12312 static void 12313 bxe_link_status_update(struct bxe_softc *sc) 12314 { 12315 if (sc->state != BXE_STATE_OPEN) { 12316 return; 12317 } 12318 12319 #if 0 12320 /* read updated dcb configuration */ 12321 if (IS_PF(sc)) 12322 bxe_dcbx_pmf_update(sc); 12323 #endif 12324 12325 if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) { 12326 elink_link_status_update(&sc->link_params, &sc->link_vars); 12327 } else { 12328 sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half | 12329 ELINK_SUPPORTED_10baseT_Full | 12330 ELINK_SUPPORTED_100baseT_Half | 12331 ELINK_SUPPORTED_100baseT_Full | 12332 ELINK_SUPPORTED_1000baseT_Full | 12333 ELINK_SUPPORTED_2500baseX_Full | 12334 ELINK_SUPPORTED_10000baseT_Full | 12335 ELINK_SUPPORTED_TP | 12336 ELINK_SUPPORTED_FIBRE | 12337 ELINK_SUPPORTED_Autoneg | 12338 ELINK_SUPPORTED_Pause | 12339 ELINK_SUPPORTED_Asym_Pause); 12340 sc->port.advertising[0] = sc->port.supported[0]; 12341 12342 sc->link_params.sc = sc; 12343 sc->link_params.port = SC_PORT(sc); 12344 sc->link_params.req_duplex[0] = DUPLEX_FULL; 12345 sc->link_params.req_flow_ctrl[0] = ELINK_FLOW_CTRL_NONE; 12346 sc->link_params.req_line_speed[0] = SPEED_10000; 12347 sc->link_params.speed_cap_mask[0] = 0x7f0000; 12348 sc->link_params.switch_cfg = ELINK_SWITCH_CFG_10G; 12349 12350 if (CHIP_REV_IS_FPGA(sc)) { 12351 sc->link_vars.mac_type = ELINK_MAC_TYPE_EMAC; 12352 sc->link_vars.line_speed = ELINK_SPEED_1000; 12353 sc->link_vars.link_status = (LINK_STATUS_LINK_UP | 12354 LINK_STATUS_SPEED_AND_DUPLEX_1000TFD); 12355 } else { 12356 sc->link_vars.mac_type = ELINK_MAC_TYPE_BMAC; 12357 sc->link_vars.line_speed = ELINK_SPEED_10000; 12358 sc->link_vars.link_status = (LINK_STATUS_LINK_UP | 12359 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD); 12360 } 12361 12362 sc->link_vars.link_up = 1; 12363 12364 sc->link_vars.duplex = DUPLEX_FULL; 12365 sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE; 12366 12367 if (IS_PF(sc)) { 12368 REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0); 12369 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 12370 bxe_link_report(sc); 12371 } 12372 } 12373 12374 if (IS_PF(sc)) { 12375 if (sc->link_vars.link_up) { 12376 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 12377 } else { 12378 bxe_stats_handle(sc, STATS_EVENT_STOP); 12379 } 12380 bxe_link_report(sc); 12381 } else { 12382 bxe_link_report(sc); 12383 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 12384 } 12385 } 12386 12387 static int 12388 bxe_initial_phy_init(struct bxe_softc *sc, 12389 int load_mode) 12390 { 12391 int rc, cfg_idx = bxe_get_link_cfg_idx(sc); 12392 uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx]; 12393 struct elink_params *lp = &sc->link_params; 12394 12395 bxe_set_requested_fc(sc); 12396 12397 if (CHIP_REV_IS_SLOW(sc)) { 12398 uint32_t bond = CHIP_BOND_ID(sc); 12399 uint32_t feat = 0; 12400 12401 if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) { 12402 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; 12403 } else if (bond & 0x4) { 12404 if (CHIP_IS_E3(sc)) { 12405 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC; 12406 } else { 12407 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; 12408 } 12409 } else if (bond & 0x8) { 12410 if (CHIP_IS_E3(sc)) { 12411 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC; 12412 } else { 12413 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; 12414 } 12415 } 12416 12417 /* disable EMAC for E3 and above */ 12418 if (bond & 0x2) { 12419 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; 12420 } 12421 12422 sc->link_params.feature_config_flags |= feat; 12423 } 12424 12425 BXE_PHY_LOCK(sc); 12426 12427 if (load_mode == LOAD_DIAG) { 12428 lp->loopback_mode = ELINK_LOOPBACK_XGXS; 12429 /* Prefer doing PHY loopback at 10G speed, if possible */ 12430 if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) { 12431 if (lp->speed_cap_mask[cfg_idx] & 12432 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { 12433 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000; 12434 } else { 12435 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000; 12436 } 12437 } 12438 } 12439 12440 if (load_mode == LOAD_LOOPBACK_EXT) { 12441 lp->loopback_mode = ELINK_LOOPBACK_EXT; 12442 } 12443 12444 rc = elink_phy_init(&sc->link_params, &sc->link_vars); 12445 12446 BXE_PHY_UNLOCK(sc); 12447 12448 bxe_calc_fc_adv(sc); 12449 12450 if (sc->link_vars.link_up) { 12451 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 12452 bxe_link_report(sc); 12453 } 12454 12455 if (!CHIP_REV_IS_SLOW(sc)) { 12456 bxe_periodic_start(sc); 12457 } 12458 12459 sc->link_params.req_line_speed[cfg_idx] = req_line_speed; 12460 return (rc); 12461 } 12462 12463 /* must be called under IF_ADDR_LOCK */ 12464 static int 12465 bxe_init_mcast_macs_list(struct bxe_softc *sc, 12466 struct ecore_mcast_ramrod_params *p) 12467 { 12468 if_t ifp = sc->ifp; 12469 int mc_count = 0; 12470 int mcnt, i; 12471 struct ecore_mcast_list_elem *mc_mac; 12472 unsigned char *mta; 12473 12474 mc_count = if_multiaddr_count(ifp, -1);/* XXX they don't have a limit */ 12475 /* should we enforce one? */ 12476 ECORE_LIST_INIT(&p->mcast_list); 12477 p->mcast_list_len = 0; 12478 12479 if (!mc_count) { 12480 return (0); 12481 } 12482 12483 mta = malloc(sizeof(unsigned char) * ETHER_ADDR_LEN * 12484 mc_count, M_DEVBUF, M_NOWAIT); 12485 12486 if(mta == NULL) { 12487 BLOGE(sc, "Failed to allocate temp mcast list\n"); 12488 return (-1); 12489 } 12490 12491 mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF, 12492 (M_NOWAIT | M_ZERO)); 12493 if (!mc_mac) { 12494 free(mta, M_DEVBUF); 12495 BLOGE(sc, "Failed to allocate temp mcast list\n"); 12496 return (-1); 12497 } 12498 12499 if_multiaddr_array(ifp, mta, &mcnt, mc_count); /* mta and mcnt not expected 12500 to be different */ 12501 for(i=0; i< mcnt; i++) { 12502 12503 bcopy((mta + (i * ETHER_ADDR_LEN)), mc_mac->mac, ETHER_ADDR_LEN); 12504 ECORE_LIST_PUSH_TAIL(&mc_mac->link, &p->mcast_list); 12505 12506 BLOGD(sc, DBG_LOAD, 12507 "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X\n", 12508 mc_mac->mac[0], mc_mac->mac[1], mc_mac->mac[2], 12509 mc_mac->mac[3], mc_mac->mac[4], mc_mac->mac[5]); 12510 12511 mc_mac++; 12512 } 12513 12514 p->mcast_list_len = mc_count; 12515 free(mta, M_DEVBUF); 12516 12517 return (0); 12518 } 12519 12520 static void 12521 bxe_free_mcast_macs_list(struct ecore_mcast_ramrod_params *p) 12522 { 12523 struct ecore_mcast_list_elem *mc_mac = 12524 ECORE_LIST_FIRST_ENTRY(&p->mcast_list, 12525 struct ecore_mcast_list_elem, 12526 link); 12527 12528 if (mc_mac) { 12529 /* only a single free as all mc_macs are in the same heap array */ 12530 free(mc_mac, M_DEVBUF); 12531 } 12532 } 12533 12534 static int 12535 bxe_set_mc_list(struct bxe_softc *sc) 12536 { 12537 struct ecore_mcast_ramrod_params rparam = { NULL }; 12538 int rc = 0; 12539 12540 rparam.mcast_obj = &sc->mcast_obj; 12541 12542 BXE_MCAST_LOCK(sc); 12543 12544 /* first, clear all configured multicast MACs */ 12545 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 12546 if (rc < 0) { 12547 BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc); 12548 return (rc); 12549 } 12550 12551 /* configure a new MACs list */ 12552 rc = bxe_init_mcast_macs_list(sc, &rparam); 12553 if (rc) { 12554 BLOGE(sc, "Failed to create mcast MACs list (%d)\n", rc); 12555 BXE_MCAST_UNLOCK(sc); 12556 return (rc); 12557 } 12558 12559 /* Now add the new MACs */ 12560 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD); 12561 if (rc < 0) { 12562 BLOGE(sc, "Failed to set new mcast config (%d)\n", rc); 12563 } 12564 12565 bxe_free_mcast_macs_list(&rparam); 12566 12567 BXE_MCAST_UNLOCK(sc); 12568 12569 return (rc); 12570 } 12571 12572 static int 12573 bxe_set_uc_list(struct bxe_softc *sc) 12574 { 12575 if_t ifp = sc->ifp; 12576 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; 12577 struct ifaddr *ifa; 12578 unsigned long ramrod_flags = 0; 12579 int rc; 12580 12581 #if __FreeBSD_version < 800000 12582 IF_ADDR_LOCK(ifp); 12583 #else 12584 if_addr_rlock_drv(ifp); 12585 #endif 12586 12587 /* first schedule a cleanup up of old configuration */ 12588 rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE); 12589 if (rc < 0) { 12590 BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc); 12591 #if __FreeBSD_version < 800000 12592 IF_ADDR_UNLOCK(ifp); 12593 #else 12594 if_addr_runlock_drv(ifp); 12595 #endif 12596 return (rc); 12597 } 12598 12599 ifa = if_getifaddr(ifp); /* XXX Is this structure */ 12600 while (ifa) { 12601 if (ifa->ifa_addr->sa_family != AF_LINK) { 12602 ifa = TAILQ_NEXT(ifa, ifa_link); 12603 continue; 12604 } 12605 12606 rc = bxe_set_mac_one(sc, (uint8_t *)LLADDR((struct sockaddr_dl *)ifa->ifa_addr), 12607 mac_obj, TRUE, ECORE_UC_LIST_MAC, &ramrod_flags); 12608 if (rc == -EEXIST) { 12609 BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); 12610 /* do not treat adding same MAC as an error */ 12611 rc = 0; 12612 } else if (rc < 0) { 12613 BLOGE(sc, "Failed to schedule ADD operations (%d)\n", rc); 12614 #if __FreeBSD_version < 800000 12615 IF_ADDR_UNLOCK(ifp); 12616 #else 12617 if_addr_runlock_drv(ifp); 12618 #endif 12619 return (rc); 12620 } 12621 12622 ifa = TAILQ_NEXT(ifa, ifa_link); 12623 } 12624 12625 #if __FreeBSD_version < 800000 12626 IF_ADDR_UNLOCK(ifp); 12627 #else 12628 if_addr_runlock_drv(ifp); 12629 #endif 12630 12631 /* Execute the pending commands */ 12632 bit_set(&ramrod_flags, RAMROD_CONT); 12633 return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */, 12634 ECORE_UC_LIST_MAC, &ramrod_flags)); 12635 } 12636 12637 static void 12638 bxe_handle_rx_mode_tq(void *context, 12639 int pending) 12640 { 12641 struct bxe_softc *sc = (struct bxe_softc *)context; 12642 if_t ifp = sc->ifp; 12643 uint32_t rx_mode = BXE_RX_MODE_NORMAL; 12644 12645 BXE_CORE_LOCK(sc); 12646 12647 if (sc->state != BXE_STATE_OPEN) { 12648 BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state); 12649 BXE_CORE_UNLOCK(sc); 12650 return; 12651 } 12652 12653 BLOGD(sc, DBG_SP, "if_flags(ifp)=0x%x\n", if_getflags(sc->ifp)); 12654 12655 if (if_getflags(ifp) & IFF_PROMISC) { 12656 rx_mode = BXE_RX_MODE_PROMISC; 12657 } else if ((if_getflags(ifp) & IFF_ALLMULTI) || 12658 ((if_getamcount(ifp) > BXE_MAX_MULTICAST) && 12659 CHIP_IS_E1(sc))) { 12660 rx_mode = BXE_RX_MODE_ALLMULTI; 12661 } else { 12662 if (IS_PF(sc)) { 12663 /* some multicasts */ 12664 if (bxe_set_mc_list(sc) < 0) { 12665 rx_mode = BXE_RX_MODE_ALLMULTI; 12666 } 12667 if (bxe_set_uc_list(sc) < 0) { 12668 rx_mode = BXE_RX_MODE_PROMISC; 12669 } 12670 } 12671 #if 0 12672 else { 12673 /* 12674 * Configuring mcast to a VF involves sleeping (when we 12675 * wait for the PF's response). Since this function is 12676 * called from a non sleepable context we must schedule 12677 * a work item for this purpose 12678 */ 12679 bxe_set_bit(BXE_SP_RTNL_VFPF_MCAST, &sc->sp_rtnl_state); 12680 schedule_delayed_work(&sc->sp_rtnl_task, 0); 12681 } 12682 #endif 12683 } 12684 12685 sc->rx_mode = rx_mode; 12686 12687 /* schedule the rx_mode command */ 12688 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { 12689 BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n"); 12690 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); 12691 BXE_CORE_UNLOCK(sc); 12692 return; 12693 } 12694 12695 if (IS_PF(sc)) { 12696 bxe_set_storm_rx_mode(sc); 12697 } 12698 #if 0 12699 else { 12700 /* 12701 * Configuring mcast to a VF involves sleeping (when we 12702 * wait for the PF's response). Since this function is 12703 * called from a non sleepable context we must schedule 12704 * a work item for this purpose 12705 */ 12706 bxe_set_bit(BXE_SP_RTNL_VFPF_STORM_RX_MODE, &sc->sp_rtnl_state); 12707 schedule_delayed_work(&sc->sp_rtnl_task, 0); 12708 } 12709 #endif 12710 12711 BXE_CORE_UNLOCK(sc); 12712 } 12713 12714 static void 12715 bxe_set_rx_mode(struct bxe_softc *sc) 12716 { 12717 taskqueue_enqueue(sc->rx_mode_tq, &sc->rx_mode_tq_task); 12718 } 12719 12720 /* update flags in shmem */ 12721 static void 12722 bxe_update_drv_flags(struct bxe_softc *sc, 12723 uint32_t flags, 12724 uint32_t set) 12725 { 12726 uint32_t drv_flags; 12727 12728 if (SHMEM2_HAS(sc, drv_flags)) { 12729 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); 12730 drv_flags = SHMEM2_RD(sc, drv_flags); 12731 12732 if (set) { 12733 SET_FLAGS(drv_flags, flags); 12734 } else { 12735 RESET_FLAGS(drv_flags, flags); 12736 } 12737 12738 SHMEM2_WR(sc, drv_flags, drv_flags); 12739 BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags); 12740 12741 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); 12742 } 12743 } 12744 12745 /* periodic timer callout routine, only runs when the interface is up */ 12746 12747 static void 12748 bxe_periodic_callout_func(void *xsc) 12749 { 12750 struct bxe_softc *sc = (struct bxe_softc *)xsc; 12751 int i; 12752 12753 if (!BXE_CORE_TRYLOCK(sc)) { 12754 /* just bail and try again next time */ 12755 12756 if ((sc->state == BXE_STATE_OPEN) && 12757 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { 12758 /* schedule the next periodic callout */ 12759 callout_reset(&sc->periodic_callout, hz, 12760 bxe_periodic_callout_func, sc); 12761 } 12762 12763 return; 12764 } 12765 12766 if ((sc->state != BXE_STATE_OPEN) || 12767 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) { 12768 BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state); 12769 BXE_CORE_UNLOCK(sc); 12770 return; 12771 } 12772 12773 /* Check for TX timeouts on any fastpath. */ 12774 FOR_EACH_QUEUE(sc, i) { 12775 if (bxe_watchdog(sc, &sc->fp[i]) != 0) { 12776 /* Ruh-Roh, chip was reset! */ 12777 break; 12778 } 12779 } 12780 12781 if (!CHIP_REV_IS_SLOW(sc)) { 12782 /* 12783 * This barrier is needed to ensure the ordering between the writing 12784 * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and 12785 * the reading here. 12786 */ 12787 mb(); 12788 if (sc->port.pmf) { 12789 BXE_PHY_LOCK(sc); 12790 elink_period_func(&sc->link_params, &sc->link_vars); 12791 BXE_PHY_UNLOCK(sc); 12792 } 12793 } 12794 12795 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 12796 int mb_idx = SC_FW_MB_IDX(sc); 12797 uint32_t drv_pulse; 12798 uint32_t mcp_pulse; 12799 12800 ++sc->fw_drv_pulse_wr_seq; 12801 sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK; 12802 12803 drv_pulse = sc->fw_drv_pulse_wr_seq; 12804 bxe_drv_pulse(sc); 12805 12806 mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) & 12807 MCP_PULSE_SEQ_MASK); 12808 12809 /* 12810 * The delta between driver pulse and mcp response should 12811 * be 1 (before mcp response) or 0 (after mcp response). 12812 */ 12813 if ((drv_pulse != mcp_pulse) && 12814 (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) { 12815 /* someone lost a heartbeat... */ 12816 BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n", 12817 drv_pulse, mcp_pulse); 12818 } 12819 } 12820 12821 /* state is BXE_STATE_OPEN */ 12822 bxe_stats_handle(sc, STATS_EVENT_UPDATE); 12823 12824 #if 0 12825 /* sample VF bulletin board for new posts from PF */ 12826 if (IS_VF(sc)) { 12827 bxe_sample_bulletin(sc); 12828 } 12829 #endif 12830 12831 BXE_CORE_UNLOCK(sc); 12832 12833 if ((sc->state == BXE_STATE_OPEN) && 12834 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { 12835 /* schedule the next periodic callout */ 12836 callout_reset(&sc->periodic_callout, hz, 12837 bxe_periodic_callout_func, sc); 12838 } 12839 } 12840 12841 static void 12842 bxe_periodic_start(struct bxe_softc *sc) 12843 { 12844 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO); 12845 callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc); 12846 } 12847 12848 static void 12849 bxe_periodic_stop(struct bxe_softc *sc) 12850 { 12851 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP); 12852 callout_drain(&sc->periodic_callout); 12853 } 12854 12855 /* start the controller */ 12856 static __noinline int 12857 bxe_nic_load(struct bxe_softc *sc, 12858 int load_mode) 12859 { 12860 uint32_t val; 12861 int load_code = 0; 12862 int i, rc = 0; 12863 12864 BXE_CORE_LOCK_ASSERT(sc); 12865 12866 BLOGD(sc, DBG_LOAD, "Starting NIC load...\n"); 12867 12868 sc->state = BXE_STATE_OPENING_WAITING_LOAD; 12869 12870 if (IS_PF(sc)) { 12871 /* must be called before memory allocation and HW init */ 12872 bxe_ilt_set_info(sc); 12873 } 12874 12875 sc->last_reported_link_state = LINK_STATE_UNKNOWN; 12876 12877 bxe_set_fp_rx_buf_size(sc); 12878 12879 if (bxe_alloc_fp_buffers(sc) != 0) { 12880 BLOGE(sc, "Failed to allocate fastpath memory\n"); 12881 sc->state = BXE_STATE_CLOSED; 12882 rc = ENOMEM; 12883 goto bxe_nic_load_error0; 12884 } 12885 12886 if (bxe_alloc_mem(sc) != 0) { 12887 sc->state = BXE_STATE_CLOSED; 12888 rc = ENOMEM; 12889 goto bxe_nic_load_error0; 12890 } 12891 12892 if (bxe_alloc_fw_stats_mem(sc) != 0) { 12893 sc->state = BXE_STATE_CLOSED; 12894 rc = ENOMEM; 12895 goto bxe_nic_load_error0; 12896 } 12897 12898 if (IS_PF(sc)) { 12899 /* set pf load just before approaching the MCP */ 12900 bxe_set_pf_load(sc); 12901 12902 /* if MCP exists send load request and analyze response */ 12903 if (!BXE_NOMCP(sc)) { 12904 /* attempt to load pf */ 12905 if (bxe_nic_load_request(sc, &load_code) != 0) { 12906 sc->state = BXE_STATE_CLOSED; 12907 rc = ENXIO; 12908 goto bxe_nic_load_error1; 12909 } 12910 12911 /* what did the MCP say? */ 12912 if (bxe_nic_load_analyze_req(sc, load_code) != 0) { 12913 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12914 sc->state = BXE_STATE_CLOSED; 12915 rc = ENXIO; 12916 goto bxe_nic_load_error2; 12917 } 12918 } else { 12919 BLOGI(sc, "Device has no MCP!\n"); 12920 load_code = bxe_nic_load_no_mcp(sc); 12921 } 12922 12923 /* mark PMF if applicable */ 12924 bxe_nic_load_pmf(sc, load_code); 12925 12926 /* Init Function state controlling object */ 12927 bxe_init_func_obj(sc); 12928 12929 /* Initialize HW */ 12930 if (bxe_init_hw(sc, load_code) != 0) { 12931 BLOGE(sc, "HW init failed\n"); 12932 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12933 sc->state = BXE_STATE_CLOSED; 12934 rc = ENXIO; 12935 goto bxe_nic_load_error2; 12936 } 12937 } 12938 12939 /* attach interrupts */ 12940 if (bxe_interrupt_attach(sc) != 0) { 12941 sc->state = BXE_STATE_CLOSED; 12942 rc = ENXIO; 12943 goto bxe_nic_load_error2; 12944 } 12945 12946 bxe_nic_init(sc, load_code); 12947 12948 /* Init per-function objects */ 12949 if (IS_PF(sc)) { 12950 bxe_init_objs(sc); 12951 // XXX bxe_iov_nic_init(sc); 12952 12953 /* set AFEX default VLAN tag to an invalid value */ 12954 sc->devinfo.mf_info.afex_def_vlan_tag = -1; 12955 // XXX bxe_nic_load_afex_dcc(sc, load_code); 12956 12957 sc->state = BXE_STATE_OPENING_WAITING_PORT; 12958 rc = bxe_func_start(sc); 12959 if (rc) { 12960 BLOGE(sc, "Function start failed!\n"); 12961 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12962 sc->state = BXE_STATE_ERROR; 12963 goto bxe_nic_load_error3; 12964 } 12965 12966 /* send LOAD_DONE command to MCP */ 12967 if (!BXE_NOMCP(sc)) { 12968 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12969 if (!load_code) { 12970 BLOGE(sc, "MCP response failure, aborting\n"); 12971 sc->state = BXE_STATE_ERROR; 12972 rc = ENXIO; 12973 goto bxe_nic_load_error3; 12974 } 12975 } 12976 12977 rc = bxe_setup_leading(sc); 12978 if (rc) { 12979 BLOGE(sc, "Setup leading failed!\n"); 12980 sc->state = BXE_STATE_ERROR; 12981 goto bxe_nic_load_error3; 12982 } 12983 12984 FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) { 12985 rc = bxe_setup_queue(sc, &sc->fp[i], FALSE); 12986 if (rc) { 12987 BLOGE(sc, "Queue(%d) setup failed\n", i); 12988 sc->state = BXE_STATE_ERROR; 12989 goto bxe_nic_load_error3; 12990 } 12991 } 12992 12993 rc = bxe_init_rss_pf(sc); 12994 if (rc) { 12995 BLOGE(sc, "PF RSS init failed\n"); 12996 sc->state = BXE_STATE_ERROR; 12997 goto bxe_nic_load_error3; 12998 } 12999 } 13000 /* XXX VF */ 13001 #if 0 13002 else { /* VF */ 13003 FOR_EACH_ETH_QUEUE(sc, i) { 13004 rc = bxe_vfpf_setup_q(sc, i); 13005 if (rc) { 13006 BLOGE(sc, "Queue(%d) setup failed\n", i); 13007 sc->state = BXE_STATE_ERROR; 13008 goto bxe_nic_load_error3; 13009 } 13010 } 13011 } 13012 #endif 13013 13014 /* now when Clients are configured we are ready to work */ 13015 sc->state = BXE_STATE_OPEN; 13016 13017 /* Configure a ucast MAC */ 13018 if (IS_PF(sc)) { 13019 rc = bxe_set_eth_mac(sc, TRUE); 13020 } 13021 #if 0 13022 else { /* IS_VF(sc) */ 13023 rc = bxe_vfpf_set_mac(sc); 13024 } 13025 #endif 13026 if (rc) { 13027 BLOGE(sc, "Setting Ethernet MAC failed\n"); 13028 sc->state = BXE_STATE_ERROR; 13029 goto bxe_nic_load_error3; 13030 } 13031 13032 #if 0 13033 if (IS_PF(sc) && sc->pending_max) { 13034 /* for AFEX */ 13035 bxe_update_max_mf_config(sc, sc->pending_max); 13036 sc->pending_max = 0; 13037 } 13038 #endif 13039 13040 if (sc->port.pmf) { 13041 rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN); 13042 if (rc) { 13043 sc->state = BXE_STATE_ERROR; 13044 goto bxe_nic_load_error3; 13045 } 13046 } 13047 13048 sc->link_params.feature_config_flags &= 13049 ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN; 13050 13051 /* start fast path */ 13052 13053 /* Initialize Rx filter */ 13054 bxe_set_rx_mode(sc); 13055 13056 /* start the Tx */ 13057 switch (/* XXX load_mode */LOAD_OPEN) { 13058 case LOAD_NORMAL: 13059 case LOAD_OPEN: 13060 break; 13061 13062 case LOAD_DIAG: 13063 case LOAD_LOOPBACK_EXT: 13064 sc->state = BXE_STATE_DIAG; 13065 break; 13066 13067 default: 13068 break; 13069 } 13070 13071 if (sc->port.pmf) { 13072 bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0); 13073 } else { 13074 bxe_link_status_update(sc); 13075 } 13076 13077 /* start the periodic timer callout */ 13078 bxe_periodic_start(sc); 13079 13080 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { 13081 /* mark driver is loaded in shmem2 */ 13082 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); 13083 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], 13084 (val | 13085 DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED | 13086 DRV_FLAGS_CAPABILITIES_LOADED_L2)); 13087 } 13088 13089 /* wait for all pending SP commands to complete */ 13090 if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) { 13091 BLOGE(sc, "Timeout waiting for all SPs to complete!\n"); 13092 bxe_periodic_stop(sc); 13093 bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE); 13094 return (ENXIO); 13095 } 13096 13097 #if 0 13098 /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */ 13099 if (sc->port.pmf && (sc->state != BXE_STATE_DIAG)) { 13100 bxe_dcbx_init(sc, FALSE); 13101 } 13102 #endif 13103 13104 /* Tell the stack the driver is running! */ 13105 if_setdrvflags(sc->ifp, IFF_DRV_RUNNING); 13106 13107 BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n"); 13108 13109 return (0); 13110 13111 bxe_nic_load_error3: 13112 13113 if (IS_PF(sc)) { 13114 bxe_int_disable_sync(sc, 1); 13115 13116 /* clean out queued objects */ 13117 bxe_squeeze_objects(sc); 13118 } 13119 13120 bxe_interrupt_detach(sc); 13121 13122 bxe_nic_load_error2: 13123 13124 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 13125 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 13126 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); 13127 } 13128 13129 sc->port.pmf = 0; 13130 13131 bxe_nic_load_error1: 13132 13133 /* clear pf_load status, as it was already set */ 13134 if (IS_PF(sc)) { 13135 bxe_clear_pf_load(sc); 13136 } 13137 13138 bxe_nic_load_error0: 13139 13140 bxe_free_fw_stats_mem(sc); 13141 bxe_free_fp_buffers(sc); 13142 bxe_free_mem(sc); 13143 13144 return (rc); 13145 } 13146 13147 static int 13148 bxe_init_locked(struct bxe_softc *sc) 13149 { 13150 int other_engine = SC_PATH(sc) ? 0 : 1; 13151 uint8_t other_load_status, load_status; 13152 uint8_t global = FALSE; 13153 int rc; 13154 13155 BXE_CORE_LOCK_ASSERT(sc); 13156 13157 /* check if the driver is already running */ 13158 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 13159 BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n"); 13160 return (0); 13161 } 13162 13163 bxe_set_power_state(sc, PCI_PM_D0); 13164 13165 /* 13166 * If parity occurred during the unload, then attentions and/or 13167 * RECOVERY_IN_PROGRES may still be set. If so we want the first function 13168 * loaded on the current engine to complete the recovery. Parity recovery 13169 * is only relevant for PF driver. 13170 */ 13171 if (IS_PF(sc)) { 13172 other_load_status = bxe_get_load_status(sc, other_engine); 13173 load_status = bxe_get_load_status(sc, SC_PATH(sc)); 13174 13175 if (!bxe_reset_is_done(sc, SC_PATH(sc)) || 13176 bxe_chk_parity_attn(sc, &global, TRUE)) { 13177 do { 13178 /* 13179 * If there are attentions and they are in global blocks, set 13180 * the GLOBAL_RESET bit regardless whether it will be this 13181 * function that will complete the recovery or not. 13182 */ 13183 if (global) { 13184 bxe_set_reset_global(sc); 13185 } 13186 13187 /* 13188 * Only the first function on the current engine should try 13189 * to recover in open. In case of attentions in global blocks 13190 * only the first in the chip should try to recover. 13191 */ 13192 if ((!load_status && (!global || !other_load_status)) && 13193 bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) { 13194 BLOGI(sc, "Recovered during init\n"); 13195 break; 13196 } 13197 13198 /* recovery has failed... */ 13199 bxe_set_power_state(sc, PCI_PM_D3hot); 13200 sc->recovery_state = BXE_RECOVERY_FAILED; 13201 13202 BLOGE(sc, "Recovery flow hasn't properly " 13203 "completed yet, try again later. " 13204 "If you still see this message after a " 13205 "few retries then power cycle is required.\n"); 13206 13207 rc = ENXIO; 13208 goto bxe_init_locked_done; 13209 } while (0); 13210 } 13211 } 13212 13213 sc->recovery_state = BXE_RECOVERY_DONE; 13214 13215 rc = bxe_nic_load(sc, LOAD_OPEN); 13216 13217 bxe_init_locked_done: 13218 13219 if (rc) { 13220 /* Tell the stack the driver is NOT running! */ 13221 BLOGE(sc, "Initialization failed, " 13222 "stack notified driver is NOT running!\n"); 13223 if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING); 13224 } 13225 13226 return (rc); 13227 } 13228 13229 static int 13230 bxe_stop_locked(struct bxe_softc *sc) 13231 { 13232 BXE_CORE_LOCK_ASSERT(sc); 13233 return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE)); 13234 } 13235 13236 /* 13237 * Handles controller initialization when called from an unlocked routine. 13238 * ifconfig calls this function. 13239 * 13240 * Returns: 13241 * void 13242 */ 13243 static void 13244 bxe_init(void *xsc) 13245 { 13246 struct bxe_softc *sc = (struct bxe_softc *)xsc; 13247 13248 BXE_CORE_LOCK(sc); 13249 bxe_init_locked(sc); 13250 BXE_CORE_UNLOCK(sc); 13251 } 13252 13253 static int 13254 bxe_init_ifnet(struct bxe_softc *sc) 13255 { 13256 if_t ifp; 13257 int capabilities; 13258 13259 /* ifconfig entrypoint for media type/status reporting */ 13260 ifmedia_init(&sc->ifmedia, IFM_IMASK, 13261 bxe_ifmedia_update, 13262 bxe_ifmedia_status); 13263 13264 /* set the default interface values */ 13265 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL); 13266 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL); 13267 ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO)); 13268 13269 sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */ 13270 13271 /* allocate the ifnet structure */ 13272 if ((ifp = if_gethandle(IFT_ETHER)) == NULL) { 13273 BLOGE(sc, "Interface allocation failed!\n"); 13274 return (ENXIO); 13275 } 13276 13277 if_setsoftc(ifp, sc); 13278 if_initname_drv(ifp, device_get_name(sc->dev), device_get_unit(sc->dev)); 13279 if_setflags(ifp, (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST)); 13280 if_setioctlfn(ifp, bxe_ioctl); 13281 if_setstartfn(ifp, bxe_tx_start); 13282 #if __FreeBSD_version >= 800000 13283 if_settransmitfn(ifp, bxe_tx_mq_start); 13284 if_setqflushfn(ifp, bxe_mq_flush); 13285 #endif 13286 #ifdef FreeBSD8_0 13287 if_settimer(ifp, 0); 13288 #endif 13289 if_setinitfn(ifp, bxe_init); 13290 if_setmtu(ifp, sc->mtu); 13291 if_sethwassist(ifp, (CSUM_IP | 13292 CSUM_TCP | 13293 CSUM_UDP | 13294 CSUM_TSO | 13295 CSUM_TCP_IPV6 | 13296 CSUM_UDP_IPV6)); 13297 13298 capabilities = 13299 #if __FreeBSD_version < 700000 13300 (IFCAP_VLAN_MTU | 13301 IFCAP_VLAN_HWTAGGING | 13302 IFCAP_HWCSUM | 13303 IFCAP_JUMBO_MTU | 13304 IFCAP_LRO); 13305 #else 13306 (IFCAP_VLAN_MTU | 13307 IFCAP_VLAN_HWTAGGING | 13308 IFCAP_VLAN_HWTSO | 13309 IFCAP_VLAN_HWFILTER | 13310 IFCAP_VLAN_HWCSUM | 13311 IFCAP_HWCSUM | 13312 IFCAP_JUMBO_MTU | 13313 IFCAP_LRO | 13314 IFCAP_TSO4 | 13315 IFCAP_TSO6 | 13316 IFCAP_WOL_MAGIC); 13317 #endif 13318 if_setcapabilitiesbit(ifp, capabilities, 0); /* XXX */ 13319 if_setbaudrate(ifp, IF_Gbps(10)); 13320 /* XXX */ 13321 if_setsendqlen(ifp, sc->tx_ring_size); 13322 if_setsendqready(ifp); 13323 /* XXX */ 13324 13325 sc->ifp = ifp; 13326 13327 /* attach to the Ethernet interface list */ 13328 ether_ifattach_drv(ifp, sc->link_params.mac_addr); 13329 13330 return (0); 13331 } 13332 13333 static void 13334 bxe_deallocate_bars(struct bxe_softc *sc) 13335 { 13336 int i; 13337 13338 for (i = 0; i < MAX_BARS; i++) { 13339 if (sc->bar[i].resource != NULL) { 13340 bus_release_resource(sc->dev, 13341 SYS_RES_MEMORY, 13342 sc->bar[i].rid, 13343 sc->bar[i].resource); 13344 BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n", 13345 i, PCIR_BAR(i)); 13346 } 13347 } 13348 } 13349 13350 static int 13351 bxe_allocate_bars(struct bxe_softc *sc) 13352 { 13353 u_int flags; 13354 int i; 13355 13356 memset(sc->bar, 0, sizeof(sc->bar)); 13357 13358 for (i = 0; i < MAX_BARS; i++) { 13359 13360 /* memory resources reside at BARs 0, 2, 4 */ 13361 /* Run `pciconf -lb` to see mappings */ 13362 if ((i != 0) && (i != 2) && (i != 4)) { 13363 continue; 13364 } 13365 13366 sc->bar[i].rid = PCIR_BAR(i); 13367 13368 flags = RF_ACTIVE; 13369 if (i == 0) { 13370 flags |= RF_SHAREABLE; 13371 } 13372 13373 if ((sc->bar[i].resource = 13374 bus_alloc_resource_any(sc->dev, 13375 SYS_RES_MEMORY, 13376 &sc->bar[i].rid, 13377 flags)) == NULL) { 13378 #if 0 13379 /* BAR4 doesn't exist for E1 */ 13380 BLOGE(sc, "PCI BAR%d [%02x] memory allocation failed\n", 13381 i, PCIR_BAR(i)); 13382 #endif 13383 return (0); 13384 } 13385 13386 sc->bar[i].tag = rman_get_bustag(sc->bar[i].resource); 13387 sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource); 13388 sc->bar[i].kva = (vm_offset_t)rman_get_virtual(sc->bar[i].resource); 13389 13390 BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %p-%p (%ld) -> %p\n", 13391 i, PCIR_BAR(i), 13392 (void *)rman_get_start(sc->bar[i].resource), 13393 (void *)rman_get_end(sc->bar[i].resource), 13394 rman_get_size(sc->bar[i].resource), 13395 (void *)sc->bar[i].kva); 13396 } 13397 13398 return (0); 13399 } 13400 13401 static void 13402 bxe_get_function_num(struct bxe_softc *sc) 13403 { 13404 uint32_t val = 0; 13405 13406 /* 13407 * Read the ME register to get the function number. The ME register 13408 * holds the relative-function number and absolute-function number. The 13409 * absolute-function number appears only in E2 and above. Before that 13410 * these bits always contained zero, therefore we cannot blindly use them. 13411 */ 13412 13413 val = REG_RD(sc, BAR_ME_REGISTER); 13414 13415 sc->pfunc_rel = 13416 (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT); 13417 sc->path_id = 13418 (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1; 13419 13420 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 13421 sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id); 13422 } else { 13423 sc->pfunc_abs = (sc->pfunc_rel | sc->path_id); 13424 } 13425 13426 BLOGD(sc, DBG_LOAD, 13427 "Relative function %d, Absolute function %d, Path %d\n", 13428 sc->pfunc_rel, sc->pfunc_abs, sc->path_id); 13429 } 13430 13431 static uint32_t 13432 bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc) 13433 { 13434 uint32_t shmem2_size; 13435 uint32_t offset; 13436 uint32_t mf_cfg_offset_value; 13437 13438 /* Non 57712 */ 13439 offset = (SHMEM_RD(sc, func_mb) + 13440 (MAX_FUNC_NUM * sizeof(struct drv_func_mb))); 13441 13442 /* 57712 plus */ 13443 if (sc->devinfo.shmem2_base != 0) { 13444 shmem2_size = SHMEM2_RD(sc, size); 13445 if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) { 13446 mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr); 13447 if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) { 13448 offset = mf_cfg_offset_value; 13449 } 13450 } 13451 } 13452 13453 return (offset); 13454 } 13455 13456 static uint32_t 13457 bxe_pcie_capability_read(struct bxe_softc *sc, 13458 int reg, 13459 int width) 13460 { 13461 int pcie_reg; 13462 13463 /* ensure PCIe capability is enabled */ 13464 if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) { 13465 if (pcie_reg != 0) { 13466 BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg); 13467 return (pci_read_config(sc->dev, (pcie_reg + reg), width)); 13468 } 13469 } 13470 13471 BLOGE(sc, "PCIe capability NOT FOUND!!!\n"); 13472 13473 return (0); 13474 } 13475 13476 static uint8_t 13477 bxe_is_pcie_pending(struct bxe_softc *sc) 13478 { 13479 return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) & 13480 PCIM_EXP_STA_TRANSACTION_PND); 13481 } 13482 13483 /* 13484 * Walk the PCI capabiites list for the device to find what features are 13485 * supported. These capabilites may be enabled/disabled by firmware so it's 13486 * best to walk the list rather than make assumptions. 13487 */ 13488 static void 13489 bxe_probe_pci_caps(struct bxe_softc *sc) 13490 { 13491 uint16_t link_status; 13492 int reg; 13493 13494 /* check if PCI Power Management is enabled */ 13495 if (pci_find_cap(sc->dev, PCIY_PMG, ®) == 0) { 13496 if (reg != 0) { 13497 BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg); 13498 13499 sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG; 13500 sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg; 13501 } 13502 } 13503 13504 link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2); 13505 13506 /* handle PCIe 2.0 workarounds for 57710 */ 13507 if (CHIP_IS_E1(sc)) { 13508 /* workaround for 57710 errata E4_57710_27462 */ 13509 sc->devinfo.pcie_link_speed = 13510 (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1; 13511 13512 /* workaround for 57710 errata E4_57710_27488 */ 13513 sc->devinfo.pcie_link_width = 13514 ((link_status & PCIM_LINK_STA_WIDTH) >> 4); 13515 if (sc->devinfo.pcie_link_speed > 1) { 13516 sc->devinfo.pcie_link_width = 13517 ((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1; 13518 } 13519 } else { 13520 sc->devinfo.pcie_link_speed = 13521 (link_status & PCIM_LINK_STA_SPEED); 13522 sc->devinfo.pcie_link_width = 13523 ((link_status & PCIM_LINK_STA_WIDTH) >> 4); 13524 } 13525 13526 BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n", 13527 sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width); 13528 13529 sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG; 13530 sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg; 13531 13532 /* check if MSI capability is enabled */ 13533 if (pci_find_cap(sc->dev, PCIY_MSI, ®) == 0) { 13534 if (reg != 0) { 13535 BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg); 13536 13537 sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG; 13538 sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg; 13539 } 13540 } 13541 13542 /* check if MSI-X capability is enabled */ 13543 if (pci_find_cap(sc->dev, PCIY_MSIX, ®) == 0) { 13544 if (reg != 0) { 13545 BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg); 13546 13547 sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG; 13548 sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg; 13549 } 13550 } 13551 } 13552 13553 static int 13554 bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc) 13555 { 13556 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13557 uint32_t val; 13558 13559 /* get the outer vlan if we're in switch-dependent mode */ 13560 13561 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13562 mf_info->ext_id = (uint16_t)val; 13563 13564 mf_info->multi_vnics_mode = 1; 13565 13566 if (!VALID_OVLAN(mf_info->ext_id)) { 13567 BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id); 13568 return (1); 13569 } 13570 13571 /* get the capabilities */ 13572 if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == 13573 FUNC_MF_CFG_PROTOCOL_ISCSI) { 13574 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI; 13575 } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == 13576 FUNC_MF_CFG_PROTOCOL_FCOE) { 13577 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE; 13578 } else { 13579 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET; 13580 } 13581 13582 mf_info->vnics_per_port = 13583 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13584 13585 return (0); 13586 } 13587 13588 static uint32_t 13589 bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc) 13590 { 13591 uint32_t retval = 0; 13592 uint32_t val; 13593 13594 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); 13595 13596 if (val & MACP_FUNC_CFG_FLAGS_ENABLED) { 13597 if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) { 13598 retval |= MF_PROTO_SUPPORT_ETHERNET; 13599 } 13600 if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) { 13601 retval |= MF_PROTO_SUPPORT_ISCSI; 13602 } 13603 if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) { 13604 retval |= MF_PROTO_SUPPORT_FCOE; 13605 } 13606 } 13607 13608 return (retval); 13609 } 13610 13611 static int 13612 bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc) 13613 { 13614 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13615 uint32_t val; 13616 13617 /* 13618 * There is no outer vlan if we're in switch-independent mode. 13619 * If the mac is valid then assume multi-function. 13620 */ 13621 13622 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); 13623 13624 mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0); 13625 13626 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); 13627 13628 mf_info->vnics_per_port = 13629 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13630 13631 return (0); 13632 } 13633 13634 static int 13635 bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc) 13636 { 13637 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13638 uint32_t e1hov_tag; 13639 uint32_t func_config; 13640 uint32_t niv_config; 13641 13642 mf_info->multi_vnics_mode = 1; 13643 13644 e1hov_tag = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13645 func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 13646 niv_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config); 13647 13648 mf_info->ext_id = 13649 (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >> 13650 FUNC_MF_CFG_E1HOV_TAG_SHIFT); 13651 13652 mf_info->default_vlan = 13653 (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >> 13654 FUNC_MF_CFG_AFEX_VLAN_SHIFT); 13655 13656 mf_info->niv_allowed_priorities = 13657 (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >> 13658 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT); 13659 13660 mf_info->niv_default_cos = 13661 (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >> 13662 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT); 13663 13664 mf_info->afex_vlan_mode = 13665 ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >> 13666 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT); 13667 13668 mf_info->niv_mba_enabled = 13669 ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >> 13670 FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT); 13671 13672 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); 13673 13674 mf_info->vnics_per_port = 13675 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13676 13677 return (0); 13678 } 13679 13680 static int 13681 bxe_check_valid_mf_cfg(struct bxe_softc *sc) 13682 { 13683 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13684 uint32_t mf_cfg1; 13685 uint32_t mf_cfg2; 13686 uint32_t ovlan1; 13687 uint32_t ovlan2; 13688 uint8_t i, j; 13689 13690 BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n", 13691 SC_PORT(sc)); 13692 BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n", 13693 mf_info->mf_config[SC_VN(sc)]); 13694 BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n", 13695 mf_info->multi_vnics_mode); 13696 BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n", 13697 mf_info->vnics_per_port); 13698 BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n", 13699 mf_info->ext_id); 13700 BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n", 13701 mf_info->min_bw[0], mf_info->min_bw[1], 13702 mf_info->min_bw[2], mf_info->min_bw[3]); 13703 BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n", 13704 mf_info->max_bw[0], mf_info->max_bw[1], 13705 mf_info->max_bw[2], mf_info->max_bw[3]); 13706 BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n", 13707 sc->mac_addr_str); 13708 13709 /* various MF mode sanity checks... */ 13710 13711 if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) { 13712 BLOGE(sc, "Enumerated function %d is marked as hidden\n", 13713 SC_PORT(sc)); 13714 return (1); 13715 } 13716 13717 if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) { 13718 BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n", 13719 mf_info->vnics_per_port, mf_info->multi_vnics_mode); 13720 return (1); 13721 } 13722 13723 if (mf_info->mf_mode == MULTI_FUNCTION_SD) { 13724 /* vnic id > 0 must have valid ovlan in switch-dependent mode */ 13725 if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) { 13726 BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n", 13727 SC_VN(sc), OVLAN(sc)); 13728 return (1); 13729 } 13730 13731 if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) { 13732 BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n", 13733 mf_info->multi_vnics_mode, OVLAN(sc)); 13734 return (1); 13735 } 13736 13737 /* 13738 * Verify all functions are either MF or SF mode. If MF, make sure 13739 * sure that all non-hidden functions have a valid ovlan. If SF, 13740 * make sure that all non-hidden functions have an invalid ovlan. 13741 */ 13742 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13743 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); 13744 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); 13745 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && 13746 (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) || 13747 ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) { 13748 BLOGE(sc, "mf_mode=SD function %d MF config " 13749 "mismatch, multi_vnics_mode=%d ovlan=%d\n", 13750 i, mf_info->multi_vnics_mode, ovlan1); 13751 return (1); 13752 } 13753 } 13754 13755 /* Verify all funcs on the same port each have a different ovlan. */ 13756 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13757 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); 13758 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); 13759 /* iterate from the next function on the port to the max func */ 13760 for (j = i + 2; j < MAX_FUNC_NUM; j += 2) { 13761 mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config); 13762 ovlan2 = MFCFG_RD(sc, func_mf_config[j].e1hov_tag); 13763 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && 13764 VALID_OVLAN(ovlan1) && 13765 !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) && 13766 VALID_OVLAN(ovlan2) && 13767 (ovlan1 == ovlan2)) { 13768 BLOGE(sc, "mf_mode=SD functions %d and %d " 13769 "have the same ovlan (%d)\n", 13770 i, j, ovlan1); 13771 return (1); 13772 } 13773 } 13774 } 13775 } /* MULTI_FUNCTION_SD */ 13776 13777 return (0); 13778 } 13779 13780 static int 13781 bxe_get_mf_cfg_info(struct bxe_softc *sc) 13782 { 13783 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13784 uint32_t val, mac_upper; 13785 uint8_t i, vnic; 13786 13787 /* initialize mf_info defaults */ 13788 mf_info->vnics_per_port = 1; 13789 mf_info->multi_vnics_mode = FALSE; 13790 mf_info->path_has_ovlan = FALSE; 13791 mf_info->mf_mode = SINGLE_FUNCTION; 13792 13793 if (!CHIP_IS_MF_CAP(sc)) { 13794 return (0); 13795 } 13796 13797 if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) { 13798 BLOGE(sc, "Invalid mf_cfg_base!\n"); 13799 return (1); 13800 } 13801 13802 /* get the MF mode (switch dependent / independent / single-function) */ 13803 13804 val = SHMEM_RD(sc, dev_info.shared_feature_config.config); 13805 13806 switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK) 13807 { 13808 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT: 13809 13810 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13811 13812 /* check for legal upper mac bytes */ 13813 if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) { 13814 mf_info->mf_mode = MULTI_FUNCTION_SI; 13815 } else { 13816 BLOGE(sc, "Invalid config for Switch Independent mode\n"); 13817 } 13818 13819 break; 13820 13821 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED: 13822 case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4: 13823 13824 /* get outer vlan configuration */ 13825 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13826 13827 if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) != 13828 FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 13829 mf_info->mf_mode = MULTI_FUNCTION_SD; 13830 } else { 13831 BLOGE(sc, "Invalid config for Switch Dependent mode\n"); 13832 } 13833 13834 break; 13835 13836 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF: 13837 13838 /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */ 13839 return (0); 13840 13841 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE: 13842 13843 /* 13844 * Mark MF mode as NIV if MCP version includes NPAR-SD support 13845 * and the MAC address is valid. 13846 */ 13847 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13848 13849 if ((SHMEM2_HAS(sc, afex_driver_support)) && 13850 (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) { 13851 mf_info->mf_mode = MULTI_FUNCTION_AFEX; 13852 } else { 13853 BLOGE(sc, "Invalid config for AFEX mode\n"); 13854 } 13855 13856 break; 13857 13858 default: 13859 13860 BLOGE(sc, "Unknown MF mode (0x%08x)\n", 13861 (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)); 13862 13863 return (1); 13864 } 13865 13866 /* set path mf_mode (which could be different than function mf_mode) */ 13867 if (mf_info->mf_mode == MULTI_FUNCTION_SD) { 13868 mf_info->path_has_ovlan = TRUE; 13869 } else if (mf_info->mf_mode == SINGLE_FUNCTION) { 13870 /* 13871 * Decide on path multi vnics mode. If we're not in MF mode and in 13872 * 4-port mode, this is good enough to check vnic-0 of the other port 13873 * on the same path 13874 */ 13875 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 13876 uint8_t other_port = !(PORT_ID(sc) & 1); 13877 uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port)); 13878 13879 val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag); 13880 13881 mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0; 13882 } 13883 } 13884 13885 if (mf_info->mf_mode == SINGLE_FUNCTION) { 13886 /* invalid MF config */ 13887 if (SC_VN(sc) >= 1) { 13888 BLOGE(sc, "VNIC ID >= 1 in SF mode\n"); 13889 return (1); 13890 } 13891 13892 return (0); 13893 } 13894 13895 /* get the MF configuration */ 13896 mf_info->mf_config[SC_VN(sc)] = 13897 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 13898 13899 switch(mf_info->mf_mode) 13900 { 13901 case MULTI_FUNCTION_SD: 13902 13903 bxe_get_shmem_mf_cfg_info_sd(sc); 13904 break; 13905 13906 case MULTI_FUNCTION_SI: 13907 13908 bxe_get_shmem_mf_cfg_info_si(sc); 13909 break; 13910 13911 case MULTI_FUNCTION_AFEX: 13912 13913 bxe_get_shmem_mf_cfg_info_niv(sc); 13914 break; 13915 13916 default: 13917 13918 BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n", 13919 mf_info->mf_mode); 13920 return (1); 13921 } 13922 13923 /* get the congestion management parameters */ 13924 13925 vnic = 0; 13926 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13927 /* get min/max bw */ 13928 val = MFCFG_RD(sc, func_mf_config[i].config); 13929 mf_info->min_bw[vnic] = 13930 ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT); 13931 mf_info->max_bw[vnic] = 13932 ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT); 13933 vnic++; 13934 } 13935 13936 return (bxe_check_valid_mf_cfg(sc)); 13937 } 13938 13939 static int 13940 bxe_get_shmem_info(struct bxe_softc *sc) 13941 { 13942 int port; 13943 uint32_t mac_hi, mac_lo, val; 13944 13945 port = SC_PORT(sc); 13946 mac_hi = mac_lo = 0; 13947 13948 sc->link_params.sc = sc; 13949 sc->link_params.port = port; 13950 13951 /* get the hardware config info */ 13952 sc->devinfo.hw_config = 13953 SHMEM_RD(sc, dev_info.shared_hw_config.config); 13954 sc->devinfo.hw_config2 = 13955 SHMEM_RD(sc, dev_info.shared_hw_config.config2); 13956 13957 sc->link_params.hw_led_mode = 13958 ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >> 13959 SHARED_HW_CFG_LED_MODE_SHIFT); 13960 13961 /* get the port feature config */ 13962 sc->port.config = 13963 SHMEM_RD(sc, dev_info.port_feature_config[port].config), 13964 13965 /* get the link params */ 13966 sc->link_params.speed_cap_mask[0] = 13967 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask); 13968 sc->link_params.speed_cap_mask[1] = 13969 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2); 13970 13971 /* get the lane config */ 13972 sc->link_params.lane_config = 13973 SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config); 13974 13975 /* get the link config */ 13976 val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config); 13977 sc->port.link_config[ELINK_INT_PHY] = val; 13978 sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK); 13979 sc->port.link_config[ELINK_EXT_PHY1] = 13980 SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2); 13981 13982 /* get the override preemphasis flag and enable it or turn it off */ 13983 val = SHMEM_RD(sc, dev_info.shared_feature_config.config); 13984 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) { 13985 sc->link_params.feature_config_flags |= 13986 ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 13987 } else { 13988 sc->link_params.feature_config_flags &= 13989 ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 13990 } 13991 13992 /* get the initial value of the link params */ 13993 sc->link_params.multi_phy_config = 13994 SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config); 13995 13996 /* get external phy info */ 13997 sc->port.ext_phy_config = 13998 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); 13999 14000 /* get the multifunction configuration */ 14001 bxe_get_mf_cfg_info(sc); 14002 14003 /* get the mac address */ 14004 if (IS_MF(sc)) { 14005 mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 14006 mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower); 14007 } else { 14008 mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper); 14009 mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower); 14010 } 14011 14012 if ((mac_lo == 0) && (mac_hi == 0)) { 14013 *sc->mac_addr_str = 0; 14014 BLOGE(sc, "No Ethernet address programmed!\n"); 14015 } else { 14016 sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8); 14017 sc->link_params.mac_addr[1] = (uint8_t)(mac_hi); 14018 sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24); 14019 sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16); 14020 sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8); 14021 sc->link_params.mac_addr[5] = (uint8_t)(mac_lo); 14022 snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str), 14023 "%02x:%02x:%02x:%02x:%02x:%02x", 14024 sc->link_params.mac_addr[0], sc->link_params.mac_addr[1], 14025 sc->link_params.mac_addr[2], sc->link_params.mac_addr[3], 14026 sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]); 14027 BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str); 14028 } 14029 14030 #if 0 14031 if (!IS_MF(sc) && 14032 ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == 14033 PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE)) { 14034 sc->flags |= BXE_NO_ISCSI; 14035 } 14036 if (!IS_MF(sc) && 14037 ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == 14038 PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI)) { 14039 sc->flags |= BXE_NO_FCOE_FLAG; 14040 } 14041 #endif 14042 14043 return (0); 14044 } 14045 14046 static void 14047 bxe_get_tunable_params(struct bxe_softc *sc) 14048 { 14049 /* sanity checks */ 14050 14051 if ((bxe_interrupt_mode != INTR_MODE_INTX) && 14052 (bxe_interrupt_mode != INTR_MODE_MSI) && 14053 (bxe_interrupt_mode != INTR_MODE_MSIX)) { 14054 BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode); 14055 bxe_interrupt_mode = INTR_MODE_MSIX; 14056 } 14057 14058 if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) { 14059 BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count); 14060 bxe_queue_count = 0; 14061 } 14062 14063 if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) { 14064 if (bxe_max_rx_bufs == 0) { 14065 bxe_max_rx_bufs = RX_BD_USABLE; 14066 } else { 14067 BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs); 14068 bxe_max_rx_bufs = 2048; 14069 } 14070 } 14071 14072 if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) { 14073 BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks); 14074 bxe_hc_rx_ticks = 25; 14075 } 14076 14077 if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) { 14078 BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks); 14079 bxe_hc_tx_ticks = 50; 14080 } 14081 14082 if (bxe_max_aggregation_size == 0) { 14083 bxe_max_aggregation_size = TPA_AGG_SIZE; 14084 } 14085 14086 if (bxe_max_aggregation_size > 0xffff) { 14087 BLOGW(sc, "invalid max_aggregation_size (%d)\n", 14088 bxe_max_aggregation_size); 14089 bxe_max_aggregation_size = TPA_AGG_SIZE; 14090 } 14091 14092 if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) { 14093 BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs); 14094 bxe_mrrs = -1; 14095 } 14096 14097 if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) { 14098 BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen); 14099 bxe_autogreeen = 0; 14100 } 14101 14102 if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) { 14103 BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss); 14104 bxe_udp_rss = 0; 14105 } 14106 14107 /* pull in user settings */ 14108 14109 sc->interrupt_mode = bxe_interrupt_mode; 14110 sc->max_rx_bufs = bxe_max_rx_bufs; 14111 sc->hc_rx_ticks = bxe_hc_rx_ticks; 14112 sc->hc_tx_ticks = bxe_hc_tx_ticks; 14113 sc->max_aggregation_size = bxe_max_aggregation_size; 14114 sc->mrrs = bxe_mrrs; 14115 sc->autogreeen = bxe_autogreeen; 14116 sc->udp_rss = bxe_udp_rss; 14117 14118 if (bxe_interrupt_mode == INTR_MODE_INTX) { 14119 sc->num_queues = 1; 14120 } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */ 14121 sc->num_queues = 14122 min((bxe_queue_count ? bxe_queue_count : mp_ncpus), 14123 MAX_RSS_CHAINS); 14124 if (sc->num_queues > mp_ncpus) { 14125 sc->num_queues = mp_ncpus; 14126 } 14127 } 14128 14129 BLOGD(sc, DBG_LOAD, 14130 "User Config: " 14131 "debug=0x%lx " 14132 "interrupt_mode=%d " 14133 "queue_count=%d " 14134 "hc_rx_ticks=%d " 14135 "hc_tx_ticks=%d " 14136 "rx_budget=%d " 14137 "max_aggregation_size=%d " 14138 "mrrs=%d " 14139 "autogreeen=%d " 14140 "udp_rss=%d\n", 14141 bxe_debug, 14142 sc->interrupt_mode, 14143 sc->num_queues, 14144 sc->hc_rx_ticks, 14145 sc->hc_tx_ticks, 14146 bxe_rx_budget, 14147 sc->max_aggregation_size, 14148 sc->mrrs, 14149 sc->autogreeen, 14150 sc->udp_rss); 14151 } 14152 14153 static void 14154 bxe_media_detect(struct bxe_softc *sc) 14155 { 14156 uint32_t phy_idx = bxe_get_cur_phy_idx(sc); 14157 switch (sc->link_params.phy[phy_idx].media_type) { 14158 case ELINK_ETH_PHY_SFPP_10G_FIBER: 14159 case ELINK_ETH_PHY_XFP_FIBER: 14160 BLOGI(sc, "Found 10Gb Fiber media.\n"); 14161 sc->media = IFM_10G_SR; 14162 break; 14163 case ELINK_ETH_PHY_SFP_1G_FIBER: 14164 BLOGI(sc, "Found 1Gb Fiber media.\n"); 14165 sc->media = IFM_1000_SX; 14166 break; 14167 case ELINK_ETH_PHY_KR: 14168 case ELINK_ETH_PHY_CX4: 14169 BLOGI(sc, "Found 10GBase-CX4 media.\n"); 14170 sc->media = IFM_10G_CX4; 14171 break; 14172 case ELINK_ETH_PHY_DA_TWINAX: 14173 BLOGI(sc, "Found 10Gb Twinax media.\n"); 14174 sc->media = IFM_10G_TWINAX; 14175 break; 14176 case ELINK_ETH_PHY_BASE_T: 14177 if (sc->link_params.speed_cap_mask[0] & 14178 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { 14179 BLOGI(sc, "Found 10GBase-T media.\n"); 14180 sc->media = IFM_10G_T; 14181 } else { 14182 BLOGI(sc, "Found 1000Base-T media.\n"); 14183 sc->media = IFM_1000_T; 14184 } 14185 break; 14186 case ELINK_ETH_PHY_NOT_PRESENT: 14187 BLOGI(sc, "Media not present.\n"); 14188 sc->media = 0; 14189 break; 14190 case ELINK_ETH_PHY_UNSPECIFIED: 14191 default: 14192 BLOGI(sc, "Unknown media!\n"); 14193 sc->media = 0; 14194 break; 14195 } 14196 } 14197 14198 #define GET_FIELD(value, fname) \ 14199 (((value) & (fname##_MASK)) >> (fname##_SHIFT)) 14200 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID) 14201 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR) 14202 14203 static int 14204 bxe_get_igu_cam_info(struct bxe_softc *sc) 14205 { 14206 int pfid = SC_FUNC(sc); 14207 int igu_sb_id; 14208 uint32_t val; 14209 uint8_t fid, igu_sb_cnt = 0; 14210 14211 sc->igu_base_sb = 0xff; 14212 14213 if (CHIP_INT_MODE_IS_BC(sc)) { 14214 int vn = SC_VN(sc); 14215 igu_sb_cnt = sc->igu_sb_cnt; 14216 sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) * 14217 FP_SB_MAX_E1x); 14218 sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x + 14219 (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn)); 14220 return (0); 14221 } 14222 14223 /* IGU in normal mode - read CAM */ 14224 for (igu_sb_id = 0; 14225 igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; 14226 igu_sb_id++) { 14227 val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4); 14228 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) { 14229 continue; 14230 } 14231 fid = IGU_FID(val); 14232 if ((fid & IGU_FID_ENCODE_IS_PF)) { 14233 if ((fid & IGU_FID_PF_NUM_MASK) != pfid) { 14234 continue; 14235 } 14236 if (IGU_VEC(val) == 0) { 14237 /* default status block */ 14238 sc->igu_dsb_id = igu_sb_id; 14239 } else { 14240 if (sc->igu_base_sb == 0xff) { 14241 sc->igu_base_sb = igu_sb_id; 14242 } 14243 igu_sb_cnt++; 14244 } 14245 } 14246 } 14247 14248 /* 14249 * Due to new PF resource allocation by MFW T7.4 and above, it's optional 14250 * that number of CAM entries will not be equal to the value advertised in 14251 * PCI. Driver should use the minimal value of both as the actual status 14252 * block count 14253 */ 14254 sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt); 14255 14256 if (igu_sb_cnt == 0) { 14257 BLOGE(sc, "CAM configuration error\n"); 14258 return (-1); 14259 } 14260 14261 return (0); 14262 } 14263 14264 /* 14265 * Gather various information from the device config space, the device itself, 14266 * shmem, and the user input. 14267 */ 14268 static int 14269 bxe_get_device_info(struct bxe_softc *sc) 14270 { 14271 uint32_t val; 14272 int rc; 14273 14274 /* Get the data for the device */ 14275 sc->devinfo.vendor_id = pci_get_vendor(sc->dev); 14276 sc->devinfo.device_id = pci_get_device(sc->dev); 14277 sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev); 14278 sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev); 14279 14280 /* get the chip revision (chip metal comes from pci config space) */ 14281 sc->devinfo.chip_id = 14282 sc->link_params.chip_id = 14283 (((REG_RD(sc, MISC_REG_CHIP_NUM) & 0xffff) << 16) | 14284 ((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12) | 14285 (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf) << 4) | 14286 ((REG_RD(sc, MISC_REG_BOND_ID) & 0xf) << 0)); 14287 14288 /* force 57811 according to MISC register */ 14289 if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) { 14290 if (CHIP_IS_57810(sc)) { 14291 sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) | 14292 (sc->devinfo.chip_id & 0x0000ffff)); 14293 } else if (CHIP_IS_57810_MF(sc)) { 14294 sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) | 14295 (sc->devinfo.chip_id & 0x0000ffff)); 14296 } 14297 sc->devinfo.chip_id |= 0x1; 14298 } 14299 14300 BLOGD(sc, DBG_LOAD, 14301 "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n", 14302 sc->devinfo.chip_id, 14303 ((sc->devinfo.chip_id >> 16) & 0xffff), 14304 ((sc->devinfo.chip_id >> 12) & 0xf), 14305 ((sc->devinfo.chip_id >> 4) & 0xff), 14306 ((sc->devinfo.chip_id >> 0) & 0xf)); 14307 14308 val = (REG_RD(sc, 0x2874) & 0x55); 14309 if ((sc->devinfo.chip_id & 0x1) || 14310 (CHIP_IS_E1(sc) && val) || 14311 (CHIP_IS_E1H(sc) && (val == 0x55))) { 14312 sc->flags |= BXE_ONE_PORT_FLAG; 14313 BLOGD(sc, DBG_LOAD, "single port device\n"); 14314 } 14315 14316 /* set the doorbell size */ 14317 sc->doorbell_size = (1 << BXE_DB_SHIFT); 14318 14319 /* determine whether the device is in 2 port or 4 port mode */ 14320 sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/ 14321 if (CHIP_IS_E2E3(sc)) { 14322 /* 14323 * Read port4mode_en_ovwr[0]: 14324 * If 1, four port mode is in port4mode_en_ovwr[1]. 14325 * If 0, four port mode is in port4mode_en[0]. 14326 */ 14327 val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR); 14328 if (val & 1) { 14329 val = ((val >> 1) & 1); 14330 } else { 14331 val = REG_RD(sc, MISC_REG_PORT4MODE_EN); 14332 } 14333 14334 sc->devinfo.chip_port_mode = 14335 (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE; 14336 14337 BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2"); 14338 } 14339 14340 /* get the function and path info for the device */ 14341 bxe_get_function_num(sc); 14342 14343 /* get the shared memory base address */ 14344 sc->devinfo.shmem_base = 14345 sc->link_params.shmem_base = 14346 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 14347 sc->devinfo.shmem2_base = 14348 REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 : 14349 MISC_REG_GENERIC_CR_0)); 14350 14351 BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n", 14352 sc->devinfo.shmem_base, sc->devinfo.shmem2_base); 14353 14354 if (!sc->devinfo.shmem_base) { 14355 /* this should ONLY prevent upcoming shmem reads */ 14356 BLOGI(sc, "MCP not active\n"); 14357 sc->flags |= BXE_NO_MCP_FLAG; 14358 return (0); 14359 } 14360 14361 /* make sure the shared memory contents are valid */ 14362 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); 14363 if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) != 14364 (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) { 14365 BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val); 14366 return (0); 14367 } 14368 BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val); 14369 14370 /* get the bootcode version */ 14371 sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev); 14372 snprintf(sc->devinfo.bc_ver_str, 14373 sizeof(sc->devinfo.bc_ver_str), 14374 "%d.%d.%d", 14375 ((sc->devinfo.bc_ver >> 24) & 0xff), 14376 ((sc->devinfo.bc_ver >> 16) & 0xff), 14377 ((sc->devinfo.bc_ver >> 8) & 0xff)); 14378 BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str); 14379 14380 /* get the bootcode shmem address */ 14381 sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc); 14382 BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base); 14383 14384 /* clean indirect addresses as they're not used */ 14385 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 14386 if (IS_PF(sc)) { 14387 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0); 14388 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0); 14389 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0); 14390 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0); 14391 if (CHIP_IS_E1x(sc)) { 14392 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0); 14393 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0); 14394 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0); 14395 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0); 14396 } 14397 14398 /* 14399 * Enable internal target-read (in case we are probed after PF 14400 * FLR). Must be done prior to any BAR read access. Only for 14401 * 57712 and up 14402 */ 14403 if (!CHIP_IS_E1x(sc)) { 14404 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 14405 } 14406 } 14407 14408 /* get the nvram size */ 14409 val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4); 14410 sc->devinfo.flash_size = 14411 (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE)); 14412 BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size); 14413 14414 /* get PCI capabilites */ 14415 bxe_probe_pci_caps(sc); 14416 14417 bxe_set_power_state(sc, PCI_PM_D0); 14418 14419 /* get various configuration parameters from shmem */ 14420 bxe_get_shmem_info(sc); 14421 14422 if (sc->devinfo.pcie_msix_cap_reg != 0) { 14423 val = pci_read_config(sc->dev, 14424 (sc->devinfo.pcie_msix_cap_reg + 14425 PCIR_MSIX_CTRL), 14426 2); 14427 sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE); 14428 } else { 14429 sc->igu_sb_cnt = 1; 14430 } 14431 14432 sc->igu_base_addr = BAR_IGU_INTMEM; 14433 14434 /* initialize IGU parameters */ 14435 if (CHIP_IS_E1x(sc)) { 14436 sc->devinfo.int_block = INT_BLOCK_HC; 14437 sc->igu_dsb_id = DEF_SB_IGU_ID; 14438 sc->igu_base_sb = 0; 14439 } else { 14440 sc->devinfo.int_block = INT_BLOCK_IGU; 14441 14442 /* do not allow device reset during IGU info preocessing */ 14443 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 14444 14445 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); 14446 14447 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 14448 int tout = 5000; 14449 14450 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n"); 14451 14452 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN); 14453 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val); 14454 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f); 14455 14456 while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) { 14457 tout--; 14458 DELAY(1000); 14459 } 14460 14461 if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) { 14462 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n"); 14463 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 14464 return (-1); 14465 } 14466 } 14467 14468 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 14469 BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n"); 14470 sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP; 14471 } else { 14472 BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n"); 14473 } 14474 14475 rc = bxe_get_igu_cam_info(sc); 14476 14477 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 14478 14479 if (rc) { 14480 return (rc); 14481 } 14482 } 14483 14484 /* 14485 * Get base FW non-default (fast path) status block ID. This value is 14486 * used to initialize the fw_sb_id saved on the fp/queue structure to 14487 * determine the id used by the FW. 14488 */ 14489 if (CHIP_IS_E1x(sc)) { 14490 sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc)); 14491 } else { 14492 /* 14493 * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of 14494 * the same queue are indicated on the same IGU SB). So we prefer 14495 * FW and IGU SBs to be the same value. 14496 */ 14497 sc->base_fw_ndsb = sc->igu_base_sb; 14498 } 14499 14500 BLOGD(sc, DBG_LOAD, 14501 "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n", 14502 sc->igu_dsb_id, sc->igu_base_sb, 14503 sc->igu_sb_cnt, sc->base_fw_ndsb); 14504 14505 elink_phy_probe(&sc->link_params); 14506 14507 return (0); 14508 } 14509 14510 static void 14511 bxe_link_settings_supported(struct bxe_softc *sc, 14512 uint32_t switch_cfg) 14513 { 14514 uint32_t cfg_size = 0; 14515 uint32_t idx; 14516 uint8_t port = SC_PORT(sc); 14517 14518 /* aggregation of supported attributes of all external phys */ 14519 sc->port.supported[0] = 0; 14520 sc->port.supported[1] = 0; 14521 14522 switch (sc->link_params.num_phys) { 14523 case 1: 14524 sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported; 14525 cfg_size = 1; 14526 break; 14527 case 2: 14528 sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported; 14529 cfg_size = 1; 14530 break; 14531 case 3: 14532 if (sc->link_params.multi_phy_config & 14533 PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 14534 sc->port.supported[1] = 14535 sc->link_params.phy[ELINK_EXT_PHY1].supported; 14536 sc->port.supported[0] = 14537 sc->link_params.phy[ELINK_EXT_PHY2].supported; 14538 } else { 14539 sc->port.supported[0] = 14540 sc->link_params.phy[ELINK_EXT_PHY1].supported; 14541 sc->port.supported[1] = 14542 sc->link_params.phy[ELINK_EXT_PHY2].supported; 14543 } 14544 cfg_size = 2; 14545 break; 14546 } 14547 14548 if (!(sc->port.supported[0] || sc->port.supported[1])) { 14549 BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n", 14550 SHMEM_RD(sc, 14551 dev_info.port_hw_config[port].external_phy_config), 14552 SHMEM_RD(sc, 14553 dev_info.port_hw_config[port].external_phy_config2)); 14554 return; 14555 } 14556 14557 if (CHIP_IS_E3(sc)) 14558 sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR); 14559 else { 14560 switch (switch_cfg) { 14561 case ELINK_SWITCH_CFG_1G: 14562 sc->port.phy_addr = 14563 REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10); 14564 break; 14565 case ELINK_SWITCH_CFG_10G: 14566 sc->port.phy_addr = 14567 REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18); 14568 break; 14569 default: 14570 BLOGE(sc, "Invalid switch config in link_config=0x%08x\n", 14571 sc->port.link_config[0]); 14572 return; 14573 } 14574 } 14575 14576 BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr); 14577 14578 /* mask what we support according to speed_cap_mask per configuration */ 14579 for (idx = 0; idx < cfg_size; idx++) { 14580 if (!(sc->link_params.speed_cap_mask[idx] & 14581 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) { 14582 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half; 14583 } 14584 14585 if (!(sc->link_params.speed_cap_mask[idx] & 14586 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) { 14587 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full; 14588 } 14589 14590 if (!(sc->link_params.speed_cap_mask[idx] & 14591 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) { 14592 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half; 14593 } 14594 14595 if (!(sc->link_params.speed_cap_mask[idx] & 14596 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) { 14597 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full; 14598 } 14599 14600 if (!(sc->link_params.speed_cap_mask[idx] & 14601 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) { 14602 sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full; 14603 } 14604 14605 if (!(sc->link_params.speed_cap_mask[idx] & 14606 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) { 14607 sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full; 14608 } 14609 14610 if (!(sc->link_params.speed_cap_mask[idx] & 14611 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) { 14612 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full; 14613 } 14614 14615 if (!(sc->link_params.speed_cap_mask[idx] & 14616 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) { 14617 sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full; 14618 } 14619 } 14620 14621 BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n", 14622 sc->port.supported[0], sc->port.supported[1]); 14623 } 14624 14625 static void 14626 bxe_link_settings_requested(struct bxe_softc *sc) 14627 { 14628 uint32_t link_config; 14629 uint32_t idx; 14630 uint32_t cfg_size = 0; 14631 14632 sc->port.advertising[0] = 0; 14633 sc->port.advertising[1] = 0; 14634 14635 switch (sc->link_params.num_phys) { 14636 case 1: 14637 case 2: 14638 cfg_size = 1; 14639 break; 14640 case 3: 14641 cfg_size = 2; 14642 break; 14643 } 14644 14645 for (idx = 0; idx < cfg_size; idx++) { 14646 sc->link_params.req_duplex[idx] = DUPLEX_FULL; 14647 link_config = sc->port.link_config[idx]; 14648 14649 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) { 14650 case PORT_FEATURE_LINK_SPEED_AUTO: 14651 if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) { 14652 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; 14653 sc->port.advertising[idx] |= sc->port.supported[idx]; 14654 if (sc->link_params.phy[ELINK_EXT_PHY1].type == 14655 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833) 14656 sc->port.advertising[idx] |= 14657 (ELINK_SUPPORTED_100baseT_Half | 14658 ELINK_SUPPORTED_100baseT_Full); 14659 } else { 14660 /* force 10G, no AN */ 14661 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; 14662 sc->port.advertising[idx] |= 14663 (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE); 14664 continue; 14665 } 14666 break; 14667 14668 case PORT_FEATURE_LINK_SPEED_10M_FULL: 14669 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) { 14670 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; 14671 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full | 14672 ADVERTISED_TP); 14673 } else { 14674 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14675 "speed_cap_mask=0x%08x\n", 14676 link_config, sc->link_params.speed_cap_mask[idx]); 14677 return; 14678 } 14679 break; 14680 14681 case PORT_FEATURE_LINK_SPEED_10M_HALF: 14682 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) { 14683 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; 14684 sc->link_params.req_duplex[idx] = DUPLEX_HALF; 14685 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half | 14686 ADVERTISED_TP); 14687 } else { 14688 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14689 "speed_cap_mask=0x%08x\n", 14690 link_config, sc->link_params.speed_cap_mask[idx]); 14691 return; 14692 } 14693 break; 14694 14695 case PORT_FEATURE_LINK_SPEED_100M_FULL: 14696 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) { 14697 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; 14698 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full | 14699 ADVERTISED_TP); 14700 } else { 14701 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14702 "speed_cap_mask=0x%08x\n", 14703 link_config, sc->link_params.speed_cap_mask[idx]); 14704 return; 14705 } 14706 break; 14707 14708 case PORT_FEATURE_LINK_SPEED_100M_HALF: 14709 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) { 14710 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; 14711 sc->link_params.req_duplex[idx] = DUPLEX_HALF; 14712 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half | 14713 ADVERTISED_TP); 14714 } else { 14715 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14716 "speed_cap_mask=0x%08x\n", 14717 link_config, sc->link_params.speed_cap_mask[idx]); 14718 return; 14719 } 14720 break; 14721 14722 case PORT_FEATURE_LINK_SPEED_1G: 14723 if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) { 14724 sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000; 14725 sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full | 14726 ADVERTISED_TP); 14727 } else { 14728 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14729 "speed_cap_mask=0x%08x\n", 14730 link_config, sc->link_params.speed_cap_mask[idx]); 14731 return; 14732 } 14733 break; 14734 14735 case PORT_FEATURE_LINK_SPEED_2_5G: 14736 if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) { 14737 sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500; 14738 sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full | 14739 ADVERTISED_TP); 14740 } else { 14741 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14742 "speed_cap_mask=0x%08x\n", 14743 link_config, sc->link_params.speed_cap_mask[idx]); 14744 return; 14745 } 14746 break; 14747 14748 case PORT_FEATURE_LINK_SPEED_10G_CX4: 14749 if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) { 14750 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; 14751 sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full | 14752 ADVERTISED_FIBRE); 14753 } else { 14754 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14755 "speed_cap_mask=0x%08x\n", 14756 link_config, sc->link_params.speed_cap_mask[idx]); 14757 return; 14758 } 14759 break; 14760 14761 case PORT_FEATURE_LINK_SPEED_20G: 14762 sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000; 14763 break; 14764 14765 default: 14766 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14767 "speed_cap_mask=0x%08x\n", 14768 link_config, sc->link_params.speed_cap_mask[idx]); 14769 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; 14770 sc->port.advertising[idx] = sc->port.supported[idx]; 14771 break; 14772 } 14773 14774 sc->link_params.req_flow_ctrl[idx] = 14775 (link_config & PORT_FEATURE_FLOW_CONTROL_MASK); 14776 14777 if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) { 14778 if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) { 14779 sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE; 14780 } else { 14781 bxe_set_requested_fc(sc); 14782 } 14783 } 14784 14785 BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d " 14786 "req_flow_ctrl=0x%x advertising=0x%x\n", 14787 sc->link_params.req_line_speed[idx], 14788 sc->link_params.req_duplex[idx], 14789 sc->link_params.req_flow_ctrl[idx], 14790 sc->port.advertising[idx]); 14791 } 14792 } 14793 14794 static void 14795 bxe_get_phy_info(struct bxe_softc *sc) 14796 { 14797 uint8_t port = SC_PORT(sc); 14798 uint32_t config = sc->port.config; 14799 uint32_t eee_mode; 14800 14801 /* shmem data already read in bxe_get_shmem_info() */ 14802 14803 BLOGD(sc, DBG_LOAD, "lane_config=0x%08x speed_cap_mask0=0x%08x " 14804 "link_config0=0x%08x\n", 14805 sc->link_params.lane_config, 14806 sc->link_params.speed_cap_mask[0], 14807 sc->port.link_config[0]); 14808 14809 bxe_link_settings_supported(sc, sc->link_params.switch_cfg); 14810 bxe_link_settings_requested(sc); 14811 14812 if (sc->autogreeen == AUTO_GREEN_FORCE_ON) { 14813 sc->link_params.feature_config_flags |= 14814 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14815 } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) { 14816 sc->link_params.feature_config_flags &= 14817 ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14818 } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) { 14819 sc->link_params.feature_config_flags |= 14820 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14821 } 14822 14823 /* configure link feature according to nvram value */ 14824 eee_mode = 14825 (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) & 14826 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >> 14827 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT); 14828 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) { 14829 sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI | 14830 ELINK_EEE_MODE_ENABLE_LPI | 14831 ELINK_EEE_MODE_OUTPUT_TIME); 14832 } else { 14833 sc->link_params.eee_mode = 0; 14834 } 14835 14836 /* get the media type */ 14837 bxe_media_detect(sc); 14838 } 14839 14840 static void 14841 bxe_get_params(struct bxe_softc *sc) 14842 { 14843 /* get user tunable params */ 14844 bxe_get_tunable_params(sc); 14845 14846 /* select the RX and TX ring sizes */ 14847 sc->tx_ring_size = TX_BD_USABLE; 14848 sc->rx_ring_size = RX_BD_USABLE; 14849 14850 /* XXX disable WoL */ 14851 sc->wol = 0; 14852 } 14853 14854 static void 14855 bxe_set_modes_bitmap(struct bxe_softc *sc) 14856 { 14857 uint32_t flags = 0; 14858 14859 if (CHIP_REV_IS_FPGA(sc)) { 14860 SET_FLAGS(flags, MODE_FPGA); 14861 } else if (CHIP_REV_IS_EMUL(sc)) { 14862 SET_FLAGS(flags, MODE_EMUL); 14863 } else { 14864 SET_FLAGS(flags, MODE_ASIC); 14865 } 14866 14867 if (CHIP_IS_MODE_4_PORT(sc)) { 14868 SET_FLAGS(flags, MODE_PORT4); 14869 } else { 14870 SET_FLAGS(flags, MODE_PORT2); 14871 } 14872 14873 if (CHIP_IS_E2(sc)) { 14874 SET_FLAGS(flags, MODE_E2); 14875 } else if (CHIP_IS_E3(sc)) { 14876 SET_FLAGS(flags, MODE_E3); 14877 if (CHIP_REV(sc) == CHIP_REV_Ax) { 14878 SET_FLAGS(flags, MODE_E3_A0); 14879 } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ { 14880 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3); 14881 } 14882 } 14883 14884 if (IS_MF(sc)) { 14885 SET_FLAGS(flags, MODE_MF); 14886 switch (sc->devinfo.mf_info.mf_mode) { 14887 case MULTI_FUNCTION_SD: 14888 SET_FLAGS(flags, MODE_MF_SD); 14889 break; 14890 case MULTI_FUNCTION_SI: 14891 SET_FLAGS(flags, MODE_MF_SI); 14892 break; 14893 case MULTI_FUNCTION_AFEX: 14894 SET_FLAGS(flags, MODE_MF_AFEX); 14895 break; 14896 } 14897 } else { 14898 SET_FLAGS(flags, MODE_SF); 14899 } 14900 14901 #if defined(__LITTLE_ENDIAN) 14902 SET_FLAGS(flags, MODE_LITTLE_ENDIAN); 14903 #else /* __BIG_ENDIAN */ 14904 SET_FLAGS(flags, MODE_BIG_ENDIAN); 14905 #endif 14906 14907 INIT_MODE_FLAGS(sc) = flags; 14908 } 14909 14910 static int 14911 bxe_alloc_hsi_mem(struct bxe_softc *sc) 14912 { 14913 struct bxe_fastpath *fp; 14914 bus_addr_t busaddr; 14915 int max_agg_queues; 14916 int max_segments; 14917 bus_size_t max_size; 14918 bus_size_t max_seg_size; 14919 char buf[32]; 14920 int rc; 14921 int i, j; 14922 14923 /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */ 14924 14925 /* allocate the parent bus DMA tag */ 14926 rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */ 14927 1, /* alignment */ 14928 0, /* boundary limit */ 14929 BUS_SPACE_MAXADDR, /* restricted low */ 14930 BUS_SPACE_MAXADDR, /* restricted hi */ 14931 NULL, /* addr filter() */ 14932 NULL, /* addr filter() arg */ 14933 BUS_SPACE_MAXSIZE_32BIT, /* max map size */ 14934 BUS_SPACE_UNRESTRICTED, /* num discontinuous */ 14935 BUS_SPACE_MAXSIZE_32BIT, /* max seg size */ 14936 0, /* flags */ 14937 NULL, /* lock() */ 14938 NULL, /* lock() arg */ 14939 &sc->parent_dma_tag); /* returned dma tag */ 14940 if (rc != 0) { 14941 BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc); 14942 return (1); 14943 } 14944 14945 /************************/ 14946 /* DEFAULT STATUS BLOCK */ 14947 /************************/ 14948 14949 if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block), 14950 &sc->def_sb_dma, "default status block") != 0) { 14951 /* XXX */ 14952 bus_dma_tag_destroy(sc->parent_dma_tag); 14953 return (1); 14954 } 14955 14956 sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr; 14957 14958 /***************/ 14959 /* EVENT QUEUE */ 14960 /***************/ 14961 14962 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, 14963 &sc->eq_dma, "event queue") != 0) { 14964 /* XXX */ 14965 bxe_dma_free(sc, &sc->def_sb_dma); 14966 sc->def_sb = NULL; 14967 bus_dma_tag_destroy(sc->parent_dma_tag); 14968 return (1); 14969 } 14970 14971 sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr; 14972 14973 /*************/ 14974 /* SLOW PATH */ 14975 /*************/ 14976 14977 if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath), 14978 &sc->sp_dma, "slow path") != 0) { 14979 /* XXX */ 14980 bxe_dma_free(sc, &sc->eq_dma); 14981 sc->eq = NULL; 14982 bxe_dma_free(sc, &sc->def_sb_dma); 14983 sc->def_sb = NULL; 14984 bus_dma_tag_destroy(sc->parent_dma_tag); 14985 return (1); 14986 } 14987 14988 sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr; 14989 14990 /*******************/ 14991 /* SLOW PATH QUEUE */ 14992 /*******************/ 14993 14994 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, 14995 &sc->spq_dma, "slow path queue") != 0) { 14996 /* XXX */ 14997 bxe_dma_free(sc, &sc->sp_dma); 14998 sc->sp = NULL; 14999 bxe_dma_free(sc, &sc->eq_dma); 15000 sc->eq = NULL; 15001 bxe_dma_free(sc, &sc->def_sb_dma); 15002 sc->def_sb = NULL; 15003 bus_dma_tag_destroy(sc->parent_dma_tag); 15004 return (1); 15005 } 15006 15007 sc->spq = (struct eth_spe *)sc->spq_dma.vaddr; 15008 15009 /***************************/ 15010 /* FW DECOMPRESSION BUFFER */ 15011 /***************************/ 15012 15013 if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma, 15014 "fw decompression buffer") != 0) { 15015 /* XXX */ 15016 bxe_dma_free(sc, &sc->spq_dma); 15017 sc->spq = NULL; 15018 bxe_dma_free(sc, &sc->sp_dma); 15019 sc->sp = NULL; 15020 bxe_dma_free(sc, &sc->eq_dma); 15021 sc->eq = NULL; 15022 bxe_dma_free(sc, &sc->def_sb_dma); 15023 sc->def_sb = NULL; 15024 bus_dma_tag_destroy(sc->parent_dma_tag); 15025 return (1); 15026 } 15027 15028 sc->gz_buf = (void *)sc->gz_buf_dma.vaddr; 15029 15030 if ((sc->gz_strm = 15031 malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) { 15032 /* XXX */ 15033 bxe_dma_free(sc, &sc->gz_buf_dma); 15034 sc->gz_buf = NULL; 15035 bxe_dma_free(sc, &sc->spq_dma); 15036 sc->spq = NULL; 15037 bxe_dma_free(sc, &sc->sp_dma); 15038 sc->sp = NULL; 15039 bxe_dma_free(sc, &sc->eq_dma); 15040 sc->eq = NULL; 15041 bxe_dma_free(sc, &sc->def_sb_dma); 15042 sc->def_sb = NULL; 15043 bus_dma_tag_destroy(sc->parent_dma_tag); 15044 return (1); 15045 } 15046 15047 /*************/ 15048 /* FASTPATHS */ 15049 /*************/ 15050 15051 /* allocate DMA memory for each fastpath structure */ 15052 for (i = 0; i < sc->num_queues; i++) { 15053 fp = &sc->fp[i]; 15054 fp->sc = sc; 15055 fp->index = i; 15056 15057 /*******************/ 15058 /* FP STATUS BLOCK */ 15059 /*******************/ 15060 15061 snprintf(buf, sizeof(buf), "fp %d status block", i); 15062 if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block), 15063 &fp->sb_dma, buf) != 0) { 15064 /* XXX unwind and free previous fastpath allocations */ 15065 BLOGE(sc, "Failed to alloc %s\n", buf); 15066 return (1); 15067 } else { 15068 if (CHIP_IS_E2E3(sc)) { 15069 fp->status_block.e2_sb = 15070 (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr; 15071 } else { 15072 fp->status_block.e1x_sb = 15073 (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr; 15074 } 15075 } 15076 15077 /******************/ 15078 /* FP TX BD CHAIN */ 15079 /******************/ 15080 15081 snprintf(buf, sizeof(buf), "fp %d tx bd chain", i); 15082 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES), 15083 &fp->tx_dma, buf) != 0) { 15084 /* XXX unwind and free previous fastpath allocations */ 15085 BLOGE(sc, "Failed to alloc %s\n", buf); 15086 return (1); 15087 } else { 15088 fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr; 15089 } 15090 15091 /* link together the tx bd chain pages */ 15092 for (j = 1; j <= TX_BD_NUM_PAGES; j++) { 15093 /* index into the tx bd chain array to last entry per page */ 15094 struct eth_tx_next_bd *tx_next_bd = 15095 &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd; 15096 /* point to the next page and wrap from last page */ 15097 busaddr = (fp->tx_dma.paddr + 15098 (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES))); 15099 tx_next_bd->addr_hi = htole32(U64_HI(busaddr)); 15100 tx_next_bd->addr_lo = htole32(U64_LO(busaddr)); 15101 } 15102 15103 /******************/ 15104 /* FP RX BD CHAIN */ 15105 /******************/ 15106 15107 snprintf(buf, sizeof(buf), "fp %d rx bd chain", i); 15108 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES), 15109 &fp->rx_dma, buf) != 0) { 15110 /* XXX unwind and free previous fastpath allocations */ 15111 BLOGE(sc, "Failed to alloc %s\n", buf); 15112 return (1); 15113 } else { 15114 fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr; 15115 } 15116 15117 /* link together the rx bd chain pages */ 15118 for (j = 1; j <= RX_BD_NUM_PAGES; j++) { 15119 /* index into the rx bd chain array to last entry per page */ 15120 struct eth_rx_bd *rx_bd = 15121 &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2]; 15122 /* point to the next page and wrap from last page */ 15123 busaddr = (fp->rx_dma.paddr + 15124 (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES))); 15125 rx_bd->addr_hi = htole32(U64_HI(busaddr)); 15126 rx_bd->addr_lo = htole32(U64_LO(busaddr)); 15127 } 15128 15129 /*******************/ 15130 /* FP RX RCQ CHAIN */ 15131 /*******************/ 15132 15133 snprintf(buf, sizeof(buf), "fp %d rcq chain", i); 15134 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES), 15135 &fp->rcq_dma, buf) != 0) { 15136 /* XXX unwind and free previous fastpath allocations */ 15137 BLOGE(sc, "Failed to alloc %s\n", buf); 15138 return (1); 15139 } else { 15140 fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr; 15141 } 15142 15143 /* link together the rcq chain pages */ 15144 for (j = 1; j <= RCQ_NUM_PAGES; j++) { 15145 /* index into the rcq chain array to last entry per page */ 15146 struct eth_rx_cqe_next_page *rx_cqe_next = 15147 (struct eth_rx_cqe_next_page *) 15148 &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1]; 15149 /* point to the next page and wrap from last page */ 15150 busaddr = (fp->rcq_dma.paddr + 15151 (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES))); 15152 rx_cqe_next->addr_hi = htole32(U64_HI(busaddr)); 15153 rx_cqe_next->addr_lo = htole32(U64_LO(busaddr)); 15154 } 15155 15156 /*******************/ 15157 /* FP RX SGE CHAIN */ 15158 /*******************/ 15159 15160 snprintf(buf, sizeof(buf), "fp %d sge chain", i); 15161 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES), 15162 &fp->rx_sge_dma, buf) != 0) { 15163 /* XXX unwind and free previous fastpath allocations */ 15164 BLOGE(sc, "Failed to alloc %s\n", buf); 15165 return (1); 15166 } else { 15167 fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr; 15168 } 15169 15170 /* link together the sge chain pages */ 15171 for (j = 1; j <= RX_SGE_NUM_PAGES; j++) { 15172 /* index into the rcq chain array to last entry per page */ 15173 struct eth_rx_sge *rx_sge = 15174 &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2]; 15175 /* point to the next page and wrap from last page */ 15176 busaddr = (fp->rx_sge_dma.paddr + 15177 (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES))); 15178 rx_sge->addr_hi = htole32(U64_HI(busaddr)); 15179 rx_sge->addr_lo = htole32(U64_LO(busaddr)); 15180 } 15181 15182 /***********************/ 15183 /* FP TX MBUF DMA MAPS */ 15184 /***********************/ 15185 15186 /* set required sizes before mapping to conserve resources */ 15187 if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) { 15188 max_size = BXE_TSO_MAX_SIZE; 15189 max_segments = BXE_TSO_MAX_SEGMENTS; 15190 max_seg_size = BXE_TSO_MAX_SEG_SIZE; 15191 } else { 15192 max_size = (MCLBYTES * BXE_MAX_SEGMENTS); 15193 max_segments = BXE_MAX_SEGMENTS; 15194 max_seg_size = MCLBYTES; 15195 } 15196 15197 /* create a dma tag for the tx mbufs */ 15198 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 15199 1, /* alignment */ 15200 0, /* boundary limit */ 15201 BUS_SPACE_MAXADDR, /* restricted low */ 15202 BUS_SPACE_MAXADDR, /* restricted hi */ 15203 NULL, /* addr filter() */ 15204 NULL, /* addr filter() arg */ 15205 max_size, /* max map size */ 15206 max_segments, /* num discontinuous */ 15207 max_seg_size, /* max seg size */ 15208 0, /* flags */ 15209 NULL, /* lock() */ 15210 NULL, /* lock() arg */ 15211 &fp->tx_mbuf_tag); /* returned dma tag */ 15212 if (rc != 0) { 15213 /* XXX unwind and free previous fastpath allocations */ 15214 BLOGE(sc, "Failed to create dma tag for " 15215 "'fp %d tx mbufs' (%d)\n", 15216 i, rc); 15217 return (1); 15218 } 15219 15220 /* create dma maps for each of the tx mbuf clusters */ 15221 for (j = 0; j < TX_BD_TOTAL; j++) { 15222 if (bus_dmamap_create(fp->tx_mbuf_tag, 15223 BUS_DMA_NOWAIT, 15224 &fp->tx_mbuf_chain[j].m_map)) { 15225 /* XXX unwind and free previous fastpath allocations */ 15226 BLOGE(sc, "Failed to create dma map for " 15227 "'fp %d tx mbuf %d' (%d)\n", 15228 i, j, rc); 15229 return (1); 15230 } 15231 } 15232 15233 /***********************/ 15234 /* FP RX MBUF DMA MAPS */ 15235 /***********************/ 15236 15237 /* create a dma tag for the rx mbufs */ 15238 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 15239 1, /* alignment */ 15240 0, /* boundary limit */ 15241 BUS_SPACE_MAXADDR, /* restricted low */ 15242 BUS_SPACE_MAXADDR, /* restricted hi */ 15243 NULL, /* addr filter() */ 15244 NULL, /* addr filter() arg */ 15245 MJUM9BYTES, /* max map size */ 15246 1, /* num discontinuous */ 15247 MJUM9BYTES, /* max seg size */ 15248 0, /* flags */ 15249 NULL, /* lock() */ 15250 NULL, /* lock() arg */ 15251 &fp->rx_mbuf_tag); /* returned dma tag */ 15252 if (rc != 0) { 15253 /* XXX unwind and free previous fastpath allocations */ 15254 BLOGE(sc, "Failed to create dma tag for " 15255 "'fp %d rx mbufs' (%d)\n", 15256 i, rc); 15257 return (1); 15258 } 15259 15260 /* create dma maps for each of the rx mbuf clusters */ 15261 for (j = 0; j < RX_BD_TOTAL; j++) { 15262 if (bus_dmamap_create(fp->rx_mbuf_tag, 15263 BUS_DMA_NOWAIT, 15264 &fp->rx_mbuf_chain[j].m_map)) { 15265 /* XXX unwind and free previous fastpath allocations */ 15266 BLOGE(sc, "Failed to create dma map for " 15267 "'fp %d rx mbuf %d' (%d)\n", 15268 i, j, rc); 15269 return (1); 15270 } 15271 } 15272 15273 /* create dma map for the spare rx mbuf cluster */ 15274 if (bus_dmamap_create(fp->rx_mbuf_tag, 15275 BUS_DMA_NOWAIT, 15276 &fp->rx_mbuf_spare_map)) { 15277 /* XXX unwind and free previous fastpath allocations */ 15278 BLOGE(sc, "Failed to create dma map for " 15279 "'fp %d spare rx mbuf' (%d)\n", 15280 i, rc); 15281 return (1); 15282 } 15283 15284 /***************************/ 15285 /* FP RX SGE MBUF DMA MAPS */ 15286 /***************************/ 15287 15288 /* create a dma tag for the rx sge mbufs */ 15289 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 15290 1, /* alignment */ 15291 0, /* boundary limit */ 15292 BUS_SPACE_MAXADDR, /* restricted low */ 15293 BUS_SPACE_MAXADDR, /* restricted hi */ 15294 NULL, /* addr filter() */ 15295 NULL, /* addr filter() arg */ 15296 BCM_PAGE_SIZE, /* max map size */ 15297 1, /* num discontinuous */ 15298 BCM_PAGE_SIZE, /* max seg size */ 15299 0, /* flags */ 15300 NULL, /* lock() */ 15301 NULL, /* lock() arg */ 15302 &fp->rx_sge_mbuf_tag); /* returned dma tag */ 15303 if (rc != 0) { 15304 /* XXX unwind and free previous fastpath allocations */ 15305 BLOGE(sc, "Failed to create dma tag for " 15306 "'fp %d rx sge mbufs' (%d)\n", 15307 i, rc); 15308 return (1); 15309 } 15310 15311 /* create dma maps for the rx sge mbuf clusters */ 15312 for (j = 0; j < RX_SGE_TOTAL; j++) { 15313 if (bus_dmamap_create(fp->rx_sge_mbuf_tag, 15314 BUS_DMA_NOWAIT, 15315 &fp->rx_sge_mbuf_chain[j].m_map)) { 15316 /* XXX unwind and free previous fastpath allocations */ 15317 BLOGE(sc, "Failed to create dma map for " 15318 "'fp %d rx sge mbuf %d' (%d)\n", 15319 i, j, rc); 15320 return (1); 15321 } 15322 } 15323 15324 /* create dma map for the spare rx sge mbuf cluster */ 15325 if (bus_dmamap_create(fp->rx_sge_mbuf_tag, 15326 BUS_DMA_NOWAIT, 15327 &fp->rx_sge_mbuf_spare_map)) { 15328 /* XXX unwind and free previous fastpath allocations */ 15329 BLOGE(sc, "Failed to create dma map for " 15330 "'fp %d spare rx sge mbuf' (%d)\n", 15331 i, rc); 15332 return (1); 15333 } 15334 15335 /***************************/ 15336 /* FP RX TPA MBUF DMA MAPS */ 15337 /***************************/ 15338 15339 /* create dma maps for the rx tpa mbuf clusters */ 15340 max_agg_queues = MAX_AGG_QS(sc); 15341 15342 for (j = 0; j < max_agg_queues; j++) { 15343 if (bus_dmamap_create(fp->rx_mbuf_tag, 15344 BUS_DMA_NOWAIT, 15345 &fp->rx_tpa_info[j].bd.m_map)) { 15346 /* XXX unwind and free previous fastpath allocations */ 15347 BLOGE(sc, "Failed to create dma map for " 15348 "'fp %d rx tpa mbuf %d' (%d)\n", 15349 i, j, rc); 15350 return (1); 15351 } 15352 } 15353 15354 /* create dma map for the spare rx tpa mbuf cluster */ 15355 if (bus_dmamap_create(fp->rx_mbuf_tag, 15356 BUS_DMA_NOWAIT, 15357 &fp->rx_tpa_info_mbuf_spare_map)) { 15358 /* XXX unwind and free previous fastpath allocations */ 15359 BLOGE(sc, "Failed to create dma map for " 15360 "'fp %d spare rx tpa mbuf' (%d)\n", 15361 i, rc); 15362 return (1); 15363 } 15364 15365 bxe_init_sge_ring_bit_mask(fp); 15366 } 15367 15368 return (0); 15369 } 15370 15371 static void 15372 bxe_free_hsi_mem(struct bxe_softc *sc) 15373 { 15374 struct bxe_fastpath *fp; 15375 int max_agg_queues; 15376 int i, j; 15377 15378 if (sc->parent_dma_tag == NULL) { 15379 return; /* assume nothing was allocated */ 15380 } 15381 15382 for (i = 0; i < sc->num_queues; i++) { 15383 fp = &sc->fp[i]; 15384 15385 /*******************/ 15386 /* FP STATUS BLOCK */ 15387 /*******************/ 15388 15389 bxe_dma_free(sc, &fp->sb_dma); 15390 memset(&fp->status_block, 0, sizeof(fp->status_block)); 15391 15392 /******************/ 15393 /* FP TX BD CHAIN */ 15394 /******************/ 15395 15396 bxe_dma_free(sc, &fp->tx_dma); 15397 fp->tx_chain = NULL; 15398 15399 /******************/ 15400 /* FP RX BD CHAIN */ 15401 /******************/ 15402 15403 bxe_dma_free(sc, &fp->rx_dma); 15404 fp->rx_chain = NULL; 15405 15406 /*******************/ 15407 /* FP RX RCQ CHAIN */ 15408 /*******************/ 15409 15410 bxe_dma_free(sc, &fp->rcq_dma); 15411 fp->rcq_chain = NULL; 15412 15413 /*******************/ 15414 /* FP RX SGE CHAIN */ 15415 /*******************/ 15416 15417 bxe_dma_free(sc, &fp->rx_sge_dma); 15418 fp->rx_sge_chain = NULL; 15419 15420 /***********************/ 15421 /* FP TX MBUF DMA MAPS */ 15422 /***********************/ 15423 15424 if (fp->tx_mbuf_tag != NULL) { 15425 for (j = 0; j < TX_BD_TOTAL; j++) { 15426 if (fp->tx_mbuf_chain[j].m_map != NULL) { 15427 bus_dmamap_unload(fp->tx_mbuf_tag, 15428 fp->tx_mbuf_chain[j].m_map); 15429 bus_dmamap_destroy(fp->tx_mbuf_tag, 15430 fp->tx_mbuf_chain[j].m_map); 15431 } 15432 } 15433 15434 bus_dma_tag_destroy(fp->tx_mbuf_tag); 15435 fp->tx_mbuf_tag = NULL; 15436 } 15437 15438 /***********************/ 15439 /* FP RX MBUF DMA MAPS */ 15440 /***********************/ 15441 15442 if (fp->rx_mbuf_tag != NULL) { 15443 for (j = 0; j < RX_BD_TOTAL; j++) { 15444 if (fp->rx_mbuf_chain[j].m_map != NULL) { 15445 bus_dmamap_unload(fp->rx_mbuf_tag, 15446 fp->rx_mbuf_chain[j].m_map); 15447 bus_dmamap_destroy(fp->rx_mbuf_tag, 15448 fp->rx_mbuf_chain[j].m_map); 15449 } 15450 } 15451 15452 if (fp->rx_mbuf_spare_map != NULL) { 15453 bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); 15454 bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); 15455 } 15456 15457 /***************************/ 15458 /* FP RX TPA MBUF DMA MAPS */ 15459 /***************************/ 15460 15461 max_agg_queues = MAX_AGG_QS(sc); 15462 15463 for (j = 0; j < max_agg_queues; j++) { 15464 if (fp->rx_tpa_info[j].bd.m_map != NULL) { 15465 bus_dmamap_unload(fp->rx_mbuf_tag, 15466 fp->rx_tpa_info[j].bd.m_map); 15467 bus_dmamap_destroy(fp->rx_mbuf_tag, 15468 fp->rx_tpa_info[j].bd.m_map); 15469 } 15470 } 15471 15472 if (fp->rx_tpa_info_mbuf_spare_map != NULL) { 15473 bus_dmamap_unload(fp->rx_mbuf_tag, 15474 fp->rx_tpa_info_mbuf_spare_map); 15475 bus_dmamap_destroy(fp->rx_mbuf_tag, 15476 fp->rx_tpa_info_mbuf_spare_map); 15477 } 15478 15479 bus_dma_tag_destroy(fp->rx_mbuf_tag); 15480 fp->rx_mbuf_tag = NULL; 15481 } 15482 15483 /***************************/ 15484 /* FP RX SGE MBUF DMA MAPS */ 15485 /***************************/ 15486 15487 if (fp->rx_sge_mbuf_tag != NULL) { 15488 for (j = 0; j < RX_SGE_TOTAL; j++) { 15489 if (fp->rx_sge_mbuf_chain[j].m_map != NULL) { 15490 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 15491 fp->rx_sge_mbuf_chain[j].m_map); 15492 bus_dmamap_destroy(fp->rx_sge_mbuf_tag, 15493 fp->rx_sge_mbuf_chain[j].m_map); 15494 } 15495 } 15496 15497 if (fp->rx_sge_mbuf_spare_map != NULL) { 15498 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 15499 fp->rx_sge_mbuf_spare_map); 15500 bus_dmamap_destroy(fp->rx_sge_mbuf_tag, 15501 fp->rx_sge_mbuf_spare_map); 15502 } 15503 15504 bus_dma_tag_destroy(fp->rx_sge_mbuf_tag); 15505 fp->rx_sge_mbuf_tag = NULL; 15506 } 15507 } 15508 15509 /***************************/ 15510 /* FW DECOMPRESSION BUFFER */ 15511 /***************************/ 15512 15513 bxe_dma_free(sc, &sc->gz_buf_dma); 15514 sc->gz_buf = NULL; 15515 free(sc->gz_strm, M_DEVBUF); 15516 sc->gz_strm = NULL; 15517 15518 /*******************/ 15519 /* SLOW PATH QUEUE */ 15520 /*******************/ 15521 15522 bxe_dma_free(sc, &sc->spq_dma); 15523 sc->spq = NULL; 15524 15525 /*************/ 15526 /* SLOW PATH */ 15527 /*************/ 15528 15529 bxe_dma_free(sc, &sc->sp_dma); 15530 sc->sp = NULL; 15531 15532 /***************/ 15533 /* EVENT QUEUE */ 15534 /***************/ 15535 15536 bxe_dma_free(sc, &sc->eq_dma); 15537 sc->eq = NULL; 15538 15539 /************************/ 15540 /* DEFAULT STATUS BLOCK */ 15541 /************************/ 15542 15543 bxe_dma_free(sc, &sc->def_sb_dma); 15544 sc->def_sb = NULL; 15545 15546 bus_dma_tag_destroy(sc->parent_dma_tag); 15547 sc->parent_dma_tag = NULL; 15548 } 15549 15550 /* 15551 * Previous driver DMAE transaction may have occurred when pre-boot stage 15552 * ended and boot began. This would invalidate the addresses of the 15553 * transaction, resulting in was-error bit set in the PCI causing all 15554 * hw-to-host PCIe transactions to timeout. If this happened we want to clear 15555 * the interrupt which detected this from the pglueb and the was-done bit 15556 */ 15557 static void 15558 bxe_prev_interrupted_dmae(struct bxe_softc *sc) 15559 { 15560 uint32_t val; 15561 15562 if (!CHIP_IS_E1x(sc)) { 15563 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS); 15564 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) { 15565 BLOGD(sc, DBG_LOAD, 15566 "Clearing 'was-error' bit that was set in pglueb"); 15567 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc)); 15568 } 15569 } 15570 } 15571 15572 static int 15573 bxe_prev_mcp_done(struct bxe_softc *sc) 15574 { 15575 uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 15576 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET); 15577 if (!rc) { 15578 BLOGE(sc, "MCP response failure, aborting\n"); 15579 return (-1); 15580 } 15581 15582 return (0); 15583 } 15584 15585 static struct bxe_prev_list_node * 15586 bxe_prev_path_get_entry(struct bxe_softc *sc) 15587 { 15588 struct bxe_prev_list_node *tmp; 15589 15590 LIST_FOREACH(tmp, &bxe_prev_list, node) { 15591 if ((sc->pcie_bus == tmp->bus) && 15592 (sc->pcie_device == tmp->slot) && 15593 (SC_PATH(sc) == tmp->path)) { 15594 return (tmp); 15595 } 15596 } 15597 15598 return (NULL); 15599 } 15600 15601 static uint8_t 15602 bxe_prev_is_path_marked(struct bxe_softc *sc) 15603 { 15604 struct bxe_prev_list_node *tmp; 15605 int rc = FALSE; 15606 15607 mtx_lock(&bxe_prev_mtx); 15608 15609 tmp = bxe_prev_path_get_entry(sc); 15610 if (tmp) { 15611 if (tmp->aer) { 15612 BLOGD(sc, DBG_LOAD, 15613 "Path %d/%d/%d was marked by AER\n", 15614 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15615 } else { 15616 rc = TRUE; 15617 BLOGD(sc, DBG_LOAD, 15618 "Path %d/%d/%d was already cleaned from previous drivers\n", 15619 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15620 } 15621 } 15622 15623 mtx_unlock(&bxe_prev_mtx); 15624 15625 return (rc); 15626 } 15627 15628 static int 15629 bxe_prev_mark_path(struct bxe_softc *sc, 15630 uint8_t after_undi) 15631 { 15632 struct bxe_prev_list_node *tmp; 15633 15634 mtx_lock(&bxe_prev_mtx); 15635 15636 /* Check whether the entry for this path already exists */ 15637 tmp = bxe_prev_path_get_entry(sc); 15638 if (tmp) { 15639 if (!tmp->aer) { 15640 BLOGD(sc, DBG_LOAD, 15641 "Re-marking AER in path %d/%d/%d\n", 15642 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15643 } else { 15644 BLOGD(sc, DBG_LOAD, 15645 "Removing AER indication from path %d/%d/%d\n", 15646 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15647 tmp->aer = 0; 15648 } 15649 15650 mtx_unlock(&bxe_prev_mtx); 15651 return (0); 15652 } 15653 15654 mtx_unlock(&bxe_prev_mtx); 15655 15656 /* Create an entry for this path and add it */ 15657 tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF, 15658 (M_NOWAIT | M_ZERO)); 15659 if (!tmp) { 15660 BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n"); 15661 return (-1); 15662 } 15663 15664 tmp->bus = sc->pcie_bus; 15665 tmp->slot = sc->pcie_device; 15666 tmp->path = SC_PATH(sc); 15667 tmp->aer = 0; 15668 tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0; 15669 15670 mtx_lock(&bxe_prev_mtx); 15671 15672 BLOGD(sc, DBG_LOAD, 15673 "Marked path %d/%d/%d - finished previous unload\n", 15674 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15675 LIST_INSERT_HEAD(&bxe_prev_list, tmp, node); 15676 15677 mtx_unlock(&bxe_prev_mtx); 15678 15679 return (0); 15680 } 15681 15682 static int 15683 bxe_do_flr(struct bxe_softc *sc) 15684 { 15685 int i; 15686 15687 /* only E2 and onwards support FLR */ 15688 if (CHIP_IS_E1x(sc)) { 15689 BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n"); 15690 return (-1); 15691 } 15692 15693 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */ 15694 if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) { 15695 BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n", 15696 sc->devinfo.bc_ver); 15697 return (-1); 15698 } 15699 15700 /* Wait for Transaction Pending bit clean */ 15701 for (i = 0; i < 4; i++) { 15702 if (i) { 15703 DELAY(((1 << (i - 1)) * 100) * 1000); 15704 } 15705 15706 if (!bxe_is_pcie_pending(sc)) { 15707 goto clear; 15708 } 15709 } 15710 15711 BLOGE(sc, "PCIE transaction is not cleared, " 15712 "proceeding with reset anyway\n"); 15713 15714 clear: 15715 15716 BLOGD(sc, DBG_LOAD, "Initiating FLR\n"); 15717 bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0); 15718 15719 return (0); 15720 } 15721 15722 struct bxe_mac_vals { 15723 uint32_t xmac_addr; 15724 uint32_t xmac_val; 15725 uint32_t emac_addr; 15726 uint32_t emac_val; 15727 uint32_t umac_addr; 15728 uint32_t umac_val; 15729 uint32_t bmac_addr; 15730 uint32_t bmac_val[2]; 15731 }; 15732 15733 static void 15734 bxe_prev_unload_close_mac(struct bxe_softc *sc, 15735 struct bxe_mac_vals *vals) 15736 { 15737 uint32_t val, base_addr, offset, mask, reset_reg; 15738 uint8_t mac_stopped = FALSE; 15739 uint8_t port = SC_PORT(sc); 15740 uint32_t wb_data[2]; 15741 15742 /* reset addresses as they also mark which values were changed */ 15743 vals->bmac_addr = 0; 15744 vals->umac_addr = 0; 15745 vals->xmac_addr = 0; 15746 vals->emac_addr = 0; 15747 15748 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2); 15749 15750 if (!CHIP_IS_E3(sc)) { 15751 val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4); 15752 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port; 15753 if ((mask & reset_reg) && val) { 15754 BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n"); 15755 base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM 15756 : NIG_REG_INGRESS_BMAC0_MEM; 15757 offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL 15758 : BIGMAC_REGISTER_BMAC_CONTROL; 15759 15760 /* 15761 * use rd/wr since we cannot use dmae. This is safe 15762 * since MCP won't access the bus due to the request 15763 * to unload, and no function on the path can be 15764 * loaded at this time. 15765 */ 15766 wb_data[0] = REG_RD(sc, base_addr + offset); 15767 wb_data[1] = REG_RD(sc, base_addr + offset + 0x4); 15768 vals->bmac_addr = base_addr + offset; 15769 vals->bmac_val[0] = wb_data[0]; 15770 vals->bmac_val[1] = wb_data[1]; 15771 wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE; 15772 REG_WR(sc, vals->bmac_addr, wb_data[0]); 15773 REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]); 15774 } 15775 15776 BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n"); 15777 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4; 15778 vals->emac_val = REG_RD(sc, vals->emac_addr); 15779 REG_WR(sc, vals->emac_addr, 0); 15780 mac_stopped = TRUE; 15781 } else { 15782 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) { 15783 BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n"); 15784 base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0; 15785 val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI); 15786 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1)); 15787 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1)); 15788 vals->xmac_addr = base_addr + XMAC_REG_CTRL; 15789 vals->xmac_val = REG_RD(sc, vals->xmac_addr); 15790 REG_WR(sc, vals->xmac_addr, 0); 15791 mac_stopped = TRUE; 15792 } 15793 15794 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port; 15795 if (mask & reset_reg) { 15796 BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n"); 15797 base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0; 15798 vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG; 15799 vals->umac_val = REG_RD(sc, vals->umac_addr); 15800 REG_WR(sc, vals->umac_addr, 0); 15801 mac_stopped = TRUE; 15802 } 15803 } 15804 15805 if (mac_stopped) { 15806 DELAY(20000); 15807 } 15808 } 15809 15810 #define BXE_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4)) 15811 #define BXE_PREV_UNDI_RCQ(val) ((val) & 0xffff) 15812 #define BXE_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff) 15813 #define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq)) 15814 15815 static void 15816 bxe_prev_unload_undi_inc(struct bxe_softc *sc, 15817 uint8_t port, 15818 uint8_t inc) 15819 { 15820 uint16_t rcq, bd; 15821 uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port)); 15822 15823 rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc; 15824 bd = BXE_PREV_UNDI_BD(tmp_reg) + inc; 15825 15826 tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd); 15827 REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg); 15828 15829 BLOGD(sc, DBG_LOAD, 15830 "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n", 15831 port, bd, rcq); 15832 } 15833 15834 static int 15835 bxe_prev_unload_common(struct bxe_softc *sc) 15836 { 15837 uint32_t reset_reg, tmp_reg = 0, rc; 15838 uint8_t prev_undi = FALSE; 15839 struct bxe_mac_vals mac_vals; 15840 uint32_t timer_count = 1000; 15841 uint32_t prev_brb; 15842 15843 /* 15844 * It is possible a previous function received 'common' answer, 15845 * but hasn't loaded yet, therefore creating a scenario of 15846 * multiple functions receiving 'common' on the same path. 15847 */ 15848 BLOGD(sc, DBG_LOAD, "Common unload Flow\n"); 15849 15850 memset(&mac_vals, 0, sizeof(mac_vals)); 15851 15852 if (bxe_prev_is_path_marked(sc)) { 15853 return (bxe_prev_mcp_done(sc)); 15854 } 15855 15856 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1); 15857 15858 /* Reset should be performed after BRB is emptied */ 15859 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) { 15860 /* Close the MAC Rx to prevent BRB from filling up */ 15861 bxe_prev_unload_close_mac(sc, &mac_vals); 15862 15863 /* close LLH filters towards the BRB */ 15864 elink_set_rx_filter(&sc->link_params, 0); 15865 15866 /* 15867 * Check if the UNDI driver was previously loaded. 15868 * UNDI driver initializes CID offset for normal bell to 0x7 15869 */ 15870 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) { 15871 tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST); 15872 if (tmp_reg == 0x7) { 15873 BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n"); 15874 prev_undi = TRUE; 15875 /* clear the UNDI indication */ 15876 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0); 15877 /* clear possible idle check errors */ 15878 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0); 15879 } 15880 } 15881 15882 /* wait until BRB is empty */ 15883 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); 15884 while (timer_count) { 15885 prev_brb = tmp_reg; 15886 15887 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); 15888 if (!tmp_reg) { 15889 break; 15890 } 15891 15892 BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg); 15893 15894 /* reset timer as long as BRB actually gets emptied */ 15895 if (prev_brb > tmp_reg) { 15896 timer_count = 1000; 15897 } else { 15898 timer_count--; 15899 } 15900 15901 /* If UNDI resides in memory, manually increment it */ 15902 if (prev_undi) { 15903 bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1); 15904 } 15905 15906 DELAY(10); 15907 } 15908 15909 if (!timer_count) { 15910 BLOGE(sc, "Failed to empty BRB\n"); 15911 } 15912 } 15913 15914 /* No packets are in the pipeline, path is ready for reset */ 15915 bxe_reset_common(sc); 15916 15917 if (mac_vals.xmac_addr) { 15918 REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val); 15919 } 15920 if (mac_vals.umac_addr) { 15921 REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val); 15922 } 15923 if (mac_vals.emac_addr) { 15924 REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val); 15925 } 15926 if (mac_vals.bmac_addr) { 15927 REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]); 15928 REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]); 15929 } 15930 15931 rc = bxe_prev_mark_path(sc, prev_undi); 15932 if (rc) { 15933 bxe_prev_mcp_done(sc); 15934 return (rc); 15935 } 15936 15937 return (bxe_prev_mcp_done(sc)); 15938 } 15939 15940 static int 15941 bxe_prev_unload_uncommon(struct bxe_softc *sc) 15942 { 15943 int rc; 15944 15945 BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n"); 15946 15947 /* Test if previous unload process was already finished for this path */ 15948 if (bxe_prev_is_path_marked(sc)) { 15949 return (bxe_prev_mcp_done(sc)); 15950 } 15951 15952 BLOGD(sc, DBG_LOAD, "Path is unmarked\n"); 15953 15954 /* 15955 * If function has FLR capabilities, and existing FW version matches 15956 * the one required, then FLR will be sufficient to clean any residue 15957 * left by previous driver 15958 */ 15959 rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION); 15960 if (!rc) { 15961 /* fw version is good */ 15962 BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n"); 15963 rc = bxe_do_flr(sc); 15964 } 15965 15966 if (!rc) { 15967 /* FLR was performed */ 15968 BLOGD(sc, DBG_LOAD, "FLR successful\n"); 15969 return (0); 15970 } 15971 15972 BLOGD(sc, DBG_LOAD, "Could not FLR\n"); 15973 15974 /* Close the MCP request, return failure*/ 15975 rc = bxe_prev_mcp_done(sc); 15976 if (!rc) { 15977 rc = BXE_PREV_WAIT_NEEDED; 15978 } 15979 15980 return (rc); 15981 } 15982 15983 static int 15984 bxe_prev_unload(struct bxe_softc *sc) 15985 { 15986 int time_counter = 10; 15987 uint32_t fw, hw_lock_reg, hw_lock_val; 15988 uint32_t rc = 0; 15989 15990 /* 15991 * Clear HW from errors which may have resulted from an interrupted 15992 * DMAE transaction. 15993 */ 15994 bxe_prev_interrupted_dmae(sc); 15995 15996 /* Release previously held locks */ 15997 hw_lock_reg = 15998 (SC_FUNC(sc) <= 5) ? 15999 (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) : 16000 (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8); 16001 16002 hw_lock_val = (REG_RD(sc, hw_lock_reg)); 16003 if (hw_lock_val) { 16004 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) { 16005 BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n"); 16006 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 16007 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc))); 16008 } 16009 BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n"); 16010 REG_WR(sc, hw_lock_reg, 0xffffffff); 16011 } else { 16012 BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n"); 16013 } 16014 16015 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) { 16016 BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n"); 16017 REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0); 16018 } 16019 16020 do { 16021 /* Lock MCP using an unload request */ 16022 fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0); 16023 if (!fw) { 16024 BLOGE(sc, "MCP response failure, aborting\n"); 16025 rc = -1; 16026 break; 16027 } 16028 16029 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) { 16030 rc = bxe_prev_unload_common(sc); 16031 break; 16032 } 16033 16034 /* non-common reply from MCP night require looping */ 16035 rc = bxe_prev_unload_uncommon(sc); 16036 if (rc != BXE_PREV_WAIT_NEEDED) { 16037 break; 16038 } 16039 16040 DELAY(20000); 16041 } while (--time_counter); 16042 16043 if (!time_counter || rc) { 16044 BLOGE(sc, "Failed to unload previous driver!\n"); 16045 rc = -1; 16046 } 16047 16048 return (rc); 16049 } 16050 16051 void 16052 bxe_dcbx_set_state(struct bxe_softc *sc, 16053 uint8_t dcb_on, 16054 uint32_t dcbx_enabled) 16055 { 16056 if (!CHIP_IS_E1x(sc)) { 16057 sc->dcb_state = dcb_on; 16058 sc->dcbx_enabled = dcbx_enabled; 16059 } else { 16060 sc->dcb_state = FALSE; 16061 sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID; 16062 } 16063 BLOGD(sc, DBG_LOAD, 16064 "DCB state [%s:%s]\n", 16065 dcb_on ? "ON" : "OFF", 16066 (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" : 16067 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" : 16068 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ? 16069 "on-chip with negotiation" : "invalid"); 16070 } 16071 16072 /* must be called after sriov-enable */ 16073 static int 16074 bxe_set_qm_cid_count(struct bxe_softc *sc) 16075 { 16076 int cid_count = BXE_L2_MAX_CID(sc); 16077 16078 if (IS_SRIOV(sc)) { 16079 cid_count += BXE_VF_CIDS; 16080 } 16081 16082 if (CNIC_SUPPORT(sc)) { 16083 cid_count += CNIC_CID_MAX; 16084 } 16085 16086 return (roundup(cid_count, QM_CID_ROUND)); 16087 } 16088 16089 static void 16090 bxe_init_multi_cos(struct bxe_softc *sc) 16091 { 16092 int pri, cos; 16093 16094 uint32_t pri_map = 0; /* XXX change to user config */ 16095 16096 for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) { 16097 cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4)); 16098 if (cos < sc->max_cos) { 16099 sc->prio_to_cos[pri] = cos; 16100 } else { 16101 BLOGW(sc, "Invalid COS %d for priority %d " 16102 "(max COS is %d), setting to 0\n", 16103 cos, pri, (sc->max_cos - 1)); 16104 sc->prio_to_cos[pri] = 0; 16105 } 16106 } 16107 } 16108 16109 static int 16110 bxe_sysctl_state(SYSCTL_HANDLER_ARGS) 16111 { 16112 struct bxe_softc *sc; 16113 int error, result; 16114 16115 result = 0; 16116 error = sysctl_handle_int(oidp, &result, 0, req); 16117 16118 if (error || !req->newptr) { 16119 return (error); 16120 } 16121 16122 if (result == 1) { 16123 sc = (struct bxe_softc *)arg1; 16124 BLOGI(sc, "... dumping driver state ...\n"); 16125 /* XXX */ 16126 } 16127 16128 return (error); 16129 } 16130 16131 static int 16132 bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS) 16133 { 16134 struct bxe_softc *sc = (struct bxe_softc *)arg1; 16135 uint32_t *eth_stats = (uint32_t *)&sc->eth_stats; 16136 uint32_t *offset; 16137 uint64_t value = 0; 16138 int index = (int)arg2; 16139 16140 if (index >= BXE_NUM_ETH_STATS) { 16141 BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index); 16142 return (-1); 16143 } 16144 16145 offset = (eth_stats + bxe_eth_stats_arr[index].offset); 16146 16147 switch (bxe_eth_stats_arr[index].size) { 16148 case 4: 16149 value = (uint64_t)*offset; 16150 break; 16151 case 8: 16152 value = HILO_U64(*offset, *(offset + 1)); 16153 break; 16154 default: 16155 BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n", 16156 index, bxe_eth_stats_arr[index].size); 16157 return (-1); 16158 } 16159 16160 return (sysctl_handle_64(oidp, &value, 0, req)); 16161 } 16162 16163 static int 16164 bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS) 16165 { 16166 struct bxe_softc *sc = (struct bxe_softc *)arg1; 16167 uint32_t *eth_stats; 16168 uint32_t *offset; 16169 uint64_t value = 0; 16170 uint32_t q_stat = (uint32_t)arg2; 16171 uint32_t fp_index = ((q_stat >> 16) & 0xffff); 16172 uint32_t index = (q_stat & 0xffff); 16173 16174 eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats; 16175 16176 if (index >= BXE_NUM_ETH_Q_STATS) { 16177 BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index); 16178 return (-1); 16179 } 16180 16181 offset = (eth_stats + bxe_eth_q_stats_arr[index].offset); 16182 16183 switch (bxe_eth_q_stats_arr[index].size) { 16184 case 4: 16185 value = (uint64_t)*offset; 16186 break; 16187 case 8: 16188 value = HILO_U64(*offset, *(offset + 1)); 16189 break; 16190 default: 16191 BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n", 16192 index, bxe_eth_q_stats_arr[index].size); 16193 return (-1); 16194 } 16195 16196 return (sysctl_handle_64(oidp, &value, 0, req)); 16197 } 16198 16199 static void 16200 bxe_add_sysctls(struct bxe_softc *sc) 16201 { 16202 struct sysctl_ctx_list *ctx; 16203 struct sysctl_oid_list *children; 16204 struct sysctl_oid *queue_top, *queue; 16205 struct sysctl_oid_list *queue_top_children, *queue_children; 16206 char queue_num_buf[32]; 16207 uint32_t q_stat; 16208 int i, j; 16209 16210 ctx = device_get_sysctl_ctx(sc->dev); 16211 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)); 16212 16213 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version", 16214 CTLFLAG_RD, BXE_DRIVER_VERSION, 0, 16215 "version"); 16216 16217 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version", 16218 CTLFLAG_RD, &sc->devinfo.bc_ver_str, 0, 16219 "bootcode version"); 16220 16221 snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d", 16222 BCM_5710_FW_MAJOR_VERSION, 16223 BCM_5710_FW_MINOR_VERSION, 16224 BCM_5710_FW_REVISION_VERSION, 16225 BCM_5710_FW_ENGINEERING_VERSION); 16226 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version", 16227 CTLFLAG_RD, &sc->fw_ver_str, 0, 16228 "firmware version"); 16229 16230 snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s", 16231 ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION) ? "Single" : 16232 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD) ? "MF-SD" : 16233 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI) ? "MF-SI" : 16234 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" : 16235 "Unknown")); 16236 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode", 16237 CTLFLAG_RD, &sc->mf_mode_str, 0, 16238 "multifunction mode"); 16239 16240 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics", 16241 CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0, 16242 "multifunction vnics per port"); 16243 16244 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr", 16245 CTLFLAG_RD, &sc->mac_addr_str, 0, 16246 "mac address"); 16247 16248 snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d", 16249 ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" : 16250 (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" : 16251 (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" : 16252 "???GT/s"), 16253 sc->devinfo.pcie_link_width); 16254 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link", 16255 CTLFLAG_RD, &sc->pci_link_str, 0, 16256 "pci link status"); 16257 16258 sc->debug = bxe_debug; 16259 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "debug", 16260 CTLFLAG_RW, &sc->debug, 0, 16261 "debug logging mode"); 16262 16263 sc->rx_budget = bxe_rx_budget; 16264 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget", 16265 CTLFLAG_RW, &sc->rx_budget, 0, 16266 "rx processing budget"); 16267 16268 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state", 16269 CTLTYPE_UINT | CTLFLAG_RW, sc, 0, 16270 bxe_sysctl_state, "IU", "dump driver state"); 16271 16272 for (i = 0; i < BXE_NUM_ETH_STATS; i++) { 16273 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 16274 bxe_eth_stats_arr[i].string, 16275 CTLTYPE_U64 | CTLFLAG_RD, sc, i, 16276 bxe_sysctl_eth_stat, "LU", 16277 bxe_eth_stats_arr[i].string); 16278 } 16279 16280 /* add a new parent node for all queues "dev.bxe.#.queue" */ 16281 queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue", 16282 CTLFLAG_RD, NULL, "queue"); 16283 queue_top_children = SYSCTL_CHILDREN(queue_top); 16284 16285 for (i = 0; i < sc->num_queues; i++) { 16286 /* add a new parent node for a single queue "dev.bxe.#.queue.#" */ 16287 snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i); 16288 queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO, 16289 queue_num_buf, CTLFLAG_RD, NULL, 16290 "single queue"); 16291 queue_children = SYSCTL_CHILDREN(queue); 16292 16293 for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) { 16294 q_stat = ((i << 16) | j); 16295 SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO, 16296 bxe_eth_q_stats_arr[j].string, 16297 CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat, 16298 bxe_sysctl_eth_q_stat, "LU", 16299 bxe_eth_q_stats_arr[j].string); 16300 } 16301 } 16302 } 16303 16304 /* 16305 * Device attach function. 16306 * 16307 * Allocates device resources, performs secondary chip identification, and 16308 * initializes driver instance variables. This function is called from driver 16309 * load after a successful probe. 16310 * 16311 * Returns: 16312 * 0 = Success, >0 = Failure 16313 */ 16314 static int 16315 bxe_attach(device_t dev) 16316 { 16317 struct bxe_softc *sc; 16318 16319 sc = device_get_softc(dev); 16320 16321 BLOGD(sc, DBG_LOAD, "Starting attach...\n"); 16322 16323 sc->state = BXE_STATE_CLOSED; 16324 16325 sc->dev = dev; 16326 sc->unit = device_get_unit(dev); 16327 16328 BLOGD(sc, DBG_LOAD, "softc = %p\n", sc); 16329 16330 sc->pcie_bus = pci_get_bus(dev); 16331 sc->pcie_device = pci_get_slot(dev); 16332 sc->pcie_func = pci_get_function(dev); 16333 16334 /* enable bus master capability */ 16335 pci_enable_busmaster(dev); 16336 16337 /* get the BARs */ 16338 if (bxe_allocate_bars(sc) != 0) { 16339 return (ENXIO); 16340 } 16341 16342 /* initialize the mutexes */ 16343 bxe_init_mutexes(sc); 16344 16345 /* prepare the periodic callout */ 16346 callout_init(&sc->periodic_callout, 0); 16347 16348 /* prepare the chip taskqueue */ 16349 sc->chip_tq_flags = CHIP_TQ_NONE; 16350 snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name), 16351 "bxe%d_chip_tq", sc->unit); 16352 TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc); 16353 sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT, 16354 taskqueue_thread_enqueue, 16355 &sc->chip_tq); 16356 taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */ 16357 "%s", sc->chip_tq_name); 16358 16359 /* get device info and set params */ 16360 if (bxe_get_device_info(sc) != 0) { 16361 BLOGE(sc, "getting device info\n"); 16362 bxe_deallocate_bars(sc); 16363 pci_disable_busmaster(dev); 16364 return (ENXIO); 16365 } 16366 16367 /* get final misc params */ 16368 bxe_get_params(sc); 16369 16370 /* set the default MTU (changed via ifconfig) */ 16371 sc->mtu = ETHERMTU; 16372 16373 bxe_set_modes_bitmap(sc); 16374 16375 /* XXX 16376 * If in AFEX mode and the function is configured for FCoE 16377 * then bail... no L2 allowed. 16378 */ 16379 16380 /* get phy settings from shmem and 'and' against admin settings */ 16381 bxe_get_phy_info(sc); 16382 16383 /* initialize the FreeBSD ifnet interface */ 16384 if (bxe_init_ifnet(sc) != 0) { 16385 bxe_release_mutexes(sc); 16386 bxe_deallocate_bars(sc); 16387 pci_disable_busmaster(dev); 16388 return (ENXIO); 16389 } 16390 16391 /* allocate device interrupts */ 16392 if (bxe_interrupt_alloc(sc) != 0) { 16393 if (sc->ifp != NULL) { 16394 ether_ifdetach_drv(sc->ifp); 16395 } 16396 ifmedia_removeall(&sc->ifmedia); 16397 bxe_release_mutexes(sc); 16398 bxe_deallocate_bars(sc); 16399 pci_disable_busmaster(dev); 16400 return (ENXIO); 16401 } 16402 16403 /* allocate ilt */ 16404 if (bxe_alloc_ilt_mem(sc) != 0) { 16405 bxe_interrupt_free(sc); 16406 if (sc->ifp != NULL) { 16407 ether_ifdetach_drv(sc->ifp); 16408 } 16409 ifmedia_removeall(&sc->ifmedia); 16410 bxe_release_mutexes(sc); 16411 bxe_deallocate_bars(sc); 16412 pci_disable_busmaster(dev); 16413 return (ENXIO); 16414 } 16415 16416 /* allocate the host hardware/software hsi structures */ 16417 if (bxe_alloc_hsi_mem(sc) != 0) { 16418 bxe_free_ilt_mem(sc); 16419 bxe_interrupt_free(sc); 16420 if (sc->ifp != NULL) { 16421 ether_ifdetach_drv(sc->ifp); 16422 } 16423 ifmedia_removeall(&sc->ifmedia); 16424 bxe_release_mutexes(sc); 16425 bxe_deallocate_bars(sc); 16426 pci_disable_busmaster(dev); 16427 return (ENXIO); 16428 } 16429 16430 /* need to reset chip if UNDI was active */ 16431 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 16432 /* init fw_seq */ 16433 sc->fw_seq = 16434 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & 16435 DRV_MSG_SEQ_NUMBER_MASK); 16436 BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq); 16437 bxe_prev_unload(sc); 16438 } 16439 16440 #if 1 16441 /* XXX */ 16442 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); 16443 #else 16444 if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) && 16445 SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) && 16446 SHMEM2_RD(sc, dcbx_lldp_params_offset) && 16447 SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) { 16448 bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON); 16449 bxe_dcbx_init_params(sc); 16450 } else { 16451 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); 16452 } 16453 #endif 16454 16455 /* calculate qm_cid_count */ 16456 sc->qm_cid_count = bxe_set_qm_cid_count(sc); 16457 BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count); 16458 16459 sc->max_cos = 1; 16460 bxe_init_multi_cos(sc); 16461 16462 bxe_add_sysctls(sc); 16463 16464 return (0); 16465 } 16466 16467 /* 16468 * Device detach function. 16469 * 16470 * Stops the controller, resets the controller, and releases resources. 16471 * 16472 * Returns: 16473 * 0 = Success, >0 = Failure 16474 */ 16475 static int 16476 bxe_detach(device_t dev) 16477 { 16478 struct bxe_softc *sc; 16479 if_t ifp; 16480 16481 sc = device_get_softc(dev); 16482 16483 BLOGD(sc, DBG_LOAD, "Starting detach...\n"); 16484 16485 ifp = sc->ifp; 16486 if (ifp != NULL && if_vlantrunkinuse(ifp)) { 16487 BLOGE(sc, "Cannot detach while VLANs are in use.\n"); 16488 return(EBUSY); 16489 } 16490 16491 /* stop the periodic callout */ 16492 bxe_periodic_stop(sc); 16493 16494 /* stop the chip taskqueue */ 16495 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE); 16496 if (sc->chip_tq) { 16497 taskqueue_drain(sc->chip_tq, &sc->chip_tq_task); 16498 taskqueue_free(sc->chip_tq); 16499 sc->chip_tq = NULL; 16500 } 16501 16502 /* stop and reset the controller if it was open */ 16503 if (sc->state != BXE_STATE_CLOSED) { 16504 BXE_CORE_LOCK(sc); 16505 bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE); 16506 BXE_CORE_UNLOCK(sc); 16507 } 16508 16509 /* release the network interface */ 16510 if (ifp != NULL) { 16511 ether_ifdetach_drv(ifp); 16512 } 16513 ifmedia_removeall(&sc->ifmedia); 16514 16515 /* XXX do the following based on driver state... */ 16516 16517 /* free the host hardware/software hsi structures */ 16518 bxe_free_hsi_mem(sc); 16519 16520 /* free ilt */ 16521 bxe_free_ilt_mem(sc); 16522 16523 /* release the interrupts */ 16524 bxe_interrupt_free(sc); 16525 16526 /* Release the mutexes*/ 16527 bxe_release_mutexes(sc); 16528 16529 /* Release the PCIe BAR mapped memory */ 16530 bxe_deallocate_bars(sc); 16531 16532 /* Release the FreeBSD interface. */ 16533 if (sc->ifp != NULL) { 16534 if_free_drv(sc->ifp); 16535 } 16536 16537 pci_disable_busmaster(dev); 16538 16539 return (0); 16540 } 16541 16542 /* 16543 * Device shutdown function. 16544 * 16545 * Stops and resets the controller. 16546 * 16547 * Returns: 16548 * Nothing 16549 */ 16550 static int 16551 bxe_shutdown(device_t dev) 16552 { 16553 struct bxe_softc *sc; 16554 16555 sc = device_get_softc(dev); 16556 16557 BLOGD(sc, DBG_LOAD, "Starting shutdown...\n"); 16558 16559 /* stop the periodic callout */ 16560 bxe_periodic_stop(sc); 16561 16562 BXE_CORE_LOCK(sc); 16563 bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE); 16564 BXE_CORE_UNLOCK(sc); 16565 16566 return (0); 16567 } 16568 16569 void 16570 bxe_igu_ack_sb(struct bxe_softc *sc, 16571 uint8_t igu_sb_id, 16572 uint8_t segment, 16573 uint16_t index, 16574 uint8_t op, 16575 uint8_t update) 16576 { 16577 uint32_t igu_addr = sc->igu_base_addr; 16578 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8; 16579 bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr); 16580 } 16581 16582 static void 16583 bxe_igu_clear_sb_gen(struct bxe_softc *sc, 16584 uint8_t func, 16585 uint8_t idu_sb_id, 16586 uint8_t is_pf) 16587 { 16588 uint32_t data, ctl, cnt = 100; 16589 uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; 16590 uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; 16591 uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4; 16592 uint32_t sb_bit = 1 << (idu_sb_id%32); 16593 uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT; 16594 uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id; 16595 16596 /* Not supported in BC mode */ 16597 if (CHIP_INT_MODE_IS_BC(sc)) { 16598 return; 16599 } 16600 16601 data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup << 16602 IGU_REGULAR_CLEANUP_TYPE_SHIFT) | 16603 IGU_REGULAR_CLEANUP_SET | 16604 IGU_REGULAR_BCLEANUP); 16605 16606 ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) | 16607 (func_encode << IGU_CTRL_REG_FID_SHIFT) | 16608 (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT)); 16609 16610 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 16611 data, igu_addr_data); 16612 REG_WR(sc, igu_addr_data, data); 16613 16614 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 16615 BUS_SPACE_BARRIER_WRITE); 16616 mb(); 16617 16618 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 16619 ctl, igu_addr_ctl); 16620 REG_WR(sc, igu_addr_ctl, ctl); 16621 16622 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 16623 BUS_SPACE_BARRIER_WRITE); 16624 mb(); 16625 16626 /* wait for clean up to finish */ 16627 while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) { 16628 DELAY(20000); 16629 } 16630 16631 if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) { 16632 BLOGD(sc, DBG_LOAD, 16633 "Unable to finish IGU cleanup: " 16634 "idu_sb_id %d offset %d bit %d (cnt %d)\n", 16635 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt); 16636 } 16637 } 16638 16639 static void 16640 bxe_igu_clear_sb(struct bxe_softc *sc, 16641 uint8_t idu_sb_id) 16642 { 16643 bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/); 16644 } 16645 16646 16647 16648 16649 16650 16651 16652 /*******************/ 16653 /* ECORE CALLBACKS */ 16654 /*******************/ 16655 16656 static void 16657 bxe_reset_common(struct bxe_softc *sc) 16658 { 16659 uint32_t val = 0x1400; 16660 16661 /* reset_common */ 16662 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f); 16663 16664 if (CHIP_IS_E3(sc)) { 16665 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 16666 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 16667 } 16668 16669 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val); 16670 } 16671 16672 static void 16673 bxe_common_init_phy(struct bxe_softc *sc) 16674 { 16675 uint32_t shmem_base[2]; 16676 uint32_t shmem2_base[2]; 16677 16678 /* Avoid common init in case MFW supports LFA */ 16679 if (SHMEM2_RD(sc, size) > 16680 (uint32_t)offsetof(struct shmem2_region, 16681 lfa_host_addr[SC_PORT(sc)])) { 16682 return; 16683 } 16684 16685 shmem_base[0] = sc->devinfo.shmem_base; 16686 shmem2_base[0] = sc->devinfo.shmem2_base; 16687 16688 if (!CHIP_IS_E1x(sc)) { 16689 shmem_base[1] = SHMEM2_RD(sc, other_shmem_base_addr); 16690 shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr); 16691 } 16692 16693 BXE_PHY_LOCK(sc); 16694 elink_common_init_phy(sc, shmem_base, shmem2_base, 16695 sc->devinfo.chip_id, 0); 16696 BXE_PHY_UNLOCK(sc); 16697 } 16698 16699 static void 16700 bxe_pf_disable(struct bxe_softc *sc) 16701 { 16702 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 16703 16704 val &= ~IGU_PF_CONF_FUNC_EN; 16705 16706 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 16707 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 16708 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0); 16709 } 16710 16711 static void 16712 bxe_init_pxp(struct bxe_softc *sc) 16713 { 16714 uint16_t devctl; 16715 int r_order, w_order; 16716 16717 devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2); 16718 16719 BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl); 16720 16721 w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5); 16722 16723 if (sc->mrrs == -1) { 16724 r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12); 16725 } else { 16726 BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs); 16727 r_order = sc->mrrs; 16728 } 16729 16730 ecore_init_pxp_arb(sc, r_order, w_order); 16731 } 16732 16733 static uint32_t 16734 bxe_get_pretend_reg(struct bxe_softc *sc) 16735 { 16736 uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0; 16737 uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base); 16738 return (base + (SC_ABS_FUNC(sc)) * stride); 16739 } 16740 16741 /* 16742 * Called only on E1H or E2. 16743 * When pretending to be PF, the pretend value is the function number 0..7. 16744 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID 16745 * combination. 16746 */ 16747 static int 16748 bxe_pretend_func(struct bxe_softc *sc, 16749 uint16_t pretend_func_val) 16750 { 16751 uint32_t pretend_reg; 16752 16753 if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) { 16754 return (-1); 16755 } 16756 16757 /* get my own pretend register */ 16758 pretend_reg = bxe_get_pretend_reg(sc); 16759 REG_WR(sc, pretend_reg, pretend_func_val); 16760 REG_RD(sc, pretend_reg); 16761 return (0); 16762 } 16763 16764 static void 16765 bxe_iov_init_dmae(struct bxe_softc *sc) 16766 { 16767 return; 16768 #if 0 16769 BLOGD(sc, DBG_LOAD, "SRIOV is %s\n", IS_SRIOV(sc) ? "ON" : "OFF"); 16770 16771 if (!IS_SRIOV(sc)) { 16772 return; 16773 } 16774 16775 REG_WR(sc, DMAE_REG_BACKWARD_COMP_EN, 0); 16776 #endif 16777 } 16778 16779 #if 0 16780 static int 16781 bxe_iov_init_ilt(struct bxe_softc *sc, 16782 uint16_t line) 16783 { 16784 return (line); 16785 #if 0 16786 int i; 16787 struct ecore_ilt* ilt = sc->ilt; 16788 16789 if (!IS_SRIOV(sc)) { 16790 return (line); 16791 } 16792 16793 /* set vfs ilt lines */ 16794 for (i = 0; i < BXE_VF_CIDS/ILT_PAGE_CIDS ; i++) { 16795 struct hw_dma *hw_cxt = SC_VF_CXT_PAGE(sc,i); 16796 ilt->lines[line+i].page = hw_cxt->addr; 16797 ilt->lines[line+i].page_mapping = hw_cxt->mapping; 16798 ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */ 16799 } 16800 return (line+i); 16801 #endif 16802 } 16803 #endif 16804 16805 static void 16806 bxe_iov_init_dq(struct bxe_softc *sc) 16807 { 16808 return; 16809 #if 0 16810 if (!IS_SRIOV(sc)) { 16811 return; 16812 } 16813 16814 /* Set the DQ such that the CID reflect the abs_vfid */ 16815 REG_WR(sc, DORQ_REG_VF_NORM_VF_BASE, 0); 16816 REG_WR(sc, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS)); 16817 16818 /* 16819 * Set VFs starting CID. If its > 0 the preceding CIDs are belong to 16820 * the PF L2 queues 16821 */ 16822 REG_WR(sc, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID); 16823 16824 /* The VF window size is the log2 of the max number of CIDs per VF */ 16825 REG_WR(sc, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND); 16826 16827 /* 16828 * The VF doorbell size 0 - *B, 4 - 128B. We set it here to match 16829 * the Pf doorbell size although the 2 are independent. 16830 */ 16831 REG_WR(sc, DORQ_REG_VF_NORM_CID_OFST, 16832 BNX2X_DB_SHIFT - BNX2X_DB_MIN_SHIFT); 16833 16834 /* 16835 * No security checks for now - 16836 * configure single rule (out of 16) mask = 0x1, value = 0x0, 16837 * CID range 0 - 0x1ffff 16838 */ 16839 REG_WR(sc, DORQ_REG_VF_TYPE_MASK_0, 1); 16840 REG_WR(sc, DORQ_REG_VF_TYPE_VALUE_0, 0); 16841 REG_WR(sc, DORQ_REG_VF_TYPE_MIN_MCID_0, 0); 16842 REG_WR(sc, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff); 16843 16844 /* set the number of VF alllowed doorbells to the full DQ range */ 16845 REG_WR(sc, DORQ_REG_VF_NORM_MAX_CID_COUNT, 0x20000); 16846 16847 /* set the VF doorbell threshold */ 16848 REG_WR(sc, DORQ_REG_VF_USAGE_CT_LIMIT, 4); 16849 #endif 16850 } 16851 16852 /* send a NIG loopback debug packet */ 16853 static void 16854 bxe_lb_pckt(struct bxe_softc *sc) 16855 { 16856 uint32_t wb_write[3]; 16857 16858 /* Ethernet source and destination addresses */ 16859 wb_write[0] = 0x55555555; 16860 wb_write[1] = 0x55555555; 16861 wb_write[2] = 0x20; /* SOP */ 16862 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 16863 16864 /* NON-IP protocol */ 16865 wb_write[0] = 0x09000000; 16866 wb_write[1] = 0x55555555; 16867 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */ 16868 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 16869 } 16870 16871 /* 16872 * Some of the internal memories are not directly readable from the driver. 16873 * To test them we send debug packets. 16874 */ 16875 static int 16876 bxe_int_mem_test(struct bxe_softc *sc) 16877 { 16878 int factor; 16879 int count, i; 16880 uint32_t val = 0; 16881 16882 if (CHIP_REV_IS_FPGA(sc)) { 16883 factor = 120; 16884 } else if (CHIP_REV_IS_EMUL(sc)) { 16885 factor = 200; 16886 } else { 16887 factor = 1; 16888 } 16889 16890 /* disable inputs of parser neighbor blocks */ 16891 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); 16892 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); 16893 REG_WR(sc, CFC_REG_DEBUG0, 0x1); 16894 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); 16895 16896 /* write 0 to parser credits for CFC search request */ 16897 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 16898 16899 /* send Ethernet packet */ 16900 bxe_lb_pckt(sc); 16901 16902 /* TODO do i reset NIG statistic? */ 16903 /* Wait until NIG register shows 1 packet of size 0x10 */ 16904 count = 1000 * factor; 16905 while (count) { 16906 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 16907 val = *BXE_SP(sc, wb_data[0]); 16908 if (val == 0x10) { 16909 break; 16910 } 16911 16912 DELAY(10000); 16913 count--; 16914 } 16915 16916 if (val != 0x10) { 16917 BLOGE(sc, "NIG timeout val=0x%x\n", val); 16918 return (-1); 16919 } 16920 16921 /* wait until PRS register shows 1 packet */ 16922 count = (1000 * factor); 16923 while (count) { 16924 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16925 if (val == 1) { 16926 break; 16927 } 16928 16929 DELAY(10000); 16930 count--; 16931 } 16932 16933 if (val != 0x1) { 16934 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16935 return (-2); 16936 } 16937 16938 /* Reset and init BRB, PRS */ 16939 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 16940 DELAY(50000); 16941 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 16942 DELAY(50000); 16943 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 16944 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 16945 16946 /* Disable inputs of parser neighbor blocks */ 16947 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); 16948 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); 16949 REG_WR(sc, CFC_REG_DEBUG0, 0x1); 16950 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); 16951 16952 /* Write 0 to parser credits for CFC search request */ 16953 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 16954 16955 /* send 10 Ethernet packets */ 16956 for (i = 0; i < 10; i++) { 16957 bxe_lb_pckt(sc); 16958 } 16959 16960 /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */ 16961 count = (1000 * factor); 16962 while (count) { 16963 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 16964 val = *BXE_SP(sc, wb_data[0]); 16965 if (val == 0xb0) { 16966 break; 16967 } 16968 16969 DELAY(10000); 16970 count--; 16971 } 16972 16973 if (val != 0xb0) { 16974 BLOGE(sc, "NIG timeout val=0x%x\n", val); 16975 return (-3); 16976 } 16977 16978 /* Wait until PRS register shows 2 packets */ 16979 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16980 if (val != 2) { 16981 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16982 } 16983 16984 /* Write 1 to parser credits for CFC search request */ 16985 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1); 16986 16987 /* Wait until PRS register shows 3 packets */ 16988 DELAY(10000 * factor); 16989 16990 /* Wait until NIG register shows 1 packet of size 0x10 */ 16991 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16992 if (val != 3) { 16993 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16994 } 16995 16996 /* clear NIG EOP FIFO */ 16997 for (i = 0; i < 11; i++) { 16998 REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO); 16999 } 17000 17001 val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY); 17002 if (val != 1) { 17003 BLOGE(sc, "clear of NIG failed\n"); 17004 return (-4); 17005 } 17006 17007 /* Reset and init BRB, PRS, NIG */ 17008 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 17009 DELAY(50000); 17010 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 17011 DELAY(50000); 17012 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 17013 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 17014 if (!CNIC_SUPPORT(sc)) { 17015 /* set NIC mode */ 17016 REG_WR(sc, PRS_REG_NIC_MODE, 1); 17017 } 17018 17019 /* Enable inputs of parser neighbor blocks */ 17020 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff); 17021 REG_WR(sc, TCM_REG_PRS_IFEN, 0x1); 17022 REG_WR(sc, CFC_REG_DEBUG0, 0x0); 17023 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1); 17024 17025 return (0); 17026 } 17027 17028 static void 17029 bxe_setup_fan_failure_detection(struct bxe_softc *sc) 17030 { 17031 int is_required; 17032 uint32_t val; 17033 int port; 17034 17035 is_required = 0; 17036 val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) & 17037 SHARED_HW_CFG_FAN_FAILURE_MASK); 17038 17039 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) { 17040 is_required = 1; 17041 } 17042 /* 17043 * The fan failure mechanism is usually related to the PHY type since 17044 * the power consumption of the board is affected by the PHY. Currently, 17045 * fan is required for most designs with SFX7101, BCM8727 and BCM8481. 17046 */ 17047 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) { 17048 for (port = PORT_0; port < PORT_MAX; port++) { 17049 is_required |= elink_fan_failure_det_req(sc, 17050 sc->devinfo.shmem_base, 17051 sc->devinfo.shmem2_base, 17052 port); 17053 } 17054 } 17055 17056 BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required); 17057 17058 if (is_required == 0) { 17059 return; 17060 } 17061 17062 /* Fan failure is indicated by SPIO 5 */ 17063 bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z); 17064 17065 /* set to active low mode */ 17066 val = REG_RD(sc, MISC_REG_SPIO_INT); 17067 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS); 17068 REG_WR(sc, MISC_REG_SPIO_INT, val); 17069 17070 /* enable interrupt to signal the IGU */ 17071 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); 17072 val |= MISC_SPIO_SPIO5; 17073 REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val); 17074 } 17075 17076 static void 17077 bxe_enable_blocks_attention(struct bxe_softc *sc) 17078 { 17079 uint32_t val; 17080 17081 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); 17082 if (!CHIP_IS_E1x(sc)) { 17083 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40); 17084 } else { 17085 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0); 17086 } 17087 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); 17088 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); 17089 /* 17090 * mask read length error interrupts in brb for parser 17091 * (parsing unit and 'checksum and crc' unit) 17092 * these errors are legal (PU reads fixed length and CAC can cause 17093 * read length error on truncated packets) 17094 */ 17095 REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00); 17096 REG_WR(sc, QM_REG_QM_INT_MASK, 0); 17097 REG_WR(sc, TM_REG_TM_INT_MASK, 0); 17098 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0); 17099 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0); 17100 REG_WR(sc, XCM_REG_XCM_INT_MASK, 0); 17101 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */ 17102 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */ 17103 REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0); 17104 REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0); 17105 REG_WR(sc, UCM_REG_UCM_INT_MASK, 0); 17106 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */ 17107 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */ 17108 REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0); 17109 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0); 17110 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0); 17111 REG_WR(sc, CCM_REG_CCM_INT_MASK, 0); 17112 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */ 17113 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */ 17114 17115 val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT | 17116 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF | 17117 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN); 17118 if (!CHIP_IS_E1x(sc)) { 17119 val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED | 17120 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED); 17121 } 17122 REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val); 17123 17124 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0); 17125 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0); 17126 REG_WR(sc, TCM_REG_TCM_INT_MASK, 0); 17127 /* REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */ 17128 17129 if (!CHIP_IS_E1x(sc)) { 17130 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */ 17131 REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff); 17132 } 17133 17134 REG_WR(sc, CDU_REG_CDU_INT_MASK, 0); 17135 REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0); 17136 /* REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */ 17137 REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */ 17138 } 17139 17140 /** 17141 * bxe_init_hw_common - initialize the HW at the COMMON phase. 17142 * 17143 * @sc: driver handle 17144 */ 17145 static int 17146 bxe_init_hw_common(struct bxe_softc *sc) 17147 { 17148 uint8_t abs_func_id; 17149 uint32_t val; 17150 17151 BLOGD(sc, DBG_LOAD, "starting common init for func %d\n", 17152 SC_ABS_FUNC(sc)); 17153 17154 /* 17155 * take the RESET lock to protect undi_unload flow from accessing 17156 * registers while we are resetting the chip 17157 */ 17158 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 17159 17160 bxe_reset_common(sc); 17161 17162 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff); 17163 17164 val = 0xfffc; 17165 if (CHIP_IS_E3(sc)) { 17166 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 17167 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 17168 } 17169 17170 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val); 17171 17172 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 17173 17174 ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON); 17175 BLOGD(sc, DBG_LOAD, "after misc block init\n"); 17176 17177 if (!CHIP_IS_E1x(sc)) { 17178 /* 17179 * 4-port mode or 2-port mode we need to turn off master-enable for 17180 * everyone. After that we turn it back on for self. So, we disregard 17181 * multi-function, and always disable all functions on the given path, 17182 * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1 17183 */ 17184 for (abs_func_id = SC_PATH(sc); 17185 abs_func_id < (E2_FUNC_MAX * 2); 17186 abs_func_id += 2) { 17187 if (abs_func_id == SC_ABS_FUNC(sc)) { 17188 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17189 continue; 17190 } 17191 17192 bxe_pretend_func(sc, abs_func_id); 17193 17194 /* clear pf enable */ 17195 bxe_pf_disable(sc); 17196 17197 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 17198 } 17199 } 17200 17201 BLOGD(sc, DBG_LOAD, "after pf disable\n"); 17202 17203 ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON); 17204 17205 if (CHIP_IS_E1(sc)) { 17206 /* 17207 * enable HW interrupt from PXP on USDM overflow 17208 * bit 16 on INT_MASK_0 17209 */ 17210 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); 17211 } 17212 17213 ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON); 17214 bxe_init_pxp(sc); 17215 17216 #ifdef __BIG_ENDIAN 17217 REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1); 17218 REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1); 17219 REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1); 17220 REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1); 17221 REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1); 17222 /* make sure this value is 0 */ 17223 REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0); 17224 17225 //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1); 17226 REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1); 17227 REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1); 17228 REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1); 17229 REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1); 17230 #endif 17231 17232 ecore_ilt_init_page_size(sc, INITOP_SET); 17233 17234 if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) { 17235 REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1); 17236 } 17237 17238 /* let the HW do it's magic... */ 17239 DELAY(100000); 17240 17241 /* finish PXP init */ 17242 val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE); 17243 if (val != 1) { 17244 BLOGE(sc, "PXP2 CFG failed\n"); 17245 return (-1); 17246 } 17247 val = REG_RD(sc, PXP2_REG_RD_INIT_DONE); 17248 if (val != 1) { 17249 BLOGE(sc, "PXP2 RD_INIT failed\n"); 17250 return (-1); 17251 } 17252 17253 BLOGD(sc, DBG_LOAD, "after pxp init\n"); 17254 17255 /* 17256 * Timer bug workaround for E2 only. We need to set the entire ILT to have 17257 * entries with value "0" and valid bit on. This needs to be done by the 17258 * first PF that is loaded in a path (i.e. common phase) 17259 */ 17260 if (!CHIP_IS_E1x(sc)) { 17261 /* 17262 * In E2 there is a bug in the timers block that can cause function 6 / 7 17263 * (i.e. vnic3) to start even if it is marked as "scan-off". 17264 * This occurs when a different function (func2,3) is being marked 17265 * as "scan-off". Real-life scenario for example: if a driver is being 17266 * load-unloaded while func6,7 are down. This will cause the timer to access 17267 * the ilt, translate to a logical address and send a request to read/write. 17268 * Since the ilt for the function that is down is not valid, this will cause 17269 * a translation error which is unrecoverable. 17270 * The Workaround is intended to make sure that when this happens nothing 17271 * fatal will occur. The workaround: 17272 * 1. First PF driver which loads on a path will: 17273 * a. After taking the chip out of reset, by using pretend, 17274 * it will write "0" to the following registers of 17275 * the other vnics. 17276 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 17277 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0); 17278 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0); 17279 * And for itself it will write '1' to 17280 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable 17281 * dmae-operations (writing to pram for example.) 17282 * note: can be done for only function 6,7 but cleaner this 17283 * way. 17284 * b. Write zero+valid to the entire ILT. 17285 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of 17286 * VNIC3 (of that port). The range allocated will be the 17287 * entire ILT. This is needed to prevent ILT range error. 17288 * 2. Any PF driver load flow: 17289 * a. ILT update with the physical addresses of the allocated 17290 * logical pages. 17291 * b. Wait 20msec. - note that this timeout is needed to make 17292 * sure there are no requests in one of the PXP internal 17293 * queues with "old" ILT addresses. 17294 * c. PF enable in the PGLC. 17295 * d. Clear the was_error of the PF in the PGLC. (could have 17296 * occurred while driver was down) 17297 * e. PF enable in the CFC (WEAK + STRONG) 17298 * f. Timers scan enable 17299 * 3. PF driver unload flow: 17300 * a. Clear the Timers scan_en. 17301 * b. Polling for scan_on=0 for that PF. 17302 * c. Clear the PF enable bit in the PXP. 17303 * d. Clear the PF enable in the CFC (WEAK + STRONG) 17304 * e. Write zero+valid to all ILT entries (The valid bit must 17305 * stay set) 17306 * f. If this is VNIC 3 of a port then also init 17307 * first_timers_ilt_entry to zero and last_timers_ilt_entry 17308 * to the last enrty in the ILT. 17309 * 17310 * Notes: 17311 * Currently the PF error in the PGLC is non recoverable. 17312 * In the future the there will be a recovery routine for this error. 17313 * Currently attention is masked. 17314 * Having an MCP lock on the load/unload process does not guarantee that 17315 * there is no Timer disable during Func6/7 enable. This is because the 17316 * Timers scan is currently being cleared by the MCP on FLR. 17317 * Step 2.d can be done only for PF6/7 and the driver can also check if 17318 * there is error before clearing it. But the flow above is simpler and 17319 * more general. 17320 * All ILT entries are written by zero+valid and not just PF6/7 17321 * ILT entries since in the future the ILT entries allocation for 17322 * PF-s might be dynamic. 17323 */ 17324 struct ilt_client_info ilt_cli; 17325 struct ecore_ilt ilt; 17326 17327 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 17328 memset(&ilt, 0, sizeof(struct ecore_ilt)); 17329 17330 /* initialize dummy TM client */ 17331 ilt_cli.start = 0; 17332 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 17333 ilt_cli.client_num = ILT_CLIENT_TM; 17334 17335 /* 17336 * Step 1: set zeroes to all ilt page entries with valid bit on 17337 * Step 2: set the timers first/last ilt entry to point 17338 * to the entire range to prevent ILT range error for 3rd/4th 17339 * vnic (this code assumes existence of the vnic) 17340 * 17341 * both steps performed by call to ecore_ilt_client_init_op() 17342 * with dummy TM client 17343 * 17344 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT 17345 * and his brother are split registers 17346 */ 17347 17348 bxe_pretend_func(sc, (SC_PATH(sc) + 6)); 17349 ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR); 17350 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 17351 17352 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN); 17353 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN); 17354 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1); 17355 } 17356 17357 REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0); 17358 REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0); 17359 17360 if (!CHIP_IS_E1x(sc)) { 17361 int factor = CHIP_REV_IS_EMUL(sc) ? 1000 : 17362 (CHIP_REV_IS_FPGA(sc) ? 400 : 0); 17363 17364 ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON); 17365 ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON); 17366 17367 /* let the HW do it's magic... */ 17368 do { 17369 DELAY(200000); 17370 val = REG_RD(sc, ATC_REG_ATC_INIT_DONE); 17371 } while (factor-- && (val != 1)); 17372 17373 if (val != 1) { 17374 BLOGE(sc, "ATC_INIT failed\n"); 17375 return (-1); 17376 } 17377 } 17378 17379 BLOGD(sc, DBG_LOAD, "after pglue and atc init\n"); 17380 17381 ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON); 17382 17383 bxe_iov_init_dmae(sc); 17384 17385 /* clean the DMAE memory */ 17386 sc->dmae_ready = 1; 17387 ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1); 17388 17389 ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON); 17390 17391 ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON); 17392 17393 ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON); 17394 17395 ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON); 17396 17397 bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3); 17398 bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3); 17399 bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3); 17400 bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3); 17401 17402 ecore_init_block(sc, BLOCK_QM, PHASE_COMMON); 17403 17404 /* QM queues pointers table */ 17405 ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET); 17406 17407 /* soft reset pulse */ 17408 REG_WR(sc, QM_REG_SOFT_RESET, 1); 17409 REG_WR(sc, QM_REG_SOFT_RESET, 0); 17410 17411 if (CNIC_SUPPORT(sc)) 17412 ecore_init_block(sc, BLOCK_TM, PHASE_COMMON); 17413 17414 ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON); 17415 REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT); 17416 if (!CHIP_REV_IS_SLOW(sc)) { 17417 /* enable hw interrupt from doorbell Q */ 17418 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); 17419 } 17420 17421 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 17422 17423 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 17424 REG_WR(sc, PRS_REG_A_PRSU_20, 0xf); 17425 17426 if (!CHIP_IS_E1(sc)) { 17427 REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan); 17428 } 17429 17430 if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) { 17431 if (IS_MF_AFEX(sc)) { 17432 /* 17433 * configure that AFEX and VLAN headers must be 17434 * received in AFEX mode 17435 */ 17436 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE); 17437 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA); 17438 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6); 17439 REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926); 17440 REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4); 17441 } else { 17442 /* 17443 * Bit-map indicating which L2 hdrs may appear 17444 * after the basic Ethernet header 17445 */ 17446 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 17447 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); 17448 } 17449 } 17450 17451 ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON); 17452 ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON); 17453 ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON); 17454 ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON); 17455 17456 if (!CHIP_IS_E1x(sc)) { 17457 /* reset VFC memories */ 17458 REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 17459 VFC_MEMORIES_RST_REG_CAM_RST | 17460 VFC_MEMORIES_RST_REG_RAM_RST); 17461 REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 17462 VFC_MEMORIES_RST_REG_CAM_RST | 17463 VFC_MEMORIES_RST_REG_RAM_RST); 17464 17465 DELAY(20000); 17466 } 17467 17468 ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON); 17469 ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON); 17470 ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON); 17471 ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON); 17472 17473 /* sync semi rtc */ 17474 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 17475 0x80000000); 17476 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 17477 0x80000000); 17478 17479 ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON); 17480 ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON); 17481 ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON); 17482 17483 if (!CHIP_IS_E1x(sc)) { 17484 if (IS_MF_AFEX(sc)) { 17485 /* 17486 * configure that AFEX and VLAN headers must be 17487 * sent in AFEX mode 17488 */ 17489 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE); 17490 REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA); 17491 REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6); 17492 REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926); 17493 REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4); 17494 } else { 17495 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 17496 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); 17497 } 17498 } 17499 17500 REG_WR(sc, SRC_REG_SOFT_RST, 1); 17501 17502 ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON); 17503 17504 if (CNIC_SUPPORT(sc)) { 17505 REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672); 17506 REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc); 17507 REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b); 17508 REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a); 17509 REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116); 17510 REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b); 17511 REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf); 17512 REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09); 17513 REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f); 17514 REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7); 17515 } 17516 REG_WR(sc, SRC_REG_SOFT_RST, 0); 17517 17518 if (sizeof(union cdu_context) != 1024) { 17519 /* we currently assume that a context is 1024 bytes */ 17520 BLOGE(sc, "please adjust the size of cdu_context(%ld)\n", 17521 (long)sizeof(union cdu_context)); 17522 } 17523 17524 ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON); 17525 val = (4 << 24) + (0 << 12) + 1024; 17526 REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val); 17527 17528 ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON); 17529 17530 REG_WR(sc, CFC_REG_INIT_REG, 0x7FF); 17531 /* enable context validation interrupt from CFC */ 17532 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); 17533 17534 /* set the thresholds to prevent CFC/CDU race */ 17535 REG_WR(sc, CFC_REG_DEBUG0, 0x20020000); 17536 ecore_init_block(sc, BLOCK_HC, PHASE_COMMON); 17537 17538 if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) { 17539 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36); 17540 } 17541 17542 ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON); 17543 ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON); 17544 17545 /* Reset PCIE errors for debug */ 17546 REG_WR(sc, 0x2814, 0xffffffff); 17547 REG_WR(sc, 0x3820, 0xffffffff); 17548 17549 if (!CHIP_IS_E1x(sc)) { 17550 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5, 17551 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 | 17552 PXPCS_TL_CONTROL_5_ERR_UNSPPORT)); 17553 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT, 17554 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 | 17555 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 | 17556 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2)); 17557 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT, 17558 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 | 17559 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 | 17560 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5)); 17561 } 17562 17563 ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON); 17564 17565 if (!CHIP_IS_E1(sc)) { 17566 /* in E3 this done in per-port section */ 17567 if (!CHIP_IS_E3(sc)) 17568 REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc)); 17569 } 17570 17571 if (CHIP_IS_E1H(sc)) { 17572 /* not applicable for E2 (and above ...) */ 17573 REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc)); 17574 } 17575 17576 if (CHIP_REV_IS_SLOW(sc)) { 17577 DELAY(200000); 17578 } 17579 17580 /* finish CFC init */ 17581 val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10); 17582 if (val != 1) { 17583 BLOGE(sc, "CFC LL_INIT failed\n"); 17584 return (-1); 17585 } 17586 val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10); 17587 if (val != 1) { 17588 BLOGE(sc, "CFC AC_INIT failed\n"); 17589 return (-1); 17590 } 17591 val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10); 17592 if (val != 1) { 17593 BLOGE(sc, "CFC CAM_INIT failed\n"); 17594 return (-1); 17595 } 17596 REG_WR(sc, CFC_REG_DEBUG0, 0); 17597 17598 if (CHIP_IS_E1(sc)) { 17599 /* read NIG statistic to see if this is our first up since powerup */ 17600 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 17601 val = *BXE_SP(sc, wb_data[0]); 17602 17603 /* do internal memory self test */ 17604 if ((val == 0) && bxe_int_mem_test(sc)) { 17605 BLOGE(sc, "internal mem self test failed\n"); 17606 return (-1); 17607 } 17608 } 17609 17610 bxe_setup_fan_failure_detection(sc); 17611 17612 /* clear PXP2 attentions */ 17613 REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); 17614 17615 bxe_enable_blocks_attention(sc); 17616 17617 if (!CHIP_REV_IS_SLOW(sc)) { 17618 ecore_enable_blocks_parity(sc); 17619 } 17620 17621 if (!BXE_NOMCP(sc)) { 17622 if (CHIP_IS_E1x(sc)) { 17623 bxe_common_init_phy(sc); 17624 } 17625 } 17626 17627 return (0); 17628 } 17629 17630 /** 17631 * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase. 17632 * 17633 * @sc: driver handle 17634 */ 17635 static int 17636 bxe_init_hw_common_chip(struct bxe_softc *sc) 17637 { 17638 int rc = bxe_init_hw_common(sc); 17639 17640 if (rc) { 17641 return (rc); 17642 } 17643 17644 /* In E2 2-PORT mode, same ext phy is used for the two paths */ 17645 if (!BXE_NOMCP(sc)) { 17646 bxe_common_init_phy(sc); 17647 } 17648 17649 return (0); 17650 } 17651 17652 static int 17653 bxe_init_hw_port(struct bxe_softc *sc) 17654 { 17655 int port = SC_PORT(sc); 17656 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0; 17657 uint32_t low, high; 17658 uint32_t val; 17659 17660 BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port); 17661 17662 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 17663 17664 ecore_init_block(sc, BLOCK_MISC, init_phase); 17665 ecore_init_block(sc, BLOCK_PXP, init_phase); 17666 ecore_init_block(sc, BLOCK_PXP2, init_phase); 17667 17668 /* 17669 * Timers bug workaround: disables the pf_master bit in pglue at 17670 * common phase, we need to enable it here before any dmae access are 17671 * attempted. Therefore we manually added the enable-master to the 17672 * port phase (it also happens in the function phase) 17673 */ 17674 if (!CHIP_IS_E1x(sc)) { 17675 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17676 } 17677 17678 ecore_init_block(sc, BLOCK_ATC, init_phase); 17679 ecore_init_block(sc, BLOCK_DMAE, init_phase); 17680 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); 17681 ecore_init_block(sc, BLOCK_QM, init_phase); 17682 17683 ecore_init_block(sc, BLOCK_TCM, init_phase); 17684 ecore_init_block(sc, BLOCK_UCM, init_phase); 17685 ecore_init_block(sc, BLOCK_CCM, init_phase); 17686 ecore_init_block(sc, BLOCK_XCM, init_phase); 17687 17688 /* QM cid (connection) count */ 17689 ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET); 17690 17691 if (CNIC_SUPPORT(sc)) { 17692 ecore_init_block(sc, BLOCK_TM, init_phase); 17693 REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20); 17694 REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31); 17695 } 17696 17697 ecore_init_block(sc, BLOCK_DORQ, init_phase); 17698 17699 ecore_init_block(sc, BLOCK_BRB1, init_phase); 17700 17701 if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) { 17702 if (IS_MF(sc)) { 17703 low = (BXE_ONE_PORT(sc) ? 160 : 246); 17704 } else if (sc->mtu > 4096) { 17705 if (BXE_ONE_PORT(sc)) { 17706 low = 160; 17707 } else { 17708 val = sc->mtu; 17709 /* (24*1024 + val*4)/256 */ 17710 low = (96 + (val / 64) + ((val % 64) ? 1 : 0)); 17711 } 17712 } else { 17713 low = (BXE_ONE_PORT(sc) ? 80 : 160); 17714 } 17715 high = (low + 56); /* 14*1024/256 */ 17716 REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low); 17717 REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high); 17718 } 17719 17720 if (CHIP_IS_MODE_4_PORT(sc)) { 17721 REG_WR(sc, SC_PORT(sc) ? 17722 BRB1_REG_MAC_GUARANTIED_1 : 17723 BRB1_REG_MAC_GUARANTIED_0, 40); 17724 } 17725 17726 ecore_init_block(sc, BLOCK_PRS, init_phase); 17727 if (CHIP_IS_E3B0(sc)) { 17728 if (IS_MF_AFEX(sc)) { 17729 /* configure headers for AFEX mode */ 17730 REG_WR(sc, SC_PORT(sc) ? 17731 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 17732 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE); 17733 REG_WR(sc, SC_PORT(sc) ? 17734 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 : 17735 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6); 17736 REG_WR(sc, SC_PORT(sc) ? 17737 PRS_REG_MUST_HAVE_HDRS_PORT_1 : 17738 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA); 17739 } else { 17740 /* Ovlan exists only if we are in multi-function + 17741 * switch-dependent mode, in switch-independent there 17742 * is no ovlan headers 17743 */ 17744 REG_WR(sc, SC_PORT(sc) ? 17745 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 17746 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 17747 (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6)); 17748 } 17749 } 17750 17751 ecore_init_block(sc, BLOCK_TSDM, init_phase); 17752 ecore_init_block(sc, BLOCK_CSDM, init_phase); 17753 ecore_init_block(sc, BLOCK_USDM, init_phase); 17754 ecore_init_block(sc, BLOCK_XSDM, init_phase); 17755 17756 ecore_init_block(sc, BLOCK_TSEM, init_phase); 17757 ecore_init_block(sc, BLOCK_USEM, init_phase); 17758 ecore_init_block(sc, BLOCK_CSEM, init_phase); 17759 ecore_init_block(sc, BLOCK_XSEM, init_phase); 17760 17761 ecore_init_block(sc, BLOCK_UPB, init_phase); 17762 ecore_init_block(sc, BLOCK_XPB, init_phase); 17763 17764 ecore_init_block(sc, BLOCK_PBF, init_phase); 17765 17766 if (CHIP_IS_E1x(sc)) { 17767 /* configure PBF to work without PAUSE mtu 9000 */ 17768 REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0); 17769 17770 /* update threshold */ 17771 REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16)); 17772 /* update init credit */ 17773 REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22); 17774 17775 /* probe changes */ 17776 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1); 17777 DELAY(50); 17778 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0); 17779 } 17780 17781 if (CNIC_SUPPORT(sc)) { 17782 ecore_init_block(sc, BLOCK_SRC, init_phase); 17783 } 17784 17785 ecore_init_block(sc, BLOCK_CDU, init_phase); 17786 ecore_init_block(sc, BLOCK_CFC, init_phase); 17787 17788 if (CHIP_IS_E1(sc)) { 17789 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 17790 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 17791 } 17792 ecore_init_block(sc, BLOCK_HC, init_phase); 17793 17794 ecore_init_block(sc, BLOCK_IGU, init_phase); 17795 17796 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); 17797 /* init aeu_mask_attn_func_0/1: 17798 * - SF mode: bits 3-7 are masked. only bits 0-2 are in use 17799 * - MF mode: bit 3 is masked. bits 0-2 are in use as in SF 17800 * bits 4-7 are used for "per vn group attention" */ 17801 val = IS_MF(sc) ? 0xF7 : 0x7; 17802 /* Enable DCBX attention for all but E1 */ 17803 val |= CHIP_IS_E1(sc) ? 0 : 0x10; 17804 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val); 17805 17806 ecore_init_block(sc, BLOCK_NIG, init_phase); 17807 17808 if (!CHIP_IS_E1x(sc)) { 17809 /* Bit-map indicating which L2 hdrs may appear after the 17810 * basic Ethernet header 17811 */ 17812 if (IS_MF_AFEX(sc)) { 17813 REG_WR(sc, SC_PORT(sc) ? 17814 NIG_REG_P1_HDRS_AFTER_BASIC : 17815 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE); 17816 } else { 17817 REG_WR(sc, SC_PORT(sc) ? 17818 NIG_REG_P1_HDRS_AFTER_BASIC : 17819 NIG_REG_P0_HDRS_AFTER_BASIC, 17820 IS_MF_SD(sc) ? 7 : 6); 17821 } 17822 17823 if (CHIP_IS_E3(sc)) { 17824 REG_WR(sc, SC_PORT(sc) ? 17825 NIG_REG_LLH1_MF_MODE : 17826 NIG_REG_LLH_MF_MODE, IS_MF(sc)); 17827 } 17828 } 17829 if (!CHIP_IS_E3(sc)) { 17830 REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1); 17831 } 17832 17833 if (!CHIP_IS_E1(sc)) { 17834 /* 0x2 disable mf_ov, 0x1 enable */ 17835 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4, 17836 (IS_MF_SD(sc) ? 0x1 : 0x2)); 17837 17838 if (!CHIP_IS_E1x(sc)) { 17839 val = 0; 17840 switch (sc->devinfo.mf_info.mf_mode) { 17841 case MULTI_FUNCTION_SD: 17842 val = 1; 17843 break; 17844 case MULTI_FUNCTION_SI: 17845 case MULTI_FUNCTION_AFEX: 17846 val = 2; 17847 break; 17848 } 17849 17850 REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE : 17851 NIG_REG_LLH0_CLS_TYPE), val); 17852 } 17853 REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0); 17854 REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0); 17855 REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1); 17856 } 17857 17858 /* If SPIO5 is set to generate interrupts, enable it for this port */ 17859 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); 17860 if (val & MISC_SPIO_SPIO5) { 17861 uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 17862 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 17863 val = REG_RD(sc, reg_addr); 17864 val |= AEU_INPUTS_ATTN_BITS_SPIO5; 17865 REG_WR(sc, reg_addr, val); 17866 } 17867 17868 return (0); 17869 } 17870 17871 static uint32_t 17872 bxe_flr_clnup_reg_poll(struct bxe_softc *sc, 17873 uint32_t reg, 17874 uint32_t expected, 17875 uint32_t poll_count) 17876 { 17877 uint32_t cur_cnt = poll_count; 17878 uint32_t val; 17879 17880 while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) { 17881 DELAY(FLR_WAIT_INTERVAL); 17882 } 17883 17884 return (val); 17885 } 17886 17887 static int 17888 bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc, 17889 uint32_t reg, 17890 char *msg, 17891 uint32_t poll_cnt) 17892 { 17893 uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt); 17894 17895 if (val != 0) { 17896 BLOGE(sc, "%s usage count=%d\n", msg, val); 17897 return (1); 17898 } 17899 17900 return (0); 17901 } 17902 17903 /* Common routines with VF FLR cleanup */ 17904 static uint32_t 17905 bxe_flr_clnup_poll_count(struct bxe_softc *sc) 17906 { 17907 /* adjust polling timeout */ 17908 if (CHIP_REV_IS_EMUL(sc)) { 17909 return (FLR_POLL_CNT * 2000); 17910 } 17911 17912 if (CHIP_REV_IS_FPGA(sc)) { 17913 return (FLR_POLL_CNT * 120); 17914 } 17915 17916 return (FLR_POLL_CNT); 17917 } 17918 17919 static int 17920 bxe_poll_hw_usage_counters(struct bxe_softc *sc, 17921 uint32_t poll_cnt) 17922 { 17923 /* wait for CFC PF usage-counter to zero (includes all the VFs) */ 17924 if (bxe_flr_clnup_poll_hw_counter(sc, 17925 CFC_REG_NUM_LCIDS_INSIDE_PF, 17926 "CFC PF usage counter timed out", 17927 poll_cnt)) { 17928 return (1); 17929 } 17930 17931 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */ 17932 if (bxe_flr_clnup_poll_hw_counter(sc, 17933 DORQ_REG_PF_USAGE_CNT, 17934 "DQ PF usage counter timed out", 17935 poll_cnt)) { 17936 return (1); 17937 } 17938 17939 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */ 17940 if (bxe_flr_clnup_poll_hw_counter(sc, 17941 QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc), 17942 "QM PF usage counter timed out", 17943 poll_cnt)) { 17944 return (1); 17945 } 17946 17947 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */ 17948 if (bxe_flr_clnup_poll_hw_counter(sc, 17949 TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc), 17950 "Timers VNIC usage counter timed out", 17951 poll_cnt)) { 17952 return (1); 17953 } 17954 17955 if (bxe_flr_clnup_poll_hw_counter(sc, 17956 TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc), 17957 "Timers NUM_SCANS usage counter timed out", 17958 poll_cnt)) { 17959 return (1); 17960 } 17961 17962 /* Wait DMAE PF usage counter to zero */ 17963 if (bxe_flr_clnup_poll_hw_counter(sc, 17964 dmae_reg_go_c[INIT_DMAE_C(sc)], 17965 "DMAE dommand register timed out", 17966 poll_cnt)) { 17967 return (1); 17968 } 17969 17970 return (0); 17971 } 17972 17973 #define OP_GEN_PARAM(param) \ 17974 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM) 17975 #define OP_GEN_TYPE(type) \ 17976 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE) 17977 #define OP_GEN_AGG_VECT(index) \ 17978 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX) 17979 17980 static int 17981 bxe_send_final_clnup(struct bxe_softc *sc, 17982 uint8_t clnup_func, 17983 uint32_t poll_cnt) 17984 { 17985 uint32_t op_gen_command = 0; 17986 uint32_t comp_addr = (BAR_CSTRORM_INTMEM + 17987 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func)); 17988 int ret = 0; 17989 17990 if (REG_RD(sc, comp_addr)) { 17991 BLOGE(sc, "Cleanup complete was not 0 before sending\n"); 17992 return (1); 17993 } 17994 17995 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX); 17996 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE); 17997 op_gen_command |= OP_GEN_AGG_VECT(clnup_func); 17998 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT; 17999 18000 BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n"); 18001 REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command); 18002 18003 if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) { 18004 BLOGE(sc, "FW final cleanup did not succeed\n"); 18005 BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n", 18006 (REG_RD(sc, comp_addr))); 18007 bxe_panic(sc, ("FLR cleanup failed\n")); 18008 return (1); 18009 } 18010 18011 /* Zero completion for nxt FLR */ 18012 REG_WR(sc, comp_addr, 0); 18013 18014 return (ret); 18015 } 18016 18017 static void 18018 bxe_pbf_pN_buf_flushed(struct bxe_softc *sc, 18019 struct pbf_pN_buf_regs *regs, 18020 uint32_t poll_count) 18021 { 18022 uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start; 18023 uint32_t cur_cnt = poll_count; 18024 18025 crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed); 18026 crd = crd_start = REG_RD(sc, regs->crd); 18027 init_crd = REG_RD(sc, regs->init_crd); 18028 18029 BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd); 18030 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : s:%x\n", regs->pN, crd); 18031 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed); 18032 18033 while ((crd != init_crd) && 18034 ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) < 18035 (init_crd - crd_start))) { 18036 if (cur_cnt--) { 18037 DELAY(FLR_WAIT_INTERVAL); 18038 crd = REG_RD(sc, regs->crd); 18039 crd_freed = REG_RD(sc, regs->crd_freed); 18040 } else { 18041 BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN); 18042 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : c:%x\n", regs->pN, crd); 18043 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed); 18044 break; 18045 } 18046 } 18047 18048 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n", 18049 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 18050 } 18051 18052 static void 18053 bxe_pbf_pN_cmd_flushed(struct bxe_softc *sc, 18054 struct pbf_pN_cmd_regs *regs, 18055 uint32_t poll_count) 18056 { 18057 uint32_t occup, to_free, freed, freed_start; 18058 uint32_t cur_cnt = poll_count; 18059 18060 occup = to_free = REG_RD(sc, regs->lines_occup); 18061 freed = freed_start = REG_RD(sc, regs->lines_freed); 18062 18063 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 18064 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 18065 18066 while (occup && 18067 ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) { 18068 if (cur_cnt--) { 18069 DELAY(FLR_WAIT_INTERVAL); 18070 occup = REG_RD(sc, regs->lines_occup); 18071 freed = REG_RD(sc, regs->lines_freed); 18072 } else { 18073 BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN); 18074 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 18075 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 18076 break; 18077 } 18078 } 18079 18080 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n", 18081 poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 18082 } 18083 18084 static void 18085 bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count) 18086 { 18087 struct pbf_pN_cmd_regs cmd_regs[] = { 18088 {0, (CHIP_IS_E3B0(sc)) ? 18089 PBF_REG_TQ_OCCUPANCY_Q0 : 18090 PBF_REG_P0_TQ_OCCUPANCY, 18091 (CHIP_IS_E3B0(sc)) ? 18092 PBF_REG_TQ_LINES_FREED_CNT_Q0 : 18093 PBF_REG_P0_TQ_LINES_FREED_CNT}, 18094 {1, (CHIP_IS_E3B0(sc)) ? 18095 PBF_REG_TQ_OCCUPANCY_Q1 : 18096 PBF_REG_P1_TQ_OCCUPANCY, 18097 (CHIP_IS_E3B0(sc)) ? 18098 PBF_REG_TQ_LINES_FREED_CNT_Q1 : 18099 PBF_REG_P1_TQ_LINES_FREED_CNT}, 18100 {4, (CHIP_IS_E3B0(sc)) ? 18101 PBF_REG_TQ_OCCUPANCY_LB_Q : 18102 PBF_REG_P4_TQ_OCCUPANCY, 18103 (CHIP_IS_E3B0(sc)) ? 18104 PBF_REG_TQ_LINES_FREED_CNT_LB_Q : 18105 PBF_REG_P4_TQ_LINES_FREED_CNT} 18106 }; 18107 18108 struct pbf_pN_buf_regs buf_regs[] = { 18109 {0, (CHIP_IS_E3B0(sc)) ? 18110 PBF_REG_INIT_CRD_Q0 : 18111 PBF_REG_P0_INIT_CRD , 18112 (CHIP_IS_E3B0(sc)) ? 18113 PBF_REG_CREDIT_Q0 : 18114 PBF_REG_P0_CREDIT, 18115 (CHIP_IS_E3B0(sc)) ? 18116 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 : 18117 PBF_REG_P0_INTERNAL_CRD_FREED_CNT}, 18118 {1, (CHIP_IS_E3B0(sc)) ? 18119 PBF_REG_INIT_CRD_Q1 : 18120 PBF_REG_P1_INIT_CRD, 18121 (CHIP_IS_E3B0(sc)) ? 18122 PBF_REG_CREDIT_Q1 : 18123 PBF_REG_P1_CREDIT, 18124 (CHIP_IS_E3B0(sc)) ? 18125 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 : 18126 PBF_REG_P1_INTERNAL_CRD_FREED_CNT}, 18127 {4, (CHIP_IS_E3B0(sc)) ? 18128 PBF_REG_INIT_CRD_LB_Q : 18129 PBF_REG_P4_INIT_CRD, 18130 (CHIP_IS_E3B0(sc)) ? 18131 PBF_REG_CREDIT_LB_Q : 18132 PBF_REG_P4_CREDIT, 18133 (CHIP_IS_E3B0(sc)) ? 18134 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q : 18135 PBF_REG_P4_INTERNAL_CRD_FREED_CNT}, 18136 }; 18137 18138 int i; 18139 18140 /* Verify the command queues are flushed P0, P1, P4 */ 18141 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) { 18142 bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count); 18143 } 18144 18145 /* Verify the transmission buffers are flushed P0, P1, P4 */ 18146 for (i = 0; i < ARRAY_SIZE(buf_regs); i++) { 18147 bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count); 18148 } 18149 } 18150 18151 static void 18152 bxe_hw_enable_status(struct bxe_softc *sc) 18153 { 18154 uint32_t val; 18155 18156 val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF); 18157 BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val); 18158 18159 val = REG_RD(sc, PBF_REG_DISABLE_PF); 18160 BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val); 18161 18162 val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN); 18163 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val); 18164 18165 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN); 18166 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val); 18167 18168 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK); 18169 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val); 18170 18171 val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR); 18172 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val); 18173 18174 val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR); 18175 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val); 18176 18177 val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); 18178 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val); 18179 } 18180 18181 static int 18182 bxe_pf_flr_clnup(struct bxe_softc *sc) 18183 { 18184 uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc); 18185 18186 BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc)); 18187 18188 /* Re-enable PF target read access */ 18189 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 18190 18191 /* Poll HW usage counters */ 18192 BLOGD(sc, DBG_LOAD, "Polling usage counters\n"); 18193 if (bxe_poll_hw_usage_counters(sc, poll_cnt)) { 18194 return (-1); 18195 } 18196 18197 /* Zero the igu 'trailing edge' and 'leading edge' */ 18198 18199 /* Send the FW cleanup command */ 18200 if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) { 18201 return (-1); 18202 } 18203 18204 /* ATC cleanup */ 18205 18206 /* Verify TX hw is flushed */ 18207 bxe_tx_hw_flushed(sc, poll_cnt); 18208 18209 /* Wait 100ms (not adjusted according to platform) */ 18210 DELAY(100000); 18211 18212 /* Verify no pending pci transactions */ 18213 if (bxe_is_pcie_pending(sc)) { 18214 BLOGE(sc, "PCIE Transactions still pending\n"); 18215 } 18216 18217 /* Debug */ 18218 bxe_hw_enable_status(sc); 18219 18220 /* 18221 * Master enable - Due to WB DMAE writes performed before this 18222 * register is re-initialized as part of the regular function init 18223 */ 18224 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 18225 18226 return (0); 18227 } 18228 18229 #if 0 18230 static void 18231 bxe_init_searcher(struct bxe_softc *sc) 18232 { 18233 int port = SC_PORT(sc); 18234 ecore_src_init_t2(sc, sc->t2, sc->t2_mapping, SRC_CONN_NUM); 18235 /* T1 hash bits value determines the T1 number of entries */ 18236 REG_WR(sc, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS); 18237 } 18238 #endif 18239 18240 static int 18241 bxe_init_hw_func(struct bxe_softc *sc) 18242 { 18243 int port = SC_PORT(sc); 18244 int func = SC_FUNC(sc); 18245 int init_phase = PHASE_PF0 + func; 18246 struct ecore_ilt *ilt = sc->ilt; 18247 uint16_t cdu_ilt_start; 18248 uint32_t addr, val; 18249 uint32_t main_mem_base, main_mem_size, main_mem_prty_clr; 18250 int i, main_mem_width, rc; 18251 18252 BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func); 18253 18254 /* FLR cleanup */ 18255 if (!CHIP_IS_E1x(sc)) { 18256 rc = bxe_pf_flr_clnup(sc); 18257 if (rc) { 18258 BLOGE(sc, "FLR cleanup failed!\n"); 18259 // XXX bxe_fw_dump(sc); 18260 // XXX bxe_idle_chk(sc); 18261 return (rc); 18262 } 18263 } 18264 18265 /* set MSI reconfigure capability */ 18266 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18267 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0); 18268 val = REG_RD(sc, addr); 18269 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0; 18270 REG_WR(sc, addr, val); 18271 } 18272 18273 ecore_init_block(sc, BLOCK_PXP, init_phase); 18274 ecore_init_block(sc, BLOCK_PXP2, init_phase); 18275 18276 ilt = sc->ilt; 18277 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 18278 18279 #if 0 18280 if (IS_SRIOV(sc)) { 18281 cdu_ilt_start += BXE_FIRST_VF_CID/ILT_PAGE_CIDS; 18282 } 18283 cdu_ilt_start = bxe_iov_init_ilt(sc, cdu_ilt_start); 18284 18285 #if (BXE_FIRST_VF_CID > 0) 18286 /* 18287 * If BXE_FIRST_VF_CID > 0 then the PF L2 cids precedes 18288 * those of the VFs, so start line should be reset 18289 */ 18290 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 18291 #endif 18292 #endif 18293 18294 for (i = 0; i < L2_ILT_LINES(sc); i++) { 18295 ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt; 18296 ilt->lines[cdu_ilt_start + i].page_mapping = 18297 sc->context[i].vcxt_dma.paddr; 18298 ilt->lines[cdu_ilt_start + i].size = sc->context[i].size; 18299 } 18300 ecore_ilt_init_op(sc, INITOP_SET); 18301 18302 #if 0 18303 if (!CONFIGURE_NIC_MODE(sc)) { 18304 bxe_init_searcher(sc); 18305 REG_WR(sc, PRS_REG_NIC_MODE, 0); 18306 BLOGD(sc, DBG_LOAD, "NIC MODE disabled\n"); 18307 } else 18308 #endif 18309 { 18310 /* Set NIC mode */ 18311 REG_WR(sc, PRS_REG_NIC_MODE, 1); 18312 BLOGD(sc, DBG_LOAD, "NIC MODE configured\n"); 18313 } 18314 18315 if (!CHIP_IS_E1x(sc)) { 18316 uint32_t pf_conf = IGU_PF_CONF_FUNC_EN; 18317 18318 /* Turn on a single ISR mode in IGU if driver is going to use 18319 * INT#x or MSI 18320 */ 18321 if (sc->interrupt_mode != INTR_MODE_MSIX) { 18322 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; 18323 } 18324 18325 /* 18326 * Timers workaround bug: function init part. 18327 * Need to wait 20msec after initializing ILT, 18328 * needed to make sure there are no requests in 18329 * one of the PXP internal queues with "old" ILT addresses 18330 */ 18331 DELAY(20000); 18332 18333 /* 18334 * Master enable - Due to WB DMAE writes performed before this 18335 * register is re-initialized as part of the regular function 18336 * init 18337 */ 18338 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 18339 /* Enable the function in IGU */ 18340 REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf); 18341 } 18342 18343 sc->dmae_ready = 1; 18344 18345 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); 18346 18347 if (!CHIP_IS_E1x(sc)) 18348 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func); 18349 18350 ecore_init_block(sc, BLOCK_ATC, init_phase); 18351 ecore_init_block(sc, BLOCK_DMAE, init_phase); 18352 ecore_init_block(sc, BLOCK_NIG, init_phase); 18353 ecore_init_block(sc, BLOCK_SRC, init_phase); 18354 ecore_init_block(sc, BLOCK_MISC, init_phase); 18355 ecore_init_block(sc, BLOCK_TCM, init_phase); 18356 ecore_init_block(sc, BLOCK_UCM, init_phase); 18357 ecore_init_block(sc, BLOCK_CCM, init_phase); 18358 ecore_init_block(sc, BLOCK_XCM, init_phase); 18359 ecore_init_block(sc, BLOCK_TSEM, init_phase); 18360 ecore_init_block(sc, BLOCK_USEM, init_phase); 18361 ecore_init_block(sc, BLOCK_CSEM, init_phase); 18362 ecore_init_block(sc, BLOCK_XSEM, init_phase); 18363 18364 if (!CHIP_IS_E1x(sc)) 18365 REG_WR(sc, QM_REG_PF_EN, 1); 18366 18367 if (!CHIP_IS_E1x(sc)) { 18368 REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18369 REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18370 REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18371 REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18372 } 18373 ecore_init_block(sc, BLOCK_QM, init_phase); 18374 18375 ecore_init_block(sc, BLOCK_TM, init_phase); 18376 ecore_init_block(sc, BLOCK_DORQ, init_phase); 18377 18378 bxe_iov_init_dq(sc); 18379 18380 ecore_init_block(sc, BLOCK_BRB1, init_phase); 18381 ecore_init_block(sc, BLOCK_PRS, init_phase); 18382 ecore_init_block(sc, BLOCK_TSDM, init_phase); 18383 ecore_init_block(sc, BLOCK_CSDM, init_phase); 18384 ecore_init_block(sc, BLOCK_USDM, init_phase); 18385 ecore_init_block(sc, BLOCK_XSDM, init_phase); 18386 ecore_init_block(sc, BLOCK_UPB, init_phase); 18387 ecore_init_block(sc, BLOCK_XPB, init_phase); 18388 ecore_init_block(sc, BLOCK_PBF, init_phase); 18389 if (!CHIP_IS_E1x(sc)) 18390 REG_WR(sc, PBF_REG_DISABLE_PF, 0); 18391 18392 ecore_init_block(sc, BLOCK_CDU, init_phase); 18393 18394 ecore_init_block(sc, BLOCK_CFC, init_phase); 18395 18396 if (!CHIP_IS_E1x(sc)) 18397 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1); 18398 18399 if (IS_MF(sc)) { 18400 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); 18401 REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc)); 18402 } 18403 18404 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); 18405 18406 /* HC init per function */ 18407 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18408 if (CHIP_IS_E1H(sc)) { 18409 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 18410 18411 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 18412 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 18413 } 18414 ecore_init_block(sc, BLOCK_HC, init_phase); 18415 18416 } else { 18417 int num_segs, sb_idx, prod_offset; 18418 18419 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 18420 18421 if (!CHIP_IS_E1x(sc)) { 18422 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); 18423 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); 18424 } 18425 18426 ecore_init_block(sc, BLOCK_IGU, init_phase); 18427 18428 if (!CHIP_IS_E1x(sc)) { 18429 int dsb_idx = 0; 18430 /** 18431 * Producer memory: 18432 * E2 mode: address 0-135 match to the mapping memory; 18433 * 136 - PF0 default prod; 137 - PF1 default prod; 18434 * 138 - PF2 default prod; 139 - PF3 default prod; 18435 * 140 - PF0 attn prod; 141 - PF1 attn prod; 18436 * 142 - PF2 attn prod; 143 - PF3 attn prod; 18437 * 144-147 reserved. 18438 * 18439 * E1.5 mode - In backward compatible mode; 18440 * for non default SB; each even line in the memory 18441 * holds the U producer and each odd line hold 18442 * the C producer. The first 128 producers are for 18443 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20 18444 * producers are for the DSB for each PF. 18445 * Each PF has five segments: (the order inside each 18446 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods; 18447 * 132-135 C prods; 136-139 X prods; 140-143 T prods; 18448 * 144-147 attn prods; 18449 */ 18450 /* non-default-status-blocks */ 18451 num_segs = CHIP_INT_MODE_IS_BC(sc) ? 18452 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS; 18453 for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) { 18454 prod_offset = (sc->igu_base_sb + sb_idx) * 18455 num_segs; 18456 18457 for (i = 0; i < num_segs; i++) { 18458 addr = IGU_REG_PROD_CONS_MEMORY + 18459 (prod_offset + i) * 4; 18460 REG_WR(sc, addr, 0); 18461 } 18462 /* send consumer update with value 0 */ 18463 bxe_ack_sb(sc, sc->igu_base_sb + sb_idx, 18464 USTORM_ID, 0, IGU_INT_NOP, 1); 18465 bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx); 18466 } 18467 18468 /* default-status-blocks */ 18469 num_segs = CHIP_INT_MODE_IS_BC(sc) ? 18470 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS; 18471 18472 if (CHIP_IS_MODE_4_PORT(sc)) 18473 dsb_idx = SC_FUNC(sc); 18474 else 18475 dsb_idx = SC_VN(sc); 18476 18477 prod_offset = (CHIP_INT_MODE_IS_BC(sc) ? 18478 IGU_BC_BASE_DSB_PROD + dsb_idx : 18479 IGU_NORM_BASE_DSB_PROD + dsb_idx); 18480 18481 /* 18482 * igu prods come in chunks of E1HVN_MAX (4) - 18483 * does not matters what is the current chip mode 18484 */ 18485 for (i = 0; i < (num_segs * E1HVN_MAX); 18486 i += E1HVN_MAX) { 18487 addr = IGU_REG_PROD_CONS_MEMORY + 18488 (prod_offset + i)*4; 18489 REG_WR(sc, addr, 0); 18490 } 18491 /* send consumer update with 0 */ 18492 if (CHIP_INT_MODE_IS_BC(sc)) { 18493 bxe_ack_sb(sc, sc->igu_dsb_id, 18494 USTORM_ID, 0, IGU_INT_NOP, 1); 18495 bxe_ack_sb(sc, sc->igu_dsb_id, 18496 CSTORM_ID, 0, IGU_INT_NOP, 1); 18497 bxe_ack_sb(sc, sc->igu_dsb_id, 18498 XSTORM_ID, 0, IGU_INT_NOP, 1); 18499 bxe_ack_sb(sc, sc->igu_dsb_id, 18500 TSTORM_ID, 0, IGU_INT_NOP, 1); 18501 bxe_ack_sb(sc, sc->igu_dsb_id, 18502 ATTENTION_ID, 0, IGU_INT_NOP, 1); 18503 } else { 18504 bxe_ack_sb(sc, sc->igu_dsb_id, 18505 USTORM_ID, 0, IGU_INT_NOP, 1); 18506 bxe_ack_sb(sc, sc->igu_dsb_id, 18507 ATTENTION_ID, 0, IGU_INT_NOP, 1); 18508 } 18509 bxe_igu_clear_sb(sc, sc->igu_dsb_id); 18510 18511 /* !!! these should become driver const once 18512 rf-tool supports split-68 const */ 18513 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); 18514 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); 18515 REG_WR(sc, IGU_REG_SB_MASK_LSB, 0); 18516 REG_WR(sc, IGU_REG_SB_MASK_MSB, 0); 18517 REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0); 18518 REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0); 18519 } 18520 } 18521 18522 /* Reset PCIE errors for debug */ 18523 REG_WR(sc, 0x2114, 0xffffffff); 18524 REG_WR(sc, 0x2120, 0xffffffff); 18525 18526 if (CHIP_IS_E1x(sc)) { 18527 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/ 18528 main_mem_base = HC_REG_MAIN_MEMORY + 18529 SC_PORT(sc) * (main_mem_size * 4); 18530 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR; 18531 main_mem_width = 8; 18532 18533 val = REG_RD(sc, main_mem_prty_clr); 18534 if (val) { 18535 BLOGD(sc, DBG_LOAD, 18536 "Parity errors in HC block during function init (0x%x)!\n", 18537 val); 18538 } 18539 18540 /* Clear "false" parity errors in MSI-X table */ 18541 for (i = main_mem_base; 18542 i < main_mem_base + main_mem_size * 4; 18543 i += main_mem_width) { 18544 bxe_read_dmae(sc, i, main_mem_width / 4); 18545 bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data), 18546 i, main_mem_width / 4); 18547 } 18548 /* Clear HC parity attention */ 18549 REG_RD(sc, main_mem_prty_clr); 18550 } 18551 18552 #if 1 18553 /* Enable STORMs SP logging */ 18554 REG_WR8(sc, BAR_USTRORM_INTMEM + 18555 USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18556 REG_WR8(sc, BAR_TSTRORM_INTMEM + 18557 TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18558 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18559 CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18560 REG_WR8(sc, BAR_XSTRORM_INTMEM + 18561 XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18562 #endif 18563 18564 elink_phy_probe(&sc->link_params); 18565 18566 return (0); 18567 } 18568 18569 static void 18570 bxe_link_reset(struct bxe_softc *sc) 18571 { 18572 if (!BXE_NOMCP(sc)) { 18573 BXE_PHY_LOCK(sc); 18574 elink_lfa_reset(&sc->link_params, &sc->link_vars); 18575 BXE_PHY_UNLOCK(sc); 18576 } else { 18577 if (!CHIP_REV_IS_SLOW(sc)) { 18578 BLOGW(sc, "Bootcode is missing - cannot reset link\n"); 18579 } 18580 } 18581 } 18582 18583 static void 18584 bxe_reset_port(struct bxe_softc *sc) 18585 { 18586 int port = SC_PORT(sc); 18587 uint32_t val; 18588 18589 /* reset physical Link */ 18590 bxe_link_reset(sc); 18591 18592 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 18593 18594 /* Do not rcv packets to BRB */ 18595 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0); 18596 /* Do not direct rcv packets that are not for MCP to the BRB */ 18597 REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP : 18598 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0); 18599 18600 /* Configure AEU */ 18601 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0); 18602 18603 DELAY(100000); 18604 18605 /* Check for BRB port occupancy */ 18606 val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4); 18607 if (val) { 18608 BLOGD(sc, DBG_LOAD, 18609 "BRB1 is not empty, %d blocks are occupied\n", val); 18610 } 18611 18612 /* TODO: Close Doorbell port? */ 18613 } 18614 18615 static void 18616 bxe_ilt_wr(struct bxe_softc *sc, 18617 uint32_t index, 18618 bus_addr_t addr) 18619 { 18620 int reg; 18621 uint32_t wb_write[2]; 18622 18623 if (CHIP_IS_E1(sc)) { 18624 reg = PXP2_REG_RQ_ONCHIP_AT + index*8; 18625 } else { 18626 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8; 18627 } 18628 18629 wb_write[0] = ONCHIP_ADDR1(addr); 18630 wb_write[1] = ONCHIP_ADDR2(addr); 18631 REG_WR_DMAE(sc, reg, wb_write, 2); 18632 } 18633 18634 static void 18635 bxe_clear_func_ilt(struct bxe_softc *sc, 18636 uint32_t func) 18637 { 18638 uint32_t i, base = FUNC_ILT_BASE(func); 18639 for (i = base; i < base + ILT_PER_FUNC; i++) { 18640 bxe_ilt_wr(sc, i, 0); 18641 } 18642 } 18643 18644 static void 18645 bxe_reset_func(struct bxe_softc *sc) 18646 { 18647 struct bxe_fastpath *fp; 18648 int port = SC_PORT(sc); 18649 int func = SC_FUNC(sc); 18650 int i; 18651 18652 /* Disable the function in the FW */ 18653 REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0); 18654 REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0); 18655 REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0); 18656 REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0); 18657 18658 /* FP SBs */ 18659 FOR_EACH_ETH_QUEUE(sc, i) { 18660 fp = &sc->fp[i]; 18661 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18662 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id), 18663 SB_DISABLED); 18664 } 18665 18666 #if 0 18667 if (CNIC_LOADED(sc)) { 18668 /* CNIC SB */ 18669 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18670 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET 18671 (bxe_cnic_fw_sb_id(sc)), SB_DISABLED); 18672 } 18673 #endif 18674 18675 /* SP SB */ 18676 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18677 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), 18678 SB_DISABLED); 18679 18680 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) { 18681 REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0); 18682 } 18683 18684 /* Configure IGU */ 18685 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18686 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 18687 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 18688 } else { 18689 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); 18690 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); 18691 } 18692 18693 if (CNIC_LOADED(sc)) { 18694 /* Disable Timer scan */ 18695 REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0); 18696 /* 18697 * Wait for at least 10ms and up to 2 second for the timers 18698 * scan to complete 18699 */ 18700 for (i = 0; i < 200; i++) { 18701 DELAY(10000); 18702 if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4)) 18703 break; 18704 } 18705 } 18706 18707 /* Clear ILT */ 18708 bxe_clear_func_ilt(sc, func); 18709 18710 /* 18711 * Timers workaround bug for E2: if this is vnic-3, 18712 * we need to set the entire ilt range for this timers. 18713 */ 18714 if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) { 18715 struct ilt_client_info ilt_cli; 18716 /* use dummy TM client */ 18717 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 18718 ilt_cli.start = 0; 18719 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 18720 ilt_cli.client_num = ILT_CLIENT_TM; 18721 18722 ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR); 18723 } 18724 18725 /* this assumes that reset_port() called before reset_func()*/ 18726 if (!CHIP_IS_E1x(sc)) { 18727 bxe_pf_disable(sc); 18728 } 18729 18730 sc->dmae_ready = 0; 18731 } 18732 18733 static int 18734 bxe_gunzip_init(struct bxe_softc *sc) 18735 { 18736 return (0); 18737 } 18738 18739 static void 18740 bxe_gunzip_end(struct bxe_softc *sc) 18741 { 18742 return; 18743 } 18744 18745 static int 18746 bxe_init_firmware(struct bxe_softc *sc) 18747 { 18748 if (CHIP_IS_E1(sc)) { 18749 ecore_init_e1_firmware(sc); 18750 sc->iro_array = e1_iro_arr; 18751 } else if (CHIP_IS_E1H(sc)) { 18752 ecore_init_e1h_firmware(sc); 18753 sc->iro_array = e1h_iro_arr; 18754 } else if (!CHIP_IS_E1x(sc)) { 18755 ecore_init_e2_firmware(sc); 18756 sc->iro_array = e2_iro_arr; 18757 } else { 18758 BLOGE(sc, "Unsupported chip revision\n"); 18759 return (-1); 18760 } 18761 18762 return (0); 18763 } 18764 18765 static void 18766 bxe_release_firmware(struct bxe_softc *sc) 18767 { 18768 /* Do nothing */ 18769 return; 18770 } 18771 18772 static int 18773 ecore_gunzip(struct bxe_softc *sc, 18774 const uint8_t *zbuf, 18775 int len) 18776 { 18777 /* XXX : Implement... */ 18778 BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n"); 18779 return (FALSE); 18780 } 18781 18782 static void 18783 ecore_reg_wr_ind(struct bxe_softc *sc, 18784 uint32_t addr, 18785 uint32_t val) 18786 { 18787 bxe_reg_wr_ind(sc, addr, val); 18788 } 18789 18790 static void 18791 ecore_write_dmae_phys_len(struct bxe_softc *sc, 18792 bus_addr_t phys_addr, 18793 uint32_t addr, 18794 uint32_t len) 18795 { 18796 bxe_write_dmae_phys_len(sc, phys_addr, addr, len); 18797 } 18798 18799 void 18800 ecore_storm_memset_struct(struct bxe_softc *sc, 18801 uint32_t addr, 18802 size_t size, 18803 uint32_t *data) 18804 { 18805 uint8_t i; 18806 for (i = 0; i < size/4; i++) { 18807 REG_WR(sc, addr + (i * 4), data[i]); 18808 } 18809 } 18810 18811