xref: /freebsd/sys/dev/bxe/bxe.c (revision e94f204a324d7dc60476c32be5af474a736c50d4)
1 /*-
2  * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
15  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
18  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
19  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
20  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
21  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
22  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
23  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
24  * THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #define BXE_DRIVER_VERSION "1.78.81"
31 
32 #include "bxe.h"
33 #include "ecore_sp.h"
34 #include "ecore_init.h"
35 #include "ecore_init_ops.h"
36 
37 #include "57710_int_offsets.h"
38 #include "57711_int_offsets.h"
39 #include "57712_int_offsets.h"
40 
41 /*
42  * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these
43  * explicitly here for older kernels that don't include this changeset.
44  */
45 #ifndef CTLTYPE_U64
46 #define CTLTYPE_U64      CTLTYPE_QUAD
47 #define sysctl_handle_64 sysctl_handle_quad
48 #endif
49 
50 /*
51  * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these
52  * here as zero(0) for older kernels that don't include this changeset
53  * thereby masking the functionality.
54  */
55 #ifndef CSUM_TCP_IPV6
56 #define CSUM_TCP_IPV6 0
57 #define CSUM_UDP_IPV6 0
58 #endif
59 
60 /*
61  * pci_find_cap was added in r219865. Re-define this at pci_find_extcap
62  * for older kernels that don't include this changeset.
63  */
64 #if __FreeBSD_version < 900035
65 #define pci_find_cap pci_find_extcap
66 #endif
67 
68 #define BXE_DEF_SB_ATT_IDX 0x0001
69 #define BXE_DEF_SB_IDX     0x0002
70 
71 /*
72  * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per
73  * function HW initialization.
74  */
75 #define FLR_WAIT_USEC     10000 /* 10 msecs */
76 #define FLR_WAIT_INTERVAL 50    /* usecs */
77 #define FLR_POLL_CNT      (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */
78 
79 struct pbf_pN_buf_regs {
80     int pN;
81     uint32_t init_crd;
82     uint32_t crd;
83     uint32_t crd_freed;
84 };
85 
86 struct pbf_pN_cmd_regs {
87     int pN;
88     uint32_t lines_occup;
89     uint32_t lines_freed;
90 };
91 
92 /*
93  * PCI Device ID Table used by bxe_probe().
94  */
95 #define BXE_DEVDESC_MAX 64
96 static struct bxe_device_type bxe_devs[] = {
97     {
98         BRCM_VENDORID,
99         CHIP_NUM_57710,
100         PCI_ANY_ID, PCI_ANY_ID,
101         "QLogic NetXtreme II BCM57710 10GbE"
102     },
103     {
104         BRCM_VENDORID,
105         CHIP_NUM_57711,
106         PCI_ANY_ID, PCI_ANY_ID,
107         "QLogic NetXtreme II BCM57711 10GbE"
108     },
109     {
110         BRCM_VENDORID,
111         CHIP_NUM_57711E,
112         PCI_ANY_ID, PCI_ANY_ID,
113         "QLogic NetXtreme II BCM57711E 10GbE"
114     },
115     {
116         BRCM_VENDORID,
117         CHIP_NUM_57712,
118         PCI_ANY_ID, PCI_ANY_ID,
119         "QLogic NetXtreme II BCM57712 10GbE"
120     },
121     {
122         BRCM_VENDORID,
123         CHIP_NUM_57712_MF,
124         PCI_ANY_ID, PCI_ANY_ID,
125         "QLogic NetXtreme II BCM57712 MF 10GbE"
126     },
127     {
128         BRCM_VENDORID,
129         CHIP_NUM_57800,
130         PCI_ANY_ID, PCI_ANY_ID,
131         "QLogic NetXtreme II BCM57800 10GbE"
132     },
133     {
134         BRCM_VENDORID,
135         CHIP_NUM_57800_MF,
136         PCI_ANY_ID, PCI_ANY_ID,
137         "QLogic NetXtreme II BCM57800 MF 10GbE"
138     },
139     {
140         BRCM_VENDORID,
141         CHIP_NUM_57810,
142         PCI_ANY_ID, PCI_ANY_ID,
143         "QLogic NetXtreme II BCM57810 10GbE"
144     },
145     {
146         BRCM_VENDORID,
147         CHIP_NUM_57810_MF,
148         PCI_ANY_ID, PCI_ANY_ID,
149         "QLogic NetXtreme II BCM57810 MF 10GbE"
150     },
151     {
152         BRCM_VENDORID,
153         CHIP_NUM_57811,
154         PCI_ANY_ID, PCI_ANY_ID,
155         "QLogic NetXtreme II BCM57811 10GbE"
156     },
157     {
158         BRCM_VENDORID,
159         CHIP_NUM_57811_MF,
160         PCI_ANY_ID, PCI_ANY_ID,
161         "QLogic NetXtreme II BCM57811 MF 10GbE"
162     },
163     {
164         BRCM_VENDORID,
165         CHIP_NUM_57840_4_10,
166         PCI_ANY_ID, PCI_ANY_ID,
167         "QLogic NetXtreme II BCM57840 4x10GbE"
168     },
169     {
170         BRCM_VENDORID,
171         CHIP_NUM_57840_MF,
172         PCI_ANY_ID, PCI_ANY_ID,
173         "QLogic NetXtreme II BCM57840 MF 10GbE"
174     },
175     {
176         0, 0, 0, 0, NULL
177     }
178 };
179 
180 MALLOC_DECLARE(M_BXE_ILT);
181 MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer");
182 
183 /*
184  * FreeBSD device entry points.
185  */
186 static int bxe_probe(device_t);
187 static int bxe_attach(device_t);
188 static int bxe_detach(device_t);
189 static int bxe_shutdown(device_t);
190 
191 /*
192  * FreeBSD KLD module/device interface event handler method.
193  */
194 static device_method_t bxe_methods[] = {
195     /* Device interface (device_if.h) */
196     DEVMETHOD(device_probe,     bxe_probe),
197     DEVMETHOD(device_attach,    bxe_attach),
198     DEVMETHOD(device_detach,    bxe_detach),
199     DEVMETHOD(device_shutdown,  bxe_shutdown),
200     /* Bus interface (bus_if.h) */
201     DEVMETHOD(bus_print_child,  bus_generic_print_child),
202     DEVMETHOD(bus_driver_added, bus_generic_driver_added),
203     KOBJMETHOD_END
204 };
205 
206 /*
207  * FreeBSD KLD Module data declaration
208  */
209 static driver_t bxe_driver = {
210     "bxe",                   /* module name */
211     bxe_methods,             /* event handler */
212     sizeof(struct bxe_softc) /* extra data */
213 };
214 
215 /*
216  * FreeBSD dev class is needed to manage dev instances and
217  * to associate with a bus type
218  */
219 static devclass_t bxe_devclass;
220 
221 MODULE_DEPEND(bxe, pci, 1, 1, 1);
222 MODULE_DEPEND(bxe, ether, 1, 1, 1);
223 DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0);
224 
225 /* resources needed for unloading a previously loaded device */
226 
227 #define BXE_PREV_WAIT_NEEDED 1
228 struct mtx bxe_prev_mtx;
229 MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF);
230 struct bxe_prev_list_node {
231     LIST_ENTRY(bxe_prev_list_node) node;
232     uint8_t bus;
233     uint8_t slot;
234     uint8_t path;
235     uint8_t aer; /* XXX automatic error recovery */
236     uint8_t undi;
237 };
238 static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list);
239 
240 static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
241 
242 /* Tunable device values... */
243 
244 SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters");
245 
246 /* Debug */
247 unsigned long bxe_debug = 0;
248 SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, CTLFLAG_RDTUN,
249              &bxe_debug, 0, "Debug logging mode");
250 
251 /* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
252 static int bxe_interrupt_mode = INTR_MODE_MSIX;
253 SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN,
254            &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode");
255 
256 /* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */
257 static int bxe_queue_count = 4;
258 SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN,
259            &bxe_queue_count, 0, "Multi-Queue queue count");
260 
261 /* max number of buffers per queue (default RX_BD_USABLE) */
262 static int bxe_max_rx_bufs = 0;
263 SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN,
264            &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue");
265 
266 /* Host interrupt coalescing RX tick timer (usecs) */
267 static int bxe_hc_rx_ticks = 25;
268 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN,
269            &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks");
270 
271 /* Host interrupt coalescing TX tick timer (usecs) */
272 static int bxe_hc_tx_ticks = 50;
273 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN,
274            &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks");
275 
276 /* Maximum number of Rx packets to process at a time */
277 static int bxe_rx_budget = 0xffffffff;
278 SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN,
279            &bxe_rx_budget, 0, "Rx processing budget");
280 
281 /* Maximum LRO aggregation size */
282 static int bxe_max_aggregation_size = 0;
283 SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN,
284            &bxe_max_aggregation_size, 0, "max aggregation size");
285 
286 /* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */
287 static int bxe_mrrs = -1;
288 SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN,
289            &bxe_mrrs, 0, "PCIe maximum read request size");
290 
291 /* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */
292 static int bxe_autogreeen = 0;
293 SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN,
294            &bxe_autogreeen, 0, "AutoGrEEEn support");
295 
296 /* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */
297 static int bxe_udp_rss = 0;
298 SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN,
299            &bxe_udp_rss, 0, "UDP RSS support");
300 
301 
302 #define STAT_NAME_LEN 32 /* no stat names below can be longer than this */
303 
304 #define STATS_OFFSET32(stat_name)                   \
305     (offsetof(struct bxe_eth_stats, stat_name) / 4)
306 
307 #define Q_STATS_OFFSET32(stat_name)                   \
308     (offsetof(struct bxe_eth_q_stats, stat_name) / 4)
309 
310 static const struct {
311     uint32_t offset;
312     uint32_t size;
313     uint32_t flags;
314 #define STATS_FLAGS_PORT  1
315 #define STATS_FLAGS_FUNC  2 /* MF only cares about function stats */
316 #define STATS_FLAGS_BOTH  (STATS_FLAGS_FUNC | STATS_FLAGS_PORT)
317     char string[STAT_NAME_LEN];
318 } bxe_eth_stats_arr[] = {
319     { STATS_OFFSET32(total_bytes_received_hi),
320                 8, STATS_FLAGS_BOTH, "rx_bytes" },
321     { STATS_OFFSET32(error_bytes_received_hi),
322                 8, STATS_FLAGS_BOTH, "rx_error_bytes" },
323     { STATS_OFFSET32(total_unicast_packets_received_hi),
324                 8, STATS_FLAGS_BOTH, "rx_ucast_packets" },
325     { STATS_OFFSET32(total_multicast_packets_received_hi),
326                 8, STATS_FLAGS_BOTH, "rx_mcast_packets" },
327     { STATS_OFFSET32(total_broadcast_packets_received_hi),
328                 8, STATS_FLAGS_BOTH, "rx_bcast_packets" },
329     { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi),
330                 8, STATS_FLAGS_PORT, "rx_crc_errors" },
331     { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi),
332                 8, STATS_FLAGS_PORT, "rx_align_errors" },
333     { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi),
334                 8, STATS_FLAGS_PORT, "rx_undersize_packets" },
335     { STATS_OFFSET32(etherstatsoverrsizepkts_hi),
336                 8, STATS_FLAGS_PORT, "rx_oversize_packets" },
337     { STATS_OFFSET32(rx_stat_etherstatsfragments_hi),
338                 8, STATS_FLAGS_PORT, "rx_fragments" },
339     { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi),
340                 8, STATS_FLAGS_PORT, "rx_jabbers" },
341     { STATS_OFFSET32(no_buff_discard_hi),
342                 8, STATS_FLAGS_BOTH, "rx_discards" },
343     { STATS_OFFSET32(mac_filter_discard),
344                 4, STATS_FLAGS_PORT, "rx_filtered_packets" },
345     { STATS_OFFSET32(mf_tag_discard),
346                 4, STATS_FLAGS_PORT, "rx_mf_tag_discard" },
347     { STATS_OFFSET32(pfc_frames_received_hi),
348                 8, STATS_FLAGS_PORT, "pfc_frames_received" },
349     { STATS_OFFSET32(pfc_frames_sent_hi),
350                 8, STATS_FLAGS_PORT, "pfc_frames_sent" },
351     { STATS_OFFSET32(brb_drop_hi),
352                 8, STATS_FLAGS_PORT, "rx_brb_discard" },
353     { STATS_OFFSET32(brb_truncate_hi),
354                 8, STATS_FLAGS_PORT, "rx_brb_truncate" },
355     { STATS_OFFSET32(pause_frames_received_hi),
356                 8, STATS_FLAGS_PORT, "rx_pause_frames" },
357     { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi),
358                 8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" },
359     { STATS_OFFSET32(nig_timer_max),
360                 4, STATS_FLAGS_PORT, "rx_constant_pause_events" },
361     { STATS_OFFSET32(total_bytes_transmitted_hi),
362                 8, STATS_FLAGS_BOTH, "tx_bytes" },
363     { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi),
364                 8, STATS_FLAGS_PORT, "tx_error_bytes" },
365     { STATS_OFFSET32(total_unicast_packets_transmitted_hi),
366                 8, STATS_FLAGS_BOTH, "tx_ucast_packets" },
367     { STATS_OFFSET32(total_multicast_packets_transmitted_hi),
368                 8, STATS_FLAGS_BOTH, "tx_mcast_packets" },
369     { STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
370                 8, STATS_FLAGS_BOTH, "tx_bcast_packets" },
371     { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi),
372                 8, STATS_FLAGS_PORT, "tx_mac_errors" },
373     { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi),
374                 8, STATS_FLAGS_PORT, "tx_carrier_errors" },
375     { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi),
376                 8, STATS_FLAGS_PORT, "tx_single_collisions" },
377     { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi),
378                 8, STATS_FLAGS_PORT, "tx_multi_collisions" },
379     { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi),
380                 8, STATS_FLAGS_PORT, "tx_deferred" },
381     { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi),
382                 8, STATS_FLAGS_PORT, "tx_excess_collisions" },
383     { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi),
384                 8, STATS_FLAGS_PORT, "tx_late_collisions" },
385     { STATS_OFFSET32(tx_stat_etherstatscollisions_hi),
386                 8, STATS_FLAGS_PORT, "tx_total_collisions" },
387     { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi),
388                 8, STATS_FLAGS_PORT, "tx_64_byte_packets" },
389     { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi),
390                 8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" },
391     { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi),
392                 8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" },
393     { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi),
394                 8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" },
395     { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi),
396                 8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" },
397     { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi),
398                 8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" },
399     { STATS_OFFSET32(etherstatspktsover1522octets_hi),
400                 8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" },
401     { STATS_OFFSET32(pause_frames_sent_hi),
402                 8, STATS_FLAGS_PORT, "tx_pause_frames" },
403     { STATS_OFFSET32(total_tpa_aggregations_hi),
404                 8, STATS_FLAGS_FUNC, "tpa_aggregations" },
405     { STATS_OFFSET32(total_tpa_aggregated_frames_hi),
406                 8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"},
407     { STATS_OFFSET32(total_tpa_bytes_hi),
408                 8, STATS_FLAGS_FUNC, "tpa_bytes"},
409     { STATS_OFFSET32(eee_tx_lpi),
410                 4, STATS_FLAGS_PORT, "eee_tx_lpi"},
411     { STATS_OFFSET32(rx_calls),
412                 4, STATS_FLAGS_FUNC, "rx_calls"},
413     { STATS_OFFSET32(rx_pkts),
414                 4, STATS_FLAGS_FUNC, "rx_pkts"},
415     { STATS_OFFSET32(rx_tpa_pkts),
416                 4, STATS_FLAGS_FUNC, "rx_tpa_pkts"},
417     { STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts),
418                 4, STATS_FLAGS_FUNC, "rx_erroneous_jumbo_sge_pkts"},
419     { STATS_OFFSET32(rx_bxe_service_rxsgl),
420                 4, STATS_FLAGS_FUNC, "rx_bxe_service_rxsgl"},
421     { STATS_OFFSET32(rx_jumbo_sge_pkts),
422                 4, STATS_FLAGS_FUNC, "rx_jumbo_sge_pkts"},
423     { STATS_OFFSET32(rx_soft_errors),
424                 4, STATS_FLAGS_FUNC, "rx_soft_errors"},
425     { STATS_OFFSET32(rx_hw_csum_errors),
426                 4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"},
427     { STATS_OFFSET32(rx_ofld_frames_csum_ip),
428                 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"},
429     { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
430                 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"},
431     { STATS_OFFSET32(rx_budget_reached),
432                 4, STATS_FLAGS_FUNC, "rx_budget_reached"},
433     { STATS_OFFSET32(tx_pkts),
434                 4, STATS_FLAGS_FUNC, "tx_pkts"},
435     { STATS_OFFSET32(tx_soft_errors),
436                 4, STATS_FLAGS_FUNC, "tx_soft_errors"},
437     { STATS_OFFSET32(tx_ofld_frames_csum_ip),
438                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"},
439     { STATS_OFFSET32(tx_ofld_frames_csum_tcp),
440                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"},
441     { STATS_OFFSET32(tx_ofld_frames_csum_udp),
442                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"},
443     { STATS_OFFSET32(tx_ofld_frames_lso),
444                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"},
445     { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
446                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"},
447     { STATS_OFFSET32(tx_encap_failures),
448                 4, STATS_FLAGS_FUNC, "tx_encap_failures"},
449     { STATS_OFFSET32(tx_hw_queue_full),
450                 4, STATS_FLAGS_FUNC, "tx_hw_queue_full"},
451     { STATS_OFFSET32(tx_hw_max_queue_depth),
452                 4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"},
453     { STATS_OFFSET32(tx_dma_mapping_failure),
454                 4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"},
455     { STATS_OFFSET32(tx_max_drbr_queue_depth),
456                 4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"},
457     { STATS_OFFSET32(tx_window_violation_std),
458                 4, STATS_FLAGS_FUNC, "tx_window_violation_std"},
459     { STATS_OFFSET32(tx_window_violation_tso),
460                 4, STATS_FLAGS_FUNC, "tx_window_violation_tso"},
461     { STATS_OFFSET32(tx_chain_lost_mbuf),
462                 4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"},
463     { STATS_OFFSET32(tx_frames_deferred),
464                 4, STATS_FLAGS_FUNC, "tx_frames_deferred"},
465     { STATS_OFFSET32(tx_queue_xoff),
466                 4, STATS_FLAGS_FUNC, "tx_queue_xoff"},
467     { STATS_OFFSET32(mbuf_defrag_attempts),
468                 4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"},
469     { STATS_OFFSET32(mbuf_defrag_failures),
470                 4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"},
471     { STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
472                 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"},
473     { STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
474                 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"},
475     { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
476                 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"},
477     { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
478                 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"},
479     { STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
480                 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"},
481     { STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
482                 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"},
483     { STATS_OFFSET32(mbuf_alloc_tx),
484                 4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"},
485     { STATS_OFFSET32(mbuf_alloc_rx),
486                 4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"},
487     { STATS_OFFSET32(mbuf_alloc_sge),
488                 4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"},
489     { STATS_OFFSET32(mbuf_alloc_tpa),
490                 4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"},
491     { STATS_OFFSET32(tx_queue_full_return),
492                 4, STATS_FLAGS_FUNC, "tx_queue_full_return"}
493 };
494 
495 static const struct {
496     uint32_t offset;
497     uint32_t size;
498     char string[STAT_NAME_LEN];
499 } bxe_eth_q_stats_arr[] = {
500     { Q_STATS_OFFSET32(total_bytes_received_hi),
501                 8, "rx_bytes" },
502     { Q_STATS_OFFSET32(total_unicast_packets_received_hi),
503                 8, "rx_ucast_packets" },
504     { Q_STATS_OFFSET32(total_multicast_packets_received_hi),
505                 8, "rx_mcast_packets" },
506     { Q_STATS_OFFSET32(total_broadcast_packets_received_hi),
507                 8, "rx_bcast_packets" },
508     { Q_STATS_OFFSET32(no_buff_discard_hi),
509                 8, "rx_discards" },
510     { Q_STATS_OFFSET32(total_bytes_transmitted_hi),
511                 8, "tx_bytes" },
512     { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi),
513                 8, "tx_ucast_packets" },
514     { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi),
515                 8, "tx_mcast_packets" },
516     { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
517                 8, "tx_bcast_packets" },
518     { Q_STATS_OFFSET32(total_tpa_aggregations_hi),
519                 8, "tpa_aggregations" },
520     { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi),
521                 8, "tpa_aggregated_frames"},
522     { Q_STATS_OFFSET32(total_tpa_bytes_hi),
523                 8, "tpa_bytes"},
524     { Q_STATS_OFFSET32(rx_calls),
525                 4, "rx_calls"},
526     { Q_STATS_OFFSET32(rx_pkts),
527                 4, "rx_pkts"},
528     { Q_STATS_OFFSET32(rx_tpa_pkts),
529                 4, "rx_tpa_pkts"},
530     { Q_STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts),
531                 4, "rx_erroneous_jumbo_sge_pkts"},
532     { Q_STATS_OFFSET32(rx_bxe_service_rxsgl),
533                 4, "rx_bxe_service_rxsgl"},
534     { Q_STATS_OFFSET32(rx_jumbo_sge_pkts),
535                 4, "rx_jumbo_sge_pkts"},
536     { Q_STATS_OFFSET32(rx_soft_errors),
537                 4, "rx_soft_errors"},
538     { Q_STATS_OFFSET32(rx_hw_csum_errors),
539                 4, "rx_hw_csum_errors"},
540     { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip),
541                 4, "rx_ofld_frames_csum_ip"},
542     { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
543                 4, "rx_ofld_frames_csum_tcp_udp"},
544     { Q_STATS_OFFSET32(rx_budget_reached),
545                 4, "rx_budget_reached"},
546     { Q_STATS_OFFSET32(tx_pkts),
547                 4, "tx_pkts"},
548     { Q_STATS_OFFSET32(tx_soft_errors),
549                 4, "tx_soft_errors"},
550     { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip),
551                 4, "tx_ofld_frames_csum_ip"},
552     { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp),
553                 4, "tx_ofld_frames_csum_tcp"},
554     { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp),
555                 4, "tx_ofld_frames_csum_udp"},
556     { Q_STATS_OFFSET32(tx_ofld_frames_lso),
557                 4, "tx_ofld_frames_lso"},
558     { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
559                 4, "tx_ofld_frames_lso_hdr_splits"},
560     { Q_STATS_OFFSET32(tx_encap_failures),
561                 4, "tx_encap_failures"},
562     { Q_STATS_OFFSET32(tx_hw_queue_full),
563                 4, "tx_hw_queue_full"},
564     { Q_STATS_OFFSET32(tx_hw_max_queue_depth),
565                 4, "tx_hw_max_queue_depth"},
566     { Q_STATS_OFFSET32(tx_dma_mapping_failure),
567                 4, "tx_dma_mapping_failure"},
568     { Q_STATS_OFFSET32(tx_max_drbr_queue_depth),
569                 4, "tx_max_drbr_queue_depth"},
570     { Q_STATS_OFFSET32(tx_window_violation_std),
571                 4, "tx_window_violation_std"},
572     { Q_STATS_OFFSET32(tx_window_violation_tso),
573                 4, "tx_window_violation_tso"},
574     { Q_STATS_OFFSET32(tx_chain_lost_mbuf),
575                 4, "tx_chain_lost_mbuf"},
576     { Q_STATS_OFFSET32(tx_frames_deferred),
577                 4, "tx_frames_deferred"},
578     { Q_STATS_OFFSET32(tx_queue_xoff),
579                 4, "tx_queue_xoff"},
580     { Q_STATS_OFFSET32(mbuf_defrag_attempts),
581                 4, "mbuf_defrag_attempts"},
582     { Q_STATS_OFFSET32(mbuf_defrag_failures),
583                 4, "mbuf_defrag_failures"},
584     { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
585                 4, "mbuf_rx_bd_alloc_failed"},
586     { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
587                 4, "mbuf_rx_bd_mapping_failed"},
588     { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
589                 4, "mbuf_rx_tpa_alloc_failed"},
590     { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
591                 4, "mbuf_rx_tpa_mapping_failed"},
592     { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
593                 4, "mbuf_rx_sge_alloc_failed"},
594     { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
595                 4, "mbuf_rx_sge_mapping_failed"},
596     { Q_STATS_OFFSET32(mbuf_alloc_tx),
597                 4, "mbuf_alloc_tx"},
598     { Q_STATS_OFFSET32(mbuf_alloc_rx),
599                 4, "mbuf_alloc_rx"},
600     { Q_STATS_OFFSET32(mbuf_alloc_sge),
601                 4, "mbuf_alloc_sge"},
602     { Q_STATS_OFFSET32(mbuf_alloc_tpa),
603                 4, "mbuf_alloc_tpa"},
604     { Q_STATS_OFFSET32(tx_queue_full_return),
605                 4, "tx_queue_full_return"}
606 };
607 
608 #define BXE_NUM_ETH_STATS   ARRAY_SIZE(bxe_eth_stats_arr)
609 #define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr)
610 
611 
612 static void    bxe_cmng_fns_init(struct bxe_softc *sc,
613                                  uint8_t          read_cfg,
614                                  uint8_t          cmng_type);
615 static int     bxe_get_cmng_fns_mode(struct bxe_softc *sc);
616 static void    storm_memset_cmng(struct bxe_softc *sc,
617                                  struct cmng_init *cmng,
618                                  uint8_t          port);
619 static void    bxe_set_reset_global(struct bxe_softc *sc);
620 static void    bxe_set_reset_in_progress(struct bxe_softc *sc);
621 static uint8_t bxe_reset_is_done(struct bxe_softc *sc,
622                                  int              engine);
623 static uint8_t bxe_clear_pf_load(struct bxe_softc *sc);
624 static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc,
625                                    uint8_t          *global,
626                                    uint8_t          print);
627 static void    bxe_int_disable(struct bxe_softc *sc);
628 static int     bxe_release_leader_lock(struct bxe_softc *sc);
629 static void    bxe_pf_disable(struct bxe_softc *sc);
630 static void    bxe_free_fp_buffers(struct bxe_softc *sc);
631 static inline void bxe_update_rx_prod(struct bxe_softc    *sc,
632                                       struct bxe_fastpath *fp,
633                                       uint16_t            rx_bd_prod,
634                                       uint16_t            rx_cq_prod,
635                                       uint16_t            rx_sge_prod);
636 static void    bxe_link_report_locked(struct bxe_softc *sc);
637 static void    bxe_link_report(struct bxe_softc *sc);
638 static void    bxe_link_status_update(struct bxe_softc *sc);
639 static void    bxe_periodic_callout_func(void *xsc);
640 static void    bxe_periodic_start(struct bxe_softc *sc);
641 static void    bxe_periodic_stop(struct bxe_softc *sc);
642 static int     bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
643                                     uint16_t prev_index,
644                                     uint16_t index);
645 static int     bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
646                                      int                 queue);
647 static int     bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
648                                      uint16_t            index);
649 static uint8_t bxe_txeof(struct bxe_softc *sc,
650                          struct bxe_fastpath *fp);
651 static void    bxe_task_fp(struct bxe_fastpath *fp);
652 static __noinline void bxe_dump_mbuf(struct bxe_softc *sc,
653                                      struct mbuf      *m,
654                                      uint8_t          contents);
655 static int     bxe_alloc_mem(struct bxe_softc *sc);
656 static void    bxe_free_mem(struct bxe_softc *sc);
657 static int     bxe_alloc_fw_stats_mem(struct bxe_softc *sc);
658 static void    bxe_free_fw_stats_mem(struct bxe_softc *sc);
659 static int     bxe_interrupt_attach(struct bxe_softc *sc);
660 static void    bxe_interrupt_detach(struct bxe_softc *sc);
661 static void    bxe_set_rx_mode(struct bxe_softc *sc);
662 static int     bxe_init_locked(struct bxe_softc *sc);
663 static int     bxe_stop_locked(struct bxe_softc *sc);
664 static __noinline int bxe_nic_load(struct bxe_softc *sc,
665                                    int              load_mode);
666 static __noinline int bxe_nic_unload(struct bxe_softc *sc,
667                                      uint32_t         unload_mode,
668                                      uint8_t          keep_link);
669 
670 static void bxe_handle_sp_tq(void *context, int pending);
671 static void bxe_handle_fp_tq(void *context, int pending);
672 
673 static int bxe_add_cdev(struct bxe_softc *sc);
674 static void bxe_del_cdev(struct bxe_softc *sc);
675 static int bxe_alloc_buf_rings(struct bxe_softc *sc);
676 static void bxe_free_buf_rings(struct bxe_softc *sc);
677 
678 /* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */
679 uint32_t
680 calc_crc32(uint8_t  *crc32_packet,
681            uint32_t crc32_length,
682            uint32_t crc32_seed,
683            uint8_t  complement)
684 {
685    uint32_t byte         = 0;
686    uint32_t bit          = 0;
687    uint8_t  msb          = 0;
688    uint32_t temp         = 0;
689    uint32_t shft         = 0;
690    uint8_t  current_byte = 0;
691    uint32_t crc32_result = crc32_seed;
692    const uint32_t CRC32_POLY = 0x1edc6f41;
693 
694    if ((crc32_packet == NULL) ||
695        (crc32_length == 0) ||
696        ((crc32_length % 8) != 0))
697     {
698         return (crc32_result);
699     }
700 
701     for (byte = 0; byte < crc32_length; byte = byte + 1)
702     {
703         current_byte = crc32_packet[byte];
704         for (bit = 0; bit < 8; bit = bit + 1)
705         {
706             /* msb = crc32_result[31]; */
707             msb = (uint8_t)(crc32_result >> 31);
708 
709             crc32_result = crc32_result << 1;
710 
711             /* it (msb != current_byte[bit]) */
712             if (msb != (0x1 & (current_byte >> bit)))
713             {
714                 crc32_result = crc32_result ^ CRC32_POLY;
715                 /* crc32_result[0] = 1 */
716                 crc32_result |= 1;
717             }
718         }
719     }
720 
721     /* Last step is to:
722      * 1. "mirror" every bit
723      * 2. swap the 4 bytes
724      * 3. complement each bit
725      */
726 
727     /* Mirror */
728     temp = crc32_result;
729     shft = sizeof(crc32_result) * 8 - 1;
730 
731     for (crc32_result >>= 1; crc32_result; crc32_result >>= 1)
732     {
733         temp <<= 1;
734         temp |= crc32_result & 1;
735         shft-- ;
736     }
737 
738     /* temp[31-bit] = crc32_result[bit] */
739     temp <<= shft;
740 
741     /* Swap */
742     /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */
743     {
744         uint32_t t0, t1, t2, t3;
745         t0 = (0x000000ff & (temp >> 24));
746         t1 = (0x0000ff00 & (temp >> 8));
747         t2 = (0x00ff0000 & (temp << 8));
748         t3 = (0xff000000 & (temp << 24));
749         crc32_result = t0 | t1 | t2 | t3;
750     }
751 
752     /* Complement */
753     if (complement)
754     {
755         crc32_result = ~crc32_result;
756     }
757 
758     return (crc32_result);
759 }
760 
761 int
762 bxe_test_bit(int                    nr,
763              volatile unsigned long *addr)
764 {
765     return ((atomic_load_acq_long(addr) & (1 << nr)) != 0);
766 }
767 
768 void
769 bxe_set_bit(unsigned int           nr,
770             volatile unsigned long *addr)
771 {
772     atomic_set_acq_long(addr, (1 << nr));
773 }
774 
775 void
776 bxe_clear_bit(int                    nr,
777               volatile unsigned long *addr)
778 {
779     atomic_clear_acq_long(addr, (1 << nr));
780 }
781 
782 int
783 bxe_test_and_set_bit(int                    nr,
784                        volatile unsigned long *addr)
785 {
786     unsigned long x;
787     nr = (1 << nr);
788     do {
789         x = *addr;
790     } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0);
791     // if (x & nr) bit_was_set; else bit_was_not_set;
792     return (x & nr);
793 }
794 
795 int
796 bxe_test_and_clear_bit(int                    nr,
797                        volatile unsigned long *addr)
798 {
799     unsigned long x;
800     nr = (1 << nr);
801     do {
802         x = *addr;
803     } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0);
804     // if (x & nr) bit_was_set; else bit_was_not_set;
805     return (x & nr);
806 }
807 
808 int
809 bxe_cmpxchg(volatile int *addr,
810             int          old,
811             int          new)
812 {
813     int x;
814     do {
815         x = *addr;
816     } while (atomic_cmpset_acq_int(addr, old, new) == 0);
817     return (x);
818 }
819 
820 /*
821  * Get DMA memory from the OS.
822  *
823  * Validates that the OS has provided DMA buffers in response to a
824  * bus_dmamap_load call and saves the physical address of those buffers.
825  * When the callback is used the OS will return 0 for the mapping function
826  * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any
827  * failures back to the caller.
828  *
829  * Returns:
830  *   Nothing.
831  */
832 static void
833 bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
834 {
835     struct bxe_dma *dma = arg;
836 
837     if (error) {
838         dma->paddr = 0;
839         dma->nseg  = 0;
840         BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error);
841     } else {
842         dma->paddr = segs->ds_addr;
843         dma->nseg  = nseg;
844     }
845 }
846 
847 /*
848  * Allocate a block of memory and map it for DMA. No partial completions
849  * allowed and release any resources acquired if we can't acquire all
850  * resources.
851  *
852  * Returns:
853  *   0 = Success, !0 = Failure
854  */
855 int
856 bxe_dma_alloc(struct bxe_softc *sc,
857               bus_size_t       size,
858               struct bxe_dma   *dma,
859               const char       *msg)
860 {
861     int rc;
862 
863     if (dma->size > 0) {
864         BLOGE(sc, "dma block '%s' already has size %lu\n", msg,
865               (unsigned long)dma->size);
866         return (1);
867     }
868 
869     memset(dma, 0, sizeof(*dma)); /* sanity */
870     dma->sc   = sc;
871     dma->size = size;
872     snprintf(dma->msg, sizeof(dma->msg), "%s", msg);
873 
874     rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
875                             BCM_PAGE_SIZE,      /* alignment */
876                             0,                  /* boundary limit */
877                             BUS_SPACE_MAXADDR,  /* restricted low */
878                             BUS_SPACE_MAXADDR,  /* restricted hi */
879                             NULL,               /* addr filter() */
880                             NULL,               /* addr filter() arg */
881                             size,               /* max map size */
882                             1,                  /* num discontinuous */
883                             size,               /* max seg size */
884                             BUS_DMA_ALLOCNOW,   /* flags */
885                             NULL,               /* lock() */
886                             NULL,               /* lock() arg */
887                             &dma->tag);         /* returned dma tag */
888     if (rc != 0) {
889         BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc);
890         memset(dma, 0, sizeof(*dma));
891         return (1);
892     }
893 
894     rc = bus_dmamem_alloc(dma->tag,
895                           (void **)&dma->vaddr,
896                           (BUS_DMA_NOWAIT | BUS_DMA_ZERO),
897                           &dma->map);
898     if (rc != 0) {
899         BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc);
900         bus_dma_tag_destroy(dma->tag);
901         memset(dma, 0, sizeof(*dma));
902         return (1);
903     }
904 
905     rc = bus_dmamap_load(dma->tag,
906                          dma->map,
907                          dma->vaddr,
908                          size,
909                          bxe_dma_map_addr, /* BLOGD in here */
910                          dma,
911                          BUS_DMA_NOWAIT);
912     if (rc != 0) {
913         BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc);
914         bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
915         bus_dma_tag_destroy(dma->tag);
916         memset(dma, 0, sizeof(*dma));
917         return (1);
918     }
919 
920     return (0);
921 }
922 
923 void
924 bxe_dma_free(struct bxe_softc *sc,
925              struct bxe_dma   *dma)
926 {
927     if (dma->size > 0) {
928         DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL"));
929 
930         bus_dmamap_sync(dma->tag, dma->map,
931                         (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE));
932         bus_dmamap_unload(dma->tag, dma->map);
933         bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
934         bus_dma_tag_destroy(dma->tag);
935     }
936 
937     memset(dma, 0, sizeof(*dma));
938 }
939 
940 /*
941  * These indirect read and write routines are only during init.
942  * The locking is handled by the MCP.
943  */
944 
945 void
946 bxe_reg_wr_ind(struct bxe_softc *sc,
947                uint32_t         addr,
948                uint32_t         val)
949 {
950     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
951     pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4);
952     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
953 }
954 
955 uint32_t
956 bxe_reg_rd_ind(struct bxe_softc *sc,
957                uint32_t         addr)
958 {
959     uint32_t val;
960 
961     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
962     val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4);
963     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
964 
965     return (val);
966 }
967 
968 static int
969 bxe_acquire_hw_lock(struct bxe_softc *sc,
970                     uint32_t         resource)
971 {
972     uint32_t lock_status;
973     uint32_t resource_bit = (1 << resource);
974     int func = SC_FUNC(sc);
975     uint32_t hw_lock_control_reg;
976     int cnt;
977 
978     /* validate the resource is within range */
979     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
980         BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)"
981             " resource_bit 0x%x\n", resource, resource_bit);
982         return (-1);
983     }
984 
985     if (func <= 5) {
986         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
987     } else {
988         hw_lock_control_reg =
989                 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
990     }
991 
992     /* validate the resource is not already taken */
993     lock_status = REG_RD(sc, hw_lock_control_reg);
994     if (lock_status & resource_bit) {
995         BLOGE(sc, "resource (0x%x) in use (status 0x%x bit 0x%x)\n",
996               resource, lock_status, resource_bit);
997         return (-1);
998     }
999 
1000     /* try every 5ms for 5 seconds */
1001     for (cnt = 0; cnt < 1000; cnt++) {
1002         REG_WR(sc, (hw_lock_control_reg + 4), resource_bit);
1003         lock_status = REG_RD(sc, hw_lock_control_reg);
1004         if (lock_status & resource_bit) {
1005             return (0);
1006         }
1007         DELAY(5000);
1008     }
1009 
1010     BLOGE(sc, "Resource 0x%x resource_bit 0x%x lock timeout!\n",
1011         resource, resource_bit);
1012     return (-1);
1013 }
1014 
1015 static int
1016 bxe_release_hw_lock(struct bxe_softc *sc,
1017                     uint32_t         resource)
1018 {
1019     uint32_t lock_status;
1020     uint32_t resource_bit = (1 << resource);
1021     int func = SC_FUNC(sc);
1022     uint32_t hw_lock_control_reg;
1023 
1024     /* validate the resource is within range */
1025     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1026         BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)"
1027             " resource_bit 0x%x\n", resource, resource_bit);
1028         return (-1);
1029     }
1030 
1031     if (func <= 5) {
1032         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1033     } else {
1034         hw_lock_control_reg =
1035                 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1036     }
1037 
1038     /* validate the resource is currently taken */
1039     lock_status = REG_RD(sc, hw_lock_control_reg);
1040     if (!(lock_status & resource_bit)) {
1041         BLOGE(sc, "resource (0x%x) not in use (status 0x%x bit 0x%x)\n",
1042               resource, lock_status, resource_bit);
1043         return (-1);
1044     }
1045 
1046     REG_WR(sc, hw_lock_control_reg, resource_bit);
1047     return (0);
1048 }
1049 static void bxe_acquire_phy_lock(struct bxe_softc *sc)
1050 {
1051 	BXE_PHY_LOCK(sc);
1052 	bxe_acquire_hw_lock(sc,HW_LOCK_RESOURCE_MDIO);
1053 }
1054 
1055 static void bxe_release_phy_lock(struct bxe_softc *sc)
1056 {
1057 	bxe_release_hw_lock(sc,HW_LOCK_RESOURCE_MDIO);
1058 	BXE_PHY_UNLOCK(sc);
1059 }
1060 /*
1061  * Per pf misc lock must be acquired before the per port mcp lock. Otherwise,
1062  * had we done things the other way around, if two pfs from the same port
1063  * would attempt to access nvram at the same time, we could run into a
1064  * scenario such as:
1065  * pf A takes the port lock.
1066  * pf B succeeds in taking the same lock since they are from the same port.
1067  * pf A takes the per pf misc lock. Performs eeprom access.
1068  * pf A finishes. Unlocks the per pf misc lock.
1069  * Pf B takes the lock and proceeds to perform it's own access.
1070  * pf A unlocks the per port lock, while pf B is still working (!).
1071  * mcp takes the per port lock and corrupts pf B's access (and/or has it's own
1072  * access corrupted by pf B).*
1073  */
1074 static int
1075 bxe_acquire_nvram_lock(struct bxe_softc *sc)
1076 {
1077     int port = SC_PORT(sc);
1078     int count, i;
1079     uint32_t val = 0;
1080 
1081     /* acquire HW lock: protect against other PFs in PF Direct Assignment */
1082     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1083 
1084     /* adjust timeout for emulation/FPGA */
1085     count = NVRAM_TIMEOUT_COUNT;
1086     if (CHIP_REV_IS_SLOW(sc)) {
1087         count *= 100;
1088     }
1089 
1090     /* request access to nvram interface */
1091     REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1092            (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port));
1093 
1094     for (i = 0; i < count*10; i++) {
1095         val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1096         if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1097             break;
1098         }
1099 
1100         DELAY(5);
1101     }
1102 
1103     if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1104         BLOGE(sc, "Cannot get access to nvram interface "
1105             "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n",
1106             port, val);
1107         return (-1);
1108     }
1109 
1110     return (0);
1111 }
1112 
1113 static int
1114 bxe_release_nvram_lock(struct bxe_softc *sc)
1115 {
1116     int port = SC_PORT(sc);
1117     int count, i;
1118     uint32_t val = 0;
1119 
1120     /* adjust timeout for emulation/FPGA */
1121     count = NVRAM_TIMEOUT_COUNT;
1122     if (CHIP_REV_IS_SLOW(sc)) {
1123         count *= 100;
1124     }
1125 
1126     /* relinquish nvram interface */
1127     REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1128            (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port));
1129 
1130     for (i = 0; i < count*10; i++) {
1131         val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1132         if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1133             break;
1134         }
1135 
1136         DELAY(5);
1137     }
1138 
1139     if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1140         BLOGE(sc, "Cannot free access to nvram interface "
1141             "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n",
1142             port, val);
1143         return (-1);
1144     }
1145 
1146     /* release HW lock: protect against other PFs in PF Direct Assignment */
1147     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1148 
1149     return (0);
1150 }
1151 
1152 static void
1153 bxe_enable_nvram_access(struct bxe_softc *sc)
1154 {
1155     uint32_t val;
1156 
1157     val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1158 
1159     /* enable both bits, even on read */
1160     REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1161            (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN));
1162 }
1163 
1164 static void
1165 bxe_disable_nvram_access(struct bxe_softc *sc)
1166 {
1167     uint32_t val;
1168 
1169     val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1170 
1171     /* disable both bits, even after read */
1172     REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1173            (val & ~(MCPR_NVM_ACCESS_ENABLE_EN |
1174                     MCPR_NVM_ACCESS_ENABLE_WR_EN)));
1175 }
1176 
1177 static int
1178 bxe_nvram_read_dword(struct bxe_softc *sc,
1179                      uint32_t         offset,
1180                      uint32_t         *ret_val,
1181                      uint32_t         cmd_flags)
1182 {
1183     int count, i, rc;
1184     uint32_t val;
1185 
1186     /* build the command word */
1187     cmd_flags |= MCPR_NVM_COMMAND_DOIT;
1188 
1189     /* need to clear DONE bit separately */
1190     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1191 
1192     /* address of the NVRAM to read from */
1193     REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1194            (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1195 
1196     /* issue a read command */
1197     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1198 
1199     /* adjust timeout for emulation/FPGA */
1200     count = NVRAM_TIMEOUT_COUNT;
1201     if (CHIP_REV_IS_SLOW(sc)) {
1202         count *= 100;
1203     }
1204 
1205     /* wait for completion */
1206     *ret_val = 0;
1207     rc = -1;
1208     for (i = 0; i < count; i++) {
1209         DELAY(5);
1210         val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1211 
1212         if (val & MCPR_NVM_COMMAND_DONE) {
1213             val = REG_RD(sc, MCP_REG_MCPR_NVM_READ);
1214             /* we read nvram data in cpu order
1215              * but ethtool sees it as an array of bytes
1216              * converting to big-endian will do the work
1217              */
1218             *ret_val = htobe32(val);
1219             rc = 0;
1220             break;
1221         }
1222     }
1223 
1224     if (rc == -1) {
1225         BLOGE(sc, "nvram read timeout expired "
1226             "(offset 0x%x cmd_flags 0x%x val 0x%x)\n",
1227             offset, cmd_flags, val);
1228     }
1229 
1230     return (rc);
1231 }
1232 
1233 static int
1234 bxe_nvram_read(struct bxe_softc *sc,
1235                uint32_t         offset,
1236                uint8_t          *ret_buf,
1237                int              buf_size)
1238 {
1239     uint32_t cmd_flags;
1240     uint32_t val;
1241     int rc;
1242 
1243     if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) {
1244         BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1245               offset, buf_size);
1246         return (-1);
1247     }
1248 
1249     if ((offset + buf_size) > sc->devinfo.flash_size) {
1250         BLOGE(sc, "Invalid parameter, "
1251                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1252               offset, buf_size, sc->devinfo.flash_size);
1253         return (-1);
1254     }
1255 
1256     /* request access to nvram interface */
1257     rc = bxe_acquire_nvram_lock(sc);
1258     if (rc) {
1259         return (rc);
1260     }
1261 
1262     /* enable access to nvram interface */
1263     bxe_enable_nvram_access(sc);
1264 
1265     /* read the first word(s) */
1266     cmd_flags = MCPR_NVM_COMMAND_FIRST;
1267     while ((buf_size > sizeof(uint32_t)) && (rc == 0)) {
1268         rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1269         memcpy(ret_buf, &val, 4);
1270 
1271         /* advance to the next dword */
1272         offset += sizeof(uint32_t);
1273         ret_buf += sizeof(uint32_t);
1274         buf_size -= sizeof(uint32_t);
1275         cmd_flags = 0;
1276     }
1277 
1278     if (rc == 0) {
1279         cmd_flags |= MCPR_NVM_COMMAND_LAST;
1280         rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1281         memcpy(ret_buf, &val, 4);
1282     }
1283 
1284     /* disable access to nvram interface */
1285     bxe_disable_nvram_access(sc);
1286     bxe_release_nvram_lock(sc);
1287 
1288     return (rc);
1289 }
1290 
1291 static int
1292 bxe_nvram_write_dword(struct bxe_softc *sc,
1293                       uint32_t         offset,
1294                       uint32_t         val,
1295                       uint32_t         cmd_flags)
1296 {
1297     int count, i, rc;
1298 
1299     /* build the command word */
1300     cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR);
1301 
1302     /* need to clear DONE bit separately */
1303     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1304 
1305     /* write the data */
1306     REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val);
1307 
1308     /* address of the NVRAM to write to */
1309     REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1310            (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1311 
1312     /* issue the write command */
1313     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1314 
1315     /* adjust timeout for emulation/FPGA */
1316     count = NVRAM_TIMEOUT_COUNT;
1317     if (CHIP_REV_IS_SLOW(sc)) {
1318         count *= 100;
1319     }
1320 
1321     /* wait for completion */
1322     rc = -1;
1323     for (i = 0; i < count; i++) {
1324         DELAY(5);
1325         val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1326         if (val & MCPR_NVM_COMMAND_DONE) {
1327             rc = 0;
1328             break;
1329         }
1330     }
1331 
1332     if (rc == -1) {
1333         BLOGE(sc, "nvram write timeout expired "
1334             "(offset 0x%x cmd_flags 0x%x val 0x%x)\n",
1335             offset, cmd_flags, val);
1336     }
1337 
1338     return (rc);
1339 }
1340 
1341 #define BYTE_OFFSET(offset) (8 * (offset & 0x03))
1342 
1343 static int
1344 bxe_nvram_write1(struct bxe_softc *sc,
1345                  uint32_t         offset,
1346                  uint8_t          *data_buf,
1347                  int              buf_size)
1348 {
1349     uint32_t cmd_flags;
1350     uint32_t align_offset;
1351     uint32_t val;
1352     int rc;
1353 
1354     if ((offset + buf_size) > sc->devinfo.flash_size) {
1355         BLOGE(sc, "Invalid parameter, "
1356                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1357               offset, buf_size, sc->devinfo.flash_size);
1358         return (-1);
1359     }
1360 
1361     /* request access to nvram interface */
1362     rc = bxe_acquire_nvram_lock(sc);
1363     if (rc) {
1364         return (rc);
1365     }
1366 
1367     /* enable access to nvram interface */
1368     bxe_enable_nvram_access(sc);
1369 
1370     cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST);
1371     align_offset = (offset & ~0x03);
1372     rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags);
1373 
1374     if (rc == 0) {
1375         val &= ~(0xff << BYTE_OFFSET(offset));
1376         val |= (*data_buf << BYTE_OFFSET(offset));
1377 
1378         /* nvram data is returned as an array of bytes
1379          * convert it back to cpu order
1380          */
1381         val = be32toh(val);
1382 
1383         rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags);
1384     }
1385 
1386     /* disable access to nvram interface */
1387     bxe_disable_nvram_access(sc);
1388     bxe_release_nvram_lock(sc);
1389 
1390     return (rc);
1391 }
1392 
1393 static int
1394 bxe_nvram_write(struct bxe_softc *sc,
1395                 uint32_t         offset,
1396                 uint8_t          *data_buf,
1397                 int              buf_size)
1398 {
1399     uint32_t cmd_flags;
1400     uint32_t val;
1401     uint32_t written_so_far;
1402     int rc;
1403 
1404     if (buf_size == 1) {
1405         return (bxe_nvram_write1(sc, offset, data_buf, buf_size));
1406     }
1407 
1408     if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) {
1409         BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1410               offset, buf_size);
1411         return (-1);
1412     }
1413 
1414     if (buf_size == 0) {
1415         return (0); /* nothing to do */
1416     }
1417 
1418     if ((offset + buf_size) > sc->devinfo.flash_size) {
1419         BLOGE(sc, "Invalid parameter, "
1420                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1421               offset, buf_size, sc->devinfo.flash_size);
1422         return (-1);
1423     }
1424 
1425     /* request access to nvram interface */
1426     rc = bxe_acquire_nvram_lock(sc);
1427     if (rc) {
1428         return (rc);
1429     }
1430 
1431     /* enable access to nvram interface */
1432     bxe_enable_nvram_access(sc);
1433 
1434     written_so_far = 0;
1435     cmd_flags = MCPR_NVM_COMMAND_FIRST;
1436     while ((written_so_far < buf_size) && (rc == 0)) {
1437         if (written_so_far == (buf_size - sizeof(uint32_t))) {
1438             cmd_flags |= MCPR_NVM_COMMAND_LAST;
1439         } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) {
1440             cmd_flags |= MCPR_NVM_COMMAND_LAST;
1441         } else if ((offset % NVRAM_PAGE_SIZE) == 0) {
1442             cmd_flags |= MCPR_NVM_COMMAND_FIRST;
1443         }
1444 
1445         memcpy(&val, data_buf, 4);
1446 
1447         rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags);
1448 
1449         /* advance to the next dword */
1450         offset += sizeof(uint32_t);
1451         data_buf += sizeof(uint32_t);
1452         written_so_far += sizeof(uint32_t);
1453         cmd_flags = 0;
1454     }
1455 
1456     /* disable access to nvram interface */
1457     bxe_disable_nvram_access(sc);
1458     bxe_release_nvram_lock(sc);
1459 
1460     return (rc);
1461 }
1462 
1463 /* copy command into DMAE command memory and set DMAE command Go */
1464 void
1465 bxe_post_dmae(struct bxe_softc    *sc,
1466               struct dmae_cmd *dmae,
1467               int                 idx)
1468 {
1469     uint32_t cmd_offset;
1470     int i;
1471 
1472     cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_cmd) * idx));
1473     for (i = 0; i < ((sizeof(struct dmae_cmd) / 4)); i++) {
1474         REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i));
1475     }
1476 
1477     REG_WR(sc, dmae_reg_go_c[idx], 1);
1478 }
1479 
1480 uint32_t
1481 bxe_dmae_opcode_add_comp(uint32_t opcode,
1482                          uint8_t  comp_type)
1483 {
1484     return (opcode | ((comp_type << DMAE_CMD_C_DST_SHIFT) |
1485                       DMAE_CMD_C_TYPE_ENABLE));
1486 }
1487 
1488 uint32_t
1489 bxe_dmae_opcode_clr_src_reset(uint32_t opcode)
1490 {
1491     return (opcode & ~DMAE_CMD_SRC_RESET);
1492 }
1493 
1494 uint32_t
1495 bxe_dmae_opcode(struct bxe_softc *sc,
1496                 uint8_t          src_type,
1497                 uint8_t          dst_type,
1498                 uint8_t          with_comp,
1499                 uint8_t          comp_type)
1500 {
1501     uint32_t opcode = 0;
1502 
1503     opcode |= ((src_type << DMAE_CMD_SRC_SHIFT) |
1504                (dst_type << DMAE_CMD_DST_SHIFT));
1505 
1506     opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
1507 
1508     opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
1509 
1510     opcode |= ((SC_VN(sc) << DMAE_CMD_E1HVN_SHIFT) |
1511                (SC_VN(sc) << DMAE_CMD_DST_VN_SHIFT));
1512 
1513     opcode |= (DMAE_COM_SET_ERR << DMAE_CMD_ERR_POLICY_SHIFT);
1514 
1515 #ifdef __BIG_ENDIAN
1516     opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
1517 #else
1518     opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
1519 #endif
1520 
1521     if (with_comp) {
1522         opcode = bxe_dmae_opcode_add_comp(opcode, comp_type);
1523     }
1524 
1525     return (opcode);
1526 }
1527 
1528 static void
1529 bxe_prep_dmae_with_comp(struct bxe_softc    *sc,
1530                         struct dmae_cmd *dmae,
1531                         uint8_t             src_type,
1532                         uint8_t             dst_type)
1533 {
1534     memset(dmae, 0, sizeof(struct dmae_cmd));
1535 
1536     /* set the opcode */
1537     dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type,
1538                                    TRUE, DMAE_COMP_PCI);
1539 
1540     /* fill in the completion parameters */
1541     dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp));
1542     dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp));
1543     dmae->comp_val     = DMAE_COMP_VAL;
1544 }
1545 
1546 /* issue a DMAE command over the init channel and wait for completion */
1547 static int
1548 bxe_issue_dmae_with_comp(struct bxe_softc    *sc,
1549                          struct dmae_cmd *dmae)
1550 {
1551     uint32_t *wb_comp = BXE_SP(sc, wb_comp);
1552     int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000;
1553 
1554     BXE_DMAE_LOCK(sc);
1555 
1556     /* reset completion */
1557     *wb_comp = 0;
1558 
1559     /* post the command on the channel used for initializations */
1560     bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc));
1561 
1562     /* wait for completion */
1563     DELAY(5);
1564 
1565     while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
1566         if (!timeout ||
1567             (sc->recovery_state != BXE_RECOVERY_DONE &&
1568              sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) {
1569             BLOGE(sc, "DMAE timeout! *wb_comp 0x%x recovery_state 0x%x\n",
1570                 *wb_comp, sc->recovery_state);
1571             BXE_DMAE_UNLOCK(sc);
1572             return (DMAE_TIMEOUT);
1573         }
1574 
1575         timeout--;
1576         DELAY(50);
1577     }
1578 
1579     if (*wb_comp & DMAE_PCI_ERR_FLAG) {
1580         BLOGE(sc, "DMAE PCI error! *wb_comp 0x%x recovery_state 0x%x\n",
1581                 *wb_comp, sc->recovery_state);
1582         BXE_DMAE_UNLOCK(sc);
1583         return (DMAE_PCI_ERROR);
1584     }
1585 
1586     BXE_DMAE_UNLOCK(sc);
1587     return (0);
1588 }
1589 
1590 void
1591 bxe_read_dmae(struct bxe_softc *sc,
1592               uint32_t         src_addr,
1593               uint32_t         len32)
1594 {
1595     struct dmae_cmd dmae;
1596     uint32_t *data;
1597     int i, rc;
1598 
1599     DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32));
1600 
1601     if (!sc->dmae_ready) {
1602         data = BXE_SP(sc, wb_data[0]);
1603 
1604         for (i = 0; i < len32; i++) {
1605             data[i] = (CHIP_IS_E1(sc)) ?
1606                           bxe_reg_rd_ind(sc, (src_addr + (i * 4))) :
1607                           REG_RD(sc, (src_addr + (i * 4)));
1608         }
1609 
1610         return;
1611     }
1612 
1613     /* set opcode and fixed command fields */
1614     bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
1615 
1616     /* fill in addresses and len */
1617     dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */
1618     dmae.src_addr_hi = 0;
1619     dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data));
1620     dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data));
1621     dmae.len         = len32;
1622 
1623     /* issue the command and wait for completion */
1624     if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1625         bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1626     }
1627 }
1628 
1629 void
1630 bxe_write_dmae(struct bxe_softc *sc,
1631                bus_addr_t       dma_addr,
1632                uint32_t         dst_addr,
1633                uint32_t         len32)
1634 {
1635     struct dmae_cmd dmae;
1636     int rc;
1637 
1638     if (!sc->dmae_ready) {
1639         DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32));
1640 
1641         if (CHIP_IS_E1(sc)) {
1642             ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1643         } else {
1644             ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1645         }
1646 
1647         return;
1648     }
1649 
1650     /* set opcode and fixed command fields */
1651     bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
1652 
1653     /* fill in addresses and len */
1654     dmae.src_addr_lo = U64_LO(dma_addr);
1655     dmae.src_addr_hi = U64_HI(dma_addr);
1656     dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */
1657     dmae.dst_addr_hi = 0;
1658     dmae.len         = len32;
1659 
1660     /* issue the command and wait for completion */
1661     if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1662         bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1663     }
1664 }
1665 
1666 void
1667 bxe_write_dmae_phys_len(struct bxe_softc *sc,
1668                         bus_addr_t       phys_addr,
1669                         uint32_t         addr,
1670                         uint32_t         len)
1671 {
1672     int dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
1673     int offset = 0;
1674 
1675     while (len > dmae_wr_max) {
1676         bxe_write_dmae(sc,
1677                        (phys_addr + offset), /* src DMA address */
1678                        (addr + offset),      /* dst GRC address */
1679                        dmae_wr_max);
1680         offset += (dmae_wr_max * 4);
1681         len -= dmae_wr_max;
1682     }
1683 
1684     bxe_write_dmae(sc,
1685                    (phys_addr + offset), /* src DMA address */
1686                    (addr + offset),      /* dst GRC address */
1687                    len);
1688 }
1689 
1690 void
1691 bxe_set_ctx_validation(struct bxe_softc   *sc,
1692                        struct eth_context *cxt,
1693                        uint32_t           cid)
1694 {
1695     /* ustorm cxt validation */
1696     cxt->ustorm_ag_context.cdu_usage =
1697         CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1698             CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
1699     /* xcontext validation */
1700     cxt->xstorm_ag_context.cdu_reserved =
1701         CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1702             CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
1703 }
1704 
1705 static void
1706 bxe_storm_memset_hc_timeout(struct bxe_softc *sc,
1707                             uint8_t          port,
1708                             uint8_t          fw_sb_id,
1709                             uint8_t          sb_index,
1710                             uint8_t          ticks)
1711 {
1712     uint32_t addr =
1713         (BAR_CSTRORM_INTMEM +
1714          CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index));
1715 
1716     REG_WR8(sc, addr, ticks);
1717 
1718     BLOGD(sc, DBG_LOAD,
1719           "port %d fw_sb_id %d sb_index %d ticks %d\n",
1720           port, fw_sb_id, sb_index, ticks);
1721 }
1722 
1723 static void
1724 bxe_storm_memset_hc_disable(struct bxe_softc *sc,
1725                             uint8_t          port,
1726                             uint16_t         fw_sb_id,
1727                             uint8_t          sb_index,
1728                             uint8_t          disable)
1729 {
1730     uint32_t enable_flag =
1731         (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
1732     uint32_t addr =
1733         (BAR_CSTRORM_INTMEM +
1734          CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index));
1735     uint8_t flags;
1736 
1737     /* clear and set */
1738     flags = REG_RD8(sc, addr);
1739     flags &= ~HC_INDEX_DATA_HC_ENABLED;
1740     flags |= enable_flag;
1741     REG_WR8(sc, addr, flags);
1742 
1743     BLOGD(sc, DBG_LOAD,
1744           "port %d fw_sb_id %d sb_index %d disable %d\n",
1745           port, fw_sb_id, sb_index, disable);
1746 }
1747 
1748 void
1749 bxe_update_coalesce_sb_index(struct bxe_softc *sc,
1750                              uint8_t          fw_sb_id,
1751                              uint8_t          sb_index,
1752                              uint8_t          disable,
1753                              uint16_t         usec)
1754 {
1755     int port = SC_PORT(sc);
1756     uint8_t ticks = (usec / 4); /* XXX ??? */
1757 
1758     bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks);
1759 
1760     disable = (disable) ? 1 : ((usec) ? 0 : 1);
1761     bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable);
1762 }
1763 
1764 void
1765 elink_cb_udelay(struct bxe_softc *sc,
1766                 uint32_t         usecs)
1767 {
1768     DELAY(usecs);
1769 }
1770 
1771 uint32_t
1772 elink_cb_reg_read(struct bxe_softc *sc,
1773                   uint32_t         reg_addr)
1774 {
1775     return (REG_RD(sc, reg_addr));
1776 }
1777 
1778 void
1779 elink_cb_reg_write(struct bxe_softc *sc,
1780                    uint32_t         reg_addr,
1781                    uint32_t         val)
1782 {
1783     REG_WR(sc, reg_addr, val);
1784 }
1785 
1786 void
1787 elink_cb_reg_wb_write(struct bxe_softc *sc,
1788                       uint32_t         offset,
1789                       uint32_t         *wb_write,
1790                       uint16_t         len)
1791 {
1792     REG_WR_DMAE(sc, offset, wb_write, len);
1793 }
1794 
1795 void
1796 elink_cb_reg_wb_read(struct bxe_softc *sc,
1797                      uint32_t         offset,
1798                      uint32_t         *wb_write,
1799                      uint16_t         len)
1800 {
1801     REG_RD_DMAE(sc, offset, wb_write, len);
1802 }
1803 
1804 uint8_t
1805 elink_cb_path_id(struct bxe_softc *sc)
1806 {
1807     return (SC_PATH(sc));
1808 }
1809 
1810 void
1811 elink_cb_event_log(struct bxe_softc     *sc,
1812                    const elink_log_id_t elink_log_id,
1813                    ...)
1814 {
1815     /* XXX */
1816     BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id);
1817 }
1818 
1819 static int
1820 bxe_set_spio(struct bxe_softc *sc,
1821              int              spio,
1822              uint32_t         mode)
1823 {
1824     uint32_t spio_reg;
1825 
1826     /* Only 2 SPIOs are configurable */
1827     if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
1828         BLOGE(sc, "Invalid SPIO 0x%x mode 0x%x\n", spio, mode);
1829         return (-1);
1830     }
1831 
1832     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1833 
1834     /* read SPIO and mask except the float bits */
1835     spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
1836 
1837     switch (mode) {
1838     case MISC_SPIO_OUTPUT_LOW:
1839         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio);
1840         /* clear FLOAT and set CLR */
1841         spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1842         spio_reg |=  (spio << MISC_SPIO_CLR_POS);
1843         break;
1844 
1845     case MISC_SPIO_OUTPUT_HIGH:
1846         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio);
1847         /* clear FLOAT and set SET */
1848         spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1849         spio_reg |=  (spio << MISC_SPIO_SET_POS);
1850         break;
1851 
1852     case MISC_SPIO_INPUT_HI_Z:
1853         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio);
1854         /* set FLOAT */
1855         spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
1856         break;
1857 
1858     default:
1859         break;
1860     }
1861 
1862     REG_WR(sc, MISC_REG_SPIO, spio_reg);
1863     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1864 
1865     return (0);
1866 }
1867 
1868 static int
1869 bxe_gpio_read(struct bxe_softc *sc,
1870               int              gpio_num,
1871               uint8_t          port)
1872 {
1873     /* The GPIO should be swapped if swap register is set and active */
1874     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
1875                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
1876     int gpio_shift = (gpio_num +
1877                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
1878     uint32_t gpio_mask = (1 << gpio_shift);
1879     uint32_t gpio_reg;
1880 
1881     if (gpio_num > MISC_REGISTERS_GPIO_3) {
1882         BLOGE(sc, "Invalid GPIO %d port 0x%x gpio_port %d gpio_shift %d"
1883             " gpio_mask 0x%x\n", gpio_num, port, gpio_port, gpio_shift,
1884             gpio_mask);
1885         return (-1);
1886     }
1887 
1888     /* read GPIO value */
1889     gpio_reg = REG_RD(sc, MISC_REG_GPIO);
1890 
1891     /* get the requested pin value */
1892     return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0;
1893 }
1894 
1895 static int
1896 bxe_gpio_write(struct bxe_softc *sc,
1897                int              gpio_num,
1898                uint32_t         mode,
1899                uint8_t          port)
1900 {
1901     /* The GPIO should be swapped if swap register is set and active */
1902     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
1903                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
1904     int gpio_shift = (gpio_num +
1905                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
1906     uint32_t gpio_mask = (1 << gpio_shift);
1907     uint32_t gpio_reg;
1908 
1909     if (gpio_num > MISC_REGISTERS_GPIO_3) {
1910         BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d"
1911             " gpio_shift %d gpio_mask 0x%x\n",
1912             gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask);
1913         return (-1);
1914     }
1915 
1916     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
1917 
1918     /* read GPIO and mask except the float bits */
1919     gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
1920 
1921     switch (mode) {
1922     case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1923         BLOGD(sc, DBG_PHY,
1924               "Set GPIO %d (shift %d) -> output low\n",
1925               gpio_num, gpio_shift);
1926         /* clear FLOAT and set CLR */
1927         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1928         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
1929         break;
1930 
1931     case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1932         BLOGD(sc, DBG_PHY,
1933               "Set GPIO %d (shift %d) -> output high\n",
1934               gpio_num, gpio_shift);
1935         /* clear FLOAT and set SET */
1936         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1937         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
1938         break;
1939 
1940     case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1941         BLOGD(sc, DBG_PHY,
1942               "Set GPIO %d (shift %d) -> input\n",
1943               gpio_num, gpio_shift);
1944         /* set FLOAT */
1945         gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1946         break;
1947 
1948     default:
1949         break;
1950     }
1951 
1952     REG_WR(sc, MISC_REG_GPIO, gpio_reg);
1953     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
1954 
1955     return (0);
1956 }
1957 
1958 static int
1959 bxe_gpio_mult_write(struct bxe_softc *sc,
1960                     uint8_t          pins,
1961                     uint32_t         mode)
1962 {
1963     uint32_t gpio_reg;
1964 
1965     /* any port swapping should be handled by caller */
1966 
1967     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
1968 
1969     /* read GPIO and mask except the float bits */
1970     gpio_reg = REG_RD(sc, MISC_REG_GPIO);
1971     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
1972     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
1973     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
1974 
1975     switch (mode) {
1976     case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1977         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins);
1978         /* set CLR */
1979         gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
1980         break;
1981 
1982     case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1983         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins);
1984         /* set SET */
1985         gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
1986         break;
1987 
1988     case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1989         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins);
1990         /* set FLOAT */
1991         gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
1992         break;
1993 
1994     default:
1995         BLOGE(sc, "Invalid GPIO mode assignment pins 0x%x mode 0x%x"
1996             " gpio_reg 0x%x\n", pins, mode, gpio_reg);
1997         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
1998         return (-1);
1999     }
2000 
2001     REG_WR(sc, MISC_REG_GPIO, gpio_reg);
2002     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2003 
2004     return (0);
2005 }
2006 
2007 static int
2008 bxe_gpio_int_write(struct bxe_softc *sc,
2009                    int              gpio_num,
2010                    uint32_t         mode,
2011                    uint8_t          port)
2012 {
2013     /* The GPIO should be swapped if swap register is set and active */
2014     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2015                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2016     int gpio_shift = (gpio_num +
2017                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2018     uint32_t gpio_mask = (1 << gpio_shift);
2019     uint32_t gpio_reg;
2020 
2021     if (gpio_num > MISC_REGISTERS_GPIO_3) {
2022         BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d"
2023             " gpio_shift %d gpio_mask 0x%x\n",
2024             gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask);
2025         return (-1);
2026     }
2027 
2028     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2029 
2030     /* read GPIO int */
2031     gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
2032 
2033     switch (mode) {
2034     case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2035         BLOGD(sc, DBG_PHY,
2036               "Clear GPIO INT %d (shift %d) -> output low\n",
2037               gpio_num, gpio_shift);
2038         /* clear SET and set CLR */
2039         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2040         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2041         break;
2042 
2043     case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2044         BLOGD(sc, DBG_PHY,
2045               "Set GPIO INT %d (shift %d) -> output high\n",
2046               gpio_num, gpio_shift);
2047         /* clear CLR and set SET */
2048         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2049         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2050         break;
2051 
2052     default:
2053         break;
2054     }
2055 
2056     REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
2057     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2058 
2059     return (0);
2060 }
2061 
2062 uint32_t
2063 elink_cb_gpio_read(struct bxe_softc *sc,
2064                    uint16_t         gpio_num,
2065                    uint8_t          port)
2066 {
2067     return (bxe_gpio_read(sc, gpio_num, port));
2068 }
2069 
2070 uint8_t
2071 elink_cb_gpio_write(struct bxe_softc *sc,
2072                     uint16_t         gpio_num,
2073                     uint8_t          mode, /* 0=low 1=high */
2074                     uint8_t          port)
2075 {
2076     return (bxe_gpio_write(sc, gpio_num, mode, port));
2077 }
2078 
2079 uint8_t
2080 elink_cb_gpio_mult_write(struct bxe_softc *sc,
2081                          uint8_t          pins,
2082                          uint8_t          mode) /* 0=low 1=high */
2083 {
2084     return (bxe_gpio_mult_write(sc, pins, mode));
2085 }
2086 
2087 uint8_t
2088 elink_cb_gpio_int_write(struct bxe_softc *sc,
2089                         uint16_t         gpio_num,
2090                         uint8_t          mode, /* 0=low 1=high */
2091                         uint8_t          port)
2092 {
2093     return (bxe_gpio_int_write(sc, gpio_num, mode, port));
2094 }
2095 
2096 void
2097 elink_cb_notify_link_changed(struct bxe_softc *sc)
2098 {
2099     REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 +
2100                 (SC_FUNC(sc) * sizeof(uint32_t))), 1);
2101 }
2102 
2103 /* send the MCP a request, block until there is a reply */
2104 uint32_t
2105 elink_cb_fw_command(struct bxe_softc *sc,
2106                     uint32_t         command,
2107                     uint32_t         param)
2108 {
2109     int mb_idx = SC_FW_MB_IDX(sc);
2110     uint32_t seq;
2111     uint32_t rc = 0;
2112     uint32_t cnt = 1;
2113     uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10;
2114 
2115     BXE_FWMB_LOCK(sc);
2116 
2117     seq = ++sc->fw_seq;
2118     SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param);
2119     SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq));
2120 
2121     BLOGD(sc, DBG_PHY,
2122           "wrote command 0x%08x to FW MB param 0x%08x\n",
2123           (command | seq), param);
2124 
2125     /* Let the FW do it's magic. GIve it up to 5 seconds... */
2126     do {
2127         DELAY(delay * 1000);
2128         rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header);
2129     } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2130 
2131     BLOGD(sc, DBG_PHY,
2132           "[after %d ms] read 0x%x seq 0x%x from FW MB\n",
2133           cnt*delay, rc, seq);
2134 
2135     /* is this a reply to our command? */
2136     if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) {
2137         rc &= FW_MSG_CODE_MASK;
2138     } else {
2139         /* Ruh-roh! */
2140         BLOGE(sc, "FW failed to respond!\n");
2141         // XXX bxe_fw_dump(sc);
2142         rc = 0;
2143     }
2144 
2145     BXE_FWMB_UNLOCK(sc);
2146     return (rc);
2147 }
2148 
2149 static uint32_t
2150 bxe_fw_command(struct bxe_softc *sc,
2151                uint32_t         command,
2152                uint32_t         param)
2153 {
2154     return (elink_cb_fw_command(sc, command, param));
2155 }
2156 
2157 static void
2158 __storm_memset_dma_mapping(struct bxe_softc *sc,
2159                            uint32_t         addr,
2160                            bus_addr_t       mapping)
2161 {
2162     REG_WR(sc, addr, U64_LO(mapping));
2163     REG_WR(sc, (addr + 4), U64_HI(mapping));
2164 }
2165 
2166 static void
2167 storm_memset_spq_addr(struct bxe_softc *sc,
2168                       bus_addr_t       mapping,
2169                       uint16_t         abs_fid)
2170 {
2171     uint32_t addr = (XSEM_REG_FAST_MEMORY +
2172                      XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid));
2173     __storm_memset_dma_mapping(sc, addr, mapping);
2174 }
2175 
2176 static void
2177 storm_memset_vf_to_pf(struct bxe_softc *sc,
2178                       uint16_t         abs_fid,
2179                       uint16_t         pf_id)
2180 {
2181     REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2182     REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2183     REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2184     REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2185 }
2186 
2187 static void
2188 storm_memset_func_en(struct bxe_softc *sc,
2189                      uint16_t         abs_fid,
2190                      uint8_t          enable)
2191 {
2192     REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2193     REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2194     REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2195     REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2196 }
2197 
2198 static void
2199 storm_memset_eq_data(struct bxe_softc       *sc,
2200                      struct event_ring_data *eq_data,
2201                      uint16_t               pfid)
2202 {
2203     uint32_t addr;
2204     size_t size;
2205 
2206     addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid));
2207     size = sizeof(struct event_ring_data);
2208     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data);
2209 }
2210 
2211 static void
2212 storm_memset_eq_prod(struct bxe_softc *sc,
2213                      uint16_t         eq_prod,
2214                      uint16_t         pfid)
2215 {
2216     uint32_t addr = (BAR_CSTRORM_INTMEM +
2217                      CSTORM_EVENT_RING_PROD_OFFSET(pfid));
2218     REG_WR16(sc, addr, eq_prod);
2219 }
2220 
2221 /*
2222  * Post a slowpath command.
2223  *
2224  * A slowpath command is used to propagate a configuration change through
2225  * the controller in a controlled manner, allowing each STORM processor and
2226  * other H/W blocks to phase in the change.  The commands sent on the
2227  * slowpath are referred to as ramrods.  Depending on the ramrod used the
2228  * completion of the ramrod will occur in different ways.  Here's a
2229  * breakdown of ramrods and how they complete:
2230  *
2231  * RAMROD_CMD_ID_ETH_PORT_SETUP
2232  *   Used to setup the leading connection on a port.  Completes on the
2233  *   Receive Completion Queue (RCQ) of that port (typically fp[0]).
2234  *
2235  * RAMROD_CMD_ID_ETH_CLIENT_SETUP
2236  *   Used to setup an additional connection on a port.  Completes on the
2237  *   RCQ of the multi-queue/RSS connection being initialized.
2238  *
2239  * RAMROD_CMD_ID_ETH_STAT_QUERY
2240  *   Used to force the storm processors to update the statistics database
2241  *   in host memory.  This ramrod is send on the leading connection CID and
2242  *   completes as an index increment of the CSTORM on the default status
2243  *   block.
2244  *
2245  * RAMROD_CMD_ID_ETH_UPDATE
2246  *   Used to update the state of the leading connection, usually to udpate
2247  *   the RSS indirection table.  Completes on the RCQ of the leading
2248  *   connection. (Not currently used under FreeBSD until OS support becomes
2249  *   available.)
2250  *
2251  * RAMROD_CMD_ID_ETH_HALT
2252  *   Used when tearing down a connection prior to driver unload.  Completes
2253  *   on the RCQ of the multi-queue/RSS connection being torn down.  Don't
2254  *   use this on the leading connection.
2255  *
2256  * RAMROD_CMD_ID_ETH_SET_MAC
2257  *   Sets the Unicast/Broadcast/Multicast used by the port.  Completes on
2258  *   the RCQ of the leading connection.
2259  *
2260  * RAMROD_CMD_ID_ETH_CFC_DEL
2261  *   Used when tearing down a conneciton prior to driver unload.  Completes
2262  *   on the RCQ of the leading connection (since the current connection
2263  *   has been completely removed from controller memory).
2264  *
2265  * RAMROD_CMD_ID_ETH_PORT_DEL
2266  *   Used to tear down the leading connection prior to driver unload,
2267  *   typically fp[0].  Completes as an index increment of the CSTORM on the
2268  *   default status block.
2269  *
2270  * RAMROD_CMD_ID_ETH_FORWARD_SETUP
2271  *   Used for connection offload.  Completes on the RCQ of the multi-queue
2272  *   RSS connection that is being offloaded.  (Not currently used under
2273  *   FreeBSD.)
2274  *
2275  * There can only be one command pending per function.
2276  *
2277  * Returns:
2278  *   0 = Success, !0 = Failure.
2279  */
2280 
2281 /* must be called under the spq lock */
2282 static inline
2283 struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc)
2284 {
2285     struct eth_spe *next_spe = sc->spq_prod_bd;
2286 
2287     if (sc->spq_prod_bd == sc->spq_last_bd) {
2288         /* wrap back to the first eth_spq */
2289         sc->spq_prod_bd = sc->spq;
2290         sc->spq_prod_idx = 0;
2291     } else {
2292         sc->spq_prod_bd++;
2293         sc->spq_prod_idx++;
2294     }
2295 
2296     return (next_spe);
2297 }
2298 
2299 /* must be called under the spq lock */
2300 static inline
2301 void bxe_sp_prod_update(struct bxe_softc *sc)
2302 {
2303     int func = SC_FUNC(sc);
2304 
2305     /*
2306      * Make sure that BD data is updated before writing the producer.
2307      * BD data is written to the memory, the producer is read from the
2308      * memory, thus we need a full memory barrier to ensure the ordering.
2309      */
2310     mb();
2311 
2312     REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)),
2313              sc->spq_prod_idx);
2314 
2315     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
2316                       BUS_SPACE_BARRIER_WRITE);
2317 }
2318 
2319 /**
2320  * bxe_is_contextless_ramrod - check if the current command ends on EQ
2321  *
2322  * @cmd:      command to check
2323  * @cmd_type: command type
2324  */
2325 static inline
2326 int bxe_is_contextless_ramrod(int cmd,
2327                               int cmd_type)
2328 {
2329     if ((cmd_type == NONE_CONNECTION_TYPE) ||
2330         (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
2331         (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
2332         (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
2333         (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
2334         (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
2335         (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) {
2336         return (TRUE);
2337     } else {
2338         return (FALSE);
2339     }
2340 }
2341 
2342 /**
2343  * bxe_sp_post - place a single command on an SP ring
2344  *
2345  * @sc:         driver handle
2346  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
2347  * @cid:        SW CID the command is related to
2348  * @data_hi:    command private data address (high 32 bits)
2349  * @data_lo:    command private data address (low 32 bits)
2350  * @cmd_type:   command type (e.g. NONE, ETH)
2351  *
2352  * SP data is handled as if it's always an address pair, thus data fields are
2353  * not swapped to little endian in upper functions. Instead this function swaps
2354  * data as if it's two uint32 fields.
2355  */
2356 int
2357 bxe_sp_post(struct bxe_softc *sc,
2358             int              command,
2359             int              cid,
2360             uint32_t         data_hi,
2361             uint32_t         data_lo,
2362             int              cmd_type)
2363 {
2364     struct eth_spe *spe;
2365     uint16_t type;
2366     int common;
2367 
2368     common = bxe_is_contextless_ramrod(command, cmd_type);
2369 
2370     BXE_SP_LOCK(sc);
2371 
2372     if (common) {
2373         if (!atomic_load_acq_long(&sc->eq_spq_left)) {
2374             BLOGE(sc, "EQ ring is full!\n");
2375             BXE_SP_UNLOCK(sc);
2376             return (-1);
2377         }
2378     } else {
2379         if (!atomic_load_acq_long(&sc->cq_spq_left)) {
2380             BLOGE(sc, "SPQ ring is full!\n");
2381             BXE_SP_UNLOCK(sc);
2382             return (-1);
2383         }
2384     }
2385 
2386     spe = bxe_sp_get_next(sc);
2387 
2388     /* CID needs port number to be encoded int it */
2389     spe->hdr.conn_and_cmd_data =
2390         htole32((command << SPE_HDR_T_CMD_ID_SHIFT) | HW_CID(sc, cid));
2391 
2392     type = (cmd_type << SPE_HDR_T_CONN_TYPE_SHIFT) & SPE_HDR_T_CONN_TYPE;
2393 
2394     /* TBD: Check if it works for VFs */
2395     type |= ((SC_FUNC(sc) << SPE_HDR_T_FUNCTION_ID_SHIFT) &
2396              SPE_HDR_T_FUNCTION_ID);
2397 
2398     spe->hdr.type = htole16(type);
2399 
2400     spe->data.update_data_addr.hi = htole32(data_hi);
2401     spe->data.update_data_addr.lo = htole32(data_lo);
2402 
2403     /*
2404      * It's ok if the actual decrement is issued towards the memory
2405      * somewhere between the lock and unlock. Thus no more explict
2406      * memory barrier is needed.
2407      */
2408     if (common) {
2409         atomic_subtract_acq_long(&sc->eq_spq_left, 1);
2410     } else {
2411         atomic_subtract_acq_long(&sc->cq_spq_left, 1);
2412     }
2413 
2414     BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr);
2415     BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n",
2416           BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata));
2417     BLOGD(sc, DBG_SP,
2418           "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n",
2419           sc->spq_prod_idx,
2420           (uint32_t)U64_HI(sc->spq_dma.paddr),
2421           (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq),
2422           command,
2423           common,
2424           HW_CID(sc, cid),
2425           data_hi,
2426           data_lo,
2427           type,
2428           atomic_load_acq_long(&sc->cq_spq_left),
2429           atomic_load_acq_long(&sc->eq_spq_left));
2430 
2431     bxe_sp_prod_update(sc);
2432 
2433     BXE_SP_UNLOCK(sc);
2434     return (0);
2435 }
2436 
2437 /**
2438  * bxe_debug_print_ind_table - prints the indirection table configuration.
2439  *
2440  * @sc: driver hanlde
2441  * @p:  pointer to rss configuration
2442  */
2443 
2444 /*
2445  * FreeBSD Device probe function.
2446  *
2447  * Compares the device found to the driver's list of supported devices and
2448  * reports back to the bsd loader whether this is the right driver for the device.
2449  * This is the driver entry function called from the "kldload" command.
2450  *
2451  * Returns:
2452  *   BUS_PROBE_DEFAULT on success, positive value on failure.
2453  */
2454 static int
2455 bxe_probe(device_t dev)
2456 {
2457     struct bxe_softc *sc;
2458     struct bxe_device_type *t;
2459     char *descbuf;
2460     uint16_t did, sdid, svid, vid;
2461 
2462     /* Find our device structure */
2463     sc = device_get_softc(dev);
2464     sc->dev = dev;
2465     t = bxe_devs;
2466 
2467     /* Get the data for the device to be probed. */
2468     vid  = pci_get_vendor(dev);
2469     did  = pci_get_device(dev);
2470     svid = pci_get_subvendor(dev);
2471     sdid = pci_get_subdevice(dev);
2472 
2473     BLOGD(sc, DBG_LOAD,
2474           "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
2475           "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
2476 
2477     /* Look through the list of known devices for a match. */
2478     while (t->bxe_name != NULL) {
2479         if ((vid == t->bxe_vid) && (did == t->bxe_did) &&
2480             ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) &&
2481             ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) {
2482             descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
2483             if (descbuf == NULL)
2484                 return (ENOMEM);
2485 
2486             /* Print out the device identity. */
2487             snprintf(descbuf, BXE_DEVDESC_MAX,
2488                      "%s (%c%d) BXE v:%s\n", t->bxe_name,
2489                      (((pci_read_config(dev, PCIR_REVID, 4) &
2490                         0xf0) >> 4) + 'A'),
2491                      (pci_read_config(dev, PCIR_REVID, 4) & 0xf),
2492                      BXE_DRIVER_VERSION);
2493 
2494             device_set_desc_copy(dev, descbuf);
2495             free(descbuf, M_TEMP);
2496             return (BUS_PROBE_DEFAULT);
2497         }
2498         t++;
2499     }
2500 
2501     return (ENXIO);
2502 }
2503 
2504 static void
2505 bxe_init_mutexes(struct bxe_softc *sc)
2506 {
2507 #ifdef BXE_CORE_LOCK_SX
2508     snprintf(sc->core_sx_name, sizeof(sc->core_sx_name),
2509              "bxe%d_core_lock", sc->unit);
2510     sx_init(&sc->core_sx, sc->core_sx_name);
2511 #else
2512     snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name),
2513              "bxe%d_core_lock", sc->unit);
2514     mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF);
2515 #endif
2516 
2517     snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name),
2518              "bxe%d_sp_lock", sc->unit);
2519     mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF);
2520 
2521     snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name),
2522              "bxe%d_dmae_lock", sc->unit);
2523     mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF);
2524 
2525     snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name),
2526              "bxe%d_phy_lock", sc->unit);
2527     mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF);
2528 
2529     snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name),
2530              "bxe%d_fwmb_lock", sc->unit);
2531     mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF);
2532 
2533     snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name),
2534              "bxe%d_print_lock", sc->unit);
2535     mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF);
2536 
2537     snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name),
2538              "bxe%d_stats_lock", sc->unit);
2539     mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF);
2540 
2541     snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name),
2542              "bxe%d_mcast_lock", sc->unit);
2543     mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF);
2544 }
2545 
2546 static void
2547 bxe_release_mutexes(struct bxe_softc *sc)
2548 {
2549 #ifdef BXE_CORE_LOCK_SX
2550     sx_destroy(&sc->core_sx);
2551 #else
2552     if (mtx_initialized(&sc->core_mtx)) {
2553         mtx_destroy(&sc->core_mtx);
2554     }
2555 #endif
2556 
2557     if (mtx_initialized(&sc->sp_mtx)) {
2558         mtx_destroy(&sc->sp_mtx);
2559     }
2560 
2561     if (mtx_initialized(&sc->dmae_mtx)) {
2562         mtx_destroy(&sc->dmae_mtx);
2563     }
2564 
2565     if (mtx_initialized(&sc->port.phy_mtx)) {
2566         mtx_destroy(&sc->port.phy_mtx);
2567     }
2568 
2569     if (mtx_initialized(&sc->fwmb_mtx)) {
2570         mtx_destroy(&sc->fwmb_mtx);
2571     }
2572 
2573     if (mtx_initialized(&sc->print_mtx)) {
2574         mtx_destroy(&sc->print_mtx);
2575     }
2576 
2577     if (mtx_initialized(&sc->stats_mtx)) {
2578         mtx_destroy(&sc->stats_mtx);
2579     }
2580 
2581     if (mtx_initialized(&sc->mcast_mtx)) {
2582         mtx_destroy(&sc->mcast_mtx);
2583     }
2584 }
2585 
2586 static void
2587 bxe_tx_disable(struct bxe_softc* sc)
2588 {
2589     if_t ifp = sc->ifp;
2590 
2591     /* tell the stack the driver is stopped and TX queue is full */
2592     if (ifp !=  NULL) {
2593         if_setdrvflags(ifp, 0);
2594     }
2595 }
2596 
2597 static void
2598 bxe_drv_pulse(struct bxe_softc *sc)
2599 {
2600     SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb,
2601              sc->fw_drv_pulse_wr_seq);
2602 }
2603 
2604 static inline uint16_t
2605 bxe_tx_avail(struct bxe_softc *sc,
2606              struct bxe_fastpath *fp)
2607 {
2608     int16_t  used;
2609     uint16_t prod;
2610     uint16_t cons;
2611 
2612     prod = fp->tx_bd_prod;
2613     cons = fp->tx_bd_cons;
2614 
2615     used = SUB_S16(prod, cons);
2616 
2617     return (int16_t)(sc->tx_ring_size) - used;
2618 }
2619 
2620 static inline int
2621 bxe_tx_queue_has_work(struct bxe_fastpath *fp)
2622 {
2623     uint16_t hw_cons;
2624 
2625     mb(); /* status block fields can change */
2626     hw_cons = le16toh(*fp->tx_cons_sb);
2627     return (hw_cons != fp->tx_pkt_cons);
2628 }
2629 
2630 static inline uint8_t
2631 bxe_has_tx_work(struct bxe_fastpath *fp)
2632 {
2633     /* expand this for multi-cos if ever supported */
2634     return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE;
2635 }
2636 
2637 static inline int
2638 bxe_has_rx_work(struct bxe_fastpath *fp)
2639 {
2640     uint16_t rx_cq_cons_sb;
2641 
2642     mb(); /* status block fields can change */
2643     rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb);
2644     if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX)
2645         rx_cq_cons_sb++;
2646     return (fp->rx_cq_cons != rx_cq_cons_sb);
2647 }
2648 
2649 static void
2650 bxe_sp_event(struct bxe_softc    *sc,
2651              struct bxe_fastpath *fp,
2652              union eth_rx_cqe    *rr_cqe)
2653 {
2654     int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2655     int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2656     enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX;
2657     struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
2658 
2659     BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n",
2660           fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type);
2661 
2662     switch (command) {
2663     case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
2664         BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid);
2665         drv_cmd = ECORE_Q_CMD_UPDATE;
2666         break;
2667 
2668     case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
2669         BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid);
2670         drv_cmd = ECORE_Q_CMD_SETUP;
2671         break;
2672 
2673     case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
2674         BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
2675         drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY;
2676         break;
2677 
2678     case (RAMROD_CMD_ID_ETH_HALT):
2679         BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid);
2680         drv_cmd = ECORE_Q_CMD_HALT;
2681         break;
2682 
2683     case (RAMROD_CMD_ID_ETH_TERMINATE):
2684         BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid);
2685         drv_cmd = ECORE_Q_CMD_TERMINATE;
2686         break;
2687 
2688     case (RAMROD_CMD_ID_ETH_EMPTY):
2689         BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid);
2690         drv_cmd = ECORE_Q_CMD_EMPTY;
2691         break;
2692 
2693     default:
2694         BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n",
2695               command, fp->index);
2696         return;
2697     }
2698 
2699     if ((drv_cmd != ECORE_Q_CMD_MAX) &&
2700         q_obj->complete_cmd(sc, q_obj, drv_cmd)) {
2701         /*
2702          * q_obj->complete_cmd() failure means that this was
2703          * an unexpected completion.
2704          *
2705          * In this case we don't want to increase the sc->spq_left
2706          * because apparently we haven't sent this command the first
2707          * place.
2708          */
2709         // bxe_panic(sc, ("Unexpected SP completion\n"));
2710         return;
2711     }
2712 
2713     atomic_add_acq_long(&sc->cq_spq_left, 1);
2714 
2715     BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n",
2716           atomic_load_acq_long(&sc->cq_spq_left));
2717 }
2718 
2719 /*
2720  * The current mbuf is part of an aggregation. Move the mbuf into the TPA
2721  * aggregation queue, put an empty mbuf back onto the receive chain, and mark
2722  * the current aggregation queue as in-progress.
2723  */
2724 static void
2725 bxe_tpa_start(struct bxe_softc            *sc,
2726               struct bxe_fastpath         *fp,
2727               uint16_t                    queue,
2728               uint16_t                    cons,
2729               uint16_t                    prod,
2730               struct eth_fast_path_rx_cqe *cqe)
2731 {
2732     struct bxe_sw_rx_bd tmp_bd;
2733     struct bxe_sw_rx_bd *rx_buf;
2734     struct eth_rx_bd *rx_bd;
2735     int max_agg_queues;
2736     struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
2737     uint16_t index;
2738 
2739     BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START "
2740                        "cons=%d prod=%d\n",
2741           fp->index, queue, cons, prod);
2742 
2743     max_agg_queues = MAX_AGG_QS(sc);
2744 
2745     KASSERT((queue < max_agg_queues),
2746             ("fp[%02d] invalid aggr queue (%d >= %d)!",
2747              fp->index, queue, max_agg_queues));
2748 
2749     KASSERT((tpa_info->state == BXE_TPA_STATE_STOP),
2750             ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!",
2751              fp->index, queue));
2752 
2753     /* copy the existing mbuf and mapping from the TPA pool */
2754     tmp_bd = tpa_info->bd;
2755 
2756     if (tmp_bd.m == NULL) {
2757         uint32_t *tmp;
2758 
2759         tmp = (uint32_t *)cqe;
2760 
2761         BLOGE(sc, "fp[%02d].tpa[%02d] cons[%d] prod[%d]mbuf not allocated!\n",
2762               fp->index, queue, cons, prod);
2763         BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n",
2764             *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7));
2765 
2766         /* XXX Error handling? */
2767         return;
2768     }
2769 
2770     /* change the TPA queue to the start state */
2771     tpa_info->state            = BXE_TPA_STATE_START;
2772     tpa_info->placement_offset = cqe->placement_offset;
2773     tpa_info->parsing_flags    = le16toh(cqe->pars_flags.flags);
2774     tpa_info->vlan_tag         = le16toh(cqe->vlan_tag);
2775     tpa_info->len_on_bd        = le16toh(cqe->len_on_bd);
2776 
2777     fp->rx_tpa_queue_used |= (1 << queue);
2778 
2779     /*
2780      * If all the buffer descriptors are filled with mbufs then fill in
2781      * the current consumer index with a new BD. Else if a maximum Rx
2782      * buffer limit is imposed then fill in the next producer index.
2783      */
2784     index = (sc->max_rx_bufs != RX_BD_USABLE) ?
2785                 prod : cons;
2786 
2787     /* move the received mbuf and mapping to TPA pool */
2788     tpa_info->bd = fp->rx_mbuf_chain[cons];
2789 
2790     /* release any existing RX BD mbuf mappings */
2791     if (cons != index) {
2792         rx_buf = &fp->rx_mbuf_chain[cons];
2793 
2794         if (rx_buf->m_map != NULL) {
2795             bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
2796                             BUS_DMASYNC_POSTREAD);
2797             bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
2798         }
2799 
2800         /*
2801          * We get here when the maximum number of rx buffers is less than
2802          * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL
2803          * it out here without concern of a memory leak.
2804          */
2805         fp->rx_mbuf_chain[cons].m = NULL;
2806     }
2807 
2808     /* update the Rx SW BD with the mbuf info from the TPA pool */
2809     fp->rx_mbuf_chain[index] = tmp_bd;
2810 
2811     /* update the Rx BD with the empty mbuf phys address from the TPA pool */
2812     rx_bd = &fp->rx_chain[index];
2813     rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr));
2814     rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr));
2815 }
2816 
2817 /*
2818  * When a TPA aggregation is completed, loop through the individual mbufs
2819  * of the aggregation, combining them into a single mbuf which will be sent
2820  * up the stack. Refill all freed SGEs with mbufs as we go along.
2821  */
2822 static int
2823 bxe_fill_frag_mbuf(struct bxe_softc          *sc,
2824                    struct bxe_fastpath       *fp,
2825                    struct bxe_sw_tpa_info    *tpa_info,
2826                    uint16_t                  queue,
2827                    uint16_t                  pages,
2828                    struct mbuf               *m,
2829 			       struct eth_end_agg_rx_cqe *cqe,
2830                    uint16_t                  cqe_idx)
2831 {
2832     struct mbuf *m_frag;
2833     uint32_t frag_len, frag_size, i;
2834     uint16_t sge_idx;
2835     int rc = 0;
2836     int j;
2837 
2838     frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd;
2839 
2840     BLOGD(sc, DBG_LRO,
2841           "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n",
2842           fp->index, queue, tpa_info->len_on_bd, frag_size, pages);
2843 
2844     /* make sure the aggregated frame is not too big to handle */
2845     if (pages > 8 * PAGES_PER_SGE) {
2846 
2847         uint32_t *tmp = (uint32_t *)cqe;
2848 
2849         BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! "
2850                   "pkt_len=%d len_on_bd=%d frag_size=%d\n",
2851               fp->index, cqe_idx, pages, le16toh(cqe->pkt_len),
2852               tpa_info->len_on_bd, frag_size);
2853 
2854         BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n",
2855             *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7));
2856 
2857         bxe_panic(sc, ("sge page count error\n"));
2858         return (EINVAL);
2859     }
2860 
2861     /*
2862      * Scan through the scatter gather list pulling individual mbufs into a
2863      * single mbuf for the host stack.
2864      */
2865     for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
2866         sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j]));
2867 
2868         /*
2869          * Firmware gives the indices of the SGE as if the ring is an array
2870          * (meaning that the "next" element will consume 2 indices).
2871          */
2872         frag_len = min(frag_size, (uint32_t)(SGE_PAGES));
2873 
2874         BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d "
2875                            "sge_idx=%d frag_size=%d frag_len=%d\n",
2876               fp->index, queue, i, j, sge_idx, frag_size, frag_len);
2877 
2878         m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
2879 
2880         /* allocate a new mbuf for the SGE */
2881         rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
2882         if (rc) {
2883             /* Leave all remaining SGEs in the ring! */
2884             return (rc);
2885         }
2886 
2887         /* update the fragment length */
2888         m_frag->m_len = frag_len;
2889 
2890         /* concatenate the fragment to the head mbuf */
2891         m_cat(m, m_frag);
2892         fp->eth_q_stats.mbuf_alloc_sge--;
2893 
2894         /* update the TPA mbuf size and remaining fragment size */
2895         m->m_pkthdr.len += frag_len;
2896         frag_size -= frag_len;
2897     }
2898 
2899     BLOGD(sc, DBG_LRO,
2900           "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n",
2901           fp->index, queue, frag_size);
2902 
2903     return (rc);
2904 }
2905 
2906 static inline void
2907 bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp)
2908 {
2909     int i, j;
2910 
2911     for (i = 1; i <= RX_SGE_NUM_PAGES; i++) {
2912         int idx = RX_SGE_TOTAL_PER_PAGE * i - 1;
2913 
2914         for (j = 0; j < 2; j++) {
2915             BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx);
2916             idx--;
2917         }
2918     }
2919 }
2920 
2921 static inline void
2922 bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp)
2923 {
2924     /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */
2925     memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask));
2926 
2927     /*
2928      * Clear the two last indices in the page to 1. These are the indices that
2929      * correspond to the "next" element, hence will never be indicated and
2930      * should be removed from the calculations.
2931      */
2932     bxe_clear_sge_mask_next_elems(fp);
2933 }
2934 
2935 static inline void
2936 bxe_update_last_max_sge(struct bxe_fastpath *fp,
2937                         uint16_t            idx)
2938 {
2939     uint16_t last_max = fp->last_max_sge;
2940 
2941     if (SUB_S16(idx, last_max) > 0) {
2942         fp->last_max_sge = idx;
2943     }
2944 }
2945 
2946 static inline void
2947 bxe_update_sge_prod(struct bxe_softc          *sc,
2948                     struct bxe_fastpath       *fp,
2949                     uint16_t                  sge_len,
2950                     union eth_sgl_or_raw_data *cqe)
2951 {
2952     uint16_t last_max, last_elem, first_elem;
2953     uint16_t delta = 0;
2954     uint16_t i;
2955 
2956     if (!sge_len) {
2957         return;
2958     }
2959 
2960     /* first mark all used pages */
2961     for (i = 0; i < sge_len; i++) {
2962         BIT_VEC64_CLEAR_BIT(fp->sge_mask,
2963                             RX_SGE(le16toh(cqe->sgl[i])));
2964     }
2965 
2966     BLOGD(sc, DBG_LRO,
2967           "fp[%02d] fp_cqe->sgl[%d] = %d\n",
2968           fp->index, sge_len - 1,
2969           le16toh(cqe->sgl[sge_len - 1]));
2970 
2971     /* assume that the last SGE index is the biggest */
2972     bxe_update_last_max_sge(fp,
2973                             le16toh(cqe->sgl[sge_len - 1]));
2974 
2975     last_max = RX_SGE(fp->last_max_sge);
2976     last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
2977     first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
2978 
2979     /* if ring is not full */
2980     if (last_elem + 1 != first_elem) {
2981         last_elem++;
2982     }
2983 
2984     /* now update the prod */
2985     for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) {
2986         if (__predict_true(fp->sge_mask[i])) {
2987             break;
2988         }
2989 
2990         fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
2991         delta += BIT_VEC64_ELEM_SZ;
2992     }
2993 
2994     if (delta > 0) {
2995         fp->rx_sge_prod += delta;
2996         /* clear page-end entries */
2997         bxe_clear_sge_mask_next_elems(fp);
2998     }
2999 
3000     BLOGD(sc, DBG_LRO,
3001           "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n",
3002           fp->index, fp->last_max_sge, fp->rx_sge_prod);
3003 }
3004 
3005 /*
3006  * The aggregation on the current TPA queue has completed. Pull the individual
3007  * mbuf fragments together into a single mbuf, perform all necessary checksum
3008  * calculations, and send the resuting mbuf to the stack.
3009  */
3010 static void
3011 bxe_tpa_stop(struct bxe_softc          *sc,
3012              struct bxe_fastpath       *fp,
3013              struct bxe_sw_tpa_info    *tpa_info,
3014              uint16_t                  queue,
3015              uint16_t                  pages,
3016 			 struct eth_end_agg_rx_cqe *cqe,
3017              uint16_t                  cqe_idx)
3018 {
3019     if_t ifp = sc->ifp;
3020     struct mbuf *m;
3021     int rc = 0;
3022 
3023     BLOGD(sc, DBG_LRO,
3024           "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n",
3025           fp->index, queue, tpa_info->placement_offset,
3026           le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag);
3027 
3028     m = tpa_info->bd.m;
3029 
3030     /* allocate a replacement before modifying existing mbuf */
3031     rc = bxe_alloc_rx_tpa_mbuf(fp, queue);
3032     if (rc) {
3033         /* drop the frame and log an error */
3034         fp->eth_q_stats.rx_soft_errors++;
3035         goto bxe_tpa_stop_exit;
3036     }
3037 
3038     /* we have a replacement, fixup the current mbuf */
3039     m_adj(m, tpa_info->placement_offset);
3040     m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd;
3041 
3042     /* mark the checksums valid (taken care of by the firmware) */
3043     fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3044     fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3045     m->m_pkthdr.csum_data = 0xffff;
3046     m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED |
3047                                CSUM_IP_VALID   |
3048                                CSUM_DATA_VALID |
3049                                CSUM_PSEUDO_HDR);
3050 
3051     /* aggregate all of the SGEs into a single mbuf */
3052     rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx);
3053     if (rc) {
3054         /* drop the packet and log an error */
3055         fp->eth_q_stats.rx_soft_errors++;
3056         m_freem(m);
3057     } else {
3058         if (tpa_info->parsing_flags & PARSING_FLAGS_INNER_VLAN_EXIST) {
3059             m->m_pkthdr.ether_vtag = tpa_info->vlan_tag;
3060             m->m_flags |= M_VLANTAG;
3061         }
3062 
3063         /* assign packet to this interface interface */
3064         if_setrcvif(m, ifp);
3065 
3066 #if __FreeBSD_version >= 800000
3067         /* specify what RSS queue was used for this flow */
3068         m->m_pkthdr.flowid = fp->index;
3069         BXE_SET_FLOWID(m);
3070 #endif
3071 
3072         if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3073         fp->eth_q_stats.rx_tpa_pkts++;
3074 
3075         /* pass the frame to the stack */
3076         if_input(ifp, m);
3077     }
3078 
3079     /* we passed an mbuf up the stack or dropped the frame */
3080     fp->eth_q_stats.mbuf_alloc_tpa--;
3081 
3082 bxe_tpa_stop_exit:
3083 
3084     fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP;
3085     fp->rx_tpa_queue_used &= ~(1 << queue);
3086 }
3087 
3088 static uint8_t
3089 bxe_service_rxsgl(
3090                  struct bxe_fastpath *fp,
3091                  uint16_t len,
3092                  uint16_t lenonbd,
3093                  struct mbuf *m,
3094                  struct eth_fast_path_rx_cqe *cqe_fp)
3095 {
3096     struct mbuf *m_frag;
3097     uint16_t frags, frag_len;
3098     uint16_t sge_idx = 0;
3099     uint16_t j;
3100     uint8_t i, rc = 0;
3101     uint32_t frag_size;
3102 
3103     /* adjust the mbuf */
3104     m->m_len = lenonbd;
3105 
3106     frag_size =  len - lenonbd;
3107     frags = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3108 
3109     for (i = 0, j = 0; i < frags; i += PAGES_PER_SGE, j++) {
3110         sge_idx = RX_SGE(le16toh(cqe_fp->sgl_or_raw_data.sgl[j]));
3111 
3112         m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
3113         frag_len = min(frag_size, (uint32_t)(SGE_PAGE_SIZE));
3114         m_frag->m_len = frag_len;
3115 
3116        /* allocate a new mbuf for the SGE */
3117         rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
3118         if (rc) {
3119             /* Leave all remaining SGEs in the ring! */
3120             return (rc);
3121         }
3122         fp->eth_q_stats.mbuf_alloc_sge--;
3123 
3124         /* concatenate the fragment to the head mbuf */
3125         m_cat(m, m_frag);
3126 
3127         frag_size -= frag_len;
3128     }
3129 
3130     bxe_update_sge_prod(fp->sc, fp, frags, &cqe_fp->sgl_or_raw_data);
3131 
3132     return rc;
3133 }
3134 
3135 static uint8_t
3136 bxe_rxeof(struct bxe_softc    *sc,
3137           struct bxe_fastpath *fp)
3138 {
3139     if_t ifp = sc->ifp;
3140     uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
3141     uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod;
3142     int rx_pkts = 0;
3143     int rc = 0;
3144 
3145     BXE_FP_RX_LOCK(fp);
3146 
3147     /* CQ "next element" is of the size of the regular element */
3148     hw_cq_cons = le16toh(*fp->rx_cq_cons_sb);
3149     if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) {
3150         hw_cq_cons++;
3151     }
3152 
3153     bd_cons = fp->rx_bd_cons;
3154     bd_prod = fp->rx_bd_prod;
3155     bd_prod_fw = bd_prod;
3156     sw_cq_cons = fp->rx_cq_cons;
3157     sw_cq_prod = fp->rx_cq_prod;
3158 
3159     /*
3160      * Memory barrier necessary as speculative reads of the rx
3161      * buffer can be ahead of the index in the status block
3162      */
3163     rmb();
3164 
3165     BLOGD(sc, DBG_RX,
3166           "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n",
3167           fp->index, hw_cq_cons, sw_cq_cons);
3168 
3169     while (sw_cq_cons != hw_cq_cons) {
3170         struct bxe_sw_rx_bd *rx_buf = NULL;
3171         union eth_rx_cqe *cqe;
3172         struct eth_fast_path_rx_cqe *cqe_fp;
3173         uint8_t cqe_fp_flags;
3174         enum eth_rx_cqe_type cqe_fp_type;
3175         uint16_t len, lenonbd,  pad;
3176         struct mbuf *m = NULL;
3177 
3178         comp_ring_cons = RCQ(sw_cq_cons);
3179         bd_prod = RX_BD(bd_prod);
3180         bd_cons = RX_BD(bd_cons);
3181 
3182         cqe          = &fp->rcq_chain[comp_ring_cons];
3183         cqe_fp       = &cqe->fast_path_cqe;
3184         cqe_fp_flags = cqe_fp->type_error_flags;
3185         cqe_fp_type  = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
3186 
3187         BLOGD(sc, DBG_RX,
3188               "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d "
3189               "BD prod=%d cons=%d CQE type=0x%x err=0x%x "
3190               "status=0x%x rss_hash=0x%x vlan=0x%x len=%u lenonbd=%u\n",
3191               fp->index,
3192               hw_cq_cons,
3193               sw_cq_cons,
3194               bd_prod,
3195               bd_cons,
3196               CQE_TYPE(cqe_fp_flags),
3197               cqe_fp_flags,
3198               cqe_fp->status_flags,
3199               le32toh(cqe_fp->rss_hash_result),
3200               le16toh(cqe_fp->vlan_tag),
3201               le16toh(cqe_fp->pkt_len_or_gro_seg_len),
3202               le16toh(cqe_fp->len_on_bd));
3203 
3204         /* is this a slowpath msg? */
3205         if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) {
3206             bxe_sp_event(sc, fp, cqe);
3207             goto next_cqe;
3208         }
3209 
3210         rx_buf = &fp->rx_mbuf_chain[bd_cons];
3211 
3212         if (!CQE_TYPE_FAST(cqe_fp_type)) {
3213             struct bxe_sw_tpa_info *tpa_info;
3214             uint16_t frag_size, pages;
3215             uint8_t queue;
3216 
3217             if (CQE_TYPE_START(cqe_fp_type)) {
3218                 bxe_tpa_start(sc, fp, cqe_fp->queue_index,
3219                               bd_cons, bd_prod, cqe_fp);
3220                 m = NULL; /* packet not ready yet */
3221                 goto next_rx;
3222             }
3223 
3224             KASSERT(CQE_TYPE_STOP(cqe_fp_type),
3225                     ("CQE type is not STOP! (0x%x)\n", cqe_fp_type));
3226 
3227             queue = cqe->end_agg_cqe.queue_index;
3228             tpa_info = &fp->rx_tpa_info[queue];
3229 
3230             BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n",
3231                   fp->index, queue);
3232 
3233             frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) -
3234                          tpa_info->len_on_bd);
3235             pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3236 
3237             bxe_tpa_stop(sc, fp, tpa_info, queue, pages,
3238                          &cqe->end_agg_cqe, comp_ring_cons);
3239 
3240             bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe.sgl_or_raw_data);
3241 
3242             goto next_cqe;
3243         }
3244 
3245         /* non TPA */
3246 
3247         /* is this an error packet? */
3248         if (__predict_false(cqe_fp_flags &
3249                             ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) {
3250             BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons);
3251             fp->eth_q_stats.rx_soft_errors++;
3252             goto next_rx;
3253         }
3254 
3255         len = le16toh(cqe_fp->pkt_len_or_gro_seg_len);
3256         lenonbd = le16toh(cqe_fp->len_on_bd);
3257         pad = cqe_fp->placement_offset;
3258 
3259         m = rx_buf->m;
3260 
3261         if (__predict_false(m == NULL)) {
3262             BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n",
3263                   bd_cons, fp->index);
3264             goto next_rx;
3265         }
3266 
3267         /* XXX double copy if packet length under a threshold */
3268 
3269         /*
3270          * If all the buffer descriptors are filled with mbufs then fill in
3271          * the current consumer index with a new BD. Else if a maximum Rx
3272          * buffer limit is imposed then fill in the next producer index.
3273          */
3274         rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons,
3275                                   (sc->max_rx_bufs != RX_BD_USABLE) ?
3276                                       bd_prod : bd_cons);
3277         if (rc != 0) {
3278 
3279             /* we simply reuse the received mbuf and don't post it to the stack */
3280             m = NULL;
3281 
3282             BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
3283                   fp->index, rc);
3284             fp->eth_q_stats.rx_soft_errors++;
3285 
3286             if (sc->max_rx_bufs != RX_BD_USABLE) {
3287                 /* copy this consumer index to the producer index */
3288                 memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf,
3289                        sizeof(struct bxe_sw_rx_bd));
3290                 memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd));
3291             }
3292 
3293             goto next_rx;
3294         }
3295 
3296         /* current mbuf was detached from the bd */
3297         fp->eth_q_stats.mbuf_alloc_rx--;
3298 
3299         /* we allocated a replacement mbuf, fixup the current one */
3300         m_adj(m, pad);
3301         m->m_pkthdr.len = m->m_len = len;
3302 
3303         if ((len > 60) && (len > lenonbd)) {
3304             fp->eth_q_stats.rx_bxe_service_rxsgl++;
3305             rc = bxe_service_rxsgl(fp, len, lenonbd, m, cqe_fp);
3306             if (rc)
3307                 break;
3308             fp->eth_q_stats.rx_jumbo_sge_pkts++;
3309         } else if (lenonbd < len) {
3310             fp->eth_q_stats.rx_erroneous_jumbo_sge_pkts++;
3311         }
3312 
3313         /* assign packet to this interface interface */
3314 	if_setrcvif(m, ifp);
3315 
3316         /* assume no hardware checksum has complated */
3317         m->m_pkthdr.csum_flags = 0;
3318 
3319         /* validate checksum if offload enabled */
3320         if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
3321             /* check for a valid IP frame */
3322             if (!(cqe->fast_path_cqe.status_flags &
3323                   ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) {
3324                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3325                 if (__predict_false(cqe_fp_flags &
3326                                     ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) {
3327                     fp->eth_q_stats.rx_hw_csum_errors++;
3328                 } else {
3329                     fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3330                     m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3331                 }
3332             }
3333 
3334             /* check for a valid TCP/UDP frame */
3335             if (!(cqe->fast_path_cqe.status_flags &
3336                   ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) {
3337                 if (__predict_false(cqe_fp_flags &
3338                                     ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) {
3339                     fp->eth_q_stats.rx_hw_csum_errors++;
3340                 } else {
3341                     fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3342                     m->m_pkthdr.csum_data = 0xFFFF;
3343                     m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID |
3344                                                CSUM_PSEUDO_HDR);
3345                 }
3346             }
3347         }
3348 
3349         /* if there is a VLAN tag then flag that info */
3350         if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_INNER_VLAN_EXIST) {
3351             m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag;
3352             m->m_flags |= M_VLANTAG;
3353         }
3354 
3355 #if __FreeBSD_version >= 800000
3356         /* specify what RSS queue was used for this flow */
3357         m->m_pkthdr.flowid = fp->index;
3358         BXE_SET_FLOWID(m);
3359 #endif
3360 
3361 next_rx:
3362 
3363         bd_cons    = RX_BD_NEXT(bd_cons);
3364         bd_prod    = RX_BD_NEXT(bd_prod);
3365         bd_prod_fw = RX_BD_NEXT(bd_prod_fw);
3366 
3367         /* pass the frame to the stack */
3368         if (__predict_true(m != NULL)) {
3369             if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3370             rx_pkts++;
3371             if_input(ifp, m);
3372         }
3373 
3374 next_cqe:
3375 
3376         sw_cq_prod = RCQ_NEXT(sw_cq_prod);
3377         sw_cq_cons = RCQ_NEXT(sw_cq_cons);
3378 
3379         /* limit spinning on the queue */
3380         if (rc != 0)
3381             break;
3382 
3383         if (rx_pkts == sc->rx_budget) {
3384             fp->eth_q_stats.rx_budget_reached++;
3385             break;
3386         }
3387     } /* while work to do */
3388 
3389     fp->rx_bd_cons = bd_cons;
3390     fp->rx_bd_prod = bd_prod_fw;
3391     fp->rx_cq_cons = sw_cq_cons;
3392     fp->rx_cq_prod = sw_cq_prod;
3393 
3394     /* Update producers */
3395     bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod);
3396 
3397     fp->eth_q_stats.rx_pkts += rx_pkts;
3398     fp->eth_q_stats.rx_calls++;
3399 
3400     BXE_FP_RX_UNLOCK(fp);
3401 
3402     return (sw_cq_cons != hw_cq_cons);
3403 }
3404 
3405 static uint16_t
3406 bxe_free_tx_pkt(struct bxe_softc    *sc,
3407                 struct bxe_fastpath *fp,
3408                 uint16_t            idx)
3409 {
3410     struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx];
3411     struct eth_tx_start_bd *tx_start_bd;
3412     uint16_t bd_idx = TX_BD(tx_buf->first_bd);
3413     uint16_t new_cons;
3414     int nbd;
3415 
3416     /* unmap the mbuf from non-paged memory */
3417     bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
3418 
3419     tx_start_bd = &fp->tx_chain[bd_idx].start_bd;
3420     nbd = le16toh(tx_start_bd->nbd) - 1;
3421 
3422     new_cons = (tx_buf->first_bd + nbd);
3423 
3424     /* free the mbuf */
3425     if (__predict_true(tx_buf->m != NULL)) {
3426         m_freem(tx_buf->m);
3427         fp->eth_q_stats.mbuf_alloc_tx--;
3428     } else {
3429         fp->eth_q_stats.tx_chain_lost_mbuf++;
3430     }
3431 
3432     tx_buf->m = NULL;
3433     tx_buf->first_bd = 0;
3434 
3435     return (new_cons);
3436 }
3437 
3438 /* transmit timeout watchdog */
3439 static int
3440 bxe_watchdog(struct bxe_softc    *sc,
3441              struct bxe_fastpath *fp)
3442 {
3443     BXE_FP_TX_LOCK(fp);
3444 
3445     if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) {
3446         BXE_FP_TX_UNLOCK(fp);
3447         return (0);
3448     }
3449 
3450     BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index);
3451     if(sc->trigger_grcdump) {
3452          /* taking grcdump */
3453          bxe_grc_dump(sc);
3454     }
3455 
3456     BXE_FP_TX_UNLOCK(fp);
3457 
3458     atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT);
3459     taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
3460 
3461     return (-1);
3462 }
3463 
3464 /* processes transmit completions */
3465 static uint8_t
3466 bxe_txeof(struct bxe_softc    *sc,
3467           struct bxe_fastpath *fp)
3468 {
3469     if_t ifp = sc->ifp;
3470     uint16_t bd_cons, hw_cons, sw_cons, pkt_cons;
3471     uint16_t tx_bd_avail;
3472 
3473     BXE_FP_TX_LOCK_ASSERT(fp);
3474 
3475     bd_cons = fp->tx_bd_cons;
3476     hw_cons = le16toh(*fp->tx_cons_sb);
3477     sw_cons = fp->tx_pkt_cons;
3478 
3479     while (sw_cons != hw_cons) {
3480         pkt_cons = TX_BD(sw_cons);
3481 
3482         BLOGD(sc, DBG_TX,
3483               "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n",
3484               fp->index, hw_cons, sw_cons, pkt_cons);
3485 
3486         bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons);
3487 
3488         sw_cons++;
3489     }
3490 
3491     fp->tx_pkt_cons = sw_cons;
3492     fp->tx_bd_cons  = bd_cons;
3493 
3494     BLOGD(sc, DBG_TX,
3495           "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n",
3496           fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod);
3497 
3498     mb();
3499 
3500     tx_bd_avail = bxe_tx_avail(sc, fp);
3501 
3502     if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
3503         if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
3504     } else {
3505         if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
3506     }
3507 
3508     if (fp->tx_pkt_prod != fp->tx_pkt_cons) {
3509         /* reset the watchdog timer if there are pending transmits */
3510         fp->watchdog_timer = BXE_TX_TIMEOUT;
3511         return (TRUE);
3512     } else {
3513         /* clear watchdog when there are no pending transmits */
3514         fp->watchdog_timer = 0;
3515         return (FALSE);
3516     }
3517 }
3518 
3519 static void
3520 bxe_drain_tx_queues(struct bxe_softc *sc)
3521 {
3522     struct bxe_fastpath *fp;
3523     int i, count;
3524 
3525     /* wait until all TX fastpath tasks have completed */
3526     for (i = 0; i < sc->num_queues; i++) {
3527         fp = &sc->fp[i];
3528 
3529         count = 1000;
3530 
3531         while (bxe_has_tx_work(fp)) {
3532 
3533             BXE_FP_TX_LOCK(fp);
3534             bxe_txeof(sc, fp);
3535             BXE_FP_TX_UNLOCK(fp);
3536 
3537             if (count == 0) {
3538                 BLOGE(sc, "Timeout waiting for fp[%d] "
3539                           "transmits to complete!\n", i);
3540                 bxe_panic(sc, ("tx drain failure\n"));
3541                 return;
3542             }
3543 
3544             count--;
3545             DELAY(1000);
3546             rmb();
3547         }
3548     }
3549 
3550     return;
3551 }
3552 
3553 static int
3554 bxe_del_all_macs(struct bxe_softc          *sc,
3555                  struct ecore_vlan_mac_obj *mac_obj,
3556                  int                       mac_type,
3557                  uint8_t                   wait_for_comp)
3558 {
3559     unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
3560     int rc;
3561 
3562     /* wait for completion of requested */
3563     if (wait_for_comp) {
3564         bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
3565     }
3566 
3567     /* Set the mac type of addresses we want to clear */
3568     bxe_set_bit(mac_type, &vlan_mac_flags);
3569 
3570     rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
3571     if (rc < 0) {
3572         BLOGE(sc, "Failed to delete MACs (%d) mac_type %d wait_for_comp 0x%x\n",
3573             rc, mac_type, wait_for_comp);
3574     }
3575 
3576     return (rc);
3577 }
3578 
3579 static int
3580 bxe_fill_accept_flags(struct bxe_softc *sc,
3581                       uint32_t         rx_mode,
3582                       unsigned long    *rx_accept_flags,
3583                       unsigned long    *tx_accept_flags)
3584 {
3585     /* Clear the flags first */
3586     *rx_accept_flags = 0;
3587     *tx_accept_flags = 0;
3588 
3589     switch (rx_mode) {
3590     case BXE_RX_MODE_NONE:
3591         /*
3592          * 'drop all' supersedes any accept flags that may have been
3593          * passed to the function.
3594          */
3595         break;
3596 
3597     case BXE_RX_MODE_NORMAL:
3598         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3599         bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags);
3600         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3601 
3602         /* internal switching mode */
3603         bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3604         bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags);
3605         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3606 
3607         break;
3608 
3609     case BXE_RX_MODE_ALLMULTI:
3610         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3611         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3612         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3613 
3614         /* internal switching mode */
3615         bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3616         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3617         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3618 
3619         break;
3620 
3621     case BXE_RX_MODE_PROMISC:
3622         /*
3623          * According to deffinition of SI mode, iface in promisc mode
3624          * should receive matched and unmatched (in resolution of port)
3625          * unicast packets.
3626          */
3627         bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags);
3628         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3629         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3630         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3631 
3632         /* internal switching mode */
3633         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3634         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3635 
3636         if (IS_MF_SI(sc)) {
3637             bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags);
3638         } else {
3639             bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3640         }
3641 
3642         break;
3643 
3644     default:
3645         BLOGE(sc, "Unknown rx_mode (0x%x)\n", rx_mode);
3646         return (-1);
3647     }
3648 
3649     /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
3650     if (rx_mode != BXE_RX_MODE_NONE) {
3651         bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags);
3652         bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags);
3653     }
3654 
3655     return (0);
3656 }
3657 
3658 static int
3659 bxe_set_q_rx_mode(struct bxe_softc *sc,
3660                   uint8_t          cl_id,
3661                   unsigned long    rx_mode_flags,
3662                   unsigned long    rx_accept_flags,
3663                   unsigned long    tx_accept_flags,
3664                   unsigned long    ramrod_flags)
3665 {
3666     struct ecore_rx_mode_ramrod_params ramrod_param;
3667     int rc;
3668 
3669     memset(&ramrod_param, 0, sizeof(ramrod_param));
3670 
3671     /* Prepare ramrod parameters */
3672     ramrod_param.cid = 0;
3673     ramrod_param.cl_id = cl_id;
3674     ramrod_param.rx_mode_obj = &sc->rx_mode_obj;
3675     ramrod_param.func_id = SC_FUNC(sc);
3676 
3677     ramrod_param.pstate = &sc->sp_state;
3678     ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING;
3679 
3680     ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata);
3681     ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata);
3682 
3683     bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
3684 
3685     ramrod_param.ramrod_flags = ramrod_flags;
3686     ramrod_param.rx_mode_flags = rx_mode_flags;
3687 
3688     ramrod_param.rx_accept_flags = rx_accept_flags;
3689     ramrod_param.tx_accept_flags = tx_accept_flags;
3690 
3691     rc = ecore_config_rx_mode(sc, &ramrod_param);
3692     if (rc < 0) {
3693         BLOGE(sc, "Set rx_mode %d cli_id 0x%x rx_mode_flags 0x%x "
3694             "rx_accept_flags 0x%x tx_accept_flags 0x%x "
3695             "ramrod_flags 0x%x rc %d failed\n", sc->rx_mode, cl_id,
3696             (uint32_t)rx_mode_flags, (uint32_t)rx_accept_flags,
3697             (uint32_t)tx_accept_flags, (uint32_t)ramrod_flags, rc);
3698         return (rc);
3699     }
3700 
3701     return (0);
3702 }
3703 
3704 static int
3705 bxe_set_storm_rx_mode(struct bxe_softc *sc)
3706 {
3707     unsigned long rx_mode_flags = 0, ramrod_flags = 0;
3708     unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
3709     int rc;
3710 
3711     rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags,
3712                                &tx_accept_flags);
3713     if (rc) {
3714         return (rc);
3715     }
3716 
3717     bxe_set_bit(RAMROD_RX, &ramrod_flags);
3718     bxe_set_bit(RAMROD_TX, &ramrod_flags);
3719 
3720     /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */
3721     return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags,
3722                               rx_accept_flags, tx_accept_flags,
3723                               ramrod_flags));
3724 }
3725 
3726 /* returns the "mcp load_code" according to global load_count array */
3727 static int
3728 bxe_nic_load_no_mcp(struct bxe_softc *sc)
3729 {
3730     int path = SC_PATH(sc);
3731     int port = SC_PORT(sc);
3732 
3733     BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3734           path, load_count[path][0], load_count[path][1],
3735           load_count[path][2]);
3736     load_count[path][0]++;
3737     load_count[path][1 + port]++;
3738     BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3739           path, load_count[path][0], load_count[path][1],
3740           load_count[path][2]);
3741     if (load_count[path][0] == 1) {
3742         return (FW_MSG_CODE_DRV_LOAD_COMMON);
3743     } else if (load_count[path][1 + port] == 1) {
3744         return (FW_MSG_CODE_DRV_LOAD_PORT);
3745     } else {
3746         return (FW_MSG_CODE_DRV_LOAD_FUNCTION);
3747     }
3748 }
3749 
3750 /* returns the "mcp load_code" according to global load_count array */
3751 static int
3752 bxe_nic_unload_no_mcp(struct bxe_softc *sc)
3753 {
3754     int port = SC_PORT(sc);
3755     int path = SC_PATH(sc);
3756 
3757     BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3758           path, load_count[path][0], load_count[path][1],
3759           load_count[path][2]);
3760     load_count[path][0]--;
3761     load_count[path][1 + port]--;
3762     BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3763           path, load_count[path][0], load_count[path][1],
3764           load_count[path][2]);
3765     if (load_count[path][0] == 0) {
3766         return (FW_MSG_CODE_DRV_UNLOAD_COMMON);
3767     } else if (load_count[path][1 + port] == 0) {
3768         return (FW_MSG_CODE_DRV_UNLOAD_PORT);
3769     } else {
3770         return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION);
3771     }
3772 }
3773 
3774 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */
3775 static uint32_t
3776 bxe_send_unload_req(struct bxe_softc *sc,
3777                     int              unload_mode)
3778 {
3779     uint32_t reset_code = 0;
3780 
3781     /* Select the UNLOAD request mode */
3782     if (unload_mode == UNLOAD_NORMAL) {
3783         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3784     } else {
3785         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3786     }
3787 
3788     /* Send the request to the MCP */
3789     if (!BXE_NOMCP(sc)) {
3790         reset_code = bxe_fw_command(sc, reset_code, 0);
3791     } else {
3792         reset_code = bxe_nic_unload_no_mcp(sc);
3793     }
3794 
3795     return (reset_code);
3796 }
3797 
3798 /* send UNLOAD_DONE command to the MCP */
3799 static void
3800 bxe_send_unload_done(struct bxe_softc *sc,
3801                      uint8_t          keep_link)
3802 {
3803     uint32_t reset_param =
3804         keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
3805 
3806     /* Report UNLOAD_DONE to MCP */
3807     if (!BXE_NOMCP(sc)) {
3808         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
3809     }
3810 }
3811 
3812 static int
3813 bxe_func_wait_started(struct bxe_softc *sc)
3814 {
3815     int tout = 50;
3816 
3817     if (!sc->port.pmf) {
3818         return (0);
3819     }
3820 
3821     /*
3822      * (assumption: No Attention from MCP at this stage)
3823      * PMF probably in the middle of TX disable/enable transaction
3824      * 1. Sync IRS for default SB
3825      * 2. Sync SP queue - this guarantees us that attention handling started
3826      * 3. Wait, that TX disable/enable transaction completes
3827      *
3828      * 1+2 guarantee that if DCBX attention was scheduled it already changed
3829      * pending bit of transaction from STARTED-->TX_STOPPED, if we already
3830      * received completion for the transaction the state is TX_STOPPED.
3831      * State will return to STARTED after completion of TX_STOPPED-->STARTED
3832      * transaction.
3833      */
3834 
3835     /* XXX make sure default SB ISR is done */
3836     /* need a way to synchronize an irq (intr_mtx?) */
3837 
3838     /* XXX flush any work queues */
3839 
3840     while (ecore_func_get_state(sc, &sc->func_obj) !=
3841            ECORE_F_STATE_STARTED && tout--) {
3842         DELAY(20000);
3843     }
3844 
3845     if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) {
3846         /*
3847          * Failed to complete the transaction in a "good way"
3848          * Force both transactions with CLR bit.
3849          */
3850         struct ecore_func_state_params func_params = { NULL };
3851 
3852         BLOGE(sc, "Unexpected function state! "
3853                   "Forcing STARTED-->TX_STOPPED-->STARTED\n");
3854 
3855         func_params.f_obj = &sc->func_obj;
3856         bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
3857 
3858         /* STARTED-->TX_STOPPED */
3859         func_params.cmd = ECORE_F_CMD_TX_STOP;
3860         ecore_func_state_change(sc, &func_params);
3861 
3862         /* TX_STOPPED-->STARTED */
3863         func_params.cmd = ECORE_F_CMD_TX_START;
3864         return (ecore_func_state_change(sc, &func_params));
3865     }
3866 
3867     return (0);
3868 }
3869 
3870 static int
3871 bxe_stop_queue(struct bxe_softc *sc,
3872                int              index)
3873 {
3874     struct bxe_fastpath *fp = &sc->fp[index];
3875     struct ecore_queue_state_params q_params = { NULL };
3876     int rc;
3877 
3878     BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index);
3879 
3880     q_params.q_obj = &sc->sp_objs[fp->index].q_obj;
3881     /* We want to wait for completion in this context */
3882     bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
3883 
3884     /* Stop the primary connection: */
3885 
3886     /* ...halt the connection */
3887     q_params.cmd = ECORE_Q_CMD_HALT;
3888     rc = ecore_queue_state_change(sc, &q_params);
3889     if (rc) {
3890         return (rc);
3891     }
3892 
3893     /* ...terminate the connection */
3894     q_params.cmd = ECORE_Q_CMD_TERMINATE;
3895     memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate));
3896     q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
3897     rc = ecore_queue_state_change(sc, &q_params);
3898     if (rc) {
3899         return (rc);
3900     }
3901 
3902     /* ...delete cfc entry */
3903     q_params.cmd = ECORE_Q_CMD_CFC_DEL;
3904     memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del));
3905     q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
3906     return (ecore_queue_state_change(sc, &q_params));
3907 }
3908 
3909 /* wait for the outstanding SP commands */
3910 static inline uint8_t
3911 bxe_wait_sp_comp(struct bxe_softc *sc,
3912                  unsigned long    mask)
3913 {
3914     unsigned long tmp;
3915     int tout = 5000; /* wait for 5 secs tops */
3916 
3917     while (tout--) {
3918         mb();
3919         if (!(atomic_load_acq_long(&sc->sp_state) & mask)) {
3920             return (TRUE);
3921         }
3922 
3923         DELAY(1000);
3924     }
3925 
3926     mb();
3927 
3928     tmp = atomic_load_acq_long(&sc->sp_state);
3929     if (tmp & mask) {
3930         BLOGE(sc, "Filtering completion timed out: "
3931                   "sp_state 0x%lx, mask 0x%lx\n",
3932               tmp, mask);
3933         return (FALSE);
3934     }
3935 
3936     return (FALSE);
3937 }
3938 
3939 static int
3940 bxe_func_stop(struct bxe_softc *sc)
3941 {
3942     struct ecore_func_state_params func_params = { NULL };
3943     int rc;
3944 
3945     /* prepare parameters for function state transitions */
3946     bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
3947     func_params.f_obj = &sc->func_obj;
3948     func_params.cmd = ECORE_F_CMD_STOP;
3949 
3950     /*
3951      * Try to stop the function the 'good way'. If it fails (in case
3952      * of a parity error during bxe_chip_cleanup()) and we are
3953      * not in a debug mode, perform a state transaction in order to
3954      * enable further HW_RESET transaction.
3955      */
3956     rc = ecore_func_state_change(sc, &func_params);
3957     if (rc) {
3958         BLOGE(sc, "FUNC_STOP ramrod failed. "
3959                   "Running a dry transaction (%d)\n", rc);
3960         bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
3961         return (ecore_func_state_change(sc, &func_params));
3962     }
3963 
3964     return (0);
3965 }
3966 
3967 static int
3968 bxe_reset_hw(struct bxe_softc *sc,
3969              uint32_t         load_code)
3970 {
3971     struct ecore_func_state_params func_params = { NULL };
3972 
3973     /* Prepare parameters for function state transitions */
3974     bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
3975 
3976     func_params.f_obj = &sc->func_obj;
3977     func_params.cmd = ECORE_F_CMD_HW_RESET;
3978 
3979     func_params.params.hw_init.load_phase = load_code;
3980 
3981     return (ecore_func_state_change(sc, &func_params));
3982 }
3983 
3984 static void
3985 bxe_int_disable_sync(struct bxe_softc *sc,
3986                      int              disable_hw)
3987 {
3988     if (disable_hw) {
3989         /* prevent the HW from sending interrupts */
3990         bxe_int_disable(sc);
3991     }
3992 
3993     /* XXX need a way to synchronize ALL irqs (intr_mtx?) */
3994     /* make sure all ISRs are done */
3995 
3996     /* XXX make sure sp_task is not running */
3997     /* cancel and flush work queues */
3998 }
3999 
4000 static void
4001 bxe_chip_cleanup(struct bxe_softc *sc,
4002                  uint32_t         unload_mode,
4003                  uint8_t          keep_link)
4004 {
4005     int port = SC_PORT(sc);
4006     struct ecore_mcast_ramrod_params rparam = { NULL };
4007     uint32_t reset_code;
4008     int i, rc = 0;
4009 
4010     bxe_drain_tx_queues(sc);
4011 
4012     /* give HW time to discard old tx messages */
4013     DELAY(1000);
4014 
4015     /* Clean all ETH MACs */
4016     rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE);
4017     if (rc < 0) {
4018         BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc);
4019     }
4020 
4021     /* Clean up UC list  */
4022     rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE);
4023     if (rc < 0) {
4024         BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc);
4025     }
4026 
4027     /* Disable LLH */
4028     if (!CHIP_IS_E1(sc)) {
4029         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
4030     }
4031 
4032     /* Set "drop all" to stop Rx */
4033 
4034     /*
4035      * We need to take the BXE_MCAST_LOCK() here in order to prevent
4036      * a race between the completion code and this code.
4037      */
4038     BXE_MCAST_LOCK(sc);
4039 
4040     if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
4041         bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
4042     } else {
4043         bxe_set_storm_rx_mode(sc);
4044     }
4045 
4046     /* Clean up multicast configuration */
4047     rparam.mcast_obj = &sc->mcast_obj;
4048     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4049     if (rc < 0) {
4050         BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4051     }
4052 
4053     BXE_MCAST_UNLOCK(sc);
4054 
4055     // XXX bxe_iov_chip_cleanup(sc);
4056 
4057     /*
4058      * Send the UNLOAD_REQUEST to the MCP. This will return if
4059      * this function should perform FUNCTION, PORT, or COMMON HW
4060      * reset.
4061      */
4062     reset_code = bxe_send_unload_req(sc, unload_mode);
4063 
4064     /*
4065      * (assumption: No Attention from MCP at this stage)
4066      * PMF probably in the middle of TX disable/enable transaction
4067      */
4068     rc = bxe_func_wait_started(sc);
4069     if (rc) {
4070         BLOGE(sc, "bxe_func_wait_started failed (%d)\n", rc);
4071     }
4072 
4073     /*
4074      * Close multi and leading connections
4075      * Completions for ramrods are collected in a synchronous way
4076      */
4077     for (i = 0; i < sc->num_queues; i++) {
4078         if (bxe_stop_queue(sc, i)) {
4079             goto unload_error;
4080         }
4081     }
4082 
4083     /*
4084      * If SP settings didn't get completed so far - something
4085      * very wrong has happen.
4086      */
4087     if (!bxe_wait_sp_comp(sc, ~0x0UL)) {
4088         BLOGE(sc, "Common slow path ramrods got stuck!(%d)\n", rc);
4089     }
4090 
4091 unload_error:
4092 
4093     rc = bxe_func_stop(sc);
4094     if (rc) {
4095         BLOGE(sc, "Function stop failed!(%d)\n", rc);
4096     }
4097 
4098     /* disable HW interrupts */
4099     bxe_int_disable_sync(sc, TRUE);
4100 
4101     /* detach interrupts */
4102     bxe_interrupt_detach(sc);
4103 
4104     /* Reset the chip */
4105     rc = bxe_reset_hw(sc, reset_code);
4106     if (rc) {
4107         BLOGE(sc, "Hardware reset failed(%d)\n", rc);
4108     }
4109 
4110     /* Report UNLOAD_DONE to MCP */
4111     bxe_send_unload_done(sc, keep_link);
4112 }
4113 
4114 static void
4115 bxe_disable_close_the_gate(struct bxe_softc *sc)
4116 {
4117     uint32_t val;
4118     int port = SC_PORT(sc);
4119 
4120     BLOGD(sc, DBG_LOAD,
4121           "Disabling 'close the gates'\n");
4122 
4123     if (CHIP_IS_E1(sc)) {
4124         uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4125                                MISC_REG_AEU_MASK_ATTN_FUNC_0;
4126         val = REG_RD(sc, addr);
4127         val &= ~(0x300);
4128         REG_WR(sc, addr, val);
4129     } else {
4130         val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK);
4131         val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
4132                  MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
4133         REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val);
4134     }
4135 }
4136 
4137 /*
4138  * Cleans the object that have internal lists without sending
4139  * ramrods. Should be run when interrutps are disabled.
4140  */
4141 static void
4142 bxe_squeeze_objects(struct bxe_softc *sc)
4143 {
4144     unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
4145     struct ecore_mcast_ramrod_params rparam = { NULL };
4146     struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
4147     int rc;
4148 
4149     /* Cleanup MACs' object first... */
4150 
4151     /* Wait for completion of requested */
4152     bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
4153     /* Perform a dry cleanup */
4154     bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
4155 
4156     /* Clean ETH primary MAC */
4157     bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags);
4158     rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags,
4159                              &ramrod_flags);
4160     if (rc != 0) {
4161         BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc);
4162     }
4163 
4164     /* Cleanup UC list */
4165     vlan_mac_flags = 0;
4166     bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags);
4167     rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags,
4168                              &ramrod_flags);
4169     if (rc != 0) {
4170         BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc);
4171     }
4172 
4173     /* Now clean mcast object... */
4174 
4175     rparam.mcast_obj = &sc->mcast_obj;
4176     bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
4177 
4178     /* Add a DEL command... */
4179     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4180     if (rc < 0) {
4181         BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4182     }
4183 
4184     /* now wait until all pending commands are cleared */
4185 
4186     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4187     while (rc != 0) {
4188         if (rc < 0) {
4189             BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc);
4190             return;
4191         }
4192 
4193         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4194     }
4195 }
4196 
4197 /* stop the controller */
4198 static __noinline int
4199 bxe_nic_unload(struct bxe_softc *sc,
4200                uint32_t         unload_mode,
4201                uint8_t          keep_link)
4202 {
4203     uint8_t global = FALSE;
4204     uint32_t val;
4205     int i;
4206 
4207     BXE_CORE_LOCK_ASSERT(sc);
4208 
4209     if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING);
4210 
4211     for (i = 0; i < sc->num_queues; i++) {
4212         struct bxe_fastpath *fp;
4213 
4214         fp = &sc->fp[i];
4215         BXE_FP_TX_LOCK(fp);
4216         BXE_FP_TX_UNLOCK(fp);
4217     }
4218 
4219     BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n");
4220 
4221     /* mark driver as unloaded in shmem2 */
4222     if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
4223         val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
4224         SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
4225                   val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
4226     }
4227 
4228     if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE &&
4229         (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) {
4230         /*
4231          * We can get here if the driver has been unloaded
4232          * during parity error recovery and is either waiting for a
4233          * leader to complete or for other functions to unload and
4234          * then ifconfig down has been issued. In this case we want to
4235          * unload and let other functions to complete a recovery
4236          * process.
4237          */
4238         sc->recovery_state = BXE_RECOVERY_DONE;
4239         sc->is_leader = 0;
4240         bxe_release_leader_lock(sc);
4241         mb();
4242 
4243         BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n");
4244         BLOGE(sc, "Can't unload in closed or error state recover_state 0x%x"
4245             " state = 0x%x\n", sc->recovery_state, sc->state);
4246         return (-1);
4247     }
4248 
4249     /*
4250      * Nothing to do during unload if previous bxe_nic_load()
4251      * did not completed successfully - all resourses are released.
4252      */
4253     if ((sc->state == BXE_STATE_CLOSED) ||
4254         (sc->state == BXE_STATE_ERROR)) {
4255         return (0);
4256     }
4257 
4258     sc->state = BXE_STATE_CLOSING_WAITING_HALT;
4259     mb();
4260 
4261     /* stop tx */
4262     bxe_tx_disable(sc);
4263 
4264     sc->rx_mode = BXE_RX_MODE_NONE;
4265     /* XXX set rx mode ??? */
4266 
4267     if (IS_PF(sc) && !sc->grcdump_done) {
4268         /* set ALWAYS_ALIVE bit in shmem */
4269         sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
4270 
4271         bxe_drv_pulse(sc);
4272 
4273         bxe_stats_handle(sc, STATS_EVENT_STOP);
4274         bxe_save_statistics(sc);
4275     }
4276 
4277     /* wait till consumers catch up with producers in all queues */
4278     bxe_drain_tx_queues(sc);
4279 
4280     /* if VF indicate to PF this function is going down (PF will delete sp
4281      * elements and clear initializations
4282      */
4283     if (IS_VF(sc)) {
4284         ; /* bxe_vfpf_close_vf(sc); */
4285     } else if (unload_mode != UNLOAD_RECOVERY) {
4286         /* if this is a normal/close unload need to clean up chip */
4287         if (!sc->grcdump_done)
4288             bxe_chip_cleanup(sc, unload_mode, keep_link);
4289     } else {
4290         /* Send the UNLOAD_REQUEST to the MCP */
4291         bxe_send_unload_req(sc, unload_mode);
4292 
4293         /*
4294          * Prevent transactions to host from the functions on the
4295          * engine that doesn't reset global blocks in case of global
4296          * attention once gloabl blocks are reset and gates are opened
4297          * (the engine which leader will perform the recovery
4298          * last).
4299          */
4300         if (!CHIP_IS_E1x(sc)) {
4301             bxe_pf_disable(sc);
4302         }
4303 
4304         /* disable HW interrupts */
4305         bxe_int_disable_sync(sc, TRUE);
4306 
4307         /* detach interrupts */
4308         bxe_interrupt_detach(sc);
4309 
4310         /* Report UNLOAD_DONE to MCP */
4311         bxe_send_unload_done(sc, FALSE);
4312     }
4313 
4314     /*
4315      * At this stage no more interrupts will arrive so we may safely clean
4316      * the queue'able objects here in case they failed to get cleaned so far.
4317      */
4318     if (IS_PF(sc)) {
4319         bxe_squeeze_objects(sc);
4320     }
4321 
4322     /* There should be no more pending SP commands at this stage */
4323     sc->sp_state = 0;
4324 
4325     sc->port.pmf = 0;
4326 
4327     bxe_free_fp_buffers(sc);
4328 
4329     if (IS_PF(sc)) {
4330         bxe_free_mem(sc);
4331     }
4332 
4333     bxe_free_fw_stats_mem(sc);
4334 
4335     sc->state = BXE_STATE_CLOSED;
4336 
4337     /*
4338      * Check if there are pending parity attentions. If there are - set
4339      * RECOVERY_IN_PROGRESS.
4340      */
4341     if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) {
4342         bxe_set_reset_in_progress(sc);
4343 
4344         /* Set RESET_IS_GLOBAL if needed */
4345         if (global) {
4346             bxe_set_reset_global(sc);
4347         }
4348     }
4349 
4350     /*
4351      * The last driver must disable a "close the gate" if there is no
4352      * parity attention or "process kill" pending.
4353      */
4354     if (IS_PF(sc) && !bxe_clear_pf_load(sc) &&
4355         bxe_reset_is_done(sc, SC_PATH(sc))) {
4356         bxe_disable_close_the_gate(sc);
4357     }
4358 
4359     BLOGD(sc, DBG_LOAD, "Ended NIC unload\n");
4360 
4361     return (0);
4362 }
4363 
4364 /*
4365  * Called by the OS to set various media options (i.e. link, speed, etc.) when
4366  * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...".
4367  */
4368 static int
4369 bxe_ifmedia_update(struct ifnet  *ifp)
4370 {
4371     struct bxe_softc *sc = (struct bxe_softc *)if_getsoftc(ifp);
4372     struct ifmedia *ifm;
4373 
4374     ifm = &sc->ifmedia;
4375 
4376     /* We only support Ethernet media type. */
4377     if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
4378         return (EINVAL);
4379     }
4380 
4381     switch (IFM_SUBTYPE(ifm->ifm_media)) {
4382     case IFM_AUTO:
4383          break;
4384     case IFM_10G_CX4:
4385     case IFM_10G_SR:
4386     case IFM_10G_T:
4387     case IFM_10G_TWINAX:
4388     default:
4389         /* We don't support changing the media type. */
4390         BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n",
4391               IFM_SUBTYPE(ifm->ifm_media));
4392         return (EINVAL);
4393     }
4394 
4395     return (0);
4396 }
4397 
4398 /*
4399  * Called by the OS to get the current media status (i.e. link, speed, etc.).
4400  */
4401 static void
4402 bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
4403 {
4404     struct bxe_softc *sc = if_getsoftc(ifp);
4405 
4406     /* Report link down if the driver isn't running. */
4407     if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
4408         ifmr->ifm_active |= IFM_NONE;
4409         return;
4410     }
4411 
4412     /* Setup the default interface info. */
4413     ifmr->ifm_status = IFM_AVALID;
4414     ifmr->ifm_active = IFM_ETHER;
4415 
4416     if (sc->link_vars.link_up) {
4417         ifmr->ifm_status |= IFM_ACTIVE;
4418     } else {
4419         ifmr->ifm_active |= IFM_NONE;
4420         return;
4421     }
4422 
4423     ifmr->ifm_active |= sc->media;
4424 
4425     if (sc->link_vars.duplex == DUPLEX_FULL) {
4426         ifmr->ifm_active |= IFM_FDX;
4427     } else {
4428         ifmr->ifm_active |= IFM_HDX;
4429     }
4430 }
4431 
4432 static void
4433 bxe_handle_chip_tq(void *context,
4434                    int  pending)
4435 {
4436     struct bxe_softc *sc = (struct bxe_softc *)context;
4437     long work = atomic_load_acq_long(&sc->chip_tq_flags);
4438 
4439     switch (work)
4440     {
4441 
4442     case CHIP_TQ_REINIT:
4443         if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
4444             /* restart the interface */
4445             BLOGD(sc, DBG_LOAD, "Restarting the interface...\n");
4446             bxe_periodic_stop(sc);
4447             BXE_CORE_LOCK(sc);
4448             bxe_stop_locked(sc);
4449             bxe_init_locked(sc);
4450             BXE_CORE_UNLOCK(sc);
4451         }
4452         break;
4453 
4454     default:
4455         break;
4456     }
4457 }
4458 
4459 /*
4460  * Handles any IOCTL calls from the operating system.
4461  *
4462  * Returns:
4463  *   0 = Success, >0 Failure
4464  */
4465 static int
4466 bxe_ioctl(if_t ifp,
4467           u_long       command,
4468           caddr_t      data)
4469 {
4470     struct bxe_softc *sc = if_getsoftc(ifp);
4471     struct ifreq *ifr = (struct ifreq *)data;
4472     int mask = 0;
4473     int reinit = 0;
4474     int error = 0;
4475 
4476     int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN);
4477     int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING);
4478 
4479     switch (command)
4480     {
4481     case SIOCSIFMTU:
4482         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n",
4483               ifr->ifr_mtu);
4484 
4485         if (sc->mtu == ifr->ifr_mtu) {
4486             /* nothing to change */
4487             break;
4488         }
4489 
4490         if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) {
4491             BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n",
4492                   ifr->ifr_mtu, mtu_min, mtu_max);
4493             error = EINVAL;
4494             break;
4495         }
4496 
4497         atomic_store_rel_int((volatile unsigned int *)&sc->mtu,
4498                              (unsigned long)ifr->ifr_mtu);
4499 	/*
4500         atomic_store_rel_long((volatile unsigned long *)&if_getmtu(ifp),
4501                               (unsigned long)ifr->ifr_mtu);
4502 	XXX - Not sure why it needs to be atomic
4503 	*/
4504 	if_setmtu(ifp, ifr->ifr_mtu);
4505         reinit = 1;
4506         break;
4507 
4508     case SIOCSIFFLAGS:
4509         /* toggle the interface state up or down */
4510         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n");
4511 
4512 	BXE_CORE_LOCK(sc);
4513         /* check if the interface is up */
4514         if (if_getflags(ifp) & IFF_UP) {
4515             if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4516                 /* set the receive mode flags */
4517                 bxe_set_rx_mode(sc);
4518             } else if(sc->state != BXE_STATE_DISABLED) {
4519 		bxe_init_locked(sc);
4520             }
4521         } else {
4522             if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4523 		bxe_periodic_stop(sc);
4524 		bxe_stop_locked(sc);
4525             }
4526         }
4527 	BXE_CORE_UNLOCK(sc);
4528 
4529         break;
4530 
4531     case SIOCADDMULTI:
4532     case SIOCDELMULTI:
4533         /* add/delete multicast addresses */
4534         BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n");
4535 
4536         /* check if the interface is up */
4537         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4538             /* set the receive mode flags */
4539 	    BXE_CORE_LOCK(sc);
4540             bxe_set_rx_mode(sc);
4541 	    BXE_CORE_UNLOCK(sc);
4542         }
4543 
4544         break;
4545 
4546     case SIOCSIFCAP:
4547         /* find out which capabilities have changed */
4548         mask = (ifr->ifr_reqcap ^ if_getcapenable(ifp));
4549 
4550         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n",
4551               mask);
4552 
4553         /* toggle the LRO capabilites enable flag */
4554         if (mask & IFCAP_LRO) {
4555 	    if_togglecapenable(ifp, IFCAP_LRO);
4556             BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n",
4557                   (if_getcapenable(ifp) & IFCAP_LRO) ? "ON" : "OFF");
4558             reinit = 1;
4559         }
4560 
4561         /* toggle the TXCSUM checksum capabilites enable flag */
4562         if (mask & IFCAP_TXCSUM) {
4563 	    if_togglecapenable(ifp, IFCAP_TXCSUM);
4564             BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n",
4565                   (if_getcapenable(ifp) & IFCAP_TXCSUM) ? "ON" : "OFF");
4566             if (if_getcapenable(ifp) & IFCAP_TXCSUM) {
4567                 if_sethwassistbits(ifp, (CSUM_IP      |
4568                                     CSUM_TCP      |
4569                                     CSUM_UDP      |
4570                                     CSUM_TSO      |
4571                                     CSUM_TCP_IPV6 |
4572                                     CSUM_UDP_IPV6), 0);
4573             } else {
4574 		if_clearhwassist(ifp); /* XXX */
4575             }
4576         }
4577 
4578         /* toggle the RXCSUM checksum capabilities enable flag */
4579         if (mask & IFCAP_RXCSUM) {
4580 	    if_togglecapenable(ifp, IFCAP_RXCSUM);
4581             BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n",
4582                   (if_getcapenable(ifp) & IFCAP_RXCSUM) ? "ON" : "OFF");
4583             if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
4584                 if_sethwassistbits(ifp, (CSUM_IP      |
4585                                     CSUM_TCP      |
4586                                     CSUM_UDP      |
4587                                     CSUM_TSO      |
4588                                     CSUM_TCP_IPV6 |
4589                                     CSUM_UDP_IPV6), 0);
4590             } else {
4591 		if_clearhwassist(ifp); /* XXX */
4592             }
4593         }
4594 
4595         /* toggle TSO4 capabilities enabled flag */
4596         if (mask & IFCAP_TSO4) {
4597             if_togglecapenable(ifp, IFCAP_TSO4);
4598             BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n",
4599                   (if_getcapenable(ifp) & IFCAP_TSO4) ? "ON" : "OFF");
4600         }
4601 
4602         /* toggle TSO6 capabilities enabled flag */
4603         if (mask & IFCAP_TSO6) {
4604 	    if_togglecapenable(ifp, IFCAP_TSO6);
4605             BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n",
4606                   (if_getcapenable(ifp) & IFCAP_TSO6) ? "ON" : "OFF");
4607         }
4608 
4609         /* toggle VLAN_HWTSO capabilities enabled flag */
4610         if (mask & IFCAP_VLAN_HWTSO) {
4611 
4612 	    if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
4613             BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n",
4614                   (if_getcapenable(ifp) & IFCAP_VLAN_HWTSO) ? "ON" : "OFF");
4615         }
4616 
4617         /* toggle VLAN_HWCSUM capabilities enabled flag */
4618         if (mask & IFCAP_VLAN_HWCSUM) {
4619             /* XXX investigate this... */
4620             BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n");
4621             error = EINVAL;
4622         }
4623 
4624         /* toggle VLAN_MTU capabilities enable flag */
4625         if (mask & IFCAP_VLAN_MTU) {
4626             /* XXX investigate this... */
4627             BLOGE(sc, "Changing VLAN_MTU is not supported!\n");
4628             error = EINVAL;
4629         }
4630 
4631         /* toggle VLAN_HWTAGGING capabilities enabled flag */
4632         if (mask & IFCAP_VLAN_HWTAGGING) {
4633             /* XXX investigate this... */
4634             BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n");
4635             error = EINVAL;
4636         }
4637 
4638         /* toggle VLAN_HWFILTER capabilities enabled flag */
4639         if (mask & IFCAP_VLAN_HWFILTER) {
4640             /* XXX investigate this... */
4641             BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n");
4642             error = EINVAL;
4643         }
4644 
4645         /* XXX not yet...
4646          * IFCAP_WOL_MAGIC
4647          */
4648 
4649         break;
4650 
4651     case SIOCSIFMEDIA:
4652     case SIOCGIFMEDIA:
4653         /* set/get interface media */
4654         BLOGD(sc, DBG_IOCTL,
4655               "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n",
4656               (command & 0xff));
4657         error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
4658         break;
4659 
4660     default:
4661         BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n",
4662               (command & 0xff));
4663         error = ether_ioctl(ifp, command, data);
4664         break;
4665     }
4666 
4667     if (reinit && (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
4668         BLOGD(sc, DBG_LOAD | DBG_IOCTL,
4669               "Re-initializing hardware from IOCTL change\n");
4670 	bxe_periodic_stop(sc);
4671 	BXE_CORE_LOCK(sc);
4672 	bxe_stop_locked(sc);
4673 	bxe_init_locked(sc);
4674 	BXE_CORE_UNLOCK(sc);
4675     }
4676 
4677     return (error);
4678 }
4679 
4680 static __noinline void
4681 bxe_dump_mbuf(struct bxe_softc *sc,
4682               struct mbuf      *m,
4683               uint8_t          contents)
4684 {
4685     char * type;
4686     int i = 0;
4687 
4688     if (!(sc->debug & DBG_MBUF)) {
4689         return;
4690     }
4691 
4692     if (m == NULL) {
4693         BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n");
4694         return;
4695     }
4696 
4697     while (m) {
4698 
4699 #if __FreeBSD_version >= 1000000
4700         BLOGD(sc, DBG_MBUF,
4701               "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n",
4702               i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data);
4703 
4704         if (m->m_flags & M_PKTHDR) {
4705              BLOGD(sc, DBG_MBUF,
4706                    "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n",
4707                    i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS,
4708                    (int)m->m_pkthdr.csum_flags, CSUM_BITS);
4709         }
4710 #else
4711         BLOGD(sc, DBG_MBUF,
4712               "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n",
4713               i, m, m->m_len, m->m_flags,
4714               "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", m->m_data);
4715 
4716         if (m->m_flags & M_PKTHDR) {
4717              BLOGD(sc, DBG_MBUF,
4718                    "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n",
4719                    i, m->m_pkthdr.len, m->m_flags,
4720                    "\20\12M_BCAST\13M_MCAST\14M_FRAG"
4721                    "\15M_FIRSTFRAG\16M_LASTFRAG\21M_VLANTAG"
4722                    "\22M_PROMISC\23M_NOFREE",
4723                    (int)m->m_pkthdr.csum_flags,
4724                    "\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP\4CSUM_IP_FRAGS"
4725                    "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED"
4726                    "\12CSUM_IP_VALID\13CSUM_DATA_VALID"
4727                    "\14CSUM_PSEUDO_HDR");
4728         }
4729 #endif /* #if __FreeBSD_version >= 1000000 */
4730 
4731         if (m->m_flags & M_EXT) {
4732             switch (m->m_ext.ext_type) {
4733             case EXT_CLUSTER:    type = "EXT_CLUSTER";    break;
4734             case EXT_SFBUF:      type = "EXT_SFBUF";      break;
4735             case EXT_JUMBOP:     type = "EXT_JUMBOP";     break;
4736             case EXT_JUMBO9:     type = "EXT_JUMBO9";     break;
4737             case EXT_JUMBO16:    type = "EXT_JUMBO16";    break;
4738             case EXT_PACKET:     type = "EXT_PACKET";     break;
4739             case EXT_MBUF:       type = "EXT_MBUF";       break;
4740             case EXT_NET_DRV:    type = "EXT_NET_DRV";    break;
4741             case EXT_MOD_TYPE:   type = "EXT_MOD_TYPE";   break;
4742             case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break;
4743             case EXT_EXTREF:     type = "EXT_EXTREF";     break;
4744             default:             type = "UNKNOWN";        break;
4745             }
4746 
4747             BLOGD(sc, DBG_MBUF,
4748                   "%02d: - m_ext: %p ext_size=%d type=%s\n",
4749                   i, m->m_ext.ext_buf, m->m_ext.ext_size, type);
4750         }
4751 
4752         if (contents) {
4753             bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE);
4754         }
4755 
4756         m = m->m_next;
4757         i++;
4758     }
4759 }
4760 
4761 /*
4762  * Checks to ensure the 13 bd sliding window is >= MSS for TSO.
4763  * Check that (13 total bds - 3 bds) = 10 bd window >= MSS.
4764  * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD
4765  * The headers comes in a separate bd in FreeBSD so 13-3=10.
4766  * Returns: 0 if OK to send, 1 if packet needs further defragmentation
4767  */
4768 static int
4769 bxe_chktso_window(struct bxe_softc  *sc,
4770                   int               nsegs,
4771                   bus_dma_segment_t *segs,
4772                   struct mbuf       *m)
4773 {
4774     uint32_t num_wnds, wnd_size, wnd_sum;
4775     int32_t frag_idx, wnd_idx;
4776     unsigned short lso_mss;
4777     int defrag;
4778 
4779     defrag = 0;
4780     wnd_sum = 0;
4781     wnd_size = 10;
4782     num_wnds = nsegs - wnd_size;
4783     lso_mss = htole16(m->m_pkthdr.tso_segsz);
4784 
4785     /*
4786      * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the
4787      * first window sum of data while skipping the first assuming it is the
4788      * header in FreeBSD.
4789      */
4790     for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) {
4791         wnd_sum += htole16(segs[frag_idx].ds_len);
4792     }
4793 
4794     /* check the first 10 bd window size */
4795     if (wnd_sum < lso_mss) {
4796         return (1);
4797     }
4798 
4799     /* run through the windows */
4800     for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) {
4801         /* subtract the first mbuf->m_len of the last wndw(-header) */
4802         wnd_sum -= htole16(segs[wnd_idx+1].ds_len);
4803         /* add the next mbuf len to the len of our new window */
4804         wnd_sum += htole16(segs[frag_idx].ds_len);
4805         if (wnd_sum < lso_mss) {
4806             return (1);
4807         }
4808     }
4809 
4810     return (0);
4811 }
4812 
4813 static uint8_t
4814 bxe_set_pbd_csum_e2(struct bxe_fastpath *fp,
4815                     struct mbuf         *m,
4816                     uint32_t            *parsing_data)
4817 {
4818     struct ether_vlan_header *eh = NULL;
4819     struct ip *ip4 = NULL;
4820     struct ip6_hdr *ip6 = NULL;
4821     caddr_t ip = NULL;
4822     struct tcphdr *th = NULL;
4823     int e_hlen, ip_hlen, l4_off;
4824     uint16_t proto;
4825 
4826     if (m->m_pkthdr.csum_flags == CSUM_IP) {
4827         /* no L4 checksum offload needed */
4828         return (0);
4829     }
4830 
4831     /* get the Ethernet header */
4832     eh = mtod(m, struct ether_vlan_header *);
4833 
4834     /* handle VLAN encapsulation if present */
4835     if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
4836         e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
4837         proto  = ntohs(eh->evl_proto);
4838     } else {
4839         e_hlen = ETHER_HDR_LEN;
4840         proto  = ntohs(eh->evl_encap_proto);
4841     }
4842 
4843     switch (proto) {
4844     case ETHERTYPE_IP:
4845         /* get the IP header, if mbuf len < 20 then header in next mbuf */
4846         ip4 = (m->m_len < sizeof(struct ip)) ?
4847                   (struct ip *)m->m_next->m_data :
4848                   (struct ip *)(m->m_data + e_hlen);
4849         /* ip_hl is number of 32-bit words */
4850         ip_hlen = (ip4->ip_hl << 2);
4851         ip = (caddr_t)ip4;
4852         break;
4853     case ETHERTYPE_IPV6:
4854         /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
4855         ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
4856                   (struct ip6_hdr *)m->m_next->m_data :
4857                   (struct ip6_hdr *)(m->m_data + e_hlen);
4858         /* XXX cannot support offload with IPv6 extensions */
4859         ip_hlen = sizeof(struct ip6_hdr);
4860         ip = (caddr_t)ip6;
4861         break;
4862     default:
4863         /* We can't offload in this case... */
4864         /* XXX error stat ??? */
4865         return (0);
4866     }
4867 
4868     /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
4869     l4_off = (e_hlen + ip_hlen);
4870 
4871     *parsing_data |=
4872         (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
4873          ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W);
4874 
4875     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
4876                                   CSUM_TSO |
4877                                   CSUM_TCP_IPV6)) {
4878         fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
4879         th = (struct tcphdr *)(ip + ip_hlen);
4880         /* th_off is number of 32-bit words */
4881         *parsing_data |= ((th->th_off <<
4882                            ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
4883                           ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW);
4884         return (l4_off + (th->th_off << 2)); /* entire header length */
4885     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
4886                                          CSUM_UDP_IPV6)) {
4887         fp->eth_q_stats.tx_ofld_frames_csum_udp++;
4888         return (l4_off + sizeof(struct udphdr)); /* entire header length */
4889     } else {
4890         /* XXX error stat ??? */
4891         return (0);
4892     }
4893 }
4894 
4895 static uint8_t
4896 bxe_set_pbd_csum(struct bxe_fastpath        *fp,
4897                  struct mbuf                *m,
4898                  struct eth_tx_parse_bd_e1x *pbd)
4899 {
4900     struct ether_vlan_header *eh = NULL;
4901     struct ip *ip4 = NULL;
4902     struct ip6_hdr *ip6 = NULL;
4903     caddr_t ip = NULL;
4904     struct tcphdr *th = NULL;
4905     struct udphdr *uh = NULL;
4906     int e_hlen, ip_hlen;
4907     uint16_t proto;
4908     uint8_t hlen;
4909     uint16_t tmp_csum;
4910     uint32_t *tmp_uh;
4911 
4912     /* get the Ethernet header */
4913     eh = mtod(m, struct ether_vlan_header *);
4914 
4915     /* handle VLAN encapsulation if present */
4916     if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
4917         e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
4918         proto  = ntohs(eh->evl_proto);
4919     } else {
4920         e_hlen = ETHER_HDR_LEN;
4921         proto  = ntohs(eh->evl_encap_proto);
4922     }
4923 
4924     switch (proto) {
4925     case ETHERTYPE_IP:
4926         /* get the IP header, if mbuf len < 20 then header in next mbuf */
4927         ip4 = (m->m_len < sizeof(struct ip)) ?
4928                   (struct ip *)m->m_next->m_data :
4929                   (struct ip *)(m->m_data + e_hlen);
4930         /* ip_hl is number of 32-bit words */
4931         ip_hlen = (ip4->ip_hl << 1);
4932         ip = (caddr_t)ip4;
4933         break;
4934     case ETHERTYPE_IPV6:
4935         /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
4936         ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
4937                   (struct ip6_hdr *)m->m_next->m_data :
4938                   (struct ip6_hdr *)(m->m_data + e_hlen);
4939         /* XXX cannot support offload with IPv6 extensions */
4940         ip_hlen = (sizeof(struct ip6_hdr) >> 1);
4941         ip = (caddr_t)ip6;
4942         break;
4943     default:
4944         /* We can't offload in this case... */
4945         /* XXX error stat ??? */
4946         return (0);
4947     }
4948 
4949     hlen = (e_hlen >> 1);
4950 
4951     /* note that rest of global_data is indirectly zeroed here */
4952     if (m->m_flags & M_VLANTAG) {
4953         pbd->global_data =
4954             htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
4955     } else {
4956         pbd->global_data = htole16(hlen);
4957     }
4958 
4959     pbd->ip_hlen_w = ip_hlen;
4960 
4961     hlen += pbd->ip_hlen_w;
4962 
4963     /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
4964 
4965     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
4966                                   CSUM_TSO |
4967                                   CSUM_TCP_IPV6)) {
4968         th = (struct tcphdr *)(ip + (ip_hlen << 1));
4969         /* th_off is number of 32-bit words */
4970         hlen += (uint16_t)(th->th_off << 1);
4971     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
4972                                          CSUM_UDP_IPV6)) {
4973         uh = (struct udphdr *)(ip + (ip_hlen << 1));
4974         hlen += (sizeof(struct udphdr) / 2);
4975     } else {
4976         /* valid case as only CSUM_IP was set */
4977         return (0);
4978     }
4979 
4980     pbd->total_hlen_w = htole16(hlen);
4981 
4982     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
4983                                   CSUM_TSO |
4984                                   CSUM_TCP_IPV6)) {
4985         fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
4986         pbd->tcp_pseudo_csum = ntohs(th->th_sum);
4987     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
4988                                          CSUM_UDP_IPV6)) {
4989         fp->eth_q_stats.tx_ofld_frames_csum_udp++;
4990 
4991         /*
4992          * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP
4993          * checksums and does not know anything about the UDP header and where
4994          * the checksum field is located. It only knows about TCP. Therefore
4995          * we "lie" to the hardware for outgoing UDP packets w/ checksum
4996          * offload. Since the checksum field offset for TCP is 16 bytes and
4997          * for UDP it is 6 bytes we pass a pointer to the hardware that is 10
4998          * bytes less than the start of the UDP header. This allows the
4999          * hardware to write the checksum in the correct spot. But the
5000          * hardware will compute a checksum which includes the last 10 bytes
5001          * of the IP header. To correct this we tweak the stack computed
5002          * pseudo checksum by folding in the calculation of the inverse
5003          * checksum for those final 10 bytes of the IP header. This allows
5004          * the correct checksum to be computed by the hardware.
5005          */
5006 
5007         /* set pointer 10 bytes before UDP header */
5008         tmp_uh = (uint32_t *)((uint8_t *)uh - 10);
5009 
5010         /* calculate a pseudo header checksum over the first 10 bytes */
5011         tmp_csum = in_pseudo(*tmp_uh,
5012                              *(tmp_uh + 1),
5013                              *(uint16_t *)(tmp_uh + 2));
5014 
5015         pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum));
5016     }
5017 
5018     return (hlen * 2); /* entire header length, number of bytes */
5019 }
5020 
5021 static void
5022 bxe_set_pbd_lso_e2(struct mbuf *m,
5023                    uint32_t    *parsing_data)
5024 {
5025     *parsing_data |= ((m->m_pkthdr.tso_segsz <<
5026                        ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
5027                       ETH_TX_PARSE_BD_E2_LSO_MSS);
5028 
5029     /* XXX test for IPv6 with extension header... */
5030 }
5031 
5032 static void
5033 bxe_set_pbd_lso(struct mbuf                *m,
5034                 struct eth_tx_parse_bd_e1x *pbd)
5035 {
5036     struct ether_vlan_header *eh = NULL;
5037     struct ip *ip = NULL;
5038     struct tcphdr *th = NULL;
5039     int e_hlen;
5040 
5041     /* get the Ethernet header */
5042     eh = mtod(m, struct ether_vlan_header *);
5043 
5044     /* handle VLAN encapsulation if present */
5045     e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ?
5046                  (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN;
5047 
5048     /* get the IP and TCP header, with LSO entire header in first mbuf */
5049     /* XXX assuming IPv4 */
5050     ip = (struct ip *)(m->m_data + e_hlen);
5051     th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
5052 
5053     pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz);
5054     pbd->tcp_send_seq = ntohl(th->th_seq);
5055     pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff);
5056 
5057 #if 1
5058         /* XXX IPv4 */
5059         pbd->ip_id = ntohs(ip->ip_id);
5060         pbd->tcp_pseudo_csum =
5061             ntohs(in_pseudo(ip->ip_src.s_addr,
5062                             ip->ip_dst.s_addr,
5063                             htons(IPPROTO_TCP)));
5064 #else
5065         /* XXX IPv6 */
5066         pbd->tcp_pseudo_csum =
5067             ntohs(in_pseudo(&ip6->ip6_src,
5068                             &ip6->ip6_dst,
5069                             htons(IPPROTO_TCP)));
5070 #endif
5071 
5072     pbd->global_data |=
5073         htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
5074 }
5075 
5076 /*
5077  * Encapsulte an mbuf cluster into the tx bd chain and makes the memory
5078  * visible to the controller.
5079  *
5080  * If an mbuf is submitted to this routine and cannot be given to the
5081  * controller (e.g. it has too many fragments) then the function may free
5082  * the mbuf and return to the caller.
5083  *
5084  * Returns:
5085  *   0 = Success, !0 = Failure
5086  *   Note the side effect that an mbuf may be freed if it causes a problem.
5087  */
5088 static int
5089 bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head)
5090 {
5091     bus_dma_segment_t segs[32];
5092     struct mbuf *m0;
5093     struct bxe_sw_tx_bd *tx_buf;
5094     struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
5095     struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
5096     /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */
5097     struct eth_tx_bd *tx_data_bd;
5098     struct eth_tx_bd *tx_total_pkt_size_bd;
5099     struct eth_tx_start_bd *tx_start_bd;
5100     uint16_t bd_prod, pkt_prod, total_pkt_size;
5101     uint8_t mac_type;
5102     int defragged, error, nsegs, rc, nbds, vlan_off, ovlan;
5103     struct bxe_softc *sc;
5104     uint16_t tx_bd_avail;
5105     struct ether_vlan_header *eh;
5106     uint32_t pbd_e2_parsing_data = 0;
5107     uint8_t hlen = 0;
5108     int tmp_bd;
5109     int i;
5110 
5111     sc = fp->sc;
5112 
5113 #if __FreeBSD_version >= 800000
5114     M_ASSERTPKTHDR(*m_head);
5115 #endif /* #if __FreeBSD_version >= 800000 */
5116 
5117     m0 = *m_head;
5118     rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0;
5119     tx_start_bd = NULL;
5120     tx_data_bd = NULL;
5121     tx_total_pkt_size_bd = NULL;
5122 
5123     /* get the H/W pointer for packets and BDs */
5124     pkt_prod = fp->tx_pkt_prod;
5125     bd_prod = fp->tx_bd_prod;
5126 
5127     mac_type = UNICAST_ADDRESS;
5128 
5129     /* map the mbuf into the next open DMAable memory */
5130     tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)];
5131     error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5132                                     tx_buf->m_map, m0,
5133                                     segs, &nsegs, BUS_DMA_NOWAIT);
5134 
5135     /* mapping errors */
5136     if(__predict_false(error != 0)) {
5137         fp->eth_q_stats.tx_dma_mapping_failure++;
5138         if (error == ENOMEM) {
5139             /* resource issue, try again later */
5140             rc = ENOMEM;
5141         } else if (error == EFBIG) {
5142             /* possibly recoverable with defragmentation */
5143             fp->eth_q_stats.mbuf_defrag_attempts++;
5144             m0 = m_defrag(*m_head, M_NOWAIT);
5145             if (m0 == NULL) {
5146                 fp->eth_q_stats.mbuf_defrag_failures++;
5147                 rc = ENOBUFS;
5148             } else {
5149                 /* defrag successful, try mapping again */
5150                 *m_head = m0;
5151                 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5152                                                 tx_buf->m_map, m0,
5153                                                 segs, &nsegs, BUS_DMA_NOWAIT);
5154                 if (error) {
5155                     fp->eth_q_stats.tx_dma_mapping_failure++;
5156                     rc = error;
5157                 }
5158             }
5159         } else {
5160             /* unknown, unrecoverable mapping error */
5161             BLOGE(sc, "Unknown TX mapping error rc=%d\n", error);
5162             bxe_dump_mbuf(sc, m0, FALSE);
5163             rc = error;
5164         }
5165 
5166         goto bxe_tx_encap_continue;
5167     }
5168 
5169     tx_bd_avail = bxe_tx_avail(sc, fp);
5170 
5171     /* make sure there is enough room in the send queue */
5172     if (__predict_false(tx_bd_avail < (nsegs + 2))) {
5173         /* Recoverable, try again later. */
5174         fp->eth_q_stats.tx_hw_queue_full++;
5175         bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5176         rc = ENOMEM;
5177         goto bxe_tx_encap_continue;
5178     }
5179 
5180     /* capture the current H/W TX chain high watermark */
5181     if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth <
5182                         (TX_BD_USABLE - tx_bd_avail))) {
5183         fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail);
5184     }
5185 
5186     /* make sure it fits in the packet window */
5187     if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5188         /*
5189          * The mbuf may be to big for the controller to handle. If the frame
5190          * is a TSO frame we'll need to do an additional check.
5191          */
5192         if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5193             if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) {
5194                 goto bxe_tx_encap_continue; /* OK to send */
5195             } else {
5196                 fp->eth_q_stats.tx_window_violation_tso++;
5197             }
5198         } else {
5199             fp->eth_q_stats.tx_window_violation_std++;
5200         }
5201 
5202         /* lets try to defragment this mbuf and remap it */
5203         fp->eth_q_stats.mbuf_defrag_attempts++;
5204         bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5205 
5206         m0 = m_defrag(*m_head, M_NOWAIT);
5207         if (m0 == NULL) {
5208             fp->eth_q_stats.mbuf_defrag_failures++;
5209             /* Ugh, just drop the frame... :( */
5210             rc = ENOBUFS;
5211         } else {
5212             /* defrag successful, try mapping again */
5213             *m_head = m0;
5214             error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5215                                             tx_buf->m_map, m0,
5216                                             segs, &nsegs, BUS_DMA_NOWAIT);
5217             if (error) {
5218                 fp->eth_q_stats.tx_dma_mapping_failure++;
5219                 /* No sense in trying to defrag/copy chain, drop it. :( */
5220                 rc = error;
5221             }
5222             else {
5223                 /* if the chain is still too long then drop it */
5224                 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5225                     bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5226                     rc = ENODEV;
5227                 }
5228             }
5229         }
5230     }
5231 
5232 bxe_tx_encap_continue:
5233 
5234     /* Check for errors */
5235     if (rc) {
5236         if (rc == ENOMEM) {
5237             /* recoverable try again later  */
5238         } else {
5239             fp->eth_q_stats.tx_soft_errors++;
5240             fp->eth_q_stats.mbuf_alloc_tx--;
5241             m_freem(*m_head);
5242             *m_head = NULL;
5243         }
5244 
5245         return (rc);
5246     }
5247 
5248     /* set flag according to packet type (UNICAST_ADDRESS is default) */
5249     if (m0->m_flags & M_BCAST) {
5250         mac_type = BROADCAST_ADDRESS;
5251     } else if (m0->m_flags & M_MCAST) {
5252         mac_type = MULTICAST_ADDRESS;
5253     }
5254 
5255     /* store the mbuf into the mbuf ring */
5256     tx_buf->m        = m0;
5257     tx_buf->first_bd = fp->tx_bd_prod;
5258     tx_buf->flags    = 0;
5259 
5260     /* prepare the first transmit (start) BD for the mbuf */
5261     tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd;
5262 
5263     BLOGD(sc, DBG_TX,
5264           "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n",
5265           pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd);
5266 
5267     tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
5268     tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
5269     tx_start_bd->nbytes  = htole16(segs[0].ds_len);
5270     total_pkt_size += tx_start_bd->nbytes;
5271     tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
5272 
5273     tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
5274 
5275     /* all frames have at least Start BD + Parsing BD */
5276     nbds = nsegs + 1;
5277     tx_start_bd->nbd = htole16(nbds);
5278 
5279     if (m0->m_flags & M_VLANTAG) {
5280         tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag);
5281         tx_start_bd->bd_flags.as_bitfield |=
5282             (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
5283     } else {
5284         /* vf tx, start bd must hold the ethertype for fw to enforce it */
5285         if (IS_VF(sc)) {
5286             /* map ethernet header to find type and header length */
5287             eh = mtod(m0, struct ether_vlan_header *);
5288             tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto;
5289         } else {
5290             /* used by FW for packet accounting */
5291             tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod);
5292         }
5293     }
5294 
5295     /*
5296      * add a parsing BD from the chain. The parsing BD is always added
5297      * though it is only used for TSO and chksum
5298      */
5299     bd_prod = TX_BD_NEXT(bd_prod);
5300 
5301     if (m0->m_pkthdr.csum_flags) {
5302         if (m0->m_pkthdr.csum_flags & CSUM_IP) {
5303             fp->eth_q_stats.tx_ofld_frames_csum_ip++;
5304             tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM;
5305         }
5306 
5307         if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) {
5308             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 |
5309                                                   ETH_TX_BD_FLAGS_L4_CSUM);
5310         } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) {
5311             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6   |
5312                                                   ETH_TX_BD_FLAGS_IS_UDP |
5313                                                   ETH_TX_BD_FLAGS_L4_CSUM);
5314         } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) ||
5315                    (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
5316             tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
5317         } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) {
5318             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM |
5319                                                   ETH_TX_BD_FLAGS_IS_UDP);
5320         }
5321     }
5322 
5323     if (!CHIP_IS_E1x(sc)) {
5324         pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2;
5325         memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
5326 
5327         if (m0->m_pkthdr.csum_flags) {
5328             hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data);
5329         }
5330 
5331         SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE,
5332                  mac_type);
5333     } else {
5334         uint16_t global_data = 0;
5335 
5336         pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x;
5337         memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
5338 
5339         if (m0->m_pkthdr.csum_flags) {
5340             hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x);
5341         }
5342 
5343         SET_FLAG(global_data,
5344                  ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
5345         pbd_e1x->global_data |= htole16(global_data);
5346     }
5347 
5348     /* setup the parsing BD with TSO specific info */
5349     if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5350         fp->eth_q_stats.tx_ofld_frames_lso++;
5351         tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
5352 
5353         if (__predict_false(tx_start_bd->nbytes > hlen)) {
5354             fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++;
5355 
5356             /* split the first BD into header/data making the fw job easy */
5357             nbds++;
5358             tx_start_bd->nbd = htole16(nbds);
5359             tx_start_bd->nbytes = htole16(hlen);
5360 
5361             bd_prod = TX_BD_NEXT(bd_prod);
5362 
5363             /* new transmit BD after the tx_parse_bd */
5364             tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5365             tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen));
5366             tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen));
5367             tx_data_bd->nbytes  = htole16(segs[0].ds_len - hlen);
5368             if (tx_total_pkt_size_bd == NULL) {
5369                 tx_total_pkt_size_bd = tx_data_bd;
5370             }
5371 
5372             BLOGD(sc, DBG_TX,
5373                   "TSO split header size is %d (%x:%x) nbds %d\n",
5374                   le16toh(tx_start_bd->nbytes),
5375                   le32toh(tx_start_bd->addr_hi),
5376                   le32toh(tx_start_bd->addr_lo),
5377                   nbds);
5378         }
5379 
5380         if (!CHIP_IS_E1x(sc)) {
5381             bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data);
5382         } else {
5383             bxe_set_pbd_lso(m0, pbd_e1x);
5384         }
5385     }
5386 
5387     if (pbd_e2_parsing_data) {
5388         pbd_e2->parsing_data = htole32(pbd_e2_parsing_data);
5389     }
5390 
5391     /* prepare remaining BDs, start tx bd contains first seg/frag */
5392     for (i = 1; i < nsegs ; i++) {
5393         bd_prod = TX_BD_NEXT(bd_prod);
5394         tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5395         tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr));
5396         tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr));
5397         tx_data_bd->nbytes  = htole16(segs[i].ds_len);
5398         if (tx_total_pkt_size_bd == NULL) {
5399             tx_total_pkt_size_bd = tx_data_bd;
5400         }
5401         total_pkt_size += tx_data_bd->nbytes;
5402     }
5403 
5404     BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd);
5405 
5406     if (tx_total_pkt_size_bd != NULL) {
5407         tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size;
5408     }
5409 
5410     if (__predict_false(sc->debug & DBG_TX)) {
5411         tmp_bd = tx_buf->first_bd;
5412         for (i = 0; i < nbds; i++)
5413         {
5414             if (i == 0) {
5415                 BLOGD(sc, DBG_TX,
5416                       "TX Strt: %p bd=%d nbd=%d vlan=0x%x "
5417                       "bd_flags=0x%x hdr_nbds=%d\n",
5418                       tx_start_bd,
5419                       tmp_bd,
5420                       le16toh(tx_start_bd->nbd),
5421                       le16toh(tx_start_bd->vlan_or_ethertype),
5422                       tx_start_bd->bd_flags.as_bitfield,
5423                       (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS));
5424             } else if (i == 1) {
5425                 if (pbd_e1x) {
5426                     BLOGD(sc, DBG_TX,
5427                           "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u "
5428                           "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x "
5429                           "tcp_seq=%u total_hlen_w=%u\n",
5430                           pbd_e1x,
5431                           tmp_bd,
5432                           pbd_e1x->global_data,
5433                           pbd_e1x->ip_hlen_w,
5434                           pbd_e1x->ip_id,
5435                           pbd_e1x->lso_mss,
5436                           pbd_e1x->tcp_flags,
5437                           pbd_e1x->tcp_pseudo_csum,
5438                           pbd_e1x->tcp_send_seq,
5439                           le16toh(pbd_e1x->total_hlen_w));
5440                 } else { /* if (pbd_e2) */
5441                     BLOGD(sc, DBG_TX,
5442                           "-> Parse: %p bd=%d dst=%02x:%02x:%02x "
5443                           "src=%02x:%02x:%02x parsing_data=0x%x\n",
5444                           pbd_e2,
5445                           tmp_bd,
5446                           pbd_e2->data.mac_addr.dst_hi,
5447                           pbd_e2->data.mac_addr.dst_mid,
5448                           pbd_e2->data.mac_addr.dst_lo,
5449                           pbd_e2->data.mac_addr.src_hi,
5450                           pbd_e2->data.mac_addr.src_mid,
5451                           pbd_e2->data.mac_addr.src_lo,
5452                           pbd_e2->parsing_data);
5453                 }
5454             }
5455 
5456             if (i != 1) { /* skip parse db as it doesn't hold data */
5457                 tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd;
5458                 BLOGD(sc, DBG_TX,
5459                       "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n",
5460                       tx_data_bd,
5461                       tmp_bd,
5462                       le16toh(tx_data_bd->nbytes),
5463                       le32toh(tx_data_bd->addr_hi),
5464                       le32toh(tx_data_bd->addr_lo));
5465             }
5466 
5467             tmp_bd = TX_BD_NEXT(tmp_bd);
5468         }
5469     }
5470 
5471     BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod);
5472 
5473     /* update TX BD producer index value for next TX */
5474     bd_prod = TX_BD_NEXT(bd_prod);
5475 
5476     /*
5477      * If the chain of tx_bd's describing this frame is adjacent to or spans
5478      * an eth_tx_next_bd element then we need to increment the nbds value.
5479      */
5480     if (TX_BD_IDX(bd_prod) < nbds) {
5481         nbds++;
5482     }
5483 
5484     /* don't allow reordering of writes for nbd and packets */
5485     mb();
5486 
5487     fp->tx_db.data.prod += nbds;
5488 
5489     /* producer points to the next free tx_bd at this point */
5490     fp->tx_pkt_prod++;
5491     fp->tx_bd_prod = bd_prod;
5492 
5493     DOORBELL(sc, fp->index, fp->tx_db.raw);
5494 
5495     fp->eth_q_stats.tx_pkts++;
5496 
5497     /* Prevent speculative reads from getting ahead of the status block. */
5498     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle,
5499                       0, 0, BUS_SPACE_BARRIER_READ);
5500 
5501     /* Prevent speculative reads from getting ahead of the doorbell. */
5502     bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle,
5503                       0, 0, BUS_SPACE_BARRIER_READ);
5504 
5505     return (0);
5506 }
5507 
5508 static void
5509 bxe_tx_start_locked(struct bxe_softc *sc,
5510                     if_t ifp,
5511                     struct bxe_fastpath *fp)
5512 {
5513     struct mbuf *m = NULL;
5514     int tx_count = 0;
5515     uint16_t tx_bd_avail;
5516 
5517     BXE_FP_TX_LOCK_ASSERT(fp);
5518 
5519     /* keep adding entries while there are frames to send */
5520     while (!if_sendq_empty(ifp)) {
5521 
5522         /*
5523          * check for any frames to send
5524          * dequeue can still be NULL even if queue is not empty
5525          */
5526         m = if_dequeue(ifp);
5527         if (__predict_false(m == NULL)) {
5528             break;
5529         }
5530 
5531         /* the mbuf now belongs to us */
5532         fp->eth_q_stats.mbuf_alloc_tx++;
5533 
5534         /*
5535          * Put the frame into the transmit ring. If we don't have room,
5536          * place the mbuf back at the head of the TX queue, set the
5537          * OACTIVE flag, and wait for the NIC to drain the chain.
5538          */
5539         if (__predict_false(bxe_tx_encap(fp, &m))) {
5540             fp->eth_q_stats.tx_encap_failures++;
5541             if (m != NULL) {
5542                 /* mark the TX queue as full and return the frame */
5543                 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5544 		if_sendq_prepend(ifp, m);
5545                 fp->eth_q_stats.mbuf_alloc_tx--;
5546                 fp->eth_q_stats.tx_queue_xoff++;
5547             }
5548 
5549             /* stop looking for more work */
5550             break;
5551         }
5552 
5553         /* the frame was enqueued successfully */
5554         tx_count++;
5555 
5556         /* send a copy of the frame to any BPF listeners. */
5557         if_etherbpfmtap(ifp, m);
5558 
5559         tx_bd_avail = bxe_tx_avail(sc, fp);
5560 
5561         /* handle any completions if we're running low */
5562         if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5563             /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5564             bxe_txeof(sc, fp);
5565             if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
5566                 break;
5567             }
5568         }
5569     }
5570 
5571     /* all TX packets were dequeued and/or the tx ring is full */
5572     if (tx_count > 0) {
5573         /* reset the TX watchdog timeout timer */
5574         fp->watchdog_timer = BXE_TX_TIMEOUT;
5575     }
5576 }
5577 
5578 /* Legacy (non-RSS) dispatch routine */
5579 static void
5580 bxe_tx_start(if_t ifp)
5581 {
5582     struct bxe_softc *sc;
5583     struct bxe_fastpath *fp;
5584 
5585     sc = if_getsoftc(ifp);
5586 
5587     if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
5588         BLOGW(sc, "Interface not running, ignoring transmit request\n");
5589         return;
5590     }
5591 
5592     if (!sc->link_vars.link_up) {
5593         BLOGW(sc, "Interface link is down, ignoring transmit request\n");
5594         return;
5595     }
5596 
5597     fp = &sc->fp[0];
5598 
5599     if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
5600         fp->eth_q_stats.tx_queue_full_return++;
5601         return;
5602     }
5603 
5604     BXE_FP_TX_LOCK(fp);
5605     bxe_tx_start_locked(sc, ifp, fp);
5606     BXE_FP_TX_UNLOCK(fp);
5607 }
5608 
5609 #if __FreeBSD_version >= 800000
5610 
5611 static int
5612 bxe_tx_mq_start_locked(struct bxe_softc    *sc,
5613                        if_t                ifp,
5614                        struct bxe_fastpath *fp,
5615                        struct mbuf         *m)
5616 {
5617     struct buf_ring *tx_br = fp->tx_br;
5618     struct mbuf *next;
5619     int depth, rc, tx_count;
5620     uint16_t tx_bd_avail;
5621 
5622     rc = tx_count = 0;
5623 
5624     BXE_FP_TX_LOCK_ASSERT(fp);
5625 
5626     if (!tx_br) {
5627         BLOGE(sc, "Multiqueue TX and no buf_ring!\n");
5628         return (EINVAL);
5629     }
5630 
5631     if (!sc->link_vars.link_up ||
5632         (if_getdrvflags(ifp) &
5633         (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING) {
5634         rc = drbr_enqueue(ifp, tx_br, m);
5635         goto bxe_tx_mq_start_locked_exit;
5636     }
5637 
5638     /* fetch the depth of the driver queue */
5639     depth = drbr_inuse_drv(ifp, tx_br);
5640     if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) {
5641         fp->eth_q_stats.tx_max_drbr_queue_depth = depth;
5642     }
5643 
5644     if (m == NULL) {
5645         /* no new work, check for pending frames */
5646         next = drbr_dequeue_drv(ifp, tx_br);
5647     } else if (drbr_needs_enqueue_drv(ifp, tx_br)) {
5648         /* have both new and pending work, maintain packet order */
5649         rc = drbr_enqueue(ifp, tx_br, m);
5650         if (rc != 0) {
5651             fp->eth_q_stats.tx_soft_errors++;
5652             goto bxe_tx_mq_start_locked_exit;
5653         }
5654         next = drbr_dequeue_drv(ifp, tx_br);
5655     } else {
5656         /* new work only and nothing pending */
5657         next = m;
5658     }
5659 
5660     /* keep adding entries while there are frames to send */
5661     while (next != NULL) {
5662 
5663         /* the mbuf now belongs to us */
5664         fp->eth_q_stats.mbuf_alloc_tx++;
5665 
5666         /*
5667          * Put the frame into the transmit ring. If we don't have room,
5668          * place the mbuf back at the head of the TX queue, set the
5669          * OACTIVE flag, and wait for the NIC to drain the chain.
5670          */
5671         rc = bxe_tx_encap(fp, &next);
5672         if (__predict_false(rc != 0)) {
5673             fp->eth_q_stats.tx_encap_failures++;
5674             if (next != NULL) {
5675                 /* mark the TX queue as full and save the frame */
5676                 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5677                 /* XXX this may reorder the frame */
5678                 rc = drbr_enqueue(ifp, tx_br, next);
5679                 fp->eth_q_stats.mbuf_alloc_tx--;
5680                 fp->eth_q_stats.tx_frames_deferred++;
5681             }
5682 
5683             /* stop looking for more work */
5684             break;
5685         }
5686 
5687         /* the transmit frame was enqueued successfully */
5688         tx_count++;
5689 
5690         /* send a copy of the frame to any BPF listeners */
5691 	if_etherbpfmtap(ifp, next);
5692 
5693         tx_bd_avail = bxe_tx_avail(sc, fp);
5694 
5695         /* handle any completions if we're running low */
5696         if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5697             /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5698             bxe_txeof(sc, fp);
5699             if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
5700                 break;
5701             }
5702         }
5703 
5704         next = drbr_dequeue_drv(ifp, tx_br);
5705     }
5706 
5707     /* all TX packets were dequeued and/or the tx ring is full */
5708     if (tx_count > 0) {
5709         /* reset the TX watchdog timeout timer */
5710         fp->watchdog_timer = BXE_TX_TIMEOUT;
5711     }
5712 
5713 bxe_tx_mq_start_locked_exit:
5714 
5715     return (rc);
5716 }
5717 
5718 /* Multiqueue (TSS) dispatch routine. */
5719 static int
5720 bxe_tx_mq_start(struct ifnet *ifp,
5721                 struct mbuf  *m)
5722 {
5723     struct bxe_softc *sc = if_getsoftc(ifp);
5724     struct bxe_fastpath *fp;
5725     int fp_index, rc;
5726 
5727     fp_index = 0; /* default is the first queue */
5728 
5729     /* check if flowid is set */
5730 
5731     if (BXE_VALID_FLOWID(m))
5732         fp_index = (m->m_pkthdr.flowid % sc->num_queues);
5733 
5734     fp = &sc->fp[fp_index];
5735 
5736     if (BXE_FP_TX_TRYLOCK(fp)) {
5737         rc = bxe_tx_mq_start_locked(sc, ifp, fp, m);
5738         BXE_FP_TX_UNLOCK(fp);
5739     } else
5740         rc = drbr_enqueue(ifp, fp->tx_br, m);
5741 
5742     return (rc);
5743 }
5744 
5745 static void
5746 bxe_mq_flush(struct ifnet *ifp)
5747 {
5748     struct bxe_softc *sc = if_getsoftc(ifp);
5749     struct bxe_fastpath *fp;
5750     struct mbuf *m;
5751     int i;
5752 
5753     for (i = 0; i < sc->num_queues; i++) {
5754         fp = &sc->fp[i];
5755 
5756         if (fp->state != BXE_FP_STATE_OPEN) {
5757             BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n",
5758                   fp->index, fp->state);
5759             continue;
5760         }
5761 
5762         if (fp->tx_br != NULL) {
5763             BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index);
5764             BXE_FP_TX_LOCK(fp);
5765             while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
5766                 m_freem(m);
5767             }
5768             BXE_FP_TX_UNLOCK(fp);
5769         }
5770     }
5771 
5772     if_qflush(ifp);
5773 }
5774 
5775 #endif /* FreeBSD_version >= 800000 */
5776 
5777 static uint16_t
5778 bxe_cid_ilt_lines(struct bxe_softc *sc)
5779 {
5780     if (IS_SRIOV(sc)) {
5781         return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS);
5782     }
5783     return (L2_ILT_LINES(sc));
5784 }
5785 
5786 static void
5787 bxe_ilt_set_info(struct bxe_softc *sc)
5788 {
5789     struct ilt_client_info *ilt_client;
5790     struct ecore_ilt *ilt = sc->ilt;
5791     uint16_t line = 0;
5792 
5793     ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc));
5794     BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line);
5795 
5796     /* CDU */
5797     ilt_client = &ilt->clients[ILT_CLIENT_CDU];
5798     ilt_client->client_num = ILT_CLIENT_CDU;
5799     ilt_client->page_size = CDU_ILT_PAGE_SZ;
5800     ilt_client->flags = ILT_CLIENT_SKIP_MEM;
5801     ilt_client->start = line;
5802     line += bxe_cid_ilt_lines(sc);
5803 
5804     if (CNIC_SUPPORT(sc)) {
5805         line += CNIC_ILT_LINES;
5806     }
5807 
5808     ilt_client->end = (line - 1);
5809 
5810     BLOGD(sc, DBG_LOAD,
5811           "ilt client[CDU]: start %d, end %d, "
5812           "psz 0x%x, flags 0x%x, hw psz %d\n",
5813           ilt_client->start, ilt_client->end,
5814           ilt_client->page_size,
5815           ilt_client->flags,
5816           ilog2(ilt_client->page_size >> 12));
5817 
5818     /* QM */
5819     if (QM_INIT(sc->qm_cid_count)) {
5820         ilt_client = &ilt->clients[ILT_CLIENT_QM];
5821         ilt_client->client_num = ILT_CLIENT_QM;
5822         ilt_client->page_size = QM_ILT_PAGE_SZ;
5823         ilt_client->flags = 0;
5824         ilt_client->start = line;
5825 
5826         /* 4 bytes for each cid */
5827         line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
5828                              QM_ILT_PAGE_SZ);
5829 
5830         ilt_client->end = (line - 1);
5831 
5832         BLOGD(sc, DBG_LOAD,
5833               "ilt client[QM]: start %d, end %d, "
5834               "psz 0x%x, flags 0x%x, hw psz %d\n",
5835               ilt_client->start, ilt_client->end,
5836               ilt_client->page_size, ilt_client->flags,
5837               ilog2(ilt_client->page_size >> 12));
5838     }
5839 
5840     if (CNIC_SUPPORT(sc)) {
5841         /* SRC */
5842         ilt_client = &ilt->clients[ILT_CLIENT_SRC];
5843         ilt_client->client_num = ILT_CLIENT_SRC;
5844         ilt_client->page_size = SRC_ILT_PAGE_SZ;
5845         ilt_client->flags = 0;
5846         ilt_client->start = line;
5847         line += SRC_ILT_LINES;
5848         ilt_client->end = (line - 1);
5849 
5850         BLOGD(sc, DBG_LOAD,
5851               "ilt client[SRC]: start %d, end %d, "
5852               "psz 0x%x, flags 0x%x, hw psz %d\n",
5853               ilt_client->start, ilt_client->end,
5854               ilt_client->page_size, ilt_client->flags,
5855               ilog2(ilt_client->page_size >> 12));
5856 
5857         /* TM */
5858         ilt_client = &ilt->clients[ILT_CLIENT_TM];
5859         ilt_client->client_num = ILT_CLIENT_TM;
5860         ilt_client->page_size = TM_ILT_PAGE_SZ;
5861         ilt_client->flags = 0;
5862         ilt_client->start = line;
5863         line += TM_ILT_LINES;
5864         ilt_client->end = (line - 1);
5865 
5866         BLOGD(sc, DBG_LOAD,
5867               "ilt client[TM]: start %d, end %d, "
5868               "psz 0x%x, flags 0x%x, hw psz %d\n",
5869               ilt_client->start, ilt_client->end,
5870               ilt_client->page_size, ilt_client->flags,
5871               ilog2(ilt_client->page_size >> 12));
5872     }
5873 
5874     KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!"));
5875 }
5876 
5877 static void
5878 bxe_set_fp_rx_buf_size(struct bxe_softc *sc)
5879 {
5880     int i;
5881     uint32_t rx_buf_size;
5882 
5883     rx_buf_size = (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu);
5884 
5885     for (i = 0; i < sc->num_queues; i++) {
5886         if(rx_buf_size <= MCLBYTES){
5887             sc->fp[i].rx_buf_size = rx_buf_size;
5888             sc->fp[i].mbuf_alloc_size = MCLBYTES;
5889         }else if (rx_buf_size <= MJUMPAGESIZE){
5890             sc->fp[i].rx_buf_size = rx_buf_size;
5891             sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE;
5892         }else if (rx_buf_size <= (MJUMPAGESIZE + MCLBYTES)){
5893             sc->fp[i].rx_buf_size = MCLBYTES;
5894             sc->fp[i].mbuf_alloc_size = MCLBYTES;
5895         }else if (rx_buf_size <= (2 * MJUMPAGESIZE)){
5896             sc->fp[i].rx_buf_size = MJUMPAGESIZE;
5897             sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE;
5898         }else {
5899             sc->fp[i].rx_buf_size = MCLBYTES;
5900             sc->fp[i].mbuf_alloc_size = MCLBYTES;
5901         }
5902     }
5903 }
5904 
5905 static int
5906 bxe_alloc_ilt_mem(struct bxe_softc *sc)
5907 {
5908     int rc = 0;
5909 
5910     if ((sc->ilt =
5911          (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt),
5912                                     M_BXE_ILT,
5913                                     (M_NOWAIT | M_ZERO))) == NULL) {
5914         rc = 1;
5915     }
5916 
5917     return (rc);
5918 }
5919 
5920 static int
5921 bxe_alloc_ilt_lines_mem(struct bxe_softc *sc)
5922 {
5923     int rc = 0;
5924 
5925     if ((sc->ilt->lines =
5926          (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES),
5927                                     M_BXE_ILT,
5928                                     (M_NOWAIT | M_ZERO))) == NULL) {
5929         rc = 1;
5930     }
5931 
5932     return (rc);
5933 }
5934 
5935 static void
5936 bxe_free_ilt_mem(struct bxe_softc *sc)
5937 {
5938     if (sc->ilt != NULL) {
5939         free(sc->ilt, M_BXE_ILT);
5940         sc->ilt = NULL;
5941     }
5942 }
5943 
5944 static void
5945 bxe_free_ilt_lines_mem(struct bxe_softc *sc)
5946 {
5947     if (sc->ilt->lines != NULL) {
5948         free(sc->ilt->lines, M_BXE_ILT);
5949         sc->ilt->lines = NULL;
5950     }
5951 }
5952 
5953 static void
5954 bxe_free_mem(struct bxe_softc *sc)
5955 {
5956     int i;
5957 
5958     for (i = 0; i < L2_ILT_LINES(sc); i++) {
5959         bxe_dma_free(sc, &sc->context[i].vcxt_dma);
5960         sc->context[i].vcxt = NULL;
5961         sc->context[i].size = 0;
5962     }
5963 
5964     ecore_ilt_mem_op(sc, ILT_MEMOP_FREE);
5965 
5966     bxe_free_ilt_lines_mem(sc);
5967 
5968 }
5969 
5970 static int
5971 bxe_alloc_mem(struct bxe_softc *sc)
5972 {
5973     int context_size;
5974     int allocated;
5975     int i;
5976 
5977     /*
5978      * Allocate memory for CDU context:
5979      * This memory is allocated separately and not in the generic ILT
5980      * functions because CDU differs in few aspects:
5981      * 1. There can be multiple entities allocating memory for context -
5982      * regular L2, CNIC, and SRIOV drivers. Each separately controls
5983      * its own ILT lines.
5984      * 2. Since CDU page-size is not a single 4KB page (which is the case
5985      * for the other ILT clients), to be efficient we want to support
5986      * allocation of sub-page-size in the last entry.
5987      * 3. Context pointers are used by the driver to pass to FW / update
5988      * the context (for the other ILT clients the pointers are used just to
5989      * free the memory during unload).
5990      */
5991     context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc));
5992     for (i = 0, allocated = 0; allocated < context_size; i++) {
5993         sc->context[i].size = min(CDU_ILT_PAGE_SZ,
5994                                   (context_size - allocated));
5995 
5996         if (bxe_dma_alloc(sc, sc->context[i].size,
5997                           &sc->context[i].vcxt_dma,
5998                           "cdu context") != 0) {
5999             bxe_free_mem(sc);
6000             return (-1);
6001         }
6002 
6003         sc->context[i].vcxt =
6004             (union cdu_context *)sc->context[i].vcxt_dma.vaddr;
6005 
6006         allocated += sc->context[i].size;
6007     }
6008 
6009     bxe_alloc_ilt_lines_mem(sc);
6010 
6011     BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n",
6012           sc->ilt, sc->ilt->start_line, sc->ilt->lines);
6013     {
6014         for (i = 0; i < 4; i++) {
6015             BLOGD(sc, DBG_LOAD,
6016                   "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n",
6017                   i,
6018                   sc->ilt->clients[i].page_size,
6019                   sc->ilt->clients[i].start,
6020                   sc->ilt->clients[i].end,
6021                   sc->ilt->clients[i].client_num,
6022                   sc->ilt->clients[i].flags);
6023         }
6024     }
6025     if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) {
6026         BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n");
6027         bxe_free_mem(sc);
6028         return (-1);
6029     }
6030 
6031     return (0);
6032 }
6033 
6034 static void
6035 bxe_free_rx_bd_chain(struct bxe_fastpath *fp)
6036 {
6037     struct bxe_softc *sc;
6038     int i;
6039 
6040     sc = fp->sc;
6041 
6042     if (fp->rx_mbuf_tag == NULL) {
6043         return;
6044     }
6045 
6046     /* free all mbufs and unload all maps */
6047     for (i = 0; i < RX_BD_TOTAL; i++) {
6048         if (fp->rx_mbuf_chain[i].m_map != NULL) {
6049             bus_dmamap_sync(fp->rx_mbuf_tag,
6050                             fp->rx_mbuf_chain[i].m_map,
6051                             BUS_DMASYNC_POSTREAD);
6052             bus_dmamap_unload(fp->rx_mbuf_tag,
6053                               fp->rx_mbuf_chain[i].m_map);
6054         }
6055 
6056         if (fp->rx_mbuf_chain[i].m != NULL) {
6057             m_freem(fp->rx_mbuf_chain[i].m);
6058             fp->rx_mbuf_chain[i].m = NULL;
6059             fp->eth_q_stats.mbuf_alloc_rx--;
6060         }
6061     }
6062 }
6063 
6064 static void
6065 bxe_free_tpa_pool(struct bxe_fastpath *fp)
6066 {
6067     struct bxe_softc *sc;
6068     int i, max_agg_queues;
6069 
6070     sc = fp->sc;
6071 
6072     if (fp->rx_mbuf_tag == NULL) {
6073         return;
6074     }
6075 
6076     max_agg_queues = MAX_AGG_QS(sc);
6077 
6078     /* release all mbufs and unload all DMA maps in the TPA pool */
6079     for (i = 0; i < max_agg_queues; i++) {
6080         if (fp->rx_tpa_info[i].bd.m_map != NULL) {
6081             bus_dmamap_sync(fp->rx_mbuf_tag,
6082                             fp->rx_tpa_info[i].bd.m_map,
6083                             BUS_DMASYNC_POSTREAD);
6084             bus_dmamap_unload(fp->rx_mbuf_tag,
6085                               fp->rx_tpa_info[i].bd.m_map);
6086         }
6087 
6088         if (fp->rx_tpa_info[i].bd.m != NULL) {
6089             m_freem(fp->rx_tpa_info[i].bd.m);
6090             fp->rx_tpa_info[i].bd.m = NULL;
6091             fp->eth_q_stats.mbuf_alloc_tpa--;
6092         }
6093     }
6094 }
6095 
6096 static void
6097 bxe_free_sge_chain(struct bxe_fastpath *fp)
6098 {
6099     struct bxe_softc *sc;
6100     int i;
6101 
6102     sc = fp->sc;
6103 
6104     if (fp->rx_sge_mbuf_tag == NULL) {
6105         return;
6106     }
6107 
6108     /* rree all mbufs and unload all maps */
6109     for (i = 0; i < RX_SGE_TOTAL; i++) {
6110         if (fp->rx_sge_mbuf_chain[i].m_map != NULL) {
6111             bus_dmamap_sync(fp->rx_sge_mbuf_tag,
6112                             fp->rx_sge_mbuf_chain[i].m_map,
6113                             BUS_DMASYNC_POSTREAD);
6114             bus_dmamap_unload(fp->rx_sge_mbuf_tag,
6115                               fp->rx_sge_mbuf_chain[i].m_map);
6116         }
6117 
6118         if (fp->rx_sge_mbuf_chain[i].m != NULL) {
6119             m_freem(fp->rx_sge_mbuf_chain[i].m);
6120             fp->rx_sge_mbuf_chain[i].m = NULL;
6121             fp->eth_q_stats.mbuf_alloc_sge--;
6122         }
6123     }
6124 }
6125 
6126 static void
6127 bxe_free_fp_buffers(struct bxe_softc *sc)
6128 {
6129     struct bxe_fastpath *fp;
6130     int i;
6131 
6132     for (i = 0; i < sc->num_queues; i++) {
6133         fp = &sc->fp[i];
6134 
6135 #if __FreeBSD_version >= 800000
6136         if (fp->tx_br != NULL) {
6137             /* just in case bxe_mq_flush() wasn't called */
6138             if (mtx_initialized(&fp->tx_mtx)) {
6139                 struct mbuf *m;
6140 
6141                 BXE_FP_TX_LOCK(fp);
6142                 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL)
6143                     m_freem(m);
6144                 BXE_FP_TX_UNLOCK(fp);
6145             }
6146         }
6147 #endif
6148 
6149         /* free all RX buffers */
6150         bxe_free_rx_bd_chain(fp);
6151         bxe_free_tpa_pool(fp);
6152         bxe_free_sge_chain(fp);
6153 
6154         if (fp->eth_q_stats.mbuf_alloc_rx != 0) {
6155             BLOGE(sc, "failed to claim all rx mbufs (%d left)\n",
6156                   fp->eth_q_stats.mbuf_alloc_rx);
6157         }
6158 
6159         if (fp->eth_q_stats.mbuf_alloc_sge != 0) {
6160             BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6161                   fp->eth_q_stats.mbuf_alloc_sge);
6162         }
6163 
6164         if (fp->eth_q_stats.mbuf_alloc_tpa != 0) {
6165             BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6166                   fp->eth_q_stats.mbuf_alloc_tpa);
6167         }
6168 
6169         if (fp->eth_q_stats.mbuf_alloc_tx != 0) {
6170             BLOGE(sc, "failed to release tx mbufs (%d left)\n",
6171                   fp->eth_q_stats.mbuf_alloc_tx);
6172         }
6173 
6174         /* XXX verify all mbufs were reclaimed */
6175     }
6176 }
6177 
6178 static int
6179 bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
6180                      uint16_t            prev_index,
6181                      uint16_t            index)
6182 {
6183     struct bxe_sw_rx_bd *rx_buf;
6184     struct eth_rx_bd *rx_bd;
6185     bus_dma_segment_t segs[1];
6186     bus_dmamap_t map;
6187     struct mbuf *m;
6188     int nsegs, rc;
6189 
6190     rc = 0;
6191 
6192     /* allocate the new RX BD mbuf */
6193     m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6194     if (__predict_false(m == NULL)) {
6195         fp->eth_q_stats.mbuf_rx_bd_alloc_failed++;
6196         return (ENOBUFS);
6197     }
6198 
6199     fp->eth_q_stats.mbuf_alloc_rx++;
6200 
6201     /* initialize the mbuf buffer length */
6202     m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6203 
6204     /* map the mbuf into non-paged pool */
6205     rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6206                                  fp->rx_mbuf_spare_map,
6207                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6208     if (__predict_false(rc != 0)) {
6209         fp->eth_q_stats.mbuf_rx_bd_mapping_failed++;
6210         m_freem(m);
6211         fp->eth_q_stats.mbuf_alloc_rx--;
6212         return (rc);
6213     }
6214 
6215     /* all mbufs must map to a single segment */
6216     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6217 
6218     /* release any existing RX BD mbuf mappings */
6219 
6220     if (prev_index != index) {
6221         rx_buf = &fp->rx_mbuf_chain[prev_index];
6222 
6223         if (rx_buf->m_map != NULL) {
6224             bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6225                             BUS_DMASYNC_POSTREAD);
6226             bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6227         }
6228 
6229         /*
6230          * We only get here from bxe_rxeof() when the maximum number
6231          * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already
6232          * holds the mbuf in the prev_index so it's OK to NULL it out
6233          * here without concern of a memory leak.
6234          */
6235         fp->rx_mbuf_chain[prev_index].m = NULL;
6236     }
6237 
6238     rx_buf = &fp->rx_mbuf_chain[index];
6239 
6240     if (rx_buf->m_map != NULL) {
6241         bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6242                         BUS_DMASYNC_POSTREAD);
6243         bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6244     }
6245 
6246     /* save the mbuf and mapping info for a future packet */
6247     map = (prev_index != index) ?
6248               fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map;
6249     rx_buf->m_map = fp->rx_mbuf_spare_map;
6250     fp->rx_mbuf_spare_map = map;
6251     bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6252                     BUS_DMASYNC_PREREAD);
6253     rx_buf->m = m;
6254 
6255     rx_bd = &fp->rx_chain[index];
6256     rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6257     rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6258 
6259     return (rc);
6260 }
6261 
6262 static int
6263 bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
6264                       int                 queue)
6265 {
6266     struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
6267     bus_dma_segment_t segs[1];
6268     bus_dmamap_t map;
6269     struct mbuf *m;
6270     int nsegs;
6271     int rc = 0;
6272 
6273     /* allocate the new TPA mbuf */
6274     m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6275     if (__predict_false(m == NULL)) {
6276         fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++;
6277         return (ENOBUFS);
6278     }
6279 
6280     fp->eth_q_stats.mbuf_alloc_tpa++;
6281 
6282     /* initialize the mbuf buffer length */
6283     m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6284 
6285     /* map the mbuf into non-paged pool */
6286     rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6287                                  fp->rx_tpa_info_mbuf_spare_map,
6288                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6289     if (__predict_false(rc != 0)) {
6290         fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++;
6291         m_free(m);
6292         fp->eth_q_stats.mbuf_alloc_tpa--;
6293         return (rc);
6294     }
6295 
6296     /* all mbufs must map to a single segment */
6297     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6298 
6299     /* release any existing TPA mbuf mapping */
6300     if (tpa_info->bd.m_map != NULL) {
6301         bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6302                         BUS_DMASYNC_POSTREAD);
6303         bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map);
6304     }
6305 
6306     /* save the mbuf and mapping info for the TPA mbuf */
6307     map = tpa_info->bd.m_map;
6308     tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map;
6309     fp->rx_tpa_info_mbuf_spare_map = map;
6310     bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6311                     BUS_DMASYNC_PREREAD);
6312     tpa_info->bd.m = m;
6313     tpa_info->seg = segs[0];
6314 
6315     return (rc);
6316 }
6317 
6318 /*
6319  * Allocate an mbuf and assign it to the receive scatter gather chain. The
6320  * caller must take care to save a copy of the existing mbuf in the SG mbuf
6321  * chain.
6322  */
6323 static int
6324 bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
6325                       uint16_t            index)
6326 {
6327     struct bxe_sw_rx_bd *sge_buf;
6328     struct eth_rx_sge *sge;
6329     bus_dma_segment_t segs[1];
6330     bus_dmamap_t map;
6331     struct mbuf *m;
6332     int nsegs;
6333     int rc = 0;
6334 
6335     /* allocate a new SGE mbuf */
6336     m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE);
6337     if (__predict_false(m == NULL)) {
6338         fp->eth_q_stats.mbuf_rx_sge_alloc_failed++;
6339         return (ENOMEM);
6340     }
6341 
6342     fp->eth_q_stats.mbuf_alloc_sge++;
6343 
6344     /* initialize the mbuf buffer length */
6345     m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE;
6346 
6347     /* map the SGE mbuf into non-paged pool */
6348     rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag,
6349                                  fp->rx_sge_mbuf_spare_map,
6350                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6351     if (__predict_false(rc != 0)) {
6352         fp->eth_q_stats.mbuf_rx_sge_mapping_failed++;
6353         m_freem(m);
6354         fp->eth_q_stats.mbuf_alloc_sge--;
6355         return (rc);
6356     }
6357 
6358     /* all mbufs must map to a single segment */
6359     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6360 
6361     sge_buf = &fp->rx_sge_mbuf_chain[index];
6362 
6363     /* release any existing SGE mbuf mapping */
6364     if (sge_buf->m_map != NULL) {
6365         bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6366                         BUS_DMASYNC_POSTREAD);
6367         bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map);
6368     }
6369 
6370     /* save the mbuf and mapping info for a future packet */
6371     map = sge_buf->m_map;
6372     sge_buf->m_map = fp->rx_sge_mbuf_spare_map;
6373     fp->rx_sge_mbuf_spare_map = map;
6374     bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6375                     BUS_DMASYNC_PREREAD);
6376     sge_buf->m = m;
6377 
6378     sge = &fp->rx_sge_chain[index];
6379     sge->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6380     sge->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6381 
6382     return (rc);
6383 }
6384 
6385 static __noinline int
6386 bxe_alloc_fp_buffers(struct bxe_softc *sc)
6387 {
6388     struct bxe_fastpath *fp;
6389     int i, j, rc = 0;
6390     int ring_prod, cqe_ring_prod;
6391     int max_agg_queues;
6392 
6393     for (i = 0; i < sc->num_queues; i++) {
6394         fp = &sc->fp[i];
6395 
6396         ring_prod = cqe_ring_prod = 0;
6397         fp->rx_bd_cons = 0;
6398         fp->rx_cq_cons = 0;
6399 
6400         /* allocate buffers for the RX BDs in RX BD chain */
6401         for (j = 0; j < sc->max_rx_bufs; j++) {
6402             rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod);
6403             if (rc != 0) {
6404                 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
6405                       i, rc);
6406                 goto bxe_alloc_fp_buffers_error;
6407             }
6408 
6409             ring_prod     = RX_BD_NEXT(ring_prod);
6410             cqe_ring_prod = RCQ_NEXT(cqe_ring_prod);
6411         }
6412 
6413         fp->rx_bd_prod = ring_prod;
6414         fp->rx_cq_prod = cqe_ring_prod;
6415         fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0;
6416 
6417         max_agg_queues = MAX_AGG_QS(sc);
6418 
6419         fp->tpa_enable = TRUE;
6420 
6421         /* fill the TPA pool */
6422         for (j = 0; j < max_agg_queues; j++) {
6423             rc = bxe_alloc_rx_tpa_mbuf(fp, j);
6424             if (rc != 0) {
6425                 BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n",
6426                           i, j);
6427                 fp->tpa_enable = FALSE;
6428                 goto bxe_alloc_fp_buffers_error;
6429             }
6430 
6431             fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP;
6432         }
6433 
6434         if (fp->tpa_enable) {
6435             /* fill the RX SGE chain */
6436             ring_prod = 0;
6437             for (j = 0; j < RX_SGE_USABLE; j++) {
6438                 rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod);
6439                 if (rc != 0) {
6440                     BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n",
6441                               i, ring_prod);
6442                     fp->tpa_enable = FALSE;
6443                     ring_prod = 0;
6444                     goto bxe_alloc_fp_buffers_error;
6445                 }
6446 
6447                 ring_prod = RX_SGE_NEXT(ring_prod);
6448             }
6449 
6450             fp->rx_sge_prod = ring_prod;
6451         }
6452     }
6453 
6454     return (0);
6455 
6456 bxe_alloc_fp_buffers_error:
6457 
6458     /* unwind what was already allocated */
6459     bxe_free_rx_bd_chain(fp);
6460     bxe_free_tpa_pool(fp);
6461     bxe_free_sge_chain(fp);
6462 
6463     return (ENOBUFS);
6464 }
6465 
6466 static void
6467 bxe_free_fw_stats_mem(struct bxe_softc *sc)
6468 {
6469     bxe_dma_free(sc, &sc->fw_stats_dma);
6470 
6471     sc->fw_stats_num = 0;
6472 
6473     sc->fw_stats_req_size = 0;
6474     sc->fw_stats_req = NULL;
6475     sc->fw_stats_req_mapping = 0;
6476 
6477     sc->fw_stats_data_size = 0;
6478     sc->fw_stats_data = NULL;
6479     sc->fw_stats_data_mapping = 0;
6480 }
6481 
6482 static int
6483 bxe_alloc_fw_stats_mem(struct bxe_softc *sc)
6484 {
6485     uint8_t num_queue_stats;
6486     int num_groups;
6487 
6488     /* number of queues for statistics is number of eth queues */
6489     num_queue_stats = BXE_NUM_ETH_QUEUES(sc);
6490 
6491     /*
6492      * Total number of FW statistics requests =
6493      *   1 for port stats + 1 for PF stats + num of queues
6494      */
6495     sc->fw_stats_num = (2 + num_queue_stats);
6496 
6497     /*
6498      * Request is built from stats_query_header and an array of
6499      * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT
6500      * rules. The real number or requests is configured in the
6501      * stats_query_header.
6502      */
6503     num_groups =
6504         ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) +
6505          ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0));
6506 
6507     BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n",
6508           sc->fw_stats_num, num_groups);
6509 
6510     sc->fw_stats_req_size =
6511         (sizeof(struct stats_query_header) +
6512          (num_groups * sizeof(struct stats_query_cmd_group)));
6513 
6514     /*
6515      * Data for statistics requests + stats_counter.
6516      * stats_counter holds per-STORM counters that are incremented when
6517      * STORM has finished with the current request. Memory for FCoE
6518      * offloaded statistics are counted anyway, even if they will not be sent.
6519      * VF stats are not accounted for here as the data of VF stats is stored
6520      * in memory allocated by the VF, not here.
6521      */
6522     sc->fw_stats_data_size =
6523         (sizeof(struct stats_counter) +
6524          sizeof(struct per_port_stats) +
6525          sizeof(struct per_pf_stats) +
6526          /* sizeof(struct fcoe_statistics_params) + */
6527          (sizeof(struct per_queue_stats) * num_queue_stats));
6528 
6529     if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size),
6530                       &sc->fw_stats_dma, "fw stats") != 0) {
6531         bxe_free_fw_stats_mem(sc);
6532         return (-1);
6533     }
6534 
6535     /* set up the shortcuts */
6536 
6537     sc->fw_stats_req =
6538         (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr;
6539     sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr;
6540 
6541     sc->fw_stats_data =
6542         (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr +
6543                                      sc->fw_stats_req_size);
6544     sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr +
6545                                  sc->fw_stats_req_size);
6546 
6547     BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n",
6548           (uintmax_t)sc->fw_stats_req_mapping);
6549 
6550     BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n",
6551           (uintmax_t)sc->fw_stats_data_mapping);
6552 
6553     return (0);
6554 }
6555 
6556 /*
6557  * Bits map:
6558  * 0-7  - Engine0 load counter.
6559  * 8-15 - Engine1 load counter.
6560  * 16   - Engine0 RESET_IN_PROGRESS bit.
6561  * 17   - Engine1 RESET_IN_PROGRESS bit.
6562  * 18   - Engine0 ONE_IS_LOADED. Set when there is at least one active
6563  *        function on the engine
6564  * 19   - Engine1 ONE_IS_LOADED.
6565  * 20   - Chip reset flow bit. When set none-leader must wait for both engines
6566  *        leader to complete (check for both RESET_IN_PROGRESS bits and not
6567  *        for just the one belonging to its engine).
6568  */
6569 #define BXE_RECOVERY_GLOB_REG     MISC_REG_GENERIC_POR_1
6570 #define BXE_PATH0_LOAD_CNT_MASK   0x000000ff
6571 #define BXE_PATH0_LOAD_CNT_SHIFT  0
6572 #define BXE_PATH1_LOAD_CNT_MASK   0x0000ff00
6573 #define BXE_PATH1_LOAD_CNT_SHIFT  8
6574 #define BXE_PATH0_RST_IN_PROG_BIT 0x00010000
6575 #define BXE_PATH1_RST_IN_PROG_BIT 0x00020000
6576 #define BXE_GLOBAL_RESET_BIT      0x00040000
6577 
6578 /* set the GLOBAL_RESET bit, should be run under rtnl lock */
6579 static void
6580 bxe_set_reset_global(struct bxe_softc *sc)
6581 {
6582     uint32_t val;
6583     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6584     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6585     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT);
6586     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6587 }
6588 
6589 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */
6590 static void
6591 bxe_clear_reset_global(struct bxe_softc *sc)
6592 {
6593     uint32_t val;
6594     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6595     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6596     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT));
6597     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6598 }
6599 
6600 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */
6601 static uint8_t
6602 bxe_reset_is_global(struct bxe_softc *sc)
6603 {
6604     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6605     BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val);
6606     return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE;
6607 }
6608 
6609 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */
6610 static void
6611 bxe_set_reset_done(struct bxe_softc *sc)
6612 {
6613     uint32_t val;
6614     uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
6615                                  BXE_PATH0_RST_IN_PROG_BIT;
6616 
6617     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6618 
6619     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6620     /* Clear the bit */
6621     val &= ~bit;
6622     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6623 
6624     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6625 }
6626 
6627 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */
6628 static void
6629 bxe_set_reset_in_progress(struct bxe_softc *sc)
6630 {
6631     uint32_t val;
6632     uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
6633                                  BXE_PATH0_RST_IN_PROG_BIT;
6634 
6635     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6636 
6637     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6638     /* Set the bit */
6639     val |= bit;
6640     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6641 
6642     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6643 }
6644 
6645 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */
6646 static uint8_t
6647 bxe_reset_is_done(struct bxe_softc *sc,
6648                   int              engine)
6649 {
6650     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6651     uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT :
6652                             BXE_PATH0_RST_IN_PROG_BIT;
6653 
6654     /* return false if bit is set */
6655     return (val & bit) ? FALSE : TRUE;
6656 }
6657 
6658 /* get the load status for an engine, should be run under rtnl lock */
6659 static uint8_t
6660 bxe_get_load_status(struct bxe_softc *sc,
6661                     int              engine)
6662 {
6663     uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK :
6664                              BXE_PATH0_LOAD_CNT_MASK;
6665     uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT :
6666                               BXE_PATH0_LOAD_CNT_SHIFT;
6667     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6668 
6669     BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
6670 
6671     val = ((val & mask) >> shift);
6672 
6673     BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val);
6674 
6675     return (val != 0);
6676 }
6677 
6678 /* set pf load mark */
6679 /* XXX needs to be under rtnl lock */
6680 static void
6681 bxe_set_pf_load(struct bxe_softc *sc)
6682 {
6683     uint32_t val;
6684     uint32_t val1;
6685     uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
6686                                   BXE_PATH0_LOAD_CNT_MASK;
6687     uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
6688                                    BXE_PATH0_LOAD_CNT_SHIFT;
6689 
6690     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6691 
6692     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6693     BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
6694 
6695     /* get the current counter value */
6696     val1 = ((val & mask) >> shift);
6697 
6698     /* set bit of this PF */
6699     val1 |= (1 << SC_ABS_FUNC(sc));
6700 
6701     /* clear the old value */
6702     val &= ~mask;
6703 
6704     /* set the new one */
6705     val |= ((val1 << shift) & mask);
6706 
6707     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6708 
6709     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6710 }
6711 
6712 /* clear pf load mark */
6713 /* XXX needs to be under rtnl lock */
6714 static uint8_t
6715 bxe_clear_pf_load(struct bxe_softc *sc)
6716 {
6717     uint32_t val1, val;
6718     uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
6719                                   BXE_PATH0_LOAD_CNT_MASK;
6720     uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
6721                                    BXE_PATH0_LOAD_CNT_SHIFT;
6722 
6723     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6724     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6725     BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val);
6726 
6727     /* get the current counter value */
6728     val1 = (val & mask) >> shift;
6729 
6730     /* clear bit of that PF */
6731     val1 &= ~(1 << SC_ABS_FUNC(sc));
6732 
6733     /* clear the old value */
6734     val &= ~mask;
6735 
6736     /* set the new one */
6737     val |= ((val1 << shift) & mask);
6738 
6739     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6740     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6741     return (val1 != 0);
6742 }
6743 
6744 /* send load requrest to mcp and analyze response */
6745 static int
6746 bxe_nic_load_request(struct bxe_softc *sc,
6747                      uint32_t         *load_code)
6748 {
6749     /* init fw_seq */
6750     sc->fw_seq =
6751         (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
6752          DRV_MSG_SEQ_NUMBER_MASK);
6753 
6754     BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq);
6755 
6756     /* get the current FW pulse sequence */
6757     sc->fw_drv_pulse_wr_seq =
6758         (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) &
6759          DRV_PULSE_SEQ_MASK);
6760 
6761     BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n",
6762           sc->fw_drv_pulse_wr_seq);
6763 
6764     /* load request */
6765     (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
6766                                   DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
6767 
6768     /* if the MCP fails to respond we must abort */
6769     if (!(*load_code)) {
6770         BLOGE(sc, "MCP response failure!\n");
6771         return (-1);
6772     }
6773 
6774     /* if MCP refused then must abort */
6775     if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
6776         BLOGE(sc, "MCP refused load request\n");
6777         return (-1);
6778     }
6779 
6780     return (0);
6781 }
6782 
6783 /*
6784  * Check whether another PF has already loaded FW to chip. In virtualized
6785  * environments a pf from anoth VM may have already initialized the device
6786  * including loading FW.
6787  */
6788 static int
6789 bxe_nic_load_analyze_req(struct bxe_softc *sc,
6790                          uint32_t         load_code)
6791 {
6792     uint32_t my_fw, loaded_fw;
6793 
6794     /* is another pf loaded on this engine? */
6795     if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
6796         (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
6797         /* build my FW version dword */
6798         my_fw = (BCM_5710_FW_MAJOR_VERSION +
6799                  (BCM_5710_FW_MINOR_VERSION << 8 ) +
6800                  (BCM_5710_FW_REVISION_VERSION << 16) +
6801                  (BCM_5710_FW_ENGINEERING_VERSION << 24));
6802 
6803         /* read loaded FW from chip */
6804         loaded_fw = REG_RD(sc, XSEM_REG_PRAM);
6805         BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n",
6806               loaded_fw, my_fw);
6807 
6808         /* abort nic load if version mismatch */
6809         if (my_fw != loaded_fw) {
6810             BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)",
6811                   loaded_fw, my_fw);
6812             return (-1);
6813         }
6814     }
6815 
6816     return (0);
6817 }
6818 
6819 /* mark PMF if applicable */
6820 static void
6821 bxe_nic_load_pmf(struct bxe_softc *sc,
6822                  uint32_t         load_code)
6823 {
6824     uint32_t ncsi_oem_data_addr;
6825 
6826     if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
6827         (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
6828         (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
6829         /*
6830          * Barrier here for ordering between the writing to sc->port.pmf here
6831          * and reading it from the periodic task.
6832          */
6833         sc->port.pmf = 1;
6834         mb();
6835     } else {
6836         sc->port.pmf = 0;
6837     }
6838 
6839     BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf);
6840 
6841     /* XXX needed? */
6842     if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) {
6843         if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) {
6844             ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr);
6845             if (ncsi_oem_data_addr) {
6846                 REG_WR(sc,
6847                        (ncsi_oem_data_addr +
6848                         offsetof(struct glob_ncsi_oem_data, driver_version)),
6849                        0);
6850             }
6851         }
6852     }
6853 }
6854 
6855 static void
6856 bxe_read_mf_cfg(struct bxe_softc *sc)
6857 {
6858     int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1);
6859     int abs_func;
6860     int vn;
6861 
6862     if (BXE_NOMCP(sc)) {
6863         return; /* what should be the default bvalue in this case */
6864     }
6865 
6866     /*
6867      * The formula for computing the absolute function number is...
6868      * For 2 port configuration (4 functions per port):
6869      *   abs_func = 2 * vn + SC_PORT + SC_PATH
6870      * For 4 port configuration (2 functions per port):
6871      *   abs_func = 4 * vn + 2 * SC_PORT + SC_PATH
6872      */
6873     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
6874         abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc));
6875         if (abs_func >= E1H_FUNC_MAX) {
6876             break;
6877         }
6878         sc->devinfo.mf_info.mf_config[vn] =
6879             MFCFG_RD(sc, func_mf_config[abs_func].config);
6880     }
6881 
6882     if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] &
6883         FUNC_MF_CFG_FUNC_DISABLED) {
6884         BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n");
6885         sc->flags |= BXE_MF_FUNC_DIS;
6886     } else {
6887         BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n");
6888         sc->flags &= ~BXE_MF_FUNC_DIS;
6889     }
6890 }
6891 
6892 /* acquire split MCP access lock register */
6893 static int bxe_acquire_alr(struct bxe_softc *sc)
6894 {
6895     uint32_t j, val;
6896 
6897     for (j = 0; j < 1000; j++) {
6898         val = (1UL << 31);
6899         REG_WR(sc, GRCBASE_MCP + 0x9c, val);
6900         val = REG_RD(sc, GRCBASE_MCP + 0x9c);
6901         if (val & (1L << 31))
6902             break;
6903 
6904         DELAY(5000);
6905     }
6906 
6907     if (!(val & (1L << 31))) {
6908         BLOGE(sc, "Cannot acquire MCP access lock register\n");
6909         return (-1);
6910     }
6911 
6912     return (0);
6913 }
6914 
6915 /* release split MCP access lock register */
6916 static void bxe_release_alr(struct bxe_softc *sc)
6917 {
6918     REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
6919 }
6920 
6921 static void
6922 bxe_fan_failure(struct bxe_softc *sc)
6923 {
6924     int port = SC_PORT(sc);
6925     uint32_t ext_phy_config;
6926 
6927     /* mark the failure */
6928     ext_phy_config =
6929         SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
6930 
6931     ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
6932     ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
6933     SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
6934              ext_phy_config);
6935 
6936     /* log the failure */
6937     BLOGW(sc, "Fan Failure has caused the driver to shutdown "
6938               "the card to prevent permanent damage. "
6939               "Please contact OEM Support for assistance\n");
6940 
6941     /* XXX */
6942 #if 1
6943     bxe_panic(sc, ("Schedule task to handle fan failure\n"));
6944 #else
6945     /*
6946      * Schedule device reset (unload)
6947      * This is due to some boards consuming sufficient power when driver is
6948      * up to overheat if fan fails.
6949      */
6950     bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state);
6951     schedule_delayed_work(&sc->sp_rtnl_task, 0);
6952 #endif
6953 }
6954 
6955 /* this function is called upon a link interrupt */
6956 static void
6957 bxe_link_attn(struct bxe_softc *sc)
6958 {
6959     uint32_t pause_enabled = 0;
6960     struct host_port_stats *pstats;
6961     int cmng_fns;
6962 
6963     /* Make sure that we are synced with the current statistics */
6964     bxe_stats_handle(sc, STATS_EVENT_STOP);
6965 
6966     elink_link_update(&sc->link_params, &sc->link_vars);
6967 
6968     if (sc->link_vars.link_up) {
6969 
6970         /* dropless flow control */
6971         if (!CHIP_IS_E1(sc) && sc->dropless_fc) {
6972             pause_enabled = 0;
6973 
6974             if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
6975                 pause_enabled = 1;
6976             }
6977 
6978             REG_WR(sc,
6979                    (BAR_USTRORM_INTMEM +
6980                     USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))),
6981                    pause_enabled);
6982         }
6983 
6984         if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) {
6985             pstats = BXE_SP(sc, port_stats);
6986             /* reset old mac stats */
6987             memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx));
6988         }
6989 
6990         if (sc->state == BXE_STATE_OPEN) {
6991             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
6992         }
6993     }
6994 
6995     if (sc->link_vars.link_up && sc->link_vars.line_speed) {
6996         cmng_fns = bxe_get_cmng_fns_mode(sc);
6997 
6998         if (cmng_fns != CMNG_FNS_NONE) {
6999             bxe_cmng_fns_init(sc, FALSE, cmng_fns);
7000             storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7001         } else {
7002             /* rate shaping and fairness are disabled */
7003             BLOGD(sc, DBG_LOAD, "single function mode without fairness\n");
7004         }
7005     }
7006 
7007     bxe_link_report_locked(sc);
7008 
7009     if (IS_MF(sc)) {
7010         ; // XXX bxe_link_sync_notify(sc);
7011     }
7012 }
7013 
7014 static void
7015 bxe_attn_int_asserted(struct bxe_softc *sc,
7016                       uint32_t         asserted)
7017 {
7018     int port = SC_PORT(sc);
7019     uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
7020                                MISC_REG_AEU_MASK_ATTN_FUNC_0;
7021     uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
7022                                         NIG_REG_MASK_INTERRUPT_PORT0;
7023     uint32_t aeu_mask;
7024     uint32_t nig_mask = 0;
7025     uint32_t reg_addr;
7026     uint32_t igu_acked;
7027     uint32_t cnt;
7028 
7029     if (sc->attn_state & asserted) {
7030         BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted);
7031     }
7032 
7033     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7034 
7035     aeu_mask = REG_RD(sc, aeu_addr);
7036 
7037     BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n",
7038           aeu_mask, asserted);
7039 
7040     aeu_mask &= ~(asserted & 0x3ff);
7041 
7042     BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
7043 
7044     REG_WR(sc, aeu_addr, aeu_mask);
7045 
7046     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7047 
7048     BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
7049     sc->attn_state |= asserted;
7050     BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
7051 
7052     if (asserted & ATTN_HARD_WIRED_MASK) {
7053         if (asserted & ATTN_NIG_FOR_FUNC) {
7054 
7055 	    bxe_acquire_phy_lock(sc);
7056             /* save nig interrupt mask */
7057             nig_mask = REG_RD(sc, nig_int_mask_addr);
7058 
7059             /* If nig_mask is not set, no need to call the update function */
7060             if (nig_mask) {
7061                 REG_WR(sc, nig_int_mask_addr, 0);
7062 
7063                 bxe_link_attn(sc);
7064             }
7065 
7066             /* handle unicore attn? */
7067         }
7068 
7069         if (asserted & ATTN_SW_TIMER_4_FUNC) {
7070             BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n");
7071         }
7072 
7073         if (asserted & GPIO_2_FUNC) {
7074             BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n");
7075         }
7076 
7077         if (asserted & GPIO_3_FUNC) {
7078             BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n");
7079         }
7080 
7081         if (asserted & GPIO_4_FUNC) {
7082             BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n");
7083         }
7084 
7085         if (port == 0) {
7086             if (asserted & ATTN_GENERAL_ATTN_1) {
7087                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n");
7088                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
7089             }
7090             if (asserted & ATTN_GENERAL_ATTN_2) {
7091                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n");
7092                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
7093             }
7094             if (asserted & ATTN_GENERAL_ATTN_3) {
7095                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n");
7096                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
7097             }
7098         } else {
7099             if (asserted & ATTN_GENERAL_ATTN_4) {
7100                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n");
7101                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
7102             }
7103             if (asserted & ATTN_GENERAL_ATTN_5) {
7104                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n");
7105                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
7106             }
7107             if (asserted & ATTN_GENERAL_ATTN_6) {
7108                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n");
7109                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
7110             }
7111         }
7112     } /* hardwired */
7113 
7114     if (sc->devinfo.int_block == INT_BLOCK_HC) {
7115         reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET);
7116     } else {
7117         reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
7118     }
7119 
7120     BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n",
7121           asserted,
7122           (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
7123     REG_WR(sc, reg_addr, asserted);
7124 
7125     /* now set back the mask */
7126     if (asserted & ATTN_NIG_FOR_FUNC) {
7127         /*
7128          * Verify that IGU ack through BAR was written before restoring
7129          * NIG mask. This loop should exit after 2-3 iterations max.
7130          */
7131         if (sc->devinfo.int_block != INT_BLOCK_HC) {
7132             cnt = 0;
7133 
7134             do {
7135                 igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS);
7136             } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
7137                      (++cnt < MAX_IGU_ATTN_ACK_TO));
7138 
7139             if (!igu_acked) {
7140                 BLOGE(sc, "Failed to verify IGU ack on time\n");
7141             }
7142 
7143             mb();
7144         }
7145 
7146         REG_WR(sc, nig_int_mask_addr, nig_mask);
7147 
7148 	bxe_release_phy_lock(sc);
7149     }
7150 }
7151 
7152 static void
7153 bxe_print_next_block(struct bxe_softc *sc,
7154                      int              idx,
7155                      const char       *blk)
7156 {
7157     BLOGI(sc, "%s%s", idx ? ", " : "", blk);
7158 }
7159 
7160 static int
7161 bxe_check_blocks_with_parity0(struct bxe_softc *sc,
7162                               uint32_t         sig,
7163                               int              par_num,
7164                               uint8_t          print)
7165 {
7166     uint32_t cur_bit = 0;
7167     int i = 0;
7168 
7169     for (i = 0; sig; i++) {
7170         cur_bit = ((uint32_t)0x1 << i);
7171         if (sig & cur_bit) {
7172             switch (cur_bit) {
7173             case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
7174                 if (print)
7175                     bxe_print_next_block(sc, par_num++, "BRB");
7176                 break;
7177             case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
7178                 if (print)
7179                     bxe_print_next_block(sc, par_num++, "PARSER");
7180                 break;
7181             case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
7182                 if (print)
7183                     bxe_print_next_block(sc, par_num++, "TSDM");
7184                 break;
7185             case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
7186                 if (print)
7187                     bxe_print_next_block(sc, par_num++, "SEARCHER");
7188                 break;
7189             case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
7190                 if (print)
7191                     bxe_print_next_block(sc, par_num++, "TCM");
7192                 break;
7193             case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
7194                 if (print)
7195                     bxe_print_next_block(sc, par_num++, "TSEMI");
7196                 break;
7197             case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
7198                 if (print)
7199                     bxe_print_next_block(sc, par_num++, "XPB");
7200                 break;
7201             }
7202 
7203             /* Clear the bit */
7204             sig &= ~cur_bit;
7205         }
7206     }
7207 
7208     return (par_num);
7209 }
7210 
7211 static int
7212 bxe_check_blocks_with_parity1(struct bxe_softc *sc,
7213                               uint32_t         sig,
7214                               int              par_num,
7215                               uint8_t          *global,
7216                               uint8_t          print)
7217 {
7218     int i = 0;
7219     uint32_t cur_bit = 0;
7220     for (i = 0; sig; i++) {
7221         cur_bit = ((uint32_t)0x1 << i);
7222         if (sig & cur_bit) {
7223             switch (cur_bit) {
7224             case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
7225                 if (print)
7226                     bxe_print_next_block(sc, par_num++, "PBF");
7227                 break;
7228             case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
7229                 if (print)
7230                     bxe_print_next_block(sc, par_num++, "QM");
7231                 break;
7232             case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
7233                 if (print)
7234                     bxe_print_next_block(sc, par_num++, "TM");
7235                 break;
7236             case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
7237                 if (print)
7238                     bxe_print_next_block(sc, par_num++, "XSDM");
7239                 break;
7240             case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
7241                 if (print)
7242                     bxe_print_next_block(sc, par_num++, "XCM");
7243                 break;
7244             case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
7245                 if (print)
7246                     bxe_print_next_block(sc, par_num++, "XSEMI");
7247                 break;
7248             case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
7249                 if (print)
7250                     bxe_print_next_block(sc, par_num++, "DOORBELLQ");
7251                 break;
7252             case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
7253                 if (print)
7254                     bxe_print_next_block(sc, par_num++, "NIG");
7255                 break;
7256             case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
7257                 if (print)
7258                     bxe_print_next_block(sc, par_num++, "VAUX PCI CORE");
7259                 *global = TRUE;
7260                 break;
7261             case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
7262                 if (print)
7263                     bxe_print_next_block(sc, par_num++, "DEBUG");
7264                 break;
7265             case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
7266                 if (print)
7267                     bxe_print_next_block(sc, par_num++, "USDM");
7268                 break;
7269             case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
7270                 if (print)
7271                     bxe_print_next_block(sc, par_num++, "UCM");
7272                 break;
7273             case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
7274                 if (print)
7275                     bxe_print_next_block(sc, par_num++, "USEMI");
7276                 break;
7277             case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
7278                 if (print)
7279                     bxe_print_next_block(sc, par_num++, "UPB");
7280                 break;
7281             case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
7282                 if (print)
7283                     bxe_print_next_block(sc, par_num++, "CSDM");
7284                 break;
7285             case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
7286                 if (print)
7287                     bxe_print_next_block(sc, par_num++, "CCM");
7288                 break;
7289             }
7290 
7291             /* Clear the bit */
7292             sig &= ~cur_bit;
7293         }
7294     }
7295 
7296     return (par_num);
7297 }
7298 
7299 static int
7300 bxe_check_blocks_with_parity2(struct bxe_softc *sc,
7301                               uint32_t         sig,
7302                               int              par_num,
7303                               uint8_t          print)
7304 {
7305     uint32_t cur_bit = 0;
7306     int i = 0;
7307 
7308     for (i = 0; sig; i++) {
7309         cur_bit = ((uint32_t)0x1 << i);
7310         if (sig & cur_bit) {
7311             switch (cur_bit) {
7312             case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
7313                 if (print)
7314                     bxe_print_next_block(sc, par_num++, "CSEMI");
7315                 break;
7316             case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
7317                 if (print)
7318                     bxe_print_next_block(sc, par_num++, "PXP");
7319                 break;
7320             case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
7321                 if (print)
7322                     bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT");
7323                 break;
7324             case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
7325                 if (print)
7326                     bxe_print_next_block(sc, par_num++, "CFC");
7327                 break;
7328             case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
7329                 if (print)
7330                     bxe_print_next_block(sc, par_num++, "CDU");
7331                 break;
7332             case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
7333                 if (print)
7334                     bxe_print_next_block(sc, par_num++, "DMAE");
7335                 break;
7336             case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
7337                 if (print)
7338                     bxe_print_next_block(sc, par_num++, "IGU");
7339                 break;
7340             case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
7341                 if (print)
7342                     bxe_print_next_block(sc, par_num++, "MISC");
7343                 break;
7344             }
7345 
7346             /* Clear the bit */
7347             sig &= ~cur_bit;
7348         }
7349     }
7350 
7351     return (par_num);
7352 }
7353 
7354 static int
7355 bxe_check_blocks_with_parity3(struct bxe_softc *sc,
7356                               uint32_t         sig,
7357                               int              par_num,
7358                               uint8_t          *global,
7359                               uint8_t          print)
7360 {
7361     uint32_t cur_bit = 0;
7362     int i = 0;
7363 
7364     for (i = 0; sig; i++) {
7365         cur_bit = ((uint32_t)0x1 << i);
7366         if (sig & cur_bit) {
7367             switch (cur_bit) {
7368             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
7369                 if (print)
7370                     bxe_print_next_block(sc, par_num++, "MCP ROM");
7371                 *global = TRUE;
7372                 break;
7373             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
7374                 if (print)
7375                     bxe_print_next_block(sc, par_num++,
7376                               "MCP UMP RX");
7377                 *global = TRUE;
7378                 break;
7379             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
7380                 if (print)
7381                     bxe_print_next_block(sc, par_num++,
7382                               "MCP UMP TX");
7383                 *global = TRUE;
7384                 break;
7385             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
7386                 if (print)
7387                     bxe_print_next_block(sc, par_num++,
7388                               "MCP SCPAD");
7389                 *global = TRUE;
7390                 break;
7391             }
7392 
7393             /* Clear the bit */
7394             sig &= ~cur_bit;
7395         }
7396     }
7397 
7398     return (par_num);
7399 }
7400 
7401 static int
7402 bxe_check_blocks_with_parity4(struct bxe_softc *sc,
7403                               uint32_t         sig,
7404                               int              par_num,
7405                               uint8_t          print)
7406 {
7407     uint32_t cur_bit = 0;
7408     int i = 0;
7409 
7410     for (i = 0; sig; i++) {
7411         cur_bit = ((uint32_t)0x1 << i);
7412         if (sig & cur_bit) {
7413             switch (cur_bit) {
7414             case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
7415                 if (print)
7416                     bxe_print_next_block(sc, par_num++, "PGLUE_B");
7417                 break;
7418             case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
7419                 if (print)
7420                     bxe_print_next_block(sc, par_num++, "ATC");
7421                 break;
7422             }
7423 
7424             /* Clear the bit */
7425             sig &= ~cur_bit;
7426         }
7427     }
7428 
7429     return (par_num);
7430 }
7431 
7432 static uint8_t
7433 bxe_parity_attn(struct bxe_softc *sc,
7434                 uint8_t          *global,
7435                 uint8_t          print,
7436                 uint32_t         *sig)
7437 {
7438     int par_num = 0;
7439 
7440     if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
7441         (sig[1] & HW_PRTY_ASSERT_SET_1) ||
7442         (sig[2] & HW_PRTY_ASSERT_SET_2) ||
7443         (sig[3] & HW_PRTY_ASSERT_SET_3) ||
7444         (sig[4] & HW_PRTY_ASSERT_SET_4)) {
7445         BLOGE(sc, "Parity error: HW block parity attention:\n"
7446                   "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
7447               (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0),
7448               (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1),
7449               (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2),
7450               (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3),
7451               (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4));
7452 
7453         if (print)
7454             BLOGI(sc, "Parity errors detected in blocks: ");
7455 
7456         par_num =
7457             bxe_check_blocks_with_parity0(sc, sig[0] &
7458                                           HW_PRTY_ASSERT_SET_0,
7459                                           par_num, print);
7460         par_num =
7461             bxe_check_blocks_with_parity1(sc, sig[1] &
7462                                           HW_PRTY_ASSERT_SET_1,
7463                                           par_num, global, print);
7464         par_num =
7465             bxe_check_blocks_with_parity2(sc, sig[2] &
7466                                           HW_PRTY_ASSERT_SET_2,
7467                                           par_num, print);
7468         par_num =
7469             bxe_check_blocks_with_parity3(sc, sig[3] &
7470                                           HW_PRTY_ASSERT_SET_3,
7471                                           par_num, global, print);
7472         par_num =
7473             bxe_check_blocks_with_parity4(sc, sig[4] &
7474                                           HW_PRTY_ASSERT_SET_4,
7475                                           par_num, print);
7476 
7477         if (print)
7478             BLOGI(sc, "\n");
7479 
7480         return (TRUE);
7481     }
7482 
7483     return (FALSE);
7484 }
7485 
7486 static uint8_t
7487 bxe_chk_parity_attn(struct bxe_softc *sc,
7488                     uint8_t          *global,
7489                     uint8_t          print)
7490 {
7491     struct attn_route attn = { {0} };
7492     int port = SC_PORT(sc);
7493 
7494     attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
7495     attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
7496     attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
7497     attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
7498 
7499     /*
7500      * Since MCP attentions can't be disabled inside the block, we need to
7501      * read AEU registers to see whether they're currently disabled
7502      */
7503     attn.sig[3] &= ((REG_RD(sc, (!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
7504                                       : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0)) &
7505                          MISC_AEU_ENABLE_MCP_PRTY_BITS) |
7506                         ~MISC_AEU_ENABLE_MCP_PRTY_BITS);
7507 
7508 
7509     if (!CHIP_IS_E1x(sc))
7510         attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
7511 
7512     return (bxe_parity_attn(sc, global, print, attn.sig));
7513 }
7514 
7515 static void
7516 bxe_attn_int_deasserted4(struct bxe_softc *sc,
7517                          uint32_t         attn)
7518 {
7519     uint32_t val;
7520 
7521     if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
7522         val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
7523         BLOGE(sc, "PGLUE hw attention 0x%08x\n", val);
7524         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
7525             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
7526         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
7527             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
7528         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
7529             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
7530         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
7531             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
7532         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
7533             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
7534         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
7535             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
7536         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
7537             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
7538         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
7539             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
7540         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
7541             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
7542     }
7543 
7544     if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
7545         val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR);
7546         BLOGE(sc, "ATC hw attention 0x%08x\n", val);
7547         if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
7548             BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
7549         if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
7550             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
7551         if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
7552             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
7553         if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
7554             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
7555         if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
7556             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
7557         if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
7558             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
7559     }
7560 
7561     if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7562                 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
7563         BLOGE(sc, "FATAL parity attention set4 0x%08x\n",
7564               (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7565                                  AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
7566     }
7567 }
7568 
7569 static void
7570 bxe_e1h_disable(struct bxe_softc *sc)
7571 {
7572     int port = SC_PORT(sc);
7573 
7574     bxe_tx_disable(sc);
7575 
7576     REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7577 }
7578 
7579 static void
7580 bxe_e1h_enable(struct bxe_softc *sc)
7581 {
7582     int port = SC_PORT(sc);
7583 
7584     REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7585 
7586     // XXX bxe_tx_enable(sc);
7587 }
7588 
7589 /*
7590  * called due to MCP event (on pmf):
7591  *   reread new bandwidth configuration
7592  *   configure FW
7593  *   notify others function about the change
7594  */
7595 static void
7596 bxe_config_mf_bw(struct bxe_softc *sc)
7597 {
7598     if (sc->link_vars.link_up) {
7599         bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX);
7600         // XXX bxe_link_sync_notify(sc);
7601     }
7602 
7603     storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7604 }
7605 
7606 static void
7607 bxe_set_mf_bw(struct bxe_softc *sc)
7608 {
7609     bxe_config_mf_bw(sc);
7610     bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
7611 }
7612 
7613 static void
7614 bxe_handle_eee_event(struct bxe_softc *sc)
7615 {
7616     BLOGD(sc, DBG_INTR, "EEE - LLDP event\n");
7617     bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
7618 }
7619 
7620 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
7621 
7622 static void
7623 bxe_drv_info_ether_stat(struct bxe_softc *sc)
7624 {
7625     struct eth_stats_info *ether_stat =
7626         &sc->sp->drv_info_to_mcp.ether_stat;
7627 
7628     strlcpy(ether_stat->version, BXE_DRIVER_VERSION,
7629             ETH_STAT_INFO_VERSION_LEN);
7630 
7631     /* XXX (+ MAC_PAD) taken from other driver... verify this is right */
7632     sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj,
7633                                           DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
7634                                           ether_stat->mac_local + MAC_PAD,
7635                                           MAC_PAD, ETH_ALEN);
7636 
7637     ether_stat->mtu_size = sc->mtu;
7638 
7639     ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
7640     if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
7641         ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
7642     }
7643 
7644     // XXX ether_stat->feature_flags |= ???;
7645 
7646     ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0;
7647 
7648     ether_stat->txq_size = sc->tx_ring_size;
7649     ether_stat->rxq_size = sc->rx_ring_size;
7650 }
7651 
7652 static void
7653 bxe_handle_drv_info_req(struct bxe_softc *sc)
7654 {
7655     enum drv_info_opcode op_code;
7656     uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control);
7657 
7658     /* if drv_info version supported by MFW doesn't match - send NACK */
7659     if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
7660         bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
7661         return;
7662     }
7663 
7664     op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
7665                DRV_INFO_CONTROL_OP_CODE_SHIFT);
7666 
7667     memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp));
7668 
7669     switch (op_code) {
7670     case ETH_STATS_OPCODE:
7671         bxe_drv_info_ether_stat(sc);
7672         break;
7673     case FCOE_STATS_OPCODE:
7674     case ISCSI_STATS_OPCODE:
7675     default:
7676         /* if op code isn't supported - send NACK */
7677         bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
7678         return;
7679     }
7680 
7681     /*
7682      * If we got drv_info attn from MFW then these fields are defined in
7683      * shmem2 for sure
7684      */
7685     SHMEM2_WR(sc, drv_info_host_addr_lo,
7686               U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
7687     SHMEM2_WR(sc, drv_info_host_addr_hi,
7688               U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
7689 
7690     bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0);
7691 }
7692 
7693 static void
7694 bxe_dcc_event(struct bxe_softc *sc,
7695               uint32_t         dcc_event)
7696 {
7697     BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event);
7698 
7699     if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
7700         /*
7701          * This is the only place besides the function initialization
7702          * where the sc->flags can change so it is done without any
7703          * locks
7704          */
7705         if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
7706             BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n");
7707             sc->flags |= BXE_MF_FUNC_DIS;
7708             bxe_e1h_disable(sc);
7709         } else {
7710             BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n");
7711             sc->flags &= ~BXE_MF_FUNC_DIS;
7712             bxe_e1h_enable(sc);
7713         }
7714         dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
7715     }
7716 
7717     if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
7718         bxe_config_mf_bw(sc);
7719         dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
7720     }
7721 
7722     /* Report results to MCP */
7723     if (dcc_event)
7724         bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0);
7725     else
7726         bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0);
7727 }
7728 
7729 static void
7730 bxe_pmf_update(struct bxe_softc *sc)
7731 {
7732     int port = SC_PORT(sc);
7733     uint32_t val;
7734 
7735     sc->port.pmf = 1;
7736     BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf);
7737 
7738     /*
7739      * We need the mb() to ensure the ordering between the writing to
7740      * sc->port.pmf here and reading it from the bxe_periodic_task().
7741      */
7742     mb();
7743 
7744     /* queue a periodic task */
7745     // XXX schedule task...
7746 
7747     // XXX bxe_dcbx_pmf_update(sc);
7748 
7749     /* enable nig attention */
7750     val = (0xff0f | (1 << (SC_VN(sc) + 4)));
7751     if (sc->devinfo.int_block == INT_BLOCK_HC) {
7752         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val);
7753         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val);
7754     } else if (!CHIP_IS_E1x(sc)) {
7755         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
7756         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
7757     }
7758 
7759     bxe_stats_handle(sc, STATS_EVENT_PMF);
7760 }
7761 
7762 static int
7763 bxe_mc_assert(struct bxe_softc *sc)
7764 {
7765     char last_idx;
7766     int i, rc = 0;
7767     uint32_t row0, row1, row2, row3;
7768 
7769     /* XSTORM */
7770     last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET);
7771     if (last_idx)
7772         BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7773 
7774     /* print the asserts */
7775     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7776 
7777         row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i));
7778         row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4);
7779         row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8);
7780         row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12);
7781 
7782         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7783             BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7784                   i, row3, row2, row1, row0);
7785             rc++;
7786         } else {
7787             break;
7788         }
7789     }
7790 
7791     /* TSTORM */
7792     last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET);
7793     if (last_idx) {
7794         BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7795     }
7796 
7797     /* print the asserts */
7798     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7799 
7800         row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i));
7801         row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4);
7802         row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8);
7803         row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12);
7804 
7805         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7806             BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7807                   i, row3, row2, row1, row0);
7808             rc++;
7809         } else {
7810             break;
7811         }
7812     }
7813 
7814     /* CSTORM */
7815     last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET);
7816     if (last_idx) {
7817         BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7818     }
7819 
7820     /* print the asserts */
7821     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7822 
7823         row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i));
7824         row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4);
7825         row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8);
7826         row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12);
7827 
7828         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7829             BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7830                   i, row3, row2, row1, row0);
7831             rc++;
7832         } else {
7833             break;
7834         }
7835     }
7836 
7837     /* USTORM */
7838     last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET);
7839     if (last_idx) {
7840         BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7841     }
7842 
7843     /* print the asserts */
7844     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7845 
7846         row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i));
7847         row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4);
7848         row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8);
7849         row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12);
7850 
7851         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7852             BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7853                   i, row3, row2, row1, row0);
7854             rc++;
7855         } else {
7856             break;
7857         }
7858     }
7859 
7860     return (rc);
7861 }
7862 
7863 static void
7864 bxe_attn_int_deasserted3(struct bxe_softc *sc,
7865                          uint32_t         attn)
7866 {
7867     int func = SC_FUNC(sc);
7868     uint32_t val;
7869 
7870     if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
7871 
7872         if (attn & BXE_PMF_LINK_ASSERT(sc)) {
7873 
7874             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7875             bxe_read_mf_cfg(sc);
7876             sc->devinfo.mf_info.mf_config[SC_VN(sc)] =
7877                 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
7878             val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status);
7879 
7880             if (val & DRV_STATUS_DCC_EVENT_MASK)
7881                 bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK));
7882 
7883             if (val & DRV_STATUS_SET_MF_BW)
7884                 bxe_set_mf_bw(sc);
7885 
7886             if (val & DRV_STATUS_DRV_INFO_REQ)
7887                 bxe_handle_drv_info_req(sc);
7888 
7889             if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
7890                 bxe_pmf_update(sc);
7891 
7892             if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
7893                 bxe_handle_eee_event(sc);
7894 
7895             if (sc->link_vars.periodic_flags &
7896                 ELINK_PERIODIC_FLAGS_LINK_EVENT) {
7897                 /* sync with link */
7898 		bxe_acquire_phy_lock(sc);
7899                 sc->link_vars.periodic_flags &=
7900                     ~ELINK_PERIODIC_FLAGS_LINK_EVENT;
7901 		bxe_release_phy_lock(sc);
7902                 if (IS_MF(sc))
7903                     ; // XXX bxe_link_sync_notify(sc);
7904                 bxe_link_report(sc);
7905             }
7906 
7907             /*
7908              * Always call it here: bxe_link_report() will
7909              * prevent the link indication duplication.
7910              */
7911             bxe_link_status_update(sc);
7912 
7913         } else if (attn & BXE_MC_ASSERT_BITS) {
7914 
7915             BLOGE(sc, "MC assert!\n");
7916             bxe_mc_assert(sc);
7917             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0);
7918             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0);
7919             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0);
7920             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0);
7921             bxe_panic(sc, ("MC assert!\n"));
7922 
7923         } else if (attn & BXE_MCP_ASSERT) {
7924 
7925             BLOGE(sc, "MCP assert!\n");
7926             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0);
7927             // XXX bxe_fw_dump(sc);
7928 
7929         } else {
7930             BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn);
7931         }
7932     }
7933 
7934     if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
7935         BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn);
7936         if (attn & BXE_GRC_TIMEOUT) {
7937             val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN);
7938             BLOGE(sc, "GRC time-out 0x%08x\n", val);
7939         }
7940         if (attn & BXE_GRC_RSV) {
7941             val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN);
7942             BLOGE(sc, "GRC reserved 0x%08x\n", val);
7943         }
7944         REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
7945     }
7946 }
7947 
7948 static void
7949 bxe_attn_int_deasserted2(struct bxe_softc *sc,
7950                          uint32_t         attn)
7951 {
7952     int port = SC_PORT(sc);
7953     int reg_offset;
7954     uint32_t val0, mask0, val1, mask1;
7955     uint32_t val;
7956 
7957     if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
7958         val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR);
7959         BLOGE(sc, "CFC hw attention 0x%08x\n", val);
7960         /* CFC error attention */
7961         if (val & 0x2) {
7962             BLOGE(sc, "FATAL error from CFC\n");
7963         }
7964     }
7965 
7966     if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
7967         val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0);
7968         BLOGE(sc, "PXP hw attention-0 0x%08x\n", val);
7969         /* RQ_USDMDP_FIFO_OVERFLOW */
7970         if (val & 0x18000) {
7971             BLOGE(sc, "FATAL error from PXP\n");
7972         }
7973 
7974         if (!CHIP_IS_E1x(sc)) {
7975             val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1);
7976             BLOGE(sc, "PXP hw attention-1 0x%08x\n", val);
7977         }
7978     }
7979 
7980 #define PXP2_EOP_ERROR_BIT  PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR
7981 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT
7982 
7983     if (attn & AEU_PXP2_HW_INT_BIT) {
7984         /*  CQ47854 workaround do not panic on
7985          *  PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
7986          */
7987         if (!CHIP_IS_E1x(sc)) {
7988             mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0);
7989             val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1);
7990             mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1);
7991             val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0);
7992             /*
7993              * If the only PXP2_EOP_ERROR_BIT is set in
7994              * STS0 and STS1 - clear it
7995              *
7996              * probably we lose additional attentions between
7997              * STS0 and STS_CLR0, in this case user will not
7998              * be notified about them
7999              */
8000             if (val0 & mask0 & PXP2_EOP_ERROR_BIT &&
8001                 !(val1 & mask1))
8002                 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
8003 
8004             /* print the register, since no one can restore it */
8005             BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0);
8006 
8007             /*
8008              * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8009              * then notify
8010              */
8011             if (val0 & PXP2_EOP_ERROR_BIT) {
8012                 BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n");
8013 
8014                 /*
8015                  * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is
8016                  * set then clear attention from PXP2 block without panic
8017                  */
8018                 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) &&
8019                     ((val1 & mask1) == 0))
8020                     attn &= ~AEU_PXP2_HW_INT_BIT;
8021             }
8022         }
8023     }
8024 
8025     if (attn & HW_INTERRUT_ASSERT_SET_2) {
8026         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
8027                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
8028 
8029         val = REG_RD(sc, reg_offset);
8030         val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
8031         REG_WR(sc, reg_offset, val);
8032 
8033         BLOGE(sc, "FATAL HW block attention set2 0x%x\n",
8034               (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2));
8035         bxe_panic(sc, ("HW block attention set2\n"));
8036     }
8037 }
8038 
8039 static void
8040 bxe_attn_int_deasserted1(struct bxe_softc *sc,
8041                          uint32_t         attn)
8042 {
8043     int port = SC_PORT(sc);
8044     int reg_offset;
8045     uint32_t val;
8046 
8047     if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
8048         val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR);
8049         BLOGE(sc, "DB hw attention 0x%08x\n", val);
8050         /* DORQ discard attention */
8051         if (val & 0x2) {
8052             BLOGE(sc, "FATAL error from DORQ\n");
8053         }
8054     }
8055 
8056     if (attn & HW_INTERRUT_ASSERT_SET_1) {
8057         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
8058                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
8059 
8060         val = REG_RD(sc, reg_offset);
8061         val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
8062         REG_WR(sc, reg_offset, val);
8063 
8064         BLOGE(sc, "FATAL HW block attention set1 0x%08x\n",
8065               (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1));
8066         bxe_panic(sc, ("HW block attention set1\n"));
8067     }
8068 }
8069 
8070 static void
8071 bxe_attn_int_deasserted0(struct bxe_softc *sc,
8072                          uint32_t         attn)
8073 {
8074     int port = SC_PORT(sc);
8075     int reg_offset;
8076     uint32_t val;
8077 
8078     reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
8079                           MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
8080 
8081     if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
8082         val = REG_RD(sc, reg_offset);
8083         val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
8084         REG_WR(sc, reg_offset, val);
8085 
8086         BLOGW(sc, "SPIO5 hw attention\n");
8087 
8088         /* Fan failure attention */
8089         elink_hw_reset_phy(&sc->link_params);
8090         bxe_fan_failure(sc);
8091     }
8092 
8093     if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) {
8094 	bxe_acquire_phy_lock(sc);
8095         elink_handle_module_detect_int(&sc->link_params);
8096 	bxe_release_phy_lock(sc);
8097     }
8098 
8099     if (attn & HW_INTERRUT_ASSERT_SET_0) {
8100         val = REG_RD(sc, reg_offset);
8101         val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
8102         REG_WR(sc, reg_offset, val);
8103 
8104         bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n",
8105                        (attn & HW_INTERRUT_ASSERT_SET_0)));
8106     }
8107 }
8108 
8109 static void
8110 bxe_attn_int_deasserted(struct bxe_softc *sc,
8111                         uint32_t         deasserted)
8112 {
8113     struct attn_route attn;
8114     struct attn_route *group_mask;
8115     int port = SC_PORT(sc);
8116     int index;
8117     uint32_t reg_addr;
8118     uint32_t val;
8119     uint32_t aeu_mask;
8120     uint8_t global = FALSE;
8121 
8122     /*
8123      * Need to take HW lock because MCP or other port might also
8124      * try to handle this event.
8125      */
8126     bxe_acquire_alr(sc);
8127 
8128     if (bxe_chk_parity_attn(sc, &global, TRUE)) {
8129         /* XXX
8130          * In case of parity errors don't handle attentions so that
8131          * other function would "see" parity errors.
8132          */
8133         sc->recovery_state = BXE_RECOVERY_INIT;
8134         // XXX schedule a recovery task...
8135         /* disable HW interrupts */
8136         bxe_int_disable(sc);
8137         bxe_release_alr(sc);
8138         return;
8139     }
8140 
8141     attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
8142     attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
8143     attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
8144     attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
8145     if (!CHIP_IS_E1x(sc)) {
8146         attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
8147     } else {
8148         attn.sig[4] = 0;
8149     }
8150 
8151     BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
8152           attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
8153 
8154     for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
8155         if (deasserted & (1 << index)) {
8156             group_mask = &sc->attn_group[index];
8157 
8158             BLOGD(sc, DBG_INTR,
8159                   "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index,
8160                   group_mask->sig[0], group_mask->sig[1],
8161                   group_mask->sig[2], group_mask->sig[3],
8162                   group_mask->sig[4]);
8163 
8164             bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]);
8165             bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]);
8166             bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]);
8167             bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]);
8168             bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]);
8169         }
8170     }
8171 
8172     bxe_release_alr(sc);
8173 
8174     if (sc->devinfo.int_block == INT_BLOCK_HC) {
8175         reg_addr = (HC_REG_COMMAND_REG + port*32 +
8176                     COMMAND_REG_ATTN_BITS_CLR);
8177     } else {
8178         reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
8179     }
8180 
8181     val = ~deasserted;
8182     BLOGD(sc, DBG_INTR,
8183           "about to mask 0x%08x at %s addr 0x%08x\n", val,
8184           (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
8185     REG_WR(sc, reg_addr, val);
8186 
8187     if (~sc->attn_state & deasserted) {
8188         BLOGE(sc, "IGU error\n");
8189     }
8190 
8191     reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8192                       MISC_REG_AEU_MASK_ATTN_FUNC_0;
8193 
8194     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8195 
8196     aeu_mask = REG_RD(sc, reg_addr);
8197 
8198     BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n",
8199           aeu_mask, deasserted);
8200     aeu_mask |= (deasserted & 0x3ff);
8201     BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
8202 
8203     REG_WR(sc, reg_addr, aeu_mask);
8204     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8205 
8206     BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
8207     sc->attn_state &= ~deasserted;
8208     BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
8209 }
8210 
8211 static void
8212 bxe_attn_int(struct bxe_softc *sc)
8213 {
8214     /* read local copy of bits */
8215     uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
8216     uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
8217     uint32_t attn_state = sc->attn_state;
8218 
8219     /* look for changed bits */
8220     uint32_t asserted   =  attn_bits & ~attn_ack & ~attn_state;
8221     uint32_t deasserted = ~attn_bits &  attn_ack &  attn_state;
8222 
8223     BLOGD(sc, DBG_INTR,
8224           "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n",
8225           attn_bits, attn_ack, asserted, deasserted);
8226 
8227     if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) {
8228         BLOGE(sc, "BAD attention state\n");
8229     }
8230 
8231     /* handle bits that were raised */
8232     if (asserted) {
8233         bxe_attn_int_asserted(sc, asserted);
8234     }
8235 
8236     if (deasserted) {
8237         bxe_attn_int_deasserted(sc, deasserted);
8238     }
8239 }
8240 
8241 static uint16_t
8242 bxe_update_dsb_idx(struct bxe_softc *sc)
8243 {
8244     struct host_sp_status_block *def_sb = sc->def_sb;
8245     uint16_t rc = 0;
8246 
8247     mb(); /* status block is written to by the chip */
8248 
8249     if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
8250         sc->def_att_idx = def_sb->atten_status_block.attn_bits_index;
8251         rc |= BXE_DEF_SB_ATT_IDX;
8252     }
8253 
8254     if (sc->def_idx != def_sb->sp_sb.running_index) {
8255         sc->def_idx = def_sb->sp_sb.running_index;
8256         rc |= BXE_DEF_SB_IDX;
8257     }
8258 
8259     mb();
8260 
8261     return (rc);
8262 }
8263 
8264 static inline struct ecore_queue_sp_obj *
8265 bxe_cid_to_q_obj(struct bxe_softc *sc,
8266                  uint32_t         cid)
8267 {
8268     BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid);
8269     return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj);
8270 }
8271 
8272 static void
8273 bxe_handle_mcast_eqe(struct bxe_softc *sc)
8274 {
8275     struct ecore_mcast_ramrod_params rparam;
8276     int rc;
8277 
8278     memset(&rparam, 0, sizeof(rparam));
8279 
8280     rparam.mcast_obj = &sc->mcast_obj;
8281 
8282     BXE_MCAST_LOCK(sc);
8283 
8284     /* clear pending state for the last command */
8285     sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw);
8286 
8287     /* if there are pending mcast commands - send them */
8288     if (sc->mcast_obj.check_pending(&sc->mcast_obj)) {
8289         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
8290         if (rc < 0) {
8291             BLOGD(sc, DBG_SP,
8292                 "ERROR: Failed to send pending mcast commands (%d)\n", rc);
8293         }
8294     }
8295 
8296     BXE_MCAST_UNLOCK(sc);
8297 }
8298 
8299 static void
8300 bxe_handle_classification_eqe(struct bxe_softc      *sc,
8301                               union event_ring_elem *elem)
8302 {
8303     unsigned long ramrod_flags = 0;
8304     int rc = 0;
8305     uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8306     struct ecore_vlan_mac_obj *vlan_mac_obj;
8307 
8308     /* always push next commands out, don't wait here */
8309     bit_set(&ramrod_flags, RAMROD_CONT);
8310 
8311     switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) {
8312     case ECORE_FILTER_MAC_PENDING:
8313         BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n");
8314         vlan_mac_obj = &sc->sp_objs[cid].mac_obj;
8315         break;
8316 
8317     case ECORE_FILTER_MCAST_PENDING:
8318         BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n");
8319         /*
8320          * This is only relevant for 57710 where multicast MACs are
8321          * configured as unicast MACs using the same ramrod.
8322          */
8323         bxe_handle_mcast_eqe(sc);
8324         return;
8325 
8326     default:
8327         BLOGE(sc, "Unsupported classification command: %d\n",
8328               elem->message.data.eth_event.echo);
8329         return;
8330     }
8331 
8332     rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags);
8333 
8334     if (rc < 0) {
8335         BLOGE(sc, "Failed to schedule new commands (%d)\n", rc);
8336     } else if (rc > 0) {
8337         BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n");
8338     }
8339 }
8340 
8341 static void
8342 bxe_handle_rx_mode_eqe(struct bxe_softc      *sc,
8343                        union event_ring_elem *elem)
8344 {
8345     bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
8346 
8347     /* send rx_mode command again if was requested */
8348     if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED,
8349                                &sc->sp_state)) {
8350         bxe_set_storm_rx_mode(sc);
8351     }
8352 }
8353 
8354 static void
8355 bxe_update_eq_prod(struct bxe_softc *sc,
8356                    uint16_t         prod)
8357 {
8358     storm_memset_eq_prod(sc, prod, SC_FUNC(sc));
8359     wmb(); /* keep prod updates ordered */
8360 }
8361 
8362 static void
8363 bxe_eq_int(struct bxe_softc *sc)
8364 {
8365     uint16_t hw_cons, sw_cons, sw_prod;
8366     union event_ring_elem *elem;
8367     uint8_t echo;
8368     uint32_t cid;
8369     uint8_t opcode;
8370     int spqe_cnt = 0;
8371     struct ecore_queue_sp_obj *q_obj;
8372     struct ecore_func_sp_obj *f_obj = &sc->func_obj;
8373     struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw;
8374 
8375     hw_cons = le16toh(*sc->eq_cons_sb);
8376 
8377     /*
8378      * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256.
8379      * when we get to the next-page we need to adjust so the loop
8380      * condition below will be met. The next element is the size of a
8381      * regular element and hence incrementing by 1
8382      */
8383     if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) {
8384         hw_cons++;
8385     }
8386 
8387     /*
8388      * This function may never run in parallel with itself for a
8389      * specific sc and no need for a read memory barrier here.
8390      */
8391     sw_cons = sc->eq_cons;
8392     sw_prod = sc->eq_prod;
8393 
8394     BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n",
8395           hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left));
8396 
8397     for (;
8398          sw_cons != hw_cons;
8399          sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
8400 
8401         elem = &sc->eq[EQ_DESC(sw_cons)];
8402 
8403         /* elem CID originates from FW, actually LE */
8404         cid = SW_CID(elem->message.data.cfc_del_event.cid);
8405         opcode = elem->message.opcode;
8406 
8407         /* handle eq element */
8408         switch (opcode) {
8409 
8410         case EVENT_RING_OPCODE_STAT_QUERY:
8411             BLOGD(sc, DBG_SP, "got statistics completion event %d\n",
8412                   sc->stats_comp++);
8413             /* nothing to do with stats comp */
8414             goto next_spqe;
8415 
8416         case EVENT_RING_OPCODE_CFC_DEL:
8417             /* handle according to cid range */
8418             /* we may want to verify here that the sc state is HALTING */
8419             BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid);
8420             q_obj = bxe_cid_to_q_obj(sc, cid);
8421             if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) {
8422                 break;
8423             }
8424             goto next_spqe;
8425 
8426         case EVENT_RING_OPCODE_STOP_TRAFFIC:
8427             BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n");
8428             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) {
8429                 break;
8430             }
8431             // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED);
8432             goto next_spqe;
8433 
8434         case EVENT_RING_OPCODE_START_TRAFFIC:
8435             BLOGD(sc, DBG_SP, "got START TRAFFIC\n");
8436             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) {
8437                 break;
8438             }
8439             // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED);
8440             goto next_spqe;
8441 
8442         case EVENT_RING_OPCODE_FUNCTION_UPDATE:
8443             echo = elem->message.data.function_update_event.echo;
8444             if (echo == SWITCH_UPDATE) {
8445                 BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n");
8446                 if (f_obj->complete_cmd(sc, f_obj,
8447                                         ECORE_F_CMD_SWITCH_UPDATE)) {
8448                     break;
8449                 }
8450             }
8451             else {
8452                 BLOGD(sc, DBG_SP,
8453                       "AFEX: ramrod completed FUNCTION_UPDATE\n");
8454             }
8455             goto next_spqe;
8456 
8457         case EVENT_RING_OPCODE_FORWARD_SETUP:
8458             q_obj = &bxe_fwd_sp_obj(sc, q_obj);
8459             if (q_obj->complete_cmd(sc, q_obj,
8460                                     ECORE_Q_CMD_SETUP_TX_ONLY)) {
8461                 break;
8462             }
8463             goto next_spqe;
8464 
8465         case EVENT_RING_OPCODE_FUNCTION_START:
8466             BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n");
8467             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) {
8468                 break;
8469             }
8470             goto next_spqe;
8471 
8472         case EVENT_RING_OPCODE_FUNCTION_STOP:
8473             BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n");
8474             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) {
8475                 break;
8476             }
8477             goto next_spqe;
8478         }
8479 
8480         switch (opcode | sc->state) {
8481         case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN):
8482         case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT):
8483             cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8484             BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid);
8485             rss_raw->clear_pending(rss_raw);
8486             break;
8487 
8488         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN):
8489         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG):
8490         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT):
8491         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN):
8492         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG):
8493         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8494             BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n");
8495             bxe_handle_classification_eqe(sc, elem);
8496             break;
8497 
8498         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN):
8499         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG):
8500         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8501             BLOGD(sc, DBG_SP, "got mcast ramrod\n");
8502             bxe_handle_mcast_eqe(sc);
8503             break;
8504 
8505         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN):
8506         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG):
8507         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8508             BLOGD(sc, DBG_SP, "got rx_mode ramrod\n");
8509             bxe_handle_rx_mode_eqe(sc, elem);
8510             break;
8511 
8512         default:
8513             /* unknown event log error and continue */
8514             BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n",
8515                   elem->message.opcode, sc->state);
8516         }
8517 
8518 next_spqe:
8519         spqe_cnt++;
8520     } /* for */
8521 
8522     mb();
8523     atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt);
8524 
8525     sc->eq_cons = sw_cons;
8526     sc->eq_prod = sw_prod;
8527 
8528     /* make sure that above mem writes were issued towards the memory */
8529     wmb();
8530 
8531     /* update producer */
8532     bxe_update_eq_prod(sc, sc->eq_prod);
8533 }
8534 
8535 static void
8536 bxe_handle_sp_tq(void *context,
8537                  int  pending)
8538 {
8539     struct bxe_softc *sc = (struct bxe_softc *)context;
8540     uint16_t status;
8541 
8542     BLOGD(sc, DBG_SP, "---> SP TASK <---\n");
8543 
8544     /* what work needs to be performed? */
8545     status = bxe_update_dsb_idx(sc);
8546 
8547     BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status);
8548 
8549     /* HW attentions */
8550     if (status & BXE_DEF_SB_ATT_IDX) {
8551         BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n");
8552         bxe_attn_int(sc);
8553         status &= ~BXE_DEF_SB_ATT_IDX;
8554     }
8555 
8556     /* SP events: STAT_QUERY and others */
8557     if (status & BXE_DEF_SB_IDX) {
8558         /* handle EQ completions */
8559         BLOGD(sc, DBG_SP, "---> EQ INTR <---\n");
8560         bxe_eq_int(sc);
8561         bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
8562                    le16toh(sc->def_idx), IGU_INT_NOP, 1);
8563         status &= ~BXE_DEF_SB_IDX;
8564     }
8565 
8566     /* if status is non zero then something went wrong */
8567     if (__predict_false(status)) {
8568         BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status);
8569     }
8570 
8571     /* ack status block only if something was actually handled */
8572     bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID,
8573                le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1);
8574 
8575     /*
8576      * Must be called after the EQ processing (since eq leads to sriov
8577      * ramrod completion flows).
8578      * This flow may have been scheduled by the arrival of a ramrod
8579      * completion, or by the sriov code rescheduling itself.
8580      */
8581     // XXX bxe_iov_sp_task(sc);
8582 
8583 }
8584 
8585 static void
8586 bxe_handle_fp_tq(void *context,
8587                  int  pending)
8588 {
8589     struct bxe_fastpath *fp = (struct bxe_fastpath *)context;
8590     struct bxe_softc *sc = fp->sc;
8591     uint8_t more_tx = FALSE;
8592     uint8_t more_rx = FALSE;
8593 
8594     BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index);
8595 
8596     /* XXX
8597      * IFF_DRV_RUNNING state can't be checked here since we process
8598      * slowpath events on a client queue during setup. Instead
8599      * we need to add a "process/continue" flag here that the driver
8600      * can use to tell the task here not to do anything.
8601      */
8602 #if 0
8603     if (!(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
8604         return;
8605     }
8606 #endif
8607 
8608     /* update the fastpath index */
8609     bxe_update_fp_sb_idx(fp);
8610 
8611     /* XXX add loop here if ever support multiple tx CoS */
8612     /* fp->txdata[cos] */
8613     if (bxe_has_tx_work(fp)) {
8614         BXE_FP_TX_LOCK(fp);
8615         more_tx = bxe_txeof(sc, fp);
8616         BXE_FP_TX_UNLOCK(fp);
8617     }
8618 
8619     if (bxe_has_rx_work(fp)) {
8620         more_rx = bxe_rxeof(sc, fp);
8621     }
8622 
8623     if (more_rx /*|| more_tx*/) {
8624         /* still more work to do */
8625         taskqueue_enqueue(fp->tq, &fp->tq_task);
8626         return;
8627     }
8628 
8629     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
8630                le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
8631 }
8632 
8633 static void
8634 bxe_task_fp(struct bxe_fastpath *fp)
8635 {
8636     struct bxe_softc *sc = fp->sc;
8637     uint8_t more_tx = FALSE;
8638     uint8_t more_rx = FALSE;
8639 
8640     BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index);
8641 
8642     /* update the fastpath index */
8643     bxe_update_fp_sb_idx(fp);
8644 
8645     /* XXX add loop here if ever support multiple tx CoS */
8646     /* fp->txdata[cos] */
8647     if (bxe_has_tx_work(fp)) {
8648         BXE_FP_TX_LOCK(fp);
8649         more_tx = bxe_txeof(sc, fp);
8650         BXE_FP_TX_UNLOCK(fp);
8651     }
8652 
8653     if (bxe_has_rx_work(fp)) {
8654         more_rx = bxe_rxeof(sc, fp);
8655     }
8656 
8657     if (more_rx /*|| more_tx*/) {
8658         /* still more work to do, bail out if this ISR and process later */
8659         taskqueue_enqueue(fp->tq, &fp->tq_task);
8660         return;
8661     }
8662 
8663     /*
8664      * Here we write the fastpath index taken before doing any tx or rx work.
8665      * It is very well possible other hw events occurred up to this point and
8666      * they were actually processed accordingly above. Since we're going to
8667      * write an older fastpath index, an interrupt is coming which we might
8668      * not do any work in.
8669      */
8670     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
8671                le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
8672 }
8673 
8674 /*
8675  * Legacy interrupt entry point.
8676  *
8677  * Verifies that the controller generated the interrupt and
8678  * then calls a separate routine to handle the various
8679  * interrupt causes: link, RX, and TX.
8680  */
8681 static void
8682 bxe_intr_legacy(void *xsc)
8683 {
8684     struct bxe_softc *sc = (struct bxe_softc *)xsc;
8685     struct bxe_fastpath *fp;
8686     uint16_t status, mask;
8687     int i;
8688 
8689     BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n");
8690 
8691     /*
8692      * 0 for ustorm, 1 for cstorm
8693      * the bits returned from ack_int() are 0-15
8694      * bit 0 = attention status block
8695      * bit 1 = fast path status block
8696      * a mask of 0x2 or more = tx/rx event
8697      * a mask of 1 = slow path event
8698      */
8699 
8700     status = bxe_ack_int(sc);
8701 
8702     /* the interrupt is not for us */
8703     if (__predict_false(status == 0)) {
8704         BLOGD(sc, DBG_INTR, "Not our interrupt!\n");
8705         return;
8706     }
8707 
8708     BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status);
8709 
8710     FOR_EACH_ETH_QUEUE(sc, i) {
8711         fp = &sc->fp[i];
8712         mask = (0x2 << (fp->index + CNIC_SUPPORT(sc)));
8713         if (status & mask) {
8714             /* acknowledge and disable further fastpath interrupts */
8715             bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8716             bxe_task_fp(fp);
8717             status &= ~mask;
8718         }
8719     }
8720 
8721     if (__predict_false(status & 0x1)) {
8722         /* acknowledge and disable further slowpath interrupts */
8723         bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8724 
8725         /* schedule slowpath handler */
8726         taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
8727 
8728         status &= ~0x1;
8729     }
8730 
8731     if (__predict_false(status)) {
8732         BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status);
8733     }
8734 }
8735 
8736 /* slowpath interrupt entry point */
8737 static void
8738 bxe_intr_sp(void *xsc)
8739 {
8740     struct bxe_softc *sc = (struct bxe_softc *)xsc;
8741 
8742     BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n");
8743 
8744     /* acknowledge and disable further slowpath interrupts */
8745     bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8746 
8747     /* schedule slowpath handler */
8748     taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
8749 }
8750 
8751 /* fastpath interrupt entry point */
8752 static void
8753 bxe_intr_fp(void *xfp)
8754 {
8755     struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp;
8756     struct bxe_softc *sc = fp->sc;
8757 
8758     BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index);
8759 
8760     BLOGD(sc, DBG_INTR,
8761           "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n",
8762           curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id);
8763 
8764     /* acknowledge and disable further fastpath interrupts */
8765     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8766 
8767     bxe_task_fp(fp);
8768 }
8769 
8770 /* Release all interrupts allocated by the driver. */
8771 static void
8772 bxe_interrupt_free(struct bxe_softc *sc)
8773 {
8774     int i;
8775 
8776     switch (sc->interrupt_mode) {
8777     case INTR_MODE_INTX:
8778         BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n");
8779         if (sc->intr[0].resource != NULL) {
8780             bus_release_resource(sc->dev,
8781                                  SYS_RES_IRQ,
8782                                  sc->intr[0].rid,
8783                                  sc->intr[0].resource);
8784         }
8785         break;
8786     case INTR_MODE_MSI:
8787         for (i = 0; i < sc->intr_count; i++) {
8788             BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i);
8789             if (sc->intr[i].resource && sc->intr[i].rid) {
8790                 bus_release_resource(sc->dev,
8791                                      SYS_RES_IRQ,
8792                                      sc->intr[i].rid,
8793                                      sc->intr[i].resource);
8794             }
8795         }
8796         pci_release_msi(sc->dev);
8797         break;
8798     case INTR_MODE_MSIX:
8799         for (i = 0; i < sc->intr_count; i++) {
8800             BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i);
8801             if (sc->intr[i].resource && sc->intr[i].rid) {
8802                 bus_release_resource(sc->dev,
8803                                      SYS_RES_IRQ,
8804                                      sc->intr[i].rid,
8805                                      sc->intr[i].resource);
8806             }
8807         }
8808         pci_release_msi(sc->dev);
8809         break;
8810     default:
8811         /* nothing to do as initial allocation failed */
8812         break;
8813     }
8814 }
8815 
8816 /*
8817  * This function determines and allocates the appropriate
8818  * interrupt based on system capabilites and user request.
8819  *
8820  * The user may force a particular interrupt mode, specify
8821  * the number of receive queues, specify the method for
8822  * distribuitng received frames to receive queues, or use
8823  * the default settings which will automatically select the
8824  * best supported combination.  In addition, the OS may or
8825  * may not support certain combinations of these settings.
8826  * This routine attempts to reconcile the settings requested
8827  * by the user with the capabilites available from the system
8828  * to select the optimal combination of features.
8829  *
8830  * Returns:
8831  *   0 = Success, !0 = Failure.
8832  */
8833 static int
8834 bxe_interrupt_alloc(struct bxe_softc *sc)
8835 {
8836     int msix_count = 0;
8837     int msi_count = 0;
8838     int num_requested = 0;
8839     int num_allocated = 0;
8840     int rid, i, j;
8841     int rc;
8842 
8843     /* get the number of available MSI/MSI-X interrupts from the OS */
8844     if (sc->interrupt_mode > 0) {
8845         if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) {
8846             msix_count = pci_msix_count(sc->dev);
8847         }
8848 
8849         if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) {
8850             msi_count = pci_msi_count(sc->dev);
8851         }
8852 
8853         BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n",
8854               msi_count, msix_count);
8855     }
8856 
8857     do { /* try allocating MSI-X interrupt resources (at least 2) */
8858         if (sc->interrupt_mode != INTR_MODE_MSIX) {
8859             break;
8860         }
8861 
8862         if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) ||
8863             (msix_count < 2)) {
8864             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8865             break;
8866         }
8867 
8868         /* ask for the necessary number of MSI-X vectors */
8869         num_requested = min((sc->num_queues + 1), msix_count);
8870 
8871         BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested);
8872 
8873         num_allocated = num_requested;
8874         if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) {
8875             BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc);
8876             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8877             break;
8878         }
8879 
8880         if (num_allocated < 2) { /* possible? */
8881             BLOGE(sc, "MSI-X allocation less than 2!\n");
8882             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8883             pci_release_msi(sc->dev);
8884             break;
8885         }
8886 
8887         BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n",
8888               num_requested, num_allocated);
8889 
8890         /* best effort so use the number of vectors allocated to us */
8891         sc->intr_count = num_allocated;
8892         sc->num_queues = num_allocated - 1;
8893 
8894         rid = 1; /* initial resource identifier */
8895 
8896         /* allocate the MSI-X vectors */
8897         for (i = 0; i < num_allocated; i++) {
8898             sc->intr[i].rid = (rid + i);
8899 
8900             if ((sc->intr[i].resource =
8901                  bus_alloc_resource_any(sc->dev,
8902                                         SYS_RES_IRQ,
8903                                         &sc->intr[i].rid,
8904                                         RF_ACTIVE)) == NULL) {
8905                 BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n",
8906                       i, (rid + i));
8907 
8908                 for (j = (i - 1); j >= 0; j--) {
8909                     bus_release_resource(sc->dev,
8910                                          SYS_RES_IRQ,
8911                                          sc->intr[j].rid,
8912                                          sc->intr[j].resource);
8913                 }
8914 
8915                 sc->intr_count = 0;
8916                 sc->num_queues = 0;
8917                 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8918                 pci_release_msi(sc->dev);
8919                 break;
8920             }
8921 
8922             BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i));
8923         }
8924     } while (0);
8925 
8926     do { /* try allocating MSI vector resources (at least 2) */
8927         if (sc->interrupt_mode != INTR_MODE_MSI) {
8928             break;
8929         }
8930 
8931         if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) ||
8932             (msi_count < 1)) {
8933             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
8934             break;
8935         }
8936 
8937         /* ask for a single MSI vector */
8938         num_requested = 1;
8939 
8940         BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested);
8941 
8942         num_allocated = num_requested;
8943         if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) {
8944             BLOGE(sc, "MSI alloc failed (%d)!\n", rc);
8945             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
8946             break;
8947         }
8948 
8949         if (num_allocated != 1) { /* possible? */
8950             BLOGE(sc, "MSI allocation is not 1!\n");
8951             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
8952             pci_release_msi(sc->dev);
8953             break;
8954         }
8955 
8956         BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n",
8957               num_requested, num_allocated);
8958 
8959         /* best effort so use the number of vectors allocated to us */
8960         sc->intr_count = num_allocated;
8961         sc->num_queues = num_allocated;
8962 
8963         rid = 1; /* initial resource identifier */
8964 
8965         sc->intr[0].rid = rid;
8966 
8967         if ((sc->intr[0].resource =
8968              bus_alloc_resource_any(sc->dev,
8969                                     SYS_RES_IRQ,
8970                                     &sc->intr[0].rid,
8971                                     RF_ACTIVE)) == NULL) {
8972             BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid);
8973             sc->intr_count = 0;
8974             sc->num_queues = 0;
8975             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
8976             pci_release_msi(sc->dev);
8977             break;
8978         }
8979 
8980         BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid);
8981     } while (0);
8982 
8983     do { /* try allocating INTx vector resources */
8984         if (sc->interrupt_mode != INTR_MODE_INTX) {
8985             break;
8986         }
8987 
8988         BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n");
8989 
8990         /* only one vector for INTx */
8991         sc->intr_count = 1;
8992         sc->num_queues = 1;
8993 
8994         rid = 0; /* initial resource identifier */
8995 
8996         sc->intr[0].rid = rid;
8997 
8998         if ((sc->intr[0].resource =
8999              bus_alloc_resource_any(sc->dev,
9000                                     SYS_RES_IRQ,
9001                                     &sc->intr[0].rid,
9002                                     (RF_ACTIVE | RF_SHAREABLE))) == NULL) {
9003             BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid);
9004             sc->intr_count = 0;
9005             sc->num_queues = 0;
9006             sc->interrupt_mode = -1; /* Failed! */
9007             break;
9008         }
9009 
9010         BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid);
9011     } while (0);
9012 
9013     if (sc->interrupt_mode == -1) {
9014         BLOGE(sc, "Interrupt Allocation: FAILED!!!\n");
9015         rc = 1;
9016     } else {
9017         BLOGD(sc, DBG_LOAD,
9018               "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n",
9019               sc->interrupt_mode, sc->num_queues);
9020         rc = 0;
9021     }
9022 
9023     return (rc);
9024 }
9025 
9026 static void
9027 bxe_interrupt_detach(struct bxe_softc *sc)
9028 {
9029     struct bxe_fastpath *fp;
9030     int i;
9031 
9032     /* release interrupt resources */
9033     for (i = 0; i < sc->intr_count; i++) {
9034         if (sc->intr[i].resource && sc->intr[i].tag) {
9035             BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i);
9036             bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag);
9037         }
9038     }
9039 
9040     for (i = 0; i < sc->num_queues; i++) {
9041         fp = &sc->fp[i];
9042         if (fp->tq) {
9043             taskqueue_drain(fp->tq, &fp->tq_task);
9044             taskqueue_free(fp->tq);
9045             fp->tq = NULL;
9046         }
9047     }
9048 
9049 
9050     if (sc->sp_tq) {
9051         taskqueue_drain(sc->sp_tq, &sc->sp_tq_task);
9052         taskqueue_free(sc->sp_tq);
9053         sc->sp_tq = NULL;
9054     }
9055 }
9056 
9057 /*
9058  * Enables interrupts and attach to the ISR.
9059  *
9060  * When using multiple MSI/MSI-X vectors the first vector
9061  * is used for slowpath operations while all remaining
9062  * vectors are used for fastpath operations.  If only a
9063  * single MSI/MSI-X vector is used (SINGLE_ISR) then the
9064  * ISR must look for both slowpath and fastpath completions.
9065  */
9066 static int
9067 bxe_interrupt_attach(struct bxe_softc *sc)
9068 {
9069     struct bxe_fastpath *fp;
9070     int rc = 0;
9071     int i;
9072 
9073     snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name),
9074              "bxe%d_sp_tq", sc->unit);
9075     TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc);
9076     sc->sp_tq = taskqueue_create_fast(sc->sp_tq_name, M_NOWAIT,
9077                                       taskqueue_thread_enqueue,
9078                                       &sc->sp_tq);
9079     taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */
9080                             "%s", sc->sp_tq_name);
9081 
9082 
9083     for (i = 0; i < sc->num_queues; i++) {
9084         fp = &sc->fp[i];
9085         snprintf(fp->tq_name, sizeof(fp->tq_name),
9086                  "bxe%d_fp%d_tq", sc->unit, i);
9087         TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp);
9088         fp->tq = taskqueue_create_fast(fp->tq_name, M_NOWAIT,
9089                                        taskqueue_thread_enqueue,
9090                                        &fp->tq);
9091         taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */
9092                                 "%s", fp->tq_name);
9093     }
9094 
9095     /* setup interrupt handlers */
9096     if (sc->interrupt_mode == INTR_MODE_MSIX) {
9097         BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n");
9098 
9099         /*
9100          * Setup the interrupt handler. Note that we pass the driver instance
9101          * to the interrupt handler for the slowpath.
9102          */
9103         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9104                                  (INTR_TYPE_NET | INTR_MPSAFE),
9105                                  NULL, bxe_intr_sp, sc,
9106                                  &sc->intr[0].tag)) != 0) {
9107             BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc);
9108             goto bxe_interrupt_attach_exit;
9109         }
9110 
9111         bus_describe_intr(sc->dev, sc->intr[0].resource,
9112                           sc->intr[0].tag, "sp");
9113 
9114         /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */
9115 
9116         /* initialize the fastpath vectors (note the first was used for sp) */
9117         for (i = 0; i < sc->num_queues; i++) {
9118             fp = &sc->fp[i];
9119             BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1));
9120 
9121             /*
9122              * Setup the interrupt handler. Note that we pass the
9123              * fastpath context to the interrupt handler in this
9124              * case.
9125              */
9126             if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource,
9127                                      (INTR_TYPE_NET | INTR_MPSAFE),
9128                                      NULL, bxe_intr_fp, fp,
9129                                      &sc->intr[i + 1].tag)) != 0) {
9130                 BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n",
9131                       (i + 1), rc);
9132                 goto bxe_interrupt_attach_exit;
9133             }
9134 
9135             bus_describe_intr(sc->dev, sc->intr[i + 1].resource,
9136                               sc->intr[i + 1].tag, "fp%02d", i);
9137 
9138             /* bind the fastpath instance to a cpu */
9139             if (sc->num_queues > 1) {
9140                 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i);
9141             }
9142 
9143             fp->state = BXE_FP_STATE_IRQ;
9144         }
9145     } else if (sc->interrupt_mode == INTR_MODE_MSI) {
9146         BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n");
9147 
9148         /*
9149          * Setup the interrupt handler. Note that we pass the
9150          * driver instance to the interrupt handler which
9151          * will handle both the slowpath and fastpath.
9152          */
9153         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9154                                  (INTR_TYPE_NET | INTR_MPSAFE),
9155                                  NULL, bxe_intr_legacy, sc,
9156                                  &sc->intr[0].tag)) != 0) {
9157             BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc);
9158             goto bxe_interrupt_attach_exit;
9159         }
9160 
9161     } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */
9162         BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n");
9163 
9164         /*
9165          * Setup the interrupt handler. Note that we pass the
9166          * driver instance to the interrupt handler which
9167          * will handle both the slowpath and fastpath.
9168          */
9169         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9170                                  (INTR_TYPE_NET | INTR_MPSAFE),
9171                                  NULL, bxe_intr_legacy, sc,
9172                                  &sc->intr[0].tag)) != 0) {
9173             BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc);
9174             goto bxe_interrupt_attach_exit;
9175         }
9176     }
9177 
9178 bxe_interrupt_attach_exit:
9179 
9180     return (rc);
9181 }
9182 
9183 static int  bxe_init_hw_common_chip(struct bxe_softc *sc);
9184 static int  bxe_init_hw_common(struct bxe_softc *sc);
9185 static int  bxe_init_hw_port(struct bxe_softc *sc);
9186 static int  bxe_init_hw_func(struct bxe_softc *sc);
9187 static void bxe_reset_common(struct bxe_softc *sc);
9188 static void bxe_reset_port(struct bxe_softc *sc);
9189 static void bxe_reset_func(struct bxe_softc *sc);
9190 static int  bxe_gunzip_init(struct bxe_softc *sc);
9191 static void bxe_gunzip_end(struct bxe_softc *sc);
9192 static int  bxe_init_firmware(struct bxe_softc *sc);
9193 static void bxe_release_firmware(struct bxe_softc *sc);
9194 
9195 static struct
9196 ecore_func_sp_drv_ops bxe_func_sp_drv = {
9197     .init_hw_cmn_chip = bxe_init_hw_common_chip,
9198     .init_hw_cmn      = bxe_init_hw_common,
9199     .init_hw_port     = bxe_init_hw_port,
9200     .init_hw_func     = bxe_init_hw_func,
9201 
9202     .reset_hw_cmn     = bxe_reset_common,
9203     .reset_hw_port    = bxe_reset_port,
9204     .reset_hw_func    = bxe_reset_func,
9205 
9206     .gunzip_init      = bxe_gunzip_init,
9207     .gunzip_end       = bxe_gunzip_end,
9208 
9209     .init_fw          = bxe_init_firmware,
9210     .release_fw       = bxe_release_firmware,
9211 };
9212 
9213 static void
9214 bxe_init_func_obj(struct bxe_softc *sc)
9215 {
9216     sc->dmae_ready = 0;
9217 
9218     ecore_init_func_obj(sc,
9219                         &sc->func_obj,
9220                         BXE_SP(sc, func_rdata),
9221                         BXE_SP_MAPPING(sc, func_rdata),
9222                         BXE_SP(sc, func_afex_rdata),
9223                         BXE_SP_MAPPING(sc, func_afex_rdata),
9224                         &bxe_func_sp_drv);
9225 }
9226 
9227 static int
9228 bxe_init_hw(struct bxe_softc *sc,
9229             uint32_t         load_code)
9230 {
9231     struct ecore_func_state_params func_params = { NULL };
9232     int rc;
9233 
9234     /* prepare the parameters for function state transitions */
9235     bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
9236 
9237     func_params.f_obj = &sc->func_obj;
9238     func_params.cmd = ECORE_F_CMD_HW_INIT;
9239 
9240     func_params.params.hw_init.load_phase = load_code;
9241 
9242     /*
9243      * Via a plethora of function pointers, we will eventually reach
9244      * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func().
9245      */
9246     rc = ecore_func_state_change(sc, &func_params);
9247 
9248     return (rc);
9249 }
9250 
9251 static void
9252 bxe_fill(struct bxe_softc *sc,
9253          uint32_t         addr,
9254          int              fill,
9255          uint32_t         len)
9256 {
9257     uint32_t i;
9258 
9259     if (!(len % 4) && !(addr % 4)) {
9260         for (i = 0; i < len; i += 4) {
9261             REG_WR(sc, (addr + i), fill);
9262         }
9263     } else {
9264         for (i = 0; i < len; i++) {
9265             REG_WR8(sc, (addr + i), fill);
9266         }
9267     }
9268 }
9269 
9270 /* writes FP SP data to FW - data_size in dwords */
9271 static void
9272 bxe_wr_fp_sb_data(struct bxe_softc *sc,
9273                   int              fw_sb_id,
9274                   uint32_t         *sb_data_p,
9275                   uint32_t         data_size)
9276 {
9277     int index;
9278 
9279     for (index = 0; index < data_size; index++) {
9280         REG_WR(sc,
9281                (BAR_CSTRORM_INTMEM +
9282                 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
9283                 (sizeof(uint32_t) * index)),
9284                *(sb_data_p + index));
9285     }
9286 }
9287 
9288 static void
9289 bxe_zero_fp_sb(struct bxe_softc *sc,
9290                int              fw_sb_id)
9291 {
9292     struct hc_status_block_data_e2 sb_data_e2;
9293     struct hc_status_block_data_e1x sb_data_e1x;
9294     uint32_t *sb_data_p;
9295     uint32_t data_size = 0;
9296 
9297     if (!CHIP_IS_E1x(sc)) {
9298         memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9299         sb_data_e2.common.state = SB_DISABLED;
9300         sb_data_e2.common.p_func.vf_valid = FALSE;
9301         sb_data_p = (uint32_t *)&sb_data_e2;
9302         data_size = (sizeof(struct hc_status_block_data_e2) /
9303                      sizeof(uint32_t));
9304     } else {
9305         memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9306         sb_data_e1x.common.state = SB_DISABLED;
9307         sb_data_e1x.common.p_func.vf_valid = FALSE;
9308         sb_data_p = (uint32_t *)&sb_data_e1x;
9309         data_size = (sizeof(struct hc_status_block_data_e1x) /
9310                      sizeof(uint32_t));
9311     }
9312 
9313     bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9314 
9315     bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)),
9316              0, CSTORM_STATUS_BLOCK_SIZE);
9317     bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)),
9318              0, CSTORM_SYNC_BLOCK_SIZE);
9319 }
9320 
9321 static void
9322 bxe_wr_sp_sb_data(struct bxe_softc               *sc,
9323                   struct hc_sp_status_block_data *sp_sb_data)
9324 {
9325     int i;
9326 
9327     for (i = 0;
9328          i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t));
9329          i++) {
9330         REG_WR(sc,
9331                (BAR_CSTRORM_INTMEM +
9332                 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) +
9333                 (i * sizeof(uint32_t))),
9334                *((uint32_t *)sp_sb_data + i));
9335     }
9336 }
9337 
9338 static void
9339 bxe_zero_sp_sb(struct bxe_softc *sc)
9340 {
9341     struct hc_sp_status_block_data sp_sb_data;
9342 
9343     memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
9344 
9345     sp_sb_data.state           = SB_DISABLED;
9346     sp_sb_data.p_func.vf_valid = FALSE;
9347 
9348     bxe_wr_sp_sb_data(sc, &sp_sb_data);
9349 
9350     bxe_fill(sc,
9351              (BAR_CSTRORM_INTMEM +
9352               CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))),
9353               0, CSTORM_SP_STATUS_BLOCK_SIZE);
9354     bxe_fill(sc,
9355              (BAR_CSTRORM_INTMEM +
9356               CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))),
9357               0, CSTORM_SP_SYNC_BLOCK_SIZE);
9358 }
9359 
9360 static void
9361 bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
9362                              int                       igu_sb_id,
9363                              int                       igu_seg_id)
9364 {
9365     hc_sm->igu_sb_id      = igu_sb_id;
9366     hc_sm->igu_seg_id     = igu_seg_id;
9367     hc_sm->timer_value    = 0xFF;
9368     hc_sm->time_to_expire = 0xFFFFFFFF;
9369 }
9370 
9371 static void
9372 bxe_map_sb_state_machines(struct hc_index_data *index_data)
9373 {
9374     /* zero out state machine indices */
9375 
9376     /* rx indices */
9377     index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
9378 
9379     /* tx indices */
9380     index_data[HC_INDEX_OOO_TX_CQ_CONS].flags      &= ~HC_INDEX_DATA_SM_ID;
9381     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
9382     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
9383     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
9384 
9385     /* map indices */
9386 
9387     /* rx indices */
9388     index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
9389         (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9390 
9391     /* tx indices */
9392     index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
9393         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9394     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
9395         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9396     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
9397         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9398     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
9399         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9400 }
9401 
9402 static void
9403 bxe_init_sb(struct bxe_softc *sc,
9404             bus_addr_t       busaddr,
9405             int              vfid,
9406             uint8_t          vf_valid,
9407             int              fw_sb_id,
9408             int              igu_sb_id)
9409 {
9410     struct hc_status_block_data_e2  sb_data_e2;
9411     struct hc_status_block_data_e1x sb_data_e1x;
9412     struct hc_status_block_sm       *hc_sm_p;
9413     uint32_t *sb_data_p;
9414     int igu_seg_id;
9415     int data_size;
9416 
9417     if (CHIP_INT_MODE_IS_BC(sc)) {
9418         igu_seg_id = HC_SEG_ACCESS_NORM;
9419     } else {
9420         igu_seg_id = IGU_SEG_ACCESS_NORM;
9421     }
9422 
9423     bxe_zero_fp_sb(sc, fw_sb_id);
9424 
9425     if (!CHIP_IS_E1x(sc)) {
9426         memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9427         sb_data_e2.common.state = SB_ENABLED;
9428         sb_data_e2.common.p_func.pf_id = SC_FUNC(sc);
9429         sb_data_e2.common.p_func.vf_id = vfid;
9430         sb_data_e2.common.p_func.vf_valid = vf_valid;
9431         sb_data_e2.common.p_func.vnic_id = SC_VN(sc);
9432         sb_data_e2.common.same_igu_sb_1b = TRUE;
9433         sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr);
9434         sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr);
9435         hc_sm_p = sb_data_e2.common.state_machine;
9436         sb_data_p = (uint32_t *)&sb_data_e2;
9437         data_size = (sizeof(struct hc_status_block_data_e2) /
9438                      sizeof(uint32_t));
9439         bxe_map_sb_state_machines(sb_data_e2.index_data);
9440     } else {
9441         memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9442         sb_data_e1x.common.state = SB_ENABLED;
9443         sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc);
9444         sb_data_e1x.common.p_func.vf_id = 0xff;
9445         sb_data_e1x.common.p_func.vf_valid = FALSE;
9446         sb_data_e1x.common.p_func.vnic_id = SC_VN(sc);
9447         sb_data_e1x.common.same_igu_sb_1b = TRUE;
9448         sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr);
9449         sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr);
9450         hc_sm_p = sb_data_e1x.common.state_machine;
9451         sb_data_p = (uint32_t *)&sb_data_e1x;
9452         data_size = (sizeof(struct hc_status_block_data_e1x) /
9453                      sizeof(uint32_t));
9454         bxe_map_sb_state_machines(sb_data_e1x.index_data);
9455     }
9456 
9457     bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id);
9458     bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id);
9459 
9460     BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id);
9461 
9462     /* write indices to HW - PCI guarantees endianity of regpairs */
9463     bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9464 }
9465 
9466 static inline uint8_t
9467 bxe_fp_qzone_id(struct bxe_fastpath *fp)
9468 {
9469     if (CHIP_IS_E1x(fp->sc)) {
9470         return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H);
9471     } else {
9472         return (fp->cl_id);
9473     }
9474 }
9475 
9476 static inline uint32_t
9477 bxe_rx_ustorm_prods_offset(struct bxe_softc    *sc,
9478                            struct bxe_fastpath *fp)
9479 {
9480     uint32_t offset = BAR_USTRORM_INTMEM;
9481 
9482     if (!CHIP_IS_E1x(sc)) {
9483         offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
9484     } else {
9485         offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id);
9486     }
9487 
9488     return (offset);
9489 }
9490 
9491 static void
9492 bxe_init_eth_fp(struct bxe_softc *sc,
9493                 int              idx)
9494 {
9495     struct bxe_fastpath *fp = &sc->fp[idx];
9496     uint32_t cids[ECORE_MULTI_TX_COS] = { 0 };
9497     unsigned long q_type = 0;
9498     int cos;
9499 
9500     fp->sc    = sc;
9501     fp->index = idx;
9502 
9503     fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc));
9504     fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc));
9505 
9506     fp->cl_id = (CHIP_IS_E1x(sc)) ?
9507                     (SC_L_ID(sc) + idx) :
9508                     /* want client ID same as IGU SB ID for non-E1 */
9509                     fp->igu_sb_id;
9510     fp->cl_qzone_id = bxe_fp_qzone_id(fp);
9511 
9512     /* setup sb indices */
9513     if (!CHIP_IS_E1x(sc)) {
9514         fp->sb_index_values  = fp->status_block.e2_sb->sb.index_values;
9515         fp->sb_running_index = fp->status_block.e2_sb->sb.running_index;
9516     } else {
9517         fp->sb_index_values  = fp->status_block.e1x_sb->sb.index_values;
9518         fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index;
9519     }
9520 
9521     /* init shortcut */
9522     fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp);
9523 
9524     fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS];
9525 
9526     /*
9527      * XXX If multiple CoS is ever supported then each fastpath structure
9528      * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
9529      */
9530     for (cos = 0; cos < sc->max_cos; cos++) {
9531         cids[cos] = idx;
9532     }
9533     fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0];
9534 
9535     /* nothing more for a VF to do */
9536     if (IS_VF(sc)) {
9537         return;
9538     }
9539 
9540     bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE,
9541                 fp->fw_sb_id, fp->igu_sb_id);
9542 
9543     bxe_update_fp_sb_idx(fp);
9544 
9545     /* Configure Queue State object */
9546     bit_set(&q_type, ECORE_Q_TYPE_HAS_RX);
9547     bit_set(&q_type, ECORE_Q_TYPE_HAS_TX);
9548 
9549     ecore_init_queue_obj(sc,
9550                          &sc->sp_objs[idx].q_obj,
9551                          fp->cl_id,
9552                          cids,
9553                          sc->max_cos,
9554                          SC_FUNC(sc),
9555                          BXE_SP(sc, q_rdata),
9556                          BXE_SP_MAPPING(sc, q_rdata),
9557                          q_type);
9558 
9559     /* configure classification DBs */
9560     ecore_init_mac_obj(sc,
9561                        &sc->sp_objs[idx].mac_obj,
9562                        fp->cl_id,
9563                        idx,
9564                        SC_FUNC(sc),
9565                        BXE_SP(sc, mac_rdata),
9566                        BXE_SP_MAPPING(sc, mac_rdata),
9567                        ECORE_FILTER_MAC_PENDING,
9568                        &sc->sp_state,
9569                        ECORE_OBJ_TYPE_RX_TX,
9570                        &sc->macs_pool);
9571 
9572     BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n",
9573           idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id);
9574 }
9575 
9576 static inline void
9577 bxe_update_rx_prod(struct bxe_softc    *sc,
9578                    struct bxe_fastpath *fp,
9579                    uint16_t            rx_bd_prod,
9580                    uint16_t            rx_cq_prod,
9581                    uint16_t            rx_sge_prod)
9582 {
9583     struct ustorm_eth_rx_producers rx_prods = { 0 };
9584     uint32_t i;
9585 
9586     /* update producers */
9587     rx_prods.bd_prod  = rx_bd_prod;
9588     rx_prods.cqe_prod = rx_cq_prod;
9589     rx_prods.sge_prod = rx_sge_prod;
9590 
9591     /*
9592      * Make sure that the BD and SGE data is updated before updating the
9593      * producers since FW might read the BD/SGE right after the producer
9594      * is updated.
9595      * This is only applicable for weak-ordered memory model archs such
9596      * as IA-64. The following barrier is also mandatory since FW will
9597      * assumes BDs must have buffers.
9598      */
9599     wmb();
9600 
9601     for (i = 0; i < (sizeof(rx_prods) / 4); i++) {
9602         REG_WR(sc,
9603                (fp->ustorm_rx_prods_offset + (i * 4)),
9604                ((uint32_t *)&rx_prods)[i]);
9605     }
9606 
9607     wmb(); /* keep prod updates ordered */
9608 
9609     BLOGD(sc, DBG_RX,
9610           "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n",
9611           fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod);
9612 }
9613 
9614 static void
9615 bxe_init_rx_rings(struct bxe_softc *sc)
9616 {
9617     struct bxe_fastpath *fp;
9618     int i;
9619 
9620     for (i = 0; i < sc->num_queues; i++) {
9621         fp = &sc->fp[i];
9622 
9623         fp->rx_bd_cons = 0;
9624 
9625         /*
9626          * Activate the BD ring...
9627          * Warning, this will generate an interrupt (to the TSTORM)
9628          * so this can only be done after the chip is initialized
9629          */
9630         bxe_update_rx_prod(sc, fp,
9631                            fp->rx_bd_prod,
9632                            fp->rx_cq_prod,
9633                            fp->rx_sge_prod);
9634 
9635         if (i != 0) {
9636             continue;
9637         }
9638 
9639         if (CHIP_IS_E1(sc)) {
9640             REG_WR(sc,
9641                    (BAR_USTRORM_INTMEM +
9642                     USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))),
9643                    U64_LO(fp->rcq_dma.paddr));
9644             REG_WR(sc,
9645                    (BAR_USTRORM_INTMEM +
9646                     USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4),
9647                    U64_HI(fp->rcq_dma.paddr));
9648         }
9649     }
9650 }
9651 
9652 static void
9653 bxe_init_tx_ring_one(struct bxe_fastpath *fp)
9654 {
9655     SET_FLAG(fp->tx_db.data.header.data, DOORBELL_HDR_T_DB_TYPE, 1);
9656     fp->tx_db.data.zero_fill1 = 0;
9657     fp->tx_db.data.prod = 0;
9658 
9659     fp->tx_pkt_prod = 0;
9660     fp->tx_pkt_cons = 0;
9661     fp->tx_bd_prod = 0;
9662     fp->tx_bd_cons = 0;
9663     fp->eth_q_stats.tx_pkts = 0;
9664 }
9665 
9666 static inline void
9667 bxe_init_tx_rings(struct bxe_softc *sc)
9668 {
9669     int i;
9670 
9671     for (i = 0; i < sc->num_queues; i++) {
9672         bxe_init_tx_ring_one(&sc->fp[i]);
9673     }
9674 }
9675 
9676 static void
9677 bxe_init_def_sb(struct bxe_softc *sc)
9678 {
9679     struct host_sp_status_block *def_sb = sc->def_sb;
9680     bus_addr_t mapping = sc->def_sb_dma.paddr;
9681     int igu_sp_sb_index;
9682     int igu_seg_id;
9683     int port = SC_PORT(sc);
9684     int func = SC_FUNC(sc);
9685     int reg_offset, reg_offset_en5;
9686     uint64_t section;
9687     int index, sindex;
9688     struct hc_sp_status_block_data sp_sb_data;
9689 
9690     memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
9691 
9692     if (CHIP_INT_MODE_IS_BC(sc)) {
9693         igu_sp_sb_index = DEF_SB_IGU_ID;
9694         igu_seg_id = HC_SEG_ACCESS_DEF;
9695     } else {
9696         igu_sp_sb_index = sc->igu_dsb_id;
9697         igu_seg_id = IGU_SEG_ACCESS_DEF;
9698     }
9699 
9700     /* attentions */
9701     section = ((uint64_t)mapping +
9702                offsetof(struct host_sp_status_block, atten_status_block));
9703     def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
9704     sc->attn_state = 0;
9705 
9706     reg_offset = (port) ?
9707                      MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
9708                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
9709     reg_offset_en5 = (port) ?
9710                          MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
9711                          MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0;
9712 
9713     for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
9714         /* take care of sig[0]..sig[4] */
9715         for (sindex = 0; sindex < 4; sindex++) {
9716             sc->attn_group[index].sig[sindex] =
9717                 REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index)));
9718         }
9719 
9720         if (!CHIP_IS_E1x(sc)) {
9721             /*
9722              * enable5 is separate from the rest of the registers,
9723              * and the address skip is 4 and not 16 between the
9724              * different groups
9725              */
9726             sc->attn_group[index].sig[4] =
9727                 REG_RD(sc, (reg_offset_en5 + (0x4 * index)));
9728         } else {
9729             sc->attn_group[index].sig[4] = 0;
9730         }
9731     }
9732 
9733     if (sc->devinfo.int_block == INT_BLOCK_HC) {
9734         reg_offset = (port) ?
9735                          HC_REG_ATTN_MSG1_ADDR_L :
9736                          HC_REG_ATTN_MSG0_ADDR_L;
9737         REG_WR(sc, reg_offset, U64_LO(section));
9738         REG_WR(sc, (reg_offset + 4), U64_HI(section));
9739     } else if (!CHIP_IS_E1x(sc)) {
9740         REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
9741         REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
9742     }
9743 
9744     section = ((uint64_t)mapping +
9745                offsetof(struct host_sp_status_block, sp_sb));
9746 
9747     bxe_zero_sp_sb(sc);
9748 
9749     /* PCI guarantees endianity of regpair */
9750     sp_sb_data.state           = SB_ENABLED;
9751     sp_sb_data.host_sb_addr.lo = U64_LO(section);
9752     sp_sb_data.host_sb_addr.hi = U64_HI(section);
9753     sp_sb_data.igu_sb_id       = igu_sp_sb_index;
9754     sp_sb_data.igu_seg_id      = igu_seg_id;
9755     sp_sb_data.p_func.pf_id    = func;
9756     sp_sb_data.p_func.vnic_id  = SC_VN(sc);
9757     sp_sb_data.p_func.vf_id    = 0xff;
9758 
9759     bxe_wr_sp_sb_data(sc, &sp_sb_data);
9760 
9761     bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
9762 }
9763 
9764 static void
9765 bxe_init_sp_ring(struct bxe_softc *sc)
9766 {
9767     atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING);
9768     sc->spq_prod_idx = 0;
9769     sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS];
9770     sc->spq_prod_bd = sc->spq;
9771     sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT);
9772 }
9773 
9774 static void
9775 bxe_init_eq_ring(struct bxe_softc *sc)
9776 {
9777     union event_ring_elem *elem;
9778     int i;
9779 
9780     for (i = 1; i <= NUM_EQ_PAGES; i++) {
9781         elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1];
9782 
9783         elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr +
9784                                                  BCM_PAGE_SIZE *
9785                                                  (i % NUM_EQ_PAGES)));
9786         elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr +
9787                                                  BCM_PAGE_SIZE *
9788                                                  (i % NUM_EQ_PAGES)));
9789     }
9790 
9791     sc->eq_cons    = 0;
9792     sc->eq_prod    = NUM_EQ_DESC;
9793     sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS];
9794 
9795     atomic_store_rel_long(&sc->eq_spq_left,
9796                           (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING),
9797                                NUM_EQ_DESC) - 1));
9798 }
9799 
9800 static void
9801 bxe_init_internal_common(struct bxe_softc *sc)
9802 {
9803     int i;
9804 
9805     /*
9806      * Zero this manually as its initialization is currently missing
9807      * in the initTool.
9808      */
9809     for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) {
9810         REG_WR(sc,
9811                (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)),
9812                0);
9813     }
9814 
9815     if (!CHIP_IS_E1x(sc)) {
9816         REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET),
9817                 CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
9818     }
9819 }
9820 
9821 static void
9822 bxe_init_internal(struct bxe_softc *sc,
9823                   uint32_t         load_code)
9824 {
9825     switch (load_code) {
9826     case FW_MSG_CODE_DRV_LOAD_COMMON:
9827     case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
9828         bxe_init_internal_common(sc);
9829         /* no break */
9830 
9831     case FW_MSG_CODE_DRV_LOAD_PORT:
9832         /* nothing to do */
9833         /* no break */
9834 
9835     case FW_MSG_CODE_DRV_LOAD_FUNCTION:
9836         /* internal memory per function is initialized inside bxe_pf_init */
9837         break;
9838 
9839     default:
9840         BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code);
9841         break;
9842     }
9843 }
9844 
9845 static void
9846 storm_memset_func_cfg(struct bxe_softc                         *sc,
9847                       struct tstorm_eth_function_common_config *tcfg,
9848                       uint16_t                                  abs_fid)
9849 {
9850     uint32_t addr;
9851     size_t size;
9852 
9853     addr = (BAR_TSTRORM_INTMEM +
9854             TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid));
9855     size = sizeof(struct tstorm_eth_function_common_config);
9856     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg);
9857 }
9858 
9859 static void
9860 bxe_func_init(struct bxe_softc            *sc,
9861               struct bxe_func_init_params *p)
9862 {
9863     struct tstorm_eth_function_common_config tcfg = { 0 };
9864 
9865     if (CHIP_IS_E1x(sc)) {
9866         storm_memset_func_cfg(sc, &tcfg, p->func_id);
9867     }
9868 
9869     /* Enable the function in the FW */
9870     storm_memset_vf_to_pf(sc, p->func_id, p->pf_id);
9871     storm_memset_func_en(sc, p->func_id, 1);
9872 
9873     /* spq */
9874     if (p->func_flgs & FUNC_FLG_SPQ) {
9875         storm_memset_spq_addr(sc, p->spq_map, p->func_id);
9876         REG_WR(sc,
9877                (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)),
9878                p->spq_prod);
9879     }
9880 }
9881 
9882 /*
9883  * Calculates the sum of vn_min_rates.
9884  * It's needed for further normalizing of the min_rates.
9885  * Returns:
9886  *   sum of vn_min_rates.
9887  *     or
9888  *   0 - if all the min_rates are 0.
9889  * In the later case fainess algorithm should be deactivated.
9890  * If all min rates are not zero then those that are zeroes will be set to 1.
9891  */
9892 static void
9893 bxe_calc_vn_min(struct bxe_softc       *sc,
9894                 struct cmng_init_input *input)
9895 {
9896     uint32_t vn_cfg;
9897     uint32_t vn_min_rate;
9898     int all_zero = 1;
9899     int vn;
9900 
9901     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
9902         vn_cfg = sc->devinfo.mf_info.mf_config[vn];
9903         vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
9904                         FUNC_MF_CFG_MIN_BW_SHIFT) * 100);
9905 
9906         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
9907             /* skip hidden VNs */
9908             vn_min_rate = 0;
9909         } else if (!vn_min_rate) {
9910             /* If min rate is zero - set it to 100 */
9911             vn_min_rate = DEF_MIN_RATE;
9912         } else {
9913             all_zero = 0;
9914         }
9915 
9916         input->vnic_min_rate[vn] = vn_min_rate;
9917     }
9918 
9919     /* if ETS or all min rates are zeros - disable fairness */
9920     if (BXE_IS_ETS_ENABLED(sc)) {
9921         input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
9922         BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n");
9923     } else if (all_zero) {
9924         input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
9925         BLOGD(sc, DBG_LOAD,
9926               "Fariness disabled (all MIN values are zeroes)\n");
9927     } else {
9928         input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
9929     }
9930 }
9931 
9932 static inline uint16_t
9933 bxe_extract_max_cfg(struct bxe_softc *sc,
9934                     uint32_t         mf_cfg)
9935 {
9936     uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
9937                         FUNC_MF_CFG_MAX_BW_SHIFT);
9938 
9939     if (!max_cfg) {
9940         BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n");
9941         max_cfg = 100;
9942     }
9943 
9944     return (max_cfg);
9945 }
9946 
9947 static void
9948 bxe_calc_vn_max(struct bxe_softc       *sc,
9949                 int                    vn,
9950                 struct cmng_init_input *input)
9951 {
9952     uint16_t vn_max_rate;
9953     uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn];
9954     uint32_t max_cfg;
9955 
9956     if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
9957         vn_max_rate = 0;
9958     } else {
9959         max_cfg = bxe_extract_max_cfg(sc, vn_cfg);
9960 
9961         if (IS_MF_SI(sc)) {
9962             /* max_cfg in percents of linkspeed */
9963             vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100);
9964         } else { /* SD modes */
9965             /* max_cfg is absolute in 100Mb units */
9966             vn_max_rate = (max_cfg * 100);
9967         }
9968     }
9969 
9970     BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
9971 
9972     input->vnic_max_rate[vn] = vn_max_rate;
9973 }
9974 
9975 static void
9976 bxe_cmng_fns_init(struct bxe_softc *sc,
9977                   uint8_t          read_cfg,
9978                   uint8_t          cmng_type)
9979 {
9980     struct cmng_init_input input;
9981     int vn;
9982 
9983     memset(&input, 0, sizeof(struct cmng_init_input));
9984 
9985     input.port_rate = sc->link_vars.line_speed;
9986 
9987     if (cmng_type == CMNG_FNS_MINMAX) {
9988         /* read mf conf from shmem */
9989         if (read_cfg) {
9990             bxe_read_mf_cfg(sc);
9991         }
9992 
9993         /* get VN min rate and enable fairness if not 0 */
9994         bxe_calc_vn_min(sc, &input);
9995 
9996         /* get VN max rate */
9997         if (sc->port.pmf) {
9998             for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
9999                 bxe_calc_vn_max(sc, vn, &input);
10000             }
10001         }
10002 
10003         /* always enable rate shaping and fairness */
10004         input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
10005 
10006         ecore_init_cmng(&input, &sc->cmng);
10007         return;
10008     }
10009 
10010     /* rate shaping and fairness are disabled */
10011     BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n");
10012 }
10013 
10014 static int
10015 bxe_get_cmng_fns_mode(struct bxe_softc *sc)
10016 {
10017     if (CHIP_REV_IS_SLOW(sc)) {
10018         return (CMNG_FNS_NONE);
10019     }
10020 
10021     if (IS_MF(sc)) {
10022         return (CMNG_FNS_MINMAX);
10023     }
10024 
10025     return (CMNG_FNS_NONE);
10026 }
10027 
10028 static void
10029 storm_memset_cmng(struct bxe_softc *sc,
10030                   struct cmng_init *cmng,
10031                   uint8_t          port)
10032 {
10033     int vn;
10034     int func;
10035     uint32_t addr;
10036     size_t size;
10037 
10038     addr = (BAR_XSTRORM_INTMEM +
10039             XSTORM_CMNG_PER_PORT_VARS_OFFSET(port));
10040     size = sizeof(struct cmng_struct_per_port);
10041     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port);
10042 
10043     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10044         func = func_by_vn(sc, vn);
10045 
10046         addr = (BAR_XSTRORM_INTMEM +
10047                 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func));
10048         size = sizeof(struct rate_shaping_vars_per_vn);
10049         ecore_storm_memset_struct(sc, addr, size,
10050                                   (uint32_t *)&cmng->vnic.vnic_max_rate[vn]);
10051 
10052         addr = (BAR_XSTRORM_INTMEM +
10053                 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func));
10054         size = sizeof(struct fairness_vars_per_vn);
10055         ecore_storm_memset_struct(sc, addr, size,
10056                                   (uint32_t *)&cmng->vnic.vnic_min_rate[vn]);
10057     }
10058 }
10059 
10060 static void
10061 bxe_pf_init(struct bxe_softc *sc)
10062 {
10063     struct bxe_func_init_params func_init = { 0 };
10064     struct event_ring_data eq_data = { { 0 } };
10065     uint16_t flags;
10066 
10067     if (!CHIP_IS_E1x(sc)) {
10068         /* reset IGU PF statistics: MSIX + ATTN */
10069         /* PF */
10070         REG_WR(sc,
10071                (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10072                 (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10073                 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10074                0);
10075         /* ATTN */
10076         REG_WR(sc,
10077                (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10078                 (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10079                 (BXE_IGU_STAS_MSG_PF_CNT * 4) +
10080                 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10081                0);
10082     }
10083 
10084     /* function setup flags */
10085     flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
10086 
10087     /*
10088      * This flag is relevant for E1x only.
10089      * E2 doesn't have a TPA configuration in a function level.
10090      */
10091     flags |= (if_getcapenable(sc->ifp) & IFCAP_LRO) ? FUNC_FLG_TPA : 0;
10092 
10093     func_init.func_flgs = flags;
10094     func_init.pf_id     = SC_FUNC(sc);
10095     func_init.func_id   = SC_FUNC(sc);
10096     func_init.spq_map   = sc->spq_dma.paddr;
10097     func_init.spq_prod  = sc->spq_prod_idx;
10098 
10099     bxe_func_init(sc, &func_init);
10100 
10101     memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port));
10102 
10103     /*
10104      * Congestion management values depend on the link rate.
10105      * There is no active link so initial link rate is set to 10Gbps.
10106      * When the link comes up the congestion management values are
10107      * re-calculated according to the actual link rate.
10108      */
10109     sc->link_vars.line_speed = SPEED_10000;
10110     bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc));
10111 
10112     /* Only the PMF sets the HW */
10113     if (sc->port.pmf) {
10114         storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
10115     }
10116 
10117     /* init Event Queue - PCI bus guarantees correct endainity */
10118     eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr);
10119     eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr);
10120     eq_data.producer     = sc->eq_prod;
10121     eq_data.index_id     = HC_SP_INDEX_EQ_CONS;
10122     eq_data.sb_id        = DEF_SB_ID;
10123     storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc));
10124 }
10125 
10126 static void
10127 bxe_hc_int_enable(struct bxe_softc *sc)
10128 {
10129     int port = SC_PORT(sc);
10130     uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10131     uint32_t val = REG_RD(sc, addr);
10132     uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10133     uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10134                            (sc->intr_count == 1)) ? TRUE : FALSE;
10135     uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10136 
10137     if (msix) {
10138         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10139                  HC_CONFIG_0_REG_INT_LINE_EN_0);
10140         val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10141                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10142         if (single_msix) {
10143             val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
10144         }
10145     } else if (msi) {
10146         val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
10147         val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10148                 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10149                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10150     } else {
10151         val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10152                 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10153                 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10154                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10155 
10156         if (!CHIP_IS_E1(sc)) {
10157             BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n",
10158                   val, port, addr);
10159 
10160             REG_WR(sc, addr, val);
10161 
10162             val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
10163         }
10164     }
10165 
10166     if (CHIP_IS_E1(sc)) {
10167         REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF);
10168     }
10169 
10170     BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n",
10171           val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10172 
10173     REG_WR(sc, addr, val);
10174 
10175     /* ensure that HC_CONFIG is written before leading/trailing edge config */
10176     mb();
10177 
10178     if (!CHIP_IS_E1(sc)) {
10179         /* init leading/trailing edge */
10180         if (IS_MF(sc)) {
10181             val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10182             if (sc->port.pmf) {
10183                 /* enable nig and gpio3 attention */
10184                 val |= 0x1100;
10185             }
10186         } else {
10187             val = 0xffff;
10188         }
10189 
10190         REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val);
10191         REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val);
10192     }
10193 
10194     /* make sure that interrupts are indeed enabled from here on */
10195     mb();
10196 }
10197 
10198 static void
10199 bxe_igu_int_enable(struct bxe_softc *sc)
10200 {
10201     uint32_t val;
10202     uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10203     uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10204                            (sc->intr_count == 1)) ? TRUE : FALSE;
10205     uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10206 
10207     val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10208 
10209     if (msix) {
10210         val &= ~(IGU_PF_CONF_INT_LINE_EN |
10211                  IGU_PF_CONF_SINGLE_ISR_EN);
10212         val |= (IGU_PF_CONF_MSI_MSIX_EN |
10213                 IGU_PF_CONF_ATTN_BIT_EN);
10214         if (single_msix) {
10215             val |= IGU_PF_CONF_SINGLE_ISR_EN;
10216         }
10217     } else if (msi) {
10218         val &= ~IGU_PF_CONF_INT_LINE_EN;
10219         val |= (IGU_PF_CONF_MSI_MSIX_EN |
10220                 IGU_PF_CONF_ATTN_BIT_EN |
10221                 IGU_PF_CONF_SINGLE_ISR_EN);
10222     } else {
10223         val &= ~IGU_PF_CONF_MSI_MSIX_EN;
10224         val |= (IGU_PF_CONF_INT_LINE_EN |
10225                 IGU_PF_CONF_ATTN_BIT_EN |
10226                 IGU_PF_CONF_SINGLE_ISR_EN);
10227     }
10228 
10229     /* clean previous status - need to configure igu prior to ack*/
10230     if ((!msix) || single_msix) {
10231         REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10232         bxe_ack_int(sc);
10233     }
10234 
10235     val |= IGU_PF_CONF_FUNC_EN;
10236 
10237     BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n",
10238           val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10239 
10240     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10241 
10242     mb();
10243 
10244     /* init leading/trailing edge */
10245     if (IS_MF(sc)) {
10246         val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10247         if (sc->port.pmf) {
10248             /* enable nig and gpio3 attention */
10249             val |= 0x1100;
10250         }
10251     } else {
10252         val = 0xffff;
10253     }
10254 
10255     REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
10256     REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
10257 
10258     /* make sure that interrupts are indeed enabled from here on */
10259     mb();
10260 }
10261 
10262 static void
10263 bxe_int_enable(struct bxe_softc *sc)
10264 {
10265     if (sc->devinfo.int_block == INT_BLOCK_HC) {
10266         bxe_hc_int_enable(sc);
10267     } else {
10268         bxe_igu_int_enable(sc);
10269     }
10270 }
10271 
10272 static void
10273 bxe_hc_int_disable(struct bxe_softc *sc)
10274 {
10275     int port = SC_PORT(sc);
10276     uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10277     uint32_t val = REG_RD(sc, addr);
10278 
10279     /*
10280      * In E1 we must use only PCI configuration space to disable MSI/MSIX
10281      * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC
10282      * block
10283      */
10284     if (CHIP_IS_E1(sc)) {
10285         /*
10286          * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register
10287          * to prevent from HC sending interrupts after we exit the function
10288          */
10289         REG_WR(sc, (HC_REG_INT_MASK + port*4), 0);
10290 
10291         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10292                  HC_CONFIG_0_REG_INT_LINE_EN_0 |
10293                  HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10294     } else {
10295         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10296                  HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10297                  HC_CONFIG_0_REG_INT_LINE_EN_0 |
10298                  HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10299     }
10300 
10301     BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr);
10302 
10303     /* flush all outstanding writes */
10304     mb();
10305 
10306     REG_WR(sc, addr, val);
10307     if (REG_RD(sc, addr) != val) {
10308         BLOGE(sc, "proper val not read from HC IGU!\n");
10309     }
10310 }
10311 
10312 static void
10313 bxe_igu_int_disable(struct bxe_softc *sc)
10314 {
10315     uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10316 
10317     val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
10318              IGU_PF_CONF_INT_LINE_EN |
10319              IGU_PF_CONF_ATTN_BIT_EN);
10320 
10321     BLOGD(sc, DBG_INTR, "write %x to IGU\n", val);
10322 
10323     /* flush all outstanding writes */
10324     mb();
10325 
10326     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10327     if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) {
10328         BLOGE(sc, "proper val not read from IGU!\n");
10329     }
10330 }
10331 
10332 static void
10333 bxe_int_disable(struct bxe_softc *sc)
10334 {
10335     if (sc->devinfo.int_block == INT_BLOCK_HC) {
10336         bxe_hc_int_disable(sc);
10337     } else {
10338         bxe_igu_int_disable(sc);
10339     }
10340 }
10341 
10342 static void
10343 bxe_nic_init(struct bxe_softc *sc,
10344              int              load_code)
10345 {
10346     int i;
10347 
10348     for (i = 0; i < sc->num_queues; i++) {
10349         bxe_init_eth_fp(sc, i);
10350     }
10351 
10352     rmb(); /* ensure status block indices were read */
10353 
10354     bxe_init_rx_rings(sc);
10355     bxe_init_tx_rings(sc);
10356 
10357     if (IS_VF(sc)) {
10358         return;
10359     }
10360 
10361     /* initialize MOD_ABS interrupts */
10362     elink_init_mod_abs_int(sc, &sc->link_vars,
10363                            sc->devinfo.chip_id,
10364                            sc->devinfo.shmem_base,
10365                            sc->devinfo.shmem2_base,
10366                            SC_PORT(sc));
10367 
10368     bxe_init_def_sb(sc);
10369     bxe_update_dsb_idx(sc);
10370     bxe_init_sp_ring(sc);
10371     bxe_init_eq_ring(sc);
10372     bxe_init_internal(sc, load_code);
10373     bxe_pf_init(sc);
10374     bxe_stats_init(sc);
10375 
10376     /* flush all before enabling interrupts */
10377     mb();
10378 
10379     bxe_int_enable(sc);
10380 
10381     /* check for SPIO5 */
10382     bxe_attn_int_deasserted0(sc,
10383                              REG_RD(sc,
10384                                     (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
10385                                      SC_PORT(sc)*4)) &
10386                              AEU_INPUTS_ATTN_BITS_SPIO5);
10387 }
10388 
10389 static inline void
10390 bxe_init_objs(struct bxe_softc *sc)
10391 {
10392     /* mcast rules must be added to tx if tx switching is enabled */
10393     ecore_obj_type o_type =
10394         (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX :
10395                                          ECORE_OBJ_TYPE_RX;
10396 
10397     /* RX_MODE controlling object */
10398     ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj);
10399 
10400     /* multicast configuration controlling object */
10401     ecore_init_mcast_obj(sc,
10402                          &sc->mcast_obj,
10403                          sc->fp[0].cl_id,
10404                          sc->fp[0].index,
10405                          SC_FUNC(sc),
10406                          SC_FUNC(sc),
10407                          BXE_SP(sc, mcast_rdata),
10408                          BXE_SP_MAPPING(sc, mcast_rdata),
10409                          ECORE_FILTER_MCAST_PENDING,
10410                          &sc->sp_state,
10411                          o_type);
10412 
10413     /* Setup CAM credit pools */
10414     ecore_init_mac_credit_pool(sc,
10415                                &sc->macs_pool,
10416                                SC_FUNC(sc),
10417                                CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10418                                                  VNICS_PER_PATH(sc));
10419 
10420     ecore_init_vlan_credit_pool(sc,
10421                                 &sc->vlans_pool,
10422                                 SC_ABS_FUNC(sc) >> 1,
10423                                 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10424                                                   VNICS_PER_PATH(sc));
10425 
10426     /* RSS configuration object */
10427     ecore_init_rss_config_obj(sc,
10428                               &sc->rss_conf_obj,
10429                               sc->fp[0].cl_id,
10430                               sc->fp[0].index,
10431                               SC_FUNC(sc),
10432                               SC_FUNC(sc),
10433                               BXE_SP(sc, rss_rdata),
10434                               BXE_SP_MAPPING(sc, rss_rdata),
10435                               ECORE_FILTER_RSS_CONF_PENDING,
10436                               &sc->sp_state, ECORE_OBJ_TYPE_RX);
10437 }
10438 
10439 /*
10440  * Initialize the function. This must be called before sending CLIENT_SETUP
10441  * for the first client.
10442  */
10443 static inline int
10444 bxe_func_start(struct bxe_softc *sc)
10445 {
10446     struct ecore_func_state_params func_params = { NULL };
10447     struct ecore_func_start_params *start_params = &func_params.params.start;
10448 
10449     /* Prepare parameters for function state transitions */
10450     bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
10451 
10452     func_params.f_obj = &sc->func_obj;
10453     func_params.cmd = ECORE_F_CMD_START;
10454 
10455     /* Function parameters */
10456     start_params->mf_mode     = sc->devinfo.mf_info.mf_mode;
10457     start_params->sd_vlan_tag = OVLAN(sc);
10458 
10459     if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
10460         start_params->network_cos_mode = STATIC_COS;
10461     } else { /* CHIP_IS_E1X */
10462         start_params->network_cos_mode = FW_WRR;
10463     }
10464 
10465     //start_params->gre_tunnel_mode = 0;
10466     //start_params->gre_tunnel_rss  = 0;
10467 
10468     return (ecore_func_state_change(sc, &func_params));
10469 }
10470 
10471 static int
10472 bxe_set_power_state(struct bxe_softc *sc,
10473                     uint8_t          state)
10474 {
10475     uint16_t pmcsr;
10476 
10477     /* If there is no power capability, silently succeed */
10478     if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) {
10479         BLOGW(sc, "No power capability\n");
10480         return (0);
10481     }
10482 
10483     pmcsr = pci_read_config(sc->dev,
10484                             (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10485                             2);
10486 
10487     switch (state) {
10488     case PCI_PM_D0:
10489         pci_write_config(sc->dev,
10490                          (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10491                          ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2);
10492 
10493         if (pmcsr & PCIM_PSTAT_DMASK) {
10494             /* delay required during transition out of D3hot */
10495             DELAY(20000);
10496         }
10497 
10498         break;
10499 
10500     case PCI_PM_D3hot:
10501         /* XXX if there are other clients above don't shut down the power */
10502 
10503         /* don't shut down the power for emulation and FPGA */
10504         if (CHIP_REV_IS_SLOW(sc)) {
10505             return (0);
10506         }
10507 
10508         pmcsr &= ~PCIM_PSTAT_DMASK;
10509         pmcsr |= PCIM_PSTAT_D3;
10510 
10511         if (sc->wol) {
10512             pmcsr |= PCIM_PSTAT_PMEENABLE;
10513         }
10514 
10515         pci_write_config(sc->dev,
10516                          (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10517                          pmcsr, 4);
10518 
10519         /*
10520          * No more memory access after this point until device is brought back
10521          * to D0 state.
10522          */
10523         break;
10524 
10525     default:
10526         BLOGE(sc, "Can't support PCI power state = 0x%x pmcsr 0x%x\n",
10527             state, pmcsr);
10528         return (-1);
10529     }
10530 
10531     return (0);
10532 }
10533 
10534 
10535 /* return true if succeeded to acquire the lock */
10536 static uint8_t
10537 bxe_trylock_hw_lock(struct bxe_softc *sc,
10538                     uint32_t         resource)
10539 {
10540     uint32_t lock_status;
10541     uint32_t resource_bit = (1 << resource);
10542     int func = SC_FUNC(sc);
10543     uint32_t hw_lock_control_reg;
10544 
10545     BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource);
10546 
10547     /* Validating that the resource is within range */
10548     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
10549         BLOGD(sc, DBG_LOAD,
10550               "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
10551               resource, HW_LOCK_MAX_RESOURCE_VALUE);
10552         return (FALSE);
10553     }
10554 
10555     if (func <= 5) {
10556         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
10557     } else {
10558         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
10559     }
10560 
10561     /* try to acquire the lock */
10562     REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
10563     lock_status = REG_RD(sc, hw_lock_control_reg);
10564     if (lock_status & resource_bit) {
10565         return (TRUE);
10566     }
10567 
10568     BLOGE(sc, "Failed to get a resource lock 0x%x func %d "
10569         "lock_status 0x%x resource_bit 0x%x\n", resource, func,
10570         lock_status, resource_bit);
10571 
10572     return (FALSE);
10573 }
10574 
10575 /*
10576  * Get the recovery leader resource id according to the engine this function
10577  * belongs to. Currently only only 2 engines is supported.
10578  */
10579 static int
10580 bxe_get_leader_lock_resource(struct bxe_softc *sc)
10581 {
10582     if (SC_PATH(sc)) {
10583         return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1);
10584     } else {
10585         return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0);
10586     }
10587 }
10588 
10589 /* try to acquire a leader lock for current engine */
10590 static uint8_t
10591 bxe_trylock_leader_lock(struct bxe_softc *sc)
10592 {
10593     return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
10594 }
10595 
10596 static int
10597 bxe_release_leader_lock(struct bxe_softc *sc)
10598 {
10599     return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
10600 }
10601 
10602 /* close gates #2, #3 and #4 */
10603 static void
10604 bxe_set_234_gates(struct bxe_softc *sc,
10605                   uint8_t          close)
10606 {
10607     uint32_t val;
10608 
10609     /* gates #2 and #4a are closed/opened for "not E1" only */
10610     if (!CHIP_IS_E1(sc)) {
10611         /* #4 */
10612         REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
10613         /* #2 */
10614         REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
10615     }
10616 
10617     /* #3 */
10618     if (CHIP_IS_E1x(sc)) {
10619         /* prevent interrupts from HC on both ports */
10620         val = REG_RD(sc, HC_REG_CONFIG_1);
10621         REG_WR(sc, HC_REG_CONFIG_1,
10622                (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
10623                (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
10624 
10625         val = REG_RD(sc, HC_REG_CONFIG_0);
10626         REG_WR(sc, HC_REG_CONFIG_0,
10627                (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
10628                (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
10629     } else {
10630         /* Prevent incoming interrupts in IGU */
10631         val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
10632 
10633         REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
10634                (!close) ?
10635                (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
10636                (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
10637     }
10638 
10639     BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n",
10640           close ? "closing" : "opening");
10641 
10642     wmb();
10643 }
10644 
10645 /* poll for pending writes bit, it should get cleared in no more than 1s */
10646 static int
10647 bxe_er_poll_igu_vq(struct bxe_softc *sc)
10648 {
10649     uint32_t cnt = 1000;
10650     uint32_t pend_bits = 0;
10651 
10652     do {
10653         pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS);
10654 
10655         if (pend_bits == 0) {
10656             break;
10657         }
10658 
10659         DELAY(1000);
10660     } while (--cnt > 0);
10661 
10662     if (cnt == 0) {
10663         BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits);
10664         return (-1);
10665     }
10666 
10667     return (0);
10668 }
10669 
10670 #define SHARED_MF_CLP_MAGIC  0x80000000 /* 'magic' bit */
10671 
10672 static void
10673 bxe_clp_reset_prep(struct bxe_softc *sc,
10674                    uint32_t         *magic_val)
10675 {
10676     /* Do some magic... */
10677     uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
10678     *magic_val = val & SHARED_MF_CLP_MAGIC;
10679     MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
10680 }
10681 
10682 /* restore the value of the 'magic' bit */
10683 static void
10684 bxe_clp_reset_done(struct bxe_softc *sc,
10685                    uint32_t         magic_val)
10686 {
10687     /* Restore the 'magic' bit value... */
10688     uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
10689     MFCFG_WR(sc, shared_mf_config.clp_mb,
10690               (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
10691 }
10692 
10693 /* prepare for MCP reset, takes care of CLP configurations */
10694 static void
10695 bxe_reset_mcp_prep(struct bxe_softc *sc,
10696                    uint32_t         *magic_val)
10697 {
10698     uint32_t shmem;
10699     uint32_t validity_offset;
10700 
10701     /* set `magic' bit in order to save MF config */
10702     if (!CHIP_IS_E1(sc)) {
10703         bxe_clp_reset_prep(sc, magic_val);
10704     }
10705 
10706     /* get shmem offset */
10707     shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
10708     validity_offset =
10709         offsetof(struct shmem_region, validity_map[SC_PORT(sc)]);
10710 
10711     /* Clear validity map flags */
10712     if (shmem > 0) {
10713         REG_WR(sc, shmem + validity_offset, 0);
10714     }
10715 }
10716 
10717 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
10718 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
10719 
10720 static void
10721 bxe_mcp_wait_one(struct bxe_softc *sc)
10722 {
10723     /* special handling for emulation and FPGA (10 times longer) */
10724     if (CHIP_REV_IS_SLOW(sc)) {
10725         DELAY((MCP_ONE_TIMEOUT*10) * 1000);
10726     } else {
10727         DELAY((MCP_ONE_TIMEOUT) * 1000);
10728     }
10729 }
10730 
10731 /* initialize shmem_base and waits for validity signature to appear */
10732 static int
10733 bxe_init_shmem(struct bxe_softc *sc)
10734 {
10735     int cnt = 0;
10736     uint32_t val = 0;
10737 
10738     do {
10739         sc->devinfo.shmem_base     =
10740         sc->link_params.shmem_base =
10741             REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
10742 
10743         if (sc->devinfo.shmem_base) {
10744             val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
10745             if (val & SHR_MEM_VALIDITY_MB)
10746                 return (0);
10747         }
10748 
10749         bxe_mcp_wait_one(sc);
10750 
10751     } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
10752 
10753     BLOGE(sc, "BAD MCP validity signature\n");
10754 
10755     return (-1);
10756 }
10757 
10758 static int
10759 bxe_reset_mcp_comp(struct bxe_softc *sc,
10760                    uint32_t         magic_val)
10761 {
10762     int rc = bxe_init_shmem(sc);
10763 
10764     /* Restore the `magic' bit value */
10765     if (!CHIP_IS_E1(sc)) {
10766         bxe_clp_reset_done(sc, magic_val);
10767     }
10768 
10769     return (rc);
10770 }
10771 
10772 static void
10773 bxe_pxp_prep(struct bxe_softc *sc)
10774 {
10775     if (!CHIP_IS_E1(sc)) {
10776         REG_WR(sc, PXP2_REG_RD_START_INIT, 0);
10777         REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0);
10778         wmb();
10779     }
10780 }
10781 
10782 /*
10783  * Reset the whole chip except for:
10784  *      - PCIE core
10785  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit)
10786  *      - IGU
10787  *      - MISC (including AEU)
10788  *      - GRC
10789  *      - RBCN, RBCP
10790  */
10791 static void
10792 bxe_process_kill_chip_reset(struct bxe_softc *sc,
10793                             uint8_t          global)
10794 {
10795     uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
10796     uint32_t global_bits2, stay_reset2;
10797 
10798     /*
10799      * Bits that have to be set in reset_mask2 if we want to reset 'global'
10800      * (per chip) blocks.
10801      */
10802     global_bits2 =
10803         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
10804         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
10805 
10806     /*
10807      * Don't reset the following blocks.
10808      * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
10809      *            reset, as in 4 port device they might still be owned
10810      *            by the MCP (there is only one leader per path).
10811      */
10812     not_reset_mask1 =
10813         MISC_REGISTERS_RESET_REG_1_RST_HC |
10814         MISC_REGISTERS_RESET_REG_1_RST_PXPV |
10815         MISC_REGISTERS_RESET_REG_1_RST_PXP;
10816 
10817     not_reset_mask2 =
10818         MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
10819         MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
10820         MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
10821         MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
10822         MISC_REGISTERS_RESET_REG_2_RST_RBCN |
10823         MISC_REGISTERS_RESET_REG_2_RST_GRC  |
10824         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
10825         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
10826         MISC_REGISTERS_RESET_REG_2_RST_ATC |
10827         MISC_REGISTERS_RESET_REG_2_PGLC |
10828         MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
10829         MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
10830         MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
10831         MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
10832         MISC_REGISTERS_RESET_REG_2_UMAC0 |
10833         MISC_REGISTERS_RESET_REG_2_UMAC1;
10834 
10835     /*
10836      * Keep the following blocks in reset:
10837      *  - all xxMACs are handled by the elink code.
10838      */
10839     stay_reset2 =
10840         MISC_REGISTERS_RESET_REG_2_XMAC |
10841         MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
10842 
10843     /* Full reset masks according to the chip */
10844     reset_mask1 = 0xffffffff;
10845 
10846     if (CHIP_IS_E1(sc))
10847         reset_mask2 = 0xffff;
10848     else if (CHIP_IS_E1H(sc))
10849         reset_mask2 = 0x1ffff;
10850     else if (CHIP_IS_E2(sc))
10851         reset_mask2 = 0xfffff;
10852     else /* CHIP_IS_E3 */
10853         reset_mask2 = 0x3ffffff;
10854 
10855     /* Don't reset global blocks unless we need to */
10856     if (!global)
10857         reset_mask2 &= ~global_bits2;
10858 
10859     /*
10860      * In case of attention in the QM, we need to reset PXP
10861      * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
10862      * because otherwise QM reset would release 'close the gates' shortly
10863      * before resetting the PXP, then the PSWRQ would send a write
10864      * request to PGLUE. Then when PXP is reset, PGLUE would try to
10865      * read the payload data from PSWWR, but PSWWR would not
10866      * respond. The write queue in PGLUE would stuck, dmae commands
10867      * would not return. Therefore it's important to reset the second
10868      * reset register (containing the
10869      * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
10870      * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
10871      * bit).
10872      */
10873     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
10874            reset_mask2 & (~not_reset_mask2));
10875 
10876     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
10877            reset_mask1 & (~not_reset_mask1));
10878 
10879     mb();
10880     wmb();
10881 
10882     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
10883            reset_mask2 & (~stay_reset2));
10884 
10885     mb();
10886     wmb();
10887 
10888     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
10889     wmb();
10890 }
10891 
10892 static int
10893 bxe_process_kill(struct bxe_softc *sc,
10894                  uint8_t          global)
10895 {
10896     int cnt = 1000;
10897     uint32_t val = 0;
10898     uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
10899     uint32_t tags_63_32 = 0;
10900 
10901     /* Empty the Tetris buffer, wait for 1s */
10902     do {
10903         sr_cnt  = REG_RD(sc, PXP2_REG_RD_SR_CNT);
10904         blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT);
10905         port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0);
10906         port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1);
10907         pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2);
10908         if (CHIP_IS_E3(sc)) {
10909             tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32);
10910         }
10911 
10912         if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
10913             ((port_is_idle_0 & 0x1) == 0x1) &&
10914             ((port_is_idle_1 & 0x1) == 0x1) &&
10915             (pgl_exp_rom2 == 0xffffffff) &&
10916             (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff)))
10917             break;
10918         DELAY(1000);
10919     } while (cnt-- > 0);
10920 
10921     if (cnt <= 0) {
10922         BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there "
10923                   "are still outstanding read requests after 1s! "
10924                   "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, "
10925                   "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
10926               sr_cnt, blk_cnt, port_is_idle_0,
10927               port_is_idle_1, pgl_exp_rom2);
10928         return (-1);
10929     }
10930 
10931     mb();
10932 
10933     /* Close gates #2, #3 and #4 */
10934     bxe_set_234_gates(sc, TRUE);
10935 
10936     /* Poll for IGU VQs for 57712 and newer chips */
10937     if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) {
10938         return (-1);
10939     }
10940 
10941     /* XXX indicate that "process kill" is in progress to MCP */
10942 
10943     /* clear "unprepared" bit */
10944     REG_WR(sc, MISC_REG_UNPREPARED, 0);
10945     mb();
10946 
10947     /* Make sure all is written to the chip before the reset */
10948     wmb();
10949 
10950     /*
10951      * Wait for 1ms to empty GLUE and PCI-E core queues,
10952      * PSWHST, GRC and PSWRD Tetris buffer.
10953      */
10954     DELAY(1000);
10955 
10956     /* Prepare to chip reset: */
10957     /* MCP */
10958     if (global) {
10959         bxe_reset_mcp_prep(sc, &val);
10960     }
10961 
10962     /* PXP */
10963     bxe_pxp_prep(sc);
10964     mb();
10965 
10966     /* reset the chip */
10967     bxe_process_kill_chip_reset(sc, global);
10968     mb();
10969 
10970     /* clear errors in PGB */
10971     if (!CHIP_IS_E1(sc))
10972         REG_WR(sc, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
10973 
10974     /* Recover after reset: */
10975     /* MCP */
10976     if (global && bxe_reset_mcp_comp(sc, val)) {
10977         return (-1);
10978     }
10979 
10980     /* XXX add resetting the NO_MCP mode DB here */
10981 
10982     /* Open the gates #2, #3 and #4 */
10983     bxe_set_234_gates(sc, FALSE);
10984 
10985     /* XXX
10986      * IGU/AEU preparation bring back the AEU/IGU to a reset state
10987      * re-enable attentions
10988      */
10989 
10990     return (0);
10991 }
10992 
10993 static int
10994 bxe_leader_reset(struct bxe_softc *sc)
10995 {
10996     int rc = 0;
10997     uint8_t global = bxe_reset_is_global(sc);
10998     uint32_t load_code;
10999 
11000     /*
11001      * If not going to reset MCP, load "fake" driver to reset HW while
11002      * driver is owner of the HW.
11003      */
11004     if (!global && !BXE_NOMCP(sc)) {
11005         load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
11006                                    DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
11007         if (!load_code) {
11008             BLOGE(sc, "MCP response failure, aborting\n");
11009             rc = -1;
11010             goto exit_leader_reset;
11011         }
11012 
11013         if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
11014             (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
11015             BLOGE(sc, "MCP unexpected response, aborting\n");
11016             rc = -1;
11017             goto exit_leader_reset2;
11018         }
11019 
11020         load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
11021         if (!load_code) {
11022             BLOGE(sc, "MCP response failure, aborting\n");
11023             rc = -1;
11024             goto exit_leader_reset2;
11025         }
11026     }
11027 
11028     /* try to recover after the failure */
11029     if (bxe_process_kill(sc, global)) {
11030         BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc));
11031         rc = -1;
11032         goto exit_leader_reset2;
11033     }
11034 
11035     /*
11036      * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver
11037      * state.
11038      */
11039     bxe_set_reset_done(sc);
11040     if (global) {
11041         bxe_clear_reset_global(sc);
11042     }
11043 
11044 exit_leader_reset2:
11045 
11046     /* unload "fake driver" if it was loaded */
11047     if (!global && !BXE_NOMCP(sc)) {
11048         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
11049         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
11050     }
11051 
11052 exit_leader_reset:
11053 
11054     sc->is_leader = 0;
11055     bxe_release_leader_lock(sc);
11056 
11057     mb();
11058     return (rc);
11059 }
11060 
11061 /*
11062  * prepare INIT transition, parameters configured:
11063  *   - HC configuration
11064  *   - Queue's CDU context
11065  */
11066 static void
11067 bxe_pf_q_prep_init(struct bxe_softc               *sc,
11068                    struct bxe_fastpath            *fp,
11069                    struct ecore_queue_init_params *init_params)
11070 {
11071     uint8_t cos;
11072     int cxt_index, cxt_offset;
11073 
11074     bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags);
11075     bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags);
11076 
11077     bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags);
11078     bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags);
11079 
11080     /* HC rate */
11081     init_params->rx.hc_rate =
11082         sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0;
11083     init_params->tx.hc_rate =
11084         sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0;
11085 
11086     /* FW SB ID */
11087     init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id;
11088 
11089     /* CQ index among the SB indices */
11090     init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11091     init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
11092 
11093     /* set maximum number of COSs supported by this queue */
11094     init_params->max_cos = sc->max_cos;
11095 
11096     BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n",
11097           fp->index, init_params->max_cos);
11098 
11099     /* set the context pointers queue object */
11100     for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
11101         /* XXX change index/cid here if ever support multiple tx CoS */
11102         /* fp->txdata[cos]->cid */
11103         cxt_index = fp->index / ILT_PAGE_CIDS;
11104         cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS);
11105         init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth;
11106     }
11107 }
11108 
11109 /* set flags that are common for the Tx-only and not normal connections */
11110 static unsigned long
11111 bxe_get_common_flags(struct bxe_softc    *sc,
11112                      struct bxe_fastpath *fp,
11113                      uint8_t             zero_stats)
11114 {
11115     unsigned long flags = 0;
11116 
11117     /* PF driver will always initialize the Queue to an ACTIVE state */
11118     bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags);
11119 
11120     /*
11121      * tx only connections collect statistics (on the same index as the
11122      * parent connection). The statistics are zeroed when the parent
11123      * connection is initialized.
11124      */
11125 
11126     bxe_set_bit(ECORE_Q_FLG_STATS, &flags);
11127     if (zero_stats) {
11128         bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags);
11129     }
11130 
11131     /*
11132      * tx only connections can support tx-switching, though their
11133      * CoS-ness doesn't survive the loopback
11134      */
11135     if (sc->flags & BXE_TX_SWITCHING) {
11136         bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags);
11137     }
11138 
11139     bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags);
11140 
11141     return (flags);
11142 }
11143 
11144 static unsigned long
11145 bxe_get_q_flags(struct bxe_softc    *sc,
11146                 struct bxe_fastpath *fp,
11147                 uint8_t             leading)
11148 {
11149     unsigned long flags = 0;
11150 
11151     if (IS_MF_SD(sc)) {
11152         bxe_set_bit(ECORE_Q_FLG_OV, &flags);
11153     }
11154 
11155     if (if_getcapenable(sc->ifp) & IFCAP_LRO) {
11156         bxe_set_bit(ECORE_Q_FLG_TPA, &flags);
11157         bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags);
11158     }
11159 
11160     if (leading) {
11161         bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags);
11162         bxe_set_bit(ECORE_Q_FLG_MCAST, &flags);
11163     }
11164 
11165     bxe_set_bit(ECORE_Q_FLG_VLAN, &flags);
11166 
11167     /* merge with common flags */
11168     return (flags | bxe_get_common_flags(sc, fp, TRUE));
11169 }
11170 
11171 static void
11172 bxe_pf_q_prep_general(struct bxe_softc                  *sc,
11173                       struct bxe_fastpath               *fp,
11174                       struct ecore_general_setup_params *gen_init,
11175                       uint8_t                           cos)
11176 {
11177     gen_init->stat_id = bxe_stats_id(fp);
11178     gen_init->spcl_id = fp->cl_id;
11179     gen_init->mtu = sc->mtu;
11180     gen_init->cos = cos;
11181 }
11182 
11183 static void
11184 bxe_pf_rx_q_prep(struct bxe_softc              *sc,
11185                  struct bxe_fastpath           *fp,
11186                  struct rxq_pause_params       *pause,
11187                  struct ecore_rxq_setup_params *rxq_init)
11188 {
11189     uint8_t max_sge = 0;
11190     uint16_t sge_sz = 0;
11191     uint16_t tpa_agg_size = 0;
11192 
11193     pause->sge_th_lo = SGE_TH_LO(sc);
11194     pause->sge_th_hi = SGE_TH_HI(sc);
11195 
11196     /* validate SGE ring has enough to cross high threshold */
11197     if (sc->dropless_fc &&
11198             (pause->sge_th_hi + FW_PREFETCH_CNT) >
11199             (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) {
11200         BLOGW(sc, "sge ring threshold limit\n");
11201     }
11202 
11203     /* minimum max_aggregation_size is 2*MTU (two full buffers) */
11204     tpa_agg_size = (2 * sc->mtu);
11205     if (tpa_agg_size < sc->max_aggregation_size) {
11206         tpa_agg_size = sc->max_aggregation_size;
11207     }
11208 
11209     max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT;
11210     max_sge = ((max_sge + PAGES_PER_SGE - 1) &
11211                    (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT;
11212     sge_sz = (uint16_t)min(SGE_PAGES, 0xffff);
11213 
11214     /* pause - not for e1 */
11215     if (!CHIP_IS_E1(sc)) {
11216         pause->bd_th_lo = BD_TH_LO(sc);
11217         pause->bd_th_hi = BD_TH_HI(sc);
11218 
11219         pause->rcq_th_lo = RCQ_TH_LO(sc);
11220         pause->rcq_th_hi = RCQ_TH_HI(sc);
11221 
11222         /* validate rings have enough entries to cross high thresholds */
11223         if (sc->dropless_fc &&
11224             pause->bd_th_hi + FW_PREFETCH_CNT >
11225             sc->rx_ring_size) {
11226             BLOGW(sc, "rx bd ring threshold limit\n");
11227         }
11228 
11229         if (sc->dropless_fc &&
11230             pause->rcq_th_hi + FW_PREFETCH_CNT >
11231             RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) {
11232             BLOGW(sc, "rcq ring threshold limit\n");
11233         }
11234 
11235         pause->pri_map = 1;
11236     }
11237 
11238     /* rxq setup */
11239     rxq_init->dscr_map   = fp->rx_dma.paddr;
11240     rxq_init->sge_map    = fp->rx_sge_dma.paddr;
11241     rxq_init->rcq_map    = fp->rcq_dma.paddr;
11242     rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE);
11243 
11244     /*
11245      * This should be a maximum number of data bytes that may be
11246      * placed on the BD (not including paddings).
11247      */
11248     rxq_init->buf_sz = (fp->rx_buf_size -
11249                         IP_HEADER_ALIGNMENT_PADDING);
11250 
11251     rxq_init->cl_qzone_id     = fp->cl_qzone_id;
11252     rxq_init->tpa_agg_sz      = tpa_agg_size;
11253     rxq_init->sge_buf_sz      = sge_sz;
11254     rxq_init->max_sges_pkt    = max_sge;
11255     rxq_init->rss_engine_id   = SC_FUNC(sc);
11256     rxq_init->mcast_engine_id = SC_FUNC(sc);
11257 
11258     /*
11259      * Maximum number or simultaneous TPA aggregation for this Queue.
11260      * For PF Clients it should be the maximum available number.
11261      * VF driver(s) may want to define it to a smaller value.
11262      */
11263     rxq_init->max_tpa_queues = MAX_AGG_QS(sc);
11264 
11265     rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT;
11266     rxq_init->fw_sb_id = fp->fw_sb_id;
11267 
11268     rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11269 
11270     /*
11271      * configure silent vlan removal
11272      * if multi function mode is afex, then mask default vlan
11273      */
11274     if (IS_MF_AFEX(sc)) {
11275         rxq_init->silent_removal_value =
11276             sc->devinfo.mf_info.afex_def_vlan_tag;
11277         rxq_init->silent_removal_mask = EVL_VLID_MASK;
11278     }
11279 }
11280 
11281 static void
11282 bxe_pf_tx_q_prep(struct bxe_softc              *sc,
11283                  struct bxe_fastpath           *fp,
11284                  struct ecore_txq_setup_params *txq_init,
11285                  uint8_t                       cos)
11286 {
11287     /*
11288      * XXX If multiple CoS is ever supported then each fastpath structure
11289      * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
11290      * fp->txdata[cos]->tx_dma.paddr;
11291      */
11292     txq_init->dscr_map     = fp->tx_dma.paddr;
11293     txq_init->sb_cq_index  = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
11294     txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
11295     txq_init->fw_sb_id     = fp->fw_sb_id;
11296 
11297     /*
11298      * set the TSS leading client id for TX classfication to the
11299      * leading RSS client id
11300      */
11301     txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id);
11302 }
11303 
11304 /*
11305  * This function performs 2 steps in a queue state machine:
11306  *   1) RESET->INIT
11307  *   2) INIT->SETUP
11308  */
11309 static int
11310 bxe_setup_queue(struct bxe_softc    *sc,
11311                 struct bxe_fastpath *fp,
11312                 uint8_t             leading)
11313 {
11314     struct ecore_queue_state_params q_params = { NULL };
11315     struct ecore_queue_setup_params *setup_params =
11316                         &q_params.params.setup;
11317     int rc;
11318 
11319     BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index);
11320 
11321     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
11322 
11323     q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
11324 
11325     /* we want to wait for completion in this context */
11326     bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
11327 
11328     /* prepare the INIT parameters */
11329     bxe_pf_q_prep_init(sc, fp, &q_params.params.init);
11330 
11331     /* Set the command */
11332     q_params.cmd = ECORE_Q_CMD_INIT;
11333 
11334     /* Change the state to INIT */
11335     rc = ecore_queue_state_change(sc, &q_params);
11336     if (rc) {
11337         BLOGE(sc, "Queue(%d) INIT failed rc = %d\n", fp->index, rc);
11338         return (rc);
11339     }
11340 
11341     BLOGD(sc, DBG_LOAD, "init complete\n");
11342 
11343     /* now move the Queue to the SETUP state */
11344     memset(setup_params, 0, sizeof(*setup_params));
11345 
11346     /* set Queue flags */
11347     setup_params->flags = bxe_get_q_flags(sc, fp, leading);
11348 
11349     /* set general SETUP parameters */
11350     bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params,
11351                           FIRST_TX_COS_INDEX);
11352 
11353     bxe_pf_rx_q_prep(sc, fp,
11354                      &setup_params->pause_params,
11355                      &setup_params->rxq_params);
11356 
11357     bxe_pf_tx_q_prep(sc, fp,
11358                      &setup_params->txq_params,
11359                      FIRST_TX_COS_INDEX);
11360 
11361     /* Set the command */
11362     q_params.cmd = ECORE_Q_CMD_SETUP;
11363 
11364     /* change the state to SETUP */
11365     rc = ecore_queue_state_change(sc, &q_params);
11366     if (rc) {
11367         BLOGE(sc, "Queue(%d) SETUP failed (rc = %d)\n", fp->index, rc);
11368         return (rc);
11369     }
11370 
11371     return (rc);
11372 }
11373 
11374 static int
11375 bxe_setup_leading(struct bxe_softc *sc)
11376 {
11377     return (bxe_setup_queue(sc, &sc->fp[0], TRUE));
11378 }
11379 
11380 static int
11381 bxe_config_rss_pf(struct bxe_softc            *sc,
11382                   struct ecore_rss_config_obj *rss_obj,
11383                   uint8_t                     config_hash)
11384 {
11385     struct ecore_config_rss_params params = { NULL };
11386     int i;
11387 
11388     /*
11389      * Although RSS is meaningless when there is a single HW queue we
11390      * still need it enabled in order to have HW Rx hash generated.
11391      */
11392 
11393     params.rss_obj = rss_obj;
11394 
11395     bxe_set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
11396 
11397     bxe_set_bit(ECORE_RSS_MODE_REGULAR, &params.rss_flags);
11398 
11399     /* RSS configuration */
11400     bxe_set_bit(ECORE_RSS_IPV4, &params.rss_flags);
11401     bxe_set_bit(ECORE_RSS_IPV4_TCP, &params.rss_flags);
11402     bxe_set_bit(ECORE_RSS_IPV6, &params.rss_flags);
11403     bxe_set_bit(ECORE_RSS_IPV6_TCP, &params.rss_flags);
11404     if (rss_obj->udp_rss_v4) {
11405         bxe_set_bit(ECORE_RSS_IPV4_UDP, &params.rss_flags);
11406     }
11407     if (rss_obj->udp_rss_v6) {
11408         bxe_set_bit(ECORE_RSS_IPV6_UDP, &params.rss_flags);
11409     }
11410 
11411     /* Hash bits */
11412     params.rss_result_mask = MULTI_MASK;
11413 
11414     memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
11415 
11416     if (config_hash) {
11417         /* RSS keys */
11418         for (i = 0; i < sizeof(params.rss_key) / 4; i++) {
11419             params.rss_key[i] = arc4random();
11420         }
11421 
11422         bxe_set_bit(ECORE_RSS_SET_SRCH, &params.rss_flags);
11423     }
11424 
11425     return (ecore_config_rss(sc, &params));
11426 }
11427 
11428 static int
11429 bxe_config_rss_eth(struct bxe_softc *sc,
11430                    uint8_t          config_hash)
11431 {
11432     return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash));
11433 }
11434 
11435 static int
11436 bxe_init_rss_pf(struct bxe_softc *sc)
11437 {
11438     uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc);
11439     int i;
11440 
11441     /*
11442      * Prepare the initial contents of the indirection table if
11443      * RSS is enabled
11444      */
11445     for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) {
11446         sc->rss_conf_obj.ind_table[i] =
11447             (sc->fp->cl_id + (i % num_eth_queues));
11448     }
11449 
11450     if (sc->udp_rss) {
11451         sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1;
11452     }
11453 
11454     /*
11455      * For 57710 and 57711 SEARCHER configuration (rss_keys) is
11456      * per-port, so if explicit configuration is needed, do it only
11457      * for a PMF.
11458      *
11459      * For 57712 and newer it's a per-function configuration.
11460      */
11461     return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc)));
11462 }
11463 
11464 static int
11465 bxe_set_mac_one(struct bxe_softc          *sc,
11466                 uint8_t                   *mac,
11467                 struct ecore_vlan_mac_obj *obj,
11468                 uint8_t                   set,
11469                 int                       mac_type,
11470                 unsigned long             *ramrod_flags)
11471 {
11472     struct ecore_vlan_mac_ramrod_params ramrod_param;
11473     int rc;
11474 
11475     memset(&ramrod_param, 0, sizeof(ramrod_param));
11476 
11477     /* fill in general parameters */
11478     ramrod_param.vlan_mac_obj = obj;
11479     ramrod_param.ramrod_flags = *ramrod_flags;
11480 
11481     /* fill a user request section if needed */
11482     if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) {
11483         memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
11484 
11485         bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
11486 
11487         /* Set the command: ADD or DEL */
11488         ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD :
11489                                             ECORE_VLAN_MAC_DEL;
11490     }
11491 
11492     rc = ecore_config_vlan_mac(sc, &ramrod_param);
11493 
11494     if (rc == ECORE_EXISTS) {
11495         BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
11496         /* do not treat adding same MAC as error */
11497         rc = 0;
11498     } else if (rc < 0) {
11499         BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc);
11500     }
11501 
11502     return (rc);
11503 }
11504 
11505 static int
11506 bxe_set_eth_mac(struct bxe_softc *sc,
11507                 uint8_t          set)
11508 {
11509     unsigned long ramrod_flags = 0;
11510 
11511     BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n");
11512 
11513     bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
11514 
11515     /* Eth MAC is set on RSS leading client (fp[0]) */
11516     return (bxe_set_mac_one(sc, sc->link_params.mac_addr,
11517                             &sc->sp_objs->mac_obj,
11518                             set, ECORE_ETH_MAC, &ramrod_flags));
11519 }
11520 
11521 static int
11522 bxe_get_cur_phy_idx(struct bxe_softc *sc)
11523 {
11524     uint32_t sel_phy_idx = 0;
11525 
11526     if (sc->link_params.num_phys <= 1) {
11527         return (ELINK_INT_PHY);
11528     }
11529 
11530     if (sc->link_vars.link_up) {
11531         sel_phy_idx = ELINK_EXT_PHY1;
11532         /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */
11533         if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
11534             (sc->link_params.phy[ELINK_EXT_PHY2].supported &
11535              ELINK_SUPPORTED_FIBRE))
11536             sel_phy_idx = ELINK_EXT_PHY2;
11537     } else {
11538         switch (elink_phy_selection(&sc->link_params)) {
11539         case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
11540         case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
11541         case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
11542                sel_phy_idx = ELINK_EXT_PHY1;
11543                break;
11544         case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
11545         case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
11546                sel_phy_idx = ELINK_EXT_PHY2;
11547                break;
11548         }
11549     }
11550 
11551     return (sel_phy_idx);
11552 }
11553 
11554 static int
11555 bxe_get_link_cfg_idx(struct bxe_softc *sc)
11556 {
11557     uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc);
11558 
11559     /*
11560      * The selected activated PHY is always after swapping (in case PHY
11561      * swapping is enabled). So when swapping is enabled, we need to reverse
11562      * the configuration
11563      */
11564 
11565     if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11566         if (sel_phy_idx == ELINK_EXT_PHY1)
11567             sel_phy_idx = ELINK_EXT_PHY2;
11568         else if (sel_phy_idx == ELINK_EXT_PHY2)
11569             sel_phy_idx = ELINK_EXT_PHY1;
11570     }
11571 
11572     return (ELINK_LINK_CONFIG_IDX(sel_phy_idx));
11573 }
11574 
11575 static void
11576 bxe_set_requested_fc(struct bxe_softc *sc)
11577 {
11578     /*
11579      * Initialize link parameters structure variables
11580      * It is recommended to turn off RX FC for jumbo frames
11581      * for better performance
11582      */
11583     if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) {
11584         sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX;
11585     } else {
11586         sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH;
11587     }
11588 }
11589 
11590 static void
11591 bxe_calc_fc_adv(struct bxe_softc *sc)
11592 {
11593     uint8_t cfg_idx = bxe_get_link_cfg_idx(sc);
11594     switch (sc->link_vars.ieee_fc &
11595             MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
11596     case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
11597     default:
11598         sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
11599                                            ADVERTISED_Pause);
11600         break;
11601 
11602     case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
11603         sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
11604                                           ADVERTISED_Pause);
11605         break;
11606 
11607     case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
11608         sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
11609         break;
11610     }
11611 }
11612 
11613 static uint16_t
11614 bxe_get_mf_speed(struct bxe_softc *sc)
11615 {
11616     uint16_t line_speed = sc->link_vars.line_speed;
11617     if (IS_MF(sc)) {
11618         uint16_t maxCfg =
11619             bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]);
11620 
11621         /* calculate the current MAX line speed limit for the MF devices */
11622         if (IS_MF_SI(sc)) {
11623             line_speed = (line_speed * maxCfg) / 100;
11624         } else { /* SD mode */
11625             uint16_t vn_max_rate = maxCfg * 100;
11626 
11627             if (vn_max_rate < line_speed) {
11628                 line_speed = vn_max_rate;
11629             }
11630         }
11631     }
11632 
11633     return (line_speed);
11634 }
11635 
11636 static void
11637 bxe_fill_report_data(struct bxe_softc            *sc,
11638                      struct bxe_link_report_data *data)
11639 {
11640     uint16_t line_speed = bxe_get_mf_speed(sc);
11641 
11642     memset(data, 0, sizeof(*data));
11643 
11644     /* fill the report data with the effective line speed */
11645     data->line_speed = line_speed;
11646 
11647     /* Link is down */
11648     if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) {
11649         bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags);
11650     }
11651 
11652     /* Full DUPLEX */
11653     if (sc->link_vars.duplex == DUPLEX_FULL) {
11654         bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags);
11655     }
11656 
11657     /* Rx Flow Control is ON */
11658     if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) {
11659         bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
11660     }
11661 
11662     /* Tx Flow Control is ON */
11663     if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
11664         bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
11665     }
11666 }
11667 
11668 /* report link status to OS, should be called under phy_lock */
11669 static void
11670 bxe_link_report_locked(struct bxe_softc *sc)
11671 {
11672     struct bxe_link_report_data cur_data;
11673 
11674     /* reread mf_cfg */
11675     if (IS_PF(sc) && !CHIP_IS_E1(sc)) {
11676         bxe_read_mf_cfg(sc);
11677     }
11678 
11679     /* Read the current link report info */
11680     bxe_fill_report_data(sc, &cur_data);
11681 
11682     /* Don't report link down or exactly the same link status twice */
11683     if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) ||
11684         (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
11685                       &sc->last_reported_link.link_report_flags) &&
11686          bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
11687                       &cur_data.link_report_flags))) {
11688         return;
11689     }
11690 
11691     sc->link_cnt++;
11692 
11693     /* report new link params and remember the state for the next time */
11694     memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data));
11695 
11696     if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
11697                      &cur_data.link_report_flags)) {
11698         if_link_state_change(sc->ifp, LINK_STATE_DOWN);
11699         BLOGI(sc, "NIC Link is Down\n");
11700     } else {
11701         const char *duplex;
11702         const char *flow;
11703 
11704         if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX,
11705                                    &cur_data.link_report_flags)) {
11706             duplex = "full";
11707         } else {
11708             duplex = "half";
11709         }
11710 
11711         /*
11712          * Handle the FC at the end so that only these flags would be
11713          * possibly set. This way we may easily check if there is no FC
11714          * enabled.
11715          */
11716         if (cur_data.link_report_flags) {
11717             if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
11718                              &cur_data.link_report_flags) &&
11719                 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
11720                              &cur_data.link_report_flags)) {
11721                 flow = "ON - receive & transmit";
11722             } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
11723                                     &cur_data.link_report_flags) &&
11724                        !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
11725                                      &cur_data.link_report_flags)) {
11726                 flow = "ON - receive";
11727             } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
11728                                      &cur_data.link_report_flags) &&
11729                        bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
11730                                     &cur_data.link_report_flags)) {
11731                 flow = "ON - transmit";
11732             } else {
11733                 flow = "none"; /* possible? */
11734             }
11735         } else {
11736             flow = "none";
11737         }
11738 
11739         if_link_state_change(sc->ifp, LINK_STATE_UP);
11740         BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
11741               cur_data.line_speed, duplex, flow);
11742     }
11743 }
11744 
11745 static void
11746 bxe_link_report(struct bxe_softc *sc)
11747 {
11748     bxe_acquire_phy_lock(sc);
11749     bxe_link_report_locked(sc);
11750     bxe_release_phy_lock(sc);
11751 }
11752 
11753 static void
11754 bxe_link_status_update(struct bxe_softc *sc)
11755 {
11756     if (sc->state != BXE_STATE_OPEN) {
11757         return;
11758     }
11759 
11760     if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) {
11761         elink_link_status_update(&sc->link_params, &sc->link_vars);
11762     } else {
11763         sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half |
11764                                   ELINK_SUPPORTED_10baseT_Full |
11765                                   ELINK_SUPPORTED_100baseT_Half |
11766                                   ELINK_SUPPORTED_100baseT_Full |
11767                                   ELINK_SUPPORTED_1000baseT_Full |
11768                                   ELINK_SUPPORTED_2500baseX_Full |
11769                                   ELINK_SUPPORTED_10000baseT_Full |
11770                                   ELINK_SUPPORTED_TP |
11771                                   ELINK_SUPPORTED_FIBRE |
11772                                   ELINK_SUPPORTED_Autoneg |
11773                                   ELINK_SUPPORTED_Pause |
11774                                   ELINK_SUPPORTED_Asym_Pause);
11775         sc->port.advertising[0] = sc->port.supported[0];
11776 
11777         sc->link_params.sc                = sc;
11778         sc->link_params.port              = SC_PORT(sc);
11779         sc->link_params.req_duplex[0]     = DUPLEX_FULL;
11780         sc->link_params.req_flow_ctrl[0]  = ELINK_FLOW_CTRL_NONE;
11781         sc->link_params.req_line_speed[0] = SPEED_10000;
11782         sc->link_params.speed_cap_mask[0] = 0x7f0000;
11783         sc->link_params.switch_cfg        = ELINK_SWITCH_CFG_10G;
11784 
11785         if (CHIP_REV_IS_FPGA(sc)) {
11786             sc->link_vars.mac_type    = ELINK_MAC_TYPE_EMAC;
11787             sc->link_vars.line_speed  = ELINK_SPEED_1000;
11788             sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
11789                                          LINK_STATUS_SPEED_AND_DUPLEX_1000TFD);
11790         } else {
11791             sc->link_vars.mac_type    = ELINK_MAC_TYPE_BMAC;
11792             sc->link_vars.line_speed  = ELINK_SPEED_10000;
11793             sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
11794                                          LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
11795         }
11796 
11797         sc->link_vars.link_up = 1;
11798 
11799         sc->link_vars.duplex    = DUPLEX_FULL;
11800         sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE;
11801 
11802         if (IS_PF(sc)) {
11803             REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0);
11804             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11805             bxe_link_report(sc);
11806         }
11807     }
11808 
11809     if (IS_PF(sc)) {
11810         if (sc->link_vars.link_up) {
11811             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11812         } else {
11813             bxe_stats_handle(sc, STATS_EVENT_STOP);
11814         }
11815         bxe_link_report(sc);
11816     } else {
11817         bxe_link_report(sc);
11818         bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11819     }
11820 }
11821 
11822 static int
11823 bxe_initial_phy_init(struct bxe_softc *sc,
11824                      int              load_mode)
11825 {
11826     int rc, cfg_idx = bxe_get_link_cfg_idx(sc);
11827     uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx];
11828     struct elink_params *lp = &sc->link_params;
11829 
11830     bxe_set_requested_fc(sc);
11831 
11832     if (CHIP_REV_IS_SLOW(sc)) {
11833         uint32_t bond = CHIP_BOND_ID(sc);
11834         uint32_t feat = 0;
11835 
11836         if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) {
11837             feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
11838         } else if (bond & 0x4) {
11839             if (CHIP_IS_E3(sc)) {
11840                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC;
11841             } else {
11842                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
11843             }
11844         } else if (bond & 0x8) {
11845             if (CHIP_IS_E3(sc)) {
11846                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC;
11847             } else {
11848                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
11849             }
11850         }
11851 
11852         /* disable EMAC for E3 and above */
11853         if (bond & 0x2) {
11854             feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
11855         }
11856 
11857         sc->link_params.feature_config_flags |= feat;
11858     }
11859 
11860     bxe_acquire_phy_lock(sc);
11861 
11862     if (load_mode == LOAD_DIAG) {
11863         lp->loopback_mode = ELINK_LOOPBACK_XGXS;
11864         /* Prefer doing PHY loopback at 10G speed, if possible */
11865         if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) {
11866             if (lp->speed_cap_mask[cfg_idx] &
11867                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
11868                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000;
11869             } else {
11870                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000;
11871             }
11872         }
11873     }
11874 
11875     if (load_mode == LOAD_LOOPBACK_EXT) {
11876         lp->loopback_mode = ELINK_LOOPBACK_EXT;
11877     }
11878 
11879     rc = elink_phy_init(&sc->link_params, &sc->link_vars);
11880 
11881     bxe_release_phy_lock(sc);
11882 
11883     bxe_calc_fc_adv(sc);
11884 
11885     if (sc->link_vars.link_up) {
11886         bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11887         bxe_link_report(sc);
11888     }
11889 
11890     if (!CHIP_REV_IS_SLOW(sc)) {
11891         bxe_periodic_start(sc);
11892     }
11893 
11894     sc->link_params.req_line_speed[cfg_idx] = req_line_speed;
11895     return (rc);
11896 }
11897 
11898 /* must be called under IF_ADDR_LOCK */
11899 
11900 static int
11901 bxe_set_mc_list(struct bxe_softc *sc)
11902 {
11903     struct ecore_mcast_ramrod_params rparam = { NULL };
11904     int rc = 0;
11905     int mc_count = 0;
11906     int mcnt, i;
11907     struct ecore_mcast_list_elem *mc_mac, *mc_mac_start;
11908     unsigned char *mta;
11909     if_t ifp = sc->ifp;
11910 
11911     mc_count = if_multiaddr_count(ifp, -1);/* XXX they don't have a limit */
11912     if (!mc_count)
11913         return (0);
11914 
11915     mta = malloc(sizeof(unsigned char) * ETHER_ADDR_LEN *
11916             mc_count, M_DEVBUF, M_NOWAIT);
11917 
11918     if(mta == NULL) {
11919         BLOGE(sc, "Failed to allocate temp mcast list\n");
11920         return (-1);
11921     }
11922     bzero(mta, (sizeof(unsigned char) * ETHER_ADDR_LEN * mc_count));
11923 
11924     mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF, (M_NOWAIT | M_ZERO));
11925     mc_mac_start = mc_mac;
11926 
11927     if (!mc_mac) {
11928         free(mta, M_DEVBUF);
11929         BLOGE(sc, "Failed to allocate temp mcast list\n");
11930         return (-1);
11931     }
11932     bzero(mc_mac, (sizeof(*mc_mac) * mc_count));
11933 
11934     /* mta and mcnt not expected to be  different */
11935     if_multiaddr_array(ifp, mta, &mcnt, mc_count);
11936 
11937 
11938     rparam.mcast_obj = &sc->mcast_obj;
11939     ECORE_LIST_INIT(&rparam.mcast_list);
11940 
11941     for(i=0; i< mcnt; i++) {
11942 
11943         mc_mac->mac = (uint8_t *)(mta + (i * ETHER_ADDR_LEN));
11944         ECORE_LIST_PUSH_TAIL(&mc_mac->link, &rparam.mcast_list);
11945 
11946         BLOGD(sc, DBG_LOAD,
11947               "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X\n",
11948               mc_mac->mac[0], mc_mac->mac[1], mc_mac->mac[2],
11949               mc_mac->mac[3], mc_mac->mac[4], mc_mac->mac[5]);
11950 
11951         mc_mac++;
11952     }
11953     rparam.mcast_list_len = mc_count;
11954 
11955     BXE_MCAST_LOCK(sc);
11956 
11957     /* first, clear all configured multicast MACs */
11958     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
11959     if (rc < 0) {
11960         BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc);
11961         BXE_MCAST_UNLOCK(sc);
11962     	free(mc_mac_start, M_DEVBUF);
11963         free(mta, M_DEVBUF);
11964         return (rc);
11965     }
11966 
11967     /* Now add the new MACs */
11968     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD);
11969     if (rc < 0) {
11970         BLOGE(sc, "Failed to set new mcast config (%d)\n", rc);
11971     }
11972 
11973     BXE_MCAST_UNLOCK(sc);
11974 
11975     free(mc_mac_start, M_DEVBUF);
11976     free(mta, M_DEVBUF);
11977 
11978     return (rc);
11979 }
11980 
11981 static int
11982 bxe_set_uc_list(struct bxe_softc *sc)
11983 {
11984     if_t ifp = sc->ifp;
11985     struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
11986     struct ifaddr *ifa;
11987     unsigned long ramrod_flags = 0;
11988     int rc;
11989 
11990 #if __FreeBSD_version < 800000
11991     IF_ADDR_LOCK(ifp);
11992 #else
11993     if_addr_rlock(ifp);
11994 #endif
11995 
11996     /* first schedule a cleanup up of old configuration */
11997     rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE);
11998     if (rc < 0) {
11999         BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc);
12000 #if __FreeBSD_version < 800000
12001         IF_ADDR_UNLOCK(ifp);
12002 #else
12003         if_addr_runlock(ifp);
12004 #endif
12005         return (rc);
12006     }
12007 
12008     ifa = if_getifaddr(ifp); /* XXX Is this structure */
12009     while (ifa) {
12010         if (ifa->ifa_addr->sa_family != AF_LINK) {
12011             ifa = TAILQ_NEXT(ifa, ifa_link);
12012             continue;
12013         }
12014 
12015         rc = bxe_set_mac_one(sc, (uint8_t *)LLADDR((struct sockaddr_dl *)ifa->ifa_addr),
12016                              mac_obj, TRUE, ECORE_UC_LIST_MAC, &ramrod_flags);
12017         if (rc == -EEXIST) {
12018             BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12019             /* do not treat adding same MAC as an error */
12020             rc = 0;
12021         } else if (rc < 0) {
12022             BLOGE(sc, "Failed to schedule ADD operations (%d)\n", rc);
12023 #if __FreeBSD_version < 800000
12024             IF_ADDR_UNLOCK(ifp);
12025 #else
12026             if_addr_runlock(ifp);
12027 #endif
12028             return (rc);
12029         }
12030 
12031         ifa = TAILQ_NEXT(ifa, ifa_link);
12032     }
12033 
12034 #if __FreeBSD_version < 800000
12035     IF_ADDR_UNLOCK(ifp);
12036 #else
12037     if_addr_runlock(ifp);
12038 #endif
12039 
12040     /* Execute the pending commands */
12041     bit_set(&ramrod_flags, RAMROD_CONT);
12042     return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */,
12043                             ECORE_UC_LIST_MAC, &ramrod_flags));
12044 }
12045 
12046 static void
12047 bxe_set_rx_mode(struct bxe_softc *sc)
12048 {
12049     if_t ifp = sc->ifp;
12050     uint32_t rx_mode = BXE_RX_MODE_NORMAL;
12051 
12052     if (sc->state != BXE_STATE_OPEN) {
12053         BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state);
12054         return;
12055     }
12056 
12057     BLOGD(sc, DBG_SP, "if_flags(ifp)=0x%x\n", if_getflags(sc->ifp));
12058 
12059     if (if_getflags(ifp) & IFF_PROMISC) {
12060         rx_mode = BXE_RX_MODE_PROMISC;
12061     } else if ((if_getflags(ifp) & IFF_ALLMULTI) ||
12062                ((if_getamcount(ifp) > BXE_MAX_MULTICAST) &&
12063                 CHIP_IS_E1(sc))) {
12064         rx_mode = BXE_RX_MODE_ALLMULTI;
12065     } else {
12066         if (IS_PF(sc)) {
12067             /* some multicasts */
12068             if (bxe_set_mc_list(sc) < 0) {
12069                 rx_mode = BXE_RX_MODE_ALLMULTI;
12070             }
12071             if (bxe_set_uc_list(sc) < 0) {
12072                 rx_mode = BXE_RX_MODE_PROMISC;
12073             }
12074         }
12075     }
12076 
12077     sc->rx_mode = rx_mode;
12078 
12079     /* schedule the rx_mode command */
12080     if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
12081         BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n");
12082         bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
12083         return;
12084     }
12085 
12086     if (IS_PF(sc)) {
12087         bxe_set_storm_rx_mode(sc);
12088     }
12089 }
12090 
12091 
12092 /* update flags in shmem */
12093 static void
12094 bxe_update_drv_flags(struct bxe_softc *sc,
12095                      uint32_t         flags,
12096                      uint32_t         set)
12097 {
12098     uint32_t drv_flags;
12099 
12100     if (SHMEM2_HAS(sc, drv_flags)) {
12101         bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12102         drv_flags = SHMEM2_RD(sc, drv_flags);
12103 
12104         if (set) {
12105             SET_FLAGS(drv_flags, flags);
12106         } else {
12107             RESET_FLAGS(drv_flags, flags);
12108         }
12109 
12110         SHMEM2_WR(sc, drv_flags, drv_flags);
12111         BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags);
12112 
12113         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12114     }
12115 }
12116 
12117 /* periodic timer callout routine, only runs when the interface is up */
12118 
12119 static void
12120 bxe_periodic_callout_func(void *xsc)
12121 {
12122     struct bxe_softc *sc = (struct bxe_softc *)xsc;
12123     struct bxe_fastpath *fp;
12124     uint16_t tx_bd_avail;
12125     int i;
12126 
12127     if (!BXE_CORE_TRYLOCK(sc)) {
12128         /* just bail and try again next time */
12129 
12130         if ((sc->state == BXE_STATE_OPEN) &&
12131             (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12132             /* schedule the next periodic callout */
12133             callout_reset(&sc->periodic_callout, hz,
12134                           bxe_periodic_callout_func, sc);
12135         }
12136 
12137         return;
12138     }
12139 
12140     if ((sc->state != BXE_STATE_OPEN) ||
12141         (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) {
12142         BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state);
12143         BXE_CORE_UNLOCK(sc);
12144         return;
12145     }
12146 
12147 #if __FreeBSD_version >= 800000
12148 
12149     FOR_EACH_QUEUE(sc, i) {
12150         fp = &sc->fp[i];
12151 
12152         if (BXE_FP_TX_TRYLOCK(fp)) {
12153             if_t ifp = sc->ifp;
12154             /*
12155              * If interface was stopped due to unavailable
12156              * bds, try to process some tx completions
12157              */
12158             (void) bxe_txeof(sc, fp);
12159 
12160             tx_bd_avail = bxe_tx_avail(sc, fp);
12161             if (tx_bd_avail >= BXE_TX_CLEANUP_THRESHOLD) {
12162                 bxe_tx_mq_start_locked(sc, ifp, fp, NULL);
12163             }
12164             BXE_FP_TX_UNLOCK(fp);
12165         }
12166     }
12167 
12168 #else
12169 
12170     fp = &sc->fp[0];
12171     if (BXE_FP_TX_TRYLOCK(fp)) {
12172         struct ifnet *ifp = sc->ifnet;
12173         /*
12174          * If interface was stopped due to unavailable
12175          * bds, try to process some tx completions
12176          */
12177         (void) bxe_txeof(sc, fp);
12178 
12179         tx_bd_avail = bxe_tx_avail(sc, fp);
12180         if (tx_bd_avail >= BXE_TX_CLEANUP_THRESHOLD) {
12181             bxe_tx_start_locked(sc, ifp, fp);
12182         }
12183 
12184         BXE_FP_TX_UNLOCK(fp);
12185     }
12186 
12187 #endif /* #if __FreeBSD_version >= 800000 */
12188 
12189     /* Check for TX timeouts on any fastpath. */
12190     FOR_EACH_QUEUE(sc, i) {
12191         if (bxe_watchdog(sc, &sc->fp[i]) != 0) {
12192             /* Ruh-Roh, chip was reset! */
12193             break;
12194         }
12195     }
12196 
12197     if (!CHIP_REV_IS_SLOW(sc)) {
12198         /*
12199          * This barrier is needed to ensure the ordering between the writing
12200          * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and
12201          * the reading here.
12202          */
12203         mb();
12204         if (sc->port.pmf) {
12205 	    bxe_acquire_phy_lock(sc);
12206             elink_period_func(&sc->link_params, &sc->link_vars);
12207 	    bxe_release_phy_lock(sc);
12208         }
12209     }
12210 
12211     if (IS_PF(sc) && !(sc->flags & BXE_NO_PULSE)) {
12212         int mb_idx = SC_FW_MB_IDX(sc);
12213         uint32_t drv_pulse;
12214         uint32_t mcp_pulse;
12215 
12216         ++sc->fw_drv_pulse_wr_seq;
12217         sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
12218 
12219         drv_pulse = sc->fw_drv_pulse_wr_seq;
12220         bxe_drv_pulse(sc);
12221 
12222         mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) &
12223                      MCP_PULSE_SEQ_MASK);
12224 
12225         /*
12226          * The delta between driver pulse and mcp response should
12227          * be 1 (before mcp response) or 0 (after mcp response).
12228          */
12229         if ((drv_pulse != mcp_pulse) &&
12230             (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
12231             /* someone lost a heartbeat... */
12232             BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
12233                   drv_pulse, mcp_pulse);
12234         }
12235     }
12236 
12237     /* state is BXE_STATE_OPEN */
12238     bxe_stats_handle(sc, STATS_EVENT_UPDATE);
12239 
12240     BXE_CORE_UNLOCK(sc);
12241 
12242     if ((sc->state == BXE_STATE_OPEN) &&
12243         (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12244         /* schedule the next periodic callout */
12245         callout_reset(&sc->periodic_callout, hz,
12246                       bxe_periodic_callout_func, sc);
12247     }
12248 }
12249 
12250 static void
12251 bxe_periodic_start(struct bxe_softc *sc)
12252 {
12253     atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO);
12254     callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc);
12255 }
12256 
12257 static void
12258 bxe_periodic_stop(struct bxe_softc *sc)
12259 {
12260     atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP);
12261     callout_drain(&sc->periodic_callout);
12262 }
12263 
12264 /* start the controller */
12265 static __noinline int
12266 bxe_nic_load(struct bxe_softc *sc,
12267              int              load_mode)
12268 {
12269     uint32_t val;
12270     int load_code = 0;
12271     int i, rc = 0;
12272 
12273     BXE_CORE_LOCK_ASSERT(sc);
12274 
12275     BLOGD(sc, DBG_LOAD, "Starting NIC load...\n");
12276 
12277     sc->state = BXE_STATE_OPENING_WAITING_LOAD;
12278 
12279     if (IS_PF(sc)) {
12280         /* must be called before memory allocation and HW init */
12281         bxe_ilt_set_info(sc);
12282     }
12283 
12284     sc->last_reported_link_state = LINK_STATE_UNKNOWN;
12285 
12286     bxe_set_fp_rx_buf_size(sc);
12287 
12288     if (bxe_alloc_fp_buffers(sc) != 0) {
12289         BLOGE(sc, "Failed to allocate fastpath memory\n");
12290         sc->state = BXE_STATE_CLOSED;
12291         rc = ENOMEM;
12292         goto bxe_nic_load_error0;
12293     }
12294 
12295     if (bxe_alloc_mem(sc) != 0) {
12296         sc->state = BXE_STATE_CLOSED;
12297         rc = ENOMEM;
12298         goto bxe_nic_load_error0;
12299     }
12300 
12301     if (bxe_alloc_fw_stats_mem(sc) != 0) {
12302         sc->state = BXE_STATE_CLOSED;
12303         rc = ENOMEM;
12304         goto bxe_nic_load_error0;
12305     }
12306 
12307     if (IS_PF(sc)) {
12308         /* set pf load just before approaching the MCP */
12309         bxe_set_pf_load(sc);
12310 
12311         /* if MCP exists send load request and analyze response */
12312         if (!BXE_NOMCP(sc)) {
12313             /* attempt to load pf */
12314             if (bxe_nic_load_request(sc, &load_code) != 0) {
12315                 sc->state = BXE_STATE_CLOSED;
12316                 rc = ENXIO;
12317                 goto bxe_nic_load_error1;
12318             }
12319 
12320             /* what did the MCP say? */
12321             if (bxe_nic_load_analyze_req(sc, load_code) != 0) {
12322                 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12323                 sc->state = BXE_STATE_CLOSED;
12324                 rc = ENXIO;
12325                 goto bxe_nic_load_error2;
12326             }
12327         } else {
12328             BLOGI(sc, "Device has no MCP!\n");
12329             load_code = bxe_nic_load_no_mcp(sc);
12330         }
12331 
12332         /* mark PMF if applicable */
12333         bxe_nic_load_pmf(sc, load_code);
12334 
12335         /* Init Function state controlling object */
12336         bxe_init_func_obj(sc);
12337 
12338         /* Initialize HW */
12339         if (bxe_init_hw(sc, load_code) != 0) {
12340             BLOGE(sc, "HW init failed\n");
12341             bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12342             sc->state = BXE_STATE_CLOSED;
12343             rc = ENXIO;
12344             goto bxe_nic_load_error2;
12345         }
12346     }
12347 
12348     /* set ALWAYS_ALIVE bit in shmem */
12349     sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
12350     bxe_drv_pulse(sc);
12351     sc->flags |= BXE_NO_PULSE;
12352 
12353     /* attach interrupts */
12354     if (bxe_interrupt_attach(sc) != 0) {
12355         sc->state = BXE_STATE_CLOSED;
12356         rc = ENXIO;
12357         goto bxe_nic_load_error2;
12358     }
12359 
12360     bxe_nic_init(sc, load_code);
12361 
12362     /* Init per-function objects */
12363     if (IS_PF(sc)) {
12364         bxe_init_objs(sc);
12365         // XXX bxe_iov_nic_init(sc);
12366 
12367         /* set AFEX default VLAN tag to an invalid value */
12368         sc->devinfo.mf_info.afex_def_vlan_tag = -1;
12369         // XXX bxe_nic_load_afex_dcc(sc, load_code);
12370 
12371         sc->state = BXE_STATE_OPENING_WAITING_PORT;
12372         rc = bxe_func_start(sc);
12373         if (rc) {
12374             BLOGE(sc, "Function start failed! rc = %d\n", rc);
12375             bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12376             sc->state = BXE_STATE_ERROR;
12377             goto bxe_nic_load_error3;
12378         }
12379 
12380         /* send LOAD_DONE command to MCP */
12381         if (!BXE_NOMCP(sc)) {
12382             load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12383             if (!load_code) {
12384                 BLOGE(sc, "MCP response failure, aborting\n");
12385                 sc->state = BXE_STATE_ERROR;
12386                 rc = ENXIO;
12387                 goto bxe_nic_load_error3;
12388             }
12389         }
12390 
12391         rc = bxe_setup_leading(sc);
12392         if (rc) {
12393             BLOGE(sc, "Setup leading failed! rc = %d\n", rc);
12394             sc->state = BXE_STATE_ERROR;
12395             goto bxe_nic_load_error3;
12396         }
12397 
12398         FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) {
12399             rc = bxe_setup_queue(sc, &sc->fp[i], FALSE);
12400             if (rc) {
12401                 BLOGE(sc, "Queue(%d) setup failed rc = %d\n", i, rc);
12402                 sc->state = BXE_STATE_ERROR;
12403                 goto bxe_nic_load_error3;
12404             }
12405         }
12406 
12407         rc = bxe_init_rss_pf(sc);
12408         if (rc) {
12409             BLOGE(sc, "PF RSS init failed\n");
12410             sc->state = BXE_STATE_ERROR;
12411             goto bxe_nic_load_error3;
12412         }
12413     }
12414     /* XXX VF */
12415 
12416     /* now when Clients are configured we are ready to work */
12417     sc->state = BXE_STATE_OPEN;
12418 
12419     /* Configure a ucast MAC */
12420     if (IS_PF(sc)) {
12421         rc = bxe_set_eth_mac(sc, TRUE);
12422     }
12423     if (rc) {
12424         BLOGE(sc, "Setting Ethernet MAC failed rc = %d\n", rc);
12425         sc->state = BXE_STATE_ERROR;
12426         goto bxe_nic_load_error3;
12427     }
12428 
12429     if (sc->port.pmf) {
12430         rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN);
12431         if (rc) {
12432             sc->state = BXE_STATE_ERROR;
12433             goto bxe_nic_load_error3;
12434         }
12435     }
12436 
12437     sc->link_params.feature_config_flags &=
12438         ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN;
12439 
12440     /* start fast path */
12441 
12442     /* Initialize Rx filter */
12443     bxe_set_rx_mode(sc);
12444 
12445     /* start the Tx */
12446     switch (/* XXX load_mode */LOAD_OPEN) {
12447     case LOAD_NORMAL:
12448     case LOAD_OPEN:
12449         break;
12450 
12451     case LOAD_DIAG:
12452     case LOAD_LOOPBACK_EXT:
12453         sc->state = BXE_STATE_DIAG;
12454         break;
12455 
12456     default:
12457         break;
12458     }
12459 
12460     if (sc->port.pmf) {
12461         bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0);
12462     } else {
12463         bxe_link_status_update(sc);
12464     }
12465 
12466     /* start the periodic timer callout */
12467     bxe_periodic_start(sc);
12468 
12469     if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
12470         /* mark driver is loaded in shmem2 */
12471         val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
12472         SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
12473                   (val |
12474                    DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
12475                    DRV_FLAGS_CAPABILITIES_LOADED_L2));
12476     }
12477 
12478     /* wait for all pending SP commands to complete */
12479     if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) {
12480         BLOGE(sc, "Timeout waiting for all SPs to complete!\n");
12481         bxe_periodic_stop(sc);
12482         bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE);
12483         return (ENXIO);
12484     }
12485 
12486     /* Tell the stack the driver is running! */
12487     if_setdrvflags(sc->ifp, IFF_DRV_RUNNING);
12488 
12489     BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n");
12490 
12491     return (0);
12492 
12493 bxe_nic_load_error3:
12494 
12495     if (IS_PF(sc)) {
12496         bxe_int_disable_sync(sc, 1);
12497 
12498         /* clean out queued objects */
12499         bxe_squeeze_objects(sc);
12500     }
12501 
12502     bxe_interrupt_detach(sc);
12503 
12504 bxe_nic_load_error2:
12505 
12506     if (IS_PF(sc) && !BXE_NOMCP(sc)) {
12507         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
12508         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
12509     }
12510 
12511     sc->port.pmf = 0;
12512 
12513 bxe_nic_load_error1:
12514 
12515     /* clear pf_load status, as it was already set */
12516     if (IS_PF(sc)) {
12517         bxe_clear_pf_load(sc);
12518     }
12519 
12520 bxe_nic_load_error0:
12521 
12522     bxe_free_fw_stats_mem(sc);
12523     bxe_free_fp_buffers(sc);
12524     bxe_free_mem(sc);
12525 
12526     return (rc);
12527 }
12528 
12529 static int
12530 bxe_init_locked(struct bxe_softc *sc)
12531 {
12532     int other_engine = SC_PATH(sc) ? 0 : 1;
12533     uint8_t other_load_status, load_status;
12534     uint8_t global = FALSE;
12535     int rc;
12536 
12537     BXE_CORE_LOCK_ASSERT(sc);
12538 
12539     /* check if the driver is already running */
12540     if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
12541         BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n");
12542         return (0);
12543     }
12544 
12545     bxe_set_power_state(sc, PCI_PM_D0);
12546 
12547     /*
12548      * If parity occurred during the unload, then attentions and/or
12549      * RECOVERY_IN_PROGRES may still be set. If so we want the first function
12550      * loaded on the current engine to complete the recovery. Parity recovery
12551      * is only relevant for PF driver.
12552      */
12553     if (IS_PF(sc)) {
12554         other_load_status = bxe_get_load_status(sc, other_engine);
12555         load_status = bxe_get_load_status(sc, SC_PATH(sc));
12556 
12557         if (!bxe_reset_is_done(sc, SC_PATH(sc)) ||
12558             bxe_chk_parity_attn(sc, &global, TRUE)) {
12559             do {
12560                 /*
12561                  * If there are attentions and they are in global blocks, set
12562                  * the GLOBAL_RESET bit regardless whether it will be this
12563                  * function that will complete the recovery or not.
12564                  */
12565                 if (global) {
12566                     bxe_set_reset_global(sc);
12567                 }
12568 
12569                 /*
12570                  * Only the first function on the current engine should try
12571                  * to recover in open. In case of attentions in global blocks
12572                  * only the first in the chip should try to recover.
12573                  */
12574                 if ((!load_status && (!global || !other_load_status)) &&
12575                     bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) {
12576                     BLOGI(sc, "Recovered during init\n");
12577                     break;
12578                 }
12579 
12580                 /* recovery has failed... */
12581                 bxe_set_power_state(sc, PCI_PM_D3hot);
12582                 sc->recovery_state = BXE_RECOVERY_FAILED;
12583 
12584                 BLOGE(sc, "Recovery flow hasn't properly "
12585                           "completed yet, try again later. "
12586                           "If you still see this message after a "
12587                           "few retries then power cycle is required.\n");
12588 
12589                 rc = ENXIO;
12590                 goto bxe_init_locked_done;
12591             } while (0);
12592         }
12593     }
12594 
12595     sc->recovery_state = BXE_RECOVERY_DONE;
12596 
12597     rc = bxe_nic_load(sc, LOAD_OPEN);
12598 
12599 bxe_init_locked_done:
12600 
12601     if (rc) {
12602         /* Tell the stack the driver is NOT running! */
12603         BLOGE(sc, "Initialization failed, "
12604                   "stack notified driver is NOT running!\n");
12605 	if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING);
12606     }
12607 
12608     return (rc);
12609 }
12610 
12611 static int
12612 bxe_stop_locked(struct bxe_softc *sc)
12613 {
12614     BXE_CORE_LOCK_ASSERT(sc);
12615     return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE));
12616 }
12617 
12618 /*
12619  * Handles controller initialization when called from an unlocked routine.
12620  * ifconfig calls this function.
12621  *
12622  * Returns:
12623  *   void
12624  */
12625 static void
12626 bxe_init(void *xsc)
12627 {
12628     struct bxe_softc *sc = (struct bxe_softc *)xsc;
12629 
12630     BXE_CORE_LOCK(sc);
12631     bxe_init_locked(sc);
12632     BXE_CORE_UNLOCK(sc);
12633 }
12634 
12635 static int
12636 bxe_init_ifnet(struct bxe_softc *sc)
12637 {
12638     if_t ifp;
12639     int capabilities;
12640 
12641     /* ifconfig entrypoint for media type/status reporting */
12642     ifmedia_init(&sc->ifmedia, IFM_IMASK,
12643                  bxe_ifmedia_update,
12644                  bxe_ifmedia_status);
12645 
12646     /* set the default interface values */
12647     ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL);
12648     ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL);
12649     ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO));
12650 
12651     sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */
12652 
12653     /* allocate the ifnet structure */
12654     if ((ifp = if_gethandle(IFT_ETHER)) == NULL) {
12655         BLOGE(sc, "Interface allocation failed!\n");
12656         return (ENXIO);
12657     }
12658 
12659     if_setsoftc(ifp, sc);
12660     if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
12661     if_setflags(ifp, (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST));
12662     if_setioctlfn(ifp, bxe_ioctl);
12663     if_setstartfn(ifp, bxe_tx_start);
12664     if_setgetcounterfn(ifp, bxe_get_counter);
12665 #if __FreeBSD_version >= 800000
12666     if_settransmitfn(ifp, bxe_tx_mq_start);
12667     if_setqflushfn(ifp, bxe_mq_flush);
12668 #endif
12669 #ifdef FreeBSD8_0
12670     if_settimer(ifp, 0);
12671 #endif
12672     if_setinitfn(ifp, bxe_init);
12673     if_setmtu(ifp, sc->mtu);
12674     if_sethwassist(ifp, (CSUM_IP      |
12675                         CSUM_TCP      |
12676                         CSUM_UDP      |
12677                         CSUM_TSO      |
12678                         CSUM_TCP_IPV6 |
12679                         CSUM_UDP_IPV6));
12680 
12681     capabilities =
12682 #if __FreeBSD_version < 700000
12683         (IFCAP_VLAN_MTU       |
12684          IFCAP_VLAN_HWTAGGING |
12685          IFCAP_HWCSUM         |
12686          IFCAP_JUMBO_MTU      |
12687          IFCAP_LRO);
12688 #else
12689         (IFCAP_VLAN_MTU       |
12690          IFCAP_VLAN_HWTAGGING |
12691          IFCAP_VLAN_HWTSO     |
12692          IFCAP_VLAN_HWFILTER  |
12693          IFCAP_VLAN_HWCSUM    |
12694          IFCAP_HWCSUM         |
12695          IFCAP_JUMBO_MTU      |
12696          IFCAP_LRO            |
12697          IFCAP_TSO4           |
12698          IFCAP_TSO6           |
12699          IFCAP_WOL_MAGIC);
12700 #endif
12701     if_setcapabilitiesbit(ifp, capabilities, 0); /* XXX */
12702     if_setbaudrate(ifp, IF_Gbps(10));
12703 /* XXX */
12704     if_setsendqlen(ifp, sc->tx_ring_size);
12705     if_setsendqready(ifp);
12706 /* XXX */
12707 
12708     sc->ifp = ifp;
12709 
12710     /* attach to the Ethernet interface list */
12711     ether_ifattach(ifp, sc->link_params.mac_addr);
12712 
12713     return (0);
12714 }
12715 
12716 static void
12717 bxe_deallocate_bars(struct bxe_softc *sc)
12718 {
12719     int i;
12720 
12721     for (i = 0; i < MAX_BARS; i++) {
12722         if (sc->bar[i].resource != NULL) {
12723             bus_release_resource(sc->dev,
12724                                  SYS_RES_MEMORY,
12725                                  sc->bar[i].rid,
12726                                  sc->bar[i].resource);
12727             BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n",
12728                   i, PCIR_BAR(i));
12729         }
12730     }
12731 }
12732 
12733 static int
12734 bxe_allocate_bars(struct bxe_softc *sc)
12735 {
12736     u_int flags;
12737     int i;
12738 
12739     memset(sc->bar, 0, sizeof(sc->bar));
12740 
12741     for (i = 0; i < MAX_BARS; i++) {
12742 
12743         /* memory resources reside at BARs 0, 2, 4 */
12744         /* Run `pciconf -lb` to see mappings */
12745         if ((i != 0) && (i != 2) && (i != 4)) {
12746             continue;
12747         }
12748 
12749         sc->bar[i].rid = PCIR_BAR(i);
12750 
12751         flags = RF_ACTIVE;
12752         if (i == 0) {
12753             flags |= RF_SHAREABLE;
12754         }
12755 
12756         if ((sc->bar[i].resource =
12757              bus_alloc_resource_any(sc->dev,
12758                                     SYS_RES_MEMORY,
12759                                     &sc->bar[i].rid,
12760                                     flags)) == NULL) {
12761             return (0);
12762         }
12763 
12764         sc->bar[i].tag    = rman_get_bustag(sc->bar[i].resource);
12765         sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource);
12766         sc->bar[i].kva    = (vm_offset_t)rman_get_virtual(sc->bar[i].resource);
12767 
12768         BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %p-%p (%jd) -> %p\n",
12769               i, PCIR_BAR(i),
12770               (void *)rman_get_start(sc->bar[i].resource),
12771               (void *)rman_get_end(sc->bar[i].resource),
12772               rman_get_size(sc->bar[i].resource),
12773               (void *)sc->bar[i].kva);
12774     }
12775 
12776     return (0);
12777 }
12778 
12779 static void
12780 bxe_get_function_num(struct bxe_softc *sc)
12781 {
12782     uint32_t val = 0;
12783 
12784     /*
12785      * Read the ME register to get the function number. The ME register
12786      * holds the relative-function number and absolute-function number. The
12787      * absolute-function number appears only in E2 and above. Before that
12788      * these bits always contained zero, therefore we cannot blindly use them.
12789      */
12790 
12791     val = REG_RD(sc, BAR_ME_REGISTER);
12792 
12793     sc->pfunc_rel =
12794         (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT);
12795     sc->path_id =
12796         (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1;
12797 
12798     if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
12799         sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id);
12800     } else {
12801         sc->pfunc_abs = (sc->pfunc_rel | sc->path_id);
12802     }
12803 
12804     BLOGD(sc, DBG_LOAD,
12805           "Relative function %d, Absolute function %d, Path %d\n",
12806           sc->pfunc_rel, sc->pfunc_abs, sc->path_id);
12807 }
12808 
12809 static uint32_t
12810 bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc)
12811 {
12812     uint32_t shmem2_size;
12813     uint32_t offset;
12814     uint32_t mf_cfg_offset_value;
12815 
12816     /* Non 57712 */
12817     offset = (SHMEM_RD(sc, func_mb) +
12818               (MAX_FUNC_NUM * sizeof(struct drv_func_mb)));
12819 
12820     /* 57712 plus */
12821     if (sc->devinfo.shmem2_base != 0) {
12822         shmem2_size = SHMEM2_RD(sc, size);
12823         if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) {
12824             mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr);
12825             if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) {
12826                 offset = mf_cfg_offset_value;
12827             }
12828         }
12829     }
12830 
12831     return (offset);
12832 }
12833 
12834 static uint32_t
12835 bxe_pcie_capability_read(struct bxe_softc *sc,
12836                          int    reg,
12837                          int    width)
12838 {
12839     int pcie_reg;
12840 
12841     /* ensure PCIe capability is enabled */
12842     if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) {
12843         if (pcie_reg != 0) {
12844             BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg);
12845             return (pci_read_config(sc->dev, (pcie_reg + reg), width));
12846         }
12847     }
12848 
12849     BLOGE(sc, "PCIe capability NOT FOUND!!!\n");
12850 
12851     return (0);
12852 }
12853 
12854 static uint8_t
12855 bxe_is_pcie_pending(struct bxe_softc *sc)
12856 {
12857     return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) &
12858             PCIM_EXP_STA_TRANSACTION_PND);
12859 }
12860 
12861 /*
12862  * Walk the PCI capabiites list for the device to find what features are
12863  * supported. These capabilites may be enabled/disabled by firmware so it's
12864  * best to walk the list rather than make assumptions.
12865  */
12866 static void
12867 bxe_probe_pci_caps(struct bxe_softc *sc)
12868 {
12869     uint16_t link_status;
12870     int reg;
12871 
12872     /* check if PCI Power Management is enabled */
12873     if (pci_find_cap(sc->dev, PCIY_PMG, &reg) == 0) {
12874         if (reg != 0) {
12875             BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg);
12876 
12877             sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG;
12878             sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg;
12879         }
12880     }
12881 
12882     link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2);
12883 
12884     /* handle PCIe 2.0 workarounds for 57710 */
12885     if (CHIP_IS_E1(sc)) {
12886         /* workaround for 57710 errata E4_57710_27462 */
12887         sc->devinfo.pcie_link_speed =
12888             (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1;
12889 
12890         /* workaround for 57710 errata E4_57710_27488 */
12891         sc->devinfo.pcie_link_width =
12892             ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
12893         if (sc->devinfo.pcie_link_speed > 1) {
12894             sc->devinfo.pcie_link_width =
12895                 ((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1;
12896         }
12897     } else {
12898         sc->devinfo.pcie_link_speed =
12899             (link_status & PCIM_LINK_STA_SPEED);
12900         sc->devinfo.pcie_link_width =
12901             ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
12902     }
12903 
12904     BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n",
12905           sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width);
12906 
12907     sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG;
12908     sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg;
12909 
12910     /* check if MSI capability is enabled */
12911     if (pci_find_cap(sc->dev, PCIY_MSI, &reg) == 0) {
12912         if (reg != 0) {
12913             BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg);
12914 
12915             sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG;
12916             sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg;
12917         }
12918     }
12919 
12920     /* check if MSI-X capability is enabled */
12921     if (pci_find_cap(sc->dev, PCIY_MSIX, &reg) == 0) {
12922         if (reg != 0) {
12923             BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg);
12924 
12925             sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG;
12926             sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg;
12927         }
12928     }
12929 }
12930 
12931 static int
12932 bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc)
12933 {
12934     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
12935     uint32_t val;
12936 
12937     /* get the outer vlan if we're in switch-dependent mode */
12938 
12939     val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
12940     mf_info->ext_id = (uint16_t)val;
12941 
12942     mf_info->multi_vnics_mode = 1;
12943 
12944     if (!VALID_OVLAN(mf_info->ext_id)) {
12945         BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id);
12946         return (1);
12947     }
12948 
12949     /* get the capabilities */
12950     if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
12951         FUNC_MF_CFG_PROTOCOL_ISCSI) {
12952         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI;
12953     } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
12954                FUNC_MF_CFG_PROTOCOL_FCOE) {
12955         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE;
12956     } else {
12957         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET;
12958     }
12959 
12960     mf_info->vnics_per_port =
12961         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
12962 
12963     return (0);
12964 }
12965 
12966 static uint32_t
12967 bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc)
12968 {
12969     uint32_t retval = 0;
12970     uint32_t val;
12971 
12972     val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
12973 
12974     if (val & MACP_FUNC_CFG_FLAGS_ENABLED) {
12975         if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) {
12976             retval |= MF_PROTO_SUPPORT_ETHERNET;
12977         }
12978         if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
12979             retval |= MF_PROTO_SUPPORT_ISCSI;
12980         }
12981         if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
12982             retval |= MF_PROTO_SUPPORT_FCOE;
12983         }
12984     }
12985 
12986     return (retval);
12987 }
12988 
12989 static int
12990 bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc)
12991 {
12992     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
12993     uint32_t val;
12994 
12995     /*
12996      * There is no outer vlan if we're in switch-independent mode.
12997      * If the mac is valid then assume multi-function.
12998      */
12999 
13000     val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13001 
13002     mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0);
13003 
13004     mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13005 
13006     mf_info->vnics_per_port =
13007         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13008 
13009     return (0);
13010 }
13011 
13012 static int
13013 bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc)
13014 {
13015     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13016     uint32_t e1hov_tag;
13017     uint32_t func_config;
13018     uint32_t niv_config;
13019 
13020     mf_info->multi_vnics_mode = 1;
13021 
13022     e1hov_tag   = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13023     func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13024     niv_config  = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config);
13025 
13026     mf_info->ext_id =
13027         (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >>
13028                    FUNC_MF_CFG_E1HOV_TAG_SHIFT);
13029 
13030     mf_info->default_vlan =
13031         (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >>
13032                    FUNC_MF_CFG_AFEX_VLAN_SHIFT);
13033 
13034     mf_info->niv_allowed_priorities =
13035         (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
13036                   FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT);
13037 
13038     mf_info->niv_default_cos =
13039         (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
13040                   FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT);
13041 
13042     mf_info->afex_vlan_mode =
13043         ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
13044          FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT);
13045 
13046     mf_info->niv_mba_enabled =
13047         ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >>
13048          FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT);
13049 
13050     mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13051 
13052     mf_info->vnics_per_port =
13053         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13054 
13055     return (0);
13056 }
13057 
13058 static int
13059 bxe_check_valid_mf_cfg(struct bxe_softc *sc)
13060 {
13061     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13062     uint32_t mf_cfg1;
13063     uint32_t mf_cfg2;
13064     uint32_t ovlan1;
13065     uint32_t ovlan2;
13066     uint8_t i, j;
13067 
13068     BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n",
13069           SC_PORT(sc));
13070     BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n",
13071           mf_info->mf_config[SC_VN(sc)]);
13072     BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n",
13073           mf_info->multi_vnics_mode);
13074     BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n",
13075           mf_info->vnics_per_port);
13076     BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n",
13077           mf_info->ext_id);
13078     BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n",
13079           mf_info->min_bw[0], mf_info->min_bw[1],
13080           mf_info->min_bw[2], mf_info->min_bw[3]);
13081     BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n",
13082           mf_info->max_bw[0], mf_info->max_bw[1],
13083           mf_info->max_bw[2], mf_info->max_bw[3]);
13084     BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n",
13085           sc->mac_addr_str);
13086 
13087     /* various MF mode sanity checks... */
13088 
13089     if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) {
13090         BLOGE(sc, "Enumerated function %d is marked as hidden\n",
13091               SC_PORT(sc));
13092         return (1);
13093     }
13094 
13095     if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) {
13096         BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n",
13097               mf_info->vnics_per_port, mf_info->multi_vnics_mode);
13098         return (1);
13099     }
13100 
13101     if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13102         /* vnic id > 0 must have valid ovlan in switch-dependent mode */
13103         if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) {
13104             BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n",
13105                   SC_VN(sc), OVLAN(sc));
13106             return (1);
13107         }
13108 
13109         if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) {
13110             BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n",
13111                   mf_info->multi_vnics_mode, OVLAN(sc));
13112             return (1);
13113         }
13114 
13115         /*
13116          * Verify all functions are either MF or SF mode. If MF, make sure
13117          * sure that all non-hidden functions have a valid ovlan. If SF,
13118          * make sure that all non-hidden functions have an invalid ovlan.
13119          */
13120         FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13121             mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13122             ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13123             if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13124                 (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) ||
13125                  ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) {
13126                 BLOGE(sc, "mf_mode=SD function %d MF config "
13127                           "mismatch, multi_vnics_mode=%d ovlan=%d\n",
13128                       i, mf_info->multi_vnics_mode, ovlan1);
13129                 return (1);
13130             }
13131         }
13132 
13133         /* Verify all funcs on the same port each have a different ovlan. */
13134         FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13135             mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13136             ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13137             /* iterate from the next function on the port to the max func */
13138             for (j = i + 2; j < MAX_FUNC_NUM; j += 2) {
13139                 mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config);
13140                 ovlan2  = MFCFG_RD(sc, func_mf_config[j].e1hov_tag);
13141                 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13142                     VALID_OVLAN(ovlan1) &&
13143                     !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) &&
13144                     VALID_OVLAN(ovlan2) &&
13145                     (ovlan1 == ovlan2)) {
13146                     BLOGE(sc, "mf_mode=SD functions %d and %d "
13147                               "have the same ovlan (%d)\n",
13148                           i, j, ovlan1);
13149                     return (1);
13150                 }
13151             }
13152         }
13153     } /* MULTI_FUNCTION_SD */
13154 
13155     return (0);
13156 }
13157 
13158 static int
13159 bxe_get_mf_cfg_info(struct bxe_softc *sc)
13160 {
13161     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13162     uint32_t val, mac_upper;
13163     uint8_t i, vnic;
13164 
13165     /* initialize mf_info defaults */
13166     mf_info->vnics_per_port   = 1;
13167     mf_info->multi_vnics_mode = FALSE;
13168     mf_info->path_has_ovlan   = FALSE;
13169     mf_info->mf_mode          = SINGLE_FUNCTION;
13170 
13171     if (!CHIP_IS_MF_CAP(sc)) {
13172         return (0);
13173     }
13174 
13175     if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) {
13176         BLOGE(sc, "Invalid mf_cfg_base!\n");
13177         return (1);
13178     }
13179 
13180     /* get the MF mode (switch dependent / independent / single-function) */
13181 
13182     val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13183 
13184     switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)
13185     {
13186     case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
13187 
13188         mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13189 
13190         /* check for legal upper mac bytes */
13191         if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) {
13192             mf_info->mf_mode = MULTI_FUNCTION_SI;
13193         } else {
13194             BLOGE(sc, "Invalid config for Switch Independent mode\n");
13195         }
13196 
13197         break;
13198 
13199     case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
13200     case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4:
13201 
13202         /* get outer vlan configuration */
13203         val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13204 
13205         if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) !=
13206             FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
13207             mf_info->mf_mode = MULTI_FUNCTION_SD;
13208         } else {
13209             BLOGE(sc, "Invalid config for Switch Dependent mode\n");
13210         }
13211 
13212         break;
13213 
13214     case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
13215 
13216         /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */
13217         return (0);
13218 
13219     case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
13220 
13221         /*
13222          * Mark MF mode as NIV if MCP version includes NPAR-SD support
13223          * and the MAC address is valid.
13224          */
13225         mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13226 
13227         if ((SHMEM2_HAS(sc, afex_driver_support)) &&
13228             (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) {
13229             mf_info->mf_mode = MULTI_FUNCTION_AFEX;
13230         } else {
13231             BLOGE(sc, "Invalid config for AFEX mode\n");
13232         }
13233 
13234         break;
13235 
13236     default:
13237 
13238         BLOGE(sc, "Unknown MF mode (0x%08x)\n",
13239               (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK));
13240 
13241         return (1);
13242     }
13243 
13244     /* set path mf_mode (which could be different than function mf_mode) */
13245     if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13246         mf_info->path_has_ovlan = TRUE;
13247     } else if (mf_info->mf_mode == SINGLE_FUNCTION) {
13248         /*
13249          * Decide on path multi vnics mode. If we're not in MF mode and in
13250          * 4-port mode, this is good enough to check vnic-0 of the other port
13251          * on the same path
13252          */
13253         if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13254             uint8_t other_port = !(PORT_ID(sc) & 1);
13255             uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port));
13256 
13257             val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag);
13258 
13259             mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0;
13260         }
13261     }
13262 
13263     if (mf_info->mf_mode == SINGLE_FUNCTION) {
13264         /* invalid MF config */
13265         if (SC_VN(sc) >= 1) {
13266             BLOGE(sc, "VNIC ID >= 1 in SF mode\n");
13267             return (1);
13268         }
13269 
13270         return (0);
13271     }
13272 
13273     /* get the MF configuration */
13274     mf_info->mf_config[SC_VN(sc)] =
13275         MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13276 
13277     switch(mf_info->mf_mode)
13278     {
13279     case MULTI_FUNCTION_SD:
13280 
13281         bxe_get_shmem_mf_cfg_info_sd(sc);
13282         break;
13283 
13284     case MULTI_FUNCTION_SI:
13285 
13286         bxe_get_shmem_mf_cfg_info_si(sc);
13287         break;
13288 
13289     case MULTI_FUNCTION_AFEX:
13290 
13291         bxe_get_shmem_mf_cfg_info_niv(sc);
13292         break;
13293 
13294     default:
13295 
13296         BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n",
13297               mf_info->mf_mode);
13298         return (1);
13299     }
13300 
13301     /* get the congestion management parameters */
13302 
13303     vnic = 0;
13304     FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13305         /* get min/max bw */
13306         val = MFCFG_RD(sc, func_mf_config[i].config);
13307         mf_info->min_bw[vnic] =
13308             ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT);
13309         mf_info->max_bw[vnic] =
13310             ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT);
13311         vnic++;
13312     }
13313 
13314     return (bxe_check_valid_mf_cfg(sc));
13315 }
13316 
13317 static int
13318 bxe_get_shmem_info(struct bxe_softc *sc)
13319 {
13320     int port;
13321     uint32_t mac_hi, mac_lo, val;
13322 
13323     port = SC_PORT(sc);
13324     mac_hi = mac_lo = 0;
13325 
13326     sc->link_params.sc   = sc;
13327     sc->link_params.port = port;
13328 
13329     /* get the hardware config info */
13330     sc->devinfo.hw_config =
13331         SHMEM_RD(sc, dev_info.shared_hw_config.config);
13332     sc->devinfo.hw_config2 =
13333         SHMEM_RD(sc, dev_info.shared_hw_config.config2);
13334 
13335     sc->link_params.hw_led_mode =
13336         ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >>
13337          SHARED_HW_CFG_LED_MODE_SHIFT);
13338 
13339     /* get the port feature config */
13340     sc->port.config =
13341         SHMEM_RD(sc, dev_info.port_feature_config[port].config),
13342 
13343     /* get the link params */
13344     sc->link_params.speed_cap_mask[0] =
13345         SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask);
13346     sc->link_params.speed_cap_mask[1] =
13347         SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2);
13348 
13349     /* get the lane config */
13350     sc->link_params.lane_config =
13351         SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
13352 
13353     /* get the link config */
13354     val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
13355     sc->port.link_config[ELINK_INT_PHY] = val;
13356     sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK);
13357     sc->port.link_config[ELINK_EXT_PHY1] =
13358         SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2);
13359 
13360     /* get the override preemphasis flag and enable it or turn it off */
13361     val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13362     if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) {
13363         sc->link_params.feature_config_flags |=
13364             ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13365     } else {
13366         sc->link_params.feature_config_flags &=
13367             ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13368     }
13369 
13370     /* get the initial value of the link params */
13371     sc->link_params.multi_phy_config =
13372         SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config);
13373 
13374     /* get external phy info */
13375     sc->port.ext_phy_config =
13376         SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
13377 
13378     /* get the multifunction configuration */
13379     bxe_get_mf_cfg_info(sc);
13380 
13381     /* get the mac address */
13382     if (IS_MF(sc)) {
13383         mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13384         mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower);
13385     } else {
13386         mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
13387         mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
13388     }
13389 
13390     if ((mac_lo == 0) && (mac_hi == 0)) {
13391         *sc->mac_addr_str = 0;
13392         BLOGE(sc, "No Ethernet address programmed!\n");
13393     } else {
13394         sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8);
13395         sc->link_params.mac_addr[1] = (uint8_t)(mac_hi);
13396         sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24);
13397         sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16);
13398         sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8);
13399         sc->link_params.mac_addr[5] = (uint8_t)(mac_lo);
13400         snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str),
13401                  "%02x:%02x:%02x:%02x:%02x:%02x",
13402                  sc->link_params.mac_addr[0], sc->link_params.mac_addr[1],
13403                  sc->link_params.mac_addr[2], sc->link_params.mac_addr[3],
13404                  sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]);
13405         BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str);
13406     }
13407 
13408     return (0);
13409 }
13410 
13411 static void
13412 bxe_get_tunable_params(struct bxe_softc *sc)
13413 {
13414     /* sanity checks */
13415 
13416     if ((bxe_interrupt_mode != INTR_MODE_INTX) &&
13417         (bxe_interrupt_mode != INTR_MODE_MSI)  &&
13418         (bxe_interrupt_mode != INTR_MODE_MSIX)) {
13419         BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode);
13420         bxe_interrupt_mode = INTR_MODE_MSIX;
13421     }
13422 
13423     if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) {
13424         BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count);
13425         bxe_queue_count = 0;
13426     }
13427 
13428     if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) {
13429         if (bxe_max_rx_bufs == 0) {
13430             bxe_max_rx_bufs = RX_BD_USABLE;
13431         } else {
13432             BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs);
13433             bxe_max_rx_bufs = 2048;
13434         }
13435     }
13436 
13437     if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) {
13438         BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks);
13439         bxe_hc_rx_ticks = 25;
13440     }
13441 
13442     if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) {
13443         BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks);
13444         bxe_hc_tx_ticks = 50;
13445     }
13446 
13447     if (bxe_max_aggregation_size == 0) {
13448         bxe_max_aggregation_size = TPA_AGG_SIZE;
13449     }
13450 
13451     if (bxe_max_aggregation_size > 0xffff) {
13452         BLOGW(sc, "invalid max_aggregation_size (%d)\n",
13453               bxe_max_aggregation_size);
13454         bxe_max_aggregation_size = TPA_AGG_SIZE;
13455     }
13456 
13457     if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) {
13458         BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs);
13459         bxe_mrrs = -1;
13460     }
13461 
13462     if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) {
13463         BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen);
13464         bxe_autogreeen = 0;
13465     }
13466 
13467     if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) {
13468         BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss);
13469         bxe_udp_rss = 0;
13470     }
13471 
13472     /* pull in user settings */
13473 
13474     sc->interrupt_mode       = bxe_interrupt_mode;
13475     sc->max_rx_bufs          = bxe_max_rx_bufs;
13476     sc->hc_rx_ticks          = bxe_hc_rx_ticks;
13477     sc->hc_tx_ticks          = bxe_hc_tx_ticks;
13478     sc->max_aggregation_size = bxe_max_aggregation_size;
13479     sc->mrrs                 = bxe_mrrs;
13480     sc->autogreeen           = bxe_autogreeen;
13481     sc->udp_rss              = bxe_udp_rss;
13482 
13483     if (bxe_interrupt_mode == INTR_MODE_INTX) {
13484         sc->num_queues = 1;
13485     } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */
13486         sc->num_queues =
13487             min((bxe_queue_count ? bxe_queue_count : mp_ncpus),
13488                 MAX_RSS_CHAINS);
13489         if (sc->num_queues > mp_ncpus) {
13490             sc->num_queues = mp_ncpus;
13491         }
13492     }
13493 
13494     BLOGD(sc, DBG_LOAD,
13495           "User Config: "
13496           "debug=0x%lx "
13497           "interrupt_mode=%d "
13498           "queue_count=%d "
13499           "hc_rx_ticks=%d "
13500           "hc_tx_ticks=%d "
13501           "rx_budget=%d "
13502           "max_aggregation_size=%d "
13503           "mrrs=%d "
13504           "autogreeen=%d "
13505           "udp_rss=%d\n",
13506           bxe_debug,
13507           sc->interrupt_mode,
13508           sc->num_queues,
13509           sc->hc_rx_ticks,
13510           sc->hc_tx_ticks,
13511           bxe_rx_budget,
13512           sc->max_aggregation_size,
13513           sc->mrrs,
13514           sc->autogreeen,
13515           sc->udp_rss);
13516 }
13517 
13518 static int
13519 bxe_media_detect(struct bxe_softc *sc)
13520 {
13521     int port_type;
13522     uint32_t phy_idx = bxe_get_cur_phy_idx(sc);
13523 
13524     switch (sc->link_params.phy[phy_idx].media_type) {
13525     case ELINK_ETH_PHY_SFPP_10G_FIBER:
13526     case ELINK_ETH_PHY_XFP_FIBER:
13527         BLOGI(sc, "Found 10Gb Fiber media.\n");
13528         sc->media = IFM_10G_SR;
13529         port_type = PORT_FIBRE;
13530         break;
13531     case ELINK_ETH_PHY_SFP_1G_FIBER:
13532         BLOGI(sc, "Found 1Gb Fiber media.\n");
13533         sc->media = IFM_1000_SX;
13534         port_type = PORT_FIBRE;
13535         break;
13536     case ELINK_ETH_PHY_KR:
13537     case ELINK_ETH_PHY_CX4:
13538         BLOGI(sc, "Found 10GBase-CX4 media.\n");
13539         sc->media = IFM_10G_CX4;
13540         port_type = PORT_FIBRE;
13541         break;
13542     case ELINK_ETH_PHY_DA_TWINAX:
13543         BLOGI(sc, "Found 10Gb Twinax media.\n");
13544         sc->media = IFM_10G_TWINAX;
13545         port_type = PORT_DA;
13546         break;
13547     case ELINK_ETH_PHY_BASE_T:
13548         if (sc->link_params.speed_cap_mask[0] &
13549             PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
13550             BLOGI(sc, "Found 10GBase-T media.\n");
13551             sc->media = IFM_10G_T;
13552             port_type = PORT_TP;
13553         } else {
13554             BLOGI(sc, "Found 1000Base-T media.\n");
13555             sc->media = IFM_1000_T;
13556             port_type = PORT_TP;
13557         }
13558         break;
13559     case ELINK_ETH_PHY_NOT_PRESENT:
13560         BLOGI(sc, "Media not present.\n");
13561         sc->media = 0;
13562         port_type = PORT_OTHER;
13563         break;
13564     case ELINK_ETH_PHY_UNSPECIFIED:
13565     default:
13566         BLOGI(sc, "Unknown media!\n");
13567         sc->media = 0;
13568         port_type = PORT_OTHER;
13569         break;
13570     }
13571     return port_type;
13572 }
13573 
13574 #define GET_FIELD(value, fname)                     \
13575     (((value) & (fname##_MASK)) >> (fname##_SHIFT))
13576 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
13577 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
13578 
13579 static int
13580 bxe_get_igu_cam_info(struct bxe_softc *sc)
13581 {
13582     int pfid = SC_FUNC(sc);
13583     int igu_sb_id;
13584     uint32_t val;
13585     uint8_t fid, igu_sb_cnt = 0;
13586 
13587     sc->igu_base_sb = 0xff;
13588 
13589     if (CHIP_INT_MODE_IS_BC(sc)) {
13590         int vn = SC_VN(sc);
13591         igu_sb_cnt = sc->igu_sb_cnt;
13592         sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) *
13593                            FP_SB_MAX_E1x);
13594         sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x +
13595                           (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn));
13596         return (0);
13597     }
13598 
13599     /* IGU in normal mode - read CAM */
13600     for (igu_sb_id = 0;
13601          igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
13602          igu_sb_id++) {
13603         val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
13604         if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) {
13605             continue;
13606         }
13607         fid = IGU_FID(val);
13608         if ((fid & IGU_FID_ENCODE_IS_PF)) {
13609             if ((fid & IGU_FID_PF_NUM_MASK) != pfid) {
13610                 continue;
13611             }
13612             if (IGU_VEC(val) == 0) {
13613                 /* default status block */
13614                 sc->igu_dsb_id = igu_sb_id;
13615             } else {
13616                 if (sc->igu_base_sb == 0xff) {
13617                     sc->igu_base_sb = igu_sb_id;
13618                 }
13619                 igu_sb_cnt++;
13620             }
13621         }
13622     }
13623 
13624     /*
13625      * Due to new PF resource allocation by MFW T7.4 and above, it's optional
13626      * that number of CAM entries will not be equal to the value advertised in
13627      * PCI. Driver should use the minimal value of both as the actual status
13628      * block count
13629      */
13630     sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt);
13631 
13632     if (igu_sb_cnt == 0) {
13633         BLOGE(sc, "CAM configuration error\n");
13634         return (-1);
13635     }
13636 
13637     return (0);
13638 }
13639 
13640 /*
13641  * Gather various information from the device config space, the device itself,
13642  * shmem, and the user input.
13643  */
13644 static int
13645 bxe_get_device_info(struct bxe_softc *sc)
13646 {
13647     uint32_t val;
13648     int rc;
13649 
13650     /* Get the data for the device */
13651     sc->devinfo.vendor_id    = pci_get_vendor(sc->dev);
13652     sc->devinfo.device_id    = pci_get_device(sc->dev);
13653     sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev);
13654     sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev);
13655 
13656     /* get the chip revision (chip metal comes from pci config space) */
13657     sc->devinfo.chip_id     =
13658     sc->link_params.chip_id =
13659         (((REG_RD(sc, MISC_REG_CHIP_NUM)                   & 0xffff) << 16) |
13660          ((REG_RD(sc, MISC_REG_CHIP_REV)                   & 0xf)    << 12) |
13661          (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf)    << 4)  |
13662          ((REG_RD(sc, MISC_REG_BOND_ID)                    & 0xf)    << 0));
13663 
13664     /* force 57811 according to MISC register */
13665     if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
13666         if (CHIP_IS_57810(sc)) {
13667             sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) |
13668                                    (sc->devinfo.chip_id & 0x0000ffff));
13669         } else if (CHIP_IS_57810_MF(sc)) {
13670             sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) |
13671                                    (sc->devinfo.chip_id & 0x0000ffff));
13672         }
13673         sc->devinfo.chip_id |= 0x1;
13674     }
13675 
13676     BLOGD(sc, DBG_LOAD,
13677           "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n",
13678           sc->devinfo.chip_id,
13679           ((sc->devinfo.chip_id >> 16) & 0xffff),
13680           ((sc->devinfo.chip_id >> 12) & 0xf),
13681           ((sc->devinfo.chip_id >>  4) & 0xff),
13682           ((sc->devinfo.chip_id >>  0) & 0xf));
13683 
13684     val = (REG_RD(sc, 0x2874) & 0x55);
13685     if ((sc->devinfo.chip_id & 0x1) ||
13686         (CHIP_IS_E1(sc) && val) ||
13687         (CHIP_IS_E1H(sc) && (val == 0x55))) {
13688         sc->flags |= BXE_ONE_PORT_FLAG;
13689         BLOGD(sc, DBG_LOAD, "single port device\n");
13690     }
13691 
13692     /* set the doorbell size */
13693     sc->doorbell_size = (1 << BXE_DB_SHIFT);
13694 
13695     /* determine whether the device is in 2 port or 4 port mode */
13696     sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/
13697     if (CHIP_IS_E2E3(sc)) {
13698         /*
13699          * Read port4mode_en_ovwr[0]:
13700          *   If 1, four port mode is in port4mode_en_ovwr[1].
13701          *   If 0, four port mode is in port4mode_en[0].
13702          */
13703         val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR);
13704         if (val & 1) {
13705             val = ((val >> 1) & 1);
13706         } else {
13707             val = REG_RD(sc, MISC_REG_PORT4MODE_EN);
13708         }
13709 
13710         sc->devinfo.chip_port_mode =
13711             (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE;
13712 
13713         BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2");
13714     }
13715 
13716     /* get the function and path info for the device */
13717     bxe_get_function_num(sc);
13718 
13719     /* get the shared memory base address */
13720     sc->devinfo.shmem_base     =
13721     sc->link_params.shmem_base =
13722         REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
13723     sc->devinfo.shmem2_base =
13724         REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 :
13725                                   MISC_REG_GENERIC_CR_0));
13726 
13727     BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n",
13728           sc->devinfo.shmem_base, sc->devinfo.shmem2_base);
13729 
13730     if (!sc->devinfo.shmem_base) {
13731         /* this should ONLY prevent upcoming shmem reads */
13732         BLOGI(sc, "MCP not active\n");
13733         sc->flags |= BXE_NO_MCP_FLAG;
13734         return (0);
13735     }
13736 
13737     /* make sure the shared memory contents are valid */
13738     val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
13739     if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
13740         (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
13741         BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val);
13742         return (0);
13743     }
13744     BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val);
13745 
13746     /* get the bootcode version */
13747     sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev);
13748     snprintf(sc->devinfo.bc_ver_str,
13749              sizeof(sc->devinfo.bc_ver_str),
13750              "%d.%d.%d",
13751              ((sc->devinfo.bc_ver >> 24) & 0xff),
13752              ((sc->devinfo.bc_ver >> 16) & 0xff),
13753              ((sc->devinfo.bc_ver >>  8) & 0xff));
13754     BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str);
13755 
13756     /* get the bootcode shmem address */
13757     sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc);
13758     BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base);
13759 
13760     /* clean indirect addresses as they're not used */
13761     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
13762     if (IS_PF(sc)) {
13763         REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0);
13764         REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0);
13765         REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0);
13766         REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0);
13767         if (CHIP_IS_E1x(sc)) {
13768             REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0);
13769             REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0);
13770             REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0);
13771             REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0);
13772         }
13773 
13774         /*
13775          * Enable internal target-read (in case we are probed after PF
13776          * FLR). Must be done prior to any BAR read access. Only for
13777          * 57712 and up
13778          */
13779         if (!CHIP_IS_E1x(sc)) {
13780             REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
13781         }
13782     }
13783 
13784     /* get the nvram size */
13785     val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
13786     sc->devinfo.flash_size =
13787         (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE));
13788     BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size);
13789 
13790     /* get PCI capabilites */
13791     bxe_probe_pci_caps(sc);
13792 
13793     bxe_set_power_state(sc, PCI_PM_D0);
13794 
13795     /* get various configuration parameters from shmem */
13796     bxe_get_shmem_info(sc);
13797 
13798     if (sc->devinfo.pcie_msix_cap_reg != 0) {
13799         val = pci_read_config(sc->dev,
13800                               (sc->devinfo.pcie_msix_cap_reg +
13801                                PCIR_MSIX_CTRL),
13802                               2);
13803         sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE);
13804     } else {
13805         sc->igu_sb_cnt = 1;
13806     }
13807 
13808     sc->igu_base_addr = BAR_IGU_INTMEM;
13809 
13810     /* initialize IGU parameters */
13811     if (CHIP_IS_E1x(sc)) {
13812         sc->devinfo.int_block = INT_BLOCK_HC;
13813         sc->igu_dsb_id = DEF_SB_IGU_ID;
13814         sc->igu_base_sb = 0;
13815     } else {
13816         sc->devinfo.int_block = INT_BLOCK_IGU;
13817 
13818         /* do not allow device reset during IGU info preocessing */
13819         bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
13820 
13821         val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
13822 
13823         if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
13824             int tout = 5000;
13825 
13826             BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n");
13827 
13828             val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
13829             REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val);
13830             REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f);
13831 
13832             while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
13833                 tout--;
13834                 DELAY(1000);
13835             }
13836 
13837             if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
13838                 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n");
13839                 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
13840                 return (-1);
13841             }
13842         }
13843 
13844         if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
13845             BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n");
13846             sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP;
13847         } else {
13848             BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n");
13849         }
13850 
13851         rc = bxe_get_igu_cam_info(sc);
13852 
13853         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
13854 
13855         if (rc) {
13856             return (rc);
13857         }
13858     }
13859 
13860     /*
13861      * Get base FW non-default (fast path) status block ID. This value is
13862      * used to initialize the fw_sb_id saved on the fp/queue structure to
13863      * determine the id used by the FW.
13864      */
13865     if (CHIP_IS_E1x(sc)) {
13866         sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc));
13867     } else {
13868         /*
13869          * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of
13870          * the same queue are indicated on the same IGU SB). So we prefer
13871          * FW and IGU SBs to be the same value.
13872          */
13873         sc->base_fw_ndsb = sc->igu_base_sb;
13874     }
13875 
13876     BLOGD(sc, DBG_LOAD,
13877           "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n",
13878           sc->igu_dsb_id, sc->igu_base_sb,
13879           sc->igu_sb_cnt, sc->base_fw_ndsb);
13880 
13881     elink_phy_probe(&sc->link_params);
13882 
13883     return (0);
13884 }
13885 
13886 static void
13887 bxe_link_settings_supported(struct bxe_softc *sc,
13888                             uint32_t         switch_cfg)
13889 {
13890     uint32_t cfg_size = 0;
13891     uint32_t idx;
13892     uint8_t port = SC_PORT(sc);
13893 
13894     /* aggregation of supported attributes of all external phys */
13895     sc->port.supported[0] = 0;
13896     sc->port.supported[1] = 0;
13897 
13898     switch (sc->link_params.num_phys) {
13899     case 1:
13900         sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported;
13901         cfg_size = 1;
13902         break;
13903     case 2:
13904         sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported;
13905         cfg_size = 1;
13906         break;
13907     case 3:
13908         if (sc->link_params.multi_phy_config &
13909             PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
13910             sc->port.supported[1] =
13911                 sc->link_params.phy[ELINK_EXT_PHY1].supported;
13912             sc->port.supported[0] =
13913                 sc->link_params.phy[ELINK_EXT_PHY2].supported;
13914         } else {
13915             sc->port.supported[0] =
13916                 sc->link_params.phy[ELINK_EXT_PHY1].supported;
13917             sc->port.supported[1] =
13918                 sc->link_params.phy[ELINK_EXT_PHY2].supported;
13919         }
13920         cfg_size = 2;
13921         break;
13922     }
13923 
13924     if (!(sc->port.supported[0] || sc->port.supported[1])) {
13925         BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n",
13926               SHMEM_RD(sc,
13927                        dev_info.port_hw_config[port].external_phy_config),
13928               SHMEM_RD(sc,
13929                        dev_info.port_hw_config[port].external_phy_config2));
13930         return;
13931     }
13932 
13933     if (CHIP_IS_E3(sc))
13934         sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR);
13935     else {
13936         switch (switch_cfg) {
13937         case ELINK_SWITCH_CFG_1G:
13938             sc->port.phy_addr =
13939                 REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
13940             break;
13941         case ELINK_SWITCH_CFG_10G:
13942             sc->port.phy_addr =
13943                 REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
13944             break;
13945         default:
13946             BLOGE(sc, "Invalid switch config in link_config=0x%08x\n",
13947                   sc->port.link_config[0]);
13948             return;
13949         }
13950     }
13951 
13952     BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr);
13953 
13954     /* mask what we support according to speed_cap_mask per configuration */
13955     for (idx = 0; idx < cfg_size; idx++) {
13956         if (!(sc->link_params.speed_cap_mask[idx] &
13957               PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) {
13958             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half;
13959         }
13960 
13961         if (!(sc->link_params.speed_cap_mask[idx] &
13962               PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) {
13963             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full;
13964         }
13965 
13966         if (!(sc->link_params.speed_cap_mask[idx] &
13967               PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) {
13968             sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half;
13969         }
13970 
13971         if (!(sc->link_params.speed_cap_mask[idx] &
13972               PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) {
13973             sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full;
13974         }
13975 
13976         if (!(sc->link_params.speed_cap_mask[idx] &
13977               PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) {
13978             sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full;
13979         }
13980 
13981         if (!(sc->link_params.speed_cap_mask[idx] &
13982               PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) {
13983             sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full;
13984         }
13985 
13986         if (!(sc->link_params.speed_cap_mask[idx] &
13987               PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
13988             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full;
13989         }
13990 
13991         if (!(sc->link_params.speed_cap_mask[idx] &
13992               PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) {
13993             sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full;
13994         }
13995     }
13996 
13997     BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n",
13998           sc->port.supported[0], sc->port.supported[1]);
13999 }
14000 
14001 static void
14002 bxe_link_settings_requested(struct bxe_softc *sc)
14003 {
14004     uint32_t link_config;
14005     uint32_t idx;
14006     uint32_t cfg_size = 0;
14007 
14008     sc->port.advertising[0] = 0;
14009     sc->port.advertising[1] = 0;
14010 
14011     switch (sc->link_params.num_phys) {
14012     case 1:
14013     case 2:
14014         cfg_size = 1;
14015         break;
14016     case 3:
14017         cfg_size = 2;
14018         break;
14019     }
14020 
14021     for (idx = 0; idx < cfg_size; idx++) {
14022         sc->link_params.req_duplex[idx] = DUPLEX_FULL;
14023         link_config = sc->port.link_config[idx];
14024 
14025         switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
14026         case PORT_FEATURE_LINK_SPEED_AUTO:
14027             if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) {
14028                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14029                 sc->port.advertising[idx] |= sc->port.supported[idx];
14030                 if (sc->link_params.phy[ELINK_EXT_PHY1].type ==
14031                     PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
14032                     sc->port.advertising[idx] |=
14033                         (ELINK_SUPPORTED_100baseT_Half |
14034                          ELINK_SUPPORTED_100baseT_Full);
14035             } else {
14036                 /* force 10G, no AN */
14037                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14038                 sc->port.advertising[idx] |=
14039                     (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
14040                 continue;
14041             }
14042             break;
14043 
14044         case PORT_FEATURE_LINK_SPEED_10M_FULL:
14045             if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) {
14046                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14047                 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full |
14048                                               ADVERTISED_TP);
14049             } else {
14050                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14051                           "speed_cap_mask=0x%08x\n",
14052                       link_config, sc->link_params.speed_cap_mask[idx]);
14053                 return;
14054             }
14055             break;
14056 
14057         case PORT_FEATURE_LINK_SPEED_10M_HALF:
14058             if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) {
14059                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14060                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14061                 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half |
14062                                               ADVERTISED_TP);
14063             } else {
14064                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14065                           "speed_cap_mask=0x%08x\n",
14066                       link_config, sc->link_params.speed_cap_mask[idx]);
14067                 return;
14068             }
14069             break;
14070 
14071         case PORT_FEATURE_LINK_SPEED_100M_FULL:
14072             if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) {
14073                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14074                 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full |
14075                                               ADVERTISED_TP);
14076             } else {
14077                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14078                           "speed_cap_mask=0x%08x\n",
14079                       link_config, sc->link_params.speed_cap_mask[idx]);
14080                 return;
14081             }
14082             break;
14083 
14084         case PORT_FEATURE_LINK_SPEED_100M_HALF:
14085             if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) {
14086                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14087                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14088                 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half |
14089                                               ADVERTISED_TP);
14090             } else {
14091                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14092                           "speed_cap_mask=0x%08x\n",
14093                       link_config, sc->link_params.speed_cap_mask[idx]);
14094                 return;
14095             }
14096             break;
14097 
14098         case PORT_FEATURE_LINK_SPEED_1G:
14099             if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) {
14100                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000;
14101                 sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full |
14102                                               ADVERTISED_TP);
14103             } else {
14104                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14105                           "speed_cap_mask=0x%08x\n",
14106                       link_config, sc->link_params.speed_cap_mask[idx]);
14107                 return;
14108             }
14109             break;
14110 
14111         case PORT_FEATURE_LINK_SPEED_2_5G:
14112             if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) {
14113                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500;
14114                 sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full |
14115                                               ADVERTISED_TP);
14116             } else {
14117                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14118                           "speed_cap_mask=0x%08x\n",
14119                       link_config, sc->link_params.speed_cap_mask[idx]);
14120                 return;
14121             }
14122             break;
14123 
14124         case PORT_FEATURE_LINK_SPEED_10G_CX4:
14125             if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) {
14126                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14127                 sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full |
14128                                               ADVERTISED_FIBRE);
14129             } else {
14130                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14131                           "speed_cap_mask=0x%08x\n",
14132                       link_config, sc->link_params.speed_cap_mask[idx]);
14133                 return;
14134             }
14135             break;
14136 
14137         case PORT_FEATURE_LINK_SPEED_20G:
14138             sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000;
14139             break;
14140 
14141         default:
14142             BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14143                       "speed_cap_mask=0x%08x\n",
14144                   link_config, sc->link_params.speed_cap_mask[idx]);
14145             sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14146             sc->port.advertising[idx] = sc->port.supported[idx];
14147             break;
14148         }
14149 
14150         sc->link_params.req_flow_ctrl[idx] =
14151             (link_config & PORT_FEATURE_FLOW_CONTROL_MASK);
14152 
14153         if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) {
14154             if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) {
14155                 sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE;
14156             } else {
14157                 bxe_set_requested_fc(sc);
14158             }
14159         }
14160 
14161         BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d "
14162                             "req_flow_ctrl=0x%x advertising=0x%x\n",
14163               sc->link_params.req_line_speed[idx],
14164               sc->link_params.req_duplex[idx],
14165               sc->link_params.req_flow_ctrl[idx],
14166               sc->port.advertising[idx]);
14167     }
14168 }
14169 
14170 static void
14171 bxe_get_phy_info(struct bxe_softc *sc)
14172 {
14173     uint8_t port = SC_PORT(sc);
14174     uint32_t config = sc->port.config;
14175     uint32_t eee_mode;
14176 
14177     /* shmem data already read in bxe_get_shmem_info() */
14178 
14179     BLOGD(sc, DBG_LOAD, "lane_config=0x%08x speed_cap_mask0=0x%08x "
14180                         "link_config0=0x%08x\n",
14181                sc->link_params.lane_config,
14182                sc->link_params.speed_cap_mask[0],
14183                sc->port.link_config[0]);
14184 
14185     bxe_link_settings_supported(sc, sc->link_params.switch_cfg);
14186     bxe_link_settings_requested(sc);
14187 
14188     if (sc->autogreeen == AUTO_GREEN_FORCE_ON) {
14189         sc->link_params.feature_config_flags |=
14190             ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14191     } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) {
14192         sc->link_params.feature_config_flags &=
14193             ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14194     } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) {
14195         sc->link_params.feature_config_flags |=
14196             ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14197     }
14198 
14199     /* configure link feature according to nvram value */
14200     eee_mode =
14201         (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) &
14202           PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
14203          PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
14204     if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
14205         sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI |
14206                                     ELINK_EEE_MODE_ENABLE_LPI |
14207                                     ELINK_EEE_MODE_OUTPUT_TIME);
14208     } else {
14209         sc->link_params.eee_mode = 0;
14210     }
14211 
14212     /* get the media type */
14213     bxe_media_detect(sc);
14214 }
14215 
14216 static void
14217 bxe_get_params(struct bxe_softc *sc)
14218 {
14219     /* get user tunable params */
14220     bxe_get_tunable_params(sc);
14221 
14222     /* select the RX and TX ring sizes */
14223     sc->tx_ring_size = TX_BD_USABLE;
14224     sc->rx_ring_size = RX_BD_USABLE;
14225 
14226     /* XXX disable WoL */
14227     sc->wol = 0;
14228 }
14229 
14230 static void
14231 bxe_set_modes_bitmap(struct bxe_softc *sc)
14232 {
14233     uint32_t flags = 0;
14234 
14235     if (CHIP_REV_IS_FPGA(sc)) {
14236         SET_FLAGS(flags, MODE_FPGA);
14237     } else if (CHIP_REV_IS_EMUL(sc)) {
14238         SET_FLAGS(flags, MODE_EMUL);
14239     } else {
14240         SET_FLAGS(flags, MODE_ASIC);
14241     }
14242 
14243     if (CHIP_IS_MODE_4_PORT(sc)) {
14244         SET_FLAGS(flags, MODE_PORT4);
14245     } else {
14246         SET_FLAGS(flags, MODE_PORT2);
14247     }
14248 
14249     if (CHIP_IS_E2(sc)) {
14250         SET_FLAGS(flags, MODE_E2);
14251     } else if (CHIP_IS_E3(sc)) {
14252         SET_FLAGS(flags, MODE_E3);
14253         if (CHIP_REV(sc) == CHIP_REV_Ax) {
14254             SET_FLAGS(flags, MODE_E3_A0);
14255         } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ {
14256             SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
14257         }
14258     }
14259 
14260     if (IS_MF(sc)) {
14261         SET_FLAGS(flags, MODE_MF);
14262         switch (sc->devinfo.mf_info.mf_mode) {
14263         case MULTI_FUNCTION_SD:
14264             SET_FLAGS(flags, MODE_MF_SD);
14265             break;
14266         case MULTI_FUNCTION_SI:
14267             SET_FLAGS(flags, MODE_MF_SI);
14268             break;
14269         case MULTI_FUNCTION_AFEX:
14270             SET_FLAGS(flags, MODE_MF_AFEX);
14271             break;
14272         }
14273     } else {
14274         SET_FLAGS(flags, MODE_SF);
14275     }
14276 
14277 #if defined(__LITTLE_ENDIAN)
14278     SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
14279 #else /* __BIG_ENDIAN */
14280     SET_FLAGS(flags, MODE_BIG_ENDIAN);
14281 #endif
14282 
14283     INIT_MODE_FLAGS(sc) = flags;
14284 }
14285 
14286 static int
14287 bxe_alloc_hsi_mem(struct bxe_softc *sc)
14288 {
14289     struct bxe_fastpath *fp;
14290     bus_addr_t busaddr;
14291     int max_agg_queues;
14292     int max_segments;
14293     bus_size_t max_size;
14294     bus_size_t max_seg_size;
14295     char buf[32];
14296     int rc;
14297     int i, j;
14298 
14299     /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */
14300 
14301     /* allocate the parent bus DMA tag */
14302     rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */
14303                             1,                        /* alignment */
14304                             0,                        /* boundary limit */
14305                             BUS_SPACE_MAXADDR,        /* restricted low */
14306                             BUS_SPACE_MAXADDR,        /* restricted hi */
14307                             NULL,                     /* addr filter() */
14308                             NULL,                     /* addr filter() arg */
14309                             BUS_SPACE_MAXSIZE_32BIT,  /* max map size */
14310                             BUS_SPACE_UNRESTRICTED,   /* num discontinuous */
14311                             BUS_SPACE_MAXSIZE_32BIT,  /* max seg size */
14312                             0,                        /* flags */
14313                             NULL,                     /* lock() */
14314                             NULL,                     /* lock() arg */
14315                             &sc->parent_dma_tag);     /* returned dma tag */
14316     if (rc != 0) {
14317         BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc);
14318         return (1);
14319     }
14320 
14321     /************************/
14322     /* DEFAULT STATUS BLOCK */
14323     /************************/
14324 
14325     if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block),
14326                       &sc->def_sb_dma, "default status block") != 0) {
14327         /* XXX */
14328         bus_dma_tag_destroy(sc->parent_dma_tag);
14329         return (1);
14330     }
14331 
14332     sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr;
14333 
14334     /***************/
14335     /* EVENT QUEUE */
14336     /***************/
14337 
14338     if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
14339                       &sc->eq_dma, "event queue") != 0) {
14340         /* XXX */
14341         bxe_dma_free(sc, &sc->def_sb_dma);
14342         sc->def_sb = NULL;
14343         bus_dma_tag_destroy(sc->parent_dma_tag);
14344         return (1);
14345     }
14346 
14347     sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr;
14348 
14349     /*************/
14350     /* SLOW PATH */
14351     /*************/
14352 
14353     if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath),
14354                       &sc->sp_dma, "slow path") != 0) {
14355         /* XXX */
14356         bxe_dma_free(sc, &sc->eq_dma);
14357         sc->eq = NULL;
14358         bxe_dma_free(sc, &sc->def_sb_dma);
14359         sc->def_sb = NULL;
14360         bus_dma_tag_destroy(sc->parent_dma_tag);
14361         return (1);
14362     }
14363 
14364     sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr;
14365 
14366     /*******************/
14367     /* SLOW PATH QUEUE */
14368     /*******************/
14369 
14370     if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
14371                       &sc->spq_dma, "slow path queue") != 0) {
14372         /* XXX */
14373         bxe_dma_free(sc, &sc->sp_dma);
14374         sc->sp = NULL;
14375         bxe_dma_free(sc, &sc->eq_dma);
14376         sc->eq = NULL;
14377         bxe_dma_free(sc, &sc->def_sb_dma);
14378         sc->def_sb = NULL;
14379         bus_dma_tag_destroy(sc->parent_dma_tag);
14380         return (1);
14381     }
14382 
14383     sc->spq = (struct eth_spe *)sc->spq_dma.vaddr;
14384 
14385     /***************************/
14386     /* FW DECOMPRESSION BUFFER */
14387     /***************************/
14388 
14389     if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma,
14390                       "fw decompression buffer") != 0) {
14391         /* XXX */
14392         bxe_dma_free(sc, &sc->spq_dma);
14393         sc->spq = NULL;
14394         bxe_dma_free(sc, &sc->sp_dma);
14395         sc->sp = NULL;
14396         bxe_dma_free(sc, &sc->eq_dma);
14397         sc->eq = NULL;
14398         bxe_dma_free(sc, &sc->def_sb_dma);
14399         sc->def_sb = NULL;
14400         bus_dma_tag_destroy(sc->parent_dma_tag);
14401         return (1);
14402     }
14403 
14404     sc->gz_buf = (void *)sc->gz_buf_dma.vaddr;
14405 
14406     if ((sc->gz_strm =
14407          malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) {
14408         /* XXX */
14409         bxe_dma_free(sc, &sc->gz_buf_dma);
14410         sc->gz_buf = NULL;
14411         bxe_dma_free(sc, &sc->spq_dma);
14412         sc->spq = NULL;
14413         bxe_dma_free(sc, &sc->sp_dma);
14414         sc->sp = NULL;
14415         bxe_dma_free(sc, &sc->eq_dma);
14416         sc->eq = NULL;
14417         bxe_dma_free(sc, &sc->def_sb_dma);
14418         sc->def_sb = NULL;
14419         bus_dma_tag_destroy(sc->parent_dma_tag);
14420         return (1);
14421     }
14422 
14423     /*************/
14424     /* FASTPATHS */
14425     /*************/
14426 
14427     /* allocate DMA memory for each fastpath structure */
14428     for (i = 0; i < sc->num_queues; i++) {
14429         fp = &sc->fp[i];
14430         fp->sc    = sc;
14431         fp->index = i;
14432 
14433         /*******************/
14434         /* FP STATUS BLOCK */
14435         /*******************/
14436 
14437         snprintf(buf, sizeof(buf), "fp %d status block", i);
14438         if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block),
14439                           &fp->sb_dma, buf) != 0) {
14440             /* XXX unwind and free previous fastpath allocations */
14441             BLOGE(sc, "Failed to alloc %s\n", buf);
14442             return (1);
14443         } else {
14444             if (CHIP_IS_E2E3(sc)) {
14445                 fp->status_block.e2_sb =
14446                     (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr;
14447             } else {
14448                 fp->status_block.e1x_sb =
14449                     (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr;
14450             }
14451         }
14452 
14453         /******************/
14454         /* FP TX BD CHAIN */
14455         /******************/
14456 
14457         snprintf(buf, sizeof(buf), "fp %d tx bd chain", i);
14458         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES),
14459                           &fp->tx_dma, buf) != 0) {
14460             /* XXX unwind and free previous fastpath allocations */
14461             BLOGE(sc, "Failed to alloc %s\n", buf);
14462             return (1);
14463         } else {
14464             fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr;
14465         }
14466 
14467         /* link together the tx bd chain pages */
14468         for (j = 1; j <= TX_BD_NUM_PAGES; j++) {
14469             /* index into the tx bd chain array to last entry per page */
14470             struct eth_tx_next_bd *tx_next_bd =
14471                 &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd;
14472             /* point to the next page and wrap from last page */
14473             busaddr = (fp->tx_dma.paddr +
14474                        (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES)));
14475             tx_next_bd->addr_hi = htole32(U64_HI(busaddr));
14476             tx_next_bd->addr_lo = htole32(U64_LO(busaddr));
14477         }
14478 
14479         /******************/
14480         /* FP RX BD CHAIN */
14481         /******************/
14482 
14483         snprintf(buf, sizeof(buf), "fp %d rx bd chain", i);
14484         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES),
14485                           &fp->rx_dma, buf) != 0) {
14486             /* XXX unwind and free previous fastpath allocations */
14487             BLOGE(sc, "Failed to alloc %s\n", buf);
14488             return (1);
14489         } else {
14490             fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr;
14491         }
14492 
14493         /* link together the rx bd chain pages */
14494         for (j = 1; j <= RX_BD_NUM_PAGES; j++) {
14495             /* index into the rx bd chain array to last entry per page */
14496             struct eth_rx_bd *rx_bd =
14497                 &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2];
14498             /* point to the next page and wrap from last page */
14499             busaddr = (fp->rx_dma.paddr +
14500                        (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES)));
14501             rx_bd->addr_hi = htole32(U64_HI(busaddr));
14502             rx_bd->addr_lo = htole32(U64_LO(busaddr));
14503         }
14504 
14505         /*******************/
14506         /* FP RX RCQ CHAIN */
14507         /*******************/
14508 
14509         snprintf(buf, sizeof(buf), "fp %d rcq chain", i);
14510         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES),
14511                           &fp->rcq_dma, buf) != 0) {
14512             /* XXX unwind and free previous fastpath allocations */
14513             BLOGE(sc, "Failed to alloc %s\n", buf);
14514             return (1);
14515         } else {
14516             fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr;
14517         }
14518 
14519         /* link together the rcq chain pages */
14520         for (j = 1; j <= RCQ_NUM_PAGES; j++) {
14521             /* index into the rcq chain array to last entry per page */
14522             struct eth_rx_cqe_next_page *rx_cqe_next =
14523                 (struct eth_rx_cqe_next_page *)
14524                 &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1];
14525             /* point to the next page and wrap from last page */
14526             busaddr = (fp->rcq_dma.paddr +
14527                        (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES)));
14528             rx_cqe_next->addr_hi = htole32(U64_HI(busaddr));
14529             rx_cqe_next->addr_lo = htole32(U64_LO(busaddr));
14530         }
14531 
14532         /*******************/
14533         /* FP RX SGE CHAIN */
14534         /*******************/
14535 
14536         snprintf(buf, sizeof(buf), "fp %d sge chain", i);
14537         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES),
14538                           &fp->rx_sge_dma, buf) != 0) {
14539             /* XXX unwind and free previous fastpath allocations */
14540             BLOGE(sc, "Failed to alloc %s\n", buf);
14541             return (1);
14542         } else {
14543             fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr;
14544         }
14545 
14546         /* link together the sge chain pages */
14547         for (j = 1; j <= RX_SGE_NUM_PAGES; j++) {
14548             /* index into the rcq chain array to last entry per page */
14549             struct eth_rx_sge *rx_sge =
14550                 &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2];
14551             /* point to the next page and wrap from last page */
14552             busaddr = (fp->rx_sge_dma.paddr +
14553                        (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES)));
14554             rx_sge->addr_hi = htole32(U64_HI(busaddr));
14555             rx_sge->addr_lo = htole32(U64_LO(busaddr));
14556         }
14557 
14558         /***********************/
14559         /* FP TX MBUF DMA MAPS */
14560         /***********************/
14561 
14562         /* set required sizes before mapping to conserve resources */
14563         if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
14564             max_size     = BXE_TSO_MAX_SIZE;
14565             max_segments = BXE_TSO_MAX_SEGMENTS;
14566             max_seg_size = BXE_TSO_MAX_SEG_SIZE;
14567         } else {
14568             max_size     = (MCLBYTES * BXE_MAX_SEGMENTS);
14569             max_segments = BXE_MAX_SEGMENTS;
14570             max_seg_size = MCLBYTES;
14571         }
14572 
14573         /* create a dma tag for the tx mbufs */
14574         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
14575                                 1,                  /* alignment */
14576                                 0,                  /* boundary limit */
14577                                 BUS_SPACE_MAXADDR,  /* restricted low */
14578                                 BUS_SPACE_MAXADDR,  /* restricted hi */
14579                                 NULL,               /* addr filter() */
14580                                 NULL,               /* addr filter() arg */
14581                                 max_size,           /* max map size */
14582                                 max_segments,       /* num discontinuous */
14583                                 max_seg_size,       /* max seg size */
14584                                 0,                  /* flags */
14585                                 NULL,               /* lock() */
14586                                 NULL,               /* lock() arg */
14587                                 &fp->tx_mbuf_tag);  /* returned dma tag */
14588         if (rc != 0) {
14589             /* XXX unwind and free previous fastpath allocations */
14590             BLOGE(sc, "Failed to create dma tag for "
14591                       "'fp %d tx mbufs' (%d)\n", i, rc);
14592             return (1);
14593         }
14594 
14595         /* create dma maps for each of the tx mbuf clusters */
14596         for (j = 0; j < TX_BD_TOTAL; j++) {
14597             if (bus_dmamap_create(fp->tx_mbuf_tag,
14598                                   BUS_DMA_NOWAIT,
14599                                   &fp->tx_mbuf_chain[j].m_map)) {
14600                 /* XXX unwind and free previous fastpath allocations */
14601                 BLOGE(sc, "Failed to create dma map for "
14602                           "'fp %d tx mbuf %d' (%d)\n", i, j, rc);
14603                 return (1);
14604             }
14605         }
14606 
14607         /***********************/
14608         /* FP RX MBUF DMA MAPS */
14609         /***********************/
14610 
14611         /* create a dma tag for the rx mbufs */
14612         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
14613                                 1,                  /* alignment */
14614                                 0,                  /* boundary limit */
14615                                 BUS_SPACE_MAXADDR,  /* restricted low */
14616                                 BUS_SPACE_MAXADDR,  /* restricted hi */
14617                                 NULL,               /* addr filter() */
14618                                 NULL,               /* addr filter() arg */
14619                                 MJUM9BYTES,         /* max map size */
14620                                 1,                  /* num discontinuous */
14621                                 MJUM9BYTES,         /* max seg size */
14622                                 0,                  /* flags */
14623                                 NULL,               /* lock() */
14624                                 NULL,               /* lock() arg */
14625                                 &fp->rx_mbuf_tag);  /* returned dma tag */
14626         if (rc != 0) {
14627             /* XXX unwind and free previous fastpath allocations */
14628             BLOGE(sc, "Failed to create dma tag for "
14629                       "'fp %d rx mbufs' (%d)\n", i, rc);
14630             return (1);
14631         }
14632 
14633         /* create dma maps for each of the rx mbuf clusters */
14634         for (j = 0; j < RX_BD_TOTAL; j++) {
14635             if (bus_dmamap_create(fp->rx_mbuf_tag,
14636                                   BUS_DMA_NOWAIT,
14637                                   &fp->rx_mbuf_chain[j].m_map)) {
14638                 /* XXX unwind and free previous fastpath allocations */
14639                 BLOGE(sc, "Failed to create dma map for "
14640                           "'fp %d rx mbuf %d' (%d)\n", i, j, rc);
14641                 return (1);
14642             }
14643         }
14644 
14645         /* create dma map for the spare rx mbuf cluster */
14646         if (bus_dmamap_create(fp->rx_mbuf_tag,
14647                               BUS_DMA_NOWAIT,
14648                               &fp->rx_mbuf_spare_map)) {
14649             /* XXX unwind and free previous fastpath allocations */
14650             BLOGE(sc, "Failed to create dma map for "
14651                       "'fp %d spare rx mbuf' (%d)\n", i, rc);
14652             return (1);
14653         }
14654 
14655         /***************************/
14656         /* FP RX SGE MBUF DMA MAPS */
14657         /***************************/
14658 
14659         /* create a dma tag for the rx sge mbufs */
14660         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
14661                                 1,                  /* alignment */
14662                                 0,                  /* boundary limit */
14663                                 BUS_SPACE_MAXADDR,  /* restricted low */
14664                                 BUS_SPACE_MAXADDR,  /* restricted hi */
14665                                 NULL,               /* addr filter() */
14666                                 NULL,               /* addr filter() arg */
14667                                 BCM_PAGE_SIZE,      /* max map size */
14668                                 1,                  /* num discontinuous */
14669                                 BCM_PAGE_SIZE,      /* max seg size */
14670                                 0,                  /* flags */
14671                                 NULL,               /* lock() */
14672                                 NULL,               /* lock() arg */
14673                                 &fp->rx_sge_mbuf_tag); /* returned dma tag */
14674         if (rc != 0) {
14675             /* XXX unwind and free previous fastpath allocations */
14676             BLOGE(sc, "Failed to create dma tag for "
14677                       "'fp %d rx sge mbufs' (%d)\n", i, rc);
14678             return (1);
14679         }
14680 
14681         /* create dma maps for the rx sge mbuf clusters */
14682         for (j = 0; j < RX_SGE_TOTAL; j++) {
14683             if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
14684                                   BUS_DMA_NOWAIT,
14685                                   &fp->rx_sge_mbuf_chain[j].m_map)) {
14686                 /* XXX unwind and free previous fastpath allocations */
14687                 BLOGE(sc, "Failed to create dma map for "
14688                           "'fp %d rx sge mbuf %d' (%d)\n", i, j, rc);
14689                 return (1);
14690             }
14691         }
14692 
14693         /* create dma map for the spare rx sge mbuf cluster */
14694         if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
14695                               BUS_DMA_NOWAIT,
14696                               &fp->rx_sge_mbuf_spare_map)) {
14697             /* XXX unwind and free previous fastpath allocations */
14698             BLOGE(sc, "Failed to create dma map for "
14699                       "'fp %d spare rx sge mbuf' (%d)\n", i, rc);
14700             return (1);
14701         }
14702 
14703         /***************************/
14704         /* FP RX TPA MBUF DMA MAPS */
14705         /***************************/
14706 
14707         /* create dma maps for the rx tpa mbuf clusters */
14708         max_agg_queues = MAX_AGG_QS(sc);
14709 
14710         for (j = 0; j < max_agg_queues; j++) {
14711             if (bus_dmamap_create(fp->rx_mbuf_tag,
14712                                   BUS_DMA_NOWAIT,
14713                                   &fp->rx_tpa_info[j].bd.m_map)) {
14714                 /* XXX unwind and free previous fastpath allocations */
14715                 BLOGE(sc, "Failed to create dma map for "
14716                           "'fp %d rx tpa mbuf %d' (%d)\n", i, j, rc);
14717                 return (1);
14718             }
14719         }
14720 
14721         /* create dma map for the spare rx tpa mbuf cluster */
14722         if (bus_dmamap_create(fp->rx_mbuf_tag,
14723                               BUS_DMA_NOWAIT,
14724                               &fp->rx_tpa_info_mbuf_spare_map)) {
14725             /* XXX unwind and free previous fastpath allocations */
14726             BLOGE(sc, "Failed to create dma map for "
14727                       "'fp %d spare rx tpa mbuf' (%d)\n", i, rc);
14728             return (1);
14729         }
14730 
14731         bxe_init_sge_ring_bit_mask(fp);
14732     }
14733 
14734     return (0);
14735 }
14736 
14737 static void
14738 bxe_free_hsi_mem(struct bxe_softc *sc)
14739 {
14740     struct bxe_fastpath *fp;
14741     int max_agg_queues;
14742     int i, j;
14743 
14744     if (sc->parent_dma_tag == NULL) {
14745         return; /* assume nothing was allocated */
14746     }
14747 
14748     for (i = 0; i < sc->num_queues; i++) {
14749         fp = &sc->fp[i];
14750 
14751         /*******************/
14752         /* FP STATUS BLOCK */
14753         /*******************/
14754 
14755         bxe_dma_free(sc, &fp->sb_dma);
14756         memset(&fp->status_block, 0, sizeof(fp->status_block));
14757 
14758         /******************/
14759         /* FP TX BD CHAIN */
14760         /******************/
14761 
14762         bxe_dma_free(sc, &fp->tx_dma);
14763         fp->tx_chain = NULL;
14764 
14765         /******************/
14766         /* FP RX BD CHAIN */
14767         /******************/
14768 
14769         bxe_dma_free(sc, &fp->rx_dma);
14770         fp->rx_chain = NULL;
14771 
14772         /*******************/
14773         /* FP RX RCQ CHAIN */
14774         /*******************/
14775 
14776         bxe_dma_free(sc, &fp->rcq_dma);
14777         fp->rcq_chain = NULL;
14778 
14779         /*******************/
14780         /* FP RX SGE CHAIN */
14781         /*******************/
14782 
14783         bxe_dma_free(sc, &fp->rx_sge_dma);
14784         fp->rx_sge_chain = NULL;
14785 
14786         /***********************/
14787         /* FP TX MBUF DMA MAPS */
14788         /***********************/
14789 
14790         if (fp->tx_mbuf_tag != NULL) {
14791             for (j = 0; j < TX_BD_TOTAL; j++) {
14792                 if (fp->tx_mbuf_chain[j].m_map != NULL) {
14793                     bus_dmamap_unload(fp->tx_mbuf_tag,
14794                                       fp->tx_mbuf_chain[j].m_map);
14795                     bus_dmamap_destroy(fp->tx_mbuf_tag,
14796                                        fp->tx_mbuf_chain[j].m_map);
14797                 }
14798             }
14799 
14800             bus_dma_tag_destroy(fp->tx_mbuf_tag);
14801             fp->tx_mbuf_tag = NULL;
14802         }
14803 
14804         /***********************/
14805         /* FP RX MBUF DMA MAPS */
14806         /***********************/
14807 
14808         if (fp->rx_mbuf_tag != NULL) {
14809             for (j = 0; j < RX_BD_TOTAL; j++) {
14810                 if (fp->rx_mbuf_chain[j].m_map != NULL) {
14811                     bus_dmamap_unload(fp->rx_mbuf_tag,
14812                                       fp->rx_mbuf_chain[j].m_map);
14813                     bus_dmamap_destroy(fp->rx_mbuf_tag,
14814                                        fp->rx_mbuf_chain[j].m_map);
14815                 }
14816             }
14817 
14818             if (fp->rx_mbuf_spare_map != NULL) {
14819                 bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
14820                 bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
14821             }
14822 
14823             /***************************/
14824             /* FP RX TPA MBUF DMA MAPS */
14825             /***************************/
14826 
14827             max_agg_queues = MAX_AGG_QS(sc);
14828 
14829             for (j = 0; j < max_agg_queues; j++) {
14830                 if (fp->rx_tpa_info[j].bd.m_map != NULL) {
14831                     bus_dmamap_unload(fp->rx_mbuf_tag,
14832                                       fp->rx_tpa_info[j].bd.m_map);
14833                     bus_dmamap_destroy(fp->rx_mbuf_tag,
14834                                        fp->rx_tpa_info[j].bd.m_map);
14835                 }
14836             }
14837 
14838             if (fp->rx_tpa_info_mbuf_spare_map != NULL) {
14839                 bus_dmamap_unload(fp->rx_mbuf_tag,
14840                                   fp->rx_tpa_info_mbuf_spare_map);
14841                 bus_dmamap_destroy(fp->rx_mbuf_tag,
14842                                    fp->rx_tpa_info_mbuf_spare_map);
14843             }
14844 
14845             bus_dma_tag_destroy(fp->rx_mbuf_tag);
14846             fp->rx_mbuf_tag = NULL;
14847         }
14848 
14849         /***************************/
14850         /* FP RX SGE MBUF DMA MAPS */
14851         /***************************/
14852 
14853         if (fp->rx_sge_mbuf_tag != NULL) {
14854             for (j = 0; j < RX_SGE_TOTAL; j++) {
14855                 if (fp->rx_sge_mbuf_chain[j].m_map != NULL) {
14856                     bus_dmamap_unload(fp->rx_sge_mbuf_tag,
14857                                       fp->rx_sge_mbuf_chain[j].m_map);
14858                     bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
14859                                        fp->rx_sge_mbuf_chain[j].m_map);
14860                 }
14861             }
14862 
14863             if (fp->rx_sge_mbuf_spare_map != NULL) {
14864                 bus_dmamap_unload(fp->rx_sge_mbuf_tag,
14865                                   fp->rx_sge_mbuf_spare_map);
14866                 bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
14867                                    fp->rx_sge_mbuf_spare_map);
14868             }
14869 
14870             bus_dma_tag_destroy(fp->rx_sge_mbuf_tag);
14871             fp->rx_sge_mbuf_tag = NULL;
14872         }
14873     }
14874 
14875     /***************************/
14876     /* FW DECOMPRESSION BUFFER */
14877     /***************************/
14878 
14879     bxe_dma_free(sc, &sc->gz_buf_dma);
14880     sc->gz_buf = NULL;
14881     free(sc->gz_strm, M_DEVBUF);
14882     sc->gz_strm = NULL;
14883 
14884     /*******************/
14885     /* SLOW PATH QUEUE */
14886     /*******************/
14887 
14888     bxe_dma_free(sc, &sc->spq_dma);
14889     sc->spq = NULL;
14890 
14891     /*************/
14892     /* SLOW PATH */
14893     /*************/
14894 
14895     bxe_dma_free(sc, &sc->sp_dma);
14896     sc->sp = NULL;
14897 
14898     /***************/
14899     /* EVENT QUEUE */
14900     /***************/
14901 
14902     bxe_dma_free(sc, &sc->eq_dma);
14903     sc->eq = NULL;
14904 
14905     /************************/
14906     /* DEFAULT STATUS BLOCK */
14907     /************************/
14908 
14909     bxe_dma_free(sc, &sc->def_sb_dma);
14910     sc->def_sb = NULL;
14911 
14912     bus_dma_tag_destroy(sc->parent_dma_tag);
14913     sc->parent_dma_tag = NULL;
14914 }
14915 
14916 /*
14917  * Previous driver DMAE transaction may have occurred when pre-boot stage
14918  * ended and boot began. This would invalidate the addresses of the
14919  * transaction, resulting in was-error bit set in the PCI causing all
14920  * hw-to-host PCIe transactions to timeout. If this happened we want to clear
14921  * the interrupt which detected this from the pglueb and the was-done bit
14922  */
14923 static void
14924 bxe_prev_interrupted_dmae(struct bxe_softc *sc)
14925 {
14926     uint32_t val;
14927 
14928     if (!CHIP_IS_E1x(sc)) {
14929         val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS);
14930         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
14931             BLOGD(sc, DBG_LOAD,
14932                   "Clearing 'was-error' bit that was set in pglueb");
14933             REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc));
14934         }
14935     }
14936 }
14937 
14938 static int
14939 bxe_prev_mcp_done(struct bxe_softc *sc)
14940 {
14941     uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE,
14942                                  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
14943     if (!rc) {
14944         BLOGE(sc, "MCP response failure, aborting\n");
14945         return (-1);
14946     }
14947 
14948     return (0);
14949 }
14950 
14951 static struct bxe_prev_list_node *
14952 bxe_prev_path_get_entry(struct bxe_softc *sc)
14953 {
14954     struct bxe_prev_list_node *tmp;
14955 
14956     LIST_FOREACH(tmp, &bxe_prev_list, node) {
14957         if ((sc->pcie_bus == tmp->bus) &&
14958             (sc->pcie_device == tmp->slot) &&
14959             (SC_PATH(sc) == tmp->path)) {
14960             return (tmp);
14961         }
14962     }
14963 
14964     return (NULL);
14965 }
14966 
14967 static uint8_t
14968 bxe_prev_is_path_marked(struct bxe_softc *sc)
14969 {
14970     struct bxe_prev_list_node *tmp;
14971     int rc = FALSE;
14972 
14973     mtx_lock(&bxe_prev_mtx);
14974 
14975     tmp = bxe_prev_path_get_entry(sc);
14976     if (tmp) {
14977         if (tmp->aer) {
14978             BLOGD(sc, DBG_LOAD,
14979                   "Path %d/%d/%d was marked by AER\n",
14980                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
14981         } else {
14982             rc = TRUE;
14983             BLOGD(sc, DBG_LOAD,
14984                   "Path %d/%d/%d was already cleaned from previous drivers\n",
14985                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
14986         }
14987     }
14988 
14989     mtx_unlock(&bxe_prev_mtx);
14990 
14991     return (rc);
14992 }
14993 
14994 static int
14995 bxe_prev_mark_path(struct bxe_softc *sc,
14996                    uint8_t          after_undi)
14997 {
14998     struct bxe_prev_list_node *tmp;
14999 
15000     mtx_lock(&bxe_prev_mtx);
15001 
15002     /* Check whether the entry for this path already exists */
15003     tmp = bxe_prev_path_get_entry(sc);
15004     if (tmp) {
15005         if (!tmp->aer) {
15006             BLOGD(sc, DBG_LOAD,
15007                   "Re-marking AER in path %d/%d/%d\n",
15008                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15009         } else {
15010             BLOGD(sc, DBG_LOAD,
15011                   "Removing AER indication from path %d/%d/%d\n",
15012                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15013             tmp->aer = 0;
15014         }
15015 
15016         mtx_unlock(&bxe_prev_mtx);
15017         return (0);
15018     }
15019 
15020     mtx_unlock(&bxe_prev_mtx);
15021 
15022     /* Create an entry for this path and add it */
15023     tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF,
15024                  (M_NOWAIT | M_ZERO));
15025     if (!tmp) {
15026         BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n");
15027         return (-1);
15028     }
15029 
15030     tmp->bus  = sc->pcie_bus;
15031     tmp->slot = sc->pcie_device;
15032     tmp->path = SC_PATH(sc);
15033     tmp->aer  = 0;
15034     tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0;
15035 
15036     mtx_lock(&bxe_prev_mtx);
15037 
15038     BLOGD(sc, DBG_LOAD,
15039           "Marked path %d/%d/%d - finished previous unload\n",
15040           sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15041     LIST_INSERT_HEAD(&bxe_prev_list, tmp, node);
15042 
15043     mtx_unlock(&bxe_prev_mtx);
15044 
15045     return (0);
15046 }
15047 
15048 static int
15049 bxe_do_flr(struct bxe_softc *sc)
15050 {
15051     int i;
15052 
15053     /* only E2 and onwards support FLR */
15054     if (CHIP_IS_E1x(sc)) {
15055         BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n");
15056         return (-1);
15057     }
15058 
15059     /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
15060     if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
15061         BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n",
15062               sc->devinfo.bc_ver);
15063         return (-1);
15064     }
15065 
15066     /* Wait for Transaction Pending bit clean */
15067     for (i = 0; i < 4; i++) {
15068         if (i) {
15069             DELAY(((1 << (i - 1)) * 100) * 1000);
15070         }
15071 
15072         if (!bxe_is_pcie_pending(sc)) {
15073             goto clear;
15074         }
15075     }
15076 
15077     BLOGE(sc, "PCIE transaction is not cleared, "
15078               "proceeding with reset anyway\n");
15079 
15080 clear:
15081 
15082     BLOGD(sc, DBG_LOAD, "Initiating FLR\n");
15083     bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0);
15084 
15085     return (0);
15086 }
15087 
15088 struct bxe_mac_vals {
15089     uint32_t xmac_addr;
15090     uint32_t xmac_val;
15091     uint32_t emac_addr;
15092     uint32_t emac_val;
15093     uint32_t umac_addr;
15094     uint32_t umac_val;
15095     uint32_t bmac_addr;
15096     uint32_t bmac_val[2];
15097 };
15098 
15099 static void
15100 bxe_prev_unload_close_mac(struct bxe_softc *sc,
15101                           struct bxe_mac_vals *vals)
15102 {
15103     uint32_t val, base_addr, offset, mask, reset_reg;
15104     uint8_t mac_stopped = FALSE;
15105     uint8_t port = SC_PORT(sc);
15106     uint32_t wb_data[2];
15107 
15108     /* reset addresses as they also mark which values were changed */
15109     vals->bmac_addr = 0;
15110     vals->umac_addr = 0;
15111     vals->xmac_addr = 0;
15112     vals->emac_addr = 0;
15113 
15114     reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2);
15115 
15116     if (!CHIP_IS_E3(sc)) {
15117         val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
15118         mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
15119         if ((mask & reset_reg) && val) {
15120             BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n");
15121             base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM
15122                                     : NIG_REG_INGRESS_BMAC0_MEM;
15123             offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL
15124                                     : BIGMAC_REGISTER_BMAC_CONTROL;
15125 
15126             /*
15127              * use rd/wr since we cannot use dmae. This is safe
15128              * since MCP won't access the bus due to the request
15129              * to unload, and no function on the path can be
15130              * loaded at this time.
15131              */
15132             wb_data[0] = REG_RD(sc, base_addr + offset);
15133             wb_data[1] = REG_RD(sc, base_addr + offset + 0x4);
15134             vals->bmac_addr = base_addr + offset;
15135             vals->bmac_val[0] = wb_data[0];
15136             vals->bmac_val[1] = wb_data[1];
15137             wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
15138             REG_WR(sc, vals->bmac_addr, wb_data[0]);
15139             REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]);
15140         }
15141 
15142         BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n");
15143         vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4;
15144         vals->emac_val = REG_RD(sc, vals->emac_addr);
15145         REG_WR(sc, vals->emac_addr, 0);
15146         mac_stopped = TRUE;
15147     } else {
15148         if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
15149             BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n");
15150             base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
15151             val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI);
15152             REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1));
15153             REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1));
15154             vals->xmac_addr = base_addr + XMAC_REG_CTRL;
15155             vals->xmac_val = REG_RD(sc, vals->xmac_addr);
15156             REG_WR(sc, vals->xmac_addr, 0);
15157             mac_stopped = TRUE;
15158         }
15159 
15160         mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
15161         if (mask & reset_reg) {
15162             BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n");
15163             base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
15164             vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
15165             vals->umac_val = REG_RD(sc, vals->umac_addr);
15166             REG_WR(sc, vals->umac_addr, 0);
15167             mac_stopped = TRUE;
15168         }
15169     }
15170 
15171     if (mac_stopped) {
15172         DELAY(20000);
15173     }
15174 }
15175 
15176 #define BXE_PREV_UNDI_PROD_ADDR(p)  (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
15177 #define BXE_PREV_UNDI_RCQ(val)      ((val) & 0xffff)
15178 #define BXE_PREV_UNDI_BD(val)       ((val) >> 16 & 0xffff)
15179 #define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
15180 
15181 static void
15182 bxe_prev_unload_undi_inc(struct bxe_softc *sc,
15183                          uint8_t          port,
15184                          uint8_t          inc)
15185 {
15186     uint16_t rcq, bd;
15187     uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port));
15188 
15189     rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc;
15190     bd = BXE_PREV_UNDI_BD(tmp_reg) + inc;
15191 
15192     tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd);
15193     REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg);
15194 
15195     BLOGD(sc, DBG_LOAD,
15196           "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
15197           port, bd, rcq);
15198 }
15199 
15200 static int
15201 bxe_prev_unload_common(struct bxe_softc *sc)
15202 {
15203     uint32_t reset_reg, tmp_reg = 0, rc;
15204     uint8_t prev_undi = FALSE;
15205     struct bxe_mac_vals mac_vals;
15206     uint32_t timer_count = 1000;
15207     uint32_t prev_brb;
15208 
15209     /*
15210      * It is possible a previous function received 'common' answer,
15211      * but hasn't loaded yet, therefore creating a scenario of
15212      * multiple functions receiving 'common' on the same path.
15213      */
15214     BLOGD(sc, DBG_LOAD, "Common unload Flow\n");
15215 
15216     memset(&mac_vals, 0, sizeof(mac_vals));
15217 
15218     if (bxe_prev_is_path_marked(sc)) {
15219         return (bxe_prev_mcp_done(sc));
15220     }
15221 
15222     reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1);
15223 
15224     /* Reset should be performed after BRB is emptied */
15225     if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
15226         /* Close the MAC Rx to prevent BRB from filling up */
15227         bxe_prev_unload_close_mac(sc, &mac_vals);
15228 
15229         /* close LLH filters towards the BRB */
15230         elink_set_rx_filter(&sc->link_params, 0);
15231 
15232         /*
15233          * Check if the UNDI driver was previously loaded.
15234          * UNDI driver initializes CID offset for normal bell to 0x7
15235          */
15236         if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
15237             tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
15238             if (tmp_reg == 0x7) {
15239                 BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n");
15240                 prev_undi = TRUE;
15241                 /* clear the UNDI indication */
15242                 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0);
15243                 /* clear possible idle check errors */
15244                 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0);
15245             }
15246         }
15247 
15248         /* wait until BRB is empty */
15249         tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15250         while (timer_count) {
15251             prev_brb = tmp_reg;
15252 
15253             tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15254             if (!tmp_reg) {
15255                 break;
15256             }
15257 
15258             BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg);
15259 
15260             /* reset timer as long as BRB actually gets emptied */
15261             if (prev_brb > tmp_reg) {
15262                 timer_count = 1000;
15263             } else {
15264                 timer_count--;
15265             }
15266 
15267             /* If UNDI resides in memory, manually increment it */
15268             if (prev_undi) {
15269                 bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1);
15270             }
15271 
15272             DELAY(10);
15273         }
15274 
15275         if (!timer_count) {
15276             BLOGE(sc, "Failed to empty BRB\n");
15277         }
15278     }
15279 
15280     /* No packets are in the pipeline, path is ready for reset */
15281     bxe_reset_common(sc);
15282 
15283     if (mac_vals.xmac_addr) {
15284         REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val);
15285     }
15286     if (mac_vals.umac_addr) {
15287         REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val);
15288     }
15289     if (mac_vals.emac_addr) {
15290         REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val);
15291     }
15292     if (mac_vals.bmac_addr) {
15293         REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
15294         REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
15295     }
15296 
15297     rc = bxe_prev_mark_path(sc, prev_undi);
15298     if (rc) {
15299         bxe_prev_mcp_done(sc);
15300         return (rc);
15301     }
15302 
15303     return (bxe_prev_mcp_done(sc));
15304 }
15305 
15306 static int
15307 bxe_prev_unload_uncommon(struct bxe_softc *sc)
15308 {
15309     int rc;
15310 
15311     BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n");
15312 
15313     /* Test if previous unload process was already finished for this path */
15314     if (bxe_prev_is_path_marked(sc)) {
15315         return (bxe_prev_mcp_done(sc));
15316     }
15317 
15318     BLOGD(sc, DBG_LOAD, "Path is unmarked\n");
15319 
15320     /*
15321      * If function has FLR capabilities, and existing FW version matches
15322      * the one required, then FLR will be sufficient to clean any residue
15323      * left by previous driver
15324      */
15325     rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION);
15326     if (!rc) {
15327         /* fw version is good */
15328         BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n");
15329         rc = bxe_do_flr(sc);
15330     }
15331 
15332     if (!rc) {
15333         /* FLR was performed */
15334         BLOGD(sc, DBG_LOAD, "FLR successful\n");
15335         return (0);
15336     }
15337 
15338     BLOGD(sc, DBG_LOAD, "Could not FLR\n");
15339 
15340     /* Close the MCP request, return failure*/
15341     rc = bxe_prev_mcp_done(sc);
15342     if (!rc) {
15343         rc = BXE_PREV_WAIT_NEEDED;
15344     }
15345 
15346     return (rc);
15347 }
15348 
15349 static int
15350 bxe_prev_unload(struct bxe_softc *sc)
15351 {
15352     int time_counter = 10;
15353     uint32_t fw, hw_lock_reg, hw_lock_val;
15354     uint32_t rc = 0;
15355 
15356     /*
15357      * Clear HW from errors which may have resulted from an interrupted
15358      * DMAE transaction.
15359      */
15360     bxe_prev_interrupted_dmae(sc);
15361 
15362     /* Release previously held locks */
15363     hw_lock_reg =
15364         (SC_FUNC(sc) <= 5) ?
15365             (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) :
15366             (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8);
15367 
15368     hw_lock_val = (REG_RD(sc, hw_lock_reg));
15369     if (hw_lock_val) {
15370         if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
15371             BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n");
15372             REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
15373                    (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc)));
15374         }
15375         BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n");
15376         REG_WR(sc, hw_lock_reg, 0xffffffff);
15377     } else {
15378         BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n");
15379     }
15380 
15381     if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) {
15382         BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n");
15383         REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0);
15384     }
15385 
15386     do {
15387         /* Lock MCP using an unload request */
15388         fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
15389         if (!fw) {
15390             BLOGE(sc, "MCP response failure, aborting\n");
15391             rc = -1;
15392             break;
15393         }
15394 
15395         if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
15396             rc = bxe_prev_unload_common(sc);
15397             break;
15398         }
15399 
15400         /* non-common reply from MCP night require looping */
15401         rc = bxe_prev_unload_uncommon(sc);
15402         if (rc != BXE_PREV_WAIT_NEEDED) {
15403             break;
15404         }
15405 
15406         DELAY(20000);
15407     } while (--time_counter);
15408 
15409     if (!time_counter || rc) {
15410         BLOGE(sc, "Failed to unload previous driver!"
15411             " time_counter %d rc %d\n", time_counter, rc);
15412         rc = -1;
15413     }
15414 
15415     return (rc);
15416 }
15417 
15418 void
15419 bxe_dcbx_set_state(struct bxe_softc *sc,
15420                    uint8_t          dcb_on,
15421                    uint32_t         dcbx_enabled)
15422 {
15423     if (!CHIP_IS_E1x(sc)) {
15424         sc->dcb_state = dcb_on;
15425         sc->dcbx_enabled = dcbx_enabled;
15426     } else {
15427         sc->dcb_state = FALSE;
15428         sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID;
15429     }
15430     BLOGD(sc, DBG_LOAD,
15431           "DCB state [%s:%s]\n",
15432           dcb_on ? "ON" : "OFF",
15433           (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" :
15434           (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" :
15435           (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ?
15436           "on-chip with negotiation" : "invalid");
15437 }
15438 
15439 /* must be called after sriov-enable */
15440 static int
15441 bxe_set_qm_cid_count(struct bxe_softc *sc)
15442 {
15443     int cid_count = BXE_L2_MAX_CID(sc);
15444 
15445     if (IS_SRIOV(sc)) {
15446         cid_count += BXE_VF_CIDS;
15447     }
15448 
15449     if (CNIC_SUPPORT(sc)) {
15450         cid_count += CNIC_CID_MAX;
15451     }
15452 
15453     return (roundup(cid_count, QM_CID_ROUND));
15454 }
15455 
15456 static void
15457 bxe_init_multi_cos(struct bxe_softc *sc)
15458 {
15459     int pri, cos;
15460 
15461     uint32_t pri_map = 0; /* XXX change to user config */
15462 
15463     for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) {
15464         cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4));
15465         if (cos < sc->max_cos) {
15466             sc->prio_to_cos[pri] = cos;
15467         } else {
15468             BLOGW(sc, "Invalid COS %d for priority %d "
15469                       "(max COS is %d), setting to 0\n",
15470                   cos, pri, (sc->max_cos - 1));
15471             sc->prio_to_cos[pri] = 0;
15472         }
15473     }
15474 }
15475 
15476 static int
15477 bxe_sysctl_state(SYSCTL_HANDLER_ARGS)
15478 {
15479     struct bxe_softc *sc;
15480     int error, result;
15481 
15482     result = 0;
15483     error = sysctl_handle_int(oidp, &result, 0, req);
15484 
15485     if (error || !req->newptr) {
15486         return (error);
15487     }
15488 
15489     if (result == 1) {
15490         uint32_t  temp;
15491         sc = (struct bxe_softc *)arg1;
15492 
15493         BLOGI(sc, "... dumping driver state ...\n");
15494         temp = SHMEM2_RD(sc, temperature_in_half_celsius);
15495         BLOGI(sc, "\t Device Temperature = %d Celsius\n", (temp/2));
15496     }
15497 
15498     return (error);
15499 }
15500 
15501 static int
15502 bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS)
15503 {
15504     struct bxe_softc *sc = (struct bxe_softc *)arg1;
15505     uint32_t *eth_stats = (uint32_t *)&sc->eth_stats;
15506     uint32_t *offset;
15507     uint64_t value = 0;
15508     int index = (int)arg2;
15509 
15510     if (index >= BXE_NUM_ETH_STATS) {
15511         BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index);
15512         return (-1);
15513     }
15514 
15515     offset = (eth_stats + bxe_eth_stats_arr[index].offset);
15516 
15517     switch (bxe_eth_stats_arr[index].size) {
15518     case 4:
15519         value = (uint64_t)*offset;
15520         break;
15521     case 8:
15522         value = HILO_U64(*offset, *(offset + 1));
15523         break;
15524     default:
15525         BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n",
15526               index, bxe_eth_stats_arr[index].size);
15527         return (-1);
15528     }
15529 
15530     return (sysctl_handle_64(oidp, &value, 0, req));
15531 }
15532 
15533 static int
15534 bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS)
15535 {
15536     struct bxe_softc *sc = (struct bxe_softc *)arg1;
15537     uint32_t *eth_stats;
15538     uint32_t *offset;
15539     uint64_t value = 0;
15540     uint32_t q_stat = (uint32_t)arg2;
15541     uint32_t fp_index = ((q_stat >> 16) & 0xffff);
15542     uint32_t index = (q_stat & 0xffff);
15543 
15544     eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats;
15545 
15546     if (index >= BXE_NUM_ETH_Q_STATS) {
15547         BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index);
15548         return (-1);
15549     }
15550 
15551     offset = (eth_stats + bxe_eth_q_stats_arr[index].offset);
15552 
15553     switch (bxe_eth_q_stats_arr[index].size) {
15554     case 4:
15555         value = (uint64_t)*offset;
15556         break;
15557     case 8:
15558         value = HILO_U64(*offset, *(offset + 1));
15559         break;
15560     default:
15561         BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n",
15562               index, bxe_eth_q_stats_arr[index].size);
15563         return (-1);
15564     }
15565 
15566     return (sysctl_handle_64(oidp, &value, 0, req));
15567 }
15568 
15569 static void
15570 bxe_add_sysctls(struct bxe_softc *sc)
15571 {
15572     struct sysctl_ctx_list *ctx;
15573     struct sysctl_oid_list *children;
15574     struct sysctl_oid *queue_top, *queue;
15575     struct sysctl_oid_list *queue_top_children, *queue_children;
15576     char queue_num_buf[32];
15577     uint32_t q_stat;
15578     int i, j;
15579 
15580     ctx = device_get_sysctl_ctx(sc->dev);
15581     children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
15582 
15583     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version",
15584                       CTLFLAG_RD, BXE_DRIVER_VERSION, 0,
15585                       "version");
15586 
15587     snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d",
15588              BCM_5710_FW_MAJOR_VERSION,
15589              BCM_5710_FW_MINOR_VERSION,
15590              BCM_5710_FW_REVISION_VERSION,
15591              BCM_5710_FW_ENGINEERING_VERSION);
15592 
15593     snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s",
15594         ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION)     ? "Single"  :
15595          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD)   ? "MF-SD"   :
15596          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI)   ? "MF-SI"   :
15597          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" :
15598                                                                 "Unknown"));
15599     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics",
15600                     CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0,
15601                     "multifunction vnics per port");
15602 
15603     snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d",
15604         ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" :
15605          (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" :
15606          (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" :
15607                                               "???GT/s"),
15608         sc->devinfo.pcie_link_width);
15609 
15610     sc->debug = bxe_debug;
15611 
15612 #if __FreeBSD_version >= 900000
15613     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version",
15614                       CTLFLAG_RD, sc->devinfo.bc_ver_str, 0,
15615                       "bootcode version");
15616     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version",
15617                       CTLFLAG_RD, sc->fw_ver_str, 0,
15618                       "firmware version");
15619     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode",
15620                       CTLFLAG_RD, sc->mf_mode_str, 0,
15621                       "multifunction mode");
15622     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr",
15623                       CTLFLAG_RD, sc->mac_addr_str, 0,
15624                       "mac address");
15625     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link",
15626                       CTLFLAG_RD, sc->pci_link_str, 0,
15627                       "pci link status");
15628     SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "debug",
15629                     CTLFLAG_RW, &sc->debug,
15630                     "debug logging mode");
15631 #else
15632     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version",
15633                       CTLFLAG_RD, &sc->devinfo.bc_ver_str, 0,
15634                       "bootcode version");
15635     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version",
15636                       CTLFLAG_RD, &sc->fw_ver_str, 0,
15637                       "firmware version");
15638     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode",
15639                       CTLFLAG_RD, &sc->mf_mode_str, 0,
15640                       "multifunction mode");
15641     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr",
15642                       CTLFLAG_RD, &sc->mac_addr_str, 0,
15643                       "mac address");
15644     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link",
15645                       CTLFLAG_RD, &sc->pci_link_str, 0,
15646                       "pci link status");
15647     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "debug",
15648                     CTLFLAG_RW, &sc->debug, 0,
15649                     "debug logging mode");
15650 #endif /* #if __FreeBSD_version >= 900000 */
15651 
15652     sc->trigger_grcdump = 0;
15653     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "trigger_grcdump",
15654                    CTLFLAG_RW, &sc->trigger_grcdump, 0,
15655                    "trigger grcdump should be invoked"
15656                    "  before collecting grcdump");
15657 
15658     sc->grcdump_started = 0;
15659     sc->grcdump_done = 0;
15660     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "grcdump_done",
15661                    CTLFLAG_RD, &sc->grcdump_done, 0,
15662                    "set by driver when grcdump is done");
15663 
15664     sc->rx_budget = bxe_rx_budget;
15665     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget",
15666                     CTLFLAG_RW, &sc->rx_budget, 0,
15667                     "rx processing budget");
15668 
15669     SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state",
15670                     CTLTYPE_UINT | CTLFLAG_RW, sc, 0,
15671                     bxe_sysctl_state, "IU", "dump driver state");
15672 
15673     for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
15674         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
15675                         bxe_eth_stats_arr[i].string,
15676                         CTLTYPE_U64 | CTLFLAG_RD, sc, i,
15677                         bxe_sysctl_eth_stat, "LU",
15678                         bxe_eth_stats_arr[i].string);
15679     }
15680 
15681     /* add a new parent node for all queues "dev.bxe.#.queue" */
15682     queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue",
15683                                 CTLFLAG_RD, NULL, "queue");
15684     queue_top_children = SYSCTL_CHILDREN(queue_top);
15685 
15686     for (i = 0; i < sc->num_queues; i++) {
15687         /* add a new parent node for a single queue "dev.bxe.#.queue.#" */
15688         snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i);
15689         queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO,
15690                                 queue_num_buf, CTLFLAG_RD, NULL,
15691                                 "single queue");
15692         queue_children = SYSCTL_CHILDREN(queue);
15693 
15694         for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) {
15695             q_stat = ((i << 16) | j);
15696             SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO,
15697                             bxe_eth_q_stats_arr[j].string,
15698                             CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat,
15699                             bxe_sysctl_eth_q_stat, "LU",
15700                             bxe_eth_q_stats_arr[j].string);
15701         }
15702     }
15703 }
15704 
15705 static int
15706 bxe_alloc_buf_rings(struct bxe_softc *sc)
15707 {
15708 #if __FreeBSD_version >= 800000
15709 
15710     int i;
15711     struct bxe_fastpath *fp;
15712 
15713     for (i = 0; i < sc->num_queues; i++) {
15714 
15715         fp = &sc->fp[i];
15716 
15717         fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF,
15718                                    M_NOWAIT, &fp->tx_mtx);
15719         if (fp->tx_br == NULL)
15720             return (-1);
15721     }
15722 #endif
15723     return (0);
15724 }
15725 
15726 static void
15727 bxe_free_buf_rings(struct bxe_softc *sc)
15728 {
15729 #if __FreeBSD_version >= 800000
15730 
15731     int i;
15732     struct bxe_fastpath *fp;
15733 
15734     for (i = 0; i < sc->num_queues; i++) {
15735 
15736         fp = &sc->fp[i];
15737 
15738         if (fp->tx_br) {
15739             buf_ring_free(fp->tx_br, M_DEVBUF);
15740             fp->tx_br = NULL;
15741         }
15742     }
15743 
15744 #endif
15745 }
15746 
15747 static void
15748 bxe_init_fp_mutexs(struct bxe_softc *sc)
15749 {
15750     int i;
15751     struct bxe_fastpath *fp;
15752 
15753     for (i = 0; i < sc->num_queues; i++) {
15754 
15755         fp = &sc->fp[i];
15756 
15757         snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name),
15758             "bxe%d_fp%d_tx_lock", sc->unit, i);
15759         mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF);
15760 
15761         snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name),
15762             "bxe%d_fp%d_rx_lock", sc->unit, i);
15763         mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF);
15764     }
15765 }
15766 
15767 static void
15768 bxe_destroy_fp_mutexs(struct bxe_softc *sc)
15769 {
15770     int i;
15771     struct bxe_fastpath *fp;
15772 
15773     for (i = 0; i < sc->num_queues; i++) {
15774 
15775         fp = &sc->fp[i];
15776 
15777         if (mtx_initialized(&fp->tx_mtx)) {
15778             mtx_destroy(&fp->tx_mtx);
15779         }
15780 
15781         if (mtx_initialized(&fp->rx_mtx)) {
15782             mtx_destroy(&fp->rx_mtx);
15783         }
15784     }
15785 }
15786 
15787 
15788 /*
15789  * Device attach function.
15790  *
15791  * Allocates device resources, performs secondary chip identification, and
15792  * initializes driver instance variables. This function is called from driver
15793  * load after a successful probe.
15794  *
15795  * Returns:
15796  *   0 = Success, >0 = Failure
15797  */
15798 static int
15799 bxe_attach(device_t dev)
15800 {
15801     struct bxe_softc *sc;
15802 
15803     sc = device_get_softc(dev);
15804 
15805     BLOGD(sc, DBG_LOAD, "Starting attach...\n");
15806 
15807     sc->state = BXE_STATE_CLOSED;
15808 
15809     sc->dev  = dev;
15810     sc->unit = device_get_unit(dev);
15811 
15812     BLOGD(sc, DBG_LOAD, "softc = %p\n", sc);
15813 
15814     sc->pcie_bus    = pci_get_bus(dev);
15815     sc->pcie_device = pci_get_slot(dev);
15816     sc->pcie_func   = pci_get_function(dev);
15817 
15818     /* enable bus master capability */
15819     pci_enable_busmaster(dev);
15820 
15821     /* get the BARs */
15822     if (bxe_allocate_bars(sc) != 0) {
15823         return (ENXIO);
15824     }
15825 
15826     /* initialize the mutexes */
15827     bxe_init_mutexes(sc);
15828 
15829     /* prepare the periodic callout */
15830     callout_init(&sc->periodic_callout, 0);
15831 
15832     /* prepare the chip taskqueue */
15833     sc->chip_tq_flags = CHIP_TQ_NONE;
15834     snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name),
15835              "bxe%d_chip_tq", sc->unit);
15836     TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc);
15837     sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT,
15838                                    taskqueue_thread_enqueue,
15839                                    &sc->chip_tq);
15840     taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */
15841                             "%s", sc->chip_tq_name);
15842 
15843     /* get device info and set params */
15844     if (bxe_get_device_info(sc) != 0) {
15845         BLOGE(sc, "getting device info\n");
15846         bxe_deallocate_bars(sc);
15847         pci_disable_busmaster(dev);
15848         return (ENXIO);
15849     }
15850 
15851     /* get final misc params */
15852     bxe_get_params(sc);
15853 
15854     /* set the default MTU (changed via ifconfig) */
15855     sc->mtu = ETHERMTU;
15856 
15857     bxe_set_modes_bitmap(sc);
15858 
15859     /* XXX
15860      * If in AFEX mode and the function is configured for FCoE
15861      * then bail... no L2 allowed.
15862      */
15863 
15864     /* get phy settings from shmem and 'and' against admin settings */
15865     bxe_get_phy_info(sc);
15866 
15867     /* initialize the FreeBSD ifnet interface */
15868     if (bxe_init_ifnet(sc) != 0) {
15869         bxe_release_mutexes(sc);
15870         bxe_deallocate_bars(sc);
15871         pci_disable_busmaster(dev);
15872         return (ENXIO);
15873     }
15874 
15875     if (bxe_add_cdev(sc) != 0) {
15876         if (sc->ifp != NULL) {
15877             ether_ifdetach(sc->ifp);
15878         }
15879         ifmedia_removeall(&sc->ifmedia);
15880         bxe_release_mutexes(sc);
15881         bxe_deallocate_bars(sc);
15882         pci_disable_busmaster(dev);
15883         return (ENXIO);
15884     }
15885 
15886     /* allocate device interrupts */
15887     if (bxe_interrupt_alloc(sc) != 0) {
15888         bxe_del_cdev(sc);
15889         if (sc->ifp != NULL) {
15890             ether_ifdetach(sc->ifp);
15891         }
15892         ifmedia_removeall(&sc->ifmedia);
15893         bxe_release_mutexes(sc);
15894         bxe_deallocate_bars(sc);
15895         pci_disable_busmaster(dev);
15896         return (ENXIO);
15897     }
15898 
15899     bxe_init_fp_mutexs(sc);
15900 
15901     if (bxe_alloc_buf_rings(sc) != 0) {
15902 	bxe_free_buf_rings(sc);
15903         bxe_interrupt_free(sc);
15904         bxe_del_cdev(sc);
15905         if (sc->ifp != NULL) {
15906             ether_ifdetach(sc->ifp);
15907         }
15908         ifmedia_removeall(&sc->ifmedia);
15909         bxe_release_mutexes(sc);
15910         bxe_deallocate_bars(sc);
15911         pci_disable_busmaster(dev);
15912         return (ENXIO);
15913     }
15914 
15915     /* allocate ilt */
15916     if (bxe_alloc_ilt_mem(sc) != 0) {
15917 	bxe_free_buf_rings(sc);
15918         bxe_interrupt_free(sc);
15919         bxe_del_cdev(sc);
15920         if (sc->ifp != NULL) {
15921             ether_ifdetach(sc->ifp);
15922         }
15923         ifmedia_removeall(&sc->ifmedia);
15924         bxe_release_mutexes(sc);
15925         bxe_deallocate_bars(sc);
15926         pci_disable_busmaster(dev);
15927         return (ENXIO);
15928     }
15929 
15930     /* allocate the host hardware/software hsi structures */
15931     if (bxe_alloc_hsi_mem(sc) != 0) {
15932         bxe_free_ilt_mem(sc);
15933 	bxe_free_buf_rings(sc);
15934         bxe_interrupt_free(sc);
15935         bxe_del_cdev(sc);
15936         if (sc->ifp != NULL) {
15937             ether_ifdetach(sc->ifp);
15938         }
15939         ifmedia_removeall(&sc->ifmedia);
15940         bxe_release_mutexes(sc);
15941         bxe_deallocate_bars(sc);
15942         pci_disable_busmaster(dev);
15943         return (ENXIO);
15944     }
15945 
15946     /* need to reset chip if UNDI was active */
15947     if (IS_PF(sc) && !BXE_NOMCP(sc)) {
15948         /* init fw_seq */
15949         sc->fw_seq =
15950             (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
15951              DRV_MSG_SEQ_NUMBER_MASK);
15952         BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq);
15953         bxe_prev_unload(sc);
15954     }
15955 
15956 #if 1
15957     /* XXX */
15958     bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
15959 #else
15960     if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) &&
15961         SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) &&
15962         SHMEM2_RD(sc, dcbx_lldp_params_offset) &&
15963         SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) {
15964         bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON);
15965         bxe_dcbx_init_params(sc);
15966     } else {
15967         bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
15968     }
15969 #endif
15970 
15971     /* calculate qm_cid_count */
15972     sc->qm_cid_count = bxe_set_qm_cid_count(sc);
15973     BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count);
15974 
15975     sc->max_cos = 1;
15976     bxe_init_multi_cos(sc);
15977 
15978     bxe_add_sysctls(sc);
15979 
15980     return (0);
15981 }
15982 
15983 /*
15984  * Device detach function.
15985  *
15986  * Stops the controller, resets the controller, and releases resources.
15987  *
15988  * Returns:
15989  *   0 = Success, >0 = Failure
15990  */
15991 static int
15992 bxe_detach(device_t dev)
15993 {
15994     struct bxe_softc *sc;
15995     if_t ifp;
15996 
15997     sc = device_get_softc(dev);
15998 
15999     BLOGD(sc, DBG_LOAD, "Starting detach...\n");
16000 
16001     ifp = sc->ifp;
16002     if (ifp != NULL && if_vlantrunkinuse(ifp)) {
16003         BLOGE(sc, "Cannot detach while VLANs are in use.\n");
16004         return(EBUSY);
16005     }
16006 
16007     bxe_del_cdev(sc);
16008 
16009     /* stop the periodic callout */
16010     bxe_periodic_stop(sc);
16011 
16012     /* stop the chip taskqueue */
16013     atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE);
16014     if (sc->chip_tq) {
16015         taskqueue_drain(sc->chip_tq, &sc->chip_tq_task);
16016         taskqueue_free(sc->chip_tq);
16017         sc->chip_tq = NULL;
16018     }
16019 
16020     /* stop and reset the controller if it was open */
16021     if (sc->state != BXE_STATE_CLOSED) {
16022         BXE_CORE_LOCK(sc);
16023         bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE);
16024         sc->state = BXE_STATE_DISABLED;
16025         BXE_CORE_UNLOCK(sc);
16026     }
16027 
16028     /* release the network interface */
16029     if (ifp != NULL) {
16030         ether_ifdetach(ifp);
16031     }
16032     ifmedia_removeall(&sc->ifmedia);
16033 
16034     /* XXX do the following based on driver state... */
16035 
16036     /* free the host hardware/software hsi structures */
16037     bxe_free_hsi_mem(sc);
16038 
16039     /* free ilt */
16040     bxe_free_ilt_mem(sc);
16041 
16042     bxe_free_buf_rings(sc);
16043 
16044     /* release the interrupts */
16045     bxe_interrupt_free(sc);
16046 
16047     /* Release the mutexes*/
16048     bxe_destroy_fp_mutexs(sc);
16049     bxe_release_mutexes(sc);
16050 
16051 
16052     /* Release the PCIe BAR mapped memory */
16053     bxe_deallocate_bars(sc);
16054 
16055     /* Release the FreeBSD interface. */
16056     if (sc->ifp != NULL) {
16057         if_free(sc->ifp);
16058     }
16059 
16060     pci_disable_busmaster(dev);
16061 
16062     return (0);
16063 }
16064 
16065 /*
16066  * Device shutdown function.
16067  *
16068  * Stops and resets the controller.
16069  *
16070  * Returns:
16071  *   Nothing
16072  */
16073 static int
16074 bxe_shutdown(device_t dev)
16075 {
16076     struct bxe_softc *sc;
16077 
16078     sc = device_get_softc(dev);
16079 
16080     BLOGD(sc, DBG_LOAD, "Starting shutdown...\n");
16081 
16082     /* stop the periodic callout */
16083     bxe_periodic_stop(sc);
16084 
16085     BXE_CORE_LOCK(sc);
16086     bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE);
16087     BXE_CORE_UNLOCK(sc);
16088 
16089     return (0);
16090 }
16091 
16092 void
16093 bxe_igu_ack_sb(struct bxe_softc *sc,
16094                uint8_t          igu_sb_id,
16095                uint8_t          segment,
16096                uint16_t         index,
16097                uint8_t          op,
16098                uint8_t          update)
16099 {
16100     uint32_t igu_addr = sc->igu_base_addr;
16101     igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
16102     bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr);
16103 }
16104 
16105 static void
16106 bxe_igu_clear_sb_gen(struct bxe_softc *sc,
16107                      uint8_t          func,
16108                      uint8_t          idu_sb_id,
16109                      uint8_t          is_pf)
16110 {
16111     uint32_t data, ctl, cnt = 100;
16112     uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
16113     uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
16114     uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
16115     uint32_t sb_bit =  1 << (idu_sb_id%32);
16116     uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
16117     uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
16118 
16119     /* Not supported in BC mode */
16120     if (CHIP_INT_MODE_IS_BC(sc)) {
16121         return;
16122     }
16123 
16124     data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup <<
16125              IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
16126             IGU_REGULAR_CLEANUP_SET |
16127             IGU_REGULAR_BCLEANUP);
16128 
16129     ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) |
16130            (func_encode << IGU_CTRL_REG_FID_SHIFT) |
16131            (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT));
16132 
16133     BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16134             data, igu_addr_data);
16135     REG_WR(sc, igu_addr_data, data);
16136 
16137     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16138                       BUS_SPACE_BARRIER_WRITE);
16139     mb();
16140 
16141     BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16142             ctl, igu_addr_ctl);
16143     REG_WR(sc, igu_addr_ctl, ctl);
16144 
16145     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16146                       BUS_SPACE_BARRIER_WRITE);
16147     mb();
16148 
16149     /* wait for clean up to finish */
16150     while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) {
16151         DELAY(20000);
16152     }
16153 
16154     if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) {
16155         BLOGD(sc, DBG_LOAD,
16156               "Unable to finish IGU cleanup: "
16157               "idu_sb_id %d offset %d bit %d (cnt %d)\n",
16158               idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
16159     }
16160 }
16161 
16162 static void
16163 bxe_igu_clear_sb(struct bxe_softc *sc,
16164                  uint8_t          idu_sb_id)
16165 {
16166     bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/);
16167 }
16168 
16169 
16170 
16171 
16172 
16173 
16174 
16175 /*******************/
16176 /* ECORE CALLBACKS */
16177 /*******************/
16178 
16179 static void
16180 bxe_reset_common(struct bxe_softc *sc)
16181 {
16182     uint32_t val = 0x1400;
16183 
16184     /* reset_common */
16185     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f);
16186 
16187     if (CHIP_IS_E3(sc)) {
16188         val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
16189         val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
16190     }
16191 
16192     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val);
16193 }
16194 
16195 static void
16196 bxe_common_init_phy(struct bxe_softc *sc)
16197 {
16198     uint32_t shmem_base[2];
16199     uint32_t shmem2_base[2];
16200 
16201     /* Avoid common init in case MFW supports LFA */
16202     if (SHMEM2_RD(sc, size) >
16203         (uint32_t)offsetof(struct shmem2_region,
16204                            lfa_host_addr[SC_PORT(sc)])) {
16205         return;
16206     }
16207 
16208     shmem_base[0]  = sc->devinfo.shmem_base;
16209     shmem2_base[0] = sc->devinfo.shmem2_base;
16210 
16211     if (!CHIP_IS_E1x(sc)) {
16212         shmem_base[1]  = SHMEM2_RD(sc, other_shmem_base_addr);
16213         shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr);
16214     }
16215 
16216     bxe_acquire_phy_lock(sc);
16217     elink_common_init_phy(sc, shmem_base, shmem2_base,
16218                           sc->devinfo.chip_id, 0);
16219     bxe_release_phy_lock(sc);
16220 }
16221 
16222 static void
16223 bxe_pf_disable(struct bxe_softc *sc)
16224 {
16225     uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
16226 
16227     val &= ~IGU_PF_CONF_FUNC_EN;
16228 
16229     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
16230     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
16231     REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0);
16232 }
16233 
16234 static void
16235 bxe_init_pxp(struct bxe_softc *sc)
16236 {
16237     uint16_t devctl;
16238     int r_order, w_order;
16239 
16240     devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2);
16241 
16242     BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl);
16243 
16244     w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5);
16245 
16246     if (sc->mrrs == -1) {
16247         r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12);
16248     } else {
16249         BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs);
16250         r_order = sc->mrrs;
16251     }
16252 
16253     ecore_init_pxp_arb(sc, r_order, w_order);
16254 }
16255 
16256 static uint32_t
16257 bxe_get_pretend_reg(struct bxe_softc *sc)
16258 {
16259     uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0;
16260     uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base);
16261     return (base + (SC_ABS_FUNC(sc)) * stride);
16262 }
16263 
16264 /*
16265  * Called only on E1H or E2.
16266  * When pretending to be PF, the pretend value is the function number 0..7.
16267  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
16268  * combination.
16269  */
16270 static int
16271 bxe_pretend_func(struct bxe_softc *sc,
16272                  uint16_t         pretend_func_val)
16273 {
16274     uint32_t pretend_reg;
16275 
16276     if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) {
16277         return (-1);
16278     }
16279 
16280     /* get my own pretend register */
16281     pretend_reg = bxe_get_pretend_reg(sc);
16282     REG_WR(sc, pretend_reg, pretend_func_val);
16283     REG_RD(sc, pretend_reg);
16284     return (0);
16285 }
16286 
16287 static void
16288 bxe_iov_init_dmae(struct bxe_softc *sc)
16289 {
16290     return;
16291 }
16292 
16293 static void
16294 bxe_iov_init_dq(struct bxe_softc *sc)
16295 {
16296     return;
16297 }
16298 
16299 /* send a NIG loopback debug packet */
16300 static void
16301 bxe_lb_pckt(struct bxe_softc *sc)
16302 {
16303     uint32_t wb_write[3];
16304 
16305     /* Ethernet source and destination addresses */
16306     wb_write[0] = 0x55555555;
16307     wb_write[1] = 0x55555555;
16308     wb_write[2] = 0x20;     /* SOP */
16309     REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16310 
16311     /* NON-IP protocol */
16312     wb_write[0] = 0x09000000;
16313     wb_write[1] = 0x55555555;
16314     wb_write[2] = 0x10;     /* EOP, eop_bvalid = 0 */
16315     REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16316 }
16317 
16318 /*
16319  * Some of the internal memories are not directly readable from the driver.
16320  * To test them we send debug packets.
16321  */
16322 static int
16323 bxe_int_mem_test(struct bxe_softc *sc)
16324 {
16325     int factor;
16326     int count, i;
16327     uint32_t val = 0;
16328 
16329     if (CHIP_REV_IS_FPGA(sc)) {
16330         factor = 120;
16331     } else if (CHIP_REV_IS_EMUL(sc)) {
16332         factor = 200;
16333     } else {
16334         factor = 1;
16335     }
16336 
16337     /* disable inputs of parser neighbor blocks */
16338     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16339     REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16340     REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16341     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16342 
16343     /*  write 0 to parser credits for CFC search request */
16344     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16345 
16346     /* send Ethernet packet */
16347     bxe_lb_pckt(sc);
16348 
16349     /* TODO do i reset NIG statistic? */
16350     /* Wait until NIG register shows 1 packet of size 0x10 */
16351     count = 1000 * factor;
16352     while (count) {
16353         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16354         val = *BXE_SP(sc, wb_data[0]);
16355         if (val == 0x10) {
16356             break;
16357         }
16358 
16359         DELAY(10000);
16360         count--;
16361     }
16362 
16363     if (val != 0x10) {
16364         BLOGE(sc, "NIG timeout val=0x%x\n", val);
16365         return (-1);
16366     }
16367 
16368     /* wait until PRS register shows 1 packet */
16369     count = (1000 * factor);
16370     while (count) {
16371         val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16372         if (val == 1) {
16373             break;
16374         }
16375 
16376         DELAY(10000);
16377         count--;
16378     }
16379 
16380     if (val != 0x1) {
16381         BLOGE(sc, "PRS timeout val=0x%x\n", val);
16382         return (-2);
16383     }
16384 
16385     /* Reset and init BRB, PRS */
16386     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
16387     DELAY(50000);
16388     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
16389     DELAY(50000);
16390     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16391     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16392 
16393     /* Disable inputs of parser neighbor blocks */
16394     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16395     REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16396     REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16397     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16398 
16399     /* Write 0 to parser credits for CFC search request */
16400     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16401 
16402     /* send 10 Ethernet packets */
16403     for (i = 0; i < 10; i++) {
16404         bxe_lb_pckt(sc);
16405     }
16406 
16407     /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */
16408     count = (1000 * factor);
16409     while (count) {
16410         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16411         val = *BXE_SP(sc, wb_data[0]);
16412         if (val == 0xb0) {
16413             break;
16414         }
16415 
16416         DELAY(10000);
16417         count--;
16418     }
16419 
16420     if (val != 0xb0) {
16421         BLOGE(sc, "NIG timeout val=0x%x\n", val);
16422         return (-3);
16423     }
16424 
16425     /* Wait until PRS register shows 2 packets */
16426     val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16427     if (val != 2) {
16428         BLOGE(sc, "PRS timeout val=0x%x\n", val);
16429     }
16430 
16431     /* Write 1 to parser credits for CFC search request */
16432     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
16433 
16434     /* Wait until PRS register shows 3 packets */
16435     DELAY(10000 * factor);
16436 
16437     /* Wait until NIG register shows 1 packet of size 0x10 */
16438     val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16439     if (val != 3) {
16440         BLOGE(sc, "PRS timeout val=0x%x\n", val);
16441     }
16442 
16443     /* clear NIG EOP FIFO */
16444     for (i = 0; i < 11; i++) {
16445         REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO);
16446     }
16447 
16448     val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY);
16449     if (val != 1) {
16450         BLOGE(sc, "clear of NIG failed val=0x%x\n", val);
16451         return (-4);
16452     }
16453 
16454     /* Reset and init BRB, PRS, NIG */
16455     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
16456     DELAY(50000);
16457     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
16458     DELAY(50000);
16459     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16460     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16461     if (!CNIC_SUPPORT(sc)) {
16462         /* set NIC mode */
16463         REG_WR(sc, PRS_REG_NIC_MODE, 1);
16464     }
16465 
16466     /* Enable inputs of parser neighbor blocks */
16467     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff);
16468     REG_WR(sc, TCM_REG_PRS_IFEN, 0x1);
16469     REG_WR(sc, CFC_REG_DEBUG0, 0x0);
16470     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1);
16471 
16472     return (0);
16473 }
16474 
16475 static void
16476 bxe_setup_fan_failure_detection(struct bxe_softc *sc)
16477 {
16478     int is_required;
16479     uint32_t val;
16480     int port;
16481 
16482     is_required = 0;
16483     val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
16484            SHARED_HW_CFG_FAN_FAILURE_MASK);
16485 
16486     if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) {
16487         is_required = 1;
16488     }
16489     /*
16490      * The fan failure mechanism is usually related to the PHY type since
16491      * the power consumption of the board is affected by the PHY. Currently,
16492      * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
16493      */
16494     else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) {
16495         for (port = PORT_0; port < PORT_MAX; port++) {
16496             is_required |= elink_fan_failure_det_req(sc,
16497                                                      sc->devinfo.shmem_base,
16498                                                      sc->devinfo.shmem2_base,
16499                                                      port);
16500         }
16501     }
16502 
16503     BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required);
16504 
16505     if (is_required == 0) {
16506         return;
16507     }
16508 
16509     /* Fan failure is indicated by SPIO 5 */
16510     bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
16511 
16512     /* set to active low mode */
16513     val = REG_RD(sc, MISC_REG_SPIO_INT);
16514     val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
16515     REG_WR(sc, MISC_REG_SPIO_INT, val);
16516 
16517     /* enable interrupt to signal the IGU */
16518     val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
16519     val |= MISC_SPIO_SPIO5;
16520     REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val);
16521 }
16522 
16523 static void
16524 bxe_enable_blocks_attention(struct bxe_softc *sc)
16525 {
16526     uint32_t val;
16527 
16528     REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
16529     if (!CHIP_IS_E1x(sc)) {
16530         REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40);
16531     } else {
16532         REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0);
16533     }
16534     REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
16535     REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
16536     /*
16537      * mask read length error interrupts in brb for parser
16538      * (parsing unit and 'checksum and crc' unit)
16539      * these errors are legal (PU reads fixed length and CAC can cause
16540      * read length error on truncated packets)
16541      */
16542     REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00);
16543     REG_WR(sc, QM_REG_QM_INT_MASK, 0);
16544     REG_WR(sc, TM_REG_TM_INT_MASK, 0);
16545     REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0);
16546     REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0);
16547     REG_WR(sc, XCM_REG_XCM_INT_MASK, 0);
16548 /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */
16549 /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */
16550     REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0);
16551     REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0);
16552     REG_WR(sc, UCM_REG_UCM_INT_MASK, 0);
16553 /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */
16554 /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */
16555     REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
16556     REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0);
16557     REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0);
16558     REG_WR(sc, CCM_REG_CCM_INT_MASK, 0);
16559 /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */
16560 /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */
16561 
16562     val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
16563            PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
16564            PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN);
16565     if (!CHIP_IS_E1x(sc)) {
16566         val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
16567                 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED);
16568     }
16569     REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val);
16570 
16571     REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0);
16572     REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0);
16573     REG_WR(sc, TCM_REG_TCM_INT_MASK, 0);
16574 /*      REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */
16575 
16576     if (!CHIP_IS_E1x(sc)) {
16577         /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
16578         REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
16579     }
16580 
16581     REG_WR(sc, CDU_REG_CDU_INT_MASK, 0);
16582     REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0);
16583 /*      REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */
16584     REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18);     /* bit 3,4 masked */
16585 }
16586 
16587 /**
16588  * bxe_init_hw_common - initialize the HW at the COMMON phase.
16589  *
16590  * @sc:     driver handle
16591  */
16592 static int
16593 bxe_init_hw_common(struct bxe_softc *sc)
16594 {
16595     uint8_t abs_func_id;
16596     uint32_t val;
16597 
16598     BLOGD(sc, DBG_LOAD, "starting common init for func %d\n",
16599           SC_ABS_FUNC(sc));
16600 
16601     /*
16602      * take the RESET lock to protect undi_unload flow from accessing
16603      * registers while we are resetting the chip
16604      */
16605     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
16606 
16607     bxe_reset_common(sc);
16608 
16609     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff);
16610 
16611     val = 0xfffc;
16612     if (CHIP_IS_E3(sc)) {
16613         val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
16614         val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
16615     }
16616 
16617     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val);
16618 
16619     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
16620 
16621     ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON);
16622     BLOGD(sc, DBG_LOAD, "after misc block init\n");
16623 
16624     if (!CHIP_IS_E1x(sc)) {
16625         /*
16626          * 4-port mode or 2-port mode we need to turn off master-enable for
16627          * everyone. After that we turn it back on for self. So, we disregard
16628          * multi-function, and always disable all functions on the given path,
16629          * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1
16630          */
16631         for (abs_func_id = SC_PATH(sc);
16632              abs_func_id < (E2_FUNC_MAX * 2);
16633              abs_func_id += 2) {
16634             if (abs_func_id == SC_ABS_FUNC(sc)) {
16635                 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
16636                 continue;
16637             }
16638 
16639             bxe_pretend_func(sc, abs_func_id);
16640 
16641             /* clear pf enable */
16642             bxe_pf_disable(sc);
16643 
16644             bxe_pretend_func(sc, SC_ABS_FUNC(sc));
16645         }
16646     }
16647 
16648     BLOGD(sc, DBG_LOAD, "after pf disable\n");
16649 
16650     ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON);
16651 
16652     if (CHIP_IS_E1(sc)) {
16653         /*
16654          * enable HW interrupt from PXP on USDM overflow
16655          * bit 16 on INT_MASK_0
16656          */
16657         REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
16658     }
16659 
16660     ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON);
16661     bxe_init_pxp(sc);
16662 
16663 #ifdef __BIG_ENDIAN
16664     REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1);
16665     REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1);
16666     REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
16667     REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
16668     REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
16669     /* make sure this value is 0 */
16670     REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0);
16671 
16672     //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1);
16673     REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1);
16674     REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1);
16675     REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1);
16676     REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
16677 #endif
16678 
16679     ecore_ilt_init_page_size(sc, INITOP_SET);
16680 
16681     if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) {
16682         REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
16683     }
16684 
16685     /* let the HW do it's magic... */
16686     DELAY(100000);
16687 
16688     /* finish PXP init */
16689     val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
16690     if (val != 1) {
16691         BLOGE(sc, "PXP2 CFG failed PXP2_REG_RQ_CFG_DONE val = 0x%x\n",
16692             val);
16693         return (-1);
16694     }
16695     val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
16696     if (val != 1) {
16697         BLOGE(sc, "PXP2 RD_INIT failed val = 0x%x\n", val);
16698         return (-1);
16699     }
16700 
16701     BLOGD(sc, DBG_LOAD, "after pxp init\n");
16702 
16703     /*
16704      * Timer bug workaround for E2 only. We need to set the entire ILT to have
16705      * entries with value "0" and valid bit on. This needs to be done by the
16706      * first PF that is loaded in a path (i.e. common phase)
16707      */
16708     if (!CHIP_IS_E1x(sc)) {
16709 /*
16710  * In E2 there is a bug in the timers block that can cause function 6 / 7
16711  * (i.e. vnic3) to start even if it is marked as "scan-off".
16712  * This occurs when a different function (func2,3) is being marked
16713  * as "scan-off". Real-life scenario for example: if a driver is being
16714  * load-unloaded while func6,7 are down. This will cause the timer to access
16715  * the ilt, translate to a logical address and send a request to read/write.
16716  * Since the ilt for the function that is down is not valid, this will cause
16717  * a translation error which is unrecoverable.
16718  * The Workaround is intended to make sure that when this happens nothing
16719  * fatal will occur. The workaround:
16720  *  1.  First PF driver which loads on a path will:
16721  *      a.  After taking the chip out of reset, by using pretend,
16722  *          it will write "0" to the following registers of
16723  *          the other vnics.
16724  *          REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
16725  *          REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
16726  *          REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
16727  *          And for itself it will write '1' to
16728  *          PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
16729  *          dmae-operations (writing to pram for example.)
16730  *          note: can be done for only function 6,7 but cleaner this
16731  *            way.
16732  *      b.  Write zero+valid to the entire ILT.
16733  *      c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
16734  *          VNIC3 (of that port). The range allocated will be the
16735  *          entire ILT. This is needed to prevent  ILT range error.
16736  *  2.  Any PF driver load flow:
16737  *      a.  ILT update with the physical addresses of the allocated
16738  *          logical pages.
16739  *      b.  Wait 20msec. - note that this timeout is needed to make
16740  *          sure there are no requests in one of the PXP internal
16741  *          queues with "old" ILT addresses.
16742  *      c.  PF enable in the PGLC.
16743  *      d.  Clear the was_error of the PF in the PGLC. (could have
16744  *          occurred while driver was down)
16745  *      e.  PF enable in the CFC (WEAK + STRONG)
16746  *      f.  Timers scan enable
16747  *  3.  PF driver unload flow:
16748  *      a.  Clear the Timers scan_en.
16749  *      b.  Polling for scan_on=0 for that PF.
16750  *      c.  Clear the PF enable bit in the PXP.
16751  *      d.  Clear the PF enable in the CFC (WEAK + STRONG)
16752  *      e.  Write zero+valid to all ILT entries (The valid bit must
16753  *          stay set)
16754  *      f.  If this is VNIC 3 of a port then also init
16755  *          first_timers_ilt_entry to zero and last_timers_ilt_entry
16756  *          to the last enrty in the ILT.
16757  *
16758  *      Notes:
16759  *      Currently the PF error in the PGLC is non recoverable.
16760  *      In the future the there will be a recovery routine for this error.
16761  *      Currently attention is masked.
16762  *      Having an MCP lock on the load/unload process does not guarantee that
16763  *      there is no Timer disable during Func6/7 enable. This is because the
16764  *      Timers scan is currently being cleared by the MCP on FLR.
16765  *      Step 2.d can be done only for PF6/7 and the driver can also check if
16766  *      there is error before clearing it. But the flow above is simpler and
16767  *      more general.
16768  *      All ILT entries are written by zero+valid and not just PF6/7
16769  *      ILT entries since in the future the ILT entries allocation for
16770  *      PF-s might be dynamic.
16771  */
16772         struct ilt_client_info ilt_cli;
16773         struct ecore_ilt ilt;
16774 
16775         memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
16776         memset(&ilt, 0, sizeof(struct ecore_ilt));
16777 
16778         /* initialize dummy TM client */
16779         ilt_cli.start      = 0;
16780         ilt_cli.end        = ILT_NUM_PAGE_ENTRIES - 1;
16781         ilt_cli.client_num = ILT_CLIENT_TM;
16782 
16783         /*
16784          * Step 1: set zeroes to all ilt page entries with valid bit on
16785          * Step 2: set the timers first/last ilt entry to point
16786          * to the entire range to prevent ILT range error for 3rd/4th
16787          * vnic (this code assumes existence of the vnic)
16788          *
16789          * both steps performed by call to ecore_ilt_client_init_op()
16790          * with dummy TM client
16791          *
16792          * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
16793          * and his brother are split registers
16794          */
16795 
16796         bxe_pretend_func(sc, (SC_PATH(sc) + 6));
16797         ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR);
16798         bxe_pretend_func(sc, SC_ABS_FUNC(sc));
16799 
16800         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN);
16801         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN);
16802         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
16803     }
16804 
16805     REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0);
16806     REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0);
16807 
16808     if (!CHIP_IS_E1x(sc)) {
16809         int factor = CHIP_REV_IS_EMUL(sc) ? 1000 :
16810                      (CHIP_REV_IS_FPGA(sc) ? 400 : 0);
16811 
16812         ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON);
16813         ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON);
16814 
16815         /* let the HW do it's magic... */
16816         do {
16817             DELAY(200000);
16818             val = REG_RD(sc, ATC_REG_ATC_INIT_DONE);
16819         } while (factor-- && (val != 1));
16820 
16821         if (val != 1) {
16822             BLOGE(sc, "ATC_INIT failed val = 0x%x\n", val);
16823             return (-1);
16824         }
16825     }
16826 
16827     BLOGD(sc, DBG_LOAD, "after pglue and atc init\n");
16828 
16829     ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON);
16830 
16831     bxe_iov_init_dmae(sc);
16832 
16833     /* clean the DMAE memory */
16834     sc->dmae_ready = 1;
16835     ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1);
16836 
16837     ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON);
16838 
16839     ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON);
16840 
16841     ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON);
16842 
16843     ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON);
16844 
16845     bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3);
16846     bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3);
16847     bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3);
16848     bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3);
16849 
16850     ecore_init_block(sc, BLOCK_QM, PHASE_COMMON);
16851 
16852     /* QM queues pointers table */
16853     ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET);
16854 
16855     /* soft reset pulse */
16856     REG_WR(sc, QM_REG_SOFT_RESET, 1);
16857     REG_WR(sc, QM_REG_SOFT_RESET, 0);
16858 
16859     if (CNIC_SUPPORT(sc))
16860         ecore_init_block(sc, BLOCK_TM, PHASE_COMMON);
16861 
16862     ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON);
16863     REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT);
16864     if (!CHIP_REV_IS_SLOW(sc)) {
16865         /* enable hw interrupt from doorbell Q */
16866         REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
16867     }
16868 
16869     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16870 
16871     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16872     REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
16873 
16874     if (!CHIP_IS_E1(sc)) {
16875         REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan);
16876     }
16877 
16878     if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) {
16879         if (IS_MF_AFEX(sc)) {
16880             /*
16881              * configure that AFEX and VLAN headers must be
16882              * received in AFEX mode
16883              */
16884             REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE);
16885             REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA);
16886             REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
16887             REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
16888             REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4);
16889         } else {
16890             /*
16891              * Bit-map indicating which L2 hdrs may appear
16892              * after the basic Ethernet header
16893              */
16894             REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC,
16895                    sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
16896         }
16897     }
16898 
16899     ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON);
16900     ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON);
16901     ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON);
16902     ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON);
16903 
16904     if (!CHIP_IS_E1x(sc)) {
16905         /* reset VFC memories */
16906         REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
16907                VFC_MEMORIES_RST_REG_CAM_RST |
16908                VFC_MEMORIES_RST_REG_RAM_RST);
16909         REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
16910                VFC_MEMORIES_RST_REG_CAM_RST |
16911                VFC_MEMORIES_RST_REG_RAM_RST);
16912 
16913         DELAY(20000);
16914     }
16915 
16916     ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON);
16917     ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON);
16918     ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON);
16919     ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON);
16920 
16921     /* sync semi rtc */
16922     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
16923            0x80000000);
16924     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
16925            0x80000000);
16926 
16927     ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON);
16928     ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON);
16929     ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON);
16930 
16931     if (!CHIP_IS_E1x(sc)) {
16932         if (IS_MF_AFEX(sc)) {
16933             /*
16934              * configure that AFEX and VLAN headers must be
16935              * sent in AFEX mode
16936              */
16937             REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE);
16938             REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA);
16939             REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
16940             REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
16941             REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4);
16942         } else {
16943             REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC,
16944                    sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
16945         }
16946     }
16947 
16948     REG_WR(sc, SRC_REG_SOFT_RST, 1);
16949 
16950     ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON);
16951 
16952     if (CNIC_SUPPORT(sc)) {
16953         REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672);
16954         REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
16955         REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b);
16956         REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a);
16957         REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116);
16958         REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
16959         REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf);
16960         REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
16961         REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f);
16962         REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7);
16963     }
16964     REG_WR(sc, SRC_REG_SOFT_RST, 0);
16965 
16966     if (sizeof(union cdu_context) != 1024) {
16967         /* we currently assume that a context is 1024 bytes */
16968         BLOGE(sc, "please adjust the size of cdu_context(%ld)\n",
16969               (long)sizeof(union cdu_context));
16970     }
16971 
16972     ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON);
16973     val = (4 << 24) + (0 << 12) + 1024;
16974     REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val);
16975 
16976     ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON);
16977 
16978     REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
16979     /* enable context validation interrupt from CFC */
16980     REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
16981 
16982     /* set the thresholds to prevent CFC/CDU race */
16983     REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
16984     ecore_init_block(sc, BLOCK_HC, PHASE_COMMON);
16985 
16986     if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) {
16987         REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36);
16988     }
16989 
16990     ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON);
16991     ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON);
16992 
16993     /* Reset PCIE errors for debug */
16994     REG_WR(sc, 0x2814, 0xffffffff);
16995     REG_WR(sc, 0x3820, 0xffffffff);
16996 
16997     if (!CHIP_IS_E1x(sc)) {
16998         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
16999                (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
17000                 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
17001         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
17002                (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
17003                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
17004                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
17005         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
17006                (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
17007                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
17008                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
17009     }
17010 
17011     ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON);
17012 
17013     if (!CHIP_IS_E1(sc)) {
17014         /* in E3 this done in per-port section */
17015         if (!CHIP_IS_E3(sc))
17016             REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc));
17017     }
17018 
17019     if (CHIP_IS_E1H(sc)) {
17020         /* not applicable for E2 (and above ...) */
17021         REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc));
17022     }
17023 
17024     if (CHIP_REV_IS_SLOW(sc)) {
17025         DELAY(200000);
17026     }
17027 
17028     /* finish CFC init */
17029     val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
17030     if (val != 1) {
17031         BLOGE(sc, "CFC LL_INIT failed val=0x%x\n", val);
17032         return (-1);
17033     }
17034     val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
17035     if (val != 1) {
17036         BLOGE(sc, "CFC AC_INIT failed val=0x%x\n", val);
17037         return (-1);
17038     }
17039     val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
17040     if (val != 1) {
17041         BLOGE(sc, "CFC CAM_INIT failed val=0x%x\n", val);
17042         return (-1);
17043     }
17044     REG_WR(sc, CFC_REG_DEBUG0, 0);
17045 
17046     if (CHIP_IS_E1(sc)) {
17047         /* read NIG statistic to see if this is our first up since powerup */
17048         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
17049         val = *BXE_SP(sc, wb_data[0]);
17050 
17051         /* do internal memory self test */
17052         if ((val == 0) && bxe_int_mem_test(sc)) {
17053             BLOGE(sc, "internal mem self test failed val=0x%x\n", val);
17054             return (-1);
17055         }
17056     }
17057 
17058     bxe_setup_fan_failure_detection(sc);
17059 
17060     /* clear PXP2 attentions */
17061     REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
17062 
17063     bxe_enable_blocks_attention(sc);
17064 
17065     if (!CHIP_REV_IS_SLOW(sc)) {
17066         ecore_enable_blocks_parity(sc);
17067     }
17068 
17069     if (!BXE_NOMCP(sc)) {
17070         if (CHIP_IS_E1x(sc)) {
17071             bxe_common_init_phy(sc);
17072         }
17073     }
17074 
17075     return (0);
17076 }
17077 
17078 /**
17079  * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase.
17080  *
17081  * @sc:     driver handle
17082  */
17083 static int
17084 bxe_init_hw_common_chip(struct bxe_softc *sc)
17085 {
17086     int rc = bxe_init_hw_common(sc);
17087 
17088     if (rc) {
17089         BLOGE(sc, "bxe_init_hw_common failed rc=%d\n", rc);
17090         return (rc);
17091     }
17092 
17093     /* In E2 2-PORT mode, same ext phy is used for the two paths */
17094     if (!BXE_NOMCP(sc)) {
17095         bxe_common_init_phy(sc);
17096     }
17097 
17098     return (0);
17099 }
17100 
17101 static int
17102 bxe_init_hw_port(struct bxe_softc *sc)
17103 {
17104     int port = SC_PORT(sc);
17105     int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
17106     uint32_t low, high;
17107     uint32_t val;
17108 
17109     BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port);
17110 
17111     REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
17112 
17113     ecore_init_block(sc, BLOCK_MISC, init_phase);
17114     ecore_init_block(sc, BLOCK_PXP, init_phase);
17115     ecore_init_block(sc, BLOCK_PXP2, init_phase);
17116 
17117     /*
17118      * Timers bug workaround: disables the pf_master bit in pglue at
17119      * common phase, we need to enable it here before any dmae access are
17120      * attempted. Therefore we manually added the enable-master to the
17121      * port phase (it also happens in the function phase)
17122      */
17123     if (!CHIP_IS_E1x(sc)) {
17124         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17125     }
17126 
17127     ecore_init_block(sc, BLOCK_ATC, init_phase);
17128     ecore_init_block(sc, BLOCK_DMAE, init_phase);
17129     ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
17130     ecore_init_block(sc, BLOCK_QM, init_phase);
17131 
17132     ecore_init_block(sc, BLOCK_TCM, init_phase);
17133     ecore_init_block(sc, BLOCK_UCM, init_phase);
17134     ecore_init_block(sc, BLOCK_CCM, init_phase);
17135     ecore_init_block(sc, BLOCK_XCM, init_phase);
17136 
17137     /* QM cid (connection) count */
17138     ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET);
17139 
17140     if (CNIC_SUPPORT(sc)) {
17141         ecore_init_block(sc, BLOCK_TM, init_phase);
17142         REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20);
17143         REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
17144     }
17145 
17146     ecore_init_block(sc, BLOCK_DORQ, init_phase);
17147 
17148     ecore_init_block(sc, BLOCK_BRB1, init_phase);
17149 
17150     if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) {
17151         if (IS_MF(sc)) {
17152             low = (BXE_ONE_PORT(sc) ? 160 : 246);
17153         } else if (sc->mtu > 4096) {
17154             if (BXE_ONE_PORT(sc)) {
17155                 low = 160;
17156             } else {
17157                 val = sc->mtu;
17158                 /* (24*1024 + val*4)/256 */
17159                 low = (96 + (val / 64) + ((val % 64) ? 1 : 0));
17160             }
17161         } else {
17162             low = (BXE_ONE_PORT(sc) ? 80 : 160);
17163         }
17164         high = (low + 56); /* 14*1024/256 */
17165         REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
17166         REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
17167     }
17168 
17169     if (CHIP_IS_MODE_4_PORT(sc)) {
17170         REG_WR(sc, SC_PORT(sc) ?
17171                BRB1_REG_MAC_GUARANTIED_1 :
17172                BRB1_REG_MAC_GUARANTIED_0, 40);
17173     }
17174 
17175     ecore_init_block(sc, BLOCK_PRS, init_phase);
17176     if (CHIP_IS_E3B0(sc)) {
17177         if (IS_MF_AFEX(sc)) {
17178             /* configure headers for AFEX mode */
17179             REG_WR(sc, SC_PORT(sc) ?
17180                    PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17181                    PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
17182             REG_WR(sc, SC_PORT(sc) ?
17183                    PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
17184                    PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
17185             REG_WR(sc, SC_PORT(sc) ?
17186                    PRS_REG_MUST_HAVE_HDRS_PORT_1 :
17187                    PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
17188         } else {
17189             /* Ovlan exists only if we are in multi-function +
17190              * switch-dependent mode, in switch-independent there
17191              * is no ovlan headers
17192              */
17193             REG_WR(sc, SC_PORT(sc) ?
17194                    PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17195                    PRS_REG_HDRS_AFTER_BASIC_PORT_0,
17196                    (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6));
17197         }
17198     }
17199 
17200     ecore_init_block(sc, BLOCK_TSDM, init_phase);
17201     ecore_init_block(sc, BLOCK_CSDM, init_phase);
17202     ecore_init_block(sc, BLOCK_USDM, init_phase);
17203     ecore_init_block(sc, BLOCK_XSDM, init_phase);
17204 
17205     ecore_init_block(sc, BLOCK_TSEM, init_phase);
17206     ecore_init_block(sc, BLOCK_USEM, init_phase);
17207     ecore_init_block(sc, BLOCK_CSEM, init_phase);
17208     ecore_init_block(sc, BLOCK_XSEM, init_phase);
17209 
17210     ecore_init_block(sc, BLOCK_UPB, init_phase);
17211     ecore_init_block(sc, BLOCK_XPB, init_phase);
17212 
17213     ecore_init_block(sc, BLOCK_PBF, init_phase);
17214 
17215     if (CHIP_IS_E1x(sc)) {
17216         /* configure PBF to work without PAUSE mtu 9000 */
17217         REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
17218 
17219         /* update threshold */
17220         REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
17221         /* update init credit */
17222         REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
17223 
17224         /* probe changes */
17225         REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1);
17226         DELAY(50);
17227         REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0);
17228     }
17229 
17230     if (CNIC_SUPPORT(sc)) {
17231         ecore_init_block(sc, BLOCK_SRC, init_phase);
17232     }
17233 
17234     ecore_init_block(sc, BLOCK_CDU, init_phase);
17235     ecore_init_block(sc, BLOCK_CFC, init_phase);
17236 
17237     if (CHIP_IS_E1(sc)) {
17238         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
17239         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
17240     }
17241     ecore_init_block(sc, BLOCK_HC, init_phase);
17242 
17243     ecore_init_block(sc, BLOCK_IGU, init_phase);
17244 
17245     ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
17246     /* init aeu_mask_attn_func_0/1:
17247      *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
17248      *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
17249      *             bits 4-7 are used for "per vn group attention" */
17250     val = IS_MF(sc) ? 0xF7 : 0x7;
17251     /* Enable DCBX attention for all but E1 */
17252     val |= CHIP_IS_E1(sc) ? 0 : 0x10;
17253     REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
17254 
17255     ecore_init_block(sc, BLOCK_NIG, init_phase);
17256 
17257     if (!CHIP_IS_E1x(sc)) {
17258         /* Bit-map indicating which L2 hdrs may appear after the
17259          * basic Ethernet header
17260          */
17261         if (IS_MF_AFEX(sc)) {
17262             REG_WR(sc, SC_PORT(sc) ?
17263                    NIG_REG_P1_HDRS_AFTER_BASIC :
17264                    NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
17265         } else {
17266             REG_WR(sc, SC_PORT(sc) ?
17267                    NIG_REG_P1_HDRS_AFTER_BASIC :
17268                    NIG_REG_P0_HDRS_AFTER_BASIC,
17269                    IS_MF_SD(sc) ? 7 : 6);
17270         }
17271 
17272         if (CHIP_IS_E3(sc)) {
17273             REG_WR(sc, SC_PORT(sc) ?
17274                    NIG_REG_LLH1_MF_MODE :
17275                    NIG_REG_LLH_MF_MODE, IS_MF(sc));
17276         }
17277     }
17278     if (!CHIP_IS_E3(sc)) {
17279         REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
17280     }
17281 
17282     if (!CHIP_IS_E1(sc)) {
17283         /* 0x2 disable mf_ov, 0x1 enable */
17284         REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
17285                (IS_MF_SD(sc) ? 0x1 : 0x2));
17286 
17287         if (!CHIP_IS_E1x(sc)) {
17288             val = 0;
17289             switch (sc->devinfo.mf_info.mf_mode) {
17290             case MULTI_FUNCTION_SD:
17291                 val = 1;
17292                 break;
17293             case MULTI_FUNCTION_SI:
17294             case MULTI_FUNCTION_AFEX:
17295                 val = 2;
17296                 break;
17297             }
17298 
17299             REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE :
17300                         NIG_REG_LLH0_CLS_TYPE), val);
17301         }
17302         REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
17303         REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
17304         REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
17305     }
17306 
17307     /* If SPIO5 is set to generate interrupts, enable it for this port */
17308     val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17309     if (val & MISC_SPIO_SPIO5) {
17310         uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
17311                                     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
17312         val = REG_RD(sc, reg_addr);
17313         val |= AEU_INPUTS_ATTN_BITS_SPIO5;
17314         REG_WR(sc, reg_addr, val);
17315     }
17316 
17317     return (0);
17318 }
17319 
17320 static uint32_t
17321 bxe_flr_clnup_reg_poll(struct bxe_softc *sc,
17322                        uint32_t         reg,
17323                        uint32_t         expected,
17324                        uint32_t         poll_count)
17325 {
17326     uint32_t cur_cnt = poll_count;
17327     uint32_t val;
17328 
17329     while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) {
17330         DELAY(FLR_WAIT_INTERVAL);
17331     }
17332 
17333     return (val);
17334 }
17335 
17336 static int
17337 bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc,
17338                               uint32_t         reg,
17339                               char             *msg,
17340                               uint32_t         poll_cnt)
17341 {
17342     uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt);
17343 
17344     if (val != 0) {
17345         BLOGE(sc, "%s usage count=%d\n", msg, val);
17346         return (1);
17347     }
17348 
17349     return (0);
17350 }
17351 
17352 /* Common routines with VF FLR cleanup */
17353 static uint32_t
17354 bxe_flr_clnup_poll_count(struct bxe_softc *sc)
17355 {
17356     /* adjust polling timeout */
17357     if (CHIP_REV_IS_EMUL(sc)) {
17358         return (FLR_POLL_CNT * 2000);
17359     }
17360 
17361     if (CHIP_REV_IS_FPGA(sc)) {
17362         return (FLR_POLL_CNT * 120);
17363     }
17364 
17365     return (FLR_POLL_CNT);
17366 }
17367 
17368 static int
17369 bxe_poll_hw_usage_counters(struct bxe_softc *sc,
17370                            uint32_t         poll_cnt)
17371 {
17372     /* wait for CFC PF usage-counter to zero (includes all the VFs) */
17373     if (bxe_flr_clnup_poll_hw_counter(sc,
17374                                       CFC_REG_NUM_LCIDS_INSIDE_PF,
17375                                       "CFC PF usage counter timed out",
17376                                       poll_cnt)) {
17377         return (1);
17378     }
17379 
17380     /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
17381     if (bxe_flr_clnup_poll_hw_counter(sc,
17382                                       DORQ_REG_PF_USAGE_CNT,
17383                                       "DQ PF usage counter timed out",
17384                                       poll_cnt)) {
17385         return (1);
17386     }
17387 
17388     /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
17389     if (bxe_flr_clnup_poll_hw_counter(sc,
17390                                       QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc),
17391                                       "QM PF usage counter timed out",
17392                                       poll_cnt)) {
17393         return (1);
17394     }
17395 
17396     /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
17397     if (bxe_flr_clnup_poll_hw_counter(sc,
17398                                       TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc),
17399                                       "Timers VNIC usage counter timed out",
17400                                       poll_cnt)) {
17401         return (1);
17402     }
17403 
17404     if (bxe_flr_clnup_poll_hw_counter(sc,
17405                                       TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc),
17406                                       "Timers NUM_SCANS usage counter timed out",
17407                                       poll_cnt)) {
17408         return (1);
17409     }
17410 
17411     /* Wait DMAE PF usage counter to zero */
17412     if (bxe_flr_clnup_poll_hw_counter(sc,
17413                                       dmae_reg_go_c[INIT_DMAE_C(sc)],
17414                                       "DMAE dommand register timed out",
17415                                       poll_cnt)) {
17416         return (1);
17417     }
17418 
17419     return (0);
17420 }
17421 
17422 #define OP_GEN_PARAM(param)                                            \
17423     (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
17424 #define OP_GEN_TYPE(type)                                           \
17425     (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
17426 #define OP_GEN_AGG_VECT(index)                                             \
17427     (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
17428 
17429 static int
17430 bxe_send_final_clnup(struct bxe_softc *sc,
17431                      uint8_t          clnup_func,
17432                      uint32_t         poll_cnt)
17433 {
17434     uint32_t op_gen_command = 0;
17435     uint32_t comp_addr = (BAR_CSTRORM_INTMEM +
17436                           CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func));
17437     int ret = 0;
17438 
17439     if (REG_RD(sc, comp_addr)) {
17440         BLOGE(sc, "Cleanup complete was not 0 before sending\n");
17441         return (1);
17442     }
17443 
17444     op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
17445     op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
17446     op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
17447     op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
17448 
17449     BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n");
17450     REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command);
17451 
17452     if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) {
17453         BLOGE(sc, "FW final cleanup did not succeed\n");
17454         BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n",
17455               (REG_RD(sc, comp_addr)));
17456         bxe_panic(sc, ("FLR cleanup failed\n"));
17457         return (1);
17458     }
17459 
17460     /* Zero completion for nxt FLR */
17461     REG_WR(sc, comp_addr, 0);
17462 
17463     return (ret);
17464 }
17465 
17466 static void
17467 bxe_pbf_pN_buf_flushed(struct bxe_softc       *sc,
17468                        struct pbf_pN_buf_regs *regs,
17469                        uint32_t               poll_count)
17470 {
17471     uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start;
17472     uint32_t cur_cnt = poll_count;
17473 
17474     crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed);
17475     crd = crd_start = REG_RD(sc, regs->crd);
17476     init_crd = REG_RD(sc, regs->init_crd);
17477 
17478     BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
17479     BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
17480     BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
17481 
17482     while ((crd != init_crd) &&
17483            ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) <
17484             (init_crd - crd_start))) {
17485         if (cur_cnt--) {
17486             DELAY(FLR_WAIT_INTERVAL);
17487             crd = REG_RD(sc, regs->crd);
17488             crd_freed = REG_RD(sc, regs->crd_freed);
17489         } else {
17490             BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN);
17491             BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : c:%x\n", regs->pN, crd);
17492             BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed);
17493             break;
17494         }
17495     }
17496 
17497     BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n",
17498           poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
17499 }
17500 
17501 static void
17502 bxe_pbf_pN_cmd_flushed(struct bxe_softc       *sc,
17503                        struct pbf_pN_cmd_regs *regs,
17504                        uint32_t               poll_count)
17505 {
17506     uint32_t occup, to_free, freed, freed_start;
17507     uint32_t cur_cnt = poll_count;
17508 
17509     occup = to_free = REG_RD(sc, regs->lines_occup);
17510     freed = freed_start = REG_RD(sc, regs->lines_freed);
17511 
17512     BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
17513     BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
17514 
17515     while (occup &&
17516            ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) {
17517         if (cur_cnt--) {
17518             DELAY(FLR_WAIT_INTERVAL);
17519             occup = REG_RD(sc, regs->lines_occup);
17520             freed = REG_RD(sc, regs->lines_freed);
17521         } else {
17522             BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN);
17523             BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
17524             BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
17525             break;
17526         }
17527     }
17528 
17529     BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n",
17530           poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
17531 }
17532 
17533 static void
17534 bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count)
17535 {
17536     struct pbf_pN_cmd_regs cmd_regs[] = {
17537         {0, (CHIP_IS_E3B0(sc)) ?
17538             PBF_REG_TQ_OCCUPANCY_Q0 :
17539             PBF_REG_P0_TQ_OCCUPANCY,
17540             (CHIP_IS_E3B0(sc)) ?
17541             PBF_REG_TQ_LINES_FREED_CNT_Q0 :
17542             PBF_REG_P0_TQ_LINES_FREED_CNT},
17543         {1, (CHIP_IS_E3B0(sc)) ?
17544             PBF_REG_TQ_OCCUPANCY_Q1 :
17545             PBF_REG_P1_TQ_OCCUPANCY,
17546             (CHIP_IS_E3B0(sc)) ?
17547             PBF_REG_TQ_LINES_FREED_CNT_Q1 :
17548             PBF_REG_P1_TQ_LINES_FREED_CNT},
17549         {4, (CHIP_IS_E3B0(sc)) ?
17550             PBF_REG_TQ_OCCUPANCY_LB_Q :
17551             PBF_REG_P4_TQ_OCCUPANCY,
17552             (CHIP_IS_E3B0(sc)) ?
17553             PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
17554             PBF_REG_P4_TQ_LINES_FREED_CNT}
17555     };
17556 
17557     struct pbf_pN_buf_regs buf_regs[] = {
17558         {0, (CHIP_IS_E3B0(sc)) ?
17559             PBF_REG_INIT_CRD_Q0 :
17560             PBF_REG_P0_INIT_CRD ,
17561             (CHIP_IS_E3B0(sc)) ?
17562             PBF_REG_CREDIT_Q0 :
17563             PBF_REG_P0_CREDIT,
17564             (CHIP_IS_E3B0(sc)) ?
17565             PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
17566             PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
17567         {1, (CHIP_IS_E3B0(sc)) ?
17568             PBF_REG_INIT_CRD_Q1 :
17569             PBF_REG_P1_INIT_CRD,
17570             (CHIP_IS_E3B0(sc)) ?
17571             PBF_REG_CREDIT_Q1 :
17572             PBF_REG_P1_CREDIT,
17573             (CHIP_IS_E3B0(sc)) ?
17574             PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
17575             PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
17576         {4, (CHIP_IS_E3B0(sc)) ?
17577             PBF_REG_INIT_CRD_LB_Q :
17578             PBF_REG_P4_INIT_CRD,
17579             (CHIP_IS_E3B0(sc)) ?
17580             PBF_REG_CREDIT_LB_Q :
17581             PBF_REG_P4_CREDIT,
17582             (CHIP_IS_E3B0(sc)) ?
17583             PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
17584             PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
17585     };
17586 
17587     int i;
17588 
17589     /* Verify the command queues are flushed P0, P1, P4 */
17590     for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) {
17591         bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count);
17592     }
17593 
17594     /* Verify the transmission buffers are flushed P0, P1, P4 */
17595     for (i = 0; i < ARRAY_SIZE(buf_regs); i++) {
17596         bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count);
17597     }
17598 }
17599 
17600 static void
17601 bxe_hw_enable_status(struct bxe_softc *sc)
17602 {
17603     uint32_t val;
17604 
17605     val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF);
17606     BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
17607 
17608     val = REG_RD(sc, PBF_REG_DISABLE_PF);
17609     BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val);
17610 
17611     val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN);
17612     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
17613 
17614     val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN);
17615     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
17616 
17617     val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
17618     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
17619 
17620     val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
17621     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
17622 
17623     val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
17624     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
17625 
17626     val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
17627     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val);
17628 }
17629 
17630 static int
17631 bxe_pf_flr_clnup(struct bxe_softc *sc)
17632 {
17633     uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc);
17634 
17635     BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc));
17636 
17637     /* Re-enable PF target read access */
17638     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
17639 
17640     /* Poll HW usage counters */
17641     BLOGD(sc, DBG_LOAD, "Polling usage counters\n");
17642     if (bxe_poll_hw_usage_counters(sc, poll_cnt)) {
17643         return (-1);
17644     }
17645 
17646     /* Zero the igu 'trailing edge' and 'leading edge' */
17647 
17648     /* Send the FW cleanup command */
17649     if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) {
17650         return (-1);
17651     }
17652 
17653     /* ATC cleanup */
17654 
17655     /* Verify TX hw is flushed */
17656     bxe_tx_hw_flushed(sc, poll_cnt);
17657 
17658     /* Wait 100ms (not adjusted according to platform) */
17659     DELAY(100000);
17660 
17661     /* Verify no pending pci transactions */
17662     if (bxe_is_pcie_pending(sc)) {
17663         BLOGE(sc, "PCIE Transactions still pending\n");
17664     }
17665 
17666     /* Debug */
17667     bxe_hw_enable_status(sc);
17668 
17669     /*
17670      * Master enable - Due to WB DMAE writes performed before this
17671      * register is re-initialized as part of the regular function init
17672      */
17673     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17674 
17675     return (0);
17676 }
17677 
17678 static int
17679 bxe_init_hw_func(struct bxe_softc *sc)
17680 {
17681     int port = SC_PORT(sc);
17682     int func = SC_FUNC(sc);
17683     int init_phase = PHASE_PF0 + func;
17684     struct ecore_ilt *ilt = sc->ilt;
17685     uint16_t cdu_ilt_start;
17686     uint32_t addr, val;
17687     uint32_t main_mem_base, main_mem_size, main_mem_prty_clr;
17688     int i, main_mem_width, rc;
17689 
17690     BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func);
17691 
17692     /* FLR cleanup */
17693     if (!CHIP_IS_E1x(sc)) {
17694         rc = bxe_pf_flr_clnup(sc);
17695         if (rc) {
17696             BLOGE(sc, "FLR cleanup failed!\n");
17697             // XXX bxe_fw_dump(sc);
17698             // XXX bxe_idle_chk(sc);
17699             return (rc);
17700         }
17701     }
17702 
17703     /* set MSI reconfigure capability */
17704     if (sc->devinfo.int_block == INT_BLOCK_HC) {
17705         addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
17706         val = REG_RD(sc, addr);
17707         val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
17708         REG_WR(sc, addr, val);
17709     }
17710 
17711     ecore_init_block(sc, BLOCK_PXP, init_phase);
17712     ecore_init_block(sc, BLOCK_PXP2, init_phase);
17713 
17714     ilt = sc->ilt;
17715     cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
17716 
17717     for (i = 0; i < L2_ILT_LINES(sc); i++) {
17718         ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt;
17719         ilt->lines[cdu_ilt_start + i].page_mapping =
17720             sc->context[i].vcxt_dma.paddr;
17721         ilt->lines[cdu_ilt_start + i].size = sc->context[i].size;
17722     }
17723     ecore_ilt_init_op(sc, INITOP_SET);
17724 
17725     /* Set NIC mode */
17726     REG_WR(sc, PRS_REG_NIC_MODE, 1);
17727     BLOGD(sc, DBG_LOAD, "NIC MODE configured\n");
17728 
17729     if (!CHIP_IS_E1x(sc)) {
17730         uint32_t pf_conf = IGU_PF_CONF_FUNC_EN;
17731 
17732         /* Turn on a single ISR mode in IGU if driver is going to use
17733          * INT#x or MSI
17734          */
17735         if (sc->interrupt_mode != INTR_MODE_MSIX) {
17736             pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
17737         }
17738 
17739         /*
17740          * Timers workaround bug: function init part.
17741          * Need to wait 20msec after initializing ILT,
17742          * needed to make sure there are no requests in
17743          * one of the PXP internal queues with "old" ILT addresses
17744          */
17745         DELAY(20000);
17746 
17747         /*
17748          * Master enable - Due to WB DMAE writes performed before this
17749          * register is re-initialized as part of the regular function
17750          * init
17751          */
17752         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17753         /* Enable the function in IGU */
17754         REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf);
17755     }
17756 
17757     sc->dmae_ready = 1;
17758 
17759     ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
17760 
17761     if (!CHIP_IS_E1x(sc))
17762         REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
17763 
17764     ecore_init_block(sc, BLOCK_ATC, init_phase);
17765     ecore_init_block(sc, BLOCK_DMAE, init_phase);
17766     ecore_init_block(sc, BLOCK_NIG, init_phase);
17767     ecore_init_block(sc, BLOCK_SRC, init_phase);
17768     ecore_init_block(sc, BLOCK_MISC, init_phase);
17769     ecore_init_block(sc, BLOCK_TCM, init_phase);
17770     ecore_init_block(sc, BLOCK_UCM, init_phase);
17771     ecore_init_block(sc, BLOCK_CCM, init_phase);
17772     ecore_init_block(sc, BLOCK_XCM, init_phase);
17773     ecore_init_block(sc, BLOCK_TSEM, init_phase);
17774     ecore_init_block(sc, BLOCK_USEM, init_phase);
17775     ecore_init_block(sc, BLOCK_CSEM, init_phase);
17776     ecore_init_block(sc, BLOCK_XSEM, init_phase);
17777 
17778     if (!CHIP_IS_E1x(sc))
17779         REG_WR(sc, QM_REG_PF_EN, 1);
17780 
17781     if (!CHIP_IS_E1x(sc)) {
17782         REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
17783         REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
17784         REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
17785         REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
17786     }
17787     ecore_init_block(sc, BLOCK_QM, init_phase);
17788 
17789     ecore_init_block(sc, BLOCK_TM, init_phase);
17790     ecore_init_block(sc, BLOCK_DORQ, init_phase);
17791 
17792     bxe_iov_init_dq(sc);
17793 
17794     ecore_init_block(sc, BLOCK_BRB1, init_phase);
17795     ecore_init_block(sc, BLOCK_PRS, init_phase);
17796     ecore_init_block(sc, BLOCK_TSDM, init_phase);
17797     ecore_init_block(sc, BLOCK_CSDM, init_phase);
17798     ecore_init_block(sc, BLOCK_USDM, init_phase);
17799     ecore_init_block(sc, BLOCK_XSDM, init_phase);
17800     ecore_init_block(sc, BLOCK_UPB, init_phase);
17801     ecore_init_block(sc, BLOCK_XPB, init_phase);
17802     ecore_init_block(sc, BLOCK_PBF, init_phase);
17803     if (!CHIP_IS_E1x(sc))
17804         REG_WR(sc, PBF_REG_DISABLE_PF, 0);
17805 
17806     ecore_init_block(sc, BLOCK_CDU, init_phase);
17807 
17808     ecore_init_block(sc, BLOCK_CFC, init_phase);
17809 
17810     if (!CHIP_IS_E1x(sc))
17811         REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1);
17812 
17813     if (IS_MF(sc)) {
17814         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
17815         REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc));
17816     }
17817 
17818     ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
17819 
17820     /* HC init per function */
17821     if (sc->devinfo.int_block == INT_BLOCK_HC) {
17822         if (CHIP_IS_E1H(sc)) {
17823             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
17824 
17825             REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
17826             REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
17827         }
17828         ecore_init_block(sc, BLOCK_HC, init_phase);
17829 
17830     } else {
17831         int num_segs, sb_idx, prod_offset;
17832 
17833         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
17834 
17835         if (!CHIP_IS_E1x(sc)) {
17836             REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
17837             REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
17838         }
17839 
17840         ecore_init_block(sc, BLOCK_IGU, init_phase);
17841 
17842         if (!CHIP_IS_E1x(sc)) {
17843             int dsb_idx = 0;
17844             /**
17845              * Producer memory:
17846              * E2 mode: address 0-135 match to the mapping memory;
17847              * 136 - PF0 default prod; 137 - PF1 default prod;
17848              * 138 - PF2 default prod; 139 - PF3 default prod;
17849              * 140 - PF0 attn prod;    141 - PF1 attn prod;
17850              * 142 - PF2 attn prod;    143 - PF3 attn prod;
17851              * 144-147 reserved.
17852              *
17853              * E1.5 mode - In backward compatible mode;
17854              * for non default SB; each even line in the memory
17855              * holds the U producer and each odd line hold
17856              * the C producer. The first 128 producers are for
17857              * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
17858              * producers are for the DSB for each PF.
17859              * Each PF has five segments: (the order inside each
17860              * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
17861              * 132-135 C prods; 136-139 X prods; 140-143 T prods;
17862              * 144-147 attn prods;
17863              */
17864             /* non-default-status-blocks */
17865             num_segs = CHIP_INT_MODE_IS_BC(sc) ?
17866                 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
17867             for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) {
17868                 prod_offset = (sc->igu_base_sb + sb_idx) *
17869                     num_segs;
17870 
17871                 for (i = 0; i < num_segs; i++) {
17872                     addr = IGU_REG_PROD_CONS_MEMORY +
17873                             (prod_offset + i) * 4;
17874                     REG_WR(sc, addr, 0);
17875                 }
17876                 /* send consumer update with value 0 */
17877                 bxe_ack_sb(sc, sc->igu_base_sb + sb_idx,
17878                            USTORM_ID, 0, IGU_INT_NOP, 1);
17879                 bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx);
17880             }
17881 
17882             /* default-status-blocks */
17883             num_segs = CHIP_INT_MODE_IS_BC(sc) ?
17884                 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
17885 
17886             if (CHIP_IS_MODE_4_PORT(sc))
17887                 dsb_idx = SC_FUNC(sc);
17888             else
17889                 dsb_idx = SC_VN(sc);
17890 
17891             prod_offset = (CHIP_INT_MODE_IS_BC(sc) ?
17892                        IGU_BC_BASE_DSB_PROD + dsb_idx :
17893                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
17894 
17895             /*
17896              * igu prods come in chunks of E1HVN_MAX (4) -
17897              * does not matters what is the current chip mode
17898              */
17899             for (i = 0; i < (num_segs * E1HVN_MAX);
17900                  i += E1HVN_MAX) {
17901                 addr = IGU_REG_PROD_CONS_MEMORY +
17902                             (prod_offset + i)*4;
17903                 REG_WR(sc, addr, 0);
17904             }
17905             /* send consumer update with 0 */
17906             if (CHIP_INT_MODE_IS_BC(sc)) {
17907                 bxe_ack_sb(sc, sc->igu_dsb_id,
17908                            USTORM_ID, 0, IGU_INT_NOP, 1);
17909                 bxe_ack_sb(sc, sc->igu_dsb_id,
17910                            CSTORM_ID, 0, IGU_INT_NOP, 1);
17911                 bxe_ack_sb(sc, sc->igu_dsb_id,
17912                            XSTORM_ID, 0, IGU_INT_NOP, 1);
17913                 bxe_ack_sb(sc, sc->igu_dsb_id,
17914                            TSTORM_ID, 0, IGU_INT_NOP, 1);
17915                 bxe_ack_sb(sc, sc->igu_dsb_id,
17916                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
17917             } else {
17918                 bxe_ack_sb(sc, sc->igu_dsb_id,
17919                            USTORM_ID, 0, IGU_INT_NOP, 1);
17920                 bxe_ack_sb(sc, sc->igu_dsb_id,
17921                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
17922             }
17923             bxe_igu_clear_sb(sc, sc->igu_dsb_id);
17924 
17925             /* !!! these should become driver const once
17926                rf-tool supports split-68 const */
17927             REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
17928             REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
17929             REG_WR(sc, IGU_REG_SB_MASK_LSB, 0);
17930             REG_WR(sc, IGU_REG_SB_MASK_MSB, 0);
17931             REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0);
17932             REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0);
17933         }
17934     }
17935 
17936     /* Reset PCIE errors for debug */
17937     REG_WR(sc, 0x2114, 0xffffffff);
17938     REG_WR(sc, 0x2120, 0xffffffff);
17939 
17940     if (CHIP_IS_E1x(sc)) {
17941         main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
17942         main_mem_base = HC_REG_MAIN_MEMORY +
17943                 SC_PORT(sc) * (main_mem_size * 4);
17944         main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
17945         main_mem_width = 8;
17946 
17947         val = REG_RD(sc, main_mem_prty_clr);
17948         if (val) {
17949             BLOGD(sc, DBG_LOAD,
17950                   "Parity errors in HC block during function init (0x%x)!\n",
17951                   val);
17952         }
17953 
17954         /* Clear "false" parity errors in MSI-X table */
17955         for (i = main_mem_base;
17956              i < main_mem_base + main_mem_size * 4;
17957              i += main_mem_width) {
17958             bxe_read_dmae(sc, i, main_mem_width / 4);
17959             bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data),
17960                            i, main_mem_width / 4);
17961         }
17962         /* Clear HC parity attention */
17963         REG_RD(sc, main_mem_prty_clr);
17964     }
17965 
17966 #if 1
17967     /* Enable STORMs SP logging */
17968     REG_WR8(sc, BAR_USTRORM_INTMEM +
17969            USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
17970     REG_WR8(sc, BAR_TSTRORM_INTMEM +
17971            TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
17972     REG_WR8(sc, BAR_CSTRORM_INTMEM +
17973            CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
17974     REG_WR8(sc, BAR_XSTRORM_INTMEM +
17975            XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
17976 #endif
17977 
17978     elink_phy_probe(&sc->link_params);
17979 
17980     return (0);
17981 }
17982 
17983 static void
17984 bxe_link_reset(struct bxe_softc *sc)
17985 {
17986     if (!BXE_NOMCP(sc)) {
17987 	bxe_acquire_phy_lock(sc);
17988         elink_lfa_reset(&sc->link_params, &sc->link_vars);
17989 	bxe_release_phy_lock(sc);
17990     } else {
17991         if (!CHIP_REV_IS_SLOW(sc)) {
17992             BLOGW(sc, "Bootcode is missing - cannot reset link\n");
17993         }
17994     }
17995 }
17996 
17997 static void
17998 bxe_reset_port(struct bxe_softc *sc)
17999 {
18000     int port = SC_PORT(sc);
18001     uint32_t val;
18002 
18003     /* reset physical Link */
18004     bxe_link_reset(sc);
18005 
18006     REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
18007 
18008     /* Do not rcv packets to BRB */
18009     REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
18010     /* Do not direct rcv packets that are not for MCP to the BRB */
18011     REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
18012                NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
18013 
18014     /* Configure AEU */
18015     REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
18016 
18017     DELAY(100000);
18018 
18019     /* Check for BRB port occupancy */
18020     val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
18021     if (val) {
18022         BLOGD(sc, DBG_LOAD,
18023               "BRB1 is not empty, %d blocks are occupied\n", val);
18024     }
18025 
18026     /* TODO: Close Doorbell port? */
18027 }
18028 
18029 static void
18030 bxe_ilt_wr(struct bxe_softc *sc,
18031            uint32_t         index,
18032            bus_addr_t       addr)
18033 {
18034     int reg;
18035     uint32_t wb_write[2];
18036 
18037     if (CHIP_IS_E1(sc)) {
18038         reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
18039     } else {
18040         reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
18041     }
18042 
18043     wb_write[0] = ONCHIP_ADDR1(addr);
18044     wb_write[1] = ONCHIP_ADDR2(addr);
18045     REG_WR_DMAE(sc, reg, wb_write, 2);
18046 }
18047 
18048 static void
18049 bxe_clear_func_ilt(struct bxe_softc *sc,
18050                    uint32_t         func)
18051 {
18052     uint32_t i, base = FUNC_ILT_BASE(func);
18053     for (i = base; i < base + ILT_PER_FUNC; i++) {
18054         bxe_ilt_wr(sc, i, 0);
18055     }
18056 }
18057 
18058 static void
18059 bxe_reset_func(struct bxe_softc *sc)
18060 {
18061     struct bxe_fastpath *fp;
18062     int port = SC_PORT(sc);
18063     int func = SC_FUNC(sc);
18064     int i;
18065 
18066     /* Disable the function in the FW */
18067     REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
18068     REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
18069     REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
18070     REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
18071 
18072     /* FP SBs */
18073     FOR_EACH_ETH_QUEUE(sc, i) {
18074         fp = &sc->fp[i];
18075         REG_WR8(sc, BAR_CSTRORM_INTMEM +
18076                 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
18077                 SB_DISABLED);
18078     }
18079 
18080     /* SP SB */
18081     REG_WR8(sc, BAR_CSTRORM_INTMEM +
18082             CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
18083             SB_DISABLED);
18084 
18085     for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) {
18086         REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0);
18087     }
18088 
18089     /* Configure IGU */
18090     if (sc->devinfo.int_block == INT_BLOCK_HC) {
18091         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18092         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18093     } else {
18094         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18095         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18096     }
18097 
18098     if (CNIC_LOADED(sc)) {
18099         /* Disable Timer scan */
18100         REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
18101         /*
18102          * Wait for at least 10ms and up to 2 second for the timers
18103          * scan to complete
18104          */
18105         for (i = 0; i < 200; i++) {
18106             DELAY(10000);
18107             if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4))
18108                 break;
18109         }
18110     }
18111 
18112     /* Clear ILT */
18113     bxe_clear_func_ilt(sc, func);
18114 
18115     /*
18116      * Timers workaround bug for E2: if this is vnic-3,
18117      * we need to set the entire ilt range for this timers.
18118      */
18119     if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) {
18120         struct ilt_client_info ilt_cli;
18121         /* use dummy TM client */
18122         memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
18123         ilt_cli.start = 0;
18124         ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
18125         ilt_cli.client_num = ILT_CLIENT_TM;
18126 
18127         ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR);
18128     }
18129 
18130     /* this assumes that reset_port() called before reset_func()*/
18131     if (!CHIP_IS_E1x(sc)) {
18132         bxe_pf_disable(sc);
18133     }
18134 
18135     sc->dmae_ready = 0;
18136 }
18137 
18138 static int
18139 bxe_gunzip_init(struct bxe_softc *sc)
18140 {
18141     return (0);
18142 }
18143 
18144 static void
18145 bxe_gunzip_end(struct bxe_softc *sc)
18146 {
18147     return;
18148 }
18149 
18150 static int
18151 bxe_init_firmware(struct bxe_softc *sc)
18152 {
18153     if (CHIP_IS_E1(sc)) {
18154         ecore_init_e1_firmware(sc);
18155         sc->iro_array = e1_iro_arr;
18156     } else if (CHIP_IS_E1H(sc)) {
18157         ecore_init_e1h_firmware(sc);
18158         sc->iro_array = e1h_iro_arr;
18159     } else if (!CHIP_IS_E1x(sc)) {
18160         ecore_init_e2_firmware(sc);
18161         sc->iro_array = e2_iro_arr;
18162     } else {
18163         BLOGE(sc, "Unsupported chip revision\n");
18164         return (-1);
18165     }
18166 
18167     return (0);
18168 }
18169 
18170 static void
18171 bxe_release_firmware(struct bxe_softc *sc)
18172 {
18173     /* Do nothing */
18174     return;
18175 }
18176 
18177 static int
18178 ecore_gunzip(struct bxe_softc *sc,
18179              const uint8_t    *zbuf,
18180              int              len)
18181 {
18182     /* XXX : Implement... */
18183     BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n");
18184     return (FALSE);
18185 }
18186 
18187 static void
18188 ecore_reg_wr_ind(struct bxe_softc *sc,
18189                  uint32_t         addr,
18190                  uint32_t         val)
18191 {
18192     bxe_reg_wr_ind(sc, addr, val);
18193 }
18194 
18195 static void
18196 ecore_write_dmae_phys_len(struct bxe_softc *sc,
18197                           bus_addr_t       phys_addr,
18198                           uint32_t         addr,
18199                           uint32_t         len)
18200 {
18201     bxe_write_dmae_phys_len(sc, phys_addr, addr, len);
18202 }
18203 
18204 void
18205 ecore_storm_memset_struct(struct bxe_softc *sc,
18206                           uint32_t         addr,
18207                           size_t           size,
18208                           uint32_t         *data)
18209 {
18210     uint8_t i;
18211     for (i = 0; i < size/4; i++) {
18212         REG_WR(sc, addr + (i * 4), data[i]);
18213     }
18214 }
18215 
18216 
18217 /*
18218  * character device - ioctl interface definitions
18219  */
18220 
18221 
18222 #include "bxe_dump.h"
18223 #include "bxe_ioctl.h"
18224 #include <sys/conf.h>
18225 
18226 static int bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
18227                 struct thread *td);
18228 
18229 static struct cdevsw bxe_cdevsw = {
18230     .d_version = D_VERSION,
18231     .d_ioctl = bxe_eioctl,
18232     .d_name = "bxecnic",
18233 };
18234 
18235 #define BXE_PATH(sc)    (CHIP_IS_E1x(sc) ? 0 : (sc->pcie_func & 1))
18236 
18237 
18238 #define DUMP_ALL_PRESETS        0x1FFF
18239 #define DUMP_MAX_PRESETS        13
18240 #define IS_E1_REG(chips)        ((chips & DUMP_CHIP_E1) == DUMP_CHIP_E1)
18241 #define IS_E1H_REG(chips)       ((chips & DUMP_CHIP_E1H) == DUMP_CHIP_E1H)
18242 #define IS_E2_REG(chips)        ((chips & DUMP_CHIP_E2) == DUMP_CHIP_E2)
18243 #define IS_E3A0_REG(chips)      ((chips & DUMP_CHIP_E3A0) == DUMP_CHIP_E3A0)
18244 #define IS_E3B0_REG(chips)      ((chips & DUMP_CHIP_E3B0) == DUMP_CHIP_E3B0)
18245 
18246 #define IS_REG_IN_PRESET(presets, idx)  \
18247                 ((presets & (1 << (idx-1))) == (1 << (idx-1)))
18248 
18249 
18250 static int
18251 bxe_get_preset_regs_len(struct bxe_softc *sc, uint32_t preset)
18252 {
18253     if (CHIP_IS_E1(sc))
18254         return dump_num_registers[0][preset-1];
18255     else if (CHIP_IS_E1H(sc))
18256         return dump_num_registers[1][preset-1];
18257     else if (CHIP_IS_E2(sc))
18258         return dump_num_registers[2][preset-1];
18259     else if (CHIP_IS_E3A0(sc))
18260         return dump_num_registers[3][preset-1];
18261     else if (CHIP_IS_E3B0(sc))
18262         return dump_num_registers[4][preset-1];
18263     else
18264         return 0;
18265 }
18266 
18267 static int
18268 bxe_get_total_regs_len32(struct bxe_softc *sc)
18269 {
18270     uint32_t preset_idx;
18271     int regdump_len32 = 0;
18272 
18273 
18274     /* Calculate the total preset regs length */
18275     for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) {
18276         regdump_len32 += bxe_get_preset_regs_len(sc, preset_idx);
18277     }
18278 
18279     return regdump_len32;
18280 }
18281 
18282 static const uint32_t *
18283 __bxe_get_page_addr_ar(struct bxe_softc *sc)
18284 {
18285     if (CHIP_IS_E2(sc))
18286         return page_vals_e2;
18287     else if (CHIP_IS_E3(sc))
18288         return page_vals_e3;
18289     else
18290         return NULL;
18291 }
18292 
18293 static uint32_t
18294 __bxe_get_page_reg_num(struct bxe_softc *sc)
18295 {
18296     if (CHIP_IS_E2(sc))
18297         return PAGE_MODE_VALUES_E2;
18298     else if (CHIP_IS_E3(sc))
18299         return PAGE_MODE_VALUES_E3;
18300     else
18301         return 0;
18302 }
18303 
18304 static const uint32_t *
18305 __bxe_get_page_write_ar(struct bxe_softc *sc)
18306 {
18307     if (CHIP_IS_E2(sc))
18308         return page_write_regs_e2;
18309     else if (CHIP_IS_E3(sc))
18310         return page_write_regs_e3;
18311     else
18312         return NULL;
18313 }
18314 
18315 static uint32_t
18316 __bxe_get_page_write_num(struct bxe_softc *sc)
18317 {
18318     if (CHIP_IS_E2(sc))
18319         return PAGE_WRITE_REGS_E2;
18320     else if (CHIP_IS_E3(sc))
18321         return PAGE_WRITE_REGS_E3;
18322     else
18323         return 0;
18324 }
18325 
18326 static const struct reg_addr *
18327 __bxe_get_page_read_ar(struct bxe_softc *sc)
18328 {
18329     if (CHIP_IS_E2(sc))
18330         return page_read_regs_e2;
18331     else if (CHIP_IS_E3(sc))
18332         return page_read_regs_e3;
18333     else
18334         return NULL;
18335 }
18336 
18337 static uint32_t
18338 __bxe_get_page_read_num(struct bxe_softc *sc)
18339 {
18340     if (CHIP_IS_E2(sc))
18341         return PAGE_READ_REGS_E2;
18342     else if (CHIP_IS_E3(sc))
18343         return PAGE_READ_REGS_E3;
18344     else
18345         return 0;
18346 }
18347 
18348 static bool
18349 bxe_is_reg_in_chip(struct bxe_softc *sc, const struct reg_addr *reg_info)
18350 {
18351     if (CHIP_IS_E1(sc))
18352         return IS_E1_REG(reg_info->chips);
18353     else if (CHIP_IS_E1H(sc))
18354         return IS_E1H_REG(reg_info->chips);
18355     else if (CHIP_IS_E2(sc))
18356         return IS_E2_REG(reg_info->chips);
18357     else if (CHIP_IS_E3A0(sc))
18358         return IS_E3A0_REG(reg_info->chips);
18359     else if (CHIP_IS_E3B0(sc))
18360         return IS_E3B0_REG(reg_info->chips);
18361     else
18362         return 0;
18363 }
18364 
18365 static bool
18366 bxe_is_wreg_in_chip(struct bxe_softc *sc, const struct wreg_addr *wreg_info)
18367 {
18368     if (CHIP_IS_E1(sc))
18369         return IS_E1_REG(wreg_info->chips);
18370     else if (CHIP_IS_E1H(sc))
18371         return IS_E1H_REG(wreg_info->chips);
18372     else if (CHIP_IS_E2(sc))
18373         return IS_E2_REG(wreg_info->chips);
18374     else if (CHIP_IS_E3A0(sc))
18375         return IS_E3A0_REG(wreg_info->chips);
18376     else if (CHIP_IS_E3B0(sc))
18377         return IS_E3B0_REG(wreg_info->chips);
18378     else
18379         return 0;
18380 }
18381 
18382 /**
18383  * bxe_read_pages_regs - read "paged" registers
18384  *
18385  * @bp          device handle
18386  * @p           output buffer
18387  *
18388  * Reads "paged" memories: memories that may only be read by first writing to a
18389  * specific address ("write address") and then reading from a specific address
18390  * ("read address"). There may be more than one write address per "page" and
18391  * more than one read address per write address.
18392  */
18393 static void
18394 bxe_read_pages_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset)
18395 {
18396     uint32_t i, j, k, n;
18397 
18398     /* addresses of the paged registers */
18399     const uint32_t *page_addr = __bxe_get_page_addr_ar(sc);
18400     /* number of paged registers */
18401     int num_pages = __bxe_get_page_reg_num(sc);
18402     /* write addresses */
18403     const uint32_t *write_addr = __bxe_get_page_write_ar(sc);
18404     /* number of write addresses */
18405     int write_num = __bxe_get_page_write_num(sc);
18406     /* read addresses info */
18407     const struct reg_addr *read_addr = __bxe_get_page_read_ar(sc);
18408     /* number of read addresses */
18409     int read_num = __bxe_get_page_read_num(sc);
18410     uint32_t addr, size;
18411 
18412     for (i = 0; i < num_pages; i++) {
18413         for (j = 0; j < write_num; j++) {
18414             REG_WR(sc, write_addr[j], page_addr[i]);
18415 
18416             for (k = 0; k < read_num; k++) {
18417                 if (IS_REG_IN_PRESET(read_addr[k].presets, preset)) {
18418                     size = read_addr[k].size;
18419                     for (n = 0; n < size; n++) {
18420                         addr = read_addr[k].addr + n*4;
18421                         *p++ = REG_RD(sc, addr);
18422                     }
18423                 }
18424             }
18425         }
18426     }
18427     return;
18428 }
18429 
18430 
18431 static int
18432 bxe_get_preset_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset)
18433 {
18434     uint32_t i, j, addr;
18435     const struct wreg_addr *wreg_addr_p = NULL;
18436 
18437     if (CHIP_IS_E1(sc))
18438         wreg_addr_p = &wreg_addr_e1;
18439     else if (CHIP_IS_E1H(sc))
18440         wreg_addr_p = &wreg_addr_e1h;
18441     else if (CHIP_IS_E2(sc))
18442         wreg_addr_p = &wreg_addr_e2;
18443     else if (CHIP_IS_E3A0(sc))
18444         wreg_addr_p = &wreg_addr_e3;
18445     else if (CHIP_IS_E3B0(sc))
18446         wreg_addr_p = &wreg_addr_e3b0;
18447     else
18448         return (-1);
18449 
18450     /* Read the idle_chk registers */
18451     for (i = 0; i < IDLE_REGS_COUNT; i++) {
18452         if (bxe_is_reg_in_chip(sc, &idle_reg_addrs[i]) &&
18453             IS_REG_IN_PRESET(idle_reg_addrs[i].presets, preset)) {
18454             for (j = 0; j < idle_reg_addrs[i].size; j++)
18455                 *p++ = REG_RD(sc, idle_reg_addrs[i].addr + j*4);
18456         }
18457     }
18458 
18459     /* Read the regular registers */
18460     for (i = 0; i < REGS_COUNT; i++) {
18461         if (bxe_is_reg_in_chip(sc, &reg_addrs[i]) &&
18462             IS_REG_IN_PRESET(reg_addrs[i].presets, preset)) {
18463             for (j = 0; j < reg_addrs[i].size; j++)
18464                 *p++ = REG_RD(sc, reg_addrs[i].addr + j*4);
18465         }
18466     }
18467 
18468     /* Read the CAM registers */
18469     if (bxe_is_wreg_in_chip(sc, wreg_addr_p) &&
18470         IS_REG_IN_PRESET(wreg_addr_p->presets, preset)) {
18471         for (i = 0; i < wreg_addr_p->size; i++) {
18472             *p++ = REG_RD(sc, wreg_addr_p->addr + i*4);
18473 
18474             /* In case of wreg_addr register, read additional
18475                registers from read_regs array
18476              */
18477             for (j = 0; j < wreg_addr_p->read_regs_count; j++) {
18478                 addr = *(wreg_addr_p->read_regs);
18479                 *p++ = REG_RD(sc, addr + j*4);
18480             }
18481         }
18482     }
18483 
18484     /* Paged registers are supported in E2 & E3 only */
18485     if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
18486         /* Read "paged" registers */
18487         bxe_read_pages_regs(sc, p, preset);
18488     }
18489 
18490     return 0;
18491 }
18492 
18493 int
18494 bxe_grc_dump(struct bxe_softc *sc)
18495 {
18496     int rval = 0;
18497     uint32_t preset_idx;
18498     uint8_t *buf;
18499     uint32_t size;
18500     struct  dump_header *d_hdr;
18501     uint32_t i;
18502     uint32_t reg_val;
18503     uint32_t reg_addr;
18504     uint32_t cmd_offset;
18505     int context_size;
18506     int allocated;
18507     struct ecore_ilt *ilt = SC_ILT(sc);
18508     struct bxe_fastpath *fp;
18509     struct ilt_client_info *ilt_cli;
18510     int grc_dump_size;
18511 
18512 
18513     if (sc->grcdump_done || sc->grcdump_started)
18514 	return (rval);
18515 
18516     sc->grcdump_started = 1;
18517     BLOGI(sc, "Started collecting grcdump\n");
18518 
18519     grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
18520                 sizeof(struct  dump_header);
18521 
18522     sc->grc_dump = malloc(grc_dump_size, M_DEVBUF, M_NOWAIT);
18523 
18524     if (sc->grc_dump == NULL) {
18525         BLOGW(sc, "Unable to allocate memory for grcdump collection\n");
18526         return(ENOMEM);
18527     }
18528 
18529 
18530 
18531     /* Disable parity attentions as long as following dump may
18532      * cause false alarms by reading never written registers. We
18533      * will re-enable parity attentions right after the dump.
18534      */
18535 
18536     /* Disable parity on path 0 */
18537     bxe_pretend_func(sc, 0);
18538 
18539     ecore_disable_blocks_parity(sc);
18540 
18541     /* Disable parity on path 1 */
18542     bxe_pretend_func(sc, 1);
18543     ecore_disable_blocks_parity(sc);
18544 
18545     /* Return to current function */
18546     bxe_pretend_func(sc, SC_ABS_FUNC(sc));
18547 
18548     buf = sc->grc_dump;
18549     d_hdr = sc->grc_dump;
18550 
18551     d_hdr->header_size = (sizeof(struct  dump_header) >> 2) - 1;
18552     d_hdr->version = BNX2X_DUMP_VERSION;
18553     d_hdr->preset = DUMP_ALL_PRESETS;
18554 
18555     if (CHIP_IS_E1(sc)) {
18556         d_hdr->dump_meta_data = DUMP_CHIP_E1;
18557     } else if (CHIP_IS_E1H(sc)) {
18558         d_hdr->dump_meta_data = DUMP_CHIP_E1H;
18559     } else if (CHIP_IS_E2(sc)) {
18560         d_hdr->dump_meta_data = DUMP_CHIP_E2 |
18561                 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
18562     } else if (CHIP_IS_E3A0(sc)) {
18563         d_hdr->dump_meta_data = DUMP_CHIP_E3A0 |
18564                 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
18565     } else if (CHIP_IS_E3B0(sc)) {
18566         d_hdr->dump_meta_data = DUMP_CHIP_E3B0 |
18567                 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
18568     }
18569 
18570     buf += sizeof(struct  dump_header);
18571 
18572     for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) {
18573 
18574         /* Skip presets with IOR */
18575         if ((preset_idx == 2) || (preset_idx == 5) || (preset_idx == 8) ||
18576             (preset_idx == 11))
18577             continue;
18578 
18579         rval = bxe_get_preset_regs(sc, (uint32_t *)buf, preset_idx);
18580 
18581 	if (rval)
18582             break;
18583 
18584         size = bxe_get_preset_regs_len(sc, preset_idx) * (sizeof (uint32_t));
18585 
18586         buf += size;
18587     }
18588 
18589     bxe_pretend_func(sc, 0);
18590     ecore_clear_blocks_parity(sc);
18591     ecore_enable_blocks_parity(sc);
18592 
18593     bxe_pretend_func(sc, 1);
18594     ecore_clear_blocks_parity(sc);
18595     ecore_enable_blocks_parity(sc);
18596 
18597     /* Return to current function */
18598     bxe_pretend_func(sc, SC_ABS_FUNC(sc));
18599 
18600 
18601     context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc));
18602     for (i = 0, allocated = 0; allocated < context_size; i++) {
18603 
18604         BLOGI(sc, "cdu_context i %d paddr %#jx vaddr %p size 0x%zx\n", i,
18605             (uintmax_t)sc->context[i].vcxt_dma.paddr,
18606             sc->context[i].vcxt_dma.vaddr,
18607             sc->context[i].size);
18608         allocated += sc->context[i].size;
18609     }
18610     BLOGI(sc, "fw stats start_paddr %#jx end_paddr %#jx vaddr %p size 0x%x\n",
18611         (uintmax_t)sc->fw_stats_req_mapping,
18612         (uintmax_t)sc->fw_stats_data_mapping,
18613         sc->fw_stats_req, (sc->fw_stats_req_size + sc->fw_stats_data_size));
18614     BLOGI(sc, "def_status_block paddr %p vaddr %p size 0x%zx\n",
18615         (void *)sc->def_sb_dma.paddr, sc->def_sb,
18616         sizeof(struct host_sp_status_block));
18617     BLOGI(sc, "event_queue paddr %#jx vaddr %p size 0x%x\n",
18618         (uintmax_t)sc->eq_dma.paddr, sc->eq_dma.vaddr, BCM_PAGE_SIZE);
18619     BLOGI(sc, "slow path paddr %#jx vaddr %p size 0x%zx\n",
18620         (uintmax_t)sc->sp_dma.paddr, sc->sp_dma.vaddr,
18621         sizeof(struct bxe_slowpath));
18622     BLOGI(sc, "slow path queue paddr %#jx vaddr %p size 0x%x\n",
18623         (uintmax_t)sc->spq_dma.paddr, sc->spq_dma.vaddr, BCM_PAGE_SIZE);
18624     BLOGI(sc, "fw_buf paddr %#jx vaddr %p size 0x%x\n",
18625         (uintmax_t)sc->gz_buf_dma.paddr, sc->gz_buf_dma.vaddr,
18626         FW_BUF_SIZE);
18627     for (i = 0; i < sc->num_queues; i++) {
18628         fp = &sc->fp[i];
18629         BLOGI(sc, "FP status block fp %d paddr %#jx vaddr %p size 0x%zx\n", i,
18630             (uintmax_t)fp->sb_dma.paddr, fp->sb_dma.vaddr,
18631             sizeof(union bxe_host_hc_status_block));
18632         BLOGI(sc, "TX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
18633             (uintmax_t)fp->tx_dma.paddr, fp->tx_dma.vaddr,
18634             (BCM_PAGE_SIZE * TX_BD_NUM_PAGES));
18635         BLOGI(sc, "RX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
18636             (uintmax_t)fp->rx_dma.paddr, fp->rx_dma.vaddr,
18637             (BCM_PAGE_SIZE * RX_BD_NUM_PAGES));
18638         BLOGI(sc, "RX RCQ CHAIN fp %d paddr %#jx vaddr %p size 0x%zx\n", i,
18639             (uintmax_t)fp->rcq_dma.paddr, fp->rcq_dma.vaddr,
18640             (BCM_PAGE_SIZE * RCQ_NUM_PAGES));
18641         BLOGI(sc, "RX SGE CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
18642             (uintmax_t)fp->rx_sge_dma.paddr, fp->rx_sge_dma.vaddr,
18643             (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES));
18644     }
18645 
18646     ilt_cli = &ilt->clients[1];
18647     for (i = ilt_cli->start; i <= ilt_cli->end; i++) {
18648         BLOGI(sc, "ECORE_ILT paddr %#jx vaddr %p size 0x%x\n",
18649             (uintmax_t)(((struct bxe_dma *)((&ilt->lines[i])->page))->paddr),
18650             ((struct bxe_dma *)((&ilt->lines[i])->page))->vaddr, BCM_PAGE_SIZE);
18651     }
18652 
18653 
18654     cmd_offset = DMAE_REG_CMD_MEM;
18655     for (i = 0; i < 224; i++) {
18656         reg_addr = (cmd_offset +(i * 4));
18657         reg_val = REG_RD(sc, reg_addr);
18658         BLOGI(sc, "DMAE_REG_CMD_MEM i=%d reg_addr 0x%x reg_val 0x%08x\n",i,
18659             reg_addr, reg_val);
18660     }
18661 
18662 
18663     BLOGI(sc, "Collection of grcdump done\n");
18664     sc->grcdump_done = 1;
18665     return(rval);
18666 }
18667 
18668 static int
18669 bxe_add_cdev(struct bxe_softc *sc)
18670 {
18671     sc->eeprom = malloc(BXE_EEPROM_MAX_DATA_LEN, M_DEVBUF, M_NOWAIT);
18672 
18673     if (sc->eeprom == NULL) {
18674         BLOGW(sc, "Unable to alloc for eeprom size buffer\n");
18675         return (-1);
18676     }
18677 
18678     sc->ioctl_dev = make_dev(&bxe_cdevsw,
18679                             sc->ifp->if_dunit,
18680                             UID_ROOT,
18681                             GID_WHEEL,
18682                             0600,
18683                             "%s",
18684                             if_name(sc->ifp));
18685 
18686     if (sc->ioctl_dev == NULL) {
18687         free(sc->eeprom, M_DEVBUF);
18688         sc->eeprom = NULL;
18689         return (-1);
18690     }
18691 
18692     sc->ioctl_dev->si_drv1 = sc;
18693 
18694     return (0);
18695 }
18696 
18697 static void
18698 bxe_del_cdev(struct bxe_softc *sc)
18699 {
18700     if (sc->ioctl_dev != NULL)
18701         destroy_dev(sc->ioctl_dev);
18702 
18703     if (sc->eeprom != NULL) {
18704         free(sc->eeprom, M_DEVBUF);
18705         sc->eeprom = NULL;
18706     }
18707     sc->ioctl_dev = NULL;
18708 
18709     return;
18710 }
18711 
18712 static bool bxe_is_nvram_accessible(struct bxe_softc *sc)
18713 {
18714 
18715     if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) == 0)
18716         return FALSE;
18717 
18718     return TRUE;
18719 }
18720 
18721 
18722 static int
18723 bxe_wr_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len)
18724 {
18725     int rval = 0;
18726 
18727     if(!bxe_is_nvram_accessible(sc)) {
18728         BLOGW(sc, "Cannot access eeprom when interface is down\n");
18729         return (-EAGAIN);
18730     }
18731     rval = bxe_nvram_write(sc, offset, (uint8_t *)data, len);
18732 
18733 
18734    return (rval);
18735 }
18736 
18737 static int
18738 bxe_rd_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len)
18739 {
18740     int rval = 0;
18741 
18742     if(!bxe_is_nvram_accessible(sc)) {
18743         BLOGW(sc, "Cannot access eeprom when interface is down\n");
18744         return (-EAGAIN);
18745     }
18746     rval = bxe_nvram_read(sc, offset, (uint8_t *)data, len);
18747 
18748    return (rval);
18749 }
18750 
18751 static int
18752 bxe_eeprom_rd_wr(struct bxe_softc *sc, bxe_eeprom_t *eeprom)
18753 {
18754     int rval = 0;
18755 
18756     switch (eeprom->eeprom_cmd) {
18757 
18758     case BXE_EEPROM_CMD_SET_EEPROM:
18759 
18760         rval = copyin(eeprom->eeprom_data, sc->eeprom,
18761                        eeprom->eeprom_data_len);
18762 
18763         if (rval)
18764             break;
18765 
18766         rval = bxe_wr_eeprom(sc, sc->eeprom, eeprom->eeprom_offset,
18767                        eeprom->eeprom_data_len);
18768         break;
18769 
18770     case BXE_EEPROM_CMD_GET_EEPROM:
18771 
18772         rval = bxe_rd_eeprom(sc, sc->eeprom, eeprom->eeprom_offset,
18773                        eeprom->eeprom_data_len);
18774 
18775         if (rval) {
18776             break;
18777         }
18778 
18779         rval = copyout(sc->eeprom, eeprom->eeprom_data,
18780                        eeprom->eeprom_data_len);
18781         break;
18782 
18783     default:
18784             rval = EINVAL;
18785             break;
18786     }
18787 
18788     if (rval) {
18789         BLOGW(sc, "ioctl cmd %d  failed rval %d\n", eeprom->eeprom_cmd, rval);
18790     }
18791 
18792     return (rval);
18793 }
18794 
18795 static int
18796 bxe_get_settings(struct bxe_softc *sc, bxe_dev_setting_t *dev_p)
18797 {
18798     uint32_t ext_phy_config;
18799     int port = SC_PORT(sc);
18800     int cfg_idx = bxe_get_link_cfg_idx(sc);
18801 
18802     dev_p->supported = sc->port.supported[cfg_idx] |
18803             (sc->port.supported[cfg_idx ^ 1] &
18804             (ELINK_SUPPORTED_TP | ELINK_SUPPORTED_FIBRE));
18805     dev_p->advertising = sc->port.advertising[cfg_idx];
18806     if(sc->link_params.phy[bxe_get_cur_phy_idx(sc)].media_type ==
18807         ELINK_ETH_PHY_SFP_1G_FIBER) {
18808         dev_p->supported = ~(ELINK_SUPPORTED_10000baseT_Full);
18809         dev_p->advertising &= ~(ADVERTISED_10000baseT_Full);
18810     }
18811     if ((sc->state == BXE_STATE_OPEN) && sc->link_vars.link_up &&
18812         !(sc->flags & BXE_MF_FUNC_DIS)) {
18813         dev_p->duplex = sc->link_vars.duplex;
18814         if (IS_MF(sc) && !BXE_NOMCP(sc))
18815             dev_p->speed = bxe_get_mf_speed(sc);
18816         else
18817             dev_p->speed = sc->link_vars.line_speed;
18818     } else {
18819         dev_p->duplex = DUPLEX_UNKNOWN;
18820         dev_p->speed = SPEED_UNKNOWN;
18821     }
18822 
18823     dev_p->port = bxe_media_detect(sc);
18824 
18825     ext_phy_config = SHMEM_RD(sc,
18826                          dev_info.port_hw_config[port].external_phy_config);
18827     if((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) ==
18828         PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
18829         dev_p->phy_address =  sc->port.phy_addr;
18830     else if(((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) !=
18831             PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
18832         ((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) !=
18833             PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
18834         dev_p->phy_address = ELINK_XGXS_EXT_PHY_ADDR(ext_phy_config);
18835     else
18836         dev_p->phy_address = 0;
18837 
18838     if(sc->link_params.req_line_speed[cfg_idx] == ELINK_SPEED_AUTO_NEG)
18839         dev_p->autoneg = AUTONEG_ENABLE;
18840     else
18841        dev_p->autoneg = AUTONEG_DISABLE;
18842 
18843 
18844     return 0;
18845 }
18846 
18847 static int
18848 bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
18849         struct thread *td)
18850 {
18851     struct bxe_softc    *sc;
18852     int                 rval = 0;
18853     device_t            pci_dev;
18854     bxe_grcdump_t       *dump = NULL;
18855     int grc_dump_size;
18856     bxe_drvinfo_t   *drv_infop = NULL;
18857     bxe_dev_setting_t  *dev_p;
18858     bxe_dev_setting_t  dev_set;
18859     bxe_get_regs_t  *reg_p;
18860     bxe_reg_rdw_t *reg_rdw_p;
18861     bxe_pcicfg_rdw_t *cfg_rdw_p;
18862     bxe_perm_mac_addr_t *mac_addr_p;
18863 
18864 
18865     if ((sc = (struct bxe_softc *)dev->si_drv1) == NULL)
18866         return ENXIO;
18867 
18868     pci_dev= sc->dev;
18869 
18870     dump = (bxe_grcdump_t *)data;
18871 
18872     switch(cmd) {
18873 
18874         case BXE_GRC_DUMP_SIZE:
18875             dump->pci_func = sc->pcie_func;
18876             dump->grcdump_size =
18877                 (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
18878                      sizeof(struct  dump_header);
18879             break;
18880 
18881         case BXE_GRC_DUMP:
18882 
18883             grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
18884                                 sizeof(struct  dump_header);
18885             if ((!sc->trigger_grcdump) || (dump->grcdump == NULL) ||
18886                 (dump->grcdump_size < grc_dump_size)) {
18887                 rval = EINVAL;
18888                 break;
18889             }
18890 
18891             if((sc->trigger_grcdump) && (!sc->grcdump_done) &&
18892                 (!sc->grcdump_started)) {
18893                 rval =  bxe_grc_dump(sc);
18894             }
18895 
18896             if((!rval) && (sc->grcdump_done) && (sc->grcdump_started) &&
18897                 (sc->grc_dump != NULL))  {
18898                 dump->grcdump_dwords = grc_dump_size >> 2;
18899                 rval = copyout(sc->grc_dump, dump->grcdump, grc_dump_size);
18900                 free(sc->grc_dump, M_DEVBUF);
18901                 sc->grc_dump = NULL;
18902                 sc->grcdump_started = 0;
18903                 sc->grcdump_done = 0;
18904             }
18905 
18906             break;
18907 
18908         case BXE_DRV_INFO:
18909             drv_infop = (bxe_drvinfo_t *)data;
18910             snprintf(drv_infop->drv_name, BXE_DRV_NAME_LENGTH, "%s", "bxe");
18911             snprintf(drv_infop->drv_version, BXE_DRV_VERSION_LENGTH, "v:%s",
18912                 BXE_DRIVER_VERSION);
18913             snprintf(drv_infop->mfw_version, BXE_MFW_VERSION_LENGTH, "%s",
18914                 sc->devinfo.bc_ver_str);
18915             snprintf(drv_infop->stormfw_version, BXE_STORMFW_VERSION_LENGTH,
18916                 "%s", sc->fw_ver_str);
18917             drv_infop->eeprom_dump_len = sc->devinfo.flash_size;
18918             drv_infop->reg_dump_len =
18919                 (bxe_get_total_regs_len32(sc) * sizeof(uint32_t))
18920                     + sizeof(struct  dump_header);
18921             snprintf(drv_infop->bus_info, BXE_BUS_INFO_LENGTH, "%d:%d:%d",
18922                 sc->pcie_bus, sc->pcie_device, sc->pcie_func);
18923             break;
18924 
18925         case BXE_DEV_SETTING:
18926             dev_p = (bxe_dev_setting_t *)data;
18927             bxe_get_settings(sc, &dev_set);
18928             dev_p->supported = dev_set.supported;
18929             dev_p->advertising = dev_set.advertising;
18930             dev_p->speed = dev_set.speed;
18931             dev_p->duplex = dev_set.duplex;
18932             dev_p->port = dev_set.port;
18933             dev_p->phy_address = dev_set.phy_address;
18934             dev_p->autoneg = dev_set.autoneg;
18935 
18936             break;
18937 
18938         case BXE_GET_REGS:
18939 
18940             reg_p = (bxe_get_regs_t *)data;
18941             grc_dump_size = reg_p->reg_buf_len;
18942 
18943             if((!sc->grcdump_done) && (!sc->grcdump_started)) {
18944                 bxe_grc_dump(sc);
18945             }
18946             if((sc->grcdump_done) && (sc->grcdump_started) &&
18947                 (sc->grc_dump != NULL))  {
18948                 rval = copyout(sc->grc_dump, reg_p->reg_buf, grc_dump_size);
18949                 free(sc->grc_dump, M_DEVBUF);
18950                 sc->grc_dump = NULL;
18951                 sc->grcdump_started = 0;
18952                 sc->grcdump_done = 0;
18953             }
18954 
18955             break;
18956 
18957         case BXE_RDW_REG:
18958             reg_rdw_p = (bxe_reg_rdw_t *)data;
18959             if((reg_rdw_p->reg_cmd == BXE_READ_REG_CMD) &&
18960                 (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT))
18961                 reg_rdw_p->reg_val = REG_RD(sc, reg_rdw_p->reg_id);
18962 
18963             if((reg_rdw_p->reg_cmd == BXE_WRITE_REG_CMD) &&
18964                 (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT))
18965                 REG_WR(sc, reg_rdw_p->reg_id, reg_rdw_p->reg_val);
18966 
18967             break;
18968 
18969         case BXE_RDW_PCICFG:
18970             cfg_rdw_p = (bxe_pcicfg_rdw_t *)data;
18971             if(cfg_rdw_p->cfg_cmd == BXE_READ_PCICFG) {
18972 
18973                 cfg_rdw_p->cfg_val = pci_read_config(sc->dev, cfg_rdw_p->cfg_id,
18974                                          cfg_rdw_p->cfg_width);
18975 
18976             } else if(cfg_rdw_p->cfg_cmd == BXE_WRITE_PCICFG) {
18977                 pci_write_config(sc->dev, cfg_rdw_p->cfg_id, cfg_rdw_p->cfg_val,
18978                             cfg_rdw_p->cfg_width);
18979             } else {
18980                 BLOGW(sc, "BXE_RDW_PCICFG ioctl wrong cmd passed\n");
18981             }
18982             break;
18983 
18984         case BXE_MAC_ADDR:
18985             mac_addr_p = (bxe_perm_mac_addr_t *)data;
18986             snprintf(mac_addr_p->mac_addr_str, sizeof(sc->mac_addr_str), "%s",
18987                 sc->mac_addr_str);
18988             break;
18989 
18990         case BXE_EEPROM:
18991             rval = bxe_eeprom_rd_wr(sc, (bxe_eeprom_t *)data);
18992             break;
18993 
18994 
18995         default:
18996             break;
18997     }
18998 
18999     return (rval);
19000 }
19001